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R É S U M É

Les êtres humains et leurs représentations sont omniprésents dans toutes les cultures.

Depuis la nuit des temps, nos ancêtres ont peint ou sculpté des myriades d’œuvres

d’art où figurent souvent des représentants humains, comme les peintures pariétales

de la grotte de Lascaux, il y a environ 20’000 ans, la Vénus de Milo, il y a 2’000 ans,

ou le David de Michel-Ange, il y a quelques siècles. Au cours des dernières décennies,

les technologies numériques ont véritablement révolutionné la manière dont les êtres

humains peuvent créer et accéder à la culture. De plus en plus d’outils sont apparus

pour aider tous les types d’artistes, y compris les concepteurs et les animateurs, en

particulier pour accroître leurs capacités créatives et le réalisme de leurs œuvres d’art

tout en réduisant les coûts de production. Par exemple, des personnages virtuels ont

donné vie de manière très convaincante à des créatures fictives non humaines comme

les Na’vi dans Avatar ou même à l’identité visuelle d’acteurs décédés depuis longtemps,

comme le personnage Grand Moff Tarkin d’abord interprété par l’acteur britannique

Peter Cushing en 1977 dans Star Wars : Episode IV – A New Hope, puis synthétisé Rogue

One en 2016, bien que l’acteur soit décédé en 1994 (voir figure 1.1).

Dans ce contexte, l’animation de personnages a une grande importance pour la qualité

globale des œuvres d’art. La façon dont les humains bougent est très variée et transmet

beaucoup d’informations sur l’activité réalisée, l’état d’esprit du personnage (intentions,

humeurs ou émotions), son identité (caractéristiques morphologiques et biologiques),

etc. En outre, la deuxième loi de Newton fait intrinsèquement du mouvement humain

un processus dynamique, tandis que notre compréhension de la biomécanique est

loin d’être complète. Pour ces raisons, l’animation de personnages humains reste un

véritable défi, même si d’énormes progrès ont été réalisés récemment. Il faut donc

faire des compromis pour équilibrer les coûts de production, le réalisme, la quantité

de travail manuel et le niveau d’expertise des animateurs, en fonction de la qualité

attendue. Par exemple, l’industrie du jeu s’appuie déjà sur l’animation de personnages
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assistée par ordinateur, mais les studios d’animation ont encore recours à une grande

quantité de travail manuel, par exemple dans la post-production de films à gros budget.

Le domaine de recherche de l’animation de personnages est actif depuis des décennies

pour atténuer ces compromis et rendre l’animation plus accessible, en commençant avec

des travaux pionniers tels que l’édition et la déformation de mouvements (p.ex. Witkin

et al. [188]), la squeletto-morphose de mouvements sur de nouveaux personnages (par

exemple Gleicher [44]), le contrôle de personnages à l’aide de graphes de mouvements

(p.ex. Kovar et al., Min et al. [85, 121]), etc.

l’émergence de l’apprentissage profond

Au cours de la dernière décennie, l’apprentissage profond s’est imposé comme un

moyen puissant d’améliorer les performances et les capacités de l’animation de per-

sonnages. Il a démontré une capacité sans précédent à traiter des tâches complexes

dans une grande variété de domaines non limités à l’animation, tels que la vision par

ordinateur, le traitement du langage naturel et bien d’autres encore. Les humains sont

surpassés par les algorithmes d’intelligence artificielle dans un nombre croissant de

tâches telles que la classification d’images [53] ou le jeu de Go [155]. Cela s’explique

notamment par le fait que les réseaux de neurones profonds sont de puissants ap-

proximateurs de fonctions, capables d’apprendre des modèles sophistiqués dans des

phénomènes complexes du monde réel à partir de données, qui sont de plus en plus

facilement capturées, stockées et traitées en amont. En effet, bon nombre des grandes

avancées récentes telles que les réseaux antagonistes génératifs ou les transformeurs

se sont accompagnées d’une augmentation du volume de données nécessaire pour

entraîner ces modèles de pointe. Pourtant, une fois la phase d’entraînement terminée,

les données d’entraînement sont rejetées, laissant des modèles compacts capables de

répondre aux exigences de performance des applications en temps réel ou de passer à

l’échelle des systèmes embarqués.

Dans le domaine de l’animation, les approches basées sur l’apprentissage profond

tentent de gérer la complexité des mouvements humains et offrent des perspectives

prometteuses pour des techniques d’animation moins coûteuses et plus rapides, avec
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une fidélité et des capacités créatives de plus en plus grandes. Cependant, ce type

d’approches peine à atteindre la qualité de travail obtenue par des animateurs qua-

lifiés et n’est pas massivement déployé dans les studios d’animation qui dépendent

encore largement d’animations réalisées à la main. Pour imiter les récentes percées de

l’apprentissage profond dans d’autres domaines, l’animation profonde pourrait avoir

besoin de davantage de données de mouvement de haute qualité pour alimenter les

récents modèles gourmands en données comme les transformeurs. En effet, les grandes

bases de données publiques unifiées de données de mouvement sont beaucoup plus

rares que dans d’autres domaines tels que les bases de données d’images en vision par

ordinateur, et moins faciles à agréger. Souvent, les systèmes de capture de mouvements

de haute qualité sont coûteux, nécessitent un environnement contrôlé empêchant les

captures dans la nature, et diffèrent quant aux articulations ou aux marqueurs corporels

capturés. La recherche en apprentissage profond pourrait avoir un rôle à jouer, soit en

améliorant les moyens d’unifier les bases de données existantes sur les mouvements

humains, soit en facilitant l’acquisition de données de haute qualité sur les mouvements,

par exemple grâce à l’estimation de pose. Pour ces raisons, l’apprentissage profond est

aujourd’hui au cœur de la recherche en animation de personnages, ainsi que de cette

thèse, de la collecte de grandes bases de données de mouvements jusqu’à la conception

et l’apprentissage de modèles puissants.

animation du squelette de personnages virtuels

L’animation traditionnelle de personnages virtuels 3D est généralement réalisée

en animant un squelette auquel on attache un maillage qui représente la surface du

corps, ce qui permet d’offrir un bon compromis entre qualité et complexité. La mise en

correspondance du squelette et du maillage offre des moyens pratiques pour animer le

personnage en 3D comme le font les fils pour une marionnette, et le maillage qui est

coloré et texturé permet de contrôler l’identité visuelle du personnage virtuel animés.

L’animation du squelette sous-jacent, qui est le sujet d’intérêt de cette thèse, permet

de donner vie au personnage virtuel. Ce sujet peut être divisé en trois catégories

principales :
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— la synthèse de mouvements, pour générer de nouvelles séquences de mouvement

avec les caractéristiques souhaitées.

— le contrôle de personnages, pour piloter et actionner en continu des personnages

virtuels à partir de contrôles spécifiques (généralement pilotées par l’utilisateur).

— l’édition de mouvements, pour combiner, transférer, enrichir, améliorer, nettoyer,

etc. des séquences de mouvements existantes.

La synthèse de mouvements s’efforce de créer de nouvelles séquences de mouvement

plausibles sur le plan perceptif, généralement hors ligne, à partir de paramètres bas

niveau tels que des variables latentes ou des paramètres de plus haut niveau tels

que le style souhaité, les variations affectives ou un ensemble de poses clés éparses

à interpoler ou à extrapoler. En revanche, le contrôle des personnages se réfère par

définition au contrôle et à l’actionnement en ligne de personnages virtuels répondant

aux flux d’entrée de l’utilisateur. Parmi les cas d’utilisation typiques du contrôle des

personnages, on peut citer les jeux vidéo, où des contrôles haut niveau de l’utilisateur

pilotent un personnage virtuel censé se déplacer de manière fluide et naturelle dans

l’environnement du jeu et s’y adapter, tout en effectuant différentes actions telles que

la saisie et la manipulation d’objets. Enfin, l’édition de mouvements se concentre sur

le traitement de séquences de mouvements existantes plutôt que sur la production

de nouvelles séquences de mouvements via le contrôle ou la synthèse. Il regroupe

différentes tâches, y compris la manipulation de caractéristiques de haut niveau, telles

que le transfert du style d’une séquence de mouvements à une autre, ou le transfert

des mouvements d’un personnage à un autre avec une morphologie ou une structure

différente. L’édition de mouvements comprend également toutes sortes d’approches

visant à améliorer des séquences de mouvements existantes, par exemple en supprimant

des artefacts tels que du bruit.

Il y a une dizaine d’années, des méthodes reposant sur l’apprentissage profond

sont apparues et n’ont cessé de se développer dès lors dans tous ces domaines. Ces

dernières années, ces approches ont ponctuellement commencé à atteindre la qualité

des techniques traditionnelles d’animation. Les prochaines étapes consisteront alors à

surpasser complètement les flux de travail de l’animation traditionnelles, en améliorant

tous les composants des systèmes d’animation pour synthétiser, contrôler et traiter
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le mouvement des personnages virtuels, dans le but d’atteindre, et éventuellement

de surpasser, la qualité du travail manuel des animateurs qualifiés, ce qui serait

particulièrement précieux sur des tâches manuelles peu créatives et fastidieuses (par

exemple, les personnages d’arrière-plan).

objectifs

Les objectifs de cette thèse sont doubles : premièrement, identifier et surmonter les

obstacles actuels dans l’animation de personnages humains squelettiques basée sur

l’apprentissage profond, afin d’éviter d’atteindre la qualité de travail des animateurs

qualifiés. Deuxièmement, explorer les méthodes de pointe prometteuses en appren-

tissage profond pour surmonter ces obstacles et apporter de nouveaux outils à la

communauté de l’animation du squelettique de personnages virtuels afin d’améliorer

le traitement des séquences de mouvements.

En particulier, nous avons d’abord exploré le goulot d’étranglement que constitue

la disponibilité limitée des données de mouvement sous deux angles différents : tout

d’abord, l’acquisition de données de mouvement pour augmenter le volume et la

diversité des données de mouvement de haute qualité dans la nature. À cette fin, nous

avons envisagé l’utilisation de modèles génératifs profonds pour améliorer et enrichir

les séquences de mouvements estimées à partir de vidéos avec des connaissances a

priori. Deuxièmement, l’unification des bases de données de mouvement existantes,

par exemple pour tirer parti à la fois des aspects spécifiques de petites bases de

données (par exemple les étiquettes de style) et de la diversité et du volume des

bases de données plus importantes. Afin de faciliter l’utilisation conjointe de données

de mouvement provenant de différentes sources (qui est difficle principalement en

raison des différences structurelles et morphologiques du squelette des personnages),

nous avons également exploré une nouvelle architecture polyvalente permettant de

séparer des caractéristiques abstraites du mouvement et de caractéristiques liées à la

structure et et à la morphologie du squelette. Enfin, nous nous sommes également

penchés sur l’amélioration des séquences de mouvement existantes, en particulier pour

résoudre les artéfacts de footskate, un problème de longue date en animation. En bref, le
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footskate est une famille d’artefacts présents dans les séquences de mouvement lorsque

les mouvements des pieds ne sont pas cohérents par rapport au sol et apparaissent

facilement dans les sorties des réseaux de neurones artificiels. Ces artéfacts nuisent

fortement à la qualité d’un certain nombre d’approches dans tous les domaines de

l’animation du squelette de personnages virtuels et empêchent de s’appuyer sur de

telles méthodes imparfaites.

structure

Toutz d’abord, nous faisons un aperçu approfondi pertinante pour cette thèse dans

le chapitre 2. En nous concentrant sur l’animation du squelette de personnages virtuels

basée sur l’apprentissage profond, nous commençons par une vue d’ensemble des

problèmes bas niveau rencontrés lors du traitement des données de mouvement humain

avec des réseaux de neurones profonds, incluant les représentations du mouvement

et les bases de données, ainsi que l’apprentissage de caractéristiques spatiales et

temporelles du mouvement. Ensuite, nous couvrons les méthodes de pointe en synthèse

de mouvement, en contrôle de personnages et en édition de mouvement dans des

sections distinctes. D’autres travaux connexes spécifiques, comme les modèles profonds

de pointe importants pour certaines parties de cette thèse, sont traités dans chaque

chapitre correspondant.

Ensuite, nous présentons dans le chapitre 3 une nouvelle approche visant à amé-

liorer la qualité et le niveau de détail de l’estimation de pose humaine, qui s’efforce

de capturer le corps humain avec un équipement limité (souvent une seule caméra

monoculaire). Étant donné que de nombreuses approches de l’estimation de pose

humaine en 3D décomposent le problème en estimation 2D suivie puis essayent d’in-

férer la profondeur, nous proposons une étape intermédiaire supplémentaire pour

compléter et suréchantillonner les articulations des séquences de pose estimées en 2D,

dans l’espoir d’améliorer, d’enrichir et de désambiguïser les séquences de poses en

2D pour faciliter l’étape d’inférence de la profondeur. À cette fin, nous apprenons une

représentation profonde des séquences de poses en 2D, que nous exploitons ensuite

en y projetant des séquences de pose incomplètes avec un nombre inférieur d’articula-

7



tions, ce qui nous permet de reconstruire finalement les séquences de poses complètes

et suréchantillonnées qui y correspondent, ainsi qu’avec une cohérence temporelle

améliorée.

Dans le chapitre 4, nous proposons une nouvelle représentation profonde polyvalente

pour unifier les séquences de mouvement avec différentes topologies et morphologies

de squelette. Étant donné les variations d’emplacement, de nombre et d’interconnexion

des articulations entre les systèmes, les méthodes et les bases de données en animation,

notre objectif est d’accroître leur interopérabilité avec une représentation abstraite du

mouvement indépendante des caractéristiques structurelles et morphologiques du

squelette. Pour atteindre cet objectif, nous concevons une architecture d’autoencodeur

dédiée basée sur les transformeurs qui permet de traiter des séquences de mouvement

d’entrée et de sortie avec un nombre variable d’articulations et en conditionnant à la fois

l’encodage et le décodage sur le squelette. Notre modèle a de multiples applications,

notamment le rééchantillonnage des articulations ou le transfert d’un mouvement d’un

squelette source à un squelette cible, c’est-à-dire le retargeting.

Finalement, dans le chapitre 5, nous nous attaquons au nettoyage du footskate, un

problème de longue date en animation. Les artefacts de footskate consistent typique-

ment en des glissements de pieds par rapport au sol qui sont facilement introduits lors

de toute étape de traitement de séquences de mouvements. Ces artéfacts nuisent forte-

ment au réalisme perçu des animations [138] et requièrent la connaissances des phases

de contacts des pieds pour être nettoyés. Comme les approches traditionnelles reposent

généralement sur une annotation manuelle des contacts de pieds, notre première contri-

bution ici est une base de données unique en son genre de mouvements synchronisées

avec des données sur la pression des pieds exercées sur le sol, servant de vérité terrain

physique pour les contacts de pieds. Ensuite, nous nous appuyons sur cette base de

données pour entraîner un réseau de neurones profond à détecter les contacts de

pieds, une étape nécessaire pour la résolution du footskate. La principale nouveauté

est l’utilisation des forces de réaction du sol - qui sont estimées à partir des séquences

de mouvements - comme représentation alternative aux contacts binaires pour mieux

capturer les interactions physiques entre les pieds et le sol, à partir desquelles les

contacts entre les pieds sont calculés. Nous démontrons que notre approche est plus
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performante que les solutions heuristiques traditionnellement utilisées. Enfin, nous

proposons une approche pour supprimer les artefacts liés au footskate. Conformément

aux approches récentes, le footskate est nettoyé en imposant des contraintes sur les

pieds pendant les phases de contact (détectées au préalable), à l’aide d’un algorithme

de cinématique inverse qui optimise itérativement les angles des articulations pour

satisfaire les contraintes. Nous nous appuyons en outre sur notre modèle profond pour

préserver les forces de réaction du sol pendant l’optimisation et maintenir la dynamique

du mouvement globalement cohérente.

perspectives

Dans cette thèse, nous avons exploré des approches dans le but général d’amélio-

rer les systèmes basés sur l’apprentissage profond pour l’animation du squelette de

personnages virtuels. Dans ce qui suit, nous présentons des perspectives de recherche

possibles pour la suite de notre travail. Tout d’abord, nous proposons des perspectives à

court terme, des améliorations possibles et des expériences qui découlent naturellement

du travail présenté dans cette thèse. Ensuite, nous suggérons un ensemble de directions

possibles pour étendre notre travail en s’inspirant de la littérature existante dans le

domaine de l’animation de personnages et au-delà. Enfin, nous ouvrons la discussion

sur des perspectives à long terme qui nécessitent de résoudre plusieurs défis et de

repenser une partie des paradigmes actuels de l’animation de personnages.

Perspectives à court terme

Dans les chapitres 3 et 4, nous avons présenté deux approches reposant sur des

représentations profondes du mouvement. Dans la seconde, nous avons proposé une

représentation abstraite du mouvement indépendante de la topologie et de la mor-

phologie du squelette. Cependant, comme indiqué dans la section 4.5, notre modèle

présente certaines limites en ce qui concerne les variations morphologiques, y compris

une diminution des performances sur les morphologies non humaines.
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Une première perspective serait d’étudier si le modèle proposé est capable ou non

d’encoder avec précision les morphologies humaines et humanoïdes dans une seule

représentation unifiée du mouvement. En d’autres termes, est-il possible d’unifier le

mouvement de personnages humanoïdes (avec deux jambes, deux bras et une tête,

mais des proportions corporelles éventuellement exagérées) dans une représentation

profonde apprise selon notre approche ? En outre, les personnages non humanoïdes

tels que les quadrupèdes pourraient également être étudiés dans le cadre de travaux

futurs. Une approche simple et efficace consisterait à diversifier l’ensemble des données

d’apprentissage au-delà des séquences de mouvements humains. Cependant, d’autres

changements plus complexes pourraient être nécessaires pour traiter les personnages

humanoïdes ou d’autres types de personnages, et sont présentés dans les perspectives

à moyen terme ci-après.

Une autre limite de notre travail est que des artefacts de footskate sont susceptibles

d’être introduits dans certains cas. À l’heure actuelle, ce problème concerne la plupart,

sinon la totalité, des modèles de mouvement profond utilisés pour produire ou traiter

des données de mouvement. Une approche possible pour améliorer la situation serait

d’introduire des connaissances sur les interactions entre les pieds et le sol. Par exemple,

cela pourrait être possible en introduisant une certaine supervision en ce qui concerne le

contact des pieds ou les forces de réaction du sol au cours de l’apprentissage. Cela peut

être directement mis en œuvre en utilisant la base de données de mouvement proposée

dans le chapitre 5 dans laquelle des données de mouvement sont synchronisées avec des

données de semelles de pression. Il existe plusieurs façons d’ajouter de la supervision

et qui pourraient être combinées. Par exemple : les contacts des pieds avec le sol

pourraient être utilisés pour mesurer et minimiser le footskate ; les forces de réaction

du sol ou les contacts pourraient être estimés à partir de la représentation latente de

séquences de mouvement ; une fonction de perte sur la cohérence des forces de réaction

du sol ou des contacts pourrait être appliquée sur les forces ou contacts estimés à partir

de séquences de mouvements reconstruites ou retargetées. En outre, la représentation

unifiée du mouvement proposée dans le chapitre 4 et le modèle de détection des contacts

avec les pieds proposé dans le chapitre 5 pourraient être directement combinés pour

nettoyer automatiquement les artefacts de footskate. Le premier modèle transférerait
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les séquences de mouvement vers la topologie de squelette du second pour ensuite

obtenir les contacts des pieds avec le sol nécessaires au nettoyage du footskate.

Enfin, la quantité d’artefacts de footskate introduits est rarement évaluée. Les raisons

à cela sont la rareté des données de mouvement annotées avec des contacts de pieds

précis, et la difficulté d’obtenir des contacts de pieds de vérité au sol précis. La base

de données et l’approche de détection des contacts avec les pieds proposées dans le

chapitre 5 pourraient être exploitées pour définir une procédure d’évaluation standard

du footskate.

Perspectives à moyen terme

Un défi croissant dans l’animation de personnages est de proposer des méthodes

suffisamment polyvalentes pour être utilisables sur des personnages présentant de

grandes variations topologiques et morphologiques, et éventuellement généralisables

au-delà des personnages humanoïdes. L’extension de certaines des représentations

profondes du mouvement proposées dans cette thèse pour gérer de telles variations

pourrait donc nécessiter de repenser le mécanisme de conditionnement que nous

avons proposé. En particulier, nous avons actuellement proposé d’utiliser des poses

neutres comme modèles de squelette, représentées par la position des articulations, ce

qui peut être limitant pour capturer pleinement les caractéristiques morphologiques

et topologiques. Bien que ce problème puisse être résolu par une conception plus

réfléchie, nous pensons qu’une solution élégante consisterait à apprendre en plus

une représentation profonde des topologies et morphologies du squelette ainsi qu’une

représentation profonde du mouvement. Une telle approche aurait l’avantage d’éviter la

prédéfinition manuelle des modèles de squelettes tout en atténuant les limites de notre

approche actuelle. Pour élargir encore le champ d’application de notre approche, il

faudrait peut-être aussi envisager de personnaliser les modèles de squelette (prédéfinis

ou appris) pour chaque sujet, c’est-à-dire de régler plus finement notre mécanisme de

conditionnement pour mieux saisir les variations morphologiques fines.

Au-delà des modèles de squelette, de nouveaux modèles d’apprentissage profond

peuvent être exploités pour améliorer l’apprentissage. Par exemple, les modèles de
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diffusion [159] sont très attrayants pour construire des représentations profondes utiles

pour de multiples tâches. En effet, ces modèles surpassent les réseaux antagonistes

génératifs sur la synthèse d’images, et ont également été prometteurs dans une variété

de domaines [197]. Enfin, leur nature progressive pourrait être utile à de nombreuses

applications qui peuvent être formulées comme des transitions progressives. Il s’agit

notamment de la plupart des tâches de complétion, telles que la complétion de mouve-

ment, l’in-betweening ou le suréchantillonnage des articulations, mais aussi des tâches

de nettoyage telles que le débruitage ou le nettoyage du footskate. La nature progressive

des modèles de diffusion pourrait même étendre la portée des problèmes actuels. Par

exemple, les modèles de diffusion de mouvement à mouvement (par analogie avec

les modèles de diffusion d’image à image [146]) pourraient apprendre à retargeter

progressivement une séquence de mouvement d’un personnage à un autre, permettant

notamment la morphose de personnages dans les séquences de mouvement, c’est-à-dire

le passage progressif d’un personnage à un autre au fil du temps.

Il existe également de multiples perspectives en matière de nettoyage et de prévention

des artefacts dans les séquences de mouvement de sortie. Dans le contexte du nettoyage

du footskate en particulier, l’une des limitations provient de la représentation binaire

des contacts entre les pieds, qui sont ensuite généralement utilisés pour appliquer les

contraintes liées aux pieds à l’aide d’algorithmes de cinématique inverse. En effet, les

interactions entre les pieds et le sol ne sont pas triviales et les modéliser comme étant

en contact ou hors contact est trop simplifié et conduit à ajuster manuellement les

algorithmes de cinématique inverse pour des situations spécifiques afin d’éviter de

remplacer le footskate par d’autres types d’artefacts. Pour résoudre ce problème, il est

possible d’utiliser une représentation plus fine des interactions entre les pieds et le sol,

telle que les forces de réaction du sol, et de concevoir un algorithme de cinématique

inverse ciblant spécifiquement le nettoyage du footskate, par exemple en imposant des

profils cibles des forces de réaction du sol au lieu de phases binaires de contact. C’est

un aspect que nous n’avons que très peu exploré dans cette thèse, mais qui, selon nous,

présente un potentiel prometteur pour de nouvelles approches. Une autre direction

ambitieuse pour prévenir les artefacts de footskate serait de modéliser explicitement les

interactions entre les pieds et le sol en même temps que le mouvement, par exemple en
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construisant un plongement commun des forces de réaction du sol et des séquences de

mouvement, de manière similaire aux plongements sémantiques visuels en vision par

ordinateur.

Perspectives à long terme

À long terme, nous pensons que l’animation de personnages pourrait devoir chan-

ger de paradigme pour rendre la synthèse et l’édition d’animation plus accessibles.

Cela pourrait inclure le remplacement des interfaces homme-machine actuelles dans

les systèmes d’animation par des commandes sémantiques plus intuitives pour les

concepteurs et les artistes. Dans cette direction, les plongements sémantiques sont

prometteurs. En effet, ils ont récemment démontré des capacités impressionnantes à

l’intersection du traitement du langage naturel et de la vision par ordinateur, comme

le nouveau modèle de génération d’images d’OpenAI DALL·E 2 [141] qui s’appuie

sur une version de GPT-3 [22] modifiée pour la synthèse d’images. En particulier, les

plongements sémantiques basés sur le langage naturel semblent être très efficaces

pour produire des représentations puissantes et capturer les informations nécessaires

pour les applications impliquant des interactions homme-machine. Dans le domaine

de l’animation de personnages, de nombreuses applications incluent des interactions

homme-machine à un moment ou à un autre, comme les systèmes de synthèse et

d’édition de mouvements pilotés par des artistes et des animateurs, ou les personnages

de jeux-vidéo contrôlés par les joueurs. Par exemple, par analogie avec les capacités des

modèles actuels de synthèse d’images, nous pourrions imaginer produire rapidement

des ébauches de séquences de mouvement à partir de descriptions textuelles, telles que

“un personnage de grande taille qui court pendant 4 secondes puis accélère en sautant

au-dessus d’un obstacle”. Cependant, la construction d’un plongement sémantique

pour l’animation de personnages basée sur le langage naturel nécessiterait de résoudre

plusieurs problèmes difficiles. Ces défis comprennent la nécessité de gros volume de

données pour l’apprentissage des modèles récents, tels que GPT-3. Dans le cas des

images associées à des descripteurs textuels, des milliards d’exemples sont disponibles

sur internet. En revanche, les données de mouvement sont actuellement beaucoup

13



plus rares que les images. En outre, les séquences de mouvement ne sont pas souvent

annotées avec des descripteurs textuels dans les bases de données existantes, ce qui est

nécessaire pour construire un tel plongements sémantiques du langage naturel et du

mouvement de personnages. Un autre défi important est que des modèles de langage

naturel dédiés peuvent être nécessaires, comme pour DALL·E 2. Même si cela peut

nécessiter moins de complexité que des modèles de langage naturel généraux comme

GPT-3, peu de travaux ont été réalisés dans cette direction. Une tentative récente est le

contrôleur proposé par Juravsky et al. [73].

Nous pensons que les contributions présentées dans cette thèse constituent un

premier pas dans ces directions et qu’elles ouvriront la voie à de nouvelles approches

pour l’animation de personnages virtuels basées sur des approches d’apprentissage

profond.
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in 2016 (right), 22 years after Peter Cushing passed away. . . . . 36
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Figure 2.3 In a variational autoencoder (VAE), a motion sequence is mapped
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trained, feeding the decoder with samples drawn from the prior

generates stochastic motion sequences. . . . . . . . . . . . . . . . 65
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Figure 2.4 A generative adversarial network (GAN) consists of two networks:

the generator produces synthetic motion samples from random

seeds, the discriminator tries to differentiate them from real ones

drawn from the training dataset. The two modules are trained

jointly, aiming at an equilibrium where the generator outputs

cannot be distinguished from the training data. . . . . . . . . . . 67

Figure 2.5 Overall idea of the mixture-of-experts scheme [99, 161, 163, 207]:

a gating network first computes blending weights for a number

of expert networks, based on a number of features extracted from

the current frame xt. Each expert specialises in a particular move-

ment. They are then blended together to dynamically compute

the weights of a motion prediction network, which outputs in-

formation relevant to the next frame xt+1 including the pose of

the animated character. This output is typically fed back into the

network (autoregression) at time t + 1. . . . . . . . . . . . . . . . 74

Figure 3.1 Illustration of our method applied to human pose estimation:

the yellow 12-joint skeletons (top) depicts poses estimated by

AlphaPose [192] at different timestamps. Our approach completes
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to enrich estimated pose sequences, and yields the corresponding
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five images of the jumper at different frames have been overlaid

as foreground. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
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Figure 3.2 Coarse representation of our deep generative model. The upper

right part is the basis of our model: a generative adversarial

network (GAN) with generator G and discriminator D operating

on motion sequences with higher number of joints. Moreover, we

complement our model with encoder E to map motion sequences

with lower number of joints to the latent space of the GAN. Pz

denotes the prior distribution while P(h)
data and P(l)

data denote motion

data distributions at with higher and lower number of joints,

respectively. The latter is sampled by discarding predefined joints

from motion sequences sampled from the former. . . . . . . . . . 93

Figure 3.3 Illustration of how our model internally represents a pose se-

quence whose topology is depicted on the left part. The right

part shows how joint coordinates are arranged, with body parts

ordered following the human skeleton from hands to feet. x1,

y1, x2 and y2 denote the 2D coordinates of left and right joints,

respectively, for symmetrical joints (e.g. hips) and duplicated 2D

coordinates of asymmetrical joints (e.g. pelvis). . . . . . . . . . . 94
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Figure 3.5 Detailed description of our network architecture. Notations: Con-
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Figure 3.6 Qualitative example of the influence of overlapping temporal

chunks. This subset of four consecutive frames in a longer se-

quence is inpainted with no overlap (top) and half overlap (bot-

tom). The frames are located at the end (first two) and the be-

ginning (last two) of two consecutive chunks. Note the temporal

discontinuity of joint locations (e.g. head top, elbows, ankles) in

the sequence inpainted with no overlap at the chunk boundary

(dashed red line, top). The temporal consistency is much better

with half overlap (bottom). . . . . . . . . . . . . . . . . . . . . . . 104

Figure 3.7 Example of a limb (right forearm) occluded by the subject’s body

inaccurately estimated by AlphaPose [192] but recovered by our

method based on human motion priors. Note that these images

have been intentionally whitened except for the area around the

occlusion for clarity purposes. . . . . . . . . . . . . . . . . . . . . 106

Figure 4.1 Overview of our model which is a transformer-based autoencoder

whose encoder E and decoder D are conditioned on skeleton tem-

plates to control morphological and topological features. Skeleton

templates consist in neutral poses (see Section 4.3.2). During train-

ing, our model is guided by the reconstruction loss Lrec as well as

the temporal bone lengths consistency loss Lrbl (see Section 4.3.4).
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that can be performed by setting the decoding template to the

target character skeleton, as well as motion cleaning by encoding

and decoding with the same template as our decoder has learnt

to produce clean motion sequences. . . . . . . . . . . . . . . . . . 117

Figure 4.2 Illustration of a typical skeleton template used to condition our

model, consisting in a neutral standing pose with arms along the

body (i.e. N-pose) with the pelvis at the origin and transverse

(green) and coronal (blue) planes aligned with XY and XZ planes,

respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
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Figure 4.3 Illustration of the spatial positional encoding used in our encoder,

performed via joint-wise concatenation of intermediate features

of skeleton template and motion. Hence, for each joint, motion

features are registered to template features of the same joint (e.g.

left wrist highlight in yellow), telling the network which piece of

information is associated to which joint. Thereby, the skeleton

template acts as a reference frame for motion features. . . . . . . 121

Figure 4.4 Illustration of our encoder architecture: output latent code (right)

is computed from input template (top-left) and motion (bottom-

left) through the different network layers (dark cyan rounded

rectangles) and other functions (see top-right caption), following

black arrows. Coloured rectangular slices depict tensor shapes

of template (red), motion (blue), query token (cyan) and latent

(grey) features at different points in the network. Colour gradients

across slices illustrate varying features over time dimension. . . 122

Figure 4.5 Illustration of our decoder architecture: output motion sequence

(right) is computed from input template (bottom-left) and latent

code (top-left) through the different network layers (dark red

rounded rectangles) and other functions (see top-right caption),

following black arrows. Coloured rectangular slices depict tensor

shapes of template (red), motion (blue) and latent (grey) features

at different points in the network. Colour gradients across slices
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Figure 4.6 Illustration of the different skeleton topologies present in the

dataset we gathered, and their structural variations, represented

by the corresponding predefined neutral poses. The left-most

five columns show front and side views of the different topolo-

gies. Each one is associated to a subset of the data (from left

to right: Human3.6M [66], MPI-INF-3DHP [119], AMASS [111],

PSU-TMM100 [148] and UnderPressure [125]). The right-most

column gives an insight about topological variations by overlaying
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Figure 4.7 Illustration of the representation accuracy of our deep motion

representation on a challenging motion sequence, consisting in a

speed vault to cross some fence or wall, depicted in white. The

ground truth test motion sequence (top row, green) is given as

input to our model which encodes and then decodes it to get

the corresponding reconstructed motion sequence (middle row,

red). The bottom row shows both ground truth and reconstructed

motion sequences overlaid to emphasise reconstruction errors. . 134

Figure 4.8 Quantitative evaluation of our model on motion denoising. Gaus-

sian noise is purposely added to clean motion sequences from our

validation set. The resulting noised motion sequences are then

encoded and decoded using our model to perform denoising. For

an entire range of levels of noise, positional error on denoised se-

quences is plotted vertically against the positional error observed

in noised sequences, horizontally. The top axis indicates the stan-
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1
I N T R O D U C T I O N

Humans and their representations are ubiquitous in all cultures. Since the beginning

of times, our ancestors have painted or sculpted myriads of works of art often with hu-

man representatives portrayed like the parietal wall paintings in Lascaux Cave about 20

thousands years ago, the Venus de Milo 2 thousands years ago or Michelangelo’s David

a few centuries ago. In the past decades, digital technologies have truly revolutionised

the way humans can create and access culture. More and more tools have appeared to

assist all kind of artists including designers and animators, especially to increase their

creative capabilities and the realism of their artworks while reducing production costs.

