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Abstract

Titre: Méthodes de Traitement des Images RSO Polarimétriques, Monostatiques et Bistatiques
Mots clés: polarimétrie radar, PolSAR, monostatique, bistatique, consimilarité, similarité, décomposi-
tion polaire, variété, regroupement non supervisé.
Résumé:

Les données polarimétriques radar à synthèse d’ouverture
(RSO, ou SAR en anglais) enregistrent la diversité de retrod-
iffusion en mesurant la réponse électromagnétique dans
deux bases orthogonales de polarisation. L’interaction des
micro-ondes avec les milieux anthropiques et naturels peut
modifier l’état polarimétrique incident. Les applications PolSAR
exploitent cette dépendance des ondes incidentes et de retrod-
iffusion, qui s’est avérée être un atout important, en particulier
pour la détection et la classification.

L’objectif principal de cette thèse est de contribuer à
l’analyse des données SAR polarimétriques. Conformément
aux développements technologiques attendus dans le domaine
des instruments radar, le cas de la géométrie bistatique est
aussi discuté. Pour la représentation et le traitement des don-
nées, le formalisme matriciel a été utilisé. Comme en PolSAR
les matrices de diffusion ont des propriétés qui dépendent
de la géométrie de diffusion, les méthodes proposées dans la
thèse sont applicables au cas le plus général, c’est-à-dire avec
des données non réciproques (monostatiques ou bistatiques).

La thèse propose deux modèles pour la matrice de diffu-
sion à partir de la Représentation Réelle et de la Décomposition
Polaire. Les deux sections sont complémentaires, avec des
modèles basés sur : un traitement algébrique vs. géométrique,
une factorisation en utilisant la similarité conjuguée vs. la
similarité ou un contexte cohérent vs. incohérent. La première
contribution discute la similarité conjuguée en PolSAR. Cela
oriente l’étude vers la représentation réelle, sa décomposition
propre et l’extraction de paramètres non accessibles par les
méthodes précédentes. La deuxième contribution est basée sur
les propriétés de la décomposition polaire et de la géométrie
Riemannienne des matrices semi-définies positives. Un algo-
rithme de clustering géométrique, combinant les k-means et
une distance géodésique Riemannienne est introduit.

Des ensembles de données aéroportées, monostatiques
PolSAR (en bande L, C, et X) ainsi que des données po-
larimétriques monostatiques et bistatiques simulées sont
utilisés pour tester les méthodes proposées dans cette thèse.

Title: Methods for Monostatic and Bistatic Polarimetric SAR Image Analysis
Keywords: radar polarimetry, PolSAR, monostatic, bistatic, consimilarity, similarity, polar decomposi-
tion, manifold, clustering.
Abstract:

Polarimetric Synthetic Aperture Radar (PolSAR) data
records the scattering diversity by measuring the electromag-
netic response in two orthogonal polarization bases. The
interaction of the microwaves with both anthropogenic and
natural media can modify the incident polarimetric state.
PolSAR applications exploit the incident-scattering polariza-
tion dependence, which was proven as an important asset,
especially for detection and classification.

The main aim of this thesis is to contribute to the analysis
of full-polarimetric PolSAR data. In line with expected techno-
logical developments in the area of radar instruments, the case
of bistatic geometry is discussed. Throughout the work, the
matrix formalism has been assumed for data representation
and processing. Because PolSAR scattering matrices have prop-
erties which depend on the scattering geometry, the methods
proposed in the thesis are applicable to the most general case,
i.e., with non-reciprocal data (monostatic or bistatic).

The thesis proposes two frameworks for the scattering
matrix based on the Real Representation and the Polar De-
composition. The two parts are complementary, with models
based on an algebraic vs. geometric processing, on a conjugate
similarity vs. similarity factorization or on a coherent vs. in-
coherent application context. The first contribution is oriented
towards the study of the conjugate similarity in PolSAR by the
use of the Real Representation. The second contribution is
based on the properties of the polar decomposition and the
Riemannian geometry of positive semidefinite matrices. A
geometric clustering algorithm, combining the k-means and
a Riemannian geodesic distance is introduced.

Airborne, monostatic PolSAR datasets (L-, C-, X-Band)
and simulated monostatic and bistatic polarimetric data are
used for testing the proposed methods.
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Introduction

Introduction and motivations

R emote sensing allows the detection and monitoring of an object’s physical
characteristics, at a distance. Microwave remote sensing is the branch which uses

for this study electromagnetic signals belonging to the radar (or, microwave) frequency
domain. It is further divided into active and passive sub-branches, depending whether
the sensor carries, or not, its own signal source.

Active microwave remote sensing is nowadays a conventional technology in Earth
observation applications, seen as a complement to the optical technology, e.g., due
to its unrestricted imaging ability (day or night, all weather). The most popular
radar remote sensing implementation is through the Synthetic Aperture Radar (SAR)
technique. By combining several, adjacent, multi-angle observations, SAR has the
ability to provide high-resolution (nowadays, even around tens of cm) image-like
visualizations of an area’s complex radar backscattering return.

SAR images have been collected on a global scale for several decades now. By
combining sets of multiple observations of the same area, the primary form of diversity
for all remote sensing applications is multi-temporal. With satellite instruments, the
revisit time is periodic and the acquisitions are often termed multi-pass. Other forms
of diversity are possible in microwave remote sensing: frequency, polarization and
spatial (or, multi-platform) can be accessible when the radar sensor is equipped with
specialized instrumentation.

The last decade has shown an increased interest towards multi-platform radar
systems. Instrumental steps in this direction have been the launch in 2010 of the "twin"
satellite to TerraSAR-X, TanDEM-X, along with the preparatory and in-orbit scientific
studies it demanded. This has made a statement on the technological maturity and
the possible advantages the multi-platform diversity can bring (e.g., the possibility of
having multiple single-pass acquisitions from distinct spatial positions).

The polarization is a wave property defined in a plane transverse to the propagation
direction. It is a research subject studied across disciplines and especially in domains
involving electromagnetic radiation. The polarization may carry the signature of an
absorption/scattering process, quantified through measurable changes in perpendicular
directions of the transverse plane.

In radar polarimetry, the active instrument is the one fixing the polarization at
emission, which will usually be modified by the interaction of the radiation with the
Earth surface, measured at one or more frequencies. Polarimetric SAR (hereafter,
PolSAR) offers access to a multidimensional, simultaneous set of measurements of
the radiation reaching the sensor. Crop monitoring, land use/land cover classification,
persistent scatterers detection in urban environment, or the study of glaciers and Arctic
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2 Introduction

ice are among its principal applications.

This thesis focuses on the study of polarimetric radar diversity with datasets
obtained by acquisition in monostatic or bistatic geometry. New methods and
algorithms for PolSAR processing (linear polarization) are proposed. These are
developed around two working hypotheses, aiming to address current challenges in
radar polarimetry, as follows.

■ Context: Between the end of the 20th century and the beginning of the 21st
century, polarimetric diversity was most often combined with multi-temporal
or multi-frequency diversity to obtain composite data sets. Most of the PolSAR
methods are based on the algebraic model of reciprocal data, meaning they have
been developed and tested mainly using monostatic data.
Challenge: Due to the growing interest in bistatic/ multistatic radar platforms,
it is expected that such PolSAR data will become accessible in the future (both
as single acquisitions and in composite sets that will exploit the spatial diversity
offered by multi-platform geometries).
Within the thesis: The polarimetric data should no longer be constrained by the
monostatic reciprocity property.

■ Context: The progressive decrease of the size of resolution cells in radar images
has been achieved through technological and data processing developments. This
steady improvement of the spatial resolution has made SAR images attractive
in various practical applications and competitive with optical sensors.
Challenge: However, it has been shown that statistical model-based methods
used in SAR/PolSAR need to be modified when working with high spatial
resolution data and many models have been eventually proposed to accurately
represent these statistics [1].
Within the thesis: The difficulty of choosing an optimal model could be solved
by proposing techniques that do not rely solely on the statistical distribution of
the data.

Thesis outline

This thesis focuses on developing new tools and methods for the understanding and
the analysis of (linear polarization) full-polarimetric radar images. This subsection
briefly outlines the composition of the thesis and presents the key topics covered in
each of the following chapters. The contributions are intended to address some of
the identified challenges.

Chapter 1 sets the main theoretical framework. For this, it introduces the elemen-
tary descriptors of wave polarization, compares the radar versus optical scattering
alignment conventions and the matrix versus vector PolSAR formalism, which are at
the core of most analysis methods for coherent and incoherent decompositions.



Introduction 3

Chapter 2 develops from the following question: Which processing is adequate if
one operates under the radar convention, i.e., Backscattering Alignment (BSA), adopts
a matrix formalism computation and deals with radar observations which are not
reciprocal (inherent property, not the result of measurement errors)?

A purely mathematical perspective is necessary at first. We introduce the conjugate
similarity transformation (hereafter, consimilarity) and propose a solution based on the
real representation. The results returned by this method are proven to match the ones
from the non-negative factorization of the squared scattering matrix, only in the case
when the matrix is reciprocal. The method revealed complex-valued solutions for the
case of some non-reciprocal scattering matrices. The chapter then explores practical
applications for the real representation, particularly through its eigen-decomposition.
Monostatic and bistatic wide-angle polarimetric simulations of two coherent targets
are obtained and investigated on the premise of pursuing a concrete link between
scattering geometry, nonreciprocity and the complex eigenvalues.

Chapter 3 continues to explore applications under the PolSAR matrix formalism,
but considers now an operation based on similarity, i.e., the polar decomposition.
A geometric perspective is adopted in the chapter. The polar decomposition factors
are seen not only as algebraic products, but using well-known results in information
geometry, as matrix terms embedded into a manifold. Eventually, the method proposed
in the chapter uses exclusively the Hermitian positive definite factor and operations
onto its associated Riemannian manifold. When assuming the PolSAR vector formalism,
the classical incoherent target decompositions (ICTDs) operate with the sample
covariance matrix, which is generally estimated as a weighted sum of vector inner
products. Differently, we propose to use the intrinsic geometric mean of Hermitian
positive definite matrices, followed by a partitional clustering algorithm having a
geodesic distance for intra/inter-cluster attribution.

Two particularly appealing properties are that the algorithm does not assume a
statistical distribution of the data and does not modify, at any step, the algebraic and
the geometric matrix structure. Qualitative and quantitative tests are performed using
real and simulated monostatic datasets. Despite this choice, the technique could be
applied to the most general type of polarimetric diversity, i.e., bistatic full-polarimetric.

The last chapter provides an overall focus on the thesis’ contributions and proposes
an outlook on future work.

To improve readability, retain the focus of the main chapters on personal
contributions, but still provide extensive clarifications where needed, proofs and other
extra material are transferred to Annexes B-H. The real datasets used by the thesis
are airborne, with medium-high (as of current technological level) spatial resolution
(i.e., ∼1m). All details are provided in Annex A.

Contributions into peer-reviewed publications and conferences during the
time-frame of this thesis are listed in Section I.





All the diversity, all the charm, and all the beauty of life are made up of light and shade.
Lev Tolstoy

CHAPTER 1

Polarimetric Radar Diversity
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From simple scattering mechanism extraction and throughout more complex
applications (e.g., land classification, disaster monitoring, height estimation),
polarimetry has become a key element for remote sensing. It allows to obtain new
and improved characteristics of a scattering object under investigation.

This chapter provides a short theoretical background to the domain of radar po-
larimetry, with a selection of thesis-relevant elements. The presentation is more general
in Section 1.1 and Section 1.2, which focus on introductory notions of wave polarization,
the imaging radar and the latest technological advancements in bistatic imaging radars.
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6 Chapter 1. Polarimetric Radar Diversity

Following up, Section 1.3 discusses the algebra of polarimetric radar transformations
and its particularities when analyzing both monostatic and bistatic data. Sections 1.4
and 1.5 describe decomposition methods for Polarimetric SAR PolSAR data analysis
for both deterministic (e.g., man-made targets with a stable scattering mechanism) and
nondeterministic targets. The thesis concentrates on techniques which can be applied to
both monostatic and bistatic data. We generally assume complete polarimetric diversity
(i.e., full-polarimetric data). Nonetheless, the end of the current chapter provides a
comparative analysis on a set of dual-polarimetric monostatic-bistatic measurements.

1.1 Polarization of electromagnetic waves

A radar (acronym: Radio Detection and Ranging) is an active instrument which
allow coherent transmission and reception of electromagnetic (EM) signals. Radar
instruments operate with signals in the electromagnetic spectrum which typically
belong to the Microwave Band (300 MHz - 300 GHz).

The polarimetric radar recovers the simultaneous projections on orthogonal
polarimetric bases, while a non-polarimetric system measures only one of the possible
projections. The IEEE Standard Definitions for Antennas (Nr. 145, 2013) [2]
distinguishes between the polarization of a vector field/wave and that of an antenna.

1.1.1 Plane wave model

Throughout the thesis, one or multiple assumptions fixing the theoretical context are
introduced in each chapter. Generic or specific, they are the axioms on which the
models and experiments adopted in the manuscript are build. The gain in providing
this concise indexing is double-folded: limitations imposed alongside the assumptions
are easily uncovered and the reader can gain a rapid overview of the models. For a
generic plane wave, these are as follows:

Assumptions Set - 1.1.

I. The plane wave solution of the electromagnetic waves equations is
sufficient in describing the propagation of the radar signals.

II. The signal is monochromatic and has a small bandwidth relative to the
working frequency, f.

III. The electric and magnetic field components are transverse to the direction
of propagation (i.e., Transverse Electromagnetic (TEM) propagation
mode). In far field, at any (time/space) instant, the two lie inside the
2D plane perpendicular to the wave vector’s direction.
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Hypothesis 1.1.I. is a reliable approximation for far-field observations of radar
instruments, which is the broad case of operation for imaging radars. Due to the
duality of electric and magnetic fields, describing the solution for only one of the
fields is sufficient. The connection between the two fields is complete considering the
impedance of the propagating medium.

The polarization of a wave is generally defined by the oscillation direction of the
electric field components in the transverse plane. It is often understood as the figure
"that the extremity of a (specified) vector field draws as a function of time". Otherwise,
the polarization of an antenna is "that of the plane wave it radiates at large distances
in a given direction" [3, 2].

The plane wave solution for the electric field is [4]:

ER(r,t)=E0cos(k·r−ω·t+ϕ0), (1.1)

where E0 and ϕ0 are the initial constant amplitude and phase vectors, respectively.
Further, ω=2πf denotes the angular frequency while k is the wave vector (modulus,
|k|=2π/λ, dependent on the wavelength, λ).

Eq. (1.1) is alternatively written [4]:

ER(r,t)=R
{
E(r)·ejωt

}
, (1.2)

with j=
√
−1 as the imaginary unit and E(r) the complex, time-independent, electric

field phasor.

In the Cartesian plane (x, y, z), the propagation direction of the wave is generally
chosen to coincide with the z-axis. In an observation plane z0, considered at the origin
O of the coordinate system, the time-varying projections of the complex electric field
in orthogonal basis aligned with the axes of the coordinate system is:

E(z0,t)=

[
Ex(z0,t)
Ey(z0,t)
Ez(z0,t)

]
=

E0x·e−j(kz0−ωt−ϕx)

E0y ·e−j(kz0−ωt−ϕy)

0

. (1.3)

Given the transverse nature of the propagating wave, the electric field component
in the z direction is zero. Parameters ϕx and ϕy represent the absolute phase values
of the electric field’s x and y projections.

1.1.2 Jones vector and polarization ellipse

For characterizing the complex amplitudes of the electric field components in the
transverse plane, the formalism of the Jones vector is used. This is described as:

EJ=

[
Ex

Ey

]
=

[
E0x·ejϕx

E0y ·ejϕy

]
. (1.4)
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Figure 1.1: Elliptical polarization. (a) Polarization ellipse with descriptive parameters. (b) Electric
field evolution for Jones vector EJ =

[
2.7−1j; 2+1j

]
(obtained using the Matlab Phased Array

System Toolbox.)

The complex polarization wave ratio is the fraction between the two elements from
the Jones vector:

ρE=
Ey

Ex
=
E0y

E0x
·ejδϕyx =tanαρ

E
·ejδϕyx (1.5)

We consider the Jones vector to completely characterize the polarization state of
the electric field in the transverse plane, for a fixed position in time (t) and space (z).
For situations in which TEM is no longer a correct approximation of the propagation
mode, the formalism is extended to a 3×1 generalized Jones vector [5]. However, in
the current thesis, the case of 2×1 dimensional Jones vector is considered, exclusively.

The curve drawn by the tip of the electric field vector in all transverse planes
aligned on the propagation direction describes the polarization of the plane wave.
When the oscillation is random from one transverse plane to the other, the electric field
may be partially polarized or unpolarized [6]. In the most general case of polarized
waves, the locus of points takes the form of an ellipse (Fig. 1.1). Proposing such
a shape is not aleatory, as it can be shown that the amplitudes of the electric field
components in the transverse plane and their relative phase difference (δϕyx

=ϕy−ϕx)
verify the equation of a (rotated) ellipse [7]:

1

sin2(δϕyx
)

[
Ex

2

E0x
2
−2· Ex

E0x

Ey

E0y
cos
(
δϕyx

)
+
Ey

2

E0y
2

]
=1. (1.6)

A change in the locus of points depends on both amplitude of components from
the two orthogonal directions (here, E0x and E0y), and relative phase difference, δϕyx

.
As a result, the standards quantitatively define the polarization by the shape (i.e., axial
ratio), orientation and sense of the polarization ellipse [2]. Each of these characteristics
is individually analysed hereafter:
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■ orientation: We consider an unoriented ellipse (a−semi-major axis, b−semi-minor
axis), in reference coordinates X-Y: X2

a2 + Y 2

b2 =1. The transformation to rotated
coordinates U-V via an angle ϕ is equivalent to the algebraic multiplication:[

U
V

]
=[X Y ]

[
cosϕ sinϕ
−sinϕ cosϕ

]
=[Xcosϕ−Y sinϕ Xsinϕ+Y cosϕ] (1.7)

The rotated ellipse is now described by [8]:

(Xcosϕ−Y sinϕ)2

a2
+
(Xsinϕ+Y cosϕ)2

b2
=1 (1.8)

Using equivalence of terms from (1.6) and (1.8), the rotation angle is determined
as:

tanϕ=2
E0xE0y

E2
0x−E2

0y

cos
(
δϕyx

)
(1.5)
−−→

tanϕ=tan
(
2αρ

E

)
cos
(
δϕyx

)
. (1.9)

■ axial ratio (AR): It is a real number, obtained as the ratio between the semi-major
and semi-minor axes of the ellipse. This quantity is directly related to the
ellipticity (or tilt) angle, τ∈ [−π/4,π/4], as:

τ=arctan

(
b

a

)
. (1.10)

Then,
sin2τ=sin

(
2αρ

E

)
sinδϕyx

. (1.11)

■ sense: The sense of the rotating ellipse can be either right-handed (RH) or left-
handed (LH) as the wave is observed to progress clockwise or counter-clockwise,
in the propagation direction. The sign of the ellipticity parameter describes this
"handedness" property of the ellipse: negative sign for the clockwise rotation and
positive sign for the counter-clockwise.

For the general case, of elliptical polarization, no constraints are imposed on the
set of parameters (E0x, E0y, δϕyx

). Alternatively, oscillations under the shape of a circle
or line are (constrained/degenerate) cases which are preferred in practical applications
[9]:

■ circular polarization (CP): The two components are of equal amplitude
E0=E0x=E0y and have a phase difference δϕyx

=mπ
2 , m∈{±1,±3,±5,...}.

Depending on the sign of the phase difference, it is possible to separate between
right-handed RHCP and left-handed LHCP circular polarization.

■ linear polarization (LP): The two components are in phase or opposition of
phase, δϕyx

=mπ, m∈{0,±1,±2,...}.
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Figure 1.2: Linear and circular polarization. (a) 45◦ Linear Polarization. (b) Vertical Polarization
(V). (c) Circular Polarization. (obtained using Matlab Phased Array System Toolbox™).

1.1.3 Radar polarization imaging modes

The basic imaging radar transmits and receives electromagnetic radiation in only
one polarization. Whichever the acquisition geometry, a polarimetric imaging radar
is equipped to allow partial or full polarimetric diversity. Obtaining a minimum
configuration (i.e., partial diversity) requires that the receiving unit of the instrument
is capable to coherently measure the electric field components in two orthogonal bases.
This is the case of dual-polarimetric (dual-pol) acquisitions. With fully polarimetric
(full-pol or quad-pol) instruments, the transmission is itself possible in two polarimetric
bases. The classification of imaging modes can be performed under these main
categories, considering: a) the polarimetric coherence and b) the polarimetric
transmitter (Tx) - receiver (Rx) basis combinations:

■ Basis combinations: When the polarimetric basis used with the transmitter and
receiver are not identical, the configuration is called hybrid [10]. This has been
tested in applications having partial diversity. One such example is the use of
CP for transmitting and orthogonal LPs for receiving. With full-pol instruments,
the Tx and Rx polarimetric basis is usually the same.

■ Coherence: When the coherence of the receiving channels is not preserved, a
significant part of the polarimetric information is lost. This has been reported
only as a distinct subgroup of dual-polarimetry [9].

1.2 Imaging radar

This subsections introduces elementary definitions related to the synthetic aperture
radar, the monostatic and bistatic geometries, spatial azimuth and range resolutions,
etc. The concepts will be used throughout the entire manuscript.

The conventional imaging radar assumes a monostatic geometry in which the
transmitting and receiving units are co-located (Fig. 1.3, blue dotted box). Imaging
radars operate in mainly three configurations: spaceborne, airborne, and ground-based.
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Figure 1.3: Monostatic, bistatic and multistatic radar systems.

The main remote sensing radar imaging technology in use is that of Synthetic
Aperture Radar (SAR) [11]. The two directions of a radar image are the slant-range
(i.e., the radar Line of Sight (LOS) direction, connecting instrument and target, also
known as cross-track) and the azimuth (or along-track). SAR is a type of pulsed,
side-looking radar, in which the instrument is located on a platform moving in the
azimuth direction. One land area is observed from multiple adjacent positions in
azimuth and the stack of backscattered responses is used into constructing the SAR
image. Elementary parameters of a SAR system are: the imaging frequency, the signal’s
bandwidth and pulse width, the Pulse Repetition Interval (PRI), etc.

The resolution of a radar image is an important performance indicator in both
spatial and radiometric domains. The minimum amount of separation (measured in
units of distance) which can exist between two targets along each imaging direction,
so that they are completely separated, is known as (range/azimuth) spatial resolution.
On the other hand, the radiometric resolution is the minimum brightness contrast for
which two equally reflective targets are discriminated.

The discussion on monostatic SAR systems shortly follows in Subsection 1.2.1.
The bistatic/multistatic systems propose more complex imaging geometries, which
integrate physically-separated, synchronized-operating transmitter(s) and receiver(s).
Subsection 1.2.2 covers this type of diversity.

1.2.1 Monostatic geometry - Synthetic Aperture Radar

Fig. 1.4 shows the example of a spaceborne, monostatic SAR system imaging an area
on the surface of the Earth (swath). At one time instant, R1 and R2 are the extreme
slant ranges (i.e., the near and far-range) and delimit the extremities of a swath
(yellow ellipse). The look angle varies across the swath in an interval [θiNR,θiFR]. This
imaging mode is known as Stripmap [12] and is the general model used in textbooks
for derivation of resolution formulas. More advanced beam-modes, which have the
advantage of enhanced azimuth resolution, are Spotlight and ScanSAR.

Complementary to the radar slant-range, the radar image may be projected into a
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Figure 1.4: Spaceborne monostatic imaging radar.

reference surface (horizontally flat or in accordance to the Earth ellipsoid irregularities).
This is now called the ground-range and it offers the advantage of having a common,
georeferenced coordinate system between multiple acquisitions.

The emitted SAR electromagnetic chirps use a pulse compression technique, a type of
signal modulation which allows an optimum counterbalance between peak transmitted
power and enhancement of slant range resolution. For a real aperture radar, the
azimuth resolution depends on frequency, incidence angle and the exact dimensions of
the system’s antenna. The SAR technology allows to improve the resolution in azimuth
by using coherent signal processing of the backscattered echoes across the integration
time of the synthetic aperture. In both range and azimuth, the final SAR resolution is
independent on the distance between the monostatic radar instrument and the target.

Combining such performance characteristics with the ability to image the Earth’s
surface day and night, even under fog and clouds, has greatly increased the popularity
of SAR. Nowadays, among the world’s Space Agencies there are over 30 years of
almost continuous spaceborne SAR remote sensing monitoring expertise [11].

When speaking of SAR image processing, both image formation and image
analysis chains come to mind. The image formation comprises the range and azimuth
compression [12] as well as geometric (i.e., layover, foreshortening) and radiometric
distortions compensation. A 2D grid of range-azimuth cells (i.e., pixels) renders a SAR
image. It is usually distributed in the form of a complex image (Single-look complex
- SLC or Multi-look complex - MLC) which preserves both amplitude and phase at each
pixel. Alternatively, only the amplitude or intensity (i.e., power) values are sometimes
available. The value associated to a pixel is dimensionless and a function of the radar
reflectivity, referred to as the backscattering coefficient. The pixel’s intensity is known
to be proportional to the equivalent radar cross section [13]. This measurement
information is transformed by image analysis into qualitative and quantitative
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observables. In the current thesis, the focus is exclusively on image analysis, performed
from a polarimetric diversity perspective. SAR images are essentially scattering maps
obtained for the radar’s operative microwave frequency band and full-polarimetric mea-
surements allow the complete backscattering description for the transverse electric field.
Moreover, the aim of the thesis is towards developing and testing methods adapted
also in bistatic polarimetry and capable to characterize its scattering information.

1.2.2 Bistatic geometry

In a bistatic system, the Tx and Rx units are at different locations and have a
considerable separation (i.e., a large baseline). If the emitter and receiver are only
separate hardware equipment, but placed in near proximity, the geometry is known
as quasi-monostatic (i.e., nearly monostatic). As long as the synchronization between
the two units is maintained, they can be carried out on the same or different platforms.
However, assuring a proper (phase/frequency) synchronization of local oscillators
between separate units has long been an important setback for the actual development
of bistatic systems. In [14], a comprehensive review of the history and developments
of bistatic radar systems from their beginning in the XX century and until around the
first decade of the XXI century is offered. In depth analysis of the more latter period
and some additional bistatic experiments are covered in [15].

Multistatic systems are an extension of the bistatic ones, possessing an increased
transmitting/receiving diversity (at least two transmitting/receiving units, placed at
different positions).

RTx-Tg

v

bistatic 
angle

Tx/Rx

Rx RTg-Rx

Tg

ground-range 

(β) 

Figure 1.5: Spaceborne to ground-based bistatic radar.

The bistatic geometry most similar to monostatic is one in which the transmitter and
receiver are placed in the same plane at a similar height and if in movement, their veloc-
ities are comparable. A bistatic geometry presents a higher number of degrees of liberty,
compared to monostatic. Apart from geometry, the technological choices contribute to
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the complete description of the system. For example, two possible alternatives are the
use of passive or active receiving unit(s). An active receiver may act as an individual
monostatic system, alternating between transmission and reception. Another type of ac-
tive receiver can operate as a transponder, broadcasting the acquired signals to another
node of the bistatic/multistatic architecture [16]. When it comes to ease of deployment,
however, the passive receiver is the far more preferred type. Fig. 1.5 presents, as
example, a space-surface bistatic geometry with an opportunistic satellite transmitter
and a ground-based passive receiver. The bistatic range is the sum of two slant-ranges,
RTx−Tg+RTg−Rx. The baseline is the direct LOS between transmitter of opportunity
and receiver and the bistatic angle (β) is its opposing angle in the Tx-Tg-Rx triangle.
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Table 1.1: Extensive list of full-polarimetric bistatic missions, platforms and experiments.
Acronyms: spaceb = spaceborne, airb = airborne, groundb = ground-based, acq. = acquisition.

Bistatic config. Ref. Acq. Year Tx System
(Institution, Country)

Rx System
(Institution, Country)

Acq.
Band

Geometries capable of large bistatic angles (β>10◦):

spaceb-airb [17, 18] 2011 TerraSAR-X (DLR, Germany) F-SAR (DLR, Germany) X

spaceb-groundb [19, 20] 2009 TerraSAR-X (DLR, Germany) Hitchhiker
(University of Siegen, Germany) X

[21] 2019 ASTRA 1KR, DVB-Satellite(2)
(SES Astra, Luxembourg)

SABBIA
(Fraunhofer FHR, Germany)

Ku

airb-groundb [22, 23] 2007
2017

Ingara
(Australian Defence Science

and Technology Organisation)

passive Rx
(Australian DSTO)

X
L

groundb-groundb [24] 2010 TARA (Technical University of Delft) PARSAX (TU Delft, Holland) S

Geometries with smaller bistatic angles (β≤10◦):

airb-airb [25, 26, 27] 2018 BelSAR (MetaSensing, Belgium) BelSAR (MetaSensing, Belgium) L

Quasi-monostatic:

spaceb-spaceb [28] 2010 - ongoing TerraSAR-X (DLR, Germany) TanDEM-X (DLR, Germany) X
[29, 30, 31] 2022 - ongoing LuTan-1A

(Chinese Space Agency, China)
LuTan-1B

(Chinese Space Agency, China)
L

airb-airb [32, 33] 2017, 2021 N-SAR & N-SAR-SG
(Nanjing Research Institute, China)

N-SAR & N-SAR-SG
(Nanjing Research Institute, China)

L, P,
X, Ku

groundb-groundb [34] 2018 Tx unit (Tohokun University, China) OEFS-Rx (Tohokun University, China) C

[35, 36, 37] 2020 KAPRI-Tx
(GAMMA Remote Sensing, Switzerland)

KAPRI-Rx
(GAMMA Remote Sensing, Switzerland) Ku
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1.2.3 Bistatic polarimetric diversity

Table 1.1 contains a list of bistatic full-polarimetric experiments extracted from
literature. They are grouped by the location of transmitter and receiver and the bistatic
angle (as specified directly in each resource or indirectly, by mentioning slant range
and baseline). A threshold value of β=10◦ for separating between classes with larger
and smaller bistatic angles is considered. Nonetheless, there is no consensus in the
literature regarding an exact threshold value for β.

The TerraSAR-X (TSX) / TanDEM-X (TDX) couple has played a pioneering role in
the spaceborne area. It essentially features a quasi-monostatic implementation with
bistatic angles smaller than 1◦ across an acquisition. The low separation between the
two satellites has been imposed by the mission’s main objective, as the couple forms
a one-pass interferometer. Full-polarimetric bistatic acquisitions performed in a second
phase of the missions have allowed a larger across-track baseline separation, of around
70 km (i.e., in the Pursuit Monostatic (PM) working mode) [38]. From early 2022,
another similar quasi-monostatic PolInSAR mission has been launched by the Chinese
Space Agency [39]. The LuTan-1 (LT-1) comprises two identical satellites carrying
full-pol SAR instruments [31].

Three other spaceborne-spaceborne bistatic/multistatic SAR platforms are to be
launched before 2030. While two of the projects will continue the legacy of quasi-
monostatic implementations, one will provide observations from a truly bistatic con-
figuration (with expected bistatic angles larger than 20◦). The instruments will also
include some type of polarimetric diversity: full-pol capabilities for the quasi-monostatic
geometries and dual-pol for the bistatic mission. The main characteristics of the future
bistatic missions are presented in Table 1.2. These examples indicate the current phase
of technological advancements in microwave remote sensing. As so, it is now possible to
combine bistatic and polarimetric diversities, even for spaceborne-spaceborne implemen-
tations. The thesis aims to aligns with modern interests in bistatic radar polarimetry.

Table 1.2: Future spaceborne-spaceborne missions to combine bistatic and polarimetric diversities.

Name Ref. Acq. Band Inst. Mission and system description

Large bistatic angles:

Harmony [40, 41] C-Band ESA

• one Sentinel-1 satellite as opportunistic Tx;
• two passive payloads as bistatic Rxs (250 km along-track

between Tx and each Rx);
• dual-polarimetric diversity;
• estimated launch: 2029.

Quasi-monostatic:

Tandem-L [42] L-Band DLR

• two SAR sensors with configurable formation flying;
• tests new advancements in antenna and feeding design;
• dual/full-polarimetric diversity;
• estimated launch: 2025.

High Resolution Wide
Swath (HRWS)

[43, 44] X-Band DLR

• follow-up mission of TanDEM-X.
• one opportunistic monostatic Tx;
• three passive transponder Rx companions (MirrorSAR

concept [45]);
• Rxs provide a single-pass multibaseline interferometric

capability;
• dual/full-polarimetric diversity;
• estimated launch: 2027.
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1.3 Scattering matrix

For any target illuminated inside the radar swath, a target is known to behave as a
polarization state modifier [46]:

Assumptions Set - 1.2.

I. The transformation of the incident electric field (Ei) into the scattered
electric field (Es) is a linear operation.

Given a generic (i.e., unspecified X-Y) set of polarization bases, the change between
components of the incidence and scattering fields is performed through the scattering
matrix, S∈C2×2:

[
EX
s

EY
s

]
=

[
Sxx Sxy
Syx Syy

][
EX
i

EY
i

]
. (1.12)

Figure 1.6: Full-polarimetric radar observations.

For an element Sxy of the matrix, X represents the receiving polarization and Y
is the transmitting one. When having a double index (Sxx or Syy), the element is
known as co-polar, while otherwise as cross-polar. The Tx and Rx instruments can
be manufactured to use basis combinations different from linear (e.g., circular, hybrid),
case in which the scattering matrix will be expressed accordingly. Nowadays, the
complex elements of S represent the primary measurement output of a polarimetric
system. The total power (or span) of a generic scattering matrix is 1

∥S∥2F = |Sxx|2+|Sxy|2+|Syx|2+|Syy|2. (1.13)

Targets are broadly described by having either a deterministic or a nondeterministic
scattering response. A deterministic target has a polarization response stable in
both space and time, which is completely characterized by a scattering matrix. It
is equivalently called a single scatterer. Alternatively, the scattering response for a
nondeterministic target does not remain stable and is modelled by using stochastic
processes. The literature resources use the nomenclature of partial/distributed target
(physically, the scatterer has dimensions which span multiple resolution cells), as well
as that of depolarizing target ([47], Table 1 in [48]).

1Frobenius norm: ∥A∥F =
(∑n

i,j=1|aij|
2
)1/2
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(a) (b)

Figure 1.7: Scattering alignment conventions. (a) Forward Scattering Alignment. (b) Backscatter
Alignment.

With fully polarimetric measurements, the complete 2 × 2 complex matrix is
obtained at each pixel. With dual-pol acquisitions, the equipment can measure only
one column or the diagonal elements of the matrix. As so, full-polarimetric data has
a diversity order equal to 4, while this is equal to 2 for dual-pol diversity.

The study of transformations undergone by this matrix and its ability in distinguish-
ing between different type of scattering processes is at the core of the current thesis.

1.3.1 Forward Scattering Alignment (FSA) and Backscattering (BSA)

Valid in all domains using wave polarization, (1.12) expresses the connection between
the two Jones vectors of the incident and scattered waves, EJi andEJs. For example, this
is especially relevant for optical polarimetry or other domains for which the polarization
is exclusively wave-oriented (i.e., it is a property of only the incoming electromagnetic
signal, measured by a passive system). In this domain, the standard alignment of
incident and scattered wave vectors with respect to a target located at the origin of
an x−y−z coordinate system is as shown in Fig. 1.7(a). It is known as the Forward
Scattering Alignment (FSA). The scattering matrix is known as the Jones matrix.

However, in radar polarimetry the polarization is a property of both the incoming
electromagnetic signal and of the active device which emits the radar signal and
performs measurements. As suggested by the IEEE Antenna Standards, the polarization
of an antennas is that of the wave it radiates, which implies that in the receiving
case, the "coordinate systems used to describe the polarization of the antenna and
the incoming wave are oriented in opposite directions" [2]. As so, there is a second
convention in radar, known as the Backscatter Alignment (BSA) [4], referred to as
the antenna-oriented convention. Fig. 1.7 compares the FSA and BSA geometric
representations, with linear vertical (V) and horizontal (H) polarimetric bases. The
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incident direction of the incoming plane wave is given by k̂i and the scattering
directions are k̂fs or k̂bs for forward scattering and backscattering, respectively.

Versors v̂ and ĥ are the unit polarization vectors for the V and H components.
When the BSA convention is used, the scattering matrix is called the Sinclair matrix.
In the framework of this convention, compared to the optical one, the scattered versor
is geometrically oriented as from the antenna to the target, i.e., a reversal of 180◦ from
the general right-handed FSA convention. A simple mathematical connection has been
established between the Jones and Sinclair matrices, but it was recently shown to be
valid only under linear H-V polarization [49].

1.3.2 The monostatic simplification

Using the BSA antenna-oriented polarimetric base definition in both emission and
reception conserves the symmetry of the measurement system.

In the monostatic case, the propagation LOS distance is the same between Tx
and Rx. With the same polarimetric base definition in both emission and reception
and under Assumption 1.2.I (which unless otherwise stated is implicitly considered
in PolSAR), the two cross-polar components of the scattering matrix are equal (for
example, Svh = Shv in linear polarization). This is known as the PolSAR reciprocity
theorem. The resulting 2×2 scattering matrix is mathematically complex symmetric,
S=S

⊺. In this context, the preferred term in radar for ’symmetric’ is ’reciprocal’, in direct
resemblance to the microwave’s domain network theory. As a result, when referring to
the scattering matrix, these two terms will be used interchangeably in the current thesis.

The reciprocity property provides important algebraic simplifications, which
will be discussed through the manuscript. Because of this, the monostatic radar
scattering matrix is exclusively described through the BSA geometric convention and
the reciprocity is generally assumed. In order to avoid any exceptions from reciprocity,
some monostatic applications perform as preprocessing step the symmetrization of
the scattering matrix [50, 51, 52]. In other applications, obtaining the symmetric
scattering matrices of elementary targets or natural media [53] from nonreciprocal,
usually noise corrupted, measurements serves as a calibration procedure.

With data free of calibration errors, the monostatic reciprocity is still based on a
set of assumptions, to be collectively met, regarding the: (a) geometry of the radar
system (i.e., equality of propagation paths for the EM waves between Tx-Tg and
Tg-Rx), (b) isotropic properties of propagation medium, (c) nature of target, (d) use
of BSA convention. Under monostatic geometries, the scattering matrix may no longer
verify reciprocity for example with:
- special ionospheric conditions which introduce noticeable Faraday rotations for
satellite PolSAR acquisitions [54];
- targets of nonreciprocal materials (e.g., magnetized plasma, ferrite materials). This
is however a rare case, different from that of most geophysical elements from inside
a scene [53].
- use of FSA wave-oriented convention.
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Finally, the reciprocity is no longer claimed for bistatic acquisitions. In this case,
both BSA and FSA conventions can be used. One may claim that using the BSA in
both monostatic and bistatic is the natural decision, providing this way a common
reference framework for the radar domain. Difficulties arise however with respect to
the mathematical apparatus needed for consimilarity transformations of non-reciprocal
scattering matrices. This has been a topic so far not covered in PolSAR and to which
the current thesis provides contribution. The algebraic framework presentation starts
in Subsection 1.3.3. Chapter 2 will provide a close-up investigation into the matter.

Henceforth, (·)T , (·)∗ and (·)
H

are the transpose, complex-conjugate and
complex-conjugate transpose operators.

