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(mention informatique)

par

Hrishikesh Dhondge

Composition du jury

Président : Julie Thompson DR CNRS, Strasbourg

Rapporteurs : Olga Kalinina Professeur, Université de Sarrebruck
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Chapter 1. Introduction

Computational biology has accelerated the pace of advancements in biological
sciences. It has opened up new areas of research including data organization,
integration, modelling and simulating biological systems, and prediction of
interactions between two biomolecules to help us understand the mechanisms of
biological processes, especially diseases, and discover therapeutics. The classical
goals of computational biology are to distinguish between noise and signals, obtain
and quantify trends, and put these together, so that we are able to figure out how
the information flows, how the processes are regulated, and what goes wrong in
disease [Nussinov, 2013]. More advanced goals consist in designing new molecules
and therapeutic approaches, by modelling and simulation methods taking
advantage of accumulated knowledge [Hosseinzadeh et al., 2017, Coluzza, 2017]. In
any case, computational biology remains a pluridisciplinary field in which
computer science results need to be confronted to experimental validation.

1.1 Central Dogma of Molecular Biology

The flow of genetic information is explained by the fundamental theory of central
dogma developed by Francis Crick in 1958. The central dogma suggests that DNA
contains the information needed to make all of our proteins, and that RNA is a
messenger that carries this information to the ribosomes, where the information is
‘translated’ into the functional product, protein (Figure 1.1).

Figure 1.1: Central dogma of molecular biology, flow of information between DNA,
RNA and protein.

Protein’s functions are best understood when particular domains are found in their
structure. A protein domain is generally defined as a conserved structure identified
by conserved residues in a multiple sequence alignment across different types of
proteins often sharing similar functions. Moreover, it is generally assumed that the
protein domains can fold independently from the rest of the protein [Batey and
Clarke, 2008].
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1.2. The importance of RNA Recognition Motif

While RNA was originally believed to be only a carrier of genetic information, this
belief was challenged by subsequent work from recent years with discoveries of
both new classes of RNAs (e.g., noncoding RNAs) and new RNA-based
mechanisms of gene regulation (e.g., microRNA and RNAi silencing) [Holt and
Schuman, 2013]. This increased the understanding of many fascinating
mechanisms of RNA and of its role as a central player in cellular regulation. A
large number of proteins capable of binding to and regulating RNA help facilitate
RNA function. RNA-binding proteins (RBPs) regulate numerous aspects of co-
and post-transcriptional gene expression (including RNA splicing, polyadenylation,
capping, modification, export, localization, translation and turnover).
Sequence-specific associations between RBPs and their RNA targets are typically
mediated by one or more RNA-binding domains (RBDs), such as the RNA
recognition motif (RRM) and hnRNP K-homology (KH) domain [Ray et al.,
2013].

1.2 The importance of RNA Recognition

Motif

In eukaryotes, the RNA recognition motif is one of the most abundant protein
domains. In humans, 497 proteins containing at least one RRM have been identified.
Assuming about 20000 - 25000 human genes, the RRM would therefore be present
in about 2% of gene products. RRMs are well-studied and are extremely versatile in
their RNA recognition capability, which can even be modulated allosterically [Ryder
et al., 2012]. RRM domains often occur in multi-domain RBPs, with their modular
association allowing the recognition of separate RNA motifs that are sequentially
remote [Maris et al., 2005]. A protein domain in such abundance is necessarily
biologically important and associated with many functions in the cell. The RRM
domain plays an important role in several key biological processes including post-
transcriptional gene regulation, formation of amyloid-like aggregates [Berchowitz
et al., 2015], abnormal cell proliferation [Chen et al., 2019], maintenance of stem
cells and telomerase activity [Xie et al., 2021]. The engineering of these RRMs
have many applications for the creation of new synthetic biological pathways and
for the discovery of new treatments for RNA-asssociated diseases [Shotwell et al.,
2020].

RNAct is an MSCA-ITN1 project with a research focus of designing novel RRM
proteins for exploitation in synthetic biology and bio-analytics. Ten Early Stage
Researchers (ESRs) have combined computational and experimental methods to
achieve this goal within the RNAct project (Figure 1.2). I am ESR3 within the
RNAct project, focusing mainly on the diversity and characterization of RRM
domains using computational techniques.

Understanding RNA binding is essential for designing RRM that can inhibit or bind
to specific RNAs. To understand the RNA binding patterns of RRM domain, it is
necessary to collect and analyze all the available information about RRMs. While
several studies have been carried out trying to decipher the RNA binding code
for single and multi-RRM domains [Birney et al., 1993, Allain et al., 1996, Bauer

1Marie Sk lodowska-Curie Innovative Training Network
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Chapter 1. Introduction

Figure 1.2: Overview of the work packages (WP) and ESR involvement within the
RNAct project. Image by W. Vranken taken from the RNAct application.

et al., 2012, Lukavsky et al., 2013, Wang et al., 2014], there are very few successful
examples of RRM design [Blakeley and McNaughton, 2014, Chen et al., 2016]. The
reason behind this is likely because RRM domains bind RNA with diverse and less
predictable binding modes and specificities compared to other RBPs.
Thus, it is important to study and understand the diversity displayed by RRM
domains and their binding modes to successfully design novel RRM domain with
desired activity.

1.3 Thesis Aims and Contributions

This thesis aims to describe the diversity of RRM domains and of their binding
modes to RNA based on experimental reports, and to exploit such data for
deciphering the RRM-RNA recognition code and for improving modeling of
RRM-RNA complexes. Figure 1.3 illustrates the various steps of this work.

Chapter 2 covers a general introduction to protein sequences and structures,
protein alignments, protein domains, protein functions, and protein-RNA
interactions. Moreover, this chapter helps to understand the state of the art
methods and resources that will be useful for this thesis.

A key step in this work consisted in developing a complete and comprehensive
database with RRM information. This database stores domain information from
domain databases, sequence information from UniProt, structural information
from Protein Data Bank (PDB), and binding information retrieved from literature.
The collected data was analyzed to study the diversity of RRM which helped us to
differentiate the RRM fold from the non-RRM fold. The database provides an easy
way to explore and exploit the existing knowledge about the RNA binding
capacity of RRM domains. Chapter 3 describes a new database called ‘InteR3M’
(Interactions of RNA and RNA Recognition Motif) including it’s design,
implementation and data collection procedures.

Different generalist domain databases employ different classification systems
leading to inconsistent data for a given domain type. For example, domain families
corresponding to the same type of domain in two different databases may not
contain the same domain instances. We encountered such inconsistencies during
the data collection procedure for the InteR3M database. To solve this problem, we
developed the ‘CroMaSt’ workflow for assessing domain classification by
cross-mapping of structural instances between protein domain databases. Our

4



1.3. Thesis Aims and Contributions

cross-mapping approach provides an easy way to identify the domains classified by
only one classification system and not the other. Further analysis of these domains
(classified by only one method) can lead us to identify wrongly classified domains
or the domains not recognized by a method. Chapter 4 presents the CroMaSt
workflow including the details for conceptualization and implementation of the
method, and usage for RRM domain type.

Figure 1.3: My role from computational perspective within the RNAct project.
The dotted boxes represent chapters of this thesis. The dashed lines indicate
experimental tasks within the RNAct project.
∗ indicates the collaboration with other ESRs within the RNAct project.

Chapter 5 describes the computational approaches developed using the data from
InteR3M database. The sequence and structural data stored in the database can
be used to generate an alignment covering all the RRM domains. With the help of
an alignment, one can easily explore and retrieve the residue-specific characteristics
from the RRM domain. The RRM alignment and binding information can be used
jointly to identify the residues from interface and different binding modes of RRM
leading towards the better understanding of RRM binding patterns (Section 5.2).
Moreover, other computational approaches, like modeling 3D structures of RRM
from sequences and modeling RRM-RNA 3D complexes, can be developed using
information from this database. Such modeling approaches can be used to bridge
the gap between RRM sequences and available structures. We can start with testing
of a simple comparative modeling approach to model the 3D structures of RRM from
the sequence. In the frame of RRM-RNA modeling, the goal of this objective is to
model diverse structures of an RRM from a given sequence so that at least few
structures will be close to the RNA-bound form of the RRM (Section 5.3).
The resulting 3D structures of an RRM can be used to model RRM-RNA complexes
by docking protocols. In addition, we can incorporate the binding information stored
in the database into the docking protocol (data-driven approach) (Section 5.4).
Then the modelled 3D structures of RRM-RNA complexes can be evaluated further
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Chapter 1. Introduction

to distinguish between strongly bound and weakly bound RRM-RNA complexes
(Section 5.5).

At the end, Chapter 6 summarises the contributions of this thesis, and it presents
some future possible developments along with scientific prospects.
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Chapter 2. Structural Bioinformatics of RRM: State of the art

2.1 Proteins Bioinformatics

Proteins are one of the main macromolecular components of life and are central
players in the myriad of cellular functions in all living organisms. Proteins are
responsible for nearly every task of cellular life, including cell shape and inner
organization, product manufacture and waste cleanup, and routine maintenance.
Proteins also receive signals from outside the cell and mobilize intracellular
response. They are the workhorse macromolecules of the cell and are as diverse as
the functions they serve.

2.1.1 Protein sequence

Proteins are made up of a sequence of amino acids translated from the sequence of
nucleotides in a gene. In total, there are 20 naturally occurring amino acids in living
organisms that create all the proteins. Each amino acid corresponds to a triplet of
nucleotides according to the genetic code [Crick, 1968]. Every amino acid has an
acidic carboxyl group, a basic amino group and a variable R group (side-chain)
(Figure 2.1a).

(a) Amino Acid structure (b) Formation of Peptide Bond

Figure 2.1: The amino acid structure and formation of peptide bond between two
amino acids.

The amino acids are bound together by a peptide bond, in which the carboxyl
group from one amino acid joins the amino group of another amino acid with a loss
of water molecule (Figure 2.1b). Multiple amino acids are added in similar way
next to each other to form a complete protein. Thus, protein has two ends, one with
free amino group called N-terminus and the other with a free carboxyl group called
C-terminus.

Universal Protein Knowledgebase (UniProtKB): The Universal Protein
KnowledgeBase (UniProtKB) is the main publicly available resource for protein
sequences and associated metadata [The-UniProt-Consortium, 2023]. UniProtKB
is the central resource that combines a reviewed protein set from
UniProtKB/Swiss-Prot and an unreviewed protein set from UniProtKB/TrEMBL,
which gathers all possible protein sequences translated from all sequenced genomes
so far.
All the protein entries from Swiss-Prot are linked to a summary of experimentally
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2.1. Proteins Bioinformatics

verified, or computationally predicted, functional information added by the
experts, whereas all the protein entries from TrEMBL are annotated
computationally by automated systems.
UniProtKB integrates data from other resources to add biological knowledge,
making the UniProtKB a central hub for proteins. In addition, UniProtKB
provides links to all those external resources from which the information was
integrated.
The UniProtKB release 2023 01 contains a total of 246,440,937 entries.
UniProtKB/Swiss-Prot contains 569,213 sequence entries, curated from 291,046
unique literature references, whereas UniProtKB/TrEMBL contains a total of
245,871,724 sequence entries.

2.1.2 The Four Levels of Protein Structure

The specific sequence of amino acids in a protein determines its unique structure
at different levels, i.e. primary, secondary, tertiary and quaternary structure. The
primary structure of a protein is its linear sequence of amino acids. The secondary
structure of a protein refers to regular, local structures of the protein backbone,
stabilised by intra-molecular and sometimes inter-molecular hydrogen bonds.
Common types of secondary structures are alpha helix and beta sheets. The
tertiary structure is the overall three-dimensional shape of the protein determined
by interactions like hydrogen bonding, ionic interactions, van der Waals forces, and
hydrophobic packing. The quaternary structure of the protein is the arrangement
of multiple polypeptide chains in a structural assembly (protein complex) formed
by the interactions between these subunits (Figure 2.2).

(a) Primary Structure (b) Secondary Structure

(c) Tertiary Structure (d) Quaternary Structure

Figure 2.2: Structural levels of proteins.
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Experimental Methods to Study Protein Structure

Several techniques can be used to study 3D structure of proteins, including X-ray
crystallography, nuclear magnetic resonance (NMR) spectroscopy, and cryo-electron
microscopy (cryo-EM). These techniques allow to determine the precise position of
all the atoms present in a protein, which can provide valuable insights into protein’s
function.

X-ray Crystallography: X-ray crystallography can provide very detailed atomic
information, showing every heavy atom in a protein or nucleic acid along with atomic
details of ligands, inhibitors, ions, and other molecules that are incorporated into the
crystal. The protein is purified and crystallized, then the formed crystal is subjected
to an intense beam of X-rays. The molecules in the crystal diffract the X-ray into
a characteristic pattern of spots. These spots are then analyzed to determine the
distribution of electrons in the protein, resulting in electron density map. This
electron density map is interpreted to determine the location of each atom.

NMR Spectroscopy: NMR spectroscopy is used to determine the structure of
proteins in solution rather than locked in a crystal or bound. To determine the
coordinates of each atom from protein, the protein is labelled with an isotope (15N,
13C, or deuterium), then purified, placed in a strong magnetic field, and then probed
with radio waves. A distinctive set of observed resonances may be analyzed to give
a list of atomic nuclei that are close to one another, and to characterize the local
conformation of atoms that are bonded together. This list of restraints is then used
to build a model of the protein that shows the location of each atom.
As large proteins present problems with overlapping peaks in the NMR spectra, this
method is limited to small or medium proteins.

Electron Microscopy (EM): EM is used to determine 3D structures of large
macromolecular assemblies. A beam of electrons and a system of electron lenses
is used to image the biomolecular particles directly. The most commonly used
technique today involves imaging of many thousands of different single particles
preserved in a thin layer of non-crystalline ice (cryo-EM). Provided these views
show the molecule in myriad different orientations, a computational approach akin
to that used for computerized axial tomography (CAT) scans in medicine will yield a
3D mass density map. With a sufficient number of single particles, the 3D electron
microscopy (3DEM) maps can then be interpreted by fitting an atomic model of
the macromolecule into the map, just as macromolecular crystallographers interpret
their electron density maps [Zardecki et al., 2022].

Results from experimental studies of protein 3D structure determination are stored
in a dedicated database, the Protein Data Bank (PDB). This data resource serves
as the single most comprehensive repository for archiving protein 3D structures
and provides valuable 3D structural data to support a wide range of scientific
investigations.

Protein Data Bank (PDB) is a core data resource serving as the single global
repository for atomic-level, 3D structural data of experimentally determined
structures of biomolecules including their complexes with metal ions, drugs, and
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other small molecules [Berman et al., 2007]. Since 2003, the PDB has been
managed jointly by the Worldwide Protein Data Bank (wwPDB) consortium to
ensure universal open access and compliance with FAIR1 principles. The wwPDB
consortium includes US Research Collaboratory for Structural Bioinformatics
Protein Data Bank (RCSB PDB) [Burley et al., 2021], Protein Data Bank in
Europe (PDBe) [Armstrong et al., 2020], Protein Data Bank Japan
(PDBj) [Bekker et al., 2022], and Biological Magnnetic Resonance Bank
(BMRB) [Hoch et al., 2023].
As of 14-March-2023, the PDB contains 202,292 3D structures, 61,535 of which are
from human sequences and 15,736 are structures containing nucleic acid.

2.1.3 Protein Alignments

Protein alignments attempt to establish residue-to-residue correspondence between
two (pairwise) or more (multiple) proteins.

Why to align Proteins? Protein alignments have a wide range of applications
including phylogenetic analysis, similarity search, function prediction etc. There
are many algorithms and tools developed for each type of alignment over the past
few years but the scope of this section is not to review the complete landscape of
protein alignment tools. In particular we focused only on multiple protein
alignment tools.
A set of proteins can be aligned either using sequence-based alignments
(MUSCLE, T-coffee, Clustal Omega) or structure-based alignments (Kpax,
FATCAT), or by incorporating sequence and structural information together
(PROMALS3D, Expresso).
All of the above-mentioned alignments result into aligned sequences from input
proteins with or without additional information like alignment score, sequence
similarity, or superimposed structures.

Sequence-based Alignments

An alignment between two protein sequences is calculated by optimizing the
alignment scoring function. The alignment score is usually a sum of the gap
penalties that depend linearly on the gap lengths, and the pairwise substitution
scores that depend on the matched residue types [Marti-Renom et al., 2004].
The sequence-based alignments can be performed through sequence-to-sequence
alignments, sequence-to-profile alignments, or profile-to-profile alignments. A
protein sequence profile lists the preference for all the 20 standard amino acid
residue types at each position in a given multiple sequence alignment.

Clustal Family: Clustal family is comprised of a series of tools, starting from
Clustal V [Griffin et al., 1994], Clustal W [Thompson et al., 1994], Clustal
X [Thompson et al., 1997], to Clustal Omega [Sievers et al., 2011], to align protein
and nucleic acid sequences. Clustal Omega is the latest addition to the Clustal
family. Clustal Omega produces multiple sequence alignments using seeded guide
trees and hidden markov model (HMM) profile-profile alignments. It supports

1Findable, Accessible, Interoperable, Reusable
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alignments of protein, DNA, and RNA. Clustal Omega can also add sequences to
an existing alignment. Clustal Omega uses a modified version of
mBed [Blackshields et al., 2010] to produces guide trees that are just as accurate
as those from conventional methods. In addition, it uses HHalign [Söding, 2005]
for aligning HMM profiles that led Clustal Omega to achieve higher accuracy than
earlier programs from the Clustal family [Sievers et al., 2011].

T-coffee: T-coffee (Tree-based Consistency Objective Function for alignment
Evaluation) is a multiple sequence alignment tool that can align protein, DNA and
RNA sequences. T-coffee pre-processes a data set of global and local pairwise
alignments between the input sequences (using ClustalW [Thompson et al., 1994]
and Lalign [Huang and Miller, 1991] programs, respectively) resulting in a library
of alignment information to guide the progressive alignment. Thus, T-coffee uses
this approach of combining local and global pairwise alignments to generate the
final multiple alignments [Notredame et al., 2000].

MUSCLE: MUSCLE (MUltiple Sequence Comparison by Log-Expectation) is a
program for creating multiple alignments of protein sequences. MUSCLE uses a
progressive approach to align sequences by constructing a guide tree to estimate
evolutionary relationships among the sequences. MUSCLE aligns a set of sequences
in two stages using k mer and Kimura distances, respectively. In the first stage, the
guide tree is built by computing the pairwise distances between all sequences using
the k-mer distance metric. A k mer is a contiguous subsequence of length k. The
k mer distance does not require an alignment, improving the speed significantly. In
second stage, MUSCLE reestimates the guide tree using Kimura distance. For each
aligned pair of sequences, MUSCLE computes the Kimura distance that will be used
to produce binary tree using Unweighted Pair Group Method with Arithmetic Mean
(UPGMA). MUSCLE uses this guide tree to guide the alignment, first aligning the
two closest sequences in the guide tree and then proceeds to align the remaining
sequences one by one [Edgar, 2004].

All these three programs are included in the EMBL-EBI sequence analysis
tools [Madeira et al., 2022] and available at
https://www.ebi.ac.uk/Tools/msa/.

Structure-based Alignments

Structure-based alignments does not need any prior knowledge of equivalent pair
of residues, hence does not rely on the sequence alignment and the type of residues
is ignored when the correspondence is established. Protein structural alignment
can be either rigid or flexible. Rigid structural alignment does not allow any atoms
in the protein structures to move relative to each other, so the alignment is
performed by rotating and translating the entire protein structure as a single rigid
body. The flexible alignment allows the rotations and translations between atoms
of one structure making it possible to effectively align and compare protein
structures even if they underwent structural rearrangements.

FATCAT webserver: The FATCAT structure alignment is formulated as an
AFP (aligned fragment pair) chaining process, allowing flexibility in connecting
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them. Aligned fragment pair is defined as a match of two fragments, one from each
structure. A rotation and/or translation is introduced between two consecutive
AFPs if it results in a substantially better superposition of the structures.
FATCAT integrates simple extensions, gaps and twists into a unified scoring
function and performs the alignment and hinge detection simultaneously using
dynamic programming. Several post-processing steps are applied to refine the
alignments. The significance of the similarity detected by FATCAT is evaluated by
a P-value that measures the chance of getting the same similarity in two random
structures [Ye and Godzik, 2004].

TM-align: TM-align is an algorithm to align protein structures pairwise. For
two input protein structures, TM-align first generates optimized residue-to-residue
alignment based on structural similarity using heuristic dynamic programming
iterations. An optimal superposition of the two structures built on the detected
alignment, as well as the TM-score value which scales the structural similarity, will
be returned. TM-score is a metric for assessing the topological similarity of protein
structures [Zhang and Skolnick, 2005].

PDBeFold: PDBefold is a structure alignment tool which can perform both
pairwise and multiple structural alignments. PDBeFold assumes that multiple
alignment preserves the connectivity of the structural elements and aims to
identify optimal alignment for these structural elements. Structural element is
defined as one or more secondary structural elements (SSE) found in a certain
geometrical orientation with regard to each other and ordered in the same way
along the protein sequence. The Q-score is used to evaluate the quality of pairwise
alignments and guide the selection of SSEs that should be excluded from
consideration [Krissinel and Henrick, 2005].

Kpax: Kpax uses gaussian overlap functions to score the local and spatial
environment of each amino acid residue in a protein using dynamic programming
approach to find the optimal global alignment for proteins based on their gaussian
similarity scores. Kpax uses multiple Cα coordinate systems and a Gaussian
peptide fragment scoring scheme to provide a sensitive structural similarity score.
Kpax provides the functionalities to create a custom database for a set of given
structures, and allows large structure databases to be searched or queried rapidly.
Users can choose between rigid or flexible and pairwise or multiple structural
alignments [Ritchie, 2016]. By default, this tool provides several metrics to assess
the resulting alignments.

Alignments incorporating sequence and structural information

PROMALS3D: PROMALS3D (PROfile Multiple Alignment with predicted
Local Structures and 3D constraints) is a progressive method that clusters similar
sequences for easy alignments and applies more elaborate techniques to align the
relatively divergent clusters. In the first alignment stage, PROMALS3D aligns
similar sequences using a scoring function of weighted sum-of-pairs of BLOSUM62
scores. The first stage is fast and results in a number of pre-aligned groups that
are relatively distant from each other. In the second alignment stage, one
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representative sequence is selected for each group, and submitted to PSI-BLAST
searches to retrieve additional homologs from UNIREF90 database and to
PSIPRED secondary structure prediction. Then, an HMM of profile-profile
alignments with predicted secondary structures is applied to pairs of
representatives to obtain posterior probabilities of residue matches. These
probabilities serve as sequence-based constraints that are combined with
constraints derived from homologs with 3D structures or user-defined alignment
constraints to derive a probabilistic consistency scoring function. The
representative sequences are progressively aligned using such a consistency scoring
function, and the pre-aligned groups obtained in the first stage are merged into the
alignment of representatives to form the final multiple alignment of all
sequences [Pei et al., 2008].

2.2 Protein Classification and Domain

Databases

2.2.1 The concept of protein domain

A protein domain can be considered as an abstract class derived from the
properties shared by multiple instances, where each instance is a well defined
structural region of a protein. The protein domain class, from a sequence
perspective, can be captured by a given HMM or PSSM (Position Specific Scoring
Matrix) profile, generally called ‘signature’ (even with varying sequence length).
From a structural perspective, it shares a common topology or fold but the size
may vary in different instances. From a functional perspective, most often it
associates with a specific, definitive function in the protein.
Domain instances can be characterized by the sequences of the corresponding
proteins annotated with start and end positional boundaries. Each domain
instance may have one or more 3D structures, i.e. domain structural instances
abbreviated as StIs and further described in chapter 4.

There are several resources available that provide information about different protein
domain types and their classification. In the rest of this thesis, we will use the term
“domain” for the abstract class representing the set of domain instances satisfying
the domain signature. All the domain databases can be grouped into three categories
depending on the rationale used for classification.

2.2.2 Sequence-based classification

Among sequence-based domain databases, Pfam is certainly one of the most
comprehensive resources.

Pfam database: Pfam classification starts with a seed alignment for a
representative set of sequences. Structural data, when available, are used during
the curation step to align domain boundaries with those provided by
structure-based classification, such as SCOP [Bateman et al., 2002] or CATH [Finn
et al., 2014]. Then, an HMM (Hidden Markov Model) profile is built based on the
seed alignment which is then used to retrieve a full set of sequences matching this
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domain from the UniProt reference proteomes, thus producing the Pfam entry full
alignment. Pfam classifies all of the entries in one of the six ways:

1. Family: Collection of related protein regions

2. Domain: A structural unit

3. Repeat: A short unit which is unstable in isolation but forms a stable
structure when multiple copies are present

4. Motifs: A short unit found outside globular domains

5. Coiled-Coil: Regions that predominantly contain coiled-coil motifs, regions
that typically contain alpha-helices that are coiled together in bundles of 2-7

6. Disordered: Regions that are conserved, yet are either shown or predicted
to contain bias sequence composition and/or are intrinsically disordered (non-
globular).

Sets of Pfam entries that are thought to be evolutionarily related are grouped
together into clans. This grouping is based on sequence similarity, structural
similarity, functional similarity and/or profile-profile comparisons [Mistry et al.,
2021].

2.2.3 Structure-based classification

SCOP database: The SCOP database aims to provide a detailed and
comprehensive description of the structural and evolutionary relationships between
proteins whose three-dimensional structure is known and deposited in the PDB.
The classification of proteins in SCOP has been constructed mainly manually by
visual inspection and analysis. In SCOP, entries are protein domains identified in
PDB structures and organized into families and superfamilies and finally into
structural folds and classes reflecting their secondary structure content. Domain
boundaries are provided at both family and superfamily levels as the evolutionary
relationships can sometimes span regions of different size between closely related
proteins (family level) and more distantly related protein domains (superfamily
level). In brief, the family domain boundaries can define conserved multi-domain
regions whereas the superfamily domains span over the individual domains. The
curated cross-references are indicated at the family level from SCOP to Pfam
database in many cases [Andreeva et al., 2020]. SCOP2, a successor to the SCOP
database was introduced in 2014 [Andreeva et al., 2014].

CATH database: The CATH project has developed a semi-automatic
procedure to split 3D structures into the constituent domains defined as
semi-independently folding globular units. These domains are then clustered into
homologous superfamilies based on evolutionary relationships. The sequences of
the CATH structural domains are then used to build HMM profiles in order to
identify the domains in UniProt protein sequences for which no 3D structure is
available. This effort is shared with the sister resource Gene3D. The lowest level of
CATH is H for Homologous superfamilies and CATH provides structural
superpositions of all representative domains of a superfamily. However,
superfamilies can be sub-divided in functionally coherent groups named Functional
Families (FunFams). Recently, CATH has created an additional class for
non-globular domains [Sillitoe et al., 2021].
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2.2.4 Integrated classification

InterPro database: InterPro is an integrated resource of predictive models or
‘signatures’ representing protein domains, families, regions, repeats and sites from
major protein signature databases including CATH-Gene3D, HAMAP,
PANTHER, Pfam, PIRSF, PRINTS, PROSITE, SMART, SUPERFAMILY and
TIGRFAMs. Thus, InterPro aims to combine the individual strength of each
protein domain database without building domain models itself. Quality control is
performed at InterPro when integrating new signatures by checking whether such
signatures generate false positive matches. Hierarchical relationships are identified
between InterPro entries to represent subfamilies displaying specific functions
within larger families, or specific subclasses within certain classes of domains. The
InterProScan software regularly calculates InterPro signature matches to
UniProtKB [Blum et al., 2021].

CDD: The CDD (Conserved Domain Database) is a protein annotation resource
that consists of a collection of well-annotated multiple sequence alignment models
for domains and full-length proteins obtained from both NCBI projects (NCBI
Protein Clusters collection, NCBIfam, CDD itself) and external sources (Pfam,
SMART, COG, TIGRFAMs). These models are available as position-specific score
matrices (PSSMs) for fast identification of conserved domains in protein sequences
via RPS-BLAST (Reversed Position Specific BLAST). Within CDD, the NCBIfam
curated domains use 3D structure information to define domain boundaries
explicitly and provide insights into sequence/structure/function relationships.
CDD shares domain models with InterPro and contributes to enlarge InterPro
with specific subfamilies [Lu et al., 2020].

2.3 RNA-binding domains and available

resources

RNA-binding domains are often in contact with only a few nucleotides, but there
can be multiple RNA-binding domains within a single protein. The different
categories of RNA-binding proteins (RBPs) and their structural specificities are
presented below.

2.3.1 Different RNA Binding Domains

RRM Domain: RRM (RNA Recognition Motif) is the most abundant RNA
binding domain and present in about 2% of gene products in human [Maris et al.,
2005]. This domain can also interact with ssDNA and other protein partners,
allowing it to perform various biological function [Cléry and Allain, 2012]. RRM
domains are generally 90 amino acids long in sequence with two conserved motifs
RNP1 and RNP2 consisting of 8 and 6 amino acids, respectively. The RNP1 and
RNP2 consensus sequences are (R/K)-G-(F/Y)-(G/A)-(F/Y)-V-X-(F/Y) and
(L/I)-(F/Y)-(V/I)-X-(N/G)-L, located on β3 and β1 sheets, respectively. An
example of RRM domain is illustrated in Figure 2.3 with the topology from PDBe

16



2.3. RNA-binding domains and available resources

Topology Viewer module2. RRM domains often occur in multi-domain RBPs, with
their modular association allowing the recognition of separate RNA motifs that are
sequentially remote [Maris et al., 2005].
A protein domain in such abundance is necessarily biologically important and
associated with many functions in the cell. The RRM domain plays an important
role in several key biological processes including post-transcriptional gene
regulation, translation repression for meiosis activation in yeast [Berchowitz et al.,
2015], abnormal cell proliferation [Chen et al., 2019], maintenance of stem cells and
telomerase activity [Xie et al., 2021].

(a) Structure of RRM domain with conserved
RNP sequences

β2
β4β3 β1

α2

α1

(b) Topology of RRM domain

Figure 2.3: Typical characteristics of RRM domain illustrated with PDB entry
2MSS (Musashi1 RBD2, NMR). The amino acids of conserved motives RNP1
(RGFGFVTF) and RNP2 (IFVGGL) present in β3 and β1 segments, respectively
have been indicated

KH Domain: The KH (K Homology) domain is of approximately 70 amino acids
and typically found in multiple copies. There are two different versions of the KH
motif, named type I and type II KH folds. Both type I and type II share a minimal
KH motif (β1α1α2β2), in addition to an extra α and β strand [Valverde et al.,
2008].

Pumilio Homology Domain: This domain generally consists of eight 36 amino
acids long repeats. The complete domain forms a curved structure allowing

2https://github.com/PDBeurope/pdb-topology-viewer
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interaction with 8 to 10 nucleotides. Due to the very good understanding of the
interaction between these domains and RNAs, it is possible to artificially create
these domains to bind specific sequences of RNA [Zhou et al., 2021, Wang et al.,
2002].

Zinc Finger Domain: A typical Zinc finger domain is about 30 amino acids long
with a ββα protein fold in which a β-hairpin is pinned with an α helix by a Zn2+ ion.
In a protein, there may be several copies of zinc finger domains, which are frequently
arranged in groups or clusters of tandem repeats [Brayer and Segal, 2008].

2.3.2 Available databases for RNA-binding domains

RBPDB: RBPDB (database of RNA-binding protein specificities) is a collection
of RNA-binding proteins linked to a curated database of published observations
of RNA binding. The data in RBPDB is separated into two sets: proteins and
experiments. Each experiment is an observation of RNA-protein binding to a single
sequence (e.g. in a gel shift or UC cross-linking experiment) or many sequences (e.g.
a SELEX or RIP-chip experiment). Each experiment is linked to a single RNA-
binding protein. RBPDB contains binding information of 1141 RBPs including 414
from Humans.

RNAct: RNAct computes Protein-RNA interaction propensity scores using
catRAPID algorithm [Bellucci et al., 2011] with the fragmentation procedure. For
each protein-RNA pair, the fragment with the maximum interaction propensity
score is used to assess overall binding ability. The catRAPID method was trained
on X-ray and NMR data, not on recent high-throughput data. The agreement
between the original catRAPID approach and the eCLIP experiments
[Van Nostrand et al., 2016] is strong (AUC=0.72). Currently, the RNAct covers
human protein-RNA interactome with 20778 proteins and 199330 RNA transcripts
[Lang et al., 2019].

POSTAR: POSTAR3 is a comprehensive database for exploring
POST-trAnscriptional Regulation based on high-throughput sequencing data from
7 species, including human, mouse, zebrafish, fly, worm, Arabidopsis, and yeast.
POSTAR3, previously known as CLIPdb, describes the RBP-RNA interactions
based on publicly available CLIP-seq data sets for 351 RBPs with their domains,
Gene Ontologies, binding sequence motifs, structural preferences, and binding
sites. The CLIPdb module provides various annotations for the RNA-binding
proteins, including RNA recognition domains, Gene Ontology, sequence motifs,
and structural preferences. All the binding sites for the query RNA-binding
protein and expression level for the target genes are also included. [Zhao et al.,
2022]

RRMdb: The RRMdb (RNA Recognition Motif database) is an
evolution-oriented database of RNA recognition motif sequences, published in 2019
but that is no more available on the web. The RRMdb was compiled from 57,000
collected representative RRM domain sequences, classified into 415 families.
A representative set of RRM core domain sequences (consisting of the
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β1α1β2β3α2β4 regions) was constructed from the SCOP and Pfam databases.
The representative set was searched against the NCBI non-redundant protein
database using PSI-BLAST, and the resulting sequences were filtered to 90%
sequence identity using CD-HIT. This yields in a database of 57471 sequences. All
these sequences were clustered into 415 families based on all-vs.-all BLAST
comparisons using the Markov Cluster (MCL algorithm). A multiple sequence
alignment was generated for each family using MUSCLE [Edgar, 2004], and
calculated a Hidden Markov Model (HMM) using hhmake after manual corrections
in alignment. A network was generated from these HMM models where the nodes
represent RRM families and edges denote significant similarities between them.
[Nowacka et al., 2019]

2.4 Protein-RNA complexes

2.4.1 Molecular Interactions

Molecular recognition is a term used to describe the selective binding between two
or more molecules that is mediated by noncovalent interactions. Non-covalent
interactions are relatively weak interactions formed between molecules that do not
involve the complete sharing of electrons [Daze and Hof, 2016]. The function of
proteins is determined at some level by their ability to form intra- or
intermolecular non-covalent interactions. There are many different noncovalent
interactions.

van-der-Waals interactions: These interactions arise when any two atoms
approach each other closely, and create a weak, nonspecific attractive force. These
nonspecific interactions result from the momentary random fluctuations in the
distribution of the electrons of any atom, which give rise to a transient unequal
distribution of electrons, that is, a transient electric dipole. If two non-covalently
bonded atoms are close enough together, the transient dipole in one atom will
perturb the electron cloud of the other. This perturbation generates a transient
dipole in the second atom, and the two dipoles will attract each other weakly.

Ionic Bond: Ionic Bond is a strong non-covalent attraction between 2 charged
molecules, a negatively charged (anion) and a positively charged (cation). As the
ionic bonds involve fully-charged molecules, they’re stronger than other non-covalent
interactions like van der Waals interactions which only involve attractions between
temporary charges.

Hydrogen Bond: The hydrogen bond is the attractive interaction between a
hydrogen atom that is attached to a more electronegative (donor) atom and an
acceptor atom bearing electrons available for sharing. Hydrogen bonds between
hydrogen atom and nitrogen/oxygen atoms are most common in nature.

Cation-π Interaction: These interactions are attractive force between a
positively charged cation and a negatively charged cloud of π systems [Dougherty,
2013]. The π electron cloud is formed by an aromatic ring that occurs in
sidechains of aromatic amino acids or the nitrogenous base from nucleotides.
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(a) Cation-π Interaction (b) π-π Interaction

Figure 2.4: π stacking interactions

π-π Interaction: These are attractive interactions between two aromatic π - π
systems. These interactions can occur in one of the three common orientations:
stacked (face-to-face or parallel), t-shaped (edge-to-face), and slip-stacked (slipped
parallel) [Sinnokrot et al., 2002].

2.4.2 Thermodynamic parameters

Understanding of thermodynamic parameters like binding free energy (∆G),
enthalpy (∆H), entropy (∆S) is important to gain a deeper understanding of
inter-molecular binding. A simple binding reaction between a protein (P) and
ligand (L) to form a biomolecular complex (P:L) can be formulated as in Eq.
2.4.1.

P + L
kon−−⇀↽−−
koff

P : L (Eq. 2.4.1)

Where, the kon and koff are the kinetic rate constants for the forward (binding) and
backward (unbinding) reactions, respectively.
At equilibrium, the forward binding reaction is balanced by the backward unbinding
reaction, and can be written as follows (Eq. 2.4.2):

kon[P ][L] = koff [P : L] (Eq. 2.4.2)

where, the [P] and [L] represent the concentrations of protein and ligand,
respectively. [P:L] represents the concentration of protein-ligand complex.
Then the association and dissociation constants for this reaction are defined by
following equation:

Ka =
kon
koff

=
[P : L]

[P ][L]
=

1

Kd

(Eq. 2.4.3)

where, Ka is association constant with the unit of M−1 and Kd is dissociation
constant with the unit of M.
A fast association rate along with a slow dissociation rate will give a higher
binding and lower dissociation constant, resulting in high binding affinity [Du
et al., 2016]. Binding affinity is the strength of the binding interaction between
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protein and ligand. Binding affinity is measured and reported using the
dissociation constant (Kd). The smaller the Kd value, the greater the binding
affinity of ligand for the protein and vice versa.

The capacity of a thermodynamic system is measured by the Gibbs free energy, to
do maximum or reversible work at a constant pressure (isobaric) and temperature
(isothermal) [Gilson and Zhou, 2007]. The free energy can be computed from the
association constant (Ka) as follows:

∆G = −RTlnKa (Eq. 2.4.4)

where, R is the gas constant, T is temperature, and Ka is association constant.

The Gibbs free energy can also be computed from enthalpic and entropic
contributions of a thermodynamic system (Eq. 2.4.5).

∆G = ∆H − T∆S (Eq. 2.4.5)

where, ∆H is change in enthalpy, ∆S is change in entropy, and T is temperature in
Kelvin.
Free energy is a state function, i.e. defined by initial and final thermodynamic states,
regardless of the pathway connecting these two states.

All the key driving forces in a binding reaction are compensatied by enthalpy and
entropy. Enthalpy (H) is a measure of total energy of a thermodynamic system. A
binding reaction has a negative value for the change in enthalphy (∆H) for an
exothermic process (forming energetically favorable interactions) and a positive
value for an endothermic process (breaking of energetically favourable
interactions).
The second law of thermodynamics determines that the heat always flows from
higher temperature to lower temperature. This creates the disorder in the
thermodynamic system and this disorder can be accounted with entropy. Entropy
(S) is the measure of disorder or randomness in atoms and molecules in a system.
The change in entropy (∆S) can be positive for increase in degree of freedom and
negative for the decrease in degree of freedom of the system.

2.4.3 Experimental methods to Study Binding Affinity

There are well established protocols/methods to study and investigate the protein-
RNA binding [Ramanathan et al., 2019, Cozzolino et al., 2021]. These methods
can help to investigate the contacts between protein and nucleic acid but can not
specify the magnitude of free energy contribution made by the interaction.

Isothermal Titration Calorimetry (ITC): It is one of the physical technique
that directly measures the heat released or absorbed all along a biomolecular
process. This analytical method works on the basic principle of thermodynamics
where contact between two molecules results in either heat generation or
absorption, depending on the type of binding, that is, exothermic or endothermic.
The measurements of the change in heat are used to determine the binding
constants, enthalpy, entropy and the reaction stoichiometry [Srivastava and Yadav,
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2019, Ladbury and Chowdhry, 1996]. ITC is the only approach to measure directly
the heat exchange during complex formation at a constant temperature. ITC
generally needs a large amount of sample, which limits its application to certain
bio-macromolecules that are difficult to prepare in large quantities.

Surface Plasmon Resonance (SPR): This is an optical technique based on a
microfluidic surface for detecting the molecular interaction of two molecules. SPR
provides a robust platform for screening and compound optimization. A mobile
molecule, called analyte, binds to an immobilized ligand on a thin gold film. Such
interaction changes the refractive index of the film at the interface of the liquid
sample and a surface with an immobilized sensor molecule. The corresponding
kinetic parameters of the binding (i.e. the association rate constant (kon) and the
dissociation rate constant (koff )) and the affinity (Kd), and the thermodynamic
parameters can be characterized. The most extensively used instruments to measure
the binding kinetic are SPR biosensors with a microfluidic flow system and dextran
surfaces. A simple fitting of the equation corresponding to a suitable model to the
sensogram allows to determine the kon and koff , and Kd as the ratio of koff to
kon [Patching, 2014].

Fluorescence Polarization (FP): It is a fluorescence-based technique used to
detect the binding of ‘fluorescent ligand’ or ‘fluorescence-labelled ligand’ to a protein.
This technique uses polarized light to excite the fluorophore, which then emits light
that is detected by polarimeter. The polarization of the emitted light is dependent on
the mobility of the labelled ligand, that affects the binding to protein. FP technique
makes use of single fluorescent label strategy and does not involve the filtration or
separation steps and, as thus, requires relatively fewer reagents, smaller amounts of
protein, and relatively less expensive equipment than do SPR and ITC. The major
advantage of FP over other methods is that it does not require the separation of
bound and free ligand. FP is suitable for measurements of low-affinity interactions
with higher (fast) dissociation rates [Moerke, 2009, Rossi and Taylor, 2011].

Electrophoretic mobility shift assay (EMSA): This method is widely used
to detect protein complexes with DNA or RNA. In a classical assay, solutions of
protein and nucleic acid are combined and the resulting mixtures are subjected to
electrophoresis under native conditions through polyacrylamide or agarose gel.
After electrophoresis, the distribution of species containing nucleic acid is
determined, usually by autoradiography of 32P-labeled nucleic acid. In general,
the electrophoretic mobility of protein-nucleic acid complexes is less than the free
nucleic acid. This method is simple to perform and yet robust enough to
accommodate a wide range of binding conditions [Hellman and Fried, 2007].