For instance, synthetic characters have very convincingly brought to life non-human

fictional creatures like the Na’vi in Avatar or even visual identity of long time deceased

actors like Grand Moff Tarkin in Rogue One in 2016 portrayed by the British actor Peter

Cushing even though he passed away in 1994, as illustrated in Figure 1.1.

Figure 1.1 – Grand Moff Tarkin, a fictional character in the Star Wars franchise, first played by
Peter Cushing in Star Wars: Episode IV – A New Hope in 1977 (left) and synthesised
in Rogue One: A Star Wars Story in 2016 (right), 22 years after Peter Cushing passed
away.

36



introduction 37

In that context, character animation has a great importance for the overall quality of

the artworks. The way humans move is very diverse and conveys a lot of information

about the activity performed, the character’s state of mind, such as intentions, moods or

emotions, the character’s identity, such as morphological and biological characteristics,

etc., which all have to be consistent together with other visual aspects. In addition,

Newton’s second law of motion inherently makes human motion a dynamic process,

while our understanding of biomechanics is far from being comprehensive. For these

reasons, animating human characters is still very challenging, even though huge

progresses have been made recently. Therefore, compromises have to be made to

balance between production costs, realism, amount of manual work, and animators’

level of expertise, depending on the expected quality. For instance, the gaming industry

already relies on computer-assisted character animation but animation studios still

resort to a lot of manual work, e.g. in the post-production of high-budget films. The

research area of character animation has been active for decades to mitigate these

compromises and make animation more accessible, starting from pioneering works

such as editing and deforming motion examples (e.g. Witkin et al. [188]), retargeting

motions to new characters (e.g. Gleicher [44]), controlling characters using motion

graphs (e.g. Kovar et al., Min et al. [85, 121]), etc.

the emergence of deep learning

Over the last decade, deep learning has emerged as a powerful means to enhance the

performance and capabilities of character animation. It has shown an unprecedented

ability to address complex tasks in a wide variety of domains not restricted to animation,

such as computer vision, natural language processing and many more. Humans are

outperformed by artificial intelligence algorithms in a growing number of tasks such as

classifying images [53] or playing Go [155]. This is notably due to the fact that deep

neural networks (DNNs) are powerful function approximators, able to learn sophisticated

patterns in complex real-world phenomena from data, which is increasingly easily

captured, stored and processed upstream. Indeed, many of the recent great advances

like GANs or transformers have been accompanied with an increase of data volume
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needed to train those state-of-the-art models. Still, once the training phase is complete,

training data is discarded, leaving compact models that are able to meet performance

requirements of real-time applications or to scale to embedded systems.

In animation, deep learning (DL)-based approaches attempt to handle the human

motion complexity and provide promising perspectives for cheaper and faster animation

techniques with more and more fidelity and creative capabilities. However, this kind of

approaches struggle to reach the quality of work obtained by skilled animators, and

are not widely deployed in animation studios which still largely rely on hand-crafted

animations. To imitate recent breakthroughs of deep learning in other domains, deep

animation might need more high-quality motion data to feed recent data-greedy models

like transformers. Indeed, large public unified databases of motion data are much more

scarce than in other domains such as image databases in computer vision, and less

easily aggregated. Often, high-quality motion capture systems are expensive, require

controlled environment preventing in-the-wild captures, and differ in which joints

or body markers are captured. Research in deep learning could have a role to play,

either by improving ways to unify existing human motion databases, or by facilitating

high-quality motion data acquisition e.g. through human pose estimation. For these

reasons, deep learning is nowadays central to research in character animation, as well as

to this thesis, from the gathering of large motion databases to the design and learning

of powerful models.

skeletal character animation

Traditional animation of 3D virtual humans typically uses 3D rigged skeletons with

skinned meshes to provide a good trade-off between quality and complexity. Rigging

offers convenient ways to manipulate 3D models as strings do for a puppet, while

skinning handles the visual identity by binding coloured and textured 3D meshes to

animated characters. Characters are then brought to life by animating their underlying

skeleton, the topic of interest in this thesis, called skeletal character animation hereafter.

This topic can be divided into three main categories:

— Motion synthesis, to generate new motion sequences with desired characteristics.
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— Character control, to continuously drive and actuate characters from specific

(typically user-driven) controls.

— Motion editing, to combine, transfer, enrich, enhance, clean, etc. existing motion

sequences.

Motion synthesis strives to create novel perceptually plausible motion sequences gen-

erally in an offline manner from low-level parameters such as latent variables or

higher-level parameters e.g. desired style, affective variations, or a set of key sparse

poses to be semantically interpolated or extrapolated. In contrast, character control

refers by definition to online control and actuation of virtual characters responding to

user input flows. Typical use cases of character control include video games, where

high-level user controls drive a virtual character expected to seamlessly move into and

adapt to the game’s environment while performing different actions such as grabbing

and manipulating objects. Finally, motion editing focuses on processing existing motion

sequences rather than producing novel motion sequences through control or synthesis.

It regroups different tasks including the manipulation of high-level features, such as

transferring the style from one motion sequence to another, or transferring the motion

of one character to another with different morphology or structure. Motion editing also

includes all kind of approaches to enhance existing motion sequences, e.g. by removing

artefacts such as noise.

About a decade ago, methods relying on deep learning appeared and have continu-

ously grown since then in all these topics. In the last few years, these approaches have

punctually begun to reach traditional animation quality. The next steps are then to fully

outperform traditional animation pipelines, by upgrading all components of animation

systems to synthesise, control, and process the motion of virtual characters, with the

aim of reaching, and eventually outperforming skilled animators’ manual work quality

which is valuable especially for the tedious manual tasks including little creativity (e.g.

background characters).
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objectives

Revolving around motion editing, the goals of this thesis are twofold. Firstly, to

identify and tackle current obstacles in DL-based skeletal human character animation

preventing to reach skilled animators’ quality of work. And secondly, to investigate

promising state-of-the-art methods in deep learning to tackle those obstacles and bring

new tools in the community of skeletal character animation to enhance motion data

processing.

In particular, we first explored the bottleneck constituted by the limited availability of

motion data from two different angles: first, the acquisition of motion data to increase

the volume and diversity of high-quality in-the-wild motion data. To this end, we

considered the use of deep generative models to improve and enrich motion sequences

estimated from video with prior knowledge. Second, the unification of existing motion

databases, e.g. to leverage both specific aspects of small databases (e.g. style labels) and

the diversity and volume of larger databases. To alleviate current issues to mix motion

data from different sources (mainly due to structural and morphological differences

of characters’ skeleton), we also investigated a novel versatile architecture to abstract

out pure motion features from skeleton structure and morphology features. Finally,

we also delved into the enhancement of existing motion sequences, especially toward

solving the long-standing problem in character animation known as footskate. In short,

footskate is a family of artefacts present in motion sequences when foot movements are

not consistent with the ground, which easily appear in neural networks outputs and

strongly hurt the quality of a number of approaches in all topics in skeletal character

animation and prevents from building upon such imperfect methods.

structure

First, we provide an extensive review of the literature relevant to this thesis in

Chapter 2. Focused on skeletal character animation based on deep learning, we begin

with an overview of low-level concerns encountered when processing human motion

data with DNNs, including motion representations and databases, as well as spatial
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and temporal features learning. Then, we cover state-of-the-art methods in motion

synthesis, character control and motion editing in separate sections. Other specific

related works, like state-of-the-art deep models important to parts of this thesis, are

treated within each corresponding chapter.

Then, we present in Chapter 3 a novel approach intended to improve quality and

level of details of human pose estimation, which strives to capture human body with

limited equipment (often a single monocular camera). Since many approaches to 3D

human pose estimation broke down this problem into 2D pose estimation followed by

inverse mapping from 2D to 3D, we propose an additional intermediate step to this

common pipeline to complete and upsample joints of estimated 2D pose sequences,

hopefully to enhance, enrich, disambiguate 2D pose sequences before solving the

ill-posed problem of inverse mapping from 2D to 3D. To this end, we learn a deep

representation of 2D pose sequences, exploit it afterwards by projecting incomplete

input pose sequences with a lower number of joints into this representation and finally

reconstruct corresponding 2D pose sequences with completed and upsampled joints,

as well as improved temporal consistency.

In Chapter 4, we propose a novel versatile deep representation to unify motion

sequences with different skeleton topologies and morphologies. Given the variations in

locations, number and interconnections of joints across animation systems, pipelines

and databases, our goal is to increase their interoperability by abstracting pure motion

features out from structural and morphological features of the skeleton. To reach this

goal, we design a dedicated autoencoder architecture based on transformers which

handles input and output motion sequences with variable number of joints (potentially

different) and condition both encoding to and decoding from its latent space on the

skeleton, enabling to embed together motions with different skeleton topologies and

morphologies. Moreover, this framework has multiple other applications, including

the resampling of joints or the transfer of a motion from a source skeleton to a target

skeleton, i.e. motion retargeting (see Section 2.4.2).

Finally, in Chapter 5 we tackle the long-standing problem of footskate, ubiquitous

in character animation. Footskate artefacts are easily introduced during any motion

processing step e.g. motion retargeting, are highly detrimental to the perceived real-
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ism [138], and require foot contact labels to be cleaned up. As traditional approaches

typically rely on manually annotated foot contacts, our first contribution here is a novel

and unique database of motion data synchronised with pressure insoles data, serving as

a physical ground truth of foot contacts. Then, we leverage this database to train a deep

neural network to detect foot contacts, a necessary step in the resolution of footskate.

The main novelty is the use of ground reaction forces – which are estimated from

motion sequences – as a proxy representation to better capture the physical interactions

between feet and ground, from which foot contacts are computed. We demonstrate

that our approach outperforms traditional heuristics-based solutions. Finally, we pro-

pose a fully automatic workflow to remove footskate artefacts from motion sequences.

Following recent approaches, footskate is removed by enforcing foot constraints during

detected contact phases beforehand using an inverse kinematics (IK) algorithm which

iteratively optimises joint angles to satisfy the constraints. We additionally leverage

our deep model to preserve ground reaction forces during the optimisation and keep

motion dynamics globally consistent.

For improved global consistency and readability, the order in which the chapters are

presented in this thesis does not strictly follow the chronological order of publication.

In particular, Chapter 4 is based on works done towards the end of the thesis and not

yet published at the time of writing (see contributions below).

contributions

This thesis is based on the following contributions:

Article 1: Lucas Mourot, Ludovic Hoyet, François Le Clerc, François Schnitzler and

Pierre Hellier, “A Survey on Deep Learning for Skeleton-Based

Human Animation”, Computer Graphics Forum 41.1, 2021, pp. 122-157,

DOI: 10.1111/cgf.14426.

Article 2: Lucas Mourot, François Le Clerc, Cedric Thébault and Pierre Hellier, “JUMPS:

Joints Upsampling Method for Pose Sequences”, Proceedings of 2020 25th

International Conference on Pattern Recognition (ICPR), 2021, pp. 1096-1103,

DOI: 10.1109/ICPR48806.2021.9412160.
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https://www.doi.org/10.1109/ICPR48806.2021.9412160


introduction 43

— Presented at the 25th International Conference on Pattern Recognition
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Chapter abstract

Human character animation is often critical in entertainment content production, in-

cluding video games, virtual reality or fiction films. To this end, deep neural networks drive

most recent advances through deep learning. In this chapter, we propose a review of the

literature relevant to the rest of the thesis, i.e. state-of-the-art methods in skeletal human

character animation based on deep learning. First, we introduce motion data representations,

most common human motion datasets and how basic deep models can be enhanced to foster

learning of spatial and temporal patterns in motion data. Second, we cover approaches

creating new motion sequences, divided into motion synthesis and character control. Finally,

we provide an overview of motion editing, a topic at the heart of the thesis. The content of

this chapter mainly stems from our survey article on deep learning for skeletal character

animation (see Article 1). In particular, we restricted the content to the literature relevant

to the thesis, and completed and updated whenever novel works have been published since

then.
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2.1 introduction

As stated in the introduction of the thesis, human characters are ubiquitous in culture

and digital technologies have revolutionised in the past decades how we create and

access artworks. In entertainment content production, e.g. video games, virtual reality

or fiction films, the quality of human character animations is critical. Moreover, most

of the recent advances to enhance the performance and capabilities in this area rely

on deep learning, which outperforms statistical or other classical approaches that

were used about up to a decade ago. In this chapter, we review the literature of the

recent growing trend of deep learning in skeletal character animation, mainly focused

on humanoid characters. Skeletal here means using a representation derived from a

skeleton, as commonly used in the movie and game industries in combination with 3D

skinned meshes (see Section 2.2.1).

We begin with an overview of low-level concerns encountered when processing

human motion data with DNNs, presenting pose representations (Section 2.2.1) and

human motion datasets (Section 2.2.2) frequently used in the literature, as well as how

to efficiently and successfully learn spatial (Section 2.2.3) and temporal (Section 2.2.4)

features.

Then we cover in Section 2.3 the general task of generating new motion sequences.

We distinguish here two different families of applications interested in creating new

motion sequences which are motion synthesis (Section 2.3.1) and character control

(Section 2.3.2). Their main difference is that character control strives to dynamically

generate motions, continuously responding to user inputs while motion synthesis is

interested in synthesising new motion sequences in an offline fashion with all the

parameters known in advance.

Finally, Section 2.4 gathers motion editing approaches at large, i.e. methods aiming to

process or transform any aspects of existing motion data. Motion cleaning (Section 2.4.1)

enhances motion data, e.g. by removing noise or filling in missing information such as

marker or joint positions. Then, retargeting (Section 2.4.2) strives to transfer the motion

from a source character to a target character, while motion style transfer (Section 2.4.3)
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edits the style of a motion segment while preserving the action performed and the

character.

2.2 human motion representation, data and modelling

Choices of input and output spaces for DNNs are often impactful in deep learning

on the effectiveness of the learning phase and on what specific aspects of the data

will be retained. When dealing with human motion, the pose representation mainly

determines these input and output spaces. Moreover in DNNs, the computational

workflow can be structured around spatial and temporal aspects of motion. In this

section we explore the different human pose representations commonly encountered

in deep animation and their key strengths and weaknesses (Section 2.2.1), commonly

used datasets (Section 2.2.2), as well as DNN architectures structured with respect to

spatial (Section 2.2.3) and temporal (Section 2.2.4) domains.

2.2.1 Pose Representations

Traditional animation approaches typically use 3D rigged skeletons with skinned

meshes, which provides a good trade-off between quality and complexity. Rigging

offers convenient ways to manipulate 3D models as strings do for a puppet, while

skinning is the process of binding actual 3D meshes to animated characters. In that

framework, human motions are usually represented as sequences of poses separated

by constant time intervals whose rate generally ranges from 30 to 250 hertz. At

each time step, the state of the human body is then represented as a set of links (i.e.

bones) connected by joints. This skeletal representation is a good compromise for the

complexity and the diversity of human movements that can be represented. When bone

lengths are kept constant over time, the degrees of freedom (DOFs) are the orientations

of the bones, commonly expressed relative to their parent. In the following, we call

such a representation an angular pose representation, as opposed to a positional pose
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representation where the skeleton DOFs are the coordinates of the joint positions, which

does not explicitly constrain bone lengths to remain constant over time.

Positional Pose Representations

In a positional pose representation, each joint is directly represented by its position,

sometimes expressed at each time step in the body’s local coordinate system, which

allows the decomposition of the whole motion into the local movements of limbs with

respect to the body itself and the global movement of the body with respect to its

environment. Although different coordinate systems could be formulated to embed the

set of joint positions, positional pose representations almost always rely on the Cartesian

coordinate system. It has neither discontinuities nor singularities and constitutes a

convenient space for interpolation, visualisation and optimisation. Moreover, within

the framework described here, positional pose representations do not present some of

the limitations inherent to angular representations presented in the following section.

However, it suffers from some limitations related to the structure of human motions.

For instance, joint positions do not encode the information of bone orientations around

themselves which is often needed for concrete applications in animation, in order

to display more natural mesh deformations. Positional representations also do not

explicitly constrain bone lengths to remain constant over time, therefore requiring

reliance on additional constraints to ensure that the skeleton does not break apart. For

these reasons, communities closer to animation, such as computer graphics, rarely

use purely positional pose representations, while on the opposite, communities more

commonly involved in deep learning, such as computer vision, are more prone to

employ these representations.

Angular Pose Representations

Angular representations have been widely used in animation mainly because their

hierarchical nature allows straightforward orientation of any joint together with all

of its descendants, while keeping bone lengths constant. Indeed, the position of

each joint is described with respect to its parent as a 3D rigid transformation, often

decomposed into a variable rotation and a fixed translation, corresponding to the joint
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orientation and the bone dimensions respectively. Main differences among angular pose

representations are determined by the parameterisation of the rotations, however there

are also representations working at the level of rigid transformation parameterisations.

Formally, the set of all rotations of R3 equipped with the composition is the 3D

rotation group often denoted SO(3), standing for special orthogonal group of dimen-

sion 3. SO(3) can be identified with the group of orthogonal 3 × 3 matrices with

determinant 1 under the matrix multiplication. Similarly, the 3D special Euclidean

group whose elements are proper 3D rigid transformations (i.e. excluding reflections)

is SE(3) = SO(3)× R3. Both SO(3) and SE(3) are Lie groups, i.e. differentiable spaces

that locally resemble Euclidean space. Furthermore, a Lie algebra is associated to every

Lie group, called so(3) and se(3) for SO(3) and SE(3), respectively. Lie algebras are

vector spaces tangent to their Lie group at the identity element completely capturing

its local structure, making them compelling as representation spaces.

euler angles . The most intuitive parameterisation of SO(3) is probably Euler

angles, that represents a 3D orientation as three successive rotations around different

axes, e.g. yaw, pitch and roll. However, it suffers from the well-known gimbal lock

when two of the three rotation axes align, causing a DOF to be lost. Gimbal lock can

be avoided only if at least one rotation axis is limited to a range smaller than 180◦,

which is not always possible in practice. As a result, Euler angles are unsuitable for

IK, dynamics and spacetime optimisation [47]. Moreover, they do not work well for

interpolations since the space of orientations is highly nonlinear [47]. Finally, multiple

conventions exist for the axes considered, including their order, which requires to

define them formally in each application to avoid any ambiguity. For these reasons,

this representation is inappropriate for a lot of applications.

lie algebras . A popular angular pose representation in skeletal character ani-

mation consists in representing each joint rotation as an element of so(3), where the

direction and magnitude of the vector correspond to the axis and angle of the rota-

tion [47], respectively. Since such a vector is an element of so(3), the parameterisation is

defined by the exponential map from so(3) to SO(3) which can be efficiently computed
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with the Rodrigues’ formula [143]. This pose representation is often called exponential

map, and is sometimes confused with the so-called axis-angle representation that is

equivalent but separates the vector into a unit vector and a scalar describing the axis

and the magnitude of the rotation.

Since Lie algebras are locally linearised versions of their Lie group, so(3) is a com-

pelling space to work with elements of SO(3). However, as all parameterisations of

SO(3) in R3, the exponential map representation has singularities [47] leading to losing

a DOF in some parts of the representation space, even though these are located on the

spheres of radius 2kπ for k ∈ N+, since a rotation of 2π about any axis is equivalent to

no rotation. Therefore, this representation is often well-suited in animation since control

and simulation deal with small time steps and thus with small rotations that stay inside

the sphere of radius 2π, far from the singularities. It has been employed in early works

in deep animation (e.g. [167, 168]), and broadly exploited for motion synthesis (e.g.

[8, 28]), as well as in other topics (e.g. [9, 58, 69, 118]). However, as quality needs

increase, long-term correlations are more and more important and inevitably imply

larger rotations, getting close to the singularities of the parameterisation.

Similarly to the exponential map representation which uses so(3) to represent joint

orientations with respect to their parents, Liu et al. [108] proposed a pose representation

using se(3) to represent rigid transformations of each joint with respect to its parent.

The main motivation for choosing such a representation is to explicitly encode both

geometric constraints (i.e. bone lengths) and actual DOFs (i.e. joint orientations)

together. Nevertheless, it still has the same singularities as the exponential map

representation. As we will see in the following paragraphs, other parameterisations in

higher-dimensional spaces than R3, i.e. over-parameterised representations, are able to

prevent such singularities.

rotation matrices . In computer graphics, rotation matrices are widely used

to represent 3D rotations. The corresponding parameterisation is the identity since

elements of SO(3) are 3 × 3 matrices. Rotation matrices have no singularity and can

be integrated together with joint translations into a 4 × 4 homogeneous matrix, which

is elegant and effective when involved in computations like composition or inverse.
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However, such a representation is particularly difficult to work with when its parameters

must be estimated since the representation is over-parameterised. Indeed, not all 3 × 3

matrices belong to SO(3). By definition, a matrix R ∈ R3×3 must satisfy R⊤R = I and

det(R) = 1 to be a valid 3D rotation. For instance, predicting the orientation of a joint

in matrix representation would require to solve a constrained optimisation problem to

ensure the validity of the rotation, which can be tedious.

unit quaternions . A more compact representation than rotation matrices are

unit quaternions. Lying in R4, they are free of singularities, suitable for interpola-

tion [47], numerically stable and computationally efficient [135]. Like so(3), the space

of unit quaternions has the same local geometry and topology as SO(3) [47]. How-

ever, unit quaternions are also over-parameterised, but have only four parameters (in

comparison to nine parameters for rotation matrices). Thus, they must be constrained

to remain on the unit 4-sphere. This angular representation has been popularised in

DL-based animation with QuaterNet, a quaternion-based framework for human motion

prediction proposed by Pavllo et al. [135, 136]. In that framework, Pavllo et al. intro-

duced a penalty term in the loss function for all quaternions predicted by the network

that minimises their divergence from the unit length. It encourages the network to

predict valid rotations and leads to better training stability. Moreover, the predicted

quaternions are also normalised after computing the penalty to enforce their validity.

According to the authors, the distribution of predicted quaternion norms converges to

a Gaussian with mean 1 during the training, suggesting that the model actually learns

to represent valid rotations. Since Pavllo et al. [135] showed promising results using

quaternions, their use is gaining popularity.

gram-schmidt-like . Zhou et al. [209] recently pointed out that all representations

in Rn with n ≤ 4 have discontinuities which can be unfavourable for DNNs training.

They therefore introduced a continuous representation of n-dimensional rotations

SO(n) with n2 − n dimensions. The mapping from SO(n) to the representation space

simply drops the last column vector of the input n × n matrix. The inverse mapping

back to SO(n), called Gram-Schmidt-like (GSL) process, is a Gram-Schmidt process over



52 literature review

the n − 1 column vectors followed by the computation of the last column vector by

a generalisation to n dimensions of the cross product. In the case of SO(3), this GSL

representation gives a 6D representation. Zhou et al. [209] also provided a method

to further reduce the dimensionality from 6D to 5D while still keeping a continuous

representation using a stereographic projection combined with normalisation. However,

they empirically found that nonlinearities introduced by the projection can make the

learning process more difficult. A few of the most recent methods in skeletal character

animation [98, 131, 139] make use of the 6D GSL pose representation, which tends to

confirm the interest of the aforementioned appealing properties.

hierarchical representation limitations . In skeletal character animation,

a hierarchical modelling approach is used in conjunction with angular pose representa-

tions, i.e. the representation of the joint orientations relative to their parents. In that

context, positional errors over proximal joints (e.g. the shoulder) are propagated and

accumulated down the kinematic chains. This is problematic in optimisation-based

frameworks such as deep learning since equally distributed joint orientation errors

will result in growing joint position errors along the kinematic chains as depicted in

Figure 2.1 – Illustration of the error accumulation problem with angular representations: even
small angular errors along the kinematic chain can lead to large accumulated
joint positioning errors (left-hand stick figure, see error colour gradient). This is
problematic in optimisation frameworks such as deep learning when penalising
joint orientation deviations. This is not the case with positional representations
(right-hand stick figure) where joint positions are directly optimised.
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Figure 2.1, making it difficult to accurately handle end effectors. This is especially true

in motions sequences involving fast or ample movements, e.g. running.

To solve this problem, Pavllo et al. [135, 136] performed forward kinematics (FK) to

convert quaternion-based poses predicted by their DNN into 3D joint positions, and then

penalised absolute position errors instead of angular errors. Since FK is a differentiable

operation with respect to joint orientations, they can train their network end-to-end

using a positional loss.

Hybrid Representations

As mentioned above, both angular and positional approaches for representing human

poses have advantages and drawbacks that sometimes depend on the application or

viewpoint, dividing researcher communities. For this reason, several works have

proposed hybrid representations with the goal of mitigating drawbacks while keeping

benefits of both types of representations.

Aberman et al. [3] presented a novel data-driven approach for retargeting motions

between homeomorphic skeletons (see Section 2.4.2) along with an interesting and

elegant representation of human motion illustrated in Figure 2.2. In this work, both

Figure 2.2 – Representation of skeletal motion data as a graph proposed by Aberman et al. [3].
The nodes of the graph correspond to joints and the edges to armatures. Each of
the J armatures holds a time-varying tensor Q modelling the temporal sequence of
rotations at its corresponding joint, and a time-independent vector S modelling the
bone offset to the parent joint. The global motion of the root joint R is processed
separately. Illustration in courtesy of Aberman et al. [3].
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angular and positional information are combined: a static component S consisting of a

set of 3D positional offsets describes the skeleton in some arbitrary pose (similar to a

T-pose but specific to a pose sequence), while a dynamic component Q specifies the

sequence of orientations of each joint along time (with respect to S) represented using

unit quaternions. The separation between static and dynamic partial representations

enables the authors to design an architecture such that each component is processed

in a separate branch. In continuation of previous work of Pavllo et al. [135, 136],

Aberman et al. [3] penalised errors in the positional space after performing FK, while

also penalising errors in the quaternion space. Following this work, Shi et al. [150]

addressed the reconstruction of 3D kinematic skeletons from 2D key points estimated

from monocular video while dividing the motion representation into static bone lengths

and dynamic joint orientations. To this end, a DNN called MotioNet learns to map 2D

key points to a symmetric static skeleton, represented by its bone lengths and a dynamic

sequence of joint rotations (quaternions) which are then combined through FK to get a

full kinematic skeleton.

Finally, the success of multiple recent methods in skeletal character animation mixing

different pose representations suggests that DNNs benefit from redundant pose infor-

mation. In addition to joint orientations, researchers often feed their models with joint

positions [93], joint positions and velocities [58, 106, 118, 161, 163, 207] or even joint

positions and linear and angular velocities [61].

2.2.2 Human Motion Datasets

Another crucial aspect of data-driven approaches is the choice of dataset, from which

a DL-based model will learn a deep representation of human motion. In particular, large

amounts of high-quality motion data are necessary to constitute so-called benchmark

datasets and to provide robust assessment procedures. In this section we introduce a

selection of human motion datasets that are the most relevant for skeleton character

animation. Although many datasets have been proposed, only a small number of them

have been repeatedly exploited and even fewer can be considered as standard bench-
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Table 2.1 – Summary of the main datasets presented in Section 2.2.2.

Dataset URL Availability
Frames Framerate Hours Joints Repr. Misc. Data

CMU [170] </> 3.9×106 120 Hz 9.1 h 29 angular Public
HDM05 [127] </> 3.6×105 120 Hz 0.8 h 31 angular Public

Human3.6M [66] </> 3.6×106 50 Hz 20.0 h 32 angular RGB+D On request
Holden et al. [59] </> 6.0×106 120 Hz 13.9 h 21 positional Public

NTU RGB+D [149] </> 4.0×106 30 Hz 37.0 h 25 positional RGB+D+IR On request
NTU RGB+D 120 [107] </> 8.0×106 30 Hz 74.1 h 25 positional RGB+D+IR On request

3DPW [114] </> 5.1×104 30 Hz 0.5 h 23 angular RGB Public
AMASS [111] </> 1.8×107 60–250 Hz 41.5 h 52 angular Body mesh Public
Mixamo [5] </> 2.7×105 30 Hz 2.5 h 52 angular Body mesh Public

Size & Framerate Data

marks. Table 2.1 provides relevant information about these datasets most commonly

used in the works presented in this chapter.

The two most widely used databases in skeleton-based deep human animation are

CMU [170] and Human3.6M [66]. Both are standard large-scale human motion datasets

for learning and evaluation. Despite the fact that the CMU dataset was released about a

decade earlier than Human3.6M, they have a comparable size (see Table 2.1). The main

advantage of Human3.6M over CMU is the presence of RGB+D videos synchronised

with human pose sequences, making it sometimes more suitable for tasks closer to

computer vision such as motion prediction, even though CMU is also often leveraged.

Beyond these two standard human motion databases, a few others are noticeable,

e.g. for the types of motion they contain, for the annotations that are included, or

even for the environment in which they were captured. A few years after the release

of CMU, Müller et al. [127] proposed HDM05, a public well-documented database of

systematically recorded motion capture data. Complementary to CMU which contains

a large number of diverse motion sequences, HDM05 is composed of a limited number

of specific motion sequences (one hundred) which were executed from 10 to 50 times by

five actors. As an example, a cartwheel starting with the left hand has been performed

21 times. More recently, Shahroudy et al. [149] proposed NTU RGB+D, one of the

largest datasets for 3D skeleton-based action recognition. It contains 60 action classes

as well as RGB and infrared (IR) videos and depth map sequences (D) synchronised

with motion sequences. Later on, Liu et al. [107] added another 60 classes to constitute

NTU RGB+D 120, roughly doubling the size of the dataset. However, the motion

http://mocap.cs.cmu.edu
http://resources.mpi-inf.mpg.de/HDM05
http://vision.imar.ro/human3.6m
https://theorangeduck.com/page/deep-learning-framework-character-motion-synthesis-and-editing
https://rose1.ntu.edu.sg/dataset/actionRecognition
https://rose1.ntu.edu.sg/dataset/actionRecognition
https://virtualhumans.mpi-inf.mpg.de/3DPW
https://amass.is.tue.mpg.de
https://www.mixamo.com
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sequences in these two datasets are represented only by joint positions which limits

their use in skeleton-based human animation. Since motion capture systems need

dedicated environments e.g. for a multicamera setup, human motion datasets are

mostly captured in the lab, resulting in a lack of in the wild data. To this end, Marcard

et al. [114] proposed a pose estimation method, leveraging inertial measurement units

in addition to a hand-held camera, accurate enough to capture a new dataset called

3DPW consisting of human pose sequences in the wild synchronised with RGB videos.

It contains challenging sequences including walking in the city, going up-stairs, or

taking the bus for a total of more than 51000 frames.

A special need of data occurs from the use-case of retargeting (see Section 2.4.2),

which consists in transferring the movements of a character to another one with a

different morphology, i.e. motion data with diversity among morphologies. Unfortu-

nately, most human motion datasets feature only a very limited number of subjects

with minor morphological differences. As a result the so-called Mixamo Dataset [5] is

often used to train or evaluate models for retargeting. Indeed Mixamo is a company

developing services for 3D character animation including downloadable animation

sequences performed by numerous 3D character models with varied morphologies.

