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Résumé
Dans cette thèse, nous avons proposé deux contributions principales liées
à l’analyse par apprentissage profond des parasites Plasmodium et Cryp-

tosporidium à partir d’images microscopiques.
Plus spécifiquement, dans la première contribution, nous avons pro-

posé un framework pour diagnostiquer une infection par le parasite Plas-

modium chez les humains en utilisant des images microscopiques de frottis
sanguins fins. Comparé aux méthodes de l’état de l’art, notre framework
est basé sur des approches de segmentation et de classification permettant
l’analyse directe du parasite au lieu de la cellule qui le contient. Dans
ce sens, le framework permet de segmenter directement le parasite Plas-

modium et de distinguer son espèce parmi quatre classes principales : P.
Falciparum, P. Ovale, P. Malaria et P. Vivax. Nous démontrons l’efficacité
de notre framework et notamment son potentiel de généralisation sur des
données interclasses en exploitant plusieurs jeux de données publiques.
De plus, nous montrons que la technique d’augmentation des données
que nous proposons, appelée Local Parasite Texture Scanning (LPTS),
améliore davantage la précision de notre modèle de classification.

Dans la deuxième contribution, nous avons proposé un framework pour
diagnostiquer une infection par le parasite Cryptosporidium chez les vaches
laitières en utilisant des images microscopiques de fluorescence. À cette
fin, nous avons proposé une méthodologie originale de segmentation des
parasites basée sur une approche grossière à fine, qui atteint une grande
précision sur notre jeu de données généré de Cryptosporidium et qui per-
met de dépasser en termes de performance les méthodes de segmentation
de l’état de l’art. Nous avons également proposé un modèle de classifi-
cation à haut pouvoir discriminant permettant d’identifier efficacement le
stade de vie des parasites parmi 4 stades asexués : oocyste, trophozoïte,
méronte, et forme libre. Nous montrons à travers une étude expérimentale
que notre modèle atteint une grande précision en analysant uniquement
le parasite lui-même et sans avoir besoin d’informations supplémentaires
liées à la taille et au nombre de noyaux qui sont nécessaires au biologiste
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afin de réaliser sa classification.

Mots clés : Parasite Plasmodium, Parasite Cryptosporidium, Appren-
tissage profond, Analyse d’images microscopiques 2D, BIO-MEMS.
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Abstract
In this thesis, we have proposed two main contributions related to the Plas-

modium parasite and Cryptosporidium parasite analysis from microscopic
images using deep learning techniques.

More specifically, in the first contribution, we have proposed a frame-
work for diagnosing Plasmodium infection in humans using microscopic
images of thin blood smears. Compared to the state-of-the-art studies, it
is rather based on a straightforward segmentation and classification ap-
proaches, permitting the analysis of the parasite itself instead of the cell
containing it. In this sense, the framework permits to directly segment
the Plasmodium parasite and to distinguish its species among four major
classes: P. Falciparum, P. Ovale, P. Malaria and P. Vivax. We demonstrate
the efficiency of our framework and notably its potential of generalization
over interclass data by exploiting several public datasets. Moreover, we
show that our proposed data augmentation technique named Local Parasite
Texture Scanning (LPTS) further improves the accuracy of our classifica-
tion model.

In the second contribution, we have proposed a framework for diag-
nosing Cryptosporidium infection in dairy cows using fluorescence mi-
croscopic images. To this end, we have proposed an original parasite seg-
mentation methodology based on a coarse-to-fine approach which achieves
high accuracy on our generated dataset of Cryptosporidium and permits to
outperform segmentation methods from the state-of-the-art. We have also
proposed a classifier with a high discriminatory power that is used to effi-
ciently distinguish the life stages of the parasites among 4 asexual stages:
oocyst, trophozoite, meront, and free form. We show through an experi-
mental study that our classifier achieves high accuracy by analyzing only
the parasite itself and without the need of additional information related to
the size and the number of nuclei which are required by the biologist to
establish the classification.

Key words: Plasmodium parasite, Cryptosporidium parasite, Deep
learning, 2D microscopic image analysis, BIO-MEMS.
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Chapter 1

Introduction

Parasitic diseases have a profound impact on global public health. The
WHO (World Health Organization) reported in its global Health Estimates
of 2020 [30] that parasitic and infectious diseases are a major cause of
death in Africa. In this thesis, we have been interested in the development
of precision analysis tools for two parasites, namely the Plasmodium par-
asite and the Cryptosporidium parasite. In this context, we will present
briefly these two parasites:

• Plasmodium parasite causes the Malaria disease which is an acute
febrile human disease. The Malaria is one of the epidemics that pos-
sess the potential to threaten human life [18, 102]. It is widespread
in tropical and subtropical areas, particularly in Asia, Sub-Saharan
Africa and Latin America [10]. The same trend has been observed
until now (as shown in Fig 1.1). According to the WHO, in South-
east Asia and Africa regions, the number of mortality due to Malaria

has declined from approximately 530,000 (2010) to 380,000 (2018).
Nevertheless, since 2016, the decrease in mortality rate has decel-
erated [104]. Therefore, there is a need to develop an automated
Malaria diagnostic system that is not only reliable, but can be faster
and more economical, especially in resource-limited regions [111].

• Cryptosporidium parasite causes Cryptosporidiosis which is a diar-
rheal disease. The parasite may live in the intestine of several mam-
mals. It is important to note that Cryptosporidium is the 5th causative
agent of diarrhoeal disease in young children under 5 years of age
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[49]. On farms, parasites are excreted in the external surroundings
through the faeces of infected cows as a form called oocyst, which
directly contaminates water or food and causes further infections (il-
lustrated in Fig 1.2) [20, 34].

FIGURE 1.1: Malaria world map 2022 (extracted
from WANDA).

Both parasites are generally diagnosed by experts through a visual anal-
ysis of microscopic images. These images represent for the Malaria case,
blood samples and for the Cryptosporidium case, infection of HCT-8 cell
lines with Cryptosporidium parvum. Nevertheless, the manual analysis
method does not allow for a transition into large-scale tests. To face this
issue, adopting deep learning methods is a natural choice in reason of their
high performance demonstrated in medical image analysis [47, 56, 36].
However, direct exploitation of the existing methods is not sufficient to
develop a reliable tool due to the particular visual aspect of these parasites.

https://www.wanda.be/en/a-z-index/malaria-world-map/
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FIGURE 1.2: Cryptosporidium parvum life cycle (ex-
tracted from CDC).

This thesis is under the frame of the H4DC (Health for Dairy Cows)
project 1 that has been funded by the european Interreg program and which
includes mainly 4 academic partners (Junia2, University of Kent3, CNRS4,

1https://h4dc-interreg2seas.eu/
2https://www.junia.com/fr/
3https://www.kent.ac.uk/
4https://www.cnrs.fr/fr/page-daccueil

https://www.cdc.gov/dpdx/cryptosporidiosis/index.html
https://h4dc-interreg2seas.eu/
https://www.junia.com/fr/
https://www.kent.ac.uk/
https://www.cnrs.fr/fr/page-daccueil
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University of East Anglia5) and 3 industrials (Inagro6, ZLTO7, CVE8).
The project consists in working on the cryptosporidiosis disease within the
cows (caused by Cryptosporidium parasite infection) by reducing its im-
pact in farms. Indeed, the project aims to increase farm productivity in a
number of different countries, making these businesses more efficient and
successful, with a lower impact on human health. For this purpose, the
project aims to provide pilot farms, detection tools and technological de-
vices that can accelerate the discovery of new drugs at the lowest possible
cost.

Nevertheless, as it was raised in the beginning of this introduction,
we have been also interested in the development of analysis tools of the
Malaria parasite. Indeed, we have started our thesis in the midst of the
COVID-19 crisis which lasted for almost 2 years and which has involved
several lockdowns, leading in our case to a major issue in the process of
data acquisition from the partners of the project. Besides, no public Cryp-

tosporidium data were available at that time. For these reasons, we choose
to first address the Malaria parasite which belongs to the same group as
the Cryptosporidium parasite namely Apicomplexa group and for which
several public datasets were already available.

1.1 Contributions

In this thesis, we offer two different contributions: (1) the first one is re-
lated to the study of the human Malaria diagnosis from microscopic im-
ages, and (2) the second one is related to the study of automated Cryp-

tosporidium parasite analysis from fluorescence microscopic images.

Deep learning-based precision tool for Plasmodium parasite analy-
sis – We have proposed a framework for diagnosing Malaria infection in
humans using microscopic images of thin blood smears. Compared to the

5https://www.uea.ac.uk/
6https://inagro.be/
7https://www.zlto.nl/
8https://www.cvegroup.com/

https://www.uea.ac.uk/
https://inagro.be/
https://www.zlto.nl/
https://www.cvegroup.com/
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state-of-the-art studies, it is rather based on a straightforward segmentation
and classification approaches, permitting the analysis of the parasite itself
instead of the cell containing it. In this sense, the framework permits to
directly segment the Malaria parasite and to distinguish its species among
four major classes: P. Falciparum, P. Ovale, P. Malaria and P. Vivax. We
demonstrate the efficiency of our framework and notably its potential of
generalization over interclass data by exploiting several public datasets.
Moreover, we show that our proposed data augmentation technique named
Local Parasite Texture Scanning (LPTS) further improves the accuracy of
our classification model.

Deep learning-based precision tool for Cryptosporidium parasite
analysis – We have proposed a framework for diagnosing Cryptosporid-

ium infection in dairy cows using fluorescence microscopic images. To
this end, we have proposed an original parasite segmentation methodology
based on a coarse-to-fine approach which achieves high accuracy on our
generated dataset of Cryptosporidium and permits to outperform segmen-
tation methods from the state-of-the-art. We have also proposed a classifier
with a high discriminatory power that is used to efficiently distinguish the
life stages of the parasites among 4 asexual stages: oocyst, trophozoite,
meront, and free form. We show through an experimental study that our
classifier achieves high accuracy by analyzing only the parasite itself and
without the need of additional information related to the size and the num-
ber of nuclei which are required by the biologist to establish the classifica-
tion.

1.2 Outline

The manuscript is organized as follows:

• Chapter 2 introduces the state of the art of parasite analysis from
microscopic images in a general manner. It is worth mentioning
that the Plasmodium parasite studies take up the major part of this
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chapter. Indeed, there are few vision-based works for the analysis of
Cryptosporidium parasite, especially exploiting deep learning tech-
niques.

• Chapter 3 presents a framework based on deep learning for assist-
ing in the diagnosis of human Malaria infection. The chapter shows
through a comprehensive experimental study the high performance
of our framework in term of generalization potential on interclass
data. Specifically, the chapter highlights the fact that our global
system including segmentation and classification modules reaches
100% of diagnosis accuracy on the test set of 17 infected patients.

• Chapter 4 presents a framework based on deep learning to diag-
nose the infection of Cryptosporidium parasite in dairy cows. The
chapter first points out the limitation of state of the art methods to
achieve the goal of accurate parasite segmentation, then it explains
how we addressed it. To this end, the chapter discribes our coarse-to-
fine segmentation approach. It presents also a classification model to
distinguish the life stages of the parasite. Finally, this chapter con-
cludes with a set of experiments to demonstrate the efficiency of our
framework.

• Chapter 5 summarizes the major results obtained in the frame of
this thesis and discusses some research lines to investigate which are
mainly on the Cryptosporidium analysis using bright-field images
(raw images not including the fluorescence).
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Chapter 2

State of the art of parasite image
analysis

2.1 Introduction

This chapter introduces the state of the art of parasite analysis from micro-
scopic images in a general manner, including Plasmodium, Cryptosporid-

ium, intestinal parasite, Toxoplasma, Babesia and Leishmania.
Moreover, we also present briefly the life cycle of Cryptosporidium.

