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Abstract

From small scale energy systems such as domestic boilers up to rocket motors, combustion cham-
bers are often prone to combustion instabilities. These instabilities stem from the coupling of
unsteady heat release rate and acoustic waves. This coupling is two sided: ame front perturba-
tions generate acoustic waves while acoustic waves impinging on ame holders can disturb ames
attached on them. Signi�cant pressure and velocity oscillations can be reached during unsta-
ble regimes, that can alter its e�ciency or even damage the entire combustion chamber. One
major challenge is to understand, predict, and prevent from these combustion instabilities. The
objectives of this thesis are twofold: (1) take into account acoustic dissipation and (2) analyze
ame/acoustic coupling to obtain Reduced Order Model (ROM) for combustion instabilities.

This work is divided into three parts. First, the concept of ROM that gives the acoustic modes
of a combustion chamber is introduced. This modeling strategy is based on the acoustic network
theory and may take into account ame/acoustic coupling as well as acoustic dissipation. An
e�cient numerical algorithm dedicated to solve ROMs was designed on purpose and validated on
several academical con�gurations. Second, an experimental rig was commissioned to study mean
and acoustic pressure losses across a diaphragm and two swirl injectors. Results show that these
two phenomena are linked and can be simply incorporated into ROMs. Finally, ame/acoustic
coupling is investigated by using both direct numerical simulations and experiments: a lean
premixed V-shaped laminar ame is anchored on a cylindrical blu�-body and we show that its
temperature greatly inuences the ame mean shape as well as its dynamics.

Keywords Combustion instability, Flame transfer function, heat-transfer, acoustic dissipa-
tion, pressure loss, network model
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Résumé

Les instabilit�es thermo-acoustiques se rencontrent fr�equemment au sein des chambres de combus-
tion de toute taille, de la petite chaudi�ere au moteur de fus�ee. Ces instabilit�es sont caus�ees par
le couplage entre ondes acoustiques et d�egagement de chaleur instationnaire. En e�et, le passage
d'une onde acoustique au travers d'une amme va moduler son d�egagement de chaleur qui, en
retour, va g�en�erer de nouvelles ondes acoustiques. Lorsqu'une chambre de combustion entre en
instabilit�e, d'importantes variations de pression sont observ�ees ; ces uctuations peuvent user
pr�ematur�ement le syst�eme ou alt�erer ses performances.

L'�etude des instabilit�es thermo-acoustiques a pour but d'am�eliorer notre compr�ehension de
ces ph�enom�enes complexes a�n de les pr�evenir. L'objectif de ce travail est d'obtenir et d'int�egrer
au sein de mod�eles r�eduits des descriptions pr�ecises de la dissipation acoustique - e�et stabilisant
- et d'interaction amme/acoustique - e�et d�estabilisant.

Cette �etude se d�ecompose en trois axes :
La premi�ere partie d�eveloppe le concept de "mod�ele acoustique r�eduit" qui permet de pr�edire
les modes acoustiques d'une chambre de combustion. Pour cela, sont prises en compte les
dissipations inh�erentes �a certaines pi�eces (diaphragmes, injecteurs, ...) ainsi que le couplage
amme/acoustique. Une fois le mod�ele �etabli, il convient d'en chercher les solutions �a l'aide d'un
solveur num�erique sp�ecialement con�cu pour cette tâche.
Dans une deuxi�eme partie, un banc exp�erimental est utilis�e pour caract�eriser le lien entre perte
de charge et dissipation acoustique. Il est montr�e de mani�ere th�eorique et exp�erimentale que la
connaissance des pertes de charge au travers d'un �el�ement permet de pr�edire son comportement
acoustique �a basse fr�equence.
La derni�ere partie concerne le couplage amme/acoustique et plus sp�eci�quement l'inuence de la
temp�erature de l'accroche-amme : une amme pauvre pr�e-m�elang�ee air/m�ethane est stabilis�ee
sur un cylindre dont la temp�erature peut être contrôl�ee. Ainsi, il est montr�e que l'inuence
de la temp�erature du cylindre sur la amme - position d'�equilibre, dynamique et stabilit�e - est
remarquable.

Mots clés Instabilité de combustion, Fonction de transfert de flamme, transfert de chaleur,
dissipation acoustique, perte de charge, modèle réseau acoustique
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Introduction

0.1 Context

Combustion is the �rst source of energy generation. Its use ranges from electricity production to
rocket propulsion. Today, it still represents about 90 % of the energy used on earth [1]. Despite
the growth of renewable energies, combustion is likely to remain the main source of energy in
the future decades and is thus still an active subject of research.

Today, the main objective is to reduce pollutant emissions generated by combustion. Except
for hydrogen/oxygen ames, which are encountered in some rocket propulsion systems, CO2 is
always obtained as a �nal product of combustion. Its emission ampli�es the green-house e�ect [2]
as it increases the absorption of infra-red radiations. CO2 emissions can be tempered by reducing
the need of combustion, that is to say, reducing the number of devices operated by combustion,
or improving the e�ciency of combustors. Other pollutants, such as mono-nitrogen oxides NOx

can be avoided by lowering the temperature at which combustion occurs as shown in Fig. 1.

Figure 1: Inuence of the Equivalence Ratio (or the temperature) on pollutants emission (NOx and
CO). Reproduced from [3]

NOx emissions can also be reduced by using lean premixed combustion where the burnt
mixture reaches lower temperature than for stoichiometric combustion. In premixed combustion,
all reactants are mixed before entering the burner so that the burnt gas temperature never
exceeds the adiabatic temperature. Figure 1 shows an example of NOx and CO emissions, as a
function of the Equivalence Ratio (ER) or fresh gas temperature. Contrary to CO, NOx emissions
increase with these parameters and a narrow operating range in which pollutant emissions remain
acceptable is obtained.
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However, system operating lean premixed mixtures are prone to Combustion Instabilities
(CI). One of the mechanism leading to CIs is the coupling between acoustic waves and unsteady
heat release. Rayleigh [4, 5] provided a simple criterion to predict the onset of such perturbations,
which are called thermo-acoustic instabilities, in reference to the underlying mechanism. This
criterion has been later adapted to take into account acoustic radiation and dissipation [6, 7, 8] :

∂E

∂t
+
∂F

∂xi
= S −D (0.1.1)

where E is the acoustic energy, F = u′p′ is the ux of acoustic energy, and S: the Rayleigh source
term:

S =
1

T ∫
V

γ − 1

ρ0c2
p′ _q′dV (0.1.2)

where p′, _q′ are the acoustic pressure and unsteady heat release uctuations respectively. The
Rayleigh source term appears as a source (or sink) of acoustic energy: acoustic energy increases
when the unsteady heat release _q′ rate and acoustic pressure waves p′ are in phase. Finally, the
last term D in the RHS of equation 0.1.1 accounts for acoustic energy dissipation.

CIs have been widely documented: Candel et al [9] presented a detailed review on this topic,
as well as Lieuwen [10] where di�erent studies are compiled into a book. CIs have also been
studied numerically, by the mean of computational uid dynamics, and interesting methods are
presented in the book written by Poinsot and Veynante [11]. The speci�c case of CI in real
engines was discussed in the 2016 Hottel lecture at the Symp. on Comb. in Seoul.

Figure 2: Consequences of thermo-acoustic instabilities. Left: a NASA rocket chamber destroyed
during operation (ashback event). Center: Nasa engine damaged on start. Right: Turbo fan engine
after a turbine disc is detached from the opposed engine due to vibrations caused by CIs. Reproduced
from Mejia et al [12]

Most of the time, combustion chambers are designed in order to avoid the occurrence of CIs:
these instabilities may cause excessive vibration or even ashback events. Some examples of
engine failures caused by CIs are displayed in Fig. 2. The objectives of thermo-acoustic studies
are �rst to understand the underlying mechanisms leading to high pressure uctuation, but also
to predict these acoustic modes in order to avoid them. In practice, one must model/measure
accurately both dissipative e�ects (D) as well as ame/acoustic coupling (S) to predict thermo-
acoustic instabilities.
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Acoustic energy losses

Two phenomena are generally contributing to acoustic energy losses. The �rst contribution is
acoustic energy radiation at the boundaries of the system (F in equation 0.1.1). Indeed, in
the case of non fully reective boundary conditions, acoustic energy is transfered outside of the
system. This loss in acoustic energy can be measured apart from the other sink terms [13] or
modelled by the mean of impedance/reection coe�cients [14, 15].

The second contribution is acoustic energy dissipation (D in equation 0.1.1). Acoustic dissi-
pation occurs in boundary-layers [16] as well as in compact elements such as perforated plates or
injectors. The physical mechanism is the generation of vortex eddies, which are convected away
from the plate [17, 18]. In the presence of a mean ow, this mechanism remains linear as long as

Figure 3: Vortex shedding occuring across a perforated plate in the presence of a mean ow forced by
acoustic waves. Reproduced from Tam et al [19].

the amplitude of the acoustic velocity remains lower than the mean ow velocity in the element
of interest. An example of vortex shedding occurring at the rim of a perforated plate is shown in
Fig. 3. This result has been obtained in a Direct Numerical Simulation (DNS), in the presence
of a mean ow, which was forced by acoustic waves.

Acoustic dissipation can be modelled in the case of academical con�gurations such as di-
aphragms (as done by Howe [20]) or acoustic dissipation through swirl injectors [21]. Beyond
modelling, measurement in both experiments [21] and simulations [22] have been carried out.
The idea is to measure a two-port representation of the element which dissipates acoustic energy,
by linking acoustic quantities at input and output ports. An instant velocity �eld of a turbulent
ow forced with broadband acoustic waves is displayed in Fig. 4. This ow, obtained in a Large
Eddy Simulation (LES), has been post-processed to obtain the acoustic two-port representation
of a sudden change of section: acoustic waves are reected and transmitted across this passage.
This procedure permits to retrieve the frequency behavior of the two-port matrix in a single
simulation.

Dissipative elements may be added in combustion chambers to damp the existing acoustic
modes. For instance, dampers based on Helmholtz [24] or multi-perforated cavities [25] can
be designed to absorb acoustic energy in the frequency range where CIs occur. However, few
studies quantify the level of acoustic damping, caused by the presence of an acoustic damper.
Indeed, Durox et al [26] measured a global dissipation term D directly in their experiment
and incorporated it in equation 0.1.1 without any modeling. This is clearly a weak part of
many thermo-acoustic models: while may studies focus on the Rayleigh term (The gain in
equation 0.1.1) very few models can provide the dissipation (the sink term in equation 0.1.1).
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Figure 4: Measurement of an acoustic two-port: the scattering matrix, which links leaving and entering
acoustic waves. Top: instant velocity �eld of a forced turbulent ow experiencing a change of section.
Bottom: procedure used to retrieve the scattering matrix from broadband acoustic inputs. Reproduced
from F•oller et al [23].

Flame/acoustic coupling: influence of the flame holder temperature

The burnt gas temperatures reached in all combustion chambers exceed the maximum tempera-
tures which can be sustained by most materials, especially metals used in engines. Cooling these
walls is mandatory for all combustion chamber designers. While cooling is obviously needed to
preserve walls, the e�ects of wall cooling on the ames themselves have received less attention
up to now and are usually neglected in many CFD approaches. Flame/wall interaction, for
example, is a �eld of combustion which has not been investigated yet with su�cient attention
[27, 28, 29, 30] and is often overlooked. In most cases, authors try to predict the maximum wall
heat uxes induced by the ame but do not investigate the e�ects of the wall on the ame itself
(steady regime as well as dynamics).

Most LES performed for example for real engines [31, 32, 33, 34], assume adiabatic walls.
Many models for turbulent combustion also assume adiabatic ows. The famous BML (Bray Moss
Libby) approach, for example, which is the workhorse of most theories for turbulent premixed
ames [35, 11] assume that a single variable (the progress variable c) is su�cient to describe
the ow: this is true only when the ow is adiabatic. Almost all approaches for turbulent
combustion using the mixture fraction are valid only if the ow is adiabatic (otherwise there is
no equivalence between reduced temperature and species �elds). In the same way, many usual
methods for chemistry tabulation such as FPV [36], FPI [37] or FGM [38] assume that chemistry
depend only on two variables, the mixture fraction z and the progress variable c, which implies
that the ames must be adiabatic. Considering that wall heat uxes in most chambers correspond
to approximately 10 to 40 percent of the chamber total power, assuming adiabaticity is clearly
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not compatible with the high-precision methods which are sought today [39].
Note that computing correctly the interaction between the ame and the wall usually requires

to compute both the ow and the temperature within the walls simultaneously: this requires
coupling the LES (or DNS) codes with a heat transfer code within the combustor walls, a task
which is not simple [40, 41, 42] because time scales are usually very di�erent (a few milliseconds
in the ow and a few minutes in the walls).

Figure 5: Temperature contours with overlaid streamlines and 10% YHCO black contour line for the
case with φ = 0.7 for two di�erent thermal conductivities of the blu�-body (marked by the white square).
Adapted from Kedia and Ghoniem [42].

Heat losses to walls obviously play important roles on the mean ame structure (velocity and
temperature �elds, pollutant levels [32, 43]). A comparison between laminar ames stabilized on
quasi-adiabatic and steel ame holders is provided in Fig. 5 for a φ = 0.7 methane/air laminar
premixed ame. Post-processing of DNS data shows that in the steel case (Fig. 5, right), the
ame is stabilized farther than in the quasi-adiabatic case (Fig. 5, left). Heat losses to walls also
a�ect the ames unsteady behavior and notably, combustion instabilities [44, 41]. This is due to
two main mechanisms:

• Mechanism I (sound speed changes): heat losses through the walls change the gas temper-
ature and therefore the sound speed, thereby modifying the chamber stability because the
frequencies of the acoustic modes change. Since combustion instabilities require phase cri-
teria to be satis�ed to lead to positive growth rate, any change in the acoustic frequencies
of a given chamber can push the ame from stable to unstable regime and vice versa.

• Mechanism II (ame response changes): heat losses, especially in the ame holder region,
also control the 'sensitive' stabilization region where ames are anchored. A modi�cation
of heat transfer in this zone directly a�ects the unsteady ame response because it changes
its position: cold ameholders prevent the ame from �nding a stabilization point close
to the solid surface. The stabilization region where a ame front can anchor is dominated
by viscous mechanisms where chemistry and heat transfer compete to determine a sta-
ble anchoring point. These processes are similar to another usual topic in combustion:
ame/wall interaction [28, 45, 46] where a ame impacts on a wall. Most ame/wall inter-
action studies, however, correspond to an unsteady situation where a ame quenches on a
cold wall [47, 30, 48] while the stabilization of a ame behind a ame holder is a steady
process.
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Mechanism I has been studied in a few LES [44, 32] which compared adiabatic and isothermal
walls e�ects on combustion stability. Mechanism II was also investigated numerically by the
MIT group [49, 50] and at CERFACS [41, 40] and experimentally at EM2C [51] and IMFT by
Mejia et al [52] who showed that the dynamics of the ame 'root' (the place where the ame
is anchored) has a direct impact on ame stability. The most direct proof of the combined
strengths of Mechanisms I and II is that many ames exhibit di�erent combustion instability
characteristics when the ame is ignited (cold walls) and after a few minutes (when the walls
become warm) as discussed by Mejia et al [52]. Figure 6 presents a laminar inverted-V ame
operated at IMFT which is self-excited. This combustor is built to allow a full control of the
ame holder temperature which can be varied from 300 to 400 K using a water cooling system.
At t ≤ 40 s, the burner rim is still cold (Tc ≈ 290 K), and it reaches higher temperature for t C 400
s: Th ≈ 340 K. One observes that the ame dynamic is a�ected by the burner rim temperature.

40 s

100 s

480 s

Figure 6: Snapshots at di�erent instant of an unstable cycle of a laminar inverted V-ame stabilized
on a ame holder which temperature increases with time. Reproduced from Mejia [12].

Figure 7 shows the evolution of both the RMS pressure uctuation ~p0 and burner rim tem-
perature Ts in both cooled and un-cooled regimes: low temperatures lead to an unstable ame
while a hot ame holder (more than 340 K) help to stabilize the ame.

The mechanisms which explain the behavior observed in Figs. 6 and 7 have been elucidated in
simple laminar ames [52] and involve mainly a modi�cation of the ame root zone (Mechanism
II), leading to di�erent ame dynamics and a ame which switches from stable to unstable modes.
How these mechanisms can a�ect larger, turbulent ames is unclear at this point.

Put it all together: Reduced-Order Model (ROM)

The prediction of thermo-acoustic instabilities can be realized by deriving ROM, built on top
of an acoustic network representing the geometry of the burner. ROM are an elegant way to
enter the �eld because they allow to identify the various phenomena controlling CI. They are
widely used in industry as well as laboratories. Such networks are based on the assumption that
one dimensional acoustic waves propagate in a series of connected elements. A network model
consists in the assembly of two-port representation of individual elements [53]. A semi-analytical
approach has been employed by Kopitz et al [54] and is shown in Fig. 8.

In this study, CFD is used to measure the scattering of acoustic waves in the ame region
while network modelling is used to propagate the acoustic waves in the remaining of the system.
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Figure 7: Experiment showing the e�ect of wall temperature on the combustion instability. At t = 20
s, tha ame is ignited, with cooling system OFF. At t = 480 s, the cooling system is turned ON. ~p0 is
the magnitude of pressure uctuations inside of the chamber while Ts corresponds to the ame holder
temperature. Reproduced from Mejia [12].

Figure 8: Hybrid CFD/Network approach for the prediction of thermo-acoustic instabilities. The
network approach is used for the boundary conditions while the CFD is used for the ame region.
Reproduced from Kopitz et al [54].

Such representation permits to modify the chamber design (Lengths, termination impedances)
without running a new costly CFD simulation.

Finally, the stability of combustion chambers can be predicted by solving fully analytical
ROM at small CPU cost. For instance, Sattelmayer [55] introduced a characteristic equation for
a premixed gas turbine combustor. More recently, Parmentier [56] and Bauerheim [57] studied
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the linear stability of annular combustion chambers, the latter study including plenum e�ects. A
sketch of the network model corresponding to an azimuthal combustion chamber is reproduced
in Fig. 9. Both plenum and chambers are decomposed into nb sectors, nb being the number
of burners and all these elements are linked in three port junctions. In this study, no acoustic
dissipation is taken into account but the ame/acoustic coupling is accounted for by the mean
of individual Flame Transfer Functions (FTF) for each burner. ROM have also been used to

Figure 9: Network representation of an azimuthal combustion chamber split into three parts: the
plenum, the burners and the chamber. Reproduced from [57]

compare theoretical and experimental results. For example, Schuller et al [58] proposed a model
in which dissipation was taken into account to predict the stability of a laminar premixed ame
anchored on a slot burner.

0.2 Objectives of the present work

The general equations to solve for thermo-acoustic studies are presented in Part I: they are
rather well known today but impossible to solve analytically in most cases. Chapter 1 will
present the di�erent approximations used to solve these equations and focus on one class of
solutions: reduced-order models (ROM) [56, 57, 58]. When a ROM approach is used, it leads
to a mathematical problem which may be viewed as non critical but rapidly becomes more
complicated than expected because it requires to solve for the roots of an equation in the complex
plane (of type F (ω) = 0, ω ∈ C where ω is the complex angular frequency of the acoustic modes).
During the present work, in collaboration with other researchers of the ERC INTECOCIS grant
(intecocis.inp-toulouse.com) project, a speci�c solver called Rootlocker was developed to address
this issue (Chapter 2). The equation to solve is �rst recalled and various mathematical theorems
are presented [59] before describing the basic elements of Rootlocker and its application to the
IMFT rig called INTRIG (a burner with a laminar premixed ame stabilized on a cylindrical
blu�-body). Two main issues have been identi�ed concerning ROM:

• Taking into account the interaction between acoustic waves and the mean ow �eld is a
�rst critical topic. Such coupling generally damps acoustic energy and helps to stabilize a
thermo-acoustic system. (Part II)
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• Studying how heat transfer inuences ame dynamics by measuring FTFs for di�erent
ame holder will be a second topic. (Part III)

The sources of acoustic losses, which may stabilize a combustion chamber by lowering the
growth rate of thermo-acoustic modes are investigated in Part II: independently of the mathe-
matical framework used to solve the equations of Part I, a major di�culty is to quantify acoustic
losses. Overall instabilities occur when the gain (measured through Rayleigh type criteria like
equation 0.1.1) exceeds the acoustic losses. Most studies focus on the quanti�cation of the gain
but very few try to predict acoustic dissipation. These losses occur through acoustic radiation
at inlets and outlets, but also through vortex formation [20, 60] in all zones where unsteady
vorticity is created by acoustic waves (perforated plates [61] , expansions [23], swirl injectors
[21], . . . ).

Chapter 3 discusses how acoustic dissipation can be evaluated and exhibits the link with
pressure losses occuring in the same elements [24]. For instance, the coe�cients of modelled two
port acoustic matrices for a multi-perforated plate are actually linked to the classical discharge
coe�cient giving pressure losses for the mean ow in the same elements. In other words, being
able to predict accurately acoustic dissipation in a chamber must begin by a computation of mean
pressure losses in this chamber (which is the zero-frequency limit of the exercise). Therefore
Chapter 4 presents computations and measurements of mean pressure losses in two experiments
installed at IMFT: a diaphragm ow and a swirl injector (provided by Safran Helicopter Engines
and shown Fig. 9.15, left). This question, even if it is not directly connected to CI, is critical in
the LES community. While almost all LES provide excellent results in terms of velocity �elds
at swirl injectors outlets (within the chamber) [62, 63, 64], almost no author reports values of
overall pressure losses. The experience of CERFACS (and others such as CORIA or EM2C)
is that predicting pressure losses accurately in swirling ows is a di�culty. This topic was
addressed during this PhD work in a collaborative task with CERFACS to de�ne a metric: the
kinetic energy dissipation, which must be well resolved for pressure losses to be captured by LES.
This metric was used in an automatic mesh re�nement tool (MMG3D by INRIA) and chapter 4
shows drastic improvements in LES results for pressure losses as soon as this automatic mesh
re�nement tool is used.

After the mean ow in the target con�gurations of Fig. 9.15, left, was computed precisely, it
was possible to address the question of acoustic losses. These losses were measured (at IMFT) and
computed (by F. Ni at CERFACS) and the methodology to perform measurements is presented
in Chapter 5. Two-port matrices were used to de�ne the transfer functions of the elements.
These results are compared to simulations and to models (for the diaphragm) and show a path
to introduce acoustic dissipation in Helmholtz codes1 or in ROM approaches.

Finally, part III addresses the question of the inuence of wall temperatures on CI. Here the
INTRIG rig developed at IMFT [66] is studied, with combustion. The cylinder on which the
ame is stabilized was equipped with a water cooling system in order to investigate the e�ects of
ame-holder temperature on the ame steady structure and dynamics. Again, both experiments
and simulations were performed. The latter were set-up with a complex chemistry scheme (up to
19 species) for methane/air ames and a coupled heat transfer/ow resolution to compute not
only the ow but also the temperature within the cylindrical ame holder. Chapter 6 presents
the experimental con�guration as well as the numerical set-up. Since the ames are laminar and

1This strategy has been published with F. Ni [65]
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2D, a full DNS was possible for steady and forced ames.
Chapter 7 describes the steady ames, using both DNS and experimental data. Two di�erent
con�gurations are investigated: a cooled case where the rod temperature is around 300 K and an
un-cooled one where it reaches 700 K. It is shown that this latter temperature can be predicted
in the DNS only when considering radiative uxes lost by the rod. As a consequence, a third case
of interest is identi�ed in the DNS where the ame would stabilize upstream of the blu�-body
when radiative uxes are neglected2. In this case, which was not studied experimentally, the
blu�-body would reach very high temperature (close to the adiabatic ame temperature). The
ame structures obtained for the three cases are shown to be very di�erent con�rming that the
temperature play a major role in the structure of the ame.

The next chapter (8) of Part III discusses the inuence of the blu�-body temperature on the
FTFs of the ame. The three ames introduced in chapter 7 are forced with both harmonic and
broad band acoustic uctuations in order to obtain Flame Transfer Functions. It is shown that
the temperature of the ame holder greatly inuences the ame response, both in phase and
gain. A modeling approach based on the G-equation framework is provided to understand how
the ame root dynamics a�ect the global FTF.

Finally, chapter 9 gathers all the results of the previous chapters. A detailed ROM of the
INTRIG burner is designed by taking into account the FTFs obtained in the DNS. The solutions
of this ROM are then compared to the acoustic modes observed in the experiment for several
geometries: the chamber length is varied from a short con�guration, where all ames lead to
stable regimes (ideal to measure FTFs) up to a long one, where instabilities have been observed.
The agreement between ROM solutions and experimental measurements is very good and a new
family of acoustic modes is introduced to explain the modal structure encountered in the burner:
the Quasi Intrinsic Thermo-Acoustic (QITA) family of modes.

The outlines of the manuscript are �nally gathered in Fig. 10 where the main objectives of
the di�erent chapters are recalled.

2This case has only been studied in the DNS and corresponds to a transparent blu�-body.
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Part I

Introduction to
thermo-acoustic instabilities

After recalling the equations associated with thermo-acoustic studies, a methodology dedicated to
derive Reduced-Order Models (ROM) is presented (Chapter 1). ROM take the form of analytical
equations of the complex variable ω, the angular frequency of the acoustic mode. Such models can
be derived for academic con�gurations as well as for more complex con�gurations. In Chapter 2,
an e�cient and robust method (called RootLocker) dedicated to the resolution of the analytical
equations is detailed and validated on both polynomial and thermo-acoustic examples. This
method is particularly well suited to the resolution of ROM equations.
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Chapter 1

Derivation of reduced-order models

The general framework to study thermo-acoustic instabilities is the set of reacting, compressible
Navier-Stokes equations, which are recalled in section 1.2. When combined to a realistic chemical
kinetic scheme, these equations provide a very precise insight into thermo-acoustic phenomena.
These equations cannot be solved directly and must be simpli�ed. The �rst step consists in deriv-
ing the acoustic equations from the reacting, compressible equations (section 1.3). The temporal
problem is then recast in the spectral domain to obtain the Helmholtz equation (section 1.4).
This equation is linear and easier to solve, especially in regions where only one-dimensional
acoustic waves are propagating. ROM can be established by splitting a complex geometry into
simpler, one-dimensional components. These components are then linked by the mean of conti-
nuity equations, which take the form of acoustic two-port matrices (section 1.5) when acoustic
waves are considered. Finally, an example of ROM is derived for the INTRIG burner operating
at IMFT which is briey described here and in more details in Part III.

1.1 Introduction

Distinct approaches exist to predict the stability of a thermo-acoustic system [11, 10]. First,
it is possible to use Large Eddy Simulations (LES) or Direct Numerical Simulation (DNS) to
check wether the time dependent reactive ow is prone to instability [67, 68, 69]. Although
time-consuming, LES and DNS can predict both linear instability growth rate and limit-cycle
amplitudes by inherently accounting for non-linear e�ects.

When a parametric study is of interest, LES and DNS are no more convenient. It is more
interesting to use a Helmholtz solver. The Helmholtz equation accounts for sound speed �eld and
ame transfer functions, obtained from simulations or experimental measurement, and acoustic
boundary conditions [70, 67]. Such computations remain less expensive than LES or DNS (com-
putational time). Moreover, they output acoustic modes along with their respective complex
frequencies. Even so, they rely on a �xed geometry which must be meshed properly.

Finally, the stability of combustion chambers can be predicted by solving corresponding ROM
at small CPU cost. For instance, Sattelmayer [55] introduced a characteristic equation for a
premixed gas turbine combustor. More recently, Parmentier [56] and Bauerheim [57] both studied
the linear stability of annular combustion chambers, the latter study including plenum e�ects.
Courtine et al [71] established a low-order model to predict intrinsic thermo-acoustic instabilities
which accounts for realistic ame transfer function. Low-order models have also been used to
compare theoretical and experimental results. For example, Schuller et al [58] proposed a model
to predict the stability of a laminar premixed ame stabilized on a slot burner. These models
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all have in common the �nal mathematical formulation: they lead to analytical equations :
f(ω) = 0 , ω ∈ C. Contrary to the previous methods, here, one has a complete control over the
whole parameter set including geometry description, ow properties or ame transfer functions.

The objective of this chapter is to provide a general methodology to derive ROM. For instance,
the con�guration depicted in Fig. 1.1 is a typical toy problem in which longitudinal thermo-
acoustic instabilities may occur. It is constituted by a plenum, fed by an un-burnt premixed
ow, a multi-perforated plate, which aims at both laminarizing the ow and damping the acoustic
waves, a ame holder and a combustion chamber. This con�guration can be synthesized into a
ROM as described in the next sections to illustrate the methodology.

Multi-perforated
plate

Bunsen type
premixed flame

ū

Figure 1.1: Generic geometry of a laminar premixed burner.

1.2 Reacting Navier-Stokes equations

The reacting, compressible Navier-Stokes equations can be established in a conservative form.
They state that some relevant quantities: the mass, quantity of momentum, and total energy
are globally conserved in the absence of external forces.

1.2.1 Conservation of mass and species

∂ρ

∂t
+
∂ρui
∂xi

= 0 (1.2.1)

Here, and in the following of the manuscript, the Einstein summation convention is used to
ease the reading of partial derivative equations. When a sub-index (here i or j) is twice or
more repeated in the same equation, one sums across the n-dimensions considered. The mass
conservation equation states that no mass is created nor absorbed in a compressible reacting
ow. Any local changes in the density are caused by non zero mass uxes.
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In the context of reacting gaseous ows, one must also provide equations for the mass fractions
Y k of the species involved in the chemical kinetic scheme:

∂ρY k

∂t
+
∂ρuiY k

∂xi

= −
∂ρVk,iY k

∂xi

+ _ωk (1.2.2)

The RHS terms are the di�usive uxes characterized by the di�usion velocity: Vk,i and the chem-
ical consumption/production: _ωk. There are various models to describe the di�usion velocities,
among them, the Hirschfelder and Curtiss approximation provides quantitative results [72]. The
equations of the species k ∈ [1 � Nspec] may be summed to retrieve the mass equation as:

Nspec

∑
k=1

νkYk = 0 ,
Nspec

∑
k=1

Yk = 1 and
Nspec

∑
k=1

_ωk = 0 (1.2.3)

1.2.2 Conservation of momentum

∂ρui

∂t
+
∂ρuiuj

∂xj

= −
∂p

∂xi

+
∂τij

∂xj

, i ∈ [1 � ndim] (1.2.4)

The momentum equation 1.2.4 links the variation of momentum with pressure and the deviatoric
stress tensor. This equation is left unchanged in the case of reacting ows. However, combustion
inuences the velocity �eld by altering the density between burnt and un-burnt gases and by
modifying the local viscosity, which increases with temperature.

1.2.3 Conservation of energy

The conservation of energy may be expressed into multiple forms. For the sake of clarity, only
the conservation equation of the sensible energy es is presented here:

∂ρes

∂t
+
∂ρuies

∂xi

= _ωT
¯

1

+
∂

∂xi

(λ
∂T

∂xi

)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
2

−
∂

∂xi

(
N

∑
k=1

hs,kYkVk,i)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
3

+σij
∂ui

∂xj

´¹¹¹¹¸¹¹¹¹¶
4

(1.2.5)

The RHS of equation 1.2.5 may be decomposed into four di�erent contributing terms. First, there
is the heat release term. The second term represents the thermal di�usion and the third, the
variation of sensible enthalpy caused by the molecular di�usion of the di�erent species. Finally,
term 4 regroups both the dissipation of kinetic energy , which is a source term of the sensible
energy and the power of pressure forces as σij = τij − p.

The equation for the temperature �eld can be established from 1.2.5. It will ease the derivation
of the acoustic equation:

ρCp
DT

Dt
= _ω′T +

Dp

Dt
+

∂

∂xi

(λ
∂T

∂xi

) −
∂

∂xi

(
N

∑
k=1

Cp,kYkVk,i) + τij
∂ui

∂xj

(1.2.6)

Here, the term _ω′T , which is also misleadingly called heat release is di�erent from _ωT : _ω′T =

_ωT − ∑
N
k=1 hsk _ωk with hsk and _ωk, the sensible energy and the mass reaction rate of species k

respectively.
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1.3 Acoustic equations

Several work have been devoted to provide equation for the propagation of acoustic waves in
reacting ows. Among them, the study of Bailly et al [73] clearly di�erentiates the direct noise,
which is induced by combustion, and the indirect noise, which is caused by acceleration of entropy.

1.3.1 General acoustic equation

The acoustic equations for reacting ows can be derived from the Navier-Stokes equations. It
is convenient to derive an equation for the logarithm of the pressure and then, to linearize it.
After combining equations 1.2.1, 1.2.4, 1.2.6 and the ideal gas relation p = ρrT , one obtains the
following wave equation:

©.(
c2

0

γ
© ln(p)) −

D

Dt
(

1

γ

D

Dt
ln(p)) = (1.3.1)

©.(
1

ρ
©.τ) −

D

Dt
�
D

Dt
ln(r)� −

∂ui

∂xj

∂ui

∂xj

−
D

Dt
� _ω′T +

∂

∂xi

(λ
∂T

∂xi

) −
∂

∂xi

(
N

∑
k=1

Cp,kYkVk,i) + τij
∂ui

∂xj

	

where "©." is the divergence operator and c0 is the local sound speed: c2
0 = γp/ρ = γrT . The

LHS of equation 1.3.1 exhibits a propagating behavior. Indeed, by neglecting the convective
derivatives of the pressure �eld and assuming constant sound speed and heat capacities, it reduces
to: c2

0�ln(p)−∂2ln(p)/∂t2. Moreover, sink and source terms are present in the RHS. Establishing
an exhaustive description of all these terms is out of the scope of this chapter. Even so, three
key mechanisms are identi�ed:

• Flame/Acoustic coupling
The coupling between acoustic waves and unsteady heat release rate is the key mechanism
leading to thermo-acoustic instabilities. When heat release rate is in phase with acoustic
pressure, it produces acoustic energy [4].
In the following of the manuscript, the ame is supposed to be compact: the length of
the region in which the heat release rate _ωT takes non negligible values is small compared
to typical acoustic wavelengths. Indeed, most of the longitudinal combustion instabilities
occur below fmax = 1 kHz in common burners. The corresponding wavelength is λ = c0/f A

0.5 m with c0 ≈ 500 m.s−1 and a typical scale for a ame is a few centimeters.

• Natural acoustic energy dissipation
Acoustic energy dissipation is observed, even when the mean ow is at rest. The corre-
sponding di�usive mechanisms are the dissipation caused by viscosity, which damps the
acoustic waves and laminar dissipation in acoustic boundary layers [74, 16]. These dissi-
pative mechanisms lead to linear damping of the acoustic waves. Similarly to the pressure
losses in a constant cross section channel, these losses are proportional to the length of the
combustion chambers and plenum walls.

This linear source term of dissipation increases with frequency and is thus most of the time
negligible in combustion chambers subject to low frequency thermo-acoustic instabilities.
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• Hydrodynamics/Acoustic coupling Finally the last mechanism is about the interaction
between acoustic waves and vortex eddies. The later are often encountered when the
geometry experiences a sudden change of cross section, such as in diaphragms, backward
and upward facing steps and even swirlers. The mechanism leading to acoustic energy
dissipation was accurately described by Howe [20] , who predicted a linear damping of
the acoustic waves, as long as their amplitude remained small when compared to the mean
ow. This mechanism presents some similarities with the singular pressure loss phenomena.
These e�ects will be scrutinized in the second part of the manuscript.

1.3.2 Linearised low-Mach acoustic equation

Equation 1.3.1 is very general, as derived without particular assumptions but it is still too
complex to be used for the derivation of ROM. Some assumptions can be introduced to derive a
simpler acoustic equation:

Low Mach acoustic assumptions

• H1 Low-speed mean ow.
The mean ow is supposed to be at rest: u = 0 Ô⇒ M = 0. This condition is quasi
ful�lled in combustion chambers as the mean Mach number often remains below
M @ 0.1.

• H2 Identical molecular weights for all species.
In air/methane combustion, the ow is mainly composed of nitrogen, which is barely
involved in the chemical reactions. As a consequence, this assumption only concerns
the remaining species which represent a small part of the total mixture.

• H3 Constant heat capacity
The variation of the heat capacity of the mixture with temperature is neglected. It
also implies that the ratio of speci�c heat capacities γ is constant.

• H4 Viscous and di�usive terms are negligible.
These terms are negligible when compared to the heat release rate.

Under H1 assumption, all total derivatives can be identi�ed with temporal derivatives. After
combining all these assumptions, the following simpli�ed equation is obtained:

©.(c2
0© ln(p)) −

∂2

∂t2
lnp = −

∂

∂t
(

1

ρCpT
_ωT) (1.3.2)

This equation may now be linearized. Let's �rst decompose the ow �eld into mean and
uctuating parts:

p = �p + p′ (1.3.3)

ρ = = �ρ + ρ′ (1.3.4)

u = u′ (1.3.5)

where it is explicitly assumed that there is no mean ow. One �nally obtains the acoustic pressure
equation for low-Mach reacting ows:

©.(c2
0©p

′) −
∂2

∂t2
p′ = − (γ − 1)

∂ _ωT

∂t
(1.3.6)
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The LHS of equation 1.3.6 is similar to the one obtained in non-reacting ows. However, the
sound speed �eld c0 =

º
γrT is non uniform due to the presence of hot burnt gases. A typical

ratio of sound speed between burnt and un-burnt mixtures is cb
0/c

u
0 =

»
T b/T u ≈ 2.5 with T u = 300

K and T b = 1900 K, the adiabatic ame temperature for methane/air premixed combustion at
φ = 0.75.

This equation has been derived under the zero mean ow assumption. On the one hand,
this assumption is not very restrictive concerning the free propagation of acoustic wave. For
instance, an example detailed in section 1.4.2 shows that the frequency of a longitudinal mode is
only modi�ed by the factor 1−M2 in the presence of a mean ow. In most combustion chambers,
and especially the ones encountered in this manuscript, mean ows remains below M @ 0.1 so
that the impact on the frequencies is below 1%.
On the other hand, the coupling between the mean ow and acoustic waves also produces acoustic
dissipation as recalled in section 1.3.1. This e�ect should be taken into account in thermo-
acoustic studies as it alters the stability of a system [75]. A methodology dedicated to take into
account the dissipation of acoustic energy caused by the interaction with eddies will be briey
introduced in section 1.5.2 and detailed in the second part of this manuscript. This method
allows to introduce acoustic dissipation, even under the zero-Mach assumption.

1.4 Helmholtz equation

Equation 1.3.6 is a linear, partial di�erential equation for the acoustic pressure �eld. As stated
in the previous section, a combustion chamber may be split into several simpler components
in which there is no ame. Flames are modeled using Flame Transfer Functions (FTF) (see
section 1.5.1). The homogeneous acoustic equation is now investigated.

1.4.1 Homogeneous Helmholtz equation

The equation for the acoustic pressure �eld in the non reacting regions reduces to d'Alembert's
formula:

©.(c2
0©p

′) −
∂2

∂t2
p′ = 0 (1.4.1)

The general method to solve this equation is to �rst transpose it into the frequency domain and
to identify the acoustic modes ˜ωk, ~pk• by solving the corresponding eigenvalue problem. The
temporal evolution of an initial solution p′0 is then retrieved by decomposing it into the basis
formed by the acoustic modes, for which the temporal evolution is known. The acoustic equation
written in the frequency domain is known as the homogeneous Helmholtz equation:

©.(c2
0©~p) + ω2 ~p = 0 (1.4.2)

where the solution ~p is a complex acoustic pressure �eld de�ned in the frequency domain:

p′k =R ‰~pke
−iωktŽ (1.4.3)

This temporal convention will be kept throughout the manuscript. Results obtained with this
temporal evolution can be compared with results obtained with the exp(iωkt) convention by
applying the conjugate operator.
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Once the acoustic pressure modes are obtained, it is possible to retrieve the corresponding
acoustic velocity modes ~uk by using the linearized momentum equation:

i�ρω ~ui +
∂~p

∂xi

= 0 (1.4.4)

The contribution of unsteady heat release can be taken into account by using the linearized
energy equation, combined with the ideal gas relation:

iω

γ�p
~p +

∂ ~ui

∂xi

=
γ − 1

γ�p
~ωT (1.4.5)

Most combustion chambers may be decomposed into one-dimensional components, for which
the acoustic equations can be resolved. The solution of both velocity and pressure acoustic
one-dimensional �elds are harmonic waves:

~p(z) = �a+eiω/c0z + a−e−iω/c0z� (1.4.6)

~u(z) =

<
@
@
@
@
>

a+eiω/c0z
´¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¶

A�

−a−e−iω/c0z
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

A�

=
A
A
A
A
?

1

ρ0c
(1.4.7)

where a+ and a− are the complex Riemann invariants associated with the downstream and up-
stream acoustic waves respectively. The propagation of acoustic waves in a one dimensional
channel can be synthesised into a two-port matrix called the propagation matrix R, which links
the complex acoustic waves amplitudes entering the channel to those leaving it:

(
A+

A−)
z=L

= (
eiω/c0L 0

0 e−iω/c0L
)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
R(L)

(
A+

A−)
z=0

(1.4.8)

To determine these unknowns, one must prescribe additional equations for the boundary
conditions (inlet or outlet) but also for the interfaces (ame front or acoustic dampers).

1.4.2 Boundary conditions required for the acoustic network equa-
tions

The boundary conditions can be characterized by a complex, frequency dependent, reection
coe�cient which links the amplitude of entering and reected acoustic waves.

In the remainder of the manuscript, all reection coe�cients are de�ned by the ratio of the
reected wave amplitude divided by the incident wave amplitude. This ensures that for passive
boundaries, the modulus of the reection coe�cient remains below unity: SRS @ 1.
For instance, its de�nition is R = A−/A+ for the outlet represented in Fig. 1.2. When the outlet an
opened atmosphere, the pressure is roughly imposed so that ~p = 0. As a consequence, Routlet = −1.
This result is only a �rst order approximation of an outlet acoustic boundary condition. Indeed,
it does not take into account end tube corrections nor acoustic uxes. These e�ects will be
addressed in chapter 4. Similarly, the velocity is imposed for a chocked nozzle or even a closed
outlet (the mixture leaves the burner by a lateral channel) so that Routlet = 1.

Velocity nodes are also often used for the inlet: R = A+/A− = 1. As for the outlet, this
constitutes a �rst order approximation.

19



R =
A�

A+

A�

A+

z

Figure 1.2: De�nition of the acoustic reection coe�cient

It is now possible to �nd the acoustic modes of a simple cavity closed by two boundary
conditions. After combining equation 1.4.8 with both inlet and outlet reection coe�cients, one
obtains:

A+
z=L

A−
z=0

(
1

Routlet
) = R(

Rinlet

1
) (1.4.9)

which can only be veri�ed when the vectors from the RHS and LHS are collinear. This can be
assessed by using the determinant of the matrix formed by both vectors:

det(R(
Rinlet

1
) ,(

1
Routlet

)) = 0 (1.4.10)

In the case of the 1D channel, equation 1.4.10 reduces to:

e2iωL/c0RinletRoutlet = 1 (1.4.11)

which is an analytic equation of the complex variable ω = ωr + iωi. Prior to solving it, one
may notice that in the case of non fully reective boundary conditions: SRinletRoutletS @ 1 so that
e−2ωiL/c0 A 1. Consequently, the imaginary part of the angular frequency ωi must be negative and
the acoustic modes are stable1.
In the symmetrical case where velocity nodes are imposed at both the inlet and outlet ˜Rinlet = 1,
Routlet = 1•, the following acoustic modes are identi�ed:

fk = k
c0

2L
, k ∈ N (1.4.12)

For a 1 m long channel fed by air under atmospheric conditions (c0 = 350 m.s−1), the �rst acoustic
modes are at: 175, 350 and 525 Hz respectively.

The frequency of the �rst mode can be retrieved by a ight time analysis: a mode is obtained
when an acoustic wave propagates from the beginning of the channel to the end and comes back.
This takes a time t = 2L/c0 so that f = 1/t = c0/(2L).
The same analysis can be employed for a channel with an uniform mean ow u. In the frame
of the ow, the acoustic equation derived in the previous section is still valid but the boundary
conditions are moving at the speed −u. The acoustic wave will then take a time t1 = L/(c0 + u)
to travel from the beginning of the tube to the end and a time t2 = L/(c0 − u) to go back to the
beginning of the tube. The corresponding frequency is:

f =
1

t1 + t2
=

1
L

c0+u +
L

c0−u
=
c2

0 − u
2

2Lc0

=
c0

2L
(1 −M2) (1.4.13)

1The temporal evolution of the acoustic mode follows exp(−iωrt) exp(ωit)
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where M = u/c0 is the Mach number. The frequency correction for a channel with a non zero
mean ow is proportional to M2 and thus negligible in most combustion chambers. This is true
for the real part of the frequency: the growth rate (imaginary part of f) is much more sensitive
to M [75].

1.5 Coupling with Flame and Hydrodynamics

As stated in section 1.3.1, ame zones and dissipative regions (multi-perforated plates, di-
aphragm, ...) occur in compact regions and can be usually described by continuity equations,
synthesized into two-port matrices where acoustic wavelengths are large compared to all other
characteristic sizes.

1.5.1 Flame Transfer Function (FTF) to model flames

The coupling between ame and acoustic waves is contained in the heat release rate term. Inte-
grating equations 1.4.4 and 1.4.5 leads to the following set of continuity equations [76, 77]:

[S~u]
d
u =

γ − 1

γ�p
~
T with ~
T = ∫

V
~ωTdV (1.5.1)

[~p]
d
u = 0 (1.5.2)

where S, is the cross section of the channel. The subscripts "d" and "u" refer to upstream and
downstream quantities respectively. The acoustic pressure ~p is constant across the interface while
the acoustic volume ux S~u experiences a discontinuity caused by the unsteady heat release.

A model for the heat release rate must be provided to close Equation 1.5.1. This can be
achieved by using a FTF, which links the heat release rate to the upstream acoustic velocity
perturbation:

FTF(ω) =
~
T /
T

~u/�u
(1.5.3)

where ~u is measured upstream of the ame holder. The concept of FTF has been introduced
by Crocco [78] and is still widely used to study thermo-acoustic instabilities. This transfer
function can be measured experimentally (see for instance [79, 52]), numerically [80, 71] or even
modeled [81].