1.3.3 Similarity and conjugate similarity transformations

Under the BSA convention of the radar domain, the scattered wave vector is represented
in the coordinate system with an opposite orientation (i.e., from the receiving element
to the target, Subsection 1.3.1) [4]. As the vector on the receiving path is reversed
in direction, this will mathematically be modeled by a conjugation operation. Given
a Jones vector propagating in the k̂ direction, the relation with the Jones vector of the
wave having identical polarization and propagating in the opposite direction −k̂ is [9]:

EJ+=E∗J−. (1.14)

In this regard, the basis change relations of the two conventions (BSA vs. FSA) are
quite different [55, 56]. This is generally presented as the contrasting example between
Radar Polarimetry (under BSA) and Optical Polarimetry [48]. While the latter operates
with similarity transformations performed on the Jones matrix, the former operates
with conjugate similarity transformations performed on the Sinclair matrix.

Before moving further, a short description and comparison of the two mathematical
operations is necessary.

Between three complex matrices A,B,C∈Cn×n, two types of equivalent relations
are possible, the similarity and conjugate similarity, as defined in Table 1.3. Matrices V
and X∈Cn×n are referred as the similarity and consimilarity transformation matrices.
However, using a real matrix X ∈ Rn×n (e.g., an orthogonal rotation matrix), the
consimilarity operation changes into a similarity one.

Table 1.3: General equations of similarity and consimilarity.

similarity con(jugate) similarity

AV=VB AX=X∗C

A proper choice of transformation matrices may allow for the diagonalization under
similarity and conjugate similarity:

Λ=V−1AV (1.15) Γ=(X∗)−1
AX (1.16)

For V unitary (i.e., V
H

V=VV
H

=V−1V= In×n and det(V) = 1) (1.15) is a unitary
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similarity transformation: Λ=V
H

AV. If Λ is in diagonal form, matrix A is said to
be normal. This is well-known as an eigen-decomposition, with the elements on the
diagonal of Λ as eigenvalues and the columns of V as eigenvectors. Correspondingly,
the diagonalization through consimilarity is used to obtain con(jugate)-eigenvalues
and con(jugate)-eigenvectors.

Table 1.4: Eigenvalues/Eigenvectors and conjugate counterparts.

eigenvalue/eigenvector coneigenvalue/coneigenvector

Avn=λnvn Axn=ξnx
∗
n

Under the influence of Kennaugh’s works, the methodology of basis change has
been linked in radar polarimetry, for a long time, to that of finding the optimal
polarization for a given scattering matrix (or, finding the states for which the radar
receives minim/maximum power on certain directions) [57, 58]. Usually, the optimum
condition refers to maximizing the power of the co-polar channels along making the
cross-polar components zero, which is nonetheless the diagonalization of the scattering
matrix through a consimilarity basis transformation operation. This is exploited, for
example, by the Huynen-Euler multiplicative decomposition (Subsection 1.4.2).

With optical systems, i.e., under the FSA convention, the change of basis if
performed using the standard similarity operation [59].

1.3.3.1 Conjugate similarity and unitary congruence

It is mathematically proven that for a complex symmetric matrix A in (1.17), the
transformation matrix X is unitary [60]. Then, such unitary consimilarity is equivalent
to a unitary congruence transformation:

Γ=(X∗)−1AX=(X−1)∗AX

=(X
H

)∗AX=X
⊺
AX.

(1.17)

Both the conjugate similarity transformation and the ability to claim the symmetry
of the monostatic scattering matrix S are by-products of imposing the BSA convention.
The second weakens the first, so that monostatic scattering matrices verifying reciprocity
are diagonalized under unitary congruence [61, 62, 63]. While this is distinct from the
well-known unitary similarity diagonalization, the computation is always possible and
the mathematical formalism is available in PolSAR from the early works of Graves [64].
As emphasized in the thesis, this is not the case for the general consimilarity operation.

The method used to determine the elements of the unitary congruence diagonaliza-
tion (transformation and diagonal matrices) will follow after a short literature review.
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1.3.3.2 Consimilarity in PolSAR

This subsection highlights some of the confusions surrounding the radar-oriented
representation, with respect to: (a) naming inaccuracies and (b) interpretations of
the physics of the scattering process described through the consimilarity operation.

(a) In radar polarimetry, due to its many influences from antenna theory, microwave
networks or signal processing domains, to name only a few, algebraic constructs
are borrowed from these domains with exact or adapted terminology. Due to
such branched inheritance the terminology may be confusing and not follow the
one in standard mathematics.

The conjugate similarity equation is addressed in many ways throughout
the literature, and unfortunately, sometimes in misleading or omissive terms.
Moreover, the solutions proposed are usually applicable only under the reciprocity
equivalence. In light of all such contradictions in the radar literature, Hubbert
suggest to use only the optical convention, performing always the FSA-equivalent
transformation and then solving any algebraic problem directly through similarity
[55]. Nonetheless, the proposed framework is not general as it is based only on
linear H-V measurements.

The earlier works of Graves (1958, [64]), Payne (1968, [65]) and Huynen
(1970, [66]), have investigated to provide a diagonal form for the symmetric
scattering matrix. While they offer the transformation equation in conjugate
similarity/unitary congruence, they then refer to the decomposition using very
common terms as "eigenvalue decomposition" and for the products those of
"eigenvalue(s)" and "eigenvector(s)/eigenpolarization(s)". While former studies
have in some cases adopted the same notation, others use terms as "Kennaugh
eigen-values/vectors" [55], "pseudoeigen-values/vectors" [58, 67], or "Kennaugh
pseudoeigen-values/vectors" [68] to provide a differentiation in nomenclature.

More recent works make another type of omission: they claim to compute
the coneigenvalues/coneigenvectors via "conjugate similarity" or "conjugate
diagonalization" even when the scattering matrix is explicitly symmetric [50].

(b) On the other hand, it appears there is currently no consensus in the literature
for the adequate formalism interpretation of the polarimetric radar consimilarity
operation.

Lüneburg et al. start from the concept of directional polarization vectors,
eq. (1.14), and interpret the conjugate similarity transformation as a time
reversal operation, i.e., an operation described by an antilinear operator. The
antilinear operator connects the conjugate propagation spaces for the transmitted
and received electric fields, travelling in opposite directions. As part of this
mathematical formalism, the Sinclair matrix becomes just the antimatrix or the
matrix of the antilinear operator [69].

Bebbington et al. oppose such understanding and proposes instead the use of
the spinorial formalism under the radar backscattering convention [70].
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1.3.3.3 Solving unitary congruence diagonalization and connections to SVD factorization

The unitary congruence factorization (1.17) is sometimes referred to, as the
Autonne-Takagi factorization. The terms from the decomposition are the Takagi
(diagonal) values and the Takagi vectors. It is known that all complex symmetric
matrices are Takagi-diagonalizable [71] and the Takagi factorization is applied only
to symmetric complex matrices. This operation is also used, for example, in particle
physics for the diagonalization of the complex symmetric mass matrix. Other domains
in which the decomposition is relevant are mentioned in [72].

In PolSAR, Graves introduces the polarization power scattering matrix, also known
as the Graves matrix, G:

G=S
H

S (1.18)

=

[
|Sxx|2+|Syx|2 Sxx·S∗xy+Syx·S∗yy

Sxy ·S∗xx+Syy ·S∗yx |Syy|2+|Sxy|2
]
.

Graves argues that without a phase difference, decomposing this Hermitian matrix
offers the same polarimetric information as the (monostatic) reciprocal scattering
matrix [64]. He refers nonetheless to the possibility of obtaining the vectors and
diagonal values of the unitary congruence transformation directly from matrix G. With
symmetric scattering matrices, S=S

⊺, the eigenvalues of G=S
H

S=S
⊺∗
S=S∗S are

the squared absolute values of the coneigenvalues and its eigenvectors are equal to the
coneigenvectors [73]. However, according to [68, 71], in the degenerate case (equal
eigenvalues of G), the eigenvalue decomposition of the Hermitian G matrix does no
longer solve the Takagi factorization.

The unitary congruence of symmetric scattering matrices can also be interpreted
as a special form of the Singular Value Decomposition (SVD), i.e., as a symmetric SVD
(SSVD).

Every complex matrix A1∈Cn×n admits an SVD

A1=V1,1Σ1V
H

1,2, (1.19)

and every complex symmetric matrix A2∈Cn×n admits an SSVD [74]:

A2=QΣ2Q
⊺
, (1.20)

where Q,V1,1,V1,2 ∈ Cn×m are distinct unitary matrices with singular vectors as
columns , while Σ1,Σ2 matrices are diagonal and contain real, non-negative elements,
known as the singular values, Σ=diag(σ1,...,σn). Singular values are usually sorted in
ascending/descending order and the singular vectors are sorted accordingly.

From (1.17) and (1.20), the unitary congruence is indeed a SSVD (Fig. 1.8), given
Q=X∗ and Σ1=Γ:

A=
(
X

⊺)−1
ΓX−1=

(
X

H
)⊺

ΓX
H

=X∗Γ(X∗)
⊺
. (1.21)
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Figure 1.8: Conjugate similarity and SVD operations for reciprocal and nonreciprocal scattering
matrices.

Combining the definition of the Graves matrix (1.18) with that of the SSVD (1.20):

G=
(
QΣSQ

⊺)∗(
QΣSQ

⊺)
=Q∗Σ∗

SΣSQ
⊺
=Q∗GΣS

Q
⊺ (1.22)

=XGΣS
X

H

=XGΣS
X−1 (1.23)

Matrix GΣS
contains the eigenvalues of G, which are no others than the squared

singular values. We conclude that for the case of symmetric scattering matrices, the
singular values of S are equal to the absolute values of the coneigenvalues.

For general scattering matrices S≠S
⊺, it remains true that a squared relation exists

between the eigenvalues of the Graves matrix and the singular values of S (1.33). The
eigenvectors are the left singular vectors, but there is no longer a connection with the
general coneigenvalues and the general coneigenvectors.

G=V2Σ
H

V
H

1V1ΣV
H

2=V2Σ
H

ΣV
H

2=V2GΣV
−1
2 (1.24)

Changing a nonreciprocal scattering matrix (under BSA) into a new, distinct basis
representation (diagonal or not) requires the use of two complex conjugate basis
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transformations which solve the conjugate similarity operation (1.16). As seen, when
the transformation matrix X remains unitary, the general conjugate similarity equation
is a particular form of SVD, i.e., an SSVD. The transformation vectors are linearly
independent and orthogonal. Nonetheless, the two transformations are no longer
related when X is not unitary.

Until now, there has been little investigation in polarimetric radar of the general
conjugate similarity transformation (i.e., for nonreciprocal scattering matrices). For
the bistatic case, the SVD transformation is proposed in the literature. This allows the
diagonal decomposition of the scattering matrix by means of two unitary transforma-
tions, one characterizing the Tx-Tg path and one the Tg-Rx path [75, 76]. Two sets
of orthogonal basis vectors are used. With the consimilarity operation, a restriction
of the model is that the two transformation matrices on each path are conjugate pairs.

However, transforming nonreciprocal matrices through the general conjugate sim-
ilarity may be different in some regards, as there should be matrices condiagonalizable
but not by a unitary transformation (nonorthogonal set of basis vectors) and even
matrices for which the consimilarity is verified, but not under a diagonal form. From a
physical point of view, different properties of the target and propagation medium may
not allow for preservation of the unitary property of transformation matrices associated
to the monostatic/bistatic propagation paths. The investigation of the general conjugate
similarity may contribute with new information in the analysis of scattering matrices.

1.4 Coherent decompositions

The information potentially contained in multi-polarization observations is exploited
using decomposition techniques, which form a core theory in PolSAR. These techniques
are used to separate the polarimetric signature captured by the radar instruments into
a combination of simpler scattering responses, to which a physical significance can be
associated. They are divided into coherent and incoherent methods. Distinctively, these
decomposition methods are used with different types of scatterers, which then imposes
different types of input variables. These are the scattering matrix (for single scatterers)
and the second order statistics (i.e., coherency or covariance matrices - Section 1.5)
of the scattering vector (for distributed targets).

Sections 1.4 and 1.5 will cover an elementary introduction of PolSAR coherent and
incoherent decompositions, with the analysis deliberately restricted to methods which
are relevant for the thesis.

The coherent methods are divided into two main classes, as they can decompose the
scattering matrix via a summation or a multiplicative factorization [4]. The most well-
known coherent decompositions are displayed in Fig. 1.9. We separate them consider-
ing on one side, their factorization type and on the other, their applicability to the decom-
position of reciprocal and nonreciprocal scattering matrices. This is to say, we take into
account the utility of these methods for both monostatic and bistatic scattering matrices.

The main developments proposed by the thesis are linked to the branch of coherent
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decompositions. More precisely, the contributions rely on the use of multiplicative
factorization methods adequate for both reciprocal and nonreciprocal scattering
matrices (e.g., the polar decomposition).

SUMMATION MULTIPLICATIVE

• Krogager

RECIPROCAL + 
NONRECIPROCAL 

SM

RECIPROCAL SM• Huynen-Euler 

• Polar

• Huynen SVD

• Lexicographic
• Pauli 

• Cameron

Figure 1.9: Classification of coherent decompositions.
Horizontal axis: factorization type (summation and multiplicative).
Vertical axis: applicability to reciprocal and nonreciprocal scattering matrices.
Acronyms: SVD: Singular Value Decomposition.

1.4.1 Summation decompositions

A summation decompositions uses a predefined alphabet basis of elementary matrices:

S=

[
Sxx Sxy
Syx Syy

]
=

N∑
i=1

kB,iΨB,i. (1.25)

Set {ΨB} contains the algebraic bases and the corresponding coefficients are kB,i,
i∈ [1,N]. The base matrices usually acquire the interpretation of elementary scattering
responses.

The principal PolSAR summation decompositions are: lexicographic , Pauli
[77], Krogager [78] and Cameron [79, 80]. The lexicographic and Pauli propose
conventional basis representations, common to all scientific fields which use 2× 2
(complex) matrices. While the first three methods can be used with both reciprocal
and nonreciprocal scattering matrices, the Krogager model has been proposed only
for reciprocal scattering matrices (Fig. 1.9).

In [81, 82], a three component scattering model is suggested for symmetric
scattering matrices, which can be restricted to obtain both the Krogager and the
Cameron decomposition.

The set of Pauli coefficients
{
kP,1,kP,2,kP,3,kP,4

}
in Table 1.5 are generally complex

numbers. The Pauli bases, σi, have a physical scattering interpretation, as follows: odd
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Table 1.5: Target scattering vector models lexicographic and Pauli basis.

Lexicographic {ΨL}
{[

1 0

0 0

]
,

[
0 1

0 0

]
,

[
0 0

1 0

]
,

[
0 0

0 1

]}
kL,i, i∈ [1,4] Sxx,Sxy,Syx,Syy

Pauli {ΨP}={σi}
{[

1 0

0 1

]
,

[
1 0

0 −1

]
,

[
0 1

1 0

]
,

[
0 −j
j 0

]}
kP,i, i∈ [1,4] 1√

2
·
(
Sxx+Syy√

2
,
Sxx−Syy√

2
,
Sxy+Syx√

2
,
j(Sxy−Syx)√

2

)

bounce, even bounce, diffused and asymmetric scattering mechanisms. Only the first
three components are used in decomposing a reciprocal scattering matrix (i.e., kP,3
associated to the asymmetric scattering equals zero).

1.4.2 Multiplicative decompositions

The second type of methods for the decomposition of the scattering matrix use a
multiplicative factorization. They rely on elementary algebraic operations (e.g., di-
agonalization) to extract the decomposition factors. Subsequently, product matrices are
expressed using parameters which can interpreted the scattering properties of targets.

■ Huynen
An important reference in PolSAR is the thesis and the early work of J.R. Huynen
[66]. In search of an effective method to characterize the maximum polarization
return from a coherent target, Huynen writes a model based on the unitary
congruence transformation (Section 1.3.3.1) and proposes a factorization which
is equivalent to a diagonalization operation for the case of symmetric matrices.
The transformation matrix of unitary congruence is constructed via two matrices:
one real rotation (R) and one elliptical rotation (T). Given that there exists a
third matrix of complex phases, the transformation is also interpreted as the
product of three elementary Euler rotation matrices and a diagonal matrix. As
so, it is referred by different nomenclatures in the literature: directly Huynen
or Huynen-Euler [83, 84] or Euler [85] and sometimes Kennaugh-Huynen [86].
Equation (1.20) transforms into (1.26):

S=QSdQ
⊺
=R(ϕ2)T(τ2)SdT(τ1)R(−ϕ1) (1.26)

Sd=

[
m·e2j(ν+ρ) 0

0 m·tan2γ ·e−2j(ν−ρ)

]
=

[
µ1 0
0 µ2

]
(1.27)

R(ϕ)=

[
cosϕ −sinϕ
sinϕ cosϕ

]
(1.28) T(τ)=

[
cosτ −jsinτ

−jsinτ cosτ

]
(1.29)

For the monostatic case, ϕH = ϕ1 = ϕ2 and τH = τ1 = τ2. To obtain the Huynen
parameters (m,γ,ν,ϕH,τH,ρ), one must solve the congruence unitary inversion.
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This is usually done from Grave’s eigendecomposition ( Subsection 1.3.3.3).
Dallman et al. propose to extract the parameters using a technique based on the
Kennaugh matrix [87].
The extension of the Huynen method for the bistatic case (i.e., asymmetric
scattering matrices) is inspired by the SVD factorization. However, it is important
to emphasize that it is not the general complex SVD equation in (1.19) which is
used by the proposed transformation in [75, 88, 89], but the particular real form:

S=Q1ΣdQ
⊺
2. (1.30)

An increased number of parameters is used by this decomposition as the rotation
and ellipticity angles are now distinct for the transmission {ϕ1=ϕT , τ1=τT} and
reception {ϕ2=ϕR, τ2=τR} paths.

■ Polar
Any complex square matrix A ∈ Cn×n can be decomposed using the polar
decomposition as the product of two factors: one unitary and one Hermitian.
There exist two different forms, with (1.31) being known as the right polar
decomposition and (1.32) as the left polar decomposition:

A=UH (1.31) A=KU, (1.32)

where U ∈Cn×n verifies UU
H

=U
H

U= I and is the nearest unitary matrix to
A (in any unitarily invariant norm1, as argued in [90, 91]). It is possible to
write the Hermitian factors (H

H

= H and K
H

= K) of the right/left forms as:
H=

√
A

H

A and K=
√

AA
H

. If A is a normal matrix (i.e., it verifies A
H

A=AA
H

),
it immediately follows that H = K. For all other A matrices, A

H

A is similar
to AA

H

. This means that H and K are themselves similar (i.e., have the same
eigenvalues and the same number of independent eigenvectors). By using the
properties of the unitary U factor, it is possible to transform from one expression
to the other, as follows: A = UHU

H

U = (UHU
H

)U = KU. As a result, K =
UHU

H

= UHU−1, which is the similarity equivalence.
Irrespective of choosing (1.31) or (1.32), the Hermitian term is always unique,
while the unitary term is unique only if the decomposed matrix is non-singular.
The general interpretation of the two factors is as follows: the unitary factor
performs a rotation, while the Hermitian factor acts as a stretching/deformation.
From a mathematical perspective, the polar decomposition has a close connection
to the SVD, from which it can be computed.
For the right polar decomposition, the Hermitian factor is the matrix square
root of the Graves power matrix G. In the case of a symmetric scattering matrix,
given the eigendecomposition H=VHΛHV

H

H, the eigenvalues diag(ΛH) of H
are none others than the Takagi factors/unitary coneigenvalues/singular values
(Subsection 1.3.3.3). Equation (1.20) then becomes:

1i.e., a norm satisfying ∥A∥=∥UAV
H
∥
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S=QΣQ
⊺
=V∗

H
(
V

⊺
HUVH

)1/2
ΛH

[(
V

⊺
HUVH

)⊺]1/2
V

H

H (1.33)

The unitary Q transformation matrix of SSVD is a combination of the two unitary
matrices from the polar decomposition: matrix U and the eigenvector matrix
of H [92].
We further exploit the polar decomposition technique in Section 3.

1.4.3 Target scattering vector

S.R. Cloude has proposed the target scattering vector as a new and equivalent character-
ization of the scattering matrix, in his PhD thesis (1986) [77]. Some of the summation
(e.g., Cameron [79]) and multiplicative (e.g., Huynen [89]) coherent decomposition
methods have used equivalent vector forms to speed up algebraic computations.

The vectorization operation can be interpreted as a function, Vect:C2×2 →C4×1,
which projects the scattering matrix S into the set {Ψ} of N basis functions.

k=Vect(S)=
1

2
Tr(SΨ) (1.34)

An important property of the target scattering vector is that it conserves the span (i.e.,
total power) of the original scattering matrix.

I. Full-polarimetric data
The two elementary representations of the target scattering vector are based on
the lexicographic and Pauli summation decompositions.

■ For bistatic observations, the target vectors kL4,kP4 are directly obtained
by column concatenation of the decomposition coefficients when basis sets
{ΨL} and {ΨP} are used (Table 1.5).

■ For monostatic observations, only the first three coefficients in the Pauli
decomposition are nonzero. Because of this, the (column) target vector has
different dimensions, (3×1) vs. (4×1), for the monostatic and bistatic cases,
respectively. To comply with the power conservation property, the linear
polarization monostatic lexicographic and Pauli target vectors are:

kL3=
[
Shh,

√
2Shv,Svv

]⊺
kP3=

1

2

[
Shh+Svv,Shh−Svv,

√
2Shv

]⊺
(1.35)

In the rest of the chapter, the alphanumerical subscript of the target vector
(L or P) and (3 or 4) is used to specify the algebraic basis and the number of
elements in the vector.
Starting from the two elementary forms, the scattering vector has been expressed
using PolSAR-relevant parameters. Such models distinguish themselves by com-
bining elements of both summation and multiplicative coherent decompositions.
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The vector’s coefficients are obtained as from a summation model, but each of
them is expressed using parameters derived from a multiplicative decomposition.
The most well-known examples are indexed in Table 1.6.
The vectorization operation is sometimes expressed using the Kronecker product
[93]. For example, the Huynen [89] and polar decomposition vectorizations (in
lexicographic basis) are simply:

kHuynenL4
=(R(ϕ2)⊗R(ϕ1))(T(τ2)⊗T(τ1))kL4(Sd), (1.36)

kPolarL4
=(I2⊗U)(I2⊗H)kL4(I2). (1.37)

Table 1.6: Other PolSAR full-polarimetric target scattering vector models.

Name Ref.
SM bases

Parametrization
polarimetric algebraic {Ψ} model

Scattering matrix parametrization:

TSVM [50] linear Pauli Huynen-Euler
BiTSVM [86] linear Pauli Huynen SVD
Unitary eigenvector matrix parametrization:

α/β [94] linear Pauli or
lexicographic

α−β−γ−δ

ψ-Ω-Φ-LS [95] circular lexicographic α−β−γ−δ

II. Dual-polarimetric data
For dual-polarimetric measurements, irrespective of having a monostatic or
bistatic geometry, the target scattering vector has uniquely a (2×1) dimension.
However, because of the different number of degrees of liberty assumed by
monostatic and bistatic measurements, the loss of polarimetric information may
be different. General monostatic dual-pol cross-channel data will be more closely
related to standard monostatic measurements [96].
General dual-polarimetric data contains either both the co-polarimetric channels
or one of the two cross-polarimetric sets. In the case of linear polarization, there
exist 3 possible dual-pol combinations: HH-VV, HH-VH and VV-HV.
Only the double co-pol HH-VV scattering vector can be represented in both
lexicographic and Pauli basis [97]:

kL2,co−pol=[Shh,Svv]
⊺

kP2,co−pol=
1

2
[Shh+Svv,Shh−Svv]

⊺
(1.38)

1.5 Incoherent decompositions

The scattering response of partial targets is no longer relevant under pixel-level analysis.
Moreover, there is common knowledge that radar images (even single-channel) are
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affected by speckle. This phenomenon is modeled as a multiplicative noise and is
the result of coherent summation from all elementary scattering responses in one
resolution cell. The number of scatterers inside the resolution cell increases with
coarser resolution and as the features/roughness of scatterers have dimensions
comparable to the wavelength.

Under these circumstances, the multi-channel PolSAR data has a stochastic nature
and pertinent analysis tools involve the computation of higher order moments. In what
concerns the statistics of the target scattering vector, the subsequent assumptions are
implied:

Assumptions Set - 1.3.

I. The PolSAR multivariate target vector is modeled by a jointly Gaussian
complex random vector, having zero mean and completely described
as a second order stochastic process.

In the light of these assumptions, the most elementary statistical model used for the
target scattering vector is that of zero-mean circular Gaussian [98]. The assumption
of circularity completes 1.3.II, so that the second order statistics are entirely described
by a covariance matrix [99]. Having two elementary models of the target vector
(lexicographic and Pauli), incoherent PolSAR processing distinguishes between the
Hermitian forms of covariance (C) and coherency (T) matrices:

C=E
{
kLk

H

L

}
(1.39) T=E

{
kPk

H

P

}
(1.40)

Then, the probability density function (pdf) associated to the (lexicographic) target
vector is [9]:

p(k)=
1

πmdet(C)
exp
(
−k

H

C−1k
)
, (1.41)

where m={3,4} is the vector dimension. Previously, E{·} represents the expectation
operator.

With real data, the covariance/coherency are obtained using a Maximum Likelihood
(ML) estimator. Under the stationarity assumption, the expectation value can be
computed by ensemble average in a local window having L total pixels.

Ĉ=
1

L

L∑
i=1

kL,ik
H

L,i (1.42) T̂=
1

L

L∑
i=1

kP,ik
H

P,i (1.43)

It is assumed that L > m. Equations (1.42) and (1.43) are often referred as
polarimetric complex multilooking operations.

The estimated complex covariance 2 matrix is assumed to follow a (scaled) complex
2or coherency. Henceforth, the covariance and coherency matrices are assumed to have the same statistical properties.

This is implied whenever not addressed specifically in the text.
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Wishart distribution, with probability density function:

p
(
Ĉ
)
=
LqL
(
detĈ

)L−q
(detΣ)LΓq(L)

exp
(
−L·Tr

(
Σ−1Ĉ

))
, (1.44)

where Γq(L)=π
q(q−1)

2

∏q−1
i=0Γ(L−i), Γ(·) represents the standard Euler gamma function,

q is the covariance matrix order and Σ = E
{
Ĉ
}

. The model is valid as long as L≥q.
Finally, Σ may itself be estimated using a ML approach.

It it generally accepted that the Gaussian model for the target vector best describes
PolSAR data from: a) homogeneous regions or b) for which a large number of
elementary targets are present inside the resolution cells (under the applicability
of the central limit theorem). This is often the case for medium and low resolution
observations. For brevity in presentation, only the elementary models of multivariate
normal and Wishart pdfs are introduced here.

For high and very high resolution PolSAR data, there are two viewpoints proposed
by the literature:

(a) Non-Gaussian statistical modeling:

By far, this represents currently the common approach used in data analysis. As the
highly heterogeneous PolSAR data deviates from the usual Gaussian model, the use of
other probability distributions has proven necessary. A comprehensive presentation of
such statistical models is provided in [1]. For example, a popular model for the target
scattering vector of distributed targets, which allows to model heterogeneous clutter, is
that of the Spherical Invariant Random Vector (SIRV) [100]. Previous work has shown
that additional informational can be retrieved for the non-Gaussian scattering vector
by using, for example, blind source separation techniques which no longer impose
orthogonality [101, 98].

(b) Dominance of single scattering mecha-
nism:

As the actual number of physical targets decreases in high resolution acquisitions,
the scattering behavior may begin to resemble, for more and more pixels in the PolSAR
image, to that of single (i.e., coherent) scatterers. As a result, it becomes more and
more suitable to exploit a data analysis approach involving coherent decompositions.
This viewpoints is proposed, for example, in [95].

The work presented in the current thesis is based greatly on a coherent approach,
which may be seen as the direct influence of the second viewpoint. However, from
a practical implementation perspective, the direct use of coherent techniques is not
proper for distributed targets, as well as for dealing with the speckle effect. While
based on a coherent approach, the technique proposed in Chapter 3 incorporates
a geometric averaging stage, which allows it to be applied for practical clustering
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applications with real PolSAR data.

1.5.1 Entropy-alpha decomposition (monostatic/bistatic, quad-pol/dual-pol)

The entropy-average alpha angle method is based on an eigenvalue-eigenvector
decomposition of the coherency matrix. The spectral theorem assures all Hermitian
matrices are diagonalizable with real eigenvalues and the eigenvectors corresponding
to distinct eigenvalues are orthogonal. Moreover, the eigenvectors form an orthogonal
basis which spans the entire spectral space. In the followings, the possible dimensions
of the scattering vector are m={2,3,4} for dual-pol, quad-pol monostatic and quad-pol
bistatic observations, respectively. Then, the eigen-decomposition is:

Tm=VDmV
H

, (1.45)

where Dm = diag(λ1,...,λm) is a diagonal matrix with eigenvalues λi, i = 1,...,m (in
descending order). The sum of squared eigenvalues (or equivalently, the squared
Frobenius norm of vector [λ1,...,λm]

⊺
) is equal to the span.

Matrix V=[vm,1,...,vm,m] is the unitary (i.e., V
H

=V−1), m×m,m∈{2,3,4} matrix
of eigenvectors. Under the α−β−γ−δ parametrization, the eigenvectors of V are ex-
pressed using one of the forms in (1.46), depending on their dimensionm∈{2,3,4} [76]:

cosαie
jδ4,1

sinαicosβie
jδ4,2

sinαisinβicosγie
jδ4,3

sinαisinβisinγie
jδ4,4


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 cosαie
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v3

∣∣∣∣∣∣
[
cosαie

jδ2,1

sinαie
jδ2,2

]}
v2

(1.46)

The α,β,γ are angular values of the model, while δm,k are random phase values. The
eigen-decomposition allows the interpretation of coherency scatterer Tm as the sum
of m rank-1 matrices which occur with probability Pi (eq. 1.49).

1.5.1.1 Parameters definition and differences in plane partitioning

The Entropy-alpha classification scheme is, probably, the most well-known PolSAR
incoherent decomposition [94]. The entropy (H) is a measure used to describe the
randomness of a scattering target, while alpha (α) is the average of orientation angles
(αi,1≤ i≤m) from the eigenvectors’s parametrization (eq. 1.46). These parameters
are expressed as follows:

H=−
m∑
i=1

PilogmPi 0≤H≤1 (1.47) α=

m∑
i=1

Piαi 0◦≤α≤90◦ [deg.] (1.48)

Pi=
λi
m∑
j=1

λj

0≤Pi≤1; 1≤i≤m (1.49)
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With monostatic observations, the two parameters are known to be roll-invariant.
According to the definition in [102], a parameter of such type does not incorporate
the target’s orientation angle (measured with respect to LOS) and it’s value remains
constant even when such rotation of the physical object exists.

■ Entropy: H∈ [0,1],H∈R
A small value, close to zero, characterizes one dominant scattering mechanism
in the resolution cell, while a larger value, close to one, is the mark for a mixture
of m scattering mechanisms, all of similar power.

■ Average alpha angle: α∈ [0◦,90◦],α∈R
i. Quad-polarimetric

The extreme values of the α parameter are assigned to single-bounce (i.e.,
α=0◦) and double-bounce (i.e., α=90◦) mechanisms. These correspond to
surface and dihedral scattering, respectively. In between the two extremes, a
value α=45◦ shows the dominance of an oriented dipole mechanism which
corresponds in the physical world to volume scattering. However, the values
of α are not discrete, and the change in scattering mechanism is gradual. As
a result, [103] argues there exists up to a ±10◦ inherent statistical variability
for real world scatterers (the larger the entropy, the larger the uncertainty).

ii. Dual-polarimetric
For interpretation of the dual-pol α parameter, the polarimetric basis
combination (e.g., HH-VV, HH-HV, VH-VV) needs to be taken into account.
Nonetheless, results in the PolSAR literature suggest that with dual-pol data,
it is not always possible to extract the scattering mechanism from α and the
parameter possesses no longer the roll-invariant property [102, 104]. We
verify and confirm this observation in Subsection 1.5.2.1.

■ H−α Plane Space:
The values of the H and α parameters possess the advantage of offering a
certain physical interpretation of the scattering mechanism. As so, the two
parameters are combined to form a 2D Plane Space representation. The separation
of scattering mechanisms inside the plane is better when a dominant average
scattering mechanimsm exists inside the resolution cell [94] (i.e., discrimination
more reliable towards lower entropies). For orthogonal scattering mechanism,
there are bounds regarding the maximum and minimum alpha angles which can
be obtained for a given entropy. This restricts the interpretation for theH−α plane
space inside a feasible region [76, 98]. The curves separating between feasible
and unfeasible regions correspond to a particular type of coherency matrices. But
because the dimensions of the coherency matrix can change, different parametric
limits exist and the surface occupied by the feasible region changes as well. This
modification of boundaries of theH−α feasible space can be observed in Fig. 1.10.

i. Quad-polarimetric
Under this category, both monostatic and bistatic plane space representations
are possible. The difference between the two increases at higher entropies.
The feasible monostatic H−α plane space is divided by well-known limits
(Table 1.7) into 8 zones. To the best of our knowledge, there are no specific
limits proposed for the bistatic plane space.
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ii. Dual-polarimetric
The H-α dual-pol plane space is symmetric with respect to the center of
the alpha axis, α=45◦. This new arrangement in the plane space produces
an increase of the unfeasible area. In order to differentiate from the
full-polarimetric eigen-decomposition, the method or plane space are also
referred in the literature as H2α [105].
Multiple separations are proposed for theH2α plane space, with change even
between different dual-pol combinations. Some methods choose to preserve
the original segmentation of the plane into 9 classification zones (8 feasible +
1 unfeasible). Kegfeng et al. [96] propose only changes to partitioning limits,
with different optimal boundaries for HH-VV, HV-VV, HH-VH modes. This is
also the case for Ainsworth et al. [102], which proposes different limits for
the HH-VH plane space. In contrast, for data obtained under a slant 45◦ dual-
pol mode, Long et al. [106] divide the feasible plane space into 6 partitions,
corresponding to a smaller number of elementary scattering mechanism.

1.5.2 Application: Dual-polarimetric bistatic and monostatic VV-HV H-alpha
classification

The full-polarimetric bistatic diversity is of central focus in the current thesis. The
state of technological developments certainly indicates the bistatic geometry is to
become more and more common with future applications (Subsection 1.2.2). However,
from an implementation perspective, the dual-polarimetric diversity may offer an
appealing compromise, as it is the case with many of today’s monostatic systems. As
in the case of the Harmony mission [40], it is expected that the early and exploratory
bistatic systems will not be equipped with quad-pol capabilities. Another example is
with the TSX-TDX couple for which a full-polarimetric bistatic mode has been used
in one of the scientific phases of the missions [107], but the regular operating modes
have only single or dual-pol capabilities. At present moment, the available bistatic
dual-pol analysis use real data from underlying quasi-monostatic acquisitions (as with
TSX-TDX). We propose a short investigation, based on the H-α method and plane
space representation, to analyze a set of truly bistatic (i.e., large bistatic angle) dual-pol
acquisitions. The linear dual-pol VV-HV combination is available.

A synthetic example is discussed in Subsection 1.5.2.1 for illustrating, at first, some
differences and changes in interpretation between H-α plane space of monostatic full-
pol and restrained VV-HV dual-pol. Then, Subsection 1.5.2.2 focuses on the comparison
between dual-pol simultaneous VV-HV monostatic and bistatic data. The former is
acquired by a Sentinel-1 satellite and the latter by an opportunistic ground-based
receiver, with the two forming a bistatic geometry similar to the one in Fig. 1.5.

1.5.2.1 Example 1: Monostatic quad-pol vs. monostatic VV-HV dual-pol

For the current application, the boundaries used inside the H2α plane are the ones
proposed by K. Ji et al. [96] and shown in Table 1.7.
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Figure 1.10: Shape of feature space
(bistatic/monostatic/dual-pol) depending
on dimensions of target vector.

Monostatic quad-pol [76]
H: [0,0.5,0.9,1]

α:
L: [42.5◦,48◦]
C: [40◦,50◦]
R: [40◦,55◦]

Dual-pol HV-VV [96]
H: [0,0.69,0.94,1]

α:
L: [26◦,49◦]

C: [37.8◦,53◦]
R: [53.8◦]

Table 1.7: H−α Plane Space limits.

■ Synthetic example nr. 1 / non-zero entropy: 8 scatterers inside feasible zones
of monostatic quad-pol plane space
This example examines the translation of a set of eight scatters, originally
represented in each of the eight feasible zones of the monostatic full-pol H-α plane
space. The coherency matrices associated to each of these scatterers can be found
in Annex B. The matrices are originally proposed for a different example in [108].
They are scatterers of non-zero entropy. The translation in positions inside the
quad-pol and dual-pol plane spaces is shown in Fig. 1.11. For all eight scatterers,
a change (i.e., a decrease) in the α angle parameter is observed. The targets
having a high α angle are significantly affected. In terms of the entropy parameter,
while the values indeed change, the scatterers of low and high entropy preserve
their interpretation also in the dual-pol plane. For these scatterers, the newly
associated entropy value is an underestimation of the monostatic quad-pol entropy.
For scatterers of medium entropy, the translation inside the plane space is more
significant and dependent also on the value of quad-pol α. Scatterers of medium
entropy / low-medium α angles are reassigned towards the left-side of the plane
space and change interpretation as low-entropy targets. In contrast, the green
scatterer of quad-pol medium entropy / high α angle obtains a slight increase
in entropy and is redistributed towards dual-pol medium entropy / medium α.

■ Synthetic example nr. 2/ entropy free: 5 unoriented/oriented elementary scatterers
A set of 5 elementary scatterers (sphere, dipole, diplane, quarter-wave, helix)
are now considered. Their (normalized) monostatic scattering matrices are
well-known references in the PolSAR literature. These S matrices can be found
in Table B.1. For three of the elementary scatterers (i.e., dipole, dihedral and
quarter-wave), distinct orientations are taken into account. For the dual-pol
VV-HV case, only the second column of the scattering matrix is available. The
coherency matrices are computed directly, without averaging.
Such elementary scatterers describe a single scattering mechanism and are of
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Figure 1.11: Monostatic quad-pol vs. VV-HV dual-pol. Translation in position [(a) to (b)] inside
the H−α plane for 8 scatterer from each of the zones in the original monostatic Plane Space.

zero entropy. However, with full-polarimetric measurements they are mapped
in different locations on the alpha axis. The average scattering alpha angle is
computed, eq. (1.48), and we inspect the positioning on the alpha axis of both
quad-pol and dual-pol results (Fig. 1.12). In the figures, the different sizes of
the colored dots serve only a visual discrimination function.
For quad-pol, it is verified that the 9 scattering matrices map to unique points on
the vertical axis (Fig. 1.12a-c-e). Only one confusion is observed: both dihedral
(the notation used in the figures is "diplane") and helix are assigned an α value
of 90◦. Nevertheless, both rotation-free and oriented scatterers are represented by
the same scattering mechanism. This demonstrates the well-known invariance of
the α parameter (with respect to changes modeled as multiplicative product of the
original scattering matrix with real rotations R∈R2×2). For the monostatic case,
such an operation describes a rotation of the point target around the LOS axis.
On the other hand, this property is no longer preserved for the VV-HV dual-pol
case. The position of different mechanisms changes and they are confused on
the α axis, as observed in Fig. 1.12b-d-f.
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Figure 1.12: Monostatic quad-pol vs. VV-HV dual-pol. Changes in the α angle interpretation for the
oriented and orientation-free, zero-entropy, elementary scatterer in Table B.1.
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■ Real data / monostatic / Brétigny dataset: quad-pol vs (artificially-restrained)
dual-pol comparison
We now extend the monostatic quad-pol/VV-HV dual-pol comparison to a real
PolSAR dataset. The Brétigny full-polarimetric set, in detail described in Annex
A.1.I, is used.
Two parallel runs are performed: one with the entire set of polarimetric channels
(quad-pol processing) and another only with the VV-HV channel combination.
The H/α parameters are computed via spatial averaging of target vectors having
3 and 2 elements, respectively. A moving window with 1 pixel displacement,
size 5× 5 is used. Results are divided into one of the 9 categories and the
pixels distribution in the regions from the feature space is represented in the
monostatic and dual-pol plane spaces (Figs. 1.13c and 1.13d). The color-coded
representation of the pixels is given in Figs. 1.13a and 1.13b. This provides a first
classification of the scattering mechanism inside the image, as identified through
the two sets of parameters. All pixels from the image fall inside one of the feasible
zones. For quad-pol, each zone is associated to a type of mechanism, as indicated
by Fig. 1.13e. While the same colors have been used for similar positions in
the dual-pol plane space, it is necessary to emphasis that the interpretation in
terms of scattering mechanism is not nearly the same for these zones, due to the
changes in the entropy and alpha parameters.
The quad-pol results in Fig. 1.13a indicate the image is mainly composed of
points of moderately random entropy, with distinctive scatterers of low entropy
being identified at the location of the four calibration targets, the parking space
and the roofs of the two main buildings from the image. The same mechanism
is recognized for one of the agricultural fields from lower left.
With dual-pol results, a major degradation is seen in attributing to class Z1
(Bragg scattering in monostatic) the great number of pixels in the image. This
is consistent with the result from Fig. 1.11, indicating also the translation of
scatterers of medium entropy towards low entropy in the dual-pol VV-HV plane
space when their α angle is itself medium to low.

