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Abstract

Nowadays, many organizations choose to increasingly implement the cloud

computing approach. More specifically, as customers, these organizations are

outsourcing the management of their physical infrastructure to data centers

(or cloud computing platforms). Energy consumption is a primary concern

for datacenter (DC) management. Its cost represents about 80% of the to-

tal cost of ownership and it is estimated that in 2020, the US DCs alone will

spend about $13 billion on energy bills. Generally, the datacenter servers are

manufactured in such a way that they achieve high energy efficiency at high uti-

lizations. Thereby for a low cost per computation all datacenter servers should

push the utilization as high as possible. In order to fight the historically low

utilization, cloud computing adopted server virtualization. This technology en-

ables a cloud provider to pack (consolidate) the entire set of virtual machines

(VMs) on a small set of physical servers and thereby, reduce the number of

active servers. Even so, the datacenter servers rarely reach utilizations higher

than 50% which means that they operate with a set of long-term unused re-

sources (called ’holes’). My first contribution is a cloud management system

that dynamically splits/fusions VMs such that they can better fill the holes.

However the datacenter resource fragmentation has a more fundamental prob-

lem. Over time, cloud applications demand more and more memory but the

physical servers provide more an more CPU. In nowadays datacenters, the two

resources are strongly coupled since they are bounded to a physical sever. My

second contribution is a practical way to decouple the CPU-memory tuple that

can simply be applied to a commodity server. The underutilization observed

on physical servers is also true for virtual machines. It has been shown that

VMs consume only a small fraction of the allocated resources because the cloud

customers are not able to correctly estimate the resource amount necessary for

their applications. My third contribution is a system that estimates the mem-

ory consumption (i.e. the working set size) of a VM, with low overhead and

high accuracy. Thereby, we can now consolidate the VMs on based on their

working set size (not the booked memory). However, the drawback of this ap-

proach is the risk of memory starvation. If one or multiple VMs have an sharp

increase in memory demand, the physical server may run out of memory. This

event is undesirable because the cloud platform is unable to provide the client

with the booked memory. My fourth contribution is a system that allows a

VM to use remote memory provided by a different rack server. Thereby, in the

case of a peak memory demand, my system allows the VM to allocate memory

on a remote physical server.
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Chapter 1

Introduction

We live in an economic era of recursive outsourcing. Companies are becom-

ing more and more specialized and those tasks falling outside of their narrow

expertise area are outsourced to other companies which, in turn, follow the

same pattern. IT services are not exempted from this trend. They are central-

ized to datacenters which increase the energy efficiency by sharing resources

among multiple tenants. Initially, datacenters were populated with specialized

machines but they were soon replaced by commodity servers for cost efficiency

matters. Commodity servers are built in a way that they are more energy ef-

ficient at high utilization [89]. When the utilization is low, servers waste an

important fraction of energy in stalled cycles and empty memory banks [46].

This problem is attacked from two different angles. First, a research axis

focuses on improving the energy proportionality of servers by reducing their

energy consumption at low utilization rates. The second research axis takes

the opposite way and focuses on increasing as much as possible the utilization

of turned-on servers. An energy efficient datacenter should host either fully

used servers or turned-off servers. In this second research category, a notable

evolutionary step was achieved when cloud datacenters adopted virtualization.

This technology enables the execution of multiple virtual machines (VMs) on

top of a single physical server. Since the VM is completely decoupled from

the hardware, it can easily be relocated (migrated) between physical servers

with minimal service downtime. This is a powerful feature since it enables VM

consolidation whose objective is to pack VMs on as few physical servers as pos-

sible. By mutualizing server resources among multiple tenants, virtualization

along with VM consolidation brought task density to a level unseen before.

However, even if VM consolidation increased server utilization by 5-10%, we

rarely observe datacenter servers with an utilization above 50% for even the

most adapted workloads [46, 63, 113]. Considering that datacenters may have

tens or hundreds of thousands of servers, huge amounts of energy and resources

end up being wasted.



1.1 Contribution overview

StopGap: reduce datacenter resource fragmentation. In the previous

section we have seen that VM consolidation is a powerful technique but it is

often not as effective as we want. There are multiple reasons that limit the

consolidation rate. First, cloud providers propose a wide range of general pur-

pose or specialized virtual machines. For example, Amazon EC2 proposes 164

VM types tuned for general purpose use or specialized for CPU, memory, GPU,

or storage intensive workloads. In addition, this wide range of choices is not

on a single dimension (i.e. a single resource type) but at least three (CPU,

memory and network bandwidth). In this context, VMs almost always fail to

completely fill up the capacity of the hosting servers and this limits consoli-

dation rates. Datacenter servers will execute with a set of long-term unused

resources, hereinafter called holes. However, we observed that smaller VMs lead

to higher consolidation rates because it is more probable that they will fit avail-

able holes. Second, we observed that many internet applications (e.g. internet

services, MapReduce, etc.) are elastic which means that they can be reconfig-

ured on top of an arbitrary number of VMs. Based on this two observations, in

Chapter 2 we introduce StopGap, an extension which comes in support to any

VM consolidation system. StopGap dynamically replaces (when needed) “big”

VMs with “smaller” ones and automatically reconfigures the user application

on top of the newly created VMs. This process is called VM split. However,

a larger number of VMs will also introduce a higher overhead because each

VM executes additional OS services along with the user application or stateful

servers (such as databases) generate additional coherency traffic. Thereby, in

cases where the higher number of VMs does not lead to a higher consolidation

rate, StopGap may chose to fuse multiple VMs colocated on the same physical

server which execute the same application replica.

Decouple memory and CPU with a new ACPI state. Even if a dat-

acenter enhanced with StopGap is able to increase the consolidation rate, we

observed that the CPU utilization of servers is still very low. Thereby, we

presumed that a more fundamental problem is the source of this low CPU

utilization. After analyzing the amount of memory and CPU for the Amazon

EC2 VMs in the last decade, we found out that even if both resources have

grown substantially, the memory per CPU ratio is two times higher today than

one decade ago. Applications are gradually migrating datasets from HDD to

faster storage such as NVMe or RAM and, on top of this, datasets are also

becoming larger and larger over time. On the other hand, by analyzing the

SPECpower ssj2008 [28] reports, we’ve also computed the memory per CPU

5



ratio for the physical servers in the last decade. In this case, we have observed

an inverse trend; the memory per CPU ratio is today more than two times

lower than about a decade ago. In conclusion, applications demand more and

more memory but physical servers provide more and more CPU. However, in

the current datacenters the CPU:memory tuple is strongly coupled inside a

physical server which is the smallest granularity of the power domain. To get

more memory in the datacenter, one needs to completely turn on a new server,

including the CPU. However, CPU could not be fully used because memory

saturates faster and limits the consolidation rates. Since the two resource de-

mands are not correlated anymore, cloud computing research is looking for

ways to decouple them such that each resource can be allocated independently.

To solve this problem, the concept that gained significant momentum in re-

cent years is disaggregated computing which aims to change the server-centric

view of the datacenter to a resource-centric view. A disaggregated datacenter

can be seen as a single huge and modular physical machine whose amount of

resources can be independently and dynamically allocated. Since resource dis-

aggregation completely revolutionizes the datacenter computing paradigm, it

is still a research topic with plenty of unanswered questions and thereby, not

yet implemented in the mainstream cloud. In Chapter 3, we propose a short

term solution that can have the benefits of memory disaggregation and can be

introduced with only small changes to the hardware of commodity servers. We

propose a new ACPI state (called zombie) which is very similar to Suspend-to-

RAM in power efficiency and transition latency. Our new zombie state (noted

Sz) keeps the memory banks completely active and ready to be used by other

servers in the rack, even when all the CPUs are turned off. Thereby, we provide

a simple and practical way to decouple memory from the computing resources.

In this way, zombie servers have the potential to considerably increase the

energy efficiency of cloud datacenters.

ZombieStack and working set size estimation. Cloud computing does

not provide any software stack ready to take advantage of our new Zombie

ACPI state. Thereby, in Chapter 4 we present the architecture and the imple-

mentation details of ZombieStack, a prototype cloud operating system based

on OpenStack [22] and a modified version of the KVM [80] hypervisor. In a

nutshell, a cloud operating system manages the VMs during their entire life-

time. For example, when a new VM request arrives in the system, the cloud

operating system looks for a physical server that has enough resources to host

the new VM. However, in a datacenter whose servers are enhanced with Sz,

VMs can also rely on remote memory, i.e. memory provided by other physi-

cal servers than the one hosting the VM. Thereby, our ZombieStack can place

6



a VM even on a server that is unable to provide the entire amount of re-

quested memory; the missing part will be filled with remote memory. Even if

the networking technology evolved such that one can access remote memory

with sub-microsecond latency, this is still much larger than any local memory

access. Thereby, our system should find the most optimal ratio of local vs.

remote memory that increases the resource efficiency and minimizes the VM

performance impact. However, the optimal ratio is not static but depends on

the VM memory activity (i.e. the working set size of the VM). The working

set size (WSS) is defined as the amount of memory actively used by a VM at a

given time. In Chapter 5, we present Badis, a system that is able to estimate

a VM’s WSS with high accuracy and no VM codebase intrusiveness. In short,

WSS estimation increases the memory allocation efficiency for two main rea-

sons. First, by finding out how much memory is actively used by a VM, we can

reclaim the unused memory and look for more optimal ways to reallocate it.

Second, WSS estimation allows us to find out the performance impact induced

by a given ratio of remote memory on a VM.

Publications that constitute this thesis:

1. Vlad Nitu, Boris Teabe, Leon Fopa, Alain Tchana, Daniel Hagimont:

StopGap: elastic VMs to enhance server consolidation. Softw., Pract.

Exper. 47(11): 1501-1519 (2017).

2. Vlad Nitu, Aram Kocharyan, Hannas Yaya, Alain Tchana, Daniel Hagi-

mont, Hrachya V. Astsatryan: Working Set Size Estimation Techniques

in Virtualized Environments: One Size Does not Fit All. SIGMETRICS

2018: 62-63.

3. Vlad Nitu, Boris Teabe, Alain Tchana, Canturk Isci, Daniel Hagimont:

Welcome to zombieland: practical and energy-efficient memory disaggre-

gation in a datacenter. EuroSys 2018: 16:1-16:12.

Other publications:

1. Alain Tchana, Vo Quoc Bao Bui, Boris Teabe, Vlad Nitu, Daniel Hag-

imont: Mitigating performance unpredictability in the IaaS using the

Kyoto principle. Middleware 2016: 6

2. Vlad Nitu, Pierre Olivier, Alain Tchana, Daniel Chiba, Antonio Bar-

balace, Daniel Hagimont, Binoy Ravindran: Swift Birth and Quick Death:

Enabling Fast Parallel Guest Boot and Destruction in the Xen Hypervi-

sor. VEE 2017: 1-14
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3. Vlad Nitu, Boris Teabe, Leon Fopa, Alain Tchana, Daniel Hagimont:

StopGap: elastic VMs to enhance server consolidation. SAC 2017: 358-

363

4. Katia Jaffrs-Runser, Gentian Jakllari, Tao Peng, Vlad Nitu: Crowdsens-

ing mobile content and context data: Lessons learned in the wild. Per-

Com Workshops 2017: 311-315

5. Boris Teabe, Vlad Nitu, Alain Tchana, Daniel Hagimont: The lock holder

and the lock waiter pre-emption problems: nip them in the bud using

informed spinlocks (I-Spinlock). EuroSys 2017: 286-297

1.2 Thesis organization

The rest of this thesis is organized as follows. In Chapter 2 we introduce

StopGap, our consolidation system extension which splits/fuses VMs in order

to increase the consolidation ratio. In Chapter 3, we propose a new ACPI state

which keeps the memory banks completely active and ready to be used by

other servers in the rack, even when all the CPUs are turned off. In Chapter 4

we present the architecture and the implementation details of ZombieStack, a

software stack that takes advantage of our new ACPI state. In Chapter 5, we

survey the state-of-the-art for WSS estimation techniques and propose Badis,

a system that is able to estimate a VM’s WSS with high accuracy and no VM

codebase intrusiveness.
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Chapter 2

StopGap: Elastic VMs to

enhance server consolidation

2.1 Introduction

These days, many organizations tend to outsource the management of their

physical infrastructure to hosting centers, implementing the cloud computing

approach. The latter provides two major advantages for end-users and cloud

operators: flexibility and cost efficiency [44]. On the one hand, cloud users can

quickly increase their hosting capacity without the overhead of setting up a

new infrastructure every time. On the other hand, cloud operators can make

a profit by building largescale datacenters and by sharing their resources be-

tween multiple users. Most of the cloud platforms follow the Infrastructure as a

Service (IaaS) model where users subscribe for virtual machines (VMs). In this

model, two ways are generally proposed to end-users for acquiring resources:

reserved and on-demand [63]. Reserved resources are allocated for long periods

of time (typically 1-3 years) and offer consistent service, but come at a signif-

icant upfront cost. On-demand resources are progressively obtained as they

become necessary; the user pays only for resources used at each time. How-

ever, acquiring new VM instances induces instantiation overheads. Despite this

overhead, on-demand resource provisioning is a commonly adopted approach

since it allows the user to accurately control its cloud billing.

In such a context, both customers and cloud operators aim at saving money

and energy . They generally implement resource managers to dynamically ad-

just the active resources. At the end-user level, such a resource manager (here-

inafter AppManager) allocates and deallocates VMs according to load fluctua-

tions [32]. Tools like Cloudify [5], Roboconf [25], Amazon Auto-scaling [4] and

WASABi [3] can play that role. At the cloud platform level, the resource man-

ager (hereinafter IaaSManager) relies on VM migration [60] to pack VMs atop

as few physical machines (PMs) as possible. Subsequently, it leaves behind a



Figure 2.1: Resource wasting due to holes in a public Eolas cluster (a cloud

operator) composed of 35 PMS. Holes are aggregated and represented as entire

wasted PMs. We can observe that an average of 6 PMs are misspent every day.

number of ”empty” PMs which may be turned-off. This process is known as

server consolidation [102]. Tools like OpenStack Neat [23], DRR/DPM from

VMware [7], and OpenNebula [21] can play that role.

Although VM consolidation may increase server utilization by about 5-10%,

it is difficult to actually observe server loads greater than 50% for even the

most adapted workloads [46, 63, 113]. Due to various customer needs, VMs

have different sizes (e.g. Amazon EC2[8] offers 164 VM types) which are often

incongruous with the hosting PM’s size. This incongruity obstructs consoli-

dation when VMs do not fit available spaces on PMs. The data center will

find itself having a set of PMs which operate with long-term unused resources

(hereinafter ’holes’). The multiplication of such situations raises the issue of

PM fragmentation (illustrated in Section 2.2), which is a source of significant

resource waste in the IaaS. Figure 2.1 presents the waste observed in a public

Eolas[11] cluster1 composed of 35 PMs. The datacenter holes are aggregated

and represented as entire wasted PMs. We can observe that an average of 6

PMs are misspent every day.

VMs which consume a low amount of resource (hereinafter ”small” VMs)

lead sometimes to a more efficient consolidation compared to VMs which con-

sume a high amount of resource (”big” VMs). In order to take advantage of

this fact, we introduce StopGap, an extension which comes in support

to any VM consolidation system. It dynamically replaces (when needed)

”big” VMs with multiple ”small” VMs (seen as VM split) so that holes are

1Eolas is our cloud computing partner.
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avoided. StopGap imposes a novel VM management system that deals with

elastic VMs (i.e. VMs whose sizes can vary during execution). However, cur-

rent IaaS managers handle only VMs whose sizes are fixed during execution,

thus we need to extend the traditional IaaS management model. To this end,

we introduce a novel management model called Hybrid Resource Negotiation

Model (HRNM), detailed in Section 2.5.

The main contributions of this article are the followings:

1. We propose HRNM, a new resource allocation model for the cloud.

2. We propose StopGap, an extension which improves any VM consolidation

system.

3. We present a prototype of our model built atop two reference IaaSMan-

ager systems (OpenStack[22] and OpenNebula[21]). We demonstrate its

applicability with SPECvirt sc2010 [29], a suite of reference benchmarks.

4. We show that StopGap improves the OpenStack consolidation engine by

about 62.5%.

5. We show that our solution’s overhead is, at worst, equivalent to the over-

head of First Fit Decreasing (FFD) algorithms [67] underlying the ma-

jority of consolidation systems.

The rest of the chapter is organized as follows. In Section 2.2 we intro-

duce some notations, we motivate our new resource management policy and

we present its central idea. Section 2.4 defines the application type on which

we tested our model. Section 2.5 presents in detail HRNM and its application

to our reference benchmark. Section 2.6 presents StopGap while Section 2.7

evaluates both its impact and benefits. The chapter ends with the presentation

of related works in Section 2.8 and our conclusions in Section 2.9.

2.2 Motivation

A data center is potentially wasting resources at a given time t if the following

assertion is verified:

Assertion 1

∃k s.t. ∀x ∈ {CPU,memory, bandwidth},
mPk∑
j=1

bookedx(VMj, Pk) ≤
n∑

i=1,i6=k

freex(Pi)
(2.1)

where
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Figure 2.2: Illustration of resource waste in a data center: two states of the

same data center are presented (a and b).

n : total number of physical machines in the data center

VMj : VM number j

Pk : PM number k

mPk
: total number of VMs on Pk

bookedx(VMj, Pk) : the amount of resource of type x booked by VMj on Pk

freex(Pz) : the amount of resource of type x which is unbooked on

Pz

In other words, a data center is wasting resources when there is at least one

PM whose sum of booked resources by its VMs can be provided by the sum

of the other PMs’ holes. Figure 2.2 presents two states (top and bottom) of

a data center with three PMs. According to our definition, in the first state,

the data center wastes resources (k may be 1, 2 or 3). In the second case, we

consider that the data center does not waste resources because Assertion 2.1 is

not verified for CPU and memory.

Resource waste is a crucial issue because of the tremendous energy con-

sumed by todays data centers. Addressing this issue is beneficial on the

one hand to cloud operators (about 23% of the total amortized costs of the

cloud [81]). On the other hand, it is environmentally beneficial for the planet,

as argued by Microsoft [19] (which proposes the 10 best practices to move in

the right direction). Several research have investigated this issue and the large

majority of them [53, 122] rely on VM consolidation. The latter consists in

dynamically rearranging (via live migration) VMs atop the minimum number

of PMs. Thus empty PMs are suspended (e.g. in sleep mode) or switched to a

low power mode for energy saving.

Even if VM consolidation has proven its efficiency, it is not perfect for two
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main reasons: (1) VM consolidation is an NP-hard problem, (2) in some sit-

uations, VM relocation is not possible even if Assertion 2.1 is verified. For

illustration, let us consider our data center use case introduced in the previous

section. We focus on the first state (Figure 2.2(a)) where resources are poten-

tially wasted. As mentioned in the previous section, if we aggregate the P2 and

P3 holes we are able to provide the resources needed by all VMs which run on

P1. Therefore, one can think that by applying VM consolidation to this use

case, P1 could be freed.

Assertion 2: The efficiency of any VM consolidation algorithm depends

on two key parameters: VM sizes and hole sizes.

Returning to our first data center state (Figure 2.2(a)), we may consider

two VM configurations which consume the same amount of resource on P1:

• In Figure 2.3(a) we consider two identical ”small” VMs (VM1 and VM2).

Each of them consumes 30% CPU, 35% memory and 2.5% bandwidth

from P1. In this case, VM consolidation is able to migrate VM1 to P2

and VM2 to P3. At the end, P1 may be turned-off (Figure 2.3(b)).

• In Figure 2.3(c) we consider that P1 runs a single ”big” VM (VM ′
1). VM

consolidation is no longer efficient because neither P2 nor P3 is able to

host VM ′
1. It cannot fit in the available holes.

Such situations are promoted in a data center by the mismatch between VM

sizes and holes. As presented in Section 2.1, Figure 2.1 shows that this issue

is present in a real data center. In this chapter we propose a solution which

addresses this problem.

2.3 StopGap overview

In the previous section we exposed that the regular consolidation is difficult for

”big” VMs because they require big holes. A solution to this limitation could

be to aggregate the holes using a distributed OS. However, the lessons learned

from distributed kernels (such as Amoeba[1]) show that the reliability of these

solutions is debatable. In this work, we opt for an alternative approach which

relies on two assumptions.

• (A1) the vertical scaling capability of VMs: this is the virtualization

system’s capability to resize a VM (add/remove resources) at runtime.

For instance, Xen [42] and VMware [146] provide this feature.

• (A2) the distributed behaviour of end-user applications: this is an appli-

cation’s capability to run atop a changeable number of VMs (horizontal
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Figure 2.3: The efficiency of any VM consolidation algorithm depends on two

key parameters: VM sizes and hole sizes. From state (a), there is a possible

VM consolidation which releases one PM; it is evidenced by the state transition

(a)→(b). The consolidation is successful because of small VM sizes. In contrast,

from state (c), VM consolidation is not possible because VMs are too big.

scaling). Such applications are called elastic applications. They include

the large majority of applications deployed within the cloud (e.g. inter-

net services, MapReduce, etc.). For illustration, we focus in this work on

applications which follow the master-slave pattern.

Relying on these two assumptions, we propose a cooperative resource man-

agement system in which the end-user allows the cloud manager to dy-

namically resize (vertical/horizontal scaling) the VMs so that a ”big”

VM can be replaced by multiple small VMs. For illustration, we apply

our solution to the ”big” VM case in Figure 2.3(c). Firstly, we instantiate a

new VM (VM1) on P1. Its size will be half of the ”big” VM size. Secondly, we

scale down the ”big” VM (vertical scaling) to half of its size, resulting VM2.

Finally, we end up with the case of Figure 2.3(a) having two identical ”small”

VMs.

VM resizing is not a common practice in today’s cloud. Therefore, we pro-

pose a novel resource allocation and management model for the cloud. Before

describing this model, we first present an overview of the master-slave pattern,

the application type considered in our solution.
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Figure 2.4: The architecture of an Multi-tier master-slave applications

(MTMSA).

2.4 Multi-tier master slave applications

As mentioned earlier, our solution is suitable for Multi-tier master-slave ap-

plications (hereinafter MTMSA). It is important to specify that MTMSA is

one of the most prevalent architecture among Internet services. For instance,

most applications from SPECvirt sc2010 [29] and CloudSuite [71], two refer-

ence benchmarks for cloud platforms, follow this pattern. In this application

type (see Figure 2.4), a tier is composed of several replica (also called slaves)

which all play the same role (e.g. web server, application server, database).

