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Résumé en français

Le rôle des membranes biologiques est de séparer la cellule et ses constituants de l’envi-
ronnement extérieur et de réguler les échanges de celle-ci avec l’extérieur. Une membrane
biologique est constituée de deux couches de fluide de lipides, composants amphipha-
tiques, qui, en s’auto-assemblant, rendent la membrane sélectivement perméable. Pour
séparer la cellule de l’extérieur, la membrane se referme sur elle-même, adoptant la to-
pologie d’une sphére que l’on appelle une vésicule. En plus de sa fluidité, la membrane
oppose une résistance à la flexion et à l’extension, elle est donc élastique.

Une membrane biologique contient, de plus, des protéines qui remplissent différents
rôles tels que le transport intra-cellulaire et extra-cellulaire et la signalisation cellulaire.
Les protéines membranaires sont classées en deux catégories : les protéines dites intégrales
qui restent en permanence en interaction avec la membrane via l’un de ses sites et les
protéines périphériques qui ne restent attachées à la membrane que temporairement.

Dans la première catégorie, soit la protéine traverse la membrane et est ainsi en contact
avec les deux couches (protéine transmembranaire), soit elle n’est en contact qu’avec une
seule des couches (protéine monotopique). Dans le cas des protéines périphériques, les
protéines ne sont en interaction qu’ avec une seule monocouche.

Les protéines existent dans une grandes variété de formes et sont rigides, ainsi, s’ap-
puyant sur la propriété élastique de la membrane, elles peuvent induire une courbure à
la membrane. C’est typiquement le cas des protéines faisant partie de la superfamille des
BARs ; ces protéines périphériques ont une forme de banane qui leur permet de courber
la membrane localement le long de leur domaine lorsqu’elles s’accrochent à cette dernière.

A ce mécanisme de courbure à l’accrochage, s’ajoute la possibilité, pour certaines
protéines, en particulier les transmembranaires, de changer de conformation. En effet, des
réactions chimiques ont lieu entre les protéines et les divers composés chimiques présents
dans la membrane et autour. Ainsi, les protéines BmrA faisant parties des transporteurs
ABC, réagissent à l’hydrolyse de la molécule d’ATP pour changer leur forme et, par là
même, permettre le transport de composants de l’extérieur vers l’intérieur de la cellule.
On a donc l’existence d’un mécanisme de changement conformationnel actif de la protéine
qui induit lui aussi des déformations à la membranes.

Les déformations membranaires induites par les protéines au travers des mécanismes
présentées au-dessus sont à leur tour source d’interactions. D’abord, la membrane étant
décrite par un champ élastique, ces déformations génèrent des interactions élastiques
entre les protéines. Ensuite, les protéines imposent localement des contraintes au champ
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membranaire et celui-ci est soumis à des fluctuations thermiques. De ce fait, des interac-
tions de type Casimir apparaissent entre les protéines. On parle donc ici d’interactions
médiées car les protéines n’intéragissent pas directement entre elles, mais seulement au
travers des déformations du champ qui affectent leur déplacement. Par conséquent, à la
fois les fluides de lipides qui composent la membrane et les protéines sont déplacées, ce
qui pose la question de la mobilité des objets dans la membrane.

A ces interactions médiées, s’ajoutent des couplages hydrodynamiques ; la membrane
étant constituée d’une bicouche de lipides de quelques nanomètres pouvant être assimilée à
un fluide bidimensionnel, il se crée des couplages hydrodynamiques 2D entre les protéines,
eux-mêmes couplés aux écoulements 3D des fluides entourant la membrane, à la fois de
l’extérieur et de l’intérieur.

Cette thèse s’attache à étudier la dynamique collective des protéines dans une mem-
brane biologique, en considérant les mécanismes décrits ci-dessus. On utilise des approches
analytiques, mais aussi numériques.

On commence par modéliser la statique du système. On considère un morceau de
membrane en contact avec un réservoir de lipides. Se basant sur ses propriétés élastiques,
Helfrich a établi un Hamiltonien qui permet de modéliser les déformations de la membrane
comportant une énergie de flexion qui fait intervenir les invariants du tenseur de courbure :
la courbure moyenne et la courbure de Gauss. De plus, l’ensemble thermodynamique
approprié pour décrire ce système est l’ensemble grand canonique qui fait apparaître une
tension de surface effective qui pénalise les déformations.

En sus, on considère que les protéines sont ponctuelles. Cette supposition permet de
simplifier la modélisation du couplage entre les protéines et la membrane car la présence
d’une taille pour les protéines induirait des conditions aux bords convoluées à l’énergie de
couplage. Toujours dans un esprit de simplification, on considère un couplage quadratique,
un couplage linéaire n’étant pas suffisant pour rendre compte des intéractions multicorps
essentielles pour étudier les interactions médiées entre protéines.

On s’attelle ensuite à décrire la dynamique du système. Pour cela, on assimile la
membrane à un fluide infini incompressible bidimensionnel entouré, de part et d’autre,
par des solvents aqueux qui transmettent des contraintes visqueuses à la membrane. Et
on considère la présence de protéines ponctuelles induisant une courbure locale isotrope
à la membrane.

Les dynamiques de la membrane et des protéines sont ainsi décrites par des équations
de Langevin suramorties avec des bruits qui satisfont le bilan détaillé à l’équilibre ther-
mique et, auxquels il est possible d’ajouter des taux permettant de mettre le système
hors d’équilibre.

Cette modélisation nous a permis, dans un premier temps, d’étudier le comportement
collectif de protéines périphériques pouvant s’accrocher et se détacher de la membrane
selon un mécanisme thermalisé ou activé.

Nous avons déterminé et analysé le diagramme de phase d’une membrane en contact
avec un réservoir de telles protéines qui induisent une courbure locale et isotrope à la
membrane lorsqu’elles s’accrochent, à l’aide d’approches à la fois analytiques et numé-
riques.

A l’équilibre thermique, avec des taux d’accrochage et de décrochage respectant le
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bilan détaillé, une analyse de stabilité linéaire appliquée à l’énergie libre d’une membrane
plane contenant une densité uniforme de protéines en fonction du potentiel chimique du
réservoir et de la courbure spontanée des protéines montre que la membrane présente
trois phases différentes :

• une phase dite phase non liée uniforme et plane (U). Dans cette phase, peu de
protéines se sont accrochées à la membrane, cette dernière contient donc une densité
faible de protéines et reste plane en moyenne.

• Une phase liée uniforme et plane (B), où une densité très élevée de protéines s’est
attachée à la membrane, générant donc une courbure uniforme à la membrane, mais
qui, en raison des conditions aux limites périodiques, reste plane.

• Une phase «vallonnée»(SC) dans laquelle la membrane se compose de régions de
courbure et de densité de protéines différentes.

La structure adoptée dans la dernière phase étant non linéaire, une analyse de stabilité
linéaire n’est pas suffisante pour la déterminer. On utilise donc un ansatz sur la forme
adoptée par la membrane qui nous permet de déterminer que dans la phase vallonnée,
la membrane s’ondule, on observe une succession périodique de zones courbées où se
concentrent les protéines et de zones vidées de protéines, où la membrane s’infléchit dans
le sens contraire. De plus, en étudiant le coût énergétique optimal de ces ondulations
de la forme de la membrane par rapport à une membrane plane en fonction du potentiel
chimique et de la courbure spontanée, on a pu obtenir un point tricritique, à droite duquel
survient une transition de phase du second ordre entre la phase non liée U et la phase
vallonée SC. A sa gauche, on observe une transition de phase du premier ordre entre les
phases SC et B.

De plus, on trouve une transition du premier ordre entre les phases U et B en restau-
rant les fluctuations d’équilibre en présence de protéines ayant une courbure spontanée
nulle, c’est-à-dire, en considérant des protéines soumises uniquement à des interactions
de type Casimir.

On considère ensuite le cas hors d’équilibre en rajoutant un mécanisme d’accrochage-
décrochage actif décrit par un processus de Poisson, et brisant le bilan détaillé. En ap-
pliquant une analyse de stabilité linéaire sur la dynamique du système, on montre que la
présence d’activité altère la stabilité de la phase vallonnée : en présence de décrochage
actif, on observe un décalage de la région où la membrane adopte la phase vallonnée
vers des valeurs du potentiel chimique du réservoir plus élevées car l’ajout d’un taux de
décrochage entraîne la stabilisation de la membrane plane.

En parallèle, nous avons mené une approche numérique dont les simulations ont été
effectuées par Hiroshi Noguchi. Dans ces simulations, on considère que la membrane
est constituée de particules qui s’auto-assemblent à l’aide d’un potentiel attractif. Un
réservoir de protéines qui s’accrochent et se décrochent stochastiquement de la membrane
avec des taux satisfaisant la condition de bilan détaillé entoure la membrane lorsque l’on
étudie l’équilibre thermique, on peut étendre ce modèle en introduisant des taux actifs
plongeant le système hors d’équilibre.
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Qualitativement, le diagramme de phase à l’équilibre thermique obtenu numérique-
ment est en accord avec celui trouvé analytiquement : on observe les trois phases décrites
plus haut et on obtient les mêmes transitions de phases. Concernant la phase SC, la si-
mulation montre une structure où les zones courbées et denses en protéines ont une forme
hexagonale. De même, l’analyse numérique hors d’équilibre donne un comportement si-
milaire à celui déterminé analytiquement en présence de décrochage actif.

Dans un second temps, nous nous intéressons à la diffusion de protéines ponctuelles
qui induisent une courbure locale à la membrane.

On commence par étudier la diffusion d’une protéine isolée assimilée à un objet ponc-
tuel. Cette approche nous permet non seulement de retrouver la loi de Saffman-Delbrück,
mais aussi de la généraliser. Cette loi établie en 1976 par Saffman et Delbrück permet de
déterminer la mobilité d’une protéine dans une membrane. La membrane étant un fluide
2D infini, à nombre de Reynolds faible, la mobilité diverge (paradoxe de Stokes). Tou-
tefois, considérer les solvents entourant la membrane permet d’introduire une longueur
caractéristique, appelée longueur de Saffman-Delbrück, qui permet de régulariser la mo-
bilité. Cependant, la dérivation usuelle de cette loi nécessite des calculs lourds. Grâce
à notre approche «ponctuelle» faisant intervenir une coupure ultraviolette de l’ordre de
l’inverse de la taille caractéristique de la protéine, nous arrivons à dériver cette loi simple-
ment, à un facteur près. Fort de ce résultat, nous avons étendu cette approche en prenant
en compte d’autres effets.

Tout d’abord, on prend en compte le caractère bicouche de la membrane. En effet, la
membrane se compose de deux couches de lipides ayant chacune leur propre viscosité. De
plus, à l’interface entre les deux couches, la (faible) interdigitation entre les queues des
lipides génère une friction intermonocouche.

Dans un premier cas, on considère une protéine ne se déplaçant qu’au sein d’une seule
couche. En imposant une condition de non-glissement entre la protéine et la monocouche,
on trouve que pour de larges valeurs du coefficient de friction intermonocouche la loi de
Saffman-Delbrück décrit toujours la mobilité du système, à condition de remplacer la
viscosité de la membrane assimilée à un fluide unique par la somme des viscosités des
deux couches. Ainsi, dans ce régime, la friction entre les couches peut être négligée car cela
revient à imposer une condition de non-glissement entre les couches. Pour des valeurs plus
faibles qu’un seuil dépendant de la viscosité de la membrane et de la taille de la protéine
la loi de Saffman-Delbrück trouvée ne tient plus, et on trouve une mobilité plus large car
le fluide de la couche ne contenant pas la protéine n’est pas entièrement entraînée par le
déplacement de cette dernière.

Dans le cas d’une protéine occupant l’intégralité de la bicouche, nous montrons que
la contrainte de non-glissement entre la protéine est chaque monocouche entraîne une
condition de non-glissement entre les deux couches. Ainsi, pour toutes valeurs physique
du coefficient de friction intermonocouche, on retrouve une loi de Saffman-Delbrück dont
la viscosité est la somme des viscosités des deux monocouches.

Dans un second cas, on considère une protéine induisant une courbure à la membrane.
En utilisant un couplage linéaire entre la protéine et la membrane, notre approche nous
permet de démontrer que dans le régime des faibles déformations, la friction totale res-
sentie par la protéine est la somme de la friction usuelle d’une protéine isolée se déplaçant
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dans un fluide 2D plan (Saffman-Delbrück) et d’une friction supplémentaire due à la force
de rappel qu’exerce la déformation sur la protéine.

Finalement, on étudie la diffusion collective d’un ensemble de protéines induisant une
courbure à la membrane a l’aide de simulations numériques.

Il a été montré que les couplages hydrodynamiques entre protéines formant un en-
semble dense dans un fluide incompressible 2D (membrane maintenue plane) génèrent
un déplacement collectif. En effet, en présence de ces interactions hydrodynamiques, le
coefficient de diffusion du centre de masse de l’ensemble devient comparable à celui du
grandissement du rayon de gyration.

Pour effectuer nos simulations, on considère un ensemble d’un nombre fini de pro-
téines ponctuelles distribuées initialement uniformément dans un cercle dans une mem-
brane maintenue plane. La dynamique des protéines suivant une dynamique brownienne,
on remplace le tenseur hydrodynamique usuel d’Oseen par un tenseur défini positif dé-
rivé selon la méthode variationnelle de Rotne et Prager. Ceci est nécessaire car le calcul
numérique fait intervenir la décomposition de Cholesky qui n’est possible que pour des
tenseur de mobilité définis positifs. Nos simulations nous permettent de valider numé-
riquement les prédictions analytiques trouvées dans la littérature sur le comportement
collectif des protéines à temps long : la diffusion collective est subdiffusive et la distribu-
tion interprotéine, initialement uniforme, tend vers une distribution gaussienne au fil du
temps.

Enfin, on prend en compte les couplages entre la membrane et des protéines qui
induisent localement une courbure spontanée à la membrane, ainsi que les fluctuations
de cette dernière. Pour cela, on considère un patch de taille finie de membrane et on
impose des conditions aux limites périodiques. Dans l’espace de Fourier, on discrétise
son champ de hauteur : on remplace le champ défini dans le continu par un réseau
dont les sites contiennent chacun un mode du champ membranaire. La dynamique du
système est décrite par une équation de Langevin suramortie faisant intervenir un noyau
hydrodynamique pour la membrane, couplée à la dynamique brownienne des protéines à
travers un couplage quadratique.

Comme dans le cas précédent, on considère un ensemble dense de protéines distribuées
initialement selon une loi uniforme dans un cercle.

Les couplages hydrodynamiques étant toujours présents, l’étude numérique des coef-
ficients de diffusion du centre de masse de l’ensemble et du grandissement du rayon de
gyration établit l’existence de la diffusion collective des protéines.

Toutefois, on observe un coefficient de diffusion collective réduit en présence des fluc-
tuations de la membrane. L’étude de cette distinction avec le cas d’une membrane plane
nécessite une étude plus poussée, non effectuée dans cette thèse, mais nous suspectons
que cet effet est dû à des forces de rappel exercées par la membrane sur les protéines.
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Résumé

Les membranes biologiques sont des constituants importants de nos cellules qui ont
pour rôle de séparer le cytoplasme du fluide extracellulaire. Les bicouches lipidiques, qui
forment la base de ces membranes, sont des structures auto-assemblées qui confèrent ses
propriétés de fluidité et d’élasticité aux membranes. De plus, les membranes biologiques
contiennent des protéines, objets rigides existant dans une grande variété de formes et
impliqués dans plusieurs mécanismes biologiques tels que les transports intra et extracel-
lulaires. En raison de leur forme et de leur rigidité, certaines protéines peuvent défor-
mer les membranes. D’autres sont même conformationellement active, i.e., elles peuvent
changer leur forme, passant sur des états qui peuvent déformer ou non la membrane Ces
déformations élastiques entraînent des interactions médiées élastiques entre les protéines,
auxquelles s’ajoutent des interactions de type Casimir issues des fluctuations de la forme
de la membrane. En outre, la membrane biologique est entourée par un solvent, ajoutant
ainsi des couplages hydrodynamiques.

Cette thèse aborde la dynamique collective de protéines membranaires passives et
conformationellement actives qui induisent une courbure locale à la membrane, au travers
d’approches à la fois analytiques et numériques.

Dans le Chapitre 3, nous déterminons analytiquement et numériquement le diagramme
de phase à l’équilibre thermique d’une membrane en présence de protéines induisant
une courbure qui peuvent s’accrocher ou se décrocher de la membrane en fonction de
leur courbure spontanée et du potentiel chimique du réservoir de protéines. Au moyen
d’une analyse non-linéaire, nous étudions la structure adoptée par la phase instable. Nous
étendons ensuite l’étude du système au cas hors-équilibre en ajoutant des taux actifs au
processus d’accrochage et de décrochage des protéines.

Dans le Chapitre 4, nous appliquons une approche ponctuelle à l’étude de la diffusion
d’une protéine membranaire isolée. Cette méthode nous permet de retrouver simplement
la loi de Saffman-Delbrück (SD) qui régit la mobilité d’un objet se déplaçant dans un
fluide bidimensionnel. Nous présentons ensuite des généralisations de cette loi en prenant
en compte le caractère bicouche de la membrane. Enfin, nous obtenons analytiquement
la correction de la loi de SD pour une protéine qui génère une courbure spontanée locale.

Dans le Chapitre 5, nous présentons une approche numérique qui nous permet de
confirmer des prédictions sur le comportement à long terme de la diffusion collective
de protéines dans une membrane non fluctuante et en présence de couplages hydrody-
namiques. Nous étudions ensuite le comportement collectif de protéines induisant une
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courbure locale dans une membrane fluctuante.

Mots-clés : Matière molle, Matière active, Interactions hydrodynamiques, Interactions
médiées, Membranes biologiques



Abstract

Biological membranes are important constituents of our cells that separate the cytoplasm
from the extracellular fluid. Lipid bilayers, which form the basis of these membranes, are
self-assembled structures that give fluidity and elastic properties to the membranes. Fur-
thermore, biological membranes contain proteins, rigid objects coming in various shapes
and implied in many biological mechanisms such as intra and extracellular transport.
Due to their shape and rigidity, some proteins can deform the membranes and others
are conformationally active, i.e., they can switch between states which can either deform
the membrane, or not. These elastic deformations cause elastic mediated interactions
between proteins, which are supplemented by Casimir-like interactions coming from the
membrane shape fluctuations. In addition, a biological membrane is surrounded by a
solvent fluid adding hydrodynamic couplings.

This thesis deals with the collective dynamics of passive and conformationally ac-
tive proteins that induce a local curvature of the membrane, using both analytical and
numerical approaches.

In Chapter 3 we determine analytically and numerically the phase diagram of a mem-
brane in the presence of thermalized curvature-inducing proteins that can bind to or
unbind from the membrane as a function of the spontaneous curvature and the chemical
potential of the reservoir. By means of a nonlinear analysis, we study the pattern selected
by the unstable phase. We then extend the study by considering, in addition, active rates
for the binding/unbinding process of proteins.

In Chapter 4 we resort to a pointlike modeling of the protein diffusing within the
membrane. This method allows us to make a simple derivation of the well-known Saffman-
Delbrück (SD) law that governs the mobility of an object moving within a bi-dimensional
fluid. We then present analytical generalizations of this law by taking into account the
bilayer nature of the membrane. And we are able to derive the correction of the SD law
for a protein that creates a local spontaneous curvature.

In Chapter 5, we present a numerical approach that allows us to confirm the pre-
dictions made in the literature on the long-time behavior of the collective diffusion of
proteins in a non-fluctuating membrane and with hydrodynamic couplings. We then
study the collective behavior of curvature-inducing proteins in a fluctuating membrane.

Keywords: Soft matter, Active Matter, Hydrodynamics interactions, Mediated inter-
actions, Biological membranes
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Chapter 1

Introduction: the soft matter
physics of membranes and proteins

1.1 Biological membrane structure

In this first section, we introduce one of the main components of biological membranes,
lipids, and how they self-assemble into bilayer membranes. And finally, we briefly describe
biological membranes.

1.1.1 Lipids

Lipids are commonly defined as organic compounds that are insoluble (or sparingly sol-
uble) in water but dissolve in organic solvents. Given this loose definition, a wide range
of molecules is included under the term lipid, including sterols, waxes, or fatty acids [1].
In addition, most lipids fall into the latter group of fatty acids because they contain
a hydrocarbon chain characteristic of fatty acids. This hydrocarbon chain is aliphatic,
i.e., it is not aromatic, and is responsible for the hydrophobic aspect of lipids. Along
this hydrophobic chain at one end, the lipids terminate with a carboxylic acid at their
other end. Unlike the chain, this “head” is hydrophilic and therefore soluble in water.
The two major components of cells, triglycerides and phospholipids, are examples of such
molecules. Triglycerides, which are the main component of both animal and plant fats,
serve as energy stores. Phospholipids are the main component of membranes.

Phosphoglycerides are shown in Fig. 1.1 along with the other group of phospholipids:
sphingolipids. Sphingolipids, like phosphoglycerides, have two “tails” one of which is de-
rived from sphingosine, an aliphatic chain that ends with an amino group. Sphingolipids
are involved in signal transduction [2]. The typical size of phospholipids is determined by
the length of their aliphatic tails, which is about 2 nm [3]. Having both a hydrophobic part
through its aliphatic chains and a hydrophilic headgroup, phospholipids are amphiphilic,
a property that plays a key role in the assembly of lipids into bilayer membranes as we
will see in the following.
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Figure 1.1 – Structural formulae of phospholipids. (a) Structural formula of a phospho-
glyceride. Choline, phosphate, and glycerol form the ”head” of the phospholipid and fatty
acids its two ”tails”. This phosphoglyceride is called phosphatidylcholine. Its space-filling
representation is given in (b). (c) Structural formula of a sphingomyelin. The orange part
corresponds to the sphingosine tail of this sphingolipid. Formulae (a, c) adapted from
Wikimedia Commons and illustration (b) extracted from [4].

1.1.2 Self-assembly of lipids

When phospholipids and water are mingled, two opposing effects compete: the hy-
drophilic head groups want to maximize their contact with water, while the hydrophobic
tails tend to aggregate in order to minimize their contact area with water. Therefore,
phospholipids seek to optimize their surface area with water to minimize their free en-
ergy and do so by assembling into supramolecular structures such as micelles, bilayers,
or vesicles, as shown in Fig. 1.2. The way lipids self-assemble into such structures can be
explained by a rather heuristic argument.

Using geometric considerations on the lipids [5], i.e., considering the volume v of
their hydrocarbon chains, the length ℓ of their tails, and the surface a of their hydrophilic
head group, one can construct the so-called dimensionless packing parameter p given by
p = v/(ℓa). The value that this packing parameter takes indicates the possible structures
in which the lipids self-assemble. However, the structure formed by the assembly of lipids
not only depends on the geometry of the lipids, but also on entropy. For instance, single-
chained lipids,i.e., lipids with one tail, could form bilayer energetically, but cannot in
reality due to entropy [5].

In the case of phospholipids, most self-assemble into bilayers where the interior of the
leaflets are the tails ended on each side by the headgroups. This structure takes advantage
of the amphiphilic property of its constituents to select objects that can pass through
it. The thickness of the bilayer is around twice the phospholipids size, i.e., 4-10 nm [6,
7]. Finally, to avoid contact between the hydrophobic chains and water, the bilayers
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Figure 1.2 – Common supramolecular structures formed by lipids. (a) One-tailed lipids
that have conical shapes tend to form micelles, whereas (b) rectangular-shaped lipids,
such that phosphoglycerides, form bilayers. (c) A bilayer can be closed into a sphere
called a vesicle. Illustrations adapted from Wikimedia Commons.

spontaneously close themselves by forming spherical vesicles called liposomes. It is this
selectively-permeable structure that separates the cell from the external environment.

1.1.3 Biological membrane

The bilayer described so far is the basic structure of biological membranes. Biological
membranes are essentially composed of three different components: lipids, sugars, and
proteins [8].

In addition to phospholipids introduced previously, biological membranes contain
other types of lipids such that glycolipids and sterols. Glycolipids share a structure
similar to phospholipids, except that the phosphate group present in the latter is re-
placed by carbohydrates (sugar). These lipids have different functions, among which are
cellular recognition and cell stabilization [9, 10]. As for sterols, they are composed of
three cyclohexanes molecules ended on one side by a hydroxyl group replacing a hydrogen
of the cyclohexane, and on the other side by a cyclopentane in a way presented Fig. 1.3a.
The most common sterol in animal cells is the infamous cholesterol (Fig. 1.3b) which
plays a key role in the regulation of membrane fluidity. Besides this lipids diversity, the
two leaflets are often asymmetric, i.e., their composition differs.

Proteins are diverse and have important functions within membranes such that trans-
port across the bilayer. Since the membrane isolates the cell from the external environ-
ment, proteins act as watchmen which select what molecules can cross the membrane
either inward to fuel the cell or outward to eliminate the toxins [8]. Section 1.3 gives
more details about membrane proteins.

The model presented here is called the fluid mosaic model [11]. In this paradigm,
the phospholipids composing the bilayer form a bidimensional fluid in which membrane
proteins are embedded. Therefore, lipids are not static, they diffuse laterally as well as
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Figure 1.3 – (a) Generic chemical formula of sterols. Sterols are composed of four carbon
rings fused together and a hydroxyl group. (b) Structural formula of cholesterol. The
sterol part is ended by a carbon chain. Like phospholipids, cholesterol is an amphiphilic
lipid where the hydroxyl group corresponds to the hydrophilic head and the carbon chain
plus rings are the hydrophobic tails. Formulae adapted from Wikimedia Commons

.

proteins. A well-known fluid mosaic representation of the biological membrane is given
in Fig. 1.4

1.2 Membrane properties
Given the particularity of its formation–no covalent or electrostatic interactions bind
the phospholipids to each other, they only keep the structure through the love-hate
interactions with water–the bilayer presents some interesting physical properties described
in this section.