2.5 Modelling 3D structures of protein and

protein-RNA complex

UniProtKB release 2023 01 has 246,440,937 protein sequences, while there are only
202,292 protein structures available in the Protein Data Bank (PDB) as of
14-March-2023, corresponding to 61,463 protein sequences. Three-dimensional
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structure determination using experimental methods like X-ray crystallography
and NMR is a quite time-consuming and complex procedure. Thus, many
scientists focused on developing computational methods for modelling 3D
structures from sequences to bridge this gap between protein sequences and
protein structures.

2.5.1 Protein 3-D Structure prediction

All the computational methods for protein 3-D structure prediction can be grouped
in two categories: template-based modeling and template-free modeling [Kuhlman
and Bradley, 2019].

Template-based modeling

Template-based modeling uses previously determined 3-D structures of a
homologous protein to model the unknown structure of the target protein.
Template-based modeling is also called homology modeling or comparative
modeling as it uses the homologous structure as a template to model the target
protein. The basic principle of homology modeling is that proteins with similar
amino acid sequences are likely to have similar structures. This is because the
sequence of a protein determines its three-dimensional structure through the
interactions between the side chains of the amino acids. Therefore, if a protein of
interest has a high degree of sequence similarity to a protein with a known
structure, it is likely that the two proteins will have similar structures. The
homology modeling is usually divided into four steps:

1. Identify the template protein;

2. Alignment of the target-template sequences;

3. Model building and refinement;

4. Model evaluation.

There are several programs and web-servers available for each of the
above-mentioned step of homology modeling.
The accuracy of the predicted structure can vary depending on the degree of
similarity between the target and template proteins, the quality of the alignment,
and model building steps. Furthermore, the accuracy of the predicted structure
can be affected by the presence of point mutations in target protein.

Template-free modeling

Template-free modeling does not rely on the global similarity to a protein structure
(previously determined) and can be applied to target proteins with novel folds. This
approach of protein 3-D structure modeling uses large-scale conformational sampling
and the application of physics-based energy functions. Fragment assembly is one
of the most common approach used to tackle the issue of conformational sampling
in which models are built from short and continuous backbone fragments retrieved
from known protein structures. Template-free modeling is required when the target
protein do not have any homologous protein with known 3-D structure.
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When an homologous structure is available, template-based modeling provides
more accurate models when compared to template-free prediction [Vallat et al.,
2015].
The distinction between these two approaches has begun to blur, as
template-based methods have incorporated energy-guided model refinement, and
template-free methods have employed machine learning and fragment-based
sampling approaches to exploit the information in the structural database [Hardin
et al., 2002, Kuhlman and Bradley, 2019].

AlphaFold2

AlphaFold2 is a deep learning model that incorporates physical and biological
knowledge about protein structure, leveraging multi-sequence alignments, to
predict the 3-D structure of protein [Jumper et al., 2021]. AlphaFold2 uses a
multiple sequence alignment (MSA) as input and uses information about
conservation and co-evolution of protein sequences from MSA. The key part of the
workflow of AlphaFold2 is the Evoformer. The Evoformer consists of two
transformer blocks capable of exchanging information to efficiently extract
structural information from the MSA. The Evoformer passes the information to
structure module that builds a 3D representation of the protein structure.
AlphaFold2 also has a Recycling stage where it goes back and refines the
prediction using the resulting 3D structure.
The 3D structure of multi-chain protein complexes can be modelled using
AlphaFold-Multimer [Evans et al., 2021]. The success of AlphaFold2 led to
development of AlphaFold DB providing open access to over 200 million protein
structure predictions to help accelerate scientific research [Varadi et al., 2022].
The AlphaFold DB can be accessed at https://alphafold.ebi.ac.uk/.

RoseTTAFold

RoseTTAFold is another deep learning model that uses three-track neural network
to obtain accuracy comparable to that of AlphaFold2. These three layers include
1D sequence, 2D distance map between residues and 3D atom coordinates of the
protein structure. In this architecture, information from all three layers flows back
and forth, allowing the network to collectively reason about the relationship between
a protein’s chemical parts and its folded structure.
In addition to the 3D structure of a single protein, RoseTTAFold has demonstrated
the capacity to generate accurate 3D structure models for protein-protein complexes
from sequence information [Baek et al., 2021].

2.5.2 Critical Assessment of protein Structure Prediction
(CASP)

The Critical Assessment of protein Structure Prediction (CASP) initiative is
aiming to help advance the methods of protein structure prediction from sequence.
This experiment takes place every two year since 1994. CASP has shown
continuous improvement in accuracy of protein 3-D structure prediction. CASP
assessors have been using the measures from Global Distance Test (GDT) to
quantify prediction performance since CASP3 in 1998 [Li et al., 2016]. GDT is a
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structure similarity assessment test introduced by local global alignment (LGA)
program [Zemla, 2003]. GDT provides two main scores/measures: ‘Global
Distance Test Total Score’ (GDT TS) and ‘Global Distance Test High Accuracy’
(GDT HA). Both of these measures can be computed using Eq. 2.5.1 and Eq.
2.5.2, respectively3.

GDT TS = (GDT P1 + GDT P2 + GDT P4 + GDT P8)/4 (Eq. 2.5.1)

where, GDT Pn denotes percentage of residues under distance cutoff <= nÅ.

GDT HA = (GDT P0.5 + GDT P1 + GDT P2 + GDT P4)/4 (Eq. 2.5.2)

where, GDT Pn denotes percentage of residues under distance cutoff <= nÅ.

Figure 2.5: AlphaFold2 results on CASP14 targets (Black); this method modelled
∼2/3 of the targets with GDT TS >90 (Orange), and ∼90% of targets with GDT TS
>80 (Blue). Figure taken from CASP14 (predictioncenter.org).

CASP14 marked an extraordinary increase in the accuracy of the computed
three-dimensional protein structures with the emergence of the advanced deep

3https://predictioncenter.org/casp14/doc/help.html
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learning method AlphaFold2. The accuracy of CASP14 models for template-based
modeling targets (Figure 2.5) significantly superseeded accuracy of models that
can be built by simple transcription of information from templates, and reached
the level of GDT TS=92 on average, which is significantly higher than the
corresponding averages in previous two CASPs.

2.5.3 Modeling Protein-RNA complexes

The protein-RNA complexes play critical roles in various biological processes, such
as gene expression and regulation. Understanding the 3D structures of these
complexes is important to learn more about their interactions and functional
mechanisms. 3D structure determination of protein-RNA complexes can be
challenging and time consuming. Thus, computational methods, such as molecular
docking, have become important tools for modeling the 3D structures of
protein-RNA complexes.
The docking methods aim at predicting three-dimensional structures of
macromolecular complexes, using the structure (atomic coordinates) of the
individual molecules. Docking is performed when it is assumed that there is an
interaction between two molecules. The larger molecule is usually referred to as
the receptor, whereas the smaller one is called ligand.
The docking method consists of two basic steps. The first is sampling, i.e. search
of the conformational space for possible relative orientations and conformations of
the components resulting in sampled models (poses). The second step is scoring,
i.e. assessment of the models from first step by a scoring function to distinguish
correct (near native) poses from incorrect (non-native) ones [Vajda et al.,
2013].

Sampling methods: The main goal of the sampling method is to have a
sufficiently exahaustive sampling to explore conformations with local energy
minima including the global minimum. There are several sampling methods used
by different docking programs. Some of the widely used sampling methods are fast
fourier transform used by Hex, monte carlo method used by Rosetta, and gradient
descent used by HADDOCK and ATTRACT.

Scoring methods: The goal of the scoring function is to distinguish near native
structures from non-native ones. Scoring functions involve approximating, rather
than calculating, the binding affinity between the docked molecules [Meng et al.,
2011]. Scoring functions can be divided in three groups: force-field based, empirical,
and knowledge-based scoring functions [Kitchen et al., 2004].

Flexibility of macromolecules: Earlier, both the receptor and the ligand were
considered as rigid while docking to reduce the computational cost. This approach
is called rigid docking. Rigid docking might provide good results when
experimentally determined 3D structures of the individual molecules (or their close
homologs) are close to the bound form. If the available structures are very
different from the bound form, the rigid docking will not work very well.
In such cases, the flexibility of these molecules can be considered in order to
overcome such issues and achieve better results. Flexibility can be taken into
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consideration for each partner in different ways. One popular approach is
fragment-based docking. Fragment-based docking consists in chopping the ligand
into fragments and performing multi-conformation docking of each fragment. Then
the poses of fragments with compatible positions are assembled into a complete
structure. Fragment-based docking permits the docking of a ligand onto a receptor
without a known structure for the ligand. This method allows to model the local
flexibility at the fragment level (multi-conformation docking) and global flexibility
by assembling the fragments [de Beauchene et al., 2016].

The coarse-grained representation is a way to simplify the representation of
macromolecules by grouping several atoms together using a ‘pseudo atom’. This
representation results in a relatively smooth surface representation containing
fewer docking energy minima on the partners and allows for rapid and fully
converged energy minimization compared to an atomic resolution representation.
Another advantage of the coarse-grained representation is a shorter computation
time as there are less atoms and less interactions to compute. But, one has to
create and calibrate a new force field with the pseudo atoms. Calibrating a force
field with pseudo atoms can be a tedious task. However, there are some
coarse-grained representations with force fields used by the community like
Martini [Periole and Marrink, 2013] and ATTRACT [Setny and Zacharias,
2011].

Data-driven docking: The docking can be improved by using experimental data
to create constraints. There are many types of information that can be used in the
docking including the overall shape of the complex, interface residues, and residue-
residue contacts between partners. The study from de Beauchene et al. [2016] showed
the use of data-driven docking in the form of anchoring contacts for ssRNA-RRM
complexes to achieve better results compared to the state-of-the-art methods.

There are several docking programs available including ATTRACT,
AutoDock [Forli et al., 2016], HADDOCK [Van Zundert et al., 2016],
ZDOCK [Pierce et al., 2014], and Hex [Ghoorah et al., 2013]. Each of these
programs support docking of specific biomolecules. Hex and ZDOCK are primarily
dedicated to protein-protein docking, AutoDock is widely used for virtual
screening of small molecules in addition to protein-peptide docking [Zhang and
Sanner, 2019]. ATTRACT and HADDOCK can perform protein-protein and
protein-nucleic acid docking.
In this thesis, we are interested in modelling 3D structures for protein-ssRNA
complexes. The ssRNA-protein docking part of the ATTRACT program (we call it
ssRNA’TTRACT) is being developed in our team. Thus, I will be focusing only on
ATTRACT docking program.
For the scope of this thesis, we considered only the binding of ssRNA to
RRM-containing proteins and therefore only ‘RNA’ term will be used instead of
‘ssRNA’, unless specified otherwise.

ATTRACT docking program: The ATTRACT docking program can be used
for docking of proteins to protein [Zacharias, 2003], DNA [Piotr et al., 2012],
RNA [Setny and Zacharias, 2011], and small ligands [May and Zacharias, 2005].
For RNA-protein docking, ATTRACT uses its coarse-grained representation and
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the fragment-based approach proposed by de Beauchene et al. [2016]. ATTRACT
uses the fragment library of tri-nucleotides created using ProtNAff [Moniot et al.,
2022b]. The fragments of tri-nuclotides corresponding to the target RNA sequence
are docked onto the protein (minimized from random positions according to the
ATTRACT score using gradient descent). The redundant poses are eliminated and
the poses with best score are kept for the assembly. Two poses are linked together
if the RMSD between their two overlapping nucleotides is below the defined
threshold. Finally, the scoring function is used to score all these assembled chains
for the purpose of distinguishing between near native and non-native chains.

The modelled 3D structures of protein or protein-RNA complexes can be refined
using a short energy minimization step or/and with molecular dynamics
simulation.

2.6 Assessment of modelled 3D structures

2.6.1 Overview of Molecular Dynamics

Molecular dynamics (MD) simulations can be used to calculate the thermodynamic
and energetic properties that will help the understanding of the conformational
changes of molecule. There are several programs developed specifically to simulate
the behavior of biomolecules. Some of the commonly used simulation programs are
AMBER, CHARMM, GROMACS, and NAMD.

In MD, the forces on each atom are calculated as derivatives of potentials and
substituted into Newton’s equations of motion:

Fi = miai = mi
d2xi

dt2
(Eq. 2.6.1)

where, mi is the mass and ai is the acceleration of atom i with the position of xi

along a single dimension during the time interval of t.

Force Fields are sets of potential functions and parameterized interactions that
can be used to study physical systems. There are two main components of a force
field: the set of potential energy functions and the set of parameters used in these
functions.
In the simplest form, the potential energy of a molecule can be written as:

E =
∑
bonds

Estretch +
∑
angles

Ebend +
∑

dihedrals

Etorsion +
∑
pairs

Enonbonded (Eq. 2.6.2)

where Estretch, Ebend, Etorsion, Enonbonded are the energy contributions from bond
stretching, angle bending, torsional motion (rotation) around single bonds, and
interactions between nonbonded atoms, respectively. The sums are over all the
bonds, all the angles defined by any set of three bonded atoms A–B–C, all the
dihedral angles defined by any set of four sequentially bonded atoms A–B–C–D,
and all pairs of significant nonbonded interactions [Lewars, 2011].

All these energy functions can be grouped into two categories: bonded and non-
bonded potential terms. The non-bonded terms are composed of electrostatic and
non-electrostatic interactions between all pairs of atoms.
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Coulomb’s law is used to describe the electrostatic potential in MD. The point
charges are assigned to the positions of atomic nuclei and atomic charges are
derived using quantum mechanical (QM) methods with the goal to approximate
the electrostatic potential around a molecule.

Uelec =
qiqj

4πϵ0ϵrrij
(Eq. 2.6.3)

where, qi and qj are the charges on the atoms i and j, ϵ0 is the permittivity of
vacuum, ϵr is the relative permittivity, and rij is the distance between the pair of
atoms.

Lennard-Jones potential is used to approximate the potential energy of non-
electrostatic interaction between a pair of non-bonded atoms

ULJ = 4ϵ

[(σ
r

)12

−
(σ
r

)6
]

(Eq. 2.6.4)

where, ϵ is the well depth (a measure of how strongly two atoms attract each
other), σ is the van der Waals radius (the distance at which the intermolecular
potential between two atoms is zero), and r is the distance of separation between
two atoms.

Bonded potential terms describe several types of interactions including bond
stretching, angle bending, and torsion terms between the atoms within molecules.
The bond potential is used to model the covalent interactions in a molecule. Bond
stretch is approximated by a simple harmonic function describing oscillation about
an equilibrium bond length r0 with bond constant kb.

Ubond = kb (rij − r0)
2 (Eq. 2.6.5)

The angle potential is defined for every triplet of bonded atoms (A–B–C) and
describes the bond bending energy. It is approximated by a harmonic function
describing oscillation about an equilibrium angle θ0 with force constant kθ:

Uangle = kθ (θijk − θ0)
2 (Eq. 2.6.6)

The torsion angle potentials are defined for every 4 sequentially bonded atoms. It
describes the angular spring between the planes formed by the first three (A–B–C)
and last three (B–C–D) atoms of a consecutively bonded atoms.

UDihed = kϕ(1 + cos(nϕ− δ)) (Eq. 2.6.7)

where, kϕ is the force constant, n defines periodicity, ϕ is the torsion angle, and δ is
the phase shift angle.
The force constants for angle potential are about 5 times smaller than for bond
stretching 4.

4Energy scale for the potential terms can be found at:
https://computecanada.github.io/molmodsim-md-theory-lesson-novice/01-
Force Fields and Interactions/index.html
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Periodic boundary conditions are a set of boundary conditions that makes
possible to approximate a large (infinite) system using a unit cell. This unit cell in
MD is called periodic box or simulation box. When one particle leaves the periodic
box from one side, it reappears on the opposite side of the periodic box. Each
simulation package provides several shapes of periodic boxes to choose from, like
cubic box, truncated octahedron, rhombic dodecahedron. Some are more efficient
than others because of their smaller volume including less extra (irrelevant)
solvent [Wassenaar and Mark, 2006].

Molecular dynamic simulations are performed as close to experimental conditions
as possible by controlling the factors like pressure, temperature. An ensemble
describing a system consists of a large number of copies of a system representing a
set of possible states that a real system might be in.
A thermodynamic ensemble is a statistical ensemble that is in statistical
equilibrium. It provides a way to derive the properties of a real thermodynamic
system from the laws of classical and quantum mechanics. Usually one of the
following thermodynamic ensembles are used in MD simulations:

NVE or microcanonical ensemble: number of particles (N), volume (V), and the
energy (E) of the system are kept constant (conserved).

NVT or canonical ensemble: number of particles (N), volume (V), and the
temperature (T) of the system are kept constant (conserved).

NPT or isothermal-isobaric ensemble: number of particles (N), pressure (P), and
the temperature (T) of the system are kept constant (conserved).

Different algorithms are implemented by each simulation package that provide
options to control the parameters for these thermodynamic ensembles. For
example, to control pressure AMBER uses Monte-Carlo and Berendsen barostats
while NAMD uses Langevin barostat along with Berendsen 5. Barostat helps to
regulate the pressure by adjusting the volume of the system.

A typical MD run consists of the following steps:

System setup : The system is prepared for the simulation. This includes getting
initial structure, creating a topology and coordinate file, setting the periodic
box, adding water and ions, if necessary.

Energy minimization : The system is relaxed to remove any steric clashes or
unusual geometry.

Equilibration : In the initial segment of the simulation, the energy of the system
changes rapidly, but it eventually settles into a reasonable approximation of
an oscillation around a mean. At this point the simulation has achieved
equilibration.

Production run : Properties are calculated from the averages over the ensemble
of structures generated during this step.

Analysis : This step is the analysis of the output from simulation.

5More details here https://computecanada.github.io/molmodsim-md-theory-lesson-novice/08-
barostats/index.html
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2.6.2 Free energy computation

Free energy is one of the most important quantity in the thermodynamic system.
The computation of free energies is one of the key objective of MD. There are several
methods to compute the free energy difference like MM-PBSA/MM-GBSA, umbrella
sampling, thermodynamic integration, or free energy perturbation.

MM-PBSA (molecular mechanics Poisson-Boltzmann surface area) is a method
to estimate the free energy of a system. The average free energy (Ḡ), of a system
is computed using Eq. 2.6.8, after removing any solvent and ion molecules from the
system.

Ḡ = Ēbond + Ēangle + Ētorsion + Ēvdw + Ēelec + Ḡpol + Ḡnp − TS (Eq. 2.6.8)

Where, the first five energy terms correspond to the bond, angle, torsion, van der
waals and electrostatic terms in the molecular mechanical force field, evaluated
with no nonbonded cutoff. These terms together result in the average molecular
mechanical energy. Ḡpol and Ḡnp are polar and non-polar contributions of the
solvation free energies, and the last term (TS) is the solute entropy, i.e, absolute
temperature, T , multiplied by the entropy, S, estimated by a normal mode
analysis. Ḡpol is typically obtained by solving the Poisson-Boltzmann (PB)
equation or by using the generalized Born (GB) model (MM-GBSA
approach).

Both of these methods, MM-PBSA and MM-GBSA, can be used to estimate binding
free energies for a ligand (RNA) in complex with a protein using Eq. 2.6.9.

∆G = Ḡcomplex − Ḡprotein − Ḡligand (Eq. 2.6.9)

There are two ways to compute binding free energies using Eq. 2.6.9:

1. run separate simulations of complex, protein, and ligand, resulting in three
different trajectories.

2. run a single simulation of complex, and use just the snapshots from the
resulting trajectory on complex.

The option 2 assumes that the snapshots of protein and ligand taken from the
trajectory of complex are of comparable free energy to those that would emerge from
separate trajectories of protein and ligand. It is also much faster as only a single
simulation of the complex is required for computing binding free energies [Kollman
et al., 2000].
The MM-PBSA method was originally developed for the AMBER software [Miller III
et al., 2012], later on the scripts for this method were also presented for other
simulation softwares like GROMACS and NAMD [Kumari et al., 2014].

Umbrella Sampling is a method that uses bias potentials along a reaction
coordinate (ξ) to drive a system from one thermodynamic state to another. This
change in thermodynamic state is carried out via a series of windows by using bias
potentials like harmonic potentials. A bias function (Ui(ξ)) is applied to keep the
system close to the reference point ξ0,i in each window i.

Ui(ξ) = ki(ξ − ξ0,i)
2 (Eq. 2.6.10)
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where, ξ0,i is the reference position of harmonic restraint defining the center of
window i, and ki is the force constant that defines the width of the corresponding
window.
These sampled distribution along the reaction coordinate can be used to calculate
the free energy change in each window. This series of windows are then combined
by post-processing methods like weighted histogram analysis method
(WHAM) [Souaille and Roux, 2001] or umbrella integration [Kästner and Thiel,
2005] to get the global free energy profile.
You et al. [2019] used umbrella sampling to investigate the free energy changes
during ligand unbinding from protein and examined the effect of data point
selections along the reaction coordinate in umbrella sampling.

Thermodynamic Integration (TI) is a method used to compute free energy
difference between two given states (λ0 and λ1). In TI, the free energy difference
is calculated by defining a thermodynamic path between the states and integrating
over the ensemble-averaged enthalpy changes along the path.

∆GTI =

∫ 1

0

〈
∂U (x)

∂x

〉
λ

dλ (Eq. 2.6.11)

where x is the full set of configurational coordinates, U is potential energy, ⟨...⟩λ
denotes the ensemble average at a particular value of λ. The limiting factor for TI
is that only a finite number of λ values can be simulated, and thus the integral must
be approximated by sum [Ytreberg et al., 2006].

Free Energy Perturbation (FEP) is often referred as computational alchemy
as it is used in protein design to compute the free energy changes due to “alchemical”
perturbations introduced during MD. In the FEP approach, λ intermediate states
wherein atoms that need to appear, disappear, or mutate between the two molecules
are represented by a linear combination of end-state Hamiltonians.
Hamiltonians are complex mathematical expressions representing the total energy
of a system (kinetic and potential energy) as a function of is momentum (p = mv)
and the space coordinates (q). Usual notation is H(p,q)6.

In a FEP, independent equilibrium simulations at each λ value (intermediate
states) are performed and exponential averaging is used to determine the free
energy difference between two neighboring λ states, then these differences are
summed to obtain the total free energy between two end states.
The free energy difference between two systems (A and B), represented by
Hamiltonia HA and HB can be expressed as:

∆GFEP = GB −GA = −RT ln
〈
e−∆H /RT

〉
A

(Eq. 2.6.12)

where R is gas constant, T is temperature, ∆H = HB − HA, and ⟨⟩A refers to an
ensemble average over a system represented by Hamiltonian HA. This equation is
the fundamental equation for free energy perturbation calculations. This equation
(Eq. 2.6.12) will not lead to sensible free energy, if the two systems A and B differ
in more than a trivial way. To overcome this problem the simulation is performed

6https://en.wikipedia.org/wiki/Hamiltonian mechanics
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in small steps where the pathway for the hybrid molecule to go from one state to
other is via the coupling parameter λ that allows smooth mixing of the two states.
The λ is changed from 0 (state A) to 1 (state B) in a number of small steps called as
FEP windows [Kollman, 1993]. Thus, the Eq. 2.6.12 can be generalized to:

∆GFEP = −RT

1∑
λ=0

ln
〈
e−∆H ′/RT

〉
λ

(Eq. 2.6.13)

where ∆H ′ = Hλ+dλ − Hλ and Hλ = λHB + (1 − λ)HA.

Free energy is a state function and its value is determined by the end state of the
system and not by the path of transformation. Thus, if one wants to compute the
difference of free energy between a receptor (protein) in complex with one or the
other ligand (RNA), the following thermodynamic cycle can be used (Figure 2.6).

Receptor + Ligand Receptor − Ligand

Receptor + Ligand′ Receptor − Ligand′

∆G1

∆G3 ∆G4

∆G2

Figure 2.6: A thermodynamic cycle describing the binding of two ligands, Ligand
and Ligand′, to a Receptor.

Using the above cycle (from Figure 2.6), the various free energy differences are
related to each other by the Eq. 2.6.14, suggesting that only two transformations
are required to get the ∆∆G.

∆∆G = ∆G1 − ∆G2 = ∆G3 − ∆G4 (Eq. 2.6.14)

2.6.3 Example studies

All the computational approaches require agreements with experimental data up to
a certain extent to be considered as reliable and accurate. In most cases (if not all),
the accuracy of computational method is assessed by the experimental information.
The experimental NMR parameters are generally used to assess the quality of new
force fields [Huang and MacKerell Jr, 2013]. NMR structural data can also be used
to create biasing potentials to improve the simulation stability [Li and Brüschweiler,
2014].

There are several experimental and computational studies performed with RRMs
and RNAs to check their binding.
Basu et al. [2021] used molecular docking and molecular dynamic simulation to
study the FUS RRM domain and a 12-nucleotides long RNA with ‘GGUG’ motif.
This RRM domain lacks some of the conserved residues from RNP1 motif and has
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an unusual lysine-rich loop (KK-loop) between α1 and β2. They mutated the three
lysine residues from this loop to alanine (K312A, K315A, and K316A from PDB
entry 2LCW) and found that several native contacts from the KK-loop are lost in
the mutant. In addition, they have also analyzed binding affinity using umbrella
sampling method to conclude that the KK-loop is important for the stability of
RRM-RNA complex.

Nolan et al. [1999] investigated the role of a conserved aromatic amino acid (F56
from RNP1 motif) forming stacking interactions using CD spectroscopy and gel
mobility shift assays [Carey, 1991] in U1A-RNA complex (PDB ID: 1URN). Based
on mutant studies, they found that the F56 residue contributes significantly to the
RNA binding and the mutants were observed to bind with lower binding affinity.
Based on these experimental calculations, Kormos et al. [2007] performed free energy
computations using MM-GBSA protocol for wild type U1A-RNA complex and F56
mutant U1A-RNA complexes. The relative binding free energies obtained in this
study follow the trend of the experimental binding free energies.

MD simulations and experimental studies can be used to complement each other.
Krepl et al. [2016] demonstrated the MD simulation as a viable tool to complement
the NMR studies using RRM-RNA complexes. They used Fox-1 RRM and SRSF1
RRM2 with their RNA targets. The simulations predicted an unanticipated role of
Arg142 at protein-RNA interface of SRSF1 RRM2-RNA complex. This was then
confirmed by NMR and ITC experiments by mutating Arg142 to Alanine. They also
showed that the use of experimental NMR NOEs-based restraints in the early stages
of the simulations (first 120 ns in this case) leads to more stable simulations.

Gapsys and de Groot [2017] developed a protocol for alchemical free energy
calculations with nucleotide mutations in protein-DNA complexes. The results
from their protocol are in agreement with the experimentally determined binding
profiles. The program to generate the input files required for MD simulation with
alchemical transformation can be found at
http://pmx.mpibpc.mpg.de/dna webserver.html.
Currently, there is no supporting force fields for the mutations in RNA. Developers
of the ‘pmx’ package are working on it7.

This chapter covered the important concepts to understand the contributions of
this thesis, described in next chapters, but considering the diversity of methods, it
was not possible to cover all the methods in detail. Whenever necessary I will give
additional remarks on the methods I have used in the next chapters.

7https://bioexcel.eu/research/projects/alchemical-free-energy-calculations-in-biomolecules/
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3.1. Introduction

3.1 Introduction

This chapter describes the design, implementation and data collection for the
relational database of Interactions of RNA and RNA Recognition Motif
(InteR3M). In Chapter 2, we have seen the importance of RRMs and how studying
and characterizing them will get us a step closer in successfully designing the novel
RRMs with target activity. We also learnt that another specific database,
RRMdb [Nowacka et al., 2019], was developed to assess evolutionary relationships
among RRM domain instances and the classification within the RRMdb was based
on sequence similarity only.

Compared to this, the InteR3M database is developed by carefully inspecting
experimental 3D structures. InteR3M database aims to provide sequence,
structure, and the binding information available for each RRM domain instance.
By collecting and organizing this information in InteR3M database, we aim to
uncover the RNA binding code of RRM domains.

3.2 Scope & Requirements

We started with a very basic goal of collecting all the available information about
RNA Recognition Motif (RRM) domain and integrate all the collected data to
develop a comprehensive database of available RRM information.

3.2.1 Mission Statement

The purpose of this database (InteR3M) is to organize, make available
and maintain the available information about RNA Recognition Motif
(RRM) domains and their interactions with nucleic acid partners. This
includes their sequence, structure, biological function, and binding
affinity.

The data collected and stored in the InteR3M database will help us and the
interested scientific community to characterize the RNA binding code of RRM
domain and to improve the modelling of 3D structures of RRM-RNA
complexes.

3.2.2 Mission Objectives

The mission objectives consists of the general tasks related to the data maintained in
the database and will help us in the database design procedure. We have compiled
a set of objectives to achieve the goal of developing and maintaining the data in
InteR3M database.

1. Keep track of new Pfam families from RRM clan.

2. Keep track of the proteins containing at least one or more RRM domains.

3. Provide access and maintain the list of all RRM domain instances.

4. Provide access and maintain the list of PDB entries having a structural
instance of at least one RRM domain.
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5. Provide access and maintain the list of experiments performed with RRM
domain instances.

6. Provide access and maintain the list of molecular interactions between RRMs
and nucleic acids.

3.2.3 Delineation of a correct set of RRM families

There are a number of generalist domain databases like Pfam, SCOP, CATH,
InterPro, CDD and so on. All of these domain databases use different rationale for
domain classification which can be either primarily sequence-based, primarily
structure-based or integration-based (see Chapter 2 section 2.2).

We need to collect information from sequence-based domain databases to achieve the
mission objectives 2 and 3. In this way, we will have information about the RRM
domain instances even if they do not have experimentally solved 3D structures.

Pfam was selected from the generalist domain databases as it is well connected with
other protein databases and widely used in the field. Pfam has been searched for
the RRM families via keyword search. At the time of creation of the prototype for
InteR3M database, the RRM-centric RRMdb database was online [Nowacka et al.,
2019]. Thus, we also searched RRMdb as it was classifying RRM domain instances
into 415 different families based on sequences and each instance of the family can be
traced back to Pfam. Table 3.1 contains the list of the 42 Pfam families retrieved
from Pfam and RRMdb.
The RRM 1 (PF00076) family has the highest number of domain instances and
structures (experimentally determined) among all these 42 filtered Pfam families.
RRM 1 family has 1,069 domain structures and no other Pfam family has more than
52 structures (Table 3.1). This shows the dominance of RRM 1 Pfam family over
all these families from structural point of view.

Structural Inspection of RRM families

It is important to verify that the collected families from Pfam indeed contain RRM
domain instances as defined by the typical RRM fold (See Chapter 2,
section 2.3.1). One way to validate these families is the manual inspection of 3D
structures from these families. Of the collected families, 16 families have no
experimentally determined 3D structure. Thus, the 26 remaining families with 3D
structures were processed through structural inspection to determine if the
structures corresponding to these families contain the RRM fold (Table 3.2).

Many RRM domain instances from RRM 1 family are widely studied and well
characterized from a structural point of view [Maris et al., 2005]. Thus, we selected
two well-known RRM structural instances from the predominant PF00076 family
as references, namely 1A9N B (spliceosomal U2B′′-U2A′ protein complex) and
2A3J A (redesigned human U1A protein).

Based on the availability of structures we selected a few (1-3 unique) structures
from each family for the manual structural inspection of these families. For each of
the selected structure (query structure) from these families, we first checked how the
structure-based domain databases, SCOP and CATH, classify these structures. This
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Table 3.1: Pfam families retrieved from Pfam (v33.0) and RRMdb. One Protein
(UniProt ID) and PDB entry may have multiple domain and structural instances,
respectively.

Family Name
Family

Identifier

Number of
Domain
Instances

Number of
Structural
Instances

Clan Name

Baculo FP∗ PF03258 224 0 None
BRAP2 PF07576 1,249 0 RRM

Calcipressin PF04847 1,574 1 RRM
DbpA PF03880 5,850 3 RRM

DUF1743 PF08489 334 10 RRM
DUF1866 PF08952 778 2 RRM
DUF4283∗ PF14111 6,556 0 None
DUF4523 PF15023 94 0 RRM

GlcNAc-1 reg PF18440 242 1 RRM
GUCT PF08152 992 2 RRM

Limkain-b1† PF11608 333 1 RRM
Nab6 mRNP bdg∗ PF10567 30 0 None

NCBP3∗ PF10309 912 0 None
Nup35 RRM PF05172 888 10 RRM

Nup35 RRM 2 PF14605 241 0 RRM
Peptidase C48∗ PF02902 14,660 51 Peptidase CA

PHM7 cyt PF14703 6,972 12 RRM

PNMA∗ PF14893 1,063 0
GAG-

polyprotein
PRE C2HC∗ PF07530 314 0 None

RL PF17797 288 14 RRM
RNA bind PF08675 343 5 RRM

RRM PF10378 408 0 None
RRM 1 PF00076 246,502 1,069 RRM
RRM 2 PF04059 2,110 0 RRM
RRM 3 PF08777 1,110 4 RRM
RRM 4 PF10598 1,368 30 None
RRM 5 PF13893 4,399 38 RRM
RRM 7 PF16367 2,003 6 RRM
RRM 8 PF11835 2,912 5 RRM
RRM 9 PF18444 124 6 RRM

RRM DME PF15628 685 0 None
RRM occluded PF16842 454 6 RRM

RRM Rrp7 PF17799 769 1 RRM
SET assoc PF11767 514 0 RRM

Smg4 UPF3 PF03467 1,824 3 RRM
Spo7 2 N PF15407 240 0 RRM
Sugar tr∗ PF00083 99,230 24 MFS

Tap-RNA bind PF09162 714 12 RRM
Transposase 22 PF02994 594 12 RRM
U1snRNP70 N PF12220 1,302 10 RRM

XS PF03468 1567 2 RRM
YlmH RBD PF17774 1,708 1 RRM

∗ These families were retrieved only from RRMdb.
† The Limkain-b1 family has been renamed to MARF1 RRM1.
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will help to understand the topology in a better way. In addition, we aligned the
query structure against the two reference structures using two different programs:
PDBeFold and Kpax. The resulting aligned structures from both programs were
manually inspected in PyMol, and the Pfam families were classified accordingly as
true or false RRM families.

Demo 3.2.1 shows the demonstration for structural inspection of 1WHV A from
RNA bind (PF08675) family. The details of all manual structural inspections can
be found in Appendix A.2.

Demo 3.2.1: Demonstration of Structural Inspection†

The RNA bind (PF08675) family contains 5 domain structural instances
corresponding to 2 different domain instances. We performed the structural
inspection of this family in following way for the 1WHV A (430, 508)
structural instance:

1WHV A(430, 508):

• SCOP classification∗: TP=1, CL=1000003, CF=2000014,
SF=3000110, FA=4000236

• CATH classification: Superfamily 3.30.70.330 (RRM domain)

• PDBeFold: (Secondary structure alignment)

RANGE 1whv:A S H s S H S h

PDB 1a9n:B S H s S H S h

PDB 2a3j:A S H s S H S h

• Kpax: (For simplicity, we removed some fields from the result of
Kpax)

===========================================================

Rank K-Score G-Score J-Score M-Score T-Score RMSD Match

==== ======= ======= ======= ======= ======= ==== =====

1 39.86 46.17 0.5014 0.6613 0.6740 1.88 1a9n_B

2 37.17 44.60 0.4675 0.6465 0.6616 1.97 2a3j_A

===========================================================

Both SCOP and CATH classification point to classes identical to the one
obtained with RRM 1 (PF00076) in Pfam. In addition, the structures are
aligned with respect to the secondary structures in PDBeFold (Figure 3.1).
Finally, all the scores computed by Kpax structural alignment are consistent
with a correct alignment, especially the M-Score which is greater than 0.60.
Thus, this analysis allows to conclude that ‘1WHV A’ has the RRM fold and
is a true RRM domain instance.
In the same way, we inspected two more structures (3CTR A and 3D45 A)
from this family before including this family in the list of true RRM families.

∗ TP=protein type, CL=protein class, CF=fold, SF=superfamily, FA=family
†NOTE: This demo shows a manual structural inspection for positive example
of RRM family. Refer to Appendix A.1 for further explanation about SCOP
and CATH classification codes and Kpax alignment scores.
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(a) Structural alignment of 1WHV A
(orange) and 1A9N B (green)

(b) Structural alignment of 1WHV A
(orange) and 2A3J A (purple)

Figure 3.1: Structural inspection of 1WHV A (orange) via alignment with a)
1A9N B (green) and b) 2A3J A (purple)

After this analysis, it became clear that not all the Pfam families from the RRM
clan (CL0221) possess true RRM instances, matching the RRM definition. These
Pfam families are DUF1743, U1snRNP70 N, PHM7cyt, RL, and GlcNac-1reg. In
the end, we found only 19 true RRM Pfam families, 9 false RRM Pfam families
(Table 3.2).

This set of 19 true RRM Pfam families was chosen as starting material for data
collection for the database. This is one of the apriori choice we adopted for this
database. The other choice was not to integrate predicted 3D structures obtained
from AlphaFold but to limit our data to experimentally determined 3D structures
from the PDB.

3.2.4 Use cases

A use case is a description of the ways in which a user interacts with the database
to achieve a goal. Typically, a use case outlines the user’s point of view and tells
developers the needs and requirements of users. The use cases are important to
design the database model. The use cases covering different applications for the
interactions between RNA and RNA Recognition Motifs (RRMs) have been
devised by questioning the partners of the RNAct project to help create the
database model.

Below is the list of the use cases collected for the InteR3M database.

1. Retrieve sequences of RRM-containing proteins that have Pfam ID PF08777.

2. Retrieve RRM sequences that have Pfam ID PF00076 and 3D crystallography
data of complexes with nucleic acids (NA).

3. Retrieve RRM sequences that have Pfam ID PF08777 and NMR data available
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Table 3.2: Results of Curation of Pfam families for RRM domains with at least one
PDB instance. These counts are from Pfam v33.0.

Family
Identifier

Family Name

Number of domain
Structures (Number of
corresponding distinct
domain sequences)

Result of
inspection

PF00076 RRM 1 1,069 (247) Pass
PF00083 Sugar tr 24 (8) Fail
PF02902 Peptidase C48 51 (12) Fail
PF02994 Transposase 22 12 (1) Pass
PF03467 Smg4 UPF3 3 (2) Pass
PF03468 XS 2 (1) Pass
PF03880 DbpA 3 (2) Pass
PF04847 Calcipressin 1 (1) Pass
PF05172 Nup35 RRM 10 (5) Pass
PF08152 GUCT 2 (2) Pass
PF08489 DUF1743 10 (2) Fail
PF08675 RNA bind 5 (2) Pass
PF08777 RRM 3 4 (2) Pass
PF08952 DUF1866 2 (2) Pass
PF09162 Tap-RNA bind 12 (1) Pass
PF10598 RRM 4 30 (3) Fail
PF11608 Limkain-b1 1 (1) Pass
PF11835 RRM 8 5 (2) Pass
PF12220 U1snRNP70 N 10 (2) Fail
PF13893 RRM 5 38 (8) Pass
PF14703 PHM7 cyt 12 (4) Fail
PF16367 RRM 7 6 (3) Pass
PF16842 RRM occluded 6 (1) Pass
PF17774 YlmH RBD 1 (1) Pass
PF17797 RL 14 (2) Fail
PF17799 RRM Rrp7 1 (1) Fail
PF18440 GlcNAc-1 reg 1 (1) Fail
PF18444 RRM 9 6 (2) Pass

(with or without NA).

4. Retrieve all NA sequences having dissociation constant lower than 10 µM.

5. Retrieve all NA sequences interacting with the same RRMs.

6. Retrieve all RRMs interacting with the NA sequence ‘AAGCGCCAGAACU’.

7. Retrieve PDB IDs of RRMs that have Pfam ID PF00076 and NMR data of
complexes with NA.

8. Retrieve all PDB IDs and Pfam IDs of RRM interacting with the same NA
sequences.

9. Retrieve all complexes having domain RRM 1 or with Pfam ID PF03880.
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10. Retrieve all the articles cited for domain PF16842 in relation with a PDB
structure.

11. Retrieve all PDB IDs of RRM structures with crystallography data with less
than 2 Å resolution.

12. Retrieve interacting residues between protein and NA from complexes
containing Pfam ID PF18444.

The use case 1 suggests storing protein and domain information to meet these needs.
One can simply store this information together but the protein information would
be redundant when the protein has multiple RRM domains. Thus, it would be more
efficient to store protein and domain information separately with a link (relation)
between them. This results in a Protein entity linked with an RRM instance entity,
one instance of the former can be associated with one or more instances of the
latter. The RRM instance entity should also be linked to a Pfam entity as its
reference family.

The use cases 2, 3, and 4 draw our attention towards the experiments performed
with RRM domains and nucleic acids along with their resulting information. An
experiment can be one of several types, including X-ray diffraction, solution NMR,
ITC, filter binding assays, etc. At the very broad level, all of these experiments
can be classified as either structural experiments or non-structural experiments
depending on their resulting information. This leads us to introduce a Ligand
entity (mostly of NA type) and an Experiment entity.

A structural experiment results in a 3D structure of protein(s) with or without an
interacting ligand. One PDB entry is considered as one structural experiment. It
might have one or more proteins with or without one or more ligands. A
non-structural experiment does not result in a 3D structure. The goal of these
experiments is to check the binding of protein and ligand. An instance of
“Non-structural experiment” is usually an experiment performed to check the
binding of single ligand with one protein containing one or more RRM
domains.

Thus, based on these 3 use cases (use cases 2, 3, and 4) we can say at this stage
that an Experiment entity can be either structural or non-structural. One instance
of the Experiment entity uses one or more instances of the Protein entity (full or
partial) containing one or more instances of RRM instance entity with or without
any instance of Ligand instance entity. The Experiment entity is associated with
either a PDB structure entity or a Binding information entity. The PDB structure
entity represents entries from the PDB comprising the whole structure that may have
one or more instances of an RRM structure entity with or without any instance of
a Ligand structure entity.