Each replica is executed by a single VM. In front of this set of slaves, lays a

master VM, responsible for distributing requests to the slaves. The master is

generally called loadbalancer since it implements a load balancing policy.

The main MTMSA advantage (which justifies its wide adoption) is the high

flexibility of a tier (i.e. add/remove VMs according to the workload). After

any change in a tier structure, the application has to be reconfigured. This

process is usually automated by an autonomic-manager component (i.e. the

AppManager) deployed with the application. The AppManager is provided

either by the Cloud (e.g. Amazon Auto-Scaling service), or by the customer

(e.g. using an orchestration system like Cloudify [5] or Roboconf [25]). In this

work we assume that the AppManager is provided by the cloud. Generally, an

AppManager is responsible for:

• detecting a tier overload/underload and deciding how many VMs to ad-

d/remove (by sending instantiation/termination requests to the IaaSMan-

ager).

• invoking the loadbalancer reconfiguration in order to take into account a

VM’s arrival/departure.
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2.5 A hybrid resource negotiation model

This work improves VM consolidation thanks to the basic idea presented in

Section 2.3. Our solution is complementary to any VM consolidation

system. However, it requires: (1) that the user VM is executing an App-

Manager able to reconfigure the MTMSA and (2) there is a real collaboration

between the AppManager and the IaaSManager. More precisely, the AppMan-

ager exposes APIs called by the IaaSManager to reconfigure the application

when the IaaSManager identifies a VM split opportunity. In a traditional IaaS

model, the cloud provider sells VMs which are seen as “black boxes”. Any

information about the applications executed inside the VM are only known by

the VM’s user. Thereby, in order to take advantage of our solution, the tradi-

tional IaaS model should be enhanced with the two requirements stated above.

The PaaS is a more high level service where the provider hides from users the

complexity of building and maintaining the infrastructure. In this case, the two

requirements can be provided without a mandatory collaboration between the

provider and users. This section presents the cooperative resource management

model which we propose. It can be considered from different perspectives: an

extension of a PaaS or a hybrid IaaS-PaaS model. In this work we consider the

latter case because it is the most general one.

2.5.1 Description of the model

In contemporary clouds, the resource negotiation model (between the customer

and the provider) is based on fixed size VMs. We call it: the VM Granularity

Resource Negotiation Model (hereinafter VGRNM ). Figure 2.6 summarizes this

model and illustrates its limitation in the perspective of VM consolidation. For

instance, the sum of unused resources on PM 2 and PM 3 is greater than the

needs of the large VM hosted on PM 4, but no consolidation system could

avoid this waste.

Our model overcomes these limitations. To this end, it allows the IaaS-

Manager to change both the number and the size of VMs, feature which is not

provided by VGRNM. Thus, in addition to VGRNM, we need to define a new re-

source management model which allows resource negotiation at the granularity

of an application tier. We call it: the Tier Granularity Resource Negotiation

Model (hereinafter TGRNM ). The HRNM (hybrid model) introduced above

represents the aggregation between the traditional model (VGRNM) and our

new model (TGRNM). Figure 2.5 graphically represents the negotiation phases

of HRNM. They are summarized as follows:

• (1) Using VGRNM, the customer deploys and starts the AppManager,

which exposes a web service. Through it, the AppManager is informed
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E SPECweb E SPECjAppserver E SPECmail

VTGRNM HaProxy, InfraServer HaProxy, DAS Front, Mupdate

TGRNM Web Glassfish, MySQL Imapd

Table 2.1: VGRNM and TGRNM: which model is appropriate to each

E SPECvirt tier?

about any resource changes (e.g. after a VM resize). Finally, the customer

registers the AppManager endpoint with the IaaSManager.

• (2) The customer enters in what we call the ”subscription phase”. An

application subscription is formalized as follows:

A = {ti(#cpu,#mem,#io) and strategy|1 ≤ i ≤ n}, where A represents

a request to the provider (see Figure 2.5 left), n is the total number of

tiers, ti represents the ith tier, (#cpu,#mem,#io) is the tier size, and

strategy represents the allocation model (TGRNM or VGRNM).

• (3) From these information, the IaaSManager computes and starts the

number of VMs needed to satisfy each tier. The first advantage (resource

saving) of our solution can be observed during this step. Indeed, VM

instantiation implies VM placement: which PMs will host instantiated

VMs. An efficient VM placement algorithm avoids resource waste. In

comparison with the traditional model in which VM sizes are constant

and chosen by end-users, our model avoids PM fragmentation (the mul-

tiplication of holes). For instance, PM 2 and PM 3 in Figure 2.6 (the

traditional model) have unused resources which would have been filled in

our model (as shown in Figure 2.5 right).

• (4) When VMs are ready, the IaaSManager informs the AppManager

about the number and the size of VMs for each tier so that the application

can be configured accordingly (e.g. load balancing weights).

• (5) The AppManager informs back the IaaSManager when the applica-

tion is ready. Resource changes are envisioned only after this notification.

As mentioned above, the traditional model (VGRNM) is still available in our

solution because it could be suitable for some tiers. For instance, the MTMSA

entry point (i.e. loadbalancer) needs a static well known IP address, thus a

single VM. More generally, our solution is highly flexible in the sense that it is

even possible to organize a tier in two groups so that each group uses its own

allocation model (Section 2.7 presents a use case). The next section presents

an application of our model to a well known set of cloud applications.
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Figure 2.6: The traditional functioning of a cloud platform. The resource nego-

tiation model is based on fixed size VMs (small, medium, large, etc.) requested

by the end-user. The cloud operator has no information about the application

type (its architecture) deployed within VMs. Furthermore, any modification

of the application is initiated by the AppManager (VM addition or removal)

according to workload fluctuations. This inflexibility is at the heart of VM

consolidation limitations: see resource waste on PM 2 and PM 3.
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Figure 2.7: Architecture of E SPECvirt.

2.5.2 Application of the model

SPECvirt sc2010 [29] is a reference benchmark which has been used for evalu-

ating the performance of the most common cloud platforms. It is composed of

three main workloads which are the patched versions of more specific bench-

marks: SPECweb2005[30] (web application), SPECjAppserver2004 [26] (JEE

application), and SPECmail2008 [27] (mail application). SPECvirt sc2010 also

provides a test harness driver to run, monitor, and validate benchmark results.

We relied on SPEC-virt sc2010 in order to target the most popular cloud appli-

cations. For the needs of this work, we enhanced SPEC-virt sc2010 by imple-

menting the elasticity of each tier. This new version is called E SPECvirt and

it is composed of E SPECweb2005, E SPECjAppserver2004, and E SPECmail-

2008. Figure 2.7 presents the new architecture. E SPECweb2005 comprises one

or more Apache[2] web servers with loadbalancing assured by HaProxy[14].

E SPECjAppserver2004 is composed of a Glassfish[12] cluster with loadbalanc-

ing archived by both HaProxy (for HTTP requests) and Domain Administra-

tion Server (DAS) registry (for IIOP requests). HaProxy also provides loadbal-

ancing for MySQL databases. To ensure consistency, all MySQL servers lever-

age a master-master replication [20]. Update requests received by a MySQL

server are replicated to the others in a cyclic way. E SPECmail2008 is achieved

by Cyrus IMAP[6]. The latter provides three software types: a loadbalancer

(called front), a database server which contains information about the location

of all mailboxes (called mupdate), and multiple imapd slaves which serve IMAP

requests.

Table 2.1 shows which HRNM submodel is suitable for each E SPECvirt

tier. VGRNM is used both for loadbalancers and for some software such as In-

fraServer, DAS, and Mupdate, which need to be known in advance throughout

a unique static IP address (thus a single VM). All other tiers are provisioned

using TGRNM.
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2.6 Implementation of the model

In the cloud, a customer can request resources both at application subscription

time or at runtime. There are two types of cloud actions at runtime:

• (C1) the adjustment of both the number and the size of VMs while keeping

the corresponding tier to the same size.

• (C2) the adjustment of a tier size in response to workload variation.

C1 operation types are initiated by the IaaSManager while C2 operation types

are initiated by the AppManager. The ”subscription phase” can be seen as

a C2 operation: increase the tier size starting from zero. A runtime cloud

action is taken only if the application performance insured by the provider (i.e.

the Service Level Agreement) is respected. The procedure used to ensure the

Service Level Agreement (SLA) is presented below.

2.6.1 SLA enforcement during VM split

One of the main goals of a cloud operator is to save resources. Thus, every

time Assertion 1 is verified, it considers that there should be a better consoli-

dation. In this respect, the IaaSManager tries to restructure application tiers

by replacing ”big” VMs with ”smaller” VMs (VM split). The main objective of

this operation is to improve VM consolidation (free as much PMs as possible).

On the other hand, the customer is rather interested in the performance of

its application. There are cases where even if Assertion 1 is verified,

the provider cannot split a VM. These circumstances are promoted by two

main factors. First, there is often a non-linear dependence between the perfor-

mance and the amount of resource. For instance, a 2GB VM may not perform

2 times better than a 1GB VM. Second, there is always an overhead introduced

by VM’s operating system (OS) footprint. For an accurate VM split, we need

to find a metric which exposes well the application performance. A suitable

choice for our MTMSA seems to be the maximum application throughput (e.g.

requests/sec for a web server). Based on this metric, we can safely split the

VM without affecting the customer. For example, a customer will be satisfied

with both, a single VM capable of 200 req/s or two VMs, each one capable

of 100 req/s, considering that the streams are aggregated by the loadbalancer.

To convert from resources to throughput, we introduce a function called s2ttier
(size to throughput for a given tier). It takes as input a hole (#cpu,#mem,#io)

and returns the throughput that a corresponding VM will deliver. The function

is provided either by the customer2 or by the provider. If the customer does not

2Customers may have such information since they need to predict how their applications

will perform in a given VM.
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1//This function is invoked at the end of each VM consolidation round

2void consolidationExtension (...) {
3 S1={PMs with holes}
4 thrholes − ”the sum of throughput of all holes”

5 choose P from S1 so that P has the biggest hole

6 thrP − ”the sum of throughput of all P’s VMs”

7 if (thrP > thrholes)

8 return

9 foreach(VM v on P){
10 determine tierName of v

11 thrv := s2ttierName(sizeOf(v))

12 foreach (Pi ∈ S1 ∩ {P}) {
13 thrhole := s2ttierName(sizeOfhole(Pi))

14 if (thrv<thrhole){
15 resize v to thrv
16 notify changes to AppManager

17 migrate v to Pi

18 break

19 } else {
20 enlarge or instantiate a VM in this hole

21 thrv := thrv − thrhole
22 }
23 update S1

24 }
25 }
26 Switch−off PMs without VMs

27}

Figure 2.8: The StopGap algorithm.

have such information, the provider (IaaSManager) computes the function like

Quasar[63]. The latter dynamically determines application throughput based

on performance monitoring counters and collaborative filtering techniques. The

estimation of s2ttier is beyond the scope of this work.

2.6.2 Resource management of type C1

While HRNM can improve VMs’ resource assignment at application subscrip-

tion time, holes may also show up during runtime (e.g. a VM termination/mi-

gration). In order to address this issue, we introduce a VM consolidation

extension called StopGap. Figure 2.8 presents in pseudo code the StopGap

algorithm. It is complementary to the consolidation system which already runs

within the IaaS. The only thing to do is to immediately invoke it after each

VM consolidation round. For simplicity reasons, we are not presenting the

pseudo code related to synchronization problems. In the real code version we
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Figure 2.9: Illustration of StopGap on E SPECweb2005.

used locks to avoid holes contention (see Section 2.7.1). Figure 2.9 illustrates

the algorithm on a simple use case: the restructuring of the web server tier in

Specvirt sc2010. The StopGap algorithm is interpreted as follows. The reader

can follow in parallel the illustration in Figure 2.9: top-down. First, we choose

the least charged PM (line 5) (noted P ). If the data center holes are unable

to provide the necessary throughput for P’s VMs (line 7), no application re-

structuring can be done without performance loss. Otherwise, we take a VM

v from P (line 9). We iterate over the remaining PMs from S1 (line 12) and

we start to reconstruct v in the holes(lines 20-21). If a VM of the same tier

exists on Pi we prefer to enlarge it instead of instantiating a new VM. Each

time, we subtract the new VM’s throughput from the throughput of v (line 21).

When we find a hole which can provide the remaining throughput, we migrate

v (lines 15-18). Notice that the reconfiguration of the application during VM

reconstruction is only performed once all generated VMs are ready. By doing

so, there is no wait time related to VM instantiation.

2.6.3 Resource management of type C2

Due to workload variations, the AppManager may request a change in a tier’s

capacity/size. Figure 2.10 and 2.11 present in pseudo code the algorithms to

shrink/enlarge a tier. It works as follows. The AppManager communicates to

the IaaSManager the desired tier variation (∆). Concerning the tier downscale
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1//decrease tierName by ∆

2S1={PMs which run a VM belonging to the tierName}
3thr∆ = s2ttierName(∆)

4decLabel:

5Let v be ”the smallest VM of tierName in S2”

6thrv := s2ttierName(sizeOf(v))

7 if (thrv==thr∆){
8 record v for termination

9}else if (thrv < thr∆){
10 record v for termination

11 thr∆ := thr∆ − thrv
12 remove P from S2

13 goto decLabel

14}else{
15 shrink v until s2ttierName(sizeOf(v)) == thrv − t∆
16}
17notify changes to the AppManager

18when(ack is received){
19 terminate recorded VMs

20 free empty PMs

21}

Figure 2.10: Tier size decrease algorithm.

1//increase tierName by ∆

2S1={PMs with holes}
3thr∆ = s2ttierName(∆)

4foreach (Pi ∈ S1){
5 thrhole := s2ttierName(sizeOfhole(Pi))

6 enlarge or instantiate a VM in this hole

7 thr∆ := thr∆ − thrhole
8}
9incLabel:

10 turn−on a new PM P

11 instantiate a new VM v on P

12 thrv := s2ttierName(sizeOf(v))

13 thr∆ := thr∆ − thrv
14 if (thr∆ > 0)

15 goto incLabel

16notify changes to the AppManager

Figure 2.11: Tier size increase algorithm.
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(Figure 2.10), the IaaSManager prioritizes VM termination (line 8, 10) rather

than shrinking a group of VMs (line 15). Thus, the overhead caused by VM’s

OS footprint is minimized. Regarding the tier enlargement (Figure 2.11), the

priority is placed on resizing (vertical up-scaling) the existing VMs. If at the

end, the request is not completely satisfied, a set of VMs are instantiated ac-

cording to available holes (line 6). If all holes are filled up and the request

is still not completely satisfied, PMs are switched-on and new VMs are in-

stantiated atop them (line 10-11). The IaaSManager always informs back the

AppManager about the operations it has performed (i.e new size for old VMs,

new VMs and their size, or terminated VMs). Subsequently, the AppManager

answers with an ACK message. The IaaSManager only terminates VMs upon

receiving that message. This prevents the termination of a VM which is still

servicing requests.

2.7 Evaluations

In order to test our approach, we performed two evaluation types. The first

type evaluates our solution impact on customer applications, provided by

SPECvirt sc2010 [29] (presented in Section 2.5.2). The second evaluation type

focuses on VM consolidation improvements.

2.7.1 Experimental environment

The first type experiments were performed using a prototype implemented

within our private IaaS. It is composed of 7 HP Compaq Elite 8300, con-

nected with a 1Gbps switch. Each node is equipped with an Intel Core i7-3770

3.4GHz and 8GB RAM. One node is dedicated to management systems (IaaS-

Manager, NFS server and additional networking services: DNS, DHCP). The

others are used as resource pool. To show the generic facet of our solution,

the prototypes have been implemented for two reference IaaSManger systems:

OpenStack [22] and OpenNebula[21]. Both systems are virtualized with Xen

4.2.0. The integration of our solution with these systems is straightforward. We

have implemented the resource negotiation model on top of both OpenStack

and OpenNebula public APIs. Concerning VM consolidation, OpenStack relies

on OpenStack Neat[23]. It is an external and extensible framework which is

provided with a default consolidation system. Our solution requires a minor

extension to OpenStack Neat. We only extended its ”global manager” compo-

nent, which implements the consolidation algorithm. Two modifications were

necessary: one LoC at the end of the consolidation algorithm to invoke Stop-

Gap (Figure 2.8), and about 5 LoCs for locking PMs whose VMs are subject
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Figure 2.12: Horizontal and vertical scaling durations (N.B.: log-scale y-axes).

VM instantiation or termination time is quasi constant regardless the number of

VMs. vCPU addition or removal time increases almost linearly with the number

of vCPUs. Similar results are observed for the main memory. Bandwidth

adjustment always uses the same duration.

to resize. This prototype is used to evaluate the impact of our resource alloca-

tion model. Concerning OpenNebula, it does not implement any dynamic VM

consolidation module. However, it is built so that the integration of a consol-

idation engine is elementary. In OpenNebula, the single component which we

patched is the ”Scheduler”.

2.7.2 Impact on end-user’s applications

In our solution, two new operation types can impact the performance of end-

user applications:

• Vertical and horizontal scaling. By leveraging HRNM, the IaaSManager

may combine vertical scaling (VM size adjustment) and horizontal scaling

(add/remove a VM) to dynamically restructure an application tier. These

operations are the basis for both VM split and VM enlargement.

• Application reconfiguration: VM spliting and enlargement require the

adaptation/reconfiguration of the application level (e.g. weight adjust-

ment).

Impact of vertical and horizontal scaling

The influence of each operations is evaluated separately. Figure 2.12 presents

the experiment results. In Figure 2.12(a) we can note that the time taken to

instantiate or terminate VMs is quasi constant regardless the number of VMs

(about 20 msec to instantiate and 2 msec to terminate). This is due to the

parallel VM instantiation/termination. Notice that neither VM instantiation

nor VM termination impact applications which run on the same machine since

these operations do not require high amount of resource for completion.
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1//AppServer: VM addition

2Update haproxy.cfg and reload it

3Update glassfish .env and reload it

4Start a new Glassfish node agent

5Start a new Glassfish server

6//AppServer: VM removal

7Update haproxy.cfg and reload it

8Update glassfish .env and reload it

9Update domain.xml and reload DAS

10Stop Glassfish server

11Stop Glassfish node agent

12//AppServer: VM resize

13Update haproxy.cfg and reload it

14Update glassfish .env and reload it

15//web: VM addition/removal/resize

16Update haproxy.cfg and reload it

17//mail: VM addition

18Update the front server

19Reorganize (via migration) mailboxes ↘

according to backend′s size

1//DB: VM addition

2Start MySQL with specdb database

3DB pre−sync

4Lock all the active DBs

5Execute the final rsync

6Unlock the DBs

7Update the circular relationship of ↘

MySQL slaves

8Update haproxy.cfg and reload it

9//DB: VM removal

10Update haproxy.cfg and reload it

11Update MySQL slaves relationship

12//DB: VM resize

13Update haproxy.cfg and reload it

14//mail:VM removal

15Migrate mailboxes from the removed server

16Update the front server

17//mail:VM resize

18Reorganize mailboxes according to ↘

backend′s size

Table 2.2: E SPECvirt AppManagers reconfiguration algorithms.
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Figure 2.13: Horizontal and vertical scaling impact on (a)App Server, (b)DB

Server and (c)Web Server (N.B.: log-scale y-axes). Except the addition of a

new data base server, no tier suffers from our solution.

Concerning vertical scaling, we evaluated addition/removal of each resource

type individually. We evaluated the time taken to make added resources (re-

spectively removed resources) available (respectively unavailable) inside the

VM. As reported in Figure 2.12(b), vCPU addition or removal time increases

almost linearly with the number of vCPUs. This is explained by the fact that

any adjustment in the number of vCPUs triggers the sequential execution of

a set of watchers (according to the number of vCPUs). Notice that vCPU

removal costs about 20 times more than addition.

Similar results have been reported for the main memory. Its shrinking cor-

responds to the time taken by the VM to free memory pages. This operation is

triggered by a balloon driver which resides within the VM. Concerning memory

addition, it corresponds to the time taken by the hypervisor to both acquire

machine memory pages (which is straightforward in the context of our solu-

tion since it uses holes) and update the memory page list used by the target

VM. Last but not least, bandwidth adjustment always implies a constant time.

Since Xen does not manage bandwidth allocation, we relied on tc[17], a Linux

tool which quickly takes into account the bandwidth adjustment. Every time

a packet is sent or received, tc checks if the bandwidth limit is reached. Thus,

a bandwidth adjustment is immediately taken into account.

Impact of dynamic reconfigurations

The second set of experiments evaluate both the application reconfiguration

time and the consequences of this operation. The adopted impact indicator

is the number of lost requests during the reconfiguration (noted lr). For each

experiment, the workload is chosen so that VMs are saturated. Table 2.2

presents in a pseudo-code the reconfiguration algorithms we have implemented

for each tier. Figure 2.13 and 2.14 report the results of this second set of

experiments, interpreted as follows. The number of lr is shown atop each pair

of histogram bars.
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Figure 2.14: Impact of horizontal and vertical scaling on Imap Server. No

request is lost during the reconfiguration. The migration time increases almost

linearly with the number of migrated mailboxes.

• Application server tier (Figure 2.13(a)). Except the integration of a

new VM which takes some time (the first two bars), the reconfiguration

of the application server tier is straightforward. During this operation,

no request is lost. Our solution does not incur major issues for this tier.

• Database tier (Figure 2.13(b)). A new database integration within

the application is relatively expensive (the first two bars). During this

operation, the database tier is out of service for a few moments due

to synchronization reasons. This is the only situation which leads to

some lost requests. Therefore, our solution could become negative for

E SPECj-Appserver2004 if the addition of new MySQL VMs occurs fre-

quently. This problem does not appear when removing or vertically scal-

ing a database VM since no synchronization is needed. In these cases,

only the loadbalancer needs to be reconfigured.

• Web tier (Figure 2.13(c)). The web tier reconfiguration is straightfor-

ward since it only requires a loadbalancer update. Our solution does not

impact this tier.