For example, the FTF of the Intrig burner is displayed in Fig. 1.3. It has been obtained
in DNS by using a Wiener �ltering approach [82]. FTF are also functions of the operating
conditions: equivalence ratio [83], bulk velocity, heat losses [84, 52] at the walls2. The latter
e�ect will be scrutinized in the third part of the manuscript. The gain of the FTF is represented
in Fig. 1.3, left. It starts from unity at low frequencies because in the quasi steady regime (zero
frequency), a change ~u/�u must lead to the same change for ~
T /
T as ~
T is linear in u [85]. It
peaks up to 2.5 at f = 70 Hz and slowly decreases to zero until f = 400 Hz. The phase of the
FTF (Fig. 1.3, right) linearly increases up to 400 Hz and then saturates. The linear part of the
phase can be approximated by φ = ωτ , in which τ = 35 ms can be seen as a ame delay.

The FTF (equation 1.5.3) can be introduced into the continuity equation of acoustic velocity
(equation 1.5.1):

[S~u]
d
u = 
T

γ − 1

γ�p�u
FTF(ω)~uu (1.5.4)

2FTFs depend also o the amplitude of forcing [6], an e�ect which will be discussed later.
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Figure 1.3: FTF of the INTRIG burner obtained by DNS. The operating regime is described in
chapter 8. This long ame exhibits large gains for frequencies below 200 Hz and a high ame delays of
τ = 35 ms.

This expression may be simpli�ed after noticing that �
T = ρuSinletCp�T . Consequently, Equa-
tion 1.5.4 reduces to:

~ud
Sd

Su

= ~uu (1 +
�T

T
FTF(ω))

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
g(ω)

(1.5.5)

Without the ame contribution (FTF(ω) = 0), one retrieves the classical continuity equation
for the acoustic velocity: the acoustic volume ux is conserved at the interface between burnt
and un-burnt gases (see [86, 77] for a complete analysis of this jump condition). Moreover,
the explicit reference to the bulk velocity u, which is supposed to be zero in the low-Mach
assumption, disappears from equation 1.5.5. Finally, this continuity equation may be rewritten
in the two-port formalism [80, 87]:

(
A+

A−)
d

= (
1 +Γg 1 −Γg
1 −Γg 1 +Γg

)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
F(ω)

(
A+

A−)
u

(1.5.6)

where Γ is the ratio of the cross sections multiplied by the inverse ratio of the impedances:
Γ= (Suρdc0,d)/(Sdρuc0,u). The matrix F(ω) is called the transfer matrix of the ame and accounts
for the changes in cross section, impedance and for the ame/acoustic coupling.

1.5.2 Acoustic/vortex eddies two-port representation

The dissipation of acoustic energy caused by the interaction of acoustic waves with vortex eddies
can also be described by two-port matrices. These transfer matrices can be obtained theoreti-
cally [88, 21] or by numerical [23] or experimental measurements [21]. Some models for perforated
plates and diaphragms are recalled in Chapter 3 while an experimental method to measure the
transfer matrix of a diaphragm and a swirl injector is described in Chapter 5.

The two port matrix can be de�ned by its inputs and outputs:

(
A+

A−)
d

= Twave(ω,u)(
A+

A−)
u

(1.5.7)
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where T(ω,u) is the transfer matrix of the compact acoustic element. The dependency to the
mean ow velocity u is explicitly written in the transfer matrix in order to recall that it couples
acoustic waves with vortex eddies.

1.6 Reduced Order Model (ROM)

1.6.1 Derivation of the ROM

ROM are obtained by combining the two-port matrices of sections 1.4, 1.5.1 and 1.5.2 and
applying the boundary conditions described in section 1.4.2.
Such models can be established for linear acoustic networks3. An example of simpli�ed laminar
burner is provided to illustrate the methodology. This burner contains a multi-perforated plate
located in the plenum and a ame is attached at the rim of a back-ward facing step. The geometry
is described in Fig. 1.4. It can be decomposed into four components, called Ci, i∈ [1,4], linked
by appropriate transfer matrices.

Multi-perforated
plate

Bunsen type
premixed flame

C1 C2 C3 C4

Tmpp(!, ū) Tcs(!) F (!) Routlet
Rinlet

Figure 1.4: Geometry used to illustrate the methodology. It is constituted by four channels, linked
by three transfer matrices and closed by two boundary conditions

The procedure applied in section 1.4.2 to construct the characteristic equation of a single
channel can be generalized to linear acoustic networks:

det(
1

∏
i=N

(RiTi)(ω)(
Rinlet

1
) ,(

1
Routlet

)) = 0 (1.6.1)

where the �rst transfer matrix is equal to identity: T1 =Id. Equation 1.6.1 is a complex, analytical
equation of the angular pulsation ω ∈ C. In our example, the product of the rotational and
transfer matrices reduces to:

1

∏
i=N

(RiTi)(ω) = R4F(ω)R3Tcs(ω)R2Tmpp(ω,u)R1 (1.6.2)

3Here, linear refers to the topology of the acoustic network, on which each interfaces link two channels or less.
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The case of non-linear acoustic network with rami�cations has been addressed by Parmentier
et al [56]. In this study, the ROM of a combustor constituted by an annular combustion chamber
fed with multiple injectors is derived. Acoustic boundary conditions are needed at the intakes
of the injectors and a periodic boundary condition is applied on the annular chamber. Mathe-
matically, the corresponding characteristic equation reduces to the determinant of the product
of two-port matrices.

In a recent study, Bauerheim et al [57] extended this model by adding an annular plenum to
the latter con�guration. The topology of the acoustic network changed as it now contains loops.
In this case, the characteristic equation contained products of four-ports matrices.

Establishing a general theory of acoustic network in the �eld of thermo-acoustic is out of the
scope of this manuscript. However, the reader interested in this topic is refered to the interesting
study of Glav et al [53].

1.6.2 Resolution of the ROM equation

The solutions of the ROM are the complex angular frequencies of the acoustic modes. These
roots (ωk) provide two di�erent kinds of information:

• Rωk: The real part of the root provides the angular frequency of the acoustic mode. Once
the fundamental frequency of the burner is known, it is possible to design speci�c dampers,
e�cient in a narrow frequency band, which help to stabilize the system.

• Iωk: The imaginary part of the angular frequency is linked to the linear stability of the
acoustic mode. A negative value means that the mode is exponentially decreasing while a
positive value means that the mode is linearly unstable.

However, any information concerning limit cycles cannot be provided by the resolution of the
characteristic equation. Indeed, these limit cycles are reached because of the non linearities
occurring in the combustion chambers. Among them, the non-linearities observed in the ame
response are of primary importance [70].

Starting from the compressible, reacting Navier-Stokes equations, many simplifying assump-
tions have been proposed to derive equation 1.6.1. However, solving this non-linear analytic
equation is not an easy task. Two di�erent methods are often employed:

• Analytical resolution
In order to solve analytically equation 1.6.1, one must introduce other simplifying assump-
tions such as a low coupling between the ame and the acoustic: SFTF(ω)S P 1 and study
only simpli�ed geometries. Examples of analytical resolution under these additional as-
sumptions are provided in [11] and [56].

• Numerical resolution
Here, a numerical method is employed to solve equation 1.6.1. One major drawback of
this method is that the explicit dependency of the solution with the key parameters of the
problem is lost. However, this knowledge can be retrieved by performing parametric or
even Uncertainty Quanti�cation (UQ) studies, which both help to understand the relation
between the acoustic modes of a combustion chamber and the relevant parameters.

The numerical resolution method will be employed in the following of the manuscript. In previous
studies, authors have developed various methods to solve ROM numerically. Among them, the
most used is the Newton-Raphson (NR) method4 [89]. This method works fast to �nd one

4When the derivative of the function is not available, this method is replaced by the secant method.
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solution of equation 1.6.1 but is not adapted when all solutions must be enclosed and their
number is unknown. An example to illustrate this point is provided in section 1.6.3 while a
better algorithm is presented in chapter 2 to solve equations like 1.6.1.

1.6.3 Application to the INTRIG burner ROM

In this section, we derive a simpli�ed5 ROM for the INTRIG burner, which uses a premixed
methane/air ame under a laminar regime. This experimental rig will be presented in details in
chapter 6. It is constituted by a plenum, a cylindrical ame holder, which is small enough not
to reect the acoustic waves and a combustion chamber. The whole burner has a constant cross
section.

Mean flow

(M ⌧ 1)

Combustion chamberPlenum

T1

T2

Rinlet Routlet

4 mm

h = 34mm

L1 L2

Figure 1.5: Idealized geometry of the Intrig burner. The lengths of both plenum and combustion
chamber can be adapted. Here, L1 = 0.3 m and L2 = 0.16 m.

For the sake of simplicity, a simple ROM is derived without sources of acoustic losses and
with fully reective boundary conditions: Rinlet = 1 (imposed velocity) and Routlet = −1 (imposed
pressure). Moreover, we use the extension of the n − τ model provided by Crocco [78] for the
FTF:

FTF(ω) = neiωτ (1.6.3)

where n is a constant interaction index6 set to unity (low frequency limit of FTF) and the delay
τ is the characteristic convective time associated with the length of the ame. In the case of the
INTRIG burner, it is set to τ = 35 ms.

After splitting the geometry in two components, of respective temperature and sound speed
(T1, c1) and (T2, c2), one obtains the following ROM:

det(R2(L1)FT1,T2(n, τ)R1(L2)(
Rinlet

1
) ,(

1
Routlet

)) = 0 (1.6.4)

This scalar analytical equation can be further simpli�ed after substituting the two-port matrices

5A more accurate ROM will be established in chapter 9.
6The interaction index n corresponds to the N3 term in [90]
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by their expressions:

f0(ω) = a(ω) + �b(ω) = 0 (1.6.5)

whereœ
a(ω) = (1 + eiαω) ((1 + eiβω)
b(ω) = (1 − eiαω) (1 − eiβω) (1 + neiωτ)

with α = 2L1/c1, β = 2L2/c2 and � =
»
T1/T2 = 0.4. The values of all remaining parameters are

recalled in Table 1.1.

L1 [m] c1 [m.s−1] L2 [m] c2 [m.s−1] n [] τ [ms]

0.3 348 0.16 877 1 35

Table 1.1: Set of parameters used in equation 1.6.5.

As stated in section 1.6.2, this equation cannot be solved analytically and contains many
solutions for frequencies between 0 and 400 Hz (exactly 15 as shown in chapter 2). One easy way
to solve it is to use the NR method with a random multi-guess strategy. The di�culty of the
exercise with the NR method is the choice of the initial values from which the iterative process
starts for each roots. The most naive approach is to use random values to try to cover all possible
states and avoid covering only a limited subspace of the complex plane. This can require using
many initial guesses. The corresponding algorithm called ANR, is decomposed in three steps and
is sightly smarter than using one set of random numbers. Here, two independent sets of initial
seeds ai and bi are generated to search for the roots of equation 1.6.1:

ANR algorithm

1. Two series ai and bi of nrnd complex random guesses are generated.

2. The NR method is applied on both series to output two distinct ensembles of solu-
tions: Sai, i ∈ [1,Na] and Sbj, j ∈ [1,Nb] where Na and Nb are the number of distinct
solutions found for both series.

3. Nsol solutions are extracted by combining the two series of results. Moreover, as the
two series are independent, it is possible to estimate the total number of solutions:
Nest = NaNb/Na,b where Na,b is the number solutions found in both series.

The last result can be simply explained in the case where all roots are distinct. Let's suppose
that the total number of solution is N and that the probability to �nd a root z is P (z) = 1/N is
equal for each roots. The probability that the root z is contained in the �rst set of solutions is
P (z ∈ Sa) = Na/N and P (z ∈ Sb) = Nb/N for the second set.

In addition, the probability that a root z is present in both sets Sa and Sb is given by

P (z ∈ Sa 9 Sb) = P (z ∈ Sa) � P (z ∈ Sb)

Na,b

N
=

Na

N
�

Nb

N

⇒ Nest =
NaNb

Na,b
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Figure 1.6: Sketch of the ANR algorithm. Multiple NR are started from random guesses and only a
few converge

An illustration of the ANR algorithm is provided in Fig. 1.6. Markers with coloured faces
represent initial guesses of un-converging NR method. Only ten solutions have been found in
this case. The convergence study of the ANR algorithm is shown in tab 1.2: the number of
solutions enclosed is displayed as a function of nrnd, the size of the series of guesses. The results
presented here have been averaged over 100 samples to get rid of stochastic uctuations.

nrnd 5 10 20 40 80 120 160 200
Nsol 3.9 6.4 10.0 12.7 14.3 14.7 14.8 15.0
RMS 1.2 1.7 1.6 1.3 0.73 0.5 0.4 0.2
nest 89 60 13.5 14.3 14.6 14.9 14.9 15.0
ncalls 210 420 810 1700 3400 5100 6700 8300

Table 1.2: Synthesized results of ANR algorithm applied to the INTRIG ROM

The results gathered in tab 1.2 show that there are probably 15 roots of equation 1.6.5 lying
in the domain of research f ∈ [0,400]+ i[−30,30] but that it takes at least 120 initial guesses and
5100 calls to the calculation of f(ω) to isolate these roots. A closer look to the data provides
quantitative information: �rst, the estimation of the number of solutions Nest converges faster
than the number of solutions Nsol itself. This guaranties that all solutions are most probably
enclosed when both values are equals. Second, the number of enclosed distinct roots converges
slowly. At least two series of 120 random guesses are needed to enclose the 15 roots of the
problem with a su�ciently small spread (the RMS is below 0.5). This represents a total of 5100
calls (in average) to the function f0.

The 15 solutions are represented in Fig. 1.7. According to the resolution of the INTRIG ROM,
thermo-acoustic instabilities are expected closed to 280 Hz. A detailed physical interpretation
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of these solutions is out of the scope of this chapter and will be carried out in chapter 8.

Figure 1.7: Acoustic modes of the INTRIG ROM. Imaginary (damping/growth rate) versus real part
(frequency).

1.7 Conclusion

In this chapter, we have detailed the methodology to derive Reduced-Order Models (ROM).
Such models are very helpful to predict thermo-acoustic instabilities. Indeed, they allow the
user to interact directly with them: no need for long computational time nor meshing. However,
such ROM must be fed by accurate models for the coupling of acoustic waves with both the
ame and the mean ow �eld. This coupling can be taken into account by the mean of two-port
matrices. Finally, we showed that in most of the cases, these models cannot be solved analytically.
The naive numerical algorithm ANR, based on the Newton-Raphson method, exhibited poor
convergence properties. Even though this is not a major issue for ROM, it is a problem for
3D Helmholtz solvers like AVSP [70, 91] or Comsol[92] where calling the function f(ω) means
solving a very large linear system, something which can become very expensive. Strategies to
optimize this search are therefore critical [93].

A new algorithm (ARL) dedicated to the resolution of the ROM complex equation will be
presented in chapter 2. Contrary to the stochastic method introduced here (ANR), its convergence
is fast and mathematically proved.
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Chapter 2

An optimal adaptive methodology for
the resolution of the ROM equation

A new algorithm (ARL), intended to enclose the roots of thermo-acoustic characteristic equations
more e�ciently is reported in this chapter. It can solve numerically, in a robust and e�cient way,
the various existing ROM equations. Most of the former thermo-acoustic studies relied on simple
algorithms such as the Newton-Raphson method (see chapter 1 and the ANR algorithm), to �nd
the complex-valued frequencies of the acoustic modes one by one, or Nyquist diagram analysis
to predict stability. However, the method described here, based on the argument principle, is
built speci�cally to retrieve all the solutions of a ROM. Several solvers based on this principle
have already been reported [94, 95, 96] and exhibited robust properties. However, they all
su�ered from expensive computational costs. Here, the ARL algorithm comes with two major
improvements. First, after a short comparison with previous solvers, the best ideas of each are
gathered in the ANR solver so that the computational cost is lowered. Second, a new method
is employed to enclose multiple zeros (whatever the order of multiplicity) at a negligible cost.
Finally, the implementation of the ARL algorithm exhibits very good performance in term of
computational time when compared to other algorithms found in the literature.

Introduction

In chapter 1, we derived a simple ROM for the INTRIG burner and showed that algorithms only
based on Newton-Raphson (NR) methods may be used to �nd some solutions of equation 1.6.5
(Hopefully, all of them). However, the whole set of solutions must be computed to assess the
stability of the thermo-acoustic system.

It can be seen that equation 1.6.5 is highly non-linear since it involves multiple exponentials
terms. Moreover, f0 derives from a certain class of functions of the complex variable z or ω that
are called meromorphic functions, for which the numbers and values of the poles and zeros can
be obtained with contour integrals. In the following, we will restrict our target to the case of
holomorphic functions, a restriction of meromorphic functions for which there is no pole in the
entire domain of interest. This assumption holds for all the ROM equations presented in this
manuscript. However, in the case of a function containing some poles, the domain of research
can be adapted to exclude them as done in [97]. This restriction also implies that all models
or �t used in ROM such as ame transfer functions or transfer matrices coe�cients are also
holomorphic.

The objective of this study is to �nd the roots of a given analytic function f � C → C in a
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bounded domain of the complex plane. To solve this problem, an e�cient and robust algorithm
has been designed and implemented with success. The backbone of the algorithm stems from
a generalized version of Cauchy’s argument principle, as �rst described by Delves and Lyness
[94, 59]. This theorem is used recursively throughout an adaptive multilevel subdivision strategy,
the challenge being to �nd a satisfactory compromise between robustness and computational
e�ciency.

Algorithms based on the principle argument have been detailed and implemented more re-
cently by Dellnitz [95]. Johnson et al [96, 97] proposed two implementations which used validated
integral computations. However, theses methods, albeit mathematically rigorous, happen to be
computationally intensive. Other families of algorithm that do not rely explicitly on Cauchy’s
argument principle have been developed. Suzuki et al [98] proposed a method which relies on the
Numerical Integration Error Method derivation. Ko et al [99] �rst designed a method to compute
the topological degree of a mapping in R2 and then applied these results to analytic functions in
C. Kopitz et al [54] resolved thermo-acoustic ROM by using the Nyquist criterion, which stems
from Cauchy's argument principle. Finally, Semenov[100] described a method which only work
with non multiple zeros. The ARL algorithm combines some of the advantages of the previous
solvers, in addition to some new extensions dedicated to enhance its robustness and rapidity.

In section 2.1, we recall the theoretical background associated with analytic functions, and
state the generalized Cauchy’s argument principle. The algorithm is detailed in section 2.2.
Sections 2.3 and 2.4 elaborate on the particular implementation of the algorithm. Section 2.5
displays results and comparison with other solvers in terms of accuracy, robustness and e�ciency
on both standard performance benchmarks and thermo-acoustic ROM. Finally, a parametric
study concerning the INTRIG burner is realized (section 2.6).

2.1 Theoretical context

The resolution of a characteristic equation in a compact subset U of the complex plane like
equation 1.6.5 is equivalent to the following problem:

˜z ∈ U S f(z) = 0• (2.1.1)

2.1.1 Cauchy’s argument principle

The argument principle, based on an integration over a closed contour ∂U, allows to retrieve
the number of roots of a holomorphic function contained within ∂U. Let f � z ∈ U → f(z) ∈ C
be a holomorphic, non constant function and U ∈ C is de�ned by its closed contour ∂U. As f is
analytical within U, it is equal to its Taylor series 1:

f(z) =
∞
∑
k=0

akz
k , z ∈ U (2.1.2)

which can be recast into a product form:

f(z) = g(z)
n

∏
i=1

(z − zi)
pi (2.1.3)

1This equality is the de�nition of an analytic function and holds for most usual functions.
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where zi, i ∈ [1, n] are the zeros of f contained in U, pi C 0 their multiplicity and g � z ∈ U →

g(z) ∈ C is an holomorphic function containing no zeros in U nor in ∂U. The ratio between f
and its derivative f ′ is equal to:

f ′(z)

f(z)
=

n

∑
i=1

pi
z − zi

+
g′(z)

g(z)
(2.1.4)

which can be integrated over the closed contour ∂U:

1

2πi ∮∂U

f ′(z)

f(z)
dz =

n

∑
i=1

1

2πi ∮∂U

pi
z − zi

dz +
1

2πi ∮∂U

g′(z)

g(z)
dz (2.1.5)

This expression can be simpli�ed by using both Cauchy's integral theorem (equation 2.1.7) and
formula (equation 2.1.7) which are valid for holomorphic functions within U:

1

2πi ∮∂U
h(z)dz = 0 (2.1.6)

1

2πi ∮∂U

h(z)

z − a
dz = h(a)δ(a,U) (2.1.7)

where δ(a,U) = 1 if a lies inside U, 0 else. The second term of the RHS of equation 2.1.5 is equal
to 0 as g′(z)/g(z) is still holomorphic in U. The �rst term of the RHS is equal to Nsol = ∑

n
i=1 pi.

Finally, one obtains the Cauchy's argument principle:

I0(∂U) =
1

2πi ∮∂U

f ′(z)

f(z)
dz = Nsol (2.1.8)

where Nsol is the number of zeros of f contained in U.
If the tested function is only meromorphic, so that is has poles, one gets I0(∂U) = Nsol−Npoles

and it is thus not possible to retrieve the number of zeros contained in U.

2.1.2 Extension of the argument principle

Results provided by equation 2.1.8 can help to enclose the roots of holomorphic functions: know-
ing the number of zeros of f is the �rst step of an algorithm dedicated to �nd all the solutions
of equation 2.1.1. It is however possible to go further with the generalized argument princi-
ple [94, 59]:

Ik(∂U) =
1

2iπ ∮∂U
zk
f ′(z)

f(z)
dz = sk (2.1.9)

sk =
n

∑
i=1

piz
k
i (2.1.10)

where ˜zi, pi• are the zeros of f and their respective multiplicity. With k = 0, one retrieves the
number of zeros contained in U. The sum of all these roots is obtained for k = 1. In the case of a
domain U containing only one root z1, the latter can be directly extracted as z1 = I1(∂U). In the
general case, once the number of zeros contained within ∂U is known, it is possible to construct
an equivalent polynomial QN(z) of order N = Nsol which coe�cients qk are directly linked with
the power sums sk so that the zeros of QN correspond to the zeros of f contained in U [94]. The
method used to obtain such a polynomial is detailed in section 2.1.3.
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2.1.3 Construction of the equivalent polynomial

Newton's Identities provide the link between the power sums sk and the corresponding equivalent
polynomial QN [101] :

QN(z) =
N

∑
j=0

(−1)jejz
N−j (2.1.11)

with e0 = 1 , ekx0 =
1

k

k

∑
j=1

(−1)j+1ek−jsj

The polynomial QN is constructed to share the same roots as f in U. Analytical methods exist to
solve this polynomial up to the fourth order (N = 4). In the N = 3 case, the following equivalent
polynomial is obtained:

Q3(z) = z
3 − s1z

2 +
s2

1 − s2

2
z −

1

6
(2s3 − 3s1s2 + s

3
1) (2.1.12)

2.2 Algorithm description

The ARL algorithm dedicated to compute all the solutions of equation 2.1.1 within a closed subset
U ` C is now detailed. An example is then provided to illustrate its behaviour.

zmin

zmax

U

<

=

0

@U

Figure 2.1: Initial mesh U ` C de�ned by Zmin, Zmax.

The domain U, which has a rectangular shape, is de�ned by:

U = {z ∈ C ∣ {R(Zmin) BR(z) BR(Zmax) , (2.2.1)

I(Zmin) B I(z) B I(Zmax)}

This domain, shown in Fig. 2.1, is called the initial mesh and its contour is called ∂Umesh. The ARL

algorithm is applied recursively to compute all the solutions of equation 2.1.1: the number of root is
identi�ed with the Cauchy's argument and the problem is locally recast into an equivalent polynomial
resolution.
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ARL algorithm

1. Generalized Cauchy's argument principle (equation 2.1.9) is used to compute both the
number of roots N (k = 0) which are contained in the current mesh and the corresponding
power sums (k > 0). If a root is located too close to the boundary ∂Umesh, all the adjacent
meshes are reshaped. This procedure is detailed in section 2.3. Once the number of root is
known, the problem is reformulated in term of an equivalent polynomial, which maximal
order is limited to Nmax.

2. If N = 0
There are no roots in this mesh, nothing to be done.

If 1 B N B Nmax

The solutions are obtained in three steps:

(a) The equivalent polynomial QN is constructed according to Eq. 2.1.11.

(b) The equivalent polynomial QN is solved with an appropriate analytical method.
The roots of QN are only approximations of the roots of f as its coe�cients are
provided by non exact, numerical integration.

(c) Starting from the roots of the equivalent polynomial, the NR algorithm is ap-
plied to compute the zeros of f with a better accuracy. All zeros are �nally
strictly checked with an integral computation : this procedure is described in the
appendix A.

If N > Nmax

The existence of a single root of multiplicity N is �rst checked (see section 2.3). If
not found, the mesh is split in two sub-meshes and the procedure described in step 1
is applied on both of them.

3. If the re�nement reaches a user-de�ned size L = ∣Zmax(Umesh)−Zmin(Umesh)∣ < ε and there
are still more than Nmax roots within this mesh, the re�nement is stopped and a single
root (of multiplicity N) is extracted and set to (Zmin(Umesh) +Zmax(Umesh))/2.

To illustrate this algorithm, an example is described in Fig. 2.2. Here, the maximum equivalent
polynomial order is set to Nmax = 2 for the sake of clarity. During the �rst step, four solutions are found
in the initial mesh M1. As 4 > Nmax, the latter is split in two sub-meshes: M3 on the left and M2 on the
right. Only one root is found in M2 and is enclosed by �rst, the resolution of the �rst order equivalent
polynomial and then by an additional use of the NR method. Meanwhile, M3 still contains 3 > Nmax

roots and must be split. At step 3, a root lies exactly on the boundary so that the computations of
the number of solutions failed in both lower and upper sub-meshes. As a consequence, both of them
are reshaped. Finally, two solutions are extracted from the upper mesh M4 by solving the equivalent
polynomial and one is extracted from the lower mesh M5.

2.3 Strategies of domain splitting and reshaping

When N > Nmax in a given mesh, a two-step checking procedure is performed to decide whether a single
root of multiplicity N is located in it or not. Assuming a zero zN of multiplicity N in equation 2.1.10
leads to

s2 −
s2

1

N
= Nz2

N − (NzN)2

N
= 0 (2.3.1)
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Zmin

Zmax

•

•

••

M1 : 4

Step 1

•

•

••

M2 : 1M3 : 3

Step 2

•

••

?

?

Step 3

•

••

M5 : 1

M4 : 2

Step 4

Figure 2.2: Illustration of the algorithm used to �nd the solutions of equation f(z) = 0. Step 1: initial
domain of research. Step 2: creation of the sub-meshes. Step 3: problem of convergence for both lower
and upper sub-meshes. Step 4 : sub-meshes are reshaped.

As s1 and s2 are not computed exactly, the following condition is tested to detect the existence of a
multiple root:

d = ∣s2

N
− (s1

N
)

2

∣
1
2 < 0.001Lmesh (2.3.2)

As long as s1 and s2 are known with a su�cient precision, equation 2.3.2 should be veri�ed for a single
root of multiplicity N . However, this criterion is not su�cient to ensure the existence of the single root
as it may be ful�lled with distinct roots too. For instance, the three single roots of equation z3 − 1 = 0:
{1 , ei2π/3 , ei4π/3}, lead to s1 = 0 and s2 = 0 so that d = 0 < 0.001Lmesh.

In the second step, an approximation of the root is provided by zN = s1/N . The NR method applied
to the function f1/N , starting from this guess. In case of convergence, the existence of the single root is
proved with contour integration.

If the two-step checking procedure fails, the mesh is split as it contains too many distinct roots.
Various mesh shapes have been used in previous studies: rectangles [96, 99], triangles [97] or even circles
[94], for which there is overlapping. The rectangular shape was preferred in this study (Fig. 2.2). Meshes
can be split along the real or the imaginary axis. Here, a simple solution is retained: the mesh is cut
in its larger dimension as done in [96]. Once split into two sub-meshes, some roots may lie too close to
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the shared boundary. Such situations are identi�ed by performing a new contour integration:

I∞(∂U) = 1

2πi
∮
∂U

Wf
′(z)
f(z)

Wdz (2.3.3)

which numerically diverges if a root of whatever multiplicity is located within the boundary. In the
vicinity of the root zi of multipliticy pi, equation 2.1.4 shows that f ′/f is equivalent to:

Wf
′

f
(z)W ≈ pi

∣z − zi∣
(2.3.4)

which is not integrable on paths containing zi
2. Except for the initial domain, speci�ed by the user,

these roots are always located on the common boundary of the two meshes issued from the last split.
If divergence occurs in the initial mesh, a domain sightly larger is used instead and only the roots
contained in the initial domain are kept. If the divergence occurs in a sub-mesh, the shared boundary
is translated and a new computation is performed. An example is given in Fig. 2.2 between steps 3 and
4.

2.4 Numerical scheme used for the computation of the

generalized argument principle

The computation of the generalized argument principle requires 4Nmax integrations for each mesh. Each
integral requires a line integration in the complex plane:

�k =
1

2iπ
∫

z2

z1
gk(z)dz , 0 B k B Nmax (2.4.1)

gk(z) = zk
f ′(z)
f(z)

All �k integrals on the same path P = [z1 → z2] are computed simultaneously to avoid redundant calls
to f and its derivative. Three integration schemes have been implemented in this study. The �rst one,
called the Modi�ed Romberg scheme (MR), is an adaptive scheme based on a fourth order approximation
of the derivative f ′. The two others are the well known Romberg scheme (R) and Adaptive Simpson
scheme (AS), which both require automated di�erentiation for f ′. All these schemes must return a
result with a controlled accuracy �err < 1/8 in order to estimate properly I0(∂U). In practice, a criteria
of �err = 0.01 was preferred as the integration error is only estimated.

2.4.1 Modified Romberg scheme (MR)

To avoid the use of automatic di�erentiation, the MR scheme, derived from the Romberg adaptive [102,
95] scheme was implemented and tested. The composite Simpson's rule is �rst applied with n = 2 initial
subintervals to compute �MR

k,2 . The same rule is then applied recursively with twice more subintervals

at each iteration to compute �MR
k,2i

. At each step i > 1, the integration error is approximated by �err =
∣�MR
k,2i

−�MR
k,2i�1 ∣ and the computation stops when it is su�ciently low. All the gk computed during step i

are reused at step i + 1 so that the function f is called as few as possible.

In order to compute gk(z) = zk f
′(z)
f(z) , a fourth-order �nite di�erence centred stencil is used to evaluate

f ′(z) so that additional calls to f are needed to compute the derivatives at the extremities of the path
P. However, this overhead only add two additional calls to f during each iteration as shown in �gure
2.3.

2This complex integral can be recast into R
1
−1 ∣t∣

−1dt which do not converge
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za zbstep i
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Additional points
(4th order stencil)

step i + 1
| | • • • • • | |

ReusedComputed

Figure 2.3: Illustration of the MR scheme of integration. During step i + 1, values computed from
step i are reused. Additional values are computed to compute the derivative with a fourth order �nite
di�erence centred stencil.

2.4.2 Romberg scheme with automated differentiation (R)

The R scheme [102] has been implemented and tested. By using automated di�erentiation, the gk(zi) are
exactly computed so that truncation errors are avoided. Contrary to the MR scheme which was limited
to fourth order accuracy, the R scheme's order of accuracy is increasing with the number of iterations.
This scheme provides better performance than the MR scheme when the function f is simple. However,
it may become slower when the extra computational time necessary to compute the derivative of f
increases.

2.4.3 Adaptive Simpson Scheme with automated differentiation (AS)

Finally, the AS scheme [96] was also tested. In this scheme, the fourth order Simpson rule of integration
is applied in any subdivision Pab of the original path. These subdivisions are split in two parts:
{Pac , Pcb}, only when more precision is needed according to the following relation [103]:

∣�AS
0 (Pac) + �AS

0 (Pcb) − �AS
0 (Pab)∣ > 15

�err

2Nsplit
(2.4.2)

where 1/2Nsplit refers to the relative length of the newly created subdivision compared to the original
path. An illustration of this adaptive integration scheme is depicted in Fig. 2.4.

For performance purposes, the convergence criteria is only checked for k = 0 as only the computation
of the number of roots in a mesh must be carried out in a safe manner. Finally, a global �fth-order
of accuracy is obtained by combining the last two results obtained for each subdivisions. This scheme
exhibits very good performance when compared to MR and R schemes as less calls to f are needed
to provide the same precision. Indeed, far from the zeros of f , the gk functions are rather smooth so
that a uniform re�nement as proposed in both R and MR schemes is not well suited. A quantitative
comparison of all schemes is given in section 2.5.

2.5 Numerical results

The implementation of the ARL algorithm has been realized in Java, into a program called RootLocker.
The ANTLR library [104] is used to translate the equation f(z) = 0 proposed by the user into Java
code which is then dynamically compiled and loaded by the Java virtual machine. This technique has
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Figure 2.4: Illustration of the AS scheme of integration. All subdivisions are converged after step s5

so that function f has been called 21 times

several advantages. It �rst simpli�es the implementation of the forward mode automatic di�erentiation
[105] by using the source code transformation technique. Moreover, it allows faster computation by
using only native Java code to describe the function f and its derivative. Finally, this procedure is
transparent for the user, who only needs to describe the function f .

In the following part of this section, a few examples illustrating the improvement realized in terms
of accuracy and performance compared to previous solvers are detailed. Example 1 is taken from [96],
example 2 is adapted from [99] and example 3 is taken from [97]. The last example focus on a thermo-
acoustic model proposed in [57]. Examples 1, 2 and 3 were all carried out with Nmax = 3 while the
inuence of this parameter is studied in example 4. In all cases, two performance measurements are
provided. First, the total number of calls to the function f is monitored. However, these data are not
always available in all the reference papers for the �rst three examples and thus, cannot be compared.
As a consequence, both the number of meshes and the computational time measured on a macbook air
2013 are provided (these data are available in the aforementioned references).

2.5.1 Academic cases

The �rst two examples concern complex polynomial equations.
Example 1:

f1(z) = z11 − a , a = 1

2
+ i

√
3

2
(2.5.1)

This polynomial has exactly 11 zeros which are uniformely distributed on the unit circle as shown in
Fig. 2.5. The computation was conducted in the initial domain U = [Zmin = −3 − 3i,Zmax = 3 + 3i]
and required 1270 calls to f1 to compute the roots with seven decimals with the AS scheme. This
corresponds to a computational time of t = 5 ms to be compared with the 40 seconds obtained in [96].
All other schemes of integration provided exactly the same roots, but with a longer computational time.

An other computation was realised with a = 1. In this case, one root is located on the real axis thus
two sub-meshes needed reshaping (see Fig. 2.5, right). Despite this di�culty, only 1461 calls to f1 were
needed to compute all the roots (corresponding to a time t = 6 ms). Finally, the criterion de�ned in
equation 2.3.2 was veri�ed in the initial mesh for both values of a. Checking that this was not caused
by the presence of a single root of multiplicity N = 11 only required two additional calls to f1 as the
NR algorithm diverged rapidly out of the domain.
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Figure 2.5: Location of the roots of f1 for a = 1/2 + i
√

3/2 (left) and a = 1 (right). Meshes are
represented in thin grey lines except for reshaped ones, which are represented in thick black lines.

Example 2:

f2(z) = (z2 + z + 1)2(z − 1)4(z3 + z2 + z + 1)3(z − 2)(z − 4)4 (2.5.2)

This polynomial has exactly 22 roots (see Fig. 2.7), all located in the domain of research de�ned by
U = [Zmin = −5− 5i,Zmax = 5+ 5i]. This example exhibits fourth order roots which cannot be computed
directly with Nmax = 3. For this reason, they are enclosed thanks to the criteria de�ned in equation
2.3.2. Finally, 4564 calls to f2 were needed with the AS scheme. This corresponds to a computational
time of t = 26 ms which may be compared with the 22.7 seconds obtained in [99].

Figure 2.6: Visualisation of the zeros of f2. Meshes are represented by thin grey lines, except for
reshaped ones, which are represented in thick black lines.

2.5.2 Thermoacoustic cases

The two following examples are associated with thermo-acoustic problems formulated by Dellnitz et al
[95] and Bauerheim [57].

38



Example 3:

f3(z) = z2 +Az +Be−Tz +C (2.5.3)

This case concerns the acoustic stability study of a reactive ow in an annular combustion chamber (see
[95] for more details), the following set of values is used : A = −0.19435, B = 1000.41, C = 522463.0 and
T = 0.005. 24 zeros are enclosed in the domain de�ned by U = [Zmin = −5000 − 15000i,Zmax = 5000 +
15000i]. This computation required 11828 calls to f3 (AS scheme). This corresponds to approximately
62 ms which can be compared with the 3 seconds obtained in [97] and 83 integrals computations (24
were dedicated to validate the guesses). As a comparison, solving f3 without the generalized argument
principle (Nmax = 0) required 17588 calls to f3 and 111 integrals computations.

Figure 2.7: Visualisation of the zeros of f3. Meshes are represented by thin grey lines

Example 4:
The function used in example 4 is proposed by Bauerheim et al [57] and dedicated to predict the
thermo-acoustic modes of annular combustion chambers:

f4(z) = det(
1

∏
i=4

Ri(z)Ti(z) − Id) (2.5.4)

where Ri designates a four by four rotation matrix and Ti, a four by four transfer matrix which accounts
for the ame/acoustic coupling. This model enlightens the ability of RootLocker to deal with realistic
characteristic equations. All parameters are described in [57], table 1, except τ , the ame delay, which
is set to 5 ms and n = 1.57, the interaction index. In symmetrical con�gurations, when all burners are
identical and uniformely distributed around the annular chamber, some acoustic modes are of second
multiplicity. Symmetry may be broken by sightly modifying the interaction between the burners and
the acoustic [106]. Second order acoustical modes are then split into separate modes. However, the
roots of equation 2.5.4 may still stay very close to each other if the asymmetry remains small. In such
situations, enclosing several roots from a single mesh without splitting it is very useful.

The domain of interest is de�ned by U = [Zmin = 4−20i , Zmax = 70+22i] where z [Hz] is the complex
valued frequency. In the symmetrical case, one unstable solution is enclosed at z1 = 28.17118+ 4.70674i
and stable solution is found equal to z2 = 57.11084−0.32660i (multiplicity of two). Computational time
and number of calls to f4 are reproduced in table 2.1. The meshes needed to enclose the roots are
displayed in Fig. 2.8 for Nmax ∈ {0,1,2,3}.
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Scheme
Nmax 0 1 2 3

MR 161996 (5.1s) 132121 (4.1s) 19489 (0.59s) 11153 (0.33s)
R 158015 (7.8s) 157459 (6.8s) 667 (0.03s) 387 (0.02s)

AS 8437 (0.42s) 7972 (0.40s) 406 (0.021s) 241 (0.012s)

Table 2.1: Number of calls to f4 and associated computational time in the symmetrical case.

Nmax = 3Nmax = 2Nmax = 1Nmax = 0

Second order

First order

Figure 2.8: Visualisation of the zeros of f4 in the symmetrical case with the AS scheme. From left to
right: Nmax ∈ {0,1,2,3}.

When Nmax = 0, contour integrals only provide the number of zeros contained in the meshes. When
a mesh contains only one root, it is extracted thanks to the NR algorithm started from the center of
the mesh. In the present case, the NR algorithm did not converge and the mesh has been re�ned two
additional times (see Fig. 2.8, Nmax = 0 ). When Nmax = 1, the contour integrals provide a guess to the
NR algorithm by solving the one order equivalent polynomial. This guess helps the NR algorithm to
converge as the single root was extracted without mesh re�nement. However, roots of multiple order
are not extracted directly and the concerned meshes are re�ned until the minimal size is reached. When
Nmax C 2, the complete algorithm is applied with equivalent polynomials of order 2 and 3 respectively
as shown in Fig. 2.8.

One can notice that the best results are obtained in the case Nmax = 3 as fewer meshes are needed
to enclose all the roots. When Nmax < 2, using the R scheme takes a longer time than unsing the
MR scheme for an equivalent number of calls to f4 as it implies the computation of derivatives with
automated di�erentiation. However, when Nmax C 2, the R scheme performances reach those of the AS
scheme. As calls to f4 are quite expensive, both R and AS schemes exhibit the same amount of calls
per second which is roughly equal to 20000 s−1 showing that the overhead caused by the algorithm is
negligible.

The asymmetrical case is obtained with the following set of interaction indexes: {n1 = 1.55 , n2 =
1.6 , n3 = 1.54 , n4 = 1.59} so that �n = 1.57, all the other parameters being kept unchanged. The
following single roots are enclosed: {28.17117 + 4.70662i , 57.10970 − 0.33192i , 57.11195 − 0.32127i}.
Computational time and number of calls of f4 are reproduced in table 2.2.

When Nmax C 2, the numbers of calls to f4 from both symmetrical and asymmetrical cases are
similar. Indeed, enclosing two single solutions instead of a multiple one only implies an additional
call to the NR method in this case. The factor 2 between the computational times is justi�ed by the
increased complexity of f4 computations in the asymmetrical case as four di�erent matrices must be
assembled instead of one. However, when Nmax < 2, fewer calls to f4 are needed to enclose all roots as
meshes are not split down to the precision limit as it was the case in the symmetrical case.

The combination AS, Nmax = 3 always provided the fastest results. For instance, a speed up of
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Scheme
Nmax 0 1 2 3

MR 132580 (7.1s) 98236 (5.3s) 19673 (1.08s) 11338 (0.69s)
R 75467 (6.7s) 74519 (6.7s) 715 (0.072s) 435 (0.040s)

AS 5392 (0.54s) 4789 (0.51s) 428 (0.045s) 257 (0.026s)

Table 2.2: Number of calls to f4 and associated computational time in the asymmetrical case.

500 is observed when compared with the worst combination: MR, Nmax = 0. The presented algorithm
can be further improved by increasing Nmax up to the number of solutions encountered in the initial
domain: Nmax = N . This can be achieved by solving numerically the equivalent polynomial of order N
with an e�cient method such as the Jenkins{Traub algorithm [107]. However, this procedure is limited
by the accuracy of the polynomial coe�cients, determined by contour integrals computations which are
bounded to discretization errors.

2.6 Parametric study of a laboratory scale combustion

chamber

In this section, we use again the example of the INTRIG ROM derived in chapter 1. After taking exactly
the same parameters, 15 single roots are �nally enclosed to the precision 10−5. This computation costs
640 (+440 for veri�cations) calls to the function f0 de�ned in equation 1.6.5, which is much less than the
number of calls needed for the stochastic ANR algorithm presented in chapter 1 (more than 5000 calls
for the same precision). These roots are reproduced in Fig. 2.9 and are identical to the ones obtained
in chapter 1.

Figure 2.9: Solutions for the INTRIG ROM with un-realistic FTF. The meshes are denoted by thin
gray lines

It is now interesting to focus on parametric studies, as they provide information on the acoustic
modes of the INTRIG setup. Two kinds of parametric studies can be performed on top of the rootlocker
algorithm:
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parametric studies

• Safe parametric mode:
In this mode, the ARL algorithm is called for each value of the varied parameter. This
ensures that all the solutions are enclosed properly but the cost is proportional to the
number of values taken by the parameter.

• Fast parametric mode:
In this mode, the ARL algorithm is only called for the �rst value of the parameter. The
NR method is then called for each successive value, by taking the previous results as initial
guesses. This has the major advantage of reducing the cost of the parametric study as
all integral computations are removed. However, this method may �rst fail to capture
correctly a mode which crosses an other on the complex plane. Second, it cannot detect
new solutions that can appear at the boundary of the domain of research.

In the case of the INTRIG ROM, the ARL algorithm performs very fast so that the safe parametric
mode is preferred. The �rst parametric study concerns the ame delay τ which had been arbitrarily set
to 35 ms in chapter 1. This parameter often controls the onset of thermo-acoustic instabilities [79]. It
is now varied from 0, which corresponds to a one-dimensional ame approximation up to 50 ms. This
study can be performed experimentally by modifying both the equivalence ratio, to variate to ame
delay, and the bulk velocity, to maintain the ame shape.

n = 0.075

⌧%
%⌧

n = 1

Figure 2.10: Parametric study for the ame delay τ . Studies have been performed with two di�erent
interaction index: left n = 0.075; right n = 1.

In order to study the inuence of this parameter, two values for the interaction index are used:
n = 0.075 and n = 13. With the small interaction index, two di�erent kinds of modes are observed.
First, there is an acoustic mode which is present even without ame delay (semi-line in Fig. 2.10,
left). This mode switches between stable and unstable regimes until τ = 40 ms, when it �nally remains
stable. This results is coherent with the theoretical stability analysis which can be performed in the low
interaction index limit[11]. The other family (thick lines in Fig. 2.10, left) is constituted by the modes
which do not exist without ame delay (τ = 0). Some of these modes remain stable, whatever the value
of the ame delay. Others are coupled with the �rst family mode: they exhibit unstable behaviour.

With the interaction index set to unity, the two families of acoustic modes are still observed, but
the coupling between them is stronger: the �rst mode (semi-line in Fig. 2.10, right) stops alternating

3Even though values of n larger than unity are sometimes observed, n = 1 is a reasonable upper value for
parametric studies.
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between stable and unstable regimes after only one cycle. For important interaction indices (n C 1), the
stability of the system is not a�ected by the ame delay anymore: there is always at least one unstable
mode close to f = 270 Hz.

The second parametric study concerns the interaction index of the n − τ model: n, which is varied
from zero to unity. The corresponding complex frequencies are displayed in Fig. 2.11. One may notice
that only one mode is present when the coupling between the ame and the acoustic waves is removed
(n = 0). As the interaction index increases, other modes, which are initially under-damped, enter the
domain of research and some become unstable. A physical discussion concerning this classi�cation,
based on block diagram analysis, is provided in chapter 9.

n
%

Figure 2.11: Parametric study for the interaction indices n ∈ [0,1] in the INTRIG ROM. The lines
show the trajectories of the modes when n goes from 0 to 1.

Conclusion

The ARL algorithm dedicated to �nd all the solutions of a ROM has been detailed and validated. Its
Java implementation, called RootLocker, is more e�cient than previous solvers based on the principle
of the argument. All roots, multiple or distinct, are enclosed with the accuracy prescribed by the user.
Among all the variants of the algorithm, the AS scheme of integration, based on the adaptive Simpson
scheme, combined with third order (Nmax = 3) equivalent polynomial resolution, gives the best results
in term of computational time (below 0.1 s in all examples) and calls to the function f . This short
computational time makes it possible to perform fast but still safe parametric studies. Furthermore,
the ARL algorithm used here for the resolution of thermo-acoustic equations is also suitable for other
kind of problems implying the resolution of holomorphic equations. Indeed, this method is particularly
adapted to solve low-dimension non linear eigen-value problems, or characteristic equations obtained in
wave dynamic studies such as hydrodynamics, optics or structure mechanics.