1.2.1 Fluidity
As explained above, the phospholipids are not truly attached and form a fluid. The flu-
idity property of membranes is mainly affected by three factors, temperature, cholesterol
concentration, and types of lipids [12].

First, the degrees of freedom of phospholipids influence membrane fluidity. When the
temperature is increased, the lipids are more and more excited. Gaining thermal energy,
they become more mobile and get away from each other, increasing fluidity. At low
temperatures, lipids get closer and the structure is more organized. Therefore, lipids can
undergo a phase transition between a solid-like phase, usually referred to as the gel phase,
at low temperatures and a liquid phase at high temperatures. It is worth mentioning that
the temperature of transition is indeed below the physiological one and that it depends on
the cholesterol concentration as well as on the types of lipids. The cholesterol molecules
help the membrane to stay fluid and keep its isolating property either by acting as a glue
between phospholipids when they get too far from each other (high temperatures), and
so avoiding unwanted molecules to cross the membrane, or by preventing phospholipids
to be too close (low temperatures) and thus maintaining the membrane fluidity. Finally,
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Figure 1.4 – Fluid mosaic model of the biological membrane. The bilayer is composed
of phospholipids whose head is colored red here. Embedded in the bilayer we see the
cholesterol lipids in yellow, the glycolipids in green, and finally the proteins in blue. The
membrane is attached to the cell through the cytoskeleton filaments, the old lace tubes
on the figure. Illustration adapted from Wikimedia Commons.

the fluidity is also affected by the fatty acids which are part of the phospholipids. The
unsaturated ones, i.e., the fatty acids where all carbon atoms have only single bonds
between them, are straight and so easy to order closely and thus have a lower transition
temperature than the saturated fatty acids which present “kinks” due to double bonds
between some carbon atoms (see the right tail of the phosphatidylcholine in Fig 1.1b).
These kinks create disorder and therefore favor the liquid phase.

Like every fluid, the bilayer is therefore characterized by a viscosity coefficient quanti-
fying the internal friction between adjacent fluid molecules moving in different directions.
The typical observed value is η2 = 4 × 10−9 Js/m2 [13].

1.2.2 Elasticity
In the fluid mosaic model [11], the phospholipid bilayer confers elasticity to the mem-
brane, as it relaxes to its original shape after a constraint was applied to it. Therefore
membranes respond to deformations either by bending or stretching, the two modes of
elastic deformations.

The stretching happens when the area A of the membrane is changed from its me-
chanical equilibrium one A0. In this case, analogous to the elongation of a spring, the
variation of the free energy density ∆f , i.e., the free energy per unit area is given by

∆f = 1
2ks

(
A − A0

A0

)2
, (1.1)

where ks is the stretching modulus of the bilayer. The stretching modulus was measured
experimentally in different bilayer membranes [14]. The order of magnitude obtained is
ks ≃ 0.1 N/m.

When the membrane shape is altered – different from its mechanical equilibrium shape
– we speak about bending deformation. In the case of two identical monolayers, lipids
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tend to align with each other and so the bilayer equilibrium shape is flat. However, when
the compositions of the two monolayers differ, for instance, if the lipids in one monolayer
are all cylindrical and the ones of the other leaflet are all conical, the bilayer spontaneously
curves with a spontaneous curvature C0. This asymmetry is not always as trivial as in the
previous illustration; it arises from the variety of lipids found in membranes that make it
difficult to get two identical monolayers. Furthermore, many proteins, as we will see later
in Sec. 1.3, bend the membrane so as to satisfy their boundary conditions, resulting in a
local curvature. In the case the curvature is imposed on the membrane, the free energy
density is given by

∆f = 1
2κ (C − C0)2 , (1.2)

where κ is the bending modulus of the bilayer. Like the stretching modulus, the bending
modulus was measured in membranes [14]. Its order of magnitude is κ ≃ 10−19 J. More
precisely, the values taken by κ goes from 10 kBT to 30 kBT (for T at room temperature).

1.2.3 Surface tension

As bilayers are fluid and surrounded by water, one could expect the emergence of a surface
tension γ at the interface. Such phenomenon is usual for common fluid interfaces, e.g.,
liquid-vapor interface, where the surface tension is defined by

γ = ∂F
∂A

∣∣∣∣∣
V,N,T

, (1.3)

with F the free energy of the liquid, V its volume, A the area of the liquid-vapor interface,
N the number of molecules in the liquid and T the temperature. Molecules at the interface
have fewer bounds, i.e., they have fewer neighbors and so less attractive interactions.
Therefore, the bigger the interface area is, the greater the energy cost is. Thus the two
fluids tend to minimize their interface area by changing their geometry and the force that
keeps the system in this minimum energy configuration is the surface tension γ.

However, in the case of bilayers, the lipids have self-assembled in such a way that the
area interface with water is minimized. Hence, if we consider a bilayer formed with a
constant number of lipids, then it implies that the total area of the membrane is equal to
its equilibrium one in the absence of any external constraints and thus the surface tension
γ vanished [15].

Finally, membranes are subjected to thermal fluctuations. These fluctuations tend
to deform the bilayer so that its shape is no more than its mechanical equilibrium one.
Therefore the bilayer acts against these deformations which cost energy by inducing
opposite forces, from which arises a surface tension that tends to restore the bilayer to
its equilibrium shape. Here we work at a fixed area, therefore the “surface tension” σ is a
Lagrange multiplier conjugate to the area A. This will be discussed further in Sec 2.1.1.
The typical range of tension for membranes is 10−8 − 10−3 N/m. At higher tensions,
membrane ruptures occur [16].
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1.3 Proteins in membrane
In this section, we review the different types of proteins and then we present some
curvature-inducing proteins.

1.3.1 Integral and peripheral proteins

Fig. 1.5 shows the main types of membrane proteins. There exist two types of membrane
proteins: integral and peripheral.

Integral membrane proteins are proteins permanently embedded within the mem-
brane thanks to one of its domains which ensures that they stay stuck in the bilayer.
Transmembrane proteins are the most common integral proteins. Integral proteins are
subdivided into three groups [17]. First, if the protein spans the bilayer by a single pass it
is therefore bitopic. Such proteins have a hydrophilic region on both sides of the bilayer.
In the case that the protein span the bilayer several times, i.e., it passes back and forth
across the membrane, the protein belongs to the polytopic group. Polytopic proteins
have many hydrophilic regions on each side of the bilayer. Finally, the third group is
called monotopic and corresponds to proteins that bind to the membrane on a single
leaflet. These proteins bind to the membrane through their hydrophobic region, leaving
the single hydrophilic domain outside the membrane.

Figure 1.5 – Different types of membrane proteins. Purple proteins correspond to integral
membrane proteins. The left one which is attached to the bottom leaflet is a monotypic
protein. At its right comes the bitopic protein or singlepass protein that spans the bilayer
once. Note that the protein represented is called an α helix due to its structure. Then
there are the polytopic protein or multipass protein. Finally, some proteins can form a
complex called multisubunit protein. A peripheral protein is shown in green. Illustration
adapted from Alchetron.com (https: // alchetron. com/ Membrane-protein ).

Unlike integral proteins, peripheral proteins are only temporarily attached to the
membrane. Since they have no hydrophobic region, peripheral membrane proteins bind
only to the surface of the bilayer, i.e., to the heads of the phospholipids or to integral
proteins, avoiding contact with the inner hydrophobic part of the membrane. Therefore,
they are not in contact with the hydrophobic part of the bilayer. The bond these proteins

https://alchetron.com/Membrane-protein
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Figure 1.6 – Transmembrane conical shape protein embedded in a membrane. The
conical shape of the protein (at the center) provokes the bending of the bilayer (on both
sides). Extracted from [19].

form with the phospholipids can easily be broken and therefore peripheral proteins can
move away from the membrane. While transmembrane proteins are mainly gateways
that allow transport across the membrane, peripheral proteins are involved in signal
transduction [18].

1.3.2 Curvature-inducing proteins
Since proteins are rigid and come in a wide variety of shapes on the one hand, and the
membrane is elastic on the other, it is well understood that they can deform the bilayer
to satisfy their boundary conditions by, for instance, inducing a curvature. A noteworthy
case of such proteins is the conical transmembrane protein (see Fig. 1.6) of which KvAP
and BmrA presented below are examples. This kind of protein being skewed at the
interface with the bilayer, the lipids that would rather stay aligned can’t anymore as it
is not favored energetically, and so the bilayer locally bend near the protein. Below we
give different examples of proteins inducing a curvature.

a. BAR proteins

Bin-Amphiphysin-Rvs (BAR) name comes from the three proteins that contain this
type of domain. BAR domains are dimers having the shape of a banana represented
in Fig. 1.7a. They play a dual role; they can both sense membrane curvature and induce
an anisotropic curvature to the membrane along the concave surface of their domain [20].
The BAR domain-membrane interaction is an electrostatic one and BAR proteins only
bind to negatively charged membranes. Since they bind only to the surface of the mem-
brane, these proteins are part of the peripheral membrane proteins group. BAR proteins
exhibit different sorts of BAR domains (see Fig. 1.7) which give different mechanisms
and roles to them [21].

When a BAR domain is modified at its N-terminal, i.e., a group with a free amine
(-NH2) which can be found at both ends of the domain, it is called an N-BAR domain
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Figure 1.7 – BAR domains dimer of the BAR superfamily proteins. Here only the BAR
domains of these proteins are shown. (a) The classical BAR domain. (b) N-BAR domain
where an N-terminal region sequence is added at one end of the BAR domain (see text,
N-terminal not visible here). (c) The F-BAR domain is longer and shallower than the
previous domains. (d) I-BAR domains impose an opposed curvature with respect to the
other domains. Illustrations adapted from [21].

(see Fig. 1.7b). These proteins are mainly found in the mammalian nerve cells where they
are involved in synapse formation and signal transduction [22]. The N-terminal evoked
here is an amphiphilic α helix [23] that acts as an anchor: it can use its amphipathic
property to be embedded in the membrane where it reshapes the latter locally by moving
the phospholipids around in order to induce a favorable curvature for the protein to bind
to the membrane [20, 24]. Therefore, N-BAR proteins generate curvature through two
mechanisms: scaffolding and wedging [25, 26], also called hydrophobic insertion. While
the latter mechanism is induced when the N-terminal sequence is (deeply) inserted into
one monolayer as described above, scaffolding occurs through the binding of the BAR
domain to one of the two leaflets. The protein being rigid and curved, it imposes therefore
locally its curvature on the membrane along its long axis. Note that we use scaffolding
both to deal with the binding of a single BAR domain and the collective effect of BAR
proteins on the membrane indifferently. Depending on the strength of these mechanisms
(i.e., the imposed curvature), N-BAR proteins can induce either membrane tubulation
associated with an anisotropic curvature or vesiculation associated with a (collective)
isotropic curvature [25, 27, 28]. The length of proteins containing a classical BAR domain
is approximately 20 nm [29] and the radius of curvature they impose to the membrane
was measured in the range 11 − 30 nm experimentally [24, 30, 31] giving a curvature C0

around 0.05 nm−1.
F-BAR domains shown in Fig. 1.7c are quite similar to classical BAR domains. Like

the latter, they have an N-terminal called Fes/CIP4 homology (FCH) domain [32] and
have a crescent shape. However, their N-terminal group doesn’t play a role in curvature
induction [33]. Moreover, these proteins are longer than classical BAR domains, as their
length is around 30 nm [34], and are also thrice shallower having a radius of curvature in
the range 30−50 nm [31, 33, 35] which gives a curvature C0 of approximatively 0.02 nm−1.
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Figure 1.8 – Binding mechanisms of BAR proteins. (a) scaffolding which occurs when
the protein bind to the membrane through its BAR domain. (b) wedging or hydrophobic
insertion where the protein bind to the membrane using its N-terminals. Illustrations
adapted from [24].

These proteins are present in all eukaryotes excluding plants and play a role in several
biological processes such as clathrin-mediated endocytosis [25, 34]. This transport process
allows some compounds to cross the membrane towards the cell thanks to the invagination
of the membrane that forms a clathrin-coated vesicle.

The last important BAR domain is the Inverse (I-) BAR domain represented in
Fig. 1.7d. As its name suggests, these proteins induce a curvature along their convex
region, i.e., they induce an opposed curvature with respect to other BAR domains [25,
36]. They are involved in several processes where they induce or stabilize the negative
curvature, e.g., they are found along with N-BAR proteins during synapse formation [22].
Like F-BAR domains, their arc is shallower, almost flat and they are elongated [25].

b. KvAP channels

Transmembrane proteins can also induce curvature. It is the case, for instance, of the
KvaP proteins. KvAP proteins are part of the voltage-gated ion channels, more specifi-
cally the potassium channels. Ion channels are proteins that allow the transfer of ions from
one side of the membrane to the other along their concentration gradient (see Fig. 1.9).
There exist two types of ion channels: non-gated channels which are never closed and
gated channels which stay closed until they receive a chemical or electrical signal. The
voltage-gated channels change their state by sensing the transmembrane voltage; they
remain close when the inner part, i.e., the interior of the cell, is more negative than the
outer part and open in the opposite case.

KvAP, like sodium and calcium gated ion channels [37], is a tetramer, i.e., it is com-
posed of four identical subunits as shown in Fig. 1.9a. Each subunit contains six α helices
of which four are dedicated to transmembrane voltage sensing and the last two are part of
the pore domain that is the central part of the protein [38]. The voltage-gated potassium
channels play a key role in the regulation of cellular excitability; while they depolarize
the membrane and thus induce an excitation when they are closed, they are responsible
for quiescence when their channel is opened [39].

The interplay between membrane curvature and KvAP distribution was highlighted
by observing their behavior as a function of membrane curvature [42]. To do so, a giant
unilamellar vesicle (GUV) – a spherical vesicle composed of a single bilayer – is held by
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Figure 1.9 – KvAP structure. Top view of the KvAP structure (a) and its simplified
representation (b). A color has been assigned to each subunit. The helices S1 to S4
compose the voltage sensor group. S5 and S6 are part of the pore domain which forms
the channel for ions. The bond between S4 and S5 links these two groups. Schematic
side view of the protein when the channel is closed (c) and when it is opened (d). When
the protein receives a signal to open, its pore domain change conformation to let the ions
pass. (a) is extracted from [40] and the illustrations are adapted from [41].

Figure 1.10 – Schematic representation of the experimental setup used to highlight the
KvAP curvature dependence. A GUV (kind of planar membrane) is held by a micropipette
while a bead in an optical trap pulls out a membrane tube (curved membrane). Adapted
from [42].
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a micropipette, and a membrane tube of radius R is pulled out from the GUV to form
a curved membrane. One can observe that KvAP proteins prefer to occupy the curved
membrane. A schematic representation of the experiment performed in [42] is shown
Fig. 1.10. The size of KvAP is around 4 nm and its spontaneous curvature measured is
approximatively C0 = 0.04 nm−1 experimentally [42, 43] as well as numerically [44].

c. ABC transporters - BmrA

Our last example is the BmrA protein that belongs to the superfamily of ATP-binding
cassette (ABC) transporters. ABC transporters are transmembrane proteins that are
composed of two subunits, each containing a transmembrane domain (TMD) that spans
the bilayer, a nucleotide-binding domain (NBD) and an intracellular domain (ICD) that
links the two previous domains (see Fig. 1.11). TMDs selectively bind substrates to the
proteins to transport them either towards or away from the cell if the ABC transporter is
an importer or an exporter respectively [45], the latter being more common. NBDs, as its
name suggests, can bind nucleotides and more precisely adenosine triphosphate (ATP)
which is the energy source of several essential biological processes.

Figure 1.11 – ABC transporter architecture. All ABC transporters share a common
structural organization, especially the P-glycoprotein (P-gp) represented here is homolo-
gous to the BmrA protein [46]. (a) Inward-facing (IF) conformation. In this conformation,
the ABC transporter has a V-shape. (b) Outward-facing (OF) conformation where the
proteins take a rectangular shape. The purple and yellow helices are the TMD. The end
of these domains as well as the filaments constitutes the ICDs linking the former domains
with the two NBDs colored in pink and green. Illustrations adapted from [47].

BmrA stands for Bacillus multidrug resistance ATP as this ABC transporter endows
(multi-) drug resistance with cells binding several drugs and exporting them outside the
cell. Although this is essential to maintain healthy cells, multidrug resistance prevents
the drugs used in chemotherapy from healing cancerous cells [48].

The ATPase cycle of the BmrA protein [49] represented Fig 1.12 begins with the
protein in the IF conformation where it binds substrates inside its TM domains. When
ATP nucleotides are added, the NBD capture them which induces dimerization of the two
NBDs, i.e., they merge, changing the conformation of the protein from inward-facing (IF)
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to outward-facing (OF) conformation where the substrates can be expelled outside the
cell. Finally, by ATP hydrolysis, the two NBD sites are dissociated releasing adenosine
diphosphate and restoring the IF initial state of the protein.

Figure 1.12 – ATP cycle of the BmrA protein. First compounds (purple lozenges) bind
to the protein (light purple inverted V). In presence of ATP, the latter nucleotides are
caught by NBDs. This binding induces the dimerization of the two NBDs and so the
protein changes its conformation towards the outside of the cell where the substrate is
expulsed. Illustration extracted from Team Lévy, Institut Curie.

As can be seen in Figs 1.12, 1.13a, when the BmrA is in its IF conformation it induces
a curvature of the membrane in order to satisfy its boundary conditions. From the BmrA
rings given in [50] one can deduce the size and spontaneous curvature of BmrA proteins.
The size is around 5 nm and the ring radius is 27 nm giving a spontaneous curvature of
0.04 nm−1 approximatively.

1.3.3 Casimir-like interactions in biological membranes
Since proteins curve the membranes, membrane-proteins interactions are elastic. How-
ever, there are also Casimir-like interactions between proteins and biological membranes.

The Casimir force was identified by Casimir in 1948 when he studied the interaction
between two perfectly conducting plates in vacuum [51]. Casimir determined that this
interaction is attractive and exists even in the absence of a charge or any external electro-
magnetic field, and at zero temperature. In fact, the boundary conditions imposed by the
plates on the zero-point fluctuations of the electromagnetic field constrain a component

Figure 1.13 – Change of conformation of BmrA. In its IF conformation and at a high
enough concentration BmrA forms rings (b). When it is in presence of ATP, the rings
disappear as the BmrA proteins switch their state to OF with a conformation that does
not curve the membrane (c). (a) shows a 3D model of such BmrA rings that curve the
membrane (TMD). The 3D model and the electron microscopy experiment images are
extracted from [50] and [49] respectively.
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of the field to vanish on the former, so they prevent the existence of some field modes
inside the cavity. Since these modes are allowed to exist outside the cavity (see Fig. 1.14),
an (attractive) interaction arises between the plates.

Since then, several manifestations of Casimir-like interactions have been reported in
Soft Matter [52, 53]. In biological membranes, these interactions come from the boundary
conditions imposed by proteins on the fluctuations of the membrane shape [54]. Let us
consider two disk proteins of radius a at distance R. In this case, the Casimir interaction
is given by [55]

FC = −6kBT
a4

R4 + O

(
a6

R6

)
, (1.4)

which is an attractive long-range interaction.

Figure 1.14 – Representation of the Casimir effect. All field modes shown in color exist
outside the cavity but, to ensure the field vanishing condition on the two plates, some field
modes can’t exist inside the cavity, leading to the generation of an attractive interaction
between the plates. Illustation extracted from [56]



Chapter 2

How to model a membrane?

In this chapter, we aim to model a membrane containing proteins from a physical point of
view. We shall first model the membrane without proteins and then consider the coupling
with proteins. After the description of the statics, we present the dynamics of the system.

2.1 Statics

2.1.1 Canham-Helfrich Hamiltonian

In 1973, Helfrich elaborated a physical modelization of the lipid bilayer based on the
elastic properties of the latter [57]. In this model, Helfrich kept only the membrane
bending energy arguing the latter dominates the stretching one in (almost) every case.
Notably, he calculated the bending and stretching energy of a spherical vesicle using his
model and showed that the stretching can be neglected with respect to the bending [57].
Therefore, in the case of a closed bilayer membrane with a fixed number of phospholipids
(e.g., vesicles), disregarding stretching corresponds to keeping a fixed area and the system
undergoes only bending deformations, i.e., curvature.

The local curvature of a bilayer membrane can be described by a tensor of rank 2
called the curvature tensor. Its eigenvalues, c1 and c2, are called the principal curvatures
(see Fig. 2.1). The trace c1+c2 and the determinant c1c2 are called the total curvature and
the Gaussian curvature, respectively. Since the membrane bending energy is a scalar, i.e.,
it does not depend on the chosen frame , it can only depend on the total curvature and
Gaussian curvature as they are the two invariants of the curvature tensor [58]. Helfrich
introduced the membrane Hamiltonian

H0 =
ˆ

A

dA
[
κ

2 (c1 + c2 − c0)2 + κ̄ c1c2

]
, (2.1)

where A is the membrane area, κ and κ̄ are the bending modulus and saddle-splay mod-
ulus, respectively, and c0 is the spontaneous curvature emerging from the asymmetry
between the two monolayers as explained in the previous chapter. The first term ac-
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Figure 2.1 – Representation of the planes of the two principal curvatures c1 and c2 at a
saddle point on a surface (in gold). The principal curvatures depend on the choice of the
basis we use, unlike the mean and Gaussian curvatures that are invariant under a change
of basis. Illustration extracted and adapted from Wikipedia.

counts for the energetic cost due to the difference between the total curvature and the
spontaneous curvature of the membrane, the second term comes from the Gaussian curva-
ture. While the bending modulus is always positive, the sign of the saddle-splay modulus
can be either positive or negative. Moreover, to guarantee membrane stability it can be
shown that the saddle-splay modulus should be between −2κ and 0 [58].

It is worth noting that the Helfrich Hamiltonian we presented above is sometimes
called the Canham-Helfrich Hamiltonian, as Canham used a similar Hamiltonian in 1970
to study the membrane of blood cells [59]:

H0 =
ˆ

A

dA κ
[1
2(c1 + c2)2 − c1c2

]
, (2.2)

where the main difference with the Helfrich Hamiltonian is the lack of a saddle-splay
modulus, or more precisely, it is assumed that κ̄ = −κ. The other difference–a zero
spontaneous curvature c0–comes from the assumption of a symmetric bilayer. For the
sake of simplicity, we will assume the same in the following.

Fortunately, these two Hamiltonians will give the same energy for membranes thanks
to the Gauss-Bonnet theorem. This theorem states that the Gaussian curvature contri-
bution is a constant for a closed surface:

ˆ
A

dA c1c2 = 2πχ, (2.3)

where χ is the Euler characteristic of the system, i.e., it is a number that depends only
on the topological shape of the system. Since we assume that the membrane does not
change its topology, it is a constant that can be disregarded. It is worth noting that even
if proteins generate local “holes” in the membrane, if they keep a fixed shape, i.e., the
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contact angle between the membrane and a protein is fixed, the geodesic curvature is a
constant and, thereby, the Gauss-Bonnet theorem holds (see Erratum of [60]). Keeping
only the contribution of the total curvature, we see that the two Hamiltonians are the
same for membranes in the case of zero spontaneous curvature.

Now, let us consider a patch of the membrane which is in contact with a reservoir
of lipids (e.g., in the case of a membrane patch of a vesicle, the rest of the vesicle plays
the role of the lipids reservoir). We impose a fixed projected area Ap for the patch that
corresponds to the projection of the curved membrane on a parallel plane (see Fig. 2.2).
Therefore, stretching does not play any role and the appropriate thermodynamic ensem-
ble to describe the membrane is the grand canonical ensemble where the number N of
molecules can fluctuate and a chemical potential µ is imposed on the system. Thus the
appropriate Hamiltonian is

H′
0 = H0 − µN = H0 + σA, (2.4)

where we introduced the effective surface tension σ = −µ/a0 of the lipid reservoir with
a0 the area per lipid, assumed fixed (ks large in Eq.(1.1)).

Finally, gathering all elements, the Hamiltonian we use in the following to describe
the bilayer membrane is

H0 =
ˆ

A

κ

2 (c1 + c2)2 dA + σA. (2.5)

We recall that the order of magnitude of κ is 30 kBT and σ is in the range 10−8−10−3 N/m.