• Mail tier (Figure 2.14). The time taken at the application level to

reconfigure the mail tier (Cyrus IMAP) is almost the same regardless

the reconfiguration option (Figure 2.14 bottom). In any case the same

number of mail boxes needs to be migrated. Due to the mailbox live

migration implemented by Cyrus, no request is lost during the reconfigu-

ration. The migration time increases almost linearly with the number of

migrated mailboxes (Figure 2.14 top).

Impact of multiple reconfigurations. We tend to conclude from the

above experiments that the impact of a single reconfiguration is almost negligi-
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Figure 2.15: Impact of performing several reconfiguration operations. Both

E SPECmail and E SPECweb are relatively little impacted by the multipli-

cation of reconfiguration operations. In contrast, E SPECjAppserver’s perfor-

mance starts to degenerate after about 20 reconfigurations. The degradation

comes from the synchronization of the data base tier, which requires a little

downtime of the application.

ble. However, the multiplication of these actions on a group of VMs belonging

to the same application could be harmful. Figure 2.15 presents the normalized

performance of each specific benchmark when the number of reconfiguration

operations varies. We can note that both E SPECmail and E SPECweb are

relatively little impacted by the multiplication of these operations. This is

not the case for E SPECjAppserver whose performance starts to degenerate

after about 20 reconfigurations. The number of additions of new database

VMs increases. To minimize this impact, the algorithm presented in Figure 2.8

has been improved for fairness. The reconfiguration operations which are per-

formed in order to improve VM consolidation are fairly distributed among cloud

applications. Thus, PMs whose VMs are subject to split are fairly chosen.

Synthesis

In comparison with horizontal scaling, vertical scaling globally provides better

results regarding reconfiguration duration and performance degradation. Sev-

eral reasons explained that. First of all, reconfiguration operations required

to be performed at application level after a vertical scaling are most of the

time less complex than those needed after an horizontal scaling (see algorithms

in Table 2.2). Secondly, resource (un)plug-in is faster (in mere microseconds)

than VM instantiation/termination (in mere seconds). These two options are

showcased in our solution.
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Figure 2.16: (top) The subset of Google data center traces we used. (bottom)

Resource saving on google traces when our solution is used.

2.7.3 Resource saving and scalability

Resource saving The main goal of our contribution is resource saving. For

this evaluation type we rely on Google data center traces obtained from [13].

Before presenting the results, let us firstly introduce how we interpreted Google

traces. They represent the execution of thousands of jobs monitored during 29

days. Each job is composed of several tasks and every task runs within a con-

tainer. For each container, we know the amount of resource used by the job

and the PM on which it is executing. We considered a job as a customer appli-

cation where its number of tasks correspond to the number of tiers. Therefore,

a container is seen as the VM allocated during the first resource allocation

request. The total number of PMs involved in these traces is 12583, organized

into eleven types. For readability, we only present in this work the analysis of a

subset of these traces. It includes up to 7669 PMs and 82531 VMs. Figure 2.16

summarizes its content. We evaluated how the StopGap extension may improve

OpenStack Neat (OSN for short). The number of freed PMs is compared when

OSN runs in three situations: alone (noted ’OSN’), in combination with our so-

lution when every second tier leverages StopGap (noted ’OSN+(1/2)StopGap’),

and in combination with our solution when all tiers leverage StopGap (noted

’OSN+StopGap’). Figure 2.16 (left plot) presents the results of these exper-

iments. We can notice that both OSN+ (1/2)StopGap and OSN+StopGap

perform better than the standard consolidation system (i.e. OSN). In the case

of OSN+StopGap, OSN is enhanced with up to 62.5%.

Scalability StopGap complexity depends on the efficiency of the original

consolidation algorithm employed by the data center. The worst case com-

plexity corresponds to the use of StopGap as the only consolidation engine.

Although this is not its main goal, StopGap can play that role in the ab-
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Figure 2.17: Overhead of our solution.

sence of a consolidation system. In this case, its complexity is the same as

most FFD bin-packing algorithms [67]. The consolidation algorithm used by

OSN has the complexity O(n ×m), where n is the number of PMs and m is

the number of VMs to be relocated. We have also relied on Google traces to

evaluate and compare both StopGap and OSN scalability. We considered two

extreme datacenter states (S1 and S2) which respectively represent the highest

and the lowest OSN efficiency. From Figure 2.16 left, we choose S1 and S2 to

respectively be the timestamps 450 and 200. For each situation, we executed

three consolidation algorithms (OSN, StopGap, and OSN+StopGap) on differ-

ent subsets from the original set of PMs. Normalized execution times (against

OSN) are plotted in Figure 2.17. In the most efficient case (S1), we can notice

that both StopGap and OSN+StopGap are close to OSN. Conversely, both

perform better than OSN when it is not efficient (S2). In this case, StopGap

as well as OSN+StopGap does the entire consolidation effort. The minimum

value noticed in Figure 2.17(top) represents another observation: OSN has the

highest efficiency when it operates on 5000 PMs.

2.8 Related Work

Memory footprint improvements. Significant research has been devoted

to improve workload consolidation in data centers [37]. Some studies have in-

vestigated VM memory footprint reduction to increase VM consolidation ratio.

Among these, memory compression and memory over commitment [137, 43]

are promising. In the same vein, [135] extends the VM ballooning technique to

software for increasing the density of software colocation in the same VM. Xen
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offers the so called ”stub domain”3. This is a lightweight VM which requires

limited memory (about 32MB) for its execution.

Uncoordinated Policies. Many research projects focus on improving re-

source management on client-side [131, 56, 88, 69]. They aim at improving the

workload prediction and the allocation of VMs for replication. On the provider

side, research mainly focuses on (1) size of resource slices, i.e. provided VM

size; or (2) VM placement, i.e. VM allocation and migration across physi-

cal servers to improve infrastructure utilization ratio. Various algorithms are

proposed to solve the VM packing problem [53, 122]. They take into account

various factors such as real resource usage, VM loads, etc. However, in a dat-

aceter, the resource demands of a VM are not fixed. Thus, several authors

propose heuristics which address the dynamicity of this problem. Beloglazov

et al [48] propose an algorithm which take consolidation decisions based on a

minimum and a maximum PM utilization threshold. Since live VM migration

is a costly operation, Murtazaev et al proposes Sercon [121], a consolidation

algorithm that minimize not only the number of active PMs but also the num-

ber of VM migrations. Further, the state-of-the-art algorithms are leveraged in

order to build dynamic consolidation systems. For example, Snooze [70] is an

open-source consolidation system build on top of Sercon. Snooze implements

a decentralized resource management on three layers: local controllers on each

PM, group managers which survey a set of local controllers and a group leader

among the group managers. However, the previous solutions operate indepen-

dently either on the client side or the provider side. For this reason, their

potential effectiveness may be narrowed.

Cooperative Policies. Authors in [96] describe a model to coordinate differ-

ent resource management policies from both cloud actors’ point of views. The

proposed approach allows the customer to specify the resource management

constraints, including computing capacity, load thresholds for each host and

for each subnet before an allocation of a new VM, etc. The authors also de-

scribe a set of affinity rules for imposing VM collocation in the IaaS, which is a

form of knowledge sharing. The authors have asserted that this model allows

an efficient allocation of services on virtualized resources. This work is a first

step in the direction of coordinated policies.

Nguyen Van et al. [124] describe research works closely-related to ours. The

authors propose an autonomic resource management system to deal with the

requirements of dynamic VMs provisioning and placement. They take both

application level SLA and resource cost into account, and support various

application types and workloads. Globally, the authors clearly separate two

resource management levels: Local Decision Modules (LDM) and the Global

3http://wiki.xen.org/wiki/StubDom
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Decision Module (GDM). The two are respectively similar to our AppManager

and IaaSManager. These two decision modules work cooperatively: the LDM

makes requests to the GDM to allocate and deallocate VMs, the GDM may re-

quest back changes to allocated virtual machines. The results reported in [124]

are only based on simulations.

Christina Delimitrou et al. [63] presents Quasar, a non-virtualized cluster man-

agement solution which adopts an approach philosophically close to our. It

asserts that the customers are not able to correctly estimate the amount of

resource needed by their applications to run efficiently. The customers are al-

lowed to express their needs in terms of QoS constraints, instead of low level

resource requirements. The management system will allocate the appropri-

ate amount of resource which ensures the requested QoS. Like our solution,

knowledge about applications and their expected QoS is shipped to the cloud

management system. This cooperation enables a smarter resource manage-

ment. Contrary to our solution, Quasar manages non-virtualized clusters and

does not address any dynamic consolidation issues.

Elastic workloads. Zhenhua Guo et al. [78] proposes a mechanism to split

map-reduce tasks for loadbalancing reasons. Since this application type may

also be split, it could be included (along with the MTMSA) in the list of suit-

able applications for our model.

Middleboxes represent an obstacle in the scalability of web applications. In

order to address this limitation, Shriram Rajagopalan et al. [132] come up with

a framework capable of splitting the middlebox VMs (e.g. loadbalancers, fire-

walls). Consequently, the entry point of an application (i.e. the loadbalancer)

may now be distributed over multiple VMs. This work may exempt us from the

need of the traditional model since the entry point of an MTMSA application

could now be negotiated at the granularity of a tier (TGRNM).

2.9 Conclusion

This work proposes a way to combine cooperative resource management with

elastic VMs. Knowledge about customer’s applications (e.g. tier instances) is

shared with the IaaS provider so that IaaSManager can better optimize the in-

frastructure. Based on this shared knowledge, the provider can split or enlarge

VMs. Our proposed cooperative IaaS can be considered from two different

perspectives: a PaaS extension or a hybrid IaaS-PaaS model. We validated the

applicability of our solution through extensive experiments. Relying on Google

datacenter traces, we evaluated our solution’s benefits in terms of resource sav-

ing. It improves OpenStack consolidation engine by about 62.5%, without any

additional overhead.
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Chapter 3

Towards memory desagregation

with the zombie state

3.1 Introduction

In recent years, we have witnessed some tectonic shifts in the computing land-

scape. First, with virtualization and containerization technologies becoming

mainstream, we were finally able to decouple applications and their opera-

tion environments from the underlying hardware. Then, with cloud computing

democratizing access to compute infrastructures and platforms, we have trans-

formed these into services that can be provisioned and consumed on demand.

These advances not only changed how we design software and build systems

today, but also opened up many new opportunities for improving computing

efficiency and cost.

With virtualization came the simplified multitenancy of operating systems,

consolidation, virtual machine (VM) migration, distributed, dynamic resource

and power management [86]. These were aimed at improving the notoriously-

low data center (DC) server utilization [46], reducing cost, and dramatically

improving power efficiency. With the cloud, we were able to push the bound-

aries further. Economies of scale, advents of software-based availability enables

us to keep compute devices simple, cheap and designed for perfect efficiency

meeting observed demands. By continuously placing thousands, if not mil-

lions, of requests on these nodes we can keep them busy, highly-utilized, and

working at their optimal point of energy efficiency. Essentially, with cloud and

virtualization, we could consider the compute infrastructure as one giant com-

puter that theoretically has infinite resources, yet operates nimbly, with almost

perfect efficiency based on demand.

Unfortunately the reality has been far from this. After myriad projects,

papers, products and services, we now have giant computers at our fingertips

on demand that are fast, easy to use, yet still highly inefficient in their resource
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Figure 3.1: Energy consumption depending on server utilization. The solid

line shows the usual server energy consumption, while the dashed line plots

energy-proportional behavior.

utilization and energy efficiency. The average compute node utilization in most

cloud offerings is well below 50% [46, 63, 113]. So where has this gone wrong?

One main reason behind the mismatch between our expectation and the reality

is our inability to efficiently pack multidimensional application needs to the

underlying bundled compute resources such as CPU, memory and network.

And this is because what the infrastructure offered in its evolution did not

meet what software demanded in its evolution. Over the last several years

we have seen new applications emerge with vastly growing memory demands,

while platform evolution continued to offer more CPU capacity growth than

memory, referred to as memory capacity wall [98]. Therefore, we are unable to

leverage consolidation, efficient packing and balanced utilization of resources in

the cloud as memory demand direction saturates before the other dimensions.

This observation is actually one of the underpinnings of another significant

shift that has been gaining momentum, namely disaggregated computing [98],

which aims to change the server-centric view of the infrastructure to a resource-

centric view. In this model, each resource dimension can evolve and expand

independently, and thus respond to evolving application demands. Disaggre-

gated computing has the potential to lead us to our desired computing model

that is nimble, boundless and highly resource and energy efficient. However, it

is a solution for the long term that requires fundamental changes to compute

hierarchy and operations.

In our work we explore a short-term solution that can have the benefits of

disaggregation, yet that can be applied by introducing small changes to general-

purpose computing hardware. Our solution targets the immediate problem

at hand, disaggregating memory resources and unbundling them from other

compute resources (e.g. CPU). We propose a new Zombie (Sz) ACPI state

that is similar to suspend-to-RAM (S3) state in latency and power efficiency,

but keeps the memory resources of a server active and usable by other nodes.

In other words, a server in Sz state is a Zombie as it is brain-dead (CPU-
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Figure 3.2: The memory(GiB) : cpu(GHz) ratio for all introduced

m<n>.<size> instances in AWS over the last ten years.

dead), limps along consuming minimal resources (low-energy), but still has

basic motor functions such as serving memory (memory-alive).

Even if the mainstream hardware does not currently support the Sz ACPI

state, its implementation is fairly simple. Sz only requires completely indepen-

dent power domains for CPU and memory. In order to evaluate the benefits

of the Zombie technology, in chapter 4 we present ZombieStack, the software

stack needed to leverage the Sz state. Even if we do not own an Sz compat-

ible hardware, we estimated the energy consumption of a server in Sz state

based on a model. Our experimental evaluations demonstrate that the Zombie

technology improves energy efficiency on datacenter workloads by up to 67%,

which is 86% better than state-of-the-art consolidation techniques.

In the rest of this chapter, we first present some related background and

motivation for this work. We introduce the zombie (Sz) state and its design in

section 3.4. Section 3.5 presents the related works. Then, we present the ex-

perimental evaluation in section 3.6, highlighting the significant improvements

with this approach. Last, section 3.7 offers my conclusions.

3.2 Motivation

As we have discussed in the introduction, we have seen substantial opportunity

and effort in improving resource utilization and energy efficiency with virtual-

ization and cloud. As presented in section 3.5, there have been myriad efforts

at the hardware, virtualization and the ensemble to attack this problem on

multiple fronts, improving energy efficiency and overheads of low-power states

and driving up server utilization and consolidation. The motivation behind

driving server utilization has been to improve consolidation ratios to reduce

cost, while also benefiting from the widely-known observation that servers are

more energy efficient (or energy proportional) at higher utilizations as depicted

in Figure 3.1.

While these prior techniques have improved utilization numbers significantly
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Figure 3.3: Normalized memory : cpu capacity ratio for multiple server gener-

ations.

and improved energy-efficiency of systems, it is still difficult to actually reach

server loads near 50% in even the most advanced implementations. Some works

demonstrated that one main reason for this is a growing mismatch between

platform resources and growing application demands [152, 98]. This is due to

the combination of two opposite trends. First, we observe that emerging ap-

plications such as search, in-memory data stores, and analytics have developed

a fast-growing appetite for memory resources to minimize request latencies, in

response to real-time needs. This results in a growing gap between mem-

ory and CPU demand as memory demand has been growing much more

rapidly. To validate this, we looked back at the historical instance sizes in

AWS, and the observations were quite telling. As expected, AWS has gradually

introduced newer-generation and bigger-size instances over time, as compute

demands grew. However, when we look at the growth trend among different

resources, we see that the memory configuration growth substantially outpaced

that of compute. Figure 3.2 shows the ratio of memory size to CPU size for all

AWS instances of family m<n>.<size>, where n is the generation and size the

size attribute. The figure shows the general trend that while demand on both

resources has grown substantially, the rate of growth for memory demand has

been approximately 2X of CPU demand.

The second trend we observe is that there is a growing gap between

Memory and CPU supply in the reverse direction. On the one hand,

the International Technology Roadmap for Semiconductors (ITRS) estimates

that the pin count at a socket level is likely to remain constant [16]. As a

result, the number of channels per socket is expected to be near-constant. In

addition, the rate of growth in DIMM density is starting to wane (2X every

three years versus 2X every two years), and the DIMM count per channel is

declining (e.g. two DIMMs per channel on DDR3 versus eight for DDR) [18].

On the other hand, another trend points the increased number of cores per

socket, with some studies predicting a two-fold increase every two years [40].

If the trends continue, the memory capacity per core will drop by 30% every
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Figure 3.4: Resource disaggregation: summary of existing solutions. We il-

lustrate each solution at the rack-level, considering a rack composed of three

serves. We estimate the energy consumed by the rack in each solution. We can

see that our proposition (d) results in the optimal energy proportionality while

requiring less hardware and software modification.

two years, as depicted in Figure 3.3 [152].

These two opposing trends show that applications have been evolving in

the direction where they require more memory than CPU, while servers are

evolving to provide more CPU than memory. This situation leads to poor VM

consolidation ratio [82, 98], thus energy waste as illustrated in Figure 3.4(a).

3.3 Background

Core vs. Uncore The current trend in modern processors is to reorganize

the functions critical to the core, making them physically closer to the core on-

die, thereby reducing their access latency. Many of this functions come from

the historical northbridge. Figure 3.5 presents the architecture of a modern

Intel processor. The uncore (or ’system agent’) subsystem regroups all modules

which are not directly related to data processing. Among them we can mention
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Figure 3.5: The architecture of a modern processor. All modules which are not

related to data processing belong to ’uncore’.

the memory controller, the PCIe controller, the package control unit (which

includes the power management logic and controller firmware), etc.

ACPI. The Advanced Configuration and Power Interface (ACPI) is a stan-

dard that allows an OS to perform power management on individual compo-

nents (e.g. CPU cores, network adapters, storage devices, etc.) or the system

as a whole. The global (system level) power states are named from S0 to S5.

S0 represents the most active state (i.e. the CPU is running and executes

instructions) while S5 is the most inactive one (i.e. the machine is turned

off without saving any system state). S3 is an intermediate state also called

Suspend-to-RAM (see Figure 3.6). It cuts power to most of the components

except the RAM memory (which is in self-refresh mode and stores the system

state), the network adapter (which is used to wake-on-LAN the machine) and

a part of the PCI/PCIe circuitry.

3.4 Zombie (Sz): A Sleep State for Servers

In this section we describe our new ACPI sleep state (S-state) called zombie

or Sz state (see Figure 3.7). The Sz state is similar to S3 state, with one key

difference. It keeps the memory banks of the platform active and remotely

accessible even when the server is suspended. Our main motivation in intro-

ducing this new Sz state is to address the growing gap between the memory

demand vs. supply and the CPU demand vs. supply discussed earlier. With

the Sz state, an application running on one platform can “borrow” memory

from another, otherwise suspended, platform. This feature is provided neither

by the ACPI specification nor by existing hardware or OS distributions.
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Figure 3.6: The state of the uncore subsystem in S3. The memory controller

is powered off and the memory banks are in self-refresh mode. However, some

components are powered-on and ready for the wake-on-LAN. Following a WOL

magic packet, the NIC sends a WAKE signal to the power management con-

troller which perform the system wake-up.

Figure 3.7: The state of the uncore subsystem in Sz. The memory controller,

the memory banks and the entire PCIe circuitry are now active. In this state,

the RDMA NIC is able to address the entire memory.
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Figure 3.8: Sz state operation compared to S3 and S0.

The Sz state operates similarly to the S3 state for the most part. All

components are turned off except the main memory and part of the network

is kept active to serve remote memory requests. The memory behavior of Sz

mimics that of Si0x state specifications, where the memory is kept in active

idle, unlike the low-power self refresh mode of S3. The Sz State enables a nice

compromise for a practical step towards disaggregated computing for memory.

A general-purpose compute node can be used as a full-fledged platform when

demand on resources is high, can be suspended to S3, S4 or S5 when demand

is low, and can be kept in Sz state when compute demand is low, but the

aggregate memory demand still requires the node to serve memory. Figure 3.8

shows the operation mode of Sz in comparison to the traditional S-states.

3.4.1 Sz State Design

The implementation of the new Sz state needs support from the manufacturer

since it requires modifications across the stack from hardware and firmware to

the OS, as well as to the ACPI specifications. At the hardware level, when a

server enters ACPI S states, it follows a sequence to shutdown several power

rails to the board components. As the memory and the networking logic for

remote memory access need to remain active, power lines for these compo-

nents require additional switches and control signaling for Sz enter/exit. State

management hardware needs modifications to include the new S state and addi-

tional signals for triggering the right power state change actions for Sz. System

management hardware needs additional signals from the participating chips for

reporting and idempotence of actions. These signals are used to determine the

state of the devices, when a state transition is active and to report the power

state of the server. Firmware is involved in S-state transitions during boot up
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1@+echo zom > /sys/power/state@

2@+pm suspend@

3 enter state

4suspend prepare

5suspend devices and enter

6suspend enter

7acpi suspend enter

8x86 acpi suspend lowlevel

9do suspend lowlevel

10 x86 acpi enter sleep state

11@+acpi hw legacy sleep@

12 acpi os prepare sleep

13@+tboot sleep@

Figure 3.9: The execution path to transition to the zombie state. It is similar

to the S3 execution path, except the modifications on red functions (lines 1, 10

and 12).

and during each Sz enter and exit. During boot up the firmware initialises Sz

chipset configurations. During Sz enter and exit the firmware transitions indi-

vidual devices to their corresponding S-states. The additional work required for

the actual steps is minimal for Sz as most of the board is still transitioned to S3.

Additional logic is required to transition memory and network to their active-

idle states to enable their operation while the system is in Sz state. During Sz

exit, once the chipset state is reinitialised, the firmware passes the control back

to the OS to transition to general-purpose computation in S0 state.