All the resolutions of ROM presented in the following chapters of the manuscript were carried out
with the RootLocker tool, which is built upon an intuitive graphical user interface. For instance, it is
used in chapter 5, in order to �nd the acoustic modes of a cavity containing a diaphragm in the presence
of a mean ow. The simple ROM of the INTRIG burner presented here as an example permitted to
retrieve unstable modes closed to 270 Hz which were observed in the experiments. To go further and
provide more quantitative results, a more realistic ROM of the INTRIG burner will be introduced and
solved in chapter 8.
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Part II

Mechanisms leading to acoustic
dissipation

This part is dedicated to provide quantitative data concerning acoustic wave scattering for elements
typically encountered in modern combustion chambers such as diaphragm, multi-perforated plates or
even swirl injectors. These data are needed as input of ROM or Helmoltz solvers to predict the thermo-
acoustic stability with a better accuracy. This part is decomposed into three chapters. In chapter 3, A
link is established between acoustic and pressure losses which occur in compact elements. These e�ects
are monitored in an experimental rig called PREINTRIG designed at IMFT. Pressure loss is then
speci�cally investigated in chapter 4 to answer to the following problem: Is it possible to accurately
predict the pressure losses in Large Eddy Simulations (LES) ? Finally, the acoustic loss mechanisms are
scrutinized in chapter 5 by the mean of two-port matrix measurement. These matrices are then used
in a ROM of the PREINTRIG rig and a detailed comparison of the predicted and measured damping
of the �rst acoustic modes is performed.
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Chapter 3

Acoustic and pressure losses: The
PREINTRIG work-bench

In this chapter, a detailed description of the existing models of two-port matrices for multi-perforated
plate is provided. Starting from this example, the link between acoustic and pressure losses is estab-
lished. Finally, the non reacting PREINTRIG workbench is introduced. This experimental apparatus
is dedicated to the study of both acoustic and pressure losses for elements typically encountered in
combustion chambers such as perforated plates or swirl injectors.

Introduction

Designing a complete combustion chamber is a challenging task. The main objective is to ensure that the
combustion process is complete. Second, since the chamber walls cannot sustain high temperature, they
must be cooled. This can be achieved by inserting a multi-perforated housing separating the chamber
from a cold air ow [108]. This multi-perforated casing also induces acoustic damping, which diminishes
the occurrence of self-oscillating acoustic modes in the combustion chamber. In the case of the multi-
perforated plates, the mechanism leading to acoustic damping is the generation of vortex eddies, which
are convected away of the plate [17, 18, 24]. In the presence of a mean ow, this mechanism remains
linear as long as the amplitude of the acoustic velocity remains lower than the mean ow velocity in
the apertures.

The same mechanism: coupling of acoustic waves with vortical eddies, is also observed in dump
planes [23], diaphragms (which are treated as mono-perforated plates) [20] or even swirl injectors [21,
109]. These losses can be modelled by using equation 1.3.1 but this requires a precise knowledge
of all terms appearing on the RHS. The scattering of acoustic waves across such elements can be
described by the mean of acoustic two-port matrices as explained in section 1.5.2. Such matrices can
be modelled [20] by the mean of the Rayleigh conductivity (see section 3.1.2), which links the acoustic
pressure discontinuity through the element of interest with the uctuating acoustic ux. Two port
matrices can also been measured experimentally [21] with the multi-microphone technique (presented
in chapter 5) or numerically [22, 110] with the system identi�cation approach (presented in the case of
FTF measurements in chapter 8).

Both mean and acoustic pressure losses are encountered in such compact elements and these phe-
nomena present similarities. Indeed, both mean kinetic energy and acoustic energy are dissipated across
compact elements with sudden area restrictions [10]. These similarities are investigated in section 3.2.2
in the case of a diaphragm but the result is more general: the mean pressure loss is associated to the
low frequency limit of the acoustic loss.

Other sources of acoustic damping exists in combustion chambers and can be separated in two
distinct categories. First, sound is convected and/or radiated at both inlet and outlet [10, 24]: acoustic
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energy is not dissipated but tranported outside of the combustion chamber. A detailed characterization
of the boundary condition is su�cient to take into account this cause of damping and examples are
provided in both chapter 6 (non reacting PREINTRIG workbench) and chapter 9 (reacting INTRIG
workbench). Second, damping is observed in mechanical and thermal boundary layers [74]. These losses
can be taken into account by post-processing results provided by Helmholtz codes or ROMs.

3.1 Two-port matrix formalism

3.1.1 Definitions

The two-port matrix formalism can be used to describe mathematically an Acoustically Compact El-
ement (ACE) such as a dump plane, a diaphragm or even a swirl injector, which is surrounded by
ducts as shown in Fig. 3.1. Several de�nitions exist in the litterature and are briey introduced in
this section. Among them, the transfer matrix T , introduced by Munjal [111], links upstream acoustic
quantities (~uu, ~pu) with downstream ones (~ud, ~pd):

A�
d

A+
dA+

u

A�
u

⇢0cũp̃ +
�

+
+

Tprim

Twave

M

S

,
,

,

upstream downstreamcompact
element

Figure 3.1: Sketch of the compact element and the associated acoustic waves. Several matrix repre-
sentations are available to describe the scattering of acoustic waves across the ACE.

( Tuu Tpu
Tup Tpp

)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Tprim

( ρ0c ~uu
~pu

) = ( ρ0c ~ud
~pd

) (3.1.1)

An example of diaphragm transfer matrix is shown in Fig. 3.2. It has been measured in the PREINTRIG
rig (see section 3.3). The experimental method is detailed in chapter 5 while the two models (HM and
MHM) are introduced in section 3.1.2.

The transfer matrix Tprim relies on the acoustic primitive variables ~u and ~p and should not be
confused with the "Riemann coe�cient based" [21] transfer matrix Twave de�ned in equation 1.5.7.
Using Twave is convenient to build network models as shown in chapter 1. However, the two-port matrix
Tprim is more convenient for use in CFD codes [60]. The link between these two-ports is provided in

46



Figure 3.2: Example of primitive transfer matrix (gain of the four terms only) measured in the
PREINTRIG workbench for a diaphragm. The measurement technique is detailed in chapter 6 while
the models HM and MHM will be introduced in section 3.1.2.

equation 3.1.2 which expresses the terms of Twave as a function of the terms of Tprim:

1

2
( Tuu + Tpu + Tup + Tpp Tpu − Tuu − Tup + Tpp
−Tuu − Tpu + Tup + Tpp Tuu − Tpu − Tup + Tpp

)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Twave

( A+
u

A−
u

) = ( A+
d

A−
d

) (3.1.2)

where A+
d ,A

−
d ,A

+
u,A

−
u are the complex amplitudes associated with the acoustic waves upstream and

downstream of the acoustic element as recalled in Fig. 3.1
It is sometimes more convient to use the scattering matrix formalism introduced by Davies [112],

which links acoustic waves coming into the port (A+
u,A

−
d) to the waves leaving it (A+

d ,A
−
u) by the mean

of transmission and reection coe�cients:

( tu rd
ru td

)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
S

( A+
u

A−
d

) = ( A+
d

A−
u

) (3.1.3)

Scattering matrices, as built on top of transmission and reection coe�cients, are more suitable for
the physical interpretation of complex phenomena. Both transfer and scattering matrix formalisms are
equivalents as it is possible to switch from one to another by using matrix transformation. For instance,
one can rewrite the transfer matrix in term of scattering matrix coe�cients:

( Tuu Tpu
Tup Tpp

) = 1

2

⎛
⎝
tu + (1−rd)(1+ru)td

tu − (1+rd)(1+ru)td

tu − (1−rd)(1−ru)td
tu + (1+rd)(1−ru)td

⎞
⎠

(3.1.4)

This transformation will be used in chapter 5 to obtain transfer matrices from measured scattering
matrices.

Finally, the mobility matrix M links the acoustic velocities at both sides of the two-port element
with the acoustic pressure perturbations. This formulation has been introduced by Pierce [113] and will
not be used in this manuscript. All the two-port representations are synthesized in table 3.1.

3.1.2 Models for perforated plates

All models presented in this section are related to the work of Howe [20] (see [60] for a detailed review
of existing models). According to Howe, the acoustic-vortex interaction created when acoustic waves
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Name Context De�ning equation

Transfer matrix (p,u) Modelling, CFD Tprim (
ρ0c ~uu

~pu
) = (

ρ0c ~ud
~pd

)

Transfer matrix (waves) Acoustic network, ROMs Twaves (
A+
u

A−
u

) = (
A+
d

A−
d

)

Scattering matrix Physical insights, ROMs S (
A+
u

A−
d

) = (
A+
d

A−
u

)

Mobility matrix Helmholtz codes M (
~pu
~pd

) = (
ρ0c ~uu
ρ0c ~ud

)

Table 3.1: Various representations of two-port matrices used in the literature. This table is adapted
from [21].

create vorticity at the aperture borders is the key mechanism responsible for sound absorption in small
apertures. Linear behaviour is expected for small acoustic perturbations. Otherwise, the acoustic ow
generates itself a vortex �eld and losses become non-linear as reported in [60]. Sketches for the perforated
plate and the mean ow topology are provided in �gure 3.3.

2r R

Uu

⇡r2

A

Uu
Ujet

Figure 3.3: Left: Scheme of the perforated plate : r is the radius of an aperture. Right: View of a
single aperture and the velocity jet downstream. A is the e�ective surface of the jet and πr2, the surface
of the aperture.

3.1.2.1 Rayleigh conductivity

The Rayleigh conductivity has been identi�ed as an important quantity for modelling ACEs which
contain apertures [20, 114]. Similarly to the electric conductivity de�ned as the ratio between current
and voltage drop across an electric component, it completely characterises an ACE provided the acoustic
ow-rate ~q is conserved:

Kr =
iωρ0~q

�~p
, ~q = πr2~uaper (3.1.5)
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where �~p = ~pd − ~pu is the acoustic pressure loss. Contrary to the electric conductivity, the Rayleigh
conductivity contains the term iω in its de�nition: the loss in acoustic energy induced by the aperture is
linked to the imaginary part I(1/Kr). In the case of a diaphragm (studied experimentally in chapter 5),
the acoustic velocity in the apertures is deduced by using the conservation of the uctuating volume
ow-rate:

~uaper = ~uu (
R

r
)

2

(3.1.6)

Combining equations 3.1.6 and 3.1.5 �nally gives :

Kr =
iωπρ0R

2~uu
~pd − ~pu

(3.1.7)

which only relies on acoustic quantities taken upstream and downstream of the multi-perforated plate.
Finally,equation 3.1.7 directly links the Rayleigh conductivity with the transfer matrix of the acoustic
element :

( Tuu Tpu
Tup Tpp

)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Tprim

= ( 1 0
2ζ 1

) , ζ = iωπR
2

2cKr
(3.1.8)

In the limit of an in�nite Rayleigh conductivity, ∣ζ ∣ → 0 and the transfer matrix tends to unity which
is the expected behaviour. Moreover, when ∣ζ ∣ → ∞, equation 3.1.8 is only de�ned provided that
~uu = 0 = ~ud. This case is equivalent to a zero-velocity boundary condition imposed at the location of
the ACE.

3.1.2.2 Howe’s model

Howe's model [20] is dedicated to predict the Rayleigh conductivity of an in�nitely thin aperture in a
high Reynolds mean ow as a function of the Strouhal number:

St = ωr

Ujet
(3.1.9)

where Ujet is the bulk velocity of the jet. Because of the vena contracta e�ect, the surface of the jet is
smaller than the one of the aperture: the contraction coe�cient is CC,HM = A/(πr2) = 1/2 so that the
surface of the jet is A = π/2R2. Scarpato et al [25] recommended to use a vortex convection velocity
equal to half of the jet bulk velocity. However, best results are obtain by keeping the jet velocity itself
(choice of Mendez et al [60]) as shown in Fig. 3.2 in the low frequency limit. The conservation of the
volume ow-rate through the aperture leads to:

Ujet =
1

CC,HM
Uu (

R

r
)

2

(3.1.10)

where Uu is the bulk velocity upstream of the plate. Finally, Howe obtained the following analytical
expression for the Rayleigh conductivity of an in�nitely thin perforated plate by solving the divergence
of the momentum equation for an inviscid, incompressible ow:

Kr,HM = 2r(T ∗up − iδ) (3.1.11)

T ∗up − iδ = 1 + (π/2)I1(St) exp(−St) − iK1(St) sinh(St)
St[(π/2)I1(St) exp(−St) + iK1(St) cosh(St)]

(3.1.12)

where I1 , K1 are the modi�ed Bessel function of the �rst and second kinds respectively. This model
(denoted as HM in the following of the manuscript) derived for a single aperture is still valid for a multi-
perforated plate as long as the jets do not interact with their neighbours: d >> r. Jing and Sun [115]
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proposed a modi�cation of the previous model (denoted as MHM) to take into account the thickness h
of the plate:

Kr,MHM = 2r ( 1

T ∗up − iδ
+ 2h

πr
)
−1

(3.1.13)

This modi�cation is function of the ratio between the depth h and the radius r of the perforation.
Taking into account the plate thickness only alters the real part of 1/Kr,MHM and thus, does not
modify the absorbing properties of the media as shown in section 3.2.1.

3.1.2.3 Uniform models

Uniform models have been proposed by Mendez in [60]. These models, which stem from the resolution
of the temporal Bernoulli's equation, are approximation of Howe's equations. Moreover, they are easier
to use in the context of CFD or Helmholtz solvers as the evaluation of Bessel's functions are avoided.

Kr,UM1,2 =
πr

2

St

i + l1,2 St /(2r)
(3.1.14)

The e�ective length l accounts for both the end correction e�ects in in�nitely anged con�guration [15]
(UM1): l1 = πr/2 and the thickness of the plate h (UM2) :l2 = l1 + h (see [60], [116]). Both UM1 and
UM2 models give the same asymptotic results as HM and MHM models respectively for St → 0 and
St→∞ as shown in �gure 3.4.

Figure 3.4: Comparison between models HM,MHM,UM1 and UM2 with r/h = 1. The Rayleigh
conductivity is plotted against the Strouhal number. Models HM and UM1, which do not take into
account the plate thickness give similar results. Models MHM and UM2, which take into account the
plate thickness also give similar results.
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The models presented here will be compared to measurements (from both experiments ans simula-
tions) of transfer matrices in chapter 5.

3.2 What can we get from two-port matrices ?

In this section, we start from acoustic two-port matrices and establish the link with acoustic damping
(section 3.2.1) and mean pressure losses (section 3.2.2). General results but also application in the case
of perforated plates are provided.

3.2.1 Link with acoustic damping

The knowledge of an acoustic two-port is not su�cient to predict the total acoustic damping which can
occur in a system. Indeed, the damping also rely on the boundary conditions. The simplest way to
recover the damping of the total system {ACE +BCs} is to solve equation 1.6.1. However, two-port
matrices contain the seed of acoustic energy dissipation. A �rst method consists in looking at the
eigenvalues of the matrix I −S ×S as shown in [117]. According to the signs of the two eigenvalues, the
ACE may generate (active behaviour) or dissipate acoustic energy.

An other argument can be used for the primitive transfer matrix. As far as an element is acoustically
compact, the acoustic ow-rate ~q is conserved. Moreover, in the absence of acoustic velocity uctuations,
the acoustic pressure must also be constant. These two assumptions introduce several simpli�cations
in the transfer matrix (primitive form):

Tprim = ( 1 0
2ζ 1

) (3.2.1)

where ζ is a complex function of the frequency. This transfer matrix shape is also retrieved for the
multi-perforated plate model as shown in section 3.1.2 and in experiments (see Fig. 3.2). A budget of
the acoustic energy can be performed upstream and downstream of the ACE:

∂Eu
∂t

= �in −R
1

2
(~p~u∗)− (3.2.2)

∂Ed
∂t

=R
1

2
(~p~u∗)+ −�out (3.2.3)

where �in = R(~p~u∗)in/2 denotes the acoustic energy ux entering the upstream section and �out =
R(~p~u∗)out/2, the ux leaving the downstream section. Both of these uxes may be characterized by
taking into account the boundary conditions and are thus not linked to the dissipative behavior of the
ACE. Moreover, the terms (~p~u)� are the uxes entering/leaving the ACE. Both equations 3.2.2 and
3.2.3 can be summed to retrieve the acoustic energy equation of the complete system:

∂E

∂t
= (�in −�out)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Boundary fluxes

+R1

2
[(~p~u∗)+ − (~p~u∗)−]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Two−port dissipation

(3.2.4)

The second term appearing in the RHS of equation 3.2.4 account for the dissipation which may occur
in the ACE. According to equation 3.2.1, we know that:

~u+ = ~u− (3.2.5)

~p+ = ~p− + 2ζ~u− (3.2.6)

The dissipative term stems from the combination of equations 3.2.5 and 3.2.5:

Re
1

2
[(~p~u∗)+ − (~p~u∗)−] =R(ζ)∣~u∣2 (3.2.7)

51



Equation 3.2.7 shows that when R(ζ) ≠ 0, acoustic pressure waves are generated in phase (or opposite
phase) with the acoustic velocity so that acoustic power is added/removed. More precisely, R(ζ) < 0
means that acoustic energy is dissipated. In addition, the dissipation only occurs when acoustic velocities
is non null at the location of the ACE. In the case of a perforated plate (UM1 model), this term reduces
to:

R(ζUM1) = −2
Uu
c

(R
r
)

4

(3.2.8)

Equation 3.2.8 shows that the absorbing properties of a perforated plate are independent of the fre-
quency. However, they are linearly linked to the bulk velocity. In the absence of a mean ow, no losses
are expected. The fact that ζ is not a function of the frequency does not mean that perforated plates
damp acoustic modes at every frequency. Indeed, when a velocity node is located close to the plate, the
dissipation cancel as shown in equation 3.2.7.

3.2.2 Link between transfer matrix and pressure losses

The mean pressure loss of an ACE can be deduced from the low frequency limit of transfer matrices.
As observed in equation 3.2.1, the non diagonal term Tup = 2ζ of the transfer matrix Tprim links the
acoustic pressure drop with the acoustic velocity:

�~p = ρ0cTup~uu (3.2.9)

Before retrieving the steady state equation from equation 3.2.9, one must provide a model for the Uu
(bulk velocity upstream of the element) dependency of Tup. For the in�nitely thin perforated plate case,
both HM and UM1 models are equivalent in the low frequency limit: Kr,(HM,UM1)/(2r) = St2/3−iπSt/4
which leads to:

Tup = −4(R
r
)

4 Uu
c

(3.2.10)

Equation 3.2.10 shows that Tup is a linear function of the upstream mean velocity Uu. As a consequence,
the following non-dimensioned function T ∗up = (c/Uu)Tup,ω=0 is independent of Uu and it is now possible
to retrieve the steady state behaviour from equation 3.2.9. The method consists in �nding the global
equation for which the �rst order linearization leads to equation 3.2.9:

�(p + ~p) =
1

2
ρ0T

‡
up(Uu + ~u)2 Ô⇒ œ

�p = 1
2ρ0T ‡

up(Uu)
2 (0 order)

�~p = ρ0T ‡
upUu~u (1st order)

(3.2.11)

In the general case, equation 3.2.11 shows that the mean pressure loss across an ACE is linked to
the low frequency limit of the non-diagonal term which appears in the transfer matrix Tprim: �P =
1/2ρ0Tup,ω=0Uu. The pressure loss can be studied by the mean of a reduced coe�cient ξ, which relates
the ratio between pressure drop and kinetic energy:

ξ = �P
1
2ρ0U2

u

(3.2.12)

In the case of the perforated plate, combining equations 3.2.11, 3.2.10 and 3.2.12 provides an ex-
pression for the pressure loss coe�cient:

ξUM1 = −4(R
r
)

4

(3.2.13)
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Equation 3.2.13 can be compared to a model dedicated to predict the pressure losses across a perforated
plate. In a recent study, Malavasi et al [118] provided a detailed review of the existing models for the
pressure loss across perforated plates. Among them, the model from Miller et al [119] states that:

ξM = −C0(1 −CCβ2)2

C2
Cβ

4
(3.2.14)

where β = r/R is the ratio of the inner and outer radius, C0 is a parameter which relies on the thickness
of the plate and CC is the contraction coe�cient of the jet. In the case of an in�nitely thin plate and
in the limit of very small apertures (β P 1), as prescribed for the Howe model HM, Malavasi provides
values for the two coe�cients: C0 = 1 and CC = 0.6. However, a di�erent value have been used to derive
the Howe model: CC,HM = 0.5. Finally, equation 3.2.14 reduces to:

ξM′ = − 1

C2
C,HM

(R
r
)

4

= −4(R
r
)

4

(3.2.15)

which is equivalent to equation 3.2.13. The models detailed in this section (for both acoustic and
mean pressure losses) will be then confronted to both numerical and experimental measurements on
the PREINTRIG workbench. The setup of the PREINTRIG workbench, which is operated at IMFT,
is detailed in section 3.3. Results concerning the mean pressure losses are then provided in the next
chapter (4) while results concerning the acoustic scattering are gathered in chapter 5.

3.3 The PREINTRIG workbench

The PREINTRIG work bench has been designed to study both mean pressure losses and acoustic scat-
tering through elements commonly encountered in modern combustion chambers as shown in Fig. 3.5.

swirl injector

Cooling holes

Figure 3.5: Annular combustion chamber of a an helicopter engine (Courtesy of Turbomecca). It
contains 15 swirl injectors and small perforations are located on the walls for cooling purpose.

3.3.1 Introduction of the PREINTRIG rig

The PREINTRIG workbench is shown in �g 3.6. The experimental rig contains up to three cylindrical
ducts of di�erent lengths and an ACE (perforated plate or swirl injector) can be installed between them.
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The three PVC ducts share the same cross section. Their inner radius is R = 41 mm and lengths
with the connection are respectively 0.26, 0.34 and 0.56 m. When acoustic measurements are to be
performed, the number of ducts used and their order can be varied as well as the outlet state (closed
or open) as shown in Fig. 3.6. This permits to vary the structure of the acoustic waves propagating in
the rig. When pressure losses are investigated, the ducts downstream of the compact element can be
removed to ease the measurements (PIV, hot-wire anemometry) as described in section 3.3.3.

T2

T3

ACE

Injection

mass flow
meter

pressure tap

microphones

Loudspeaker

Figure 3.6: Pictures of the experimental workbench in the acoustic measurement con�guration. On
the left picture, only two ducts are used while on the right picture, three are mounted.

A mean ow is imposed by a mass-ow meter fed by a 7 bar air supply channel. The air ow is then
split into 8 individual circular injectors disposed right after the loudspeaker at the bottom of the rig, as
shown in Fig. 3.6, left. The ow passes trough duct T3, crosses the ACE (diaphragm or swirl injector)
and �nally exits the rig by the outlet. When a closed outlet boundary conditions is required (~u = 0, as
shown in chapter 1), a small hole just upstream of the top is left open to let the air ow outside.

Experiments have been conducted at various ow-rates characterized by their bulk velocities: Uu ∈
[0 , 1]m.s−1. These bulk velocities have been checked with an accuracy of 2% by using hot-wire based
velocity pro�le measurements: the upstream velocity pro�le has been measured and integrated in cylin-
drical coordinates to retrieve the volumetric ow rate as shown in 3.7 for the highest velocity. A �t
function is then used as an inlet boundary condition for simulations:

�u(y) = βn (1 − ( y
R

)
n

) (3.3.1)

with βn a normalization constant which ensures the conservation of the volume ow rate q = _m/ρ:

∫
R

y=0
2πy�u(y)dy = _m

ρ
(3.3.2)

which leads to:

β = _m

πR2ρ

n + 2

n
(3.3.3)
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Figure 3.7: Mean axial velocity pro�le inside the plenum at x = −90 mm from hot-wire measurement:
Uu = 0.67 m.s−1 which corresponds to _m = 4.29 g.s−1 (squares) and �t function used to compute the
ow-rate (solid line)

3.3.2 Presentation of the ACEs

The �rst ACE is the diaphragm shown in �g (3.8, left). It has a diameter of 2r = 18 mm and a thickness
of h = 2 mm. The swirl injector (�g 3.8, middle) has been provided by TurboMecca. It is referred as
the S1 swirl injector and has two counter-rotating passages for air. The fuel injection passage, not used
in this study, has been blocked by a plug. An other geometry has been studied. It is constituted of the
S1 swirl injector on which a cylindrical rod has been mounted on the top of the plug (Fig. 3.8, right)
and is called the S2 swirl injector. The outlet radius is common for both injectors as well as for the
diaphragm: r = 9 mm.

The low porosity (below 5%) of all these elements guaranties a high Reynolds number within the
perforations. The compact hypothesis, which is necessary to ease the study of acoustic scattering is
now investigated for the three elements of interest. The diaphragm may be seen as a compact element
as the ratio between its e�ective thickness h and the acoustic wavelength stay below 1 % for all the
frequencies1 reported in chapter 5.
The e�ective thickness of the swirl injector is de�ned by the following relation [120]:

leff = ∫
xd

xu

Au
A(x)

dx (3.3.4)

It is approximately equal to leff = 0.2 m. For frequencies above 350 Hz, with ambient air conditions,
the acoustic wavelengths are lower than λ = c/f ≈ 1 m: the swirl injector may not be seen as an ACE
for f > 350 Hz. Experimental measurements provided in chapter 5 tend to validate this assumptions
(for instance, see Fig. 5.6 and the associated comments).

1from 0 up to 1 kHz, the ratio c/(hf) never exceeds 0.6%
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Figure 3.8: sketches of the ACE studied. From left to right, the diaphragm, the swirl injector without
rod (S1) and with rod (S2). For the sake of clarity, S1 and S2 elements are cut to reveal the two
separated networks of air injection but also the cylindrical rod in the S2 con�guration

3.3.3 Specific setup for the pressure loss study

The measuring instruments required to study the mean pressure loss across ACEs at IMFT is detailed
in this section.

3.3.3.1 Differential pressure measurement

Pressure losses through the ACE are measured with an electronic micro-manometer with an uncertainty
smaller than 0.25% in the range �P ∈ [0 ∶ 2]kPa . The di�erential probe records the pressure upstream
of the ACE, as shown in Fig. 3.6, left (pressure tap) and outside of the rig. The pressure drop along
ducts T3 is negligible so that the exact location of the pressure probe does not inuence the pressure
loss. Pressure loss as a function of the mass-ow rate is shown in chapter 4 and is compared to values
obtained in a CFD code for the diaphragm and the swirl injector S1.

3.3.3.2 Particle Image Velocity (PIV)

PIV measurements have been carried out for the swirl injectors S1 and S2. The velocity �eld was
measured downstream of the injector, along a longitudinal (xOy) plane (Fig. 3.9). A double cavity
Nd:YAG laser (Quantel Big Sky) operating at 532 nm �res two laser beams, with a delay varying
between 4 and 11µs according to the operating conditions. The beam is expanded through a set of
fused silica lenses (spherical and diverging). Because of the important out-of-plane velocity component,
the laser sheet was intentionally thickened to approximately 1 mm. Olive oil particles (typical size of
1-2µm) were seeded through the various ow injections systems (by means of venturi seeders). Mie
scattering is collected on a 4 Hz PCO-Sensicam, operating with a resolution of 1280 × 600 pixels for
the longitudinal plane. A f/16 182 mm telecentric lens (TC4M64, Opto-engineering) is used to reduce
parallax displacements occurring with classical lenses. PIV images are processed with a cross-correlation
multi-pass algorithm (Davis 8.2.3), resulting in a �nal window of 16 × 16 pix2 and a 50% overlap. 1320
images are collected over a region of 20 × 32 mm2 with a vector resolution of 0.4mm.

PIV measurements are performed at three mass ow rates _m = 2.15, 3.22, 4.29 g.s−1 with an ambient
temperature and pressure of T = 298 K and P = 101150 Pa, respectively. This roughly corresponds to
upstream bulk velocities of Uu = 0.34, 0.51, 0.68 m.s−1 respectively. The theoretical swirl number is
S = 0.76 (estimated at the exit of the injector from the de�nition given by Merkle [121]).

In chapter 4, Large Eddy Simulations (LES) have been carried out to predict the total pressure loss
of the swirl injector S1. These results have been validated by comparing the velocity pro�le downstream
of the injector obtained in the LES with PIV data and are shown in chapter 4.
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Figure 3.9: Picture of the experimental setup (left) and schematic view (right) for PIV measurement.
The longitudinal (xOy) PIV plane is highlighted. The shaded area corresponds to the CFD domain
(see chapter 4).

3.3.4 Specific setup for acoustic scattering study

We now focus on the measurement instrument dedicated to reconstruct acoustic two-port matrices.

3.3.4.1 Loudspeaker and microphones

Actuators and sensors are required to generate and monitor the acoustic waves upstream and down-
stream of the ACEs. Six slots are located on the sides of each ducts inside which microphones of
type Bruel & Kjaer 1/4" Type 4954B can be plugged. Considering the three di�erent ducts and the
possibility to let the outlet opened or closed, four di�erent con�gurations have been retained (see 3.10).

JUNCTION

T3

T2

T1

PRESSURE TAP

MREF

1 2 3 4

Flow in

Flow out

Figure 3.10: Description of the four con�gurations used in this study. For example, the second
con�guration is composed of the 3 ducts while the ACE is located in the junction between ducts T3 and
T2 and the outlet is left opened. This con�guration is denoted as ls t3 element t2 t1 opened in the
following.

A loudspeaker of type Focal ISN 100 is �xed in a PVC casing at the bottom of the rig. As the
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loudspeaker is mounted ush, acoustic waves can easily propagate in the ducts: the system { loudspeaker
+ casing } transmits the sound with very few attenuation in the frequency range of interest f ∈ [0,1]
kHz. This feature is of primordial importance to measure acoustic two-port matrices in turbulent ows,
where the acoustic signal must be important in both upstream and downstream ducts.

3.3.4.2 Acquisition of time series

The acquisition system is based on the Labview software and its associated multichannel acquisition
board. The six temporal acoustic pressure signals are recorded simultaneously while feeding a sinusoidal
excitation to the loudspeaker ampli�er. All measurements are performed with harmonic excitations,
for a frequency ranging between 50 and 1000 Hz. For each frequency and con�guration, samples of 2 s
were recorded at a sampling rate of 10 kHz. This represents at least 100 periods of acoustic forcing.

Conclusions

The concept of acoustic two-port matrices have been detailed in this chapter in order to model Acous-
tically Compact Elements (ACEs). Such matrices detail how the acoustic waves are linearly scattered
across the ACE. Two interesting properties of two-port matrices have then been introduced:

• The two-port matrix representation contains informations about acoustic energy dissipation.

• The mean pressure loss coe�cient ξ = �P /(1/2ρU2) can be deduced from the low-frequency limit
of the transfer matrix:

ξ = lim
ω→0

T ∗up = lim
ω→0

c

UU
Tup (3.3.5)

Finally, the PREINTRIG workbench has been designed to �rst verify these assumptions but also to
provide quantitative data concerning pressure and acoustic losses. This rig is fully equipped to measure
two-port matrices, pressure losses but also asymmetrical velocity �eld for CFD validation purposes.

A numerical method, based on automated mesh re�nement, is presented in chapter 4 in order to
correctly predict the pressure losses in LES. Acoustic energy dissipation is then investigated: A ROM is
constructed on top of acoustic two-port matrices (measured in both experiments and LES) and damping
rates are compared with experimental measurements.
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Chapter 4

Pressure losses study

In the previous chapter, the link between mean pressure losses and two-port matrices has been estab-
lished. The acoustic losses, which causes acoustic damping in ROM must be accurately taken into
account to predict the stability of combustion chambers. As a consequence, a fundamental problem is
tackled here: prior to accurately predicting acoustic two-port matrices in simulations, it is necessary to
capture correctly the mean pressure drop (simply denoted as "pressure loss" or "pressure drop" in the
remaining of the chapter).

This chapter focuses on the prediction of pressure losses occuring across ACEs (diaphragm and swirl
injector) using a joint experimental and numerical study based on Large Eddy Simulation (LES). An
automated procedure, based on mesh re�nement using the MMG3D tool of INRIA, has been developed
to accurately predict them. In order to re�ne the LES mesh and correctly predict the experimental
pressure losses in this complex geometry, a new monitor function is introduced, which is based on the
mean dissipation of kinetic energy �. After a �rst validation on a diaphragm ow, results obtained
for a swirl injector with two counter-rotating passages show that a h-re�nement algorithm based on
this quantity coupled to the remeshing library MMG3D [122] can e�ectively produce the desirable local
mesh re�nement to match the target losses, measured experimentally. The re�nement also improves
the computed velocity and turbulence pro�les at the swirl injector outlet, compared to PIV results.

Introduction

The design of swirl injectors used in combustion chambers is often based on multiple passages and relies
on complex geometrical shapes. The swirl injector controls a large part of the chamber performances:
ame stabilization, mixing between fuel and air, ame stability, ignition capabilities, etc [123] and
its optimization is a crucial part of an engine design. Large-Eddy Simulation (LES) has become a
reference method for the simulation of swirling ows in the last ten years [124, 125, 126]. Nevertheless,
the prediction of pressure losses in swirl burners using LES remains a challenge for most industrial
solvers: errors on pressure losses in swirled systems computed with LES can be surprisingly high as
discussed below. This chapter shows that the accuracy of pressure losses prediction is mainly controlled
by the mesh quality and density in the swirl injector passages. Uniform mesh re�nement is not an
a�ordable option, so that adaptive mesh re�nement appears as an appropriate tool. In turn, a local
mesh re�nement approach requires a sensor which robustly ags all areas relevant to pressure loss, but
does not expend valuable mesh resources in irrelevant areas.

Only few studies have addressed prediction of losses in combustors with complex geometry [127, 128],
whereas the sensitivity of LES to mesh quality is a well-known issue for non-reacting ows [129] as well
as for reacting ows [130, 125]. Three di�erent approaches are commonly used in Adaptive Mesh Re-
�nement (AMR) strategies in CFD: r-re�nement methods where cells of a given mesh are redistributed,
p-re�nement methods where the order of discretization is locally increased and h-re�nement approaches

59



where cells are subdivided isotropically or anisotropically [131]. In this latter case, a new mesh with a
modi�ed density distribution is generated [132, 133]. Whereas r- and p-re�nement are most useful for
dynamic mesh re�nement as they do not change the mesh topology, h-re�nement and remeshing are
very appropriate for static mesh adaptation as they allow to add cells. While h-re�nement is the most
costly approach, it is the only one which can produce a high-quality mesh that is independent of the
initial mesh.

AMR methods have been developed for Reynolds Average Navier-Stokes (RANS) methods for a long
time [134, 135] but they remain a challenge in LES: being able to generate LES meshes on the basis of
well-established metrics instead of relying on the intuition of the LES user is probably the overarching
question for future LES. The present paper focuses on this problem for one speci�c case: non-reacting
ows in swirl injectors. LES have been applied with tremendous success to swirled injectors used in
combustion chambers for both non-reacting [136, 137] and reacting ows [138, 126, 139, 108]. Velocity
pro�les at various positions downstream of the swirled injectors usually match experimental velocity
pro�les very well, with and without reaction. What is seldom studied, however, is the capability of the
LES solvers to predict pressure losses through these systems. These losses are a �rst order parameter
in the design of swirled injectors in combustion: excessive pressure losses directly impact the engine
e�ciency so that predicting pressure losses accurately is as important as predicting velocity pro�les.
Unfortunately, recent studies show that while most LES capture velocity pro�les accurately downstream
of the swirl injector, they fail to predict pressure losses through the swirl injector itself with precision,
usually overestimating them by 20 to 50 %.

Pressure losses in a swirling system are mainly induced by sudden expansion within the swirl injector
passages, where strong ow directional perturbations occur [127]. Of course, increasing the total number
of points inside the swirl injector helps to improve the accuracy of the prediction of pressure losses, but
re�ning uniformly in the swirl injector is not a�ordable. A more e�ective method based on h-re�nement
is to develop a sensor which adds points inside the swirl injector only where they are needed. The
objective of the present work is to propose an adaptive h-re�nement method to increase the accuracy
of the prediction of pressure losses while keeping the total number of mesh points to a minimum. The
approach employs remeshing which is driven by a sensor that is based on mean ow data. The sensor
considers as Quantity of Interest (QOI) the dissipation of kinetic energy as shown in Section 4.1. This
QOI is averaged during the simulation and provided as �eld function to the MMG3D library [122] which
carries out the remeshing operations. A new solution is then computed on the re�ned mesh, and the
process is repeated once or twice during a full simulation. This is su�cient to reach an accuracy of
a few percent on pressure losses while preserving or improving the quality of all velocity pro�les and
retaining an appropriate number of cells.

This chapter is organized as follows: Section 4.1 shows why the kinetic energy dissipation is the
right mesh metric to predict pressure losses and presents the mesh adaptation procedure where the LES
solver is coupled to the mesh re�nement code MMG3D. The remeshing methodology is then validated
on the diaphragm in Section 4.2 while section 4.3 presents the results concerning the swirl injector S1.

4.1 Mesh metric for the prediction of pressure losses

As underlined by Mitran [140], the criterion governing grid re�nement in CFD should represent the
physics of the problem. Due to the unsteady chaotic nature of turbulence, knowing where to re�ne the
mesh in an LES is a complicated question which may depend on the objectives of the simulation: the
best mesh to predict far �eld noise sources is probably not the best mesh to capture pressure losses.
Metrics for CFD have been proposed for RANS meshes for a long time [141, 132] and are still studied
today [142, 143]. Metrics for LES or DNS have also been derived recently. This can be done either as a
dynamic approach, i.e. performed at run time, so that the mesh is adapted to the instantaneous solution
(see [144, 145, 146]), but can also be done statically, i.e. performed using mean ow characteristics once
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or twice during the whole simulation [128], as proposed here.
The �rst step to build a proper QOI adapted to the accurate prediction of pressure losses occurring

across ACEs such as swirl injectors is to identify which physical mechanisms generate these losses. This
can be obtained by considering conservation equations for kinetic energy Ec = 1/2ui2 and for entropy s.
The equation for kinetic energy Ec can be written in incompressible ows as:

∂Ec
∂t

±
1

+ ∂

∂xj
(uj (Ec + P ))

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
2

=
∂ (τijui)
∂xj

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
3

+ τij
∂ui
∂xj

´¹¹¹¹¹¹¸¹¹¹¹¹¹¹¶
4

(4.1.1)

where terms (1), (2), (3) and (4) correspond respectively to the temporal variation of the kinetic energy,
the mechanical energy ux, the viscous di�usion and the viscous dissipation.The entropy equation
expressed with the same notations is:

∂ρs

∂t
+
∂ρujs

∂xj
= 1

T
(τij

∂ui
∂xj

+ ∂

∂xj
(λ ∂T
∂xj

)) (4.1.2)

Equations 4.1.1 and 4.1.2 reveal the importance of the viscous dissipation �:

� = τij
∂ui
∂xj

= µ
2
(∂ui
∂xj

+
∂uj

∂xi
)

2

> 0 (4.1.3)

This term is present in the entropy equation and measures the losses due to uid friction irreversibili-
ties [147, 148, 149]. Of course, this is not a surprising result and the dissipation � plays a major role in
all turbulence theories where it controls the dissipation to the small scales. The aerodynamic commu-
nity [150, 151, 152, 147, 149] and the applied mathematicians [153, 154], have also been using entropy
as a quality indicator for a long time. � also appears in the kinetic energy equation and rewriting this
equation to introduce the total pressure Pt = P +Ec shows that the dissipation � is the quantity which
controls the dissipation of total pressure and therefore pressure losses:

∂Ec
∂t

+ ∂

∂xj
(ujPt) =

∂ (τijui)
∂xj

+� (4.1.4)

For a steady ow, the integration of Eq. 4.1.4 over the whole computational domain of volume �
bounded by a surface �, with the Ostrogradsky's theorem gives:

∫
Σ
Ptuinidσ = ∫

∆

∂ (τijui)
∂xj

dV + ∫
∆

�dV (4.1.5)

Finally, for a case with non-moving walls, the �rst right-hand side term of Eq. 4.1.6, which corresponds
to the power of external viscous forces, cancels. The pressure losses are then directly expressed by the
integral of the volumetric dissipation rate:

Qv�Pt = ∫
∆

�dV (4.1.6)

where QV is the volume ow rate and �Pt is the pressure loss between inlet and outlet sections. Eq. 4.1.6
con�rms that errors on pressure losses �Pt in a simulation are due to the fact that the total dissipation

R∆ �dV is not computed with su�cient accuracy. The fact that the dissipation �eld � controls the
irreversible losses in the entropy equation as well as the pressure losses in the kinetic energy equations
suggests that a proper QOI to use in a metric aiming at adapting meshes to improve pressure losses
prediction is the �eld of �.

Finally, an additional complexity introduced by LES is that the equations used in LES are not
Eq. 4.1.1. Some di�erences must be accounted for to construct the QOI to use in an LES:
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• Many LES use compressible formulations where additional phenomena (dilatation dissipation for
example [155]) contribute to losses. However, one can demonstrate that the QOI � still controls
the pressure drop across the ACE so that this criterion can be used in compressible LES codes
such as AVBP. More details about the application of the QOI to compressible ows are provided
in appendix C.

• In the present mesh adaptation strategy, Eq. 4.1.1 will be averaged over time to produce a steady
�eld. Therefore the proper QOI is not the instantaneous �eld � but its time averaged �eld �.

• Finally, LES does not resolve all spatial scales: the LES �eld corresponds to a �ltered velocity ~ui
and not the local velocity ui [156, 157]. The �ltering operation introduced by LES leads to an
expression for dissipation which contains two parts: the �rst one is produced by the uctuations

resolved on the LES grid and can be written φ = µ Š ∂ũi∂xj
+ ∂ũj
∂xi

•
2
. The second contribution to

dissipation corresponds to the unresolved part and can be written ϕ = µt Š ∂ũi∂xj
+ ∂ũj
∂xi

•
2

where µt is

the local turbulent viscosity. Therefore a proper expression for the QOI is the time averaged of

the sum of these two contributions: ~� = φ + ϕ:

~� = (µ + µt)(
∂~ui
∂xj

+
∂~uj

∂xi
)

2

(4.1.7)

This is the QOI used in the following sections. It is expected to provide a metric leading to

mesh re�nement in zones where ~� will be large so that the precision of pressure losses, which are
controlled by this �eld, will improve. Interestingly, results show that the prediction of the velocity
�elds is also more accurate and suggest that this metric improves the quality of all results and
not just of pressure losses.

In practice, the implementation of the metric in the LES code AVBP is performed as follows (Fig. 4.1).

From the dissipation �eld ~�, a dimensionless variable �† is �rst de�ned as:

�† =
<@@@@>
1 −

⎛
⎝

~� − ~�min

~�max − ~�min

⎞
⎠

=AAAA?

α

, �† ∈ [0 ∶ 1] (4.1.8)

where the parameter α scales the value of �† in order to ensure continuous variation of QOI and to
obtain smoother stretching of the cells size in the new mesh. Then the maximum factor to divide the
volume of the tetrahedral cells is imposed by the variable ε in the metric:

metric = �†(1 − ε) + ε (4.1.9)

Typical values used for these two terms are ε = 0.3 and α = 10. The MMG3D library [122] then
interpolates the mesh size to use from the prescribed metric on the current mesh. Finally, the MMG3D
library is used to generate an entirely new mesh. The mesh re�nement strategy is shown on Fig. 4.1. No
restriction on the number of tetrahedra is speci�ed but a minimal cell volume is �xed. The AVBP code
uses a compressible formulation with explicit time-stepping and is hence subject to a CFL condition
based on the fastest acoustic wave. To maintain an appropriate time-step �t, the local mesh size
must not be too small. Only isotropic subdivisions of the tetrahedra are considered to preserve the
mesh quality [158]. While anisotropic remeshing can be very appropriate in producing high-aspect ratio
cells aligned with strong gradients in steady ow [133], the present computations are unsteady and
the extreme element angles found in anisotropic tetrahedral meshes would adversely a�ect accuracy.
All simulations in sections 4.2 and 4.3 are performed using the compressible cell-vertex Navier-Stokes
solver AVBP [159, 160]. The third-order scheme TTGC [161] is used on a fully tetrahedral mesh. In
order to remove spurious numerical oscillations, an arti�cial viscosity operator of 2nd and 4th order
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is also applied according to a local sensor [161]. At the inlet and outlet boundaries, the classical
Local One-Dimensional Inviscid (LODI) Navier-Stokes Characteristic Boundary Conditions (NSCBC)
are used [162]. An eddy-viscosity approach is considered for the SubGrid-Scale (SGS) stress, based on
the SIGMA model [163]. No-slip adiabatic conditions are applied at all walls.

4.2 Validation on a canonical test case: pressure losses

through a diaphragm

The AVBP-MMG3D strategy is �rst validated for the canonical test case of a diaphragm in a straight
duct (Fig. 4.2) introduced in section 3.3.2. The evaluation of the pressure losses through a diaphragm
is a usual task in the industry to measure ow rates. Due to the simplicity of the geometry, many
pressure loss correlations derived from experiment are available in the literature [118, 164, 165]. In
order to compare LES and experimental data, a series of experimental measurement were performed
on a diaphragm to make sure that pressure losses were evaluated correctly. The experimental pressure
drop curve measured in the PREINTRIG workbench is displayed in Fig. 4.3. Two models are compared
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Figure 4.1: Mesh adaptation procedure.
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Figure 4.2: Schematic view of the experimental setup of the diaphragm. The shaded area correspond
to the LES domain.

to the experimental measurements. The Idel'Cik correlation [164] for diaphragm and Reynolds number
Re < 105 is the model which best agrees with the experimental measurement for all mass ow rates. The
Idel'Cik correlation predicts a pressure loss coe�cient ξIC = 920 However, the Miller [118] model recalled
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Figure 4.3: Experimental pressure loss evolution across the diaphragm for di�erent mass ow rates.
Comparison of the measured values (circles) with the Idel'Cik model [164] (solid line), the Miller
model [118] (crosses) and the LES results for the coarse (squares), the adapted 1 (diamonds) and
the adapted 2 (triangles) meshes.

in equation 3.2.14 is very close to the measurement at the higher mass ow rate tested. Indeed, this
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model is dedicated to study higher Reynolds number ows. Finally, the approximation (equation 3.2.15)
established in section 3.2.2, where a link between acoustic and mean pressure losses was established,
exhibit bad results: �P3.2.13 = 320 Pa which overestimate the measured value �PXP = 180 Pa when
_m = 3.55 g.s−1 and Uu = 0.55 m.s−1. This happens because the vena-contracta e�ect is sightly over-

estimated in the Howe model (CC = 0.5 instead of CC = 0.6 in [118]) but also because the porosity
β = r/R = 0.222 is not negligible so that a correction must be added. The pressure loss coe�cient
ξ de�ned in equation 3.2.12 is provided in table 4.1 for the experiment as well as other models. This
coe�cient is roughly independent of the ow-rate in the three models and relies on geometric parameters.

model ξ

Idel'Cik 920
Miller (equation 3.2.14) 970
UM1 (equation 3.2.15) 1750

XP 976

Table 4.1: Non-dimensioned pressure loss coe�cients ξ
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Figure 4.4: LES of the diaphram at _m = 3.55 g.s−1. The instantaneous ow is represent using Q-
criterion Q = 1.62(Uj/Dj)2 colored by axial velocity, on mesh AD 2.