2.1.2 Monge parametrization
To describe the bilayer membrane effectively, we need to define its parametrization, i.e., a
mapping of its surface to a field that specifies its variations. We use the so-called Monge
parametrization where the bilayer membrane is described by its height field h(x, y) where
the Cartesian coordinates x and y are the coordinates in a reference plane (see Fig. 2.2):

h :

R2 → R

(x, y) → h(x, y)
(2.6)

Introducing the vector n normal to the surface, the curvature tensor K is the rate
of change of the normal vector when one makes a displacement dr along the membrane
surface, i.e.,

dn = K · dr. (2.7)

As straightforward as this parametrization is, it has a major drawback: it cannot hold
“overhangs”, i.e., the height field cannot be multivalued. Nevertheless, we are only
interested in small deformations. Thereby, we consider deformations such that ∂ih = O(ϵ)
and e ∂i∂jh = O(ϵ) with i, j ∈ {x, y} and e the bilayer thickness. To determine the
curvature tensor, we introduce the function Φ(x, y, z) = h(x, y) − z such that it vanishes
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Figure 2.2 – Sketch showing the parametrization of a surface (in shaded blue) in the
Monge gauge. The area of the square formed by the projection of the surface is Ap. The
height of the surface is given by the field h(x, y). Extracted from [61].

on the membrane surface. Therefore the unit vector n normal to the surface is along
∇Φ, and for small deformations, to first order in ϵ

n ∝ ∇ [h(x, y) − z] ≃


∂xh

∂yh

−1

 (2.8)

We can then determine dn and so the curvature tensor K:

dn =
(

d(∂xh)
d(∂yh)

)
=
(

∂xh∂xh ∂yh∂xh

∂xh∂yh ∂yh∂yh

)(
dx

dy

)
, (2.9)

K =
(

∂xh∂xh ∂yh∂xh

∂xh∂yh ∂yh∂yh

)
, (2.10)

where the matrix on the rhs is the expression of the curvature tensor in the Monge
parametrization. Note that the trace and the determinant of this tensor are the total
curvature and the Gaussian curvature, respectively and

c1 + c2 ≃ ∇2h. (2.11)

We now focus on the expression of the infinitesimal area element dA in the Monge gauge.
The element of surface can be written in Cartesian coordinates by starting with a point
S on the surface at position (x, y, h(x, y)), we construct the vectors ⃗SSx and ⃗SSy such
that their coordinates are approximatively (1, 0, ∂xh) dx and (1, 0, ∂yh) dy, respectively.
The parallelogram formed by these two vectors corresponds to the element of the surface
and its area dA is given by their cross product [62]:

dA = | ⃗SSx × ⃗SSy| =
√

1 + (∇h)2 dxdy ≃
(

1 + 1
2(∇h)2

)
dxdy, (2.12)

where the approximation is done to second order in the derivatives of h (ϵ ∼ ∂ih). We
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thus can rewrite the area A using the projected area Ap:

A =
ˆ

Ap

dA ≃
ˆ

Ap

1
2(∇h)2 dxdy, (2.13)

up to a constant.
Finally, the Hamiltonian for the membrane bilayer in the small gradient approximation

(second order in ϵ) is given by

H0 = 1
2

ˆ
Ap

d2r
[
κ(∇2h)2 + σ(∇h)2

]
, (2.14)

where d2r = dx dy.

2.1.3 Membrane-protein coupling

We now focus on the coupling between the membrane and the proteins embedded in the
bilayer. As explained in the last chapter, the proteins can deform membranes when they
bind to them as well as sense their curvature. Therefore, the deformations a membrane
undergoes due to some protein generate elastic forces that affect other proteins, i.e.,
proteins interact with each other via the membrane field deformations (see Fig 2.3).
These kinds of indirect interactions between objects conveyed by the change of a field of
matter are called mediated interactions [55].

In the literature, to model the coupling between a membrane and proteins that curve
it upon binding, authors commonly use a quadratic coupling [64–69]. Having in mind
the bending energy that describes the curvature of a membrane, it is straightforward to
determine that a quadratic coupling between an isotropic protein at position rp and a
membrane takes a form similar to

Hint = 1
2

ˆ
Ap

d2r κp G(r − rp)
(
∇2h − 2c0

)2
, (2.15)

where c0 is the favored curvature by the protein along its principal curvatures, i.e., pro-
teins impose an isotropic curvature to the membrane, κp is the strength of the coupling;
the greater it is, the closer the membrane curvature is to c0. G(r) corresponds to the
coupling region between a protein and the membrane. Here, we have deliberately omitted
the contribution of the Gaussian curvature for the sake of presentation. This quadratic
potential is a good approximation of higher-order potentials in the small gradient ap-
proximation where the membrane deformations and fluctuations are kept small [64].

It is noteworthy that a linear potential can be used to describe the membrane-proteins
coupling [43, 64, 69]. Such a coupling is written

Hint = −1
2

ˆ
Ap

d2r κpG(r − rp) c0∇2h. (2.16)

This expression appears clearly as an approximation of the quadratic potential to the first
order in ∇2h, up to an additive contribution. While a linear coupling implies simpler
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Figure 2.3 – Sketch of different sorts of mediated interactions between two proteins
(purple) embedded in a membrane (light grey). The black arrows show the direction
of the force acting on each protein. Here we see that proteins can interact either via a
change of membrane thickness (on the right) or via membrane bending (on the left). Since
we assume a bidimensional membrane, we will only consider the latter case. Extracted
from [63].

computations, it cannot account for multi-body interactions [64] which can be essential
for mediated interactions. Therefore it can be considered only to study the behavior of a
single protein [43].

We now aim at giving a more specific expression of the membrane-proteins coupling,
especially by specifying the coupling region encoded by G(r). Commonly, proteins are
assumed to be either cylinders or cones that become disks when the membrane thickness
is neglected [19, 70]. In this case, the first and straightforward way to model the area of
coupling is to assume that G(r) is a Gaussian kernel [65–67]: (see Fig. 2.4a)

G(r) = e
− r2

a2
p , (2.17)

with ap the protein radius which is also the radius of the coupling area. However, as
noted in [68], a Gaussian function to describe the envelope function G(r) is irrelevant as
it doesn’t define a clear envelope where the protein influence the membrane but rather
leads to a normalization varying with the strength κp. A more suitable choice is therefore
to consider a series of envelope functions for G(r) [68] (see Fig. 2.4b). Furthermore,
since proteins curve the membrane on their envelope function, the membrane can be seen
as a mixture of bound sites where a protein imposes a deformation and unbound sites
where the membrane tends to adopt its spontaneous curvature. Therefore one has to
remove the binding energy on places where the proteins bind [66, 68]. As the envelope is
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Figure 2.4 – Representation of different coupling region function G(r) for a protein of
radius ap and located at position rp. (a) a Gaussian coupling function G(r) is wider than
the more sophisticated function (b) G(r) ∝ ϕ(x)ϕ(y), with ϕ a piecewise function given
in [68]. Extracted and adapted from [67] and [68], respectively.

space-dependent, the integral of the Gaussian curvature is no more a constant, i.e., the
Gauss-Bonnet theorem does not hold for integrands that vary locally in space. Thus the
interaction energy takes the form

Hint =
ˆ

Ap

d2r G(r − rp)
[
κp

2
(
∇2h − 2c0

)2
− κ

2 (∇2h)2 + (κ̄p − κ̄) det K
]

, (2.18)

where κ̄ and κ̄p are the saddle-splay moduli of the membrane and the proteins, respec-
tively, associated with the Gaussian curvature det K which is the determinant of the
matrix of Eq. (2.9).

Finally, for the sake of simplicity, proteins can be assumed to be pointlike. This is
the assumption made in the following. In this case, the envelope function G(r) reduces
to a Dirac delta function δ(r). Since the envelope is pointlike, it is useless to remove the
bending energy where proteins bind to the membrane. Furthermore, in the case of an
isotropic curvature imposed by proteins and assuming that the splay-modulus κ̄p = −κp,
we can write

(∂i∂jh − c0δij)(∂i∂jh − c0δij) = (∇2h − 2c0)2 − 2
(
∂2

xh)(∂2
yh) − (∂x∂yh)2

)
, (2.19)

up to irrelevant boundary terms. The tensor (∂i∂jh(r) − c0δij) corresponds to the de-
viation between the curvature tensor and the isotropic curvature c0 at position r. Note
that it is possible to consider proteins with different curvatures cn corresponding to the
curvature favored by the nth protein. Considering N proteins located at positions rn,
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the interaction can thus be written

Hint = κp

2

N∑
n=1

ˆ
Ap

d2r δ(r − rn)(∂i∂jh − cnδij)(∂i∂jh − cnδij) = κp

2

N∑
n=1

K
(n)
ij K

(n)
ij , (2.20)

where Kn
ij = ∂i∂jh|rn − cnδij is the deviation between the curvature tensor at the location

of the nth protein and its isotropic favored curvature cn. In what follows, the complete
Hamiltonian of the system will be given by

H = H0 + Hint = 1
2

ˆ
Ap

d2r
[
κ(∇2h)2 + σ(∇h)2

]
+ κp

2

N∑
n=1

K
(n)
ij K

(n)
ij . (2.21)

The order of magnitude of the coupling strength κp can be obtained by comparing the
coupling energy to the bending energy in terms of order (∇2h)2. To do so, we form the
dimensionless ratio Rp such that Rp = κp/(κπa2

p), where the numerator comes from the
interaction energy and the denominator is obtained by integrating the bending energy
for a disk of radius ap supposed to be the “true” shape of the assumed pointlike proteins.
Therefore, for ap ≃ 10 nm, a value κp ≃ 3×10−17 Jnm2 corresponds to a coupling strength
comparable to the bending strength.

2.2 Dynamics

2.2.1 Dynamics of a membrane in a solvent

We consider a membrane as an infinite two-dimensional incompressible fluid with viscosity
η2 surrounded on both sides by an incompressible bulk solvent (water) with viscosity η

(see Fig. 2.5). Since the latter is viscous, we neglect the inertial forces and work at low
Reynolds number. Therefore, the dynamics of the solvent can be described by the well-
known Stokes equations supplemented with conditions expressing the incompressibility
of the fluids:

η∇2V ± − ∇P ± = 0, (2.22)
∇ · V ± = 0, (2.23)

where the ± subscript refers to the upper (+) or lower (−) solvent bulk, V ± is the fluid
velocity, and P ± its pressure.

Since the membrane is a fluctuating surface, we should describe its dynamics both
in-plane, i.e., along its surface, and across its normal (z-direction). While the former
corresponds to the lateral displacements of lipids in the membrane, the latter encodes
the transversal deformations undergone by the membrane. Since the membrane is also a
viscous incompressible fluid, its in-plane dynamics is given by [71, 72]

η2∇̄2v − ∇̄p + σ+ + σ− = 0, , (2.24)
∇̄ · v = 0, (2.25)
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Figure 2.5 – Sketch of an infinite membrane (orange) surrounded by a bulk (sky blue)
of viscosity η. While the membrane has a thickness on the sketch, it is assumed to be
a 2D fluid of viscosity η2 with field velocity v(r). Here a conical protein (dark grey) is
embedded in the membrane.

where ∇̄ = ∂xex + ∂yey is the in-plane gradient operator, v is the velocity of the bi-
dimensional lipidic fluid and p is its pressure. One recognizes that the first two terms of
Eq. (2.24) correspond to the Stokes equations. As the membrane is surrounded by another
fluid, we add the tangential viscous stresses σ± = ±η(∂zV ± + ∇̄V ±

z )|z=0 transmitted by
the solvent to the bi-dimensional membrane fluid, where z = 0 is the coordinate of the
tangential plane. Again, the second equation conveys the incompressibility of the fluid.

In the transverse plane, the membrane is subjected to the elastic deformations − δH0
δh

coming from thermal fluctuations, and to the transverse viscous stresses Σ± = ±(2η∂zV ±
z −

P ±)|z=0. Therefore, the transversal dynamics of the membrane is given by

−δH0

δh
+ Σ+ + Σ− = 0, (2.26)

where the Hamiltonian H0 is given by Eq. (2.14).
Finally, we assume no-slip boundary conditions between the membrane and the sol-

vent. Thus, the continuity equations between the fluids are

v = V ±|z=0, , (2.27)
ḣ = V ±

z |z=0, (2.28)

where the first equation corresponds to the in-plane continuity and the second one, to
the transverse continuity.

2.2.2 Dynamics of the proteins embedded in a membrane
We now add pointlike curvature-inducing proteins located at position rn and favoring
a local isotropic curvature cn. When these proteins bind, they induce a curvature to
the membrane which leads to local deformations in the transverse plane through the
(modified) elastic forces − δH

δh
, with H = H0 + Hint given by Eq. (2.21). In turn, these
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local deformations impact the in-plane dynamics where the forces − ∂H
∂rn

are applied to
each protein. Therefore, the in-plane (Eq. (2.24)) and transverse (Eq. (2.26)) dynamics
of a membrane surrounded by a bulk fluid in the presence of proteins become

η2∇̄2v − ∇̄p + σ+ + σ− −
∑

n

∂H
∂rn

δ(r − rn) = 0, (2.29)

−δH
δh

+ Σ+ + Σ− = 0, (2.30)

respectively. The Dirac δ(r) function expresses the locality of the forces applied by
pointlike proteins on the fluid. The presence of proteins affects neither the dynamics of
the solvent which is still given by the Stokes equations Eqs. (2.22) and (2.23), nor the
no-slip fluid-fluid boundary conditions (Eqs.(2.27) and (2.28)). Finally, we assume again
no-slip conditions between the lipid fluid and the embedded proteins:

ṙn = v(rn). (2.31)

This equation yields the dynamics of proteins.

We now aim at expressing the dynamics of the systems with the relevant variables,
i.e., the membrane and proteins variables. We first introduce the continuous Fourier
transform using the convention

f̂(q) =
ˆ

d2r f(r) e−iq·r, (2.32)

f(r) =
ˆ d2q

(2π)2 f(q)eiq·r, (2.33)

with q the 2D in-plane wavevector in Fourier space. Since the dynamics of the proteins
is divided into the in-plane one and the transverse one, we use the Fourier Transform for
the tangential (x, y) plane while keeping the transverse component along z in the direct
space. Therefore, the bulk pressures P ±(r, z) and velocities V ±(r, z) become P ±(q, z)
and V ±(q, z), respectively, the membrane height fields becomes h(q) and so on. For
vectorial quantities, we now use the local basis (q̂, q̂⊥, ez) with q̂ = q/q and q̂⊥ = ez × q̂.
For instance, in this basis V ± = V ±

∥ q̂ + V ±
⊥ q̂⊥ + V ±

z ez. In Fourier space, the bulk Stokes
equations (2.22) and (2.23) become

η(∂2
z − q2)V ±

∥ = iqP ±, (2.34)
η(∂2

z − q2)V ±
⊥ = 0, (2.35)

η(∂2
z − q2)V ±

z = ∂zP ±, (2.36)
∂zV ±

z + iqV ±
∥ = 0. (2.37)

Using Eq. (2.34) to eliminate P ± in Eq. (2.36), and then using Eq. (2.37) to further
eliminate V ±

∥ yields (∂2
z − q2)V ±

z = 0. The solutions of the latter equations which vanish
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at infinity are

V ±
z = (A± + B±z)e∓qz, (2.38)

with A±, B± and C± depend on q and are given below. Substituting these solutions both
into Eq. (2.36) and integrating with respect to z yields

P ± = 2ηB±e∓qz, (2.39)

and into Eq. (2.37) gives

V ±
∥ = −i

(
B±

q
∓ A± ∓ B±z

)
e∓qz. (2.40)

V ±
⊥ can be determined using Eq. (2.35):

V ±
⊥ = C±e∓qz. (2.41)

Finally, satisfying the boundary conditions between the bulk and the membrane fluids,
we get

A± = ḣ, (2.42)
B± = −iqv∥ ± qḣ, (2.43)
C± = v⊥. (2.44)

Thus, by injecting the expressions of the bulk variables into the tangential and transversal
viscous stresses, the dynamical equations of the membrane and proteins become

(2ηq + η2q
2)v⊥(q) +

∑
n

∂H
∂rn

· q̂⊥e−iq·rn = 0, (2.45)

v∥(q) = 0, (2.46)

4ηqḣ(q) = −δH
δh

(q), (2.47)

ṙn = v(rn), (2.48)

with v = v∥q̂ + v⊥q̂⊥. The two first equations come from the in-plane dynamics. The
component v∥ vanishes as the fluid is incompressible (Eq. (2.25)). Therefore, combining
these two equations yields

v(q) = −O(q) ·
∑

n

∂H
∂rn

e−iq·rn , (2.49)

where one recognizes O, the well-known mobility Oseen-like tensor [73, 74]

O(q) = 1 − q̂ ⊗ q̂

2ηq + η2q2 . (2.50)
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a. Mobility tensor

The mobility µ links the velocity v of an object to the force f applied to it, i.e., the
mobility is the velocity response of a considered protein to a force it feels [75], v = µf .
For instance, according to Stokes law, the mobility of a spherical particle of radius a in
a 3D fluid of viscosity η is given by µ3D = 1/(6πηa) [76]. However, in 2D, the mobility
diverges which is known as the Stokes paradox [76]. This has to do with the Oseen tensor.

The Oseen mobility tensor is the solution of the Stokeslet equation, i.e., the Stokes
equation where the object is reduced to a point on which a unit external force is applied.
In other words, the Oseen mobility tensor is the Green function associated with the
Stokes equation. In 2D, this tensor has an infrared divergence when integrated over
wavevectors. This divergence can be regularized in two ways: either by restricting the
2D fluid to a finite area or by embedding the infinite 2D fluid in an immiscible 3D fluid [70,
77]. Fortunately, the last case occurs naturally for biological membranes, recalling that
they are bidimensional fluids of lipids embedded in bulk water. Taking into account the
solvent introduces a length cutoff, the so-called Saffman-Delbrück length ℓ = η2/(2η) [70]
that regularizes the infrared divergence. For the Oseen tensor given in Eq. (2.50), the
regularization has led to the addition of the q term in the denominator.

In direct space, the Oseen tensor Eq. (2.50) becomes [78, 79]

Oij(r) = 1
4η2

{[
H0(r/ℓ) − H1(r/ℓ)

r/ℓ
− 1

2[Y0(r/ℓ) − Y2(r/ℓ)] + 2
π(r/ℓ)2

]
δij (2.51)

−
[
H0(r/ℓ) − 2H1(r/ℓ)

r/ℓ
+ Y2(r/ℓ) + 4

π(r/ℓ)2

]
rirj

r2

}
, (2.52)

where Yn and Hn are Bessel functions of the second kind and Struve functions, respec-
tively. At short distances, i.e., distances such that r ≪ ℓ, the Oseen tensor can be
approximated to first order in r/ℓ by [79]

Oij(r) ≃ 1
4πη2

{
−
[
ln
(

r

2ℓ

)
+ γ + 1

2

]
δij + rirj

r2

}
, (2.53)

with γ ≃ 0.577 Euler’s constant. Therefore, at short distances, the Oseen tensor has a
logarithmic decay which is typical of 2D flows. At large distances, O exhibits a (ηr)−1

decay, characteristic of 3D flows. Thus, to keep a bidimensional fluid, we should stay
in the short distances regime. Especially, when considering hydrodynamic interactions
between proteins, the interprotein distances should be negligible with respect to the
Saffman-Delbrück length.

Nevertheless, the short distances Oseen tensor Eq. (2.53) does not allow for the re-
covery of the self-mobility corresponding to r = 0. The self-mobility can be recovered
by considering the flow provoked by a cylindrical protein of radius ap dragged by an
external force in a 2D planar fluid which gives back the well-known Saffman-Delbrück
mobility [77]. Therefore, one gets

O(r = 0) = µSD1 = 1
4πη2

[
ln
(

ℓ

ap

)]
1. (2.54)
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Further details about self-mobility will be given in Sec. 4.2.
It is worth noting that, from a physics point of view, the true mobility tensor is

positive definite, as this latter property is directly related to the second law of thermo-
dynamics [80]. The Oseen tensor gives a valid approximation of the true mobility tensor
for objects far from each other. However, when its use is extended to shorter distances it
is not surprising that it is not positive-definite. For instance, depending on the strength
of the hydrodynamic interaction, the mobility of a rigid rodlike polymer in a 3D fluid can
be negative, which is unphysical [81]. In addition, since the positive-definiteness property
is required for Brownian dynamics simulations [82, 83], one needs a corrected mobility
tensor

In 3D, Rotne and Prager, in their seminal article [84], introduced a “patch” correcting
the lack of positive-definiteness of the Oseen tensor at short distances, making it an
acceptable mobility down to short distances. By applying a variational principle on
the energy dissipation associated with an ansatz on the superposition of independent
individual contribution of the particles to the stresses and restoring the particle size they
get a correction to second order in ap/r [84, 85]. Although the corrected tensor derived
in this way can be inaccurate for small distances, it gives back the definite positiveness
of the mobility tensor and tends to the usual Oseen tensor for large distances.

The same method was applied recently by Sokolov and Diamant on the 2D case [80].
Like in the 3D case, they get a correction to second order in ap/r, so that the corrected
Oseen tensor Õij is given by

Õij(r) = Oij(r) + 1
4πη2

(
δij − 2rirj

r2

)(
ap

r

)2
, (2.55)

with Oij(r) given in Eq. (2.53). This corrected tensor is valid for r = 0 and Õ(r = 0)
coincides with O(r = 0). A step-by-step presentation of the computations performed by
Sokolov and Diamant to get the corrected tensor is given in Appx. A. In addition, along
with the corrected Oseen tensor introduced above, the authors of [80] derived another
positive-definite mobility tensor for objects allowed to overlap, that fails at very short
distances. Thereby, we derive a rectified mobility tensor in the overlapping case, using
the method of [85] (see Appx. A).

In the following, we shall replace the Oseen tensor O(r) with its corrected counterpart.

b. Dynamics of the proteins

We now go back to the dynamical equations. Using the membrane-proteins continuity
equation Eq. (2.48) and the 2D fluid velocity expression Eq. (2.49) we get the dynamics
of proteins

ṙn = −
∑
m

ˆ d2q

(2π)2 Õ(q) · ∂H

∂rm

eiq·(rn−rm) = −
∑
m

Õ(rn − rm) · ∂H

∂rm

, (2.56)

where the second equality arises from the definition of the inverse Fourier transform of
the corrected Oseen tensor.
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Up to now, we did not take into account the thermal fluctuations that affect both
the membrane and the proteins. To do so, we add thermal noises to the latter that
satisfy the detailed balance condition, i.e., the added noises ensure thermal equilibrium.
Therefore, as the 2D fluid is viscous, we use overdamped Langevin equations to describe
the dynamics:

ḣ = − 1
4ηq

δH
δh

+ ν(q, t), (2.57)

ṙn = −
∑
m

Õ(rn − rm) · ∂H
∂rm

+ ξn(t), (2.58)

where Λq = (4ηq)−1 is the Fourier transform of the Oseen hydrodynamic kernel. The
quantities ν and ξn are Gaussian white noises with zero mean such that (kB = 1)

⟨ν(q, t)ν(q′, t′)⟩ = T

2ηq
(2π)2δ(q + q′)δ(t − t′), (2.59)

⟨ξn(t)ξm(t′)⟩ = 2T Õ(rn − rm)δ(t − t′), (2.60)
⟨νξn⟩ = 0. (2.61)

The forces in real space are given by

δH
δh

(r) = κ∇4h(r) − σ∇2h(r) + κp

∑
n

∂i∂j

[
K

(n)
ij (r)δ(r − rn)

]
, (2.62)

∂H
∂rm

= κp

ˆ
d2r δ(r − rm) K

(m)
ij (r) ∇∂i∂jh(r). (2.63)

Note that while the dynamical equations given above ensure convergence towards thermal
equilibrium, we can drive them out of equilibrium by introducing sources of noise that
break the detailed balance condition (see Sec. 3.2.3).

2.3 Conclusion
Considering the bending elasticity of the membrane we modeled the couplings between
pointlike proteins and a membrane. Then, regarding the membrane as a bi-dimensional
incompressible viscous fluid containing proteins gave coupled overdamped Langevin equa-
tions for the dynamics of the system.

We will use our modeling to study both the collective behavior of curvature-inducing
proteins that bind and unbind to the membrane in Chapter 3 and the mediated interac-
tions between proteins that can change their conformation in Chapter 5.

Finally, in Chapter 4, we will take advantage of the simplicity of our pointlike approach
to study the mobility of a protein in a membrane considering various cases.



Chapter 3

Binding of thermalized and active
membrane curvature-inducing
proteins

In this chapter, we focus on proteins that induce a local curvature of the membrane when
they bind to it. We consider a membrane in contact with a reservoir of such proteins that
can bind or unbind. We analyze the phase behavior of this system by a combination of
analytical and numerical approaches. In thermal equilibrium under the detailed balance
between binding and unbinding, the membrane exhibits three phases: an unbound uni-
form flat phase (U), a bound uniform flat phase (B), and a separated/corrugated phase
(SC). In the SC phase, the bound proteins form hexagonally-ordered bowl-shaped do-
mains. The transitions between the U and SC phases and between the B and SC phases
are second order and first order, respectively. At small spontaneous curvature of the
protein or high surface tension, the transition between the B and SC phases becomes
continuous. Moreover, a first-order transition between the U and B phases is found at
zero spontaneous curvature driven by the Casimir-like interactions between rigid proteins.
Furthermore, nonequilibrium dynamics is investigated by the addition of active binding
and unbinding at a constant rate. The active binding and unbinding processes alter the
stability of the SC phase. This work was performed and published [86] in collaboration
with Prof. Hiroshi Noguchi who performed all the Monte Carlo simulations.

3.1 Introduction

Previously, we introduced examples of proteins that bind to biological membranes and
locally reshape the curvature. For instance the F-BAR proteins of the BAR super-
family that bind to membranes via their BAR domain play a role in various biological
mechanisms such that the clathrin-mediated endocytosis via the generation of membrane
tubules [20, 30]. Clathrins are triskelion-shaped proteins that form a polyhedral lat-
tice (i.e., a coat") when they interact with each other. When they are recruited by the
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Figure 3.1 – Schematic representation of the steps of membrane tubulation induced by
F-BAR proteins. Some F-BAR proteins (orange) bind to the membrane (blue plate) that
remains flat as the concentration of proteins is low. Then, enticed by the local membrane
curvature generated by the already attached F-BARs, more proteins bind to the membrane
beginning the tubulation. Finally, at a high enough concentration, tubules are formed by
the assembly of F-BAR proteins. Two distinct size tubules are shown according to the
way these proteins scaffold. Extracted from [87].

biological membrane, these coat-proteins begin to form buds by locally imposing their
spontaneous curvature of the membrane parts they cover. Attracted by the buds, some
F-BAR proteins bind to the membrane along their BAR domain and begin to generate a
curvature. F-BAR proteins are not only curvature generators but also curvature sensors
that preferentially attach to areas where the membrane curvature matches its sponta-
neous curvature. Therefore, these proteins aggregate by scaffolding, forming a collective
assembly and thus generating membrane tubulation [87] (see Fig. 3.1).