We prototype the OS components of Sz state with the Linux Operating

System Power Management (OSPM) framework. OSPM is the kernel compo-

nent in charge of power management and shares this responsibility with the

device-drivers. Sz state implementation in the kernel requires the modification

of both the OSPM and the Infiniband device driver (MLNX OFED in the pro-

totype). This implementation starts from the S3/S4 execution path, to which

we applied slight modifications as presented in Figure 3.9. We introduce a new

keyword (zom) for triggering the transition to Sz when setting /sys/power/s-

tate. We identify the set of devices which should be kept up during the Sz state

(e.g., Infiniband card and its associated PCIe devices). The pm suspend() call

for these devices has been modified in order to prevent them from transition-

ing to the sleep state. The real activation of the transition is done by setting

PM1A and PM1B ACPI registers. In the case of S3, SLP TYP and SLP EN are

respectively set into these registers. Once set, PM1A and PM1B are read by the

platform in order to know which state to transition to. Since this registers have

unused values, we consider new ones for triggering to zombie.
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3.5 Related works

Energy is certainly an important percentage of the total cost of ownership as

datacenters are huge energy consumers. For a 10 MW datacenter, an energy

reduction of only 1% would result in almost $3.4 million of savings over a period

of 10 years [83]. Thereby, an important research effort focuses on improving

the energy efficiency of computing infrastructure.

Component level techniques. Several studies have investigated solutions

to reduce the energy consumption of server components. Most components

generally implement some or all power states specified by the ACPI standard.

Thereby, the operating system can switch them to lower-power states when

that is possible. Concerning the CPU cores, the low-power ACPI states are

named C-states. ACPI defines only the first 4 states (C0-C3) but some CPU

manufacturers added additional states which can go up to powered-off cores

(e.g. C6 on Intel Core i7). One of the most popular techniques that is used to

reduce the energy consumption in low-power states is the Dynamic Voltage and

Frequency Scaling (DVFS) and, over time, multiple works focused on refining

and improving its efficiency. DVFS is implemented using voltage regulators

which convert the noisy input voltage into one or more voltage levels applied

to the processors. The energy conversion efficiency of on-chip regulators is

typically much lower than off-chip regulators but the latter can only support

coarse-grained power control. In this context, Yuxin Bai et al. [41] propose a

framework that relies on a hierarchy of off-chip switching regulators and on-chip

linear regulators to facilitate fine-grained power control and a high regulator

efficiency.

Qingyuan Deng et al. [65] propose a scheme which applies dynamic voltage

and frequency scaling to the memory controller and dynamic frequency scaling

to the memory channels and DRAM chips. Mike OConnor et al. [127] propose

a new DRAM architecture which, through a better chip-level parallelism and

a shorter wiring distance between the cell array and the local I/O, improves

the bandwidth of traditional DRAM by 4x and the energy efficiency by 2x.

Several works [101, 104] focus on reducing the energy consumption of DRAM

self-refresh. They propose different refresh rates for the DRAM rows accord-

ing to the leakiness of the memory cells [101] or according to the criticality

of the stored data [104]. Another technique used to decrease the servers’ en-

ergy consumption is to include low-power cores in the package. For example,

Tegra 3 [126] and ARM big.LITTLE [76] can switch to low-power efficient cores

during the low-utilization intervals. Ganesh Venkatesh et al. [144] introduce

c-cores which are specialized processors focusing on reducing energy, especially
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in advanced architectures where DVFS becomes less effective.

Modern CPUs also adopt a technique called power gating in order to shut

down unnecessary parts of the chip. This can naively be extended to shut

down portions of the clock distribution system (clock gating) that were only

used to feed the power gated resources. G. S. Ravi et al. [133] argue that the

reconfiguration (gating) mechanism should be aware of the clock tree and the

power consumption distribution over the nodes. Under these circumstances,

it can take more informed decisions that result in better energy savings. M.

Taram et al. [141] propose context-sensitive decoding, a technique that enables

customization of the micro-op translation depending on the current execution

context. Context-sensitive decoding allows to scalarize vector instructions in

order to power gate vector units during phases of minimal vector activity. WiD-

GET [149] decouples the instruction engines (IEs) from the execution units

(EUs). By varying the number of EUs, WiDGET affords a wide power range,

from the low-power Atom-like processors to the high performance Xeon-like

ones. Most of the components, taken individually, have already reached high

levels of energy efficiency. Thereby it becomes more and more difficult to ac-

complish high datacenter energy savings by exclusively relying on component

level techniques.

Server level techniques. The fundamental goal of server level techniques is

to increase the energy proportionality. The latter simply means that the energy

consumption of a server should be proportional to its utilization for the entire

utilization interval (i.e. 0%-100%). Some research effort [114, 106, 130, 143]

focus on improving the energy proportionality for latency-critical workloads.

David Meisner et al. [114] found out that, for this type of workloads, an ac-

ceptable response time can only be achieved in active states so the challenge is

to reach high energy proportionality in these conditions. PEGASUS [106] mon-

itors the end-to-end latency and dynamically adjusts servers’ power manage-

ment so that they run just fast enough to meet the objectives. TimeTrader [143]

exploits the observation that the large majority of replies are 3-4x faster than

the tail. Thereby, slowing down these fast replies can be an opportunity for

energy savings. As a result of all these efforts, the servers are becoming more

and more energy proportional.

Chao Xu et al. [153] propose a structural change to the current Linux run-

time power management (PM) framework, centralizing the PM code from de-

vice drivers to a single kernel module. Several works [138, 105, 160] introduce

more sophisticated power management frameworks. T. S. Muthukaruppan et

al. [138] propose a distributed power management framework for heteroge-

neous many-core systems based on the supply-demand market mechanism. The

45



20 40 60 80
0

10

20

30

WSS ratio (a % of the VM’s memory capacity)

m
ig

ra
ti

o
n

ti
m

e
(s

) Native

ZombieStack

Figure 3.10: Comparison of the vanilla live VM migration solution with Zom-

bieStack.

framework incorporates and coordinates various power management techniques

like DVFS, load balancing and task migrations. SleepScale [105] dynamically

selects the most appropriate combination of frequency and low power modes

necessary to satisfy the QoS requirements of a workload, based on the work-

load’s predicted behavior. They also demonstrated that naive prediction tech-

niques are sufficient for choosing the most suitable power state. Wenli Zheng

et al. [160] propose a framework that integrates the thermoelectric cooler, the

fan and DVFS to improve the overall energy efficiency of chip multiproces-

sors (CMPs). They formulate the CMP energy optimization with temperature

constraint as a nonlinear optimization problem and design a novel heuristic

algorithm to solve it with low overhead.

PowerNap [113] aims to reduce the energy consumption by switching the

servers to a low-power state during idle periods. It focuses on improving two

things: the energy consumption of this low-power state and the transition

speed. DreamWeaver [115] and Somnoloquy [34] extend PowerNap to support

certain services (such as download and instant messaging) during the low-power

state. KnightShift [151] proposes a datacenter where each traditional server

is paired with a low-power server (called memory server). During the low

utilization intervals the traditional server is turned off. Thereby, the energy

efficiency of the pair is better than the case where the traditional server would

have operated alone. The fundamental observation of the KnightShift paper is

that many servers in the datacenter are only used for their memory (their CPUs

are idle). However, C. Jiang et al. [89] shown that idle servers have the worst

energy efficiency. In this context, our new zombie state substantially improves

the energy efficiency of idle servers only powered on for their memory. Our

work can transform a commodity server in an efficient1 memory server without

any additional capital investment.

1In the KnightShift paper, the memory servers are equipped with Intel Atom processors.

Even if they are quite low-power, the processors are only powered on to enable access to

memory. In contrast, all CPUs are powered off when a server is in Sz.
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S0WOIB S0WIBOff S0WIBOn S3WOIB S3WIB S4WOIB S4WIB Sz

HP 46.16% 52.20% 53.84% 4.23% 11.03% 0.19% 6.81% 12.67%

Dell 35.35% 42.33% 44.77% 1.97% 8.71% 1.12% 8.31% 11.15%

Table 3.1: Energy consumption of our two experimental machines in different

configurations. Each value is the percentage of the machine’s maximum energy.

3.6 Evaluations: the Sz energy consumption

Given that we don’t have a HW prototype, we estimated the amount of energy

that a machine would likely consume in the Sz state. To this end, we consider

two machine types available in our lab: an HP compaq Elite 8300 (noted HP )

and a Dell precision Tower 5810 (noted Dell). Using PowerSpy2, a power

analyzer device, we measured the energy consumed by each machine in several

configurations: S0 without the Infiniband card (noted S0WOIB), S0 with the

Infiniband card not in use (noted S0WIBOff), S0 with the Infiniband card

in use (noted S0WIBOn), S3 without the Infiniband card (noted S3WOIB),

S3 with the Infiniband card (noted S3WIB), S4 without the Infiniband card

(noted S4WOIB), and S4 with the Infiniband card (noted S4WIB). Notice

that a server in a sleep state usually keeps at least one of its network card

(the Infiniband card here) in a power state which allows the Wake-on-LAN

(WoL). This corresponds to S3WIB or S4WIB. Table 3.1 presents the results.

Knowing that Sz is a kind of S3 in which the RAM and the circuitry from the

Infiniband card to the RAM are kept functioning, the energy consumed in Sz

can be estimated2 as follows:

E(Sz) = (E(S0WIBOn)− E(S0WIBOff))+

(E(S3WIB)− E(S3WOIB)) + E(S3WOIB) (3.1)

(E(S0WIBOn) − E(S0WIBOff)) is the energy induced by the Infiniband

card activity; (E(S3WIB) − E(S3WOIB)) is the energy consumption which

allows the WoL (i.e. the low-powered Infiniband card, PCIe, root complex,

etc.). Using equation 3.1, we estimated the energy consumed by our testbed

machines in Sz (see the last column of Table 3.1).

2This is an optimistic estimation since it considers the memory in self-refresh mode.

However the Sz can be optimized to get the energy consumption close to the estimation. For

example, some (or all) memory banks can be kept in self-refresh and switched to active-idle

only when the NIC performs memory operations.
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3.7 Conclusion

This work proposes a simple and practical way towards memory disaggregation

which can be introduced with only small changes to a commodity server. To

this end, we introduced a new ACPI low-power state called the zombie state

(noted ’Sz’) which is similar to Suspend-to-RAM with the key difference that

in Sz, the memory resources of a server are active and usable by other nodes.

Since we dont have a hardware prototype, we modeled the amount of energy

that a machine would likely consume in the Sz state. The results prove that

the Sz state considerably improves the energy proportionality of servers and

thereby, the energy efficiency of the entire datacenter.
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Chapter 4

ZombieStack

While chapter 3 focuses on the low-level features the Sz state, this chapter

presents a practical approach to rack-level memory disaggregation based on the

Sz state. To this end, we introduce ZombieStack, a complete cloud software

stack able to manage a virtualized datacenter enhanced with our new Zombie

technology.

4.1 Memory Disaggregation Using Sz State

In our rack-level management implementation, servers are either active in S0

state or zombie in Sz state. An active server can use its own memory or memory

from other zombie servers. While our main contribution is on utilizing Sz state

for energy-efficient memory disaggregation, our implementation also allows for

serving and using remote memory from other active servers. If an active server

requires more memory it can become a user of available remote memory. If

there is capacity slack, workload is consolidated to fewer hosts to save energy,

which then become zombies pushed into Sz. We implement two remote memory

functions as (i) RAM extension (RAM Ext for short), and (ii) Explicit swap

device (Explicit SD for short).

RAM Ext : An ideal implementation of disaggregated memory as RAM ex-

tension would require special hardware interconnect for remote memory access,

similar to NUMA [35]. Instead, we design a practical, simple solution based

on commodity server and network architecture, and addressing the complexity

in software. We implement a hypervisor-level swap mechanism, where the re-

mote memory is presented as swap to the hypervisor. It keeps the frequently

accessed pages in local memory and excess pages are simply swapped to the

remote memory. One key advantage of our approach is that we simply build

upon all the existing page promotion, relegation, hot page determination poli-

cies which are already built into the hypervisor. As a result, with a small set

of tweaks and by leveraging hypervisor paging, we can transparently present



Figure 4.1: The architecture of a disaggregated rack provided by the zombie

technology.

remote memory to VMs running on the host. As demand decreases, pages are

naturally swapped in, requiring no custom implementation for releasing remote

memory.

Explicit SD: As a natural extension of our remote memory design, a server

may also use remote memory to implement swap devices for VMs. These

memory-backed swap devices perform substantially faster than disk-based swap.

Our implementation is similar to InfiniSwap [77].

An interesting difference between these two remote memory functions is

that, the VMs and applications are completely oblivious to the former func-

tion, which is hypervisor-managed, while the latter is fully-visible to those.

Application behavior can be significantly different (particularly more aggres-

sive regarding memory management) as it knows that fewer local pages are

allocated to the VM (see the evaluation section).

4.1.1 Implementation

Fig. 4.1 presents our implementation architecture of a virtualized rack with

the zombie technology. A general-purpose server in the rack plays one of the

following five roles:

1. Global Memory Controller (global-mem-ctr) manages the memory

for the whole zombie pool. It is responsible for allocating/deallocating

remote memory to servers.
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2. Secondary Memory Controller (secondary-ctr) enforces transparent

high availability of the global controller. It monitors the main controller’s

state (periodic heart beat) and synchronously mirrors all operations.

3. User Server (server-A) uses remote memory from other servers.

4. Zombie Server (server-C ) serves remote memory to other servers, while

suspended in Sz state.

5. Active Server (server-B) serves remote memory to other servers, while

in active state.

All user servers execute a Remote Memory Manager (remote-mem-mgr)

agent, which interacts with the global-mem-ctr to request and release remote

memory. The communication framework implements RPC over RDMA [72,

139]. In our implementation, the clients poll for the RPC results as RDMA

inbound operations are cheaper than outbound operations. Remote-mem-mgr

relies on low-level RDMA primitives instead of RPC calls to directly access

remote memory and to implement RAM Ext and Explicit SD functions.

4.1.2 Initialisation

At startup, global-mem-ctr initialises various data structures for state keeping

such as the list of zombie nodes. Initially all servers are designated active, and

state is updated as they are pushed to Sz. Next global-mem-ctr starts a daemon

serving the requests from remote-mem-mgr agents. Finally, it starts the mirror-

ing and heartbeat processes for mirroring and high availability. Secondary-ctr

spawns two processes to periodically monitor global-mem-ctr heartbeats and

to establish the RPC over RDMA communication with the global-mem-ctr in

order to receive the mirrored operations. Each remote-mem-mgr establishes

an RPC over RDMA communication channel with the global-mem-ctr and ini-

tialises state to request and use remote memory.

4.1.3 Delegating and Reclaiming Server Memory

Here we first describe how servers can delegate, i.e., lend, their memory to global-

mem-ctr via remote-mem-mgr. Then we explain how they can reclaim their

memory when it is needed locally. As discussed previously, we have patched

the OS of each server to implement the Sz state transition. When a server’s

OS receives the suspend to Sz signal, it signals its remote-mem-mgr to trigger

memory delegation. Remote-mem-mgr computes free memory and organizes

it in buffers. Their size (noted BUFF SIZE) is uniform across the entire

rack. It then notifies global-mem-ctr of its intention to go to Sz state via
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the GS goto zombie(buffers) function and communicates the list of zombie

memory buffers it is lending via buffers. Global-mem-ctr uses an in-memory

database to manage the allocation state of these buffers. Each remote buffer

is characterized by an identifier, offset, size, its type (active/zombie), the host

serving the buffer, and the server currently using this buffer (nil if it is not yet

allocated to a server).

A zombie server can reclaim its memory once it becomes active again. Its

remote-mem-mgr determines the amount of memory it wishes to reclaim (at

buffer granularity) and informs the global-mem-ctr via GS reclaim(nbBuffers).

Global-mem-ctr has to choose from its database which of the buffers belonging

to this server will be returned. It first uses unallocated buffers and then chooses

buffers allocated to other servers and reclaims them using the US reclaim(buff IDs)

function. This function only informs the corresponding remote-mem-mgrs that

buff IDs are no longer available. As a result, the remote-mem-mgrs start

transferring the backup copy of the data1 to other remote locations. Last,

global-mem-ctr returns the buffer identifiers to the reclaiming server. Once

in possession of these buffers, the remote-mem-mgr of the server destroys the

communication channels to these buffers and frees them.

4.1.4 Requesting and Allocating Remote Memory

Here we describe how a user server can request and allocate available remote

memory from global-mem-ctr using the following functions:

GS alloc ext(memSize) requests a RAM Extension memory allocation of mem-

Size that the global-mem-ctr must fulfill. This allocation is guaranteed by the

cloud provider via admission control to avoid rack-level memory overcommit-

ment. Thereby, GS alloc ext(memSize) is called once at the VM creation time

and returns a list of nb buffers such that nb ×BUFF SIZE == memSize

GS alloc swap(memSize) requests a VM Swap memory allocation of memSize.

The full allocation is not guaranteed as it depends on the available memory

in the rack. This allocation is best-effort because using a fast swap device

is not included in the VM’s SLA, contrary to RAM Extension. Therefore,

this allocation is such that nb × BUFF SIZE ≤ memSize. This function is

periodically called (i.e. every 1 hour) in order to take advantage of unused

remote buffers.

Memory from zombie servers have always higher priority than memory

from active servers. Thereby, global-mem-ctr first attempts to allocate the

requested memory from available free buffers. Next, it tries to get more re-

1Each write to a remote buffer (backing either a RAM Extension or an Explicit SD) is

asynchronously mirrored to the local storage.
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mote memory from active and user servers with the AS get free mem() and

US reclaim(buff IDs) calls. For both, GS alloc ext() and GS alloc swap(),

the memSize allocation is backed by memory from multiple remote servers.

This approach minimizes the performance impact caused by a remote server

failure. By default, all inactive servers are pushed into Sz. If the global-mem-

ctr holds huge amounts of free memory (e.g. more than the total memory of a

rack server), the cloud manager may decide to transition zombie servers to S3

for further reducing the energy consumption.

4.1.5 Using Remote Memory

Here we describe how user servers use remote memory and our actual im-

plementation for the KVM hypervisor [80]. As we previously discussed, user

servers can utilize remote memory via two functions: (i) RAM Ext, and (ii)

Explicit SD. Our RAM Ext implementation is a practical approximation to

disaggregated memory, which operates transparently to VMs via our modified

hypervisor-level swapping mechanism.

The ideal case of memory disaggregation requires fundamental changes to

hypervisor memory virtualization implementation, where remote endpoints and

page addresses need to be in shadow or extended page tables, and enabling

direct access to these remote addresses. Such an implementation requires an

important hardware evolution (i.e. MMUs that can understand and access

remote addresses) [98]. In contrast, our solution relies on commodity, general-

purpose servers2, standard RDMA networking and a software-based solution

with our modified KVM hypervisor, and unmodified VMs and applications.

Our modified virtualized memory management system within the hypervi-

sor works as follows. Let VMMemSize be the amount of memory reserved

by a VM. At VM startup, the hypervisor allocates a part of the server’s lo-

cal RAM (noted LocalMemSize) to the VM. If LocalMemSize is less than

VMMemSize, the rest of the memory is provided by other remote servers as

Extension memory. From VM perspective, all the memory is local and allo-

cated in its pseudo-physical memory. From hypervisor perspective, the actual

machine memory can be distributed between local physical and remote physical

RAM.

We implement our solution in KVM’s page fault handler, extending hyper-

visor paging to use remote physical memory buffers similar to swap devices.

VMs are given pseudo-physical frames and the hypervisor manages their asso-

ciation with host-physical (machine) frames. KVM allocates physical frames

on demand, which means when a VM modifies its guest page table and traps to

2This servers are not yet for sale since they should implement our new Sz state as described

in Section 3.4.1.
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the hypervisor, a physical frame is allocated and associated with the pseudo-

physical page. In our solution, we provision both local and remote page frames

to a VM. When a page fault is caused by a VM attempt to modify a guest page

table, if a physical frame is available (free), the handler follows the traditional

code execution path. Otherwise, it frees a physical frame to satisfy the page

fault, using a page replacement policy.3 Indeed, it asks the remote-mem-mgr

for a remote page frame, transfers the content of the local frame to the re-

mote frame, registers the information allowing its eventual reclaim and clears

the present bit in the corresponding page table entry. When the page fault is

caused by the non-presence of a page, we first check whether it is a page sent

to a remote memory. If this is the case, a local page is allocated as above and

the remote page is reloaded in the local page. Our paging policy keeps hot

pages closer in local memory, and as local memory becomes scarce, demotes

cold pages to remote buffers.

Our implementation of the second function, Explicit SD, is relatively simpler

as no guarantee is offered to the VMs. Swap remote memory is obtained with

the dedicated GS alloc swap() function. This function has the same proto-

type as GS alloc ext(), but the amount of returned memory may be less than

requested as it depends on remote memory availability. Our Explicit SD imple-

mentation is based on the split-driver model [150]. When a VM is swapping-out

a page to remote memory, the backend driver first contacts the remote-mem-

mgr for allocating remote memory if available. It also asynchronously swaps to

local storage for fault tolerance. When the global-mem-ctr reclaims this mem-

ory, the pages are still available on local storage and remote-mem-mgr uses this

slower path to serve page requests.

4.2 Cloud Management with ZombieStack

In the previous sections we presented the hardware implementation of Sz state

(Section 3.4), and how we leverage Sz state for energy-efficient, practical mem-

ory disaggregation at the hypervisor level (Section 4.1). Here, we discuss the

final layer of the compute stack, the cloud operating system. We describe how

we leverage memory disaggregation with zombie servers for energy-efficient and

practical cloud computing. We build a prototype cloud management platform,

ZombieStack, based on OpenStack and our modified KVM hypervisor. We ex-

plain below the key cloud capabilities we introduce and the changes we did to

the OpenStack components in our prototype.

3We evaluated three policies (see Section 4.4.2)
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4.2.1 Remote Memory Aware VM Placement

Nova is the OpenStack component responsible of VM placement on physical

nodes. It operates in two phases. First, it filters the servers which are able to

host the VM(s) and returns a list of suitable hosts. Second, it sorts these hosts

based on certain placement criteria such as available resources and placement

strategy (VM stacking or spreading). In our ZombieStack implementation we

modify Nova to allow more relaxed filtering to account for remote memory

availability. One trade off we explore in our implementation is the minimal

amount of local memory needed for a host to be included in the list of suitable

hosts. We answer this question with empirical evaluation (see Section 4.4). For

the benchmarks we evaluated, the results show that down to 50% of the VM’s

working set size4 in local memory is a good, conservative compromise.

4.2.2 VM Consolidation with Zombie Servers

Our VM consolidation implementation is based on OpenStack Neat. The con-

solidation algorithm employed by Neat can be outlined in four main steps [23]:

Determine the underloaded hosts (all their VMs should be migrated and the

hosts should be suspended); Determine the overloaded hosts (some of their

VMs should be migrated in order to meet QoS requirements); Select VMs to

migrate from overloaded hosts; Place the selected VMs to other hosts (wake

up suspended hosts if necessary).

