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Abstract

My thesis focuses on the asymptotic analysis of integro-differential models quantifying
the influence of certain features of sexual reproduction on the eco-evolutionary dynamics of
spatially distributed species characterized by quantitative traits with complex genetic architec-
ture. It extends the analytical toolkit to study the dynamics of singular distributions arising
in a regime where diversity introduced by reproduction is small. In the first chapter, I use
separation of times scales techniques and completely characterize the equilibria of a population
living in a discrete heterogeneous environment connected by migration, whose local adaptation
is quantified by the action of selection on a quantitative trait resulting from a large number of
small diallelic effects. In the second chapter, I explicit the biological framework underlying the
previous chapter thanks to individual-based simulations with an explicit genetic description. In
a third chapter, I propose a new composite model allowing to include the effect of a major gene
onto the trait characterizing local adaptation in the previous context, whose analysis sheds
some lights on an undocumented evolutionary phenomenon. In the fourth chapter, I present
an explicit long-time approximation of the solution of a reaction-diffusion equation modelling
the phenomenon of evolution of dispersion along range expansions, where the diffusion coef-
ficient is the trait under evolution. In the fifth chapter, I analyse a new integro-differential
model which describes the dynamics of quantitative alleles under general allelic interaction
and selection function. In an annex, I present my contribution to a modelling project of the
COVID-19 epidemic in Mayotte.

Keywords – Integro-differential models, eco-evolutionary dynamics, sexual reproduction,
spatial structure, quantitative traits, asymptotic analysis.

Résumé

Ma thèse porte sur l’étude asymptotique de modèles intégro-différentiels quantifiant
l’influence de certains aspects de la reproduction sexuée sur la dynamique éco-évolutive
d’espèces spatialement distribuées caractérisées par des traits quantitatifs à architecture géné-
tique complexe. Elle étend la gamme d’outils analytiques pour l’étude de la dynamique
de distributions singulières dans un régime de faible variance introduite par reproduction.
Dans le chapitre 1, j’utilise des techniques de séparation d’échelles de temps et caractérise
complètement les états stationnaires du cas d’une population vivant dans un environnement
hétérogène discret, connecté par migration, et dont l’adaptation locale est quantifiée par l’effet
de la sélection sur un trait résultant de nombreuses contributions dialléliques à petits effets.
Dans le chapitre 2, j’explicite le cadre biologique sous-tendant le chapitre précédent grâce
à des simulations individus-centrées à description génétique explicite. Dans le chapitre 3,
je propose un nouveau modèle composite permettant d’inclure l’effet d’un gène fort sur le
trait polygénique d’adaptation locale précédent, dont l’analyse met en lumière un phénomène
biologique inédit. Dans le chapitre 4, je présente une approximation explicite en temps long
de la solution d’une équation de réaction-diffusion modélisant le phénomène d’évolution de la
dispersion lors d’invasions spatiales, où le coefficient de diffusion est le trait sous évolution.
Dans le chapitre 5, j’analyse un nouveau modèle intégro-différentiel qui décrit la dynamique
d’allèles quantitatifs sous des formes générales d’interaction allélique et de sélection. Dans une
annexe, je présente ma contribution à un projet de modélisation de l’épidemie du COVID-19
à Mayotte.

Mots clés – Modèles intégro-différentiels, dynamiques éco-évolutives, reproduction sexuée,
structure spatiale, traits quantitatifs, analyse asymptotique.
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Résumé substantiel en francais

Étudier conjointement les dynamiques écologiques et évolutives d’espèces spatialement
distributées est particulièrement crucial aujourd’hui, alors que le dérèglement climatique frag-
mente les écosystèmes, perturbe les transitions entre habitats et précipite le déclin d’espèces qui
ne s’adaptent pas assez rapidement. Ces conditions sont également propices aux phénomènes
d’évolution de la résistance (voir Resistance project 2018), qui commencent déjà à peser sur les
systèmes alimentaire (résistance aux pesticides) et de santé (résistance aux antibiotiques/vac-
cins) de nos sociétés (cela revêt un sens particulier lors de la rédaction d’une thèse de doctorat
en 2022). De plus, la mondialisation de notre réseau de transport a redéfini la répartition
spatiale des espèces à un rythme sans précédent, ce qui résulte dans l’introduction massive
d’espèces dans de nouveaux territoires et dans des invasions où l’adaption est primordiale.
Cela a des conséquences sérieuses pour la conservation d’écosystèmes et d’espèces natives (Liu
et al. 2020), dont la préservation soustend la résilience de ces mêmes systèmes alimentaire et
de santé.

Prédir comment ces phénomènes complexes mêlant écologie et évolution se déroulent est
ardu, car ils font intervenir a minima plusieurs forces dont les actions s’entrecroisent: la
génération de diversité par reproduction, la variation de pressions locales de sélection na-
turelle, la distribution hétérogène de ressources à travers l’espace, et la capacité à se mouvoir
par dispersion/migration. Y arriver requiert à la fois de quantifier l’importance relative de ces
forces sur la dynamique évolutive des espèces et de rationaliser leur interaction. Les modèles
mathématiques sont des outils appropriés dans cette optique. Cependant, ils deviennent parti-
culièrement intriqués lorsqu’ils considèrent l’interconnexion des changements démographiques
locaux et de l’évolution de traits distribués spatialement dans la population. Cela est exacerbé
lorsqu’on considère des traits quantitatifs qui proviennent d’une structure génétique complexe
et transmis par reproduction sexuée, qui fait intervenir de façon inhérente des processus non-
linéaires (deux parents sont nécessaires) et non-locaux (le trait d’un descendant peut être
distant de ceux de ses deux parents).

Tout le long de ma thèse, j’ai eu pour but de construire et d’analyser des modèles intégro-
différentiels afin de quantifier l’influence de la reproduction sexuée sur les dynamiques spatiales
éco-évolutives qui façonnent l’adaptation d’espèces. En particulier, j’ai développé des outils
pour étudier ces dynamiques lorsque l’adaptation des individus dépend de traits quantitatifs
résultant d’architectures génétiques intriquées.

Dans un premier chapitre introductif, j’introduis les processus évolutifs majeurs qui dictent
l’adaptation d’espèces, particulièrement en rapport avec l’espace et le mode de reproduction:
la sélection naturelle, la dérive génétique (élément stochastique particulièrement important
dans les dynamiques de petites populations), le flux de gènes dans l’espace du aux mouvements
migratoires ou dispersifs des individus et la génération de nouveaux traits par reproduction
(par exemple, via mutations pour la reproduction asexuée/clonale, mais également la recom-
binaison et ségrégation allélique pour la reproduction sexuée). Puis, je présente l’état de l’art
constitué d’études basées sur des modèles intégro-différentiels qui décrivent les dynamiques
éco-évolutives de grandes populations via leur distributions en traits. D’abord, je discute
du cas d’espèces se reproduisant asexuellement, ou clonalement (tout individu descend d’un
seul parent), où les opérateurs de reproduction les plus fréquents sont linéaires et modélisent
l’occurrence de mutations, soit non-localement via une convolution avec un noyau de mutation,
soit localement via un opérateur laplacien de diffusion. Je décris particulièrement les travaux
qui développent la méthodologie asymptotique de petite variance de mutation introduite par
[Diekmann, Jabin, et al. 2005], qui permet de déduire des informations quantitatives sur

vii



les distributions en trait nε lorsque celles-ci se concentrent vers des mesures n, comme des
sommes de masses de Dirac, sous l’action de la sélection naturelle et de mutations de petite
variance

√
ε (voir Perthame and Barles 2008; Barles, Mirrahimi, and Perthame 2009; Lorz,

Mirrahimi, and Perthame 2011 par exemple). Pour ce faire, cette méthodologie introduit un
ansatz WKB suivant une transformation logarithmique d’Hopf-Cole: uε := ε log (εnε), dont
l’objet résultant uε converge (au moins formellement) vers une limite u plus régulière que la
mesure limite n. Dans ces études avec des populations asexuées, cette limite u est souvent
une solution de viscosité d’une équation de Hamilton-Jacoi sous contrainte (la contrainte
étant liée à la taille de population qui doit rester bornée). Je distingue les études avec un
espace homogène, de celles considérant un espace hétérogène discret (par exemple Mirrahimi
2017) et enfin un espace continu. Dans cette dernière catégorie est utilisée une méthodologie
similaire (introduite antérieurement par Evans and Souganidis 1989) pour dériver analytique-
ment la vitesse de fronts de propagation solution d’équations de réaction-diffusion non-locales
grâce aux niveaux de solutions d’équations d’Hamilton-Jacobi auxiliaires (voir Bouin and
Mirrahimi 2015 par exemple). Une attention particulière est portée sur les études portant sur
le phénomène de tri spatial résultant de l’évolution d’un trait de dispersion, modélisée par
le fait que le coefficent de diffusion des équations de réaction-diffusion correspondantes est le
trait sous évolution, ce qui produit des fronts accélérants (voir Bouin, Henderson, and Ryzhik
2017a; Berestycki, Mouhot, and Raoul n.d.; Calvez, Henderson, et al. 2022). Dans un deux-
ième temps, je me tourne vers les modèles intégro-différentiels avec des populations sexuées
caractérisées par un trait quantitatif, où l’effet stochastique de la ségrégation des chromosomes
est souvent traduit par le modèle infinitésimal de Fisher (Fisher 1919). Celui-ci, supposant que
le trait résulte de nombreuses contributions additives de petits effets dialléliques, caractérise
la déviation du trait d’un individu par rapport à la moyenne des traits de ses parents via une
gaussienne à variance constante, appelée la variance de ségrégation (le cadre de validité de
ce modèle est précisé dans Barton, Etheridge, and Véber 2017). Plusieurs études emploient
les propriétés de contraction que possède l’opérateur non-local et non-linéaire qui découle du
modèle infinitésimal, afin de décrire analytiquement les trajectoires évolutives de populations
dans un environnement homogène (Calvez, Garnier, and Patout 2019; Patout 2020; Raoul
2021). Certaines d’entre elles adaptent la méthodologie de petite variance développée pour
la reproduction asexuée, avec une différence notable: la variance dans leur cas est contrainte
par la variance de ségrégation supposée petite ε2, ce qui à son tour contraint formellement la
distribution en trait nε à être proche d’une gaussienne (ou de façon équivalente, à ce que le
terme principal de l’ansatz uε = ε2 log(εnε) soit quadratique). L’objectif principal de l’analyse
perturbative présentée dans [Calvez, Garnier, and Patout 2019] est donc de caractériser le
correcteur à ce profil gaussien, solution d’un problème faisant intervenir un terme de différence
fini qui tranche avec la structure Hamilton-Jacobi asexuée. Il n’existe pas d’études similaires
incluant une dimension spatiale hétérogène discrète et peu avec un espace continu. Mes projets
de thèse avaient donc pour but de combler ce vide relatif.

Dans un deuxième chapitre, je présente un travail publié seul en 2022 dans "Journal
of Mathematical Biology" (Dekens 2022). Dans celui-ci, j’étudie l’adaptation d’une espèce
sexuée à un environnement hétérogène constitué de deux habitats symétriques caractérisés
par des traits optimaux différents et reliés par migration, question classique de génétique
quantitative. L’article de référence [Ronce and Kirkpatrick 2001] utilise une hypothèse gaussi-
enne à variance fixe ad-hoc sur les distributions locales en trait afin de clore le système
ODE décrivant la dynamique macroscopique des moments de ces distributions. Les auteures
intuitent numériquement l’existence d’équilibres asymétriques bistables non triviaux, selon
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lesquels la population occupe principalement un des habitats qui acte comme une source
pour les autres. Dans mon travail, je résous ces deux limitations en utilisant la méthodologie
de petite variance de ségrégation décrite précédemment pour compléter l’analyse des états
stationnaires du système intégro-différentiel qui fait intervenir l’opérateur de reproduction du
modèle infinitésimal. Pour ce faire, j’apporte des éléments de justifications à l’approximation
gaussienne utilisée dans [Ronce and Kirkpatrick 2001], et je combine ensuite une analyse lente-
rapide avec une propriété de polynômes symétriques (reflétant la symétrie de l’environnement)
pour réduire la complexité algébrique du système. En particulier, je décris exhaustivement les
équilibres asymétriques bistables mis en valeur dans [Ronce and Kirkpatrick 2001].

Le chapitre suivant présente un court travail numérique qui se base sur des simulations
individus-centrées, avec description explicite des informations génétiques. Il a pour but de
préciser le cadre biologique sous-tendant l’étude précédente, notamment d’examiner à quoi
correspondent les hypothèses sous-jacentes du modèle infinitésimal tel que je l’ai utilisé dans
un environnement hétérogène, à savoir que la variance de ségrégation peut être considérée
comme constante par rapport au temps, à l’espace et aux familles, tout en étant petite par
rapport aux autres paramètres. En comparant les trajectoires numériques du modèle intégro-
différentiel déterministe avec celles des simulations individus-centrées stochastique et grâce
à une étude systématique des variances de ségrégations, je montre que ces hypothèses sont
valides lorsque l’intervalle des traits s’étend bien au-delà des traits optimaux locaux, soit que
la sélection est stabilisante.

Le quatrième chapitre décrit un projet que j’ai initié en collaboration avec Sarah Otto
(UBC, Vancouver) lors de ma dernière longue visite académique dans son équipe et dont les
résultats sont actuellement sous révision post-soumission (Dekens, Otto, and Calvez 2021).
Les hétérogénéités spatiales sont connues pour promouvoir un panorama de réponses géné-
tiques, combinant des gènes à effets majeurs à une pléiade de gènes à petits effets (Orr 2001;
Walsh and Lynch 2018). Cependant, les modèles de génétiques de populations sont souvent
limités dans leur possibilité analytique et restreints aux environnements homogènes à cause
de la grande complexité de l’espace des paramètres. Ma motivation originelle était de prendre
une nouvelle approche et de construire un modèle composite liant génétique quantitative
et génétique des populations qui est adapté à des développements théoriques. Le problème
de trop grande complexité est contourné en considérant une composante quantitative qui
modélise un arrière-plan génétique d’une multitude de petits effets, et qui est héritée selon
le modèle infinitésimal. Le trait sous sélection est somme de cette composante quantitative
et d’un effet fort discret provenant de deux allèles A/a qui ségrègent au même gène. Il en
résulte un nouvel opérateur de reproduction, dont l’effet de contrainte asymptotique dans le
régime de petite variance de ségrégation nécessite des résultats d’analyse convexe nouveaux
pour être identifié. Ceux-ci me permettent de prédire un phénomène contre-intuitif et non
documenté de perte d’un des allèles majeurs sous forte sélection, confirmé par simulations
individus-centrées. Ce travail inclut également une description schématique de la méthode en
vue d’aider à l’appliquer à des modèles plus complexes de génétiques des populations.

Le cinquième chapitre présente un travail en collaboration avec Florian Lavigne publié en
2021 dans "SIAM Journal of Applied Mathematics" (Dekens and Lavigne 2021). Il s’intéresse
au phénomène d’évolution des capacités de dispersion d’individus lors d’invasions spatiales,
comme celle des crapauds-buffles en Australie (Phillips, Brown, Webb, et al. 2006), dont le
front est composé d’individus avec des pattes plus longues et plus endurantes (tri spatial).
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La dynamique de l’invasion spatiale structurée en trait est modélisée par une équation de
réaction-diffusion dont le coefficient de diffusion est le trait sous évolution. Plusieurs études
pour populations asexuées dérivent analytiquement le taux d’accélération de fronts solutions
∝ t3/2, où la variable t est le temps (Bouin, Henderson, and Ryzhik 2017a; Berestycki, Mouhot,
and Raoul n.d.; Calvez, Henderson, et al. 2022), en utilisant l’opérateur diffusif de mutations.
En remplaçant ce dernier par l’opérateur de reproduction sexuée du modèle infinitésimal, le
taux d’accélération a numériquement été montré être inférieur pour les populations sexuées
: (∝ t

5
4 - Calvez, Crevat, et al. 2020). Dans le travail avec Florian Lavigne, nous obtenons

une approximation explicite de la distribution en trait spatiale en temps long, qui résout un
problème limite dérivé formellement. Notamment, le trait moyen est explicitement décrit, à
l’arrière et à l’avant du front, et l’approximation (numériquement confirmée) montre que la
distribution à l’arrière du front est stationnaire et localement gaussienne, à variance contrainte
par la variance de ségrégation, ce qui est qualitativement très différent du cas asexué.

Le sixième chapitre présente un travail en révision post-soumission effectué avec Sepideh
Mirrahimi (Dekens and Mirrahimi 2021). Si la régulation d’expression génétique est désormais
acceptée comme un mécanisme majeur des dynamiques d’adaptation (Romero, Ruvinsky, and
Gilad 2012; Lenormand, Fyon, et al. 2020), les modèles de continuum d’allèles, qui provi-
ennent de [Kimura 1965], sont restreints par des hypothèses sur la nature de la sélection et
sur les interactions entre gènes qui ne sont pas nécessairement adaptées à étudier l’influence
de la régulation d’expression génétique. Pour passer outre ces limitations, nous introduisons
un nouveau modèle intégro-différentiel qui décrit les dynamiques éco-évolutives d’une espèce
sexuée soumise à la compétition pour les ressources et la sélection naturelle dans un espace
homogène. Il fait intervenir un opérateur de reproduction sexuée non-linéaire et non-local
différent du modèle infinitésimal, car il décrit la transmission d’allèles quantitatifs à deux
gènes (x, y) selon les lois Mendéliennes. L’interaction entre ces allèles peut être très générale,
et est soumise à l’effet létal d’une fonction de sélection naturelle également générale. Dans un
régime où la variance est faible au sein de la population, je montre la convergence forte (le long
de sous-suites) de l’ansatz WKB uε = ε log(εnε) (nε est la distribution des allèles) vers une
limite u qui décorrèle les allèles x et y. Bien que les équations limites présentent des difficultés
analytiques nouvelles en terme de régularité, leur étude permet d’illustrer quantitativement la
richesse du modèle en terme de diversité des trajectoires qui peuvent être obtenues et décrites,
selon la fonction de sélection et l’interaction entre gènes choisies.

Enfin, dans un chapitre annexe, je présente ma contribution (supervisée par Vincent
Calvez) à un projet de modélisation de l’épidémie du COVID-19 à Mayotte, commencé en
Mai 2020 en collaboration avec l’ARS de Mayotte, le Centre Universitaire de Mayotte et la
plate-forme MODCOV19. En particulier, je décris le modèle épidémiologique structuré en
âge sur lequel j’ai travaillé. Celui-ci avait pour but d’évaluer l’influence de la démographie
particulière de Mayotte (plus de la moitié de la populations a moins de 20 ans) et son im-
plémentation a nécessité une exploration bibliographique fouillée et intense. Les résultats
de simulations numériques concernant la réouverture des écoles en mai 2020 sont également
montrés.

x
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Chapter 1
Introduction

Studying the joint dynamics of the ecology and evolution of spatially distributed species is
especially crucial now, as climate deregulation fragments ecosystems and disrupts the dynamics
which connect habitats, precipitating the decline of species that cannot adapt fast enough.
These dynamics can also harbour the potentiality for the evolution of resistance (see Resistance
project 2018), which already heavily pressurizes our societies’ food (e.g. pesticides) and health
(e.g. pathogens/viruses) systems (the latter conveys a particular resonance when writing a
PhD thesis in 2022). Moreover, as a result of our globalized transport networks, species
ranges have also been redefined at a pace never seen before, resulting in mass introduction of
species to new territories and subsequent invasions where adaptation is key. This has serious
consequences for the conservation of native species and ecosystems (Liu et al. 2020), which
underlies the resilience of the same health and food systems.

Predicting how these complex phenomena unfold is challenging, as they involve at least sev-
eral intertwined forces: the generation of diversity by reproduction, varying pressures of natural
selection, heterogeneous distribution of resources across space, and the capacity for dispersal
and migration. Doing so requires both quantifying the relative importance of these components
on the evolutionary dynamics of species and rationalizing how they interact. Mathematical
models are thus powerful tools for these purposes. However, they become particularly intri-
cate when considering the interplay between local demographic changes and the evolution of
traits distributed in the population. This is exacerbated when considering the transmission of
quantitative traits with complex genetic architectures according to sexual reproduction, which
inherently involves non-linear and non-local processes.

Throughout my PhD, I aimed to build and analyse integro-differential models to quan-
tify the influence of certain features of sexual reproduction on the spatial eco-evolutionary
dynamics shaping species adaptation. In particular, I developed tools for studying such dy-
namics when adaptation is characterized by quantitative traits resulting from complex genetic
architectures.
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1.1 Biological motivations

1.1.1 A brief overview of evolutionary theory and
models

If one has the privilege to take a quick naturalist look around, it is often sufficient to be
astonished at the sheer diversity of patterns that constitute the surrounding ecosystems. If
ecology (the study of these ecosystems and their constituents) explains how this wide array
of living organizations interact in the present, evolutionary theory completes it by describing
the interplay of the processes that shape(d) it.

The most iconic of these processes (but not the only participating one) is natural selection,
first theorized by [Darwin and Wallace 1858] following their separate peregrinations in South
America and South-East Asia, and more extensively in the famous seminal book "On the Origin
of Species" (Darwin, 1859). Natural selection describes the following: in a given environment
and in a given population, individuals which have certain traits (for example, leaf shape,
number of teeth or flowering time) survive better and produce on average more offsprings
(which inherit these traits) than individuals with other traits. According to this view, natural
selection requires some diversity for it to act upon and favour certain traits under given
environmental pressures. Upon the biased transmission of these traits by descent, patterns
emerge at the population trait distribution level as signs of the adaptation of species to their
environment. The conceptual power of natural selection resides thus in its ability to articulate
these two seemingly opposing concepts of variation and adaptation.

However, if it highlights the interaction between two constitutive elements (environment
and varying traits in a population), Darwin and Wallace’s theory lacked the exact description
of the support of trait inheritance across generations which closes the loop (it is even more
remarkable that they elaborated this theory without). The rediscovery of Mendel’s work
on peas’ hybridization in the turn of the 20th century brought upon the notion of genes or
loci, which can be seen as the discrete microscopic bricks of heritable information underlying
the expression of macroscopic traits at the individual level. Within a population, different
versions of each gene segregate, called alleles, which can translate in different traits. Over
time, evolutionary processes change the frequencies of alleles in a population and therefore its
trait distribution.

To quantify these changes and rationalize the influence of evolutionary processes, math-
ematical models have flourished, first underlying the Evolutionary Synthesis in the first half
of the 20th century, under the impulsion of several protagonists: the most well-known are
Fisher, Wright and Haldane. Their separate contributions provided a unified view of evo-
lution, resolving the paradox of discrete Mendelian alleles resulting in apparently gradually
changing continuous trait under (in particular) natural selection, and founded the framework
of population genetics. Population genetic models aim at predicting how changes in allelic
frequencies within a population occur through time under various contexts. Because explicitly
modelling the joint dynamics of a large number of alleles is mathematically challenging due to
the high complexity in variables that arises, population genetic models tend to consider the
dynamics of adaption through a few major effect alleles (like eye’s color - see Bürger 2020 for a
review on multi-loci theory). One recurring question is how variation is maintained in view of
genetic drift in finite populations. The latter designs the chance component that resides in the
dynamics of alleles, even neutral ones w.r.t natural selection, which inevitably leads to allele
loss/fixation events in the whole population, and therefore the reduction of genetic variation
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(especially in small populations, where individuals carrying rare alleles might die by chance
before reproducing).

On the other end of the spectrum, quantitative genetic models aim at modelling directly
the dynamics of continuous quantitative traits within a population (like leaf shape, fur pat-
terns or flowering time), resulting from the combined effects of a large number of small effects
genes (Fisher 1919). Their study has been of sustained interest for animal and plant breeding
companies. Since such polygenic traits often have complex genetic architectures, which are
nowadays increasingly identified by Genome Wide Associations Studies (GWAS), the precise
description of their inheritance is often hidden in quantitative genetic models, which rather
focus on the focal trait’s transmission. Moreover, because the natural mathematical objects of
these models are trait distributions, whose temporal dynamics are described by Partial Differ-
ential Equations (PDE), such models often assume ad-hoc hypotheses on the trait distribution
in order to reduce the analysis to a moment-based approach describing the temporal dynamics
of macroscopic variables thanks to Ordinary Differential Equations (ODE) (see Burger 2000
for such methods).

1.1.2 The influence of spatial structure in evolution-
ary theory

(For a more detailed review, I recommend the interested reader to consult the introduction of
Débarre 2010). Spatial heterogeneities and structures are ubiquitous, and thus most species
do not live in homogeneous spaces, meaning that individuals live, mate and die depending on
local environmental and demographic pressures. Therefore, models based on assumptions of
well-mixed populations under homogeneous conditions, which cannot capture the local effects
of spatial heterogeneities, might not reflect accurately the dynamics of spatially distributed
species. In the scope of my PhD, I am interested in the influence of two particular types of
spatial structure on species evolution: discrete heterogeneous (or patchy) environments and
continuous environments.

Discrete heterogeneous (patchy) environments. According to this modelling of
space, the considered environments are constituted by several patches in which local condi-
tions are homogeneous, but potentially different between patches. A reasonable representation
would be small islands separated by large stretches of sea. If they are not connected by migra-
tion, the local subpopulations are in reproductive isolation and the local adaptation to their
patch can be described by models assuming well-mixed populations. However, as soon as
migration connects the patches, the transfer of population that ensues between patches can
translate on the genetic viewpoint into gene flow, as different alleles that have potentially
been favored under the local conditions of each patch reach new habitats. Whether or not
this disrupts the local adaptation of subpopulations is a central question in models quantifying
migration load (as reviewed in Ronce 2007), and is linked to the notion of the maintenance
or loss of polymorphism (at the gene of trait level) in face of gene swamping (describing the
undermining of local selection due to strong gene flow). At the species level, it relates to
the maintenance of its range through the qualifications of generalist species, (a species which
thrives under a wide range of conditions) or specialist species (a species which thrives under a
restricted range of conditions). At the clade’s level (above the species level), this can also relate
to the notions of hybridization (offsprings that are produced due to crosses between species)
or speciation (the separation of a species into two distinct species, classified as allopatric in
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the case of separate patches).
Quantifying the conditions under which these patterns of adaptation to a heterogeneous

environment occur, a minima under migration and natural selection, has been explored by
population genetics since the early years of the field. As reviewed in [Felsenstein 1976], the first
population genetic models with spatial structure are due to Wright (Wright 1931) and Haldane
(Haldane 1932), which introduce separately a one-locus continent-island model (a framework
which considers that one patch’s population is much larger than the other’s and is therefore
not influenced by the latter). Two alleles segregate at the focal locus and one is favored in the
island, the other deleterious and the aim of the studies is to describe the maintenance of the
favoured allele in the island. These studies paved the way to others accounting for more loci
[Bürger and Akerman 2011] (two-locus continent-island model), [Akerman and Bürger 2014]
(two-locus two-patch model), or more alleles per locus [Nagylaki and Lou 2001], [Nagylaki and
Lou 2007] (one multi-allelic locus), [Bürger 2009a] and [Bürger 2009b]. Because the systems
become quickly too involved to derive conditions in the most general case, the previous studies
often use perturbative theory to analyse the equilibria of the focal system in various asymptotic
regimes (weak/strong local selection, low/high migration - see also Karlin and McGregor 1972
for the methods). However, as the genetic architecture of traits related to local adaptation
might not be restricted to major effect genes and can be polygenic (Orr 2001), similar questions
have also been tackled by quantitative genetics models (Ronce and Kirkpatrick 2001; Hendry,
Day, and Taylor 2001; Débarre, Ronce, and Gandon 2013; Débarre and Gandon 2011; Débarre,
Yeaman, and Guillaume 2015). They highlight in particular the need for modelling jointly the
trait and demographic dynamics, as their interplay can greatly influence the outcomes of the
system in case of great discrepancy between local population sizes (Ronce and Kirkpatrick
2001). This emphasizes in turn the need to understand the underlying assumptions of how
regulation and natural selection are modelled, and their consequences, as these matter in a
context of discrete spatial structure (Débarre and Gandon 2011).

Continuous environments When the space available to a species is considered very
large and with a low granularity, the species can be considered as evolving in a continuous
environment, using the framework of reaction-diffusion equations. The first models study
the dynamics of invasion by a homogeneously beneficial allele (Kolmogorov, Petrovsky, and
Piskunov 1937, Fisher 1937), and quantify the speed of the invasion. Later, the adaptation of
species to a cline (defined as "a gradient of continuous variation though space for a genetic or
phenotypic character" in Donoghue et al. 2014, IV.3) focused modelling efforts from population
genetics to understand the interplay between gene flow and local adaptation in a continuous
environment separated in two (continuous) habitats (Haldane 1948, Fisher 1950), Slatkin 1973,
Nagylaki 1975, Nagylaki 1978, see Débarre and Gandon 2010 for a recent study). Later, the
adaptation of species range to a linear trait cline raised interest: a landmark paper [Kirkpatrick
and Barton 1997] proposed a moment-based model that tracks both the demographic and
trait changes through time and space. Its analysis highlights the possibility for limited range
adaptation to a linear cline, an equilibrium that differs from the traditional dichotomy of
invasion/extinction.

Species expansion in continuous environment has sustained an increasing interest, as they
can be subsequent for example to the introduction of invasive species into new territories, which
can threaten the conservation of native species (Liu et al. 2020). In the last two decades, field
studies have highlighted a phenomenon of spatial sorting of traits related to dispersal abilities,
where individuals at the front of an expansion present dispersal trait advantages: wingspan or
strength in butterflies (Saastamoinen 2008), crickets (Thomas et al. 2001), birds (Berthouly-
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Salazar et al. 2012); seed and stems characteristics in plants (Monty and Mahy 2010; Williams,
Kendall, and Levine 2016); legs stamina and length in the infamous cane-toads invasion in
Australia since the 1930’s (Phillips, Brown, Webb, et al. 2006, Shine, Alford, et al. 2021).
Spatial sorting of dispersal trait poses new challenge for the conservation of native ecosystems,
as evidences have been mounting that it can lead to the acceleration of the invasion front
(Phillips, Brown, Webb, et al. 2006; Shine, Alford, et al. 2021). This sparked a modelling
effort for the evolution of dispersal in continuous environment, which often involves to study
the spatial evolution of polygenic morphological traits (Ronce 2007). (Note that the evolution
of dispersal in patchy environment has also been a subject of population genetic studies since
the 1970’s with for example [Balkau and Feldman 1973], [Hamilton and May 1977], [Hastings
1983], and of invasion analysis in bounded continuous environment [Dockery et al. 1998]).

1.1.3 Mode of reproduction: sexual vs. asexual
As evolution relies on modification by descent when genes are passed across generations, how
these genes are transmitted, and subsequently the traits that they encode, is an essential
component of evolutionary dynamics. Indeed, part of the variation, which is required for
natural selection to act upon, is generated during the inheritance process. Throughout my
PhD, I have been exploring the influence on eco-evolutionary dynamics of some features specific
to sexual reproduction.

Brief overview of asexual and sexual reproduction In the history of life, asexual
reproduction or clonal reproduction, according to which a single parent transmit all its genetic
information to its offspring, was the first process of genetic transmission. No variation would
be generated, if it was not for the alterations occurring during the replication of genetic
information, the mutations. This mode of reproduction is still quite widespread in prokaryotes
(single-celled organism that does not have a nucleus), for example in bacteria, and can be
extended to include virus replication.

However, there exists a different mode of reproduction that fungi, plant and animal species
(including humans), which constitute the "visible part" of our ecosystems, employ. Indeed,
many of the latter use, at least facultatively, sexual reproduction, which is defined broadly
as the "production of offspring that are a mixture between two different parental genotypes"
(Donoghue et al. 2014, IV, 4 - note that this includes processes affecting prokaryotes, like
horizontal-gene transfer between bacteria, which is, very roughly, a physical exchange of DNA
from one individual to another). Sex is ubiquitous and evidences indicate that it has in fact
evolved multiple times in parallel until now (as suggested by the different sex chromosomes
Z/W in birds, compared to X/Y in mammals), but keeping similar features between these
parallel apparitions, that are strikingly different from asexual reproduction. Despite these
observations, the evolution of sex has long been (and continue being) a mystery for evolutionary
biologists (Otto 2009). Indeed, engaging in the sexual reproduction act is often more costly,
and each parent transmits only half of its genetic information to each offspring (versus all of it
under asexual reproduction), which has been coined the cost of sex. One might interject that
sexual reproduction does maintain intrinsically more variation in a population than asexual
reproduction, even without any mutation occurring, due to the genetic shuffling or segregation
of parental alleles during meiosis according to Mendelian laws. Consequently, it might increase
the efficiency of the weeding action of natural selection (at least, it was how sex was presented
in my high school biology class). However, the relationship between sex and variation is more
intricate than this, and the review [Otto 2009] provides with an illuminating analogy with
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poker, that works well for haploid individuals (only one copy of each gene), to illustrate why.
Consider that one has a particularly good hand of cards. Then would that person be on average
more successful if half of their cards were chosen randomly and exchanged for an equal number
of cards from another successful hand, but potentially with a different combination?

This analogy highlights the role of recombination in sexual reproduction, which breaks
linkage between alleles. One however has to recall that linkage has a high spatial component,
as genes that are close on the chromosome tend (mostly) to be inherited together, except
when there exists a hot-spot for recombination between them (a slightly more faithful ver-
sion of the analogy might be that closest cards in the hand have a higher probability to be
kept or exchanged together). Moreover, recombination includes the chromosome segregation
during meiosis, but also the crossing-over phenomenon that happens at the molecular level
when breaks in the DNA strands get repaired. Conceptually, both recombination and linkage
are double-edge swords, as recombination can dissociate deleterious alleles’ transmission from
beneficial ones or allow the association of beneficial ones (previously linked by genetic drift)
while linkage can favor certain combinations to be inherited together.

Recombination in population genetic models. As recombination is a central mech-
anism in sexual reproduction, its role in various contexts has been under scrutiny in the field
of population genetics. [Hill and Robertson 1966] identified an effect due to the interplay
between genetic drift, recombination and selection, coined the Hill-Robertson effect, which
suggests that recombination leads to a faster fixation of a combination of two beneficial al-
leles. This effect was quantified in a mathematical framework by [Felsenstein 1974] (see also
Otto and Barton 1997, Roze and Barton 2006 for further theoretical investigations and de-
velopments, and Otto and Barton 2001 for numerical ones). Furthermore, the key concept of
modifier genes, which change the occurrence of crossing-over events and thus recombination
rates (introduced by theoretical models of the 1970’s (Feldman 1972) has allowed the role of
recombination in spatially structure environment and with genetic drift to be investigated in
[Lenormand and Otto 2000] (haploid populations in a two-patch model, n viability loci and
one modifier locus, with epistasis), [Martin, Otto, and Lenormand 2006] (n patches, two-locus
two-alleles model, genetic drift and selection, no epistasis), [Roze 2009] (diploid individuals,
three-locus with dominance and epistasis) (see Otto and Lenormand 2002 for a review). They
highlight in particular the role of epistasis (the non-additive effects of the interactions between
several alleles at different loci) in favouring or not favouring recombination.

Limited range of sexual reproduction From a quantitative genetic view, the intricate
genetic architecture underlying the focal complex evolving trait prevents to model precisely
subtle changes in recombination rates between precise loci and derive analytical conclusions.
Even modelling the effect of segregation of large number of alleles during meiosis on the
transmission of the trait from two parents to an offspring required a conceptual step in the
early days of evolutionary theory, and resulted in the infinitesimal model (Fisher 1919; Bulmer
1971; Lange 1978; Bulmer 1980; Barton, Etheridge, and Véber 2017, see also Section 1.2.3 for
a lot more details). The latter is parsimonious in terms of parameters and has therefore
been used in several theoretical studies (Slatkin 1970; Roughgarden 1972; Turelli and Barton
1990; Turelli and Barton 1994 for example). One of them, [Roughgarden 1972], explores the
difference between asexual and sexual populations related to the evolution of their niche width
(the variety of resources that they can exploit). It shows that, even by solely considering
segregation through the infinitesimal model, sexual populations evolve more narrow niches
under the shuffling action of segregation, in comparison to asexual ones, that can evolve to an
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optimal niche width (from a large initial variance in trait). A driving question of this PhD is
the following: to what extent does this feature of constrained variation induced by segregation
of alleles with sexual reproduction intertwine with spatial structure, and compare to asexual
populations?

This relates to the field of geographic parthenogenesis (Tilquin and Kokko 2016 for a re-
view), which investigates the differences of spatial distributions between closely related asex-
ual and sexual populations, for example, in facultative asexual plant species (species where
individuals can reproduce through sex by pollination from another plant, but also self-mate).
Differences can be latitudinal (see simulations in Peck, Yearsley, and Waxman 1998), but some
field studies have also suggested the influence of historical glaciation events on the spatial dis-
tribution patterns of asexual/sexual Townsendia daisies (Thompson and Whitton 2006). This
species has a much more limited spatial range for sexual populations than for the asexual ones,
despite sexual individuals being as successful as asexual ones when planted outside their range
during reciprocal transplant experiments (Hersh 2020).

1.2 State of the art

1.2.1 Delimitation of the scope
Species’ ecological and evolutionary fates are both driven by biological phenomena occurring
at individual and populations level. On one hand, the success or failure of each microscopic
individual within a given environment, in terms of survival and offspring generation, depends
both on their own genetic information, determining their own particular heritable traits, and
on non-local ecological interactions with the whole neighboring ecosystem, like competition for
resources, and might present a high stochasticity. On the other hand, the macroscopic popu-
lation dynamics are driven by all the individuals’ life successes or failures upon which it con-
stantly feedbacks. In some cases, for example in relatively large populations, the stochasticity
of individual trajectories might be thought to be averaging itself to produce rather determin-
istic population dynamics. Additionally to this scaling relative to population size, ecological
phenomena and evolutionary consequences might also occur on different time scales, accord-
ing to the seminal intuition of Darwin regarding gradual evolution of complex (continuous)
traits (which is the focal interest of my PhD, rather than discrete ones). However, rigorously
quantifying this kind of intuition requires a careful examination of the various scaling lim-
its that appear in individual-based models, that follow the stochastic ecological trajectories of
all individuals constituents of an evolving population. This has been done for example in a
landmark paper [Champagnat, Ferrière, and Méléard 2006] that uses a birth-death stochastic
individual-based model for asexually reproducing populations that accounts for various bio-
logical phenomena that drive individual’s life, such as natural selection, non-local interactions
like competition for resources, and non-faithful genes transmissions involving mutations. They
show that, in the limit of large populations, their re-normalized stochastic process converges
to a deterministic partial differential equation (PDE) describing the dynamics of a trait dis-
tribution n. A generic example of such a PDE is the following (it should be emphasized
that [Champagnat, Ferrière, and Méléard 2006] derived more detailed PDEs, which will be
presented more in depth in the next section)

∂tn(t, z) = B[n](t, z)−D[n](t, z). (1.1)

In (1.1), B[n](t, z) (resp. D[n](t, z)) represents a birth (resp. death) term of individuals with
continuous trait z ∈ R

d at time t > 0, which can also depend non-locally on the whole
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distribution trait n (see details in the next section).
As a more concrete and very basic example of what kind of PDE can be obtained (although

the scope of [Champagnat, Ferrière, and Méléard 2006] is much more in depth), I will specify
an example of birth and death terms as follows: B[n] : (t, z) �→ r n(t, z), where r > 0 is the
reproductive/growth rate, and D[n] : (t, z) �→ [s(z) + κ

∫
Rd n(z′)dz′] n(t, z), where s : Rd → R+

is the function quantifying the mortality provoked by natural trait-dependent selection, and
κ > 0 measure the intensity of the uniform competition for resources. The PDE (1.1) then
reads

∂tn(t, z) = n(t, z)
[
r − s(z)− κ

∫
Rd

n(t, z′)dz′
]

. (1.2)

Note that if we ignore the effect of natural selection (setting s ≡ 0) and integrate over all the
trait space R

d, (1.2) reduces to the famous logistic growth equation, that can be classified as
the archetypal ecological model:

d

dt
N(t) = (r − κN(t))N(t), (1.3)

where N(t) denotes the population size at time t. A population whose dynamics are gov-
erned by this logistic equation grows exponentially when small and then saturates when its
size reaches r

κ , as its derivative in time becomes negative. The exponential growth at small
density comes from the birth operator considered in (1.2), which is linear, and can describe
for example a situation with asexual populations and completely faithful trait transmission.
In the population dynamics models combining ecology and evolution that will be described
and studied henceforth, the birth term will be of special focus, because we consider that the
events that introduce the diversity necessary for natural selection to act upon occur during
reproduction and birth (mutations/segregation/recombination).

A straight-forward extension of (1.1) that will be of interest in the next sections integrates
a heterogeneous spatial structure. Suppose the species occupies two habitats, which are con-
nected by migration. Then, indexing the parameters and variables by habitat, one can consider
the following system{

∂tn1(t, z) = B1[n1](t, z)−D1[n1](t, z) +M2→1[n1, n2](t, z)−M1→2[n1, n2](t, z),
∂tn2(t, z) = B2[n2](t, z)−D2[n2](t, z) +M1→2[n1, n2](t, z)−M2→1[n1, n2](t, z).

(1.4)

Here, the operators Mi→j , (i, j = 1, 2) represent the instantaneous transfer of individuals by
migration from the habitat i to the habitat j. A case that will be specifically shown below
is the one of constant migration rate m > 0 from one habitat to the other, which translates
into: M1→2[n1, n2] = m n1 andM2→1[n1, n2] = m n2. Note that (1.4) is easily generalized for
situations involving H ≥ 2 different habitats.

In a later work [Champagnat and Méléard 2007], the authors derive, similarly as in their
previous work, the limit objects obtained when considering spatially distributed species whose
individuals diffuse at a trait-dependent and space-dependent rate in a continuum according to
various renormalizations limits. In the large population asymptotics, it is a reaction-diffusion
PDE acting on a spatial trait distribution n(t, x, z), where x denotes the spatial variable, of
general form given by

∂tn(t, x, z) = B[n](t, x, z)−D[n](t, x, z) +M[n](t, x, z). (1.5)

Here, M[n](t, x, z) represents the instantaneous spatial movement of individuals with trait z
at location x. Setting it to be the diffusion operator of the heat equation M[n](t, x, z) =
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Δxn(t, x, z) and adding it to the logistic growth equation (1.3) yields the famous and widely
studied local FKPP equation (from the names of the people that studied its properties first)

∂tN(t, x) = N(t, x)(r − κN(t, x)) + ΔxN(t, x). (1.6)

Note that, without integrating over all the traits, it would have yielded a non-local version of
the FKPP equation.

In my PhD thesis, I will focus on such large populations deterministic limits, and thus
on PDE/integro-differential equations (like the generic ones (1.1),(1.4),(1.5)) that describe
how the adaptation of species characterized by continuous traits/phenotypes is shaped by the
interplay between space-dependent ecological mechanisms (birth, death, migration/dispersal)
and reproduction-dependent evolutionary mechanisms (mutations, segregation/recombina-
tion), particularly for sexually reproducing populations.

Remark: Adaptive dynamics. [Champagnat, Ferrière, and Méléard 2006] obtained
another mathematical limit object, when simultaneously taking large population and rare
mutations limits: a jump process model. This kind of model translates the heuristics that
the occurrences of mutations are so sparse that, after a mutation appears, the ecological
dynamics of the historic strain and the variant with the mutation are deterministic and reach
a steady state before another mutation occurs. This trait substitution process, modelled by
the so-called canonical equation, is the fundamental object of study of adaptive dynamics,
originating from evolutionary game theory (see Metz et al. 1996; Dieckmann and Law 1996;
Geritz et al. 1997 for seminal works, and Champagnat, Ferrière, and Ben Arous 2002 for
more details on the derivation of the canonical equation from stochastic processes). As this
approach relies on the (ecological) competition of a resident and a mutant population that are
not structured according to a continuum of traits (between the occurrence of two consecutive
mutations), I will consider it outside of the scope of my PhD work. I would like to mention
however that this formalism has yielded numerous works studying the effect of spatial struc-
ture on the adaptive dynamics of asexual species, especially on the evolution of dispersal. I
will present a quick overview of them at the end of the next section centered on works for
asexual populations, for they introduce interesting concepts, like the ideal free distributions.
Furthermore, I anticipate on the next section, which will highlight, among other approaches,
one relying on small mutational variance (but where mutations are not rare, and most of
the time, even frequent), which borrow adaptive dynamics nomenclature to describe similar
concepts (although, once again, the underlying biological framework is undoubtedly distinct).

I will next present and discuss anterior works fitting within the scope of my PhD thesis, of
which I have tried to roughly draw the boundaries above. I will contrast studies for asexually
reproducing populations from those for sexually reproducing populations, and within each
section, distinguish works for well-mixed populations (homogeneous space), next, populations
structured in discrete heterogeneous environments and finally in continuous environments.

1.2.2 Asexually reproducing populations
In asexually reproducing populations, as every offspring is a genetic clone of its sole parent, the
main source of genetic/trait diversity that can support evolution of a species are the mutations
that occasionally arise during the transmission of genetic information. Despite the variety of
how exactly the mutational molecular process occurs, their effects on a quantitative trait have
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been modelled essentially through two types of reproduction operators. These were formally
introduced in the seminal work of [Kimura 1965], which promoted the idea of a continuum-of-
alleles. He considered that there is a low probability that two mutations arising independently
in a population and affecting the same gene have the same exact effect. Consequently, parallel
repeated mutations at a focal locus in a population would result in infinitely many alleles
segregating at this locus. Therefore, he thought that a continuous view of alleles’ effects was
more adequate than a discrete one in certain situations. He formally derived two operators
to model the effect of mutation on a single focal locus in a haploid population. The first is a
non-local integral operator

Bmut
non-local[n](t, z) = (1− μ(z))n(t, z) +

∫
R

μ(z′)K(z − z′)n(t, z′)dz′

= (1− μ(z))n(t, z) + (K ∗ μn(t, ·))(z).
(1.7)

In (1.7), the parameter μ ≥ 0 is the mutation rate (here supposed to be constant but trait-
dependent) and K is the mutation kernel, which quantifies the probability that an offspring
of a parent with trait z′ displays a trait z, deviated by mutations. Typical assumptions on
K is that it is the density of an unbiased probability measure with finite variance, which
translates into

∫
Rd K(z)dz = 1,

∫
Rd zK(z)dz = 0 and

∫
Rd z2K(z)dz = σ2

M , where σ2
M is the

mutational variance. Next, considering a Taylor expansion and neglecting higher moments
of K under the intuition of small mutational steps, he formally derived his famous localized
diffusion approximation operator

Bmut
local[n](t, z) = (1− μ(z))n(t, z) +

σ2
M

2
Δz(μn)(t, z). (1.8)

Note that originally, Kimura intended for (1.7) and (1.8) to be applied to a single focal locus in
haploid (sexual) populations. However, as reviewed in the classical population genetic models
textbook [Burger 2000], it has since been increasingly transposed to the study of quantitative
traits in asexual populations, as the transmission processes in these particular cases are quite
similar.

These two operators (1.7) and (1.8) were indeed rigorously obtained in [Champagnat, Fer-
rière, and Méléard 2006] at the limit of renormalizations of stochastic processes (in even more
general forms). The first non-local operator (1.7) is derived in the limit of large populations,
whereas the second one requires additional rescaling, considering that birth and death are
accelerated, while the mutational variance is small (small effects mutations).

As will be described in the next subsections, the mutational operators (1.7) and (1.8) have
been widely used in models studying the adaptation of asexually reproducing populations
through mutations in various contexts. One reason for this success relies on the fact that both
Bmut

local and Bmut
non-local are linear operators. Moreover, the presence of the Laplacian operator

in (1.8) opens the potential to use classical analytical tools for the study of linear elliptic or
parabolic PDEs. Note that, due to the properties of the mutational kernel K, these operators
also preserve the mass and the center of mass of the trait distribution n considered:∫

Rd
Bmut

non-local[n](z)dz =
∫
Rd

n(z)dz,

∫
Rd

zBmut
non-local[n](z)dz =

∫
Rd

zn(z)dz.

Finally, one can also see that any distribution with finite second-moment that is fixed under
the action of Bmut

non-local leads satisfies ˆ(μn)(ξ) = 0 wherever K̂(ξ) �= 1 for all ξ ∈ R
d, where

·̂ denotes the Fourier transform. For example, for a typical choice of Gaussian mutational
kernel K, the last condition is almost always satisfied. Hence n must be 0 almost everywhere.

10



Furthermore, any non-negative distribution n fixed under the action of Bmut
local is solution of

the elliptic equation Δz(μn) = μn. Then the elliptic maximum principle implies that there
cannot exist compactly supported or even thin-tailed fixed points of Bmut

local. This translates the
fact that introducing mutations without any other forces (natural selection) only increases the
phenotypic range of a distribution, either through a convolution or a diffusion operator.

In the rest of this section, I will present a view of the different works and PDE approaches
that have been produced to improve the understanding of the mechanisms of eco-evo adapta-
tion of asexual species in homogeneous, discrete heterogeneous and continuous space. Although
my central interest lies within the study of sexual populations, I will detail in some lengths
the following studies, to illustrate the richness of techniques and results that have been used
and obtained, and draw a contrast w.r.t. analogous sexual populations studies.

1.2.2.1 Homogeneous space
In this subsection, I will mainly present works that illustrate a particular prolific approach that
was developed significantly for asexual quantitative genetic models in the last two decades,
which is the small variance methodology, for it has strong ties with most, if not all, of my PhD
works. I will also nonetheless give a brief overview of other approaches used to study asexual
reproducing populations in homogeneous environment.

Small mutational variance methodology. The small variance methodology was in-
troduced for quantitative genetics models by [Diekmann, Jabin, et al. 2005], in a model study-
ing the possibility for evolutionary branching in response to trait-dependent access to two
resources, modelling mutations thanks to a non-local operator (1.7). Assuming that the mu-
tations variance ε2 was small, and expecting therefore the trait distribution nε to concentrate,
they used the so-called Hopf-Cole transform on the latter

nε = e
uε
ε . (HC)

The intuition behind this transform and the subsequent shift in the main analysis that is carried
on the ansatz uε rather than on nε are detailed in Box 1.2.2.1. The authors of [Diekmann,
Jabin, et al. 2005] showed that the differential equation obtained on the ansatz uε was for-
mally converging toward a constrained Hamilton-Jacobi equation, characterizing the limit u as
a viscosity solution of the latter. By doing so, they transposed the analysis from a singular
problem to a more regular and better known type of equation, to which there exists a rich
variety of results (see Barles 2013). The constrained nature of the limit equation comes from
the fact that asymptotically, coupling (HC) with a bounded population size Iε :=

∫
Rd nε(z)dz <

+∞ implies (at least formally), that u is non-positive and reaches 0 somewhere (see also Box
1.2.2.1 for the details).

The use of transform like (HC) was not new in the theory of PDE at the time, for this
formalism from geometric optics was popularized in particular in the study of large-time be-
haviour of reaction-diffusion equations, where the limit object u is a viscosity solution of a
Hamilton-Jacobi equation, whose levels sets characterize the front propagation’s dynamics (see
Evans and Souganidis 1989 for a PDE point of view using methods from the optimal control
theory). However, the novelty in the context of quantitative genetics comes from the feedback
from the non-local bounded population size which constrains the non-positive limit u to reach
0 somewhere.

To my knowledge, the first study that rigorously established the link between the PDE
on the trait density of a quantitative genetic model for asexual populations and viscos-
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ity solutions of a constrained Hamilton-Jacobi equation in the regime of small mutational
variance is [Perthame and Barles 2008]. The authors consider that the population is sub-
ject to the environmental pressure R(z, Iε(t)), combining for example the effect of trait-
dependent natural selection and decreasing w.r.t. a non-local term of competition for resources
Iε(t) =

∫
Rd ψ(z)nε(z)dz, with ψ positive, bounded away from 0, and smooth. One might want

to keep in mind, for an easy interpretation of the non-local term Iε, that ψ ≡ 1 (uniform
competition) leads to Iε reducing to the population size: Iε = ρε :=

∫
Rd nε(z)dz. Further,

the authors model the effect of mutations thanks to the local operator (1.8) in the following
non-linear equation

ε∂tnε(t, z) = ε2Δznε(t, z) + R(z, Iε(t))nε(t, z), z ∈ R
d, t > 0. (1.9)

Notice that the time is rescaled by the small parameter ε, as the effect of the small mutations
requires such long time scales to have an influence on the dynamics. Once again, we emphasize
the non-locality of the parabolic equation (1.9) through the non-local population feedback due
to the decreasing dependence of R on Iε (the latter translating the increase of competition
with higher population sizes). The main results of [Perthame and Barles 2008] set the stepping
stones for future studies: they first obtain preliminary uniform BV estimates on the non-local
competition term Iε, which shows the convergence of Iε toward a limit I in L1, and therefore
the weak convergence of nε towards a limit measure n. The challenge is to understand where
the singular measure n concentrates (ie. its support). The BV control of the non-local term
Iε is next instrumental to prove the convergence along subsequences of the Hopf-Cole ansatz
uε = ε log (εnε) (see also (HC)) toward a viscosity solution of the following constrained Hamil-
ton-Jacobi equation:{

∂tu(t, z) = |∇u(t, z)|2 + R(z, I(t)), z ∈ R
d, t > 0,

max(u(t, ·)) = 0.
(1.10)

I refer to the Box 1.2.2.1 for heuristics about the derivation of (1.10). The actual proof involves
obtaining Lipschitz estimates and uniform bounds on uε when ε is small, so that the Arzela-
Ascoli theorem applies. The link between the limit measure n (obtained by weak convergence
of nε following a priori estimates) and the limit function u is that the support of n is a subset
of the zeros of u (see the third paragraph of the Box 1.2.2.1 for heuristics). In particular,
the authors show that when the trait is unidimensional (z ∈ R) and the environmental pres-
sure term R(z, I) is monotonic w.r.t. the trait z, the population remains monomorphic at the
dominant trait z̄(t) (n(t, ·) = δ ¯z(t)) all along its evolutionary trajectory. In this case, they
also derive a canonical equation that describes explicitly the dynamics of the dominant trait
z̄(t). Moreover, the convergence uε → u along subsequences highlights the fact that unique-
ness of the limit solution u among viscosity solutions of (1.10) is not a priori guaranteed (see
much below the later developments on that question by [Mirrahimi and Roquejoffre 2016] and
[Calvez and Lam 2022]). [Perthame and Barles 2008] highlights one particular case where it
can nonetheless be obtained. This occurs when assuming a specific form of the environmental
reaction term R(z, I) = B(z)−Q(I)D(z), which decouples trait-dependent birth and death
terms, and where the non-local environmental feedback term I only affects one of them as a
factor.
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Box 1.2.2.1: Small variance methodology for studying concentration
phenomena: heuristics

Singular limit n. In the context we are interested in, as the size of population Iε :=
∫
Rd nε(z)dz

is constrained to remain bounded, and even positive for persisting populations, the population trait
density is expected to concentrate under the balanced influence of the reduction of diversity induced
by the trait-dependent selection-competition and the introduction of diversity from mutations with
small variance ε2. From a priori uniform estimates on Iε dependent on the specific problem, one
might obtain, at the limit of vanishing variance, that the population density nε converges weakly
to a singular Dirac (or sum of Dirac, both) measure n concentrated on the fittest traits. One
interesting features would be to determine the support of that measure, which would indicate the
fittest dominant traits on which the population density concentrates.
A quadratic/Gaussian example. The value of considering the Hopf-Cole transform (HC) can
be illustrated with the example of the convergence of Gaussian densities to Dirac measures, setting
uε : z �→ − |z−z̄ε|2

2 − ε log(2πε)
2 , and assuming that z̄ε converges to a limit z̄ when ε vanishes. Together

with (HC), the latter yields that (nε) are Gaussian with vanishing variance, thus converging in the
sense of measures to n = δz̄. However, (uε), that are close to quadratic functions, converges strongly
toward a smooth function u = − |z−z̄|2

2 . The idea is that studying the asymptotic properties of u
(for example its zero set, which contains the support of n) is much more accessible than for n, and
that this might lead to derive quantitative fundamental information on the evolutionary trajectories
of the population retained by u in the limit.
Formal derivation of a constrained Hamilton-Jacobi equation. For a specific example,
let us consider the equation (1.9). Performing the transform nε = e

uε
ε and plugging the latter in

(1.9) divided by nε reads

∂tuε(t, z) = εΔuε(t, z) + |∇uε(t, z)|2 + R(z, Iε(t)). (1.11)

Upon appropriate convergence estimates of Iε toward I and appropriate estimates on uε, the
equation (1.11) yields the first line of (1.10). The constraint max(u) = 0 is obtained by noticing
that ∫

Rd

ψ(z′)e
uε(t,z′)

ε dz′ = Iε(t).

Formally, the integral term diverges asymptotically if there exists z0 such that uε(z0) > δ > 0
uniformly w.r.t. ε and vanishes, if uε is uniformly bounded by above by a negative constant. It
also formally hints that the support of the limit measure n is a subset of the zero set of u.
Some remarks. This formal derivation reveals several key points of interest. First, it justifies a
posteriori the time scaling of (1.9), and highlights the discrepancy between the variance in trait of
the population (of order ε), much larger than the contributing mutational variance (of order ε2).
Second, passing from the second order parabolic equation (1.9) to the first order (although genuinely
non-linear) equation (1.10) opens the analysis to use tools like the method of characteristics. Third,
the constraint max(u(t, ·)) = 0 for all t > 0 adjusts the non-local term I in order to be verified.
Fourth, the term H(z, I(t),∇u(t, z)) = −|∇u(t, z)|2−R(z, I(t)) is the Hamiltonian, which is concave
and is associated to the Lagrangian L(q) = sup

p∈Rd

[pq −H(p)] = − |q|2

4 + R(z, I(t)). The viscosity

theory of Hamilton-Jacobi equations, which is beyond the scope of my PhD, links the viscosity
solutions to the trajectories that minimize the action of the Lagrangian (see Evans and Souganidis
1989 for an example on a non-constrained Hamilton-Jacobi equation arising from reaction-diffusion
equation). If one replaces the local mutation operator (1.8) by the non-local integral version (1.7)
in (1.9) (like in [Barles, Mirrahimi, and Perthame 2009]), one obtains another Hamiltonian in the
analogous constrained Hamilton-Jacobi limit equation: H(p) = − ∫

Rd K(z′)ep·z′
dz′ +R(z, I(t)) (the

Laplace transform of the mutational kernel K).

Next, in [Barles, Mirrahimi, and Perthame 2009], results were derived for a similar frame-
work as in [Perthame and Barles 2008], but with a non-local reproduction/mutations opera-
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tor (1.7) including a trait and population size-dependent birth rate (bounded and Lipschitz
continuous)⎧⎪⎪⎨⎪⎪⎩

ε∂tnε(t, z) =
∫

Rd

1
εd

K

(
z − z′

ε

)
b(z′, Iε(t))nε(t, z′)dz′ + R(z, Iε(t))nε(t, z),

Iε(t) =
∫
Rd

ψ(z′)nε(t, z′)dz′, z ∈ R
d, t ≥ 0.

(1.12)

In the same asymptotics of vanishing mutational variance ε2, they show the convergence of
the Hopf-Cole transform ansatz uε (see (HC)) toward a viscosity solution of a constrained
Hamilton-Jacobi equation, but with a different Hamiltonian than in [Perthame and Barles
2008] (see the last paragraph of Box 1.2.2.1).

In [Lorz, Mirrahimi, and Perthame 2011], the authors show that, when considering the
action of the local operator (1.8) to model the mutations on a multi-dimensional trait z ∈ R

d,
the assumptions of concavity of the inital state and of the reaction term R(z, I) w.r.t its de-
pendence on the trait were propagating forward in time along solutions u of the constrained
Hamilton-Jacobi equation (1.10). This implies new regularity of the trajectories, as it ensures
monomorphism of the trait distribution at all time, with the dynamics of the regular dominant
trait encoded in a canonical equation. Furthermore, the long-term stability of a steady state
is ensured thanks to a Lyapunov-type argument. Further regularity on the non-local term I
(W 1,∞ instead of L1) is obtained (as no jump occurs due to the monomorphism).

Despite the achievements of these initial studies, how uniqueness of the limit object u could
be guaranteed beyond the specific case mentioned in [Perthame and Barles 2008] was still quite
an open question. However, the propagation in time of [Lorz, Mirrahimi, and Perthame 2011]
paved way for the first significant uniqueness result in [Mirrahimi and Roquejoffre 2016] (see
also [Mirrahimi and Roquejoffre 2015] for a succinct summary). This study focuses on the
constrained Hamilton-Jacobi equation (1.10), assuming concavity on the initial state and the
reaction term similarly as in [Lorz, Mirrahimi, and Perthame 2011]. Inspired by the fact that
monomorphism arises under these conditions, they transformed the constrained equation (1.10)
into a system constituted of the unconstrained Hamilton-Jacobi equation (first line of (1.10))
coupled with the canonical equation that describes the dynamics of the dominant trait z̄(t)
(which exists and is regular according to Lorz, Mirrahimi, and Perthame 2011). Furthermore,
the non-local term I(t) is implicitly defined by the constraint in the monomorphic population:⎧⎪⎪⎨⎪⎪⎩

∂tu(t, z) = |∇u(t, z)|2 + R(z, I(t)), z ∈ R
d, t ∈ [0, T ],

dz̄
dt =

(
D2u(t, z̄(t)

)−1∇zR(I(t), z̄(t)), t ∈ [0, T ],
R(z̄(t), I(t)) = 0, t ∈ [0, T ].

(1.13)

The authors use dynamic programming to work with the variational representation of solutions
of the unconstrained Hamilton-Jacobi equation (first line of (1.13)) as minimization of the
Lagrangian action along paths. Thanks to the latter, they proved that there exists a unique
viscosity, bounded from above solution to the unconstrained equation (first line of (1.13)),
which is actually a classical regular solution. Using the uniqueness of the unconstrained
equation for fixed I and its regularity, they deduced the uniqueness of the solution to the
system (1.13), thanks to a Banach fixed-point argument, and therefore the uniqueness of the
(classical) solution to the original Hamilton-Jacobi equation (1.10).

More recently, an even more general uniqueness result was established in [Calvez and
Lam 2022], that goes beyond the concavity of the initial data and reaction term framework
considered in [Mirrahimi and Roquejoffre 2016]. This new result applies to general convex
and super-linear Hamiltonian p �→ H(z, I, p) (encompassing hamiltonians obtained with the
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small variance methodology from both the local and non-local reproduction operators (1.7)
and (1.8)), that are also decreasing w.r.t. the non-local term I. They consider therefore the
following constrained equation{

∂tu(t, z) + H(z, I(t),∇zu(t, z)) = 0, z ∈ R
d, t ∈ [0, T [,

max(u(t, ·)) = 0, ∀t ∈ [0, T [.
(1.14)

The uniqueness of the solution (u, I) to the constrained Hamilton-Jacobi equation is obtained
among the pairs of viscosity solution and BV functions, and therefore encompasses situations of
jumps of the population size. This constitutes a uniqueness result in a larger class of solutions
as in [Mirrahimi and Roquejoffre 2016], where it was obtained among classical solutions u
and regular non-local term I (due to the smoothness of monomorphic trajectories). The proof
uses the duality Hamilton/Lagrangian to work almost exclusively on variational formulation of
minimization of the Lagrangian action along paths. The constraint of non-positivity is reflected
by the role of the non-local term I(t) which has to adjust the minimal Lagrangian action along
optimal paths (wherever they might end) to stay zero at each time. A first preliminary result
is the BV regularity of γ̇ for such optimal paths γ that minimize the Lagrangian action. The
main result is proved by contradiction, considering (u1, I1) and (u2, I2) two solutions of (1.14)
with I1, I2 BV functions and using that crossed terms in the variational formulation have a
sign by minimization and the constraint.

Finally, [Lam 2019] obtains a series of results within the small mutational variance
framework/Hopf-Cole transform/constrained Hamilton-Jacobi equation. The author studies
the steady states of an equation which is similar to the one considered in [Perthame and
Barles 2008] and [Lorz, Mirrahimi, and Perthame 2011], but with two differences. First,
the reaction term decouples a trait-dependent selection on fecundity term and a non-local
mortality by trait-dependent competition through a kernel K(z, z′) (intensity of competition
between individuals with trait z and z′). Second, and this is a significant difference, the
trait considered is unidimensional and bounded in an interval. This allows to go further
in the steady states analysis asymptotically w.r.t the vanishing mutational variance, which
the author characterizes as threefold according to a ratio between competition and selection
representing the capacity of one trait to invade another . This quantity is commonly used in
adaptive dynamics studies. If this invasion ratio is uniformly convex and minimal along one
direction in one point in the interior of the trait interval, then the population will concentrate
asymptotically on this interior point as a Dirac mass. If this invasion ratio is uniformly
concave and maximal along one direction, then the population will concentrate asymptotically
as a sum of two Dirac masses at the edge of the trait interval. If the invasion ratios against
the extremal traits are both monotonic (with opposing signs), then there exists at least two
asymptotic steady states which are Dirac masses at each edge. Interestingly, it links patterns
of evolution to the type of selection: stabilizing, disruptive and directional (in the order of the
results).

Let me finally mention that a similar small mutational variance framework led to several
results in time-fluctuating environments. In [Mirrahimi, Perthame, and Souganidis 2015], the
authors show that, simultaneously accelerating the time and making the mutational variance
vanish, concavity in a setting similar as in Lorz, Mirrahimi, and Perthame 2011 propagates
along solutions straining when ε vanishes to the dynamics of a single time-fluctuating Dirac
mass. Later, in [Figueroa Iglesias and Mirrahimi 2018], the authors first prove the existence
and uniqueness of a long time solution to the time-periodic equation (with positive mutational
variance) that has a fluctuating population size. They next describe the asymptotic behaviour
when the mutational variance vanishes, solving the constrained Hamilton-Jacobi equation
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that arises as monomorphism occurs (following the uniqueness of the maximum for the aver-
age birth rate over a time period), ensuring uniqueness and regularity of a classical solution
u. Furthermore, adaption of asexual population to a space homogeneous, time-fluctuating
environment has also been studied with other methods that do not place themselves in small
mutational variance (see [Carrère and Nadin 2020], which highlights the potential beneficial
effect of mutations that are not small on the mean population size).

Finally, a related approach using the Hopf-Cole transform on the trait density of an asex-
ual population was employed to study its long time adaptive behaviour subject to natural
selection on the fecundity, general competitive interactions, and faithful trait transmission (no
mutations are considered). Traits are assumed to be compactly supported. Due to the absence
of mutations, there is no asymptotic Hamilton-Jacobi equation, but a constraint still holds to
avoid the population either to blow up or to go extinct. [Desvillettes et al. 2008] obtains
results on the well-posedness and the weak convergence of the trait distribution towards a
measure, supported at maximal points of the reaction term. They further study the stability
of Dirac masses that can arise and developed numerical methods to capture accurately such
phenomena. In a later work [Jabin and Raoul 2011], the authors found a Lyapunov functional
for the previous equation (which follows an assumption that the competitive interactions are
positive-definite) and thus ensuring the global stability of some steady states.

Other PDE approaches. In this paragraph, I will try to give a quick overview on other
PDE approaches that aim at deriving quantitative information about the evolutionary dy-
namics of asexually reproducing populations under mutation-selection balance affecting the
relative fitness of individuals, so without considering any demographical changes in the pop-
ulation size. One class of models that is built according to this approach is based on the
non-linear, non-local replicator-mutator equation, introduced by [Kimura 1965]

∂tn(t, z) = σ2
M Δzn(t, z) +

[
s(z)−

∫
R

s(z′)n(t, z′)dz′
]

n(t, z), t ≥ 0, z ∈ R. (1.15)

The relative fitness is characterized by the trait dependent selection function s and the muta-
tions are modelled with the localized reproduction operator (1.8), with a mutational variance
σ2

M . One can verify that the population size, initially normalized at 1, remains constant af-
ter integration of (1.15) over all the trait space. This constitutes a first difference with the
Hamilton-Jacobi approach, which allows to account for demographical changes. The second
difference is that the relative fitness function s is often quite specifically chosen to derive
analytical quantitative information on the fitness distribution, as illustrated below.

A first set of papers study the case where s(z) = z , which means that mutations directly
affect the fitness (Alfaro and Carles 2014; Martin and Roques 2016; Gil et al. 2017; Gil et al.
2019; Alfaro and Veruete 2020). In the case where the mutations are modelled in (1.15) thanks
to the local diffusive operator, [Alfaro and Carles 2014] finds explicit solutions, which allow
to derive quantitative information on the relative fitness distribution, and qualitative asymp-
totic behaviour (extinction/persistence), while [Alfaro and Veruete 2020] later use cumulants
generating functions (CGF) on a slightly different replicator-mutator equation to derive quan-
titative asymptotic behavior on the first two moments of the fitness distribution. In the case
where the mutations are modelled in (1.15) thanks to the non-local diffusive operator, the use
of CGF leads similarly to derive quantitative information on the trajectories of the first two
moments of the fitness distribution (Martin and Roques 2016; Gil et al. 2017), or inform on
the concentration behaviour of the stationary fitness distribution when the mutation kernel is
fitness-dependent (Gil et al. 2019).
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A second set of studies focuses on the case where the selection function is confining
s(z) −→

|x|→∞
= −∞ (Alfaro and Veruete 2019; Hamel, Lavigne, Martin, et al. 2020; Alfaro,

Gabriel, and Kavian 2021). In the multi-dimensional case where the fitness function is specifi-
cally taken as quadratic s(z) = −||z||2 and mutations are modelled by a local diffusive oper-
ator extending (1.8) to account for different mutations variances w.r.t different coordinates of
the trait z, the authors of [Hamel, Lavigne, Martin, et al. 2020] use CGF and obtain explicit
formula which provide quantitative information of the trajectory of the mean trait. With
more general confing selection function, [Alfaro and Veruete 2020] (local mutation operator
(1.8)) and [Alfaro, Gabriel, and Kavian 2021] (non-local mutation operator (1.7)) take ad-
vantage of the properties of the solutions n of (1.15), which can be directly deduced from
the properties of the solutions ñ to the analogous linearized and localized equation, through a
straight-forward transformation n := ñ∫

R
ñ(z′)dz′ . The latter allows to use linear spectral analy-

sis tools and the semi-group of contraction theory to derive qualitative asymptotic behaviour
(extinction/persistence) which can be transposed on the solutions of the non-local, non-linear
replicator-mutator model (1.15).

1.2.2.2 Discrete heterogeneous environments
In the dynamics of local adaptation to a discrete heterogeneous environment where different
values of a quantitative traits are optimal in different habitats that are connected by density-
dependent migration, demography plays a central role as it underlies the intensity of gene/trait
flow between habitats.

A Hamilton-Jacobi approach on eco-evo dynamics. In [Mirrahimi 2017], the au-
thor studies the distributions at equilibrium in asexual populations through a model that
allows to track demographical changes through birth, death and migration events (see (1.4))
as well as trait evolution, thanks to the introduction of mutations with vanishing variance via
a local operator (1.8). Namely, the aim is to analytically describe the steady states of the
following non-linear, non-local elliptic system (for all z ∈ R)⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ε2
(

Δnε
1(z)

Δnε
2(z)

)
=

(
R1(z, N ε

1 )−m1 m2

m1 R2(z, N ε
2 )−m2

)(
nε

1(z)
nε

2(z)

)
=: A(z, N ε

1 , N ε
2 )

(
nε

1(z)
nε

2(z)

)
,

N ε
1 =

∫
R

nε
1(z′)dz′, N ε

2 =
∫
R

nε
2(z′)dz′.

(1.16)
The author chose to focus on a specific reaction term R(z, N ε

i ) = (ri − gi(z − θi)2 − κiN
ε
i ),

which involves a quadratic stabilizing selection term and a non-local uniform competition
for resources term. The latter is common in in quantitative genetics models (see Ronce and
Kirkpatrick 2001; Hendry, Day, and Taylor 2001; Débarre, Ronce, and Gandon 2013 for
example) and allows the analysis to be pushed further and highlights its value, for it leads to
characterize explicitly the equilibrium variables. Besides, the basis of the asymptotic analysis
of vanishing mutational variance remains robust to general reaction terms. Moreover, one can
notice that the habitats are asymmetrical as they can differ in their growth rate ri, strength of
selection gi towards a local optimal trait θi, intensity of uniform local competition for resources
κi and outward migration rate mi.

A first part of the study introduces concepts borrowed from adaptive dynamics, by first
defining W (z, N ε

1 , N ε
2 ) the leading eigenvalue of the reaction-migration matrix A(z, N ε

1 , N ε
2 )
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as the effective fitness of the population (the growth rate of individuals of trait z in the
demographic state N ε

1 , N ε
2 ). The latter in turn defines the notion of Evolutionary Stable

Strategy (ESS) (states of the system that cannot be invaded by a mutant) by any discrete
set of traits Ω∗ that verifies that W (·, N∗

1 , N∗
2 ) is always non-negative and cancels at least for

all z∗ ∈ Ω∗, where (N∗
1 , N∗

2 ) are the demographic equilibrium associated to Ω∗, defined through
the eigenvectors associated to each W (z∗, N∗

1 , N∗
2 ) with z∗ ∈ Ω∗. The first main result of

the paper is to prove that there exist a unique ESS, and algebraically characterize it, which
requires to explicitly compute W (z, N1, N2) and identify the conditions to find the trait(s)
that composed the ESS, which is possible with specific choice of the quadratic selection. The
author shows that, when migration is below a certain threshold defined by selection, the unique
ESS is composed of two diametrically opposed dominant traits (−z∗

D, z∗
D) defining a dimorphic

population, whereas it is composed of a unique trait defining a monomorphic population when
migration is beyond this threshold. I emphasize on the fact that the dimorphic ESS and its
demographic equilibrium (N∗

1 , N∗
2 ) are explicitly known in the case of quadractic selection.

This allows to show that W (·, N∗
1 , N∗

2 ) cancels exactly at the ESS Ω∗ (might it be dimorphic
or monomorphic), which is instrumental to conclude the next part.

The other part of the analysis focuses on the study of the ansatz uε
i = ε log (

√
εnε

i ), accord-
ing to the methodology of small mutational variance (see also the Box 1.2.2.1). From (1.16),
the ansatz satisfy the following[

ε

(
Δuε

1(z)
Δuε

2(z)

)
+

(
−|uε

1(z)′|2
−|uε

2(z)′|2
)]
·
(

1

e
uε

1(z)−uε
2(z)

ε

)
= A(z, N ε

1 , N ε
2 )

(
1

e
uε

1(z)−uε
2(z)

ε

)
, z ∈ R. (1.17)

The originality compared to the homogeneous space studies comes from the term e
uε

1−uε
2

ε which
appears from the migration that mixes nε

1 and nε
2 in both equations in (1.16). One can notice

that (1.17) hints, at least formally, that, in the limit of vanishing variance, uε
1 and uε

2, if they

converge, should converge to the same limit u, so that z �→ e
uε

1(z)−uε
2(z)

ε remains well balanced
within (1.17). This implies formally that when ε → 0, −|u′(z)|2 is the leading eigenvalue of
A(z, N1, N2), which is by definition W (z, N1, N2), associated with an eigenvector with positive
entries (N ε

1 and N ε
2 are preliminary shown to converge along subsequences towards N1 and N2

thanks to a priori classical bounds in the limit of vanishing variance).
In agreement with the previous presented heuristics, the first main result of this part is

the convergence along subsequences of uε
1 and uε

2 towards the same limit u, solution of the
following constrained Hamilton Jacobi equation{

−u′(z)2 = W (z, N1, N2), z ∈ R,

max(u) = 0.
(1.18)

The latter relies on the application of the Arzela-Ascoli theorem following Lipschitz estimates
and uniform bounds on uε

i . The uniform bounds are obtained from a localized Harnack in-
equality between local trait densities nε

1 and nε
2, and a L1 control of the masses far from the

origin. The arguments for the Lipschitz bounds are technically intricate. The convergence re-
sult toward a viscosity solution of (1.18) is robust w.r.t. general reaction terms in each habitat
Ri(z, Ni). Recall that, in the homogeneous space studies, since the convergence is obtained
along subsequences only, the uniqueness is not guaranteed and, in the case where it is proved,
requires various additional conditions and remains quite challenging.

However, in [Mirrahimi 2017], the results of the first part on the ESS obtained with the
specific choice of quadratic growth functions R(z, Ni) = ri− gi(z− θi)2− κiNi allows to prove
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the uniqueness of the limit u. To understand why, recall that typically, in the limit of small
variance, the support of the limit measures n1 and n2 (obtained by weak convergence of nε

1 and
nε

2) is contained in the zero set of the limit function u. From (1.18), the latter is itself contained
in the zero set of W (·, N1, N2), where (N1, N2) is the demographical equilibrium. However, the
support of n is the (unique) ESS of the system, which has been shown in this particular case
to be exactly the zeros of W (·, N1, N2) (end of the first part). This leads to identify exactly
the zero set of u with the zero set of W (·, N1, N2). Thanks to a property of identifiability of a
viscosity solution u to the Hamilton-Jacobi equation (1.18) by the values it takes on the maxima
of W (·, N1, N2), which are all 0, the author finally shows the uniqueness of the limit u, solu-
tion of the contrained Hamilton-Jacobi equation (1.18) in the case of quadratic growth func-
tions. This allows the derivation of an explicit variational formula for u, as the demographic
equilibrium associated to the unique ESS and the leading eigenvalue Hamiltonian function
W determines completely the optimal path involved. The explicit formula for W (·, N∗

1 , N∗
2 )

and its non-linear and non-trivial dependence with the demographical equilibrium (N∗
1 , N∗

2 )
highlights the fact that the demographical equilibrium is strongly involved in the dynamics of
local adaptation and justifies a posteriori the modelling choice to include its influence on the
quantitative trait dynamics. Finally, the author also derives results form the source-sink case
under one-way migration.

The follow-up work [Mirrahimi and Gandon 2020] is targeted at presenting and illustrating
the quantitative results that can be obtained from this Hamilton-Jacobi approach and how
they translate in terms of adaptation patterns under migration-mutation-selection balance,
in symmetrical/asymmetrical discrete heterogeneous environments. Among the results from
[Mirrahimi 2017] that they expose, I would like to highlight two in particular, as they are
relevant to illustrate the structural differences between asexual and sexual populations’ adap-
tation. The first one is that, in symmetrical environments (meaning that the growth rate r,
the outward migration rate m, the selection strength g and the competition’s intensity do not
depend on the habitat), the only equilibrium of the system is symmetrical, either dimorphic
when migration is below a certain level of selection, or monomorphic when it is above it. Note
also that in the dimorphic equilibrium, the local subpopulation trait densitites are bimodal,
and therefore, are not well approximated by Gaussian densities, as it is commonly assumed
in quantitative genetic models. The second one comes from the derivations of approximations
of the macroscopic moments of the trait densities nε

1 and nε
2 when the mutational variance

is small but not 0, as these can be useful and informative for biologists. Even in the case
of monomorphic equilibrium, it highlights the fact that the variance in trait of the asexual
population depends on the combined effects of migration, selection and mutation.

Link with a quantitative genetics/adaptive dynamics study. The two articles
[Mirrahimi 2017] and [Mirrahimi and Gandon 2020] improve the understanding of the underly-
ing conditions of the results obtained in a previous study [Débarre, Ronce, and Gandon 2013].
In this work, the authors focus on the quantitative and qualitative description of the steady
states of a similar quantitative genetics PDE model, on which they use tools from adaptive
dynamics in a regime of small mutational variance. Thanks to these, they formally derive, in
a symmetrical environment setting, macroscopic description of the local trait densities, and
conditions for symmetrical dimorphism and symmetrical monomorphism to arise, that are very
close from the approximations obtained in [Mirrahimi 2017] and [Mirrahimi and Gandon 2020].
However, they also found that a locally stable asymmetrical monomorphic equilibrium existed,
which is not in agreement with the analysis done in [Mirrahimi 2017]. I will commentate more
on this discrepancy in results in light on my own work on the adaptation of sexual populations
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to a symmetrical discrete heterogeneous environment (see Section 1.3.1).

Other PDE approaches. I would like to mention that other PDE approaches that I
described in the last paragraph of the last section presenting homogeneous space studies have
also been used to analyse the evolutionary dynamics modelling specific qualitative evolutionary
questions arising in discrete heterogeneous environments. Replicator-mutator models have
been useful in that regard, on situations that are not too influenced by the dynamics of the
demography, which these models are not suited to account for: probability of establishment in
a new habitat with one-way migration from source to sink using cumulant generating functions
in [Lavigne et al. 2020] (there is no demographic feedback on the source, and the saturation
in the sink can be neglected), or conditions of extinction or persistence through an eigenvalue
problem (Hamel, Lavigne, and Roques 2021).

1.2.2.3 Continuous space
Overview of the FKPP equation. Since the first half of the last century, reaction-
diffusion equations have been used to model the adaptation of populations in a structured
and continuous space. The archetypal and seminal example is the spatial propagation of an
advantageous allele A, replacing a resident allele a, a phenomenon modelled simultaneously
and independently, on the one hand, in [Kolmogorov, Petrovsky, and Piskunov 1937], and on
the other hand, in [Fisher 1937], through the non-linear FKPP equation (1.6) that we recall
here {

∂tN(t, x) = rN(t, x)(1−N(t, x)) + DΔxN(t, x), t > 0, x ∈ R,

N(0, x) = 1R−(z), x ∈ R.
(1.19)

The latter models the spatial dynamics of a population whose individuals diffuse spatially
randomly according to the heat operator with coefficent D, and constitutes a population
under local logistic growth, with a saturating effect when N ≡ 1, and with initial growth
at small populations r. The reaction term N �→ rN(1 − N) has two equilibria, an unstable
one at N = 0 and a stable one at N = 1. Consequently, the authors cited above show that
there exist travelling waves with constant speed c connecting the stable state 1 at −∞ to
the unstable equilibrium 0 at +∞, provided that the speed c is above a certain threshold c∗

depending on the diffusion coefficient and the initial growth rate of small populations (for
(1.19) c∗ = 2

√
rD). Although [Kolmogorov, Petrovsky, and Piskunov 1937] use a phase plane

analysis to deduce the minimal propagation speed, the latter can be identified formally by
solving the dispersion relation obtained when searching the travelling waves solutions eλ(x−ct)

of the following linearized version of (1.19){
∂tN(t, x) = rN(t, x) + DΔxN(t, x), t > 0, x ∈ R. (1.20)

Indeed, the parabolic equation (1.19), despite being non-linear, respects the maximum princi-
ple, so the propagation speed obtained from (1.20) provides an upper bound for the analogous
quantity for (1.19) (which is shown to be the actual speed).

The importance of these results and their influence since their publications cannot be
understated, especially on models of ecological invasions. Since then, the constant minimal
speed result of the reaction-diffusion equation (1.19) has been derived for various reaction
terms, in arbitrary high dimension (see the landmark population genetic work Aronson and
Weinberger 1978, which includes among others the analysis of the case of bistable reaction
terms, in which case the propagation speed is uniquely determined). Further correcting terms
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have been derived to improve the fine understanding of the influence of the non-linearity on
the propagation speed (Bramson 1978; Bramson 1983) and obtaining new estimates are still
a current challenge.

A geometric optics Hamilton-Jacobi approach for local reaction-diffusion
equations. Around the turn of the century, a new approach from geometric optics has been
introduced to study large time asymptotics of reaction-diffusion equations related to (1.19), in
[Freidlin 1986] from a probabilistic point of view and in [Evans and Souganidis 1989] with a
PDE framework. I will illustrate heuristic about their method on a multidimensional version
of the FKPP equation example. First they consider a rescaling of the time and space variables
N̂(t, x) = N

(
t
ε , x

ε

)
, where ε is a small positive parameter that allows to follow large-time

dynamics on the propagation front. N̂ is solution of:{
ε∂tN̂(t, x) = ε2ΔxN̂(t, x) + N̂(t, x)(1− N̂(t, x)), t ≥ 0, x ∈ R

d,

N̂(0, x) = g(x), x ∈ R
d.

(1.21)

Assumptions on g is that it is nonegative, smooth, bounded, Lipschitz, and its suppport G0
is bounded and smooth. Next, following the observation that the steady states of (1.19) are
0 and 1, they aim at characterizing the asymptotic set G that will characterize the support of
the limit of N̂ when ε vanishes. To that effect, they introduced the WKB ansatz according to
a Hopf-Cole transform Uε = ε log

(
N̂

)
. The ansatz Uε is solution of the following equation:

⎧⎪⎪⎨⎪⎪⎩
∂tUε(t, x) = |∇xUε(t, x)|2 + εΔxUε(t, x) + 1− e

Uε(t,x)
ε , t > 0, x ∈ R

d,

Uε(0, x) = ε log(g(x)), x ∈ int(G0),
Uε(0, x) = −∞, x /∈ G0.

(1.22)

They show, by establishing uniform and Lipschitz bounds on Uε thanks to comparison prin-
ciples, that, according to the Arzela-Ascoli theorem, Uε converges toward the unique viscosity
solution U (expressed with a variational formula minimizing the action of the Lagrangian
L : q �→ |q|2

4 along paths with stopping times) of the Hamilton-Jacobi inequality that reads:⎧⎪⎪⎨⎪⎪⎩
max

[
∂tU(t, x)− |∇xU(t, x)|2 − 1, U(t, x)

]
= 0, t > 0, x ∈ R

d,

U(0, x) = 0, x ∈ int(G0),
U(0, x) = −∞, x /∈ G0.

(1.23)

Doing so, they describe the large time dynamics of the propagation front as zero level set of
U .

This approach has been adapted for the study of the propagation dynamics of asexual pop-
ulations structured according to a quantitative trait z (taken as uni-dimensional henceforth to
simplify), dispersing in a continuous space. This leads to consider non-local reaction-diffusion
equations, like the non-local FKPP equation on the population trait density n (characterized
by the variables (t, x, z) ∈ R

∗
+ × Ω× I)

⎧⎪⎪⎨⎪⎪⎩
∂tn(t, x, z) = B[n](t, x, z) + D(z)Δxn(t, x, z) + n(t, x, z) (1− ρ(t, x)) ,

ρ(t, x) =
∫

I n(t, x, z′)dz′, t ≥ 0, x ∈ Ω,

n(0, x, z) = n0(x, z), x ∈ Ω, z ∈ I.

(1.24)
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The saturation term modelling uniform competition for resources locally in space, non-locally
in trait leads to some failures of comparison principles, as non-monotonic waves can propagate
(Berestycki, Nadin, et al. 2009). This brings analytical challenges to quantify the speed of the
expansion of such populations.

In what follows, the reproduction operator B considered will be the localized mutation
Laplacian operator (1.8). I will present some non-local reaction-diffusion works that study the
interplay between ecology and evolution on the propagation of asexual populations structured
by a quantitative trait. I will first discuss the constant space diffusion case (D(z) = 1), and
next focus on the phenomenon of evolution of dispersal, where the space diffusion coefficient
is a function of the trait under evolution (typically, D(z) = z).

Constant diffusion The first eco-evolutionary framework that I will present is the study
of the local adaptation of populations to a spatially continuous environment.

[Bouin and Mirrahimi 2015] studies the long-time behaviour of a propagating population
under small spatial diffusion, characterized by a bounded quantitative trait z ∈ I and subject
to a general spatial selection r(x, z) (upper bounded by a constant and lower bounded by
x �→ −|x|2 + A). I will detail heuristically their approach inspired by [Evans and Souganidis
1989], as it is found also in other studies on evolution of dispersal. They consider the following
rescaled equation (for (t, x, z) ∈ R

∗
+ × R

d × I)

ε∂tnε(t, x, z) = ε2Δxnε(t, x, z) + σ2
M Δznε(t, x, z) + nε(t, x, z) [r(x, z)− ρε(t, x)] ,

with homogeneous Neumann boundary conditions on ∂I. Notice that the mutational variance
is not considered small. Consequently, the trait variable is expected to be a fast variable and
the space variable a slow one. This separation of time scales is highlighted by what follows.
Aligning with the approach employed in [Evans and Souganidis 1989], the authors introduce
the WKB ansatz uε = ε log(nε), which solves:

∂tuε(t, x, z) = εΔxuε + |∇xuε|2 +
σ2

M Δzuε

ε
+

σ2
M |∇zuε|2

ε2 + r(x, z)− ρε. (1.25)

The influence of the successive orders in ε involved in (1.25) of uε can be formally untangled
by considering a (formal) Taylor expansion

uε(t, x, z) = u0(t, x, z) + εu1(t, x, z) + o(ε).

Indeed, using this expansion in (1.25) asymptotically leads first to σ2
M |∇zu0(t, x, z)|2 = 0,

hence the main term u0 does not depend on the trait variable z, u0(·, ·, z) = u0(·, ·). Next,
considering the terms of order ε0, regrouping by dependence on variables and denoting ρ0 the
formal limit of ρε reads[

∂tu0 − |∇xu0|2 + ρ0
]

(t, x) =
[
σ2

M

(
Δzu1(t, x, ·) + |∇zu1(t, x, ·)|2

)
+ r(x, ·)

]
(z) (1.26)

The latter can be interpreted as the asymptotic link between the slow spatial propagation
(l.h.s of (1.26)), which reminds of the limit equation (1.23) in [Evans and Souganidis 1989],
and the effects of trait-dependent effects of mutation and local adaptation (r.h.s of (1.26)),
which has an elliptic form characterizing a fast-reached steady state w.r.t. z. Note indeed that
the time variable t in the r.h.s. of (1.26) is uncorrelated from the trait variable z due to the
differentials w.r.t z, which implies that u1 separates variables: u1(t, x, z) = μ(t, x)+log(Qx(z))
(the log ensures the simplification Δz log(Qx)+ |∇z log(Qx)|2 = ΔzQx

Qx
). In turn, the Hopf-Cole

transform implies that nε also separates fast and slow variables
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nε(t, x, z) ≈ Qx(z) e
u0(t,x)

ε
+μ(t,x). (1.27)

The latter suggests the following two-step reformulation of (1.25). First, one should solve the
space-dependent elliptic eigenvalue problem (with homogeneous Neumann boundary condi-
tion) given by the r.h.s. of (1.26)

σ2
M ΔzQx(·) + r(x, ·)Qx(·) = σ2

M H(x)Qx(·). (1.28)

The authors show that there exists a unique smooth eigenpair (H, Q) solving (1.28). The
eigenvalue H (which is linked to the local population size ρ0 through (1.26), depending on if
u0 = 0 or is negative) next identifies the limit Hamilton-Jacobi problem encoding the dynamics
of the front (notice the resemblance with (1.23), up to the sign)

max
[
u(t, x), ∂tu(t, x)− |∇xu(t, x)|2 −H(x)

]
= 0. (1.29)

The main result of [Bouin and Mirrahimi 2015] is the convergence of uε to the unique viscosity
solution u of (1.29), which defines the invaded region depending on it being zero or negative.
I also would like to emphasize on the neat fast-slow structure of the problem, which will also
be found again in studies on the evolution of dispersal with a different asymptotics at large
times and with small mutations. Finally, the effective Hamiltonian solving the eigenvalue
problem encoding the fast reached equilibrium of the trait-dependent elliptic part, is also a
mild remainder of the analogous Hamiltonian structure deduced from an eigenvalue problem
in [Mirrahimi 2017] (steady states in discrete heterogeneous environments).