Use cases 5-8 refer to various ways to query the data which can be implemented
very easily using SQL technology. Use cases 9 and 10 lead us to add publication
references and resolution values as attributes for the PDB structure entity. Finally
use case 12 requires that contact information be structured in a separate entity
(Detailed contacts entity) related to the PDB structure entity. This preliminary use
case analysis will be refined when building the complete conceptual model of the
database (see section 3.3.1).
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3.3 Database Design

We designed the InteR3M database in three phases, conceptual, logical and physical
database design, according the good practices in this field [Connolly and Begg,
2005].

3.3.1 Conceptual Database Design

The conceptual model has been designed for the InteR3M database based on the
collected use cases (Figure 3.2). At this level, the design is entirely independent
of implementation details like database management system (DBMS), programming
or any hardware platforms.

Figure 3.2: Conceptual model for InteR3M database

The RRM instance entity is central to the data model and is well connected with
other entities from the data model. An RRM instance is a part of a protein, one
protein may contain one or more RRM instances. When a protein contain two or
more RRM instances, these RRM instances are connected by the linker instances.
Ligand instances define the unique NA sequences that have been tested with the
RRM instances in an experiment. An Experiment is an important entity as it carries
the originality of this database. It is defined in relation with the Protein and Ligand
instance entities. Experiments produce different information based on the type
of experiment performed. In this schema, experiments produce mainly two types
of information: structural information (PDB structure) and binding information.
Experiments producing structural information are linked to the PDB structure entity
that corresponds to entries from the PDB and structural information for RRM,
ligand and linkers. For structural experiments, each entry in PDB with RRM is
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considered as an individual experiment even if it has several proteins. For non-
structural experiments, one experiment is performed with a single protein and a
ligand to check the binding. The Experiment entity also keeps track of the mutations
performed in the protein via the Mutated protein entity. The 3D structures of protein
and nucleic acid complexes are further processed to extract interactions at the atomic
level reported by the Detailed contacts entity.

The conceptual data model was tested and validated against the use cases collected.
This conceptual model provides a base for the logical database design.

3.3.2 Logical Database Design

A preliminary logical model was developed on top of the conceptual model by
considering constraints at the table level. This model was normalized to prevent
any kind of anomalies in the database resulting in the final logical model for the
InteR3M database (Figure 3.3). The logical model is composed of 19 tables and
106 attributes.
The details of all attributes and tables can also be found in the InteR3M data
dictionary available on the website at https://inter3mdb.loria.fr/dictionary.

3.3.3 Physical Database Design

Physical database design is the final phase of database design process and it decides
how the database is to be implemented. Field length specifications were defined
for each field (also called an attribute or column) from all the tables. The views
were created to merge/join data from multiple tables into a single view. The views
were defined in a way to meet the user’s needs without any information-retrieval
issues. Views can be considered as a tool to support particular aspects of the
implementation or application program, i.e., user interface in our case.

The allpdbcontacts view was defined to merge all atomic-level and residue-level
interactions together by assigning the RRM and ligand instances and structures.
The contactsaligned view was defined to align the contacts from allpdbcontacts
against/with the RRM master alignment [Martinez et al., 2023].
Table 3.4 presents a complete list of tables and views created for the physical
design of InteR3M database.

PostgreSQL automatically creates a unique index when a unique constraint or
primary key is defined for a table. An index is a data structure in a database that
helps to enhance the querying performance. Indexes provide a way for the
database to look up the relevant rows directly based on the values in the indexed
columns, rather than having to scan the entire table. Thus, we have 19 indexes for
19 tables in InteR3M database (Table 3.3).

3.4 Implementation

The InteR3M database implementation was carried out in two stages, the database
implementation where we implemented the actual database in a Database
Management System (DBMS) and the user interface implementation where we
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Figure 3.3: Logical model for InteR3M database. It is also available in ‘About’
section of InteR3M database at https://inter3mdb.loria.fr/about.
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Table 3.3: List of indices in InteR3M database

Table Index Name Indexed Columns

entity binding entity binding pkey
experiment id, ligand id,

rrm entryname
experiment ligands experiment ligands pkey experiment id, ligand id
experiment overview experiment overview pkey experiment id

experiment proteins experiment proteins pkey
experiment id,

uniprot accession
ligand instance ligand instance pkey ligand id
ligand structure ligand structure pkey ligand structure id
linker instance linker instance pkey linker name

linker structure linker structure pkey
pdb id, linker name,

pdb chain

mutated protein instance
mutated protein

instance pkey
mutated aa pos,

mutated instance id
mutated proteins mutated proteins pkey mutated instance id

pdb atomic binding pdb atomic binding pkey

aa chain, aa position,
aa atom, pdb id,
nucleotide atom,
contact distance,
nucleotide chain,

nucleotide position

pdb residue binding pdb residue binding pkey

nucleotide position, pdb id,
aa chain, aa position,

contact distance,
nucleotide chain

pdb structure pdb structure pkey pdb id
pfam pfam pkey pfam id
protein protein pkey uniprot accession

residue alignment pdb
residue alignment

pdb pkey
pdb position, pdb id,

pdb chain

residue alignment uniprot
residue alignment

uniprot pkey
uniprot position,
rrm entryname

rrm instance rrm instance pkey rrm entryname
rrm structure rrm structure pkey rrm structurename

developed the application (user interface) that helps users to access data from
database.

3.4.1 Data Collection

The overall process of data collection for InteR3M database is schematized in
Figure 3.4. The primary data for domain information was collected from Pfam.
The domain instances and structures were retrieved from the release files provided
by Pfam database. Pfam stores domain instances using UniProt entry names that
need to be mapped to UniProt accession identifiers to retrieve information about
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Table 3.4: List of views in InteR3M database and their usage in database interface.

Name Interface Usage

allpdbcontacts
Intermediate view for ‘list of contacts’
display

contactsaligned List of contacts display

experiments filter
Searching experiments from ‘Multicriteria
search’

experiment per protein Experiment display, Protein display
ligands per experiment Experiment display

notstructural
Experiment display, Ligand instance
display, RRM instance display

structural
Experiment display, Ligand instance
display, RRM instance display, RRM
structure display

contacted ligands
Ligand instance display, Protein display,
RRM instance display

rrm Protein display, RRM instance display
mutant proteins Mutated protein instance display
linker insta merged Linker instance display
linker structure complex Linker instance display
linkercontacts Linker instance display

Figure 3.4: Workflow for data collection for InteR3M database. Starting Pfam
families and PubMed references have been manually selected. Dashed arrows
correspond to cross-referencing.

the corresponding proteins from UniProt. We used UniProt ‘ID mapping’ tool1 for
mapping UniProt entry names to UniProt accession identifiers. Then ‘UniProt

1https://www.uniprot.org/id-mapping
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website REST API’2 was used to collect information about proteins containing
RRM domains.
We also retrieved the structural instances of RRM domains from Pfam. Then, we
used the PDB API to retrieve the experimental information using the PDB
identifiers from the collected structural instances. The PDB API also provides
information about the proteins and nucleic acids present in the given structure.
With this information, we processed the PDB entries with RRMs having at least
one nucleic acid to compute the contacts between RRM and nucleic acids.

Contacts computation

The overall workflow for contacts computation is schematized on Figure 3.5. The
set of RRM-NA (RNA or DNA) complex structures were obtained from the Protein
Data Bank (PDB). From each PDB entry, the chains containing RRM and NA were
extracted and processed through an in-house script to retrieve the contacts between
RRM and NA. An amino acid residue and a nucleotide were considered to interact
if any atom from the residue and the nucleotide were less than 5.0 Å away from each
other. This is a broadly used interaction definition to keep strong interactions such as
hydrogen bonds or electrostatic interactions, while still accounting for hydrophobic
interactions that can occur at distances of 3.8 – 5.0 Å. Each atomic level interaction
is in the form of PDB ID, amino acid chain, amino acid, amino acid position, amino
acid atom, nucleotide chain, nucleotide position, nucleotide and the distance between
amino acid atom and nucleotide atom. We used x3DNA-DSSR [Colasanti et al.,
2013] to determine the ‘H-bonds’ and ‘stacking interactions’ between RRM and NA
chains. All atomic interactions were assigned one of the following interaction type
if they met the respective conditions:

H-bond: If the atomic interaction is present in the list of H-bonds obtained from
x3DNA-DSSR3.

Ionic bond: If the interacting atoms are from the side chain of basic amino acid
and phosphate of nucleotide respectively.

Van-der-waals: If neither of the above two conditions is met, the interaction is
assigned as van-der-waals interaction.

The RRM-nucleic acid binding information resulting from different binding assays
was collected manually from literature.

In summary, InteR3M has 400,892 RRM domain instances from 256,266 unique
proteins and 1,456 RRM structures from 727 unique PDB entries. Only 303 RRM
domain instances have at least one structure in PDB. Contacts have been computed
for the 656 RRM-NA complexes recorded in the database. The binding information
was retrieved from 16 publications related to 34 distinct RRM instances.

3.4.2 Database Implementation

The InteR3M database is implemented in PostgreSQL (v15.1). PostgreSQL is a
powerful and open source object-relational database management system

2https://www.uniprot.org/help/api retrieve entries
3http://home.x3dna.org/
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(a) Workflow for the contacts computation. (b) Workflow for contact types determination.

Figure 3.5: Workflow for contacts computation and contact types determination.
The bold font indicates the final output from each workflow.

(RDBMS) [Stonebraker et al., 1990]. The database schema (tables and views) was
defined using the data definition language (DDL).

3.4.3 Implementation of User Interface

The user interface for InteR3M database was implemented in PHP language. We
used twig as a template engine for PHP to design the web pages that will be displayed
to the users. Twig is a fast, secure, and flexible modern template engine for PHP.
The InteR3M user interface provides options to browse and search the InteR3M
database. The interface provides two different search options, a simple search and
a multi-criteria search. More details about these are given in section 3.5.

InteR3M database also provides the options to filter the contacts/interactions
between RRM and nucleic acids based on several different options like amino acid
residue name and nucleotide, or contact type.

3.4.4 Testing

Once the database was ready, we thoroughly tested it before making it publicly
available. We carefully tested the search and browse functionalities of the database
that helped us to improve the usability of InteR3M database. It was important
to get the feedback from new users of the database that will make it more user-
friendly and help us evaluate the database. Thus, we asked CAPSID and RNAct
members to use the database and provide their feedback for testing purpose. The
feedback we received mainly included the comments to add information for columns
in search contacts section to better understand the meaning of each column. We
also have been asked to make connections between ligand instances and structures
so that users can easily hop between instances and structures of the ligand similar
to RRMs.
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3.5 Using InteR3M

InteR3M is built by considering real-world cases and ease to retrieve data. The
Homepage contains a search bar (in top right corner) with the filtering options.

3.5.1 Search functionality

The users can search the InteR3M database for a given protein, RRM, or the 3D
structure if they know their identifiers. The Search bar allows to enter a protein name
or identifier from UniProt, an RRM name or identifier from Pfam or a 3D structure
identifier from PDB. Each query will return a results page with a list of matching
RRM instances and/or RRM structures. Each returned entry for RRM instances
provides options to select and jump to RRM entryname or UniProt Accession. Each
entry from returned results for RRM structures provides options to select and jump
to experiment, protein, or RRM structure.
The Search bar is available at the top right of every page and is easily navigated by
pressing the tab key.

3.5.2 RRM instance display

Once an RRM of interest is selected, the RRM instance display shows protein and
domain information, a list of all available structural instances, a list of non-structural
(binding) experiments retrieved from literature, and a list of ligands tested with
this RRM instance in all (structural and non-structural) experiments. The list of
structural instances provides information about interacting ligands if any and a link
to list the atomic interactions between RRM and ligand from that structure.

3.5.3 Protein display

Upon selection of a particular protein, the Protein display presents brief information
about the protein, a list of RRM domains, and all the experiments (structural and
non-structural) performed for RRM domains from this protein along with the list of
ligands included in the experiments. Each experiment from the list of experiments
presents the information about experiment type and the source (PubMed identifier).
The user can select the RRM domain instance, an experiment, and/or the ligand to
learn further about a particular entry.

3.5.4 Ligand instance display

Upon selection of a particular ligand, the Ligand display presents brief information
about the ligand followed by a list of experiments this ligand was involved in and a
list of RRM domains with which the binding of ligand has been tested. The
non-structural (binding) experiments are listed with the RRM domain with which
the experiment was performed along with their binding affinity. The structural
experiments are listed with the RRM domain with which the experiment was
performed along with the option to visualize the interactions between them. At
the bottom, the list of RRM domains indicates the RRM domains with their
position in a protein and domain sequence.
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A B

C

Figure 3.6: Homepage of InteR3M database. A) indicates the Navigation Bar, B)
indicates the Search Bar, and C) indicates the Multicriteria Search.
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3.5.5 Experiment display

The Experiment display provides brief information about the type and source of
information, protein(s), RRMs and ligands involved in this experiment. The
Experiment display also provides the information about mutations in the protein.
From Experiment display, user can select protein, RRM, and/or ligand to get
detailed information about a particular entry. For the complexes of RRM-ligand
(NA) from structural experiments, the entries are listed with the link for the
interactions between RRM and ligand, while the non-structural experiments are
displayed with binding affinity information.

3.5.6 List-of-contacts display

The list-of-contacts display provides detailed contact information between an RRM
and a ligand. From this display, user can jump to several displays like ‘RRM
instance’, and ‘Ligand instance’ by a simple click. Whenever available, the
list-of-contacts display also provides information about the amino acid residue
position in the protein sequence (‘UniProt Position’) and in the RRM master
alignment (‘Alignment Position’). This display is available for showing particular
contacts retrieved from the ‘Search Contacts’ option of multicriteria search, or
directly from an RRM instance display or a Ligand instance display.

3.5.7 Multicriteria Search

The InteR3M database provides the functionalities for querying the database using
‘Multicriteria Search’ (Figure 3.6 C.). With this functionality, users can query for
contacts between RRM and ligand, RRM structures, experiments performed with
RRM domains, RRM domain instances and ligands.

The contacts (interactions) between RRM and ligand can be queried using one or
more of these parameters: PDB identifier, interaction type, nucleotide, amino acid,
and RRM entryname. The RRM structures can be queried using PDB identifier,
experiment type, UniProt accession number, and/or PubMed identifier. The
experiments can be queried based on PDB identifier, experiment type, ligand
binding capacity, UniProt accession number, and/or PubMed identifier. Moreover,
all these query variables can be combined thanks to the multicriteria search
functionality. This answers the user needs described in the use cases (see
Section 3.2.4). In the case of RRMs and ligands search, the user can use either the
complete sequence or sequence motif to search for the RRM instances and ligand
instances with the given sequence. For sequence search, it is recommended to use
as long sequences as possible.
For each multicriteria search query, the user will land on the results page.
Figure 3.7 shows the results for one ‘Search Contacts’ query using multicriteria
search. Each result page from multicriteria search provides options for exporting
the results, filtering the results and sorting the results in ascending or descending
order based on a column. To filter the results, one can simply type the value on
which the results will be filtered. For example, the user can filter the resulting
contacts based on an interacting amino acid such as tyrosine (TYR) by typing
“TYR” in the filter bar. The user can hide columns by clicking on a specific
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A B

Figure 3.7: Results page for ‘Search Contacts’ using Multicriteria Search. We
searched contacts using Interaction Type (‘H-bond’), Nucleotide (‘U’), and RRM
Entryname (‘P19339 RRM1’). A) represents Export options and B) represents
Filter bar

column name in the ‘Toggle column’ section. For simplicity, we have hidden a few
columns in Figure 3.7. The user can also sort the resulting contacts, by simply
clicking on the column on which he/she wants to sort the results. The result page
also provides options to export the results as either CSV file or copy to
clipboard.

3.6 Strategies to update InteR3M database

The updates of InteR3M database can be from one of the two categories: minor
updates and major updates. Major updates will be done with every release of Pfam
database, i.e. generally every six months. Pfam release files will be checked for
the addition or removal of any domain instances from one of the 19 RRM families
present in InteR3M database. The newly added domain instances in each Pfam
release will also be added to the InteR3M database along with their available 3D
structures, while the obsolete domain instances (if any) from Pfam release will be
moved to the obsolete section from InteR3M database.
For any new 3D structure of RRM-NA complex, the contacts will be computed using
the same protocol (Figure 3.5). New families or families from RRM clan (CL0221) in
Pfam with no structural coverage will be checked for availability of any experimental
3D structure. As soon as any structure is available from these families, the structures
will be passed through the structural inspection protocol (Appendix A.2).
In addition, we will be computing one average structure with only backbone atoms
from all RRM structural instances present in the InteR3M database. This average
RRM structure can be considered as a representative structure for RRM domains,
and thus can be used to compare with other structures.
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Minor update will consist in adding binding information from literature and any
changes made in the web interface. Minor releases of InteR3M database will be
made regularly, for example, every three months.
The release history of InteR3M database can be accessed at
https://inter3mdb.loria.fr/releases/.
All these updates will rely on existing scripts stored at
https://gitlab.inria.fr/hdhondge/data collection inter3mdb.

3.7 Results

Figure 3.8: Count of entries per table InteR3M database

The InteR3M (v0.0.1) contains a total of 400,892 RRM domain instances from
256,266 unique proteins. All these RRM domain instances have been extracted
from 19 different Pfam families. In average, the PDB4 has 1 structure per 1209
protein entries from UniProtKB5, i.e.

UniProtKB entries

PDB entries
=

246, 440, 937

203, 863
= 1208.855

In InteR3M, we have a more favourable structure to sequence ratio, i.e. 1 structure
per 352 RRM containing proteins:

RRM containing UniProtKB entries

RRM containing PDB entries
=

256, 266

727
= 352.497

4Data collected on 19th of April 2023
5UniProtKB Release 2023 01
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This suggests that the RRM-containing proteins have been studied more from a
structural point of view compared to overall proteins.
The InteR3M database includes 459,859 interactions extracted from 656 RRM-NA
complexes, with 1,926 residue-level stacking interactions and 457,933 atomic-level
interactions (Figure 3.8). Proteins with multiple RRM domains have linkers,
linking two RRM domains together. These linkers play an important role in the
orientation of RRM domains. InteR3M has 144,623 linker instances from 95,288
different proteins.

Figure 3.9: Distribution of RRM instances across Pfam families

Figure 3.9 shows the distribution of RRM instances across Pfam families. RRM 9
(PF18444) has the smallest number of RRM domain instances, i.e. 149, whereas
RRM 1 (PF00076) is the predominant family among all comprising 359,655 RRM
instances. Of all other families, none has more than 8,000 RRM instances.

Of these total (400,892) RRM instances, only 303 have their 3D structures solved in
the PDB. These 303 RRM instances have a total of 1,456 structural instances from
727 unique PDB entries. The structural distribution of RRMs per Pfam family is
shown in Figure 3.10. This clearly depicts the dominance of RRM 1 Pfam family in
sequential and structural aspects of RRMs. RRM 5 (PF13893) is the second largest
family with 7,622 RRM domain instances and 42 RRM structural instances. All
other 17 Pfam families have less than 15 RRM structural instances each. Figure 3.10
also shows that there are more RRM structures in unbound form (orange bars, total
unbound = 906) than the RRM structures in bound form (blue bars, total bound
= 550) either with RNA or DNA. A total of 87 unique RRM instances have their
structures in both bound and unbound states. The list of the RRM instances having
both bound and unbound structures can be found in Appendix A.3.

The InteR3M database has information from 9 different types of experiments
(including X-ray diffraction, NMR solution, Fluoroscence polarization, ITC etc.).
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Figure 3.10: Distribution of RRM structures across Pfam families

Figure 3.11: Distribution of experiments performed across each type of experiments.
A single RRM instance might be used in more than one experiment of same or
different types.

Figure 3.11 shows the distribution of experiment entries per unique RRM instances
across different experiment types (techniques). The ‘X-ray diffraction’ technique
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was used 362 times to determine the 3D structure of 140 unique RRM instances.
The same RRM instance might be used in multiple experiments. The ‘NMR
solution’ technique was used 268 times to determine the 3D structure of 192
unique RRM instances, making the NMR solution the technique used on the
highest number of unique RRM instances. The ‘Fluorescence polarization’
technique has 234 experiments performed on 10 unique RRM instances.
Unlike non-structural experiments, structural experiments, i.e. X-ray diffraction,
NMR solution, and EM, do not necessarily involve nucleic acid along with the
RRM as their main goal is to determine the 3D structure of RRM containing
proteins.

Figure 3.12: Distribution of Experiments performed for each RRM instance. All
these RRM instances are from RRM 1 family (PF00076) except P40567 RRM1 that
corresponds to RRM 5 (PF13893) family.
For simplicity, we have shown only RRM instances with multiple types of
experiments, or with at least 50 total experiments, or with >10 PubMed references.

Figure 3.12 shows the most studied RRM instances from different perspectives, i.e.
with the highest number of experiments, different PubMed references, and different
experiment types. Currently, we have limited data for non-structural experiments
as this step of collecting data from literature can not be automated. The RRM
instance ‘Q61474 RRM1’ has the highest number of experiments (84)
corresponding to 3 different PubMed references (studies). Each of these
experiments can be classified into one of two types: ‘Fluorescence polarization’ or
‘NMR solution’. This RRM instance corresponds to the first RRM domain from
‘Musashi homolog 1’ protein in Mouse.
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The RRM instance with the highest number of publications (distinct studies) is
the first RRM domain from ‘U1 small nuclear ribonucleoprotein A’ protein. A
total of 83 experiments were performed for this RRM instance (‘P09012 RRM1’)
that has been used in 41 different studies with 3 different types of experiments.
The RRM instance with the highest number of types of experiments is
‘P31483 RRM2’. In InterR3M, there are 24 experiments entries related to this
RRM instance from 5 different studies and 5 types of experiments. This RRM
domain instance is from ‘T-cell intracellular antigen-1’ (TIA-1) protein in Human.
Interestingly, all three RRM domain instances from the TIA-1 protein are present
in our list of most studied RRM domain instances suggesting that all the three
RRMs from this protein are well studied by different experiments and studies. The
TIA-1 potein has dual regulatory role in transcriptional and post-transcriptional
processes, shuttling between nucleus and cytoplasm [Kedersha et al., 2000, Zhang
et al., 2005]. Within nucleus TIA-1 promotes the inclusion of exon 6 in FAS
pre-mRNA resulting in an apoptotic form of FAS protein that is linked to
autoimmune responses [Izquierdo et al., 2005]. In the cytoplasm, TIA-1 protein
mediates translational repression of target mRNAs via binding to target RNA
motifs (A/U rich sequence) present in their untranslated regions. Previous studies
from Piecyk et al. [2000], Dixon et al. [2003] and Yu et al. [2003] have shown that
TIA-1 protein also represses the expression of inflammatory mediators.

Figure 3.13: Distribution of single and multi-RRM proteins per RRM domain count

Figure 3.13 shows the distribution of proteins having single and multiple RRM
domains. Majority of proteins contain a single RRM domains along with a few
proteins (354) with more than 5 RRM domains. The “RPOLD domain-containing
protein” (UniProt Accession: A0A2R6WJA9) has the highest number of RRM
domains: 16. This protein has a 2143 amino acid long sequence and there is no
experiment reported yet for any of the RRM domains from this protein. All 16
RRM domains from this protein correspond to RRM 1 Pfam family. From the
figure 3.13, it is clear that RRM domains from some multi-RRM proteins (7714)
correspond to different RRM families (yellow bars).
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Although this number is a small fraction compared to proteins with multiple
RRMs from the same family, a closer look at this might provide some insights into
the evolutionary aspects of these RRM families.

(a) Proteins with two RRM domains (b) Proteins with three RRM domains

(c) Proteins with four RRM domains (d) Proteins with five RRM domains

Figure 3.14: Distribution of proteins with multi-RRM domains from different Pfam
families

Figure 3.14 shows the distribution of Pfam families among multi-RRM proteins.
Each of the four subplot shows the Pfam families distribution across proteins with
two, three, four and five RRM domains respectively. The two most abundant RRM
families (‘PF00076’ and ‘PF13893’) from sequence and structural points of view
can be found together within the same protein in all these categories. These two
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families are together even in the proteins with 6 and 8 RRM domains. This indicates
the closeness of these two families compared to rest of the RRM families. The
phylogenetic analysis of all RRM instances can provide more details into this and
help us to understand the evolution of RRM domains in order to know the functions
and relations between multi-RRM proteins.

All the experiments in InteR3M have used 311 different nucleic acid sequences
(ligand instances) to test their binding capacity with RRM domains. Of these 311
ligand instances, 190 have been used in structural experiments, 126 have been used
in non-structural experiments like ITC, SPR, etc and 5 of them are used in both
types of experiments.

Figure 3.15: Most studied RRM-ligand pairs. For simplicity, we showed RRM-RNA
pairs with multiple experiment types or with experiment count >15.

Figure 3.15 shows the distribution of experiment types and experiment count per
RRM-ligand pair. This plot tells us about the most studied RRM-ligand pairs.
The pairs of ‘Q13148 RRM1/2’ and ‘Lig121’ have been used in two different types
of experiments and in a total of 16 experiments. InteR3M has a 3D structure for
the complex of these pairs with PDB identifier ‘4BS2’. These pairs have been also
tested with point mutations on protein using ITC experiments. Both of these
RRM instances correspond to the protein named ‘TAR DNA-binding protein 43’
whereas the ligand has a GU-rich sequence ‘GUGUGAAUGAAU’.
The RRM domain instances ‘P26599 RRM3’ and ‘P26599 RRM4’ have been used
with the ligand ‘Lig328’ in 19 and 18 experiments, respectively. Both of these
RRM instances, as well as several mutated versions, have been tested for RNA

61



Chapter 3. InteR3M: The Database for Interactions of RNA and RRM

binding capacity using ‘filter binding assay’. Thus, InteR3M provides binding
information resulting from checking the effect of point mutations in
‘Polypyrimidine tract-binding protein 1’ on the binding of the 185-nucleotides long
RNA, referred to as ‘Lig328’.

Figure 3.16: Number of mutations studied per protein containing RRM

InteR3M also stores the information about mutations performed on proteins to check
their effect of these mutations on the RNA binding capacity. Figure 3.16 shows total
count of mutations in proteins used to test the RNA binding. The ‘Heterogeneous
nuclear ribonucleoprotein L’ protein with UniProt identifier ‘P14866’ has the highest
number of mutations tested for RNA binding. This protein has 4 RRM domains,
and mutation positions span the entire protein. These mutations were performed
in this protein to check and identify the RNA binding surface of ‘hnRNP L RRM1’
and ‘hnRNP L RRM23’.

In this example, one mutation refers to either point mutation or multiple mutations
performed in a protein for the same experiment. These mutations can be either
from or outside the RRM domain region.

The curation of information pertaining from various primary sources and its
integration in a well designed domain-specific database such as InteR3M, have
been essential in obtaining all these results. Such a database provides in-depth
information about the targeted protein domain, which helps to better understand
and characterize this domain.

3.8 Discussion & Conclusion

The domain-centric databases provide detailed information on specific domains of
interest. Although there exist several generalist domain databases like Pfam, CATH,
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CDD, InterPro etc. these databases provide only the very first basic information for
domain-based analyses. Most of these generalist domain databases detect domains
in an automated or semi-automated way. It is difficult to find all domain instances
for a given domain type correctly using the same rationale. For example, there are
five Pfam families that are reported as members of the RRM clan but do not have
the RRM fold to be considered as RRM domain families.
Thus, it is important to study the protein domains in a domain-centric way and
report newly generated information or any wrongly classified domains back to the
generalist domain databases so that they can improve their classification.

Domain-centric databases can play important roles in developing the
domain-centric approaches in different fields like functional studies of mammalian
genes, characterization and identification of pathogenic viruses, and phylogenetic
analysis [Phan et al., 2018]. One of the main advantages of domain-centric
databases is that the domain instances they contain are manually curated and
validated by developers of these domain-centric databases. Therefore, the users
have more confidence on domain instances retrieved from domain-centric databases
rather than generalist domain databases. Undoubtedly, the resulting domain
instances depend on the rationale used to develop these databases and users
should be aware of it before starting any downstream analysis.

We are making the code publicly available to facilitate either the creation of
domain-centric databases similar to our InteR3M database or a few tasks from the
whole process like contacts computation. The code used for data collection and
update of the InteR3M database is publicly available and can be accessed at
https://gitlab.inria.fr/hdhondge/data collection inter3mdb.

The InteR3M database is publicly available and can be accessed at
https://inter3mdb.loria.fr/.

The major problems faced during the InteR3M database development were in the
initial stages especially to delineate the correct set of RRM families. The choice
of a generalist domain database as a primary source was very important and Pfam
was selected based on collected use cases. Although not all Pfam families from
the RRM clan have RRM fold, Pfam provided a good starting point to investigate
further.

Currently, InteR3M have domain family information only from Pfam (sequence-
based) database, but we would like to add the annotations from a structure-based
classification like CATH or SCOP. The addition of information from structure-based
domain classification would be helpful as it might add a few domain instances missed
by Pfam and provide structural insights on domains from different Pfam families.
This inspired us to develop a cross-mapping approach between Pfam (sequence-
based) and CATH (structure-based) classifications presented in next chapter.
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4.1. Introduction

4.1 Introduction

Most proteins are composed of one or more domains that can be identified at the
sequence or structural level. A protein domain is generally defined as a conserved
structure identified by conserved residues in a multiple sequence alignment across
different types of proteins often sharing similar functions. Moreover, it is generally
assumed that the protein domains can fold independently from the rest of
protein [Batey and Clarke, 2008]. Conceptually, a protein domain can also be
considered as an abstract class whose definition/pattern is first induced from the
analysis of certain occurrences of this domain (instances of the class) in real
proteins. This definition/pattern is then used to discover new occurrences in new
proteins. A domain can be associated with a specific, definite function in the
proteins, making it the basic unit for understanding protein function and building
synthetic proteins with given functions. There are several resources available that
provide information about the protein domains and their classification [Wang
et al., 2021]. The domain databases can be grouped into three categories
depending on the rationale used for classification which can be either primarily
sequence-based, primarily structure-based or integration-based (Section 2.2).

Figure 4.1: General landscape of domain databases. In red are the integrated
domain databases (InterPro and CDD). CATH, SCOP and ECOD are structure-
based domain databases (enclosed in dashed line) and the rest are sequence-based
domain databases.

Figure 4.1 summarizes the general landscape of domain databases. In red are the
integrated domain databases: InterPro [Blum et al., 2021] and CDD [Lu et al., 2020].
CATH [Sillitoe et al., 2021], SCOP [Andreeva et al., 2020] and ECOD [Cheng et al.,
2015] are structure-based domain databases (framed with a dashed outline) and the
rest are sequence-based domain databases. Pfam [Mistry et al., 2021] and CATH
(in bold font) are used in this study.
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All these domain databases constitute valuable and complementary sources of
knowledge about domain families and can be used to investigate structure-function
relationships in proteins. However, several problems arise when one begins to
examine a particular type of domain across multiple domain databases. First, the
domain families have different names in different databases and are not
consistently mapped to each other. Second, domain families corresponding to the
same type of domain in two different databases may not contain the same domain
instances. Finally, for a given domain instance present in two different domain
databases, the domain boundaries on the sequence (start and end residues) may be
different.
Such difficulties are particularly deleterious for domain-centric investigation in the
frame of synthetic biology and protein design. Indeed, such projects require a very
precise knowledge about existing instances of a given type of domain associated
with a specific function, in order to be able to engineer synthetic versions of this
domain without losing the function. In practice, the exhaustive enumeration of all
true domain instances of a certain type of domain is a complex problem and
cannot be solved by querying a single domain database. To solve these issues, we
propose here a generic iterative approach aiming to clarify domain definition by
cross-mapping of domain structural instances between domain databases.

As a use case to develop and test our approach, we use the RNA Recognition Motif
(RRM) domain, described in Chapter 2, section 2.3.1, with the goal to integrate
all existing information about this domain, including all available experimental 3D
structures.

Inconsistencies regarding RRM domain families appear with very simple searches
inside a database (RRM Pfam families can be found outside the RRM clan) and
between databases (16 Pfam families versus 2 CATH superfamilies). There are 16
Pfam families (13 from RRM clan) with RRM in their name. When the CATH
database was searched using keyword ‘RRM’, several matching CATH domains
were retrieved from and outside of the ‘RRM’ superfamilies (see query details in
Appendix B.5.2).

Thus, different classification systems provide very different results for a given type
of domain such as RRM. Although the RRM domain appeared well characterized
in early studies, a great diversity exists today among domain families referring to
RRMs. This raises the question of intra-domain allowed diversity: which domain
instance is a ”true RRM” and which one is not. At this stage, we decided to
answer to this question from a 3D structure point of view and we designed a generic
systematic approach: CroMaSt that classifies all structural instances of a given
domain into 3 different categories (core, true and domain-like). We first describe our
approach including our cross-mapping concept. The methods section then details
the implementation of the CroMaSt generic workflow and is followed by the results
section with RRM as a use case. Finally, we will discuss the possible usage of the
CroMaSt workflow.

4.2 Approach

Our objective is to clarify the membership of structural domain instances to a
given type of domain, often represented by a set of domain families in domain
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databases. The CroMaSt workflow is designed in such a way that it uses the
domain definitions from two well-known and widely used domain databases, Pfam
(sequence-based) and CATH (structure-based). In our running example, we will
consider the RRM domain type, which has been defined above, and is mostly
represented by the CATH 3.30.70.330 superfamily (RRM domain) and the Pfam
PF00076 domain family (RRM 1, RNA recognition motif). Two questions must be
solved: (i) which other domain families in CATH or Pfam also represent the RRM
domain type, and (ii) are there domain structural instances that are misclassified
as RRMs in the RRM domain families.

Our generic approach assumes that there exists a consensus basic definition of the
considered domain type, with a few validated structural instances (StIs), qualified as
“true” StIs for this type of domain. Then, our first hypothesis is that it is possible to
verify that a given domain StI belongs to the considered type of domain, by running
structural alignment with true StIs. The result can be either manually inspected
or automatically filtered using appropriate thresholds defined by the experts of this
type of domain. However, this task can become tedious in view of the ever increasing
number of StIs. Therefore, one needs to rely on existing domain classifications, in
particular those with wide-coverage such as CATH and Pfam. Let CATH-rep1 and
Pfam-rep1 be two most representative domain families in CATH and Pfam databases
respectively. Our second hypothesis is that if a domain StI belongs to both CATH-
rep1 and Pfam-rep1, then it is likely to be a true StI. If a domain StI is only present
in CATH-rep1 (respectively in Pfam-rep1), it can be relevant to “cross-map” it to
another domain family in Pfam database (respectively in CATH database), and to
check all the StIs of this new domain family that may become a new representative
family of the considered domain type.

Cross-mapping is the process of finding/locating an instance from one resource
in another one. In our case, it refers to the process of finding a domain StI from
Pfam in CATH or from CATH in Pfam.

CATH-rep1 to be cross-mapped

CATH-rep1 : ‘2DNL,A,1,3.30.70.330,427,515,Q8NE35,441,529’

This StI is in the format of: ‘PDB id, Chain id, Domain order number,
Family id, PDB start, PDB end, UniProt id, UniProt start, UniProt end’.

For example, to cross-map the above domain StI (CATH-rep1) from CATH in Pfam
database. I will search the CATH database until I find the match for this StI, in this
case Pfam-rep2 from the CATH StIs box. Now we have successfully cross-mapped
the CATH-rep1 in Pfam to Pfam-rep2. The domain family corresponding to this
StI (Pfam-rep2) become a new possible candidate family of the considered domain
type.
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Pfam StIs
...

Pfam-rep1 : ‘2DIS,A,RRM 1,PF00076,11,78,A0AV96,153,220’
Pfam-rep2 : ‘2DNL,A,RRM 7,PF16367,426,515,Q8NE35,440,529’
Pfam-rep3 : ‘2MSS,A,RRM 1,PF00076,Q61474,111,180,111,180’
Pfam-rep4 : ‘4CQ1,F,RRM 5,PF13893,337,434,Q9UKA9,337,434’
Pfam-rep5 : ‘5X3Z,A,0,3.30.70.330,105,200,Q61474,109,200’

...

These StIs are in the format of: ‘PDB id, Chain id, Domain name, Family id,
PDB start, PDB end, UniProt id, UniProt start, UniProt end’.

At the end of the process, three categories of domain StIs are produced (Table 4.1):
the “Core” category groups all domain StIs that are present in starting families
and shared between two considered databases, the StIs from core category are used
to build the ‘core average structure’, the “True” category groups all domain StIs
that are cross-mapped to families distinct from starting families while displaying
significant structural similarity with the core average structure, and the “Domain-
like” category groups all domain StIs that could not be cross-mapped but display a
significant structural similarity with core average structure.

More precisely our CroMaSt workflow is described in Fig. 4.2. Our approach starts
with a single domain family (or a list of domain families) representing the domain
type of interest in each of Pfam and CATH domain databases. We then filter all
StIs from these families and compare the lists obtained from each domain database.
The instances common to both Pfam and CATH families are included in the ‘True
domain’ list and named the ‘Core domain’ set at the first iteration of the workflow.
An average structure is computed for the set of core domains and named ‘Average
core structure’. The rest of the instances that are either specific to Pfam or specific to
CATH are “cross-mapped” in the other database to fetch possible additional CATH
or Pfam (respectively) families for the same type of domain. For all newly fetched
families, an average structure is computed at the family level with cross-mapped
StIs. After verifying that the structural alignment of the new family members with
the average core structure exceeds a certain quality threshold, the newly found
family is added to the list of families at the beginning of the workflow and a new
iteration is started. At each iteration, a certain number of domain StIs specific
to each database remain unmapped in the other database. For each unmapped
domain instance, the average structure is computed at the sequence instance level,
i.e. all StIs corresponding to the same protein sequence. These averaged structures
are checked by structural alignment with average core structure and classified as
‘Domain-like’ structures when the alignment score exceeds a given threshold. This
iterative procedure is followed until no other families are found. Domain StIs that
do not fall in any category (Core, True or Domain-like) are labelled as ‘Failed
domains’.
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Figure 4.2: Conceptual model behind the CroMaSt workflow.
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Table 4.1: Rationale behind classifying structural instances into categories.

Category
Starting family

member
Cross-mapped

Structurally
well aligned

Core ✓ ✓ ✓
True - ✓ ✓
Domain-like - - ✓

4.3 Methods

4.3.1 Selection of data sources

We selected two data sources to instantiate the CroMaSt approach, one
sequence-based (Pfam) and one structure-based (CATH) domain databases. These
two databases provide the raw files for each version of their update. The CroMaSt
workflow uses these raw files. The workflow also uses Protein Data Bank (PDB)
[Burley et al., 2021] and SIFTS (Structure integration with function, taxonomy
and sequence) [Dana et al., 2019] resources for experimental 3D structures and
residue-mapping between UniProt and PDB instances. More precisely, the files
used by the workflow are as follows:

1. CATH domain description file - version 4.3.0 (Link)

2. File with Pfam-A matches for each PDB chain - version 33.0 (Link)

3. Obsolete PDB entries information (Link)

4. 3D coordinates of PDB structures

5. SIFTS mapping files

All above data files can be downloaded by running a tool provided with the workflow.
This allows users to select the version of their choice for each source database.

4.3.2 Retrieve the domain structural instances

The workflow starts with at least one (super)family from each database. The
structural instances (StIs) of a given domain refer to the parts of the PDB chains
that contain an instance of this domain. This information can be extracted for
given domain family IDs from Pfam and CATH databases but is not easily
compared between the two sources as domain StIs retrieved from the Pfam
database have start and end residues numbered according to UniProt, while these
residues are numbered according to PDB when the domain StIs are retrieved from
the CATH database. Therefore a residue mapping step is required to generate a
unified representation that follows the form ‘PDB id, Chain id, Domain name or
Domain order number, Family id, PDB start, PDB end, UniProt id,
UniProt start, UniProt end’. For example, a StI shared in Pfam and CATH has
the following representation:

• ‘1CVJ, G, RRM 1, PF00076, 13, 83, P11940, 13, 83’ in Pfam, and

• ‘1CVJ, G, 01, 3.30.70.330, 11, 87, P11940, 11, 87’ in CATH.
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This unified format facilitates identification of shared StIs between the two
databases, taking into account the possible differences between start and end
positions in the two data sources. Moreover, this format allows to save the start
and end positions from the PDB chain in order to extract the 3D coordinates of
the domain StIs for computing structural average or for structural alignment
purpose.

The first step of the workflow consists of retrieving all StIs corresponding to given
domain family IDs from each database. Domain length is used as a threshold to
filter the domain StIs to avoid getting extremely short structures. Then, the start
and end residues of all domain StIs are mapped to their corresponding PDB (for
StIs deriving from Pfam) or UniProt (for StIs deriving from CATH) numbering.
The SIFTS resource is used for this residue mapping. The workflow also keeps track
of the domain StIs for which the residue mapping can not be done (obsolete or
inconsistent entries). The complete step for retrieving the domain StIs is depicted
in Fig. 4.3.

4.3.3 Compare sets/lists of domain structural instances

At this stage, the CroMaSt workflow compares two sets of domain StIs (one from
Pfam, one from CATH) using the PDB and chain IDs and the start and end residue
positions on the UniProt sequence. The workflow takes into account that the two
databases can provide different lengths for the same domain instance, allowing for
a difference between start (respectively end) residues for the same domain instance.
By default, we use a maximal difference of 30 residues, but the user can modify this
parameter according to their needs. This consideration of possible different lengths
between various domain databases is important as it allows more than one source
of information about a given domain to be covered.
This step of the workflow results in three different sets:

• Common domain StIs,

• Domain StIs unique to Pfam, and

• Domain StIs unique to CATH

The common domain StIs obtained at the first iteration of the workflow are the core
domains and are used to compute the core structure of the domain (Step 4.3.5).
The domain StIs unique to one database must be “cross-mapped” to the other
database.