These animations were created using motion capture and cleaned up by key frame

animators 1.

Finally, existing datasets were also gathered to build larger human motion databases.

Holden et al. [59] constructed a dataset by collecting CMU [170], HDM05 [127],

MHAD [130] and Xia et al. [190] in addition to internal motion capture sequences. This

data was retargeted to a uniform skeleton structure and resampled to 120 frames per

second. More recently, Mahmood et al. [111] proposed AMASS, which unifies 15 differ-

ent optical marker-based motion capture datasets (including CMU [170], HDM05 [127],

SFU [171], HumanEva [154]). The size of AMASS, initially around 42 hours of data,

is still increasing. Motion sequences in AMASS are parameterised using the Skinned

Multi-Person Linear (SMPL) model [110], a learnt model of human body shape and

pose that provides a parameter space from which the skeleton, the joint orientations

and the body mesh can be computed.

1. https://en.wikipedia.org/wiki/Mixamo

https://en.wikipedia.org/wiki/Mixamo
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2.2.3 Learning Spatial Features

Besides the pose representation and the dataset, the network architecture can also

have a significant impact on the deep representation learned. In this section, we present

different types of architectures leveraged to learn spatial correlations in motion data.

While most DNNs designed to address tasks related to skeletal character animation do

not exploit the prior knowledge we have about geometric and structural aspects of the

human skeleton, e.g. its symmetry or its hierarchical structure, a few methods proposed

various clever architectures to benefit from this prior knowledge. We present them in the

following sub-sections, divided into three categories: spatially-structured architectures,

convolutional neural networks (CNNs) and graph convolutional networks (GCNs).

Spatially-Structured Architectures

A first group of approaches to help DNNs learn spatial correlations rely on network

architectures structured around the human skeleton, such that the function computed

by the network intrinsically encodes human skeleton characteristics. These approaches

split the skeleton into body parts and process the corresponding data either in parallel

network branches or hierarchically.

In parallel approaches, the main difference is usually related to the targeted task,

which conditions the architecture of individual branches. Wang and Neff [182] extracted

deep motion signatures with an independent autoencoder (AE) for each branch (i.e.

limb or torso) and concatenated the outputs. Guo and Choi [49] relied instead on

fully-connected (FC) layers for each branch, whose outputs are merged using a shared

layer to predict the next frame. Nakada et al. [128] similarly divided the body into

separate modules responsible for controlling muscle activations of body parts from

preprocessed common visual information. Both Goel et al. [45] and Men et al. [120] fed

long short-term memories (LSTMs) with human body parts in their adversarial motion

synthesis framework. Finally, Jain et al. [68] predicted future poses with one recurrent

neural network (RNN) per body part, whose inputs are the predictions of neighbouring

RNN at the previous timestamps as well as their own previous predictions.
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Hierarchical approaches can be either top-down or bottom-up. Wang et al. [178]

proposed a spatial encoder that separates the human pose into five body parts, then

encodes and merges them two by two recursively. Both Li et al. [102] and Bütepage

et al. [23] used a similar top-down approach with a finer human pose split at the input.

In contrast, Aksan et al. [7] proposed a bottom-up scheme where the human pose is

predicted step by step from the root joint (e.g. pelvis) to the end effectors, i.e. the root

is first predicted and then the other joints are recursively predicted using neighbouring

predictions as additional inputs.

Convolutional Neural Networks

Another type of architecture sometimes employed to model spatial correlations

relies on 2D convolutions, i.e. in the spatial and temporal domains. To this purpose,

the skeleton graph is flattened along the spatial dimension. CNNs are particularly

efficient at learning spatial correlations in data whose structure is regular such as

images. However, learning the spatio-temporal dynamics of human joints remains

challenging with CNNs because the graph structure of the human skeleton cannot be

meaningfully flattened along a single dimension. To capture the spatial correlations

of joints from different limbs, Li et al. [95] proposed to enlarge the convolutional

kernels in the spatial domain. More recently, Zang et al. [203] proposed to adaptively

model the spatial correlations with deformable convolutional kernels whose relative

positions of the entries are learned. The problem of learning patterns in irregular data

structures like human poses with CNNs can be overcome by extending convolutions to

graph-structured data, as we will see next.

Graph Convolutional Networks

To leverage CNNs while properly handling the graph-structure typically used in

animation to represent skeletons, GCNs, an extension of CNNs, have been recently

considered in different frameworks working on human motion data. GCNs come in two

different flavours [21]. Spatial approaches map neighbourhoods of each node in the

graph to Euclidean patches on which a convolution is applied. Spectral approaches

operate in the Fourier domain of the feature signals sampled on the graph, which
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depends on the graph Laplacian operator [153]. By analogy with the convolution

theorem, convolution filters are defined as spectral coefficients that are multiplied by

the Fourier transforms of the signals.

Aberman et al. [3] resorted to a simple implementation of spatial GCNs. The supports

of convolution kernels around each joint are defined as d-ring neighbourhoods on the

skeleton graph in the spatial dimension and extended to the temporal axis to obtain

2D skeleto-temporal convolutions. The operation of such GCNs is limited to skeletons

sharing the same topology. However, the motion retargeting network they proposed

includes skeletal pooling/unpooling layers, based on the fusion/duplication of the

signals of adjacent edges. The pooling layers bring the input topology to a common

primal skeleton on which the core processing is performed. The result is transformed

back to the original topology by the unpooling layers. Such a network can cope with

any topology that is homeomorphic to the primal skeleton.

Other methods leveraging GCNs relied on the spectral approach proposed by Kipf

and Welling [84]. Here, the output Fl+1 of the graph convolutional layer l fed with a

feature signal Fl is formulated as Fl+1 = σ(ÂFlW l) where W l is the tensor of learnable

convolution filter weights, Â depends only on the graph adjacency matrix and σ is a

non-linear activation function. Most of the time, the weights of the adjacency matrix

are learnt in addition to the convolution filter. Mao et al. [113] built their adjacency

matrix from a fully connected graph of joints and thereby simultaneously learnt the

motion correlations between joints that are physically connected and joints that are

far apart but whose motion are dependent, e.g. hands and feet during walking. Cui

et al. [30] objected that this scheme may result in unstable training and separately learnt

two graph adjacency matrices, one in which the weights of non-connected joints in the

skeleton are forced to zero and another with full joint connectivity.

2.2.4 Learning Temporal Features

The temporal dimension of motion data is informative of the nature of the action

being performed as well as the way it is performed. In the following sub-sections we
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review the approaches taken to model human dynamics, most of which rely either on

RNNs or CNNs.

Recurrent Neural Networks

RNNs are neural networks designed to process each timestep of time series one after

another, and can thereby handle variable length sequences. They maintain an internal

state that captures the temporal context of the signal. RNNs are most of the time based

on LSTM or gated recurrent unit (GRU).

long short-term memory. A common LSTM is composed of a memory cell that

remembers values over arbitrary time intervals, and three gates – an input gate, an

output gate and a forget gate – to regulate the flow of information into and out of the

cell and to avoid a common problem with RNNs known as the vanishing (or exploding)

gradient problem. In general, the problem is that the gradients used to update the

network weights can become extremely small (or large), either preventing the network

from further learning or making the network diverge, respectively. In the case of RNNs,

the backpropagation through time heavily relies on the chain rule to compute gradients

which exponentially decrease (vanishing problem) or increase (exploding problem) if

any weight is greater or smaller than one, respectively.

The memory cell remembers values over arbitrary time intervals, making LSTM

effective at capturing both short-term and long-term temporal dependencies. Indeed,

LSTMs have proven to be powerful for learning temporal dependencies by achieving

state-of-the-art performance in key applications e.g. natural language processing

and machine translation. In skeletal character animation, LSTMs have been broadly

employed, e.g. in motion synthesis [52, 55, 180, 184], in character control [93, 183, 185],

as well as in motion editing [181].

gated recurrent unit. As an alternative to LSTMs, GRUs have also been widely

used, such as in motion synthesis [10, 19, 202] or in motion editing [69, 176]. GRUs

rely on a gating mechanism similar to LSTMs in order to avoid the vanishing gradient

problem but have only two gates, a reset gate and an update gate. As a result, GRUs use
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fewer parameters and therefore less memory, are computationally less expensive [49]

and thus train faster than LSTMs. They can process entire motion datasets [116] instead

of training action-specific models. However, as shown by Weiss et al. [186], LSTMs are

strictly stronger than GRUs as they can easily perform unbounded counting, while GRUs

cannot. Thus, LSTMs seem more accurate than GRUs on longer sequences. In summary,

the choice between LSTMs and GRUs depends on the processed data and the considered

application.

Besides pure LSTMs or GRUs, extensions [166] or combinations of both [177] have

been used to model human dynamics. Bidirectional LSTMs (BiLSTMs) stack two LSTMs

running forward and backward, respectively. As a result, temporal information is

processed and preserved in both directions, i.e. past and future, which is helpful

on certain tasks. For instance, BiLSTMs have been leveraged to synthesise motion

sequences [45, 193] or even to refine 3D motion data [99, 101].

Transformer

One of the limitations of RNNs is the difficulty to learn to model correlations in

time series occurring between arbitrarily distant pieces of information. Indeed, during

training, their recurrent nature imposes to gradients to flow through very long compu-

tational paths to model distant correlations. This results in eventually falling back to

the vanishing gradient problem initially intended to be mitigated by recurrent connec-

tions. In natural language processing, researchers identified this issue and introduced

attention mechanisms in recurrent architectures to face the vanishing gradient problem

in a first step. In contrast with classical RNNs, attention-based RNNs additionally model

correlations between all intermediate input and output hidden states instead of only

passing the final hidden states. These skip connections effectively create shortcuts

for gradients. In a second time, researchers found even more efficient to solely rely

on attention mechanisms and dispense recurrent connections [172], resulting in the

transformer architecture, recently becoming very popular.

A typical transformer network is composed of a stack of multi-head attention blocks.

Each block starts with a self-attention layer which first maps a sequence of input tokens

to three values usually referred to as query Q, keys K and values V, in analogy with
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retrieval systems. Then attention scores are computed by matrix multiplication of Q

and K and used to weight V. In a multi-head attention layer, this process is done several

time in parallel with different set of learnable parameters, and the corresponding results

are summed up. Then, attention is followed by a token-wise feed-forward layer to

better fit the input for the next attention layer. Finally, both attention and feed-forward

layers are residual and layer normalisation [16] is applied on their outputs. Moreover,

since transformers contains no recurrence and no convolution, in order for the model

to make use of the order of the sequence, information is injected about the relative or

absolute position of the tokens in the sequence, e.g. with position encoding.

In skeletal character animation, transformer-based models started to gather attention

from researchers essentially in the last three years. In particular, this kind of models

have been explored towards motion in-betweening [36, 131, 139] (see Section 2.3.1) and

upper-body gestures style transfer [89] (see Section 2.4.3).

Temporal Convolutions

Convolutional neural networks (CNNs) also constitute an alternative to RNNs for

learning temporal patterns in motion data. They can be either 1D along the temporal

dimension, or use 2D spatio-temporal convolutions. Stacking several convolutional

layers can efficiently capture both short and long range temporal patterns since lower

and higher layers will capture dependencies between nearby and distant frames,

respectively. CNN-based approaches are more computationally efficient than RNN-based

ones because they process whole motion segments at once rather than frame by frame,

allowing greater parallelism. However, CNN-based architectures often contain elements

that do not allow variable length inputs (e.g. a few FC layers after convolutions) limiting

their use in practice. As a result, they are more prone to be used in tasks where

fixed-length motion sequences are suitable, e.g. motion editing [3, 4, 33, 60, 81, 104, 109,

150, 152, 211] (see Section 2.4).

Miscellaneous

Other approaches to better model the temporal flow of human motions include mo-

tion phase representation, spectral decomposition of motion data and spatio-temporal
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attention. For instance, several authors investigated the representation and learning of

the phase of movements in the context of kinematic character control, which is detailed

in Section 2.3.2. In the character controller network proposed by Holden et al. [58], the

network weights are computed as a spline function of the phase, whose control points,

representing network weights configurations during the human locomotion cycle, are

learned. Other works [106, 161, 163, 207] use a gating network instead of the cyclic

phase to blend expert weights, resulting in a mixture-of-experts scheme.

2.3 motion synthesis and character control

Generating new motion sequences is of strong practical interest to the media and

entertainment industry. Besides creating realistic and diverse sequences, a key challenge

is to be able to control various aspects of the motion with high-level parameters. In

this section we distinguish motion synthesis and character control. The former focuses

on synthesising new motions both consistent with the distribution of samples in a

reference training dataset and sufficiently diverse to capture its variations, optionally

conditioned on semantic cues typically pertaining to the character trajectory or motion

style. Here we restrict ourself to general-purpose approaches and exclude works

targeting application-specific contexts such as the synthesis of gestures from speech

or dance animations from music. The latter also strives to generate motions but in an

online fashion, dynamically responding to user inputs while satisfying environmental

constraints. The needs of responsiveness and the fact that user inputs are not known in

advance, unlike conditioning parameters in motion synthesis, make character control

approaches very different from motion synthesis.

2.3.1 Motion Synthesis

We define motion synthesis as the process of creating perceptually plausible motion

sequences with a desired style or expressed emotion for instance. Motion synthesis

models are thus capable of generating different motions depending on inputs, e.g.



64 literature review

low-level parameters such as latent variables or high-level parameters such as trajectory.

In the following sub-sections, we group approaches to motion synthesis based on the

framework they build on, all but one being deep generative models. Indeed, in the

scheme proposed by Holden et al. [59] the synthesis process is purely deterministic

and driven by high-level cues. Finally, we conclude this section with an additional sub-

section treating of a particular case of motion synthesis known as in-betweening, where

synthesised motions ought to be interpolated between given sparse poses referred to as

keyframes. We summarise the methods presented in this section in Table 2.2.

Table 2.2 – Summary of the methods presented in Section 2.3.1. Miscellaneous data includes
hand-crafted, synthetic, proprietary, unspecified or other public datasets.
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Holden et al. 2016 [59] </> × × × 3D positions
Toyer et al. 2017 [169] × × × 2D positions

Barsoum et al. 2018 [19] </> × × × × 3D positions
Yan et al. 2018 [195] </> × × × × 3D positions
Du et al. 2019 [35] × × × × × 3D positions

Wang et al. 2019 [185] × × × × Unknown
Yan et al. 2019 [194] × × × × Unknown

Aliakbarian et al. 2020 [10] </> × × × × Quaternions
Henter et al. 2020 [55] </> × × × × × × × 3D positions
Wang et al. 2020 [180] </> × × × × Euler Angles
Wang et al. 2020 [184] </> × × × × Unknown
Goel et al. 2022 [45] </> × × × 3D positions

Li et al. 2022 [98] </> × × × 6D GSL
Men et al. 2022 [120] × × × 3D positions

Habibie et al. 2017 [51] × × × × 3D positions
Yu et al. 2019 [200] × × Unknown

Kaufmann et al. 2020 [80] × × × × 3D positions
Xu et al. 2020 [193] × × × × Euler Angles

Harvey et al. 2020 [52] </> × × × × × Quaternions
Duan et al. 2021 [36] </> × × × × 3D pos. & quat.

Oreshkin et al. 2022 [131] </> × × × 3D pos. & 6D GSL
Tang et al. 2022 [165] × × × × 3D pos. & rot.
Qin et al. 2022 [139] × × 6D GSL

Dataset Architecture

Motion prediction/extrapolation, consisting in extrapolating given motion sequences

into the future could also have been considered as part of motion synthesis. However

the community around it is oriented toward time series and computer vision, as well

as a bit farther from animation, since the analogous problem with image sequence

https://www.theorangeduck.com/page/deep-learning-framework-character-motion-synthesis-and-editing
https://www.github.com/ebarsoum/hpgan
https://www.github.com/xcyan/eccv18_mtvae
https://www.github.com/mix-and-match/mix-and-match-tutorial
https://www.github.com/simonalexanderson/StyleGestures
https://www.github.com/lucaskingjade/Motion_Synthesis_Adversarial_Learning
https://www.github.com/zheshiyige/Learning-Diverse-Stochastic-Human-Action-Generators-by-Learning-Smooth-Latent-Transitions
https://github.com/Aman-Goel1/IMM
https://github.com/PeizhuoLi/ganimator
https://www.github.com/ubisoft/ubisoft-laforge-animation-dataset
https://github.com/FuxiCV/SSMCT
https://github.com/boreshkinai/delta-interpolator
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extrapolation is also of interest in those fields. For this reason, motion prediction is out

of the scope of the thesis. Therefore, we do not cover it in the following (see Article 1

for a comprehensive review of DL-based motion prediction in the context of skeletal

character animation).

Early Works

Pioneer works [8, 28, 167, 168] in motion synthesis based on deep learning notably

relied on restricted Boltzmann machines (RBMs). Initially proposed by Smolensky [158],

RBMs build on a parametric expression of the probability density function of the data

distribution from which new samples are to be generated. These early works are now

outperformed by the more recent approaches described below e.g. variational autoen-

coders (VAEs) and generative adversarial networks (GANs), and have bee abandoned.

Variational Autoencoders

Encoder Decoder

Generative
Module

Figure 2.3 – In a variational autoencoder (VAE), a motion sequence is mapped by an encoder to a
random latent code that is constrained to follow a prior Gaussian distribution. This
code is mapped back by a decoder to the input motion data. Once the full network
is trained, feeding the decoder with samples drawn from the prior generates
stochastic motion sequences.

Structured as an encoder followed by a decoder, an autoencoder is a DNN whose

input and output represent the same data. The encoder output provides an intermediate

latent code with a dimension often lower than the input data. Thus, autoencoders

provide a scheme for non-linear dimensionality reduction. As illustrated in Figure 2.3,

the distribution of the latent codes in a variational autoencoder (VAE) [83] is further
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constrained to follow a predefined prior distribution, typically a multivariate normal

distribution, endowing the autoencoder with a generative capability. Thus, VAEs

provide a convenient way to embed a stochastic component into the generation of

human motion.

Various approaches have been proposed to extend the VAE framework to the mod-

elling of temporal sequences. Toyer et al. [169] relied on a Deep Markov Model,

essentially a VAE in which the latent code is conditioned on its value at the previous

time step. Habibie et al. [51] combined a VAE and an RNN. Motion generation is driven

by the random latent code samples, as well as by control variables that constrain the

trajectory and velocity of the character. The RNN is conditioned on encodings on these

control variables. At inference time, its cell state is initialised with the latent code

value. The concatenation of cell state outputs at each time step is fed to the decoder to

produce the synthesised motion sequence.

Du et al. [35] built on the motion graph framework proposed by Min and Chai [121],

in which motion sequences are represented as a graph of motion primitives. The

segmentation of motion sequences into primitives is dependent on the type of motion

and typically hand-crafted. Autoencoders learn embeddings for each primitive, and the

latent codes for these embeddings are further encoded by conditional VAEs trained on

dataset samples for the considered primitives. The conditioning of the primitive-specific

VAEs ensures that they reproduce the style of the input motion, which is encoded as a

Gram matrix in the embedding space, following prior work in motion style transfer [59]

(see Section 2.4.3). To synthesise a motion sequence, a path is determined in the motion

graph based on user-defined trajectory controls, and motion primitives are generated

along this path using the VAEs.

Yan et al. [195] and Aliakbarian et al. [10] relied on similar network architectures

for stochastic motion prediction. Pose sequences are mapped to lower-dimensional

features by an encoder and transformed back to motion data by a decoder. The VAE

operates on the encoded features, its output is fed to the decoder to synthesise the

motion clips. Yan et al. [195] processed small pose sequences called motion modes that

capture short-term motion features. During training, their VAE maps a pair of (past,

future) mode features to a random latent code (encoder) then to a prediction of the
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future mode feature (decoder). It thereby captures the transition between the two

modes. At inference time, the VAE and RNN decoders generate a stochastic prediction

of the future mode, given a past conditioning mode and a draw of the VAE random

latent code. Aliakbarian et al. [10] argued that stacking the past sequence information

and the random generating seed in a vector and feeding it to the decoding network

leaves the possibility that the stochastic component is assigned low weights during

training and is thus effectively ignored by the network. This concern is confirmed

by experimental evidence. To avoid this, they proposed a mix-and-match perturbation

strategy and formed a vector by replacing randomly selected components of the past

sequence feature by corresponding components of the VAE latent code. Feeding this

vector to the decoder forces it to account for both the past context and the stochastic

input.

Generative Adversarial Networks

Generator Discriminator

Adversarial
Losses

Prior
Distribution

Training
Data

Generative
Module

real /
fake

Figure 2.4 – A generative adversarial network (GAN) consists of two networks: the generator
produces synthetic motion samples from random seeds, the discriminator tries
to differentiate them from real ones drawn from the training dataset. The two
modules are trained jointly, aiming at an equilibrium where the generator outputs
cannot be distinguished from the training data.

Generative adversarial networks (GANs) are a popular alternative to VAEs for generat-

ing samples from random seeds. In a GAN, new samples are synthesised by a generator

network that operates in conjunction with a discriminator network (see Figure 2.4).

The generator transforms a random seed drawn from a known prior distribution to a
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sample which aims to be similar to the contents of the training dataset, the discriminator

assesses this similarity. The two networks are trained jointly with adversarial losses,

the generator being driven to produce samples that the discriminator ultimately should

not be able to distinguish from the training dataset samples. In motion synthesis,

Barsoum et al. [19] pointed out that relying on a GAN has intrinsic advantages. GANs do

not suffer from the temporal error accumulation issues of RNNs and will produce one

instance of all possible outputs instead of averaging these possible outputs. Moreover,

GANs also natively embed a stochastic component. Any motion generation network can

be wrapped into a GAN by adding a discriminator network to improve the plausibility

of the generated sequences [19, 52, 185].

Most other works focused their contribution on optimising the architecture of the

GAN generator network to facilitate and improve its training. Wang et al. [180] proposed

an adversarial autoencoder architecture [112] where a GAN enforces a prior on the

distribution of the latent code of an autoencoder. Yan et al. [194] fed the generator with

a sequence of random samples drawn from a Gaussian process with a predetermined

covariance function. Through a series of purely convolutional modules made up of

a spatio-temporal upsampling layer followed by a graph convolution on the skeleton

features, they gradually increased the spatial and temporal resolution of their output to

produce a pose sequence. Wang et al. [184] split their generator into separate spatial and

temporal sub-networks: the lower layer maps the input random seed and conditioning

action label via an RNN to a sequence of low-dimensional latent codes that model

temporal transitions. The upper layer decodes each latent code into a skeletal pose. The

generator is regularised by a helper action classifier network through a cycle consistency

constraint: the conditioning action label fed to the generator should agree with the

result of the classification of the motion sequence it produces. Finally, both Men

et al. [120] and Goel et al. [45] proposed a GAN-based approach for close interaction

synthesis, i.e. synthesising the motion of a character (output) reacting to another

character’s motion (input). Both approaches rely on an LSTM-based generator with

seq2seq attention mechanism [17] and fed with separated human body parts, together

with an LSTM-based binary and multi-class discriminator which tries to distinguish

between fake and real samples as well as between different classes of interaction.
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Different from most other approaches, Li et al. [98] learn a GAN-based motion syn-

thesis model from a single motion sequence instead of a large motion dataset. To avoid

overfitting the single training motion sequence, the receptive field of the discriminator is

limited, following Patch-GAN [67, 96]. Moreover, following the progressive approach of

Karras et al. [79] with images, motion sequences are generated progressively by upsam-

pling them at each level. Finally, their architecture rely on skeleton-aware operators [3]

as a backbone (see Section 2.2.3).

Normalising Flows

Generative models based on normalising flows (NF) [32] synthesise samples by

applying a composition of invertible elementary transforms to a latent variable drawn

from a known prior distribution. Unlike in GANs or VAEs, owing to the form of the

elementary transforms, the probability density function of the generated samples can

be computed in closed form. Thus, the generative network can be trained by maximum

likelihood optimisation. Henter et al. [55] adapted this framework to the generation of

motion sequences. Each transform layer in the generator network is conditioned by a

control signal that encodes the past trajectory of the root joint and holds an LSTM unit

whose hidden state captures temporal dependencies.

Deterministic Generation

Holden et al. [59] conditioned their motion generation approach on purely deter-

ministic constraints that specify the trajectory and velocity of the character. They

leveraged an autoencoder operating on temporal chunks of poses to learn a latent

manifold of human motion. A separate feedforward network maps the autoencoder

embedding to high-level, semantically interpretable controls of the motion. Generating

high-dimensional motion embedding samples from a set of low-dimensional control

parameters is severely under-constrained. To disambiguate the generation to the largest

possible extent, the scope of the approach is restricted to human locomotion, and a

comprehensive set of trajectory and foot contact constraints is imposed.
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In-betweening

The task of interpolating motion between sparse character poses, i.e. keyframes, is

referred to as in-betweening. In early works [144, 187], spacetime constraints and inverse

kinematics were used to interpolate motion between keyframes. Then, probabilistic

models including MAP optimisers [25, 122] or Gaussian processes [179] have also been

used for in-betweening. However, as pointed out by Harvey et al. [52], these models

are specific to action and actors, making combinations of actions looking scripted and

sequential. Recent works relied on the scalability and expressiveness of DNNs to tackle

this issue.

Yu et al. [200] proposed a simple scheme for interpolating a motion sequence from

starting and ending positions of end-effector joints. Their main objective is computa-

tional efficiency, in order to generate terrain-adaptive character motion in real time for

video games. They cascaded two FC networks: the first interpolates the trajectories of

the end effectors in time, the second infers full poses at each frame.

Then multiple works focused on generating plausible and diverse motion over long

transitions bounded by a starting and an ending keyframe. Kaufmann et al. [80]

leveraged a deep convolutional denoising autoencoder, in which pooling layers ensure

large receptive fields to capture long-range spatial and temporal joint correlations. A

curriculum learning scheme feeds the encoder with sequences containing increasingly

large temporal gaps to improve the training. Xu et al. [193] proposed a temporally

hierarchical scheme in which the transition segment is split into equal length sub-

segments. Trajectory constraints are provided at each sub-segment endpoint. The

transition sequence is initialised by sampling a motion clip from the training dataset

for each subsegment. Next, the style of each clip is changed to match the style of a

reference sequence throughout the whole transition sequence. This stage leverages a

motion autoencoder with separate content and style embeddings, that is trained in an

unsupervised way. Style transfer is performed by linearly combining the content latent

code of the initial clips and the style latent code of the reference style sequence. Finally,

transitions between the endpoints of consecutive sub-segments are generated using

forward and backward LSTM networks, and the plausibility of the generated sequence is



2.3 motion synthesis and character control 71

enhanced by combining the generation network with a discriminator in an adversarial

framework. Harvey et al. [52] pointed out that in-betweening between distant keyframes

may result in stalling or teleportation artifacts if the temporal evolution of the motion is

not monitored during the generation process. To deal with this issue, Harvey et al. [52]

relied on an encoder-recurrent-decoder (ERD) architecture [41] that is fed with the

pose representation deltas between the current and the target frame, in addition to the

character pose at the current timestep and the end pose. The time-to-arrival is encoded

in a sine wave and added (similar to positional encoding), rather than stacked, to the

latent code that is input to the RNN, forcing the network to take this piece of information

into account during training. Later on, Tang et al. [165] proposed a real-time approach to

in-betweening, by learning a deep representation of the low-level short-horizon motion

dynamics through a conditional VAE modelling the distribution of frames conditioned

on the preceding frame, as well as on the next frame hip velocity to disambiguate the

next frame. Moreover, a conditional mixture-of-experts scheme is used in the decoder

to achieve multi-modal frame transitions. Then, an additional network is learned to

sample next frame hip velocity and latent code from previous and target frames and

target duration. This enables in-betweening by iteratively conditioning the VAE on the

previous frame. According to the authors, 50-frame sequences are too long for the

learning to converge, and training sequences were therefore restricted to 25 frames.

Another limitation to this approach is that the target frame is not guaranteed to be

reached.

One of the major issues of the aforementioned methods is that they struggle to

capture long-term correlations. Indeed, autoregressive models are known to accumulate

prediction errors while temporal horizons in convolutional architectures are limited

by the size of the kernels and the number of layers. To tackle this issue, researchers

recently investigated transformers which are known to efficiently model long-term

dependencies (see Section 2.2.4). Duan et al. [36] first used a transformer encoder

wrapped by 1D temporal convolutional layers. Missing frames between keyframes are

first interpolated using spherical linear interpolation before being fed to the model,

which is expected to refine interpolated frames and bring global consistency. Oreshkin

et al. [131] then also relied on a transformer-based architecture and interpolation of
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keyframes. Instead of starting from interpolated keyframes, the proposed network

models deltas and in-betweening is then obtained by summing up both deltas and

interpolated keyframes. Qin et al. [139] argued that keyframes interpolation can

produce unnatural transitions which cannot be fully corrected afterwards. Instead,

they proposed a two-stage transfer architecture where the first stage, called context

transformer, replaces interpolation and produces rough transitions which are then

refined in the second stage, the detail transformer. Evaluated on LAFAN1 dataset, a

standard benchmark in motion in-betweening since first introduced by Harvey et al. [52],

this approach significantly outperforms other state-of-the-art methods.

2.3.2 Character Control

In this section, we explore the task of controlling character motions that react naturally

to user inputs, while accounting for environment constraints, which is another challenge

involved in creating believable virtual characters. Character control can itself be

sorted into kinematic, physical and biomechanical control. Kinematic approaches

directly produce motions as joint angles. In contrast, both physical and biomechanical

approaches strive to obey the laws of physics, while differing in the actuation model:

physical models are actuated by forces and torques, while biomechanical models (a.k.a.

musculoskeletal models) are driven by muscle activations. Moreover, both rely most of

the time on deep reinforcement learning which is well-suited when dealing with agents

(characters) in a simulated environment. This section only treats kinematic character

control, the other two being slightly out of the scope of this thesis (see Article 1 for a

comprehensive review of physical and biomechanical character control). We summarise

DL-based methods presented in this section in Table 2.3.

Kinematic character control approaches typically produce motions as joint angles,

based on a set of motion examples and high-level controls (e.g. user inputs, interactions

with the environment). Because of the requirement of generating motions in an online

fashion when controlling characters in video games or other interactive applications,

RNNs and other autoregressive models are often considered to be more appropriate

than CNNs, as the future pose is predicted from the previous motion as well as a
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Table 2.3 – Summary of the methods presented in Section 2.3.2. Miscellaneous data includes
hand-crafted, synthetic, proprietary, unspecified or other public datasets.
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Alemi et al. 2017 [9] × × ×
Holden et al. 2017 [58] </> × × ×
Wang et al. 2017 [183] × × × ×

Lee et al. 2018 [93] × × ×
Mason et al. 2018 [118] </> × × ×
Zhang et al. 2018 [207] </> × × ×
Starke et al. 2019 [163] </> × × ×
Holden et al. 2020 [61] × × ×
Ling et al. 2020 [106] × × × ×

Starke et al. 2020 [161] × × × ×
Starke et al. 2021 [162] × × ×
Starke et al. 2022 [160] </> × × × × ×
Mason et al. 2022 [117] × × × ×

Dataset Architecture Character

control signal. For instance, Lee et al. [93] used a four-layer LSTM model for controlling

characters playing basketball and tennis. However such approaches often tend to fail in

the long run, as errors in the prediction are fed back into the input and accumulate,

eventually either converging to an average pose or introducing high frequency artifacts.

According to Starke et al. [163], these models also often suffer from low responsiveness

due to the large variation of the memory state in the case of interactive character control,

as the internal memory state is high dimensional.