Vanilla Neat places a VM on a server only if the latter holds all the re-

sources booked by the VM. In the same vein as VM placement, we modify this

constraint to only check if 50% of the VM’s working set size is available on

the target server. If there is no host that satisfies this requirement, we choose

and wake up a zombie host. We modified Neat so that it prefers zombie servers

with the least amount of shared buffers. Neat calls GS get lru zombie() which

returns the hostID corresponding to the Zombie server having the minimum

number of allocated zombie buffers. By this way, we minimize the amount of

zombie memory which has to be reclaimed.

4.2.3 VM Migration Protocol

The vanilla pre-copy VM migration consists of only source and destination

hosts that hold the VM’s current and future memory state. As part of a VM’s

memory may be located remotely in our zombie implementation, the migration

protocol of ZombieStack is more complex than traditional migration. In our

implementation, the active part of VM memory is mostly local to the source

4The working set size is computed by the system presented in Section 5.6.
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server due to the replacement policy behavior. Any remote memory used for

the VM consists of cold pages.

Our migration protocol implementation first creates a listening VM on the

target host, similar to traditional migration. However, instead of iteratively

pre-copying dirty VM memory pages, we follow an approach similar to post-

copy migration [85]. We stop the VM and we copy its local active memory part

(hot pages) to the destination host. The newly created VM can be resumed as

soon as its active part is copied on the target host. An interesting side benefit

of zombie servers is that the VM’s remote memory needs no migration. Once

started on the destination host, the active part can address its remote part in

the same way as before. We just need to update the ownership pointers for

the remote memory components. Overall, our disaggregated memory imple-

mentation with zombie servers somewhat complicates the orchestration of live

migration. However, in addition to the energy savings benefits, disaggregation

also improves migration performance by both reducing the migration overhead

and by providing a natural decoupling of hot vs. cold VM pages.

4.3 Related works

A great deal of works focus on increasing the energy efficiency of cloud data-

centers. Xiaoqiao Meng et al. [117] consolidate together virtual machine (VM)

pairs with strong negative correlations (i.e. the resource demand change in

opposite directions). Thereby the peak resource demand of a VM can be

satisfied by the valleys in the other VM. Canturk Isci et al. [87] introduced

low-latency low-power states for enterprise servers and demonstrated that, in

the case of a peak resource demand, a workload can be quickly deconsolidated

with negligible performance impact. Oasis [161] adopts the concept of partial

VM migration to densely consolidate the idle VM working sets on energy effi-

cient memory servers. The accessed memory pages are pulled back on demand

from the remote memory server. Faraz Ahmad et al. [36] address two problems

caused by intensive consolidation: (1) the higher cooling power due to the hot

spots created by concentrating the datacenter load and (2) the performance

degradation due to power state switching. For the first issue, they propose a

solution that jointly optimizes the idle and cooling power while, for the second

issue, they propose to overprovision the number of active servers based on a

two-tier scheme. Heracles [107] enables the safe collocation of best-effort tasks

alongside a latency-critical service. In order to achieve the perfect performance

isolation of latency-critical jobs, Heracles leverages two hardware mechanisms

(shared cache partitioning and fine-grained power/frequency settings) and two

software mechanisms (scheduling and network traffic control).
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Yanpei Chen et al. [58] focus on increasing the server utilization for MapRe-

duce with Interactive Analysis (MIA) workloads at Facebook. They observed

that even if MIA clusters host huge data volumes, the interactive jobs operate

on a small fraction of the data. Thereby, interactive jobs can be served by a

small pool of dedicated machines, while the less time-sensitive jobs can run on

the rest of the cluster in a batch fashion. Some works [90, 158, 159] consider

several schemes of network traffic consolidation. Hao Jin et al. [90] propose

a joint optimization scheme that simultaneously optimizes VM placement and

network flow routing to maximize energy savings. Other works [158, 159] opti-

mize the power consumption of the data center network but dynamically control

the flow completion time of delay sensitive traffic flows.

Some works [120, 99] propose small-scale clouds to cooperate and share re-

sources among themselves. Both works focus on designing a system that finds

out the market equilibrium (i.e. the resource price that satisfies both sides)

and a smart cloud scheduler aware of external resources. Prateek Sharma et

al. [136] propose a resource management framework for transient servers (also

known as ’Spot VMs’) inspired from the concept of portfolio in financial mar-

ket investment. Depending on the application risk tolerance and sensitivity,

customers can create portfolios with configurable costs and availabilities, com-

posed of a mix of transient server types. Many large-scale companies such as

Yahoo [134], Google [75] and Facebook [68] use “free” cooling systems that

rely on the outside environment to decrease the rack inlet temperature. How-

ever, small and medium-scale datacenters which are responsible for 49% of U.S.

datacenter electricity consumption [62] are generally not suitable for these in-

novative technologies. Thereby, several research works [74, 47, 155, 112] focus

on reducing the cooling costs of small and medium-scale cloud datacenters.

One fairly extensive research axis focus on efficient resource management

and provisioning. Christina Delimitrou et al. [63, 64] observed that in the cloud,

users are generally not interested in the amount of allocated resources but in

the performance of their applications. Thereby, they introduce Quasar [63], a

cluster management system which uses classification techniques to determine

and adjust the amount of resources that satisfy the performance constraints of a

given workload. In a subsequent paper, they propose HCloud [64], a hybrid pro-

visioning system that chooses the best provisioning policy (fixed vs on-demand)

for each workload and determines the optimal instance size needed to satisfy

a given QoS. Liuhua Chen et al. [57] shown that the utilization curves for dif-

ferent VMs of the same job may be misaligned in time and they propose three

refinement algorithms that improve the efficiency of resource provisioning. Eli

Cortez et al. [61] monitored Microsoft Azures VM workloads and identified cer-

tain behaviors that are consistent over time. Further, they introduce Resource
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Central, a system that collects various metrics during the VM execution and

identify the potential recurrent patterns. Further, this information is exploited

online to smartly oversubscribe the servers that host some specific VM types.

Nikita Mishra et al. [119] formalize the problem of allocating available resources

to meet the current performance demand as a constrained optimization problem

and apply machine learning techniques to estimate the application-dependent

power/performance parameters. Ning Liu et al. [103] propose a hierarchical

framework that comprises a global tier for VM placement to the servers and

a local tier for power management of local servers. The global tier problem is

solved using the deep reinforcement learning (DRL) technique. Each decision

epoch coincides with the arrival time of a new VM request thereby the action

space is significantly reduced. At each local tier, a model-free RL-based power

manager relies on workload predictions to decide the suitable server power

state. Hao He et al. [84] adopt the Linear Temporal Logic (LTL) to resolve

the conflicting objectives faced by a cloud resource manager and further, the

LTL-based constraints are integrated with reinforcement learning.

Similar to ZombieStack, Juncheng Gu et al. [77] focus on efficient mem-

ory management. They developed a system called InfiniSwap whose goal is to

balance the memory demand over all datacenter servers. InfiniSwap is com-

posed of a daemon which allocates free memory and lends it over RDMA to

remote servers having high memory demand. The remote memory is exposed

as a swap device which may introduce useless overheads since the operating

systems suppose that swap storage is slow so they try to optimize and batch

accesses. Second, InfiniSwap is effective only if the global datacenter memory

demand is comparable with the CPU demand. In contrast, ZombieStack re-

lies on zombie memory which is completely decoupled from the CPU so both

resources can vary independently.

The fundamental way of decoupling resources in the cloud is introduced

by disaggregated computing which changes the server centric view of data-

centers to a resource centric view. In a disaggregated datacenter, resources

(CPU, memory, networking, etc.) are physically decoupled and can evolve in-

dependently. One of the most prominent resource disaggregation projects is

The Machine[15] from HPE. In contrast, ZombieStack introduces a simple and

short term solution until resource desegregation will become prevalent in the

cloud.

4.4 Evaluations

This paper introduces ZombieStack, a framework that exploits the Sz state at

rack level. ZombieStack includes two utilisation modes namely RAM Ext and
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Explicit SD. Since the latter has been widely investigated in previous work [108,

37, 97, 77, 51], our evaluations focus on RAM Ext while comparing it with

Explicit SD. Notice that each presented result is an average of ten executions.

We do not show the standard deviation results because we observed stable

results.

4.4.1 Experimental environment

Hardware. We used two environment types. First, we evaluated the effec-

tiveness of ZombieStack using a real rack in our lab. This rack is composed

of four HP compaq Elite 8300 machines (Intel Xeon Intel(R) Xeon (R) CPU

i7, 16GB RAM, running Linux kernel 4.4) organized as follows: two machines

for hosting the global-mem-ctr and the secondary-ctr, one machine services as

a user server while the last machine plays the role of a zombie server. Having

not yet Sz enabled boards, the zombie server is provided by an idle server in

S0. The four servers are linked altogether with Mellanox Infiniband SB7800

switch. Each machine uses a Mellanox ConnectX-3 as the network card.

The second environment type is a simulator, used for the evaluation of Zombi-

eStack in a large scale environment.

Software. We evaluated ZombieStack with both micro and macro benchmarks.

The former is an application which performs random read/write operations on

the entries of an array whose size is configured at start time. Each entry rep-

resents a 4KB memory page. The performance metric of this benchmark is

the execution time. Regarding the macro-benchmarks, we chose the following

applications: Data Caching5 from CloudSuite [71]; Elasticsearch nightly bench-

marks [9]6; and Spark SQL [38] with BigBench [73] (we used a 100GB data set

and focused on query 237). The performance metric of these benchmarks is the

number of operations performed per second. Otherwise specified, every VM

uses 8 processors.

4.4.2 RAM Ext’s page replacement policy

The efficiency of RAM Ext depends on the replacement policy which selects the

page that should be transferred to a remote memory when the local memory

becomes scarce. We compared three common replacement policies:

5Data Caching uses the Memcached data caching server, simulating the behavior of a

Twitter caching server using a Twitter dataset.
6We only present the results for the NYC taxi benchmark whose data set contains the rides

that have been performed in yellow taxis in New York in 2015. This benchmark evaluates

the performance of Elasticsearch for structured data.
7BigBench includes more than 30 queries and query 23 is one of the longest.
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• FIFO. The hypervisor records to a list (called FIFO list) the pages which

generate page faults. The page to transfer is the one which has generated

the oldest page fault.

• Clock. The hypervisor iterates through the FIFO list and chooses the

first page whose “accessed” bit is zero. The “accessed” bit of all pages is

periodically cleared.

• Mixed. The Clock policy is applied to the first x elements of the FIFO

list (e.g. x=5). If no page is obtained, the FIFO policy is applied to the

rest of the list. This policy is designed to reduce the costs associated with

“accessed” bits’ management and list iterations.

We relied on the micro-benchmark to evaluate the above policies. The bench-

mark runs inside a VM having 7GB reserved memory while its working set size

(WSS) is configured to 6GB. The VM is launched on the user server. We per-

formed several experiments while varying the proportion of its memory in that

server. Its remaining memory is provided by the zombie server using RAM Ext.

Fig. 4.2 presents the evaluation results. The collected data are: the execution

time (top curve), the number of page faults caused by the replacement policy

(middle curve), and the time taken by the replacement policy in the page fault

handler (bottom curve). We can see that Mixed is the best replacement pol-

icy. This is explained by the fact that it minimizes the page list iteration time

(which is fairly important, see the gaps in Fig. 4.2 bottom) while avoiding the

replacement of a page which may be used in a near future (by checking the

“accessed” bit, see the gaps in Fig. 4.2 middle). As a result, Mixed outper-

forms both FIFO (by up to 30%) and Clock (by up to 36%), see Fig. 4.2 top.

Thereby, the remaining experiments rely on Mixed.

4.4.3 RAM Ext limitations

We investigated to what extent a portion of a VM’s RAM can be provided by

a remote server. To this end, we relied on both micro and macro-benchmarks.

Our micro-benchmark represents a worst-case scenario. The evaluation pro-

cedure for the macro-benchmarks is as follows. Given a benchmark, we first

ran it with vanilla KVM in order to determine its maximum WSS that does

not generate swap activities. This size will serve as the VM’s reserved memory

in RAM Ext. Afterwards, we ran the benchmark with ZombieStack-RAM Ext

while varying the proportion of the VM’s reserved memory in the local RAM.

Table 4.1 presents the evaluation results in terms of performance penalty. We

can see that providing down to 50% of the VM’s reserved memory with local

RAM is a good compromise. It leads to an acceptable penalty, less than 6.5%
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Figure 4.2: Comparison of three replacement policies (FIFO, Clock, and Mixed)

for RAM Ext. (top) The micro-benchmark execution time, (middle) # page

faults and (bottom) time taken by the policy to perform a page fault. Mixed

is the best policy.

% in local mem micro-bench. Elastic search Data caching Spark SQL

20% 1400% 15.6% 9.6% 27%

40% 770% 6% 3.16% 6.5%

50% 171% 4.2% 1.35% 5.34%

60% 41% 3.01% 0.35% 2.04%

80% 1% 0.01% 0.32% 0.2%

Table 4.1: Performance penalty evaluation when a proportion of the VM’s

reserved memory is provided by a remote server. 50% is a good compromise.

(excepting our synthetic workload). We can observe that this proportion is also

appropriate for macro-benchmarks. Our results are consistent with the ones

in [72]. ZombieStack is configured with 50% local memory in order to take

into account worse case applications like our micro-benchmark, even if such

applications are rare.

4.4.4 RAM Ext compared with Explicit SD

Let us consider two VMs (noted v1 and v2) configured as follows. v1’s re-

served memory is m and v2’s reserved memory is m − x, x ≤ m. v1 runs

in ZombieStack-RAM Ext with m − x memory provided by the local server.

v2 runs in ZombieStack-Explicit SD with a mounted swap device backed by

zombie memory. The size of this swap device is x. Let us consider that v1

and v2 run the same application. One may think that the performance of that

application will be the same in both cases. To clarify the situation, we com-

pared the two utilization modes while extending the analysis to other swap

device technologies including: a local fast swap device (provided by an SSD,
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Micro benchmark

% in local mem v1-RE v2-ESD v2-LFSD v2-LSSD

20% 1400% 6k% ∞ ∞
40% 770% 3k% ∞ ∞
50% 171% 910% 302k% ∞
60% 41% 232% 3k% 429k%

80% 1% 5.4% 10.3% 21%

Elastic Search

% in local mem v1-RE v2-ESD v2-LFSD v2-LSSD

20% 15.6% 43.2% 85.12% ∞
40% 6% 38.6% 68% 307%

50% 3.4% 17.1% 45.04% 105.8%

60% 0.2% 12.3% 17.4% 55.3%

80% 0.01% 0.8% 1.6% 3%

Data caching

% in local mem v1-RE v2-ESD v2-LFSD v2-LSSD

20% 9.6% 15.7% 140.8% ∞
40% 3.16% 6.4% 41.7% ∞
50% 1.35% 3.1% 18.2% ∞
60% 0.35% 1.1% 3.04% ∞
80% 0.32% 0.35% 0.68% 13.2%

Spark SQL

% in local mem v1-RE v2-ESD v2-LFSD v2-LSSD

20% 27% 31.64% 122% ∞
40% 6.5% 18.39% 63.23% ∞
50% 5.34% 13% 35% ∞
60% 2.04% 2.9% 11.45% 185.36%

80% 0.2% 0.3% 3.2% 4.78%

Table 4.2: The performance penalty (i.e. how much longer the execution

takes?) depending on the local/remote memory ratio. RAM Ext (RE) vs Ex-

plicit SD (ESD) and other swap technologies (LFSD=Local fast swap device;

LSSD=Local slow swap device).

Samsung MZ-7PD256), and a local slow swap device (provided by a HDD,

Seagate ST12000NM0007). Table 4.2 presents the evaluation results in terms

of performance penalty. The following observations can be made. (1) v1 out-

performs v2, see Table 4.2 column 2-3. In fact, v2 generates much more swap

activities on the remote server than v1. For instance, v2 generates more than

122% traffic than v1 in the case of Elastic search. This comes from the fact

that most applications and operating systems are configured according to the

RAM size [135]. (2) Using a remote RAM as the swap space through Infini-

band is better than using a local storage, even if the latter is fast (see Table 4.2

column 3-5). In addition, fast storages require additional costs, leading to an

unacceptable performance per dollar for data center operators [123].

4.4.5 VM Migration

We compared our VM migration implementation with the vanilla live VM mi-

gration. To this end, we ran the micro-benchmark inside a VM with different
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Figure 4.3: Comparison of the vanilla live VM migration solution with Zombi-

eStack.

S0WOIB S0WIBOff S0WIBOn S3WOIB S3WIB S4WOIB S4WIB Sz

HP 46.16% 52.20% 53.84% 4.23% 11.03% 0.19% 6.81% 12.67%

Dell 35.35% 42.33% 44.77% 1.97% 8.71% 1.12% 8.31% 11.15%

Table 4.3: Energy consumption of our two experimental machines in different

configurations. Each value is the percentage of the machine’s maximum energy.

WSS. We are interested in the time taken by the migration process. Fig. 4.3

presents the evaluation results. We can see that in the vanilla implementation,

the migration time is almost not affected by the WSS. This is explained by the

fact that the number of iterations performed by the hypervisor for transferring

dirty pages is fixed (independent of the memory activity). In ZombieStack,

only the memory pages within the local memory (about 50% of the WSS - see

Section 4.2) are transferred. Thus, our implementation outperforms the native

one, especially when the WSS is small.

4.4.6 Energy gain in a large scale DC

We evaluated the energy gain that can be achieved using ZombieStack in a

DC. To this end, we relied on Google datacenter traces [13] which record the

execution of thousands of jobs monitored during 29 days. Each job is composed

of several tasks and every task runs within a container (seen as a VM is this

paper). The total number of servers involved in these traces is 12583. The

traces contain, among other information, for each task: its start time and

termination time, its booked resource capacity (CPU and memory), its actual

resource utilization level (gathered periodically). From these traces, we built

a second set in which the memory demand is twice the CPU demand as the

actual trends reveal (see Section 3.2). Relying on these two set of traces, we

simulated a DC which is equipped with the OpenStack consolidation system

(i.e. Neat [23]).

We compared ZombieStack with Oasis [161], a consolidation approach ori-

ented to energy-efficient cluster management. Oasis works as follows. After
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Figure 4.4: Energy saving: comparison with other resource management sys-

tems using both original (top) and modified (bottom) Google DC traces.

the execution of the consolidation plan, Oasis selects all underused servers (i.e.

CPU utilization level lower than a threshold - 20% in this paper). Let us note

S this set of underloaded servers. All S’s VMs which are idle (e.g. CPU uti-

lization level lower than 1%) are partially migrated [50] to other servers. A

partial VM migration consists in transferring only the working set of the VM.

The remaining memory pages are relocated to a low power memory server so

that the initial server can be suspended for energy saving. We assume that

an Oasis memory server consumes about 40% of a regular server’s total energy

consumption, as stated in the original paper [161]. We performed experiments

while considering that servers are either HP or Dell (see Section 4.4.1). Fig. 4.4

presents the evaluation results. We can observe that ZombieStack outperforms

Neat and Oasis. The best results are obtained on Dell servers with the modi-

fied traces (Fig. 4.4 bottom), where ZombieStack outperforms Neat and Oasis

respectively by about 86% and 59%.

4.5 Conclusion

This work prototypes a cloud management platform (ZombieStack) based on

OpenStack and a modified KVM hypervisor. We performed intensive experi-

ments using micro-benchmarks, macro-benchmarks and real DC traces (from

Google clusters) and compared our solution with existing ones (Neat and Oa-

sis). The evaluation results showed that our solution is viable (acceptable per-

formance degradation), leads to both high and balanced resource utilization

and high energy efficiency.
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Chapter 5

Working Set Size Estimation

Techniques in Virtualized

Environments: One Size Does

not Fit All

5.1 Introduction

Energy consumption is a primary concern for datacenter (DC) management. Its

cost represents a significant part of the total cost of ownership (about 80% [45])

and it is estimated that in 2020, US DCs will spend about $13 billion on energy

bills [62].

A majority of DCs implements the Infrastructure as a Service (IaaS) model

where customers buy (from providers) VMs with a set of reserved resources.

The VMs host general purpose applications (e.g. web services), as well as High

Performance Computing applications. In such IaaS DCs, virtualization is a

fundamental technology which allows optimizing the infrastructure by colocat-

ing several VMs on the same physical server. Such colocation can be achieved

at deployment time by starting as many VMs as possible on each physical ma-

chine, or at runtime by dynamically migrating VMs on a reduced set of physical

machines, thus implementing a consolidation strategy [140].

Ideally, consolidation should lead to highly loaded servers. Although con-

solidation may increase server utilization by about 5-10%, it is difficult to

actually observe server loads greater than 50% for even the most adapted

workloads [46, 63, 113]. As presented in section 3.2, the main reason is that

VM collocation is memory bound, as memory saturates much faster than the

CPU. This situation was accentuated over the last several years, as we have

seen emerging new applications with growing memory demands, while physical

platforms had an opposite tendency; they provide more CPU capacity than



0 50 100 150 200 250 300
0

500

1,000

1,500

Time
M

em
o
ry

(M
B

) Static provisioning On-demand provisioning

Figure 5.1: Static provisioning vs on-demand provisioning.

physical memory.

However, the existing consolidation systems [23, 70] take the CPU as a

pivot, i.e. the central element of the consolidation. The memory is considered

constant (i.e. the initially booked value) all over the VM’s lifetime. Neverthe-

less, we consider that the memory should be the consolidation pivot since it

is the limiting resource. In order to reduce the memory pressure, the consoli-

dation should consider the memory actually consumed (i.e. the VM’s working

set size) and not the booked memory (see Fig. 5.1). Thereby, we need mecha-

nisms to (1) evaluate the working set size (WSS) of VMs, (2) to anticipate their

memory evolution and (3) to dynamically adjust the VMs’ allocated memory.

Numerous research papers propose algorithms to estimate the WSS of VMs.

However, most of them are able to follow either up-trends (the increase) or

down-trends (the decrease) of WSS. The few of them which are able to follow

both trends are highly intrusive. Moreover, to the best of our knowledge, no

previous work has shown the implications of dynamically adjusting the VM’s

allocated memory according to the WSS estimation. Finally, as far as we know,

no previous consolidation algorithm considers the WSS as a pivot. In this work

we address all the above limitations.