4.3.4 Cross-mapping of the unique domain structural
instances

Each domain StI unique to one database (CATH or Pfam) is “cross-mapped” to the
other database (Pfam or CATH, respectively). To do so, the PDB and chain IDs
are used to query the domain description files downloaded from the data sources.
When a hit is found, the start and end positions (from UniProt for Pfam database,
and from PDB for CATH database) are checked with the same tolerated difference
as in Step 4.3.3. If the cross-mapping is successful, the corresponding cross-mapped
StI is created and its domain family becomes a new possible candidate for the ’true
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Figure 4.3: Process of filtering and residue-mapping structural domain instances.
(Figure was generated locally using cwltool.)

domain’ category. An average structure is computed at the family level from all StIs
mapped to this domain family (see Step 3.5) and if the structural alignment test
(see Step 3.6.1) is positive, this domain family is added to the set of domain families
ready for the next iteration of the workflow. Whenever a new domain family is found
and it undergo a structural alignment test (See Step 4.3.6) before being added to
the set of domain families ready for next iteration of the workflow. and is stored
for the next iteration. The corresponding cross-mapped StI is created. If the cross-
mapping is not successful, the domain StI is stored as unmapped. In summary, this
step provides three different sets of domain StIs as follows:

• Pfam StIs cross-mapped to new families in CATH

• CATH StIs cross-mapped to new families in Pfam

• Un-mapped StIs from both databases, these domain StIs are not classified or
annotated in the other database

4.3.5 Computation of average structures

Family-level and instance-level average structure

The coordinates for average structure are computed using an in-house python
script after aligning a set of 3D coordinates (extracted from PDB entries) using
the Kpax program [Ritchie, 2016]. The resulting average structure only consists of
the protein backbone without side-chains. When applied to a set of domain StIs,
this computation could be biased towards the domain instances (defined by their
UniProt sequence) having more StIs in the PDB. To avoid this, our workflow first
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computes “instance-level” averages from all StIs corresponding to the same domain
instance in UniProt. Then, these “instance-level” average structures are used to
compute the “family-level” average structure as an ‘average of averages’.

Figure 4.4: Steps to compute family-level average structure as the average of
instance-level average structures (Figure was generated locally using cwltool).

Core average structure

Core domain StIs are the common domain StIs (from Step 4.3.3) retrieved during the
first iteration. Core domain average structure is computed using these core domain
StIs as an average of averages per domain instance as described in Step 4.3.5. It
should be noted here that the core average structure of the domain is dependent on
the families selected for the first iteration of the workflow.

Average structures for each cross-mapped families

An average structure is computed for each cross-mapped (newly found) family from
all the unique domain StIs that are mapped to this family (Step 4.3.4). These average
structures are computed at the “family-level” as described above (Step 4.3.5).

Average structures for un-mapped domain structural instances

Average structures are computed at the “instance level” for each unmapped domain
instance produced at Step 4.3.4.

4.3.6 Structural alignments

The core average structure of the domain obtained at Step 4.3.5 plays a crucial
role as a reference for domain membership in the structural alignments. The
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workflow considers the core average structure as the prototype/template for the
query domain. Thus, the core average structure is aligned against other structures
to assess if the aligned structures are instances for the same domain type. For all
structural alignments, the CroMaSt workflow uses Kpax as it provides a
Gaussian-based Multiple Structural Alignments quality measure called
‘M-score’ [Ritchie, 2016], which circumvents the pitfalls of RMSD-based quality
measures [Kufareva and Abagyan, 2011]. This step outputs a csv file with all the
scores provided by Kpax for each target structure. By default, the CroMaSt
workflow uses ‘M-score’ as the alignment score and 0.6 as the score threshold to
evaluate the alignments. Users can choose to evaluate the alignments using any of
the alignment score provided by Kpax (such as K-score, J-score, T-score and so
on) with different thresholds.

Structural alignments for average structures of cross-mapped
families

Each average structure for cross-mapped families from Pfam and CATH (Step 4.3.5)
is aligned against the core average structure using Kpax. If the average structure for
a cross-mapped family passes the given threshold (for alignment score), the family
identifier is added to the list of families for next iteration of the workflow. In parallel,
the StIs that were mapped to this new family are also kept for next iteration in order
to get recognized as ‘true domain’ StIs when comparing lists from the two domain
databases.

Structural alignments for un-mapped average structures

The un-mapped average structures (from Step 4.3.5) are also aligned in same manner
like Step 4.3.6. The StIs corresponding to average structures passing the threshold
(for given score) are included in the list of ‘domain-like’ StIs. The StIs corresponding
to structures failing to pass the threshold, are considered as false positives and
labeled as ‘failed domains’.

4.3.7 Implementation

CroMaSt uses the common workflow language engine and the Conda package
manager (to install the required dependencies). All the scripts are written in
Python and wrapped in CWL [Crusoe et al., 2022] as cwltools. Although the
developers of Common Workflow Language (CWL) are working on adding the
functionality for loop from quite some time now, it does not support the loops yet.
As the nature of the CroMaSt workflow is iterative, a new parameter file is created
at the end of each iteration for next iteration. This step updates certain inputs
from string types to file types along with updating the most important input
parameters of family identifiers (from Step 4.3.6). The family identifiers are
updated based on the alignment scores of average structures for cross-mapped
families. FAIR principles were followed while developing workflow, which can be
found on WorkflowHub [Goble et al., 2021] from doi:
10.48546/workflowhub.workflow.390.1. Details on how to use the CroMaSt
workflow are provided on WorkflowHub and Git repository.

74

https://doi.org/10.48546/workflowhub.workflow.390.1


4.4. Results

Table 4.2: Results from each step of CroMaSt, starting with Pfam family - RRM 1
(PF00076) and CATH superfamily - 3.30.70.330 (RRM (RNA Recognition Motif)
domain).

Steps
Iteration 1 Iteration 2

Pfam CATH Pfam CATH
Starting Families 1 1 14 0
StI filtered on domain length 1147 1527 96 80∗

Obsolete and inconsistent entries 3 323 0 0
Residue-mapped StIs 1144 1204 96 -
Common StIs (Core & True) 886 886 80 80
Remaining StIs (not common) 258 318 16 0
Cross-mapped StIs 0 244 0 0
Properly aligned at family level - 80 - -
Not properly aligned at family level - 164 - -
Not cross-mapped StIs (unmapped) 258 74 16 0
Properly aligned at instance level
(Domain-like)

255 74 15 -

Not properly aligned at instance level 3 0 1 -
Failed structures 3 164 1 0
New families found 14 0 0 0

∗These StI entries are cross-mapped and properly aligned at the family level from
the previous iteration.

4.4 Results

To run the CroMaSt workflow successfully requires:

1. At least one family identifier from each Pfam and CATH databases as input
from user.

2. At least one common StI between the starting families from Pfam and CATH.

To demonstrate the capacity of the CroMaSt workflow to distinguish between true
domain StIs and domain-like StIs and to list false positive and obsolete or
inconsistent StIs, we apply CroMaSt to the RRM group of domain families.

We initiate the CroMaSt workflow with families PF00076 (RRM 1) from Pfam and
superfamily 3.30.70.330 (RRM domain) from CATH. Table 4.2 shows the different
results obtained at each step of the workflow. A total of 1147 domain StIs were
filtered from RRM 1 Pfam family along with 3 inconsistent domain StIs, whereas
1527 domain StIs were filtered from CATH including 316 obsolete and 7
inconsistent domain StIs. Then, the 1144 and 1204 domain StIs from Pfam and
CATH, respectively were residue-mapped. Out of all these residue-mapped domain
StIs, 886 are shared between Pfam and CATH. Thus, 886 StIs constitute the core
domain StIs, and are also included in the list of true domain StIs. Core average
structure (Fig. 4.5 A.) for RRM domain was computed using these 886 StIs. From
the remaining StIs (258 unique to Pfam and 318 unique to CATH), only 244 StIs
from CATH were successfully cross-mapped to a total of 17 different Pfam
families. Thus, average structures were computed for these 17 newly found Pfam
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families using the cross-mapped StIs. After aligning these average structures
against the core domain average structure, 14 of them passed the threshold
allowing to include these families at the beginning of the next iteration. The
remaining 3 families and their corresponding StIs (164) were considered as failed
domain StIs. Thus, only 80 StIs from the 244 CATH StIs crossmapped to Pfam
were kept for the next iteration.

The average structures were computed at the ‘instance-level’ for all un-mapped
StIs from Pfam (258) and CATH (74). After the alignment of these average
structures against the core domain average, only 3 StIs from Pfam failed to pass
the threshold. Thus, all remaining StIs (255 from Pfam, and 74 from CATH)
constitute the ‘domain-like’ StIs. In summary, the first iteration resulted in a total
of 886 core domain StIs, 329 domain-like StIs, and 167 ‘failed domain’ StIs, as well
as 14 Pfam families and 80 CATH StIs ready for next iteration.

The second iteration started with the 14 Pfam families and 80 StIs from CATH.
A total of 96 StIs were filtered from the 14 Pfam families with no inconsistent or
obsolete entry. These two sets shared 80 StIs (true domain StIs) and the other 16
StIs from Pfam remained un-mapped in CATH. Nearly all of them (15/16) passed
the alignment threshold leading to 15 domain-like StIs and 1 failed domain StI.
Thus, at the end of the second iteration, no new family was found, hindering any
further iterations of the workflow.

The CroMasSt workflow keeps track of all obsolete and inconsistent domain StIs
which are detected mostly at the residue mapping step based on SIFTS. To
illustrate that, we list here the inconsistent StIs encountered throughout the
workflow (obsolete StIs are listed in Appendix B.5):

• “6DG0,B,RRM 1,PF00076,Q22039,230,294”,

• “6DG0,A,RRM 1,PF00076,Q22039,230,294”,

• “6PAI,D,RRM 1,PF00076,Q7Z3L0,95,165”,

• “2KU7,A,00,3.30.70.330,1,140”,

• “3DXB,F,02,3.30.70.330,452,556”,

• “3DXB,G,02,3.30.70.330,452,556”,

• “3DXB,D,02,3.30.70.330,452,556”,

• “3DXB,B,02,3.30.70.330,452,556”,

• “3DXB,A,02,3.30.70.330,452,556”,

• “4V19,X,00,3.30.70.330,2,150”

The domain StIs with PDB ID ‘6DG0’ (chains A and B) are associated with UniProt
ID G5ECJ4 in PDB and with UniProt ID Q22039 in Pfam. Similarly, the domain StI
present in PDB ID ‘6PAI’ (chain D) is associated with UniProt ID Q14498 in PDB
and with UniProt ID Q7Z3L0 in Pfam. Regarding the domain StI present in PDB
ID ‘2KU7’ (chain A), the start and end residues from the PDB entry are mapped
in SIFTS to two different UniProt IDs: Q03164 and Q9UNP9. The situation is the
same for all domain StIs in PDB ID ‘3DXB’, the start and end residues map to
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UniProt IDs, P0AA27 and Q9UHX1, respectively. Finally, the domain StI in PDB
ID ‘4V19’ (chain X) has no annotation for any UniProt entry in SIFTS.

Figure 4.5: RRM domain structural instances A. Core average domain structure B.
and C. True domain StIs unique to CATH at first iteration and successfully mapped
to two different Pfam families. D. and E. Domain-like StIs from CATH and Pfam,
respectively.

In summary, the CroMaSt workflow identified 966 true domain StIs among which
886 are core domain StIs, 344 domain-like StIs and 168 failed domain StIs. In
terms of domain families, the CroMaSt workflow explored a total of 19 families (18
from Pfam and 1 from CATH, including the starting families) for the RRM type of
domain, and 16 of them (15 from Pfam and 1 from CATH) qualified for the RRM
domain type (Table 4.3). The structural alignment score for the other 3 families
failed to pass the given threshold (Appendix B.1). Interestingly, CroMaSt detects in
Pfam one DUF domain (Domains of Unknown Function), DUF1866, that can now
be associated to an RNA binding function. In total, this run of CroMast workflow
lasted approximately 54 minutes on a machine equipped with 8 2.40 GHz Intel(R)
Xeon(R) Silver 4214R processor without any prior downloads of PDB and SIFTS
entry files.

Figure 4.5 shows some of RRM domain StIs with the core average domain structure
resulted from the CroMaSt workflow. Figure 4.5 B and C have some extensions
after the RRM domain topology in the form of β sheet and α helix, respectively.
These are the variations and extensions of the RRM domain studied previously.
This is in good agreement with the variations described by Maris et al. [2005]. In
addition, Fig. 4.5 D has a β sheet within the loop5 that is also found in many
domain StIs from PF00076 (RRM 1) Pfam family and 3.30.70.330 (RRM) CATH
superfamily.
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One failed domain StI from each database is shown in Fig. 4.6. In both cases, one
can observe that the topology of secondary structural elements is clearly different
from the one of the average core structure.

Figure 4.6: Failed domain StIs from Pfam PF00076 domain family (A) and from
CATH superfamily 3.30.70.330 (B).

Table 4.3: List of 19 domain families explored by the CroMaSt workflow

Family IDs Family Name Database Passed
alignment
threshold?

PF00076 RRM 1 Pfam NA∗

PF00276 Ribosomal L23 Pfam No
PF00511 PPV E2 C Pfam No
PF01282 Ribosomal S24e Pfam No
PF03467 Smg4 UPF3 Pfam Yes
PF03880 DbpA Pfam Yes
PF04847 Calcipressin Pfam Yes
PF05172 Nup35 RRM Pfam Yes
PF08675 RNA bind Pfam Yes
PF08777 RRM 3 Pfam Yes
PF08952 DUF1866 Pfam Yes
PF09162 Tap-RNA bind Pfam Yes
PF11608 MARF1 RRM1 Pfam Yes
PF11835 RRM 8 Pfam Yes
PF13893 RRM 5 Pfam Yes
PF16367 RRM 7 Pfam Yes
PF16842 RRM occluded Pfam Yes
PF17774 YlmH RBD Pfam Yes
3.30.70.330 RRM (RNA recognition

motif) domain
CATH NA∗

∗Starting domain families from Pfam and CATH. NA: Not Applicable.
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4.5 Discussion

The multiplicity of biological databases and the lack of systematic cross-references
between them lead to important issues in data integration and consistency.
Protein domain databases are no exceptions. Here, we show the way to increase
interoperability between protein domain databases using a cross-mapping
approach. Our CroMaSt method constitutes a systematic, reproducible and
automated solution to retrieve domain StIs corresponding to a certain type of
interest for the user. Along with this, CroMaSt also points out some irregularities
in the databases.

It should be noted that the results returned by CroMaSt are determined by the
starting domain families used as input. In fact, the set of core domain StIs is
dependent on the starting domain families. This influences the computation of
‘core domain average’ structure and in turn all other results. For instance, we
tested CroMaSt using PF13893 (RRM 5) and 3.30.70.330 (RRM domain) for Pfam
family and CATH superfamily, respectively. Although CroMaSt explored the same
families as described in our running example (Table 4.3), only 11 of them passed
the threshold allowing them to be included in the next iteration. Thus, with these
different starting domain families, CroMaSt returned a slightly different core average
structure (RMSD-aligned: 0.96Å), 962 true domain StIs including 36 core domain
StIs, 327 domain-like StIs and 183 failed domain StIs (see Appendix B.4). This
strong dependency of CroMaSt on input domain families has at least two practical
consequences. Firstly, it is recommended to start the workflow with the two most
populated domain families in order to get the most exhaustive results. It is also not
forbidden to start with more than one family from one or both databases. Second,
this feature can be used to explore particular domain families within a given type
of domain in order to characterize possible subtype average core structures.

The CroMaSt workflow can be easily applied to any structural domain different
from RRMs by providing respective family identifiers to the workflow. Manual
expertise of the domain of interest is useful (not necessary) to start the workflow
with correct families and to inspect the structural alignments performed by the
CroMaSt workflow. Ideally, the StIs from starting families should have a good
quality structures with no chain breaks within the domain range. As mentioned
above, it is recommended to initiate the workflow with the most populated families
for domain of interest for better results, i.e. to get the core average structure that
represents as many StIs as possible. The alignment threshold can be changed
depending on the structural versatility of the domain type. If the user is unsure
about the threshold, running the first iteration of the CroMaSt workflow with the
default threshold is recommended. After the first iteration, all the structures are
available for manual inspection, in order to decide the threshold according to the
needs.

The CroMaSt workflow allows individual users to contribute to the Pfam and
CATH protein domain database curation by (i) providing annotations to domain
families lacking any annotation (e.g. the DUF domains in Pfam), (ii) detecting
irregularities in domain annotations within databases, (iii) removing StIs wrongly
assigned to a domain family and (iv) pointing to discrepancies occurring among
databases. Thus, the CroMaSt workflow can bring a precious help in curating and
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updating domain-specific databases. This way, users can take advantage of the
strengths of both databases while trying to reduce the limitations of each. For
example, the CATH database classifies structures based on the arrangement of
secondary structures; but sometimes, two different domains might have the same
topology, like the RRM domain and PPV E2 C (PF00511) domain. The
PPV E2 C domain does not have any RNP sequence (Appendix B.1). We did
check how other structure-based domain databases classify domain-like and failed
domain StIs resulting from CroMaSt, and found that there are some domain
instances missing in each of them (more details in Appendix B.2). We believe that
this problem of inconsistencies can be solved by the cross-mapping approach.
Currently, CroMaSt takes Pfam and CATH as sources for domain databases.
However, these sources can be expanded to include other domain databases as
well. The inclusion of different databases will facilitate interoperability between
them. While developing the CroMaSt workflow, we considered only primary
domain databases that do not take references from other domain databases during
their classification procedure. As the number of source databases increases, the
thresholds used (domain length difference, alignment score thresholds) in the
workflow should not be too strict allowing domain definitions from other databases
to be considered.

4.6 Conclusion

We built CroMaSt: “Cross-Mapper for Structural domains”, a fully automated
workflow that classifies all structural instances of a given domain into 3 different
categories: core, true and domain-like. We show that CroMaSt can be used
successfully to compute the prototype structure of a given type of domain, here
the RRM domain. Thus, we used experimental 3D structures to clarify domain
definition while addressing the inconsistencies within and between domain
databases (Pfam and CATH). In addition, CroMaSt produces multiple structural
alignments, that can provide new information about conserved and variable
residues, loops or SSEs in the domain instances. This information could be readily
used in protein design, for building synthetic proteins with the right domain-like
properties.
We demonstrated the usage of CroMaSt workflow using ‘M-score’ from Kpax. In
addition to the M-score, CroMaSt can use any other alignment score provided by
Kpax like RMSD and T-score (TM-score defined by the TM-Align program).
The workflow is available from GitLab
(https://gitlab.inria.fr/capsid.public codes/CroMaSt) and WorkflowHub (doi:
10.48546/workflowhub.workflow.390.1).

4.7 Future Perspectives

This chapter has introduced the concept of “cross-mapping” domain StIs from two
different protein domain classification systems, Pfam and CATH. Based on this idea
of cross-mapping, we built the CroMaSt workflow to solve the inconsistency issues
of domain StIs classification systems.

With the current approach of CroMaSt workflow, the time taken to execute workflow
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is dependent on the number of considered domain StIs, both from starting families
and from cross-mapped families at each iteration. There are two time consuming but
very important steps in the CroMaSt workflow, residue-mapping between UniProt
and PDB (Section 4.3.2), and computation of average structures (Section 4.3.5).
Appendix B.5.3 provides a brief demonstration of ‘residue mapping’ process with
an example. We will test running these steps on GPU to reduce the time taken by
each of this step.

The CroMaSt workflow is designed to cross-map StIs between sequence-based
Pfam database and structure-based CATH database. Thus, CroMaSt do not cover
families without any StIs available (from sequential perspective). The
structure-based domain databases like CATH and SCOP do not have any
information of such families as there are no experimental structures available.
It is more likely that the domain databases like Pfam and CATH will integrate
with the AlphaFold database providing representative structures for all families.
Pfam have already started this initiative and from old website of Pfam, one could
see the AlphaFold models for corresponding family.
CroMaSt workflow can be run with AlphaFold structures once the structure-based
domain databases (CATH) have integrated information from AlphaFold database.
The usage of AlphaFold models will give more power to CroMaSt workflow in
terms of inclusion of the families with no structural coverage (from sequence-based
classification) and addition of new families (from Structure-based
classification).

We designed CroMaSt in a way to consider the fact that different databases have
different policies and time period for updates. Thus, by allowing users to select the
database versions we give complete control to the user. Inconsistencies in data might
result from updating one database and not the other one. CroMaSt is designed
to handle such inconsistencies by considering the inconsistent StI only from one
database and then look for the structural similarity with core average structure.
CroMaSt keeps track of the StIs that can not be processed and return the list of
such StIs as one of the output.

Current version of CroMaSt supports cross-mapping of domain StIs from only two
domain databases, Pfam (sequence-based) and CATH (structure-based). To open
CroMaSt to any other source domain databases, we plan to create a unified format
from release files of other domain databases. This will allow users to run CroMaSt
with domain databases of their choice for cross mapping of StIs. The users can
contribute to source domain databases in case of wrongly classified domain StIs or
to assign classification for StIs without any classification.
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5.1. Introduction

5.1 Introduction

This chapter describes the usage of data from InteR3M database (Chapter 3) to
decipher the RRM-RNA recognition code and to model 3D structures of RRM and
RRM-RNA complexes followed by assessing the modelled 3D structures of RRM-
RNA complexes.

5.2 Deciphering RRM-RNA Recognition

Code

The work described in this section is a collaboration with the Bio2Byte group1 from
Vrije Universiteit Brussel (VUB). I did my secondment at Bio2Byte group from
March 2021 to July 2021. During this period, I worked with another PhD student
(Joel Roca-Martinez) from Bio2Byte group under the supervision of Prof. Wim
Wranken. The main objective of this collaboration work is to decipher the RRM-
RNA recognition code that will bring us a step closer to successfully design a RRM
with desired RNA binding activity.

5.2.1 General Approach

The RRM domain is a well studied protein domain, even though a general
recognition code between this motif and the RNA is not known [Auweter et al.,
2006].

Figure 5.1 shows the data flow between different steps of this computational
analysis and the green blocks represent my contributions in this collaboration
work. We used the structural information about RRM, RNA and their interactions
stored in InteR3M database to align RRM domains, RNAs, and compute
RRM-RNA complex similarity among different RRM-RNA complex structures.
Then we used an adaptation of GOR [Garnier et al., 1996] formula (Eq. 5.2.2) to
compute the likelihood of a residue-nucleotide interaction at a specific position in
RRM domain.
My major contributions in this work are in data curation and mapping of contacts
on the alignment.

5.2.2 RRM Master alignment

The positions of interacting residues from RRM play an important role in the
binding modes of RNA. They can be identified by aligning all the RRM structures
having RNA binding information. Thus, we extracted all the available structural
instances of RRM domains from InteR3M database, i.e. 1259 RRM structures. All
the sequences corresponding to these RRM structures were extracted from
InteR3M database and filtered with a sequence identity threshold of 99%. At the
end, we retrieved 356 RRM sequences, and 314 entries were from a single Pfam
family RRM 1 (PF00076) showing a strong bias towards this Pfam family.

1https://bio2byte.be/
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Figure 5.1: Data flow for computational analysis for deciphering RRM-RNA
recognition code. The green blocks indicate my contributions in this work.

To overcome the bias, we used CD-HIT [Li and Godzik, 2006] to select 19
representative RRM sequences with a 30% sequence identity cut-off.
PROMALS3D [Pei et al., 2008] uses sequence and structural information to
generate high-quality multiple alignments. Thus, we used PROMALS3D to align
these 356 RRM sequences. The structural information was used for the 19
representative RRMs and sequences were used for rest of the RRM domains.
After manually checking the resulting alignment, 9 sequences were removed from
alignment because of unusually long β strands and/or α helices.

In this alignment, some extra residues were included at both the C- and N-terminal
regions that might be relevant for RNA binding. All entries are identified by their
UniProt code, RRM number, PDB Id. and chain, starting and ending positions of
the RRM by PDB and UniProt, and UniProt starting and ending positions matching
the sequence included in the file. The latter numbering helps to keep track of the
extra added residues.
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Extra information for RRM master alignment

After having the final alignment, it was a bit tricky to keep track of numbering
of residues because all entries do not have the sequence only from PDB files.
So we came up with a specific format for the headers in alignment and is as
follows:
>UniProt-ID RRM-no PDB chainid PDBstart-PDBend UniProtStart-
UniProtEnd UniProtStart’-UniProtEnd’
Where,

• PDBstart, PDBend are the start and end numbering for residues of
RRM region in the PDB file/structure

• UniProtStart, UniProtEnd are the start and end numbering for residues
of RRM region in the UniProt

• UniProtStart’, UniProtEnd’ are the start and end numbering for
residues of RRM entry in the UniProt after adding 15 residues/linker at
each terminal (if any)

Example:
>P19339 RRM2 1B7F A 213-281 213-281 197-296

5.2.3 Mapping Contacts onto the Alignment

The detailed analysis of RRM-RNA contacts along the protein structure requires
the mapping of interactions extracted from RRM-RNA complexes onto the RRM
master alignment. This mapping can provide valuable insights into the structural
and functional RNA-binding features of RRM domains and can help to design novel
RRM with the desired RNA binding activity.

This mapping is not a straightforward task as the master alignment has some
extra residues at the C- and N-terminal regions of RRM domains that may or not
be present in the PDB entry. Therefore, we used SIFTS (Structure Integration
with Function, Taxonomy and Sequence) resource for residue-level mapping
between UniProt and PDB entries.

All the interactions between RRM and RNA were retrieved from InteR3M database
for the 271 RRM-RNA complexes. Then using the SIFTS residue-level mapping
these contacts were mapped onto the RRM master alignment by checking their
corresponding residues from RRM domain entries.

The format of the final resulting file is as follows:

{

RRM_entry: {

model_no: {

alignment_position: {

interacting_residue_pair: {

‘‘interactions’’: {list_of interactions},

‘‘stacking’’: boolean_value

}

}
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}

}

}

Where,

• ‘RRM entry’ represents the header of individual entry from the alignment

• ‘model no’ represents the model number within the PDB entry (to differentiate
models in NMR structure)

• ‘alignment position’ represents the column position of the each residue from
the alignment

• ‘interacting residue pair’ represents the interacting pair of amino acid and
nucleotide with their position in PDB entry

• ‘interactions’ is the key with which we are storing all the interactions at atomic
level

• ‘list of interactions’ is the list of all the interactions extracted for the
interacting residue pair

• ‘stacking’ is the key we use to store information about stacking interactions in
boolean form

• ‘boolean value’ is True when there is stacking interaction between
interacting residue pair and False when there is no stacking interaction

Example of a contact mapped onto the alignment

‘‘P08579_RRM1_1A9N_B_12-83_9-80_0-95’’: {

‘‘0’’: {

‘‘73’’: {

‘‘6_I_10_C_Q’’: {

‘‘interactions’’: {

‘‘1’’: [

‘‘N4’’,

‘‘CD1’’,

‘‘4.27’’,

‘‘Base’’,

‘‘sidechain’’,

‘‘van-der-waals’’

]

},

‘‘stacking’’: false

}

}

}

}
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5.2.4 Similarity among RRM-RNA complexes

All RNA sequences from RRM-RNA complexes were compared with each other, by
sliding them with respect to each other and checking whether their nucleotides bind
similar amino acid sequence positions in the RRM master alignment. The similarity
score between two RRM-RNA complexes is computed using Eq. 5.2.1.

Similarity Score =

∑i=n
i

NMatching positions

NUnique positions

NAligned nucleotides

(Eq. 5.2.1)

Where, NMatching positions is the number of matching positions between two RNAs,
NUnique positions are the unique positions that those two nucleotides bind, and
NAligned positions is the aligned length of RNA.

The alignment (sliding window) with highest similarity score was retained for each
RNA pair. With this a similarity matrix was constructed to identify the different
binding modes.

We grouped the entries having a minimum score of 0.25 with at least 25% of the
complexes in the cluster to select a homogeneous cluster. The first cluster (cluster
0) is composed of 187 entries and corresponds to the canonical binding mode of
RRM.

RNA alignment

The method of similarity scores was used to align RNA sequences. To align all the
187 RNA sequences from cluster 0, we selected the medoid (3HHN D), the entry
with the highest similarity scores with respect to all other entries. All other 186
RNA sequences were aligned against the medoid to generate the RNA alignment.
When comparing two RNAs, the sliding window position generating the highest
score was considered as the best possible alignment for those RNA sequences.

5.2.5 Computation of scoring matrices

The RRM-RNA scoring method we have developed, RRMScorer, is an adaptation
of the GOR method which was originally used for secondary structure
prediction [Garnier et al., 1996, Kouza et al., 2017]. RRMScorer relies on the same
information difference equation to calculate which nucleotide-residue contacts are
preferred for specific amino acid positions in an RRM. RRMScorer uses Eq. 5.2.2
to compute the scores for each residue-nucleotide interacting position individually.
The result is the sum of two terms; the first term computes the logarithm of the
ratio between the number of times a nucleotide in position i (from the RNA
alignment) has been observed interacting with an amino acid residue in position j
(fNi,Rj

) (from RRM master alignment), over the number of times that the
nucleotide interacts with any other amino acid residue (fn−Ni,Rj

).

I(∆Ni;Rj) = log(
fNi,Rj

fn−Ni,Rj

) + log(
fn−Ni

fNi

) (Eq. 5.2.2)

Where, Ni is the nucleotide at position i, Rj is the residue at position j.
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5.2.6 Discussion

We developed RRMScorer, a novel method to estimate RRM-RNA binding from
sequence information only. Our method provides scores for the probability that a
given RNA sequence binds to an RRM protein. We validated RRMScorer on both
computational and experimental data. Our method is restricted to the canonical
binding mode because of the limited data availability for other binding modes. From
the protein structure side, the data availability is no longer a limitation after the
AlphaFold Protein Structure Database release. Even though it does not solve the
RNA recognition problem, current challenges purely based on protein structure,
such as assessing the preferred RNA binding mode of an RRM, might be solved
soon, although the current inability of such methods to cover dynamics and multiple
conformations remains a bottleneck to be solved.

RRMScorer can be used to find good RNA candidates for a specific RRM domain
on genomic scale studies that can be further coupled with computational methods
for predicting the structure of the RRM-RNA complex.
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5.3 Modeling 3D structures of RRM domains

There is a wide gap between the number of protein sequences and the number of
protein structures available. UniProtKB release 2023 01 has 246,440,937 protein
sequences, while there are only 202,292 experimentally determined protein
structures available in the Protein Data Bank (PDB) as of 14-March-2023,
corresponding to 61,463 distinct protein sequences. We collected 400,892 RRM
(RNA Recognition Motif) sequences from UniProtKB (Swiss-Prot and TrEMBL)
belonging to 19 different Pfam families and 1,456 RRM structures using 727
distinct entries from PDB, corresponding to 303 RRM instances. All the data
about RRMs is stored in our InteR3M database. To bridge this gap between RRM
sequences and RRM structures, comparative modeling could be one of the
important tools. Three-dimensional structure determination using experimental
methods like X-ray crystallography and NMR is a quite time-consuming and
complex procedure. In contrast, comparative modeling gives acceptable results if a
homologous template is available for the query sequence, in much less time and
simpler ways.
The goal of this homology modeling pipeline for RRMs (RRMpip) is to model
diverse structures of an RRM for a given sequence so that at least a few structures
will be close to the RNA-bound form of the RRM.
Figure 5.2 depicts the workflow followed by RRMpip. This workflow is visualized
using Common Workflow Language (CWL) [Amstutz et al., 2016].

This work was carried out in mid-2020, i.e. before the AlphaFold2 revolution. In
this work, we developed the pipeline to model 3D structures of RRM domains using
the state of the art methods available at the time. However, since the release of
AlphaFold2, we have used the results from AlphaFold2 for modeling 3D structures
of RRM domains. The use of AlphaFold2 has allowed us to generate 3D models of
RRM domains with per-residue confidence score. We will be using the 3D structures
from AlphaFold DB for any further analysis.

5.3.1 Methodology

Finding the best template
RRMpip needs a single input from the user, i.e. an amino acid sequence in
FASTA format. The amino acid sequence provided by user was queried against
the PDB database through HHblits [Remmert et al., 2012]. We limited the
template hits to the RRM structures from InteR3M database only. At first,
a single iteration of HHblits was performed and if there were no homologous
RRM sequence found then further iterations were carried out to find the best
templates.

Target-template sequence alignment
After template selection, target-template alignment was performed using
align2d()2 function from MODELLER. Although align2d() is based on a
dynamic programming algorithm, it is different from standard
sequence-sequence alignment methods because it takes into account
structural information from the template when constructing an alignment.

2https://salilab.org/modeller/9v5/manual/node282.html
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Workflow Inputs

Workflow Outputs

Sequence-Template alignment [Align2d()]

Backbone generation (MODELLER)

Side-chain fixing (SCWRL4)

Model Evaluation (DOPE score)

5_models DOPE_score_graph

Filter the templates

Format conversion Fasta to PIR Template search against PDB (HHblits)

target_sequence(Fasta)

Figure 5.2: Workflow followed by the RRM Modeling Pipeline, RRMpip (visualized
using CWL)

align2d() function takes two arguments, i.e., target sequence in PIR format
and template structure, and returns the target-template alignment in PIR
format.

Model building
The target-template alignment generated from align2d() was used to build
models using MODELLER [Webb and Sali, 2016]. It takes two different
arguments: target-template alignment in PIR format and template structure
with chain ID, and returns five models (default). The number of models to
be generated can be altered. The models generated by MODELLER were
then processed with SCWRL4 [Krivov et al., 2009] for fixing the side-chain
conformations.
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Model evaluation
We used DOPE (Discrete Optimized Protein Energy) score [Shen and Sali,
2006] for evaluating the models. DOPE scores were calculated on a per-residue
basis for each newly generated model and the template and then plotted for
visualization.

The user needs to submit only a target sequence in fasta format and the pipeline
will return five models generated by homology modeling, with the DOPE score. The
pipeline also produces a graph to better understand the DOPE score for each part
of the models according to the template.

5.3.2 Testing RRMpip

We used the sequences from experimentally determined structures of RRM domains
for testing RRMpip. We randomly selected two RRM structures, one in the RNA-
bound form and one in the unbound form.

• 1A9N B from RRM 1 family (RNA-bound)
• 1D9A A from RRM 1 family (unbound)

To avoid any bias, we ensured that no template would be from the same protein.
The chosen templates to generate models for 1A9N B and 1D9A A have sequence
identity of 75% (4PKD B, RNA-bound) and 39% (1X5O A, unbound), respectively.
The bound/unbound state was not taken into account during the search for template.
The 5 models of 1A9N B have RMSD values ranging from 0.59 Å to 0.67 Å when
aligned against the original structure, whereas the 5 models of 1D9A A have RMSD
values ranging from 1.83 Å to 2.02 Å.

The higher RMSD values for 1D9A A models correspond to differences in the loops
(Loop3 and 5), as visible on Figure 5.3b. Those higher differences in the models
of 1A9N compared to the models of 1D9A could be explained by the bound state
of both 1A9N and its template. The binding to RNA has a tendency to fix the
interacting loops in a given position, while the unbound loops can have a larger
diversity of positions.

To summarize this testing of RRMpip, the structures generated by RRMpip (RRM
modeling pipeline) are close to the experimentally determined structure. The
DOPE score plots from the pipeline suggests that, when generating the DOPE
score graph, only the aligned part of the template should be considered instead of
the complete chain. Moreover, it reveals the need for adding a loop modeling step
to the workflow.

5.3.3 Results & Discussion

RRMpip, a fully automated pipeline to model RRMs using a comparative
modeling approach, was successfully built. RRMpip combines several tools to
achieve the best results. As this is a preliminary version, there is much scope for
improvement. In upcoming versions, loop modeling will be introduced (depending
on homology). Loop modeling approaches can be used for correcting the folding of
low-homology regions, with high accuracy for up to 30 residues. Loop modeling is
one of the difficult parts of protein structure modeling. DaReUS-Loop, a
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(a) Structure alignment of a generated
model (yellow) and the experimentally
determined (purple) structure (1A9N B)

(b) Structure alignment a generated
model (green) and the experimentally
determined (cyan) structure (1D9A A)

Figure 5.3: Structure alignment of one generated model against experimentally
determined structures

data-based approach, could be an option for this purpose [Karami et al., 2019].
It is always better to have multiple criteria to assess or evaluate the models. There
are several evaluation methods from different categories like MolProbity and
Ramachandran plot from Physics-based methods, DOPE (already in use) and
Qualitative Model Energy ANalysis (QMEAN) from knowledge-based methods,
and DSSP from machine learning-based methods. All these methods can be used
to evaluate the models generated from the RRMpip. Currently, only one criteria is
being used to assess the models. It is assumed that 3D structure minimization is
imperative prior to any computational analysis [Haddad et al., 2020]. But there
might be various pre-processing steps required depending on the analysis workflow
used afterwards (like coarse-grained docking using ATTRACT). Thus, we will try
to make the output from this RRMpip pipeline interoperable with other
computational analysis workflows. For future tests, the reliability of intra-Pfam
and inter-Pfam RRM templates will be evaluated. We will also compare the results
obtained for a given sequence using RNA-bound or unbound templates. Currently
we expect that RNA-bound templates would give more reliable results to achieve
the goal of modeling a bound-like structure.
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5.4 Modeling RRM-RNA complexes

Initially, we planned to use the RRM 3D structures resulting from RRMpip for
the modeling of RRM-RNA complexes but after the release of AlphaFold DB we
shifted to directly use the 3D structures of RRM domains from AlphaFold DB. All
the information about RRM domains and their interactions with nucleic acids from
InteR3M database can be used to model structures of RRM-RNA complexes in a
data-driven docking approach.

5.4.1 Anchored Docking: Definition and requirements

RRM domains have conserved residues in RNP1 and RNP2 regions that establish
π−π stacking interactions with the nucleotides. These stacking interactions can be
used as anchors in the docking of RNA fragments. Using these stacking interaction,
one nucleotide is anchored to a conserved aromatic residue at 5th position in RNP1
and another nucleotide at 2nd position in RNP2 (Figure 5.4). These two anchoring
positions of nucleotides will guide the position of the next nucleotides in an iterative
manner. This approach was first validated by de Beauchene et al. [2016] using
fragment-based docking of tandem RRMs and RNA. In this study, the data was
collected from the PDB in July 2015. Since then, there has been an increase in the
number of RRM-RNA complex structures in the PDB. Moreover, there are more
experimentally solved structures for single RRM domains in complex with RNA than
for tandem RRM domains in complex with RNA. Thus, we focused on the docking
of RNA onto a single RRM domain rather than on tandem RRM domains.

5.4.2 Extraction and Clustering of Anchoring Patterns

All the experimental structures of RRM-RNA complexes were extracted from the
InteR3M database along with the contact information. There are a total of 496
structures of RRM-RNA complexes that have contacts between the atoms of RRM
and RNA, without any filter for redundancies at the protein level (structures of
the same RRM, bound to same or different RNA sequences). These 496
RRM-RNA complexes belong to 105 distinct RRM domain instances. As we are
looking specifically at the stacking interactions from the RNP regions, to use them
as anchors in the docking protocol, all these 496 structures were filtered for the
stacking interactions at RNP1 position 5 (Figure 5.4a) and RNP2 position 2
(Figure 5.4b). A total of 257 structures of RRM-RNA complexes have the
stacking interaction at either one or both positions. These 257 structural
complexes are from 52 unique proteins and 72 unique RRM domains: 34 proteins
with a single RRM domain, 16 proteins with two RRM domains, and 2 proteins
with three RRM domains.

We want to get a few anchoring patterns (3D conformation and position of a stacking
nucleotide relative to the RNP backbone) representative of all these 257 different
structural complexes. They can be used to guide the docking by adding an energy
penalty to the deviation of a given nucleotide of the fragment from the anchoring
position. Our fragment-based docking method uses trinucleotide fragments, and the
two RRM residues RNP1-5 and RNP2-2 usually bind two nucleotides that are at
positions (i, i+1) or (i, i+2) in the RNA sequence. Thus, the docked fragments will
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(a) RNP1 sequence motif

(b) RNP2 sequence motif

Figure 5.4: RNP sequence motifs from the alignment of RRM domains; the position
of stacking amino acid is highlighted with a red outline.

The sequence logos were generated using WebLogo [Crooks et al., 2004].

use either one or a couple of anchoring pattern(s), one per stacking nucleotide in the
fragment. As one docking will be run for each (couple of) representative anchoring
pattern(s), we want as few representatives as possible to limit the computational
time. But for the docking to succeed, one of the representatives must be close enough
to the real target position, which is easier to achieve if we have many representatives.
Clustering will be performed to get a few representative anchoring patterns. A trade-
off must be found for the clustering cutoff to have a low number of representatives
(loose clustering cutoff) but each pattern is close enough to its closest representative
(tight clustering cutoff).

To get the representatives for all the stacking nucleotide conformations, we
proceed with a new hierarchical agglomerative (HA) clustering approach called
Radius, that produces the minimum number of clusters and their representatives
such that each initial element is within a chosen distance from at least one of the
final representatives [Moniot et al., 2022a]. The representatives are not among the
initial elements but are the centroid of each cluster. For 3D structures of the same
molecule, we use the root mean squared deviation (RMSD) as the clustering
distance criteria.

As we want to cluster the stacking nucleotides after protein fitting, all the
structural complexes were chopped by keeping only the amino acid residues from
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RNP1 position 4-6 or RNP2 position 1-3 and the stacking nucleotides. The RRM
master alignment was used to retrieve the positions of these amino acid residues.
All the chopped structures were then divided into two different parts based on the
position of the stacking interaction. Beta1 group consists of all chopped structures
with only the stacking interaction on RNP2 retained, Beta3 group consists of all
chopped structures with only the stacking interaction on RNP1 retained. The
structures having stacking interactions at both positions were also classified into
Beta1 and Beta3 with the stacked nucleotide at the respective position.