The mesh re�nement procedure is tested �rst for a mass ow rate of _m = 3.55 g.s−1 where the
pipe ow upstream of the perforated plate characterized by a bulk velocity Ub = 0.55 m.s−1 and a
Reynolds number ReD = UbD/ν = 3000. The ambient pressure and temperature of the experiment are
P = 101150 Pa and T = 292 K. The computational domain is shown on Fig. 4.2. The inlet plenum is
truncated at x = −90 mm in the LES. A semi-hemisphere, de�ned by a radius of (r = 0.3 m) is added
at the duct outlet in order to mimic the atmosphere in the experiment and dissipate free-jet ow
uctuations. Downstream of the diaphram, centered at x = 0 mm (the upstream inlet edge is at x = −1
mm), a jet-plume ow develops as expected. This is shown using Q-criterion (as de�ned by Hunt et
al. [166]) on Fig. 4.4.

In this test case, the target pressure loss is obtained in two adaptation steps and three LES only.
Table 4.2 summarizes the parameters and the cost. From an initial coarse mesh (Fig. 4.5), a �rst adapted
mesh \AD 1" is obtained. The central picture in Fig. 4.5 shows that the mesh re�nement follows the

distribution of viscous dissipation ~� obtained on the coarse mesh. This �rst re�nement step leads to an
overestimation of the pressure drop compared to the experiment of only 3.8% while it was 6.1% on the
coarse mesh. Finally, an acceptable discretization is obtained in the second step and the mesh "AD 2".
The error on the predicted losses is less than 1%. Figure 4.6 shows radial pro�les of the axial mean
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Figure 4.5: Diaphram test case at _m = 3.55 g.s−1: zoom on the mesh on the diaphragm for each LES

(top images) and mean kinetic energy dissipation ~� (bottom images) in W.m−3.

velocity across the ori�ce at the leading edge (x = −1 mm), the center (x = 0 mm) and the trailing edge
(x = 1 mm), respectively. Only the last mesh "AD 2", allows the apparition of the "vena-contracta"
e�ect, with a ow separation zone across the diaphragm. Indeed, no reverse ow appears downstream
the leading edge of the diaphragm at x = 0 mm and x = 1 mm with the coarse and AD 1 mesh.

Moreover, a remarkable change is observed for the mean kinetic energy dissipation �eld between
mesh AD 1 and AD 2 on Fig. 4.5. The solution on mesh AD 1 would suggest that a persistent shear
layer has been captured well at the ori�ce and is then swept downstream. AD 2 re�nement leads to a
mesh which is re�ned much closer to the perforated plate: this allows the growth of Kelvin-Helmholtz
instabilities and a rapid transition to a fully developed turbulent jet-plume. This is in agreement with
the spectral power density obtained from the axial velocity signal recorded at x = 2d and r = 0.5d for
the three meshes (Fig. 4.7). Only the axial velocity spectrum of mesh AD 2 is fully broadband and
exhibits a typical k = −5/3 slope over one decade. Mesh AD 1 allows the development of instabilities,
characterized by a narrow band with a maximum for f = 700 Hz, but no inertial zone is found in the
spectrum. The result for the coarse mesh suggests that the ow remains fully laminar.

The adaptation approach was repeated at a mass ow rate of _m = 2.15 g.s−1 to further check its
validity (cf. Fig. 4.3). The experimental target is also reached in two mesh re�nement steps with a �nal
error of 1.6%.

4.3 Pressure losses in a swirl injector

Two swirl injectors have been introduced in chapter 3. Only the swirl injector S1 is investigated here
for the sake of clarity but similar results have been obtained with the swirl injector S2. A schematic
view of the S1 injector is displayed in Fig. 3.9.
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Figure 4.6: Radial distribution of axial mean velocity across the ori�ce at _m = 3.55 g.s−1. Coarse mesh
(dashed line); mesh AD 1 (dotted line) and mesh AD 2 (solid line).
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Figure 4.7: Diaphragm test case at _m = 3.55 g.s−1: power spectral density of the axial velocity in the
jet-plume shear layer at x = 2d and r = 0.5d. Coarse mesh (dashed line); mesh AD 1 (dotted line) and
mesh AD 2 (solid line).

4.3.1 Description of the swirl injector S1

The air entering the swirl injector is divided into two passages: the primary ow passes through the
inner region of the passages with eight tangential vanes. The secondary ow passes through the outer
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Table 4.2: Summary of the mesh adaptation LES on the perforated plate at _m = 3.55 g.s−1.

Coarse AD 1 AD 2

α | 100 50
ε | 0.3 0.4

Tinit (s) 1.5 0.3 0.3
Tstat (s) 0.5 0.5 0.5

time step (�10−6 s) 1.4 0.41 0.13
number of cells (�106) 0.71 1.55 2.75
number of CPU hours 3h06mn 5h30mn 19h

number of cores 256 720 1152

�P error 6.1% 3.8% −0.5%

passages with the same number of vanes but with counter-rotating swirl direction. No fuel is injected
for these tests: in order to replace the fuel injection system, a plug is inserted in the primary ow
along the centerline of the swirl injector producing a recess of 14 mm with respect to the exit plane.
The experimental apparatus used to measure pressure losses and have been previously described in
chapter 3. The pressure loss plotted as a function of the mass ow rates are displayed in Fig. 4.8.
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Figure 4.8: Pressure loss evolution through the swirl injector: experimental data (circles), �t function
(solid line), LES results for the coarse (squares), the adapted 1 (diamonds) and the adapted 2 (triangles)
meshes.

4.3.2 Flow parameters

The pressure losses of the swirl injector system are measured over a range of mass ow rates 0.43 g.s−1 B
_m B 3.55 g.s−1. PIV measurements are performed at three mass ow rates _m = 2.15, 3.22, 4.29 g.s−1

with an ambient temperature and pressure of T = 298 K and P = 101150 Pa, respectively. First, LES are
performed at _m = 4.29 g.s−1. The bulk velocity at the nozzle exit is de�ned as Ub = _m/ (ρA) = 13.9 m.s−1.
The theoretical swirl number is S = 0.76 (estimated from the de�nition given by Merkle [121]) and a
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Reynolds number based on the bulk velocity and the swirl injector exit diameter is Re = UbD/µ � 14×103.
The inlet plenum is truncated to x = −90 mm in the LES where the velocity pro�le have been measured
in the experiment (see chapter 3, section 3.3.1).

4.3.3 Pressure losses

Figure 4.9 shows the time evolution of the instantaneous pressure loss measured in the LES, for one
reference case where the ow rate is 4.29 g.s−1. The pressure loss evolves during the coarse mesh
computation until its average becomes steady with the value overestimated by 46%, compared to the
experiment. As observed by many LES users in recent years [128, 127], the pressure losses error obtained
on a �rst arbitrary mesh can be very large and a 46% error is not acceptable. The application of the
re�nement method corrects this problem: pressure losses change abruptly when the mesh is re�ned for
the �rst time to AD 1 and a second one to AD 2. The error on the pressure losses drops to 10% for
AD 1 and �nally to less than 1% for AD 2. To investigate mesh convergence, an additional adaptation
step AD 3 was performed. The pressure losses predicted on this mesh are again in agreement with the
experiment (less than 1% of error). These results and the values for the parameters α and ε, used to
build the mesh re�nement metric (cf. Fig. 4.1) are summarized in table 4.4. Finally, the pressure loss
coe�cient obtained in both LES and experiment ξswirl ≈ 13900 is much higher than the one for the
diaphragm (ξdia ≈ 920).
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Figure 4.9: _m = 4.29 g.s−1 case: Evolution of the pressure loss computed with LES as a function of
time and comparison with the target experimental value (straight solid line). The pressure signal is
recorded in the upstream plenum at the wall (x = −50 mm and r = 40.5 mm). The mesh is re�ned by
the AVBP-MMG3D three times during the whole procedure.

An important parameter of the LES is the evaluation of the ow characteristic time τF = D/Ub =
1.3 ms. The simulation time based on this value need to be chosen su�ciently long for the ow to reach
steady state as well as the averaged time needed to gather samples in the LES1. Fig. 4.9 shows that
the ow adapts to all changes of mesh within 30 τF . All statistics used in the rest of the paper were
gathered over a period of 40 ms corresponding to 30 ow-through times.

1In the experiment, all measurements were performed over 110 s, corresponding to very long times compared
to τF .
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Figure 4.10: _m = 4.29 g.s−1 case: meshes (left) and �elds of ~� in W.m−3 (right) for the coarse and
AD 1, meshes in the central plane of the swirl injector, from top to bottom, respectively.

The four meshes (coarse, AD 1, AD 2 and AD 3) are displayed in Fig. 4.10. As expected, mesh

re�nement is performed in regions where the total mean dissipation ~� is large, allowing to resolve

the �eld of ~� with precision, thereby increasing the precision of the pressure loss evaluation. The
convergence of the process can be clearly observed: meshes and results on AD 2 and AD 3 are almost
similar.

The automatic re�nement procedure AVBP+MMG3D was also applied to an other ow rate at
_m = 2.15 g.s−1. Fig. 4.8 displays the values of the experimental pressure loss vs ow rate compared to

the values obtained by the LES for each re�nement step. All values of pressure losses correspond to
the average pressure loss measured over at least 30 ow-through times (Fig. 4.9 shows that this time is
su�cient for the pressure loss to converge). The procedure appears to be robust for all cases tested here:
the re�nement procedure leads systematically to small errors compared to the experiment. Note that
the procedure is unmodi�ed for all cases: this is a fully automatic method determining a su�ciently
resolved mesh in terms of pressure losses, independent of the LES user. Moreover, in most cases, two
re�nement steps are su�cient to reach the target so that the simulation costs remain comparable to
a normal simulation where the user would try to re�ne the grid using intuition. Obviously, it is also
much cheaper than a brute-force strategy where the whole mesh would be re�ned homogeneously: here,
the homogeneous mesh having the same re�nement everywhere as mesh AD 2 has in the swirl injector
region would require 1.4 billion points. The next section shows that the mesh re�nement procedure
allows also to better predict the velocity �eld in the chamber itself.
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Figure 4.11: _m = 4.29 g.s−1 case: meshes (left) and �elds of ~� in W.m−3 (right) for the AD 2 and AD 3
meshes in the central plane of the swirl injector, from top to bottom, respectively.

4.3.4 Velocity fields for the _m = 4.29 g.s−1 case

The previous section has shown that the AVBP+MMG3D tool was able to produce an acceptable mesh
for the pressure loss because it allowed a proper resolution of the time-averaged dissipation �eld. It is
to be expected that with a correct resolution of the mixing phenomena, not only pressure losses but
also velocity �elds will be predicted more accurately. To assess this aspect, PIV measurements were
performed in the experimental setup (section 3.3.1) for the _m = 4.29 g.s−1 case and compared to the LES
velocity �elds on the coarse, AD 1 and AD 2 meshes (AD 3 gave results which are very similar to AD 2).
The accuracy of the PIV data was carefully checked by investigating the e�ects of the measurement
windows. Results (table 4.3) exhibit less than 9% of error on the mass ow rates recovered from PIV
compared to the target imposed by the mass ow controller at the plenum inlet in the experiement.
Fig. 4.12 shows the mean axial velocity �eld in the vicinity of the swirl injector over the quarter of the
�eld which was accessible by the PIV optical window. A strong ow reversal due to vortex breakdown
dominates downstream of the exhaust of the primary swirl injector, which is as expected for ows
with a swirl number S > 0.6. This very compact reverse ow zone is associated with high turbulence
levels [167].

Even if the mean PIV data reveal a smooth averaged �eld, a visualization of the instantaneous
structures obtained by LES for the same regime (Fig. 4.13) shows that the ow is highly turbulent with
multiple structures developing in the breakdown zone.

Fig. 4.14 shows that the precision of the LES, in terms of velocity �elds, also increases with mesh
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Figure 4.12: Mean velocity from PIV measurement and schematic representation of the swirl injector.
White lines denotes negative mean velocity contours at −7 m.s−1 and −2 m.s−1. Positives and zero mean
velocity contours of 7 m.s−1, 2 m.s−1 and 0 m.s−1 are shown with black line. Dashed-lines identify the
position of the measurement cross-sections downstream of the exit plane at x = 1,2,3,4 mm.

re�nement levels de�ned by the AVBP+MMG3D procedure. For the mean axial velocity pro�le at
x = 1 mm, the di�erences between simulation and PIV results in the shear regions may be explained
by a limitation of the PIV spatial resolution [168, 169]. The LES results for the radial pro�les of axial
velocity on the AD 2 and AD 3 meshes give similar �elds, again con�rming grid convergence for the
adaptation for this feature. A similar conclusion can be drawn for the radial pro�les of turbulence
intensities given in Fig. 4.15. This con�rms that capturing the ow features that govern pressure
losses through the swirl injector passages is su�cient for a good prediction of velocity �elds further
downstream in the chamber. This is not an obvious result: most of the mechanisms controlling pressure
losses occur within the swirl injector passages where separation on the vanes change the e�ective sections
and directly a�ect pressure losses. On the other hand, velocity and temperature pro�les in the chamber
are controlled by the local resolution in the chamber itself and not in the swirl injector. It is interesting
to observe that an improved resolution within the swirl injector also increases the quality of the velocity
pro�le far downstream of the swirl injector passages. This suggests that the mesh re�nement metric
for the pressure losses based on the kinetic energy dissipation provides most if not all of the re�nement
needed to predict the ow with accuracy.

Table 4.3: Error on the experimental mass ow rates recovered from PIV result.

Target mass ow rates (g.s−1) PIV mass ow rates (g.s−1) error (%)

4.29 3.99 7.0
3.22 2.95 8.4
2.15 2.04 5.1
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Figure 4.13: LES of the swirl injector on AD 2 mesh: Q-criterion Q = 1.67 × 104(Ub/D)2 colored by
axial velocity for the _m = 4.29 g/s swirl injector case.

Table 4.4: Summary of the mesh adaptation LES on the swirl injector

Coarse AD 1 AD 2 AD 3

α | 30 30 30
ε | 0.3 0.3 0.7

Tstat (s) 0.04 0.04 0.04 0.04
time step (�10−7 s) 1.0 1.0 0.35 0.23

number of cells (�106) 1.4 3.1 10.8 14.7
number of CPU hours 6h22mn 11h44mn 20h20mn 33h40mn

number of cores 240 240 1140 1728

�P error 46% 10% −0.7% 0.8%

4.3.5 Evaluation of costs

The previous sections have shown that the AVBP+MMG3D procedure provides accurate predictions
of pressure losses as well as of velocity and turbulence pro�les. A natural question is to determine
the cost of this procedure: going from a coarse mesh to re�ned meshes increases the number of nodes
and therefore the overall cost of the simulation. Table 4.4 summarizes the number of cells and the
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Figure 4.14: Comparison of the radial distribution of mean axial (top) and tangential (bottom)
velocity at four axial locations (from left to right x = 1,2,3,4 mm). Coarse mesh (dashed lines); mesh
adapted 1 (squares); mesh adapted 2 (solid lines) and experiments PIV (circles).

CPU cost (number of hours to compute one ow-through time2) on all grids used for the _m = 4.29

2All CPU costs are given on a single processor. Most runs were performed on 500 to 1000 processors but
the parallel e�ciency is almost unity for these cases so that the total CPU cost is a good measure of the mesh
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Figure 4.15: Comparison of the radial distribution of turbulence intensities in axial (top) and tangen-
tial (bottom) direction at four axial locations (from left to right x = 1,2,3,4 mm). Coarse mesh (dashed
lines); mesh adapted 1 (squares); mesh adapted 2 (solid lines) and experiments PIV (circles).

e�ciency.
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g/s case. Obviously the cost per ow through time increases when the mesh is re�ned. The increase
is not proportional to the number of cells as the total time needed on each grid to achieve statistical
convergence decreases because the initial ow is interpolated from the converged-average state on the
previous mesh and hence is close to its own converged-average state. As a result, the cost of the re�ned
mesh cases remains a�ordable to improve the capture of physical phenomena relevant to pressure losses.

Another relevant question is whether the proposed AVBP+MMG3D re�nement algorithm is more
e�cient than a purely intuitive mesh re�nement method, as typically performed manually by the user
based on strong gradients in pressure or velocities. Looking at the various meshes created by the
AVBP+MMG3D method (Fig. 4.10) shows that the method adds points in places which are not obvious

to guess: they correspond to regions where ~� is large and these regions, and their extent, do not correlate
with easily identi�ed ow-features. For example, not all shear layers are re�ned to the same extent,
but only those that are highly relevant for pressure losses. As a result, an important aspect of the
present re�nement procedure is to o�er a systematic and robust, user-independent method to optimize
meshes for swirl injector computations. It is acknowledged that while certain users who have very good
knowledge of a particular con�guration may obtain a similarly e�cient re�nement based on their speci�c
experience, a systematic computation methodology as AVBP+MMG3D allows to retain this e�ciency
for a large variety of ows.

Conclusion

A mesh re�nement algorithm has been proposed that improves the prediction of pressure losses in Large
Eddy Simulations of turbulent ow in swirl injectors at reasonable computational cost. The method is
based on an existing compressible LES code (AVBP) and mesh re�nement program (MMG3D). Mesh
re�nement is done only a few times (1 to 3) during a complete simulation and it uses only mean ow
information. It is performed outside the LES solver and needs no intrusive modi�cation of the solver
itself. The metric that de�nes the local mesh size is the time-averaged value of the kinetic energy

dissipation ~�. When this �eld is su�ciently well resolved, both pressure losses and velocity �elds are
correctly predicted.

The method is validated on two cases: (1) the ow through a diaphragm and (2) the ow through
an industrial swirl injector used for helicopter engines. However, the method is not speci�c to these
ows but may be applied to other ows. Results con�rm its power in these two cases and suggest that
it can be used for other LES solvers where it would bring a systematic, user-independent method to
de�ne meshes for LES tools.

We have shown that it is possible to accurately predict mean pressure losses in LES as all errors
remained below 1%. It is then possible to return to the original problem: How to predict acoustic
damping across the same elements ? In the following chapter, acoustic two-port matrices have been
measured both in experiments and in LES, on meshes which have been adapted for the mean pressure
loss. We will demonstrate that using such matrices in ROM can be su�cient to predict acoustic energy
damping in academical con�gurations.
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Chapter 5

Measurement of acoustic two-port
matrices: application to acoustic losses
prediction

This chapter focuses on the acoustic dissipation in Acoustically Compact Elements (ACEs). As shown
in the previous chapters, there is a link between this dissipation at low frequency and the steady pressure
drop: the limit of the Tup term in the primitive transfer matrix is linked to the pressure loss coe�cient
ξ (see equation 3.3.5, which will be validated in this chapter). As a consequence, a method has been
provided in chapter4 in order to accurately predict the steady pressure drop in LES by using automated
mesh re�nement. The meshes used to predict the pressure drop are used here to measure acoustic
two-port matrices in LES, which will be compared to experimental measurements.

Such acoustic two-ports are then introduced in a Reduced Order Model (ROM) of the PREINTRIG
workbench and acoustic modes identi�ed with the RootLocker solver (see chapter 2) are compared to a
measure of the damping in the experiment.

Introduction

Acoustic dampers are used in combustion chambers in order to absorb sound. Indeed, including acoustic
dampers such as perforated liners can prevent the onset of thermo-acoustic instabilities. Early works
intended to model some simples ACEs such as perforated plates [20, 115] and provided analytical
expressions for the primitive transfer matrix as shown in section 3.1.2.

At the same time, measurements were performed on experimental workbench by using the two-
microphone technique originally developed by Seybert et al [170]. In this method, acoustic pressure
measurements are performed at two di�erent locations and acoustic wave amplitudes are retrieved by
assuming one dimensional propagation. Later on, this method was improved by increasing the number of
inputs: the multi-microphone technique [171, 21] combines the time traces of more than two microphones
to lower the inuence of additional perturbation such as turbulence.

Similarly, CFD data can be used to retrieve acoustic two-ports [82, 22, 172, 23, 173]. In this case,
a new method, based on the inversion of the Wiener-Hopf equations [82] permits to obtained in only
one or two simulations the complete two-port of an ACEs, that is to say for all frequencies of interest.
However, this method implies to use a broad-band signal of excitation and it is thus very complicated
to assess the linearity of the response1.

This chapter is constituted as follows. The method dedicated to measure acoustic two-port in
both experiments and simulations is detailed in section 5.1. The two-port matrices are then presented

1The two-port matrix formalism is valid as long as the system studied is linear.
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in section 5.2: a comparison with existing models is provided with the diaphragm while interaction
between hydrodynamical and acoustic modes is investigated in the case of the swirl injector. Finally,
acoustic losses are scrutinized in section 5.3 where the damping measured in the experiment in the case
of the diaphragm is compared to a dedicated ROM resolution, which is built upon both measured and
modelled two-port matrices.

5.1 Measurement of two port matrices

In this section, a method used to retrieve the acoustic two-port matrix of an ACE from both experimental
and numerical measurements is described. Taking a look at equation 3.1.1, it is clear that the two-port
matrix of an ACE can be retrieved by using a set of at least two independent states [170] where
both acoustic pressure and velocity are recorded upstream and downstream of the element. As long as
experiments are concerned, direct measurements of acoustic velocity �elds are not easy as they imply the
use of fragile hot wires which are more intrusive than microphones located at the walls of the workbench.
Concerning simulations, acoustic velocities are not more convenient to use: they are subject to acoustic
boundary layers close to the walls.

It is easier to �rst reconstruct the scattering matrix by using the Riemann invariants (A+,A−)
associated with the one-dimensional planar acoustic waves. These quantities may be retrieved by using
a multi-microphones technique [174, 171, 175]. The two following steps are then applied to retrieve a
scattering matrix:

• First, the Riemann invariants upstream and downstream of the ACE are reconstructed for each
frequency.

• Then, the scattering matrix is obtained by using a set of at least two linearly independent states.

5.1.1 Acoustic wave decomposition

Under the assumption of harmonic signals, let aj and φj , j ∈ J1, JK designate the respective amplitudes
and phases of each acoustic pressure signals and J , the number of available microphones. The acoustic
pressure at position zj writes:

p′(zj , t) =R(~p(zj)eiωt) =R(ajeiφj+iωt) (5.1.1)

where ~p is the complex amplitude of the acoustic pressure. The determination of amplitude and phase
of each temporal signals is performed by a non-linear sinusoidal regression. The Levenberg-Marquardt
algorithm is used to minimize the following expression:

�Gj = ∫
tend

tinitial
∣sj,estim − p′j(t)∣2 dt (5.1.2)

where sj,estim = aj,estim cos(ωt + φj,estim). The one-dimensional acoustic decomposition introduced in
chapter 1 is employed:

~p(zj) = ajeiφj = A+e−ik
�zj +A−eik

�zj (5.1.3)

ρ0c ~u(zj) = A+e−ik
�zj −A−eik

�zj (5.1.4)

where ρ0 is the mean density and c the speed of sound while the origin z = 0 is taken at the center
of the ACE. After estimating aj and φj at di�erent locations zj , a system of J equations is formed to
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determine the Riemann invariants A+ and A−:
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(5.1.5)

Contrary to the two-microphone method described in [170], which are ill-conditioned for certain fre-
quencies [176], the multi-microphones method rely on the inversion of an over-determined system of
equations. The latter system is solved by using the least square method:

~x = (F †F )−1F †b , ε = ∣F ~x − b∣/∣b∣ (5.1.6)

where F † is the hermitian matrix of F. Using J > 2 microphones has multiple advantages [21, 171], such
as reducing the impact of errors induced by turbulence or providing an estimation of the uncertainty
ε. This method is also less sensitive to uncertainties associated with the locations of the sensors. In
the experiment, the microphones are located at the side of the rig, as shown in Fig. 3.10 and are not
equally spaced as explained in appendix D.

Finally, Mach e�ects may be taken into account by modifying the up and down-travelling wave

numbers [177, 175] k+ = ω/c
1+M and k− = ω/c

1−M . However, only cases where M < 0.01 will be investigated
in the present chapter so that these corrections are neglected.

5.1.2 From the acoustic waves to scattering matrix

The acoustic waves complex amplitudes notations (following the notations introduced in chapter 1)
obtained upstream and downstream of the acoustic element are summarized in �gure 5.1.

h

R

zz = 0

A+
u

A−
u

A+
d

A−
d

Figure 5.1: Description of the acoustic waves. The origin of the z axis is located at the center of the
ACE (thickness h). The waves amplitudes A+,−

u,d are valid at z = 0.

Following the work of Holmberg [175], the scattering matrix (equation 3.1.3) is reconstructed. Let
N denotes the number of linearly independent datasets available. The following system of equations is
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solved to obtain the scattering matrix:
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(5.1.7)

The complex system of equation 5.1.7 is over-determined when N > 2. By applying a least square
method, one gets an estimation of s and its associated relative error:

~s = (G†G)−1G†a , errrelative = ∣∣G~s − a∣∣/∣∣a∣∣ (5.1.8)

The N = 2 case has already been described by Fischer et al [21]. However, using more than two linearly
independent states allows to estimate the uncertainty associated with each matrix [178]. In the following
of the chapter, all experimental matrices have been obtained with at least four di�erent states which
were represented in Fig. 3.10 while two-port matrices extracted from simulations were obtained with
two states.

5.2 Two-port Matrices

In this section, we present two-port matrices obtained in both experiments and LES for the diaphragm
case and two-port matrices from experiments only for the swirl injectors cases S1 and S2.

5.2.1 Diaphragm case

The diaphragm introduced in section 3.3.2 is �t in the junction between ducts 2 and 3 (see Fig. 3.6).
The scattering matrices of the diaphragm are shown against HM and MHM models2 in Figs. 5.2.

Experimental results are displayed with error bars (see equation 5.1.8) from 20 up to 1000 Hz while
LES results are provided for 6 discrete frequencies. LES have been carried out by Franchine Ni at
CERFACS. The setup of the LES is described in [65].

First, experimental and numerical data are in excellent agreement: both gains and phases are well
reproduced. This proves that LES data can be used to retrieve acoustic two-port matrices. Second, as
the ratio between the radius and the thickness of the diaphragm is small, both models HM and MHM
provide similar results. However, small di�erences exist for low frequencies (f < 200 Hz) where the
phases of the measured reection coe�cients do not properly match the models.

Concerning experimental data, the four con�gurations used to retrieve the two-port matrices provide
accurate results (errors remains below a few percent). Strong vibrations have been observed in the
experimental rig in the 500-600 Hz frequency range. These may explain the important uncertainties
observed in this region.

Finally, one may observe that both transmission tu td and reection ru rd coe�cients are equal. This
stems from the conservation of the acoustic ow-rate ~q across the ACE: the two-port is completely

2The two uniform models described in chapter 3 have not been added to the graphs because they provide
results very similar to the corresponding Howe models.
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Figure 5.2: Scattering matrix of the diaphragm at Uu = 0.344ms−1. Top: modulus, bottom: phases.

characterized by the Rayleigh conductivity as shown in equation 3.1.8 for the primitive transfer matrix.
The corresponding scattering matrix can be deduced:

S = 1

1 − ξ
( 1 −ξ
−ξ 1

) (5.2.1)

and is symmetrical with both transmission coe�cients equal to each-other. Acoustic primitive transfer
matrices can be deduced from scattering matrix by using equation 3.1.4. The corresponding two-ports
at the same ow-rate (Uu = 0.344 m.s−1) are displayed in Fig. 5.3.

One can notice that diagonal terms Tuu and Tpp are equal to one which is the expected behavior
for an ACE placed in a constant section channel as stated in equation 3.1.8. The Tup term is more
interesting as it is the only one which varies with frequency as shown theoretically in section 3.1.2.1 by
equation 3.1.8: Tup = 2ζ . Its phase is in good agreement with both HM and MHM models, especially
for frequencies above 400 Hz. However, its modulus is sightly over-estimated by both models.
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Figure 5.3: Transfer matrix of the diaphragm at Uu = 0.344ms−1. Top: modulus, bottom: phases.

The inuence of the mean ow is then investigated experimentally through the Tup term for three
di�erent ow-rates: Uu = 0.172, 0.344, 0.516 m.s−1 and the results are gathered in Fig. 5.4. Moreover,
experimental measurements of mean pressure losses shown in chapter 4 have also been recast as trans-
fer coe�cient and displayed in Fig. 5.4. The link between transfer and pressure loss coe�cient was
established in equation 3.2.6 and is recalled here for the sake of clarity:

T∆P = Uu
c
ξXP (5.2.2)

where T∆P corresponds to the equivalent transfer coe�cient associated with a mean pressure drop. Two
important features are observed:

• In the low frequency limit, the Tup term goes to a constant value which is in good agreement
with the mean pressure drop experimental measurement detailed in section 4.2. These results are
also coherent with the uniform model (approximation of the Howe model HM) which predicts a
linear dependency to the bulk upstream velocity Uu.

• In the high frequency limit, the three ow-rates provide similar results: the slope is independent
of the mean ow-rate and the gain shift between the three curves remains small. This behavior
is predicted by the uniform model UM1 but also by both HM and MHM models.
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Figure 5.4: Gain of the Tup term measured experimentally for three di�erent ow-rates. The horizontal
dashed lines corresponds to the experimental measurement of pressure losses obtained in chapter 4 and
recast into transfer coe�cient

In this section, we showed that acoustic two-ports measured in both experiments and simulations
exhibited excellent agreement. Moreover, the results obtained are coherent with existing models and
the uncertainties remains very low below 5% for all frequencies. As a consequence, the following study
of an industrial swirl injector is conducted only in experiments.

5.2.2 Swirl injectors

The study of the swirl injectors is more demanding. The ow is much more turbulent and the workbench
becomes noisy. As a consequence, the acoustic forcing level must be increased to maintain a correct
signal to noise ratio. For instance, the S1 injector generates noise at a frequency which scales with the
mass ow rate as shown in Fig. 5.5, left.

S1 S2

Figure 5.5: Amplitude of acoustic uctuations as a function of owrate and frequency for the injectors
S1 (left) and S2 (right). The addition of a cylindrical rod in the S2 injector diminishes the noise when
compared to the S1 injector.

It has been observed experimentally that placing a small object at the center of the outlet plan of
the swirl injector S1 lowered the sound self generated by the system. This discovery led to the design of
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the swirl injector S2 on which a cylindrical rod has been inserted as shown in Fig. 3.8, right. The mass
ow / frequency map of this new injectors is displayed in Fig. 5.5, right: much less noise is generated.

5.2.2.1 Injector S1

The swirl injector S1, shown in �gure 3.8 is placed in the junction between ducts 2 and 3 as sketched in
�gure 3.6 and the corresponding scattering matrices obtained at three di�erent ow-rates: Uu[m.s−1] ∈
[0 , 0.172 , 0.344] are shown in �gures 5.6, 5.7 and 5.8 respectively.

Figure 5.6: Amplitude and phase of the scattering matrix of the swirl injector (S1) at rest. (Uu =
0 m.s−1 )

As expected for the passive system constituted by the swirl injector at rest, all reection and
transmission coe�cients are below unity except for frequencies below 50 Hz. Moreover, transmission
and reection coe�cients from upstream and downstream are identical in term of magnitude but a small
di�erence is observed in the phase of ru and rd as the frequency is increasing. This prove that the swirl
injector is not fully compact, as predicted in equation 3.3.4. The uncertainties remain small except in
the 500 − 600 Hz frequency range where the rig itself su�ered from mechanical vibrations. This region
of important uncertainties is also observed for the diaphragm.

Figure 5.7: Amplitude and phase of the scattering matrix of the swirl injector (S1) at intermediate
ow rate. (Uu = 0.172 m.s−1 )

84



Concerning the intermediate ow-rate (Uu = 0.172 m.s−1), a sharp peak in transmission and reection
coe�cients is observed at 165 Hz. For frequencies above 200 Hz, these coe�cients are similar to the
one measured at rest. Uncertainties in the region of the peak are small enough to ensure that it is a
physical e�ect and not an artefact. Phases are also a�ected in the peak region: They are shifted by
�φ ≈ π when compared to the values measured in the case at rest.

Figure 5.8: Amplitude and phase of the scattering matrix of the swirl injector (S1) at higher ow
rate. (Uu = 0.344 m.s−1 )

Finally, for the highest ow-rate (Uu = 0.344m.s−1), the peak is still present but shifted up to 335
Hz which is twice the frequency observed with the previous ow-rate (165 Hz). Moreover, peaks of
reection and transmission coe�cients have di�erent amplitudes, approximately 3 and 2 respectively
and these amplitudes are also lower than the one obtained at the previous ow-rate (≈ 7).

The presence of these peaks is counter-intuitive. Indeed, they lead to acoustic energy ampli�cation,
which was not expected for a passive system. This point is investigated in section 5.2.2.3.

5.2.2.2 Injector S2: inhibiting instabilities

The injector S2 is mainly constituted of the same swirl injector, with an extra rod added on top of the
plug, in the precessing vortex core. Although not modifying in a signi�cant manner the pressure losses
(the di�erence is below 5% the the ow-rates considered here.), the presence of the rod diminishes
the acoustic noise that is generated by the swirl injector as shown in Fig. 5.5. It is thus important
to determine whether di�erences are observed in the scattering matrix of the S1 and S2 elements or
not. The modulus of the corresponding scattering matrices are displayed in �g 5.9 for the three same
ow-rates (Uu = 0, 0.172, 0.344 m.s−1).

In order to compare the injectors S1 and S2, the same excitation signals have been used to force the
acoustic waves. First, the scattering matrices of the two injectors are identical in the absence of mean
ow (see Figs. 5.9, left and 5.6). Second, when a mean ow Uu ≠ 0 is imposed, peaks in transmission
(tu, td) and reection (ru, rd) coe�cients are still observed for the injector S2 (see Fig. 5.9, center and
right) However, the amplitudes of the peaks are diminished when compared to the injector S1: for the
intermediate ow-rate (Uu = 0.172m.s−1), it decreases from 7 (Fig. 5.7) down to 2 (Fig. 5.9, center).
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0.172 m.s�1 0.344 m.s�1Uu = 0m.s�1

Figure 5.9: Amplitude of the scattering matrix for the S2 con�guration. From left to right, the three
studied ow-rates: Uu = 0, 0.172, 0.344 m.s−1

5.2.2.3 Discussion

As both scattering matrices of injectors S1 and S2 are identical in the absence of mean ow, the rod does
not modify signi�cantly the transmission and reection coe�cients of the swirl injector. Furthermore,
peaks in transmission and reection coe�cients are observed at frequencies scaling with the imposed
ow-rate. A Strouhal number may be used to characterize the peak frequencies at di�erent ow-rates:

St = fD
us

(5.2.3)

where D = 2r is taken as the diameter of the outlet rim of the injector and Us, the corresponding
bulk velocity (taken at the outlet of the swirl injector). This bulk velocity is obtained by closing a
volume-ow budget between the plenum and the outlet of the swirl injector:

St = 2(R
r
)

2 fr

Uu
(5.2.4)

where R is the radius of the plenum and r, the radius of the swirl injector outlet (see section 3.3.2
for the complete description of the swirl injectors). For the injector S1, Strouhal numbers of 0.85
and 0.86 have been obtained for the two higher ow-rates Uu = 0.172 and 0.344 m.s−1 respectively.
Furthermore, strouhal numbers are more di�cult to de�ne with a su�cient precision for the injector
S2 as the peaks are too damped, but are also roughly equal to 0.85. The constant Strouhal number is
typical of hydrodynamic instabilities which may occur in the center recirculation zone in the wake of
the swirl injector [179]. This suggests that acoustic waves interact with the hydrodynamic instability.

The acoustic wave reconstruction method only detects coherent acoustic signals. Therefore, acoustic
waves generated by hydrodynamic instabilities must be locked in phase with the external forcing. The
existence of a coupling between forced acoustic and hydrodynamic instabilities may also explain the
transmission and reection values greater than one in the peak's regions [175]. In the following, we
provide a possible scenario which can explain this behaviour.

The hydrodynamic instability results in an acoustic source term through convective to acoustic mode
conversion. This instability may be locked in phase with the forced acoustic waves for Strouhal numbers
close to 0.85, but its strength is quasi not a�ected by the amplitude of the incoming acoustic wave. It is
possible to decompose the observed SO scattering matrix into passive and active source contributions:

( A+
d

A−
u

) = SO ( A+
u

A−
d

) = S
®

Passive

( A+
u

A−
d

) + g(St)
²
Active

( α
β

) (5.2.5)
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where S stands for the passive scattering matrix of the system. The second term of the RHS of
equation 5.2.5 is an active source term. The function g peaks to unity around St = 0.85 and decreases
rapidly to zero elsewhere. α and β are the complex amplitudes of the acoustic source terms emitted
in upstream and downstream direction. The relation between the observed scattering matrix (SO) and
the source term may be retrieved by rewriting the latter as a function of the incoming acoustic waves:

( α
β

) =
⎛
⎝

α
2A�u

α
2A�

d
β

2A�u
β

2A�
d

⎞
⎠
( A+

u

A−
d

) (5.2.6)

By combining equations 5.2.5 and 5.2.6, it is possible to express the observed scattering matrix SO as
a combination between the passive scattering matrix and the source term:

So =
⎛
⎝
tu + α

2A�u
rd + α

2A�
d

ru + β
2A�u

td + β
2A�

d

⎞
⎠

(5.2.7)

As exhibited in equation 5.2.7, both observed transmission and reection coe�cients may be greater
than one although their passive contributions (tu, rd, ru, td) remain bounded below unity. Such situations
may occur when the amplitude of excitation is lower than the source term strengths α and β. Despite
the non uniqueness of the decomposition performed in equation 5.2.6, this explain the existence of
transmission and reection coe�cients greater than unity.

In order to validate this model, it would be necessary to measure the observed scattering matrix at
a di�erent level of forcing excitation or to use system identi�cation (SI) methods as recently described
by Sovardi [180].

5.3 Acoustic losses: a detailed comparison

The objective of this section is to prove that the acoustic modes of academic systems containing one or
more ACEs can be predicted by Reduced Order Models (ROM) built on top of acoustic two-port matri-
ces. As the two-port matrices of the swirl injectors S1 and S2 were subject to acoustic/hydrodynamic
instabilities, it has been decided to focus only on the diaphragm case.

XP

LES Two-port

ROM +
RootLocker

Helmholtz
solver

Validation

XP

LES
ACE Measure

Model

Prediction

Network / 3D
acoustic

I II III

Figure 5.10: Work-ow of the comparison between predicted and measured acoustic damping. The
paths denoted by the solid black arrows correspond to the work presented in the manuscript. The paths
denoted by the gray dashed arrows have been investigated in [65]

The work-ow of this section is synthesized in Fig. 5.10 where we follow the paths denoted by black
solid arrows: �rst, two-port matrices (modelled or measured in the experiment) are obtained (I, see
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section 5.2) and then introduced in a ROM (II, see equation 5.3.1), which solutions contain both the
tone (Rf) and the damping rate (If). In the same time, measurements of damping rates are performed
in the experimental rig PREINTRIG by using an harmonic response method described in [181]. (III,
see section 5.3.4). These results are then compared in section 5.3.4 and a good agreement is observed.

The other dashed paths introduced in Fig. 5.10 have been reported by Franchine Ni [65]. LES can
be used to measure two-port matrices (see Fig. 5.2) as well as damping rates. The two-port matrices
are then integrated in a 3D Helmholtz solver instead of a ROM.

5.3.1 ROM of the PREINTRIG rig in the P-ROM configuration

As detailed in section 3.2.1, the damping of an acoustic mode is a function of the entire network
description and not only the ACE. For instance, an acoustic mode with a velocity node at the location
of a diaphragm will not be damped. Conversely, acoustic modes can be computed numerically from the
knowledge of scattering matrices and boundary conditions [175] in simple con�gurations by solving a
ROM.

The ush mounted loudspeaker con�guration used to measure the acoustic two-port is not suitable
for the measurement of natural acoustic modes. Indeed, a quantitative comparison with a ROM would
require an accurate modelling of the loudspeaker impedance, which is not available. An other con�g-
uration is used instead: the forcing system is moved to the side of the main duct and connected by a
small aperture. The corresponding con�guration is displayed in Fig. 5.11.

Figure 5.11: sketch of the PREINTRIG rig con�guration used for acoustic modes measurement.

As the loudspeaker is displaced at the side of the main duct, a precise knowledge of its impedance
is no more needed. The occurrence of unwanted acoustic modes, which arise from the coupling between
the loudspeaker system and the main duct can be avoided by using a small connection between the
loudspeaker casing and the main system {T3 + T2}. A detailed proof of this assumption is provided
in appendix B in which experimental measurements are compared to a ROM of the complete system.
This con�guration is denoted as "P-ROM" in the following of the manuscript.

A sketch of the P-ROM con�guration in which the diaphragm is inserted is displayed in Fig. 5.12.
The acoustic end corrections δin, δout will be determined experimentally in section 5.3.3.

The corresponding ROM is retrieved by following the method described in chapter1:

det(RL2+δinT (ω)RL2 (
Rinlet

1
) ,( 1

Routlet
)) = 0 (5.3.1)

where T (ω) is the transfer matrix of the diaphragm which can be either measured or modeled. For the
sake of clarity, fully reective boundary conditions are applied at both inlet and outlet: Rinlet = 1 and
Routlet = −1.
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Figure 5.12: Sketch of the PREINTRIG rig in the P-ROM con�guration: The forcing system
{Loudspeaker + casing} is displaced at the side of the rig.

5.3.2 Experimental damping measurement

Acoustic modes are retrieved by forcing the test rig at di�erent frequencies using a loudspeaker located
at the side of the rig (see Fig. 5.11). The acoustic waves complex amplitudes A+, A− are measured in
upstream and downstream ducts by using the multi-microphone technique described in section 5.1.1.
Focusing at the acoustic waves amplitudes permits to directly observe the acoustic modes from inside
of the workbench: a peak in acoustic wave amplitude corresponds to an acoustic mode.

A model which takes into account damping and assumes that the system behaves like an oscillator
driven by an external forcing is used to �t the experimental data around a mode and permits to retrieve
both its tone and damping rate [182]. This method has been described in detail by Mejia et al [181] to
characterize the damping/growth rate of a laminar burner and we only focus here on its application.
The model used for the acoustic wave amplitude around a mode writes:

∣A�(ω = 2πf)∣2 = g

(ω2
0 − ω2)2 + 4(νω)2

, f ∈ R+ (5.3.2)

where ω0/(2π) is the real part of the complex frequency of the acoustic mode and ν, its damping rate.
It is important to note that the gain g is not relevant to characterize the acoustic modes and will not
be assessed in the following of the study. Indeed, this parameter is proportional to the forcing level,
which is chosen small enough in order to avoid the occurrence of non-linear dissipation.

An example of curve �tting performed on experimental data is shown in Fig. 5.13. One can notice
that the model perfectly �ts the data.

Measurements of acoustic modes have been conducted for two di�erent setups:

• The single duct con�guration has been examined (Duct Con�guration). In this case, the di-
aphragm has been replaced by an element with the same inner radius as both upstream and
downstream ducts, leading to a constant cross section along the test rig. In this case, no dissipa-
tion is expected.

• the diaphragm con�guration has then been studied at two di�erent ow-rates: one case at rest,
when no dissipation is expected across the diaphragm3 and the other at an intermediate ow-rate:
Uu = 0.344 m.s−1.

3In the absence of the mean ow, only non-linear dissipation is expected.
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Figure 5.13: ∣A+
d ∣

2 as a function of frequency for the diaphragm con�guration. The model is displayed
in red solid line. The optimal values are: f0 = ω0/(2π) = 451 Hz and ν = 18.7 [Hz].

5.3.3 Evaluation of the acoustic end corrections with the duct con-
figuration

It is �rst important to characterize the acoustic boundary conditions at the inlet and the outlet of the
rig. This is done here without diaphragm to concentrate on end e�ects. The inlet is constituted of
eight radial injectors equally spaced on its contour at 1 cm of a closed bottom, while the outlet is left
opened. Both boundaries may be accurately modelled by taking into account acoustic end corrections.
Such corrections are obtained in two steps:

• Characterization of the rig with a closed outlet where the di�erence between theory and experi-
ment is caused by the inlet end correction δin.

• Characterization of the rig with an open outlet. The di�erence between theory and experiment
is due to both inlet and outlet end corrections (δout) and these e�ects may be separated.

In the �rst case (closed inlet, closed outlet, zero mean ow), experimental modes are compared to
the theoretical ones (adapted from equation 1.4.12):

fk,cc =
c0

2(L + δin)
k , k ∈ N (5.3.3)

where L = L3+L2 = 0.9 m denotes the total length of the rig constituted by the two ducts T3 and T2. The
inlet end correction δin is obtained by minimizing the distance between theoretical and experimental
acoustic modes as shown in Fig. 5.14. It is estimated to δin = 12 mm and remains small when compared
to the duct radius R = 40.5 mm.

An open outlet is then used for the following studies: this boundary condition is easier to use and
characterize at non zero ow-rates. In this case, the quarter wave family of acoustic modes is expected
in the duct con�guration with a closed inlet (~u = 0) and an opened outlet (~p = 0). The same technique
used to obtain the inlet end correction is used to determine the correction associated with the open
outlet:

fk,total =
c

4(L + δin + δout)
(1 + 2k) , k ∈ N (5.3.4)

where δout refers to outlet end correction. The comparison between theoretical and experimental fre-
quencies is shown in Fig. 5.15. The value found for the outlet end correction, δout = 25 mm can be
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Figure 5.14: A+
u as a function of frequency for the closed end con�guration. Vertical lines correspond

to the modes of equation 5.3.3, taking into account or not inlet end correction.

scaled by the radius of the duct: δout = 0.62r. Such a ratio is in good agreement with existing studies
of unanged, opened end acoustic correction below the cut-o� frequency [15, 14].

Finally, the two end corrections are supposed to be independent of the mean ow. These values are
kept constant for the diaphragm case as they only rely on the boundaries.