To overcome these limitations, Holden et al. [58] proposed the use of a specialised

architecture called phase-functioned neural network (PFNN), which provides the phase

variable to represent the progression of the motion. In their seminal work, the phase

is defined based on alternating foot contacts, and used to generate the weights of

the regression network at each frame. A trade-off between compactness and runtime

speed can then be achieved by precomputing the phase-function for a number of

fixed intervals, then interpolating the precomputed elements at runtime. One major

limitation of PFNN is that phase functions need to be manually defined, which can

be in some cases extremely complex [161, 207]. Zhang et al. [207] therefore proposed

to rely on a mixture-of-experts scheme to dynamically compute the weights of a

motion prediction network (see Figure 2.5 for an illustration of the general concept). In

https://www.theorangeduck.com/page/phase-functioned-neural-networks-character-control
https://www.github.com/ianxmason/Fewshot_Learning_of_Homogeneous_Human_Locomotion_Styles
https://www.github.com/ShikamaruZhang/MANN
https://www.github.com/sebastianstarke/AI4Animation/blob/master/AI4Animation/SIGGRAPH_Asia_2019
https://github.com/sebastianstarke/AI4Animation/tree/master/AI4Animation/SIGGRAPH_2022/PyTorch
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motion, controls, 
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Figure 2.5 – Overall idea of the mixture-of-experts scheme [99, 161, 163, 207]: a gating network
first computes blending weights for a number of expert networks, based on a
number of features extracted from the current frame xt. Each expert specialises in
a particular movement. They are then blended together to dynamically compute
the weights of a motion prediction network, which outputs information relevant to
the next frame xt+1 including the pose of the animated character. This output is
typically fed back into the network (autoregression) at time t + 1.

their architecture, a gating network first computes blending weights for a number of

expert networks, each specialising in a particular movement. This approach was first

demonstrated for creating complex quadruped character controllers and then extended

by Starke et al. [163] to compute goal-directed series of motions and transitions, while

potentially interacting with the environment. The idea was pushed one step further

through the use of local motion phases [161], which are defined based on how each

body part contacts external objects. Unlike previous approaches where different actions

are considered to be synchronised by a single global phase variable, their approach

describes each motion by a set of multiple independent and local phases for each bone.

It then enables neural networks to learn asynchronous movements of each bone, as

well as its interaction with external elements of the virtual environment. Later on,

Starke et al. [160] proposed to learn a periodic autoencoder from unstructured motion

data such that the features of its latent space serve as deep motion phases. Based

on a temporal convolutional autoencoder [62], the latent space is further structured

by parameterising each of its dimension as a sinusoidal function whose amplitude,

frequency, offset and phase shift are learnt, enforcing periodicity encoding. A neural

motion controller can then be obtained using a framework similar to the gated mixture-

of-experts scheme (see above) [161, 207] but using the deep motion phases as input
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to the gating network. Moreover, this approach can also be used in motion matching

frameworks, by matching deep motion phases instead of higher-dimensional pose or

velocity features of the current character state. Finally, while the previous approaches

relied on autoregressive DNNs to generate controlled character motions, Ling et al. [106]

demonstrated that a VAE using a similar mixture-of-experts scheme is also viable to

produce stable high-quality human motions, while being usable in a deep reinforcement

learning context to produce goal-directed motions.

Simultaneously, a few approaches explored the creation of controllable human

motions with expressive variations or styles from high-level semantic parameters. For

instance, Alemi and Pasquier [9] trained a factored CRBM (FCRBM) on a dataset of

motion capture data containing movements from different subjects, expressions, and

trajectories. This model can then be used to generate modulated walking movements

in real time. Mason et al. [118] explored a similar question from the perspective of

generating characters moving in different styles when there is little data available

for a new style and proposed a few-shot learning approach. The goal of few-shot

learning is to learn (part of) a model able to generalise out of a single or very few

examples. In their work, Mason et al. [118] adapted a pre-trained PFNN (modelling

style-independent components of the motions), coupled with a set of residual adapters

(modelling style-dependent components) learned separately for each new style.

Recently, Mason et al. [117] proposed an improved style modelling system based

on the state-of-the-art mixture-of-experts scheme [161] with extended local motion

phases. Previously based on feet and hands contacts within the environment, local

phases, needed for stylised locomotion, are computed using principal components of

cyclic arm movements when contact-free. Then, they introduced a style modulation

network which learns to parametrise locomotion style from a stylised reference motion.

Style parameters then modulate hidden layers of an autoregressive animation synthesis

network, which produces the next frame of motion paced by the local motion phases.

Moreover, this framework is trained and evaluated on 100style, a large dataset of

stylised locomotion data with about 4 million mocap frames and 100 different styles

released alongside. Finally, Starke et al. [162] leveraged a mixture-of-experts with a

local motion phases generator into a neural animation layering framework for martial
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arts movements. This framework can produce a large variety of novel movements from

reference motions and high-level user controls, including combinations of punching,

kicking, avoiding as well as close character-interactions. A set of control modules are

learnt to predict a set of future body trajectories, which can then be intuitively edited,

mixed or layered by animators. The motion generator, fed with those trajectories, will

then synthesise a plausible novel animation.

While some of the approaches mentioned above have been demonstrated to be com-

patible with multi-character control, such character interactions are typically handled

by directly including information about the other characters’ relative positions [161], or

indirectly through information about objects both characters are interacting with and

the action to be performed [93, 161, 162]. Wang et al. [183] also proposed to generate

character interactions based on the history motion data of both characters, relying on

a variant of the ERD architecture [41] to improve animation stability, where multiple

LSTM layers constitute the recurrent network. Besides interactions with other characters,

interactions with environment have been little investigated up to very recently. Lately,

Alvarado et al. [11] proposed a character control framework to handle and anticipate

interactions with a variety of obstacles. At the edge between physical and kinematic

character control, this approach relies on a hybrid responsive character model follow-

ing a given reference motion coupled with a lightweight physical upper-body model,

making it able to interact with non-rigid objects such as vegetation through physically

plausible dynamic responses.

Finally, despite the impressive advances made by the aforementioned methods,

traditional animation approaches are still commonly used in animation pipelines to

control human characters because of the quality of the motions produced. However,

novel approaches, such as Learned Motion Matching [61], have recently begun to be

explored with the goal of breaking down and replacing individual components of

animation algorithms by individual specialised neural networks. They balance the

advantages of more traditional approaches with the scalability of neural network based

models.
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2.4 motion editing

In the previous section, we looked at how motion data can be synthesised, either

through offline generative approaches or interactive frameworks. Another important

area of character animation is motion editing, which greatly diversifies the creative

capabilities of artists. In this section, we focus on DL-based approaches divided into

three topics: motion cleaning, motion retargeting and style transfer. The methods

presented in this section are summarised in Table 2.4.

Table 2.4 – Summary of the methods presented in Section 2.4. Miscellaneous data includes
hand-crafted, synthetic, proprietary, unspecified or other public datasets.
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Holden et al. 2015 [62] × × × × 3D positions
Wang et al. 2015 [182] × × × × Unknown

Bütepage et al. 2017 [23] × × × × so(3)
Holden 2018 [57] × × × × Euler Angles
Li et al. 2019 [101] × × × × 3D positions

Smith et al. 2019 [156] × × × × 3D positions
Wang et al. 2019 [185] × × × × × Unknown
Wang et al. 2019 [178] × × × × × × 3D positions

Jang et al. 2020 [69] </> × × × × × so(3)
Li et al. 2020 [99] × × × × × 3D positions

Shi et al. 2020 [150] </> × × × × × 3D pos. & quat.
Shimada et al. 2020 [152] × × × × 2D positions

Zou et al. 2020 [211] </> × × × × 2D positions
Lohit et al. 2021 [109] × × × × × × 2D positions
Yang et al. 2021 [196] × × × × Ad hoc

Villegas et al. 2018 [176] </> × × × × × Quaternions
Lim et al. 2019 [104] </> × × × × × Quaternions

Aberman et al. 2020 [3] </> × × × × × 3D pos. & quat.
Kim et al. 2020 [81] </> × × × × × Quaternions
Li et al. 2022 [100] × × × 3D pos. & quat.

Holden et al. 2016 [59] </> × × × × 3D positions
Holden et al. 2017 [60] × × × × 3D positions
Wang et al. 2018 [181] × × × × × Unknown

Aberman et al. 2020 [4] </> × × × × × 3D pos. & quat.
Dong et al. 2020 [33] × × × × Quaternions

Wang et al. 2020 [180] </> × × × × × Euler Angles
Park et al. 2021 [133] </> × × × × 3D pos. & quat.
Jang et al. 2022 [70] × × × 3D pos. & rot.

Kuriyama et al. 2022 [89] × × × × so(3)

Section Dataset Architecture

https://www.github.com/DK-Jang/human_motion_manifold
https://www.github.com/Shimingyi/MotioNet
https://www.github.com/vt-vl-lab/footskate_reducer
https://www.github.com/rubenvillegas/cvpr2018nkn
https://www.github.com/ljin0429/bmvc19_pmnet
https://www.github.com/DeepMotionEditing/deep-motion-editing
https://www.github.com/medialab-ku/retargetting-tdcn
https://www.theorangeduck.com/page/deep-learning-framework-character-motion-synthesis-and-editing
https://www.github.com/DeepMotionEditing/deep-motion-editing
https://www.github.com/lucaskingjade/Motion_Synthesis_Adversarial_Learning
https://github.com/soomean/Diverse-Motion-Stylization
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2.4.1 Cleaning

As mentioned by several authors, projection to and inverse projection from learnt

manifolds of human motion can be used to clean motion data, e.g. to perform oper-

ations such as denoising, fixing corrupted information or filling in missing motion

sequences. Such problems have for instance been explored using RBMs [182], convolu-

tional autoencoders [62], temporal autoencoders [23, 109], spatio-temporal RNNs [178],

sequential RNNs [69], BiLSTMs [101], as well as RNN-based GANs [185]. While most

approaches typically clean motion data through direct projection and inverse projec-

tion (e.g. [62, 182]), then fix residual errors as a post-process, it is also possible to

include additional constraints during training. For instance, it is possible to enforce

bone length constraints and smoothness by including specific loss functions [99, 101], or

to include an additional perceptual loss measuring the difference in high-level features

extracted by a pre-trained perceptual autoencoder [99], which improves overall visual

quality at the cost of a slight increase in reproduction error. Lohit and Anirudh [109]

also proposed to optimise the latent representation to minimise the error between the

reconstructed sequence and the correct information of the input sequence, which they

applied to filling missing joint trajectories. While most approaches focus on cleaning

directly kinematics skeletal data, Holden [57] proposed an approach producing joint

transforms directly from raw marker data, in a way which is robust to errors in the

input data. This approach is based on learning a deep denoising feedforward neural

network using marker locations synthetically reconstructed from motion capture data,

where the marker data is corrupted in terms of occlusions and positional shifts.

Footskate

Apart from general-purpose motion cleaning addressed above, researchers have

explored footskate cleaning in particular [86]. Artefacts referred to as footskate constitute

a family of artifacts well-known in character animation and consist in any motion

inconsistency between the ground and the feet, e.g. sliding on, passing through or

floating above the ground. They are common and easily introduced when processing

existing motion data and are known to be very detrimental to the perceived realism
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and disturb human perception even at very low intensities [138]. Moreover the problem

of footskate is closely related to foot contacts which are necessary to quantify, prevent

or fix such artefacts. In particular, most recent approaches remove footskate artefacts

from motion sequences by enforcing foot contacts via IK [3, 52, 58, 121, 161, 163]. As

a consequence, foot contacts are needed to clean footskate artefacts and foot contact

detection is therefore closely related to the problem of footskate.

The most widespread family of approaches in both animation research and industry

to extract foot contact labels from motion data relies on simple heuristics with hand-

crafted thresholds, applied to velocity and proximity relative to the ground as proposed

by Bindiganavale and Badler [20] or Lee et al. [92]. However, such methods lack of

temporal precision and are not reliable [91]. Therefore, they are either limited to

algorithms that are insensitive to the accuracy of contact labels [132], or require tedious

manual checking and corrections [58, 118, 185] to produce faithful contact detection

results. Moreover, the accuracy of these approaches often dramatically drops when

decreasing motion sequences quality, e.g. increasing noise or artefacts.

Other heuristic approaches have been sparsely investigated, including the work of

Le Callennec and Boulic [91]. Stationary or rotating point constraints are computed by

solving linear equation systems assuming rigid transformations and a uniform noise

pattern, itself estimated from known user-defined constraint(s). While addressing the

unreliability of common heuristics-based methods due to the fact that the zero velocity

assumption does not hold in the presence of noise, this approach is not fully automatic.

Moreover, the noise pattern is assumed to be uniform along time, which is not always

true.

Researchers also investigated learned contact detection models. E.g. Ikemoto et

al. [64] proposed a k-nearest neighbours (KNN) classifier to determine when the feet

should be planted and claimed to be more accurate than heuristics-based approaches.

However, a very low amount of manually annotated motion data was used (about 3

minutes, single subject) preventing the approach to generalise well. The proposed KNN

classifier achieves 90.78% accuracy over about 33 seconds of hand-labelled motion data,

compared to 57.45% and 57% for speed-based and height-based thresholding baselines,
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respectively. However, these relatively low accuracies suggest that the corresponding

thresholds are not optimal.

More recently, researchers leveraged neural networks to solve this problem. Smith

et al. [156] detected foot contact labels using a dedicated MLP to remove footskate

artefacts through IK in a motion style transfer pipeline. Zou et al. [211], Shi et al. [150],

and Rempe et al. [142] concurrently proposed to leverage foot contact detection to

refine human motion estimation. In these works, foot contact labels are detected from

2D key points, themselves estimated from images using OpenPose [24], a state-of-the-art

2D pose estimator. Both Zou et al. [211] and Rempe et al. [142] used a dedicated

module for contact detection while Shi et al. [150] detected them together with 3D joint

rotations and global root positions. Shimada et al. [152] extended the contact detection

module from Zou et al. [211] to additionally detect at each frame whether the subject

is stationary or not. However, in all these works the foot contact detection modules

were trained with ground truth contacts obtained from simple heuristics, as previously

described. Tedious manual screening has occasionally been used to correct or label

motion sequences, but this approach limits the amount of labelled data which is crucial

with neural networks.

Finally, researchers also embedded foot contact detection into their model with the

goal of improving foot positioning consistency, but do not support detection from

motion data. Yang et al. [196] estimated lower-body pose and foot contacts from

upper-body tracking devices. Harvey et al. [52] proposed a motion in-betweening

method where pose and contact labels are interpolated between their known values at

user-specified keyframes. Likewise, Holden et al. [58] and Starke et al. [163] include foot

contact detection at the next frame in character control frameworks, which enables foot

contact continuation. Min and Chai [121] modelled foot contacts into a graph-based

framework called Motion Graphs++, by annotating individual motion primitives with

embedded contact information. Then, this framework is able to randomly synthesise

motion along with corresponding contacts at runtime.
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2.4.2 Retargeting

Retargeting [44] refers to the task of transferring the movements of a source character

in a skeletal animation sequence to a target character with a different skeleton, i.e. dif-

ferent bone lengths (morphology) and possibly different joints or connections between

joints (topology). As pointed out by Aberman et al. [3], there is no formal specification

of the task. The purpose at large is to abstract out the dynamics of the source sequence

and to reproduce it on a character whose body differ. Effectively, the sought goal is

to create retargeted sequences with new morphologies and topologies whose motion

mimics the source while remaining visually plausible and natural. Since it is difficult in

practice to obtain ground-truth pairs of (source, target) sequences with exactly the same

motion, most deep learning approaches to retargeting, and all the schemes surveyed

in this section, rely on unpaired training data without motion correspondences across

characters.

In the seminal work of Villegas et al. [176], the retargeting network is built around

two RNNs. An encoder RNN captures the motion context of the source sequence in its

hidden state and forwards it to a decoder RNN that outputs each frame of the retargeted

sequence. A reference pose of the target skeleton is provided to the decoder. Besides

regularisation loss terms, network training is driven by an adversarial loss and a cycle

consistency loss. The adversarial loss attempts to minimise discrepancies between

the joint velocities of ground truth (true) and retargeted (fake) sequences. The cycle

consistency loss ensures that a source motion sequence that is retargeted to a target

character and then retargeted back to its original character remains as close as possible

to the original.

Lim et al. [104] and Kim et al. [81] reported that the above approach tends to generate

unrealistic motion. To mitigate this issue, Lim et al. [104] retargeted the motion of

the root joint separately from the poses at each time step, and combined the results

to construct the output sequence. The retargeted poses are computed as joint angles,

represented as quaternions, to be applied to a reference pose of the target skeleton.

The cycle consistency loss of Villegas et al. [176] is replaced by a reconstruction loss

associated to self-retargeting to the same character. Li et al. [100] then proposed a
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similar approach without adversarial loss but using an iterative solution: at runtime, the

retargeted motion is iteratively optimised such that source and retargeted motions have

the same end-effectors velocities (normalised by kinematic chain lengths). Moreover, a

smoothness term between adjacent frames is also used in this iterative optimisation

scheme. Kim et al. [81] argued that CNNs are better suited than RNNs for retargeting

because they can more accurately capture the short-term motion dependencies that

mostly condition the performance of the task. Accordingly, their scheme relies on

a purely convolutional network with temporally dilated convolutions that retargets

whole motion sequences in one batch.

In the previous approaches, retargeting was done only across different morphologies,

only supporting source and target characters with the same skeleton joints. Aberman

et al. [3] extended the scope of retargeting to skeletons with different topologies, subject

to the condition that source and target topologies are homeomorphic. This implies that

they can all be reduced to a common primal skeleton by merging pairs of adjacent bones.

Their representation of skeletal motion separates the temporally invariant bone offset

vectors that define the character morphology from the time-varying bone rotations at

each joint that capture the motion dynamics (see Figure 2.2). These two components

are processed in distinct parallel branches of the retargeting network. Importantly, a

motion sequence is modelled as a graph whose edges correspond to armatures. This

provides a principled formalism for processing motion data sampled on the skeletal

graph. The retargeting network includes three types of modules: space-time graph-

convolutional operators acting on spatio-temporal joint neighbourhoods, graph pooling

and graph unpooling operators. Graph pooling merges features of two adjacent edges

(armatures) into a single feature. Each graph unpooling operator is designed as the

inverse of a graph pooling operator, splitting one edge into two adjacent edges whose

features are copied from the original feature. Even though homeomorphic skeletons

are supported, a separate autoencoder has to be learnt for each skeletal structure to

encode motion sequences into a common latent space expressed in the common primal

skeleton topology, and to decode back latent code to motion sequences. Retargeting is

achieved by composing the encoder for the source character with the decoder for the

target character. The need of a separate autoencoder for each different homeomorphic
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skeleton topology prevents this approach to easily generalise to any homeomorphic

skeleton topology.

2.4.3 Style Transfer

Style Transfer refers to algorithms manipulating data such as images, videos or

human animations with DNNs to make the stylistic components look like another data

sample. Gatys et al. [43] first introduced a method to perform neural style transfer on

images, using the Gram matrix of the deep features as the artistic style information

of an image. In human animation, style transfer aims at transferring the style from

one motion sequence to another whose content is retained, called hereafter style and

content motion sequences, respectively. For example, we might want to edit a particular

motion by affecting the state of mind of the character (e.g. enthusiastic, sad, angry)

while preserving the performed action, e.g. locomotion from point A to point B.

In the following, we split approaches to motion style transfer into two categories,

supervised and unsupervised. Both categories are data-driven but the former uses

motion sequences annotated with style labels while the latter does not. Human motion

databases with style labels obviously facilitate the learning of style transfer frameworks;

however they are rare and hence their usage limits the scope and capability to generalise

of such frameworks.

Unsupervised

Holden et al. [59] pioneered human motion style transfer using their deterministic

generation model (see Section 2.3.1). In this framework, different types of constraints

can be applied on the generated motion, such as trajectories, bone lengths or joint posi-

tions, solving a constrained optimisation problem in a learnt human motion manifold.

Gradients are back-propagated through an autoencoder representing the manifold to

optimise latent representations. Style transfer constitutes a particular case, where both

joint positions and style are constrained with respect to the content and style motion

sequences, respectively. Moreover, Holden et al. [59] followed prior work in image style

transfer [43] by using the Gram matrix in the latent representation as a style similarity
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measure. They further improved this approach by training a feedforward network to

perform style transfer thousands of times faster [60]. Gradients are back-propagated to

train the feedforward network instead of optimising the latent representation. More

recently Jang et al. [70] proposed to break down style information into local per-body-

part style components to enable local style editing and increasing the range of stylised

motions. Spatial-temporal GCNs are used into a framework that can be learnt from a

motion dataset without labels or paired motion sequences. To do so, four objectives are

used: a reconstruction loss on unchanged styles, a cycle consistency loss to preserve

the style-invariant features, a third loss to preserve the linear and angular velocities of

the root joint, and a smoothness term between adjacent frames.

Supervised

Alternatively, style annotations can also be used to guide the learning of a style

transfer model. Smith et al. [156] divided the task of style transfer into spatial and

temporal style variations networks, both taking as inputs joint positions as well as a one-

hot style vector, where the networks are applied consecutively to predict corresponding

style variations. However, this approach requires motion data registered with similar

poses in different styles. Wang et al. [180, 181] leveraged an LSTM-based sequential

adversarial autoencoder whose encoder learns to map motions to separate content

and style encodings: two additional discriminators are trained to recover style labels

from content and style encodings, respectively. The encoder tries to fool the former

and helps the latter in order to free the content encoding from the style information

while preserving it in the style encoding. At runtime, both the content and style

motion sequences are encoded into separate content and style embeddings. The

decoder combines the content embedding of the content motion sequence and the

style embedding of the style motion sequence to produce the style transfer output.

Following these works, Aberman et al. [4] also extracted content and style encodings

but with two separate temporal convolutional encoders. Furthermore, the style encoder

learns a common embedding from both 2D and 3D joint positions with a triplet loss,

which enables style extraction from videos. The output motion is synthesised from the

content encoding while the style is controlled by the style encoding through temporally



2.4 motion editing 85

invariant adaptive instance normalisation (AdaIN). Moreover, a multi-style discriminator

assesses the output motion style. Park et al. [133] pointed out two limitations of the

latter framework: firstly, spatial relations between joints are not considered with 1D

convolutions, which might be an issue when style and content motions are significantly

different. Secondly, input style in previous works can only be given from an example

motion, which is not always available in real-world applications. To tackle the former

issue, Park et al. [133] presented a GAN-based framework relying on spatial-temporal

GCNs to extract style features in both spatial and temporal domains. In addition, a

mapping network is learnt to generate style codes sampled from a Gaussian distribution

and to match style codes encoded from style motions. At runtime, the space of style

codes can be explored through the mapping network and used to generate new style

codes without requiring example motions from which to extract style codes, addressing

the latter issue.

Beyond general-purpose style transfer, a few particular cases have been explored.

Kuriyama et al. [89] investigated the topic of style transfer of expressive or exaggerated

upper-body gestures. To this end, a transformer-based autoencoder is leveraged to first

embed both content and style gestures into its latent space, where another transformer

network called style transformer swaps content and style gesture tokens. Finally, Dong

et al. [33] focused on translation from adult to child motions and vice versa. In this

particular case, retargeting is not sufficient since it does not capture the natural stylistic

differences between adults and children [33]. This work leverages the capacity of

CycleGAN [210] to learn the mapping between adult and child motion distributions

without paired training data, which is critical due to the very limited availability of

child data.

Whereas most of the aforementioned approaches rely on style labels, Victor et al. [174]

recently pointed out that style is still loosely defined and arbitrary categories are too

subjective, arguing that style labels are to high-level. As a compromise, they introduced

the idea of objective intermediate-level descriptors (e.g. openness of the shoulders),

referred to as pose metrics, computed single poses and intended to be provided by

the user. Then metric networks operating into the latent space of a pre-trained pose
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autoencoder learn to edit pose metrics (one metric per network) given input and target

training pairs.

2.5 conclusion

As presented throughout this chapter, skeletal character animation is a wide topic

consisting of a lot of different but closely related problems. As an example, retargeting

and style transfer have clearly distinct purposes, while simultaneously being both

interested in extracting and transferring high-level semantic information (decoupling

the motion from the skeleton and the style from the motion, respectively).

A lot of promising methods have been proposed to create new motions and edit

existing motions. Even though deep learning has brought a diversity of novel tools for

character animation, current solutions often suffer from artefacts, such as footskate,

which are typically mitigated afterward through inverse kinematics for example. In

addition, current deep data-driven models lack capacity to generalise, in part due

to the difficulty of capturing high-quality and in-the-wild motion data, requiring an

expensive motion capture system that not all research teams can afford. Also, large

general-purpose motion databases are missing and there is no proper methodology to

learn models from multiple smaller, specialised databases, as one can do in computer

vision or natural language processing with image and text data, respectively. Indeed,

most human motion databases have different skeleton structures and there is currently

no satisfactory way to unify them. For these reasons, deep models struggle to inte-

grate workflows in animation studios which still mostly rely on traditional animation

approaches.

The goal of this thesis is then to propose effective approaches to enhance workflows

based on deep data-driven models and foster their use in animation studios. In

particular, we attempt to ease and enhance acquisition, unification and processing of

human motion data, three critical aspects to improve state-of-the-art methods as well

as to enlarge interoperability of animation systems, pipelines and databases.
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Chapter abstract

Human pose estimation is a low-level task useful to easily collect pose and motion data

with little equipment compared to motion capture systems, promising for animation of

synthetic characters. It also offers interesting perspectives for human action recognition,

scene understanding at large, and surveillance. For these applications, and especially

the former, accurately estimating the position of many joints from images is desirable for

larger high-quality in-the-wild human motion data volumes. In this chapter we present a

novel method called JUMPS for increasing the number of joints in 2D pose estimates and

recovering occluded or missing joints. We believe this is the first attempt to address the

issue. We build on a deep generative model that combines a generative adversarial network

to learn the distribution of high-resolution human pose sequences with an encoder that maps

the input low-resolution sequences to its latent space. Joints completion and upsampling

are then obtained by computing the latent representation whose decoding by the generator

optimally matches known joints. Post-processing a 2D pose sequence using our method

enhances and enriches representations of the character motion which reduces ambiguity and

eases inverse mapping from 2D to 3D, commonly done in 3D pose estimation. We show

experimentally that the localisation accuracy of the additional joints is on average on par

with the original pose estimates.
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Figure 3.1 – Illustration of our method applied to human pose estimation: the yellow 12-joint
skeletons (top) depicts poses estimated by AlphaPose [192] at different timestamps.
Our approach completes and upsamples joints in a spatially and temporally consis-
tent way to enrich estimated pose sequences, and yields the corresponding green
28-joint skeletons (bottom). In both images, the background has been stitched from
a video with a smaller field of view and five images of the jumper at different
frames have been overlaid as foreground.

3.1 introduction

Human pose estimation refers to the problem of estimating joint positions (either

in 2D or 3D) of one or more people in an image or video. In addition, it is appealing

in the context of skeletal character animation as an alternative to acquire in-the-wild

motion data with little equipment in opposition to traditional motion capture systems

which are cumbersome and expensive. It has been a topic of active research for several

decades, and all state-of-the-art solutions rely on deep learning, e.g. [15, 24, 164, 206].

Even then, the best approaches extract skeletons with a limited number of joints, usually

from 12 to 16, which is too rough for the movie industry or video games applications.

This issue concerns both the 2D and 3D cases since 3D joint extraction often relies on

2D pose estimation. Moreover, in the presence of strong foreshortening such left-right
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ambiguities, (self-)occlusions, or on previously unseen complex poses, both the 2D pose

estimation and the mapping from 2D to 3D are severely underconstrained.

In this chapter we present a novel approach to enhance existing state-of-the-art human

pose estimation solutions by upsampling human joints and completing occluded ones,

thereby paving the way for downstream applications that require complete poses and

higher joint resolutions. Starting with a temporal sequence of partially occluded poses,

we recover missing joint locations and improve the resolution of the skeleton animation

by estimating the position of additional joints. To the best of our knowledge, no work

has been previously proposed to recover missing joints and increase joint resolutions of

animated skeletons in 2D. We believe that enriching the representation provide a better

understanding of the motion which helps in many cases, especially for extremities such

as feet and hands. For instance, extracting the toe in addition to the ankle provides an

finer sense of feet contacts.

To this purpose, we draw inspiration from past research on human pose estimation,

human motion modelling and image inpainting: we leverage a deep generative model

that provides an effective spatio-temporal prior on human motion. Our model builds

on a GAN, which we complement by a front-end encoder to learn a mapping from the

space of human motions to the GAN latent space. The encoder helps selecting better

samples in latent space and stabilises the training of the GAN. At runtime, we leverage

our deep generative model to complete and upsample joints through an optimisation

in the latent space of our model to best match a 2D pose sequence to be enhanced,

typically estimated from video beforehand.

3.2 related work

In this section, we overview works related to our approach, i.e. recent approaches

for image inpainting in computer vision from which we draw inspiration and then

methods to interpolate and extrapolate motion sequences in the context of character

animation which are related to the joints completion component of the problem we

address.
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3.2.1 Image Inpainting

Deep generative models have demonstrated impressive performance on image in-

painting [18, 63, 198, 199]. For this task, the need to faithfully reproduce the visible

surroundings of missing image regions adds an additional constraint to the generative

synthesis process. Yeh et al. [198] rely on a GAN [46] whose generator is fed with

noise samples from a known prior distribution. In the inference stage, the closest noise

sample to the corrupted image is obtained by backpropagating the gradients of the

generator network, and fed to the generator to obtain the inpainted image. In their

seminal paper, Pathak et al. [134] take a different approach that combines a GAN and

a context encoder. The latter network is trained to reconstruct a full image from an

input with missing parts. It acts as the GAN generator, while the discriminator enforces

the plausibility of the inpainting result. Iizuka et al. [63] enrich this architecture with

two discriminators that separately process small-scale and large-scale image textures.

Yu et al. [199] further add a self-attention module to better take advantage of distant

image patches to fill the missing regions. Bao et al. [18] replace the context encoder

with a VAE [83] and incorporate an image classifier to specialise the generative process

to sub-categories.

3.2.2 Motion Prediction and In-Betweening

As seen in Chapter 2, motion in-betweening refers to the process of temporally

interpolating motion between input keyframes that can be manually edited by an artist.

By definition, in-betweening completes pose sequences in the temporal domain and

usually operates on 3D motion data [51, 52, 139]. More closely related to our work is the

approach of Hernandez Ruiz et al. [56], addressing motion prediction through spatio-

temporal inpainting. They combine an ERD [41] with a GAN whose generator operates

in the latent space of the encoder. Their scheme can both temporally interpolate motion

frames and recover missing joints within a pose. Unlike these approaches that are fed

with 3D motion data, our scheme takes as input 2D joint locations that could typically

be first estimated from video using a 2D human pose estimation framework. We believe
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2D pose inpainting is more challenging: although depth is missing, it needs to be

accounted for by the inpainting process in order to obtain 2D joint location estimates

that are consistent with the motion of the character in 3D space.

3.3 method

In this section we describe the method we propose to upsample and complete a

2D pose sequence, typically previously estimated from video, to infer the location of

missing or unseen joints and provide a higher-resolution representation of the body.

To this purpose we leverage a deep generative model that we train on pose sequences,

rather than static poses, in order to lower ambiguities with spatio-temporal cues.

GAN

P data
(l )

Pdata
(h)

E DG fake
real

P z

Figure 3.2 – Coarse representation of our deep generative model. The upper right part is the
basis of our model: a GAN with generator G and discriminator D operating on
motion sequences with higher number of joints. Moreover, we complement our
model with encoder E to map motion sequences with lower number of joints
to the latent space of the GAN. Pz denotes the prior distribution while P(h)

data and

P(l)
data denote motion data distributions at with higher and lower number of joints,

respectively. The latter is sampled by discarding predefined joints from motion
sequences sampled from the former.

3.3.1 Network Architecture

As illustrated in Figure 3.2, our model consists of a GAN coupled with an additional

encoder intended to map pose sequences with lower number of joints in the latent
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space of the GAN which represents pose sequences with higher number of joints. Hence,

this model benefits from the generative power of GANs and mitigates instability during

training by introducing supervision from the encoder.

Our network conforms to the architecture of deep convolutional GANs (DCGANs) [140],

using fractionally-strided transposed convolutions in the generator and strided con-

volutions in the discriminator (see detailed architecture in Section 3.4.1). Moreover,

DCGANs use rectified linear units (ReLUs) in the generator and leaky rectified linear

units (LReLUs) in the discriminator, and batch normalisations (BNs) are applied after

almost each convolutional layer. Except for the size its first and last layers, our encoder

follows the architecture of the discriminator.