All the structures from each group were superimposed on the amino acids backbone.
The reference structure used for the superposition was RRM1 from 1B7F chain
A (protein sex-lethal). All the nucleotides were extracted from the superimposed
structures and converted into the ATTRACT coarse-grain representation. To cluster
all nucleotides together requires the same number of pseudo-atoms, therefore the
extra bead (coarse-grain pseudo-atom) created from the N7 atom of purines was
removed, resulting in the same number of beads for purines and pyrimidines. Its
position can be recreated exactly from the position of the 3 other base beads.

The atomic coordinates of all the nucleotides in the coarse-grain model from each
group were extracted and stored in a numpy matrix, input for the HA clustering
method. The Radius HA clustering method groups together the given structures
based on the threshold RMSD given by the user, and returns the following:

• A list of all members (nucleotide structures in our case) in each cluster,

• Prototypes (representative structures) for each cluster,

• The radius of each cluster, suggesting the variability within each cluster.

5.4.3 Resulting Anchoring patterns

We tried clustering the coarse-grain coordinates of the stacking nucleotides fitted
on the reference RNPs at different RMSD thresholds for both Beta1 and Beta3
groups. The following table summarizes the results from clustering of the anchoring
patterns:

Table 5.1: Results from clustering of the anchoring patterns

Group
Clustering
Threshold

Number
of

Clusters

Number
of

Singletons∗

Max distance of each bead
to prototype

[GP1,GS1,GS2,GX1,GX2,GX3]

Beta1 3.0 Å 8 3 [5.1, 3.6, 3.7, 3.1, 5.1, 4.1]
Beta3 3.0 Å 6 1 [4.8, 3.9, 4.4, 3.4, 4.4, 3.8]
Beta1 3.5 Å 6 2 [6.3, 4.7, 3.9, 3.7, 5.0, 4.9]
Beta3 3.5 Å 4 0 [4.8, 3.9, 4.4, 3.7, 4.4, 4.9]

∗ Singleton: A cluster is said to be singleton if it contains only structure(s) from
the same instance of RRM domain
X in the table above represents the base and GX1, GX2, and GX3 are beads for
the atoms of the base for the corresponding nucleotide

The maximum distance of each bead to its prototype in the clusters gives us
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information about which bead positions are the most variable. Currently, during
docking we are using the same maximal distance for the positional restraints of
each bead of a nucleotide toward the corresponding bead in the prototype, but
different maximal distances could be applied for the different beads depending on
their position variability. This would result in a more accurate position of each
bead instead of an overall position of the nucleotide. For example, in most cases
from Table 1, the bead (GP1) representing the phosphate group has the highest
positional variability, so this bead would have slightly looser positional restraints
or a lower energy penalty. Yet given the relatively small number of clustered
structures, this could lead to over-fitting.

Figures 5.5 show the positions of each bead along with its prototype for one cluster
from each group.

We took the clusters from 3.5 Å and 3.0 Å for beta1 and beta3 groups. These
RMSD thresholds were chosen such as to minimize the radius of the clusters (which
determines the precision of the docking restraints that can be used) while obtaining
a small number of singletons. The singletons were excluded from docking as they
are not representative enough. Using them would increase the number of wrong
poses while barely increasing the chance to obtain hits. Finally, we obtained 4 and
5 prototypes for Beta1 and Beta3, respectively.

Following are the excluded RRM domain instances (Singletons):

• P25299 RRM1 (2 structures in Beta1 group and 1 structure in Beta3)

• Q4DY32 RRM2 (1 structure in Beta1 group)

The position of the stacking nucleotide is dependent on the position of the side-
chain of the amino acid involved in stacking. As a consequence, by looking at the
side-chain positions in the clustered structures, it appears that most positions are
specific to one cluster, while only a few positions appear in several clusters Thus the
most suitable prototype for docking on a specific target protein could be predicted
from the bound position of the side-chain of the amino acid, if this position could be
inferred from the sequence or an unbound structure of the protein. As an example,
Figure 5.6 shows two prototypes along with the stacking amino acid from their
respective cluster.

5.4.4 Docking with Anchoring patterns

This part was done by another PhD student ESR4 from our lab (Anna
Kravchenko). The docking pipeline was developed to automatically build
RRM-RNA models using only the sequences and the identification of stacking
nucleotides as input from the user. This RRM-RNA docking (RRM-RNA dock)
pipeline uses AlphaFold DB to obtain a 3D structures of RRM domain and the
anchoring prototypes (from Section 5.4.3) for anchored docking. RRM-RNA dock
is still in development and currently can dock only tri-nucleotide fragments
containing the anchoring nucleotides. The RRM-RNA dock pipeline is available at
https://github.com/AnnaKravchenko/RRM-RNA-dock.

The resulting 3D structure of RRM-RNA complex from RRM-RNA dock can be
assessed and further studied for interactions between RRM and RNA using
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(a) Prototype and members for cluster 5 from Beta3 group at 3.0Å

(b) Prototype and members for cluster 3 from Beta1 group at 3.5Å

Figure 5.5: Prototype and members for one cluster each from Beta1 and Beta3
group. Prototype for the cluster is shown as mesh and all the members from this
cluster are shown as spheres; Orange color is for phosphate beads, cyan color is for
sugar atoms and green color is for base beads.
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Figure 5.6: The prototypes from clusters 1 (green) and 4 (yellow) of the Beta3
group along with the amino-acid residues used for fitting. Although there is some
overlap in the position of the side-chain of the stacking amino acid residue from the
2 clusters, they are still mostly distinct from each other

molecular dynamic simulations.
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5.5 Evaluating RRM-RNA complexes

The goal of the RNAct project is to design an RRM with the desired RNA binding
activity. For this, we need to be able to distinguish, between two RRMs, which one
binds with highest affinity to the given RNA sequence. This is why we are interested
in developing a molecular dynamic (MD) simulation protocol capable of detecting
the effect of RRM point mutations on RNA binding.

Binding free energies can be computed using molecular dynamic simulations. The
methods to compute absolute binding free energies can be used to compare the
binding of ligands irrespective of chemical similarity [Feng et al., 2022].
The computation of relative binding free energy results in the difference between
the binding free energies of two ligands by computing the change in free energy. In
alchemical transformation, this change in free energy is computed by transforming
one ligand (beginning state) to the other (end state). Thus, the methods to
compute the relative binding free energies are well suited for molecules that are
chemically similar. Thus, computation of relative binding free energy is most
suitable for comparing or ranking the binding activity of chemically similar
ligands [Baumann et al., 2021].
Absolute binding free energy computations require more sampling because of the
larger transformations (from initial state to end state) involved compared to
relative binding free energy. This makes the computation of absolute binding free
energy computationally expensive [Cournia et al., 2020].
Our goal is to find the effect of RRM point mutations on RNA binding and
computation of relative binding free energy is more relevant in this case. Thus, we
focused only on the computation of relative binding free energies. This section
focuses on establishing a protocol for the computation of relative binding free
energies for RRM-RNA complexes.

Before proceeding with the computation of binding free energy, we wanted to make
sure that MD simulations can be used to replicate stability and instability for a
RRM-RNA pair known to be stable (binding) and less stable (not binding),
respectively. If MD simulations can differentiate between stable and less stable
complex, we can use this MD protocol as a step to filter for good/bad RRM, in
terms of binding to the desired RNA before a finer filter is designed by computing
binding energy.

5.5.1 Stability of an RRM-RNA complex

I started with checking the stability of an RRM-RNA complex by running a standard
MD simulation. Musashi homolog 1 (UniProt ID: Q61474) is one of the proteins
of interest in the RNAct3 project. RNAct aims to modify the RRM1 domain from
Musashi1 to change its RNA specificity for regulation of the fatty acid pathway in
E. Coli. So, I used the Musashi1 RRM1-RNA complex (PDB ID: 2RS2) for this
task.

3https://rnact.eu/
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System preparation

The RRM domain from Musashi (from Mouse) was taken from PDB (PDB ID:
2RS2). This NMR solution structure of wild-type RRM1 from ‘RNA-binding
protein Musashi homolog 1’ is in complex with RNA having sequence ‘GUAGU’.
We built the system for this complex in explicit solvent using TIP3P water model
inside a truncated octahedral box with a space of 30 Å around the complex in each
direction. This ensures that all atoms in the starting structure of the complex will
be no less than 30 Å from the edge of the water box. The Na+ and Cl- ions were
added at a concentration of 0.15 M NaCl salt. The AMBER force fields (OL3 for
RNA and ff19SB for Protein) were used to describe molecular interactions. All this
was done in tleap program from AmberTools. The system consists of 82,610 atoms.

Simulation Protocol

The MD simulation was performed using NAMD 3.0. MD simulations were run at
310 K with a time step of 1 fs. Particle mesh ewald (PME) was used to compute the
long-range electrostatic interactions. The SHAKE algorithm was used to constrain
the covalent bonds involving hydrogen atoms. A cutoff distance of 9 Å was used
for non-bonded interactions. The interactions between atoms that are further apart
than this cutoff distance were ignored. Langevin dynamics was used to maintain
the constant temperature and pressure (1 atm) 4.
Once set up, the system was minimized for 20 ps using a conjugate gradient and
line search algorithm. The system was slowly heated up from 0 to 310 K over a
period of 310 ps. Then the system was equilibrated with NVT and NPT ensembles,
for 500 ps each. Finally, the production run was performed for 300 ns under NPT
ensemble.

Analysis of the trajectory for wild type

After the production run, the complete system was wrapped and unwrapped using
PBCTools plugin5 in VMD [Humphrey et al., 1996]. As we are interested in the
stability of RRM-RNA complex and their inter-molecular interactions, we have
removed water molecules along with salt (Na+, Cl-) ions and hydrogen atoms to
save space and time for further analysis.

The first frame of the trajectory was used as reference to superimpose all other
frames and compute the RMSF values per residue and RMSD values for each frame
in this system.

RMSF analysis indicates the flexibility of an individual residue in the simulated
system. Firstly, the RMSF has been computed per atom and then averaged per
residue. The terminal residues with higher RMSF values than the rest of the complex
can be removed to avoid bias when computing the RMSD.

4Detailed setting information for using AMBER force field in NAMD can be found here:
https://ambermd.org/namd/namd amber.html

5https://www.ks.uiuc.edu/Research/vmd/plugins/pbctools/
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Figure 5.7: RMSF plot for the Musashi RRM1-RNA (‘GUAGU’) complex

The RMSF shows a low conformational flexibility (<2.7 Å) for the protein, except
the C-terminal residues 82-84 having RMSF values >5 Å. These residues were
removed from the protein for further analysis. The RMSF values <1 Å for the
middle three nucleotides (83-85) correspond to very small fluctuations from their
positions, whereas the terminal nucleotides (G82 and U86) have RMSF values
>2.4 Å, revealing more fluctuations.

RMSD analysis: The RNA shows more deviation compared to the protein and
complex. As the RNA is very short compared to the protein in this complex, it
contributes very little to the complex RMSD compared to the protein contribution
(Figure 5.8). Overall, this complex is quite stable as the RMSD keeps moving around
3 Å after the first few frames (ns).

Convergence analysis: This is useful to check the convergence of the simulation,
i.e., if no new conformations have been explored by the last part of the trajectory.
One of the ways to check the convergence of a simulation is clustering the simulation
trajectory and see if there are any new clusters for the end part of the trajectory.
Thus, to perform clustering of the simulation trajectory, we divided the complete
trajectory of 300 ns into three parts, each comprising 100 frames: 0-100 ns, 101-
200 ns, and 201-300 ns. Then we performed “star-shaped clustering” on these three
parts of the trajectory with different thresholds to obtain different number of clusters
using an in-house script. Table 5.2 provides the number of resulting clusters at
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Figure 5.8: RMSD plot for the Musashi1 RRM1-RNA (‘GUAGU’) complex

different thresholds.
A high threshold of RMSD will result into a small number of clusters composed
of frames with higher RMSD (significantly different). This will make it difficult to
track the conformational changes that could be detected at lower RMSD threshold
such as movement of side-chain from a residue. A low threshold of RMSD will result
into a large number of clusters comprised of frames with lower RMSD (significantly
similar). The analysis of too many clusters becomes very tedious and makes it
difficult to track the conformational changes because multiple clusters might have
similar conformations with a very little deviation. Thus, it is important to perform
clustering at different threshold to find the optimal number of clusters and number
of members per cluster.

Table 5.2: Results from clustering of the trajectory for Musashi1 RRM1-RNA
complex

Clustering Threshold Number of Clusters

3.0 Å RMSD 2
2.7 Å RMSD 5
2.5 Å RMSD 6
2.3 Å RMSD 9

Each cluster represents a conformation of the simulated system. Figure 5.9 shows the
clustering results for 2.7 Å threshold. The simulation explored a total of 5 different
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conformations. All three parts of the simulation have explored 4 conformations
while the last part from 201 - 300 ns has not explored the 5th conformation (cluster).
As there is no new conformations explored in the last part of the simulation, the
simulation has converged.
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Figure 5.9: Convergence plot for the Musashi1 RRM1-RNA complex

Contacts analysis : We want to check if we can detect a low stability (known
in vitro) by a loss of contacts in the MD simulation. A contacts analysis can be
done by comparing native and non-native contacts. Native contacts are the contacts
present in a protein’s native (natural) state. Non-native contacts are the contacts
absent in a protein’s native state.

CPPTRAJ [Roe and Cheatham III, 2013] provides functionality to compute native
contacts. We wrote a script to take advantage of ‘nativecontacts’ functionality
from CPPTRAJ and visualize these contacts in a heatmap. The resulting heatmap
contains three different colors: green for conserved native contacts, blue for
non-native contacts and red for lost native contacts. The intensity of the color
shows the percentage of contacts for that particular section.

In this analysis, we considered the first 50 ns (frames) as reference for the native
contacts, to allow the complex to relax and to capture all the possible contacts. We
have only considered the contacts found in at least 10% of the frames. No native
contacts are lost in the simulation, but some contacts are formed after the 50 ns of
the simulation, i.e., shown in blue (Figure 5.10).
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Figure 5.10: Tracking of native and non-native contacts over time from the Musashi1
RRM1-RNA (‘GUAGU’) complex. The green color represents native contacts,
blue represents non-native contacts, and red color represents lost native contacts.
The intensity of color shows how many frames have that respective contact.
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Thus, the MD simulations were able to replicate the stability of Musashi1
RRM1-RNA (GUAGU) complex and the contacts between RRM and RNA from
the simulation are in agreement with Ohyama et al. [2012] (Table 5.3).

Table 5.3: Unique stacking interactions for recognition of target RNA by Musashi1
RRM1 from the study of Ohyama et al. [2012]

AA with actual
position

Nucleotide
AA with

position from
our system

Location of AA

Phe23 3A Phe4 RNP2
Trp29 1G Trp10 First loop
Phe65 4G Phe46 RNP1
Phe96 3A Phe77 Immediately after β4

The nucleotides numbered 83-85 in our system (‘UAG’ motif from RNA sequence)
have some contacts that are present in all the frames of simulation. This suggests
‘UAG’ as the binding motif for this RRM domain.
We want to check if we can predict the non-binding of other RNA sequences and to
test this we changed the RNA sequence from ‘GUAGU’ to ‘GCCCU’ in the same
RRM-RNA complex.

The mutations in the RNA sequence were performed using the ‘mutate bases’6 utility
program from x3DNA-DSSR tool. The modified RNA sequence does not have the
binding motif (UAG) so it may not form the interactions required for the stability of
RRM-RNA complex, resulting in weak binding or dissociation of the complex. The
system was prepared, simulated and analysed in same way as the previous one.

Analysis of trajectory for complex with mutRNA

Figure 5.11 shows the RMSF per residue from the simulated system of Musashi1
RRM1-mutRNA (‘GCCCU’) complex. The C-terminal residues (82-84) with RMSF
values > 5.0 Å were removed for further analysis.

Figure 5.12 showing the RMSD of the system suggests that the complex is stable,
as its RMSD stays around 3.0 Å. There is a sudden drop in RMSD of the RNA,
after 36th frame, that arises mainly from the fluctuation of 3′ nucleotides.

Table 5.4 shows the number of clusters obtained from clustering of Musashi1 RRM1-
mutRNA complex at different thresholds.

Table 5.4: Results from clustering of the trajectory for Musashi1 RRM1-RNA
complex

Clustering Threshold Number of Clusters

3.0 Å 2
2.7 Å 4
2.5 Å 8

6http://forum.x3dna.org/general-discussions/mutate bases/
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Figure 5.11: RMSF plot for the Musashi RRM1-RNA (‘GCCCU’) complex

We chose the clusters at 2.7 Å as it has optimal number of clusters and number
of members per clusters (>5). Figure 5.13 shows the clusters from the three parts
of the trajectory at 2.7 Å. All three parts have three clusters in common and the
fourth cluster is present only in the first and last parts of the trajectory. Thus, the
simulation has converged and no new conformation was explored by the last part of
the trajectory.
Figure 5.14 shows the intermolecular contacts between Musashi1 RRM1 and RNA
from the simulation. Most native contacts are conserved in the RRM-mutRNA
complex, like Phe4-C2, Phe76-C3. The results for this are not exactly as we were
expecting , but still there are some contacts missing between loop3 (between β2 and
β3) and the last nucleotide.

Comparison of Wild Type and Mutant complex

We wanted to compare both trajectories (wild type and mutant) to see if there are
any conformations that are unique to only one trajectory. Those unique
conformations from one trajectory might provide more insights into the
conformational differences. We clustered the two trajectories together. For
clustering by RMSD, we need the same number of atoms in both trajectories.
Thus, we kept only the common atoms from the RNA of both complexes and
removed the atoms that are different. For pyrimidine (C) - purine (A or G) pair,
we kept only the sugar-phosphate backbone of the RNA by removing all atoms
from the nucleobase. After removing all these atoms, both systems have 731
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Figure 5.12: RMSD plot for the Musashi RRM1-RNA (‘GCCCU’) complex

atoms.

We performed ‘star-shaped clustering’ on the merged trajectories. Table 5.5 shows
the number of resulting clusters with different thresholds. Out of all the 7 clusters
formed at 2.7 Å threshold, 4 clusters are shared by both trajectories while 1 and 2
clusters are unique to the mutant and wild type complex, respectively.

Table 5.5: Results from clustering of the trajectory for wild type and mutant complex
of Musashi1 RRM1-RNA

Clustering Threshold Number of Clusters
Common Clusters to
both Trajectories

3.0 Å 4 3
2.7 Å 7 4
2.5 Å 12 3

After visualizing the frames (members) from clusters that are unique to one of the
trajectories, visually significant differences are in the conformation of the C-terminal
part of the protein and in the last nucleotide.

Unlike our hypothesis, the change in binding motif from RNA sequence has not
resulted in a dissociation of the RRM-RNA complex during 300 ns MD simulation.
The classical MD simulations are probably not able to distinguish between strong
and weak binders, in our case RNA sequences. This MD protocol might not be very
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Figure 5.13: Convergence plot for the Musashi1 RRM1-mutRNA (‘GCCCU’)
complex

helpful to use as a filtering step for RRM-RNA complexes resulting from docking
approaches like RRM-RNA dock.

We also performed MD simulation for both the wild type and mutant complexes with
a simulated annealing protocol. We increased the temperature of the system by 50 K
after every 100 ns. But, even with the simulated annealing protocol we were not able
to distinguish between strongly and weakly bound RRM-RNA complexes.

We can further investigate these two trajectories for the differences at the binding
interface. To do this, we will perform clustering only for the residues at the
binding interface and nucleotides. We can also employ steered MD protocol, i.e.
constant velocity pulling7 to check which RNA sequence binds stronger to the
RRM domain.

7https://www.ks.uiuc.edu/Training/Tutorials/namd/namd-tutorial-html/node18.html
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Figure 5.14: Tracking of native and non-native contacts over time from the
Musashi1 RRM1-mutRNA (‘GCCCU’) complex. The green color represents
native contacts, blue represents non-native contacts, and red color represents
lost native contacts. The intensity of color shows how many frames have that
respective contact.
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5.5.2 Free Energy Computation

The computation of free energy will help us to check the effect of point mutations in
RRM domain on the RNA-binding activity. To establish and check the protocol for
RRM-RNA complexes, we first performed MD simulations with complexes having
binding affinity information available. From InteR3M database, we already have
the information about RRM-RNA complexes with experimental data for binding
affinities.
The RNA binding affinities of RRM domain from SRSF2 protein with several point
mutations have been quantified in vitro [Daubner et al., 2012, Phelan et al., 2012,
Kim et al., 2015]. Kim et al. [2015] showed that the proline mutations at 95th position
changes the RNA binding specificity of SRSF2 RRM. The mutagenesis studies from
Phelan et al. [2012] demonstrated that the residues from loop3 region (in between
β2 and β3) R47, D48 and K52 are responsible for mediating the RNA binding.
Daubner et al. [2012] determined the 3D structures of SRSF2 RRM, SRSF2 RRM-
RNA (UCCAGU), and SRSF2 RRM-RNA (UGGAGU). Most interacting residues
from the SRSF2 RRM-RNA complexes were substituted by alanine residue in order
to evaluate the importance of each residue involved in RNA binding activity.

Figure 5.15: Position of all point mutations studied by Daubner et al. [2012] in
SRSF2 RRM. Residues with magenta color represent the mutated residues.

We decided to select the study from Daubner et al. [2012] for testing the protocol
for computing binding free energies of RRM-RNA complexes, as it covers the point
mutations from different regions of RRM domain. Figure 5.15 shows the positions
of all point mutations (from Daubner et al. [2012] study) on RRM domain.
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System preparation

All the systems with dual topology were prepared using VMD and its plugins. We
used 3D structure of SRSF2 RRM-RNA from PDB ID: 2LEB. The primary topology
files were generated with the ‘autopsf plugin’8 from VMD using CHARMM36 force
field. The dual topology for the wild type and mutant states were created using
the ‘mutator plugin’9 from VMD. After this, the explicit solvent was added using
TIP3P model inside a cubic box with a space of at least 30 Å around the RRM-RNA
complex in each direction. Na+ and Cl- ions were added in the system to make the
salt concentration of 0.15 M.
For each point mutation, two systems were prepared in the same manner, bound
(RRM-RNA complex) and unbound (RRM). For each prepared system, we also
created a file with the perturbation flags for concerned atoms. The format of this
file is similar to the ‘.pdb’ file with flag of ‘-1’ for the disappearing atoms (in our
case wild type residue), ‘1’ for appearing atoms (in our case mutated residue), and
‘0’ for rest of the atoms.

Simulation protocol

All MD simulations were performed using NAMD 3.0 at 310 K with a time step of
1 fs. Langevin dynamics was used to maintain the constant temperature and
pressure (1 atm). Particle mesh ewald (PME) was used to compute the long-range
electrostatic interactions. A cutoff distance of 12 Å was used for non-bonded
interactions. The SHAKE algorithm was used to constrain the covalent bonds
involving hydrogen atoms. We started simulations with the minimization step for
20 ps (20,000 steps) using conjugate gradient and line search algorithm. After
minimization, the system was equilibrated with NVT and NPT ensembles,
respectively for 500 ps each. Finally, bidirectional (forward and backward)
alchemical tranformations were performed with λ = 0.0625. Thus, each alchemical
transformation will take place in 1

λ
= 16 steps. Figure 5.16 shows the

thermodynamic cycle we used to compute the relative binding free energy (∆∆G)
with point mutations on RRM (receptor) while keeping the RNA (ligand)
same.

We computed the relative binding free energy for a set of point mutations on RRM
that can be found in Table 5.6.

Analysis

We used ‘ParseFEP plugin’10 from VMD for analysis of free-energy perturbation
calculations [Liu et al., 2012]. ParseFEP computes the free-energy difference and
provides an estimate of the statistical error based on the output files from FEP
simulation. It combines the results of the forward and the backward simulations in
the form of the simple-overlap sampling (SOS) estimator, or the Bennett acceptance-
ratio (BAR) estimator [Bennett, 1976] of the free energy.

8https://www.ks.uiuc.edu/Research/vmd/plugins/autopsf/
9https://www.ks.uiuc.edu/Research/vmd/plugins/mutator/

10https://www.ks.uiuc.edu/Research/vmd/plugins/parsefep/
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Figure 5.16: A thermodynamic cycle describing the binding of two Receptors,
(Receptor1 and Receptor2) to a Ligand. The relative free energy of binding can
be calculated from either the physical (∆G2 – ∆G1) or alchemical (∆G4 – ∆G3)
legs of the cycle.

Table 5.6: Binding affinities of SRSF2 RRM mutants with RNA (‘UCCAGU’),
experimental values are from the study of Daubner et al. [2012] and computational
values are computed in this thesis.

Point mutation
performed

Experimental Computational

Kd (in µM)
Affinity

decrease (in
folds)

∆∆G (in kcal mol−1)

SRSF2 RRM (aa 1-101) + 5′-UCCAGU-3′

Wild type 0.27 ± 0.02
K17A 2.38 ± 0.38 9 −−
D42A 4.09 ± 0.58 15 1.48 ± 0.02
Y44A >5 >20 −−
D48A 0.83 3 -1.42 ±0.58
S54A 0.37 1 1.322 ± 0.09
F59A Unfolded −− 4.08 ± 0.20
R61A >5 >20 2.83 ± 0.42
Q88A 0.35 1 0.202 ±0.11

R61A point mutation : The Arg61 resides on β3 within RNP1 sequence motif.
Figure 5.17 shows the overall free energy profile for R61A mutation in unbound
and bound form of SRSF2 RRM domain.
The total free energy change (∆G3) of R61A mutation in unbound form of SRSF2
RRM is 263.44 kcal mol−1 with a total error of 0.250 kcal mol−1. Whereas, in the
bound form the free energy change (∆G4) for R61A point mutation is
266.27 kcal mol−1 with a total error of 0.334 kcal mol−1.
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(a) Free energy change for Arg61 to Ala mutation in SRSF2 RRM domain (unbound form)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

l

0.0

50.0

100.0

150.0

200.0

250.0

300.0

D
G

 (
kc

a
l/m

o
l)

ParseFEP: Summary 

(b) Free energy change for Arg61 to Ala mutation in SRSF2 RRM domain (bound form)

Figure 5.17: Free energy change for Arginine (position 61) to Alanine mutation in
SRSF2 RRM domain. Black line indicates the forward transformation, i.e., from
Arg to Ala and red line indicates the backward transformation from Ala to Arg.

Overlapping free energy profiles for forward and backward transformations is a
sign for the convergence of the free energy calculation. This is further broken down
per window (λ) size in Figure 5.18a and Figure 5.19a for unbound and bound form
of RRM, respectively.
The convergence of the free energy calculation can be assessed by monitoring the
time-evolution of ∆G(λ) for every individual window (λ-state) and the overlap of
configurational ensembles embodied in their density of states, P0[∆U(x)] and
P1[∆U(x)], where ∆U(x) = U1(x) − U0(x) denotes the difference in potential
energy between the target and the reference states (Figure 5.18 and
Figure 5.19).

To compute the relative binding free energy for R61A point mutation we will use
the equation ∆∆G = ∆G4 − ∆G3 (see Figure 5.16).

∆∆G = (266.27 ± 0.334 kcal mol−1) − (263.44 ± 0.250 kcal mol−1)

= (266.27 − 263.44) ± (
√

0.3342 + 0.2502)kcal mol−1

= 2.83 ± 0.417 kcal mol−1
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(a) Time evolution of free energy differences for each λ window (unbound RRM)
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(b) Probability distribution plots for backward and forward transformations
(unbound RRM)

Figure 5.18: Output plots from the soft-core potential calculation, of ∆G, and
P0[∆U] and P1[∆U] generated by ParseFEP (for unbound RRM). Each subplot
corresponds to a λ sampling window.
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(a) Time evolution of free energy differences for each λ window (RRM-RNA
complex)
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(b) Probability distribution plots for backward and forward transformations (RRM-
RNA complex)

Figure 5.19: Output plots from the soft-core potential calculation, of ∆G, and
P0[∆U] and P1[∆U] generated by ParseFEP (for bound RRM-RNA complex). Each
subplot corresponds to a λ sampling window.
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Thus, the relative binding free energy for R61A point mutation in SRSF2 RRM-RNA
complex is 2.83 ± 0.417 kcal mol−1.

In the same way, we computed relative binding free energies for other point
mutations from SRSF2 RRM and the results are in Table 5.6.

The higher the binding free energy, the lower the binding affinity and the less stable
the complex. The lower the binding free energy, the higher the binding affinity and
the more stable the complex.
Thus, the point mutation R61A in SRSF2 RRM is less stable relative to wild type
SRSF2 RRM-RNA complex. In the study from Daubner et al. [2012], the point
mutation R61A resulted in a decrease in affinity by 20-fold.

The wild type RRM-RNA complex is favourable compared to all point mutations
performed in our study (FEP simulations) except the point mutation D48A. The D48
(Aspartate) amino acid resides in the loop3 between β2 and β3 (See Figure 5.15).
The relative binding free energy computed from FEP simulations for this point
mutation (D48A) is -1.414 ± 0.32 kcal mol−1 (see Appendix C.2). In contrast, in the
study from Daubner et al. [2012] this point mutation (D48A) resulted in a decrease
in affinity by 3-fold.

This could be because this point mutation needs more sampling time or shorter
window size (λ-step). Because of the lack of time we were not able to check the effect
of window size of the convergence of calculations. But there are studies showing
the impact of window size and sampling time on the relative binding free energy
calculations using FEP protocol [Guest et al., 2022].

To proceed with the relative binding free energy computations with FEP protocol,
we need to first benchmark FEP protocol for RRM-RNA system with different
sampling time and window size, like the study from Guest et al. [2022]. This would
help us to better understand the impact of sampling time and window size on the
accuracy and error rate of FEP calculations.

After benchmarking the FEP protocol, we can test it on other point mutations either
on the same system using studies from Phelan et al. [2012], Kim et al. [2015] or on
any other RRM-RNA system.
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6.1 Summary of the main contributions

In this thesis, I have explored the diversity among RRM domains to better
understand their binding characteristics with the aim of contributing to the design
of RRM-containing proteins with desired binding activity. I carefully curated a set
of Pfam families having the RRM domains via structural inspection of family
members. This made it clear that not all the families from RRM clan of Pfam
have RRM domains.

The main contributions of the thesis are as follows:

1. I have developed a database for Interactions of RNA and RNA Recognition
Motif (InteR3M), available at https://inter3mdb.loria.fr/.

2. I have developed a workflow for assessing domain classification by
cross-mapping of structural instances between protein domain databases
(CroMaSt) and assessing structural alignment of unmapped instances with
an RRM structural prototype, available at
https://workflowhub.eu/workflows/390.

3. I have contributed to the computational scoring method for estimating the
binding between an RRM and a ssRNA (RRMScorer), available at
https://bio2byte.be/rrmscorer/.

4. I have contributed to integrate information from InteR3M database and
RRMScorer predictions to model the 3D structures of RRM-ssRNA complex
(RRM-RNA dock), available at
https://github.com/AnnaKravchenko/RRM-RNA-dock.

5. I have tested different molecular dynamics (MD) simulation protocols to
evaluate the 3D models of RRM-ssRNA complexes.

The contributions 3 and 4 from this list were performed in the frame of
collaborations with RNAct partners: Joel Roca-Martinez and Anna Kravchenko,
respectively, within the RNAct project.

6.2 InteR3M Database

The foundation for InteR3M database is laid by the careful delineation of a correct
set of RRM families from Pfam database (Section 3.2.3). InteR3M database
integrates the domain information from Pfam, protein information from
UniProtKB, structural information from PDB, and experimental binding (Kd

values) information from literature. The current version of InteR3M database
contains 400,892 RRM domain instances, of which only 303 RRMs have at least
one experimentally solved 3D structure in the PDB. A total of 459,859 interactions
are stored from 656 RRM-RNA complexes. InteR3M database provides an easy to
use interface for querying the interactions, experiments, structures, and sequences
of RRM domains.

The InteR3M database will be updated with every new release of Pfam database,
and the binding information from literature will be added regularly (Section 3.6).
We are planning to add the CroMaSt annotations (core, true, false) and provide a
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prototype structure for the RRM domain. In addition, we are considering to add
information from CATH-Gene3D database to include RRM domains captured only
by CATH.

In the near future, we will consider integrating supplementary binding information
from other RNA-binding domain resources such as RBPDB as well as evolutionary
information from RRMdb. We will also investigate other generalist domain
databases, such as ECOD or CDD, for the RRM domain instances that can not be
captured by Pfam. In this way the InteR3M database can play the role of a hub
for RRM domain information.
The code used for data collection is publicly available, so the same method can be
followed to create the database for any other RNA/DNA-binding domain. The
code is available at
https://gitlab.inria.fr/hdhondge/data collection inter3mdb.

6.3 CroMaSt Workflow

The “Cross-Mapper of Structural domains” (CroMaSt) workflow is a fully
automated workflow that classifies all structural instances (StIs) of a given domain
into 3 different categories: core, true and domain-like. This workflow provides an
easy way to curate a list of domain instances for a given domain type from two
different domain classification systems, Pfam (mostly sequence-based) and CATH
(structure-based). In addition, CroMaSt computes an average prototype structure
for the given domain type and also detects wrongly classified domain instances
thanks to structural alignment. Current version of CroMaSt was built to take
advantage of both, sequence-based (Pfam) and structure-based (CATH),
classification systems. It can be used to look for structurally related families across
protein domain classification databases.

Currently, CroMaSt can be run with only two source databases, Pfam and CATH.
To open CroMaSt to any other source domain databases, we plan to create a unified
format from release files of other domain databases. This will allow users to use
CroMaSt with domain databases of their choice for cross mapping of StIs. Moreover,
users can contribute to source domain databases in case of wrongly classified domain
StIs or to assign classification for StIs lacking any classification.

The current version of CroMaSt uses only experimentally determined 3D
structures because these are directly available from source databases. CroMaSt
workflow can be used with AlphaFold structures once the structure-based domain
databases (CATH) have integrated information from AlphaFold database. The
usage of AlphaFold models will give more power to CroMaSt workflow in terms of
inclusion of the families hitherto devoid of any experimental structure (from
sequence-based classification) and addition of new families (from structure-based
classification).

We believe that CroMaSt will be a valuable tool for developers of protein domain
data resources like Pfam and CATH. CroMaSt can be used to improve the quality
and knowledge of domains in these domain data resources. For example, to learn
more about any DUF (Domain of Unknown Function) families from Pfam.
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Moreover, CroMaSt can be useful for people interested in evolutionary relationships
of protein domains. One can use the ECOD (Evolutionary Classification of Protein
Domains) [Cheng et al., 2015] as a source database for cross-mapping of domain
structural instances.

6.4 RRMScorer

RRMScorer provides scores for the binding probability of any RRM-RNA pair
asssuming they use the canonical binding mode. RRMScorer was validated on
both computational and experimental data. The key tasks of this work are the
generation of RRM master alignment and the mapping of contacts onto the
alignment. These tasks led us to understand the role of each residue positions and
identify different binding modes of RRM domains. For this work, we focused only
on the canonical binding mode of RRMs, therefore the other binding modes remain
to be investigated. However, for the moment, the number of instances for these less
frequent binding modes is too low to compute statistically reliable scores.

The RRM-RNA interaction data used to develop the RRMScorer method is
retrieved from the InteR3M database. With the addition of new RRM-RNA
complexes in InteR3M database, RRMScorer will be updated accordingly.
Hopefully, the various updates of InteR3M database will provide more 3D
structures of RRM-RNA complexes with non-canonical binding modes. This will
be useful to analyze and decipher the RRM recognition code for other binding
modes. RRMScorer can score an RRM-RNA complex while tracking the individual
scores of each residue-nucleotide pair. This information can be useful to rationally
design new RRMs. The RRMScorer can be coupled with state-of-the-art methods
used to predict the 3D structure of the RNA-RRM complex, such as
RoseTTAFoldNA [Baek et al., 2022] and ATTRACT.
Finally, this methodology can be used to decipher the recognition code for other
RNA/DNA-binding domains, assuming there exists sufficient structural
information on 3D complexes of these domains with RNA or DNA.

6.5 RRM-RNA Dock

We employed anchored docking protocol for RRM-RNA docking with the
ATTRACT docking program. The interactions between RRM and RNA were used
to identify anchoring patterns, i.e. prototypes of 3D atomic positions (relative to
the protein backbone) of a nucleotide stacked on a conserved aromatic amino acid.
We used all the experimentally determined 3D structures of RRM-RNA complexes
to extract the stacking interactions. Then, we used the representatives for all these
stacking interactions to model the 3D structures of RRM-RNA complexes. The
current version of ‘RRM-RNA dock’ can be used to dock only the tri-nucleotide
fragment containing the anchored nucleotide onto the RRM domain.

The current version of ‘RRM-RNA dock’ uses the same constraint distance for
each bead. The use of different constraint distances depending on the variability of
the beads position within the cluster might help to get better results.
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The ‘RRM-RNA dock’ pipeline is still in development as discussed in section 5.4.4.
Another PhD student (Anna Kravchenko) from the RNAct project in our lab is
working on it to integrate the RRMScorer predictions.

6.6 Evaluating 3D structures of RRM-RNA

complexes

We tested the standard MD protocol to distinguish between strongly bound and
weakly bound RRM-RNA complexes using MSI1 RRM1-RNA complex. But this
protocol was not able to successfully distinguish between these two systems.
We then used free energy perturbation (FEP) protocol to compute the relative
binding free energy of RRM-RNA complexes. We tested this protocol with point
mutations on SRSF2 RRM (from Daubner et al. [2012]), but the results are not
completely in agreement with the study from Daubner et al. [2012].
Due to the lack of time, we could not test other MD protocols or the same protocol
with different settings.

To develop an efficient FEP protocol on such a system formed by an RRM-RNA
complex, a benchmarking study can be performed. This will help to understand
the effect of sampling time and window size on the accuracy and error rate of FEP
calculation [Guest et al., 2022].
A few other MD protocols can also be tested to evaluate the 3D structures of
RRM-RNA complexes like constant velocity pulling and accelerated molecular
dynamics [Pawnikar et al., 2022].

6.7 Future Directions

This thesis presents a set of computational tools that can be used in different
studies. The evolutionary aspects of a protein domain are useful to understand the
function of newly discovered proteins and reveal co-evolving interactions at
molecular level [P Bagowski et al., 2010, Basu et al., 2009]. The curated data from
InteR3M database can be used to extend the evolutionary analysis of RRM
domains initiated recently [Nowacka et al., 2019]. In particular, this will help to
understand the promiscuity of different RRM families. Promiscuity refers to the
presence of a domain in combination with many other domains. This can be
extended to all proteins containing at least one RRM domain resulting in all
possible multi-domain architectures of RRM domains. These multi-domain
architecture can provide some valuable insights into the ability of RRM to interact
with a wide range of molecular partners (RNA, DNA, and proteins). In addition,
it can reveal if any other neighboring domains have an impact on the function of
RRM domains leading to either a deviant domain or a novel function. Forslund
and Sonnhammer [2012] reviewed several studies to dissect the evolution of domain
architectures and provides an overview on different scenarios.

The study from Oliveira et al. [2017], which focuses on RNA-binding proteins
(RBPs) in Trypanosoma cruzi and Saccharomyces cerevisiae, provides interesting
insights on domain architecture among RBPs. This study also states that in some
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cases, the function of a protein of interest is conserved despite the phylogenetic
distance. The phylogenetic analysis of RRM-containing proteins in plants
performed by Gomez-Porras et al. [2011] revealed that the RRM from plants and
cyanobacteria do not have a common origin. Thus, it would be interesting to
perform a phylogenetic analysis of RRM-containing proteins to understand and
learn about common origin of RRMs and how they evolved to preserve their
functions. It would also provide insights on the multiple divergence steps of RRM
domain evolution, that lead to their extremely large diversity.

The RRM domain plays an important role in several key biological processes
including post-transcriptional gene regulation, formation of amyloid-like
aggregates [Berchowitz et al., 2015], and abnormal cell proliferation [Chen et al.,
2019]. The ‘HuR (ELAV1) protein’ with three RRM domains is an established
regulator of post-transcriptional gene regulation in humans. The HuR protein is
overexpressed and over-active, i.e. with an increased subcellular localization within
cytoplasm, in most cancers [Schultz et al., 2020]. HuR is a promising target for
cancer therapies [Blanco et al., 2016]. HuR nucleocytoplasmic shuttling sequence
(HNS) and RRM3 play critical role in its cytoplasmic localization [Doller et al.,
2010]. The study from Grammatikakis et al. [2017] summarizes the impact of each
post-translational modification on HuR localization and function. We believe that
the computational tools developed during this thesis will be very useful in such
cases. For example, the RRMScorer can be used to find RNA candidates that can
bind to HuR (or individual RRMs) with relatively higher score than mRNA known
as targets. The structure of HuR with these RNA candidates can be modelled
using ‘RRM-RNA dock’. These 3D models can be studied to compare
inter-molecular interactions between HuR and RNA candidates. Currently, there is
no MD protocol for alchemical transformations of RNA but other MD protocols
can be used to compute the relative binding free energies for the different RNA
sequences to filter out and select the best candidates. Then, the selected
candidates can be tested in-vitro to inhibit the HuR.

In addition to HuR, RRM-containing proteins are involved in many other diseases.
For example, Tar DNA-binding protein 43 (TDP-43) with 2 RRM domains is a key
player in Amyotrophic Lateral Sclerosis (ALS). Elevated expression of Musashi
(MSI1 and MSI2) proteins has been observed in several tumors from different
organs [Fox et al., 2016, Kudinov et al., 2017] and some chronic diseases like
chronic myelogenous leukemia (CML), acute myelogenous leukemia (AML), and
acute lymphoblastic leukemia (ALL) [Kharas et al., 2010]. These RRM-containing
proteins are well-established therapeutic targets and our tools can help in guiding
the inhibition of these over-expressed proteins.