Our study concerns four morphologies of the asexual phase: oocyst, tropho-
zoite, meront, and free form.

2.2 Plasmodium parasite image analysis

In the previous decade, there has been a growing interest regarding the
development of microscopic image analysis for use as an aid in Malaria

diagnosis [77, 81, 58, 45]. Fig 2.1 shows the life cycles of the Plasmodium

parasite.
Various analysis systems, as proposed in different surveys [77, 81, 58,

45], include thick blood smears (a drop of blood over glass slide) and thin
blood smears (a drop of blood scattered throughout the slide). In com-
parison with the two, the system of thick blood smears is mainly used
to detection of the parasite presence, while thin blood smears enable the
determination of the parasite species. In fact, thin blood smear systems
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FIGURE 2.1: The life cycles of the Plasmodium par-
asite (extracted from [72]).

constitute the majority and consist of three main stages: pre-processing of
the microscopic image, segmentation of the RBCs (red blood cells) and
classification of the segmented cells in the image.

The purpose of the pre-processing is to enhance the image quality by
decreasing unwanted noise. In fact, the capture system and its setup in-
fluence the rendition of the images directly. With the same blood sample,
the illumination, texture and contrast and illumination of the image will
vary depending on the used capture protocol, which may impact the dis-
criminative features for segmenting blood cells and detecting the possible
infection of parasites in the image. To address this issue, the proposed
system leverages different techniques of image filtering for example mor-
phological operations [83], contrast stretching [72] and median filtering
[110].

The preprocessed image consists of a population of RBCs, each of
which may be infected with the parasite. Hence, current analysis systems
have presented segmentation of isolated RBCs as an intermediate stage. In
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order to achieve this goal, the presented systems have employed a large
number of segmentation methods, primarily including conventional meth-
ods such as: Watershed segmentation [19], Gaussian mixture model [1]
and Otsu binarization [38]. These methods initially outline the RBC in the
image and crop out a set of images where each image represents an isolated
cell.

The final stage is performed through the classification of each RBC
(cropped image) in order to determine its infection status. At this status,
the presented system includes the analysis from a simple binary classifica-
tion to more complex classifications. To be precise, in the case of binary
classification, the system distinguish if the blood cells are infected with
parasites [82, 38, 1]. Nevertheless, with classification for multiple class,
the system is able to recognize the parasite species [78] and, the life stage
of it under certain circumstances [24]. Moreover, recent references [77, 81,
58, 45] show that nearly all classification methods proposed use machine
learning techniques to characterize parasites using hand-designed charac-
teristics.

Consecutive research efforts on Malaria diagnostic systems based on
thin blood smear image analysis [70, 22, 91, 65, 3] suggest that it is still a
challenging task and more research is needed to strengthen the robustness
of the system.

Molina et al. [70] proposed a system following the processing pipeline
presented previously. Precisely, the system considers only the green com-
ponent of the microscopic image and applies a set of filters to improve
its quality: i) an adaptive histogram equalization to enhance the contrast
between RBCs and the background and ii) median and Gaussian filters to
reduce the background noise. The resulting image is then binarised using
Otsu thresholding and RBCs are segmented and cropped using watershed
algorithm. A cascade of 3 classifiers are then used to classify each cropped
image into 6 classes: normal RBC, RBC with parasite inclusion and 4
classes covering RBC with other erythrocyte inclusions (non parasite). To
train and test the classifiers, authors built their own Malaria image dataset
from 87 patients and split it into 4633 RBC images for training and 11027
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of RBC images for testing. To feed the classifiers, each image has been
characterized by a set of 2852 handcrafted features including shape, tex-
ture and color information. Authors reported a cell segmentation perfor-
mance of 97.4% without mentioning the used metric and an overall parasite
infection classification accuracy of 97.7% using SVM classifiers.

The system proposed by Delgado-Ortet et al. [22] permits to classify
each segmented RBC into two classes namely Malaria infected or not.
To this end, authors designed their own CNN model to learn an RGB
pixel based cell segmentation. The segmentation model is composed of
3 sequential blocks of convolution layers: i) a down-scaling block for ex-
tracting the RBCs pixel features from the RGB input image (population of
RBCs), ii) an up-scaling block to align the size and the shape of the ex-
tracted information with those of the input image, iii) a classification block
to predict the belonging to a RBC or not for each pixel of the input im-
age. The cell segmentation model has been trained on 169 images from 4
patients and validated on 17 images of 1 patient, the overall representing
a total of 5911 RBCs. Authors reported a Jaccard coefficient ranged be-
tween 0.80 (lowest) and 0.94 (highest) for the 17 tested images. For the
classification of each cropped RBC with respect to the parasite infection,
authors proposed also their own CNN model which has been trained from
scratch and tested using another public Malaria dataset composed of 27
558 cropped RBCs images [82]. The system reached on the test set (20%
of this dataset) a classification accuracy of 95%. However, the classifi-
cation reached 75.39% of accuracy when tested on the dataset used for
training the segmentation model. Authors explained that this drop in per-
formance is due to the difference between the acquisition parameters of the
two datasets.

A similar deep learning based binary classifier (infected or not) as in
[22] has been proposed by Sriporn et al. [91]. However, authors consid-
ered only the classification task and didn’t address the segmentation one.
To train the classifier, they used the public dataset composed of 27 558
cropped RBCs images [82] and have conducted a comparative experimen-
tal study between 6 popular deep architectures namely AlexNet, VGG-16,
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NasNetMobile, ResNet-50, Inception-V3 and Xception. To this end they
explored different transfer learning strategies together with several opti-
mizers. According to the authors, the best performance in term of classifi-
cation accuracy has been obtained using Xception architecture. Precisely,
they reached an accuracy of 99.28% using Nadam optimizer and Mish ac-
tivation function. However, authors didn’t precise the size of the cropped
RBCs test set.

The system proposed by Maity et al. [65] allows to classify the RBCs
into 6 classes corresponding to Normal RBCs, Falciparum species with
two life stages and Vivax species with three life stages. To segment the
RBCs from the input image, authors proposed to first correct the image
color using an automatic equalization color technique then to train a pixel
based MLP binary classifier (a Multi Layer Perceptron artificial network).
The network is fed with pixels associated feature vectors, each one initially
composed of 230 handcrafted descriptors covering geometrical and textu-
ral information. Authors exploited the training loss function versus one
feature exclusion from the 230 in order to keep the most significant fea-
tures (top 20). The final trained classifier outputs a pixel probability map
of the input image which is post-processed using: i) a graph-cut algorithm
to refine the borders of each segmented RBC and ii) a watershed algorithm
to separate overlapped RBCs. Authors used for training the cell segmenta-
tion model their own dataset composed of 210 images and representing a
total of 2720 RBCs. They used as a benchmark another dataset of 38 im-
ages (524 cells) and reported a Jaccard coefficient of 0.98 on the resulting
segmentation but they didn’t indicate how they exploited the data in order
to reach this result. To classify the cropped images of RBCs, the authors
proposed to train a classifier based on an adapted CapsNet deep architec-
ture. To this end, they gathered the two datasets used for segmentation into
one set (3244 RBCs) and augmented it to reach 141600 cropped images of
RBCs. According to the authors, the classifier achieved an overall accu-
racy of 98.7% on the test set which corresponds to 15% of the augmented
set.
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Abbas and Dijkstra [3] proposed a system that permits to directly seg-
ment the parasite (only the falciparum species) instead of the RBC and
classify its life stage. To segment the parasite, the authors designed a pixel
based segmentation model using a Random forest binary classifier. To
this end, a set of 9 handcrafted features is extracted for each pixel of the
input image covering mainly Gaussian blur and average intensities while
considering the image channels separately. The training of the segmenta-
tion model permits to output a binary mask which is refined by filling the
holes of detected parasites. Authors trained and tested the segmentation
model on their own publicly shared dataset composed of 837 images of
RBCs collected from 16 patients infected with Falciparum. They reported
an average Dice coefficient of 0.82 obtained on the whole dataset using a
cross validation evaluation method. For the life stage classification of seg-
mented falciparum parasites, authors considered 112 x 3 channels global
handcrafted features extracted on the parasite cropped images including in-
tensity and area related features. They trained a random forest classifier to
learn 8 classes: 6 parasite life stages, white blood cell and debris. Authors
reported an average classification accuracy of 58.8% when classifying all
the life stages and 82.7% when simplifying the life stages to the three main
ones namely ring, trophozoite and schizont.

Some research works have proposed parasite-related analysis approaches
from the dataset MP-IDB [26, 25, 27, 65]. Di Ruberto et al. [26] proposed
a method called Edge Boxes for detecting and quantifying red cells from a
microscopic blood image. Di Ruberto et al. [25] proposed an efficient sys-
tem for detecting white blood cells and classifying them as being affected
by leukemia or healthy. Another article proposed by Di Ruberto et al. [27]
leveraging the dataset MP-IDB to detect and quantitatively analyze red and
white blood cells from blood images. Besides, Maity et al. [65] have also
evaluated the feasibility of their algorithm on MP-IDB dataset. After Red
Blood Cells (RBCs) segmentation, a trained model Capsule Network is
applied in order to classify segmented blood cells to identify species and
stages of the Malaria parasites. In particular, only two Malaria species
(Falciparum and Vivax) and three stages (Ring, Gametocyte and Schzonat)
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are considered.

2.3 Cryptosporidium parasite image analysis

A brief biological introduction – Cryptosporidium is an intracellular
parasite that occupies intracellular but extracytoplasmic vesicles in the host
[6, 79, 73]. Its life cycle begins with the asexual stage, followed by the sex-
ual stage [8]. The detailed information of different life stages is illustrated
in Fig 2.2 and Fig 2.3.

FIGURE 2.2: Detailed information of the Cryp-
tosporidium parvum life stages.

Our study concerns four morphologies of the asexual phase: oocyst,
trophozoite, meront, and free form. As shown in Fig 2.4, ingestion of an
oocyst leads to a process called excystation, releasing four parasites named
free forms [85, 84]. The free form will enter the cell and be converted into a
trophozoite [14]. Subsequently, the trophozoite evolves into type I meront.
Afterwards, certain type I meronts develop into type II meronts and release
free forms.

Existing work – Up to now, only one research has been conducted based
on the analysis of microscopic images of Cryptosporidium parvum. In
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FIGURE 2.3: Cryptosporidium parvum life cycle ex-
amples.

FIGURE 2.4: Outline of the Cryptosporidium parvum
life stages (extracted from [8]).

[106], artificial neural networks (ANNs) were employed to identify the
Cryptosporidium parvum oocysts. A total of 525 images were cropped to
36 x 36 pixels, and the cropped images were divided into two categories:
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oocyst and non-oocyst images. To convert the digital images into the for-
mat used by the neural network, the authors chose a relatively simple al-
gorithm: a histogram measuring the pixel intensity of grayscale images.
Afterwards, this network was optimised by applying different quantities of
training images and hidden neurons. The results indicated that the artificial
neural network obtained satisfactory performance in test images. In sev-
eral tests, the correct recognition rates ranged from 81% to 97% for oocyst
images and 78% to 82% for non-oocyst images.

2.4 Other parasite image analysis

In addition to the existing works on the Malaria and Cryptosporidiumparasite
image analysis, we also found a number of relevant works related to other
parasites [86, 63, 76, 113, 39]. Three studies regarding the classification
of intestinal parasite images used different methods [86, 63, 76]. Fig 2.5
shows some samples of parasite species addressed in [63].