3.3.2 Data Representation and Notation

2D pose sequences represented by joint positions are usually stored in three-dimensional

tensors containing the 2D coordinates of each joint at each frame. Instead of temporal

1D convolutional layers, we use 2D convolutional layers operating in the spatio-temporal

domain to better model motion dynamics. To obtain meaningful convolutions in the

spatial domain, we rearrange the joints as shown in Figure 3.3. In this arrangement,

frames

shoulders

hands
elbows

2 × head

2 × thorax

hips

feet
knees

2 × pelvis

2 × neck

    

    

    
    

    
    y1

x2
y2

x1

Figure 3.3 – Illustration of how our model internally represents a pose sequence whose topology
is depicted on the left part. The right part shows how joint coordinates are arranged,
with body parts ordered following the human skeleton from hands to feet. x1,
y1, x2 and y2 denote the 2D coordinates of left and right joints, respectively, for
symmetrical joints (e.g. hips) and duplicated 2D coordinates of asymmetrical joints
(e.g. pelvis).
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each entry holds four coordinates, i.e. the 2D coordinates for two joints. The symmetric

joints (e.g. feet, knees, etc.) are paired to form a single entry, while the other joints (e.g.

pelvis, thorax, etc.) are duplicated 1 to obtain consistent four-channel entries.

In the following, we note E, G and D the encoder, generator and discriminator

networks, respectively. P(h)
data is the GAN data distribution, whose samples are pose

sequences picked from the training dataset. Then, P(l)
data denotes the data distribution

used to feed our encoder, which will encode pose sequences with lower number of joints

into the latent space of our GAN which represents pose sequences with higher number

of joints. It corresponds to P(h)
data mapped by discarding predefined joints to obtain

pose sequences with lower number of joints. Finally Pz denotes the prior distribution

and PX̃ stands for the distribution of uniformly sampled points along straight lines

between pairs of points sampled from the GAN data distribution P(h)
data and the generator

distribution, i.e. Pz mapped through G, used to improve the training of Wasserstein

GANs [48].

3.3.3 Training

Adversarial Loss

Traditionally, a GAN consists of a generator and a discriminator. The former is

trained to produce realistic samples while the latter aims at distinguishing those from

real samples, both competing against each other. The ability to generate realistic

samples can be expressed more formally as the similarity between two probability

distributions that are the data distribution and the distribution of samples produced

by the generator. The original formulation of GANs [46] measures the similarity with

the Jensen–Shannon divergence. However, this divergence fails to provide meaningful

values when the overlap between the two distributions is not significant which often

makes GANs quickly diverge during training. Arjovsky et al. [14] introduced Wasserstein

generative adversarial networks (WGANs), showing that, under the hypothesis that the

discriminator is 1-Lipschitz, the Jensen–Shannon divergence can be replaced by the

1. Both discriminator and encoder duplicate those joints while the generator produces duplicated
joints in a first step and then outputs the average of the two versions.
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Wasserstein distance that have better properties for convergence. Then, Gulrajani

et al. [48] proposed a gradient penalty term in the WGAN loss function to enforce the

1-Lipschitz hypothesis on the discriminator.

Therefore, we opt for the gradient-penalised WGAN and have the following loss

functions for the generator and the discriminator, respectively:

LG = − D
(
G(z)

)
(3.1)

LD = D
(
G(z)

)
− D(X) + λgp

(
∥∇X̃D(X̃)∥2 − 1

)2
(3.2)

where λgp is the gradient penalty coefficient, z is a latent code sampled from the pior

distribution Pz, and both X and X̃ are pose sequences sampled from PX̃ and P(h)
data,

respectively.

Reconstruction Losses

As previously mentioned, we complement the GAN of our model with an encoder.

Then we encourage our model to reconstruct inputs that are encoded and then de-

coded through the generator with a (forward) reconstruction loss L f orward
rec minimising

differences between input and output like in autoencoders. We also incite our model to

be consistent when generating samples from the prior distribution and then encoding

them back into the latent space with a backward reconstruction loss Lbackward
rec , as in

cycle-consistent VAEs [71]. Such backward reconstruction loss facilitates the convergence

but more importantly it enforces encoder outputs to follow the prior distribution Pz

imposed on our GAN. As illustrated in Figure 3.4b, our reconstruction loss is then

Lrec = L f orward
rec + Lbackward

rec (3.3)

where L f orward
rec is itself made up of two terms, respectively minimising the divergences

of position and velocity of the reconstructed pose sequence X̂ = G(E(X)). More
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formally, we use the MPJPE [66] to quantify the positional divergence between two pose

sequences X and Y:

MPJPE(X,Y) =
1
F

1
J

F

∑
f=1

J

∑
j=1

∥X f ,j − Yf ,j∥2 (3.4)

where F and J denotes the number of frames and joints, respectively. In analogy with

the MPJPE, we define the mean per joint velocity error (MPJVE) to quantify the velocity

divergence between X and Y as:

MPJVE(X,Y) =
1
F

1
J

F

∑
f=1

J

∑
j=1

∥v(X f ,j)− v(Yf ,j)∥2 (3.5)

where v(·) denotes the velocity of a joint, which is in practice computed via numerical

differentiation. This secondary term acts as a powerful regulariser that speeds up

the convergence in early iterations and mitigates temporal jitter in generated pose

sequences. Finally, L f orward
rec is the weighted sum of MPJPE and MPJVE:

L f orward
rec = λp · MPJPE

(
X, G

(
E(X)

))
+ λv · MPJVE

(
X, G

(
E(X)

))
(3.6)

where λp and λv are hyperparameters and X a pose sequence sampled from P(l)
data.

The second component Lbackward
rec focuses on the reconstruction of latent codes sampled

from the prior distribution Pz. It minimises the mean squared error (MSE) between

z ∼ Pz and its reconstructed version E(G(z)):

Lbackward
rec = MSE

(
z, E
(
G(z)

))
(3.7)

Mixed Loss

We further encourage the generation of realistic sequences with an additional loss

term to penalise unrealistic reconstructed pose sequences. Here we make use of the

discriminator to tell both the generator and the encoder whether the reconstructed
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DG

X∼P data
(l )z∼P z

G (z )
LD

D (G ( z))

D (X )

(a) Flow during discriminator’s training step.

D
Lrec

( forward )

Lrec
(backward )

X∼Pdata
(l )

LG
LmixGE

z∼P z

E (X )

E (G( z)) G(z )

G(E (X ))

(b) Flow during generator/encoder’s training step.

Figure 3.4 – Computational flows through our deep generative model during training.

pose sequence X̂ = G(E(X)) is realistic or not. We use the same formulation as for the

generator adversarial loss (see Section 3.3.3) but applied to X̂ instead of G(z):

Lmix =−λm · D
(

G
(
E(X)

))
(3.8)

where λm is an hyperparameter to balance Lmix with respect to LG and LD, and

X ∼ P(l)
data.

Optimisation

In summary, the encoder, the generator and the discriminator are trained by min-

imising the loss functions Lrec + Lmix, LG + Lrec + Lmix and LD, respectively. Similarly

to a GAN, we optimise at each iteration the discriminator in a first step and then both

the generator and the encoder. Figure 3.4 illustrates the computational flows through

the network during both training steps.
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Temporal Variance Regularisation

GANs are known to produce sharp samples, but for the considered task this can lead

to perceptually disturbing temporal jitter in the output pose sequences. To optimise the

trade-off between sharpness and temporal consistency, we feed the discriminator with

stacked joint positions and velocities (computed through numerical differentiation).

The velocities favour the rejection of generated samples that are either temporally too

smooth or too sharp. This idea is inspired from Karras et al. [79], where the variation

of generated samples is regulated by concatenating mini-batch standard deviations at

some point of the discriminator.

3.3.4 Inference

At runtime, we leverage the generative model learnt to recover missing joints in an

incomplete pose sequence X and upsample joints to increase the level of details. Given

an input pose sequence X, we iteratively optimise the latent code z initialised to E(X)

by backpropagating gradients through our generator to minimise the divergence of

G(z) from X over available joints. In addition to this contextual loss term, we add a prior

term which maximises the discriminator score on the generated pose sequence. This

process is closely related to the semantic image inpainting approach proposed by Yeh

et al. [198]. Formally, we solve

z∗ = argmin
z

LInp (3.9)

where LInp is our inpainting objective function composed of a contextual and a prior

term. The contextual term minimises the weighted sum of MPJPE and MPJVE between

input X and output X̂ = G(z), while the prior term maximises the plausibility of the

output by maximising the discriminator score D(X̂):

LInp = γp · MPJPE
(
X, X̂

)
+ γv · MPJVE

(
X, X̂

)︸ ︷︷ ︸
contextual loss

−γd · D
(
X̂
)︸ ︷︷ ︸

prior loss

(3.10)
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where γp, γv and γd are additional hyperparameters. Then, we finally generate

X∗ = G(z∗) – which best reconstructs X with respect to LInp – to get an enhanced

version of input X where missing joints have been recovered and additional joints have

been upsampled.

Moreover, we translate, scale and rotate X̂ to best match X at each iteration of

the gradient descent. Ordinary Procrustes analysis (OPA) is used to analytically find

optimal translation, scaling and rotation, and hence has a low overhead while making

the gradient descent convergence several times faster and improving results.

Finally, our network only supports fixed-length pose sequences. Here we describe a

simple yet effective mechanism to handle longer variable-length pose sequences. Given

a pose sequence X longer than F frames, one can independently inpaint fixed-length

sub-sequences of X and then concatenate the results into a single inpainted pose

sequence having the same length as X. However, this approach does not guarantee

that two consecutive sub-sequences will be concatenated smoothly. To prevent such

discontinuities we use half overlapping sub-sequences and for each frame we select

between the two overlapping inpainted frames the closest to the input, in the sense of

the minimal contextual loss term in LInp.

3.4 evaluation

In this section, we assess the proposed method. First, we provide necessary im-

plementation details in Section 3.4.1. Then, we evaluate our method on pure joint

upsampling in Section 3.4.2 and on 2D pose estimation enhancement in Section 3.4.3,

i.e. joints completion and upsampling from pose sequences estimated from video.

3.4.1 Implementation Details

data . To train and evaluate our method, we rely on MPI-INF-3DHP [119]. This

dataset contains image sequences in which 8 actors perform various activities with

different sets of clothing. It is well suited for joint upsampling since it is one of the
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Figure 3.5 – Detailed description of our network architecture. Notations: Convolution (Conv),
Transposed Convolution (Tr.Conv), Batch Normalisation (BN), Rectified Linear
Unit (ReLU) and Leaky Rectified Linear Unit (LReLU).

public databases having the highest number of joints, i.e. 28 joints. Since our method

focuses on fixed-length 2D pose sequences, we generated a set of around 835’000 2D

pose sequences of F = 24 frames by randomly projecting original 3D pose sequences.

We also selected around 166’000 of images annotated with 2D poses directly from

MPI-INF-3DHP with no preprocessing for testing.

architecture . The architecture of our model is detailed in Figure 3.5. It has

about 3 millions learnable parameters that are almost equally distributed over the

encoder, the generator and the discriminator.

training . Our implementation is written in Python and deeply relies on PyTorch.

Training and experiments have been executed on an NVidia Tesla P100 GPU. We trained

our model for 60 epochs (about 11 hours) with a mini-batch size of 256 using Adam

optimisation algorithm [82] with learning rate α = 0.0001 and hyperparameters β1 = 0.5,

β2 = 0.999 and ϵ = 10−8. We followed the suggestions for DCGAN from Radford et

al. [140] to reduce α and β1, with respect to Kingma and Ba [82]. As Radford et al. [140],

we observed that β1 = 0.5 helped to stabilise the training. We set the Wasserstein

gradient penalty weight to λgp = 10 as proposed by Gulrajani et al. [48], and our loss

weights as follows: λp = 200, λv = 100, λz = 2 and λm = 1. We empirically found these

values to work well.
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inference . We optimise the latent code again using Adam algorithm with α = 1,

β1 = 0.8, β2 = 0.999 and ϵ = 10−8. The weights of the inpainting loss terms are set

to γp = 10, γv = 5 and γd = 15. We run the optimisation for 200 iterations. These

hyperparameter values have been chosen to enforce the convergence of the optimisation

in a limited number of iterations and avoid matching noise or imperfections in inputs.

These hyperparameter values have been chosen to enforce the convergence of the

optimisation in a limited number of iterations and hence avoid to reproduce input

noise and imperfections. Finally, to improve inference results we perform several

optimisations of the latent code in parallel for a single input, starting from different

initialisations. One of these starting points is computed as the output of the encoder

fed by the input pose sequence, the others are randomly sampled from the prior

distribution. We keep the one closest to the input, in the sense of the inpainting loss

LInp.

ablative study. We perform our evaluation on different variants of our method

in order to show the relevance of the different components of our method. In the first

variant considered, Ours w/o OPA, we disable the OPA alignment mechanism during

inference (see Section 3.3.4) to measure its impact. Then, we trained from scratch

our model without its encoder (Ours w/o ENC.), falling back to a pure GAN. Finally,

we evaluate our method without using our overlapping sub-sequences mechanism

described in Section 3.3.4 (Ours w/o overlap).

human pose estimation. In the second part of our evaluation (see Section 3.4.3),

we apply our method on real-world pose sequence estimates. We rely on AlphaPose 2 to

perform 2D pose estimation from videos picked from our test set. AlphaPose provides

12-joint estimates that are then enhanced using our method, recovering missing (e.g.

occluded) joints and upsampling to 28 joints.

metrics . Finally, we report our results in the following with the percentage of

correct key points normalised with head size (PCKh) [13] and the area under the

2. Implementation based on [40, 97, 192] available at https://github.com/MVIG-SJTU/AlphaPose

https://github.com/MVIG-SJTU/AlphaPose


3.4 evaluation 103

curve (AUC) [65] metrics. The PCKh consider a joint as correct if its distance to the

ground truth normalised by head size is less than a fixed threshold and the AUC

aggregates the PCKh over an entire range of thresholds. We refer to the PCKh with

threshold α with PCKh@α and we compute the AUC over the range [0,1] of thresholds.

3.4.2 Joints Upsampling

Our first experiment focuses on pure joint upsampling. To do so, we purposely

downsample ground truth pose sequences from 28 joints to the 12 joints that are

common to our test set and AlphaPose outputs (see Figure 3.7 left), upsample them

back to 28 joints using our method, and compare the result to the ground truth. Table 3.1

provides PCKh and AUC obtained by our method and its variants.

Assuming a typical human head size, the main variant of our method achieves a

positioning error lower than 2.25 cm for half of the upsampled joints (i.e. PCKh thresh-

old of 0.1) and lower than 11.25 cm for 95% of them (i.e. PCKh threshold of 0.5).

Removing the encoder in front of the GAN in our architecture (Ours w/o ENC.) substan-

tially degrades performance. Indeed, the encoder regularises the generative process

and improves the initialisation of the latent code at inference time, yielding sequences

that better match available input joints. Then, Table 3.1 show that our OPA alignment

mechanism is critical to the performance of our approach.

Table 3.1 – Quantitative evaluation of our method and its variants on pure joint upsampling.
We purposely remove 16 of the 28 joints from ground truth pose sequences, apply
our method to recover them and compare the result to the ground truth. We
report the percentage of correct key points normalised with head size (PCKh) at
different thresholds and corresponding area under the curve (AUC) over [0,1] (see
Section 3.4.1). Disabling ordinary Procrustes analysis alignment (Ours w/o OPA)
and removing encoder (Ours w/o ENC.) substantially degrade performance. Higher
PCKh and AUC mean better performance.

Model PCKh@0.1 PCKh@0.5 PCKh@1.0 AUC
Ours w/o OPA 0.0368 0.4384 0.6814 0.3912
Ours w/o ENC. 0.1701 0.8259 0.9678 0.7005

Ours w/o overlap 0.5821 0.9648 0.9962 0.8727
Ours 0.6096 0.9674 0.9965 0.8803
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Finally, in absence of the overlapping sub-sequences mechanism (Ours w/o overlap),

the error measured is only slightly increased, but grows at high accuracy levels. How-

ever, as illustrated on Figure 3.6, we found that processing overlapping chunks of

frames noticeably improves the temporal consistency of the output pose sequence. We

O
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s

Figure 3.6 – Qualitative example of the influence of overlapping temporal chunks. This subset
of four consecutive frames in a longer sequence is inpainted with no overlap (top)
and half overlap (bottom). The frames are located at the end (first two) and the
beginning (last two) of two consecutive chunks. Note the temporal discontinuity of
joint locations (e.g. head top, elbows, ankles) in the sequence inpainted with no
overlap at the chunk boundary (dashed red line, top). The temporal consistency is
much better with half overlap (bottom).
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observed that the per-frame joint positioning accuracy drops at the extremities of the

processed chunks, probably because of the reduced temporal context information at the

extremities. Without our overlapping sub-sequences mechanism, an increased temporal

jitter is introduced at the chunk boundaries of the generated pose sequence, which

is likely to incur perceptually disturbing artifacts e.g. when applying our method to

character animation.

3.4.3 Human Pose Estimation

Our second experiment evaluates the performance of our method and its variants

when applied on 2D human pose sequences estimated from videos using AlphaPose.

Table 3.2 summarises the results for this experiment. The first row, entitled AlphaPose,

gives the amount of error in AlphaPose estimates. By comparing it to our main variant

(Ours) we see that our method is able to upsample input pose sequences from 12 to 28

joints without significantly increasing joint position errors. Moreover, estimated joint

positions with low confidence are sometimes corrected using our method, as illustrated

in Figure 3.7. The results obtained by the other variants of our method tend to confirm

the conclusions drawn in the previous section.

Table 3.2 – Quantitative evaluation of our method and its variants on joint completion and up-
sampling applied on 2D human pose estimated from videos using AlphaPose [192].
We report the percentage of correct key points normalised with head size (PCKh) at
different thresholds and corresponding area under the curve (AUC) over [0,1] (see
Section 3.4.1). The first row reports errors observed in AlphaPose outputs before
applying our method. The ablation studies confirm the conclusions drawn from
our pure joint upsampling evaluation (see Table 3.1). Higher PCKh and AUC mean
better performance.

Model PCKh@0.1 PCKh@0.5 PCKh@1.0 AUC
AlphaPose [192] 0.0941 0.7659 0.9157 0.6310
Ours w/o OPA 0.0207 0.3423 0.6304 0.3249
Ours w/o ENC. 0.0537 0.6801 0.9059 0.5692

Ours w/o overlap 0.0831 0.7701 0.9277 0.6326
Ours 0.0842 0.7723 0.9276 0.6341
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AlphaPose JUMPS Ground Truth

Figure 3.7 – Example of a limb (right forearm) occluded by the subject’s body inaccurately
estimated by AlphaPose [192] but recovered by our method based on human
motion priors. Note that these images have been intentionally whitened except for
the area around the occlusion for clarity purposes.
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3.5 conclusion

In this chapter we presented a novel method relying on a hybrid adversarial genera-

tive model which is able to upsample joints and complete missing joints in 2D human

pose sequences. Intended to enhance 2D pose estimates, we achieve to increase joint

resolution without of loss accuracy. To the best of our knowledge, this is the first

attempt to solve this problem in 2D with deep learning. Our framework considers a

12-joint 2D pose sequence as input and produces a valuable 28-joint 2D pose sequence

by inpainting the input. The proposed model consists of a DCGAN coupled to a front-

end encoder. Ablation studies have shown the strong benefit of the encoder, since

it provides some supervision that greatly helps the convergence and accuracy of the

combined model. Given an input sequence, inpainting is performed by optimising

the latent representation that best reconstructs the low-resolution input. The encoder

provides the initialisation and a prior loss based on the discriminator is used to improve

the plausibility of the generated output.

The obtained results are encouraging and open up future research opportunities

toward high-quality human pose estimation and increased availability of high-quality in-

the-wild human motion data. Improvements could come from an improved consistency

with respect to actual human motion. Explicitly modelling or enforcing biomechanical

constraints could help. Adapting our method to 3D pose sequences might also benefit

from the richer information of 3D joints. Additionally, a potentially fruitful line of

research could be to tackle as a whole 3D human pose estimation and joint upsampling.

Finally, temporal consistency can be improved. Even though the overlapping sub-

sequences mechanism introduced helps to provide smooth output pose sequences,

the underlying architecture is still limited to fixed-length sequences. Moreover, CNNs

are known to struggle to model long-term correlations. Transformers could be a

promising candidate to better model long-term dependencies and handle variable-

length sequences. Indeed, as explained in Section 2.2.4, transformers have recently

been successful in natural language processing, in particular to efficiently learn distant

correlations, and lately became very popular. In the following chapter, we explore such

a transformer model to learn an abstract deep motion representation of variable-length
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sequences with variable number of joints, which natively supports joint upsampling as

well as other applications.
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Chapter abstract

Motion retargeting is a long-standing problem in character animation, which consists

in transferring and adapting the motion of a source character to another target character.

A typical application is the creation of motion sequences from off-the-shelf motions by

transferring them onto new characters. Motion retargeting is also promising to increase

interoperability of existing animation systems and motion databases, as they often differ in

the structure of the skeleton(s) considered. Moreover, since the goal of motion retargeting is

to abstract and transfer motion dynamics, effective solutions might coincide with expressive

and powerful human motion models in which operations such as cleaning or editing are

easier. In this chapter, we present a novel abstract representation of human motion agnostic

to skeleton topology and morphology. Based on transformers, our model is able to encode

and decode motion sequences with variable morphology and topology – extending the scope

of retargeting – while supporting skeleton topologies never seen during the training phase.

More specifically, our model is structured as an autoencoder and encoding and decoding

are separately conditioned on skeleton templates to extract and control morphology

and topology. Beyond motion retargeting, our model has many applications since our

representation is convenient to embed motion data from different sources. It might be

benefical to a number of data-driven methods, allowing them to combine scarce specialised

motion datasets (e.g. with style or contact annotations) and larger general motion datasets

for improved performance and generalisation ability. Other applications include motion

denoising and joint upsampling.
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4.1 introduction

In this chapter, we propose a general approach to learn an abstract representation of

motion that is agnostic to the skeleton topology and morphology. Possible applications

are diverse and numerous since our representation is convenient to embed motion

data from different sources. For example it could be beneficial to apply a number of

data-driven methods on both scarce specialised motion datasets (e.g. with style or

contact annotations) and larger general motion datasets for improved performance

and generalisation ability. Specific applications include motion denoising and motion

retargeting, by mapping in two steps given motion sequences into our representation,

and then to the desired representation.

Motion retargeting is a long-standing problem in character animation. Specifically

addressed by Gleicher [44] in 1998, it refers to the problem of transferring and adapting

the motion of a source character to another target character. However, it has no

formal specification since the goal is to abstract out motion dynamics across different

characters, which makes motion retargeting difficult to address. Typical applications in

animation pipelines include the creation of novel motion sequences by transferring onto

new characters off-the-shelf motions. Motion retargeting could also be very interesting

to make existing animation systems and motion databases interoperable. Indeed, they

often differ in the structure of the skeleton(s) handled, which are difficult to swap.

Finally, finding effective models for motion retargeting might coincide with building

expressive and powerful motion representations in which operations such as cleaning

or editing are easier.

Motion retargeting has not been much explored compared to other topics in char-

acter animation such as generative synthesis of human motion. Nonetheless, a few

approaches have been proposed in the last years, exclusively relying on deep learning.

In the general case, source and target characters considered in retargeting might differ

in the length of their bones (morphological variations) or in which joints and bones they

are composed of (topological variations). However, most existing methods only address

morphological variations. As an exception, Aberman et al. [3] recently extended this

scope to homeomorphic skeletons only and is limited to known skeleton topologies.
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Moreover, there is no significant amount of pairs of source and retargeted motion

sequences available. In consequence, researchers rely on unsupervised approaches and

often additionally introduce various heuristics to disambiguate the learning phase of

their model.

To this end, we present in this chapter a novel approach to learn an abstract deep

motion representation unified across human morphologies and topologies. Based

on transformers, our model is able to encode and decode motion sequences with

variable skeleton topology and morphology, extending the scope of retargeting beyond

homeomorphic skeletons while supporting skeleton topologies never seen during the

training phase. More specifically, our model consists in an autoencoder in which

both encoder and decoder follow a transformer-based architecture, support motion

sequences with variable number of joints and are separately conditioned on skeleton

templates to extract and control morphology and topology. Trained on a large amount of

data gathered from multiple existing databases with different skeleton topologies, our

model successfully abstracts out motion features from morphological and topological

features.

Motion retargeting can then be performed through encoding conditioned on the

source character followed by decoding conditioned on the target character. Moreover,

as our decoder has learnt to produce clean motion sequences, motion denoising can

be performed through self-retargeting (retargeting with identical source and target

characters) of noised motion sequences.
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4.2 related work

In the following, we give an overview of existing works related to our transformer-

based approach for motion retargeting.

4.2.1 Motion Retargeting

Motion retargeting at large might be addressed within different representations of

human dynamics. For instance, Aberman et al. [2] proposed a 2D approach based on

visual features where inputs and outputs are image sequences. Other variants include

the retargeting of body shapes which considers the dynamics of body surfaces, and is

notably addressed in parallel to [175] or on top of [115] skeletal retargeting. Our work

is specifically focused on the latter, i.e. 3D skeletal motion retargeting, which considers

motion dynamics of character skeletons as commonly done in character animation.

Before Gleicher [44], techniques specifically addressing skeletal motion retargeting

have been little explored. In his work, Gleicher [44] uses different constraints, e.g.

on joint locations or body segment orientations, to define specific motion dynamics

features that must be preserved or transferred. Retargeting is then performed by

numerically solving the corresponding constrained optimisation problem. About two

decades later, researchers in character animation tried again to tackle this long-standing

problem, relying on deep learning.

As detailed in Section 2.4.2, recent approaches address only morphological retar-

geting [81, 100, 104, 176], except for Aberman et al. [3] who address homeomorphic

skeleton topologies. Besides the scope addressed, these recent methods mostly dis-

agree on what is the most effective architecture for this task: recurrent, 1D temporal

convolutional and spatio-temporal graph-convolutional architectures have all been

leveraged.

Indeed, both convolutional and recurrent architecture have advantages and disad-

vantages, as seen in Section 2.2.4. Theoretically, RNNs can model correlations across

any temporal horizons. However, as they process each timestep of time series one

after another, training gradients exponentially vanish, limiting the effective maximal
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temporal horizon across which correlations are learnt. Moreover, the sequential pro-

cessing of RNNs is inefficient since parallelism is little exploited compared to CNNs,

which are more efficient, allowing for larger data volumes and longer training times.

The temporal horizon of CNNs is strictly limited by the size of their receptive field,

itself determined by the number of convolutional layers and the size of their kernel.

GCNs suffer from the same limitations as CNNs, but might better model spatio-temporal

dependencies. To the best of our knowledge, no transformer-based architecture has yet

been explored in the context of motion retargeting, even though it is very promising

especially for modelling long-term temporal dependencies (see Section 2.2.4).

Beyond network architectures, a wide diversity of training losses have been explored

without any consensus emerging. They can be sorted into three categories:

— unsupervised losses, e.g. adversarial, reconstruction and cycle consistency losses;

— retargeting heuristics, e.g. to reproduce end-effector velocities or to bound joint

twists;

— regularisation losses, e.g. to foster smoothness or quaternion validity.

Losses in the first category shape the model learnt while the ones in the second increase

supervision, translating the difficulty to learn such models from unpaired motion

sequences. Losses in the third category are typically used to ease model training and

guarantee some properties. For a detailed review of methods cited beforehand, please

refer to Section 2.4.2.

In contrast with existing methods, ours gets rid of retargeting heuristics, as we only

rely on a reconstruction loss to learn a deep motion representation and a temporal

bone lengths consistency loss to enforce constant bone lengths over time, since we

use a positional pose representation. Moreover, we leverage transformers which are a

promising alternative to better model distant spatio-temporal correlations. Last but not

least, our learnt deep motion representation is unified across skeleton morphologies

and topologies, pushing the scope of retargeting beyond homeomorphic topologies,

and generalises well to novel topologies unseen during training.
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4.2.2 Transformers

A transformer is a scheme of neural network architecture adopting the mechanism

of self-attention, in which the network itself finds out which part of input data it

should pay more attention to (see Section 2.2.4 for an introduction to transformers).

First introduced in natural language processing, transformers are getting more and

more attention in all topics leveraging deep learning. For instance in computer vision,

transformers have been leveraged in specialised architectures for images, such as vision

transformers (ViTs) [34], and tend to replace CNNs as self-attention layers with sufficient

number of heads are at least as expressive as any convolutional layer [29]. In animation,

they have been explored for 3D facial animation [26] for instance. In skeletal character

animation in particular, solutions to style transfer [89] and motion in-betweening [36,

131, 139] have also been built around transformer architectures.

In our work, we draw inspiration from the architecture proposed by Chandran

et al. [27] for 3D shape modelling, who relied on a transformer-based autoencoder to

model topology-independent static 3D shapes such as human faces, hand shapes or full

human body shapes. Later on, Chandran et al. [26] extended their method to include

the time dimension for facial animation, where static facial identity and dynamics

are separately encoded such that the model learns a disentangled representation.

On our side, we instead adapt our transformer-based architecture to process spatio-

temporal sequences of joint positions. To this end, we introduce point-wise 1D temporal

convolutions at different places to encode, process and extract human joint trajectories

(see next section).
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Figure 4.1 – Overview of our model which is a transformer-based autoencoder whose encoder E
and decoder D are conditioned on skeleton templates to control morphological and
topological features. Skeleton templates consist in neutral poses (see Section 4.3.2).
During training, our model is guided by the reconstruction loss Lrec as well as
the temporal bone lengths consistency loss Lrbl (see Section 4.3.4). At inference,
applications of our model include motion retargeting that can be performed by
setting the decoding template to the target character skeleton, as well as motion
cleaning by encoding and decoding with the same template as our decoder has
learnt to produce clean motion sequences.

4.3 method

In this section, we describe our methodology to build a deep motion representation

unified across skeleton topologies and morphologies. Our goal is twofold: first, we

need an architecture flexible enough to encode variable size inputs to latent variables

lying in our deep representation and then to decode them to variable size outputs. In

particular, inputs and outputs are motion sequences with variable number of frames

and joints. Second, we not only want our deep representation to be able to encode

motion sequences with variable numbers of joints, but also to be shared across skeleton

topologies and morphologies. In other words, we want similar motions to be repre-

sented by close latent codes in our deep representation, even when skeleton topologies

and morphologies differ. To this end, we propose a model relying on an autoencoder

(see Figure 4.1) in which both encoder and decoder have transformer-based architec-

tures and are conditioned on skeleton templates (see below), representing morphological
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and topological variations. Our deep motion representation then corresponds to the

latent space of our autoencoder and is supposed to encode motion free from skele-

ton topology and morphology. Hence, we make the hypothesis that “pure” motion

features can be reasonably separated from morphological and topological features.

After a brief overview of data representations and notations, we present in detail the

proposed model in the following: we begin with the description of our conditioning

mechanism used to control and abstract skeleton topology and morphology, followed

by the proposed associated architecture. Finally, we present the procedure used to train

our model and how to exploit it at inference.

4.3.1 Notation and Representation

Our deep representation operates on variable-length motion sequences. We represent

them by the position of the joints at each frame, expressed in the global Euclidean space.

We note X(a) ∈ RJ (a)×3×F a motion sequence of F frames “performed” by the skeleton a

having J (a) ∈ N+ joints, where the function J (·) gives the number of joint of a given

skeleton. Then X(b) ∈ RJ (b)×3×F denotes a motion sequence consisting of the same

motion features as X(a) but performed by a another skeleton b ̸= a. Finally, we note

E and D our encoder and decoder modules, E(X(a)|T (a)) the encoding of a motion

sequence X(a) conditioned on the skeleton template T (a) associated to skeleton a, and

D(z|T (b)) the decoding of latent code z conditioned on the template T (b) associated

to skeleton b, where the function T (·) gives the template of given skeleton. In the next

section we will see what skeleton templates are.

4.3.2 Template Conditioning

Our neural network is an autoencoder made up of an encoder E and a decoder D,

with our deep motion representation corresponding to the latent space lying in between.

