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Abstract

Heart failure is the final funnel of all cardiac diseases, currently affecting 8% of the
general population living in developed countries and is expected to reach 11% by 2030.
Despite major improvements provided by optimization of medical therapy and pre-
vention, this disease still has a high mortality rate and represents 1-2% of the total
medical expenses. Among the different new treatments that became available in the
last years, Cardiac Resynchronization Therapy (CRT) has emerged as a very original
technique used to correct mechanical abnormalities in these hearts, by direct stimulation
of the myocardium in selected locations. Since the early times of CRT, identification
of dyssynchrony has been based on the duration of the ventricular electrical activation
(QRS) measured on a standard electrocardiogram (ECG) by the clinician. However, more
advanced evaluation models may allow for a better understanding of the cause of dyssyn-
chrony and therefore the ability to adapt the therapy to patient-specific conditions. For
instance, recent scientific advances in mathematical modelling and numerical simulation
nowadays allow us to develop personalized models of the patient cardiac function, as
well as the use of patient data to describe dyssynchrony and predict the response to
CRT.

This thesis describes the feasibility of a novel approach to use a digital twin in order to
predict the response to CRT. The biophysical heart model is personalized from patient
data measured in clinical routine using fast artificial intelligence (AI)-based methods,
and the output simulation results are compared to clinical data provided by a cardiac
devices manufacturer.
Briefly, we first propose a modelling work that allows us to construct a generic heart model
including a three-dimensional mesh of the anatomy, the electrophysiological activity, as
well as the complex dynamics of the heart through biomechanical models. This generic
model is then personalized to the patient’s health data: phenotype, echocardiography,
ECG and haemodynamic measures. Next, an original method based on the optimization
of a reduced model is proposed, allowing us to parameterise our digital twin. Finally,
we have defined a stimulation protocol from the personalized model in order to study
the response to CRT, and the in silico predictions of electromechanical measures are
compared to patient data for different pacing configurations.
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Overall, the work described in this thesis substantially contributes to the development
of advanced non-invasive digital twin technologies that can be translated into routine
clinical diagnostic and treatment planning procedures in order to increase the positive
outcome and effectiveness of CRT (potentially resulting in slower progression towards
advanced heart failure), and ultimately improving the quality of life of a large patient
population.

Keywords: patient-specific simulation, digital twin, ECG, CRT, cardiac electrophysiology,
biomechanics, finite element method, artificial intelligence.
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Résumé

L’insuffisance cardiaque est la finalité de toutes les maladies cardiaques. Elle touche
aujourd’hui 8% de la population générale vivant dans les pays développés et devrait
atteindre 11% d’ici 2030. Malgré les améliorations majeures apportées par l’optimisation
des thérapies et de la prévention, cette maladie a toujours un taux de mortalité élevé et
représente 1 à 2% des dépenses totales dans le secteur de la santé. Parmi les différents
nouveaux traitements disponibles ces dernières années, la thérapie de resynchronisation
cardiaque (CRT) est apparue comme une technique très originale utilisée pour corriger
certaines anomalies mécaniques de ces cœurs défaillants, par stimulation directe du
myocarde dans des zones précises. Depuis les débuts de la CRT, l’identification de la
désynchronisation est basée sur la durée de l’activation électrique ventriculaire (QRS)
mesurée sur un électrocardiogramme (ECG) standard par le clinicien. Cependant, des
modèles d’évaluation plus avancés permettent de mieux comprendre la cause de la
désynchronisation et donc d’adapter le traitement. Les récentes avancées scientifiques en
matière de modélisation mathématique et de simulation numérique permettent désormais
de développer des modèles personnalisés de la fonction cardiaque du patient et d’utiliser
les données cliniques pour décrire la désynchronisation et prédire la réponse à la thérapie
de resynchronisation.

Cette thèse évalue la faisabilité de l’utilisation d’un jumeau numérique pour prédire
la réponse à la thérapie de resynchronisation cardiaque. Le modèle est personnalisé
à partir des données de routine des patients en utilisant des méthodes rapides basées
sur l’IA. Les résultats sont comparés aux données cliniques fournies par un fabriquant
de dispositifs cardiaques. Un premier travail de modélisation permet de construire un
modèle cardiaque générique incluant un maillage tridimensionnel de l’anatomie, l’activité
électrophysiologique, ainsi que la dynamique complexe du cœur à travers des modèles
biomécaniques. Ce modèle générique est ensuite personnalisé sur les données de santé
du patient : morphologie, échocardiographie, ECG et mesures hémodynamiques. Une
méthode basée sur l’optimisation d’un modèle réduit est proposée et permet de rapide-
ment paramétrer le jumeau numérique. Enfin, nous avons mis en place un protocole de
stimulation à partir du modèle personnalisé afin d’étudier la réponse à la thérapie de
resynchronisation. Les prédictions des mesures électromécaniques sont comparées aux
données des patients pour différentes configurations de stimulation.

Dans l’ensemble, les travaux décrits dans cette thèse contribuent au développement de
technologies non-invasives avancées de jumeau numérique qui peuvent être utilisées
pour le diagnostic clinique et la planification des traitements de santé afin d’augmenter
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les résultats positifs et l’efficacité de la CRT, et finalement améliorer la qualité de vie
d’une large population de patients.

Mots-clés: simulation personnalisée, jumeau numérique, ECG, CRT, électrophysiologie
cardiaque, biomécanique, éléments finis, intelligence artificielle.
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1.1 Clinical context

Heart failure is a progressive cardiac condition characterized by the inability of the heart
to provide a cardiac output adapted to the needs of the body. Eventually, the heart fails
to provide a cardiac output adapted to body’s needs, leading to death. At the beginning
symptoms may be absent, but later appear during exercise and further at rest, defining
the traditionally functional classes (NYHA). Heart failure induces an increase of the
pressures of the cardio-vascular system responsible for specific symptoms (dyspnea), and
altered functional capacities. At the end, death occurs either by pump failure or sudden
cardiac death (arrhythmia). Symptoms may vary, and have been deeply modified by
the successive recent pharmacological advances. They include breathlessness, fatigue,
pain or dizziness. Several underlying pathologies can cause heart failure including
cardiomyopathy, coronary heart disease or arrythmia.

This thesis focuses on electromechanical dyssynchrony induced by abnormalities in the
propagation of electrical activation within the myocardium in these altered hearts. This
dyssynchrony is then at least partly responsible for the pump inefficiency. Despite the
efforts of CRT to alleviate heart failure symptoms and improve mortality, approximately
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30% of treated patients are non-responders. Patient selection, leads placement and device
tuning are not sufficiently optimized due to the lack of understanding of the underlying
physiological phenomena.

1.1.1 The heart’s function

Anatomy

The heart is a muscular organ and beats continuously to pump blood in order to provide
oxygen and nutriments to the body. All mammals have a four-chambered heart with

(a) Position of the heart in the human body. (b) Anatomy of the heart.

Fig. 1.1.: Position and anatomy of the human heart.

two ventricles and two atria. In the human body, it is located between the two lungs,
slightly behind and to the left of the sternum. Its longitudinal axis is oblique downwards,
forwards and to the left. The left lung is slightly smaller to make room for the heart in
the left chest.

Generally, the adult heart weights about 300± 50g and beats approximately 70 times per
minute, 100 000 times per day or 2.5 billion in a lifetime [Shaffer et al., 2014]. In the
adult heart, the mean length is 12± 2cm and width 8± 2cm [Mohammadi et al., 2016].

Cardiovascular system

The human circulatory system is a closed circuit, in which the blood travels through veins
and arteries. It is supplied by the left ventricle, ejecting blood through the aortic valve
and the aorta. The oxygenated blood coming from the lungs arrives in the left atrium

2 Chapter 1 Introduction



through the pulmonary veins, and enters the left ventricle. After the oxygenated blood
is consumed, the deoxygenated blood returns to the heart and enters the right atrium
through the inferior and superior vena cava. The right atrial contraction fills up the
right ventricle, which empties itself in the pulmonary arteries, leading to the lungs. The
oxygenated blood coming from the lungs arrives in the left atrium through the pulmonary
veins, and enters the left ventricle. The heart’s contraction causes both ventricles to eject
blood, and the cycle repeats itself.

The blood’s circulation inside the heart is controlled by several valve orifices, surrounded
by fibrous collagen [Hinton et al., 2011]. The mitral and tricuspid atrioventricular (AV)
valves separate the atria from the ventricles, while the aortic and pulmonary semilunar
valves separate the ventricles from the great arteries.

Histology

Cardiac muscle (or myocardium) makes up the thick middle layer of the heart, see
Fig. 1.2, and is located between the endocardium and the epicardium [Saxton et al.,
2021]. It consists of two types of cells: cardiac muscle cells (cardiomyocytes) and
fibroblast. Cardiomyocytes function will be described in section 1.1.1, they are the cells
responsible for the heart contraction.

A fibroblast is a type of cell that contributes to the formation of connective tissue, a
fibrous cellular material that supports and connects other tissues or organs in the body. It
synthesizes the extracellular matrix and the collagen protein, which helps maintain the
structural framework of tissues.

False tendons are fibrous, fibrous-muscle or muscle structures, variable in length and
thickness, found in the left ventricular (LV) cavity, generally located between the free
wall of the left ventricle or a papillary muscle and the interventricular septum, without
connection to the mitral valves.

Pericardium

The heart is located in a thin fibroelastic envelope called the pericardium and consisting
in three layers: the fibrous, the visceral and the parietal pericardium, see Fig. 1.2.

1. The outer layer, the fibrous pericardium, provides support and protection for the
heart, it connects to the diaphragm, the sternum and the vertebral column [Rehman
et al., 2021].

2. The parietal pericardium is mainly composed of collagen, offering high extensibility
at low levels of stress with an abrupt transition to relative inextensibility at higher
stress, due to the shortening of collagen bundles.
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3. The visceral layer of the serous pericardium is called the epicardium and delimits
the myocardium [Watkins et al., 1993].

The pericardial cavity contains fluids necessary to lubricate the heart during the contrac-
tion.

Fig. 1.2.: The three layers of the heart wall. Source: BiologyOnline.com.

Conduction system

The cardiomyocytes contraction is activated by electrical activity. Achieving a coordi-
nated biatrial and biventricular contraction greatly depends on the signal propagation
throughout the heart.

Cardiac cells, like all living cells in the body, exhibit an electrical potential across the cell
membrane (namely, a transmembrane potential). The resting potential is approximately
-90mV. The electrical potential is determined by the concentration of ions across the
membrane, which shows varying permeability to each of the ions, mostly potassium
(K+), sodium (Na+) and calcium (Ca2+). Ions cross the membrane through specialized
ions channels, which can be opened or closed. The membrane potential regulates the
voltage-gated channels and allows for ions movement [Hodgkin et al., 1952], and for
cells’ contraction, see section 1.1.1.

In cardiac physiology, an action potential occurs when the membrane potential of a cell
rapidly depolarizes and then repolarizes back to its resting state. We can distinguish two
types of cardiac action potential:
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• non-pacemaker action potentials are triggered by depolarizing currents from adja-
cent cells. Individual myocytes are joined together by low-resistance gap junctions
located at the intercalated disks, and for this reason the ionic currents can flow be-
tween two adjoining cells. When these ionic currents (i.e., moving ions through gap
junctions) are sufficient to rapidly depolarize the adjacent cell above its threshold
potential, an action potential is elicited in the second cell, and so on.

• pacemaker cells are capable of spontaneous action potential generation.

Cells within the sinoatrial (SA) node, located within the posterior wall of the right atrium,
constitute the primary pacemaker site within the heart. When a depolarisation occurs,
the electrical signal propagates through the atria, leading to its contraction. Because atria
and ventricles are electrically isolated from each other by connective tissue, the atria
depolarisation does not directly affect the ventricles. The electrical signal is conducted
to the atrioventricular (AV) node, located at the lower back section of the interatrial
septum, near the opening of the coronary sinus. It then enters the ventricles through
the bundle of His and is further separated into the left and right bundle branches. More
distally the bundles ramify into Purkinje fibers and finally enters the myocardium through

Fig. 1.3.: Potential at the specialised cells of the heart. Source: [Malmivuo et al., 1995].
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Purkinje-muscle junction points. His bundle branches and Purkinje fibers are part of the
fast conduction network, they transmit the signal between 2 and 4 m/s [Malmivuo et
al., 1995; Sahli Costabal et al., 2016].

While most of the Purkinje network is located subendocardially, it is known that some
Purkinje bundle are free running, without being attached to the ventricle surface. Such
cells can be found in the false tendon, see Fig. 1.4b and [Cha et al., 2020; Boyden et
al., 2010; Martinez et al., 2018; Hwang et al., 2011].

(a) Purkinje fibers. A. gross findings. B. optical coher-
ence microscopy findings. C. histology. Source: [Cha
et al., 2020].

(b) Schematic representation of the origins of my-
ocardial activation from the Purkinje network.
Source: [Martinez et al., 2018].

Fig. 1.4.: Evidence of free-running Purkinje fibers.

Cardiomyocytes

Cardiomyocytes are connected muscular cells responsible for the contractile force of the
heart, see Fig. 1.5. The contraction-relaxation cycle of cardiomyocytes is regulated by
the varying ions concentration, mainly Ca2+ ions [Kosta et al., 2021].

(a) Cardiomyocytes are joined by intercalated disks and composed of bun-
dles of myofibrils that contain myofilaments. The sarcomere contains
thick (myosine) and thin (actin) filaments, and is attached between
two Z-disks by titin protein.

(b) Binding of thick and thin fil-
aments.

Fig. 1.5.: Structure of the sarcomere and force generation process. Adapted from [Klabunde,
2012].
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Electrocardiogram

The electrocardiogram (ECG) is a recording of the heart’s electrical activity, measured
using ten electrodes placed on the torso. It captures the small electrical changes through-
out the cardiac cycle, conveying a large amount of information about the structure of the
heart and the conduction system.
The ECG signals are traditionally recorded on standard paper travelling at a rate of
25mm/s. The paper is divided into large squares, each measuring 5mm wide (which is
typically equivalent to 0.2s). Each large square has five small squares within its width,
and each small square is 1mm wide (i.e. equivalent to 40ms). ECG recordings provide
important information concerning electrical activation of the heart (pattern, duration)
related to potential diseases.

Besides duration, an important measure

that can be extracted from the ECG is the

QRS axis, (see Fig. 1.6), which represents

the sum of depolarisation vectors generated

by individual cardiac myocytes. Several cal-

culation methods are possible, either from

the ECG wave or from the activation map.

Since it identifies the mean electrical de-

polarisation path, it can give a preliminary

determination on the heart’s condition, see

section 3.3.2.
Fig. 1.6.: Abnormal QRS axis can indicate an

underlying pathology.

Fig. 1.7.: ECG leads and heart axis.

The six chest leads (V1 to V6) record the electrical activity of the heart in the horizontal
plane, see Fig. ??. The information from the limb electrodes is combined to produce
the six limb leads (I, II, III, aVR, aVL, and aVF), corresponding to the vertical plane
of the heart. The information from these 12 leads is combined to form a standard
electrocardiogram Fig. ??. A normal ECG wave from a healthy subject is presented in
Fig. 1.8, characterized by a width of the QRS interval certainly shorter than 120ms
(ideally close to 80ms).
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Fig. 1.8.: Normal ECG. Sinus rhythm; QRS width ≈ 80ms; QRS axis ≈ +30°; small septal Q
waves in I, aVL, V6; large S wave in V1-V2 which transitions to large R wave in V4-
V6. Source: https://elentra.healthsci.queensu.ca/assets/modules/ts-ecg/
normal_ecg.html.

The cardiac cycle

The primary function of the heart is to pump blood throughout the body, delivering
nutrients and removing wastes from each organ. It consists in two major phases: the
diastole when the heart muscle relaxes and fills with blood, and the systole, when it
contracts and ejects blood to the arteries and the cardiovascular system (Fig. 1.9).

We can define four distinct phases, which repeat about 100 000 times a day: filling,
isovolumetric contraction, ejection, and isovolumetric relaxation. Initially, the ventricles
fill with blood from the atria. The atria then contract and push blood into the ventricles.
The valves between the atria and ventricles close, creating the first sound of a heartbeat,
and the ventricles contract. The pressure in the ventricles increases until it exceeds the
pressure in the arteries, causing the valves in the arteries to open. Blood is then expelled
into the arteries, and the pressure decreases as the ventricles relax. When the pressure in
the ventricles drops below the pressure in the arteries, the valves in the arteries close,
creating the second sound of a heartbeat, and the relaxation phase begins. The process
then repeats, with the atria filling the ventricles once more.
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Fig. 1.9.: A Wiggers diagram illustrates events and details of the cardiac cycle. The ventricular
diastole, or relaxation, begins with the isovolumic relaxation phase, then proceeds
through three sub-stages of inflow, namely: rapid inflow, diastasis, and atrial systole.
During the diastole, the ventricular volume increases, beginning at the aortic valve
closing and ending after the atrial filling phase. The ventricular systole (i.e., the
contraction), begins with the isovolumic contraction when the AV valve closes. It
ends after the ejection phase, when the aortic valve closes. During the ejection, the
ventricular volume decreases to its least amount as the ventricles pump blood to the
pulmonary arteries and to the aorta. Source: Wikimedia Commons.
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Fig. 1.10.: Introduction to notations with a schematic cardiac cycle.

1.1.2 Heart failure

Heart failure is a syndrome in which the heart is unable to pump enough blood to meet
the body’s needs for oxygen and nutrients. The condition can be classified as either
systolic or diastolic heart failure, depending on whether the problem is with the heart’s
pumping ability (systolic) or its capability to fill with blood (diastolic). The New York
Heart Association (NYHA) functional classification is a system used to categorize the
degree of functional impairment a person with heart failure may have, see Table 1.1.
This index is clinically determined based on the patient’s self-reported symptoms during
ordinary physical activity.

Diastolic heart failure, also known as heart failure with preserved ejection fraction
(HFpEF), is a type of heart failure in which the heart’s ability to be filled is altered
and decreased, but the systolic function is normal. Impaired relaxation function of
the myocardium may be due to stiffer myocardial tissue, for example in the case of
hypertrophic cardiomyopathy with increased fibrosis. It may also come from a diminished
capacity to restore a low resting Ca2+ during the isovolumetric relaxation phase [Morgan
et al., 1990].

The contraction of the ventricles can also be defective during systole, leading to a
decreased stroke volume. It can be caused by a reduced contractility of the cardiac
muscle, either locally (e.g. due to myocardial infarction) or globally (e.g. for example in
the case of dilated cardiomyopathy). Other electrophysiological disorders can lead to a
failing heart, such as dyssynchrony.
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Class Functional capacity

I
Patients with cardiac disease but without resulting limitation of phys-
ical activity. Ordinary physical activity does not cause undue fatigue,
palpitation, dyspnea, or anginal pain.

II
Patients with cardiac disease resulting in slight limitation of physical
activity. They are comfortable at rest. Ordinary physical activity results
in fatigue, palpitation, dyspnea, or anginal pain.

III
Patients with cardiac disease resulting in marked limitation of physical
activity. They are comfortable at rest. Less than ordinary physical activity
causes fatigue, palpitation, dyspnea, or anginal pain.

IV

Patients with cardiac disease resulting in inability to carry on any phys-
ical activity without discomfort. Symptoms of heart failure may be
present even at rest. If any physical activity is undertaken, discomfort is
increased.

Tab. 1.1.: The 1994 New York Heart Association (NYHA) Classification system. Source: [Bennett
et al., 2002].

1.1.3 Dyssynchrony

Dyssynchrony is a condition in which the segments of the heart do not contract in
harmony (i.e. simultaneously), leading to a reduced ejection fraction. Such condi-
tion can classically be observed on the ECG recordings displaying a prolonged QRS
duration, although dyssynchrony is much more complex and involves mechanical and
hemodynamical mechanisms.

From an electro-mechanical view, dyssynchrony can be modelled in three different
types:

• Atrioventricular (AV) dyssynchrony
AV dyssynchrony results in a reduction of the filling duration. Classically, it is due to
delayed conduction through the AV node due to a first-degree AV Block. The result
is a reduced ventricular diastolic filling with the summation of the protodiastolic
component of filling (E wave on doppler examination) and end diastolic compo-
nent (A wave) due to atrial contracion. It results in a decreased LV preload that
jeopardizes stroke volume (due to the failure of the Starling mechanism). Another
mechanism responsible for AV dyssynchrony is IntraV dyssynchrony (cf further).
Significant AV dyssynchrony potentially correctable by CRT is defined by a LV filling
time (LVFT) indexed to R-R interval < 40% [CAZEAU et al., 2000; Serge, 2000].

• Interventricular dyssynchrony
Interventricular dyssynchrony describes an important delay in activation between
the RV and the LV, resulting in a lack of coordinated contraction. Significant InterV
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dyssynchrony is defined when the interval is greater than 40 ms [CAZEAU et al.,
2000].

• Intraventricular dyssynchrony
Intraventricular dyssynchrony describes a delay within ventricle segment’s prop-
agation, resulting in delayed or slowed contraction. It is typically evaluated by
M-mode, pulsed tissue Doppler, speckle tracking, or 3D echocardiography.

Intraventricular dyssynchrony may occur when the conduction system fails to deliver
the electrical depolarisation signal to all segments of the ventricle. Rupture in the
His bundle conduction system and branches or infarcted areas are possible causes of
electrical intraventricular dyssynchrony. Definition varies according the authors. Some
are focusing on delays measured between different segments, others focus on the amount
of ventricular mass still contracting after the closure of the aortic valve, prolonging the
duration of the systole, and therefore delaying the timing of the next E wave, resulting in
a decrease on filling duration [Cazeau et al., 2000].

1.1.4 Cardiac Resynchronization Therapy (CRT)

The CRT procedure consists in the implantation of pacing leads that ensures an improve-
ment in the coordination of the contraction of the cardiac muscle. Although this technique
has been shown to be effective in some patients, it is difficult to predict the response to
CRT in each patient due to individual variability in cardiac function and propagation.
Observational data increasingly suggest that patients suffering from congestive heart
failure in presence of modest QRS widening could also be benefiting from CRT but this
has not been validated. With this respect, some patients can be significantly improved
clinically after system implantation despite no apparent change in QRS width [Cazeau et
al., 2019; GHIO, 2004].

1.2 Patient-specific cardiac modelling

1.2.1 Why building patient-specific models of the heart ?

Numerical simulation can be defined as a sequence of calculations performed on a
computer, in order to solve complex solutions of mathematical models, that usually
describe a physical system and its response after a perturbation. Building models for a
particular application is a difficult task and requires a strong knowledge of the dynamical
system. Their complexity depends largely on the studied system, and is directly linked to
the ability of the model to represent the reality.
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The heart is not only one of the most complex organ of the body, but also one of
the most studied because of its vital functions. Having a sufficiently realistic cardiac
simulation framework is a real opportunity for researchers, clinicians, or even the patients
themselves. Understanding the cardiac function, in-silico trials, CRT device optimization,
surgical planning, communication, research and development, are possible outcomes of
patient-specific simulation.

Multinational industrial companies such as Philips, General Electric Healthcare or Das-
sault Systems (The Living Heart Project) are currently developing health digital twins
to bring simulation into the clinical routine. Their modelling approaches are based on
extremely detailed multi-scale observation of the heart function. However, while this
procedure yields highly precise measures of the cardiac function, the simulations require
tremendous hardware resources and computation time to run. Moreover, most of these
models rely on highly accurate patient data, generally processed from expensive medical
devices such as Magnetic Resonance Imaging (MRI), which is not a commonly used
procedure for heart failure patients.

Our method, on the contrary, is based on low-cost routine patient data that is usually
acquired during cardiologist examination, such as those from ECG or echocardiographic
measurements. The models and methods developed in this thesis are focused on explain-
able parametrisation, limited computation time and resources, scalability and portability.
The patient-specific simulation framework presented hereafter targets daily usage by clin-
icians on large cohort of patients, and its integration within a fully automatic pipeline.