FIGURE 2.5: A sample of each parasite species ad-
dressed in [63].

Roder et al. [86] were the first to experiment with Deep Boltzmann
Machine and Deep Belief Network for parasite classification, and the ro-
bustness of the model was confirmed by experiments using 3 different
datasets including fecal impurity surrounds. Machaca et al. [63] presented
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a method for generating synthetic images of parasites using Deep Convo-
lutional Generative Adversarial Network (DCGAN), followed by exper-
iments using the pre-trained deep learning models Resnet34, Resnet50,
VGG16, Densenet121, and Inceptionv3. The experimental results demon-
strated the accuracy improvement with the use of synthetic datasets. While
a hybrid method was proposed by Osaku et al. [76], which combines the
views from two decision systems (support vector machines and deep neu-
ral networks VGG16) with complementary properties so as to enhance the
overall efficiency.

In addition, in a study on microorganisms [113], some novel deep
learning methods for parasite microscopic image recognition integrated the
geometric morphology of parasites into deep learning framework to reduce
the dependence on labeled data [54, 53, 46]. For example in [53], micro-
scopic parasites (Toxoplasma, Plasmodium, Babesia) were linked to their
morphologically similar macroscopic objects (banana, ring, and pear) by
deep cycle transfer learning (illustrated in Fig 2.6). The results showed the
high accuracy of the proposed method, with an average accuracy of more
than 95% for all parasite types.

What’s more, Górriz et al. [39] trained a U-Net model that can suc-
cessfully segment leishmania parasites (displayed in Fig 2.7) and classify
them into 3 classes: promastigotes, amastigotes, and adhered parasites.
The authors thought that the improvement could be applied by using larger
databases, keeping the balance of the classes, and providing a precise an-
notation.

2.5 Conclusion

Among the state of the art of parasite analysis from microscopic images
presented in this chapter, it is worth mentioning that the Malaria studies
take up the major part. Although the performances of the existing systems
are promising, comparisons among different systems are quite challenging.
The generality of the systems is also difficult to guarantee since most of the
datasets used for assessing performance are not publicly available.
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FIGURE 2.6: Microscopic parasites (Toxoplasma,
Plasmodium, Babesia) were linked to their morpho-
logically similar macroscopic objects (banana, ring,

and pear) (extracted from [53]).

While for Cryptosporidium, there has been few vision-based works for
the analysis of this parasite. Additionally, we have also presented the life
cycle of Cryptosporidium and the evolution of each life stage in the asexual
phase.
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FIGURE 2.7: Annotation of leishmaniasis parasite
(extracted from [39]).
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Chapter 3

Generalized deep learning for
Plasmodium parasite image
analysis

3.1 Introduction

Malaria is one of the epidemics that possess the potential to threaten hu-
man life [18, 102]. In fact, during the year of 2018 there were an estimate
of 228 million cases of Malaria, resulting in over 400,000 fatalities around
the world. Of this group, children younger than 5 years of age represent
to be the most fragile, with about one death under 2 minutes, constituting
over 65% for all deaths due to Malaria [100, 105]. Malaria is caused by
Plasmodium parasite and is transmitted through the bite of infected female
Anopheles mosquitoes [99]. Malaria is widespread in tropical and sub-
tropical areas, particularly in Asia, Sub-Saharan Africa and Latin America
[10]. Globally, nearly 85% of Malaria deaths occurred in Africa and India
during 2018, with 24% in Nigeria [105]. In WHO’s Southeast Asia and
Africa region, the number of mortality has declined from approximately
530,000 (2010) to 380,000 (2018). Nevertheless, since 2016, the decrease
in mortality rate has decelerated [104].

There are a couple of ways for diagnosing Malaria [67], of which mi-
croscopic examination of thick or thin blood smears is the gold standard
[67, 66]. To be more specific, blood samples are colored according to the
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Giemsa method [80] and then a well-trained expert analyzes them with
a microscope to detect parasites in the blood cells as well as to deter-
mine their species. In fact, human Malaria infections are due to Plas-
modium parasites consisting of no less than six species, namely P. falci-
parum, P. malariae, P. ovale (two variants), P. vivax and P. knowlesi [90,
52]. These species may contribute to the death of patients through in-
fection with red blood cells [61]. Therefore, regardless of the species of
Malaria parasite, an early diagnosis is necessary in order to i) enable the
patient to receive timely treatment [69], ii) limit the transmission of the
infection via mosquitoes within the community [13]. However, specialist
microscopic examination is still extremely time-consuming and challeng-
ing since parasites are typically tiny and potentially able to be mistaken
with non-parasitic objects [95, 68, 43]. Furthermore, the examination is
suggested to be completed by two specialists [5] to achieve a more solid
diagnostic result. There is indeed a significant risk to the patient that inac-
curate diagnosis may lead to inappropriate treatment [29].

The World Health Organization (WHO) has encouraged research on
appropriate approaches for a fast and economical diagnosis to treat Malaria

[75]. Hence, there is a need to develop an automated Malaria diagnostic
system that is not only reliable, but can be faster and more economical,
especially in resource-limited regions [111].

Artificial intelligence (AI) currently provides the possibility to achieve
this goal; whereas in scientific community the employment of deep learn-
ing techniques is now the obvious alternative for medical image analysis
[56]. All these techniques offer strong aids for specialists to execute high-
level medical tasks, for instance, diabetic retinopathy detection [40] or skin
cancer classification [32]. In this study, we propose a framework for di-
agnosing Malaria infection in humans using microscopic images of thin
blood smears. To be specific, the framework aims at segmenting the Plas-
modium parasites and distinguishing the species into four major classes: P.
Falciparum, P. Ovale, P. Malaria and P. Vivax.

The main contributions of our study are as follows:
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- A straightforward segmentation and classification method which re-
lies on the parasite itself. Noteworthy is the fact that our method
is complements to those proposed methods [65, 22, 70]. Although
these methods are designed to quantify the amount of infected RBCs,
our method enables to outline the shape of the parasite within these
cells, thereby providing an accurate analytical tool.

- Our framework demonstrates the efficiency of generalization to in-
terclass data on 2 Malaria datasets [59, 2]. These datasets consist of
images that have extremely different features owing to variations in
data collection conditions (e.g., microscope characteristics, illumi-
nation conditions, and magnification).

- Our experimental study takes into account six data sources [59, 2,
21, 82, 96, 57], offering an overview of Malaria feature detection,
segmentation and classification.

- We named our data augmentation technology called Local Parasite
Texture Scanning (LPTS), which allows for greatly increasing the
number of images of cell images. LPTS technology generates local
variations of images from authentic datasets with simple but effec-
tive cropping and decentering techniques. LPTS greatly improved
the precision of classification in experiments with deep architectures.

3.2 Exploited CNN-based architectures

In this section, we describe in detail the related architectures for image
segmentation as well as image classification that have been employed in
our work.

Object segmentation – Convolutional neural networks (CNN) can achieve
image classification, but how to identify objects in specific parts of images
through deep learning has always been a problem. Until 2015, Long et
al. [60] proposed the Fully Convolutional Networks, leading the field of
image semantic segmentation. FCNs can classify images at the pixel level,
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thereby solving the problem of semantic segmentation. They have received
increasing attention and have been employed successfully with good re-
sults in biomedical images, for example, liver and lesion segmentation in
CT [17] and cardiac segmentation in MRI [98].

Unlike convolutional neural networks, there is no fully connected layer
in FCNs. FCNs adopt deconvolution layers to upsample the feature map
of the last convolutional layer in order to the same size as the input im-
age. In this way, a prediction is generated for each pixel, while retaining
the spatial information in the original input image. Finally, the pixel-wise
classification is implemented based on the feature map obtained after the
upsampling operation.

Fig 3.1 (Row A) illustrates the general network of a FCN architecture.
The network consists of the following basic layers, including convolution
(conv), pooling (pool), activation and deconvolution (deConv) [50]. Fur-
thermore, the authors proposed two other FCN architectures that vary in
upsampling scale: FCN-16s (Row B) and FCN-8s (Row C). They fuse the
pooling information from different layers and can provide better semantic
segmentation results than that of the original. The network architectures of
FCN-16s and FCN-8s are also shown in (Row B is FCN-16s and Row C is
FCN-8s). For instance, in FCN-8s, the coarse output of the FCN model is
initially upsampled by a factor of 4, while the pool4 image is upsampled
by a factor of 2. Subsequently, these upsampled images are fused with the
pool3 layer image, which is finally upsampled by a factor of 8 to yield the
predicted image of the same size as the input.

After series of successful applications of FCNs in semantic segmen-
tation, numerous new algorithms based on FCNs techniques have been
proposed. They are extensively investigated in the fields of image segmen-
tation, classification, etc [103, 64]. As a variant of FCNs, U-Net archi-
tecture [87] has been widely used in the field of cellular segmentation and
biomedical image processing [88, 92].

The architecture U-Net is shown in Fig 3.2. It includes repeatedly ap-
plying two 3x3 convolution operations, ReLU activations, and a down-
sampling operation through 2x2 max-pooling with stride 2. Between some
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FIGURE 3.1: Fully convolutional neural networks
(FCNs) [60].

convolutional layers, dropout is adopted. The deconvolution process com-
prises an upsampling of the feature maps, subsequent a 2x2 convolution,
concatenation of the corresponding feature maps from the previous convo-
lutional layers, and two 3x3 convolutions with ReLU activations. In con-
trast to the original U-Net, a 3x3 convolution (including two filters) layer
is applied before the output. The last layer is employed to map feature vec-
tors to the required number of classes to generate the result of pixel-wise
segmentation.

Object classification – In this section, I will compare several architec-
tures that are frequently used in recent years.

AlexNet
AlexNet [50] is the first large-scale convolutional neural network ar-

chitecture performing well on ImageNet [23] classification. AlexNet par-
ticipated in the competition and outperformed previous non-deep learning
based models with remarkable margins.

AlexNet was trained on ImageNet and the input size was 227 x 227
x 3. The AlexNet architecture consists of convolutional layers, pooling
layers and fully connected layers. As is displayed in Fig 3.3), there are
five convolutional layers, starting with a convolutional layer with a kernel
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FIGURE 3.2: U-Net architecture [87].

size of 11 x 11, followed by 5 x 5 and some 3 x 3. The last layer of the
fully connected layer applies the softmax activation function, which maps
to 1,000 ImageNet classes.

VGGNet
In LSVRC-2014, VGG16Net [89] won the competition on ImageNet

with 92.7% accuracy, reducing the error of the AlexNet by a factor of 2.
There are two versions of VGGNet, VGG16 and VGG19. The VGG19
architecture (also known as VGGNet-19) is very similar to the VGG16,
but has more convolutional layers in it (see in Fig 3.4).

Inception
Inception v3 [93] is a combination of many ideas developed by several

researchers for many years and has been proven to yield an accuracy of
over 78.1% on the imageNet.

Inception consists of symmetric and asymmetric blocks, including con-
volutional layers, max pooling, average pooling, dropout and fully con-
nected layers. Its main idea is to merge convolutional kernels in parallel,
as shown in Fig 3.5. Each inception block contains convolutional layers of
different kernel sizes to extract features in different scales.
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FIGURE 3.3: AlexNet architecture [50].
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FIGURE 3.4: Two versions of VGGNet, VGG16 and
VGG19 [89].
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FIGURE 3.5: Inception module [93].