A first consequence of our goal to abstract out human motion in the latent space

independently of skeleton topology and morphology is the following: no information
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about topology and morphology should be encoded into our latent space. Then, the

decoding of such skeleton-agnostic latent codes must be conditioned on the desired

topology and morphology of the output motion sequence. To this end, we introduce

skeleton templates as conditioning representatives of topological and morphological

features. In the following, the short form “template” is equivalent to skeleton template

if not stated otherwise.

Coronal plane

Transverse plane
X

Y

Z

Figure 4.2 – Illustration of a typical skeleton template used to condition our model, consisting in
a neutral standing pose with arms along the body (i.e. N-pose) with the pelvis at
the origin and transverse (green) and coronal (blue) planes aligned with XY and
XZ planes, respectively.

In our approach, a skeleton template is a static neutral pose, i.e. standing with arms

along the body (sometimes referred to as N-pose in animation, in opposition to T-pose

and A-pose), which we represent by the position of its joints expressed in the global

Euclidean space. Furthermore, we normalise them such that the position of the pelvis

is at the origin, the transverse 1 plane is parallel to the XY-plane and the coronal 2 plane

is parallel to the XZ-plane. See Figure 4.2 for a typical skeleton template aligned with

1. Anatomical plane that divides the body into superior and inferior sections; see Figure 4.2.
2. Anatomical plane that divides the body into dorsal and ventral sections; see Figure 4.2.
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transverse and coronal planes. These skeleton templates explicitly encode topological

features through the order and position of their joints while morphological features are

implicitly encoded through the relations between joint positions which correspond to

the bone lengths. These poses are required to be neutral for our network to be able to

compare templates and to register motion sequences with respect to their respective

skeleton templates.

Such static neutral poses are straightforward to obtain. Indeed, topological variations

generally appear across animation systems or motion databases, while morphological

variations are more common and appear between any different characters or persons.

Therefore, after manually predefining a single neutral pose per database or animation

system considered, the skeleton template corresponding to a given motion sequence

is obtained by scaling the bone lengths of the predefined neutral pose according to

the bone lengths observed in the motion sequence. Moreover, the simplicity of neutral

poses makes their manual editing straightforward.

Finally, in addition to our decoder, we condition our encoder on the very same

skeleton templates which are expected to be consistent with input motion sequences

to be encoded. Still, both encoder and decoder conditionings are independent and

different templates might be used to encode and then decode a given motion sequence,

e.g. to transfer a motion from one character to another, i.e. to perform retargeting. As

we will see in the following, these templates additionally serve as spatial references

when encoding or decoding motion sequences, in a similar way to positional encoding

which is critical to transformers performance (see Section 2.2.4).

4.3.3 Network Architecture

Our model relies on an autoencoder network based on the recent transformer models

and whose latent space constitutes the proposed unified deep motion representation.

In this section we describe its architecture in detail. For a general overview of what a

transformer is and how it works, please refer to Section 2.2.4. Moreover, to reproduce

our approach, please also see implementation details provided in Section 4.4.1.



4.3 method 121

Joint-wise
MLP

Joint-wise
CNN

Transformer
blocks

Replicate

Template

Motion

Latent
code

Figure 4.3 – Illustration of the spatial positional encoding used in our encoder, performed via
joint-wise concatenation of intermediate features of skeleton template and motion.
Hence, for each joint, motion features are registered to template features of the
same joint (e.g. left wrist highlight in yellow), telling the network which piece of
information is associated to which joint. Thereby, the skeleton template acts as a
reference frame for motion features.

Positional Encoding

Inputs and outputs of our model are sequences of joint positions given in an arbitrary

order in the spatial domain but in a consistent order across frames. As commonly done

in transformer networks, we resort to positional encoding with sine and cosine functions

of varying frequencies to give both encoder and decoder knowledge about each frame

position in the sequence and hence exploit the temporal structure of motion sequences.

To further give information about the spatial structure of input sequences, we rely on

another type of positional encoding which consists in concatenating reference features

to input features. In our case, this corresponds to concatenating skeleton template

features and joint position features, joint by joint, as illustrated in Figure 4.3. In other

words, each joint position of an input motion sequence is registered with the same

joint in input skeleton template, and hence this mechanism is closely related to our

conditioning scheme and to the representation of skeleton templates. Previous work

in 3D shape modelling has found this kind of positional encoding to be beneficial [27,

105].
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Figure 4.4 – Illustration of our encoder architecture: output latent code (right) is computed
from input template (top-left) and motion (bottom-left) through the different
network layers (dark cyan rounded rectangles) and other functions (see top-right
caption), following black arrows. Coloured rectangular slices depict tensor shapes
of template (red), motion (blue), query token (cyan) and latent (grey) features at
different points in the network. Colour gradients across slices illustrate varying
features over time dimension.

Encoder

As illustrated in Figure 4.4, our encoder is structured as follows: it takes a motion

sequence and the corresponding skeleton template as inputs and embeds both of them

in respective intermediate representations. The results are merged and fed to a stack of

transformer blocks. Both motion sequences and skeleton templates embeddings are

performed at each joint independently, i.e. joint-wise, by a 1D temporal CNN and an

MLP, respectively. Template embedding is temporally replicated to be concatenated to

motion embedding, joint by joint. The result is further processed by a linear layer and

modulated by temporal positional encoding to constitute input tokens of the subsequent

transformer blocks.

As previously stated, our model is expected to encode a given motion sequence X(a)

conditioned on skeleton template T (a) to z = E(X(a)|T (a)) and might be asked to

decode it conditioned on another template T (b) toward X̂(b) = D(z|T (b)). In such a

scenario, both X(a) and X̂(b) will have the same number of frames, but might have
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a different number of joints. As a consequence, the whole process conforms to the

sequence-to-sequence paradigm, as in original transformers, in the temporal dimension.

However, it is not true in the spatial domain as the number of joints is variable across

inputs and outputs. This observation coupled with our goal to have latent codes free

from skeletal features imposes spatially fixed-size latent codes, and that our encoder

and decoder act as sequence-to-item and item-to-sequence functions, respectively, in

the spatial domain. To address this issue, we follow Chandran et al. [27] who use an

additional learned token, called query token, which is appended to input sequences of

tokens. First introduced in BERT [31], such additional sequence-level token, sometimes

referred to as [CLS], is a common design pattern in transformer architectures. In our

particular case, it is used as a fixed-size container for output features while other output

tokens of the final transformer block are discarded. During training, the network is

thus forced to progressively migrate necessary information toward the query token

along transformer blocks.

We use a hybrid approach following Chandran et al. [27] with the query token. We

further temporally replicate it to match the number of frames of the input motion

sequence to obtain latent codes with fixed spatial size but variable temporal size.

More formally, the query token is a tensor of shape 1 × C, where C is a number of

intermediate features. Given an input motion sequence X(a) ∈ RJ (a)×3×F, the sequence

of tokens obtained after positional encoding will be a tensor of shape J (a)× C × F.

Then, the query token is replicated F times, producing a tensor of shape 1 × C × F and

appended to the sequence of tokens, resulting in a tensor of shape (J (a) + 1)× C × F,

which will be the actual input sequence to the transformer blocks. Finally, at the

end of the final transformer block, the first J (a) slices are discarded to get a tensor

of shape 1 × C × F which is further processed by a linear layer toward the latent

code z ∈ RZ×F where Z is the spatial size of the latent space. See Figure 4.4 for a better

understanding of how these different tensors are manipulated into our encoder.
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Figure 4.5 – Illustration of our decoder architecture: output motion sequence (right) is computed
from input template (bottom-left) and latent code (top-left) through the different
network layers (dark red rounded rectangles) and other functions (see top-right
caption), following black arrows. Coloured rectangular slices depict tensor shapes
of template (red), motion (blue) and latent (grey) features at different points in
the network. Colour gradients across slices illustrate varying features over time
dimension.

Decoder

As depicted in Figure 4.5, our decoder is structured as follows: it takes a latent

code z ∈ RZ×F and a skeleton template T (b) ∈ RJ (b)×3 as inputs and decodes them

toward a motion sequence X̂(b) = D(z|T (b)) ∈ RJ (b)×3×F of the same temporal length

as the latent code z but the same number of joints as the skeleton template T (b). To do

so, the skeleton template T (b) is first processed at the entrance of the decoder: it is first

embedded into an intermediate representation using a joint-wise MLP, then replicated

F times to match the length of latent code and finally temporal positional encoding is

applied.

The result is used as input tokens to a stack of transformer blocks, as in our encoder.

However, these blocks differ from the ones used in our encoder to inject information

from the latent code. In particular, we inject information derived from the latent code

into each block rather than only as input to the first one. This scheme consisting in

disseminating latent information at different points of the network, sometimes called

style modulation, has proven to be effective when it comes to synthesising new samples,

e.g. in the StyleGAN series [76–78]. In our decoder, each style-modulated transformer



4.3 method 125

block corresponds to the same transformer block as in our encoder with an additional

style module which maps the latent code into a style code. The style code is then

used to modulate input tokens of the transformer block through multiplication. Style

modules are 1D temporal CNNs, well suited to process latent codes that are temporally

structured (see previous section). Most of the first layers of style modules are shared

across blocks (see Section 4.4.1).

Finally, the output of the last transformer block is further processed by a joint-wise

1D temporal CNN to get the final motion sequence.

Cross-Covariance Attention

Transformers typically transform a sequence of input tokens into a desired output

sequence by modelling token-to-token interactions using self-attention [172]. In this

work, we consider motion sequences and model interactions between joint positions at

any frames. However, one of the limitations of transformers is the time and memory

complexity of self-attention layers which increase quadratically with the number of

input tokens [37]. In our model, we instead leverage cross-covariance attention (XCA),

recently proposed by El-Nouby et al. [37], which is a transposed version of self-attention

with linear complexity with respect to the number of tokens. It operates across feature

channels rather than tokens where interactions are based on the cross-covariance matrix

between keys and queries (see Section 2.2.4). El-Nouby et al. [37] further proposed a

cross-covariance image transformer (XCiT) block adapted from original transformer

block with three main changes: first, self-attention layer is replaced with XCA layer;

second, a local interaction layer is added in-between attention and feed-forward layers;

third, layer normalisation is applied before rather than after each layer of the block. The

additional local interaction layer enables explicit communication across tokens (only

implicit in XCA layer) and consists in two 2D convolutional layers. Even though our

model operates on motion sequences rather than images, we build it on top of the same

cross-covariance transformer blocks. Indeed, the only part that might be sensitive to

the type of data processed is the local interaction layer made of 2D convolutional layers.

Since its goal is to make tokens interact locally, 2D convolutions are as much relevant

to image patches as to spatio-temporal motion sequence patches.
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4.3.4 Training

After describing the architecture of our network in the previous section, we present

here the training procedure used to successfully learn the sought unified deep motion

representation.

Data Preparation

Basically, the goal of our approach is to learn the structure of the human body from

data instead of relying on a single predefined skeleton topology. To this end, we

collected a large amount of motion data gathered from UnderPressure (see Chapter 5),

existing public databases (Human3.6M [66], MPI-INF-3DHP [119], AMASS [111] and

PSU-TMM100 [148], see Table 4.1) and internal motion data. In total we have about

65 hours of motion data, spanning across 5 different skeleton topologies (see Figure 4.6)

and 494 different morphologies.

Human3.6M MPI-INF-3DHP AMASS PSU-TMM100 UnderPressure Overlaid

Figure 4.6 – Illustration of the different skeleton topologies present in the dataset we gathered,
and their structural variations, represented by the corresponding predefined neutral
poses. The left-most five columns show front and side views of the different
topologies. Each one is associated to a subset of the data (from left to right:
Human3.6M [66], MPI-INF-3DHP [119], AMASS [111], PSU-TMM100 [148] and

UnderPressure [125]). The right-most column gives an insight about topological
variations by overlaying the different topologies.
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Table 4.1 – Overview of the different datasets gathered to train our model.
Dataset Frames Framerate Size Joints Repr. Availability

Human3.6M [66] 3.6×106 50 Hz 20.0 h 25 angular On request
MPI-INF-3DHP [119] 1.3×105 25 Hz 1.5 h 27 positional Public

AMASS [111] 1.8×107 60–250 Hz 41.5 h 52 angular Public
PSU-TMM100 [148] 1.3×106 50 Hz 7.4 h 17 positional On request

UnderPressure [125] 4.9×106 240 Hz 5.6 h 23 angular Public

Then, our data preprocessing consists in three steps:

1. We resample all motion sequences to a common framerate (i.e. 30 Hz) using

spherical linear interpolation on motion sequences represented with angular pose

representations and linear interpolation on motion sequences represented with

positional pose representations (see Section 2.2.1).

2. We convert all motion sequences to joint positions expressed in the same XYZ

Euclidean space, by switching their axes, converting their coordinates to meters

and/or applying forward kinematics (FK) on motion sequences represented with

angular pose representations to get joint positions when needed.

3. We extract 1-second overlapping chunks (i.e. 30-frame chunks overlapping over

24 frames, or 0.8 s) and normalise them separately by removing the mean position

computed over a set of major joints (i.e. ankles, hips, knees, shoulders, elbows,

wrists).

The resulting unified, augmented and normalised motion sequences constitute our

dataset, for a total of about 300 hours of motion data.

Training Objective

In an typical autoencoder, inputs are fed to the encoder to produce latent codes which

are then decoded, and the resulting differences between inputs and outputs (known

as reconstruction loss) is minimised to train the network. We slightly change this

scheme to further prevent our model from being tied to one or more particular skeleton

topology, and rely on a stochastic joint subsampling of input and target motion sequences.

Moreover, we use temporal consistency loss over bone lengths. Both objectives are

described in the following paragraphs.



128 transformer-based unified deep motion representation

reconstruction loss . The idea of stochastic joint subsampling comes by think-

ing of motion sequences tied to their skeleton topologies as proxy representations of

their underlying motion features. Within this context, we can discard a few joints

from motion sequences and still consider their underlying motion features to be the

same. Then, given an input motion sequence X(a) sampled from the training set, we

first derive two sub-versions X(a1) = S(X(a)) and X(a2) = S(X(a)), where S(·) stands

for stochastic joint subsampling and discards a random set of joints. Skeleton template

T (a) is also subsampled consistently with X(a1) and X(a2) subsamplings to get tem-

plates T (a1) = S(T (a)) and T (a2) = S(T(a)), respectively. Hence, we consider these

two sub-versions as different proxy representations of the same underlying motion fea-

tures X. We encode X(a1) and then decode the resulting latent code z = E(X(a1)|T (a1))

conditioned on a2 to get X̂(a2) = D(z|T (a2)). Finally, our reconstruction loss is imple-

mented to minimise the deviation of X̂(a2) with respect to X(a2). This mechanism is

critical to the training of our model as it forces both encoder and decoder to strictly

follow the conditioning template skeletons they are given to encode and decode motion

sequences. Indeed, the variations in skeleton topologies seen by our network is much

larger. Formally, we compute the deviation of X̂(a2) with respect to X(a2) as the mean

squared position error:

Lrec =
1
F

1
J (a2)

F

∑
f=1

J (a2)

∑
j=1

∥X(a2)
f ,j − X̂(a2)

f ,j ∥2
2 (4.1)

As described in Section 4.3.1 and consistently with the formulation of our recon-

struction loss above, input and output motion sequences are represented by their joint

positions. However, as explained in Section 2.2.1, positional pose representations do

not constrain bone lengths to remain constant over time which is be problematic when

synthesising motion sequences. A common approach to solve this issue is to add

constraints to ensure that distance between pairs of adjacent joints, referred to as bones,

are consistent [99, 101].
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temporal bone lengths consistency. Therefore, we rely on an additional

temporal bone lengths consistency loss to train our model such that the motion se-

quences produced by the decoder have consistent bone lengths over time. It consists

in minimising the temporal variance of bone lengths in the decoder output. However,

bone lengths have large variations across the different bones and thus minimising

absolute temporal variance of bone lengths might mostly fail to constrain short bones.

To mitigate this issue, we instead use the relative temporal variance of bone lengths

obtained by normalising, per bone, output lengths with respect to the ground truth

lengths before computing the temporal variance. In other words, we compute the

temporal variance of output bone length ratios with respect to the true bone lengths.

Our temporal bone lengths consistency loss is then:

Lrbl =
1

B(a2)

B(a2)

∑
b=1

Var

(
X̂(a2)

b

X(a2)
b

)
(4.2)

where function B(·) gives the number of bones of a given skeleton and X(a)
b ∈ RF

denotes the vector of lengths of the bth bone at each of the F frames of motion

sequence X(a).

In summary, we train our model with two objectives, a reconstruction loss and

a temporal bone lengths consistency loss. Moreover, we rely on a stochastic joint

subsampling mechanism within our reconstruction loss in order to augment topological

and morphological variations seen by our model during training, and hence improve

generalisation capability. This reduces the dependency of the network on specific joints

of the input topology, in the same way as dropout reduces the dependency on specific

nodes of a network. The total loss used to train our model is L= Lrec + λrbl · Lrbl ,

where λrbl is a hyperparameter to balance both losses.
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4.4 evaluation

In this section, we evaluate our approach. First, implementation details necessary

for reproducibility are provided in the next sub-section. Second, we quantify the

representation accuracy of our deep motion representation. Third, we further show

that our deep motion representation is well structured through the evaluation of a side

task, i.e. motion denoising. Finally, we evaluate our model on motion retargeting and

demonstrate that it achieves state-of-the-art performance.

4.4.1 Implementation Details

data . To train and evaluate our model, we split our dataset (see Section 4.3.4)

into a training set and validation set. The latter is constituted of all chunks from

MPI-INF-3DHP [119], to allow validation on unseen skeleton topology, as well as about

10% of chunks from other sub-datasets for validation on known skeleton topologies.

This results in about 114’275 seen and 26’249 unseen 30-frames chunks reserved for

evaluation.

skeleton templates . As explained in Section 4.3.2, we obtain the skeleton

template for a given motion sequence by scaling the bone lengths of the corresponding

generic neutral pose. We manually predefined a generic neutral pose for each data

source as illustrated in Figure 4.6. Then, given a motion sequence, we scale bone lengths

of the corresponding predefined neutral pose to match the bone lengths observed in

the given motion sequence. Since some of our sources of motion data use a positional

pose representation, the bone lengths are not always constrained and sometimes vary a

little over time. In consequence, we use the temporal median of bone lengths of a given

motion sequence as observed bone lengths.

architecture . As illustrated in Figure 4.4, our encoder begins with two joint-wise

embedding modules: a 3-layer MLP is used to embed skeleton templates (16, 32 and

64 output features) while motion sequences are embedded by a CNN made of 4 1D
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convolutional layers (3, 16, 32 and 64 output features) followed by 3 linear layers (64

output features each). Each layer of both modules is followed by exponential linear

unit (ELU). Then, the core of our encoder is made of 4 transformer blocks with 8 heads

and 128 features each. Finally, intermediate and final linear layers (see Figure 4.4) have

both 128 output features. Similarly to our encoder, templates and latent codes are also

embedded at the beginning of our decoder (see Figure 4.5). Skeleton templates are

embedded by a 4-layer MLP (16, 32, 64 and 128 output features) with ReLU after each

layer except the last. Latent codes are embedded by a CNN made of 3 1D convolutional

layers followed by a linear layer (128 output features and ELU activation each). Then,

the core of our decoder is also made of 4 transformer blocks with 8 heads and 128

features each. Moreover, a 2-layer MLP with 128 output features and ReLU activation

is associated to each block to further independently process latent features before

modulating input tokens (see Section 4.3.3). After transformer blocks, a final joint-wise

CNN is used to reconstruct motion sequences. It is made of 3 1D convolutional layers

(128 output features) followed by 3 linear layers (128, 128 and 3 output features), with

ELU activation after each layer except the last. As explained in Section 4.3.3, transformer

blocks in both our encoder and decoder leverage cross-covariance attention. In total,

our model has 2’475’511 learnable parameters.

stochastic joint subsampling . As seen in Section 4.3.4, we apply our recon-

struction loss on two sub-versions of a given sample motion sequence, in which we

discard random sets of joints. In practice, we discard each joint independently with

probability p = 0.1 for major joints (i.e. ankles, hips, knees, shoulders, elbows, wrists)

that are common to all skeleton topologies of our dataset, and with probability p = 0.5

for other joints. Moreover, we compute our temporal bone lengths consistency loss on

reconstructed subsampled motion sequences. Since some joints have been discarded, we

compute this loss over bones whose both joints have not been discarded for increased

computational efficiency. Otherwise, it is required to encode and decode the original

sample motion sequence in addition to its subsampled version, which roughly doubles

the computation time.
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training . Our implementation is written in Python and relies on PyTorch. Train-

ing was performed on an NVidia Ampere A100 GPU while other results were obtained

either on an NVidia GeForce RTX 2060 GPU or on CPU. We trained our model for

107 iterations (about 385 epochs and 26.5 days) using Adam optimisation algorithm [82]

with mini-batch size of 32 and hyperparameters β1 = 0.9, β2 = 0.999. Moreover, we

used a triangular cyclic learning rate [157] with a period of 10 epochs and lower and

upper bounds set at 10−4 and 10−5, respectively. Finally we set the weight of our

temporal bone lengths consistency loss to λrbl = 0.5 (see Section 4.3.4).

motion retargeting . In the following, we notably perform a quantitative eval-

uation of the performance of our model on motion retargeting. This evaluation is

performed on motion sequences drawn from Mixamo dataset (see Section 2.2.2), as

commonly done for motion retargeting [3, 81, 100, 104, 176]. However, models from

other approaches are usually trained on a subset of Mixamo while ours is not. To

make the comparison more fair, we fine-tune our model on a few motion sequences

from Mixamo before performing our motion retargeting evaluation. The procedure

is the same as the training of the model, except that the amount of motion data is

far smaller (about 1 hour vs 65 hours for training) and its duration is much shorter

(less than 2 hours vs 26.5 days). We also used a constant learning rate set at 5 · 10−5

instead of the cyclic learning rate. Finally, since the pelvises of skeleton templates are

aligned (see Section 4.3.2), our model aligns the global trajectory of output motion

sequences with respect to input motion sequences around the same region of the

body. However, when performing motion retargeting on source and target characters

of different scales, the resulting global trajectory might not be consistent with target

character scale. To fix this issue, we further scale the global trajectory of output motion

sequences when performing motion retargeting based on the leg length ratio of source

and target characters, as typically performed in the literature [54, 88]
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ablative study. Throughout our evaluation, we notably show that our joint

subsampling mechanism (see Section 4.3.4) is critical to the performance of our method.

To this end, we perform a simple ablative study which considers a variant of our

approach, called Ours - no SJS, in which the same neural network was trained without

this mechanism.

4.4.2 Representation Accuracy

A key aspect of deep representations is their ability to accurately encode information,

sometimes called the representation accuracy. In this section, we evaluate this aspect by

quantifying the amount of distortion introduced by our deep motion representation

when encoding and then decoding motion sequences drawn from our validation set

(see previous section). We measure this amount of distortion using the mean per joint

position error (MPJPE) of reconstructed motion sequences with respect to ground truth

motion sequences given in input.

In Table 4.2, we provide the corresponding results for both our deep motion repre-

sentation and its variant without stochastic joint subsampling and for each skeleton

topology. Moreover, we separate the evaluation between skeleton topologies that have

been seen during training from unseen skeleton topology, i.e. the one associated to

MPI-INF-3DHP.

Table 4.2 – Quantitative evaluation of the representation accuracy of our deep motion represen-
tation. We measure the distortion introduced when encoding and then decoding
ground truth motion sequences drawn from our validation set with the mean per
joint position error (MPJPE) in centimetres. We distinguish skeleton topologies that
have been seen during training from unseen topologies. Columns are associated to
the different skeleton topologies in our validation set, named after the data sources
used to constitute our dataset (see Section 4.3.4). Lower MPJPE means higher repre-
sentation accuracy.

Model Seen Unseen
Human3.6M AMASS PSU-TMM100 UnderPressure Average MPI-INF-3DHP

Ours - no SJS 2.91 cm 2.54 cm 3.05 cm 2.93 cm 2.64 cm 4.40 cm
Ours 1.81 cm 1.00 cm 1.74 cm 1.22 cm 1.13 cm 3.09 cm
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Figure 4.7 – Illustration of the representation accuracy of our deep motion representation on a
challenging motion sequence, consisting in a speed vault to cross some fence or
wall, depicted in white. The ground truth test motion sequence (top row, green)
is given as input to our model which encodes and then decodes it to get the
corresponding reconstructed motion sequence (middle row, red). The bottom
row shows both ground truth and reconstructed motion sequences overlaid to
emphasise reconstruction errors.

Figure 4.7 illustrates the representation accuracy of our model on a challenging

example motion sequence. In this example, we can see that the dynamics is relatively

well encoded with fine details, such as hand orientations which are kept consistent

throughout the sequence. Positional errors mostly occur during fast and ample move-

ments such as leg swings when the character is running or jumping over the fence. Still,

the MPJPE is of 1.33 cm on this example, which is slightly above global and topology

averages (1.13 cm and 1 cm, respectively; see Table 4.2).
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Figure 4.8 – Quantitative evaluation of our model on motion denoising. Gaussian noise is
purposely added to clean motion sequences from our validation set. The resulting
noised motion sequences are then encoded and decoded using our model to
perform denoising. For an entire range of levels of noise, positional error on
denoised sequences is plotted vertically against the positional error observed in
noised sequences, horizontally. The top axis indicates the standard deviation of
the different levels of noise, while the bottom axis gives the MPJPE observed in
corresponding noised sequences, which is proportional to the standard deviation.
Results are averaged over seen and unseen skeleton topologies. Flatter curves
correspond to higher denoising ability.

4.4.3 Motion Denoising

In this section, we demonstrate that our model has also the ability to substantially

clean noised motion sequences, which suggests that the underlying deep motion

representation is well structured and prevents from encoding artefacts like noise. To

this end, we pick clean motion sequences from our validation set and purposely add

Gaussian noise on joint positions to obtain corresponding noised motion sequences.

Then we simply encode and then decode these noised motion sequences and compare

them to original clean motion sequences. We follow this procedure for an entire range

of noise levels, controlled by the standard deviation of offset coordinates (sampled from

a centred Gaussian) that are added to coordinates of joint positions.

In Figure 4.8, we vertically plot the MPJPE of denoised motion sequences with respect

to clean motion sequences against the level of noise introduced horizontally. The MPJPE
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is computed for all motion sequences from our validation set and averaged over seen

and unseen skeleton topologies. Without noise (at x = 0 in Figure 4.8), we fall back on

the representation errors found when evaluating the representation accuracy of our

model (see Table 4.2). Then, positional errors observed in denoised motion sequences

increase with noise but slowly compared to noise increase, indicating that our model

reduces noise. The right-hand side of Figure 4.8 demonstrates the ability of our model

to reduce noise as the output positional error is lower than input positional error

observed in noised motion sequences.

4.4.4 Motion Retargeting

As pointed by Aberman et al. [3], the task of motion retargeting has no formal

specification as its goal is to abstract out motion dynamics. Nevertheless, research in

motion retargeting relied on the so-called Mixamo dataset (see Section 2.2.2) as a source

of motion sequences performed by different characters, considered as ground truth for

evaluation purposes [3, 81, 100, 104, 176].

In this section, we provide quantitative retargeting results following the evaluation

procedure from Aberman et al. [3], as well as qualitative visual results. Relying on

Mixamo, 106 test motion sequences are considered. The evaluation is divided in two

modes, called intra-structural and cross-structural. The former corresponds to motion

retargeting with the same skeleton topology but different body proportions, while the

latter additionally considers source characters with topology different from the target.

Five characters are considered: BigVegas, Goblin, Mousey, Mremireh and Vampire. The

first one has a different topology from others and is used as the source character to

evaluate cross-structural retargeting. For intra-structural retargeting, Aberman et al. [3]

considered all combinations of the four last characters as source and target characters.

However, according to their publicly released implementation 3, these combinations are

drawn with replacement, meaning that their evaluation of intra-structural retargeting

includes self-retargeting, i.e. retargeting with same source and target characters. In the

following, we further evaluate self-retargeting apart from intra-structural retargeting.

3. https://github.com/DeepMotionEditing/deep-motion-editing

https://github.com/DeepMotionEditing/deep-motion-editing
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Finally, we measure the retargeting error with the MPJPE normalised by the height of

the skeleton.

In the results provided by Aberman et al. [3], the retargeting error is averaged over

target characters. However, we observed variations in the performance of our model

depending on whether the characters involved have body proportions close to humans.

The reason here is that some of these humanoid characters have body proportions

very different from human, such as a head about the size of the body, and that we

exclusively trained our model on motion data captured from human subjects. As a

result, our model is a bit less accurate on non-human morphologies. In consequence,

we detail our evaluation per character to emphasise the performance and limitations of

our model when body proportions are close to human or not. In particular, BigVegas,

Goblin and Mremireh have body proportions close to humans, while Vampire and

Mousey body proportions differ, especially for the latter.

self-retargeting . Table 4.3 shows that our model performs well on all test

characters for self-retargeting, even on non-human morphologies. Still, the retargeting

error is significantly higher for Mousey compared to other characters. We notably

outperform the skeleton-aware networks proposed by Aberman et al. [3], with an average

retargeting error normalised by character height at 0.009, which is equivalent to an

error of 1.62 cm for a 1.8 m tall character.

Table 4.3 – Quantitative evaluation of self-retargeting, i.e. from a source to a target character
with the same skeleton topology and body proportions. We measure the retargeting
error with the MPJPE normalised by the height of the skeleton, and provide results
per character (middle) as well as overall average (right-most). Lower values means
higher retargeting accuracy.

Model Goblin Mousey Mremireh Vampire Average

Aberman et al. [3] 0.018 0.015 0.017 0.021 0.018
Ours - no SJS 0.046 0.066 0.045 0.042 0.050

Ours 0.006 0.015 0.006 0.007 0.009



138 transformer-based unified deep motion representation

intra-structural retargeting . As shown in Table 4.4, the performance of our

model on intra-structural retargeting is a bit lower because non-human morphologies

are encountered more often. In particular, the retargeting error when Mousey is either

the source or target character is increased with respect to other characters, which points

out that the ability of our model to generalise to morphologies very different from the

ones in the training set is a bit limited. Still, its performance is competitive with respect

to the state-of-the-art skeleton-aware networks proposed by Aberman et al. [3].

Table 4.4 – Quantitative evaluation of intra-structural retargeting, i.e. from a source to a target
character with the same skeleton topology. We measure the retargeting error with
the MPJPE normalised by the height of the skeleton, and provide results per pair of
source and target characters (middle) as well as overall average (right-most). Go, Mo,
Mr and Va stand for Goblin, Mousey, Mremireh and Vampire characters, respectively.
Lower values means higher retargeting accuracy.

Model Go ↔ Mo Go ↔ Mr Go ↔ Va Mo ↔ Mr Mo ↔ Va Mr ↔ Va Average

Aberman et al. [3] 0.027 0.033 0.028 0.036 0.036 0.024 0.030
Ours - no SJS 0.118 0.071 0.073 0.112 0.131 0.066 0.095

Ours 0.067 0.055 0.055 0.065 0.067 0.040 0.058

cross-structural retargeting . Table 4.5 confirms our conclusions on the

performance of our model on human morphologies and its relative limitation on

very different morphologies. Nevertheless, our approach outperforms skeleton-aware

networks [3], while it does not require a specific encoder/decoder pair to be trained

for each new skeleton topology. Surprisingly, our model is more accurate on cross-

structural retargeting than on intra-structural retargeting, which is presumably easier.

The performance on cross-structural retargeting suggests that our model effectively

Table 4.5 – Quantitative evaluation of cross-structural retargeting, i.e. from a source (BigVegas
here) to a target character with different skeleton topologies. We measure the
retargeting error with the MPJPE normalised by the height of the skeleton, and
provide results per target character (middle) as well as overall average (right-most).
Lower values means higher retargeting accuracy.

Model Goblin Mousey Mremireh Vampire Average

Aberman et al. [3] 0.060 0.047 0.062 0.071 0.060
Ours - no SJS 0.072 0.128 0.076 0.076 0.088

Ours 0.045 0.060 0.035 0.036 0.044
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captures abstract motion features which are shared across different skeleton topologies.