In [Alfaro, Coville, and Raoul 2013], the authors consider a more specific biological ques-
tion, which is the local adaptation to a spatial environmental gradient/cline. Precisely, the
study (1.24) with D ≡ 1, and a more complex reaction term:

n(t, x, z)
[
r(z −Bx)−

∫
R

k(z′ −Bx, z −Bx)n(t, x, z′)dz′
]

;

which includes a selection term deriving local adaptation along a linear spatial cline and a local
in space, non-local in trait term of trait-dependent competitive interactions. The main result
of their work is showing the existence of travelling waves of constant speed above a minimial
speed c∗ when the principal eigenvalue of the problem is negative or the extinction of the pop-
ulation when it is positive. The main challenge is in the first case. They construct the waves
by approximating the problem by considering the space to be bounded slabs, of increasing
radius. In the compact slabs, they reduce the travelling wave problem to an elliptic problem,
on which they employ a Leray-Schauder fixed point argument, using a Harnack inequality to
control the non-local competition term. A later study [Alfaro, Berestycki, and Raoul 2017]
studies a similar framework, but where the local adaptation depends on a constant climate
shift, thus carried on the variable x− cclimatet. They show that different behaviours regarding
extinction/persistence can occur depending on the shifting growth rate, either the population
should keep pace with the climate to persist in case of a stringent local selection, or it can
persist behind while lagging at a lower speed where selection is more permissible.

Moreover, I will mention that there are also works on non-linear and non-local reaction-
diffusion equation in [Alfaro and Ducrot 2018], [Alfaro, Girardin, et al. 2021] considering
a particular effect of the trait on the growth rate, namely considering that the trait under
mutation is the strength of an Allee effect. The Allee effect is a phenomenon that translates
the potential reduction of growth rate at low density (for example, modelling an increased
effect of density-dependent of predation on small populations). When its strength is large
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enough, it even leads to a negative growth rate at low density, which translates into a typically
bistable reaction term, which was showed to change qualitatively the pushed/pulled nature of
propagation fronts with constant diffusion, on the maintenance of neutral genetic diversity at
the front (Roques et al. 2012). [Alfaro and Ducrot 2018] shows that, in a model where ecology
and evolution are described in separate equations, the evolution of the Allee effect in very small
initial populations can eventually lead to persistence (hair-trigger effect) and evolutionary res-
cue, whereas such populations would go extinct with a fixed Allee effect. Moreover, [Alfaro,
Girardin, et al. 2021] study the interplay of the evolution of the Allee effect through mutations
and the reaction-diffusion dynamics in a single equation. Their main result is a thorough char-
acterization of the qualitative outcomes on persistence/extinction, which is established thanks
to eigenvalue problems, point-wise comparison principles and integral estimates.

Finally, an evolutionary reaction-advection-diffusion problem that has sparked growing
recent interest, following the rapid progress in gene editing (thanks to the technology CRISPR-
9), is the study of propagation of gene drives (humanly manufactured heritable alleles that
lowers the fitness of its vessel) for controlling ecological populations, like mosquitoes, and of
their impact for conservation (Rode et al. 2019). The main aims of such PDE studies is to
understand the conditions of spread and long time control of these drives (Girardin, Calvez,
and Débarre 2019, Girardin and Débarre 2021).

Evolution of dispersal The evolution of dispersal has been attracting sustained interest,
both for the complexity of the dispersal patterns that it can occasion in spatially distributed
species (Ronce 2007) and for the original and intricate mathematical challenges that it poses
in the reaction-diffusion field. The models that arise are motivated by deriving qualitative (Is
evolution selecting for low or high dispersal rates?) and quantitative features of the influence
of evolving dispersal on the propagation of a species (How fast can a species evolving its
morphological dispersal means -wings/legs/weight- expand and invade new regions? How
does the interplay between spatial propagation and dispersal trait structure the population?)
through the generic equation for asexual reproduction:⎧⎪⎪⎨⎪⎪⎩

∂tn(t, x, z) = σ2
M Δzn(t, x, z) + zΔxn(t, x, z) + n(t, x, z) (1− ρ(t, x)) ,

ρ(t, x) =
∫

I n(t, x, z′)dz′, t ≥ 0, x ∈ Ω,

n(0, x, z) = n0(x, z), x ∈ Ω, z ∈ I.

(1.30)

(In all that follows, the necessary boundary conditions are considered as Neumann homo-
geneous). Notice that the spatial diffusion coefficient is the quantitative trait z which can
mutate according to the localized reproduction operator derived from (1.8), involving a trait
diffusion term. This trait dependence on the spatial diffusion radically changes the behaviour
of (1.30) in comparison to the constant diffusion case (1.24) (D ≡ 1), where travelling waves
are shown to be spreading at constant speed. I will structure the rest of this subsection by
distinguishing studies interested in the case of a bounded trait interval I ⊂ R

∗
+ and unbounded

spatial environment Ω = R, from in a bounded spatial environment Ω and finally present the
ones modelling unbounded trait and space I =]1, +∞[, Ω = R, for the qualitative conclusions
diverge significantly between these cases.

1) Bounded trait interval I, unbounded spatial environment R. In this case,
one would expect that, as the competition for resources, which is local in space but non-local
in trait, advantages individuals in low densities regions in an unbounded space, the highest
possible dispersal rate would be selected for in order to be able to reach inhabited regions. This
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would lead to a constant speed propagation corresponding to the highest dispersal trait. This
simple intuition is somewhat confirmed by the following studies, although the actual rate of
propagation is more involved, as formally presented in [Bouin, Calvez, et al. 2012] and shown in
[Bouin and Calvez 2014] and [Turanova 2015]. These last two studies adopt radically different
approaches, but deduce consistent results. The earlier [Bouin and Calvez 2014] focuses on
establishing the existence of travelling waves combining a smooth monotonic profile Qλ(z)
increasing w.r.t. the trait z and an exponential spatial decay e−λ(x−ct), propagating at con-
stant minimal speed identified through an elliptic eigenvalue problem. The increasing profile
Qλ(z) at the front illustrates the spatial sorting effect, according to which higher values of the
dispersal trait are selected for, consistently with the above verbal intuition. Furthermore, the
authors use a Leray-Schauder fixed point argument on approximated travelling wave problems
Qλ(z)e−λ(x−ct) in a spatial slab, combined with Harnack inequalities to control the non-local
term (similarly in spirit as in [Alfaro, Coville, and Raoul 2013]). One interesting feature is that
the elliptic eigenvalue problem (1.31) bears some resemblances with the one that I described
earlier from [Bouin and Mirrahimi 2015] (1.28)

σ2
M ΔzQλ(z) + (1 + zλ2 − λc(λ))Qλ(z) = 0. (1.31)

However, the eigenvalue Hλ(z) = 1 + zλ2−λc(λ) is different and determines the critical speed
c∗ = min c(λ). The link is made clearer in [Turanova 2015], in which the author adopts a
Hamilton-Jacobi approach coupled with the eigenvalue problem (1.31) to study the asymptotic
behaviour of solutions at large times and in the limit of small spatial diffusion. The equation
reads

ε∂tn(t, x, z) = ε2 z Δxn(t, x, z) + σ2
M Δzn(t, x, z) + n(t, x, z) [r(x, z)− ρ(t, x)] .

Notice the resemblance in the time and space scaling with [Bouin and Mirrahimi 2015]. The
heuristics are also similar, with z being a fast variable and x a slow one (consistent with
the monotonic trait profile form in Bouin and Calvez 2014). Therefore, the Hamiltonian Hλ

involved in the limit Hamilton-Jacobi equation derived in [Turanova 2015] (whose solution
characterizes the movement of the propagation front) is obtained from the elliptic eigenvalue
problem (1.31) describing the fast equilibrium on the dispersal trait distribution for any given
spatial decay. The asymptotic definition of invaded/empty regions linked to the limit Hamil-
ton-Jacobi equation is one of the two main results of [Turanova 2015], the other one, that is
crucial to prove the convergence result, being a uniform upper bound to the trait distribution,
which is a remarkable result. It is a key argument in a later work [Bouin, Henderson, and
Ryzhik 2017b], in which the authors derive the next term in the travelling waves propagation
after the constant speed from [Bouin and Calvez 2014]. They prove and use in particular an
improved Harnack inequality for their non-local parabolic framework, which allows to shift the
analysis to an equation with a localized reaction, where the comparison principle holds.

2) Bounded space. The studies of this case [Dockery et al. 1998], [Perthame and Sougani-
dis 2016], [Lam and Lou 2017] reveal a sharp behaviour of dispersal trait distributions, con-
trasting with the previous case where space was unbounded. Indeed, the common qualitative
conclusion here is that the slowest dispersal rate is favoured and becomes eventually predomi-
nant in the whole population, which was obtained with adaptive dynamics tools when consid-
ering a finite and discrete trait space in [Dockery et al. 1998]. It is opposite to the phenomenon
discussed in the last paragraph and shown by [Bouin and Calvez 2014] and [Turanova 2015]
when the space is unbounded, namely that higher dispersal traits are favored at the front. I
mention also that the first results on (1.30) with both bounded trait interval I and bounded
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space Ω that I know of are derived in [Arnold, Desvillettes, and Prévost 2012], which shows
the existence of non-trivial steady states to a weak formulation of (1.30), thanks to a fixed
point argument on regularized equations.

The concentration phenomenon that is intuited is studied for continuously distributed
dispersal traits simultaneously and independently using a Hamilton-Jacobi approach in a small
mutational variance asymptotics in two slightly different studies [Lam and Lou 2017] (bounded
traits and non-constant growth rate) and [Perthame and Souganidis 2016] (unbounded traits,
but 1-periodic diffusion coefficient minimised at zm ∈ [0, 1[). The scaling is different from
[Bouin and Mirrahimi 2015] and [Turanova 2015], since the variance of mutation is rescaled,
and not the space variable x:⎧⎪⎪⎨⎪⎪⎩

ε2Δzn(t, x, z) + zΔxn(t, x, z) + n(t, x, z) (1− ρ(t, x)) = 0,

ρ(t, x) =
∫

I n(t, x, z′)dz′, t ≥ 0, x ∈ Ω,

n(0, x, z) = n0(x, z), x ∈ Ω, z ∈ I.

(1.32)

Consequently, the fast variable is here the space variable x and the slow one that will con-
centrate according to a constrained Hamilton Jacobi equation is the dispersal trait variable z,
as the main term u0 of the WKB ansatz uε = ε log(nε) does not see the space dependency.
The structure of the analysis is thus presenting a similar two-step limit problem with some
(mirrored) similarities with [Bouin and Mirrahimi 2015] and [Turanova 2015]. The first step
is an elliptic eigenvalue problem which characterizes the fast equilibria in space for a given
dispersal trait value. The eigenvalue defines the Hamiltonian involved in the limit Hamilton-
Jacobi equation, constrained because of the boundedness of the domains considered. The main
result of [Perthame and Souganidis 2016] is the weak convergence of nε toward the Dirac mass
centered in the slowest dispersal trait zm with a prefactor given by a local FKPP equation
(with constant diffusion with coefficient zm). [Lam and Lou 2017] provides additionally some
L∞ estimates on the convergence of nε.

I will mention also the later work of [Hao, Lam, and Lou 2019], which tackles a similar
problem, but with an additional advection term that is also influenced by the trait under
evolution alongside the diffusion coefficient. This models therefore the evolution of conditional
dispersal (in contrast to that of random dispersal, when only diffusion is considered). They
study the concentration phenomena that arise in the limit of small mutational variance thanks
to a Hamilton-Jacobi approach on a WKB ansatz obtained thanks to a Hopf-Cole transform.
One particularity is that they study the steady states in a small neighborhood of points that
satisfy particular convexity/monotony properties of the invasion fitness. They define here
this concept borrowed from adaptive dynamics by an elliptic eigenvalue problem between two
specific traits. This invasion fitness is linked to the Hamiltonian (principal eigenvalue of a
related problem) that is involved in the limit constrained Hamilton-Jacobi equation. Their
main result, following the convergence of the ansatz to the viscosity solution of the limit
constrained Hamilton-Jacobi equation, is analogous in spirit to the main result of [Lam 2019],
linking the qualitative features of steady states (concentration at the lower edge of the small
neighborhood, at an intermediate point, or at both edges of the small neighborhood) to features
of the local invasion fitness (increasing, convex, concave).

3) Unbounded space [1, +∞[, unbounded trait. In the case of both unbounded
traits and space, [Bouin, Calvez, et al. 2012] predicts using formal derivations on a Hamilton-
Jacobi approach that the average trait at the long-time propagation front increases at an
asymptotic rate linear in time (for long-time asymptotics), whereas the spatial position of
the front accelerates at a rate proportional to t

3
2 . This phenomenon of structure of dispersal
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trait by spatial position has been coined as spatial sorting, as fastest individuals (or their
descendants) get to the edge of the invasion quicker than slower ones. [Bouin, Henderson, and
Ryzhik 2017a] and [Berestycki, Mouhot, and Raoul n.d.] study two equations related to the
evolution of dispersal. The first is with a local reaction term n(t, x, z)(1−n(t, x, z)), modelling
the competition for resources among individuals both at the same location and sharing the
same dispersal trait, and the second one is with the non-local reaction term as in (1.30) (the
competition is local in space, non-local in trait). The authors of [Bouin, Henderson, and
Ryzhik 2017a] derive two results, one for each equation. In the local case, they show a precise
estimation of the long-time position of the front X(t) = 4

3 t
3
2 . To do so, they focus on the

linearized equation and make a suitable self-similar change in variables (reminiscent of the
one in Evans and Souganidis 1989) by defining

nε(t, x, z) = n

(
t

ε
,

x

ε
3
2

,
z

ε

)
. (1.33)

Next, they perform a Hopf-Cole transform uε = ε log(nε). under the change of variable (1.33),
the WKB ansatz is solution of the following equation obtained from the linearized equation

∂tuε(t, x, z) = ε (zΔxuε(t, x, z) + Δzuε(t, x, z)) + z|∇xuε|2 + |∇zuε|2. (1.34)

Since the Hamiltonian here is quite simple, they can compute explicitly the optimal paths
of the variational formula minimizing the Lagrangian action, and thus define sup-solutions to
the non-linear equation to get an upper bound. They also build sub-solutions by locally fol-
lowing the optimal paths for the linearized equation trailing just behind the front, and obtain
a matching lower bound, hence the sharp result of X(t) = 4

3 t
3
2 . With the non-local reac-

tion term however, the lack of comparison principle prevents them from using optimal paths
from the linearized equation as for the local case, as these meet the region where the popula-
tion size saturates (contradicting the fact that they are established assuming non-saturation).
Therefore, for the non-local equation, they obtain an upper bound for the prefactor of 4

3 and
a non-matching lower bound in a weak sense. I will mention that, in the additional case of
a non-local competition between traits that are in a uniform bounded range (parametrized
by A>0) modelled by the reaction term n(t, x, z)

(
1− ∫ z+A

min(1,z−A) n(t, x, z′)dz′
)
, [Berestycki,

Mouhot, and Raoul n.d.] found the same acceleration rate 4
3 t

3
2 as for the local reaction term

n(1− n), thanks to probabilistic arguments.
The last chapter in date on the accurate estimation of the rate of acceleration for asexual

population that can evolve their dispersal trait and subject to a competition for resources,
locally in space, non-local in trait, has been written recently in [Calvez, Henderson, et al.
2022]. The main result is that the prefactor to the spatial rate of acceleration for the non-local
competition is strictly lower than 4

3 , which is the analogous quantity for the localized compe-
tition (see Bouin, Henderson, and Ryzhik 2017a). This is quite surprising, since there was no
discrepancy between the local equation and the slightly less local one from [Berestycki, Mouhot,
and Raoul n.d.]. To prove their result, the authors also employ a geometric optics/Hamilton-
Jacobi approach, similarly as in [Evans and Souganidis 1989] and [Bouin, Henderson, and
Ryzhik 2017a], with the self-similar rescaling of variables (1.33). The limit Hamilton-Jacobi
equation that they consider is similar to the formal limit of (1.34), although with an additional
term for the non-local population size ρ, which they roughly approximate in their analysis with
an indicator function μ1x≤αt3/2 (with a prefactor parameter α and a level μ). They do not prove
the convergence of the WKB ansatz uε = ε log(nε) towards a viscosity solution of the limit
Hamilton-Jacobi problem. Rather, they use the variational formulation of minimization of the
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Lagrangian action on optimal paths to argue by contradiction. One of the key results is that
the variational quantity does not depend on μ if it the latter is greater than 1

2 . The Figure 3 of
[Calvez, Henderson, et al. 2022] offers a great illustration of the difference between the optimal
paths corresponding to the Lagrangian obtained from the linearized equation in the local/non-
local case in [Bouin, Henderson, and Ryzhik 2017a] and those used in [Calvez, Henderson, et
al. 2022], which bend when approaching the saturating region due to the discontinuity of the
indicator function used to approximate the non-local term ρ.

Appendix: Evolution of dispersal in adaptive dynamics The evolution of dis-
persal has also been extensively studied with the viewpoint of adaptive dynamics applied to
reaction-diffusion-advection systems (see for example Cantrell, Cosner, and Lou 2010; Lam
and Lou 2014b; Lam and Lou 2014a; Lou and Lutscher 2014; Lam, Lou, and Lutscher 2015;
Cantrell, Cosner, Lewis, et al. 2020; Hao, Lam, and Lou 2021). These can for example model
ecological populations in streams, where the flow of the water is modelled by an advection
term. The typical approach is to consider two species in competition that are differing from
one (or more) parameter, like the advection term (Cantrell, Cosner, and Lou 2010), the advec-
tion coefficent (Lam and Lou 2014b), the diffusion coefficient (Lou and Lutscher 2014), Lam
and Lou 2014a, Lam, Lou, and Lutscher 2015, Hao, Lam, and Lou 2021), or both (Cantrell,
Cosner, Lewis, et al. 2020), and analyse the existence and uniqueness of stable invasion strate-
gies. These models rely on a separation of time scales between the ecological dynamics and
the mutations’ occurrences. The models built in that framework offer a robust way to give
analytical insights on the influence of subtle parameters on the success of a given strategy,
like the boundary conditions of the spatial domain (Lou and Lutscher 2014; Lam, Lou, and
Lutscher 2015; Hao, Lam, and Lou 2021) or the spatial environmental variation (Lam and Lou
2014b; Lam and Lou 2014a). One strategy in particular is highlighted as often, but not always,
being evolutionary stable upon existence: the so-called ideal free dispersal strategy resulting in
an ideal free distribution of species, describing an equilibrium under which all individuals have
the same fitness independent of their spatial position and therefore without any net movement
of individuals. Determining the evolutionary stability of such equilibria is of sustained interest
(Cantrell, Cosner, and Lou 2010; Lam and Lou 2014b; Cantrell, Cosner, Lewis, et al. 2020).
A concluding thought is on the scope of models that assume different levels of timescales (dif-
fusion of individuals, population growth, evolution by mutation), and on the links that they
entertain with more intricate models, whose analysis they could simplify while still recovering
close results (Cantrell, Cosner, Lewis, et al. 2020).

1.2.2.4 Conclusion on asexual populations
The study of the adaptation of large asexually reproducing populations characterized by quan-
titative traits, under the combined effects of mutations, natural selection, population regulation
by competition and migration/dispersal in structured environments, has driven PDE models
to flourish in the aim of obtaining rigorous qualitative and quantitative insights. This success
is partly due to the linearity of the reproduction operators involved, especially if it is com-
bined with localness, that allows a variety of techniques to be deployed to analyse evolutionary
dynamics. One line of method, the small variance methodology, stems from the introduction
of geometric optics tools to the study of reaction-diffusion equations. It has been adapted
to analyse concentration phenomena in non-local models in various contexts that arise when
diversity introduced by reproduction is low compared to the pressure of natural selection to-
ward the fittest traits. This method, which relies on a logarithmic transform and the study
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of limit constrained Hamilton-Jacobi equations, has proved to be particularly suited to de-
rive analytical predictions of the combined dynamics of ecology/demography and evolution of
traits. It highlights and quantifies, among other features, how asexual populations can evolve
their within-population trait variance, which underlies their adaptation capacity, under the
interplay of selection, migration/dispersal and mutations.

1.2.3 Sexual populations
On the contrary to asexual reproduction, according to which a single individual passes down
all its genetic information to its offsprings (up to mutations), sexual reproduction requires the
mating of two individuals to produce offsprings, each bearing a mix of their parents information
due to segregation during meiosis. As such, whereas modelling the inheritance of continuous
traits in asexual populations involves linear operators (non-local (1.7), or local (1.8)), the
transmission of continuous traits in sexual populations relies on non-linear (often quadratic,
for the two parents), non-local (the offspring trait can be far from both parents’) and non-
monotone operators. Mathematical analysis of differential equations involving such collisional
operators is therefore quite recent and challenging, for a lot of classical tools that intervene
in the study of asexual populations (as presented in the previous section) are not suited to
handle these inherent properties of sexual reproduction operators.

Among those, this thesis limits itself to kernel-based operators, which describes the dis-
tribution of offspring traits conditional to the parental traits z1 and z2 through a kernel
K(·, z1, z2). Under the assumption of a well-mixed population (also called panmictic) where
individuals mate randomly, the latter yields that the density B[n](z) of offsprings of trait
z ∈ R

d generated in the whole population (described by the population trait distribution n)
reads

Bsex[n](z) =
∫∫

Rd×Rd
K(z, z1, z2)

n(z1) n(z2)∫
Rd n(z′)dz′ dz1 dz2. (1.35)

Throughout my PhD, to model how diversity introduced by segregation influence the spatial
eco-evo dynamics of sexually reproducing populations, I used mainly the so-called infinitesimal
model, where the kernel is a Gaussian density of fixed variance, and that I detail below.
However, I also got interested in other biological frameworks that require other kernels, like
the following which characterizes the faithful transmission of two quantitative alleles in sexually
reproducing haploid populations

K : R6 → R, ((x, y), (x1, y1), (x2, y2)) �→ 1
4

[δx=x1,y=y1 + δx=x1,y=y2 + δx=x2,y=y1 + δx=x2,y=y2 ] .

(1.36)
In all what follows, I do not consider cases of sex-differentiating selection, and therefore that
the dynamics of mating types of the system are similar, and do not need to be separately
modelled.

The infinitesimal model. The infinitesimal model is a founding cornerstone of both pop-
ulation and quantitative genetics, as it was built more than a century ago to conciliate the
Mendelian view of evolution (where adaptation comes from changes in allelic frequencies at
certain genes with discrete effects) and the Biometricians view of evolution, for which complex
continuous traits evolve gradually through time. In [Fisher 1919], Fisher considered complex
quantitative traits resulting from a very large number L of infinitesimally small additive dial-
lelic mendelian contributions (for example, ± 1√

L
). He proposed that the stochastic inheritance
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σ

σ2: segregational variance,
parameter, constant across families

Figure 1.1: Illustration of the trait inheritance process according to the infinitesimal model.

of such traits occurs with a within-family variance that can asymptotically (L→∞) be con-
sidered as constant across time and families. Half a century later, in the spirit of a central
limit theorem, first Bulmer (Bulmer 1971) and next Lange (Lange 1978) proposed that the
within-family distribution of a complex polygenic traits whose genetic architecture is as de-
scribed above is Gaussian centered on the mean parental trait, which is what I consider as the
classical form of the infinitesimal model (for a more complete, detailed, and accurate historical
view, see the review Turelli 2017 or the first section of Barton, Etheridge, and Véber 2017).
Reformulated, it states that an offspring trait’s variable Z deviates from the mean parental
trait according to a Gaussian law, quantifying the stochasticity of the segregation through the
parameter σ2, called the segregational variance (see Fig. 1.1 for an illustration)

Z|{Z1 = z1,Z2 = z2} ∼ z1 + z2
2

+N
(
0, σ2

)
. (1.37)
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Rigorous derivation of the infinitesimal model: [Barton, Etheridge,
and Véber 2017]

The statement of a segregational variance that is constant across time and families might seem
surprising at first glance. Indeed, in the simplest case where all the alleles are unlinked (meaning
their inheritance is independent of other alleles’s) in a haploid population (only one copy of
each gene per individual), the passing down of genotypes from two parents to their offspring
introduces stochasticity, as each offspring’s locus can receive either of its parents’ allele at the
same locus with an equal probability of 1

2 during segregation. The within-family segregational
variance of this process is therefore directly linked to the number of differences between the
genotypes of the two parents and the variance at each locus (in the example above, the variance

at each locus is
(

1√
L

)2
= 1

L ). In turn, the number of differences between the parents’ genotypes,
or equivalently, the number of identical alleles they share, which is averaged as the identity by
descent, depends on the genealogical lineages that led to them. In a finite population, this
within-family segregational variance is therefore inevitably eroded by inbreeding. However, in a
large well-mixed population, one might think that this erosion by inbreeding is greatly reduced
(even negligible in a certain asymptotic), hence this idea of segregational variance constant
across time and families. Nevertheless, to precise in which asymptotic this statement might
hold, one has to effectively track the building of inbreeding through time, or equivalently the
pedigree.
This has recently been done in the landmark paper [Barton, Etheridge, and Véber 2017] which
presents a rigorous derivation of the infinitesimal model. Thanks to a recently established
sophisticated version of the central limit theorem, the authors show that the error between the
within-family distribution, conditioned to knowing only the history of the parents (not their
precise traits), and the Gaussian distribution centered on the mean parental traits and with a
segregational variance eroded by inbreeding from the ancestral segregational variance V0, is at
most of order t√

L
after a generation time t (L being the number of genes that add to build

the trait). The paper also indicates that this estimation is robust to its application in various
biological settings, for example, with natural selection, or migration in a discrete heterogeneous
environment. It also seems to justify (1.37) in the asymptotic where L → ∞ (so that the
segregational variance reduces to V0(1−Fj), where Fj is the probability of identity between the
parents of the j − th individual), and then in the limit of large population (that leads formally
to Fj → 0).

31



Box 1.2.3: Link between variance at linkage equilibrium, segregational
variance and allelic effects

In [Barton, Etheridge, and Véber 2017], the ancestral segregational variance V0 is linked to
the concept of the ancestral variance at linkage equilibrium and denoted σ2

LE (also denoted
VLE , see Turelli and Barton 1994; Tufto 2000; Tufto 2001). The latter is the variance in
the ancestral population considering alleles are distributed independently between different loci
(more precisely, that the frequency of any couple of alleles in the population is the product
of the allelic frequencies); as we consider an ancestral population where alleles are randomly
distributed, the frequency of each allele at each locus is furthermore of 1

2 . Note that the variance
at linkage equilibrium in general at a given time is the sum of the variances at each locus at
that given time, so depends on the frequency of the alleles at each locus.
In this configuration, σ2

LE is then linked to the diallelic effects as the latter read ±σLE√
L

. Indeed, if
the loci are assumed unlinked, the alleles distributed at each loci according to a Bernoulli law of
parameter 1

2 , and that each individual is independent of all others, then the each individual’s trait
is distributed according to a binomial law of parameter

(
L, 1

2
)

taking values in
{
−σLE√

L
, σLE√

L

}
.

Its variance is therefore equal to L× 1
2

[(
−σLE√

L

)2
+

(
σLE√

L

)2
]

= σ2
LE , which equals the variance

in the population, as individuals are independent.
Moreover, to show that V0 = σ2

LE

2 (Turelli and Barton 1994, Barton, Etheridge, and Véber 2017),
consider the i-th and j-th individuals, and let us denote X l

i (resp. X l
j) the random variable of

their allele at locus l. Let us introduce Y l the random variable which equals X l
i or X l

j with
equal probability 1

2 (the allele inherited by their offspring). Then, as all alleles are unlinked, we
obtain for the segregational variance within the (i, j) family:

V0,i,j =
L∑

l=1
E

⎡⎣(
Y l − X l

i + X l
j

2

)2
⎤⎦ =

L∑
l=1

E

⎡⎣(
Y l − X l

i + X l
j

2

)2

1Xl
i
�=Xl

j

⎤⎦
=

L∑
l=1

E[(Y l)21Xl
i
�=Xl

j
] =

σ2
LE

L

L∑
l=1

P[X l
i �= X l

j ] =
σ2

LE

L

L∑
l=1

1
2

=
σ2

LE

2
,

where we use the fact that if X l
j = Xi

j , then Y l = Xl
i+Xl

j

2 and that (Y l)2 = σ2
LE

L (as the allelic
effects sum to 0). Therefore, as all pairs are independent, we conclude that V0 = σ2

LE

2 .

The latter (1.37) yields the following infinitesimal model BIM
σ integral operator deduced

from (1.35) with a Gaussian kernel of variance σ2

BIM
σ [n](z) =

1√
2πσ

∫∫
R×R

exp
[

z − z1+z2
2

2σ2

]2
n(z1) n(z2)∫
Rd n(z′)dz′ dz1 dz2. (1.38)

(For simplicity, I consider henceforth real-valued traits, but BIM
σ can also be defined for multi-

dimensional traits in R
d.) This integral operator can be seen as a collisional operator, and is

of great mathematical interest in its own right. I highlight here the main properties that it
had been shown to verify

1. the operator BIM
σ conserves the mass (population size) and the center of mass (mean

trait)

N :=
∫
R

n(z′)dz′ =
∫
R

BIM
σ [n](z′)dz′, z̄ =

1
N

∫
R

z′n(z′)dz′ =
1
N

∫
R

BIM
σ [n](z′)dz′.

2. any Gaussian distribution of variance 2σ2 (twice the segregational variance) is a fixed
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point of BIM
σ (Bulmer 1980). A reformulation is that such distribution are steady states

of a constant size population under random mating according to the infinitesimal model

∂tn(t, z) = BIM
σ [n](t, z)− n(t, z). (1.39)

This is in sharp contrast with the asexual reproduction operators (1.7) and (1.8).

3. similarly as for the Boltzmann operator modelling particles’ collision, which is nonex-
pansive by Tanaka’s inequality (see Villani 2008), the operator (1.39) contracts for the
quadratic Wasserstein distance W2; for two probability distributions n1 and n2 with the
same center of mass,

W2
(
BIM

σ [n1],BIM
σ [n2]

)2 ≤ 1
2

W2 (n1, n2)2 . (1.40)

A proof of that fact can be consulted in [Raoul 2017], and a counter-example where the
centers of mass differ is presented in [Calvez, Lepoutre, and Poyato 2022]. We recall that
the quadratic Wasserstein distance W2 is defined on the set of probability distributions
with finite variances as

W2(n1, n2)2 = inf
μ∈Π[n1,n2]

∫∫
Rd×Rd

|x− y|2dμ(x, y), (1.41)

where Π[n1, n2] is the subset of probability distributions with finite variance on R
d×R

d

which have marginals n1 and n2. This metric is the optimal transport metric for the
cost of the Euclidian distance (see Villani 2008 for reference), which can be illustrated
by its application on two Dirac distributions : W2(δa, δb)2 = |a− b|2 (the cost of moving
a Dirac mass between two locations is equal to the Euclidian distance between them).

4. the integral operator (1.38) can be rewritten as a double convolution

BIM
σ [n] = G0,σ2 ∗ ñ ∗ ñ

N
, (1.42)

where ñ : z �→ n(2z). This property (which implies the Gaussian fixed point one) is
practical from a numerical viewpoint, as Fast Fourier Transform algorithms can be used
instead of double sums to speed up simulations (for applications, see for example Turelli
and Barton 1994, Tufto 2000, Tufto 2001).

Because the infinitesimal model allows to reduce a priori high-dimensional genetic questions
to a one-parameter ones (the segregational variance) when studying adaptation in populations
characterized by polygenic traits, the infinitesimal model has been used in some population
genetic models to answer evolutionary questions.

These studies point to the fact that the variance in trait in a well-mixed population where
reproduction is modelled by the infinitesimal model is highly constrained by the segregational
variance, even under natural selection. [Slatkin 1970] shows that under stabilizing selection,
the variance in the population is bounded below by the segregational variance σ2 and by above
by twice the segregational variance 2σ2, bounds that both do not depend on the strength of
selection. This result aligns with the fundamental findings of [Roughgarden 1972] which shows
in an analysis using Fourier transforms that the variance in trait in sexual populations subject
to selection and competition for resources will not have the same response to selection as
asexual populations, as it is heavily influenced by the segregational variance (close to 2σ2, see
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fig. 9 of Roughgarden 1972), whereas asexual population with large initial variance can evolve
their variance to an optimal one (without mutations).

Later, other population genetic studies examine the link between multi-loci models and
the infinitesimal model, and the validity to the Gaussian approximation of breeding values
(heritable part of the trait) in the whole population, assuming constant population size (no
demographic dynamics). At this point, it must be stressed that the infinitesimal model does
not assume a within-population Gaussian distribution of trait or breeding values (rather a
within-family one), and does not lead in all generality to such distributions. However, [Turelli
and Barton 1990] shows by computing Taylor expansions that, in a homogeneous space, weak
quadratic selection on many loci of small effects leads to distributions that are approximately
Gaussian. This fact essentially translates a Quasi-Linkage-Equilibrium (QLE) state, meaning
that selection does not bias (or very little) the occurrence of any particular pair of alleles
(linkage disequilibrium). A few years later, in a homogeneous space, constant population size
multi-loci model, the same authors approximate in [Turelli and Barton 1994] the dynamics
of the mean trait and variance in trait under strong truncation selection and recombination
thanks to cumulants of the trait distribution, and indicate that they stay close to those obtained
when assuming Gaussian trait distributions, even if the skewness is away from 0.

Finally, I will mention that the infinitesimal model is also known in the field of animal
breeding as the animal model and has been widely used both on wild and domesticated animal
and plant populations in the last two decades as a base of a lot of statistical studies to separate
heritable and environmental effects (see Kruuk 2004, Hill 2014, Bernardo 2020 for reviews).

I will next detail more lengthily works in homogeneous, heterogeneous and continuous
space that study the adaptation of large sexually reproducing populations while combining
the dynamics of demography/ecology and evolution, in the aim of further delimit the scope of
my PhD.

1.2.3.1 Homogeneous space
Recently, there has been an increasing interest in analytically describing the eco-evo dynamics
of large sexual panmictic populations subject to natural selection acting on a quantitative trait
in a homogeneous space, using integro-differential equations and modelling trait inheritance
through kernels (1.35) (Calvez, Garnier, and Patout 2019, Patout 2020, Raoul 2021, Garnier
et al. 2022, Calvez, Lepoutre, and Poyato 2022, Perthame, Strugarek, and Taing 2021). The
majority focuses on modelling the influence of segregation with the infinitesimal model oper-
ator (1.39). [Calvez, Garnier, and Patout 2019], [Patout 2020], [Raoul 2021], take advantage
of the properties of contraction and of Gaussian fixed point of the infinitesimal model opera-
tor shown in the previous subsection. However, they developed different analytical methods
aimed at different asymptotics. [Calvez, Lepoutre, and Poyato 2022] employs another ap-
proach to highlight an ergodic property of (1.39) without any restricting asymptotic regime.
Finally [Perthame, Strugarek, and Taing 2021] focuses on the influence of small mutations on
asymmetrical kernels of trait transmission.

Small segregational variance asymptotics. In [Calvez, Garnier, and Patout 2019]
and [Patout 2020], the authors study the following equation:

ε2∂tñε(t, z) = B ε√
2
[ñε](t, z)−m(z)ñε(t, z), z ∈ R

d, t > 0. (1.43)

The equation (1.43) models the evolutionary dynamics of a sexual population under natural
selection affecting its mortality m, according to a quantitative trait z ∈ R

d inherited according
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to the infinitesimal model operator (1.39). They adopt a methodology of small variance close
to the one developed for asexual models (see Box Section 1.2.2.1) as they consider that the
segregational variance ε2

2 is small. Consequently, as diversity introduced by reproduction is
small, the time is rescaled to see the effect of selection on evolution (hence the ε2 factor in
front of the time derivative). I will recall in some details their approach and results, as it
shares strong links with some of my works.

Steady states of (1.43). The authors of [Calvez, Garnier, and Patout 2019] study the
solutions of (1.43) of the form eλε tnε(z). The variable nε is a distribution profile and λε ∈ R

represents a population growth rate which gives a demographic dimension to the problem
(it therefore considers (1.43) as the linearized equation of a model with a non-local competi-
tion/saturation term). They are searched as solutions of

B ε√
2
[nε](z)

nε(z)
= λε + m(z), z ∈ R

d. (1.44)

Note that the equation (1.44) highlights the fact that the reproduction term
B ε√

2
[nε](z)

nε(z) must
formally remain bounded when ε vanishes, in order to balance the r.h.s of (1.44). They adapt
the small variance methodology used in asexual studies (Section 1.2.2.1) by introducing the
following ansatz uε = u0 + ε2vε:

nε(z) =
1√
2πε

e− uε
ε2 =

1√
2πε

e− u0
ε2 −vε . (1.45)

A formal analysis of the term
B ε√

2
[nε](z)

nε(z) with the ansatz (1.45) in [Garnier et al. 2022] reveals
that, when ε vanishes, for the latter to remain bounded, u0 must formally satisfy the following
constraint:

∀z ∈ R, max
(z1,z2)

[
−

(
z − z1 + z2

2

)2
+ u0(z)− u0(z1)− u0(z2) + min u0

]
= 0. (1.46)

A quick look at (1.46) shows that the main term u0 is asymptotically characterized indepen-
dently of natural selection, as the small segregational variance formally isolates the reproduc-
tion term. As a matter of fact, it is shown that, up to additive constant, (1.46) determines
completely u0 as the quadratic function (z−z∗)2

2 , where z∗ is unknown at this stage (see Garnier
et al. 2022, which formally compares the adaptation of asexual and sexual populations to a lin-
early changing environment in the regimes of small variance, for the convex analysis arguments
that lead to this characterization). It must be emphasized that this is a crucial difference with
comparable asexual studies with the small mutational variance asymptotics (Section 1.2.2.1),
for whom the limit object u0 is viscosity solution of a constrained Hamilton-Jacobi which de-
pends directly on selection. The concentration phenomenon in sexual populations under the
infinitesimal model and the regime of small variance is highly influenced by segregation, and
not selection as for asexual models in a comparable regime. Another way to state this is to
observe that here, the variance in trait of the population is of the same order as the segre-
gational variance (ε2) whereas, in asexual models of mutation-selection balance, the variance
in trait of the population (ε) is much larger than the mutational variance (ε2), and requires
selection to be stabilized (see Box 1.2.2.1). This is qualitatively consistent with the findings of
[Roughgarden 1972] on the evolution of niche width presented earlier (see Section 1.2.3). This
implies several points:
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1. In virtue of the latter and (1.45), the profile that is under investigation in the small
variance regime is a small perturbation of a Gaussian profile.

2. The unknowns on which selection acts and upon which the analysis of [Calvez, Garnier,
and Patout 2019] is carried, are the asymptotic dominant trait z∗ and the deviation to
the limit Gaussian profile vε (the asymptotic dominant trait z∗ can be fixed to 0 up to a
translation of the selection m), which has to be controlled to confirm the main Gaussian
profile.

3. The analysis for sexual reproduction with the infinitesimal model in a regime of small
variance focuses on a higher degree of approximation than for analogous asexual models.

Following (1.45) with the identification of u0(z) = (z−z∗)2

2 leads to a reformulation problem
involving a finite-difference term instead of a Hamiltonian characteristic of asexual models in
small variance regime

exp
[
vε(z) + vε(z∗)− 2vε

(
z + z∗

2

)]
Iε(vε)(z) = λε + m(z), z ∈ R

d, (1.47)

where Iε(vε)(z) is an integral term that is shown to converge uniformly toward 1 thanks to
suitable Lipschitz estimates. Consequently, the following limit problem can be derived from
(1.47) upon convergence of vε→v and λε→λ:

exp
[
v(z) + v(z∗)− 2v

(
z + z∗

2

)]
= λ + m(z), z ∈ R

d. (1.48)

Interestingly, (1.48) identifies λ and z∗, the former as λ = 1 − m(z∗) by evaluating (1.47)
in z∗ and the latter as a critical point of m by differentiating (1.47) and evaluating in z∗.
Furthermore, it shows that the limit object v = lim

ε→0
vε can be expressed explicitly as an infinite

series by inverting the finite difference operator involved in (1.48), up to its linear part. As
linear functions are in the kernel of the finite-difference operator involved in (1.48), the linear
part of v cannot be determined from (1.48).

The main result of [Calvez, Garnier, and Patout 2019] is therefore the local existence and
uniqueness of vε solution of (1.47) (and therefore nε solution of (1.43)) thanks to a contrac-
tion-mapping fixed point theorem in a subspace of C3(Rd) (using the contractive properties
of the infinitesimal model operator on the first three derivatives of vε) and its convergence to
the limit objects previously identified (the linear part is treated separately as a by-product of
the main analysis thanks to an implicit function theorem). The local uniqueness aspect of the
result is important, as their analysis indicates that the trait distribution can concentrate at
local minima of m (provided that their level under m are not too high compared to the global
minima).

Cauchy problem of (1.43). The aim of [Patout 2020] is to study the time-marching
problem (1.43) by searching for solution of the form ñε(t, z) = e

λεt
ε nε(t, z). It relies on the

same small segregational variance framework as in [Calvez, Garnier, and Patout 2019] using
the WKB ansatz

nε(t, z) =
1√
2πε

exp
[
−(z − z∗(t))2

2ε2 − v(t, z)− ε2rε(t, z)
]

, t > 0, z ∈ R
d, (1.49)

The main result is the uniform control of order ε2 of the dynamics of the perturbation rε(t, z)
when the initial state at ε > 0 is sufficiently close to the limit solution. This requires another
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perturbative approach rather than the contraction-mapping fixed point argument which cannot
apply due to the time derivative.

The preliminary stages consists, as in [Calvez, Garnier, and Patout 2019], in identifying
the dynamics of the limit objects λ(t), z∗(t), v(t, z) defined analogously as in [Calvez, Garnier,
and Patout 2019]. Unsurprisingly, the limit equation involves a similar finite difference term
as in (1.47)

exp
[
v(t, z) + v(t, z∗(t))− 2v

(
t,

z + z∗(t)
2

)]
= λ′(t)+z∗′(t)(z−z∗(t))+m(z), z ∈ R

d, t > 0.

(1.50)
The dynamics λ′(t)+m(z∗(t)) = 1 and z∗′(t)+m′(z∗(t)) = 0 are obtained by evaluating (1.50)
in z∗(t) and differentiating (1.50) and evaluating in z∗(t), and the non-linear part of v(t, z) is
identified as an explicit infinite serie obtained by inverting the finite difference operator as for
the stationary problem above. Notice that the equation on z∗(t) is similar to the canonical
equation obtained in asexual models, as it descends the selection gradient, but here with a
constant variance. This limit analysis allows to deduce the equation verified by rε(t, z), which
is non-linear and quite involved (as the exponentiated finite difference term still appears).
Nevertheless, its linearization is informative and is at the core of the strategy to prove that rε

is bounded through a stability result:

ε2∂tr̂ε(t, z) = M(t, z)
[
2r̂ε

(
t,

z + z∗(t)
2

)
− r̂ε(t, z)− r̂ε(t, z∗(t))

]
, (1.51)

where M is a function independent of r̂ε. Therefore, the stability of the dynamics of r̂ε(t, z)
can be inferred from the spectrum of the linear operator T defined as

T (f)(t, z) = 2f

(
t,

z + z∗(t)
2

)
− f(t, z)− f(t, z∗(t)).

The first eigenvalue is 0 with multiplicity 2, associated to the dual eigenvector δz∗ (evaluation
in z∗) and δ′

z∗ (differentiating and evaluating in z∗), and therefore affecting the stability of the
affine part of rε. The affine part of rε is thus driven by slow dynamics (solution of ODE in a
comparable time scale as the macroscopic variable λ(t) and z∗(t)) compared to its non-linear
counterpart, associated to negative eigenvalues and therefore converging quickly to a bounded
value.

Wasserstein estimates under weak and compactly supported selection. In
[Raoul 2021], the author proposes a methodology different from the perturbative approach
used in [Calvez, Garnier, and Patout 2019] and [Patout 2020] to study the adaptation of
well-mixed sexually reproducing populations over time, subject to uniform competition for
resources through a non-local term and weak natural selection affecting their fecundity (and
not their mortality as in the two previously presented studies) according to a quantitative trait
z ∈ R. The inheritance of the trait is according to the infinitesimal model, but, here, the trait
transmission kernel incorporates the slight increase or decrease z �→ 1 + αa(z) due to selection
on fecundity (α, the selection strength, is a small parameter) and thus differs slightly from the
Gaussian kernel (1.39):

˜BIM
σ [n](z) =

1√
2πσ

∫∫
R×R

exp
[

z − z1+z2
2

2σ2

]2 (1 + αa(z1))n(z1) (1 + αa(z2))n(z2)∫
Rd n(z′)dz′ dz1 dz2.

(1.52)
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The non-linear non-local equation describing the eco-evo dynamics of the population reads

∂tn(t, z) = ˜BIM
σ [n](t, z)− [

∫
R

(1 + αa(z′))n(t, z′)dz′]2∫
R

n(t, z′)dz′ n(t, z). (1.53)

The main result of [Raoul 2021] is the existence and local uniqueness of a stable steady state
(1.53), which is close to Gaussian distributions of variance 2σ2, with exponential convergence
toward this steady state under some conditions. The integro-differential equation (1.53) can
asymptotically be summarized by the dynamics of the mean trait and the population size.

This result relies heavily on an extension of the Wasserstein contractive property of the
infinitesimal model operator (equivalent to (1.52) with α = 0) to when the selection strength
α is small. Recall that the contraction does not hold necessarily if the center of mass changes,
which is likely to occur with selection. The idea here is therefore to dominate the selection
by the contraction, hence the weak selection regime. More precisely, the approach used is
inspired from [Bolley, Gentil, and Guillin 2012] and provides some Wasserstein control even
in the presence of weak multiplicative selection when the distributions are uniformly bounded
away from 0. For that reason, a crucial additional assumption in [Raoul 2021] is that the
selection function a is compactly supported. Tail estimates are also derived to complete the
analysis.

Ergodic property of the infinitesimal model operator under quadratic selec-
tion Let us also mention that an ergodic property of the infinitesimal model operator (1.39)
was proved in a discrete-time model under quadratic stabilizing selection in [Calvez, Lepoutre,
and Poyato 2022], without restriction to an asymptotic regime (nor small segregational vari-
ance, nor weak selection). A thorough study of the propagation of information along the
pedigree shows that the influence of the initial state is lost rapidly, which entails exponential
convergence toward a unique steady state thanks to non-expansiveness estimates (different
from the Wasserstein metric one).

Asymmetrical sexual reproduction kernels: small mutational variance. Fi-
nally, let us mention the work of [Perthame, Strugarek, and Taing 2021] in which is analysed
the influence of asymmetrical sexual reproduction kernels on a competition-selection-mutation
model, thanks to a small variance approach. Asymmetry in sexual reproduction can for ex-
ample arise as a trade-off of evolving resistance at the expense of a loss of fertility in female
mosquitoes. Specifically, the authors consider two sorts of kernels: asymmetrical fecundity
kernels KAF

ε and asymmetrical heredity kernels KAH
ε that include non-local mutations kernels

with small variance ε (similarly as introduced by Kimura 1965 and used in asexual models
presented in Section 1.2.2.1)

KAF
ε (z, z1, z2) = B(z1)

α
( z−z2

ε , z1
)

ε
, KAH

ε (z, z1, z2) = K0(z − z1)
G

( z−z2
ε

)
ε

,

∀z1 ∈ R,

∫
R

α(x, z1) dx = 1,

∫
R

G(x)dx = 1, B ≥ 0, K0 ≥ 0.

(1.54)

Unlike the infinitesimal model operator (1.39), the asymmetrical kernels (1.54) focus on
modelling mutations on the trait to introduce diversity rather than segregation. Two types
of results are derived. The first is the existence of uniform BV-bounds on the population
sizes with both types of asymmetrical kernels (even more general ones for the asymmetrical
fecundity), but only when the selection-competition term is not trait-dependent (although
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non-local). The second one concerns the WKB ansatz obtained through the Hopf-Cole trans-
form uε = ε ln(nε). It states locally uniform Lipschitz bounds in space and time for both class
of kernels (1.54) and therefore the strong convergence of uε toward a Lipschitz limit u along
subsequences. However, the time-dependency and the lack of regularity of some of the terms
prevent to identify this limit as a viscosity solution of constrained Hamilton-Jacobi equations,
which they derive formally.

To conclude on the studies of the adaptation of large sexually reproducing populations
through integro-differential equations: different asymptotics have yielded qualitative and quan-
titative result when segregation is modelled according to the infinitesimal model operator.
However, beyond the limitations of the asymptotic regime considered, they each have their
own technical limitations. On the one hand, the perturbative approach in the small segre-
gational variance regime is highly technical, despite the limit problem being quite easy to
describe. Extensions of this method of proof to a spatial structure might thus be even more
technical, as/and the limit problem might be more intricate, despite its a priori robustness.
On the other hand, the approach using Wasserstein estimates in weak selection regime does
not look the best to handle losses of mass by selection, which would be even more non-local
with spatial structure. Finally, the study with asymmetrical kernels is inspirational to carry
analyses in homogeneous space with rather different kernels than the Gaussian one involved in
the classical version of the infinitesimal model, for example corresponding to a different genetic
architecture. This motivates a joint work with Sepideh Mirrahimi presented in Section 1.3.4.

1.2.3.2 Discrete heterogeneous space
Back-and-forth migration models. Two decades ago, a landmark paper [Ronce and
Kirkpatrick 2001] used a quantitative genetic models to describe the eco-evo adaptation of a
population in a two-patch symmetrical environment connected by constant migration, subject
to local population regulation and stabilizing selection toward local different optima. Assuming
that the two local trait distributions remain Gaussian with a constant variance, independent
of the patch, they reduced the analysis to a non-linear ODE system with four macroscopic
variables (local sizes of population and local mean traits). Even though the reproduction mode
is left unspecified, it is assumed to be sexual populations (from personal communication with
one of the authors), which is a priori consistent with fixed variance result in homogeneous
space studies (see Section 1.2.3.1). Despite the symmetry of the environment, they found
that both symmetrical and asymmetrical steady states (the latter only numerically observed)
could exist, and even co-exist, contrasting with the analytical finding of [Mirrahimi 2017] for
asexual populations. Asymmetrical situations correspond to specialist species that are mainly
adapted to one patch and does not occupy fully all the available range (when selection is strong
enough compared to migration, especially with asymmetrical initial population sizes), while
symmetrical ones correspond to generalist species which occupy the whole range of habitats
by being equally (mal)adapted to all (when selection is weak compared to migration). Their
study highlights the need to take into account the demographic feedback on evolutionary dy-
namics in discrete heterogeneous environment, as the coupled effects can result into non-trivial
dynamics, including hysteresis phenomena (coined as "migrational meltdown").

A very recent population genetic work also tracking demographic changes [Szép, Sachdeva,
and Barton 2021b] shows some interesting influences of the interplay between migration, selec-
tion and genetic drift on the patterns of local adaptation to a discrete heterogeneous environ-
ment, where local populations are also subject to regulation (competition for resources). The
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discrete heterogeneous environment is constituted by infinitely many patches all connected by
migration, each patch either belonging to a frequent first type of habitat or a rare second type
of habitat. The authors use a stochastic multi-loci model modelling the joint dynamics of
demography and alleles frequencies. More precisely, at each locus, two alleles (0 or 1) segre-
gate under local directional selection, so that individuals with alleles 1 at all loci are optimally
adapted to one habitat, whereas individual with alleles 0 are optimally adapted to the other,
and any mix is less adapted everywhere. Moreover, selection is decoupled per loci (multiplica-
tive for discrete-time model, and additive for continuous time model) and acts linearly on the
vector of allele frequencies, which simplifies the dynamics of the joint distribution. Migration
between infinitely many demes allows to average its effect, instead of tracking every exchange
between every particular pairs of demes. In complement of the stochastic model, a formal
deterministic diffusion approximation is also derived. The study highlights two qualitative
phenomena. The first occurs when selection is weak compared to the stochastic drift, which
promotes gene swamping (replacement of alleles from one habitat to another) from the com-
mon habitat onto the rare habitat. When selection is strong compared to the stochastic drift,
there exists a threshold on the migration rate above which local adaptation to the rare habitat
fails. Note that this biological framework exhibits two main differences from the one studied
in [Ronce and Kirkpatrick 2001]. Indeed, in the latter, stabilizing selection (which means it is
locally concave around optimal traits, as the optimum is reached at an intermediate trait in
the full trait range) is considered instead of directional selection (the selection is monotonic
around the optimal trait, as the optimum is reached on a boundary on the full trait range).
Moreover, the trait in [Ronce and Kirkpatrick 2001], which can be thought to be additive
w.r.t small effects loci, is nonetheless under quadratic selection, which would include non-
linear cross terms if it were to be expressed as sum of small effects loci, which is different from
the framework studided in [Szép, Sachdeva, and Barton 2021b] (additive effects of selection
w.r.t all loci, see above).

There exists other quantitative genetic models which rather keep the local subpopulations
sizes constant for analytical purposes. For instance, [Débarre, Yeaman, and Guillaume 2015]
presents a study in two parts to illustrate how patterns of local adaptation in a two-patch
environment can skew local distributions of a quantitative trait. The first part introduces a
discrete-time model with constant population sizes which highlights the role of the local skews
in trait on the differentiation between locally adapted subpopulations, in contrast with the
analogous quantity derived in [Hendry, Day, and Taylor 2001] by assuming Gaussian local trait
distributions. In the second part of their article, the authors use individual-based simulations
to investigate the influence of a major effect locus combined with 19 small effects loci to drive
the local trait distributions away from Gaussian profiles (all effects are fixed at first, and next
results from IBS with evolvable effects are shown). On the one hand, they indicate that when
all the 20 loci have small effect, local trait distributions are close to being Gaussian (when
the standard deviation at linkage equilibrium is σLE = 0.4 and the local optima ±θ = ±1)
and on the other hand, they show that if one locus has a much larger effect, then the local
distributions are more highly skewed.

One-way migration models. Other works in quantitative genetics examined the rela-
tionship between the infinitesimal model with both moment-based approaches (Tufto 2001,
Barton and Etheridge 2018) and multi-loci models (Tufto 2000, Huisman and Tufto 2012) in
one-way migration-selection in two-patches model (also called source-sink, as one patch - the
sink - only receives incomers from the other patch - the source - which is not affected by any
migrational feedback, which results in less involved systems).
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In [Tufto 2001], the author describes the equilibria of a deterministic moments-based re-
duction that results from a Gaussian approximation of the local trait distribution in the sink
to study establishment despite maladaptation from a polygenic trait, inspired by the work of
Turelli and Barton 1994 (homogeneous space) on the link between infinitesimal model and
Gaussian approximation of trait distribution. He found that multiple equilibria can coexist
when migration is small and selection strong enough, including ones with small populations
sizes (sign of maldaptation). Population size can also drop under strong migration and weak
selection if the genetic deviation of the individuals that migrate is too far from the sink
optimum.

More recently, the work of [Barton and Etheridge 2018] focuses on a similar biological
framework (establishment in a sink of locally maladapted newcomers from a source in a one-
way migration-selection model, where adaptation comes from a polygenic trait). However,
their main approach is stochastic, so it incorporates the influence of both random drift and
inbreeding to account for the erosion of the segregational variance of the infinitesimal model
in the estimation of the probability of establishment under directional selection (the selection
function is monotonic on the considered trait space). They show that the quantity of interest
is mainly influenced by the mean trait and the genetic variation in the source population (how
far a newcomer will be and how fast can it adapts). They also highlight a non-monotonic con-
vex type of behaviour w.r.t. increasing migration regarding the mean time to establishment
(fig. 4 of their article). The latter decreases when migration is below a certain threshold as
(relatively) strong enough selections favor quickly the rare fit migrants to found a successful
lineage. Conversely, the time to establishment increases on average when migration is above
a threshold, as migration holds back local adaptation by increased gene flow from the source.
They also derive a diffusion deterministic approximation ODE system on macroscopic elements
(population size, mean traits), assuming constant variance and Gaussian approximation of trait
values to study the deterministic steady states (with extensions to study how to incorporate
inbreeding, density-dependent regulation and stabilizing selection).

One can turn next to multi-loci simulations models with a one-way migration between two
patches and local stabilizing selection in each patch. [Tufto 2000] presents a discrete-time
numerical study to understand the influence of several types of Gaussian approximation of
the trait distribution in a sink (with fixed variance like at linkage equilibrium, or updated
variance) versus the infinitesimal model, with reference to a multi-loci model. The author
found that, if selection and migration are not too strong, or if the immigrants can compensate
their initial maladaptation with a large enough genetic variance σ2

LE , the model assuming nor-
mality with fixed variance (ignoring linkage disequilibrium) and the infinitesimal model are in
good agreement on the predicted mean traits and variance in trait. Relative to a multi-loci
model (1, 2 or 5 loci), the numerical recursions under the infinitesimal model show the same
pattern of agreement with the multi-loci model, except when the genetic variance is too small
to bridge the maladaptation of newcomers, or if selection and migration are both too strong
builds linkage disequilibrium in both cases. One can notice that the order of the chosen life
cycle (reproduction, migration followed by selection) might exaggerate the effect of strong
selection, as newcomers do not have chance to breed with the local population before getting
culled.

In [Huisman and Tufto 2012], a different numerical study is performed, to quantify the
consistence of the infinitesimal model with multi-loci individual-based models with unequal
allelic effects (the effective allele number indicated in the simulations are between 5 and 20)
when modelling the effects of truncation selection (all individuals with traits above a certain
threshold die) and migration from a "donor farm" to a focal wild population under stabilizing
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selection. At the beginning of the simulation, the donor farm is created as a copy of the
adapted wild population and then subjected to repeated truncation selection until the diver-
gence between the wild and farm populations reach a certain level. Then, 50 generations of
the following life cycle: migration (from the donor farm to the wild population) - reproduc-
tion/selection (fitness impacts the selection of parents) is repeated for 50 generations. The
study shows that the infinitesimal model is in very good agreement with the multi-loci ones
on the dynamics of the mean trait of the wild population. However, the variance in trait might
be overestimated with the infinitesimal model, the largest difference being when selection is
strong and migration is small, as the frequencies of alleles change and therefore the variance
at linkage equilibrium. This discrepancy decreases as the number of (effective) alleles increases.

To conclude, it seems like there is great interest on modelling the adaptation of sexual
populations characterized by a polygenic trait to a patchy environment. The one-way migration
case has produced a lot of studies, which employ formal Gaussian approximations of trait
distributions in deterministic settings, while its validity w.r.t. the deterministic infinitesimal
model (with constant segregational variance) and multi-loci simulations has been numerically
investigated. However, in a two-patch setting with back and forth migration and stabilizing
selection, some analytical questions are still to be answered. [Ronce and Kirkpatrick 2001]
shows that, in this context, the dynamics of demography coupled with evolution gives way
to non-trivial adaptation patterns, that are yet to be analytically derived. The validity of
the Gaussian approximation of local trait distributions needs to be clarified in this two-patch
setting with back and forth migration, as other numerical multi-loci studies indicate that
asymmetry in the trait distributions might be important to estimate (Yeaman and Guillaume
2009), while [Mirrahimi 2017] found that bimodal equilibria exist in asexual populations, which
violate this assumption. Moreover, the limits of the infinitesimal model w.r.t. multi-loci mod-
els in this heterogeneous environment context should be studied. All these three goals are
addressed in the two works presented in Section 1.3.1. Finally, most of the presented multi-
loci models (except Huisman and Tufto 2012) assume equal allelic effects. However, it is noted
in [Turelli 2017] that incorporating major allele in this polygenic trait, infinitesimal model
framework is of great interest, as it is hinted numerically that large effect responses can evolve
to promote local adaptation (Yeaman and Whitlock 2011). This motivates the study presented
in Section 1.3.2, conducted in collaboration with Sarah Otto and Vincent Calvez.

1.2.3.3 Continuous space
In this section, I will try to illustrate how the study of large sexual populations structured in
trait and (continuous) space is not as widely tackled as for asexual populations, while yielding
qualitatively and quantitatively different dynamics. It is in part due to the new challenges
that arise with a space and trait dependent genuine non-linearity and non-localness of the
generic reproduction operator (1.35) (except for the simplest segregation kernels) compared
to its asexual diffusion approximations counterparts (linear local (1.8) and non-local (1.8)).
In particular, the wide array of tools developed for reaction-diffusion equations (comparison/-
monotony principles, linearization, spectral problem, geometric optics approximations, to cite
a few) might either not apply or need to be adapted. As for asexual populations, I will dis-
tinguish constant space diffusion studies from those focusing on accelerating invasions due to
the evolution of dispersal.
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Constant diffusion The theoretical study of spatially distributed species’ range in a con-
tinuous environment has been attracting sustained interest from population genetic models.
In 1997, the highly influential article [Kirkpatrick and Barton 1997] focused on populations
characterized by a quantitative trait underlying local adaptation to a spatial environmental
gradient through stabilizing selection around an optimum Bx depending linearly on the space
variable (the parameter B represents the slope of the environmental gradient). Without speci-
fying explicitly whether sexual or asexual populations were considered, they derive a system of
coupled PDE of the local population size N and the mean trait z̄ of the population, assuming
that the genetic variance is fixed and that the quantitative trait is normally distributed (which
closes the following system){

∂tN(t, x) = ΔxN(t, x) + N(t, x)(1−N(t, x))− (z̄−Bx)2

2 N(t, x),
∂tz̄(t, x) = Δxz̄(t, x) + 2∂xz̄(t, x)∂x log(N(t, x)) + A(Bx− z̄(t, x))z̄(t, x).

(1.55)

Additionally to the Laplacian operator for the space diffusion, the first equation presents a
logistic growth term and a quadratic mortality term from stabilizing selection centered on the
optimal trait Bx. The second one presents the classical selection gradient with intensity A and
an additional term provoked by the gene flow following the transfer of population from regions
from high to low density 2∂xz̄(t, x)∂x log(N(t, x)). The popularity of this article also comes
from the qualitative behaviours whose conditions were obtained via numerical simulations (fig.
2). There are three types of evolutionary fates: if the slope of the environment gradient B is
small enough, the population invades the whole space, if it increases past a certain threshold
depending on A, the population stabilizes at limited range, and if the slope B is too large, it
goes extinct. The limited range scenario is somewhat reminiscent of the limited niche width
for sexual populations in [Roughgarden 1972], especially with regard to [Alfaro, Coville, and
Raoul 2013], which shows that this phenomenon does not appear in their study of asexual
populations. Finally, let us mention some extensions to this model in population genetics, like
[Polechová, Barton, and Marion 2009] that include a time-dependency in the spatial optimal
trait (modelling climate change). More than a decade later, [Mirrahimi and Raoul 2013] aimed
at deriving the macroscopic differential system studied in the very renowned paper [Kirkpatrick
and Barton 1997], that studies the spatial adaptation of species to an environmental gradient,
from a mesoscopic integro-differential equation involving a spatial version of the infinitesimal
model operator (1.39)

∂tn(t, x, z) = C

⎡⎢⎢⎢⎣
∫∫

R×R

exp
[

z− z1+z2
2

2σ2

]2

√
2πσ

n(t, x, z1) n(t, x, z2)∫
Rd n(t, x, z′)dz′ dz1 dz2 − n(t, x, v)

⎤⎥⎥⎥⎦
+ Δxn(t, x, z) +

[
1 + A− (z −Bx)2n(t, x, z)−

∫
Rd

n(t, x, z′)dz′
]

n(t, x, z)

(1.56)

This model introduces the parameter C ≥ 1, which is the ratio between reproduction rate
and growth rate. A and B share the same meaning as in (1.55). Indeed, [Mirrahimi and
Raoul 2013] formally derives (1.55) in an asymptotic regime where the reproduction rate C is
large (the segregation dominates the selection), which allows them to close the moment-based
system. They also noticed that then, the trait variance is constant and equal to the twice the
segregational variance at linkage equilibrium. Furthermore, in an additional weak selection
asymptotic (A and B small), they reduce (1.56) to a single PDE on z̄(t, x), which presents
singularities at constant trait distance from the local optimum trait. However, they show
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by extraction that there exists (non-unique) viscosity solutions to this simplified model, that
quantitatively approximates well the limited range and invasion scenario.

Moreover, notice that there is no existence or uniqueness result on solutions of (1.55),
mainly due to the gene flow term. This is in contrast with the integro-differential equation
(1.56), at least when the trait and spatial domains are compact. Indeed, the first results
regarding trait and space structured integro-differential equations modelling the interplay be-
tween dispersal by laplacian diffusion, selection/non-local competition and sexual reproduc-
tion, where the effect of segregation involves general (smooth) kernels K in (1.35), are derived
in [Prevost 2004]. Under compactness and regularity assumptions, well-posedness of strong
solutions is shown, where in particular a uniform lower bound on the initial local population
is essential for the uniqueness (unlike for asexual populations). A few years later, [Raoul 2017]
shows a rigorous asymptotic derivation of the Kirkpatrick-Barton equations (1.55) from (1.56)
in the same asymptotic of large reproduction rate as was used formally in [Mirrahimi and
Raoul 2013]. The proof involves Wasserstein estimates following the contraction (1.40) and
the maximum principle on the macroscopic parabolic system (1.55). Moreover, the author also
proves the existence and uniqueness of a solution to a macroscopic differential system which
is asymptotically close to (1.55).

I will also mention the work of [Miller and Zeng 2014], which also formally derived the
Kirkpatrick-Barton system (1.55), only with diploid asexual populations, with several assump-
tions: the quantitative trait is sum of l unlinked loci, and at each locus is assumed a continuous
distribution of alleles that is symmetrical with constant genetic variance (it extends a little a
previous assumption used for the same aim in [Barton 2001] of normal distribution at each
locus), which they link to the infinitesimal model for sexual populations. The analysis is also
placed in a weak selection, slow environmental change asymptotic (which is close to the large
reproduction rate asymptotic of [Mirrahimi and Raoul 2013] and [Raoul 2017]). Moreover,
they performed a perturbation analysis around steady states of a simplified model that only
involved the local mean trait z̄(t, x), assuming a Gaussian profile for the local distribution (this
simplified model was also shown in Kirkpatrick and Barton 1997), and obtained some stability
result. Coming back to the validity of the Kirkpatrick-Barton model for asexual populations,
it seems that it really comes down to the validity of the assumption on the allelic distribution
at each loci. I emphasize also that the limited range equilibrium is not shared by [Alfaro,
Coville, and Raoul 2013], which studies asexual populations characterized by a quantitative
trait in the same context.

Evolution of dispersal To my knowledge, contrasting with the numerous studies pre-
sented in Section 1.2.2.3, the only deterministic study that models the influence of specifically
sexual reproduction on the phenomenon of spatial sorting of dispersal trait during invasions is
the recent one [Calvez, Crevat, et al. 2020], using the infinitesimal model to model the disper-
sal trait inheritance process. Formal arguments, backed by numerical simulations, are given
that indicate that the large-time acceleration of sexual populations is significantly slower, at a
rate of order t

5
4 whereas I recall that asexual populations accelerate at a rate of order t

3
2 (see

Bouin, Henderson, and Ryzhik 2017a; Calvez, Henderson, et al. 2022). The joint work with
Florian Lavigne, presented in Section 1.3.3, aims at giving a solution to the formally derived
limit problem that provides an explicit approximation of the spatial density at large times.
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1.2.3.4 Conclusion on sexual populations.
The study of the adaptation of large sexually reproducing populations characterized by a quan-
titative trait and subject to natural selection, population regulation and migration/dispersal
is mathematically challenging. This stems from inherent features of the trait inheritance pro-
cess, which is non-linear, non-local and non-monotone, and therefore less suited to existing
analytical tools for integro/partial differential equations.

When considering a well-mixed population in a homogeneous space, several methods have
been developed, using almost exclusively the infinitesimal model to describe the process of
segregation of parental alleles. One in particular aims at studying concentration phenomena
when diversity introduced by the segregation process is low compared to the pressure of natu-
ral selection toward the fittest traits, inspired by an analogous method developed for asexual
populations. However, it requires here highly technical controls on even finer approximations
to account for the influence of natural selection, as the latter is dominated by the mixing seg-
regation process in this asymptotic. This is highlighted by the fact that the within-population
variance in large sexual populations, which is the support of the action of selection, is highly
strained by the segregation process under the infinitesimal model. One of the aims of my
PhD is to diversify the models for sexual population in homogeneous environment beyond the
infinitesimal model to account for the influence of other genetic background to quantitative
traits.

Moreover, for the study of sexual populations in spatially structured environments, existing
quantitative genetic models often rely on ad-hoc reduction to moment-based models using a
Gaussian approximation of trait distributions. One of my goals is to clarify the range of validity
of such an assumption, in particular in certain asymptotics, and derive robust quantitative
insights on the influence of sexual reproduction over the adaptation of spatially distributed
sexual populations, in heterogeneous and continuous environments.

1.3 Presentation of PhD results

1.3.1 Adaptation of sexual populations character-
ized by a quantitative polygenic trait to a
patchy environment

1.3.1.1 Main theoretical study
This project, which I published in the Journal of Mathematical Biology as sole author (Dekens
2022), has two aims relating to the adaptation of sexually reproducing populations in a discrete
heterogeneous environment. The first is to precise the range of validity of the Gaussian as-
sumption classically made in reference quantitative genetic models. The second is to complete
the analysis of the steady states encoding the local adaptation patterns of such populations.

Motivation If heterogeneous environments are ubiquitous, and therefore parts of most
ecosystems, the evolutionary patterns of local adaptation and maladaptation are not fully un-
derstood yet. Two decades ago, a landmark quantitative genetic study [Ronce and Kirkpatrick
2001] coined the term migrational meltdown to describe the surprising dynamics of the check-
erspot butterfly, which after a particularly harsh winter, switched their previously main host
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plant for a formerly pseudo-sink one, after which the population never recovered completely.
[Ronce and Kirkpatrick 2001] aims at describing these dynamics in a symmetrical two-patch
model. They specifically make a Gaussian assumption on the local trait distributions with
fixed variance to reduce the analysis to the macroscopic moment-based system, a classical
assumption in quantitative genetic models (Hendry, Day, and Taylor 2001; Tufto 2001), but
whose validity, especially in the context of heterogeneous environments, is not clear. Thanks
to this hypothesis, they analytically found a symmetrical equilibrium describing a population
that is equally adapted (or maladapted) to both habitats, characterizing a generalist species
(a species that occupies the whole available range). Moreover, bistable monomorphic asym-
metrical equilibria corresponding to the non-trivial source-sink scenario that contribute to
explain the migrational meltdown for a specialist species (a species that occupies only part
of the available range) were highlighted by means of numerical simulations, but remained
analytically elusive. Later, these asymmetrical equilibria were also found numerically in the
two-patch quantitative genetic model for asexual populations [Débarre, Ronce, and Gandon
2013] that uses adaptive dynamics tools in a limit of vanishing mutational variance. The
authors formally characterized these monomorphic asymmetrical equilibria as locally stable
singular strategies, that co-existed with a symmetrical polymorphic one. Recently, [Mirrahimi
2017] and [Mirrahimi and Gandon 2020] showed rigorously that, in asexual populations and
in the limit of vanishing mutational variance, only symmetrical equilibria, either dimorphic or
monomorphic, are stable, and do not need to be Gaussian. Note that the variances in trait
of the local subpopulations are fixed in [Ronce and Kirkpatrick 2001], but not in [Débarre,
Ronce, and Gandon 2013], [Mirrahimi 2017] and [Mirrahimi and Gandon 2020].

The first goal of this project is therefore to clarify the range of validity of the Gaussian
approximation used in [Ronce and Kirkpatrick 2001] with a two-patch model for sexually
reproducing populations explicitly encoding the effect of the segregation on the inheritance of
the quantitative trait. The second goal is to complete the analytical description of the steady
states, in the hope that it can explain the discrepancies between the aforementioned studies.

Model We study the adaptation of a sexual population in a symmetrical heterogeneous
environment where two patches are connected by back-and-forth migration at rate m, thanks
to the following integro-differential system⎧⎪⎪⎨⎪⎪⎩

ε2 ∂nε,1
∂t (t, z) = Bε(nε,1)(t, z)− g(z + 1)2nε,1(t, z)−Nε,1(t)nε,1(t, z) + m (nε,2(t, z)− nε1(t, z)) ,

ε2 ∂nε,2
∂t (t, z) = Bε(nε,2)(t, z)− g(z − 1)2nε,2(t, z)−Nε,2(t)nε,2(t, z) + m (nε,1(t, z)− nε,2(t, z)) .

(1.57)
Aligning with [Ronce and Kirkpatrick 2001], the system (1.57) models the action of quadratic
stabilizing selection toward local optima 1 and −1, with strength g, and local uniform pop-
ulation regulation by a non-local term of competition proportional to the size of the local
subpopulation Nε,i. We furthermore explicit the action of sexual reproduction on the local
trait distributions nε,1 and nε,2 thanks to the infinitesimal model operator (1.39). The latter
is expressed with a small rescaled segregational variance ε2 := σ2

θ2 , as we place our analysis
in the small segregational variance regime σ2 � θ2 where the segregational variance prior to
scaling σ2 is small compared to the heterogeneity of the environment (the difference between
the local optima) prior to scaling, measured by θ2. The time variable is rescaled accordingly,
as we expect diversity to be slow to be generated by segregation.
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Previous works (I recommend the interested reader to refer to Section 1.2.3, Sec-
tion 1.2.3.1 and Section 1.2.3.2 for further details on this paragraph.) We recall that the
infinitesimal model (Fisher 1919; Bulmer 1971; Lange 1978) relies on a Gaussian assump-
tion of the within-family trait distribution, which does not automatically imply a Gaussian
within-population trait distribution. However, in the context of the adaptation of sexual
populations to natural selection in homogeneous environment (Turelli and Barton 1990), it is
formally accepted that the Gaussian assumption on the trait distribution is valid under weak
quadratic selection regime. Several studies formally extrapolated this assumption to one-way
migration studies, where there is no demographic feedback from the sink, that only receives
migrants, to the source, that only sends migrants. In one of them, [Tufto 2001] determines
that multi-stability can arise between several co-existing equilibria. In another one, after
their main stochastic analysis, the authors of [Barton and Etheridge 2018] formally derive
deterministic approximations in the limit of large populations and examine the agreement
between stochastic models and deterministic models with a Gaussian assumption on the trait
distribution under directional and stabilizing selections.

Later studies have rigorously linked the validity of the Gaussian assumption for the within-
population trait distribution to another regime than the weak selection one: a small segrega-
tional variance regime (Calvez, Garnier, and Patout 2019, Patout 2020), using a perturbative
approach close to a main Gaussian profile to study a limit finite-difference type of equations.
Their approach is related to high-frequencies techniques from geometric optics, first adapted for
the study of reaction-diffusion equations (Freidlin 1986, Evans and Souganidis 1989), and then
to integro-differential models for quantitative genetics, mainly for asexually reproducing pop-
ulations in a limit of vanishing mutational variance (Diekmann, Jabin, et al. 2005; Perthame
and Barles 2008; Barles, Mirrahimi, and Perthame 2009; Lorz, Mirrahimi, and Perthame 2011
for the first studies). The asymptotic limit derived in the analysis for asexual populations in
homogeneous space, a constrained Hamilton-Jacobi equation, was also found and analysed in
a model for asexual populations in patchy environment in [Mirrahimi 2017], where the author
derives (among other results) all the possible steady states of the system.

Structure of the results

1. Quantifying the Gaussian assumption in the regime of small variance. I
transposed formally the framework [Calvez, Garnier, and Patout 2019] and [Patout 2020] to
the heterogeneous environment model (1.57), introducing the WKB ansatz U ε

i and its series
expansion U ε

i = ui
0 + ε2vε

i . This constrains the local trait distributions to be Gaussian at the
leading order, assuming that the arguments to control the error term vε

i of [Calvez, Garnier,
and Patout 2019] hold in the present context. This allows me to quantify the approximation
made by the Gaussian assumption and close the macroscopic moment-based system on the local
population sizes (Nε,1, Nε,2) and the local mean traits (z̄ε,1, z̄ε,2). The ODE system obtained is
equivalent under a change of variables to the one considered in [Ronce and Kirkpatrick 2001].

2. Separation of ecological and evolutionary time scales This result relates to the
convergence, when ε vanishes, of the solutions of the moment-based ODE system

(Pε)
{

ε2 dȲε
dt = G(zε, Ȳε) + ε2νN,ε(t),

dzε
dt = −2gzε + F (Ȳε) + ε2νz,ε(t).

(1.58)

In the latter, I denote Ω = (R∗
+)2 × R and the functions F : Ω → R and G : R × Ω → R

3.
Moreover, Ȳε =

(
N1,ε, N2,ε,

z̄2,ε−z̄1,ε

2ε2

)
is the slow variable in Ω and zε = z̄2,ε+z̄1,ε

2 . I prove the
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following slow-fast theorem.

Theorem. Consider the limit system

(P0)
{

G(z(t), Ȳ (t)) = 0,
dz
dt = −2gz + F (Ȳ ).

(1.59)

Then, for ε small enough, and for close enough initial conditions, the solutions of the perturbed
system (1.58) (Ȳε, zε) converge locally in time toward the solutions (Ȳ , z) of the limit system
(1.59).

3. Complete analysis of the steady states of (1.59) in the regime of small
variance. Additionally to the symmetrical equilibrium (N1, N2, z∗) = (1− g, 1− g, 0) found
in [Ronce and Kirkpatrick 2001] when selection pressure g is below the threshold 1, I show the
following result

Proposition. Under an explicit condition on the migration rate m and the selection strength
g, there exists two mirrored asymmetrical equilibria (z∗, N∗

1 , N∗
2 ) and (−z∗, N∗

2 , N∗
1 ) with 0 <

N∗
1 < N∗

2 , given by: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

N∗
1 = (1−m) + mρ− 4g ρ∗4

(ρ∗2+1)2 ,

N∗
2 = (1−m) + m

ρ∗ − 4g 1
(ρ∗2+1)2 ,

z∗ = ρ∗2−1
ρ∗2+1 �= 0,

(1.60)

where ρ∗ = y∗+
√

y∗2−4
2 and y∗

(
= ρ∗ + 1

ρ∗
)

is the only root greater than 2 of the polynomial:

S(Y ) = Y 3 +
(1− 4g)

m
Y 2 − 4g

m
Y +

4g

m
.

Conversely, if the condition is not verified, there can be no asymmetrical equilibria.

Moreover, I show that such mirrored asymmetrical equilibria are always bistable upon
existence, resulting in the loss of stability of the symmetrical equilibrium that separates them
when the latter occurs.

Comments on the results and the framework

1. Heuristics behind the quantification of the Gaussian assumption In each
equation of (1.57), the small variance regime ε2 � 1 isolates the effect of the reproduction
term, which should remain well-balanced with the others quantities involved. This constrains
heavily the local trait distributions, an effect that can be better assessed when considering
the WKB ansatz U ε

i = −ε2 log(εnε,i) (notice the different scaling with asexual studies) and its
series expansion U ε

i = ui
0 + ε2vε

i (ui
0 is a non-negative function that cancels somewhere for the

population size to remain bounded, see the third paragraph of Box 1.2.2.1. Assuming that the
framework of [Calvez, Garnier, and Patout 2019] and [Patout 2020] which controls the error
terms vε

i can be transposed here, the reproduction terms read

Bε(nε,i)
nε

(z) =
1√
πε

∫∫
R2

exp
[

1
ε2

[
−

[
z − z1 + z2

2

]2
+ u0

i (z)− u0
i (z1)− u0

i (z2)
]

+O(1)
]

dz1 dz2.
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As ε vanishes, the last double integral term diverges or vanishes unless the following constraint
is satisfied

∀z ∈ R, max
(z1,z2)

[
−

(
z − z1 + z2

2

)2
+ u0

i (z)− u0
i (z1)− u0

i (z2)
]

= 0. (1.61)

The latter has been shown in [Garnier et al. 2022] to determine u0
i as a quadratic function

(z−z∗
i )2

2 , which determines nε,i to be Gaussian of predetermined variance at the leading order,
but of undetermined mean z∗

i , which is the asymptotic dominant trait in the subpopulation i.
The latter shifts due to selection, which occurs on a slower time scale, which is why it remains
unknown at this stage where only the reproduction term is involved in the computation.

2. Behind the slow-fast analysis The slow-fast theorem relies mainly on the local
stability of the slow manifold, defined by the first line of (1.59): G(Ȳ , Z) = 0, w.r.t. the
fast variable Ȳ . The slow manifold can also be interpreted as the instantaneous ecological
equilibria on the population sizes, due to the effects of migration, mortality and growth.
Its linear stability analysis only involves the population size variables N1 and N2 and the
migration rate m, whose action on demography explicitly ensures the local stability. However,
the description of the slow manifold (solving a tangled system of two algebraic equations)
is much more involved, with potential multi-branches (although we show that such multi-
branches are not viable). I would also like to mention that this property of separation of time
scales is robust with regard to its application in non-symmetrical environments with more
habitats and more general selection functions.

3. Migration strains to monomorphism in the limit of small variance The
symbolic representation of the perturbed system (1.58) and the limit one (1.59) hides the
crucial reduction of complexity due to the separation of time scales. Indeed, if the former has
four differential equations, the latter only has two algebraic ones (the slow manifold of the
instantaneous ecological equilibria, on the limit population sizes) and the differential equation
of the evolutionary dynamics of the dominant trait z∗, driven by the balance between the
slow shift by selection and the fast demographic (ecological) equilibrium at the level z∗. The
reason why only one dominant trait z∗ appears in the limit system is because of the rapid
blending effect of the migration between patches, which can be seen by the following ODE on
the difference between the local mean traits that can be obtained from the perturbed system,
before the reduction to (1.58) and the convergence to (1.59)

ε2
d
[

z̄ε
2−z̄ε

1
2

]
dt

= −m

[
N ε

1
N ε

2
+

N ε
2

N ε
1

]
(z̄ε

2 − z̄ε
1) +O(ε2).

Consequently, the two local mean traits relax rapidly toward the single asymptotic dom-
inant trait z∗ of the monomorphic population, as the demographic blending effect of the
migration is bounded by below away from 0: 2m ≤ m

[
Nε

1
Nε

2
+ Nε

2
Nε

1

]
(and minimal when the local

subpopulations sizes coincide).

4. The symmetrical algebraic property of the steady states of the limit system
To obtain the steady states of the limit system, one has to solve a sixth order polynomial
Q ∈ R6[X] closed on the variable N∗

2
N∗

1
. However, the limit system (1.59) is symmetrical, which

reflects the symmetry of the environments (not to be confused with the symmetry of equilibria:
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asymmetrical equilibria can arise in symmetrical environments): it remains invariant under
the transformation (N∗

1 , N∗
2 , z∗) �→ (N∗

2 , N∗
1 ,−z∗):⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

[
1−N∗

1 − g(z∗ + 1)2 −m
]
N∗

1 + mN∗
2 = 0,[

1−N∗
2 − g(z∗ − 1)2 −m

]
N∗

2 + mN∗
1 = 0,

dz∗
dt = 2g

⎛⎝ N∗
2

N∗
1

− N∗
1

N∗
2

N∗
2

N∗
1

+
N∗

1
N∗

2

− z∗
⎞⎠ .

This is crucial, because it allows to define the third-order polynomial S ∈ R3[X] defined in the
proposition above such that

S

(
N∗

2
N∗

1
+

N∗
1

N∗
2

)
= Q

(
N∗

2
N∗

1

)
.

The study of the positive roots of S that are larger than 2 is still quite involved, but is handled
thanks to a monotony property.

5. Comparison with the asexual study [Mirrahimi 2017] The forced monomor-
phism in this study on sexual populations is a striking structural difference with the possibility
of dimorphism shown in [Mirrahimi 2017], established in a similar small variance approach. It
can be understood at several layers:

1. The more general one is that mutations have a spreading effect on distributions (see the
operators (1.7) and (1.8)) whereas segregation described by the infinitesimal model is
concentrating (see Section 1.2.3), adding a within-patch blending effect to the between-
patch blending effect of migration.

2. This underlies most of the results of limited range of sexual populations with the in-
finitesimal model compared to asexual ones, from the limited niche width in [Rough-
garden 1972], to the limited range equilibrium in the adaptation of sexual populations
to changing continuous environment in [Kirkpatrick and Barton 1997], [Mirrahimi and
Raoul 2013] and [Raoul 2017], which does not occur in asexual one (Alfaro, Coville, and
Raoul 2013). In the present case, the analysis shows that specialist species (which only
occupies a part of the total range accessible in the environment, corresponding to the
asymmetrical equilibria) evolve in sexual populations under the approximate same con-
ditions that would lead to generalist species by local adaptation (dimorphism) in asexual
populations (see Fig. 1.2).

3. The last layer of comparison is more technical, and relates to the relationship between
the support of trait distributions and the zeros of the WKB ansatz in the methodology
of small variance. If we assume that we do not know yet that the sexual population is
monomorphic in the limit of small variance, but that each local population is Gaussian
at the leading order, centered in z∗

i , the steady states of (1.57) can be written under
matrix form considering the series expansions of the WKB ansatz U ε

i = (z−z∗
i )2

2 + ε2vi
ε

A(z, N ε
1 , N ε

2 )

⎛⎝ 1

e
(z−z∗

1 )2−(z−z∗
2 )2

2ε2

⎞⎠ =

⎛⎝ 1

e
(z−z∗

1 )2−(z−z∗
2 )2

2ε2

⎞⎠ ·
⎛⎝1− Bε(nε,1)

nε,1
(z)

1− Bε(nε,2)
nε,2

(z)

⎞⎠
≈

ε→0

⎛⎝ 1

e
(z−z∗

1 )2−(z−z∗
2 )2

2ε2

⎞⎠ ·
⎛⎝ 1− exp

[
vε

1(z) + vε
1(z∗

1)− 2vε
1
(

z+z∗
1

2

)]
1− exp

[
vε

2(z) + vε
2(z∗

2)− 2vε
2
(

z+z∗
2

2

)]
,

⎞⎠ (1.62)
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where A(z, N ε
1 , N ε

2 ) is defined similarly as in (1.17) in [Mirrahimi 2017]. Notice the
similar structure of (1.62) before the approximation, with (1.17) in [Mirrahimi 2017].

The mixed term e
(z−z∗

1 )2−(z−z∗
2 )2

2ε2 on the leading terms in the expansion is analogous to
the term e

uε
1(z)−uε

2(z)
ε in (1.17). Both yield asymptotically that the leading terms are

the same (z∗
1 = z∗

2 and u1(z) = u2(z)), which implies that the local trait distributions
are asymptotically supported at the same points. In the sexual case, they can only
be each supported at one point (because of the mixing effect of segregation by the
infinitesimal model), which must be the same, hence the monomorphism, whereas in the
asexual case, the limit object u1 = u2 = u is not constrained to cancel only once, and
can actually cancel twice under some conditions, hence the possibility of dimorphism.
The fact that it cancels once or twice is not fixed a priori, for the analogous object in
[Mirrahimi 2017] to the finite difference terms (1.62) is at the limit the Hamiltonian term(
−|u1(z)′|2
−|u2(z)′|2

)
=

(
−|u(z)′|2
−|u(z)′|2

)
in [Mirrahimi 2017] (see (1.17)). Therefore, it is determined

by solving the constrained Hamilton-Jacobi equation on the limit u of the main terms
uε

1 and uε
2, on which the selection acts. This is very different than in (1.62), where the

limit problem, on which the selection acts, does not see the leading terms (except for the
unknown dominant trait z∗) and rather focuses on the next order terms, the correctors vε

1
and vε

2, involved in the finite difference terms, as in [Calvez, Garnier, and Patout 2019].
As the correctors have no reason to be equal here, the asymptotic characterization of the
Hamiltonian as the principal eigenvalue of A(z, N1, N2) in [Mirrahimi 2017] is lost here.
This structural discrepancy between possible dimorphic equilibria in asexual populations
and forced monomorphism can thus be read at the light of the respective influence of the
asexual reproduction operators and the infinitesimal model one on the different orders
of the series expansion of the WKB ansatz.

4. Note finally that monomorphism is only shown to be forced in the regime of small vari-
ance (for example, the relaxation of the local mean traits to the same value shown
above is really due to ε being much smaller than the migration rate m). Actually,
numerical simulations indicate that for small migration rates, dimorphism arise in sexual
populations too, as this violates the small variance regime.

6. Link with the results of [Débarre, Ronce, and Gandon 2013]. I recall that in
[Débarre, Ronce, and Gandon 2013], the authors study the steady states of a system similar to
(1.57), only for asexual populations with the diffusion operator (1.8) for modelling mutations.
They distinguish the study of monomorphic equilibria and dimorphic equilibria. The singular
monomorphic strategies zM are identified as the singular points of the selection gradient when
the mutational variance vanishes, which is thus the leading eigenvalue z �→ W (z, N1, N2) of
the same matrix A(z, N1, N2) involved in (1.17) and (1.62). This means that they search for
zM which satisfies W (zM , N1, N2) = ∂zW (zM , N1, N2) = 0. The interesting link with my
model, is that the dominant trait z∗ is also a singular point of the finite difference terms
1 − exp

[
vε

i (z) + vε
i (z∗

2)− 2vε
i

(
z+z∗

2
2

)]
involved in (1.62) (it relates to the kernel of the finite

difference operator, that is generated by δz∗ and δ′
z∗ , as explained in [Patout 2020], see in

Section 1.2.3.1). The latter is the analogous to the selection gradient (but not an eigenvalue, see
the previous comment on the link with Mirrahimi 2017). Therefore, the asymmetrical singular
strategy whose existence is hinted mostly numerically in [Débarre, Ronce, and Gandon 2013]
(they obtain an approximation for small migrations) is the asymmetrical equilibria identified
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Figure 1.2: Comparison between the monomorphic outcomes of sexual populations
(Dekens 2022, blue and green) and the dimorphic ones in asexual populations
(Mirrahimi 2017) in the limit of small variance. Notice that the blue region at the
bottom left, corresponding to the monomorphic asymmetrical equilibria (specialist species
outcomes) in the present work, almost overlaps with the parameter region where dimorphism
is the globally stable equilibrium for asexually reproducing populations (Mirrahimi 2017).
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in my work (this is made obvious from the similarities between Fig. 1.2 and the figure 4 of
Débarre, Ronce, and Gandon 2013). However, it is a priori different from the global ESS,
which we recall are defined in [Mirrahimi 2017] as a specific type of singular strategy: a global
maximum of z �→W (z, N1, N2). In particular, the analysis in [Mirrahimi 2017] shows that this
asymmetrical equilibrium is not a global ESS, and is therefore not obtainable. Nevertheless,
it is shown in the figure 2 of [Débarre, Ronce, and Gandon 2013]. This is because this figure
was computed numerically with a cut-off for small densities, and therefore does not correspond
to the asymptotic large population size. I must admit that in my explanation of this link in
the discussion section of the published paper [Dekens 2022], I misunderstood [Débarre, Ronce,
and Gandon 2013] by misreading the fact that they do not use a Gaussian assumption and
I claimed the contrary. The link with their analysis is actually more profound than that, as
shown in this comment.

7. Links with the analysis of [Calvez, Garnier, and Patout 2019], [Patout
2020]. The aforementioned studies are very technical, even though limit objects are easily
determined (see Section 1.2.3.1). Actually controlling the error terms in the present work
and thus justifying rigorously the heuristics presented in the first comment is likely to get
even more technical, because of the additional coupling of the local demographic dynamics,
which results in quite non-trivial steady states, but could probably be adapted. Instead, I rely
on the formal assumption that suitable estimates can be performed, and this allows a more
tractable framework to emerge on which to base the slow-fast analysis, which is reminiscent
of the different time scales involved in the analysis in [Patout 2020].