1.2.2 Introduction to the IPRC project

In this thesis, clinical constraints are considered and evaluated from the beginning to
build a complete modelling framework, compatible with clinical use. IPRC stands for
Industrialization of Cardiac Resynchronization Personalization and is a global industrial
project aiming at incorporating cardiac models and personalization methods into the
clinical workflow. This project starts when a patient is diagnosed with heart failure (or
more precisely cardiac dyssynchrony) and follows the treatment for several years after
implantation of a CRT device, and its principal goal is to use routine non-invasive data to
make fast patient-specific therapy predictions.

This thesis work is part of the long-term IPRC project, led by Microport CRM and focuses
on bringing digital twins to the clinical world. The IPRC project is composed of five
blocks, developed independently:

1. extraction of echographic numerical patient data: this is done by using specialized
AI-based analysis of standard echocardiographic views,
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2. automatic analysis of the data and stratification of heart failure patients via an
heterogeneous database (INSERM Rennes),

3. personalization of a cardiac model to fit sinus rhythm patient data, prediction of
the CRT leads implantation location (INRIA),

4. assistance to leads implantation using specific sensors and automatic device opti-
mization,

5. long-term followup of cardiac remodelling, potentially linked to drug treatment
and device programming optimization via a clinical followup application linked to
the heteregeneous database and various others (CPAM, INSEE).

The third block of this project consists in the development of a cardiac digital twin and is
presented in this manuscript. The output of the two preceding blocks (i.e. the patient
data), is clearly identified and serves as input to this digital twin. The first objective of
this thesis is to build a complete cardiac model, simple enough to be customized in a
time compatible with the clinical constraints, and detailed enough to represent well the
cardiac function of the patient. Once the electromechanical model has been personalized
and validated against the patient known data, different stimulation configurations are
considered, optimized and sent to the practitioner to plan the implantation of the leads.

1.3 Presentation of the datasets

Several datasets are used in this thesis, they come from different sources and were
extracted with different modalities. Having good patient data is prevailing to build
robust models by restricting the possible outcomes and build more accurate and realistic
simulations of the cardiac function. Although the data is heterogeneous and no complete
of set of patient data was found, it is possible to aggregate this real-world data to assess
the personalization of the model.

Note that since the machine learning algorithms developed in this thesis are focused on
learning the relations between the input and the outputs of reduced representations of
the model, they do not rely on these datasets but rather on simulated data, where both
the parameters and the simulation’s output were available.

1.3.1 Anatomies

The anatomical model presented in chapter 2 relies on a healthy biventricular template
geometry that has been segmented from cine MRI by a Siemens Healthineers team with a
combination of the methods described in [Wang et al., 2012] and [Jolly et al., 2012], as
mentioned in [Mollero, 2017]. A dozen of these geometries were available but only one of
them was manually corrected to serve as the template mesh. Pathological geometries can

14 Chapter 1 Introduction



then be generated with a deformation model, without losing the labels of the anatomical
structures of this biventricular geometry, see section 2.1.2.

Moreover, a statistical shape model described in [Rodero et al., 2021] offers the possibility
to generate realistic four-chamber heart models. Their publication is supplemented by
one thousand meshes generated by their model. Although this data has not been used in
this thesis, it provides a complete description of labelled anatomical meshes and could
help in making realistic simulations.

1.3.2 ECGs dataset

The dataset that is used to calibrate the electrophysiology model presented in chapter 3 is
composed of 827 ECG tracings from different patients, annotated by several cardiologists,
residents and medical students [Ribeiro et al., 2020]. In addition to healthy cases,
it contains six different ECGs abnormalities: 1st degree AV block, sinus bradycardia,
atrial fibrillation, sinus tachycardia, Left Bundle Branch Block (LBBB) and Right Bundle
Branch Block (RBBB). In this work we are only focusing on healthy and BBB cases, all
other abnormalities are excluded. After processing these tracings and selecting only
BBB, it remains 483 ECG. Based on the algorithms presented in section 3.3.1, QRS have
been extracted and some measures are described in Tab. 1.2. The envelope of the QRS
extracted from these tracings is presented in Fig. 1.11.

Healthy LBBB RBBB
Count 459 8 16
QRSd [ms] 96.2 (3.0) 116.2 (17.2) 100.9 (2.2)
Axis iso [°] 36.3 (65.6) 22.5 (41.7) 5.6 (74.5)
Axis I-aVF [°] -41.7 (24.9) -30.3 (16.0) -12.2 (49.3)
Axis I-III [°] 11.1 (44.5) -26.1 (9.8) -16.8 (67.7)

Tab. 1.2.: Computed values on the 483 ECG tracings extracted from the data provided by [Ribeiro
et al., 2020]. Data given as ‘mean (std)’.

1.3.3 Microport CRM dataset

This dataset includes data from ninety patients undergoing CRT implantation, and is
provided by Microport CRM. Measurements of electromechanical indices using echocar-
diography were made at five steps of the procedure, corresponding to different pacing
configurations: entry (the presence or absence of an implanted stimulation device is
indicated), RV stimulation, LV stimulation, standard BiV stimulation, Final BiV or triple
site stimulation after optimization of leads placement. The final step is optionally a last
stimulation configuration, referred as BiVOpt or TIV, for optimized CRT.
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Fig. 1.11.: Envelope of the 12-lead recordings from [Ribeiro et al., 2020].

For each step of the implantation, for each pacing configuration, the following electrome-
chanical indices are measured: R-R interval, Diastolic Filling Time (DFT), DFT ratio
(percentage of filling as compared to R-R interval), QRS-E, RPEI, LPEI, InterV delay (IVD),
Total Systole Duration (TSD), isovolumetric contraction duration (IsoC), isovolumetric
relaxation duration (IsoR), left ventricular ejection time (LVET), LPEI

LVET , delay between the
beginning of the QRS and the end of the atrial filling wave (QRS-endA), contraction times
of the septum and left ventricle free wall (LVFW), diastolic contraction of the septum and
LVFW as well as the overlap of these contractions (when the aortic and pulmonary valves
are closed) and the delay of contraction between the septum and the LVFW. Additionally,
the dataset also provides the areas of the mitral and tricuspid valves but are not used in
this study. See Fig. 1.10 for a schematic representation of these indices.

Entry Final
Age [years] 70.6 (11.8)
Sex 8 female (30.8%), 18 male
EF [%] 27.8 (9.1) 38.2 (10.6)
QRS axis [°] -32.3 (57.6) -5 (122.3)
QRSd [ms] 172.7 (31.0) 150.4 (25.5)

Tab. 1.3.: Selection of 26 patients among the data provided by Microport CRM, with DCM and
sinus rhythm. Data given as ‘mean (std)’.
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1.4 Outline of the manuscript and contributions

The present manuscript follows the order of the realized works. First we describe the
modelling of the heart’s function, through the three following sub-models: anatomy,
electrophysiology and biomechanics. Once the generic model has been implemented and
calibrated both on healthy and pathological scenarios, the personalization methods and
results are presented. Finally, the last part introduces the stimulation protocol and shows
the prediction to CRT response results.

Contributions

Here are the main contributions of this PhD work with the corresponding sections in
parenthesis:

• implementation of a semi-automatic labelling pipeline for input geometry using
the ray-tracing method and anatomical prior knowledge (2.1),

• construction of a shape model and implementation of a personalized anatomical
pipeline (2.1.2),

• electrical model for fast generation of the activation map, including Purkinje-based
propagation, conduction disorders (BBB, ischemia), and pacing (3.1 and 3.6),

• implementation of the coupling between the Purkinje network and the activation
map (3.6.2),

• fast and fully automatic ECG waves generation framework (3.2),

• new finite element implementation of the cardiac mechanical model, using SOFA
(Simulation Open Framework Architecture), an open source framework primarily
targeted at real-time physical simulation, with an emphasis on medical simula-
tion (4.2),

• corrected formulation of the 3-element Windkessel model and implementation of
the Crank-Nicolson numerical scheme within a constraint-based framework (4.2.5),

• personalization of the prediction to the resynchronization therapy response (chap-
ter 5),

• producing a personalized modelling framework, suitable for various types of cardiac
3D simulations, including High Performance Computing (HPC) support (5.1.4),

• frame-based model order reduction formulation for cardiac mechanics (6.3.1).
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This chapter introduces two contributions, the first one being the development of
a deformation model that is able to generate dilated and hypertrophic geometries.
It relies on meaningful deformation modes for the selected cardiomyopathies and
allows for fine-tuning of the geometrical properties such as septal thickness and
the reduction of the RV due to the dilatation of the LV. Additionally, heterogenous
meshing helps in optimizing the number of tetrahedra in the geometry.

The second contribution consists in the development of efficient algorithms related
to the free-running Purkinje network. A robust generation method is derived from an
existing implementation and allows to adapt the discretization of the network based
on the curvature of the endocardial surface. Also, because the network’s topology
can be altered by BBB or myocardial infarction, the geodesic distance can be difficult
to compute and a fast parallelized implementation is used.

Cardiac simulations are based on numerical methods that require the definition of a
finite domain for subsequent computations. In this manuscript, several physiological
structures are considered: the cardiac muscle is the main organ but some models require
additional elements such as the pericardium and the torso. Each of these structures
is described as a set of connected points lying in space, called a mesh. A mesh is a
discretisation of a geometric domain into small simple shapes, such as triangles (2D) and
tetrahedra (3D).
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The anatomy of the patient’s heart is the first fundamental block needed when building
patient-specific simulations. The biventricular myocardium can be extracted from non-
invasive methods of 3D cardiac imaging such as MRI (which offers the best contrast
but is generally expensive and time-consuming) and CT (which offers the best spatial
sub-milimetric resolution, but uses ionizing radiation). The heart anatomy is extracted
using segmentation algorithms, which are more and more available thanks to deep
learning approaches.

However, myocardial segmentation methods still require highly tuned and performant
algorithms in order to yield adequate results that are clinically acceptable, due to the
complexity of the heart’s anatomy (trabeculae, right ventricle wall thickness, continuous
motion, etc.). Furthermore, these methods are expensive and rarely used in clinical
routine. In this framework we instead rely on a template biventricular mesh and use a
shape model to deform the mesh and generate a new geometry, with required features
such as ventricular volume or wall thickness.

Note that the atria are not included in our 3D model, but their interactions with the
ventricles are modelled in different ways, see sections 3.1 and 4.2.7.

The anatomical model [Desrues, 2022b] is included in the ElecModel pipeline.

2.1 Input data

Fig. 2.1.: Required labels. Surface labels: endocardium and epicardium (left) and ventricular
labels: left or right ventricle (right).

This section describes the minimal required data and the preprocessing pipeline to
perform a 3D electromechanical simulation. Any mesh can be transformed into a polydata,
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compatible with this framework. For example, the marching cubes algorithm [Lorensen
et al., 1987] can be used to create a triangular surface from the 3D image extracted from
the segmentation of medical images.

A polydata represents a geometric structure consisting of vertices, lines, polygons, and/or
triangle strips [Schroeder et al., 2006a], it is associated with surface topologies. This
surface polydata must be labelled as per Fig. 2.1, namely endocardium (RV in red, LV
in green on the figure), epicardium (EPI, blue) and ventricular labels. The data can
be stored on points (vtkPointData) or on cells (vtkCellData) ; the preferred file format is
VTK [Schroeder et al., 2006b]. Several tools allow to manually (ParaView, pyvista) or
semi-automatically (MeshObject) [Desrues, 2022a] segment the input polydata. Note
that the septum on the right ventricle is labelled as left ventricle.

2.1.1 Meshing

Meshing a closed 3D surface mesh consists in dividing the inner volume of the polydata
into multiple tetrahedral elements. Several solutions to generate tetrahedral meshes exist
(gmsh, CGAL) but they do not yield sufficient results, see Fig. 2.2. We use MMG [Do-
brzynski, 2012], an open source remesher, for all meshing operations.

Fig. 2.2.: Comparison of surface triangular meshing results on an atrial mesh: CGAL intro-
duces very small elements that are not present with the MMG remeshing. The color
map indicates the quality of the elements with a scalar between zero (bad) and one
(acceptable).

The MMG software allows us to pass in a tensor field, prescribing a length and a direction
for the edges, so that the resulting meshes will be anisotropic. This feature is beneficial
when working with heart meshes as the myocardium walls can be thin (up to 3mm [Kawel
et al., 2012]) and too many small elements can be problematic. This is illustrated in
Fig. 2.3: small elements are present on the thin right ventricle free wall but the edge
length on the hypertrophic left ventricle is increased to have at least 3 elements in
the cross-section, leading to 12% reduction in the number of tetrahedra compared to
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isotropic meshing. Optimzing the number of elements is important to keep the size of
the numerical systems to solve small.

Note that other types of elements do exist but are usually more complex to implement.
Hexahedra are known to be more suitable for incompressibility and large-deformation
hyperelasticity. See [Oliveira et al., 2016] for a comparison between tetrahedral and
hexahedral meshes for finite element simulation of cardiac electro-mechanics. For the
sake of simplicity and compatibility with available software, tetrahedral elements are
preferred in this thesis.

Fig. 2.3.: Anisotropic and isotropic meshing. By optimizing the number of cross-wall elements,
the number of tetrahedra is reduced by 12% on the left.

2.1.2 Building a deformation model

In addition to the generated mesh, tools were developed to virtually modify the anatomy,
in order to increase the number of healthy and pathological cases available, as well
as to correct any inaccuracies from the segmentation method. As opposed to [Rodero
et al., 2021] where deformation modes are found automatically, they are here defined
based on meaningful deformations for the selected cardiomyopathies. This allows to
parameterize the deformations with only three parameters: kr and kz control the radial
and longitudinal scaling respectively while kdilate controls both the thinning of the LV
wall in case of DCM and its thickening in case of hypertrophy. The kdilate deformation
field is aligned with the LV radial directions, as shown in the first column of Fig. 2.4.

VLV VRV AB dist. Diameter Sept. thick.

kdilate 0.779 (0.0) -0.686 (0.0) 0.193 (0.0) 0.758 (0.0) -0.963 (0.0)

kr 0.405 (0.0) 0.645 (0.0) -0.013 (0.64) 0.500 (0.0) 0.035 (0.0)

kz 0.242 (0.0) 0.319 (0.0) 0.970 (0.0) 0.003 (0.93) -0.002 (0.95)

Tab. 2.1.: PRCC between parameters and the computed features. p-values are indicated in
parentheses.
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To account for the minimum wall thickness of 3mm mentioned in the previous section,
the deformation is further scaled depending on the local wall thickness of the template
mesh. This is visible on Fig. 2.4, the coefficient kdilate is reduced near the LV apex,
minimizing the effect of dilatation in these thin areas.

Fig. 2.4.: Deformation modes of the shape model. Left: dilatation of the left ventricle, modelling
either hypertrophy (>0) or dilated (<0) cardiopathies). Center: septal overlap, allows
to simulate the displacement of the dilated LV over the RV. Right: septal coefficient,
controlling the thickness of the septum independently. The color bar indicates the
norm of each vector in the deformation field.

To evaluate this model, two hundred sets of parameters have been sampled with the Latin
Hypercube Sampling (LHS) method, in a parameter space representing both healthy,
DCM and hypertrophic cases. The Partial Rank Correlation Coefficient (PRCC) method
is then used to compute the correlation between the deformation model parameters
and the computed features, as presented in Tab. 2.1. These correlation coefficients
are effective measures to ensure that the model behaves correctly. For instance, the
dilatation coefficient kdilate is positively correlated with the LV volume and negatively
correlated with the septal thickness. As the apicobasal distance is not influenced by radial
deformations, the heart diameter and septal thickness are not impacted by longitudinal
deformations. However, the fact that kdilate is negatively correlated does not only comes
from the dilatation deformation. Other deformations are to be considered but they are
not parameterized directly.

Two other parameters can be defined to gain finer control on the septal deformation:
koverlap = αmax (0, kdilate) is used to enlarge the LV while overlapping the RV (keeping a
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constant volume for both cavities, only available for DCM) ; and ksept = βmax (0, kdilate)
which can be used to manage the thickness of the setpum. These deformation modes
are also presented by the vector fields visible on Fig. 2.4, in the center and right panes.
α is the overlap factor and β the septal mode coefficient. Best results were found using
α = 2 and β = 0.5 but these values could eventually be modified in a learning algorithm
scenario to increase the number of generated geometries and their variability.

Fig. 2.5.: Normal (left) and dilated geometry (right).

An example of the mesh generated by the deformation model is presented in Fig. 3.1a,
where the right ventricle volume has been reduced by 20%. Several pathological cases
could be generated similarly from a healthy heart geometry, for example dilated (Fig. 2.5)
or hypertrophic cardiomyopathies.

Other use of shape models have been reported, for example in [Lorenz et al., 2006]
and [Pekar et al., 2001], shape models are used for the segmentation of cardiac images,
adding an anatomical prior knowledge.

2.1.3 From surface meshes to masks

In the following example, the binary mask from the segmentation (Fig. 2.6a) is resampled
into 1× 1× 1mm3 voxels and contains the labels for left and right ventricles. The labels
for endocardium, myocardium and epicardium are built with a ray-tracing method,
emerging from each ventricle barycentre. A tetrahedral mesh is built using the remeshing
software MMG [Dapogny et al., 2014] (Fig. 2.6b), resulting in a mesh of approximately
90k tetrahedra and 20k vertices, respectively.
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(a) Image extracted using the segmentation algo-
rithms (≈ one million voxels).

(b) Generated mesh (≈ 90k tetrahedra).

Fig. 2.6.: Generated topologies.

2.2 Building the anatomical data

Now that we have a suitable tridimensional tetrahedral mesh and its corresponding
uniform grid, the end of this chapter will be focused on computing the remaining
structural and functional data, namely the local cardiac coordinates, the fibers orientation
and the His-Purkinje conduction network.

2.2.1 Local cardiac coordinates system

Cardiac local coordinates are a system of reference used to describe the position and
orientation of structures within the heart. The long-axis coordinate system is defined in
each ventricle as the line connecting the apex to the center of the heart base. The second
one is defined by the direction toward the other ventricle’s barycenter in the transverse
axis, forming an orthogonal basis at the barycenter of each cavity. The spherical cardiac
coordinates are automatically found using the work from [Cedilnik, 2018], by fitting an
ellipsoid to each endocardial surface. This approach is also used in the definition of AHA
regions, Section 2.2.3.

A transmural metric is also necessary to compute the depth of any point within the
myocardial tissue and the local thickness of the cardiac wall. The method described
in [Yezzi et al., 2003] defines a smooth vector field between the boundaries (endocardium
and epicardium) and solves a pair of Partial Differential Equations (PDEs) to get the
shortest distance to each boundary. The thickness map is then given by the sum of
these distances and normalizing one by the thickness map gives the normalized radial
coordinate which is null on the endocardium and equal to one on the epicardium.
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This radial coordinate is used to define smooth gradients for conduction velocity (see
section 3.1.2), to create spatially varying Action Potential Duration (APD) or in the
definition of the fiber directions.

2.2.2 Cardiac fibers

The spatial orientation of the muscle fibres plays a major role in the excitation and
contraction of the heart [Streeter et al., 1969]. We assume that the fibre helix angle
varies from −α to +α across the myocardial wall and remains constant throughout the
cardiac cycle, neglecting the angle variations in any other direction.

Based on the cardiac coordinates system and the radial direction defined in the previous
section, a local orthonormal basis is build on each point. The fibre directions are given
by the circumferential basis vector, rotated by an angle αf ∈ [−α,+α] along the radial
direction (Fig. 2.7). In this framework, the angle variation is chosen to linearly increase
from the endocardium (αf = −80◦) to the epicardium (αf = 80◦). Note that the septum
is considered as left ventricle for the fibres generation.

Fig. 2.7.: Short-axis clipped view of the fibers direction. The double helix is clearly visible from
endocardium (blue) to epicardium (red).
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2.2.3 AHA regions segmentation

The 17 American Heart Association (AHA) segments are defined as per a standardized
segmentation of the left ventricle proposed in [Manuel D Cerqueira et al., 2002]. We can
extend this to 29 regions (Fig. 2.6b) by including the RV to obtain the whole myocardial
tissue. These segments are mostly used in the mechanical simulation. They can also give
a good insight into the regional properties such as stress and strain ; thus, helping us
assessing intraventricular dyssynchrony.

To build these regions for each ventricle, we let an ellipsoid fit the ventricle endocardial
vertices and use the spherical coordinates to generate the regions on the ellipsoid. Finally,
the segments are projected onto the tetrahedral mesh [Cedilnik, 2018]. At the base of the
mesh, a stiffer and less electrically conductive region is introduced to model the valves
fibrous tissue (beige region at the top of the mesh in Fig. 2.6b).

2.2.4 Purkinje network generation

The Purkinje is a fast conduction network with specialised cells, which is generated by
growing it starting from the basal points on the endocardium, close to the SA node. The
Purkinje generation method presented in this section is inspired from [Sahli Costabal et
al., 2016]. Several tools to increase the robustness of the method, compute the distances,
extract the PMJ points, or delete nodes and branches have been implemented.

Fig. 2.8 presents the growing procedure of the network. For each ventricle, the coordi-
nates and direction of the first branch are sufficient to grow the network, see Fig. 2.9. The
network increases by generations in which each branch creates two new branches, based
on the initial direction and the distances from all other branches. A repulsivity coefficient
controls the global distance between branches. Each branch is built with several small

Fig. 2.8.: Growing Purkinje network. At each generation, the next branch is computed based on
the current direction and the direction of all other branches with the gradient distance ;
the coefficient w controls the repulsivity of the new branch. Source: [Sahli Costabal et
al., 2016].
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segments. Together with branch length and number of segments per branch, they control
the density of the network.

Fig. 2.9.: Procedures for the generation of the Purkinje network. (a) for each endocardial surface,
in the direction of LV-RV barycenters, the intersection is performed near the base. (b)
two nodes are found on the endocardium boundary edges and directions are found
using the apex. (c) starting from this node, the network starts to grow. (d) the geodesic
distance can be computed from any node.

In the process of creating a new branch segment, the generated node is projected on the
endocardial surface, using the triangle normals. If the projection fails, the progression of
the network is stopped at this point, a behavior which is not desired. Particularly with
dilated geometries, the right ventricle can be quite tight near the apex and the meshes
have sharp edges, leading to the projection error. To overcome this issue, the proposed
method consists in using the curvature of the input endocardium to:

1. remesh the endocardial surface, discretizing the highly curved areas with very small
triangles,

2. locally adapt the network segment length, proportionally to curvature.

Because the segment length is much smaller in curved areas, there is necessarily a triangle
on which to project the new point. The phenomenon is visible on Fig. 2.10 where the
use of small elements near the apex is beneficial for the network growth. Additionally,
the endocardial surface is remeshed using a curvature-based metric in order to obtain
small triangles in curved areas, which facilitates even more the projection of new points
and the growth of the network.

Using curvature-based discretizations for both the triangular endocardial surface and the
network’s segments allows to optimize the number of nodes in the Purkinje graph, while
keeping a robust growth and avoiding the projection error. The number of nodes in the
graph greatly affects the computation time of the geodesic distance.

Fast computation of the geodesic distance

The geodesic distance defines a metric on the generated Purkinje network, it allows to
compute the shortest path from any point on the network to the ventricle’s atrioventricular
node. Because the network is closed, the computation of this geodesic distance can be
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(a) (b)

Fig. 2.10.: Right ventricle endocardium and grown Purkinje network with zoomed view on
the transition septum-free wall. Comparison between the old method (a) and the
curvature-based method (b). The network growths better on the RVFW when both
the surface discretisation and branch length are computed from curvature.

difficult, even more so if the network connectivity is altered (e.g. defining an infarcted
tissue area that may locally remove branches from the network).