The lower performance on intra-structural retargeting indicates that our model might

wrongly transfer some morphological features. We further discuss the reasons to that

in Section 4.5, and the possible directions to solve it. In Figures 4.9 and 4.10, we provide

visual results of motion retargeting performed using our approach and skeleton-aware

networks [3].
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Figure 4.9 – Visual result of cross-structural retargeting. In this example, a motion sequence
(1st row) drawn from Mixamo, consisting in fighting moves, is retargeted from
BigVegas to Vampire using either Skeleton-Aware Networks (SAN) [3] (3rd row) or
our model (4th row). The corresponding sequence for character Vampire (2nd row)
is considered as ground truth when evaluating motion retargeting.
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Figure 4.10 – Visual examples of motion retargeting. A motion sequence (see 1st row, in green)
with AMASS skeleton topology A is retargeted to PSU-TMM100 and MPI-INF-
3DHP topologies, noted P and M, respectively (see 2nd and 4th rows, respectively,
in blue). Then, both are retargeted back to AMASS topology (see 3rd and 5th
rows, respectively, in red). Note that our model performs well on MPI-INF-3DHP
topology, even though it has never seen it during training.
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stochastic joint subsampling . Finally, Tables 4.3 to 4.5 show that our stochas-

tic joint subsampling mechanism is effective, with performance of the variant Ours -

no SJS consistently outperformed by our main variant. It is worth noting that the

difference is larger on self-retargeting rather than intra-structural and cross-structural

retargeting, and on characters with morphology close to human.

4.5 conclusion

We have proposed a novel framework in which an autoencoder network based

on transformers learns to encode diverse motion sequences with variable skeleton

topologies and morphologies in a shared latent space, i.e. our unified deep motion

representation. The reasons why our approach is successful are threefold: first, we

rely on a skeleton template conditioning mechanism to tell both encoder and decoder

which morphology and topology is given and targeted, respectively. Moreover, it acts

as a spatial variant of positional encoding since we require skeleton templates to be

normalised and consistently aligned neutral poses, and we concatenate intermediate

features of motions and templates per-joint. Second, we apply during training a well-

thought variant of dropout, consisting in randomly subsampling joints of input and

output motion sequences and skeleton templates consistently. As our model is forced

not to rely too much on specific joints, this mechanism encourages our deep motion

representation to be shared across skeleton topologies, instead of representing each

topology in a distinct region. Third, our autoencoder network follows a thoroughly

designed transformer-based architecture, coupled with a large amount of motion

data gathered from multiple existing databases with different skeleton topologies and

morphologies.

We have demonstrated the ability of our model to accurately encode motion se-

quences, perform motion retargeting, and denoise motion sequences. Indeed, both

motion retargeting and denoising can be performed reasonably well through encoding

into our deep motion representation followed by decoding. This suggests that our

deep motion representation is rather well structured to encode clean motion sequences

with abstract features that are common to multiple topologies and morphologies. In
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the case of retargeting in particular, the results obtained with our model are very

close to the state-of-the-art skeleton-aware networks proposed by Aberman et al. [3].

However, both models reach an average normalised retargeting error ranging from 0.03

to 0.06 on cross-structural and intra-structural, corresponding to an abolute mean per

joint position error of 5.4 cm to 10.8 cm for a 1.8 m tall character which is relatively

consequent. When looking at visual results such as those illustrated in Figure 4.9,

we might think that both skeleton-aware networks and our method have essentially

reached the limitation of using Mixamo’s source and target motion sequence pairs as

ground truth for retargeting evaluation. If our thoughts are correct, further reducing the

retargeting error evaluated over Mixamo would mostly be overfitting. Nevertheless, our

deep motion representation unified across morphology and topology has the advantage

over skeleton-aware networks [3] to not require additional encoder/decoder pairs to

be trained for each new skeleton topology. This is particularly beneficial when few

motion data are available for a given skeleton topology, or when training an additional

encoder/decoder pair is not possible.

Beyond motion retargeting, our model might be useful for numerous applications, in

a similar way that recent powerful natural language models are effective on multiple

different natural language tasks. For instance, joint positions might be completed in

a similar way to JUMPS, i.e. our approach presented in Chapter 3. In the temporal

domain, this might include frames completion, motion prediction and in-betweening.

Moreover, a well structured deep motion representation might also facilitate numerous

editing applications, e.g. to affect the trajectory followed, the style expressed, the

interactions with environment or other characters, etc. Last but not least, our deep

motion representation, which is able to embed together motion sequences from different

sources (e.g. databases or animation systems outputs), might enhance the performance

and extend the scope of numerous approaches in skeletal character animation. On one

hand, data-driven approaches might be applied on large general databases coupled

with smaller specialised ones (e.g. annotated with style or contact labels) to increase

supervision, which is currently difficult when skeleton topologies differ. On the

other hand, existing methods and animation systems might be more easily used as
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building blocks for novel methods of higher level and complexity since topological and

morphological variations constitute a source of incompatibility.

It is tempting to think that our model might generalise to any morphology. However,

our evaluation demonstrated that our model learnt on human characters is more ef-

fective on unseen human-like morphology rather than on exaggerated morphologies.

Moreover, we showed that our model is less accurate on intra-structural retargeting, i.e.

with source and target characters having the same topology. The reason here might

be that the skeleton templates lack complexity, pushing our deep motion represen-

tation to not entirely be freed from some morphological features. When performing

intra-structural retargeting, such wrongly encoded morphological features would be

transferred, explaining the lower performance. Moreover, skeleton templates that we

represented with joint positions have no mechanism to specify correspondences. For

instance, a long half arm and a short full arm result in similar structure in skeleton

templates even though the nature of their dynamics is different. In other words, skele-

ton templates do not tell anything about dynamics which leaves space for ambiguity

when dealing with different morphologies and topologies. Increasing expressiveness of

skeleton templates is a possible direction to improve our deep motion representation.

Finally, our approach, as other existing methods for motion retargeting, do not take

care of foot contacts. This is an issue when transferring motion dynamics from one

character toward another because annoying footskate artefacts (i.e. inconsistencies

between feet motion and ground) are likely to be introduced. Even though approaches

based on angular pose representations are more prone to produce such artefacts, it

is still an issue with positional representations, such as in our case, since neither

guarantees are given nor explicit constraints applied to ensure that legs movements

are consistent with the global trajectory. In the next chapter, we present an approach

intended to automatically solve such artefacts typically applied as a post-process.
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Chapter abstract

Human motion synthesis and editing are essential to many applications like video

games, virtual reality, and film post-production. However, they often introduce artefacts

in motion data, which can be detrimental to the perceived realism. In particular, footskate

is a frequent and disturbing artefact, which requires knowledge of foot contacts to be

cleaned up. Current approaches to obtain foot contact labels rely either on unreliable

threshold-based heuristics or on tedious manual annotation. In this chapter, we explore

foot contact detection from motion data with deep learning. To this end, we first publicly

release UnderPressure, a novel motion capture database labelled with pressure insoles

data serving as reliable knowledge of foot contact with the ground. Then, we design and

train a deep neural network to estimate ground reaction forces exerted on the feet from

motion data and then derive accurate foot contact labels. The evaluation of our model shows

that we significantly outperform heuristic approaches usually used in character animation

in terms of accuracy and robustness. We further propose to automatically remove footskate

by solving foot contact constraints through an optimisation-based inverse kinematics

approach that ensures ground reaction forces consistency. Beyond footskate cleanup, both

the database and the method we propose could help to improve many approaches based

on foot contact labels or ground reaction forces, including inverse dynamics problems like

motion reconstruction and learning of deep motion models in motion synthesis or character

animation. Our implementation, pre-trained model as well as links to database can be found

at https://github.com/InterDigitalInc/UnderPressure.

https://github.com/InterDigitalInc/UnderPressure
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Part II: Footskate Cleanup

Part I: Ground Reaction Forces Estimation for Foot Contact Detection

Pressure Insoles Motion Capture
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Figure 5.1 – We leverage UnderPressure, a novel publicly available dataset of motion capture
synchronised with pressure insoles data, to learn a deep model for vertical ground
reaction forces (vGRFs) estimation from motion data and foot contact detection.
We further clean up footskate artefacts through an optimisation-based inverse
kinematics algorithm while enforcing vGRF invariance.

5.1 introduction

Perceived realism is central in animation; however, when synthesising or processing

motion sequences, annoying artefacts can be introduced, such as footskate well-known

in skeletal character animation. As seen in Section 2.4.1, It is a family of artefacts

which can be defined as motion inconsistencies of the feet with respect to the ground

such as when the feet are sliding on, passing through or floating above the ground

while they should be static and on the ground. The problem of footskate is twofold:

first, it easily appears when processing or synthesising motion sequences. Second, it

is known to disturb human perception even at very low intensities [138] and to be

highly detrimental to the realism of synthetic characters. In this chapter we explore

foot contact detection and footskate artefacts removal, the former being a necessary

step of the latter.

As of today, foot contacts are derived from motion sequences using simple heuristics,

most commonly hand-crafted thresholds applied over the velocity and height of the feet

to obtain binary contact labels. These approaches suffer from three main limitations.



5.1 introduction 147

First, the terrain height must be known everywhere, meaning that these approaches

are generally not applicable to uneven or inclined terrain. Second, those thresholds

have no universal optimal values and therefore must be manually tuned, ideally for

every motion type, morphology and contact location (e.g. heel or toe). Finally, even

with optimal values thresholding approaches are far from being 100% accurate and

particularly lack of robustness, which implies that tedious manual checking is necessary

when using these approaches. Especially in the context of footskate cleaning, foot

contact detection must be robust to the presence of, at least, footskate artifacts.

In this chapter, we present a novel data-driven method for foot contact detection from

motion sequences which significantly outperforms traditional heuristic approaches

accuracy and robustness. First, we captured UnderPressure, a novel database publicly

released and composed of motion sequences synchronised with pressure insoles data,

from which vertical ground reaction forces (vGRFs) and accurate foot contact labels can

be derived. Then, our key idea is to model vGRFs with a deep neural network, providing

a finer representation of interactions of the feet with the ground than binary contact

labels. Furthermore, vGRFs are directly related to the dynamics of motion unlike binary

labels. To this end, we train our model to estimate the distribution of vGRFs exerted

under the feet, from which foot contact labels can be calculated, encouraging robustness

and generalisability since the network needs a relatively deep understanding of motion

dynamics to accurately estimate vGRFs.

We evaluate our model against an OT baseline that relies on thresholding the velocity

and height above ground of foot joints. In addition, we make an ablative study which

considers learned linear and non-linear generalisations of the OT baseline as well as

variants of the proposed model. We further experiment how these models behave in

different challenging conditions representative of real-world applications.

Finally, we demonstrate the generalisability of our approach on motion sequences

from other databases, as well as its integration in a fully automatic footskate cleanup

workflow. The main novelty of this workflow is to leverage our deep neural network

by enforcing invariance between vGRFs estimated from input and optimised motion

sequences to better guide the IK optimisation used to clean footskate and maintain the

consistency of interactions between feet and ground.
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5.2 related work

Early works in human animation already considered kinematic constraints such

as foot contacts [20, 64, 86, 91, 92]. Foot contact labels are helpful in numerous

applications: they are often necessary to clean up foot artefacts such as footskate [86],

e.g. by enforcing foot constraints via IK [3, 52, 58, 121, 161, 163]; likewise, they are

required to quantify such foot artefacts, e.g. for evaluation purposes [106, 161, 163,

207]; they are also helpful to mitigate the well-known problem of mean collapse /

drift away in human motion prediction, particularly with deterministic and recurrent

models [52, 55, 116, 185], to disambiguate human motion modelling [58, 59, 135, 136,

190] (see Section 2.3.1), and more generally to leverage contact-based loss functions

for increased quality and robustness [58, 93, 132, 150, 178]; foot contact information

is also deeply involved in character control based on physical simulation [1, 90, 189,

191, 201] where ground reaction forces are explicitly modelled in the physics engine,

and also relates to foot-placement strategies that are a real challenge for locomotion

policies [137]. In the following, we overview existing approaches for foot contacts

labels detection (Section 5.2.1) and ground reaction forces estimation (Section 5.2.2), as

well as existing databases of motion data labelled with information on foot contacts

(Section 5.2.3).

5.2.1 Foot Contact Labels Detection

In Chapter 2, we have extensively reviewed existing approaches for foot contacts

labels detection (see Section 2.4.1). In summary, both animation research and industry

mostly rely directly or indirectly on simple heuristics with hand-crafted thresholds,

applied to velocity and height of the feet as proposed by Bindiganavale and Badler [20]

or Lee et al. [92]. However, they lack of temporal precision and are not reliable [91], in

particular in the presence of noise or artefacts. As a result, they are not suited in the

context of footskate cleanup without tedious manual checking and corrections. Beyond

thresholds, researchers have explored learned contact detection models, e.g. KNN

classifier [64] and neural networks [142, 150, 152, 156, 211]. However, these approaches
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are learned from ground truth foot contacts that are either obtained with heuristics or

manually annotated which limits the amount of data and hence the generalisability of

the derived model.

5.2.2 Ground Reaction Forces Estimation

In physics, the force exerted by the ground on a body in contact, such as the human

body, is called a ground reaction force (GRF). It is generally difficult to measure but

nonetheless important in many fields of study including biomechanics, biomedical

engineering and physics-based animation. Researchers in biomechanics and biomedical

investigated GRF estimation from plantar pressure sensors [72, 123, 145], inertial and

optical motion capture systems [39, 42, 75, 126], 3D accelerometers [94], and Kinect

[38]. However, GRF estimation for biomechanics or biomedical applications is beyond

the scope of our approach that uses vGRF distribution as a proxy representation and

is intended for human animation applications. For more details on GRF estimation in

biomechanics and biomedical engineering, we refer the reader to the systematic review

by Ancillao et al. [12].

Early works in motion reconstruction leveraged pressure sensors to measure GRFs,

because of their importance in dynamics. Ha et al. [50] formulated the problem as a

per-frame optimisation of end-effector positions obtained from a hand tracking device,

and linear and angular momentums measured with pressure platforms. Later, Zhang

et al. [208] leveraged a pair of pressure sensing shoes as well as three depth cameras

to develop a full-body motion reconstruction framework consisting in kinematic pose

reconstruction followed by physics-based motion optimisation.

More recently, several approaches instead estimated GRFs from monocular images,

starting with 2D and 3D pose estimation and then solving physical optimisation

problems. Zell et al. [205] proposed to estimate inner and exterior forces by optimising

camera parameters and 2D pose reconstruction with a linear combination of base

poses in a first step, and then GRFs and inner joint torques to satisfy the equations of

motion and resolve camera projection ambiguities. Li et al. [103] estimated 3D motion

and forces between a subject and its environment by minimizing the discrepancy
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between the observed and reprojected 2D poses, with priors on estimated 3D poses,

trajectory smoothness and physical plausibility for regularisation. Rempe et al. [142]

and Shimada et al. [152] proposed a similar pipeline but focusing on more dynamic and

diverse human motions, without object interactions. Shimada et al. further corrected

imbalanced stationary poses. Later on, they extended their approach with additional

DNN [151]: TPNet first regresses target 3D poses and contact states from 2D key points.

Then, GRFNet and DyNet iteratively estimate GRFs and proportional-derivative (PD)

controller gain parameters in a dynamic cycle where the character pose is updated at

each step after FK.

Different from motion reconstruction from images, Zell et al. [204] proposed a

weakly-supervised approach to inverse dynamics. An MLP is trained to estimate GRFs,

moments and joint torques from motion such that the input motion is reconstructed

using forward dynamics in an optimisation loop. Motion capture data synchronised

with force plates enable supervision during training: reconstructed ground reaction

force and moment and joint torque divergences are penalised while GRF are minimised

whenever feet are not in contact with the ground.

To the best of our knowledge, the closest work to the proposed method is the deep

learning approach to improve computing stability in human pose estimation proposed

by Scott et al. [148]. In this work, body dynamics analysis from joint positions is

investigated while most papers on human pose estimation only focus on skeleton

kinematics. A CNN called PressNet is proposed to estimate 2D foot pressure maps from

joint positions and validated on a novel dataset of tai chi sequences (see Section 5.2.3).

CoP and base of support (BoS) are computed from pressure values and used for val-

idation. Unlike Scott et al., our work specifically targets foot contact detection and

footskate cleanup, tasks that are relevant to human character animation. We explore

more diverse motion sequences including different types of locomotion at different

paces performed in different ways (forward, backward, sideways) as well as sequences

in non-flat environments such as stair climbing and stepping on solid obstacles.
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5.2.3 Foot Contact & Ground Reaction Force Databases

As of today, motion capture data annotated with accurate foot contact information

are scarce. Researchers in biomechanics and biomedical engineering have released a

few databases of motion capture with GRFs e.g. Kulbacki et al. [87], however most

of these databases are not suitable for animation purposes as they typically focus on

specific aspects of movement, or target stage and symptoms recognition of diseases in

pathological subjects.

To the best of our knowledge, the closest database to the one we propose is PSU-

TMM100. Recently released to the computer vision community by Scott et al. [148], this

dataset provides videos from two views, motion capture markers, body joints and foot

pressure recorded with insole sensors. It contains about 7.6 hours of data during which

10 subjects are performing 24-form simplified tai chi. Although similar in terms of scale

and nature of the captured data, the database we propose has quite different types of

motion. While PSU-TMM100 contains specific tai chi sequences mostly composed of

slow body movements with long and stable foot supports, UnderPressure provides

diversified sequences focused on but not restricted to locomotion at different paces

including on non-flat environments (see Table 5.1), i.e. more challenging conditions for

foot contacts detection.

5.3 database

In this work, we release UnderPressure, a motion capture database annotated with

pressure insoles data, designed primarily for character animation purposes. In the

following, we provide information about the capture, the motion characteristics, and

the preprocessing steps.

We recorded 10 healthy adult volunteers (2F, 8M) with diverse morphologies aged

between 21 and 55 years (32 ± 11 yr), weighing between 65 and 91 kilograms (79 ± 9 kg),

and measuring between 167 and 187 centimetres (177 ± 5 cm). Each subject performed

the same set of activities, including forward and backward locomotion at different

paces, sitting, standing, passing obstacles, climbing stairs, as well as motions on uneven

https://github.com/InterDigitalInc/UnderPressure
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Table 5.1 – Motion sequence categories in UnderPressure.
Category Motion Type Duration [mn]

Locomotion,
forward

slow walking 43.9
normal walking 42.0

fast walking 42.9
running 30.1

Locomotion,
backward

slow walking 21.1
normal walking 21.8

fast walking 20.8
running 15.5

Locomotion,
miscellaneous

running sideways 12.3
hopping 13.9

stairs 1 at a time 18.0
stairs 2 at a time 13.9

Locomotion
with

obstacles

stepping on obstacles 5.7
stepping over obstacles 11.4
jumping over obstacles 10.5

Idle

leg stand-up 4.8
sit-down 4.8

crouched down 4.8
Total 338.2

terrain like going up and down stairs. The detailed composition of our dataset is

provided in Table 5.1. Motion capture data for each subject last approximately 34

minutes, for a total of 5.6 hours of motion capture.

5.3.1 Motion Capture

Subjects were equipped with the Xsens MVN Link motion capture system [147]. The

hardware consists of 17 inertial measurement units (IMUs) running at 240 Hz embedded

in the MVN Link suit. Each IMU contains a 3D accelerometer, a gyroscope, and a

magnetometer. Capturing was performed using the Xsens MVN Animate software, an

engine customised for 3D character animation that combines tracking data of the 17

individual IMUs with a 23-segment biomechanical model (see Figure 5.2b) to obtain

segment positions and orientations. We calibrated MVN Animate for each subject with

height, arm span and shoe length measurements as inputs while other body dimensions

and proportions were estimated through the calibration, as well as the orientation of
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Figure 5.2 – Left) Pressure cell layout of Moticon’s OpenGo Sensor Insoles [6]. Blue (1 to 4) and
red (9 to 16) cells are the groups of cells used to compute heel and toe contacts,
respectively. Axes at insole centres represent inertial measurement units. Right)
Xsens MVN’s [147] motion capture skeleton with 23 joints.

motion trackers with respect to the corresponding segments. After MVN Animate

processing, motion data consist of pose sequences with 23 segments sampled at 240 Hz.

5.3.2 Foot Pressure

In addition to motion capture, we recorded the spatial distribution of plantar foot

pressures. To this end, subjects were also equipped with Moticon’s OpenGo Sensor Insoles

[6] placed into their shoes. Each insole has 16 plantar pressure sensors with a resolution

of 0.25 N/cm2 and a 6-axis IMU, both running at 100 Hz (see Figure 5.2a). Moreover, we

weighed each subject with full equipment to enable vGRF normalisation and equipped

subjects with the same shoes whose soles are thin and flexible insole for accurate and

faithful pressure measures as well as for controlling the grip.

5.3.3 Post-Capture Processing

ground reaction forces Captured data include motion sequences, plantar

pressure distribution and foot acceleration. Since pressure is defined as the perpen-
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dicular force per unit area, we additionally compute vGRF components by multiplying

pressure values by the corresponding cell areas. The motivation here is that groups

of vGRFs are easier to aggregate (by summation). We also normalise these values to

express them as subject weight proportions.

foot contact labels We derive ground truth foot contact labels deterministically

from vGRFs. In this work, we consider two contact locations per foot, i.e. heels and toes

as commonly done in human animation [58, 64, 151]. To compute contact labels, vGRF

components are first smoothed with a Gaussian filter to avoid rapidly alternating labels

due to threshold effects. Then, smoothed vGRF components are summed per contact

location (see red and blue cells in Figure 5.2a), rescaled such that the sum of blue and

red cell vGRFs is equal to total vGRF (to properly ignore grey cells which particularly

suffer from noised measures and can be activated during either toes or heels contact)

and then a threshold at 5% of the body weight is applied to obtain raw labels. Finally,

raw labels are discarded whenever per-foot total vGRF (including grey cells) is below

10% of the body weight to avoid false positives triggered by noise. Contact phases

shorter than 0.1 s are also discarded for the same reason. In the following, we refer to

this binary contact labels calculation as the contact function Γ.

synchronisation Since we jointly capture motion and foot pressure data with

separate devices, our records must be accurately synchronised in absence of a genlock

signal. To this end, subjects were asked to perform a simple control movement at

the beginning and end of each capture sequence, consisting in an in-place double-leg

jump. This allows us to match vertical acceleration peaks measured on pressure insole

IMUs with peaks computed from motion captured foot positions. Although numerical

differentiation is known to amplify high frequency noise, we found that the framerate

of our motion capture data was sufficiently high and measurement noise was small

enough for synchronisation.

downsampling and trimming After synchronising our data, we downsampled

motion capture data from 240 Hz to 100 Hz using spherical linear interpolation to
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Figure 5.3 – Overview of our approach. Our database provides synchronised input motion
sequences and target vertical ground reaction forces (vGRFs) to train our network
Ψ depicted in red. The blue trapezoid represents the contact function Γ (see Sec-
tion 5.3.3). At runtime, our network estimates vGRFs from which foot contact labels
can be derived using the contact function Γ, both useful in many applications, e.g.,
reconstructing motion from images, cleaning footskate, finding suitable transition
frames for motion blending, adapting animations to uneven terrain, and many
more. As illustrated, both estimated vGRFs and detected contacts are evaluated in
Sections 5.5.2 and 5.5.3, respectively.

match the framerate of pressure insole data, and trimmed the beginning and end of

each sequence to remove the synchronisation patterns. Original motion sequences at

240 Hz are also provided in our database.

5.4 deep neural network

In this section, we describe the proposed method to learn a deep model for vGRFs

estimation from motion capture data. Learning vGRFs instead of binary contact labels

encourages our deep neural network to more accurately model interactions between

feet and ground, and enforces motion dynamics understanding. See Figure 5.3 for an

overview of our approach.
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5.4.1 Data Representation

input At each frame t, the human pose Xt ∈ RJ×3 is represented by the position

of its J = 23 joints in a global Euclidean space. We design our deep network Ψ to

output vGRFs and contact labels at each frame from a few surrounding input frames

with padding when needed. The full input pose sequence is then X ∈ RT×J×3, where T

is a variable number of frames.

output As previously described, our deep network Ψ estimates the vGRF distribu-

tion from motion data. At each frame, it outputs F̂ = Ψ (X) with F̂ ∈ RT×2×16, i.e. 16

positive real-valued vGRF components, corresponding to the 16 insole pressure cells for

each foot, expressed proportionally to subject weight.

5.4.2 Network Architecture

We designed our network Ψ to process variable-length sequences. To this end,

the network is composed of four 1D temporal convolutional layers with 7-frame wide

kernels, followed by three fully-connected layers applied at each frame independently to

preserve the support variable-length sequence. Each convolutional or fully-connected

layer is followed by ELUs as activation, except for the last one which is a softplus

activation to output nonnegative vGRF components.

5.4.3 Training and Inference

During training, our network is iteratively exposed to sequences of human poses

and tries to estimate corresponding vGRF components as depicted in Figure 5.3. To

encourage robustness and smooth convergence, we make use of stochastic data augmen-

tation. First, similar to random crops and rotations used on images in computer vision,

we apply random vGRF-invariant transformations on input pose sequences including

translations, horizontal rotations, scaling, and left-right mirroring.
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For each sequence, we also randomly draw its skeleton which is then animated by

joint angles to further robustify our network. To do so, we precomputed (offline) an

singular value decomposition (SVD) basis of the skeletons captured in our database.

At training time, we draw new skeletons by linearly combining precomputed singular

vectors with randomly sampled weights. We then further edit these skeletons by

randomly moving joint relative positions and rescaling bone lengths to obtain morpho-

logical variations. The resulting input motion sequences purposely suffer from artefacts

since kinematic chains (i.e. from root joint to feet) have been randomly edited, which

encourages the network to be resilient with respect to perturbed inputs. Joint positions

are finally computed through forward kinematics and fed to the network.

To train our deep network Ψ, we minimise a reconstruction loss of vGRF components.

Instead of the standard MSE, we use the mean squared logarithmic error (MSLE). It

has the property to only focus on the relative difference between target and estimated

values (see right-hand side of Equation (5.1)), which is convenient when the values

considered can be several orders of magnitude apart. In our case, actual vGRFs can be

strictly positive and arbitrarily low (e.g. during transition from the double leg stance to

the single leg stance) as well as very high (e.g. during jump landing). The loss function

used to train our network is then

L=
1
N

N

∑
i=1

(
ln(Fi + 1)− ln(F̂i + 1)

)2
=

1
N

N

∑
i=1

ln2
(

Fi + 1
F̂i + 1

)
(5.1)

where Fi are the ground truth vGRF components, and F̂i = Ψ(X)i their estimated

counterpart. Adding 1 to both F and F̂ ensures that the loss is defined when vGRF

component value goes to zero.

At inference, our deep network estimates vGRF components from joint positions as

inputs. Then, foot contact labels can be calculated from vGRF estimates using the contact

function Γ (see Section 5.3.3).
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5.5 evaluation

In this section we present results of our method to assess estimated vGRFs and

detected foot contacts. After providing implementation details necessary for repro-

ducibility, we assess foot contact labels detection and vGRF estimation. Finally, we also

evaluate foot contact detection performance on different perturbed motion sequences,

simulating challenging conditions encountered in concrete applications.

5.5.1 Implementation Details

data . We split our database into training and testing sets. To ensure robust

evaluation, the testing set is composed of the sequences performed by three out of

the ten subjects (1F+2M, {S8, S9, S10}), representing approximately 30% of the overall

database. For training, we further divide the remaining 70% to keep a validation set

(about 10%) and use early stopping during training. Moreover, we split each training

motion sequence into overlapping windows of T = 240 frames, i.e. 2.4 s.

architecture . The four convolutional layers at the beginning of our network

have respectively 128, 128, 256, and 256 7-frame wide filters while the back-end FC

layers have 256 neurons each. Dropout with probability p = 0.2 is applied before each

FC layer. The total number of weights in our network is 1’137’792.

training . We implemented our deep neural network in Python using PyTorch.

Training and validation were executed on an NVidia Tesla V100 GPU while other results

were obtained either on an NVidia GeForce RTX 2060 GPU or on CPU. We trained our

deep neural network through stochastic gradient descent (see Equation (5.1)) for about

2500 epochs (about 10 days) at each of which a new version of the training set was

randomly generated (see Section 5.4.3). We used Adam optimisation algorithm [82]

with a mini-batch size of 64, learning rate α = 3 · 10−5 and hyperparameters β1 = 0.9

and β2 = 0.999.
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5.5.2 Foot Contacts Detection

metric . To evaluate foot contact detection, we use the F1 score which is the

harmonic mean of precision (fraction of correctly detected labels among detected labels)

and recall (fraction of correctly detected labels among expected contact labels).

baseline . To evaluate our model against commonly used heuristics-based ap-

proaches using thresholds, we define an optimal thresholds (OT) baseline. It has two

thresholds that are applied on foot height and velocity norm. To demonstrate the effec-

tiveness of our approach, we set these two thresholds to the values which maximise the

F1 score over the training set, computed by recursive grid search. Note that in practical

applications, such optimal values are not available. Therefore, this baseline constitutes

an upper bound of threshold-based approaches.

ablative study. We also investigate the relevance of our architecture with an

ablative study. We first consider two linear models taking as inputs joint positions

and velocities, as learned generalisations of the OT baseline: the former (Linear-Feet),

takes foot and ankle joints as inputs while the latter (Linear) takes all joints. Then, we

consider a 3-layer MLP, i.e. the architecture of the foot contact detection module in the

style transfer framework proposed by Smith et al. [156], introducing non-linearities

with respect to Linear-Feet and Linear models. These three models have real-valued

outputs, for which positive values are considered as foot contacts with the ground,

and are trained with binary cross-entropy (BCE). Finally, we explore two variants

of our deep network. First, in Ours-C variant, we adapt our architecture to directly

estimate foot contact labels instead of vGRFs by change the last layer and its activation

(i.e. number of neurons and sigmoid instead of softplus) and train this adapted

model with BCE. Then, in Ours-C&F variant, we combine Ours-C variant with the

main proposed model Ours. Our architecture is adapted to output both contacts and

vGRF components (convolutional layers are shared while FC layers are duplicated and

separately learned for each output) and trained with both MSLE and BCE over vGRF and

contacts, respectively.
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foot contact detection results . Table 5.2 reports the F1 score for each

model of our ablative study and each motion category as well as overall results. First,

Linear and Linear-Feet show improved performances with respect to the OT baseline,

which tends to confirm that thresholds based approaches lack complexity. Increased

performances obtained by Linear model with respect to Linear-Feet model suggests

that foot contact detection also benefits from other body joints, pointing out one of

the limitation of thresholds applied on foot joints. The higher F1 score of the 3-layer

MLP with respect to linear models confirms their limitations. Finally the proposed

architecture further increases the detection accuracy with relatively small differences

among variants.

Table 5.2 – F1 score on foot contact labels detection of our method, its variants for ablative
study purposes, and the OT baseline. Bold and underline respectively indicate
per-column best and second best. Our method outperforms the OT baseline and its
linear generalisations, and the proposed architecture seems relevant with respect to
the 3-layer MLP.

Model Walking Running Obstacles Hopping Stairs Idle Overall
OT baseline 0.927 0.869 0.926 0.859 0.882 0.826 0.909
Linear-Feet 0.936 0.863 0.921 0.824 0.906 0.812 0.913

Linear 0.937 0.868 0.926 0.855 0.925 0.912 0.923
3-layer MLP 0.940 0.883 0.926 0.882 0.947 0.921 0.930

Ours-C 0.946 0.917 0.941 0.930 0.956 0.941 0.942
Ours-C&F 0.948 0.918 0.942 0.923 0.954 0.946 0.943

Ours 0.949 0.930 0.944 0.931 0.959 0.948 0.947

temporal analysis of foot contact detection. Up to now, we provided

temporally global foot contact detection results. However, misdetected labels located

closer to contact phase changes are less severe in the sense that they would result in less

severe biases or artefacts in most applications, e.g. footskate cleanup. To this end, we

provide a finer analysis in the following. In Figure 5.4, we plot the F1 score against an

increasing temporal tolerance to detection errors. In Figure 5.5, the distribution of false

positive rates is given according to a normalised temporal frame where ground truth

off-contact phase intervals are mapped to [0,1]. Both figures confirm the limitations

of heuristics approaches represented by the OT baseline whose false positive rate is

significant in the middle of off-contact phases. On the contrary, learned models show
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convergence of accuracy close to 100% with increasing tolerance as well as low false

positive rates in the middle of off-contact phases.
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Figure 5.4 – F1 score curves against temporal tolerance. Here we compute the F1 score with
tolerance t ∈ [0,0.25] by considering contact labels correct whenever they are located
at most t seconds away from the closest contact phase. At t = 0, we fall back to
the Overall column in Table 5.2. The optimal thresholds (OT) baseline and its
linear generalisations have large errors far from contact phase changes, resulting in
relatively low F1 scores compared to our model even with high temporal tolerances.
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Figure 5.5 – False positive distribution during normalised off-contact phases, i.e. mapped to
[0,1]. Intuitively, the farther misdetected contacts are from contact phases, the
more severe they are. False positive rates of learned models like ours quickly
decrease outside contact phases while the optimal thresholds (OT) baseline keeps it
significantly higher in-between contacts.
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Table 5.3 – Root mean squared error (RMSE) of the estimated vGRF normalised by body weight.
Estimating foot contacts in addition to vGRFs (Ours-C&F) seems slightly detrimental
compared to estimating only vGRFs (Ours).