ResNet
ResNet [44] won first place in the ILSVRC and COCO 2015 competi-

tion with an error rate of 3.6%. It even performed better than humans.
The main fundamental element of ResNet is the residual block (illus-

trated in Fig 3.6). As the layers get deeper, the calculations become more
complex. The layers are stacked on top of each other, each trying to learn
some underlying mapping. ResNet-18 is shown in Fig 3.7 as an example.

3.3 Methodology

Our Malaria diagnostic system consists of a number of steps, as shown in
Fig 3.8. To be specific, taking as input an image stack of the patient sample
obtained by microscope, the linear interpolation-based downscaling oper-
ation (Step 1) is applied to these images in order to achieve 224 by 224.
In fact, through the analysis of the Malaria public datasets, we observed
that the captured images have a high resolution (ranging from 640 x 480
to 2592 x 1944), which is unsuitable for direct processing with deep ar-
chitectures. In order to achieve this goal, we have adopted a small square
resolution, which has been widely used in the field of deep learning.
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FIGURE 3.6: Residual-Block used for ResNet archi-
tecture [44].

Next, we propose a new approach to the segmentation of the possible
parasites in each image, which allows for the generation of relevant bi-
nary masks (Step 2). Then, the resulting binary mask is enlarged ( with
the identical linear interpolation technique used in Step 1 to achieve the
original resolution) and applied to mark the detected parasites (Step 3).
Both the detected parasites and their bounding boxes in the binary mask
are mapped onto original image. (Step 4).

Based on this, the experts can take advantage of two possibilities: (1)
the classification by the analysis to distinguish (Step 5.1 - 5.3), (2) to sup-
ply indicators, like the number of parasites detected and fine delineation of
parasite shape (Step 5 ’).

For the prediction of parasite species, the parasite with the largest area
is chose out of each image and extracted through a square window of 224
x 224 pixels centered on the parasite before cropping. Then, we classify
the parasite crops into 4 classes: P. Falciparum, P. Malariae, P. Ovale, and
P. Vivax. Finally, a major voting method is used to determine the infected
parasite species based on the previous classification results. If there is
no parasite found in the segmentation step, then the classication step will
output no Malaria infection.

It should be noted that the selection of 224 x 224 for image crops is
appropriate in this situation, as it has been found that in the majority of
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FIGURE 3.7: ResNet-18 architecture [51].
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FIGURE 3.8: Overview of our proposed Malaria di-
agnosis assistance system.

cases this resolution is enough to include a single parasite (99% of the
parasite in all data sets is less than 224 × 224). We also downscale the
larger parasite crops to 224 x 244 (their width or height is no more than 350
pixels). In addition, we consider only the largest parasite in each image, so
as to improve the probability of detection of a true positive.

3.3.1 Parasite segmentation

In order to extract potential parasites from the input image, we used a pixel
based method to segment them. Specifically, a label is allocated to every
pixel in an input image, i.e., a foreground and a background. The fore-
ground category includes the pixels of the subject of interest, which are
parasites, whereas the background class includes other pixels in the pic-
ture, such as uninfected cells, extracellular fluid. Therefore, the classifi-
cation of the individual pixels results in the creation of a binary mask that
allows to delimit the the contour of the parasite from the image.

We use the U-Net architecture as the kernel of our image segmenta-
tion algorithm. This architecture consists of an encoder and a symmetric
decoder. The encoder allows the input image to be scaled down by pass-
ing it into a series of convolution-layer blocks (64, 128, 256, 512), with
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an intermediate maxpooling operation followed by a stack of 1024 small
contextual feature maps as output. The symmetric decoder allows to up-
grade the generated feature maps from the encoder by passing them into
an inverted sequence of convolution layers (512, 256, 128, 64). Each of
these blocks is preceded by an intermediate up-convolution operation and
produces a stack of feature maps with size 64 as output. In order to im-
prove the positioning accuracy of the target, the authors proposed that the
convolution layer block of the encoder be connected to it, which is the
equivalent (in terms of the number of layers). Then there is a second set of
64 convolution layers, which is followed by the binary mask.

In order to improve the performance of the U-Net, we customized a
variant by integrating a deep architecture VGG19 [89] that is tailor-made
for image classification. In particular, we used VGG19 instead of the orig-
inal U-Net encoder. By this way, we followed the same principles as U-net
to construct the symmetric decoder.

Based on the Jaccard Index of Eelbode et al. [31] we kept this measure
and modified it to solve the problem of segmentation. In particular, the
variation has been trained to minimize the Jaccard loss (Jl) between an
image’s predicted binary mask and its associated ground truth mask. To
define this loss, we first formulate our parasite segmentation problem as
follow:

Let bma be the binary mask obtained by our approach for an image
Img(w,h), where (w,h) represent the image’s width and height. We denote
the label of a pixel pi, j positioned at indexes (i, j) of Img by li, j

bma
in the

binary mask bma, where:

li, j
bma

=

{
1 i f pi, j ∈ parasite

0 else
(3.1)

Similarly we define bmgt as the ground-truth binary mask that corre-
sponds to a manual segmentation of Img performed by a specialist.

The Jl between two masks is defined as:

Jl(bma,bmgt) = 1− Ji(bma,bmgt) (3.2)
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Ji represents Jaccard index and is defined as:

Ji(bma,bmgt) =
bma∩bmgt

bma∪bmgt
with (3.3)


(bma∩bmgt) = ∑

h,w
i, j I(li, j

bma
= li, j

bmgt
= 1),

I : binary indicator
(bma∪bmgt) = ∑x=a,gt ∑

h,w
i, j I(li, j

bmx
= 1)− (bma∩bmgt)

The Jl permits the measurement of the difference between the two seg-
mentations and outputs in the range [0,1] where 0 indicates that the two
segmentations are the same.

To minimize Jl, the architecture’s weights are optimized according
to the adaptive moment optimization technique (Adam) [15], which is a
stochastic gradient descent technique based on an adaptive estimation of
the first and second order moments. We denote wi jt a weight to update
between two neurons xi and x j of our architecture for step t + 1 of the
training:

wi jt+1 = wi jt −
η · m̂t+1√
v̂t+1 + ε

with (3.4)



m̂t+1 = mt+1/(1−β
t+1
1 )

v̂t+1 = vt+1/(1−β
t+1
2 )

mt+1 = β1mt +(1−β1) ·δ jt , β1 = 0.9,m0 = 0
vt+1 = β2vt +(1−β2) ·δ 2

jt , β2 = 0.999,v0 = 0
η = 10−3, learning rate
ε = 10−8, calculation stability

Here the (β1,β2) are the exponential decay rates for the first and second
moment respectively and δ jt is the gradient error back-propagated from the
loss Jl over the neuron x j at step t of the backward pass.
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3.3.2 Parasite classification

To implement our classification module, we developed our own deep ar-
chitecture called Light-Net, that is based on a standard CNN. As shown
in Figure 3.9, the architecture consists of 3 blocks of convolutional layers,
each followed by a Relu : max(x,0) activation function and a max pool-
ing operation. The convolutional sequence is followed by a global average
pooling, then by a dense layer of 64 units, with a Relu activation and an
output dense layer of 4 units that corresponds to the four species to be pre-
dicted. For this purpose, the output layer is related to a so f tmax function
to calculate the species’ probability. The architecture has been trained to
minimize the categorical cross entropy loss L for the crop classification
defined below:

for the crop classification of an image defined as follows.

FIGURE 3.9: Our proposed CNN classification archi-
tecture named Light-Net.

L =− ∑
c=1,4

yclog(pc) (3.5)

where yc is a binary indicator whether the class c is the correct one
for the given crop and pc is the predicted probability by the model on the
same crop for being of class c. The weights have been updated based on
a Root Mean Square propagation technique (RMSprop) [15]. We denote
wi jt a weight to update between two neurons xi and x j of our architecture
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for step t +1 of the training:
wi jt+1 = wi jt − ( η√

vt+ε
∗δ jt )

vt = βvt−1 +(1−β )δ 2
jt , β = 0.9,v0 = 0

η = 10−3, learning rate
ε = 10−8, calculation stability

(3.6)

where δ jt is the gradient error of the neuron x j back-propagated from
the loss L on the predicted class for the input image at step t of the back-
ward pass.

3.3.3 Proposed parasite-oriented data augmentation tech-
nique

Data augmentation by applying our local parasite texture scanning tech-
nique (LPTS) to generate a set of derived parasite crops from an image I

containing one centered parasite P, according to the illustration displayed
in Figure 3.10, can be noted by the following:

LPT S(I1×P) =
8⋃

i=0

Ipi (3.7)

where p0 corresponds to the initial position of the frame f (parasite cen-
tered) and pi(i6=0) corresponds to all possible horizontal and/or vertical rigid
displacements of f from p0; namely p1: a = 0 and d = 0, p2: a = 0, p3:
a = 0 and b = 0, p4: b = 0, p5: b = 0 and c = 0, p6: c = 0, p7: c = 0
and d = 0, p8: d = 0 with a, b, c, d representing respective distances in
between the parasite bounding box and the boundaries of f ; in this case,
card(LPT S(I1×P)) = 9 parasite crops. In situations where the parasites are
located at the image borders, possible displacements of f are limited, thus
reducing the amount of derived crops. Overall, considering N parasites
contained in an image, the maximum number of parasite crops derived
from LPTS is:

card(LPT S(IN×P)) = 9×N (3.8)
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FIGURE 3.10: Principle of the LPT S technique by
horizontal and/or vertical displacements of the rigid
frame f around the parasite P ∈ I1×P varying a,b,c,d

parameters from an initial position p0.

3.4 Experimental study

3.4.1 Datasets analysis

To explore the possibility of generalization, we have explored 6 public
Malaria datasets. It should be noted that, the Malaria diagnosis in all
samples was performed according to the May-Grünwald-Giemsa (MGG)
method [80]. However, the images were obtained with a variety of micro-
scopes and different parameters, in particular with respect to magnification
and illumination. Even within the dataset, these parameters may differ. As
a result, the images display large differences in resolution, colour, contrast,
brightness and texture (shown in Figure 3.11).
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(A) Dataset1[59] (B) Dataset2[2] (C) Dataset3[21]

(D) Dataset4[82] (E) Dataset5[96] (F) Dataset6[57]

FIGURE 3.11: Image examples from the experi-
mented public datasets.

Figure 3.12 visualizes the six datasets by data dimensionality reduc-
tion. In particular, PCA (Principal Component Analysis) and t-SNE (t-
distributed stochastic neighbor embedding) [62] were applied to each dataset
to generate a point distribution from the 200 image samples. This figure
allows us to observe the intra- and inter-class relationships of the images in
the different datasets. It is worth noting that the visual exploration shows
a high intra-class homogeneity for the Datasets3,4; while the others are
more moderate. The Dataset4 is isolated; it confirms the specificity of
its images, as they involve single cells, while the other datasets consist of
multicellular images. The Datasets2,3,5,6 are connected by overlapping re-
gions. In these datasets, the regions of Datasets2,6 are different from the
other datasets because both are homogeneously stretched and relatively
overlapping. Despite Dataset1 represents multicellular images, it demon-
strates a large inter-class gap compared to the other datasets.

These 6 datasets are summarized in Table 3.1.
The table illustrates that only Dataset1 and Dataset2 propose the ground-

truth for parasite segmentation. Furthermore, only Dataset1 includes 4
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FIGURE 3.12: The global visualization of six
datasets by the distribution of points from 200 image

samples of each dataset.

TABLE 3.1: Characteristics of the public malaria
datasets used in our experiments.