An algorithm similar to the Dijkstra’s algorithm [Dijkstra, 1959] is implemented in
C++ and is included in the ElecModel pipeline through python bindings. The geodesic
distance computation on the network is implemented in parallel and is quite fast, taking
10s for both ventricles on an Intel Core i5-4430 CPU @ 3.00GHz laptop. Without the
parallelism and the C++ bindings, the pure python solution takes more than two minutes
per ventricle.

In the electrophysiology model (chapter 3), this metric will be used to compute the
arrival time of the electrical signal on the network’s nodes. Note that the conductivity of
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each point on the purkinje can be defined either locally or globally, the latter being the
default implementation.

Fascicle identification for fascicular BBB simulation

To be able to simulate fascicular blocks, it is possible to identify either the anterior or
posterior segments of the network. To do so, the His node is first identified (black node
on Fig. 2.11), as well as the two consecutive nodes, belonging to the posterior and
anterior fascicles. Then, for any point on the graph, the shortest path to either one of
these nodes will give the fascicle of the current point.

Being able to monitor specific segments of the network is paramount to simulating
fascicular blocks, referred as Left Anterior Fascicle Block (LAFB) and Left Posterior Fascicle
Block (LPFB), in which case they can be deactivated but still functional (complete block)
or removed from the graph (DCM, MI). An example of a LPFB is presented Fig. 3.17.

Anterior fascicle

Posterior fascicle

RV

His node

Fig. 2.11.: PMJ nodes and network labels. The block node represents the His node, the cyan is
the RV Purkinje network. In the LV, the anterior fascicle is shown in red and posterior
in green.
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2.2.5 Conclusion

The anatomical model presented in this chapter is able to generate realistic geometries
among the selected cardiomyopathies. The deformation model relies on a few number of
parameters that have a meaningful significance and five modes of deformation, allowing
for a fine-tuning of the geometry. Then, all the geometric quantities are computed, in-
cluding the cardiac coordinates, the ventricles’ volume and wall thickness. The deformed
mesh is remeshed using a heterogeneous metric to optimize the size and number of
elements depending on the wall thickness. This reduction in the number of elements
allows to reduce the time required for the resolution of the FEM dynamical system,
presented in chapter 4. The cardiac coordinates are also used for the generation of the
double-helical arrangement of the myocardial fibers, and the segmentation of the AHA
regions.

This model also accounts for the fast-running Purkinje fibers, being able to robustly
grow a Purkinje network on a given endocardial surface, compute the geodesic distance
between two nodes, remove the PMJ nodes affected by an infarct and eventually locally
deactivate the network. Note that the fast-running Purkinje fibers only account for the
extramural conduction system. The intramural Purkinje fibers are also included in the
cardiac model and will be presented in section 3.1.2.

Addtionally to the geometry and the generated cardiac structures, the torso of the patient
has also been included in this framework. It allows for precise localization of the ECG
leads, but also the orientation of the heart within the body. Elongated and thin torsos are
associated with more vertically oriented hearts, while the apex is higher and the heart
more horizontal in shorter people.

The anatomical data is generated in less than a minute (without the deformation model),
a description of the resources used for its computation is presented Fig. 3.21. If a
transformation of the template mesh is required, the deformation model takes less than
thirty seconds.

Globally, the anatomical model sets up the computational domain and spatial parameters
for the electrophysiological simulation.
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This chapter is partly based on the following paper:
Personal-by-design: a 3D Electromechanical Model of the Heart Tailored for Per-
sonalisation. Gaëtan Desrues, Delphine Feuerstein, Thierry Legay, Serge Cazeau, Maxime
Sermesant. FIMH 2021 - 11th International Conference on Functional Imaging and
Modeling of the Heart, Jun 2021, Stanford, CA, United States.

This chapter introduces one contribution, concerning the implementation of the
stimulation method and the coupling between the free-running Purkinje network
and the myocardial tissue. Indeed, because the specialised His-Purkinje network is
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more conductive than cardiac tissue and blood, the electrical signal can travel at high
speed to distal regions of the heart and initiate depolarization points (myocardium
to Purkinje activation) that would have been depolarized later with pure cell to
cell conduction. It is also possible that some myocardial cells activate the Purkinje
network, allowing for fast propagation of the electrical signal and earlier activation
of distal tissue (Purkinje to myocardium activation). In both cases, special care must
be paid to the activation map so that all depolarization follow the correct order ; this
is done by iteratively recomputing the activation map.

ECG generation

Torso ECG leadsEndocardial purkinje
termination points

Potential propagationFibers arrangment

Data augmentation

Anatomy Electrophysiology

a.

b.

c.

f.d.

e.

Fig. 3.1.: Pipeline for patient-specific electrophysiology simulation. a. Initial and modified
geometries. b. Fibre directions. c. Activation points and activation times on the
endocardial surfaces. d. Activation map. e. Leads location on a virtual torso. f. 12-lead
ECG. This pipeline generates all the data required to run the mechanical simulation.

The electrophysiology plays an important role in the cardiac function as it triggers
the biomechanical contraction of the cardiac tissue. In physiological conditions, the
electrical pathway is well known as described in 1.1.1. Harmonized propagation of the
depolarization wave ensures that all cardiac segments contract altogether to produce
the maximum stroke volume with minimum energy consumption. However, various
conditions can affect this usually optimised machinery and force the heart to adapt. This
part will focus on a few electrophysiological causes of dyssynchrony, such as complete or
partial BBB or local ischemia.
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This chapter introduces a fast propagation model for the depolarization wave, includ-
ing some complex structures of the heart such as the His-Purkinje network. Then, a
simple ECG generation method is proposed and allows one to compute the twelve-lead
electrocardiogram within seconds, based on the electromagnetic activity of the heart.
This measure of the cardiac activity is primordial in this thesis work as it constitutes a
reliable connection between the model’s behavior and the real-world clinical data and
expertise. Finally, the implementation of the pacing protocol is detailed and the results
on calibrated cases are discussed.

3.1 Propagation of the electrical depolarization wave

At each cardiac cycle, the mechanical contraction of the heart is driven by the electrical
activation. The electrical signal emerging from the atrio-ventricular node is conducted
along the bundle of His and the Purkinje network to the endocardium (Fig. 3.1c). The
numerous termination points of the Purkinje fibers on the endocardium are reduced to a
dozen of points (Fig. 3.1d) and selected to match a real endocardial map (Fig. 3.2). To
account for the fast potential propagation due to the Purkinje fibers, a thin endocardial
layer is assigned a higher isotropic conductivity.

Since the present biventricular geometry does not have atria, the propagation of the
electrical signal from the sino-atrial to the auriculo-ventricular node is not simulated.
However, atria are included in the biomechanical model, see for example 4.2.7. This
chapter only focuses on the electrophysiological ventricular activity, originating from
auriculo-ventricular node. Thus, no P wave is present on the ECG.

3.1.1 A conduction model for the heart tissue

As described in section 1.1.1, the depolarization of cardiac cells consists in a change of the
transmembrane potential by exchange of ions inside and outside the cell. Mathematical
models describing this complex biochemical activity do exist [Tusscher et al., 2004;
Kosta et al., 2021] and include several ions concentrations at the cellular scale, as
well as their flux through specific ion channels across in the membrane. This type of
electrophysiological model is known to accurately describe the cardiac cell behavior but
is computationally demanding. Another type of bidomain electrophysiological model
are the phenomenological ones, that try to reproduce the shape of the action potential
using a non-linear system of ODEs [Mitchell, 2003; Aliev et al., 1996]. With fewer
parameters, they are much faster than biophysical ionic models, but they still allow
to simulate the variations of the transmembrane potential and the propagation of the
depolarization wave. However, eikonal models are much faster and only describe the
activation front of the electrical signal with isochronous surfaces. They have been used
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in cardiac simulations in the past [Talbot et al., 2013; Wallman et al., 2012; Sermesant
et al., 2007].

In the present work, the potential propagation is computed using a fast marching
method [Mirebeau et al., 2019] and solving the anisotropic eikonal equation for each
mesh vertex:

σ
√
∇T TD∇T = 1 (3.1)

where σ is the local conduction velocity, D the anisotropy tensor and T the arrival time
of the depolarization wave.

After a short period of time (duration of the QRS), all the myocardial cells are acti-
vated and contract until the repolarization wave arrives. The action potential duration
(APD) is linearly interpolated from the endocardium to the epicardium (shorter on the
epicardium), using a wall depth map.

Our eikonal model has been compared with an endocardial map acquired with catheter
mapping, see Fig. 3.2. After manual selection of the onsets points on the endocardial
surface, the results show a good correspondence between the depolarized areas in the
real and simulated cases. The activation map indicates the Electrical Arrival Time (EAT)
on any point of the mesh. If not mentioned otherwise, t = 0 corresponds to the first node
being depolarized on the mesh, and is referred as the His node, as seen in Fig. 2.11.

Fig. 3.2.: Real endocardial activation map (courtesy of Dr.Mouhoub) and their computed homol-
ogous, at different points in time. The computed map (white background) shows both
ventricles endocardium (no atria) and the fast isotropic propagation wave.
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This experiment showed that the location and activation timing of these onset points
is quite significant in the electrical pathway, and that all onsets are relevant when
matching the real-world data. These observations have led to the development of the
His-Purkinje network, for physiological arrangement and timing of the onset activation
points. Moreover, note that the endocardial propagation is chosen to be isotropic (D is
set to identity), this will be discussed in the next section.

Beside the anisotropy tensor D, that is based on local fibers arrangement, the local
conduction velocity σ must be defined on the computational domain and has a primary
role in the eikonal propagation wave.

3.1.2 Conduction velocity

Conduction velocity is known to be deeply heterogeneous in the heart, even within the
myocardial tissue. The combined presence of highly conductive purkinje fibers in the
cellular matrix, fibrotic tissue, or even ischemic regions that do not, or poorly transmit
signal, makes the modelling of local conductivities rather complex.

Determination of the local map of electrical conductivities has been studied in recent
years, involving the acquisition of invasive data, such as the activation map [Pheiffer
et al., 2017; Chinchapatnam et al., 2008], or with non-invasive data, such as the Body
Surface Potential Mapping (BSPM) [Giffard-Roisin et al., 2017] or the ECG [Zettinig et
al., 2014].

The approach used in this thesis relies on the ability to explain each parameter, while
keeping a total number of significant parameters low. To this end, the conduction velocity
is set to a uniform value in the whole myocardium, typically the measured conductivity
in the cardiac tissue, see table 3.1. Then, based on the observations made in [Martinez
et al., 2018] that account for the presence of subendocardial activation, a different
conduction velocity value is assigned to a thin region (1-4mm) on the endocardium.
Because of the high density of this subendocardial Purkinje network and its independence
to cardiomyocytes preferential propagation direction, the endocardial region is isotropic
see Fig. 3.3, with a greater velocity as compared to pure myocardium. Finally, this
procedure is applied to either one of both ventricles, leading to six parameters defining
the local velocity of the propagation wave, on the whole biventricular computational
domain.
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3.2 Fast model for 12-lead ECG generation

The electrocardiogram (ECG) is a non-invasive measure of the heart’s activity and a
routine practice in clinics. Being able to monitor the electrophysiological simulated
activity on the torso is primordial.

3.2.1 The heart as bioelectric source

The ECG records the bioelectric activity of the cardiac cells by measuring the electrical
potential at the 6 precordial leads placed on the patient’s torso and 3 (or 4) limb leads

Fig. 3.3.: Examples of activation maps for different scenarios on a 8×8×15mm myocardial cross-
section with endocardial pacing. Endocardium is in the front while the epicardium
is in the back. a. Fibers arrangement linearly varying from -45° on endocardium
to 45° on epicardium, and the stimulation point (blue). Reference points (green)
are used to compare the arrival time of the depolarization wave in ms. b. Isotropic
propagation. c. Anisotropic propagation with anisotropy ratio of 0.3. d. Isotropic
endocardial propagation (3mm) and anisotropy in the remaining myocardium. The
color bar indicates the EAT, in ms.
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Myocardium Endocardium His Purkinje

[Malmivuo et al., 1995] 0.3-0.8 - 1.0-1.5 3.0-3.5

[Sermesant et al., 2012] 0.5 4-5 - -

[Tusscher et al., 2008] 0.7 - - 3.0

[Barber et al., 2021] - - - 1.7-2.2

Tab. 3.1.: Conduction velocities (along fibers for the myocardium) found in the literature for
healthy human hearts [m/s].

(Fig. 3.1e). In order to simulate this electrical activity, we consider each voxel of the
image as a dipole of current density jeq = −σ∇v where ∇v is the spacial gradient of the
potential v [Cedilnik et al., 2019]. By using the chain rule, we obtain:

jeq = −σ ∂v
∂T
∇T (3.2)

where σ is the local conductivity, ∇T the gradient of the activation map and ∂v
∂T is given

by solving the Mitchell-Schaeffer model [Mitchell, 2003] using a forward Euler scheme.
We suppose here that the body is a homogeneous material with constant conductivity σT .
The electrical potential at a distance r from the source is developed in [Malmivuo et
al., 1995] and is given by:

Φ(r) = 1
4πσT

∫
V

jeq · ∇
(1
r

)
dV (3.3)

We finally derive the potential contribution of each voxel with the Einthoven triangle to
obtain the augmented leads and plot the electrocardiogram Fig. 3.1f.

3.2.2 Modelling the action potential

Since the Eikonal model only yields the arrival time of the depolarization wave, it is
not possible to compute the gradient of the action potential, required to express the
current density jeq. To compute this gradient, we used a forward Euler scheme to
solve the monodomain version of the Mitchell-Schaeffer cardiomyocyte action potential
model [Mitchell, 2003], as in [Talbot et al., 2013].

The Mitchell-Schaeffer model defines two variables, the transmembrane potential v
and h, a secondary variable controlling the repolarization phase. Note that the coefficient
τclose mainly affect the APD90 duration, or 90% of the action potential duration. This
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Fig. 3.4.: Normalised transmembrane potential as described in [Mitchell, 2003]. 1: depolariza-
tion, 2: plateau phase, 3: repolarization, 4: rest potential.

parameter is also important for the mechanical simulation since it controls the contraction
duration of the cardiac cells, and thus influence the duration of the ejection phase.


∂tv = div(D∇v) + zv2(1−v)

τin
− v

τout
+ Jstim

∂th =


1−h
τopen

if v < vgate
−h
τclose

if v > vgate

(3.4)

3.3 Signal processing on the ECG

Since the ECG constitutes the main interface between the patient’s cardiac activity, the
practitioner and the cardiac model, a special attention is given to its automated analysis.
This section introduces the ECG features that will be used for the remaining of this thesis,
such as the five waves of the QRS complex and the QRS axis.

Note that since we are primarily focused on the propagation of the depolarizing wave,
only the QRS complex will be extracted and studied. Atria depolarization (P) wave
and ventricular repolarization (T) wave are not considered in the present manuscript,
although the model is able to produce T waves.

3.3.1 ECG signal processing pipeline

ECG filtering and sampling

Although the typical ECG generated by the model may be quite smooth, real-world ECGs
are often noisy and may be altered by the following: movement of the patient (either
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breathing or muscles artifacts), electrical interference from surrounding equipment,
or signal corruption by any processing such as analog to digital conversion. Simple
linear filtering is used here, applying both low and high bandpass filters to remove
undesired frequencies in the frequencies’ spectrum, see Fig. 3.5. Typical values found
in the literature for cutoff frequencies are 0.05-40Hz [Clifford et al., 2006; Karraz et
al., 2006] so that information is preserved at 0.3Hz, the accepted low frequency limit
of the informative signal range [Berson et al., 1966]. In 1990 the American Heart
Association (AHA) established a standard 0.05 to 150 Hz bandwidth for the routine
recording of 12-lead ECG and authors have been using values ranging from 40 to 150Hz
for the high pass. However, as demonstrated in [Ricciardi et al., 2016] and observed
in our analysis, 40Hz high pass filtering does not affect ECG clinical interpretation and
allows better quality of tracings.

After filtering, signals are resampled from 400Hz to 1000Hz using linear interpolation.
Note that the ECGs generated by the model are already sampled at 1000Hz.

Finding the cardiac cycle in an ECG recording

Detecting the cardiac cycle is perhaps the most common practice in ECG analysis and
is usually done by identification of the R wave of the QRS complex [Nacif et al., 2011].
Simple peak-detection algorithms can roughly identify the QRS complex and extract one
cardiac cycle that contains it.

Deriving the QRS complex

Once the cardiac cycle has been extracted from the signal, a series of signal processing
operations are performed to segment the QRS complex. The depolarization of the ventri-
cles is the principle electrical activity observed on the ECG recording and is characterized
in particular by a high voltage on the Q and R waves. Taking the absolute value of
gradient thus magnifies these variations, see Fig. 3.5. Finally, we use a moving window
as in [Augustyniak, 2010; Jokic et al., 1970] to extract the relevant parts of the signal by
averaging the gradient. Best results were found using a window length of 100ms. This
method yields the beginning and final time stamps of the QRS, as shown Fig. 3.5 and
Fig. 3.6a.

Consensus for the 12-lead ECG

The QRS complex is extracted from all twelve derivations and aggregated to give a final
segmentation for the whole ECG. Having a consensus between the twelve leads increases
the robustness of the segmentation, in particular for isoelectric or noisy derivations.

Let vs and vl be the 12-length vectors of timestamps for QRS start and length respectively.
The consensus is given by the qth quantile of each vector, q = 0.1 for vs and q = 0.9 for vl.
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Working with the quantiles instead of the values ensures that segmentation artefacts
are not included in the final decision. Finally, this method yields the starting time and
duration of the QRS complex, for the twelve derivations of the ECG.

Fig. 3.5.: ECG signal processing and QRS detection. The signal is first filtered to remove any
artifacts, then a moving window of 100ms is applied and extracts the range of values
where the signal varies the most, giving the QRS complex. A consensus is then made
on the twelve derivations.

Extraction and identification of the QRS complex

At this step of the pipeline, the QRS complex is identified and segmented on a signal
sampled at 1000Hz. It gives the voltages measured on the torso during the ventricular
depolarization, lasting between 70 and 90ms for healthy patients and up to 200ms for
desynchronized patients. Again using a peak detection algorithm constrained on width
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Fig. 3.6.: Signal processing on the ECG.
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and prominence, all the waves are localized on the signal. They are successively labelled
as Q, R, S, R’, and S’ waves, depending on their sign and order. All remaining waves are
ignored. Moreover, it is possible that one or more waves are not present in the signal,
especially for healthy patients, as seen in Fig. 3.6b.

At this step, the ECG processing pipeline has extracted at most 60 labelled waves with
their time location, amplitude and prominence, as well as the QRS duration. The next
section will detail the determination of the QRS axis, another meaningful feature that
can be extracted out of an ECG.

3.3.2 QRS axis determination

The QRS axis represents the mean current flow during ventricular depolarization, pro-
jected on the frontal plane, see Fig. 1.6. The normal axis points mostly downward and
to the left because the more muscular left ventricle generates a stronger depolarizing
current that overwhelms that generated by the less bulky right. Right and Left Axis
Deviation (RAD and LAD respectively) may indicate an underlying pathology such as
hypertrophied or infarcted tissue, or a conduction disorder affecting one side of the heart,
for example a bundle branch block.

Physiologically, a positive deflection on an ECG derivation means that the electrical
forces are moving towards the lead, while negative deflection indicates the current is
moving away. Minimal deflections will be formed when the electrical forces are moving
perpendicular to the lead. These observations allow clinicians to quickly compute the
QRS axis from an ECG.

Classical axis determination method

This is the preferred method used by clinicians as it gives a good approximation of
the QRS with a glance at the ECG. The most isoelectric derivation is chosen among
the limb leads, it corresponds to the perpendicular direction of the mean current flow.
This isoelectric direction may be located in between two leads if no derivation is found
isoelectric, see Fig. 1.6. Then, the perpendicular lead gives the mean direction of QRS
depolarization. The sign of the deflection on the corresponding ECG derivation finally
gives the QRS vector, that can be reported on the hexaxial reference system to find the
QRS axis.

From the standard derivations

The previous method, while quite adapted for the human eye and the experienced
clinician, is not appropriate for computers. This method is not robust to ECG artifacts
such as misplacement of the leads, and extrapolation whenever an isoelectric derivation
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is not found can be difficult to implement. The protocol to numerically compute the QRS
axis is based on reporting the voltage from two standard derivations on the hexaxial
system presented in Fig. 1.6, either leads I and aVF or I and III. Although the perfect QRS
axis determination method is still lacking [Gao et al., 2020], they have been extensively
discussed [Martinez-Diaz et al., 2008; Mitra et al., 2007] and tend to favour leads I and
aVF. Also, because a computer can measure the areas of ECG waves, whereas interpreters
necessarily use their amplitudes, the computer is always more accurate [Spodick et
al., 2008].

From the activation map

Whenever the activation map is available, it is the best method to approximate the QRS
axis since it has a direct meaning related to the electrical activation pathway. To this end,
the mean gradient of the arrival times is projected onto the frontal plane and yields the
exact QRS axis.

Discussion

Although the QRS axis is an important feature of the ECG and clinically meaningful, its
precise value is not required for the classification of normal or deviated axis. All methods
yield similar results (see Fig. 3.11).

3.4 Calibration of the electrophysiological model

Calibration is an important step in the development of a mathematical model, it ensures
that the output quantities are those expected by the user. Calibration consists in finding a
set of parameter values such that the model predictions are similar to the observed data.
It also gives the interval of parameter values in which the model’s output is valid and
meaningful. This section describes the different strategies that are adopted to this end.

Previous work used the Unscented Transform algorithm as an automatic calibration
method [Marchesseau et al., 2012], but it still requires a lot of simulations and results
are not granted. Instead, the calibration is here performed manually with a clinical
validation and allows for finer tuning of the parameters.

3.4.1 Healthy and dilated geometries

This section presents the sinus rhythm simulation results of the electrophysiological
model, for the two geometries displayed in Fig. 3.7.
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(a) Normal geometry (b) DCM geometry

N D

VLV 120 212 +77%
VRV 69 76 +9%
dLV 54 72 +33%
dAB 85 86 +1%
Sept 11 9 -21%

(c) Anatomical features

Fig. 3.7.: Baseline anatomical geometries. V : ventricular volume [mL], dLV : diameter [mm],
dAB: apico-basal distance [mm], Sept: septal thickness [mm]. N: normal geometry,
D: DCM. The last column of the table indicates the evolution of the features as
compared to the normal geometry.

Healthy

The geometry in Fig. 3.7a constitutes the healthy baseline result of the anatomical model,
featuring a 120mL LV volume and septal thickness of 11mm. The Purkinje network has
also been generated on the endocardial surfaces of this geometry.

Fig. 3.8 presents the activation map and the corresponding 12-lead ECG, focused on the
QRS complex tracings. The computed QRS duration is 77ms while the axis is 7°, thus
classified as normal axis and duration. Several features of a healthy heart are also visible
on the ECG, such as the negative to positive transition of the signal in the precordial
leads, with the transitional zone in lead V3. A large positive deflection -R wave- is present
in leads I, II, V4-V6 as well as a large S wave in leads aVR, V1 and V2. This experiment
shows that the model is able to simulate a healthy depolarization, as seen on the ECG. It
is also compatible with the ventricular activation described in [Durrer et al., 1970].
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Fig. 3.8.: Electrophysiological simulation of the healthy heart, showing the QRS tracings (left)
and the activation map (right). QRSd=77ms, QRSa=7°, max (EAT)=69.2ms.
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Dilated cardiomyopathy

Applying the deformation model presented in section 2.1.2 to the healthy geometry leads
to the dilated geometry in Fig. 3.7b, featuring a 212mL LV volume and thinned LV wall.
The Purkinje network has been projected using barycentric coordinates from the normal
geometry to the dilated one so that simulation contexts are as close as possible. Moreover,
since dilatation is often associated with an increase in fibrotic tissue in global reduction
of the conductive property of the myocardial tissue, all conductivities are reduced by
25%.
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Fig. 3.9.: Electrophysiological simulation of a DCM with spontaneous activation. Note that the
dilatation of the heart is a sign of an underlying pathology, which is not included in
this simulation. QRSd=104ms, QRSa=32°, max (EAT)=114ms.