8. Link between the small segregational variance and the weak selection regime.
As Gaussian profiles arise at the leading order both in the small segregational variance regime
used here (σ2 � θ2), and in homogeneous environment in the weak quadratic selection regime
(see Turelli and Barton 1990), it is natural to question whether this two regimes intersect or
are the same. I address this question in the published paper [Dekens 2022], and find that
it is different. I bring here new elements, that comfort this conclusion. The definition of
weak selection in [Turelli and Barton 1990] found in formula 3.26, page 17, translates in our
parameters as gσ2 � 1 and z̄−θ

σ ≈ θ
σ of order 1. However, the last condition is precisely in

contradiction with our small segregational variance regime σ2 � θ2.

1.3.1.2 Supplementary numerical comparison with individual-
based simulations

Motivation This short numerical project was conducted using multi-loci individual-based
simulations (IBS) in order to assess to what extent the hypotheses underlying the classical
version of the infinitesimal model, i.e. a constant segregational variance across time, space
and families, are reasonably valid in a two-patch environment for large sexual populations,
with respect to the number of loci involved and the ancestral variance at linkage equilibrium.
A particular focus is put on the case where the latter is small, as this corresponds to the
asymptotic regime according to which the analysis in [Dekens 2022] was conducted.

Model This study compares simulations from two models: a discrete-time deterministic
model and a discrete-time multi-loci individual-based model.
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The discrete-time deterministic model is described by the following equations (where Δt =
tl+1 − tl = 0.1 is small)⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

n1(tl+1, z) = (1−mΔt) exp [−Δt (q1(z) + (1 + rΔt)N1(tl))] (n1(tl, z) + rΔtBσ[n1(tl, ·)](z))
+mΔt exp [−Δt (q2(z) + (1 + rΔt)N2(tl))] (n2(tl, z) + rΔtBσ[n2(tl, ·)](z)) ,

n2(tl+1, z) = (1−mΔt) exp [−Δt (q2(z) + (1 + rΔt)N2(tl))] (n2(tl, z) + rΔtBσ[n2(tl, ·)](z))
+mΔt exp [−Δt (q1(z) + (1 + rΔt)N1(tl))] (n1(tl, z) + rΔtBσ[n1(tl, ·)](z)) .

(1.63)
It corresponds to the following life cycle , implemented via a splitting scheme: reproduction
involving the infinitesimal model operator (1.39) at a rate r, followed by selection/competition
(qi(z) = g(z− θi)2 denotes the quadratic selection in habitat i with pressure g, and where the
population size in the competition term is obtained after reproduction), and finally migration
at a rate m. The segregational variance σ2 is estimated thanks to the initial segregational
variance in the IBS.

The IBS consider two local subpopulations of sexual diploid individuals characterized by
a quantitative trait with an explicit multi-loci genetic architecture. It is obtained by adding
di-allelic effects ± σLE

2
√

L
from L ∈ {10, 100, 500} unlinked loci (recall that the individuals are

diploid), with the standard deviation at linkage equilibrium σLE either small (σLE = 0.1)
or large (σLE = 1). The IBS follow the same life cycle as the deterministic model for 103

generations (of effective length Δt). They start with two locally adapted sexual diploid pop-
ulations, one of which has a reduced initial populations size modelling a catastrophic event
and resulting in an asymmetrical initial state. At the reproduction stage, all individuals find
randomly a mate in their habitat and their union produce a viable offspring with probability
rΔt. The segregational variance of each of these pairs is estimated at this stage. At the selec-
tion/competition stage, all individuals survive with a probability dependent on their trait and
the local population size exp (−Δtqi(z)) exp

(
−ΔtNi

K

)
, where K is the carrying capacity of

each patch (K = 104 is large). At the migration stage, a number of migrants is drawn in each
patch according to a Poisson law of parameter mΔt. For each of parameters, 20 replicates
simulations are run.

Previous works (I recommend the interested reader to refer to Section 1.2.3.2 for further
details on the content of this paragraph.)

The relationship between multi-loci IBS and discrete-time deterministic models has been
studied in a context of one-way migration, where a source population sends migrants in a sink
population under stabilizing selection around an optimum that differs from the source’ mean
trait, without migration in the other direction (Tufto 2000; Huisman and Tufto 2012).

In [Tufto 2000], the author compares (among others) a discrete-time deterministic model
where the reproduction stage involves the infinitesimal model, with multi-loci models, with
relatively few loci (1, 2 or 5). He found that the two are in good agreement when selection and
migration are not too strong, or if the immigrants can compensate their initial maladaptation
with a large enough variance at linkage equilibrium σ2

LE . He also performed numerical simula-
tions comparing the infinitesimal model based recursions with a model assuming normality of
the population trait distribution with fixed variance, and drew similar conclusions. Moreover,
he considered, among other values, a small variance at linkage equilibrium σ2

LE = 0.01, and
showed (fig. 2 of the article) that the trait variance in the population at equilibrium with the
infinitesimal model can be very different for σ2

LE , when migration is small, and selection very
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strong (g ∈ {4, 20, 100}. Finally, one notable difference between our studies is the life cycle
order (migration followed by selection in his case) and the generations’ time length Δt (1 in
his case).

In [Huisman and Tufto 2012], the IBS also include unequal effects between loci (5 or 20).
Their results highlight that the dynamics of the mean traits are well approximated between the
IBS and the deterministic model where segregation is modelled with the infinitesimal model.
However, they indicate that the variance in trait might be overestimated, but less so as the
number of loci increases (with fixed σ2

LE).

Results Our study focuses on three types of outcomes

1. small segregational variance, computed from the IBS

2. transient dynamics, compared between the IBS and the deterministic model (1.63).

3. qualitative final states, compared between the IBS and the deterministic model (1.63).
The study reveals that the trait range in the IBS, defined as [−σLE

√
L, σLE

√
L], and

thus depending on the number of loci L ∈ {10, 100, 500} and standard deviations at
linkage equilibrium σLE ∈ {0.1, 1}, is a crucial determinant. If the trait range extends
beyond the local optima, the IBS indicate that the mean segregational variance is ap-
proximately constant across time, space and families, and remains small over the course
of the simulations. These properties do not need to hold true if, conversely, the local
optima are beyond the trait range. Moreover, if the trait range extends beyond the local
optima, the comparison of both transient dynamics and qualitative outcomes between
the IBS and the deterministic model are in excellent agreement, and deteriorates when
it is not the case. When the local optima are just at the edge of the trait range, the
transient dynamics produced by the IBS and the deterministic model are not always in
agreement, but sufficiently so for the qualitative outcomes to be similar. When the local
optima are well beyond the trait range and particularly when selection is strong, the IBS
might lead to extinction whereas the deterministic model does not.

Comments

1. Link between the discrete-time deterministic model (1.63) and the contin-
uous-time model in [Dekens 2022] The discrete-time deterministic model (1.63) is a
discretization of the continuous-time model used in [Dekens 2022] (of which a rescaled version
is (1.57)); Precisely, it uses a splitting scheme to handle the migration events, and a Duhamel’s
integral formula for the local events on small time intervals of length Δt. The two commute
when Δt is small.

2. Proximity of transient dynamics : the comparison between the transient dynamics
of the deterministic model and the IBS is quantified thanks to the first Wasserstein distance.
For μ, ν two probability measures with finite means, the first Wasserstein distance between
them is defined as W1(μ, ν) = ‖Fμ − Fν‖L1

, where Fμ and Fν are the respective cumulative
distribution functions. This distance is preferred to the L1 norm, because it handles better
distances between measures with disjoint support (which can occur due to concentrations
around slightly different means) than the L1 norm (the distance would always be equal to 2
with disjoint support).
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3. The time length of the IBS as compared to [Barton, Etheridge, and Véber
2017] The IBS run for 103 generations of time length Δt = 0.1, so for 100 time units. In
[Barton, Etheridge, and Véber 2017], the indicated typical time below which the approximation
underlying the infinitesimal model is shown to hold is of order

√
L. Here, the 100 time units

of the IBS are well beyond this typical time for L = 10 or L = 100, in which cases significant
variations in the segregational variance across time are indeed observed in the simulations.
However, I think that here, there might be an added effect of creation of Linkage Disequilibrium
because the selection is directional in both cases, and the higher variations across time are for
high selection levels.

4. The role of stabilizing selection This criterion on the relationship between the trait
range and the local optima can be translated as the difference between directional (the local
optima are beyond the trait range) and stabilizing selection (the trait range extends beyond
the local optima). The reason for the failure of the infinitesimal model’s hypotheses of constant
segregational variance across time, space and families in large populations under directional
selection comes from the building of Linkage Disequilibrium, as individual in each habitat have
to accumulate the same alleles (either all +, or all -) to be adapted. On the contrary, under
stabilizing selection, many allelic combinations can lead to adapted individuals in each habitat,
which translates formally a state of Quasi Linkage Equilibrium.

5. Link with the approximation computed in [Sachdeva and Barton 2017]
under the hypergeometric model. In [Sachdeva and Barton 2017], the authors study
the eco-evolutionary dynamics of a haploid sexual population in a two-patch model, where
the polygenic trait which determines the degree of local adaptation also quantifies mates’
assortment. This polygenic trait results from the combined additive small diallelic effects ±γ
at L loci. Even though the added assortative mating effect differs from the framework of this
present work, one of the results presented in the equation (6) of the Appendix S1 of [Sachdeva
and Barton 2017] connects to the result presented above. Indeed, under the hypergeometric
model assumption that all allelic combinations with a given number of + alleles are equally
represented in the population and when L is assumed large, they derive an approximation of
the segregational variance V (Y, Z) between two parents with traits Y and Z:

V (Y, Z) ≈ γ2L

2
− Y Z

2L
.

Therefore, the segregational variance can be considered as independent of the family if θ2 �
γ2L2, where ±θ are the local trait optima. This exactly means that the phenotypic range
[−γL, γL] extends well beyond the local optima. In [Sachdeva and Barton 2017], the allelic
effect γ is set at

√
2
L , but I checked that this approximation holds under a more general form

for the allelic effect γ =
√

σLE
L .

5. Link with previous one-way migration works. Despite the framework presented
here being different from the ones in [Tufto 2000] and [Huisman and Tufto 2012], for it allows
migration to go back and forth, the fact that the initial populations is asymmetrical and thus
the metapopulation displays pseudo source-sink dynamics under strong selection (asymmetrical
equilibria of [Ronce and Kirkpatrick 2001] and [Dekens 2022]) makes the comparison relevant.
The results are overall relatively consistent with these studies, conditioned on the differences
in terms of number of loci (here a lot higher) and the commutativity of the different stages as
a consequence of small generation length Δt = 0.1.
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In [Tufto 2000], the latter has a significant importance, because of the succession of the
migration and selection stages, which at high selection culls automatically all the migrants
before allowing them to mate with the local population. However, the conclusion that the
infinitesimal model and the Gaussian approximation are consistent with multi-loci IBS when
the immigrants can compensate their initial maladaptation with a large enough σ2

LE (at fixed
distance between the sink’s optimum and the source’ mean trait) goes in the same direction
as my conclusion on the trait range [−σLE

√
L, σLE

√
L] extending beyond the local optima.

Besides, I would also like to address the findings of [Tufto 2000] that the variance in trait at
equilibrium is largely over σ2

LE when the latter is small (0.01), as it is not observed here. My
explanation for the discrepancy is the very strong selection levels considered (4, 20, and 100)
and the life cycle order, as described above.

As for the observation that the recursions with the infinitesimal model in [Huisman and
Tufto 2012] might overestimate the variance in trait when the difference between the sub-
populations increases (fig. 5 of their article, with 5 loci), with this discrepancy in variance
decreasing when the number of loci passes from 5 to 20 (fig. 6 of their article) aligns with our
findings. Indeed, the first effect relates directly with the trait range including or not the local
optima and the second relates to the fact that the trait range increases with the number of
loci (at fixed σLE).

1.3.2 Combining population and quantitative ge-
netic models: modelling the evolution of a
composite genetic architecture in heteroge-
neous environments

This joint project with Sally Otto and Vincent Calvez (Dekens, Otto, and Calvez 2021), ac-
cepted with minor revision in Theoretical Population Biology, introduces a new mathematical
framework that bridges population genetic and quantitative genetic models to study the in-
fluence of a polygenic quantitative background on a major effect polymorphism that underlies
local adaptation of sexual populations to a heterogeneous environment.

Motivation The debate on the genetic architecture of adaptation has been animating most
of the development of evolutionary biology. Since half a century ago, rapid progress and
popularization of genetic sequencing have been alimenting it, through for instance Genome
Wide Association Studies (GWAS), without clear-cut conclusions in whether most adaptive
responses are due to major effect genes or arise from a polygenic background, especially when
considering spatial structure (Orr 2001; Slate 2005). For example, the evolution of resistance
to pesticide BT toxin have reached different conclusions between field (major genes) and lab
experiment (polygenic, see McKenzie and Batterham 1994 and Groeters and Tabashnik 2000).
In long-term experiments, polygenic responses have been shown to evolved under directional
opposing selection (Laurie et al. 2004; Dudley et al. 2007), which conditions could arise in
patchy environments. From a theoretical viewpoint, this is reflected by the dichotomy between
population genetics and quantitative genetics. On the one hand, the adaptation of populations
to local conditions under migration due to major effect polymorphism has been investigated
in one-locus multi-allelic models (Nagylaki and Lou 2001, Nagylaki and Lou 2007) or two-
locus models (Bürger and Akerman 2011, Akerman and Bürger 2014, Geroldinger and Bürger
2014). As increasing the number of loci yields rapidly a high cost in analytical complexity,
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multi-locus models are usually restricted to consider either equal allelic effects (Lythgoe 1997,
Szép, Sachdeva, and Barton 2021b) or to asymptotic regimes of migration and selection (Bürger
2009a). On the other end of the spectrum, migration-selection quantitative genetic models do
not include additional major effect locus to the focal quantitative trait (Ronce and Kirkpatrick
2001, Hendry, Day, and Taylor 2001, Débarre, Ronce, and Gandon 2013, Débarre and Otto
2016, Dekens 2022). However, a multi-loci simulation study by [Yeaman and Whitlock 2011]
has shown that local adaptation could be underlined by tightly linked clusters of major loci
at intermediate migration rates, a genetic pattern that arises from an ancestral architecture
with only small effects thanks to mutations. Moreover, in [Débarre, Yeaman, and Guillaume
2015], the authors indicate that the presence of a major effect locus alongside 19 other smaller
effect loci can skew the local trait distributions away from Gaussian profiles, and increase
differentiation between subpopulations.

Model We consider that the focal trait ζ ∈ R, which determines the adaptation of a sexually
reproducing haploid population, is sum of two contributions z ∈ R and ±η. The variable z
represents the quantitative polygenic contribution resulting from the combined additive small
allelic effects of a large number of loci, which is inherited according to the classical version
of the infinitesimal model (with constant segregational variance σ2). The diallelic effects ±η
represents the contribution of two alleles A/a which segregate at a focal major effect locus,
which is inherited according to Mendelian laws. Given a population with trait density n of
total population size N , we denote by nA and na the trait distributions of the subpoplations
carrying respectively A and a at the major effect locus. The combined inheritance process
for offsprings born in this population with the major allele A and the quantitative trait z is
described by the following reproduction operator extending the infinitesimal model one (1.39)
(see Fig. 1.3 for an illustration)

BA
σ [nA

i , na
i ](z) =

∫
R2

1√
πσ

exp

⎡⎢⎣−
(
z − z1+z2

2

)2

σ2

⎤⎥⎦×
1

Ni

[
nA

i (z1) nA
i (z2) +

1
2

[
nA

i (z1) na
i (z2) + na

i (z1)nA
i (z2)

]]
dz1 dz2

=
∫
R2

1√
πσ

exp

⎡⎢⎣−
(
z − z1+z2

2

)2

σ2

⎤⎥⎦ nA
i (z1)

nA
i (z2) + na

i (z2)
Ni

dz1 dz2.

(1.64)
(The inheritance process for offspring born with a pair (a, z) is encoded similarly). We aim

at studying the eco-evo dynamics of a population that lives in a symmetrical heterogeneous
environment that can be described similarly as in Section 1.3.1, in the regime where the
segregational variance σ2 is small compared to θ2 the parameter measuring the difference
between the local optimal traits (or equivalently, η2, as we consider that the major alleles
effects are of the same order than the local optima). Denoting ε = σ

θ � 1 and rescaling the
system (and dropping the bold font for the rescaled variables and parameters), we therefore
study the following integro-differential system
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σ σ

σ2: segregational variance,
parameter, constant across families

Figure 1.3: Illustration of the combined inheritance of the major effect locus and a quantitative
background. The latter is inherited according to the infinitesimal model.
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ε2 ∂nA
ε,1

∂t (t, z) = BA
ε [nA

ε,1, na
ε,1](t, z)− g(z + η + 1)2 nA

ε,1(t, z)−Nε,1(t) nA
ε,1(t, z)

+m(nA
ε,2(t, z)− nA

ε1(t, z)),
ε2 ∂na

ε,1
∂t (t, z) = Ba

ε [na
ε,1, nA

ε,1](t, z)− g(z − η + 1)2 na
ε,1(t, z)−Nε,1(t) na

ε,1(t, z)
+m(na

ε,2(t, z)− na
ε1(t, z)),

ε2 ∂nA
ε,2

∂t (t, z) = BA
ε [nA

ε,2, na
ε,2](t, z)− g(z + η − 1)2 nA

ε,2(t, z)−Nε,2(t) nA
ε,2(t, z)

+m(nA
ε,1(t, z)− nA

ε2(t, z)),
ε2 ∂na

ε,2
∂t (t, z) = Ba

ε [na
ε,2, nA

ε,2](t, z)− g(z − η − 1)2 na
ε,2(t, z)−Nε,2(t) na

ε,2(t, z)
+m(na

ε,1(t, z)− na
ε2(t, z)),

(1.65)

Previous works. There exists quantitative genetic models or multi diallelic loci population
genetic models, which study the evolution of the genetic architecture in response to an abrupt
change of optimum (directional selection) in a homogeneous environment (Lande 1983; Chevin
and Hospital 2008; Vladar and Barton 2014; Jain and Stephan 2017; Höllinger, Pennings, and
Hermisson 2019), either by a genetic sweep (a major response from a single gene) or by a shift
in allelic frequencies from a polygenic background. The quantitative genetics models assume
that the polygenic contribution results in a Gaussian noise centered in the major effects (Lande
1983; Chevin and Hospital 2008). The population genetic models are interested in the short-
term mutation-selection balance and show that there can exist a sharp threshold on the allelic
effect sizes at each locus, over which fixation occurs, and below which polymorphism at this
locus is maintained (Vladar and Barton 2014; Jain and Stephan 2017). This approach has
been extended to include the influence of genetic drift (Höllinger, Pennings, and Hermisson
2019). However, up to our knowledge, no such framework or study exists on the effect of local
stabilizing selection in a heterogeneous environment.
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The small variance asymptotics approach has primarily been developed for the evolution
of quantitative traits in asexual populations due to mutations (see Section 1.2.2, Diekmann,
Jabin, et al. 2005; Perthame and Barles 2008; Barles, Mirrahimi, and Perthame 2009; Lorz,
Mirrahimi, and Perthame 2011 in homogeneous environments, Mirrahimi 2017 in heteroge-
neous environments). It has recently been adapted to study the asymptotic influence of
segregation in sexual populations according to the infinitesimal model operator (1.39)(see
Section 1.2.3, Calvez, Garnier, and Patout 2019; Patout 2020 for rigorous approaches in ho-
mogeneous environments, Dekens 2022 in heterogeneous environments and Garnier et al. 2022
in changing environments). Moreover, one can notice that, upon fixation of a major allele and
loss of the other, our system (1.65) reduces to the one (1.57) whose steady states have been
determined in [Dekens 2022]. Therefore, as the outcomes of the system are known upon the
loss of polymorphism at the major effect locus, its maintenance is the main goal here.

Structure and results The main objective is to determine the influence of the poly-
genic background on the major effect polymorphism, as the latter alone (with no polygenic
background) is maintained whenever the population persists.

1. Determining the main asymptotic profiles. We consider the WKB ansatz UA
ε,i =

−ε2 log(ε nA
ε,i) and the formal Taylor expansion UA

ε,i = uA
0,i + ε2uA

ε,i. As in Section 1.3.1, the

small variance regime asymptotically isolates the reproduction terms like BA
ε [nA

ε,1,na
ε,1]

nA
ε

in each
equation of (1.65). For their contribution to remain bounded in (1.65), the main terms uA

0,i

and uA
0,i must formally verify the following constraint

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∀z ∈ R, max
[
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2
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uA
0,i(z)− (

z − z1+z2
2

)2 − uA
0,i(z1)− ua

0,i(z2)
]

= 0,

∀z ∈ R, max
[
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ua
0,i(z) − (

z − z1+z2
2

)2 − ua
0,i(z1)− ua

0,i(z2),

sup
z1,z2

ua
0,i(z)− (

z − z1+z2
2

)2 − uA
0,i(z1)− ua

0,i(z2)
]

= 0.

(C)

Our first result relates to how (C) determines uA
0,i and ua

0,i.

Proposition. Let uA
0 and ua

0 satisfying Eq. (C), positive almost everywhere and cancelling
somewhere. Then, there exists z∗ ∈ R such that:

∀z ∈ R, uA
0 (z) = ua

0(z) =
(z − z∗)2

2
. (1.66)

The allelic trait distributions nA
ε,i and na

ε,i are therefore Gaussian at the main order, cen-
tered at the same habitat-dependent trait z∗

i .

2. Slow-fast analysis. Denoting Ω =
(
R

∗
+
)4 × R

3, there exists G ∈ C∞(Ω × R) and
F ∈ C∞(Ω) such that the moment-based system deduced from (1.65) and closed thanks to
the last proposition is equivalent to the following{

ε2 dȲε
dt = G(Ȳε, Zε) +O(ε2),

dZε
dt = −2g Zε + F (Ȳε) +O(ε2),

(Pε)
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In the latter, Ȳε denotes the elements of Ω and is the fast variable. Its first four coordinates
are the local allelic subpopulations sizes Na

1,ε, Na
1,ε, NA

1,ε, NA
2,ε and the last three coordinates

δA
ε , δa

ε , δε are difference terms between the local allelic mean traits (δA
ε := zA

2,ε−zA
1,ε

2ε2 , δa
ε :=

za
2,ε−za

1,ε

2ε2 , δε := zA
2,ε+zA

1,ε−za
2,ε−za

1,ε

4ε2 ). Furthermore, the variable Zε is the mean quantitative con-

tribution in the meta-population and is the slow variable (Zε := zA
2,ε+zA

1,ε+za
2,ε+za

1,ε

4 ). We show
the following asymptotic separation of time scale

Theorem. Let (Ȳ , Z) ∈ Ω×]− 1, 1[ be a solution of the limit system{
G(Ȳ , Z) = 0,
dZ
dt = −2g Z + F (Ȳ ),

(P0)

Then, for ε small enough and for close enough initial conditions, the solutions (Ȳε, Zε) of (Pε)
converge locally in time to the solutions (Ȳ , Z) of (Pε) .

In particular, as δA
ε , δa

ε and δε converge to finite limits, the average quantitative contribu-
tions in both patches are asymptotically equal (to Z). This is due to both migration mixing
the quantitative contributions between patches, and segregation with small variance in the
infinitesimal model mixing them within patches.

3. Stability of the symmetrical polymorphic equilibrium in the limit system.
There exists a migration threshold m∗(η), such that for m ≤ m∗(η), the symmetrical polymor-
phic equilibrium is unstable at weak selection, stable at intermediate selection and unstable at
strong selection, due to the quantitative background (illustrated in Fig. 1.4). The maintenance
of the major polymorphism exhibits a non-monotonic behaviour w.r.t. increasing selection,
which is confirmed by individual-based simulations.

Comments on the results

1. Asymptotic regime The asymptotic regime σ � θ that is considered here is equiva-
lent to σ � η, since the major effects are assumed to be of the same order as the local optima.
The last regime can be interpreted as when the standard deviation at linkage equilibrium,
which is linked to the small effects constituting the polygenic background (see Box 1.2.3), is
small compared to the major locus effects.

2. Convex analysis to identify the main Gaussian profiles. The constraint (C)
relies on the control of the error terms uA

ε,i and ua
ε,i in the series expansion, for which [Calvez,

Garnier, and Patout 2019] provides an analytical framework. It arises as the asymptotic regime
isolates the reproduction terms in each equation of (1.65), which should remain bounded and
can be expressed thanks to the ansatz as follows

BA
ε (nA

ε , na
ε)(t, z)

nA
ε (z) ∝

[∫
R2

exp
(

1
ε2

[
uA

0 (z) −
(

z − z1 + z2

2

)2
− uA

0 (z1) − uA
0 (z2)

])
exp (O(1)) dz1dz2

+
∫
R2

exp
(

1
ε2

[
uA

0 (z) −
(

z − z1 + z2

2

)2
− uA

0 (z1) − ua
0(z2)

])
exp (O(1)) dz1dz2

]
.

(1.67)

The constraint (C) obtained from the latter is more involved than the analogous one when
considering only the infinitesimal model operator (1.39) (like in Garnier et al. 2022, Calvez,
Garnier, and Patout 2019, Patout 2020 or Dekens 2022), which would be obtained from (C)
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Figure 1.4: Stability region of the symmetrical polymorphic equilibrium (in yellow),
for the major effect locus η = 1

2 , when migration (y-axis) and selection (x-axis) vary. The
dashed curve represents the limit of the analogous stability region in the one-locus model
(OLM, so without the quantitative background). The red crosses indicate the parameters
used for the individual-based simulations whose results are shown in Fig. 1.5.

(a) Weak selection (b) Intermediate selection (c) Strong selection

Figure 1.5: Dynamics of the local variances p(1 − p) at the major effect locus w.r.t.
increasing selection. The variable p is the local frequency of the allele A. In all three
subfigures, the two colors correspond to the two local subpopulations, the solid curves display
the average trajectory resulting from the IBS over 20 replicate simulations, the shaded regions
indicate the confidence interval w.r.t. the quantiles 0.2 and 0.8, and the dashed lines are
the average trajectories obtained from numerical recursions of the deterministic PDE model
(1.65). The migration and selection parameters correspond to the red crosses in Fig. 1.4.
Polymorphism at the major effect locus is lost if the variance at this locus reaches 0 (fixation
of one allele in the metapopulation, loss of the other). Fig. 1.5a, Fig. 1.5b and Fig. 1.5c confirm
the theoretical finding shown in Fig. 1.4, namely that at a fixed intermediate migration level,
the major locus polymorphism is gained when increasing selection and subseqeuntly lost when
selection increases past a certain threshold.
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assuming that uA
0,i = ua

0,i (and result then in the same Gaussian profile as proven in Garnier
et al. 2022). The latter would be implied if all the suprema involved in (C) were zero. However,
only the maximum of the suprema is zero here (due to the sum of the two integrals in (1.67)),
which is a priori a lot weaker. Nevertheless, we proved than in this context it is equivalent,
thanks to a monotony property of the convex conjugates of uA

0,i and ua
0,i when passing to the

half arguments:
[
uA

0,i(z) ≥ ua
0,i(z)

]
=⇒

[
uA

0,i

(
z
2
) ≥ ua

0,i

(
z
2
)]

. We actually proved that the
result holds true when considering an arbitrary finite number of different (geno)types, under
a condition of graph connectivity (where a vertex connects two types if there is a positive
probability that an offspring generated from parents of these types belongs to either of these
types). I emphasize on the importance of this result, as it underlies the whole subsequent
analysis, by allowing to close the moment-based system. This also justifies the Gaussian
assumption of the quantitative background around the major alleles effects made in [Lande
1983]. Furthermore, the generalization could be used for studying the maintenance of major
polymorphic responses in more complex population genetic frameworks, and we include a tool-
box in our paper (Appendix A of Dekens, Otto, and Calvez 2021) to indicate how to apply it
for such purposes.

3. Behind the separation of time scales Classically, the main argument for the
separation of time scales is the stability of the slow manifold, defined by G(Ȳ , Z) = 0 (see
(P0)). I recall that G takes values in a space of dimension seven. However, G presents a
particular diagonal block structure. The four first non-linear algebraic equations only involve
the four populations sizes and the last three form a linear system in the rest of the variables,
that can always be inverted, and therefore is not an issue. We moreover show that the first block
of four non-linear algebraic equations has always a unique explicit solution, which contrasts
surprisingly with the analogous system of only two equations in [Dekens 2022], that could
have either one or three non-explicit solutions. Furthermore, to prove that the spectrum
of the Jacobian associated to G is in the open left half-plane, we use the Routh-Hurwitz
criterion, on the two blocks separately. Despite the still high dimensions involved (four and
three), the signs conditions are shown to be verified (via a symbolic computation software).
Furthermore, the separation of time scales is robust. It holds when the environment is assumed
to be asymmetrical, and under non-quadratic selections functions. It essentially relies on
the blending of the quantitative contributions due to segregation with small variance within
patches and due to migration between patches.

4. Loss of polymorphism at strong selection. The result that the fast established
polymorphism is slowly disrupted by the quantitative background under strong selection pres-
sure for local adaptation is quite surprising, and to our knowledge, undocumented. Indeed,
the intuition is that it would be most favored in this range of parameters, as the two alleles
are the "largest assistants" for the trait to reach the local optima. This phenomenon does
not occur when the major effect locus is considered alone (which is actually proven by the
stability of the slow manifold property at the level Z = 0), which means that it is due to the
quantitative background. My interpretation is that under strong selection, the quantitative
background tries locally to diverge to push the local mean traits toward the optima, while being
constrained by the concentration property of the infinitesimal model to stay similar between
the two habitats, which causes the instability. Moreover, upon loss of the polymorphism at
the major effect locus, the dynamics are described by the system involved in [Dekens 2022]
(1.57), whose outcomes are determined.
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5. Individual-based simulations (IBS). Because this phenomenon is surprising and
undocumented, we conducted multi-loci individual-based simulations to confirm it. This allows
to determine if this phenomenon of loss of polymorphism at strong selection actually occurs,
in particular before genetic drift provokes the fixation. The IBS are performed thanks to
the software SLiM (Haller and Messer 2019). The parameters for migration and selection
are indicated by the red crosses in Fig. 1.4. The simulations are in discrete time, with short
generations to approximate reasonably the continuous-time deterministic model. We show
that the IBS and the continuous-time deterministic model (1.65) are in good agreement (see
Fig. 1.5, which is obtained with 200 loci and an ancestral variance at linkage equilibrium of
0.01). The discrepancy between the IBS results and the findings of those performed in [Yeaman
and Whitlock 2011] (tightly linked loci of major effects arise under intermediate migration, with
no change in increasing selection) can have several sources. First, no mutation is considered
here, whereas all alleles in [Yeaman and Whitlock 2011] can mutate at the same rate and with
the same variance. Our framework also does not allow for recombination between alleles, which
might favor linked divergent clusters under strong selection. Moreover, this phenomenon is
not indicated in the results of IBS conducted in [Débarre, Yeaman, and Guillaume 2015], even
with a fixed major effect locus. This has two explanations. First, the value of the standard
deviation at linkage equilibrium σLE ≈ 0.44 which they consider (corresponding to 19 loci
with effects ±0.1) is not indeed particularly small compared to the considered large effects
(0.6) nor compared to the local optima (±1). Moreover, the magnitude of the migration rate
(<0.1) or the selection strength (0.04) are quite smaller. Therefore, the IBS conducted for the
present work explore a different parameter range than in [Débarre, Yeaman, and Guillaume
2015].

1.3.3 A large-time analysis of the evolution of dis-
persal during invasions with sexual reproduc-
tion

This joint project with Florian Lavigne, published in SIAM Journal of Applied Mathemat-
ics (Dekens and Lavigne 2021), focuses on quantifying the main features of the spatial trait
distribution in sexually reproducing populations produced by the evolution of dispersal along
unbounded range expansions. By doing so, it aims at proving insights on the influence of
sexual reproduction on the phenomenon of spatial sorting of the dispersal trait that arises in
this situation.

Motivation Our globalized transport and exchange network has shifted species range at
a pace and a magnitude that hardly have any historical comparison. The subsequent intro-
duction of invasive species into new territories poses a rapidly growing threat for conservation
of native species, which makes even more important to correctly assess invasions’ speed. A
number of studies have shown that range expansions, while being at first glance an ecological
issue, is also influenced by species evolution (Travis and Dytham 2002, Ronce 2007, Phillips,
Brown, and Shine 2010), through the evolution of dispersal traits, in plants (Monty and Mahy
2010; Williams, Kendall, and Levine 2016), butterflies (Saastamoinen 2008), crickets (Thomas
et al. 2001), birds (Berthouly-Salazar et al. 2012) or infamously in cane-toads (Phillips, Brown,
Webb, et al. 2006, Shine, Alford, et al. 2021). This phenomenon is coupled to the spatial sorting
of the dispersal trait, as individuals at the leading edge of the invasion both present stronger,
more enduring, larger wings/legs, and have a higher chance at surviving to reproduction due
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to the low intensity of competition, therefore transmitting this high dispersal trait to their
offspring. Spatial sorting of dispersal trait have been seen to result in an accelerating front
(Phillips, Brown, Webb, et al. 2006; Shine, Alford, et al. 2021). Quantifying this phenomenon
is highlighted in Ronce 2007 as a challenge for evolutionary models, since most traits that are
shown to influence significantly the dispersal ability are morphological polygenic quantitative
trait and that the reproduction mode (sexual, asexual) is also a factor that influences the
invasion speed (Ochocki and Miller 2017; Williams, Hufbauer, and Miller 2019).

Model We study the evolution of dispersal in a large sexually reproducing population
characterized by an unbounded by above quantitative dispersal trait z ∈ [1, +∞[, in an
unbounded continuous uni-dimensional space, through the following non-local, non-linear
reaction-diffusion PDE⎧⎪⎪⎨⎪⎪⎩

∂tn(t, x, z) = BIM
σ [n](t, x, z)− ρ(t, x)n(t, x, z) + zΔxn(t, x, z), t ≥ 0, x ∈ R, z ∈ [1, +∞[,

ρ(t, x) =
∫ +∞

1 n(t, x, z′)dz′,
n(0, x, z) = n0(x, z), x ∈ R, z ∈ [1, +∞[.

(1.68)
The sexual population is subject to uniform competition for local resources among all individ-
uals at the same spatial position x, independently of their traits, which results in the non-local
and non-linear term −ρ(t, x) n(t, x, z). Furthermore, individuals disperse randomly in space
according to their own quantitative trait z as diffusion coefficient. The final feature of the
model that remains to be specified is the reproduction operator BIM

σ , which is the infinitesimal
reproduction operator (1.39), which I recall the spatial version here:

BIM
σ [n](t, x, z) =

1√
2πσ

∫∫
R×R

exp
[(

z − z1+z2
2

)2

2σ2

]
n(t, x, z1) n(t, x, z2)∫

Rd n(t, x, z′)dz′ dz1 dz2. (1.69)

It depends on the parameter σ2, which is the within-family segregational variance, supposed
here to be constant across time, space and families. The non-linear, non-local infinitesimal
model operator encodes the transmission of the dispersal trait from one generation to the next
under local in space and time random mating, considering that an offspring’s trait typically
deviate from the mean parental trait according to a Gaussian distribution whose (segrega-
tional) variance summarizes the stochasticity of the parental allelic segregation during meiosis
(I invite the interested reader to refer to the section Section 1.2.3 for further details on the
biological assumptions of the infinitesimal model and the main properties of the operator).

Previous works. (I recommend the interested reader to refer to Section 1.2.2.3 and Sec-
tion 1.2.3.3 for a more in-depth view of the content of this paragraph). The dependence of
the diffusion coefficient on the trait under evolution z constitutes a major difference with the
archetypal reaction-diffusion of FKPP (Kolmogorov, Petrovsky, and Piskunov 1937, Fisher
1937), where there is no trait dependence (the population is a Dirac mass n = ρδz=z0 for
constant diffusion z0) and BIM

σ [n] is replaced by ρ. In this model, the constant diffusion results
in the existence of travelling waves propagating at constant speed (see for example Aronson
and Weinberger 1978; Evans and Souganidis 1989 for the local reaction version (1.6), and
Hamel and Ryzhik 2014 for the non-local reaction version (1.24)). This constant speed prop-
agation feature following constant diffusion has been proved to be robust when the reaction
term includes a trait and space-dependent local adaptation term (replacing BIM

σ [n](t, x, z) by
σ2

M Δzn(t, x, z) + a(x, z)n(t, x, z) for asexual populations (Alfaro, Coville, and Raoul 2013;
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Bouin and Mirrahimi 2015). For sexual populations, with the same reproduction operator
(1.69), there is an additional equilibrium describing a limited range expansion that can arise
when local adaptation along a spatial cline is considered (Mirrahimi and Raoul 2013; Raoul
2017), when the dispersal trait’s inheritance is modelled by the infinitesimal model reproduc-
tion operator (1.39).

In the last decade, the phenomenon of evolution of dispersal along range expansions, mod-
elled by a trait-dependent diffusion as in (1.68) has sparked a growing interest from the quan-
titative genetics/PDE community. Note that the evolution of dispersal has also raised a great
interest in adaptive dynamics (see for example Hastings 1983; Dockery et al. 1998; Cantrell,
Cosner, and Lou 2010; Lam and Lou 2014b; Lam and Lou 2014a; Lou and Lutscher 2014; Lam,
Lou, and Lutscher 2015; Cantrell, Cosner, Lewis, et al. 2020; Hao, Lam, and Lou 2021). How-
ever, existing models are almost exclusively for asexual populations, for which the non-linear,
non-local operator BIM

σ [n] is replaced in (1.68) by the linear and local operator n + σ2
M Δzn

modelling mutations on the trait with variance σ2
M . Formal computations in [Bouin, Calvez,

et al. 2012] suggested that the front of such an invasion accelerates at large times at an
asymptotic rate proportional to t

3
2 to be at a spatial position X(t) ≈ αt

3
2 . This intuition

was later rigorously confirmed in [Bouin, Henderson, and Ryzhik 2017a], [Berestycki, Mouhot,
and Raoul n.d.] and [Calvez, Henderson, et al. 2022], highlighting a surprising phenomenon of
quantitative difference on the factor α with regard to the nature of the competition term (lo-
cal: α = 4

3/non-local: α < 4
3). While [Berestycki, Mouhot, and Raoul n.d.] use a probabilistic

approach to derive their result, [Bouin, Henderson, and Ryzhik 2017a] and [Calvez, Henderson,
et al. 2022] employ a PDE approach inspired from geometric optics (Freidlin 1986, Evans and
Souganidis 1989), introducing an self-similar change of variables and a WKB ansatz to describe
the motion of the front thanks to the level-set of a Hamilton-Jacobi equation. This approach
has also been used in [Bouin and Mirrahimi 2015] in the case of constant diffusion and with a
local adaptation term, in [Bouin and Calvez 2014] and [Turanova 2015] to study the evolution
of dispersal when the trait is bounded, or when the spatial domain is bounded (Perthame and
Souganidis 2016, Lam and Lou 2017), where very different qualitative behaviours of the trait
distribution arise in both cases (see the paragraph on evolution of dispersal in Section 1.2.2.3
for more details).

In the case of sexually reproducing populations under evolution of dispersal, numerical
simulations have been conducted in [Calvez, Crevat, et al. 2020] that highlight the discrep-
ancy between the acceleration rate of asexual and sexual populations during range expansions,
using the infinitesimal model reproduction operator (1.39) to model the dispersal trait’s in-
heritance. In the large time asymptotics, we expect the dispersal trait values at the front to
become large and therefore the effective segregational variance compared to these trait values
to be small. Consequently, this work has strong ties with [Calvez, Garnier, and Patout 2019]
and [Patout 2020] that consider a similar small variance regime along with the infinitesimal
model reproduction operator to derive their result on the adaptation of sexual populations to
homogeneous space.

Main result. (Some notations of the article have been changed here for the sake of clarity
and uniformity throughout the introduction.)

The spatial trait distribution n solution of (1.68) is conjectured to be approximated for
large-time asymptotics as follows:

Conjecture. Define the front position constant

yc = 4
(

σ

3

)1/2
. (1.70)
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There exists δ0 > 0, such that, for all 0 < δ ≤ δ0, the density n at time t ≥ T (where T is
large) can be approximated by:

n(t, x, z) ≈

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
2
√

πσ
exp

[
− 1

4σ2

[
z − z̄behind(x)

]2
+ O

δ→0
(δ) + O

t→∞(1
t )

]
,

for x ≤ yc t5/4, |z − z̄behind(x)| ≤ δz̄behind(x),

exp
[(

1−
(

x
yc t5/4

)4/3
)

t

]
× 1

2
√

πσ
exp

[
− 1

4σ2

[
z − z̄ahead(t, x)

]2
+ O

δ→0

(
δ + δ2

[
x

t5/4

]8/3
)

+ O
t→∞(1

t )
]

,

for x ≥ yc t5/4, |z − z̄ahead(x)| ≤ δz̄ahead(x).
(1.71)

The approximated mean dispersal trait behind and ahead of the front are given by:⎧⎨⎩ z̄behind(x) = σ4/5(6x2)1/5, x ≤ yct
5/4,

z̄ahead(t, x) =
(
3σ2 x2

2t

)1/3
, x ≥ yct

5/4.
(1.72)

As the approximation (1.71) is only a conjecture, results from a numerical resolution of
(1.68) are also provided. It indicates that the conjectured approximation predicts reasonably
well the position of the front X(t) ≈ yct

5
4 , the position of the mean trait z̄behind behind the

front and the local constant variance behind the front.

Comments on the result. The conjectured approximation (1.71) above suggests several
qualitative and quantitative features of the spatial trait distributions. The first important
one is the spatial position of the front, which is located at X(t) ≈ 4

(
σ
3
)1/2

t
5
4 . Behind the

front, the spatial distribution is approximately Gaussian, of constant variance 2σ2 (twice the
segregational variance), and stationary, as the local mean trait z̄behind only depends on the
space variable x. Ahead of the front, the formula in (1.71) presents two multiplicative terms.
The first is the prefactor of the trait distribution which quantifies the rapid exponential de-
cay of the population ahead of the front. The second indicates that the spatial trait density
ahead of the front is also approximately Gaussian, of same variance as behind the front, but
with a different mean z̄ahead (notice though that the mean trait is continuous at the interface,
meaning that z̄behind(yct

5/4) = z̄ahead(yct
5/4)). I draw the attention on the trait intervals on

which the approximation holds, which are asymptotically large at large times and thus at large
spatial position x. Moreover, the error term ahead of the front is close to O

t→+∞(δ) near the
front, as x

t5/4 = yc = O(1) there, and the exponential decay rapidly shrinks the population size
just ahead of the front.

A striking feature of the spatial trait distribution as approximated in (1.71) and seen in
Fig. 1.6a, is the narrowness of the spatial trait distribution for sexual populations, compared
to the one for asexual reproductions Fig. 1.6b. It seems to relate to the different accounts of
the concentration properties inherent to the infinitesimal model operator, which can limit its
spatial range (which is reminiscent of the limited range equilibrium specific to the propagation
of sexual populations along a spatial cline Kirkpatrick and Barton 1997; Mirrahimi and Raoul
2013; Raoul 2017). Here, as a reminder of the same phenomenon in other contexts in [Rough-
garden 1972], [Bulmer 1980], the local within-population variance in trait is approximated by
twice the segregational variance, behind and ahead of the front. This constrained variance in
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the dispersal trait is the structural reason of why sexual populations are significantly slower
than asexual to invade with a pure spatial sorting effect under the rule of inheritance following
the infinitesimal model.

Some heuristics.

1. WKB ansatz for large time asymptotics. Our formal analysis relies first on an
self-similar change of variable, which is wired to be able to follow the accelerating front at large
times (following [Calvez, Crevat, et al. 2020], combined with a WKB ansatz (like in Evans and
Souganidis 1989; Bouin and Mirrahimi 2015; Turanova 2015; Perthame and Souganidis 2016;
Bouin, Henderson, and Ryzhik 2017a; Calvez, Henderson, et al. 2022)

n(t, x, z) = exp
[
−t u

(
log(t),

x

t5/4 ,
z

t1/2

)]
=: exp [−es u (s, y, η)] . (1.73)

The WKB ansatz u is solution of the following equation, obtained from (1.73) and (1.68)

− u(s, y, η)− ∂su(s, y, η) +
5
4

y∂yu(s, y, η) +
η

2
∂ηu(s, y, η)

= η
[
(∂yu(s, y, η))2 − e−sΔyu(s, y, η)

]
+ (I[u](s, y, η)− �u(s, y)) , (1.74)

where the term I[u](s, y, η) is the integral term that arises from the infinitesimal model oper-
ator, analogous as in [Calvez, Garnier, and Patout 2019], [Patout 2020]

I[u](s, y, η) =
es

√
2πσ2�u(s, y)∫∫

(e−s/2,∞)2
exp

⎡⎢⎣es

⎛⎜⎝−
(
η − η1+η2

2

)2

2σ2 + [u(s, y, η)− u(s, y, η1)− u(s, y, η2)]

⎞⎟⎠
⎤⎥⎦ dη1 dη2.

We are interested in the large time asymptotics, when s → +∞. Notice that the diffusion
in space yields the same term (∂yu(s, y, η))2 in (1.74) as in asexual studies, but that the
corresponding derivative w.r.t. the trait variable (coming from the diffusion in trait modelling
mutations in asexual populations) is replaced by the integral term I[u], which comes from
(1.69). Hence, the limit equation of (1.74) is not a Hamilton-Jacobi equation, and it is required
to understand the asymptotic limit of I[u] to derive it.

2. Decomposition of the main term u0 and derivation of the limit equation.
Following the heuristics given by [Garnier et al. 2022], [Calvez, Garnier, and Patout 2019] and
[Patout 2020], we first consider the following series expansion of

u(s, y, η) = u0(y, η) + e−su1(y, η) + O
s→+∞(e−2s). (1.75)

Notice that here, the segregational variance σ2 is not assumed to be small per say, but the
rescaling of the trait variable η = z√

t
implies that it becomes small compared to the trait values

as t (or s) becomes large (as the effective segregational variance for η is σ2e− s
2 ). This is why

the arguments of the above references are likely to apply.
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(a) Spatial distribution of a sexual population under evolution of dispersal at time t = 100, (numerical
resolution of (1.68), with σ2 = 1

2 ).

(b) Spatial distribution of an asexual population under evolution of dispersal at time t = 100, (nu-
merical resolution of (1.30), with σ2

M = 1
2 ). The black dashed line represents the upper trait value in

Fig. 1.6a.

Figure 1.6: Comparison of the spatial distributions of sexual (top panel) and asex-
ual (bottom panel) under evolution of dispersal. Both figures results from numerical
resolutions of respectively (1.68) and (1.30), at the same time t = 100, and starting from the
same initial conditions. Notice the difference of y-axis values for the dispersal trait between
both figures (the black dashed line in the lower figure represents the upper trait value for the
upper figure). Apart from the different spatial speed of invasions, and the difference in the
trait values, one striking difference is the variance of the local trait distributions, quite narrow
around the mean for the sexual population, and large for the asexual population.
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They yield that u0 must formally verify a constraint which determines its form as a
quadratic function in the trait variable

u0(y, η) = λ(y) +
(η − η̄(y))2

4σ2 . (1.76)

The space-dependent coefficients λ(y) and η̄(y) are unknown at this stage (like in Patout 2020)
and will be determined as solutions of the limit problem. Their significance is highlighted when
used in (1.73): λ(y) is the local spatial decay coefficient and η̄(y) is the local mean trait at
the position y. The quadratic form (1.76) yields in turn a formal limit equation with a finite-
difference term as in [Calvez, Garnier, and Patout 2019], [Patout 2020]. The limit equation of
the steady states at large times is given by

− λ(y)− (η − η̄(y))2

4σ2 +
1
2

y

[
λ′(y)− η̄′(y)

η − η̄(y)
2σ2

]
+

5
4

η
η − η̄(y)

2σ2 − η

[
λ′(y)− η̄′(y)

η − η̄(y)
2σ2

]2

+ 1{y≤yc} = exp
[
u1(y, η) + u1(y, η̄(y))− 2u1

(
y,

η + η̄(y)
2

)]
. (1.77)

The l.h.s of (1.77) is much more involved than the analogous l.h.s. of the limit equation in
[Patout 2020], and represents the interplay between the spatial sorting effect, the competi-
tion and segregation (r.h.s). One can notice that the competition is roughly approximated at
the limit by an indicator function of the invaded region and therefore ignores the non-linear
transition (similar to Calvez, Henderson, et al. 2022). The quantitative features of the spatial
trait distribution ahead of the front should therefore be read with caution.

3. Solving the limit equation (1.77) The unknown of (1.77) are the functions λ, η̄, u1
and the constant yc. The strategy is to first eliminate u1, thanks to the kernel of finite-
difference operator appearing on the r.h.s of (1.77). The latter is known from [Patout 2020]
to be of dimension two, generated by the evaluation at the local mean trait δη̄(y) and its
derivative δ ′̄

η(y). Therefore, thanks to the latter, the following closed ODE system on (λ, η̄, yc)
is obtained

∀y �= yc,

{
−λ(y) + 1

2yλ′(y)− η̄(y)(λ′(y))2 + 1{y<yc} = 1,

−1
2yη̄′(y) + 5

4 η̄(y)− 2σ2(λ′(y))2 + 2η̄(y)λ′(y)η̄′(y) = 0.
(1.78)

One of our results is the derivation of a solution of the latter (its uniqueness, though, is
yet to be proved), which underlies the main terms of (1.71):

Proposition. Let us define:

yc = 4
√

σ

3
, η̄ : y �→

⎧⎨⎩ σ4/5 61/5 y2/5, if y ≤ yc,(
3σ2

2

)1/3
y2/3, if y > yc,

and:

λ : y �→
⎧⎨⎩ 0, if y ≤ yc,(

3
σ4

)2/3
y4/3 − 1, if y > yc.

Then λ, η̄ ∈ C0(R) ∩ C1(R\{yc}) and yc, λ and η̄ are solutions of (1.78).

70



Finally, the determination of λ, η̄, yc allows to locally invert the finite-difference operator
of the r.h.s of (1.77) to obtain the corrector u1 as an infinite series ahead and behind the front,
like in [Calvez, Garnier, and Patout 2019] and [Patout 2020], up to its affine part:

u1(y, η) =
∑
k≥0

2k log
[
g

(
y, η̄(y) +

η − η̄(y)
2k

)]
+ u(y, η̄(y)) + γ(y) (η − η̄(y)) , y �= yc,

∣∣∣∣ η

η̄(y)
− 1

∣∣∣∣ ≤ δ.

(1.79)
In (1.79), g(y, η) denotes the l.h.s of (1.77) (notice that the closed ODE system (1.78) is
equivalent to g(y, η̄(y)) = 1, ∂ηg(y, η̄(y)) = 0). The control of the infinite series involved in

(1.79) on this interval leads to respective error terms O(δ2) and O
(

δ2
[

x
t5/4

]8/3
)

behind and
ahead of the front.

The affine part η �→ u(y, η̄(y)) + γ(y) (η − η̄(y)) is in the kernel of the finite-difference
operator (r.h.s of (1.77)), and thus has to be determined separately, both behind and ahead of
the front. The constant part u(y, η̄(y)) is set to − log(2

√
πσ) so that the limit local population

size is normalized. Furthermore, the linear coefficient γ is identified by formally following
analogous computations from [Calvez, Garnier, and Patout 2019] (see equations (1.10) and
(3.2) of the latter):

γ(y) =
3
4

∂3
ηu1(y, η̄(y))

∂2
ηu1(y, η̄(y))

=
1
2

∂3
ηg(y, η̄(y))

∂2
ηg(y, η̄(y))

=

⎧⎨⎩
3

2η̄(y) for y < yc,
−3

2η̄(y) for y > yc.
(1.80)

I have to admit that the linear part, which increases the error terms by an additional O(δ),
has been overlooked in the published article.

4. Conclusion of the formal analysis The proposition presented in the last paragraph
defines the rescaled front position yc, the spatial decay coefficient λ and the local mean dispersal
trait η̄ which together identify completely the main quadratic term u0 (see (1.76)) of the WKB
ansatz (1.75). The equations (1.79) and (1.80) in turn identify completely the corrector term
u1 and its magnitude has been controlled. Finally, recasting all these information in the
self-similar change of variable (1.73) yields the conjectured approximation (1.71).

1.3.4 Dirac dynamics of quantitative alleles under
general genes interactions and selection in a
sexual population

This joint project with Sepideh Mirrahimi (Dekens and Mirrahimi 2021), currently in press in
Nonlinearity , aims at proposing a PDE framework to analyse quantitatively the large-time
evolutionary trajectories of faithfully transmitted quantitative alleles in a sexually reproducing
population under general natural selection pressures.

Motivation. In the last two decades, evidences that gene expression regulation plays a
significant role in the adaptation of species have been mounting, confirming intuition of the
second half of the last century (see Romero, Ruvinsky, and Gilad 2012; Signor and Nuzhdin
2018; Anderson, Vilgalys, and Tung 2020; El Taher et al. 2021), even proposing new paradigms
(see the alternative explanation for the degeneration of the Y chromosome by regulatory
evolution in Lenormand, Fyon, et al. 2020). This calls for models that can analytically predict
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how gene regulation systems can evolve, which requires the possibility to model a broad range
of genes interactions. In particular, it requires doing so in the continuum-of-alleles framework,
as slight differences in the regulation of a gene will translate for example into a slight change
in the protein production that it controls.

The concept of continuum-of-alleles can be traced back to the seminal work of [Kimura
1965], which thought that such a situation could arise from random mutations (see also the
beginning of Section 1.2.2). In this work, he derived some approximations by assuming a
haploid population (or asexual), that all loci were unlinked, had additive effects on the trait
and that the allelic values distributions at each locus was Gaussian. An extension to diploid
sexual populations under similar assumptions of additivity between loci, and normality on
the distribution of allelic values at each locus was presented later in [Lande 1975]. Our goal
is to propose an analytical framework that bypasses these assumptions, to be able to model
evolutionary dynamics involving gene expression regulation.

Model. We study the following non-local, non-linear integro-differential equation modelling
the eco-evo dynamics of a sexually reproducing haploid population, characterized by two com-
pactly supported quantitative alleles (x, y) ∈ I × J segregating at two different unlinked loci

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ε ∂tnε(t, x, y) = r
2

[
ρY

ε (t,x) ρX
ε (t,y)

ρε(t) + nε(t, x, y)
]
− (m(x, y) + κ ρε) nε(t, x, y),

ρX
ε (t, y) =

∫
I

nε(t, x′, y) dx′, ρY
ε (t, x) =

∫
J

nε(t, x, y′) dy′, ρε(t) =
∫∫

I×J
nε(t, x′, y′) dx′ dy′,

nε(0, x, y) = n0
ε(x, y).

(P (nε))
The population is subject to a smooth, bounded lethal natural selection at a rate m(x, y) ≥ 0,
which depends on the alleles carried by each individual, and to a uniform competition for
resources with intensity proportional to the population size ρε at a rate κ > 0. Notice that the
natural selection term allows general interactions between the alleles values x and y. One idea
for a specific example that we have in mind is to model multiplicative interactions between
alleles under stabilizing selection m(x, y) = (1− xy)2 (with I = J = [−2, 2]).

The inheritance of a given pair of unlinked alleles (x, y) by an offspring is modelled
thanks to the kernel (1.36), which results in the following reproduction operator B[nε] =
1
2

[
ρY

ε (x) ρX
ε (y)

ρε
+ nε(t, x, y)

]
. Under the assumption of random mating for haploid individuals,

an offspring receives either both its alleles from one of its parents, or one from each parent,
with equal probability (we assume that no mutation occur, see Fig. 1.7 for an illustration).
Consequently, the marginals ρX

ε and ρY
ε of the trait distribution nε w.r.t. both loci appear in

the expression of B. The reproduction rate is denoted by r > 0.
The initial population density n0

ε is assumed to have a small initial variance of order ε > 0,
which would happen for example if some mutations had occured initially. This also anticipates
on a future work that will include mutations. The time is thus rescaled accordingly, as the
changes in the allelic distribution are expected to be perceived on a long time scale set by the
small parameter ε. As no mutation is considered here, we expect the population trait density
nε to keep its variance of order ε. Consequently, we introduce the WKB ansatz uε = ε log(ε nε)
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Figure 1.7: Faithful transmission of quantitative alleles at two locus in sexual haploid popula-
tions

and the corresponding equation, on which the main analysis is carried⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂t uε(t, x, y) = r
2ρε(t)

∫∫
I×J

1
ε

exp
[

uε(t, x, y′) + uε(t, x′, y)− uε(t, x, y)
ε

]
dx′ dy′

− (
m(x, y) + κ ρε(t)− r

2
)

,

uε(0, ·, ·) = ε log(εn0
ε),

ρε =
∫∫

I×J

1
ε

exp
[

uε(x′, y′)
ε

]
dx′ dy′.

(Puε)

Previous works. (I recommend to refer to Section 1.2.2.1 and Section 1.2.3.1 for more
details on the content of this paragraph.)

As mentioned above, the model we consider here (P (nε)) is related to the continuum-of-
alleles framework, to which it aims at extending the classical models (Kimura 1965; Lande 1975,
see also Burger 2000 for a review). As such, it belongs to another framework than population
genetic models, which also consider the evolution of a few loci, but with discrete effects (see
Bürger 2020 for a review of multi-loci population genetic models). However, it is notable that a
very similar equation was derived from an individual-based model in [Collet, Méléard, and Metz
2013] in the limit of large population, but for diploid populations characterized by a continuum-
of-allele segregating at one locus. Their model also involves two variables (x, y), which denote
the two copies of diploid individuals. In fact, their equation can be obtained under a change
of variable m̃ = m− r

2 as a particular case of (P (nε)), by assuming additionally that both the
selection and the initial state are symmetrical. Indeed, a diploid offspring receives one allele
from each of its parents, which is modelled by the non-linear reproduction term involving the
marginals of the trait distribution. The symmetry condition is imposed by biological reasons,
as the order of the alleles should not influence the dynamics. One can notice that under this
symmetry condition, the solution of (P (nε)) is also symmetrical at all times.

The methodology using the WKB ansatz uε = ε log(ε nε) following the assumption of
small variance in the initial population is similar in principle to the small mutational variance
developed primarily for asexual studies (Diekmann, Jabin, et al. 2005; Perthame and Barles
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2008; Barles, Mirrahimi, and Perthame 2009; Lorz, Mirrahimi, and Perthame 2011). However,
the non-linear sexual reproduction operator yields different regularity estimates compared to
the linear reproduction operator (1.8) or (1.7) (note also that no mutations is considered in our
model, which leads to a limit problem which is not the typical constrained Hamilton-Jacobi
equation obtained in the previously mentioned asexual studies).

A related small variance asymptotics is also considered in some studies on the evolution
of a quantitative trait in sexual populations (Calvez, Garnier, and Patout 2019; Patout 2020;
Perthame, Strugarek, and Taing 2021). Although the latter also models the transmission
of trait across generations with a kernel-based integral operator, the genetic architectures
underlying the quantitative trait are very different. [Calvez, Garnier, and Patout 2019] and
[Patout 2020] uses the infinitesimal model, which assumes classically that the trait results from
a large number of small discrete additive allelic effects, whereas in our case, the two allelic
effects are considered nor small nor discrete nor additive (note that other asymptotics have
also been considered with the infinitesimal model Mirrahimi and Raoul 2013; Raoul 2017;
Raoul 2021, but are not comparable to ours either). Moreover, [Perthame, Strugarek, and
Taing 2021] considers asymmetrical kernel on a single focal trait variable, whereas here, two
variables (the allelic values x and y) are mixed between individuals by reproduction.

Main result The main result relates to the dynamics of uε in the limit when ε vanishes.
It requires some typical hypothesis of regularity and boundedness on the initial distribution,
that I will not detail here. However, I will state the following fundamental hypothesis that
is both highly specific to our problem and informative on the asymptotic allelic distribution
before stating the theorem

∃ 0 < νm < νM , ∀ε, ∀(x, y) ∈ I×J, νm ≤ ν0
ε (x, y) :=

ρX,0
ε (y) ρY,0

ε (x)
n0

ε(x, y) ρ0
ε

≤ νM . (Hmultiplicative)

Theorem 1.3.1. Under some assumptions of regularity and boundedness on the initial dis-
tribution, along with Hmultiplicative, for all T > 0, uε −→

ε→0
u in C0([0, T ] × I × J) (along

subsequences). Additionally, u satisfies the following properties:

(i) u is Lipschitz continuous,

(ii) u is non-positive and satisfies an additive separation of variables property:

∀(t, x, y) ∈ [0, T ]×I×J, u(t, x, y) = uY (t, x)+uX(t, y) := max u(t, x, ·)+max u(t, ·, y).
(1.81)

Furthermore, we have at all time t: max uY (t, ·) = max uX(t, ·) = 0.

(iii) Link with the support of n. The limit measure n(t, ·, ·) is supported at the zeros of u(t, ·, ·)
for a.e. t:

supp(n(t, ·, ·)) ⊂ {(x, y) |u(t, x, y) = 0}
= {x |uY (t, x) = 0} × {y |uX(t, y) = 0}.

(iv) uX (resp. uY ) satisfies the following limit equation for a.e. y:

∀t ∈ [0, T ] uX(t, y) = uX(0, y)+ r t−κ

∫ t

0
ρ(s) ds−

∫ t

0

〈
φX(t, ·, y), m(·, y)

〉
ds, (1.82)
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where φX is the limit of nε

ρX
ε

in L∞ (
w∗ − [0, T ]× I, M1(I)

)
. Moreover, for a.e. (t,y)

supp
(
φX(t, ·, y)

)
= {x |uY (t, x) = 0}.

Comments on the result

1. Preliminary results: well-posedness and convergence of ρε. A preliminary
result to Theorem 1.3.1 is the well-posedness of (P (nε)) thanks to the Cauchy-Lipschitz theo-
rem and the weak convergence of nε toward a limit measure n (following the a priori uniform
bounds on the population size ρε). This preliminary result is however not sufficient to describe
the support of the limit measure n (i.e. the dominant alleles in the population), which is why
we study the dynamics of the ansatz uε and its convergence, which eventually informs on that
support. Moreover, the regularity of the weakly defined limit population size ρ can be im-
proved to be a BV function under an additional hypothesis on the selection m, namely that is
separates variables additively (m(x, y) = mX(y) + mY (x).) This BV regularity is reminiscent
of typical regularity of the analogous term in asexual studies, like [Perthame and Barles 2008],
[Barles, Mirrahimi, and Perthame 2009] or [Lorz, Mirrahimi, and Perthame 2011].

2. Strong convergence of uε. The strong convergence of uε toward u (along subse-
quences) relies on the Arzéla-Ascoli theorem, which is frequently used in asexual studies in
the regime of small mutational variance to show the convergence of the analogous ansatz uε

towards its limit. The derivation of uniform bounds for uε follows classical arguments using
the fact that the population size ρε is uniformly bounded from above and below at all times
(see Desvillettes et al. 2008; Perthame and Barles 2008; Barles, Mirrahimi, and Perthame 2009
for example, or also the third paragraph in Box for some details 1.2.2.1), while the uniform
Lipschitz bounds in space result from a maximum principle respected by the equation on ∇uε.
However, the derivation of uniform Lispchitz bounds in time is original, as it requires to bound
uniformly the integral reproduction term in (Puε), which is νε := ρX

ε ρY
ε

nε ρε
. The uniform bound

on νε is a key result of our analysis and uses a comparison principle. Additionally to being
instrumental in the derivation of Lipschitz bounds in time, it justifies Hmultiplicative and under-
lies the additivity of the limit u w.r.t. both variables. Another way to look at this is to state
that, for a.e. (t, y), the limit measure φX(t, ·, y) ∈ M1( (weak limit of nε

φX
ε

) is equivalent to
ρY (t, ·) ∈M1(I) (weak limit of ρY

ε ), and its support is therefore independent of y (last state-
ment of Theorem 1.3.1). Finally, the fact that the support of the limit measure n is a subset
of the zeros of the non-positive limit u is quite classical and obtained in the aforementioned
asexual studies. However, here the specific additivity property of u makes it more specific, as
the product of a subspace of I and a subspace of J .

3. Limit equations One can notice that the limit equations (1.82) on uX and uY are
quite different from the problem on uε (Puε) for ε > 0. This is because, on the contrary to
the convergence property of uε, the limit equations are instead obtained from the equations
on the marginals ρX

ε and ρY
ε{

ε ∂tρ
X
ε = (r − κ ρε) ρX

ε −
∫

I m(x, y) nε(t, x, y) dx,

ε ∂tρ
Y
ε = (r − κ ρε) ρY

ε −
∫

J m(x, y) nε(t, x, y) dy,
(1.83)
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(a) m(x, y) = (x + y)2. (b) m(x, y) = (1− xy)2.

Figure 1.8: Comparison between the trajectories of the dominant alleles (x̄(t), ȳ(t)) in
a monomorphic population obtained from numerical recursions of (P (nε)) (full lines)
and the canonical equations (dashed lines), with two different selection functions. In each
subfigure, each colored line corresponds to a trajectory departing from a uniformly randomly chosen
monomorphic initial state (the set of initial states is the same between both figures). The black curve
shows the region of steady states for each selection function: the diagonal x + y = 0 for Fig. 1.8a and
the hyperbola xy = 1 for Fig. 1.8b. These two figures highlight the importance of a model and an
analysis that can apply for various selection functions, as trajectories and steady states can be radically
different from one particular to another.

Indeed, we dispose of the strong convergence ε log
(
ρX

ε

)
→ uX

ε (subsequent to knowing that
uX and uY exist, from the first points of Theorem 1.3.1). The advantage of considering (1.83)
reports the difficulty that the reproduction integral term in (Puε) represents on the selection
terms instead. However, the limit equations (1.82) is nonetheless suffering from a lack of
regularity w.r.t the time t to be able to be differentiated into a PDE, due to the weakly
defined measures φX and φY , which are additional limit objects that are typically not present
in asexual studies mentioned above. The lack of regularity is quite handicapping to pursue
further analysis without assuming some additional regularity assumptions.

4. Monomorphic trajectories Consequently, under additional regularity assumptions,
other results related to monomorphic trajectories in the population can be derived (the support
of n(t, ·, ·) is limited to only one pair (x̄(t), ȳ(t))). If the selection is monotonic on the allelic
space (directional selection), then the limit measure is a (moving) Dirac mass at all times
(akin to [Perthame and Barles 2008]). Furthermore, when monomorphism is guaranteed,
we derive the canonical equations describing the motion of the dominant alleles (x̄(t), ȳ(t)).
We illustrate the value of these equations by explicitly deriving those trajectories for various
selection functions (in agreement with numerical resolutions), which indicates the variety of
trajectories that can be obtained depending on the selection function and the initial state (see
Fig. 1.8).
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1.3.5 Annex: Short volunteer modelling project of
the COVID-19 epidemic in Mayotte (early
May 2020)

Context and motivation of the project. On the 11th of March 2020, the World Health
Organization (WHO) assessed that the COVID-19 epidemic spreading around the globe had
reached the pandemic stage. As public policies were considering extremely stringent measures
to contain the first wave of the epidemic, modelling efforts sparked worldwide to try to provide
some guiding elements. The academic platform of MODCOV19 was created to coordinate and
support this effort in France. Through the intermediary of Amandine Véber (a member of
MODCOV19), Vincent Calvez was put in contact with Julien Balicchi of the Regional Health
Agency of Mayotte (ARS) in mid-April 2020.

The aim was to extend a first epidemiological model built in collaboration with a mathe-
matician from the Centre Universitaire de Mayotte to account for the influence of the particular
age structure of Mayotte’s population on the trajectory of the COVID-19 epidemic wave that
was unfolding there since mid-March 2020 (according to the reports at the time). Indeed,
Mayotte is one of the French departments with the highest fecundity (over 4) and with over
half of its total population under 20 (UN 2019 - per comparison, the same age class in the
whole French population represents under 25 percent of the total French population). As
studies were starting to be published showing large discrepancies of susceptibility to infec-
tion by COVID-19 with regard to age (Davies et al. 2020), it seemed relevant to include the
demographic structure of Mayotte in the existing epidemiological model, in order to assess
in particular how the reopening of school, forecasted to be on the 18th of May 2020, would
impact the course of the epidemic and translate into severe cases, as requested by the ARS.
The head of the ARS of Mayotte was forecasted to speak about the potential impact of this
measure at the French Parliament during the week of the 11th of May 2020. Mete Demircigil
and myself joined this short volunteer modelling project on the 5th of May 2020.

Description of my contribution to the project The annex at the end of my thesis
presents the part of this short project to which I dedicated myself from the 5th of May to the
11th of May 2020, under the supervision of V. Calvez and in collaboration with the ARS of
Mayotte. My first task was to dive into the scientific literature on the COVID-19 epidemic to
reduce the number of parameter values of the age-structured model to be estimated, and next
to implement this model into a Python code in order to give some quantitative predictions
about the effect of school’s reopening on the incidence level. The complementary part of the
project, conducted by M. Demircigil and V. Calvez, was to analyse the hospitalizations and
ICU data provided by the ARS of Mayotte and translate the dynamics of the age-specific
incidence output of the Python code into age-specific dynamics of hospitalizations and ICU
cases.

The numerical work that I did is based on a classical age-structured epidemiological model
(Diekmann, Heesterbeek, and Britton 2013) which takes into account the particular age struc-
ture of Mayotte’s population (UN 2019), with age-specific epidemiological parameters taken
from studies done in well-known epidemiological groups (Davies et al. 2020; Nishiura, Linton,
and Akhmetzhanov 2020; Li et al. 2020) and an age-structured contact matrix specific to May-
otte inspired by [Prem, Cook, and Jit 2017], stratified into different locations (school, home,
work, others) which allows to investigate the effects of different public policies (confinement,
school closing/reopening, remote working).
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Outcomes The report and the figures obtained by simulations presented in the annex at
the end of my PhD were provided to the ARS of Mayotte on the 11th of May 2020, as well
as projections of hospitalizations and ICU cases estimated from the incidence output from the
simulations described in this report. The head of the ARS of Mayotte communicated part
of this report to the French Parliament and the presidential office. The schools reopening in
Mayotte got delayed by a week, to the 25th of May 2020.

Conclusion I want to address a number of caveats surrounding this project, mainly due to
the short time available (a week) to develop it from scratch to results and the relative inexpe-
rience of epidemiological models that I personally had at the start (I knew of age-structured
epidemiological models without any real experience of working with them). Moreover, in May
2020, the epidemiological characteristics of the COVID-19 were not as well understood as
nowadays (two years after) and were still under intense investigation, which produced a fast-
growing vast literature that I had to navigate quickly, without prior knowledge of it. More
in-depth sensitivity analyses and a better tuned statistical inference of some parameters w.r.t
the incidence data were in particular lacking (although I investigated numerically a scenario
assuming that the incidence data provided by the ARS were only reflecting a fraction of the
total cases during the first month).

After this intense period in early May 2020, my involvement in the more global project
decreased progressively as I focused on my main PhD projects, especially after I transferred
the Python codes to Benoît Fabrèges (research engineer at the ICJ). B. Fabrèges joined the
project in June 2020 and implemented a more robust statistical inference scheme of the initial
parameters, in particular the date of the first imported case (the best estimation indicates
that it occurred in February 2020, three weeks earlier compared to the date indicated to us
by the ARS and used in this whole report). The global modelling project of the COVID-19
epidemic in Mayotte continued and was aiming at expand the model to explore among other
features the effect of spatial heterogeneity, new variants and recontaminations in collaboration
with the ARS of Mayotte. It motivated a serology study conducted by the ARS in Mayotte
during the summer of 2021. I also punctually worked again for the global project of epidemic
modelling in Mayotte in February 2021, to extend the age-structured model and the Python
code to account for the variant Beta.

1.4 Perspectives
1. Emergence of major gene responses to local maladaptation. More funda-
mentally than the maintenance of major alleles responses to maladaptation in heterogeneous
environments studied in [Dekens, Otto, and Calvez 2021], what are the biological conditions
for such strong effects to emerge in the first place? Being able to analytically predict their
rise is crucial, for example in the struggle against the evolution of resistance. In [Yeaman
and Whitlock 2011], the authors explore the emergence of tightly linked alleles with strong
effects as a consequence of an increase of migration between two habitats selecting toward
different optima, through numerical simulations. However, this phenomenon is analytically
challenging to study from the point of view of population genetic models (without strong lim-
iting assumptions). Extending the framework of [Dekens, Otto, and Calvez 2021], I plan to
build an integro-differential quantitative genetic model which enables to analytically capture
and quantify this phenomenon. This requires to study an intricate inheritance process, which
allows mutations to accumulate at a major locus with effect denoted η ∈ R while also encoding
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the inheritance of an unlinked quantitative component z ∈ R (additive contribution of a large
number of small effect loci), which reads on the offspring’s variables (Z, E)

(Z, E))| {(Z1, E1) = (z1, η1), (Z2, E2) = (z2, η2)}
∼

(
N

(
z1 + z2

2
, σ2

S

)
,XM(η1, VM ) + (1−X )M(η2, VM )

)
,

(1.84)

where N ( z1+z2
2 , σ2

S

)
is a normal law of center the mean parental quantitative component and

of variance σ2
S , X is a Bernoulli law of parameter 1

2 and M(ηi, VM ) is a mutation law with
kernel K centered on the parental major allele ηi and of variance VM . Note that ifM(ηi, VM ) is
replaced by a Dirac mass centered in ηi, then (1.84) reduces to the inheritance process where
the major effect alleles are fixed (underlying the composite reproduction operator (1.64) of
Dekens, Otto, and Calvez 2021). The inheritance process described in (1.84) translates into
a collision-convolution reproduction operator B̃ which extends the composite reproduction
operator (1.64) to also include the non-local mutation operator (1.7)

B̃(f)(z, η) =
1√
πσ

∫
R3

exp
[−(z − z1+z2

2 )2

σ2

]
f(z1, η1)

∫
R

K
(

η−η2
VM

)
f(z2, η2)dη2∫

R2 f(z′, η′)dz′dη′ dz1dz2dη1.

(1.85)
Moreover, for each individual, the quantitative component z and the major effect allele η
contribute additively to the trait under selection ζ = z + η.

On the one hand, one can expect that if the mutational variance VM of the focal major
effect locus is small in a certain sense compared to the σ2 the accumulation of mutations at
the particular locus might not be significant on the timescale of adaptation. At the limit, the
mutation law would be a Dirac mass (no mutations) and (1.85) would reduce to (1.64). On
the other hand, if VM is large in a certain sense compared to σ2, then one would expect the
major alleles to quickly adapt to match the local optima before the quantitative component
can provoke the loss of one major allele.

Preliminary calculus suggests that, between solely major effects responses or solely poly-
genic responses to local adaptation, non-trivial dynamics can arise from a balance between
the mutational variance of the major effect and the segregational variance of the polygenic
background.

2. Evolutionary tipping points (ETP). Under climate deregulation, many ecosys-
tems are expected to see their environmental conditions shift. Recent studies have shown that
this environmental change can interact with existing feedback loop between the ecology and
the evolution of a species and result in its abrupt extinction (Osmond and Klausmeier 2017,
Cotto et al. 2019). Increasing our knowledge about the conditions that facilitate these sudden
extinctions and the signs to detect them is urgent and necessary in face of further climate
deregulation of ecosystems. For example, can ETP result from the fragmentation of environ-
ments? Answering analytically this question is challenging because, as pointed in [Osmond
and Klausmeier 2017] and [Cotto et al. 2019], it requires a fine understanding of the different
of stability of co-existing equilibria in the focal system. In the context of patchy environment,
the stability analysis has been performed in [Dekens 2022] explicitly, and hints that under
an environmental shift, spatially heterogeneous environments can indeed create conditions for
ETP to occur. My goal is to derive quantitative results that will deepen the understanding of
the theoretical conditions under which ETP arise.
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3. Mutation-selection models for quantitative alleles under sexual reproduc-
tion. What are the conditions under which evolution of gene regulation leads to silencing a
gene? The complex evolutionary dynamics displayed in the numerical simulations of [Lenor-
mand, Fyon, et al. 2020] to investigate this phenomenon highlight the need for proposing
mutation-selection models for quantitative alleles to isolate the separate influence of different
mechanisms. For example, when considering two loci controlling the level expression of a gene
under stabilizing selection, a two-step phenomenon can arise when the mutational variances
at both loci differ. First, the dominant couple of allelic effect (x̄, ȳ) converges toward a point
of the manifold of optimal fitness. Next, due to asymmetrical mutations between the two
loci, it can slide along this manifold. I aim to provide quantitative predictions on this phe-
nomenon, through the study of a quantitative alleles model that extends the one introduced in
Section 1.3.4 to allow for mutations to accumulate, first at one of the two loci, at rate p. Using
the non-local mutational operator (1.7), with the mutational kernel Kx

ε with small variance ε,
the corresponding reproduction operator reads

BMut,x
ε (nε)(x, y) =

p

2

[
ρX(y)(Kx

ε ∗ ρY
ε )(x)

ρε
+ Kx

ε ∗ [nε(·, y)](x)
]
+

1− p

2

[
ρY

ε (x) ρX
ε (y)

ρε
+ nε(x, y)

]
.

Preliminary calculus indicate that the WKB ansatz converges toward the viscosity solution of
a constrained Hamilton-Jacobi equation and that further regularity challenges arise.

4. Interplay between inbreeding, genetic drift and expansion load in range
expansions. How does expansion load (the accumulation of deleterious mutations along
the expansion) affect the speed of range expansions and what is its interplay with reproduc-
tion modes? According to numerical studies, the long-term effects of expansion load can be
dramatic for invasions (Peischl, Kirkpatrick, and Excoffier 2015). A recent stochastic study by
[Foutel-Rodier and Etheridge 2020] highlights the role of Mueller’s ratchet and genetic drift
to enhance expansion load in asexually reproducing populations. However, a quantitative
understanding of the phenomena for sexual populations is lacking and challenging, because
inbreeding, eroding the segregational variance, is likely to also influence how strong the expan-
sion load might be. To quantitatively investigate this, I plan to build an agent-based model
combining the stochastic IM (Barton, Etheridge, and Véber 2017) with the stepping-stone
model. I will start by conducting simulations to apprehend the correlation between probabil-
ity of identity and space for a neutral trait. Later, extensions to the spatial λ-Fleming Viot
process (Barton, Etheridge, and Véber 2013) will be considered.

5. Assortative mating and speciation. I am interested in adding an effect of assorta-
tive mating to the infinitesimal model, to explore the dynamics of sympatric speciation due to
mate’s choice (Jiang, Bolnick, and Kirkpatrick 2013). Several quantitative genetic models have
been studied to improve the analytical understanding of parapatric speciation w.r.t. mates’
choice (Sachdeva and Barton 2017), and of the benefit that assortative mating w.r.t flowering
time confers to help keeping pace with climate change (Godineau, Ronce, and Devaux 2021).
The assortment of mates I propose here takes a different form corresponding to postzygotic
isolation, modelled by a loss of fecundity that is function of the distance between the mates’
traits encoded by a Gaussian kernel of variance σ2

AM

BAM [n](z) =
∫∫

R2
G0,σ2

AM
(z1 − z2) G0,σ2

S

(
z − z1 + z2

2

)
n(z1)

n(z2)∫
R

n(z′)dz′ dz1 dz2.
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The last operator combines collision (IM with segregational variance σ2
S) and attraction ef-

fects (assortative mating). In the regime of small variance and under the balancing condition
σ2

AM = 4σ2
S , I could characterize the leading order term in the Hopf-Cole ansatz by means of

convexity analysis, which is a promising first step. In contrast with previous studies reported
in this manuscript, the leading order term is not a simple quadratic function (as in Calvez,
Garnier, and Patout 2019; Patout 2020; Dekens 2022; Dekens, Otto, and Calvez 2021), but the
minimum of several quadratic functions, allowing for co-existence of multiple dominant traits
in the population. My goal is to derive the analytical conditions under which speciation occurs.

Last epistemological thought on the potential influence of eugenics on current
mathematical modelling of evolution. Throughout the 20th century, the theory of
evolution has been instrumentalized worldwide to justify multiple genocides including, but not
restricted to, the well-documented practices of the Nazi regime in Germany before and during
World War II, partly inspired by compulsory sterilization programs carried out in several
states of the United States of America from the beginning of the 20th century (see p. 69
of Zuberi 2001), targeting (at least) African-American and Latina women at that time (see
p. 90 of Solinger 2005). However, this horrendous weaponization of evolutionary theory did
not appear out of thin air. It took roots, directly and indirectly, in the development of the
eugenics school of thought. This was initiated by Francis Galton in the last decades of the
19th century, and later sustained by contributions of eminent academics, such as Karl Pearson
and Ronald Fisher.

Francis Galton, Ronald Fisher and Karl Pearson all hold in common their pioneering
contributions to a rich array of statistical tools which are widely used today, in the field of
evolutionary biology and many others. Moreover, Fisher is considered as a founding father
of modern evolutionary biology, due to the advances in the mathematical understanding of
evolution that his work provided. Because of the vast scope of their research, we must also
be aware of their role as founders and strong promoters of modern eugenics, the belief that it
should be aimed to improve the genetic background of the human species

"[...] the science of improving stock, which is by no means confined to questions of judicious
mating, but which, especially in the case of man, takes cognisance of all influences that
tend in however remote a degree to give to the more suitable races or strains of blood a
better chance of prevailing speedily over the less suitable than they otherwise would have
had." (p. 24 of Galton 1883).

Francis Galton in particular was convinced that mental and intellectual abilities were inherited
genetically, and included so-called characteristics as "feeblemindness" and "criminal nature"

"The perpetuation of the criminal class by heredity is a question difficult to grapple with on
many accounts. Their vagrant habits, their illegitimate unions, and extreme untruthfulness,
are among the difficulties of the investigation. It is, however, easy to show that the criminal
nature tends to be inherited " (p. 82 of Galton 1883).

Pearson, Galton’s protégé, founded the Galton Laboratory of Eugenics in 1904, which edited
the Annals of Eugenics from 1924 onward. In the two first issues, Pearson is co-author of a re-
pulsing study (personal opinion) titled "The Problem of Alien Immigration into Great Britain,
illustrated by an examination of Russian and Polish Jewish Children", whose conclusion after
many varied physical measurements and intellectual tests is that "Taken on the average, and
regarding both sexes, this alien Jewish population is somewhat inferior physically and mentally to the
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native population" (Part II of this study). There is some argument over the extent of these indi-
vidual’s roles in promoting eugenics and it’s influence on their scientific contributions. Ronald
Fisher was the successor of Karl Pearson as head of the Galton Laboratory of Eugenics from
1933 to 1943. He opposed the 1952 Unesco statement about "The Race Question" (this topic
was prompted by the weaponization of such notion to justify a genocidal agenda, particularly
in the aftermath of the Nazi regime), because "he believes that human groups differ profoundly
“in their innate capacity for intellectual and emotional development”" (p. 27 of the 1952 Unesco
Statement). Conceding that it does not appear favorable in light of knowing that Fisher had
"previously viewed human value in terms of capacity for intellectual development", the authors of
[Bodmer et al. 2021] (all indicated as trustes of the Fisher Memorial Trust) seem to claim that
this comment and more broadly the view of Fisher on eugenics should be read as reflections
of societal paradigm of the time and are merely anecdotal in comparison to his enormous
contribution to modern evolutionary biology and statistics.

However, one would argue precisely that Fisher’s eugenics beliefs should be considered
in concert with his lasting founding contributions to evolutionary theory, in particular to its
mathematical modelling. This is because, while it is unreasonable to think that eugenics beliefs
have tainted the mathematical quality of Fisher’s reasoning, one still have to entertain the pos-
sibility that they have oriented the choices made when building his mathematical models. For
example, Marcus Feldman explains in a 2017 interview with Quanta Magazine (Finding the
Actions That Alter Evolution, by E. Svoboda)

"The modern synthesis developed in the 1930s and 1940s and basically had finished by
the 1950s. At that time, little was known about the molecular biology of development —
how what’s going on in the development process itself influences what can happen to the
evolutionary trajectory of cells and organisms. Although some of its originators were in-
terested in behavior, many were steeped in the eugenics tradition. They would have thought
that the majority of behaviors were determined by genes. The inclusion of other forms of
inheritance totally changes evolutionary dynamics."

This belief that "the majority of behaviours were determined by genes" is neither innocent,
nor inconsequential on subsequent models. Indeed, all mathematical models require some
initial choices of idealized framework and hypotheses if one is to hope to highlight a precise
phenomenon related to the considered research question, which in turn can be influenced by
personal beliefs or aims. One concrete example is the modelling of adaptation to (i) an optimal
trait in a well-mixed population characterized by (ii) an entirely heritable quantitative trait,
a very classical model of quantitative genetics. The range of analytical results that can be
found is constrained by this initial modelling choice of considering a single optimum to which
the population can or cannot adapt, and the assumption that inheritance of the quantitative
trait underlying adaptation does not depend on, for instance, environmental factors.

These two modelling choices are not anecdotal, as they are quite frequent in mathematical
models of evolution: throughout my PhD, I used both of them to some extent. From a
mathematical viewpoint, there is an obvious reason for the recurrence of these modelling
choices: complexifying these initial modelling hypothesis a priori decreases the prospect of
conducting a full analysis. However, another reason exists in the background: the inertia of
the academic paradigm, which is influenced to some degree by its foundation, which traces
back, among a few others, to Fisher. Being aware of Fisher’s eugenics beliefs, I want to
question the following: What is the influence of eugenics on the current modelling choices
made in mathematical studies of evolution of species, and how limiting is it (first and fore-
most, in my own work)? To assess this, I will first extend my knowledge about already existing
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established theories , like cultural inheritance of phenotypes (Cavalli-Sforza and Feldman 1973)
or niche construction (Laland, Odling-Smee, and Feldman 2003). I also plan to work even
closer with biologists and with biological data providing actual new insights on the different
influencing forces shaping the eco-evolutionary patterns of real-world species to ground my
future research. Note that even nowadays, the question of whether the current theory of
evolution allows to accurately model other forms of inheritance than genetic is debated among
prominent evolutionary biologists (Laland, Uller, et al. 2014). Finally this question about
the influence of eugenics on current mathematical modelling of evolution also connects with a
recent work which deciphers how eugenic foundations have narrowed the lenses on key concepts
of the theory of evolution (Branch et al. 2022).

It is of concern to me first because of the historical role of eugenics in weaponizing evo-
lutionary theory toward systemic oppression (as discussed above). Moreover, the later is not
precluded to the past and did not disappear with the Nuremberg trials and the end of WWII.
Despite post-war institutions and academic journals changing names, which reflects a shift
in paradigm (for instance, the Annals of Eugenics founded by Pearson became the Annals of
Human Genetics in 1954), Angela Saini highlights in her excellent book (personal opinion)
Superior: the Return of Race Science the current comeback/persistence of eugenics ideas in
some science and institutions niches promoting white supremacy, as for instance the Pioneer
fund and the academic journal "Mankind Quaterly" (Saini 2019).
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Chapter 2
Evolutionary dynamics of complex traits in
sexual populations in a heterogeneous
environment: how normal?

2.1 Introduction
Most species occupy heterogeneous environments, in which the spatial structure is expected to
play a significant role in the evolution of the diversity of a species. As a result of the balance
between the mixing effect of migration connecting the different habitats of a species and the
selective pressure reducing diversity within each habitat, several equilibrium states encoding
the local adaptation of a species can be reached. Will the species succeed to persist in a wide
range of habitat available and thus thrive as a generalist species? Will it become adapted to
specific sets of conditions as what we call a specialist species? Evolutionary biology fields have
taken a sustained interest in these questions, in population genetics (Lythgoe 1997; Nagylaki
and Lou 2001; Bürger and Akerman 2011; Akerman and Bürger 2014), adaptive dynamics
(Meszéna, Czibula, and Geritz 1997; Day 2000) or quantitative genetics (Tufto 2000; Ronce
and Kirkpatrick 2001; Hendry, Day, and Taylor 2001; Yeaman and Guillaume 2009; Débarre,
Ronce, and Gandon 2013; Débarre, Yeaman, and Guillaume 2015; Mirrahimi 2017; Lavigne et
al. 2020; Mirrahimi and Gandon 2020). Here we adopt the framework of quantitative genetics,
which models the adaptation of a continuous trait without giving explicitly its underlying
genetic architecture. Additionally, we specifically choose to analyse the influence of sexual
reproduction as mating system.

Model. We build our model within a biological framework shared with classical studies
(Ronce and Kirkpatrick 2001; Hendry, Day, and Taylor 2001; Débarre, Ronce, and Gandon
2013). We consider a sexual population whose individuals are characterized by a quantitative
phenotypic trait z ∈ R and evolving in a heterogeneous environment constituted by two
habitats that we will assume to be symmetric (i.e, sharing the same ecological parameters
except for their optimal traits), as illustrated in Fig. 2.1.

The density of population at a given time t with respect to a phenotype z in habitat
i ∈ {1, 2} is denoted ni(t, z) ∈ L1 (R+ × R), for which we further assume that zk ni(t, z) ∈
L1 (R+ × R) for k < 4.

Local maladaptation is the source of mortality in our model: stabilizing selection acts
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Habitat 1
n1(t, z), N1

θ1

Habitat 2
n2(t, z), N2

θ2

m

m

+rBσ(n1)(t, z)

−g(z − θ1)2

+rBσ(n2)(t, z)

−g(z − θ2)2

−κN1 −κN2

θ1 = −θ θ2 = θ

−g(z − θ1)2 −g(z − θ2)2

z

Figure 2.1: Heterogeneous symmetrical environment framework for a quantitative
trait z. The upper part of the figure illustrates the different biological forces acting in each
habitat (reproduction, competition for resources, selection) and between them (migration).
The lower part of the figure draws the local quadratic selection functions considered, where
θ1 and θ2 are the local optimal traits. The parameters are the same in both habitats, except
for the local optimal traits.

quadratically in each patch toward an optimal phenotype θi ∈ R with an intensity g > 0.
Define θ as half the distance between the two local optima: θ := |θ2−θ1|

2 . Up to a translation
in the phenotypic space, we can consider without loss of generality that 0 < θ2 = −θ1 = θ.
Additionally, competition for resources regulates the total size of the subpopulation Ni(t) =∫
R

ni(t, z′) dz′ in each patch with an intensity κ > 0. The mortality rate of an individual
with phenotypic trait z ∈ R is thus given by:

M [ni(t, z)] = −g(z − θi)2 − κNi.

Migration between the two patches occurs symmetrically at a rate m > 0. The exchange of
individuals from patch i to patch j of a given phenotype z ∈ R at time t ≥ 0 is thereby:

m (nj(t, z)− ni(t, z)) .

Finally, we denote by Bσ(ni)(t, z) the number of new individuals that are born at time
t ≥ 0 in patch i with a phenotype z ∈ R due to sexual reproduction. That phenomenon is
occurring at a rate r > 0, and the parameter σ is a measure of the segregational variance
linked to the trait inheritance process. The sexual reproduction operator is at this point still
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unspecified and will be defined below. However, we will consider that it respects the following
conservative properties :

∀t ∈ R+,

∫
R

Bσ(ni)(t, z) dz =
∫
R

ni(t, z) dz,

∫
R

zBσ(ni)(t, z) dz =
∫
R

z ni(t, z) dz.