The tube thus formed is the only link between the membrane bud shaped by the
clathrin and the rest of the bilayer membrane. In order to achieve the vesicle formation,
the tube must be “dissolved”. It happens when the dynamin proteins, recruited by the
F-BAR proteins during the tubulation, change guanosine triphosphate (GTP) enzymes
into guanosine diphosphate (GDP) by hydrolysis (GTPase), leading to the unbinding of
the F-BAR proteins [88, 89]

Therefore, we see two underlying phenomena behind this mechanism: collective behav-
ior and non-equilibrium processes. In living cells, biomembranes evolve in non-equilibrium
conditions, and the individual protein binding/unbinding is often activated by chemical
reactions. Thus the fluctuations of membranes containing such active proteins are often
found to deviate from the equilibrium spectrum [90, 91]. In terms of collective behavior,
spatiotemporal patterns in membranes are often observed in cell migration, spreading,
growth, or division [92–96]

The binding of proteins and their assembly on membranes have been explored in
equilibrium for fully flat membranes [97–99] and in the more complicated case of curved
membranes where the effects of a fixed curvature sensing [100–102] are present. But the
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Figure 3.2 – Binding and unbinding of molecules with a finite spontaneous curvature of
the membrane.

phase diagram of a membrane that can freely curve in equilibrium and to which curvature-
inducing proteins can bind and interact via curvature-mediated interactions [19, 55, 103–
105] deserves to be thoroughly investigated. As seen in the case of clathrin endocyto-
sis, active chemical reactions play a role in the behavior of the protein, it is therefore
important to determine how the related nonequilibrium collective behavior affects the
phase diagram of the membrane/proteins system and modifies the membrane shapes and
domain structures. In this chapter, we thus examine the binding/unbinding of proteins
or other macromolecules onto a deformable membrane, whether in or out of thermal
equilibrium, using theory and simulations.

In Section 3.2, the theoretical analysis of the protein binding/unbinding is presented.
It leads to a phase diagram, in or out of equilibrium, for the membrane phases in terms
of c0 and of the chemical potential. In Section 3.3, the simulation model and method are
described. In Sections a. and b., the simulation results of the thermal binding/unbinding
process without and with active unbinding are presented, respectively. Comparison with
the theoretical analysis shows good agreement. An outlook is presented in Section 3.5.

3.2 Theory

We assume that the binding of the molecule locally changes the bending rigidity and
induces a spontaneous curvature c0 of the membrane, as shown in Fig. 3.2. This sponta-
neous curvature is assumed to be isotropic, i.e., the bound membrane has no preferred
bending orientation.

We consider an incompressible membrane of fixed surface area A, which contains a
surface density ρ(x) of bound proteins that are exchanged with a reservoir of chemical
potential µ. The membrane is assumed to be subjected to an external lateral frame tension
γ conjugate to the projected area Ap = L2

p (area of the membrane average plane); for the
sake of simplicity, the corresponding contribution will be introduced at a later stage. We
assume an ideal mixture of protein-coated membrane and protein-free membrane so that
the free energy of the system takes the form [102].
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F =
ˆ

A

dS
{(

1 − ρa2
) [κu

2 (c1 + c2)2 + κ̄uc1c2

]
+ ρa2

[
κb

2 (c1 + c2 − c0)2 + κ̄bc1c2

]
− µρ

+ T
[
ρ ln(ρa2) +

(
a−2 − ρ

)
ln
(
1 − ρa2

)]}
. (3.1)

The first term, proportional to 1 − ρa2, where a2 is the surface area covered by a
bound protein, is the standard Canham-Helfrich Hamiltonian – presented in the pre-
vious chapter, Eq. (2.2) – describing the curvature energy of the unbound membrane
fraction [57], with a bending rigidity κu and a Gaussian modulus κ̄u. Like ρ(x), the
membrane principal curvatures c1(x) and c2(x) are space-dependent. We shall assume
that the saddle-splay modulus κ̄u = −κu, as this value satisfies the stability condition of
the protein-free membrane [58] on the one hand and it will match the numerical simula-
tions on the other.

The second term, proportional to ρ, is the standard Helfrich Hamiltonian (Eq. (2.1))
for the bound membrane fraction, with a spontaneous curvature c0. We shall also choose
κ̄b = −κb. In this case, the term in brackets reduces to 1

2κb(c1 − c0)2 + 1
2κb(c2 − c0)2 up

to a constant that we may discard as it simply renormalizes the chemical potential µ.
The proteins thus locally promote an isotropic curvature of magnitude c0, as conically-
shaped inclusions would do. Although curvature-inducing proteins presumably stiffen
the bound membrane (otherwise they would fail to impose a local prescribed curvature),
their bending strength is protein-dependent. For the sake of simplicity, we shall assume
κb ∼ 10κu in this study.

The third term describes the equilibrium exchange of the proteins with the solvent,
i.e., the binding/unbinding process, through a chemical potential µ. Note that the binding
energy has been absorbed in the definition of the chemical potential [102]. The last term,
with T the temperature in energy units, describes the entropy of mixing of proteins [102,
106].

For small deformations relative to the flat state, the shape of the membrane can be
described in the Monge gauge by the height function z = h(r), where r covers a two-
dimensional (2D) plane. We recall that to second order in the deformation h, we have
c2

1+c2
2 ≃ (∂i∂jh)2, (c1−c0)2+(c2−c0)2 ≃ (∂i∂jh−c0δij)2 and dS ≃ [1+ 1

2(∇h)2]d2r, where
we used Einstein’s summation convention, which will be implicit throughout. Thus, to
second order, the free energy becomes F ≃ F̃ , with

F̃ =
ˆ

Ap

d2r

{
(1 − ρa2)κu + ρa2κb

2 (∂i∂jh)2 − ρa2κbc0∇2h

+
(

1 + 1
2(∇h)2

) [
ρa2κbc

2
0 + Tρ ln(ρa2)

+ T
(
a−2 − ρ

)
ln
(
1 − ρa2

)
− µρ

]}
, (3.2)
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where Ap is the projected area of the membrane. Note that 0 < ρa2 < 1 is not assumed
to be small.

In this section, we will now work in dimensionless units by setting a = T = 1. In other
words, we take T as the unit of energy and a as the unit of length. In addition, since we
are interested in a system with a large projected membrane area Ap (and in accordance
with the numerical simulations below), we will assume periodic boundary conditions.

3.2.1 Linear stability analysis in equilibrium

Due to the curvature promoted by the bound proteins, we expect the flat membrane
to develop spatial undulations. The only term that may destabilize the flat membrane,
however, is the second term of Eq. (3.2); but if ρ is uniform, it is a boundary term
with no effect under periodic boundary conditions. In other words, the energy gain in
the favorably curved parts would be compensated by the energy loss in the unfavorably
curved parts.

We thus expect that at both low and high protein densities, the membrane will remain
flat since the entropy of mixing will promote uniform density. At intermediate densities,
however, lateral phase separation accompanied by spatial modulations of the membrane
will be possible.

Therefore, we foresee three phases: an unbound uniform flat phase (U), i.e., a flat
membrane with a low density of bound proteins, a bound uniform flat phase (B), i.e.,
a flat membrane with a high density of bound proteins, and a separated/corrugated
phase (SC), i.e., a corrugated membrane with regions of different protein densities and
curvatures. Since the U and B phases have the same symmetries, we expect either a
first-order transition between them, a transition through an intermediate phase, or a
continuous transformation similar to the gas–liquid transformation above the critical
point.

Let us first examine the situation where the membrane is flat. For h = 0, the energy
F̃ becomes

F̃0 = L2
0

[
ρκbc

2
0 + ρ ln ρ + (1 − ρ) ln(1 − ρ) − µρ

]
, (3.3)

where L2
0 = A is the membrane area. Minimizing it with respect to ρ gives the equilibrium

density [102]

ρ0 = 1
1 + eκbc2

0−µ
, (3.4)

for which F̃0 = L2
0 ln(1 − ρ0).

We now perform a linear stability analysis of this solution for a square membrane
under a fixed external lateral tension γ at fixed total area L2

0. Let us consider a small
perturbation h = h1(r) and ρ = ρ0 +ρ1(r) of the previous solution. Calling Lp = L0 +L1

the linear size of the perturbed membrane, the area constraint reads L2
p+
´ Lp

0 d2r 1
2(∇h)2 =
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L2
0, yielding to second order in the perturbation

L1 ≃ − 1
2L0

ˆ L0

0
d2r

1
2(∇h1)2. (3.5)

Taking into account that κbc
2
0 − µ = ln[(1 − ρ0)/ρ0], the energy becomes at second order

in the perturbation

F̃ ≃
ˆ Lp

0
d2r

[
κeff

2 (∇2h1)2 − ρ1κbc0∇2h1

+
(

1 + 1
2(∇h1)2

)
ln(1 − ρ0) + ρ2

1
2ρ0(1 − ρ0)

]
, (3.6)

where κeff = (1−ρ0)κu +ρ0κb. Note that we have discarded a term ∝∇2h1 that vanishes
under periodic boundary conditions, and replaced (∂i∂jh)2 by (∇2h)2, since the difference
vanishes under periodic boundary conditions. Now, to second order in the perturbation,
we have

ˆ Lp

0
d2r ln(1 − ρ0) ≃ (L2

0 + 2L0L1) ln(1 − ρ0), (3.7)

therefore this term gives F̃0 = L2
0 ln(1 − ρ0) plus a contribution that cancels the term

proportional to (∇h1)2 in Eq. (3.6), because of Eq. (3.5). Adding the energy associated
with the external tension, the total energy becomes F⋆ = F̃ − γL2

p, which reads, up to a
constant and at second order in the perturbation,

F⋆ ≃
ˆ L0

0
d2r

[
κeff

2 (∇2h1)2 − ρ1κbc0∇2h1

+ 1
2

ρ2
1

ρ0(1 − ρ0)
+ γ

2 (∇h1)2
]
. (3.8)

Calling h1,q and ρ1,q the Fourier transforms of the perturbation fields, we obtain

F⋆ ≃ 1
2L2

0
∑

q

(
h1,q

ρ1,q

)t

Meq

(
h1,−q

ρ1,−q

)
, (3.9)

with

Meq =
(

κeffq4 + γq2 κbc0q
2

κbc0q
2 1

ρ0(1−ρ0)

)
. (3.10)

The flat membrane is unstable if Meq has negative eigenvalues. Since tr(Meq) > 0, the
corresponding condition is det(Meq) < 0, which reads[

κeff − κ2
bc

2
0ρ0(1 − ρ0)

]
q2 + γ < 0. (3.11)

For tensionless membrane (γ = 0), all q modes are therefore destabilized when the quan-
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Figure 3.3 – Equilibrium phase diagram. In the blue region, the flat membrane is stable
against small perturbations, while in the yellow region, it is unstable. The black lines
show the phase diagram obtained from the bumpy 1D shapes studied in the nonlinear
analysis. U: unbound flat phase (low protein density), B: bound flat phase (high protein
density), SC: separated-corrugated phase where the membrane exhibits curved domains
with a separation between protein-dense and protein-poor regions. The thick solid line
indicates a second-order phase transition. The thick dashed line corresponds to a first-
order phase transition, with a coexistence region delimited by the two thin solid lines.
The black dot indicates a tricritical point. Parameters are κu = 16, κb = 144 and γ = 0.5.
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tity δ = κeff − κ2
bc

2
0ρ0(1 − ρ0) in the square brackets above is negative. For γ > 0, the

unstable modes are in the interval q ∈ [qmin, qmax], with qmax = +∞ and qmin =
√

γ/(−δ).
Now, for membranes with proteins, our length scale a also corresponds to the small-
est wavelength accessible to membrane fluctuations, which sets an upper cutoff qmax in
Fourier space of order 1/a, or, in dimensionless units, of order 1. Thus, if qmin is larger
than 1 there is no physical range of q that can be excited by the instability, even if δ < 0.
Hence, we expect that when δ < −γ there will be a separated and modulated phase (SC)
if the condition δ < 0 is met. A necessary condition for δ < 0 is given by c0 > Cth, with

Cth =
√

κu + √
κb

κb

. (3.12)

The instability condition δ < −γ is actually fulfilled in the range of µ shown in the yellow
region of Fig. 3.3 whose borders is defined by the upper and lower expressions

µ = c2
0κb

− ln
−2γ − κu − κb + c2

0κ
2
b ∓

√
−4(γ + κu)(γ + κb) + (2γ + κu + κb − c2

0κ
2
b)2

2(γ + κu)


(3.13)

This unstable region is slightly shrunk at smaller values of γ. As expected, spatial
undulations occur when the membrane is neither too poor nor too rich in proteins, i.e.,
at intermediate values of µ where the entropy of the mixture allows phase separation, as
evidenced by the presence of the ρ0(1 − ρ0) factor in the instability condition.

3.2.2 Nonlinear analysis in equilibrium

The linear stability analysis is of course unable to predict the corrugation pattern selected
by the system in the nonlinear regime. Instead of solving the corresponding nonlinear
PDEs (with the covariant Helfrich contribution to the energy) we follow an alternative
route. We postulate that the system will adopt a corrugated phase, which we parametrize
with a small number of parameters. To simplify, we assume in addition that the selected
patterns are translationally invariant along one space direction.

To study the phase diagram of the system beyond the linear stability analysis, we
thus consider a family of corrugated shapes of arbitrary amplitude (Fig. 3.4a). In the SC
phase, we expect the system to develop periodic structures with large regions of curvature
favorable to inclusions, surrounded by narrow regions of opposite curvature. Proteins will
naturally accumulate in the favorable regions and deplete in the unfavorable regions. We
thus consider the following three-parameter family of smooth shapes:

h(x) = Rθ Γ (x)
tanh

(
x+R

λ

)
− tanh

(
x−R

λ

)
2 tanh

(
2R
λ

)2 , (3.14)

with Γ(x) the circular arc of equation
√

R2 − x2, which is replaced by its sixth order
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Figure 3.4 – (a) Typical membrane shape with a bump for use in the nonlinear analysis
(cross-section). (b) Free energy f of the bump as a function of R and λ after numerical
minimization with respect to θ. The blue regions of low energy correspond to λ ≪ R.
Parameters are κu = 16, κb = 144, γ = 0.5, c0 = 0.15 and µ = 2 (deep in the instability
region).
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Taylor expansion in order to allow x > R:

Γ(x) ≃
(

R − x2

2R
− x4

8R3 − x6

16R5

)
. (3.15)

The function (3.14), parametrized by (R, λ, θ), describes a membrane deformation having
a central circular bump of width 2R and amplitude Rθ surrounded by side channels of
width 2λ in which the curvature changes sign and relaxes (Fig. 3.4a). This deformation
can be repeated in space in order to produce a corrugation.

We then seek to determine the equilibrium state of the system. With c1 = c and
c2 = 0, the free energy (3.1) per unit length, supplemented by the contribution of the
external tension, takes the exact nonlinear form:

f =
ˆ Lp

2

− Lp
2

√
1 + h′2

[
(1 − ρ)κu

2 c2 + ρ
κb

2 [(c − c0)2 + c2
0]

+ ρ ln ρ + (1 − ρ) ln(1 − ρ) − µρ
]
dx − γLp, (3.16)

with c = h′′/(1 + h′2)3/2, where L =
´ Lp/2

−Lp/2 dx
√

1 + h′2, is the fixed total length per-
pendicular to the translational invariant direction and Lp is its variable projected length
determined consistently. Constructed this way, f is a function of R, λ, θ and a functional
of ρ(x). Minimizing f with respect to ρ(x) gives ρ⋆(x) = [1+exp(−1

2κuc(x)2 + 1
2κb[(c(x)−

c0)2 + c2
0] − µ)]−1, and the free energy per unit length reduces to

f =
ˆ Lp

2

− Lp
2

√
1 + h′2

[
κ

2 c2 + ln(1 − ρ⋆)
]

dx − γLp. (3.17)

Let us place ourselves in the region of instability of the linear stability analysis
(Fig. 3.3), and numerically examine when the bumps described by f(R, λ, θ) are stable
with respect to the flat state. It is worth mentioning that since we consider a particular
family of deformations, the flat state can be found stable for a broader range of values
of µ and c0, i.e., the instability region of the considered shapes is shrunk with respect
to the yellow instability region found with the linear stability analysis. Scanning the
(R,λ) plane and minimizing numerically the energy with respect to θ (Fig. 3.4b), we find
that the stable bumps appear in a large R range but have a small, well-defined λ value.
We therefore expect the SC phase to consist of large protein-filled bumps surrounded by
narrow protein-depleted oppositely curved channels.

Since the system prefers narrow side channels, we set a small λ ≃ 2.5 (see Fig. 3.4)
and we keep R and θ as parameters. We find that the one-dimensional bumps shapes,
corresponding to the separated/corrugated (SC) phase, are stable with respect to the flat
state within the region delimited by the thick solid and thick dashed lines in Fig. 3.3.
Starting at small chemical potentials and increasing µ, the transition from the flat un-
bound phase (U) to the separated/corrugated phase (SC) is of second order to the right
of a tricritical point and of first order to its left. Increasing µ, there is, as expected, a
re-entrant first-order transition toward a flat state, the flat bound phase (B). The equi-
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librium values of R and θ are shown in Fig. 3.5. Determining the equilibrium values
of R and θ as function of µ for different values of c0 allows us to determine the phase
transitions represented by the black lines in Fig. 3.3
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Figure 3.5 – Equilibrium amplitude θ (order-parameter) and width R of the 1D bumps
used in the nonlinear analysis as a function of µ. The solid lines correspond to stable
states and the dashed lines to metastable states. Parameters are the same as in Fig. 3.3
and c0 = 0.15.

3.2.3 Linear stability analysis in the presence of active bind-
ing/unbinding

In nonequilibrium, it is necessary to specify the dynamics of the system to study its
behavior. We model the binding-unbinding mechanism by a Poisson process with rates
η1 and η2 :

bound
η2−⇀↽−
η1

unbound (3.18)

Neglecting the fluctuations caused by the binding/unbinding active processes and by
the thermal exchanges with the thermostat, we consider the following noiseless dynamical
equations for the density and height fields:

ρ̇(r) = ∇ ·
(

mρ(1 − ρa2)∇δF̂
δρ

)
+ α1(a−2 − ρ)

− α2ρ + η1(a−2 − ρ) − η2ρ, (3.19)

ḣ(r) = −ΛδF̂
δh

, (3.20)

where F̂ = F̃ − γL2
p. The first term in Eq. (3.19), proportional to the mobility m

of the particles, stems from the conservation of their number in the absence of bind-
ing/unbinding processes. It is the divergence of the particle current, in which the
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ρ(1 − ρa2) factor accounts for the vanishing of the current both for ρ = 0 (empty state)
and ρ = a−2 (filled state). Note that for small ρ this part of the equation reduces to the
noiseless Dean-Kawasaki equation [107, 108]. The next two terms describe the equilib-
rium binding and unbinding of the proteins, respectively. Note that there is some freedom
in choosing the thermal binding-unbinding rates, as long as the detailed balance condition
is fulfilled i.e., α1/α2 = e−β∆H(r). One possibility, which we adopt, is to resort to the
Glauber rates defined by α1 = αeβ∆H(r)/(1 + eβ∆H(r)) and α2 = αe−β∆H(r)/(1 + e−β∆H(r))
where ∆H(r) = 1

2κb(∂i∂jh−c0δij)2 − 1
2κu(∂i∂jh)2 −µ is the energy variation upon binding

of a protein. While also being associated to local configuration changes, they further share
with the Metropolis rates used in the simulations (that we will present in Section 3.3)
the property that they remain bounded, regardless of the energy change involved. Other
choices are of course possible. While these various choices leave the equilibrium phase
diagram intact, the resulting nonequilibrium steady state in the presence of active pro-
cesses will depend on the specific choice that is made. However, we have checked that
alternative choices involving only local moves, e.g. α1 = αe− 1

2 β∆H(r) and α2 = αe
1
2 β∆H(r)

or α1 = αe−β∆H(r) and α2 = α, although they affect the specific location of phase and
local stability boundaries, do not alter our physical conclusions for physically relevant
values of c0, µ and η1 for which the effects of the active binding process do not dominate
the ones of the thermal processes. Note that with our choice of rates that saturate when
the energy difference increases by a large amount across a configuration change, we mimic
the chemical/physical reality according to which diffusion constants are bounded.

The last two terms in Eq. (3.19) describe the active binding (η1) and active unbinding
(η2) processes. Since the rates η1 and η2 are constant, these terms violate detailed balance
and constitute the source of nonequilibrium. The second equation, which describes the
dynamics of the membrane shape h, assumes a simple local dissipative dynamics with
mobility Λ. Hydrodynamic interactions are thus neglected. We now switch to dimen-
sionless units by setting a = T = m = 1. In other words, we take a2/(mT ) as the unit of
time.

Let us first investigate the steady state for the flat uniform state. The dynamical
equation for ρ becomes

ρ̇ =α(1 − ρ) e−(κbc2
0−µ)

1 + e−(κbc2
0−µ) − αρ

eκbc2
0−µ

1 + eκbc2
0−µ

+ η1(1 − ρ) − η2ρ, (3.21)

and the steady-state solution is therefore

ρ̄0 = αρ0 + η1

α + η1 + η2
, (3.22)

with ρ0 given in Eq. (3.4). Note that ρ̄0 reduces as expected to ρ0 in the absence of
activity.

To perform a linear stability analysis in this nonequilibrium situation, we consider a
small perturbation h = h1(r), ρ = ρ̄0 + ρ1(r) and L = L0 + L1, where L1 is given by
Eq. (3.5) in order to conserve the membrane area. To second order in the perturbation, we
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find that F̂ takes the same form as Eq. (3.8) except for an additional term ρ1 ln{[ρ̄0(1 −
ρ0)]/[ρ0(1 − ρ̄0)]} in the integrand. At first order in the perturbation, the dynamical
equations (3.19) and (3.20) take then the form(

ḣ1,q

ρ̇1,q

)
= −M

(
h1,q

ρ1,q

)
, (3.23)

with

M11 = Λ
(
κ̄effq4 + γq2

)
, (3.24)

M12 = Λκbc0q
2, (3.25)

M21 = κbc0q
2
(
s̄q2 + αs

)
, (3.26)

M22 = q2 + η1 + η2 + α, (3.27)

where κ̄eff = (1 − ρ̄0)κu + ρ̄0κb, s = ρ0(1 − ρ0) and s̄ = ρ̄0(1 − ρ̄0).
The flat state is unstable when M has negative eigenvalues. Since tr(M) is positive,

this is achieved when det(M) < 0. Let us first discuss the equilibrium case again. For
η1 = η2 = 0 and ρ0 = ρ̄0, we get M = D Meq, with D = diag(Λ, s(q2 + α)) and Meq given
by Eq. (3.10). Since D is diagonal with strictly positive eigenvalues, the instability occurs
when det(Meq) < 0 in agreement with the equilibrium condition of Section 3.2.1.

In the general nonequilibrium case, the condition det(M) < 0 yields an instability re-
gion that is shifted relative to the equilibrium case (Fig. 3.6). Both in the active binding
and unbinding cases, the instability is shifted towards larger values of c0, whereas it is
shifted towards larger values of µ in the unbinding case and towards lower values of µ in
the binding case.

While our linear stability analysis predicts that the homogeneous phase is destabilized
for active binding when c0 exceeds a (η1-dependent) threshold value (see Fig. 3.6(b)), we
also note that the instability region has a similar shape for active binding and for active
unbinding at moderate c0 values, as seen in Fig. 3.6(c). However, we believe that the
instability driven by a nonzero η1 at large c0 may not yield a simple SC phase, as more
drastic nonlinear phenomena could take over in this regime. And as a matter of fact, in the
simulations presented later in Section 3.3, right below Eq. (3.30), we have not considered
the possibility of active binding, as the destabilization we have found translates, in terms
of the self-assembled membrane, into particles detaching away and eventually dissolving
the membrane.

3.2.4 Casimir-like interactions

In the previous sections, we have adopted a mean-field approach. Here we wish to study
whether equilibrium fluctuation-induced forces, i.e., Casimir-like interactions, can induce
a transition between the unbound flat phase (U) and the bound flat phase (B). If this
transition exists, it must be of first order since the two phases have the same symmetries.
To isolate the Casimir effect, we take c0 = 0 and κb → ∞, so that the only effect of
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Figure 3.6 – Linear stability analysis in the presence of active binding and active un-
binding. In the blue region, the flat membrane is stable against small perturbations, while
in the yellow region, it is unstable. The hatched domain refers to the linearly unstable
region in the equilibrium phase diagram of Fig. 3.3. (a) Active unbinding for η1 = 0 and
η2 = 1. (b) Active binding for η1 = 1 and η2 = 0. (c) Active binding for η1 = 0.02, η2 = 0.
At small values of η1 and c0, there is no qualitative difference with (a) in terms of the
shape of the instability region. Parameters are κu = 16 and κb = 144, γ = 0.5 and α = 1.
Note that these phase diagrams are independent of Λ.
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the adsorbed proteins is to locally stiffen the membrane. Because the protein has a zero
spontaneous curvature, the SC phase will be absent. So, upon increasing µ we may either
have a continuous increase of the protein density or a first-order phase transition.

Even in this simplified situation, it is very difficult to calculate exactly the free energy
of the system for a given spatial distribution of proteins. We are going to rely on estimates
based on the pointlike theory of Ref. [103]. In this work, the size a of the protein inclusions
is set by an upper wavevector cutoff, which allows to recover the results of Ref. [55] for two
extended inclusions. The multibody Casimir interaction is found to be exactly pairwise
additive at leading order, given by the sum of −6T (a/Rij)4, where the Rij’s are the
distances between pairs of inclusions. Note that contrary to the results of Ref. [109] for
pinning inclusions, screening effects are very weak and occur only at the next orders.