Fig. 3.9 shows the resulting ECG and activation map on the dilated geometry. The 124ms
QRS is wider but the axis remains normal (30°). Note that this experiment only shows
the impact of the dilatation on the depolarization but does not represent real-world cases
since dilatation is always resulting from an underlying pathology such as conduction
disorders, e.g. BBB. Nonetheless, it shows that the model able to simulate a sinus rhythm
propagation on a dilated geometry and that decreasing conductivities is necessary to
obtain QRS durations that are close to the ones observed in diseased hearts.

3.4.2 Sensitivity analysis on the electrical parameters

The sensitivity analysis represents the behavior of the model relative to each parameter.
First, a scalar interval is assigned to each of the n parameters, centered on the baseline
value calibrated in the previous section. Then, m values are uniformly sampled on the
interval, thus giving n×m sets of parameters, and n×m simulations to run in parallel.
For each simulation, n− 1 parameters are fixed to their baseline value and one parameter
is sampled within a defined interval.
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Fig. 3.10.: Results of the sensitivity analysis showing the impact of each parameter of the
electrophysiological model on the 12-lead ECG.
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Influence on the 12-lead ECG

The results of this experiment are presented in Fig. 3.10. All simulations are run on the
healthy geometry (Fig. 3.7a) except mentioned otherwise. As a general remark, we can
notice that all selected parameters are relevant given the variations on the ECG that can
be observed when they are modified, except for the fibers angles, which does not seem to
affect the way the depolarization wave propagates. In fact, it can be seen on Fig. 3.3 that
the transmural propagation induces homogeneous activation times on the epicardium,
be the propagation isotropic or purely anisotropic. Furthermore, the isotropic metric set
on the endocardium helps in propagating the electrical signal all over the ventricle, thus
reducing the effect of a preferred direction that slows down the signal in some areas.

On the contrary, the interventricular bundle delay has a great influence on the shape
of the QRS waves. Because it modifies the direction of the early septal propagation, its
influence is quite visible on the first wave in leads V1 and V2. When negative, the first
onset point is located on the LV and propagates mainly towards the RV, thus giving a
positive deflection on V1. Inversely, a positive interventricular bundle delay will yield a
negative deflection (Q wave) on V1, the depolarization wave propagating from the RV to
the LV, through the septum.

Regarding the LV Purkinje network conduction velocity, Fig. 3.10b, the shape of the
QRS is not altered but this parameter rather influences the duration of the ventricular
activation. Indeed, a slower conduction velocity leads to a late activation of the LV
lateral wall, which can be seen on leads I, aVL, V5 and V6, extending the QRS by thirty
milliseconds. The same observation can be made for the RV Purkinje conduction velocity
(not plotted) with less influence, given the smaller mass of the RV as compared to the
LV.

As for the interventricular bundle delay, the endocardial conduction speed impacts mostly
the beginning of the QRS ant the depolarization through the septum (figures 3.10c
and 3.10d). Even for the slowest conduction velocity, the electrical signal is transmitted
mainly with the Purkinje network to the distal segments of the heart, allowing to have
an almost constant QRS duration.

The myocardial conduction speed, however, greatly burdens the duration of the QRS
complex, mostly for the LV, as it is seen in the latest parts of the QRS signal in Fig. 3.10e.
The RV, much thinner, benefits from the endocardial layer of rather fast conductive tissue
to balance the lower myocardial conduction rate, see Fig. 3.10f.

Finally, the influence of the anatomical geometry is presented in Fig. 3.10h. As for
Fig. 3.10e with a reduced conduction speed, the LV hypertrophic geometry causes a delay
in the LVFW activation, visible in all derivations with a large, lasting wave. For the dilated
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geometry, as opposed to Fig. 3.9, baseline conductivities have not been altered, leading
to only small differences as compared to the normal geometry. Only a small LV delay can
be observed.

Influence on the computed ECG features

Fig. 3.11 shows the results of the sensitivity analysis on the QRS duration and axis. As
mentioned previously, endocardial conduction velocity does not affect the QRS duration,
as opposed to the myocardial LV one. This prolonged QRS duration can also be observed
when the LV is depolarized long after the RV due to a significant interventricular bundle
delay.

Regarding the QRS axis, it can be noticed that it increases (towards a right axis deviation)
when the LV conduction is faster and conversely, decreases (towards left axis deviation)
when the RV conduction is faster.

Another interesting takeaway observation that can be made on Fig. 3.11 is the fact that
the QRS axis values are always very close to each other, except when computed from
leads I and III. The QRS axis computed from the activation map, which is considered to
be the reference computation method, are well correlated from the computations made
with leads I and aVF. This observation reinforces the suggestion that this method is the
to be preferred when the activation map is not available. The standard clinical QRS axis
estimation method (iso) is not very far either but can only yield values at ±15ř, without
interpolation. From now on, unless explicitly mentioned, all QRS axis computed from
ECG will be computed based on leads I and aVF.
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Statistical study

In addition to the previous study, this section presents a deeper analysis of the correlation
that exists between the electrophysiological model parameters and the waves extracted
from the ECG. A total of 2000 simulations were run, allowing a complete exploration of
the parameters space and a comprehensive understanding of the model’s behavior when
multiple parameters vary at the same time.

The parameters are taken from a Latin Hypercube Sampling (LHS) method. This method
is flexible because it does not make any assumptions on the number of samples and
furthermore ensures that the set of random parameter values is representative of the
multidimensional dataset.

Discussion

The sensitivity analysis performed on the model show that all the selected parameters
have significant influence on the simulation results. However, it can be noted that the
real world ECG tracings have a much higher variability than those generated by the
model, as presented in Fig. 3.14 for healthy cases.
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Fig. 3.12.: Correlation between the QRS waves (Q, R, S, R’, S’) and the model’s parameters.
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Fig. 3.14.: Comparison between the ECG tracings obtained with the model and those from the
database presented in section 1.3.2.
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3.5 Pathological simulations

The electrophysiological model presented in this chapter has been calibrated on healthy
and DCM geometries. This section is dedicated to the study of how electrical condition
affects the output.

3.5.1 Simulating bundle branch blocs

This section presents the simulation results of complete BBB on DCM geometry. Despite
the global reduction of the conduction velocities associated with the dilation of the
ventricles, it is assumed that both the muscle and Purkinje network are still functional
and not altered further the block. In this sense, the Purkinje network still transmits the
electrical signal at a high speed to the distal myocardial tissue, whenever it is activated.
In the case of complete BBB in one side of the heart, the depolarizing wave, typically
coming from the healthy His bundle, crosses the septum and activates the other Purkinje
network, propagating the signal in the remaining tissue. This is particularly visible on
the ECG tracings, where the signal is notched and exhibits ‘M’ or ‘W’ shapes, reflecting
the fact that ventricles have been activated sequentially.
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Fig. 3.15.: Electrophysiological simulation of a complete LBBB, QRSd=172ms, QRSa=-17°,
max (EAT)=180ms.

Fig. 3.15 shows the ECG tracings and activation map resulting from a LBBB. The QRS
duration is 172ms and axis -17°. The LLW has a delayed activation, visible in dark blue in
the activation map. The ECG shows a dominant S wave in V1 and large R wave in leads
I, aVL, V5 and V6. We can note the absence of Q wave in leads I, V5 and V6. Finally,
the notch, visible in V1 and V6, is typically associated to complete LBBB with preserved
conduction properties, for instance without myocardial infarction.

52 Chapter 3 Electrophysiology model



-2.0

-0.5

1.0

2.5 I aVR V1 V4

-2.0

-0.5

1.0

2.5 II aVL V2 V5

0 20040 80
time [ms]

-2.0

-0.5

1.0

2.5

vo
lta

ge
 [m

V]

III

0 20040 80

aVF

0 20040 80

V3

0 20040 80

V6

QRS duration: 142ms ; QRS axis: 77°

Fig. 3.16.: Electrophysiological simulation of a complete RBBB. QRSd=142ms, QRSa=77°,
max (EAT)=150ms.

Similarly, a complete RBBB is presented Fig. 3.15, resulting in a 142ms QRS duration
and 77° QRS axis. Again, the RSR’ pattern observed in leads V1-3 with an ‘M-shaped’
signal is typically associated with RBBB.

3.5.2 Simulating fascicular blocks

Based on the identification of the Purkinje end nodes visible in Fig. 2.11, it is possible to
induce a fascicular block, either on the anterior branch (LAFB) or posterior one (LPFB)
of the LV.

3.5.3 Simulating ischemia

Simulating infarcted areas is also possible within the ElecModel. This consists in locally
modifying the conduction velocities, near the infarcted area. Several methods for defining
the areas are implemented, either growing from a seed given its 3D coordinates and area
size, or based on the AHA regions (Fig. 2.6b). Defining a gradient for smooth transition
between healthy and diseased tissue is also implemented.

3.5.4 Discussion

These simulation results show that the electrophysiology model is able to reproduce
simple pathologies observed in heart failure patients such as complete and incomplete
BBB, as well as myocardial infarction. The ECG tracings exhibit behaviors typically
associated with these conditions. However, two notable limitations can be made on
these results. First, the axis computed from the BBB simulations are classified as normal,
although it should have been classified as right or left axis deviation for RBBB and LBBB
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respectively. Instead, they lie in the border of the [−30◦, 90◦] range associated with
normal axis. This lack of variability of the QRS axis is also visible on Fig. 3.11 where
almost all QRS axis are within the normal range, in spite of using parameters normally
associated with pathological simulations. This behavior may be related to the important
restrictions in the conduction pathways possibly used by the depolarizing wave, and
could be explained by the following points:

1. the Purkinje systems used in these simulations do not vary much and offer only
one preferred pathway for the propagation of the electrical signal. Since the
first activation on the endocardium occurs on the septum and since the Purkinje
network is mostly oriented towards the apex, the posterior and anterior walls, the
propagation is mainly oriented towards the apex ;

2. the short-axis plane defined as the limit for the endocardial conductivity may
influence the way the wave propagates to the basal part of the heart. For instance
in RBBB, the pathway of the depolarizing wave is not purely left to right (leading
to an axis close to 150°), but also presents an apical to basal current flow on a
direction perpendicular to the latter one, diminishing the weight associated to
lateral propagation.

3.6 Pacing simulation

3.6.1 Cardiac stimulation and defibrillation

The electrical stimulation of cardiac tissue has three clinical applications: cardiac pacing,
cardiac defibrillation, and cardiac resynchronization. Cardiac pacing, on the other hand,
is used to maintain a physiological activation in case of failing or interrupted conduction
system. Defibrillation is used to stop uncontrolled multiple reentrant activation causing
fibrillating muscle contractions and falls out of the scope of the current manuscript.
Resynchronization is used for recoordinating cardiac segments not contracting at the
appropriate timing within the cardiac cycle.

Modern CRT devices embed electronic components including a microprocessor and a
battery with a lifespan up to six to twelve years [Munawar et al., 2018]. Efficient
algorithms allow the controller to adjust pulses to make them as physiological as possible
and deliver the required cardiac output. Rate modulation rely on minute ventilation,
heart contractility or other factors, in order to adapt the pacing.

Leads are plugged in the CRT device and carry the electrical signal to the electrodes, at
the pacing sites. They are insulated wires inserted through veins and placed or screwed
in the cardiac muscle with the help of a removable stylet. The ideal location for the
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electrodes is the endocardium because of the high density of Purkinje fibers that allow
the signal to spread rapidly. Implanters typically enter the lead in the right ventricle
through the atria. Entering the LV directly is more challenging given the high pressures
in the arterial system, and the introduction of a lead through the left valves may cause
further complications. In routine, today the coronary sinus route provides an elegant
way to stimulate the left ventricle, but epicardially [Daubert et al., 2017]. In case of
failure of placing the LV electrode by the coronary sinus route, surgical epicardial pacing
approach can be an alternative. Recent re-discovery of direct His-bundle pacing or left
bundle branch pacing are re-emerging. It is the best location in case of complete block (if
the global conduction properties of the free-running Purkinje fibers are preserved) since
it would rapidly propagate the signal to all segments of the heart.

3.6.2 Implementation of cardiac stimulation

This section is dedicated to the modelling of cardiac stimulation and more globally, on
the implementation of the electrophysiological model. Indeed, the stimulation is the
last action altering the activation map, as it occurs on top of the spontaneous activation.
After the latter has been computed once, any stimulation point added to the simulation
can drastically change the activation map. For instance, if the pacing occurs before
the spontaneous activation, then all propagations have to be recomputed, including the
myocardium and the Purkinje network. Moreover, because the propagation is faster in the
Purkinje network than in the myocardium and the endocardium, distal tissue might be
activated by a Purkinje-Muscle Junction (PMJ) node before the cell-to-cell depolarization.
In that case, this PMJ becomes a new source for cell-to-cell depolarization. In this
scenario, the PMJ node is treated as a pacing point.

We can distinguish two types on pacing points, whether they are located within the
myocardium, or on the Purkinje network.

Myocardial pacing

When the pacing occurs in the myocardium, the pacing points are added to the onset
points list without any further modification. In this case, an electrical depolarization will
occur at the pacing time and start to propagate to neighbouring cells. If this propagation
reaches a Purkinje node that has not been depolarized yet, it can be activated and initiate
a propagation. In this case, this point becomes a Purkinje pacing point.

Purkinje pacing

For any point pk ∈ Ω labelled as Purkinje pacing, it is projected to the nearest purkinje
node (Pk). If it is already on the graph, pk = Pk. Then, Pk is used to compute a geodesic
distance on the network, stored as dk = D(Pk)/σPk

+ tk where D is the distance operator
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giving the distance from Pk to the network’s nodes, σPk
the purkinje speed and tk the

pacing time.

The final Purkinje activation map is obtained by taking the minimum arrival time for
all Purkinje points: d = mink dk. Then, the PMJ points are extracted and added to the
onsets points list. An example of a Purkinje stimulation on a LPFB simulation is presented
Fig. 3.17. The stimulation is located on the anterior part of the LVFW and leads to
the reactivation of the anterior fascicle, as well as the optimized recomputation of the
activation time for the surrounding PMJ points.

The complete electrophysiological pipeline is represented Fig. 3.18. It shows how the
activation map is iteratively recomputed in the case where a point on the Purkinje
network is activated after the closest point on the myocardium. Indeed, the earliest
myocardial depolarization should have activated the network. The global propagation is
then recomputed until no such case exists.

Fig. 3.17.: Onset points before and after applying the pacing protocol on a LPFB. In this figure,
LV is activated on the septum at t=10ms and the pacing occurs at t=15ms. The
activation time of each point is derived from the shortest distance to either the
physiological His point or the pacing point.
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Fig. 3.18.: Description the ElecModel’s eikonal module implementation. The anatomical data,
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erated. At the top of this scheme, the Pukinje network may be modified in case of
BBB, in all cases generating a set of Purkinje-Muscle Junction (PMJ) points. Similarly,
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3.6.3 Simulating CRT

This section presents the simulation results for two pacing configurations on dilated ge-
ometry. In these simulations, the spontaneous activation has been deactivated (capture),
so that the only source for the electrical depolarization are the stimulation points.

Fig. 3.19 shows the ECG tracings and the activation map for a LVFW pacing. As soon as it
reached the endocardial Purkinje network, the depolarization quickly propagates through
the LV to the septum, then is slowed down throughout the septum before reaching the
RV Purkinje.
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Fig. 3.19.: Electrophysiological simulation of a LLW pacing on a DCM geometry, in capture. The
stimulation point is located on the right of the figure (the green point on the LV
epicardium). QRSd=185ms, QRSa=142°, max (EAT)=281ms.

Fig. 3.20 shows the ECG tracings and the activation map for a BiV pacing (RV septum and
LVFW). With this pacing configuration, the QRS duration (99ms) is under the pathological
120ms threshold.
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Fig. 3.20.: Electrophysiological simulation of a BiV pacing on a DCM geometry, in capture.
QRSd=99ms, QRSa=36°, max (EAT)=110ms.
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3.7 Conclusion

This electrophysiology model presented in this chapter is able to generate realistic
activation map, reflecting the electrical activity at the organ scale. The anisotropic
depolarization is computed using the Eikonal model on a rectilinear grid, which reduces
the computation time for the generation of the activation map. Additionally, a fast
ECG generation model has been presented and enables to characterize the biventricular
depolarization through the QRS complex. Several tools allowing for the processing of
these signals have been implemented and will also be used for the personalization of
the model in chapter 5. A complete description of the electrophysiological simulation
pipeline has been given in Fig. 3.18 and shows that it is possible to simulate various
pathologies, including complete and incomplete BBB, fasicular blocks, and myocardial
infarction.
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Fig. 3.21.: Resources used during an electrophysiological simulation of sinus rhythm.

Finally, Fig. 3.21 shows the resources used by the ElecModel during a sinus rhythm
electrophysiological simulation, without the anatomical deformation model. The compu-
tation time of the electrophysiology model is less than 30s for this healthy simulation. If
the activation map must be recomputed, as described in Fig. 3.18, the simulation will
be longer (adding ten seconds per recomputation). It is also noted that the simulation’s
output is only 80MB of hard drive storage.

The output of the electrophysiology model consists both in the ECG tracings and the
activation map, but only the latter is required for the mechanical simulations. Indeed, the
arrival time of the depolarization wave indicates the beginning if the cells’ contraction.
Globally, both the anatomical and electrophysiological simulation results are required to
run the mechanical simulation.
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The models presented in the previous chapters allow for the simulation of the electrical
depolarization on a given geometry, at the organ scale. After the electrical depolarization,
the muscle cells in the heart release ions that lead to sarcomere shortening and active
muscle contraction. This contraction is the origin of the pumping function of the heart,
but several other phenomena have been considered to fully characterize the mechanical
cardiac function.

In the case of cardiac dyssynchrony, most often an electrical delay induces a prolonged
QRS activation and causes cardiac segments to contract in a non-harmonious way, which
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may lead to a reduction of the ejection fraction. However, some desynchronized hearts
exhibit a QRS complex around or less than 120ms, thus included in the classically admit-
ted normal range, but still present abnormalities in the contraction pattern, described as
pure intraventricular dyssynchrony, and exhibiting some late segments still contracting
although valves are closed [Cazeau et al., 2008]. These authors introduced then eighteen
electromechanical indices that can be grouped together to provide an electromechanical
assessment of the dyssynchrony [Cazeau et al., 2019]. While classical QRS-based assess-
ments are associated with 30-35% non-responders, [Cazeau et al., 2000; Abraham et
al., 2002] showed that the appropriate selection of electromechanical indices allows to
describe dyssynchrony. With this model, they were able to improve the success rate from
65 to 85% [Cazeau et al., 2003].

An important part of the IPRC project relies on the implementation of this model and its
coupling with the electromechanical heart model, in order to compute the delays on the
simulated cardiac cycles. This chapter then presents the theoretical framework and the
implementation of the heart model’s mechanical part.

Analyzing the mechanical behavior of biological tissue may be challenging. Soft tissue
are highly anisotropic and heterogenous, and they are often coupled with an electrophys-
iological activity. Moreover, the anatomical structures surrounding the heart, such as
valves, chordae tendineae, pericardium and the arteries, add a layer of complexity to
their modelling.

Early approaches for modelling the soft tissue behavior assumed a linear elastic behav-
ior [Cotin et al., 2000]. However, deformations of biological materials are known to be of
the order of 50%-100% [Mirsky, 1973], thus invalidating the assumptions inherent to the
linear theory of small deformations. According to the analysis performed in [Yingchon-
charoen et al., 2013], left ventricle global longitudinal strain is above 20% and global
radial strain above 50%. The deformations are larger than a few percent and impose the
large strain theory.
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4.1 Solid mechanics

The area of continuum mechanics known as solid mechanics focuses on the motion and
deformation of solid materials, under the action of both internal and external forces.

4.1.1 Lagrangian description of the finite strain theory

In continuum mechanics, the finite strain theory - also called large strain theory - deals
with deformations in which strains and/or rotations are large enough to invalidate
assumptions inherent in infinitesimal strain theory.

Let Ed = span {ei} be the orthonormal Euclidian vector space of dimension d. The
simulated object is defined as the bounded domain Ω ⊂ Ed. t = t0 defines the initial (rest
or undeformed) position. The rest positions are X(t = t0) ∈ Ω(t0), where the material
coordinates, X, are the independent variables of the system (reference configuration).

To get the position vector of a material point in the deformed domain at a time t (current
configuration), we use the following rigid transformation

xt(X) = Rt ·X + Tt (4.1)

where Rt is the rotation matrix and Tt the translation vector. Dropping the time notation
·t, the displacement vector field is given by

u(X) = x(X)−X (4.2)

Deformation gradient

Let’s derive the transformation x with respect to the material coordinates:

F = ∇Xx = I +∇Xu (4.3)

The deformation gradient transforms a small segment dx from spacial to material
coordinates: dx = F · dX. More generally, Nanson’s formula is an important relation
that can be used to relate areas in the current configuration to areas in the reference
configuration and vice versa. This formula states that da · n = JdAF−T · N where
J = det F, da is an area of a region in the current configuration, dA is the same area
in the reference configuration, and n is the outward normal to the area element in the
current configuration while N is the outward normal in the reference configuration.
Similarly, Nanson’s formula for volume change implies dv = JdV .
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Strain measures

The strain measures the change of shape between two particles in an infinitesimal closed
space of continuous material.

The right Cauchy–Green deformation tensor is independent of the rotation:

C = FTF (4.4)

The Green-Lagrangian strain tensor is a measure of how C differs from I:

E = 1
2 (C− I) (4.5)

4.1.2 Elasticity theory

The Cauchy stress tensor is used to express uniaxial and shear stresses across a surface
with normal n. An infinitesimal force can be expressed as:

dft = t da = σT · n da = σT J dA F−T ·N = P ·N dA (4.6)

with P the first Piola-Kirchhoff (FPK) tensor and σ:

σ =


σx τxy τxz

τyx σy τyz

τzx τzy σz

 (4.7)

where σ and τ are the uniaxial and shear stresses.

To express the stress in a Lagrangian formulation dft = F · dFt:

dFt = F−1P ·N dA = S ·N dA (4.8)

where S = F−1P is called the Second Piola-Kirchhoff (SPK) stress tensor and is symmet-
ric.

Constitutive model

The relation between the amount of deformation and the response of the material is
called the constitutive relation. An hyperelastic material is a type of constitutive relation
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for which the relation between the strain and the stress is derived from a scalar-valued
strain energy density function W (F).

For an hyper-elastic material, the SPK tensor is defined as:

S = ∂W

∂E (4.9)

The FPK tensor is defined as:

P = ∂W

∂F = F · ∂W
∂E (4.10)

4.1.3 Balance equations

The equations that describe the deformation of a solid body in continuum mechanics
are governed by a set of laws that relate the kinematic quantities of the system. In
Lagrangian description:

Balance of Mass ρ0 − Jρ = 0
Balance of Linear Momentum ρ0ẍ−∇X ·P− ρ0b = 0
Balance of Angular Momentum F ·PT = P · FT

Balance of Energy ρ0u̇ = S · Ė +∇XQ− ρ0φ = 0

with Q the heat flux vector, φ the heat source, and b the vector of external forces that act
everywhere within the domain.

Since the simulated myocardial tissue is assumed to have constant density throughout the
simulation and is only represented by the symmetric SPK stress tensor, we will assume
that the laws of conservation of mass and angular momentum are always respected.
Moreover, heat is not considered in the current model. The only law remaining is the
conservation of linear momentum.