The dynamics of the local trait distributions are therefore given by:

⎧⎨⎩
∂n1

∂t
(t, z) = rBσ(n1)(t, z) − g(z − θ1)2n1(t, z) − κN1(t)n1(t, z) + m (n2(t, z) − n1(t, z)) ,

∂n2

∂t
(t, z) = rBσ(n2)(t, z) − g(z − θ2)2n2(t, z) − κN2(t)n2(t, z) + m (n1(t, z) − n2(t, z)) .

(2.1)

System of moments and gaussian assumption. Quantitative genetics studies often
model the dynamics of the sizes of the subpopulations N1 > 0 and N2 > 0 and their mean
traits z1 and z2 (where Ni :=

∫
R

ni(t, z) dz and zi := 1
Ni

∫
R

z ni(t, z) dz). Although we
intend to follow the dynamics of the whole trait distributions, for the sake of comparison,
we derive ordinary differential equations for the first moments of the trait distributions by
integrating (2.1) with regard to z:

⎧⎪⎪⎨⎪⎪⎩
dNi
dt =

[
r − κNi(t)− g(zi(t)− θi)2 − gσi

2] Ni(t) + m
(
Nj(t)−Ni(t)

)
,

dzi
dt = 2σi

2g(θi − zi(t))− gψ3
i + m

Nj(t)
Ni(t (zj(t)− zi(t)).

(2.2)

where σi
2 := 1

Ni

∫
R

(z−zi)2 ni(t, z) dz and ψi
3 :=

∫
R

1
Ni

∫
(z−zi)3 ni(t, z) dz are respectively

the variance and the third central moment of the trait distribution of each subpopulation (see
Appendix 2.A for details about the derivation). At this point, a common key assumption used
to close the system that arises in quantitative genetics models is the normality of such a trait
distribution, with a constant variance (Hendry, Day, and Taylor 2001; Ronce and Kirkpatrick
2001). In Ronce and Kirkpatrick 2001, such an assumption results in the following system
(with their original notations for the parameters):⎧⎪⎪⎨⎪⎪⎩

dNi
dt =

[
r0(1− Ni

K )− γ
2 σp

2 − γ
2 (zi − θi)2

]
Ni + m(Nj −Ni),

dzi
dt = σg

2γ(θi − zi) + m
Nj

Ni
(zj − zi).

where σp
2 and σg

2 are respectively the constant phenotypic and genotypic variance, differing
additively by a constant variance due to environmental effects σe

2 (σp
2 = σg

2 + σe
2). With

this method, the authors of Ronce and Kirkpatrick 2001 analyse the equilibria of the system
above, by distinguishing two types of equilibrium:

• symmetrical equilibrium, where both local populations have equal size and are equally
maladapted to their local habitat. The species survives in both habitats, and is therefore
characterized as a generalist species. The authors derived this equilibrium analytically.

• asymmetrical equilibria, where the species mainly inhabits one habitat to which it is
adapted. It acts as a source for the other habitat that is almost deserted, if it were not
for a few unsuccessful migrants, sent from the first habitat, and therefore poorly adapted
to the second one (the sink). This type of equilibrium characterizes a specialist species,
that can only live in a restricted set of environments . The authors numerically explored
this type of equilibrium and derived approximations for low migration rates.
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However, this approach disregards the effect of higher moments of the trait distribution
(like the skewness), that may become significant due to the presence of gene flow, as pointed
out in Yeaman and Guillaume 2009 and Débarre, Yeaman, and Guillaume 2015.

The infinitesimal model of sexual reproduction. To account for the influence of
higher moments calls for models bypassing any prior assumption on the trait distribution,
both to assess the validity of the Gaussian approximation or examine the departure from
it. Therefore, it is necessary to make explicit the interplay between sexual reproduction and
phenotypic inheritance. The infinitesimal model of sexual reproduction, first introduced by
R.Fisher in 1919 (Fisher 1919) offers a simple way to tackle this issue for complex traits.
Consequently, it has been used both in several biological studies (under truncation selection
in Turelli and Barton 1994, or in a continent-island model in Tufto 2000) and mathematical
ones (Mirrahimi and Raoul 2013; Bourgeron et al. 2017; Raoul 2017). Aligning with these,
we choose it in our study to model trait inheritance due to sexual reproduction. The classical
version of this model translates the stochasticity of the segregation process by the fact that the
offspring trait variable Z (conditioned to the parental traits Z1 = z1 and Z2 = z2) follows a
Gaussian law centered in the mean parental trait and with a segregational variance of σ2

2 :

Z|{Z1 = z1, Z2 = z2} ∼ z1 + z2
2

+N
(

0,
σ2

2

)
. (2.3)

Consequently, this model makes a normal assumption, not on the distribution of trait in the
population, but on the distribution of offspring within each family, with a fixed and constant
segregational variance (Turelli 2017). A common Mendelian interpretation of this mixing
model is that the trait results from the expression of a large number of alleles with small
additive effects (Fisher 1919; Bulmer 1971; Lange 1978). Recently, a rigorous framework of
the use of that model in various biological contexts has been derived in Barton, Etheridge,
and Véber 2017.

The regime of small variance: σ2 � θ2. There also has been increasing mathematical
interest in developing integro-differential equations for the whole trait distribution to study
qualitatively quantitative genetics models (Diekmann, Jabin, et al. 2005; Desvillettes et al.
2008). A framework introduced by Diekmann, Jabin, et al. 2005 to study asexual models
in the regime of small mutations led to first rigorous results in Perthame and Barles 2008
in the context of homogeneous environment. Next, it has been extended to study spatially
heterogeneous environment where asexual species evolve, like in Mirrahimi 2017 that success-
fully characterizes the equilibrium states by using a Hamilton-Jacobi approach in the limit
of small mutations. For sexually reproducing populations, using the infinitesimal model in
an asymptotic regime allowed Mirrahimi and Raoul 2013 to study invasions by phenotypically
structured populations. More recently, using the infinitesimal model in a small variance regime
led Garnier et al. 2022 to formally derive features of the underlying trait distribution of a pop-
ulation under a changing environment. Their formal derivations have next been justified in
a homogeneous space framework in Calvez, Garnier, and Patout 2019. Our work aligns with
these studies: our main analysis lies in the small variance regime: σ2 � θ2, namely when
the diversity introduced by sexual reproduction is small compared to the heterogeneity of the
environment (recall that θ = |θ2−θ1|

2 ).

Contributions. We use the infinitesimal model operator and the formalism of small segre-
gational variance to study evolutionary dynamics of a sexually reproducing population under
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stabilizing selection in a heterogeneous and symmetrical environment in an integrated model
(Section 2.2). From the PDE system on the local trait distributions, we derive a system of
ODE on their moments. In the particular asymptotic regime considered: σ2 � θ2, our ODE
system approximates the one of Ronce and Kirkpatrick 2001 (Section 2.2):⎧⎪⎪⎨⎪⎪⎩

dNi
dt =

[
r − κNi(t)− g(zi(t)− θi)2 − gσ2] Ni(t) + m

(
Nj(t)−Ni(t)

)
+O

(
σ4

θ4

)
,

dzi
dt = 2σ2g(θi − zi(t)) + m

Nj(t)
Ni(t) (zj(t)− zi(t)) +O

(
σ4

θ4

)
.

(2.4)

To support that, we provide a numerical comparison between the two models, showing their
equivalence in the small variance regime, and their discrepancy when this variance becomes
large (Section 2.3). By doing so, we are justifying the validity of the Gaussian assumption
on local trait distributions in this small variance regime. Next, we show that, in the regime
of small variance, our system of moments can be reformulated as a slow-fast system (Sec-
tion 2.4), which highlights the blending force of our sexual reproduction operator that strains
monomorphism to quickly emerge at the metapopulation level. The study of the corresponding
unperturbed problem, with a reduced complexity, leads to the complete analytical description
of the equilibria in the asymptotic regime of small variance. In particular, it gives the con-
ditions of existence of bistable asymmetrical equilibria numerically observed by Ronce and
Kirkpatrick 2001 (Section 2.5).

To put this study in a broader context, let us first recall some findings of Ronce and Kirk-
patrick 2001, our reference moment-based model in the quantitative genetics field. It makes a
Gaussian assumption on the local trait distributions, without specifying any particular mode
of reproduction. The authors numerically found that bistable mirrored asymmetrical equilib-
ria can exist, allowing source-sink dynamics to completely reverse after a demographical loss
event. Based on their study, however, it remains unclear which hypotheses on the inheritance
process allow for such dynamics to arise. More recently, two studies interested in the equilib-
ria states of asexual populations highlight the need for precise hypotheses with regard to such
conclusions. If the authors of Débarre, Ronce, and Gandon 2013 indicate that asymmetrical
equilibria can be locally stable in a restrained range of mutational parameters, Mirrahimi 2017
and Mirrahimi and Gandon 2020 show through using a continuum-of-alleles model that, under
broader mutational parameters, only a single stable symmetrical equilibrium can arise in a
symmetrical setting. Here, we claim that we can explain the dynamics of the analysis done
in Ronce and Kirkpatrick 2001 via a model on phenotypic densities dynamics, analogous to
Mirrahimi 2017 and Mirrahimi and Gandon 2020 but with a sexual reproduction operator
derived from the infinitesimal model and in a small segregational variance regime. We thereby
make explicit the details of another mechanism that can provide with those locally bistable
asymmetrical equilibria, which relies on the blending effect of the infinitesimal model in a
regime of small segregational variance.

2.2 The infinitesimal model and the regime
of small variance

In this section, we present the specific framework in which we choose to perform our analysis.
We first present some properties of the infinitesimal model operator in general, then its rela-
tionship with the specific regime of small variance. Then, we will show that the asymptotic
approximation allows us to formally derive a closed system for the dynamics of the moments.
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Let us define the following rescaled variables and parameters to get a dimensionless system:

z :=
z

θ
, g :=

gθ2

r
, m :=

m

r
, ε :=

σ

θ
, t := ε2rt,

nε,i(t, z) :=
κ

r
ni(t, z), Nε,i(t) =

κ

r
Ni(t),

and the reproduction operator Bε(nε,i)(t, z) = Bσ(ni)(t, z). Then, (2.1) gives the rescaled
system:

⎧⎪⎪⎨⎪⎪⎩
ε2 ∂nε,1

∂t (t, z) = Bε(nε,1)(t, z)− g(z + 1)2nε,1(t, z)−Nε,1(t)nε,1(t, z) + m (nε,2(t, z)− nε1(t, z)) ,

ε2 ∂nε,2
∂t (t, z) = Bε(nε,2)(t, z)− g(z − 1)2nε,2(t, z)−Nε,2(t)nε,2(t, z) + m (nε,1(t, z)− nε,2(t, z)) .

(2.5)
From the remaining of this section and unless specified otherwise, we will refer to that system
for all analysis purposes.

2.2.1 The sexual reproduction operator
Presentation. For modelling the segregation process resulting from sexual reproduction,
we use the infinitesimal model, first introduced in Fisher 1919. It is inspired originally from
the observation that the phenotypic variance among families does not seem to depend on their
breeding values (Galton 1877). Although this can be formulated solely from a phenotypic
perspective, Fisher 1919 gives a Mendelian interpretation by proposing to consider that the
quantitative trait z results from the infinitesimally small additive effects of a large number
of alleles. That interpretation, in the spirit of a central limit theorem, has been followed on
(Bulmer 1971; Lange 1978; Bulmer 1980; Barton, Etheridge, and Véber 2017). It leads to
(2.3). With our notations, we can express the number of individuals born at time t with trait
z in habitat i by:

Bε(nε)(t, z) =
1√
πε

∫
R2

exp
[−(z − z1+z2

2 )2

ε2

]
nε(t, z1)

nε(t, z2)
Nε(t)

dz1dz2. (2.6)

The scaled segregational variance ε2

2 is assumed to be constant with regard to time and
independent of the parental traits. These are strong biological assumptions. Their relevance
in the context of a spatially structured population will be the subject of a forthcoming work.

Equilibria under random mating only. To study the behaviour of the reproduction
operator (2.6), it is informative to consider the conservative case where a sexually reproducing
population only experiences random mating, without any structure due to space or mating
preferences:

ε2 ∂nε

∂t
(t, z) =

1√
πε

∫
R2

exp
[−(z − z1+z2

2 )2

ε2

]
nε(t, z1)

nε(t, z2)
Nε(t)

dz1dz2 − nε(t, z), (2.7)

(the term −nε(t, z) is meant to keep the size of the population constant by balancing birth
and death). Then, every Gaussian distribution of variance ε2 (arbitrarily centered) is a stable
distribution under (2.7) (see Appendix 2.B). Furthermore, it is shown in Raoul 2017 that
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there are no other equilibrium and that the convergence toward such a Gaussian distribution
is exponential in quadratic Wasserstein distance. Therefore, with this operator of sexual
reproduction, a fixed and finite variance in trait at equilibrium arises under random mating
only and without selection.

2.2.2 The regime of small variance: ε2 � 1.
The framework presented in this section is inspired by a methodology developed in Diekmann,
Jabin, et al. 2005 and Perthame and Barles 2008 that uses asymptotic regime in partial
differential equations in order to derive analytical features of quantitative genetics models. In
a regime where few diversity is introduced by reproduction at each generation, the continuous
trait distributions are expected to converge toward Dirac masses concentrated on some specific
traits. Performing a suitable transformation on the trait distribution allows to unfold the
singularities of these Dirac masses and define more regular objects to study and calculate, in
order to follow trait densities. That methodology has already been successfully applied for
asexual populations, in homogeneous (Perthame and Barles 2008) and heterogeneous space
(Mirrahimi 2017), then in other frameworks such as the study of adaptation to a changing
environment (Garnier et al. 2022), and lately for sexual populations in homogeneous space
(Calvez, Garnier, and Patout 2019). Applying a similar approach as described above, we will
show that, within a regime of small variance yet to be defined, we can reduce the complexity
of the system while rigorously justify that reduction.

In our context, a relative measure of diversity introduced by reproduction comes from
comparing the variance of the segregation process to a measure of habitats’ difference (recall
that θ = |θ2−θ1|

2 ):
σ2

θ2 = ε2.

One can thus define the small variance regime by σ2 � θ2, or equivalently ε2 � 1. Moreover,
we perform the unfolding of singularities by shaping the traits distributions according to:

nε,i =
1√
2πε

e− Uε,i

ε2 . (2.8)

The exponential form, known as the Hopf-Cole transform in scalar conservation laws,
presumes that Uε,i will be a more regular object to analyze when ε2 � 1 than nε,i, which we
expect to converge toward a sum of Dirac distributions centered at the minima of Uε,i. In
fact, Garnier et al. 2022 performed a formal analysis on the behaviour of the reproduction
term in the regime of small variance under such a formalism. They found that, for the various
contributions to be well-balanced in the equation (reproduction and mortality) when ε2 � 1,
Uε,i is formally constrained to have the following expansion with regard to successive powers
of ε2 (see Appendix 2.C):

Uε,i(z) =
(z − z∗

i )2

2
+ ε2uε,i, (2.9)

where z∗
i is a byproduct of the formal analysis and uε,i is the following order term in the

expansion. It leads to:

nε,i =
1√
2πε

e− (z−z∗
i

)2

2ε2 e−uε,i(z). (2.10)

Let us interpret this formalism. For ε2 � 1, the leading term in the expansion (2.10) is
precisely the Gaussian distribution of (yet unknown) mean z∗

i and variance ε2, namely a
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distribution we know to be at equilibrium under random mating only. Only considering this
term would be to assume that the trait distribution is Gaussian. As we want to capture the
departure from normality, we introduce the term uε,i, which we can see as the next order term
in the expansion of log(nε,i) with regard to successive powers of ε. It embodies the correction
to the Gaussian distribution due to the effect of selection, competition and migration. The
study of its analytical properties is beyond the scope of this paper and will be the project of
a forthcoming paper. For now, we will assume that such a limit exist and we will use it in our
analysis without rigorously justifying it.

2.2.3 Derivation of the dynamics of the moments in
the regime of small variance

Although our method describes directly the trait distribution, we propose to formally derive
the equations describing the dynamics of the first three moments of the trait distribution from
its dynamics under the small variance of segregation (ε2 � 1) to compare our framework to
other quantitative genetic studies. Toward that purpose, we define (assuming persistence of
each subpopulation):

Nε,i(t) =
∫
R

nε,i(t, z) dz, zε,i(t) =
1

Nε,i

∫
R

z nε,i(t, z) dz,

σ2
ε,i(t) =

1
Nε,i

∫
R

(zε,i − z)2 nε,i(t, z) dz, ψ3
ε =

1
Nε

∫
R

(z − zε,i)3nε(z)dz.
(2.11)

Let us omit for a moment the time dependency. Using the expression (2.10) and under
the formal assumption that u := lim

ε→0
uε is sufficiently regular, we get the following expansions

(where vi,ε is the expansion term of order ε4 of Uε,i - see Appendix 2.D):⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Nε,i = e−ui(z∗
i )

[
1 + ε2

(
(∂zui(z∗

i ))2

2 − ∂zzui(z∗
i )

2 − vi,ε(z∗
i )

)]
+O(ε4),

zε,i = z∗
i − ε2∂zui(z∗

i ) +O(ε4),
σ2

ε,i = ε2 +O(ε4),
ψ3

ε,i = O(ε4).

(2.12)

These expansions are informative, particularly the one describing the rescaled variance of
the trait distribution. We can observe that it is equivalent to twice the rescaled segregational
variance (which is given as a parameter of the model) when the latter is small. The local
rescaled variance in trait are thereby asymptotically constant and independent of the local
environment.

Now, from scaling (2.2), we obtain:⎧⎪⎪⎨⎪⎪⎩
ε2 dNε,i

dt =
[
1−Nε,i(t)− g(zε,i(t)− (−1)i)2 − g σi(t)2] Nε,i(t) + m

(
Nε,j(t)−Nε,i(t)

)
,

ε2 dzε,i

dt = 2g σi(t)2((−1)i − zε,i(t))− g ψ3
i (t) + m

Nε,j(t)
Nε,i(t) (zε,j(t)− zε,i(t)).

Next, using the formal expansions of the variances and skews given by (2.12) when ε2 � 1
yields:
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⎧⎪⎪⎨⎪⎪⎩
ε2 dNε,i

dt =
[
1−Nε,i(t)− g(zε,i(t)− (−1)i)2 − gε2] Nε,i(t) + m

(
Nε,j(t)−Nε,i(t)

)
+O(ε4),

ε2 dzε,i

dt = 2ε2g((−1)i − zε,i(t)) + m
Nε,j(t)
Nε,i(t) (zε,j(t)− zε,i(t)) +O(ε4),

(2.13)
which is equivalent to (2.4).

Remark 1: Relationship between the rescaling of time and small variance regime
ε2 � 1.. The small variance regime σ2 � θ2 (or equivalently ε2 � 1) considers the case
where the variance introduced by reproduction is very small compared to the phenotypic gap
between the two habitats (recall that θ = |θ2−θ2|

2 ). Therefore, it takes a very long ecological
time to bridge the gap. An interpretation of that intuition can be seen in the rescaled system
(2.13). The effects of the ecology (migration, population growth, death by competition and
selection) are of order 1. The evolutionary effects (how selection shifts the mean traits of both
subpopulations toward the local optima) are represented by the terms 2ε2g((−1)i− zε,i(t)), and
are therefore comparatively very small (of order ε2). This discrepancy is the motivation of the
change in time scales t = ε2T to capture the slow dynamics of the local mean traits. It is also
behind the motivation for the slow-fast analysis (see Section 2.4).

Remark 2: Relationship between the small variance regime and the weak selec-
tion approximation.. A widespread regime studied in quantitative genetics models using the
Gaussian assumption of trait distributions is the weak selection approximation. As we showed
formally that the local trait distributions are well approximated by Gaussian distributions in
the small variance regime (see (2.10)), it is natural to examine if the regime of small variance
σ2 � θ2 and the weak selection approximation are equivalent.

However, the small variance regime σ2 � θ2 presents an alternative that seems to differ
from the weak selection approximation:

1. Either the segregational variance σ2 is of order 1, and therefore θ2 must be large, ie.
the local optimal traits are far apart. However, this has an indirect consequence on the
strength of selection g, which must be small, since g = gθ2

r must be of order 1 to be
relevant in the rescaled system (13). Nevertheless, this framework is distinct from the
weak selection approximation, in the sense that the effective selection felt by an individual
adapted to one patch and migrating to the other is of order gθ2, hence of order 1.

2. Either the segregational variance σ2 is small compared to θ2, the latter being of order 1,
as well as the other parameters of the system. Therefore, in that case, the selection does
not need to be weak. A way to get such a small segregational variance can be illustrated
by the following with haploid individuals: suppose that we consider L loci that contribute
to the focal quantitative trait additively, and that, at each locus, two alleles segregate,
having opposite effects of ± a

2
√

L
, where a is a parameter that scales the magnitude of

the effect. An estimation of the variance in the offsprings of two mates is σ̂2 = a2 D
L ,

where D < L is the number of differences between their respective genetic backgrounds.
So σ̂2 = O(a2) can be uniformly small provided that the allelic effect size parameter a
is small.
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2.3 Equivalence with a moment based model

2.3.1 Presentation of the moment based model
In Ronce and Kirkpatrick 2001, the authors present a quantitative genetic model to tackle the
same problem: the evolutionary dynamics of a species under the effects of stabilizing selection
and migration between two symmetric patches. Let us first recall the model and indicate
the parameters. Stabilizing selection toward a local phenotypic optima θi ∈ R is added to
competition for resources within each patch to build the fitness of an individual of phenotype
z in patch i:

ri(z) = r0

(
1− Ni

K

)
− γ

2
(z − θi)2,

where r0 > 0 is the maximal fitness at low density, K > 0 the carrying capacity of each
environment (assumed to be the same in both of them), and γ > 0 the intensity of the
selection. Migration occurs symmetrically between the two patches at a rate m > 0. The
mode of reproduction is left unspecified, but phenotypes and breeding values are assumed
to follow a Gaussian distribution within each population, of constant genetic (σg

2 > 0) and
phenotypic (σp

2 > 0) variances, independent of the patch with:

σp
2 = σg

2 + σe
2,

where σe
2 > 0 is the environmental variance. The analysis is focused on the ordinary dif-

ferential equation system of the first two moments of the local trait distributions (assuming
persistence of each subpopulation). Namely, the sizes of the subpopulations (N1, N2) and the
mean phenotypic traits (z1, z2):⎧⎪⎪⎨⎪⎪⎩

dNi
dt =

[
r0(1− Ni

K )− γ
2 σp

2 − γ
2 (zi − θi)2

]
Ni + m(Nj −Ni),

dzi
dt = σg

2γ(θi − zi) + m
Nj

Ni
(zj − zi).

(2.14)

2.3.2 Formal comparison
Let us consider (2.14) in the case where we neglect the additional variance due to the envi-
ronment, so that all the variation in trait results from the genetic variance. We will denote
this variance by ς2, so that: σp

2 = σg
2 := ς2. Then, let us also consider the equations of

the trait distribution moments derived from our model (2.4), when disregarding the errors of
O

(
σ4

θ4

)
. Then, the dynamics of the moments and their stationary states are equivalent under

the change of parameters:

r = r0, g =
γ

2
, κ =

r0
K

, σ2 = ς2, σe = 0. (2.15)

This change of parameters is only possible because, in both models, the variance in trait in
the subpopulations is derived from a single parameter encoding the genetic stochasticity (σg

2

in Ronce and Kirkpatrick 2001 and σ2 in our model). Particularly, the variance is independent
from the other biological parameters, which is a structural difference with asexual models (see
Mirrahimi 2017).
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2.3.3 Numerical comparison
In this subsection, we provide results from numerical simulations performed to confirm this
formal equivalence between the stationary states of the two models under the regime of small
variance in which we expect this link to hold. In these simulations, we follow two systems:

• the first one is a discretization of (2.1), where we follow the evolution of the local trait
distributions ni(t, ·). We then compute at each time the sizes, mean traits and variances
in trait of the subpopulations N i(t), zi(t) and σi. We emphasize the fact that we do
not deduce N i(t) and zi(t) from the system of moments (2.4).

• the second one is the system of moments (2.14) provided in the article Ronce and Kirk-
patrick 2001, initialized by integration of ni(0, ·). We denote the respective quantitites
N i,RK(t) and zi,RK(t).

We then compare the evolution of the sizes and the mean traits of the subpopulations given
by both systems. We also provide the evolution of the variance and the skewness in trait in
both subpopulations compared to the value of the fixed and constant variance σg and the skew
null of the Gaussian approximation, for it can shed some lights on the divergence of the two
systems. The results are displayed in Fig. 2.2. Details about numerical domains and schemes
can be consulted in Section 2.H.

Parameters of the simulations. The value of the parameters were taken from Ronce
and Kirkpatrick 2001 (the optimal phenotypes are translated without loss of generality to
reduce the numbers of parameters):

m = 0.1, γ = 0.1, r0 = 1 +
γ

2
σp

2, K = 2.5 r0, θ = |θ2 − θ1
2

| = 3.5,

where the value of σg
2 = σp

2 = σ2 determines completely the parameters. Two values are
chosen for σ2 = σg

2 = σp
2: the first, σ2 = 0.0025, is set to assess the regime of small variance

(σ2 � θ2) in which our formal link of equivalence should hold. The second, σ2 = 1, comes
from the value set in Ronce and Kirkpatrick 2001 and illustrates the discrepancy between the
two models when not in the small variance regime.

Initial conditions. In both simulations, the initial conditions are the same, conditioned to
the value of σ, for we want to be close to the equilibrium when under random mating only and
selection only, as if the two habitats were disconnected at first. We consider two populations
locally adapted to their habitats, but one is a little smaller in size than the other. To do so,
we set: ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

n1(0, z) = 9
10κ

e
− (z+θ)2

2σ2√
2πσ

n2(0, z) = 1
κ

e
− (z−θ)2

2σ2√
2πσ

Results of the numerical comparison. As Fig. 2.2a and Fig. 2.2c display the dynamics
of the mean traits and population size in both subpopulations in the regime of small variance
(σ2 = 0.0025), it confirms numerically that both the model used in Ronce and Kirkpatrick
2001 and ours share similar dynamics (except maybe at initial times when the migratory
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(a) Small variance σ2 = 0.0025 (b) σ2 = 1

(c) Small variance σ2 = 0.0025 (d) σ2 = 1

(e) Small variance σ2 = 0.0025 (f) σ2 = 1

(g) Small variance σ2 = 0.0025 (h) σ2 = 1

Figure 2.2: Numerial comparison of our model (yellow lines) with Ronce and Kirk-
patrick 2001’s model (blue line) in small (left panel) and large (right panel) vari-
ance regime. All parameters are the same or given by (2.15) and initial conditions are the same for
both models. The left panel shows the results in the small variance regime (σ2 = 2.5 × 10−3). Both
models converge quickly to an asymmetrical equilibrium where both subpopulations are adapted to the
second habitat (z1 = z2 ≈ θ2). The right panel shows the results when not in the small variance regime
(σ2 = 1): the same link of equivalence does not hold. The discrepancy can be explained by looking at
the local variances and skews in trait. They are asymptotically supporting a Gaussian assumption with
fixed variance on the trait distributions in the small variance regime (note the logarithmic scale for the
y-axis of Fig. 2.2e), but not when the segregational variance is larger. Note the logarithmic time scale
for the sake of clarity.
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fluxes are transiently high). When not in this regime (σ2 = 1), Fig. 2.2b and Fig. 2.2d
show that it does not need to be the case: the model used in Ronce and Kirkpatrick 2001
converges toward a monomorphic asymmetrical equilibrium whereas ours converges toward a
dimorphic symmetrical equilibrium. The four bottom plots give an intuition of the source of
this discrepancy. In the regime of small variance, we can see with Fig. 2.2e the variances in trait
of the subpopulations in our model match the fixed genetical variance assumed by the gaussian
approximation made in Ronce and Kirkpatrick 2001 (note the logarithmic scale for the y-axis
on this figure). Moreover, Fig. 2.2g shows that the skew in both distributions are very small,
as expected by our formal expansions, which makes the Gaussian approximation consistent.
On the contrary, when not in the regime of small variance, Fig. 2.2f shows that the stationary
variances in trait in both subpopulations derived from our model are significantly greater than
the prescribed fixed variance σg

2 of Ronce and Kirkpatrick 2001. It is also important to note
that with our model, even if the variance of segregation within families is held constant, the
local variances in trait (byproducts of our numerical analysis) vary over time. The presence
of respectively negative and positive skews (Fig. 2.2h) for the subpopulations confirms that
the gaussian approximation breaks down in this regime in our model, hence the discrepancy
in the outcomes with Ronce and Kirkpatrick 2001.

The two models have their own limit. Ronce and Kirkpatrick 2001 assumes that the
variance in traits is the same in both subpopulations and constant through time and disregards
any skewness in the local trait distributions. Our model assumption acts on the segregation:
variance in each family is constant and independent of parental traits or habitat. As a result of
that discrepancy between the models, their results differ on some ranges of parameters, as the
previous figures show (Fig. 2.2b, Fig. 2.2d), while they match on others (Fig. 2.2a, Fig. 2.2c).
To determine the range of parameters on which each model is closer to an explicit genetic
model that includes drift, individual-based simulations are to be carried. That is the prospect
of future work.

For now, since we have shown that our model was equivalent to Ronce and Kirkpatrick
2001’s one in the regime of small variance, we will next develop a slow-fast analysis that will
reduce the complexity of the system (Section 2.4) in the limit of vanishing variance in order
to complete the equilbrium analysis done in Ronce and Kirkpatrick 2001 (Section 2.5).

2.4 Slow-fast system in small variance regime
In this section, we will see that the small variance regime allows for a separation of time
scales to arise, as (2.13) can be seen as a slow-fast system when ε2 � 1. Using a singular
perturbation approach similar to the one described in Levin and Levinson 1954, we will show
that it converges in the limit of small variance to the following system, constrained in having
N∗

1 > 0, N∗
2 > 0: ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

[
1−N∗

1 − g(z∗ + 1)2 −m
]
N∗

1 + mN∗
2 = 0,[

1−N∗
2 − g(z∗ − 1)2 −m

]
N∗

2 + mN∗
1 = 0,

dz∗
dt = 2g

⎛⎝ N∗
2

N∗
1

− N∗
1

N∗
2

N∗
2

N∗
1

+
N∗

1
N∗

2

− z∗
⎞⎠ .

(2.16)

Until further notice, let us consider ourselves in the regime of small variance: ε2 � 1.

Monomorphism in the regime of small variance. The slow-fast system reduces
the complexity of the system (2.13) from four equations to three (see (2.16)), as the local
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mean traits z̄ε,1 and z̄ε,2 both relax rapidly toward the same value z∗(t). Since asymptotically,
the mean traits in both subpopulations are the same and the local variances in trait are
infinitesimally small, the metapopulation can be considered as monomorphic in z∗(t), which
we call the dominant trait.

Biological interpretation of the slow-fast analysis in terms of separation be-
tween ecological and evolutionary time scales. The limit system (2.16) highlights
the separation of ecological and evolutionary time scales in the limit of small variance, seen
from the evolutionary perspective. Indeed, the two first equations of (2.16) are algebraic and
therefore describe an instantaneous equilibrium reached by the local population sizes N∗

1 and
N∗

2 . This equilibrium can be seen as an ecological one, as it results from the balanced actions
of birth, death and migration. It depends on the value of the trait z∗, which changes according
to the last differential equation. As explained in the previous paragraph, this differential equa-
tion results from the changes in local mean traits driven by local selection (attested here by
the prefactor g), weighted by the discrepancy between local population sizes. Consequently,
the dynamics of z∗ can be seen as evolutionary dynamics, constrained to occur on the mani-
fold of ecological equilibrium defined by the first two equations (considered as instantaneously
reached on the evolutionary time scale considered).

2.4.1 Slow-fast system formulation.
As we expect monomorphism to occur rapidly in the regime of small variance, let us operate
the following change in variables:

δε =
z̄ε,2 − z̄ε,1

2ε2 , z∗
ε =

z̄ε,2 + z̄ε,1
2

.

Then (2.13) is equivalent to:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ε2 dNε,1
dt =

[
1−Nε,1(t)− g(z∗

ε (t) + 1− ε2δε(t))2 − gε2] Nε,1(t) + m
(
Nε,2(t)−Nε,1(t)

)
+O(ε4),

ε2 dNε,2
dt =

[
1−Nε,2(t)− g(z∗

ε (t)− 1 + ε2δε(t))2 − gε2] Nε,2(t) + m
(
Nε,1(t)−Nε,2(t)

)
+O(ε4),

ε2 d δε(t)
dt = 2g −m

(
Nε,2(t)
Nε,1(t) + Nε,1(t)

Nε,2(t)

)
δε(t) +O(ε2),

dz∗
ε

dt = −2gz∗
ε (t) + m

(
Nε,2(t)
Nε,1(t) − Nε,1(t)

Nε,2(t)

)
δε(t) +O(ε2).

(2.17)
Let us denote Ω = (R∗

+)2×R and Ȳ = (N1, N2, δ) the elements of Ω. Let us define F : Ω→ R

and G : R× Ω→ R
3 by :

∀(z, (N1, N2, δ)) ∈ R× Ω,

F (N1, N2, δ) = m

(
N2
N1
− N1

N2

)
δ,

G(z, N1, N2, δ) =

⎛⎜⎝
[
1−N1 − g(z + 1)2 −m

]
N1 + mN2[

1−N2 − g(z − 1)2 −m
]
N2 + mN1

2g −m
(

N2
N1

+ N1
N2

)
δ

⎞⎟⎠ , (2.18)
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where F and G are respectively in C∞(Ω,R) and C∞(R× Ω,R3).
Let the following be called the perturbed system (Pε), where ε > 0 is a vanishing parameter

and νN,ε and νz,ε are uniformly bounded as ε→ 0:

(Pε)

⎧⎪⎪⎨⎪⎪⎩
ε2 dȲε

dt = G(zε, Ȳε) + ε2νN,ε(t),
dzε
dt = −2gzε + F (Ȳε) + ε2νz,ε(t),

(zε(0), Ȳε(0)) = (zε
0, Ȳ ε

0 ).
(2.19)

One can verify that any solution of (2.17) also solves (Pε). The framework is concordant
with fast/slow system studies, like in Levin and Levinson 1954. We seek to establish the
convergence over a finite time interval of the solutions of (Pε) towards the solution of the
unperturbed system (P0), when (zε

0, Ȳ ε
0 ) is close enough to (z∗

0 , Ȳ ∗
0 ) which verifies G(z∗

0 , Ȳ ∗
0 ) =

0:

(P0)

⎧⎪⎪⎨⎪⎪⎩
G(z∗(t), Ȳ ∗(t)) = 0,
dz∗
dt = −2gz∗ + F (Ȳ ∗)

(z∗(0), Ȳ ∗(0)) = (z∗
0 , Ȳ ∗

0 ),
(2.20)

The first line G(z∗(t), Ȳ ∗(t)) = 0 in (2.20) defines the slow manifold, parametrized by the
slow variable z∗(t), whereas the equation dz∗

dt = −2gz∗ + F (Ȳ ∗) (second line) encodes the slow
dynamic on that manifold. The slow manifold can be interpreted as the set of fast equilibria
Ȳ ∗(t) corresponding to the levels given by slow variables z∗(t). We will first assess the number
of coexisting fast equilibria for any given parameter set (g, m) ∈ R

∗
+

2 and value of the slow
variable z∗. We will show that there exists either one or none of those, which constrains
our proof of convergence to apply when (zε

0, Ȳ ε
0 ) is close enough to (z∗

0 , Ȳ ∗
0 ) (the latter being

on the slow manifold). Then, we will show that those fast equilibria are locally stable in
Lemma 6. This lemma represents the essential condition for the convergence to apply on the
finite time interval [0, t∗], where t∗ will be subsequently defined (see Levin and Levinson 1954
and Appendix 2.E for the detailed proof). We state the following theorem:

Theorem 2.4.1. Let (Ȳ ∗, z∗) be solution of (2.20) on [0, t∗] with initial conditions (z∗
0 , Ȳ ∗

0 ),
located on the slow manifold (ie. such that G

(
z∗(t), Ȳ ∗(t)

)
= 0 for t ∈ [0, t∗]). For 0 <

ε < 1, let (Ȳε, zε) be solution of (2.19) on [0, t∗] with initial conditions (zε
0, Ȳ ε

0 ). Then, as
max(ε, |zε

0 − z∗
0 |, |Ȳ ε

0 − Ȳ ∗
0 |)→ 0, (Ȳε, zε) converges toward (Ȳ ∗, z∗) uniformly on [0, t∗].

2.4.2 Number of coexisting fast equilibria.
Let us explicit that fast equilibria corresponding to z∗ ∈ R are Ȳ ∗ = (N∗

1 , N∗
2 , δ∗) ∈ Ω =

(R∗
+)2 × R verifying: G(z∗, Ȳ ∗) = 0, ie. the system:⎧⎪⎪⎨⎪⎪⎩

[
1−N∗

1 − g(z∗ + 1)2 −m
]
N∗

1 + mN∗
2 = 0,[

1−N∗
2 − g(z∗ − 1)2 −m

]
N∗

2 + mN∗
1 = 0,

2g −m
(

N∗
2

N∗
1

+ N∗
1

N∗
2

)
δ∗ = 0.

(2.21)

We stress that this definition of fast equilibria requires both sizes of the subpopulations to be
positive (we can notice that the two first equations of (2.21) do not allow for one population
to go extinct while the other one persists). The objective is to identify how many coexisting
fast equilibria there are for each set of parameter (g, m, z∗) ∈ (R∗

+)2×R. To that purpose, let
us first notice that the fast equilibria can be defined only using their demographic ratio N∗

2
N∗

1
.
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Lemma 1. For z∗ ∈ R, let us define:

Pz∗(X) = X3 − f1(z∗)X2 + f2(z∗)X − 1,

where
f1(z∗) = 1 +

g

m
(z∗ + 1)2 − 1

m
, f2(z∗) = 1 +

g

m
(z∗ − 1)2 − 1

m
.

If (N∗
1 , N∗

2 , δ∗) is a fast equilibrium, then: ρ∗ = N∗
2

N∗
1

is a positive root of Pz∗ greater than
f1(z∗). Conversely, if ρ∗ is a positive root of Pz∗ greater than f1(z∗), then:

(N∗
1 , N∗

2 , δ∗) =

⎛⎝m[ρ∗ − f1(z∗)], m ρ∗ [ρ∗ − f1(z∗)],
2g

m
(
ρ∗ + 1

ρ∗
)
⎞⎠ ∈ Ω,

is a fast equilibrium corresponding to z∗ and ρ∗ = N∗
2

N∗
1

.
Consequently, the number of fast equilibria corresponding to z∗ is the number of positive

roots of Pz∗(X) greater than f1(z∗).

Proof of Lemma 1. For z∗ ∈ R, since Ȳ ∗ ∈ Ω = R
∗
+ × R

∗
+ × R, one can notice that (2.21) is

equivalent to: ⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

N∗
2

N∗
1

=
g(z∗−1)2+m−1−m

N∗
1

N∗
2

g(z∗+1)2+m−1−m
N∗

2
N∗

1

,

N∗
1 = m

N∗
2

N∗
1

+ 1− g(z∗ + 1)2 −m,

δ∗ = 2g

m

(
N∗

2
N∗

1
+

N∗
1

N∗
2

) .

⇐⇒

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

[
N∗

2
N∗

1

]3 −
[

N∗
2

N∗
1

]2 [
1 + g

m(z∗ + 1)2 − 1
m

]
+

[
N∗

2
N∗

1

] [
1 + g

m(z∗ − 1)2 − 1
m

]
− 1 = 0,

N∗
1 = m

[
N∗

2
N∗

1
−

(
1 + g

m(z∗ + 1)2 − 1
m

)]
,

δ∗ = 2g

m

(
N∗

2
N∗

1
+

N∗
1

N∗
2

) .

Hence the result.

Remark 3. Thanks to the symmetrical setting of the habitats, one can notice that, for all
z∗ ∈ R, P−z∗(X) = X3Pz∗(1/X) and f1(−z∗) = f2(z∗). Hence, the number of positive roots
of Pz∗ that are greater than f1(z∗) is the number of positive roots of P−z∗ that are greater than
f2(z∗). Therefore, from now on, we will consider that z∗ ≥ 0 without loss of generality.

The Lemma 2 shows that multiple fast equilibria cannot coexist and fast equilibria do not
need to exist for any given set of parameters (g, m, z∗) ∈ R

∗
+

2 × R+.

Lemma 2. Let z∗ ≥ 0. Then:

(i) If Pz∗ has more than a single positive root, then they are all lower than f1(z∗). Hence,
no fast equilibrium can exist in this configuration.

(ii) If Pz∗ has a single positive root ρ∗, then:

[ρ∗ > f1(z∗)] ⇐⇒ [f1(z∗) ≤ 0] ∨ [Pz∗(f1(z∗)) < 0] .
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Proof of Lemma 2. Let z∗ ≥ 0. As Pz∗(0) = −1, and the leading coefficient is 1, Pz∗ has at
least one positive root and has either 1 or 3 positive roots.

(i) Let us assume that Pz∗ has three positive roots x1, x2, x3. Then f1(z∗) = x1 +x2 +x3 >
max{x1, x2, x3}, since the three roots are positive.

(ii) Let us assume now that Pz∗ has a single positive root ρ∗. As Pz∗(0) = −1 < 0 and the
leading coefficient of Pz∗ is 1, we deduce that, for y > 0: y < ρ∗ ⇐⇒ Pz∗(y) < 0. Hence the
result.

The second point of the Lemma 2 allows us to precise in the next proposition the conditions
on z∗ such that a fast equilibrium exists, depending on (g, m) ∈ R

∗
+

2 (see also Fig. 2.3):

Proposition 2.4.1. For (g, m, z∗) ∈ R
∗
+ × R

∗
+ × R+ such that Pz∗ has a single positive root,

let us define:

Δ =
4
g2

[
m2 − 4g (m− 1)

]
, z1 =

1
2

[2 (g + 1−m)
g

−
√

Δ
]

, z2 =
1
2

[2 (g + 1−m)
g

+
√

Δ
]

.

The following holds:

∗ If g ≥ 1 and:

� m < 2g
(
1−

√
1− 1

g

)
, then for all z∗ ∈]√z1,

√
z2[, there exists a single fast equilib-

rium, and none otherwise.
� m ≥ 2g

(
1−

√
1− 1

g

)
(ie. Δ ≤ 0), then for all z∗ ≥ 0, there exists no fast equilibria.

∗ If g < 1, then :

� If m ≤ 1−g
2 , then, for z∗ ∈ [0,

√
1−m

g − 1[∪]√z1,
√

z2[, there exists a single fast
equilibrium associated to z∗, and none otherwise.

� If 1−g
2 < m < 1− g, then, for z∗ ∈ [0, max

(√
1−m

g − 1,
√

z2
)

[, there exists a single
fast equilibrium associated to z∗, and none otherwise.
� If 1−g ≤ m, then, for 0 ≤ z∗ <

√
z2, there exists a single fast equilibrium associated

to z∗, and none otherwise.

The proof of 2.4.1 is located in Section 2.F.
Finally, we examine the conditions upon which Pz∗ has three positive roots. Due to the

high degrees of the polynomials involved, an analytical condition on (g, m) ∈ R
∗
+

2 has only
been found when z∗ ∈ [−1, 1]:

Proposition 2.4.2. If 1 + 2m ≥ g, for all z∗ ∈ [−1, 1], Pz∗ has a single positive root.
If 1 + 2m < g, there exists an interval I �= ∅ centered in 0 such that for all z∗ ∈ I, Pz∗ has

three distinct positive roots.

Proof. The proof will require three lemma. The first one states conditions upon which Pz∗ has
three distinct positive roots for z∗ ∈ R. The second one gives an explicit condition determining
if P0 = Pz∗=0 has one (1 + 2m ≥ g) or three distinct positive roots (1 + 2m < g). The third
one shows that if there exists a z∗ ∈ [−1, 1]\{0} such that Pz∗ has three distinct positive roots,
then P0 also has three distinct positive roots.

Lemma 3. Let z∗ ∈ R. Pz∗(X) = X3 − f1(z∗)X2 + f2(z∗)X − 1 has three distinct positive
roots if and only if the three following conditions hold simultaneously:
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Figure 2.3: Description of the conditions imposed on z∗ ≥ 0 to get a fast equilibrium
depending on the pair (g, m) under the preliminary assumption that Pz∗ has a
single positive root, according to the results of 2.4.1. When selection is smaller than
1, symmetrical fast equilibria exist (z∗ = 0), and do not when selection is larger than 1. When both
migration and selection are both too strong, no fast equilibrium can exist.
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(i) f1(z∗) > 0,

(ii) f2(z∗) > 0,

(iii) Δ(z∗) := f1(z∗)2f2(z∗)2 − 4(f1(z∗)3 + f2(z∗)3) + 18f1(z∗)f2(z∗)− 27 > 0.

Proof of Lemma 3. Let (x1, x2, x3) ∈ C
∗3 be the roots of Pz∗ . Since x1x2x3 = 1, we have:

f1(z∗) = x1 + x2 + x3, f2(z∗) =
x1x2 + x2x3 + x3x1

x1x2x3
=

1
x1

+
1
x2

+
1
x3

.

Let us assume first that x1, x2, x3 are positive and distinct. Then they are real and from the
latter, f1(z∗) > 0 and f2(z∗) > 0. Moreover, they are real and distinct if and only if the
discriminant of Pz∗ is positive, hence condition (iii).

Conversely, let us assume (i), (ii) and (iii). Then x1, x2, x3 are real and distinct. Since
Pz∗(0) < 0, two of them (for example x2 and x3) share the same sign. Suppose that they are
negative (they cannot be 0 since Pz∗(0) = −1) . Then (i) yields:

x1 > |x2|+ |x3|.
Hence :

f2(z∗) =
1
x1

+
1
x2

+
1
x3

=
1
x1
− 1
|x2| −

1
|x3| <

1
|x2|+ |x3| −

1
|x2| −

1
|x3| < 0,

which contradicts (ii). Hence x1, x2, x3 are positive and distinct.

Lemma 4. P0 = Pz∗=0 has three distinct positive roots if and only if g > 1 + 2m and one
positive root otherwise.

Proof of Lemma 4. One can notice that f1(0) = f2(0) = 1 + g
m − 1

m and:

Δ(0) = f1(0)4 − 8f1(0)3 + 18f1(0)2 − 27 = (f1(0) + 1)(f1(0)− 3)3.

Hence, the precedent lemma ensures that P0 has three distinct positives roots only in the region
where f1(0) = f2(0) = 1 + g

m − 1
m > 0 and Δ(0) > 0. That occurs if and only if f1(0) > 3,

which yields g > 1 + 2m.

Lemma 5. If there exists z∗ ∈ [−1, 1] such that Pz∗ has three distinct positive roots, then P0
has three distinct positive roots.

Proof of Lemma 5. We recall that we study the case z∗ > 0 without loss of generality. Let us
consider z∗ ∈]0, 1] such that Pz∗ has three distinct positive roots. From Remark 3, P−z∗ has
also three distinct positive roots. Thereby, Lemma 3 implies that fi(±z∗) > 0, i = 1, 2 and
δ(±z∗) > 0.

It is clear that f1 is strictly increasing on ]− 1, 1[ and f2 is strictly decreasing on ]− 1, 1[.
As fi(±z∗) > 0, i = 1, 2, we get that f1 > 0 and f2 > 0 on [−z∗, z∗], in particular f1(0) > 0
and f2(0) > 0.

Moreover, let us introduce the function g : z �→ f1(z)2 − 3f2(z). For z ∈] − 1, 1[, g′(z) =
2f ′

1(z)f1(z)− 3f ′
2(z) > 0, because f1(z) > 0, f ′

1(z) > 0 and f ′
2(z) < 0. Therefore, g is increasing

on ]− 1, 1[. One can also notice that g(z) is the quarter of the discriminant of P ′
z(X). As Pz∗

and P−z∗ have three distinct positive roots, by Rolle’s theorem, P ′
z∗ and P ′−z∗ have two distinct

positive roots. Therefore, g(−z∗) and g(z∗) are positive. As g is increasing on [−z∗, z∗], we
get: 0 < g(0) = f1(0)(f1(0)−3). Since f1(0) > 0 and g(0) > 0, we have 3 < f1(0) = 1 + g

m − 1
m .

By the Lemma 4, P0 has then three distinct positive roots.
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The successive applications of Lemma 4 and Lemma 5 are sufficient to conclude.

2.4.3 Fast relaxation towards the slow manifold.
We hereby prove the following lemma on the stability of the slow manifold:

Lemma 6. For (z, Ȳ ) ∈ R×Ω such that G(z, Ȳ , 0) = 0, JG(z, Ȳ ) := ∂Ȳ G(z, Ȳ , 0) is invertible.
Furthermore, its eigenvalues are real and negative.

Proof. For (z, Ȳ ) ∈ R× Ω such that G(z, Ȳ , 0) = 0, we have:

JG(z, Ȳ ) =

⎛⎜⎝−2N1 + [1− g(z + 1)2 −m] m 0
m −2N2 + [1− g(z − 1)2 −m] 0

m δ
N1

(
N2
N1
− N1

N2

)
−m δ

N2

(
N2
N1
− N1

N2

)
−m

(
N2
N1

+ N1
N2

)
⎞⎟⎠ .

Since G(z, Ȳ , 0) = 0, (2.18) leads to:

JG(z, Ȳ ) =

⎛⎜⎜⎝
−mN2

N1
−N1 m 0

m −mN1
N2
−N2 0

m δ
N1

(
N2
N1
− N1

N2

)
−m δ

N2

(
N2
N1
− N1

N2

)
−m

(
N2
N1

+ N1
N2

)
⎞⎟⎟⎠

=

⎛⎜⎝ J
0
0

m δ
N1

(
N2
N1
− N1

N2

)
−m δ

N2

(
N2
N1
− N1

N2

)
−m

(
N2
N1

+ N1
N2

)
⎞⎟⎠

so that we can compute :

det JG(z, Ȳ ) = −m

(
N2
N1

+
N1
N2

)[
m

N2
2

N1
+ m

N2
1

N2
+ N1N2

]
< 0.

Hence JG(z, Ȳ ) is invertible. A first eigenvalue is −m
(

N2
N1

+ N2
N1

)
< −2m. The last two

eigenvalues are those of the upper left block J . We have:

tr(J) < −2m < 0, det(J) = m
N2

1
N2

+ m
N2

1
N2

+ N1N2 > 0,

and:
tr(J)2 − 4 det(J) = 4m2 +

(
m

N2
N1
−m

N1
N2

+ N1 −N2

)2
> 4m2 > 0.

Hence J has two real negative eigenvalues and consequently, JG(z, Ȳ ) has three real negative
eigenvalues.

2.5 Analytical description of the equilibria
in the limit of vanishing variance

In this section, we will perform an equilibrium analysis for the stationary problem in the
limit of vanishing variance. As numerically illustrated in Section 2.3, under this regime, our
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model (2.1) leads to the same dynamics of the moments as in Ronce and Kirkpatrick 2001.
Consequently, this equilibrium analysis corresponds to the one made in Ronce and Kirkpatrick
2001 (in the limit of vanishing variance where their system of four equations converges to the
system (2.16)). Recall from the introduction that the study done in Ronce and Kirkpatrick
2001 reveals two types of equilibrium:

• symmetrical equilibrium, where both populations are of the same size and equally mal-
adapted to their local habitat (corresponding to a generalist species). Such an equi-
librium is derived analytically by the authors. It is worthy to note that in the small
variance regime, this equilibrium becomes monomorphic.

• asymmetrical equilibria, where one larger population of locally adapted individuals acts
as a source for the other more poorly adapted smaller population (corresponding to a
specialist species). The authors numerically explored this type of equilibrium and derived
approximations for low migration rates. One aim of this section is to characterize such
equilibria analytically.

The fast/slow analysis done in Section 2.4 gives us the opportunity to go further in the
equilibrium analysis in the small variance regime, as the asymptotic system (2.16) presents
a reduced complexity (three equations instead of four). Moreover, adopting the notation
ρ∗ = N∗

2
N∗

1
> 0 and using the polynomial previously defined:

Pz∗(X) = X3 −X2
[
1 +

g

m
(z∗ + 1)2 − 1

m

]
+ X

[
1 +

g

m
(z∗ − 1)2 − 1

m

]
− 1,

the Lemma 1 implies that (2.16) is equivalent to:⎧⎨⎩Pz∗(ρ∗) = 0,
dz∗
dt = 2g

(
ρ∗2−1
ρ∗2+1 − z∗

)
,

(2.22)

with the constraint ρ∗ > max
(
1 + g

m(z∗ + 1)2 − 1
m , 0

)
(ie. N∗

1 > 0). This reduction in the
regime of small variance allows us in a second time to derive analytical expressions of every
possible equilibrium (z∗, N∗

1 , N∗
2 ) ∈ R× R

∗
+

2 from solving:[
P ρ∗2−1

ρ∗2+1
(ρ∗) = 0

]
∧

[
ρ∗ > max

(
1 +

g

m

4ρ∗4

(ρ∗ + 1)2 −
1
m

, 0
)]

, (2.23)

and next setting: ⎧⎪⎪⎪⎨⎪⎪⎪⎩
z∗ = ρ∗2−1

ρ∗2+1 ,

N∗
1 = m

[
ρ∗ −

[
1 + g

m(z∗ + 1)2 − 1
m

]]
,

N∗
2 = m

[
1
ρ∗ −

[
1 + g

m(z∗ − 1)2 − 1
m

]]
.

(2.24)

We will show that there exists a unique symmetrical equilibrium, which correspond to the
monomorphic one analytically found by Ronce and Kirkpatrick 2001 (in the regime of small
variance). We will then show that there can additionally exist a mirrored pair of asymmet-
rical equilibria uniquely defined, corresponding to the ones found numerically by Ronce and
Kirkpatrick 2001.
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2.5.1 Equilibrium analysis
The objective of this section is to find the steady states (z∗, N∗

1 , N∗
2 ) of the system (2.16) that

lie in R × R
∗
+

2 (or equivalently, solve (2.23) and set (2.24)). Henceforth, we will call these
(z∗, N∗

1 , N∗
2 ) equilibria. The systems (2.23) and (2.24) imply that (z∗, N∗

1 , N∗
2 ) ∈ R× R

∗
+

2 is

an equilibrium if and only if Ȳ ∗ =
(

N∗
1 , N∗

2 , 2g

m
[
ρ∗+ 1

ρ∗
]) is a fast equilibrium corresponding to

z∗ = ρ∗2−1
ρ∗2+1 . As a corollary of the 2.4.1, we get that the following region of parameters does

not allow for any equilibria to exist:

Corollary 1. If
[

[g ≥ 1]∧
[
m ≥ 2g

(
1−

√
1− 1

g

)] ]
, then there can exist no equilibria as de-

fined by (2.23) and (2.24), i.e. that leads to N∗
1 > 0 and N∗

2 > 0.

Remark 4. Although our analysis is not meant to describe extinction, we observe numerically
that the system goes to extinction in the region defined in the previous corollary (see Fig. 2.6).

From now on and until further notice, we will thus consider (m, g) ∈ R
∗
+

2 such that:

[g < 1] ∨
[
m < 2g

(
1−

√
1− 1

g

)]
.

2.5.1.1 Symmetric equilibrium: fixation of a generalist species
Definition 1. We call symmetric equilibrium the (z∗, N∗

1 , N∗
2 ) ∈ R× R

∗
+

2 solutions of (2.23)
and (2.24) where both subpopulations have the same size: N∗

1 = N∗
2 = N∗ > 0.

We first state that there can only exist one viable symmetrical equilibrium:

Proposition 2.5.1. There exists a single symmetric equilibrium when g < 1, given by
(0, 1− g, 1− g) and none when g ≥ 1.

Proof. Regarding (2.23): we have ρ∗ = 1 is a positive root of:

Pz∗=0(X) = X3 − (1 +
g − 1

m
)X2 + (1 +

g − 1
m

)X − 1,

that additionally satisfies:
ρ∗ > 1 +

g − 1
m

⇐⇒ 1 > g.

Hence the symmetrical equilibrium is uniquely defined by (0, 1− g, 1− g) (from considering
(2.24)).

In this case, as 0 is the middle point between the local optimal phenotypes −1 in habitat
1 and 1 in habitat 2, each subpopulation is equally maladapted.

Remark 5. The existence of this equilibrium (or the associated extinction when it is not
viable) was expected, for we consider symmetrical habitats and thus symmetrical dynamics.
Therefore, under symmetrical initial conditions, the outcome is necessarily symmetrical.
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2.5.1.2 Asymmetric equilibrium: specialist species
We define as asymmetric equilibrium any solution of (2.24) in R×R

∗
+

2 that is not a symmetric
equilibrium.

Remark 6. One can notice that the system (2.23) is invariant under the transformation
ρ∗ �→ 1

ρ∗ or equivalently (2.24) under (z∗, N∗
1 , N∗

2 ) �→ (−z∗, N∗
2 , N∗

1 ). Thus, we do not lose in
generality if we look for equilibria with N∗

1 < N∗
2 instead of N∗

1 �= N∗
2 : to each asymmetrical

equilibrium with N∗
1 < N∗

2 , we can associate its mirrored version.

This section is dedicated to confirm the numerical intuition of Ronce and Kirkpatrick
2001 and show that there exists a range of parameters such that a unique mirrored couple of
asymmetrical equilibria exists.

Proposition 2.5.2. Let (m, g) ∈ R
∗
+

2 be such that:

[1 + 2m < 5g] ∧
[
m2 > 4g (m− 1)

]
. (2.25)

Then there exists a single asymmetrical equilibrium (z∗, N∗
1 , N∗

2 ) with N∗
1 < N∗

2 , given by:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

N∗
1 = (1−m) + mρ− 4g ρ∗4

(ρ∗2+1)2 ,

N∗
2 = (1−m) + m

ρ∗ − 4g 1
(ρ∗2+1)2 ,

z∗ = ρ∗2−1
ρ∗2+1 �= 0,

(2.26)

where ρ∗ = y∗+
√

y∗2−4
2 and y∗

(
= ρ∗ + 1

ρ∗
)

is the only root greater than 2 of the polynomial:

S(Y ) = Y 3 +
(1− 4g)

m
Y 2 − 4g

m
Y +

4g

m
.

Conversely, if the condition (2.25) is not verified, there can be no asymmetrical equilibria.

Remark 7. For g > 1, m > 0, we have the equivalence:

[1 + 2m < 5g] ∧
[
m2 > 4g (m− 1)

]
⇐⇒

[
m < 2g

(
1−

√
1− 1

g

)]
.

Fig. 2.4 summarizes the conditions obtained with 2.5.1 and 2.5.2. It illustrates the ana-
lytical range of parameters where the different types of equilibrium exist when the strength
of selection g and the migration rate m vary. In the region where none of the conditions
are met, we observe numerically that the system leads to extinction (upper right region). In
the intermediate green triangle, the two asymmetrical equilibria coexist with the symmetrical
equilibrium.

Proof of 2.5.2. The first part of the proof is directed to solve the equation given in (2.23)
and consists in two lemmas. The second part of the proof examines the conditions under
which such solutions verify the inequality constraint given by (2.23). It consists in a lemma
that involves tedious computations. Consequently, the second part of the proof is left to be
consulted in Section 2.G.
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Figure 2.4: Regions of existence of the equilibria, according to 2.5.1 and 2.5.2. The
symmetrical equilibrium is only determined by the intensity of selection, regardless of the
migration rate. The asymmetrical equilibria cannot exist for large migration rate (m > 2) or
small intensity of selection. The limit of the blue region is given by m = 1 when g goes to ∞.
Interestingly enough, at intermediate migration: m ∈ [1, 2], asymmetrical equilibria only exist
for a bounded range of positive g: selection cannot be too strong nor too weak. Moreover, see
Section 2.5.2 for stability results about these equilibria to determine which equilibria prevail
when both symmetrical and asymmetrical coexist (turquoise triangular region).
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First part of the proof. (2.23) provides us with a close equation: P ρ∗2−1
ρ∗2+1

(ρ∗) = 0. Solving

it seems necessary, however, the direct search for solutions of this equation leads to consider
a seventh degree polynomial. The first part of the proof consists in two lemmas. We first
rely on the symmetry of the system noticed by Remark 6 ((z∗, ρ∗) is solution if and only if(
−z∗, 1

ρ∗
)

is too) to reduce the complexity from a seventh degree polynomial to a third degree
polynomial S:

Lemma 7. Let us define:

S(Y ) = Y 3 +
(1− 4g)

m
Y 2 − 4g

m
Y +

4g

m
.

Then, we have the following relation for ρ∗ ∈ R
∗
+\{1}:

S

(
ρ∗ +

1
ρ∗

)
=

(1 + ρ∗2)2

(ρ∗ − 1)ρ∗3 P ρ∗2−1
ρ∗2+1

(ρ∗).

As for ρ∗ ∈ R
∗
+\{1}, ρ∗ + 1

ρ∗ > 2, we next look for the number of roots of S greater than
2:

Lemma 8. Let a > 0, b ∈ R. Let us define b(a) := 5a
4 − 2. Then: if b ≥ b(a), S(Y ) =

Y 3 + (b− a)Y 2 − aY + a, has no root greater than 2. If b < b(a), S has a single root greater
than 2.

The successive application of the Lemma 7 and Lemma 8 with:{
b = 1

m ,

a = 4g
m > 0,

yields that there exists a unique solution to (2.23) if and only if 1 + 2m < 5g, and therefore to
(2.24) in R×R

∗
+

2 which is exactly (2.26). Proving the two lemmas concludes the first part of
the proof.

Proof of Lemma 7. Let us consider ρ∗ ∈ R
∗\{1}. Then we have:

(1 + ρ∗2)2

(ρ∗ − 1)ρ∗3 P ρ∗2−1
ρ∗2+1

(ρ∗) =
2− 4g

m
+

(3m− 4g)
m

(
ρ∗ +

1
ρ∗

)
+

(1− 4g)
m

(
ρ∗2 +

1
ρ∗2

)
+ ρ∗3 +

1
ρ∗3

=
2− 4g

m
+

(3m− 4g)
m

(
ρ∗ +

1
ρ∗

)
+

(1− 4g)
m

(
ρ∗2 +

1
ρ∗2

)
+ ρ∗3 +

1
ρ∗3 .

Since:

ρ∗2 +
1

ρ∗2 =
(

ρ∗ +
1
ρ∗

)2
− 2,

ρ∗3 +
1

ρ∗3 =
(

ρ∗ +
1
ρ∗

)3
− 3

(
ρ∗ +

1
ρ∗

)
,

we have:
(1 + ρ∗2)2

(ρ∗ − 1)ρ∗3 P ρ∗2−1
ρ∗2+1

(ρ∗) =
(

ρ∗ +
1
ρ∗

)3
+

1− 4g

m

(
ρ∗ +

1
ρ∗

)2
− 4g

m

(
ρ∗ +

1
ρ∗

)
+

4g

m

= S

(
ρ∗ +

1
ρ∗

)
.
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Proof of Lemma 8. As S(0) = a > 0 and since S goes to −∞ in −∞, S has always a negative
root.

Thereby, the case that we take interest in is included within the case where all three roots
Z1, Z2, Z3 of S are real. Furthermore, we have the following relations:{

Z1Z2Z3 = −a < 0,

Z1Z2 + Z2Z3 + Z3Z1 = −a < 0.

From the first relation, we deduce that S has an even number of positive roots, so either 0 or
2. The second relation leads to a contradiction if all roots are negative. Thus S has necessarily
two positive roots and one negative.

Moreover, we have:

1
Z1

+
1

Z2
+

1
Z3

=
Z1Z2 + Z2Z3 + Z3Z1

Z1Z2Z3
= 1.

Without loss of generality, let us assume that Z3 < 0. If the remaining two positive roots were
greater than 2, then we would get:

1 <
1

Z1
+

1
Z2
≤ 1

2
+

1
2

= 1

which is a contradiction. Hence at most one is greater than or equal to 2.
The only fact that is left to prove is that such a root exists. Let Sa(X) = X3 + (b(a) −

a)X2 − aX + a. Under the choice of b(a), we can verify that Sa(2) = 0. Consequently, the
following holds:

b < b(a) ⇐⇒ S(2) < Sa(2) = 0.

Therefore, because S goes to +∞ in +∞, if b > b(a), S has an even number of roots greater
than 2. Thereby, from the previous part of the proof, in that case, S do not have any roots
greater than 2. If b = b(a), 2 is the only root of S greater than or equal to 2. If b < b(a), S has
at least one root strictly greater than 2. This root is unique by the argument above (which
was independent of b).

Second part of the proof. The second part of the proof is dedicated to show that for all
(m, g) ∈ R

∗
+

2 verifying (2.25), the solution ρ∗ > 0 that we found in the first part of the proof
verifies the constraint given in (2.23). It consists in the following lemma, that is obtained after
tedious calculations done in part with the help of the software Mathematica, so the proof is
left to be consulted in Appendix 2.G.

Lemma 9. Let (m, g) ∈ R
∗
+

2 verifying (2.25), and ρ∗ > 0 be the unique solution of the equation[
P ρ∗2−1

ρ∗2+1
(ρ∗) = 0

]
. Then:

ρ∗ > 1 +
g

m

4ρ∗4

(ρ∗ + 1)2 −
1
m

.

Consequently: for (g, m) ∈ R
∗
+

2 such that 1 + 2m < 5g and m2 > 4g (m− 1), ρ∗ defined in
2.5.2 defines an equilibrium with positive subpopulation sizes.

Conversely: if (2.25) is not met, either 1 + 2m > 5g, in which case no asymmetrical
equilibrium can exist from Lemma 7 and Lemma 8, or m2 < 4g (m − 1) (which implies that
g > 1), in which case Remark 7 and Corollary implies that no equilibrium can exist.
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2.5.2 Stability analysis
In this subsection, we examine the stability of the equilibria of the system (2.22) that we
described previously.

Proposition 2.5.3. Let (z∗, N∗
1 , N∗

2 ) ∈ R × R
∗
+

2 be an equilibrium and ρ∗ = N∗
2

N∗
1

. Then the
equilibrium is locally stable (respectively unstable) if:

4ρ∗

(ρ∗2 + 1)2 ×
1

P ′
z∗(ρ∗)

× 2g

m

[
z∗ (

ρ∗ − ρ∗2
)
−

(
ρ∗ + ρ∗2

)]
+ 1 > 0 (resp. < 0).

Proof. If (z∗, N∗
1 , N∗

2 ) ∈ R × R
∗
+

2 is an equilibrium and ρ∗ = N∗
2

N∗
1

, then (N∗
1 , N∗

2 ) is a fast
equilibrium associated to z∗ (Lemma 1), which implies that Pz∗ has a single positive root
(without multiplicity) that is ρ∗ (Lemma 2). Hence ρ∗ cannot be a double root of Pz∗ , which
yields: P ′

z∗(ρ∗) �= 0.
(2.22) implies that the local stability of the equilibria can be examined by the following

system: ⎧⎪⎪⎨⎪⎪⎩
G(z∗, ρ∗) := Pz∗(ρ∗) = 0,

ρ∗ >
[
1 + g

m(z∗ + 1)2 − 1
m

]
,

dz∗
dt = F(z∗, ρ∗) := 2g

(
ρ∗2−1
ρ∗2+1 − z∗

)
.

As ∂ρG(z∗, ρ∗) = P ′
z∗(ρ∗) �= 0, we apply the implicit function theorem to get U a open

neighbourhood of z∗ and a smooth function ρ : U → R
∗
+ such that:

∀z ∈ U,G(z, ρ(z)) = 0.

For z ∈ U , we define f : U → R, z �→ F (z, ρ(z)). Hence, (z∗, N∗
1 , N∗

2 ) is locally stable (resp.
unstable) if :

f ′(z∗) = ∇F(z∗, ρ∗) ·
(

1
dρ
dz (z∗)

)
= ∂ρF(z∗, ρ∗)

[
− (∂ρG(z∗, ρ∗))−1

∂zG(z∗, ρ∗)
]
− 2g < 0 (resp. > 0).

Since we have:

∂ρF(z∗, ρ∗) = 2g
4ρ∗2

(ρ∗ + 1)2 , (∂ρG(z∗, ρ∗))−1 =
1

P ′
z∗(ρ∗)

,

and
∂zG(z∗, ρ∗) = −2

g

m
(z∗ + 1)ρ∗2 + 2

g

m
(z∗ − 1)ρ∗,

the considered equilibrium is locally stable (reps. unstable) if:

4ρ∗

(ρ∗2 + 1)2 ×
1

P ′
z∗(ρ∗)

× 2g

m

[
z∗ (

ρ∗ − ρ∗2
)
−

(
ρ∗ + ρ∗2

)]
+ 1 > 0 (resp. < 0).

Corollary 2. The symmetrical equilibrium z∗ = 0, ρ∗ = 1 is locally stable (resp. unstable) if
5g < 1 + 2m (resp. 5g > 1 + 2m) (ie, when it is alone).
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Proof. If z∗ = 0 and ρ∗ = 1, we have:

4ρ∗

(ρ∗2 + 1)2 ×
1

P ′
z∗(ρ∗)

× 2g

m

[
z∗ (

ρ∗ − ρ∗2
)
−

(
ρ∗ + ρ∗2

)]
+ 1

=
1

3− 2
(
1 + g

m − 1
m

)
+

(
1 + g

m − 1
m

) × −4g

m
+ 1 =

1 + 2m− 5g

1 + 2m− g
.

We recall that for the symmetrical equilibrium to exist, we need: g < 1, which imply: g <
1 + 2m. Hence the result.

Analytical derivations are more tedious for asymmetrical equilibria. However, when 1 +
2m > g, we showed that Pz∗ has a single (without multiplicity) positive root ρ(z∗) for all
z∗ ∈ [−1, 1] (2.4.2). The function ρ : [−1, 1] → R

∗
+, z �→ ρ(z) is therefore smooth (where ρ(z)

designates the single positive root of Pz). Thus, we can globally define the smooth function f
similarly as in 2.5.3 on ]− 1, 1[:

f :

⎧⎨⎩]− 1, 1[→ R

z �→ 2g
(

ρ(z)2−1
ρ(z)2+1 − z

)
,

.

That leads to the following result:

Corollary 3. Let 5g > 1 + 2m > g. Then the asymmetrical equilibria are locally stable.

Proof. Let (z∗, N∗
1 , N∗

2 ) be an asymmetrical equilibrium. We recall that z∗ = ρ∗2−1
ρ∗2+1 ∈]− 1, 1[.

From the previous corollary, the symmetric equilibrium is locally unstable, i.e.:

f ′(0) > 0.

Moreover, from 2.4.2, Pz∗=1 has a single positive root, and we can extend f in 1 by continuity
and calculate :

f(1) = 2g

(
ρ2(1)− 1
ρ2(1) + 1

− 1
)

= − 4g

ρ2(1) + 1
< 0.

Since 0 and z∗ are the only zeros of f on [0, 1] (from the uniqueness of the mirrored couple
of asymmetric equilibria) and f ′(0) > 0, f is positive on ]0, z∗[ ane negative on ]z∗, 1]. Hence,
the asymmetrical equilibria are locally stable.

To illustrate the diversity of cases in both the number of equilibria and their stability, we
display in Fig. 2.5 the graph of the function f defined above as a function of the dominant
trait z when g = 1.5 and m takes the following values :

1. m = 0.02. There are multiple branches near the origin (yellow curve), as the function f
is multi-valued. Indeed, we are in the case where: 1 + 2m < g. Therefore, for z∗ near 0,
there is three distinct positive roots for Pz∗ (from 2.4.2), which leads to non-viable fast
equilibria (from Lemma 2). Therefore, if the initial dominant trait is near 0, the system
will go to extinction.

2. m = 0.25, so that the equality 1 + 2m = g holds, which is the limit case of the folding
near the origin.

3. m = 1. For each value of the dominant trait z∗, there is only one root to Pz∗ . There are
three equilibria, an unstable symmetric and two stable asymmetric equilibria (1 + 2m <
5g).
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Figure 2.5: Graph of the function f for g = 1.5 and m ∈ {0.02, 0.25, 1, 3.25, 5}. The
dominant traits z∗ of the different equilibria are located where the curve crosses the horizontal
line (f(z∗) = 0). An equilibrium is locally stable if the slope of f at the point of equilibrium
is negative. For decreasing values of m (dark to light colors), at first, only the symmetric
equilibrium exists and is stable (see also Corollary). Then, the asymmetrical equilibria emerge
(in the parameter region indicated in 2.5.2) and are bistable (see also Corollary), while the
symmetric equilibrium becomes unstable. For small values of m, the curve folds near the
origin, as for z∗ near 0, Pz∗ has three distinct positive roots (2.4.2). For those z∗, the fast
equilibria are all non viable (Lemma 2): numerically, the system goes to extinction if the initial
dominant trait is near 0.
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4. m = 3.25, so that the equality 1 + 2m = 5g holds. This displays the limit of existence of
the asymmetrical equilibria (see 2.5.2). The three equilibria are merging and exchanging
stability.

5. m = 5. As m grows further, the asymmetric equilibria do not exist anymore. Therefore,
only the symmetric one is left and is stable.

2.6 Discussion
Contributions In this Chapter, we have studied the evolutionary dynamics of a complex
trait under stabilizing selection in a heterogeneous environment in a sexually reproducing
population. To model the process of inheritance of this trait, we have used a mixing sexual
reproduction operator according to the infinitesimal model (Fisher 1919; Bulmer 1971; Barton,
Etheridge, and Véber 2017), assuming that the segregational variance is constant and inde-
pendent of the families. We have set our analysis in a regime of small variance of segregation,
aligning with a framework developed by Diekmann, Jabin, et al. 2005; Perthame and Barles
2008 and recurrently used with the infinitesimal model Garnier et al. 2022; Calvez, Garnier,
and Patout 2019. By doing so, we showed two types of results. First, we compared the system
of moments derived from our model in the limit of small variance with a seminal work in quan-
titative genetics (Ronce and Kirkpatrick 2001), showing their equivalence in that limit, while
bypassing any prior normality assumption on the trait distributions. Next, we showed that this
small variance regime discriminates two time scales, allowing to perform a slow-fast analysis,
which reduces the complexity of our system in the asymptotic limit. Thus, we were able to
fully derive analytically its equilibria thanks to algebraic arguments of symmetry reflecting the
symmetrical habitats. The theoretical outcomes of our model are shown in the upper panel of
Fig. 2.6. They are to be compared to numerical outcomes shown in the lower panel, where the
same colours indicate the same types of equilibria. For the numerical analysis, for each couple
of parameters (m, g), the initial state is the same: both local distributions are normal of same
mean (0.2) and same variance ε2 = 2.5 × 10−3. The initial state is taken as monomorphic so
that it falls within the scope of the slow-fast analysis. Moreover, the color yellow is attributed
to simulations whose final state does not meet the small segregational variance regime analysis
prediction, which in particular states that the distribution of trait in the metapopulation has
a variance of order ε2 (see (2.12) and recall that the population is monomorphic (Section 2.4)).
In the two simulations that present the color yellow, the variance in trait in the metapopulation
is of approximately 3 ε2, which exceeds the chosen threshold (2 ε2). The detailed setting and
scoring of the simulations involved in the lower panel of Fig. 2.6 are available in Section 2.I.

One can notice that the justification of the validity of the Gaussian approximation of local
trait distributions in the regime of small variance (see Section 2.2 and Garnier et al. 2022) and
most of the slow-fast analysis (Section 2.4) are robust when introducing asymmetries in our
model, or changing the selection functions. However, we stress that our analytical derivation
of the equilibria in the asymptotic limit uses specific arguments that rely crucially on the
symmetries between habitats in our model (see Remark 6 and 2.5.2).

Robustness with regard to dimorphic initial state. The theoretical outcomes given
in Fig. 2.6 are in particular a consequence of the reduction of system due to the slow-fast
theorem, which applies provided that the initial state is close enough from a fast equilibrium
from the slow manifold (see Theorem 2.4.1). Those fast equilibria are monomorphic. A natural
question would be to ask to what extent those results apply for an initial state that is dimorphic.
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Figure 2.6: Summary of the different theoretical (upper panel, in the limit of vanish-
ing segregational variance) and numerical (lower panel, ε2 = 2.5 × 10−3) outcomes
of our model when selection (g) and migration (m) are varying. The same colors
represents the same outcomes in both figures. Fig. 2.4 complemented by the stability analysis (see
Section 2.5.2) gives the upper figure. In the dashed region, the system goes to one of the asymmetrical
equilibrium, except if the initial conditions are too symmetrical (the system goes then numerically to
extinction, typically due to the folding near z∗ = 0 of the yellow curve in Fig. 2.5). For the lower figure,
all simulations share the same initial state: the metapopulation is monomorphic and asymmetrical as
local distributions are both normal with same mean (0.2) and same variance (2ε2). Hence, the potential
extinction in the dashed region does not occur and the numerical analyis falls within the scope of the
slow-fast analysis (Section 2.4). The color yellow is attributed to simulations whose final state does
not meet the small segregational variance regime analysis prediction, which, in particular, states that
the distribution of trait in the metapopulation has a variance of order ε2 (see (2.12) and recall that
the population is monomorphic (Section 2.4)). For more details on the simulations and their scoring
resulting in the lower panel figure, see Section 2.I.
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This would model for example two initially isolated subpopulations, locally adapted, that are
suddenly being connected. Here we give a numerical taste of what a more complete answer
could look like. We display Fig. 2.7 using the same methodology and scoring than for the
lower panel of Fig. 2.6, the only difference being the initial state, now constituted by two
locally adapted subpopulations, slightly asymmetrical in size (see Section 2.I for details). To
get a sense of what could occur in the regime of vanishing variance, we choose to display the
results for two values of ε2: ε2 = 2.5× 10−3 (upper panel) and ε2 = 6.25× 10−4 (lower panel).
Both panels of Fig. 2.7 and the lower panel of Fig. 2.6 are globally quite similar, except for
the yellow region that is much wider in both panels of Fig. 2.7. Particularly, there is a net
trend for strong selection and small migration. That is expected, because the initial state of
the simulations involved in both panels of Fig. 2.7 is presumably far from the conditions asked
by Theorem 2.4.1. These simulations suggest that, in this particular range of parameters,
the fast relaxation to a monomorphic state, that is central in Theorem 2.4.1, breaks down
and dimorphism is maintained. However, we can note that this yellow region decreases for
decreasing values of ε2 (difference between upper and lower panel of Fig. 2.7). That suggests
that our analysis remains quite robust to dimorphic initial states in the limit of vanishing
variance.

Comparison with asexual studies. In Section 2.5, we found that bistable asymmet-
rical equilibria can exist in our system (2.5.2, Corollary). That is a strong difference with
the findings of Mirrahimi 2017 and Mirrahimi and Gandon 2020: with a similar mesoscopic
model but using an asexual reproduction operator with frequent mutations of small effects,
they find that symmetrical habitats lead to a single stable symmetrical equilibrium, either
monomorphic or dimorphic. In particular, if migration is small enough compared to selection,
each subpopulation adapts to their habitats and dimorphism occurs at the metapopulation
scale. In our case, the mixing effect of the infinitesimal operator of sexual reproduction does
not allow for such a local adaptation to occur in the limit of small variance. In Section 2.4, we
showed that it forces monomorphism quickly and the only option to adapt to strong forces of
selection is an asymmetrical equilibrium (2.5.2, Fig. 2.6) that describes a source sink scenario.
One population is adapted to its habitat, and the other is essentially composed by poorly
adapted migrants ; the choice of which depends on the initial conditions.

Our findings share notable similarities with some in Débarre, Ronce, and Gandon 2013,
which conducts a hybrid analysis on asexual populations with tools of adaptive dynamics
applied to quantitative genetics equations. Particularly, under gradual evolution (when muta-
tions are rare and of small effects), they state that asymmetrical equilibria can be reached if
the population is initially monomorphic, under a similar range of migration and selection pa-
rameters as indicated by our analysis. They identified these equilibria as locally stable singular
strategies, which are defined as critical points of the invasion fitness. It can be shown that the
equations obtained when looking for these critical points in their case are the same as the ones
defining the equilibria in the present study. Consequently, we suggest that the asymmetrical
equilibria found in Débarre, Ronce, and Gandon 2013 should have the same coordinates as
the ones found in our analysis. However, there is a substantial difference in the dynamics
leading to those equilibria. Even with an initially dimorphic metapopulation, our hypotheses
on sexual reproduction typically strains toward monomorphism. With the same initial state,
Débarre, Ronce, and Gandon 2013 indicate that dimorphism is typically maintained in the
range of parameters where asymmetrical equilibria exist.
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Figure 2.7: Numerical outcomes with initial dimorphic state (locally adapted sub-
populations), for ε2 = 2.5×10−3 (upper panel) and ε2 = 6.25×10−4 (lower panel).
The colors for both figures results from the same scoring scheme as for Fig. 2.6 (see Section 2.I for de-
tails). The results are quite similar as Fig. 2.6, except for the yellow region. In the upper panel
(ε2 = 2.5 × 10−3), the yellow region is wider than when the initial state is monomorphic (Fig. 2.6),
increasingly so for stronger selection. That highlights the numerical cases where the population ends up
dimorphic as the species adapts locally to each deme’s optimum, for strong selection and small migra-
tion. This is expected as the fast convergence toward a monomorphism state induced by Theorem 2.4.1
in the limit of vanishing variance of segregation is likeky to break down, as the initial state is far from
the slow manifold and the segregational variance is small but not zero. However, this yellow region
decreases as the value of ε2 decreases, as indicated by the lower panel (ε2 = 6.25×10−4). That suggests
that our analysis remains quite robust to dimorphic initial states in the limit of vanishing variance.
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Gaussian assumption. In our study, we consider a regime where the segregational vari-
ance is small compared to how far apart the local optimal traits are. While this small variance
regime is more general than the standard weak selection approximation widely used in quan-
titative genetics model using the Gaussian assumption (see Remark 2), we formally show that
the local trait distributions can still be well approximated by normal distributions within this
regime (Section 2.2). Hence, asymptotically, in the regime of small variance, the findings of our
model are equivalent to Ronce and Kirkpatrick 2001, which relies on a Gaussian assumption
of local trait distributions. This link of equivalence relies on the hypothesis that the genetic
(and phenotypic) variance is constant, which we interpreted in our model to be twice the
segregational variance in the limit of vanishing variance. Furthermore, together with the last
paragraph, our study gives some elements of explanation to why the findings of Ronce and
Kirkpatrick 2001 are structurally different from Mirrahimi 2017 and Mirrahimi and Gandon
2020, and closer to Débarre, Ronce, and Gandon 2013.

Constant segregational variance in a heterogeneous environment Our model
relies on using the infinitesimal model with a constant segregational variance, independent
of the mates deme. That is a strong assumption. However, in the perspective of linking
the present study to population genetics approaches, one can question the limits of such a
modelling assumption with regard to a Mendelian interpretation of this model. A future work
is planned to examine it through conducting individual based simulations.

Acknowledgements
The author thanks Vincent Calvez and Sepideh Mirrahimi for supervising this project and
Sarah P. Otto for precise and helpful comments. The author also thanks Ophélie Ronce, Flo-
rence Débarre, Amandine Véber, Alison Etheridge and Florian Patout for insightful conver-
sations. This project has received funding from the European Research Council (ERC) under
the European Union’s Horizon 2020 research and innovation programm (grant agreement No
639638).

2.A System of moments derived from our
model

Here, we derive the system of moments (2.2) from (2.1). In the preliminary computations,
we will omit the time and deme dependency for the sake of clarity. We will then denote n
the trait distribution density, N the size of the population, z the mean trait, σ2 the mean
variance, ψ3 the third central moment and θ the optimal phenotype.

Preliminary integration of the selection term. We have:

∫
R

(z − θ)2n(z)dz =
∫
R

[
(z − z)2 + (z − θ)2 + 2(z − z)(z − θ)

]
n(z) dz

= σ2N + (z − θ)2N ,

and:
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∫
R

(z − z)(z − θ)2ndz =
∫
R

[
(z − z)3 + (z − z)(z − θ)2 + 2(z − z)2(z − θ)

]
n(z) dz

= 2σ2(z − θ)N + ψN .

Size of the subpopulations. Recalling that Ni(t) =
∫
R

ni(t, z) dz, we get from the
preliminary computations by integrating (2.1):

dNi

dt
=

∫
R

∂ni

∂t
(t, z)dz

=
∫
R

rBσ(ni)(t, z)− g(z − θi)2ni(t, z)− κNi(t)ni(t, z) + m (n(t, z)− n(t, z)) dz

=
[
r − κNi(t)− g(zi(t)− θi)2 − gσi

2
]

Ni(t) + m
(
Nj(t)−Ni(t)

)
.

Local mean trait. Recalling that zi(t) = 1
Ni(t)

∫
R

z ni(t, z) dz, we have, thanks to the
preliminary computations:

dzi

dt
=

1
Ni

∫
R

z
∂ni

∂t
(t, z)dz − 1

Ni
2

dNi

dt

∫
R

zni(t, z)dz

=
1

Ni

∫
R

(z − zi)
∂ni

∂t
(t, z)dz

=
1

Ni

∫
R

(z − zi)
[
−g(z − θi)2ni(t, z) + m (nj(t, z)− ni(t, z))

]
dz

= 2gσi
2(θi − zi)− gψi

3 + m
Nj

Ni
(zj − zi).

2.B Equilibria of a dynamical system un-
der the infinitesimal model of repro-
duction with random mating only

In this subsection, we show that (2.7) admits any Gaussian of variance ε2 as equilibrium. That
is equivalent to state that:

Proposition 2.B.1. For μ ∈ R, the Gaussian distribution Gμ,ε2 of mean μ and variance ε2

is a fixed point of the operator Bε, namely:

Bε(Gμ,ε2) = Gμ,ε2 .

Proof. We can first notice that Bε can be written using a double convolution product:

Lemma 10. For f ∈ L1(R),
∫
R

f �= 0, we have:

Bε(f) =
4∫

R

f(z′) dz′
G0, ε2

2
∗ F ∗ F,

where F : z �→ f(2z).
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Proof of Lemma 10. For f ∈ L1(R),
∫
R

f �= 0, a straight-forward computation yields:

Bε(f)(z) =
1√
πε

∫∫
R2

exp
[−(z − z1+z2

2 )2

ε2

]
f(z1)f(z2)∫
R

f(z′) dz′
dz1dz2

=
1∫

R

f(z′) dz′

∫
R

∫
R

G0, ε2
2

(
(z − z1

2
)− z2

2
)
F (

z2
2

) dz2 F (
z1
2

) dz1

=
2∫

R

f(z′) dz′

∫
R

G0, ε2
2
∗ F (z − z1

2
)F (

z1
2

) dz1

=
4∫

R

f(z′) dz′
G0, ε2

2
∗ F ∗ F (z).

If f = Gμ,ε2 , then we find F = 1
2 × G μ

2 , ε2
4

. Besides, as the convolution product of two
Gaussian kernels Gμ1,σ2

1
and Gμ2,σ2

2
is the Gaussian kernel Gμ1+μ2,σ2

1+σ2
2
, 2.B.1 is a corollary

of the previous lemma.

2.C Formal expansion within the exponen-
tial formalism for nε

In this subsection, we will remove the deme dependency for the sake of clarity. To formally
derive (2.9), let us consider the following formal expansion of Uε with regard to successive
orders of ε2:

Uε = u0 + ε2uε.

The aim is to characterize u0 thanks to the behaviour of the reproduction term when ε� 1,
which we expect neither to diverge nor to vanish:

Bε(nε)
nε

(z) =

1√
πε

∫∫
R2

exp
[

1
ε2

[
−

[
z − z1+z2

2

]2 + u0(z) − u0(z1) − u0(z2)
]]

exp [uε(z) − uε(z1) − uε(z2)] dz1dz2∫
R

exp
[
− u0(z′)

ε2 − u(z′)
]

dz′

Then, we have several considerations to make. First, if we assume that u0 reaches its mini-
mum at a non degenerate point z∗, then the following modified expression of the denominator:

1√
πε

∫
R

exp
[
− 1

ε2

[
u0(z′) − min u0

]
− u(z′)

]
dz′,

will have its integrand concentrate around the minimum of u0 and will converge as ε � 1.
Therefore it is relevant to introduce this minimum both at the numerator and the denominator.

Then, since we expect the numerator not to diverge nor to vanish uniformly as ε� 1, we
need that:

∀z ∈ R, max
(z1,z2)

[
−

(
z − z1 + z2

2

)2
+ u0(z) − u0(z1) − u0(z2) + min u0

]
= 0. (2.27)
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As shown in Garnier et al. 2022, thanks to some convexity arguments, this leads necessarily
to choose u0 as a quadratic function in z, hence its decomposition:

u0(z) = u(z∗) +
(z − z∗)2

2
, (2.28)

where z∗ is realizing the minimum of u0. Note that u(z∗) = 0, due to the Laplace method of
integration, since:

Nε =
1√
2πε

∫
R

exp
[
−Uε(z)

ε2

]
dz ≈

ε→0

exp
[
−u(z∗)

ε2

]
√

U ′′
ε (z∗)

.

So either u(z∗) = 0, either there is extinction or explosion of the population size. That yields
(2.9).

Convexity arguments from Garnier et al. 2022. Let us recall the arguments of
convexity involved in Garnier et al. 2022 to show that functional constraint (2.27) leads in our
case to u0 being quadratic:

1. first, they show that u0 has some regularities (continuous and has left and right derivative
everywhere), for (2.27) implies that z �→ u0(z) − z2 is concave as minimum of affine
functions:

∀z ∈ R, u0(z)− z2 = min
(z1,z2)

[
−z(z1 + z2) +

(z1 + z2)2

4
+ u0(z1) + u0(z2)

]
.

2. next, they introduce the Legendre convex conjugate

û0 : p �→ sup
z∈R

[(z − z∗)p− u(z)] ,

and show that it satisfies the following functional equality, by commuting the different
sup operators while computing û0(p) using (2.27):

∀p ∈ R, û0(p) =
p2

4
+ 2 û0

(
p

2

)
. (2.29)

3. As û0 is convex by definition, it is continuous and admits left and right derivative ev-
erywhere. Moreover, û0 has a minimum in 0 and û0(0) = −u(z∗) = 0. Therefore (2.29)
implies by recursion:

∀p > 0 (resp. < 0), û0(p) =
p2

2
+ û0

′(0+) p (resp. û0
′(0−) p). (2.30)

Note that 0 being a minimum of û0 implies that: û0
′(0−) ≤ 0 ≤ û0

′(0+).

4. The next step aims at showing that u0 is equal to its convex bi-conjugate

ˆ̂u0 : z �→ sup
p∈R

[p (z − z∗)− û0(p)] ,

which is computable from (2.30):

ˆ̂u0 : z �→

⎧⎪⎪⎨⎪⎪⎩
(z−z∗−û0(0−))2

2 if z < z∗ + û0(0−)
0 if z∗ + û0(0−) ≤ z ≤ z∗ + û0(0+)
(z−z∗−û0(0+))2

2 if z > z∗ + û0(0+).
(2.31)
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Standard convexity analysis shows also that ˆ̂u0 is the lower convex envelope of u0.
The first implication is that u0 and ˆ̂u0 coincide on R\[z∗ + û0(0−), z∗ + û0(0+)], because
ˆ̂u0 is strictly convex there.
The second implication is that u0

(
z∗ + û0(0+)

)
= ˆ̂u0

(
z∗ + û0(0+)

)
= 0 (resp. z∗ +

û0(0−)), since z∗ + û0(0+) (resp. z∗ + û0(0−)) is an extremal point of the graph of
ˆ̂u0. One can show using (2.27) that the midpoint between any zeros of u0 is still a
zero of u0 (recall that u0 ≥ 0). Hence, by density and continuity of u0, u0 vanishes on
[z∗ + û0(0−), z∗ + û0(0+)].