Dataset
reference

Infected/non-infected
patients

Type of
image*

Total of
images

Image resolution
(W x H)

Total of
parasites

Parasite
species**

Parasite
segmentation truth

Dataset1 [59] 17/0 PC 210 2592 x 1944 1437 F,M,O,V Yes
Dataset2 [2] 17/0 PC 883 1382 x 1030 3586 F Yes

Dataset3 [21] 5/0 PC 331 2400 x 1800 - NA No
Dataset4 [82] 151/50 IC 27 558 Heterogeneous 13 779 F No
Dataset5 [96] - PC 654 640 x 480 - F No
Dataset6 [57] - PC 1328 1944 x 1328 - V No

*PC: Population of Cells, IC: Individual Cell. **F: Falciparum, M: Malariae, O: Ovale,
V: Vivax, NA: Not Available.

species of parasites. For these reasons, we used these two datasets as ba-
sis for the training / validation / test of our generalized segmentation and
classification modules and we utilized Datasets3,6 for additional tests.
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3.4.2 Results and evaluation of the generalized segmen-
tation module

3.4.2.1 Data preparation

Figure 3.13 illustrates how we split the training / validation / test sets to
experiment with Dataset1 and Dataset2. The images in each folder are
chosen randomly. Nevertheless, each set in Dataset1 included the images
for each parasite species, which is an essential condition for learning its
shape segmentation. As displayed in Figure 3.13, two patients (with Falci-
parum species) were excluded from the validation set of Dataset1 because
they both had only three images. Therefore, we selected one image for
each of them as the test set and added the remaining two images to the
training set.

FIGURE 3.13: Data split for segmentation module.

We also created a global training set (hybrid set) by combining the
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two datasets named Dataset12, including 1559 images. We artificially in-
creased the training set of Dataset1 from 154 to 924 images so as to rel-
atively balance the two datasets (924 and 635 respectively) in a relative
manner. For this purpose, we applied five transformations on Dataset1, as
follows: (1) two spatial transformations, involving horizontal and vertical
flips; (2) three pixel-based transformations, covering integrated contrast
and brightness, CLAHE and Gaussian noise.

3.4.2.2 Segmentation performance analysis

We assessed the quality of our segmentation module using the Average Pre-
cision metric (AP), which is often employed for the assessment of biomed-
ical image segmentation (e.g [88, 92]). In our case, the metric allows to
calculate the ratio AP = T P/(T P+FP+FN) between the number of cor-
rectly detected parasites True Positive (TP) and incorrectly detected para-
sites False Positive (FP) as well as missed ones False Negative (FN). For
this purpose, TP, FP and FN are determined compared to the ground-truth
of parasites based on a matching threshold which corresponds to the Jac-
card index (see equation 3.3) in the range of [0.5,1]. The value 0.5 is a
common threshold for assessing segmentation quality. In our case, if the
parasite detected has at least 50% of the area matches the area of the para-
site in the ground truth, then it is detected as a TP.

Our segmentation architecture called U-Net_VGG19 has been trained
and validated on:

• The training / validation sets of the two datasets separately which
allow for the production of two specialized segmentation models U-
Net_VGG19_Dataset1 and U-Net_VGG19_Dataset2

• The training / validation sets of the two datasets together (Dataset12)
which allow for the production of generalized segmentation model
U-Net_VGG19_Dataset12.

We emphasize that among the five widely used optimizers (Adam,
SGD, RMSprop, Adagrad, Adadelta), we observed that the Adam per-
formed the best.
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For ease of reading, we denote U-Net_VGG19_Dataset1,
U-Net_VGG19_Dataset2 and U-Net_VGG19_Dataset12 parasite segmen-
tation models as model 1, model 2 (specialized models) and generalized
model respectively.

Figure 3.14 illustrates the AP curves of specialized and generalized
models generated on the test sets of Dataset1 on the left (179 parasites) and
Dataset2 on the right (485 parasites). The curves indicate that while the
specialized models are incapable of detecting parasites on the external data
(APJi@0.5 = 0.03 for model 1 on Dataset2 and model 2 with an APJi@0.5 =

0.04 on Dataset1), the generalized model successfully segmented para-
sites on both datasets with promising precision (APJi@0.5 = 0.73 for both
datasets). Additionally, the curves reveal that the generalized model out-
performs the specialized model 1 on the test set of Dataset1 and performs
similarly compared to the specialized model 2 on the test set of Dataset2
(with a difference of about 0.01 at each step of the Ji threshold). It can be
also observed that the precision of the models drop when the Ji threshold
increases, suggesting that it is difficult to align the ground-truth parasite
contours with the automatic ones, especially for Dataset1. Nevertheless,
as demonstrated in Figure 3.15, the segmentation results obtained by the
generalized model on both datasets (bottom rows of subfigures 3.15a and
3.15b) seem to be very close to the ground-truth in shape and number, re-
gardless of the parasite species (top rows of subfigures 3.15a and 3.15b).
The early drop in model precision on Dataset1 might be partly explained
by the small size of the parasites areas. Indeed, in contrast to Dataset2,
most parasites in Dataset1 are characterized by a small surface which may
make it challenging to match the area between automatic and ground-truth
parasites. Furthermore, due to the small area of the parasites, we believe
that it is difficult to obtain a high level of area matching even between two
human experts’ segmentations.

Figure 3.16 displays the results of the generalized model for parasite
detection and segmentation on both test sets of Dataset1 and Dataset2 with
respect to TP, FP and TN. Indeed, the figure shows the high capacity of
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FIGURE 3.14: Average Precision curves of special-
ized and generalized models obtained over the test
set from Dataset1 (left side) and the test set from

Dataset2 (right side).

the generalized model to segment parasites on images having varied inter-
class and intra-class features with equivalent performance. To be specific,
the model detected 166/179 parasites and 426/485 parasites on Dataset1
and Dataset2 respectively (TP parasites). It can be observed that the gen-
eralized model detects the parasites located within the same cell and close
to each other as one parasite, which may lead to an increase in FN. Figure
3.17 shows an example for each dataset (see delineated parasites in yel-
low on the groud-truth on the left and the corresponding parasites detected
by the model on the right). The model might be improved if there were
more examples of such cases. We can also observe on Figure 3.16 that the
amount of false parasites (FP) is relatively low. After visually analyzing
the results for both datasets, we noticed that FP parasites are not neces-
sarily false. In fact, as indicated in Figure 3.17 for both datasets some
parasites (delineated in orange) have been missed in the ground-truth. We
note that these parasites are usually small and located at the boundaries of
the images.

Except for our proposed U-Net_VGG19 generalized model, we also
trained two other state-of-the-art architectures, the original U-Net and the
U-Net_ResNet34 following the same training / validation rules. Figure
3.18 illustrates the AP curves of the three architectures computed on a
test set corresponding to the merging of the test sets from Dataset1 and
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(A) Dataset1 test set: from left to right image examples representing Falciparum,
Malariae, Ovale and Vivax species.

(B) Dataset2 test set: image examples of Falciparum species.

FIGURE 3.15: Parasite segmentation results of Gen-
eralized model. For each dataset, ground-truth on top

row, automatic segmentation on bottom row.

Dataset2. The curves show that U-Net_VGG19 has approximately 10% at
Ji=0.5 than the other two architectures.

We also compared the parasite segmentation results of our generalized
model with the results of Abbas and Dijkstra’s segmentation method [3]
(owners of Dataset2 [2]). Since the authors trained their segmentation
model on Dataset2 using a cross-validation method it would be impossible
to make a fair comparison on this dataset. For this reason, we compared the
two segmentation models on a sample of 13 images from the CDC (Con-
trol Disease Center), and the authors have shared the associated automated
segmentation results as figures in the supplementary material document
(referenced in [3]). To be specific, we used the screenshots of these images
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FIGURE 3.16: From left to right, parasite detection
metrics of the Generalized segmentation model on
test sets from Dataset1 on the left and Dataset2 on

the right.

(A) Dataset1

(B) Dataset2

FIGURE 3.17: For each dataset, ground-truth seg-
mentation on the left vs automatic segmentation on
the right: illustration of some missed parasites shown

in orange and merged ones shown in yellow.

to test our model and generate associated segmentation results. Figure 3.19
displays comparative examples of the respective results for the first three
images shared in their document (more comparative results can be found in
the supplementary file). In addition to the fact that we tested our model on
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FIGURE 3.18: Performance comparison between
generalized parasite segmentation models based on 3
deep architectures on a merged test set from Dataset1

and Dataset2.

screen-shot images, it is worth mentioning that we did not apply any cell
diameter-based image rescaling or surface threshold-based object suppres-
sion, as was done in [3]. One may note that our method has finer contour
segmentation. However, some parasites are missed, probably partly due to
the degraded quality of the screen-shot images.

FIGURE 3.19: Parasite segmentation results from our
generalized model (colored images) vs Abbas and Di-
jkstra method [3] (quadtone masks from CDC blind
data; yellow pixels: TP, green pixels: FP, red pixels:

FN, black: background).
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3.4.3 Results and evaluation of the generalized classifica-
tion module

3.4.3.1 Data preparation

TABLE 3.2: Quantity of parasite images using a cas-
cade of augmentations with species balancing.

Parasite
species

Global image dataset1 Crops LPTS augmentation* Crops LPTS + standard augmentation
Train Validation Test Train Validation Test Train Validation

Falciparum 74 14 16 7363 1333 1524 11289 2047
Malariae 27 5 5 297 45 45 10692 2075

Ovale 21 4 4 261 32 36 11000 2052
Vivax 32 4 4 441 54 81 11178 2044

*11512 generated crops using Eq. 3.7 over the 1437 parasites of Dataset1 (close to
maximal value 12933 provided by Eq. 3.8).

We mainly used Dataset1 because it is the only dataset that contains
4 species. To be specific, we used the same training / validation / test
sets as the segmentation part (see Dataset1 in Figure 3.13). The first three
columns of Table 3.2 show the data split details of the species. It can be
observed that the size of the training set is too small to train our classifica-
tion architecture. For this reason, we proposed a first step for parasite data
augmentation using our LPTS (Local Parasite Texture Scanning) approach.

Local Parasite Texture Scanning (LPTS) – Figure 3.20 shows an ex-
ample of the output when our method is applied to a parasite. To be more
specific, the parasite is first bounded on the original image (red box in
subfigure 3.20a) according to the associated segmentation in the binary
mask (subfigure 3.20b). Then the bounding box is enlarged to a 224 x
224 square window in the center of the parasite and shifted in 8 direc-
tions (black square in subfigure 3.20a and 3.20b) in order to generate 9
binary masks crops (subfigure 3.20c) and associated original image crops
(subfigure 3.20d) according to the method given in section 3.3.3. Though
the method is based on image shifting, it allows to increase effectively the
number of images and to diversify the configuration of parasites by locally
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changing their position / shape / number. The last three columns of Ta-
ble 3.2 indicate the amount of parasites crops per species obtained after
applying our approach to the original data of Dataset1.

(A) Original image. (B) Ground-truth.

(C) Generated mask crops. (D) Original crops.

FIGURE 3.20: An output example of our LPTS para-
site augmentation technique.