4.1.4 Weak formulation

The balance of linear momentum constitutes a non-linear PDE with boundary conditions,
where the displacement vector u (from eq.4.2) is the unknown on the domain Ω. The
FEM consists in using a piecewise approximation of u, noted uh and defined over simple
topological elements. The balance of linear momentum then reads

ρ0ẍ−∇X ·P
(
uh
)
− ρ0b = R (4.11)

where R is the residual vector from the approximation error. To ensure that a unique
solution does exist, the usual approach consists in multiplying the PDE by a test function w
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and by integrating the resulting equation over the computational domain. The test
function is chosen to be zero where an essential boundary condition is imposed. The
weak formulation leads to a minimization of the residual R in the weak sense.

After converting the non-symmetric stress tensor P to its symmetric form P = FS, the
weak formulation of the dynamical system is∫

Ω0
FS : ∇Xwdv︸ ︷︷ ︸

Internal virtual work

−
∫

Ω0
ρ0ẍ · wdv︸ ︷︷ ︸

Virtual inertia

−
∫

Ω0
ρ0b · wdv −

∫
Γt

t · wds︸ ︷︷ ︸
Virtual load work

= 0 (4.12)

subject to uh = ug on Γu. Γ = Γt ∪ Γu is the boundary of the computational domain Ω.
The imposed traction ld

¯
t and displacement ug are respectively the natural and essential

boundary conditions.

4.1.5 Discretization of the weak formulation

Shape functions

To solve the weak formulation of equation 4.12, the domain Ω is split into ne small
geometrical elements. To ensure a continuous approximation of the functions and their
derivatives over the elements, we define shape functions Ni, that form an interpolation
of the element nodal values. For instance, to compute the approximation of the field uh

and its derivative at a given location X in an element:

uhe (X) =
ne−1∑
i=0

Ni(X)ui and ∇Xuhe =
ne−1∑
i=0

ui ⊗∇XNi (4.13)

Using u = x−X in ∇Xu, the deformation gradient is expressed with

Fe =
ne−1∑
i=0

xi ⊗∇XNi (4.14)

which requires the spatial coordinates x to be computed, as well as the precomputed
shape function derivative.

Isoparametric elements

For simple geometrical elements (such as triangles or tetrahedra), it is possible to define
a transformation mapping between the deformed element and a reference one, as
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illustrated in Fig. 4.1. The isoparametric configuration Ω� has its coordinate system
aligned with the euclidian basis, thus simplifying the computations.

Xe(ξ) =
ne−1∑
i=0

XiNi(ξ) (4.15)

with ξ = [ξ, η, ζ] the local (or canonical) coordinates in the reference configuration.

The term isoparametric refers to the property of the shape functions Ni to describe
both the element’s geometrical (e.g. the position vector field) shape as well as the
displacements (e.g. the displacement vector field) within the element.

Fig. 4.1.: Transformation of the coordinates of a point in Ωe to its canonical coordinates.
Source: [Brunet, 2020].

The Jacobian of the transformation mapping is:

Je = dX
dξ

=
ne−1∑
i=0

Xi ⊗∇ξNi (4.16)

which allows to compute the shape function’s gradient with respect to material coordi-
nates:

∇XNi = J−1
e ∇ξNi (4.17)
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Then, the displacement gradient (eq.4.13) can be computed based on the displacement
field and precomputed data depending on initial conditions:

∇Xuhe =
ne−1∑
i=0

ui ⊗
(
J−1
e ∇ξNi

)
(4.18)

Integration of the weak formulation

The integration of eq. 4.12 is performed on the discretized domain Ω. Any field function f
can be approximated by a sum of integrals over element domains Ωe, as well as on the
reference element given the change of variable dX = Jedξ:∫

Ω
f(X)dX ≈

∑
e

∫
Ωe

f(X)dX =
∑
e

∫
Ω�

f(ξ)Je(ξ)dξ (4.19)

To actually compute the integrals, we use the Gauss numerical integration method. The
integration is approximated by a weighted sum of the integrand taken at certain points
inside the element. These points are called the Gauss - integration - points.

∫
Ω�

f(ξ)Je(ξ)dξ ≈
nI∑
I=1

f (ξI) Je (ξI)wI (4.20)

where ξI are canonical coordinates of the I th Gauss points, and wI its weight. A
description of the shape functions Ni, their gradient with respect to canonical coordinates
∇ξNi, the location ξI of Gauss points and their weights wI for various isoparametric
elements can be found in the work of [Wriggers, 2008] and [Fortin et al., 2006].

For example, to compute the contribution of the internal virtual work inside an ele-
ment e:

R(u) =
∫

Ωe

FeSe · ∇XNidv (4.21)

≈
nI∑
I=1

FISIJe(ξI)wI · ∇ξNi (4.22)

4.1.6 Implicit integration scheme

The discretized form of the weak solution eq. 4.12 is:

Mü−R(u)−B−T = 0 (4.23)
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with Mij =
∫
Ωe
ρ0NiNjdX the mass matrix and ρ0 the constant density, R the internal

forces (see eq. 4.22) and B + T the external forces applied on the solid.

It can be transformed with ẍ = ∆v
∆t , u = x−X, F (x) = R(u) + B + T

M∆v = ∆t · F (x) (4.24)

This equation constitutes the main system that will be solved at each time step of the
simulation. On the left hand side is the mass matrix and on the right hand side (RHS)
the vector of external forces.

Using an implicit scheme ensures unconditional stability in the resolution of this system.
The backward Euler scheme is used. It means that the RHS term will be computed at
the next time step t+ ∆t. The approximation of F (x (t+ ∆t)) is given by a first order
Taylor expansion:

M∆v = ∆t · F(x(t+ ∆t)) (4.25)

= ∆t ·
(

F(x(t)) + ∆x · ∂F
∂x

)
(4.26)

= ∆t ·
(

F(x(t)) + ∆t · ∂F
∂x

v(t) + ∆t · ∂F
∂x

∆v
)

(4.27)

given that ∆x = ∆t(v(t) + ∆v) for an implicit scheme.

Rearranging the terms from the last equation and introducing the tangent stiffness
matrix K = ∂F

∂x : (
M−∆t2 ·K

)
∆v = ∆t · F(x(t)) + ∆t2 ·Kv(t) (4.28)

This means that for each force acted upon the body, the formulation of both the forces
F(x(t)) and their derivative with respect to nodes positions K must be known.

Application to hyperelasticity

The tangent stiffness matrix, K = ∂R
∂u , has to be computed when using an implicit

integration scheme:

K = DR(u) · δu =
⊎
e

ne−1∑
i=0

ne−1∑
j=0

∫
Ωe

[(
∇TXNi

)
S (∇XNj) I + BT

i CBj

]
︸ ︷︷ ︸

Kij

(4.29)

with B a strain measure and the operator
⊎
e defining the global system matrices assembly,

which is described in [Brunet, 2020]. The stiffness matrix includes the rank-2 SPK tensor
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S and the rank-4 elasticity tensor C = ∂S
∂E . These two tensors, expressed in the reference

coordinate system, fully describe the hyperelastic material.

4.2 Implementation in a simulation framework

In this section, two novel contributions are presented. First, a new implementation
of the 3-element Windkessel model has been proposed and corrects the pressures
profiles as compared to [Marchesseau, 2013]. The implementation of this model
has been integrated within the Lagrangian constraint-based haemodynamic model
resolution with a Crank-Nicolson scheme, in the SofaCardiacModel plugin. The
second contribution consists in a new description of the mechanical model, through
a fragmented scene-graph. This new structure reuses several components from
SOFA core libraries and thus leads to less error-prone code, while using the latest
SOFA version. Another important change is that the Lagrangian constraint-based
haemodynamic model is integrated within the SOFA resolution pipeline and is now
compatible with contacts resolution.

4.2.1 Introduction to SOFA

The mechanical model is implemented within SOFA (Simulation Open Framework Archi-
tecture), an open source framework intended for medical simulations [Allard et al., 2007;
Faure et al., 2012]. The software is built to be modular, allowing several blocks to be
developed independently and used in a uniformed way. The SOFA architecture relies
on a multi-model representation, where all objects are connected with mappings. For
instance, the myocardium can be decomposed into a tetrahedral volume implementing
the finite element method (FEM) to solve the solid mechanics problem, an exterior
triangle mesh allowing to compute contacts with the pericardium and a finer envelope
for visualisation.

All these components are organized in a scene-graph, which is basically a python or
xml file describing a tree-like structure where the leaves define components and their
parameters. Each component implements a specific action and is called during the
simulation by the core components of SOFA. Several components are required to run a
mechanical simulation:

• AnimationLoop: this is the main component that triggers events and activates
the required components in the scene-graph. Because our mechanical model uses
Lagrangian constraints and collision, the FreeMotionAnimationLoop is necessary.
It decomposes a simulation step into several computations and includes solving
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all linear systems without constraints and solving all constraint-based systems
separately [Duriez, 2013].

• ODESolver: implements the integration scheme, the temporal discretisation of the
system. The EulerImplicitSolver implements the implicit Euler method.

• LinearSolver: implements the solving of Ax = b linear systems and finding the
solution x(t+ ∆t). For complex simulations, iterative methods are often preferred
to direct ones and converge gradually to the solution vector x by minimizing the
residual R = Ax − b. In SOFA and with iterative methods, the matrix A is not
inverted nor built, thus increasing performances. The CGLinearSolver implements
the conjugate gradient (CG) method and is typically used.

• Topology: stores the connectivity and the mesh elements of the object.

• MechanicalObject: this is the main component storing all state vectors of an object
and is templated on the degrees of freedom (DOFs) types.

• ForceField: all components inheriting from BaseForceField are adding either
internal or external forces to the global system. For example, the components
implementing the FEM for solid mechanics are internal force fields.

During the simulation, a series of algorithmic operations are performed independently
from the graph structure and allow to compute mappings, propagate the simulation
context, accumulate the forcefields, etc.. In SOFA, visitors are actions that are propagated
to the graph, either top-down or bottom-up and that allow to perform these operations.
For instance, the SolveVisitor is the action triggering the resolution of the system
associated to a linear solver. Generally, all the components necessary to describe the
cardiac scene are available in the SofaCardiacModel plugin.

4.2.2 Implementation’s strategy

Various modules are required for the modelling of the heart’s mechanical activity and are
described in this section. Globally, the heart can be decomposed into four distinct modules,
that, thanks to the modular approach offered by SOFA, can contribute independently to
building the global system matrix and right hand side (RHS) vector:

1. the passive part corresponds to the work of the internal forces (section 4.2.3);
2. the active part is inherent to the modelling of contractile tissue, it refers to the

models of force generation along the fiber directions and takes as input the electro-
physiological activity described in the previous chapter (section 4.2.4);

3. the haemodynamic boundary condition, which includes the atria and aorta pres-
sures, controls the valves system and thus the phases of the cardiac cycle (sec-
tion 4.2.5);

4. other boundary conditions such as pericardium or other structures that hold the
biventricular geometry in space (section 4.2.7).
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The cardiac mechanical model developped in this chapter is based on the Bestel-Clement-
Sorine (BCS) [Bestel et al., 2001] model, further improved by [Chapelle et al., 2012].
Its foundation relies on a multi scale physiological description of the myocardial muscle
function, see Fig. 4.2. It describes both the passive and active components.

Fig. 4.2.: Rheological description of the electromechanical model as in [Bestel et al., 2001]. We

is the strain energy of the extracellular matrix, associated with a dissipative term η.
u is a control variable which is derived from the electrophysiological simulation and
controls the contraction stress τc. µ accounts for the friction in the sarcomere while Es

represents the elasticity of the Z-discs (titin).

4.2.3 Biophysical material law

This section is dedicated to the modelling and implementation of the passive component
of heart, that contributes to the internal forces that are generated upon deformation.
The heart muscle is mainly composed of cardiomyocytes surrounded by an extracellular
matrix, which presents a hyperelastic behavior. Note that the contribution of the extracel-
lular fluid to the viscoelastic behavior of the myocardial tissue, investigated in [Yang et
al., 1991], is neglected in this model.

Moreover, although several authors have used incompressibility constraints to model the
myocardium, it has been reported that wall compressibility ranges from 15 to 20% in
human hearts [Liu et al., 2021; Avazmohammadi et al., 2020].

Several hyperelastic material laws have been used to model the myocardium: orthotropic
behavior taking into account both the fiber and sheet directions [Holzapfel et al., 2009;
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Costa et al., 2001] ; isotropic such as in BCS model, or transversely isotropic such
as the Guccione constitutive law [Guccione et al., 1995]. The latter is used in the
cardiac benchmark proposed in [Land et al., 2015]. This benchmark allows to compare
the simulation results of the cardiac model with those of other softwares and teams,
for three problems with increasing complexity. It has been undertaken and allows to
verify the implementation of the Guccione law and the tensor rotation framework (see
Appendix B.3) in SOFA (not shown). Globally, adding the elasticity of the Z-discs, the
passive behaviour of myocardial tissue in the BCS model is considered to be transversally
isotropic.

The implementation of the material law is based on the work from [Brunet, 2020],
namely the SofaCaribou plugin for SOFA. This plugin offers an interface for the imple-
mentation of the FEM, that is templated on the elements type. Linear and quadratic finite
elements are supported on triangular, tetrahedral and hexahedral elements. Thanks to
this implementation, only the SPK tensor and its derivative, the rank-4 elasticity tensor,
are required to define the material law. The transformations of the state vectors from
the deformed configuration to the undeformed one and to the isoparametric elements is
already implemented, as well as the accumulation of these terms in the system matrix,
depending on the topology.

Appendix A describes the derivation of a few hyperelastic material laws. Some laws are
also implemented in the core of SOFA, their derivation usually comes from automatic
differentiation tools. A first attempt at using the FEniCS [Scroggs et al., 2022] powerful
automatic differentiation tools within SOFA has been proposed in [Mazier et al., 2022],
using the Unified Form Language [Alnæs et al., 2014], a language for weak formulations
of partial differential equations. Although promising, the link between SOFA and FEniCS
is ambitious and some coding is still required to implement the material laws. Ap-
pendix A.2 presents an attempt at using the open source python project SymPy [Meurer
et al., 2017] for the automatic differentiation of hyperelastic material laws, leading to
the generation of a shared C++ library, then available as a SOFA dependency.

Finally, the results presented in this manuscript have been simulated using the polynomial
Mooney-Rivlin material law because it offers a comparison with the previous work
of [Marchesseau, 2013]. Fig. 4.12b shows a comparison on pressure and volume curves
for different values of the material parameter c1. However, several laws have been
implemented and calibrated on our mechanical model. The exponential laws such as
Guccione or Costa laws exhibit an increased stiffness in systole as compared to polynomial
laws, which helps in obtaining realistic mesh deformations.
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Local basis for fibers anisotropy

Since several material laws are expressed in the local basis defined by the fiber directions,
it is necessary to define a rotation tensor can be used to change the computational basis,
see Appendix B.3. For example, Λ = [f0, s0,n0] is the orthogonal rotation matrix that
expresses the fiber, sheet and normal directions in the orthonormal basis of E3 = {ei}.

4.2.4 Active contraction

The second part of the BCS model aims at modelling the complex contraction phenomena
that occurs after the electrical depolarisation: the muscle cells release ions, leading
to sarcomere shortening. The contraction of the sarcomere can be derived, at the
molecular scale, from the Hodgkin–Huxley filament model [Hodgkin et al., 1952]. At
the macroscopic scale, the active contraction follows the law proposed by [Chapelle et
al., 2012], where the active stress τc and stiffness kc are controlled by an electrical input
u, leading to a system of Ordinary Differential Equations (ODE):{

k̇c = − (|u|+ α |ėc|) kc + n0k0|u|+
τ̇c = − (|u|+ α |ėc|) τc + ėckc + n0σ0|u|+

(4.30)

where α is a constant related to the cross-bridge unbinding due to the deformation rate,
k0 and σ0 are respectively the maximum stiffness and contraction. ec corresponds to the
fiber strain.

To this stress τc, we add one contribution to account for the fact that the binding-
unbinding phenomenon dissipates energy by friction and viscous effects, which gives

σc = τc + µėc (4.31)

The reduction factor n0 allows to take into account the Starling effect according to which
the maximum active stress depends on the strain ec. In this case, n0 can be defined as a
function of the history of ec, e.g. to represent the effect of the previous maximum stretch

Fig. 4.3.: Mesh deformation and active stress over a cardiac cycle.
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of the sarcomeres (preload) or some long-term effects spanning over several cardiac
cycles.

The rheological model presented in Fig. 4.2, and in particular the two elastic components
in series, gives an expression for the active stress that depends only on strain:

σc = τc + µėc = Es
e1D − ec

(1 + 2ec)3 (1 + 2e1D) (4.32)

From the second equality we extract en+1
c and we can use the first equality as the final

form for the stress. This formulation will be added in addForce method of the contractile
component.

SOFA implementation

The ODE system (eq. 4.30) is solved in a separate node in the scene graph. The
ContractionForce manages the resolution of this system based on the components
present in the graph (BackwardEuler, CGSolver, . . . ). For each addForce in the
ContractionForce, the SolveVisitor visitor is triggered which builds the global sys-
tem matrix (for all integration points), and solves it. The two-element vector at each
integration point is then retrieved in ContractionForce.

To disable all visitor traversals in this node that could trigger the resolution of the ODE,
it is set to a sleeping mode. Indeed, this resolution need to be done when the fiber
strain has been computed in the ContractionForce component. The latter implements
a SingleLink to the coupling node and is the only entry point to the resolution of the
ODE (through the SolveVisitor).

Alternative contractile stress formulation

The exponential profile for the active stress, as given by the BCS model, leads to a rapid
early contraction of the sarcomeres, and then a plateau where the fibers have reached
their contractile limit, but cannot relax yet because their transmembrane potential is still
in the depolarized state. At the beginning of the contraction, during the isovolumetric
contraction phase, the pulmonary and aortic valves are closed ; as the ventricles contract
without diminution of their volume, the pressure rapidly increases, until the pressure in
the ventricles reaches that in the arteries, thus opening the valves. When the ejection
starts, the blood flow in the arteries suddenly increases, the ventricular pressure drops
and reaches a plateau for the remaining time of the APD. This is visible in Fig. 4.12c,
for a = 1, corresponding to an almost exponential contraction stress as in the BCS
model. However, in this case, the shape of the ventricular pressure is not realistic and
should be more symmetric. The resulting LPEI (51ms) is also shorter than the expected
physiological value of 80-90ms found in healthy patients.
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QRS starts

Fig. 4.4.: Comparision of the active stress σc obtained with the BCS model and the Kumaraswamy
cumulative distributions (referred as ‘func.’). tAP D corresponds to 90% of the duration
of the action potential while tr represents the repolarization time.

These observations led to the redefinition of the active stress formulation, using two
Kumaraswamy cumulative distributions, one for the contraction and a second one ac-
counting for the active relaxation. A comparison of the active stress over time is presented
in Fig. 4.4. It is visible that with this function, the contraction of the sarcomeres increases
much slower than compared to the BCS solution.

The Kumaraswamy cumulative distribution transforms an input x ∈ [0, 1] into a value
y ∈ [0, 1] and is parameterized with two coefficients, controlling the shape of the curve
for both ends of the definition interval. Here, the coefficients a and b are associated with
the contraction (t < tAPD) while g and h control the relaxation (t > tAPD), with tAPD
the duration of the depolarization state of the cardiac cells. Most realistic ventricular
pressure profiles were found using a = 2, b = 1.5, g = 2, h = 3. The influence of these
parameters is presented in Fig. 4.12. This active stress model, although not incorporating
physiological elements such as the Frank-Starling mechanism, is in good concordance
with the active stress measures reported in [Liu et al., 2021], where the authors fit their
cardiac model simulation results on ovine observations. Moreover, it offers a convenient
method to benchmark different evolutions of the active stress and their influence on the
model’s behavior.

4.2.5 Heamodynamics

Modelling the four cardiac phases

In the mechanical model, the cardiac phases are controlled by the different pressures
in the heart chambers and relate the current state of both ventricles, which are treated
similarly but independently:
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1. Filling phase: the ventricular pressure Pv is below the atrial pressure Pat, the
atrial valve (either mitral or tricuspid) is open and the ventricle fills with blood.
At the end of this phase, the atrial contraction accounts for 20 to 30% of the
filling [Kurapati et al., 2022] ;

2. Isovolumetric contraction phase: when the first cells start to contract, Pv exceeds
Pat, leading to the closing of the atrial valve. Since all valves are closed, the
ventricular volume remains constant during this phase, while Pv increases ;

3. Ejection phase: when Pv overtakes the aortic pressure Par, the gradient of pressure
causes the (aortic or pulmonary) valve to open, leading to the ejection of blood
through the arteries ;

4. Isovolumetric relaxation phase: when Pv ≤ Par, all valves are closed and Pv drops
rapidly due to the relaxation of the sarcomeres.

The following model is used to model the cardiac phases presented above:

Q =


Kat (Pv −Pat)−Kvar (Pv −Par) for Pv ≤ Pat

−Kvar (Pv −Par)−Kvat (Pv −Pat) for Pat < Pv ≤ Par

Kar (Pv −Par)−Kvat (Pv −Pat) for Pv > Par

(4.33)

where the ventricular flow Q is negative when blood enters the ventricle (Q < 0 during
the filling phase, the blood flow is directed from atrium to ventricle). It is positive when
blood leaves the ventricle (Q > 0 during the ejection phase, the blood flow is directed
from ventricle to artery).

Kar and Kat are coefficients controlling the resistance of the respecting valves to the flow.
The smaller these coefficients are, the higher the pressure difference required to reach
the same flow Q. Kvat and Kvar are coefficients controlling valve regurgitation between
the ventricle and the atrium or the artery, respectively. For instance, Q = 0 during the
isovolumetric phases (Pat < Pv ≤ Par) if Kvat = Kvar = 0.

The system 4.33 constitutes a relation that has to be verified at each time step of the
simulation, in particular at time t+ ∆t. It gives a relation between Qt+∆t, Pt+∆t

v , Pt+∆t
ar

and Pt+∆t
at which is seen as a constraint on the model and developed in section 4.2.6.

The atrial pressure Pt+∆t
at is analytically computed using sigmoidal functions, which also

models the contraction of the atria. To compute Pt+∆t
ar , the model is a bit more complex

as it relates the ejection flow, the compliance of the arteries and the resistance of the
cardiovascular system. It is based on the Windkessel model.
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Windkessel models

Although the heart ejects blood in a pulsatile way, the blood circulation in the cardiovascu-
lar system is relatively constant. The physiologist Otto Frank suggested that the pressure
variations are related to the elasticity of the arteries [Kuhtz-Buschbeck et al., 2018].
Several models of the arterial flow have been proposed, including very detailled 3D (dis-
tributed) models, but we instead rely here on a so-called lumped 0D model. [Westerhof
et al., 2009] proposes a good review on the Windkessel (WK) models.

Rc

PxQ

C RpP

Rc
Rp

Fig. 4.5.: Concept of the Windkessel effect to model elastic reservoir and its electrical analogy.
Thanks to the compliance of the large arteries and the peripheral resistance of the
veins (modelled as electrical) capacitance(C) and resistance (Rp)), the peripheral flow
is rather constant. Rc is the aortic characteristic impedance [Westerhof et al., 2009].

While the 2-element WK model offers a good description of the exponential decay of
the arterial pressure during diastole, it fails for systole. The 3-element WK includes an
additional resistive element, leading to the following relation between aortic flow Q and
pressure P:

RpCṖ = (Rp +Rc) Q +RpCRcQ̇−P (4.34)

4.2.6 Constraint-based implementation of the valves system

Lagrangian constraints

At any time of the simulation, the relation between the cavities’ pressure and the blood
circulation is given by the hemodynamic model (eq. 4.33). To ensure that this relation
is verified at all times, it is added to the dynamical system (eq. 4.24) and solved as a
Lagrangian constraint:

A∆v = b + HTλ

where H holds the constraint directions and λ is a vector containing the Lagrangian
multipliers, corresponding to the correction of pressure to apply along H to guarantee
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that the constraints are respected. Globally, HTλ is the vector of constraint forces
contribution.