5. Finally, since u0 satisfies (2.31) and we need Nε not to explode when ε vanishes, we
necessarily obtain that û0(0−) = û0(0+). Hence u0 quadratic.

2.D Formal approximations of the trait dis-
tributions moments in the regime of
small variance ε2 � 1

This appendix is dedicated to formally explain (2.12). We remove the time and the deme
dependency for the sake of clarity. We denote nε the trait distribution density, Nε the size of
the population, zε the mean trait, σ2

ε the variance and ψε the third central moment. Let us
also recall that the computations are performed using the exponential formalism introduced in
(2.10) while considering the following formal expansion of uε in the regime of small variance:

uε = u + ε2 v +O(ε4).

Size of population. We have:

Nε =
∫
R

nε(z) dz

=
∫
R

1√
2πε

e− (z−z∗)2

2ε2 e−u(z)−ε2 v(z)+O(ε4)dz

=
∫
R

e− y2
2√

2π
e−u(z∗+εy)−ε2v(z∗+εy)+O(ε4)dy

(
y :=

z − z∗

ε

)

=
∫
R

e− y2
2√

2π
e−[u(z∗)+εyu′(z∗)+ ε2y2

2 u′′(z∗)+ ε3y3
6 u′′′(z∗)+O(ε4)]−ε2v(z∗)−ε3yv′(z∗)+O(ε4)dy

=
∫
R

e− y2
2√

2π
e−u(z∗)e

−
[

εyu′(z∗)+ε2
[

y2u′′(z∗)
2 +v(z∗)

]
+ε3

[
y3
6 u′′′(z∗)+yv′

]
+O(ε4)

]
dy

=
∫
R

e− y2
2√

2π
e−u(z∗)

[
1− εyu′(z∗)− ε2

[
y2u′′(z∗)

2
+ v(z∗)

]
− ε3

[
y3

6
u′′′(z∗)− yv′(z∗)

]

+
1
2

[
ε2y2u′(z∗)2 + ε3

[
y3u′(z∗)u′′(z∗) + 2yu′(z∗)v(z∗)

]]
− ε3y3u′(z∗)3

6
+O(ε4)

]

= e−u(z∗)
[
1 + ε2

[
u′2(z∗)

2
− u′′(z∗)

2
− v(z∗)

]]
+O(ε4),

from the computations of the moments of a Gaussian.
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Mean trait. Similarly as above, we have:

zε =
∫
R

z
nε

Nε
dz

=
1

Nε

∫
R

z
1√
2πε

e− (z−z∗)2

2ε2 e−u(z)−ε2 v(z)+O(ε4)dz

=
1

Nε

∫
R

(z∗ + εy)
e− y2

2√
2π

e−u(z∗+εy)−ε2v(z∗+εy)+O(ε4)dy,

(
y :=

z − z∗

ε

)

=
1

Nε

∫
R

(z∗ + εy)
e− y2

2√
2π

e−u(z∗)
[
1− εyu′(z∗) + ε2

[
y2u′(z∗)2

2
− y2u′′(z∗)

2
− v(z∗)

]

+ε3
[
−y3

6
u′′′(z∗)− yv′(z∗) +

y3u′(z∗)u′′(z∗)
2

+ yu′(z∗)v(z∗)− 3y3u′(z∗)3

6

]
+O(ε4)

]

=
e−u(z∗)

[
z∗

(
1 + ε2

[
u′2(z∗)

2 − u′′(z∗)
2 − v(z∗)

])
− ε2u′(z∗)

]
+O(ε4)

e−u(z∗)
(
1 + ε2

[
u′2(z∗)

2 − u′′(z∗)
2 − v(z∗)

])
+O(ε4)

= z∗ − ε2u′(z∗) +O(ε4).

Variance. Using the previous formal computations and methodology, we get:

σ2
ε =

1
Nε

∫
R

(z − zε)2nε(z)dz

=
1

Nε

∫
R

[
(z − z∗)2 + (z∗ − zε)2 + 2(z − z∗)(z∗ − zε)

]
nε(z)dz

=
1

Nε

∫
R

[
ε2y2 + 2ε3yu′(z∗) +O(ε4)

] [
1− εyu′ +O(ε2)

]
e−u(z∗) e− y2

2√
2π

dy

=
ε2e−u(z∗)

e−u(z∗) [1 +O(ε2)]
= ε2 +O(ε4).

Third central moment. We compute, using the same change in variable y := z−z∗
ε :

ψ3
ε =

1
Nε

∫
R

(z − zε)3nε(z)dz

=
1

Nε

∫
R

[
(z − z∗)3 + (z∗ − zε)3 + 3(z − z∗)2(z∗ − zε) + 3(z − z∗)(z∗ − zε)2

]
nε(z)dz

=
1

Nε

∫
R

[
ε3y3 +O(ε4)

] [
e−u(z∗) +O(ε)

]
dz

= O(ε4).

2.E Fast/slow system: proof of Theorem 2.4.1
This appendix is dedicated to prove Theorem 2.4.1.

Let (z∗
0 , Ȳ ∗

0 ) ∈ R × Ω (we recall that Ω = (R∗
+)2 × R) be on the slow manifold, ie. such

that G(z∗
0 , Ȳ ∗

0 ) = 0. From Lemma 6 of fast relaxation towards the slow manifold, the jacobian
matrix JG(z∗

0 , Ȳ ∗
0 ) is invertible. Consequently, the implicit function theorem gives us U open
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neighbourhood of z∗
0 in R, V open neighbourhood of (z∗

0 , Ȳ ∗
0 ) in R×Ω and φ ∈ C∞(U, V ) such

that :
∀(z∗, Ȳ ∗) ∈ V, G(z∗, Ȳ ∗, 0) = 0 =⇒ Ȳ ∗ = φ(z∗).

Hence, we can define a notation that we shall use henceforth:

∀z ∈ U, Jz := JG(z, φ(z)).

If K is a compact subset of U such that z∗
0 ∈ K̊, we can define the Cauchy problem (E0) by

the following :

(E0)
{

dz∗
dt = −2gz∗(t) + F (φ(z∗(t))) ,

z∗(0) = z∗
0 ,

(2.32)

for t ≤ t∗, that we define as the following:

t∗ := inf{t > 0, z∗(t) /∈ K}.

It is similar to (2.20) with the initial conditions (z∗(0), Ȳ ∗
0 ) = (z∗

0 , φ(z∗
0)). A essential part of

the proof relies in the fact that we can define the following uniform positive constant, thanks
to Lemma 6 of fast relaxation:

λK = −1
2

max
z∈K
{λ ∈ Sp(Jz)} > 0.

As the first step, we state the following lemma whose proof will be provided at the end of
this appendix. It defines a uniform control constant γ > 0:

Lemma 11. There exists γ > 0 such that:

max
z∈K, s≥0

∣∣∣∣∣∣∣∣∣eλKseJzs
∣∣∣∣∣∣∣∣∣ ≤ γ.

(|||·|||M3(R) is noted |||·|||)
The next step is to show the convergence of solutions of (Pε) (2.19) towards those of (P0)

(2.20) on a time interval, yet to be defined, that will be shown to be uniform with regard
to ε and the initial conditions, provided that they are small enough. For that purpose, it is
more convenient to consider the system (Rε) verified by the residuals rε

z(t) = zε(t)− z∗(t) and
rε

Y (t) = Ȳε(t)− Ȳ ∗(t):

(Rε)

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ε2 drε
Y

dt = G(z∗(t) + rε
z(t), Ȳ ∗(t) + rε

Y (t))−G(z∗(t), Ȳ ∗(t))− ε2 dȲ ∗
dt + ε2νN,ε(t),

drε
z

dt = −2grε
z(t) + F (Ȳ ∗(t) + rε

Y )− F (Ȳ ∗(t)) + ε2νz,ε(t),

(rε
z(0), rε

Y (0)) = (zε
0 − z∗

0 , Ȳ ε
0 − Ȳ ∗

0 ),
(2.33)

and introduce some further definitions.
Because K is a compact set, there exists δK > 0 such that the following set is a compact

subset of V :

K̄δK
=

{
(z, Ȳ ) ∈ R× Ω | ∃z∗ ∈ K,

∣∣∣(z, Ȳ )− (z∗, φ(z∗))
∣∣∣ ≤ δK

}
⊂ V.
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Let us consider from now (zε
0, N ε

0 ) ∈ K̄δK
. Then we define Δ = min

(
λK
4Cγ , δK

)
and T =

min(t∗, λK
4C′γ ), where:

C = max
(
‖∂2

Ȳ
G‖∞,K̄δK

, ‖∂zG‖∞,K̄δK
, ‖∂Ȳ F‖∞,ΠΩ(K̄δK

)

)
)

and :
C ′ = max

t≤t∗

∣∣∣∣∣∣∣∣∣∂tJz∗(t)
∣∣∣∣∣∣∣∣∣,

where ΠΩ is the projection from R×Ω on Ω. One can notice from these definitions and from
Lemma 11, that γ, Δ, T, λK , C, C ′ do not depend on ε and are uniform on [0, t∗]. Specifically
taking Δ ≤ λK

4Cγ and T ≤ λK
4C′γ will turn out to be important in the proof.

On the time region [0, T ], we will show that we can control explicitly the various perturbed
terms that arise. We can now state the following proposition, whose proof constitutes the core
of the resolution of the problem:

Proposition 2.E.1. As max(ε, |rε
z(0)|, |rε

Y (0)|) → 0, (Ȳε, zε) converges toward (Ȳ ∗, z∗) uni-
formly on [0, T ].

For the final step, we will show that we can reiterate the process on each interval of time
[jT, min{(j + 1)T, t∗}] with ∀j ≤ � t∗

T �, jT ≤ t∗
ε. Thus, for sufficiently small ε and initial

conditions, the control remains valid until t∗, hence Theorem 1.
For convenience, we will denote by f ∗ g (t) the convolution product of f and g at time

t > 0 :
f ∗ g (t) =

∫ t

0
f(τ)g(t− τ)dτ.

Proof of 2.E.1. Let ε ∈]0, 1]. Let us define an auxiliary time t∗
ε:

t∗
ε = min (t∗, inf{t > 0, |rε

z|+ |rε
Y | > Δ}) .

It ensures that the perturbed trajectory stays inside of K̄δK
when t ≤ t∗

ε.
Let us highlight the main steps of the proof:

1. preliminary controls on rε
Y by |rε

Y (0)| and 1
ε2 |rε

z| ∗ e− λK
2ε2 · thanks to the regularity of G,

the fast relaxation properties (Lemma 6 and Lemma 11) and Gronwall’s lemma.

2. control |rε
z| by |rε

z(0)| and |rε
Y |.

3. finish the control on rε
Y by using the latter and Gronwall’s lemma.

1. For t ≤ min(T, t∗
ε), we can introduce new terms in the equation from (2.33) on rε

Y :

drε
Y

dt
=

Jz∗(0)
ε2 rε

Y +
1
ε2

[
G(z∗(t), Ȳ ∗(t) + rε

Y (t))−G(z∗(t), Ȳ ∗(t))− Jz∗(0)r
ε
Y

]
+

1
ε2

[
G(z∗(t) + rε

z(t), Ȳ ∗(t) + rε
Y (t))−G(z∗(t), Ȳ ∗(t) + rε

Y (t))
]

− φ′(z∗(t))(−2gz∗(t) + F (φ(z∗(t)))) + νN,ε(t)

=
Jz∗(0)

ε2 rε
Y + A1(t) + A2(t) + A3(t).
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Since t ≤ min(T, t∗
ε) and G is C∞ on K̄δK

× [0, 1], we can control A1:

|A1(t)| ≤ 1
ε2

[
|G(z∗(t), Ȳ ∗(t) + rε

Y (t))−G(z∗(t), Ȳ ∗(t)− Jz∗(t)r
ε
Y |

]
+

1
ε2

[∣∣∣∣∣∣∣∣∣Jz∗(t) − Jz∗(0)
∣∣∣∣∣∣∣∣∣ |rε

Y (t)|
]

≤ 1
ε2

[
‖∂2

Ȳ
G‖∞,K̄δK

|rε
Y (t)|2 + T max

t≤t∗

∣∣∣∣∣∣∣∣∣∂tJz∗(t)
∣∣∣∣∣∣∣∣∣ |rε

Y (t)|
]

≤ 1
ε2 (CΔ + C ′T )|rε

Y (t)|,
and A2:

|A2(t)| = 1
ε2 |G(z∗(t) + rε

z(t), Ȳ ∗(t) + rε
Y (t))−G(z∗(t), Ȳ ∗(t) + rε

Y (t))|

≤ 1
ε2 ‖∂zG‖∞,K̄δK

|rε
z(t)| ≤ C

ε2 |rε
z(t)|,

and A3:
|A3(t)| = | − φ′(z∗(t))(−2gz∗(t) + F (φ(z∗(t)))) + νN,ε(t)| ≤ C ′′,

for some constant C ′′ independent of ε and z∗(0) ∈ K. Using Duhamel formulas, we get, for
t ≤ min(T, t∗

ε):

rε
Y (t) = e

Jz∗(0)t

ε2 rε
Y (0) +

[
e

Jz∗(0)·
ε2 ∗ (A1 + A2 + A3)

]
(t). (2.34)

Hence, applying Lemma 11 yields:

|rε
Y (t)| ≤ γ|rε

Y (0)|e− λK t

ε2 +
γ

ε2

[(
C|rε

z|+ (CΔ + C ′T )|rε
Y |

) ∗ e− λK
ε2 ·

]
(t) + ε2γ

C ′′

λK

≤ Arε
z (t) +

γ(CΔ + C ′T )
ε2

∫ t

0
|rε

Y (τ)| e
λK
ε2 (τ−t)dτ,

where Arε
z (t) := γ|rε

Y (0)|e− λK t

ε2 + γC
ε2

(
|rε

z| ∗ e− λK
ε2 ·

)
(t) + ε2γ C′′

λK
.

Applying Gronwall inequality to rε
Y (t)e

λK t

ε2 yields:

|rε
Y (t)| ≤ Arε

z (t) +
γ(CΔ + C ′T )

ε2

[
Arε

z ∗ e

(
−λK

ε2 + γ(CΔ+C′T )
ε2

)
·
]

(t). (2.35)

Having fixed Δ ≤ λK
4Cγ and T ≤ λK

4C′γ in the preliminaries ensures that e

(
−λK

ε2 + γ(CΔ+C′T )
ε2

)
·

defines a negative exponential term, that we can dominate by e− λK
2ε2 ·. Hence:

|rε
Y (t)| ≤ Arε

z (t) +
[
Arε

z ∗ λK

2ε2 e− λK
2ε2 ·

]
(t). (2.36)
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Making Arε
z explicit gives:

|rε
Y (t)| ≤ γ|rε

Y (0)|e− λK t

ε2 +
γC

ε2 |rε
z| ∗ e− λK

ε2 ·(t) + ε2γ
C ′′

λK

+
[(

γ|rε
Y (0)|e− λK

ε2 · +
γC

ε2

[
|rε

z| ∗ e− λK
ε2 ·

]
+ ε2γ

C ′′

λK

)
∗
(

λK

2ε2 e− λK
2ε2 ·

)]
(t)

≤ γ|rε
Y (0)|

[
e− λK t

ε2 + e− λK
ε2 · ∗

(
λK

2ε2 e− λK
2ε2 ·

)
(t)

]
+ ε2γ

C ′′

λK
(
(

1 +
∫ t

0

λK

2ε2 e− λK
2ε2 (τ−t)dt

)
+

γC

ε2 |rε
z| ∗

(
e− λK

ε2 · + e− λK
ε2· ∗ λK

2ε2 e− λK
2ε2 ·

)
(t), (2.37)

thanks to the associativity of the convolution product. One can compute that, for t ≥ 0:

e− λK t

ε2 + e− λK
ε2 · ∗

(
λK

2ε2 e− λK
2ε2 ·

)
(t) = e− λK t

ε2 +
λK

2ε2

∫ t

0
e− λK

ε2 τ e− λK
2ε2 (t−τ)dτ

= e− λK t

ε2 +
λK

2ε2

∫ t

0
e− λK

2ε2 (t+τ)dτ = e− λK
2ε2 t.

Hence, replacing those terms in (2.37) yields:

|rε
Y (t)| ≤ γ|rε

Y (0)|e− λK
2ε2 t + 2ε2γ

C ′′

λK
+

Cγ

ε2 |rε
z| ∗ e− λK

2ε2 ·(t). (2.38)

2. The next step is to gain similarly some control on |rε
z|. Using Duhamel formula on the

equation from (2.33) on rε
z gives, for t ≤ min(T, t∗

ε):

rε
z(t) = rε

z(0)e−2gt +
([

F (N∗ + rε
Y )− F (N∗) + ε2νz,ε

]
∗ e−2g·) (t),

which yields:

|rε
z(t)| ≤ |rε

z(0)|e−2gt + ε2 ‖νz,ε‖∞
2g

+ ‖∂Ȳ F‖∞,ΠΩ(K̄δK
)

(
|rε

Y | ∗ e−2g·) (t).

Hence:
|rε

z(t)| ≤ |rε
z(0)|e−2gt + ε2 ‖νz,ε‖∞

2g
+ C

(
|rε

Y | ∗ e−2g·) (t). (2.39)

At that point, it is clear that it is sufficient to control |rε
Y | and |rε

z(0)| in order to control
|rε

z(t)| for sufficiently small ε.

3. Plugging the latter in (2.38) gives:

|rε
Y (t)| ≤ γ|rε

Y (0)|e− λK
2ε2 t +

Cγ

ε2 |rε
z(0)|

(
e−2g· ∗ e− λK

2ε2 ·
)

(t) + ε2 Cγ‖νz,ε‖∞
λKg

+ 2ε2γ
C ′′

λK
+

γC2

ε2

[
|rε

Y | ∗
(

e−2g· ∗ e− λK
2ε2 ·

)]
(t). (2.40)

Similarly as the computation above, we have, for ε2 < min(λK
8g , 1) and t ≥ 0:

e−2g· ∗ e− λK
2ε2 ·(t) =

1
λK
2ε2 − 2g

(
e−2gt − e− λK

2ε2 t
)
≤ 4ε2

λK
e−2gt.
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Hence, for ε2 < min(λK
8g , 1), we get from (2.40):

|rε
Y (t)| ≤ γ|rε

Y (0)|e− λK
2ε2 t +

2γC

λK
|rε

z(0)|e−2gt + ε2 Cγ‖νz,ε‖∞
λKg

+ 2ε2γ
C ′′

λK

+
2γC2

λK

(
|rε

Y | ∗ e−2g·) (t)

≤ Cε
0(t) +

2γC2

λK

(
|rε

Y | ∗ e−2g·) (t),

where we define: Cε
0(t) := γ|rε

Y (0)|e− λK
2ε2 t + 2γC

λK
|rε

z(0)|e−2gt + ε2 Cγ‖νz,ε‖∞
λKg + 2ε2γ C′′

λK
.

Using once again Gronwall inequality on |rε
Y |e2g· yields:

|rε
Y (t)| ≤ Cε

0(t) +
2γC2

λK

(
Cε

0 ∗ e

(
−2g+ 2γC2

λK

)
·
)

(t). (2.41)

Recalling that:

Cε
0(t) = γ|rε

Y (0)|e− λK
2ε2 t +

2γC

λK
|rε

z(0)|e−2gt + ε2 Cγ‖νz,ε‖∞
λKg

+ 2ε2γ
C ′′

λK
,

we get that, thanks to (2.41) and (2.39), for a given 0 < δ < Δ, there exists ηδ > 0 depending
only on δ, g, m, K, t∗, F, G, ‖νz,ε‖∞ such that :

∀(ε, |rε
Y (0)|, |rε

z(0)|) ∈ [0, ηδ]3, max
t≤min(T,t∗

ε)
|rε

Y (t)|+ |rε
z(t)| ≤ δ.

Recalling that t∗
ε = min (t∗, inf{t > 0, |rε

z|+ |rε
Y | > Δ}), we get that T ≤ t∗

ε, for δ < Δ and
(ε, |rε

Y (0)|, |rε
z(0)|) ∈ [0, ηδ]3. Consequently, the convergence is uniform on [0, T ].

Proof of Theorem 1. One can notice that the control obtained in the proof of Proposition 1 can
be applied on any time interval [a, a + T ] with a ∈ [0, t∗−T ], provided that (ε, |rε

Y (a)|, |rε
z(a)|)

are small enough. Therefore, we can reiterate the control a finite number of times on the
intervals [jT, min{(j + 1)T, t∗}] with ∀j ≤ � t∗

T �. Hence, the uniform convergence on [0, t∗].

Proof of Lemma 11. Recall that for all z ∈ K, Jz has real negative eigenvalues, uniformly
bounded over K by −2λK < −λK . Let us define, for z ∈ K:

fλK ,z : R+ → R+, s �→
∣∣∣∣∣∣∣∣∣eJzseλKs

∣∣∣∣∣∣∣∣∣.
For all z ∈ K, fλK ,z is continuous. Moreover, Theorem 2.34 of Chicone 1999 ensures that

fl,z is bounded for all l < 2λK .
We can thus define :

ΓλK
: K → R

∗
+, z �→ max

s≥0
fλK ,z(s).

Let us show that ΓλK
is a continuous function. Let z0 ∈ K and ε > 0.

One can first notice that, for s ≥ 0:

fλK ,z(s) = f 3λK
2 ,z

(s)e− λK
2 s < Γ 3λK

2 ,z
e− λK

2 s.

Thus, fλK ,z vanishes when s goes to infinity. As a consequence, there exists s0 ≥ 0 such that:

ΓλK
(z0) =

∣∣∣∣∣∣∣∣∣eJz0 s0eλKs0
∣∣∣∣∣∣∣∣∣.
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Furthermore, for l ∈]λK , 2λK [, we have:

Γl(z0) =
∣∣∣∣∣∣∣∣∣eJz0 s0els0

∣∣∣∣∣∣∣∣∣ = ΓλK
(z0)e(l−λK)s0 .

We can therefore choose l ∈]λK , 2λK [ such that ΓλK
(z0) ≤ Γl(z0) ≤ ΓλK

(z0) + ε.
As z �→ Jz is a continuous function, there exists δ > 0 that ensures that for if z ∈ K and

|z − z0| ≤ δ, then:

|||Jz − Jz0 ||| <
l − λK

2Γl(z0)
.

Let us consider such a z.
As eJzs is solution of the ODE : y′ = Jz0y + (Jz − Jz0)y, we obtain, for s ≥ 0:

eJzs = eJz0 s + eJz0 · ∗ (Jz − Jz0)eJz ·(s).

Hence : ∣∣∣∣∣∣∣∣∣eJzt
∣∣∣∣∣∣∣∣∣ ≤ Γl(z0)e−ls +

l − λK

2

∣∣∣∣∣∣∣∣∣eJz ·
∣∣∣∣∣∣∣∣∣ ∗ e−l·

From applying Gronwall’s inequality to t �→
∣∣∣∣∣∣∣∣∣eJzs

∣∣∣∣∣∣∣∣∣els, it comes that, for s ≥ 0:

∣∣∣∣∣∣∣∣∣eJzs
∣∣∣∣∣∣∣∣∣ ≤ Γl(z0)e

−
(

l− l−λK
2

)
t ≤ Γl(z0)e

−
(

l+λK
2

)
s

≤ [ΓλK
(z0) + ε] e−λKs.

Hence:
ΓλK

(z) ≤ ΓλK
(z0) + ε.

Moreover, recall that t0 was defined so that :

ΓλK
(z0) =

∣∣∣∣∣∣∣∣∣eJz0 s0eλKs0
∣∣∣∣∣∣∣∣∣.

Then, by continuity of z �→ eJzs0 , there exists δ′ > 0 that ensures that for |z − z0| ≤ δ′, we
have: ∣∣∣∣∣∣∣∣∣eJzs0eλKs0

∣∣∣∣∣∣∣∣∣ ≥ ∣∣∣∣∣∣∣∣∣eJz0 s0eλKs0
∣∣∣∣∣∣∣∣∣− ε.

Hence:
ΓλK

(z) ≥ ΓλK
(z0)− ε.

In conclusion, if |z−z0| ≤ min(δ, δ′), then |ΓλK
(z)−ΓλK

(z0)| ≤ ε. Hence ΓλK
is continuous

over K. Furthermore, as K is a compact set, ΓλK
is bounded, by γ.

2.F Proof of 2.4.1
This appendix is dedicated to the proof of 2.4.1.

Proof. Let (g, m, z∗) ∈ R
∗
+ × R

∗
+ × R+ be such that Pz∗ has a single positive root. From

Lemma 1, this root defines a fast equilibrium if it is greater than f1(z∗). From Lemma 2, that
is the case if and only if f1(z∗) is negative or Pz∗(f1(z∗)) is negative.

First, regarding the sign of f1(z∗), we have:

f1(z∗) < 0 ⇐⇒ (z∗ + 1)2 <
1−m

g
,
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which requires that m < 1. If m < 1 then:

f1(z∗) < 0 ⇐⇒ 0 ≤ z∗ <

√
1−m

g
− 1,

which requires that m + g < 1. Hence:

f1(z∗) < 0 ⇐⇒ [m + g < 1] ∧ [z∗ <

√
1−m

g
− 1].

Next, regarding the sign of Pz∗(f1(z∗)), we compute:

Pz∗(f1(z∗)) = f1(z∗)f2(z∗)− 1

=
(

1 +
g

m
(z∗ + 1)2 − 1

m

)(
1 +

g

m
(z∗ − 1)2 − 1

m

)
− 1

=
g2

m2

[
z∗4 + z∗2 2(m− g − 1)

g
+

(g − 1)(2m + g − 1)
g2

]
Let us define:

Q(X) = X2 + X
2(m− g − 1)

g
+

(g − 1)(2m + g − 1)
g2 ,

z1, z2 its two roots and Δ = 4
g2

[
m2 − 4g (m− 1)

]
its discriminant. From the computation

above,
Pz∗(f1(z∗)) < 0 ⇐⇒ [ Δ > 0 ] ∧

[
z∗2 ∈]z1, z2[

]
.

We have:

Δ > 0 = ⇐⇒ m2 − 4 g m + 4 g > 0

⇐⇒ [g < 1] ∨
[
[g ≥ 1] ∧

[[
0 < m < 2g

(
1−

√
1− 1

g

)]
∨

[
m > 2g

(
1 +

√
1− 1

g

)]]]

and:
z1z2 =

(g − 1)(2m + g − 1)
g2 , z1 + z2 =

2(g + 1−m)
g

.

Consequently:

� if g ≥ 1, then 2m + g − 1 > 0 and then z1z2 ≥ 0. If, additionally, m < 2g
(
1−

√
1− 1

g

)
,

then m < 2 ≤ g + 1 (g �→ 2g − 2
√

g2 − g is decreasing on [1, +∞[). Therefore, we
get: z1 + z2 > 0 and thus, z2 > 0 and z1 ≥ 0. At last, if m > 2g

(
1 +

√
1− 1

g

)
, then

m > 2 g ≥ g + 1, which implies z1 + z2 < 0 and thus z1 < 0, z2 ≤ 0.

� if g < 1, then z1 + z2 ≥ 0 if and only if m ≤ g + 1 and z1z2 ≥ 0 if and only if m ≤ 1−g
2

(which is lower than g + 1).

Hence the result.
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2.G Proof of Lemma 9
This section is dedicated to proving Lemma 9, which concludes the proof of 2.5.2.

Proof of Lemma 9. Let (m, g) ∈ R
∗
+

2 verify (2.25). Then, from the first part of the proof of
2.5.2, there exists a unique ρ∗ > 0 that is solution of the equation in (2.23). Let us define N∗

1
and N∗

2 such as in (2.26). Then we have: 0 < ρ∗ = N∗
2

N∗
1

. Thus:

N∗
1 > 0 ⇐⇒ N∗

2 > 0 ⇐⇒ 1
m

(N∗
1 + N∗

2 ) > 0.

Borrowing once again the notations: a = 4g
m , b = 1

m and y∗ = ρ∗ + 1
ρ∗ (unique root of S larger

than 2), (2.26) leads to:

1
m

(N∗
1 + N∗

2 ) = 2
( 1

m
− 1

)
+ y∗ − 4g

m

y∗2 − 2
y∗2

=
1

y∗2

[
y∗3 +

[1− 2m

m
+

1
m
− 4g

m

]
y∗2 + 2× 4g

m

]
=

1
y∗2

[
S(y∗) + (

1− 2m

m
)y∗2 +

4g

m
y∗ +

4g

m

]
.

As S(y∗) = 0, we get:

N∗
1 > 0 ⇐⇒ N∗

2 > 0 ⇐⇒ (1− 2m)y∗2 + 4gy∗ + 4g > 0.

This is always true whenever m ≤ 1
2 . Otherwise, let us suppose henceforth that 2m > 1. The

condition above is equivalent to:

y∗ < c +
√

c2 + 2c, where: c =
2g

2m− 1
> 0.

Let us show that: c +
√

c2 + 2c ≥ 2. It is sufficient to show that: c ≥ 2
3 , which is equivalent to

having: 3g + 1 ≥ 2m. In this proof, we are considering (m, g) ∈ R
∗
+

2 such that 1 + 2m < 5g
and 4g (m− 1) < m2. Let us show that such pairs verify 3g + 1 ≥ 2m:

� if g ≤ 1, then m < 5g−1
2 ≤ 3g+1

2 .

� if g ≥ 1, then m < 2g−2
√

g2 − g which is a decreasing function on [1, +∞[, which takes
the value 2 when g = 1. Hence it is always dominated by g �→ 3g+1

2 on this interval.

Hence c +
√

c2 + 2c ≥ 2
3 +

√
4
9 + 4

3 = 2. Therefore, as y∗ is the only root of S greater than 2,
we get the following equivalence:

y∗ < c +
√

c2 + c ⇐⇒ S
(
c +

√
c2 + 2c

)
> 0.

The rest of the proof is dedicated to examine the conditions on (m, g) under which:

S
(
c +

√
c2 + 2c

)
> 0.

Let us set Q :=
√

c2 + 2c =
√

4g g+2m−1
(2m−1)2 . Tedious computations done with the help of

Mathematica show that: S(c) = Q2
[

g(4−6m)+(2m−1)2

m (2m−1)

]
, and we next compute:

S(c + Q) = S(c) + Q2
[
3c +

1− 4g

m

]
+ Q

[
Q2 + 3c2 + 2c

(1− 4g)
m

− 4g

m

]
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= Q2
[

g(4− 6m) + (2m− 1)2

m (2m− 1)
+

6g

2m− 1
+

1− 4g

m

]
+ Q

[
4c2 + 2c

(m + 1− 4g)
m

− 4g

m

]

= Q

[
2Q

(
2m2 −m− 4g (m− 1)

)
m(2m− 1)

− 4g
(
4g (m− 1) + 2m2 − 5m + 2

)
m(2m− 1)2

]
.

Hence:

S(c + Q) > 0

⇐⇒ Q
(
2m2 −m− 4g (m− 1)

)
> 2g

(
4g (m− 1) + 2m2 − 5m + 2

)
(2m− 1)

⇐⇒ √
g + 2m− 1

(
2m2 −m− 4g (m− 1)

)
> 2
√

g
(
4g (m− 1) + 2m2 − 5m + 2

)
.

Let us study different cases corresponding to different ranges of value of m > 1
2 .

If m = 1, then the last line is equivalent to :√
1 + g > −2

√
g,

which is true for all g > 0.
If 1

2 < m < 1, then:

4g (m− 1) + 2m2 − 5m + 2 = 4g (m− 1) + 2(m− 2)
(

m− 1
2

)
< 0,

and:
2m2 −m− 4g (m− 1) = 2m

(
m− 1

2

)
+ 4g(1−m) > 0.

Hence, for all g such that 1 + 2m < 5g and m2 > 4g (m− 1):√
g + 2m− 1

(
2m2 −m− 4g (m− 1)

)
> 2
√

g
(
4g (m− 1) + 2m2 − 5m + 2

)
.

If m > 1, then:
2m2 −m > m2 > 4g (m− 1).

Hence, if: 4g (m − 1) + 2m2 − 5m + 2 < 0, then, for all g such that 1 + 2m < 5g and
m2 > 4g (m− 1):√

g + 2m− 1
(
2m2 −m− 4g (m− 1)

)
> 2
√

g
(
4g (m− 1) + 2m2 − 5m + 2

)
.

Otherwise, if 4g (m− 1) + 2m2 − 5m + 2 ≥ 0, then:

S(c + Q) > 0

⇐⇒ √
g + 2m− 1

(
2m2 −m− 4g (m− 1)

)
> 2
√

g
(
4g (m− 1) + 2m2 − 5m + 2

)
⇐⇒

(
1 +

2m− 1
g

)(
2m2 − 2− 4g (m− 1)

)2
> 4

(
4g (m− 1) + 2m2 − 5m + 2

)2
.

Let us note x := 2m−1
g . Then, the latter is equivalent to:

(1 + x) [(m− 1)x + (x− 4(m− 1))]2 − [(m− 1)x− (x− 4(m− 1))]2 > 0

⇐⇒ 4(m− 1)x(x− 4(m− 1)) + x (mx− 4(m− 1))2 > 0
⇐⇒ 4(m− 1)x− 16(m− 1)2 + m2x2 − 8mx(m− 1) + 16(m− 1)2 > 0
⇐⇒ m2x2 + 4x(m− 1)(1− 2m) > 0
⇐⇒ m2x2 − 4x2g (m− 1) > 0
⇐⇒ m2 > 4g (m− 1).
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2.H Details of the numerical analysis car-
ried out in Section 2.3.

Domains. We consider a bounded trait domain [−zmax, zmax], discretised in a mesh
(zk)0≤k<K (K odd) with regard to the step length δz > 0, and a time domain [0, Tmax],
discretised in a mesh

(
tl
)

0≤l<L
with regard to the step length δt > 0. In the the simulations

involved in Fig. 2.2, we use the following values for the parameters:

zmax = 7, Tmax = 1000, δz = 1.6× 10−2, δt = 5× 10−3.

Scheme. For i ∈ {1, 2}, 0 ≤ l < L, we approximate the trait distributions ni(tl, ·) by(
nl

i,k

)
0≤k<K

with the following semi-implicit scheme:

σ2

δt

(
nl+1

i,k − nl
i,k

)
= r Bl

i,k −
(
g (zk − θi)2 + κ N l

i + m
)

nl+1
i,k + m nl+1

j,k ,

where N l
i =

∑K−2
k=0 nl

i,k δz and Bl
i,k is a discretisation of the reproduction operator Bσ(ni(tl, zk).

In the next paragraph, we detail how we compute
(
Bl

i,k

)
0≤k<K

.
We approximate the system of moments of Ronce and Kirkpatrick 2001 following a similar

semi-implicit scheme.

Discretization of the reproduction operator. The discretization of the reproduction
operator is in accordance with the double convolution form shown in Lemma 10, as it increases
greatly the computational speed in comparison to a double loop. However, the half-arguments
involved in Lemma 10 calls for a special attention to the meshes involved.

Let us define two auxiliary trait meshes

1. (z̃k′)0≤k′<2K−1 on [−zmax, zmax], with step length δz
2 ,

2. (ẑk′′)0≤k′′<4K−3 on [−2zmax, 2zmax], with step length δz
2 .

We define the vector (Gk′)0≤k′<2K−1 discretising the Gaussian kernel involved in our re-
production operator on the trait grid (z̃k′)0≤k′<2K−1:

Gk′ =
1√
πσ

exp
[
− z̃2

k′

σ2

]
.

We next define the vector
(
B̂l

i,k′′
)

0≤k′′<4K−3
resulting from the following double discrete con-

volution (denoted ∗):

(
B̂l

i,k′′
)

0≤k′′<4K−3
=

1
N l

i

(
nl

i,k

)
0≤k<K

∗
(
nl

i,k

)
0≤k<K

∗ (Gk′)0≤k′<2K−1
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We use a convolution algorithm with default settings: the size of the output is the sum of
entry vector sizes minus one, and out of bounds index entries are extrapolated as 0. A straight-
forward computation shows that

(
B̂l

i,k′′
)

0≤k′′<4K−3
is the approximation of the reproduction

operator on the mesh (ẑk′′)0≤k′′<4K−3:

B̂l
i,k′′ =

δz2

N l
i

4K−4∑
k1=0

nl
i,k1

3K−2∑
k2=0

nl
i,k2 Gk′′−k1−k2

=
δz2

N l
i

4K−4∑
k1=0

nl
i,k1

3K−2∑
k2=0

nl
i,k2

1√
πσ

exp
[
− z̃2

k′′−k1−k2

σ2

]

=
δz2

N l
i

4K−4∑
k1=0

nl
i,k1

3K−2∑
k2=0

nl
i,k2

1√
πσ

exp

⎡⎢⎣−
(
−zmax + δz

2 (k′′ − k1 − k2)
)2

σ2

⎤⎥⎦
=

δz2

N l
i

4K−4∑
k1=0

nl
i,k1

3K−2∑
k2=0

nl
i,k2

1√
πσ

exp

⎡⎢⎣−
(
−2zmax + k′′δz

2 − (−zmax+k1δz)+(−zmax+k2δz)
2

)2

σ2

⎤⎥⎦
=

δz2

N l
i

4K−4∑
k1=0

nl
i,k1

3K−2∑
k2=0

nl
i,k2

1√
πσ

exp

⎡⎢⎣−
(
ẑk′′ − zk1 +zk2

2

)2

σ2

⎤⎥⎦ .

Thus, we interpolate
(
B̂l

i,k′′
)

0≤k′′<4K−3
at the entries corresponding to (zk)0≤k<K to obtain(

Bl
i,k

)
0≤k<K

.

2.I Numerical outcomes details: Fig. 2.6
and Fig. 2.7.

Numerical setting. The lower panel of Fig. 2.6 has been produced by running 3600 simula-
tions, one for each couple of migration rate m ∈ [0.01, 3] and intensity of selection g ∈ [0.01, 3],
for t ≤ Tmax ∈

[
300
ε2 , 600

ε2

]
, with a criteria to cut the simulation short at a time greater than

300
ε2 if the difference between two consecutive steps is small enough. The value of the other

parameters are the same for each simulation: r = 1, θ = 1, κ = 1, ε = 0.05, as well as the initial
state: ⎧⎪⎪⎨⎪⎪⎩

n0
1(z) = 0.99 × e

− (z−0.2)2

2ε2√
2πε

,

n0
2(z) = e

− (z−0.2)2

2ε2√
2πε

.

The initial state is taken as monomorphic, as the aim of this figure is to be compared to the
theoretical outcomes that are predicted within the scope of the slow-fast analysis as stated in
Theorem 2.4.1 (so when the initial state is close enough from the slow manifold).

Scoring. Each simulation final state (nf
1 , nf

2) is attributed a score between 0 and 1 according
to the following scheme:
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1. if max
(
Nf

1 , Nf
2

)
< 0.01, then the score is 0 (for extinction) and is corresponding to the

deep purple color. Else, the score is a positive number (lower than 1) according to what
follows.

2. if the variance in trait of the metapopulation is greater than 2 ε2, the score is 1 (cor-
responding to the color yellow). This would be the case if the final state is dimorphic,
but more generally, this is to highlight the simulations whose final state does not fall in
the small segregational variance regime analysis prediction (which in particular predicts
that the distribution of trait in the metapopulation is monomorphic (see Section 2.4),
with a variance of order ε2 (see (2.12)).

3. if both conditions above are not met, then the score S is given according to the following
formula:

S =
5
6
− 1

3

∣∣∣Nf
2 −Nf

1

∣∣∣
Nf

1 + Nf
2

.

This formula discriminates between symmetrical equilibria (which are characterized by
equal population sizes, see 2.5.1), which typically have a score of 5

6 (corresponding to
the color light green), and asymmetrical equilibria, which have a discrepancy in local
population sizes and therefore have a typically much lower score (in the blue tones).

Adjustments for Fig. 2.7. The methodology is the same for the lower panel of Fig. 2.6
and both panels of Fig. 2.7, at the exception of the initial state, set as:⎧⎪⎪⎨⎪⎪⎩

n0
1(z) = 0.9 × e

− (z+1)2

2ε2√
2πε

,

n0
2(z) = e

− (z−1)2

2ε2√
2πε

.

.

and of the time step for the lower panel of Fig. 2.7, which is refined to keep up with the smaller
value of ε2.
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Chapter 3
Adaptation of a sexually reproducing
population to a heterogeneous environment:
numerical comparison with individual-based
simulations

3.1 Introduction
This short numerical project uses multi-loci individual-based simulations (IBS) in order to
assess to what extent the hypotheses underlying the classical version of infinitesimal model for
large populations (Fisher 1919; Bulmer 1971; Lange 1978; Bulmer 1980; Barton, Etheridge,
and Véber 2017), i.e. a constant segregational variance across time, space and families, are
reasonably valid in a two-patch environment for large sexual populations, with respect to the
number of loci involved and the ancestral variance at linkage equilibrium. A particular focus
is put on the case where the latter is small, as this corresponds to the asymptotic regime
according to which the analysis in [Dekens 2022] was conducted.

The relationship between multi-loci IBS and discrete-time deterministic models has been
studied in a context of one-way migration, where a source population sends migrants in a
sink population under stabilizing selection around a optimum that differs from the source’
mean trait, without migration in the other direction. In [Tufto 2000], the author compares
(among others) a discrete-time deterministic model where the reproduction stage involves the
infinitesimal model, with multi-loci models, with relatively few loci (1, 2 or 5). He found
that the two are in good agreement when selection and migration are not too strong, or if the
immigrants can compensate their initial maladaptation with a large enough variance at linkage
equilibrium σ2

LE . He also performed numerical simulations comparing the infinitesimal model
based recursions with a model assuming normality of the population trait distribution with
fixed variance, and had a similar conclusions. Moreover, he considered, among other values, a
small variance at linkage equilibrium σLE = 0.01, and shows (fig. 2 of the article) that the trait
variance in the population at equilibrium with the infinitesimal model can be very different for
σ2

LE , when migration is small, and selection very strong (g ∈ {4, 20, 100}. Finally, one notable
difference between our studies is the life cycle order (migration followed by selection in his
case) and the generations’ time length (1 in his case). In [Huisman and Tufto 2012], the IBS
also include unequal effects between loci (5 or 20). Their results highlight that the dynamics
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of the mean traits are well approximated between the IBS and the deterministic model where
segregation is modelled with the infinitesimal model. However, they indicate that the variance
in trait might be overestimated, but less so as the number of loci increases (with fixed σ2

LE).
In [Sachdeva and Barton 2017], the authors study the eco-evolutionary dynamics of a hap-

loid sexual population in a two-patch environment connected by back-and-forth migration,
characterized by a polygenic "magic trait" both conditioning local adaptation and mates’ as-
sortments. The polygenic trait results from a large number L of additive diallelic loci with
equal effects ±γ. The analysis relies an approximation according to the hypergeometric model,
which assumes that, for a given trait value within the phenotypic range [−γL, γL], all the com-
binations with the same number of + alleles that result in this trait are equiprobable in the
population. Furthermore, they use individual-based simulations to assess how well the hyper-
geometric model perform, mentioning that the infinitesimal model is recovered in the limit
L→∞. To my knowledge, there has not been any other study comparing deterministic recur-
sions with the infinitesimal model with multi-loci IBS in the context of two patchs connected
by back-and-forth migration.

Infinitesimal reproduction operator. Let us define the action of the infinitesimal
reproduction operator on a trait density n by

Bσ(n)(t, z) =
∫∫

R2
G0,σ2

(
z − z1 + z2

2

)
n(z1) n(z2) dz1 dz2. (3.1)

This operator encodes the inheritance of a complex continuous trait z, classically thought
to result from a large number of small additive allelic contributions (see [Fisher 1919], [Bulmer
1971], [Turelli and Barton 1994] and [Barton, Etheridge, and Véber 2017]). As it is writ-
ten here, it assumes that the variance with families σ2, called the segregational variance, is
constant with respect to time and across all mating events in the considered subpopulation.
One objective of this work is to assess the validity of these assumption using IBS with an
explicit genetic architecture (see Section 3.3) when modelling the adaptation of sexual diploid
populations to heterogeneous environments.

3.2 Discrete-time deterministic model
Let us denote qi : z �→ gi(z − θi)2 the quadratic selection function in habitat i and consider
the following system, for z ∈ R and tl := lΔt, with l ∈ {0, 1, ..., Ngen}⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

n1(tl+1, z) = (1−m1Δt) exp [−Δt (q1(z) + κ(1 + rΔt)N1(tl))] (n1(tl, z) + rΔtBσ[n1(tl, ·)](z))
+m2Δt exp [−Δt (q2(z) + κ(1 + rΔt)N2(tl))] (n2(tl, z) + rΔtBσ[n2(tl, ·)](z)) ,

n2(tl+1, z) = (1−m2Δt) exp [−Δt (q2(z) + κ(1 + rΔt)N2(tl))] (n2(tl, z) + rΔtBσ[n2(tl, ·)](z))
+m1Δt exp [−Δt (q1(z) + κ(1 + rΔt)N1(tl))] (n1(tl, z) + rΔtBσ[n1(tl, ·)](z)) .

(3.2)
In (3.2), a splitting scheme is used to handle the migration. The last system reflects the

following life cycle:

1. reproduction:

ni(tl, z)� ni(tl, z) + rΔtBσ[ni](tl, z) =: ñi(tl, z).
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2. Selection-competition:

ñi(tl, z)� e−Δt(qi(z)+κÑi(tl))ñi(tl, z) := n̄i(tl, z)

3. migration:

n̄i(tl, z)� (1−Δtmi)n̄i(tl, z) + Δtmjn̄j(tl, z) =: ni(tl+1, z).

Link with a continuous-time model. Here, I give some heuristics elements to hint
that the discrete-time splitting scheme involved in (3.2) approximates reasonably the following
continuous-time model, used in [Dekens 2022], when Δt is small⎧⎪⎪⎨⎪⎪⎩

∂tn1(t, z) = rBσ[n1](t, z)− κN1(t)n1(t, z)− q1(z)n1(t, z) + m2n2(t, z)−m1n1(t, z),

∂tn2(t, z) = rBσ[n2](t, z)− κN2(t)n2(t, z)− q2(z)n2(t, z) + m1n1(t, z)−m2n2(t, z).

The case without migration is informative. Let us consider n a solution of the following
equation

∂tn(t, z) = rBσ[n](t, z)− κN(t)n(t, z)− q(z)n(t, z). (3.3)

From applying Duhamel’s formula on (3.3) between tl and tl+1, we obtain the following ap-
proximation:

n(tl+1, z) = e
−
∫ tl+1

tl
κN(τ)dτ−q(z)(tl+1−tl)

n(tn, z) + r

∫ tl+1

tl

Bσ[n](τ, z)e−
∫ tl+1

τ
κN(s)ds−q(z)(tl+1−τ)dτ

≈ e
−Δt

(
κN

(
t
n+ 1

2

)
+q(z)

)
n(tn, z) + rΔtBσ[n](tl, z)e

−Δt

(
κN

(
t
n+ 1

2

)
+q(z)

)
≈ exp

[
−Δt

(
κN

(
tn+ 1

2

)
+ q(z)

)]
[n(tn, z) + rΔtBσ[n](tl, z)]

≈ exp [−Δt (κ(1 + rΔt)N (tn) + q(z))] [n(tn, z) + rΔtBσ[n](tl, z)] .

3.3 Individual-based simulations
Populations and habitats. The species is split in two subpopulations living in two dif-
ferent habitats, with local carrying capacity K = 104. In each habitat, individuals experience
selection toward a local trait optimum θi = (−1)i (for habitat i).

Genetic architecture. We consider diploid individuals with L ∈ {10, 100, 500} unlinked
loci (so 2L alleles per individual). At each of these loci, two alleles segregate, having an
additive effect on the trait of the individual of value σLE

2
√

L
or − σLE

2
√

L
. No mutation occurs at

those loci. The parameter σLE is the standard deviation at linkage equilibrium, which is taken
to be either small (σLE = 0.1) or large (σLE = 1).

Life cycle. The life cycle involves overlapping generations of time length Δt (until further
notice, the value of Δt will be fixed to 0.1) and proceeds as follows:
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1. reproduction: each individual of the meta-population chooses at random one mate
within their subpopulation, and their mating produces a viable offspring at a rate rΔt.
All offspring are added at the end of this stage (so that they cannot be drawn to mate).
This stage also provides an estimation of the average and variance of local segregational
variance across all mating events, thanks to the following computation of within-family
segregational variance for every mating event

σ̂2 =
σLE

2

4L

[
#

(
G

(1)
1 ΔG

(1)
2

)
+ #

(
G

(2)
1 ΔG

(2)
2

)]
, (3.4)

where G
(i)
j is the j ∈ {1, 2}-th serie of autosomes of the i ∈ {1, 2}-th parent, Δ represents

here the symmetrical difference operator and # represents the number of elements of
a considered set. Note that σ̂2 is of order σLE

2. The justification for (3.4) is the
following. An offspring receives its two series of autosomes independently from each of
its parents’ gametes. The variance in the offspring’s trait is therefore the sum of the
variances in each parent’ gametes. According to Mendelian laws of segregation, each
gamete produced by the i-th parent receives randomly one of the copies of this parent
at each locus, following a Bernoulli law of parameter 1

2 , independently of segregation
at other loci, since they are assumed unlinked. The segregation of the i-th parent’s
alleles during the gamete’s formation only generates variance from the #

(
G

(i)
1 ΔG

(i)
2

)
heterozygotes loci, and this variance at each locus where two different alleles segregate
is 1

2

(
σLE

2
√

L
− 0

)2
+ 1

2

(
− σLE

2
√

L
− 0

)2
= σ2

LE
4L

.

2. selection-competition: each individual faces a selection-competition trial according to
its trait z and habitat i in which they are currently living. They survive with probability
exp

(−Δtg(z − θi)2) exp
(
−ΔtNi

K

)
and are removed otherwise. Ni denotes here the

subpopulation size at the end of the reproduction stage in habitat i.

3. migration: at each migration event, within each subpopulation i, a number of migrants
is drawn, according to a Poisson probability with parameter Δt m Ni (with a hard cap
of Ni, that is the number of individuals currently in the subpopulation). Migrants are
uniformly sampled accordingly within the subpopulation and are moved to the other
deme.

Each simulation repeats this life cycle, first without migration for 100 generations of burn
in and next for Ngen = 103 generations with migration. The generation 0 is the one where
migration starts. Additionally, before the start of generation 0, I simulate a catastrophic
event affecting only the first habitat, to introduce an asymmetry in the initial state. Precisely,
individuals in habitat 1 suffer from a decreased survival rate in the selection-competition stage
(replacing punctually the carrying capacity K of the habitat 1 by K

2 ).

Ancestral population (pre-migration). At the generation -100, the two subpopula-
tions are at 4

5 of the local carrying capacity. The genetic information of the individuals of the
initial population is set as follows. In each subpopulation, at each locus (L) of each genome
(2) of each individual, an allelic effect is randomly drawn by

−σLE

2
√

L
(1−X ) +

σLE

2
√

L
X ,

where X follows a Bernoulli law of parameter p = max
(
0, min

(
1, 1

2 + (−1)i 1
2σLE

√
L

))
, so

that the population is on average initial locally adapted (the mean trait of the subpopulation
coincides with the local optimum).
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3.4 Numerical results
Type of results:

1. Final states’ comparison between the discrete-time deterministic model’s (3.2) numer-
ical resolution and the IBS with three different loci number (see Section 3.3), when the
migration rate and the selection strength vary in [0, 2].

2. Transient trajectories’ comparison between the discrete-time deterministic model’s
numerical resolution and the IBS with three different number of loci (see Section 3.3)

3. Consistence of small segregational variance hypotheses as used in the discrete
time deterministic model, which are that, throughout the simulation, the segregational
variance can be considered as constant across time, space and families, while remaining
small. The verification of these features thanks to the IBS with small standard deviation
at linkage equilibrium σLE = 0.1 and the collect of the segregational variances according
to (3.4) is essential, as these hypotheses underly the validity of the reproduction operator
in deterministic models (3.1).

3.4.1 Outcomes
In this subsection, we present the results about the qualitative comparison of the final states
between the deterministic model (3.2) and the IBS (Section 3.3), for three different number of
loci, when the migration rate m and the selection strength g vary both in [0, 2]. In particular,
we focus on the case where the segregational variance in the deterministic model is small
(σ2 = 0.01), which corresponds to the case where the standard deviation at linkage equilibrium
of the IBS is small (σLE = 0.1), of the same order as σ (see (3.4)).

Deterministic model. For each couple of parameters (m, g) ∈ [0, 2]2, 103 iterations of
the deterministic model (3.2) are computed, with the other parameters set as follows: r =
1, κ = 1, Δt = 0.1, σ2 = 0.005 (the latter being the segregational variance of the infinitesimal
model operator (3.1)). The distributions are initially set to be asymmetrical in sizes (as in the
IBS), each subpopulation being locally adapted according to the following (Gm,s2 denotes the
Gaussian density of mean m and variance s2):

∀z ∈ R, n1(t0, z) = 0.2×G−1,2σ2(z), n2(t0, z) = 0.8×G1,2σ2(z). (3.5)

The numerical scheme is the same as in [Dekens 2022] (detailed in Appendix F of the latter).
The state of the system after the last iteration is scored according to (3.6).

Individual-based simulations. For all loci number L ∈ {10, 100, 500} and every couple
of parameters (m, g) ∈ [0, 2]2, 20 replicate simulations are ran following the framework indi-
cated in Section 3.3, with a fixed small scaling allelic factor σLE = 0.1. Scores are computed
at the end of every replicate simulation according to (3.6), and then averaged to give the score
for this set of parameter values.
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Scoring scheme. For each simulations (either deterministic or individual-based), the final
state is scored according to the following formula:

Score =

⎧⎪⎨⎪⎩
5
6 − 1

3

∣∣Nf
1 −Nf

2

∣∣
Nf

1 +Nf
2

+ 1
6

(
1− exp(1− 10 V f )

)
if max

(
Nf

1 , Nf
2

)
> 0.01,

0 otherwise,
(3.6)

where Nf
1 and Nf

2 are the final subpopulations sizes, and V f is the final trait variance in the
meta-population (for IBS, Nf

i is the number of individuals of habitat i divided by the local
carrying capacity K). The scoring scheme (3.6) aims at discriminating between the different
possible outcomes

• asymmetrical monomorphic equilibrium (V f small and
∣∣∣Nf

1 −Nf
2

∣∣∣ ≈ max
(
Nf

1 , Nf
2

)
),

whose typical score is around 1
2 .

• symmetrical monomorphic equilibrium (V f small and Nf
1 ≈ Nf

2 ), whose typical score is
around 5

6 .

• symmetrical dimorphic equilibrium (V f large and Nf
1 ≈ Nf

2 ), whose typical score is
around 1.

• extinction, which is scored 0.

Results. The results are displayed in Figure 3.1. For each subfigure, the correspondence
between the score computed for each simulation’s final state given a parameter couple (m, g)
and its colour is indicated in the legend of Fig. 3.1a and remains the same for all the subfigures.
The upper left subfigure displays the outcomes of the numerical resolution of the discrete time
deterministic model (3.2), while the other subfigures display the outcomes of the IBS for the
three different number of alleles (500 in Fig. 3.1b, 100 in Fig. 3.1c, 10 in Fig. 3.1d), averaged
across replicates. The outcomes of the discrete-time deterministic model and those of the
continuous-time deterministic model, which are displayed in the Figure 6 of [Dekens 2022],
indicate that the agreement between the two deterministic models is good, which is expected.
Next, one can notice, by only looking at the outcomes of the IBS (Fig. 3.1b, Fig. 3.1c and
Fig. 3.1d, that there is a substantial variation between the final states depending on the
number of loci involved, especially at strong selection (bottom right corner of the subfigures),
particularly between 10 loci and above 100. This results from the fact that all parameters
of the IBS other that the number of loci are maintained the same between the subfigures, in
particular the standard deviation at linkage equilibrium σLE = 0.1, that determines the allelic
effects at each locus together with the number of loci L: ±σLE√

L
. Consequently, for L = 10, the

allelic effects at each locus are approximately ±0.03. This implies that the extreme phenotypes
that individuals can have (−a

√
L and a

√
L) are approximately −0.3 and 0.3, which are quite

far from the local phenoypic optima (θ1 = −1 and θ2 = 1). Therefore, at strong selection
(g ≥ 1.5), the selection is too strong for even individuals with these extreme phenotypes to be
able to adapt. The same phenomenon is avoided for L = 100 and L = 500, where the extreme
phenotypes are respectively (−1, 1) and (−2.2, 2.2) especially for the latter. This explains the
qualitative agreement of the IBS with the final states of the deterministic model (Fig. 3.1a).
It is quite poor for L = 10 loci (Figure 3.1d), quite good for L = 100 loci (Figure 3.1c) and
even better for the largest number of loci L = 500 (Figure 3.1b).
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(a) Numerical outcomes with the dis-
crete deterministic model (3.2). Param-
eters: r = 1, κ = 1, Δt = 0.1, σ2 = 0.005 (the
latter is the segregational variance), with 103

iterations per simulation, with asymmetrical
initial distributions (see (3.5)). (b) IBS outcomes - 500 loci.

(c) IBS outcomes - 100 loci. (d) IBS outcomes - 10 loci.

Figure 3.1: Qualitative comparison between the outcomes of the deterministic
model’s (3.2) numerical resolution and the IBS for three different number of loci
(10, 100, 500), when the migration rate (m1 = m2 = m) and intensity of selection
(g1 = g2 = g) vary. The IBS are designed according to Section 3.3, with generations of
time length Δt = 0.1 and small standard deviation at linkage equilibrium σLE = 0.1, and 20
replicates simulations for each point (m, g). The final state of each simulation (deterministic or
stochastic) is attributed a score according to the same scheme (3.6). For the IBS, the score is
averaged across replicates. The results indicate that there is a large variation in the outcomes
among the IBS according to the number of loci involved, especially for strong selection levels
(bottom right corner of each subfigures). The agreement with the deterministic model grows
stronger as the number of loci involved grows (very similar for 500 loci).
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3.4.2 Transient trajectories
In this section, we aim to quantify how close the numerical solutions of the deterministic model
(3.2) is from the IBS throughout the whole time length of the simulations, depending on the
number of loci involved (10, 100, 500), for small (σLE = 0.1) and large (σLE = 1) scaling allelic
effects factors and for three migration rates m ∈ {0.05; 0.8; 1.4} (henceforth qualified as low,
intermediate and high migration) and three selection strengths g ∈ {0.1; 1.0; 2.0} (henceforth
qualified as weak, intermediate and strong selection).

Individual-based simulations. For each loci number, standard deviation at linkage
equilibrium, migration rate and selection strengths, 20 replicate simulations are ran according
to the framework described in Section 3.3. For each replicate k, all the system (meaning
all the phenotypes in both habitats) is saved at each generation t, and the underlying trait
densities nIBS,k

1 (t, z) and nIBS,k
2 (t, z) are estimated from it, with z ∈ Z, Z being the trait

space’s discritization grid for the deterministic model.

Deterministic model. For each loci number, standard deviation at linkage equilibrium,
migration rate and selection strengths, 103 iterations of the deterministic model (3.2) are
computed, with the other parameter set as follows: r = 1, κ = 1, δt = 0.1. The trait space’s
discritization grid Z is the same as indicated in Appendix F of [Dekens 2022] (Δz ≈ 1.6×10−2).
The parameter σ2 (segregational variance of the infinitesimal model operator (3.1)) and the
initial state are estimated from the IBS with corresponding parameter values. The parameter
σ2 takes the value of the average of all the segregational variances across mating events and
habitats in the last generation of the IBS (with a lower cap at σLE × 10−8 if the average is 0).
The initial conditions are set as an average as follows:

ndeterministic
i (0, ·) =

1
20

20∑
k=1

nIBS,k
i (0, ·). (3.7)

(Generation 0 marks the start of the migration phenomenon).

Proximity of the trait distributions from the deterministic model and from
the IBS The proximity of the trait distributions from the deterministic model and from the
IBS obtained according to the framework previously described is computed at each generation
t by

W1

(
ndeterministic

1 (t, ·) + ndeterministic
2 (t, ·)

Ndeterministic
1 (t) + Ndeterministic

2 (t)
,
nIBS,k

1 (t, ·) + nIBS,k
2 (t, ·)

N IBS,k
1 (t) + N IBS,k

2 (t)

)
. (3.8)

In (3.8), W1 denotes here the first Wasserstein distance defined on the space of probability
measures on R with bounded first moment and the overline quantity represents the median
across all replicates. We recall that for μ and ν two probability measures on R of bounded
first moment, if we denote Fμ and Fν their respective cumulative distribution function, then
the W1 distance between μ and ν is computed by

W1(μ, ν) = ‖Fμ − Fν‖L1
. (3.9)

The W1 distance is used here instead of the L1 norm to quantify the proximity between
distributions, because it handles better the distance between two distributions, one being a
small perturbation of the other, but with disjoint support, which is expected to occur here
when the variances are low.
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Results In the case where the standard deviation at linkage equilibrium σLE is small, the
agreement between IBS and the deterministic model on transient trajectories depends highly
on the number of loci involved L. When the number of loci is large enough for the phenotypic
range [−σLE

√
L, σLE

√
L] to encompass and extend well beyond the local trait optima θ1 and

θ2 characterizing the heterogeneous environment, the IBS and the deterministic model are
extremely close throughout the whole simulations. When the phenotypic range is just enough
to include the local optima, the agreement between IBS and the deterministic model remains
globally very good, but degrades slightly for intermediate migrations, which corresponds to
the asymmetrical monomophic equilibria. When the number of loci is too small to include
the local optima, the IBS and the deterministic model are only close when selection is weak,
or intermediate with low migration. In the rest of the parameter space, in particular when
selection increases, the phenotypic range limits too much the adaptation of the population
which goes extinct, which is not the case of the deterministic model.

In the case where the standard deviation at linkage equilibrium σLE is large, the agreement
between IBS and the deterministic model on transient trajectories does not depend too much
on the number of loci involved L (at least, when it is above 10 loci), and the agreement
between IBS and the deterministic model is globally excellent (though it degrades a bit for
intermediate selection-migration).

3.4.3 Segregational variances
This section presents the numerical results from the data on segregational variances collected
from the IBS. The aim is to assess whether, when the standard deviation at linkage equilib-
rium σLE is small (0.1), the central limit theorem assumption in the infinitesimal model (the
segregational variance is constant across time, space and families) holds across the whole sim-
ulations time length and can produce a small segregational variance, depending on the number
of alleles involved. The results are shown for 100 and 500 loci (since the outcomes with 10 loci
Fig. 3.1d are very different from the deterministic model Fig. 3.1a, we do not include it in this
section).

Segregational variance data collected from IBS and quantities of interests.
There are two types of data about segregational variances that I collected from the IBS per-
formed for the subsection Section 3.4.1 for each number of loci (100, 500 - 20 replicates for
each):

1. M t,k
i , which is the average segregational variance computed for all the mating events at

generation t, for replicate k, in habitat i, according to (3.4).

2. V t,k
i , which is the variance in the segregational variances computed for all the mating

events at generation t, for replicate k, in habitat i.

Furthermore, I define the average data across replicates by

M̄i(t) :=
1

#Replicates

∑
k

M t,k
i , V̄i(t) :=

1
#Replicates

∑
k

V t,k
i .

To quantify the extent of the validity of the four hypotheses on segregational variances
(smallness, constancies across time, space and families), we compute four scores as follows.
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(a) Weak selection, low migra-
tion.

(b) Weak selection, intermedi-
ate migration.

(c) Weak selection, high migra-
tion.

(d) Intermediate selection, low
migration.

(e) Intermediate selection, in-
termediate migration.

(f) Intermediate selection, high
migration.

(g) Strong selection, low migra-
tion.

(h) Strong selection, intermedi-
ate migration.

(i) Strong selection, high mi-
gration.

Figure 3.2: Dynamics of the W1 distance between the distributions of the IBS repli-
cates according to (3.8) and the solutions of the deterministic discrete-time model
(3.2), for 3 increasing levels of selection (rows, top to bottom 0.1, 1, 2) and 3
increasing levels of migration (columns, left to right 0.05, 0.8, 1.4), with a small
standard deviation at linkage equilibrium σLE = 0.1 (small variance case). For each
figure, the three colors correspond to three different number of loci L = {10, 100, 500} (darker
colors for larger number of alleles). The coloured lines represent the median distance across
replicates (interrupted lines means that extinction occurred). The black dashed line represents
the distance between two Dirac masses on consecutive points of the trait space’s grid Z. Other
parameter values for the deterministic models are: r = 1, κ = 1, Δt = 0.1 and those for the
IBS as indicated in Section 3.3. Here, the number of loci matters substantially. With 500
loci, the distances between the IBS and deterministic trajectories (purple lines) are almost
always equivalent to the minimum distance between two Dirac masses on the discretization
grid (dashed horizontal line), with indicates excellent agreement, at the exception of extinction
events (Fig. 3.2f, Fig. 3.2i). With 100 loci, which is the limit case where the phenotypic range
matches the difference between local optima, the agreement with the deterministic model is
similar than with 500 loci when migration is low (left column), but degrades when migration
becomes higher (middle and right colum). With 10 loci, additional extinctions occur when
selection is strong and migration is low (Fig. 3.2g) or intermediate (Fig. 3.2h), and at in-
termediate selection-migration (Fig. 3.2e), which is consistent with Fig. 3.1d. Notice that in
Fig. 3.2d, the distance increases slightly after 600 generation for all number of loci. This comes
from the fact that the outcomes at this particular migration-selection parameters are near the
border of two qualitatively different phenomena (asymmetrical monomorphic or dimorphic -
see Fig. 3.1a.) 146



(a) Weak selection, low migra-
tion.

(b) Weak selection, intermedi-
ate migration.

(c) Weak selection, high migra-
tion.

(d) Intermediate selection, low
migration.

(e) Intermediate selection, in-
termediate migration.

(f) Intermediate selection, high
migration.

(g) Strong selection, low migra-
tion.

(h) Strong selection, intermedi-
ate migration.

(i) Strong selection, high mi-
gration.

Figure 3.3: Dynamics of the W1 distance between the distributions of the IBS
replicates according to (3.8) and the solutions of the deterministic discrete-time
model (3.2), for 3 increasing levels of selection (rows, top to bottom 0.1, 1, 2) and
3 increasing levels of migration (columns, left to right 0.05, 0.8, 1.4), with a large
standard deviation at linkage equilibrium σLE = 1 (large variance case). For each
figure, the three colors correspond to three different number of loci L = {10, 100, 500} (darker
colors for larger number of alleles). The coloured lines represent the median distance across
replicates (interrupted lines means that extinction occurred). The black dashed line represents
the distance between two Dirac masses on consecutive points of the trait space’s grid Z. Other
parameter values for the deterministic models are: r = 1, κ = 1, Δt = 0.1 and those for the
IBS as indicated in Section 3.3. Here, the number of loci does not influence the proximity
of the deterministic model with the IBS(at least above 10 loci). The agreement between the
deterministic model and the IBS is strong (coloured lines at the level of the black dashed line,
which is the minimum distance between two Dirac masses on the discritization grid) when
either selection is weak (top row) or migration is low (left column), and a bit worse when both
selection and migration are intermediate (Fig. 3.3e). Extinction occurs in all other cases, when
migration and selection are both sufficiently high (Fig. 3.3f, Fig. 3.3h, Fig. 3.3i).
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1. Smallness. The score is computed according to∥∥∥M̄1
∥∥∥∞ +

∥∥∥M̄2
∥∥∥∞

2
. (3.10)

2. Time constancy. The score is computed according to

max
(
M̄1 + M̄2

)
−min

(
M̄1 + M̄2

)
1

Ngen

∑
t≤Ngen M̄1(t) + M̄2(t)

. (3.11)

3. Space constancy. The score is computed according to∥∥∥[M̄1(t)− M̄2(t)
]∥∥∥∞

1
2Ngen

∑
t≤Ngen M̄1(t) + M̄2(t)

. (3.12)

4. Constancy across families. The score is computed according to∥∥∥∥[√V̄1(t) +
√

V̄2(t)
]∥∥∥∥∞

1
Ngen

∑
t≤Ngen M̄1(t) + M̄2(t)

. (3.13)

On the contrary to the first score which is an absolute norm, the three last scores are relative
norms, so scores significantly lower than 1 represent good agreement with the hypotheses.

Results. The results are displayed thanks to migration-selection heatmaps, for two different
number of loci: 100 (Fig. 3.6) and 500 (Fig. 3.4). For each number of loci, four subfigures
of the heatmaps of the four different scores described previously are shown, with a different
colormap for each number of alleles, as to draw attention on the scale of the colorbar, which
varies considerably from one plot to another. Additionally, to control for the influence of the
first time steps, we display the same figures, but with the scores computed over the generations
after the 30th (Fig. 3.5 and Fig. 3.7). Here is a short summary of the findings:

� 500 loci: Figure 3.4 indicates that, when the standard deviation at linkage equilibrium
σLE is small, and the number of loci L is large enough so that the phenotypic range
[−σLE

√
L, σLE

√
L] extends beyond the local optima (here, −1 and 1), segregational

variances remain small (of order lower than σLE
2) throughout the length of the IBS,

constant across time, space and families. Additionally, Figure 3.5 indicates that most
of the time variation of the segregational variance for parameters leading to monomor-
phic symmetrical equilibria (ie: bounded selection) happens during the first generations,
following migration’s start.

� 100 loci : On the contrary to the previous case, Figure 3.6 tends to indicate that, even
though segregational variances stay small, there is substantial variation across time,
space and families in the parameter region which leads to the asymmetrical monomor-
phic equilibria (see Fig. 3.1c for the latter), especially at strong selection/intermediate
migration. This might be linked to the fact that, with 100 loci, the phenotyipic range
[−σLE

√
L, σLE

√
L] match the local optimal traits, so they might be overrepresented in

the subpopulations at strong selection. This would decrease the variances within fam-
ilies, and over time. Additionally, the segregational variance varies also greatly across
time, at bounded selection. However, Figure 3.7 indicates that most of the variation in
this parameter region occurs in the first generations, following migration’s start.
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(a) Smallness of the segregational vari-
ances throughout the IBS, for 500 loci,
according to (3.10).

(b) Time constancy of the segregational
variance throughout the IBS, for 500
loci, according to (3.11).

(c) Spatial constancy of the segregational
variances throughout the IBS, for 500
loci, according to (3.12).

(d) Constancy of the segregational vari-
ances across families throughout the
IBS, for 500 loci, according to (3.13).

Figure 3.4: Quantification of the extent of the four hypotheses’s validity regarding
small segregational variance, throughout individual-based simulations, with 500
loci and small standard deviation at linkage equilibrium σLE = 0.1. Fig. 3.4a
indicates that the segregational variances stay very small throughout the IBS (scores lower
than 0.003), even compared to σLE

2 (see (3.4)). Fig. 3.4b indicates that, except for IBS
with migration-selection parameter values close to the extinction region (upper right corner),
the segregational variances vary weakly across generations (scores lower than 0.25). Fig. 3.4c
indicates that the differences between the average segregational variances across habitats are
globally small (scores lower than 0.1), the highest scores occuring in the asymmetrical equilibria
region (see Fig. 3.1b). Fig. 3.4d indicates that there is little variance in segregational variances
across families (scores lower than 0.2). For each couple of parameters values (m, g), 20 replicate
simulations have been conducted (see Section 3.3 for more details about the IBS).
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(a) Smallness of the segregational vari-
ances throughout the IBS, for 500 loci,
according to (3.10).

(b) Time constancy of the segregational
variance throughout the IBS, for 500
loci, according to (3.11).

(c) Spatial constancy of the segregational
variances throughout the IBS, for 500
loci, according to (3.12).

(d) Constancy of the segregational vari-
ances across families throughout the
IBS, for 500 loci, according to (3.13).

Figure 3.5: Control of the influence of first generations: Quantification of the extent
of the four hypotheses’s validity regarding small segregational variance, through-
out individual-based simulations after 30 generations, with 500 loci and small
standard deviation at linkage equilibrium σLE = 0.1. The figure has been built ex-
actly as Fig. 3.4, with the same IBS, but the four scores have been computed only over the
generations after the 30th one, to control for the influence of the first generations on the scores.
Of the four subfigures, only Fig. 3.5b quantifying the constancy across time changes, although
moderately, in particular for intermediate to high migration and bounded selection (left side).
This indicates that in the parameter region where the system tends to be monomorphic and
symetrical (see Fig. 3.1b), the segregational variance varies moderately in the first generations,
but is constant afterwards.
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(a) Smallness of the segregational vari-
ances throughout the IBS, for 100 loci,
according to (3.10).

(b) Time constancy of the segregational
variance throughout the IBS, for 100
loci, according to (3.11).

(c) Spatial constancy of the segregational
variances throughout the IBS, for 100
loci, according to (3.12).

(d) Constancy of the segregational vari-
ances across families throughout the
IBS, for 100 loci, according to (3.13).

Figure 3.6: Quantification of the extent of the four hypotheses’s validity regarding
small segregational variance, throughout individual-based simulations, with 100
loci and small standard deviation at linkage equilibrium σLE = 0.1. Fig. 3.6a
indicates that the segregational variances stay very small throughout the IBS (scores lower than
0.003), even compared to σLE

2 (see (3.4)). However, Fig. 3.6b indicates that the segregational
variances can vary substantially across time, at high migration (upper left corner, scores around
1) and even more at strong selection (lower right corner, score above 1). Fig. 3.6c indicates
the differences between the average segregational variances across habitats are relatively small
for high migration, weak selection or strong selection, low migration (scores around 0.25),
but substantial in the parameter region corresponding to the asymmetrical equilibria (see
Fig. 3.1c), especially at strong selection, intermediate migration (scores above 1). Fig. 3.6d
indicates that there is moderate (score of 0.5) to high variance in segregational variances
across families (scores above 1 at strong selection, intermediate migration). For each couple
of parameters values (m, g), 20 replicate simulations have been conducted (see Section 3.3 for
more details about the IBS). 151



(a) Smallness of the segregational vari-
ances throughout the IBS, for 100 loci,
according to (3.10).

(b) Time constancy of the segregational
variance throughout the IBS, for 100
loci, according to (3.11).

(c) Spatial constancy of the segregational
variances throughout the IBS, for 100
loci, according to (3.12).

(d) Constancy of the segregational vari-
ances across families throughout the
IBS, for 100 loci, according to (3.13).

Figure 3.7: Control of the influence of first generations: Quantification of the extent
of the four hypotheses’s validity regarding small segregational variance, through-
out individual-based simulations after 30 generations, with 100 loci and small
standard deviation at linkage equilibrium σLE = 0.1. The figure has been built ex-
actly as Fig. 3.6, with the same IBS, but the four scores have been computed only over the
generations after the 30th one, to control for the influence of the first generations on the scores.
Of the four subfigures, only Fig. 3.7b quantifying the constancy across time changes substan-
tially, in particular for intermediate to high migration and bounded selection (left side). This
indicates that in the parameter region where the system tends to be monomorphic and symet-
rical (see Fig. 3.1c), the segregational variance varies greatly in the first generations, but is
constant afterwards (scores close to 0). However, the rest of the subfigure remains the same,
meaning that for intermediate to strong selections, time constancy is not respected, even after
the 30 first generations (scores of order 1).
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3.5 Conclusion
The infinitesimal model has been commonly thought to emerge in particular from discrete
di-allelic genetic architecture involving a large number of loci L with small additive effects.
The main motivation of this study is to clarify the relation between characteristics of this
genetic architecture and the assumption behind the use of the infinitesimal model operator
(3.1) in deterministic models, which is that the segregational variance is constant across time,
space and families and is in fact a parameter of the model. This study focuses on doing so
when modelling the adaptation of diploid sexual populations to heterogeneous environments,
for example composed by two demes connected by migration. Furthermore, it aims at deriving
a biological justification for the regime of small segregational variance, which has been shown
to allow significant analytical derivations of quantitative features of the eco-evo equilibria (see
Dekens 2022).

We decompose the di-allelic effects as ±σLE

2
√

L
, where L is the number of loci involved in the

genetic architecture underlying the complex focal trait and the parameter σLE the standard
deviation at linkage equilibrium. This decomposition is practical, as the segregational vari-
ances with families are lower than σLE

2 (see (3.4)), and we first show that they remain indeed
small throughout the IBS when the standard deviation at linkage equilibrium σLE is small.
Furthermore, we show that the comparison between the phenotypic range [−σLE

√
L, σLE

√
L]

and the local phenotypic optima θ1 and θ2 characterizing the heterogeneous environment is es-
sential for the evolutionary dynamics produced by a deterministic model using the infinitesimal
model operator (3.1) in heterogeneous environments to be close to individual-based simulations
with this explicit genetic architecture.

We find that when the number of loci L involved is large enough for the phenotypic range
to extend well beyond the local trait optima, the segregational variances computed at each
mating event occurring throughout the IBS present very little variation across time, space
and families, which seems to justify summarizing it under a single parameter. Therefore,
both the transient dynamics and the qualitative outcomes of the deterministic model are in
excellent agreement with the IBS, on a time of order

√
L. When the phenotypic range is

just enough to include the local optima, segregational variances computed throughout the IBS
can vary substantially across time, space and families in the parameter region which leads to
the asymmetrical monomorphic equilibria, in particular for strong selection and intermediate
migration. In this parameter region, the transient dynamics produced by the deterministic
model are not as close to the IBS, but still good enough for the qualitative outcomes to be
consistent. When the number of loci is too small for the phenotypic range to reach the local
optima, the IBS lead to extinction on a wider region of parameter than for the deterministic
model, as even the most extreme possible phenotypes are not viable under strong enough
selections.

This criterion that the segregational variance is approximately constant across time, space
and families if the phenotypic range extends well beyond the local optima is in agreement with
the approximation derived in [Sachdeva and Barton 2017] according to the hypergeometric
model. Under this assumption, they give an approximation of the segregational variance V
conditional to the parental traits Y and Z in the limit of large number of loci L (equation (6),
Appendix S1, Sachdeva and Barton 2017):

V ≈ γ2L

2
− Y Z

2L
.

The latter implies that V is approximately constant across families if the local optimal ±θ
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satisfies θ � γL, which is consistent with our conclusion transposed from diploid to haploid
organisms, that the constant segregational variance assumption holds if the phenotypic range
[−γL, γL] extends well beyond the local optima ±θ.

Despite the framework presented here being different from the ones in [Tufto 2000] and
[Huisman and Tufto 2012], for it allows migration to go back-and-forth, the fact that the
initial populations is asymmetrical and thus the metapopulation displays pseudo source-sink
dynamics under strong selection (asymmetrical equilibria of [Ronce and Kirkpatrick 2001] and
[Dekens 2022]) makes the comparison relevant. The results are overall relatively consistent
with these studies, conditioned on the differences in terms of number of loci (here a lot higher)
and the commutativity of the different stages as a consequence of small generation length
Δt = 0.1. In [Tufto 2000], the latter has a significant importance, because of the succession of
the migration and selection stages, which at high selection culls automatically all the migrants
before allowing them to mate with the local population. However, the conclusion that the
infinitesimal model and the Gaussian approximation are consistent with multi-loci IBS when
the immigrants can compensate their initial maladaptation with a large enough σ2

LE (at fixed
distance between the sink’s optimum and the source’ mean trait) goes in the same direction
as my conclusion on the trait range [−σLE

√
L, σLE

√
L] extending beyond the local optima.

Besides, I would also like to address the findings of [Tufto 2000] that the variance in trait at
equilibrium is largely over σLE

2 when the latter is small (0.01), as it is not observed here. My
explanation for the discrepancy is the very strong selection levels considered (4, 20, and 100)
and the life cycle order, as described above. As for the observation that the recursions with
the infinitesimal model in [Huisman and Tufto 2012] might overestimate the variance in trait
when the difference between the subpopulations increases (fig. 5 of their article, with 5 loci),
with this discrepancy in variance decreasing when the number of loci passes from 5 to 20 (fig.
6 of their article) aligns with our findings. Indeed, the first effect relates directly with the trait
range including or not the local optima and the second relates to the fact that the trait range
increases with the number of loci (at fixed σLE).
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3.A Example of a numerical comparison of
transient moments’ dynamics between
deterministic recursions and IBS

In this appendix, I illustrate how the Wasserstein distance between the renormalized trait
distributions of the IBS and the deterministic recursions (Fig. 3.2) translates macroscopically
onto the visual difference of the first moments’ dynamics. The example shown in Fig. 3.8
indicates in particular how the Wasserstein distance can capture subtle discrepancies which
are unsuspected at macroscopic level.

(a) Subpopulations sizes,
500 loci.

(b) Local mean traits,
500 loci.

(c) Subpopulations sizes,
100 loci.

(d) Local mean traits,
100 loci.

(e) Local variances in
trait, 500 loci. (f) Local skews, 500 loci.

(g) Local variances in
trait, 100 loci. (h) Local skews, 100 loci.

Figure 3.8: Comparison of the transient dynamics of the first moments of local trait
distributions, obtained from IBS (blue lines) and deterministic recursions of (3.2)
(yellow lines), for weak selection g = 0.1 and intermediate migration m = 0.8, with small
standard deviation at linkage equilibrium σLE = 0.1. All the figures show that the IBS and the
deterministic recursions are in excellent agreement. Moreover, the left half panel is with 500
loci, and the right panel with 100 loci. The most significant difference between the two (which
is still quite small) is the slight discrepancy in the local mean traits with 100 loci (Fig. 3.8d)
between IBS and deterministic trajectories, which does not appear with 500 loci (Fig. 3.8b).
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Chapter 4
The best of both worlds: combining
population genetic and quantitative genetic
models

Numerous traits under migration-selection balance are shown to exhibit complex patterns of
genetic architecture with large variance in effect sizes. However, the conditions under which
such genetic architectures are stable have yet to be investigated, because studying the influence
of a large number of small allelic effects on the maintenance of spatial polymorphism is math-
ematically challenging, due to the high complexity of the systems that arise. In particular, in
the most simple case of a haploid population in a symmetrical two-patch environment, while it
is known from population genetics that polymorphism at a single major-effect locus is stable,
there exists no analytical predictions on how this polymorphism holds when a polygenic back-
ground also contributes to the trait. Here we propose to answer this question by introducing
a new eco-evo methodology which allows us to take into account the combined contributions
of a major-effect locus and of a quantitative background resulting from small effect loci, where
inheritance is encoded according to an extension to the infinitesimal model. In a regime of
small variance contributed by the quantitative loci, we justify that traits are concentrated
around the major-effect alleles effects according to a normal distribution thanks to new convex
analysis arguments. This allows a reduction in the complexity of the system using a separation
of time scales approach. We predict an undocumented phenomenon of loss of polymorphism
at the major-effect locus despite strong selection for local adaptation, because the quantitative
background slowly disrupts the rapidly established polymorphism at the major-effect locus,
which is confirmed by individual-based simulations. Our study highlights how segregation of
a quantitative background can greatly impact the dynamics of major-effect loci by provoking
migrational meltdowns. We also provide a comprehensive toolbox designed to describe how to
apply our method to more complex population genetic models.

157



4.1 Introduction
Biological motivation. Many species, if not most, evolve in heterogeneous habitats,
where varying selection acts upon phenotypic traits in a manner that causes local adapta-
tion. The genetic architecture that underlies those traits is known to present an array of
possibilities, from major responses at one particular gene to diffuse polygenic reponses (Slate
2005; Walsh and Lynch 2018). However, despite the boom in of genome sequencing of the
last four decades, global conclusions on the conditions leading to a major gene or a polygenic
response to local adaptation are yet to be drawn from empirical studies. For example, as
reviewed in Walsh and Lynch [2018], different conclusions on the genetic basis of the evolution
of resistance to the insecticide BT toxin have emerged between field and lab experiments.
Indeed, in the field, major-effects are more often found to be the main drivers of evolution of
resistance, whereas a polygenic response is more commonly found in the lab (McKenzie and
Batterham 1994), even if intensity of selection might not differ (Groeters and Tabashnik 2000).
In more recent studies, divergent conclusions about the genetic basis of pathogen resistance
in cattle have been reached in different regions of the world (major-effect in Australia: Turner
et al. 2010, polygenic in the tropics: Porto-Neto et al. 2014). Other empirical studies also
highlight cases where the genetic basis of local adaptation has a large variance in effect size,
thus combining major and polygenic responses (see e.g. Koch et al. 2022 about the genetic
architecture of local adaptation in Littorina saxatilis and Gagnaire and Gaggiotti 2016 for a
review for marine species). We are therefore interested in investigating the following biolog-
ical question: What are the stability conditions of either major gene responses or polygenic
responses (with either a small or large variance in effect size) underlying species’ evolution in
patchy environments?

From a theoretical point of view, the genetic basis of adaptation has been the subject of
an ongoing debate since the early days of evolutionary biology. On the one hand, the field of
population genetics explicitly describes and models the dynamics of a few major genes and
alleles that have discrete Mendelian effects, like eye color. On the other hand, the quantitative
genetic field explores the evolution of quantitative and continuous traits, like limb size, which
are thought to arise from the combined small effects of many genes. A first theoretical mile-
stone in the relationship between the two fields was reached in 1919, when Fisher proposed
the infinitesimal model to formalize how such a polygenic trait can be inherited, using the
Mendelian framework, clarifying the connection between the two genetic approaches (Fisher
1919). His framework was subsequently made more precise (Bulmer 1971; Lange 1978) and
recently justified in various situations using a multi-loci model and a central limit theorem
approach (Barton, Etheridge, and Véber 2017). This debate on the genetic basis of adap-
tation can be illustrated by the tension between the textbook prediction of Orr [1998] of an
exponential distribution of allelic effect sizes following adaptation in a homogeneous environ-
ment and the review in Rockman [2012], which presents several lines of evidence highlighting
infinitesimal polygenic basis of quantitative traits. Here, we would like to revisit the classical
prediction of an exponential distribution in allelic effects from Orr [1998], not in the context
of weak selection in panmictic populations, but rather in the context of spatial heterogeneity.
Although this has been explored through individual-based simulation studies (see Yeaman and
Whitlock 2011; Yeaman 2022), we aim at providing analytical predictions that can yield mech-
anistic insights on the distribution of effect sizes likely to be observed following adaptation in
patchy environments.
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Aims. The adaptation of species to heterogeneous environment at a small number of loci has
been extensively studied in the population genetic field (see Nagylaki and Lou 2001; Bürger
and Akerman 2011 for one or two-locus models, Yeaman and Otto 2011 for a model including
the effect of drift, Geroldinger and Bürger 2014 for a two-deme two-locus model). In particular,
we would like to draw attention to the predictions from the simplest one-locus model describing
the dynamics of local adaptation of a haploid species to a symmetrical two-deme environment.
In the case-study where two alleles segregate at a single locus, each allele being favoured in
one deme and selected against in the other, it can be shown that polymorphism is always
maintained at this locus, independently of the migration rate or selection strength (unless the
population goes extinct - see a proof of this result in 4.D.3). However, it is not clear whether
this polymorphism would similarly be maintained if, in addition to this biallelic major-effect
locus, local adaptation was also influenced by very small contributions from a large number
of unlinked loci. The main aim of this paper is therefore to answer the following question:
Could a polygenic background constituted by very small allelic effects topple the polymorphism
at the major-effect locus, even though the latter is a priori beneficial for local adaptation when
considered on its own?

From the point of view of population genetics, answering this question in heterogeneous
environments would require the analysis of models whose complexity would quickly grow as
the number of small effect loci considered increases (however, note that multi-loci models in
heterogeneous environments exist, but either focus on the case where all the alleles have equal
effects - see Lythgoe 1997; Szép, Sachdeva, and Barton 2021a - or on panmictic populations
- see Vladar and Barton 2014; Jain and Stephan 2017; Höllinger, Pennings, and Hermisson
2019). In this work, we propose to circumvent this limitation with a new eco-evo model and
methodology. It merges the point of views of population genetics and quantitative genetics and
considers the combined contributions of a quantitative background (summarizing the polygenic
background’ small effects contributions) and a major-effect locus on the focal trait determining
local adaptation (note that the latter is typically not considered in quantitative genetic models;
see Ronce and Kirkpatrick 2001; Hendry, Day, and Taylor 2001; Débarre, Ronce, and Gandon
2013; Mirrahimi 2017; Mirrahimi and Gandon 2020; Hamel, Lavigne, and Roques 2021; Dekens
2022).

This approach has the immediate benefit that each individual is only described by two vari-
ables (major-effect allele and quantitative background) instead of potentially many (for each
alleles). The drawback is that how to implement efficiently the inheritance of the quantitative
background becomes less obvious, which adds a methodological challenge to our objectives.
One way to proceed would be to make the ad-hoc assumption that the quantitative back-
ground only adds Gaussian noise around the major-effects. This was employed in Lande
[1983] in order to investigate the genetic architecture of adaptation to a shifting environment
(via major-effect allelic sweeps or subtle shifts in the frequency of many small effect alleles).
However, our proposed method aims to avoid any prior assumption on the distribution of
the quantitative background and rather analyze the distribution that naturally emerge from
the dynamics of adaptation.Instead, we focus on the within-family distribution by extending
Fisher’s infinitesimal model (Fisher 1919; Bulmer 1971; Lange 1978; Bulmer 1980; Turelli and
Barton 1994; Barton, Etheridge, and Véber 2017).

Contributions. We show that our model for composite traits gives new analytical insights
on the stability of polymorphism at a major-effect locus underlying local adaptation in a sym-
metrical heterogeneous environment in the presence of a quantitative background due to a
large number of small effect loci. Due to small perturbations induced by the quantitative
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component of the trait, polymorphism at the major-effect locus is lost both at low and high
strengths of selection, below a certain level of migration. The first region of loss of polymor-
phism, at low selection intensities, is intuitively expected, as migration blends more strongly
than selection differentiates. More surprising is the lost of polymorphism at high intensities
of selection, where one would expect polymorphism at the major-effect locus to be strongly
favoured. To our knowledge, this phenomenon, where quantitative differences displace poly-
morphism at a major-effect locus, has not yet been documented. We confirm that our analysis
is consistent with individual-based simulations.

This case study suggests that the long-term influence of a quantitative polygenic back-
ground on the polymorphic equilibrium at major-effect loci can lead to unforeseen phenomena.
In this work, we present an integrative framework that is meant to help analytically bridge
population genetics and quantitative genetics. Our method goes deeper than previous models
(Lande 1983) by justifying in a certain regime of small variance that the traits are normally
distributed around the major-effect alleles effects, thanks to new arguments of convex analy-
sis. It allows a separation of time scales, which ultimately leads to the conditions for when
the infinitesimal quantitative background slowly disrupts the rapidly established symmetrical
polymorphism at the major-effect locus.

Furthermore, we provide a comprehensive toolbox that describes how to apply our method-
ology to more general cases in terms of number of major-effect loci, number of patches, and
form of selection for haploid or diploid populations (see Appendices 4.A and 4.B).