Xie and all. provide in [109] an analysis between quad-pol and (synthetic) HH-VV
dual-pol data and present similar conclusions for the two dual-pol parameters: the
α parameter has no longer a rotation invariant property and the entropy, while less
impacted, has lower discrimination performances. The previous synthetic example
nr. 1 has shown that the dual-pol entropy can be an underestimate/overestimate of
the quad-pol entropy depending on the quad-pol alpha value.
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Figure 1.13: Brétigny monostatic dataset.
Simple H-α classifier: (a) Quad-polarimetric. (b) VV-HV Dual-polarimetric.
Plane space representations: (c) Quad-polarimetric. (d) VV-HV Dual-polarimetric. (e) Legend and
zones description for the quad-pol H−α plane space.
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1.5.2.2 Example 2: Monostatic vs. bistatic VV-HV dual-pol

Preceding examples have shown there is a high loss in interpretation with the α
parameter for monostatic dual-polarimetric acquisitions. The current subsection
focuses on a similar analysis between simultaneous monostatic and bistatic (VV-HV)
dual-polarimetric data, an interpretation performed in the H2α plane space.

The Mill’s Lake dual-pol dataset is used; its detailed description is available in Annex
A.2. Because the bistatic images are acquired using a geometry with a very large Tx-Rx
baseline (as in Fig. 1.5), the scattering response from the entire illuminated area covers
a range of large bistatic angles. This is different from other dual-pol simultaneous
monostatic-bistatic acquisitions, as for example with TSX/TDX and their (small bistatic
angle) HH-VV acquisitions. To the best of our knowledge, there are no other studies
addressing a polarimetric interpretation of dual-pol large-angle bistatic acquisitions.

RGB composites using the polarimetric channels are represented in Fig. A.5. For
the plane space comparison, only a selection from the lower-right corner of the original
images, of 2 km × 2 km towards North-West is employed. The area under study is
urban, combining high and low density apartment blocks, roads, construction sites,
etc. From the more sparser bistatic image, only the pixels passing a certain intensity
threshold [dB] are singled out for processing. The dual-pol H-α algorithm is applied
to the same selection of pixels in the bistatic and monostatic images, which justifies the
comparison between the two cases. Because range and azimuth focusing operations
having the same settings have been applied to raw monostatic and bistatic data, there
is a 1-to-1 correspondence between resolution cells from both images.

Figures 1.14a-b present the color-coded monostatic and bistatic dual-pol H-α
classification result. Pixels which are not selected are represented in black. In
both results, there is a dominance of scatterers with low entropy. However, the
discrimination between multiple scattering mechanisms is not possible for the dual-pol
monostatic case, where the majority of pixels are characterized by a combination of
low entropy / low α angles (Fig. 1.14a) . For the bistatic case, α takes a larger range
of values, which makes it possible to discriminate between at least two low entropy
scattering mechanisms (Fig. 1.14b). This is distinctively different from the previous
monostatic dual-pol investigations in this section. All have show a decrease of α values
for the dual-pol monostatic case.

We can take from the common monostatic/bistatic set of points, only those which
are not affected by class transitions in the H2α plane space, i.e., they are represented
in the same dual-pol scattering zones in both monostatic/bistatic classifications. Their
distribution in the plane is seen in Fig. 1.14c. These pixels correspond to the diagonal of
Table 1.8, in which the percentages of inter- and intra-class translation are represented.
The sum of all rows and columns is 100%. Regarding inter-class migrations (from the
monostatic to the bistatic dual-pol plane space), the largest displacements take place
around small entropy. For example, more than 50% of scatterrers from monostatic Z1
migrate to bistatic Z2 and Z3. These results indicate there are indeed some important
differences in the analysis of low entropy targets in monostatic and bistatic dual-pol
observations, possibly due to a change in the α interpretation with the large bistatic
angle dual-pol observations. Further investigations will be necessary on the subject.
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Nonetheless, this short example shows that even with partial polarimetric diversity,
truly bistatic observations can increase discrimination capabilities.
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Figure 1.14: Monostatic-bistatic VV-HV
dual-pol data. Simple H−α classifier:
(a) Monostatic dual-pol, Sentinel-1. (b)
Bistatic dual-pol, ground-based receiver.
Dual-pol plane space: (c) Scatterers with
common scattering mechanism in both
monostatic and bistatic results.

Table 1.8: Transition percentages inside feasible zones of the plane space.

Bistatic classif. [%]
Monostatic
classif.[%] Z1 Z2 Z3 Z4 Z5 Z6 Z8 Z9

Z1 4.7218 18.5655 35.2691 0.3831 1.2642 0.5406 0.0726 0.0012
Z2 2.1910 8.3912 15.5611 0.1517 0.4482 0.2083 0.0230 0.0004
Z3 0.3690 1.1757 2.4196 0.0191 0.0601 0.0367 0.0047 0
Z4 0.2563 0.9877 1.7682 0.0234 0.0636 0.0226 0.0051 0
Z5 0.3152 1.0239 2.1212 0.0246 0.0714 0.0382 0.0043 0
Z6 0.0726 0.2376 0.5219 0.0016 0.0160 0.0090 0.0016 0
Z8 0.0511 0.1498 0.3085 0.0031 0.0133 0.0039 0.0012 0
Z9 0.0004 0.0020 0.0027 0 0.0004 0 0 0
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1.6 Conclusions

This chapter has mapped out the theoretical foundation of the thesis. Elementary
information of wave polarimetry, an anthology of bistatic full-polarimetric imaging
radar instruments and the algebraic particularities of monostatic/bistatic data analysis
with both coherent and incoherent methods have been covered. The last subsection
integrates a comparative analysis on dual-pol monostatic and bistatic data.

While the rest of the thesis considers entirely a full-polarimetric analysis framework,
the example from the last subsection serves as a remainder that the choice of
multi-polarimetric (full- or dual-) diversity is often subject to compromises in real-world
systems (i.e., technological development stages, data volume, power requirements,
etc.). The case of many today’s spaceborne SAR platforms is eloquent: even when
equipped with full polarimetric capabilities, they are mostly operated in single or dual
polarization (e.g., Sentinel-1A/B (C Band), TerraSAR-X (X Band), COSMO-SkyMed
(X Band) or ALOS PALSAR 2 (L Band)). It is realistically to expect that for many of
the future’s bistatic missions, similar constraints may apply.

The next chapter will take a different approach on the subject of the conjugate
similarity operation introduced in Section 1.3 and some of the current limitations will
be addressed.





The shortest path between two truths in the real domain passes through the complex domain.
Jacques Hadamard
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Transforming a general scattering matrix through a con(jugate) similarity
operation is a necessary mathematically procedure under the radar Backscatter
Alignment. Generally, the interest is in recovering the factorization terms, which under
diagonalization are known as conjugate eigenvalues and conjugate eigenvectors. These
are the two pairs (ξk, xk), k={1,2} which verify:

Sxk=ξkx
∗
k (2.1)
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One of the aims of this chapter is to fill the gap in the understanding of the
conjugate similarity transformation for general scattering matrices. As seen in Fig.
1.8, the known PolSAR techniques apply either the Graves/Takagi unitary congruence
operation for (mathematically) symmetric matrices, or the SVD for non-symmetric
ones. However, there is no PolSAR study ahead of this thesis to offer a general
algebraic technique for the consimilarity factorization of non-symmetric scattering
matrices. Sections 2.1 and 2.2 cover the conjugate similarity transformation and
the proposed Real Representation method. In the end, it is not expected that the
consimilarity transformation will become an ubiquitous substitute for the SVD analysis
of nonreciprocal scattering matrices (currently "de facto") but serve as its complement.
The results obtained from these two factorizations are not directly comparable, as they
both render different information from the scattering process.

A different focus of this chapter is in the study of coneigenvalues, found by the
proposed decomposition. This is covered in Sections 2.3 and 2.5 for both (real
and simulated) monostatic and (simulated) bistatic full-polarimetric examples. The
simulated data is obtained by a computational electromagnetic software, for which
Section 2.4 provides more details.

2.1 A state-of-art investigation on general conjugate similarity

To the best of our knowledge, the methods available in the literature for solving a
conjugate similarity transformation between two complex matrices are not direct. They
are based on mappings to an equivalent space where the conjugate similarity can be
evaluated as a similarity equation.

While the PolSAR mapping to the Hermitian power matrix is well-known, it is only
particular to the unitary congruence case. This subchapter offers a general overview
of the two different mappings which can be used to transform a general scattering
matrix and then recover the conjugate similarity factorization of both monostatic and
bistatic scattering matrices. References hereafter combine perspectives from both the
mathematical literature and radar polarimetry to offer a cohesive outlook of these
different techniques.

2.1.1 On mathematical solutions for the consimilarity transformation

With the objective of solving conjugate similarity transformations, two type of mappings
have been identified for general complex matrices, as follows:

■ Complex (power) form:
The earliest and most well-known equivalent mapping is through a complex
matrix, obtained as the product of a square matrix and its conjugate. Consider
the left multiplication of (2.1) via S∗:
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S∗Sx=ξS∗x∗=ξ(Sx)∗=ξξ∗x= |ξ|2x. (2.2)

A similar equivalence can be obtained for the right multiplication SS∗.
The conjugate eigenvalues and the conjugate eigenvectors (ξk and xk, k∈{1,2})
can be obtained from the eigen-decomposition of product 1 S∗S [60]. The left
matrix product in (2.2) is equal to the polarimetric Graves power matrix equation
only for the symmetric case, S=S

⊺, so that G=S
H

S=S
⊺∗
S=S∗S. Then, S∗S

is a Hermitian matrix, which is positive (semi-)definite, i.e., all eigenvalues are
nonnegative and real, larger (or equal) to zero. Also, S∗S preserves the trace of
the Graves matrix (1.18), i.e., the squared span.
For a general non-symmetric scattering matrix, the monostatic Graves equality is
no longer valid and using the Graves eigen-decomposition will not produce the con-
jugate vectors or the squared conjugate values (see Chapter 1, Subsection 1.3.3.3
for details). In addition, product S∗S may no longer be Hermitian, but a general
complex matrix. It’s trace contains two possibly different inter-cross-channel sums.
Based on Hong et al. [110], two matrices A and B are consimilar
if: AA∗ is similar to BB∗ and the product rank condition is satisfied:
rank

[
(AA∗)kA

]
=rank

[
(BB∗)kB

]
,(∀)k≥1. A is condiagonalizable if and only if

AA∗ can be diagonalized with nonnegative eigenvalues and rank(A)=rank(AA∗).
Nonetheless, any complex matrix S∗S is reducible, under similarity, to a Jordan
canonical form, which is unique up to a permutation of its block summands .
Hong and Horn show that while conjugate diagonalization is not guaranteed,
every matrix is consimilar to some special matrices: its own conjugate, transpose,
adjoint, to a real matrix and a Hermitian matrix [110]. The Jordan representation
of the complex power matrix can then be reduced, by an inverse operation, to
a so-called canonical form under consimilarity (i.e., a concanonical form). The
technique via the complex mapping will generally produce the Hermitian con-
canonical form. Reference [111] comparatively catalogs proposed concanonical
form representations.

■ Block forms:

(a) Having constituent blocks the original matrix and its complex conjugate:
To test for conjugate normal matrices, reference [112] introduces a block
form composed of the original matrix and its conjugate. Properties of
matrices under consimilarity are discussed using both the complex power
form and this block form. Eventually, the block matrix serves a limited
purpose in the reference as the computation of transformation factors under
consimilarity returns to the use of the complex form.

(b) Having constituent blocks the original matrix and its transpose:
An alternative expression for computing the eigenvalues of the Graves
matrix based on a block representation is introduced in [113, 114, 75].
The scattering matrix and its transpose are block-stacked on the secondary
diagonal of a 4×4 matrix. This initial form is derived from the set of two
equations proposed in [113] as the "generalized Graves method" and which

1alternatively, under a change of notation, SS∗ can be used for the same purpose.
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is used to determine the so-called optimal and reciprocal-optimal polarization
vectors for the bistatic case. This proposed block matrix is then left multiplied
by its Hermitian, with the result in the form of a new (block) matrix having
S

H

S and S∗S
⊺ on the diagonal. This new block form is written in [113] as a

set of two complex equations for the "generalized Kennaugh method", which
proposes to determine the optimal polarization vectors in bistatic.

Using the 4×4 power matrix, the authors’ aim is to determine the Graves
eigenvalues. They show that the results converge only for non-degenerate
cases, i.e., distinct eigenvalues. The technique is not extended for other eigen-
values cases. In this regard, it is not generally applicable for transformation
of non-symmetric complex matrices under conjugate similarity.

(c) Having constituent blocks the real and imaginary parts of the original matrix:
In [68], Ling and Jiang propose the use of a real block form (containing the
real and imaginary parts of the scattering matrix) as a matrix transformation
which can offer an alternative solution for determining Kennaugh’s "pseudo-
eigenvalues". Some theoretical background for the real representation
as an equivalent mapping under consimilarity is offered in [115, 116].
A closed-form solution is proposed for the factors in the consimilarity
factorization. The technique allows to obtain the real Jordan canonical form
of the real representation matrix and from it, the real concanonical form.

Combining references from both general mathematics and radar polarimetric
literature, we have shortly looked into some of the equivalence mappings which could
be used for the scattering matrix. The complex power and the block real forms emerge
as possible solutions. While the Graves method has been popularized in PolSAR,
according to the first technique presented, the consimilarity solution is possible through
a Hermitian power matrix only for reciprocal scattering matrices.

Until recently, the RR remained unknown as a possible equivalent transformation.
No examples of practical applications in PolSAR were provided in its mathematical
introduction by article [68], but neither restrictions to the symmetry of the matrix
were stated. Due to the real nature of the equivalent block matrix, the technique
provides a more simpler solution than through the general complex form. And while
the equivalent concanonical matrix is always real, this proves not as a limitation. While
the classical Graves matrix analysis can obtain only real (coneigen)values, a complete
description of the real representation eigenvalues contains complex-valued solutions.
This allows to isolate those nonreciprocal scattering matrices characterized by complex
(coneigen)values. The work in the current chapter offers a closer look to some of
the properties of the Real Representation (RR) matrix [117, 118, 119]. The following
subsections look into the applicability of the RR for the consimilarity equivalence of
both monostatic and bistatic scattering matrices and explore the connections between
the conjugate eigenvalues and the nonreciprocity degree of a scattering matrix.
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2.1.2 On properties of conjugate eigenvectors/eigenvalues

From an algebraic perspective, there are distinct definitions on the existence and
uniqueness of a coneigenvalue/coneigenvector pair (ξ,x), as proposed by Horn and
Ikramov [120]. The two perspectives are compared below. In the manuscript, we
adopt the definitions of the second, which are closely related to those of the more
common eigenvalues/eigenvectors (i.e., eigen-pairs).

■ Existence
The first perspective claims a coneigen-pair (ξ,x) associates to an eigen-pair of
the complex-power form [116] only when the non-negative eigenvalues are
distinct. Under this interpretation, the consimilarly diagonalizable matrices have
necessarily positive and distinct coneigenvalues and only for them the sets (ξk,xk),
k = matrix dimension, are recovered. Other matrices may have an incomplete
coneigenvalue/coneigenvector set (ξk,xk), k < matrix dimension, or no con-eigen
pair (ξ,x) at all. This restricts the interpretation of results.
Ikramov eliminates the nonnegative constraint for the coneigenvalues, arguing
that, alike simple eigenvalues, "any (square) matrix of order n should have
exactly n coneigenvalues (counting multiplicity)" [120]. Under this interpretation,
coneigenvalues may present solutions also over the complex domain.
For similarity solutions of square matrices, in the complex domain, at least one
eigen-pair is always known to exist. With the second interpretation, this will also
be the case with coneigenvalue/coneigenvector pairs.

■ Uniqueness
Starting from eq. (2.1), there is an equivalence of the coneigevector x up to
multiplication by a complex phase, ejθ, θ∈ [−π,π], as follows:

Sxejθ=ξx∗e−jθ → Sx=
(
ξe−2jθ

)
x∗ (2.3)

Under this transformation, sources have argued that either there are infinitely
many (ξ,x) pairs [73], or that for a coneigenvector x, there should be infinitely
many coneigenvalues ξe−2jθ [121].
However, a similar claim has existed for the eigenvectors: it was argued that a
nonzero scalar multiple of an eigenvector is also an eigenvector. Because of this,
in numerical applications, the vectors are generally normalized to unit length.
With the proper normalization and conditioning, the discussion on the uniqueness
of a coneigen-pair (ξ,x) should be solved.

2.1.3 On homogeneous/inhomogeneous scattering matrices

In optics, the eigenvectors of a Jones matrix are the two polarizations which do not
change upon propagation. Similarly, the coneigenvectors (as defined for the monostatic
case) correspond to polarization vectors which do not change their polarization by
radar backscattering.
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Table 2.1: The homogeneous-inhomogeneous classification of Jones [123] / Sinclair [125] matrices
under similarity/consimilarity.

Jones or Sinclair matrices
Operation: similarity or conjugate similarity

Values: eigenvalues or coneigenvalues
Vectors: eigenvectors or coneigenvectors

homogeneous
• matrix is diagonalizable;
• values are distinct;
• two orthogonal, linearly independent vectors.

inhomogeneous
• matrix may no longer be diagonalizable;
• values may no longer be distinct;
• vectors are linearly independent but not orthogonal.

Depending on the relationship between their eigen-pairs/coneigen-pairs the
Jones/Sinclair matrices are separated into homogeneous and inhomogeneous (Table
2.1). The definitions are similar between the optical and the radar case.

For Jones matrices, Lu, Chipman [122] and Gutierrez [123] discriminate between:
diagonalizable homogeneous (i.e., with orthogonal eigenvectors) and inhomogeneous
matrices (i.e., have only independent eigenvectors, but which are no longer
orthogonal). 2×2 Jones matrices which are referred to as defective have only one true
polarization eigenstate (and a generalized eigenstate) [124]. They are a subset of the
inhomogeneous case. While they are not diagonalizable, they can be reduced to an
upper triangular Jordan canonical form.

For radar scattering matrices, Lüneburg et al. also separate between homogeneous
and inhomogeneous [125, 73]. Their transformation of reference is unitary congruence
(and not general consimilarity). The homogeneous Sinclair matrices are those
which can be diagonalized by unitary consimilarity and thus have two orthogonal
coneigenvectors. In such case, the two columns x1, x2 of the transformation matrix
X (1.17) geometrically span orthogonal subspaces and the reciprocity of the scattering
matrix S is a sufficient condition to verify this. The inhomogeneous Sinclair scattering
matrices are those for which their coneigenvectors are no longer orthogonal, but
the eigendecomposition of the Graves matrix still returns real, non-negative values.
However, due to the limitative case under which consimilarity is evaluated, this is
only a particular degenerate case and does not cover for all inhomogeneous scattering
matrices. While the percentage of matrices classified as inhomogeneous is negligible
small for monostatic data, the separation is no longer sufficient in bistatic.

The SVD transformation - currently proposed for converting bistatic scattering
matrices to a diagonal form - cannot be used to evaluate the homogeneous/inho-
mogeneous property. While all scattering matrices are diagonal under SVD, not all
are homogeneous. For a general, nonreciprocal scattering matrix, a diagonal form
under consimilarity may or may not be achieved and a complete characterization
of inhomogeneous Sinclair matrices is then possible only under the use of general
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consimilarity transformation techniques (Subsection 2.1.1).

The SVD and the consimilarity transformation of a scattering matrix are comple-
mentary and can be used to assess different type of properties. However, the second
has been incompletely described in PolSAR, which is no longer sufficient for the
analysis of bistatic data. An extensive understanding is thus necessary in order to
properly exploit any possible new information.

2.1.4 Solution through the Real Representation Scattering Matrix

This subsection introduces a general framework for solving the consimilarity equivalence
of reciprocal and nonreciprocal scattering matrices using the Real Representation of the
polarimetric scattering matrix. Theoretical and practical aspects are discussed. The tech-
nique is able to provide for all scattering matrices a canonical form under consimilarity.

2.1.4.1 Real block representations of a complex matrix

Consider a generic square matrix having complex elements, A∈Cn×n, A=Ar+jAi and
Ar=R(A)= A+A∗

2 , Ai=I(A)= A−A∗

2j , Ar,Ai∈Rn×n being the real and imaginary
matrix components of A. Generally, there are in literature two distinct definitions for
the Real Representation (RR) of a complex matrix. As suggested by [126, 127], there
is the so-called block-skew-circulant form (ARR1

) and the block-Hankel-skew-circulant
form (ARR2

):

ARR1
=

[
Ar −Ai
Ai Ar

]
ARR2

=

[
Ar Ai
Ai −Ar

]
(2.4)

ARR1
=

[
1 0
0 1

]
⊗Ar+

[
0 −1
1 0

]
⊗Ai ARR2

=

[
1 0
0 −1

]
⊗Ar+

[
0 1
1 0

]
⊗Ai (2.5)

ARR1
=σ1⊗Ar+(σ3σ2)⊗Ai ARR2

=σ2⊗Ar+σ3⊗Ai (2.6)
alternatively, some sources may use:
ARR3

=A
⊺
RR1

(2.7)

ARR3
=σ1⊗Ar+(σ2σ3)⊗Ai (2.8)

For notation simplification, the sigma notation of Pauli matrices is considered, σi,
i∈ [1,3], as introduced in Section 1.4.3. ⊗ represents the Kronecker product.

The RRs ARR1
, ARR2

, ARR3
∈ R2n×2n are twice the dimension of the original matrix,

A ∈Cn×n. Moreover, ARR1
and ARR3

are block-Toeplitz and ARR2
is block-Hankel.

A transformation taking the form of ARR1
or ARR2

or ARR3
is verified to be injective

homomorphic, i.e., a monomorphism. They provide a mapping from the complex
domain Cn×n to the real codomain R2n×2n.
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Block composite real representations are used across broader literature domains,
from signal processing to quantum computing, for applications usually involving a
complet-to-real homomorphic mapping. For example, ARR1

alone is used in operations
with complex random vectors involving: in [128] - the Independent Component Anal-
ysis (ICA) algorithm and in [129] - an orthogonalization precoding for Multiple Input
Multiple Output (MIMO) signals. The SAR Tomography experiment in [130] uses ARR1

to transform into equivalent real form an approximate formula for the Compressive
Sensing L-1 minimization, which is then implemented through a Recurrent Neural
Network. In PolSAR, the same block form is used to write the sample covariance matrix
(defined under the symmetric circularity assumption) of simulated data [131, 132].

In [133], a real canonical form for quaternion algebra under the block-Hankel
expression ARR2

is proposed. Article [127] manipulates both ARR1
and ARR2

for a
complete description of proper and improper complex signals. Finally, ARR3

is used
in [134] for joint non-orthogonal complex diagonalization.

Due to its block symmetry, ARR2
is adopted in the thesis as the Real Representation

mapping for the conjugate similarity transformations [115]. The reason for such a
choice will become evident in subchapters to come.

2.1.4.2 Real representation Scattering Matrix (RRSM)

The Real Representation block symmetric form of a scattering matrix (i.e., the RRSM)
is written as the linear monomorphism:

SRR=R(S)+jI(S)

SRR=

[
R(S) I(S)
I(S) −R(S)

]
=σ2⊗R(S)+σ3⊗I(S) (2.9)

=
1

2
[σ2⊗(S+S∗)+σ3⊗(−j)·(S−S∗)]. (2.10)

Using the properties of the Kronecker product, this transforms into:

SRR=
1

2
[(σ2−jσ3)⊗S+(σ2+jσ3)⊗S∗]. (2.11)

The mapping under the Real Representation is displayed in Fig. 2.1. For a scattering
matrix in the complex domain S∈C2×2, the theorem of general consimilarity states
that [115]: if S is consimilar to a certain Scst, then their equivalent real representations
SRR and (SRR)st are similar; S,Scst ∈C2×2 and SRR,(SRR)st ∈R4×4. We show that
any SRR matrix has an equivalent form under similarity which is itself written as a
RR. The equivalence transformation under consimilarity (in C2×2 space) is X, while
the equivalence transformation under similarity is denoted Y.
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C2x2 

R4x4
 

S

SRR

Scst

(SRR)st

(X*)-1 S X

(Y)-1 SRR Y
similarity

conjugate
similarity

Figure 2.1: Mapping the consimilarity operation between two complex matrices (S, Scst) to that of
ordinary similarity between two real matrices (SRR, SRRst).

2.2 Properties of the Real Representation Scattering Matrix

If two square matrices have the same distinct eigenvalues, they are similar to the
same diagonal matrix. Then, there exists a family of matrices which are similar to one
another and similar to the same diagonal form.

2.2.1 Real canonical form and eigenvalues of RRSM

The eigen-decomposition of a non-defective real representation scattering matrix
SRR ∈R4×4 is used directly to obtain its diagonal, equivalent form under similarity.
The eigenvalues of SRR are characterized by some unique properties, as follows:

■ Come in positive negative pairs:
Firstly, the eigenvalues appear in positive-negative (±) pairs [115]. This means
that for any eigenvalue λi ∈ {R,C}, i ∈ {1,2}, then −λi will necessary be an
eigenvalue of the same algebraic/geometric multiplicity.

■ Have all the same algebraic type:
For any real representation scattering matrix form, it is observed that all of its
eigenvalues are of the same mathematical type. A well-known property states that
for solutions in the complex domain, the eigenvalues of a real matrix are either real
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or complex conjugate pairs. Combining this with the prior observation, 4×4 RRSM
will have four eigenvalues of the same algebraic type. As a result, some matrices
may have two real eigenvalue pairs (distinct or equal) while others may present
a set of four (complex or purely imaginary) eigenvalues which are ± complex
conjugate. This is illustrated by the example in Annex D which considers the model
of symmetric, skew-symmetric, Hermitian and skew-Hermitian scattering matrices.

Some problems may appear if having at least two equal eigenvalues, when it is
not always possible to obtain a diagonal form for SRR. An almost diagonal form, the
Jordan form can be used for this case. According to Jordan’s theorem [60], every
square matrix is similar to a matrix of the same dimensions having Jordan blocks on
the diagonal. The two distinct real Jordan blocks Jp(λ), Jr(λ, λ∗) are introduced in
detail in Annex C. In this way, it is possible to write every (SRR)st into a real canonical
form as a block real (R-Jordan) form:

(SRR)J=(SRR)st=

[⊕
k1

JpR(λk1)

]
⊕

[⊕
k2

JrpI (λk2,λ
∗
k2)

]
, (2.12)

Summation variables k1, k2 depend on the size of the block, and can be:

k1∈{1,...,4}, k2=0 and pR=1 (distinct or equal non-defective real eigvs.) or
k1∈{1,2}, k2=0 and pR=2 (defective, real eigenvalues)
k2∈{1,2}, k1=0 and pI=1 (complex-conjugate eigenvalues) or
k2=1, k1=0 and pI=2 (imaginary-conjugate eigenvalues)

where pR, pI ∈{1,2} specifies the block dimension, which depends on the geometric
multiplicity of each eigenvalue. The direct sum operator ⊕ is used to connect the
Jordan blocks in composed matrix form. For matrices which are not defective, i.e.,
they have a complete basis of eigenvectors, the Jordan form is no different from
diagonal, i.e.,

⊕
k=1,...,4J1(λk). Considering the ± parity property of eigenvalues, this

is equivalent to writing diag{J1(λ1),J1(λ2),J1(−λ1),J1(−λ2)}=diag(λ1,λ2,−λ1,−λ2). It
should be noted that the ± parity property extends also to the Jordan blocks [115].

2.2.2 Real concanonical form and con-eigenvalues/eigenvectors

Due to the symmetry properties discussed above, the equivalent matrix under similarity
of SRR will, for all cases, be written as a combination of ± eigenvalues or ± real Jordan
blocks. Choosing as a convention to always have the positive and negatives values
in the upper and lower parts of the direct summation, imposes that the canonical
matrix form preserves itself the real representation (2.4). The positive half values
will be arranged in descending order and their exact same order is mirrored in the
negative lower part. The number of Jordan blocks is equal to the number of linearly
independent RRSM eigenvectors spanning orthogonal subspaces. For our 4×4 matrices,
when Jordan blocks start having dimensions of at least two, generalized eigenvectors
need to be used. The set of eigenvectors and generalized eigenvectors will still be
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linearly independent, but they no longer span orthogonal subspaces. The matrix
composed of eigenvectors (and generalized eigenvectors, if any) is the transformation
matrix under similarity (in the R4×4 space), Y in Fig. 2.1. The similarity equivalence
transforming the Real Representation Scattering Matrix to its R-Jordan canonical form
is no different than eq. (1.15), which we re-write as:

SRR=Y(SRR)JY
−1 (2.13)

Because of the parity property, the concanonical form Scst can directly be computed
by inverting the homomorphic transformation (2.9).

There is an almost one-to-one connections between the eigenvalues of SRR and
the coneigenvalues of S. Each ± pair of eigenvalues from SRR will correspond to a
coneigenvalue (positive value is chosen). For example, any real pair of eigenvalues
(λk,−λk), k ∈ {1,2}, has associated exactly one positive real coneigenvalue, ξk = λk,
λk>0. In a similar way, each ± complex pair associates to a complex coneigenvalue.
In the real concanonical form, the real block Jr1(λ,λ

∗) is used instead of the equivalent
complex block. Such choice is made to conserve the real-valued properties of the
canonical form. However, even if the concanonical form is real, the conjugate
eigenvalues obtained by the RRSM method are defined as both real and complex. The
existence of complex eigenvalues allows for a complete characterization of the case
of inhomogeneous Sinclair matrices under consimilarity (Subsection 2.1.3).

Table 2.2 briefly presents the connections and similarities between the eigenval-
ues/eigenvectors of the RRSM and the coneigenvalues/coneigenvectors of the scattering
matrix SM. The SM coneigenvectors and RRSM eigenvectors share the same properties,
which nonetheless are imposed by the latter. For complex eigenvalues of SRR, the
coneigenvectors of S will no longer be orthogonal. We obtain, one coneigenvector and
one generalized coneigenvector. This can also happen for equal SRR ± eigenvalue pairs.

While the coneigenvalues are taken directly as the half positive (real or complex)
eigenvalues of RRSM, obtaining the coneigenvectors requires performing a different
inversion operation. The transformation matrix X (Fig. 2.1) has the coneigenvectors
aligned on its columns and can be derived through operations on the similarity
transformation matrix Y. Annex E contains a closed-form algorithm for determining
X. It relies on the above-introduced properties and takes its roots into an initial
implementation suggested by [115, 68].
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Table 2.2: Eigenvalues of RRSM and con-eigenvalues/eigenvectors of the SM.

RRSM SM

eigenvalues coneigenvalues coneigenvectors

real

distinct pairs distinct real
independent, orthogonal{λ1,λ2,−λ1,−λ2} {ξ1,ξ2}

equal pairs equal real
a. independent, orthogonal or

b. independent, with

{λ,λ,−λ,−λ} {ξ,ξ} one coneigenvector and
one generalized coneigenvector

complex
conjugate pairs complex one coneigenvector and
{λ,λ∗,−λ,−λ∗} {ξ,ξ∗} one generalized coneigenvector

2.3 PolSAR monostatic data and the Real Representation

Some pertinent questions now arise:
(Q1) Why bother with the RR method, when the Graves method has served well, without

noticeable complaints in the PolSAR community in computing the coneigenvalues?

It is the author’s hope that this question has been addressed by the previous sections.
Indeed, the classical Graves may generally be enough when working only with
monostatic PolSAR data (although restrictions apply if the symmetric scattering matrix
is degenerate, as mentioned in Subsection 1.3.3.3). But with bistatic polarimetric
diversity, this is no longer the case, as the framework of unitary congruence (under
which the Graves method operates) is no longer applicable. The problem may also
arise with monostatic data which is no longer reciprocal. The SVD decomposition
has been employed by the PolSAR community for processing nonreciprocal scattering
matrices. The justification of using this technique for bistatic scattering is that it offers
the separation of incident and receiving trajectories, which then is used for the physical
interpretation of the scattering process.

(Q2) But, is the SVD the unique and complete method for the bistatic case? Or is it
the proper choice for monostatic nonreciprocal data?

As previously discussed, the similarity, consimilarity and SVD transformations
are not alike from an algebraic perspective, although they may provide the same
results for particular cases, as for example, in the monostatic reciprocal. The proper
understanding of monostatic and bistatic scattering processes is possible only when
incorporating a solid understanding of the advantages and limitations offered by the
processing tools used for their study. And in coherent PolSAR, these three elementary
algebraic operations are the ultimate decomposition tools from which parametric
decomposition methods have originated.

The SVD is currently established as the unique method for all applications having
nonreciprocal scattering matrices. From the algebraic perspective, one limitation seems
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to apply. As previously argued, in Subsection 1.26, it is not the typical complex SVD
proposed by parametrizations, as the bistatic Huynen-Euler, but the real SVD (eq.
1.30). Lüneburg reasons that this "careful choice of the polarization bases [...] leads
to finer restricted equivalence classes with more detailed information and with more
interesting polarization invariants" [75], but no further proofs are presented.

From a geometric perspective, the use of the SVD decomposition is justified in the
bistatic case by the presence of two distinct traveling paths for the incidence/scattered
wave. However, by the same principle, the argument should no longer be valid when
considering nonreciprocal monostatic SM, for which the same factorization has been
suggested.

The extensive contribution on conjugate similarity in this thesis is not on the basis
of proposing a replacement to the SVD, which has indeed a solid understanding in
bistatic, but in offering a complementary method and in filling some missing pieces
of the algebraic understanding. Moreover, in agreement to both SM algebraic and
scattering wave geometric arguments, the general conjugate similarity transformation
seems more appropriate for when nonreciprocal (obtained even after any necessary
compensations) SM are measured under the monostatic geometry.

(Q3) Finally, how do the consimilarity techniques even compare? Are the
coneigen-values/vectors obtained using the proposed RR and the Graves methods the same?

For monostatic data, the comparison proposed by (Q3) is possible and will be
addressed in the next subsection. Four monostatic polarimetric datasets are used:
RAMSES Brétigny, CONVAIR Ice, CONVAIR Ottawa and EMISAR Foulum (Annex A).

2.3.1 Graves method vs. RRSM method - Coneigenvalues comparison

The first step of the evaluation is to compute the set {λ1, λ2, −λ1, −λ2} of RRSM
eigenvalues and separate them by their type: real versus complex.

As anticipated for monostatic data, where it is expected that scattering matrices
are (almost) reciprocal, only a small percentage of RRSM eigenvalues are observed to
fall into the complex case (yellow slice from pie-charts in Figs. 2.2b,d and Figs. 2.3b,d).
This applies for datasets of different dimensions (details in Table A.1), acquired at three
different frequency bands (X-Band: Brétigny, C-Band: both Convairs, L-Band: Foulum)
and which nonetheless have different type of scatterers into the scene composition.
While the values from the pie-charts are only qualitative, the complete characterization
of RRSM eigenvalues type, for the four monostatic datasets, is available in Fig. E.3
of Annex E.

In a second step, the coneigenvalues are computed using the Graves method, which
then allows for a comparison of values obtained using the two algorithms. For this,
we compute the absolute difference (∆di= |ξi,RR−ξi,Graves|,i∈{1,2}) only for pixel po-
sitions having real RRSM eigenvalues ξ1,RR=λ1, ξ2,RR=λ2, λ1,λ2∈R. No comparison
with the Graves method is performed for positions which return complex eigenvalues.
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Figure 2.2: Comparison of absolute difference (∆d) between values obtained by the Graves method
and values obtained using the RR method - Largest coneigenvalue (ξ1).
Difference colormaps: (a) RAMSES Brétigny. (c) CONVAIR Ottawa.
Percentage of RRSM eigenvalues: real vs. complex: (b) Brétigny and (d) Ottawa PolSAR images.
Legend acronyms: NC (yellow) = Not Compared, NE (black) = Not Equal. Pixels are assigned in the
following gray and blue classes if the values obtained by the two methods are equal under a tolerance
δd ranging from 10−2 to 10−6.
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Figure 2.3: Comparison of absolute difference (∆d) between values obtained by the Graves method
and values obtained using the RR method - Largest coneigenvalue (ξ1).
Difference colormaps: (a) CONVAIR Ice. (c) EMISAR Foulum.
Percentage of RRSM eigenvalues: real vs. complex: (b)CV-Ice and (d)Foulum PolSAR images.
Legend acronyms: NC (yellow) = Not Compared, NE (black) = Not Equal. Pixels are assigned in the
following gray and blue classes if the values obtained by the two methods are equal under a tolerance
δd ranging from 10−2 to 10−6.
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From a numerical perspective, the two values are considered equal if the absolute
difference falls within a chosen tolerance, i.e., ∆d ≤ 10−2. Within all datasets, the
majority of pixels under evaluation have absolute differences smaller than this tolerance
and this is valid irrespective if the difference is computed for the largest/smallest value,
∆dξ1 or ∆dξ2.

For visual display, the result is represented using colormaps and multiple tolerance
thresholds δd∈{10−2,10−3,10−4,10−5,10−6} are used. This offers an enhanced separa-
tion in the visualization, as observed in Figs. 2.2a,c and Figs. 2.3a,c. Only the ∆dξ1,ξ1>
ξ2 result of each dataset is represented. The colormap varies from gray to (shades of)
blue as ∆d differences fall under a smaller and smaller tolerance. The percentages
corresponding to each tolerance interval are also shown. The black and yellow colors
are reserved for two special cases. i.e., for pixels having ∆d>10−2 (NE = Not Equal)
and for pixels which have not been compared (NC = Not Compared), respectively.