Since our geometry has two ventricles, there are two constraints in the model and λ ∈ R2.
H corresponds to the volume derivative, such that Hv measures the flow Q. The compu-
tation of the volume derivative for an open surface mesh is developed in Appendix B.2.

The joint resolution of dynamics and constraints is a classical problem in multi-body
simulations and is therefore already implemented within SOFA. It has for example been
used to model the interactions between medical devices and biological tissue in [Duriez,
2013], or in the simulation of soft robots [Coevoet et al., 2017; Bernardin et al., 2019].
The resolution process involves splitting the time step into two stages:

1. Free motion: a first deformed configuration is computed while considering that
no constraint is imposed on the system, (i.e., λ = 0). This resolution leads to
the definition of the free velocity dvfree = A−1b. After the free motion, we can
compute the constraint violation δfree = ∆t ·Hvfree.

2. Constraint correction: the second stage of the time step consists in computing the
correction due to the constraints (b = 0), leading to dvcorr = ∆tA−1HTλ, with λ
the unknown correction.

The resolution of the constraints is not performed in the motion space but is rather
projected in the constraint space using the Schur complement. The constraint law is
given by:

δ = ∆t2
[
HA−1HT

]
︸ ︷︷ ︸

W

λ+ δfree − δtarget (4.35)

where W ∈ R represents the coupling between the endocardial surface and the ventricu-
lar pressure.

δtarget = Qt+∆t is given by the hemodynamical model and depends on the value at
the next time step of the ventricular pressure Pt+∆t

v = λ, the atrial pressure Pt+∆t
at

and the aortic pressure Pt+∆t
ar . Pt+∆t

at is easily obtained since it follows an explicit
formulation, but Pt+∆t

ar is derived from the Windkessel model and cannot be found
directly. Indeed, its resolution depends on the flow Qt+∆t, variable that is already used in
the hemodynamical model. We need to find an expression for δtarget that does not involve
Qt+∆t, as it is the case with Windkessel model. To do so, the 3-element Windkessel
ODE equation is manually solved with the Crank–Nicolson method, an implicit finite
difference method that is unconditionally stable. The development of this resolution is
presented in Appendix B.1. It leads to an discretized expression of the hemodynamical
model that do not rely on Pt+∆t

ar .
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Once the constraint law (eq. 4.35) is defined, it only remains to compute the value of
the Lagrangian multiplier λ. This is done by minimizing the constraint violation δ in the
constraint space, and is solved using the Gauss-Seidel algorithm.

Implementation of the constraint in SOFA

The FreeMotionAnimationLoop implements the two steps constraints resolution and is
therefore required, as well as a GenericConstraintSolver which handles the constraints
resolution. A linear solver is required to compute A−1, it can be the same solver as the one
used for the free motion step or any direct or iterative solver. In case of preconditioning,
it can be judicious to use the same solver for the preconditioner and the constraints.

Additionally, a constraint law component implements the penalization term for the
Gauss-Seidel minimization problem. The solution of this problem yields the value of the
Lagrangian multiplier λ, the ventricular pressure to apply at the next time step on the
endocardium, so that the hemodynamical model is verified at the beginning of the next
time step.

4.2.7 Boundary conditions

Several boundary conditions are included in the mechanical model to restrain the
displacement and deformation of the heart. First, to restrain the movement of the
valves, a spring force is added to all nodes surronding the valves, so that these nodes
are attached to their initial position but can still have a displacement. The value of 9kPa
for the spring stiffness associated to these nodes has been used and seems to be a good
trade off between the mesh deformation and the numerical stability by keeping the mesh
attached in space. Optionally, the same force field can be applied to the apex, a stiffness
of 3kPa has been used. While these force fields do impact the mesh deformation, they do
not degrade the pressure volume results.

Secondly, the pericardium is included as a surface surrounding the heart and helps in
restraining the displacement of the mesh and the inflation of the ventricles. In SOFA,
the pericardium and the epicardial surfaces are implemented as collision models, so that
during the simulation, a force is generated for any two nodes intersecting with each other,
preventing the penetration of these surfaces. The pericardial surface is fixed in space
and is generated at 3mm from the epicardium. Collision is detected when a point on the
epicardium approaches the pericardium by less than 1mm. Note that [Pfaller et al., 2018]
emphasizes the importance of the sitffness of the pericardium in the mesh displacement
but the deformation of the pericardium has not been studied here. Moreover, including
the resolution of pericardial contacts in the simulation considerably slows down the
computation, and is therefore not used in the simulation results shown in this study.
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4.2.8 Conclusion

The implementation of this mechanical model in SOFA yields to a complex system but
thanks to SOFA’s modularity, components are clearly identified and can be benchmarked
independently. The global SOFA scene graph describing the cardiac simulation is pre-
sented in Fig. 4.6. It shows the different nodes and their components, as well as the
different mappings that connect the various objects of the simulation.

On the left, the root node contains all the general-purpose components related to
visualization, collision detection, and the FreeMotionAnimationLoop that is required
both for contacts and the hemodynamical constraint presented in section 4.2.6.

The first child node is called MecaNode and represents the biventricular geometry. It is
composed of components related to the tetrahedral topology, the solvers for the system
resolution, and all components relevant for the simulation of cardiac mechanics: the
passive hyperelastic material, the active contraction, the boundary conditions and the
constraints solver. On the same level as this node is the Coupling node. It implements
the active ODE, which is solved using an implicit method and a dedicated solver.

The third level of nodes is composed of all objects that are dependent on the deformation
of the main tetrahedral mesh, such as the epicardial collision mesh, the visualization
mesh, and the endocardial surfaces. During the simulation, the deformation of the
mesh is mapped to these child surfaces and any force applied onto them is mapped
back to the MecaNode to be accumulated in the dynamical system. The two ventricles
are implemented similarly but their parameters and initial conditions may be different.
Generally, a ventricle implements all the algorithms necessary to compute the current
phase based on pressure values, and to apply the hemodynamic constraint. The next
section is dedicated to the presentation of the SOFA simulation results generated with
this scene graph.
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Fig. 4.6.: Complete SOFA scene graph describing the simulation of the heart. Nodes are repre-
sented by the hexagons while SOFA components are the rectangular boxes ; mappings
are represented by dashed lines. The coupling node, Coupling, is used to solve the
coupled ODE system and find the contractile stress. On the same level, MecaNode
represents the object ‘heart’, with its tetrahedral topology. Its components implement
the active and passive parts, as well as the resolution of the constraints (both the
contacts and the volume constraint). Its MechanicalObject is mapped to child nodes:
lv and rv are nodes representing both ventricles, Pericardium and meca_collision
implement the contacts algorithms and meca_rings the boundary conditions. For each
ventricle, a series of component load the triangular surface, compute the volumes,
pressures and phase, and add their contribution to the constraints system. Component
data and links are not displayed on this graph.
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4.3 Results

4.3.1 Normal heart

Simulation results for both ventricles corresponding to the healthy electrophysiological
case (Fig. 3.8) is presented in Fig. 4.7. The mechanical simulation starts at t = 0, time
at which the first point on the activation map is depolarized. After a small electrome-
chanical delay (about 10ms [Heikhmakhtiar et al., 2017]), fibers start to contract and
the ventricular pressure to increase, reaching 120mmHg at its maximum. The duration
of the isovolumetric contraction phase is 100ms, and the isovolumetric relaxation phase
lasts 40ms. The arterial pressure shows an exponential decay around 80mmHg, except
during the ejection phase, where it increases alongside the ventricular pressure to reach
110mmHg. Note that the atrial pressure has been included in this simulation.
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(a) Left ventricle, EF=50%, IsoC=100ms, LPEI=120ms, LVET=235ms, IsoR=40ms.
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(b) Right ventricle, EF=43%, IsoC=55ms, RVET=265ms, IsoR=30ms.

Fig. 4.7.: Volume and pressure curves resulting from the sinus rhythm simulation on healthy
geometry. IVD=35ms, myocardial compression=7%.

In order to study the rotation during the contraction of the heart, several points have
been selected on the endocardial and epicardial surfaces, as shown in Fig. 4.8. Three
planes in the LV small axis are defined at the apex, mid and base of the BiV geometry.
A ray tracing from the center of these planes gives the intersection with the mesh and
the localization of the selected points. At the beginning of the simulation (i.e. in the
rest position), we store the barycentric coordinates of these points with respect to the
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underlying triangle or tetrahedral mesh. During the simulation, the deformation of the
mesh is mapped to the points using the barycentric coordinates, so that the selected
points move with the mesh.

At each simulation time step, these planes are recentered to their undeformed location,
so that the center of each plane matches its original position. Then, the rotation of each
point is determined by the angle formed between the rest and deformed configurations,
with respect to the plane’s center. The rotation of the mesh is visible on Fig. 4.8, where
the selected points are grouped by localization: endocardium (red) and epicardium
(blue).

Base

Mid

Apex

Fig. 4.8.: Mesh with selected points in end disatole (left) and end systole (center) and the
rotation of the selected points at the apex, mid and base of the heart (right).

A rotation of -15° is present on the apex, and it ranges between -3 and 3° at the base.
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start
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Fig. 4.9.: Evolution of the LV wall thickness and the apicobasal distance during the cardiac cycle.

Similarly, the thickness of the LV wall during the cardiac cycle is evaluated in Fig. 4.9.
The thickness corresponds to the length of the transmural segments extracted with the
ray tracing method, they are grouped by localization if the LV: LVFW (red), anterior wall
(green), posterior wall (orange) and septum (blue).
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4.3.2 DCM with LBBB

The results for the mechanical simulation of LBBB (corresponding to Fig. 3.15) is shown
Fig. 4.10.
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Fig. 4.10.: LV volume and pressure curves from the simulation of a pure LBBB on a DCM
geometry. EF=25.1%, IsoC=185ms, LPEI=200ms, LVET=210ms, IsoR=65ms

For this simulation, the maximum fiber contractility has been calibrated so that the
maximum ventricular pressure reached 120mmHg. These results show a prolonged
isovolumetric contraction duration and an ejection fraction of 25%. A summary of the
main observations is presented in Tab. 4.1.

4.3.3 Mechanical simulation of the CRT

In order to examine the effect of the CRT, a BiV pacing simulation is presented in
Fig. 4.11. The spontaneous activation has been entirely deactivated (capture) so that
the electrical activation only comes from the stimulation. As presented in section 3.6,
the electrical signal first propagates within the myocardium before eventually reaching
a node of the Purkinje network. No significant changes are observed as compared to
the LBBB simulation without pacing. Again, Tab. 4.1 offers a summary of the main
electromechanical indices.
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Fig. 4.11.: LV volume and pressure curves from the simulation on a DCM geometry, with a BiV
stimulation. EF=25.4%, IsoC=170ms, LPEI=190ms, LVET=210ms, IsoR=65ms
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Tab. 4.1 compares the simulation results for the three cases presented in this section:
healthy scenario, LBBB and BiV stimulation. max

(
dPv
dt

)
is an important index for the

simulation since it provides a global measure of the contraction force. It is expected that
the ventricular pressure increases more rapidly when all cardiac cells are contracting at
the same time, while it is expected to be slower when different segments contract in a
desynchronized way. The delay of the maximum contraction between the septum and
LLW is given in the penultimate column. In the case of the LBBB simulation, the left
lateral wall reaches its maximum contraction 40ms after the septum, while this delay is
reduced to 5ms for the BiV pacing.

Scenario
Elec.

results
Mechanical

results
max

(
dPv
dt

)
[mmHg/s]

QRSd
[ms]

EF
[%]

LPEI
[ms]

Sept-LLW
[ms]

IsoC
[ms]

Healthy Fig. 3.8 Fig. 4.7a 1522 77 51 135 10 100

LBBB Fig. 3.15 Fig. 4.10 1069 (-30%) 172 25.1 200 40 185

BiV Fig. 3.20 Fig. 4.11 1081 (+1.1%) 99 25.4 190 5 170

Tab. 4.1.: Evolution of the left ventricular pressure derivative and a few electromechanical
indices of interest in CRT for different simulation scenarios.

With these results, the benefit of the CRT is limited with an increase of max
(
dPv
dt

)
of

about 1%. However, it has been observed that different electromechanical coupling
profiles yield values of this index up to 8%. It is possible that the active stress function
plays a major role in the response to CRT but these properties have not been sufficiently
explored to draw conclusions yet.

4.3.4 Sensitivity analysis

As for the electrophysiological model, a study of the influence of a few relevant parameters
on the mechanical model is presented in Fig. 4.12. The passive component is represented
by the material parameter c1 of the Mooney-Rivlin constitutive law. Additionally, all the
five parameters of the active contraction model based on the Kumaraswamy cumulative
distribution are presented, including the maximum contractile force developed by the
sarcomeres, the two parameters controlling the contraction, a and b, and the two
controlling the relaxation, g and h, see section 4.2.4.
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(a) Maximum contractility σ0 [Pa] (b) Mooney-Rivlin stiffness parameter c1 [Pa]

(c) Active contraction coefficient a (d) Active contraction coefficient b

(e) Active relaxation coefficient g (f) Active relaxation coefficient h

Fig. 4.12.: Results of the sensitivity analysis on the mechanical model. On the pressure plots,
the dashed corresponds to the atrial pressure while the continuous lines represent
the ventricular pressure.
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Tab. 4.2 presents the correlation between the mechanical parameters and the indices
computed on each model’s output.

Tab. 4.2.: Results of the sensivity analysis on the mechanical indices. EF: Ejection Fraction, LVET:
Left Ventricle Ejection Time, LPEI: Left ventricle Pre-Ejection Interval, SD: Systole
Duration, Iso.CT: Isovolumetric Contraction Time, Iso.RT: Isovolumetric Relaxation
Time, IVD: InterVentricular Delay. Rp: arterial peripheral resistance, Zc: characteristic
impedance of the artery, C: total arterial compliance, Krs: relaxation rate, Katp: con-
traction rate, K: bulk modulus, σ: contractility, α: maximum fibres angle. Green:
p-value<0.001, Yellow: p-value<0.01, Orange: p-value<0.1, Red: p-value>0.1.

EF LVET LPEI LPEI/LVET SD Iso.CT Iso.RT IVD

Rp -0.42222 0.23128 0.02273 -0.11963 0.18141 0.02645 0.64766 -0.00766

Zc -0.03788 0.21657 0.00576 -0.10319 0.14087 0.00125 0.05784 -0.00157

LL 0.24441 0.58033 -0.00847 -0.36903 0.34962 -0.01144 -0.349 -0.00948

τ 0.32062 -0.29936 0.10974 0.304 -0.19011 0.10257 -0.48444 0.18499

Krs -0.02571 -0.03178 0.01345 0.01319 -0.02072 0.00205 -0.01778 0.02944

Katp 0.07897 -0.02247 -0.4114 -0.39651 -0.25082 -0.41028 -0.00922 -0.30771

K -0.02688 0.00409 0.03267 0.02106 0.00687 0.03839 0.02471 0.06666

σ 0.72809 -0.25892 -0.81655 -0.64763 -0.62813 -0.81896 -0.32104 -0.79371

α -0.02548 -0.03125 0.02816 0.00826 -0.00697 0.01788 -0.00138 0.096

1

4.3.5 Discussion

The mechanical model presented in this section generates realistic simulations on healthy
and pathological simulations. It is clear that the LBBB deteriorates the mechanical
simulation results, both in terms of mesh deformation and on the pressure/volume
curves. However, the BiV pacing simulation should have had a greater impact on the
electromechanical indices, see Tab. 4.1. The gain on the pressure derivative is only 1%
while [Dekker et al., 2004] and [Liu et al., 2002] reported a 15-20% increase of this
index on stimulated hearts.

The sensitivity analysis performed with a healthy scenario helps in understanding the
direct influence of the parameters on the model’s behavior. First, the maximum con-
tractility and the stiffness of the material both affect the maximum ventricular pressure
and the stroke volume but are antagonistic and work against each other. As it is also
visible in Tab. 4.2, σ0 is negatively correlated with the duration of both isovolumetric
phases, reflecting the fact that stronger contraction and relaxation lead to faster mesh
deformations and greater inertia.

Similarly, the coefficient a in Fig. 4.12c (equivalent to Katp in Tab. 4.2) is negatively
correlated with the isovolumetric contraction duration. It is visible on the volume plot
that the aortic valve opens later when the active stress rises slower, increasing the
duration of the isovolumetric contraction phase. The parameter b controls the second
half of the active stress function and has a major impact on the shape of the pressure
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during the ejection. With a small b, the fibers will take more time to reach a high value
of contraction, as it is visible on the volume. Inversely, when the fibers reach their
maximum contraction quickly, the pressure exhibits a non-symmetrical shape, probably
due to the inertia accumulated during the isovolumetric phase. The same remarks can be
made on the relaxation phase regarding the coefficients g and h. With g (equivalent to
Krs in Tab. 4.2) small, the active stress decreases exponentially, thus leading to a rapid
depressurization of the ventricles and a short isovolumetric relaxation phase.

Regarding the Windkessel parameters, it is clear from Tab. 4.2 that they are not correlated
with non-ejection indexes such as LPEI or the isovolumetric contraction time. Since they
control the shape of the arterial and ventricular pressures during the ejection, a strong
correlation on the ejection time and ejection fraction was expected. The closing time of
the aortic and pulmonary valves is also depending on those pressures, thus the correlation
observed on the isovolumetric relaxation time. However, it can be observed that the
fibres extremum angle do not seem to impact these model outputs.

The rotation patterns observed in Fig. 4.8 are in good accordance with [Taber et al., 1996;
Sengupta et al., 2008] where the apex rotation angle lie between -20° and -10°. It has
been reported in [Jadczyk et al., 2021] that the base shows an anti-clockwise rotation
but it is very small on the graph, maximum 3°. The reduced rotation of the base can be
explained by the two conditions applied near the valves: the spring force field (boundary
conditions) restrain the motion and, because of the presence of fibrous tissue near the
base, the conductivity and contractility of the cardiac cells are reduced in this area. The
thickening of the myocardial wall is also within the reported range.

4.3.6 Computation time and influence of the discretization

This section presents several simulation results for a healthy scenario but where the
mesh has been homogeneously discretized with different value of the mean edge length,
ranging from 1mm to 6mm. The level of refinement of the mesh is an important
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Fig. 4.13.: Biventricular geometry for different level of discretization, varying the mean edge
length between one and six millimeters.
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parameter when doing numerical simulations since coarse meshes can yield inaccurate
results. Generally, the model solution will converge as the mesh density increases, but the
computation time increases as a consequence. Tab. 4.3 presents the computation times
for the selected meshes, ranging from a minute for the coarser mesh to sixteen hours for
the finer one. Note that dilated geometries take a little more time to compute because
there are more elements (about 25% more tetrahedra). Fig. 4.14 offers an overview of
the meshes at the end diastole and end systole.

Mean edge
length [mm]

Nb points Nb tetrahedra
Computation
time [min]

1 347k 2M 960 (16h)

2 58k 295k 50

3 18k 86k 20

4 8500 39k 7

5 5000 21k 2.5

6 3000 13k 1.3

Tab. 4.3.: Computation time for various mesh discretization on a healthy geometry.

Fig. 4.14 presents the influence of the mesh discretization on the rotation, volume and
pressure results. On this healthy simulation, even for the coarser mesh the simulation
is stable. A small difference can however be observed on the rotation values, up to 4°
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Mean edge length [mm]
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Fig. 4.14.: Effect of the mesh discretization on rotation, volume and ventricular pressure.
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between the coarser and finer mesh, at the apex. Interestingly, it is the coarser mesh
that exhibits the most rotation. It is counterintuitive since more tetrahedra in the cross
wall section should capture more fiber directions and increase the leverage between
endocardium and epicardium.

Finally, Fig. 4.15 presents the main operations that are executed during one time step
of the simulation. Because we are using the free motion, the animation step is divided
in two parts. The first stage consists in computing all forces applied on the heart and
accumulating them in the system matrices. The computation of the active force includes
the resolution of the coupling ODE and takes 100ms. Regarding the hyperelastic material
law, the accumulation consists in iterating over all the Gauss nodes and computing the
SPK and elasticity tensors, it takes 200ms. The resolution of the free motion takes 1.2s
and yields the free position and free velocity of the mesh points ; it consists in the
resolution of the dynamical system using the conjugate gradient method. The second
stage of the free motion consists in solving the constraints to find the value of the
Lagrangian multipliers. It includes building the constraints direction, projecting into
the constraint space, solving the constraint law with the Gauss-Seidel algorithm, and
applying the motion correction. At the end of the time step, the new state vectors are
propagated to all nodes of the simulation using mappings. In this case, each time step
was 4.8s and the whole simulation took 13min.
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Fig. 4.15.: Time sequence during a time step of the mechanical simulation. During the first
step of the freemotion, the computation of the active stress tensors and the passive
hyperelastic material response take 300ms, 6.5% of the animation step. Then the
resolution of the non-constrained system takes 1.2s, a quarter of the whole animation
step. Finaly, the resolution of the constraints takes approximately half of the iteration
with 2.4s. For a 0.8s cardiac cycle and a time step ∆t = 5ms, it gives a total simulation
time of 13min.
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This chapter presents two contributions. The first one is related to the definition of
ECG features that enable the computation of the relative error between two QRS
tracings. By using the segmentation of the QRS waves, it reduces errors related
to QRS segmentation and signal noise, and relies instead on meaningful features.
The second contribution consists in a personalization method which is based on
learning a reduced representation of the model to estimate the parameters with
regression methods. Together with the segmentation of QRS waves, it offers an
efficient treatment of ECG by machine learning algorithms and focuses on fitting
successive QRS waves rather than scattered points. This method is also used for
the estimation of mechanical parameters based on meaningful cardiac indices for
CRT. This personalization method is extremely fast as compared to optimization
methods and would allow the whole personalized simulation flow to run in a clinical
context.

This chapter presents how the cardiac electromechanical model developed previously can
be personalized to a specific patient. This process consists in estimating the parameters
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of the model so that the computed observations match the available measured patient
data. Estimating model parameters is a complex inverse problem that has been adressed
before but is impaired by high computational cost which increases with the number of
parameters to estimate.

These algorithms are highly dependent on the initial set of parameters in order to
converge. [Molléro et al., 2019] uses the unscented transform algorithm to calibrate
the parameters but requires at least one iteration of parallelized model computations.
Here we propose to use a set of precomputed models to generate a good approximation
of the solution. This method requires high offline computational workload but has the
advantage of generating a solution in less than a second.

Prediction to CRT
response

Shape model

Si
m

ul
at

io
n

A
I m

et
ho

ds
C

lin
ic

al
 d

at
a

Patient data

Electromechanical model

Pacing simulations,
different configurations

Personalisation

Comparison with CRT

implantation clinical data

Fig. 5.1.: Global pipeline for patient-specific simulations and prediction to CRT response

Fig. 5.2 presents the whole data flow of the cardiac framework presented in this thesis.
At the top of this diagram is the patient data that is used for the personalization of the
model and is decomposed in four blocks:

1. Anatomical data extracted from echocardiography: it includes ventricles volume,
wall and septal thickness, diameter and apicobasal distance,

2. Anatomical data extracted from the patient record or by the clinician: it includes
general data about the shape of the patient’s body,
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3. Electrophysiological data, consisting in a numerical ECG from where the QRS axis
will be segmented, and its duration and axis computed,

4. Mechanical data extracted from echocardiography, including the eighteen parame-
ters presented in [Cazeau et al., 2019].