In summary, the contributions of this work are the following:

• We define evaluation metrics that allow to characterize WSS estimation

solutions.

• We evaluate existing WSS techniques on several types of benchmarks.

Each solution was implemented in the Xen virtualization system.

• We propose Badis, a WSS monitoring and estimation system which lever-

ages several of the existing solutions in order to provide high estimation

accuracy with no codebase intrusiveness. Badis is also able to dynami-

cally adjust the VM’s allocated memory based on the WSS estimations.

• We propose a consolidation system extension which leverages Badis for

a better consolidation ratio. Both the source and the data sets used for
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our evaluation are publicly available [31], so that our experiments can be

reproduced.

The rest of this work is structured as follows: Section 5.2 covers a quick

background overview. Section 5.3 presents the general functioning of a WSS

estimation solution. Section 5.4 presents the existing WSS estimation tech-

niques that we analyze and evaluate in this article. Section 5.5 reports the

evaluation results for the main studied techniques. Section 5.6.1 exposes the

details of Badis while Section 5.6.2 presents the way we integrated Badis in

an OpenStack cloud. Section 5.6.3 evaluates our solution. After a review of

related works in Section 5.7, we present our conclusions in Section 5.8.

5.2 Background on virtualization: illustration

with Xen

5.2.1 Generalities

The main goal of virtualization is to multiplex hardware resources between

several guest operating systems also called Virtual Machines (VMs). Xen [42]

is a well-known virtualization system employed by Amazon [8] to virtualize

its DCs. Xen relies on a hypervisor which runs on the bare hardware, and

a particular VM (the dom0) which includes all OS services. The latter are

not included in the hypervisor in order to keep it as lightweight as possible.

The other (general purpose) VMs are called domUs. In the next subsections,

we provide details about memory management and I/O management in Xen,

necessary for understanding the WSS techniques we study in this paper.

5.2.2 Memory and I/O virtualization

In a fully virtualized system, the VM believes it controls the RAM. However,

the latter is actually under the control of the hypervisor which ensures its mul-

tiplexing between multiple VMs. In this respect, one of the commonly used

techniques is the following. The page frame addresses presented to the VM and

used in its page tables are fictitious addresses (called pseudo-physical). They

do not designate a page frame’s actual location in the physical RAM. The real

addresses (i.e. host-physical) are known only by the hypervisor which main-

tains for each guest page table in the VMs (mapping guest-virtual → pseudo-

physical), an equivalent called shadow page table (mapping guest-virtual →
host-physical). Each shadow page table is synchronized with its equivalent
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guest page table. The shadow page tables are the ones used by the MMU1.

The guest page tables play no role in the address translation process. How-

ever, how the hypervisor ensures this synchronization knowing that the VM is

a ”black box”? In this respect, the hypervisor runs each guest kernel at Ring

3 and sets as read-only the address ranges corresponding to guest page tables.

Thereby, any attempt (from the guest kernel) to update a guest page table or

the guest %cr3 traps to the hypervisor. Based on the trap error, the hypervisor

updates the corresponding shadow page table (in the case of a guest page table

write attempt) or switches the execution context (in the case of a guest %cr3

write attempt).

By leveraging this mechanism, a WSS estimation technique can monitor a

VM’s memory activity in a transparent way, in the hypervisor (see Section 5.3).

5.2.3 Ballooning

Memory ballooning [42, 146] is a memory management technique that allows to

dynamically reclaim memory from a VM to the hypervisor. Most of the modern

hypervisors implement this technique in order to reclaim unused memory from

VMs, thus avoiding resource waste. In such systems, every VM is equipped with

a balloon driver which can be inflated or deflated from the hypervisor/dom0.

Fig. 5.2 presents the general functioning of the balloon driver. Balloon inflation

raises memory pressure on the VM, as follows. As soon as the balloon driver

receives a higher balloon target size, it allocates a portion of memory and

pins it, thus ensuring that memory pages cannot be swapped-out by the VM’s

OS. Then, the balloon driver reports the addresses of the pinned page to the

hypervisor so that it can use them for other purposes (e.g. assigned them to

a VM which is lacking memory). In the case of a balloon deflation order, the

balloon driver reclaims the pinned pages from the hypervisor and deallocates

them. Thereby, the pages reenter under the control of the VM’s OS. In Xen,

the command xl mem-set VM id memory size can be used to adjust the balloon

target size from the dom0.

5.3 On-demand memory allocation

5.3.1 General functioning

As argued in the introduction, the memory is the limiting resource when per-

forming VM collocation. To alleviate this issue, the commonly used approach

1The shadow page table’s address is loaded into %cr3 at context switch. The CR3 register

enables the processor to translate virtual addresses into physical addresses.
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Figure 5.2: Memory ballooning principles.

consists of managing the memory in the same way as the processor, by doing

on-demand allocation. Indeed, considering a VM whose booked memory ca-

pacity is mb (representing the SLA that the provider should meet) but which

actively uses mu (mu ≤ mb), the on-demand approach would assign only mu

memory capacity to the VM (instead of mb as in a static strategy); mu is called

the WSS of the VM. This approach requires the implementation of a feedback

loop which operates as follows. The memory activity of each VM is periodi-

cally collected and services as the input of a WSS estimation algorithm. Once

the latter has estimated the WSS (noted wssest), the VM’s memory capacity

is adjusted to wssest. In short, the implementation of the on-demand memory

allocation strategy raises thee main questions:

• (Q1) How to obtain the VM’s memory activity knowing that the VM is

a ”black-box” for the cloud provider?

• (Q2) How to estimate the VM’s WSS from the collected data?

• (Q3) How to update the VM’s memory capacity during its execution?

Regarding Q3, the solution is self-evident. Indeed, it leverages the balloon

driver inside the VM (see the previous section). Furthermore, the hypervisor

provides an API to control the balloon driver’s size. Thus, by inflating or

deflating the balloon, the actual memory capacity of the VM can be updated

at runtime. The rest of the section focuses on Q1 and Q2, which are more

complex.

Answering Q1 raises two challenges. The first one relates to the implemen-

tation of the method used for retrieving the memory activity data. The method

is either active or passive. An active method modifies the execution of the VM

(e.g. deliberately inject page faults) while a passive method does not interfere

in the VM’s execution process. The active method could impact the VM’s per-

formance. For instance, a naive way for capturing all memory accesses may be

to invalidate all memory pages in the VM’s shadow page table. All subsequent

accesses would result in page faults which are trapped by the hypervisor. This
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solution would be catastrophic for the VM’s performance because of the page

faults’ overhead. The second challenge is related to the level where the method

is implemented. Three locations are possible: exclusively inside the hypervi-

sor/dom0, exclusively inside the VM, or spread across both. In the last two

locations, the method is said to be intrusive because the ”black-box” nature of

the VM is altered. In this situation, the implementation of the method requires

the end-user’s agreement. Otherwise, one could exploit only the memory ac-

tivity data available at the hypervisor/dom0 level. Concerning Q2, two main

challenges should be tackled: the accuracy of the estimation technique (a wrong

estimation will either impact the VM’s performance or lead to resource waste)

and the overhead. In the rest of the paper, the expression ”WSS estimation

technique” is used to represent a solution to both Q1 and Q2.

5.3.2 Metrics

With respect to the above presentation, the metrics we propose for characteriz-

ing a WSS estimation technique are the following: the intrusiveness (requires

the modification of the VM), the activeness (alters the VM’s execution flow),

the accuracy, the overhead on the VM (noted vm over), and the overhead

on the hypervisor/dom0 (noted hyper over). Both the intrusiveness and the

activeness are qualitative metrics while the others are quantitative. Among

the qualitative metrics, we consider the intrusiveness as the most important.

We note that the balloon driver alone is not considered an intrusiveness since it

is de facto accepted and integrated in most of the OSs. Concerning the quanti-

tative metrics, the ranking is done as follows. Metrics which are related to the

VM performance (thus the SLA) occupy higher positions since guaranteeing

the SLA is one of the most important provider’s objectives. In this respect, we

propose the following ranking:

1. vm over: it directly impacts the VM performance. It could be affected

by both the intrusiveness and the activeness.

2. accuracy: a wrong estimation leads to either performance degradation

(under-estimation) or resource waste (over-estimation).

3. hyper over: a high overhead could saturate the hypervisor/dom0, which

are shared components. This could lead, in turn, to the degradation of

VMs’ performance (e.g. the I/O intensive VMs). In this paper we mainly

focus on the CPU load induced by the technique.

The metrics presented above characterize the WSS estimation techniques.

Apart from these, we also define a metric which characterizes the WSS itself,
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namely the volatility. The latter represents the degree/speed of WSS variation

and is very important for the VM consolidation (see Section 5.6.2).

5.4 Studied techniques

This section presents the main WSS estimation techniques proposed by re-

searchers up to the writing time of this paper. We have thoroughly studied

them both qualitatively and quantitatively. This section focuses on the former

aspect while Section 5.5 is dedicated to the latter aspect. The presentation

of each technique is organized as follows. First, we present the technique de-

scription, while highlighting how Q1 and Q2 are answered. Second, we explain

(whenever necessary) the way in which we implement the technique in Xen

(our illustrative virtualization system). Last but not least, we present both the

strengths and the weaknesses of the technique, knowing that they are validated

in Section 5.5.

5.4.1 Self-ballooning

Description. Self-ballooning [110] entirely relies on the VM, especially the

native features of its OS. It considers that the WSS of the VM is given by the

Committed AS [10] kernel statistic (cat /proc/meminfo), computed as follows.

The OS monitors all memory allocation calls (e.g. malloc) - Q1 - and sums

up the virtual memory committed to all processes. The OS decrements the

Committed AS each time the allocated pages are freed. For illustration, let us

consider a process which runs the C program presented in Fig. 5.3. After the

execution of line 2, the value of Committed AS is incremented by 2GB, even

if only one octet is actively used. In summary, the Committed AS statistic

corresponds to the total number of anonymous memory pages allocated by all

processes, but not necessary backed by physical pages.

Implementation. No effort has been required to put in place this technique

since it is the default technique already implemented in Xen. The balloon driver

(which runs inside the VM) periodically adjusts the allocation size according

to the value of the Committed AS.

Comments. As mentioned above, this technique completely depends on the

VM. In addition, the implementation of the feedback loop is shift from the hy-

pervisor/dom0 to the VM, making this technique too intrusive. The heuristic

used for estimating the WSS is not accurate for two reasons. First, Com-

mitted AS does not take into account the page cache, and thus may cause

substantial performance degradation for disk I/O intensive applications [59].

Second, this technique could lead to resource waste since the committed mem-

71



1void main(void){
2 char∗ tab=(char∗)malloc(2∗1024∗1024∗1024);

3 do{
4 tab[1]=getchar();

5 }while(tab[1]!=’a’) ;

6 free (tab);

7}

Figure 5.3: The Committed AS value increases with the amount of malloc-ed

memory even if it is not backed by physical memory.

ory is most of the time greater than the actively used memory. These two

statements are also validated by the evaluation results. The only advantage of

the Committed AS technique is its simplicity.

5.4.2 Zballoond

Description. Zballoond [59] relies on the following observation: when a VM’s

memory size is larger than or equal to its WSS, the number of swap-in and

refault (occurs when a previously evicted page is later accessed) events is close

to zero. The basic idea behind Zballoond consists in gradually decreasing the

VM’s memory size until these counters start to become non-zero (the answer

of Q1). Concerning Q2, the VM’s WSS is the lowest memory size which leads

the VM to zero swap-in and refault events.

Implementation. Zballoond is implemented inside the VM as a kernel module

which loops on the following steps. (1) The VM’s memory size is initialised

to its Committed AS value. (2) Every epoch (e.g. 1 second), the memory is

decreased by a percentage of the Committed AS (e.g. 5%). (3) Whenever the

Committed AS changes, Zballoond considers that the VM’s WSS has changed

significantly. In this case, the algorithm goes to step (1). Our implementation

of Zballoond is about 360 LOCs.

Comments. Like the previous technique, Zballoond is entirely implemented in

the VM’s OS. Furthermore, Zballoond is very active in the sense that it performs

memory pressure on the VM. The overhead introduced by this technique comes

from the fact that it actively forces the VM’s OS to invoke its page reclamation

mechanism (every epoch). Therefore, the overhead depends on both the epoch

length and the pressure put on the VM (how much memory is reclaimed).
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5.4.3 The VMware technique

Description. The VMware technique [146] is an improvement of the naive

method presented in Section 5.3. Instead of invalidating all memory pages, it

relies on a sampling approach which works as follows. Let us note mcur the

current VM’s memory size. To answer Q1, the hypervisor periodically and ran-

domly selects n pages from the VM’s memory (e.g. n = 100) and invalidates

them. By so doing, the next access to these pages trap in the hypervisor. The

latter counts the number of pages (noted f) among the selected ones which

were subject to a non present fault during the previous time interval. The

WSS of the VM is f
n
×mcur, thus answering Q2.

Implementation. Two implementations of this technique are possible de-

pending on the way the memory pages are invalidated. A memory page can be

invalidated by clearing either the present bit or the accessed bit. In the first

implementation the hypervisor counts the number of page faults generated by

the selected pages while in the second, it counts the number of pages being

accessed (the accessed bit is set) during the previous time frame. Notice that

the access bit is automatically set by the hardware each time a page is accessed;

no trap is triggered in the hypervisor. The implementation of the two methods

requires around 160 LOCs.

Comments. This technique is completely non intrusive. The feedback loop is

entirely implemented in the hypervisor/dom0. However, the technique has two

main drawbacks. First, the method used for answering Q1 modifies the exe-

cution flow of the VM, which could lead to different performance degradation

levels depending on the adopted implementation. The first implementation

leads to higher performance degradation comparing to the second implementa-

tion. This is explained by the cost of resolving a non-present page fault which

is higher than the cost of setting the accessed bit (performed in the hardware).

However, the accuracy of the second implementation (the number of accessed

pages) could be biased if the hypervisor/dom0 runs another service which clears

the accessed bit. Such a situation could occur in a KVM environment because

the hypervisor (i.e. Linux) runs services like kswapd (the swap daemon) which

monitors and clears the accessed bit. As a second drawback, this techniques

is unable to estimate WSSs greater than the current allocated memory. In the

best case, the technique will detect that all monitored pages are accessed, thus

estimating the WSS as the current size of the VM.

5.4.4 Geiger

Description. Geiger [91] monitors the evictions and subsequent reloads from

the guest OS buffer cache to the swap device (the answer of Q1). To deal with
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Q2, Geiger relies on a technique called the ghost buffer [128]. The latter rep-

resents an imaginary memory buffer which extends the VM’s physical memory

(noted mcur). The size of this buffer (noted mghost) represents the amount of

extra memory which would prevent the VM from swapping-out. Knowing the

ghost buffer size, one can compute the VM’s WSS using the following formula:

WSS = mcur + mghost if mghost > 0.

Implementation. The first challenge was to isolate the swap traffic from the

rest of the disk IO requests. In this respect, we forced the VM to use a dif-

ferent disk backend driver for the swap device (e.g. xen-blkback). This driver

is patched to implement the Geiger monitoring technique as follows. When a

page is evicted from the VM’s memory, a reference to that page is added to a

tail queue in the disk backend driver, located inside the dom0. Later, when a

page is read from the swap device, Geiger removes its reference from the tail

queue and computes the distance D to the head of the queue. D represents the

number of extra memory pages needed by the guest OS to prevent the swap-

ping out of that page (i.e. the ghost buffer size at that timestamp). However,

to update the VM’s memory size after each reloaded page from swap would

be too frequent. Thereby, we leverage D values to compute the miss ratio

curve [128]. This curve is an array indexed by D which represents how many

times we saw the D distance in the last interval. For example, if the computed

D = 50, we increment array[50] by one. When the timer expires, we iterate

through the array and we sum up its values until we got X% of its total size. In

our implementation, we found out that X = 95 yields good results. The index

corresponding to the position where the iterator stops represents the number of

extra memory pages needed by the VM to preserve 95% of swapped out pages.

Comments. Like the VMware technique, Geiger is also completely transpar-

ent from the VM’s point of view. Thereby it does not require the VM user’s

permission. As stated before, the VM has to be started with a different disk

backend driver for the swap device. However, this is not an issue since the

VMs are created by the cloud provider who is also the one deciding the disk

backend drivers to be used. Additionally, Geiger has an important drawback

which derives from its non-intrusiveness. It is able to estimate the WSS only

when the size of the ghost buffer is greater than zero (the VM is in a swapping

state). Geiger is inefficient if the VM’s WSS is smaller than the current mem-

ory allocation.

5.4.5 Hypervisor Exclusive Cache

Description. The Exclusive Cache technique [109] is fairly similar with Geiger

in the way that both of them rely on the ghost buffer to estimate the WSS.
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In the Exclusive Cache, each VM has a small amount of memory called direct

memory, and the rest of the memory is managed by the hypervisor as an ex-

clusive cache. Once the direct memory is full, the VM will send pages to the

hypervisor memory (instead of sending to the swap). Thereby, in the Exclusive

Cache technique, the ghost buffer is materialized by a memory buffer managed

in the hypervisor.

Implementation. In the same way as Geiger, the Exclusive cache technique

is also implemented as an extension to the XEN disk backend driver. In the

vanilla driver, the backend receives the pages to be swapped through a shared

memory between the VM and dom0. Subsequently, the backend creates a block

IO request that is passed further to the block layer. In our implementation,

instead of creating the block IO request, we store the VM’s page content in

a dom0 memory buffer. The latter represents the materialization of the ghost

buffer.

Comments. In comparison with Geiger, this technique is more active since

it may force the VM in eviction state. However, the performance impact of

the Exclusive cache technique is lower since the block layer is bypassed and the

evicted pages are stored in memory.

5.4.6 Dynamic MPA Ballooning

Description. The Dynamic Memory Pressure Aware (MPA) Ballooning [94]

studies the memory management from the perspective of the entire host server.

It introduces an additional set of hypercalls through which all VMs report

the number of their anonymous pages, file pages and inactive pages to the

hypervisor (Q1). Based on this information, the technique defines three possible

memory pressure states: low (the sum of anonymous and file pages for all

VMs is less than the host’s total memory pages), mild (the sum of anonymous

and file pages is greater than the host’s total memory pages) and heavy (the

sum of anonymous pages is greater than the host’s total memory pages); this

answers Q2. Depending on the current memory pressure state, the host server

adopts a different memory policy. In the case of low memory pressure, this

technique divides the hypervisor’s free memory to nbVMs + 2 slices. Each slice

(called cushion) is assigned to a VM as a memory reserve. The two remaining

cushions stay in the control of the hypervisor for a sudden memory demand.

The cushion may be seen as the exclusive cache in the Hypervisor Exclusive

Cache technique. In the mild memory pressure state, the hypervisor reclaims

the inactive pages from all VMs and rebalance them in nbVMs + 1 cushions.

In heavy memory pressure, most of the page cache pages are evicted so the

technique rebalance exclusively the anonymous pages.

Comments. This technique has high intrusiveness since it requires additional
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Figure 5.4: The set of synthetic workloads.

hypercalls in the guest OS. Thereby, it may be effective in the case of a private

data center where the cloud manager has a high degree of control over the guest

OS. Additionally, the new hypercalls export precise and important information

about the VM’s memory layout; this may increase the risk of attacks on VMs.

5.5 Evaluation of the studied techniques

This section presents the evaluation results for most of the techniques described

above. We do not evaluate the Dynamic MPA Ballooning since is not a WSS es-

timation technique. The memory utilization values are directly communicated

by the VM to the hypervisor.

5.5.1 Experimental environment

The experiments were carried out on a 2-socket DELL server. Each socket

is composed of 12 Intel Xeon E5-2420 processing units (2.20 GHz), linked to

a 8GB NUMA memory node (the machine has a total of 16GB RAM). The

virtualization system on the server is Xen 4.2. Both the dom0 and the VMs run

Ubuntu server 12.04. One socket of the server is dedicated to dom0 in order

to avoid interference with other VMs. Unless otherwise specified each VM is

configured with two vCPUs (pined to two processing units) and 2GB memory

(the maximum memory it can use).

Concerning the applications which run inside VMs, we rely on both micro

and macro benchmarks. The former is an application which performs read and

write operations on the entries of an array whose size could be dynamically ad-

justed in order to mimic a variable workload. Each array entry points to a data

structure whose size is equivalent to a memory page. The micro-benchmark

allows to compare experimental values with the exact theoretical values, nec-

essary for evaluating the accuracy metric. To this end, we build five synthetic

workloads which cover the common memory behaviors of a VM during its life-

time. Fig. 5.4 presents these workloads, noted Wi, 1 ≤ i ≤ 5. Each workload is

implemented in two ways. In the first implementation (noted Wi,s), the array
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size is malloced once, at VM start time, to its maximum possible value. In

the second implementation (noted Wi,d), the array’s allocated memory size is

adjusted to each step value.

In addition, we also rely on three macro-benchmarks, namely DaCapo [52],

CloudSuite [71], and LinkBench [39]. DaCapo is a well known open source java

benchmark suite that is widely used by memory management and computer ar-

chitecture communities [157]. We present the results for 5 DaCapo applications

which are the most memory intensive:

• Avrora is a parallel discrete event simulator that performs cycle accurate

simulation of a sensor network.

• Batik produces a number of Scalable Vector Graphics (SVG) images based

on the unit tests in Apache Batik.

• Eclipse executes some of the (non-gui) jdt performance tests for the

Eclipse IDE.

• H2 executes a JDBC-like in-memory benchmark, executing a number of

transactions against a model of a banking application.

• Jython inteprets the PyBench python benchmark

CloudSuite is a benchmark suite which covers a broad range of application cat-

egories commonly found in today’s datacenters. In our experiments, we rely

on Data Analytics, a map-reduce application using Mahout (a set of machine

learning libraries). LinkBench is a database benchmark developed to evalu-

ate database performance for workloads similar to those at Facebook. The

performance metric of all these applications is the complete execution time.

By choosing these benchmarks, we wanted to cover the most important and

popular applications executed in the cloud nowadays.