The real coneigenvalues derived by the two methods are, for the most part,
equivalent up to the second or third decimal. For coherent targets (e.g., see the known
positions, south-east, where the trihedral reflectors are located in Fig. 2.2a), there
is even a smaller tolerance observed. On the other hand, the black and yellow pixels
tend to match those zones in the image with shadows (e.g., in urban area from Fig.
2.2c) or small backscattering intensities (roads in Fig. 2.2a and water surfaces in Figs.
2.3a,c). Nonetheless, the largest absolute errors are seen for the Foulum data, which
has ≈45% of its pixels mapped in the NE, NC categories. Such pixels are distributed
within zones of agricultural fields and near the river’s border.

The study in [135], which proposes a test hypotheses on heterogeneous covariance
matrices, classifies the Foulum PolSAR dataset based on the properties of boxcar-
estimated sample covariance matrices into 4 classes: matrices with no symmetry prop-
erty or with reflection, rotation or azimuth symmetry. Comparing our result with the
one proposed by the study, it is easy to spot that the zones which verify the covariance
rotation and azimuth symmetries correspond to the areas for which the real coneigen-
values from the two methods are equal. The black and yellow zones in Fig. 2.3(c) fall
within the areas which [135] identifies with either reflection symmetry or no reflection.

2.3.2 On monostatic and bistatic SM nonreciprocity

The previous subsection has demonstrated the equality between the monostatic real
coneigenvalues using alternatively the RR and Graves methods. Because no interpre-
tation was offered yet to the case of complex coneigenvalues, the remaining part of
this chapter will be dedicated to such endeavor. The connection between nonreciprocal
SMs (i.e., having different cross-polar components) and the presence of complex
RRSM eigenvalues is investigated. The main questions analyzed (from both theoretical
and practical perspectives) are a) whether all nonreciprocal SMs have complex RRSM
eigenvalues and b) if such values can serve as descriptor(s) of scattering properties.

With monostatic systems, data calibration and preprocessing usually require a
minimization of the difference between cross-channels (e.g., HV and VH). Usually, if
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Table 2.3: Non-exhaustive assessment of existing nonreciprocity parameters.

Reference/year Method Name: Parameter Evaluated on

[79], 1990 Cameron: Nonreciprocity angle S

[140], 2004 -: Nonreciprocity factor S

[86], 2010 BiTSVM: Difference helicity angle S

[141], 2010 -: Nonreciprocity factor angle S

[142, 143], 2020 Nonreciprocity GLRT test statistics: - C

there is an increased (absolute value) difference, a measurement error/data anomaly
would be considered and methods for its mitigation employed.

With bistatic data, there is a great challenge for extracting the scattering information,
as the nonreciprocity is the result of a coupled action: partly due to the target scattering
itself and partly due to the asymmetry of the propagation paths [48]. Nonetheless,
as fewer limitations are imposed to the bistatic scattering model, it is expected that
extracting the information from nonreciprocal bistatic SMs has the potential to become
an important PolSAR asset.

In [136], Trouvé et al. argue for three main geometrical effects which account for
the bistatic scattering nonreciprocity: (a) the target orientation around LOS, (b) the
pair of Tx and Rx linear polarimetric basis (i.e., basis convention) and (c) the antenna
relative position (which corresponds to a unique bistatic angle). In the monostatic
case, the two effects of (a) and (b) are coupled. Based on this, it is argued that a (real)
rotation is sufficient for compensation, which is generally used in practical applications
for minimizing the difference in the cross-channels.

In a similar manner, [136, 137] propose a change of basis convention in which
the reference plane for the scattering process becomes the emitter-target-receiver plane.
This is obtained applying two real (one left-side and one right-side) rotations on the
scattering matrix. As a result, the matrix is said to transform to its emitter/transmitter
principal polarizations [138, 139]. Mathematically, such operation takes the particular
form of a real SVD and uses orthogonal transformations. Because the general SVD
uses unitary transformations, even after applying this transformation, the resulting
scattering matrix in the principal polarization basis may not necessarily be diagonal
and contain the singular values in the co-polar positions.

2.3.2.1 Nonreciprocity parameters

The PolSAR "nonreciprocity" (sometimes, "asymmetry") is, primarily, understood as
a property describing the scattering matrix. This is the meaning we intend for the
term in this chapter. By extension, PolSAR datasets are reciprocal/nonreciprocal given
the dominant SM properties. Distinctively, the term is sometimes used to describe a
property of the physical object, i.e., the scattering target, or a common property of
both target and retrodiffusion mechanism.
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Table 2.3 offers an indexing of well-known parameters from literature which are
used in assessing the nonreciprocity of the scattering matrix. Because in monostatic
the loss of reciprocity was generally associated to an extra rotation of the (symmetric)
scatterer or its reference system, many of the parameters have an angular interpretation,
as: the Cameron nonreciprocity angle, θrec ∈ [0, π/2] [79], the helicity parameters
difference from the extended bistatic Target Scattering Vector Model (BiTSVM, or
TSVM-SVD), τ2=τR−τE ∈ [−π/2,π/2] [86], or the nonreciprocity factor angle [141],
atan(|ζ|) ∈ [0,π/4]. This last angular parameter is obtained from the nonreciprocity
factor (NRF), which has complex values, in the range [−1,1] [140]. Quite recently, a
noncoherent approach based on a Generalized Likelihood Ratio Test (GLRT) statistics
has been proposed for assessing the (non)reciprocity of PolSAR data (under both
homogeneous and heterogeneous statistical models [142, 143]).

In this manuscript, the nonreciprocity parameter NRF is used. Compared to all
other angular parameters, it is a complex parameter with its dynamic range in [0,1]. It
evaluates the difference in cross-pol channels in relation to the SM span’s square root:

ζ=
1√
2

(Svh−Shv)
∥S∥F

. (2.14)

While it may appear that the physical interpretation of the angular parameters is more
straightforward (references in Table 2.3), the ζ amplitude ratio has its own meaning,
on which we comment below. When expressed using the Pauli vector elements
(Subsection 1.4.1):

ζ=
1√
2

(Svh−Shv)√
|Shh|2+|Shv|2+|Svh|2+|Svv|2

=
j ·kP,4√

k2P,1+k
2
P,2+k

2
P,3−k2P,4

, (2.15)

ζ is understood as a ration between the Pauli asymmetric scattering descriptor and the
difference between the symmetric-asymmetric powers in the SM, i.e., (k2P,1+k

2
P,2+k

2
P,3)

vs. k2P,4.

Figure 2.4 displays the absolute value and phase of the NRF ζ parameter for
the monostatic datasets analyzed in Subsection 2.3.1. As shown by Subfigures
(b)-(d)-(f)-(h), the phase values vary randomly in the definition interval [−90◦, 90◦]
with no evident visual information. The monostatic PolSAR images have generally
small NRF absolute values, in Subfigures (a)-(c)-(e)-(g) less than 0.2. However, one
of the most important observations from the modulus images is about the zones
with higher values for |ζ|, which we can see to generally superimpose with positions
color-coded as NC (Not Compared, i.e., positions having RRSM complex eigenvalues)
and NE (Not Equal, i.e., positions having different RRSM and Graves coneigenvalues
results) in Figs. 2.2 and 2.3. This qualitative evaluation indicates a connection between
the increase in the nonreciprocity of scattering matrices and the RRSM eigenvalues.

For an algebraic comparison, we consider the case of the four type of matrices
(i.e., symmetric, skew-symmetric, Hermitian, skew-Hermitian and presented in detail
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Figure 2.4: Absolute value and phase of nonreciprocity factor for monostatic datasets.
Absolute values: (a) RAMSES Brétigny. (c) CONVAIR Ottawa. (e) CONVAIR Ice. (g) EMISAR Foulum.
Phase values: (b) RAMSES Brétigny. (d) CONVAIR Ottawa. (f) CONVAIR Ice. (h) EMISAR Foulum.
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Table 2.4: Four particular scattering matrices (Annex D): Expressions for Pauli vectors and the
nonreciprocity factor. a1,a2,ba,b2,c1,c2,d1,d2∈R as defined in (D.1).

symmetric skew-symmetric

kP
1√
2


(a1+b1)+j(a2+b2)

(a1−b1)+j(a2−b2)
2(c1+jc2)

0

 1√
2


0

0

0

−2j(c1+jc2)


NRF 0 1

Hermitian skew-Hermitian

kP
1√
2


(a1+b1)

(a1−b1)
2c1
2c2

 1√
2


j(a2+b2)

j(a2−b2)
2jc2
2jc1


NRF j·

√
2c2√

(a1)
2+(b1)

2+2(c12−c22)

−
√
2c1√

2c12−2c22−a22−b2
2

in Annex D). The RRSM eigenvalues (and implicitly, the type of SM coneigenvalues)
are always real or always imaginary if the SM are symmetric and skew-symmetric,
respectively. As shown in Table 2.4, for these two type of matrices, the nonreciprocity
parameter corresponds to values of: 0 (zero asymmetric component, kP,4 = 0) and
1 (zero symmetric components, kP,i = 0, i ∈ {1, 2, 3}). Matrices of Hermitian and
skew-Hermitian type can have either real or complex eigenvalues (Annex D). When
evaluating the nonreciprocity value of example matrices SH1 (Hermitian with real
RRSM eigenvalues) and SH2 (Hermitian with complex RRSM eigenvalues), the
results are 0.0984 and 0.9569. But when evaluating the nonreciprocity value of
example matrices SKH1 (skew-Hermitian with real RRSM eigenvalues) and SKH2

(skew-Hermitian with complex RRSM eigenvalues), the results are -0.6176 and 0.6031.
In this case, by taking only the absolute value of the NRF, the matrices may be
considered having similar properties, which we observe is no longer true.

We argue that an interpretation of the RRSM eigen-classification can be obtained
from the obvious connection with the nonreciprocity parameter, which we continue
to investigate in Subchapter 2.5.

2.4 Computational Electromagnetic simulations

2.4.1 Bistatic scattering - Coordinate system definition

The scattering geometry depicted in Fig. 2.5 is discussed further below. A point-like
target is considered in the center of the spherical coordinate system. On the receiving
path, we represent the scattering versors for the two possible conventions (Subsection
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1.3.1): k̂fs (orange, for FSA) and k̂bs (red, for BSA). For the backscattering convention,
the angular pairs (θi,φi) and (θs,φs) identify the incidence and scattering directions,
with unit vectors k̂i and k̂bs, respectively. The incident and scattered bistatic vectors
determine the so-called bistatic plane of scattering [139, 137].

y
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Figure 2.5: Bistatic scattering geometry (spherical coordinates)

In monostatic, the double equality of the angular parameters is obvious: θi = θs,
φi=φs.

We consider the incidence versor: k̂i=[−cosφisinθi,−sinφisinθi,−cosθi]
⊺. Then, a

backscattering configuration (i.e., BSA) will have k̂i=k̂s [48].

In a bistatic geometry, when knowing the incidence and scattering directions, the
bistatic angle can be obtained as follows:

β=cos−1(k̂i·k̂s) (2.16)

For a combination {(θi,φi),(θs,φs)} in the scattering plane, the bistatic angle will
change accordingly. Figure 2.6 displays two maps of bistatic angles covering the
space of receiving positions φs,θs∈ [−90◦,90◦], when the incidence directions are: (a)
θi=0◦,φi=50◦ and (b) θi=30◦,φi=0◦.

2.4.2 Simulation software

Resolution cells having a dominant response from an elementary mechanism are the
ones associated to coherent scatterers. Computational electromagnetic simulations are
here performed to obtain the monostatic and bistatic scattering response of elementary
targets (i.e., dihedral and square plate). With each simulation evaluating only one
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Figure 2.6: Distribution of bistatic angles in the entire scattering range having θs,φs ∈ [−90◦,90◦]

when incident direction is at: (a) (θi=0◦,φi=50◦). (b) (θi=30◦,φi=0◦).

target, the results will beyond doubt correspond to a coherent evaluation. The reason
behind these simulations is threefold: (a) to obtain full-pol monostatic and bistatic
scattering responses, the latter being scarcely available as real data, (b) under a wide
range of evaluation angles and (c) with ample control of simulation geometry.

The evaluation frequency is chosen in the C-Band. From a polarimetric perspective,
the plate and dihedral are associated to two elementary, distinct scattering mechanisms,
i.e., single and double bounce.

MONOSTATIC

BISTATIC

Efield [V/m]

post-processing 

Figure 2.7: Processing workflow integrating the CEM software.

A computational electromagnetic (CEM) software (i.e., CST Microwave Studio -CST
MWS) is used to obtain the scattering response. By this, we refer to estimated values
of the electric field Es scattered by each target (far field evaluation). Linear H and
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Figure 2.8: Scatterers in spherical coordinate system geometry: (a) 90◦ Dihedral. (b) Square plate.

V polarization bases are used. Under Assumption 1.2, the polarimetric scattering matrix
models a linear dependence between the incident and scattered electric field vectors.
As so, the elements of the matrix can be computed having known values of Es and Ei.
In each simulation, the V and H incidence components are set to 1 V/m. The general
workflow for obtaining estimated components of scattering matrix elements appears
in Fig. 2.7. The final objective is to use the RRSM eigenvalue evaluation technique
on the simulated data, in the post-processing part. The bistatic SM estimates should
no longer verify reciprocity. Results are discussed in Subsection 2.5.

The simulator environment uses a spherical coordinate system (Subsection 2.4.1).
The (far-field) incidence/scattered Electric Field can be decomposed in two components:

Ei,s=Eφ
i,s·φ̂+Eθ

i,s·θ̂, (2.17)

where φ̂ and θ̂ are the spherical versors along the azimuth and elevation directions,
respectively.

The θ and φ angles of the spherical coordinate system are defined in the XZ and
XY planes (e.g., in Fig. 2.5, Fig. 2.8) and can be expressed as:

θ=arccos

(
ẑ

r̂

)
, (2.18) φ=arctan

(
ŷ

x̂

)
, (2.19)

where r̂ is the spherical versor of the radial direction and x̂,ŷ,ẑ are versors of the
Cartesian coordinate system. The incidence and scattered versors in the Cartesian
system respect the BSA convention.

The geometrical alignment of the two targets, to be evaluated by simulation, is
displayed in Fig. 2.8. The center of the coordinate system overlaps with the center
of each target. For the dihedral (Fig. 2.8a), the Z axis matches the targets’s bisector
(and not aligned in the direction of the dihedral’s lower plate, contrary to the first
impression from Fig. 2.8a). The incidence waves will propagate towards the XOY
plane (blue circle). Only the direction having θ=0◦ and φ=0◦ is aligned along the



68 Chapter 2. Real Representation Scattering Matrix (RRSM)
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Figure 2.9: Incidence and scattering directions. (a) Plane wave incident from direction having:
θi =0◦, φi =0◦ (simulator view). (b) Plane wave incident from direction having: θi =45◦, φi =0◦

(simulator view). (c) Range of incidence/scattering directions covering: θ∈ [−45◦,45◦] , φ∈ [−90◦,90◦].

Table 2.5: Parameters used for monostatic and bistatic CST simulations.

Scatterer CST Solver
CST Settings

Material Dimensions Accuracy setting Meshing
Monostatic
90◦ Dihedral

Integral Equation Solver
PEC H=W=15λ Medium Surface Based (default)

High Frequency MeshSquare Plate PEC H=W=15λ High
Bistatic
90◦ Dihedral

Transient Solver
PEC H=W=16λ

-40 dB
Hexahedral (default)
High Frequency MeshSquare Plate PEC H=W=20λ

Z axis. A plane wave propagating from this direction and incident on one of the targets
will look as in Fig. 2.9(a). The wave propagates from positive to negative Z values. Fig.
2.9(b) displays the example from another incidence direction, i.e., θ=45◦ and φ=0◦.

For each monostatic simulation, the estimation of received electric field is performed
on the same direction to that of the incident plane wave excitation. In bistatic,
the excitation plane wave direction is kept fixed, but the backscatter component is
computed for a large range of directions having specified θs, φs values. The blue
selection in Fig. 2.9(c) covers a spherical angular range θ∈ [−45◦,45◦] , φ∈ [−90◦,90◦].

Table 2.5 summarizes the main characteristics of the electromagnetic (EM)
simulations used for obtaining the scattering response of each target. A short discussion
hereafter provides more details on the settings adopted and extends the information
available in the table.

■ Material, Frequency, Dimensions

The simulated objects are large compared to the wavelength and modeled entirely
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using an idealized material, a Perfect Electric Conductor (PEC). They have a
width/height between 15-20λ, so the objects are considered to operate in the
"optical" scattering regime [144]. According to documentation specifications,
both solvers used through the simulations can be used with objects from this
dimension range.
Both dihedral and plate scatterers are 2D (i.e., objects of zero thickness with a
height H and a width W). The monostatic analysis uses the same dimension of
the square plates for both the individual scatterer and those composing the 90◦

dihedral.
The central frequency of the EM signals used in the simulations is f0 = 5.405
GHz. A small-bandwidth (20 MHz around central frequency) is used. The central
frequency is the same as the central frequency used by the Sentinel-1 satellites
and the frequency at which, in the not-so-distant future, spaceborne large angle
bistatic SAR images will be available through the Harmony mission.

■ Meshing and Accuracy
The simulator’s front-end offers a graphical solid-modeling functionality for object
drawing.
In each simulation, the geometric area of a target is divided into a certain number
of meshing domains (or, meshing cells). The voltage/currents distribution inside
each mesh cell and, from it, the electric/magnetic fields radiated are estimated
using one of the selected numerical solvers. Separately, the program can compute
other EM properties of the object, as for example, the Radar Cross Section (RCS).
The two solvers from our simulations (Table 2.5) use different meshing models.
Each simulation has used its solver’s default technique. The Integral Equation
Solver (IES) divides the object’s surface through a (curved) triangular and
quadrilateral tessellation, while the Transient Solver (TDS) uses hexahedrals (i.e.,
variable size rectangular cuboids). The latter is a volume meshing element.
Generally, the meshing choice directly impacts the accuracy and time of the
simulation (i.e., while a mesh of high density may provide more accurate results,
it will take a longer time to evaluate it). In the employed simulator, the two are
inter-related. Accuracy is an independent parameter to be specified by the user. If
no manual mesh has been defined, one will be automatically generated based on
the accuracy settings. The IES has three predefined accuracy levels (low, medium,
high). At least the medium selection has been used with all simulations using
this solver. Distinctively, the TDS allows the user to specify the value for a stop
criterion. The solver stops the evaluation of a meshing cell and returns a result
when the signal emitted has sufficiently decayed to zero (i.e., when the energy
of the signal arriving at the evaluation port has decreased with -X dB, compared
to the maximum). The smaller the X value, the higher the accuracy. The default
accuracy setting is of -30 dB and the extreme minimum limit is -80 dB.

■ Electromagnetic Solvers
The scattered Es field is obtained via full wave electromagnetic analysis.
Numerical full-wave solvers make rigorous use of the complete set of Maxwell
equations and an important advantage of these field solvers is that they do not
impose restrictions on an object’s geometry or on the simulation frequency.
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– Integral Equation Solver
This type of solver uses the integral form of the wave equations and
represents the original problems using equivalent sources (current, in
this case) placed at boundaries of planar surfaces or in finite volumes.
Computations are performed in the frequency domain, which makes it
especially powerful for high frequency simulations.
This solver of the CEM software uses the Multilevel Fast Multipole Method
(MLFMM) [145, 146]. It is based on the Method of Moments (MoM). The
latter is known to provide extremely accurate results with an increased
time/memory computation consumption. The MoM uses the exact EM
formulas everywhere in the analyzed domain; meanwhile, MLFMM separates
between the near and far-field zones and applies a set of approximate
formulas to cell areas found in the far field.
This solver has been used with dihedral and plate monostatic simulations
(Table 2.5).

– Transient Solver
In this case, the solver operates in the time domain and searches for the result
of the Maxwell equations through the Finite Integration Technique [147, 148].
Also full-wave, the method rewrites the set of integral equations in a discrete
form. The reformulation is based on the summation/difference of electric
or magnetic field and flux elements from the edges or faces of each discrete
mesh element. It is a well studied method which has been applied, due to its
flexibility, not only for CEM, but to wave problems in many domains [149].
In time domain, the simulation starts when a time domain signal, typically
a Gaussian pulse, is emitted towards the structure under observation [145,
150].
This solver has been used for bistatic EM computations with the dihedral
and plate targets (Table 2.5).

2.4.3 Radar cross-section and monostatic evaluations

2.4.3.1 RCS Definitions

From the IEEE Standards [2], the Scattering Cross Section (SCS) is an equivalent
area of an object under observation and which depends on the frequency, polarization
and direction of the plane wave incident on the object. The SCS (σ) multiplied by the
incident power (Pi) produces by isotropic radiation the same amount of scattering
power as the original object when measured on a fixed direction:

Ps=
σPi
4πr2

. (2.20)

Eq. (2.20) is representative for the monostatic case, with r representing the one-way
distance between radar and target.

The Radar Cross Section (RCS) is the SCS measured at a given polarization. It is
influenced by the geometrical and physical properties of the target. Nonetheless, the
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RCS itself does not necessarily relate to the object’s physical size and is independent
on the distance between the object and the radar (i.e., definition imposed in the far
field). The formal monostatic RCS formula is then [151, 4]:

σxy= lim
r→∞

4πr2
|EX

s |
2

|EY
i |

2
. (2.21)

For distributed targets (e.g., ground, sea) the average RCS per unit area, also
known as the normalized radar cross section (σ0) is usually used.

Comparing (2.21) and (1.12), one can express the following connection between
the elements of the scattering matrix and the RCS measured using a generic X-Y
polarimetric basis combination [144][

σxx σxy
σyx σyy

]
= lim

r→∞
4πr2

[
|Sxx|2 |Sxy|2
|Syx|2 |Syy|2

]
. (2.22)

Based on these relations, the intensity of SAR images is usually interpreted through
the lenses of the RCS (for point targets). Nonetheless, it is essential to state that while
this model is quite popular it represents only a simplified assumption. As argued
by Döring et all. [13], the final radiometric intensity of SAR images may not be
proportional to the RCS when considering the dependencies on aspect angle and
frequency (both varying in an interval with real measurements) and the filtering of the
original field measurements EX

s , EY
i through the SAR complex point spread function.

These advanced effects are not considered when estimating the scattering matrix
coefficients of the two elementary targets presented in the first part of this Section. It
is important to emphasize that the estimation of scattering matrix coefficients is based
exclusively on the simulated (amplitude and phase) electric field values and not on RCS.

Based on this, the following assumptions apply for the results:

Assumptions Set - 2.1.

I. The coefficients of the scattering matrix are proportional to the
corresponding radar cross section square roots.

II. The estimated coefficients of the scattering matrix are proportional to
the ratio between the estimated scattered and incident electric fields.

2.4.3.2 Verification of monostatic simulations

The estimated monostatic/bistatic scattering matrices cannot be directly verified apart
from the monostatic estimates at coordinates {θ=0◦,φ=0◦}, for which well-known
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expressions exist (Table B.1). Two distinct testing strategies are proposed and assimi-
lated as qualitative evaluations for the estimated results. The first evaluation is indirect,
based on 1D RCS comparison between values obtained from simulation and values
obtained through analytic formulas (and which are available, in the monostatic case,
for both plate and dihedral targets). The second evaluation is also indirect, but uses the
estimated scattering matrices. These are used to compute two roll-invariant, coherent,
PolSAR parameters which have known values for the plate and dihedral (i.e., odd-
bounce and even-bounce scattering mechanisms). The two testing strategies are applied
only to the simulated monostatic data because, for them alone, compact and well-
known analytic expressions (for the first evaluation strategy) and reliable parameter
interpretations (for the second evaluation strategy) are available in the literature.

2.4.3.2.1 RCS verification
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Modeling the RCS scattering of simple targets has been for a long time a subject
of study in the electromagnetics scientific community. Nonetheless, the largest volume
of work covers the monostatic case and the metallic plate and dihedral are two
elementary models.

Physical Optics (PO) models are used, in general, for approximations at high
frequencies (or when the ratio between a body’s dimension and the wavelength is much
greater than 1) and near-specular observations. The model is limited to some extend,
as it does not consider more complex scattering phenomenons, as: edge diffraction,
multiple bounces, traveling or creeping waves, etc. Even so, it remains popular in radar
as it proposes closed form approximations for the RCS of the elementary targets.
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With the CST simulator, the Integral Equation Solver is generally recommended
for RCS computation [145]. This has been used for both (monostatic) dihedral and
plate simulations and the RCS has been retrieved along with the estimated values of
the electric field. With the availability of analytic RCS for the two objects, comparisons
are displayed in Fig. 2.10(a) and Fig. 2.11(a).

■ Monostatic plate
Under the PO approximation and considering incident waves from angles (θ,φ),
the backscattering RCS of a perfectly conducting thin rectangular plate with
edges of length 2a and 2b is:

σplate,PO=
4πa2b2

λ2

(
sin
(
2πa
λ sinθcosφ

)
2πa
λ sinθcosφ

sin
(
2πb
λ sinθsinφ

)
2πb
λ sinθsinφ

)2

(cosθ)2 (2.23)

According to [144], the expression is generally valid for (positive) aspect angles
in [0◦,20◦]. For values in a larger evaluation interval, an extended model for
RCS is proposed otherwise. The set of equations for this RCS model is directly
available in the reference. In Fig. 2.11(a), the results from the simple and
extended analytic models (yellow and blue) is compared to the one obtained
using the EM simulator (pink). The displayed results are for vertical polarization.
The incidence is constant along one dimension (φ= 0◦) and the aspect angle
varies between −90◦ and 90◦. From values |θ| ≤ 35◦, the simulated RCS better
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matches the power variation from the generic formula. All three curves show
analogous angular positions for the local minimum and maximum extremas in
their side-lobes. Nonetheless, the pink curve is coarser as the EM simulations
are performed with a stepsize of 5◦ (in both azimuth and elevation), while the
analytic model uses a finer step size. Figures 2.11(b) and (c) show the variation
in both directions of the simulated electric field Es. The monostatic directions
used for simulation cover the entire range θ, φ∈ [−90◦, 90◦], i.e., from normal
incidence on the metallic plate to reflection/refraction towards its edges. Strong
specular reflections are observed near normal incidence on the plate’s facet.

■ Monostatic dihedral
Under the most simple approximation, the right-angle dihedral is formed by the
alignment at 90◦ of two plate objects, around one of their edges. We consider
the two plates named A and B. For computing the monostatic RCS of the
dihedral corner reflector, the PO approximation sums the contributions of: two
double-bounce (from A to B and from B to A) and two single-bounce (one on each
plate) scattering effects. The complete model can be found in [152, 151] and
is valid for observation angles θ∈ [−45◦,45◦]. The two side-lobes peaks at ±45◦

are considered to come from the single-bounce effects on the two plates [153].
When compared to the RCS obtained through the computational electromagnetic
software (computed in a much larger observation interval, but with a step of 5◦)
there is a comparable decrease in power. The simulated monostatic electric field
Es (V Polarization) scattered from the dihedral is shown (2D and 3D display)
in Figs. 2.10(b)-(c). It is evaluated in angular intervals: θ ∈ [−45◦,45◦] and
φ∈ [−90◦,90◦], so that all monostatic directions which can produce a scattering
response from the interior of the dihedral are covered.

■ On bistatic RCS formulations
For the bistatic case, there are fewer analytic models available.
In many works, the quest for a bistatic RCS model has begun by an adaptation of
the monostatic RCS analysis. Around 1965, Kell formulated a first Monostatic to
Bistatic Equivalence Theorem (MBET) [154]. A review for some of the well-known
MBET formulations is given in the introduction of [155]. The most generic MBET
states that, for sufficiently smooth targets, the Bistatic Radar Cross Section (BiRCS)
evaluated at one bistatic angle β is proportional to the Monostatic RCS measured
on the bisector of the bistatic angle. An attempt for determining a threshold value
for the compliance of the MBET is offered in [156], through simulations of 2D
scatterers. The authors show that the MBET depends greatly on the so-called
"smoothness" of a point target (understood as the property of a target to produce
single or multipath propagation) so that the angular interval of MBET compliance
decreases as the target’s geometry produces multipath or shadowing effects. For
experimental targets having a higher "smoothness", the study reports a maximum
angle for which the MBET equivalence holds of ≈14◦, while this angle decreases
to ≈1.5o with objects having very complex geometries and which are not "smooth".
No comparisons are performed for the bistatic RCS case in the thesis. At the same
time, this verification can represent an extension for the work currently presented.
Recent works as [157, 158, 159] have proposed some analytic models which
approximate the bistatic scattering from plates and dihedrals.
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2.4.3.2.2 SM verification through roll-invariant parameters

Table 2.6: Monostatic dihedral and plate results. Evaluation based on angular polarimetric
descriptors. Percentage distribution of estimated values in 10◦ intervals between [0◦, 90◦] (for all
observation directions in the investigated range).

(a) Monostatic 90◦ Dihedral (θ∈ [−45◦,45◦], φ∈ [−90◦,90◦])
Angular intervals for values of polarimetric descriptor: [upperlimit, lowerlimit ) [deg.]

90−80 80 - 70 70 - 60 60 - 50 50 - 40 40 - 30 30 - 20 20 - 10 10 - 0

αCloude 28.7 % 18.2 % 12.8 % 9.8 % 15.1 % 8.53 % 4.03 % 1.42 % 1.42 %
αTSVM 28.7 % 17.5 % 11.8 % 9.8 % 12.95 % 11.7 % 4.7 % 1.42 % 1.42 %

(b) Monostatic Plate (θ∈ [−90◦,90◦], φ∈ [−90◦,90◦], but with multiple filtered directions)
Angular intervals for values of polarimetric descriptor: [upperlimit, lowerlimit ) [deg.]

90 - 80 80 - 70 70 - 60 60 - 50 50 - 40 40 - 30 30 - 20 20 - 10 10−0

αCloude 2.32 % 3.48 % 6.72 % 13.0 % 18.8 % 9.28 % 8.12 % 16 % 22.27 %
αTSVM 2.08 % 3.71 % 5.9 % 13.45 % 17.86 % 8.32 % 7.65 % 13.9 % 27.13 %

This subsection describes the second evaluation strategy of the simulated monostatic
results. Two monostatic roll-invariant polarimetric descriptors are introduced for this
task. The rotation invariance property (in short notation, roll-invariance) means that
the values of such parameters are not affected by rotations of the target around LOS.
The parameters to be used are:

(a) the coherent Cloude and Pottier α-angle (an equivalent form, compared to the
one seen earlier in Chapter 1 and hereafter named as α-Cloude) [76, 136]:

αCloude=acos

(
1√
2

|Shh+Svv|
∥S∥F

)
(2.24)

One can observe the similarity between (2.24) and the NRF definition in (2.14). Except
for the acos inversion, only the denominator differs. While (2.24) analyses the total con-
tribution of the co-pol channels, (2.14) uses the difference between the cross-pol ones.

(b) the α angle of the Touzi TSVM decomposition (αTSVM) which appears in the
parametrization of the symmetric target scattering vector [50]:

kTSVM =m·ejΦs

[
1 0 0
0 cos2Ψ −sin2Ψ
0 sin2Ψ cos2Ψ

][
cosαTSVM

sinαTSVM ·ejΦαTSVM

0

]
. (2.25)

For symmetric (in the polarimetric sense) monostatic targets, the two parameters
are expected to provide the same result [50]. Also, the two polarimetric descriptors
have well-known values for the phenomenology of monostatic odd and even bounce,
which characterize the response of the plate and dihedral, respectively.

The result of the indirect evaluation, through the two parameters, is presented
hereafter.
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■ Monostatic dihedral
The theoretical value which the two parameters attribute to monostatic dihedral
scattering is of 90◦. Article [103] reports an acceptable statistical variation of ±10◦

in the case of real quad-pol data. For all the monostatic directions investigated,
Table 2.6(a) shows the percentage distribution of obtained values in each 10◦

interval in the [0◦,90◦] range.
Variations of at most ±20◦ in the θ direction (any φ value) seem to not produce
significant changes of the scattering mechanism (Fig. 2.12(a),(b)). Moreover,
for more than 45% of the analyzed monostatic directions, the values of the two
polarimetric descriptors remain in the [70◦,90◦] range. For observation directions
in the upper/lower parts of each dihedral’s plate, near the edges, the estimated α
values suggest a scattering mechanism similar to that of a dipole (αCloude,αTSVM ∈
[40◦,50◦]). Because of the edge’s proximity this result is not surprising.
There are studies which propose that any elementary scattering matrix can be
written as a coherent sum of oriented and unoriented dipole scatterers with fixed
spatial separations [160, 161]. For example, the dihedral scattering matrix is
modeled by two orthogonal dipoles (one H and one V) at a λ

4 separation, while the
scattering matrix of (right and left) rotated dihedrals are written using dipoles with
±45◦ orientation angles. Based on this assumption, oriented dipoles can be used to
decompose the phenomenology of randomly oriented dihedrals. And within our
results, it is analogously possible to interpret that, depending on orientation, one of
such dipole components becomes dominant, as shown for very skewed directions.

■ Monostatic plate
In case of the monostatic plate, there are directions for which the absolute values
of the normalized simulated electric field are quite low (Fig. 2.11c). All for which
a scattering response lower than -25 dB has been obtained are filtered from the
analysis. This threshold is set after comparison with the dihedral’s case, where
almost all directions have a (normalized) scattering response larger than this
limit (Fig. 2.10c). This allows for a consistent evaluation between scatterers.
The directions filtered are shown in white for Figs. 2.13, 2.15 and they are not
considered in any way for further computations. From an experimental setting,
article [162] presents experimental evidence that oriented plates are expected
to present a smaller backscattering response.
For the even-bounce scattering mechanism, the expected value of both α parame-
ters is around 0◦ (± statistical fluctuations). Figs. 2.13(a),(b) indicate such values
are dominant for directions having θ∈ [−20◦,20◦] and φ∈ [−35◦,35◦]. However,
the sum of contributions having α around [40◦,50◦] or [50◦,60◦] is much greater
than the contribution near smaller α values, as observed in Table 2.6(b). These α
intervals are associated to a dipole scattering mechanism. The directions with such
contribution appear around skewed incidence/scattering directions (Fig. 2.13).
In [160], the (unoriented) surface target has a SM obtained from two orthogonal
H and V dipoles with a separation of λ

2 . As so, in the oriented case, only one
of these dipole components may become dominant, which is observed by our
parametric evaluation. Nonetheless, this observation is only an assumption;
further investigations would be necessary to prove it.
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Fig. 2.13(c) analyzes the difference in α values between αCloude and αTSVM . The
color coding indicates predominantly small differences.
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Figure 2.12: Monostatic 90◦ Dihedral.
(a) Estimation of αCloude parameter for the
dihedral’s response for all observation directions.
(b) Estimation of αTSVM parameter for the
dihedral’s response for all observation directions.
(c) Difference between results from (a) and (b).
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Figure 2.13: Monostatic Square Plate. (a)
Estimation of αCloude parameter for the plate’s re-
sponse for a selection of observation directions. (b)
Estimation of αTSVM parameter for the plate’s
response for a selection of observation directions.
(c) Difference between results from (a) and (b).
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2.5 RRSM Eigen-classification with simulated data

This section continues the study of the relationship between the nonreciprocity
parameter and the RRSM eigenvalues, started in Section 2.3. The simulated monostatic
and bistatic data introduced in Section 2.4 is used.

2.5.1 Monostatic simulations

For the monostatic simulations, some information has already been presented in the
two-folded verification of both RCS and estimated SM parameters. All results to follow
are obtained using only the estimated SM.

■ Monostatic dihedral Absolute NRF values (2.14) corresponding to the estimated
scattering matrices in the simulation range (θ ∈ [−45◦,45◦], φ ∈ [−90◦,90◦]) are
shown in Fig. 2.14(a). For almost all incidence/scattering positions, the estimated
scattering matrices appear to verify reciprocity. However, around the θ=0◦ region,
|ζ| approaches 0.4−0.5 for |φ|≥45◦. Figure 2.14(b) displays a color-coded image
separating between positions which have RRSM returning real (shades of blue)
or complex (orange) eigenvalues. The classification is performed as presented in
Annex E and Fig. E.1. The three categories have percentages as follows: 97.72%
(real distinct eigenvalues pairs), 0.85% (real equal eigenvalues pairs), 1.42%
(complex pairs).
Around the θ=0◦ region the type of RR eigenvalues varies from real-distinct (near
normal incidence) to real-equal and then complex. For all other directions in the
monostatic dihedral results, the RRSM eigen-decomposition returns real values.
The scattering from oriented dihedrals is known to cause interpretation problems
in monostatic PolSAR. Experimental results have confirmed that rotations around
LOS determine an increase in the power from the cross-channel components
and for a rotation angle equal to 45◦ the co-channel components Shh and Svv
become zero. For example, an acknowledged effect of oriented dihedral in urban
environments is its misinterpretation in incoherent, model-based decomposition
techniques as volume scattering [163]. From our current result, the RRSM
eigen-classification may offer through its complex eigenvalues a clear evidence
of such an effect, independently or complementary to the NRF.

■ Monostatic plate
As in the analysis from Fig. 2.13, only non-filtered directions are evaluated.
Compared to the results obtained for the dihedral, the plate scatterer appears
to be more sensitive for variations of the φ angle at θ = 0◦. The pattern can
be observed by the rapidly increasing absolute values of the NRF parameter
which becomes equal to 1 with |φ|≥45◦ (Fig. 2.15a). However, here the RRSM
eigenvalues are of complex type even for values |ζ| lower than 0.5 (Fig. 2.15b).
If the results from the α parameters evaluation (Figs. 2.13a,b) are considered,
the change around θ=0◦ produces the variation of the two angular parameters
in their entire definition range.
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Absolute value of nonreciprocity factor
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Figure 2.14: Monostatic Dihedral.(a) Absolute value of nonreciprocity factor. (b) RRSM
eigen-classification color image.

Similar to the dihedral’s case, for other directions characterized by non-zero θ and
ϕ angles, there are no large changes for the NRF or the RRSM eigenvalues type.
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Figure 2.15: Monostatic Plate.(a) Absolute value of nonreciprocity factor. (b) RRSM eigen-
classification color image.

2.5.2 Bistatic simulations

In the bistatic simulations, for each unique incidence/scattering angle combination
{(θi,φi),(θs,φs)}, one estimation is obtained. For the results hereafter, the range of
scattering directions covers θs,φs∈ [−45◦,45◦] (evaluation step of 0.5◦).
Only a discrete selection of incidence directions is evaluated. Three values are
considered for θi, i.e., 0◦, 25◦, 40◦, while φi=0◦ stays fixed. Each of these incidence
directions are enough distinct and together cover a wide range in elevation, which
allows for an extensive study of the bistatic scattering phenomenons with each target.
The two nonzero angles are quite close to the expected near- and far-range incidence
angles of the future bistatic Harmony mission, of 20◦ and 44◦ [138], respectively. More,
the central frequency of all simulations is equal to the central frequency used by the
Sentinel-1 satellites. Choosing these parameters provides an immediate application
context for the bistatic simulations.
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Table 2.7: Bistatic dihedral/plate/sphere simulation results. RRSM eigen-classification percentage
distribution.
Three incidence directions are considered: (θi,φi) ∈{(0◦,0◦),(25◦,0◦),(40◦,0◦)}.

Incidence direction Real eigvs. pairs [%] Complex eigvs. Total
(θi,φi) distinct equal pairs [%] [%]

90◦ Dihedral
(0◦,0◦) 62.23 30.86 6.9 100
(25◦,0◦) 73.17 7.17 19.65 100
(40◦,0◦) 63.91 2.28 33.81 100

Square Plate
(0◦,0◦) 14.25 1.21 84.54 100
(25◦,0◦) 21.95 1.81 76.24 100
(40◦,0◦) 30.46 3.2 66.34 100

For each bistatic Rx direction, the simulated data is used to estimate scattering
matrix elements. These are finally evaluated using the nonreciprocity factor and the
RRSM eigenvalues classification. Additionally, the influence of the bistatic angle (Eq.
2.16) is now considered.