Figure 5.15: A+
u as a function of frequency for the opened end con�guration. Vertical lines correspond

to the modes of equation 5.3.4, with or without outlet end correction. Figures 5.15 and 5.14 exhibit
sharp peaks, compatible with very small dissipation as expected for this case.
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5.3.4 Damping comparison in the diaphragm case

It is now possible to focus on the diaphragm con�guration, where acoustic dissipation caused by the
coupling with hydrodynamics is expected (see section 3.2.2). Transfer matrices from experiments and
model (UM1) are introduced in the ROM equation 5.3.1 which solutions are obtained with the numerical
solver RootLocker (see chapter 2). The latter are then compared with the acoustic modes obtained in
the experiments.

We begin by a comparison in the absence of a mean ow. In this case, the diaphragm does not
dissipate acoustic energy and the losses are only due to radiation at the boundaries. The comparison
between experimental (upstream measurement) and predicted acoustic modes frequencies is shown in
Fig. 5.16. As already mentioned for the duct con�guration, uncertainties remain below one percent for
all frequencies. Most peaks are well predicted. However, the �fth analytical mode at 736 Hz predicted
by the ROM is not observed in experimental data. Conversely, the missing mode is retrieved in the

Figure 5.16: A+
u (upstream) as a function of frequency for the diaphragm con�guration. Dashed lines

correspond to analytical modes obtained with the UM1 model in the in�nity Strouhal limit.

section located downstream of the diaphragm as shown in �g 5.17. Although present, this mode seems
to be over damped.

Frequencies and damping rates obtained experimentally from equation 5.3.2 are displayed in ta-
ble 5.1. These values have been extracted upstream and downstream of the diaphragm. The frequencies
are captured with a precision below 1 Hz although the experimental frequency step was set to 4 Hz.
Damping rates measured upstream and downstream are consistent which validate the method. Finally,
results for the �fth acoustic mode are only displayed for the downstream section as it was not observed
upstream of the diaphragm.

The damping rates of the experimental acoustic modes are not constant. These losses could be
predicted at the price of taking into account the coupling with the loudspeaker system, linear losses
caused by laminar dissipation of acoustic energy in boundary layer [183], or even non linear vortex
shedding [20] which is out of the scope of this study. Once the acoustic modes have been characterized
at rest, further studies may be conducted for non zero ow-rates.

A comparison between experimental and predicted acoustic modes obtained for Uu = 0.344 m.s−1 is
displayed in Fig. 5.18.
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Figure 5.17: A+
d (downstream) as a function of frequency for the diaphragm con�guration. Dashed

lined corresponds to analytical modes obtained with the UM1 model in the in�nity Strouhal limit.

Parameters M1 M2 M3 M4 M5 M6

fu 87.7 266.9 371.5 605.2 x 898.7

fd 87.4 267.2 371.0 605.2 751.6 898.5

νu 31.9 13.8 34.3 19.4 x 22.7

νd 30.1 12.6 35.1 18.6 (58.2) 22.3

Table 5.1: The frequency and damping obtained experimentally from equation 5.3.2 for upstream
and downstream sections. Values between parenthesis must be taken with cautious as the curve �tting
procedure gave poor correlation results.

Acoustic mode prediction has been performed by solving ROMs built upon modeled and measured
transfer matrices. The UM1 analytical model, which is equivalent to the Howe model and do not
take into account the diaphragm thickness is �rst compared with the experimental results: some of
the acoustic modes are well recovered and other not. For instance, there is an error of 30 Hz for the
mode M3 at 380 Hz. Second, a global synthetic model is used to �t the transfer matrix coe�cients for
frequencies ranging between 50 and 1000 Hz. In practice, only the parameter ξ is �tted:

ξ = ip1(f + p2 + eip5
p3

f + p4
) (5.3.5)

and the corresponding values are p1 = 0.0028, p2 = −229.0 ,p3 = 44800, p4 = 62.6, p5 = 0.89. This method
provides more accurate results than the UM1 model as shown in Fig. 5.18.
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Figure 5.18: ∣A+
d ∣

2 as a function of frequency for the diaphragm con�guration at Uu = 0.344m.s−1.
vertical lines denote ROM resolution with UM1 model (dashed blue lines) and experimental transfer
matrices (solid red lines).

As all the real part f of the complex frequencies are accurately predicted by resolution of the ROM
based on the experimental two-port. It is now possible to investigate on acoustic losses. Comparison
between experimental and predicted acoustic modes is shown in table 5.2 for Uu = 0.344m.s−1. One
can �rst notice the good agreement for the real part of the frequencies. Except for the �rst mode,
which is over damped for this con�guration, all relative errors are below two percent. Concerning the
acoustic losses, the damping rate of modes M1 and M5 could not be measured properly as they were
over-damped (see �g 5.17) In order to take into account the other sources of dissipation occurring in the

Parameters M1 M2 M3 M4 M5 M6

fxp 86.6 268.6 390.7 606.5 754.2 897.3

fpredicted 81.8 268.1 384.2 611.5 747.5 903.3

νxp x 26.6 103.3 18.9 x 25.6

νxp − νxp,Uu=0 x 13.4 69.0 -0.5 x 3.3

νpredicted x 13.4 96.8 9.7 x 5.4

Table 5.2: Frequencies and damping rates obtained from equation 5.3.2 for upstream and downstream
sections compared with numerical resolution of equation 5.3.1
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rig, it is possible to subtract the damping rates measured at rest to the one at obtained at Uu = 0.344
m.s−1. Although sightly overestimated, the predicted (ROM (TXP)) damping rates scale well with the
experimental measurements. For instance, the di�erence of attenuation between modes M3, which is
very damped and mode M6, which is barely damped at this ow rate, is well recovered.

5.4 Conclusion

An e�cient method has been presented to measure two-port matrices in both experiments and simu-
lations in non reacting cases. The method is stable and provide uncertainties for both acoustic waves
and two-port matrix coe�cients by using the multi-microphone / multi-con�guration technique. Once
experimental two-port matrices are available for a given ACE, it is possible to study acoustic modes by
solving ROMs. Academical con�gurations are tested here to assess the quality of the prediction of both
tone and damping of acoustic modes: a good agreement is observed.

Moreover, the interesting case of swirl injector two-port matrix has been reported. However, the
coupling between acoustic and hydrodynamical waves made it impossible to use the injector for an
acoustic dissipation study.

Finally, this chapter closes the second part of the manuscript concerning acoustic dissipation and
its implication in ROMs. In the following part, the coupling between acoustic waves and laminar ames
anchored on a cylindrical rod is investigated for di�erent temperature regimes.
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Part III

Influence of flame holder temperature
on combustion instabilities

This part is dedicated to the study of ame holder temperature inuence on combustion instabilities.
The objective is to investigate this fundamental phenomenon in a two-dimensional academic burner:
the INTRIG rig, which uses a laminar, premixed air/methane V ame under atmospheric conditions.
This part is decomposed into four chapters. In chapter 6, the experimental burner as well as the
corresponding numerical set-up of the DNS are introduced. Flame anchoring mechanisms observed in
two distinct operating regimes: a cooled ame holder and an un-cooled one are reported in chapter 7.
A third case of interest is observed in the limit of transparent cylinder (low emissivity) where the
ame stabilizes upstream of the ame holder. The inuence of the wall temperature on combustion
instabilities is assessed by the mean of FTF measurements for the three aforementioned con�gurations
(chapter 8). Finally, these FTFs are used as input of a detailed ROM of the INTRIG burner presented
in chapter 9.
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Chapter 6

The INTRIG burner: experimental and
numerical descriptions

The INTRIG burner was built with the support of the ERC Intecocis project (http://intecocis.
inp-toulouse.fr/en/home.html). It is dedicated to the inuence of heat transfer on the ame/acoustic
coupling for a premixed, laminar, V ame attached on a cylindrical rod. Both experiments and numerical
simulations (DNS) are used in this study. The objective of this chapter is to describe the INTRIG burner
and the associated set-up used for the DNS. Simulations have been carried out with 3 di�erent chemical
mechanisms for methane/air ames (from 6 to 19 species) and a coupled heat transfer / ow resolution
to compute not only the ow but also the temperature within the cylindrical rod for both the cooled
and un-cooled cases.

Introduction

Among all the walls present in a chamber, ame holders play a special role because they control the most
sensitive zone of the chamber: the place where the ames are anchored. Any temperature change of the
ame holder will induce a change of position for the ame roots and therefore a change in stability and
e�ciency. The coupling mechanisms between heat transfer within ameholder and ame stabilization
have not been analyzed in detail yet. In a series of recent papers [184, 42, 185], the MIT group has
numerically studied the stabilization of premixed ames on square ame holders and shown that the
location of the ame roots but also the blow-o� limits were strongly a�ected by the temperature of the
ame holder.

The present chapter focuses on a similar question: which di�erences in both ame anchoring and
ame/acoustic coupling are observed when the temperature of the ame holder varies from a low
(typically 300 K for a ame holder which will be water cooled) to a high value (700 K for an uncooled
solid ame holder). In the present chapter, we �rst focus on the INTRIG burner, which is described
in section 6.1. The setup of the DNS is described in the following sections. For the sake of clarity,
the setup of the DNS is detailed only for the un-cooled cylinder case. However, all results presented
here were also used to setup the cooled cylinder case. The choice of the geometry and the meshes are
detailed in section 6.2 while the heat transfer coupling methodology between the solid blu�-body and
the reactive ow is described in section 6.3. Finally, the choice of the chemical kinetic scheme, which
appeared to be a key ingredient in the DNS, is detailed in section 6.4.
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6.1 INTRIG workbench

Following the work of Mejia et al [52] concerning the inuence of heat transfer on the ame dynamics,
it has been decided to design a new laminar burner called INTRIG, in which heat transfer could be
monitored precisely. The experimental rig is shown in Fig. 6.1: a lean premixed methane/air V-ame
is stabilized over a steel cylindrical blu�-body (radius of r = 4 mm).
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Figure 6.1: Transverse cut of the burner. The length of the combustion chamber can be varied from
0.1 up to 0.35 m.

The burner has a constant cross section of h = 34 by l = 94 mm so that the ame remains two-
dimensional, a very interesting property for the DNS. The operating conditions are given in Tab. 6.1. In
these conditions, the ame is steady for all cases (even if it exhibited unsteady K�arm�an Street vorticies
for non reacting ow) and the power of the burner is 7 kW for � = 0.75 and ub = 1.07 m.s−1. Individual
mass ow meters are used to control air and methane ow rates. Fuel and oxidizer are premixed before
entering the injection chamber though six holes. Glass wool, small glass balls and two honeycombs
panels are used to laminarize the ow.
The ow passes through a water-cooled plenum to ensure a constant fresh-gases temperature. Hot wire
measurements downstream of the plenum show that the ow is laminar: the uctuation level remains
below 1% everywhere in the chamber. The mean velocity pro�le, measured 35 mm upstream of the
cylinder, is displayed in Fig. 6.2.
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Figure 6.2: Comparison between experimental measurement and �t for the inlet velocity pro�le
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As expected, the velocity pro�le is still at as the plenum is not long enough to obtain a Poiseuille
velocity pro�le after the glass balls. A power law �t has been performed on these data to provide an
inlet boundary condition for the DNS:

u(y)
ub

= n + 1

n
(1 − V2y

h
V
n

) (6.1.1)

where the only �tting parameter is n, which is equal to 6 in this case. After the plenum, the ow
enters the combustion chamber where the ame holder is located. Two di�erent blu�-bodies have been
used to stabilize the ame. The �rst one is a cooled steel cylinder (Fig. 6.3, left) maintained at 285
K by a 37 g.s−1 mass ow rate of cooling water. The second ame holder is a solid steel cylinder,
which has exactly the same external geometry as the cooled one (Fig. 6.3, right). In the following,
these cases will be denoted as CBB (Cooled Blu�-Body) and UBB (Uncooled Blu�-Body) respectively.
Finally, the combustion chamber has a quartz window in the front, and one on each lateral side wall,
for visualization. Flames are imaged on an intensi�ed PCO-Sensicam camera equipped with a CH∗

narrow band-pass �lter and a f/16 180 mm telecentric lens [186] (Fig. 6.3).

Name Quantity Value
� equivalence ration 0.75
ub bulk velocity 1.07 m.s−1

sl laminar ame speed 0.24 m.s−1

Tu injection temperature 292 K
Tadia adiabatic ame temperature 1920 K

Table 6.1: Operating conditions for the CBB and UBB cases.
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Figure 6.3: CBB: cooled blu�-body (left) and UBB: uncooled blu�-body (right). Experimental �elds
of CH∗ are displayed for the two cases.

In the UBB case, the full cylinder is attached on only one side of the combustion chamber. On the
other side, there is a gap of approximately 3 mm between the cylinder and the quartz window when the
rig is cold. This gap drops to 1 mm at steady state during ame runs because of thermal expansion.
The ame holder temperature has been measured with a K-type thermocouple: TUBB

cyl = 670 ± 40 K. A
temperature di�erence of about 70 K has been measured between the two extremities of the cylinder.
This corresponds to a gradient of ∂T /∂x ≈ 750 K.m−1. The corresponding heat transfer is below 2 W
so that axial heat ux is not taken into account in the DNS.
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In the CBB case, the temperature elevation of the water used for cooling is equal to �T = 0.15±0.05
K so that the cooling water temperature can be assumed to be constant. It leads to a total ux taken
from the ame �xp

s→w = _mCp�T = 24 ± 8 W .
The thermal properties of the steel used in both UBB and CBB cases are recalled in Tab. 6.2.

The emissivity of the blu� body is directly linked to its surface state. In the present experiments, the
blu�-bodies are oxidized so that an emissivity of ε = 0.9 is retained. The e�ects of ε are discussed using
DNS in chapter 7. Simulations (DNS) of the INTRIG burner have been planned in the early stages

Material ρcp [K−1m−3] λ [W /m/K] ε
35NCD16 3.5 106 32 0.2 - 0.9

Table 6.2: Thermal properties of the steel used for the blu�-bodies. The emissivity ε ranges from 0.2
for polished surfaces to 0.9 for oxidized surfaces.

of its conception: the rig is designed by taking into account numerical simulations requirements. For
example, the ow remains two-dimensional and steady, which eases the computations. Moreover, no
sudden change of section occurs in the vicinity of the ame holder to avoid sources of acoustic losses.
The setup of the DNS is described in the following sections focusing on the UBB case.

6.2 Flow solver

The Navier Stokes equations are solved with the AVBP solver using a third-order scheme for spatial
di�erencing on a two-dimensional hybrid mesh and an explicit two-step scheme for time advancement
[187, 188]. The NSCBC [11, 188] formulation is used for the boundaries.

This ow solver is particularly well adapted to study thermo-acoustic problems on large unstructured
meshes. Three chemical schemes have been tested from 6 to 19 species. Details about the chemical
kinetics are provided in section 6.4. Here, AVBP is used as a DNS solver which means that no LES
models nor ame thickening are used.

Studying anchoring mechanisms of the laminar ame does not require to simulate all the geometry
of the INTRIG burner. Indeed, only the region close to the blu�-body must be simulated accurately as
long as a correct velocity is prescribed at the inlet (as shown in Fig. 6.2). Simulating only a portion of
the ame has two advantages:

• Reduction of the computational cost of the simulation. A small cost allows to run parametric
studies.

• Suppression of combustion instabilities as the unsteady heat release is generated close to the
external boundaries, where the ame touches the walls (see section 8).

As a consequence, the geometry used in this chapter as well as in chapter 7 starts 35 mm upstream of
the rod and ends 50 mm after. The size of the �ner cells is �xed to 70 µm. This is enough to correctly
resolve the ame front. The ame thickness is de�ned by:

δth =
Tadia − Tu

max (dT /dx)
(6.2.1)

For a methane/air premixed ame at � = 0.75 and with Tu = 292K: δth = 580 µm so that at least 8
cells are obtained in the ame region. At this resolution, all transported species are accurately resolved
across the ame front. The mesh size of 70 µm also allows to capture both dynamic and thermal
boundary layers along the cylinder. The thermal boundary layer thickness at the stagnation point is
Lth = 700 µm and is thickened as the ow passes around the cylinder. It is meshed with at least 10
cells. The dynamic boundary layer is thicker than the thermal one (Pr < 1).
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6.2.1 Tetrahedral mesh

Fully tetrahedral meshes have been �rst considered for two reasons:

• Simplicity of mesh creation with unstructured meshing tools such as Centaur1.

• Possibility to use the automatic mesh re�nement chain tool HIP/MMG3D, which only works for
tetrahedral meshes now.

The automatic mesh re�nement chain tool makes it possible to re�ne the mesh only where it is needed:
close to the blu�-body, but also in the ame region. This permits to control locally the size of mesh
elements, according to previous simulations.

However, using tetrahedral meshes did not provide accurate results, especially close to cold bound-
aries such as around the rod: its steady state temperature measured experimentally is about 670 K,
which is cold when compared to the adiabatic ame temperature Tb = 1900 K. The longitudinal velocity
�eld obtained on a tetrahedral mesh is displayed in Fig. 6.4: velocity oscillations are observed in the
vicinity of the blu�-body. It appears that such non-physical behaviour only occurs close to iso-thermal
boundaries, where heat transfer is intense. By taking a closer look at the velocity �eld, one observes that
the glitches are mesh dependent. Indeed, the velocity glitches occur when the mesh topology changes

Figure 6.4: Zoom on the velocity �eld downstream of the blu�-body. (Reacting ow)

at the boundary. This problem is observed independently of the numerical scheme used.

6.2.2 Hybrid mesh

The tetrahedral grid approach did not provide good results, mainly because of the non-uniformity of
the cells close to the blu�-body where heat uxes are very large. This di�culty was overcome by using
structured grids close to the cold boundaries. Indeed, hybrid meshes containing 5 layers of quadrilateral
cells at the boundary were generated with Centaur and used for the DNS. The hybrid mesh and the
corresponding velocity �eld are displayed in Fig. 6.5. As expected, all velocity glitches disappeared. Ad-
ditional information about numerical pressure and velocity oscillations and their suppression is provided
in the Appendix E.

Using hybrid meshes imply that the automated mesh re�nement chain tool described in chapter 4
for cold ows in swirl injectors cannot be used anymore. The hybrid mesh should be generated carefully

1Centaur is a unstructured meshing tool which outputs grids compatible with AVBP
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Figure 6.5: Left: hybrid mesh closed to the ame holder; Right: Velocity �eld obtained on the hybrid
mesh.

with smooth variations of cells size between the re�ned regions (blu�-body, ame) and the others. This
can be achieved in Centaur by creating a large number of re�nement sources, with continuous bi-linear
variations for the cells size criteria.

6.2.3 Mesh independence

A typical size of 70 µm has been chosen in the ame regions as well as along the cylinder in order
to correctly capture the small length scales of the reactive ow. The choice of this size is based on
physical criteria (boundary layer, ame thickness). In order to validate this choice, simulations have
been carried out on a �ner mesh: 40 µm in the ame front and boundary layers. A comparison is shown
in Fig. 6.6 in the most complex zone of the ow, where velocity streamlines are displayed for the two
grids. One may observe that the small recirculation zone located upstream of the ame is identical for
both meshes. The topology of the ames will be discussed in details in chapter 7. This section only
shows that the DNS are mesh independent: this is one of the advantages of being able to run 2D DNS.

GA
S
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D

Figure 6.6: Comparison of the DNS with two di�erent meshes. Left: the mesh used in the following.
Right: the �ner mesh used for validation. The recirculation zone is well captured by both meshes.
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6.3 Heat transfer in the bluff-body

This section focuses on the heat transfer occurring between the reactive ow and the ame holder. As
the blu�-body is completely immersed in the ow and end e�ects can be neglected, its mean temperature
is imposed by the surrounding heat uxes. Three contributions must be taken into account to accurately
predict the mean temperature of ame holder. The �rst two are the convective heat transfer: one from
the burnt gases to the downstream face of the ame holder, which cools the reactive ow and the other
from the upstream face of the ame holder to the unburnt gases, which heats up the latter. The last
contribution is the radiative heat transfer emitted by the ame holder surface which must be accounted
for when relatively high temperatures are reached:

φrad = σε(T 4 − T 4
ext) (6.3.1)

where T is the local temperature at the cylinder surface. Radiation from the gas (H2O, CO2) and from
the hot walls downstream of the combustion zone is neglected. Furthermore, walls surrounding the
ame holder (which are cooled) have a temperature close to the fresh gas and are assumed to behave
as black bodies: Text = Tu.

When compared to simulations where the temperature at the walls are imposed, an accurate resolu-
tion of heat transfer provides two advantages. First, the temperature of the blu�-body is not imposed
and can freely adapt to the surrounding ow. Second, the blu�-body temperature can uctuate when
the ow is pulsed or experiences instabilities. Two methods can be used to take into account heat
transfer in the blu�-body:

• Homogeneous adaptive boundary condition (HABC)
In this method, an iso-thermal boundary condition is used for the blu�-body. Its temperature
Tc, which is assumed to be uniform, is advanced in time according to the sum of the surrounding
heat uxes. This allows a cheap coupling of the ow with the cylinder temperature. It is justi�ed
by the large heat di�usivity of the blu�-body.

• Coupling with a solid heat transfer solver (CSHT)
This strategy allows to fully compute the temperature �eld in the ame holder by coupling the
ow solver (AVBP) with a heat transfer solver (AVTP): continuity of temperature and heat uxes
is ensured between the two solvers. Here, one has access to the local temperature and heat uxes
�elds inside of the ame holder [189, 190].

6.3.1 Homogeneous adaptive boundary condition (HABC)

A new iso-thermal boundary condition has been introduced in AVBP to compute the temperature of the
cylinder Tc (supposed to be homogeneous). The cylinder temperature Tc, which is imposed everywhere
in the cylinder and also all along the boundary, satis�es:

∂Tc

∂t
= 1

Cp
∮
S
�φ⃗c − σε(T 4

c − T 4
ref)n⃗� d⃗s (6.3.2)

where Cp is the heat capacity of the blu�-body, Tc: its temperature and φ⃗c is the convective heat
ux. Both d⃗s and n⃗ are pointing inside of the cylinder so as the convective heat ux. In order
to reach a steady state rapidly, the heat capacity can be decreased by several orders of magnitude.
Equation 6.3.2 is advanced in time by a �rst order �nite di�erence Euler scheme every iteration of the
CFD solver. Computing the integrals appearing in the RHS of equation 6.3.2 causes performance issues
in AVBP. Indeed, this computation requires gather/scatter MPI communications which are costly. As
a consequence, the integral is computed only once every ntemp iterations. This does not alter the time
advancement as long as ntempdtP min(tflow, tsolid).
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Figure 6.7: Temperature and heat release �eld obtained with the homogeneous adaptive boundary
condition for the un-cooled case (BFER chemical scheme).

With the 2S CH4 BFER kinetic mechanism (see section 6.4), the steady state temperature of the
blu�-body is THABC = 760 K. The associated heat release �eld is displayed in Fig. 6.7. As expected,
the temperature of the blu�-body stabilizes between the temperatures of burnt and unburnt mixtures.
Contrary to adiabatic blu�-body, the ame foots are extinct close to the cylinder while the unburnt
gases are heated all along the blu�-body due to the heat transfer. A detailed explanation of the ame
anchoring mechanism is provided in chapter 7.

6.3.2 Coupling with a solid heat transfer solver (CSHT)

In the second method (CSHT), one more step is takem and we now want to obtain the temperature �eld
in the cylinder. To do this, the resolution of the heat transfer equation (with a solver called AVTP)
inside of the blu�-body relies on an implicit �rst-order forward Euler scheme for time integration [191]
and a second-order Galerkin scheme [192]. Local heat uxes φs are imposed in the solid solver at the
boundary shared between the solid and the uid domains. The AVTP solid solver then sends skin
temperatures back to the DNS code for the next iteration.

Both codes are coupled with a software called OpenPALM [193] which exchanges the thermal infor-
mation (temperature and uxes) at the external face of the blu�-body. The local temperature obtained
by the solid solver on the cylinder surface is applied through an isothermal NSCBC boundary condition
[194] in the uid solver whereas the local convective heat ux and the radiative ux are imposed in
the solid solver. The characteristic ow time τf is of the order of 50 ms while the solid characteristic
time τs is of the order of 103 s. The simulation of the ame for several τs times is impractical. The
coupling strategy to accelerate the convergence towards steady state is that each domain (ow and
solid) is advanced at its own characteristic time using a time step αfτf for the uid and αsτs for the
solid with αf = αs [190]. This is equivalent to decreasing the heat capacity of the solid while preserving
its conductivity, as done for the homogeneous adaptive boundary condition.
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Figure 6.8: Temperature and heat release �eld for the coupled boundary condition.

Heat release and temperature �elds obtained with the coupled boundary condition are displayed in
Fig. 6.8 for the un-cooled cylinder and the 2S CH4 BFER scheme. These �elds are very similar to the
ones obtained for the homogeneous adaptive boundary condition (Fig. 6.7). This method also provides
the temperature distribution inside of the ame holder. It varies between 758 and 777 K with an
average temperature of 766 K which is very close to the value obtained for the homogeneous adaptive
boundary condition (760 K). However, the mean temperature is overestimated by about 100K when
compared to experimental measurements.

The temperature extent across the blu�-body (�T = 777 − 758 = 19 K) is small when compared to
ow temperature variation: �T P Tb − Tu. This can be recovered with a one dimensional model of the
ame-holder in which thermal resistances are connected in series:

Rtot = Rcu +Rs +Rcd (6.3.3)

where Rcu = 1/hcu is the heat resistance associated with the convective heat transfer upstream of the
ame-holder, Rs = 2r/λ is the heat resistance associated with the conduction of heat in the blu�-body:
Rs ≈ 2 10−4 m2K/W and Rcd = 1/hcd, for the downstream convective heat transfer. Both convective heat
transfer coe�cients are supposed equal: hcu = hcd ≈ 100 Wm−2K−1 so that Rcd = Rcu ≈ 10−2 m2K/W .
A one-dimensional sketch of this simple model is provided in Fig. 6.9. The variation of temperature
between the upstream and downstream faces of the ame holder is:

�T = Rs

Rtot
(Tb − Tu) ≈

1

100
(Tb − Tu) (6.3.4)

This corresponds to a temperature di�erence T2 −T1 ≈ 16 K which is close to the value observed in the
coupled DNS: ∣777 − 758∣ = 19 K. As a consequence, both CSHT and HABC methods provide similar
results and these results are also consistent with the simple model of Fig. 6.9. The CSHT approach
has been retained in the following of the manuscript as it provides more information for a negligible
additional computational cost: AVTP is an implicit solver and the solid mesh only contains a few cells
(< 104). It adds a negligible computational e�ort to the ow solver AVBP.
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Figure 6.9: Sketch of the one-dimensional approximated model for heat transfer.

6.4 Chemical kinetic mechanisms

In the previous sections, the geometry has been properly meshed with an hybrid grid and a coupled
ow/solid solver approach has been retained to capture heat transfer between the ow and the blu�-
body. It is now possible to focus on the choice of the chemical kinetic scheme. This topic is especially
important in the context of non-adiabatic ames, such as the ones anchored in both UBB and CBB
cases. These ames will come very close to the cylinder and low temperature chemistry will play a role.
Tabulation methods become di�cult to use and we have focused on schemes which are compatible with
DNS accuracy.

Designing a new chemical kinetic mechanism is a complex task [195, 196, 197]. However, some
interesting schemes have already been developed for air/methane combustion. In this sections 6.4.1 and
6.4.2, such schemes will be validated on one-dimensional con�gurations with both AVBP and Cantera
[198] and then used in INTRIG simulations as sketched in Fig. 6.10. Cantera is a one dimensional
Navier-Stokes reactive solver featuring automatic mesh re�nement and an accurate molecular transport
model.

Intrig simulations
• Flame shape

Mechanism:
• Transported species

• Reactions

1D simulations
• Adiabatic temperature

• Flame speed

designing process

validation

Use in realistic configuration

Figure 6.10: Workow for designing and using chemical kinetic mechanisms in AVBP.
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To begin with, the 2S CH4 BFER [199] global mechanism is investigated in section 6.4.1. Two other
mechanisms[200, 195] are then scrutinized in sections 6.4.2.
Detailed kinetic mechanisms are based on Arrhenius equations, which link the progress rates of individ-
ual reactions with the respective molar concentration of reactants and products[11]. A chemical scheme
can contain as many reactions as needed. However, in order to lower the computational e�ort, simpli�ed
schemes with as few reactions as possible are always preferred. In the case of a single step chemistry
with N species, the following conservation equation is obtained:

Nr+Np

Q
k=1

νkMk = 0 (6.4.1)

where Mk stands for the di�erent species involved in the reaction and νk is the molar stoichiometric
coe�cients of both reactants (positive) and products (negative). The probability that a reaction occurs
between two distinct species A and B to form C: PA+B→C , is proportional to the probability that both
molecules encounter, so that PA+B→C Œ [A][B], where [] stands for the molar concentration. These
results can only be applied to elementary reactions, which cannot be decomposed into simpler ones. In
the general case, the progress rate of the reaction PR is a function of the molar concentrations of each
species involved in the reaction:

PR =Kf

Nr

∏
k=1

[Xk]nk −Kr

Np+Nr

∏
k=1+Nr

[Xk]nk (6.4.2)

where Kf and Kr are the forward and backward rates of reaction. It is convenient to link the molar
concentrations and mass fractions as only the latter are computed in CFD codes: [Xk] = ρYk/Wk with
Wk, the molar mass of the species. In this law, the exponents of the molar concentration terms are
equal to their molar stoichiometric coe�cients for elementary reactions. Both forward and backward
rates of reaction may be expressed by the Arrhenius equation:

K = AT β exp(− Ea
RT

) (6.4.3)

where the pre-exponential constant A, the temperature exponent β and the activation energy Ea are
tabulated for each reaction.

6.4.1 2S CH4 BFER global scheme

Simulations have been �rst conducted with a two-step global mechanism �tted for air/methane com-
bustion called 2S CH4 BFER [199]. This scheme is built to reproduce both the correct adiabatic ame
temperature and laminar ame velocity for lean air/methane premixed ows over a wide range of con-
ditions. It contains two chemical reactions and 6 species: CH4, O2, N2, H2O, CO2, CO. The �rst step
produces carbon monoxide and water from methane and dioxygen:

CH4 +
3

2
O2 → CO + 2H2O (6.4.4)

The second step is the CO-CO2 equilibrium reaction:

CO + 1

2
O2 � CO2 (6.4.5)

These two reactions are not elementary. As a consequence, the exponents of equation 6.4.2 are not equal
to the stoichiometric coe�cients of the species. The �rst validation of a scheme is to compute laminar
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ame velocities. The latter can be measured accurately in 1D simulations by using the conservation
equation of fuel mass fraction integrated over the entire domain for a lean ame:

ρuslY
F
u = ∫

∞

−∞
_ωF dx (6.4.6)

where the subscript u stands for unburnt quantities and Y F
u the mass fraction of fuel in the unburnt

mixture.
As Shown in equation 6.4.6, the laminar ame speed sl may be retrieved my measuring the total fuel

reaction rate integrated over the entire domain. In the following, two parametric studies are presented.

φ 0.7 0.75 0.8 0.85 0.9
sl [cms−1] 18.2 22.0 25.5 29.0 32.3

Table 6.3: Laminar ame speed against the equivalence ratio at Tu = 298 K with Cantera.

First, the inuence of equivalence ratio on sl is investigated in table 6.3. As expected, the ame
velocity increases with the equivalence ratio. These ame velocities are compared to experimental
measurements in Fig. 6.14.

The second parametric study concerns the inuence of the fresh gases temperature Tu over the
laminar ame velocity. Indeed, heating of the unburnt mixture (of the order of 100 to 300 K) is observed
in simulations which take into account heat transfer from the ame holder to the fresh mixture. The

Figure 6.11: Laminar ame velocity against the fresh gas temperature at φ = 0.75 and �x = 50µm

fresh gases temperature Tu strongly inuences the laminar ame velocity and the kinematic scheme
must account for this. For instance, a heating of 150 K doubles the laminar ame velocity. The results
of the two-step scheme can be compared with the following asymptotic model:

sL(T1) = sL(T0)(
T1

T0
)
αT

(6.4.7)

Expected values of αT are close to 2 for this operating regime. A monomial regression applied to the
data displayed in Fig. 6.11 leads to αT,BFER = 2.05 which is close to the expected value: αT = 2.1 [201].
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6.4.2 Reduced mechanisms

In addition to the global two-step scheme of section 6.4.1, two additional mechanisms have been used
in this study: the LU13 [202] and LU19 [195] reduced mechanisms. These mechanisms were deduced
from two detailed kinetic schemes [203, 204], which contain too many species to be directly used in CFD
solvers but include all the best chemical knowledge available today. The reduction procedure occurs in
three steps [195]:

reduction of a detailed mechanism

1. Skeletal reduction
Unimportant species as well as the participating reactions are removed. Simulations are
carried out to assess the need of each species in typical operating regimes: auto-ignition and
perfectly stirred reactor. Both LU13 and LU19 mechanisms have been obtained by neglect-
ing the NO chemistry. This assumption has a negligible impact on the main mechanism
acording to Lu [195].

2. Identification of Quasi Steady State (QSS) species
In the next reduction step, species with low concentration which are consumed very fast
can be treated separately. These are called the QSS species for which a (quasi) constant
assumption can be proposed: ∂A/∂t ≈ 0 so that the concentration of species A can be
expressed as a simple function of other non QSS species. This is done by combining all the
elementary kinetic equations in which the QSS species is implied.

3. Analytical resolution of the QSS equations
Most of the time, the QSS equations are solved with an iterative procedure, which provides
an approximation of the solution. Here, the QSS equations are transformed so that the
concentrations can be derived analytically. This reduces the computational time required
to compute the chemical kinetics.

Reduced mechanisms are very convenient for CFD codes: as few species as possible are transported
and sti� elementary reactions are removed while remaining very close to the detailed mechanism. Two
reduced mechanisms have been used and compared to the 2S CH4 BFER mechanism.

Among them, the LU13 mechanism has been used to describe the chemical kinetics of the methane-
air combustion [202]. It is reduced from the GRI-1.2 mechanism [203]. Only 13 species are retained: the
species present in the 2S CH4 BFER scheme plus H, H2, O, OH, HO2, CH2O and CH3. As expected, all
these species are reaction intermediates and take non negligible values only in the vicinity of the ame
front. This property allows to start a computation with a global scheme such as the 2S CH4 BFER
and then switch to a reduced scheme by adding all the reaction intermediates to the solution (add spec
procedure in AVBP). This mechanism has been validated with one-dimensional ames with both Cantera
and AVBP. For instance, the laminar ame velocity as a function of the grid resolution is displayed in
table 6.4 and pro�les of heat release rate and temperature are shown in Fig. 6.12.

�x [µm] 12.5 33 50 62.5 83
sL [cms−1] 24.1 24.0 24.0 24.0 24.1

Table 6.4: Laminar ame velocity against the mesh resolution for a lean premixed con�guration:
φ = 0.75, Tu = 298 K. Computations with LU13 scheme (13 species) and AVBP. The value predicted
with the 2S CH4 BFER scheme is 22 cm.s−1. The ame thickness based to the maximum temperature
gradient is 580 µm.

On the one hand, the laminar ame velocity of the LU13 mechanism is close to the one of the
2S CH4 BFER scheme at the equivalence ratio of interest: φ = 0.75. An other interesting fact is that
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Figure 6.12: Comparison between 2S CH4 BFER and LU13 mechanism for both temperature and
heat release pro�les.

the required mesh resolution is the same as the one for the 2S CH4 BFER scheme. As a consequence,
switching to a reduced mechanism only implies the transport of more species and the resolution of more
complex chemical kinetic equations. For instance, in AVBP, switching from the 2S CH4 BFER scheme
to the LU13 scheme increases the computational cost by a factor two in INTRIG simulations.

On the other hand, di�erences are observed for the temperature pro�le as shown in Fig. 6.12: the
reactive region can be decomposed into two zones. In the �rst one (x ∈ [−0.3,0.2] mm in Fig. 6.12,
left), heat release is very important and the temperature increases rapidly. In the second region (x > 0.2
mm), the heat release rate is smaller but non zero and the temperature slowly converges to the adiabatic
temperature Tb = 1920 K. This is due to the slow consumption of reaction intermediates such as O and
OH. This result exhibits the ability of the LU13 scheme to reproduce a more realistic ame front.

The LU19 mechanism has been later proposed by Lu [195]. Contrary to the LU13 scheme, it is
reduced from the GRI-3.0 mechanism [204] and validated on perfectly stirred reactors as well as auto-
ignition cases. It is designed to be e�cient for both lean and rich operating regimes by adding 6 new
reaction intermediates to the LU13 mechanism: H2O2, CH3OH, C2H2, C4H2, C6H2 and CH2CO. As
stated earlier, the NOx chemistry is not modelled in both LU13 and LU19 reduced mechanisms but can
be easily added is done by Jaravel [205].

Both reduced mechanisms have been tested in Cantera and in AVBP where the increase of com-
putational time is approximately proportional to the number of transported quantities. For instance,
5 + 6 = 11 variables2 are transported for the 2S CH4 BFER mechanism while 5 + 19 = 24 variables are
transported for the LU19 mechanism. In practice, the computational overhead is sightly higher because
more time is devoted to compute the chemical kinetics [205].

6.4.3 Comparison of chemical kinetic schemes for 1D flames

A quantitative comparison between the 2S CH4 BFER, LU13, and LU19 mechanisms is now carried out.
We �rst compare the mass fractions of relevant species as shown in Fig. 6.13 with AVBP. Concerning

25 for the NS equation and 6 species in the 2S CH4 BFER scheme.
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Figure 6.13: Mass fractions of some species across the ame front (AVBP). Left: species present in
the three mechanisms. Right: reaction intermediates only present in LU13 and LU19 mechanisms.

the species transported in all mechanism such as CH4, CO or CO2, one may observe some discrepancies,
especially concerning the peak of CO and its value in the burnt gas, which is under-estimated with the
2S CH4 BFER scheme. However, no di�erences are observed between both LU13 and LU19 mecha-
nisms for the same species. These two reduced mechanisms exhibit slight di�erences for some reaction
intermediates such as CH3 or OH (Fig. 6.13, Right).

We then compare laminar ame velocities for various equivalence ratios by studying 1D ames.
Using Cantera allows to obtain results for the GRI3.0 mechanism, which is not available in AVBP.

Laminar ame velocities provided by Cantera simlulations for 2S CH4 BFER, LU13 and LU19
mechanisms are shown in Fig. 6.14 for the following operating condition: T = 298 K and P = 101300
Pa. These schemes are compared with the detailed GRI-3.0 mechanism [204] but also with experimental
results of Dirrenberger et al[206]. The error bars in the experimental measurements correspond to the
envelope of four di�erent measurements performed by di�erent authors. These measurements were
realised using counter ow ames [207, 208] or spherical ame [209].

Figure 6.14: Laminar ame velocity comparison between di�erent chemical kinetic mechanisms and
experimental results extracted from [206] for methane/air lean ames at T = 298 K.
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The laminar ame velocity from the LU13 mechanism is 6% higher than the one from the GRI-3.0
mechanism while the error is below 1% for the LU19 mechanism. This was expected as only the LU19
mechanism is reduced from GRI-3.0. However, a di�erence of about 14 % is observed between the
mean experimental measurement and the LU19 reduced mechanism at � = 0.75. All chemical schemes
over-estimate ame velocities in this case except 2S CH4 BFER which was actually tuned to match
experimental data.

Figure 6.15: Temperature (Left) and heat release rate (Right) comparison for a ame stabilized on a
burner at 700 K.

The inuence of heat losses over the ame topology is now investigated. Flame stabilized over
porous burners with constant rim temperature (here at 700 K with φ = 0.75) have been simulated with
Cantera. Contrary to freely propagating ames, stabilized ones are a�ected by the heat losses occurring
at the burner rim. Both temperature and heat release rate pro�les obtained downstream of the hot
burner are reproduced in Fig. 6.15.

Similarly to the laminar velocity study, both LU19 and GRI3.0 schemes provide identical results.
Discrepancies are observed with both LU13 and 2S CH4 BFER mechanisms. These may be explained
by the di�erence in laminar ame velocity. For instance, the 2S CH4 BFER mechanism has a lower
ame velocity than the GRI3.0 mechanism so that the corresponding ame is stabilized downstream
where the heat loss is less intense.

6.4.4 Application to the INTRIG burner

In addition to the 2S CH4 BFER scheme, the two reduced mechanisms LU13 and LU19 have been used
in the simulations of the INTRIG con�guration. A detailed comparison of LU13 and LU19 schemes is
provided in Fig. 6.16. Species transported in the LU13 mechanism (except N2) are displayed on the left
while all the corresponding species in the LU19 mechanism are displayed on the right. Most of them
are very similar. However, some di�erences exist close to the blu�-body: the reaction intermediate CH3

is less intense.

The ames simulated with the three di�erent mechanisms are then compared to experimental mea-
surements of the ame front location. Heat transfer is taken into account thanks to the coupled strategy
(section 6.3.1) on a hybrid, unstructured mesh (section 6.2). The experimental �eld of radical CH∗ is
represented in Fig. 6.17 in addition with the three ame fronts curves obtained in the DNS. Both reduced
mechanisms perform better than the 2S CH4 BFER global scheme. Moreover, the LU19 mechanism
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Figure 6.16: Comparison between the (normalized by max value) mass fraction �elds obtained with
both LU13 (Right) and LU19 (Left) mechanisms in the INTRIG con�guration. The value associated
with each species represent the maximum mass fraction Yk. Three iso-contours are provided: a = 0.02,
b = 0.5 and c = 0.98. The color scale starts from white (Yk/Yk,max = 0) up to gray (Yk/Yk,max = 1) to ease
the reading of the iso-contours.

provides the best results: this is consistent with the fact that it is taking into account more species and
reactions than the LU13 mechanism and predicting a more precise ame velocity (Fig. 6.14).
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6.5 Conclusion
The objective of this chapter was to describe the INTRIG burner, which is built to study the inuence
of heat transfer on ame dynamics. Along with the experiments, numerical simulations (DNS) have
been conducted to get more insight into the physical mechanisms involved in both ame stabilisation
and dynamics. Concerning the mesh, the heat transfer and the kinetic mechanisms, several options
have been confronted. The �nal choices are recalled in Fig. 6.18. In this chapter, emphasis has been
placed on numerical issues encountered in the UBB case. The strategy depicted here is used in the two
following chapters to study anchoring mechanisms (chapter 7) and ame dynamics (chapter 8).

Mesh

Heat transfer

Kinetic
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HABC CHST

BFER LU13 LU19 
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AVBP/AVTP

19 species
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500 700
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7
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Temperature [K]

Heat release rate

Figure 6.18: Overview of the DNS strategy. Rectangles isolate the best options retained.
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Chapter 7

Mechanisms of flame anchoring on
cylindrical bluff-bodies

Chapter 6 has allowed us to determine the best numerical strategy for DNS (Hybrid mesh, coupled
strategy, LU19). Now, the mechanisms controlling laminar ame anchoring on a cylindrical blu�-
body can be investigated using DNS and experiments. Two con�gurations are examined: water-cooled
(CBB) and uncooled (UBB) steel blu�-bodies. Comparisons between experimental measurements and
DNS show good agreement for the steady ame root locations in the two con�gurations. In the cooled
case, the ame holder is maintained at about 300 K and the ame is stabilized in the wake of the
cylinder, in the recirculation zone formed by the products of combustion. In the uncooled case, the
blu�-body reaches a steady temperature of about 700 K in both experiment and DNS and the ame is
stabilized closer to it. The fully coupled DNS of the ame and the temperature �eld in the blu�-body
also shows that capturing the correct radiative heat transfer from the blu�-body is a key ingredient
to reproduce experimental results. Finally, upstream stabilized ames can be obtained in the DNS for
very hot blu�-bodies, when radiative heat transfer is reduced (TBB).

Introduction

In the previous chapter, both experimental and numerical setup of the INTRIG burner have been
presented. It has been shown that using a coupled ow/solid DNS solver is a key ingredient to study
ame anchoring mechanism as heat transfer occurs at the interface between the reactive ow and the
cylinder. Among all the chemical kinetic schemes tested, the LU19 mechanism was retained as it
provided the best results.

Here, both experiments and DNS are used to analyze the di�erences in ame structure for two
di�erent operating regimes. The simulations, performed for cooled and uncooled ame holders, reveal
drastic di�erences in ame root location and ow topologies. They also show that radiative heat
transfer must be taken into account to predict the ame topology for the uncooled case. Finally,
a parametric study is performed for the emissivity ε of the cylinder. As this parameter decreases,
radiative heat transfer is reduced and the cylinder temperature increases. A discontinuous transition is
observed between ames stabilized on the sides of the blu�-body and ames stabilized upstream of it
at Tcyl ≈ 1600 K when the emissivity, ε goes from large to small values.

Results for the cooled ame holder (CBB) are discussed in section 7.1 before presenting the uncooled
case (UBB) in section 7.2. Section 7.3 discusses the inuence of radiative heat uxes on the ame
stabilization when the ame holder is uncooled. Finally, two simple theoretical models are introduced
to predict the existence of ames stabilized upstream of the blu�-body, which is a third possibility
predicted by the DNS.
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Figure 7.1: Left: Comparison between DNS (solid line: iso-contour of heat release rate) and experi-
mental (CH∗ �eld) ame fronts in the CBB con�guration. Right: Normalized wall heat ux along the
cooled cylinder external boundary.

7.1 CBB configuration

Since the blu�-body temperature is controlled by a water ow which is not computed, a boundary
condition at the inner diameter of the ame holder is required. This is simple here because the water
temperature is almost constant (Tw ≈ 293 K) so that the convective inner ux φs→w (Fig. 6.3) can be
modeled through a Newton law at the solid/water boundary:

φs→w = hturb(Ts − Tw) (7.1.1)

where Ts is the local inside skin temperature of the cylinder, Tw is the mean temperature of the cooling
water in the outer passage and hturb is the heat transfer coe�cient. The water ow is turbulent with a
Reynolds number of Re ≈ 5800 > Rec ≈ 2400 according to [210]. The heat transfer coe�cient hturb for a
turbulent ow in an annulus is obtained by a correlation [211]:

hturb = cpρv
0.023

Re0.2Pr2/3 , P r =
µcp

λl
(7.1.2)

where cp and µ are the speci�c heat at constant pressure and the dynamic viscosity of the cooling water
respectively and v is the bulk velocity in the outer annulus. The corresponding turbulent heat transfer
coe�cient is hturb ≈ 3 104 W.m−2.K−1.