LPTS data species standard augmentation and balancing – The last
two columns of the Table 3.2 indicate the quantity of parasite crops for
each species in the training / validation sets after a last augmentation and
balancing step. To be exact, we increased the first species (Falciparum) by
adding parasite image crops from the training set of Dataset2 used in the
segmentation part (see Dataset2 in Figure 3.13). This can improve the gen-
eralization potential of the classifier. For the other species, we performed
several spatial and pixel-based transformations on the crops while main-
taining species sizes balance. To be specific, we combined horizontal and
vertical flips with Gaussian noise, histogram equalization, contrast, bright-
ness, median blurring, CLAHE, gray level, random rain, fog, shadow and
snow transformations.
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3.4.3.2 Classification performance analysis

To assess the performance of the parasite species classifier, we employed
standard scoring metrics including accuracy, precision, recall and confu-
sion matrix [101]. Our classification architecture has been trained and
validated on the “Crops LPTS + standard augmentation” training / vali-
dation sets (see last 2 columns of Table 3.2) and tested on the test set (see
6th column of Table 3.2). We highlight that among the five commonly
tested optimizers (Adam, RMSprop, SGD, Adadelta, Adagrad), the best
performance was observed for RMSprop. To determine whether our LPTS
technique helps to improve the performance of the classifier, we trained
our architecture on a reduced training set, keeping only the window crops
in the center of the parasite (see position 1 in subfigures 3.20c and 3.20d)
and removing the crops in the remaining 8 positions. We also compared
the performance of our classification architecture with the state-of-the-art
by experimenting Xception [16], ResNet50 [44] and VGG16/19 [89] ar-
chitectures. For this purpose, we employed a transfer learning strategy to
fine-tune the associated models pre-trained on the ImageNet dataset [23].
The architectures have been tuned by keeping the default sequence of con-
volution layer blocks, adding a global average pooling and an output layer
of four units (corresponding to the four classes of the parasite). The fine-
tuning step has been performed during the training by freezing the Ima-
geNet weights for the sequence of convolutional layer blocks and optimiz-
ing the weights of the newly added dense layer. These adapted versions
have been trained, validated on the same “Crops LPTS + standard aug-
mentation” training / validation sets as our architecture and tested on the
same test set. Among the four tested architectures, only VGG16 achieves
competitive performance compared to our architecture.

Table 3.3 displays the performance obtained by our architecture on two
training strategies (with and without LPTS crops) and VGG16 on the vali-
dation set. It can be noticed that our architecture achieved the best perfor-
mance for the four species. Furthermore, the table shows that our LPTS
technique enabled our architecture and VGG16 to outperform the degraded
version (Light-Net*), improving considerably their discrimination ability
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TABLE 3.3: Classifiers performance comparison on
the Crops LPTS + standard augmentation validation

set using standard metrics

Parasite
species

Accuracy Precision Recall
VGG16 Light-Net* Light-Net VGG16 Light-Net* Light-Net VGG16 Light-Net* Light-Net

Falciparum 0.96 0.65 0.98 0.95 0.89 0.98 0.96 0.65 0.98
Malariae 0.99 0.94 0.99 0.96 0.85 0.98 0.99 0.94 0.99

Ovale 0.72 0.47 0.83 0.77 0.53 0.84 0.72 0.47 0.83
Vivax 0.77 0.72 0.84 0.76 0.57 0.83 0.77 0.72 0.84

VGG16 applied from [89].*Trained on reduced training set (without 8 positions of LPTS
crops).

for different species, especially for Falciparum and Ovale species.
Figure 3.21 displays the confusion matrices obtained on the test set by

our architecture and the VGG16 [89] when trained on the “Crops LPTS
+ standard augmentation” training set. The matrices reveal that our ar-
chitecture outperforms the VGG16 on three species (Falciparum, Ovale
and Vivax), while the VGG16 is slightly better at identifying the Malariae
species. The average accuracy on the four species is 88% for our architec-
ture vs 78% for VGG16.

FIGURE 3.21: From left to right, confusion matrices
obtained on the parasite species test set from Dataset1

by Light-Net and VGG16 [89] respectively.

A final test of the two architectures has been done on a test set from
Dataset2 consisting of 5889 Falciparum parasite crops. These crops have
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TABLE 3.4: Classification results obtained by the two
architectures on a test set of 5889 Falciparum crops

from Dataset2.

Classifier
True Positive False Negative
Falciparum Malariae Ovale Vivax

VGG16 [89] 5798 32 19 40
Light-Net 5864 5 1 19

been generated from the validation / test sets used in the segmentation part
(see Dataset2 in Figure 3.13). Table 3.4 displays the classification results.
We observe that the discrimination ability of our architecture is confirmed
as it detects 99.5% of crops as Falciparum species and outperforms the
VGG16. Additionally, the results show that our architecture has a high
generalization potential on Dataset1 and Dataset2.

3.4.4 Global system results and evaluation

3.4.4.1 Patient level evaluation

TABLE 3.5: Results of the global diagnosis system at
the patient level.

Dataset
Total of
images

Total of parasites Species*
GT** Predicted GT** Predicted

Dataset1
[59]

Patient 1 2 55 56 F F
Patient 2 2 33 42 F F
Patient 3 2 2 2 M M
Patient 4 2 2 2 O O
Patient 5 2 3 5 V V

Dataset2
[2]

Patient 1 8 24 29 F F
Patient 2 6 28 27 F F
Patient 3 22 48 44 F F
Patient 4 8 29 33 F F
Patient 5 6 19 24 F F

*F: Falciparum, M: Malariae, O: Ovale, V: Vivax. **GT: Ground-Truth.
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We remind that we used the same test sets from Dataset1 and Dataset2
in the segmentation and classification modules, so we can use these test sets
to evaluate the global system (combined segmentation and classification)
at the patient level (see Figure 3.8). Table 3.5 displays examples of the
results obtained by our global system on 10 patients from Dataset1 and
Dataset2. One can note that all the patients have been diagnosed with the
correct species. In fact, this result is confirmed for all patients in both
datasets. It can also be observed that the predicted number of parasites
is close to the ground-truth. All these results clearly indicate that merging
inter-class data represents a promising direction of investigation to develop
powerful generalized systems based on deep learning.

3.4.4.2 Performance analysis on other datasets with partial ground-
truth

TABLE 3.6: Global system performance in term of
parasite detection and species classification.

Test
dataset

Infected
patients

Total of
images

Parasite detection
rate

Predicted
patients

Ground-truth
species Species classification

Dataset3 [21] 5 331 0.99 5/5 - -
Dataset4 [82] 151 13779 - - Falciparum 0.63
Dataset5 [96] - 654 0.99 - Falciparum 0.84
Dataset6 [57] - 1328 0.85 - Vivax 0.31

This section presents our global system results on the 4 test datasets
(Dataset3,4,5,6) in Table 3.1 by its segmentation and classification modules.
Since these datasets do not provide a segmentation ground-truth of the par-
asite, we assessed our system by calculating the parasite detection rate. It
corresponds to the ratio of the number of images in which the segmenta-
tion module detected at least one parasite (i.e. image detected as infected)
divided by the total number of images (T P/(T P+FN)). We precise that
all images of these 4 datasets are labeled as infected, which implies that
all of them should contain at least one parasite. The results are summa-
rized in the Table 3.6. Notably, the module is not suitable for segmenting
Dataset4, as it contains individual cell images. The table demonstrates that
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our segmentation module has successfully detected at least one parasite in
each image, with high detection rates (over 99%) in Dataset3, Dataset5 and
an acceptable one (85%) in Dataset6. Figure 3.22 shows some qualitative
results of the segmentation obtained by our module on the datasets.

FIGURE 3.22: Parasite segmentation results of our
system over samples of Dataset3, Dataset5 and

Dataset6 (from left to right).

For the classification part, our system selected the largest parasite de-
tected by the segmentation module from each image and classified its
species, then following a major voting on the images of the same patient
and the system output the final predicted species. The Major voting is
performed only in Dataset4 because the images are organized by patient,
while in Dataset5 and Dataset6, where no information is provided about
the patient, the system outputs the predicted species of the largest parasite
detected in each image. In Dataset3 it is impossible to assess our classifi-
cation module because no information on species is provided. The results
are summarized in the Table 3.6. The table reveals that for Dataset4, the
classification module has a reduced discrimination capacity for P. Falci-
parum. This is due to the particular form of images considered (individual
cell images rather than LPTS crops). Nevertheless, the module succeeded
in identifying the Falciparum species in Dataset5, reaching 84%. We be-
lieve in this data set, the accuracy of our system for species identification at
the patient level may be higher, as classification decisions will be based on
a major voting. Finally, we note that there is a decrease of performance in
Dataset6 which involves Vivax species. This result was expected because
our generalized classification module has been trained on mixed data for
Falciparum species (data from Dataset1 and Dataset2) but not for the other
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species due to lack of data. We believe that mixing data for Malariae,
Ovale and Vivax species may further improve the generalization potential
of our classification module.

3.5 Conclusion

We have proposed a framework for diagnosing Malaria infection in hu-
mans using microscopic images of thin blood smears. To be specific, this
framework aims to segment the Plasmodium parasite and to differentiate
between its species in four dominant classes: P. Falciparum, P. Ovale,
P. Malaria and P. Vivax. For this purpose, two deep learning architec-
tures based on CNN, called U-Net_VGG19 and Light-Net, have been per-
formed for the segmentation and classification steps of parasites, respec-
tively. Both architectures have been trained with the generalization of the
resulting models in mind, especially on inter-class data. By combining two
public datasets [59, 2] and a parasite data augmentation technique called
LPTS, our training strategy demonstrated its efficiency in improving the
performance of the global system. Indeed, the resulting generalized seg-
mentation model performed well for detecting parasites (accuracy between
85% and 99%) in a couple of public datasets [21, 96, 57]. However, more
interclass data for parasite species could further optimize the classification
module of the global system.
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Chapter 4

Granularity guided deep learning
for precise Cryptosporidium
parasite image analysis

4.1 Introduction

Cryptosporidiosis is a diarrheal disease caused by the Cryptosporidium

parasite, which may live in the intestine of several mammals. Currently
40 species were discribed in this gender. Among these last, C. parvum
has been a primary issue of concern because it appears in the majority of
human and livestock infections. Moreover, this species presents zoonotic
properties and can therefore be transmitted from humans to animals and
vice versa [74, 33]. In humans, infected people might present with some
symptoms, particularly diarrhea, abdominal pain and acute gastroenteritis
[42, 37]. It is important to note that Cryptosporidium is the 5th causative
agent of diarrhoeal disease in young children under 5 years of age. Further-
more, its presence has been implicated in increased mortality among young
children [49]. Within livestock, cattle (especially calves) are considered to
be the main reservoir of this parasite. In fact, over one million oocysts
per gram of faeces can be excreted by an infected animal [7]. The VIDA
(Veterinary Investigation Diagnosis Analysis) 2014 report indicated that
Cryptosporidium was one of the four main causes of diarrhoea in calves
during the period 2007 to 2011. This parasite also contributes to the death
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of small animals and it has a significant economic impact by reducing the
rentability of farms [4]. Apart from labour expenses, the treatment of a
sick calf costs a minimum of £34 [97].

It is therefore clear that controlling parasite colonisation would offer
genuine benefits to the economy and would contribute to limiting the risk
to health of humans. Nevertheless, achieving this goal is a challenge due
to: i) the high level of resistance of the parasite to environmental condition,
ii) the lack of effective medicines for infected animals as well as humans
[11]. In such cases, developing a completely effective drug that targets this
parasite would allow to prevent its reproduction on farms in the presence of
infection. This lack of drugs is mainly attributed to the lack of automated
and easily accessible tools to screen drug libraries. There are currently no
highthroutput system to simplify the process of characterising new anti-
parasitic compounds.