At contact, i.e., for R = 2a, which corresponds to the distance between nearest
neighbors (NN), the above interaction gives ENN ≃ −0.4 T . For R = 2

√
2a, which

corresponds to next nearest neighbors (NNN) in a square lattice, the interaction falls to
25% of this value, while for R = 4a, i.e., for second neighbors, it falls to 6%, which we will
consider negligible. Note that these values should only be taken as estimates since only
the leading-order interaction has been taken into account, while at such short distances
higher-order terms and multibody corrections are expected to play a significant role (as
for curving inclusions [110]). A quick inspection of these corrections in the pointlike
model revealed to us an increase in the attractiveness of the Casimir interaction.

To examine the effect of these Casimir interactions, we have performed a Monte
Carlo (MC) simulation where particles diffuse on a square lattice, interact through NN
and NNN interactions only, and bind to the lattice, or detach from it by exchange with a
reservoir of chemical potential µ. The results, shown in Fig. 3.7 indicate that the orders
of magnitude given above are almost sufficient to produce an unbound-bound first-order
phase transition.

3.3 Simulation Model and Method

In numerical simulations in thermal equilibrium, the protein binding to the membrane
has been studied from molecular resolutions [111–113] to large-scale thin-surface mem-
brane models [102, 105, 114–120]. When proteins generate an isotropic spontaneous
curvature, bound sites are numerically found to assemble into circular domains or spher-
ical buds [114–117, 119]. On the other hand, bound sites with anisotropic spontaneous
curvature have been found to induce membrane tubulation [118–120]. The simulations
presented below were performed by Pr. H. Noguchi.

3.3.1 Method

A fluid membrane is numerically modeled in our work by a self-assembled one-layer sheet
of N particles (the model is illustrated Fig. 3.2). The position and orientational vectors of
the i-th particle are ri and ui, respectively. In the following we use a meshless membrane
model, i.e., the membrane particles are connected by means of an attractive potential.
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Figure 3.7 – Equilibrium protein inclusion density ρ versus chemical potential µ in an
MC simulation of stiff membrane inclusions experiencing pure Casimir-like interactions
(pairwise pointlike model). The solid red curve corresponds to an empty lattice initial
condition. The dashed black curve corresponds to a fully occupied initial condition. (a)
ENN = ENNN = 0. (b) ENN = −0.5 T and ENNN = −0.1 T . (c) ENN = −T and
ENNN = −0.25 T . (d) ENN = −2 T and ENNN = −0.5 T . A first-order phase transition
occurs in (c) and (d) as revealed by the coexistence between an unbound (U) and a bound
(B) state with different values of ρ.

The model used is described in detail in [121, 122]. Below we review the key ingredients
of this simulation.

The membrane particles interact with each other via a potential U = Urep + Uatt +
Ubend + Utilt. The potential Urep is an excluded volume interaction with diameter σ for
all pairs of particles. The solvent is implicitly accounted for by an effective attractive
potential as follows:

Uatt

T
= 2

∑
i

ln[1 + exp{−4(ρi − ρ∗)}] − C, (3.28)

where ρi = ∑
j ̸=i fcut(ri,j), C is a constant, and ρ∗ is the characteristic density with ρ∗ = 7.

fcut(r) is a C∞ cutoff function [121] and ri,j = |ri,j| with ri,j = ri − rj:

fcut(r) =
{

exp{b(1 + 1
(r/rcut)n−1)} (r < rcut)

0 (r ≥ rcut)
(3.29)

where n = 6, b = ln(2){(rcut/ratt)n − 1}, ratt = 1.9σ, and rcut = 2.4σ. The set of
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parameters used above is described in detail in Ref. [123].
The bending and tilt potentials are given by Ubend/T = (kbend/2)∑i<j(ui − uj −

Cbdr̂i,j)2wcv(ri,j) and Utilt/T = (ktilt/2)∑i<j[(ui · r̂i,j)2 +(uj · r̂i,j)2]wcv(ri,j), respectively,
where r̂i,j = ri,j/ri,j and wcv(ri,j) is a weight function. The energy Ubend penalizes the
splay of ui, and hence penalizes the curvature of the membrane when Cbd = 0, while it
favors a spontaneous curvature c0 = Cbd/(2σ) when Cbd is nonzero [122]. As for Utilt, it
penalizes the lipid tilt, therefore favors the normal orientation of the lipids relative to the
membrane plane.

The membrane consisting of 25 600 membrane particles is simulated under periodic
boundary conditions with NγT ensemble, where γ is the surface tension that is conjugate
to the projected area onto the xy plane as defined in Section 3.2. The projected area
of the square membrane (Ap = L2

p) is a fluctuating quantity [124, 125]. The motion
of the particle position ri and the orientation ui are given by underdamped Langevin
equations, which are integrated by the leapfrog algorithm [126, 127] with ∆t = 0.002τ0

where τ0 = σ2/D0 for the time unit, where D0 is the diffusion coefficient of the free
membrane particles.

Here, each membrane particle is a binding site and can be found in two—bound or
unbound—states. In this study, c0 = 0 and kbend = ktilt = 10 for the unbound membrane
particles and kbend = ktilt = 80 for the bound membrane particles, in which κu/T = 16±1
and κb/T = 144 ± 7. In the bending and tilt potentials, for a pair of neighboring bound
and unbound particles, we use the mean value kbend = ktilt = 45. We find that the ratio of
the Gaussian modulus κ̄ to κ is uniform, independently of the local binding fraction [128]:
κ̄/κ = −0.9 ± 0.1.

In the following, we shall mainly consider tensionless membranes and membranes with
tension γ = 0.5T/σ2. With typically σ ≈ 10 nm and T ≈ 4 × 10−21 J, this corresponds to
an average tension ≈ 0.02 mN/m, well below usual lysis tensions (1–25 mN/m) [129–131].

For the unbound particles, the membrane area per particle is 1.251σ2 and 1.257σ2

at γ = 0 and 0.5T/σ2, respectively. It is slightly larger (by a few percent) for bound
particles: 1.294σ2 and 1.300σ2 at γ = 0 and 0.5T/σ2, for c0σ = 0.1. The unit length
a of the theory (governing the surface area a2 covered by a bound protein, defined in
Section 3.2) is thus found to be a ≃ 1.1σ.

The bound and unbound states are stochastically switched by a Metropolis MC pro-
cedure with the acceptance rate pacpt:

pacpt =
{

exp(±∆H/T ) if ± ∆H < 0,

1 otherwise,
(3.30)

where the + and − signs refer to the unbinding and binding processes, respectively.
Here, ∆H = ∆U −µ where ∆U is the energy difference between the bound and unbound
states and µ is the chemical potential of particles attempting to bind. We also consider
active unbinding in which the particles change from bound to unbound states with a rate
η2 independent of the state of the system, as defined in Eq. (3.18). Our simulations are
carried out at η1 = 0, otherwise, membrane particles spontaneously detach, because active
binding can lead to a higher bending energy than the attractive energy between membrane
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particles. In thermal equilibrium (η2 = 0), static properties are independent of the rates of
the binding/unbinding processes. Out of equilibrium, however, the steady-state reached
by the system a priori depends on the details of the binding and unbinding processes
(compared with the thermal binding-unbinding rates and with the membrane dynamics),
as long as the detailed balance is broken. Here, we choose to consider relatively fast
binding/unbinding processes compared to the membrane motion. For each membrane
particle, the Metropolis MC and active unbinding processes are performed every τb =
0.01τ0 with probabilities αmpτb and η2τb respectively. We fix αmpτ0 = 10 and vary the
ratio η2/αmp in our investigation. The binding fraction is essentially controlled by the
ratio η2/αmp, as the binding/unbinding is faster than membrane deformation. We have
checked it by varying αmpτ0 at c0σ = 0.1, γ = 0.5T/σ2, and µ = 6T .

In our analysis, in order to characterize the various phases we find, we resort to the
concept of cluster. Two sites are considered to belong to the same cluster when the
distance between them is less than ratt. The probability P (icl) that a site belongs to a
cluster of size icl is P (icl) = ⟨nclicl⟩/N , where ncl is the number of clusters consisting
of icl sites. The vertical span of the membrane is calculated from the membrane height
variance as z2

mb = ∑N
i (zi − zG)2/N , where zG = ∑N

i zi/N .
The results of the simulations are normalized by the particle diameter σ, by tem-

perature T , and by the time step τ0 for lengths, energies, and times, respectively. The
subscripts b and u indicate bound and unbound states, while U, B, and SC refer to the
unbound, bound and separated-corrugated phases, respectively. The error bars show the
standard deviation calculated from three or more independent runs.

3.3.2 Results

a. Phase separation in thermal equilibrium

We now describe the membrane behavior in thermal equilibrium (without the active un-
binding, at η2 = 0). First, we work at c0 = 0, so that the only action of the bound and
unbound particles is to locally alter the bending rigidity. As the chemical potential µ

increases, the membrane exhibits a discontinuous transition from the unbound state (U)
to the bound state (B) (see Fig. 3.8). The two states can exist at the same chemical
potential in the vicinity of the phase transition. This transition occurs due to the sup-
pression of membrane fluctuations by the high bending rigidity of the bound sites. It is
therefore Casimir interactions that drive this transition, as discussed in Section 3.2.4. As
the surface tension γ increases, the transition occurs at slightly lower values of µ and the
coexistence range becomes narrower.

At this stage, we would like to compare with the theoretical results shown in Fig. 3.7.
In both approaches, a first-order transition is observed. Because surface tension flattens
out the membrane by stretching it, we expect that Casimir interactions will be all the
weaker as surface tension increases. For the finite spontaneous curvatures (c0 ̸= 0), the
bound sites prefer to assemble to a curved domain leading to the formation of spatial
patterns (Figs. 3.9–3.14). At a high spontaneous curvature (c0σ = 0.1) and a medium
surface tension (γσ2/T = 0.5), an SC state, where micro-domains of bound sites are
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Figure 3.8 – Discontinuous binding transition at c0 = 0 in thermal equilibrium (η2 = 0).
(a) Snapshots of the unbound (U) and bound (B) phases existing at the same chemical
potential µ/T = 3.26 for γ = 0. The bound and unbound sites are displayed in red and
in green, respectively. (b) Binding density ⟨Nb⟩/N and (c) vertical membrane span zmb
as a function of the chemical potential µ at γσ2/T = 0 and 0.5.

formed, appears between the U and B phases (see Fig. 3.9). To maintain a flat membrane
on average under the periodic boundary condition, the bound sites form finite-size bowl-
shaped domains and the unbound membrane between the bound domains is bent in the
opposite direction [see Figs. 3.9(f)]. When the membrane is sliced along a vertical plane,
the cross-section has a bump shape as depicted in Fig. 3.4. A hexagonal-shaped pattern
is formed instead of the 1D bump pattern, since a spherical shape is preferred by the
isotropic spontaneous curvature. However, the essential feature of the stability is captured
in the 1D shape. Similar curved domains can be formed on protein-free membranes. Such
curve-shaped domains were observed in three-component lipid vesicles [132–135]. These
domains are, however, caused by their strong line tension unlike our case (we have almost
no line tension as there is no direct repulsion between bound and unbound particles).

Examples of the initial relaxation dynamics at µ/T = 7 are shown in Movies 1 and
2 provided in the Electronic supplementary information (ESI) of [86]. The unbound
domains elongate leading to a percolated network. When initial states are set to the
smaller or larger domains obtained at low or high µ, the domains grow or are reduced,
respectively, but do not completely converge to the same size even in the long simulation
runs by a hysteresis (see Fig. 3.8). In the SC states, the simulations are performed from
several different initial states to check this hysteresis. The error bars in Figs. 3.10, 3.11,
and 3.16 show the width of the obtained values due to the hysteresis. The bound domain
size increases with increasing µ [compare Figs. 3.9(c) and (d)].

At c0σ = 0.1 and γσ2/T = 0.5, the transition between the U and SC phases is
continuous, but the transition between the SC and B phases is discontinuous and two
phases coexist around the phase boundary [see Figs. 3.9(d)–(f) and 3.10(a)]. This agrees
with the theoretical prediction in Section 3.2.2. To detect the discreteness of the transition
between the SC and B states more clearly, the ratio of the average number of sites in the
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Figure 3.9 – Snapshots of membranes at c0σ = 0.1, γσ2/T = 0.5, and η2 = 0. (a) U
phase at µ/T = 4, (b) Close to the phase boundary between U and SC at µ/T = 5, (c)
SC phase at µ/T = 6. (d)–(f) SC and B phases at µ/T = 8. The top views are shown in
(a)–(e) and a bird’s eye view of the snapshot of (d) is shown in (f).



3.3. Simulation Model and Method 65

largest unbound cluster to that in the unbound sites, ⟨Nu,cl⟩/⟨Nu⟩, is shown with respect
to ⟨Nb⟩/N in Fig. 3.10(b). This ratio is close to unity in the SC phase and close to zero
in the B phase because the unbound region percolates. A large gap exists between the
two states at c0σ = 0.08 and 0.1. In the SC state, most of the unbound sites belong to
the largest cluster so that the unbound sites form a single percolated domain. The mean
membrane vertical span ⟨z2

mb⟩ also exhibits a discrete gap [see Fig. 3.10(c)], since the
SC membranes are largely bent whereas not in the B phase.

For the low spontaneous curvatures (c0σ = 0.04 and 0.06 at γσ2/T = 0.5) or high
surface tension (γσ2/T = 1 at c0σ = 0.1), the transition between the SC and B phases
becomes continuous [see Fig. 3.10 and 3.11]. In the SC phase, the unbound domains are
of anisotropic shapes but do not form a fixed network structure so that stable micro-
domains are not formed (see Fig. 3.12(d) and Movies 3 provided in the ESI of [86]).
This corresponds to the single phase at c0 < Cth in the theory, where the binding ratio
gradually changes. For zero or low surface tension (γσ2/T = 0 or 0.25), the micro-
domains of the bound sites form vesicles via budding [Figs. 3.12(a),(b)] or membrane
rupture [Fig. 3.12(c)]. Therefore, finite tension is required to stabilize the SC phase.

As theoretically analyzed in Fig. 3.3, the phase boundary of the uniform (unbound
and bound) phases is shown in Fig. 3.13. In the region between two lines, the uniform
phase does not exist even as a metastable state. At η2 = 0, the unstable region becomes
wider at higher values of c0. The lower boundary is determined by the appearance of a
peak in the cluster size distribution Pb(icl) of the bound sites, as shown in Fig. 3.14(a).

b. Phase separation out of equilibrium

In this section, we describe the membrane behavior in the nonequilibrium regime with
active unbinding (η2 > 0). As η2 increases, the ratio of the bound sites linearly decreases,
and the bound and unbound sites are mixed more randomly as shown in Figs. 3.15 and
3.16(a). From Fig. 3.16(b), we see that the SC phase becomes unstable and eventually
disappears as η2 is increased at not that large chemical potential. This property is also
apparent in Fig. 3.13 where the lower boundary rises upwards. As the fraction of bound
sites decreases with increasing η2, the domain structure in the SC phase becomes less
pronounced (Fig. 3.15), and the membrane adopts a flatter shape (Fig. 3.16(c)). The SC
and uniform phases are clearly distinguished from the fraction of unbound sites belonging
to the largest cluster at µ/T = 7 and 7.5, while, as η2 is increased, the SC phase is
continuously blurred out when µ/T ≲ 6.5 (Figs. 3.16(b)). With increasing η2, Pb(icl) has
a lower and broader peak, and subsequently, it monotonously decreases (see Fig. 3.14(b)).
This is different from the transition between the U and SC phases in equilibrium, where
large clusters are exponentially rare in the U phase, as shown in Fig. 3.14(a).

In the theoretical analysis of Section 3.2 we observe (Fig. 3.6(a)) that a nonzero η2

shifts the lower boundary of the yellow metastability region upwards, in agreement with
the simulation results in Fig. 3.13, but it also shifts its upper boundary upwards, which
is not consistent with the observed numerics (Fig. 3.13). Such nonequilibrium features as
the increased fuzziness cannot be accounted for within the framework of linear stability
analysis.
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Figure 3.10 – Binding at γσ2/T = 0.5 and η2 = 0. (a) binding density ⟨Nb⟩/N . (b) ratio
of the largest cluster of unbound sites ⟨Nu,cl⟩/⟨Nu⟩. As shown for c0σ = 0.1, the U, SC and
B phases can be determined by the value of ⟨Nu,cl⟩/⟨Nu⟩. The dashed line corresponds
to the transition between the U and SC phases and the yellow domain corresponds to the
region where the SC and B phases coexist. (c) vertical membrane span zmb.
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Figure 3.11 – Surface tension γ dependence at c0σ = 0.1 and η2 = 0. (a) Binding
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Figure 3.12 – Snapshots of membranes at η2 = 0. (a),(b) Vesicle formation (a) at
c0σ = 0.1, γ = 0, and µ/T = 4.7 and (b) at c0σ = 0.1, γσ2/T = 0.25, and µ/T = 6. (c)
Membrane rupture at c0σ = 0.1, γσ2/T = 0.25, and µ/T = 8.5. (d) Anisotropic clusters
of unbound particles at c0σ = 0.06, γσ2/T = 0.5, and µ/T = 4.3. Bird’s eye and top
views are shown in (a),(b) and in (c),(d), respectively.
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Figure 3.13 – Phase boundaries for the metastability of the unbound (lower branch) and
bound (upper branch) states for η2/αmp = 0 (◦), 0.4 (△), and 0.8 (2) at γσ2/T = 0.5.
The unbound and bound states exist as stable or metastable states in the regions below
the lower line and above the upper line, respectively. The membrane is phase-separated
in the region between two lines. Note that the membrane continuously changes from the
U to B phases at µ/T = 0.06. We conjecture that the red branches eventually merge at
around c0σ ≃ 0.06 and continue into a line for lower values of c0σ.
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Figure 3.14 – Size distribution Pb(icl) of bound-site cluster at c0σ = 0.1 and γσ2/T = 0.5.
(a) µ/T = 4.5, 5, 5.1, and 5.5 at η2 = 0. (b) η2/αmp = 0, 0.6, 0.8, and 1.4 at µ/T = 6.



70Chapter 3. Binding of thermalized and active membrane curvature-inducing proteins

Figure 3.15 – Snapshots of membranes with active unbinding at c0σ = 0.1 and γσ2/T =
0.5 for (a) {µ/T, η2/αmp} = {7, 0.08}, (b) {6, 0.06}, and (c) {6, 0.12}.

3.4 Comparison between theory and simulations

The aforementioned theoretical and simulation results agree qualitatively well, but some
differences are seen. We now discuss these in more detail. In comparing the phase
diagrams in Figs. 3.3 and 3.13, the chemical potential µ for the SC phase is roughly
5T higher in the simulation than µ in the theory, but the range of the SC phase is
compatible. In the theory, the binding changes only the bending energy. Conversely, in
the simulation, it also modifies the other energy (Urep, Uatt) and the local membrane area
is slightly changed by the binding. Hence, this shift of µ might be caused by this different
energy change so that higher µ is required for binding to occur in the simulation. On the
other hand, the differences in the typical threshold values of c0 in the phase diagrams are
small. Part of these differences are due to the differences in the length units (a ≃ 1.1σ),
and the rest are likely due to thermal fluctuations. Indeed, the phase boundaries can be
affected by thermal fluctuations.

In the analytical approach, a first-order transition between U and SC phases is pre-
dicted in the vicinity of the critical point (c0 < Cth), as shown in Fig. 3.3. By contrast,
this transition is always found to be continuous in the simulation. Since this appears
only in the vicinity of the critical point, the free-energy barrier between the two states
is presumably small. Thermal fluctuations may smear out the free-energy barrier in the
simulation.

The active unbinding shrinks the region of the SC phase in the phase diagram of
the simulation (see Fig. 3.13). By contrast, a shift to higher µ is predicted in the an-
alytical model (see Fig. 3.6(a)). This difference may be due to the setting of the bind-
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Figure 3.16 – Membrane with active unbinding at c0σ = 0.1 and γσ2/T = 0.5. (a)
Binding density ⟨Nb⟩/N as a function of the active unbinding rate η2. (b) Ratio of the
largest cluster of (a) unbound sites ⟨Nu,cl⟩/⟨Nu⟩ as a function of the binding density
⟨Nb⟩/N . The black arrows show the direction of increasing η2. (c) Vertical membrane
span zmb.
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ing/unbinding using different choices for the rates α1,2 and αmppacpt in the continuum
equation and in the MC method.

3.5 Conclusion

In this chapter, we have studied the structuring of membranes interacting with binding
molecules that locally constrain the membrane curvature and increase its bending rigidity.
Our analysis has relied on simulations of a meshless membrane model and on an analytical
coarse-grained description of the dynamics (based on the Helfrich energy).

In thermal equilibrium, without any active binding/unbinding, we have found that for
high spontaneous curvatures and intermediate densities, bound sites locally self-assemble
into a bowl-like shape. The membrane then exhibits, at the macroscopic scale, a hexago-
nally corrugated shape (SC phase). At low density or high density, the membrane adopts
a flat state with a uniform distribution of particles (unbound or bound phase, respec-
tively). Second and first-order transitions occur between the SC and unbound phases and
between the SC and bound phases, respectively. For a small nonzero spontaneous curva-
ture or under high surface tension, the density of bound sites gradually increases from the
completely unbound state up to the bound state as the chemical potential is increased.
At zero spontaneous curvature, we have found that Casimir-like interactions induce a
first-order transition from the unbound to bound states. Both analytical approaches and
simulations agree with each other.

Out of equilibrium, in the presence of an active binding or unbinding, our analytical
analysis, based on Glauber equilibrium transition rates, predicts a shift of the SC phase
towards higher spontaneous curvatures, as observed in the simulations. It also predicts
a shift of the SC phase to lower chemical potentials in the active binding case and to
higher chemical potentials in the active unbinding case, while the simulations show a
simple shrinkage of the SC phase in the latter case. We expect this discrepancy to be
due to the difference in the implementation of the equilibrium transition rates (Glauber
vs Metropolis). Simulations show that active unbinding makes the bowl-shaped domains
of the SC phase fuzzier. We observe that the SC phase disappears at small curvatures,
and because we have a discontinuous transition between the U and B phases at zero
curvature, we conjecture the closing of the SC phase is continued by a line connecting to
that zero curvature point.

Casimir interactions are the result of thermal fluctuations. Because of their attractive
nature, we expect a difference between simulations (that take these forces into account)
and the nonlinear analysis which neglects fluctuations. Casimir forces act as a stabilizing
force for the SC phase, which should thus appear for a broader range of parameters in
the simulation than in the analysis of the mean-field PDEs.

We have assumed the thermal and active binding/unbinding rates to be time-independent.
This means that the protein diffusion in the bulk is faster than the binding/unbinding
and the protein concentration of the bulk in the vicinity of the membrane surface is main-
tained constant. However, it is known that large proteins exhibit slow diffusion and the
lowering of the density of proteins in the vicinity of the membrane suppresses the binding.
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When the binding/unbinding is compatible and faster, the dynamics of the protein in the
bulk might also play an important role in determining the nonequilibrium steady state,
in which a convection flow may be generated. And in fact, a more realistic description
should also incorporate the combined hydrodynamics of the membrane and of the solvent
and the diffusion/convection of the bulk particles.
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Chapter 4

Pointlike modeling of a diffusing
membrane protein

In this chapter, we present analytical generalizations of the Saffman-Delbrück’s (SD) law
(mobility of a bio-membrane protein) obtained from the velocity field produced by a
pointlike force in a 2D fluid embedded in a 3D bulk and by using a small wavelength
cutoff of the order of the protein’s size. First, we show that this method gives a very
good analytical approximation of the usual SD law. Furthermore, we are able to take
into account the bilayer nature of the membrane and the intermonolayer friction, as well
as derive the correction to the SD law for a protein that creates a local spontaneous
curvature. For a protein spanning a flat bilayer, the SD law is found to hold by replacing
the viscosity of the membrane with the sum of the monolayer viscosities, without the
influence of the intermonolayer friction as long as it is above a threshold well below
known experimental values in practice. For a protein located in or adhering to only one
of the two monolayers, the SD law is influenced by the intermonolayer friction when
the latter is below a threshold that depends on the monolayer viscosity and the protein
size. Finally, for a protein inducing a local isotropic spontaneous curvature, we show
that the total friction is the sum of the SD friction and that due to the pull-back created
by the membrane deformation, a point that was assumed without demonstration in the
literature. This work was published in [136].

4.1 Introduction

As mentioned in Sec. a., An object moving in a viscous fluid under the action of an
applied force generates a flow and acquires a velocity proportional to the mobility. In
three dimensions (3D), at low Reynolds numbers, Stoke’s law states that the mobility
of a spherical particle of radius a dragged in a fluid of viscosity η, is given by µ3D =
(6πηa)−1 [76]. However, considering the equivalent system in two dimensions (2D), i.e.,
a disk particle, the mobility diverges, which is known as the Stokes’ paradox [76].

To illustrate this, let us consider a protein initially located at the origin of a fluid.
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When a pointlike force is applied to the origin of a fluid, the velocity field is given (in the
limit of low Reynolds numbers) by the Oseen tensor [76]. In reciprocal space, this reads
v(q) = (ηq2)−1(1− q̂ ⊗ q̂), where 1 is the identity tensor and q̂ the unit vector parallel to
q. Now, assuming that the force is applied to the protein that transmits it to the fluid,
we can determine the velocity vp of the protein by looking at the velocity of the fluid at
the origin.

Discarding angular factors, the latter is given by vp/f ∝
´

ddq/(ηq2), with d the space
dimensions. In 3D, this integral converges at low q but diverges at high q, so an ultraviolet
cutoff is necessary to regularize. Taking qmax = 1/a, where a is the size of the particle,
we obtain vp/f = 1/(3π2ηa). We therefore recover the Stokes law except for an incorrect
multiplicative factor which can be viewed as an imprecision on the particle’s size. In 2D,
however, the integral diverges at low q and so the mobility is found to be infinite.