4.2 Methods

4.2.1 Model
4.2.1.1 From a generic quantitative genetic model to a com-

posite model.
We consider a haploid population reproducing sexually and characterized by a quantitative
trait ζ in a heterogeneous environment with two habitats connected by constant migration
at rate m1 (from habitat 1 to habitat 2) and m2 (from habitat 2 to habitat 1). Following
classical models of quantitative genetics, we model each habitat i selecting toward a different
optimum θi with strength gi. Maladaptation and local uniform competition for resources
(with intensity κi in deme i) are sources of mortality leading to a per capita decline at rate:

−gi(ζ − θi)2 − κi Ni,

for individuals of trait ζ in habitat i (Ni denotes the local population size). At time t ≥ 0,
let n1(t, ζ) and n2(t, ζ) be the local trait densities in patches 1 and 2, and B[ni](t, ζ) the
number of individuals born with a trait ζ in habitat i, with reproduction occuring at rate λi.
The dynamics of the local trait densities read:
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⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∂n1
∂t (t, ζ) = λ1 B[n1](t, ζ)− g1 (ζ − θ1)2 n1(t, ζ)− κ1N1(t) n1(t, ζ)

+m2 n2(t, ζ)−m1 n1(t, ζ),

∂n2
∂t (t, ζ) = λ2 B[n2](t, ζ)− g2 (ζ − θ2)2 n2(t, ζ)− κ2 N2(t) n2(t, ζ)

+m1 n1(t, ζ)−m2 n2(t, ζ).
(4.1)

We can define the trait axis such that: θ := θ2 = −θ1 > 0 without loss of generality. We
next describe the novel aspect of this work, which allows the trait ζ to be the sum of two
components, a major-effect locus and a quantitative background z. We furthermore describe
the sexual reproduction operator used.

major-effect. The first component comes from a locus where two alleles A/a are segregat-
ing. They have a major-effect on the trait: ηA and ηa. Inheritance of this locus is Mendelian.

Quantitative background. The second component, denoted by z ∈ R, represents the
quantitative background due to infinitesimally small additive contributions to the trait from a
large number of unlinked alleles. Although it comes from infinitesimally small contributions,
z should not be thought of as being necessarily small, due to the large number of alleles
contributing to it. We also assume that the major-effect locus is effectively unlinked with the
small-effect ones.

Inheritance of the trait: an extension of the infinitesimal model. Let us re-
call that the infinitesimal model, first introduced in Fisher [1919], provides a way to encode
efficiently the inheritance of complex traits coming from a large number of alleles, each with
small effects. The classical version states that an offspring receives a trait Z from its parents
with traits Z1 and Z2, where Z differs from the mean parental trait Z1+Z2

2 following a centered
Gaussian law, with variance σ2

2 . The latter accounts for the stochasticity of segregation, and
therefore the variance is called the segregational variance. Specifically:

Z|Z1,Z2 ∼ Z1 + Z2
2

+ Y, Y ∼ N
(

0,
σ2

2

)
, Y ⊥ Z1,Z2.

The Mendelian view of the infinitesimal model has been discussed in Fisher [1919], Bulmer
[1971], and Lange [1978]: the common interpretation is that the trait results from a large
number of small additive contributions at unlinked loci. For a more in depth description, see
Barton, Etheridge, and Véber [2017].

Because the trait we are considering is a composite of a major-effect locus inherited ac-
cording to Mendelian laws and an infinitesimal background, it is natural to use an extension
of the infinitesimal model for this composite case. Now, the offspring’s trait (A,Z) given their
parents (A1,Z1) and (A2,Z2) reads:

(A,Z, ) | (A1,Z1), (A2,Z2) ∼
(

XA1 + (1−X)A2,
Z1 + Z2

2
+ Y

)
, (4.2)

where Y ∼ N
(
0, σ2

2

)
follows a centered Gaussian law of variance σ2

2 and X ∼ B
(

1
2

)
follows a

Bernoulli law with parameter 1
2 (assuming fair meiosis). The random variables are independent

of each other and of Z1,Z2,A1,A2.
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Let us translate Eq. (4.2) into a continuous density model. Let nA
i (z) (respectively na

i (z))
denote the density of individuals of patch i carrying allele A (respectively a) along with an
infinitesimal background z, therefore having a trait ζ = ηA + z (respectively, ηa + z). In
agreement with Eq. (4.2), the number of offspring born with the allele A and an infinitesimal
contribution z in habitat i then reads:

BA
σ [nA

i , na
i ](z) =

∫
R2

1√
πσ

exp

⎡⎢⎣−
(
z − z1+z2

2

)2

σ2

⎤⎥⎦×
1

Ni

[
nA

i (z1) nA
i (z2) +

1
2

[
nA

i (z1) na
i (z2) + na

i (z1)nA
i (z2)

]]
dz1 dz2

=
∫
R2

1√
πσ

exp

⎡⎢⎣−
(
z − z1+z2

2

)2

σ2

⎤⎥⎦ nA
i (z1)

nA
i (z2) + na

i (z2)
Ni

dz1 dz2.

Similarly, the corresponding number of offspring born with the allele a and an infinitesimal
part z reads:

Ba
σ[nA

i , na
i ](z) =

∫
R2

1√
πσ

exp

⎡⎢⎣−
(
z − z1+z2

2

)2

σ2

⎤⎥⎦×
1

Ni

[
na

i (z1) na
i (z2) +

1
2

[
nA

i (z1) na
i (z2) + na

i (z1)nA
i (z2)

]]
dz1 dz2

=
∫
R2

1√
πσ

exp

⎡⎢⎣−
(
z − z1+z2

2

)2

σ2

⎤⎥⎦ na
i (z1)

na
i (z2) + nA

i (z2)
Ni

dz1 dz2.

The operator reproduction Bσ indicates that it is more relevant to model the dynamics of the
two local allelic densities na

i , nA
i , instead of ni (which is their sum). From now on, we will

therefore adopt this point of view.

Remark 8: Bridging a population genetic model and a quantitative genetic model.
Our model described above bridges the following population genetic and quantitative genetic
models:

1. The one-locus haploid model in a two-patch environment, which considers two alleles A
and a segregating at the same locus, each improving the survival chance in one of the
habitats and being deleterious in the other. We recall that with symmetrical migration
and selection, this model predicts that polymorphism at the focal locus is always stable,
whenever the metapopulation persists (see Remark 11 and 4.D.3 for a proof of this fact).

2. The quantitative genetic model from Dekens [2022], which studies the eco-evo dynamics of
a quantitative trait in a heterogeneous environment, where the trait is inherited according
to the standard version of the infinitesimal model. Our work can be seen as an extension
of this model, to which we add the segregation of two major-effect alleles at a single locus.
Moreover, one can notice that if one major-effect allele fixes (loss of polymorphism), the
two models are equivalent. Because Dekens [2022] gives a complete analytical description
of the outcomes of their system (in the small segregation variance regime), the outcomes
for our present study are known given the fixation of a major-effect allele. Therefore,
our study focuses on the description of polymorphism at the major-effect locus and its
stability.
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4.2.1.2 Dimensionless system.
Let us rescale Eq. (4.1) according to:

ηA :=
ηA

θ
, z :=

z

θ
, gi :=

giθ
2

λ1
, mi :=

mi

λ1
, ε :=

σ

θ
, t := ε2λ1t, , α :=

κ1
κ2

, λ :=
λ2
λ1

,

and introduce the rescaled trait densities:

nA
ε,i(t, z) :=

κi

λ1
nA

i (t, z), na
ε,i(t, z) :=

κi

λ1
na

i (t, z).

so that Eq. (4.1) reads:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ε2 ∂nA
ε,1

∂t (t, z) = Bε
A(nA

ε,1, na
ε,1)(t, z)− g1(z + ηA + 1)2 nA

ε,1(t, z)−Nε,1(t) nA
ε,1(t, z)

+α m2 nA
ε,2(t, z)−m1 nA

ε1(t, z),
ε2 ∂na

ε,1
∂t (t, z) = Bε

a(na
ε,1, nA

ε,1)(t, z)− g1(z + ηa + 1)2 na
ε,1(t, z)−Nε,1(t) na

ε,1(t, z)
+α m2 na

ε,2(t, z)−m1 na
ε1(t, z),

ε2 ∂nA
ε,2

∂t (t, z) = λBε
A(nA

ε,2, na
ε,2)(t, z)− g2(z + ηA − 1)2 nA

ε,2(t, z)−Nε,2(t) nA
ε,2(t, z)

+m1
α nA

ε,1(t, z)−m2 nA
ε2(t, z),

ε2 ∂na
ε,2

∂t (t, z) = λBε
a(na

ε,2, nA
ε,2)(t, z)− g2(z + ηa − 1)2 na

ε,2(t, z)−Nε,2(t) na
ε,2(t, z)

+m1
α na

ε,1(t, z)−m2 na
ε2(t, z),

(4.3)
where the rescaled reproduction operator is given by:

BA
ε (nA

ε,i, na
ε,i)(t, z) =

1√
πε

∫
R2

exp
[−(z − z1+z2

2 )2

ε2

]
nA

ε,i(t, z1)
nA

ε,i(t, z2) + na
ε,i(t, z2)

Nε,i(t)
dz1 dz2.

(4.4)

4.2.2 Derivation of a moment-based system in the
regime of small variance ε2 � 1

Modified reproduction operator. In this subsection, we explain how we derive a closed
moment-based ODE system on which the separation of time scale analysis will be conducted,
starting from the PDE system (4.3) based on the trait distributions, in the regime of small
variance ε2 � 1. To do so, we justify that the quantitative background values are approx-
imately normally distributed among bearers of the same major-effect allele. Moreover, the
mean of these quantitative background values is the same for individuals in the same patch.
This implies in particular that the main driver for trait divergence within each habitat is the
major-effect locus.
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4.2.2.1 Gaussian approximations of quantitative background
values in the regime of small variance: a formal analy-
sis.

We choose to place our study in a regime where the amount of diversity introduced by the
segregation of the infinitesimal background at each event of reproduction is small in comparison
to the difference between the habitats’ optima:

σ2

θ2 � 1 =⇒ ε2 � 1.

In this regime of small variance, the trait distributions are expected to converge to Dirac
masses. Our focus is to give an accurate description of the distribution near this limit. To do
so, we extend a small variance methodology introduced by Diekmann, Jabin, et al. [2005] for
asexual populations and adapted recently to sexual populations with the standard infinitesimal
model (Calvez, Garnier, and Patout 2019; Patout 2020; Garnier et al. 2022) and develop new
convex analysis arguments. Throughout this section, the time dependency will be omitted for
the sake of clarity.

Presentation of the methodology. Almost two decades ago, Diekmann, Jabin, et al.
[2005] introduced a methodology to determine the dynamics of the trait values around which
trait distributions get concentrated as Dirac masses under the regime of small variance. This
methodology has since been used successfully to study several evolutionary questions, initially
for asexual models, where the diversity generated by mutations of small variance is modelled
by a linear operator translating the distribution of mutational effects (Perthame and Barles
2008; Barles, Mirrahimi, and Perthame 2009; Mirrahimi 2017; Mirrahimi and Gandon 2020).
It has recently been adapted to study sexually reproducing populations with the infinitesimal
model operator in homogeneous spaces (Garnier et al. 2022; Calvez, Garnier, and Patout 2019;
Patout 2020; Dekens 2022).

As the analytical crux heavily relates to the singular nature of the trait distributions nε as
Dirac masses, the method consists in defining proxies Uε from nε through a suitable transfor-
mation so that such proxies are regular functions (by comparison to Dirac masses) and their
asymptotic analysis is easier. Studying them often induces a reduction in the complexity of the
system while still retaining fundamental quantitative information about the distributions, such
as around which traits they are concentrated. Here, we follow quantitative genetic studies that
use the infinitesimal model according to the same methodology (Garnier et al. 2022; Calvez,
Garnier, and Patout 2019; Patout 2020; Dekens 2022) and define the proxies UA

ε,i (resp. Ua
ε,i):

nA
ε,i =

1√
2πε

e− UA
ε,i

ε2 , na
ε,i =

1√
2πε

e− Ua
ε,i

ε2 . (4.5)

A helpful analogy is to take the example of a spiky Gaussian distribution with small variance
ε2 for nA

ε,i. Then UA
ε,i is a smooth quadratic function (even when ε� 1). Figure 4.1 displays an

example of this kind of exponential transformation (called Hopf-Cole transformation in scalar
conservation laws). A key observation to deduce the traits around which the distribution
concentrates is that it does so at the minima (zero) of Uε. As the proxies UA

ε and Ua
ε are

expected to be more regular in the regime of small variance, they are thought to be the right
object on which to perform a Taylor expansion series to gain information on the asymptotic
distributions in the limit of small variance (see Calvez, Garnier, and Patout 2019). We therefore
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Figure 4.1: Illustration of the Hopf-Cole transform to study concentration phenom-
ena. This transformation unfolds singular distributions nε close to a Dirac mass (in purple),
by defining more regular proxies: Uε (in green) such that nε = 1√

2πε
e− Uε

ε2 . This figure suggests
that, when ε vanishes, the limit U is regular and positive and cancels at the support of the
limit measure n.
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define uA
0,i (resp. ua

0,i) as the leading term in the Taylor expansion of UA
ε,i (resp. Ua

ε,i) :

UA
ε,i = uA

0,i + ε2 uA
1,i + ε4 vA

ε,i, Ua
ε,i = ua

0,i + ε2 ua
1,i + ε4 va

ε,i (4.6)

where uA
1,i and ua

1,i are the next term in the Taylor expansion, and ε4vA
ε,i and ε4va

ε,i are the
residues. Calvez, Garnier, and Patout [2019] provides the tools to control these residues and
thus rigorously justify that (4.6) is an admissible Taylor expansion; adapting them is left for
future work.

Characterization of the main terms uA
0,i and ua

0,i to justify Gaussian approxi-
mations. The first step of the analysis in the regime of small variance is the characterization
of the main terms uA

0,i and ua
0,i. Indeed, in the regime of small variance, these have to sat-

isfy a strong constraint that arises naturally for the contribution of the infinitesimal model
reproduction operator term to remain well-balanced within (4.3). In Garnier et al. [2022] that
Dekens [2022], where the standard infinitesimal model operator is used, this constraint yields
the analogous main term to be quadratic, which implies that the trait distribution is approx-
imately Gaussian, with a small variance ε2. However, here, the arguments given in Garnier
et al. [2022] and used in Dekens [2022] are not sufficient, due to the mixing of alleles between
patches and the discrete nature of Mendelian inheritance. However, we extend the convex
analysis to circumvent this limitation (4.2.1) and identify uA

0,i and ua
0,i as the same quadratic

function z �→ (z−z∗
i )2

2 , where z∗
i ∈ R is to be determined later in the analysis. Assuming

that (4.6) is an admissible Taylor expansion (which is suggested by the analysis of Calvez,
Garnier, and Patout [2019]), this result is crucial as it justifies the following formal Gaussian
approximations of nA

ε,i and na
ε,i (i ∈ {1, 2}):

nA
ε,i(z) =

e− −(z−z∗
i

)2

2ε2
√

2πε
e−uA

1,i(z)+O(ε2), na
ε,i(z) =

e− −(z−z∗
i

)2

2ε2
√

2πε
e−ua

1,i(z)+O(ε2). (4.7)

Hence, to the leading order, nA
ε,i and na

ε,i are formally Gaussian, centered at the same quanti-
tative contribution z∗

i , with the same variance ε2. However, they differ in their sizing factors,
which involve the corrector terms uA

1,i and ua
1,i, which generate asymmetries in the distributions.

To support (4.7), we first derive the following constraints (C) on the main terms uA
0,i and

ua
0,i. In order for the contribution of both reproduction operators BA

ε and Ba
ε to remain well-

balanced with the other biological phenomena in the regime of small variance in (4.3), uA
0,i and

ua
0,i formally need to satisfy the following (see Appendix 4.C for the details):⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∀z ∈ R, max
[
sup
z1,z2

uA
0,i(z) − (

z − z1+z2
2

)2 − uA
0,i(z1)− uA

0,i(z2),

sup
z1,z2

uA
0,i(z)− (

z − z1+z2
2

)2 − uA
0,i(z1)− ua

0,i(z2)
]

= 0,

∀z ∈ R, max
[
sup
z1,z2

ua
0,i(z) − (

z − z1+z2
2

)2 − ua
0,i(z1)− ua

0,i(z2),

sup
z1,z2

ua
0,i(z)− (

z − z1+z2
2

)2 − uA
0,i(z1)− ua

0,i(z2)
]

= 0.

(C)

We next state the following proposition, which characterizes the main terms uA
0,i and ua

0,i as
aforementioned.

Proposition 4.2.1. Let uA
0 and ua

0 satisfying Eq. (C) positive almost everywhere and can-
celling somewhere. Then, there exists z∗ ∈ R such that:

∀z ∈ R, uA
0 (z) = ua

0(z) =
(z − z∗)2

2
. (4.8)
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The conditions on uA
0,i and ua

0,i in 4.2.1 (positive everywhere and cancelling somewhere) are
explained in Appendix 4.C. In the Section 4.B, we actually state and prove a stronger result
4.B.1, which generalizes 4.2.1 to more complex genetic architectures.

Consequently, assuming that (4.6) is the correct ansatz so that we can control the residues
in (4.7) (which the analysis of Calvez, Garnier, and Patout [2019] suggests and provides a
framework to show), using the result of 4.2.1 in (4.5) and (4.6) leads to (4.7).

Proof. The proof relies on the same kind of approach as in Garnier et al. [2022], in which
the authors derive the solutions to a constraint that is equivalent to (C) with the additional
constraint of uA

0 = ua
0. As we do not assume the latter, this proof presents a novel part

located in the 4th and 5th points. We therefore shorten the presentation of the proof to
mainly develop these new arguments. As 4.2.1 is actually a particular case of 4.B.1, stated
and proven in Section 4.B, we invite the interested reader to refer to the proof of 4.B.1 for the
complete arguments.

1) uA
0 and ua

0 are continuous and have right and left derivatives everywhere.

2) uA
0 and ua

0 both cancels only once, and their zeros are the same. We denote
henceforth this zero z∗.

3) Convex Legendre conjugates û0
A(y) = sup

z
(z−z∗)y−uA

0 (z) and û0
a(y) = sup

z
(z−z∗)y−ua

0(z).
One can show that:

û0
A(y) = max

[
y2

4
+ 2 û0

A
(

y

2

)
,

y2

4
+ û0

A
(

y

2

)
+ û0

a
(

y

2

)
,

]
,

û0
a(y) = max

[
y2

4
+ 2 û0

a
(

y

2

)
,

y2

4
+ û0

a
(

y

2

)
+ û0

A
(

y

2

)
,

]
.

(4.9)

The fact that both uA
0 and ua

0 cancel at the same point z∗ plays a crucial part for the
crossed term.

4) Conservation of order with half arguments. Let us consider y ∈ R such that
û0

A(y) ≥ û0
a(y). Then (4.9) implies:

max
[
2 û0

A
(

y

2

)
, û0

A
(

y

2

)
+ û0

a
(

y

2

)]
≥ max

[
û0

A
(

y

2

)
+ û0

a
(

y

2

)
, 2 û0

a
(

y

2

)]
,

which in turn implies that
û0

A
(

y

2

)
≥ û0

a
(

y

2

)
.

By recursion, for k ∈ N, we deduce that

û0
A

(
y

2k

)
≥ û0

a
(

y

2k

)
.
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5) Showing that û0
A = û0

a. Let us still consider y ∈ R such that û0
A(y) ≥ û0

a(y). For
k ∈ N, using the latter in (4.9) leads to

û0
A

(
y

2k

)
=

y2

22k+2 + 2 û0
A

(
y

2k+1

)
,

û0
a
(

y

2k

)
=

y2

22k+2 + û0
A

(
y

2k+1

)
+ û0

a
(

y

2k+1

)
.

(4.10)

The second line implies that

∀k ∈ N, û0
a
(

y

2k

)
− û0

A
(

y

2k

)
= û0

a
(

y

2k+1

)
− û0

A
(

y

2k+1

)
.

By continuity of û0
A and û0

a, we obtain

û0
A(y)− û0

a(y) = û0
A(z∗)− û0

a(z∗) = 0.

As the same can be applied to y ∈ R such that û0
A(y) ≤ û0

a(y), we obtain

û0
A = û0

a.

So from now on, we will only show the arguments for û0
A.

6) Computing û0
A. One can show that (4.9) implies by recursion (denoting (α, β) :=(

û0
A′(0−), û0

A′(0+)
)
) that:

∀y > 0 (resp. < 0), û0
A(y) =

y2

2
+ β y (resp. α y). (4.11)

Note that 0 being a minimum of û0
A implies that: α ≤ 0 ≤ β.

7) Using the convex bi-conjugate to obtain: uA
0 = z−z∗

2 . We can compute the
bi-conjugate’s expression from (4.11):

ˆ̂uA
0 : z �→

⎧⎪⎪⎨⎪⎪⎩
(z−z∗−α)2

2 if z < z∗ + α

0 if z∗ + α ≤ z ≤ z∗ + β
(z−z∗−β)2

2 if z > z∗ + β.

(4.12)

Standard convexity analysis states also that ˆ̂uA
0 is the lower convex envelope of uA

0 . We actually
show that they are equal

uA
0 = ˆ̂uA

0 .

Finally, uA
0 vanishes only at z∗ (second point of the proof), so α = β = 0 and we obtain the

desired result.

4.2.2.2 Moment-based system in the regime of small variance
This section follows directly the results of the previous one, where we showed formally that, in
each habitat, the two allelic trait distributions nA

ε,i and na
ε,i can be approximated by the same

Gaussian distribution. We present here how the latter allows us to close the moment-based
system obtained from integrating (4.3).
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First, we derive formal expansions of the first moments (population size, mean trait, vari-
ance and skew) of nA

ε,i and na
ε,i when ε2 � 1, thanks to (4.6) and (4.7) (as in Dekens 2022):⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

NA
ε,i :=

∫
R

nA
ε,i(z) dz = e

−uA
1,i(z∗

i )
[

1 + ε2

((
∂zuA

1,i(z∗
i )
)2

2 − ∂zzuA
1,i(z∗

i )
2 − vA

i,ε(z∗
i )
)]

+ O(ε4),

zA
ε,i :=

∫
R

z
nA

ε,i(z)
NA

ε,i

dz = z∗
i − ε2∂zuA

1,i(z∗
i ) + O(ε4),(

σA
ε,i

)2 :=
∫
R

(z − zA
ε,i)

2 nA
ε,i(z)
NA

ε,i

dz = ε2 + O(ε4),(
ψA

ε,i

)3 :=
∫
R

(z − zA
ε,i)

3 nA
ε,i(z)
NA

ε,i

dz = O(ε4).

(4.13)
Using (4.13) when integrating (4.3), we can close the infinite system of moments in the

regime of small variance, producing a system of eight ODEs governing the dynamics of the
four allelic subpopulation sizes Na

ε,1, NA
ε,1, Na

ε,2, NA
ε,2 and the four allelic local mean quantitative

traits za
ε,1, zA

ε,1, za
ε,2, zA

ε,2:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ε2 d Na
ε,1

dt = Na
ε,1 −

(
NA

ε,1 + Na
ε,1

)
Na

ε,1 − g1
[
za

ε,1 + ηa + 1
]2

Na
ε,1 + α m2 Na

ε,2 −m1 Na
ε,1,

+O(ε2),

ε2 d NA
ε,1

dt = NA
ε,1 −

(
NA

ε,1 + Na
ε,1

)
NA

ε,1 − g1
[
zA

ε,1 + ηA + 1
]2

NA
ε,1 + α m2 NA

ε,2 −m1 NA
ε,1

+O(ε2),

ε2 d Na
ε,2

dt = λ Na
ε,2 −

(
NA

ε,2 + Na
ε,2

)
Na

ε,2 − g2
[
za

ε,2 + ηa − 1
]2

Na
ε,2 + m1

α Na
ε,1 −m2 Na

ε,2

+O(ε2),

ε2 d NA
ε,2

dt = λ NA
ε,2 −

(
NA

ε,2 + Na
ε,2

)
NA

ε,2 − g2
[
zA

ε,2 + ηA − 1
]2

NA
ε,2 + m1

α Na
ε,1 −m2 Na

ε,2

+O(ε2),

ε2 d za
ε,1

dt = ε22g1
[
−1− ηa − za

ε,1

]
+

(
zA

ε,1−za
ε,1

2

)
NA

ε,1
Nε,1

+ α m2
Na

ε,2
Na

ε,1

(
za

ε,2 − za
ε,1

)
+O(ε4),

ε2 d zA
ε,1

dt = ε22g1
[
−1− ηA − zA

ε,1

]
+

(
za

ε,1−zA
ε,1

2

)
Na

ε,1
Nε,1

+ α m2
NA

ε,2
NA

ε,1

(
zA

ε,2 − zA
ε,1

)
+O(ε4),

ε2 d za
ε,2

dt = ε22g2
[
1− ηa − za

ε,2

]
+

(
zA

ε,2−za
ε,2

2

)
NA

ε,2
Nε,2

+ m1
α

Na
ε,1

Na
ε,2

(
za

ε,1 − za
ε,2

)
+O(ε4),

ε2 d zA
ε,2

dt = ε22g2
[
1− ηA − zA

ε,2

]
+

(
za

ε,2−zA
ε,2

2

)
Na

ε,2
Nε,2

+ m1
α

NA
ε,1

NA
ε,2

(
zA

ε,1 − zA
ε,2

)
+O(ε4).

(4.14)

Biological description of the equations of the moment-based system (4.14).
The first four equations encoding the dynamics of the allelic subpopulations sizes involve four
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terms, that we describe using the first equation for Na
ε,1. The first term Na

ε,1 is a growth
term, the second one −(NA

ε,1 + Na
ε,1)Na

ε,1 is a non-linear negative death term by competition,

proportional to the total subpopulation size. The third one −g1
[
za

ε,1 + ηa + 1
]2

Na
ε,1 is a

negative death term by selection (with strength g1), which is more lethal when the allelic local
mean trait za

ε,1 + ηa is far from the local optimum −1. The last migration term α m2 Na
ε,2 −

m1 Na
ε,1 represents the asymmetrical transfer of populations between the two patches.

The last four equations encoding the dynamics of the allelic local mean quantitative traits
involve three different terms that we describe, taking for reference the first of these equations
for za

ε,1. The first term is the selection gradient that pushes the total mean trait za
ε,1 + ηa to-

wards the local optimum −1, with an intensity 2ε2g1, proportional to the intensity of selection
gi and the small variance of the quantitative trait ε2 (in agreement with the Gaussian approxi-

mation (4.7)). The second term
(

zA
ε,1−za

ε,1
2

)
NA

ε,1
Nε,1

does not exist in the analogous moment-based

system in Dekens [2022] (without the major-effect locus), as it originates from the segregation
of A/a at the major-effect locus. It describes a force which pushes each allelic mean quantita-
tive component towards one another within the same habitat due to the mixing effect of the
infinitesimal model. It is consistent with the result provided by 4.2.1 and the Gaussian approxi-
mations (4.7), which are centered at the same quantitative component z∗

i , close to both zA
ε,i and

za
ε,i according to the second line of the expansions (4.13). The last term α m2

Na
ε,2

Na
ε,1

(
za

ε,2 − za
ε,1

)
relates to the effect of the transfer of population by migration onto the mean quantitative
component: it pushes the local mean quantitative components corresponding to the same
major-effect allele za

ε,2 and za
ε,1 towards one another.

Remark 9: Selection shifts the allelic local mean quantitative trait slowly. In the
last four equations of (4.14), there is a noticeable difference between the first term, proportional
to ε2, and the other two terms, which are of order 1. This demonstrates the fact that, in the
regime of small variance, selection shifts the local mean quantitative traits very slowly toward
the local optima compared to how fast the other two terms intervene in the equation. Notice
also that the time scale in which the differential system (4.14) is written (ε2 d·

dt) is the correct
one to capture this slow shift.

Remark 10: Magnitude of the residues in (4.14). In the system (4.14), the difference in
the system between the residues in the first four equations on the local sizes of population of
order O(ε2) and the ones in the last four equations on the mean quantitative components of
order O(ε4) is consistent with the analysis of Patout [2020] (see in particular Theorem 1.4).

4.2.3 Separation of time scales: slow-fast analysis
As highlighted by Remark 9, the shift of allelic local mean quantitative components zA

ε,i and
za

ε,i occurs on a slower time scale than growth, death and transfer of populations for the
allelic subpopulation sizes (first four equations of (4.14)) and than the two relaxing forces
of gene flow and segregation for the allelic local mean quantitative traits (last two terms of
the last four equations of (4.14)). Therefore, in this subsection, we show that the moment-
based system (4.14) has a particular structure (up to a change in variables) that allows the
possibility to separate two different time scales, which can be interpreted as fast ecological and
slow evolutionary time scales.
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ε2 δa
ε ε2 δA

ε

ε2 δε + 2η

Zε

Figure 4.2: Illustration of the slow-fast variables Zε, δε, δA
ε and δa

ε (in red), introduced
in (4.15). This figure displays a situation where the two major-effect alleles are segregating
in both habitats in a symmetrical fashion. The graph represents the two local trait densities
for each of the two alleles: ñA

1,ε, ñA
2,ε, ña

1,ε, ña
2,ε (the same color is for the same deme, and

the same linestyle is for the same major-effect allele), as a function of the trait ζ = z + ηA

(resp. z + ηa), where z is the infinitesimal contribution and ηA (resp ηa) is the effect of the
major-effect allele. In red, we indicate a visualization of the new variables introduced in (4.15).
Zε is the mean infinitesimal part of the metapopulation, δε the spatial average of the local
difference between the two allelic mean infinitesimal parts, δA

ε and δa
ε the spatial discrepancies

in the mean infinitesimal parts per allele. Note the difference in notation between the trait
densities ñA

i,ε and the infinitesimal contribution densities nA
i,ε (which are the ones used in the

analysis), which are linked by nA
i,ε(z) = ñA

i,ε(z + ηA) (respectively z + ηa for ña
i,ε).

First, we need to transform (4.14) into an equivalent system which has a suitable form to
prove the separation of time scales. This requires the following change of variables, which is
motivated by the formal analysis of Section 4.2.2 (especially the results of 4.2.1):

δa
ε =

za
ε,2 − za

ε,1
2ε2 , δA

ε =
zA

ε,2 − zA
ε,1

2ε2 , δε =
zA

ε,1 + zA
ε,2 − za

ε,1 − za
ε,2

4ε2 , Zε =
zA

ε,1 + zA
ε,2 + za

ε,1 + za
ε,2

4
.

(4.15)
Zε can be interpreted as the mean infinitesimal part of the metapopulation, δε the spatial
average of the local difference between the two allelic mean infinitesimal parts, δA

ε and δa
ε

the equivalent term among bearers of A and a, respectively (see an illustration of those new
variables in Fig. 4.2). The quantities defining δε, δA

ε , δa
ε are divided by ε2 because Remark 9

suggests that zA
ε,1, za

ε,1, zA
ε,2 and za

ε,2 all relax quickly towards the same value due to the fast
action of gene flow and segregation, with an error of order ε2.

After the change in variables (4.15), we obtain a new system (shown in its explicit form
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Eq. (4.32) in Section 4.D) which can be written compactly as follows{
ε2 dȲε

dt = G(Ȳε, Zε) + ε2 νG
ε (t),

dZε
dt = −(g1 + g2) Zε + F (Ȳε) + ε2 νF

ε (t),
(Pε)

where Ȳε :=
(
Na

1,ε, Na
1,ε, NA

1,ε, NA
2,ε, δa

ε , δA
ε , δε

)
denotes the vector of fast variables, located in a

set denoted Ω :=
(
R

∗
+
)4 × R

3. The two smooth functions G ∈ C∞(Ω × R) and F ∈ C∞(Ω)
encode respectively the fast and slow dynamics. Moreover, the functions νG

ε and νF
ε are

residues that are uniformly bounded w.r.t ε.

Biological interpretation of the different timescales in (Pε). As the first four
coordinates of the fast variable Ȳε are the allelic subpopulation sizes, the function G(·, Zε)
describes the fast dynamics of growth, death and transfer of populations occurring when the
mean quantitative component is at the value Zε. The fast timescale of the dynamics of Ȳε

can be interpreted as the ecological time scale. On the contrary, the dynamics of the slow
variable Zε, which is the mean quantitative component, are driven by the shift by selection
−(g1 + g2)Zε and the demographic feedback F (Ȳε), on a slower timescale, which we interpret
as the evolutionary time scale. Indeed, notice that the time derivatives are different between
the two lines of Pε: the first line involves ε2 d·

dt , whereas the small factor ε2 is absent in the
second line.

Convergence to a simplified limit system. The slow-fast analysis developed in Sec-
tion 4.D is dedicated to show that, when ε goes to 0, the solutions of (Pε) converge to the
solutions of the following limit system which separates the ecological and evolutionary time
scales {

G(Ȳ , Z) = 0,
dZ
dt = −(g1 + g2) Z + F (Ȳ ).

(P0)

The first line of (P0) is an algebraic system defining the slow manifold, constituted by the
fast ecological equilibria Ȳ corresponding to a value Z of the evolutionary variable (these are
formally defined by {Ȳ ∈ Ω, such that G(Ȳ , Z) = 0}). The second line describes the dynamics
of the slow variable Z constrained to occur on the slow manifold.

The convergence result linking (Pε) to (P0) is stated by the following:

Theorem 4.2.1. For (Ȳ , Z) a solution of (P0), there exists T ∗ > 0 such that, for 0 < ε < 1,
any solution (Ȳε, Zε) of (Pε) on [0, T ∗] converges to (Ȳ , Z) uniformly on [0, T ∗], as ε goes to
0 and (Ȳε(0), Zε(0)) goes to (Ȳ (0), Z(0)).

The proof the Theorem 4.2.1 is detailed in Section 4.D. The main argument relies crucially
on the stability of the fast equilibria at any level defined by a value of the slow variable
Z ∈] − 1, 1[ (4.D.3, 4.D.4), ensuring that, at the limit, the fast dynamics converge quickly
toward the slow manifold and not away from it. The stability argument is completed by the
algebraic description of the slow manifold: we show that, for every level Z ∈] − 1, 1[, there
exists a single ecological equilibria Ȳ satisfying G(Ȳ , Z) = 0 (4.D.1, 4.D.2). We also summarize
in Fig. 4.7 the links between the different systems, propositions and theorem involved in the
slow-fast analysis.

Remark 11: The one-locus haploid model’s equilibrium is part of the fast equi-
librium corresponding to the level Z = 0. The one-locus haploid model is equivalent
to the first four differential equations of (4.14) on the allelic sizes of each subpopulation,
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with (za
ε,1, za

ε,1, za
ε,1, za

ε,1) = (0, 0, 0, 0) (no infinitesimal part - we can obtain from these equa-
tions a system describing the allelic frequencies and local population sizes (p1, p2, N1, N2) :=(

NA
1

NA
1 +Na

1
,

NA
2

NA
2 +Na

2
, NA

1 + Na
1 , NA

2 + Na
2

)
, dropping the ε that is a parameter of the infinitesimal

part). Applying 4.D.1 with Z = 0 gives a unique equilibrium satisfying the first four equations,
which is the one found with the one-locus haploid model. One can thus interpret the symmet-
rical polymorphic equilibrium of the one-locus haploid model as a fast equilibrium in the model
presented in this article. It is therefore stable (4.D.3) whenever it entails positive population
sizes (same condition as in 4.D.1).

Remark 12: Degrees of freedom of the slow manifold compared to Dekens 2022.
4.D.1 states that for every level Z ∈] − 1, 1[, there exists a single fast equilibrium Ȳ such
that G(Ȳ , Z) = 0. This implies that there are fewer degrees of freedom in the subsystem
(S0(Z)) defining the four allelic subpopulations sizes (see the details in Section 4.D) than in
the analogous system of two equations from the analysis done in Dekens [2022], that can be
obtained in the case where one allele has fixed (up to a translation). Indeed, Dekens [2022]
shows that the analogous system can have up to three algebraic solutions depending on the
parameters. The result of 4.D.1 is thus unexpected, since S0(Z) has twice the number of
equations and variables.

4.3 Results: stability of polymorphism at
the major-effect locus in the limit sys-
tem

This section follows naturally the separation of timescales shown in Section 4.2.3 and focuses
on the study of the stability of polymorphism at the major-effect locus in the limit system
(P0), in the presence of a quantitative background contributing additively to the trait under
selection. To be able to derive analytical conditions, we assume henceforth a symmetrical
environment setting (in migration rates, selection strengths, carrying capacities, reproduction
rates and major-effect allelic effects):

m := m1 = m2, g := g1 = g2, α = 1, λ = 1, η := ηA = −ηa > 0.

Under these symmetrical conditions, and in the absence of any quantitative background, we
recall that there exists a symmetrical polymorphic equilibrium in the one-locus haploid model,
which is always stable (see 4.D.3 for a proof). This symmetrical polymorphic equilibrium
in the one-locus model corresponds, in our model which considers additionally the additive
contribution of a quantitative background on the trait, to the fast equilibrium Y ∗ associated
to the level Z∗ = 0 (Z∗ = 0 corresponds to the average quantitative trait between patches
cancelling). Because the property of the fast equilibrium does not necessarily transpose to
a global equilibrium over multiple timescales, we are therefore interested in the following
questions:

1. Does a symmetrical polymorphic equilibrium for the global limit system (P0) exist at
the level Z∗ = 0, ie: does the pair of variables (Z∗, Ȳ ∗) defined above cancel both the
first line and the right-hand side of the second line of (P0)?
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2. When the symmetrical polymorphic equilibrium exists, is it always stable ? Or, in the
long-run, can the slowly evolving infinitesimal background undermine the rapidly estab-
lished polymorphism at the major-effect locus, even though the latter is appears favored
for local adaptation?

3. If so, can our analysis predict in which range of parameters of migration rate m, selection
strength g and major-effect η does that phenomenon occur?

In a first part, we present the results of our analysis to answer these questions. We also
provide illustrations of the complex patterns that can emerge in terms of parameters range, as
the studied phenomenon of disturbance of the polymorphism at the major-effect locus by the
infinitesimal background exhibits non-monotonic behaviours with regard to each parameter.

In a second part, we confirm the results of the first part thanks to individual-based simu-
lations.

4.3.1 Analytical predictions
The results of this section indicate that the unconditional stability of the polymorphism in the
OLM can be disturbed by the presence of a quantitative background, for a substantial range
of parameters, including, surprisingly, at the strongest selection levels. The interpretation
of Remark 11 offers the idea that the infinitesimal background slowly disrupts the rapidly
established symmetrical polymorphism at the major-effect locus.

Existence of a symmetrical polymorphic equilibrium. We first show that a sym-
metrical polymorphic equilibrium can exist under a range of parameters specified in 4.3.1, as a
stationary state of the limit system (P0), hence a solution of the explicit version of the latter:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Na
1 −

[
NA

1 + Na
1
]

Na
1 − g [Z − η + 1]2 Na

1 + m(Na
2 −Na

1 ) = 0,

NA
1 −

[
NA

1 + Na
1
]

NA
1 − g [Z + η + 1]2 NA

i + m(NA
2 −NA

1 ) = 0,

Na
2 −

[
NA

2 + Na
2
]

Na
2 − g [Z − η − 1]2 Na

2 + m(Na
1 −Na

2 ) = 0,

NA
2 −

[
NA

2 + Na
2
]

NA
2 − g [Z + η − 1]2 NA

2 + m(NA
1 −NA

2 ) = 0,

2g −m δa
[

Na
2

Na
1

+ Na
1

Na
2

]
+ δA−δa

4

[
NA

2
Na

2 +NA
2

+ NA
1

Na
1 +NA

1

]
+ δ

2

[
NA

2
Na

2 +NA
2
− NA

1
Na

1 +NA
1

]
= 0,

2g −m δA

[
NA

2
NA

1
+ NA

1
NA

2

]
+ δa−δA

4

[
Na

2
Na

2 +NA
2

+ Na
1

Na
1 +NA

1

]
+ δ

2

[
NA

1
Na

2 +NA
2
− Na

2
Na

1 +NA
1

]
= 0,

− δ
2 − 2 g η + m

(
δA

2

[
NA

2
NA

1
− NA

1
NA

2

]
− δa

2

[
Na

2
Na

1
− Na

1
Na

2

])
= 0,

−2 g Z + m

(
δa

2

[
Na

2
Na

1
− Na

1
Na

2

]
+ δA

2

[
NA

2
NA

1
− NA

1
NA

2

])
+ δA−δa

4

[
NA

2
NA

2 +Na
2
− NA

1
NA

1 +Na
1

]
+ δ

2

[
NA

1
NA

1 +Na
1

+ NA
2

NA
2 +Na

2
− 1

]
= 0.

(4.16)

Proposition 4.3.1. There exists a unique polymorphic equilibrium corresponding to the in-
finitesimal average Z = 0 under the condition:[

g(η2 + 1) < 1
]
∨

[
m <

2 g2 η2

g(η2 + 1)− 1
− g(η2 + 1) + 1

]
. (4.17)
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The allelic local population sizes corresponding to this equilibrium satisfy the property:

Na,∗
1 = NA,∗

2 , Na,∗
2 = NA,∗

1 ,

and for both alleles, the spatial discrepancies between the mean infinitesimal parts of the two
patches per allele are the same:

δA,∗ = δa,∗.

Therefore, this polymorphic equilibrium at Z∗ = 0 is called symmetrical.

The proof uses the results of 4.D.1 and 4.D.2 and is shown in Section 4.E.

Stability of the symmetrical polymorphic equilibrium. Let us recall the limit
system (P0): {

G(Ȳ , Z) = 0,
dZ
dt = −2 g Z + F (Ȳ ).

(4.18)

The stability of the symmetrical polymorphic equilibrium denoted (0, Ȳ ∗) described above in
4.3.1 is studied in the same manner as in Dekens [2022]. Because the differential equation on
Z in the second line of (P0) involves both Z and Ȳ , it is not sufficient to do a standard linear
analysis. The first step is to express the solution to G(·, Z) = 0 as a function of Z: Ȳ (Z). This
is possible thanks to the implicit function theorem used in the vicinity of the symmetrical
polymorphic equilibrium, because [∂Ȳ G] |Z=0,Ȳ =Ȳ ∗ is invertible (thanks to4.D.3 and 4.D.4).
This step allows us to recast (P0) as

dZ

dt
= F(Z) := −2 g Z + F

(
Ȳ (Z)

)
, Z ∈]− 1, 1[. (4.19)

The stability of the symmetrical polymorphic equilibrium (0, Ȳ ∗) can now be analysed by
using the chain rule of differentiation on the right-hand side of (4.19). We obtain that the
symmetrical polymorphic equilibrium is asymptotically locally stable if and only if

0 < 2g + ∂Ȳ F ·
(
[∂Ȳ G]−1 ∂ZG

)∣∣∣
Z=0,Ȳ =Ȳ ∗ .

Due to the large number of dimensions involved, the explicit formula of the latter is too long
to be given here.

The patterns resulting from the numerical analysis of the stability of the symmetrical poly-
morphic equilibrium for four values of the effect of the major-effect locus η ∈ {0.5, 0.7, 1, 1.3}
are computed in Fig. 4.3. For each value of η, the region of the stability of the polymor-
phism is indicated in yellow with selection strength (g, x-axis) and migration rate (m, y-axis)
varying in [0, 3]. We can first observe that these yellow regions have complex boundaries,
and exhibit non-monotonic behaviours with regard to both migration rate m and selection
strength g. These are not predicted by the one-locus symmetric model (OLM), which states
that polymorphism is maintained everywhere under the dashed yellow line, which represents
the extinction threshold without the quantitative component (computed thanks to the viabil-
ity condition (4.17) stated in 4.D.1 for Z = 0). The latter leads to the conclusion that, when it
occurs, the instability of polymorphism at the major-effect locus shown by our analysis results
stems from the presence of the quantitative background due to small-effect loci.

To describe the non-monotonic behaviour with respect to increasing selection strengths,
one can consider holding a constant intermediate migration rate and increase selection (going
left to right on a horizontal line in Fig. 4.3a, Fig. 4.3b, Fig. 4.3c and Fig. 4.3d). While the
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polymorphism at the major-effect locus is not stable with weak selection, stability is gained
at an intermediate level of selection that depends on the migration rate and subsequently
lost at a higher level of selection. This non-monotonic behaviour when increasing selection
levels is quite robust with regard to different values of η, as shown by the different panels
in Fig. 4.3 (even if the effect is attenuated when η = 1 in Fig. 4.3c, which means that the
major-effects coincide with the local optima). When selection is weak compared to migration
(left sides of Fig. 4.3a, Fig. 4.3b, Fig. 4.3c and Fig. 4.3d), it is expected that the relative
blending by migration, which is strong compared to the divergent forces of local selection,
provokes the loss of polymorphism. The loss of polymorphism at the major-effect locus is
more surprising and counter-intuitive as one would expect that the bonus provided by poly-
morphism at the major-effect locus, which helps subpopulations to be locally adapted, would
be even more important at stronger selection levels, and therefore maintained. Unfortunately,
the explicit mathematical expression of (4.19) is too involved to be truly informative about
what is the cause of the loss of polymorphism at the major-effect locus with strong selection.
We recommend the reader interested in this to consult the next section presenting the results
of individual-based simulations, which provide insights on the origin of this phenomenon.

Pushing further the numerical analysis of polymorphic equilibria. Here, we
show a numerical analysis of all the equilibria of the limit system (P0) in Fig. 4.4. To do so,
we use the autonomous differential equation (4.19) derived previously thanks to the implicit
function theorem (used on the whole interval Z ∈] − 1, 1[ thanks to 4.D.3 and 4.D.4). From
(4.19), (Z, Ȳ (Z)) is a polymorphic equilibrium if F(Z) = 0, and this equilibrium is locally
stable if F ′(Z) < 0.

Even if the complexity of the limit system is still too great to be analytically solved (due
to the implicit nature of the function Ȳ defined by the relation G(Ȳ (Z), Z) = 0), we show in
Fig. 4.4 the phase lines corresponding to the limit equation (4.19), when the migration rate
and the effect size of the major-effect locus are held constant (m = 0.1, η = 0.5) and the
selection strength varies (the lighter the color, the stronger the selection). Solid lines indicate
that the system is polymorphic, whereas dotted lines indicate that one major-effect allele has
fixed. Every intersection of the zero horizontal line and a solid colored line with a negative
slope indicates a locally stable polymorphic equilibrium (conversely, a positive slope indicates
an unstable equilibrium).

This figure is consistent with the analysis of Section 4.3.1 and Fig. 4.3a: at Z = 0, all
the curves return to 0 (F (Z)), confirming that a polymorphic equilibrium exists when the
mean contribution of the small-effect loci is 0. Their local slope indicates the stability of this
equilibrium (stable if negative, unstable if positive). Furthermore, Fig. 4.4 gives insights on the
existence of asymmetrical polymorphic equilibria. Particularly, it seems that such equilibria
exist for a narrow window of intermediate selection strength: the green curve corresponding
to g = 0.86 displays two mirrored stable asymmetrical polymorphic equilibria at Z ≈ ±0.5
(indicated by the red arrows), which is hard to predict analytically due to the high orders
of polynomials involved. Moreover, such equilibria are presumably quite subtle to catch in
individual-based simulations, because the window of selection and the basin of attraction are
both narrow. However, this illustrates the new and unsuspected insights that can be obtained
from this composite model.

4.3.2 Individual-based simulations
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(a) η = 0.5 (b) η = 0.7

(c) η = 1 (d) η = 1.3

Figure 4.3: Stability region of the symmetrical polymorphic equilibrium (in yellow),
for four major effects η ∈ {0.5, 0.7, 1, 1.3} (recalling that θ = 1), when m (y-axis) and g
(x-axis) vary in [0, 3]). This figure highlights the gain and loss of polymorphism with regard
to increasing selection, which is not predicted by the one-locus model (abbreviated as OLM in
the legend), according to which polymorphism is maintained below the extinction threshold
represented by the dashed yellow line. The stable region (in yellow) becomes larger as η grows
closer to 1, as the major-effect allele effects can then allow local adaptation to the two patches
on their own, then shrinks again. The red crosses in Fig. 4.3a indicate the parameters used
for the individual-based simulations (see Section 4.3.2 and Fig. 4.5 and Fig. 4.9).
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Figure 4.4: Phase lines of the limit equation (4.19), when the migration rate and
the strong allelic effect are held constant (m = 0.1, η = 1

2) and the selection
strength varies (the lighter the color, the stronger the selection). Solid curves indicate that
the system is polymorphic, whereas dashed curves indicate that one major-effect allele has
fixed. Every intersection of the horizontal black line and a solid colored curve with a negative
(resp. positive) slope indicates a locally stable (resp. unstable) polymorphic equilibrium.
The darker curve with weak selection g = 0.01 has a positive slope at Z = 0 (unstable),
the following curves have a negative slope at Z = 0 (stable for selection between g = 0.18
and g = 0.86), and finally the lightest curves have a positive slope at Z = 0 (unstable for
g ≥ 1.03), which is consistent with Fig. 4.3a. Note that there exists additionally two mirrored
asymmetrical polymorphic equilibria for g = 0.86, for Z ≈ ±0.5 (indicated by the red arrows),
which were unsuspected prior to this numerical analysis.
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In this part, we confirm the results given by our analysis on the stability of the symmetri-
cal polymorphic equilibrium, using individual-based simulations conducted with the software
SLiM (Haller and Messer 2019). We focus on the gain and loss of polymorphism with regard
to increasing selection, when η �= 1, for symmetrical and asymmetrical initial conditions. For
each set of parameters, we ran 20 replicate simulations. The results for the major-effect locus
are displayed in Fig. 4.5 and Fig. 4.9, both with a quantitative background (left panel) and
without (right panel). The simulations confirm that variation is maintained only for interme-
diate levels of selection (as measured by p(1 − p), where p is the local frequency of allele A).
They also provide some insights regarding the cause of the surprising loss of polymophism at
the major-effect locus with strong selection. The simulation procedure is detailed as follows.

Populations and habitats. The species is split in two subpopulations living in two dif-
ferent habitats, with local carrying capacity K = 104. In each habitat, individuals experience
selection toward a local trait optimum θi = (−1)i (for habitat i). Initially, the two subpopu-
lations are at 4

5 of the local carrying capacity. The genetic information of the individuals of
the initial population is set as follows. In each subpopulation, all the individuals have, at the
major-effect locus, the allele whose effect is the closest to the optimum of the habitat they are
in (η in habitat 2 and −η in habitat 1). The polygenic background is then set randomly and
uniformly.

Genetic architecture. We consider L = 200 unlinked loci constituting the polygenic
background. At each of these loci, two alleles segregate, having an additive effect on the trait
of the individual of value σLE√

L
or −σLE√

L
, where σ2

LE is the variance at linkage equilibrum of
the quantitative background. No mutation occurs at those loci. We set the variance at linkage
equilibrium to σLE = 0.1 small, so that our analysis in a small variance regime is a good
approximation. (In Section 4.G, we consider the same framework with a smaller number of
loci involved in the quantitative background L = 50).

There is an additional locus of interest, which carries the major-effect alleles +η or −η.
This locus is also unlinked to all the others and no mutation occurs at this site. Note also that
the trait range, given by [−η − σLE

√
L, η + σLE

√
L] = [−η − √2, η +

√
2] extends beyond

the local optima (-1,1), even in the absence of major-effects.

Life cycle. The life cycle involves overlapping generations of small time length Δt = 0.1.
The life cycle proceeds as follows:

1. reproduction: each individual of the metapopulation chooses at random one mate within
its subpopulation, and their mating produces an offspring with probability Δt.

2. selection-competition: each individual (including offspring generated in the previous step)
faces a selection-competition trial according to its trait ζ and habitat i in which they are
currently living. They survive with probability exp

(
−gΔt(ζ − θi)2 −ΔtNi

K

)
and are

removed otherwise (here Ni denotes the size of the subpopulation i after reproduction).

3. migration: at each migration event, within each subpopulation i, a number of migrants
is drawn, according to a Poisson law with parameter mΔt Ni (with a hard cap of Ni,
which is the number of individuals currently in the subpopulation after the selection-
competition step). Migrants are uniformly sampled accordingly within the subpopulation
and are moved to the other deme. We stress that a given value of the migration rate
m = 0.8 means that, on average, a fraction mΔt = 0.08 of the population will change
deme at each generation.
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Each simulation repeats this life cycle, first without migration for 100 generations of burn
in (10 time units) and next with migration for Ngen = 104 generations (103 time units). We
model two types of initial events when migration starts: either nothing happens, and the initial
state is symmetrical, or we model a sudden catastrophic loss of population in only one of the
habitat during the first generation with migration, so that the initial state is asymmetrical
(results shown in Section 4.G). Precisely, we change the mortality of the uniform competition
term only in the habitat 1, by replacing exp

(
−ΔtN1

K

)
by exp

(
−N1

K

)
(which is consistent

with the interpretation that this catastrophic loss of population is very abrupt). This leads to
asymmetrical initial subpopulation sizes.

Qualitative results of the IBS on the stability of polymorphism with regard
to increasing selection. The solid lines in the sufigures of Fig. 4.5 (symmetrical initial
population sizes) and Fig. 4.9 (asymmetrical initial populations sizes) represent the median
trajectories of the variance at the major-effect locus (p(1− p), where p is the local frequency
of allele A) in each habitat (gold lines for habitat 1 and navy ones for habitat 2). When
the variance p(1 − p) is positive, the A/a polymorphism is maintained. In both Fig. 4.5 and
Fig. 4.9, selection increases from top to bottom and the polygenic background is present in
the left panel and absent in the right one. When there exists a polygenic component con-
tributing to the trait, polymorphism at the major-effect locus is lost after some time with
weak selection (g = 0.1, Fig. 4.5a and Fig. 4.9a), is maintained with intermediate selection
(g = 0.5, Fig. 4.5c and Fig. 4.9c) and lost again even more quickly with strong selection
(g = 1, Fig. 4.5e and Fig. 4.9e). This is qualitatively consistent with the analytical predic-
tions displayed in Fig. 4.3a, where the red crosses indicate the three selection-migration set
of parameters chosen for the IBS. Moreover, this phenomenon is robust with regard to initial
conditions (Fig. 4.5 and Fig. 4.9), although the loss of polymophism at the major-effect locus
at weak and strong selection is faster when subpopulations sizes are initially asymmetrical
(Fig. 4.9).

Control case without polygenic background. To confirm that the loss of polymor-
phism at weak and strong selections is due to the polygenic background and not to genetic
drift (although drift is unlikely to have an effect under this time range of 103 time units with
a population of order 104), we additionally run an equal number of replicates for each set of
parameters without any polygenic background (L = 0, σLE = 0). Only the major-effect alleles
segregates, and this corresponds to the one-locus haploid model. Results shown in the right
panel of Fig. 4.5 and Fig. 4.9 are consistent with the one-locus haploid model analysis, which
states that the polymorphism at this major-effect locus is stable at all level of selection (the
variance at the major-effect locus remains positive and stable).

Explanation behind the loss of polymorphism with strong and weak selection.
The IBS allow us to gain some insights about the cause of the major locus polymorphism’s
collapse with strong selection. In particular, the dynamics of the subpopulations sizes and the
local mean traits reveal that, at one point, stochasticity creates a small shift in the local mean
traits. This shift is the same between bearers of A and a and in both patches, because the
small segregational variance of the quantitative background binds the quantitative background
values to be approximately the same for everyone (in the analysis, this is reflected by the
change in variables (4.15) introducing δa

ε , δA
ε and δε). Therefore, this shift, which is toward

one of the local optima improves the adaptation of one subpopulation and is deleterious to
the other one, which causes an asymmetry in subpopulation sizes, particularly pronounced
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when selection is strong (see the small figure embedded in Fig. 4.5e, built by selecting one of
the two asymmetries for the sake of clarity). Because of this asymmetry, the migrants’ flow is
also asymmetrical and the larger population then undermines even more the small population
by gene flow, which in turn raises the frequency of the favoured major-effect allele on both
patches and shifts the local mean traits even further. This positive feedback loop creates a
vortex related to the phenomenon of migrational meltdown identified in Ronce and Kirkpatrick
[2001], which eventually leads to one of the major-effect allele being lost.

One crucial feature of this explanation is the dynamics of the (varying) subpopulation
sizes, which our eco-evo model allows to track. To confirm this intuition, we conducted the
same IBS, but with adjusting the birth rate to compensate for the deaths at every generation,
effectively keeping both subpopulations at a constant size. With this framework which ignores
changes in subpopulations sizes, the polymorphism at the major-effect locus is not loss with
strong selection (see Fig. 4.8c in Section 4.F). This truly highlights the role of the eco-evo
framework in which subpopulations sizes are variables that are allowed to vary.

Moreover, one can wonder if the loss of polymorphism at the major-effect locus that occurs
when selection is weak relative to migration also relies on the same mechanism. In this case,
the shift in the local mean traits (which is the same in both patches and for bearers of both
major-erffect alleles) raises the frequency of the major-effect allele corresponding to the patch
where the mean trait shifts toward 0 (the midpoint between the two optima). This is because
migration blends more strongly than selection differentiates, leading the two subpopulations
to be equally (mal)adapted. However, here, the small figure embedded in Fig. 4.5a suggests
the role of varying subpopulations sizes in this phenomenon is not as important. This is
confirmed by the fact that the loss of polymorphism also occurs in IBS where subpopulations
sizes are kept at a constant level (Fig. 4.8a). This implies that the loses of polymorphism at
the major-effect locus with weak and with strong selection fundamentally differ in their origin.

Quantitative comparison of IBS with the continuous-time deterministic
model (4.1). We also ran deterministic numerical iterations of (4.1) to check the quanti-
tative constistency of the stochastic IBS with the deterministic model (4.1). Two series were
run, one for each type of initial condition (symmetrical or asymmetrical initial subpopulations
sizes). The median trajectory obtained from these deterministic numerical resolutions of (4.1)
for each set of parameters and initial conditions are displayed by the dashed lines in all the
subfigures of Fig. 4.5 and Fig. 4.9. These deterministic trajectories are in excellent agreement
with the ones obtained from the stochastic IBS and provide good approximations. We choose
to distinguish the two types of initial conditions (asymmetrical or symmetrical) because the
deterministic numerical resolutions are unequally sensitive to them. Indeed, since the en-
vironment is symmetrical, the symmetrical initial state is at an unstable edge between two
symmetrical stable valleys for the interesting range of parameters and thus wanders for some
time before choosing a valley to fall into. Therefore, we initialized the deterministic resolutions
with the symmetrical initial state according to their respective IBS replicate states at 20% of
the time before the median fixation time (140 times units for Fig. 4.5a and 40 time units for
Fig. 4.5e). With the asymmetrical initial conditions (shown in Fig. 4.9 in Section 4.G), this
sensitivity is greatly reduced, and the deterministic resolutions are initialized according to
their respective IBS replicate states when migration starts (0 time units). Furthermore, the
numerical scheme for the resolution of the deterministic model (4.1) uses a splitting scheme to
handle successively migration and the ecological dynamics internal to each habitat. For the
latter, we use a discretization of the Duhamel’ integral formula on time step of lengths Δt for
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the asymmetrical initial state series and Δt
4 for the symmetrical initial state series (with an

accordingly increased number of time steps).
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(a) Major-effect locus with polygenic back-
ground: weak selection (g = 0.1).

(b) Control case without polygenic back-
ground: weak selection (g = 0.1).

(c) Major-effect locus with polygenic back-
ground: intermediate selection (g = 0.5).

(d) Control case without polygenic back-
ground: intermediate selection (g = 0.5).

(e) Major-effect locus with polygenic back-
ground: strong selection (g = 1).

(f) Control case without polygenic back-
ground: strong selection (g = 1).

Figure 4.5: Variance at the major-effect locus across time for increasing selection (top to
bottom: g = 0.1, 0.5, 1) at a fixed rate of migration (m = 0.8), with symmetrical initial
subpopulation sizes. p denotes the local frequency of the major-effect allele A. The left panel is
obtained with both a major-effect locus (η = 1/2) and a polygenic background of 200 loci, whereas
only the major-effect locus is present in the right panel. For each subfigure, 20 replicates simulations
were run per set of parameters, according to the setting explained in Section 4.3.2. In each subfigure,
the solid line represents the median trajectory and the shaded area indicates the 0.2 and 0.8 quantiles.
The dashed lines represent the median trajectories of the numerical resolutions of the deterministic
model (4.1). This figure confirms that polymorphism of the major-effect locus is maintained only when
selection is intermediate in strength (panel c) in presence of a polygenic background (left panel). The
small figures embedded in each figure of the left panel represent the dynamics of the subpopulation
sizes (N1 and N2). They highlight the qualitative difference between the loss of polymorphism at the
major-effect locus with weak or strong selection, as fixation occurs without change in subpopulation size
with weak selection (Fig. 4.5a) and as subpopulations sizes become asymmetrical with strong selection
(Fig. 4.5e).
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4.4 Discussion
Summary. In this work, we present a new eco-evo model for selection in a heterogeneous
environment that combines a major-effect locus with a quantitative genetic background, with-
out assuming that the latter is normally distributed. With this model, we aim to examine
how the presence of a small quantitative background can disturb the polymorphism at the
major-effect locus, which on its own would be favoured in the type of setting we consider.
This model bridges a population genetic model (one-locus haploid model) with a quantitative
genetic model recently studied in a heterogeneous environment (Dekens 2022). To do so, it
introduces a new reproduction operator, inspired by the infinitesimal model, that encodes the
inheritance of a major-effect and a quantitative background. The analysis goes deeper than
previous studies, by formally justifying that the polygenic component of the trait is normally
distributed around the major-effect allelic effects in a regime of small variance and hence jus-
tifying the Gaussian assumption made in Lande [1983] and Chevin and Hospital [2008]. To
show this, we find new convex analysis arguments that leads to a separation of time scales,
which allows us to study the stability of the polymorphism at the major-effect locus. We show
that this polymorphism, which is maintained at intermediate selection, is subsequently lost
when selection increases beyond a certain threshold, a phenomenon qualitatively confirmed by
individual-based simulations. The separation of time scales’ point of view offers the interpre-
tation that the infinitesimal background slowly disrupts the rapidly established symmetrical
polymorphism at the major-effect locus. Therefore, this phenomenon cannot be predicted by
the one-locus haploid model (without the quantitative background). To our knowledge, this
phenomenon has not yet been documented.

The importance of the eco-evo framework and the influence of small segre-
gational variance. In the last section, we provided an explanation for our main biological
result, which is the unexpected loss of polymorphism at the major-effect locus with strong
selection. The two features that built up this explanation are the following. First, the mean
quantitative background is strained to move similarly in both patches and for bearers of A and
a because of the small segregational variance. This implies that any slight shift of the mean
quantitative background necessarily increases local adaptation to one patch and decreases lo-
cal adaptation to the other. Consequently, the latter creates an asymmetry in subpopulation
sizes, one being better adapted than the other. This asymmetry is significant, because local
selection is strong. The larger subpopulation then sends relatively more migrants to the other
patch, undermining the local adaptation there even more, which contributes to raise the fre-
quency of the favoured allele in both patches. In turn, it also accentuates the slight shift in
the mean quantitative background, and the evolutionary dynamics swirl into a vortex that can
be identified as a migrational meltdown (coined in Ronce and Kirkpatrick 2001).

Therefore, one can observe that this phenomenon specifically relies first on our eco-evo
framework, which allows to track the dynamics of subpopulation sizes. This highlights the
importance of considering eco-evo dynamics when dealing with strong selection (which can
heavily impacts population sizes), as this loss of polymorphism at the major-effect locus with
strong selection would not captured by a more traditional approach in population genetics that
would only follow the changes in major-effect alleles’ frequency and consider the population
sizes constant. Second, this phenomenon of loss of polymorphism at the major-effect locus
also łrelies crucially on the small segregational variance of the quantitative background, which
is linked to the very small effect sizes of sufficiently many alleles. It is indeed worth noting
that, if the segregational variance of the quantitative background is relatively large, then the
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first step of our explanation ("the mean quantitative background is strained to move similarly
in both patches and between bearers of A and a") does not hold, as the constraint of gene-
mixing between patches and between bearers of different major-effect alleles is much looser.
In that case, one rather expects that the mean quantitative background shifts in opposite
directions in the two patches, improving local adaptation in both patches, and thus stabilizing
the polymorphism at the major-effect locus by raising locally the frequency of the locally
favoured allele.

Robustness. To assess the robustness of the swamping phenomenon that we identified,
we performed various individual-based simulations. We found that these are in excellent
quantitative agreement with our analysis. They also connect our framework to the evolution
of an explicit genetic architecture, which provides a practical translation of the small variance
regime that underlies our study. This is important, because we have only shown that our results
hold in this small variance regime. In particular, they might be different under parameter
ranges that violate this regime, for example under low or no migration (meaning, at a level of
comparable order as the small variance). Moreover, because the trajectories of the individual-
based simulations are consistent with the deterministic trajectories produced by our model,
we can validate essential assumptions underlying our model, mostly the constancy of the small
segregational variance for the quantitative background. The latter requires enough loci (L)
with relatively small effects (±σLE√

L
), so that the segregational variance of the quantitative

background (lower than σ2
LE) remains small while the phenotypic range produced by the

polygenic background alone
[
−σLE

√
L, σLE

√
L
]

spans well beyond the local optimal traits.
The last condition is necessary to ensure genotypic redundancy (see also Yeaman 2022), so
that well adapted mates with similar phenotypes have on average relatively different genotypes,
which in turn ensures that the variance of their offspring does not depend too much on their
traits. In our simulations presented in Section 4.3.2, we showed that L = 200 and σLE = 0.1
produced very similar trajectories to our deterministic model. Furthermore, in Section 4.G, we
even lowered the number of loci to L = 50 and increased the segregational variance parameter
σLE = 0.2 to assess the robustness of our conclusions with regard to less favorable parameters,
with the same conclusions.

Complete analytical outcomes. The analysis performed in Section 4.3.1 is centered on
the persistence of polymorphism at the major-effect locus. As stated in Remark 8, the loss of
polymorphism by fixation would lead to the dynamics of the quantitative background alone,
as covered in Dekens [2022]. Hence, Fig. 4.6 complements Fig. 4.3 (for η = 0.5 and varying
migration and selection), by displaying both the region of parameters where the system would
go to the symmetrical polymorphic equilibrium (in yellow, corresponding to the region where
polymorphism is stable), and the region of parameters corresponding to the two types of
monomorphic equilibria for a quantitative trait in the regime of small variance described in
Dekens [2022].

For bounded selection, there exists a critical threshold in the migration rate under which
the polymorphism at the major-effect locus is stable (yellow region) and above which it is lost
due to the strong blending effect of migration. In that case, the population trait distribution
is concentrated on the trait at the midpoint between the two habitats’ optima, and occupies
equally the two habitats. this corresponds to the symmetrical monomorphic equilibrium (see
Ronce and Kirkpatrick 2001; Dekens 2022), where the population can be qualified as generalist
(green region). One can notice that there exists an interval of selection strengths g ∈ [0.7, 1] in
which the major polymorphism might not be stable for all migration rates under the critical
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threshold. This phenomenon does not hold for greater major-effect allelic effects (see Fig. 4.3b,
Fig. 4.3c, Fig. 4.3d).

For bounded migration rates, and with weak selection, the major polymorphism is unsta-
ble, as the diverging selection is too weak compared to the blending migration to maintain
differentiation at the major-effect locus (green region). When selection strength increases, the
polymorphism at the major-effect locus is first stable (yellow region), but eventually lost above
a certain selection strength. The population becomes adapted to one of the two habitats that
it mostly inhabits (blue region). This asymmetrical equilibria, highlighted as a source-sink
scenario in Ronce and Kirkpatrick [2001], was analytically derived in Dekens [2022].

Filling a methodological gap. In population genetics, one-locus or two-locus models
in heterogeneous environments have been well studied (Nagylaki and Lou 2001; Bürger and
Akerman 2011), with a nuanced picture when including the effect of drift (Yeaman and Otto
2011). A two-deme two-locus model is analysed in Geroldinger and Bürger [2014], which in
particular shows that a concentrated genetic architecture (a major-effect locus and a tightly
linked minor one) maintains polymorphism (full or single-locus) even under high migration
rates when selection acts in opposite directions in the two patches. Increasing the number
of loci quickly leads to analytical complexity too great for general study. There also exist
multi-loci models in heterogeneous environments (Lythgoe 1997; Szép, Sachdeva, and Barton
2021a), but they focus on equal allelic effects. On the other end of the spectrum, quantitative
genetic models do not typically account for additional discrete major-effect allelic effects on the
focal quantitative trait (for sexually reproducing populations in heterogeneous environment,
see Ronce and Kirkpatrick 2001; Hendry, Day, and Taylor 2001; Dekens 2022 and for asexually
reproducing populations, see Débarre, Ronce, and Gandon 2013; Mirrahimi 2017; Mirrahimi
and Gandon 2020; Hamel, Lavigne, and Roques 2021).

To our knowledge, the first model that bridges this gap between quantitative traits and
discrete loci appears in Lande [1983]. In this work, the author considers the dynamics of
a single major-effect locus where two alleles segregate along with a polygenic background,
in a diploid panmictic population subjected to a sudden change of environment. He models
the influence of the polygenic background on the trait by assuming that, among bearers of
the same major-effect allele, the trait distribution is Gaussian, centered around the effect of
the the major-effect allele on the trait. This study opened the way for more recent work
on the genetic architecture of adaptation of panmictic populations in a suddenly changing
environment, where the central question is whether this adaptation is due to major-effect
allelic sweeps or to subtle shifts in the frequency of many small effect alleles. In Chevin and
Hospital [2008], the authors extend the framework of Lande [1983] to include less specific
selection functions than exponential ones. Subsequent studies (Vladar and Barton 2014; Jain
and Stephan 2017) explicitly model the short-term dynamics of a polygenic trait at mutation-
selection balance, following a sudden change of environment. They show that there exists a
sharp threshold in allelic sizes below which polymorphism remains and above which fixation
occurs. Lately, in a similar context, Höllinger, Pennings, and Hermisson [2019] propose an
extension to take genetic drift into account on the dynamics of adaptation with a polygenic
binary trait under mutation-selection balance. However, all those works from Lande [1983]
to Höllinger, Pennings, and Hermisson [2019] study panmicitic populations, without spatial
structure, even though spatial heterogeneities are known to generate gene flow, which indirectly
shapes genetic architecture through local adaptation (see Yeaman and Whitlock [2011], or
below for more details). Moreover, they focus solely on the dynamics of the allelic frequencies
without considering their coupling with population size dynamics, assuming it to be constant.
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Figure 4.6: Summary of the complete analytical outcomes of the model, for η = 0.5
and varying migration (y-axis) and selection (x-axis). The figure combines the results obtained
in Section 4.3.1 on the stability of the symmetrical polymorphic equilibrium with the results of
the model of Dekens [2022] (equivalent to this model upon loss of polymorphism). For bounded
selection, when migration increases, there is a threshold over which the polymorphism at the
major-effect locus is lost due to the blending effect of migration (consistent with Yeaman and
Whitlock 2011). The population then becomes equally maladapted to both habitats (generalist
- symmetrical monomorphism, in the green region). For this specific major-effect allelic effect
η = 0.5, there exists additionally an interval of selection strength (≈ [0.7, 1]) for which the
major polymorphism might not be stable at all migration rates below the critical threshold.
This phenomenon does not seem to hold when the major effect is larger (see Fig. 4.3b).
For bounded migration (below the threshold rate over which the strong migration blending
hampers the major polymorphism), when selection strength increases, the polymorphism at
the major-effect locus (yellow region) is lost, and the population becomes adapted to one of
the two habitats (specialist - asymmetrical monomorphism, in the blue region). As this figure
is obtained in the small segregational variance regime (which should remain smaller than the
other parameters of the system for the analysis to be valid), we warn that the outcomes
displayed in the vicinity of the x-axis (very small migration rates) might not correspond to
the limit when the migration rate is 0 (no migration).
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In this paper, we presented a composite framework between population and quantitative
genetics aiming at going beyond these methodological limitations. Our model and methodology
allows us to study analytically the eco-evo dynamics of a sexually reproducing population
characterized by a composite trait resulting from the interplay between a few major-effect loci
and a quantitative polygenic background, in spatially heterogeneous environments (migration-
selection balance). We want to emphasize that, by "eco-evo dynamics", we mean that we study
both the ecological and evolutionary dynamics of the local trait distributions and therefore
do not assume that the sizes of the populations remain constant; rather, they are variables of
the system. This modelling choice is crucial, because the migrational meltdown phenomenon
provoking the loss of polymorphism at the major-effect locus with strong selection relies on
the building of asymmetrical subpopulation sizes.

The role of the Gaussian assumption of quantitative trait values. In our work,
we justify the Gaussian assumption made by Lande [1983] and Chevin and Hospital [2008]
to model the background polygenic effect on the trait via a framework that does not make
a priori assumptions on the within-population distribution. Instead, our model relies on an
extension of the standard infinitesimal model (Fisher 1919) that encodes both the inheritance
of the quantitative background and the major-effect alleles. Analytical progress is possible in
a regime of small segregational variance for the quantitative component of the trait, despite
not specifying the shape of the trait distribution. It relies on the fact that the variance
introduced at each event of reproduction by the quantitative background is small compared
to the discrete allelic effects at the major-effect locus. This allows us to use a methodology
developed by Diekmann, Jabin, et al. [2005], meant to study trait distributions concentrated
as Dirac masses, to justify that assuming Gaussian distributions of quantitative trait values is
valid (Section 4.2.1). Moreover, this Gaussian approximation appears here sufficient to capture
the phenomenon of migration meltdown with strong selection that we identify through the rest
of our analysis, as higher order moments do not seem to have a significant influence on it.

Extensions to more complex population genetic models. The model and the
line of methods that we use in this paper are quite robust. We thus provide a comprehensive
toolbox at the end of this manuscript (Section 4.A), to describe how to apply the method more
broadly. In particular, the toolbox is meant to indicate how to extend the method to more
complex population genetic models by adding a quantitative background. It relies on 4.B.1,
which justifies that carrying the analysis under the Gaussian assumption of quantitative trait
distribution is valid (in the regime of small variance indicated). In Section 4.A, we detail the
hypotheses that the population genetic models must satisfy in order to use it (see Section 4.B
for details and examples).

Further prospects. The loss of the polymorphism at the major-effect locus with strong
selection in a symmetrical heterogeneous environment, where one might think that it is most
favoured, illustrates the value of our method. However, two natural questions stem from our
work:

1. Would the stability region of polymorphism at the major-effect locus shrink as much
in the presence of a quantitative background when considering asymmetrical levels of
selection/migration between the two patches? Our analysis suggest that it should, and
this can be investigated through an extension of the last step of our analysis.
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2. Would this phenomenon hold if mutations can accumulate at the major-effect locus?
Figure 4.3 for example suggests that polymorphism at the major-effect locus would per-
sist over a wider range of parameters if the alleles at the major-effect locus evolve to
match the difference in optima. This possibility was indicated by the numerical findings
of Yeaman and Whitlock [2011], who found the emergence of tightly linked clusters of
major-effect loci underlying local adaptation for intermediate migration rates.

4.A Toolbox: How to study the interplay
between a quantitative background and
a finite number of major-effect loci.

The aim is to study the interplay between a quantitative background and a finite number of
major-effect loci.

We start with a population genetic model. Let us consider K different genotypes A(k)

which have genotypic effects on the phenotype a(k) (we use the index k to indicate genotypes).
For our method to be applied, the genotypes should verify two hypotheses H1 and H2 described
in Appendix 4.B. The metapopulation lives in a heterogeneous environement of I patches (we
use the index i to indicate location). We denote the population of patch i carrying genotype k

by N
(k)
i . Let us denote the system of equations that describes the dynamics of the genotypic

local population sizes: dN̄
dT = G̃ā

(
N̄(T )

)
and of a viable stable equilibrium N̄∗. We recall that

N̄∗ is an equilibrium of the system if G̃ā(N̄∗). This equilibrium is viable if all the population
sizes are non-negative, and at least one is positive. Its local stability is determined by standard
linear analysis (sign of the real parts of the eigenvalues of the system’s Jacobian).

Let us modify the previous population genetic framework to include the effect of a quantita-
tive background on the trait, generically denoted z. While previously, all individuals carrying
the same genotype A(k) shared the same phenotype, now their phenotypes can differ due to
the quantitative background they present. Consequently, among individuals of the same patch
k carrying the same major genotype A(k), we distinguish those sharing the same quantitative
background z, and denote their number n

(k)
i (z):

A(k) � (A(k), z)

a(k) � a(k) + z

N
(k)
i � n

(k)
i (z).

The PDE system that we obtain on the trait distributions n
(k)
i is not easily analysed. That is

why we provide a five steps plan in order to guide the analysis when the diversity introduced
by the segregation of the quantitative component of the trait is small compared to the variance
generated by the major-effect loci (H6 - regime of small variance):

1. First, we operate a scaling of time according to the regime of small variance. It anticipates
on the separation of time scales such that the major-effect allelic frequencies change
rapidly, followed by the slow changes of the quantitative components (see step 3).

2. In this regime of small variance, we can justify the Gaussian approximation of the local
genotypic distributions n

(k)
i centered at the same mean and the same variance ε2, thanks
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to 4.B.1, as soon as the assumptions (H1) and (H2) are satisfied (see Appendix 4.B) and
every genotypic population randomly mates with themselves and every other genotypic
population (H3) (the latter excludes for example models that differentiate sexes). This
guides the intuition toward which change of variables to perform in order to get a system
separating time scales explicitly (see Step 3). We emphasize that 4.B.1 is crucial to be
able to apply this method.

3. From the PDE system on the distributions n
(k)
i , we can deduce the ODE system of their

moments. Since we have justified the Gaussian approximation for all local genotypic
distributions n

(k)
i , the new system is closed in the regime of small variance ε2 � 1,

and only involves the dynamics of the genotypic local sizes of populations N
(k)
i and the

genotypic local mean quantitative components z
(k)
i .

4. This step aims at obtaining a system that explicitly separates time scales, in order
to ultimately reduce the complexity of the analysis. It requires a technical change of
variables, which is guided by the formal analysis of the step 1 (mean quantitative com-
ponents roughly the same within patches), and the intuition that migration has a strong
blending effect between patches in the small variance regime (which would result in the
mean quantitative components roughly being equal between patches). These considera-
tions bring the following new variables replacing the genotypic local mean quantitative
component z

(k)
i :

� for each genotype 1 ≤ k ≤ K, δ
(k)
i,ε is the difference in the mean quantitative

component of the genotypic population k between the patch i + 1 and patch i
(1 ≤ i ≤ I − 1). Dividing by ε2 comes from the intuition given above.

� for each genotype 1 ≤ k ≤ K−1, δ
(k)
ε is the difference between the mean quantitative

component averaged across patches of genotypic population k + 1 and k. Dividing
by ε2 comes from the intuition given in Step 1.

� Zε is the overall mean quantitative component across patches and major genotypes.
It is the slow evolving variable.

Rewriting the dynamics of the genotypic local population sizes N̄ε along these new
variables δ̄ε and Zε delivers a system in which all the differential equations are multiplied
by ε2 (fast dynamics of N̄ε and δ̄ε) except the one governing the dynamics of Zε (slow
dynamics).
To finally complete the separation of time scales and obtain the limit system by letting
ε2 vanish, it is sufficient to show that at each value Z of the slow variable, the fast time-
scale equilibria

(
N̄ , δ̄

)
are stable, for example by using the Routh Hurwitz criterion for

linear analysis on the Jacobian JacGā

(
N̄ , δ̄

)
.

5. The last step to determine the stability of the global equilibria of the full system of the
genotypic population with the influence of the quantitative background

(
N̄∗, δ̄∗, Z∗

)
,

consists in applying the formula given in the last box (see the next page).
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Toolbox: How to study the interplay between a quantitative background
and a finite number of major-effect loci dynamics.

The stadium:
I patches Pi (1 ≤ i ≤ I)

The teams:
K different genotypes A(k) (1 ≤ k ≤ K)
Vector of genotypic effects on phenotype: ā = (a(1), ..., a(k))
Matrix of local genotypic population sizes: N̄ =

(
N

(k)
i

)

Pop. gen. model:
dN̄
dT = G̃ā

(
N̄(T )

)
Pop gen. analysis:

(i) Viable equilibria: Gā

(
N̄∗

)
= 0 and N̄∗ > 0̄.

(ii) Stability: eigenvalues of JacGā

(
N̄∗

)
in open

left plane.

Population genetic model

The new players:

(i) Quantitative background z

(ii) Individuals carrying
genotype i and a
quantitative background z
have a phenotype z + a(k).

(iii) Distribution in patch k :
n

(k)
i (z)

Work hypotheses:

H1 - H2 (reflexivity and irreducible graph - see App.4.B)

H3 every genotypic population reproduces randomly
with themselves and every other in the same patch

H4 inheritance of the quantitative background in
accordance with the infinitesimal model with
segregational variance σ2.

H5 the quantitative background is unlinked to A(k)

H6 σ2 � min
∣∣∣a(k)

∣∣∣2: small variance regime.

Composite model combining population and quantitative genetics

0) Scaling of time t := ε2 T

(ε2 := σ2

min|a(k)|2 � 1 � few diversity

via inf. model of reproduction)

1) Formal analysis (justify Gaussian
distributions - 4.B.1):

(i) n
(k)
i,ε (z) ≈ N

(k)
i,ε ×Gauss

(
z

(k)
i,ε , ε2

)
(ii) z

(k)
i,ε ≈ z

(l)
i,ε

2) ODE system of moments (z̄ε :=
(z(k)

i,ε )):⎧⎨⎩ε2 dN̄ε
dt = Gā

(
N̄ε(t), z̄ε(t)

)
,

ε2 dz̄ε
dt = Fā

(
N̄ε(t), z̄ε(t)

)
.

3) Slow-fast analysis:

(i) Change in variables: δ
(k)
i,ε =

z
(k)
i+1,ε−z

(k)
i,ε

2ε2 [K(I − 1)] ;

δ
(k)
ε =

∑
i

z
(k+1)
i,ε −z

(k)
i,ε

2Iε2 [(K − 1)] ; Zε =
∑

k,i
z

(k)
i,ε

K×I

(ii) Slow-fast system:⎧⎨⎩ε2 d[N̄ε,δ̄ε]
dt = Gā

(
N̄ε(t), δ̄ε(t), Zε

)
,

dZε
dt = Fā

(
Zε, N̄ε, δ̄ε

)
.

(iii) Separation of time scales (via stability of zeros of Gā

by Routh-Hurwitz criterion on JacGā(N̄ , δ̄))⎧⎨⎩0 = Gā

(
N̄ , δ̄, Z

)
,

dZ
dt = Fā

(
Z, N̄ , δ̄

)
.

4) Analysis of the limit system:

(i) Viable equilibria: Gā

(
N̄∗, δ̄∗, Z∗

)
= Fā

(
Z∗, N̄∗, δ̄∗

)
= 0,

N̄∗ > 0

(ii) Stability:∇N̄,δ̄Fā ·
([

JacGā

(
N̄ , δ̄

)]−1
∂ZGā

)∣∣∣∣
Z∗,N̄∗,δ̄∗

> 0.

Steps to apply the hybrid analysis



4.B Generalization of 4.2.1 for more com-
plex genotypes.

To state a generalization of 4.2.1, we first need to specify the targeted scope of population ge-
netic models. Let us consider K different genotypes A(k) that satisfies the following hypotheses
relating to how they interact with each other regarding the genotypes of their offspring:

H1 Reflexivity: For all k ∈ (1, K), the offspring of two parents with the same genotype
A(k) has a positive probability to be of genotype A(k).

H1 is a natural hypothesis when considering either haploid or diploid populations, even with
non-Mendelian processes (genetic linkage/recombination, gene drives), provided that they are
not too extreme (lowering the probability of inheriting a certain genotype is fine as long as it
does not cancel it). The second hypothesis is more conveniently apprehendable by considering
the graph G whose nodes are the genotypes A(k). A vertex links two nodes A(k) and A(l) if
and only if there exists a positive probability that their offspring has genotype A(k) or A(l).

H2 Irreducible graph: For all (k, l) ∈ (1, K)2, there exists a path of vertices of G connect-
ing A(k) and A(l).

This last hypothesis is satisfied by any haploid models, regardless of how many loci are con-
sidered, because an offspring can inherit all their alleles from only one parent. Consequently,
in that case, every node of the graph is connected to every other. In diploid models, where
an offspring can have a different genotype from both its parents, which vertices of the graph
G exist is not clear. However, for example, we can show that the graph corresponding to a
diploid model, with L loci and two alleles at each loci, is connected according to H2. Indeed,
each genotype is directly connected to any other that differs from it from just one allele at one
locus. Nevertheless, the interest of H2 is that it is very easy to verify whether it is satisfied
given any particular model.

To state the proposition that generalizes (4.2.1), we first need to define the index set of
couples that can yield an offspring with a particular genotype. For k ≤ K, we denote it by
C(k), where (l, k) ∈ C(k) if and only if parents with genotypes A(l) and A(k) can produce an
offspring with genotype A(k). The following proposition characterizes the genotypic functions
uA(k) that respect the following constraints analogous to C

∀k ≤ K, ∀z ∈ R, max
(l,k)∈C(k)

[
sup
z1,z2

uA(k)
(z)−

(
z − z1 + z2

2

)2
− uA(l)

(z1)− uA(k)
(z2)

]
= 0.

(C’)

Proposition 4.B.1. Suppose that H1 and H2 are satisfied. For k ≤ K, we consider uA(k) a
real valued non-negative function whose zero set is non-empty and of measure 0 (for example,
is finite). If {uA(k)

, k ≤ K} respects (C’), then there exists z∗ ∈ R such that for all k ≤ K:

∀z ∈ R, uA(k)
(z) =

(z − z∗)2

2
.

Proof.
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0) uA(k) is continuous and has right and left derivatives everywhere. For k ≤ K
and z ∈ R, we have:

uA(k)
(z)− z2 = min

(l,k)∈C(k)
inf

z1,z2

[
−z(z1 + z2) +

(
z1 + z2

2

)2
+ uA(l)

(z1) + uA(k)
(z2)

]
. (4.20)

Therefore, uA(k)(z)− z2 is concave as infimum of affine functions, and thus continuous and
has right and left derivatives.

1) uA(k) cancels only once. Let us fix k ≤ K. Let us suppose that uA(k) has two zeros
z∗

1 �= z∗
2 . H1 implies that (k, k) ∈ C(k). Then, we deduce from (C’) that:

uA(k)
(z) ≤ inf

z1,z2

(
z − z1 + z2

2

)2
+ uA(k)

(z1) + uA(k)
(z2).

In particular, for z = z∗
1 +z∗

2
2 , z1 = z∗

1 , z2 = z∗
2 , we obtain

uA(k)
(
z∗

1 + z∗
2

2
) ≤ 0. (4.21)

As uA(k) is non-negative, the midpoint between two zeros of uA(k) is also a zero of uA(k) . uA(k)

is also continuous from the previous point, therefore, we deduce that uA(k) cancels on [z∗
1 , z∗

2 ].
The latter violates the assumption that uA(k) has a zero set of measure 0. Because it is also
not empty, we get that uA(k) cancels exactly once, in a point that we denote z∗

k.

2) The zero of uA(k) coincides with the zero of uA(l): z∗
k = z∗

l . First, let us consider
the case where (k, l) ∈ (1, K)2 is such that A(k) and uA(l) are linked by a vertex in the graph
G. Then, we deduce that (k, l) ∈ C(k) or (k, l) ∈ C(l). We can assume the first without loss of
generality. Similarly as the first part of the proof, we deduce that

uA(k)
(z) ≤ inf

z1,z2

(
z − z1 + z2

2

)2
+ uA(k)

(z1) + uA(l)
(z2).

Consequently, the midpoint between z∗
k and z∗

l is a zero of uA(k) , which is necessarily z∗
k, which

implies that z∗
k = z∗

l .
Let us now show the same for every couple (k, l) not necessarily linked by a vertex in G.

H2 implies that there exists a path of vertices between uA(k) and uA(l) . As we showed that
for every pair of nodes connected by a vertex, the zeros of their function is the same point,
that property also holds for the extremities of the path of vertices, hence z∗

k = z∗
l . We denote

z∗ the common zero.

3) Convex Legendre conjugates ˆuA(k)(y) = sup
z

(z − z∗)y − uA(k)(z). Let us show

that (C’) implies that the convex Legendre conjugate satisfies

∀y ∈ R, ˆuA(k)(y) =
y2

4
+ max

(l,k)∈C(k)

[
ˆuA(l)

(
y

2

)
+ ˆuA(k)

(
y

2

)]
. (4.22)
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Using (4.20) and commuting the sup, we obtain, for y ∈ R,

ˆuA(k)(y) = sup
z

[
(z − z∗)y − min

(l,k)∈C(k)
inf

z1,z2

( (
z − z1 + z2

2

)2
+ uA(l)

(z1) + uA(k)
(z2)

)]

= max
(l,k)∈C(k)

[
sup
z1,z2

(
−uA(l)

(z1)− uA(k)
(z2) + sup

z
(z − z∗)y −

(
z − z1 + z2

2

)2
)]

.

(4.23)
Moreover, a straight-forward calculus shows that the sup

z
is reached at z = y+z1+z2

2 , which
leads to

sup
z

(z − z∗)y −
(

z − z1 + z2
2

)2
=

(
y + z1 + z2

2
− z∗

)
y − y2

4

=
y2

4
+ (z1 − z∗)

y

2
+ (z2 − z∗)

y

2
.

(4.24)

Combining (4.24) and (4.23) (the fact that zA = za = z∗ plays a crucial part for the crossed
term) leads to (4.22).

Moreover, we obtain classically that:

ˆuA(k)(y) ≥ (z∗ − z∗)y − uA(k)
(z∗) = 0 = ˆuA(k)(0) (4.25)

.

4) max
k≤K

ˆuA(k) : y �→ y2

2 . We obtain from (4.22) that:

∀y ∈ R, max
k≤K

ˆuA(k)(y) =
y2

4
+ max

k≤K
max

(l,k)∈C(k)

[
ˆuA(l)

(
y

2

)
+ ˆuA(k)

(
y

2

)]
. (4.26)

For y ∈ R, let k0 ≤ K be such that max
k≤K

ˆuA(k) (y
2
)

= ˆuAk0

(y
2
)
. H1 implies in particular

(k0, k0) ∈ C(k0) and therefore, the maximum of the right-hand side of (4.26) is reached in
2 ˆuAk0

(y
2
)
. Consequently, we deduce that

∀y ∈ R, max
k≤K

ˆuA(k)(y) =
y2

4
+ 2max

k≤K

ˆuA(k)
(

y

2

)
. (4.27)

Moreover, one can notice that

∀y ∈ R, max
k≤K

ˆuA(k)(y) = max
k≤K

max
z∈R

(z − z∗)y − uA(k)
(z)

= max
z∈R

(z − z∗)y − min
k≤K

uA(k)
(z)

=
ˆ(

min
k≤K

uA(k)
)

(y).

Therefore, max
k≤K

ˆuA(k) is a convex continuous function that has left and right derivative every-

where, in particular in 0. Hence, iterating (4.27) implies first that:

∀y > 0 (resp. < 0), max
k≤K

ˆuA(k)(y) =
y2

2
+ β y (resp. α y), (4.28)
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where (α, β) =
(

max
k≤K

ˆuA(k) ′
(0−), max

k≤K

ˆuA(k) ′
(0+)

)
. From (4.25), we deduce that the α ≤ 0 ≤ β.