Results in Figs. 2.16, 2.17 are displayed using a common template in which:

• the first row displays the absolute value of the estimated electric field [dB].
• the second row shows the absolute value NRF obtained from estimated SM. The

second and third rows are displayed with an overlay grid of iso-bistatic angle
curves.

• the third rows is a color-coded representation of the RRSM eigen-classification.
Three main classes are used, as follows: orange - complex eigenvalues, dark blue
- two real, distinct pairs of eigenvalues, cyan - two real, equal pairs of eigenvalues.
The global percentage in each category can be consulted in Table 2.7.

• the fourth row shows the eigen-classification as a function of the bistatic angle.
For bistatic intervals of 5◦ increment, the results have been transformed in an
absolute percentage scale (100% for summation of all three categories). The
complete values are directly available in Table 2.8. In a relative scale analysis, all
percentages of one category from Table 2.8 should sum to the value in Table 2.7.
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Figure 2.16: 90◦ Dihedral(Bistatic Results, Time Domain Solver).
Incidence directions at φi=0◦ and θi=0◦ (first column), θi=25◦ (second column), θi=40◦ (third
column) and scattering directions θs,φs∈ [−45◦,45◦].
(a)-(c) Normalized absolute value of bistatic Es ([dB(V/m)], V Polarization). (Following results are
after selecting scattering directions at which |Es|≥ -30 dB)
(d)-(f) Absolute values of nonreciprocity factor.
(g)-(i) RRSM eigen-classification type (color-coded image).
(j)-(l) RRSM eigen-classification as bargraphs for bistatic angle intervals between [0◦,90◦].
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Figure 2.17: Square Plate (Bistatic Results, Time Domain Solver).
Incidence directions at φi=0◦ and θi=0◦ (first column), θi=25◦ (second column), θi=40◦ (third
column) and scattering directions θs,φs∈ [−45◦,45◦].
(a)-(c) Normalized absolute value of scattered bistatic Efield ([dB(V/m)], V Polarization). (Following
results are after selecting scattering directions at which |Es|≥ -30 dB).
(d)-(f) Absolute values of nonreciprocity factor.
(g)-(i) RRSM eigen-classification type (color-coded image).
(j)-(l) RRSM eigen-classification type as bargraphs for bistatic angle intervals between [0◦,90◦].
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■ Bistatic dihedral
For the dihedral target, the range of scattering directions, i.e., θs,φs∈ [−45◦,45◦]
ensures that responses come only from the two interior facets of the object. In the
absence of a verification procedure for the estimated bistatic results, the electric
field observations are limited to only those directions for which the normalized
absolute value is larger than -30 dB. This will, at minimum, prevent too noisy
results from being evaluated. The shape of our selection and the number of
points fulfilling such constraint modifies with the change in incidence direction
(i.e., from one column to the other in the results template).
At normal incidence (first column, θi = 0◦, φi = 0◦), the absolute value of the
nonreciprocity factor is quite low with values in the range [0,0.3] (Fig. 2.16d) and
the RRSM eigen-classification shows a majority of real eigenvalues (Fig. 2.16g).
So, even if the observations are bistatic and the bistatic angle varies up to 20◦

in the directions remaining after threshold selection, the scattering mechanism
remains inherently symmetric.
At more skewed incidence directions (θi =25◦ or 40◦), we observe an increase
in the percentage of Rx directions returning complex RRSM eigenvalues. This
appears for scattering directions distributed in the entire range of θs,φs values
(Fig. 2.16h-i), but only if |φs| > 5◦. The RRSM eigen-classification remains
dominated by real values (Fig. 2.16).

■ Bistatic plate
As in the monostatic case, the plate scatterer is square, i.e., it has a form factor
(FF, i.e., ratio of height to width) equal to one. The main post-processing results
are shown in Fig. 2.17(d)-(l).
The results indicate that, for the great majority of Rx directions, the RRSM
eigenvalues are of complex type. In the spherical angular domain, this happens
for φs outside [−5◦,5◦] and (∀) θs. As a particular trend, local peaks of the RRSM
complex eigenvalues percentages seem to appear at bistatic angles near integer
multiples of θi.
The change in incidence directions produces for the plate a lower variation
of the RRSM complex eigenvalues percentage by comparison to the dihedral’s
case (Table 2.7). Moreover, it indicates a slight decrease for the RRSM complex
eigen-percentage even for more skewed θi.

In Fig. 2.18, only the RRSMs with complex values are considered for each target.
They are evaluated in relation to the bistatic angle and both the NRF modulus and
phase. Even with different numbers of scattering points and distinct ranges for
the considered parameters, it is seen that the amplitude of the returned complex
eigenvalues globally decreases when varying from incidence angle θi= 0◦ (orange dots)
to incidence angle θi= 40◦.

The complex eigenvalues are not limited to a certain bistatic angle (the case with
θi= 40◦ is relevant, as such incidence allows for bistatic observations in the largest
angular range). Moreover, the appearance of the complex values is not limited to a
specific NRF phase angle and while a NRF modulus threshold seems to exist it is even
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Figure 2.18: Bistatic targets. Combined representations with: the modulus of RRSM complex
eigenvalues, the bistatic angle and the NRF parameter. (a-c) 90◦ Dihedral. (d-f) Plate.

lower than expected (i.e., as low as to ≈ [0.05, 0.1]; nonetheless it is necessary to
point out that this is very close to the auto-defined threshold value δimag, used inside
the eigen-classification workflow, Annex E).

The main results from the bistatic analysis suggest that:
(a) For low φs values in the scattering domain, the RRSM eigen-classification shows
only real values.
(b) Very skewed incidence/scattering bistatic combinations (for both θ and φ) may
determine scattering effects characterized by RRSM complex eigenvalues.
(c) The simulations are not conclusive in defining a threshold scattering direction (θs,φs)
from which complex RRSM eigenvalues begin to appear. Moreover, there is no general
result to suggest which is the minimum "skewness" with respect to the observation direc-
tion. With the plate scatterer, complex RRSM eigenvalues have appeared for φs values
as low as 5◦, or for observation directions having very low bistatic angles β∈ [0◦,5◦].

2.6 Conclusions

This chapter has continued to explore the particularities of the conjugate similarity
operation, has introduced the properties of coneigenvalues and coneigenvectors along
with a state-of-art analysis of the known algebraic methods used to determine them.
Within this context, the Real Representation and the homonym real block form of
the scattering matrix are introduced and proposed. Compared to the known PolSAR
method for consimilarity, i.e., the Graves method, it can be used with both reciprocal
and nonreciprocal scattering matrices. The previously not considered case of conjugate
(con)eigenvalues of inhomogeneous scattering matrices becomes available when using
the Real Representation.



86 Chapter 2. Real Representation Scattering Matrix (RRSM)

In order to consolidate not only an algebraic, but also a polarimetric understanding,
experiments on full-pol data are performed in the chapter. Their main aim has
been in uncovering relations or connections between the phenomena of complex
(con)eigenvalues observed in the data and the scattering mechanisms in polarimetric
monostatic and bistatic observations.

Monostatic (real and simulated) and bistatic (simulated) data has been used. The
simulated data for individual, elementary targets (which applies as model of study
to the specific case of coherent polarimetry) has been obtained using a Computational
Electromagnetic Software.

It is to be stated that the PolSAR evaluation is incomplete in some regards. The
representation itself and the eigen-decomposition of the Real Representation block
matrix is applied only in a coherent manner, without statistical averaging. This type
of evaluation is then, not appropriate to characterize distributed scatterers.

Moreover, the influence of coneigenvectors has been pursued only limited, which
can be expanded by future work.

Generally, a congruent understanding of both values and vectors of a PolSAR
decomposition has been acquired by having a parametric model which uses one (e.g.,
the Touzi model for the scattering vectors) or both (e.g., the H-α model for covariance
matrices) of this information to provide interpretable parameters. From a practical
perspective, the results presented in this part, position the Real Representation matrix
more of a testing approach (e.g., with real monostatic data, of the compliance to the
congruence assumption and the applicability of the Graves model). In this regard,
efforts have been made for a factorization (based on SVD) of the Real Representation
matrix, but the model selected has proven not unique in numerical implementation.
Further research on the subject would be necessary.



Hard to find anything lovelier than a tree.
They grow at right angles to a tangent of the nominal sphere of the Earth.

Bill Nye
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This chapter describes a different algebraic operation (i.e., the polar factorization),
which is applied to the scattering matrix for unsupervised classification. As introduced
in Chapter 1, the general framework for data processing and information extraction
in unsupervised PolSAR involves incoherent techniques and the use of the coherence/-
covariance matrix. This is a statistics-based processing and the informational space is
3×3 or 4×4 (depending on the column dimension of the monostatic/bistatic scattering
vector, Section 1.5). The incoherent clustering technique introduced in this chapter
proposes a different approach. The technique exploits the informational space of the
scattering matrix (2×2), under the polar factorization. This is combined with a geomet-
rical processing in the Riemannian manifold for the Hermitian scattering factors. The
proposed analysis shows comparable and even improved results to the conventional
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Wishart classifier, which performs covariance-based clustering. This proves the feasibility
of the introduced framework, paving the way for possibly more advanced applications.

The chapter debuts with a short discussion on PolSAR metrics and the subdomain
of unsupervised clustering applications, in Section 3.1. This is followed by a detailed
examination of the polar decomposition (Section 3.2) and a discussion on the
geometric properties of the two decomposition factors (Section 3.3). The presentation
of the proposed approach and the evaluation of results on real and simulated data
are covered in Sections 3.4 and 3.5. The main text is accompanied by Annexes F-H.

3.1 Unsupervised classification and clustering in PolSAR

3.1.1 Metrics, distances and similarity measures for PolSAR applications

The metric terminology is generally used for any quantifiable measure. From a
mathematical perspective, a metric is a distance if it is a real-valued function, operating
on a set of points {X} and verifying the conditions of: (a) non-negativity, (b) symmetry,
(c) triangular inequality, (d) identity 1[164, 165].

Choosing an adequate metric is of particular importance in both simple and
advanced data processing. Imposing a (dis)similarity measure on algebraic objects
(i.e., vectors, matrices) generally requires to assign a metric function. However, a
(dis)similarity measure is not necessarily a metric. Some of the PolSAR applications
involving the use of metrics and similarity measures are in speckle filtering, change
detection and unsupervised/supervised classification.

i. Speckle filtering: Local and non-local filtering are two type of techniques used
to reduce the effects of the granular speckle noise, which appears in the PolSAR
coherent imaging systems. The speckle filtering methods can operate spatially
or in a transformation domain.
Local approaches make use of a uniform, locally-defined window2 to process the
entire image. When similarity measures are necessary, they are applied point-wise.
Differently, the non-local filters use a more global approach, usually patch-based
[166, 167]. Pixels with resembling features are grouped together and processed
in a consistent manner. If similarity measures are necessary, they are applied at
the patch level.

ii. Change detection: The automatic extraction of differences among (at least) two
images acquired over a period of time for a common area is an important asset in
remote sensing. The type of methods used in PolSAR change detection are diverse
but most of them operate with distance/similarity measures [168, 169]. Case

1Given x,y,z∈X
d(x,y)≥0 (a) d(x,y)=d(y,x) (b)

d(x,z)≤d(x,y)+d(y,z) (c) d(x,y)=0 iff x=y (d)
2known as kernel or convolutional filter, in computer science.
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studies of PolSAR change detection have been reported in crop characterization
[170], urban areas [168, 169] and so on.
Used as a stage in change detection strategies, or applied as a separate procedure,
edge detection techniques may also use specific similarity measures [171].

iii. Classification:
Unsupervised classification techniques are pixel- or patch-based and split the
PolSAR data depending on the scattering properties of targets, the probabilistic
characteristics of the data, or a combination of the two. Otherwise, supervised
approaches are based on the use of labeled data to train a classifier.
Apart from the more recent machine learning approaches, both supervised
and unsupervised methods compare and split the data based on one or more
metrics and similarity measures. In case of the former, the metric space can be
automatically learned by the network.
The current chapter proposes a clustering-based unsupervised classification. This
is presented in more detail in the sections to follow.

An introduction to the fundamental (distance) metrics and similarity measures used
by PolSAR applications can be found in [164] and an in-depth review is available at
[165]. The two primary types are the stochastic and the geometric. Stochastic metrics
are used to evaluate probability distributions and quantify how alike two random
variables (under a statistics a priori). With geometric metrics, the a priori is in the form
of the geometric embedding considered for the variables. For example, the polarimetric
covariances are complex Hermitian positive definite matrices, known to reside inside
an open conic, smooth manifold.

■ Stochastic Metrics
Key words: Gaussian/Non-Gaussian, maximum/ratio likelihood, stochastic
divergences.
Under the fully developed speckle condition, the multi-look covariance/coherence
follow the (scaled) complex Wishart probability distribution function (pdf) [4].
When this is no longer the case, SIRV compound models have been assumed [100].
Under the most general case, the stochastic tests and measures have a distribution
independent form.
The maximum likelihood (ML) metric based on the Wishart distribution (and hav-
ing the homonym name) is one of the most popular Incoherent Target Decompo-
sition (ICTD) metrics [172]. Log-likelihood and likelihood ration testing are well-
known approaches in testing probabilistic functions. For example, [173] proposes
a likelihood ratio criterion under the Wishart distribution, while [174] derives the
Bartlett and the revised-Wishart metrics under a relaxed Wishart distribution.
Alternatively, metrics or likelihood tests have been obtained considering the
non-Gaussian (compound) distribution cases (e.g., K-Wishart metric) [165, 175].
The divergence-based stochastic metrics, with roots in information theory, have
gained recognition also in PolSAR. Such metrics test the proximity/closeness
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between two probability measures. Example of metrics (based on the h− ϕ
divergence model) are: Kullback-Leibler, Battacharyya, Hellinger, Rényi of order β
or Chi-squared. Frery et al. particularize these distances assuming the coherence
matrices under the complex Wishart [131] and the relaxed scaled complex
Wishart a priori [174], while Bouhlel and Méric [169] assume a non-Gaussian
model under the G0

d distribution.

The Chernoff [176], the Jeffries–Matusita [177] or the Jensen-Bregman Log
divergence are other examples from the same category. Particularly, they can be
viewed as special cases of some of the above-mentioned stochastic metrics [165].

In recent studies, another class of divergences have been introduced to PolSAR,
i.e., the Hölder divergences and pseudo-divergences [178, 179]. They propose
a different type of similarity metric, which measures the tightness of probabilistic
inequalities.

■ Geometric Metrics
Key words: covariance matrix - manifold metric, Kennaugh matrix - spherical
geodesic.

Such metrics are adapted to the geometric embedding of the data. Nonetheless,
they have been used to a lesser extend than the stochastic ones.

For example, based on the property of real symmetric and Hermitian complex
symmetric matrices of being enclosed in a Riemannian manifold (Section 3.3.2),
several studies have proposed metrics adequate for this space (the affine invariant
Riemannian metric (AIRM) or the log-Euclidean). In PolSAR, these have been
applied for ICTD methods using complex covariances.

Given that Kennaugh matrices operate as transformations between polarization
states on the Poincaré sphere (i.e., the transmitted and scattered Stokes vectors),
Ratha and al. introduce a spherical geodesic distance for comparing such matrices
[168, 180, 181]. The authors argue the same metric can be applied for covariance
matrices. Hereafter, we refer to it as the angular geodesic metric.

3.1.2 PolSAR clustering

There are several types of clustering algorithms proposed in computer science for un-
supervised classification: partitional, hierarchical, density, grid, model-based and others
[182]. Many of them have been applied in PolSAR. Among the most popular are the
partitional methods (e.g., k-mean, fuzzy c-means [183]). Other examples include the
probabilistic model-based clustering (e.g., with the Expectation-Maximization method
[183, 132]), the hierarchical clustering [176], the spectral clustering [184] and so on.

The introduction of the Wishart method has been a major milestone in PolSAR unsu-
pervised classification [172]. Balancing the ability to provide results of good accuracy
with implementation simplicity, the method has gained popularity with both novices
and experienced members of the community. Its popularity has also consolidated the
use of the coherency/covariance matrices as principal descriptors with ICTD.



3.1. Unsupervised classification and clustering in PolSAR 91

The classifiers is based on the k-means algorithms, with an iterative implementation
in which the Wishart distance is adopted as metric. Equipped with this metric, the
model was shown to represent an optimal Bayesian classifier, considering that the
scattering vectors are modeled by zero mean complex circular Gaussian vectors,
completely characterized by their covariance matrix [172].

The classical k-means algorithm is an iterative, partitioning clustering technique
which separates the input data X= {xi}, i∈ [1,N] into K subsets (i.e., classes) [185,
186]. Each sample xi belongs to only one subset. The assignment to class K is made
through the minimization of a least squares cost function, which computes the sum
of squared errors with respect to each cluster centroid Ck, k∈ [1,K]. A generic schema
for centroid-based classification algorithms is displayed in Fig. 3.1.

The unsupervised centroid-based clustering approach has proven popular and
versatile in PolSAR. Over the years, an important volume of publications have enriched
the core model of Wishart clustering proposing changes to different stages in the
original algorithm. A non-exhaustive selection, chosen to reflect the diversity of
proposed modifications, is depicted by Table 3.1.

A common pattern is observed. The majority of these PolSAR clustering approaches
seek to combine: a technique able to retrieve scattering mechanisms and a clustering
procedure based on stochastic distances. The classical algorithm uses the H − α
partitioning and in-class (Euclidean) averaging for computing the initial centroids.
The number of classes is subsequently increased by introducing the H−α−Anisotropy
3D plane space for the scattering partitioning [187]. Lee et al. propose in [188]
some updates in three areas: cluster initialization (by using the Freeman-Durden
model-based decomposition), the number of initial classes and the merging criterion
between iterations. This model became soon another popular choice, mostly with
model-based initialization. For example, [189] changes this stage by using the
scattering entropy power and the co-polarization ratio. Different initialization models
using power factors have been introduced: Chunle et al. change to a non-negative
eigenvalue decomposition of coherency matrices (to mitigate some of the limitations
of the Freeman-Durden model) [190], while Ratha et al. use the comparison of the
Kennaugh matrices by the angular geodesic distance [180]. The latter is modified by
[175] to separate between homogeneous and inhomogeneous regions and then use
either the Wishart or K-Wishart metric when performing the class assignment.

In [191, 192], Formont proposes changes of the classical algorithm in three
essential parts: the estimation of the sample covariance matrix (Gaussian ML vs. Fixed
Point model), the distance metric (Wishart vs. SIRV) and the centroid recomputation
(classical mean vs. geometric (Riemannian) mean).

The combination of the k-means algorithm with a class assignment based on
stochastic distances (i.e., Kullback-Leibler, Battacharyya, Hellinger, Rényi of order β and
Chi-squared, all derived considering the Wishart distribution) is referred in [132] as
stochastic clustering. While this implementation uses a random initialization, the same
authors propose in [193] an initialization based on hierarchical clustering and the
geometric mean of covariances (by considering their Riemannian manifold embedding).

In [194], the initialization uses the h/q decomposition (a proposed alternative to
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H−α), the inter-cluster classification is based on the Wishart metric, while the centroid
is updated via the density clustering technique (DCT) based on the Log-Euclidean
Riemannian metric.

first run
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class 
assignment

STOP
criterion

recompute

NO

YES

nr.
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Figure 3.1: Generic scheme of a centroid-based clustering algorithm for PolSAR data.

Table 3.1: Partitional clustering PolSAR examples based on k-means.

Acronyms: SIRV: Spherical Invariant Random Vector. NNED: Non-negative Eigenvalue Decomposition.
DCT: Density Clustering Technique. A:Anisotropy

Parameters

Ref. nr.clusters distance metric Ck initialization Ck update

classical Wishart, [172] 8∗ Wishart H−α
in-class average

(Euclidean)[187], 2001 16∗ Wishart H−α−A
[188], 2004 15-16∗ Wishart Freeman-Durden

[191], 2011 8∗ Wishart and
SIRV

H−α
in-class average

algebraic (Euclidean) and
geometric (Riemannian)

[189], 2013 8∗ Wishart
H-power

and co-pol ratio
in-class average

(Euclidean)
[190], 2014 16∗ Wishart NNED
[180], 2018 15∗ Wishart wa,wb,wrs

[132], 2019 6§ Wishart and
stochastic divergences (Wishart distr.)

random

[175], 2021 15-16∗ Wishart and K-Wishart wa,wb,wrs

[194], 2021 8∗ Wishart h/q log-Euclidean DCT
∗ fixed by model. § from ground truth.

Ck = centroid, 1≤k≤N; N = nr. of clusters

3.2 PolSAR polar factors

While the polar decomposition has already been introduced in Section 1, the discussion
here is more extensive. This technique has generally been used in PolSAR as a coherent
method and for allowing feature extraction from the scattering matrix, S ∈ C2×2.
Since there are no constraints in applying the factorization, it can be used for both
symmetric/asymmetric, or otherwise, monostatic/bistatic scattering matrices. The
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decomposition can divide any scattering matrix into two terms, one unitary and one
positive semi-definite (and therefore, also Hermitian). For brevity of notation they
are further addressed as the U and H factors, respectively. Depending on the chosen
ordering of the two terms, the factorization has two forms, the right and left polar
decomposition, (1.31) and (1.32). The unitary factor, which is unique for invertible
S∈C2×2, is the same in the two factorizations, while the Hermitian factors are unitary
similar, i.e., they share the same eigenvalues.

The polar decomposition can be seen as the matrix equivalent of a more simpler ex-
pression, the polar form, which writes every non-zero complex number s=s1+js2, s∈C,
as the product of a modulus and a phase element: s= |s|·ejθ, θ∈ [−π,π]. With the matrix
polar decomposition, the positive definite factor is the higher dimensional equivalent
of positive numbers, while the unitary factor has a combined phase-rotation action.

Nonetheless, the polar decomposition is closely connected to the SVD, S=VΣW
H

,
so that S=UH=

(
VW

H
)(

WΣW
H
)

. The singular values of S are the same as the
diagonal values of Σ.

From an algebraic perspective, the previous chapter has investigated into the use
of the conjugate similarity in PolSAR, while the current chapter is oriented - through
the polar decomposition - into the use of a similarity-type factorization.

3.2.1 State of art on PolSAR Polar Decomposition

The works of Carrea et al. are among the first to propose the polar factorization as
a coherent PolSAR decomposition technique [195, 196]. The unitary and the positive
definite factors are described as a rotation and as a boost matrix, respectively. Based
on this model, several parameters (with a geometric meaning in the spherical Stokes
space) are proposed for the decomposition of symmetric matrices [197].

Following works of Souyris et al. have express the scattering matrix’s polar
decomposition using the formalism of quaternions [198]. The quaternionic model
proposes a new set of polarimetric features for data interpretation. By applying
separate spatial averages (multi-looking) of scattering vectors obtained from the two
factors, the model is extended to applications with incoherent targets [199, 200].

By exploiting the connection between the SVD and the polar decomposition, Cloude
et al. propose a PolSAR algorithm for active calibrators which recovers the real rotation
matrix from the unitary polar factor [201]. From it, the method then estimates the
ionospheric Faraday rotation angle. As there is no reciprocity assumption implied, the
algorithm can be applied for both monostatic and bistatic calibration.

In optical polarimetry, the polar factorization is among the most popular decomposi-
tion. It splits a complex 2×2 Jones matrix in a retarder (i.e., the unitary matrix) and a
diattenuator (i.e., the Hermitian matrix). This is usually the case with a nondepolarizing
Mueller matrix [202], while for a general Mueller matrix a model of three factor
(retarder, diattenuator and depolarizer) is used. The same model is considered in
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[203] for (pixel-by-pixel) classification of PolSAR data in Mueller matrix format.

3.2.2 Algebraic and geometric properties of polar factors

The polar decomposition of complex scattering matrices returns two distinct matrices:
one unitary and one complex positive semi-definite. Here, we examine more closely
some of their properties.

■ Complex positive definite factor:

A complex positive semi-definite matrix H verifies u
H

Hu ≥ 0 ∀ u∈C2 and has
non-negative eigenvalues. Such matrix is also necessarily Hermitian, H

H

=H.
The semi-definite restriction is covering the case when the matrix may present
zero eigenvalues. The eigenvalues of the Hermitian factor are the same as the
singular values of the scattering matrix. Moreover, the two matrices have the
same rank. The question of semi-definiteness of H is thus related to the 2×2 S
having full-rank (i.e., independent columns). Generally, this is indeed the case
for the matrix of polarimetric measurements. Even in the rare occurrences of
acquisitions having a low signal to noise ratio, the presence of additive thermal
noise will guarantee in practice that the numerical singular values/eigenvalues
of S are different from zero. In the following, the discussion considers entirely
the case of positive definite results with the polar decomposition.

Assumptions Set - 3.1.

I. The H polar factors obtained from the factorization of polarimetric
data, in real world applications, have positive and non-zero
eigenvalues.

i. Algebraic perspective:
The general form of Hermitian matrices, with elements above and below
the main diagonal in complex conjugate symmetry, is well known. For the
polar H-factor, we then write:

H=

[
h1,1 h1,2
h2,1 h2,2

]
=

[
h1,1 h1,2
h∗1,2 h2,2

]
. (3.1)

It was shown that the H matrices of the right/left factorization share the
same eigenvalues (Section 1). As the two matrices are Hermitian, their
eigenvalues are real numbers. And when the decomposed scattering matrix
S is (complex) symmetric (i.e., the general case of PolSAR monostatic), these
eigenvalues share also a multi-facet interpretation: as Takagi factors and/or
coneigenvalues and/or singular values.
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ii. Geometric perspective:
The space of Hermitian positive definite matrices of fixed dimension m×m
is a subspace of the Euclidean space Rm(m+1)/2.
For the polar H factor of the scattering matrix this means an embedding
inside R3. Nonetheless, from a geometrical perspective, this subspace takes
the form of a smooth, open-conic manifold. A more in-depth overview
on this subject and the geometric embedding for H factors is covered in
Section 3.3. Given the manifold’s non-Euclidean geometry, the simple use
of common (Euclidean) metrics is not the most adequate for conventional
operations (distance, mean, other statistics) on the manifold.
The real Brétigny dataset and its polar H and U factors are considered for
the examples in Figs. 3.2 and 3.3. An illustrative example for Hermitian
matrices in (3.1) is considered by using function F(·). The representation
in (3.2) is inspired by [204], with a small change, to better fit the PolSAR
framework. Although in a different order, the three coordinates in (3.2) are
no other than the three Pauli coefficients

{
kP,1,kP,2,kP,3

}
(corresponding

to the complete set of monostatic PolSAR basis):

F(H)=
1√
2
[h12+h

∗
12, h11−h22, h11+h22]. (3.2)

(a)

(b)

Figure 3.2: Brétigny Dataset. (a) Representation in R3 of F (H) coordinates for all H factors in
the dataset. (b) Zoomed view in red rectangle area from (a) and random selection of only 800 points.

■ Unitary factor:

For a unitary matrix, its Hermitian conjugate is equal to its inverse, so that:
UU

H

=U
H

U=I.
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i. Algebraic perspective:
The unitary matrices are the complex counterparts of orthogonal matrices.
Many distance functions are unitary-invariant so, as their real analogue,
they are known to preserve lengths/amplitudes. The 2×2 group of unitary
matrices is known as U(2). Any member of this group can be expressed
under a generic form

U=

[
u1,1 u1,2
u2,1 u2,2

]
=

[
|u1,1|ejφ1,1 |u1,2|ejφ1,2

|u2,1|ejφ2,1 |u2,2|ejφ2,2

]
=

[
a b

−b∗ejφ a∗ejφ

]
(3.3)

where a, b ∈ C, |a2|+|b2|=1 and 0≤φ≤2π.
The subgroup of unitary matrices having unit determinant belongs to the
special unitary group, here SU(2)={U∈U(2)|det(U)=1}.
A number of different factorizations have been proposed for unitary matrices
[205, 206, 207] and they involve phase transformations and (real) rotations.
For example, a 2×2 unitary matrix can be expressed as the product between
a diagonal phase matrix and an SU(2) matrix3, or equivalently, as the product
of two phase matrices and one real rotation [205]. This can be expressed as

U=ejγ
[
ejφ1 0
0 e−jφ1

][
cosθ sinθ
−sinθ cosθ

][
ejφ2 0
0 e−jφ2

]
. (3.4)

That is, the combined action of a unitary matrix is that of both rotation and
phase changes.

ii. Geometric perspective:
The U(n) group of n×n unitary matrices forms a Lie group under matrix multi-
plication. It is an algebraic group that has the structure of a smooth manifold.
From a topological perspective, the elements inside SU(2) reside on a
three-sphere, S3.
By using the same mapping for the H factors (but taking the modulus |F(U)|,
as results are no longer real), the unitary U factors seem to reside inside
a spherical triangle region on the S2 sphere (Fig. 3.3a). Taking the complex
elements a and b from (3.3), a different mapping to R3 (which uses the
model of the Stokes parameters), can be proposed:

L(U)=
[
2R(a∗b), 2I(a∗b), |a|2−|b|2

]
. (3.5)

With the new mapping, the coordinates of the U factors from the PolSAR
Brétigny dataset appear in a conic hyperboloid inside the S2 sphere (Fig.
3.3b).

3One particular form which SU(2) matrices assume is:
[

a b

−b∗ a∗

]
given a, b ∈ C, |a2|+|b2|=1.
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Figure 3.3: Brétigny Dataset. (a) Representation in R3 of |F(U)| for all U factors in the dataset.
(b) Representation in R3 based on L(U) for all U factors in the dataset.

3.3 Manifold of Hermitian/unitary factors

3.3.1 On manifolds and Riemannian geometry

A manifold M is a topological space, similar to an Euclidean space at each small vicinity.
Real manifolds locally possess the properties of Rn, while complex manifolds locally
possess the properties of Cn. At any point X in the manifold, the tangent space TXM
can be defined (Fig. 3.4). The reunion of all tangent spaces determines the tangent
bundle. Each tangent space is a vector space and can be equipped with a bilinear,
symmetric, positive-definite function as inner product, ⟨·,·⟩TXM. The product induces
a norm for vectors in TXM. So, a metric defined on the manifold is a choice of inner
product for each X ∈M. When such inner product varies smoothly from point to point
over the manifold, it is called a Riemannian metric. Finally, a manifold endowed with
a Riemannian metric is a Riemannian manifold.

Because an n-dimensional manifold can be regarded also as an Euclidean subset,
it is (naturally) equipped with the distance measures of this space, e.g., the Frobenius
norm. But, in non-linear manifolds, using these metrics is no longer an adequate
choice, as the topology of the space presents some form of curvature. One of the most
simple examples of a nonlinear manifold is the Sn−1 sphere contained in any Rn.

For a clear separation, the metrics which can be imposed on a geometrical space can
be intrinsic (i.e., compute the true length on the manifold) or extrinsic (i.e., possible
to define, but not optimal in the space).

On non-linear manifolds, the intrinsic distance between two points is not a straight
line, as in the Euclidean space, but a path which follows the curvature of the space.
This is known as a geodesic. A comparison is displayed in Fig. 3.4. For coordinates
A and B in the manifold, the geodesic function ΓA−B : [0,1]→M verifies equalities
ΓA−B(0) = A and ΓA−B(1) = B.
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The geodesic is imposed by a Riemannian metric, which then represents the
intrinsic way of measuring distances in the manifold.

The geometric center (hereafter, barycenter) of a set of m matrices {X1, X2, ...,
Xm}∈M, m>2, can be mathematically expressed as the the minimizer of a sum of
squared distances,

argmin
X0

m∑
i=1

d(X0,Xi)
2, (3.6)

from the unknown barycenter X0 to each member Xi of the set.

euclidean
geodesic

A

B

Figure 3.4: Example of a manifold (M) and its tangent space at point X (TXM).

3.3.2 Manifold embedding for Hermitian positive definite matrices

The space of n×n symmetric positive definite (SPD) matrices when endowed with a
Riemannian metric forms a Riemannian manifold. The same property can be extended
to the space of Hermitian positive definite (HPD) matrices. There is a solid theoretical
framework for SPD and HPD matrices in the scientific literature, as positive definite
matrices appear in wide variety of domains (machine learning, computer vision,
medical image analysis), often as covariance matrices.

The Riemannian manifold of positive-definite matrices is known to be non-linear,
convex and smooth (i.e., infinitely differentiable). It takes the form of a convex, open
half cone with negative curvature. For an n-dimensional space we refer to it as P(n).

For manifolds having a unique normal geodesic joining any two distinct points, the
convex property is verified both globally and locally (i.e., for any two points X and
Y from a subset of the manifold, the geodesic joining them in P is also contained in
the subset).

■ Riemannian geometry in PolSAR:
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In PolSAR, it has been more than a decade since the Riemannian manifold
embedding is used exclusively with coherency/covariance matrices. The main
areas for practical applications are in unsupervised classification and segmentation
[191, 208, 209, 210, 193], time-series change detection [211, 170], supervised
classification [212, 213, 214] or speckle filtering [215, 216].
These techniques, generally share the common point of assuming a similarity
metric which exploits the geometry of the manifold. The most commonly
employed metrics in the Riemannian manifold of positive Hermitian matrices
are the affine invariant Riemannian metric (AIRM) and the Log-Euclidean metric.
Nonetheless, there are some works which have taken a different geometric
approach and instead of exploiting the Riemannian manifold of covariance
matrices propose, for example, a higher dimensional embedding (e.g., into a
Kernel Hilbert Space [217, 218, 219]). The distance metrics used in this case
are not necessarily geodesics.

■ Affine Invariant Riemannian Metric:
Considering ΓP(t) : [0,1]→P(n) with ΓP(0)=A to ΓP(0)=B, a geodesic function
in P(n), A,B∈P(n). The unique geodesic curve between any two positive definite
matrices is given by [204]

Γ(t)=A1/2
(
A−1/2BA−1/2

)t
A1/2, t∈ [0,1] (3.7)

The exact arc-length of the geodesic curve, i.e, the distance measure, between
two manifold points is obtained by integration of the velocity (i.e., first derivative)
along the geodesic, t∈ [0,1]. Then, the minimum distance between A and B is
obtained in the form of the affine invariant Riemannian metric (AIRM):

dP(n)(A,B)=∥Log(A−1/2BA−1/2)∥F , (3.8)

The AIRM geodesic distance complies to several invariance properties such as
self-duality, congruence invariance, joint homogeneity and determinant identity,
among others [220]. In particular, the congruence (or, affine) invariance implies
that

dP(n)(JAJ
H

,JBJ
H

)=dP(n)(A,B), (3.9)

for any non-singular matrix J.
Table 3.2 contains a non-exhaustive list of applications from PolSAR, which employ
AIRM as distance metric (in applications with the covariance/coherency matrices).
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Table 3.2: Example of PolSAR applications using the AIRM metric.

Applications Method Type Ref.

AIRM

supervised classif. dictionary-based [212, 213, 214]
change detection region-based [211, 170]

clustering
pixel-based [191, 208]

region-based [210]
cluster init. pixel-based [193]

filtering pixel-based [171]
AIRM-modif. segmentation region-based [209]

■ Barycenter:

The Riemannian barycenter (also known as the geometric / Fréchet / Karcher
mean) is the minimizer of squared geodesic distances between the set of m positive
definite matrices [221]. AIRM is the chosen geodesic distance for eq. (3.6).

While there is no closed-form solution for the minimization problem in (3.6) with
m≥ 3, it was shown that the minimum always exists and is unique for Riemannian
manifolds of negative curbature [222]. This is exactly the case for the manifold of
Hermitian positive definite matrices. When the dispersion of points on the manifold
is not excessive, an estimate of the minimum can be attained with probability one by
a simple gradient descent algorithm [223]. Implementations of the optimization by
Newton algorithms is also possible.

A gradient descent method is used in the thesis to obtain an estimate of the
Riemannian barycenter for a set of m Hermitian positive definite polar factors {H1,
H2, ..., Hm}, m>2. Its pseudocode and a short discussion can be found in Annex H.
Unless otherwise stated, the right polar decomposition (1.31) will always be used to
obtain the Hermitian factors. Under the usual stationarity condition, the barycenter
minimization search is implemented using a local, boxcar moving window.

The Riemannian mean presents several invariant properties, as follows [204]:

• permutation invariance: This states that H0 is still the solution considering any
rearrangement of the original set {Hi}, 1≤i≤m.

• congruence invariance: Changing the matrix set to {VHiV
H

}, 1 ≤ i ≤ m, V

non-singular, the barycenter changes accordingly, becoming VH0V
H

.
• inversion invariance: H−1

0 is the corresponding barycenter for the set of inverse
matrices {H−1

i }, 1≤i≤m.

Computing the barycenter estimate is, nonetheless, a type of averaging operation per-
formed based on a geometric criterion. The usual averaging operation in PolSAR is the
arithmetic mean. This is used, for example, in a window-based framework for the multi-
look of complex polarimetric images, or the estimation of the sample covariance matrix.
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A comparison between algebraic and geometric averaging (span results) for
2×2 polarimetric matrices of a real PolSAR dataset is displayed in Fig. 3.5. As the
computation of both algebraic and geometric means requires a boxcar neighborhood,
three window dimensions are chosen: 5×5, 7×7, 11×11 (pixels). For reference,
different visualizations (Pauli: Fig. A.1(b), span: Fig. F.1(a)) of the single-look real
Brétigny dataset are available in the manuscript’s Annexes.

The left column of Fig. 3.5 displays the span of H barycenter estimates using the
gradient solution. On the right column, the span from multi-look averaging of the
S scattering matrices is displayed (analogous dimensions of the moving window).
The spatial resolution of images on the same row is comparable and, overall, the
span’s dynamic range does not vary across the images. One can observe that, by using
the conventional spatial averaging on S matrices, the image features and contours
visually blend and become harder to discriminate. The coherent scatterers tend to
become extended and blur into the background. For the left-column results (geometric
manifold averaging), even with the decrease in resolution, the relative radiometric
difference for distinct areas in the image is less affected. This improves discrimination
between areas and better preserves contours.

Other comparisons of PolSAR algebraic and geometric averaging operations have
been identified in the literature. For example, the bilateral, iterative filtering proposed
in [171] is individually implemented using the Riemannian distance. The authors
compare filtering results on both real and (Gaussian) simulated polarimetric data
and conclude that the bilateral approach with the AIRM distance better preserves low
entropy targets4 than the traditional boxcar filter. This is observed also throughout
the comparison in Fig. 3.5.

In [224], the difference between scalar arithmetic and geometric averages of single
channel amplitude values from multi-temporal SAR series is computed. Improved
results in terms of speckle variation and signal to noise ratio are reported for the
geometric mean computation, as long as the SAR images from the acquisitions stack
remain similar, with no significant permanent changes.

As a result, the preference and motivation of this chapter is for manipulating the
PolSAR H factors in the Riemannian manifold.