All the patient data is used as the target in the personalization methods. At the bottom of
the diagram are represented the datasets that are used to train and test the machine learn-
ing algorithms. They are generated using a large number of simulations, followed by an
extraction of meaningful features. The data flow starts with the template geometry which
is fitted to patient data with the deformation model. Then, an activation map is produced
so that the simulated ECG matches the patient’s one. Finally, this electrical input is used
on the personalized geometry to compute the personalized biomecanics. Optionally, it is
possible to run the complete personalized model with several pacing configurations to
compare the outcome, both in terms of electrophysiology and mechanics.
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Fig. 5.2.: Data flow for the complete personalized cardiac model. The patient data is used
at different steps of the pipeline for the estimation of patient-specific parameters.
Learning algorithms can be trained based on several databases.

5.1 Personalization methods

This section introduces the different personalization methods that have been imple-
mented. In any case, it is necessary to define first the parameters that will be estimated
and the features that will best describe each model’s output.

5.1.1 Features extraction and dimension reduction

Anatomical features

The anatomical features have already been presented in Tab. 2.1 since they constitute
the main measures on the deformed mesh: ventricles’ volume, septal thickness, diameter
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and apicobasal distance. These five features offer a complete description of the deformed
mesh for the selected cardiomyopathies.

Electrophysiological features

Several features can be considered to describe the ECG whether they are used for opti-
mization or learning algorithms. In Fig. 5.3, three computation methods are introduced.
The first method (left) is used in [Giffard-Roisin, 2017] and consists in the extraction of
points of interest on the QRS, such as zero-crossings or signal extrema. This extraction
can be perfomed on any QRS complex but is not robust to noisy signals containing a high
number of extrema, or oscillations around 0mV. Also, the total number of features greatly
depends on the quality of the signal, it can range from a few features to hundreds of
them for the whole ECG, which makes it even more difficult to compute errors between
tracings. Finally, this method yields features of different natures and comparing integers
(such as number of zero-crossings) with scalars (such as maximum voltage) adds another
layer of complexity.

The second method presented in Fig. 5.3 (center) has been proposed as an alternative
to the first one and is also intended for optimization algorithms. Instead of a variable
number of features, only the five segmented waves (Q, R, S, R’, S’) are included in the
computation of the error, as well as the QRS duration, which is a global measure on the
ECG. For each wave, we define a triangle formed by the peak and two points at half
prominence. To define the error computation with this second method, let’s consider two
ECG that we seek to compare. k represents either the ECG that has been generated by
the model, or the one coming from the patient data, referred as ‘ref’. Wk refers to the
waves of signal k, Tk to the triangle associated to each wave and Pk(x) is the distance to
the signal k at potential x, used when no matching wave is found in the signals. Taking
the signals voltage difference ensures that even when no matching wave is found but the
tracings are close, the error remains low. Algorithm 1 presents how the error between
two ECG is computed.

0 40 80

0 .0

0 .5

1 .0

1 .5

2 .0

Q

Method 2: wavesMethod 1: features

vo
lta

ge
 [m

V
]

time [ms]

R

S

Method 3: amplitudes

q

R

s

Fig. 5.3.: ECGs comparison methods. Method 1: features from [Giffard-Roisin, 2017] ; method
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Algorithm 1 Computation of ECG error based on QRS waves

Ensure: both model and target ECG signals pre-processed
1. Segment one QRS in the ECG signal
2. Detect the Q, R, S, R’, S’ waves in signals based on peak sign
and peaks detection algorithm
3. Compute the triangle T associated to each peak
4. For each derivation i, compute the error as follow:
for wave in (Q, R, S, R’, S’) do

if wave in Wref then
if wave in Wmodel then

Ei+ = D(Tmodel, Tref ) . wave present in both QRS
else

Ei+ = Pmodel(vref ) . wave only in reference
end if

else
if wave in model then

Ei+ = Pref (vmodel) . wave only in model
else

Ei+ =∞ . other waves
end if

end if
end for
5. Gather all derivations contributions

Etot = ‖Ei‖∞, ∀i ∈ {I, . . . , V 6}

D is the distance between two triangles. It can be a direct measure such as the distance
between the two barycenters, or a more elaborated metric, for instance including the areas
or the deformation of the model’s triangle as compared to the reference one. Similarly,
the total ECG error can be computed from derivations error based on any metric such as
L∞ or L1. Lastly, the difference between QRS durations can also be incroporated into
the total error. In this case, special care must be given to the coefficients associated to
each error since the scales might be different.

The third method presented in Fig. 5.3 (right) is derived from the second one and only
includes the signed amplitude of the five waves, as well as the QRS duration. It is
intended for machine learning algorithms since it provides a fixed 61-length vector of
features that describes well the activation patterns in each derivation.
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A last comparison method that is implemented consists in computing the Mean Squared
Error (MSE) between the two signals and summing over all derivations. It is a good
approximation of the error but has no physiological knowledge of the signal. For instance,
two signals that have the same waves but a non-zero time shift will have a high MSE
error. Tab. 5.1 presents a comparison of these methods.

Tab. 5.1.: Three comparisons of the four methods computing the error between two QRS tracings
(in blue and green). For each method, the error is detailed
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In Tab. 5.1, each column corresponds to a case example, where the error is computed
between the blue and green ECG tracings. It can be observed that the two ECG in the
first column are very close, they present the same waves (R and S). In the second column,
the tracings are quite distinct, the R wave is not present in both signals. Finally, the
example in the last column is more complex. The Q wave has not been detected in the
blue signal because of its height, and the last waves are S and R’ in the green and blue
signals, respectively.
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With the first method, the lowest error is obtained for the second example, which seems
to have the worst crrespondance between tracings. Regarding the waves method, the
R wave has not been detected in the green signal, although it is present in the blue
one. In this case, the error is computed based on the distance between both tracings, at
the timestamp of the R wave, leading to an important penalization term for this wave.
Similarly, the difference between the S and R’ waves in the third columns generates a
large error.

Mechanical features

The features used to quantify the output of the mechanical model are based on [Cazeau
et al., 2019]. This choice comes from the fact that these parameters are meaningful
for the current study since they are able to describe dyssynchrony and the response to
CRT.

Because the beginning of the QRS and the time of each cardiac phase change is known
during the simulation, the computation of the following mechanical features is straight-
forward: QRS-A, LPEI, RPEI, IVD, IsoC, LVET, IsoR, QRS-E (see Fig. 1.10 for a schematic
view of these durations). To compute the time at which the maximum contraction
of cardiac segments is reached, the points of interest defined in Fig. 4.8 are used by
projecting their displacement onto the small axis plane, corresponding to the M-mode
used in echocardiography. Then, from this peak contraction, the following features are
found: SegC, DC, and the overlap (duration during which the cardiac segments are still
contracting during the filling phase).

5.1.2 Personalized parameters

The models developed in this thesis, besides focusing on the computation time, target
a few set of explainable parameters and are therefore adapted to personalization. This
section presents the parameters that are selected for personalization. They have been
chosen based on the sensitivity analysis presented in the previous chapters.

Anatomy

As for the anatomical features, there are already very few parameters that influence the
output of the anatomical model so that the five parameters kr, kz, kdilate, koverlap and
ksept can be estimated independently to produce meshes that feature the required data.

Electrophysiological personalized parameters

For the personalization of the ECG, the main parameters of the electrophysiological
model are estimated:
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• depolarisation delay of the Purkinje breakthrough points (corresponding to the
InterV bundle delay parameter presented in Fig. 3.10),

• conduction velocity of the Purkinje network σpurk (each ventricle),
• conduction velocity of the thin endocardial layer σendo (each ventricle),
• conduction velocity of the remaining myocardial tissue σmyo (each ventricle),

which makes seven parameters to estimate. Note that although the conduction velocities
are set globally in this chapter, it is possible to define them locally (for instance defining
BBB or myocardial infarction). Other global parameters such as those related to Purkinje
generation, fiber angles, anisotropy ratio, etc., are not included in the personalization.

The personalization of the Purkinje network generation model is not included in this
study. A method to estimate the Purkinje activation from ECG tracings is available
in [Giffard-Roisin et al., 2016; Barber et al., 2021].

Mechanical personalized parameters

Several parameters influence the mechanical model output, here are the most meaningful
for the personalization:

• three elements of the Windkessel model (Rp, τ and Rc). Note that the parameters
for the right ventricle are adjusted according to those of the left ventricle and are
not included in the personalization,

• Mooney-Rivlin material parameters (the bulk modulus K and the stiffness c1),
• contraction a and relaxation g parameters,
• sarcomere maximum contractility σ0.

which makes eight parameters to estimate.

For all models, the selected parameter values are defined within ranges that depend on
the simulated scenario. Given a patient’s condition (healthy, LBBB, etc..), the search
space is adapted to the condition in order to reduce the variability in the model’s outcome.
Tab. 5.2 presents the various model parameters that have been used for the constitution
of the datasets.
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Name
Healthy DCM + LBBB

Unit
baseline range baseline range

Anat
kr 1 1.15 0.9, 1.3
kz 1 1 0.9, 1.1

kdilate 0 3.6 0, 10

Elec
(LV)

Bundle delay 10 -20, 30 +∞ ms
σpurk 3 0.1, 6 2.4 0.1, 4.8 m/s
σendo 1.6 0.1, 4 1.3 0.1, 3.2 m/s
σmyo 0.8 0.1, 3 0.6 0.1, 2.4 m/s

Meca

contractility 6e5 2e5, 1e6 4e5 1e5, 1e6 Pa
stiffness 4e4 2e4, 8e4 5e4 3e4, 1e5 Pa
active a 2 0.5, 4 2 0.5, 4
active g 2 0.5, 4 2 0.5, 4
Rp 6e7 3e7, 3e8 8e7 3e7, 3e8 Pa·s/m3

τ 0.8 0.2, 4 0.8 0.2, 4 s
Rc 3e6 1e6, 1e7 3e6 1e6, 1e7 Pa·s/m3

Tab. 5.2.: Baseline and range of variation for the parameters selected for personalization.
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5.1.3 CMA-ES

Now that we have defined the model parameters that we seek to estimate and the
features that are used to evaluate the output of each model, a first optimization method
is presented.

The Covariance Matrix Adaptation Evolution Strategy (CMA-ES) is an evolutionary
algorithm for difficult non-linear non-convex black-box optimization problems [Hansen,
2006]. The parameters are sampled according to a multi-variate normal distribution.
The covariance matrix of this distribution is iteratively updated such as the new set of
parameters minimizes the cost function, see Fig. 5.4. The latter is built such that the
output of the model with the current parameters fits the patient data, based on the
features presented in the previous sections. Moreover, this personalization method is
embarrassingly parallel, as all simulations are independent within an iteration. However,
the full computation of the model is still necessary and, even in parallel, the CMA-ES
method can take hours to converge.

Fig. 5.4.: CMA-ES procedure: (1) Generate multiple candidate solutions. (2) Evaluate and rank
the solutions based on the objective function. (3) Update the covariance matrix. (4)
Shift the center of the distribution to the weighted mean vector. (5) Update step size.
(6) Generate multiple candidates at the next step. Source: [Maki et al., 2019]
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5.1.4 Implementation of the optimization on a cluster

Some details regarding the implementation of the CMA-ES method on a High Performance
Computing (HPC) cluster are given in this section. Indeed, choosing the appropriate
resources to run the optimization can be difficult. The available cluster uses OAR, a
resource and task manager, to parallelize the cardiac model computations using queued
jobs submissions. Throughout the CMA-ES generations, these jobs are managed by
the python package dask [Rocklin, 2015], which handles the lifecycle of one model
computation, (i.e., one member of the population in CMA-ES). Fig. 5.5 shows the
resources used by the personalization of the ElecModel with the CMA-ES method.

Additionally, because the Purkinje and ECG generative models are parallelized using
multithreading with disabled Global Interpreter Lock (GIL), it is necessary that each
process has one and only one ElecModel instance running on one thread, so that the
memory is not shared by several instances. The number of processess per cpu core is not
limited but optimal performance is obtained near nproc ≈ ncore.
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Fig. 5.5.: Comparison of the impact of the number of model parameters (p), required cores
(j), number of processes on the error and computation time for a simple CMA-ES
personalization of the electrophysiological model.

5.1.5 Regression with machine learning methods

To aleviate the need for the full model computation as in the CMA-ES method, the
idea behind the tools presented in this section is based on the evaluation of a reduced
representation of the model, that is much faster to compute. Using surrogate models
for personalization has already been explored in [Mollero, 2017] and seems promising.
In this work, a 0D model, surrogate to the 3D mechanical model, is used to iteratively
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provide prior values in the CMA-ES personalization, thus speeding up the convergence of
the estimation in a multi-fidelity manner. However, although they are based on the same
equations, the OD and 3D models do not behave identically and further calibration work
is needed to find a correspondance between both outputs. Furthermore, the computation
times reached with this method are still high since the computation of the full model is
still required sometimes. Additionally, this inverse problemm is ill-posed, as different sets
of parameters can produce similar output features. Therefore, regularization is needed
to ensure uniqueness of the solution. In our personalization method, prior knowledge is
based on the patient condition and is used when generating training data, therefore it
acts as a regularization term in the objective function to be minimized.

The parameter estimation problem can be seen as a regression problem and is evaluated
with supervised machine learning methods. Datasets composed of thousands of simula-
tions output are generated offline. The parameters used in these simulations are sampled
with the LHS method. Six datasets are constituted for the three models:

• anatomical dataset for the anatomical model containing healthy, DCM and hyper-
trophic geometries (500 cases),

• healthy electrophysiological dataset for healthy patients, on a healthy geometry
(500 cases),

• LBBB electrophysiological dataset for LBBB patients, DCM (2000 cases),
• RBBB electrophysiological dataset for RBBB patients, DCM (2000 cases),
• healthy mechanical dataset for healthy patients (1000 cases),
• pathological mechanical dataset for desynchronized patients, DCM (1000 cases).

The datasets are scaled by their standard deviation so that all features have a standardized
range of values. The mean is conserved since most of the values are not centered.

Three algorithms are implemented:

• Ridge: linear regression with penalization, a linear parametric method,
• K-nearest neighbors (k-NN) algorithm, a non-parametric method for weighted

average among neighbors,
• Multi-layer Perceptron regressor (MLP), a simple neural network.

Train MSE Test MSE
Ridge 1.59 1.63
k-NN 1.54 1.55
MLP 1.45 1.77

Tab. 5.3.: Inverse problem.

Train MSE Test MSE
Ridge 1.30 1.20
k-NN 0.98 0.83
MLP 1.56 1.33

Tab. 5.4.: Forward problem.
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The datasets are split in training and testing sets. Then, a 10-fold cross validation and
grid search on algorithm-specific parameters are performed. The regression problem can
either make a prediction of the parameters given the features, referred as the inverse
problem ; or make a prediction of the model’s output based on given parameters, referred
as the forward problem. Tab. 5.3 and Tab. 5.4 present the train and test errors for the
selected machine learning methods and for the inverse and forward problems applied to
the electrophysiological model. The MSE corresponds to either the error computed on
the estimated parameters (inverse method), or on the reduced representation of the ECG
(forward method).

With the forward method, a CMA-ES optimization is performed on the reduced represen-
tation of the model given by the regression learning algorithm. In this way, we combine
the speed of machine learning algorithms with the non-linear global minimization of-
fered by the CMA-ES optimization method. From now on, this method will be refered as
AI-CMA-ES.

Fig. 5.6 presents both the forward and the inverse methods, as well as the pure CMA-
ES optimization. These three methods are alternatives and the personalization time
is indicated on the right. In all cases, the personalization task consists in estimating
parameters from the 61-length vector (amplitudes of five waves for the twelve derivations
and the QRS duration) that constitutes the reduced representation of the ECG tracings.

Fig. 5.6.: Implemented methods for the personalization.
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5.2 Personalization of the model

This section presents some personalization results on the three models presented in the
previous chapters.

5.2.1 Anatomical personalization

Using the datasets and methods presented in section 5.1.5, the personalization of the
anatomical model have been performed first. Fig. 5.7 shows the errors on the test set
for the AI-CMA-ES method. Fig. 5.7a shows the errors on the estimated parameters,
relative to their variation range. Fig. 5.7b presents the relative errors on the anatomical
features.
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Fig. 5.7.: Anatomical parameters estimation and features prediction error on the test set using
the forward personalization method (AI-CMA-ES).

5.2.2 Electrophysiological personalization

Fig. 5.8 presents the personalization results for both the inverse (top) and the forward
(bottom) methods, with different metrics for healthy cases. The first column corresponds
to the error in the QRS duration, it is around 25ms. The second and third columns are
related to the five waves segmented on the QRS, they correspond to the number of waves
that are present on both the target and generated ECG for the first column, and the
waves that are present on the predicted ECG but not on the reference one, referred as
‘false positives’. The fourth column corresponds to the metric defined in algorithm 1 and
the last one to the MSE computed on the QRS signal.

There is not a significant difference between the errors obtained with the inverse param-
eters estimation and those obtained with the forward method coupled with CMA-ES, but
the latter offers slightly best results and realistic ECG. The error on the QRS duration
is divided by two and the waves error is better with the AI-CMA-ES method. It seems
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Fig. 5.8.: Errors of the electrophysiological personalization on healthy cases with the machine
learning inverse estimation and with the forward AI-based CMA-ES method, presented
for several metrics.

that using the CMA-ES optimization algorithm standardized the errors and reduced the
differences between the ML methods. This might be due to the global convergence of
CMA-ES that iteratively reduces the parameters space, used for ML predictions of the
ECG features.

Overall, the best results were obtained with the MLP coupled with the CMA-ES optimiza-
tion, in all the considered metrics. It has for instance the best ratio of fitted waves versus
false positives. Since the relation the electrophysiological parameters and ECG features
is highly non-linear, it was expected that k-NN and MLP make better approximations.
Furthermore, it can be observed on Fig. 5.8 that the errors related to LBBB cases are
higher than those of healthy cases.

5.2.3 Mechanical personalization

An example of the whole model personalization is presented in this section, through
several case studies and with data coming from the dataset presented in section 1.3.3.
In the first trial only the ejection fraction is included in the mechanical personalization,
presented in Tab. 5.5. For this patient data, the anatomical and electrophysiological
models have been personalized and yield acceptable results (error around 10% as

Vol LV [mL] QRSd [ms] QRSa [°] EF 1 [%] EF 2 [%]

Target 250 150 -30 30 40

Model 249 160 10 26 38

Rel Err. -0.4% +6.6% +11.1% -13.3% -5.0%

Tab. 5.5.: Results of the personalization for anat, elec and meca (EF).
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compared with the target data). For the mechanical model, the parameters have been
estimated trying to fit two examples of EF, 30 and 40%. After the personalization, the
obtained EF are 26 and 38%, respectively.

A second experiment was run with more mechanical indices, as presented in Tab. 5.6.
The choice of these indices lie in the fact that they are able to describe 87% of the
dyssynchrony [Cazeau et al., 2019]. Again, the personalization of the anatomical
and electrophysiological models yield satisfactory results, with an error inferior to 5%.
Regarding the mechanical personalization, the LPEI has been largely overestimated by
the method but the other indices are within acceptable range. The Sept-LLW index is
mostly impacted by the electrical conduction velocities set on the LV, which might have
been a little overestimated for this index. However, with a reduced LV conduction velocity,
the LPEI would have been even higher.

Vol LV
[mL]

QRSd
[ms]

QRSa
[°]

EF
[%]

QRS-E
[ms]

LPEI
[ms]

Sept
[ms]

Sept-LLW
[ms]

Target 250 210 0 35 576 170 514 -114

Model 249 220 0 31 615 265 465 -75

Rel Err. -0.4% +4.7% 0 -11.4% +6.7% +55.8% -9.5% -34.2%

Tab. 5.6.: Results of the personalization (for the mechanical model, only the EF and four indices
that describe 87% of the dyssynchrony have been included in this personalization).

5.3 Prediction of the therapy response

This section presents the simulation experiment performed to evaluate the prediction of
CRT response, based on real patient data.

5.3.1 Description of the protocol

The dataset provided by Microport CRM and presented in section 1.3.3 includes patient
data for different pacing configurations. The CRT was gradually conducted, adding one
lead at a time and up to three leads for the following steps: start, RV, LV, BiV, final. For
each configuration, the localization of the stimulation is indicated, which enables to
reproduce the stimulations in silico. Regarding the patient selection, we will focus on
sinus rhythm patients with DCM. Fig. 5.9 shows the different pacing points on the DCM
geometry. These points are selected according to the available patient data.

For each patient, several data (QRSd, QRSa, EF) are unknown at each step but only
available before and after the implantation. Because the ECG has not been measured
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Fig. 5.9.: Localization of the pacing sites as per the patient data from different views.

with the data and is not available, an ECG with similar features is extracted from the
ECG dataset presented in section 1.3.2. From this ECG and the available data before the
implantation, the electrophysiological and mechanical models are personalized with sinus
rhythm simulation. Then, for each pacing configuration, the corresponding stimulation
protocol is simulated and the predicted electromechanical indices are extracted and
compared to the patient data. It is important to note that all pacing simulations are done
in full capture, thus overriding the spontaneous His activation.

5.3.2 Results

Fig. 5.10 presents the personalization and prediction of CRT response results for one
patient of the dataset provided by Microport CRM. The models are personalized on the
patient data before CRT (‘start’ step) and then used without any modification of the
parameters, in the other steps of the implantation.
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Fig. 5.10.: Results of the personalization and model prediction of CRT response (red) for one
patient of the dataset (green). ‘start’: spontaneous activation, ‘rv’: stimulation in the
RV septum, ‘lv’: LVFW stimulation, ‘biv’: RVFW+LVFW, ‘final’: TIV for this patient,
RVSept+RVFW+LVFW.

5.3.3 Discussion

The results presented in Fig. 5.10 account for the simulation of the CRT, with different
leads placement. First, we can observe that the personalization of the indices before the
implantation lead to values close to the patient’s ones. The QRSd, LPEI, LVET and IsoC
are all within a 10% range error.

The prediction follows the right trend for some indices (LPEI, LPEI/LVET). The LPEI
is a good indicator of the early contraction, it increases for single lead stimulations
(probably due to the capture and the propagation from one single point) as compared to
the ‘start’ step (simulation personalized with QRSd=160ms and QRSa=-60°). For BiV
and TIV stimulations, the LPEI and QRSd both decrease, sign that the recovered electrical
activation has improved the results.

However, some changes are not properly captured. In particular the changes in iso-
volumetric contraction duration are not large enough yet. This is probably due to the
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electromechanical coupling and its interaction with the cardiac stiffness. Changes in
activation pattern do not impact enough the contraction efficiency. The quasi constant
state of the ejection fraction is in accordance with CRT results presented in section 4.3.3.
It should also change more, this is probably due to the lack of post-systolic contraction in
these diseased simulations. Adapting action potential duration and analyzing more the
relaxation phase should help in improving this.

The lack of anatomical data (like imaging) and of the patient ECG also impacts the
personalization possibilities, and therefore the prediction accuracy. Working with more
complete clinical data would enable to better capture the patient-specific parameters.
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The general conclusions of this PhD work are presented in this chapter, as well as a global
discussion on the models limitations and further improvements that could be made to
increase the robustness of the model and the prediction to CRT.

6.1 Contributions

Overall, the 3D cardiac electromechanical model developed in this thesis is able to repro-
duce typical scenarios encountered in failing hearts and allows individual personalization
from routine standardized patient data. This personalization is easy, fast and cheap to
acquire. It is also possible to simulate different configurations of CRT pacing and observe
the immediate potential response of the heart. The whole personalized flow takes 30min
to run, which makes it compatible with clinical use.

The cardiac simulation framework features some tools that are helpful to start simulations
such as an efficient mesh plotter, supporting animations, point and cell picking, camera
orientation, and ray tracing. The latter is used in the processing of the input surface mesh
to automatically label the cardiac structures. Robust meshing tools were also developed
on top of MMG to provide good quality meshes, supporting heterogeneity and anisotropy.
They have been used for instance in the deformation model, allowing for the fast and
optimized generation of tetrahedral meshes and accounting for the minimal thickness of
the myocardium.