Controlled management of multi-drug resistant pathogens is both critical and
challenging [Fournier et al., 2006]. Recently, Ciani et al. [2022] uncovered the
existence of an RRM-containing protein in Acinetobacter baumannii
(gram-negative multi-drug resistant pathogen) that binds to AU-rich regions.
Despite the fact that the specific role of this protein in A. baumannii is not known
yet, its RNA-binding properties could be targeted, in view of both functional
studies and novel therapeutic strategies.

Application domains for RNA-binding protein design are very diverse but
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computational skills required to support such protein design projects are also very
diverse. The contributions reported in this thesis illustrate this diversity which
ranges from sequence and structure analyses to MD simulations, including
database creation, workflow development and docking algorithms. Nowadays, all
these skills should be brought together in the pluridisciplinary task forces
addressing the challenging issues raised by protein design.
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Appendix A

Structural Inspection

A.1 Classification codes and Alignment scores

A.1.1 SCOP classification

The SCOP database contains classification for non-redundant protein domains. A
representative is selected based on its sequence (UniProtKB) and structure (PDB)
and used for manual SCOP classification.
SCOP has six levels of classification:

• Family groups closely related proteins with a clear evidence for their
evolutionary origin.

• Superfamily brings together more distantly related protein domains.

• Fold groups superfamilies on the basis of the global structural features shared
by the majority of their members.

• IUPR (Intrinsically Unstructured Protein Region) organises superfamilies of
proteins or protein regions that do not adopt globular folded structure.

• Classes bring together folds and IUPRs with different secondary structural
content.

• Protein type groups folds and IUPRs into four groups: soluble, membrane,
fibrous and intrinsically disordered.

SCOP uses following abbreviations to denote the classification levels: TP=protein
type, CL=protein class, CF=fold, SF=superfamily, FA=family

A.1.2 CATH classification

The name CATH derives from the initials of the top four levels of the classification
- (C)lass, (A)rchitecture, (T)opology and (H)omologous Superfamily.

• Class refers to the secondary structure content (e.g. mainly-alpha, mainly-
beta, mixed alpha/beta or ‘few secondary structures’).
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Figure A.1: CATH classification levels for RNA Recognition Motif domain

• Architecture refers to the general arrangement of the secondary structures
irrespective of connectivity between them (e.g. alpha/beta sandwich).

• Topology, also known as the ’fold’ level, takes into account the connectivity
of secondary structures in the chain.

• Homologous Superfamily refers to domains that are believed to be related
by a common ancestor.

Figure A.1 shows the levels of RRM domain classification in CATH.

A.1.3 Kpax alignment scores

K-Score: K-score (Kpax Score) is calculated using

KA,B =

NA∑
i=1

NB∑
j=1

µi,jKi,j

where,

• µi,j is 1 when residue i of the first protein is aligned to residue j of the
second protein, and zero otherwise.

• Ki,j is the similarity score for residues i and j1.

Despite being a global structural similarity score, it is worth noting that this
penalty-free score is ‘pose-invariant’ in that it does not depend on the
orientations of the given proteins, and that for two perfectly matching
backbones it will be numerically equal to the number of aligned residues.

G-Score: Global alignment score calculated using:

G =
∑
i,j

µi,jGi,j

where,

• µi,j is 1 when residue i of the first protein is aligned to residue j of the
second protein, and zero otherwise.

1For details refer to Ritchie et al. [2012]
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• Gi,j is Gaussian overlap between residue i and j.

J-Score: Normalised K-score.

M-Score: M-Score as a measure of MSA quality; novel atomic Gaussian based MSA
scoring function, which circumvents the number/RMSD trade-off problem.

M =

∑C
j=1max(Cj, 1) − C

(T − L)

where,

• C represents the total number of columns and Cj the count of residues
in the jth column.

• T represents total number of residues for a given sequence.

• L represents the longest amino acid chain aligned.

• The max function ensures that at least one unit is subtracted for each
column and thus deals with columns that contain poorly superposed Cα

atoms.

TM-Score: TM-Score defined by the program TM-align.

RMSD: The root mean squared deviation of two aligned structures.

N/*: The total count of aligned residues in an alignment.

I/@: The total count of identical residues in an alignment.

P/!: The identity percentage of residues in an alignment.

Len: The length of the target structure.

Seg: The count of continuous segments in the target structure.

TP∗: This value shows whether the retrieved structure belongs to the same CATH
or SCOP family.

Match (Family)∗: This shows the CATH or SCOP classification code of the
matching database structure.

∗: These values are useful when searching CATH or SCOP databases. In our case,
we are not interested in these values as we are not searching these databases.

A.2 Structural Inspection of Pfam families

Transposase 22 (PF02994):

2YKO A:

• SCOP classification: TP=1, CL=1000003, CF=2000014,
SF=3000110, FA=4007201

• CATH classification: Superfamily 3.30.70.1820 (L1 transposable
element, RRM domain)
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• PDBeFold: (Secondary structure alignment)

PDB 2yko:A S h S S H s S -

PDB 1a9n:B S h S S H - S h

PDB 2a3j:A S h S S H - S h

• Kpax:

===========================================================

Rank K-Score G-Score J-Score M-Score T-Score RMSD N/* D/$

==== ======= ======= ======= ======= ======= ==== === ===

1 40.05 42.12 0.4828 0.5857 0.6386 2.69 68 76

2 40.02 41.26 0.4825 0.6014 0.6440 2.45 69 71

===========================================================

=====================================

I/@ P/! Len Seg TP Match[Family]

=== === === === == =============

10 14.7 80 1 +1 1a9n_B[0.0.0.0]

10 14.5 80 1 +1 2a3j_A[0.0.0.0]

=====================================

2LDY A:

• SCOP classification: TP=1, CL=1000003, CF=2000014,
SF=3000110, FA=4007201

• CATH classification: Superfamily 3.30.70.1820 (L1 transposable
element, RRM domain)

• PDBeFold: (Secondary structure alignment)

PDB 2ldy:A S h h S S H S h

PDB 1a9n:B S h - S S H S h

PDB 2a3j:A S h - S S H S h

• Kpax:

===========================================================

Rank K-Score G-Score J-Score M-Score T-Score RMSD N/* D/$

==== ======= ======= ======= ======= ======= ==== === ===

1 43.95 42.11 0.4938 0.6151 0.6686 2.74 74 76

2 43.07 39.70 0.4840 0.5901 0.6460 2.76 73 76

===========================================================

=====================================

I/@ P/! Len Seg TP Match[Family]

=== === === === == =============

10 13.5 80 1 +1 1a9n_B[0.0.0.0]

11 15.1 80 1 +1 2a3j_A[0.0.0.0]

=====================================

CATH and SCOP have classification for both of the structural instances point
to a family named ‘L1 transposable element RRM domain-like’. In addition
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both of these query structures aligned nicely with PDBeFold and Kpax. Thus,
we include this family into a list of ‘true RRM families’.

RRM 3(PF08777):

1OWX A:

• SCOP classification: TP=1, CL=1000003, CF=2000014,
SF=3000110, FA=4000236

• CATH classification: Superfamily 3.30.70.330 (RRM domain)

• PDBeFold: (Secondary structure alignment)

PDB 1owx:A S H S S H S h

PDB 1a9n:B S H S S H S h

PDB 2a3j:A S H S S H S h

• Kpax:

==========================================================

Rank K-Score G-Score J-Score M-Score T-Score RMSD N/* D/$

==== ======= ======= ======= ======= ======= ==== === ===

1 37.08 40.50 0.4065 0.6042 0.6463 2.58 71 68

2 35.39 40.01 0.3880 0.6051 0.6454 2.49 71 69

==========================================================

======================================

I/@ P/! Len Seg TP Match[Family]

=== === === === == =============

11 15.5 80 1 +1 2a3j_A[0.0.0.0]

10 14.1 80 1 +1 1a9n_B[0.0.0.0]

======================================

5KNW A:

• SCOP classification: NO ENTRY

• CATH classification: NO ENTRY

• PDBeFold: (Secondary structure alignment)

PDB 5knw:A S H S S H S h

PDB 1a9n:B S H S S H S h

PDB 2a3j:A S H S S H S h

• Kpax:

===========================================================

Rank K-Score G-Score J-Score M-Score T-Score RMSD N/* D/$

==== ======= ======= ======= ======= ======= ==== === ===

1 38.00 48.99 0.4270 0.6894 0.7068 1.95 69 71
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2 38.88 48.72 0.4369 0.6784 0.6945 1.91 67 70

===========================================================

=====================================

I/@ P/! Len Seg TP Match[Family]

=== === === === == =============

12 17.4 80 1 +1 2a3j_A[0.0.0.0]

4 6.0 80 1 +1 1a9n_B[0.0.0.0]

=====================================

CATH and SCOP have classification for only the first structural instance
(1OWX A) and not the other one. Both of these databases classified the first
structure into RRM domain family. In addition both of these query
structures aligned nicely with PDBeFold and Kpax. Thus, we include this
family into a list of ‘true RRM families’.

XS (PF03468):

4E8U A:

• SCOP classification: No Entry

• CATH classification: Superfamily 3.30.70.2890 (Not yet named)

• PDBeFold: (Secondary structure alignment)

PDB 4e8u:A s S H s s H h S h

PDB 1a9n:B - S H s s H - S h

PDB 2a3j:A - S H s s H - S h

• Kpax:

===========================================================

Rank K-Score G-Score J-Score M-Score T-Score RMSD N/* D/$

==== ======= ======= ======= ======= ======= ==== === ===

1 40.92 48.33 0.4304 0.6822 0.7057 2.06 70 74

2 39.32 46.37 0.4135 0.6684 0.6897 2.20 70 72

===========================================================

=====================================

I/@ P/! Len Seg TP Match[Family]

=== === === === == =============

10 14.3 80 1 +1 1a9n_B[0.0.0.0]

9 12.9 80 1 +1 2a3j_A[0.0.0.0]

=====================================

For the same reasons as above, this family was included in the list of ‘true
RRM families’.

DbpA (PF03880):
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2G0C A:

• SCOP classification: TP=1, CL=1000003, CF=2000014,
SF=3000110, FA=4004284

• CATH classification: Superfamily 3.30.70.330 (RRM domain)

• PDBeFold: (Secondary structure alignment)

PDB 2g0c:A S H S S H S -

PDB 1a9n:B S H S S H S h

PDB 2a3j:A S H S S H S h

• Kpax:

===========================================================

Rank K-Score G-Score J-Score M-Score T-Score RMSD N/* D/$

==== ======= ======= ======= ======= ======= ==== === ===

1 27.72 44.76 0.3758 0.7293 0.7292 1.95 61 65

2 27.79 42.92 0.3767 0.7167 0.7128 1.91 61 62

===========================================================

======================================

I/@ P/! Len Seg TP Match[Family]

=== === === === == =============

6 9.8 80 1 +1 1a9n_B[0.0.0.0]

5 8.2 80 1 +1 2a3j_A[0.0.0.0]

======================================

5B88 A:

• SCOP classification: NO ENTRY

• CATH classification: Superfamily 3.30.70.3360 (not yet named)

• PDBeFold: (Secondary structure alignment)

PDB 5b88:A S H - S H - -

PDB 1a9n:B S H s S H s h

PDB 2a3j:A S H s S H s h

• Kpax:

===========================================================

Rank K-Score G-Score J-Score M-Score T-Score RMSD N/* D/$

==== ======= ======= ======= ======= ======= ==== === ===

1 28.58 31.32 0.3766 0.5344 0.5809 2.76 63 60

2 28.49 30.72 0.3754 0.5076 0.5603 2.78 60 64

===========================================================

=====================================

I/@ P/! Len Seg TP Match[Family]

=== === === === == =============

4 6.3 80 1 +1 2a3j_A[0.0.0.0]

6 10.0 80 1 +1 1a9n_B[0.0.0.0]
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=====================================

For the same reasons as above, this family was included in the list of ‘true
RRM families’.

Nup35 RRM (PF05172):

3P3D A:

• SCOP classification: TP=1, CL=1000003, CF=2000014,
SF=3000110, FA=4000236

• CATH classification: Superfamily 3.30.70.330 (RRM domain)

• PDBeFold: (Secondary structure alignment)

PDB 3p3d:A S H h S H S h

PDB 1a9n:B S H h S H S h

PDB 2a3j:A S H h S H S h

• Kpax:

=========================================================

Rank K-Score G-Score J-Score M-Score T-Score RMSD

N/* D/$ I/@ P/! Len Seg TP Match[Family]

==== ======= ======= ======= ======= ======= ====

=== === === === === === == =============

1 48.25 50.89 0.5784 0.7092 0.7209 1.87

69 68 12 17.4 80 1 +1 1a9n_B [0.0.0.0]

2 39.92 45.74 0.4785 0.6608 0.6812 2.12

69 67 13 18.8 80 1 +1 2a3j_A [0.0.0.0]

=========================================================

1WWH A:

• SCOP classification: TP=1, CL=1000003, CF=2000014,
SF=3000110, FA=4000236

• CATH classification: Superfamily 3.30.70.330 (RRM domain)

• PDBeFold: (Secondary structure alignment)

PDB 1wwh:A S H S S H S h

PDB 1a9n:B S H S S H S h

PDB 2a3j:A S H S S H S h

• Kpax:

===========================================================

Rank K-Score G-Score J-Score M-Score T-Score RMSD N/* D/$

==== ======= ======= ======= ======= ======= ==== === ===

1 48.75 52.10 0.6056 0.7283 0.7400 1.87 71 71
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2 45.45 48.93 0.5646 0.6974 0.7123 1.92 70 70

===========================================================

======================================

I/@ P/! Len Seg TP Match[Family]

=== === === === == =============

9 12.7 80 1 +1 1a9n_B[0.0.0.0]

10 14.3 80 1 +1 2a3j_A[0.0.0.0]

======================================

5UAZ A:

• SCOP classification: TP=1, CL=1000003, CF=2000014,
SF=3000110, FA=4000236

• CATH classification: Superfamily 3.30.70.330 (RRM domain)

• PDBeFold: (Secondary structure alignment)

PDB 5uaz:A S H h S H s S h

PDB 1a9n:B S H h S H s S h

PDB 2a3j:A S H h S H s S h

• Kpax:

===========================================================

Rank K-Score G-Score J-Score M-Score T-Score RMSD N/* D/$

==== ======= ======= ======= ======= ======= ==== === ===

1 49.80 51.91 0.5805 0.7204 0.7256 1.66 68 69

2 41.52 46.00 0.4840 0.6604 0.6818 2.17 69 68

===========================================================

======================================

I/@ P/! Len Seg TP Match[Family]

=== === === === == =============

15 22.1 80 1 +1 1a9n_B[0.0.0.0]

9 13.0 80 1 +1 2a3j_A[0.0.0.0]

======================================

For the same reasons as above, this family was included in the list of ‘true
RRM families’.

RNA bind (PF08675):

3CTR A:

• SCOP classification: TP=1, CL=1000003, CF=2000014,
SF=3000110, FA=4000236

• CATH classification: Superfamily 3.30.70.330 (RRM domain)

• PDBeFold: (Secondary structure alignment)
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PDB 3ctr:A S H S s h h -

PDB 1a9n:B S H S s h s h

PDB 2a3j:A S H S s h s h

• Kpax:

===========================================================

Rank K-Score G-Score J-Score M-Score T-Score RMSD N/* D/$

==== ======= ======= ======= ======= ======= ==== === ===

1 28.61 31.13 0.3823 0.4962 0.4982 1.95 43 63

2 27.29 30.19 0.3646 0.4883 0.4895 1.95 43 61

===========================================================

=====================================

I/@ P/! Len Seg TP Match[Family]

=== === === === == =============

10 23.3 80 1 +1 1a9n_B[0.0.0.0]

9 20.9 80 1 +1 2a3j_A[0.0.0.0]

=====================================

1WHV A:

• SCOP classification: TP=1, CL=1000003, CF=2000014,
SF=3000110, FA=4000236

• CATH classification: Superfamily 3.30.70.330 (RRM domain)

• PDBeFold: (Secondary structure alignment)

PDB 1whv:A S H s S H S h

PDB 1a9n:B S H s S H S h

PDB 2a3j:A S H s S H S h

• Kpax:

==========================================================

Rank K-Score G-Score J-Score M-Score T-Score RMSD N/* D/$

==== ======= ======= ======= ======= ======= ==== === ===

1 39.86 46.17 0.5014 0.6613 0.6740 1.88 65 64

2 37.17 44.60 0.4675 0.6465 0.6616 1.97 65 66

==========================================================

=====================================

I/@ P/! Len Seg TP Match[Family]

=== === === === == =============

14 21.5 80 1 +1 1a9n_B[0.0.0.0]

13 20.0 80 1 +1 2a3j_A[0.0.0.0]

=====================================

3D45 A:

• SCOP classification: refer 1whv
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• CATH classification: Superfamily 3.30.420.10 (Ribonuclease H-like
superfamily/Ribonuclease H)

• PDBeFold: (Secondary structure alignment)

PDB 3d45:A S H S S H - -

PDB 1a9n:B S H S S H s h

PDB 2a3j:A S H S S H s h

• Kpax:

===========================================================

Rank K-Score G-Score J-Score M-Score T-Score RMSD N/* D/$

==== ======= ======= ======= ======= ======= ==== === ===

1 38.77 47.78 0.5039 0.7126 0.7253 1.87 65 63

2 36.99 45.41 0.4808 0.6993 0.7011 1.87 64 65

===========================================================

=======================================

I/@ P/! Len Seg TP Match[Family]

=== === === === == =============

14 21.5 80 1 +1 1a9n_[0.0.0.0]

12 18.8 80 1 +1 2a3j_A[0.0.0.0]

=======================================

For the same reasons as above, this family was included in the list of ‘true
RRM families’.

Tap-RNA bind (PF09162):

1KOH A:

• SCOP classification: TP=1, CL=1000003, CF=2000014,
SF=3000110, FA=4001295

• CATH classification: Superfamily 3.30.70.330 (RRM domain)

• PDBeFold: (Secondary structure alignment)

PDB 1koh:A S H - - H S -

PDB 1a9n:B S H s s H S h

PDB 2a3j:A S H s s H S h

• Kpax:

===========================================================

Rank K-Score G-Score J-Score M-Score T-Score RMSD N/* D/$

==== ======= ======= ======= ======= ======= ==== === ===

1 36.05 39.68 0.4506 0.5881 0.6251 2.35 67 70

2 35.18 38.03 0.4398 0.5739 0.6201 2.54 69 70

===========================================================

=======================================
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I/@ P/! Len Seg TP Match[Family]

=== === === === == ==============

7 10.4 80 1 +1 1a9n_B[0.0.0.0]

8 11.6 80 1 +1 2a3j_A[0.0.0.0]

=======================================

1FT8 A:

• SCOP classification: No SCOP2 classification is available for 1ft8 A
explicitly. This entry is represented by the following domains:

– 8025950 1KOH A

– 8025952 1KOH A

– 8038329 1KOH A

– 8038331 1KOH A

• CATH classification: Superfamily 3.30.70.330 (RRM domain)

• PDBeFold: (Secondary structure alignment)

PDB 1ft8:A S h H S s H S -

PDB 1a9n:B S - H S s H S h

PDB 2a3j:A S - H S s H S h

• Kpax:

===========================================================

Rank K-Score G-Score J-Score M-Score T-Score RMSD N/* D/$

==== ======= ======= ======= ======= ======= ==== === ===

1 36.56 37.51 0.4570 0.5696 0.6176 2.51 69 70

2 38.35 37.05 0.4794 0.5624 0.6082 2.54 68 71

===========================================================

=======================================

I/@ P/! Len Seg TP Match[Family]

=== === === === == =============

8 11.6 80 1 +1 2a3j_A[0.0.0.0]

7 10.3 80 1 +1 1a9n_B[0.0.0.0]

=======================================

CATH classified both of these structures as RRM domains. SCOP classified
these structures into ‘Non-canonical RBD domain’ family that do not
point/map to any Pfam family. Although the secondary structure alignment
from PDBeFold, does not seem to be aligned very well, but the structures are
aligned nicely with Kpax. Thus, we include this family into a list of ‘true
RRM families’.

RRM 8 (PF11835):

2E5I A:
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• SCOP classification: No Entry

• CATH classification: Superfamily 3.30.70.330 (RRM domain)

• PDBeFold: (Secondary structure alignment)

PDB 2e5i:A S H S S H S -

PDB 1a9n:B S H S S H S h

PDB 2a3j:A S H S S H S h

• Kpax:

===========================================================

Rank K-Score G-Score J-Score M-Score T-Score RMSD N/* D/$

==== ======= ======= ======= ======= ======= ==== === ===

1 47.00 55.71 0.5912 0.7776 0.7902 1.83 74 72

2 45.34 54.43 0.5704 0.7579 0.7823 2.05 75 72

===========================================================

=====================================

I/@ P/! Len Seg TP Match[Family]

=== === === === == =============

18 24.3 80 1 +1 1a9n_B[0.0.0.0]

16 21.3 80 1 +1 2a3j_A[0.0.0.0]

=====================================

2MQM A:

• SCOP classification: No Entry

• CATH classification: Superfamily 3.30.70.330 (RRM domain)

• PDBeFold: (Secondary structure alignment)

PDB 2mqm:A h S H S S H S -

PDB 1a9n:B - S H S S H S h

PDB 2a3j:A - S H S S H S h

• Kpax:

===========================================================

Rank K-Score G-Score J-Score M-Score T-Score RMSD N/* D/$

==== ======= ======= ======= ======= ======= ==== === ===

1 46.55 58.39 0.5893 0.8124 0.8246 1.79 75 74

2 42.68 55.66 0.5403 0.7813 0.7971 1.91 74 74

===========================================================

=====================================

I/@ P/! Len Seg TP Match[Family]

=== === === === == =============

19 25.3 80 1 +1 1a9n_B[0.0.0.0]

17 23.0 80 1 +1 2a3j_A[0.0.0.0]

=====================================
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For the same reasons as above, this family was included in the list of ‘true
RRM families’.

RRM 5 (PF13893):

6EXN Y:

• SCOP classification: TP=1, CL=1000003, CF=2000014,
SF=3000110, FA=4000236

• CATH classification: Superfamily 3.30.70.330 (RRM domain)

• PDBeFold: (Secondary structure alignment)

PDB 6exn:Y S H S S H S -

PDB 1a9n:B S H S S H S h

PDB 2a3j:A S H S S H S h

• Kpax:

===========================================================

Rank K-Score G-Score J-Score M-Score T-Score RMSD N/* D/$

==== ======= ======= ======= ======= ======= ==== === ===

1 64.67 74.31 0.8134 0.9685 0.9630 0.71 79 79

2 48.47 63.11 0.6097 0.8616 0.8563 1.24 75 76

===========================================================

=====================================

I/@ P/! Len Seg TP Match[Family]

=== === === === == =============

25 31.6 80 1 +1 1a9n_B[0.0.0.0]

18 24.0 80 1 +1 2a3j_A[0.0.0.0]

=====================================

2ADC A:

• SCOP classification: TP=1, CL=1000003, CF=2000014,
SF=3000110, FA=4000236

• CATH classification: Superfamily 3.30.70.330 (RRM domain)

• PDBeFold: (Secondary structure alignment)

PDB 2adc:A h S H S S H S s

PDB 1a9n:B - S H S S H S h

PDB 2a3j:A - S H S S H S h

• Kpax:

===========================================================

Rank K-Score G-Score J-Score M-Score T-Score RMSD N/* D/$

==== ======= ======= ======= ======= ======= ==== === ===
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1 47.36 60.17 0.6114 0.8715 0.8676 1.42 74 74

2 48.87 59.39 0.6309 0.8619 0.8603 1.49 74 74

===========================================================

=====================================

I/@ P/! Len Seg TP Match[Family]

=== === === === == =============

20 27.0 80 1 +1 1a9n_B[0.0.0.0]

20 27.0 80 1 +1 2a3j_A[0.0.0.0]

=====================================

For the same reasons as above, this family was included in the list of ‘true
RRM families’.

RRM 7 (PF16367):

2MKK A:

• SCOP classification: TP=1, CL=1000003, CF=2000014,
SF=3000110, FA=4000236

• CATH classification: Superfamily 3.30.70.330 (RRM domain)

• PDBeFold: (Secondary structure alignment)

PDB 2mkk:A S H s h s H s S -

PDB 1a9n:B S H s - s H - S h

PDB 2a3j:A S H s - s H - S h

• Kpax:

===========================================================

Rank K-Score G-Score J-Score M-Score T-Score RMSD N/* D/$

==== ======= ======= ======= ======= ======= ==== === ===

1 32.31 41.35 0.3746 0.5912 0.6313 2.53 67 67

2 33.79 38.68 0.3917 0.5566 0.6052 2.68 66 73

===========================================================

=====================================

I/@ P/! Len Seg TP Match[Family

=== === === === == ============

9 13.4 80 1 +1 1a9n_B[0.0.0.0]

9 13.6 80 1 +1 2a3j_A[0.0.0.0]

=====================================

2MKJ A:

• SCOP classification: TP=1, CL=1000003, CF=2000014,
SF=3000110, FA=4000236

• CATH classification: Superfamily 3.30.70.330 (RRM domain)

• PDBeFold: (Secondary structure alignment)
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PDB 2mkj:A s H S S H s S -

PDB 1a9n:B s H S S H - S h

PDB 2a3j:A s H S S H - S h

• Kpax:

===========================================================

Rank K-Score G-Score J-Score M-Score T-Score RMSD N/* D/$

==== ======= ======= ======= ======= ======= ==== === ===

1 35.69 40.40 0.4160 0.6075 0.6410 2.34 69 73

2 32.75 36.55 0.3817 0.5695 0.6217 2.74 72 72

===========================================================

======================================

I/@ P/! Len Seg TP Match[Family]

=== === === === == =============

10 14.5 80 1 +1 1a9n_B[0.0.0.0]

12 16.7 80 1 +1 2a3j_A[0.0.0.0]

======================================

For the same reasons as above, this family was included in the list of ‘true
RRM families’.

RRM occluded (PF16842):

4N0T A:

• SCOP classification: TP=1, CL=1000003, CF=2000014,
SF=3000110, FA=4000236

• CATH classification: Superfamily 3.30.70.330 (RRM domain)

• PDBeFold: (Secondary structure alignment)

PDB 4n0t:A h S H S S H S h

PDB 1a9n:B - S H S S H S h

PDB 2a3j:A - S H S S H S h

• Kpax:

===========================================================

Rank K-Score G-Score J-Score M-Score T-Score RMSD N/* D/$

==== ======= ======= ======= ======= ======= ==== === ===

1 51.10 59.10 0.6554 0.8295 0.8272 1.40 70 74

2 46.39 54.75 0.5950 0.7956 0.8042 1.85 73 72

===========================================================

=====================================

I/@ P/! Len Seg TP Match[Family]

=== === === === == =============

8 11.4 80 1 +1 1a9n_B[0.0.0.0]

15 20.5 80 1 +1 2a3j_A[0.0.0.0]
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=====================================

6ASO A:

• SCOP classification: TP=1, CL=1000003, CF=2000014,
SF=3000110, FA=4000236

• CATH classification: Superfamily 3.30.70.330 (RRM domain)

• PDBeFold: (Secondary structure alignment)

PDB 6ASO:A S H S S H S h

PDB 1a9n:B S H S S H S h

PDB 2a3j:A S H S S H S h

• Kpax:

===========================================================

Rank K-Score G-Score J-Score M-Score T-Score RMSD N/* D/$

==== ======= ======= ======= ======= ======= ==== === ===

1 50.15 58.14 0.6431 0.8217 0.8190 1.48 70 74

2 45.02 53.52 0.5774 0.7840 0.7937 1.93 73 72

===========================================================

=====================================

I/@ P/! Len Seg TP Match[Family]

=== === === === == =============

8 11.4 80 1 +1 1a9n_B[0.0.0.0]

15 20.5 80 1 +1 2a3j_A[0.0.0.0]

=====================================

For the same reasons as above, this family was included in the list of ‘true
RRM families’.

YlmH RBD (PF17774):

2FPH X:

• SCOP classification: NO ENTRY

• CATH classification: Superfamily 3.30.70.330 (RRM domain)

• PDBeFold: (Secondary structure alignment)

PDB 2fph:X h S H S S H S h

PDB 1a9n:B - S H S S H S h

PDB 2a3j:A - S H S S H S h

• Kpax:

===========================================================

Rank K-Score G-Score J-Score M-Score T-Score RMSD N/* D/$

==== ======= ======= ======= ======= ======= ==== === ===

140



A.2. Structural Inspection of Pfam families

1 34.94 42.56 0.4237 0.6252 0.6396 2.05 65 69

2 32.82 40.17 0.3979 0.6016 0.6248 2.26 66 67

===========================================================

======================================

I/@ P/! Len Seg TP Match[Family]

=== === === === == =============

8 12.3 80 1 +1 1a9n_B[0.0.0.0]

12 18.2 80 1 +1 2a3j_A[0.0.0.0]

======================================

For the same reasons as above, this family was included in the list of ‘true
RRM families’.

RRM 9 (PF18444):

4WPM A:

• SCOP classification: No Entry

• CATH classification: Superfamily 3.30.70.330 (RRM domain)

• PDBeFold: (Secondary structure alignment)

PDB 4wpm:A h H s S H S -

PDB 1a9n:B s H s S H S h

PDB 2a3j:A s H s S H S h

• Kpax:

===========================================================

Rank K-Score G-Score J-Score M-Score T-Score RMSD N/* D/$

==== ======= ======= ======= ======= ======= ==== === ===

1 44.48 51.28 0.5394 0.7186 0.7410 2.09 73 71

2 39.26 48.35 0.4761 0.6901 0.7180 2.23 73 71

===========================================================

=====================================

I/@ P/! Len Seg TP Match[Family]

=== === === === == =============

13 27.8 80 1 +1 1a9n_B[0.0.0.0]

10 13.7 80 1 +1 2a3j_A[0.0.0.0]

=====================================

4WWU A:

• SCOP classification: No Entry

• CATH classification: No classification

• PDBeFold: (Secondary structure alignment)

PDB 4wwu:A S H - S H S -

PDB 1a9n:B S H s S H S h
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PDB 2a3j:A S H s S H S h

• Kpax:

===========================================================

Rank K-Score G-Score J-Score M-Score T-Score RMSD N/* D/$

==== ======= ======= ======= ======= ======= ==== === ===

1 45.89 48.67 0.6089 0.7810 0.7757 1.80 68 68

2 39.70 45.76 0.5268 0.7552 0.7490 1.92 68 67

===========================================================

=====================================

I/@ P/! Len Seg TP Match[Family]

=== === === === == =============

9 13.2 80 1 +1 1a9n_B[0.0.0.0]

10 14.7 80 1 +1 2a3j_A[0.0.0.0]

=====================================

For the same reasons as above, this family was included in the list of ‘true
RRM families’.

Peptidase C48 (PF02902):

2IY1 A:

• SCOP classification∗: TP=1, CL=1000003, CF=2001107,
SF=3001808, FA=4000883

• CATH classification: Superfamily 3.40.395.10 (Adenoviral Proteinase;
Chain A)

• PDBeFold: (Secondary structure alignment)

PDB 2iy1:A h s s h H s h h h S S s h s h h

PDB 1a9n:B - - - s H - - - - S S h s h - -

PDB 2a3j:A - - - s H - - - - S S h s h - -

• Kpax:

============================================================

Rank K-Score G-Score J-Score M-Score T-Score RMSD N/* D/$

==== ======= ======= ======= ======= ======= ==== === ===

1 41.67 21.79 0.3483 0.3217 0.3621 2.91 42 69

2 38.18 20.73 0.3190 0.2966 0.3184 2.59 34 65

============================================================

========================================

I/@ P/! Len Seg TP Match [Family]

=== === === === == ================

3 7.1 80 1 +1 1a9n_B[0.0.0.0]

4 11.8 80 1 +1 2a3j_A[0.0.0.0]

========================================
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(a) 3D model of 2IY1 A from the PDB
(visualised with PyMol)

(b) Secondary structure arrangement in
2IY1 A, the domain part is highlighted
in red.

Figure A.2: The structural visualization of 2IY1 A (464, 642).

2HKP A:

• SCOP classification: TP=1, CL=1000003, CF=2001107,
SF=3001808, FA=4000883

• CATH classification: Superfamily 3.30.310.130 (TATA-Binding
Protein; Ubiquitin-related)

• PDBeFold: (Secondary structure alignment)

PDB 2hkp:A h s s h h s h h h S s s H S h h - -

PDB 1a9n:B - - - - - - - - - S - - H S s h s h

PDB 2a3j:A - - - - - - - - - S - - H S s h s h

• Kpax:

==========================================================

Rank K-Score G-Score J-Score M-Score T-Score RMSD N/* D/$

==== ======= ======= ======= ======= ======= ==== === ===

1 41.76 22.76 0.3550 0.3294 0.3801 3.15 45 67

2 39.83 21.77 0.3386 0.3255 0.3626 2.91 42 64

==========================================================

=======================================

I/@ P/! Len Seg TP Match[Family]

=== === === === === ===============

4 8.9 80 1 +1 2a3j_A[0.0.0.0]

6 14.3 80 1 +1 1a9n_B[0.0.0.0]

=======================================

Both of the above structures don’t have RRM fold (topology). Figure A.2
shows the 3D structure of 2IY1 A and the arrangement of secondary structure,
visualized using ‘PDB Topology Viewer Plugin’. The arrangement secondary
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structural elements is very different in this structure compared to the RRM
domain. In addition, SCOP and CATH classified these structures into non-
RRM families. Finally, the Kpax scores are low, especially the M-Score which
is lower than 0.35. Thus, we include this family into a list of ‘false RRM
families’.

Sugar tr (PF00083):

4LDS A:

• SCOP classification: No Entry

• CATH classification: Superfamily 1.20.1250.20

• PDBeFold: (Secondary structure alignment)

PDB 4lds:A h h H h h h h h h h h h h h h

PDB 1a9n:B - s H s s h s h - - - - - - -

PDB 2a3j:A - s H s s h s h - - - - - - -

• Kpax:

===========================================================

Rank K-Score G-Score J-Score M-Score T-Score RMSD N/* D/$

==== ======= ======= ======= ======= ======= ==== === ===

1 32.08 19.84 0.1752 0.2981 0.3387 2.90 40 72

2 33.21 19.49 0.1814 0.2829 0.3179 3.42 38 80

===========================================================

=====================================

I/@ P/! Len Seg TP Match[Family]

=== === === === == =============

3 7.5 80 1 +1 1a9n_B[0.0.0.0]

4 10.5 80 1 +1 2a3j_A[0.0.0.0]

=====================================

For the same reasons as above, this family was included in the list of ‘false
RRM families’.

RRM Rrp7 (PF17799):

4M5D B:

• SCOP classification: TP=1, CL=1000003, CF=2001463,
SF=3000110, FA=4007617

• CATH classification: Superfamily 3.30.70.330 (RRM domain)

• PDBeFold: (Secondary structure alignment)
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PDB 4m5d:B s s h S h S h S h h

PDB 1a9n:B - - - S h S - S h s

PDB 2a3j:A - - - S h S - S h s

• Kpax:

===========================================================

Rank K-Score G-Score J-Score M-Score T-Score RMSD N/* D/$

==== ======= ======= ======= ======= ======= ==== === ===

1 39.66 37.89 0.3645 0.5529 0.5799 2.38 61 79

2 38.43 36.29 0.3532 0.5353 0.5752 2.58 63 79

===========================================================

=====================================

I/@ P/! Len Seg TP Match[Family]

=== === === === == =============

9 14.8 80 1 +1 1a9n_B[0.0.0.0]

8 12.7 80 1 +1 2a3j_A[0.0.0.0]

=====================================

This structure (4M5D B) does not have a continuous fragment in PDB
(Figure A.3a). Figure A.3b shows the secondary structure arrangement in
the 4M5D B, which is different compared to the RRM fold. The structural
alignment are okay, but these are because of the wrongly aligned secondary
structures. The β2 sheet from 4M5D B is aligned onto the β4 sheet of the
1A9N B and 2A3J A. Lin et al. [2013] identified this N-terminal domain of
4M5D B as a Deviant RRM Domain.
The available structure (4M5D B) from this family does not have the RRM
fold, so this family was included in the list of ‘false RRM families’.

(a) 3D model of 4M5D B from the PDB
(visualised with PyMol)

(b) Secondary structure arrangement in
4M5D B.

Figure A.3: The structural visualization of 4M5D B (8, 173).
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A.3 List of RRM instances having bound and

unbound structures

1. F1LQ48 RRM1

2. F1LQ48 RRM2

3. F1LQ48 RRM3

4. G5ECJ4 RRM1

5. O00425 RRM1

6. O00425 RRM2

7. O43719 RRM2

8. O45189 RRM1

9. O75821 RRM1

10. O95319 RRM3

11. P05455 RRM1

12. P06103 RRM1

13. P07910 RRM1

14. P08199 RRM1

15. P08199 RRM2

16. P08579 RRM1

17. P08621 RRM1

18. P09012 RRM1

19. P09651 RRM1

20. P09651 RRM2

21. P11940 RRM2

22. P19339 RRM1

23. P19339 RRM2

24. P22626 RRM1

25. P23588 RRM1

26. P25299 RRM1

27. P26368 RRM1

28. P26368 RRM2

29. P26599 RRM1

30. P26599 RRM2

31. P26599 RRM3

32. P26599 RRM4

33. P29558 RRM1

34. P31483 RRM2

35. P35637 RRM1

36. P38159 RRM1

37. P38996 RRM1

38. P40565 RRM1

39. P42305 RRM1

40. P43332 RRM1

41. P49960 RRM1

42. P49960 RRM2

43. P49960 RRM3

44. P49960 RRM4

45. P52597 RRM1

46. P52597 RRM2

47. P53617 RRM1

48. P53927 RRM1

49. P62995 RRM1

50. P84103 RRM1

51. Q00916 RRM1

52. Q01130 RRM1

53. Q07955 RRM1

54. Q07955 RRM2

55. Q12046 RRM1

56. Q13148 RRM1

57. Q13148 RRM2

58. Q14103 RRM2

59. Q15717 RRM1

60. Q15717 RRM2

61. Q15717 RRM3

62. Q16630 RRM1

63. Q17RY0 RRM1

64. Q389P7 RRM1

65. Q4G0J3 RRM2

66. Q60900 RRM1

67. Q60900 RRM2

68. Q61474 RRM1

69. Q61474 RRM2

70. Q64368 RRM1

71. Q8I3T5 RRM1

72. Q8IUH3 RRM1

73. Q8IUH3 RRM2

74. Q92879 RRM1

75. Q92879 RRM2

76. Q92879 RRM3

77. Q93062 RRM1

78. Q99181 RRM1

79. Q99181 RRM2

80. Q9BZB8 RRM1

81. Q9H0Z9 RRM1

82. Q9NW64 RRM1

83. Q9NWB1 RRM1

84. Q9UBU9 RRM1

85. Q9UHX1 RRM1

86. Q9UNP9 RRM1

87. Q9Y388 RRM1
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CroMaSt Data

B.1 Average structures at family level

All the cross-mapped structural instances (StIs) are first averaged into domain
instances (UniProt domain) followed by averaging all the domain instances
together, resulting in the average structure at family level (See Methods section).
All these average structures at family level are aligned against the core average
domain structure using Kpax, and based on the alignment score the families are
either added at the beginning of next iteration or discarded. Table B.1 shows the
excerpt from the alignment result file.

The three families failing to pass the given threshold (Mscore < 0.6) are
Ribosomal L23 (PF00276), PPV E2 C (PF00511), and Ribosomal S24e
(PF01282). The average structures for these three families are shown in Figure
B.1. The topology (order of secondary structure elements) for all these structures
are mentioned below -

1. Core average domain - β1 α1 β2 β3 α2 β4

2. Ribosomal L23 (PF00276) - α1 β1 α2 β2 β3

3. PPV E2 C (PF00511) - β1 α1 β2 β3 α2 β4

4. Ribosomal S24e (PF01282) - β1 β2 α1 β3 β4

The topology of ‘core average domain’ for RRM domain and ‘PPV E2 C’ are
similar, thus to confirm we visualized the structural alignment of PPV E2 C with
core average domain (Figure B.2). RNP regions are highlighted (RNP1: Green,
RNP2: Blue) in the sequence alignment (Figure B.2 C.) showing the difference
between these sequences (structures). The sequence from RNP regions of
‘PPV E2 C’ (PF00511 avgStruct core avgStruct.pdb) does not match with the
RNP sequence from core average structure (core avgStruct query.pdb), moreover
‘PPV E2 C’ structure lacks aromatic residues in this region, that can form
stacking interactions with nucleotides.

The structural instances used to compute the averaged structure for PPV E2 C
(PF00511) are listed below. All of these StIs are originally from CATH cross-mapped
to PPV E2 C (PF00511) Pfam family.
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Table B.1: Structural alignment results of averaged StIs at family level against core
average domain structure

Query In Target In Mscore Ncover Naligned RMSD-
aligned
(in Å)

core avgStruct PF13893 avgStruct 0.9313 77 74 0.96
core avgStruct PF11835 avgStruct 0.8604 81 73 1.43
core avgStruct PF16367 avgStruct 0.7995 97 72 1.66
core avgStruct PF04847 avgStruct 0.7979 84 70 1.52
core avgStruct PF05172 avgStruct 0.7875 76 69 1.51
core avgStruct PF16842 avgStruct 0.7852 82 72 1.87
core avgStruct PF11608 avgStruct 0.7845 78 68 1.72
core avgStruct PF03467 avgStruct 0.7758 97 75 1.98
core avgStruct PF08952 avgStruct 0.7620 90 69 1.77
core avgStruct PF03880 avgStruct 0.7555 83 67 1.62
core avgStruct PF08675 avgStruct 0.7262 109 65 1.62
core avgStruct PF17774 avgStruct 0.6756 85 66 1.99
core avgStruct PF09162 avgStruct 0.6526 82 69 2.31
core avgStruct PF08777 avgStruct 0.6186 88 69 2.47
core avgStruct PF00276 avgStruct 0.5557 97 51 1.93
core avgStruct PF00511 avgStruct 0.5362 88 64 2.70
core avgStruct PF01282 avgStruct 0.4440 70 43 1.93

∗The complete file for these alignment results can be found in the Results archive.