The researchers initiate their experiments in vitro through the employ-
ment of cell layer infections when they wish to evaluate the efficacy of
drugs against pathogens. After a period of incubation (varying from 24
hours to 72 hours within case of Cryptosporidium studies) the infected
cells are fixed. The parasites are then specifically identified on the mi-
croscope slide using fluorescent-labelled antibodies [55] (as shown in Fig
4.1). Microscopic observation will result in an assessment of the reduc-
tion of parasite infections and differentiate their life stages (from asexual
to sexual life stages). Nevertheless, it is a error-prone task for biologists to
count the amount of parasites. For example, in a microscopic image cap-
tured with a 63 magnification (an image representing a view of relatively a
small region of the infected sample), the number of parasites can reach on
average a hundred after 24 hours of infection. Consequently, such manual
method of analysis does not allow for a transition into large-scale trials in
which thousands of molecules are used to accelerate drug discovery.

Additionally, direct exploitation of the existing methods is not suffi-
cient to develop a reliable tool for the analysis of Cryptosporidium images
due to the particular visual aspect of this parasite. Indeed, as illustrated
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FIGURE 4.1: Cryptosporidium analysis by biologist
expert.

in Fig 4.2, the parasites have irregular shapes with confused contours no-
tably for stuck parasites and their surfaces as well as their fluorescence
are highly varied. All these observations make the characterization of the
parasite by existing deep architectures a real challenge.

To this end, we propose a coarse-to-fine segmentation approach to pre-
cisely segment a population of Cryptosporidium parvum parasites from a
microscopic image by the first step. Then, a subsequent classifier with high
discriminatory power is used to distinguish the life stages of the parasites
among 4 asexual stages: oocyst, trophozoite, meront, and free form. To
the best of our knowledge, this work is the first to address Cryptosporid-

ium parvum analysis from microscopic images and offers a precision tool
for assisting the biologists.

The main contributions of our work are summarized as follows:

- An original coarse-to-fine segmentation approach that permits to de-
lineate precisely the contours of parasites whatever their shapes, their
sizes and their situations in the image (grouped or isolated). To this
end, the approach goes through three successive processing steps
namely 1) a coarse segmentation step that outputs either individ-
ual parasites or grouped ones (i.e. they share common contours),
2) shape classification that permits to identify grouped parasites 3)
contour refinement that permits to isolate each parasite from the
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FIGURE 4.2: Huge challenges present in detecting
parasite contours, observed from the labelings of ex-
perts. Different situation as follows: (a) Confusing
contours, (b) Irregular shapes and (c) Different bright-

ness

grouped ones. The approach allowed to significantly improve the
performance in comparison with the state of the art ones.

- A classifier with high discriminative power for distinguishing the life
stages of the parasites based only on the analysis of their visual ap-
pearance (reflected in the green channel of the microscopic image)
and without the need of information related to the size and the num-
ber of nuclei which are required by the biologist. Indeed, the high
performance obtained by the classifier on the experimented dataset
shows that our deep learning architecture succeeded to characterize
the parasite life stage from its visual appearance.

- A dataset of Cryptosporidium parvum parasite publicly available.
The dataset is composed of 58 microscopic images acquired in our
laboratory from infected HCT-8 cell lines (Declinai HCT). The im-
ages contain over 3,000 parasites which have been segmented man-
ually and classified among four life stages by a biologist expert.

4.2 Exploited Transformer-based architectures

In this section, we mainly present the concept of Vision Transformer (ViT)
and the related architectures applied to our research in this chapter. For
other architectures of image classification and segmentation, we have al-
ready presented in the previous chapter.
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In the last decade, deep learning-based networks have been broadly em-
ployed for image segmentation in the medical field and have demonstrated
high performance. However, they suffer from a lack of understanding of
long-range dependencies in images owing to the induction bias inherent
among convolutional architectures. To address this limitation, we have
discovered that a growing number of recent studies have been proposed to
encode long-range dependencies based on Transformer architectures ex-
ploiting self-attention mechanism over the state-of-the-art [112, 114, 108,
107].

Dosovitskiy et al.[28] first proposed the concept of Vision Transformer
(ViT), that is a pure transformer for direct application to image classifica-
tion task. ViT follows the original transformer as much as possible in its
design, as shown in Fig 4.3. The authors split the image into patches with
fixed-size, added position embeddings and then fed these vector sequences
to the Transformer encoder.

FIGURE 4.3: The Vision Transformer (ViT) frame-
work [28].

Chen et al. [12] proposed the first medical image segmentation archi-
tecture named TransUNet. Unlike [28], the authors did not split the im-
age into patches, but used a series of convolutional operations for feature
extraction. As displayed in Fig 4.4, TransUNet adopts a hybrid CNN-
Transformer architecture, in which feature maps are first generated by
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CNN and then patch embedding is performed based on these feature maps.
The authors believe that Transformer can be leveraged as a powerful en-
coder for image segmentation, combining with U-Net for the enhancement
of finer details by recovering local spatial information.

FIGURE 4.4: Architecture TransUNet[12].

Cao et al. [9] proposed a pure Unet-like Transformer architecture for
image segmentation, named Swin-Unet (as can be seen in Fig 4.5). Tok-
enized patches of the images are sent to the architecture via a skip connec-
tion for local and global feature learning. To be specific, hierarchical Swin
Transformer with shifted windows is used for extracting image features as
encoder. Also, the decoder part employs a Swin Transformer-based design,
which includes a patch expanding layer to conduct upsampling operation
to recover the spatial information of the feature maps.

4.3 Methodology

Fig 4.6 illustrates the overview of our framework, which consists of a
coarse-to-fine segmentation module, a loop control module and a module
of parasite life stage classifier. Our coarse-to-fine segmentation method
applies deep learning models by three consecutive steps of analysis: 1)
a coarse segmentation model which inputs a microscopic image and out-
puts a mask with delimited contours that delineate individual or grouped
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FIGURE 4.5: Architecture Swin-Unet [9].

parasites. 2) a shape classification model which allows to input cropped
images of parasites that have been detected by previous step and outputs
their classes (grouped or individual). 3) a fine segmentation model which
inputs only the parasite crop identified as grouped in previous step and
isolates them by delimiting each of their contours. Subsequently, a loop
control module helps to detect outlier parasites. In addition, a classifier
with high discriminatory power is used to distinguish the life stages of the
parasites.

4.3.1 Coarse-to-fine segmentation module

Coarse-to-fine segmentation model includes the following steps: coarse
segmentation and parasite cropping, parasite shape classification after crop-
ping and fine segmentation.
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FIGURE 4.6: An overview of our method, which con-
sists of a coarse-to-fine segmentation module, a loop
control module and a module of parasite life stage

classifier.

4.3.1.1 Coarse segmentation

The segmentation architecture is designed to be identical for both coarse
and fine segmentation step. The major difference lies in the image train-
ing set employed by the different models. To be more specific, the coarse
segmentation model learns from a collection of images comprising a group
of segmented parasites (the whole microscopic image), while the fine seg-
mentation model learns from a collection of image crops consisting of a
small group of segmented parasites with common outlines.

Fig 4.7 represents our implemented architecture TransUNet [12]. It
is made up of two different processing modules, namely the encoder and
the decoder. The encoder conducts feature extraction through a series of
convolutional layers (16, 32, 64, 128, 256, 512), each of which is followed
by a max pooling operation. Afterwards, the linear projection operation
converts the feature map from the convolution operation into matrices for
passage over a series of transformer blocks. After rescaling the output
of the transformer block, the hidden features are decoded by cascading
several upsampling blocks to come up with the final segmentation mask,
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FIGURE 4.7: Our implemented segmentation archi-
tecture TransUNet.

each containing a 2× upsampling operator, a 3×3 convolutional layer, as
well as a ReLU layer.

We propose to employ a hybrid loss function to train the network, con-
sisting of a Jaccard loss and a Cross-entropy loss, so that both local and
global features are optimized:

LossJac = 1− ∑yi jti j

∑yi j +∑ ti j−∑yi jti j
(4.1)

where yi j ∈ [0,1] and ti j ∈ [0,1] denote the output and target of each pixel
at position (i, j). We adopt the Cross-entropy loss as an auxiliary loss in
order to allow optimizing the local region of the image. It is formulated as:

LossCE =−
C

∑
i

tilog(si) (4.2)

where ti and si are the ground truth and the CNN score for each class i in
C. Based on the two above losses, our loss function is as follows:

Lossour = αLossJac +(1−α)LossCE (4.3)

where α ∈ [0, 1]. In order to minimize the loss function, the Adam [48]
optimizer is employed.

4.3.1.2 Parasite shape classifier after cropping

After coarse segmentation, we crop the detected parasites and regenerate
them as small images with a resolution of 224 x 224.
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FIGURE 4.8: Our proposed classification architecture
TransCNN.

By analyzing the cropped parasite images, we find that most of the
parasites exist in isolation, however there are some parasites in the form of
parasite groups, as some parasites are interconnected. Even certain parasite
groups contain parasites of different life stages (as displayed in Fig 4.2(a)).
Therefore, it is necessary to separate each parasite in the parasite group by
a more refined segmentation before classifying the parasite life stages.

Compared to isolated parasites, we discover that parasite groups are
usually more irregular in shape rather than close to circular. Therefore,
we designed a custom architecture that incorporates CNN and transformer
blocks for the construction of a parasite shape classifier. The inspiration for
the architecture comes from the encoder of the segmentation architecture
introduced in previous section.

As illustrated in Fig 4.8, the architecture first consists of 10 convolu-
tional layer blocks (5 successive double blocks), each of which is followed
by a ReLU as activation function and a max pooling operation. After trans-
forming the feature maps into matrices, the network is then connected to
the six ViT (Vision Transformer) blocks. A flatten operation follows ViT
blocks, which is followed by a dense layer of 256 units with a ReLU ac-
tivation function. Eventually, an output dense layer of 1 unit is applied to
gain the prediction probability for the shape of the parasite using a sigmoid
activation function.

4.3.1.3 Fine segmentation

Considering the relatively regular shape of the parasites, we consider con-
tour refinement of the parasite groups so as to isolate each parasite from
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FIGURE 4.9: Parasite fine segmentation for grouped
parasites.

the grouped parasites. Given that the shape of the parasites is known to
be approximately circular, we select grouped parasite masks and perform
parasite segmentation by manually filling black pixels for the contour-
connected parasites (as displayed in Fig 4.9). Afterwards, we apply the
architecture as in coarse segmentation to train a deep learning network for
fine segmentation using the parasite masks. The only difference is that the
input size of the network is changed to 224 x 224.

Subsequently, according to the fine segmentation of the mask, we ob-
tain the result of the fine segmentation on the corresponding pixels of the
original image.

4.3.2 Loop control module

After fine segmentation, we add a loop control module for detecting the
number of parasite contours in each image. In the normal case, the con-
nected parasites in the parasite group are separated and the module should
detect more than 1 parasite at this point. However, if only 1 parasite con-
tour is detected, it means that the previous coarse-to-fine segmentation
module cannot handle the current parasite image. In this circumstance,
we consider the parasite image as an outlier, and all subsequent outliers
will be detected by the expert.
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4.3.3 Parasite life stage classification module

To classify all detected individual parasites in the framework, we train the
deep learning network using approximately the same architecture as the
parasite shape classifier. By comparison, the classification of parasite life
stages requires the output to be changed to 4 instead of 1, and the cor-
responding activation function to be changed to softmax. In addition, the
loss function is changed to categorical cross entropy instead of binary cross
entropy.