3.3.3 Manifold embedding for Unitary matrices

■ Metric:
On the manifold of unitary matrices, U(n), the geodesic distance considered
between two matrices A and B is of the form [225]:

dU(A,B)=∥Log(A
H

B)∥F . (3.10)

■ Barycenter:
4i.e., the ones which usually associate to coherent scatterers in PolSAR images,
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The set of unitary matrices forms a compact and connected Lie group. While
this group is again known to present the structure of a Riemannian manifold,
it has been studied to a lesser extend.
Computing the barycenter of p unitary matrices {U1,U2,...,Up}, requires again
to solve the minimization operation given by (3.6). To the best of our knowledge,
there is no closed-form solution neither for computing this center of mass [225].
The gradient update rule in eq. (H.6) is modified into:

Ul+1=Ul ·Exp

ϵ p∑
j=1

U
H

l Log
(
U

H

lUj

). (3.11)

In practical implementation tests, some numerical problems have been observed,
as the convergence is not attained for random positions across the entire image.
Nonetheless, the unitary barycenters are not used for the final classification
algorithm. With this in mind, while more sophisticated solutions for computing
the geometric unitary may exist, they are not addressed here.
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Figure 3.5: Brétigny Dataset.
left column- Geometric manifold average: Span of H barycenters (boxcar estimation) [dB]
right column- Spatial average: Span of multilook S data (boxcar estimation) [dB].
(a-b): 5×5 pixels. (c-d): 7×7 pixels. (e-f): 11×11 pixels.
The display uses Matlab’s ’bone’ colormap. The 1-look dataset span image [dB] is Fig. F.1(a).
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3.4 Geometric clustering with Hermitian factors

3.4.1 Evaluating the contribution of the unitary factor

■ Rotation and phase component:

Checking the single-channel amplitude or the span images of the Hermitian
and polar factors/estimated barycenters provides very different results. When
evaluating the Hermitian matrices, they contain a rich spatial information as in
the original PolSAR dataset (as observed in Fig. 3.5). By contrast, there is little
visual information displayed by the span of the unitary matrices. However, this
is expected. Apart from a normalization constant, the unitary factors are matrices
with unit determinant. As discussed earlier, they are parametrized by one real
rotation angle and several phase factors.

This subsection aims to assess if any type of pattern or particular information can
be associated to the unitary component, by analyzing some phase and angular pa-
rameters. This evaluation is applied to the unitary barycenter estimates, which are
derived using a similar iterative approach as with the Hermitian factor estimates,
but with the appropriate distance (3.10) and updated rule from (3.11). It is impor-
tant to mention that this implementation for the unitary case is not 100% conver-
gent; the points for which unitary barycenters are not convergent are masked-out
in white in any display to follow and not considered with computations.

The elementary form of a unitary matrix in (3.4) contains the contribution of
one rotation and three phase factors. For decoupling the influence of the multiple
phases, a normalization is proposed to the unitary matrices, as in [206]:

Uph−=U

(
e−iφ1 0
0 e−iφ4

)
=

(
|u11| |u12|·ei(φ2−φ4)

|u21|·ei(φ3−φ1) |u22|

)
=

(
cosθ −sinθ·e−iϕ

sinθ·eiϕ cosθ

)
(3.12)

The normalized matrix Uph− is in the form of a complex rotation with one
angular θ and only one phase ϕ parameter. This is exemplified considering unitary
barycenters estimated on the real Brétigny dataset. Results are shown in Fig. 3.6.
With this dataset, about 25% of the image pixels do not attain unitary barycenter
convergence (they are ignored for the statistical evaluation).

The rotation angle θ parameter takes values below 25◦, while the absolute phase
values |ϕ| are normally spread in the [0◦, 180◦] interval, with a 90◦ mean and ap-
proximately 30◦ standard deviation (Fig. 3.6a-d). The only distinctive pattern is in
the west-side area, marking the position of one building with multiple coherent scat-
terers (Fig. F.1a). There, the θ values approach zero degrees, while the ϕ presents
also an extreme (i.e. ± 180◦). This indicates that the phase normalized unitary ma-
trices (3.12) are at those locations (almost) equal to identity. In turn, this can also
imply that the original unitary polar factors, on which the optimization barycenter
estimation is performed, are themselves close to identity. For such a case, the
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(a) (b)

(c) (d)

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90[deg.]

median notches: [4.99°, 5.04°] [25%, 75%] [9%, 91%] outliers

(e)
0 30 60 90 120 150 180[deg.]

median notches: [90.25°, 90.4°] [25%, 75%] [9%, 91%] outliers

(f)

Figure 3.6: Brétigny Dataset. (a) Angles obtained from the normalized unitary barycenter matrices
[deg]. (b) Phase values obtained from the normalized unitary barycenter matrices [deg].
Following statistics are computed excluding white-masked values: (c) Histogram of angles from (a).
(d) Histogram of absolute phases from (b). (e) Notches boxplot with mean and median values for
angular parameter in (a). (f) Notches boxplot with mean and median values for (absolute) phase
parameter in (b).

Hermitian polar factors are completely descriptive and (almost) equal to the orig-
inal scattering matrices. As a result, discarding the unitary polar factor in each of
these locations has a minimal influence and the polarimetric information content
is completely preserved. For other areas, having the angular parameter θ∈ [0◦,25◦]
still assigns overall diagonal values close to one for (3.12), as min{cosθ}≈0.9.

■ PolSAR roll-invariance and compensation:
As introduced in Chapter 1, rotation invariance is a desired property in PolSAR of
both targets and descriptive parameters. In monostatic observations, a rotation of
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the target around LOS has the same effect with an antenna turn around this axis.
While the antenna is nonetheless kept fixed, a rotation of a target with azimuth
symmetry has the final effect of a polarization rotation in the received signal.
For some descriptive parameters, their computation technique inherently
eliminates rotations (e.g., the eigen-decomposition applied to the covariance
matrix, which assures that the entropy and average alpha angles are invariant
[4]), while for others, the orientation-compensation is applied as prerequisite.
Such operation has been used in PolSAR with scattering matrices [226, 76],
covariance/coherency matrices, Mueller/Kennaugh matrices [226, 181], alike.
For example, in model-based classification applications with uncompensated
monostatic PolSAR data, the influence of rotations on targets is known to
determine a shift of the perceived scattering mechanism (e.g., in case of rotated
dihedrals, a change from double-bounce to volume scattering [163], as discussed
in Section 2). Consequently, it is typical for PolSAR techniques to incorporate
pre-processing to mitigate the effect of rotations. Huynen used to employ the
term desying (i.e., "deΨying", considering Ψ the rotation angle) for the angle
removal procedure [66, 226]. Generally, real rotation matrices are employed
for compensation, but several studies with covariances and SU(3) unitary
matrices have shown an improved effect when both a real rotation and a phase
compensation is performed [227, 228, 229]. For example, when compensating
the scattering matrix, a real rotation will usually have the desired effect with
symmetric (i.e., nonreciprocal) matrices. This is generally suitable for monostatic
datasets and not necessarily when nonreciprocal effects are introduced (e.g., see
the discussion in Chapters 1 and 2).
The introduction of a complex phase component has been associated in PolSAR
to the action of a helix element, or the coherent summation of two different
scattering mechanisms aligned along the LOS with a separation up to λ/8. In
this context, Wentao et al. describe the effect of unitary compensation as the
combination of a (normal) rotation and a helix angle compensation [230].
As a result, the use of the polar decomposition can prove highly beneficial.
Because the unitary factor integrates both rotation and random phase components,
the Hermitian factor becomes rotation invariant. As observed, in the previous
example, man-made targets producing a strong radiometric reflection are not
influenced by real or complex rotations, while for other scatterers the removal
of unwanted rotations is envisioned as a prerequisite.
Given that contextual and spatial information is preserved by the Hermitian term
across the PolSAR image and the matrices are endowed with the geometrically
rich interpretation of the Riemannian cone, the Hermitian factor plays a key role
in the proposed clustering method described hereafter.

3.4.2 Method description

A novel algorithm for unsupervised classification which performs geometrical clustering
on the manifold of Hermitian polar factors is proposed here. The method integrates
two fundamental concepts: the polar decomposition of scattering matrices and the
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Riemannian geometry of its Hermitian factors. The method is applied in a cohesive
manner for both coherent and incoherent scatterers. Three processing stages are
identified, as follows:

Step 1: The scattering matrix is decomposed using the (right) polar decomposition
(1.31). The H factors can easily be obtained by computing the square root of S

H

S.

Step 2: An identification of coherent scatterers based on the 98th percentile criterion
proposed by Lee et al. [231] is performed, at first. As in the original algorithm, a
3×3 boxcar neighbourhood is used. The pixels fulfilling the criterion are considered
to represent coherent targets. For them, no additional steps are needed and the
Hermitian factors are used directly for clustering (Step 3). With all other pixels,
barycenters are otherwise computed. This is the analogous of a N-look geometrical
center of mass estimation in the manifold of Hermitian polar factors. The barycenters
are obtained through an iterative method (Annex H) applied in local, square, sliding
neighbourhoods of fixed size. Evaluating the Riemannian Hermitian barycenters
may be designated henceforth using the acronym PolBaRi (POLar decomposition
BArycenters estimation on the RIemannian manifold).

Step 3: A modified k-means 5 algorithm is applied to the set of points containing
estimated geometric means and coherent Hermitian factors. The computation is kept
into the native Riemannian manifold of positive-definite matrices by choosing AIRM
as an appropriate inter/intra-cluster separation metric. Given the schema in Fig. 3.1,
the method proposes contributions in the data input format, the update of class centers
and the metric used to evaluate the objective function.

In this implementation, the class centers are randomly initialized and the number of
clusters is fixed and proposed as input parameter. Progressively, one of the K classes is
assigned at each (barycenter) matrix location and the cluster centers are updated. The
operation is repeated until the inter-class transfer is lower than a predefined threshold.

♠ Identical results have been obtained in practical tests with the monostatic datasets,
when checking alternatively the right and left polar forms. As discussed, the two

Hermitian factors
(
HR=

(
S

H

S
)1/2

and HL=
(
SS

H
)1/2)

are similar, HL=UHRU
H

, and

have the same eigenvalues. Moreover, these values are exactly the real-valued singular
values of S. As pointed out in the previous chapters, for monostatic data verifying
reciprocity, they are no other than the conjugate eigenvalues.

5From a computer science perspective, the better name to be used is k-medoids. It refers to a clustering technique,
similar to k-means, apart from the centroid computation. While in k-means the class centroid may be different from
the existing elements of a class (as the result of averaging), the metric criteria for k-medoids selects the center/centroid
from the elements inside a class. Nonetheless, we stick to the more common name in PolSAR. The technique will be
hereafter referred as Riemannian k-means.
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3.5 Geometric clustering: Implementation and testing

This section presents the results obtained by evaluating the proposed clustering
method on both real PolSAR and simulated polarimetric data. The analysis is
exclusively applied to the monostatic case. Nonetheless, through the use of the polar
decomposition, the method can be applied without changes to both monostatic and
bistatic data. The choice of colormaps is arbitrary and a certain color does not imply
a transferable meaning of scattering mechanisms between datasets.

3.5.1 Simulated datasets

The algorithm’s assessment with simulated datasets is the main focus of this subsection.
The phenomenology of dihedral and volumetric scattering is considered with the two
simulations. The data does not deviate from the multivariate Gaussian case. Both
qualitative and quantitative evaluation is addressed.

3.5.1.1 Simulated dataset based on monostatic CST results

(a) (b) (c)

Figure 3.7: Simulated dataset 1. Geometric clustering using the proposed method with variable
number of input classes: (a) 3, (b) 4, (c) 5.

(a) (b)

Figure 3.8: Simulated dataset 1. (a) Geometric clustering using the proposed method - Result with 2
classes. (b) Intraclass distance evaluation (centroid of yellow class to each H barycenter from positions
on the red line) by two geometric distances.
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The data used in the first analysis is based on the monostatic simulations for
the dihedral elementary object, from Chapter 2 - Section 2.5. The dimensions of
the original simulation are slightly reduced, so that only the scattering interval
θ,φ∈ [−45◦,45◦] is considered.

This dataset is not fed directly into the clustering algorithm. In order to account for
noise variations and have a more reliable parameter estimation, pixel-wise covariance
matrices are computed from the original simulated data and the Cholesky square root
is multiplied by stochastic Gaussian vectors (N = 50 times repetition for each pixel),
which generates a tensor with dimensions [orig. height×orig. width×4×50]. This is fol-
lowed by the polar decomposition and the H barycenter estimation, which reduces the
data dimension to [orig. height×orig. width×4]. The Riemannian clustering method is
applied with varying number of classes and results are presented in Figs. 3.7 and 3.8(a).
Even with the increase of the parametric input indicating the number of classes, the
results steadily identify the two main classes at the same locations: the central cross-like
shape (in yellow) and at the four corners. Inferring from the previous discussion of Fig.
2.12, in which the αCloude parameter is used to study the simulated scattering response,
these zones correspond to the double bounce and single bounce mechanisms.

For the result obtained using only two parametric classes, the intra-class separation
along a selected line (middle cut, with red in Fig. 3.8(a)) is compared in Fig. 3.8(b).
Two geometric distances are considered: on one side, the affine invariant Riemannian
metric used even in the computation of the results, and on the other, the angular
geodesic distance [168, 181]:

d(H1,H2)=
2

π
cos−1

 Tr
(
H

H

1H2

)
√

Tr
(
H

H

1H1

)√
Tr
(
H

H

2H2

)
. (3.13)

Both results have been normalized. There is a similar outcome of the intraclass-
to-centroid distance evaluation, when using the two metrics. This motivates to adapt
the angular geodesic distance for testing with real PolSAR data.

3.5.1.2 Simulated dataset based on covariance matrix model

Evaluation on a different simulated dataset is proposed here. Compared with the
previous, which has an important phenomenological component but no fixed ground-
truth, the aim of this subsection is to test the algorithm on a benchmark dataset with
known class separation. The dataset is simulated using the well-known model described
in Annex F I-II, which has been used to model symmetric anisotropic media with
Gaussian clutter. This is usually associated with volume scattering. Also, the choice of
statistical model is best known for fitting homogeneous regions in real PolSAR images.

Fig. 3.9(a) displays the span of the simulated image, total size 300×300 (pixels),
and in which four concentric regions are shown. The method from Annex F allows to
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Figure 3.9: Simulated data - Example 2.
(a) 1-look Span [dB]. (b) Wishart Classifier. (c) Proposed method: PolBaRi+Riemannian k-means.

obtain synthetic responses of polarimetric channels with known statistics, i.e., having
a known covariance/coherency matrix [232]. In the test image, the covariance is
different for each region and the intensity is varied linearly from one region to another
(i.e., the center area having the lowest intensity).

Results using the proposed method are compared to those obtained using the
classical Wishart classifier [172]. With PolSAR multivariate data following the Gaussian
model, the latter is known to provide an optimum solution. For both algorithms, the
number of expected classes is an input parameter.

The clustering results are in Figs. 3.9(b) and (c), with the percentages of per-class
accuracy, overall accuracy and Kappa index 6 in Tables 3.3 and 3.4. The evaluation
shows similar results for both approaches with a slightly higher overall accuracy with
the Riemannian k-means method.

Table 3.3: Per class accuracy [%].
Avg. class accuracy: 96.845 %.

Kappa index: 0.9736.

Actual class
1 2 3 4

W
is

ha
rt

1 91.45 0 8.55 0
2 0 99.77 0 0.23
3 0 0 99.46 1.54
4 0 1.2 0.14 96.7

Table 3.4: Per class accuracy [%].
Avg. class accuracy: 99.017 %.

Kappa index: 0.9835.

Actual class
1 2 3 4

Pr
op

os
ed

1 99.66 0 0.34 0
2 0 98.81 0 1.19
3 0.5 0 98.82 0.7
4 0 0.57 0.65 98.78

6The kappa statistic provides a measure of agreement which reflects also the situation that the outcome is obtained
solely based on chance. However, it does not give any indication where disagreement occurs. k= po−pc

1−pc
∈ [−1,1], where

po quantifies the overall accuracy and pe measures prediction as if happened by chance.
Finally, larger values are better, as k=0 denotes agreement purely by chance and k=1 is the perfect agreement.
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3.5.2 Real datasets

This subsection continues the testing of the proposed geometric framework, with real
monostatic PolSAR data. The Brétigny and Foulum datasets are used (Annex A). Apart
from the Riemannian k-means method, the Wishart classifier and a covariance-based
k-means using the angular geodesic distance are employed. The latter follows exactly
the model of the Wishart method apart for the inter/inter-class distance, which is
changed from statistical to geometric.

The initialization with the Wishart clustering is based on an initial H − α
segmentation. The Riemannian k-means uses the same number of classes (i.e., 8) but
considers a random initialization of class centroids (Fig. 3.1). Each algorithm uses
a type of boxcar averaging: in the estimation of coherency matrices with the Wishart
algorithm and in computing the geometric barycenters for the proposed method. The
same size for the local sliding window (7×7 pixels) is considered. This dimension
has been used with many previous covariance-based PolSAR publications as a good
compromise between image resolution degradation, feature preservation (Fig. 3.5(d))
and accuracy of estimation. All clustering results have classes sorted in ascending order.
Without the presence of actual ground-truth, the labeling of classes is not addressed
and the comparison is overall visual.

3.5.2.1 Real dataset 1 - Brétigny

Clustering results for the Brétigny dataset are displayed in Fig. 3.10. The classes having
the largest number of pixels (i.e., yellow, orange) are identified to cover mostly the same
locations in the three images. However, the most striking difference between the three
results is textural. The Wishart classifier (Wishart distance for inter/intra-class separa-
tion) obtains smooth, largely homogeneous areas. On the other hand, when having the
angular geodesic as inter/intra-class metric, the results is quite the opposite, with an im-
portant heterogeneity. The Riemannian k-means implementation (Fig. 3.10(c)) is some-
where in between in terms of homogeneity. By far, it better conserves the largest number
of details from the original image (Fig. F.1(a)). This can be observed, for example,
with the bow-shaped field located North-Central, which is separated by the proposed
method. A close-up from near one calibration target in the image (Fig. 3.10(d)) shows
a partitioning which resembles the one in Subsection 3.5.1.1, for the simulated dihedral.

The result in Fig. 3.10(b), i.e., angular geodesic distance, suffers some important
shortcomings: the calibration reflectors at known-location in the image (South-East)
are not identified as expected and the oblique parking lot (Center-East) is confused
with neighboring areas.

In the Wishart classification result (Fig. 3.10(a)), the roads and other areas of lower
intensity blend with the background yellow class. With an improved segmentation,
their contours (for comparison, see Fig. F.1(b)) are better distinguishable in the
Riemannian k-means result.
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(a) (b)

(c)

(d)

Figure 3.10: Real Dataset 1 - Brétigny. (a) Wishart. (b) Angular geodesic k-means. (c)
PolBaRi+Riemannian k-means. (d) Close-up for red rectangle crop in (c).
Note: The 1-look span image [dB] is Fig. F.1(a).

3.5.2.2 Real dataset 2 - Foulum

The three clustering methods are now applied to the Foulum dataset and results
are presented in Fig. 3.11. Close-ups for a selection of five regions in the image are
separately shown in Fig. 3.12(b)-(d). An incomplete ground-truth in Fig. A.3(c) is
introduced for comparison.

Here, there is a more nuanced discussion which can be made. Inspecting the
color-coding of Figs. 3.11(a) and (b), one observes that the clustering results with the
classical Wishart and the geodesic k-means display similar results. Both have a clear
delimitation of the lake (North-East), forest (Center and upper right corner) and of
the two urban agglomerations (South). Although the fields have discernible contours,
they overall belong to a single class, which is the same as the one assigned to the lake.
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The Wishart classification for the forest is very similar to the one obtained with
the Riemannian k-means. It can be observed from the optical image in Fig. A.3(a)
that the area is not uniform (unlike the small forest in the upper right corner), but a
mixture of essence and meadows/fields. Again, the model seems to better preserve the
texture information of the original dataset. The strength of the Riemannian k-means
results lies in the possibility to extract more classes in the agricultural regions. It is
able to discriminate some crop fields which are not retrieved by the other two methods,
exhibiting an improved accuracy with respect to the ground truth (lines 1-2-3 in Fig.
3.12). There remain certain areas where classes tend to blend (e.g., line 4) and in
the lake’s region (e.g., close-up line 5, Fig. 3.12), there is a large non-uniformity, as
it combines multiple classes.

3.6 Conclusions

This chapter has focused on the polar decomposition and has introduced a geometric
clustering technique which exploits the Riemannian manifold of the scattering matrices’
Hermitian factors. The proposed technique is simple and effective in better preserving
texture information in the end clustering result.

As drawbacks, the optimality of the clustering or the attribution of the scattering
mechanism behind the thematic labeling are not currently investigated. Two soft spots
of the proposed technique may be the algorithm initialization and the parametric num-
ber of clusters. It is known that both have an influence on the final outcome of k-means
implementations. As a result, it can be expected that the combination of random initial-
ization and fixed input parameter may not always provide the best outcome in practice.
Immediate algorithmic improvements should: a) propose an optimum deterministic ini-
tialization and b) an adaptive selection of the number of classes for each unique dataset.

While there remain certain elements which can be addressed to improve the
clustering estimation results, the implications of the proposed method are important.
It shows that the informational space of the scattering matrix (only limited to the
Hermitian factors) is able to provide comparable results to those obtained with
conventional covariance techniques.

Recent experiments with complex neural networks using as input features only the
complex Pauli elements (e.g., [233]) have shown to (slightly) outperform not only real
neural networks implementations, but also complex ones using as input features the co-
variance matrix elements. This is quite similar to the conclusion obtained in this chapter.
The proposed study and future developments may provide understandable insight on
how these type of machine learning implementations finally converge to their outcome.
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Figure 3.11: Real Dataset 2 - Foulum. (a) Wishart. (b) Angular geodesic k-means. (c)
PolBaRi+Riemannian k-means.
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Figure 3.12: Real Dataset 2 - Foulum. (a) Span of estimated H barycenters and red region selections.
Close-ups of selected regions, considering the: (b) Wishart clustering. (c) Angular geodesic k-means.
(d) Riemannian k-means. (e) incomplete ground-truth from Fig. A.3(c) [234].
There is no correspondence between the colormap of columns (b),(c),(d) (same as in Fig. 3.11) and
the one of column (e).





Conclusion and perspectives

As always, this is the start of a conversation, not the end of one.

The purpose of this chapter is to summarize the contributions presented in the
dissertation and introduce some perspectives of future research to complete and
improve this work.

This thesis proposes contributions on the development of tools and methods for the
processing of polarimetric radar images. The matrix formalism was adopted for data
representation, which had a great influence on the final proposed methods. Motivated
by recent technological achievements and the pursuit of future developments in
bistatic and distributed systems, the context of bistatic polarimetric diversity serves
as a backdrop. As so, there is an explicit or implicit questioning of the compatibility
and generalization for the bistatic scenario for all proposed algorithms.

Summary

The thesis explores only a part of the multiple facets of polarimetric radar diversity
and some of the topics which have been discussed and introduced throughout the
manuscript can be found in Fig. 3.13.
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Figure 3.13: Key topics in radar polarimetry discussed throughout the thesis.

The data acquisition diversity is directly influenced by the properties of the sensor,
i.e., the radar system. As an active instrument, the access to the complete or incomplete
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(full- vs. dual-pol or compact) set of polarimetric parameters is conditioned by the
type of wave diversity at emission. In the reception stage, the geometric setting has its
own influence on the polarimetric diversity, which made us explore the monostatic vs.
bistatic paradigm, in Chapters 1 and 2. Full-polarimetric diversity is generally assumed
throughout the dissertation. However, a short example at the end of Chapter 1 explores
the results of applying the dual-pol H−α on a test scene imaged simultaneously by
dual-polarimetric monostatic and bistatic radar sensors. We firstly investigate the
differences in parameter interpretation between dual-pol and quad-pol H −α and
finally compare the dual-pol monostatic and bistatic results.

In other parts of the thesis, based on the full-polarimetric model, the data is assumed
as single look complex and each pixel is described by a scattering matrix. Early PolSAR
works, especially for basis change and the extraction of extreme polarimetric states (i.e.,
co-pol maximums, cross-pol minimums) have been the first to introduce the use of the
matrix formalism. However, it is generally adopted only for scatterers under a determin-
istic model, while the vector formalism pertains for computations involving distributed
scatters. The method proposed by Chapter 2 applies to a coherent target model, while
the one in Chapter 3 is intended for real PolSAR data, where incoherent scatterers
dominate. We summarize the main contributions of each of these chapters, as follows:

■ Chapter 2:

• Method for complex conjugate-eigenvalues detection, based on the real
representation
This chapter provides a clear overview on consimilarity in PolSAR and
proposes a representation based on the real representation scattering matrix
RRSM. In truth, the consimilarity transformation appears as a distinct
algebraic operation only in the case of nonreciprocal scattering matrices,
while reducing to orthogonal congruence when the matrices are reciprocal
(i.e., mathematically symmetric). However, with nonreciprocal scattering
matrices, assumed only for the bistatic case, a different framework is
considered by theory, which is the one of the singular value decomposition.
The great simplifications of this model is that all monostatic PolSAR data
needs to be reciprocal and the actual processing framework between
reciprocal and nonreciprocal data is very different. Upon introducing the real
representation, we present how it can be used with the conjugate similarity
framework for both reciprocal and nonreciprocal scattering matrices.
Reciprocal matrices will generally have a unique factorization. Experiments
show that coneigenvalues results from reciprocal matrices compared under
the Takagi factorization (i.e., on which the Graves method is based) and the
RRSM eigen-decomposition are always equal (with at most a 10−2 tolerance)
when the case reduces to orthogonal congruence (i.e., values are distinct).
With non-reciprocal matrices, the factorization may provide solutions in the
complex plane and at least one of the factors may not be unique.

• Analysis of real (monostatic) and simulated (monostatic and bistatic)
polarimetric data using the real representation detection
In the second part of the chapter, polarimetric simulations based on a com-
putational electromagnetic software have been obtained. They are generated
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for two coherent targets (a square plate and a 90◦ dihedral), in monostatic
and bistatic geometry and from a wide-range of observation angles. The
detection method using the real representation eigen-decomposition has
been applied to the simulated polarimetric datasets, as well as to real
monostatic PolSAR data. Results have shown that complex coneigenvalues
can be present in all cases. As expected, they appear with a very low
probability (below 5%) with all tested monostatic data. The percentage is
much higher under bistatic observations.

■ Chapter 3:

• Analysis of the two factors in the polar decomposition
In the first part of this chapter, the polar factorization is proposed for data
representation. The unitary and positive definite polar factors are each
explored through parametrizations and representations in R3. Both algebraic
and geometric properties are discussed and examples using real PolSAR data
are provided.

• Geometric clustering using the Hermitian factors The embedding of polar H
factors in the manifold of Hermitian positive definite (HPD) matrices is the
main idea behind the proposed geometric clustering method. Preceding the
actual clustering, the Hermitian polar factors from fixed spatial neighbour-
hoods have been "averaged" by a manifold-based method, which estimates
a geometric center of mass for the set of matrices in the neighbourhood. This
operation can be put in parallel to the estimation of the sample covariance
matrices. The actual clustering, has been implemented as a centroid,
partitional-based algorithm and having the AIRM Riemannian geodesic
distance for intra/inter-cluster comparison. In light of this contribution, the
method’s performance has been tested using Hermitian factors from both
real and simulated monostatic PolSAR data. Compared to the nonsupervised
Wishart method, improved quantitative and qualitative results are obtained.
With real polarimetric data, the final clustering result is observed to better
preserve texture details.

Perspectives on future work

Extensions, as well as potential improvements, on each of the two main study axes
of this thesis (i.e., the consimilarity & real representation and the polar decomposition
& geometric clustering) are discussed in this subsection.

• Bistatic data and complex coneigenvalues
Our investigation using simulated data did not identify a link between descriptors
of the bistatic geometry (e.g., the bistatic angle) and the complex coneigenvalues.
This may suggest that, if existent, the connection is multivariate, with improved
models and tests needed.
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• Conjugate similarity vectors with nonreciprocal data
The work in Chapter 2 has been centered around the conjugate eigenvalues of
non-reciprocal scattering matrices. An immediate extension is to consider the
coneigenvectors (from the 2×2 scattering matrix, the 4×4 real representation ma-
trix, or both). For uncovering some of their properties, a possible suggestion would
be in identifying descriptive parameters or the proposal of a target vector model.
For the time being, the model of conjugate similarity factorization is restricted to co-
herent applications. Introducing a unique target vector model would immediately
allow its extension by a covariance-based incoherent decomposition technique.
On a different note, machine learning models could be employed using (a)
consimilarity features, or (b) the proposed real representation. In the first scenario,
networks based on complex parameters would be appropriate, whereas the
second case could prove more simpler, requiring networks with real parameters.
However, extra attention would be necessary with the latter, to fully account with
the assumptions on the scattering coefficients, i.e., the real and imaginary parts
must be uncorrelated.

Considering the second axis of the thesis, we identify two different types of
improvements: possible updates (with more immediate results, as they are based
on combining methods already known in the literature) and a number of possible
advancements (with a higher degree of novelty):

• Assessing focused changes of the geometric clustering method
The algebraic median is known to be an estimate more robust to outliers. While
keeping the core ideas of the geometric clustering method, a different test version
may change the estimation process of the Riemannian mean to the estimation
of the Riemannian median [221].
Differently, the AIRM metric can be changed and compared with other distance
metrics, still adapted for the HPD manifold, as the log-Euclidean or the
log-Cholesky distances [235]. And finally, the partitional-based clustering
algorithm may be changed to other clustering models (e.g., hierarchical).

• New directions to explore
A deterministic initialization of the clustering algorithm, ideally through a method
reflecting scattering characteristics in the PolSAR data, would be envisioned.
A much broader comparison between classical ICTD methods and the one
proposed in Chapter 3 would involve an understanding of the exact role carried
by the Riemannian manifold dimension, as well as the exact difference in
informational content. This could involve extending the geometric method to
the computation of the geometric mean of PolSAR covariances or the Hermitian
factor from the polar decomposition of the proposed real representation.
For a set of univariate data, approximations of the geometric mean are possible
using the arithmetic mean and several central moments. An extension of this
property to sets of covariance matrices would allow to also foster a connection
between the geometric mean and the sample covariance (studied under different
statistical assumptions, Gaussian and non-Gaussian).



APPENDIX A

Polarimetric datasets used in the thesis

A.1 Quad-pol Data

Table A.1: Monostatic full-polarimetric datasets used in the paper.

Dataset Name Acquisition system (Institution) System type Band Resolution (rg.×az.) [m] Size (rows×columns)

I. Ramses Brétigny RAMSES (ONERA) airborne X-Band 1.5×1.5 501×501
II. Emisar Foulum EMISAR (TUD, Denmark) airborne L-Band 2×2 1750×1000
III. Convair Ice CONVAIR (Environment Canada) airborne C-Band 4×0.4 544×5238
IV. Convair Ottawa CONVAIR (Environment Canada) airborne C-Band 4×0.4 222×3429

A brief overview of the full-polarimetric PolSAR datasets used in the manuscript
is offered in Table A.1. For each dataset, extended information is provided hereafter.

I. RAMSES Brétigny

(a)

Pauli composite

Red:1/2|HV+VH| Green: 1/2|HH+VV| Blue: 1/2|HH-VV|

(b)

Figure A.1: (a) Google Maps optical image, Brétigny (France), May 2004. (b) Pauli color composite
Ramses Brétigny data.

The data has been acquired by the RAMSES (Radar Aéroporté Multi-spectral
d’Etude des Signatures) radar airborne instrument of ONERA, the French
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Aerospace Research Agency, over a test site near Brétigny-sur-Orge (France).
Operated roughly between 1995-2010, RAMSES has served as a high modular
experimental test bench for multi-frequency radar imaging [236]. For this
full-polarimetric dataset, the instrument was operating in X-Band (9.5 GHz central
frequency, 1.2 GHz bandwidth). The polarimetric images are characterized by
a resolution of approximate 1.5 m, in both azimuth and range.
The crop image, acquired near an airport runway (Fig. A.1a) is rich in both natural
and anthropomorphic targets. There are buildings, a parking lot, vegetation areas
(crops, prairies, forest) as well as four calibration trihedrals (lower-right part). The
acquisition campaign is recorder to have taken place in September 1999 [237].
The horizontal road at the bottom of the figure was parallel to the plane’s flight
path. The data is available in the form for four, linear polarization (HH, HV, VH,
VV) channels. The Pauli color composite representation is provided in Fig. A.1b.
For comparison, an optical image from 2004 (closest in time available with ©
Google Earth) is shown in Fig. A.1(a). Nonetheless, there are not many differences
apart from the presence of a new building in North-West. Although there isn’t
a real ground truth from the time of the acquisition, the different elements inside
the scene can be easily distinguished from later data because there haven’t been
many changes. Based on information now available online (for example on
Géoportail FR), a quite precise delineation of parcels can be achieved 1.
Fig. A.2(a) presents a topographic map of the area and Fig. A.2(b) shows
a cadastral map. Using the remaining figures, one can rapidly separate the
agricultural fields (Fig. A.2e) from the prairies/pastures land (Fig. A.2c) in the
south of the image or identify the corners of the water reservoir from north. The
forest is a mixture of hardwood species (Fig. A.2d).

II. EMISAR Foulum
The ElectroMagnetic Institute Synthetic Aperture Radar (EMISAR) was a
dual-frequency full-polarimetric SAR Danish airborne system developed for
experimental purposes. It has been used for multi-pass interferometric and
polarimetric experiments (full-polarimetric capability in C- and L-Bands) [238].
The sensor was used to acquire full-polarimetric data over ice and snow regions, as
well as agricultural fields, during the European Multi-sensor Airborne Campaign
(EMAC) in 1994–1999. The Foulum region (Central Jutlang, Denmark) has
served as a reference test site. The polarimetric dataset from this document was
acquired in L-Band around April 1998 [142]. It shows a mixture of vegetation
areas (different crop fields, forests), small urban areas and a lake/water reservoir
(Pauli composite in Fig. A.3(b)).
The dataset is well-known in the PolSAR community; due to its richness of
natural elements has been used for many publications. Some of them contain
descriptions of the area’s vegetation content, both perennial and annual, as in
[173, 239]. Incomplete ground truth representations have been proposed in [240,
241, 234]. The example in [234] is reproduced in Fig. A.3(c).

1In the final stages of writing this manuscript, a ground-truth for the area has been proposed, with some insight data
near the time of the Ramses acquisition [233]. However, this ground truth separates the small area considered in this
work into three general classes, an a priori observed and used here by optical images inspection and/or cadastral maps.
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(a)

(b) (c) (d) (e)

Figure A.2: Géoportail complementary information https://www.geoportail.gouv.fr (a) IGN Topograph-
ical map layer - Acquisition area view (2018). (b) IGN Topographical map - Close-up from (a) of the
imaged zone. (c) CORINE Land Cover – Prairies (2015). (d)Forest (v.2, 2018) and Hydrologic (2021)
Map Layers. (e) Example of Parcels Division (RPG) for 2007 (! NOT from the year of acquisition).
For (c), (d), (e) an Aerial Photograph Layer (2000-2005) serves as basemap, similar to Fig. A.1a.

III. CONVAIR

The SAR-580 radar facility operated by the Environment Canada, Canadian
Center for Remote Sensing, on-board a Convair-580 turbo airplane has serves
as experimental facility and precursor for a number of canadian SAR missions,
e.g., the RADARSAT family of satellites [242, 243]. The monostatic radar was
dual-frequency, able to operate simultaneously in both C and X bands and, as
in the case of EMISAR, was used for interferometric and polarimetric applications.
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(a)

Red:1/2|HH+VV| Green:1/2|HH-VV| Blue:1/2|HV+VH|
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Figure A.3: (a) Google Maps optical image, Foulum (Denmark), July 2005. (b) Pauli color composite
Emisar Foulum data. (c) Incomplete ground truth (Legend: blue - water; green - forest; cyan - peas;
magenta - winter rape; red - winter wheat; yellow - beet, as in [234]).

Only the C-band system possessed full-polarimetric capability [244, 245].

Two different PolSAR datasets (Convair Ice and Convair Ottawa)1 obtained by the
C-Band monostatic radar system of Convair-580 on two different campaigns have
been used in Subsection 2.3, Chapter 2. Both Convair Ice and Convair Ottawa
datasets contain the complex Sinclair coefficients for each of the four PolSAR chan-
nel. The Pauli color representations are displayed in Fig. A.4. According to [142],
the Ottawa (Ontario, Canada) dataset seems to have been acquired in June 2001.

According to their metadata, the Convair Ottawa and Ice datasets are complex

1The two datasets, along with EMISAR Foulum have been obtained by the thesis’s author from an old download
of the ESA PolSARPro. The author acknowledges obtaining the data along with the software and is grateful to the
developers and ESA for providing access.
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multilooked (10-looks). A probable acquisition location for the Convair Ice data
is in the Gulf of St. Lawrence, Canada [246, 247]. Unfortunately, no precise
information are available to ensure a precise geographic positioning for the
CONVAIR imaged areas.

(a) (b)

Figure A.4: (a) Pauli color composite Convair Ice data. (b) Pauli color composite Convair Ottawa data.
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Figure A.5: RGB Color composite dual-pol VV-HV images. (a) Monostatic Sentinel-1. (b) Bistatic
ground-based (superimposed on OpenStreetMap image of the area).
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A.2 Monostatic-Bistatic VV-HV Dual-pol Data

The dual-polarimetric bistatic dataset used in Subsection 1.5.2 Application: Dual-
polarimetric bistatic and monostatic VV-HV H-alpha classification has been obtained by a
ground-based opportunistic receiver from the University Politehnica of Bucharest [248].

The receiver can be equipped to up to three receiver channels and can exploit the
C-Band Sentinel-1 A/B SAR satellites as transmitters of opportunity. The bistatic acqui-
sition geometry is similar to the one displayed in Fig. 1.5. For the specific latitude, the
satellite operates in Interferometric Wide (IW) mode and transmits radio pulses in linear
V polarization. Its central frequency is of 5.405 GHz. The bistatic acquisitions from the
receiver are range and azimuth focused using a dedicated time-domain processor. The
processor is compatible for performing the same operations also on the Sentinel-1 raw
radar data (free to download from the Copernicus Hub, https://scihub.copernicus.eu).

For the dual-polarimetric acquisitions (17.09.2019), the receiver was equipped
with two antennas able to measure the electromagnetic scattering signal in orthogonal
Horizontal and Vertical bases. As so, the images were obtained in VV and HV
polarimetric modes, for an area of Bucharest city, Romania. During acquisitions, the
ground receiver was placed on top of the university building (at a GPS elevation of
around 165 m) 2. At the time of acquisition, the two antennas had a height difference
of almost 1 m (i.e., the simultaneous data channels have distinct phase centers).

The focusing grid is aligned with the local latitude and longitude, and has a 2
× 2 m pixel spacing. The position of the receiver is taken as origin for the image’s
latitude/longitude axes (e.g., lower right corner in Fig. A.5). The bistatic and
monostatic data is directly co-registered at the output of the SAR processor, as the
focusing operations are performed using a common grid.

Because the difference in altitude between the receiver and the observed scene
is only in the order of several dozens of meters, the bistatic scene is more sparse than
the monostatic one. In addition, a threshold selection is applied before displaying the
bistatic RGB color composite representation in Fig. A.5b.

Because of the relative difference in position at the bistatic receiver, a phase
imbalance is considered to exists between the two linear channels. However, it can be
shown analytically that with respect to the eigenvalue decomposition of the coherency
matrix, this relative phase difference has an impact only on the δ2,i components of the
u2 eigenvector parametrization (Eq. 1.46). The eigenvalues of Hermitian coherency
matrices, used in computing the entropy parameter (Eq. 1.47) are real numbers. Also,
for α (Eq. 1.48) no phase information is used. As a result, the phase imbalance should
have no major effects for neither the entropy, nor the α parameters. Other possible
sources of error are compensated or considered negligible for this acquisition. Precise
synchronization between transmitter and receiver diminishes the geometric errors,
while good channel isolation significantly reduces cross-talk at reception.

2The author of the thesis has not participated in the data acquisition campaign, but it is grateful for access to this
unique monostatic-bistatic dual-pol dataset.