Experimental and DNS results are compared by superposing iso-contours of the heat release rate
(20 % of maximum) and CH∗ �eld obtained in the experiments (Fig. 7.1, left). The location of the
ame root is accurately reproduced in the DNS. Flame angles (�) from DNS and experiments are close
to each other: �DNS = 0.072π ± 0.003π and �XP = 0.065π ± 0.003π. This result is coherent with the
di�erences in laminar ame velocity: Fig. 6.14 shows that LU19 overestimates mean experimental ame
velocities by 14 %.

In this con�guration, the ame roots are located 3 mm downstream of the blu�-body at the angle
of θCBB ≈ 0.15π. Figure 7.1, right shows the normalized heat ux entering the cylinder:

φ∗r =
φ⃗fluid.n⃗

ρuYCH4slQ
(7.1.3)

where ρu = 1.2 kg.m−3 and YCH4 = 0.042 are the gas density and methane mass fraction in the unburnt
side respectively, Q = 50100 J.g−1 is the mass heat of reaction for methane/air combustion. This ux is
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part of the uid) visualization in the CBB case. The ame front location is marked by the iso-contour
of 20% of the maximum heat release in the upper part and by its centerline in the lower part.

positive at all angles as the cylinder remains cooler than the unburnt mixture. It peaks at φ∗r = 0.1, a
value comparable to maximum uxes reached during SWQ (Side Wall Quenching) ame/wall interaction
where reduced uxes can reach 0.15 [11].

The ame root is located in the recirculation zone (Fig. 7.2) in the wake of the cylinder. Similar
results were previously observed by Kedia et al [42] for a ame stabilized behind a square blu�-body
in ceramic. The temperature is quasi uniform inside the ame holder. It ranges between 285 K, the
temperature of the cooling water and 291 K. The DNS data can be used to compute the total heat
transfer between the cylinder and the cooling water:

�s→w = ∫
θ

φr(rint) lrintdθ (7.1.4)

where rint = 3 mm is the radius of the inner boundary of the cooled ame holder. This ux is equal
to 29 W and is consistent with the experimental measurement based on the cooling water heating:
�exp

s→w = _mwcp(T out
w − T in

w ) = 24 W .

The ratio between the heat losses along the cooled cylinder (29 W ) and the total power of the burner
(7 kW ) shows that less than 0.5 percent of the thermal energy released by combustion is transferred
to the cooled ame holder. This is a negligible quantity but its e�ects on the ame itself, in term of
stabilization and dynamics, are large

The ame structure can be analyzed by visualizing the maximum heat release rate along the ame
front (Fig. 7.3, left). This quantity has been normalized by the heat release rate of the equivalent
laminar un-stretched adiabatic ame. Three di�erent zones can be identi�ed:

• The adiabatic zone (Az). Downstream of the cylinder (z > 16 mm), the heat release rate goes to
unity showing that the ame has forgotten its stabilization zone and is not a�ected by the cooled
ame holder. Typical pro�les of mass fractions of one reactant (CH4), one product (H2O) and
one reaction intermediate (CH3) are displayed in Fig. 7.3, right, along the path [CD] of Fig. 7.2.
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EzAz

Figure 7.3: Left: Normalized maximum heat release rate along the ame front (dashed line in Fig. 7.2)
for the CBB case. z = 4 mm corresponds to the cylinder external wall.
Right: Mass fractions of CH4, CH3 and H2O along the paths [AB] ∈ Ez (curve with markers) and
[CD] ∈ Az (curves). The mass fraction of CH3 is multiplied by a factor 100.

• The extinction zone (Ez). Close to the blu�-body (z < 5.3 mm), the ame is quenched. In this
region (path [AB] in Fig. 7.2), the ow is dominated by di�usion processes since no production
nor consumption of reaction intermediates is observed. The reactants present away from the wake
of the cylinder (point A, Fig. 7.2) are mixed with the products of combustion convected in the
recirculation zone (point B).

• The mixed zone (Mz). This zone is located downstream of the center of the recirculation zone
(z ∈ [5.3,16] mm). Here, the combustion is less intensive because the fresh mixture has been
mixed with products of combustion so that the local equivalence ratio is decreased. This is the
zone where the ame roots are located. Fig. 7.3, left, shows that the transition from the quenched
state (zone Ez) to the fully burning state (zone Az) is progressive in the zone Mz and takes place
over a length of approximately 1 cm.

7.2 UBB configuration

This section describes the steady ame obtained for an uncooled con�guration where the cooled blu�-
body of Fig. 6.3, Left is replaced by a solid steel cylinder (Fig. 6.3, Right).

7.2.1 Anchoring mechanisms

For the uncooled ame holder, a steady symmetrical ame is also observed. The comparison between
DNS and experiments is very good (Fig. 7.4, left). Compared to the CBB case (Fig. 7.1, left), the
ame is much closer to the ame holder. The radial heat ux in the uid region can be used to
determine its angle. The angle θUBB corresponds to the azimuthal point where the heat ux changes
sign: θUBB = θ / φ⃗fluid.n⃗ = 0 where n⃗ is the normal unit vector pointing inside of the cylinder. As shown
in Fig. 7.4, right: θUBB = 0.37π while θCBB was 0.15π (section 7.1). Furthermore, the ame roots are
located at 0.3 mm of the ame holder instead of 1.6 mm for the CBB case.
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Figure 7.4: Left: Comparison of DNS (iso-contours of heat release rate) and experimental (CH∗ �eld)
ame fronts in the UBB case. Right: normalized wall heat ux along the uncooled cylinder.

Temperature and velocity �elds obtained in DNS for both solid and uid zones are displayed in
Fig. 7.5.
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lines in the upper part of the ow) visualisation in the UBB case. The ame front location is recalled
by the iso-contour of 20% of the maximum heat release and by its centerline.

Color scales used to visualize the temperature �elds have been separately adapted for both regions.
At steady state, the mean temperature of the blu�-body is close to 680 K with a minimum of 675 K
at the stagnation point and a maximum of 690 K at the trailing edge. This result is consistent with
experimental measurements of 670 ± 40 K obtained with a thermocouple just after stopping the ame.
Close to the cylinder, the temperature �eld in the uid region indicates that the fresh gases are heated
by the hot cylinder on the upstream side. Two small recirculation zones are observed instead of one for
the CBB case (Fig. 7.2). The �rst one (RZ1) is located upstream of the ame front, where the laminar
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unburnt ow separates. Its temperature is very close to the one of the blu�-body. The second one
(RZ2) is located behind the wake of the cylinder but it is much smaller than it was for the CBB case
(Fig. 7.2) due to the ow expansion. Contrary to the CBB case, the ame roots are located upstream
of the back recirculation zone (RZ2) showing that this stabilization follows di�erent mechanisms.

The DNS data can be used to establish an energy balance for the uncooled ame holder. To do
this, it is useful to separate the skin of the blu�-body into two zones: upstream (θ > 0.37π in Fig. 7.4),
a large part of the blu�-body is cooled by the incoming gases, taking a ux �s→g away from it:

�s→g = ∫
φr<0

φr lrdθ (7.2.1)

where φr = φ⃗fluid.n⃗ is the radial heat ux in the uid region taken at the boundary of the blu�-body and
n⃗ is the normal unit vector pointing inside of the cylinder. Downstream of the blu� body (θ < 0.37π),
the burnt gases heat up the cylinder, injecting a ux �g→s:

�g→s = ∫
φr>0

φr lrdθ (7.2.2)

The separation of the two zones is simply obtained from the sign of the local heat ux (Note that this
ux was positive everywhere for the CBB case: see Fig. 7.1). The radiative ux lost by the cylinder
�rad is:

�rad = −∮ εσ(T 4 − T 4
ext) lrdθ (7.2.3)

DNS results show that �g→s = 62.0 W while �s→g = −36.0 W and �rad = −26.0 W so that the global
budget is closed: �g→s +�s→g +�rad = 0. The input heat transfer �g→s is larger than it is for the CBB
case (29 W ) due to the vicinity of the ame. Figure 7.6 shows the ux line inside the blu�-body. One
can see that heat coming from the burnt gases is participating to the heating up of the fresh gases.

�g!s�s!g

�rad

              Location of zero 
radial heat flux

= 62.0 W= �36.0 W

�rad
�26.0 W

Figure 7.6: Thermal budget of the uncooled cylinder (all uxes are counted positive when entering
the cylinder). Flux lines are represented inside of the cylinder.
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Similarly to the CBB case, three zones are identi�ed for the ame front structure (see Fig. 7.7, left):

Qz

Oz

Figure 7.7: Left: Normalized maximum heat release rate along the ame front centreline (curvilinear
abscissae). Three regions of interest are denoted: the quenching zone (Qz), the over-reactive zone (Oz)
and the adiabatic zone (Az).
Right: Mass fractions of CH4, CH3 and H2O along the paths [EF ] ∈ Qz (curves with markers) and
[GH] ∈ Oz(curves) plotted against their normalized curvilinear abscissae in the UBB case.

• The adiabatic zone (Az). In this zone, the fresh reactants have not been heated by the hot blu�-
body or diluted by burnt gases. As a consequence, an adiabatic, almost un-stretched laminar
ame is observed and the heat release rate values are similar to the equivalent one-dimensional
adiabatic ame. The adiabatic zones encountered in both the UBB and the CBB cases are similar
in terms of ame dynamics.

• The over-reactive zone (Oz). Here, the ame is more intense than the corresponding un-stretched
adiabatic ame. The excess in burning rate is about 25 percent since the unburnt mixture is
heated by the hot cylinder (Fig. 7.6). This increases the burning rate by accelerating kinetics:
the peak mass fraction of CH3 is 20 percent greater than in the adiabatic zone as shown in Fig. 7.7,
right, on the path [GH].

• The quenching zone (Qz). Close to the blu�-body, the ame is quenched due to the conjugate
heat transfer from the uid to the blu�-body. This region may be compared with the academical
ame/wall interaction zone discussed in both experimental and theoretical studies by Von K�arm�an
et al[212], Lu et al[27] and more recently by Buckmaster and Vedarajan[213, 214], who introduced
the concept of edge ame. Flame/wall interaction has also been investigated numerically in Head
On or Side Wall quenching con�gurations [215, 216] and more recently in a turbulent channel
[217, 218]. The mass fraction pro�les of CH4, CH3 and H2O are displayed in Fig. 7.7, right, along
the path [EF ], described in Fig. 7.7, left. The presence of the reaction intermediate CH3 proves
that chemical reactions are still occurring close to the cylinder. Furthermore, the ame front is
thicker in the quenching zone than the adiabatic or the over reactive zones. This is due to thermal
losses which slow kinetics down. Finally, the normalized heat ux between the uid and the solid
φ∗r is shown in Fig. 7.4, right, along the cylinder. It reaches a maximum of 0.24, which is coherent
with values obtained during stagnation quenching events on a cold wall: φ∗SQ ≈ 0.33 [219]. It is
also much higher than it was for the CBB case φ∗r = 0.1 (Fig. 7.1).
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7.2.2 Determination of the flame anchoring angle

Many physical phenomena are involved in the stabilization of the ame roots such as extinction (in
the Qz zone of Fig. 7.7, left), fresh mixture pre-heating (occurring in both Qz and Oz zones) and
convective heat transfer along the cylinder. As a consequence, providing a model which predicts the
ame anchoring angle θUBB but also the blu�-body mean temperature Tcyl is di�cult.

In the Qz zone, the local ame velocity is decreased because of heat losses. One dimensional models
exist to predict the evolution of the ame velocity with the temperature of the cylinder [220, 221] but
are di�cult to use in practice as the characterization of heat losses relies on the ame/wall distance:
the closer the ame is from the wall, the more intense is the heat transfer. However, this quenching
distance is not known a priory.

Similarly, modeling the ame in the Oz (Fig. 7.7, left), requires to predict correctly the preheating of
the fresh mixture caused by the cylinder. This implies to model both mechanic and thermal boundary
layers around the cylinder with care. As long as accurate models are provided for the ame in both
Qz and Oz zones, it is possible to obtain a relation between the temperature of cylinder and the
ame anchoring angle by assuming that the ame stabilizes where the local velocity compensates the
laminar ame velocity as shown in Fig. 7.8. This relation is called the dynamical equilibrium
condition [222, 223].
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Figure 7.8: Dynamical and thermal equilibrium conditions

To close this problem, another relation must be provided to link the temperature of the ame holder
with the ame anchoring angle. This can be achieved by considering the energy budget equation of the
cylinder: the thermal equilibrium condition where simple models are provided for all heat transfer
occurring across the cylinder. After assuming constant convective coe�cients hu and hb for both unburnt
and burnt sides respectively, the convective heat transfer is obtained by rewriting equations 7.2.2 and
7.2.1:

�conv,i = hi(Ti − Tcyl)lr�θi (7.2.4)

where i ∈ [u, b] stands for "burnt" or "unburnt" sides. In the burnt side (i = b): Tb = Tadia and �θb = θ
whereas in the unburnt side (i = u), Tu = Tu and �θu = π − θ as shown in Fig. 7.8. After combining
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equation 7.2.4 with equation 7.2.3, one �nally obtains:

�g→s +�s→g +�rad = 0� θ = π
⎛
⎝

1 +
σεT 3

cyl

hu

1 − α4

1 − α
⎞
⎠
/(1 + hb

hu

β − 1

1 − α
) (7.2.5)

where α = Tu/Tcyl(≈ 0.4) and β = Tadia/Tcyl(≈ 2.8). Convective heat coe�cients have been measured in
the DNS: hb = 58 and hu = 62 Wm−2K−1. The predicted ame foot angle is then equal to θ ≈ 0.38π
which is in very good agreement with the measured angle (θUBB = 0.37π). Equation 7.2.5 can be inverted
numerically in order to retrieve the temperature of the blu�-body as a function of the ame angle and
the cylinder emissivity ε.

7.3 Influence of the cylinder emissivity

Section 7.2 showed that radiative heat transfer represents 45 % of the blu�-body heat losses for the
UBB case. This suggests that changes in stabilization mechanisms may be induced by changing the
ame holder emissivity and its temperature. Di�erent computations have been carried out for cylinder
emissivities ranging between 0.02 and 1. DNS results show that the ame root position (Fig. 7.9)

✏ = 1.0

✏ = 0.8
✏ = 0.3

✏ = 0.1
5✏ =

0.1

✏ = 0.9

Figure 7.9: Flame shapes for emissivity ranging from εmin = 0.1 to εmax = 1.

is roughly independent of the emissivity between ε = 0.8 (weakly oxidized blu�-body) and ε = 1.0
(perfect black body). The corresponding averaged temperatures of the blu�-body computed in the
DNS are Tε=0.8 = 705 K, Tε=0.9 = 682 K and Tε=1.0 = 672 K. All these results are contained within the
upper bound of the con�dence interval of the experimental measurement of the uncooled blu�-body
temperature.
Once the emissivity of the ame holder decreases below ε = 0.8, the ame roots move upstream. For
a low emissivity (ε = 0.15), the ame is stabilized at θε=0.15 ≈ π/2. In this case, half of the blu�-body
is immersed in the burnt gases and its mean temperature increases to Tε=0.15 = 1035 K. A dramatic
change occurs when the emissivity goes below 0.15: the ame jumps ahead of the cylinder and is called
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Upstream 
stabilized

Downstream 
stabilized

✏

3

3

Figure 7.10: Flame root angle θ and normalized temperature (T − Tu)/(Tadia − Tu) for cylinder emis-
sivity between 0.02 and 1. The temperature predicted by the model 7.3.1 and its approximation 7.3.2
are also displayed when the ame is stabilized upstream.

"Upstream Stabilized". In this case, the temperature of the blu�-body, which is completely immersed
in the burnt gases ranges between 1500 and 1900 K, depending on the emissivity. Flame root angles
and the corresponding normalized mean cylinder temperature are displayed in Fig. 7.10 for ε ∈ [0.02,1].
The temperature of the cylinder increases with the ame root angle as the cylinder is surrounded by
more burnt gases. When the ame is "upstream stabilized", the blu�-body mean temperature can be
predicted by equation 7.2.5 by setting θ = π. Here, we use h ≈ 100 W.m−2.K−1 which is in agreement
with the value measured in the DNS for this regime:

σεT 3
cyl

h
= β − 1 (7.3.1)

where radiative uxes absorbed by the hot cylinder have been neglected. The temperature Tcyl of the
cylinder is solution of the fourth order polynomial in equation 7.3.1. In the limit where ε < 0.1, the
temperature of the cylinder remains close to the adiabatic ame temperature. A Taylor expansion of
(Tadia − Tcyl)/Tadia provides :

Tadia − Tcyl

Tadia
≈ 1/4

1 + h/(4σεT 3
adia)

(7.3.2)

According to Eq, 7.3.2, an increase of the emissivity decreases the cylinder temperature as expected.
Mean temperatures in the UBB case for the DNS, the model of equation 7.3.1 and its approximation 7.3.2
are displayed in Fig. 7.10 where ε goes from 0.002 to 1. This �gure con�rms the topology discontinuity
at ε = 0.15 and shows that the simple equation 7.3.2 is su�cient to predict the variations of the ame
holder temperature with ε when the ame is stabilized upstream of the cylinder.

In the following chapters concerning ame dynamics, the TBB1 case which corresponds to ε =
0.05 will be investigated along with CBB and UBB cases. Obviously, this case has not been studied
experimentally and only numerical results will be provided.

1TBB stands for Transparent Blu�-Body.
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7.4 Bifurcation to upstream stabilized flames

In section 7.3, ames stabilized upstream of the blu�-body have been observed in the DNS for the regime
of low emissivity, i.e. when the cylinder is su�ciently hot. Note that such stabilization points have also
been observed in the experiment of IMFT when the cylinder was rotated [66]. Such phenomena have
also been observed on ames stabilized on rods [224]. In this section, two models based on di�erent
physical arguments are established to assess this phenomenon. The objective of such models is to
predict whether a ame can stabilize upstream of the blu�-body or not, a situation which is potentially
dangerous in practical burners as the ame holder can melt.

7.4.1 Dynamic equilibrium of the flame front (DEFF)

The basis of the DEFF model is to look at the stability of a ame stabilized on the leading edge (θ = π)
of the cylinder. If the ame is able to remain in this position, it implies that its velocity sl is equal
to that of the mean ow uz [222, 223] and that this low velocity zone is large enough for the ame to
remain in this zone as sketched in Fig. 7.11:

∣z′∣ / [u(z′) = sl] > δ (7.4.1)

where all parameters are de�ned in Fig. 7.11. After assuming a simple model2 for the velocity upstream
of the cylinder: u(z′) = −ubz′/r, equation 7.4.1 can be recast into the following ratio of non-dimensional
parameters:

(ub/sl)/(r/δ) < 1 (7.4.2)

This expression can be further simpli�ed by using the Blint correlation [225], which links ame
velocity and thickness:

slδ = 2(Tb

Tu
)

0.7

Dth (7.4.3)

Finally, the ame can stabilize upstream when:

sl

ub
> a =

√
2

(PrRer)0.5
(Tb

Tu
)

0.35

(7.4.4)

In the UBB con�guration, Rer = Re/2 = 260 , Pr = 0.7 and Tb/Tu = 6.3 so that a = 0.2. The order
of magnitude seems to be correct as quasi adiabatic ames encountered for ε B 0.05 are upstream
stabilized with sl,adia/ub = 0.24/1.07 = 0.22 > a. Cases where the ame is upstream stabilized or not
are depicted in Fig. 7.11. As shown in section 7.3, the parameter that controls the transition between
upstream to downstream ame stabilization, is the temperature of the cylinder (through the emissivity
of the blu�-body). When radiative transfer is taken into account, both ame velocity and blu�-body
temperature decrease and equation 7.4.4 is not ful�lled anymore. In other words, the criterion for
upstream stabilization 7.4.4 is purely kinematic and cannot translate directly into a criterion involving
the blu�-body temperature Tcyl. In order to close this model, one must provide a law for the ame
velocity as a function of the blu�-body temperature as sketched in Fig. 7.12. Providing such a law is
out of the scope of this manuscript.

2In the case of a potential ow, the exact solution in the vicinity of the cylinder is u(z′) ≈ −(2ub)/rz′ but the
factor 2 is omitted for the sake of simplicity
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Figure 7.11: Left: Sketch of a ame stabilized upstream of the cylinder. Right: Case where a ame
cannot stabilize upstream of the cylinder.
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Figure 7.12: Flame stabilized upstream of the ame-holder in the non adiabatic case.

7.4.2 Thermal extinction of the flame front (TEFF)

In this second theoretical model for ame stabilization upstream of the ame holder, a much more
powerful machinery can be used if the leading edge of the ame (θ = π) is viewed as a stagnation
point ame stabilized on burnt under-adiabatic gases. This case has been studied extensively using
asymptotic techniques [220]. Suppose that in the region located upstream of the cylinder, the ow
con�guration can be approximated by a counter-ow ame (Fig. 7.13). Following the work of Libby
and Williams [226], the complete ow and ame structure can be described using asymptotic analysis
for a single-step chemistry premixed ame. This theory shows that extinction is observed when:

H = (Tadia − Tcyl)(Tadia − Tu)Tact/(T 3
adia) > 3 (7.4.5)

where Tact is the activation temperature and Tcyl is the temperature of the cylinder which is supposed
to correspond to the burnt gas side in Fig. 7.13.
This leads to a critical cylinder temperature for extinction:

Tcyl = Ta(1 − 3
T 2

adia

Tact(Tadia − Tu)
) = 1200K (7.4.6)
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Figure 7.13: Sketch of the equivalent counter-ow ame con�guration. The plane separating both jets
mimics the cylinder upstream face. The burnt gases are supposed to be at the cylinder temperature
Tcyl.

This model sightly under-estimates the minimal temperature observed for upstream stabilized ames
in the DNS (≈ 1500 K in section 7.3). Indeed, it is designed for ows with reduced strain k > 1 where
k = ∂2v/∂y2α∞/(v2

∞) where α∞ is the heat di�usion coe�cient taken in the burnt side and v2
∞ is the

laminar ame velocity also taken in the burnt side. In the INTRIG case, the reduced strain is equal to
0.05 so that the model cannot be applied. However, it would be appropriate to study cases with higher
strain rate (larger velocity or smaller cylinder).

Both attempts to model the bifurcation between downstream and upstream stabilized (equations 7.4.4
and 7.4.6) show that there is a potential for theoretical analysis here and a nice �eld for future research.

7.5 Conclusions

A comparison between DNS and experiments has been carried out to study the anchoring mechanism
of a ame attached on a cylindrical blu�-body. Two distinct con�gurations have been studied. In the
cooled blu�-body case (CBB) the ame holder temperature is about 300 K and the ame is stabilized
approximately one radius downstream of the cylinder at an angle θCBB ≈ 0.15π and attached at the
center of the recirculation zone in which products and reactants are mixed. In the uncooled blu�-body
case (UBB), the temperature of the ame holder reaches 670 K and the ame is attached closer to the
cylinder at θUBB ≈ 0.37π. A good agreement between DNS and experiments is obtained for the shape
for both cases. Finally, it has been shown that the cylinder temperature is controlled by the equilibrium
of the convective and radiative heat uxes occurring along the blu� body: the emissivity of the ame
holder can change the ame stabilization location (upstream or downstream of the ame holder). A
change of emissivity (a decrease) can lead to a ame jumping upstream of the ame holder and its
destruction. More generally, these results show that the temperature of ame holders has a major e�ect
on the ame topology and must be included in simulations as an important control parameter.
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Chapter 8

Influence of flame holder temperature
on flame acoustic coupling

In the previous chapters, three di�erent stabilization scenarios have been reported for laminar ames
anchored on a cylindrical ame holder. The �rst one is obtained for a cooled cylinder and is referred
to as the CBB (Cooled Blu�-Body) case. The two others are obtained with an uncooled cylinder: the
UBB case (ε = 0.9) where the ame is stabilized downstream but very close to the cylinder and the TBB
case (ε = 0.05) where the ame stabilizes upstream of the cylinder. We now focus on the ame dynamics
for these three ames by studying the coupling between acoustic waves and unsteady heat release rate
in a forced regime where ames are excited by inlet acoustic waves.

Introduction

From small scale apparatus such as domestic water heaters [227] up to rocket motors [228], combustion
chambers are often subject to thermo-acoustic instabilities. These instabilities exhibit some similarities:
acoustic waves perturbate the ame front, which generates unsteady heat release. The latter may
generate acoustic energy when it is in phase with acoustic pressure [4]. The coupling between acoustic
waves and the ame front is two sided: the generation of sound by unsteady heat release perturbation
q′ is predicted by a simple acoustic theory which is recalled in chapter 1. However, the heat release
response q′ to an acoustic velocity perturbation u′ is much more complicated to predict. For instance,
the G-equation framework [81, 227, 51] provides such models in very simple con�gurations.

As a consequence, measurements are still needed to obtain Flame Transfer Functions (FTF), which
relate the ratio of unsteady heat release to the acoustic velocity perturbation. These measurements can
be performed either in experiments [52, 6] or in CFD [84, 83, 82, 229].

Here, we focus on laminar lean premixed ames and investigate the ame dynamics by the mean of
simulations and experiments. The �rst objective is to study the e�ect of the ame holder temperature
on the FTFs. Only few studies have been performed on the same topic. Kedia et al [83] investigated
the inuence of the ame holder material on the FTF by using DNS data while Mejia et al [52] carried
out experiments at IMFT to study the inuence of ame holder temperature on the ame dynamics.
However, both studies where limited because only small variations of blu�-body temperature could be
created. The second objective of this study is to answer to the following question: Is DNS able to
predict the dynamics of non adiabatic flames ?

The INTRIG burner has been designed to study lean premixed laminar ames stabilized on a
cylindrical blu�-body where the temperature can be controlled over a wide range. The mechanisms
leading to ame stabilization have been previously detailed in chapter 7 and three cases have been
identi�ed. Two regimes are obtained in both experiments and DNS: the cooled (CBB: T ≈ 300 K) and
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uncooled (UBB: T ≈ 700 K) blu�-bodies while a third one is only available in DNS: the transparent
blu�-body (TBB) for which the temperature reaches a very high temperature (≈ 1600 K). The method
used to measure FTFs in the DNS is described in section 8.1. The ame dynamics are scrutinized with
a special attention to the ame root motion (section 8.2). A model is then provided for the INTRIG
ames by using the G-equation framework in section 8.2.3 and �nally, a comparison with experimental
measurements is provided (section 8.3).

8.1 Measurement of Flame Transfer Function (FTF)

This section describes the numerical methods used to compute FTFs. Results are provided for the three
cases of interest CBB, UBB and TBB described in chapter 7. There are many methods to measure
FTFs and FDFs1 [230, 52, 231, 82]. Here, two methods were used and compared:

• Forcing with a broad band signal and using Wiener-Hopf system inversion [82, 23, 232] to retrieve
the FTF.

• Forcing with a single frequency and obtain both FTF [84, 80] or FDF [233, 231, 234, 235].

The operating point is similar to chapters 6 and 7 (see table 6.1).

8.1.1 Steady baseline flames for FTF simulations

In the previous chapter, all simulated ames were stable because ame/wall interaction had been sup-
pressed: the chemistry was deactivated 3.5 cm downstream of the cylinder. This method is e�cient as
long as steady regimes are considered. However the computation of realistic ame dynamics responses
must take into account ame/external wall interaction and a larger geometry must be simulated as
shown in Fig. 8.1.
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Computational domain for FTF (Chap. 8)

Computational domain for stabilization (Chap. 7)

Figure 8.1: sketch of the computational domain used to obtain the FTFs.

Generally, steady ames are obtained by lowering the amplitude of both inlet and outlet reection
coe�cients. In the INTRIG burner, it appeared that stable ames were only obtained with reective
boundary conditions: a velocity node is imposed at the inlet while a pressure node is imposed at the
outlet. A similar phenoma has been previsouly reported by Silva et al [236].

1The concept of FDF, which stands for Flame Describing Function, is described in section 8.3.3.
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In chapter 7, a small domain of computation was used as only the ame anchoring mechanisms
were investigated: this corresponds to the region denoted as "computational domain for stabilization"
in Fig. 8.1. In the experiment, both plenum and chamber are larger as observed in Fig. 8.1.

The geometry used to measure FTFs has been speci�cally adapted: the plenum has been kept as
short as possible while the chamber was kept identical to the experimental one. This region is denoted
as "Computational domain for FTF" in Fig. 8.1. This permits to increase the frequency of the �rst
acoustic mode (from 200 Hz up to ≈ 1350 Hz) and avoid self-excited modes. It is important to note
that chamber and plenum sizes do not impact the FTF. The mean velocity pro�le has been measured
experimentally 3.5 cm upstream of the cylinder and is imposed at the DNS inlet while the combustion
chamber walls are cooled. Cooling the external walls simpli�es the set-up of the DNS because a simple
isothermal boundary condition is imposed at the DNS side walls.

The three steady ames are displayed in Fig. 8.3. The speci�c meshes associated with each case are
represented in the upper part of each images. These meshes are re�ned along the ame front and close
to the blu�-body, as prescribed in chapter 6. All ames are steady, with limited spurious oscillations at
high frequencies (≈ 1350 Hz) of amplitudes below 1 mm.s−1.

8.1.2 System identification method

When the ame is pulsated with broad band noise, Flame Transfer Functions (FTF) can be measured in
DNS by using the system identi�cation method [232, 229] which is suitable for discretized signals. The
ame is considered as a black-box system: its input sj = s(j�t) , j ∈ J0,NK is the normalized upstream
acoustic velocity u′ taken at a reference location (2 cm upstream of the cylinder) and its output rj is
the normalized unsteady heat release rate _
T (Fig. 8.2):

rj =Q
l>R
hlsj−l (8.1.1)

with

¢̈̈
¦̈̈
¨̈¤

rj =
Ω̇T,j

ΩT

sj =
u′j
ū

where h is the impulse response of the system.

Flame

u0
j

ū

⌦̇T,j

⌦̄T

(s) (r)

Figure 8.2: The ame viewed as a dynamical system: its input is an upstream acoustic velocity while
its output is an unsteady heat release rate.

The ame response is causal: its response at time t0 does not depend on acoustic velocity uctuations
at time t > t0. As a consequence, the impulse response h is equal to zero for negative times: hl = 0 , l < 0.
Moreover, h contains only a �nite number of coe�cients: hl = 0 , l > Lmax. �tLmax quanti�es the time
over which the input s is used to construct the output r. Once known the discrete impulse response h
of the system, the FTF is retrieved by taking the Z transform of equation 8.1.1:

FTF(ω) = Z+{h} =
Lmax

Q
l=0

hle
−ilω∆t (8.1.2)
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Figure 8.3: Stable ame in CBB (top), UBB (middle) and TBB (bottom) cases. The mesh is displayed
in the upper part and the heat release rate in the lower part

The impulse response is solution of the Wiener-Hopf equation[237]:

�h = c (8.1.3)

where � is the auto-correlation matrix of the input signal and c is the cross-correlation vector between
the input and the output [82]:

cj =
1

M

N

Q
l=Lmax

sl−jrj (8.1.4)

�j,k =
1

M

N

Q
l=Lmax

sl−jsl−k where (j, k) ∈ J0, LmaxK2 (8.1.5)
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case N�t [ms] �t [ms] N Lmax Tmax [ms]

CBB 440 0.55 792 130 71.5
UBB 750 0.55 1348 115 63.2
TBB 885 0.55 1594 90 49.5

Table 8.1: Parameters for the Wiener-Hopf system construction for the three cases CBB, UBB and
TBB.

with N , the number of temporal samples and M = N−Lmax+1. In the case of a perfect white-noise input,
the auto-correlation matrix Γ reduces to the unit matrix and the impulse response is directly equal to
the cross correlation matrix c. In the INTRIG con�gurations, fully reective boundary conditions were
employed to stabilize the ames and this introduces an undesired correlation in the input signal s. As
a consequence, equation 8.1.3 must be inverted numerically:

h = Γ−1c (8.1.6)

Starting from a steady initial solution, the system is excited by a broad-band signal u′, which is
superimposed to the steady inlet velocity. This input signal is displayed in Fig. 8.4, left. It has been
obtained by low pass �ltering a random discrete binary signal [238]. This method permits to avoid the
occurrence of signi�cant peaks, which could trigger non-linear heat release response. The power spectral
density of the input signal is also displayed in Fig. 8.4, right. The cut-o� frequency has been set to
fmax = 900 Hz so that the �rst acoustic mode of the shortened chamber (at 1350 Hz) is not excited in
the DNS.

Figure 8.4: Left: time-trace of the input acoustic velocity signal (arbitrary amplitude). Right: Power
spectral density of the input signal.

The cut-o� frequency imposes the time step �t used for the discretized input and output signals
(s, r): �t = 1/(2fmax). This leads to a temporal resolution of �t ≈ 1.1 ms for the impulse response.
The length of the �lter Lmax is chosen so that Tmax = Lmax�t remains longer than all the temporal
scales of the system. The parameters used to construct the Wiener-Hopf system in each con�guration
are recalled in table 8.1.2.

The values of Tmax (and thus Lmax) have been obtained by a trial and error procedure. After a �rst
attempt, these parameters are adapted until the impulse response converges to zero at high delays (see
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Figure 8.5: Impulse response for the three cases CBB, UBB and TBB.

Fig. 8.5). The impulse responses measured for the three con�gurations CBB (cooled cylinder), UBB
(uncooled cylinder) and TBB (transparent cylinder) are gathered in Fig. 8.5.

The three impulse responses exhibit a similar global behavior: it is zero before a certain delay (25
ms in the TBB case, 32 ms in the UBB case and 40 ms in the CBB case). One or more peaks are
then observed and �nally, all impulse responses return to zero. In all cases, the sum of the impulse
responses is equal to unity. This is consistent with the theoretical low frequency limit of FTFs [85] as
FTF(ω = 0) = Pl hl (see equation 8.1.2).

Di�erences are also observed: the delay of the peaks decreases as the temperature of the blu�-body
is increased. The increase in delay directly inuences the phase lag of the FTFs and will be scrutinized
in section 8.2.3. In addition, both the number and the width of the peaks vary from one case to
another. When more peaks are present, the ame response experiences a richer behavior with strong
gain variations. Moreover, as the width of the peaks increases, the FTF returns faster to zero2.

The FTFs in frequency space FTF(ω) can now be deduced from the impulse responses (equa-
tion 8.1.2). In order to improve the frequency resolution of the FTF, the impulse responses are pro-
longed with zeros: �f = 1/(Tmax). Contrary to the zero-padding technique, here, adding zeros can be
seen as a continuous prolongation of the impulse responses so that the frequency resolution is really
increased.

Gains and phases of the FTFs are displayed in Fig. 8.6. As stated previously in this section (8.3.3),
all FTFs start from unity at low frequencies (f < 10 Hz) and return to zero at high frequencies
(f > 300Hz). This behavior validates the choice of the cut-o� frequency fmax = 900 Hz: all ames
exhibit no uctuations at high frequencies. The amplitude of the peaks greatly varies from one case to
another:

• In the case of the upstream stabilized ame (TBB case), which is obtained for a quasi-transparent
blu�-body (ε = 0.05), the gain starts at unity and decreases to zero monotonically

2Justi�cations of these observations are provided in chapter 9.
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Figure 8.6: Left: Gain of the FTFs for the three cases. Right: phase of the FTFs with the corre-
sponding delays: arg(FTF) = ωτ

• Concerning the uncooled ame holder (UBB case with ε = 0.9), a peak of amplitude 2.5 is observed
for ∣FTF(ω)∣ at f = 80 Hz. Such gains have already been reported experimentally at EM2C for
conical V ames [239, 6].

• For the cooled cylinder (CBB case with Tcyl ≈ 300 K), the peak in the FTF occurs at a slightly
higher frequency (f = 140 Hz) and reaches a value of 9. Such large values have not been reported
so far in previous publications but very few experiments have been performed for cooled ame
holders

A simple conclusion arises from these observations:

As the temperature of the blu�-body decreases (TBB → UBB → CBB), the gain of the FTF
increases. The changes of the FTF are large and the maximum gain of FTF(ω) can change by
an order of magnitude when the blu�-body temperature goes from 300 to 1800 K.

Phases (φ = arg(FTF)) vary almost linearly until the gains tend to zero: the heat release response
to an acoustic perturbation comes after a certain delay τ such that φ = ωτ . This observation will be
validated in section 8.2.3 by using the G-equation framework to model the ame dynamic response.
Finally, the phases saturate at high frequencies as observed experimentally by Cuquel et al [51] or
numerically by Duchaine et al [84].

8.1.3 Harmonic forcing

The Wiener-Hopf method described in section 8.1.2 is only suitable for ames excited linearly: i.e. when
the heat release perturbation remains small. The inuence of non-linearities on the ame response is
scrutinized in section 8.3.3. Here, we simply check with harmonic velocity forcing that the heat release
response remains linear3. Comparisons between FTFs obtained with harmonic forcing (method detailed
in the present section) and by the Wiener-Hopf method (method detailed in section 8.1.2) are provided
in this section and show that both results are coherent in all cases.

3For a linear system, the response to an harmonic input is also harmonic.
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The harmonic forcing technique has been widely used to measure FTF: actually most of the ex-
perimental studies concerning FTF measurements used harmonic forcing [230, 52, 6, 227]. Concerning
simulations (DNS or LES), the harmonic method remains costly: one simulation must be performed
per frequency. The physical time which must be simulated must be at least grater than the ame delay
(mean delay of the peaks in the impulse response as shown in section 8.3.3) plus a few periods of acoustic
uctuations where both input and output reach a permanent regime [240, 80] (see Fig. 8.7).
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Figure 8.7: Time series of acoustic and heat release uctuation for a low amplitude forcing at 100 Hz
for the TBB case.

As a consequence, only results at a few selected frequencies will be presented here (80 and 100 Hz).
The procedures employed to retrieve both gains and phases of the FTF in the three cases TBB, UBB
and CBB have already been reported elsewhere [240]: the inlet is forced with harmonic acoustic waves
and both amplitudes and phases of acoustic velocity at the reference location u′ and heat release rate
_
T are retrieved using Fourier transforms performed on exactly 3 periods of input and output signals
as shown in Fig. 8.7 for the TBB case.

Amplitudes of excitation are small (u′/�u ≈ 0.6%) to avoid non-linear uctuations of the heat release
rate. One may notice that the heat release response shown in Fig. 8.7 is purely sinusoidal. The FTF
measured harmonically at 100 Hz are displayed in Fig. 8.8. A very good agreement is observed between
harmonic and broad-band excitation methods tested in section 8.1.2.

A second critical question for FTFs is the location of the reference point where ~u is measured [80].
The inuence of the velocity reference location was scrutinized in the UBB case (uncooled cylinder with
high emissivity). Several locations upstream of the cylinder have been chosen (see Fig. 8.9) and the
results (gains and phases) are gathered in table 8.2. The last case (location 10i) refers to a lateral
location 10 mm at the side of the ame holder.
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Figure 8.8: Left: Gains of the FTFs for the three cases. Right: phases of the FTFs. Results for
the harmonic forcing are represented by markers. Solid lines correspond to the Wiener-Hopf data of
Fig. 8.6.

Except for the two last cases, where two-dimensional e�ects must be considered, the gains are similar
and the phases do not change. This is coherent with the results of Tru�n et al [80] where it is shown
that the ratio between the velocity reference displacement �zref and the acoustic wavelength λ controls
the FTF. In this case, �zref/λ ≈ 10−3 which is negligible. Results for the two other cases concerning the
inuence of the velocity reference are similar and not shown here for the sake of clarity.

z

y
0

Figure 8.9: Velocity reference locations used as inputs of the FTFs.

136



z+iy [mm] -35 -30 -20 -10 10i

SFTFS 2.37 2.37 2.39 2.62 2.25
arg(FTF) 0.75π 0.75π 0.75π 0.76π 0.72π

Table 8.2: Inuence of the velocity reference location for the UBB case. The locations used for the
velocity reference are sketched in Fig. 8.9

8.2 Flame roots mechanisms

The FTFs of the INTRIG burner have been measured in DNS for three distinct operating regimes
(Flame holder temperature from 292 K up to 1750 K). Both gain and phase results exhibited di�erences
which can be analysed by using DNS data to understand the underlying mechanisms.

8.2.1 Description of flame roots dynamics

The ame holder temperature is the only parameter varying in the three di�erent cases and all other
parameters such as bulk velocity or equivalence ratio remain constant. As a consequence, one may
expect that it is the ame root motion which causes the change in FTF. This can be observed by
looking at instantaneous �elds of heat release rate sampled over one acoustic period. The acoustic
velocity amplitude was set to a su�ciently high value (5%) for the three cases so that ame surface
variations can be easily detected.

Heat release rate but also velocity streamlines4 are displayed in Fig. 8.10 for the CBB case, Fig. 8.11
for the UBB case and Fig. 8.12 for the TBB case for four di�erent excitation phases.

4The technique employed to display the streamlines is called Line Integral Convolution [241]

137



8.2.1.1 Cooled case CBB: Tcyl ≈ 300 K

Wrinkles are convected along the ame front at a convective speed (Fig. 8.10, grey circles). These
wrinkles are created in the vicinity of the ame holder, where the ame is attached. The ow topology
encounters important changes in the wake of the cylinder. The main Recirculating Zone (RZ) decreases
from step T /4 to step 3T /4 while a new RZ is formed at the side of the cylinder (step 3T /4). The
latter grows and is displaced in the wake of the cylinder between steps (3T /4 and 5T /4). Kinematic
restoration is slow and the ame surface wrinkles are convected almost without attenuation.

T/4 T/2 3T/4 T

Figure 8.10: Instantaneous solutions during one acoustic period of excitation at 100 Hz for the CBB
case. Heat release rate is displayed by thick black iso-lines and velocity streamlines coloured by the axial
velocity are represented by using the LIC method [241]. The grey arrow represents the instantaneous
direction of the acoustic velocity uctuation at the reference velocity location (20 mm upstream of the
cylinder).

As explained in chapter 7, the ame roots are attached in the center of the main RZ where fresh
reactants and products of combustion mix. As this zone is strongly pulsated, the ame roots are also
a�ected in the same proportions.

8.2.1.2 Uncooled case UBB: Tcyl ≈ 700 K

In this case, wrinkles convection is also observed (Fig. 8.11, grey circles) but at a lower amplitude than
for the CBB case. The ame roots are anchored closer to the blu�-body, which temperature is Tcyl = 680
K and they move much less than for CBB ames. Note that the cylinder temperature does not change
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T/4 T/2 3T/4 T

Figure 8.11: Instantaneous solutions during one acoustic period of excitation at 100 Hz for the UBB
case

during forcing: acoustic waves at 100 Hz cannot alter the mean temperature of the blu�-body, which
remains steady. Indeed, one can consider a thermal skin e�ect where external harmonic uctuations of
temperature cannot propagate into the ame holder deeper than δth =

√
2λ/(ρcpω) ≈ 0.2 mm at f = 100

Hz, which is negligible when compared to the radius r = 4 mm of the cylinder.
The two small recirculation zones RZ1 and RZ2 described in chapter 7 are still observed but their

respective sizes vary during one acoustic period. Indeed, RZ1 almost disappears at t = T /2: the ame
root motion is a�ected by the change in ow topology.

8.2.1.3 Transparent case TBB: Tcyl ≈ 1700 K

In the last case, where the ame holder is transparent and cannot be cooled by radiation, it becomes
hot enough so that the ame stabilizes upstream. When it is forced acoustically, very small wrinkles
are observed (Fig. 8.12, grey circles). Contrary to the two previous cases, the recirculation zone, which
is present in the wake of the transparent ame-holder, is not really a�ected by the acoustic waves.
Moreover, as the ame is stabilized upstream of the cylinder, it experiences no inuence of the RZ
displacement. As a result, the TBB ame is very weakly sensitive to acoustic forcing.
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T/4 T/2 3T/4 T

Figure 8.12: Instantaneous solutions during one acoustic period of excitation at 100 Hz for the TBB
case

8.2.2 Detailed analysis of the flame roots motion

The previous section has shown the important role of the ame root dynamic in the overall ame
response as already assumed by Mejia et al [52] or Kedia et al [185]. DNS allows to analyse this
phenomenon in details. First, the temporal variation of the ame roots location can be extracted from
DNS data. The ame root is de�ned as the most upstream location of the 10% iso-line of heat release
rate �elds displayed in Figs. 8.10, 8.11 and 8.12. Flame roots displacement for the three cases over one
period of acoustic pulsation are displayed in Fig. 8.13, left. The ame roots trajectories are ellipsoidal.
As for the FTFs, the colder is the blu�-body, the higher is the amplitude of displacement. For instance,
the amplitude of ame root displacement is about 4 mm in the CBB case whereas it reduces down to
0.04 mm in the TBB case.

A model for the FTF taking into account the ame root displacement is provided in section 8.2.3.
In this model, the quantity which controls the ame dynamics is the ame root displacement normal
to the steady ame front. This quantity is called ξ(0) and is displayed in Fig. 8.13, right, as a function
of time. The quantity h = 13 mm is the free space between the cylinder and the ame holder as de�ned
in Fig. 8.14. All roots motions are sinusoidal which proves that the ame roots respond linearly to the
acoustic velocity forcing, even for a high amplitude of excitation (5%). Both gains and phases change
from one case to another. Concerning the phase, di�erences of the order of T /2 = 5 ms are observed
between the peaks (Fig. 8.13, right) and cannot be explained by the acoustic propagation time between
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Figure 8.13: Left: relative location of the ame roots in the z,y plane. Right: temporal variation of
ame displacement normal to the ame front.

the anchoring points of the three ames: L/c ≈ 0.03 ms where L ≈ 10 mm is the distance between the
TBB and the CBB anchoring locations.

All the observations presented in this section are in agreement with the FTF measurements presented
in section 8.1.2. Indeed, the ame front is more perturbed in the CBB case, where the FTF gain is
higher. The next section tries to quantify the e�ect of the ame root motion on FTF(ω) using the
G-equation framework.

8.2.3 From flame roots dynamics to FTF models

The G-equation framework [242, 81], which models the ame front as a scalar �eld convected by the
mean ow and propagating on it at the displacement velocity can provide physical insight into the FTFs
of INTRIG ames. In a recent study from Cuquel et al [51], the particular importance of ame roots
motion has been succefully taken into acount in the case of a conical ame. These results have been
adapted more recently to the IMFT slot ame by Mejia et al [52] to take into account the inuence of
the burner rim temperature. The objective of this section is to provide a basic model for the FTFs of
the cylinder stabilized ame, measured in the DNS according to the ame representation of Fig. 8.14.