Since max
k≤K

ˆuA(k) is the convex conjugate of min
k≤K

uA(k) , we compute that the convex bi-conjugate

of min
k≤K

uA(k) is

z �→

⎧⎪⎪⎨⎪⎪⎩
(z−z∗−α)2

2 if z < z∗ + α

0 if z∗ + α ≤ z ≤ z∗ + β
(z−z∗−β)2

2 if z > z∗ + β.

(4.29)

As the convex bi-conjugate of min
k≤K

uA(k) is the lower convex envelope of min
k≤K

uA(k) , the two of

them are equal at the extremal points of its graph, namely for z = z∗ + α and z = z∗ + β. We
deduce from (4.29) that

min
k≤K

uA(k)
(z∗ + α) = min

k≤K
uA(k)

(z∗ + β) = 0.

Since all the uA(k)
, k ≤ K only cancels for z = z∗, we obtain that α = β = 0 and (4.28) yields

that max
k≤K

ˆuA(k) : y �→ y2

2 .

5) max
k≤K

ˆuA(k) = min
k≤K

ˆuA(k). First let us state that min
k≤K

ˆuA(k) is continuous as minimum of a
finite number of continuous functions and that it is non-negative and reaches its minimum in
0, with min

k≤K

ˆuA(k)(0) = 0 (from (4.25)). Moreover, (4.22) implies that

∀y ∈ R, min
k≤K

ˆuA(k)(y) ≤ y2

4
+ 2 max

k≤K

ˆuA(k)
(

y

2

)
=

y2

2
. (4.30)

Therefore min
k≤K

ˆuA(k) has left and right derivatives in 0, and min
k≤K

ˆuA(k) ′ (
0+)

= min
k≤K

ˆuA(k) ′
(0−) =

0. Furthermore, (4.22) also implies that

∀y ∈ R, min
k≤K

ˆuA(k)(y) ≥ y2

4
+ 2 min

k≤K

ˆuA(k)
(

y

2

)
.

Iterating the last inequality, and knowing that

min
k≤K

ˆuA(k) (0) = min
k≤K

ˆuA(k) ′ (
0+

)
= min

k≤K

ˆuA(k) ′ (
0−)

= 0,

leads to
∀y ∈ R, min

k≤K

ˆuA(k)(y) ≥ y2

2
= max

k≤K

ˆuA(k)(y).

Consequently, we deduce that min
k≤K

ˆuA(k) = max
k≤K

ˆuA(k) .

End of proof. The last result implies that

∀k ≤ K, ∀y ∈ R, ˆuA(k)(y) = max
k≤K

ˆuA(k)(y) =
y2

2
.
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From the latter we compute the bi-conjugates
ˆ̂

uA(k) : z �→ (z−z∗)2

2 . Since z �→ z−z∗
2 is strictly

convex and it is the lower convex envelope of uA(k) , we obtain that

∀k ≤ K, ∀z ∈ R, uA(k)
(z) =

(z − z∗)2

2
.

4.C Formal justification of the constraints
(C) on the main terms uA

0 and ua
0

We drop the index i indicating the habitat and the time dependence t for this appendix for
the sake of simpler notations.

Let us first formally justify that UA
0 and Ua

0 are positive almost everywhere and cancelling
somewhere. As we are interested in the maintenance of the polymorphism at the major-effect
locus, we consider that no major-effect allele has yet fixed. Hence, NA

ε and Na
ε need to remain

positive and bounded when ε vanishes. Using the Hopf-Cole transforms on nA
ε and na

ε (4.5)
along with the formal Taylor expansions (4.6) on UA

ε and Ua
ε leads to

NA
ε =

∫
R

nA
ε (z′) dz′ =

∫
R

1√
2πε

e− UA
ε (z′)
ε2 dz′ =

∫
R

1√
2πε

e− uA
0 (z′)
ε2 e−uA

1 +ε2vA
ε dz′. (4.31)

If we assume that the residues uA
1 and vA

ε stay bounded when ε vanishes (as Calvez, Garnier,
and Patout [2019] suggests it), then (4.31) implies that uA

0 must be non-negative for NA
ε to

remain bounded when ε vanishes. For NA
ε not to vanish asymptotically, uA

0 must cancel.
Moreover, for any interval I ⊂ R, uA

0 cannot cancel on I, or we would have:

NA
ε >

∫
I

1√
2πε

e
1

ε2 e−uA
1 +ε2vA

ε dz′ → +∞.

So uA
0 is positive almost everywhere, and cancelling somewhere. The same holds for ua

0.
Now, for determining the constraints (C), let us notice that if we divide the right-hand

side of the first equality of (4.3) by nA
ε (z), the reproduction term BA

ε (nA
ε ,na

ε )(z)
nA

ε (z) has to remain
positive and bounded for all z ∈ R when ε vanishes for the effect of reproduction to remain
well-balanced with selection, migration and competition. We assume henceforth that (4.6) is
the correct ansatz (as suggested by Calvez, Garnier, and Patout 2019). Using the Hopf-Cole
transforms on nA

ε and na
ε (4.5) along with the formal Taylor expansions (4.6) on UA

ε and Ua
ε

in (4.4) leads to

BA
ε (nA

ε , na
ε)(t, z)

nA
ε (z) = BA

ε (nA
ε , na

ε)(z)

1√
2πε

e
− uA

0 (z)
ε2 e−uA

1 (z)+O(ε2)

=
√

2
NA

ε
×[∫

R2
exp

(
1
ε2

[
uA

0 (z) −
(

z − z1 + z2

2

)2
− uA

0 (z1) − uA
0 (z2)

])
exp

(
uA

1 (z) − uA
1 (z1) − uA

1 (z2) + O(ε2)
)

dz1dz2

+
∫
R2

exp
(

1
ε2

[
uA

0 (z) −
(

z − z1 + z2

2

)2
− uA

0 (z1) − ua
0(z2)

])
exp

(
uA

1 (z) − uA
1 (z1) − ua

1(z2) + O(ε2)
)

dz1dz2

]
.
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As NA
ε remains bounded and does not vanish asymptotically, we need the maximum of the two

integrals nor to vanish, nor to diverge to infinity when ε vanishes, for all z ∈ R. Therefore the
maximum of the terms into brackets that are multiplied by 1

ε2 needs to be null for all z ∈ R:

∀z ∈ R, max
[
sup
z1,z2

uA
0 (z)−

(
z − z1 + z2

2

)2
− uA

0 (z1)− uA
0 (z2),

sup
z1,z2

uA
0 (z)−

(
z − z1 + z2

2

)2
− uA

0 (z1)− ua
0(z2)

]
= 0,

which is the first constraint of (C). The same holds for B�
ε (na

ε ,nA
ε )(z)

na
ε (z) , which gives the second

constraint of (C).

4.D Slow-fast analysis underlying the sep-
aration of time scales

Under the change of variable (4.15), the system (4.14) is equivalent to the following:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ε2 d Na
ε,i

dt = λi−1Na
ε,i −

[
NA

ε,i + Na
ε,i

]
Na

ε,i − gi
[
Zε + ηa − (−1)i

]2
Na

ε,i

+α(−1)j
mj Na

ε,j −mi Na
ε,i +O(ε2),

ε2 d NA
ε,i

dt = λi−1 NA
ε,i −

[
NA

ε,i + Na
ε,i

]
NA

ε,i − gi

[
Zε + ηA − (−1)i

]2
NA

ε,i

+α(−1)j
mj NA

ε,j −mi NA
ε,i +O(ε2),

ε2 d δa
ε

dt = g1 + g2 + (g1 − g2) (Zε + ηa) + δε
2

[
NA

ε,2
Na

ε,2+NA
ε,2
− NA

ε,1
Na

ε,1+NA
ε,1

]
−δa

ε

[
m2α Na

ε,2
Na

ε,1
+ m1Na

ε,1
α Na

ε,2

]
+ δA

ε −δa
ε

4

[
NA

ε,2
Na

ε,2+NA
ε,1

+ NA
ε,1

Na
ε,1+NA

ε,1

]
+O(ε2),

ε2 d δA
ε

dt = g1 + g2 + (g1 − g2) (Zε + ηA) + δε
2

[
Na

ε,1
Na

ε,1+NA
ε,1
− Na

ε,2
Na

ε,2+NA
ε,2

]
−δA

ε

[
m2αNA

ε,2
NA

ε,1
+ m1NA

ε,1
αNA

ε,2

]
+ δa

ε −δA
ε

4

[
Na

ε,2
Na

ε,2+NA
ε,2

+ Na
ε,1

Na
ε,1+NA

ε,1

]
+O(ε2),

ε2 d δε
dt = − δε

2 − (g1 + g2)ηA−ηa

2 +
(

δA
ε
2

[
αm2NA

ε,2
NA

ε,1
− m1NA

ε,1
αNA

ε,2

]
− δa

ε
2

[
αm2Na

ε,2
Na

ε,1
− m1Na

ε,1
αNa

ε,2

])
+O(ε2),

dZε
dt = (g2 − g1)− (g1 + g2)

(
Zε + ηA+ηa

2

)
+ δε

2

[
NA

1,ε

NA
1,ε+Na

1,ε
+ NA

2,ε

NA
2,ε+Na

2,ε
− 1

]
+

(
δa

ε
2

[
αm2Na

ε,2
Na

ε,1
− m1Na

ε,1
αNa

ε,2

]
+ δA

ε
2

[
αm2NA

ε,2
NA

ε,1
− m1NA

ε,1
αNA

ε,2

])
+ δA

ε −δa
ε

4

[
NA

2,ε

NA
2,ε+Na

2,ε
− NA

1,ε

NA
1,ε+Na

1,ε

]
+O(ε2).

(4.32)
The system (4.32) can be recasted more compactly into Pε. The main slow-fast analysis
result is Theorem 4.2.1, which states the convergence of Pε towards a limit system P0 which
separates ecological and evolutionary time scales. The arguments of the proof of Theorem 4.2.1
are similar to the analogous theorems proved in Levin and Levinson [1954] and Dekens [2022].
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(Pε)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
Fast dynamics (allelic subpopulations sizes
and spatial discrepancies between mean infinitesimal parts),

Slow dynamics (mean infinitesimal part).

Theorem 4.2.1
ε→ 0

(P0)

⎧⎪⎪⎨⎪⎪⎩
Fast ecological equilibria,

Slow evolutionary dynamics.

S0(Z) (allelic subpopulation sizes),
Resolution 4.D.1, Remark 12,

Stability 4.D.3.

SL(Z) (mean trait discrepancies),
Resolution 4.D.2,

Stability 4.D.4.

One-locus haploid model

Remark 11 (Z = 0)

Figure 4.7: Layout of the slow-fast analysis in Section 4.D. This figure presents the
key elements of the separation of time scales leading from Pε to P0. The stability of the
fast equilibria (studied in the two subsystems S0(Z) and SL(Z)) is the crucial argument
underlying the convergence result stated in Theorem 4.2.1. The resolution of S0(Z) leads
to a uniqueness result that is unexpected with regard to the analogous resolution in Dekens
[2022] (see Remark 12).

The proof requires some preliminaries results, particularly of stability, to which we dedicate
the rest of this section. The structure of this section is represented in Fig. 4.7. In the rest
of this section, we first solve the slow manifold algebraic system G(Ȳ , Z) = 0, showing that
there can only exist one instantaneous ecological equilibrium at a given Z ∈] − 1, 1[ (4.D.1
and 4.D.2). Surprisingly, this resolution is easier than the analogous one in Dekens [2022] (see
Remark 12). Next, in Section 4.D.1.2, we show a stability criterion of the slow manifold (4.D.3
and 4.D.4), which justifies the separation of time scales approach.

4.D.1 Analysis of the fast equilibria.
The fast equilibria, for Z ∈] − 1, 1[, are defined as the solutions Ȳ to the algebraic system
G(Ȳ , Z) = 0, or equivalently seven equations that we group in two subsystems S0(Z) and
SL(Z): ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

α m2 Na
2 −m1Na

1 + Na
1

[
1− (Na

1 + NA
1 )− g1 (Z + ηa + 1)2

]
= 0,

α m2 NA
2 −m1NA

1 + NA
1

[
1− (Na

1 + NA
1 )− g1 (Z + ηA + 1)2

]
= 0,

m1
α Na

1 −m2 Na
2 + Na

2
[
λ− (Na

2 + NA
2 )− g2 (Z + ηa − 1)2

]
= 0,

m1
α NA

1 −m2 NA
2 + NA

2
[
λ− (Na

2 + NA
2 )− g2 (Z + ηA − 1)2

]
= 0.

(S0(Z))
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JSL

⎛⎜⎝ δ
δA

δa

⎞⎟⎠ =

⎛⎜⎝ (g1 + g2)ηA−ηa

2
−(g1 + g2) + (g2 − g1)(Z + ηA)
−(g1 + g2) + (g2 − g1)(Z + ηa)

⎞⎟⎠ , (SL(Z))

where:

JSL
:=

⎛⎜⎜⎜⎜⎜⎝
− 1

2
1
2

[
α m2 NA

2
NA

1
− m1 NA

1
α NA

2

]
− 1

2

[
α m2 Na

2
Na

1
− m1 Na

1
α Na

2

]
Na

1
NA

1 +Na
1

−
Na

2
NA

2 +Na
2

2 −
[

α m2 NA
2

NA
1

+
m1 NA

1
α NA

2

]
−

Na
1

NA
1 +Na

1
+

Na
2

NA
2 +Na

2
4

Na
1

NA
1 +Na

1
+

Na
2

NA
2 +Na

2
4

NA
2

NA
2 +Na

2
−

NA
1

NA
1 +Na

1
2

NA
1

NA
1 +Na

1
+

NA
2

NA
2 +Na

2
4 −

[
α m2 Na

2
Na

1
+

m1 Na
1

α Na
2

]
−

NA
1

NA
1 +Na

1
+

NA
2

NA
2 +Na

2
4

⎞⎟⎟⎟⎟⎟⎠

4.D.1.1 Resolution.
Following Remark 8, we recall that we assume that no major-effect allele has fixed. Here,
we show that there is at most one instantaneous ecological equilibrium at each Z-level (for
Z ∈]− 1− ηA+ηa

2 , 1− ηA+ηa

2 [), thanks to 4.D.1 and 4.D.2.

Proposition 4.D.1. Suppose that no major-effect allele has fixed. Then, for Z ∈] − 1 −
ηA+ηa

2 , 1− ηA+ηa

2 [, S0(Z) has exactly one solution (Na
1 , NA

1 , Na
2 , NA

2 ) ∈ (R∗)4, given by:

Na
1 =

Y A N1 −N2
Y A − Y a

, Na
2 = Y a Y A N1 −N2

Y A − Y a
, NA

1 =
N2 − Y a N1

Y A − Y a
, NA

2 = Y A N2 − Y a N1
Y A − Y a

,

where the quantities (Y A, Y a, N1, N2) are defined by (4.33):⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Y A = g1
α m2

(
ηA + ηa + 2 (Z + 1)

)
ηA−ηa

2

⎡⎢⎢⎢⎣√√√√1 + m1 m2

4 g1 g2

(
ηA−ηa

2

)2
(

1−
(

ηA+ηa

2 +Z

)2
) + 1

⎤⎥⎥⎥⎦ ,

Y a = g1
α m2

(
ηA + ηa + 2 (Z + 1)

)
ηA−ηa

2

⎡⎢⎢⎢⎣√√√√1 + m1 m2

4 g1 g2

(
ηA−ηa

2

)2
(

1−
(

ηA+ηa

2 +Z

)2
) − 1

⎤⎥⎥⎥⎦ ,

N1 = 1− g1 (Z + 1 + ηA)2 −m1 + α m2 Y A,

N2 = λ− g2 (Z − 1 + ηA)2 −m2 + m1
α Y A .

(4.33)
This solution (Na

1 , NA
1 , Na

2 , NA
2 ) defines viable numbers of each allele in each sub-populations

if and only if:

[Y A N1 > N2] and [N2 > Y a N1]. (4.34)

Proof. Let us introduce the following change of variables, valid under the assumption that no
major-effect allele has fixed:

N1 := NA
1 + Na

1 , N2 := NA
2 + Na

2 , Y A :=
NA

2
NA

1
, Y a :=

Na
2

Na
1

.
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Then, under the assumptions made in Remark 8, the system (S0(Z)) is equivalent to:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

α m2 Y a −m1 +
[
1−N1 − g1 (Z + ηa + 1)2] = 0,

α m2 Y A −m1 +
[
1−N1 − g1 (Z + ηA + 1)2

]
= 0,

m1
α

1
Y a −m2 +

[
λ−N2 − g2 (Z + ηa − 1)2] = 0,

m1
α

1
Y A −m2 +

[
λ−N2 − g2 (Z + ηA − 1)2

]
= 0.

(4.35)

This is equivalent to the following system:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

α m2 (Y a − Y A) + g1
(
ηA + ηa + 2 (Z + 1)

)
(ηA − ηa) = 0,

m1
α ( 1

Y a − 1
Y A ) + g2

(
ηA + ηa + 2 (Z − 1)

)
(ηA − ηa) = 0,

N1 −
(
1− g1 (Z + 1 + ηA)2 −m1 + α m2 Y A

)
= 0,

N2 −
(
λ− g2 (Z − 1 + ηA)2 −m2 + m1

α Y A

)
= 0.

As Z �= 1− ηA+ηa

2 , the closed subsystem on (Y A, Y a) is, in turn, equivalent to:⎧⎨⎩Y A − Y a = A1(Z) := g1
α m2

(
ηA + ηa + 2 (Z + 1)

)
(ηA − ηa),

−Y A Y a = A0(Z) := g1 m1
α2 g2 m2

ηA+ηa+2 (Z+1)
ηA+ηa+2 (Z−1) .

Y A and −Y a are the roots of the polynomial:

P (X) = X2 −A1(Z) X + A0(Z).

P has two real roots of opposite signs if and only if:

[A0(Z) < 0] ,

which is equivalent to:

−1− ηA + ηa

2
< Z < 1− ηA + ηa

2
.

Under the last condition on Z, A1(Z) is positive, A0(Z) is negative and we get:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

Y A = A1(Z)
2

⎡⎢⎣√
1− A0(Z)(

A1(Z)
2

)2 + 1

⎤⎥⎦ ,

Y a = A1(Z)
2

⎡⎢⎣√
1− A0(Z)(

A1(Z)
2

)2 − 1

⎤⎥⎦ ,

(4.36)

which is equivalent to (4.33).
Inverting the initial change of variables leads to:

Na
1 =

Y A N1 −N2
Y A − Y a

, Na
2 = Y a Y A N1 −N2

Y A − Y a
, NA

1 =
N2 − Y a N1

Y A − Y a
, NA

2 = Y A N2 − Y a N1
Y A − Y a

,

hence (4.33). It defines a viable solution with positive entries if and only if Y A N1 > N2 and
N2 > Y a N1.
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Proposition 4.D.2. For all allelic sizes of subpopulations (Na
1 , NA

1 , Na
2 , NA

2 ) ∈ (
R

∗
+
)4 and

Z ∈ R, there exists a unique solution (δ, δA, δa) to the system SL(Z).
Proof. Using the notation N1 := NA

1 + Na
1 and N2 := NA

2 + Na
2 , we compute thanks to a

symbolic computation tool (Mathematica©):

det(JSL
) =− 1

4

[
m1
α

N1
N2

+ α m2
N2
N1

+ 2
m2

1
α2

Na
1 NA

1
Na

2 NA
2

+ 2α2m2
2
Na

2 NA
2

Na
1 NA

1

+ 2m1m2

(
NA

1
2
Na

2
Na

1 N1N2
+

Na
1

2NA
2

NA
1 N1N2

+
NA

2
2
Na

1
Na

2 N1N2
+

Na
2

2NA
1

NA
2 N1N2

+ 2
NA

2 Na
1

N1 N2
+ 2

Na
1 Na

2
N1N2

)]
< 0.

4.D.1.2 Stability.
Convergence toward a limit system locally in time in a slow-fast analysis relies essentially on a
stability criterion of the fast equilibria which constitute the slow manifold (Levin and Levinson
1954; Dekens 2022). In this subsection, we show that all fast equilibria found in 4.D.1 and
4.D.2 for a level Z ∈] − 1 − ηA+ηa

2 , 1 − ηA+ηa

2 [, are stable. Due to the particular shape of
the slow manifold, it is sufficient to study separately the Jacobian matrix associated to S0(Z)
denoted JS0 (4.D.3) and the Jacobian matrix associated to the linear system SL(Z), which is
exactly JSL

(4.D.4).

Proposition 4.D.3. Let Z ∈]−1− ηA+ηa

2 , 1− ηA+ηa

2 [ such that (S0(Z)) has a unique solution
(Na

1 , NA
1 , Na

2 , NA
2 ) ∈ (

R
∗
+
)4. Let us define the following matrix:

JS0 =

⎛⎜⎜⎜⎜⎜⎜⎝
−α m2 Na

2
Na

1
−Na

1 α m2 −Na
1 0

m1
α −m1 Na

1
α Na

2
−Na

2 0 −Na
2

−NA
1 0 −α m2 NA

2
NA

1
−NA

1 α m2

0 −NA
2

m1
α −m1 NA

1
α NA

2
−NA

2

⎞⎟⎟⎟⎟⎟⎟⎠ . (4.37)

Then:
1. JS0 is the Jacobian of S0(Z) at (Na

1 , NA
1 , Na

2 , NA
2 ).

2. All the eigenvalues of JS0 are located in the left open half plane.

Proof. 1. Let (Na
1 , NA

1 , Na
2 , NA

2 ) be solution of S0(Z). One can verify that:

∂
[
α m2 Na

2 −m1Na
1 + Na

1
[
1− (Na

1 + NA
1 )− g1 (Z + ηa + 1)2

]]
∂Na

1

=
[
1− (Na

1 + NA
1 )− g1 (Z + ηa + 1)2 −m1

]
−Na

1 = −α m2 Na
2

Na
1

−Na
1 ,

for (Na
1 , NA

1 , Na
2 , NA

2 ) solves S0(Z). The same holds for the other diagonal entries.
2. Let:

χJS0
(X) = X4 − tr (JS0) X3 + b X2 + c X + det JS0 ,

be the characteristic polynomial of JS0 . Let us verify the Routh-Hurwitz criterion: all the
eigenvalues of JS0 are located in the left open half plane if and only if:
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(i) det JS0 > 0,

(ii) − tr (JS0) > 0,

(iii) − tr (JS0) b− c > 0,

(iv) (− tr (JS0) b− c) c− tr (JS0)2 det JS0 > 0.

We have:

det JS0 = m1 m2
(
Na

1 Na
2 −NA

1 NA
2
)2

(
1

Na
1 NA

2
+

1
NA

1 Na
2

)
> 0.

and:

− tr (JS0) = N1 + N2 +
√

m1 m2

(
α
√

m2Na
2√

m1Na
1

+
√

m1Na
1

α
√

m2Na
2

+
α
√

m2NA
2√

m1NA
1

+
α
√

m2NA
2√

m1NA
1

)
> 0.

With the help of a symbolic computation tool (Mathematica©), we verify that the left hand
side of the two last conditions are sums of positive terms, but are too long to be displayed
here.

The Jacobian matrix of the linear system SL(Z) is exactly JSL
and we also show that JSL

satisfies the Routh-Hurwitz criterion:

Proposition 4.D.4. JSL
has all its eigenvalues located in the left open half plane.

Proof. Let the following be the characteristic polynomial of JSL
:

χJSL
(X) = X3 − tr(JSL

)X2 − 1
2

(
tr(J2

SL
)− tr(JSL

)2
)

X − det(JSL
).

We show that JSL
satisfies the Routh-Hurwitz criterion:

(i) −det(JSL
) > 0,

(ii) − tr(JSL
) > 0,

(iii) 1
2

(
tr(J2

SL
)− tr(JSL

)2
)

tr(JSL
) + det(JSL

) > 0.

We have −det(JSL
) > 0 from the proof of 4.D.2 and:

− tr(JSL
) = 1+

√
m1 m2

(
α
√

m2Na
2√

m1Na
1

+
√

m1Na
1

α
√

m2Na
2

+
α
√

m2NA
2√

m1NA
1

+
α
√

m2NA
2√

m1NA
1

)
> 1+4

√
m1m2.

We verify that the l.h.s. of the last condition is a sum of positive terms.

4.E Proof of 4.3.1.
Let us define the quantities:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Y A,∗ = 2 g η
m

[√
1 + m2

4 g2 η2 + 1
]

,

Y a,∗ = 2 g η
m

[√
1 + m2

4 g2 η2 − 1
]

,

N∗
1 = 1− g η2 − g −m + 2 g η

√
1 + m2

4 g2 η2 ,

N∗
2 = N∗

1 .

(4.38)
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4.D.1 states that the latter defines a solution to S0(Z) given that Z = 0:

(Na,∗
1 , Na,∗

2 , NA,∗
1 , NA,∗

2 ) =
(

N∗
1

Y A,∗ − 1
Y A,∗ − Y a,∗ , N∗

1
1− Y a,∗

Y A,∗ − Y a,∗ , N∗
1

1− Y a,∗

Y A,∗ − Y a,∗ , N∗
1

Y A,∗ − 1
Y A,∗ − Y a,∗

)
.

Since Y A,∗ > 1 and Y A,∗ Y a,∗ = 1, this solution is viable under the condition: N1 > 0, hence
requiring :

1 +
√

4 g2 η2 + m2 > g η2 + g + m,

which in turn is equivalent to (4.17).
4.D.2 next states that SL(Z) has a unique solution (δ∗, δA,∗, δa,∗) for such allelic population

sizes (Na,∗
1 , Na,∗

2 , NA,∗
1 , NA,∗

2 ). One can compute that:

δA,∗ = δa,∗ =
g
(
1 + η + Y A,∗(1− η)

)
m(1 + Y A,∗)

, δ∗ = −
2g

(
1 + η − Y A,∗2(1− η)

)
Y A,∗ .

Finally, one can verify that (Na,∗
1 , Na,∗

2 , NA,∗
1 , NA,∗

2 , δ∗, δA,∗, δa,∗) along with setting Z∗ = 0
is a solution of the last equation of (4.16).

4.F Supplementary IBS with fixed subpop-
ulations sizes

In this appendix, we show in Fig. 4.8 the analogous results as those presented in Fig. 4.5, but
with a slightly different procedure for the IBS, which adjusts the birth rates to compensate
exactly for the deaths by selection at each generation, thus keeping the subpopulations sizes
fixed. As mentioned in the main text, the loss of the polymorphism at the major-effect locus
still occurs with weak selection, but not with strong selection.

4.G Supplementary IBS with asymmetri-
cal initial conditions or different pa-
rameters for the genetic architecture
(L = 50 loci and σLE = 0.2)

In this appendix, we first show that the phenomenon of loss of polymorphism in the presence
of a quantitative background with weak or strong selection is robust to asymmetrical initial
population sizes, and even occurs much faster (Fig. 4.9). We emphasize on the excellent
agreement of the deterministic iterations with the individual-based simulations

Furthermore, we also show that our findings hold when considering a smaller number of
loci involved in the quantitative background (L = 50 instead of 200), with increased relative
effect (σLE = 0.2 instead of 0.1), so that the trait range [−η − σLE

√
L, η + σLE

√
L] ≈

[−η − 1.4, η + 1.4] extends beyond the local optima (-1 and 1) even in the absence of major
effects. We display the results of the IBS with symmetrical initial subpopulation sizes in
Fig. 4.10 and with asymmetrical initial subpopulation sizes in Fig. 4.11. Note that the right
panel of each figure does not change from Fig. 4.5 and Fig. 4.9, because the control case
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(a) Major-effect locus with polygenic background: weak selec-
tion (g = 0.1).

(b) Major-effect locus with polygenic background: intermedi-
ate selection (g = 0.5).

(c) Major-effect locus with polygenic background: strong se-
lection (g = 1).

Figure 4.8: Same as the left panel of Fig. 4.5, but with fixed subpopulations sizes.
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(a) Major-effect locus with polygenic back-
ground: weak selection (g = 0.1).

(b) Control case without polygenic back-
ground: weak selection (g = 0.1).

(c) major-effect locus with polygenic back-
ground: intermediate selection (g = 0.5).

(d) Control case without polygenic back-
ground: intermediate selection (g = 0.5).

(e) Major-effect locus with polygenic back-
ground: strong selection (g = 1).

(f) Control case without polygenic background
: strong selection (g = 1).

Figure 4.9: Same as Fig. 4.5, but with asymmetrical initial subpopulation sizes.
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does not depend on the number of loci, but we choose to display it anyway for consistency of
comparison. One can notice that the time to fixation at the major-effect locus in the presence of
a quantitative background under weak (Fig. 4.10e, Fig. 4.11a) and strong selection (Fig. 4.10e,
Fig. 4.11e) is reduced compared to when the quantitative background comes from a larger
number of loci (Fig. 4.5, Fig. 4.9). Moreover, the sensitivity of the numerical resolutions of
(4.1) with regard to symmetrical initial states is more pronounced here.

Acknowledgements
L.D thanks Sepideh Mirrahimi for valuable discussions and comments, and Florence Débarre
and Barbara Neto-Bradley for insightful conversations. L.D has received partial funding from
the ANR project DEEV ANR-20-CE40-0011-01 and a Mitacs Globalink Research Award.
S.P.O. has received funding from the NSERC Discovery Grant: RGPIN-2016-03711. This
project has received funding from the European Research Council (ERC) under the European
Union’s Horizon 2020 research and innovation programm (grant agreement No 865711).

206



(a) Major-effect locus with polygenic back-
ground: weak selection (g = 0.1).

(b) Control case without polygenic back-
ground: weak selection (g = 0.1).

(c) Major-effect locus with polygenic back-
ground: intermediate selection (g = 0.5).

(d) Control case without polygenic back-
ground: intermediate selection (g = 0.5).

(e) Major-effect locus with polygenic back-
ground: strong selection (g = 1)

(f) Control case without polygenic background
: strong selection (g = 1).

Figure 4.10: Same as Fig. 4.5, but with a quantitative background of L = 50 loci and
σLE = 0.2.
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(a) Major-effect locus with polygenic back-
ground: weak selection (g = 0.1).

(b) Control case without polygenic back-
ground: weak selection (g = 0.1).

(c) Major-effect locus with polygenic back-
ground: intermediate selection (g = 0.5).

(d) Control case without polygenic back-
ground: intermediate selection (g = 0.5).

(e) Major-effect locus with polygenic back-
ground: strong selection (g = 1).

(f) Control case without polygenic background
: strong selection (g = 1).

Figure 4.11: Same as Fig. 4.5, but with a quantitative background of L = 50 loci and
σLE = 0.2 and asymmetrical initial subpopulations sizes.
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Chapter 5
Front propagation of a sexual population
with evolution of dispersion: a formal
analysis

The adaptation of biological species to their environment depends on their traits. When var-
ious biological processes occur (survival, reproduction, migration, etc.), the trait distribution
may change with respect to time and space. In the context of invasions, when considering
the evolution of a heritable trait that encodes the dispersive ability of individuals, the trait
distribution develops a particular spatial structure that leads to the acceleration of the front
propagation. That phenomenon is known as spatial sorting. Many biological examples can be
cited like the bush cricket in Britain, the cane toad invasion in Australia or the common myna
one in South Africa.

Adopting this framework, recent mathematical studies have led to highlight the influence
of the reproductive mode on the front propagation. Asexual populations have been shown
to spread with an asymptotic rate of t3/2 in a minimal reaction-diffusion model, whereas the
analogous rate for sexual populations is of t5/4 (where t denotes the time). However, the
precise description of the behaviour of the front propagation in the sexual case is still an open
question.

The aim of this paper is to give precise approximations for large times of its position, as
well as some features of the local trait distribution at the front. To do so, we solve explicitly
the asymptotic problem derived formally. Numerical simulations are shown to confirm these
calculations.
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5.1 Introduction
Individuals can be more or less adapted to their environment, depending on their traits.
Various processes shape the trait distributions: some of them intervene locally, like survival
and reproduction, and others highly depend on the spatial structure of the environment,
like migration. Biological invasions are an example of a process where the role of space is
structuring. As the combination of locally limited amount of resources and large available
inhabited space tends to drive individuals further away, the ability to explore can be selected
upon. Morphological features can therefore evolve to increase dispersion: closer to the front of
the invasion, cane toads in Australia tends to develop longer legs Phillips, Brown, Webb, et al.
2006, common myna birds in South Africa and conocephalus discolor bush cricket in Britain,
larger wings Berthouly-Salazar et al. 2012; Thomas et al. 2001.

However, that process is not homogeneous in space: individuals with higher dispersal ability
are typically located at the range expansion front. This phenomenon is called spatial sorting.
Its relationship with the evolution of dispersion has been studied by biologists for the past
two decades Birzu, Hallatschek, and Korolev 2018; Shine, Brown, and Phillips 2011; Thomas
et al. 2001; Travis and Dytham 2002; Travis, Mustin, et al. 2009. More recently, mathematical
studies have been quantifying its influence on the asymptotic speed of the invasion. Our model
equation describes the effects of evolution of a trait θ > 1, which determines the dispersion
rate, in space (x ∈ R) and through time (t ≥ 0) in a population subject to sexual reproduction
and competition. The trait density f(t, x, θ) evolves according to:

∂tf(t, x, θ) = r [ B[f ](t, x, θ)︸ ︷︷ ︸
reproduction

−K−1(t, x)f(t, x, θ)︸ ︷︷ ︸
competition

] + θΔxf(t, x, θ)︸ ︷︷ ︸
dispersion

, (5.1)

for Δx the Laplace operator with respect to x.
When the dispersal rate is possibly unbounded, the relationship between the front propa-

gation and sustained spatial sorting leads to an acceleration of front propagation Berestycki,
Mouhot, and Raoul n.d.; Bouin, Calvez, et al. 2012; Bouin, Henderson, and Ryzhik 2017a;
Calvez, Henderson, et al. 2022, contrary to the case of constant dispersion for which it is well
established that the front expands asymptotically at constant speed Aronson and Weinberger
1978; Berestycki, Hamel, and Nadin 2008; Fang and Zhao 2011; Genieys, Volpert, and Auger
2006; Gourley 2000; Hamel and Ryzhik 2014; Mirrahimi and Raoul 2013.

To our knowledge, analytical results describing the asymptotic accelerating rate of prop-
agation exist only for asexual (clonal) populations (e.g., see Berestycki, Mouhot, and Raoul
n.d.; Bouin, Henderson, and Ryzhik 2017a; Calvez, Henderson, et al. 2022), for which the
reproduction operator in (5.1) is :

B[f ] = f + σ2Δθ f ,

for some constant σ2 ≥ 0 depending on the mutation variance and mutation rate and for Δθ

the Laplace operator with respect to θ. In this case, the position of the population range
asymptotically expands as t3/2 (see Bouin, Calvez, et al. 2012; Berestycki, Mouhot, and Raoul
n.d.; Bouin, Henderson, and Ryzhik 2017a; Calvez, Henderson, et al. 2022 for more details).
Furthermore, the precise asymptotic position of the front obtained from (5.1) has been derived
in Calvez, Henderson, et al. 2022, by specifying the prefactor term. The value of this prefactor
is sensitive to how the competition is modelled : when it is local in trait, it has been shown to
be equal to a larger value (Berestycki, Mouhot, and Raoul n.d.; Bouin, Henderson, and Ryzhik
2017a).
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However, as reproductive mode is thought to potentially significantly influence the rate of
propagation Williams, Hufbauer, and Miller 2019, we take interest into invasions of sexually
reproducing populations. An analogous model as for asexual populations can be built using
Fisher’s infinitesimal model, a model of allelic segregation that has been studied and used
for a century in quantitative genetics, a branch of evolutionary biology Barton, Etheridge,
and Véber 2017; Bulmer 1971; Fisher 1919; Lange 1978; Tufto 2000; Turelli 2017; Turelli and
Barton 1994. This model has also been used to model sexually reproducing populations in
several integro-differential studies Calvez, Garnier, and Patout 2019; Mirrahimi and Raoul
2013; Raoul 2017, with the following reproduction operator in (5.1):

B[f ](t, x, θ) =
∫∫

(θmin,∞)2
Gλ

[
θ − θ1 + θ2

2

]
f(t, x, θ1) f(t, x, θ2)

(t, x)
dθ1 dθ2.

It assumes that the trait of the offspring is given by the mean parental trait up to a random
normal deviation given by Gλ with constant segregational variance λ2. Using this model, the
authors of the report Calvez, Crevat, et al. 2020 predicted and numerically confirmed an
asymptotic invasion rate of t5/4 for sexually reproducing populations.

However, to understand the complexity of the interplay between ecology and evolution in
the dynamics of an invasion, the relationship between the propagation and the trait distribution
has to be untangled. That requires to describe precisely the trait distribution and the effect
of spatial sorting at the front of the invasion, which is the goal of this paper. First, we present
our model and the explicit formula that we derive to approximate the position of the front
propagation and its local trait distribution at large times (Section 5.2). Next, we present
numerical simulations that confirm this formula (Section 5.3). Finally, we derive formally the
limit problem for large times and find an explicit solution to it (Section 5.4).

5.2 Deterministic model
In this section, we present the integro - differential model that we use and state our formal result
as an approximation of the solutions of the resulting equation. The population is described
according to its location x ∈ R and its dispersive trait θ ∈ (θmin, +∞), with θmin > 0. Here
we are interested by the evolution of the density f(t, x, θ) of individuals being at time t ≥ 0
at the location x ∈ R, presenting the trait θ. We also assume that, initially, the density is
compactly supported.

Our model. The evolution of the density f(t, x, θ) can be modeled with the following
reaction - diffusion equation for all t > 0, x ∈ R and θ > θmin:

∂tf(t, x, θ) = r
[
B[f ](t, x, θ)−K−1(t, x)f(t, x, θ)

]
+ θΔxf(t, x, θ), (5.2)

where r > 0 and K > 0 are fixed constants, and (t, x) :=
∫ ∞

θmin
f(t, x, θ) dθ is the population

size at x ∈ R and time t > 0. We will detail the reaction term B[f ] later. At first, let us
discuss the modelling motivation of each term.

First, the term r
[
B[f ](t, x, θ)−K−1(t, x)f(t, x, θ)

]
is analogous to a logistic growth

term that models reproduction and competition. More precisely, the reproduction term
B[f ](t, x, θ) represents the number of new individuals that are born with the trait θ at time
t ≥ 0 and position x ∈ R and we will detail the modelling of the segregational process later.
Moreover, at point x ∈ R and at time t ≥ 0, there is a competition between individuals for
resources, related to the parameter K which is a measure of the carrying capacity of the
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environment. When the local population size at x is relatively small – (t, x) � K – the
local population disposes of enough resources to allow an exponential - like growth, while,
if (t, x)  K, then competition between individuals is strong, and consequently the local
population size decreases. The constant r > 0 is therefore called growth rate at low density.

Then, the diffusion term θ Δxf models the dispersion phenomenon. Individuals are as-
sumed to diffuse through space at each time t, at a rate given by the dispersive trait θ ≥ θmin.
When θ gets larger, it models situations like having longer legs or bigger wings, which poten-
tially give an advantage to explore a new environment faster.

Finally, let us come back to the reproduction operator B[f ]. We consider a monoecious
population in which the individuals breed randomly and only with those at the same location
x ∈ R. At time t, an individual with trait θ1 finds a mate with trait θ2 with the probability
density equal to the trait frequency at position x : f(t, x, θ2)/(t, x). To model the segre-
gation, we use Fisher’s infinitesimal model, which classically states that the offspring trait
differs from the mean parental trait (θ1 + θ2)/2 according to a normal distribution with a
segregrational variance λ2 > 0 assumed to be constant and independent of the parental trait
values. These assumptions imply the following formulation of the reproduction term:

B[f ](t, x, θ) =
∫∫

(θmin,∞)2
Gλ

[
θ − θ1 + θ2

2

]
f(t, x, θ1) f(t, x, θ2)

(t, x)
dθ1 dθ2.

The term Gλ[θ − (θ1 + θ2)/2], symbolizing the stochasticity of the segregation process, is
defined as a normalized Gaussian density with variance λ2 > 0, that is:

Gλ(θ) :=
1√

2πλ2 exp
[
− θ2

2λ2

]
. (5.3)

Let us rescale the equation by setting :

t = rt, x =
√

r

θmin
x, θ =

θ

θmin
, and f(t, x, θ) =

θmin
K

f(t, x, θ).

Then, we can simplify the previous PDE into:

∂tf(t, x, θ) = B[f ](t, x, θ)− �(t, x)f(t, x, θ) + θΔxf(t, x, θ), (5.4)

with the rescaled population size:

�(t, x) =
∫ ∞

1
f(t, x, θ) dθ.

By this simplification, the reproduction term is:

B[f ](t, x, θ) =
∫∫

(1,∞)2
Gλ

[
θ − θ1 + θ2

2

]
f(t, x, θ1)

f(t, x, θ2)
�(t, x)

dθ1 dθ2, (5.5)

where Gλ is given by (5.3), and λ = λ/θmin. One can notice the truncation at the bottom
level θmin = 1, chosen for the sake of simplicity (note that θmin can only take positive values),
which does not influence the long time asymptotics in the subsequent analysis as θ is expected
to take large values at the front.

Main result. In this paper, we denote the interval [xa, xb] by x · [a, b], for some x ∈ R

and compact interval [a, b].Moreover, as some computations are only formal, we state our main
result as a conjecture:
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Conjecture 1. Define the constant

yc = 4
(

λ

3

)1/2
. (5.6)

There exists an interval of trait values δ0 ≤ 1 such that, for all 0 < δ ≤ δ0, the density f at
large time t ≥ 0 can be approximated by:

f(t, x, θ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
2

√
πλ

exp
[
− 1

4λ2

[
θ − θ̄behind(x)

]2 + O
δ→0

(δ) + O
t→∞( 1

t )
]

,

for x ≤ yc t5/4, θ ∈ θ̄behind · [1− δ, 1 + δ],

exp
[(

1−
(

x
yc t5/4

)4/3
)

t

]
× 1

2
√

πλ
exp

[
− 1

4λ2

[
θ − θ̄ahead(t, x)

]2 + O
δ→0

(
δ + δ2 [

x
t5/4

]8/3
)

+ O
t→∞( 1

t )
]

,

for x ≥ yc t5/4, θ ∈ θ̄ahead · [1− δ, 1 + δ].

The approximated mean dispersal trait behind and ahead of the front are given by:⎧⎨⎩ θ̄behind(x) = λ4/5(6x2)1/5, x ≤ yct
5/4,

θ̄ahead(t, x) =
(
3λ2 x2

2t

)1/3
, x ≥ yct

5/4.
(5.7)

For x ≥ yc t5/4, we call the coefficient exp
[(

1−
(

x
yc t5/4

)1/3
)

t

]
the prefactor of the trait

distribution, which is of the form exp
[
−c

(
x

yc t5/4

)
t
]
, where the function c is positive and

increasing on ]1, +∞[.
The justification of this conjecture is postponed to Section 5.4.

Conjecture 1 yields that at each time t ≥ 0 large enough, the propagating front is at the
position:

X(t) ≈ yc t5/4 = 4
(

λ

3

)1/2
t5/4. (5.8)

Additionally, at large time t and all space position x ∈ R, the dispersive trait is normally
distributed, with variance 2λ2. Behind the front, i.e., at all position x � X(t), the mean of
the dispersive trait can be approximated by the value of θ

behind indicated at the first line of
(5.7) while ahead of the front, i.e., at all position x  X(t), it can be approximated by the
value of θ

ahead indicated at the second line of (5.7).
Moreover, the prefactor of the distribution trait, exp

[
−c

(
y
yc

)
t
]
, with c > 0 increasing on

]1, +∞[ and y = t−5/4x, indicates that, ahead of the front, the population size presumably
decreases with regard to the rescaled space variable y at a given time t > 0.

5.3 Simulations and validation
In this section, we display numerical simulations, in order to validate the approximation of the
solution of the Eq. (5.4) provided by Conjecture 1. The initial distribution used for simulation
is assumed to be a truncated Gaussian distribution:

f(0, x, θ) =
√

2
π

exp
[
− x2 + (1− θ)2

2

]
1θ≥1, (5.9)
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with 1θ≥1 the characteristic function of {θ ≥ 1}. The segregational variance λ2 is taken equal
to 1/2. The discretization of the sexual reproduction term B[f ] represents the biggest challenge
for the simulations, in comparison to the asexual case (see Calvez, Crevat, et al. 2020).

5.3.1 Scheme
We consider xmax ≥ 0 and θmax ≥ 1 so that we work with tuples (x, θ) in the bounded domain
[0, xmax]×[1, θmax], discretized with the meshes (xi)1≤i≤Nx and (θj)1≤j≤Nθ

, respectively of step
length δx > 0 and δθ > 0. As for the time discretization, let δt > 0 be a time step length, and
let us define for all n ∈ N, tn := n δt. We denote by AN

x the matrix of the discrete Laplace
operator in x of size Nx with Neumann boundary condition at x = 0 and Dirichlet boundary
condition at x = xmax:

AN
x =

1
δx2

⎛⎜⎜⎜⎜⎜⎜⎝
−1 1 (0)
1 −2 1

. . . . . . . . .
1 −2 1

(0) 1 −2

⎞⎟⎟⎟⎟⎟⎟⎠ ∈MNx(R),

and the diagonal matrix:

Dθ =

⎛⎜⎝ θ1 (0)
. . .

(0) θNθ

⎞⎟⎠ ∈MNθ
(R).

Futhermore, we introduce a 3D hypermatrix Gθ ∈MNθ,Nθ,Nθ
(R) such that:

∀i, j, k, Gθ(i, j, k) = Gλ

[
θk − θi + θj

2

]
,

representing the discretization of the segregation kernel (Gλ given by (5.3)).
For all n ∈ N, we approximate (f(tn, xi, θj))1≤i≤Nx,1≤j≤Nθ

by a matrix:

F n =
(
F n

ij

)
1≤i≤Nx,1≤j≤Nθ

∈MNx,Nθ
(R),

and the population size (�(tn, xi))1≤i≤Nx by the vector:

�̃n
i :=

Nθ∑
k=1

F n
i,k δθ ≈ �(tn, xi),

using the following scheme. At each time iteration n,

1. For every index 1 ≤ k ≤ Nθ, we compute the vector V n
k,l defined by:

∀l, V n
k,l := δθ2

[
F n Gθ(·, ·, k) (F n)T

]
ll

.
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We can check that V n
k,l is the discretization of the reproduction integral term:

V n
k,l = δθ2

Nθ∑
i,j=1

F n
l,iGθ(i, j, k)F n

l,j ,

≈ δθ2
Nθ∑

i,j=1
f(tn, xl, θi)Gλ

[
θk − θi + θj

2

]
f(tn, xl, θj),

≈
∫∫

(1,∞)2
f(tn, xl, θ1)Gλ

[
θk − θ1 + θ2

2

]
f(tn, xl, θ2) dθ1dθ2.

Now to compute the reproduction matrix MatReprod ∈ MNx,Nθ
(R), we need to divide

the previous quantities by the corresponding �̃n
i . To be consistent, we set:

∀i, k, Matn
Reprod(i, k) =

{
V n

k,i/�̃n
i , if �̃n

i > 0,

0, else.

2. We define the diagonal matrix Dn
� := diag ((�̃n

i )1≤i≤Nx) ∈MNx(R).

3. We approximate in time using an explicit Euler scheme that is for all n ∈ N:

F n+1 := F n + δt
[
AN

x × F n ×Dθ + r
(
Matn

Reprod −K−1 ×Dn
� × F n

)]
. (5.10)

In this section, the parameters r and K are equal to 1. The general scheme 5.10 is used
in supplementary materials, to show the effects of differents parameters on the invasion.

To be sure that this scheme gives a good approximation of the solution of the PDE (5.4),
the spatial step δx is taken large enough.

5.3.2 Numerical results
We show our results of simulations of the solution of the Eq. (5.4) in two figures Fig. 5.1 and
Fig. 5.2. In the first one, we display different features of the front, whereas in the second one,
we compare the numerical trait distribution behind the front with the approximation formally
obtained in Conjecture 1.

In the top subfigure Fig. 5.1 (a), the population size �(t, x) is displayed at multiple time
regularly spaced between t = 20 and t = 200 for different scaled position x. As expected,
thanks to Fig. 5.1 (a), we can see that this front accelerates: there exists a constant ynum

c such
that the front at time t is at position:

Xnum(t) = ynum
c t5/4,

where the numerical front position Xnum(t) at time t ≥ 0 is defined by:

Xnum(tn) = xinum(tn), with inum(tn) := argmin
1≤i≤Nx

|�̃n
i − 0.01| . (5.11)

More precisely, thanks to a linear regression, the constant ynum
c can be approximated by 2.1,

and the exponent of t by 1.22 (with R2 = 1 and p-value < 10−4). These numerical results are
consistent with (5.8), which numerically gives:

X(t) = 4
( 1

2× 9

)1/4
t5/4 ≈ 1.94 t5/4.
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(a)

(b)

Figure 5.1: Simulations of the invasion of a sexual population, associated to the
Eq.(5.4) with parameters δt = 0.02, δx = 4, δθ = 2/3, xmax = 3000 and θmax = 201. (a)
Plot of the population size �(t, ·) for successive fixed times at regular intervals from t = 20 to
t = 200, with respect to the self - similar variable xt−5/4. (b) Plot of the mean of the dispersive
trait θ

num(t) (see (5.12)) at the front position with respect to time (blue curve) and of the
function t→ 1.02t0.54 (red curve), in log− log scale.
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With Fig. 5.1 (b), we confirm that the mean of the dispersive trait at the front that we get from
the numerical simulations is quite consistent with the approximation given by Conjecture 1.
Precisely, let us define the mean of the dispersive trait θ̄num(t) at the front position Xnum(t),
given by:

θ̄num(t) :=
∫
R

θ f(t, Xnum(t), θ) dθ

�(t, Xnum(t))
. (5.12)

(a)

(b)

Figure 5.2: Heatmap of the trait distribution of a sexual population, associated to
the Eq. (5.4) with parameters δt = 0.02, δx = 4, δθ = 2/3, xmax = 3000 and θmax = 201. (a)
Trait distribution given by the numerical simulations, at t = 200. The red line represents the
approximation of the mean trait behind the propagating front given by (5.7), and is common
to both subfigures, while the black line is the mean trait behind the propagating front given
by the simulations. (b) Trait distribution behind the propagating front given by Conjecture 1,
at t = 200.

Using a linear regression on the values for t ∈ [60, 200] (illustrated in Fig. 5.1 (b)), the
mean of the dispersive trait θ̄num can be approximated by:

θ̄num(t) ≈ 1.02 t0.54, (R2 = 1, p-value < 10−14).
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(a) t = 50 (b) t = 100

(c) t = 150 (d) t = 200

Figure 5.3: Contour lines of the trait distribution during the invasion of a sexual
population, given by simulations, at (a) t = 50 (b) t = 100 (c) t = 150 (d) t = 200. The
red line represents the approximation of the mean trait behind the propagating front given by
(5.7), at time t = 200. The parameters are δt = 0.02, δx = 4, δθ = 2/3, xmax = 3000 and
θmax = 201.

We can compare this relationship with the mean of the dispersive trait θ̄(t) at the front X(t),
given respectively by (5.7) and (5.8):

θ̄(t) = λ4/5(6X(t)2)1/5 = 2λ
√

t =
√

2t.

We notice a non trivial difference between θ̄(t) and θ̄num, mainly in their prefactors (
√

2 and
1.02), but also in their exponents (0.5 and 0.54) (see also the gap between the red and black
lines in Fig. 5.2). This seems partly due to numerical inaccuracies resulting from having a
bounded trait space (thus disregarding the largest traits) and from numerical scheme errors.
One can also note that the asymptotic distribution indicated by Conjecture 1 might not yet
be reached at time 200 (upper time bound in our numerical simulations).

Let us turn to the description of the trait distribution behind the front. In Fig. 5.2, we
display the contour lines of the trait distribution at time t = 200: subfigure (a) is the trait
distribution given by the simulations, while (b) is the formal trait distribution (behind the
front only) given by Conjecture 1. Our approximation appears to fit the numerical results.
More precisely, the red curve, representing the mean of the dispersive trait at each position
behind the front given by (5.7), yields a good approximation of the numerical mean of the
dispersive trait. Moreover, if we represent the numerical trait distribution behind the front at
multiple times (see Fig. 5.3), we can see that it seems to remain stationary, which is consistent
with the fact that the expression of the approximation behind the front given by Conjecture 1
is independent of the time.

Fig. 5.4 shows the evolution of the amplitude of the trait distribution f(t, x, ·) ahead of
the front, in blue curve (log scale). We can see that it can be approximated by the red curve,
which displays the prefactor of the trait distribution ahead of the front given by Conjecture 1,
and that this approximation holds even at very low density. The difference is due to the other
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Figure 5.4: Plot of logarithm of the amplitude of the distribution ahead of the front
at time t = 200. The blue curve represents the log of the maximum of the distribution
f(t, x, ·) of the numerical approximation given by the scheme, for different positions x located
beyond the numerical value of the front position (Xnum(200) ≈ 1400). The red curve represents
the prefactor of the trait distribution ahead of the front given by Conjecture 1. The parameters
are δt = 0.02, δx = 4, δθ = 2/3, xmax = 3000 and θmax = 201.

terms of higher power, which are neglected.

5.4 Formal proof of the results
This section is devoted to the formal proof of Conjecture 1. In Section 5.4.1, we set the self-
similar variables framework suitable to capture the asymptotic invasion acceleration process.
Then in Section 5.4.2, we formally derive an asymptotic equation that will allow us in Sec-
tion 5.4.3 to determine the position of the front and to derive an approximation of the trait
distribution f(t, x, θ) by finding a solution to the limit problem.

5.4.1 Preliminaries
According to the same methodology used in previous studies that model the evolution of
dispersion (see for instance Bouin, Henderson, and Ryzhik 2017a; Calvez, Henderson, et al.
2022; Calvez, Crevat, et al. 2020), we define the function u such that:

f(t, x, θ) = exp
[
−t u

(
s(t), t−5/4x, t−1/2θ

)]
, (5.13)

where s(t) = log(t) is a time parametrization (chosen so that ts′(t) = 1). According to
the formal arguments of Calvez, Crevat, et al. 2020, we also scale the spatial variable (y =
t−5/4x) and trait variable (η = t−1/2θ), which leads to the spatial invasion rate accelerating
proportionally to t5/4 (see Calvez, Crevat, et al. 2020 for details). Like in the latter, we recall
that the power exponents are chosen so that the all biological forces (particularly, migration
and reproduction) contribute in a balanced way in the following PDE on u, satisfied for all
t ≥ 0, for all y ∈ R and for all η ≥ e−s/2:

− u(s, y, η)− ∂su(s, y, η) +
5
4

y∂yu(s, y, η) +
η

2
∂ηu(s, y, η)

= η
[
(∂yu(s, y, η))2 − e−sΔyu(s, y, η)

]
+ (I[u](s, y, η)− �u(s, y)) , (5.14)
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where:
�u(s, y) = es/2

∫ ∞

e−s/2
exp [−esu(s, y, η)] dη, (5.15)

and:

I[u](s, y, η) = es

√
2πλ2�u(s, y)∫∫

(e−s/2,∞)2
exp

[
es

(
−

(
η − η1+η2

2

)2

2λ2 + [u(s, y, η) − u(s, y, η1) − u(s, y, η2)]

)]
dη1 dη2. (5.16)

Henceforth, we note for the sake of clarity: α = 5/4 and β = 1/2. We generalise also the
notation oε→0(εp) for a sequence of functions rε(y, η) by :

rε(y, η) = oε→0(εp) if sup(y,η) |ε−prε(y, η)| goes to 0, as ε vanishes.

Our formal aim is to determine the large time behaviour of the solution of (5.14), as s→∞
(which is equivalent to take t→∞).

5.4.2 Formal asymptotic equation
In this subsection, we will derive from (5.14) an asymptotic equation in the limit s→∞ that
will explicit the interplay between spatial sorting and trait distribution at the front of the
solution. The main idea is to perform a Taylor expansion of u. For that purpose, let us define
the variation ε = e−s/2. In the line of Calvez, Garnier, and Patout 2019, we make the following
ansatz:

u(s, y, η) = u0(y, η) + ε2u1(y, η) + oε→0(ε2). (5.17)

In the next paragraph, we justify the following separation of trait and space variable in u0,
where:

u0(y, η) = b(y) +
(η − a(y))2

4λ2 . (5.18)

where a and b are continuous and piecewise differentiable functions of the space variable. Let
us interpret them.

Using the ansatz (5.17) and (5.18) in (5.13) yields (we recall that ε = e−s/2):

f(s, y, η) = exp
[
− b(y)

ε2

]
exp

[
− (η − a(y))2

4λ2ε2

]
exp

[
−u1(y, η) + O

ε→0
(ε2)

]
. (5.19)

Hence, when s→∞, the leading term of the trait distribution η �→ f(s, y, ·) is Gaussian, and
the correction is brought by a term determined by u1. The space dependent functions a and
b crystallize the main effect of spatial sorting on the trait distribution:

� a(y) gives the mean rescaled dispersal trait η > 0 at position y. It is therefore positive
and satisfies the relation:

u0(y, a(y))) = min{u0(y, η), with η ∈ (0,∞)};
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� b(y) determines the prefactor of this distribution: formally, we will see that if b(y) > 0,
�u(s, ·) vanishes when s tends to ∞. On the contrary, the set {b(y) = 0} is associated
to that area where �u is asymptotically non-zero. In the context of a spatial invasion, it
corresponds to the spatial area that has already been invaded. Hence, we are searching
b such that there exists a constant yc such that {b(y) = 0} = {y ≤ yc}. We can interpret
yc as the rescaled position of the front.

Finally, the space dependent functions a and b are linked to the corrector term u1 by an
asymptotic equation that we deduce from (5.14) (see below for the details). For y where a and
b are differentiable (recall that α = 5/4 and β = 1/2 are known):

− b(y) − (η − a(y))2

4λ2 + αy

[
b′(y) − a′(y) η − a(y)

2λ2

]
+ βη

η − a(y)
2λ2 − η

[
b′(y) − a′(y) η − a(y)

2λ2

]2

= exp
[

u1(y, η) + u1(y, a(y)) − 2u1

(
y,

η + a(y)
2

)]
− 1{y≤yc}. (5.20)

In the next section, we find an explicit solution to (5.20), which encodes the intertwined
relationship between spatial sorting and trait distribution.

Explanation for the decomposition of u0 (5.18). We will recall the fundamental
steps, more extensively detailed formally in Garnier et al. 2022 and rigorously in Calvez,
Garnier, and Patout 2019 (for a model without any spatial structure). From the Taylor
expansion of u given in (5.17), we get the following expression for I[u]:

I[u](s, η, y) = 1
ε
√

2πλ2

∫∫
(ε,∞)2

exp
[ 1

ε2 A0
y,η(η1, η2)

]
exp

[
A1

y,η(η1, η2)
]

exp
[

o
ε→0

(1)
]

dη1dη2∫ ∞
ε

exp
[
− u0(y,η′)

ε2 − u1(y, η′)
]

dη′
,

where: ⎧⎪⎪⎨⎪⎪⎩
A0

y,η(η1, η2) = − 1
2λ2

[
η − η1+η2

2

]2
+ u0(y, η)− u0(y, η1)− u0(y, η2),

A1
y,η(η1, η2) = u1(y, η)− u1(y, η1)− u1(y, η2).

Then, we have several considerations to make. First, if we assume that u0 reaches its minimum
at a non degenerated-point, then the following modified expression of the denominator:∫ ∞

ε
exp

[
− 1

ε2
[
u0(y, η′)−min u0(y, .)

]− u1(y, η′)
]

dη′,

will concentrate, as ε goes to 0, around the minimum of u0(y, ·) and have a finite limit.
Therefore it is relevant to introduce it both at the numerator and the denominator:

1[
ε
√

2πλ2
]2

∫∫
(ε,∞)2 exp

[ 1
ε2

(
A0

y,η(η1, η2) + min u0(y, .)
)]

exp
[
A1

y,η(η1, η2) + o
ε→0

(1)
]

dη1dη2

1
ε
√

2πλ2

∫ ∞
ε

exp
[
− 1

ε2 [u0(y, η′) − min u0(y, .)] − u1(y, η′)
]

dη′ .

As we want consequently the numerator not to diverge as ε→ 0, we need that:

∀η ∈ R, max
(η1,η2)

[
− 1

2λ2

(
η − η1 + η2

2

)2
+ u0(y, η) − u0(y, η1) − u0(y, η2) + min u0(y, .)

]
= 0. (5.21)

As shown in Garnier et al. 2022, thanks to some convexity arguments, this leads necessarily
to choose u0(y, ·) as a quadratic function in η with variance λ2, hence (5.18).

Derivation of the asymptotic Eq. (5.20) verified by yc, a(y), b(y) and u1(y, η).
To get an asymptotic equation from (5.14), we still need to establish (formally) the limit of
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I[u](s, y, η) as s = −2 log(ε) goes to ∞, by incorporating the quadratic expression (5.18) of
u0 in I[u]. We will separate the cases of the numerator and the denominator for the sake of
clarity.

According to Laplace’s method, as we expect the denominator to concentrate around the
minimum of u0, namely at a(y), one can perform the change of variable z := η′−a(y)

ε :

1
ε
√

2πλ2

∫ ∞

ε

exp
[
− 1

ε2

[
u0(y, η′) − min u0(y, .)

]
− u1(y, η′)

]
dη′

= 1√
2πλ2

∫ ∞

1−a(y)/ε

exp
[

− z2

4λ2

]
exp [−u1 [y, a(y) + εz]] dz →

ε→0

√
2 exp [−u1 [y, a(y)]] .

Similarly, following the analysis of the authors of Garnier et al. 2022 and Calvez, Garnier,
and Patout 2019 on (5.21), we get that the numerator concentrates around the point (η, η),
with η = η+a(y)

2 > 0, realizing its minimum. One can thus perform the change of variables
(η1, η2) = (η + εz1, η + εz2), so that a straightforward computation following the quadratic
expression (5.18) of u0 leads to:

− 1
ε2

[
− 1

2λ2

[
η − η1 + η2

2

]2
+ u0(y, η) − u0(y, η1) − u0(y, η2) + min u0(y, .)

]
= 1

4λ2 z1z2 + 3
8λ2 (z2

1 + z2
2), (5.22)

and therefore:
1[

ε
√

2πλ2
]2

∫∫
(ε,∞)2

exp
[ 1

ε2

(
A0

y,η(η1, η2) + min u0(y, .)
)]

exp
[
A1

y,η(η1, η2) + oε→0(1)
]

dη1dη2,

=
∫∫

(1−η/ε,∞)2

exp
[
− z1z2

4λ2 − 3
8λ2 (z2

1 + z2
2)
]

[
√

2πλ2]2
exp [u1(y, η) − u1(y, η + εz1) − u1(y, η + εz2)] dz1dz2,

→
ε→0

√
2 exp [u1(y, η) − 2u1(y, η)] .

We can thereby obtain the formal limit of I[u]:

I[u] (s, y, η) →
s→∞ exp

[
u1(y, η) + u1(y, a(y))− 2u1

(
y,

η + a(y)
2

)]
.

Moreover, we need the formal limit of �u(s, y) as s = −2 log(ε) tends to ∞:

�u (− 2 log(ε), y) =
1
ε

∫ ∞

ε
exp

[
−u(−2 log(ε, y, η)

ε2

]
dη,

= exp
[
−b(y)

ε2

] 1
ε

∫ ∞

ε
exp

[
−(η − a(y))2

4λ2ε2

]
exp

[
−u1(y, η) + o

ε→0
(1)

]
dη,

= exp
[
−b(y)

ε2

] ∫ ∞

1− a(y)
ε

exp
[
− z2

4λ2

]
exp

[
−u1(y, a(y) + εz) + o

ε→0
(1)

]
dz.

Hence, formally, we get:

�u (− 2 log(ε), y) −→
ε→0

1{b(y)=0}2
√

πλ exp [−u1(y, a(y))] .

By integrating all these formal computations in (5.14), we formally obtain an asymptotic
equation satisfied by a, b and u1, where a and b are differentiable:

− b(y) − (η − a(y))2

4λ2 + αy

[
b′(y) − a′(y) η − a(y)

2λ2

]
+ βη

η − a(y)
2λ2 − η

[
b′(y) − a′(y) η − a(y)

2λ2

]2

= exp
[

u1(y, η) + u1(y, a(y)) − 2u1

(
y,

η + a(y)
2

)]
− 1{b(y)=0}2

√
πλ exp [−u1(y, a(y))] .
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As we are describing a front propagation, we are looking for a and b continuous on R and
differentiable everywhere but not necessarily at the front position (to be determined):

yc = sup{y, b(y) = 0}.
For such functions a and b, we have by evaluating the latter at η = a(y) for y < yc:

2
√

πλ exp [−u1(y, a(y))] = 1., (5.23)
which set the constant part of u(y, ·) for y < yc. Hence, for y �= yc and η ∈ Jy (subset of R∗

+ to
be determined), we need to solve the asymptotic Eq. (5.20), i.e. finding yc, a, b, u1 such that
u1(y, a(y)) = − log (2

√
πλ) and :

− b(y) − (η − a(y))2

4λ2 + αy

[
b′(y) − a′(y) η − a(y)

2λ2

]
+ βη

η − a(y)
2λ2 − η

[
b′(y) − a′(y) η − a(y)

2λ2

]2

= exp
[

u1(y, η) + u1(y, a(y)) − 2u1

(
y,

η + a(y)
2

)]
− 1{y<yc}.

5.4.3 Resolution of the asymptotic Eq. (5.20)
Heuristics. Let us define for y �= yc, η > 0 (recall that α = 5/4 and β = 1/2 are known):

g(y, η) :=− b(y)− (η − a(y))2

4λ2 + αy

[
b′(y)− a′(y)

η − a(y)
2λ2

]
+ βη

η − a(y)
2λ2 − η

[
b′(y)− a′(y)

η − a(y)
2λ2

]2
+ 1{y<yc}.

(5.24)

Let us fix y �= yc. For η > 0 such that g(y, η) > 0, we can reformulate (5.20) as:

Ty(η) = Ly(u1)(η), (5.25)

where:
Ty(η) := log [g(y, η)] ,

and:
Ly(u1) : η �→ u1(y, η) + u1(y, a(y))− 2u1

(
y,

η + a(y)
2

)
. (5.26)

Eq. (5.25) suggests that a, b and yc are to be chosen so that Ty lies in the image of the linear
operator Ly. One can notice that the kernel of Ly is composed of the affine functions, hence:

dim ker (Ly) = 2.

Heuristically, the image of Ly is orthogonal to a two dimensional space, which is generated by
δa(y) and δ′

a(y). More precisely, following Calvez, Garnier, and Patout 2019, one can show that
if Ty verifies: {

Ty (a(y)) = 0,

T ′
y (a(y)) = 0,

(5.27)

then the following sum converges:

uy : η �→
∞∑

k=0
2kTy

[
a(y) + (η − a(y)) 2−k

]
, (5.28)

and Ly(uy) = Ty. The infinite serie (5.28) determines u1(y, ·) up to its affine part, which lies in
the kernel of Ly. We already know its constant part from (5.23): u1(y, a(y)) = − log(2

√
πλ)

for y < yc. We conjecture that the same holds for y > yc. The linear part will be identified in
a second time.
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Determination of yc, a(y), b(y). Hence, we first need to solve (5.27), that is to find yc > 0,
(a, b) ∈ C0(R+) ∩ C1(R+\{yc}), such that:

∀y �= yc,

{
−b(y) + αyb′(y)− a(y)(b′(y))2 + 1{y<yc} = 1,

−αya′(y) + βa(y)− 2λ2(b′(y))2 + 2a(y)b′(y)a′(y) = 0.
(5.29)

Here, we present an explicit solution to (5.29):

Proposition 5.4.1. Let us define:

yc = 4

√
λ

3
, a : y �→

⎧⎨⎩ λ4/5 61/5 y2/5, if y ≤ yc,(
3λ2

2

)1/3
y2/3, if y > yc,

and:

b : y �→
⎧⎨⎩ 0, if y ≤ yc,(

3
λ24

)2/3
y4/3 − 1, if y > yc.

Then a, b ∈ C0(R+) ∩ C1(R+\{yc}) and yc, a and b are solutions of (5.29).

Remark 13. The functions a, b and yc given in the previous proposition are the only solutions
of (5.29) of the form : a(y) = Cym, b(y) = Kyn−1 that are positive for y > yc and continuous
in yc.

Identification of u1(y, ·) up to its linear part. To derive a solution for (5.20) from
5.4.1, one still has to determine u1(y, ·) for all y. The first step is doing so up to its linear part
which will be specified later (the constant part u1(y, a(y)) is known from (5.23)). According to
the heuristics paragraph at the beginning of this section and to the analysis done in [Calvez,
Garnier, and Patout 2019], the latter should be equal to the infinite series uy introduced by
(5.28). It involves therefore Ty(·) = log [g(y, ·)], which requires g(y, ·) > 0 (g is defined by
(5.24)). As the latter is a three order polynomial in η with a negative leading coefficient, it is
negative as η becomes large so we cannot define Ty on the whole R

∗
+ space. However, because

a, b and yc are solutions of (5.29), the following holds and ensures that g(y·) is positive in the
vicinity of a(y):

g(y, a(y)) = 1, ∂ηg(y, a(y)) = 0.

We aim therefore at solving (5.20) locally in η around a(y).

Proposition 5.4.2: Control of the infinite series (5.28). Let a, b and yc be as in 5.4.1.
Then, there exists 0 < δ0 ≤ 1 such that, for all y �= yc, η > 0 such that η

a(y) ∈ [1−δ0, 1+δ0], we
have g(y, η) > 0. Moreover, for y �= yc, Ty = log(g(y, ·)) is well defined on a(y) · [1− δ0, 1 + δ0]
and for all 0 < δ ≤ δ0:

� for y < yc and η ∈ a(y) · [1 − δ, 1 + δ], the series defined in (5.28) converges and is
bounded uniformly with regard to η and y and the bound is of the form A |δ|2.

� for y > yc and η ∈ a(y) · [1 − δ, 1 + δ], the series defined in (5.28) converges and is
bounded uniformly with regard to η, and the bound is of the form: B|δ|2y8/3.

Proof. Since g(y, ·) is a polynomial of order three in η such that:

g(y, a(y)) = 1, ∂ηg(y, a(y)) = 0,
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we can define Py polynomial of order three such that:

∀η > 0, g(y, η) = 1− Py

(
η

a(y)

)
.

As Py(1) = P ′
y(1) = 0, we get:

Py(X) = (X − 1)2 [γX + Py(0)] ,

where γ > 0 is the leading coefficient of Py.
We next compute, for y �= yc (by continuity for Py(0)):

γ =
a′(y)2a(y)3

4λ4 , Py(0) = b(y) +
a(y)2

4λ2 − αy

[
b′(y) + a′(y)

a(y)
2λ2

]
+ 1{y>yc}.

Hence (adopting the notations Ka− ,Ka+ and Kb such that for y < yc, a(y) = Ka−y2/5 and for
y > yc, a(y) = Ka+y2/3, b(y) = Kby

4/3 − 1 – see the previous proposition):

� for y < yc, γ = a(y)5

25y2λ4 = Ka− 5

25λ4 and:

Py(0) =
a2

4λ2 −
αa′(y)ya(y)

2λ2 =
a2

4λ2 −
5
4
· 2a2

10λ2 = 0.

So, in that case, Py = Ka− 5

25λ4 (X−1)2X := P (X) does not depend on y. As P (1) = 0, there
exists δ ∈ (0, 1) such that for all y < yc and η ∈]a(y)(1− δ), a(y)(1 + δ)[, P

(
η

a(y)

)
< 1,

hence g(y, η) > 0.

� for y > yc, γ = 4
9

a(y)5

4y2λ4 =
K5

a+
9λ4 y4/3 := γ̃y4/3 and:

Py(0) = (b(y) + 1)− 5
3

(1 + b(y)) +
a(y)2

4λ2 −
5a(y)2

12λ2 ,

= −y4/3
[

K2
a+

6λ2 +
2Kb

3

]
= −γ̃y4/3

[
3λ2

2K3
a+

+
6Kbλ

4

K5
a+

]
,

= −γ̃y4/3
[
1 + 6× 32/3λ425/3

28/3λ12/335/3

]
= −2γ̃y4/3.

Hence: Py(X) = γ̃y4/3(X − 1)2(X − 2), thus: ∀y > yc,∀η ∈]0, 2a(y)[, g(y, η) > 1 > 0.

This proves the first part of the proposition. Let us consider 0 < δ0 ≤ 1 such that, for all
y �= yc, g(y, .) is positive on [1− δ0, 1 + δ0], and on which interval Ty is therefore well-defined.

Let us now consider 0 < δ ≤ δ0. For y �= yc, η ∈ a(y) · [1− δ, 1 + δ], let us define, for k ∈ N:

ηk := a(y) +
η − a(y)

2k
.

Next, as Ty(a(y)) = T ′(a(y)) = 0, we get the following:

2kTy(ηk) = 2k
∫ ηk

a(y)
T ′′

y (t)
ηk − t

2
dt.
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With the change of variables s = 2k (t− a(y)), we get:

2kTy(ηk) =
∫ η−a(y)

0
T ′′

y

(
a(y) + s2−k

) η − a(y)− s

2k
ds. (5.30)

T ′′
y is continuous on a(y) · [1− δ, 1 + δ], so the latter ensures that

∑
k≥0 2kT (ηk) converges for

all η ∈ a(y) · [1− δ, 1 + δ].
Finally, for y �= yc, we need to uniformly bound

∑
k≥0 2kT (ηk) with regard to η ∈ a(y) ·

[1− δ, 1 + δ]. For y < yc, from the first part of the proof, we have:

∀η ∈ a(y) · [1− δ, 1 + δ], Ty(η) = log
(

1− P

(
η

a(y)

))
,

with P (X) = γX(X − 1)2 and γ independent of y and η. Setting:

F : [1− δ, 1 + δ] → R,
x �→ log (1− P (x)) ,

we dispose of a smooth function, independent from y and η, such that:

∀η ∈ a(y) · [1− δ, 1 + δ], Ty(η) = F

(
η

a(y)

)
,

and therefore T ′′
y (η) = F ′′ (η/a(y))/a(y)2. Following (5.30), we obtain:

∀y < yc, η ∈ a(y) · [1− δ, 1 + δ],
∑
k≥0
|2kTy(ηk)| ≤

∑
k≥0

2−(k+1)‖F ′′‖∞,[1−δ,1+δ]
(η − a(y))2

a(y)2

≤ |δ|2‖F ′′‖∞,[1−δ0,1+δ0].

For y > yc, we have from above:

∀η ∈ a(y) · [1− δ, 1 + δ], Ty(η) = log
(

1− y4/3Q

(
η

a(y)

))
,

with Q(X) = γQ(X − 1)2(X − 2) (γQ a constant independent of y and η). A straight-forward
calculus leads to:

T ′′
y (η) = − y4/3

a(y)2

⎡⎢⎣ Q′′
(

η
a(y)

)
1 − y4/3Q

(
η

a(y)

) + y4/3
Q′

(
η

a(y)

)2

(
1 − y4/3Q

(
η

a(y)

))2

⎤⎥⎦ .

We recall that, additionally, for y > yc and η ∈ a(y)·[1−δ, 1+δ], we have: 1−y4/3Q
(

η
a(y)

)
> 1.

Hence, from (5.30), we obtain:

∀y > yc, ∀η ∈ a(y) · [1 − δ, 1 + δ],
∑
k≥0

|2kTy(ηk)| ≤ y4/3|δ|2
[
‖Q′′‖∞,[1−δ,1+δ] + y4/3‖Q′2‖∞,[1−δ,1+δ]

]
≤ y8/3|δ|2

[‖Q′′‖∞,[1−δ0,1+δ0]

yc
4/3 + ‖Q′2‖∞,[1−δ0,1+δ0]

]
.
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Linear part of u1. The last proposition allows to determine the function u1 for y �= yc

and η ∈ a(y) · [1 − δ, 1 + δ] for 0 < δ ≤ δ0, up to its affine part u1(y, a(y)) + γ(y)(η − a(y)),
which cannot be seen in (5.20) (recasted as Ly(u1) = Ty), because it lies in the kernel of the
finite-difference operator Ly defined by (5.26) (see also Calvez, Garnier, and Patout 2019).
Since the constant part is known from (5.23), we still need to determine the linear coefficient
γ(y) to complete the determination of u1 according to the following

u1 : (y, η) �→
∑
k≥0

2kTy

(
a(y) + (η − a(y)) 2−k

)
− log

(
2
√

πλ
)

+ γ(y)(η − a(y)). (5.31)

Following formally the computations made in [Calvez, Garnier, and Patout 2019] (see equations
(1.10) and (3.2) of the latter) and thanks to the computations on g(y, ·) performed in the proof
of 5.4.2, we obtain that:

γ(y) =
3
4

∂3
ηu1(y, a(y))

∂2
ηu1(y, a(y))

=
1
2

∂3
ηg(y, a(y))

∂2
ηg(y, a(y))

=

⎧⎨⎩
3

2a(y) for y < yc,
−3

2a(y) for y > yc.
(5.32)

The fact that γ presents a discontinuity at the front position yc reflects that g also presents a
discontinuity in yc because of the limit term of the local (in space) population size 1y<yc (see
(5.24)).

The description of γ(y) by (5.32) together with 5.4.2 completes the identification of u1.
Furthermore, for y �= yc and η ∈ a(y) · [1− δ, 1 + δ], we dispose of the following control of the
linear term:

|γ(y) (η − a(y))| = 3
2

∣∣∣∣ η

a(y)
− 1

∣∣∣∣ ≤ 3
2

δ. (5.33)

Conclusion of the resolution of Eq (5.20) 5.4.1 identifies the rescaled front position
yc, local mean trait a(y) and prefactor coefficient b(y) defining the main term of the spatial
distribution according to the formal expansion (5.19). The equations (5.31), (5.32) and (5.33)
together with 5.4.2 complete the identification and the control of u1, the first corrector term
indicated in (5.19). All this considerations allow us to propose the large-time approximation
and the magnitude of the error terms indicated in Conjecture 1.

5.5 Discussion
Contributions In this paper, we have developed a different framework than the one used
for the study of asexual populations (Berestycki, Mouhot, and Raoul n.d.; Bouin, Henderson,
and Ryzhik 2017a; Calvez, Henderson, et al. 2022) by using a mixing operator to analyze
the behaviour of the propagation front for sexual population. We have formally found an
explicit approximation of the trait distribution during the invasion by finding a solution to the
limit problem at large times. These formal computations have been numerically compared to
the solution of (5.4) and thus confirmed. All the computations have been made after having
rescaled the PDE (5.2). By a variable change, we have that, for all growth rate at low density
r > 0, carrying capacity K > 0 and segregational variance λ2 > 0, for a population with
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dispersive traits θ ≥ θmin > 0, the density f can be approximated at large time t > 0 by:

f(t, x, θ) ≈ K

θmin

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

exp
[
− 1

4λ2

[
θ − λ4/5 (

6rx2)1/5]2]
, for x ≤ yc t5/4,

exp
[
rt−

(
9x4

256 λ2t2

)1/3
]

exp
[
− 1

4λ2

[
θ −

(
3λ2x2

2t

)1/3
]2

]
,

for x ≥ yc t5/4.

with:

yc = yc

√
θmin

r
r5/4 = 4

[
λ

3

]1/2 √
θmin r3/4 = 4

[
λ

3

]1/2
r3/4.

Difference in acceleration rate between asexual and sexual invasive popu-
lations Our study shows that the effect of spatial sorting only, through the evolution of
dispersion, accelerates the speed at which a sexual population invades. The rate of this accel-
eration, of t5/4, is lower than when considering the influence of the same phenomenon on asex-
ual populations (t3/2, see Berestycki, Mouhot, and Raoul n.d.; Bouin, Henderson, and Ryzhik
2017a; Calvez, Henderson, et al. 2022). Mathematically, the blending inheritance property
of the infinitesimal model operator reduces the effect of the spatial sorting by crossing ex-
tremely dispersive individuals with less dispersive ones, which does not happen for individuals
reproducing clonally.

Extension: Shape of the front However, there are still structural questions to answer
on the asymptotic behaviour of the front that we can observe numerically. For instance, the
additional Fig. 5.5 allows us to study the deformation of the front propagation, more precisely
the shape of the transition front. In Fig. 5.5 (a), the spatial distribution � is displayed with
respect to a re-centered scale in:

X1/2(t) = sup{x ∈ R, �(t, x) = 1/2}. (5.34)

We can observe a flattening of the front shape, as t → +∞. More precisely, Fig 5.5 (b),
displaying � with respect to the re-scaled variable

(
x−X1/2(t)

)
t−1/4, shows that the shape

of the front seems to flatten at order t1/4, as the different curves overlap.

Expansion load Here, we consider only a trait linked to the dispersive ability, thus isolating
the sole effect of spatial sorting in range expansions, for which there existed no previous precise
results. By doing so, our model does not account for any process of selection by adaptation
to the local environment. However, in cases of fast range expansion, a phenomenon called
the expansion load can occur Peischl, Dupanloup, et al. 2013. As the density of individuals
at the front is low, the effective strength of natural selection is reduced allowing deleterious
mutations to accumulate at the front. That would eventually undermine the invasion process
by reducing the fitness of leading individuals (see Burton, Phillips, and Travis 2010), with
the potential effect of slowing down the speed of the front in comparison to the asymptotic
formal result of our study. Nevertheless, the clear relationship between the effect of spatial
sorting and expansion load is yet to be explored, as a recent analysis using a discrete space
framework seems to indicate that the evolution of dispersal rate can prevent expansion load
in certain cases (see Peischl and Gilbert 2018). By isolating the effect of spatial sorting, our
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(a) (b)

Figure 5.5: Plots of the density (t, ·) of a sexual population, with respect to re-
centered variables. The two plots show the evolution of the population density, associated
to (5.4), for successive times at regular intervals from t = 20 to t = 200, with respect to (a)
the re-centered variable x−X1/2(t), and (b) to the re-scaled variable (x−X1/2(t))t−1/4, with
X1/2(t) defined in (5.34). The parameters are δt = 0.02, δx = 4, δθ = 2/3, xmax = 3000 and
θmax = 201. Note that the x-axis are different between the two plots, for the sake of clarity.

study can therefore constitute a first step in understanding the intricate relationship between
the evolution of dispersion and of life history traits, ultimately providing tools to analyse the
source of variability in range expansions (see Williams, Hufbauer, and Miller 2019).

Because the formal computations ignore competition ahead of the front, even though the
simulations seems to validate our results, this paper has to be seen as a premise for a consistent
and rigorous proof for this problem.
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Chapter 6
Dynamics of dirac concentrations in the
evolution of quantitative alleles with sexual
reproduction

A proper understanding of the links between varying gene expression levels and complex trait
adaptation is still lacking, despite recent advances in sequencing techniques leading to new
insights on their importance in some evolutionary processes. This calls for extensions of the
continuum-of-alleles framework first introduced by Kimura [1965] that bypass the classical
Gaussian approximation. Here, we propose a novel mathematical framework to study the evo-
lutionary dynamics of quantitative alleles for sexually reproducing populations under natural
selection and competition through an integro-differential equation. It involves a new repro-
duction operator which is nonlinear and nonlocal. This reproduction operator is different from
the infinitesimal operator used in other studies with sexual reproduction because of different
underlying genetic structures. In an asymptotic regime where initially the population has a
small phenotypic variance, we analyse the long-term dynamics of the phenotypic distributions
according to the methodology of small variance (Diekmann, Jabin, et al. 2005). In particular,
we prove that the reproduction operator strains the limit distribution to be a product mea-
sure. Under some assumptions on the limit equation, we show that the population remains
monomorphic, that is the phenotypic distribution remains concentrated as a moving Dirac
mass. Moreover, in the case of a monomorphic distribution, we derive a canonical equation
describing the dynamics of the dominant alleles.
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6.1 Introduction

6.1.1 Model and biological motivations.
The development and popularization of sequencing techniques of the last twenty years has
been leading to a greater understanding of regulatory mechanisms of gene expression levels
and to new insights on their importance in evolutionary trajectories of complex traits (see the
recent theory of degeneration of the Y chromosome Lenormand, Fyon, et al. [2020]). However,
a complete picture of the relationship between varying gene expression levels and phenotypic
adaptation is yet to be drawn (Romero, Ruvinsky, and Gilad 2012). To model varying gene
expression levels on a trait under selection, one has to think of the effects of a gene as quanti-
tative rather than discrete. One class of models that was motivated by a similar perspective
stems from the reference study Kimura [1965]: the continuum-of-alleles models in quantita-
tive genetics, that assume that mutations produce always slightly new allelic effects, so that
the allelic effect space is considered as continuous. The method indicated by Kimura [1965]
is adapted for asexual populations, or haploid sexual populations with only one locus con-
tributing to the trait under quadratic stabilizing selection. Under these specific assumptions,
Kimura [1965] shows that the allelic effects are normally distributed under mutation-selection
balance. Several studies (Latter 1972; Lande 1975) extended the model to account for finite
number of loci with additive effects on the trait for sexual reproducing populations, still rely-
ing on the essential link between quadratic stabilizing selection and multivariate normal allelic
distributions to derive quantitative information from their non-linear model. The aim of this
paper is therefore to first study a quantitative genetics model that can account for polygenic
traits under general selection functions (not restricted to quadratic and considering situations
where the alleles do not necessarily have additive effects), in a sexually reproducing popula-
tion regulated by competition for resources. More precisely, we are interested in the following
integro-differential equation, where t ≥ 0 denotes the time:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tn(t, x, y) = r
2

[
ρY (t,x) ρX(t,y)

ρ(t) + n(t, x, y)
]
− (m(x, y) + κ ρ(t)) n(t, x, y),

ρX(t, y) =
∫

I
n(t, x′, y) dx′, ρY (t, x) =

∫
J

n(t, x, y′) dy′, ρ(t) =
∫

I×J
n(t, x′, y′) dx′ dy′,

n(0, x, y) = n0(x, y).
(P (n))

Here, n(t, x, y) denotes the allelic density of individuals of a haploid sexually reproducing
population carrying the quantitative alleles x and y at two unlinked loci of interest. The
alleles x and y are taken in compact allelic spaces I and J . Individuals experience mortality
by natural selection at a rate m(x, y) ∈ C1(I × J) depending on their genotype (x, y) ∈
I × J and regulated by a uniform competition for resources with intensity κ. The first term
in the r.h.s of P (n) is the reproduction term, which translates how alleles are transmitted
across generations under random mating at rate r. According to Mendel’s laws, there are two
equiprobable configurations which lead to an offspring being born with x and y alleles. In the
first configuration, each allele comes from a different parent, and the complementary alleles
of both parents can be chosen arbitrarily, which results in the non-linear term involving the
marginal contributions of each parent ρY (t,x) ρX(t,y)

ρ(t) . In the second configuration, both alleles
come from the same parent and the other parent can be chosen arbitrarily in the population,
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which results in the simpler term n(t, x, y).

Remark 14: One-locus diploid population.. One can notice that up to setting m̃ := m− r
2 ,

r̃ = r
2 , P (n) also describes the dynamics of a population of diploid individuals (each individual

has two alleles at each locus) whose adaptation is determined by the two quantitative alleles
(x, y) carried at a single focal locus. The following equation was derived as deterministic limit
of an individual-based model in Collet, Méléard, and Metz [2013]⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tn(t, x, y) = r̃ ρY (t,x) ρX(t,y)
ρ(t) − (m̃(x, y) + κ ρ(t)) n(t, x, y),

ρX(t, y) =
∫

I
n(t, x′, y) dx′, ρY (t, x) =

∫
J

n(t, x, y′) dy′, ρ(t) =
∫

I×J
n(t, x′, y′) dx′ dy′,

n(0, x, y) = n0(x, y).
(Pdiploid (n))

According to Mendel’s laws, the copies x and y must be inherited each from a different parent
and the other copy of each parent can be chosen arbitrarily, which results in the same non-
linear term as in the first configuration for the two-locus haploid case. In the diploid case,
r̃ is the reproduction rate and both the selection function m̃ and the initial genotypic density
n0 are assumed symmetrical (requiring I = J) (one can verify that the genotypic density n
remains symmetrical at all times). All qualitative results will also be presented for this case in
Section 6.2.

We place our analysis in an asymptotic regime where we consider that the initial distribu-
tion is concentrated, with a small variance ε so that it is convenient to introduce the following
transformation of the initial distribution:

n0 =
e

u0
ε

ε

ε
.

The motivation behind the latter comes from a future project that will include mutations on
the alleles with a small mutational variance of order ε2, which will allow the population to
explore the allelic space beyond the support of the initial distribution (which it cannot do in
the present model). Here, we expect that starting with an initial condition with such a small
variance, the population density n solution of P (n) would keep the same exponential form as
above and would remain asymptotically concentrated with a small variance. Consequently, the
dynamics of its mean, driven by natural selection with an intensity correlated to its variance,
cannot be observed at shallow time scales, and (P (n)) needs to be adequately rescaled in
order to explore long-term dynamics. To that effect, let us define the following rescaling in
time:

t = ε t, nε(t, ·, ·) = n(t, ·, ·), ρX
ε (t, ·) = ρX(t, ·), ρY

ε (t, ·) = ρY (t, ·), ρε(t) = ρ(t).
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Under the latter, the problem (P (n)) becomes, for t ≥ 0, (x, y) ∈ I × J :⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ε ∂tnε(t, x, y) = r
2

[
ρY

ε (t,x) ρX
ε (t,y)

ρε(t) + nε(t, x, y)
]
− (m(x, y) + κ ρε(t)) nε(t, x, y),

ρX
ε (t, y) =

∫
I

nε(t, x′, y) dx′, ρY
ε (t, x) =

∫
J

nε(t, x, y′) dy′, ρε(t) =
∫

I×J
nε(t, x′, y′) dx′ dy′,

nε(0, x, y) = n0
ε(x, y).

(P (nε))
As we expect the density nε to remain concentrated in our regime, the objective is to analyti-
cally describe the dynamics of the Dirac masses (ie. of the dominant alleles in the population),
for various selection functions.

6.1.2 State of the art
Integro-differential models for quantitative genetics modelling the evolutionary dynamics of
large sexually reproducing populations with selection have been on the rise recently, especially
those that model the phenotypic trait inheritance according to the non-linear infinitesimal
model introduced by Fisher [1919] (Mirrahimi and Raoul 2013; Raoul 2017; Bourgeron et al.
2017; Calvez, Garnier, and Patout 2019; Patout 2020; Dekens and Lavigne 2021; Dekens 2022;
Raoul 2021; Dekens, Otto, and Calvez 2021). According to the latter, the offspring’s trait
deviates from the mean parental trait according to a Gaussian kernel of fixed segregational
variance. The classical interpretation is that the trait under consideration results from the
combination of a large number of loci with small additive allelic effects (Lange 1978; Bulmer
1980; Turelli and Barton 1994; Tufto 2000; Turelli 2017), a framework rigorously justified in
Barton, Etheridge, and Véber [2017]. In another study Perthame, Strugarek, and Taing [2021],
asymmetrical kernels are considered to model the effect of asymmetrical trait inheritance
or fecundity on the asymptotic behaviour of the trait distribution. The present work also
studies sexually reproducing populations, but the genetical framework is different from the
ones aforementioned: here, we consider that the allelic effects at the two loci are continuous
and not necessarily small nor additive.