APPENDIX B

Scattering and Coherency
matrices for elementary scatterers

I. Scattering matrices of 5 elementary scatterers

Table B.1: Elementary scatterers in HV basis.

H dipole 45odipole V dipole[
1 0

0 0

]
1
2 ·
[
1 1

1 1

] [
0 0

0 1

]
H dihedral 45odihedral V dihedral[

1 0

0 −1

] [
0 1

1 0

] [
−1 0

0 1

]
H quarter-wave 45oquarter−wave V quarter-wave[

1 0

0 j

]
1−j
2 ·
[
1 1

1 1

] [
j 0

0 1

]
sphere/plate left helix right helix[

1 0

0 1

]
1
2 ·
[
1 j

j −1

]
1
2 ·
[
1 −j
−j −1

]

II. Coherency matrices for monostatic quad-pol to dual-pol example

Table B.2: Coherency matrices corresponding to distinct scatterers in the H−α plane space. From
example in [108].

T11 T12 T13 T22 T23 T33
T9 0.41 -0.006-j0.002 -0.004-j0.006 0.03 -0.003-j0.016 0.01
T8 0.97 0.52-j0.51 0.28-j0.34 0.69 0.39-j0.002 0.24
T6 0.23 0.44+j0.14 -0.06-j0.003 1.21 -0.16+j0.03 0.04
T5 0.41 -0.08-j0.06 -0.036-j0.02 0.11 0.01+j0.001 0.081
T4 0.38 -0.006+j0.006 0.03-j0.02 0.36 -0.01-j0.01 0.06
T3 0.009 -0.04+j0.03 -0.004+j0.02 0.65 0.05+j0.33 0.89
T2 0.18 0.008+j0.01 -0.001+j0.003 0.13 0.0001+j0.0001 0.18
T1 0.34 0.008+j0.05 -0.01+j0.007 0.6 -0.02+j0.08 0.59

III. Connection between elements of the monostatic 3×3 coherency matrix and the
2×2 VV-HV coherency
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In this subsection, starting from the nine elements of a monostatic 3×3 coherency
matrix, in linear H-V polarizations, we analytically deduce the correspondence
with the four elements in the reduced VV-HV 2 × 2 coherency matrix. The
equations to follow present these operations.

T3=

T3,11 T∗3,21 T∗3,31
T3,21 T3,22 T∗3,32
T3,31 T3,32 T3,33

 (B.1)

=
1

2
E


(Shh+Svv)(Shh+Svv)∗ (Shh+Svv)(Shh−Svv)∗ 2(Shh+Svv)Shv

∗

(Shh−Svv)(Shh+Svv)∗ (Shh−Svv)(Shh−Svv)∗ 2(Shh−Svv)Shv∗
2Shv(Shh+Svv)

∗ 2Shv(Shh−Svv)∗ 4ShvShv
∗

.
(B.2)

Some of the monostatic T3 matrix parameters are expanded hereafter:

T3,11=
1

2
E{ShhS∗hh+ShhS∗vv+SvvS∗hh+SvvS∗vv} (B.3)

T3,22=
1

2
E{ShhS∗hh−ShhS∗vv−SvvS∗hh+SvvS∗vv} (B.4)

T3,12=
1

2
E{ShhS∗hh−ShhS∗vv+SvvS∗hh−SvvS∗vv} (B.5)

T3,21=
1

2
E{ShhS∗hh+ShhS∗vv−SvvS∗hh−SvvS∗vv} (B.6)

T3,31=E{ShvS∗hh+ShvS∗vv} (B.7)
T3,32=E{ShvS∗hh−ShvS∗vv}. (B.8)

From the property that the expected value of the sum of several random variables
is equal to the sum of their expectations, the operator can be distributed to each
term from B3-B9.
The only possible variation in the form of the dual-pol VV-HV scattering vector is in
switching the position of its two elements. As so, a differentiation between a covari-
ance and a coherency matrix is not actually possible. Nonetheless, we preserve the
notation T2 of a coherency matrix for the desired second order statistics matrix.

T2,VV−HV=C2,VV−HV=

[
T2,11 T∗2,21
T2,21 T2,22

]
=E
{
kL2 ·kL2

H
}

(B.9)

=E
{[

Svv
Shv

]
[Svv Shv]

∗
}
=E
{[

SvvS
∗
vv SvvS

∗
hv

ShvS
∗
vv ShvS

∗
hv

]}
(B.10)

Deducing the four elements from the reduced coherency matrix is required the
computation of four expectations from the dual-pol measurements. Further,
relations B.12-B.15 are considered to offer an estimate of the elements of the
VV-HV T2 matrix.

T2,11=
T3,11+T3,22−T3,12−T3,21

2
T2,21=

T3,31−T3,32
2

(B.11)

T2,22=
T3,33
2

. (B.12)



APPENDIX C

Jordan canonical form

Every square matrix is similar to a Jordan canonical form, which is unique up to
permutations of its constituent blocks [60]. A Jordan matrix J is a direct sum (here,
symbol ⊕) of Jordan blocks.

J=Jp1⊕Jp2⊕... (C.1)

A Jordan block, Jp(λk), associated to an eigenvalue λk has dimensions p×p. Every
diagonal entry of a block is equal to λk and there are p−1 values of "1" on the first
upper-diagonal (or first lower-diagonal, depending on the convention). The rest of
the block’s elements are equal to zero.

Jp(λk)=λkIp+Lp (C.2)

Lp=


0 1 0

0 0

0 1
0 0 0


The Jordan blocks of sizes 1, 2, 3 (for a real-valued eigenvalue λ) are:

J1(λ)=λ J2(λ)=

[
λ 1
0 λ

]
J3(λ)=

[
λ 1 0
0 λ 1
0 0 λ

]

Each Jordan block has associated one linear independent eigenvector. For blocks
with dimensions larger or equal to 2, generalized eigenvectors must be chosen so
to span the complete column space; i.e., each Jordan block of size p will have one
eigenvector and p−1 generalized eigenvectors [249].

A real n×n matrix will have in general real and complex eigenvalues, the latter
occurring in complex conjugate pairs.

The Real Jordan form (R-Jordan) offers a canonical form, of matrices under
similarity, but with real entries. The general idea behind creating a real Jordan block
representation is based on combining the information offered by the real and imaginary
parts of two complex conjugate eigenvalues and their corresponding eigenvectors
(generalized eigenvectors, if the case).
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Given the isomorphic transformation:

ϕ :C→R2×2,ϕ(x+jy)=

[
x y
−y x

]
=x·

[
1 0
0 1

]
+y·
[
0 1
−1 0

]
(C.3)

The second matrix may be considered an equivalent of the complex unit j, because
can it can be obtained from the square root of the identity matrix.

We now consider a complex non-degenerate eigenvalue λ=a+i·b, a,b∈R. For real
matrices λ∗ is also itself an eigenvalue. Because the complex conjugate pair (λ,λ∗) is
completely specified by only one complex number, the pair will have associate a real
square Jordan block, Jr1.

The real Jordan blocks of sizes 1, 2 are:

Jr1(λ,λ
∗)=

[
a b
−b a

]
Jr2(λ,λ

∗)=

[
Jr1(λ,λ

∗) I2
0 Jr1(λ,λ

∗)

]

Some other resources may adopt to use the transpose of Jr1 presented here, as
constructive block of the R-Jordan form.



APPENDIX D

Real representation
of 4 particular scattering matrices

Consider a general scattering matrix, S:

S=

[
a1+ja2 c1+jc2
d1+jd2 b1+jb2

]
(D.1)

with a1,a2,b1,b2,c1,c2,d1,d2∈R.
Starting from eq. (D.1) we model the RRSM1 of four particular algebraic matrices
(Table D.1), which the scattering matrix may plausibly take in the bistatic case.
The type of eigenvalues attributed to each associated RRSM matrices is discussed
below. These results and observations serve as model for the discussion involving the
nonreciprocity factor from Chapter 2, Section 2.3.

The general forms considered hereafter are:
1Real Representation Scattering Matrix

Table D.1: Four particular scattering matrices. General form (S) and Real Representation (SRR).

Type S SRR SRR eigenvalues

complex symmetric
[
a1+ja2 c1+jc2
c1+jc2 b1+jb2

] 
a1 c1 a2 c2
c1 b1 c2 b2
a2 c2 −a1 −c1
c2 b2 −c1 −b1

 two real, equal/distinct ± pairs

complex
skew-symmetric

[
0 −c1−jc2

c1+jc2 0

] 
0 −c1 0 −c2
c1 0 c2 0

0 −c2 0 c1
c2 0 −c1 0

 two imaginary ± complex-conjugate pairs

Hermitian
[

a1 c1−jc2
c1+jc2 b1

] 
a1 c1 0 −c2
c1 b1 c2 0

0 −c2 −a1 −c1
c2 0 −c1 −b1

 two real, equal/distinct ± pairs
or

two complex ± complex-conjugate pairs

skew-Hermitian
[

ja2 c1+jc2
−c1+jc2 jb2

] 
0 c1 a2 c2

−c1 0 c2 b2
a2 c2 0 −c1
c2 b2 c1 0

 two real, equal/distinct ± pairs
or

two complex ± complex-conjugate pairs
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(a) complex symmetric, S=ST: It can be rapidly assessed that the RR of a reciprocal
(i.e., symmetric) scattering matrix is itself symmetric, SRR = ST

RR (Table D.1).
Distinctively, the RRSM is a special form of a Hamiltonian matrix. This symmetric
RRSM can be brought to a diagonal form through an eigen-decomposition and
its four eigenvalues will all be real (in equal or distinct ± pairs).

(b) complex skew-symmetric, S=−ST: Here, both S and SRR are skew-symmetric.
It is well known that for any skew-symmetric matrix with real entries, its
eigenvalues are purely imaginary. For this reason, the eigenvalues of the RR will
have the particular form of a double ± imaginary pair.

(c) Hermitian, S=SH: The RR of a Hermitian scattering matrix can be decomposed
into both a real symmetric (SRRc1

) and a real skew-symmetric component
(SRRc2

):

SRR=SRRc1
+SRRc2

=

a1 c1 0 0
c1 b1 0 0
0 0 −a1 −c1
0 0 −c1 −b1


︸ ︷︷ ︸

SRRc1

+

0 0 0 −c2
0 0 c2 0
0 −c2 0 0
c2 0 0 0


︸ ︷︷ ︸

SRRc2

(D.2)

a1,b1,c1,c2≠0.

The RRSM eigenvalues of the Hermitian matrix can appear both as ± real or as
± complex conjugate pairs. Matrices SH1 and SH2 are chosen for demonstrative
purposes. They are both Hermitian, but while the eigen-analysis for the RR
of SH1 returns real and distinct ± eigenvalues pairs, the RR of SH2 has only
complex eigenvalues.

SH1=

[
0.5431 0.498−0.0635j

0.498+0.0635j 0.1857

]
, SH2=

[
0.2673 0.1513+0.798j

0.1513−0.798j 0.0057

]
(d) skew-Hermitian, S=−SH:

Because the RR of the skew-Hermitian presents again both a symmetric and a
skew-symmetric component (D.3), some matrices may have only real eigenvalues
(± real pairs) and others only complex ones.

SRR=SRRd1
+SRRd2

=

 0 0 a2 c2
0 0 c2 b2
a2 c2 0 0
c2 b2 0 0


︸ ︷︷ ︸

SRRd1

+

 0 c1 0 0
−c1 0 0 0
0 0 0 −c1
0 0 c1 0


︸ ︷︷ ︸

SRRd2

(D.3)

a2,b2,c1,c2≠0.

We take as examples matrices SKH1 and SKH2, which return only real and only
complex eigenvalues, respectively.

SKH1=

[
0.9963j 0.6403+0.3043j

−0.6403+0.3043j 0.39j

]
, SKH2=

[
0.958j −0.7621+0.7211j

0.7621+0.7211j 0.2723j

]



APPENDIX E

Solving the conjugate
similarity equivalence for SM via RR

I. Algorithm I: Solution to consimilarity transformation of the scattering matrix,
SX=X∗C, via the RRSM.
INPUT: Scattering matrix (S)
OUTPUT: Consimilarity transformation matrix (X) and the equivalent matrix
under consimilarity (C - diagonal or concanonical form).

(a) Write scattering matrix S in RR form (eq. 2.9).

(b) Extract eigenvalues {λk} and eigenvectors {v(λk)} of SRR. If eigenvalues
are repeated or complex, use the Jordan algorithm for obtaining the
transformation vectors.

(c) Check if eigenvalues are real or complex:

(a) only real eigenvalues:

(i) For real, distinct eigenvalues:
CRR=diag([λ1,λ2,−λ1,−λ2]).
For real, equal eigenvalues:
Verify if CRR remains diagonal, or is written using Jordan blocks of
second order (Appendix C):
CRR=J2(λ)⊕J2(−λ).

♠ Obs: CRR is the real representation form of matrix C=J2(λ).

(ii) Check that the order of transformation vectors matches the order
of eigenvalues from CRR:
T=[v(λ1),v(λ2),v(−λ1),v(−λ2)], λ1≥λ2≥0.

(b) only complex eigenvalues:

(i) Write CRR with the real Jordan
blocks:
CRR=Jr1(λ,λ

∗)⊕Jr1(−λ,−λ∗)

♠ Obs: CRR is the real representation form of matrix C=Jr1(λ,λ
∗).

For purely imaginary eigenvalues, the canonical form may become:
CRR=Jr2(λ,λ

∗).

(ii) Build the real transformation matrix T by column-wise operations
with real and imaginary parts of (eigen)vectors
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v(λ),v(λ∗),v(−λ),v(−λ∗):

T(:,1)=
1

2
[R(v(λ))+R(v(λ∗))];

T(:,2)=
1

2
[I(v(λ))−I(v(λ∗))];

T(:,3)=−1

2
[I(v(−λ))−I(v(−λ∗))];

T(:,4)=
1

2
[R(v(−λ))+R(v(−λ∗))];

(d) Compute consimilarity transformation matrix X using
[115]:

X=
1

4
[I2,jI2](T−Q4TQ4)[I2;jI2]

where I2 represents the 2×2 identity matrix and Q4=

[
0 −I2
I2 0

]
.

(e) Verify compliance of consimilarity solution: X−1SX∗=C.

II. Example: Coneigen-values/vectors of elementary scatterers:
Table E.1 displays the results obtained by the proposed algorithm for calculating
the conjugate eigenvalues and conjugate eigenvectors of some of the elementary
scattering matrices in Table B.1. For the same type of scatterer (i.e., dipole,
dihedral), we observe the coneigenvalues to be invariant, as the same values are
preserved even if the target has a rotation associated. However, this does not
allow for a complete discrimination as multiple type of scatterers can present
the same coneigenvalues (e.g., as with dihedrals and quarter-waves). Using both
parameters, it becomes possible to discriminate between scatterers.

III. Tolerance parameters for separating between eigenvalues type:
For numerical implementation it is important to offer correct evaluation criteria
when dealing with:

(a) RR complex eigenvalues with small imaginary part (orders of magnitude
lower than the real part);

(b) RR real eigenvalues of near value (which can be considered equal under
a given tolerance);

This is necessary considering that in many places the implementation requires a
comparison between eigenvalues. We define two tolerance parameters to help in
evaluating the classification of each set of four eigenvalues. These parameters are:

(a) δimag : used for comparing the ratio between the real and imaginary parts
of one complex eigenvalue, (λ). The value determined by the product
δimag ·R(λ) is evaluated against I(λ). If the imaginary part is lower than the
threshold, it is considered negligible small compared to the real part and will
be ignored. Because the complex RRSM eigenvalues come in ± conjugate
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pairs, i.e., they have the same magnitude, when dropping the imaginary part,
a duplicate set of real eigenvalues remains in place.

(b) δr_eq : used only in testing the case of ± real pairs, the parameter is useful
for numerically evaluating if two values are equal (under a given tolerance).
With the present implementation, two values λ1 and λ2, λ1,λ2≥0 are within
tolerance if they verify the relation: |λ1−λ2|≤δr_eq ·max(λ1,λ2).

Table E.1: Coneigenvalues and coneigenvectors of elementary scatterers in Table B.1, Annex B.

Scatterers Coneigenvs. Coneigenvectors
[ξ1,ξ2]

sphere/plate [1,1] x1=
[
1,0
]⊺

x2=
[
0,1
]⊺

H dipole [1,0] x1=
[
1,0
]⊺

x2=
[
0,1
]⊺

45◦ dipole [1,0] x1=
[

1√
2
, 1√

2

]⊺
x1=

[
1√
2
,− 1√

2

]⊺
V dipole [1,0] x1=

[
0,1
]⊺

x2=
[
0,0
]⊺

H dihedral [1,1] x1=
1
2 ·
[
1,−j

]⊺
x2=x1

∗

V dihedral [1,1] x1=
[
0,0
]⊺

x2=
[
0,1
]⊺

H quarter-wave [1,1] x1=
1
2 ·
[
−1, 1√

2
+j 1√

2

]⊺
x2=−x1

∗

V quarter-wave [1,1] x1=
1
2 ·
[
− 1√

2
−j 1√

2
,−1
]⊺

x2=−x1
∗

Compute eigenvalues 

 Eigenvalues type 
investigation

Only
 complex values

NO

YES

Case 2: ±quad
(λ, λ*, -λ, -λ*)

YES NO

Case 1a: real ± 
distinct pairs 

(λ1, -λ1), (λ2, -λ2)Im(λ) = 0

 SRR

Only
 real values

(λ1, λ2, -λ1, -λ2)

Only
 real values

(λ1, λ2, -λ1, -λ2)

|λ1 – λ2| < δr_eq |λ1 – λ2| < δr_eq 

|Im(λ)| > δimag |Re(λ)||Im(λ)| > δimag |Re(λ)|

Case 1b: real ± 
equal pairs 

(λ, -λ), (λ, -λ)

Figure E.1: Flowchart for RRSM eigenvalues testing, with tolerance parameters.
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Fig. E.1 graphically summarizes how the two tolerance parameters δr_eq and
δimag influence the eigenvalues evaluation.

IV. Selection of δimag parameter: The value of tolerance parameter δr_eq is fixed
to a numerical precision: δr_eq = 10−6. In the case of δimag, its influence on
the eigenvalues classification type may be greater, which is why we perform a
comparative analysis before its selection.
In Chapter 2 it was discussed and exemplified from a PolSAR algebraic perspective
that truly reciprocal and monostatic data will not have RRSM complex eigenval-
ues. Moreover, these matrices will have a nonreciprocity ζ parameter equal to
zero. By combining these two properties, we intend to check here the influence of
three values δimag∈{0.01%,1%,5%} on the distribution of RRSM having complex
eigenvalues with respect to |ζ|∈ [0,1]. The two monostatic Convair datasets are
chosen for evaluation. It must be noted that no speckle filtering or reciprocity
equalization

(
Shvnew =Svhnew

= Shv+Svh

2

)
have been applied to the two scenes.

In Subsection 2.3.1, both datasets displayed smaller percentages of complex
eigenvalues, ≈ 1%. In Table E.2 we see how by increasing the values of δimag

to 0.05 and 0.1, the percentage of RRSM having complex eigenvalues slightly
decreases, while the percentage of RRSM having real, equal eigenvalues increases
by the same amount (i.e., complex eigenvalues pairs having very small imaginary
components which no longer pass the threshold, lose their imaginary part and
are reclassified as real, equal eigenvalues pairs). The percentages characterizing
RRSM with real, distinct eigenvalues are not affected by variations of δimag.
Fig. E.2 evaluated the changes introduced δimag to the complex eigenvalues
classification, given its dependence on the nonreciprocity parameter. The
histograms in yellow/blue display the distribution of scattering matrices, with
respect to the absolute NRF parameter values, when their RRSM eigenvalues
pairs are of complex/real type. The first, second and third rows record changes
of the distribution as δimag={0.01%;1%;5%}, respectively. On the graphs, the red
and magenta dotted lines mark values of |ζ|={0.05;0.1}.
For δimag = 0.01% and δimag = 1%, the yellow distributions reveal that a low
number of scattering matrices classified to have RR complex eigenvalues appear
for |ζ| values below 0.1 (i.e., nearly reciprocal matrices).
On the third line, evaluation with δimag=5%, there remain very few scattering
matrices having an absolute NRF lower than 0.1 and which still have RRSM
complex eigenvalues. Nonetheless, due to the initial shape of the distribution,
this determines the important overall decrease in the total number of scattering
matrices classified as complex ( as seen in Table E.2). With the blue histograms
in Figs. E.2(g)-(h), we observe also that the majority of monostatic RRSM having
real eigenvalues are characterized by a NRF below 0.1 for δimag=5%.
The threshold value of δimag can play a role in removing scattering points affected
by noise (or other errors) and correct for those scattering matrix with numerically
very small imaginary parts. Hereafter we choose a level of significance, δimag=5%.
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(g)(g)

(e)(e)(e)

(c)(c)(c)

(a)(a)(a) (b)(b)

(d)(d)

(f)(f)

(h)(h)

Figure E.2: Convair Ottawa results (left); Convair Ice results (right);
(a)(c)(e) Convair Ottawa dataset: Changes in the distribution of NRF absolute values for the RRSMs
returning complex eigenvalues (yellow color), introduced by varying δimag.
(b)(d)(f) Same as with (a)(c)(e), but for Convair Ice data.
(g) Convair Ottawa dataset: Distribution of NRF absolute values for RRSMs returning real eigenvalues
(blue color), when δimag = 5%. (h) Same as (g), for Convair Ice data.

Table E.2: Convair Ottawa and Convair Ice: Variations in the distribution of RRSM eigenvalues type
for changes in tolerance parameter δimag.

Real eigvs. pairs [%] Complex eigvs. Total
δimag distinct equal pairs [%] [%]

CONVAIR Ottawa
0.01% 98.903 0.000 1.09 100
1% 98.903 0.045 1.05 100
5% 98.903 0.483 0.61 100

CONVAIR Ice
0.01% 98.558 0.000 1.44 100
1% 98.558 0.104 1.34 100
5% 98.558 1.037 0.40 100
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Figure E.3: Bargraphs for RRSM eigenvalues classification. (a) Ramses Brétigny. (b) Convair Ottawa.
(c) Convair Ice. (d) Emisar Foulum.

V. Describing the complete RRSM classification of eigenvalues for real
monostatic PolSAR data:
The two tolerance parameters are applied as in Fig. E.1 for any RRSM eigenvalues
classification performed in the manuscript.
In Fig. E.3, we present the complete percentage description for the four
monostatic datasets described in Annex A. There are 5 groups established for the
classification, with the RR eigenvalues being divided based on the relationship
between their real and imaginary parts: R, I, CeqRI, CGR, CGI - if the values are
real, purely imaginary, complex with equal real and imaginary parts, complex
but with a larger real part and complex with a larger imaginary part, in the given
order. For the case of real values, it is also inspected if the two ± pairs are distinct
or equal (blue and cyan color separation of the first bar).
The small percentage of eigenvalues observed in these PolSAR images as complex
have all an an imaginary part which is smaller than their real part.
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PolSAR data simulation
model and Sobel kernel gradient

Chapter 3 makes use of both real and simulated monostatic data. The simulated data,
in the form of linear polarimetric channels (HH, HV, VH, VV), can be obtained from
a well-known PolSAR technique which uses the Cholesky decomposition. This offers
a unique factorization of Hermitian, positive-definite matrices into the product of a
lower triangular matrix (L) and its conjugate transpose:

C=LL
H

. (F.1)

I. Model for PolSAR covariance
The product model texture-speckle it the most used to describe the PolSAR
covariance matrix:

C=Z ·W, (F.2)
where Z is a strictly positive and scalar variable which models the texture, while
W is the speckle term. The latter is considered to follow a scaled complex
Wishart distribution with probability density function as in (I.5). So, it models
an equivalent Gaussian (homogeneous) area. The model followed by the scalar
texture variable Z determines if the overall product C has a Gaussian or a
non-Gaussian nature. For the examples below, we consider only the Gaussian case.
Several models with 2 or more layers having random (i.e., anisotropic) medium
characteristics have been used to describe geophysical media with inhomogenities
(e.g., forest, snow, etc.) [250, 251]. Based on the 1st and 2nd order solutions to
the Born approximation for the 2 layer model and assuming reflection symmetry
(E
{
ShhS

∗
hv

}
≈ E

{
SvvS

∗
hv

}
≈ 0) of the anisotropic medium, the estimated

(normalized) covariance matrix was shown to take the form:

C=σhh

[
1 0 ρ

√
γ

0 ϵ 0
ρ∗
√
γ 0 γ

]
, (F.3)

where σhh, ρ, ϵ, γ elements inside matrix C are [252]:

σhh=E
{
|Shh|2

}
, (F.4) ϵ=

E
{
|Shv|2

}
E{|Shh|2}

, (F.5)

ϵ=
E
{
|ShhS∗vv|2

}
E{|Shh|2}E{|Svv|2}

, (F.6) γ=
E
{
|Svv|2

}
E{|Shh|2}

. (F.7)
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We consider this model for the simulated data in each of the four regions in
Fig. 3.9. From a physical point of view, this model of the covariance matrix has
been adopted in cases which imply volume scattering, surface scattering and
volume-surface interactions [135].
While two parameters are fixed: γi = 1 and ϵi = 0.1, 1≤ i≤ 4, the other two
change values for each zone (in the given order):
ρ=
{
0,0.25ejπ,−0.5,0.75e−jπ

}
and σhh={1,9,25,81} [100, 232].

II. Stochastic PolSAR data simulation from known covariance
From known covariance matrices, the estimated PolSAR channels of linear
polarization can be computed using the procedure given below [253]. In the
thesis, the covariance matrices for the test area in Subsection 3.5.1.2 follow the
model described by (F.3).
Algorithm II: PolSAR data simulation using Cholesky factorization of model
covariance.
INPUT: Model covariance (Ci) for each intended test region (i= nr. of regions).
With covariance matrices of dimensions 3×3 only the monostatic PolSAR case
is covered.
OUTPUT: Simulated scattering vector/matrix.

(a) Decompose each scattering matrix Ci using (F.8), where C
1/2
i = Li is

obtained via Cholesky decomposition (F.1).

Ci=C
1/2
i

(
C

1/2
i

)H

(F.8)

(b) For every k pixel in a test region:
i. Simulate a complex, normal distributed vector w (zero mean and

identity covariance I).
ii. Then, obtain the complex, single look vk scattering vector via product:

ui,k=
(
C

1/2
i

)H

vk (F.9)

iii. Alternatively, reshape the vector into a stochastic scattering matrix, or
generate a N-look PolSAR covariance/coherence [253].

III. Modified Sobel gradient with geodesic distance

■ The Sobel gradient
The classical Sobel operator [254, 255], known primarily for edge detection
in digital image processing, proposes a sample computation of the first order
derivative. It allows a simple gradient estimation based on finite differences.
The method uses two 3 × 3 kernel filters (Tables F.1, F.2). Each of them,
employed as a sliding window, is convoluted with a spatial neighbourhood
of the same size to produce the vertical (GV) and horizontal (GH) gradient
components. The gradient magnitude is simply:

G=

√
G2

H+G2
V. (F.10)
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Table F.1: Vertical Sobel kernel.

-1 0 1
-2 0 2
-1 0 1

Table F.2: Horizontal Sobel kernel.

-1 -2 -1
0 0 0
1 2 1
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Figure F.1: Brétigny Dataset (a) Image 1-look span [dB]. (b) Magnitude of geodesic Sobel gradient
[dB] , G, evaluated on the H barycenters with the AIRM Riemannian metric.

■ Proposed model for manifold gradient
This subsection proposes to modify the gradient kernel evaluation by enrich-
ing it with a suitable geodesic metric. For this, a slight change is proposed in
the last step of the classical kernel gradient method. The same filter weights
in Tables F.1 are used and F.2 applied to 3 × 3 moving spatial neighbourhoods
(i.e., classical convolution), while the final distance evaluation procedure
between left/right or up/down components integrates the geodesic metric.
Considering, at any evaluation moment, the center of the moving window
Pi,j placed at position described by coordinates (row = i, column = j), the
two gradient components are:

Gi,j
V =d(Pi,j

↑ ,P
i,j
↓ ), (F.11) Gi,j

H=d(Pi,j
→,P

i,j
←), (F.12)

where d(·) is either (3.8) or (3.10), depending which type of polar factors
are used.

Pi,j
↑ =Pi-1,j-1+2Pi-1,j+Pi-1,j+1 (F.13)

Pi,j
↓ =Pi+1,j-1+2Pi+1,j+Pi+1,j+1 (F.14)

Pi,j
←=Pi-1,j-1+2Pi,j-1+Pi+1,j-1 (F.15)

Pi,j
→=Pi-1,j+1+2Pi,j+1+Pi+1,j+1. (F.16)



142 Appendix F. PolSAR data simulation model and Sobel kernel gradient

The gradient filter enhances specific patterns (for Sobel, horizontal and
vertical edges) in an image under evaluation. The proposed implementation
allows to apply the kernel filter directly on the matrix space and not on
only one of the amplitude channels, as usual. For the implementation, the
space of the H factors is of interest. Because the set of Hermitian matrices
is closed under addition and real scalar multiplication (it is not closed
under multiplication by complex numbers), performing the operations in
(F.13 - F.16) will not modify the matrix space. In contrast, under the same
operations, the set of unitary matrices is not a closed group. In this case,
the summations may produce a result which is no longer unitary, making
here the use of a unitary geodetic distance inappropriate.
Results from applying the proposed gradient on the Brétigny dataset are
shown here. Fig. F.1(a) is obtained having as input the set of H barycenter
matrices (obtained based on the technique in Annex H). The shape of
the three important structures from the image (horizontal West-Center,
left-oblique North-West and right-oblique North-East) is easily distinguished,
as well as some field contours. Moreover, bright pixels are clearly isolated.
This validates the ability of the modified filter to perform the usual first
order gradient estimation, but in a higher dimensional space, i.e that of 2×2
Hermitian matrices.
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Matrix logarithm and matrix exponential

I. General matrix logarithm/exponential
Operator Exp(X) denotes the matrix exponential:

Exp(X)=

∞∑
n=0

1

n!
Xn. (G.1)

For every nonsingular Z∈GL1(n,C), there exists a solution to

Exp(X)=Z,

which is
X=Log(Z).

This is called the matrix logarithm of Z and is the inverse operation to the matrix
exponential.
While property Exp(Log(X)) = X is always true, its complement does not hold
for all nonsingular X∈Cn×n, so we write Log(Exp(X)) ≠ X. This is because there
are some X matrices which have an infinite number of logarithms [91].
As a result, the notion of principal matrix logarithm is usually employed. For
a matrix X ∈ Cn×n having positive, nonzero eigenvalues, the principal matrix
logarithm is:
1) the unique solution Y∈Cn×n to Exp(Y)=X and
2) has eigenvalues that verify {z∈C|−π<I(z)<π}. For a matrix X∈Rn×n having
positive, nonzero eigenvalues, the principal matrix logarithm should be real.

II. Hermitian matrix logarithm//exponential
The properties of positive-definite matrices simplify the expression of the
matrix logarithm and exponential operations, which can be computed using the
eigenvalue decomposition of the matrix X=VDV

H

, D=diag(λ1,λ2,...,λn) and
the usual logarithm or exponential functions.
Given Dexp=diag[exp(λ1),exp(λ2),...,exp(λn)]

and Dlog=diag[log(λ1),log(λ2),...,log(λn)], then:
Exp(X)=V·Dexp·V

H

, (G.2) Log(X)=V·Dlog ·V
H

. (G.3)

1GL(n) = General Linear group of invertible matrices of size n×n.
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Exp( )
Log( )

Figure G.1: Matrix logarithm and exponentiation as operations which allow to commute between
the manifold (M) and the tangent space (TXM) at point X, ∀X ∈M.

Figure G.2: Geodesics and tangent vectors passing through the set of points {Xi}, 1≤i≤5, and their
barycenter.
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Riemannian barycenter computation

The Riemannian barycenter computation is obtained here by using an iterative gradient
descent method. In the implementation proposed by Barbaresco (and which is
considered in the manuscript), at each run, the update procedure searches to minimize
the sum of tangent vectors of all geodesics passing through a point [256].

Considering the geodesic between two Hermitian positive definite matrices A and
B on the Riemannian manifold as given in (3.8):

Γ(t)=A1/2
(
A−1/2BA−1/2

)t
A1/2, t∈ [0,1], Γ(0)=A and Γ(1)=B.

Only the Riemannian geometric mean of two 2 such matrices has a closed-form
expression. Given a set of matrices {B1, B2, ..., Bm}, 1≤k≤m, the set of geodesics
connecting A to each of them,

Γk(t)=A1/2
(
A−1/2BkA

−1/2
)t
A1/2 (H.1)

=A1/2Exp
[
t ·Log

(
A−1/2BkA

−1/2
)]

A1/2, (H.2)

and the tangent vectors passing through this point:

dΓk(t)

dt

∣∣∣∣
t=0

=A1/2Log
(
A−1/2BkA

−1/2
)
A1/2. (H.3)

The true barycenter (or Karcher mean) of the {Bm} points is characterized by a
zero vectorial sum of all tangent vectors (Fig. G.2):

m∑
k=1

dΓk(t)

dt

∣∣∣∣∣
t=0

→
m∑
k=1

Log
(
A−1/2BkA

−1/2
)
=0. (H.4)

The implemented gradient descent search uses the property in (H.4) to update the
search of the geometric mean [256, 192].

Algorithm: Iterative gradient descent for geometric mean computation.
INPUT: Set of m Hermitian positive definite matrices.
OUTPUT: Riemannian mean.
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1. Parameters definition, e.g., ε = 0.1 (start value for step-size), tolerance = 10−3

(fixed).

2. Initialization: Compute the Riemannian mean of the first two matrices from the

set, P(0)=H1

(
H−1

1 H2

)1
2

[204].

3. For m≥3, P(l)=P(0)

Repeat

∇P =

N∑
k=1

Log
(
H

−H/2
k P−1

(l)
H

−1/2
k

)
(compute gradient)

(H.5)

P(l+1) =P
H/2
(l)

Exp
(
− ε

N
∇P
)
P
1/2
(l)

(update estimate)
(H.6)

D(l+1) =∥
[
P(l)−P(l+1)

]−1
P(l)∥F (evaluation by norm)

(H.7)
ε =

[
D(l+1)>D(l)

]
? 0.5ε : 1.2ε (update step-size, for l≥1)

(H.8)

while D≥tolerance.

The tangent space TXM at a point X on the manifold M is the one containing all
possible geodesic tangent vectors. To perform the gradient evaluation on the manifold,
a projection needs to be performed to the tangent space, where the descent direction
is evaluated (Fig. G.1). The use of the matrix logarithm in (H.5) indicates this, after
which the solution is again projected on the manifold by (H.6).
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Résumé étendu

Introduction

La télédétection permet de détecter et de surveiller à distance les caractéristiques
physiques d’un objet. La télédétection par micro-ondes est la branche qui utilise pour
cette étude des signaux électromagnétiques appartenant au domaine des fréquences
radar (≈ 300 MHz - 300 GHz). Ses sous-catégories sont la télédétection active et
passive par micro-ondes.

La télédétection active, avec des instruments radar, est aujourd’hui une technologie
conventionnelle dans d’observation de la Terre. Elle est considérée un complément
à la technologie optique, notamment en raison de sa capacité d’imagerie avec moins
de restrictions (d’utilisation possible dans la journée et dans la nuit, quelles que soient
les conditions météorologiques). Le plus utilisé c’est le radar à synthèse d’ouverture
(fr., RSO, eng., « Synthetic Aperture Radar », SAR1), qui peut acquérir des images à
haute résolution de la rétrodiffusion complexe d’une zone.

La dernière décennie a montré un intérêt croissant pour les systèmes radar multi-
plateformes. Le lancement en 2010 du satellite jumeau de TerraSAR-X, TanDEM-X, ainsi
que les études scientifiques préparatoires qu’il a nécessitées, ont constitué des étapes im-
portantes dans cette direction. Ces efforts ont mis en évidence la maturité technologique
et les avantages possibles de ce type de diversité (c’est-à-dire la possibilité d’effectuer
plusieurs acquisitions dans un seul passage à partir de positions spatiales distinctes).

En combinant des ensembles d’observations de la même zone, le principal type
de diversité pour toutes les applications de télédétection est multitemporelle. D’autres
formes de diversité sont possibles en télédétection par micro-ondes : la fréquence, la
polarisation et la géométrie multi-capteur peuvent être accessibles lorsque le radar
est équipé d’instruments spécialisés.

En polarimétrie radar, l’instrument actif est celui qui fixe la polarisation à l’émission,
qui sera généralement modifiée par l’interaction d’ondes électromagnétiques avec la
surface des objets géophysiques, mesurée à une ou plusieurs fréquences. Un capteur
SAR polarimétrique permet d’accéder à l’ensemble multidimensionnel du rayonnement
rétrodiffusé. La surveillance des cultures, la classification de la couverture des sols,
la détection des diffuseurs persistants en milieu urbain ou l’étude des glaciers figurent
parmi les applications du « Polarimetrie SAR » (PolSAR).

Le travail présenté dans ce manuscrit se concentre sur l’étude de la diversité radar
polarimétrique.

■ Pendant près de vingt ans, les principales combinaisons PolSAR multi-diversité
1l’acronyme anglais sera utilisé même dans cette section
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étaient avec la multi-temporalité ou la multi-fréquence. Moins de recherches ont
utilisé la technologie radar permettant de combiner la diversité polarimétrique
et la diversité spatiale. Avec l’intérêt croissant pour des plateformes en géométrie
bistatique et multistatique, ce type de diversité combinée sera un domaine
d’intérêt important.

■ L’augmentation constante, au fil des années, de la résolution spatiale a rendu
les images radar plus performantes et plus attrayantes dans les applications
pratiques. Cependant, les statistiques permettant de caractériser le vecteur cible
sont devenues plus complexes et de nombreux modèles ont été proposés. La
difficulté de choisir la solution optimale peut être résolue en introduisant des
techniques qui ne dépendent pas de la distribution statistique des données.

Cette thèse vise à développer de nouveaux outils et méthodes pour la com-
préhension et l’analyse des images radar polarimétriques (polarisation linéaire). Les
contributions abordent les défis identifiés.

Chapitre 1 fixe le cadre théorique. Il présente les descripteurs élémentaires de la
polarisation des ondes, compare les conventions radar et optique (retrodiffusion contre
diffusion) et les formalismes matriciels et vectoriels, qui sont au centre de la plupart
des méthodes et décompositions cohérentes et incohérentes.

Chapitre 2 se développe autour de la question suivante : Quel traitement est
disponible et adéquat si on utilise la convention radar (c’est-à-dire l’alignement par
rétrodiffusion), adopte un calcul matriciel et gère des observations radar qui ne
sont pas réciproques ? Le chapitre aborde la transformation de similarité conjuguée
(ci-après, consimilarité) et propose une solution basée sur la représentation réelle
(qui a révélé des solutions à valeurs complexes pour le cas de certaines matrices
non-réciproques). Dans le cas réciproque, les résultats obtenus avec la représentation
réelle correspondent généralement à ceux de la factorisation non-négative de la matrice
de diffusion carrée. Ensuite, des applications sont explorées pour la représentation
réelle, en particulier par le calcul de sa décomposition propre.