We start from the general G-equation adapted to the INTRIG cases UBB, CBB and TBB de�ned
in equation 8.2.1. The interface between burnt and unburnt gases is represented by the iso-level G = 0
of the scalar G �eld. This �eld is solution of a convective equation which takes into account both ame
displacement speed sl and velocity �eld U⃗ :

∂G

∂t
+ U⃗ .∇⃗G = sl∣∇⃗G∣ (8.2.1)

Equation 8.2.1 can be solved by assuming a simpli�ed velocity �eld v⃗ and a constant ame displacement
speed which is taken equal to the laminar ame velocity sd = sl:

U⃗ = (u0 + u1(t))e⃗z (8.2.2)

Both mean and acoustic velocity pro�les are assumed to be uniform in the e⃗z direction. Equation 8.2.1
can be rewritten in the frame of the ame (Y,Z as de�ned in Fig. 8.14) for harmonic perturbations [81].
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Figure 8.14: Sketch of the perturbed ame represented in the G-equation framework

The location of the ame front is evidenced by applying the change of variable G = Z − ξ(Y, t):

∂ξ

∂t
− (U0 + ~U1) + V

∂ξ

∂Y
= −sl [1 + ( ∂ξ

∂Y
)

2

]
1/2

(8.2.3)

where U = U0 + ~U1 is the velocity normal to the ame front and V = Vo + ~V1 is the velocity tangential
to it: V0 = u0 cos(�). This equation can be simpli�ed by keeping terms at �rst order and noticing that
U0 = Sl (steady state equation):

∂ ~ξ

∂Y
= iK ~ξ +

~U1(Y )
V0

(8.2.4)

where ~ξ is the harmonic perturbation of the ame front normal to its steady shape, Finally, K = ω/V0

is the wave number associated with the convection of perturbations along the ame front. The solution
of Equation 8.2.4 is provided by the Telegraph integral5 [243]:

~ξ(Y ) = eiKY ( ~ξ0 +
1

V0
∫

Y

0

~U1(Y )e−iKY
′
dY ′) (8.2.5)

The �rst term of the RHS in equation 8.2.5 concerns the ame root motion (Y = 0) while the second
term measures how the external velocity excitation a�ects the convection of the wrinkles along the ame
front. In all three cases, the ame angle � is imposed by the ratio between ow and ame speed and
is close to 0.07π. As the lateral distance h ≈ 13 mm is common for all cases, one retrieves the steady
length of the ames: Y0 ≈ h/ sin(�) ≈ 60 mm. Some variations around this value are observed for the

5The resolution is eased by applying the following change of variable: ~ξ(Y ) = f(Y ) exp(iKY ).
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three cases but this estimation is valid at �rst order. In the frequency range of interest f ∈ [10,500]
Hz, acoustic wavelengths remain longer than λmin = c/fmax ≈ 0.7 m so that Y0 P λmin for all frequencies
considered here. As a consequence, the velocity perturbation ~U1 is supposed uniform: ~U1(Y ) = ~U1. It
is thus possible to integrate the second term in the RHS of equation 8.2.4:

1

V0
∫

Y

0

~U1e
−iKY ′

dY ′ = i
~U1

V0

e−iKY − 1

K
(8.2.6)

This term is equivalent for all three cases and is thus not responsible for the di�erences observed in the
FTFs. However, as shown in Fig. 8.13, the ame root motion is deeply impacted by the temperature
of the blu�-body which a�ects the motion of the ame base ~ξ0. This behavior has also been mentioned
for ames stabilized on rectangular slot burners [52] or conical ames [51]. The coupling between ame
root motion and acoustic velocity perturbation can be described by the Flame Base Motion Transfer
Function (FBMTF):

�(ω) = ( ~ξ0/h)/(~u/u0) (8.2.7)

which relates the ame root motion amplitude to the upstream acoustic velocity amplitude.
The global FTF is obtained by dividing the ame surface uctuation by the velocity perturbation.

The surface of the perturbed ame writes:

~A(Y ) = ∫
Y

0

¿
ÁÁÀ

1 + ( ∂ ~ξ

∂Y ′)
2

dY ′ ≈ ∫
Y

0
dY ′ = Y (8.2.8)

To �rst order, ame front displacements play no role in the surface uctuation. However, the length
of the ame varies when wrinkles reach the wall as shown in Fig. 8.14. The uctuating ame length is
solution of the following equation:

Yf = Y ∣ ~ξ(Y0 + δ) = δ sin(�) (8.2.9)

where δ = Y − Y0 is the additional length of the ame caused by the wrinkles convection and ~ξ(Y ) is
provided by equation 8.2.5. In the limit of small perturbations, δ → 0 so that:

δ = h

sin(�)
(�(ω) ~u

u0
eiKY0 + i

~U1

V0

1 − eiKY0
Kh

) (8.2.10)

It is then possible to combine equations 8.2.10 and 8.2.8 to retrieve the FTF:

FTF(ω) =
~A(Yf)/A0

~u/u0
= �eiKY0

´¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¶
Flame root

+ eiKY0 − 1

iKY0
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Surface perturbation

(8.2.11)

Equation 8.2.11 exhibits two terms which contribute to the FTF. The �rst term is linked with ame
root motion and is controlled by the FBMTF (�) while the second is linked to the perturbation of the
ame front away of the blu�-body by the acoustic wave. As shown in Fig. 8.6, peaks are present in the
FTF for both UBB and CBB cases in the frequency range f ∈ [80,150] Hz so that KY0 = ωY0/V0 > 25.

A model also exists for the FBMTF of a conical ame [51]. In this model, the FBMTF has a band-
pass behavior and peaks at values close to unity. However, in the INTRIG con�guration, the ame
is attached on a cylinder and no models are available. The study of ame roots motion presented in
Fig. 8.13 provides values for the FBMTF at 100 Hz which are summarized in table 8.3. These values
are close to unity, especially for the CBB case. As a consequence equation 8.2.11 is dominated by the
ame base motion term.

Two simple models (one for low frequencies and the other for large ones) can be established to
predict the FBMTF in the TBB case (where the ame is upstream stabilized). At low frequency, the
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CBB UBB TBB

S�S 0.6 0.3 0.14

Table 8.3: Flame Base Motion Transfer Function (FBMTF) measured in the DNS at 100 Hz for the
three cases.

velocity �eld varies slowly and the ame can adapt quasi-steadily. The dynamic equilibrium equation of
the ame front expresses that the ame stabilizes where the ow velocity u(z′) is equal to the laminar
ame velocity sl:

sl = u(z′) = −
u0

r
(z0 + ~ξ(0)) + ~u (8.2.12)

where z0 is the steady location of the ame root (z′ = 0 at the cylinder center as de�ned in Fig. 7.12).
After subtracting the steady state equation (sl = u0z0/r), one obtains the FBMTF of the TBB ame in
the low frequency regime:

�1
TBB(ω) = r/h (8.2.13)

In the INTRIG burner, the ratio between the ame holder radius r and the free lateral space h is equal
to r/h = 0.31. As frequency is increasing, the acoustic velocity reverts before the ame reaches its steady
state equilibrium: the characteristic time needed by the ame to return to equilibrium becomes higher
than the temporal period of the signal. At high frequencies, the ame never reaches equilibrium and its
location is predicted by the convection equation ∂ξ/∂t = u0 + u1(t) − sl or equivalently in the frequency
domain iω~ξ(0) = ~u as u0 = sl. This condition leads to the high frequency limit of the FBMTF:

�2
TBB(ω) = u0

iωh
(8.2.14)

At high frequencies, the FBMTF decreases to zero. The ame switches from a quasi-steady to a dynamic
behavior for fs = v0/(2πr) ≈ 50Hz. This frequency is in agreement with the FTF obtained in the TBB
case (see Fig. 8.6) where the gain starts decreasing close to fs. As a consequence, the second model
is valid at f = 100 Hz: the FBMTF value predicted (∣�2

TBB∣ = 0.13) is in good agreement with the
measured value: 0.14 (see table 8.3).

As shown in equation 8.2.11, the gain of the FTFs should be close to the gain of the FBMTF. Here,
the gains of FBMTFs at 100 Hz are lower than the corresponding gains of the FTFs: for instance, in
the CBB case, the FTF gain is equal to 5.5 while the FBMTF gain is equal to 0.6. However, the ratio
between the FTF and FBMTF gains is roughly constant: ∣FTF/FBMTF∣ ∈ [6,9]. The assumption that
the ame base motion controls the overall FTF of the ames is thus validated and that this zone must
be modelled precisely, taking into account heat transfer to the ame holder.

A better modeling of the ames, especially close to the cooled external walls, would probably help
to retrieve the gains of the measured FTFs in the G-equation framework. Indeed, the model presented
here is valid for adiabatic external boundaries. For instance, when the walls are cold, the ames angle
decreases so that FTF gains increase.

A general scenario for the ame dynamics can be established after considering the observations of
Figs. 8.10,8.11 and 8.12 but also the FTF derived theoretically in section 8.2.3:
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Flame dynamics

• The ame roots oscillate when the ow is acoustically forced. As the temperature of the
ame holder decreases, the amplitude of the ame base motion increases. This motion is due
to the coupling between the ame root and the recirculation zones and can be measured by
the mean of the Flame Base Motion Transfer Function (FBMTF) which changes drastically
with the ame holder temperature.

• Perturbations issued from the roots are convected down to the end of the ames. No heat
release rate uctuations are associated with the convection of these perturbations at �rst
order.

• As these perturbations reach the external walls, the ame length varies when quenching
takes place, which leads to unsteady heat release rate.

8.3 Comparison with experimental measurements

In this section, a comparison is performed between the FTF obtained in DNS and in the experiment.
The inuence of the blu�-body temperature is globally retrieved. Higher gains are obtained when the
ame-holder is cooled while DNS and experimental phases are in very good agreement for both cooled
and uncooled cases. However, the FTFs measured in the experiments goes to zero at lower frequencies
than the ones obtained in DNS. The detailed comparison is provided in section 8.3.1 while some possible
reasons explaining these discrepancies are introduced in sections 8.3.2 and 8.3.3.

8.3.1 Cooled and uncooled cases

The experimental method employed to measure the ame response to acoustic perturbations have
already been described by Mejia et al [52, 181]. Acoustic waves are generated by a 160 mm loudspeaker
located outside of the combustion chamber while acoustic velocity perturbation and heat release rate
are recorded simultaneously by a hot wire probe and a photomultiplier equipped with CH‡ �lter. The
hot wire probe is located 8 mm upstream of the blu�-body in order not to alter the ow. Temporal
signals are then processed as described in section 8.1.3 to provide the FTF for frequencies above 100
Hz.

The corresponding FTFs are displayed in Fig. 8.15 and compared to DNS results. First, FTF
obtained experimentally as well as numerically show a remarkable result: they change drastically when
the temperature of the ame holder changes. The cooled case (CBB) leads to a ame which responds
much more than the uncooled case (UBB). The maximum gain of the CBB case can be 2 to 3 times
larger than the UBB case. This maximum gain is also obtained at a di�erent frequency. This shows
that the blu�-body temperature controls the ame response. The second issue is to compare DNS and
experiments. Here, the phases are in very good agreement: the phase shift between UBB and CBB cases
is well reproduced up to 200 Hz and slight discrepancies are observed at higher frequencies. Second,
gain di�erences are observed in the experiments between the CBB and the UBB cases. However, these
gains are lower than the corresponding gains in the DNS and the di�erence increases with the frequency.

Two e�ects may explain the discrepancies observed between the FTFs measured in the experiments
and the DNS:

• Three dimensional e�ects inuence the FTF in the three cases of interest. Because of thermo-
di�usive instabilities [220], the ame height is not uniform and phase averaging of the FTF is
produced.
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Figure 8.15: Experimental measurements of the FTF.

• Non linear perturbations of the ame front are observed, even at low excitation amplitude. In
the DNS, the ratio between acoustic and bulk velocities was about 1 percent while it was about 5
percent in the experiments. These e�ect can be synthetized in the framework of Flame Describing
Functions (FDF)[244].

8.3.2 Three dimensional effects
As observed in Fig. 8.16, left, the ame height is not uniform in the x direction. One possible reason for
this is the occurence of instabilities [220], which lead to a ame surface which is not perfectly at (see
Fig. 8.16, left). These instabilities may be hydrodynamic, thermodi�usive (this is unlikely here because
Le ≈ 0.95) or due to the geometrical imperfections or 3D end e�ects. The objective of this section is
not to focus on the physical mechanisms leading to ame front perturbations in the transverse direction
but to investigate their impact on FTFs.

A sketch of the ame front in the transverse direction is provided in Fig. 8.16, right. The steady
height of the ame in the frame Y,Z is represented by the variable Y0(X). In order to account for
three-dimensional e�ects in UBB, CBB and also TBB cases, one may decompose the ame sheet into
in�nitesimal 2D ames. Their respective contributions can be integrated to retrieve the global FTF:

FTF3D = 1

∣xmax − xmin∣ ∫
xmax

xmin

FTF2D(Y0(X))dX (8.3.1)

Equation 8.3.1 can be closed by providing a model for the two-dimensional local ame transfer function
FTF2D(Y0). This can be achieved by keeping the root motion term in the FTF model provided in
section 8.2.3:

FTF2D(ω) = �(ω)eiωY0/V0 (8.3.2)

The two-dimensional FTF provided in equation 8.3.2 is convenient because it �rst exhibits a linear
behavior for the phase which is in good agreement with both experimental and numerical measurements.
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Figure 8.16: Right: Three dimensional sketch of the INTRIG ame. Left: picture of the INTRIG
burner showing the transverse perturbation.

Moreover, it is clear the FMBTF does not depend on the ame length so that only the phase of the
FTF varies with this quantity. The following calculations are further simpli�ed by assuming a Gaussian
distribution for the ame height in the transverse direction:

P (Y0) =
1

σ
√

2π
exp(−1

2
(Y0 − Ym

σ
)

2

) (8.3.3)

where Ym is the mean value of the ame height and σ its standard deviation. The ratio σ/Ym has been
approximately measured to 0.04±0.015 (see Fig. 8.16, left). It is now possible to rewrite equation 8.3.1:

FTF3D = 1

∣xmax − xmin∣ ∫
xmax

xmin

�eiKY0(X)dX = �(ω)∫
R
eiKY P (Y )dY (8.3.4)

where one recognizes the Fourier transform of the Gaussian distribution:

FTF3D = �(ω)eiKYme−
1
2
(Kσ)2 =< FTF2D > e−

1
2
(Kσ)2 (8.3.5)

Finally, taking into account the steady ame height variation alters the global FTF by multiplying it
by a low-pass �lter of cut-o� frequency fc = V0/(2πσ) ≈ 65 Hz. The more important are the ame
height variations, the lower is the cut-o� frequency. In order to simplify the calculations, the choice of
a Gaussian function for the ame height density function has been retained. However, similar results
in term of cut-o� frequency would have been obtained with other distributions.

This e�ect helps to understand the di�erences between FTFs measured in the DNS and in the
experiments. For frequencies lower than fc, experimental and numerical data are in excellent agreement
(in gain and phase). However, for frequencies higher than fc, the gains measured in the experiments
start decreasing faster than the ones in the DNS. This is because phase averaging only operates for the
experimental ame.

8.3.3 Non linear forcing: Flame Describing Function

As shown in the previous section, three dimensional e�ects may damp the gain of the FTF obtained by
a 2D approximation. Here, an other source of FTF gain attenuation is considered. As the excitation
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Amplitude TBB UBB CBB

≤ 1 % 0.8 2.38 5.5
5 % 0.76 1.63 2.35

Amplitude TBB UBB CBB

≤ 1% -2.06 2.36 0.75
5 % -2.11 1.86 -1.16

Table 8.4: Left: Gain, Right: phases of FTF for the three cases at two forcing amplitudes for f = 100
Hz

amplitude increases, the gain of the FTF decreases, this non-linear e�ect leads to the concept of Flame
Describing Functions (FDF). The latter have been �rst described by Dowling [244] and EM2C [233,
231, 234, 235]. It states that the heat release response to an acoustic perturbation is also a function of
the amplitude of excitation:

FDF(ω, ∣~u∣) =
~
T (ω, ∣~u∣)/
T

~u/�u
(8.3.6)

where ∣~u∣ refers to the amplitude of the acoustic forcing velocity. Examples of time-traces of velocity and
heat release rate monitored in the UBB case are displayed in Fig. 8.17. First, a small forcing (below 1%
of bulk velocity) is applied and one observes an harmonic response of the heat release rate. Second, a
stronger forcing is applied (5%) and the heat release response ceased to be harmonic. Consequently, high
frequency oscillations are also observed in the velocity signal as soon as the heat release rate reaches its
limit cycle. The heat release rate response to the sinusoidal forcing exhibits higher frequencies harmonics
which in turn generate acoustic waves.

Figure 8.17: Left: time traces of reference velocity and heat release in a linear case (the heat release
is still harmonic). Right: same but with a higher forcing amplitude.

The inuence of the forcing amplitude is scrutinized for the three cases CBB, UBB and TBB and
results are shown in table 8.4. One can observe that the damping e�ects are more important in the CBB
case, where the heat release uctuations are higher. This suggests that non-linear responses are obtained
when the heat release rate uctuations are important. Such a result is coherent with the FTF model
proposed in section 8.2.3: when important ame displacements ξ(Y ) are observed, the assumption used
to linearize equations 8.2.9 and 8.2.8 does not hold anymore. One may also notice that the FBMTF
may also exhibit non-linear behavior when the forcing amplitude increases.

After combining both three dimensional and non-linear e�ects, it is possible to understand why the
FTFs obtained in the DNS exhibit higher gains than those measured experimentally. However, all the
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mechanisms presented in this section are independent of the ame base motion transfer function, which
controls ame dynamics in the frequency range of interest. As a consequence, both experiments and
DNS provide higher gains for the cooled case when compared to the un-cooled one.

Conclusion

Results concerning ame transfer functions for three di�erent topologies of ames stabilized on a cylin-
drical blu�-body have been reported. In the �rst case (CBB), the ame is attached in the wake of a
cooled ame holder and its FTF experiences a high gain (close to 9) around to 100 Hz. In the second
case (UBB), the cylindrical blu�-body is not cooled and the ame is attached closer to it: the FTF
peaks at a lower amplitude (about 2.5). In the last case (TBB), the ame is attached upstream of a
quasi-transparent blu�-body of same dimensions. No peaks are observed in the FTF: it starts from
one and gently decreases to zero. Obviously the ame roots play a major role in the FTF, For the
TBB ame, there is no ame root and the ame is stabilized upstream of the ame holder so that is is
much less sensitive to forcing. As the roots appear and are convected downstream close to the cylinder
(UBB) or far away (CBB), the ame response increases. The di�erences between these FTFs have been
explained within the G-equation framework: it has been shown that the ame base motion plays an
important role in all cases and is responsible for the changes in ame dynamics between the di�erent
cases. Finally, comparisons between experimental and numerical FTFs show that the cooled cylinder
has a more intense response than the un-cooled one but discrepancies for the gain values have been
reported and justi�ed by both non-linear (FDF) and three-dimensional e�ects (phase averaging).
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Chapter 9

Reduced Order Model of the INTRIG
burner

This chapter is dedicated to thermo-acoustic modeling of the INTRIG burner. As its geometry is
simple (quasi one dimensional), the ROM approach has been retained. The latter is built on top
of FTF measured in the DNS (see chapter 8) and takes into account the "non compactness" of the
ame. The solutions of the ROM (obtained with the ARL algorithm) are compared to experimental
measurements for the three ames CBB, UBB and TBB, and a good agreement is observed for three
di�erent geometries: the combustion chamber length is varied from 0.1 (stable con�guration) up to
0.35 m (unstable con�guration). Finally, the modal structure observed in both ROM and experimental
results is explained by introducing a new family of acoustic modes: the Quasi Intrinsic Thermo-Acoustic
(QITA) family. This family originates from the coupling between the Intrinsic Thermo-Acoustic (ITA)
family, which play an important role in anechoic burners, and the chamber family, which concerns all
the modes that exist without ame/acoustic interaction.

Introduction

As stated in the introduction, one of the main objectives of thermo-acoustic studies is to predict the
stability of a given system prior to building it. To do this, several approaches exist including CFD [108]
or Helmholtz solvers [70, 92] and ROMs [57]. The two latter approaches need additional information
about acoustic losses and ame/acoustic interaction to provide predictive results.

The INTRIG geometry is simple: Sudden change of section and swirl injectors have been avoided
to limit the impact of acoustic dissipation. Moreover, the burner is one dimensional (excepted around
the small cylindrical blu�-body), which simpli�es the design of an accurate ROM.

This chapter is decomposed into four parts. Section 9.1 describes the post-processing of experimental
and DNS data to provide the information required to the ROM. FTFs are converted into analytical
functions which contain no poles in order to comply with RootLocker requirements. Once they are
�ttd using analytical functions, the three FTFs are introduced into a "non compact" acoustic transfer
matrix. Indeed, the temperature linearly increases from the root to the end of the ame over a length
zf = 0.07 m which is non negligible when compared to the burner length (≈ 0.5 m). In addition, the
unsteady heat release rate is only located at the end of the ame whereas the velocity reference location
is taken upstream of the blu�-body.

In the second section (9.2), the acoustic boundary conditions required in the ROM are inferred
from experimental measurements in the INTRIG burner. It is shown that acoustic waves are partially
reected by the small glass balls used to laminarize the ow (R = 0.7). Concerning the outlet, three
con�gurations are introduced where the length of the combustion chamber is varied: short (zend = 0.1
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m), medium (zend = 0.2 m) and long (zend = 0.35 m).
A comparison between ROM predictions and experimental measurements is provided in section 9.3:

the short con�guration, where no acoustic activity is observed in the experiment is predicted stable by
the ROM while the other con�gurations exhibit acoustic instabilities. Experimental measurements and
ROM solutions are in good agreement. In addition, more than ten modes are observed before the �rst
cavity mode for each con�guration.

This intriguing result is explained in section 9.4, where the concept of "mode family" is introduced.
The modes observed in the INTRIG burner can be separated into three families:

• The classical chamber modes [11], which exist for non reacting ows and are sightly a�ected by
the ame/acoustic interaction.

• The Intrinsic Thermo-Acoustic (ITA) modes [245, 240, 246], which have been �rst observed in
anechoic chambers and result from an internal feedback mechanism of the {blu�-body + ame}
system. More generally, these modes can still exist in non anechoic chambers but are less a�ected
by the BCs than the chamber modes.

• The Quasi Intrinsic Thermo-Acoustic (QITA) modes, which are introduced in this PhD work,
and result from the coupling between the two previous families.

These results are similar to the recent analysis performed by Emmert et al [247] at the last symposium
(not published yet).

9.1 Flame/Acoustic coupling

As shown in chapters 1 and 2, FTF is the key ingredient needed to predict thermo-acoustic instabilities.
Most of the time, FTFs are only known for a discrete set of real valued frequencies. However, ROM (and
even Helmholtz solvers) need an analytical representation, which must be valid not only for all values
of real frequencies but also for complex frequencies (i.e. for signals growing or decaying in time) [248].
An automated procedure which answers to this question is presented in 9.1.1.

After that, the FTF is introduced in a two-port representation, which links acoustic variables at both
sides of the element. In the case of the INTRIG burner, the ames are quite long (from 60 to 70 mm)
so that the compact approximation developed in chapter 1 does not apply perfectly. As a consequence,
a more accurate description of the two-port, which di�erentiates the location of the velocity reference
(upstream of the cylinder) to that of the unsteady heat release production (end of the ames, as shown
in chapter 8), is provided in section 9.1.2. This approach also assumes a linear temperature pro�le from
the root to the end of the ame.

9.1.1 Analytical representation of FTFs

Analytical representation f(ω) of FTFs are needed as inputs of ROMs and this topic has already been
addressed in various studies. Empirical models have been used by Kopitz et al [54] and Noiray et
al [249]. In these cases, a fractional polynomial multiplied by a delay function was used:

ffp(ω) =
Pnk=0 akω

k

Ppk=0 bkω
k
eiωτ (9.1.1)

where ak k ∈ [1, n], bk k ∈ [1, p] and τ are the �tting coe�cients. As all FTFs decrease to zero at
high frequencies, we impose p > n. The optimal coe�cients are obtained by performing a non linear
regression of the discrete FTF. However, using this kind of model for FTFs comes with two major
drawbacks:
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• This model is not based on physical insights and the correct values for n and p are not easy to
guess. Most of the time, a trial and error method is used. Even when these parameters are �xed,
it is also complicated to �nd correct guesses for the n + p + 3 �tting coe�cients of the model
required by minimization algorithms.

• This model introduces poles in the ROM (when p > 0). Indeed, a pole present in the analytical
representation of the FTF, unless balanced by a root, will induce a pole in the ROM. However,
methods based on the argument principle such as the ARL algorithm presented in chapter 2 are
not adapted to ROMs with poles.

As a consequence, an other methodology is adapted from [250] and [251] to solve the two aforementioned
issues. In this procedure, the �tting is performed in the time domain on the impulse response of the
ame as shown in Fig. 9.1. Indeed, it is simpler to �t a real valued function such as the impulse response
than the complex FTF.

Figure 9.1: Discrete Impulse Response (DIR) in the UBB case: Gaussian peaks can be used to �t the
data.

The Discrete Impulse Response (DIR) contains peaks of various amplitudes and widths, which can
be easily identi�ed. These peaks can be �tted with multiple Gaussian functions hg,τ,σ which are summed
to obtain the complete impulse response1:

hnp(t) = Q
k=1,np

hg,τ,σ(t) (9.1.2)

with hg,τ,σ = ge−
(t�τ)2
2σ2 (9.1.3)

where the number of peaks np will be determined later. The three parameters g, τ, σ corresponds to the
amplitude, the center and the standard deviation of the Gaussians functions respectively. Guesses for
these values can be easily obtained:

1Contrary to Polifke et al [252], who used a single Gaussian function to describe the DIR.
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Peaks detection method

• The local maxima of the absolute DIR τk are identi�ed and reordered from larger to lower.
Among them, only the �rst np peaks are retained: {τ1, τ2, . . . τnp}.

• Starting from the peaks center, the amplitudes {g1, g2, . . . gnp} are simply obtained: gk =
DIR(τk)

• Finally, the standard deviation σk is obtained for each peak by using the second order
discrete derivative of the impulse response d2(DIR)(τk) which is computed with a fourth
order centered stencila:

σk =
¾

−g
d2(DIR)(τk)

(9.1.4)

aIndeed, h′′(τ) = −g/σ2

Finally, the Gaussian based model provided in equation 9.1.2 is �tted on the DIR: examples are
provided in Fig. 9.2 with four di�erent number of peaks: np ∈ [1,3,8,15]. One observes that with np C 8,
the discrete data are well reproduced by the analytical model.
In practice, it is useful to increase np until the integral of hnp converges to unity2:

∫
∞

t=0
hnp(t)dt =

√
2π

np

Q
k=1

gkσk (9.1.5)

Figure 9.2: Model �tting on discrete impulse response (CBB case). Left: the parameter np is set to
1 and 8. Right: the parameter np is set to 3 and 15.

When the analytical representation hnp of the impulse response is obtained, it is possible to retrieve
the corresponding analytical FTF by using Fourier Transform (FT ). Each Gaussian hg,τ,σ terms can
be easily recast into the frequency domain:

FT (ge−
(t�τ)2
2σ2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
hg,τ,σ

) = gσ
ḡain

√
2π eiωτ

±
delay

e−
1
2
(ωσ)2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¶
envolope

(9.1.6)

2The integral of the impulse response is equal to the low frequency limit of the FTF (see chapter 8) and must
be equal to unity [85].
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Equation 9.1.6 shows that the Fourier Transform of a Gaussian function is decomposed into a product of
three terms. The �rst one characterizes the gain in the frequency domain. The second one corresponds
to a delay while the third one relates to the range of inuence of the peak in the frequency domain:
for frequencies above ω > 1/σ, this term vanishes. As a consequence, a peak with a large width in the
impulse response (large σ) only inuences the low frequency range of the FTF.

The analytical representations of the FTFs deduced from the hnp functions displayed in Fig. 9.2
(np =1, 3, 8 and 15) are shown in Fig. 9.3. A good agreement is observed for the �t function as long as
np C 8. Taking into account more than 8 peaks improves the gain accuracy for low frequencies as well
as the phase accuracy for high frequencies.

Figure 9.3: Model �tting on FTF (CBB case). Left: the parameter np is set to 1 and 8. Right: the
parameter np is set to 3 and 15.

A value of np = 15 will be retained for this case (CBB) but smaller ones are su�cient for the two
other cases: np = 8 for the UBB case and np = 2 for the TBB case. Using more peaks than needed
increases the computational time needed by the ROM numerical solver RootLocker without modifying
signi�cantly the FTF.

9.1.2 Transfer Matrix of a non compact flame

The mechanisms leading to ame front perturbation in the presence of acoustic forcing have been
detailed in chapter 8. In the three cases CBB, UBB and TBB, unsteady heat release rate was only
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observed in the region where the ame interacts with the external walls. However, the amplitude of
ame front perturbations was impacted by the ame root dynamic, close to the cylindrical blu�-body.
These two regions are separated by about 70 mm: the three ames are thus not perfectly compact. A
two-port description can still be proposed and is based on two assumptions:

• A1 Unsteady heat release rate is mainly generated at the wall (zf) according to the acoustic
velocity reference taken at zref .

• A2 The temperature pro�le increases linearly from Tu at z = 0 up to Tb at z = zref so that the
sound speed �eld can be simply evaluated.

Unsteady heat release

zref zf0 z
(< 0) (> 0)

q̃ ! p̃

Tlfc = Rb(�zf) Tlfe Ru(zref)

Tlfe

Velocity reference

Tu Tb

Figure 9.4: Sketch of the ame region. The velocity reference location used to measure FTFs is located
at zref while unsteady heat release occurs at zf . Two transfer matrix are de�ned: Tlfe links acoustic
waves at zref and zf stations while Tlfc links them at 0− and 0+ by using matrix transformation.

A sketch of the ame region is provided in Fig. 9.4 where all the parameters of interest are introduced.
Two transfer matrices are de�ned: the "long ame extended" transfer matrix Tlfe links the acoustic waves
(A+,A−)ref taken at the velocity reference location with the acoustic waves (A+,A−)f taken at the end
of the ame. Starting from this transfer matrix, the "long ame compact" transfer matrix Tlfc can be
obtained by using matrix transformation:

Tlfc = Rb(−zf)Tlfe Ru(zref) (9.1.7)

where Rb,u is the rotation matrix de�ned in equation 1.4.8 for burnt/unburnt gases respectively. Both
Tlfe and Tlfc take into account the whole ame with a linear temperature pro�le variation. However,
the Tlfc matrix is denoted as "compact" because its ports are located right upstream and downstream
of the blu�-body thanks to matrix transformation.

The Tlfc transfer matrix can be directly introduced into a ROM in place of the ame transfer matrix
F de�ned in equation 1.5.6 as it links acoustic waves at z = 0− and z = 0+.

The objective is now to provide an analytical expression of the long ame extended transfer matrix
Tlfe. This can be achieved by starting from equation 1.5.4 in which the reference velocity location has
been re-de�ned:

[~u]z�f
z�
f
= �T

Tu
FTF(ω)~uzref (9.1.8)
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This equation states that the acoustic velocity jump occurring at z = zf is only caused by the ame
response through the FTF. Equation 9.1.8 can be combined with the conservation equation of acoustic
pressure across the interface at z = zf and recast into acoustic wave formalism to obtain:

( A+
f�

A−
f�

) = ( 1 0
0 1

)( A+
f�

A−
f�

)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
passive

+ 1

2
�g ( 1 −1

−1 1
)( A+

ref

A−
ref

)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
active

(9.1.9)

where �g = (ρ0c)d/(ρ0c)u(�T /Tu)FTF(ω) is the product of the ratio of downstream and upstream
impedances with the reduced FTF. The RHS of equation 9.1.9 is decomposed into a passive part
(scattering of acoustic waves without the ame) and an active part (acoustic waves generated by the
unsteady heat release). The long ame extended transfer matrix Tlfe can be thus obtained by providing
a model for the acoustic waves passive propagation between zref and zf� .

This region is decomposed into two zones: from z = zref to z = 0− (see Fig. 9.4), acoustic waves are
simply advanced by using a rotating matrix Ru(0− zref). At the interface between the two zone (center
of the blu�-body), acoustic waves are continuous: the contraction ratio caused by the cylinder is to small
to alter the acoustic propagation signi�cantly. However, in a general case, one can use a transfer matrix
for the ame holder: Tfh. For instance, using a ame holder transfer matrix can be very useful in the
case of ames stabilized over multi-perforated plates or swirl injectors. The second zone, which ranges
from z = 0 to z = zf� , has a non uniform temperature pro�le. The propagation of acoustic waves in
one dimensional ducts with an axial temperature gradient has been investigated numerically by various
authors [253, 254, 255]. More recently, Sujith et al [256] derived an exact solution in the case of a linear
mean temperature �T variation in the duct, as it is the case in the INTRIG con�guration (assumption
A2). However, this approach, which is described in appendix F, cannot be retained because it implies
the use of Bessel functions of �rst and second order which are not available in RootLocker.

Another approach is preferred: the problem is discretized into n smaller regions, in which the mean
temperature Ti , i ∈ [1, n] is supposed uniform as shown in Fig. 9.5.

0 zf
(> 0)

Tu Tb

z

A+
0

A�
0 A�

f�

A+
f�MTb

(MTu
)�1

T1 T2
. . . TnTn�1. . .

RTi

⇣zf

n

⌘
(Ti ! Ti+1)T

Continuous approach

Discrete approach

Figure 9.5: Detailed sketch for the inhomogeneous zone between z = 0 and z = zf . Both continuous
and discrete approaches are represented for the propagation of acoustic waves. A comparison between
the two approaches is provided in appendix F. Note that the unsteady combustion takes place only at
z = zf .
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The corresponding discrete transfer matrix is obtained by combining all rotation (R) and tempera-
ture jump3 (T) transfer matrices:

Tdisc = Tn,TbRTn(
zf

n
)(

1

∏
i=n−1

Ti,i+1RTi(
zf

n
))Tu,1 (9.1.10)

where the intermediates temperature are Ti = Tu + (Tb − Tu)(i − 0.5)/n. Here, the discrete approach
does not require the use of unusual functions and can also be easily adapted to the case of a non-linear
variation of the mean temperature pro�le. A comparison between the continuous (equation F.1.4) and
the discrete (equation 9.1.10) approaches is provided in appendix F where it is shown that both methods
provide similar results when n > 5.

Finally, it is possible to combine equations 9.1.10 and 9.1.9 to obtain the long ame extended transfer
matrix Tlfe:

Tlfe = TdiscTfhRTu(−zref) +
1

2

(ρ0c)b
(ρ0c)u

Tb − Tu
Tu

FTF(ω)( 1 −1
−1 1

) (9.1.11)

The "long ame compact" transfer matrix Tlfc which was derived from Tlfe in equation 9.1.7 can be
used in a ROM. To sum it up, this two-port matrix takes into account the length of the ame as well
as the reference location for the acoustic velocity. It supposes that the temperature increases linearly
starting from the ame holder at T = Tu ≈ 300 K up to T = Tb ≈ 1900 K at the end of the ame where
the unsteady heat is released.

9.2 Boundary conditions and ROM of the INTRIG burner

The ame region has been accurately modeled in the previous sections 9.1.1, where the discrete FTFs
have been recast into analytical representations, and 9.1.2, where these analytical FTFs have been
included in a two-port matrix which takes into account the length of the ame. A complete ROM can
be formed by combining the burner compact transfer matrix Tlfc with a set of boundary conditions.

9.2.1 Inlet and outlet BCs

Concerning the outlet boundary conditions, the chamber outlet is left open to let the burnt mixture
ow out. As a consequence, an acoustic pressure node is imposed right after the chamber exit. Similarly
to what has been done in chapter 5, an acoustic end correction [257, 12] can be taken into account:
δout = h/2 where h = 34 mm refers to the burner width.

As small glass balls are used in the plenum to laminarize the ow (see chapter 6 for a complete
description of the burner), the de�nition of the inlet acoustic boundary is more di�cult. In order
to characterize it, the multi-microphone technique described in chapter 5 has been employed in the
experimental INTRIG burner to reconstruct the acoustic velocity pro�les for frequencies ranging between
50 and 1000 Hz as shown in Fig. 9.6. These measurement have been performed in a non reacting
con�guration, and at rest. For the sake of clarity, the acoustic velocity pro�les have been normalized
by their maximum value. One observes that all velocity curves collapse in the vicinity of z = −0.26 m,
which corresponds to the end of the small glass balls. This result was expected: small glass balls form a
porous wall where acoustic waves are partially reected. This situation can be modeled by a reection
Rin applied at z = −0.26 m, which phase4 ϕ is equal to 0.

3This matrix is de�ned in equation 1.5.6 after setting g = 1.
4The reection coe�cient must be real to obtain an extremum of velocity for each frequencies. ϕ = π corre-

sponds to a maximum while ϕ = 0 corresponds to a minimum, which is observed here.
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Figure 9.6: Normalized acoustic velocity �eld reconstructed with the multi-microphone method in
the INTRIG burner for f ∈ [50,500] Hz. A velocity node is clearly observed at z = −0.26 m, which
corresponds to the �nal location of the small glass balls used to laminarize the ow.

Moreover, the modulus of the reection coe�cient Rin can be deduced from Fig. 9.6 by considering
the Standing Wave Ratio (SWR) of ~u. Equation 1.4.7 can be recast by using the reection coe�cient
Rin:

ρ0c~u = a− ‰Reikz − e−ikzŽ (9.2.1)

where k = ω/c is the wave number and a−, the Riemann invariant of the upstream propagating wave
measured at z = −0.26 m. The ratio between maximum and minimum of ∣~u∣ is:

SWR = max ∣~u∣
min ∣~u∣

= 1 +Rin

1 −Rin
(9.2.2)

so that:

Rin =
SWR − 1

SWR + 1
(9.2.3)

Figure 9.6 shows that the standing wave ratio is about SWR = 1/0.17 = 5.9 so that the amplitude of
the reection coe�cient is Rin ≈ 0.7. However, an important uncertainty (±0.1) is associated with this
measurement.

∣Rin∣ < 1 means that the acoustic waves which are transmitted upstream of the inlet are dissipated
by the small glass balls. This constitutes the only source of dissipation occurring in the INTRIG burner.

9.2.2 Detailed ROM of the INTRIG burner

A simpli�ed ROM of the INTRIG burner has already been proposed in section 1.6.3. Although not
accurate, this model permitted to introduce the concept of thermo-acoustic low order modeling. More-
over, it was used as a benchmark for the ANR (stochastic method presented in chapter 1) and the ARL

(exact method presented in chapter 2) algorithms.
Here, we propose to establish a detailed ROM of the INTRIG burner, based on the knowledge

acquired in the previous chapters. The corresponding sketch of the INTRIG burner is depicted in
Fig. 9.7 where all important parameters are recalled.
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Figure 9.7: Sketch of the INTRIG burner used to build the ROM. All the lengths are given in m

The detailed ROM of the INTRIG burner is then:

det(Rb(zout + δout)Tlfc(zref , zf)Ru(−zin)(
Rin

1
) ,( 1

Rout
)) = 0 (9.2.4)

where Ru,b denotes the rotation matrix in the unburnt/burnt gases and Tlfc is the long ame compact
transfer matrix de�ned in section 9.1.2. Solutions of this ROM are provided in the next section for the
three cases CBB (cooled blu�-body), UBB (un-cooled blu�-body) and TBB (transparent blu�-body).
These solutions, which correspond to the acoustic modes of the INTRIG rig, are then compared to
experimental measurements.

9.3 Acoustic modes prediction in INTRIG

In the previous chapters (6, 7 and 8) a very short (zend = 0.1 m) combustion chamber has been used in
the experimental set-up to avoid self-excited acoustic modes. In this con�guration, referred as "short"
in the following, the absence of unstable mode can be understood by considering the Rayleigh criterion
provided in equation 0.1.1 which relates the variation of acoustic energy in the chamber. The source
term of acoustic energy caused by the coupling with the ame (see equation 0.1.2) which is recalled
here for the sake of clarity:

S = 1

T
∫

T

0

γ − 1

ρ0c2
p′ _q′dt (9.3.1)

is proportional to the product of the uctuating pressure and heat release rate p′ _q′. It was shown in
chapter 8 that the unsteady heat release rate was located at the end of the ame (zf ≈ 0.07 m). In this
region, which is very close from the outlet (p′ = 0 at zshort

end = 0.1 m), the pressure uctuation remains very
small so that S ≈ 0. As a consequence, no unstable modes are expected because of acoustic dissipation
and radiation.

The absence of unstable mode can also be understood quantitatively by solving the ROM equation
of the INTRIG burner in the short con�guration as done in section 9.3.3. Moreover, two other chamber
lengths have been studied. A "medium" chamber of length zmedium

end = 0.2 m, which roughly corresponds

to three lengths of the ame and a "long" chamber of length zlong
end = 0.35 m. Contrary to the "short"

con�guration, self-excited acoustic modes have been observed in the experiment for both UBB and CBB
ames in the "medium" and "long" con�gurations. Determining whether the ROM can reproduce this
behavior is an interesting test of quality.
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con�guration chamber length stable (CBB, UBB, TBB) XP ROM

short (section 9.3.3) 0.1 m  ,  ,      

medium (section 9.3.2) 0.2 m - ,  ,      

long (section 9.3.1) 0.35 m - , - ,      

Table 9.1: Summary of the di�erent con�gurations studied in this manuscript. Only CBB and UBB
cases have been studied in the experiments. However, the ROM approach was used with the three
ames (CBB, UBB and TBB).

A brief summary of the con�gurations is provided in table 9.1. In the experiment, only the cooled
(CBB) and un-cooled (UBB) ames were investigated. The three ames topologies (CBB, UBB and
the transparent blu�-body TBB) were investigated with the ROM approach. Note tht all FTF used
for the ROM come from the DNS. Even if they partially match the experimental FTF, none of the
experimental FTF results was used to determine the stability map given in the next sections. In other
words, the whole procedure can be performed without running the experiment, allowing to determine
the stability map before operating the burner, the usual ideal target of all instability studies.

Acoustic modes in the experiments are recovered by a Power Spectral Density (PSD) of a pressure
signal, measured inside of the plenum: each peak in the PSD corresponds to an acoustic mode5. Both
frequencies (real part) and stable/unstable behavior recovered from the PSDs are then compared to the
solutions of the ROM.

9.3.1 Long configuration

ROM can be �rst used to predict the "passive" acoustic modes of the burner, that is to say the modes
obtained without ame/acoustic coupling (FTF(ω) = 0), but taking into account the temperature
variation. In the long con�guration, the �rst two ROM modes are: f l1 = 228 and f l2 = 620 Hz. The
frequency of the second mode is not three times that of the �rst one (expected behavior for the quarter
wave family of modes) as the temperature �eld is not uniform.

The comparison between experiments and ROM solutions is shown in Fig. 9.8 for active ames.
Experimental results are provided for both CBB (black solid line) and UBB (blue dashed line) ames,
while the solutions of the ROM are denoted by black circles (CBB) and blue crosses (UBB). This
representation will be maintained in the following sections for the medium and short con�gurations.
A di�erent scale is used for experimental and ROM modes. The objective is to verify of each peaks
observed in the experimental measurements correspond to a solution of the ROM.

Experimental measurement are represented by a PSD of a pressure signal (Pa2) while ROM solutions
are represented by their imaginary part I(f) in Hz. A positive imaginary part stands for an unstable
mode. Although di�erent, these scales represent similar quantities. A high peak in the PSD represents an
acoustic mode which must be unstable, and thus, with a positive growth rate I(f). Several observations
can be made from Fig. 9.8:

• First, there is a signi�cant number of modes, both in the experiment and in the ROM. For
instance, in the frequency range f ∈ [0 ∶ f l1], one observes 11 modes for the CBB case in the
experimental spectrum (12 predicted by the ROM) and 9 modes for the UBB case (10 predicted
by the ROM). The agreement between the experiment and the resolution of the ROM is good
and highlights a point which is rarely observed: the existence of multiple possible modes in the
low frequency range. This topic will be addressed in section 9.4.

5This statement must be tempered by the existence of harmonics. When an acoustic mode reaches a limit
cycle, non linear e�ects arise and harmonics at multiple frequencies appear.
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Figure 9.8: Acoustic modes obtained in the INTRIG burner in the long con�guration (zend = 0.35 m),
Vertical black lines corresponds to the modes obtained without acoustic/ame coupling. Experimental
results (PSD) are represented by lines (solid black for the CBB case and dashed blue for the UBB case)
while ROM solutions are denoted by markers. The solid red horizontal line denote the limit of stability
for ROM solutions.

• Very unstable modes are observed in the experiment (peaks in the PSD close to 1 Pa2) between
f ∈ [200 ∶ 250] Hz for both CBB and UBB ames. These frequencies are close to the �rst mode
of the cavity f l1 = 228 Hz in the absence of an active ame. Moreover, the resolution of the ROM
exhibits acoustic modes with a positive growth rate in the same region. Finally, one may observe
that the instability is more important (higher limit cycle) in the CBB case.

• For higher frequencies (f > f l1), damped acoustic modes are observed in both experiment (PSD
P 1 Pa2) and ROM solutions (I(f) < 0). This behavior is similar for both UBB and CBB ames.

• The frequency di�erence between two consecutive modes is about �fCBB = 25 Hz for the cooled
case CBB in the experiment (about 20 Hz in the ROM) while it is �fUBB = 31 Hz for the un-
cooled case UBB in the experiment (about 25 Hz in the ROM). It is interesting to note that the
ratio between the CBB and the UBB gap is the same in the experiment as well as in the ROM:
�fUBB/�fCBB ≈ 1.25.

9.3.2 Medium configuration

The medium con�guration is now investigated (zend = 0.2 m). Here, the �rst two passive modes are:
fm1 = 281 and fm2 = 794 Hz and are sightly higher than those obtained for the long chamber (fm1 >
f l1 = 228 and fm2 > f l2 = 620 Hz). The comparison between experiments and ROM solutions is shown in
Fig. 9.9 where the same axes as in the "long" con�guration comparison (see Fig. 9.8) are used.
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Figure 9.9: Acoustic modes of the INTRIG burner in the medium con�guration (zout = 0.20 m).
Vertical black lines corresponds to the modes obtained without acoustic/ame coupling.

As done in section 9.3.1 for the long con�guration, several observations can be realized in Fig. 9.9
for the medium chamber:

• There are still an important number of modes, both in the experiment and in the ROM and the
agreement is still very good in the low frequency range (f ∈ [0 ∶ 300] Hz).

• Unstable modes are only observed with the cooled blu�-body (CBB case, solid black lines). The
amplitudes of the peaks observed for UBB case (dshed blue lines) are very small when compared
to those observed in the CBB case. However, the resolution of the ROM predicts sightly unstable
modes in both cases, although they should only appear above 200 Hz for the UBB case.