1. “3MI7,X,0,3.30.70.330,284,365,domain 1,P03120,284,365”,

2. “2Q79,A,0,3.30.70.330,283,362,domain 1,P03120,285,364”,

3. “1BY9,A,0,3.30.70.330,283,362,domain 1,P03120,285,364”,

4. “1R8P,A,0,3.30.70.330,1,81,domain 1,P03120,286,365”,

5. “1R8P,B,0,3.30.70.330,1,81,domain 1,P03120,286,365”,

6. “1ZZF,A,0,3.30.70.330,1,81,domain 1,P03120,286,365”,

7. “1ZZF,B,0,3.30.70.330,1,81,domain 1,P03120,286,365”,

8. “1DBD,A,0,3.30.70.330,1,100,domain 1,P03122,311,410”,

9. “1DBD,B,0,3.30.70.330,1,100,domain 1,P03122,311,410”,

10. “6BUS,3,0,3.30.70.330,316,410,domain 1,P03122,316,410”,

11. “6BUS,1,0,3.30.70.330,319,410,domain 1,P03122,319,410”,

12. “6BUS,2,0,3.30.70.330,319,410,domain 1,P03122,319,410”,

13. “6BUS,4,0,3.30.70.330,319,410,domain 1,P03122,319,410”,

14. “2BOP,A,0,3.30.70.330,326,410,domain 1,P03122,326,410”,

15. “1JJH,B,0,3.30.70.330,325,410,domain 1,P03122,326,410”,
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Figure B.1: A) Core average domain structure B) Average structure at family level
for Ribosomal L23 (PF00276) Pfam family C) Average structure at family level
for PPV E2 C (PF00511) Pfam family D) Average structure at family level for
Ribosomal S24e (PF01282) Pfam family.

16. “1JJH,A,0,3.30.70.330,325,410,domain 1,P03122,326,410”,

17. “1JJH,C,0,3.30.70.330,326,410,domain 1,P03122,326,410”,

18. “1JJ4,B,0,3.30.70.330,285,364,domain 1,P06790,286,364”,

19. “1JJ4,A,0,3.30.70.330,286,364,domain 1,P06790,286,364”,

20. “1F9F,D,0,3.30.70.330,284,365,domain 1,P06790,287,365”,

21. “1F9F,B,0,3.30.70.330,284,365,domain 1,P06790,287,365”,

22. “1F9F,A,0,3.30.70.330,285,365,domain 1,P06790,287,365”,

23. “1F9F,C,0,3.30.70.330,284,365,domain 1,P06790,287,365”,

24. “1A7G,E,0,3.30.70.330,291,372,domain 1,P17383,291,372”,

25. “1DHM,A,0,3.30.70.330,1,83,domain 1,P17383,291,372”,

26. “1DHM,B,0,3.30.70.330,1,83,domain 1,P17383,291,372”,

27. “1R8H,A,0,3.30.70.330,281,366,domain 1,Q84294,282,368”,

28. “1R8H,B,0,3.30.70.330,281,366,domain 1,Q84294,282,368”,

29. “1R8H,D,0,3.30.70.330,281,366,domain 1,Q84294,282,368”,

30. “1R8H,E,0,3.30.70.330,281,366,domain 1,Q84294,282,368”,
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Figure B.2: Alignment of PPV E2 C (PF00511) against Core average domain
A,B) Two different views for the structural alignment C) Fasta alignment resulted
from structural alignment; Blue highlighted region represents RNP2 and Green
highlighted region represents RNP1.

31. “1R8H,C,0,3.30.70.330,281,366,domain 1,Q84294,282,368”,

32. “1R8H,F,0,3.30.70.330,281,366,domain 1,Q84294,282,368”,

33. “2AYE,B,0,3.30.70.330,281,366,domain 1,Q84294,282,368”,

34. “2AYE,C,0,3.30.70.330,281,366,domain 1,Q84294,282,368”,

35. “2AYE,D,0,3.30.70.330,281,366,domain 1,Q84294,282,368”,

36. “2AYE,E,0,3.30.70.330,281,366,domain 1,Q84294,282,368”,

37. “2AYG,A,0,3.30.70.330,281,366,domain 1,Q84294,282,368”,

38. “2AYG,B,0,3.30.70.330,281,366,domain 1,Q84294,282,368”,

39. “2AYB,A,0,3.30.70.330,281,366,domain 1,Q84294,282,368”,

40. “2AYB,B,0,3.30.70.330,281,366,domain 1,Q84294,282,368”,

41. “2AYE,A,0,3.30.70.330,282,366,domain 1,Q84294,283,368”,

42. “2AYE,F,0,3.30.70.330,282,366,domain 1,Q84294,283,368”

All the StIs used to compute the average structure at family level can be found in
the Results archive.
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B.2 Comparison of CroMaSt results with

structure-based domain databases

CroMaSt uses the cross-mapping approach for individual StI between Pfam and
CATH. Although the results from CroMaSt covers both sequential (from Pfam)
and structural (from CATH) features, we wanted to compare the results with other
structure-based classifications, i.e., ECOD and SCOP. This comparison can be
done at different levels (family and instance-level), but it is an extensive and
time-consuming procedure. Thus, we randomly selected a StI from each Pfam
family (with at least 1 StI in list of true domain StIs) and cross-mapped these StIs
to families in ECOD and SCOP. Table B.2 shows StIs from Pfam and the
cross-mapped families in ECOD and SCOP, respectively.

SCOP does not have a family exclusively named as ‘RRM‘ or ‘RNA Recognition
Motif’, but the ‘Canonical RBD’ family of SCOP can be cross-referenced to the
‘PF00076’ (RRM 1) of Pfam. The ‘Canonical RBD’ family classifies under the
superfamily ‘RNA-binding domain, RBD’ in SCOP. All of the SCOP families from
Table B.2 are classified under the superfamily ‘RNA-binding domain, RBD’.
In ECOD, the family (F) level classification for domains is primarily based on Pfam,
domains having significant sequence similarity. Thus, the family naming convention
is similar to the Pfam. All the ECOD families from Table B.2 are classified under
the same topology (T) - ‘RNA-binding domain, RBD’.
In CATH, all these StIs from Table B.2 are from superfamily 3.30.70.330 (RRM
domain).

Table B.2 contains only StIs from the list of true domain StIs from CroMaSt. Three
of these StIs [2E5I A (208, 293), 2AD9 A (49, 146), 2FPH X (82, 166)], do not have
any classification in the SCOP database. The classification for other StIs in SCOP
and all the StIs in ECOD, is in good agreement with CroMast results (Pfam and
CATH).

B.3 RRM clan in Pfam

The RRM clan from Pfam contains families that are related to the RNA recognition
motif domains and are thought to be evolutionarily related. This clan contains 33
families and the total number of domains in the clan is 433471. Table B.3 lists all
the families from RRM clan.

B.4 Starting CroMaSt with different Pfam

family

We also started CroMaSt with different family to check the effect of starting
families on the results. Table B.4 shows the summarized results when the
CroMaSt was started with RRM 5 (PF13893) Pfam family and 3.30.70.330 (RRM
(RNA Recognition Motif) domain) CATH superfamily.
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Table B.2: Cross-mapping of representative structures from Pfam families to ECOD
and SCOP databases

Pfam Family
Name (Family
Ids)

Representative StI Family in ECOD Family in SCOP

RRM 1 (PF00076) 1B7F A (127, 197) RRM 1 2 (EF21352) Canonical RBD
Smg4 UPF3
(PF03467)

1UW4 A (50, 140) Smg4 UPF3
(EF12679)

Smg-4/UPF3-like

DbpA (PF03880) 2G0C A (405, 476) DbpA (EF02236) DbpA RNA-binding
domain-like

Calcipressin
(PF04847)

1WEY A (15, 98) Calcipressin
(EF01259)

Canonical RBD

Nup35 RRM
(PF05172)

3P3D A (266, 363) Nup35 RRM
(EF10021)

Canonical RBD

RNA bind
(PF08675)

3CTR A (445, 514) RNA bind
(EF12083)

Canonical RBD

RRM 3 (PF08777) 1OWX A (231, 334) RRM 3 (EF12206) Canonical RBD
DUF1866 (PF08952) 2DNR A (893, 970) DUF1866 (EF03296) Canonical RBD
Tap-RNA bind
(PF09162)

1FO1 A (123, 191) Tap-RNA bind
(EF13157)

Non-canonical RBD
domain∗

MARF1 RRM1
(PF11608)

2DIU A (8, 90) Limkain-b1
(EF08767)

Limkain b1 domain-
like

RRM 8 (PF11835) 2E5I A (208, 293) RRM 1 6 (EF24069) No results
RRM 5 (PF13893) 2AD9 A (49, 146) RRM 1 6 (EF24069) No results
RRM 7 (PF16367) 2DNL A (426, 515) RRM 1 3 (EF21353) Canonical RBD
RRM occluded
(PF16842)

2L9W A (311, 393) RRM occluded
(EF20754)

Occluded RRM-like∗

YlmH RBD
(PF17774)

2FPH X (82, 166) YlmH 2nd
(EF14865)

No results

∗No SCOP2 classification is available for given PDB ID explicitly.
Note: Representative StIs are randomly chosen from the list of true domains for
each of the listed Pfam family.
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Table B.3: All the Pfam families from RRM clan

Sr. No. Family Ids Family Name Explored by CroMaSt?
1 PF00076 RRM 1 NA∗

2 PF02994 Transposase 22 No
3 PF03467 Smg4 UPF3 No
4 PF03468 XS No
5 PF03880 DbpA Yes
6 PF04059 RRM 2 No
7 PF04847 Calcipressin Yes
8 PF05172 Nup35 RRM No
9 PF07576 BRAP2 No
10 PF08152 GUCT No
11 PF08489 DUF1743 No
12 PF08675 RNA bind Yes
13 PF08777 RRM 3 Yes
14 PF08952 DUF1866 Yes
15 PF09162 Tap-RNA bind Yes
16 PF11608 MARF1 RRM1 Yes
17 PF11767 SET assoc No
18 PF11835 RRM 8 Yes
29 PF12220 U1snRNP70 N No
20 PF13893 RRM 5 Yes
21 PF14605 Nup35 RRM 2 No
22 PF14703 PHM7 cyt No
23 PF15023 DUF4523 No
24 PF15407 Spo7 2 N No
25 PF16367 RRM 7 Yes
26 PF16842 RRM occluded Yes
27 PF17774 YlmH RBD Yes
28 PF17799 RRM Rrp7 No
29 PF17797 RL No
30 PF18440 GlcNAc-1 reg No
31 PF18444 RRM 9 No
32 PF18528 Ret2 MD No
33 PF19977 xRRM No

∗Starting Pfam family for CroMaSt workflow
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Table B.4: Results from each step of CroMaSt, starting with Pfam family - RRM 5
(PF13893) and CATH superfamily - 3.30.70.330 (RRM (RNA Recognition Motif)
domain)

Steps
Iteration 1 Iteration 2

Pfam CATH Pfam CATH
Starting Families 1 1 11 0
StI filtered on domain length 39 1527 1194 926∗

Obsolete and inconsistent entries 0 323 3 0
Residue-mapped StIs 39 1204 1191 -
Common StIs (Core & True) 36 36 926 926
Remaining StIs (not common) 3 1168 265 0
Cross-mapped StIs 0 1094 0 0
Properly aligned at family level - 926 - -
Not properly aligned at family level - 168 - -
Not cross-mapped StIs (unmapped) 3 74 265 0
Properly aligned at instance level
(Domain-like)

3 67 257 -

Not properly aligned at instance level 0 7 8 -
Failed structures 0 175 8 0
New families found 11 0 0 0

∗These StI entries are cross-mapped and properly aligned at the family level from
the previous iteration.

154



B.5. List of obsolete and inconsistent structural instances

B.5 List of obsolete and inconsistent structural

instances

There are a total of 326 StIs from Pfam and CATH considered as obsolete and
inconsistent entries by CroMaSt. Below is the complete list of all these 326 StIs:
First 10 are inconsistent entries and rest are obsolete entries (in Protein Data
Bank). First 3 are from Pfam and rest are from CATH.

Format of these structural instance entries differ slightly for Pfam and CATH.

• Pfam inconsistent and obsolete entries:
“PDB id,Chain,Fam name,Fam id,UNP id,UNP start,UNP end”

• CATH inconsistent entries:
“ PDB id,Chain,Domain position,Fam id,PDB start,PDB end”

• CATH obsolete entries:
“ PDB idChainDomain position,Fam id,PDB start,PDB end”

B.5.1 Inconsistent structural instances

1. “6DG0,B,RRM 1,PF00076,Q22039,230,294”,

2. “6DG0,A,RRM 1,PF00076,Q22039,230,294”,

3. “6PAI,D,RRM 1,PF00076,Q7Z3L0,95,165”,

4. “2KU7,A,00,3.30.70.330,1,140”,

5. “3DXB,F,02,3.30.70.330,452,556”,

6. “3DXB,G,02,3.30.70.330,452,556”,

7. “3DXB,D,02,3.30.70.330,452,556”,

8. “3DXB,B,02,3.30.70.330,452,556”,

9. “3DXB,A,02,3.30.70.330,452,556”,

10. “4V19,X,00,3.30.70.330,2,150”

The list of 316 Obsolete structural instances can be found here in a file at
https://github.com/HrishiDhondge/Data files.
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B.5.2 Inconsistencies in Pfam and CATH

Inconsistencies in and between domain databases regarding RRM domain families
appear with very simple searches. Inconsistencies are at the level of the databases,
inside a database (ex : RRM families outside the RRM clan) and between
databases (16 Pfam families versus 2 CATH superfamilies). Firstly, there are 16
Pfam families with RRM in their name: MARF1 RRM1 (PF11608), Nup35 RRM
(PF05172), Nup35 RRM 2 (PF14605), RRM (PF10378), RRM 1 (PF00076),
RRM 2 (PF04059), RRM 3 (PF08777), RRM 4 (PF10598), RRM 5 (PF13893),
RRM 7 (PF16367), RRM 8 (PF11835), RRM 9 (PF18444), RRM DME
(PF15628), RRM occluded (PF16842), RRM Rrp7 (PF17799), xRRM (PF19977).
In addition, Pfam also has an RRM clan (CL0221) with a total of 33 Pfam families
including only 13 of the above-mentioned families with RRM in their name (See
suppl Table S3). In particular, the RRM clan does not include RRM (PF10378),
RRM 4 (PF10598) and RRM DME (PF15628). These 3 Pfam families do not
belong to any clan in Pfam.

In CATH, 2 superfamilies have RRM keyword in their name: 3.30.70.330 RRM
(RNA recognition motif) domain, 3.30.70.1820 L1 transposable element, RRM
domain. When the CATH database was searched using keyword ‘RRM’, several
matching CATH domains were retrieved apart from these two CATH
superfamilies. Some of those hits are as follows: 3m4xA01 from Superfamily
3.30.70.31301, 3m4xA02 from Superfamily 3.40.50.150, 3m4xA03 from Superfamily
2.30.130.60, 3dxbA01 from Superfamily 3.40.30.10.

B.5.3 Demonstration of Residue-mapping

Let’s try to understand residue-mapping for one StI and why it takes more time:
We have a CATH StI retrieved directly from CATH release files:
‘1WF2,A,0,3.30.70.330,1,98’ in the format of ‘PDB id, Chain id,
Domain order number, Family id, PDB start, PDB end.

Before trying to find this StI in Pfam, we need the corresponding residue positions
from UniProt. Thus, we will use SIFTS resource to find the start and end residue
positions of this StI in UniProt.
At first, we start by trying to find the 1st and 98th residues from ‘A’ chain of ‘1WF2’
structure in ‘1wf2.xml’ file downloaded from SIFTS.

Figure B.3: Snapshot of SIFTS file for 1st residue from ‘1WF2’ PDB structure with
‘A’ chain.

1merged with 3.30.70.1170: Sun protein; domain 3
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The SIFTS file (‘1wf2.xml’) don’t have UniProt entry information for this residue
and PDBe annotation states that this residue is part of ‘cloning artifact’
(Figure B.3). This suggests this residue is not the part of actual protein and rather
an artifact in this experiment. We encounter the same issue with the end residue
(98) of this StI. Thus, we increment the starting residue position by 1 and
decrement the end residue position by 1. We repeat this until we find the
corresponding residue positions from UniProt.
At the end, we find the corresponding positions from UniProt resulting in
residue-mapped StI ready for cross-mapping with Pfam StIs. Below is the residue
mapped StI: ‘1WF2,A,0,3.30.70.330,1,98,P07910,8,92’ in the format of
‘PDB id, Chain id, Domain order number, Family id, PDB start, PDB end,
UniProt id, UniProt start, UniProt end’.
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Appendix C

Binding Free Energy
Computations

C.1 D42A point mutation

The Asp42 resides on β2 of RRM domain (see Figure 5.15). Figure C.1 shows the
overall free energy profile for D42A mutation in unbound and bound form of SRSF2
RRM domain.

The total free energy change (∆G3) of D42A mutation in unbound form of SRSF2
RRM is 132.47 kcal mol−1 with a total error of 0.194 kcal mol−1. Whereas, in the
bound form the free energy change (∆G4) for D42A point mutation is
133.95 kcal mol−1 with a total error of 0.196 kcal mol−1.

Figure C.2 and Figure C.3 show the time evolution of free energy differences for
each of the λ window and the probability distribution plots (for backward and
forward transformations) for unbound and bound form of SRSF2 RRM domain,
respectively.

To compute the relative binding free energy for D42A point mutation we will use
the equation ∆∆G = ∆G4 − ∆G3 (see Figure 5.16).

∆∆G = (133.95 ± 0.196 kcal mol−1) − (132.47 ± 0.194 kcal mol−1)

= (133.95 − 132.47) ± (
√

0.1962 + 0.1942)kcal mol−1

= 1.48 ± 0.276 kcal mol−1

The relative binding free energy for D42A point mutation in SRSF2 RRM-RNA
complex is 1.48 ± 0.276 kcal mol−1.
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(a) Free energy change for Asp42 to Ala mutation in SRSF2 RRM domain (unbound form)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

l

0.0

50.0

100.0

150.0

200.0

D
G

 (
kc

a
l/m

o
l)

ParseFEP: Summary 

(b) Free energy change for Asp42 to Ala mutation in SRSF2 RRM domain (bound form)

Figure C.1: Free energy change for Aspartate (position 42) to Alanine mutation in
SRSF2 RRM domain. Black line indicates the forward transformation, i.e., from
Asp to Ala and red line indicates the backward transformation from Ala to Asp.
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(a) Time evolution of free energy differences for each λ window
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(b) Probability distribution plots for backward and forward transformations

Figure C.2: Output plots from the soft-core potenial calculation, of ∆G, and P0[∆U]
and P1[∆U] generated by ParseFEP for alchemical transformation of D42A in SRSF2
RRM (unbound). Each subplot corresponds to a λ sampling window.
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(a) Time evolution of free energy differences for each λ window
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(b) Probability distribution plots for backward and forward transformations

Figure C.3: Output plots from the soft-core potenial calculation, of ∆G, and P0[∆U]
and P1[∆U] generated by ParseFEP for alchemical transformation of D42A in SRSF2
RRM (bound form). Each subplot corresponds to a λ sampling window.
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C.2 D48A point mutation

The Asp48 resides in loop3 of RRM domain (see Figure 5.15). Figure C.4 shows
the overall free energy profile for D48A mutation in unbound and bound form of
SRSF2 RRM domain.
The total free energy change (∆G3) of D48A mutation in unbound form of SRSF2
RRM is 133.36 kcal mol−1 with a total error of 0.342 kcal mol−1. Whereas, in the
bound form the free energy change (∆G4) for D42A point mutation is
131.94 kcal mol−1 with a total error of 0.480 kcal mol−1.
Figure C.5 and Figure C.6 show the time evolution of free energy differences for
each of the λ window and the probability distribution plots (for backward and
forward transformations) for unbound and bound form of SRSF2 RRM domain,
respectively.

To compute the relative binding free energy for D42A point mutation we will use
the equation ∆∆G = ∆G4 − ∆G3 (see Figure 5.16).

∆∆G = (131.94 ± 0.480 kcal mol−1) − (133.36 ± 0.342 kcal mol−1)

= (131.94 − 133.36) ± (
√

0.4802 + 0.3422)kcal mol−1

= −1.42 ± 0.589 kcal mol−1

The relative binding free energy for D42A point mutation in SRSF2 RRM-RNA
complex is −1.42 ± 0.589 kcal mol−1.
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(a) Free energy change for Asp48 to Ala mutation in SRSF2 RRM domain (unbound form)
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(b) Free energy change for Asp48 to Ala mutation in SRSF2 RRM domain (bound form)

Figure C.4: Free energy change for Aspartate (position 48) to Alanine mutation in
SRSF2 RRM domain. Black line indicates the forward transformation, i.e., from
Asp to Ala and red line indicates the backward transformation from Ala to Asp.
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(a) Time evolution of free energy differences for each λ window
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(b) Probability distribution plots for backward and forward transformations

Figure C.5: Output plots from the soft-core potenial calculation, of ∆G, and P0[∆U]
and P1[∆U] generated by ParseFEP for alchemical transformation of D48A in SRSF2
RRM (unbound form). Each subplot corresponds to a λ sampling window.
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(a) Time evolution of free energy differences for each λ window
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(b) Probability distribution plots for backward and forward transformations

Figure C.6: Output plots from the soft-core potenial calculation, of ∆G, and P0[∆U]
and P1[∆U] generated by ParseFEP for alchemical transformation of D48A in SRSF2
RRM (bound form). Each subplot corresponds to a λ sampling window.
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C.3 S54A point mutation

The Ser54 resides in loop3 of RRM domain (see Figure 5.15). Figure C.7 shows
the overall free energy profile for S54A mutation in unbound and bound form of
SRSF2 RRM domain.
The total free energy change (∆G3) of S54A mutation in unbound form of SRSF2
RRM is −2.457 kcal mol−1 with a total error of 0.064 kcal mol−1. Whereas, in the
bound form the free energy change (∆G4) for S54A point mutation is
−1.135 kcal mol−1 with a total error of 0.075 kcal mol−1.
Figure C.8 and Figure C.9 show the time evolution of free energy differences for
each of the λ window and the probability distribution plots (for backward and
forward transformations) for unbound and bound form of SRSF2 RRM domain,
respectively.

To compute the relative binding free energy for S54A point mutation we will use
the equation ∆∆G = ∆G4 − ∆G3 (see Figure 5.16).

∆∆G = (−1.135 ± 0.075 kcal mol−1) − (−2.457 ± 0.064 kcal mol−1)

= (−1.135 − (−2.457)) ± (
√

0.0752 + 0.0642)kcal mol−1

= 1.322 ± 0.099 kcal mol−1

The relative binding free energy for S54A point mutation in SRSF2 RRM-RNA
complex is 1.322 ± 0.099 kcal mol−1.
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(a) Free energy change for Ser54 to Ala mutation in SRSF2 RRM domain (unbound form)
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(b) Free energy change for Ser54 to Ala mutation in SRSF2 RRM domain (bound form)

Figure C.7: Free energy change for Serine (position 54) to Alanine mutation in
SRSF2 RRM domain. Black line indicates the forward transformation, i.e., from
Ser to Ala and red line indicates the backward transformation from Ala to Ser.
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(a) Time evolution of free energy differences for each λ window
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(b) Probability distribution plots for backward and forward transformations

Figure C.8: Output plots from the soft-core potenial calculation, of ∆G, and P0[∆U]
and P1[∆U] generated by ParseFEP for alchemical transformation of S54A in SRSF2
RRM (unbound form). Each subplot corresponds to a λ sampling window.
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(a) Time evolution of free energy differences for each λ window
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(b) Probability distribution plots for backward and forward transformations

Figure C.9: Output plots from the soft-core potenial calculation, of ∆G, and P0[∆U]
and P1[∆U] generated by ParseFEP for alchemical transformation of S54A in SRSF2
RRM (bound form). Each subplot corresponds to a λ sampling window.
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C.4 F59A point mutation

The Phe59 resides in β3 of RRM domain (see Figure 5.15). Figure C.10 shows the
overall free energy profile for F59A mutation in unbound and bound form of
SRSF2 RRM domain.
Figure C.11 and Figure C.12 show the time evolution of free energy differences for
each of the λ window and the probability distribution plots (for backward and
forward transformations) for unbound and bound form of SRSF2 RRM domain,
respectively.
The total free energy change (∆G3) of F59A mutation in unbound form of SRSF2
RRM is −5.42 kcal mol−1 with a total error of 0.132 kcal mol−1. Whereas, in the
bound form the free energy change (∆G4) for F59A point mutation is
−1.34 kcal mol−1 with a total error of 0.158 kcal mol−1.
To compute the relative binding free energy for F59A point mutation we will use
the equation ∆∆G = ∆G4 − ∆G3 (see Figure 5.16).

∆∆G = (−1.34 ± 0.158 kcal mol−1) − (−5.42 ± 0.132 kcal mol−1)

= (−1.34 − (−5.42)) ± (
√

0.1582 + 0.1322)kcal mol−1

= 4.08 ± 0.206 kcal mol−1

The relative binding free energy for D42A point mutation in SRSF2 RRM-RNA
complex is 4.08 ± 0.206 kcal mol−1.
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(a) Free energy change for Phe59 to Ala mutation in SRSF2 RRM domain (unbound form)
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(b) Free energy change for Phe59 to Ala mutation in SRSF2 RRM domain (bound form)

Figure C.10: Free energy change for Arginine (position 61) to Alanine mutation in
SRSF2 RRM domain. Black line indicates the forward transformation, i.e., from
Arg to Ala and red line indicates the backward transformation from Ala to Arg.

171



Chapter C. Binding Free Energy Computations

-3.40

-3.20

-3.00

-2.80

-2.60

-4.00

-3.50

-3.00

-2.50

-2.00

-2.00

-1.80

-1.60

-1.40

-1.20

-1.00

-2.00
-1.80
-1.60
-1.40
-1.20
-1.00
-0.80

-2.00

-1.50

-1.00

-0.50

0.00

-0.70
-0.60
-0.50
-0.40
-0.30
-0.20
-0.10
0.00

-0.60

-0.50

-0.40

-0.30

-0.20

-0.10

0.00

-0.50
-0.40
-0.30
-0.20
-0.10
0.00
0.10

0.00

0.50

1.00

1.50

2.00

0.60
0.80
1.00
1.20
1.40
1.60
1.80
2.00

0.80
1.00
1.20
1.40
1.60
1.80
2.00

0.50

1.00

1.50

2.00

0 4e+05 8e+05
0.00

0.50

1.00

1.50

2.00

0 4e+05 8e+05

 MD step

0.50

1.00

1.50

2.00

0 4e+05 8e+05

0.00

0.50

1.00

1.50

2.00

0 4e+05 8e+05
-3.00

-2.00

-1.00

0.00

1.00

2.00

ParseFEP: Free energy sheet 1 
l= 1.0000 to   0.9375 l= 0.9375 to   0.8750 l= 0.8750 to   0.8125 l= 0.8125 to   0.7500 

l= 0.7500 to   0.6875 l= 0.6875 to   0.6250 l= 0.6250 to   0.5625 l= 0.5625 to   0.5000 

l= 0.5000 to   0.4375 l= 0.4375 to   0.3750 l= 0.3750 to   0.3125 l= 0.3125 to   0.2500 

l= 0.2500 to   0.1875 l= 0.1875 to   0.1250 l= 0.1250 to   0.0625 l= 0.0625 to   0.0000 

Δ
G f

wd
,Δ

G r
ev

 (k
ca

l/m
ol)

 

(a) Time evolution of free energy differences for each λ window
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(b) Probability distribution plots for backward and forward transformations

Figure C.11: Output plots from the soft-core potenial calculation, of ∆G, and
P0[∆U] and P1[∆U] generated by ParseFEP for alchemical transformation of F59A
in SRSF2 RRM (unbound form). Each subplot corresponds to a λ sampling window.
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(a) Time evolution of free energy differences for each λ window
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(b) Probability distribution plots for backward and forward transformations

Figure C.12: Output plots from the soft-core potenial calculation, of ∆G, and
P0[∆U] and P1[∆U] generated by ParseFEP for alchemical transformation of F59A
in SRSF2 RRM (bound form). Each subplot corresponds to a λ sampling window.
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Chapter C. Binding Free Energy Computations

C.5 Q88A point mutation

The Gln88 resides in β4 of RRM domain (see Figure 5.15). Figure C.13 shows the
overall free energy profile for Q88A mutation in unbound and bound form of
SRSF2 RRM domain.
The total free energy change (∆G3) of Q88A mutation in unbound form of SRSF2
RRM is 56.528 kcal mol−1 with a total error of 0.0847 kcal mol−1. Whereas, in the
bound form the free energy change (∆G4) for Q88A point mutation is
56.730 kcal mol−1 with a total error of 0.0800 kcal mol−1.
Figure C.14 and Figure C.15 show the time evolution of free energy differences for
each of the λ window and the probability distribution plots (for backward and
forward transformations) for unbound and bound form of SRSF2 RRM domain,
respectively.

To compute the relative binding free energy for Q88A point mutation we will use
the equation ∆∆G = ∆G4 − ∆G3 (see Figure 5.16).

∆∆G = (56.730 ± 0.080 kcal mol−1) − (56.528 ± 0.084 kcal mol−1)

= (56.730 − 56.528) ± (
√

0.0802 + 0.0842)kcal mol−1

= 0.202 ± 0.116 kcal mol−1

The relative binding free energy for Q88A point mutation in SRSF2 RRM-RNA
complex is 0.202 ± 0.116 kcal mol−1.
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(a) Free energy change for Gln88 to Ala mutation in SRSF2 RRM domain (unbound form)
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(b) Free energy change for Gln88 to Ala mutation in SRSF2 RRM domain (bound form)

Figure C.13: Free energy change for Arginine (position 61) to Alanine mutation in
SRSF2 RRM domain. Black line indicates the forward transformation, i.e., from
Gln to Ala and red line indicates the backward transformation from Ala to Gln.
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(a) Time evolution of free energy differences for each λ window
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(b) Probability distribution plots for backward and forward transformations

Figure C.14: Output plots from the soft-core potenial calculation, of ∆G, and
P0[∆U] and P1[∆U] generated by ParseFEP for alchemical transformation of Q88A
in SRSF2 RRM (unbound form). Each subplot corresponds to a λ sampling window.
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(a) Time evolution of free energy differences for each λ window

3 4 5 6 7 8 9 10
0.00

0.20

0.40

0.60

3 4 5 6 7 8 9 10
0.00

0.20

0.40

0.60

3 4 5 6 7 8 9 10
0.00

0.20

0.40

0.60

0.80

3 4 5 6 7 8 9 10
0.00

0.20

0.40

0.60

3 4 5 6 7 8 9 10
0.00

0.20

0.40

0.60

0.80

3 4 5 6 7 8 9 10
0.00

0.20

0.40

0.60

0.80

3 4 5 6 7 8 9 10
0.00

0.20

0.40

0.60

2 4 6 8 10
0.00

0.20

0.40

0.60

0.80

-2 -1 0 1 2
0.00

0.50

1.00

1.50

2.00

-3 -2 -1 0 1 2 3
0.00

0.50

1.00

1.50

2.00

-2 -1 0 1 2 3
0.00

0.50

1.00

1.50

2.00

-2 -1 0 1 2 3 4
0.00

0.50

1.00

1.50

2.00

-3 -2 -1 0 1 2 3 4
0.00

0.50

1.00

1.50

2.00

-3 -2 -1 0 1 2 3 4

DU (kcal/mol)

0.00

0.50

1.00

1.50

2.00

-4 -2 0 2 4
0.00

0.50

1.00

1.50

2.00

-50 -40 -30 -20 -10 0
0.00

0.20

0.40

0.60

0.80

ParseFEP: Probability distribution sheet 1 

P f
wd

 (Δ
U)

, P
re

v (
Δ

U)
 

(b) Probability distribution plots for backward and forward transformations

Figure C.15: Output plots from the soft-core potenial calculation, of ∆G, and
P0[∆U] and P1[∆U] generated by ParseFEP for alchemical transformation of Q88A
in SRSF2 RRM (bound form). Each subplot corresponds to a λ sampling window.
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A. Cléry and F. Allain. From structure to function of rna binding domains. RNA
binding proteins, pages 137–58, 2012.

A. V. Colasanti, X.-J. Lu, and W. K. Olson. Analyzing and building nucleic acid
structures with 3dna. Journal of visualized experiments: JoVE, (74), 2013.

I. Coluzza. Computational protein design: a review. Journal of Physics: Condensed
Matter, 29(14):143001, 2017.

T. M. Connolly and C. E. Begg. Database systems: a practical approach to design,
implementation, and management. Pearson Education, 2005.

Z. Cournia, B. K. Allen, T. Beuming, D. A. Pearlman, B. K. Radak, and
W. Sherman. Rigorous free energy simulations in virtual screening. Journal of
chemical information and modeling, 60(9):4153–4169, 2020.

F. Cozzolino, I. Iacobucci, V. Monaco, and M. Monti. Protein–dna/rna interactions:

180



BIBLIOGRAPHY

an overview of investigation methods in the-omics era. Journal of Proteome
Research, 20(6):3018–3030, 2021.

F. H. Crick. The origin of the genetic code. Journal of molecular biology, 38(3):
367–379, 1968.

G. E. Crooks, G. Hon, J.-M. Chandonia, and S. E. Brenner. Weblogo: a sequence
logo generator. Genome research, 14(6):1188–1190, 2004.

M. R. Crusoe, S. Abeln, A. Iosup, P. Amstutz, J. Chilton, N. Tijanić, H. Ménager,
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G. M. Daubner, A. Cléry, S. Jayne, J. Stevenin, and F. H.-T. Allain. A syn–anti
conformational difference allows srsf2 to recognize guanines and cytosines equally
well. The EMBO journal, 31(1):162–174, 2012.

K. Daze and F. Hof. Molecular interaction and recognition. Encyclopedia of physical
organic chemistry, pages 1–51, 2016.

I. C. de Beauchene, S. J. de Vries, and M. Zacharias. Fragment-based modelling of
single stranded rna bound to rna recognition motif containing proteins. Nucleic
acids research, 44(10):4565–4580, 2016.

D. A. Dixon, G. C. Balch, N. Kedersha, P. Anderson, G. A. Zimmerman, R. D.
Beauchamp, and S. M. Prescott. Regulation of cyclooxygenase-2 expression by
the translational silencer tia-1. The Journal of experimental medicine, 198(3):
475–481, 2003.

A. Doller, K. Schlepckow, H. Schwalbe, J. Pfeilschifter, and W. Eberhardt. Tandem
phosphorylation of serines 221 and 318 by protein kinase cδ coordinates mrna
binding and nucleocytoplasmic shuttling of hur. Molecular and cellular biology,
30(6):1397–1410, 2010.

D. A. Dougherty. The cation- π interaction. Accounts of chemical research, 46(4):
885–893, 2013.

X. Du, Y. Li, Y.-L. Xia, S.-M. Ai, J. Liang, P. Sang, X.-L. Ji, and S.-Q. Liu. Insights
into protein–ligand interactions: mechanisms, models, and methods. International
journal of molecular sciences, 17(2):144, 2016.

R. C. Edgar. Muscle: multiple sequence alignment with high accuracy and high
throughput. Nucleic acids research, 32(5):1792–1797, 2004.

R. Evans, M. O’Neill, A. Pritzel, N. Antropova, A. Senior, T. Green, A. Ž́ıdek,
R. Bates, S. Blackwell, J. Yim, et al. Protein complex prediction with alphafold-
multimer. BioRxiv, pages 2021–10, 2021.

181



BIBLIOGRAPHY

M. Feng, G. Heinzelmann, and M. K. Gilson. Absolute binding free energy
calculations improve enrichment of actives in virtual compound screening.
Scientific Reports, 12(1):13640, 2022.

R. D. Finn, A. Bateman, J. Clements, P. Coggill, R. Y. Eberhardt, S. R. Eddy,
A. Heger, K. Hetherington, L. Holm, J. Mistry, et al. Pfam: the protein families
database. Nucleic acids research, 42(D1):D222–D230, 2014.

S. Forli, R. Huey, M. E. Pique, M. F. Sanner, D. S. Goodsell, and A. J.
Olson. Computational protein–ligand docking and virtual drug screening with
the autodock suite. Nature protocols, 11(5):905–919, 2016.

K. Forslund and E. L. Sonnhammer. Evolution of protein domain architectures.
Evolutionary Genomics: Statistical and Computational Methods, Volume 2, pages
187–216, 2012.

P. E. Fournier, H. Richet, and R. A. Weinstein. The epidemiology and control of
acinetobacter baumannii in health care facilities. Clinical infectious diseases, 42
(5):692–699, 2006.

R. G. Fox, N. K. Lytle, D. V. Jaquish, F. D. Park, T. Ito, J. Bajaj, C. S. Koechlein,
B. Zimdahl, M. Yano, J. L. Kopp, et al. Image-based detection and targeting
of therapy resistance in pancreatic adenocarcinoma. Nature, 534(7607):407–411,
2016.

V. Gapsys and B. L. de Groot. Alchemical free energy calculations for
nucleotide mutations in protein–dna complexes. Journal of Chemical Theory and
Computation, 13(12):6275–6289, 2017.

J. Garnier, J.-F. Gibrat, and B. Robson. [32] gor method for predicting protein
secondary structure from amino acid sequence. In Methods in enzymology, volume
266, pages 540–553. Elsevier, 1996.
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a web server to model multiple loops in homology models. Nucleic Acids Research,
47(W1):W423–W428, 2019.
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Résumé étendu de la thèse en Français 
Cette  thèse a  été  réalisée  dans le  cadre  d’un projet  Européen plus  vaste  (ITN RNAct)  dans lequel  des 
approches informatiques et biologiques étaient combinées pour progresser vers la conception et la synthèse 
de  nouveaux  domaines  protéiques  capables  de  se  fixer  sur  des  séquences  spécifiques  d’ARN  (Acide 
RiboNucléique). Les domaines RRMs représentent 50% de toutes les protéines fixant l’ARN et sont trouvées  
dans environ 2% de toutes les protéines du génome humain. Cependant, du fait de la grande diversité des 
domaines  à  RRMs,  il  n’y a eu jusqu’à présent  que très  peu de succès rapportés  dans la  conception de  
nouveaux domaines à RRMs. La thèse vise donc à décrire la diversité des domaines RRM et de leurs modes  
de liaison à l'ARN, en se fondant sur des observations expérimentales publiées, et à exploiter ces données  
pour améliorer la modélisation des complexes RRM-ARN. Elle comprend une introduction (Chapitre 1), un 
chapitre de présentation des notions de bases nécessaires pour comprendre les méthodes et les ressources  
utilisées dans la thèse (Chapitre 2), trois chapitres de résultats originaux (Chapitres 3 à 5) et une conclusion 
ouverte sur les perspectives de ce travail (Chapitre 6).

I. Bioinformatique structurale des domaines à RRM.
Les protéines sont des macromolécules biologiques constituées par l'enchaînement linéaire d'acides aminés  
(aa) pris parmi un vocabulaire de 20 aa différents. La séquence en aa (aussi appelée chaîne polypeptidique)  
constitue la structure primaire de la protéine. Elle est déterminée par la séquence en nucléotides du gène qui  
encode cette  protéine dans le génome.  La base de connaissance universelle UniProt  (UniProtKB) est  la 
ressource en ligne centrale pour les séquences des protéines et leurs annotations. Elle contenait en mars 2023 
plus de 200 millions de séquences dont environ ¼ correspond à des entrées revues et annotées manuellement 
(section SwissProt) et le reste à la traduction en protéines de séquences nucléotidiques, enrichie d'annotations  
automatiques non vérifiées (section TrEMBL). Au cours de la synthèse d'une protéine, des liaisons physico-
chimiques non covalentes s'établissent entre les aa pour mettre en place d'abord une structure secondaire  
composée principalement d'hélices a, de feuillets b ou de boucles. Puis ces différents éléments s'organisent 
entre eux pour  former  la  structure  tertiaire  de la protéine.  Dans le cas  de protéines multimériques,  une 
structure quaternaire peut aussi être observée résultant de l'agencement entre eux des différents monomères. 
Diverses méthodes expérimentales ont été développées au cours des années pour étudier la structure tri-
dimensionnelle (3D) des protéines. On peut citer ici la cristallographie aux rayons X, la spectroscopie par  
résonance  magnétique  nucléaire  (NMR),  la  microscopie  électronique  avec  sa  variante  récente  de  cryo-
microscopie électronique (Cryo-EM). Les données de structure 3D expérimentales sont stockées dans la  
banque de données des protéines (PDB) qui est gérée depuis 2003 par un consortium international (wwPDB). 
En mars 2023, la PDB contenait environ 200 000 structures 3D.

Selon les cas, une protéine peut être organisée en un ou plusieurs domaines protéiques. Ces domaines sont  
des  régions de la  protéine qui  peuvent  se  replier  de  façon indépendante  du reste  de la  protéine et  être  
retrouvées à l'identique ou sous des formes très voisines dans d'autres protéines selon des combinaisons  
différentes. Un domaine protéique est souvent associé à une fonction particulière, définissant ainsi des types  
de  domaines  comme  par  exemple  les  domaines  qui  lient  l'ARN.  Des  alignements  de  séquences  et  de  
structures permettent de comparer entre elles les diverses occurrences (ou instances) d'un type de domaine et  
de créer des familles de domaines. Ainsi,  selon le type d'alignement et la façon de caractériser les traits  
communs  des  membres  d'une famille,  les  domaines  peuvent  devenir  des  classes  abstraites  de domaines 
protéiques réels, caractérisées par une topologie commune des structures secondaires (repliement structural  
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ou « 3D fold »), ou par une signature de séquence dans laquelle des aa conservés à des positions particulières 
sont représentés par une matrice de scores de position (PSSM) ou un motif de modèle de Markov caché 
(HMM). Des bases de données de domaine se sont construites sur l'un ou l'autre de ces principes. Les plus  
générales et les mieux maintenues sont les bases Pfam et CATH, fondées respectivement sur les alignements 
de séquence et les plis structuraux. La base de domaines intégrée InterPro s'efforce d'unifier la classification 
des domaines en tirant avantage de toutes les bases particulières.