5.5.2 Evaluation with synthetic workloads

As stated above, these evaluations focus on the accuracy metric. Fig. 5.5

and Fig. 5.6 present the results for each workload and each WSS estimation

technique. To facilitate the interpretation of the results, each curve shows

both the original workload (noted W o
i ) and the actual estimated WSSs (noted

W e
ij), 1 ≤ i ≤ 5 (represents the workload type) and j=s,d (represents the

implementation type - static or dynamic).

Xen self-ballooning. Fig. 5.5 line 1-2. The accuracy of this technique is

very low for all Wi,s (see line 1) while it is almost perfect for all Wi,d (see
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line 2). This is because the technique relies on the value of Committed AS as

the WSS. Thus, it is able to follow all Committed AS changes. The accuracy

of this technique depends on the implementation (i.e. the memory allocation

approach) of applications which run inside the VM.

Zballoond. Fig. 5.5 line 3-4. This technique behaves like self-ballooning on

all Wi,d (see line 4) because it tracks all Committed AS changes. Unlike self-

ballooning, Zballoond is also quite efficient on all Wi,s (see line 3). This is

because Zballoond continuously adjusts the VM’s memory size so that swap-in

or refault events occur, thus avoiding resource waste. However, if the WSS re-

duction is faster than the memory reclaim percentage (i.e. 5%), the estimation

diverges from the real WSS (see line 3, columns 2 and 4). Even if a higher

memory reclaim percentage may solve the problem, this means more memory

pressure on the VM and thereby, it would increase the vm over.

From now on (Fig. 5.6), we only discuss Wi,s results because we observed no

difference with Wi,d regardless the WSS technique. In fact, only Committed AS-

based techniques are sensitive to the way by which the workload is implemented.

VMware. Fig. 5.6 line 1. Without access to the implementation details of

this technique, we considered two versions according to the way the sampled

pages are invalidated: the present bit based version (noted VMwarepresent) and

the access bit based version (noted VMwareaccess). The evaluation results of

these versions show that they have almost the same accuracy. They are only

different from the perspective of other metrics (see the next section). From

Fig. 5.6 line 1, we can see that the VMware technique has a main limitation.

Although it is able to detect WSS when the VM is wasting memory, it is

not able to detect shortage situations. This happens because the percentage

of memory pages (among the sampled ones) which is used for estimating the

WSS is upper bounded by 100%.

Geiger. Fig. 5.6 line 2. Geiger is the opposite of the VMware technique; it is

only able to detect shortage situations. This is because it monitors the swap-in

and refault events, which only occur when the VM is lacking memory. Another

advantage of this technique is its reactivity; it quickly detects WSS changes.

Hypervisor exclusive cache. Fig. 5.6 line 3. This technique behaves like

Geiger in the perspective of the accuracy metric. They are different in terms

of the vm over metric presented in the next section.
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Figure 5.5: Evaluation results of self-ballooning and Zballoond with synthetic

workloads. The original workload is noted W o
i while the actual estimated

WSSs are noted W e
ij. ”j” is s (the static implementation) or d (the dynamic

implementation).

Self-ballooning Zballoond VMwarepresent

Benchmark and app. vm over hyp over vm over hyp over vm over hyp over

avrora 1 1 1.19 1 2.77 1.06

batik 1 1 1.09 1 15.44 2.0

Dacapo eclipse 1 1 3.67 1 18.79 1.01

h2 1 1 2 1 24.12 2.05

jython 1 1 1.58 1 21.42 1.16

Cloud suite Data Anal. 1 1 1.4 1 45.05 2.06

LinkBench MySQL 1 1 2.92 1 20.17 1

VMwareaccess Geiger Exclusive Cache

Benchmark and app. vm over hyp over vm over hyp over vm over hyp over

avrora 2.14 1.1 1.22 1.2 1 5.06

fop 13.06 2.2 1.41 1.32 1.5 5.6

Dacapo h2 15.63 1 1 1.02 1 5.0

jython 20.51 2 1.12 1.5 1.7 4.9

luindex 18.2 1.5 1.04 1.45 1.08 5.52

Cloud suite Data Anal. 40.22 1.06 1.15 1.22 2.03 6.04

LinkBench MySQL 19.22 2 1.76 1.09 1.80 5.2

Table 5.1: Evaluation results of each technique with macro-benchmarks.

79



0 50 100150
0

200

400

600
V
M

w
a
r
eo ∗

M
em

o
ry

(M
B

)

W o
1

W e
1

0 100200300
0

200

400

600

W o
2

W e
2

0 200 400
0

200

400

600

W o
3

W e
3

0 50 100 150
0

200

400

600

W o
4

W e
4

0 500
0

200

400

600

W o
5

W e
5

0 50 100150
0

200

400

G
ei
g
er

M
em

o
ry

(M
B

)

W o
1

W e
1

0 100200300
0

200

400

600

W o
2

W e
2

0 100200300
0

200

400

600

W o
3

W e
3

0 50 100 150
0

200

400

600

W o
4

W e
4

0 500
0

200

400

600

W o
5

W e
5

0 50 100150
0

200

400

E
x
cl
.
C
a
ch

e

M
em

o
ry

(M
B

)

W o
1

W e
1

0 100200300
0

200

400

600

W o
2

W e
2

0 100200300
0

200

400

600

W o
3

W e
3

0 50 100 150
0

200

400

600

W o
4

W e
4

0 500
0

200

400

600

W o
5

W e
5

Figure 5.6: Evaluation results of VMware3, Geiger, and Exclusive cache with

synthetic workloads.

5.5.3 Evaluation with macro-benchmarks

Table 5.1 presents the evaluation results of each technique with macro-benchmarks.

We only focus on the vm over and the hyper over metrics. The vm over value

represents the normalized runtime performance of each benchmark while the

hyper over represents the normalized CPU utilization by the hypervisor. For

example, vm over = 2 means that the benchmark execution time is twice

longer. The interpretation of Table 5.1 is as follows.

Self-ballooning. It incurs no overhead neither on the hypervisor/dom0 nor

on the benchmark.

Zballoond. Like self-ballooning, it incurs no overhead on the hypervisor/-

dom0. However, the VMs’ performance is impacted (between 1.09x and 3.67x).

VMware. We can see that the two versions we implemented (VMwarepresent
and VMwareaccess) incur a relatively low overhead on the hypervisor/dom0.

However, the two versions severely impact the benchmark performance (up to

45x degradation in the case of the Data Analytics applications). As presented

in the previous section, this is due to the fact that the VMware technique is

3The accuracy of the VMware method is orthogonal to the implementation approach

thereby, it is represented only once.
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Self-b. Zballoond VMware Geiger Excl. Cache

intrusive yes yes no no no

active no yes yes no yes

addressed all all Smore Sless Sless

situations

Self-b. Zballoond VMware Geiger Excl. Cache

accuracy depends high high in Smore high in Sless high in Sless

on the app. zero in Sless zero in Smore zero in Smore

vm over nil almost nil in Smore almost almost

nil high in Sless nil nil

hyper over nil nil almost almost not negligible

nil nil

Table 5.2: Study synthesis of all WSS estimation techniques according to both

qualitative (left) and quantitative (right) metrics.

not able to detect memory lacking situations. VMwarepresent leads to more

impact on VMs than VMwareaccess (about 3x).

Geiger. Its overhead on either the hypervisor/dom0 or the VM is negligi-

ble (less than 2x). Even if the technique does not entirely address the issue of

WSS estimation, the VM performance is not strongly impacted since Geiger

never leads the VM to a lacking situation like the VMware technique.

Exclusive cache. Its overhead on the hypervisor/dom0 is not negligible

(about 5x). However, its impact on the VM performance is almost nil (swapped-

out pages are store in the main memory).

5.5.4 Synthesis

Table 5.2 summarizes the characteristics of each technique according to both

qualitative and quantitative criteria presented in Section 5.3.2. Besides these

criteria, the evaluation results reveal that not all solutions address the issue of

WSS estimation in its entirety. Indeed, a WSS estimation technique must be

able to work in the following two situations:

• (Smore) the VM is wasting memory,

• (Sless) the VM is lacking memory.

The VMware technique [146] is only appropriate in (Smore) while Geiger and

Hypervisor exclusive cache are effective in (Sless). Only Zballoond and self-

ballooning cover both (Smore) and (Sless). Our study also shows that each

solution comes with its strengths and weaknesses. The next section presents

our solution.
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Figure 5.7: (top) The architecture of Badis. (bottom) The finite-state machine

used to track a VM’s WSS in Badis.

5.6 Badis

5.6.1 Presentation

The previous section shows that the WSS estimation problem is addressed by

a wide range of solutions. However, to the best of our knowledge, none of them

are consistently adopted in the mainstream cloud. We assert that one reason

which leads the cloud customers to the denial of such solutions is their intru-

siveness (both from the codebase and from the performance perspective). This

is confirmed by our cloud partner, Eolas [11]. We claim that a solution easily

adopted in the mainstream cloud should provide (1) no codebase intrusiveness

and (2) low performance impact. In order to reduce the performance impact

the solution should provide high accuracy and thereby, address both (Smore)

and (Sless).

This section presents Badis, a system which smartly combines existing tech-

niques in such a way that both (Smore) and (Sless) are covered with no codebase

intrusiveness. Indeed, we found that even if the VMware and Geiger solutions

have a fairly high performance impact they have no intrusiveness in the VM’s

codebase. The second observation is that these solutions are complementary

(VMware addresses Smore while Geiger addresses Sless). The Hypervisor ex-

clusive cache is also a solution that only addresses (Sless) but it has higher

hyper over. Thereby, a system which is able to combine VMware and Geiger

satisfies all our requirements.

Fig. 5.7 top presents the architecture of our system. The VMware technique
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is implemented at the hypervisor level while Geiger as well as the feedback

loop decision module are located inside the dom0. Concerning the VMware

technique, we rely on the accessed bit instead of the present bit for memory

page invalidation. The former introduces less overhead on the VM than the

latter. The decision module is implemented as a kernel module inside the dom0,

thus keeping the hypervisor as lightweight as possible. The communication

between Geiger and the decision module is straightforward since they both run

inside the dom0. Concerning the VMware technique, it communicates with the

decision module via a shared memory established between the dom0 and the

hypervisor. To this end, we extend the native Xen share info data structure,

which implements the shared memory used by the hypervisor to provide the

VM with hardware information necessary at VM boot time (e.g. the memory

size). Having described the mechanisms which allow the global functioning of

our system, let us now present how the two WSS estimation techniques are

leveraged.

For each VM, the system implements a 3-state finite state machine (FSM),

as shown in Fig. 5.7 bottom. Once setup, the VM enters the V state in which

the WSS is estimated using the VMware technique (Geiger is disabled). In fact,

it is more likely that the memory allocated to the VM at boot time (booked

by its owner) is larger than its WSS. While in the V state, if the estimated

WSS moves closer to the VM’s allocated memory, the FSM transitions to the

V G state in which Geiger is enabled. While in the V G state, the WSS of the

VM is given by the VMware technique if Geiger does not measure any swap

activity. Otherwise, the WSS is given by Geiger. The FSM transitions from

V G to the G state (in which the VMware technique is disabled) when Geiger

reports swap activities during two consecutive rounds. Finally, the transition

from G to V is triggered if Geiger does not observe any swap activity during

two consecutive rounds. One may doubt the need of V G state. However, we

consider it necessary because of a more subtle VMware limitation. As presented

before, VMware chooses a set of sample pages and based on the number of pages

accessed during an observation interval, it computes the WSS as a percentage

of the total memory. For example, if VMware chooses 100 sample pages and 60

of them are accessed, it concludes that the WSS size is 60% of the total VM’s

memory. However, in most of the cases this is wrong and not only because

of the estimation error. The VMware technique considers all pages equal and

swappable. Nevertheless, some of the pages are pinned down by the OS. If they

are not accessed during a VMware observation interval, they are considered out

of the working set. When the memory is adjusted to the WSS the OS cannot

swap out this pinned pages and thereby, it has to chose from the active pages.

This issue is an important source of performance degradation.
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Further we will present how Badis cope with this problem. When in V G,

the VM is in a swapping state which means that all of its allocated memory is

necessary. In this state we still continue to read estimations from the VMware

technique which theoretically should be 100% (i.e. all pages are accessed during

a time frame). However, the estimations are generally less than 100% (e.g.

80%) because of the pinned pages which are inactive. The difference to 100%

(e.g. 20%) should also be included in the working set because, even if these

pages are inactive, they cannot be swapped-out. This correctional value is

stored and leveraged later, in the V state, for a conclusive estimation. The

next section presents the way our estimation system is leveraged in a virtualized

cloud.

5.6.2 Badis in a virtualized cloud

In the last section we presented the advantages of Badis over the state-of-the-

art. However, one may ask which are the benefits of WSS estimation in the

cloud? Clearly, there is no benefit in shrinking a VM’s memory unless there is

some other VM ready to make use of that. Thereby, the WSS estimation should

be integrated in a higher level system that has a wide image on the datacenter’s

compute resources. Such a system is the cloud manager (e.g. OpenStack [22])

which is the one controlling the VM lifecycle and taking consolidation decisions.

Generally, the factor that limits the server consolidation is memory, for two

main reasons. The first one is the the memory capacity wall presented in Sec-

tion 3.2. Second, in most of the virtualization systems, the booked memory

(mb) is entirely allocated when the VM is booted. This quantity should meet

the highest possible memory demands the VM will have during its lifetime.

However, most of the time, the memory demands are lower than mb which

implies some degree of memory waste (see Fig. 5.8). The WSS estimation

could help improving the memory efficiency and thereby, increase

the consolidation ratio. However, in some circumstances, the server consol-

idation based on the VMs’ current WSS estimation may do more harm than

good. If a recently consolidated VM requests more memory than available on

the hosting server, it should be migrated back on a server which can provide

enough memory. This excessive VM dynamics may increase the datacenter’s en-

ergy consumption [100] and impact the hosted applications’ performance [145].

Thereby, the research question is: how to leverage the WSS estimation tech-

niques not only for a better but also for a stable consolidation? Further we will

present our solution to this problem.

Our solution is implemented as an extension to a popular consolidation

system, namely OpenStack Neat [23]. The latter takes consolidation decisions

when a server is (1) underloaded or (2) overloaded. In the first case it relocates
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Figure 5.8: ”Resource utilization over 30 days for a large production cluster at

Twitter managed with Mesos. (a) and (b): utilization vs reservation for the

aggregate CPU and memory capacity of the cluster; (c) CDF of CPU utilization

for individual servers for each week in the 30 day period; (d) ratio of reserved

vs used CPU resources for each of the thousands of workloads that ran on the

cluster during this period.” [63]
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Self-ballooning Zballoond Badis

Benchmark and app. vm over vm over vm over hyper over

avrora 1 1.19 1.26 1.8

batik 1 1.09 1.57 1.05

Dacapo eclipse 1 3.67 1 1.68

h2 1 2 1.16 1.3

jython 1 1.58 1.05 1.15

Cloud suite Data Analytics 1.29 1.4 1.16 1.2

LinkBench MySQL 1.11 2.92 1.09 1

Table 5.3: Evaluation of our solution with macro-benchmarks, and comparison

with two existing solutions.

all VMs in order to free up the server and switch it to a lower energy state.

In the latter case it migrates one VM, generally the one with the smallest

allocated memory, to reduce the migration time. We mention that Neat places

VMs based on the booked memory and not the WSS estimation. In order to

decide when a server is underloaded or overloaded, Neat has a data collection

module that fetches the CPU utilization of all VMs and stores the data in

both, the local datastores on each physical server and a global datastore for

the entire datacenter. However, since Neat does not overcommit memory, it

does not collect any memory utilization data. The underload and overload

detection algorithms only take into account the CPU. Further we will present

how Badis adjusts a VM’s allocated memory based on its WSS.

First, Badis continuously computes the moving average of the last n WSS

estimation samples (e.g. n = 5). We monitor the moving average of each

WSS using time slices of size s (e.g. s = 1 hour). The allocated memory

of VM id vm is adjusted to the maximum value of the moving average in the

last time slice, noted WSSmax avg
id vm . The latter value is also transmitted to the

data collection module (see Fig. 5.9). We have modified the Neat’s underload

and overload detection algorithms to also take into account the memory load

and pack the VMs based on WSSmax avg
id vm . Since WSSmax avg

id vm ≤ mb, the VM

packing is tighter. If the allocated resources of all VMs on a server overpasses

the underload or the overload threshold, Neat will trigger a new consolidation

round. However, the volatility of the memory load is generally lower than the

CPU. In our experiments only 3% of the consolidation rounds were triggered

because of the memory load (see Section 5.6.3).

5.6.3 Evaluations

The experimental environment is the same as presented in Section 5.5. We

evaluated our solution with both micro and macro benchmarks.

Micro-benchmark based evaluations. We first validated the effective-
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Figure 5.9: The integration of Badis in OpenStack. Badis estimates the WSS

and sets the id vm’s allocated memory to WSSmax avg
id vm . It also transmits

WSSmax avg
id vm values to the local Neat. The latter collects these values along

with the CPU loads and sends them in batches to the global Neat. The local

Neat may also send consolidation requests to the global Neat in the case of

CPU/RAM overload/underload. These consolidation requests are decomposed

into individual VM migrations which are executed by OpenStack Nova.
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Figure 5.10: Badis and Zballoond evaluated with a synthetic workload.

ness of our solution using a synthetic workload, see the dashed blue curve

in Fig. 5.10. This workload includes situations a WSS estimation technique

should cope with. One can observe that the accuracy of our solution is compa-

rable with Zballoond but without any VM codebase intrusiveness. In the last

part of Fig. 5.10 we can observe a case where our solution even outperforms

Zballoond: the WSS drops quickly and the inactive pages are still allocated.

In this case Badis is able to quickly track the new WSS while Zballoond slowly

decreases the WSS leading to a lot of resource waste.

Macro-benchmark based evaluations. We also evaluated our solution with

macro-benchmarks, see Table 5.3. The latter focuses on the hyper over and

the vm over metrics since the accuracy metric has been evaluated above. We

compare our solution with the only solutions which address the issue of WSS

estimation in its entirety, namely self-ballooning and Zballoond. We can see
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that our solution leads to a negligible overhead on both the VM and the hy-

pervisor/dom0 (less than 2x).

Simulations on traces from a Google datacenter. In the last sections we

have demonstrated the capability of our solution to follow the WS variation

with high precision. This section will show the effect of WSS estimation on

the VM consolidation. In this respect, we leverage traces from a Google data-

center [13]. They represent the execution of thousands of jobs on a cluster of

about 12,5k servers, monitored for about 29 days. Each job can be composed

of several tasks and each task runs inside a container. For each container, the

traces provide data such as the creation time, the destruction time, the amount

of CPU/memory requested at creation time. Moreover the traces provide the

amount of CPU/memory actually assigned to the container4. By relying on

GloudSim [66] (a cloud simulator with VMs based on Google traces) we have

simulated both, a consolidation based on the booked memory and a consolida-

tion based on the actually assigned memory. In the first case the datacenter

has an average of 9562 active servers while in the second case the average num-

ber of active servers is 4676. These figures prove that the memory is indeed

the resource which limits the VM consolidation. In the second consolidation

type, the packing ratio is more than 2x higher. Regarding the VM dynamics,

there were executed around 2.5M migrations in total. Only 75k migrations

(i.e. 3.17%) were caused by memory overload/underload. These results prove

that the memory volatility is net inferior to the CPU volatility. However, the

paradox is that most of the popular consolidation systems overcommit CPU

but not RAM memory. Our evaluation results are totally reproducible using

the code provided at [31].

5.7 Related work

The reader should refer to Section 5.4 for the presentation of the main WSS

estimation techniques in virtualized environments. In this section we focus on

other studies related to the concept of WSS, memory management and VM

consolidation in a virtualized datacenter.

Working set size estimation. WSS estimation [116] could require large

data collection and complex processing. Weiming Zhao et al. [156] have in-

troduced a working set size estimation system which computes a VM’s WSS

based on its miss-ratio curve (MRC). The latter shows the fraction of the cache

misses that would turn into cache hits if the VM’s allocated memory increases.

Moreover, Weiming Zhao et al. have evaluated the overhead of their solution

by providing the relationship between performance and allocated memory size.

4The sampling time interval for this data is around 5 minutes.
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Pin Zhou et al. [162] have proposed two similar methods which dynamically

track the MRC of applications at run time. These techniques represent the

hardware and the software implementations of the Mattsons stack algorithm.

The latter relies on a ”stack” which stores the references to accessed pages (the

most recently used page is on the top of the stack). Similarly to the ghost

buffer, this algorithm computes the miss ratio curve based on the distance to

the top of the stack. Carl Waldspurger et al [147] have proposed an approxi-

mation algorithm that reduces the space and time complexity of reuse-distance

analysis. This algorithm is appropriate for online MRC generation due to its

modest resource requirements.

Memory optimization techniques. Memory deduplication is one of the

most popular memory optimization techniques. It consists in merging identical

memory pages by keeping only one copy of it. This is mostly useful in case of

read-only pages that stay unchanged during the VM run time. Depending on

the algorithm used to identify similar pages, there are several implementations

of page sharing [55, 118, 147, 79]. These techniques are often combined with

memory compression tools to achieve better optimization rates [142, 129, 154].

Another memory optimization tool is the transcendent memory [111] which

gathers the VMs’ idle memory and the VMM non-allocated memory to a com-

mon pool.

Memory balancing is a memory optimization technique, that tries to adjust

the VM’s allocated memory depending on its necessities. Memory ballooning is

the main concept behind this approach. The balancing techniques typically rely

on working set size estimation techniques to optimize the memory usage [157].

In a latter work, Zhao et al. [148] leverages inexpensive working set tracking

systems to correctly estimate the working set size for the Memory Balancer

(MEB) [157]. Xiaoqiao Meng et al. [117] leverage the concept of statistical re-

source multiplexing between multiple VMs. Specifically, this paper proposes to

form pairs of VMs that have complementary temporal behavior (i.e. the peaks

of one VM coincide with the valleys of the other). Thereby, if consolidated

together, the unused resources from the VM with low demands could be lent to

the VM with high demands. These pairs of VMs are found out by computing

the correlation between all combinations of two VMs in the datacenter. As one

can notice, this approach requires high amount of computation even for small

datacenters.