Nevertheless, this infrared divergence can be regularized in two different ways for
steady flows: either by restricting the 2D fluid to a finite area or by embedding the
infinite 2D fluid in an immiscible 3D fluid [70, 77]. The latter is physically relevant
for biological membranes which are surrounded by a 3D bulk. Hence, the Saffman-
Delbrück (SD) law states that the mobility of a protein in a membrane of viscosity η2

embedded in a solvent above and below of viscosity η+ and η−, respectively, is given
by µSD = (4πη2)−1{ln[η2/(ηa)] − γ}, where η = 1

2(η+ + η−) and γ ≃ 0.577 is Euler’s
constant [70, 77]. This expression is valid for a ≪ ℓ, with ℓ = η2/(2η) the Saffman-
Delbrück length that regularizes the infrared divergence of the mobility in 2D.

As far as we know, there is no easy way to establish the SD law and its generalizations.
Available proofs require heavy calculations [77, 137–139]. In the following, we present an
elegant simple derivation based on a pointlike approximation for the protein regularized
by a sharp ultraviolet cutoff of the order of the inverse of the protein size. This derivation
is not exact, because the dimension of the inclusion is only taken into account up to a
multiplicative factor of order unity inside the log. However, since the particle’s radius
appears within a logarithm in the SD law, it turns out to be excellent. Pointlike approx-
imations are standard in soft matter to calculate interactions among particles [54, 64,
103, 104, 140] and dynamical behaviors such as mobility and diffusion [141–146]. Either
sharp cutoffs are used, with excellent approximate results [54, 103, 104, 140, 142], or
smooth cutoffs in numerical works that have the effect of distributing the applied forces
over small finite regions [141, 143–146].

Owing to the relative simplicity of the pointlike approach, it is possible to go beyond
the SD problem and to provide analytical or semi-analytical results while taking into
account several additional physical ingredients otherwise too complicated to include in
the description, such as (i) the bilayer character of the membrane [146, 147] and (ii) the
spontaneous curvature of the inclusion [43, 60, 68].

In Sec. 4.2, we apply our pointlike method to swiftly rederive the well-known SD
mobility. In Secs. 4.3.1 and 4.3.2, we take into account the bilayer nature of the membrane,
both for a protein embedded in one monolayer and a protein that spans the whole bilayer,
respectively. The possibility of a protein that induces a local isotropic curvature of the
membrane is considered in Sec. 4.4. Finally, we compare the results we get for a curvature-
inducing protein with the literature, especially with [43].
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Figure 4.1 – Sketch of a membrane embedded in a solvent with 3D viscosities η+ above
and η− below. The membrane is treated (a) as a medium with 2D viscosity η2 (Saffman-
Delbrück), (b) and (c) as two adjacent media (monolayers) of 2D viscosities η+

2 and η−
2 ,

subject to an intermonolayer friction with coefficient b. In (d) the protein curves locally
the membrane. In (a), (c) and (d) the depicted inclusion spans the bilayer membrane; in
(b) it is located in the upper monolayer only.

4.2 Pointlike approach to the Saffman-Delbrück mo-
bility

In the Saffman-Delbrück problem, a particle of position R(t) is dragged by a constant
force f in a fluid membrane embedded in a solvent (Fig. 4.1a). The membrane is treated
as a structureless 2D fluid of viscosity η2 in the z = 0 plane, and inertia is neglected. The
membrane lies in a bulk solvent of viscosities η± in the two half-spaces (indicated with
the superscript ϵ = ±). Here, contrary to the traditional approach [77] we are going to
treat the particle as pointlike, which will greatly simplify the calculations. This entails
an approximation, hence validity conditions that we shall discuss in detail at the end of
Sec. 4.3.1. Calling v the velocity field in the membrane and V ± the velocity fields in the
bulk, the equations describing the problem are (see Sec. 2.2.2)

η±∇2V ± − ∇P ± = 0, (4.1)
η2∇̄2v −∇̄p + σ+ + σ− + fδ(r − R) = 0, (4.2)
Ṙ = v(R), (4.3)

where
σ± = ±η± (∂zV̄ ± + ∇̄V ±

z )
∣∣∣
z=0

(4.4)

are the tangent viscous stresses transmitted to the membrane by the bulk flow. The
first equation is the 3D Stokes equation describing the flow in the solvent, the second
equation is the Stokes equation in the membrane, and the third equation is a no-slip
condition on the pointlike particle reflecting its transport by the membrane flow. Note
that since inertia is neglected, the force f applied to the particle is directly transmitted to
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the 2D membrane fluid. Here, p and P ± are the excess pressure fields (pressure minus the
pressure at infinity), the dot denotes time derivative and the bar denotes the projection
onto the (x, y) plane of 3D vectors (∇̄ = ex∂x + ey∂y and V̄ = Vxex + Vyey). These
equations are supplemented by the incompressibility conditions ∇·V ± = 0 and ∇̄·v = 0,
and by the no-slip and continuity conditions V̄ ±|z=0 = v and V ±

z |z=0 = 0.

As we are dealing with a pointlike force, solving for the membrane flow is equivalent
to determining the Oseen-like tensor in this geometry [73, 74]. We start by eliminating
the bulk variables. For this, as detailed in 2.2.2, we Fourier transform in the (x, y) plane
while keeping z in real space. We recall briefly the procedure and results. Let V ±(q, z) =´

d2r V ±(r, z)e−iq·r. We decompose it as V ± = V ±
∥ q̂ + V ±

⊥ q̂⊥ + V ±
z êz, where q̂ = q/q

and q̂⊥ = êz × q̂, and likewise v = v∥q̂ + v⊥q̂⊥. Incompressibility yields v∥(q) = 0. The
bulk equations read η±(∂2

z − q2)(V ±
∥ , V ±

⊥ , V ±
z ) = (iqP ±, 0, ∂zP ±) and ∂zV ±

z + iqV ±
∥ = 0.

Solving them with the boundary condition V ±(q, z)|z=0 = v⊥(q)q̂⊥ yields P ±(q, z) = 0
and V ±(q, z) = v⊥(q) exp(∓qz)q̂⊥. It follows that σ± = −η±qv⊥(q)q̂⊥ [148], and the
hydrodynamic equations in the membrane reduce simply to

−η2q
2v⊥ − 2ηqv⊥ + fe−iq·R · q̂⊥ = 0, (4.5)

v∥ = 0, (4.6)

where 2η = η+ + η−. The solution for v(q) is then

v(q) = O(q) · fe−iq·R, O(q) = 1 − q̂ ⊗ q̂

2ηq + η2q2 , (4.7)

with O the Oseen-like tensor in the SD geometry [73, 74]. Assuming then f = fex, we
obtain the particle’s velocity as

vp = ex · v(R) =
ˆ

q dq dθ

(2π)2
(1 − q̂2

x)f
(η+ + η−)q + η2q2 , (4.8)

where q̂x = cos θ. However, due to its ultraviolet (high-q) behavior, this integral diverges
logarithmically. Since the short-scale velocity gradients of v(r) are located near r = R

while in reality, the particle has a uniform velocity field for r < a (it is solid), we may
resolve this problem by eliminating the Fourier modes with wavevectors larger than the
inverse particle radius a−1 (see a similar approach in Appx. B of [146]). To simplify, we
use a sharp cutoff qmax = a−1, and integrating over q in the range [0, a−1] yields

vp = f

4πη2
ln
(

1 + ℓ

a

)
, (4.9)

with the SD length
ℓ = η2

η+ + η− (4.10)

We shall discuss more precisely in Sec. 4.3.1 the validity conditions of our pointlike
method. Let us simply note here that we need to assume a ≪ ℓ otherwise, we would
be neglecting the Fourier modes at the scale of the SD length, which are physically
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important. The condition a ≪ ℓ is also a condition of validity of the original SD law [70,
77, 137]. Note that it is very well satisfied for proteins in membranes since a lies in the
nanometer range while ℓ lies in the micron range.

In this limit we thus obtain vp ≃ f(4πη2)−1 ln(ℓ/a). Therefore the particle’s mobility
µ̃ = vp/f is given, within our approximation scheme, by

µ̃ = 1
4πη2

ln ℓ

a
. (4.11)

This is the SD law, except for an extra factor of order unity multiplying the particle
radius, namely 2/eγ ≃ 1.1. Because this factor is within the logarithm, the prefactor
obtained here, i.e., (4πη2)−1, is exactly that of the SD law (contrary to the 3D case
in which the radius appears in the Stokes power law). Numerically, with the typical
parameters a ≃ 3 nm, η± ≃ 10−3 J s m−3 and η2 ≃ 10−9 J s m−2, we find that µ and µ̃

differ only by 2%. Note that while it is formally important to have an exact result for
a perfect disc (the SD law), real objects embedded in membranes, like integral proteins,
are not perfect cylinders, but rather cylindrical-like or conical-like inclusions with an
inhomogeneous radius, so that uncertainties on the radius are actually not so important.

4.3 Mobility in bilayer membranes

As seen in Chap. 1, a real membrane is not simply a 2D viscous slab, it is made up of
two contacting fluid monolayers (labeled as ±), each with its own 2D viscosity η±

2 . The
question of the continuity, or discontinuity, of the lipids’ velocity across the separation
between the two monolayers, is important [148–150]. While it is legitimate to impose a
no-slip boundary condition at the interface between each monolayer and its contacting
solvent, and at the interface between an inclusion’s boundary and its contacting mono-
layer, it is in general necessary to allow for some velocity discontinuity ∆v = v+ − v− at
the interface between the two monolayers [148]. Intermonolayer sliding occurs essentially
because there is very little interdigitation of the lipids’ tails at the interface between
the two monolayers. The relevant parameter is the intermonolayer friction coefficient b,
which plays the role of a discrete viscosity: the stress transmitted through the interface
is b∆v [149], very much like the viscous stress η∂Vx/∂z in a bulk fluid. The larger b, the
more continuity is imposed, and the smaller b, the more sliding is allowed. In practice,
for membranes, b has been reported over a wide range 106 − 109 J s m−4 [151, 152], so we
shall leave open the possibility of intermonolayer sliding. Below, we consider two cases:
either the protein is located in one monolayer, as peripheral proteins are, or it occupies
the bilayer, like integral proteins.

4.3.1 Mobility of a protein in one monolayer

The diffusion behavior of solid particles embedded in a single monolayer of a bilayer
membrane was studied numerically in [146], and discussed analytically in [153] for
supported membranes using a phenomenological friction/slip description. The related
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problem of the diffusion of liquid domains within a monolayer (thus involving lipid flow
inside the domains) was discussed in [147].

We consider an inclusion embedded in the upper monolayer of a membrane, or simply
adhering to it (Fig. 4.1b). The membrane is treated as a bilayer with monolayer viscosities
η±

2 and intermonolayer friction b, embedded in a bulk fluid with viscosities η±. The force
f+ applied to the particle is transmitted to the upper monolayer, so that the dynamical
equations presented Sec. 2.2.2 become

η±∇2V ± − ∇P ± = 0, (4.12)
η+

2 ∇̄2v+ − ∇̄p+ + σ+ − b∆v + f+δ(r − R) = 0, (4.13)
η−

2 ∇̄2v− − ∇̄p− + σ− + b∆v = 0, (4.14)
Ṙ = v+(R), (4.15)

where ∆v = v+ − v−. These equations are supplemented by the following incompress-
ibility and continuity equations: ∇ · V ± = 0, ∇̄ · v± = 0, V̄ ±|z=0 = v± and V ±

z |z=0 = 0.
With respect to the previous problem, eq. (4.2) has been split into two equations (one for
each monolayer), intermonolayer friction has been added, and the no-slip condition (4.15)
expressing the transport of the particle involves now only the upper monolayer flow. Go-
ing to Fourier space and eliminating the bulk variables as previously yields the membrane
equations:

−η+
2 q2v+

⊥ − η+qv+
⊥ + b(v−

⊥ − v+
⊥) + f+e−iq·R · q̂⊥ = 0, (4.16)

−η−
2 q2v−

⊥ − η−qv−
⊥ + b(v+

⊥ − v−
⊥) = 0, (4.17)

v±
∥ = 0. (4.18)

Solving for the monolayer velocities, we obtain v±(q) = O±
+(q) · f+e−iq·R, with

Oϵ
+(q) = Aϵ

+(q) (1 − q̂ ⊗ q̂) , (4.19)

Aϵ
+(q) = b + q(η− + η−

2 q)δϵ,+

qD(q) , (4.20)

where

D(q) = b
[
η+ + η− + (η+

2 + η−
2 )q

]
+ q(η+ + η+

2 q)(η− + η−
2 q) (4.21)

The tensor O±
− giving the velocities for a pointlike force f− applied to the lower monolayer

is obtained by exchanging the + and − signs. These Oseen-like tensors were first derived
in [146].

In order to calculate, within our regularized pointlike approximation, the mobility µ̃m

of a particle embedded in the upper monolayer, we take f+ = f+ex, which yields the
particle velocity vp = ex · v+(R) = µ̃mf+, with

µ̃m =
ˆ a−1

0

q dq dθ

(2π)2 A+
+(q) sin2 θ. (4.22)
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Figure 4.2 – Diffusion coefficient D = kκpT µ̃m, as a function of the intermonolayer
friction b, for a protein in the upper monolayer of a membrane (i) in an infinite solvent,
i.e., H = ∞ (blue line) and (ii) in a supported membrane at a distance H from a substrate
(red line). Dashed black line: approximation D ≃ kκpT µ̃

(1)
m , valid for large b in an infinite

solvent. The parameters are identical to those of Camley and Brown in [146], Fig. 7, i.e.,
T = 319 K, η± = 10−3 J s m−3, η±

2 = 2 × 10−10 J s m−2, a = 2 nm and H = 1 nm. The red
and blue data points were extracted from the Fig. 7 of [146]. Our theory fits well the
numerical data with no adjustable parameter.

As previously, we have regularized the integral by using an upper wavevector cutoff equal
to the inverse of the particle’s radius.

We first consider the symmetric situation where η+ = η− = η± and η+
2 = η−

2 = η±
2 .

In this case, the solution is analytic, given exactly by

µ̃m = 1
8πη±

2
ln
(1 + η±

2
η±a

)√
1 + η±

2 + η±a

2a2b

+
η ln

(
4ab+η±−

√
η±2−8bη±

2

4ab+η±+
√

η±2−8bη±
2

)
16πη±

2

√
η±2 − 8bη±

2

. (4.23)

Assuming a ≪ ℓ = η±
2 /η± as in the previous section, the first term µ̃(1) of µ̃, which is

also the term dominant at large b, can be simplified into

µ̃(1)
m ≃ 1

8πη±
2

ln
 ℓ

a

√
1 + η±

2
2a2b

 . (4.24)

The mobility is related to the diffusion coefficient by Einstein’s relation D = kBT µ̃m.
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The blue curve of Fig. 4.2 shows D versus the intermonolayer friction b for infinite solvents,
as obtained from eq. (4.23). We see that µ̃m ≃ µ̃(1)

m for large b, as evidenced by the black
dashed line in Fig. 4.2. Since the usual physical range of b for lipid membranes lies in
this region, we infer that in practice

µ̃m ≃ µ̃(1)
m . (4.25)

This formula is typically valid for b larger than 105 J s m−4.
We deduce that the SD law is influenced by b when b < η±

2 /(2a2). The limit b → ∞
gives exactly the SD law. Indeed, µ̃m → µ̃ with η2 replaced by 2η±

2 . This comes from the
fact that both monolayers are fully dragged by the applied force. The limit b → 0 gives
µ̃m → 2µ̃, as apparent in Fig. 4.2, a result already pointed out in Refs. [146, 147]. This
stems from the fact that only the monolayer containing the inclusion is dragged by the
force. These behaviors are easily deduced from the form of O+

+(q), which converges to
O(q) with η2 = 2η±

2 when b → ∞ and to O(q) with η2 = η±
2 when b → 0.

In Fig. 4.2, we plotted together with our analytical curves several data points extracted
from the numerical calculations of Camley and Brown [146] who addressed the same
problem. Note the fair agreement, with no adjustable parameter. The presence of a
substrate at a distance H below the membrane can be taken into account very simply
within our model by replacing η− by η− coth(qH) in the Oseen-like tensor (4.19) [73, 74].
Then the numerical integral (4.22) gives the red curve in Fig. 4.2 which displays also a
fair agreement with the numerical results of [146].

In the general asymmetric situation, such that η+ ̸= η− or η+
2 ̸= η−

2 , the integral
(4.22) giving µ̃m must be done numerically, because the roots of D(q) are complicated.
It is possible, however, to get analytical results in the following two situations:

(i) For b → ∞, O+
+(q) → O(q) with η2 replaced by η+

2 + η−
2 . Therefore the mobility

µ̃m tends to µ̃∞ with

µ̃∞ = 1
4π(η+

2 + η−
2 ) ln η+

2 + η−
2

(η+ + η−)a. (4.26)

We recover the SD law. Everything happens as if the particle were embedded in a single
layer with a 2D viscosity equal to the sum of those of the monolayers (recall that the
2D viscosity of a thin layer is proportional to its thickness). For ordinary values of the
viscosities, i.e., η± ≃ 10−3 J s m−3 and η±

2 ≃ 10−9 J s m−2, µ̃m is well approximated by µ̃∞

as soon as b ? 108 J s m−4 (like in Fig. 4.2).
(ii) In the somewhat formal proportional case η−/η+ = η−

2 /η+
2 = α, we obtain ana-

lytically the following generalization of eq. (4.24):

µ̃m ≃ 1
4π(1 + α)η+

2
ln
 ℓ

a

(
1 + 2α

1 + α

η+
2

2a2b

)α/2
 , (4.27)

valid also typically for b ? 105 J s m−4, like in Fig. 4.2.
Let us now discuss in more detail the conditions of validity of our pointlike approxi-

mation. We do eliminate all the Fourier modes with wavevectors larger than the inverse
particle radius a−1. Obviously, we must not eliminate modes having a physical meaning
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Figure 4.3 – Mobility µ̃s of a particle with radius a = 3 nm spanning an asymmetric
bilayer as a function of the intermonolayer friction b, normalized by its limit µ̃∞ for
b → ∞. The viscosities are η− = 10η+ = 10−2 J s m−3, η+

2 = 10η−
2 = 10−8 J s m−2 (solid

curve) and η+ = η− = 10−3 J s m−3, η+
2 = 10η−

2 = 10−8 J s m−2 (dashed curve).

(stemming from relevant characteristic lengths) and contributing significantly to the in-
tegral of the Oseen-like tensor. First, let us note that this will never significantly be the
case for transmembrane proteins because a is in the nanometer range and Fourier modes
with smaller wavelengths are unphysical (they are of the order of the membrane thick-
ness or of several lipid widths). In other words, there is already an implicit cutoff in the
nanometer range in the system. So, whatever the characteristic lengths involved in the
Oseen-like tensor, our approximate method can be safely applied to membrane proteins.
Now, if we were to apply our method to somewhat larger particles, e.g., liquid domains,
it would be necessary to investigate whether the integral of the modes between a−1 and
the inverse nanometer range contribute negligibly to the total integral or not. For in-
stance, our method would fail for solid particles larger than the SD length since it would
yield a mobility different from that calculated by Hughes et al. [137] who generalized the
mobility for proteins with size above the SD length.

4.3.2 Mobility of a protein spanning the bilayer

We now apply our method in order to calculate the mobility µ̃s of an inclusion spanning
the whole membrane, while taking into account the bilayer structure of the latter. The
force f applied to the inclusion is now transmitted to both monolayers in the form of
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two pointlike forces f±. If η+
2 ̸= η−

2 (or η+ ̸= η−) we expect, by lack of symmetry, these
forces to be different. They are determined by the conservation of the total force and by
the no-slip boundary condition at the surface of the particle:

f+ + f− = f , (4.28)
v+(R) = v−(R) = Ṙ. (4.29)

Using eq. (4.19) and the linearity of the problem, we get

v±(q) = (O±
+ · f+ + O±

− · f−)e−iq·R

= 1 − q̂ ⊗ q̂

qD(q) ·
[
bf + q(η∓ + η∓

2 q)f±
]

e−iq·R. (4.30)

Using our regularized pointlike approximation, we obtain v±(R) = bI0f + (η∓I1 +
η∓

2 I2)f±, with

In =
ˆ a−1

0
dq

qn

4πD(q) . (4.31)

Solving then eqs. (4.28)–(4.29) gives

f± = η±I1 + η±
2 I2

(η+ + η−)I1 + (η+
2 + η−

2 )I2
f , (4.32)

and then vp = µ̃sf , with

µ̃s = bI0 + (η−I1 + η−
2 I2)(η+I1 + η+

2 I2)
(η+ + η−)I1 + (η+

2 + η−
2 )I2

. (4.33)

Note that in the completely symmetric case η+ = η− = η and η+
2 = η−

2 = 1
2η2 the

dependence in b disappears and µ̃s reduces to µ̃. The mobility µ̃s must be studied
numerically because In has no simple analytical form. We find that µ̃s increases slightly
as b decreases, in a way that is enhanced by the asymmetry of the viscosities (fig. 4.3).
However, this effect is actually rather negligible, since for ordinary viscosities (as in
Fig. 4.3) it requires b > 104 J s m−4, well below any experimental value. We may therefore
take the limit b → ∞, which yields D(q) ≃ b[η+ + η− + (η+

2 + η−
2 )q], In ∝ 1/b, and thus

µ̃s ≃ bI0 → µ̃∞. (4.34)

We recover again the SD law with η2 replaced by η+
2 + η−

2 . Physically, intermonolayer
friction can be disregarded for particles spanning the bilayer, because monolayer slippage
nearby the particle is forbidden by the no-slip conditions (4.28)–(4.29) at the particle’s
boundary.
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4.4 Mobility of a curvature-inducing protein

Let us finally apply our method to membrane inclusions that curve the membrane. Such
particles are usually either transmembrane proteins with a conical shape that bind the
surrounding lipids, thus imposing a local curvature of the membrane [55, 154, 155], or non-
flat capping proteins adhering to the membrane [156], with the same result (see Sec. 1.3).
Experiments have been made also with larger adhering beads [157].

We will confine ourselves to weakly deformed membranes, described by their elevation
z = h(r) above the reference plane r = (x, y). The elastic energy of the system consisting
of the membrane and the inclusion can be expressed as

H =
ˆ

d2r
[
κ

2 (∇2h)2 + σ

2 (∇h)2 + κ̄p G(r − R)∇2h
]

. (4.35)

The first two terms correspond to the Helfrich Hamiltonian and describe the bending
energy of the membrane and the energy associated with its tension σ [57]. The third
term models an isotropic inclusion located at the in-plane position R that promotes
membrane curvature with strength κ̄p, in the way of [43]. Here that we rely on a simple
linear membrane-protein coupling to keep the calculations as simple as possible. Note
that, with respect to the linear coupling expression 2.16, the rigidity κ̄p contains the
favored curvature c0, i.e., κ̄p ∼ κpc0. The function G(r) is a generic function describing
the envelope of the protein influence over the membrane, e.g., a Gaussian with a width
comparable to the protein’s radius [43, 68]. Note that in this model the actual curvature
set by the inclusion depends on the elastic response of the membrane.

Assuming that the flow within the membrane remains quasi-2D, which is standard
in the limit of small deformations [148, 158], and disregarding the membrane bilayer
structure for the sake of simplicity, the dynamical equations of the system presented
Sec. 2.2.2 can be written as

η±∇2V ± − ∇P ± = 0, (4.36)

η2∇̄2v −∇̄p + σ+ + σ− +
(

f − ∂H
∂R

)
δ(r − R) = 0, (4.37)

−δH
δh

+ Σ+ + Σ− = 0, (4.38)

Ṙ = v(R). (4.39)

where
Σ± = ±(2η±∂zV ±

z − P ±)|z=0. (4.40)

The first equation is the bulk Stokes equation. The second equation is the Stokes equation
for the membrane planar flow, including the force density transmitted by the particle.
The third equation is the balance of the stresses normal to the membrane, with Σ± the
stresses transmitted by the bulk. The last equation is the no-slip condition expressing the
transport of the particle. These equations must be supplemented by the incompressibility
relations ∇ · V ± = 0 and ∇̄ · v = 0, and by the continuity conditions V̄ ±|z=0 = v and
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V ±
z |z=0 = ḣ.

Let us now express them in mixed reciprocal-direct space, as in Sec. 4.2, so as to
eliminate the bulk velocities [148]. The boundary conditions read V ±

z (q, z)|z=0 = ḣ(q)
and V̄ ±(q, z)|z=0 = v(q) = v⊥(q)q̂⊥. The bulk Stokes equations (see Sec. 4.2) give
P ± = ±2η±qḣ(q) exp(∓qz), V ±

∥ = −iqzḣ(q) exp(∓qz), V ±
⊥ = v⊥(q) exp(∓qz) and V ±

z =
(1 ± qz)ḣ(q) exp(∓qz). One can thus calculate the stresses transmitted by the bulk onto
the membrane: σ± = −η±qv⊥q̂⊥ and Σ± = −2η±qḣ. The dynamical equations of the
membrane, i.e., Eqs. (4.37)-(4.38), read then in Fourier space

(2ηq + η2q
2)v⊥(q) = f ′e−iq·R · q̂⊥, (4.41)

v∥(q) = 0, (4.42)
4ηqḣ(q) = −(κq4 + σq2)h(q) + κpq2G(q)e−iq·R, (4.43)

where 2η = η+ + η−, and where

f ′ = f − κp

ˆ
d2r G(r − R)∇∇2h (4.44)

is the applied force reduced by the pull-back due to the membrane-inclusion coupling.
The last equation, Eq. (4.43), determines the deformation of the membrane produced by
the dragged inclusion.