Plusieurs  familles  de domaines  présentent  des  propriétés  de  liaison  à  l'ARN.  Parmi  elles  on  trouve les  
domaines à RRM. Ce domaine a une longueur moyenne de 90 aa et présente une topologie conservée des 
éléments de structure secondaire : b1–a1–b2–b3-a2-b4 conduisant à une structure tertiaire à deux couches, 
l'une constituée des feuillets b et l'autre des hélices a (Figure 1). De plus la séquence des domaines à RRM 
présente deux motifs conservés : RNP1 (8aa : (R/K)-G-(F/Y)-(G/A)-(F/Y)-V-X-(F/Y) ) et RNP2 (6aa : (L/I)-
(F/Y)-(V/I)-X-(N/G)-L ), localisés sur les brins b3 et b1 respectivement.

Figure  1 :  Caractéristiques  typiques 
du  domaine  à  RRM  illustrées  avec 
l'entrée PDB 2mss (Musashi1 RBD2, 
NMR).  A.  Structure  3D  en 
représentation  ruban,  colorée  selon 
les éléments de structure secondaire, 
du  bleu  foncé  côté  N-terminal  au 
rouge  côté  C-terminal,  avec  la 
position  des  motifs  conservés  RNP1 
et  RNP2  sur  les  brins  b3  et  b1 
respectivement.  B.  Topologie 
conservée  des  éléments  de  structure 
secondaire des domaines à RRM.

Les domaines à RRM sont retrouvés 
dans un grand nombre  de protéines  régulatrices  impliquées  dans la  régulation post-transcriptionnelle  de  
l'expression  des  gènes,  dans  la  répression  de  la  traduction  de  certains  gènes,  dans  les  mécanismes  de  
prolifération cellulaire anormale, la maintenance des cellules souches et l'activité de la télomérase. Il existe  
des bases de données spécifiques des protéines de liaison à l'ARN comme  RBPDB,  RNAct,  POSTAR et 
RRMdb. Seule la dernière est centrée sur les domaines à RRM, avec notamment une analyse systématique  
des similarités de séquences entre domaines à RRM dans une perspective évolutive. Cependant elle n'est plus 
en ligne depuis plusieurs mois.

L'étude structurale des complexes protéine-ARN repose sur l'identification de différents types d'interaction 
entre les acides aminés d'une part et les nucléotides d'autre part. On distingue les interactions de Van-der-
Waals,  faibles  et  non  spécifiques,  les  liaisons  ioniques  entre  des  groupements  chargés  positivement  et 
négativement, les liaisons hydrogène, les interactions cation-p qui impliquent le nuage électronique p formé 
par  les  noyaux  aromatiques  de  certains  aa  ou  nucléotides,  les  interactions  p-p entre  deux  nuages  p 
aromatiques, encore appelées p-stacking quand les deux noyaux aromatiques sont dans des plans parallèles.

Du point de vue expérimental, l'énergie de liaison et sa constante d'affinité peuvent être mesurées par divers  
dispositifs techniques, tels que la calorimétrie à titration isothermique (ITC), la résonance de plasmons de 
surface (SPR), la polarisation de fluorescence (FP), le décalage de mobilité électrophorétique (EMSA).

Pour prédire la structure 3D d'un complexe protéine-ARN, il faut idéalement disposer des structures des deux 
partenaires isolés. Côté protéine, les structures 3D expérimentales disponibles dans la PDB ne concernent  
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que  0.08%  des  séquences  enregistrées  dans  UniProt  mais  les  systèmes  de  prédiction  entraînés  par 
apprentissage  profond  tels  que  AlphaFold  ou  RosettaFold  sont  devenus  très  puissants  pour  prédire  les  
structures des protéines à partir des séquences. Côté ARN, il faut considérer l'ARN simple-brin comme une 
structure éminemment flexible qui se repliera ou se dépliera en même temps qu'elle se liera à la protéine.

Les  méthodes  de  docking  comportent  deux  grandes  étapes :  l'échantillonnage  (sampling)  et  la  notation 
(scoring). Il s'agit de trouver, dans l'immense espace conformationnel des poses, la ou les poses de moindre  
énergie représentant les conformations et orientations relatives des deux partenaires les plus plausibles pour  
le complexe protéine-ARN. Des méthodes à base de fragments peuvent être utilisées pour tenir compte de la 
flexibilité de l'ARN. Des représentations gros-grain des macromolécules sont aussi souvent adoptées pour 
diminuer la complexité des calculs mais elles nécessitent de définir des champs de force adaptés pour l'étape  
de notation des poses de docking. Egalement, des contraintes issues de données expérimentales peuvent être  
introduites pour limiter les recherches dans l'espace conformationnel. Les principaux programmes existants 
pour réaliser le docking protéine-ARN sont ATTRACT et HADDOCK. Dans le cadre de cette thèse, nous 
avons  utilisé  ATTRACT et  son  module  ssRNA 'TTRACT qui  utilise  des  représentations  gros-grain  des 
molécules et des librairies de conformations 3D de tri-nucléotides comme fragments pour le docking.  Les 
poses de tri-nucléotides présentant les meilleurs scores sont conservées et deux poses sont liées entre elles  
quand elles  se  chevauchent  selon un seuil  donné.  Le  score  final  des  chaînes  d'ARN assemblées  sur  la 
protéine  permet  de distinguer  les  structures  les  plus  plausibles.  Le ou  les  modèles  retenus  sont  ensuite 
raffinés par minimisation et/ou simulation en dynamique moléculaire.

La dynamique moléculaire est une méthode pour simuler le comportement de biomolécules isolées ou en 
interaction.  Toutes  les  forces  s'exerçant  sur  chaque  atome  sont  exprimées  grâce  aux  champs  de  force 
correspondant aux fonctions d'énergie des liaisons covalentes et non covalentes entre les atomes. Elles sont 
utilisées pour résoudre les équations de Newton déterminant le mouvement des atomes à chaque pas de  
temps de la simulation. Les conditions de simulation sont définies par des paramètres thermodynamiques  
précis  qui  dépendent  des  systèmes  de  simulation  (NAMD,  GROMACS,  AMBER  sont  les  principaux 
logiciels de dynamique moléculaire). La structure 3D des biomolécules étudiées est calculée à chaque pas de  
temps et constitue ce qu'on appelle une « frame » de la dynamique (par exemple un pas de 1 ps pour une 
simulation de 10 ns conduit à une trajectoire de 10 000 frames). La cinétique ainsi obtenue peut ensuite être 
analysée de diverses façons, en particulier pour déterminer une énergie libre d'interaction par les méthodes  
dites MM-PBSA (Mécanique moléculaire avec aire de la surface de Poisson-Boltzmann) ou MM-BGSA 
(Mécanique moléculaire avec solvatation généralisée de Born et de surface), ou par la méthode de l'énergie  
libre de perturbation (FEP). Cette dernière méthode a été utilisée pour étudier l'effet de mutations dans des 
complexes  protéine-ADN  mais  pas  encore  pour  les  complexes  protéine-ARN.  De  façon  générale,  les  
analyses de simulation en dynamique moléculaire viennent compléter des études expérimentales pour mieux 
comprendre le comportement des complexes et le rôle particulier de certains aa dans les interactions entre 
biomolécules.

II. InteR3M : la base de données des interactions ARN-RRM
Ce chapitre décrit la conception, l'implémentation et le peuplement d'une base de données relationnelle  : 
InteR3M, décrivant  les  interactions  entre  ARN et  domaines  à RRM. Par  rapport  aux bases  de données  
existantes  sur  les  protéines  de  liaison  à  l'ARN,  InteR3M  met  l'accent  sur  l'analyse  des  structures  3D  
expérimentales des domaines à RRM et des complexes RRM-ARN, dans le but de contribuer à déchiffrer le  
code de liaison à l'ARN des domaines à RRM et d’améliorer le docking RRM-ARN. L'objectif global de la 
base de données  InteR3Mdb est  donc de collecter,  d'organiser,  de  rendre  accessible  et  de  maintenir  les  
informations disponibles sur les domaines à RRM.

Le travail a commencé par préciser l'inventaire des domaines à RRM parmi toutes les familles de domaines  
Pfam (version utilisée v.33.0). A partir d'une liste de 42 familles Pfam, issues de requêtes simples dans Pfam, 
du clan RRM de Pfam (CL0221) et de RRMdb, il est apparu que seules 26 de ces familles disposaient d'au  
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moins une occurrence structurale (notée StI  pour « Structural  Instance »)  dans la PDB. La famille Pfam 
RRM_1 (PF00076) est la plus abondamment peuplée en séquences et en StIs (246 502 séquences et 1069 
structures  3D).  Elle  contient  les  domaines  à  RRM  les  plus  étudiés  expérimentalement  et  deux  de  ces 
domaines (1A9N_B et  2A3J_A) ont servi de prototypes pour inspecter manuellement les StIs des autres 
familles selon 3 critères. (i) Le domaine correspondant dans les bases de domaines orientées structure SCOP 
et  CATH est un domaine de liaison à l'ARN ; (ii) la  topologie des éléments de structure secondaire est 
alignable avec la topologie classique des RRM (b1–a1–b2–b3-a2-b4) ; et (iii) l'alignement structural par le 
programme Kpax donne un M-score supérieur à 0.60 (seuil déterminé empiriquement). Au final, 19 familles 
Pfam avec StI ont été conservées pour constituer la base de données InteR3M.

La conception du modèle de données d'InteR3M s'est appuyée sur une liste de cas d'étude recueillies auprès  
des  futurs  utilisateurs  de  la  base  de  données  au  sein  du  consortium RNAct.  Un modèle  conceptuel  de 
données de type entité-association a été élaboré puis transformé en modèle relationnel logique puis enfin 
implémenté physiquement en utilisant le gestionnaire de base de données libre PostGreSQL. Les données 
stockées concerneront les instances de domaines à RRM, leurs ligands (principalement des ARN) et les  
linkers qui peuvent séparer deux domaines à RRM dans une protéine.

Le peuplement de la base de données à partir des 19 familles Pfam sélectionnées est décrit schématiquement  
dans la Figure 2 selon quatre blocs : (i) les séquences des domaines à RRM (des 19 familles Pfam) avec les 
informations  associées  extraites  d'UniProt,  (ii)  les  structures  3D des  domaines  à  RRM correspondant  à 
certaines de ces séquences, avec les informations associées extraites de la PDB, (iii) les informations de  
contacts atomiques entre RRM et ARN, extraites des entrées de la PDB contenant des complexes RRM-
ARN,  (iv)  les  informations  sur  les  affinités  de  liaison,  extraites  des  publications  sélectionnées  par  le 
consortium RNAct. La sélection des familles Pfam de départ et l'extraction des informations sur les affinités  
de liaison dans les articles PubMed ont été réalisées manuellement. Toutes les autres données sont collectées  
automatiquement à l'aide de scripts Python réutilisables qui serviront à la mise à jour de la base de données.  

Pour les contacts entre RRM et  ARN (ou 
ADN),  un  aa  et  un  nucléotide  (nt)  sont 
considérés comme interagissant si au moins 
un  atome  de  chaque  sont  trouvés  à  une 
distance  de  moins  de  5Ǻ l'un  de  l'autre. 
Pour toutes ces paires (aa, nt),  4 types de 
contacts  ou  d'interactions  ont  recherchés : 
liaisons  de  Van-der-Waals,  liaisons 
Hydrogène, liaisons ioniques et p-stacking.

Figure  2 :  Schema  de  la  collecte  des 
données pour le peuplement de la base de 
données InteR3M.

Une interface d'interrogation et  d'exploration du contenu de InteR3Mdb a  également  été  développée en  
langage  PHP  (moteur  de  développement  Twig)  et  est  disponible  à  l'adresse  suivante 
(https://inter3mdb.loria.fr).

La  base  de  données  InteR3M  (v0.0.1)  contient  un  total  de  400  892  instances  de  domaines  à  RRM 
correspondant à 256 266 protéines uniques et répertoriées dans 19 familles Pfam. De toutes ces instances,  
seulement 303 ont été étudiées d'un point de vue structural et ont donné lieu à 727 entrées PDB, pour un total 
de 1456 StI. La plupart de ces structures 3D appartiennent à la famille PF00076 (RRM_1 ; 1334 StI), la 2 
famille la plus peuplée est PF13893 (RRM_5) avec seulement 42 StI. Des informations de contact (459 859 
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interactions dont 1926 p-stacking entre aa et nt, le reste en contacts atomiques) ont pu être extraites de 550 
StI en complexe avec un ARN ou un ADN. Au total, 311 acides nucléiques différents (ARN ou ADN) sont  
présents dans les expériences structurales ou fonctionnelles rapportées dans InteR3M.

En conclusion,  ce  chapitre  a  décrit  la  création d'une base de données  « domaine-centrique » permettant 
d'accéder à toutes les données relatives aux domaines à RRM et notamment les données structurales et de  
contact entre RRM et ARN. Par opposition à des bases de données généralistes s'intéressant à tous les types 
de domaines, InteR3M présente l'avantage de contenir des données fiables, revues manuellement et pouvant 
être utilisées pour des études évolutives ou de design de nouvelles protéines. L'automatisation de la collecte  
des données permettra de maintenir InteR3M à jour dès que de nouveaux domaines à RRM ou de nouvelles 
structures expérimentales de complexes RRM-ARN seront décrites. Il est aussi prévu d'intégrer les données  
des structures prédites par Alpha-Fold dans InteR3M mais ces données ne concernent pas les complexes  
RRM-ARN et ne pourront donc pas enrichir les connaissances sur les contacts et les modes de liaison de 
l'ARN aux domaines à RRM.

III. CroMaSt : un workflow pour vérifier la classification des domaines  
protéiques par assignation croisée entre les bases de données et  
alignement structural

Ce chapitre fait l'objet d'un article accepté dans Bioinformatics Advances.

Dhondge Hrishikesh, Chauvot de Beauchêne Isaure and Devignes Marie-Dominique. CroMaSt : A workflow 
for  assessing  protein  domain  classification  by  cross-mapping  of  structural  instances  between  domain 
databases and structural alignment. Bioinformatics Advances.   3     :vbad081, 2023.

Le développement de bases de données particulières, centrées sur un type de domaine particulier, suppose de 
s'assurer  que  les  familles  de  domaines  extraites  des  bases  de  domaines  à  partir  de  requêtes  simples  
comprenant le nom du type de domaine considéré correspondent bien à ce type de domaine. L'expérience  
acquise  avec  les  domaines  à  RRM  nous  a  montré  qu'il  n'en  était  pas  toujours  ainsi  et  a  conduit  au 
développement du workflow CroMaSt (Cross-Mapping of Structural instances).

L'objectif de CroMaSt est de pouvoir attribuer un type de domaine d'intérêt à un domaine particulier dont on 
a une structure 3D et à travers lui à toute la famille de domaines à laquelle il appartient. En effet, un type de 
domaine  d'intérêt  peut  être  représenté  par  plusieurs  familles  de  domaines.  Mais  les  bases  de  domaines  
généralistes peuvent avoir affecté à tort une famille de domaines à un type de domaine d'intérêt.

L'approche repose sur une connaissance a priori du type de domaine étudié comme par exemple les domaines 
à  RRM.  On  supposera  donc  qu'il  existe  une  définition  consensus  de  ce  type  de  domaine  et  quelques  
structures 3D validées. Dans notre exemple c'est le cas de la famille RRM_1 (PF00076) dans la base de 
domaine Pfam, qui comprend les exemples types des domaines à RRM. La première hypothèse de CroMaSt 
est donc qu'il est possible de comparer des structures 3D (instances structurales ou StI) de domaines avec une  
structure 3D de référence pour un type de domaine d'intérêt, et d'en déduire automatiquement, avec des seuils 
de score appropriés, si ces StIs correspondent ou non à ce type de domaine d'intérêt. Cependant si ce travail  
doit être effectué pour chaque StI individuellement, il peut devenir très fastidieux. C'est pourquoi CroMaSt 
utilise  également  les  bases  de  domaines  généralistes  et  bien  documentées  que  sont  Pfam et  CATH.  La 
deuxième hypothèse de CroMaSt est que si une StI appartient à la fois à la famille Pfam et à la famille CATH  
de référence pour le type de domaine d'intérêt, il est vraisemblable qu'il s'agit d'une vraie instance de ce type  
de domaine. Si par contre une StI appartient uniquement à la famille Pfam de référence ou uniquement à la 
famille  CATH de  référence,  alors  il  convient  de  rechercher  par  assignation croisée si  cette  StI  est  tout 
simplement absente de l'autre classification ou présente dans une autre famille de domaines. Dans les deux  
cas, il conviendra d'analyser cette StI et la nouvelle famille par alignement structural avec la structure 3D de  
référence pour déterminer si la StI isolée et/ou sa famille peuvent être considérées comme appartenant au  
type de domaine d'intérêt.
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Ainsi, le workflow CroMaSt va classifier les StI de domaines en 4 catégories selon le tableau ci-dessous.

Tableau 1 : Les catégories de CroMaSt selon les caractéristiques des instances structurales de domaine

Catégorie
Communes entre les 
familles de référence 

initiales

Assignées de façon croisée 
dans l'autre base de 

domaines

Présentant une similarité 
significative par alignement 

structural avec la structure 3D de 
référence

Noyau (« Core ») Oui   -  -

Vraie (« True ») Non Oui Oui

Pseudo-vraie 
(« Domain-like »)

Non Non Oui

En échec (« Failed ») Non Oui ou Non Non

Les différentes étapes du workflow sont schématisées dans la Figure 3. Des itérations sont possibles tant que  
de nouvelles familles ont été découvertes par assignation croisée.

Figure 3. Schema 
du  workflow 
CroMaSt.

Parmi les difficultés à résoudre pour implémenter ce workflow, il faut citer la nécessité d'introduire un format 
unifié pour identifier les StI dans les deux bases de domaines et le calcul des structures 3D moyennes au  
niveau des instances elle-mêmes et au niveau d'une famille de domaines.

Le format unifié de description des StI comprend l'identifiant dans la PDB, y compris l'identifiant de chaîne,  
le nom du domaine ou son numéro d'ordre lorsqu'il y en a plusieurs, l'identifiant de la famille de domaines,  
les positions de début et de fin dans la numérotation du fichier PDB, l'identifiant UniProt et les numéros de 
début et de fin dans la séquence du fichier UniProt. Les deux numérotations (PDB et UniProt) sont utilisées  
respectivement  par  CATH  et  Pfam.  La  correspondance  entre  ces  deux  numérotations  est  calculée 
automatiquement d'après les fichiers fournis par la ressource  SIFTS. Une différence de 30 aa est acceptée 
pour les positions de début et de fin du domaine entre les deux bases de domaines. Cette valeur peut être  
modifiée en particulier si l'on travaille avec des domaines de petite taille.

L'alignement structural est réalisé par Kpax qui est aussi capable de calculer des structures moyennes à partir  
d'un alignement  structural  multiple.  La structure  3D de référence pour  le  type de domaine d'intérêt  est  
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calculée par la moyenne des structures de catégorie noyau (« Core »), c'est-à-dire partagées entre les deux 
familles  de  référence  initiales.  Pour  éviter  les  biais  liés  aux  instances  de  domaines  très  étudiées  pour 
lesquelles il existe de nombreuses StI pour la même instance en séquence, une première structure moyenne 
dite « au niveau de l’instance » est calculée à partir de toutes les StI correspondant à la même séquence. Puis 
une structure moyenne, dite « au niveau de la famille »,  est calculée comme la moyenne  des moyennes, à 
partir de l'ensemble des structures moyennes des instances d’une famille donnée.

L'ensemble  du  workflow  a  été  implémenté  dans  le  formalisme  standard  CWL  (Common  Workflow 
Language) qui respecte les principes FAIR de la science ouverte. Le workflow CroMaSt est disponible dans  
l'entrepôt WorflowHub sous l'identifiant suivant https://workflowhub.eu/workflows/390?version=1.

Les résultats obtenus pour le type de domaine à RRM sont les suivants. Lors de la première itération, les  
familles PF00076 (RRM_1) de Pfam et 3.30.70.330 (RRM domain) de CATH ont été sélectionnées comme 
familles de départ. Un total de 1333 et 1204 StI utilisables ont été extraites respectivement de chaque famille, 
parmi lesquelles 883 sont communes aux deux familles. Ces 883 StI ont permis de construire la structure 3D 
moyenne de référence pour les domaines à RRM. Les  450 StIs propres à Pfam ont été recherchées par 
assignation croisée dans CATH sans succès. Une explication pour cela serait que CATH utilise une version 
antérieure d'UniProt, incomplète donc par rapport à Pfam. Ces 450 StIs propres à Pfam ont donc été testées 
par alignement structural avec la structure de référence et 443 ont été trouvées avec un M-score au-dessus du 
seuil. Ces StIs sont donc classées dans la catégorie des StI pseudo-vraies (« Domain-like »). Les 7 StIs qui ne 
s'alignent pas correctement sont dites en échec (« Failed »). Les 321 StIs propres à CATH ont été recherchées 
par assignation croisée dans Pfam et 243 ont pu être assignées à 17 familles de Pfam. Le test d'alignement 
structural  a montré que  79 StIs seulement,  correspondant  à 14 des 17 familles Pfam, sont  correctement 
alignées  avec  la  structure  de  référence  et  peuvent  donc  être  classées  dans  la  catégorie  des  vraies  StI 
(« True »). Les 164 restantes (243 – 79) sont donc en échec ainsi que les 3 familles Pfam correspondantes. 
Quant  aux  78 StIs  (321-243)  qui  n'ont  pas  été  assignées  à  des  familles  Pfam,  toutes  sont  alignées 
correctement avec la structure moyenne de référence et viennent donc dans la catégorie pseudo-vraies.

Les  79 vraies StIs trouvées dans CATH  et assignées à 14 familles Pfam  seront utilisées dans la seconde 
itération pour tester si  des membres de ces familles Pfam peuvent être trouvées dans CATH. Lors de cette 
seconde itération, toutes les StIs des 14 familles Pfam sont extraites, soit 100 StIs, parmi lesquelles 79 sont 
communes entre CATH et Pfam (catégorie « True »). Les 21 StIs propres à Pfam ne trouvent pas de nouvelle 
famille CATH en assignation croisée. Elles sont donc testées individuellement et 20 d'entre elles présentent 
un alignement correct (pseudo-vraies) contre une qui reste en échec.

Ainsi l'exécution du workflow CroMaSt avec les deux familles principales de domaines à RRM de Pfam et 
CATH a conduit  à explorer  14 familles Pfam et  une seule  famille CATH et  à identifier  96 2 vraies  StI 
(incluant les 883 StI noyaux), 541 StI pseudo-vraies (443 + 20 de Pfam et 78 de CATH), et 172 StIs en échec 
(8 de Pfam et 164 de CATH). Tous les fichiers de calculs intermédiaires et en particuliers les résultats des 
alignements structuraux sont fournis avec les résultats de CroMaSt. Ceci permet de visualiser les structures  
et de comprendre le cas échéant pourquoi certaines StI, classées comme domaines à RRM sont trouvées en  
échec. Ces alignements permettent aussi de mieux se rendre compte de la diversité des domaines à RRMs 
vrais  et  pseudo-vrais,  ce  qui  peut  se  révéler  intéressant  lors  du  design  ou  de  l'ingénierie  de  nouvelles 
protéines contenant ce type de domaine.

En conclusion,  CroMaSt peut être appliqué à l'étude de n'importe quel type de domaine pour lequel  on  
dispose d'au moins une familles représentatives dans Pfam et CATH. Les résultats de CroMaSt peuvent être 
utilisés en retour vers les bases de domaines pour leur signaler de possibles erreurs d'annotation de certaines  
familles de domaine, ou au contraire pour proposer l'attribution d'un type de domaine à une famille encore 
peu annotée.
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IV.  Modélisation  des  complexes  ARN-RRM  à  partir  des  données  
existantes

Ce chapitre décrit plusieurs exploitations des données collectées et intégrées dans InteR3Mdb.

La première utilisation a été de contribuer à déchiffrer le code de correspondance entre RRM et ARN. Il  
s'agit  ici  d'un  travail  collaboratif  réalisé  lors  d'un  stage  de  5  mois  réalisé  dans  le  goupe  Bio2Byte  du 
Professeur Wim Vranken à Bruxelles (Vrije Universiteit Brussel), aux côtés d'un autre doctorant du projet  
RNAct. La contribution de cette thèse à ce travail a été de pouvoir disposer d'un jeu exhaustif de structures  
3D de domaines à RRM, nettoyées et bien délimitées, ainsi que de la liste exhaustive des contacts entre aa et  
nt pour les complexes RRM-ARN connus.

Les contacts aa-nt ont été positionnés sur un alignement structural complet de toutes les structures 3D des 
RRM. Ceci a permis par la suite à l'équipe Bio2Bytes de former des clusters en fonction de la localisation  
des contacts et  de caractériser ainsi le mode de liaison majoritaire ou canonique des ARN aux domaines à 
RRM. Pour ce mode de liaison, les contacts ont été recensés par paire (aa, nt) et des probabilités ont été 
calculées. De la sorte, pour toute séquence de domaine à RRM, il est possible de calculer un score prédictif  
pour les ARN pouvant se lier sur ce domaine, et de sélectionner le meilleur ARN ciblé par ce domaine. La 
fiabilité  de  la  prédiction  dépend  bien  sûr  du  nombre  de  contacts  disponibles  pour  le  mode  de  liaison 
majoritaire. RRMscorer pourra être actualisé chaque fois qu'InteR3Mdb sera mis à jour avec de nouvelles  
structures 3D de complexes RRM-ARN, donnant lieu à l'extraction de nouveaux contacts.

Une deuxième utilisation d'InteR3Mdb a été la modélisation par homologie de nouveaux domaines à RRM. 
Cette application a été débutée avant la mise à disposition du logiciel AlphaFold2. Il fallait alors rechercher  
dans  InteR3Mdb le  domaine à  RRM le  plus  proche  en  séquence  et  pour  lequel  une  structure  3D était  
disponible. Puis le nouveau domaine était aligné sur la structure 3D modèle (« template ») et modélisé en 3D 
à l'aide du logiciel Modeller. Les chaînes latérales étaient réparées par le logiciel SCWRL4 et le nouveau 
modèle 3D évalué par un score DOPE. Les résultats obtenus étaient encourageants et révélaient la nécessité 
de modéliser  les boucles qui  pouvaient  être très différentes en taille entre le domaine à modéliser  et  le  
domaine template.  Le workflow nommé RRMpip n'a plus beaucoup d'intérêt pour les domaines à RRM 
libres puisque le logiciel AlphaFold2 permet maintenant de prédire avec une grande fiabilité la structure 3D 
des protéines à partir de leur séquence. Toutefois,  AlphaFold2 ne permet pas de prédire la structure des  
complexes  protéine-ARN.  L'approche  par  homologie  pourrait  conserver  un  intérêt  pour  modéliser  les 
complexes RRM-ARN.

En troisième lieu, les contacts collectés dans InteR3Mdb ont été exploités dans une approche de docking de 
l’ARN sur les domaines à RRM avec « points d'ancrage ». Les approches par fragments pour le docking 
protéine-ARN donnent lieu à une combinatoire gigantesque de solutions possibles mais le problème peut être 
rendu moins complexe en utilisant des contraintes pour guider le docking et l'assemblage des fragments. Ces 
contraintes peuvent consister en des points d'ancrage, à savoir des configurations déjà observées de paires aa-
nt, notamment lorsque l'interaction est de type p-stacking. Les contacts d'InteR3Mdb ont donc été filtrés pour 
identifier ceux qui concernent les aa aromatiques des deux signatures conservées RNP1 (position 5) et RNP2 
(position  2)  des  domaines  à  RRM. Un total  de  496 structures  de  complexes  RRM-ARN présents  dans  
InteR3Mdb a été sélectionné, parmi lesquels 257 structures présentent une interaction de p-stacking à l'une 
ou l'autre position. Ces 257 structures proviennent de 52 protéines uniques et 72 domaines à RRM uniques. 
Les structures élémentaires du nt en interaction de p-stacking avec l'aa ont été extraites après alignement sur 
une structure de référence (1B7F_A) selon deux groupe beta1 (pour RNP2) et beta3 (pour NRP1). Puis les  
nucléotides ont été transformés en représentation gros-grain selon ATTRACT, et répartis en cluster selon un  
algorithme agglomératif ascendant (méthode Radius)  développé dans l’équipe CAPSID. Les prototypes de 
chaque cluster peuvent alors être utilisés comme des contraintes pour positionner les fragments d'ARN au  
cours  du  docking  et  de  l'assemblage  des  fragments.  Cette  dernière  partie  du  travail  a  été  effectuée  en  
collaboration avec une autre doctorante du projet RNAct.
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A la fin de ce chapitre sont présentés les travaux réalisés à partir de simulation en dynamique moléculaire 
dans  le  but  (i)  de  pouvoir  différencier  une  interaction  stable  d'une  interaction  labile  et  (ii)  de  calculer  
l'énergie libre de liaison entre un domaine à RRM et un ARN particulier.

La trajectoire de dynamique moléculaire d'un complexe RRM-ARN natif a été comparée à celle du même 
complexe dans lequel l'ARN a été modifié pour ne plus pouvoir s'associer au domaine à RRM. Les frames  
ont été clusterisées pour identifier les différents états visités au cours de la dynamique moléculaire et une 
analyse de contacts a été effectuée. Malheureusement, dans les conditions de simulation utilisées, aucune 
différence n'apparaît dans les résultats d'analyse, comme si la dynamique moléculaire n'arrivait pas, dans ces 
conditions classiques, à distinguer les ligands forts des ligands faibles. Les mêmes résultats décevants ont été 
obtenus lorsque la dynamique moléculaire a été réalisée dans des conditions de recuit simulé («  simulated 
annealing »).

Les calculs d'énergie libre ont été réalisés à partir des trajectoires de dynamique moléculaire en appliquant la  
technique FEP (« Free Energy Perturbation »). Ces calculs devraient nous aider à vérifier l'effet de mutations 
ponctuelles du domaine à RRM sur son activité de liaison de l'ARN. Grâce aux données expérimentales  
collectées dans InteR3Mdb, nous avons pu trouver rapidement un complexe RRM-ARN pour lequel des 
données de mutagenèse associées à des mesures d'affinité de liaison sont disponibles. Il s'agit du domaine 
RRM du facteur SRSF2 humain (« Serine/Arginine-rich splicing factor » ; UniProt :Q01130). Nous avons 
ainsi comparé la diminution de l'affinité (augmentation de la constante de dissociation KD) rapportée dans la 
publication avec la différence d'énergie  libre  calculée  à partir  de nos trajectoires,  quand on passe de la  
structure native aux formes mutées. Les résultats obtenus montrent que la diminution de l'affinité chez les  
mutants est toujours associée à un calcul d'énergie libre défavorable pour le domaine à RRM mutant par  
rapport au domaine à RRM natif, sauf pour une mutation (D48A) située dans une boucle entre les brins b2 et 
b3. Plus de temps serait nécessaire pour optimiser le calcul d'énergie libre par FEP et mieux comprendre les 
corrélations ou les divergences par rapport aux mesures d'affinité. Cependant ces résultats sont encourageants 
et pourront servir de base à des études ultérieures.

Conclusion et perspectives
Cette  thèse  a  permis  d'explorer  la  diversité  des  domaines  à  RRM  en  vue  de  mieux  comprendre  leurs  
caractéristiques de liaison à l'ARN. Une base de données intégrées et exhaustive a été développée et rendue  
accessible à la communauté scientifique. Un workflow permettant de vérifier l'appartenance d'un domaine ou 
d'une  famille  de  domaines  à  un  type  de  domaine  d'intérêt  a  été  implémenté  et  testé.  Il  est  également  
disponible publiquement. La collecte d'informations de contact entre RRM et ARN a permis de contribuer à 
un travail  de  déchiffrage  du code de  reconnaissance entre  RRM et  ARN. Par  ailleurs,  les  informations 
disponibles  dans  la  base  de  données  InteR3M ont  aussi  contribué au  développement  d'un  workflow de 
docking  RRM-ARN  avec  points  d'ancrage.  De  plus,  cette  thèse  rapporte  la  description  de  plusieurs 
protocoles de dynamique moléculaire réalisés dans le but d'évaluer la qualité des modèles RRM-ARN.

Ce travail ouvre de nombreuses perspectives, que ce soit par rapport à l'étude des domaines RRMs ou de  
façon plus générique. Pour les domaines RRMs, la base de données InteR3M constitue une ressource de  
qualité qu'il faudra maintenir et enrichir, en particulier avec les structures de RRM prédites par AlphaFold2. 
Cependant,  il  faut  souligner  que  cet  enrichissement  ne  concernera  pas  les  contacts  RRM-ARN  car  
Alphafold2 ne prédit pas les complexes entre protéine et ARN. Pour cela, une veille devra être réalisée sur  
les structures expérimentales de la PDB. Au fur et à mesure de l'enrichissement d'InteR3Mdb, les outils de  
prédiction des interactions RRM-ARN comme RRMscore et RRM-RNA-dock devront être mis à jour. Il  
faudra aussi améliorer les protocoles de calcul d'énergie libre pour trouver un moyen de valider les modèles  
3D. L'utilisation de la structure 3D de référence pour les RRM permettra de découvrir de nouvelles protéines  
et peut-être de nouvelles fonctions pour les RRM en interrogeant avec cette structure la base de données des 
structure AlphaFold (AlphaFoldDB). Une analyse évolutive des domaines RRMs pourra être envisagée, en 
collaboration avec les créateurs de la base RRMdb. Enfin, il sera important d'analyser l'impact de cette base 
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de données et du travail  de validation des domaines à RRM sur les expériences de design de nouvelles  
protéines de liaison à l'ARN.

D'un point de vue plus générique, les contributions bioinformatiques de cette thèse peuvent être appliquées à 
d'autres  domaines  que  les  domaines  à  RRM  et  à  d'autres  bases  de  domaines  que  CATH et  Pfam.  En 
particulier, la base de domaines  ECOD pourra être utilisée à la place de CATH ou de Pfam et permettre 
d'accéder aux relations évolutives entre les domaines, tout en restant dans un type de domaine d'intérêt. Par 
ailleurs  il  sera  intéressant  d'adapter  CroMaSt  à l'environnement  d'une base de données  intégrée comme 
InterPro, car cela garantira d'avoir la même version de la base des séquences protéiques UniProt, quelle que 
soit la base de domaines considérée. Enfin, l'outil CroMaSt et la méthodologie utilisée pour créer InteR3Mdb 
pourront être réutilisés pour n'importe quel autre type de domaine d'intérêt et accélérer la création d'une  
ressource particulière domaine-centrique, en vue de conduire des expériences d'apprentissage automatique ou 
de design de nouvelles protéines.

10



Structural characterization of RNA binding to RNA recognition motif
(RRM) domains using data integration, 3D modeling and molecular

dynamic simulation

Abstract

This thesis was carried out in the frame of a larger European project (ITN RNAct) in which computer
science and biology approaches were combined to make progress towards the synthesis of new protein
domains able to bind to specific RNA sequences. The specific goal of this thesis was to design and
develop computational tools to better exploit existing knowledge on RNA Recognition Motif (RRM)
domains using 3D modeling of RRM-RNA complexes. RRMs account for 50% of all RNA binding
proteins and are present in about 2% of the protein-coding regions of the human genome. However,
due to the large diversity of RRMs, there have been very few successful examples of new RRM design
so far.
A central achievement of this thesis is the construction of a relational database called ‘InteR3M’ that
integrates sequence, structural and functional information about RRM domains. InteR3M database
(https://inter3mdb.loria.fr/) contains 400,892 RRM domain instances (derived from UniProt entries)
and 1,456 experimentally solved 3D structure (derived from PDB entries) corresponding to only 303
distinct RRM instances. In addition, InteR3M stores 459,859 atom-atom interactions between RRM
and nucleic acids, retrieved from 656 3D structures in which the RRM domain is complexed with
RNA or DNA.
During the data collection procedure, inconsistencies were detected in the classification of several
RRM instances in the popular domain databases CATH and Pfam. This led me to propose an
original approach (CroMaSt) to solve this issue, based on cross-mapping of structural instances of
RRMs between these two domain databases and on the structural alignment of unmapped instances
with an RRM structural prototype. The CroMaSt CWL workflow is available on the European
Workflow hub at https://workflowhub.eu/workflows/390.
Sequence and structural information stored in InteR3M database was then used to align RRM do-
mains and map all RRM-RNA interactions onto this alignment to identify the different binding modes
of RNA to RRM domains. This led to the development, with RNAct partners at VUB (Vrije Uni-
versiteit Brussel), of the ‘RRMScorer’ tool. This tool contributes to decipher the RRM-RNA code by
computing binding probabilities between RNA nucleotides and RRM amino acids at certain positions
of the alignment. Atomic contacts between RRMs and RNA were also used to identify anchoring pat-
terns, i.e. prototypes of 3D atomic positions (relative to the protein backbone) of a nucleotide stacked
on a conserved aromatic amino acid. These anchors can be used as constraints in anchored docking
protocols. The ‘RRM-RNA dock’ docking pipeline is presented here and integrates both anchoring
patterns extracted from InteR3M and binding scores from RRMScorer.
Finally, molecular dynamic (MD) simulation is another computational tool tested in this thesis to
contribute to the 3D modeling of RRM-RNA complexes. Promising preliminary MD protocols are
described as attempts to distinguish between strongly and weakly binding RRM-RNA complexes.

Keywords: structural bioinformatics, protein domain, RNA Recognition Motif, protein design, 3D
modeling, protein-RNA docking, database, data integration, bioinformatic workflow



Caractérisation structurale de la liaison de l’ARN aux domaines à Motif
de Reconnaissance de l’ARN (RRM) à l’aide de l’intégration de données,

la modélisation 3D et la simulation dynamique moléculaire

Résumé

Cette thèse a été réalisée dans le cadre d’un projet Européen plus vaste (ITN RNAct) dans lequel
des approches informatiques et biologiques étaient combinées pour progresser vers la synthèse de
nouveaux domaines protéiques capables de se fixer sur des séquences spécifiques d’ARN. L’objectif
spécifique de cette thèse était de concevoir et développer des outils informatiques pour mieux exploiter
les connaissances existantes sur les domaines à Motif de Reconnaissance de l’ARN (RRM) lors de la
modélisation 3D des complexes RRM-ARN. Les domaines RRMs représentent 50% de toutes les
protéines fixant l’ARN et sont trouvées dans environ 2% de toutes les régions codantes du génome
humain. Cependant, du fait de la grande diversité des domaines RRMs, il n’y a eu jusqu’à présent
que très peu de succès rapportés dans la conception de nouveaux domaines RRMs.
La contribution centrale de cette thèse est la construction d’une base de données relationnelle appelée
(InteR3M) qui intègre des informations de séquence, de structure et de fonction sur les domaines
RRMs. La base de données InteR3M (https://inter3mdb.loria.fr/) contient 400,892 instances de
domaines RRM (dérivées d’entrées UniProt) et 1,456 structures 3D déterminées expérimentalement
(dérivées d’entrées PDB), qui correspondent à seulement 303 instances distinctes de domaines RRM.
De plus, InteR3M contient 459,859 interactions atomiques entre RRM et acides nucléiques, dérivées
de 656 structures 3D dans lesquelles le domaine RRM forme un complexe avec un ARN ou un ADN.
Au cours du processus de collecte de données, des incohérences ont été détectées dans la classification
de plusieurs instances de domaines RRMs dans les bases de données de domaines protéiques populaires
CATH et Pfam. Ceci m’a conduit à proposer une approche originale (CroMaSt) pour résoudre ce
problème, à partir de la mise en correspondance des instances structurales de domaines RRMs entre
ces deux bases de données et de l’alignement structural des domaines sans correspondance avec une
structure prototype du domaine RRM. Le workflow CroMast est disponible sur le Workflow Hub
Européen (https://workflowhub.eu/workflows/390).
Les informations de séquence et de structure intégrées dans la base de données InteR3M ont ensuite été
utilisées pour aligner entre eux tous les domaines RRM et cartographier toutes les interactions RRM-
ARN sur cet alignement en vue d’identifier les différents modes de liaison de l’ARN aux domaines
RRM. Ceci a conduit au développement, avec nos partenaires RNAct de VUB (Vrije Universiteit
Brussel), de l’outil ‘RRMScorer’. Cet outil contribue au déchiffrage du code de reconnaissance RRM-
ARN en calculant les probabilités de liaison entre les nucléotides de l’ARN et les acides aminés des
domaines RRM à certaines positions de l’alignement. Les contacts atomiques entre RRMs et ARN
ont aussi été utilisés pour identifier des motifs d’ancrage, c’est-à-dire des prototypes des positions 3D
atomiques (relatives au squelette protéique) d’un nucléotide interagissant par empilement (‘stacking’)
avec un acide aminé aromatique conservé. Ces ancres peuvent être utilisées comme des contraintes
dans un protocole d’amarrage ancré (‘anchored docking’). Le pipeline ‘RRM-RNA dock’ est présenté
ici et il intègre à la fois les motifs d’ancrage extraits de la base de données InteR3M et les scores de
liaison de RRMScorer.
Finalement, la simulation en dynamique moléculaire (MD) est un autre outil informatique testé dans
cette thèse pour contribuer à la modélisation 3D des complexes RRM-ARN. Des protocoles MD
préliminaires mais prometteurs sont décrits au titre d’essais visant à distinguer entre les complexes
RRM-ARN à liaison forte ou faible.

Mots-clés: Bioinformatique structurale, domaine protéique, motif de reconnaissance de l’ARN
(RRM), conception de protéines, modélisation 3D, amarrage protéine-ARN, base de données, in-
tegration de données, workflow bioinformatique
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