Chapitre 3 continue d’explorer les applications sous le formalisme matriciel,
mais avec une opération basée sur la similarité, la décomposition polaire. La
méthode proposée dans ce chapitre utilise le facteur H, défini positif Hermitien,
de la décomposition polaire avec des opérations sur la variété Riemannien qui lui
est associée. La moyenne géométrique intrinsèque des matrices Hermitiennes est
implémentée, suivie d’un algorithme de regroupement avec une distance géodésique
pour la répartition en clusters. Des tests qualitatifs et quantitatifs sont effectués sur
des données monostatiques réelles et simulées. Malgré ce choix, la technique peut
être appliquée avec des mesures en géométrie bistatique.

Le dernier chapitre présente une vue d’ensemble des contributions de la thèse
et propose des perspectives de travail pour l’avenir. Pour que la synthèse de ce travail
soit efficace, des éléments supplémentaires sont fournis, lorsque nécessaire, dans les
Annexes A-H. Les contributions en publications et aux conférences pendant la durée
de cette thèse sont énumérées dans Annex I.
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Diversité radar polarimétrique

La polarisation d’une onde est définie par la direction d’oscillation des composantes
du champ électrique dans le plan transversal de propagation. Elle est souvent assimilée
à la figure "que dessinait l’extrémité du champ électromagnétique vectoriel en fonction
du temps". Par ailleurs, la polarisation d’une antenne est "celle d’une onde plane qu’elle
rayonne à grande distance dans une direction donnée" [3, 2].

L’imagerie radar conventionnelle suppose une géométrie monostatique, dans
laquelle les unités d’émission et de réception sont situées au même endroit. Dans
un système bistatique, l’émetteur et le récepteur sont situés à des endroits différents
et présentent une séparation (« baseline ») considérable entre eux (plusieurs
ordres plus grands que la longueur d’onde). Si l’émetteur et le récepteur ne sont
que des équipements distincts, mais placés à proximité, la géométrie s’appelée
quasi-monostatique (ou presque monostatique).

Une cible qui se trouve éclairée dans la scène radar est connue pour se comporter
comme un modificateur de l’état de polarisation [46]. Pour un ensemble générique
de bases de polarisation (X-Y), le changement entre les composantes des champs
d’incidence et de rétrodiffusion s’effectue par la matrice de diffusion, S∈C2×2 :

[
EX
s

EY
s

]
=

[
Sxx Sxy
Syx Syy

][
EX
i

EY
i

]
. (I.1)

Figure I.1: Observation radar polarimétrique.

Les cibles sont généralement décrites comme ayant une réponse de diffusion
déterministe ou non déterministe. Une cible déterministe (ou diffuseur unique) a une
réponse de polarisation stable dans le temps, qui est entièrement caractérisée par sa
matrice de diffusion. En revanche, la réponse de diffusion d’une cible non déterministe
ne reste pas stable et est modélisée à l’aide de processus stochastiques. Ce diffuseur
est généralement partielle ou distribuée, avec des dimensions qui couvrent plusieurs
cellules de résolution [47, 48].

Systèmes de coordonnées radar et optique

La polarisation est une propriété du signal électromagnétique reçu et aussi du dispositif
radar qui transmet le signal et effectue les mesures. Comme le suggèrent les normes
de l’IEEE, la polarisation d’une antenne est celle de l’onde qu’elle émet, ce qui
implique que dans le cas réception, les systèmes de coordonnées utilisés pour décrire
la polarisation de l’antenne et de l’onde entrante sont orientés dans des directions
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opposées. Il existe un système de coordonnées spécifique utilisé dans le domaine de la
polarimétrie radar, l’alignement de rétrodiffusion (« Backscattering Alignment », BSA).
En revanche, en polarimétrie optique et dans d’autres domaines de la polarimétrie,
le système de coordonnées conventionnel utilisé est l’alignement de la diffusion vers
l’avant (« Forward Scattering Alignment », FSA). Selon la convention BSA, le vecteur
de l’onde diffusée sur le trajet de réception est représenté avec une orientation inversée
par rapport à FSA [4]. Cette différence d’orientation de 180◦ impose une opération
mathématique de conjugaison. Dans ce contexte, les relations de changement de base
des deux conventions sont très différentes: alors que FSA exploite les transformations
de similarité effectuées sur la matrice de Jones, BSA exploite les transformations de
similarité conjuguées effectuées sur la matrice de Sinclair [55, 56, 48].

Similarité et similarité conjuguée

La similarité et la similarité conjuguée sont deux relations d’équivalence des matrices
complexes. À partir de trois matrices A,B,C∈Cn×n on peut écrire :

Table I.1: Équations de similarité et de similarité conjuguée:

similarité consimilarité

AV=VB AX=X∗C

Les matrices V et X∈Cn×n sont appelées matrices de transformation de base de la
similarité et de la consimilarité. Mais en utilisant une matrice réelle X∈Rn×n, comme
une matrice orthogonale de rotation, l’opération de consimilarité devient une opération
de similarité. Si les matrices V et X sont unitaires (V

H

V=VV
H

=I et X
H

X=XX
H

=I)
les deux opérations sont assimilées à une décomposition en valeurs/vecteurs propres
et à une décomposition en valeurs/vecteurs propres conjuguées.

Table I.2: Valeurs/vecteurs propres et homologues conjugués.

valeur/vecteur propre valeur/vecteur propre conjuguée

Avn=λnvn Axn=ξnx
∗
n

Pour une matrice complexe symétrique A, X est toujours unitaire et la similarité
conjuguée est équivalente à une congruence unitaire :

Γ=(X∗)−1AX=(X−1)∗AX

=(X
H

)∗AX=X
⊺
AX.

(I.2)

La possibilité de considérer la matrice S comme symétrique et l’introduction de
l’opération de similarité conjuguée sont des conséquences directes de l’imposition de la
convention BSA. La première affecte la seconde, de sorte que les matrices de diffusion
monostatiques vérifiant la réciprocité sont toujours diagonalisées sous congruence
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unitaire. Le formalisme mathématique pour la diagonalisation en congruence unitaire
est disponible dans PolSAR depuis les premiers travaux de Graves [64] et est plus
connu dans la littérature mathématique sous le nom de factorisation d’Autonne-Takagi
[71]. Cette thèse s’intéresse à l’étude du cas où les matrices ne sont plus symétriques
et cette factorisation ne peut plus être appliquée.

Avec des matrices de diffusion symétriques, S=S
⊺, les valeurs propres de la matrice

de Graves, G=S
H

S=S
⊺∗
S=S∗S, sont les valeurs absolues au carré des valeurs propres

du consimilarité et ses vecteurs propres sont égaux aux vecteurs propres du consimilarité
[73]. Néanmoins, si les valeurs propres de G sont égales, cette décomposition ne permet
plus de résoudre la factorisation de Takagi [68, 71]. La congruence unitaire des matrices
de diffusion symétriques peut également être assimilée à la forme symétrique de la dé-
composition en valeurs singulières (une SSVD). Pour le cas bistatique, la transformation
SVD est directement proposée dans la littérature. Elle permet la décomposition de la
matrice de diffusion par une matrice diagonale et deux transformations unitaires, l’une
caractérisant le trajet émetteur-cible (Tx-Tg) et l’autre le trajet cible-récepteur (Tg-Rx)
[76]. Dans le cas de la consimilarité, les deux matrices de transformation de chaque
trajet sont des paires conjuguées. Ces connexions sont indiquées dans la Figure I.2.

La transformation générale de la similarité conjuguée pour des matrices de diffusion
non réciproques n’a pas encore été suffisamment étudiée dans le domaine des radars
polarimétriques. Elle peut apporter de nouvelles informations dans l’analyse des
matrices de diffusion.

Décompositions PolSAR cohérentes et incohérentes

Les observations de multipolarisation sont exploitées à l’aide de techniques de
décomposition qui constituent le fondement de la théorie PolSAR. Ces techniques sont
utilisées pour séparer la signature polarimétrique capturée par les instruments radar
dans une combinaison de diffusions plus simples, auxquelles une signification physique
peut être associée. On distingue les méthodes cohérentes et incohérentes (Figure I.3).

■ Décompositions cohérentes

Les méthodes cohérentes sont divisées en deux classes principales. Elles peuvent
décomposer la matrice de diffusion par sommation ou factorisation [4].
Une décomposition par addition utilise l’ensemble des matrices élémentaires qui
forment une base. La décomposition de Pauli est le plus connu exemple pour
matrices 2×2. Les matrices de Pauli ont une interprétation physique, comme suit
: écho impair, écho pair, mécanisme diffus et mécanisme asymétrique. Seuls les
trois premiers composants sont non-zéro lors de la décomposition d’une matrice
de dispersion réciproque.
Une décomposition multiplicative (par exemple, la diagonalisation) s’appuie
sur des opérations algébriques pour extraire des facteurs élémentaires. La
décomposition de Huynen [66] et la décomposition polaire [198] sont proposées
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Figure I.2: Similarité conjuguée et opérations SVD pour les matrices de diffusion réciproques et non
réciproques.
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Figure I.3: Classification des décompositions cohérentes.
Axe horizontale: Type de factorisation. Axe verticale: Applicabilité aux matrices de diffusion réciproques
et non réciproques. Acronyme : SVD : Singular Value Decomposition.

à titre d’exemple. Les principaux développements proposés par la thèse sont liés
à la branche des décompositions cohérentes. Plus précisément, les contributions
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reposent sur l’utilisation de méthodes de factorisation multiplicative adéquates
pour les matrices de diffusion réciproques et non-réciproques.

■ Décompositions incohérentes

Le vecteur de diffusion de la cible propose une représentation équivalente de
l’information polarimétrique [77, 76]. Sa connexion avec la matrice de diffusion
peut être représentée par une projection dans l’ensemble des N éléments d’une
base {Ψ} (qui sont généralement la base lexicographique ou la base de Pauli):

k=Vect(S)=
1

2
Tr(SΨ) (I.3)

I. Données en polarimétrie complète
Les observations bistatiques utilisent généralement un ensemble complet de
quatre matrices de base, alors que dans le cas monostatique (sous l’hypothèse
de réciprocité), l’ensemble est réduit à seulement trois matrices.

II. Données en double polarimétrie
Pour les données en double polarimétrie, que la géométrie soit monostatique
ou bistatique, le vecteur diffusion de la cible a la même dimension,
uniquement 2 × 1 (c’est-à-dire un ensemble incomplet de deux matrices
de base). Dans le cas d’une polarisation linéaire, il existe trois combinaisons
double-polarimetriques possible : HH-VV, HH-VH et VV-HV.

Application: Classification H-alpha monostatique et bistatique pour double
polarisation VV-HV

Une analyse au niveau du pixel n’est plus pertinente pour la réponse de diffusion des
cibles partielles. Plus la surface au sol de la cellule de résolution radar est grande, plus
le nombre d’objets réels imaginés augmente.

Les données PolSAR ont une nature stochastique dans ce cas et les outils pertinents
d’analyse exigent le calcul de moments d’ordre supérieur. Le modèle statistique
élémentaire utilisé pour le vecteur de diffusion de la cible est celui d’une distribution
Gaussienne circulaire à moyenne nulle [98]. La fonction densité de probabilité de la
vecteur cible s’exprime :

p(k)=
1

πmdet(C)
exp
(
−k

H

C−1k
)
, (I.4)

m ∈ {3,4} (en fonction de la dimension du k), C = E
{
kLk

H

L

}
c’est la matrice de

covariance et E{·} c’est l’opérateur d’espérance mathématique. Il est généralement
considéré que le modèle gaussien pour le vecteur cible décrit le mieux les données
PolSAR provenant : a) de régions homogènes ou b) pour lesquelles un grand
nombre de cibles élémentaires sont présentes à l’intérieur de la cellule de résolution
(sous l’application du théorème de la limite centrale). C’est souvent le cas pour les



156 Résumé étendu

observations à moyenne et basse résolution. Comme les méthodes présentées dans
la thèse ne fait pas directement référence à des modèles statistiques, le cas Gaussien
est implicitement supposé (c’est-à-dire, le cas non-Gaussien pour les données à très
haute résolution est ignoré). La covariance complexe, Ĉ, estimée généralement par
la moyenne spatiale selon le critère du maximum de vraisemblance suit alors une
distribution complexe de Wishart avec une fonction de densité de probabilité :

p
(
Ĉ
)
=
LqL
(
detĈ

)L−q
(detΣ)LΓq(L)

exp
(
−L·Tr

(
Σ−1Ĉ

))
, (I.5)

dans laquelle Γq (L) = π
q(q−1)

2

∏q−1
i=0Γ(L−i), Γ(·) représente la fonction gamma, q est

l’ordre de la matrice de covariance estimée à partir de L échantillons et Σ = E
{
Ĉ
}

.

La classification Entropy-alpha est probablement la décomposition PolSAR
incohérente la plus connue. L’entropie (H) est une mesure des valeurs propres (λi)
utilisée pour décrire le caractère aléatoire d’une cible diffusante et l’alpha (α) est la
valeur moyenne des angles d’orientation (αi) des vecteurs propres. Ces paramètres
s’expriment comme suit :

H=−
m∑
i=1

PilogmPi 0≤H≤1 (I.6) α=

m∑
i=1

Piαi 0◦≤α≤90◦ [deg.] (I.7)

Pi=
λi
m∑
j=1

λj

0≤Pi≤1; 1≤i≤m (I.8)

Si les mêmes définitions et formules pour H et α s’appliquent quelle que soit la
dimension polarimétrique des données (complète ou double) [76], leur interprétation
des propriétés de diffusion change, en particulier pour alpha qui perd la propriété
d’invariance à la rotation pour la double polarimétrie [105, 102]. Il s’agit d’un résultat
bien connu, étudié dans la littérature, pour le cas monostatique.

La partie applicative de ce chapitre présente de nouveaux résultats pour le cas
de la double polarisation, en utilisant des images polarimétriques monostatiques et
bistatiques simultanément enregistrées. Les résultats de l’expérience indiquent que
les mécanismes de diffusion dual-pol impliqués dans la géométrie monostatique et
bistatique sont suffisamment différents, de tel sorte qu’une augmentation de la valeur
alpha en double polarimétrie est observée pour la plus grande partie des diffuseurs
de l’image (Fig. I.4).

Le choix de la diversité multi-polarimétrique est souvent sujet à des concessions
dans les systèmes réels, c’est pourquoi la double polarimétrie est souvent préférée. Le
reste de la thèse portera entièrement sur un cadre d’analyse polarimétrique complet.
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Figure I.4: Données mono- et bi-statique en
double polarisation VV-HV et classification
dans l’espace H−α. (a) Données monostatique
(Sentinel-1) classifiées. (b) Données bistatique
(récepteur terrestre UPB) classifiées. (c) Cibles
ayant un mécanisme de diffusion commun dans
les résultats monostatiques et bistatiques.

Matrice de diffusion en représentation rélle

La transformation d’une matrice de diffusion générale par une opération de similarité
conjugée (consimilarité) est une procédure mathématique introduite dans le cadre
de l’alignement de rétrodiffusion radar. En général, l’intérêt est de récupérer les
termes de la factorisation qui, sous diagonalisation, sont appelés les valeurs propres
conjuguées (ξk) et les vecteurs propres conjugués (xk), k ∈ {1,2}. On les appelle
également convaleurs et convecteurs dans ce document :

Sxk=ξkx
∗
k (I.9)

Comme discuté dans le chapitre précédent, pour les matrices non réciproques, cette
opération ne se réduit plus à celle de la congruence unitaire. L’un des objectifs de ce
chapitre est de discuter des défis et des avantages de l’utilisation de la transformation
de consimilarité dans ce cas. Les techniques PolSAR connues appliquent soit l’opération
de congruence unitaire de Graves/Takagi pour les matrices réciproques, soit la
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décomposition en valeurs singulières (SVD) pour les matrices non réciproques, en
distinguant clairement que la première s’applique aux données monostatiques et
la seconde aux données bistatiques. Le travail présenté dans cette partie offre un
complément nécessaire, par exemple lorsque l’on dispose de données monostatiques
non réciproques ou en tant qu’alternative à la méthode SVD pour bistatique.

La matrice de diffusion de la représentation réelle (RRSM)

Les méthodes disponibles dans la littérature pour résoudre une transformation de
consimilarité ne sont pas directes, mais elles sont basées sur des « mappings » vers
un espace équivalent où la similarité conjuguée peut être évaluée comme une équation
de similarité. Cette transformation est un morphisme qui peut être basé sur le produit
complexe entre la matrice de diffusion et son conjugué complexe [60], ou en utilisant
une matrice par blocs [113, 115]. Dans cette contribution, nous utilisons la matrice de
diffusion dans sa Représentation Réelle (RR) [116, 119]. Cette matrice est composée
des blocs contenant les parties réelles, opérateur Re(·), et imaginaires, opérateur Im(·),
de la matrice initiale : SRR ∈R4×4 est appelé comme la représentation réelle de la
matrice de diffusion (RRSM).

Figure I.5: Opération de similarité conjuguée entre deux matrices complexes (S, Scst) et de similarité
entre deux matrices réelles (SRR, SRRst). La transformation d’équivalence par consimilarité est X∈
C2×2 et la transformation d’équivalence par similarité dans l’espace réel des matrices blocs est Y∈R4×4.

RRSM forme canonique et propriétés

Les valeurs propres de la représentation réelle ont des propriétés intéressantes :a) elles
se trouvent en paires positives-négatives qui b) ont le même type algébrique (Table I.3).
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Table I.3: Valeurs propres de la RRSM et valeurs/vecteurs propres de la consimilarité pour SM.

RRSM SM

valeurs propres convaleurs convecteurs

réelles

paires distinctes réelles distinctes
indépendants, orthogonaux{λ1,λ2,−λ1,−λ2} {ξ1,ξ2}

paires égales réelles égales
a. indépendants, orthogonaux ou

b. indépendants, avec un

{λ,λ,−λ,−λ} {ξ,ξ} con-vecteur et un
con-vecteur généralisé

complexes
paires conjuguées complexes un con-vecteur et
{λ,λ∗,−λ,−λ∗} {ξ,ξ∗} un con-vecteur généralisé

Lorsque au moins deux valeurs du SRR sont égales il peut ne pas être possible
d’obtenir une forme diagonale pour la matrice SRRst. La forme de Jordan, presque
diagonale, peut être utilisée dans ce cas [60] :

(SRR)J=(SRR)st=

[⊕
k1

JpR(λk1)

]
⊕

[⊕
k2

JrpI (λk2,λ
∗
k2)

]
. (I.10)

Chaque paire positive-négative de valeurs propres (à éléments réels ou complexes)
de la forme canonique (SRR)J correspondra à une convaleur (la valeur positive
de la paire est choisie). Par exemple, à une paire réelle de valeurs propres (λ,−λ),
correspond une convaleur réelle positive ξ=λ, λ>0. Une paire complexe est associée
à une convaleur complexe. L’existence de valeurs propres complexes permet une
caractérisation complète du cas des matrices Sinclair inhomogènes (par rapport à
la consimilarité). Pour des matrices de diffusion réciproques, la factorisation de
Graves-Takagi est l’opération standard pour obtenir les convaleurs (Figure I.2).
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Figure I.6: Comparaison de la différence absolue (∆d) entre les valeurs obtenues par la méthode
de Graves et les valeurs obtenues par la méthode RR - Plus grande convaleur (ξ1). (a) En carte des
couleurs. (b) Pourcentage des valeurs propres du RRSM réelles et complexes.
Légende des acronymes : NC (jaune) = Non comparée, NE (noir) = Inégales. Les pixels sont classés
dans les classes de gris et de bleu si les valeurs obtenues par les deux méthodes sont égales sous une
tolérance δd compris entre 10−2 et 10−6.

Pour le cas monostatique, le nombre de matrices renvoyant des convaleurs
complexes est généralement attendu faible. Les données (monostatiques, bande radar
X) polarimétriques de Brétigny, considéré comme exemple, vérifiez cette hypothèse
(Figure I.6b). Figure I.6 affiche la comparaison numérique entre les convaleurs
estimées par les deux méthodes (Graves-Takagi et RR) dans le cas réciproque (qui
présente uniquement des valeurs réelles). Pour la plupart, les valeurs obtenues sont
équivalentes avec une tolérance δd≤10−2.

Le chapitre se poursuit ensuite par une analyse qui cherche la connexion entre le
facteur de non-réciprocité [140] de la matrice de diffusion, ζ= 1√

2

(Svh−Shv)
∥S∥F , et les con-

valeurs complexes. Notation ∥S∥F =
(∑

i,j∈{x,y}|Sij|2
)1/2

c’est la norme de Frobenius.

La méthodologie est basée dans cette partie sur l’utilisation de données po-
larimétriques simulées (monostatiques et bistatiques, en bande radar C) de deux objets
métalliques, considérés comme des cibles indépendantes dans la cellule de résolution
: un dièdre et une plaque. D’un point de vue polarimétrique, le dièdre et la plaque sont
associés à deux mécanismes élémentaires de diffusion distincts, l’écho pair et l’écho
impair. Un logiciel de calcul électromagnétique est utilisé pour obtenir les réponses
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du champ électrique diffusé à partir desquelles des matrices de diffusion sont estimées
pour chaque objet dans un grand intervalle angulaire d’observation.

Dans la suite, l’exemple du dièdre est considéré. Les données simulées monos-
tatiques sont vérifiées par deux méthodes différentes : la vérification de la section
transversale radar (Figure I.7) et la vérification des matrices estimées à l’aide de
paramètres polarimétriques dont la valeur est connue (Table I.4). Les mêmes ressources
ne sont pas actuellement disponibles pour le cas bistatique, par conséquence les
résultats de la simulation bistatique ne sont pas vérifiés au préalable. Enfin, les matrices
de diffusion estimées par simulation sont mises sous la forme de la représentation
réelle et les pourcentages des différents types de valeurs propres des RRSM sont
calculés dans les deux cas, monostatique et bistatique.

■ Dièdre (cas monostatique)

I. Vérification de la surface équivalente radar simulée
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Figure I.7: Dièdre monostatique (V Polarisation). (a) Comparaison RCS : Valeurs simulées par
logiciel et par formule analytique (1D, [dBm2]). (b) Valeurs absolues du champ électrique normalisé
Es (3D, [dB(V/m)]), simulées par logiciel.

II. Vérification des matrices de diffusion estimées par les paramètres polarimétriques

Table I.4: Dièdre monostatique. Évaluation basée sur des descripteurs polarimétriques angulaires
(αCloude et αTSVM). Pourcentage des valeurs estimées en intervalles de 10◦ entre [0◦, 90◦].

90−80 80 - 70 70 - 60 60 - 50 50 - 40 40 - 30 30 - 20 20 - 10 10 - 0

αCloude [76] 28.7 % 18.2 % 12.8 % 9.8 % 15.1 % 8.53 % 4.03 % 1.42 % 1.42 %
αTSVM [50] 28.7 % 17.5 % 11.8 % 9.8 % 12.95 % 11.7 % 4.7 % 1.42 % 1.42 %

Pour environ 45% des directions de diffusion, les valeurs des ces descripteurs
polarimétriques (αCloude et αTSVM) varient à moins de 20◦ degrés autour
de la valeur théorique que les deux paramètres associent au mécanisme de
diffusion représenté par le dièdre, 90◦. Même si cela montre que le dièdre
est généralement un diffuseur stable, il existe également des directions
d’observation pour lesquelles d’autres mécanismes de diffusion sont observés.
Les résultats sont similaires avec les deux paramètres.
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Figure I.8: Dièdre - Résultat bistatique
Directions de l’incidence : col. 1 : {θi = 0◦,φi = 0◦}, col. 2 : {θi = 25◦,φi = 0◦}, col. 3 :
{θi=40◦,φi=0◦}. (a)-(c) Classification des valeurs propres RRSM. (d)-(f) Classification des valeurs
propres RRSM par rapport à l’angle bistatique, β∈ [0◦,90◦].

■ Dièdre (cas bistatique)

Les résultats obtenus à partir des simulations bistatiques, pour trois angles
d’incidence (et un intervalle angulaire de rétrodiffusion que dans le cas
monostatique), sont illustrés dans la Figure I.8.

Le dièdre apparaît comme une cible plus stable (en comparaison avec la plaque),
présentant des valeurs propres complexes dans certaines directions de diffusion,
obliques par rapport à la bissectrice. Néanmoins, cette analyse n’est pas suffisante
pour définir un critère d’angle bistatique imposant l’apparition de valeurs
complexes.

Il convient de préciser que l’évaluation est incomplète sous certains aspects. La
décomposition propre de la matrice bloc de la représentation réelle n’est appliquée
que de manière cohérente, sans moyenne statistique. Ce type d’évaluation n’est donc
pas approprié pour caractériser les diffuseurs distribués. En ce qui concerne l’influence
des vecteurs propres, elle n’a pas été étudiée que de manière limitée et peut-être
approfondie dans le cadre de travaux futurs.
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Clustering géométrique avec facteurs Hermitiens

Ce chapitre propose un algorithme de traitement pour la classification non supervisée
basée sur la décomposition polaire de la matrice de diffusion. Ceci est suivi d’un
calcul géométrique du centroïde de la variété Riemannienne des facteurs de diffusion
Hermitiens. L’analyse proposée montre des résultats comparables et même supérieurs
à ceux du classificateur Wishart conventionnel, qui effectue un regroupement basé
sur la covariance. Le schéma simplifié d’un algorithme de regroupement est présenté
dans la Figure I.9.

initialisation

centroïdes

métrique
fonction 
objective

attribution 
des classes

critère 
ARRÊT

recalculer

NON

OUI

nombre 
classes

ALGORITHME 
DE CLUSTERING 

données
POLSAR 

RÉSULTAT 

Figure I.9: Schéma générique d’un algorithme de clustering pour les données PolSAR.

Les facteurs de la décomposition polaire

La décomposition polaire est une opération de factorisation d’une matrice A comme
le produit de deux facteurs : un facteur unitaire et un facteur complexe semi-défini
positif (Hermitien). Il existe deux formes possibles, compte tenu de la permutation
de l’emplacement des facteurs : (I.11) c’est la décomposition polaire droite et (I.12)
c’est la décomposition polaire gauche.

A=UH (I.11) A=KU, (I.12)

où U ∈ Cn×n vérifiant UU
H

=U
H

U = I est la matrice unitaire la plus proche de A
(dans toute norme unitairement invariante [90, 91]). Les matrices H et K sont égales
seulement si A est normale. Sans égard au choix, entre (I.11) ou (I.12), le terme
Hermitien est toujours unique, tandis que le terme unitaire n’est pas encore unique si la
matrice A est singulière. Les résultats expérimentaux de ce chapitre n’ont pas montré
de différence importante dans l’utilisation de l’une ou l’autre des deux formes. La
décomposition polaire droite de la matrice de diffusion polarimétrique S est considérée
par convention dans tous les résultats qui suivent.

■ Facteur complexe défini positif :

La matrice complexe semi-définie positive H vérifie u
H

Hu ≥ 0 ∀ u ∈ C2×1 et
a des valeurs propres réelles, non-négatives. Une telle matrice est également
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Hermitienne, H
H

=H. Dans le cas où la matrice de diffusion serait symétrique
complexe (c’est-à-dire le cas supposé en monostatique), les valeurs propres du fac-
teur Hermitien partagent une interprétation à plusieurs facettes : des convaleurs
propres, des valeurs singulières ou des facteurs de la décomposition de Takagi.
D’un point de vue géométrique, l’espace des matrices Hermitiennes définies
positives ( « HPD » ) prend la forme d’une variété conique ouverte. Compte
tenu de la géométrie courbe de la variété, la simple utilisation de métriques
Euclidiennes n’est pas optimale pour les opérations conventionnelles (distance,
valeur moyenne, autres statistiques) sur la variété.

■ Facteur unitaire :
Les matrices unitaires sont les contreparties complexes des matrices orthogonales.
De nombreuses fonctions de distance sont invariantes par rapport aux matrices
unitaires, de sorte que, comme leur analogue réel, elles sont connues pour
préserver les longueurs/amplitudes. Le groupe des matrices unitaires 2×2 est
connu sous le nom de U(2) et forme un groupe de Lie sous la multiplication des
matrices. Ce dernier est un groupe algébrique qui a la structure d’un manifold lisse.

Des variétés et de la géométrie Riemannienne

Une variété ( « a manifold » ) M est un espace topologique, similaire à un espace
euclidien à chaque petit voisinage. En chaque point X de la variété, l’espace tangent
TXM pourra être défini (Figure I.10a).

Une métrique définie sur la variété est un choix de produit intérieur pour chaque
X ∈M. Lorsqu’un tel produit intérieur varie de façon lisse d’un point à l’autre sur le
manifold, on l’appelle une métrique Riemannienne. La mesure géodésique dans un
espace Riemannien est imposée par cette métrique, qui suit la courbure de l’espace
et représente alors la façon intrinsèque de mesurer les distances sur la variété. D’autres
mesures extrinsèques peuvent être imposées, mais elles ne seront pas optimales
(exemple de comparaison dans la Figure I.10a).

L’espace des matrices Hermitiennes forme un manifold Riemannien et lorsqu’il
est endossé avec la métrique riemannienne invariante affine ( « AIRM » ), la distance
minimale entre deux matrices A et B est :

dP(n)(A,B)=∥Log(A−1/2BA−1/2)∥F (I.13)

et la géodésique entre ces deux est :

Γ(t)=A1/2
(
A−1/2BA−1/2

)t
A1/2, t∈ [0,1], Γ(0)=A and Γ(1)=B.

Le barycentre Riemannien est le minimiseur des distances géodésiques au carré entre
un ensemble de matrices définies positives (Figure I.10b). Il n’existe pas de solution
analytique quand plus de trois matrices sont impliquées, mais il a été démontré que
le minimum existe et qu’il est unique quand l’estimation est réalisée par une méthode
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euclidienne
géodésique

A

B

𝑋

𝕄

𝑇𝑋𝕄

(a)

𝑋1 𝑋2

𝑋3

𝑋4
𝑋5

𝑋𝑏𝑎𝑟𝑦
𝕄

ሶ𝛤𝑘 =
𝑑 𝛤𝑘(𝑡)

𝑑𝑡
,

𝑡 ∈ 0, 1 , 𝑘 ∈ {1, 2, 3, 4, 5}

(b)

Figure I.10: Variété, espace tangent, géodésique. (a) Exemple d’une variété (M) et son espace tangent
au point X (TXM). (b) Géodésiques et vecteurs tangents passant par l’ensemble des points {Xi},
1≤i≤5 et leur barycentre.

d’optimisation [222]. La méthode de Karcher basée sur une implémentation de descente
en gradient est utilisée dans cette thèse pour obtenir l’estimation du barycentre [223].

Clustering géométrique avec des facteurs Hermitiens

Il y a plus d’une décennie que des concepts liés à la variété Riemannienne des matrices
Hermitiennes ont commencé à être appliqués dans PolSAR, mais en considérant
exclusivement les matrices de covariance et de cohérence (aussi Hermitiennes). Les
principaux domaines d’application sont liés à la classification et à la segmentation
non supervisée [191, 210], la détection des changements [211, 170], la classification
supervisée [212, 213] ou le filtrage du speckle [215, 216].

L’algorithme géométrique de regroupement ( « clustering » ) basé sur les k-means et
proposé dans ce chapitre est construit sur deux aspects essentiels : 1) la décomposition
polaire cohérente des données PolSAR et 2) un moyennage incohérent basé sur la
géométrie Riemannienne. Ce cadre ne repose plus sur l’utilisation de matrices de
covariance/cohérence. Au lieu de cela, nous exploitons directement la matrice de
diffusion en appliquant la décomposition polaire. L’étude des propriétés des deux
facteurs de décomposition a fait conclure que seul le facteur Hermitien constitue une
entrée invariante à rotation pour la méthode de regroupement. Aucune vectorisation
des données n’est effectuée (par rapport à la construction des vecteurs de diffusion) et
l’algorithme est conçu pour exploiter la propriété géométrique des facteurs Hermitiens,
qui sont intrinsèquement situés sur une variété Riemannienne. Plutôt que d’établir
une moyenne statistique des vecteurs de diffusion (comme pour l’estimation de la
matrice de covariance/cohérence), une moyenne locale (le barycentre) est calculée en
utilisant la métrique géodésique de la variété. L’algorithme ne modifie pas la structure
(algébrique/géométrique) des matrices de diffusion d’entrée. Aucun modèle statistique
(homogène ou hétérogène) de clutter n’est supposé pour l’instant.

Des ensembles de données polarimétriques monostatiques (réelles - test qualitatif
et simulées - test quantitatif) sont utilisés pour évaluer la méthode proposée. Des tests
quantitatifs sur des données simulées suivant une distribution Gaussienne montrent
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(a) (b)

(c)

Figure I.11: Données réelles Brétigny. (a) Wishart. (b) k-means avec distance géodésique angulaire.
(c) k-means avec distance géodésique Riemannienne.

des résultats comparables ou supérieurs à ceux de l’algorithme classique de Wishart.

Pour les données PolSAR réelles, la classification finale préserve mieux les
informations de texture de l’image originale. Une amélioration de la séparation est
observée parmi les zones voisines du faible intensité (comme observée par exemple
sur certains champs de végétation avec les données Brétigny, Figure I.11).

Conclusions

Cette thèse propose des contributions sur le développement d’outils et de méthodes
pour le traitement d’images radar polarimétriques (en polarisation linéaire). Le
formalisme matriciel est adopté.

La géométrie du radar peut avoir sa propre influence sur la diversité polarimétrique,
ce qui nous a amené à explorer les paradigmes monostatique et bistatique dans les
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Chapitres 1 et 2. La diversité polarimétrique totale est généralement supposée tout
au long de la thèse. Néanmoins, un court exemple à la fin du Chapitre 1 explore
des résultats en double polarisation avec une scène test imagée simultanément
par des capteurs radar monostatiques et bistatiques à double polarimétrie. Les
différences d’interprétation des paramètres H−α entre la polarimétrie double et la
polarimétrie complète sont étudiées et enfin, les résultats monostatiques et bistatiques
en polarimétrie double sont comparés.

Dans les autres parties de la thèse, le modèle polarimétrique complet est utilisé,
les données sont « single look complex » avec chaque pixel décrit par une matrice de
diffusion, S. Cette méthode est généralement utilisée pour les diffuseurs déterministes,
tandis que le formalisme vectoriel et la covariance s’appliquent aux calculs impliquant
des diffuseurs distribués. La méthode proposée dans le Chapitre 2 s’applique à un
modèle de cible cohérent et celle présentée dans le Chapitre 3 concerne surtout la
classification des données PolSAR réelles, où les diffuseurs incohérents dominent.

■ Chapitre 2:

• Méthode de détection des valeurs propres conjuguées complexes, basée sur la
représentation réelle
Ce chapitre commence par une discussion mathématique détaillée sur la
transformation de similarité conjuguée : pourquoi elle apparaît dans PolSAR
avec la convention BSA et quelles sont les méthodes connues pour effectuer
la factorisation. Après avoir présenté la représentation réelle, nous expliquons
comment elle peut être utilisée dans le cadre de la similarité conjuguée
pour les matrices de diffusion réciproques et non réciproques. Les matrices
réciproques ont une factorisation unique, cas dans lequel les expériences
de ce chapitre démontrent que ces facteurs sont généralement les mêmes
que ceux obtenus par une décomposition sur la matrice puissance S

H

S. Pour
les matrices non-réciproques, la factorisation peut fournir des solutions dans
le plan complexe et au moins, un des facteurs peut ne pas être unique.

• Analyse de données polarimétriques réelles (monostatiques) et simulées (mono-
statiques et bistatiques) à l’aide d’une détection avec la représentation réelle
Dans la deuxième partie du chapitre, des simulations polarimétriques
obtenues à l’aide d’un logiciel de calcul électromagnétique ont été présentées.
Elles sont générées pour deux cibles cohérentes (plaque métallique carrée
et dièdre à angle droit) dans des géométries monostatiques et bistatiques et
à partir d’une large échelle d’angles d’observation. La méthode de détection
utilisant la décomposition propre de la représentation réelle a été appliquée
aux ensembles de données polarimétriques simulées, ainsi qu’aux données
PolSAR monostatiques réelles. Les résultats ont montré que les valeurs
propres de la similarité conjuguée peuvent être complexes dans tous les cas.
Elles apparaissent avec une très faible probabilité (en dessous de 5%) pour
toutes les données monostatiques testées. Le pourcentage est plus élevé dans
le cas d’observations bistatiques.

■ Chapitre 3:
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• Analyse des facteurs de la décomposition polaire
Dans la première partie du chapitre, les propriétés algébriques et
géométriques des deux facteurs obtenus par la décomposition polaire sont
examinées en détail. Le facteur Hermitien, H, peut être assimilé à un résultat
compensé en phase et en rotation de la matrice de diffusion originale.

• Clustering géométrique de données à l’aide des facteurs Hermitiens
L’intégration des facteurs polaires Hermitiennes dans la variété des matrices
à définition positive est l’idée principale qui sous-tend la méthode de
regroupement géométrique proposée. En première étape, qui fait partie du
pré-traitement, les facteurs Hermitiens provenant de voisinages spatiaux ont
été utilisés pour calculer un centre de masse géométrique. Cette opération
peut être mise en parallèle avec l’estimation de la matrice de covariance dans
le voisinage. La deuxième étape est implémentée sur la base d’algorithme
par partitionnement k-means et d’une distance géodésique sur la variété
HPD Riemannienne, utilisée pour la comparaison intra/inter-cluster.
La performance de la méthode proposée a été testée sur des données
monostatiques PolSAR réelles et simulées. Des résultats quantitatifs et
qualitatifs améliorés ont été obtenus par rapport à la méthode de Wishart
non supervisée. Avec des données polarimétriques réelles, on observe que
le résultat final du regroupement préserve mieux les détails de la texture.

Perspectives

Des extensions, ainsi que des améliorations potentielles, sur chacun des deux principaux
axes d’étude de cette thèse sont discutées dans cette section.

• L’étude utilisant des données simulées et la représentation réelle n’a pas permis
d’identifier un lien entre les descripteurs de la géométrie bistatique (par exemple,
l’angle bistatique) et les valeurs propres complexes de la similarité conjuguée.
Cela peut suggérer que, s’il existe, le lien est multivarié, et qu’il est nécessaire
d’améliorer les modèles et les tests.

• Une extension immédiate du travail effectué au Chapitre 2 consiste à considérer
les vecteurs propres de la similarité conjuguée. Pour découvrir leurs propriétés,
on pourrait suggérer d’identifier des paramètres descriptifs avec lesquels proposer
un modèle vectoriel.
Pour l’instant, le modèle de factorisation de la similarité conjuguée est limité aux
applications cohérentes. L’introduction d’un modèle vecteur permettrait son ex-
tension par une technique de décomposition incohérente basée sur la covariance.
Par ailleurs, des modèles d’apprentissage automatique pourraient être utilisés en
s’appuyant sur des paramètres de la consimilarité ou de la représentation réelle.

Pour le deuxième axe de la thèse, les améliorations suivantes sont identifiées :
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■ La médiane algébrique est connue pour être une estimation plus robuste
aux valeurs aberrantes. Tout en conservant les idées fondamentales de la
méthode de regroupement géométrique, une version différente peut modifier le
processus d’estimation de la moyenne Riemannienne en estimation de la médiane
Riemannienne [221].

■ D’autre manière, la métrique AIRM peut être modifiée et comparée à d’autres
métriques, toujours adaptées à la variété HPD [235]. Une initialisation déter-
ministe de l’algorithme de regroupement k-means, idéalement par une méthode
reflétant les caractéristiques de rétrodiffusion PolSAR, serait aussi envisagée. De
plus, d’autres types d’algorithmes de regroupement peuvent être proposés.
Encore, on peut étudier le rôle joué par la dimension de la variété Riemannienne
en utilisant la covariance ou le facteur de la décomposition polaire de la
représentation réelle (les deux étant des matrices Hermitiennes).
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