Regarding the electrophysiological model, efficient algorithms were implemented and
allow for action potential anisotropic propagation simulations to run in under 10s, as
quick as the ECG generation model. The development of a Purkinje network and its
interactions with the myocardium have been explored and allow to identify typical
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deflections on the ECG. Finally, stimulation has been modelled and allows to introduce
any number of pacing points as initial condition in the depolarization.

The mechanical model has been re-implemented using the latest versions of SOFA,
based on previous works from the team. It allows to use a state-of-the-art constraints
formulation within the model. To this end, an implicit discretization of the Windkessel
model has been incorporated in the hemodynamic constraint law and is compatible with
the computation of contacts and the global implicit solver. Several hyperelastic material
laws can be implemented, either differentiated by hand or with automatic tools. It results
in realistic simulations that feature expected observations, in terms of heart displacement,
strain, wall thickness, and rotation.

Finally, because it defines a few set of explainable parameters, the model is adapted to
personalization and a significantly faster personalization method has been developed. It
uses machine learning algorithms to predict the model’s output in a reduced space and
optimization methods to minimize a global cost function, based on patient data. With
this personalization method, the models can be customized in a few seconds without the
need to perform the full 3D computations, which is attractable to clinical applications.

Because the cardiac model requires only few hardware resources, patients can be man-
aged in parallel, even on laptops, making it possible to study cohorts of patients or even
to treat all the patients of a clinician or all the patient data of an external database in a
similar way. The complete model is interfaced with simple data exchange protocols such
as the JSON text format and can therefore be easily installed on a server communicating
with other services such as a web interface, APIs or databases. All parameters used in
simulations and personalizations are written in JSON files as well, which simplifies data
exchange even more between the different services.

Furthermore, the model has been completely containerized and can be run on any
machine having Docker installed, with docker-compose. It is therefore extremely easy to
use the tools developed in this thesis on any computer. Finally, extensive documentation
is available and contains examples to start building cardiac simulations.

6.2 Models limitations

Although the implemented model includes several anatomical structures such as a biven-
tricular geometry, the Purkinje network or the pericardium, the atria are not included.
However, their impact is included in the model through the boundary conditions and
the analytical pressure formulation. Also, the biventricular geometry used throughout
this study present the same aspect, even after the deformation model: the valves are
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located relativeley at the same place, the walls are smooth and no segmentation artefact
is present on the mesh. This is not a problem since no medical images segmentation is
planned in the IPRC global project but rather the use of a single geometry that can be
personalized by the deformation model. The change of the template geometry should
result in a new calibration of all models. It should be noted that several biventricular ge-
ometries have been used with this model by members of the team without complications,
but no validation has been performed.

Moreover, personalization of the Purkinje network from non-invasive data has not been
assessed in this thesis but this complex task has been evaluated from ECG tracings
in [Barber et al., 2021; Giffard-Roisin, 2017]. It could be an improvement as compared
to the current implementation, in which there is a small variability in the generated
networks. Because our Purkinje network starts at the same node on each geometry and
has the same direction of propagation, it results in a preferential direction of growth,
namely septal to LLW. With these settings, it is impossible for the electrical signal to
originate from the His bundles and activate first the LLW, as it has been reported on
vectocardiogram. Such homogeneity in the Purkinje activation may be the cause of the
reduced variability observed on the generated ECG tracings as compared to real-world
ECG data (Fig. 3.14). This network, however, offers a convenient way of defining the
PMJ points and modelling BBB.

The conduction velocity imposed on the thin endocardial layer, which models the fast
propagation due to subendocardial Purkinje fibers, might also be a strong assumption
on the ability of the myocardium to globally conduct the electrical signal. Variants of
this model have been tested, such as having only patches of isotropic high conductive
tissue around PMJ points instead of the whole endocardial layer, but no conclusions
were drown from these simulations. The density of the Purkinje network has also been
investigated: too many PMJ points led to non-realistic oscillations on the ECG tracings.

In a clinical context, the His branch is considered to be the preferred stimulating site
since it activates all the intact Purkinje network and allows a quick propagation of the
electrical signal to all segments of the heart. Clinicians report that finding the His branch
can be quite challenging and that it is a matter of millimeters between pacing the fast
conductive network, thus significantly increasing the patient’s condition, or stimulating
the myocardium and observing close to no improvement. In our model however, even a
myocardial stimulation a few millimeters away from the His branch enters rapidly the
network and depolarizes all segments which is closer to clinical observations of direct
left bundle branch pacing.

Regarding the mechanical model, the response of stimulated hearts needs to be improved.
While the improvement of the ejection fraction is typically low in the immediate postoper-
ative period, it is still expected to improve by about 5%, which is not currently observed
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in our model. The increase of the max
(
dPv
dt

)
is also too small in the pacing simulations.

This problem could have several causes in all models but the electrophysiological results
suggest that this model behaves correctly to stimulation inputs. The reduced increase in
max

(
dPv
dt

)
in pacing simulations might be related to the calibration of the myocardial

stiffness with the cells contractility. Indeed, without pacing, these two parameters balance
each other but with stimulation, too stiff tissue could be an inhibitor to the stimulation
benefits, by making it more difficult to contract significantly. Moreover, an increase in this
index has been observed for different active stress functions, up to 8%, which suggests
that the response to CRT could be related to the profile of contraction. It is possible that
the ability of the cardiac cells to contract faster or slower is different in responder or
non-responder patients, and is currently explored.

6.3 Further improving the computation time

6.3.1 Frame-based method

This section is based on the following paper:
Towards Hyper-Reduction of Cardiac Models using Poly-Affine Deformation. Gaëtan
Desrues, Hervé Delingette, Maxime Sermesant. STACOM 2019: Statistical Atlases and
Computational Models of the Heart, Oct 2019, Shenzhen, China.

Instead of the 3-coordinate vector displacement field classically used for each point of the
mesh, we propose to use a poly-affine displacement field for which at each control node
qi, 1 ≤ i ≤ n, the 12 DOFs are the 12 coefficients of the affine transformation T (qi) =
Ti ∈ M3×4 (3 coefficients for the 3D translation and 9 for the linear transformation
combining rotation, scaling and shearing). This is well suited to a regional deformation
approach, therefore with an important reduction in the total number of degrees of
freedom.

The GMLS method was shown to be an efficient method to approximate globally a
function from sparse discrete values with a minimization problem [Martin et al., 2010;
Fries et al., 2004]. This problem seeks new shape functions Ni(x) representing accurately
the function over the whole domain.

T(x) =
n∑
i=1

TiNi(x) (6.1)

In our framework, this mapping is used to compute the deformation gradients from ver-
tices position at integration points. See [Martin et al., 2010] for an analytical formulation
of Ni(x).
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Numerical integration in the frame-based framework

The elastic energy of a deformable solid is the work done by the elastic forces between the
undeformed and deformed positions, integrated across the whole domain. The numerical
integration of the elastic forces is classically performed at the tetrahedron level in regular
finite element methods. In our approach, we partition the domain Ω into M integration
regions V m consisting of a set of tetrahedra. In the spirit of our affine frame control
nodes, we use a high order integration rule called elastons introduced in [Martin et
al., 2010] and generalized in [Gilles et al., 2013]. The classical integration approach
assumes a constant force within each integration region V m. The elaston framework
relies on a first order Taylor expansion of the field to be integrated in order to reach a
higher level of accuracy. More precisely, a field f(x) is locally approximated as f(x) ≈ Fp̃
where F is a vector containing the value of the field and its derivatives at the center of
V m, and p̃ is the polynomial basis of order α in dimension d, for example [1, x, y, z] at
order 1, in 3D. Finally, the integration is performed as :∫

Ω
f(x)dx =

∑
m

∫
V m

f (xm) dx =
∑
m

Fm

∫
V m

p̃dx (6.2)

In our approach, the strain and stress are approximated by a first order polynomial func-
tion in the vicinity of each integration sample which is estimated thanks to a Generalized
Moving Least Square (GMLS) interpolation scheme [Martin et al., 2010].

Fig. 6.1.: Left: ellipsoid at rest (blue with edges) and deformed with full (orange wireframe) and
reduced (plain brown) models. Right: position of the points on the external surface in
the plane (x+, 0, z) · nz corresponds to the number of zones on the vertical axis and nt

along the circumference of the ellipsoid (plus one zone for the apex). The number of
DOFs of each model is indicated in parenthesis.
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Fig. 6.1 presents the deformation of a simplified ventricular model using the frame-based
model, after a pressure force has been applied on the endocardium. This approach,
although promising, has several issues. As it is visible on the figure, the deformation of
the ellepsoid is not uniform and the regions associated to each affine frame are clearly
identifiable. Furthermore, the current deformation is very small but unrealistic profiles
are obtained with higher pressure values. Finally, with this frame-based method, the
boundary conditions are tricky to define since there are no DOFs on the boundary.

6.3.2 Physic-based deep learning

Another promising solution to reduce the computation time of the models is based on the
use of deep learning, for instance physics-informed neural networks. Other approaches
combine a simple physics-based model with deep learning, for instance in the cardiac
electrophysiology context [Kashtanova et al., 2022], and approaches were explored
for liver elastic deformations in [Brunet et al., 2019], or left-ventricular biomechanics
in [Buoso et al., 2021].

6.4 Conclusion

Overall, the models developed in this thesis constitute a global cardiac simulation
framework and progress towards building cardiac digital twins that can be used in CRT.
The framework is to be integrated within the IPRC project and would contribute in
a completely autonomous workflow for heart failure patients that will help clinicians
into making better patient and treatment selection. The long term data acquisition and
the use of mathematical models, together with artifical intelligence, constitute major
advances in healthcare that can help patients lives, reduce the overall cost, and facilitate
the clinical work.
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ADifferentiation of the biomechanical
material laws

A.1 Material laws

In the strain energy function of the hyperelastic material laws, an incompressibility
penalty term can be incorparated to manage the compression of the deformable body. It
is differentiated by hand:

WV = κ

2 (J − 1)2 and SV = κJ(J − 1)C−1 and TV = κJC−1 ⊗C−1 (A.1)

It corresponds to the volumetric part of the strain energy. Any term that cancels for J = 1
is suitable for the incompressibility penalty constraint. Another expression in ln J gives:

WV = κ

2 (ln J)2 and SV = κC−1 ln J and TV = κC−1 ⊗
[1

2I−C−1 ln J
]

(A.2)

A.1.1 Guccione material law

The constant material parameters describe the dregree of anisotropy in each direction:

H =


bf bfs bfs

bfs bt bt

bfs bt bt



Let Λ be the rotation tensor as described in Appendic B.3.

The strain energy is defined with respect to the locally oriented Green-Lagrange strain
tensor Ef = ΛTEΛ :

W = λ

2
(
eQ − 1

)
− κ

2 (J − 1)2 and Q = eT (H ◦Ef ◦Ef ) e

where ◦ is the Hadamard product, here between two rank-2 tensors.
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Let’s now compute the derivatives of the strain energy.

Q = ∂Q

∂Ef
= 2H ◦Ef

Q = ∂Q
∂Ef

= 2
∂ (H ◦Ef )ij

∂Efkl

ei ⊗ ej ⊗ ek ⊗ el

= 2δikδjlHij ei ⊗ ej ⊗ ek ⊗ el

Second Piola-Kirschoff tensor

Sf = ∂W

∂E = λeQH ◦Ef

Elasticity tensor

Tf = ∂Sf
∂Ef

= λeQ
(
Q + 1

2Q⊗Q
)

Projection on the euclidian basis

S = ΛSfΛT and T = �Tf�
T

A.1.2 Fung material law

The Fung law is a generalisation of the Guccione law.

H =


bff bsf bnf

bfs bss bns

bfn bfs bnn


W = λ

2
(
eQ − 1

)
and Q = eT (H ◦Ef ◦Ef ) e (A.3)

The derivation of the strain energy is performed with an automatic differentiation tool,
described in Appendic A.2.

A.1.3 Mooney-Rivlin material law

The hyperelastic Mooney–Rivlin model is a special case of the generalized Rivlin model,
it has a polynomial form.
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Strain energy function

W = c1 (I1 − 3) + c2 (I2 − 3) (A.4)

Second Piola-Kirschoff tensor

S = 2 (c1 + c2I1) I− 2c2C (A.5)

The elasticity tensor is null since ∂I1
∂C = I.

A.2 Automatic differentiation

SymPy is a Python library for symbolic mathematics. We implement the Fung constitutive
material law with SymPy syntax.

1 b, L, E = MatrixSymbols (...)
2 Ef = L.T * E * L # Projected Green - Lagrange
3

4 # Strain energy
5 Q = (e.T * HadamardProduct (b, Ef , Ef) * e).doit ()[0, 0]
6 W = 0.5 * c * (exp(Q) - 1)
7

8 S = diff(W, E) # SPK tensor
9 C = diff(S, E) # Elasticity tensor

Listing A.1: Python implementation: AutoDiffSOFAMaterial

and generate the corresponding C++ code (run time=5s) that we implement in a Sofa
component inheriting HyperelasticMaterial.

1 /**
2 * Generated ’W’ = Strain energy
3 */
4 Real W = ...
5

6 /**
7 * Generated ’S’ = SPK
8 */
9 Eigen :: Matrix <Real , 3, 3> S; S <<

10 ...
11

12 /**
13 * Generated ’T’ = Tangent modulus
14 */
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15 Eigen :: Matrix <Real , 6, 6> T; T <<
16 ...

Listing A.2: Python implementation: AutoDiffSOFAMaterial
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BMechanical model computations

B.1 Constraint-based implementation of the
Windkessel 3-element model in SOFA

Let’s recall equation (4.34), with Par the arterial pressure and Q the arterial flow.

τṖar = (Rp +Rc) Q + τRcQ̇−Par (B.1)

We implement the Crank-Nicolson method, an implicit finite difference method that is
numerically stable. For the ODE ẏ = f (t, y), the Crank-Nicolson scheme reads

yi+1 − yi

∆t = 1
2
[
f
(
t, yi

)
+ f

(
t+ ∆t, yi+1

)]
(B.2)

We will use a central finite difference scheme for Q̇i and a backward finite difference
scheme for Q̇i+1:

Q̇i = Qi+1 −Qi−1

2∆t and Q̇i+1 = Qi+1 −Qi

∆t

With these definitions, applying the Crank-Nicolson scheme to equation (B.1) leads to(
τ

∆t + 1
2

)
︸ ︷︷ ︸

α

pi+1
ar =

(
Rp +Rc

2 + τRc
∆t

)
︸ ︷︷ ︸

A

Qi+1 +
(
Rp +Rc

2 − τRc
∆t

)
︸ ︷︷ ︸

B

Qi +
(
τ

∆t −
1
2

)
︸ ︷︷ ︸

C

Pi
ar

(B.3)

which gives an approximation of the arterial pressure at the next time step. Eliminating
the next flow Qi+1 will be done by the constraint.
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The haemodynamic model during ejection states:

Qt+∆t = Kar

(
Pt+∆t
ar −Pt+∆t

v

)
(B.4)

= Kar

[
A

α
Qt+∆t + B

α
Qt + C

α
Pt
ar −Pt+∆t

v

]
(B.5)

= Kar

β

[
B

α
Qt + C

α
Pt
ar −Pt+∆t

v

]
(B.6)

with β = (1−KarA/α).

Let’s recall the minimization problem of the constraint law presented in eq 4.35:

Pt+∆t
v = min

λ

[
Wλ+ δfree − δfree

]
(B.7)

Although there is only one scalar equation defining the constraint imposed on each
ventricle, this problem is solved with the Gauss-Seidel algorithm, an iterative method
used to solve systems of linear equations. This implementation design allows to solve
a system of several constraints. λ = Pv is the unknown solution. Here is the solution
update for one iteration of the Gauss-Seidel algorithm, with δtarget replaced by the
hemodynamic constraint law, including the discretized 3-element Windkessel model:

λk+1 = λk − δ
free −∆t ·Qt+∆t

W
(B.8)

= β∆t2

βW + ∆tKar

[
Wλk − δfree + Kar∆t

αβ

(
B ·Qt + C ·Pt

ar

)]
(B.9)

The following is the corresponding implementation in the SurfaceConstraintResolution
component of the CardiacModel SOFA plugin. Note that for isovolumetric phases,
δtarget = 0 and eq B.8 becomes λk+1 = λk − δfree/W .

1 /*
2 * Resolution of the constraint in SOFA for one iteration of the Gauss -

Seidel algorithm
3 */
4

5 switch (phase) {
6

7 case Phase :: FILLING :
8 lambda [line] = ( lambda [line] - delta/W + dt*Kat* next_Pat /W) / (1 + dt

*Kat/W);
9 break;

10

11 case Phase :: ISOCONTRACTION :
12 lambda [line] -= delta / W;
13 break;
14
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15 case Phase :: EJECTION :
16 // Backward Euler
17 // alpha = 1 - Kar * Rc;
18 // A = Kar *(1-dt/tau)*Par + Kar*dt/tau *( Rp+Rc -tau*Rc/dt )*Q;
19 // lambda [line] = ( lambda [line] - delta/W + A/alpha/W) / (1+ Kar/alpha

/W);
20

21 // Crank - Nicholson
22 A = 0.5*( Rp+Rc) + tau*Rc/dt;
23 B = 0.5*( Rp+Rc) - tau*Rc/dt;
24 C_ = tau/dt - 0.5;
25 alpha = tau/dt + 0.5;
26 beta = 1 - Kar * A / alpha;
27 lambda [line] = (W* lambda [line ]/dt - delta/dt + Kar/beta/alpha *(B*Q+C_

*Par)) / (Kar/beta+W/dt);
28

29 break;
30

31 case Phase :: ISORELAXATION :
32 lambda [line] -= delta / W;
33 break;
34 }

Listing B.1: Resolution of the constraint in SOFA for one iteration of the Gauss-Seidel algorithm

B.2 Volume’s derivatives on an open mesh

To compute the volume on an open surface, we consider the closed surface constituted
by the open one and a set of virtual triangles defined on boundary edges and the center
of the valve. All operations related to boundary edges (such as computing the volume
and it’s derivatives) is included in the Python project MeshObject and in the C++ SOFA
component VolumeAlgorithms.

Volume

For each hole n, we introduce a point Cn at the center of the valve.

Cn = 1
Nn

Nn−1∑
k=0

QHn(k)

Vi = 1
6

∣∣∣QTi(0),QTi(1),QTi(2)

∣∣∣
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Vtotal =
∑
TiεZ

Vi +
∑
n

Nn−1∑
k=0

1
6

∣∣∣QHn(k),QHn(k+1),Cn

∣∣∣

Volume derivative

∂V

∂Qi
= 1

3
∑

Tj⊃Qi

A (Tj)

∂V

∂QHn(i)
=1

3
∑

Tj⊃QHn(i)

A (Tj)

+
QHn(i) ×QHn(i+1)

6 +
QHn(i+1) ×Cn

6

+
Cn ×QHn(i−1)

6 +
QHn(i−1) ×QHn(i)

6

B.3 Rotation of base vectors

Fig. B.1.: Cardiac fiber structure. The direction V1 = f is the fiber direction ; V2 = s is the sheet
direction ; V3 = n is the normal direction. Source: [LeGrice et al., 1995].

Let’s note E = {ei}i∈{1,2,3} the global base vectors in the Euclidian space. In the initial
configuration, the material intrinsic base vectors is Ef = {fi}i∈{f,s,n}, following notations
from Fig. B.1 with V1 = f , V2 = s and V3 = n.
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The rotation matrix Λ expresses Ef components in E , stored as the column vectors matrix:

Λ = [ff , fs, fn] =


ff0 fs0 fn0

ff1 fs1 fn1

ff2 fs2 fn2

 (B.10)

so that fk = Λikei.

We can ensure that the new basis Ef is orthonormal:

fk · fl = [Λikei] · [Λjlej ] = ΛikΛil = δkl

Now consider two vectors v ∈ E and v′ ∈ Ef so that v′ = Λv. The operator T maps v to
Tv and in the rotated material frame, T′ : v′ 7→ T′v′. The following defines the change
of basis for second order tensors:

Tv = ΛTT′Λv ≡ T′ = Λ T ΛT

Similarly, for fourth order tensors, the change of basis is defined by:

Tijkl = �ijmnTmnop�
T
klop with �ijmn = ΛimΛjn

B.4 Notations and tensor operations

B.4.1 Second order tensor

Let A be a symmetric 2nd order tensor and Ã its Voigt notation. We have the following
notations:

A =


A11 A12 A13

A21 A22 A23

A31 A32 A33

 = Aij ei ⊗ ej and Ã =



A11

A22

A33

A23

A13

A12


(B.11)

B.4 Notations and tensor operations 127



B.4.2 Forth order tensor

Let A be a symmetric 4th order tensor.

A =




A1111 A1112 A1113

A1121 A1122 A1123

A1131 A1132 A1133



A1211 A1212 A1213

A1221 A1222 A1223

A1231 A1232 A1233



A1311 A1312 A1313

A1321 A1322 A1323

A1331 A1332 A1333



A2111 A2112 A2113

A2121 A2122 A2123

A2131 A2132 A2133



A2211 A2212 A2213

A2221 A2222 A2223

A2231 A2232 A2233



A2311 A2312 A2313

A2321 A2322 A2323

A2331 A2332 A2333



A3111 A3112 A3113

A3121 A3122 A3123

A3131 A3132 A3133



A3211 A3212 A3213

A3221 A3222 A3223

A3231 A3232 A3233



A3311 A3312 A3313

A3321 A3322 A3323

A3331 A3332 A3333




= Aijkl ei ⊗ ej ⊗ ek ⊗ el

Fourth order rotation tensor in Voigt notation:

�̃ =



Λ2
00 Λ2

01 Λ2
02 2Λ01Λ02 2Λ00Λ02 2Λ00Λ01

Λ2
10 Λ2

11 Λ2
12 2Λ11Λ12 2Λ10Λ12 2Λ10Λ11

Λ2
20 Λ2

21 Λ2
22 2Λ21Λ22 2Λ20Λ22 2Λ20Λ21

Λ10Λ20 Λ11Λ21 Λ12Λ22 Λ11Λ22 + Λ12Λ21 Λ10Λ22 + Λ12Λ20 Λ10Λ21 + Λ11Λ20

Λ00Λ20 Λ01Λ21 Λ02Λ22 Λ01Λ22 + Λ02Λ21 Λ00Λ22 + Λ02Λ20 Λ00Λ21 + Λ01Λ20

Λ00Λ10 Λ01Λ11 Λ02Λ12 Λ01Λ12 + Λ02Λ11 Λ00Λ12 + Λ02Λ10 Λ00Λ11 + Λ01Λ10


(B.12)

B.4.3 Tensor operations

See [Ghosh et al., 2013] for a review on fourth order tensor operations.

⊗ defines the tensor product and ◦ defines the Hadamard product. A is a symmetric
second order tensor. Here are some common operations on tensors:

• Major symmetry: Aijkl = Ajilk

• Minor symmetry: Aijkl = Ajikl = Aijlk

• Transpose:
(
AT
)
ijkl

= Aklij
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• Tensor derivative:
(
∂A
∂B

)
ijkl

= ∂Aij

∂Bkl

• Dyadic product (rank 1): (u⊗ v)ij = uivj

• Dyadic product (rank 2): (A⊗B)ijkl = AijBkl

Additionally, the following relations are defined in [Brunet, 2020]:(
∂ tr(E)
∂E

)
= I

(
∂E
∂E

)
= I ⊗ I sym.= I⊗̄I(

∂E−1

∂E

)
= −E−1 ⊗E−1 sym.= −E−1⊗̄E−1

(
∂J

∂E

)
= 2

(
∂J

∂C

)
= 2

(1
2JC−1

)
= JC−1

(
∂f(E)T(E)

∂E

)
= T(E)⊗ ∂f(E)

∂E + f(E)∂T(E)
∂E
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