• Finally, the frequency spacing between two consecutive modes are similar to those obtained in
the "long" con�guration.

9.3.3 Short configuration

Only results from ROM are provided in the short con�guration. Indeed, no instabilities where observed
in the experiment for both CBB and UBB ames. In this con�guration, the �rst two passive modes
are: fs1 = 297 and fs2 = 883 Hz and are also higher than those obtained for the medium chamber
(fs1 > fm1 = 256 and fs2 > fm2 = 794 Hz). The solutions of the ROM for these two ames are displayed in
Fig. 9.10.

In this con�guration, all the solutions of the ROM are stables (except some marginally unstable
modes in the CBB case) which validates the absence of self-excited acoustic oscillations in the experi-
ments for both CBB and UBB ames as required in chapter 8 to measure FTFs.

This con�guration proves that the ROM approach is suitable to design a stable chamber, once the
FTF of the ame is known accurately.
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Figure 9.10: Acoustic modes of the INTRIG burner in the short con�guration (zout = 0.10 m). Vertical
black lines corresponds to the modes obtained without acoustic/ame coupling. All modes are stables
with negative imaginary parts.

9.3.4 TBB case

Finally, results concerning the transparent blu�-body (TBB case), for which the ame is upstream
stabilized, are provided in this section. All these results were obtained with the ROM approach as such
ames were not studied in the experimental burner6 and are gathered in Fig. 9.11.

First, one observes that for the TBB ames, all modes are stable, independently of the chamber
length. A closer look at the acoustic modes provides an interesting classi�cation: two distinct families
of modes seem to exist with the TBB ame. The �rst one, denoted as "chamber family" in Fig. 9.11,
contains two modes which are clearly a�ected by the change in length of the chamber: the longer the
chamber the lower the frequency. The frequencies (real part) of the chamber family of modes are very
close to the one obtained with a passive ame (denoted by dashed gray vertical lines in Fig. 9.11).

Second, an other set of acoustic modes, gathered here under the name of "Unknown family" is
observed at low frequencies. Contrary to the chamber family of modes, only their growth rates vary
with the chamber length. Here again, the frequency gap between the unknown family modes is small
and independent of the chamber length : �f ≈ 34 Hz.

9.4 Discussion

In the previous sections, comparisons between experimental measurements and ROM predictions have
been provided. Short, medium and long chambers has been investigated and a very good agreement was
obtained. The objective of this section is to �rst, explain these �ndings, and discuss especially the exis-

6the ame holder temperature measured in the DNS is about 1600 K for the TBB case
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Figure 9.11: Acoustic modes predicted by using the ROM approach for the transparent blu�-body
(TBB case). The modes are displayed for the three chamber lengths and vertical lines symbolizes the
acoustic modes f l,m,s1,2 of the passive systems.

tence of distinct families of modes. After that, the small discrepancies observed between experimental
results and ROM predictions will be discussed.

9.4.1 Chamber and Intrinsic families of modes

The modal structures observed in section 9.3 can be understood by considering the block diagram of
the INTRIG burner. In a recent study, Emmert and Bomberg [246, 258] provided block diagrams of
the region in which a ame was anchored on a swirl injector. Such diagrams link in and out-coming
acoustic waves outside of the region of interest. This formalism is reproduced here in Fig. 9.12 with
the notations adapted to those of the manuscript and several simpli�cations. Indeed, the blu�-body is
transparent for acoustic waves7 so that the scattering matrix appearing in [246] is replaced by an unit
matrix, which greatly simpli�es the diagram.

Two distinct loops are observed in this diagram. First, the chamber loop, which takes into account
the propagation of acoustic waves all along the chamber. This loop is still present in the absence of
combustion.
Second, the intrinsic loop, which relies only on the ame response. This intrinsic loop, has been studied
recently by many authors [245, 246, 240] in the context of (quasi) anechoic combustion chambers, that is
to say for vanishing reection coe�cients. Indeed, only the intrinsic loop remains when both upstream
and downstream boundary conditions tend to zero. The modes associated to this loop are called the
Intrinsic Thermo-Acoustic (ITA) modes [240]. Prior to studying the fully coupled system described in
Fig. 9.12, it is important to isolate the intrinsic loop, as done in section 9.4.1.1. The coupling ITA and

7Acoustic reection at the ame holder caused by the change of impedance are neglected here for the sake of
simplicity without altering the purpose of the discussion.

8Assuming a compact ame do not alter the results of this section.
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Figure 9.12: Simpli�ed block diagram of the INTRIG burner. This diagram is adapted from [246]
from which several simpli�cations have been adopted: the passive scattering matrix of the ame holder
is set to unity and the ame is supposed compact8.

and Chamber modes will lead to QITA modes, which are introduced in section 9.4.1.2.

9.4.1.1 ITA modes

In the context of fully anechoic combustion chamber, the ITA modes can be retrieved from the intrinsic
loop of Fig. 9.12 by considering the following equation:

~uu = −
�

1 + �

�T

Tu
FTF(ω)~uu (9.4.1)

which has non trivial solutions only when:

�

1 + �

�T

Tu
FTF(ω) = −1 (9.4.2)

where � is the ratio of downstream and upstream impedances and �T = Tb − Tu. The solutions of
equation 9.4.2 can be derived by assuming a local n−τ representation for the ame response (FTF(ω) ≈
n exp(iωτ)):

R(fITA) = 1

τ
(1

2
+ k) (9.4.3)

I(fITA) = 1

τ
ln( n��T

Tu(1 + �)
) (9.4.4)

The frequency spacing between ITA modes depends only on the FTF local phase delay: �fITA = 1/τ .
In addition, the stability of these modes rely on the FTF gain through the interaction index n. An ITA
mode is unstable only when:

n > nu =
Tu
�T

1 + �

�
= �

1 − �
(9.4.5)

In the case of the INTRIG burner, � =
√
Tu/Tb ≈ 0.4 so that unstable ITA modes are expected when

n > nu = 0.66. As noted by Emmert [246], Courtine [240] or Hoeijmakers [245], unlike usual CI modes,
ITA modes are not unstable when a phase condition is satis�ed but when a gain criterion nc is ful�lled.
In real burners, boundary conditions are never fully anechoic and one must take into account the
coupling between the Intrinsic and the Chamber acoustic modes. The resulting solutions of the ROM
are called Quasi Intrinsic Thermo-Acoustic (QITA) modes and are investigated in the following section.
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9.4.1.2 QITA modes

In the INTRIG burner, acoustic waves are reected at the boundaries: ∣Rin∣ = 0.7 and ∣Rout∣ = 1 so
that a coupling between intrinsic and chamber loops must occur. Instead of solving analytically the
ROM equation 9.2.4, it is easier to identify the coupling by performing parametric studies with the
"safe parametric mode" de�ned in section 2.6 (chapter 2). This coupling is investigated in the long
chamber con�guration (zend = 0.35 m), for the UBB ame. Similar results are obtained in the other
con�gurations.

The QITA modes can be obtained by a continuation strategy: starting from a fully anechoic chamber,
where ITA modes are expected, the reection coe�cients are varied up to their respective values (
Rin = 0.7 and Rout = −1) according to the following transformation:

( Rin

Rout
)

param

= α( Rin

Rout
) (9.4.6)

where α is varied from 0 to 1. The corresponding parametric study is displayed in Fig. 9.13 where the
anechoic solutions (α = 0) are denoted by red crosses while reective ones (α = 1) are represented by
blue circles. The anechoic solutions correspond to the ITA modes which are solutions of equation 9.4.2.

QITA family

ITA family

↵ : 0 ! 1
↵(Rin, Rout)

f l
1 f l

2

Figure 9.13: Parametric study realized with the ROM approach described in chapter 2. The reection
coe�cients are multiplied by a scalar α which is varied from 0 (fully anechoic) up to 1 (reective
experimental burner). Red crosses denote the origin of a mode (α = 0) while blue circles denote the end
of a mode (α = 1).

These solutions are then shifted to form the QITA modes when the reection coe�cients retrieve their
original values. This parametric study does not di�erentiate modes from chamber and QITA families.
Indeed, as the coupling remains strong (FTF(ω) > nc), both burner and intrinsic loops are fully coupled.
However, one may observe than the QITA modes are ampli�ed for frequencies close to that of the passive
modes (obtained without ame/acoustic coupling): f l1 and f l2. Close to these frequencies, the chamber
reects acoustic waves in phase with the ITA modes and the growth rate of the corresponding QITA
modes is increased. In other words, for α = 0, ITA modes do not know of the chamber modes but as α
goes to unity, the ITA modes close to the acoustic passive modes are the ones with the largest growth
rates. Moreover, the frequency spacing between ITA and QITA modes remains similar.
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An second parametric study allows to separate the QITA modes into two distinct sets of modes:
those coming from the chamber family and those originating from the ITA family. Here, the FTF is
varied from zero (where only chamber modes are expected) up to its original value (where QITA modes
are expected) according to the following transformation:

FTF(ω)param = βFTF(ω) (9.4.7)

where β is varied from 0 up to 1. The corresponding study is displayed in Fig. 9.14 where the passive
solutions (β = 0) are denoted by red crosses while active ones (β = 1) are represented by blue circles.
Only two modes are obtained when β = 0 and correspond to the passive chamber modes: f l1 and f l2.

QITA
fam

ily

Chamber family

�FTF
� : 0 ! 1

f l
1 f l

2

Figure 9.14: Parametric study realized with the ROM approach described in chapter 2. The FTF of
the UBB ame is multiplied by a scalar β which is varied from 0 (passive ame) up to 1 (fully active
ame). Red crosses denote the origin of a mode (β = 0) while blue circles denote the end of a mode
(β = 1).

However, as the gain of the FTF increases, other modes appear. Their frequencies (R(f) and I(f))
roughly match the ITA prediction of equations 9.4.3 and 9.4.4. When β = 1, it is no more possible to
separate the modes coming from the chamber or from the intrinsic loops.

According to these observations (parametric studies for the FTF and the reection coe�cients),
it is possible to infer a condition for the existence of QITA modes, which result from the coupling of
chamber and ITA families. From Fig. 9.14, one observes that the two families begin to couple when
their imaginary part (damping/growth rate) become similar which leads to the following condition for
the apparition of QITA modes:

C = I(fITA)
I(fChamber)

= 1 (9.4.8)

where I(fITA) is de�ned by equation 9.4.4. The growth/damping rate of the chamber modes can be
approximated by the following formula, which is exact in the case of a purely quarter wave mode for
isothermal ows:

I(fChamber) =
fc
π

ln (RinRout) (9.4.9)

where fc is the frequency (real part) of the �rst chamber mode. The coupling criterion de�ned in
equation 9.4.8 provides a critical threshold nc for the gain of the FTF at the frequency fc of the �rst
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chamber mode:

nc =
�

1 − �
(RinRout)τfc/π (9.4.10)

As a consequence, QITA modes must be accounted for to predict the stability of a burner when
FTF(2πfc) C nc. Finally, all the families of acoustic modes encountered in the INTRIG burner are
gathered in table 9.2.

FTF(2πfc) ≤ nc FTF(2πfc) C nc

Mode family ITA Chamber QITA
Characteristic Controlled by FTF Controlled by geometry coupled

Table 9.2: Families of modes encountered in the INTRIG burner according to the criteria de�ned in
equation 9.4.10.

9.4.1.3 Interpretation of the modal structure of the INTRIG burner

In this section, a re-interpretation of the modal structure observed in both experimental measurements
and ROM solutions for the three con�gurations (short, medium and long) as well as the three ames
(CBB, UBB and TBB) is provided.

The coupling criterion provided in equation 9.4.10 is applied to all of the aforementioned cases to
check whether ITA, Chamber or QITA modes are expected. Values of FTFs (measured in the DNS)
and critical threshold are provided in table 9.3. The direct application of the criterion of equation 9.4.10
shows that no coupling is expected in the three con�guration for the transparent blu�-body (TBB).
This is coherent with the results provided in Fig. 9.11 where the two families (ITA and chamber) were
clearly separated. In addition, the CBB and UBB cases exhibit a coupled behavior with the QITA
family. Indeed, no distinction between ITA and chamber modes can be performed in Figs. 9.8, 9.9 and
9.9.

These results prove that the criterion provided in equation 9.4.10 is a good indicator for the exis-
tence of QITA modes. For the three cases, QITA or ITA modes are observed. It is possible to verify
that an important property of these families is veri�ed in the experiment: the spacing between two
consecutive modes must be a function of the ame dynamics only. Following the ITA theory developed
in section 9.4.1.1, which is assumed to be also valid for QITA modes as shown in Fig. 9.13, the predicted
spacing writes:

R ‰f(Q)ITA(k + 1) − f(Q)ITA(k)Ž = 1

τ
(9.4.11)

It has been shown in section 9.3 that the spacing between acoustic modes did not depend on the
chamber length. A comparison between frequency spacing measurements and equation 9.4.11 is provided
in table 9.4:

The agreement between equation 9.4.11 and the ROM spacing is very good, which also proves that
ITA/QITA modes are obtained in the INTRIG burner. However, there is a small di�erence with the
spacing obtained in the experiment. Indeed, the ROM is based on FTFs measured in the DNS, where
the ame delays9 are sightly higher than those observed in the experiment as shown in Fig. 8.15.

Finally, the di�erence in gain between FTFs measured in DNS and experiments (Fig. 8.15) can
explain why the ROM approach predicts unstable modes for the UBB ame in the medium con�guration
while the experimental burner remains stable (see Fig. 9.9). Indeed, in the frequency range f ∈ [200,300],
the FTF gain in the experiment is much lower than the one in the DNS, which stabilizes the QITA
modes, as shown in equation 9.4.4.

9The ame delay is the slope of the phase of the FTF.
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Conf

Case Short Medium Long

fc 297 Hz 281 Hz 256 Hz

weak coupling
CBB 0.1 0.9 1.70.14 0.15 0.17

UBB 0.5 0.6 0.90.2 0.21 0.23

un-coupled un-coupledun-coupled
TBB 7 10�6 10�5 3 10�50.26 0.28 0.30

|FTF(2⇡fc)| nc |FTF(2⇡fc)| nc|FTF(2⇡fc)| nc

Table 9.3: FTF (left, black) and critical (right, red) threshold for all the cases/con�gurations investi-
gated in this chapter. A coupling between ITA and chamber modes is expected when the gain of the
FTF is greater than the threshold at the frequency fc of the �rst passive mode.

Case CBB UBB TBB

XP spacing [Hz] 25 31 -
ROM spacing [Hz] 20 25 34

ITA spacing (1/τ) [Hz] 21 27 37

Table 9.4: Comparison between mode spacing predicted (see equation 9.4.11) and measured (see
section 9.3). The delay τ are obtaned from the FTF data of section 8.1.2. The experimental spacing
is measured in the experimental pressure spectra. The ROM spacing is simply deduced from ROM
solutions.

Conclusion

Here, the knowledge acquired in the previous chapter about reduced order modeling, acoustic losses and
ame/acoustic interaction has been used to output a detailed ROM of the INTRIG burner. Its solutions
have been compared to experimental measurements for di�erent ames (CBB, UBB and TBB) and for
di�erent con�gurations (short, medium and long) and a good agreement was obtained.

It was shown that the ame holder temperature greatly inuences the stability of the chamber. For
instance, in the medium length chamber, the ame stabilized on a cooled cylinder (Tc ≈ 300 K) was
unstable for the ROM as well as in the experiment while the ame stabilized on the un-cooled cylinder
(Tc ≈ 700 K) was stable. The TBB case, where the ame was stabilized upstream of the blu�-body,
was stable for all con�gurations.

In order to understand the modal structure observed, a new family of acoustic mode has been intro-
duced: the Quasi-Intrinsic Thermo-Acoustic (QITA) family, which results from the coupling between
chamber and intrinsic modes. These modes are barely a�ected by the boundary conditions which would
make acoustic dampers useless to temper CIs. Finally, a critical threshold nc has been derived to
determine when these modes must be accounted for to predict the stability of the burner.
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Concluding remarks
This PhD work has been carried out with three primary objectives: 1) De�ning a clear methodology to
derive and solve reduced order models in thermo-acoustic studies, 2) Incorporating sources of acoustic
losses in these models and 3) investigate on the ame holder temperature inuence on both anchoring
mechanisms and ame dynamics. All these objectives are linked by the motivation to predict and better
understand thermo-acoustic instabilities.

From an other point of view, this work has also been dedicated to the design of numerical tools to
predict thermo-acoustic instabilities. For instance, comparisons between CFD codes (DNS and LES)
and experiments have been provided in parts II and III with a constant desire to obtain a good agree-
ment. Using simulations permits to: a) better understand underlying physical mechanisms by providing
quantitative data and b) help to design new e�cient and stable combustion chambers. Figure 9.15 sum-
marizes the experimental set-ups investigated during this PhD work. Both PREINTRIG and INTRIG
rigs were studied with numerical solvers (DNS or LES) and validated with experimental measurements
(PIV, OH* imaging).

In order to accomplish these objectives, new concepts, methods and physical mechanisms have been
introduced. Among them, the most important are recalled here:

Major advances realized during this PhD work

• A numerical algorithm (ARL) has been designed to solve analytical equations. This method
ensures that all the roots lying in a speci�c portion of the complex plane are enclosed
properly. This algorithm is particularly useful to solve ROM equations.

• An automated mesh re�nement procedure has been introduced to predict mean pressure
losses in Large Eddy Simulations (LES). This method is based on a physical criterion: the
loss in kinetic energy.

• Acoustic transfer matrices have been measured and introduced in a dedicated ROM: the
predicted frequencies and damping rates matched experimental measurements carried out
on the PREINTRIG workbench.

• The mechanisms of ame anchoring on cylindrical blu�-bodies have been investigated in
DNS, with analytical chemistry and heat transfer taken into account in the solid. It was
shown that the radiative heat transfer played a crucial role in the stabilization mechanisms.

• The ame dynamic (FTF) is greatly inuenced by ame holder temperature. This topic
has already been addressed in former experimental studies and we con�rm the existing
results with DNS data.

• A new family of acoustic modes: the Quasi-Intrinsic Thermo-Acoustic (QITA) has been
introduced to explain the modal structure encountered in the INTRIG burner. We also
showed that the ame holder temperature inuenced the stability of the burner.

Thanks to the work accomplished, several advices can be proposed to design stable combustion
chambers. First, the use of acoustic dampers must be used with caution. Indeed, it has been shown
that good acoustic dissipation properties always come with mean pressure losses, which reduce engines
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Figure 9.15: Experimental set-up used during this PhD work.

e�ciency. Second, two e�ects has been identi�ed to control ame dynamics. An increase in ame
holder temperature permits to attach ames outside of recirculation zones, and reduces their responses
to acoustic perturbations. Moreover, combining ames with di�erent delays causes phase averaging in
the overall response of the burner: this also reduces the unsteady heat release outputted by the burner
and may suppress instabilities. For instance, these advices are applied here to design a laminar burner:
ames are stabilized on a multi-perforated plate presented in Fig. 9.16. s

In this design (Fig. 9.16, right), the radii of the holes are not uniformly distributed in order to obtain
a Gaussian distribution for the ame delays. Indeed, the pressure drop is constant for each hole and is
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Noiray et al, 2005: 
The height of the flames controls  

 the instability through delay 𝜏

Stable Burner: 
• Hot (very thin plate) 
• Gaussian distribution of flame heights 
• Acoustic dissipation close to the flame

Multi-perforated plate burner

Figure 9.16: sketch of a laminar burner inspired by a study performed by Noiray et al [259]

a function of the hole bulk velocity ub and radius r (see chapter 6 for the exact relation):

�P Œ
u2
b

r4
(9.4.12)

Moreover, the ame delay is proportional to the ratio between the ame height and the velocity:

τ Œ L

ub
≈ r

2sL
(9.4.13)

which does not depend on the velocity: the ame delay is proportional to the hole radius: τ Œ r
This parameter (r) must follow a Gaussian distribution. In addition, a thin plate will attain higher

temperature and thus, help to reduce the magnitude of ame responses. Finally, the multi-perforated
plate will dissipate acoustic energy. As a consequence, one expects that this burner will remain stable
for a wide range of operating regimes.
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Publications

During this Phd work, �ve articles have been submitted. Most of these articles are related to chapters
presented here and two of them are already published. This section also allows me to thanks colleagues
who contributed to my PhD work.

The �rst article was realized in collaboration with D. Mejia at IMFT and provides a comparison
between di�erent experimental methods to measure acoustic growth/damping rates in a combustion
chamber. These measurements are then compared to the solutions of a ROM and an excellent agreement
is obtained. I realized the post-processing of pressure signals in obtained in both stable and un-stable
operating regimes, for which a broad band acoustic uctuation was superimposed (one of the method
tested) while Daniel took care of the other methods and the ROM design.

On the experimental determination of growth and damping rates for combustion instabilities. D.
Mejia, M. Miguel-Brebion, L. Selle. 2016, Combustion and Flame 169, 287-296.

The next article is about the introduction of acoustic dissipation in a Helmholtz solver and has been
realised in collaboration with F. Ni at CERFACS, who used the experimental measurements of acoustic
two-ports of the diaphragm and the swirl-injector that I realized at IMFT to predict acoustic damping
in three dimensional con�gurations.

Accounting for acoustic damping in a Helmholtz solver. F. Ni, M. Miguel-Brebion, F. Nicoud and
T. Poinsot. 2016, AIAA Journal, 1-16.

An article has been submitted in the journal Flow, Turbulence and Combustion in the collaboration
with G. Daviller (CERFACS) about the automatic mesh re�nement procedure dedicated to predict
pressure losses in LES. I helped G. Daviller to design the mesh re�nement criteria, which is based on
mean kinetic energy dissipation and I carried out experimental measurements of the pressure losses as
well as PIV imaging (with P. Xavier). This article is still under reviews.

A mesh adaptation strategy to predict pressure losses in LES of swirled flows. G. Daviller, M.
Miguel-Brebion, P. Xavier, G. Sta�elbach, J.D. M•uller, T. Poinsot. 2016, FTAC.

The next article is about the stabilization mechanisms of laminar ames on cylindrical rod and
the inuence of the ame holder temperature. I performed the DNS (with a chemical mechanism less
accurate than the one presented in chapter 7: LU13) and wrote the article while D. Mejia and P. Xavier
carried out the experimental measurements.

Joint experimental and numerical study of the influence of flame holder temperature on the stabiliza-
tion of a laminar methane flame on a cylinder. M. Miguel-Brebion, D. Mejia, P. Xavier, F. Duchaine,
B. Bedat, L. Selle, T. Poinsot, 2016, Combustion and Flame, 172, 153-161

Finally, the last article has been published to the Journal of Fluid Mechanics and is about the
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anchoring mechanisms of ames stabilized on rotating cylinders. P. Xavier carried out DNS with the
LU19 chemical mechanism and the Homogeneous adaptive boundary condition (HABC), which I devel-
oped during my PhD work (see chapter 6). These results were compared to experimental measurements
for various rotating speeds and compared to academical one dimensional ames con�gurations by A.
Ghani.

Experimental and numerical investigation of flames stabilised behind rotating cylinders: interaction
of flames with a moving wall.P. Xavier, A. Ghani, D. Mejia, M. Miguel-Brebion, L. Selle, T. Poinsot,
2017, Journal of Fluid Mechanics, 813, 127-151.
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Appendix A

Checking procedure of the roots

The checking procedure guarantees that all roots found (distinct or multiple) are solutions of the initial
problem to ε. The roots zi , i ∈ [∣1,N ∣], obtained after the application of the algorithm detailed in
section 2.2 must be controlled in an e�cient way. Indeed, The accuracy of the roots found by solving
the equivalent polynomial problem is controlled by the stop criteria used to compute the integrals of
equation 2.1.9. Applying the NR method on these guesses may then leads to erroneous results, especially
when multiple distinct solutions are extracted from a single mesh.
When all roots z∗i are distinct: ∣zi − zj ∣ > ε , ¦ (i, j), we check that I0(Ci) = 1¦i ∈ [∣1,N ∣ where Ci is a
square of size 2ε centred around zi.
When a cluster of roots is encountered: {zi, zj}, ¦j / ∣zi − zj ∣ < ε, we check that I0(Ceq) is equal to the
corresponding multiplicity. In this case, Ceq is centred on the mean of the multiple root obtained after
the NR step. In both cases, a failing check leads to a new mesh split.
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Appendix B

Design of a non intrusive lateral
loudspeaker system

This appendix reports the development of an analytical model to study eigen-frequencies of a tube
when a loudspeaker is connected to it. A network approach is developed, thus leading to consider only
longitudinal waves. Finally, a validation is performed experimentally, with the n-microphones technique.
This study was realized with the help of Dr. Xavier from IMFT.

The objective of this study is to prove that a loudspeaker attached at the side of the PREINTRING
rig do not alter the acoustic modes in the frequency range of interest: f ∈ [0,1] kHz. For the sake of
simplicity, all parameters are rede�ned without assuming that the chapter 3 have been read.

B.1 Geometry description

Fig. B.1, left presents a photography of the experiment. It consists of a vertical closed duct, named
"main tube", with a length L, a section S, and equipped with several ports for microphones. In order
to harmonically force the main duct, a loudspeaker system is connected at a right angle, located at a
certain distance ηL from the upper part of the main tube. The loudspeaker casing can be considered
as a duct, of length LB and section SB. The main duct is connected to the loudspeaker casing by an
intermediate duct (length Li, and a section Si). The length of this junction can be varied so that the
loudspeaker is either ush mounted or deported with respect to the main duct lateral wall.

A network model approach is used to model the entire experiment (Fig B.1, right). In this ROM,
only longitudinal modes are taken into account. No ame is present in the experiment so that sound
speed, noted c, is constant in all tubes. The network consists of 4 elements: "1" and "2" for the main
duct (the separation corresponds to the location of the loudspeaker system port), "i" for the connecting
junction, and "B" for the loudspeaker casing.
Table B.1 summarizes dimensions of the experimental setup.

Main Tube "1, 2" Connection "i" Casing "B"

Length L [m] 9.27.10−1 5.4 10−1S8 10−2 8.10−2

Diameter [m] 8.10−2 1.10−2 9.1.10−2

Section [-] 5.10−3 7.85.10−5 6.5.10−3

η 0.28

Table B.1: Dimensions of the experimental setup. Note that two lengths are tested for the connection
tube "i"
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Figure B.1: Left: photography of the experimental setup. Coloured rectangles depict the di�erent
parts of the system. Right: Schematic illustration of the acoustic system recalling the notations used.

B.2 ROM derivation

In order to obtain the ROM for the system of Fig. B.1, a transfer matrix for the main tube (between
ducts 1 and 2) is �rst derived, separately from the whole loudspeaker system (ducts i and B). The
interaction with duct "i" at the T intersection is taken into account by considering:

A−
i = FA+

i (B.2.1)

Where F is determined in Sec. B.2.2, when deriving the transfer matrix between tubes "i" and "B".

B.2.1 Main tube transfer matrix

Note that in this section, the origin is taken at the T intersection (z = 0 and y = 0). Both ends of
ducts 1 and 2 are considered as walls, then leading to zero velocity uctuations (i.e., ~u2(z = η L) = 0
and ~u1(z = (η-1)L) = 0). However, other boundary conditions may be tested by de�ning two reection
coe�cients :

A+
1

A−
1

e2ikL(1−η) = R1 (B.2.2)

A−
2

A+
2

e2ikLη = R2 (B.2.3)
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Jump conditions are written at the T intersection:

A+
2 +A−

2 = A+
1 +A−

1 = A+
i +A−

i (B.2.4)

(A+
2 −A−

2) = (A+
1 −A−

1) + α(A+
i −A−

i ) (B.2.5)

with α = Si/S. Eq. B.2.5 is simpli�ed with the assumption that the section in ducts 1 and 2 is constant
and equal to S. Equation B.2.4 states that the acoustic pressure is continuous across the interface while
Equation B.2.5 expresses the conservation of the acoustic ux. After combining equations B.2.5 and
B.2.1, one obtains

(A+
2 −A−

2) = (A+
1 −A−

1) + αZ(A+
1 +A−

1) (B.2.6)

where Z =
1 − F
1 + F

is an impedance, appearing with the addition of the loudspeaker system (tubes "i"

and "B") to the main duct. As a consequence, equations B.2.4 and B.2.6 only contain acoustic wave
amplitudes of ducts 1 and 2 so that a transfer matrix T can be derived:

(A
+
2

A−
2
) = (1 + αZ/2 αZ/2

−αZ/2 1 − αZ/2)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
T

(A
+
1

A−
1
) (B.2.7)

Note that if Z is equal to zero, waves travelling in ducts 1 and 2 are identical. Such a situation
corresponds to a normal velocity node imposed at the junction and thus, does not alter the acoustic of
the main duct. However, setting F = −1 leads to an unde�ned transfer matrix. In this case, a pressure
node is imposed at the junction, and there is thus no relation between acoustic waves from both sides
of the duct. Using the boundary conditions of the main duct (Eqs. B.2.2 and B.2.3), Equation B.2.7
can be re-written as a function of only two waves:

( (1 + αZ/2)R1e
2ikL(1−η) + (αZ/2) 1

(−αZ/2)R1e
2ikL(1−η) + (1 − αZ/2) R2e

2ikLη)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
T′

(A
−
1

A+
2
) = (0

0
) (B.2.8)

System B.2.8 leads to non-null solutions if and only if the determinant of T ′ is null:

R2R1e
2ikL − 1 = −αZ/2[1 +R1e

2ikL(1−η) +R2e
2ikLη +R1R2e

2ikL] (B.2.9)

Before solving Eq. B.2.9, the coupling factor Z must be obtained by considering the loudspeaker system.

B.2.2 Loudspeaker system transfer matrix

The objective of this section is determine the coupling factor Z (or F ). Note that the origin is taken
at the intersection between tube "i" and "B" (z = 0 and y = 0). End of tube "B" (at y = LB) is
considered as a wall1 which leads to zero velocity uctuation (i.e., ~uB(y = LB) = 0):

A+
B = γA−

B (B.2.10)

with γ = e−2ikLB/RB. Jump conditions are written at the intersection between tube "i" and "B":

A+
i +A−

i = A−
B(1 + γ) (B.2.11)

(A+
i −A−

i ) = A−
Bε(γ − 1) (B.2.12)

with ε = SB/Si. After combining Eqs. B.2.11 and B.2.12, one can obtain the equation for F :

1This is a strong assumption as we do not consider the impedance of the loudspeaker itself.
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F = ε(1 − γ) + (1 + γ)
(1 + γ) + ε(γ − 1)

(B.2.13)

Therefore, Z can be easily determined with Eq. B.2.13:

Z = z1

z2
= (1 + γ) + ε(γ − 1) − βi[ε(1 − γ) + (1 + γ)]

(1 + γ) + ε(γ − 1) + βi[ε(1 − γ) + (1 + γ)]
(B.2.14)

A particular attention must be taken when using Eq. B.2.13. The latter is valid at the intersection
between tube "i" and "B" (y = 0). Therefore, a correction has been added in Eq. B.2.14 to account for
the length of tube "i" and to estimate this coupling factor at the T intersection, i.e.:

A+
i

A−
i

U
T
=
A+
i

A−
i

U
x=0

´¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¶
F

e2ikLi

²
βi

(B.2.15)

B.2.3 Characteristic equation

With the model of the coupling impedance Z = z1/z2, the dispersion relation in Eq. B.2.9 can be closed,
and written as:

2z2[R2R1e
2ikL − 1] + αz1[1 +R1e

2ikL(1−η) +R2e
2ikLη +R1R2e

2ikL] = 0 (B.2.16)

The methodology used in this appendix can be applied to more general con�gurations. It relates the
derivation of ROM of non linear geometries which contain branches. All branches are modeled as
reduced impedances, which are taken into account in modi�ed transfer matrices inside of the "main
branch".

Equation B.2.16 cannot be solved analytically. The numerical solver Rootlocker described in chapter
2 is then used in section B.4.

B.3 Experimental acoustic modes

As shown in Fig. B.1, experiments have been carried out to identify the frequencies of the acoustic
modes of the complete system. Two distinct geometries have been scrutinized: the �rst one used a long
junction (Li ≈ 0.5 m) while the second used a smaller one (Li ≈ 8 cm). The geometrical parameters are
recalled in tableB.1.

Four microphones have been placed in duct 1 to retrieve the amplitude of the acoustic waves following
the multi-microphone methodology described in chapter 5 and the results are shown in Fig. B.2. The
modes family f0, 2f0, . . . correspond to the natural modes of the main duct: f0 = c/(2L) = 185 Hz.
Unwanted modes (f1) are observed in the "long" con�guration and might be caused by the coupling
between the main duct and the loudspeaker system.

According to these two measurements, one can deduce that the length of the intermediate duct Li
plays a role in the coupling between the "main duct" and the loud speaker system. This coupling is
investigated in section B.4 by comparing the experimental results with a numerical resolution of the
ROM derived in section B.2.3.

B.4 Discussion

The frequencies of the acoustic modes obtained experimentally are now compared to the numerical
resolution of the ROM (equation B.2.16). The frequencies obtained in the two con�gurations are
gathered in table B.2
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f0 2f0 3f0 4f0 5f0 

c

2L
= 185Hz

f0 2f0 3f0 4f0 5f0 

f1 
2f1 

Figure B.2: acoustic wave amplitude in the duct 1 in the short con�guration (up, Li = 8 cm) and
the long con�guration (bottom, Li = 50 cm). Error bars represent the uncertainty on the acoustic wave
amplitude. The experiment is forced harmonically with the loudspeaker of Fig. B.1.

The numerical resolution of the ROM with Rootlocker provide results in excellent agreement with
the experiment. The agreement is perfect for the half wave f0 = c/(2L) family of mode. The next family
of modes observed (f1) seems to depend on the connection duct length Li: they disappear when the
junction is shortened. Finally, a last mode, called fHelm is associated to the Helmholtz mode [11] of the
system formed by the loudspeaker casing and the connection duct:

fH = c

2π

¾
Si

LiVB
(B.4.1)

where VB = SBLB is the volume of the loudspeaker casing. The corresponding frequencies are f short
H = 74
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"long" "short"
Li = 50 cm Li = 8 cm

name fxp fROM fxp fROM

fHelm - 26 - 66
f0 185 183 185 182
f1 294 315 x x
2f0 365 366 368 366
3f0 551 550 551 549
2f1 596 627 x x
3f0 737 733 737 733
4f0 917 917 917 916
3f1 917 ? 939 x x

Table B.2: Summary of the acoustic modes [Hz] obtained in the two con�gurations. The symbol −
means that the measurement was not performed at this frequency while the symbol x means that the
mode was not observed.

Hz for the short junction and f long
H = 31 Hz for the long one. These results are in good agreement with

the modes obtained by the ROM resolution (66 and 26 Hz) displayed in table B.2.
Finally, a parametric study, as described in section 2.6, is performed for Li ∈ [0.022 ∶ 0.6]m.

Figure B.3 shows that for a given length Li, the PREINTRIG modes (f0 family) but also others are
expected. Below Lci = 18 cm, only the Helmholtz and the f0 family modes are present. This situation
is suitable for an acoustic study of the main duct: except the �rst mode, which is predicted by the
Helmholtz equation B.4.1, the only modes observed are the one of the main duct, unperturbed by the
loudspeaker system.

However, with a longer intermediate duct (Li > 20 cm), other parasite modes are observed. These
modes appear for both high frequencies f and large length Li. By taking a closer look at equation B.2.16,
one observes that the intermediate length Li only appear in an non-dimensioned form: Liω/c and the
parametric study shows that this parameter control the coupling between the two families of modes
f0 and f1. Concerning the design of a lateral loudspeaker system which does not perturb the "main
acoustic modes", the following conclusions arise:

Design of a lateral loudspeaker system

• An optimal lateral loudspeaker system should not modify the acoustic modes of the main
system.

• ROMs can easily be established for such systems and the present study demonstrates that
the agreement with experimental measurements is very good.

• This study also proves that the length Li of the intermediate duct, which link the main
chamber to the loudspeaker casing, controls the coupling of the acoustic modes: When this
parameter is small (ωLi/cP 1), the modes of the chamber and the loudspeaker do not mix.

• The frequency of the Helmholtz mode occurring at low frequency can be predicted by a
simple model (equation B.4.1).
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Figure B.3: Parametric study realized with RootLocker (see chapter 2). The intermediate duct size
Li is varied from 22 up to 600 mm and several families of modes are denoted (black solid lines).
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Appendix C

Application of the viscous dissipation
QOI Φ to compressible flows

The objective of this appendix is to demonstrate that the viscous dissipation term � which has been
identi�ed in incompressible ows is still a good mesh re�nement sensor in compressible ows. Even
in low Mach number ows, compressibility e�ects can be observed. For instance, in an isothermal
expansion, pressure and density variations are proportional, as a consequence, in mechanism leading to
pressure drop will also cause a density uctuation.

The kinetic energy equation analogous to equation 4.1.1 for compressible ows writes:

∂Ec
∂t

+ ∂

∂xj
(uj (Ec + P )) − P

∂uj

∂xj
´¹¹¹¹¸¹¹¹¹¶

Pressure dilatation

=
∂ (τijui)
∂xj

+ τij
∂ui
∂xj

(C.0.1)

where a new pressure dilatation term is introduced. Similarly to what has been done in chapter 4,
equation C.0.1 is integrated over a control volume delimited by an inlet, outlet and non-moving walls:

∫
Σ
Ptuinidσ

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
α

+∫
∆
P
∂uj

∂xj
dV

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
β

= ∫
∆

�dV (C.0.2)

For incompressible ows, it has been shown in chapter 4 that the pressure drop is expressed in the
term α which reduces to Qv�Pt. This term can be calculated in the context of isothermal compressible
ows1. One may combine the mass conservation ([ρu] = 0) equation with the real gas relation (P Œ ρ)
to show the the product of pressure and volume ow rate is conserved: [PQv]outlet = [PQv]inlet. As a
consequence, the term α is equal to zero in the case of isothermal compressible ows.

Similarly, it is possible to show that β approximately reduces to Qv�P for an isothermal com-
pressible ow. As a consequence, equation C.0.2 shows that the viscous dissipation term is responsible
for pressure drop in both compressible and incompressible ows, although the mechanisms are sightly
di�erent.

1The ows simulated in chapter4 across both the diaphragm and the swirl injector have been reported to be
quasi-isothermal with �T /T P �P P
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Appendix D

Microphone spacing and acoustic
forcing in PREINTRIG

This appendix deals with two important issues concerning the multi-microphones method used to mea-
sure acoustic two-port matrices.

D.1 Microphone spacing

The choice of the locations of the pressure taps is of primary importance. Singularities may occur when
the distance between the microphones is a multiple of the half acoustic wavelength (see [21]). In this
case, all microphones measure the same acoustic pressure (with the same or opposite phase):

eik(x+pλ/2) = (−1)peikx , p ∈ Z (D.1.1)

as a consequence, the matrix de�ned in equation 5.1.5 is constituted of co-linear line vectors and is
thus ill-conditioned. Best results are obtained by ensuring that the minimal distance between two
microphones is lower than the half of the lowest acoustic wavelength considered. In chapter 5, this
inequality is veri�ed for �zmic < c/(2fmax) ≈ 0.15 m. In practical, a value of �zmin = 0.04 m has been
retained. Jang et al [171] recommended an equidistant spacing for the microphones in order to lower
the uncertainties. However, with only three microphones at each sides of the ACE, it was preferred
to use a non equidistant spacing which is adapted for low frequencies (long wavelengths) as well as
high frequencies (short wavelengths): Abom et al [260] recommended that the spacing between two
microphone was roughly equal to �z = λ/4 to reduce the uncertainties.

D.2 Acoustic forcing

The four con�gurations exhibited in �gure 3.10 are associated with quasi-reective acoustic boundary
conditions. The loudspeaker, which imposes an acoustic velocity, acts like a wall, and both opened and
closed end are almost fully reective. The sound level inside of the ducts is then greatly modi�ed as
the frequency crosses one of the multiple acoustic modes of the rig. Two solutions exist to maintain a
quasi-constant sound level in the ducts:

1. Using an absorbing media such as a mu�er at the end of the downstream duct to lower the
modulus of the end reection coe�cient. This can damp the acoustic modes of the con�guration
and lower the variations of sound level as done by Holmberg et al [175].
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2. Fixing the sound level at a given reference microphone MREF by adapting the voltage amplitude
transmitted to the loudspeaker as described by Scarpato et al [25].

The second solution has been chosen in this manuscript as it allows to use various boundary conditions
at the outlet (opened or closed) and thus increase the number of independent states used to reconstruct
the two-port matrix.
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Appendix E

Suppression of pressure and velocity
oscillations

As mentioned in section 6.2, velocity but also pressure spurious oscillations were observed in the vicinity
of walls hotter than the surrounding ow. Using hybrid meshes helped to damp the velocity oscillations
which occurred in regions where the topology of the unstructured mesh changed. Numerical pressure
oscillations are observed in Fig. E.1 close to the downstream face of the blu�-bodies. The associated
wavelength scales with the grid resolution: This phenomenon is clearly a numerical artefact. Multiple
possibilities have been investigated to solve this problem. Among them, the use of NSCBC [194] bound-
ary conditions for the isothermal cylinder wall (WALL WAVE NOSLIP ISOT) completely damped the
oscillations.

Figure E.1: Pressure oscillations close to the cylinder boundary.

Both heat loss and iso-thermal boundary conditions are suitable for AVBP/AVTP coupling. In the
case of heat loss BCs (WALL NOSLIP LOSS), the choice of the thermal resistance is of primordial
importance: this parameter must be lower than any other thermal resistance encountered in the solid
region. Iso-thermal (WALL NOSLIP ISOT) boundary conditions act in a di�erent way: the tempera-
ture is directly imposed so that the mass conservation equation might be violated. Post processing of
the simulations showed that less than 0.1% of the mass ow is lost through the iso-thermal boundary
condition.
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Figure E.2: Inuence of the fourth order arti�cial viscosity over pressure oscillations. The ame is
represented by an iso-contour of heat release rate. Left: Smu4 = 4 10−4 and �P ≈ 25 Pa. Right:
Smu4 = 0 and �P ≈ 0 Pa.

Pressure oscillations have also been reported in the case of the ame/wall interaction encountered in
chapter8. However, switching between iso-thermal NSCBC and heat loss BCs did not solve the problem.
It appeared that the amplitude of these pressure wiggles was linked to the strength of the fourth order
numerical dissipation term [187]. This term is dedicated to damp numerical oscillations that may occur
in very low dissipative solvers such as AVBP. However, in the present simulations, decreasing the fourth
order dissipation reduced the amplitude of the pressure oscillations as shown in Fig. E.2. In the second
case, the arti�cial viscosity was removed (Smu4 = 0) and the pressure wiggles completely disappeared.
However, the simulation crashed after 1 ms elsewhere close to the inlet probably because of a numerical
instability. As a consequence, a compromise was need between global stability of the reacting ow and
pressure wiggles. The value of Smu4 = 4 10−4 was retained in all simulations.

Finally, one may observe in Fig. E.2 that the ame front is not a�ected by the pressure wiggles.
These oscillations do not propagate nor interact with the ow.
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Appendix F

Continuous and discrete approaches for
acoustic propagation in non
homogeneous media

The objective of this appendix is to compare both continuous and discrete approaches for the passive
(ame/acoustic coupling is not considered here ) propagation of acoustic waves in a duct with a constant
gradient of temperature. The analytical approach is �rst briey recalled here in section F.1 Second, a
test case is used to compare both approaches in section F.2.

F.1 Analytical two-port matrix for a linear temperature

profile

In this section, we provide a brief overview of the analytical two-port representation derived by Sujith
et al [256]. Both velocity ~u and pressure ~p acoustic �elds can be expressed by using Bessel functions of
�rst (J0, J1) and second (Y0, Y1) order:

~p = (c1J0(s) + c2Y0(s)) (F.1.1)

~u = (c1J1(s) + c2Y1(s))
ε

iρc( �T )
(F.1.2)

where c1, c2 are two constant, ε = sign (m = ∂T /∂z) and s is function of the mean temperature �eld:

s(T (z)) = 2ω

m

¿
ÁÁÀ �T (z)

γr
(F.1.3)

where m is the gradient of mean temperature and r = R/W = 287 J.K−1.Kg−1 the reduced perfect gas
constant. Equations F.1.1 and F.1.2 can be recast into the two-port formalism:

( A+
f�

A−
f�

) =MTbM
−1
Tu

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Tcont

( A+
0

A−
0

) (F.1.4)

where:

MT = ( [J0(s) − iεJ1(s)] [Y0(s) − iεY1(s)]
[J0(s) + iεJ1(s)] [Y0(s) + iεY1(s)]

) (F.1.5)

Although exact, this transfer matrix can be approximated as done in chapter 9 in order to avoid the
use of Bessel functions. The original geometry is discretized into n smaller regions, in which the mean
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temperature Ti , i ∈ [1, n] is supposed uniform as shown in Fig. 9.5. These two approaches are compared
in the following section.

F.2 Validation of the discrete approach

Sujith et al [256] provided a test case constituted by a duct (L = 4 m) with a close inlet (~u = 0, Rin = 1)
and an open outlet (~p = 0, Rout = −1), in which a linear temperature axial distribution was imposed:
Tin = 1100 K and Tout = 300 K. Acoustic modes provided by a Helmholtz solver were compared to the
solution of a ROM based on the continuous transfer matrix Tcont (see equation F.1.4) and an excellent
agreement was obtained.

Here, we compare the results of the continuous approach developed by Sujith et al [256] with a ROM
based on the discrete transfer matrix Tdisc de�ned in equation 9.1.10. The two ROMs are recalled here
for the sake of clarity:

det(Tcont,dict (
Rin

1
) ,( 1

Rout
)) = 0 (F.2.1)

In the discrete approach, one can choose the number n of discrete units used to reproduce the tem-
perature pro�le as shown in Fig. 9.5. The frequencies of the �ve �rst modes solutions of equation F.2.1
are displayed in table F.1.

Continuous n = 2 n = 5 n = 10

27.7 30.9 29.7 27.6
93.7 97.4 97.1 94.6
157.5 160.1 154.7 158.5
221.0 224.9 221.9 221.4
284.5 289.8 288.2 284.2

Table F.1: Frequencies [Hz] of the �ve �rst acoustic "quarter waves" modes in the presence of an
axial uniform temperature gradient. Both continuous and discrete approaches provide good results
when n > 5

An excellent agreement is obtained for n = 10 which means that both discrete and continuous
approaches are equivalent as long as the temperature variation is su�ciently discretized.
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