Let us consider a steady state with Ṙ = vpex, where vp is the constant particle’s
velocity and ex is the direction in which the force is applied, as in Refs. [43, 159]. In the
coordinate system comoving with the inclusion, we have R = 0 and and ḣ(r) becomes
−vp∂xh(r), so that Eq. (4.43) gives

h(q) = κpG(q)
κq2 + σ

(
1 + 4iηqxvp

κq3 + σq

)
+ O(v2

p). (4.45)

The effective force applied to the protein is then given by eq. (4.44), yielding, at linear
order in the velocity, f ′ = f − γvp, with

γ = 2ηκ2
p

ˆ
q

q3G(q)2

(κq2 + σ)2 , (4.46)

where
´

q
= (2π)−2´ Λ

0 d2q, with an upper wavevector cutoff kmax = Λ of the order of the
inverse membrane thickness. Injecting f ′ in Eqs. (4.41) and (4.42) yields v(q) = O(q)·f ′,
where O is the Oseen-like tensor (4.7) of the SD problem. Proceeding like in Sec. 4.2, we
thus obtain vp = µ̃(f − γvp), where µ̃ is the SD mobility (4.11). Hence, f = (µ̃−1 + γ)vp,
so that the mobility µ̃c for an inclusion curving the membrane is given by

1
µ̃c

= 1
µ̃

+ γ. (4.47)

This implies, thanks to the Einstein relation, that the effective diffusion coefficient Deff =
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kBT µ̃c is given in terms of the bare diffusion coefficient D0 = kBT µ̃ by

Deff = D0

(
1 + D0γ

kBT

)−1
. (4.48)

The extra friction γ comes from the mechanism introduced in [159], which is the following.
At rest, the inclusion sits in equilibrium at the top of the bump it creates. The pulling
deforms the bump in such a way that the inclusion does not sit any longer at the minimum
energy position: there is therefore a force that pulls it back; this force, the second term of
Eq. (4.44), is responsible for the extra drag. The work produced by this drag is dissipated
by the dynamics of the membrane deformation within the surrounding solvent. Indeed,
as shown in [68], this dynamics produces precisely the dissipation (4.46).

4.5 Analysis of the results of Quemeneur et al.

By comparing the diffusion coefficients of AQP0 proteins that do not deform the mem-
brane with KvAP proteins that induce a local curvature C0 to the membrane, S. Aimon
and coworkers [42] highlight the curvature sensing of KvAP proteins. In a later work,
Quemeneur and coworkers [43] observe KvAP proteins mobility exhibits a tension de-
pendence: in the high tension regime, the diffusion coefficients of AQP0 (blue points in
Fig. 4.4) and KvAP (red points in Fig, 4.4) are similar and correspond to the expected
value predicted by the SD model. However, when the tension decreases, while the AQP0
diffusion coefficient remains unchanged, KvAP drops as low as half the SD diffusion.
Investigating this effect using a linear coupling between the membrane height and the
proteins, Quemeneur et al. [43] find a diffusion coefficient that coincides with the one
derived above (4.48), with the correspondence κp = 1

2κΘ and Λ = 2π/a. However they
postulate that the total friction is the sum of the usual SD friction and the extra friction
coming from the membrane deformation. With our approach, we are able to derive this
total friction from first principles.

As shown in Fig. 4.4, a linear membrane-protein coupling is able to fit the diffusion
coefficient of KvAP proteins [43]. To get this fit, A delta function for G(r) is assumed
and the parameters taken are a = 5 nm, η = 10−3 Jsm−3, η2 = 6 × 10−10 Jsm−2, κ = 20
kBT and κp ≃ 1.4 × 10−17 Jnm. These values gives a coupling strength comparable to
the bending strength and corresponds to a spontaneous curvature C0 ≃ 1 nm−1, which
is 25 times bigger than the actual curvature (for KvAP, C0 ≃ 0.04 nm−1, see Chap. 1).
It is therefore unlikely that the linear coupling alone can explain the behavior of KvAP
proteins

Authors of [60] and [160] state that “a completely rigid conical protein (otherwise
resembling KvAP) will never diffuse like a cylindrical one, such as AQP0” and so propose
a mechanism where the protein shape depends on the membrane tension.
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Figure 4.4 – Semilogarithmic plot of the diffusion coefficient Deff as a function of the
membrane tension for AQP0 (blue points) and KvAP (red points) proteins. the dashed
line indicates the value of the SD diffusion coefficient determined with Eq. (4.11). The
points are experimental data scraped from [43]. The thick black line corresponds to a fit
of the KvAP diffusion coefficient performed in a similar fashion of [43]. The parameters
are given in the main text.
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4.6 Discussion
We have shown that an excellent analytical approximation to SD law can be obtained
very simply from the SD “Stokeslet" (the Oseen-like tensor of the SD problem) evaluated
at the origin, upon regularizing it with an upper wavevector cutoff of the order of the
inverse of the particle size a. Using this method, we have investigated the consequences
of the bilayer structure of the membrane (and of its asymmetry) and the role of the
intermonolayer friction coefficient b. We have also investigated the consequences of the
deformation (bump) caused by a curvature-inducing particle.

In the case of an inclusion embedded in only one of the two monolayers, or simply
adhering to one of them, we found that for large values of b the SD law holds upon
replacing the 2D viscosity η2 of the membrane by the sum of the 2D viscosities of the
monolayers. Indeed, b can be neglected when it is large, as it effectively sets a no-slip
boundary condition between the two monolayers (they then act as an effective medium
of viscosity η2 = η+

2 + η−
2 ). This breaks down when b is smaller than η2/(4a2), in which

case the mobility gets larger since the monolayer opposite to the inclusion is not fully
dragged by the inclusion around the latter.

In the case of an inclusion spanning the whole bilayer, we found that for all practical
values of b, the rule of replacing the 2D viscosity of the membrane by the sum of the
monolayer viscosities holds. This is because the no-slip boundary condition between the
inclusion and each of the two monolayers effectively imposes a no-slip condition between
the monolayers around the inclusion.

Finally, for curvature-inducing inclusions, we showed (in the small deformation regime)
that the total friction is the sum of the SD friction and that due to the pull-back caused
by the velocity-induced deformation of the bump. It would be interesting to investigate
whether this remains true in a more general model involving a quadratic membrane-
inclusion coupling.
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Chapter 5

Collective behavior of
curvature-inducing proteins with
hydrodynamic couplings

The goal of this chapter is to study the diffusion of an assembly of proteins. By taking
into account the hydrodynamic couplings between proteins, the authors of [161] have
found the emergence of collective motion. First, we focus on the diffusion of an assembly
of proteins in a membrane held flat, where our numerical simulations allow us to confirm
the validity of the approximations made in [161] to predict the long-time evolution of
the diffusion coefficient. We then go further by taking the thermal fluctuations of the
membrane into account, and by assuming curvature-inducing proteins to study the effect
of membrane deformations on the assembly’s diffusion.

5.1 Introduction

In the previous chapter, we considered a pointlike protein linearly coupled to a membrane
at thermal equilibrium and we studied its diffusion when it induces a curvature of the
membrane. Of course, in the literature, we can find more refined models; the protein size
is considered, the membrane-protein coupling is quadratic and the membrane deformation
is taken into account, as well as thermal fluctuations [65–68]. An interesting result
these articles highlight about this more realistic model is the reduction of the diffusion
of a curvature-inducing protein relative to the “flat” protein case (the initial problem
considered by Saffman and Delbrück [70]). As stated in [66], this reduction comes from
the negative correlations ⟨ξ(t) · f(t′)⟩ where ξ(t) is the stochastic force applied on the
protein at time t and f(t′) the force the membrane applies on the protein at time t′ > t.
These correlations stand for the membrane reaction to the stochastic force exerted on the
protein and is similar to the mechanism presented in Sec. 4.4 and [159]: when the random
force moves the protein during a small discrete time step, the latter, via its interaction
with the membrane, will change the shape of the membrane so that the energy of the
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system tends towards the minimum. However, this minimum energy cannot be reached
in such a short time, therefore, the membrane pulls the protein back to its initial position
through the force f(t′), leading to overall negative correlations. Note that it is essential
to consider the membrane’s reaction to the protein’s displacement, i.e., to consider the
deformation force the protein exerts on the membrane. Otherwise, these correlations
would not exist as the membrane shape would evolve independently from the protein’s
position, leading to a diffusion coefficient greater than the one of a “flat” protein [65–67].

When there are N > 1 proteins, they do not move independently due to interprotein
forces mediated by the membrane and the fluid [80, 161, 162]. In [161], the authors use
both theoretical and numerical Brownian dynamics simulations to highlight the effects of
the hydrodynamic correlations on the diffusion of an assembly of proteins (see Fig. 5.1).
Since the membrane is a viscous fluid, it generates hydrodynamic correlations between
proteins [80, 161] affecting the diffusion of the ensemble. Besides the self-diffusion coef-
ficient of an isolated protein, D0, to study the diffusion of the assembly of proteins, one
has therefore to consider also the diffusion coefficient of both the center of mass of the as-
sembly, DCM, and of the growth of the gyration radius, Dg = D0 − DCM [161], where this
radius is the characteristic radius of the assembly defined by R2

g = N−1∑
i(ri − RCM)2,

with ri the position of the ith protein. The ratio of these diffusion coefficients impacts
the collective diffusion of the assembly; when DCM is greater than Dg, then the hydrody-
namic couplings are strong enough to generate a collective motion between the proteins
where the diffusion of the assembly’s center of mass behaves like the diffusion of the rigid
protein disk with a characteristic radius the radius of the assembly [161]; in the opposite
case, the proteins’ assembly disperses more than it diffuses collectively so that the effect
of the hydrodynamic couplings over the motion of each protein becomes negligible [161].
Furthermore, the diffusion coefficients are time-dependent; in the initial time for a dense
assembly, the collective effects are strong, then, as time goes by, proteins move away from
each other, weakening the collective effects and the regime becomes more dispersive [161].

In addition to the hydrodynamic couplings, there are mediated interactions between
curvature-inducing proteins [55, 103] that have not been taken into account to study
the diffusion of a protein’s assembly in the literature yet. When proteins induce a cur-
vature of the membrane, the latter is deformed and, in return, generates elastic forces
between proteins. Let us consider two pointlike curvature-inducing proteins embedded
in a membrane. By assuming that the spontaneous curvatures C1 and C2 are imposed as
local constraints on the membrane, one can determine the elastic interaction through the
partition function of the system [103] and, as in Chap. 4, by using a cutoff of the order
the size of the proteins. Fig. 5.2 shows the typical behavior of the elastic interaction be-
tween two proteins for different curvatures: when the curvatures have the same sign, the
interprotein interaction is always repulsive; in the case of curvatures of opposite sign [19],
at a distance shorter than a length of the order the characteristic length ξ =

√
κ/σ,

the interaction is repulsive and, at larger distances, it becomes attractive. It is worth
mentioning that in the case of a tensionless membrane (σ = 0), the elastic interaction is
always repulsive [110]

In the first section, we will present the modelization and the numerical methods we use
to study the collective behavior of an assembly of proteins. We then use simulations to
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10 nm

Figure 5.1 – Numerical simulation snapshot of an assembly of N = 50 proteins at
time t = 20 µs with and without hydrodynamic correlations. The gray and black cir-
cles correspond to the positions of the proteins of radius ap = 0.5 nm without and with
hydrodynamic coupling, respectively. The dispersion of the assembly highlight the emer-
gence of a collective behavior between proteins when the hydrodynamic couplings are
taken into account. The parameters of the simulation are the membrane fluid viscosity
η2 = 10−9 Jsm−2, the initial assembly’s radius R0 = 10 nm, the time step of the evolution
τ = 1 ns. The simulation reproduced the results of [161] and is performed with the method
described below.
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Figure 5.2 – Elastic interactions in units of kBT between two pointlike proteins as a
function of the dimensionless interprotein separation r/ap, where ap is the effective radius
of proteins, in two cases: (a) for opposite curvatures, C1 = −C2 = 0.04 nm−1 and identical
curvatures, C1 = C2 = 0.04 nm−1. The vertical dashed line indicates the length below
which the steric repulsion occurs (overlapping between proteins is forbidden). The other
parameters are κ = 30kBT , ξ =

√
κ/σ = 5ap and ap = 10 nm.
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recover the results of [161] which include hydrodynamics but not membrane fluctuations.
In the second section, we will extend our simulation to take into account the membrane
curvature and so the mediated interactions between proteins.

5.2 Diffusion of an assembly of proteins within a flat
membrane

We consider N proteins placed randomly in a fluid membrane held flat and surrounded by
a bulk fluid. We recall that the hydrodynamic couplings are taken into account through
the positive definite mobility tensor Õ presented in Chap. 2 and Appx. A. The dynamics
of such a system is described by the Langevin equation

ṙn(t) = −
∑
m

Õ(rn − rm) · Hrm + ξn(t), (5.1)

where −Hrn is the force exerted on the protein located at rn and ξn are Gaussian white
noises with zero mean and variance

⟨ξn(t)ξm(t′)⟩ = 2kBT Õ(rn − rm)δ(t − t′). (5.2)

Note that, since the membrane remains flat, proteins do not act on the membrane and
therefore Hrn = 0, and the only forces are the stochastic ones, just as in [161].

5.2.1 Numerical method
To perform the simulations, we use the methods of Brownian dynamics with hydrody-
namic interactions; we first discretize the equations by means of the Ermak-McCammon
scheme [82, 163], i.e., a stochastic first-order forward integration scheme. Therefore, we
describe the displacements of proteins with the equation

ri,n(t + τ) = ri,n(t) +
√

2kBTτ Γij(rn − rm) ηj(t), (5.3)

where τ > 0, ηj are independent Gaussian variables with 0 mean and standard deviation 1
which are simulated by generating uniform variables and transforming them into Gaussian
ones with a Box-Müller algorithm [164]. Since the mobility tensor Õ(rn − rm) is positive
definite, we can use the Cholesky decomposition that introduces a sort of square-root
of matrix: Õij = ΓijΓT

ij, with Γ(rn − rm) the unique lower triangle matrix giving this
decomposition. Therefore, the variance of the second term of the rhs is consistent with
the fluctuation-dissipation relation (5.2). Numerically, we use the positive definite tensor
Õ given by [80]

Õα=β
ij = 1

4πη2

(
ln 2ℓSD

ap

− γ

)
δij, (5.4)

Õα ̸=β
ij = 1

4πη2

[(
ln 2ℓSD

r
− γ − 1

2

(
1 −

2a2
p

r2

))
δij +

(
1 −

2a2
p

r2

)
rirj

r2

]
, (5.5)
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where ℓSD = η2/(2η) is the Saffman-Delbrück length, γ Euler’s constant and ap the
proteins’ radius. From the first equation, one can recognize the Saffman-Delbrück law that
defines the self-mobility (Õαα). We then get the matrix Γ by implementing a Cholesky
decomposition algorithm on Õ [165].

Thus, at each time step τ , we compute simultaneously the new positions rn(t + τ).
Then, we update the current positions preventing overlapping between proteins, i.e., we
check one protein by one that the distance between its new position and another protein
is less than 2ap, rejecting the new position if this condition is not fulfilled.

To perform the simulation, we also need to choose physically consistent parameter
values. First, we take a = kBT = η = 1, i.e., the unit of length is a, which is the
membrane thickness, the energy unit is kBT and the time unit is 4ηa3/kBT where η is
the bulk fluid viscosity. Typical values for the parameters are a ≃ 5 nm, T ≃ 300 K,
η ≃ 10−3 J s m−3 (water), which yields a unit of time around 1 µs and η2 ≃ 10−9 J s m−2.
We take τ ≃ 0.1 µs, the largest characteristic time for which the algorithm converges.
Finally we consider an assembly of up to N = 50 proteins placed randomly inside a
circle of radius R0 = 10 nm like in [161]. It may be worth noting that unlike [161] where
the authors consider a finite patch of fluid with periodic conditions, we do not need this
assumption; otherwise, we would have needed to take into account the infinite images
due to the long-rangedness of the hydrodynamic couplings.

5.2.2 Short time diffusion coefficients

We remind that the diffusion coefficient D of a two-dimensional system is related to its
mean square displacement ⟨R2⟩ by the equation

D(t) = 1
4

d⟨R2⟩
dt

. (5.6)

The authors of [161] simulated the evolution of the protein assembly up to a time of
order 0.1 ms. At such a short time, the mean square displacements of both the center of
mass ⟨R2

CM⟩ and the gyration radius ⟨R2
g⟩ are approximately linear, i.e., the associated

diffusion coefficients are constants given by the generic relation ⟨R2⟩ = 4Dt. Repeating
the simulation for different numbers N of proteins in the assembly, the center of mass
diffusion coefficient DCM is found to decay with N without hydrodynamic correlations
whereas it is almost unchanged in their presence [161].

Since our model is similar, we should be able to retrieve the results of [161]. Therefore,
we reproduce their simulations using their parameter values, especially, we take ap =
0.5 nm; a value that will be changed to 5 nm in the following to be closer to the real
proteins’ radius (see Chap 1).

Thereby, in Fig. 5.3 we compare our results of DCM as a function of N with [161]. First,
the diffusion coefficients DCM and Dg are comparable, which is expected in the presence
of hydrodynamic correlation. Since we perform an average over 1000 runs, we get more
accurate diffusion coefficients values than [161] (the authors performed an average on 100
runs). Therefore our results are closer to the expected diffusion coefficients.
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Figure 5.3 – Numerical diffusion coefficients of the center of mass (a) and growth of
the gyration radius (b) as a function of the number N of proteins in the assembly. The
red triangles and black circles correspond to the diffusion coefficient values given in [161]
and those obtained numerically with our own simulations, respectively. (a) the solid line
corresponds to the expected diffusion coefficient D0 for an isolated protein determined
with the SD law [70], which gives D0 ≃ 2.31 µm2s−1 for ℓSD = 500 nm, ap = 0.5 nm,
η2 = 10−9 Jsm−2 and T = 300 K. (b) the solid line corresponds to the analytical prediction
of Dg for N ≫ 1 and R0 = 10 nm determined in [161]. The diffusion coefficient values are
averaged over 1000 runs.

5.2.3 Time evolution of the diffusion of the center of mass

By assuming a time-independent interprotein distribution and using the Einstein relation
that links the diffusion coefficient to the positive definite mobility tensor Õ(r), one can
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determine analytically a self-consistent equation for the time evolution of DCM [161]:

DCM(t) = kBT

8πη2

{
− ln

[
1

4ℓ2
SD

(R2
0 + 4D0t − 4

ˆ t

0
DCM(s)ds)

]
− 2γ − 2b

}
, (5.7)

where b is a geometric factor that depends on the interprotein separation distribution.
For instance, if the interprotein distribution is a Gaussian, b = 1

2(ln 2 − γ) and if it
is a uniform distribution, b = −1

4 [161]. Unfortunately, the authors of [161] did not
perform simulations where the time evolution of the diffusion of the center of mass can
be determined numerically. We have simulated the evolution of an assembly of proteins
up to t = 1 ms to compare with the analytic predictions of this article. In Fig. 5.4,
we compare the evolution of the numerical diffusion coefficient DCM to analytical ones
where either a uniform or Gaussian interprotein distribution is assumed. Qualitatively, as
predicted in [161], initially and at short time, the interprotein distances are distributed
along the initial distribution (uniform in our simulations), and then, at a time long
enough, the distribution of the interprotein distances tends to a Gaussian, regardless of
the initial distribution. Thereby, our numerical method allows us to perform long time
simulations, and, in doing so, to validate the approximations used in [161] to determine
analytically the behavior of the collective diffusion.

5.3 Collective diffusion of curvature-inducing proteins
in a fluctuating membrane

Now, let us consider a membrane deformed locally by proteins and that can fluctuate.
Therefore, we consider a membrane fluid whose dynamics is described through its height
field h(r) and of viscosity η2 surrounded by a three-dimensional bulk fluid with viscosity
η. The membrane contains N curvature-inducing proteins with spontaneous curvature
±c0. The dynamics of such a system was derived in Sec. 2.2.2:

ḣq(t) = − 1
4ηq

δH
δh

+ νq(t), (5.8)

ṙn(t) = −
∑
m

Õ(rn − rm) · ∂H
∂rm

+ ξn(t), (5.9)

where H is the Hamiltonian composed of the usual Canham-Helfrich energy and the elastic
interaction between membrane-proteins with a coupling strength κp (see Chap. 2). The
dynamics of the membrane field h(q, t) has been discretized in space since we perform
the simulations on a finite lattice membrane patch of size L. The noises follow the
fluctuation-dissipation relation (kB = 1):

⟨νq(t)νq′(t′)⟩ = T

2ηq
L2δq+q′,0 δ(t − t′), (5.10)

⟨ξn(t)ξm(t′)⟩ = 2kBT Õ(rn − rm)δ(t − t′), (5.11)
⟨νnξm⟩ = 0. (5.12)
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Figure 5.4 – Determination of the time evolution of center of mass diffusion coefficient
DCM. (a) Evolution of the mean square displacement of the center of mass ⟨R2

CM⟩ for N =
50 proteins. The average was performed over 10000 runs with parameters ap = 0.5 nm,
R0 = 10 nm, η2 = 10−9 Jsm−2 and ℓSD = 500 nm. The red dashed curve is a fractional
fit of the form (a1t + a2t2)/(b0 + b1t + b2t2) whose derivative gives an estimate of the
diffusion coefficient. (b) Time evolution of the diffusion coefficient DCM. The black curve
corresponds to the numerical coefficient we get with the derivative of the former fit. The
grey and tanned dashed curves correspond to the analytical expectations determined with
Eq. (5.7) for a uniform interprotein separation and a Gaussian one, respectively.
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Since we have two coupled dynamical equations we first study their decoupled dy-
namics to determine their respective characteristic time evolution, i.e., we estimate the
displacement of a disk-like protein in a non-fluctuating membrane fluid and the relaxation
of membrane modes from a deformation regardless of the coupling with proteins. The
former phenomenon is described by a Brownian motion with a diffusion coefficient given
by the Saffman-Delbrück law [70], D0. Therefore, during a time ∆t, the characteristic
displacement ∆l of the protein is given by

∆l ∼
√

D0∆t. (5.13)

The latter case can be studied using the noiseless version of Eq. (5.8) with the standard
Canham-Helfrich Hamiltonian (see Sec. 2.1.1) in Fourier space:

4ηqḣq = −(κq4 + σq2)hq. (5.14)

The solution of this first order differential equation introduces the characteristic time τq

of the relaxation given by

τq = 4η

κq3 + σq
. (5.15)

Moreover we use the physical parameters η2 = 10−9 Jsm−2, η = 10−3 Jsm−3, a = 5 nm,
κ = 20kBT and a weak surface tension σ = 8.3 10−6Jm−2 to ensure long-range protein-
protein interactions. The protein displacement causes membrane deformations at different
length scales, from the shortest meaningful length 2ap to wavelengths of the order the
size L of the patch. Therefore, we compare the characteristic time on these two extrema.
For a mode of a length comparable to the size of a protein, i.e., π/q = 2ap = 10 nm, the
relaxation time is around τq ≃ 1.6 ns. In the meantime, the protein moves a characteristic
distance of ∆l ≃ 50 pm. The time it takes for the protein to move a distance comparable
to this mode, i.e., ∆l = 2ap, is ∆t ≃ 64 µs. Now, considering a mode comparable to the
membrane patch length L = 300 nm, π/q = L, the characteristic relaxation time of the
membrane is τq ≃ 22 µs. A displacement of the same order, ∆l = L needs a characteristic
time ∆t ≃ 58 ms. Therefore, while the dynamics of the membrane operates at fast time
scales, the proteins have a slow dynamics. Thus, the relaxation of the membrane field
can be considered instantaneous with respect to the dynamics of the proteins.

5.3.1 Simulation method

Since we take into account the membrane height field, we simulate a finite membrane
square patch of size L and we assume periodic boundary conditions (PBCs) for the mem-
brane only. As for proteins, if we assume PBCs, we will have to consider the interactions
between the original proteins and their images through Ewald summation [166, 167] be-
cause the hydrodynamic correlations are long-range. Thereby, to avoid these additional
computations we do not take PBCs for proteins, and we simulate at times short enough
to keep proteins away from the original membrane patch. Besides, since we take a patch
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of length L = 330 nm that is close to the Saffman-Delbrück length, ℓSD = 500 nm, the
mobility tensor Õ(r) derived earlier is invalid to describe the hydrodynamic interactions
in assemblies whose size becomes comparable to the membrane patch length.

We introduce an ultraviolet cutoff Λ = π/a in order to get rid of Fourier modes asso-
ciated with lengths smaller than the membrane thickness a as we assume the membrane
to be bi-dimensional. In the following Therefore the modes are according to

q = 2π

La
(n, m), n, m integers ∈

[
−L

2 ,
L

2

]
. (5.16)

Since we assume a discretized membrane field, we use the following discrete Fourier
transform and discrete inverse Fourier transform

hq =
∑

r

hre−iq.r, hr = 1
L2

∑
q

hqeiq.r. (5.17)

Numerically, these transforms will be performed via Fast Fourier Transform algorithms
when needed.

To simulate the dynamics we use an Ermak’s scheme similar to that used in the
previous section:

hq(t + τ) = hq(t) − 1
4η

[
(κq3 + σq)hq(t) + κp

N∑
n=1

qiqj

q
Kij(rn)e−iq·rn

]
τ + νq(t), (5.18)

where the second term is composed of the non-interacting Helfrich Hamiltonian and the
membrane-protein couplings with Kij(rn) the elements of the deviation curvature tensor
at position rn given by

Kij(rn) = − 1
L2

∑
k

kikjhkeik·rn − c0δij. (5.19)

Since the modes are complex, we first need to decompose this equation into real and
imaginary parts. The deterministic part is straightforward as only hq and e−iq·rn are
complex. For the noise, we use the correlations ⟨ξqξq⟩ = 0 and ⟨ξqξ−q⟩ = 0 to determine
the variance of both its real and imaginary parts and we introduce independent identically
distributed Gaussian variables ζq that satisfy the fluctuation-dissipation theorem such
that

⟨ζ2
q⟩ = kBT

8ηq
L2τ, (5.20)

Re ξq = ζq + ζ−q, (5.21)
Im ξq = ζq − ζ−q, (5.22)

(5.23)

to decouple the modes, i.e., while the complex variables ξq and ξ−q are coupled, the real
variables ζq and ζ−q are independent. We use a Box-Müller algorithm to generate these
variables.
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Regarding the dynamics of the proteins, the novelty lies in the elastic forces applied
by the membrane in addition to the stochastic forces. These forces are given by

−Hrn = −κpKij(rn)∇∂i∂jh(r)|r=rn . (5.24)

Therefore, we simulate the dynamics of the proteins in the same way as previously, we
apply an Ermak-McCammon scheme to get the equation

ri,n(t + τ) = ri,n(t) −
∑
m

Õij(rn − rm) ∂H
∂rm, j

τ +
√

2kBTτ Γij(rn − rm) ηj(t), (5.25)

and we compute the mobility tensor elements Õij for all proteins at each time step along
the matrix elements Γij determined by a Cholesky decomposition.