Small variance methodology and long term-dynamics. We choose to place our
study in the small variance methodology, introduced for quantitative genetics studies in Diek-
mann, Jabin, et al. [2005] from a high-frequency method used in geometric optics. When the
variance introduced by events of reproduction (by mutations, segregation...) is small com-
pared to the reduction of diversity following natural selection, they propose to unfold Dirac
singularities that are expected to arise using the so-called Hopf-Cole transform:

nε =
e

uε
ε

ε
.

The idea behind considering uε instead of nε stems from the fact that, when ε vanishes, the
limit u (to be characterized) is expected to have more regularity than the (measure) limit
n, making it more suitable for analysis. Moreover, u would retain important quantitative
information on the support of n.

The small variance methodology has first been applied successfully to several quantita-
tive genetics settings for asexually reproducing populations in the regime of small variance of
mutations: adaptation to homogeneous environments Perthame and Barles [2008] and Barles,
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Mirrahimi, and Perthame [2009], to spatially heterogeneous environments Mirrahimi [2017]
and Mirrahimi and Gandon [2020], in a time-periodic environment Figueroa Iglesias and Mir-
rahimi [2018]. Recently, it has been extended to quantitative genetics models for sexually
reproducing populations characterized by complex traits inherited according to the aforemen-
tioned infinitesimal model (Calvez, Garnier, and Patout 2019; Patout 2020; Dekens and Lav-
igne 2021; Dekens 2022; Dekens, Otto, and Calvez 2021). However, the asymptotic analysis
of this non-local, non-monotone, non-linear operator of reproduction presents great analytical
challenges, and it has only been rigorously derived in a model for homogeneous environments
(Calvez, Garnier, and Patout 2019; Patout 2020). The same methodology is used in Perthame,
Strugarek, and Taing [2021] to study the asymptotic behaviour of the trait distribution under
asymmetrical reproduction kernels. Here, as described above, our genetical framework differs
significantly from the infinitesimal model’s one. Therefore, it yields a different reproduction
operator (see Eq. (P (nε))), which is in fact closer to the ones used for asexual populations
(Perthame and Barles 2008; Barles, Mirrahimi, and Perthame 2009), since integrating the re-
production term in P (nε) with regard to x or y results in the same reproduction term as with
clonal reproduction with a single trait and no mutations. However, here, the nonlinear nonlo-
cal term describing the reproduction operator along with the fully general bivariate selection
function m still lead to new difficulties to be overcome.

Let us then consider
(
u0

ε

)
ε>0 a sequence in C1 (I × J), uniformly bounded when ε vanishes.

It defines subsequently a sequence of concentrated initial genotypic densities with decreasingly
small variance (Hopf-Cole transform):

n0
ε =

e
u0

ε
ε

ε
. (6.1)

Let us define nε the solution of (P (n)) with initial distribution n0
ε, and uε similarly as above:

nε =
e

uε
ε

ε
.

We expect indeed that starting with such an initial condition (6.1), the population density nε

would keep the same exponential form and would remain asymptotically concentrated with
a small variance. Consequently, the dynamics of its mean, driven by natural selection with
an intensity correlated to its variance, cannot be observed at shallow time scales, and (P (n))
needs to be adequately rescaled in order to explore long term dynamics.

Moreover, in order to study the asymptotic properties of nε, we align with Perthame and
Barles [2008], Barles, Mirrahimi, and Perthame [2009], Mirrahimi [2017], and Mirrahimi and
Gandon [2020], and introduce the derived problem on uε := ε log (ε nε):⎧⎪⎪⎪⎨⎪⎪⎪⎩

∂t uε(t, x, y) = r
2νε(t, x, y)− (

m(x, y) + κ ρε(t)− r
2
)

,

uε(0, ·, ·) = u0
ε,

ρε =
∫∫

I×J

1
ε

exp
[

uε(x′, y′)
ε

]
dx′ dy′,

(Puε)

where

νε(t, x, y) :=
ρX

ε (t, y) ρY
ε (t, x)

nε(t, x, y)ρε(t)
=

1
ρε(t)

∫∫
I×J

1
ε

exp
[

uε(t, x, y′) + uε(t, x′, y)− uε(t, x, y)
ε

]
dx′ dy′.
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6.1.3 Assumptions
We assume that the selection term m satisfies the following regularity and technical bound:

m ∈ C1(I × J,R+), 4 ‖m‖∞ < r. (H1)

For ε > 0, let u0
ε ∈ C1(I × J) be such that:

∃M > 0, ∀ε ≤ 1,
∥∥∥u0

ε

∥∥∥
W 1,∞(I×J)

≤M. (H2)

Then we define the initial state by

n0
ε =

e
u0

ε
ε

ε
.

Let us define the following uniform bounds:

ρ−
0 :=

r − ‖m‖∞
κ

, ρ+
0 :=

r

κ
.

We assume that the initial size of population is bounded uniformly by ρ−
0 and ρ+

0 :

∀ε > 0, ρ0
ε :=

∫∫
I×J

n0
ε(x, y) dx dy ∈

]
ρ−

0 , ρ+
0

[
. (H3)

Next, to prepare 6.1.1, we assume that there exists 0 < νm ≤ 1 − 4‖m‖∞
r < 1 + 4‖m‖∞

r ≤ νM

such that:
∀ε, ∀(x, y) ∈ I × J, νm ≤ ν0

ε (x, y) :=
ρX,0

ε (y) ρY,0
ε (x)

n0
ε(x, y) ρ0

ε

≤ νM . (H4)

6.1.4 Presentation of the results and outline
First, we show some preliminary results of well-posedness of P (nε):

Theorem 6.1.1. Under the assumption H3, (P (nε)) has a unique solution with positive values
nε in C1(R+ × I × J). Moreover, we have for all ε:

∀t ∈ R+, ρ−
0 ≤ ρε(t) ≤ ρ+

0 .

Hence, for all T > 0, (nε) converges along subsequences in L∞(w∗ − [0, T ], M(I × J)) toward
a measure n when ε vanishes (where M(I × J) stands for the set of Radon measures equipped
with the total variation norm).

We recall that we expect nε to concentrate as ε vanishes. As such, we expect the weak
limit n to be a sum of Dirac masses. The aim of this paper is to determine where n is
supported, that is to determine which alleles become dominant in the population. To study
the asymptotic properties of n, it is more convenient to shift the asymptotic analysis from nε

on uε = ε log (ε nε). Consequently, the main result of this paper focuses on the asymptotic
behaviour of uε:

Theorem 6.1.2. Under the assumptions H2-H4, for all T > 0, uε −→
ε→0

u in C0([0, T ]× I ×J)
(along subsequences). Additionally, u satisfies the following properties:

(i) u is Lipschitz continuous,
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(ii) u is non-positive and satisfies an additive separation of variables property:

∀(t, x, y) ∈ [0, T ]×I×J, u(t, x, y) = uY (t, x)+uX(t, y) := max u(t, x, ·)+max u(t, ·, y).
(6.2)

Furthermore, we have at all time t: max uY (t, ·) = max uX(t, ·) = 0.

(iii) n(t, ·, ·) is supported at the zeros of u(t, ·, ·) for a.e. t:

supp(n(t, ·, ·)) ⊂ {(x, y) |u(t, x, y) = 0}
= {x |uY (t, x) = 0} × {y |uX(t, y) = 0}.

(iv) uX (resp. uY ) satisfies the following limit equation for a.e. y:

∀t ∈ [0, T ] uX(t, y) = uX(0, y) + r t− κ

∫ t

0
ρ(s) ds−

∫ t

0

〈
φX(t, ·, y), m(·, y)

〉
ds, (6.3)

where ρ = 〈n, 1I×J〉 ∈ L∞([0, T ]) and φX is the limit of nε

ρX
ε

in L∞ (w∗ − [0, T ]× I, M(I)).
Moreover, for a.e. (t,y)

supp
(
φX(t, ·, y)

)
= {x |uY (t, x) = 0}.

The second and third point of the results in Theorem 6.1.2 highlight the originality of this
problem: the limit u separates the variables additively and therefore, the limit measure n is
a product measure. This asymptotic decorrelation of the effects of the two loci relies on the
following proposition, that is key to establish the convergence stated in Theorem 6.1.2:

Proposition 6.1.1. Let us assume H4. For all T > 0, let nε be the positive solution of
(P (nε)) on [0, T ]. Then, the following holds:

∀t ∈ [0, T ], ∀(x, y) ∈ I × J, 0 < νm ≤ νε(t, x, y) ≤ νM .

Indeed, the compactness result of 6.1.1 together with some a priori estimates relying on
a maximum principle yield the convergence of Theorem 6.1.2 thanks to the Arzela-Ascoli
theorem (see Fig. 6.1 for a flowchart that exposes the layout of the different results).

Moreover, although Puε involves an equation on uε, one can notice that Theorem 6.1.2
states limit equations on uX and uY (6.3). Instead of passing to the limit in the equation
of u in Puε once the convergence is established (as it is done in most asexual studies in
the regime of small variance), the separation of variables u(x, y) = uX(y) + uY (x) allows us
to take an alternative approach. In the proof of Theorem 6.1.2, we will show indeed that
uX = lim

ε→0
ε log

(
ρX

ε

)
and uY = lim

ε→0
ε log

(
ρY

ε

)
. The idea is then to focus on the equations

satisfied by ρX
ε and ρY

ε instead of the equation satisfied by nε:{
ε ∂tρ

X
ε (t, y) = (r − κ ρε(t)) ρX

ε (t, y)− ∫
I m(x, y) nε(t, x, y) dx,

ε ∂tρ
Y
ε (t, x) = (r − κ ρε(t)) ρY

ε (t, x)− ∫
J m(x, y) nε(t, x, y) dy.

(6.4)

The advantage of considering (6.4) over (Puε) is that the reproduction terms involved are linear,
much simpler than the integral operator involved in the equation on uε. However, the difficul-
ties are transferred on the selection terms

∫
I m(x, y) nε(t, x, y) dx and

∫
I m(x, y) nε(t, x, y) dx
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P (nε)
nε ∈ C1([0, T ] × (I × J))

P (n)
n ∈ L∞([0, T ], M(I × J))

Theorem 6.1.1
Well-posedness

Weak convergence

ε→ 0

P (uε)
uε ∈ C1([0, T ]× I × J)

P (u)
u ∈ C0([0, T ]× I × J)

u(x, y) = uX(y) + uY (x)

Hopf-Cole

uε = ε log (ε nε)

Theorem 6.1.2
Strong convergence

ε→ 0

Regularity estimates

6.4.1
Additivity of u

6.1.1

Support of n

⊂ zeros of u

Figure 6.1: Flowchart of the analytical results of Section 6.3, Section 6.4 and Section 6.5.
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that asymptotically lead to involve φX and φY in (6.3). These terms are new compared to the
typical asexual studies, which only present two unknown variables in their constrained limit
equation: u and ρ. Consequently, here, regularity in time, which would allow us to write the
limit equation (6.3) under a differential form, is harder to get for ρ and φX (resp. φY ).

Nevertheless, under an additional hypothesis on the selection term m being additive, we
show that the limit size of population ρ is BV. This result aligns with the typical analogous
regularity obtained on the asymptotic size of population in aforementioned asexual studies.

Theorem 6.1.3. Suppose that there exists mX : I → R and mY : J → R such that:

m(x, y) = mX(x) + mY (y). (Hm,add)

Let nε be the solution to Eq. (P (nε)). Then, ρε is locally uniformly bounded in W 1,1(R+).
Consequently, after extraction of a subsequence, ρε converges to a BV-function ρ as ε vanishes.
The limit ρ is non-decreasing as soon as there exists a constant C > 0 such that:

(r − κ ρ0
ε) ρ0

ε −
∫∫

R2
m(x, y) n0

ε(x, y) dx dy ≥ −C e
o(1)

ε . (6.5)

The paper is organized as follows. In Section 6.2, we present qualitative results and nu-
merical analysis that stem from the analysis of the subsequent sections, and demonstrate the
interest of the model by exploring some biologically relevant situations. Next, in Section 6.3,
we prove the well-posedness of P (nε). Section 6.4 is dedicated to show 6.1.1 and derive uniform
L∞ and Lipschitz bounds for uε, which prepares the proof of the main result in Section 6.5.
The interplay between the different results until that point is displayed in Fig. 6.1. Finally, in
Section 6.6, we show that ρ is a BV-function, under the additional hypothesis (Hm,add).

6.2 Qualitative results and numerical anal-
ysis

In this section, we explore the insights on the dynamics of the allelic distribution in a population
following the main result of the paper (Theorem 6.1.2), assuming that (t, y) �→ φX(t, ·, y),
(t, x) �→ φY (t, x, ·) and t �→ n(t, ·, ·) (and by extension t �→ ρX(t, ·), t �→ ρY (t, ·) and ρ) are
continuous so that we can formally write:⎧⎨⎩∀(t, y) ∈ [0, T ]× J, ∂tu

X(t, y) = r − κ ρ(t)−
〈
φX(t, ·, y), m(·, y)

〉
,

∀(t, x) ∈ [0, T ]× I, ∂tu
Y (t, x) = r − κ ρ(t)−

〈
φY (t, x, ·), m(x, ·)

〉
.

(6.6)

We first show that under a hypothesis of strict monotony Hincreasing on the selection, the
population is strained to be monomorphic, i.e. all individuals share the same alleles (x̄(t), ȳ(t))
at all times. Then, we derive canonical equations describing the dynamics of (x̄(t), ȳ(t)) under
monomorphism.

6.2.1 Monotonic selection yields monomorphism
We first show that a condition of monotony on m (in both variables) yields the limit allelic
distribution to be monomorphic at all times:
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Proposition 6.2.1. For T > 0, assume that (6.6) holds and that m satisfies:
∀(x, y) ∈ I × J, m(x, ·) and m(·, y) are increasing (resp. decreasing). (Hincreasing)

Then, the following holds: ∀t ∈ [0, T ], ∃! (x̄(t), ȳ(t)) ∈ I × J,

Supp
(
ρX(t, ·)

)
=

[
uX(t, ·)

]−1
({0}) = {ȳ(t)}, Supp

(
ρY (t, ·)

)
=

[
uY (t, ·)

]−1
({0}) = {x̄(t)}.

Diploid case: homozygosity. In the diploid case, the symmetries indicated in Remark 14
yield uX = uY and therefore x̄(t) = ȳ(t) for all t ∈ [0, T ]. All individuals are therefore
homozygote in a monomorphic population.

Proof of 6.2.1. For t ∈ [0, T ], since n(t, ·, ·) is supported at the zeros of u(t, ·, ·) (see Theo-
rem 6.1.2), ρX(t, ·) is supported on the set of the zeros of uX(t, ·), that we denote by FX(t),
and ρY (t, ·) is supported on the set of the zeros of uY (t, ·), that we denote by FY (t). It is
therefore sufficient to prove that FX(t) and FY (t) are both singletons for all t ∈ [0, T ].

Since uX(t, ·) and uY (t, ·) are continuous, FX(t) and FY (t) are closed subsets of I and J , and
are therefore compact sets. In particular, the extreme points of FX(t) (resp. FY (t)) denoted
by yinf(t) and ysup(t) (respectively, xinf(t) and xsup(t)) lie in FX(t) (respectively, FY (t)). As
(t, yinf(t)) and (t, ysup(t)) maximise uX and (t, xinf(t)) and (t, xsup(t)) maximise uY (since uX

are uY are non-positive, from Theorem 6.1.2), we obtain that

0 = ∂tu
X(t, yinf(t)) = ∂tu

X(t, ysup(t)) = ∂tu
Y (t, xinf(t)) = ∂tu

Y (t, xsup(t)).

The equations Eq. (6.6) next implies that

∀t ∈ [0, t],
〈
φX(t, ·, yinf(t)), m(·, yinf(t))

〉
=

〈
φX(t, ·, ysup(t)), m(·, ysup(t))

〉
=

〈
φY (t, xinf(t), ·), m(xinf(t), ·)

〉
=

〈
φY (t, xsup(t), ·), m(xsup(t), ·)

〉
.

Recall that, for (t, x, y) ∈ [0, T ]× I × J , φX(t, ·, y) and φX(t, x, ·) are probability distributions
supported respectively on a subset of FX(t) and FY (t) (from Theorem 6.1.2). Then, we deduce
from Hincreasing that:

m (xinf(t), ysup(t)) ≤
〈
φX(t, ·, ysup(t)), m(·, ysup(t))

〉
=

〈
φY (t, xinf(t), ·), m(xinf(t), ·)

〉
≤ m (xinf(t), ysup(t)) .

Similarly, we obtain

m (xsup(t), yinf(t))≤
〈
φY (t, xsup(t), ·), m(xsup(t), ·)

〉
=

〈
φX(t, ·, yinf(t)), m(·, yinf(t))

〉
≤ m (xsup(t), yinf(t)) .

All the inequalities above must be equalities, which implies

φX(t, x, ysup (t)) = δx=xinf(t), φX(t, x, yinf (t)) = δx=xsup(t),

φY (t, xsup (t), y) = δy=yinf(t), φY (t, xinf (t), y) = δy=ysup(t).
(6.7)

Since the support of φX(t, ·, y) (resp. φY (t, x, ·)) does not depend on y (resp. x) (see (iv) of
Theorem 6.1.2), we obtain from (6.7) that xinf(t) = xsup(t) and yinf(t) = ysup(t). The latter
yields the result.
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Numerical simulations: robustness of monomorphism with regard to Hincreasing
of 6.2.2 with dimorphic initial densities. We show in Fig. 6.2 the result of numerical
simulations solving a discretized version of (P (nε)) with initial dimorphic states to test the
robustness of monomorphic trajectories with regard to Hincreasing. We consider three different
selection functions m(x, y) = x2 + y2, m(x, y) = (x + y)2, m(x, y) = (1− xy)2. Fig. 6.2 seems
to indicate that monomorphic trajectories occur under a wider scope than the one required
by 6.2.1. Fig. 6.2 also gives some insights on the diversity of trajectories that can arise under
different selection functions (see the next subsection for a more complete view).

6.2.2 Canonical equations under monomorphism
In all this section, let us fix T > 0 and let us assume that for all time t ∈ [0, T ], there exists
unique points x̄(t) and ȳ(t) such that:

∀t ∈ [0, T ] u(t, ·, ·)−1 ({0}) = {(x̄(t), ȳ(t))}. (6.8)

In that case, for all (t, x, y) ∈ [0, T ]× I × J , we deduced from Theorem 6.1.2 that:

φX(t, ·, y) = δx̄(t), φY (t, x, ·) = δȳ(t).

Hence, (6.6) reads:{
∀(t, y) ∈ [0, T ]× J, ∂tu

X(t, y) = r − κ ρ(t)−m(x̄(t), y),
∀(t, x) ∈ [0, T ]× I, ∂tu

Y (t, x) = r − κ ρ(t)−m(x, ȳ(t)).
(6.9)

Proposition 6.2.2. For T > 0, assume that m, u0 ∈ C2(I × J) and that (6.9) holds. Then:
u ∈ C0([0, T ], C2(I × J)) and the dynamics of the dominant alleles (x̄(t), ȳ(t)) read:{

∂xxuY (x̄(t)) dx̄
dt = ∂xm(x̄(t), ȳ(t)),

∂yyuX(ȳ(t)) dȳ
dt = ∂ym(x̄(t), ȳ(t)).

(6.10)

Diploid case: canonical equations. In the diploid case, the symmetries indicated in
Remark 14 yield uX = uY and x̄ = ȳ, so the canonical equations (6.10) reduce to

∂xxuX(x̄(t))
dx̄

dt
= ∂xm(x̄(t), x̄(t)). (6.11)

Proof. Let us show how to obtain the first equation of (6.10) on x̄(t). The equation on ȳ(t)
can be obtained similarly.

As 0 = ∂xuY (t, x̄(t)) = uY (t, x̄(t)) = max uY (t, ·) for all t ∈ [0, T ], we get:

0 =
d ∂xuY (t, x̄(t))

dt
= ∂t∂xuY (t, x̄(t)) + ∂xxuY (t, x̄(t))

dx̄

dt
.

Differentiating (6.9) with regard to x reads:

∀(t, x) ∈ [0, T ]× I, ∂x∂tu
Y (t, x) = −∂xm(x, ȳ(t)).

By substitution, we obtain:
dx̄

dt
∂xxuY (t, x̄(t)) = ∂xm(x̄(t), ȳ(t)).
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(a) m(x, y) = x2 + y2 (b) m(x, y) = x2 + y2.

(c) m(x, y) = (x + y)2. (d) m(x, y) = (x + y)2.

(e) m(x, y) = (1− x y)2. (f) m(x, y) = (1− x y)2.

Figure 6.2: Robustness of monomorphism with regard to assumption Hincreasing of
6.2.2 with dimorphic initial densities. For each selection function (by row), we display the
numerically solved dynamics of ρX(t, y) (left panel) and ρY (t, x) (right panel) ((x, y) ∈ [−2, 2]).
The colors correspond to isolines of ρX and ρY . The initial state is sum of two Gaussians
centered in (x1, y1) = (−0.3, 1.3) and (x2, y2) = (0.7,−0.5) and of variance ε = 0.05. Lighter
colors indicate stronger densities. The figures seem to indicate that the trajectories become
monomorphic almost instantaneously and that this phenomenon actually occur under weaker
conditions than Hincreasing of 6.2.2. One can also notice that the stationary dominant alleles
that arise vary greatly from one selection function to another.
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Remark 15. As x̄(t) maximizes uY , we have ∂xxuY (t, x̄(t)) ≤ 0 for all t ∈ [0, T ]. If
∂xxuY (t, x̄(t)) < 0 for all t ∈ [0, T ], then we obtain:

∀t ∈ [0, T ],
dx̄

dt
=

∂xm(x̄(t), ȳ(t))
∂xxuY (t, x̄(t))

.

As ∂t∂xxuY (t, x) = −∂xxm(x, ȳ(t)), we obtain

∂xxuY (t, x) = ∂xxuY (0, x)−
∫ t

0
∂xxm(x, ȳ(s)) ds.

Consequently, the strict inequality is ensured if u0 is strictly concave and m is convex.

Three examples. In this paragraph, we illustrate the insights provided by 6.2.2 through
the study of the system for three given selection functions m. In all examples, we consider
that I = J = [−2, 2] and the initial state u0 is given by (x̄0, ȳ0) ∈ [−2, 2]2 and:

u0(x, y) = −((x− x̄0)2 + (y − ȳ0)2).

1) m(x, y) = x2 + y2, ∂xm(x, y) = 2x, ∂ym(x, y) = 2y, ∂xxm(x, y) = ∂yym(x, y) = 2.
This selection function separates additively the variables. The canonical equation

Eq. (6.10) then reads: {
dx̄(t)

dt = − x̄(t)
t+1 ,

dȳ(t)
dt = − ȳ(t)

t+1 .

We obtain that, for t ≥ 0
x̄(t) =

x̄0
t + 1

, ȳ(t) =
ȳ0

t + 1
.

Consequently, the system remains monomorphic and the dominant alleles evolve and con-
verge toward (0, 0).

2) m(x, y) = (x+y)2, ∂xm(x, y) = ∂ym(x, y) = 2(x+y), ∂xxm(x, y) = ∂yym(x, y) = 2.
The canonical equation Eq. (6.10) then reads:

dx̄(t)
dt

=
dȳ(t)

dt
= − x̄(t) + ȳ(t)

t + 1
.

We deduce that, for t ≥ 0

x̄(t) + ȳ(t) =
x̄0 + ȳ0
(t + 1)2 , x̄(t)− ȳ(t) = x̄0 − ȳ0,

which leads to:

x̄(t) =
x̄0 − ȳ0

2
+

x̄0 + ȳ0
2(t + 1)2 , ȳ(t) =

ȳ0 − x̄0
2

+
x̄0 + ȳ0

2(t + 1)2 .

On the contrary to the previous example, the dominant alleles of the monomorphic system
evolve to converge toward a state that is dependent on the initial state of the system. Geo-
metrically, it is the orthogonal projection of the initial point (x̄0, ȳ0) on the diagonal defined
by x + y = 0.

3) m(x, y) = (1− xy)2, ∂xm(x, y) = −2 y (1− xy), ∂ym(x, y) = −2 x (1− xy),
∂xxm(x, y) = 2 y2, ∂yym(x, y) = 2 x2.
In this case, the canonical equation (6.10) reads:

dx̄(t)
dt

=
ȳ(t) (1− x̄(t)ȳ(t))

1 +
∫ t

0 ȳ(s)2 ds

dȳ(t)
dt

=
x̄(t) (1− x̄(t)ȳ(t))

1 +
∫ t

0 x̄(s)2 ds
. (6.12)

Without lack of generality, we can assume that x̄0 ≤ ȳ0.
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Proposition 6.2.3. Let 0 < x̄0 ≤ ȳ0 ≤ 2. Then the dominant alleles of the monomorphic
system converge toward the stationary state (xF , yF ) ∈ (

R
∗
+
)2 that solves:{

xF yF = 1,

y2
F − x2

F = ȳ2
0 − x̄2

0.
(6.13)

Proof. First, we treat the case where x0 y0 = 1. Then, the function t �→ (x0, y0) defines a
solution of (6.12). By uniqueness, it is the only solution and (x0, y0) satisfies (6.13).

Let us now suppose that x0 y0 < 1 (the case where x0 y0 > 1 can be treated following
similar arguments). We define, for A > 0 yet to be specified:

tA = min
{

inf{t ≥ 0, (x̄(t), ȳ(t)) /∈]0, A[2}, inf{t ≥ 0, x̄(t)ȳ(t) /∈]0, 1[}
}

.

For t ≤ tA, we have the following inequalities

ȳ (1− x̄ȳ)
1 + A2 t

≤ dx̄

dt
≤ ȳ (1− x̄ȳ) ,

x̄ (1− x̄ȳ)
1 + A2 t

≤ dȳ

dt
≤ x̄ (1− x̄ȳ) . (6.14)

Let us define (x−, y−) and (x+, y+) solutions of the following equations:⎧⎪⎪⎪⎨⎪⎪⎪⎩
dx−(t)

dt = y−(t)(1−x−(t)y−(t))
1+A2 t

, dx+(t)
dt = y+(t)

(
1− x+(t)y+(t)

)
,

dy−(t)
dt = x−(t)(1−x−(t)y−(t))

1+A2 t
, dy+(t)

dt = x+(t)
(
1− x+(t)y+(t)

)
,

(x−(0), y−(0)) = (x̄0, ȳ0), (x+(0), y+(0)) = (x̄0, ȳ0).

(6.15)

By comparison, we deduce that (x−, y−) and (x+, y+) are respectively subsolution and super-
solution of (x̄, ȳ):

∀t ≤ tA, x−(t) ≤ x̄(t) ≤ x+(t), y−(t) ≤ ȳ(t) ≤ y+(t). (6.16)

We define t+
A by

t+
A = min

{
inf{t ≥ 0, (x+(t), y+(t)) /∈]0, A[2}, inf{t ≥ 0, x+(t)y+(t) /∈]0, 1[}

}
.

We will show that x+y+ converges increasingly toward 1. First one can compute that

d
(
x+y+)
dt

=
(
1− x+y+

) (
x+2 + y+2)

.

Next, one can notice from (6.15) that x+ and y+ both increase on [0, t+
A]. We thus obtain that

for t ∈ [0, t+
A] (

1− x+y+
) (

x2
0 + y2

0
)
≤ d(x+y+)

dt
≤ 2A2

(
1− x+y+

)
.

Hence, by comparison, x+y+ converges increasingly toward 1.
We next notice thanks to (6.15) that:

1
2

dx+2(t)
dt

= x+(t)y+(t)
(
1− x+(t)y+(t)

)
=

1
2

dy+2(t)
dt

,

and hence:
∀t ≤ t+

A, x+2(t)− y+2(t) = x̄2
0 − ȳ2

0.
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Therefore, since (x̄0, ȳ0) ∈ [0, 2]2, and 0 < x+(t) y+(t) < 1 for t ≤ t+
A, the latter implies

that, if we choose A large enough, x+ and y+ remain uniformly bounded above away from
A. Therefore, we can consider t+

A arbitrarily large. We deduce that x+ and y+ converge
increasingly to xF > 0 and yF > 0, satisfying (6.13).

We next show that (x−, y−) converges toward the same couple (xF , yF ). Notice that for
t ≤ t+

A, we have (
x−(t), y−(t)

) ∈]0, A[2, x−(t), y−(t) ≤ 1.

Similarly as previously, we show by comparison that x− y− converges increasingly toward 1,
since (

1− x−y−)(
x2

0 + y2
0

1 + A2t+
A

)
≤ d(x−y−)

dt
≤ 2A2 (

1− x−y−)
.

Next, we notice that we still have:

dx−2(t)
dt

=
dy−2(t)

dt
=⇒ ∀t ≤ t+

A, x−2(t)− y−2(t) = x̄2
0 − ȳ2

0.

We deduce that x− and y− converge also increasingly to a solution of (6.13). As (6.13) has a
unique solution in

(
R

∗
+
)2, it must be (xF , yF ).

Finally, we obtain the announced result using (6.16).

Diploid case with the three selection functions. Due to the symmetries indicated
in Remark 14, the dynamics of the dominant allele (6.11) are simpler, because they are limited
to occur on the diagonal x = y.

1) m(x, y) = x2 + y2. We obtain that, for t ≥ 0

x̄(t) = ȳ(t) =
x̄0

t + 1
.

Consequently, the system remains monomorphic and the dominant alleles evolve and converge
toward (0, 0).

2) m(x, y) = (x + y)2. We obtain that, for t ≥ 0

x̄(t) = ȳ(t) =
x̄0

(t + 1)2 .

Consequently, the system remains monomorphic and the dominant alleles evolve and converge
toward (0, 0).

3) m(x, y) = (1−xy)2. In that case, we deduce from 6.2.3 that the dominant alleles of the
monomorphic system converge toward (1, 1).

Numerical analysis. Note that 6.2.2 relies on the fact that equation (6.9) holds. Due
to lack of regularity estimates, in this paper we have proved this property only in a weaker
integral form (6.3). However, we conjecture that this property would hold in a rather general
framework. In Fig. 6.3 using numerical simulations, we investigate whether the qualitative
results obtained above are consistent in the case of the three examples considered in Fig. 6.2.
For each selection function above, we display the trajectories of the dominant allelic effects
x̄ and ȳ, for 20 numerical resolutions of Eq. (P (nε)) with ε = 0.01 (plain lines), with initial
conditions uniformly randomized over the square [−2, 2]2 (each color corresponds to an initial
condition). We confront them to the canonical equations given in 6.2.2, for the same set of
20 initial conditions (dashed lines). The corresponding trajectories as well as the final states
(full circle for the model and cross for the canonical equations) are quite in agreement.

247



(a) m(x, y) = x2 + y2.
(b) m(x, y) = (x + y)2. (the black line repre-
sents the line x + y = 0).

(c) m(x, y) = (1− x y)2. (the black line repre-
sents the hyperbola x y = 1).

Figure 6.3: Simulated trajectories of the dominant alleles x̄ and ȳ. The plain lines
correspond to the trajectories of (xmax(t), ymax(t)) that realizes the maximum of nε(t, ·, ·) in
the numerical resolution of (P (nε)), with ε = 0.01. The dashed lines correspond to the
numerical resolution of the canonical equations given in 6.2.2. Each color corresponds to one
trajectory starting at an initial monomorphic state chosen randomly and uniformly in [−2, 2]2.
The final states of the trajectories obtained from the discretization of (P (nε)) are indicated
by full circles. This figure shows that the qualitative derivation of the section are numerically
consistent with the model.
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6.3 Preliminary results on the well-posedness
of P (nε): proof of Theorem 6.1.1

In this section, we prove Theorem 6.1.1.

1. Well-posedness of P (nε). The proof of this part relies on two lemmas. The first
one establishes a priori estimates on solutions of (P (nε)) on [0, T [ for T > 0. The second one
provides the Lipschitz property which enables us to apply the local Cauchy-Lipschitz theorem
to show the existence and uniqueness of a maximal solution on a open subset of [0, T [. Finally,
we show that this maximal solution is global on [0, T [ thanks to the estimates of the first
lemma, and extend it on R+.

Lemma 12. Let T > 0 and nε ∈ C1([0, T ] × I × J) be a solution of (P (nε)). Then, under
the assumptions H1 and H3, we have the following a priori bounds for t ∈ [0, T ]

ρ−
0 ≤ ρε(t) ≤ ρ+

0 , ‖ρX
ε (t, ·)‖∞ ≤ ‖ρX,0

ε ‖∞ e
r t
ε , ‖ρY

ε (t, ·)‖∞ ≤ ‖ρY,0
ε ‖∞ e

r t
ε , (6.17)

‖nε(t, ·, ·)‖∞ ≤ NT := e
rT
2ε ‖nε(0, ·, ·)‖∞ + e

2rT
ε
‖ρX,0

ε ‖∞ ‖ρY,0
ε ‖∞

ρ−
0

(e
rT
2ε − 1), (6.18)

‖∂xnε(t, ·, ·)‖∞ ≤ Nx
T :=

(
‖∂xn0

ε‖∞ + NT
T

ε
‖∂xm‖∞

)
e

‖ρ
X,0
ε ‖∞ |J|

2ρ−
0

e
r T

ε + rT
2ε

, (6.19)

‖∂ynε(t, ·, ·)‖∞ ≤ Ny
T :=

(
‖∂yn0

ε‖∞ + NT
T

ε
‖∂ym‖∞

)
e

‖ρ
Y,0
ε ‖∞ |I|

2ρ−
0

e
r T

ε + rT
2ε

. (6.20)

The proof of Lemma 12 relies on classical computations and is left to be consulted in
Section 6.A.

Let T > 0. Before stating the next lemma, let us define, for n ∈ C1(I × J, R+)

ρ(n) :=
∫∫

I×J
n(x, y) dx dy, ρX(n)(y) :=

∫
I

n(x, y) dx, ρY (n)(x) :=
∫

J
n(x, y) dy.

We also define

A0 =
{

n ∈ C1(I × J, R+) | ρ(n) ∈ [ρ−
0 , ρ+

0 ]
}

,

which is a closed subspace of X := C1(I × J, R+) and has a Banach space structure with the
norm ‖.‖X := ‖.‖∞ + ‖∂x · ‖∞ + ‖∂y · ‖∞. Finally, let us also define

f :

⎧⎪⎨⎪⎩
A0 → X

n �→ f(n) : (x, y) �→ r

2
ρX(n)(y) ρY (n)(x)

ρ(n)
−

[
m(x, y) + κρ(n)− r

2

]
n(x, y).

(6.21)

Next, we state the following lemma, whose proof can be found in Section 6.B.

Lemma 13. Under the assumption H1, f is locally Lipschitz on A0.
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Finally, the definition of f in (6.21) implies that P (nε) can be reformulated as the following
Cauchy problem:⎧⎪⎪⎨⎪⎪⎩

∂tnε(t, x, y) = 1
ε f(n(t, ·, ·))(x, y), (t, x, y) ∈ R+ × I × J,

nε(0, x, y) = n0
ε(x, y).

(P (nε))

For T > 0, under the assumption H3, and thanks to Lemma 12 and Lemma 13, we apply
the local Cauchy-Lipschitz theorem to show that there exists a unique maximal solution nε ∈
C1(Ω×I×J) to P (nε), where Ω is an open subset of [0, T [. Next, the estimates on ‖nε(t, ·, ·)‖X
stated in Lemma 12 and uniform for t ∈ [0, T [ imply that Ω = [0, T [, which means that the
maximal solution is global on [0, T [. As the latter holds for any T > 0, we deduce that there
exists a unique solution nε ∈ C1(R+ × I × J) to P (nε).

2. Weak convergence of (nε). From Lemma 12, for ε > 0 and t ∈ [0, T ], we have:

‖nε(t, ·, ·)‖L1(I×J) ≤ ρ+
0 .

Consequently, (nε) is bounded in L∞ (
[0, T ], L1(I × J)

)
. Hence, there exists a subsequence

that converges in L∞ (w∗ − [0, T ], M(I × J)) to a measure n.

6.4 Proof of 6.1.1 and regularity estimates
on uε

In this section, we provide the proofs of the regularity estimates that will be used in the proof
of Theorem 6.1.2.

6.4.1 Proof of 6.1.1
In this subsection, we prove the 6.1.1, which is a key step to prove the additive separation of
variables for u (see Theorem 6.1.2).

Let t ∈ [0, T ], (x, y) ∈ I × J . We differentiate νε = ρX
ε ρY

ε
nερε

with regard to t to find:

ε ∂tνε(t, x, y) =
ρX

ε ε ∂tρ
Y
ε + ρY

ε ε ∂tρ
X
ε

nε ρε
−

(
ε ∂tnε

nε
+

ε ∂tρε

ρε

)
νε

= 2 (r − κ ρε) νε −
∫

I
m(x′, y)

nε(x′, y) ρY
ε (x)

nε(x, y)ρε
dx′ −

∫
J

m(x, y′)
nε(x, y′), ρX

ε (y)
nε(x, y)ρε

dy′

− νε

(
r

2
νε +

r

2
−m(x, y)− κ ρε + r − κ ρε −

∫∫
I×J

m(x, y)
nε(x, y)

ρε
dx dy

)
=

r

2
νε(1− νε) + νε

(
m(x, y) +

∫∫
I×J

m(x, y)
nε(x, y)

ρε
dx dy

)
−

∫∫
I×J

(
m(x′, y) + m(x, y′)

) nε(x′, y) nε(x, y′)
nε(x, y) ρε

dx′ dy′.

(6.22)
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Since m ≥ 0 and nε, ρX
ε , ρY

ε , ρε > 0, we get:

ε ∂tνε(t, x, y) ≤
(

r

2
+ 2 ‖m‖∞

)
νε − r

2
ν2

ε .

Hence:

νε(t, x, y) ≤ 1
1

ν0
ε (x,y) e−( r

2 +2‖m‖∞) t
ε + r

(r+4‖m‖∞)

(
1− e−( r

2 +2‖m‖∞) t
ε

)
≤ 1

min
(

1
ν0

ε (x,y) , r
(r+4‖m‖∞)

) ≤ max
(
‖ν0

ε‖∞,

(
1 +

4‖m‖∞
r

))
≤ νM .

Similarly, from (6.22), we have:

ε ∂tνε(t, x, y) ≥
(

r

2
− 2‖m‖∞

)
νε − r

2
ν2

ε .

Recall from H1 that: r > 2‖m‖∞. Hence:

νε(t, x, y) ≥ 1
1

ν0
ε (x,y) e−( r

2 −2 ‖m‖∞) t
ε + r

r−4 ‖m‖∞

(
1− e−( r

2 −2 ‖m‖∞) t
ε

)
≥ 1

max
(

1
ν0

ε (x,y) , r
r−4‖m‖∞

) ≥ min
(
‖ν0

ε‖∞,

(
1− 4‖m‖∞

r

))
= νm.

6.4.2 Regularity estimates on uε

In this subsection, we prove the regularity estimates that underlie the convergence of uε based
on the Arzela-Ascoli theorem.

Proposition 6.4.1. Assume that H1, H2 and H3 hold. Let ε > 0, T > 0, and uε ∈ C1([0, T ]×
I × J) be the solution of Puε. Then, uε is Lipschitz continuous in time and in space, and is
bounded in C([0, T ]× I × J), all the bounds being uniform with regard to ε.

Proof of 6.4.1.

Lipschitz bounds in time. From H1 and Theorem 6.1.1, νε is the only term in Puε

whose boundness is not a priori ensured. However, 6.1.1 provides an upper bound for νε which
implies directly the following uniform Lipschitz bound in time on uε:

‖∂tuε‖∞ ≤ ‖m‖∞ + κ ρ+
0 +

r

2
(1 + νM ).

Lipschitz bounds in space. In this paragraph, we rely on a maximum principle to show
the following inequalities for all (t, x, y) ∈ [0, T ]× I × J :

|∂xuε(t, x, y)| < 2‖∂xm‖∞T + ‖∂xu0
ε‖∞ + 1, |∂yuε(t, x, y)| < 2‖∂ym‖∞T + ‖∂yu0

ε‖∞ + 1.
(6.23)

The latter together with H2 implies that (uε) is uniformly Lipschitz continuous in space.
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Let us show (6.23). For t ∈ [0, T ], (x, y, x′, y′) ∈ I̊4, define Δε(x′, y′, x, y, t) = uε(t, x′, y) +
uε(t, x, y′)−uε(t, x, y). Differentiating the equation on uε from Puε with regard to x, we obtain:

∂t ∂xuε = −∂xm +
r

2ρε

∫∫
I×J

1
ε

[
∂xuε(x, y′)− ∂xuε(x, y)

]
eΔε(x′,y′,x,y,t)dx′ dy′.

Let us define for (x, y) ∈ I × J :

wε(t, x, y) = ∂xuε(t, x, y)− 2‖∂xm‖∞ t− ‖∂xu0
ε‖∞ − 1.

First, we have that for all (x, y) ∈ I × J : wε(0, x, y) < 0. Next, let us assume that there exists
t > 0 such that max

I×J
wε(t, ·) ≥ 0. Then we can define:

t0 = inf{t > 0, max
I×J

wε(t, ·) ≥ 0}.

By continuity of ∂xuε at t = 0 and compactness of I, we have: t0 > 0. Let (x0, y0) ∈ I × J be
such that: wε(t0, x0, y0) = max

I×J
wε(t0, ·). Then, we have:

0 ≤ ∂t wε(t0, x0, y0)

= −∂xm(x0, y0) +
r

2ρε(t0)

∫∫
I×J

1
ε

[
wε(x0, y′)− wε(x0, y0)

]
eΔε(x′,y′,x,y,t)dx′ dy − 2‖∂xm‖∞

≤ −‖∂xm‖∞ < 0.

which is a contradiction. Therefore:

∀t ∈ [0, t], (x, y) ∈ I × J, wε(t, x, y) < 0,

which yields:
∂xuε(t, x, y) < 2‖∂xm‖∞t + ‖∂xu0

ε‖∞ + 1.

Next, let us consider, for (t, x, y) ∈ [0, T ]× I × J :

vε(t, x, y) = ∂xuε(t, x, y) + 2‖∂xm‖∞ t + ‖∂xu0
ε‖+ 1.

We can repeat the argument above switching maximum to minimum. First, we have that
vε(0, ·, ·) > 0. If we assume that there exists t > 0 such that min vε(t, ·, ·) ≤ 0 and define:

t0 = inf{t > 0, min vε(t, ·, ·) ≤ 0} > 0,

and (x0, y0) realising that minimum, we would have:

0 ≥ ∂tvε(t0, x0, y0)

= −∂xm(x0, y0) +
r

2ρε(t0)

∫∫
I×J

1
ε

[
wε(x0, y′)− wε(x0, y0)

]
eΔε(x′,y′,x,y,t)dx′ dy + 2‖∂xm‖∞

≥ ‖∂xm‖∞ > 0.

Which is a contradiction. Thus vε > 0 and for all (t, x, y) ∈ [0, T ]× I × J :

∂xuε > −2‖∂xm‖∞ t− ‖∂xu0
ε‖ − 1.

The bound on ∂yuε can be obtained using similar arguments.
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Uniform L∞ bounds on uε. Let us show the following lemma:

Lemma 14. For any δ > 0, there exists ε0 > 0 such that for all 0 < ε ≤ ε0:

−δ < max uε < δ, min uε > −δ − |I| (‖∂xuε‖∞ + ‖∂yuε‖∞) .

Hence, (uε) is uniformly bounded for ε small.

Proof.

1. Bounds on max uε. Let δ > 0. On the one hand, we have:

ρ−
0 ≤

∫∫
I×J

exp
(

uε(x,y)
ε

)
ε

dx dy ≤ |I|2 exp
(max uε

ε

)
ε

,

which leads to:

max uε ≥ ε log
(

ε ρ−
0

|I|2
)
−→
ε→0

0.

That implies that there exists ε0 > 0, such that:

∀ 0 < ε ≤ ε0, −δ < max uε.

On the other hand, if max uε = uε(xm, ym) > 0, then, for all (x, y) ∈ I × J , we have:

uε(x, y) ≥ uε(xm, ym)− ‖∂xuε‖∞ |x− xm| − ‖∂yuε‖∞ |y − ym|. (6.24)

Therefore, using the fact that uε is Lipschitz continuous in space, we obtain, for (x, y) ∈ I ×J

such that |x− xm| ≤ uε(xm,ym)
4‖∂xuε‖∞

, |y − ym| ≤ uε(xm,ym)
4‖∂yuε‖∞

:

uε(x, y) ≥ uε(xm, ym)
2

.

We deduce that:

ρ+
0 ≥

∫∫
I×J

exp
(

uε(x,y)
ε

)
ε

dx dy ≥
∫∫

|x−xm|≤ uε(xm,ym)
4‖∂xuε‖∞ , |y−ym|≤ uε(xm,ym)

4‖∂yuε‖∞

exp
(

uε(x,y)
ε

)
ε

dx dy

≥ uε(xm, ym)2

4 ‖∂xuε‖∞ ‖∂yuε‖∞
exp

(
uε(xm,ym)

2ε

)
ε

.

The latter yields that if uε(xm, ym) ≥ δ, then:

ρ+
0 ≥

δ2

4 ‖∂xuε‖∞ ‖∂yuε‖∞
exp

(
δ
2ε

)
ε

−→
ε→0

+∞.

Therefore, there exists ε0 > 0 such that:

∀ 0 < ε ≤ ε0, −δ < max uε < δ.

2. Bound on min uε. From (6.24), for all (x, y) ∈ I × J , we have:

uε(x, y) > max uε − |I|
(‖∂xuε‖∞ + ‖∂yuε‖∞

)
> −δ − |I| (‖∂xuε‖∞ + ‖∂yuε‖∞

)
.

Thanks to (6.23), the r.h.s is uniformly bounded.
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6.5 Proof of Theorem 6.1.2
In this section, we provide the proof for the main result of this paper, which is the convergence
of uε toward a non-positive limit u that separates additively the variables. We also link the
support of n to the zeros of u and derive a limit equation.

Limit u. From 6.4.1, there exists ε0 > 0 such that (uε)ε≤ε0 is uniformly bounded in
C0([0, T ] × I × J), and uniformly Lipschitz continuous in space and time. Hence, from the
theorem of Arzela-Ascoli, after extraction of a subsequence, (uε) converges uniformly toward
a limit u ∈ C0([0, T ]× I × J), that is also Lipschitz continuous.

u(t, x, y) ≤ max u(t, x, ·) + max u(t, ·, y). From H4 and 6.1.1, there exists νm > 0
such that:

∀(t, x, y) ∈ [0, T ]× I × J, νm ≤ νε(t, x, y)

=
∫∫

I×J

1
ε ρε

exp
[

uε(t, x, y′) + uε(t, x′, y)− uε(t, x, y)
ε

]
dx′ dy′

≤ |I|
2

ρ−
0

1
ε

exp
[max(uε(t, x, ·)) + max uε(t, ·, y))− uε(t, x, y)

ε

]
.

Moreover, for all (t, x, y) ∈ [0, T ]×I×J , and δ > 0, there exists ε0 > 0 such that for 0 < ε ≤ ε0,

max(uε(t, x, ·)) ≤ max(u(t, x, ·)) + δ, max(uε(t, ·, y)) ≤ max(u(t, ·, y)) + δ.

We deduce that, for 0 < ε < ε0:

uε(t, x, y)− u(t, x, y) + ε log
(

ε
ρ−

0 νm

|I|2
)
− 2δ ≤ max(u(t, x, ·)) + max(u(t, ·, y))− u(t, x, y).

Letting δ and ε vanish yields:

u(t, x, y) ≤ max(u(t, x, ·)) + max(u(t, ·, y)).

u(t, x, y) ≥ max u(t, x, ·) + max u(t, ·, y). For δ > 0, there exists ε0 > 0 such that
for 0 < ε ≤ ε0, for (t, x, y) ∈ [0, T ]× I × J ,

max(uε(t, x, ·)) ≥ max(u(t, x, ·))− δ, max(uε(t, ·, y)) ≥ max(u(t, ·, y))− δ.

Let ε ≤ ε0 and yε(x) be such that: uε(t, x, yε(x)) = max(uε(t, x, ·)). Since uε is uniformly
Lipschitz in space (6.4.1), we can choose M > 0 such that:

∀(y, y′) ∈ I × J, |uε(t, x, y)− uε(t, x, y′)| ≤M |y − y′|.

Combining the last two estimations leads to:

|y − yε(x)| ≤ δ

M
=⇒ uε(t, x, y′) > max u(t, x, ·)− 2δ.
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The same holds for max(u(t, ·, y)). Hence, from 6.1.1, there exists νM such that:

ρ+
0 νM ≥

∫∫
I×J

1
ε

exp
[

uε(t, x, y′) + uε(t, x′, y)− uε(t, x, y)
ε

]
dx′ dy′

≥
(

δ

M

)2 1
ε

exp
[max(u(t, x, ·)) + max(u(t, ·, y))− 4δ − uε(t, x, y)

ε

]
.

We next obtain:

ε log
(

ε
ρ+

0 νM M2

δ2

)
+ 4δ + uε(t, x, y)− u(t, x, y) ≥ max(u(t, x, ·)) + max(u(t, ·, y))− u(t, x, y).

Letting δ and ε vanish yields:

u(t, x, y) ≥ max(u(t, x, ·)) + max(u(t, ·, y)).

This concludes the proof of (6.2).

u is non-positive. This property follows directly from the uniform convergence of uε

toward u and the uniform estimates on max(uε) from Lemma 14.

Support of n and zeros of u. Let t ∈ [0, T ]. Let: (x0, y0) /∈ {(x, y) |u(t, x, y) = 0}.
Since u(t, ·, ·) is uniformly continuous, there exists δ > 0 such that: max (|x′ − x0|, |y′ − y0|) ≤
δ =⇒ u(t, x′, y′) ≤ u(t,x0,y0)

2 < 0. Also, thanks to the strong convergence of (uε) toward u,
there exists ε0 > 0 such that, for all ε < ε0, we have: ‖uε−u‖∞ ≤ |u(t,x0,y0)|

4 . Then, for ε < ε0,
we have:

∫
[x0−δ,x0+δ]×[y0−δ,y0+δ]

nε(t, x′, y′) dx′ dy′ =
∫

[x0−δ,x0+δ]×[y0−δ,y0+δ]

e
uε(t,x′,y′)

ε

ε
dx′ dy′

=
∫

[x0−δ,x0+δ]×[y0−δ,y0+δ]

e
u(t,x′,y′)+ |u(t,x0,y0)|

4
ε

ε
dx′ dy′

≤ 4δ2 e
u(t,x0,y0)

4ε

ε
−→
ε→0

0.

From the weak convergence result of Theorem 6.1.1, (x0, y0) /∈ supp(n(t, ·, ·)).

Limit equation on uX . Let ε > 0. From the equation (6.4) verified by ρX
ε , we get, by

integration:

∀(t, y) ∈ [0, T ]× J, ε log
(

ρX
ε (t, y)

ρX
ε (0, y)

)
= rt− κ

∫ t

0
ρε(s)ds−

∫ t

0

∫
I

m(x, y)
nε(s, x, y)
ρX

ε (s, y)
dx ds.

(6.25)
Let us define φX

ε ∈ C ([0, T ]× I × J) by:

φX
ε (t, x, y) =

nε(t, x, y)
ρX

ε (t, y)
.
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1. Convergence of φX
ε to φX. For (t, y) ∈ [0, T ]× J , we have:∫

I
φX

ε (t, x′, y) dx′ = 1.

Hence,
(
φX

ε

)
ε>0

is bounded in L∞([0, T ] × J, L1(I)). Thus, there exists a subsequence still

denoted
(
φX

ε

)
ε>0

that converges in L∞(w∗ − [0, T ]× J, M(I)) toward a measure φX .

Support of φX(t, ·, y). 6.1.1 implies that, for f ∈ Cc(I,R+), for a.e. (t, y)
1

νM ρ−
0

∫
I

ρY (t, x) f(x) dx ≤
〈
φX(t, ·, y), f

〉
≤ 1

νm ρ+
0

∫
I

ρY (t, x) f(x) dx.

Hence, for a.e. (t, y), φX(t, ·, y) and ρY (t, ·) share the same support. As n(t, ·, ·) is supported
at u(t, ·, ·)−1 ({(0, 0)}) = uX(t, ·)−1 ({0}) × uY (t, ·)−1 ({0}) for a.e. t, we obtain that ρY (t, ·)
(and therefore φX(t, ·, y)) is supported at the zeros of uY (t, ·).

2. ε log
(
ρX

ε

)
−→
ε→0

uX ∈ C0([0, T ] × I). We fix δ > 0 and let ε0 > 0 be such that:
∀ε < ε0, ‖uε − u‖∞ ≤ δ. Next, we compute:

ε log
(
ρX

ε (t, y)
)

= ε log

⎛⎝∫
I

e
uε(t,x,y)

ε

ε
dx

⎞⎠
≤ ε log

⎛⎝∫
I

e
u(t,x,y)+δ

ε

ε
dx

⎞⎠
= ε log

⎛⎝∫
I

e
uX (t,y)+δ

ε

ε
e

uY (t,x)
ε dx

⎞⎠
≤ uX(t, y) + δ − ε log(ε) + ε log

(∫
I

e
uY (t,x)

ε dx

)
≤ uX(t, y) + δ − ε log(ε) + ε log (|I|) .

(6.26)

Similarly, we have:

ε log
(
ρX

ε (t, y)
)
≥ uX(t, y)− δ − ε log(ε) + ε log

(∫
I

e
uY (t,x)

ε dx

)
. (6.27)

For all t ∈ [0, T ], we have shown at the step (ii) that there exists x0(t) ∈ I such that
uY (t, x0(t)) = 0. We have therefore the following lower bound:

ε log
(∫

I
e

uY (t,x)
ε dx

)
≥ ε log

(∫ x0(t)+ε

x0(t)−ε
e

uY (t,x)
ε dx

)

≥ ε log
(∫ x0(t)+ε

x0(t)−ε
e

−M|x−x0(t)|
ε dx

)
≥ −ε M + ε log (2 ε)

where the intermediate inequality is obtained due to the fact that there exists M > 0 such
that u(t, ·, ·) is M -lipschitz in space, and thus, so is uY (t, ·).

The two inequalities (6.26) and (6.27) above ensure the convergence of ε log
(
ρX

ε

)
toward

uX uniformly in [0, T ]× J .
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3. Limit equation. For all (t, y) ∈ [0, T ]× J :∫ t

0

∫
I

m(x, y)φX
ε (s, x, y) dx ds = ε log

(
ρX

ε (t, y)
ρX

ε (0, y)

)
− rt + κ

∫ t

0
ρε(s)ds.

From the strong convergence ε log
(
ρX

ε

)
−→
ε→0

uX ∈ C0([0, T ] × J) shown previously, the r.h.s
of the equality above converges toward a function in C0 ([0, T ]× J) as ε vanishes. Hence,
Gε := (t, y) �→ ∫ t

0
∫

I m(x, y)φX
ε (t, x, y) dx ds converges uniformly toward a function denoted

G(t, y) in C0 ([0, T ]× J).
We aim to show that for all t ∈ [0, T ]:

G(t, ·) = y �→
∫ t

0

〈
φX(t, ·, y), m(·, y)

〉
ds ∈ L∞(J),

which would yield (6.3). Let f ∈ L1(J). We have, for t ∈ [0, T ]:

∣∣∣∣∫
J

(
G(t, y)−

∫ t

0

〈
φX(t, ·, y), m(·, y)

〉
ds

)
f(y) dy

∣∣∣∣
≤ ‖G−Gε‖∞ ‖f‖1 +

∣∣∣∣∣
∫ T

0

∫
J

〈
φX

ε (s, ·, y)− φX(s, ·, y), m(·, y)
〉

1[0,t](s) f(y)ds dy

∣∣∣∣∣ .

The first term vanishes because of the uniform convergence of Gε to G. The second term does
the same because of the weak convergence of φX

ε to φX in L∞(w∗ − [0, T ]× J, M(I)) applied
to (s, x, y) �→ 1[0,t](s)f(y)m(x, y) ∈ L1([0, T ]× J, C0(I)), since f ∈ L1(J) and m ∈ C1(I × J).
We obtain that for all t ∈ [0, T ], f ∈ L1(J):∫

J

(
G(t, y)−

∫ t

0

〈
φX(t, ·, y), m(·, y)

〉
ds

)
f(y) dy = 0.

Therefore, we deduce that for all t ∈ [0, T ], for a.e y, G(t, y) =
∫ t

0

〈
φX(t, ·, y), m(·, y)

〉
ds.

6.6 Convergence of (ρε) toward a BV func-
tion: proof of Theorem 6.1.3

In this section, we provide the proof of Theorem 6.1.3 under the additional hypothesis that
the selection function m is additive (Hm,add).

Let ε > 0. First, we have, for all t ∈ [0, T ]:∫ t

0

∣∣∣∣dρε

dt
(s)

∣∣∣∣ ds =
∫ t

0

dρε

dt
(s) ds + 2

∫ t

0

(
dρε

dt

)
−

(s) ds

= ρε(t)− ρε(0) + 2
∫ t

0

(
dρε

dt

)
−

(s) ds

≤ ρ+
0 + 2

∫ t

0

(
dρε

dt

)
−

(s) ds,

using the estimates of Lemma 12. Let us define:

Iε(t) :=
dρε

dt
(t) =

r − κ ρε(t)
ε

ρε(t)−
∫∫

I×J
m(x, y)

nε(t, x, y)
ε

dx dy.
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To prove that ρε is locally uniformly bounded in W 1,1([0, T ]), it is sufficient to give an upper
bound on

∫ t
0 (Iε)− ds. To this end, let us notice that for a.e. t:

d (Iε)−
dt

(t) = −1Iε≤0
dIε

dt
.

We deduce that, for a.e. t

d (Iε)−
dt

(t) = −dIε

dt
(t) 1{Iε(t)≤0}

= −
[

r − 2 κ ρε

ε
Iε(t)−

∫∫
I×J

m(x, y)
∂tnε(t, x, y)

ε
dx dy

]
1{Iε(t)≤0}

=
[

r − 2 κ ρε

ε
(Iε)− (t)

+
∫∫

I×J
m(x, y)

1
ε2

(
r

2

[
ρX

ε ρY
ε

ρε
+ nε

]
− κ ρε nε −m(x, y) nε

)
dx dy

]
1{Iε(t)≤0}.

(6.28)
Let us show that the following term is non positive:

1{Iε(t)≤0}
∫∫

I×J
m(x, y)

(
r

2

[
ρX

ε ρY
ε

ρε
+ nε

]
− κ ρε nε −m(x, y) nε

)
dx dy

= 1{Iε(t)≤0}

[
r

2

∫∫
I×J

m(x, y)
ρX

ε ρY
ε

ρε
dx dy +

(
r

2
− κρε

)∫∫
I×J

m(x, y) nεdxdy −
∫∫

I×J
m2(x, y) nε dx dy

]
.

On the one hand, from the Cauchy-Schwartz inequality, we get:

−ρε

∫∫
I×J

m2(x, y) nε dx dy = −
∫∫

I×J

√
nε

2
∫∫

I×J
(m(x, y)

√
nε)2 dx dy ≤ −

(∫∫
I×J

m(x, y) nε dx dy

)2
.

On the other hand, thanks to the additional hypothesis on m (Hm,add), we have∫∫
I×J

m(x, y)
ρX

ε ρY
ε

ρε
dx dy =

∫∫
I×J

[
mX(x) + mY (y)

] ρX
ε (y) ρY

ε (x)
ρε

dx dy

=
∫

I
mX(x)ρY

ε (x) dx +
∫

I
mY (y)ρX

ε (y) dy

=
∫∫

I×J
mX(x) nε(x, y) dx dy +

∫∫
I×J

mY (y) nε(x, y) dx dy

=
∫∫

I×J
m(x, y) nε(x, y) dx dy.

We deduce that

1{Iε(t)≤0}
∫∫

I×J
m(x, y)

(
r

2

[
ρX

ε ρY
ε

ρε
+ nε

]
− κ ρε nε −m(x, y) nε

)
dx dy

≤ 1{Iε(t)≤0}

[
r

∫∫
I×J

m nε − κ ρε

∫∫
I×J

m nε − 1
ρε

(∫∫
I×J

m(x, y) nε dx dy

)2
]

≤ 1{Iε(t)≤0}

∫∫
I×J m nε dx dy

ρε

[
(r − κ ρε) ρε −

∫∫
I×J

m nε dx dy

]
≤ 1{Iε(t)≤0}

∫∫
I×J m nε dx dy

ρε
ε Iε(t) ≤ 0.
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Consequently, (6.28) implies the following inequality

d (Iε)−
dt

(t) ≤ r − 2 κ ρε

ε
(Iε)− (t)

≤ r − 2 κ ρ−
0

ε
(Iε)− (t)

=
2‖m‖∞ − r

ε
(Iε)− (t).

Let us define δ := r − 2‖m‖∞ > 0 from H1. From the last differential inequality, we deduce
that

(Iε)− (t) ≤ (Iε)− (0) e− δ
ε

t, (6.29)

which concludes the first part of the proof.
For the last part of the theorem, recall that Iε(t) = dρε

dt (t). Then, the inequality (6.5)
implies that there exists C > 0 such that

(Iε(0))− ≤ C
e

o(1)
ε

ε
.

As a corollary of (6.29), we obtain that for all t ∈ [0, T ]

(Iε)− (t) ≤ C
e

o(1)−δt
ε

ε
.

We deduce that the limit ρ is non decreasing.

6.A Proof of Lemma 12.
Proof of Lemma 12.

1. Bounds on ρε. Integrating (P (nε)) leads to ρε being solution of:{
ε ∂tρε = (r − κ ρε) ρε −

∫∫
I×J m(x, y) nε(t, x, y) dx dy,

ρ(0) = ρ0
ε.

(6.30)

Since m, nε ≥ 0, we get that ρε is a subsolution of the Cauchy problem:{
ε dtρ̃ε = (r − κ ρ̃ε) ρ̃ε,

ρ̃ε(0) = ρ0
ε.

whose solution is:

∀t ≥ 0, ρ̃ε(t) =
1

e− rt
ε

ρ0
ε

+ κ
r

(
1− e− rt

ε

) ≤ max
(

ρ0
ε,

r

κ

)
,

since ρ0
ε ≥ 0 from assumptions. Using the comparison principle, we obtain

∀t ≥ 0, ρε(t) ≤ ρ̃ε(t) ≤ ρ+
0 .

Similarly, we get:

∀t ≥ 0, ρ−
0 =≤ min

(
ρ0

ε,
r − ‖m‖∞

κ

)
≤ ρε(t).
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2. Bounds on ρX
ε , ρY

ε . Integrating (P (nε)) with regard to x leads to:{
ε ∂tρ

X
ε = (r − κ ρε) ρX

ε −
∫

I m(x, y) nε(t, x, y) dx ≤ rρX
ε ,

ρX(0) = ρX,0
ε .

The upper bound on ρX
ε is then obtained by comparison with ρX,0

ε e
r t
ε . The upper bound on

ρY
ε can be proved using similar arguments.

3. Bound on nε. From Duhamel’s formula, we obtain, for all 0 ≤ t ≤ T, (x, y) ∈ I × J :

nε(t, x, y) = n0
ε(x, y)e−

∫ t

0
m+κ ρε(s)− r

2
ε

ds +
r

2ε

∫ t

0

ρX
ε (y, τ)ρY

ε (x, τ)
ρε(τ)

e−
∫ t

τ

m+κ ρε(s)− r
2

ε
dsdτ.

Hence, using the bounds on ρX
ε and ρY

ε from (6.17), we deduce that:

‖nε(t, ·, ·)‖∞ ≤ e
rt
2ε

∥∥∥n0
ε

∥∥∥∞ +
‖ρX,0

ε ‖∞ ‖ρY,0
ε ‖∞

ρ−
0

∫ t

0

r

2ε
e

2rτ
ε e

r(t−τ)
2ε dτ

≤ e
rt
2ε

∥∥∥n0
ε

∥∥∥∞ +
‖ρX,0

ε ‖∞ ‖ρY,0
ε ‖∞

ρ−
0

e
2rt
ε

(
e

rt
2ε − 1

)
≤ NT .

4. Bound on ∂xnε and ∂ynε. We differentiate P (nε) with respect to x to obtain:⎧⎨⎩ε ∂t∂xnε = r
2

[
∂xρY

ε (x) ρX
ε (y)

ρε
+ ∂xnε(x, y)

]
− ∂xm(x, y) nε − (m + κ ρε) ∂xnε,

∂xnε(0) = ∂xn0
ε.

Putting the latter under integral form yields:

∂xnε = ∂xn0
ε e−

∫ t

0
m+κ ρε(s)

ε
ds+

1
ε

∫ t

0

(
r

2

[
∂xρY

ε (x) ρX
ε (y)

ρε
+ ∂xnε(x, y)

]
− nε ∂xm

)
e−

∫ t

τ

m+κ ρε(s)
ε

dsdτ.

Hence, by first using the previous bounds (6.17) and (6.18) and next using Gronwall’s inequality
on t �→ ‖∂xnε(t, ·, ·)‖∞ (second line), we obtain that:

‖∂xnε(t, ·, ·)‖∞ ≤
∥∥∥∂xn0

ε

∥∥∥∞ + NTM

t

ε
‖∂xm‖∞ +

∫ t

0

r

2ε

⎡⎣
∥∥∥ρX,0

ε

∥∥∥∞ |J |
ρ−

0
e

r τ
ε + 1

⎤⎦ ‖∂xnε(τ, ·, ·)‖∞ dτ

≤
(
‖∂xn0

ε‖∞ + NTM

t

ε
‖∂xm‖∞

)
e

‖ρ
X,0
ε ‖∞ |J|

2ρ−
0

e
r t
ε + rt

2ε

≤ NX
T .

The bound on ∂ynε(t, ·, ·) is obtained similarly.
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6.B Proof of Lemma 13
Proof of Lemma 13. Let us recall the definition of A0

ε

A0 =
{

n ∈ C1(I × J, R+) | ρ(n) ∈ [ρ−
0 , ρ+

0 ]
}

,

and the definition of f

f :

⎧⎪⎨⎪⎩
A0 → X

n �→ f(n) : (x, y) �→ r

2
ρX(n)(y) ρY (n)(x)

ρ(n)
−

[
m(x, y) + κρ(n)− r

2

]
n(x, y).

From H1 (C1-regularity of m on I × J) and because bounded linear functionals are Lips-
chitz, the only terms in the expression of f for which the Lipschitz bound requires additional
computations are f̃ : n �→

[
(x, y) �→ ρX(n)(y) ρY (n)(x)

ρ(n)

]
and f̂ : n �→ ρ(n)n.

Let η > 0 and n and ñ be in A0 such that max (‖n‖X , ‖ñ‖X ) < η. We compute∥∥∥f̂(n)− f̂(ñ)
∥∥∥X = ‖ρ(n)n− ρ(ñ)ñ‖X
≤ ‖ρ(n)(n− ñ)‖X + ‖ñ(ρ(n)− ρ(ñ))‖X
≤ ρ(n) ‖n− ñ‖X + ‖ñ‖X ‖ρ(n)− ρ(ñ)‖X
≤

(
ρ+

0 + η
)
‖n− ñ‖X ,

where we used the structure of Banach algebra of (X , ‖ · ‖X ) at the third line. Similarly, we
compute

∥∥∥f̃(n)− f̃(ñ)
∥∥∥X =

∥∥∥∥∥ρX(n) ρY (n)
ρ(n)

− ρX(ñ) ρY (ñ)
ρ(ñ)

∥∥∥∥∥X

≤
∥∥∥∥∥(ρX(n)− ρX(ñ)

) ρY (n)
ρ(n)

∥∥∥∥∥X
+

∥∥∥∥∥ρX(ñ)
(

ρY (n)
ρ(n)

− ρY (ñ)
ρ(ñ)

)∥∥∥∥∥X

≤
∥∥∥ρX(n)− ρX(ñ)

∥∥∥X

∥∥∥∥∥ρY (n)
ρ(n)

∥∥∥∥∥X
+

∥∥∥ρX(ñ)
∥∥∥X

∥∥∥∥∥ρY (n)
ρ(n)

− ρY (ñ)
ρ(ñ)

∥∥∥∥∥X
,

≤ |I||J |η
ρ−

0
‖n− ñ‖X

+
∥∥∥ρX(ñ)

∥∥∥X

⎛⎝
∥∥∥ρY (n)− ρY (ñ)

∥∥∥X
ρ(n)

+

∥∥∥ρY (ñ)
∥∥∥X

ρ(n)ρ(ñ)
‖ρ(n)− ρ(ñ)‖X

⎞⎠ ,

≤
⎛⎝2
|I||J |η

ρ−
0

+
[
|I||J |η

ρ−
0

]2
⎞⎠ ‖n− ñ‖X ,

where we used the structure of Banach algebra of (X , ‖ · ‖X ) at the third and fourth line.
Consequently, we obtain that f is locally Lipschitz on A0.
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6.C Technical lemma
Lemma 15. Let K and K ′ be two compact sets of R and (fn) be a bounded sequence in
L∞(K, L1(K ′)). Then, there exists f ∈ L∞(K, M1(K ′)) and a subsequence of (fn) that con-
verges toward f in the weak L∞(w∗ −K, M1(K ′)) topoplogy.

Proof of Lemma 15. Since K and K ′ are compact sets of R, L∞(K, L1(K ′)) ⊂ L1(K, L1(K ′)) ⊂
M1(K×K ′). Since (fn) is then a bounded sequence in M1(K×K ′), from Banach-Alaoglu the-
orem, there exists f ∈M1(K×K ′) and a subsequence still noted (fn) that converges weakly−∗
toward f ∈ M1(K ×K ′). As, for all n ∈ N, fn ≥ 0, we deduce that f is non-negative almost
everywhere.

f ∈ L∞(K, M1(K ′)). Let us denote:

Fn :

⎧⎨⎩ K → R

x �→
∫

K′
fn(x, y) dy.

Since fn is a bounded sequence in L∞(K, L1(K ′)), (Fn) is a bounded sequence in L∞(K,R).
As L∞(K,R) =

(
L1(K, R)

)∗, and L1(K, R) is separable, the Banach-Alaoglu theorem implies
that there exists a subsequence of (Fn), still noted (Fn), and F ∈ L∞(K,R) such that:

Fn
∗

⇀ F.

Let φ ∈ C(K,R). From the previous convergence, we have:∫
K

φ(x)
∫

K′
fn(x, y) dy dx→

∫
K

φ(x)F (x) dx.

Also, since (fn) converges weakly−∗ toward f ∈M1(K ×K ′), we have:∫
K×K′

φ(x)fn(x, y) dx dy →
∫

K×K′
φ(x)df(x, y).

The latter holds for all φ ∈ C(K,R). Hence:

x �→
∫

K′
df(x, y) = F ∈ L∞(K,R).

We thus obtain that: f ∈ L∞(K, M1(K ′)).

(fn) converges weakly toward f in L∞(K, M1(K ′)) − ∗. Let us consider ε > 0,

φ ∈ L1(K, C(K ′)) and, by density, (φk) ∈ C(K × K ′)N such that: φk
L1(K,C(K′))−→ φ. Then
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(denoting ‖ · ‖M1(K′) the dual norm on M1(K ′)):∣∣∣∣∫
K×K′

φ(x, y) df(x, y)−
∫

K×K′
fn(x, y) φ(x, y) dx dy

∣∣∣∣
≤

∣∣∣∣∫
K×K′

(φ(x, y)− φk(x, y)) df(x, y)
∣∣∣∣ +

∣∣∣∣∫
K×K′

fn(x, y) (φ(x, y)− φk(x, y))
∣∣∣∣

+
∣∣∣∣∫

K×K′
φk(x, y) (fn(x, y) dx dy − df(x, y))

∣∣∣∣
≤

∫
K
‖φ(x, ·)− φk(x, ·)‖∞

(
‖f(x, ·)‖M1(K′) + ‖fn(x, ·)‖L1(K′)

)
dx

+
∣∣∣∣∫

K×K′
φk(x, y) (fn(x, y) dx dy − df(x, y))

∣∣∣∣
≤

(
‖f‖L∞(K,M1(K′)) + ‖fn‖L∞(K,L1(K′))

)
‖φk − φ‖L1(K,C(K′))

+
∣∣∣∣∫

K×K′
φk(x, y) (fn(x, y) dx dy − df(x, y))

∣∣∣∣
Since φk → φ in L1(K, C(K ′)) and (fn) is bounded in L∞(K, L1(K ′)), the first term is
smaller than ε for k large enough. For such a k ∈ N, the weak convergence of (fn) toward
f in M1(K ×K ′) ensures that for n large enough, the second term is smaller than ε, which
concludes the proof.
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Chapter 7
Annex: Volunteer modelling project of the
Covid epidemic in Mayotte (first part: May
2020)

Context and description of the project. On the 11th of March 2020, the World Health
Organization (WHO) assessed that the COVID-19 epidemic spreading around the globe had
reached the pandemic stage. As public policies were considering extremely stringent measures
to contain the first wave of the epidemic, modelling efforts sparked worldwide to try to provide
some guiding elements. The academic platform of MODCOV19 was created to coordinate and
support this effort in France. Through the intermediary of Amandine Véber (a member of
MODCOV19), Vincent Calvez was put in contact with Julien Balicchi of the Regional Health
Agency of Mayotte (ARS) in mid-April 2020.

The aim was to extend a first epidemiological model built in collaboration with a mathe-
matician from the Centre Universitaire de Mayotte to account for the influence of the particular
age structure of Mayotte’s population on the trajectory of the COVID-19 epidemic wave that
was unfolding there since mid-March 2020 (according to the reports at the time). Indeed,
Mayotte is one of the French departments with the highest fecundity (over 4) and with over
half of its total population under 20 (UN 2019 - per comparison, the same age class in the
whole French population represents under 25 percent of the total French population). As
studies were starting to be published showing large discrepancies of susceptibility to infec-
tion by COVID-19 with regard to age (Davies et al. 2020), it seemed relevant to include the
demographic structure of Mayotte in the existing epidemiological model, in order to assess
in particular how the reopening of school, forecasted to be on the 18th of May 2020, would
impact the course of the epidemic and translate into severe cases, as requested by the ARS.
The head of the ARS of Mayotte was forecasted to speak about the potential impact of this
measure at the French Parliament during the week of the 11th of May 2020. Mete Demircigil
and myself joined this short volunteer modelling project on the 5th of May 2020.

This document presents the part of this short project to which I dedicated myself from the
5th of May to the 11th of May 2020, under the supervision of V. Calvez and in collaboration
with the ARS of Mayotte. My first task was to dive into the scientific literature on the
COVID-19 epidemic to reduce the number of parameter values of the age-structured model
to be estimated, and next to implement this model into a Python code in order to give
some quantitative predictions about the effect of school’s reopening on the incidence level.
The complementary part of the project, conducted by M. Demircigil and V. Calvez, was to
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analyse the hospitalizations and ICU data provided by the ARS of Mayotte and translate the
dynamics of the age-specific incidence output of the Python code into age-specific dynamics
of hospitalizations and ICU cases.

7.1 Epidemiological model
Compartments and age structure. As Mayotte presents a particular age structure
(with more than half its inhabitants under 20 [UN 2019]), we consider an age-structured
compartmental model with three age classes: 0-19, 20-59 and 60+. The different epidemio-
logical compartments, whose densities vary in time, are therefore vectors in R

3
+ denoted in

bold S(t), E(t), A(t), I(t), R(t) (respectively: Susceptible, Exposed, Asymptomatic, Infected
and Removed). The asymptomatic compartment represent individuals either exhibiting no
symptoms or only mild ones.

Epidemiological parameters We define

� C(t) ∈ M3(R): time-dependent contact matrix per age. The coefficient ci,j(t) is the
average estimated number of contact of a person from age class i with another from
age class j at time t. Therefore, C does not need to be symmetrical. The temporal
dependency of C allows to model the effects of public policies on contact levels.

� u ∈ R
3
+: vector of age-specific susceptibility per contact (the probability that a sus-

ceptible person meeting with an infected person becomes infected upon contact and
transmission).

� γ ∈ R
3
+: the vector of age-specific latency rate (the inverse of the average time from

being exposed to become infected).

� a ∈ [0, 1]3: the vector of age-specific asymptomatic frequency.

� β ∈ R+: the vector of age-specific transmissibility rate (the probability that an infected
person transmits the virus upon contact to a susceptible person)

� βA: the age-specific transmissibility reduction factor from an asymptomatic person com-
pared to an infected person.

� α ∈ R
3
+: the vector of age-specific removal rates for infected.

� δ the vector of age-specific removal rates for asymptomatic.

Summary sketch of the relationships between stages.
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S E I R

A

(1 − a) · γ

a · γ δ

α

uC(t)β

uC(t)β · βA

ODE system. Denoting N the vector of the total sizes of each age class, the following
system is obtained according to the law of mass action:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Ṡ(t) = −S(t) · u · C(t)β [I(t) + βAA(t)] ·N−1

Ė(t) = S(t) · u · C(t)β [I(t) + βAA(t)] N−1 − γ ·E(t)
Ȧ(t) = a · γ ·E(t)− δ ·A(t)
İ(t) = 1 − a · γ ·E(t)−α · I(t)
Ṙ(t) = α · I(t) + δ ·A(t)

(7.1)

Basic reproduction number R0(t). As the model that we consider involves an age
structure, the computation of the basic reproduction number R0(t) requires here more tools
that in the analogous homogeneous compartmental model. More precisely, I used the Next-
Generation Matrix framework for compartmental models (see Diekmann, Heesterbeek, and
Britton 2013). This approach relies on two matrices F and V , where Fi,j is the rate at
which individuals of compartment j infect individuals of compartment i (here, we consider the
compartments of Exposed, Infected and Asymptomatics) and Vi,j relates to the average time
that individuals in compartment j will spend (have spent) in compartment i

F (t) =

⎛⎜⎝0 Diag (u) C(t)β Diag (·u) C(t) Diag(ββA)
0 0 0
0 0 0

⎞⎟⎠ ,

adn

V =

⎛⎜⎝ Diag(γ) 0 0
−Diag((1− a) · γ) Diag(α) 0
−Diag(a · γ) 0 Diag(δ)

⎞⎟⎠ .

The next-generation matrix FV −1, whose spectral radius is the basic reproduction number
R0t), reads as follows

FV −1 =

⎛⎜⎝Diag (u) C(t)β
[
Diag(α−1 · (1− a)) + Diag(βA · δ−1 · a)

]
∗ ∗

0 0 0
0 0 0

⎞⎟⎠
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We thus obtain the following formula for the basic reproduction number at time t (where
ρ(M) denotes the spectral radius of M)

R0(t) = ρ
(
Diag (βu) C(t)

[
Diag(α−1 · (1− a)) + Diag(βA · δ−1 · a)

])
.

Doubling time We define the doubling time the exponential growth phase at the start of
the epidemic when S ≈N as:

T1/2 =
log(2)

r
, where r = max(Re(Sp(F − V ))),

where F and V are the matrices defined in the last paragraph.

Incidence At a time t, we compute the incidence λ(t) as :

λ(t) = S(t) · u · Cβ [I(t) + βAA(t)] N−1.

7.2 Python code implementation
The Python code implements a time-discretization of the system (7.1) using an explicit scheme.

7.2.1 Epidemiological parameter values
• age-specific susceptibility u: gross values have been taken from the Extended Table 1 of

[Davies et al. 2020] (back then still a preprint). The definitive values for the three age
classes considered in this project have next been obtained as weighed average accounting
for for Mayotte’s age class sizes.

• age-specific frequency of asymptomatic cases a: gross values have been taken from the
ones indicated for the subclinical fraction ("those with very mild symptoms that may
not be noticed or reported, even though they occur", 1 minus the clinical fraction) from
the Extended Table 1 of [Davies et al. 2020] (back then still a preprint). The definitive
values for the three age classes considered in this project have next been obtained as
weighted average accounting for age class sizes.

• relative transmissibility of asymptomatics βA = [0.55, 0.55, 0.55]: this value was chosen
from the study on "undocumented infections" in China by [Li et al. 2020] (95% confidence
interval is [0.46-0.62]). It is homogeneous across age class as, up to my knowledge, there
were not any data available at that time which indicated an age dependency on this
parameter.

• the inverse of latency period between exposition to infection and from in infection to
recovery γ = δ = α = [1/2.5, 1/2.5, 1/2.5]: these values are estimated from the mean
serial interval ("the time from illness onset in a primary case (infector) to illness onset in
a secondary case (infectee)") indicated in [Nishiura, Linton, and Akhmetzhanov 2020],
at 4.0 days (confidence interval of [3.1, 4.9]). Knowing that the mean serial interval is
bounded from above by the sum of latency and recovery period α + γ or δ + γ, I chose
arbitrarily it to be 5.0 days, split evenly between latency and recovery period. Moreover,
up to my knowledge, there were not any data available at that time which discriminated
between asymptomatic and symptomatic serial interval, or any age-specific ones.
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• the transmissibility rate β = [1/6, 1/6, 1/6]: this value is the only one that is not taken
from the literature, and is calibrated so that the initial basic reproduction numberR0(t =
0) (on the 13th of March 2020) is of 3. The latter comes from the estimations of R0(t)
obtained with an epidemiological model without age structure done by V. Calvez prior
to this work.

7.2.2 Age-structured contact matrix and demographic
parameters

The age-structured contact matrix coefficients were estimated from the study building contact
matrices from surveys in 152 countries [Prem, Cook, and Jit 2017]. In the latter, these contact
matrices are stratified by locations: home, work, school and others. Mayotte is not one of the
territories whose contact matrix were estimated in [Prem, Cook, and Jit 2017], so I decided to
deduce its contact matrix from the corresponding one for the island of Sao Tomé. Aside from
the insularity characteristic that these two African territories share (even though Sao Tomé is
located westward from the continent), this choice was motivated by the fact that they present
similar age structure patterns, fecundity and total population size (UN 2019 - although their
population density is different, but remains of the same order).

The age-structured contact matrix for Mayotte was rebuilt from the one from Sao Tomé
using age-structured demographic data for both Mayotte and Sao Tomé originating from [UN
2019]. The contact matrix C is the sum of four contact matrices by locations: Chome, Cschool,
Cwork and Cother, weighted by time-dependent weights whome, wschool, wwork and wother which
model the effects of different public policies on people’s behaviours (confinement, closing/open-
ing of schools, remote working). Setting a weight to 1 means that the corresponding contacts
occur as before the pandemic, and setting it to a lower value represents the reduction of corre-
sponding contacts following public policies. In this study, I explore different types of scenarii
by choosing particular temporal dynamics for these four weights.

7.3 Numerical results from modelling spe-
cific scenarii of public policies

Preliminary calibration step for the period from the 13th of March to the
18th of May: first imported cases and reduction of contact levels due to
public policies. First, the discussions with the ARS (which provided us with a local as-
sessment of the compliance to public policies) indicated us that the first known (imported)
case of COVID-19 in Mayotte (at the time) dated from the 13th of March 2020. Therefore,
I set initially one person from the 20-59 age class as infected at t = 0 (corresponding to the
13th of March 2020) and the rest of the population as susceptible. From t = 4 to t = 13, the
latter corresponding to the date where Mayotte closed its access from the mainland (26th of
March 2020), 1/2 an imported infected individual is added to the 20-59 age class each day, in
addition to the epidemic dynamics simulated according to (7.1). This choice was intending to
match the incidence data reported by the ARS of Mayotte for the period between the 13th
of March 2020 to early May 2020 with outputs from the simulations of (7.1) (see Fig. 7.1).
As the project was conducted over a short amount of time (a week) and due to my limited
knowledge of inference, I resorted to estimate roughly the correspondence between incidence
data and initial simulated incidence increase.
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Moreover, to simulate (7.1), one has to specify the contact weights corresponding to the
different components of the age-structured contact matrix according to the compliance of the
population to public policies. The ARS of Mayotte indicated that the confinement, school
closing and mandatory remote-working from mid March 2020 were well respected for around
three weeks, and but that social distancing behaviours got relaxed especially among the youth
from early April to early May 2020. These observations were in agreement with the estimations
of the dynamics of the R0(t) done by V. Calvez with an epidemiological model without any
age structure and the data of incidence provided by the ARS, prior to my involvement in the
project (5th of May).

Therefore, I chose to set the temporal dynamics of the four contact weights between the
13th of March 2020 (t = 0) and the 18th of May 2020 (t = 66) to match the estimations for
the dynamics of R0 provided by V. Calvez as follows:

� whome = 1 for 0 < t ≤ 66 (we assumed that the contacts at home occur independently
of public policies).

� wschool = 0 for 0 < t ≤ 66 (schools are closed during this first perdiod).

� wwork = wother = c(t) for 0 < t ≤ 66, where c(t) is chosen so that the dynamics of the
R0(t) matches the estimations provided by V. Calvez

c(t) =

⎧⎪⎪⎨⎪⎪⎩
w0 + (w1 − w0) t

24 if t < 24 (7th of April 2020),
w1 + (w2 − w1) t−24

40−24 if 24 ≤ t < 40 (23rd of April 2020),
w2 if 40 ≤ t < 66 (18th of May 2020),

where w0 = 1, w1 = 1/20 and w2 = 1/2.2, corresponding respectively to R0 ≈ 2,
R0 ≈ 0.85 and R0 ≈ 1.5.

Moreover, at t = 0, all the weights are set at 1 (no reduction of contacts), corresponding to
R0 ≈ 3.

Comparison of three scenarii: stable, optimistic and pessimistic At the request
of the ARS, we explored three scenarii which assume that the school stay closed (wschool = 0)
for the period after the 18th of May 2020:

1. stable scenario: the levels of contact wwork and wother are kept at the same value as on
the 18th of May 2020, namely at w2 = 1/2.2, corresponding to R0 ≈ 1.5.

2. optimistic scenario: the levels of contact wwork and wother are decreased to w1 = 1/20,
corresponding to R0 ≈ 0.8 (modelling the highest level of compliance to public policies
observed during the period from the 18th of March to the 7th of April).

3. pessimistic scenario: the levels of contact wwork and wother are increased to w0 = 1,
corresponding to R0 ≈ 2, modelling the corresponding contacts to come back at the
level prior to confinement measures (but with schools closed).

The temporal dynamics of the basic reproduction number and the daily incidence across age
classes for the three scenarii are displayed in Fig. 7.2. The simulations are consistent with
classical relationships between the basic reproduction number and the spreading of the epi-
demics.
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Figure 7.1: Daily incidence obtained from numerical recursions of (7.1) for the
calibration period, ranging from the date of the first known imported cases on the
island (13th of March 2020) to the time of the project (5h of May 2020). Subsequent
introduced cases before the access to the island got closed (on the 26th of March) and contact
weights were chosen so that the total daily incidence obtained by simulation (full black line)
matches approximately the daily incidence data provided by the ARS (dashed curve) and the
estimations of the basic reproduction number done by V. Calvez from the same data.

Comparison between two scenarii of school reopening At the request of the ARS,
we have simulated two scenarii of school reopening from the 18th of May (t = 66) onwards, as
follows

1. sudden reopening: wschool(t) = 1 for 66 ≤ t < 115 (the latter corresponds to the end of
the school year), and wschool(t) = 0 for 115 ≤ t.

2. progressive reopening of schools on 24 days : wschool(t) = t−66
90−66 pour 66 ≤ t < 90, and

next wschool(t) = 1 for 90 ≤ t < 115 until the end of the school year. After the end of
the school year, we set wschool(t) = 0 for 115 ≤ t.

Notice that we did not change simultaneously the weights affecting work, school and others,
even though the school reopening might correlate with a decrease in remote-working. More-
over, we set the weight for school contact at 1, because the ARS informed us of structural
difficulties regarding health measures, such as social distancing and hand-washing hygiene, to
be implemented in schools.

The temporal dynamics of the basic reproduction number and the daily incidence under
these different scenarii are displayed in Fig. 7.3 (the stable scenario is the same as defined
in the previous paragraph). The simulations suggest that the impact of school reopening as
modelled is likely to increase significantly the incidence rate around a narrower peak incidence,
while not changing its date.
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(a) Temporal dynamics of the basic reproduction number R0(t).

(b) Temporal dynamics of the daily incidence across age classes.

Figure 7.2: Dynamics of the basic reproduction number (upper panel) and the daily
incidence computed from numerical recursions on (7.1) (lower panel), according
to three different scenarii of contact levels.
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(a) Temporal dynamics of the basic reproduction number R0(t).

(b) Temporal dynamics of the daily incidence across age classes.

Figure 7.3: Dynamics of the basic reproduction number (upper panel) and the daily
incidence computed from numerical recursions on (7.1) (lower panel), according
to three different scenarii of school reopening.
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7.4 Conclusion for my contribution - per-
spectives for the project

In this report, I present the numerical work that I did as part of a short modelling project
simulating the effects of public policies on the first wave of the COVID-19 epidemic in Mayotte,
in early May 2020, supervised by V. Calvez and in collaboration with the ARS of Mayotte.
It is based on a classical age-structured epidemiological model (Diekmann, Heesterbeek, and
Britton 2013) which takes into account the particular age structure of Mayotte’s population
(UN 2019), with age-specific epidemiological parameters taken from studies done in well-known
epidemiological groups (Davies et al. 2020; Nishiura, Linton, and Akhmetzhanov 2020; Li et
al. 2020) and an age-structured contact matrix specific to Mayotte inspired by [Prem, Cook,
and Jit 2017], stratified into different locations (school, home, work, others) which allows
to investigate the effects of different public policies (confinement, school closing/reopening,
remote working). This report and the figures presented in it were provided to the ARS of
Mayotte on the 11th of May 2020, as well as projections of hospitalizations and ICU cases
estimated from the incidence output from the simulations described in this report. The head
of the ARS of Mayotte communicated part of this report to the French Parliament and the
presidential office. The school reopening in Mayotte got delayed by a week, to the 25th of May
2020.

I want to address a number of caveats surrounding this project, mainly due to the short
time available (a week) to develop it from scratch to results and the relative inexperience of
epidemiological models that I personally had at the start (I knew of age-structured epidemi-
ological models without any real experience of working with them). Moreover, in May 2020,
the epidemiological characteristics of the COVID-19 were not as well understood as nowadays
(two years after) and were still under intense investigation, which produced a fast-growing
vast literature that I had to navigate quickly, without prior knowledge of it. More in-depth
sensitivity analyses and a better tuned statistical inference of some parameters w.r.t the inci-
dence data were in particular lacking (although I investigated numerically a scenario assuming
that the incidence data provided by the ARS were only reflecting a fraction of the total cases
during the first month).

After this intense period in early May 2020, my involvement in the more global project
decreased progressively as I focused on my main PhD projects, especially after I transferred
the Python codes to Benoît Fabrèges (research engineer at the ICJ). B. Fabrèges joined the
project in June 2020 and implemented a more robust statistical inference scheme of the initial
parameters, in particular the date of the first imported case (the best estimation indicates
that it occurred in February 2020, three weeks earlier compared to the date indicated to us
by the ARS and used in this whole report). The global modelling project of the COVID-19
epidemic in Mayotte continued and was aiming at expand the model to explore among other
features the effect of spatial heterogeneity, new variants and recontaminations in collaboration
with the ARS of Mayotte. It motivated a serology study conducted by the ARS in Mayotte
during the summer of 2021. I also punctually worked again for the global project of epidemic
modelling in Mayotte in February 2021, to extend the age-structured model and the Python
code to account for the variant Beta.
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