Model Walking Running Obstacles Hopping Stairs Idle Overall
Ours-C&F 9.5% 14.8% 12.4% 14.3% 11.8% 13.1% 11.4%

Ours 9.1% 14.3% 11.6% 14.1% 10.9% 11.9% 10.9%

Table 5.4 – Median absolute deviation (MAD) in milimetres of CoP computed from estimated
vGRF components. Similarly to estimated vGRF, modelling foot contact labels in
addition to vGRFs (Ours) slightly affects CoP accuracy.

Model Walking Running Obstacles Hopping Stairs Idle Overall
Ours-C&F 16.7 12.3 17.8 15.5 17.9 28.9 16.4

Ours 13.3 11.2 15.1 12.3 13.9 25.9 13.4

5.5.3 vGRFs Estimation

metrics . In this section we assess performances of our method on vGRFs estimation

from motion capture data. We use the root mean squared error (RMSE) of per-foot total

vGRF which is mainly sensitive to global biases (at foot scale). In complement, we also

evaluate the centre of pressure (CoP) computed from vGRF estimates, which is more

sensitive to local errors (at pressure cell scale) since it is calculated as the weighted

mean of vGRF component application points.

results . Table 5.3 gives the RMSE of the estimated vGRFs proportionally to the

subjects’ body weight while Table 5.4 provides the MAD (or median distance to ground

truth) of the CoP. Moreover, Figure 5.6 depicts the distribution of offsets from predicted

to ground truth CoP. As for contact detection, these results suggest that learning to

model foot contact labels in addition to vGRF (Ours-C&F) reduces accuracy, although

the performances of both variants are close. Note that other variants evaluated on

contact detection in the previous section only detect contact labels and hence cannot be

evaluated on vGRF estimation. Finally, visual results of vGRFs estimated using our main

variant are depicted in Figure 5.7.
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Figure 5.6 – Scatter plot of 2D offsets between centres of pressure computed from ground truth
and estimated vGRFs. The concentric solid and dashed circles respectively represent
the mean and median norm of 2D offsets.
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Figure 5.7 – Illustration of vGRF components at different timestamps during a walking cycle. The
top, middle and bottom rows respectively depict the ground truth, vGRFs estimated
from motion by our deep neural network and the corresponding absolute error.
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discussion on pressure insoles accuracy. In biomechanics, force plates are

generally considered gold standard to measure vGRF and CoP; however, the environment

in which we captured the proposed database, i.e. spanning over a significant area

including obstacles and stairs, prevented us from resorting on force plates to capture

force or pressure data. As a result, our evaluation relies on pressure insole measures

as ground truth. Existing works in biomechanics [74, 129] evaluated pressure insoles

accuracy with respect to force plates, and tell us that vGRFs measured with pressure

insoles suffer from a RMSE up to approximately 10% of the subject weight, being subject

to variations depending on experimental conditions. Thus, Table 5.3 indicates that vGRF

estimation errors of our deep neural network are approximately of the same order of

magnitude as the measurement error this is expected with pressure insoles.

5.5.4 Foot Contacts Detection in Challenging Conditions

As explained in Section 5.2, applications requiring foot contact labels detection

include quantifying or correcting foot artefacts. By definition, motion sequences

considered in such applications are expected to be perturbed at least by footskate

artefacts, and sometimes by other artefacts like noise or distortions. As a consequence,

the performance of a method for foot contact detection is not only relevant on clean

motion capture data (as evaluated in Section 5.5.2), but also on motion sequences

suffering from perturbations of all kinds. In this section, we evaluate the performance

of our model compared to our baseline and ablative variants of our model on perturbed

motion sequences. To this end, we purposely introduce three types of artefacts in

motion sequences from our database such that foot contact labels can still be used

as ground truth to measure contact detection performance. First we add Gaussian

noise to joint positions. Second we introduce distortions caused by going through

a partially trained motion autoencoder. Finally, we generate footskate artefacts by

blending different motion sequences from our database.
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Figure 5.8 – F1 score on foot contacts detection from motion sequences purposely noised with
additive isotropic Gaussian noise. Each curve represents the F1 score against the
amount of noise introduced, measured with the MPJPE in centimetres indicated by
the bottom horizontal axis, while the top horizontal axis gives the corresponding
standard deviations of the Gaussian noise. The results indicate that our method is
more robust to noise.

motions perturbed with gaussian noise . First, we simply evaluate how

contact detection performances are affected by additive isotropic Gaussian noise. To

this end, we first take with ground truth sequences from our test set and purposely add

Gaussian noise to joint positions. Then we try to detect foot contacts from the noised

motion sequences using various models evaluated in Section 5.5.2 and report their

performances with the F1 score. We repeat this procedure for an entire range of noise

levels whose standard deviation varies from 0 to 5 centimetres which corresponds to a

MPJPE ranging from 0 to 8 centimetres. Finally, we plot the resulting F1 score curves in

Figure 5.8.
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Figure 5.9 – F1 score on foot contacts detection from motion sequences distorted by a motion
autoencoder early-stopped at different epochs to emulate different amounts of
distortion. Each curve displays the F1 score against the amount of distortion
introduced, measured with the MPJPE in centimetres. The results indicate that our
method is more robust to distorted sequences.

motions distorted by an autoencoder . Second, to simulate perturbations

more faithful to what is encountered in real-world applications, we evaluate detec-

tion performances on motion sequences that have been encoded and decoded by an

autoencoder. To this purpose, we trained a convolutional autoencoder similar to the

one proposed by Holden et al. [59] to reconstruct motion sequences from our test set

for 100 epochs (about 10 minutes). Then we evaluate foot contact detection on motion

sequences which have been encoded and decoded with our autoencoder. Moreover,

to emulate different level of perturbations, we leveraged the fact that the amount of

perturbations introduced when passing through the autoencoder continuously decrease

during training. Hence, we ran this evaluation scheme at different epochs and plot in

Figure 5.9 F1 score curves obtained against the amount of perturbations measured at

each of those epochs using the MPJPE.
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Figure 5.10 – F1 score against amount of footskate. Test motions with matching foot contact
patterns have been blended to purposely introduce footskate while preserving
contact labels. Foot contact detection is then evaluated on such motions suffering
from footskate, and compared to the ground truth contact labels. The amount of
footskate introduced through blending is measured using the mean velocity of the
feet during contact phases. Non-linear learned detection models keep reasonably
high accuracy while accuracy of linear models significantly decrease and accuracy
of optimal thresholds (OT) baseline quickly collapse.

footskate generated with motion blending . To push further our eval-

uation toward concrete applications, we additionally evaluate contact detection on

motion sequences that have been blended. Motion blending (or motion interpolation)

is a well-known technique widely used in animation that consists in mixing existing

motions with dynamic blending weights to create new motions. In our case, motion

blending is interesting because it is known to easily introduce footskate artefacts in

resulting motions, which can then help us to evaluate contact detection on such per-

turbed motions. To do so, we randomly picked pairs of chunks from motion sequences

in our test set having identical foot contact patterns on either left or right foot. Mak-

ing the reasonable hypothesis that foot contact patterns are preserved when motion

sequences with identical foot contact patterns are blended together, we can then blend

our random pairs of chunks and thus introduce footskate artefacts while still having

ground truth foot contacts needed to evaluate foot contact detection. We constituted a
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set of approximately 40 thousands blended chunks of 80 frames long (i.e. 0.8 s) and

quantified the amount of footskate introduced using the mean horizontal velocity of

the feet during contact phases [106, 161, 163, 207]. Then, we attempt to detect foot

contacts using the same models as before, and measure the performances with the F1

score. Finally, we obtain and plot corresponding F1 score curves in Figure 5.10 using

simple moving average.

As depicted in Figures 5.8 to 5.10, the proposed approach for foot contact labels

detection is much more robust than threshold-based heuristics approaches represented

by the OT baseline, regardless of the type of perturbation applied to motion sequences.

Moreover, the improvement of modelling vGRFs instead of foot contact labels (Ours

vs Ours-C) is much larger when facing perturbed motion sequences. Since vGRFs are

much more related to motion dynamics than binary contact label, vGRFs estimation

requires a deeper understanding of motion than contact labels detection. Indeed,

approximately 90% of contact labels can be correctly detected with foot position and

velocity thresholding (see Table 5.2), i.e. with almost no understanding. Then, in

challenging conditions like perturbed input motion sequences, the performances of

the variant modelling vGRFs are logically more stable since a deeper understanding of

motion is intuitively more robust.

5.6 footskate cleanup

In this section, we leverage our robust foot contact detection for a downstream task

and propose a novel fully automatic workflow for footskate cleanup. After detecting

foot contact labels, our goal here is remove footskate artefacts by setting the feet static

on the ground during detected contact phases, which can be seen as a particular case of

IK. Traditional IK algorithms often rely on numerical optimisation to reach the target(s).

Few works based on deep learning have been proposed, such as the framework of

Victor et al. [173] for interactive design which allows to edit end-effectors locations

in a static pose while keeping a globally consistent pose. In our case, we rely on an

hybrid optimisation-based approach in which our deep network is used to enforce

preservation of vGRFs throughout the optimisation.



5.6 footskate cleanup 169

Let X̃ = (Q̃, S, P̃) be the input motion sequence suffering from footskate, where Q̃

denote joint angles, S the skeleton and P̃ the global trajectory positions of the root

joint. Our goal is to find Q and P such that X = (Q, S, P) is the footskate-cleaned

version. First, we compute F̃ = Ψ(FK(Q̃, S, P̃)) and C = Γ(F̃), being respectively the

vGRF components estimated by our deep neural network Ψ and the foot contact labels

calculated using the contact function Γ defined in Section 5.3.3. The function FK(·)
refers to forward kinematics, i.e. the computation of joint positions from joint angles,

skeleton and global trajectory. After initialising Q and P with Q̃ and P̃, we iteratively

optimise both for a small fixed number N of iterations to best satisfy foot contact

constraints into a gradient-based optimisation loop. In the following paragraphs we

describe each term Li of the our loss function

L= ωqLquat + ω fL f oot + ωtLtraj + ωvLvGRFs (5.2)

where weights ωi are hyperparameters to balance our objectives.

quaternions loss . We parameterise joint angles with unit quaternions, which are

well-suited for such an optimisation since they are free of singularities, computationally

efficient, and numerically stable [124]. To keep valid rotations with quaternions

throughout the optimisation, Lquat penalise quaternion norm deviations from 1:

Lquat = ∑
t

∑
j

(
∥Qj(t)∥ − 1

)2 (5.3)

where Qj(t) is the quaternion representing the orientation of joint j at time t.

foot contacts loss . Satisfying foot contact constraints is not an easy task since

we do not have directly access to actual contact locations with respect to the skeleton.

Moreover, since foot joints are located above actual contact points, they are allowed

to rotate around the latter during part of contact phases (e.g. when the heel is in

contact with the ground, the ankle is constrained to rotate around). To alleviate these

issues, we artificially insert contact joints in S corresponding to contact points, i.e. under
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Figure 5.11 – Illustration of contact joints (green dots) inserted under corresponding foot joints at
the ground level in the skeleton to properly enforce foot contact constraints (See
details below).

foot joints at the ground level (see Figure 5.11). We assume that each contact joint is

located vertically under its foot joint in the T-pose at the ground height, has constant

orientation with respect to its foot joint, and is assumed to be static during contact

phases. Then, imposing zero velocity on contact joints instead of foot joints during

the contact phases better reflects the kinematics of the interaction with the ground,

allowing slight rotation of foot joints located above the ground level. To this end, we

minimise the mean squared distance from contact joints to contact positions during

contact phases to faithfully constrain foot joint positions through forward kinematics:

L f oot =
C

∑
c=1

t1(c)

∑
t=t0(c)

Π(t)∥FK(Q, S, P)jc(t)− pc∥2 (5.4)

where jc and pc are respectively the joint in contact with the ground during contact

phase c and its contact position during the contact phase spanning from t0(c) to

t1(c). Moreover, function Π(·) is a rectangular wave function with smoothed edges

(synchronised with contact phases) to avoid sharp foot position changes.

trajectory loss . Since foot contact constraints are not guaranteed to be reachable

by leg extensions, the global trajectory might be affected. However, it is closely related
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to body dynamics and its optimisation must be carefully controlled to avoid artefacts.

In particular, constraining trajectory positions might introduce implausible velocity

changes, hurting motion dynamics realism, e.g. slowing down to reach some contact

position might lead to speeding up afterwards to catch up the target trajectory. To this

end, we minimise the trajectory velocity deviations instead of position deviations:

Ltraj = ∑
t
(∥v(t)∥ − ∥ṽ(t)∥)2, v(t) =

P(t + ∆T)− P(t)
∆T

(5.5)

where v(t) is the global velocity of root joint at time t, computed from global trajectory

position P by numerical differentiation.

vgrf invariance loss . The main novelty in our gradient-based optimisation

approach is the use of our deep neural network through which gradients can flow.

Since it is able to estimate consistent vGRF components from either clean or perturbed

inputs, we further guide the optimisation by minimising the deviation between initially

estimated vGRFs components F̃ and dynamically estimated vGRF components F =

Ψ(FK(Q, S, P)):

LvGRFs = MSLE(F, F̃) (5.6)

where the MSLE measures vGRFs deviation as previously (see Section 5.4.3).

We used the same motion sequences blended for evaluation purposes in Section 5.5.4

to test the proposed footskate cleanup workflow. With parameters N = 100, ωq = 10−3,

ω f = 10−5, ωt = 102 and ωv = 5 · 10−5 (see Equation (5.2)), we achieve to significantly

reduce the amount of footskate (the velocity of the feet during contact phases is approx-

imately halved) while noticeably improving the realism of the sequences, assessed by

visual inspection.
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5.7 conclusion

In this chapter, we presented a novel approach that improves the state-of-art of foot

contact detection and footskate cleanup in human character animation. Building on

UnderPressure, a novel motion capture database synchronised with pressure insoles

which we publicly released, we proposed to learn the relationship between human

motion and interactions between feet and ground with a deep neural network estimating

vertical ground reaction forces, from which foot contact constraints can be derived and

exploited for an effective removal of foot sliding artefacts.

As of today, the proposed database is one of a kind in animation as it provides

synchronised motion capture and pressure insoles data for a wide variety of human

motion. Our approach significantly outperforms thresholds-based heuristic approaches

in detecting foot contact labels, which are limited in their capability to generalise.

We show its robustness to perturbed input motion sequences, which is crucial in

concrete use cases. We have shown that estimating forces greatly helps the accurate

and robust detection of contacts. Finally, we demonstrate the usefulness of our foot

contact detection approach for footskate cleanup, leveraging vGRF estimates to improve

the quality of the results.

As described in Section 5.2, foot contact labels are relevant to a lot of tasks in human

animation and are typically obtained with simple heuristics, or manually annotated

on an exceptional basis. Thus, many of these downstream tasks could probably

benefit from the improved accuracy of our foot contact detection approach. Moreover,

motion reconstruction relies more and more on modelling physical interaction of the

feet with the ground (see Section 5.2.2). Resolving inverse dynamics problems like

ground reaction forces estimation from motion capture data could provide a valuable

regularisation for such underconstrained problems as well as other tasks involving

physics-based models. We believe our approach is a step in that direction.





6
C O N C L U S I O N

In the last decade, artificial intelligence has revolutionised the topic of skeletal char-

acter animation as many others, especially through deep learning. Novel frameworks,

e.g. leveraging variational autoencoder (VAE) [10, 35, 51, 195] or generative adversarial

network (GAN) [19, 52, 112, 194], pushed generative motion synthesis up to unprece-

dented realism. Sophisticated schemes such as mixture-of-expert networks [207] or

local motion phases [161] yielded breakthroughs in the control of virtual characters.

The examples are numerous. Though, these advances still lack quality, flexibility and

ability to generalise to fully outperform skilled animators’ manual work quality and to

replace them when dealing with tedious low-creativity tasks. Therefore, the purpose of

this thesis is to tackle current obstacles preventing them from doing so.

In particular, we strived to alleviate the lack of high-quality motion data in the context

of deep learning and the inclination of neural networks to introduce artefacts when syn-

thesising or processing motion data. To this end, we first investigated the enhancement

of 2D human pose sequences estimated from video using prior knowledge captured in

a deep generative model. Then, we proposed a novel versatile deep representation of

human motion, in which motion features are abstracted out from skeleton structure and

morphology, allowing for gathering, processing or retargeting motion sequences with

variable skeleton topologies. Finally, we tackled foot contact detection to automatically

clean up footskate artefacts, well-known in character animation.

6.1 summary of contributions

joint upsampling and completion. Human pose estimation attempts to

capture human body pose or motion from image or video, respectively. Requiring little

equipment, it is a promising alternative to traditional motion capture systems which

are expensive and cumbersome. Hence, capturing high-quality motion data from video

174
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might vastly tackle the lack of human motion data, especially experienced with recent

data-greedy models such as transformers. Since many 3D human pose estimation

solutions rely on 2D pose estimation as a first step and solve inverse mapping from

2D to 3D afterwards, we presented in Chapter 3 a method to upsample and complete

(e.g. missing joints due to occlusions) human joints in 2D as an intermediate step.

Indeed, completed 2D pose sequences with higher spatial resolution disambiguate

inverse mapping. Moreover, in such a use case, the higher resolution of joints would be

reflected in estimated 3D pose sequences. To this end, we leveraged a deep generative

model to learn the distribution 2D human pose sequences at high resolution of joints.

At inference, completion and upsampling are performed by finding the point in the

latent space of our model which best matches observed 2D low-resolution estimates,

and then generating the corresponding completed high-resolution pose sequences. As

our model is based on a GAN, this process is performed through optimisation in the

latent space of our model, and high-resolution pose sequences are produced by the

generator module of our model. We showed that our method is able to upsample

joints in 2D pose estimates while keeping localisation accuracy of the underlying pose

estimator. Moreover, prior knowledge on human motion learnt by our model allows to

plausibly fill occluded joints (e.g. when a limb passes behind the body).

unified human motion representation. Another way to tackle the bottle-

neck constituted by the limited availability of motion data is to increase the interoper-

ability of existing human motion databases, which are difficult to gather and exploit

together. For example, combining a limited amount of motion data annotated with style

labels with a larger general motion database might be more thoughtful when develop-

ing a style transfer method than acquiring a large amount of motion data annotated

with style labels. However, combining existing databases is not straightforward since

virtual characters often have different sets of joints and interconnections and might

even be as tedious as acquiring a large amount of novel motion data. To overcome this

issue, we proposed in Chapter 4 a novel deep representation of human motion unified

across skeleton topologies and morphologies. We learnt this representation with a

transformer-based neural network in an autoencoder scheme from a large amount of
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motion data collected from different existing motion databases. We condition both

encoder and decoder on skeleton topological and morphological features allowing to

abstract “pure” motion features in our deep representation. The effectiveness of trans-

formers to discover complex patterns from data is known to be unprecedented. In our

case, it overcomes the difficulty to learn such a unified human motion representation,

which itself makes the training of our transformer-based architecture possible. Indeed,

transformers require large data volumes but our unified model can be learnt from the

gathering of multiple existing motion databases. As a result, our deep motion repre-

sentation constitutes an interesting space to embed and work with motion sequences

from different sources. Moreover, the effectiveness of transformers coupled with the

generality of the approach makes our model well-suited for a variety of downstream

applications including motion retargeting, motion denoising and joint upsampling.

foot contact detection and footskate cleanup. Finally, we also inves-

tigated in this thesis the cleaning of artefacts. We believe that deep learning is also

promising to effectively clean artefacts as post-processing rather than indefinitely in-

creasing data quality, data volumes and deep model sizes to perfect the results obtained.

In particular, we focused on footskate which is known to be detrimental to the perceived

realism even at low intensities [138] and also easily introduced when processing motion

data. Knowledge of foot contacts is required for footskate cleanup, however it is often

obtained through manual annotation or using simple heuristics (e.g. hand-crafted foot

velocity threshold). Therefore, we proposed a reliable foot contact detection solution

on top of which we built an algorithm to automatically clean footskate artefacts. To

this end, we first captured and publicly released a novel database of motion data

synchronised with pressure insoles data, from which accurate foot contacts can be

derived. Hence, this database provides a significant amount of motion data annotated

with foot contacts compared to scarce existing motion data manually annotated. Then,

we built a robust foot contact detection approach by training a deep neural network to

estimate vertical ground reaction forces (vGRFs) from motion on our database. vGRFs

serve as a proxy representation which captures physical interactions between feet and

ground better than binary foot contact labels. At inference, binary foot contact labels
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can be computed from vertical ground reaction forces (vGRFs). We demonstrate that

our approach outperforms traditional heuristics-based solutions in terms of accuracy,

generalisability and robustness. On top of our foot contact detection approach, we

also presented a fully automatic workflow to remove footskate artefacts from motion

sequences. Following recent approaches, footskate is removed by enforcing foot con-

straints (detected with our model) using an inverse kinematics (IK) algorithm, iteratively

optimising joint angles to satisfy the constraints. We additionally leverage our deep

model to preserve ground reaction forces during this optimisation process and keep

motion dynamics globally consistent.

6.2 perspectives and future work

In this thesis, we have explored approaches in the general goal of improving deep

learning based systems for skeleton character animation. In the following, we present

possible research perspectives in the continuation of our work. First, we propose short-

term perspectives, i.e. possible improvements and experiments which naturally stem

from the work presented in this thesis. Then, we suggest a set of possible directions to

extend our work inspired from existing literature in character animation and beyond.

Finally, we open up the discussion to long-term perspectives requiring to solve several

challenges and rethink part of the current paradigms in character animation.

6.2.1 Short-Term Perspectives

In Chapters 3 and 4 we have presented two approaches relying on deep motion repre-

sentations. In the latter, we proposed an abstract motion representation independent of

skeleton topology and morphology. However, as pointed out in Section 4.5, our model

has some limitations with regard to morphological variations, including decreased

performance on non-human morphologies.

A first perspective would be to investigate whether or not the proposed model

is able to accurately encode both human and humanoid morphologies in a single
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unified motion representation. In other words, is it possible to unify the motion of

humanoid characters (i.e. two legs, two arms and a head but possibly exaggerated

body proportions) in a deep representation learnt following our approach? Moreover,

non-humanoid characters such as quadrupeds might also be explored in future work.

A simple approach to do so that might be effective would be to diversify the training

dataset beyond human motion sequences. However, other changes more involved

might be needed to handle humanoid or other kind of characters, and are overviewed

in the medium-term perspectives hereafter.

Another limitation of our work is that footskate artefacts are likely to be introduced

in some cases. As of today, this issue concerns most, if not all, deep motion models

used to produce or process motion data. A possible approach to improve in this

direction would be to introduce knowledge about interactions between feet and ground.

For instance, this could be possible by introducing some supervision with respect

to foot contact or vertical ground reaction forces (vGRFs) during training. This can

be directly implemented using the motion database proposed in Chapter 5 in which

motion data is synchronised with pressure insole data. Several ways to add supervision

are possible and can be combined. For example: ground truth foot contacts might be

used to measure and minimise footskate in output motion sequences; vGRFs or foot

contacts could be estimated from the latent representation of motion sequences; vGRFs

or foot contacts consistency loss might be applied on vGRFs or foot contacts estimated

from reconstructed or retargeted motion sequences. Moreover, the unified motion

representation proposed in Chapter 4 and the foot contact detection model proposed in

Chapter 5 might be directly combined to automatically clean footskate artefacts. The

former would retarget motion sequences to the skeleton topology of the latter to obtain

foot contacts needed to clean footskate.

Finally, the amount of footskate artefacts introduced is rarely evaluated. The reasons

here are the scarcity of motion data annotated with accurate foot contacts, and the

difficulty to obtain accurate ground truth foot contacts. The database and foot contact

detection approach proposed in Chapter 5 could be leveraged to define some standard

evaluation procedure of footskate.
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6.2.2 Medium-Term Perspectives

A rising challenge in character animation is to propose methods that are versatile

enough to be usable on characters with large topological and morphological variations,

and possibly generalise beyond humanoid characters in some cases. Extending some of

the deep motion representations proposed in this thesis to handle such large variations

might therefore need to rethink the conditioning mechanism we proposed. In particular,

we currently proposed to use neutral poses as skeleton templates, represented by their

joint positions which might be limited to fully capture morphological and topological

features. While this issue could be solved by a more thoughtful design, we believe

that an elegant solution would consist in additionally learning a deep representation

of skeleton topologies and morphologies together with a deep motion representation.

Such an approach would have the benefit to avoid manually predefining skeleton

templates while alleviating the limitations of our current approach. To further extend

the scope of our approach, one might also need to consider personalising skeleton

templates (either predefined or learnt) for each subject, i.e. more finely tuning our

conditioning mechanism to better capture fine morphological variations, e.g. hip sexual

dimorphism.

Beyond skeleton templates, novel deep learning models might be leveraged for im-

proved learning. For instance, diffusion models [159] are very attractive to build deep

representations useful for multiple tasks. Indeed, these models outperform GANs on

image synthesis, and have also been promising in a variety of domains [197]. More-

over, diffusion models also improve on scalability and parallelisability. Finally, their

progressive nature might be key to numerous applications that can be formulated as

progressive transitions. These include most completion tasks, such as motion comple-

tion, in-betweening or joint upsampling, but also cleaning tasks such as denoising or

footskate cleanup. The progressive nature of diffusion models might even extend the

scope of current problems. For instance, motion-to-motion diffusion models (in analogy

with image-to-image diffusion models [146]) could learn to progressively retarget a

motion sequence from a character to another, notably allowing character morphing in

motion sequences, i.e. progressively switching from one character to another over time.
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There are also multiple perspectives in the direction of cleaning and preventing

artefacts in output motion sequences. In the context of footskate cleanup in particular,

one of the limitations comes from the binary representation of foot contacts which are

then generally used to enforce foot constraints using inverse kinematics (IK) algorithms.

Indeed, interactions between feet and ground are not trivial and modelling them as

in or out of contact is overly simplified and conducts to manually tune IK algorithms

for specific situations to avoid replacing footskate by other kinds of artefacts. A

possible direction to solve this issue is to use a finer representation of feet and ground

interactions, such as vGRFs, and design an IK algorithm specifically targeting footskate

cleanup, e.g. by enforcing target profiles of vGRFs instead of binary in-contact phases.

This is something that we have only slightly explored in this thesis, but which we

believe shows promising potential for novel approaches. Another ambitious direction

to prevent footskate artefacts would be to explicitly model feet and ground interactions

together with motion, e.g. by building a common embedding of vGRFs and motion

sequences similarly to visual semantic embedding in computer vision that are shared

between text and images.

6.2.3 Long-Term Perspectives

In the long term, we envision that character animation might need to change

paradigm to make animation synthesis and editing more accessible. This might in-

clude replacing current technical human-computer interfaces in animation systems by

semantic controls more intuitive for designers and artists. In this direction, semantic

embeddings are promising. Indeed, they have recently demonstrated impressive ca-

pabilities at the intersection of natural language processing and computer vision, e.g.

OpenAI’s novel image generation model DALL·E 2 [141] which relies on a version of

GPT-3 [22] modified for image synthesis. In particular, semantic embeddings based

on natural languages seem to be very efficient to yield powerful representations and

capture necessary information for applications involving human-computer interactions.

In character animation, a lot of applications include human-computer interactions

at some point, such as motion synthesis and editing systems driven by artists and
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animators or virtual characters controlled by gamers. For example, in analogy with

capabilities of current image synthesis models, we could imagine to quickly produce

draft motion sequences from textual descriptions, such as “a tall character running for

4 seconds then accelerating jump above an obstacle”. However, building a semantic

embedding for character animation based on natural language would require to solve

several tough challenges. These challenges include the greediness in term of data

volume of recent successful models such as GPT-3. In the case of images associated

with text descriptors, billions of examples are available on the internet. On the contrary,

motion data are currently much more scarce that images. Also, motion sequences

are not often annotated with text descriptors in existing databases, needed to build

such a semantic embedding of natural language and character motion. Another impor-

tant challenge is that dedicated natural language model(s) might be necessary, as for

DALL·E 2. Even though it might require less complexity than general natural language

models like GPT-3, little work has been done in this direction. A recent attempt is the

language-directed physical character controller proposed by Juravsky et al. [73].

We believe that the contributions presented in this thesis are a first step in such

directions, and will open the door to novel approaches for animating virtual characters

based on deep learning approaches.
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T I T R E : A P P R E N T I S S AG E P R O F O N D P O U R L’ A N I M AT I O N D U S Q U E L E T T E D E P E R S O N -

N AG E S V I RT U E L S : É D I T I O N D E L A TO P O L O G I E , R E TA R G E T I N G E T N E T TOYAG E

Mot clés : animation, personnages virtuels, apprentissage profond, mouvement humain

Résumé : L’apprentissage profond a révolu-
tionné l’animation de personnages durant la
dernière décennie. Des modèles novateurs et
sophistiqués ont permis d’obtenir un réalisme
sans précédent. Cependant, ces avancées ne
permettent pas encore de remplacer les ani-
mateurs sur toutes les tâches fastidieuses et
peu créatives. L’objectif de cette thèse est
de s’attaquer aux obstacles qui les en em-
pêchent. En particulier, nous avons abordé
le manque de données de mouvement de
qualité et la tendance des réseaux de neu-
rones à introduire des artéfacts lors du traite-
ment de données de mouvement. Nous avons

d’abord exploré l’amélioration de séquences
de poses humaines 2D estimées à partir de
vidéos en utilisant des connaissances a priori
apprises par un modèle génératif profond. En-
suite, nous avons abstrait le mouvement de
la topologie et de la morphologie dans une
représentation profonde, afin de rassembler,
de traiter ou de squeletto-morphoser des sé-
quences de mouvement avec des topologies
et des morphologies variables. Enfin, nous
nous sommes attaqués à la détection des
contacts des pieds avec le sol dans le but
de nettoyer automatiquement les artéfacts de
glissement des pieds.

T I T L E : D E E P L E A R N I N G F O R S K E L E TA L C H A R AC T E R A N I M AT I O N : TO P O L O G Y E D I T-

I N G , R E TA R G E T I N G A N D C L E A N I N G

Keywords: character animation, deep learning, human motion

Abstract: Deep learning has revolutionised
skeletal character animation in the last decade.
Novel frameworks and sophisticated schemes
pushed toward to an unprecedented realism.
Though, these advances still lack quality, flexi-
bility and ability to generalise to replace anima-
tors when dealing with tedious low-creativity
tasks. Therefore, the purpose of this thesis
is to tackle current obstacles preventing from
doing so. In particular, we strived to allevi-
ate the lack of high-quality motion data in the
context of deep learning and the inclination of
neural networks to introduce artefacts when

processing motion data. To this end, we first
investigated the enhancement of 2D human
pose sequences estimated from video using
prior knowledge captured in a deep generative
model. Then, we abstracted out motion fea-
tures from skeleton topology and morphology
in a deep motion representation, with the goal
of gathering, processing or retargeting mo-
tion sequences with variable skeleton topolo-
gies and morphologies. Finally, we tackled
foot contact detection to automatically clean
up footskate artefacts, well-known in charac-
ter animation.
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