Note that the dynamics of the proteins is in continuous space despite the coupling
with the space-discretized membrane field. Since Kij(rn) is just a number updated at
each step, we do not need to place the proteins on lattice sites to perform the compu-
tation of the membrane-protein interaction term in Eq.(5.18). Thus, at each time step,
we first compute the elements Kij(rn) and the forces −Hrn exerted by the membrane
on the proteins, and then we update the dynamics of the membrane and the proteins
simultaneously.

Furthermore, since we include the fast dynamics of the membrane, we adopt an ap-
propriate time step for the simulation. To do so, we need all the modes to converge,
i.e., the time step should be smaller than the characteristic relaxation time of the fastest
mode with norm q =

√
2π given by Eq. (5.15). In addition, the time step should not be

too small in order to avoid unnecessary computational costs. Therefore, we end up with
τ = 0.1 ns.

5.3.2 Results

As previously, we are interested in the diffusion of the center of mass and growth of
the radius of gyration, and how it compares to the case without membrane fluctuations.
We consider an assembly of up to N = 25 proteins of radius ap = 5 nm such that
the size of a protein is equal to the unit length a = 10 nm to keep them pointlike.
These proteins induce a spontaneous curvature c0 = 0.04 nm−1 with a moderate strength
κp = 4 × 10−17 Jnm2 on the membrane. It may be worth noting that the largest value of
κp is dependent of the time step ∆t since large values needs smaller time steps to prevent
the numerical scheme from diverging.

Initially, the proteins are placed randomly in a circle of radius R0 = 38 nm. With
these parameters, we were able to simulate the evolution of the assembly until a time
around t = 0.4 ms.

Since the proteins all have the same spontaneous curvature, they quickly create a
region with a favorable curvature for the proteins. Thus, despite the repulsive interactions
between the proteins, they remain grouped (see Fig. 5.5). How strong this effect is remains
to be further investigated.

In Fig. 5.6, we see that the mean square displacements of the center of mass ⟨R2
CM⟩
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Figure 5.5 – Top view snapshot of the membrane containing N = 25 proteins at time
t = 0.15 ms. i and j are used to indicate the membrane lattice sites. The spontaneous
curvature, being positive, generates negative bumps (blue area). The parameters are
κ = 20kBT , σ = 2 × 10−5 Jm−2, η = 10−3 Jsm−3, η2 = 10−9 Jsm−2, κp = 4 × 10−17 Jnm2,
c0 = 0.04 nm−1 and ap = 5 nm.

and of the gyration radius ⟨R2
g⟩ are of the same order at short times, i.e., around t =

0.1 ms. We deduce that the collective behavior observed in [161] still exists in spite of the
presence of curvature couplings and fluctuations. Therefore, despite the elastic repulsive
interactions between proteins, the hydrodynamic couplings dominate and still generate a
collective behavior between proteins.

In Fig. 5.7a, we compare the mean square displacement of the center of mass in the
presence of curvature couplings with its counterpart where the curvature was neglected.
Although both have the same behavior, we see a discrepancy: in the presence of cur-
vature couplings, the mean square displacements increase slower. Keeping in mind the
effects of fluctuations on the mobility of a single isolated protein [66], we deduce that
this discrepancy comes from the correlations ⟨ξ(t) · f(t′)⟩ according to the mechanism
presented above in the introduction. Further studies are needed on these correlations
to better quantify their effect. We also compare the growth of the radius of gyration
with and without the curvature couplings (see Fig. 5.7b). In the presence of curvature
couplings, the growth of the radius of gyration is slightly reduced. Therefore, we expect
a slower growth which still needs to be further investigated by simulating at larger times.
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Figure 5.6 – Evolution of the mean square displacement of the center of mass and growth
of the radius of gyration for an assembly of N = 25 curvature-inducing proteins. The
black curve corresponds to ⟨R2

CM⟩ and the lightgray curve to ⟨R2
g⟩. Since these quantities

are comparable, we see the emergence of a collective motion due to the hydrodynamic
couplings between proteins [161]. The parameters are given Fig. 5.5. The average was
performed over 1000 realizations.

5.4 Overview

We have first extended the simulations of proteins in a flat membrane further in time
which permitted us to probe the analytical predictions made in [161] based on ill-controlled
approximations concerning the anomalous diffusion of an assembly of proteins subject to
hydrodynamic correlations.

We have then taken into account the membrane-proteins curvature couplings and
fluctuations. The presence of curvature couplings reduces the diffusion coefficient of the
center of mass, as the mean square displacements are reduced with respect to the flat
membrane case. Nevertheless ⟨R2

g⟩ and ⟨R2
CM⟩ remain of the same order, and therefore

the collective behavior of the assembly still exists.
It would be highly interesting to study analytically the diffusion in presence of curva-

ture couplings. Since we take into account the membrane fluctuations, assumptions on
the interprotein distribution have to be made as the correlations are not instantaneous
in this case. However, given that the dynamics of the membrane is much faster than
the one of the proteins, it can be possible to “preaverage” the membrane field [66] and
therefore assume that the interprotein distribution is a Gaussian again whose variance
remains to be determined. Moreover, further investigations are needed to determine the
effects of curvature-inducing proteins. First, we did not take into account the effect of
the membrane local geometry on the displacements of the proteins, i.e., we assumed that
the metric tensor is g = 1 [66, 168]. In order to study non-equilibrium systems like the
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Figure 5.7 – Mean square displacements of the center of mass (a) and of the growth
of the radius of gyration (b) as a function of time for an assembly of N = 25 proteins
in presence of curvature couplings and fluctuations (black) and for a membrane held flat
(red). The average was performed over 1000 runs and the parameters we use are given
Fig. 5.6.
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BmrA proteins, we should now allow for conformation changes, that can be encoded, in
the spirit of [169], in a stochastic c0 in the energy Eq. (2.21).
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Conclusion

This thesis has allowed us to gain insights into the collective behavior of passive and
conformationally active proteins embedded within biological membranes.

We have first determined the membrane phase diagram in presence of binding of
curvature-inducing proteins in thermal equilibrium. We found three phases: an unbound
uniform flat phase (U), a bound uniform phase (B), and a separated/corrugated phase
(SC). By means of a nonlinear analysis, we were able to find the pattern selected by
the membrane in the unstable SC phase: proteins form hexagonally-ordered bowl-shaped
domains. We pushed the analysis further by introducing a Poisson rate to translate the
unbinding mechanism into mathematical terms, thereby breaking the detailed balance
condition and thus driving the system out of thermal equilibrium. The active unbinding
process is found to alter the stability of the unstable phase, i.e., it shifts the unstable
region to higher chemical potentials and spontaneous curvatures.

We have then investigated the diffusion of a single protein in a non-fluctuating mem-
brane where we were able to elegantly rederive the mobility formula (SD law) of such a
system within the simplifying assumption that it can be considered a pointlike object.
The only price to pay is the use of a small wavelength cutoff of the order the inverse of the
protein’s size. We have then exploited this approach by taking into account the bilayer
property of the membrane where the SD law is found to generalize; for a protein moving
within one monolayer, the diffusion is influenced by the intermonolayer friction: at high
frictions, the SD law remains; at frictions lower than a threshold, which depends on the
membrane viscosity and the protein size, the mobility increases since the monolayer with-
out the protein is not fully dragged by the protein. In addition, we have considered the
case of a protein that induces a local and isotropic spontaneous curvature. Our method
has allowed us to derive the total friction of the latter, which is given by the sum of the
usual SD friction and extra friction coming from the pull-back created by the membrane
deformation.

Finally, we have studied the diffusion of an ensemble of curvature-inducing proteins.
A numerical study considering a non-fluctuating membrane has allowed us to probe the
subdiffusive nature of the collective diffusion predicted in the literature, as well as the evo-
lution of the interprotein distribution. Finally, taking into account the fluctuations of the
membrane, our numerical simulations have shown that proteins still behave collectively,
despite a change in the collective diffusion coefficient with respect to the non-fluctuating
membrane case.
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Of course, our study calls for further investigations. First, even if we suspect the pull-
back mechanism the membrane exerts on the proteins to be responsible for the difference
observed in the collective diffusion between the non-fluctuating and fluctuating membrane
cases, the proof is not clearly established as the contributions of the different correlations
remain to be explored. Then, it would probably be possible to conduct an analytical
study of the collective diffusion coefficient to fully quantify the effect of curvature on
diffusion and to guide the analysis of numerical simulations.

Another interesting project would be to drive the system (proteins and membrane)
out of equilibrium. This could be studied by incorporating an active switching rate that
breaks the detailed balance condition.



Appendix A

Definite positive tensor for cylinders
in a fluid sheet

In their article [80], Sokolov and Diamant derive the positive definite mobility tensor
for cylindrical objects embedded in a two-dimensional fluid using the procedure Rotne
and Prager used to determine the positive definite mobility tensor for polymers in a 3D
suspension [84]. For the sake of completeness, we give the derivation performed and
explained in [80], adding some specifications on intermediate steps.

First, it is convenient and usual to use the Oseen approximated mobility tensor derived
by Kirkwood and Riseman (KR) [170] to describe the hydrodynamic interactions between
the objects embedded in a fluid. Nevertheless, this tensor is not always positive definite,
e.g. depending on the strength of the hydrodynamic interaction (for physical values
indeed), the diffusion of a rigid rodlike polymer in a 3D fluid can be negative and thus is
unphysical [81] (it leads to a negative dissipative power which breaks the Second law of
the thermodynamics). As a definite positive mobility tensor for every physical value is
needed both for thermodynamics laws and for numerical simulation using Cholesky-like
decomposition, Rotne and Prager used an ansatz for the exact stress tensor to minimize
the energy dissipation rate caused by the motion of the suspending fluid [84]. As stated
by Sokolov and Diamant, the definite positive tensor found by the formers is the standard
KR tensor plus a correction to the second order in a/r where a is the radius of the proteins
and r is the separation between the pair proteins considered [80].

We first apply the Rotne-Prager method to cylindrical objects whose motion is con-
strained in a plane (two-dimensional dynamics) following [80]. Then, we derive the correct
definite-positive tensor obtained in the case that overlapping between objects is autho-
rized.
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A.1 Rotne Prager method applied on cylinders in a
fluid sheet

We consider a configuration r of disk inclusions of radius a driven by forces F whose
movements are constrained into a sheet of viscosity η2 and distances r between them
are such that r ≪ κ−1 = η2/(2η), where η is the viscosity of the 3D fluid surrounding
the sheet and κ−1 the well-known Saffman-Delbrück length. The mobility tensor can be
derived by minimizing the energy dissipation rate ϵ due to the viscous flow which is given
by

ϵ = 1
2η2

ˆ
d2r ταβ(r) τβα(r), (A.1)

where we integrate over the whole area excluding the areas of the inclusions and τ (r) is
the viscous stress tensor at r given by

ταβ(r) = η2 [∂αuβ(r) + ∂βuα(r)] , (A.2)

with u(r) the flow field. Moreover, the total stress tensor σ is given by

σαβ(r) = −p(r)δαβ + ταβ(r), (A.3)

with p the pressure field. Both the total and viscous stress tensors satisfy the following
properties:

ταβ = τβα, σαβ = σβα, (A.4)
ταα = 0, (A.5)

∂βσαβ(r) = −∂αp(r) + ∂βταβ = 0, (A.6)

a

ˆ 2π

0
dθ σαβ(ani(θ))ni

β(θ) = −F i
α, (A.7)

where F i is the force acting on the bead i and ni is the unit normal to the surface of
bead i. The first equation states that τ and σ are symmetric. As u(r) is divergenceless,
one gets that τ is traceless so is Eq. (A.5). Eq. (A.6) corresponds to the divergenceless
property of the total stress tensor assuming inertia is neglected (which leads to putting
local forces acting on a fluid element to zero). Assuming the latter, the balance of forces
gives that the total force exerted by the fluid flow on the surface of each bead compensates
for the external force F i applied to it, leading to Eq. (A.7).

Then one gets mobility tensor Bij(r) for a configuration r of beads by equalizing the
total energy dissipation rate ϵ due to the viscous flow with the power produced by beads
under the action of the external forces:

ϵ = F i
αvi

α = F i
αBij

αβ(r)F j
β . (A.8)

Using the symmetric property of τ and Eq. (A.1), it is clear that ϵ is positive and



A.1. Rotne Prager method applied on cylinders in a fluid sheet 111

vanished if and only if the viscous stress tensor is zero (which leads to zero external
forces). Therefore the symmetric bilinear form of the rhs of Eq. (A.8) is a scalar product
which leads to Bij(r) being symmetric positive definite.

Nevertheless, the exact flow field u(r) that satisfies the boundary conditions of all
inclusions is unknown and yet essential to determine the mobility tensor. We therefore,
replace the exact stress tensor by a trial one σ̄ which must satisfy the conditions (A.4)–
(A.7). Moreover, as ϵ is the minimum energy dissipation rate, any stress satisfying the
properties (A.4)–(A.7) gives an energy dissipation rate ϵ̄ above the minimum ϵ, and thus
a definite positive mobility tensor.

The ansatz Rotne and Prager made on the trial stress tensor is to take the superpo-
sition of the independent contributions of each inclusion:

σ̄αβ(r) = −p̄(r)δαβ + τ̄αβ(r) =
∑

i

σi
αβ(r − ri), (A.9)

with

p̄(r) =
∑

i

pi(r − ri), (A.10)

τ̄αβ(r) =
∑

i

τ i
αβ(r − ri), (A.11)

where σi, pi, and τ i are, respectively, the exact total stress, pressure, and viscous stress
due to a single inclusion located at ri with an external force F i acting on it. It is
straightforward to check that the stress tensor σ̄ satisfies the three first properties. For
the last one, as σi is the exact total stress tensor it is clear that its integration over the
surface of inclusion i gives F i. Now if we integrate it over the surface of another inclusion
j, by using the divergence theorem we see that this integration vanishes. Therefore one
has

a

ˆ 2π

0
dθ σi

αβ(ani(θ))ni
β(θ) = −F i

α, (A.12)

a

ˆ 2π

0
dθ σi

αβ(rij + anj(θ))nj
β(θ) = 0, (A.13)

with rij = rj − rj. Therefore integrating the total stress σ̄ over the surface of an
inclusion gives the force acting on it and thus σ̄ satisfies the property (A.7). Note that
the superposition ū of the flow field produced by a single inclusion does not satisfy
the same boundary conditions as the exact flow field as each inclusion contribution is
considered independently from the others.

As stated previously, the viscous stress tensor τ̄ is associated to an approximate
mobility tensor B̄ij(r) such that

ϵ < ϵ̄ = 1
2η2

ˆ
d2r τ̄αβ τ̄βα = F i

αB̄ij
αβ(r)F j

β . (A.14)

Note that the integral runs over the whole area excluding the areas of all inclusions, thus
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this integration is really difficult to perform, therefore, as made by Rotne and Prager,
we extend the definition of τ i into the inclusion domain such that τ j(|r − ri| < a) = 0
if j = i and is nonzero if i ̸= j. Furthermore, this extension of the area covered by
the integration leads to adding more positive contributions to the dissipation and thus
enforces the dissipation rate ϵ̄.

Using the definition of the total stress tensor σ̄ one can rewrite the above integral as

1
2η2

ˆ
d2r τ̄αβ τ̄βα = 1

2η2

ˆ
d2r τ̄αβ (p̄ δβα + σ̄βα). (A.15)

As τ̄ is traceless, the product between τ̄αβ and p̄ appearing in the rhs vanishes. We then
replace τ̄αβ by its definition given by Eq (A.2) and use the divergenceless and symmetric
properties of σ̄ to change the rhs of the previous Eq into

1
2η2

ˆ
d2r τ̄αβ σ̄βα =

ˆ
d2r ∂β(ūασ̄αβ) =

∑
i,j

ˆ
d2r∂β(ui

ασj
αβ). (A.16)

Then using the divergence theorem and the fact that σi is in the opposite direction of ni

we finally get

1
2η2

ˆ
d2r τ̄αβ τ̄βα = −a

∑
i

ˆ 2π

0
ui

α(ani)σi
αβ(ani)ni

β − a
∑
i ̸=j

ˆ 2π

0
ui

α(rij + anj)σj
αβ(anj)nj

β

+ a
∑
i ̸=j

ˆ 2π

0
ui

α(ani)σj
αβ(ani − rij)ni

β (A.17)

Using Eq. (A.14), by identification we see that the first integral of the rhs should
give back the well-known Saffman-Delbrück self-mobility. For the last integral, we first
remark that u(ani) is independent of θ and then using Eq. (A.13) we see that this integral
vanishes (see below). Therefore the second integral accounts for the off-diagonal terms
of the mobility tensor for which i ̸= j. The computation is given below.

To compute the integrals in the rhs of Eq. (A.17), we need to find σi and ui(r). The
latter corresponds to the flow velocity of the fluid at point r produced by a single disk
inclusion located at the origin and driven by a force F i. This flow is given by [77]

ui
α(r) = UαβF i

β, (A.18)

Uαβ(r) = 1
4πη2

[(
ln 2

κr
− γ − 1

2 + a2

2r2

)
δαβ +

(
1 − a2

r2

)
rα rβ

r2

]
. (A.19)

The total stress tensor is obtained with the equations

∂βσi
αβ(r) = −∂αpi(r) + ∂βτ i

αβ, (A.20)
τ i

αβ = η2(∂αui
β + ∂βui

α), (A.21)
σi

αβ = −piδαβ + τ i
αβ. (A.22)
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The first two equations give the viscous stress and pressure field:

τ i
αβ(r) = η2 (∂βUαγ + ∂αUβγ) F i

γ, (A.23)

pi(r) = rα

2πr2 F i
α. (A.24)

Obtaining τ i
αβ is straightforward. To get pi, we first write its equation using Eqs. (A.6)

and (A.21):

∂αpi(r) = η2
[
∂α∂βui

β + ∂2
βui

α

]
, (A.25)

where the first term in the rhs vanishes as the fluid is incompressible. We then solve
this differential equation using polar coordinates and Eq.(A.18) to get the result above.
Using (A.18) and (A.19) we get

ui
α(ani) = 1

4πη2

(
ln 2

κa
− γ

)
F i

α, (A.26)

which does not depend on θ. Therefore, using (A.12) and (A.13) on the first and third
integrals in the rhs of Eq. (A.17) respectively, gives

a

η2

∑
i

ˆ 2π

0
ui

α(ani)σi
αβ(ani)ni

β = F i
α

[
1

4πη2

(
ln 2

κa
− γ

)
δαβ

]
F i

β, (A.27)

a

η2

∑
i ̸=j

ˆ 2π

0
ui

α(ani)σj
αβ(ani − rij)ni

β = 0. (A.28)

In order to compute the remaining integral in (A.17), we first expand the field U i(rij +
anj) to second order of a/rij:

U i
αβ(rij + anj) = 1

4πη2

[(
ln 2

κrij
− γ − 1

2 − a

rij
cos(θ − ϕ) +

(
a

rij

)2
cos2(θ − ϕ)

)
δαβ(

1 − 2a

rij
cos(θ − ϕ) −

(
a

rij

)2 (
1 − 4 cos2(θ − ϕ)

)) rij
α rij

β

rij2(
a

rij
− 2

(
a

rij

)2
cos(θ − ϕ)

)
rij

α nj
β + rij

β nj
α

rij
+
(

a

rij

)2
nj

αnj
β + o

(
a

rij

)2
 ,

(A.29)

where ϕ is the angle between the stress σ and the x-axis. Then using the expression of
σj

αβ as a function of U j
αβ (eqs. (A.22) – (A.24)) and expressing the unit vector n as a

function of θ one finally gets

B̄i ̸=j
αβ = 1

4πη2

(ln 2
κrij

− γ − 1
2 +

(
a

rij

)2
)

δαβ +
(

1 − 2
(

a

rij

)2
)

rij
α rij

β

rij2

 (A.30)
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A.2 Definite-positiveness of the mobility tensor for
overlapping proteins

In their article, Diamant and Sokolov derived not only a definite-positive mobility tensor
for interparticle distances such that r > 2ap but also one for r ≤ 2ap (called inner tensor
in the following).

To do so, they postulated the form it should take and determined its coefficients by
satisfying the three following conditions:

• at r = 0, as the proteins overlap perfectly, the inner tensor should match the
Saffman-Delbrück mobility tensor: µSDδαβ.

• At r = 2ap, the inner tensor should match the outer one.

• The inner tensor should be divergenceless.

They guessed a mobility tensor of the form

Oα ̸=β
αβ (r ≤ 2ap) = 1

4πη2

[(
C1 + C2

r

2ap

+ C3
r

2ap

ln r

2ap

)
δαβ

+
(

D1 + D2
r

2ap

+ D3
r

2ap

ln r

2ap

)
rαrβ

r2

]
. (A.31)

The first condition gives C1 = µSD and D1 = 0, the second one, C2 = −(ln 2 + 1/4) and
D2 = 1/2 and the last condition yields C3 = 2 ln 2 − 3/2 and D3 = − ln 2 + 3/4.

This inner tensor should be definite-positive for every possible overlapping distance.
However, we find a threshold under which this inner tensor is not definite-positive.

Therefore, we aim to derive this inner tensor by performing the calculations as it is
performed by E. Wajnry [85] et al for the Rotne-Prager mobility tensor in the 3D case.
Using the Faxen law, we can determine the mobility tensor from the velocities of the
particles ui which is given by

ui(rij) = 1
2πap

ˆ
∂Si

v(r′) d2r′, (A.32)

where rij = rj − ri is the vector connecting the two centers and the v(r) is the velocity
flow at point r in the fluid created by a cylinder pulled by a force Fi. It is given by

vα(r) =


1

4πη2

[(
ln 2ℓSD

r
− γ − 1

2 + a2
p

2r2

)
δαβ +

(
1 − a2

p

r2

)
rαrβ

r2

]
F i

β, r > 2ap

1
4πη2

[
ln 2ℓSD

ap
− γ

]
F i

α r ≤ 2ap

(A.33)

The configuration of the two overlapping proteins we consider is presented in Fig-
ure A.1. Knowing that the mobility tensor relates the velocity of a protein to the forces



A.2. Definite-positiveness of the mobility tensor for overlapping proteins 115

Figure A.1 – Sketch of two overlapping proteins. We choose the axes such that the
overlapping is along ey. rij is the vector linking the two centers. r′ is the sum of rij and
ri. The triangle ABC is used to determine the relation between θ0 and rij .

acting on all proteins, we identify

O = 1
8π2η2

{ˆ θ0

−θ0

dθ

[(
ln 2ℓSD

r′ − γ − 1
2 +

a2
p

2r′

)
1+

(
1 −

a2
p

r′2

)
r′r′

r′2

]
+
ˆ π−θ0

−(π−θ0)

(
ln 2ℓSD

ap

− γ

)
1

}
,

(A.34)

where r′ = ap sin θ ex + (rij + ap cos θ)ey and θ0 is the meridional angle at which the two
proteins intersect such that cos θ0 = −rij/(2ap). The first part comes from the outer flow
for which r′ > 2ap and the second part from the overlapping area.

Since the off-diagonal terms of the tensor r′r′ are odd functions their contribution van-
ish after integrating and we can rewrite the diagonal part as a2

p sin2 θ 1

+
[
(rij + ap cos θ)2 − a2

p sin2 θ
]

r̂ij r̂ij . Furthermore by using the expression of r′2 = a2
p +

r2
ij +2aprij cos θ we can express the logarithm coming from the outer flow as ln(2ℓSD/r′) =

ln(2ℓSD/ap) − 1
2 ln [1 + (rij/ap)2 + 2(rij/ap) cos θ]. We therefore get

O = 1
4πη2

(
ln 2ℓSD

ap

− γ

)
1

+ 1

4π2η2

ˆ θ0

0

−1
2 ln

1 +
(

rij

ap

)2

+ 2rij

ap

cos θ

− 1
2

(
1 −

a2
p

r′2

)
+
(

a2
p

r′2 −
a4

p

r′4

)
sin2 θ

 dθ

(A.35)

+ r̂ij r̂ij

4π2η2

ˆ θ0

0

(
a2

p

r′2 −
a4

p

r′4

)(rij

ap

+ cos θ

)2

− sin2 θ

 dθ,

where one recognizes that the first term is the well-known Saffman-Delbrück mobility.
In the figure A.2 we can see that the form postulated by Sorkin and Diamant is not
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equivalent to the true form of the inner tensor and even fails at very short distances.
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Figure A.2 – Mobility along exex as function of rij/(2ap) subtracting the Saffman-
Delbrück part for two overlapping proteins. (a) gives the comparison between the postu-
lated form of Sorkin and Diamant (light gray) and the true value determined with (A.35)
(black) for the full range of rij/(2ap). (b) is a zoom-in on a short distances range of
rij/(2ap) where we can see that the postulated form fails to give a definite-positive mo-
bility tensor when its sign changes. The parameters are η2 = 10−9 Jsm−2, ap = 10 nm.
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