Improving Memory balancing drawbacks. Memory balancing tech-

niques have several drawbacks. First, in the case where several VMs reach

their respective memory limit simultaneously, they will all generate a high

amount of I/O requests which may saturate the secondary storage. On the

other hand, memory balancing is not aware of the hosted applications. Thus,
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memory intensive applications (e.g. database engines) face serious issues be-

cause of memory balancing techniques. To overcome these issues, [135] extends

the VM memory ballooning to user level, for applications that manage their

own memory.

VM consolidation. The VM consolidation is an NP hard problem [93].

Thereby, numerous papers came up with heuristics for this problem [95, 49,

33, 92]. However, few of these projects provide real implementations to the

proposed algorithms [23, 70]. Among the implemented systems, to the best

of our knowledge, no system consistently performs memory overcommitment.

Even if memory is the main consolidation impediment, most of the existing

systems consolidate the VMs based on their booked memory and not on the

actually used memory. In this work, we propose a system that monitors the

WSS of VMs and takes consolidation decisions based on the observed memory

utilization.

5.8 Conclusion

In this work, we presented a systematic review of the main WSS estimation

techniques, namely Self-ballooning, Zballoond, VMware, Geiger and Hypervisor

exclusive cache. From far of our knowledge, this is the first work which deeply

compares existing WSS techniques. To this end, we propose a set of quali-

tative and quantitative metrics allowing the classification of these techniques

and we evaluate each technique using both micro and macro benchmarks. The

evaluation results reveal the strengths and the weaknesses of each technique.

More important, they show that not all solutions address the issue in its en-

tirety. Unfortunately, those which entirely address the issue are intrusive, thus

requiring the permission of the VM’s owner. This is unacceptable from the

datacenter operator’s point of view. We also propose Badis, a system which

combines several of the existing solutions, using the right solution at the right

time. In addition, we have implemented a consolidation extension which lever-

ages Badis for an improved consolidation ratio. The evaluation results reveal

a 2x better consolidation ratio with only 3% additional VM migrations.
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Chapter 6

Conclusion

6.1 Synthesis

This dissertation has presented resource-management techniques and hardware

improvements that increase the energy efficiency of virtualized datacenters. We

propose solutions that cover the entire software stack ranging from the middle-

ware level down to the server hardware. The first solution proposed is StopGap,

a middleware-level consolidation extension which dynamically replaces “big”

VMs with smaller ones in order to increase the overall cloud consolidation ra-

tio. This solution turns out to improve the OpenStack consolidation ratio by

about 62.5% but it is only effective for elastic applications (see Section 2.4).

Moreover, by analyzing the consolidation ratios on each resource (i.e. CPU

and memory) individually, we found out that StopGap leads to a satisfactory

consolidation ratio for the memory but nevertheless, the CPU utilization still

remained very low.

By analyzing the resource demand trends of cloud applications vs. the re-

source supply trends of physical servers, we found out that, over time, physical

servers could not keep up with the high memory demand requested by cloud

applications. These days, applications demand about two times more memory

per CPU core than a decade ago but physical servers provide two times less.

Then, the natural question is why not add more memory to physical servers?

Even more as the memory has become very cheap. However, it turns out that

the underlying problem is the memory bandwidth which cannot keep up as

more and more cores are introduced; this problem is known as the memory

wall. For example, the memory bandwidth for a dual-core processor (i.e. Intel

E5-2637) was 7.3 bytes per CPU cycle but it decreased to only 1 byte per CPU

cycle in 15-core processors (e.g. Intel E7-8890v2). Thereby, this thesis claims

that memory should be managed efficiently since it is a scarce resource and it is

probably becoming even scarcer. The International Technology Roadmap for

Semiconductors (ITRS) predict that from 2015 to 2020 the number of transis-



tors in CPUs will triple, the pin count will increase by 27% but the memory

bus frequency will remain fairly constant. In this context, we claim that the

static way in which cloud operating systems manage the memory is way too

inefficient. The memory should be dynamically allocated to VMs based on the

demand (i.e. the working set size). However, WSS estimation is not very pop-

ular since the state-of-the-art solutions are either inaccurate or very intrusive.

Thereby, we proposed Badis, a system that is able to estimate the WSS of a

VM with high accuracy and no VM codebase intrusiveness.

Furthermore, we focus on the traditional architecture of datacenters. They

are built of commodity servers which were not designed for large-scale cloud

datacenters. The memory and the computing resources are strongly coupled

inside a power domain entity which is a physical server. Thereby, we proposed

a practical way to decouple the memory from the CPU which can be easily

implemented to a commodity server. Our solution boils down to a new ACPI

state (called zombie) and a new cloud management software stack (called Zom-

bieStack). A server in the zombie ACPI state keeps the memory banks active

and accessible by the other servers in the rack. Our solution is built on top

of modern networking techniques (e.g. RDMA) that can bypass the operat-

ing systems and access RAM memory without any CPU involvement. The

fundamental hardware modification requested by our zombie state is separate

power domains for CPU and memory so that memory can be kept active and

addressable over PCIe even when the CPU is powered-off. The ZombieStack

is, in a nutshell, a cloud management system that can take advantage of the

memory exposed by the servers in zombie state. ZombieStack includes both the

data and the control planes for accessing remote memory, as well as a memory

management subsystem.

In conclusion, all these solutions aim to increase the energy efficiency of

virtualized datacenters. We claim that nowadays, datacenters operate ineffec-

tively because the system architectures and policies are not suitable for such

an environment. Most of them were simply inherited from standalone or small

networks of physical machines and not specifically designed for warehouse-

scale computing. The solutions presented in this paper focus on enabling more

efficient resource management (especially memory) by improving resource al-

location policies and hardware architecture. Based on the evaluation results,

we proved that a datacenter employing our solutions can seamlessly operate at

a much higher efficiency, which will result in lower management costs for the

cloud provider and in turn, lower prices for cloud customers.
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6.2 Perspectives

One of the problems we addressed in this thesis is the memory waste due to

its rigid and static allocation to VMs. In order to employ a dynamic memory

allocation based on the demand, one needs to compute the working set size

(WSS). The existing WSS estimation techniques (including our proposed tech-

nique) are fairly heavyweight and incur large overheads especially for systems

with many virtual machines. A potentially better solution, that our team is

now exploring, is to use hardware features (e.g. the Page Modification Log-

ging [24] from Intel) for estimating the WSS. This approach will reduce the

overhead and may provide a perfect accuracy. We are convinced that such

a solution holds all necessary requirements to be adopted in the mainstream

cloud.

Further, we showed that because of the memory wall, the memory supply

could not keep up with the higher and higher application demand. The straight-

forward solution here may be to break the memory wall and several research

initiatives [125, 54] already explored that. However, it doesn’t seem that the

research has found a viable way to solve this problem yet. In this context, the

solution proposed in this thesis bypasses the memory wall problem and yet is

able to increases the datacenter efficiency. We develop a new ACPI state that

considerably increase the energy proportionality of physical machines acting

as memory (zombie) servers and a cloud system that both manages and takes

advantage of this remote memory. However, the commodity server CPUs are

not able to directly address remote memory and this significantly reduces our

system’s effectiveness. In this context, a potential perspective may be to design

hardware able to access remote memory. More precisely, the memory manage-

ment unit (MMU) should be able to address pages in a global (e.g. rack-level)

address space. On 64-bit architectures, this can be implemented by storing a

machine ID tag in the most significant address bits which are often unused.

For low-latency communication, the rack servers may be interconnected using

a PCIe transparent bridge.

However, this kind of solutions represents only the first step of datacenter

architecture metamorphosis towards a complete resource disaggregation. Many

large tech companies (such as Intel, HPE, IBM, Huawei) directly investigate

the implementation of a completely disaggregated datacenter. However, latency

requirements impose hard limits on distances over which certain resources (es-

pecially CPU and memory) can be disaggregated. A potential solution to get

low latency with relatively long interconnects is to replace electrical cables

with fiber-optic interconnects. In this context, the most difficult obstacle is the

system chip-level integration of optical communication since the traditional
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optical fiber cables require fairly complex transceivers for electro-optical con-

version. The technology that seems promising for onboard chip-level optical

functions is silicon photonics. However, this technology is not ready yet and

the complete resource disaggregation is mainly waiting for silicon photonics to

hit the required metrics of cost, performance, and size.
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[112] Manousakis, I., Goiri, Í., Sankar, S., Nguyen, T. D., and Bian-

chini, R. Coolprovision: Underprovisioning datacenter cooling. In

Proceedings of the Sixth ACM Symposium on Cloud Computing (2015),

ACM, pp. 356–367.

[113] Meisner, D., Gold, B. T., and Wenisch, T. F. Powernap: elimi-

nating server idle power. In ACM Sigplan Notices (2009), vol. 44, ACM,

pp. 205–216.

[114] Meisner, D., Sadler, C. M., Barroso, L. A., Weber, W.-D.,

and Wenisch, T. F. Power management of online data-intensive ser-

vices. In ACM SIGARCH Computer Architecture News (2011), vol. 39,

ACM, pp. 319–330.

105



BIBLIOGRAPHY BIBLIOGRAPHY

[115] Meisner, D., and Wenisch, T. F. Dreamweaver: architectural sup-

port for deep sleep. In ACM SIGPLAN Notices (2012), vol. 47, ACM,

pp. 313–324.

[116] Melekhova, A., and Markeeva, L. Estimating working set size by

guest os performance counters means. CLOUD COMPUTING 48 (2015).

[117] Meng, X., Isci, C., Kephart, J., Zhang, L., Bouillet, E., and

Pendarakis, D. Efficient resource provisioning in compute clouds via

vm multiplexing. In Proceedings of the 7th international conference on

Autonomic computing (2010), ACM, pp. 11–20.

[118] Mi lós, G., Murray, D. G., Hand, S., and Fetterman, M. A.

Satori: Enlightened page sharing. In Proceedings of the 2009 conference

on USENIX Annual technical conference (2009), pp. 1–1.

[119] Mishra, N., Zhang, H., Lafferty, J. D., and Hoffmann, H. A

probabilistic graphical model-based approach for minimizing energy un-

der performance constraints. In ACM SIGARCH Computer Architecture

News (2015), vol. 43, ACM, pp. 267–281.

[120] Mukherjee, T., Dutta, P., Hegde, V. G., and Gujar, S. Risc:

Robust infrastructure over shared computing resources through dynamic

pricing and incentivization. In Parallel and Distributed Processing Sym-

posium (IPDPS), 2015 IEEE International (2015), IEEE, pp. 1107–1116.

[121] Murtazaev, A., and Oh, S. Sercon: Server consolidation algorithm

using live migration of virtual machines for green computing. IETE Tech-

nical Review 28, 3 (2011), 212–231.

[122] Nakada, H., Hirofuchi, T., Ogawa, H., and Itoh, S. Toward

virtual machine packing optimization based on genetic algorithm. In

International Work-Conference on Artificial Neural Networks (2009),

Springer, pp. 651–654.

[123] Narayanan, D., Thereska, E., Donnelly, A., Elnikety, S., and

Rowstron, A. Migrating server storage to ssds: analysis of tradeoffs. In

Proceedings of the 4th ACM European conference on Computer systems

(2009), ACM, pp. 145–158.

[124] Nguyen Van, H., Dang Tran, F., and Menaud, J.-M. Autonomic

virtual resource management for service hosting platforms. In Proceedings

of the 2009 ICSE Workshop on Software Engineering Challenges of Cloud

Computing (2009), IEEE Computer Society, pp. 1–8.

106



BIBLIOGRAPHY BIBLIOGRAPHY

[125] Nowatzyk, A., Pong, F., and Saulsbury, A. Missing the memory

wall: The case for processor/memory integration. In Computer Archi-

tecture, 1996 23rd Annual International Symposium on (1996), IEEE,

pp. 90–90.

[126] NVIDIA. Tegra 3. http://www.nvidia.com/object/

tegra-3-processor.html. Accessed on 30/05/2018.

[127] O’Connor, M., Chatterjee, N., Lee, D., Wilson, J., Agrawal,

A., Keckler, S. W., and Dally, W. J. Fine-grained dram: energy-

efficient dram for extreme bandwidth systems. In Proceedings of the

50th Annual IEEE/ACM International Symposium on Microarchitecture

(2017), ACM, pp. 41–54.

[128] Patterson, R. H., Gibson, G. A., Ginting, E., Stodolsky, D.,

and Zelenka, J. Informed prefetching and caching, vol. 29. ACM,

1995.

[129] Pekhimenko, G., Mowry, T. C., and Mutlu, O. Linearly com-

pressed pages: A main memory compression framework with low com-

plexity and low latency. In Proceedings of the 21st international confer-

ence on Parallel architectures and compilation techniques (2012), ACM,

pp. 489–490.

[130] Prekas, G., Primorac, M., Belay, A., Kozyrakis, C., and

Bugnion, E. Energy proportionality and workload consolidation for

latency-critical applications. In Proceedings of the Sixth ACM Sympo-

sium on Cloud Computing (2015), ACM, pp. 342–355.

[131] Quiroz, A., Kim, H., Parashar, M., Gnanasambandam, N., and

Sharma, N. Towards autonomic workload provisioning for enterprise

grids and clouds. In Grid Computing, 2009 10th IEEE/ACM Interna-

tional Conference on (2009), IEEE, pp. 50–57.

[132] Rajagopalan, S., Williams, D., Jamjoom, H., and Warfield, A.

Split/merge: System support for elastic execution in virtual middleboxes.

In NSDI (2013), vol. 13, pp. 227–240.

[133] Ravi, G. S., and Lipasti, M. H. Charstar: Clock hierarchy aware

resource scaling in tiled architectures. In Proceedings of the 44th An-

nual International Symposium on Computer Architecture (2017), ACM,

pp. 147–160.

107

http://www.nvidia.com/object/tegra-3-processor.html
http://www.nvidia.com/object/tegra-3-processor.html


BIBLIOGRAPHY BIBLIOGRAPHY

[134] Robison, A., Page, C., and Lytle, B. Yahoo! compute coop (ycc).

a next-generation passive cooling design for data centers. Tech. rep.,

Yahoo! Inc., Sunnyvale, CA, 2011.

[135] Salomie, T.-I., Alonso, G., Roscoe, T., and Elphinstone, K.

Application level ballooning for efficient server consolidation. In Proceed-

ings of the 8th ACM European Conference on Computer Systems (2013),

ACM, pp. 337–350.

[136] Sharma, P., Irwin, D., and Shenoy, P. Portfolio-driven resource

management for transient cloud servers. Proceedings of the ACM on

Measurement and Analysis of Computing Systems 1, 1 (2017), 5.

[137] Sharma, P., and Kulkarni, P. Singleton: system-wide page dedu-

plication in virtual environments. In Proceedings of the 21st interna-

tional symposium on High-Performance Parallel and Distributed Com-

puting (2012), ACM, pp. 15–26.

[138] Somu Muthukaruppan, T., Pathania, A., and Mitra, T. Price

theory based power management for heterogeneous multi-cores. ACM

SIGPLAN Notices 49, 4 (2014), 161–176.

[139] Su, M., Zhang, M., Chen, K., Guo, Z., and Wu, Y. Rfp: When

rpc is faster than server-bypass with rdma. In Proceedings of the Twelfth

European Conference on Computer Systems (2017), ACM, pp. 1–15.

[140] Subramanian, C., Vasan, A., and Sivasubramaniam, A. Reducing

data center power with server consolidation: Approximation and evalua-

tion. In High Performance Computing (HiPC), 2010 International Con-

ference on (2010), IEEE, pp. 1–10.

[141] Taram, M., and Tullsen, A. V. D. M. Mobilizing the micro-ops:

Exploiting context sensitive decoding for security and energy efficiency.

[142] Tuduce, I. C., and Gross, T. R. Adaptive main memory compres-

sion. In USENIX Annual Technical Conference, General Track (2005),

pp. 237–250.

[143] Vamanan, B., Sohail, H. B., Hasan, J., and Vijaykumar, T.

Timetrader: Exploiting latency tail to save datacenter energy for online

search. In Microarchitecture (MICRO), 2015 48th Annual IEEE/ACM

International Symposium on (2015), IEEE, pp. 585–597.

[144] Venkatesh, G., Sampson, J., Goulding, N., Garcia, S.,

Bryksin, V., Lugo-Martinez, J., Swanson, S., and Taylor,

108



BIBLIOGRAPHY BIBLIOGRAPHY

M. B. Conservation cores: reducing the energy of mature computa-

tions. In ACM SIGARCH Computer Architecture News (2010), vol. 38,

ACM, pp. 205–218.

[145] Voorsluys, W., Broberg, J., Venugopal, S., and Buyya, R.

Cost of virtual machine live migration in clouds: A performance evalu-

ation. In IEEE International Conference on Cloud Computing (2009),

Springer, pp. 254–265.

[146] Waldspurger, C. A. Memory resource management in vmware esx

server. ACM SIGOPS Operating Systems Review 36, SI (2002), 181–194.

[147] Waldspurger, C. A., Park, N., Garthwaite, A. T., and Ahmad,

I. Efficient mrc construction with shards. In FAST (2015), pp. 95–110.

[148] Wang, Z., Wang, X., Hou, F., Luo, Y., and Wang, Z. Dynamic

memory balancing for virtualization. ACM Transactions on Architecture

and Code Optimization (TACO) 13, 1 (2016), 2.

[149] Watanabe, Y., Davis, J. D., and Wood, D. A. Widget: Wisconsin

decoupled grid execution tiles. In ACM SIGARCH Computer Architec-

ture News (2010), vol. 38, ACM, pp. 2–13.

[150] Williams, D., Jamjoom, H., and Weatherspoon, H. Software

defining system devices with the” banana” double-split driver model. In

HotCloud (2014).

[151] Wong, D., and Annavaram, M. Knightshift: Scaling the energy pro-

portionality wall through server-level heterogeneity. In Proceedings of the

2012 45th Annual IEEE/ACM International Symposium on Microarchi-

tecture (2012), IEEE Computer Society, pp. 119–130.

[152] Wulf, W. A., and McKee, S. A. Hitting the memory wall: implica-

tions of the obvious. ACM SIGARCH computer architecture news 23, 1

(1995), 20–24.

[153] Xu, C., Lin, F. X., Wang, Y., and Zhong, L. Automated os-level

device runtime power management, vol. 43. ACM, 2015.

[154] Yang, L., Lekatsas, H., and Dick, R. P. High-performance oper-

ating system controlled memory compression. In Proceedings of the 43rd

annual Design Automation Conference (2006), ACM, pp. 701–704.

[155] Yeo, S., Hossain, M. M., Huang, J.-C., and Lee, H.-H. S. Atac:

Ambient temperature-aware capping for power efficient datacenters. In

109



BIBLIOGRAPHY BIBLIOGRAPHY

Proceedings of the ACM Symposium on Cloud Computing (2014), ACM,

pp. 1–14.

[156] Zhao, W., Jin, X., Wang, Z., Wang, X., Luo, Y., and Li, X. Low

cost working set size tracking. In USENIX Annual Technical Conference

(2011).

[157] Zhao, W., Wang, Z., and Luo, Y. Dynamic memory balancing for

virtual machines. ACM SIGOPS Operating Systems Review 43, 3 (2009),

37–47.

[158] Zheng, K., and Wang, X. Dynamic control of flow completion time

for power efficiency of data center networks. In Distributed Computing

Systems (ICDCS), 2017 IEEE 37th International Conference on (2017),

IEEE, pp. 340–350.

[159] Zheng, K., Wang, X., and Wang, X. Powerfct: Power optimiza-

tion of data center network with flow completion time constraints. In

Parallel and Distributed Processing Symposium (IPDPS), 2015 IEEE In-

ternational (2015), IEEE, pp. 334–343.

[160] Zheng, W., Ma, K., and Wang, X. Tecfan: Coordinating thermo-

electric cooler, fan, and dvfs for cmp energy optimization. In Parallel

and Distributed Processing Symposium, 2016 IEEE International (2016),

IEEE, pp. 423–432.

[161] Zhi, J., Bila, N., and de Lara, E. Oasis: energy proportionality

with hybrid server consolidation. In Proceedings of the Eleventh European

Conference on Computer Systems (2016), ACM, p. 10.

[162] Zhou, P., Pandey, V., Sundaresan, J., Raghuraman, A., Zhou,

Y., and Kumar, S. Dynamic tracking of page miss ratio curve for mem-

ory management. In ACM SIGOPS Operating Systems Review (2004),

vol. 38, ACM, pp. 177–188.

110


	Acknowledgements
	Abstract
	Contents
	Introduction
	Contribution overview
	Thesis organization

	StopGap: Elastic VMs to enhance server consolidation
	Introduction
	Motivation
	StopGap overview
	Multi-tier master slave applications
	A hybrid resource negotiation model
	Description of the model
	Application of the model

	Implementation of the model
	SLA enforcement during VM split
	Resource management of type C1
	Resource management of type C2

	Evaluations
	Experimental environment
	Impact on end-user's applications
	Resource saving and scalability

	Related Work
	Conclusion

	Towards memory desagregation with the zombie state
	Introduction
	Motivation
	Background
	Zombie (Sz): A Sleep State for Servers
	Sz State Design

	Related works
	Evaluations: the Sz energy consumption
	Conclusion

	ZombieStack
	Memory Disaggregation Using Sz State
	Implementation
	Initialisation
	Delegating and Reclaiming Server Memory
	Requesting and Allocating Remote Memory
	Using Remote Memory

	Cloud Management with ZombieStack
	Remote Memory Aware VM Placement
	VM Consolidation with Zombie Servers
	VM Migration Protocol

	Related works
	Evaluations
	Experimental environment
	RAM Ext's page replacement policy
	RAM Ext limitations
	RAM Ext compared with Explicit SD
	VM Migration
	Energy gain in a large scale DC

	Conclusion

	Working Set Size Estimation Techniques in Virtualized Environments: One Size Does not Fit All
	Introduction
	Background on virtualization: illustration with Xen
	Generalities
	Memory and I/O virtualization
	Ballooning

	On-demand memory allocation
	General functioning
	Metrics

	Studied techniques
	Self-ballooning
	Zballoond
	The VMware technique
	Geiger
	Hypervisor Exclusive Cache
	Dynamic MPA Ballooning

	Evaluation of the studied techniques
	Experimental environment
	Evaluation with synthetic workloads
	Evaluation with macro-benchmarks
	Synthesis

	Badis
	Presentation
	Badis in a virtualized cloud
	Evaluations

	Related work
	Conclusion

	Conclusion
	Synthesis
	Perspectives