4.4 Experimental study

4.4.1 Data preparation

Our dataset for the analysis Cryptosporidium parvum comprises 58 micro-
scopic images. The images have been obtained by infection of HCT-8 cell
lines with Cryptosporidium parvum in the laboratory (24 hours of infec-
tion). During the infection, the cells were fixed with methanol. Then the
parasites are killed and stained with specific fluorescent markers. The par-
asite was detected with FITC-labeled Sporoglow antibodies marketed by
Waterborne Inc. The stained parasites can be visible in the green channel
of microscope. In the life cycle of Cryptosporidium parvum, we studied
the asexual stage, containing four species: oocyst, trophozoite, meront,
and free form[35, 94]. All images have been manually annotated by a par-
asitologist to delimit the outline of each parasite (as shown in Fig 4.10).

Table 4.1 indicates the size of the training/validations sets and image
resolutions exploited during each step of our coarse-to-fine segmentation
training process. A few data augmentation techniques have been imple-
mented for the coarse segmentation only. The 3 scenarios are as follows.

Scenario1: Spatial transformation based data augmentation. In this
case, we performed rotation, vertical flip and horizontal flip on both the
original images and the associated masks.
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FIGURE 4.10: Example of parasite image annotated
by biologist using 4 different colors.

Scenario2: Texture transformation based data augmentation. We per-
formed gaussian blur, contrast enhancement and brightness enhancement
for the original images only and maintain the associated mask constant.

Scenario3: Spatial and texture transformation based data augmenta-
tion.
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TABLE 4.1: Detailed information of dataset used in
different steps

Steps Training set Validation set Image resolution
Coarse segmentation 51 images (2510 parasites) 7 images (589 parasites) 1024 x 1024
Shape classification 244 crops (122 per class) 60 crops (30 per class) 224 x 224
Fine segmentation 122 crops (263 parasites) 30 crops (65 parasites) 224 x 224
Species classification 293 parasites per class 111 parasites per class 224 x 224

FIGURE 4.11: The coarse segmentation step.

4.4.2 Experimental results

4.4.2.1 Coarse segmentation

As illustrated in Fig 4.11, the coarse segmentation step that outputs the
contours of each parasite, whether it exists in individual or grouped forms.

We compared our approach with five other approaches, including three
deep learning approaches (U-Net_VGG19, U-Net_ResNet34 and Swin-
Unet[9]) and two conventional approaches (watershed algorithm[71] and
HSV color filter). For deep learning approaches, the same scenarios as
our approach were applied. First, all models were trained based on origi-
nal data (without our proposed scenarios 1, 2, and 3). Fig 4.12 illustrates
the AP (Average Precision) curves for six architectures computed on the
validation set of the coarse segmentation (data augmentation under sce-
nario1 in the training, with the best performance for all methods relative
to the other augmentation scenarios and the base dataset). AP is defined as
AP=TP / (TP + FP + FN), where TP is true positive, FP is false positive, FN
is false negative in term of parasite object compared to the ground truth.
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FIGURE 4.12: AP curves on the validation set of the
coarse segmentation.

They are computed with the IoU (Intersection over Union) metric ranging
from a threshold of 0.5 to 1. The curves demonstrate that our model is out-
performing the others. In fact, our coarse model achieved 67% AP with an
IoU threshold of 0.5. It can also be noted that the performance of conven-
tional segmentation approaches (watershed and color filter) are very low
compared to CNN, which clearly shows that use of simple features, such
as color, is not sufficient to solve the issue of parasite segmentation.

Fig 4.13 shows the results of the our model in term of TP, FP and TN
for parasite coarse segmentation on the validation set. It could be observed
that the number of the FP and FN is relatively close to each other. When
the IoU threshold is more than 0.7, both FP and FN surpass the number of
the TP.

4.4.2.2 Parasite shape classification

The shape classification step that permits to identify grouped parasites (as
displayed in Fig 4.14).
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FIGURE 4.13: Parasite detection metrics of the our
parasite coarse segmentation model on the validation

set.

FIGURE 4.14: The shape classification step.
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TABLE 4.2: Comparison of the performance and the
number of parameters between our classification ar-

chitecture and some CNN architectures

Model Accuracy Precision Recall Parameters number
VGG16 1 1 1 134M
ResNet50 0.98 0.98 0.98 23M
Simple CNN (6 convolution layers) 0.96 0.96 0.96 25M
Our model 1 1 1 7M

FIGURE 4.15: Confusion matrices obtained by our
model on the parasite shape validation set.

We compared our model (CNN combined with ViT blocks) with sev-
eral CNN classifiers from the state of the art. Table 4.2 displays the per-
formance of the different models. Our model successfully classified all the
validation data, which is identical to VGG16. Nevertheless, as indicated in
the table, the model VGG16 is 19 times larger than our model (134M vs.
7M).

The confusion matrix on the validation set illustrates that our model
has performed perfectly on the classification of the parasite shape. From
the Fig 4.15, our model succeeds to classify all the validation data.
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FIGURE 4.16: The fine segmentation step.

4.4.2.3 Fine segmentation

Fig 4.16 shows the fine segmentation step that permits to isolate each par-
asite from the grouped ones.

Similar to the coarse segmentation, we compared our model with three
deep learning approaches. We followed also the same training protocol
along with the evaluation metric (Average Precision). Fig 4.17 demon-
strates the AP curves computed on the validation set for our fine segmenta-
tion model. The curves indicate that our model gives a better performance
than the other models. It is notable that even with a high IoU threshold,
the AP value of our model maintains the best AP value amongst the other
models, which reveals a high accuracy in parasite separation.

It can be seen also in the metrics of our parasite fine segmentation
model obtained over the validation set (illustrated in Fig 4.18). When the
IoU Threshold is no more than 0.8, all the TP are successfully detected and
there is no FN and FP. The number of FN and FP will both equal to 2 when
the IoU threshold is 0.9.

4.4.2.4 Direct segmentation vs Coarse-to-fine segmentation

The purpose of this section is to illustrate the contribution of our coarse-to-
fine segmentation method compared to the standard method that performs
segmentation directly. Based on aboved steps, we reconstructed the final
binary mask to evaluate our coarse-to-fine segmentation framework. First
we performed post-processing on the mask obtained by coarse segmenta-
tion. Comparing with the ground truth, we found that the predicted mask
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FIGURE 4.17: AP curves computed on the validation
set of fine segmentation.

FIGURE 4.18: Parasite detection metrics of our par-
asite fine segmentation model obtained over the vali-

dation set.
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FIGURE 4.19: AP curves over the validation set of
coarse-to-fine segmentation.

detected some parasites on the edges of the image, however, the ground
truth has only a very small number of parasites. To reduce the number of
false positives, we manually removed the parasites detected at the edges
in the predicted mask. In addition, to prevent the detection of individual
group of pixels with small areas that could be considered as parasites, we
added a filter to detect them and then filled them with black. After all
post-processing steps, we found 11 outliers from 7 validation images.

As can be seen from the Fig 4.19, with an IoU threshold of 0.5, our
coarse-to-fine model achieved an AP of 73.45%, exceeding all compara-
tive segmentation approaches. Furthermore, the model allows to obtain
over 5% of AP in comparison with the coarse model. While in Fig 4.20,
compared with the result in Fig 4.13, the number of both FN and FP has
decreased to less than 100 (IoU threshold=0.5).
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FIGURE 4.20: Parasite detection metrics of our par-
asite coarse-to-fine segmentation model on validation

set.

4.4.2.5 Parasite life stage classification

Fig 4.21 shows the parasite life stage classification step that permits to
distinguish the Cryptosporidium parvum parasite among 4 asexual stages:
oocyst, trophozoite, meront, and free form.

Similar to the parasite shape classification experiments, we also com-
pared our classification model with the 3 other CNN methods. As can be
seen from the table 4.3, the accuracy of all models exceeds 92%, while our
model outperforms other models, with 95.5% as accuracy.

The confusion matrix on the validation set illustrates that our model
has well performed on all 4 classes (as displayed in Fig 4.22). For the
oocyst and free form, the accuracy is much better than the other two par-
asite species, which is 97% and 99% respectively. While for the tropho-
zoite and meront, both accuracy are 93%, which shows a little bit of a gap
compared to the other two species. This is because a few images may be
confused between them.
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FIGURE 4.21: The parasite life stage classification
step.

TABLE 4.3: Comparison of the performance between
our classification model and 3 other CNN methods

Model Accuracy Precision Recall
VGG16 0.946 0.947 0.946
ResNet50 0.923 0.923 0.923
Simple CNN (6 convolution layers) 0.953 0.953 0.953
Our model 0.955 0.955 0.955

FIGURE 4.22: Confusion matrices obtained by our
model on the parasite life stage validation set.
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4.5 Conclusion

This chapter has presented a deep learning-based framework to automat-
ically analyze and diagnose the Cryptosporidium parvum infection. The
framework allows to segment precisely a group of parasites from micro-
scopic images by employing a coarse-to-fine segmentation approach, fol-
lowed by a subsequent classifier with high discriminatory power to dis-
tinguish the parasite life stages among 4 asexual stages: oocyst, tropho-
zoite, meront, and free form. Our coarse-to-fine segmentation module has
achieved an average precision of 73.45% on our validation dataset and per-
mits to obtain over 5% of average precision in comparison with the direct
segmentation. Additionally, for the parasite life stage classification mod-
ule, our model also outperformed better than other state-of-the-art models,
with 95.5% of accuracy.
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Chapter 5

Conclusion and future work

5.1 Summary

The thesis focused on the development of new deep learning based meth-
ods for the analysis of two parasites namely Plasmodium and Cryptosporid-

ium from microscopic images. In this sense, we proposed two major con-
tributions.

For the Plasmodium parasite analysis, we have proposed a generic
framework that permits to efficiently segment the parasite and to differ-
entiate between four of its species: P. Falciparum, P. Ovale, P. Malaria and
P. Vivax. Indeed, the global system reached 100% of diagnosis accuracy
on a test set of images representing 17 infected patients. We believe that
our segmentation module can be exploited as pre-segmentation tool by the
scientific community to speed up the labeling of more data sources.

For the Cryptosporidium parasite analysis, we have proposed a frame-
work that permits to precisely segment a population of parasites and clas-
sify their life stages into 4 asexual stages: oocyst, trophozoite, meront and
free form. More specifically, our coarse-to-fine segmentation approach has
permitted to achieve an AP (Average Precision) of 73.45% on our valida-
tion dataset, leading to an improvement of 5% compared to the top 1 state-
of-the-art method. In addition, for the parasite life stage classification task,
our model also outperformed better than other state-of-the-art models, with
95.5% of accuracy.
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FIGURE 5.1: Malaria parasite species and its life
stage (extracted from [81]).

5.2 Perspective for improvement of parasite anal-
ysis

5.2.1 Data enrichment and model optimization

For the Plasmodium parasite analysis, our study involved four morpholo-
gies of its species: P. Falciparum, P. Ovale, P. Malaria and P. Vivax. As
illustrated in Fig 5.1, there exists a fifth species named P. Knowlesi which
also cause infection within human and may threaten their lives.
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FIGURE 5.2: Cryptosporidium parasite life stages
(extracted from [41]).

Future work could incorporate this species in the parasite analysis pro-
cess. Moreover, life stages of the five species should also be integrated to
have a finer and more precise analysis tool. Similarly, as for the Malaria

framework, our Cryptosporidium framework can be optimized to offer a
complete analysis tool by integrating the sexual life stages (microgamont
and macrogamont as shown in Fig 5.2) in addition to the asexual ones
(oocyst, trophozoite, meront, and free form). Nevertheless, it is clear that
to develop such tools, more data are required with particularly finer an-
notations. In this sense, our proposed frameworks can be employed as
pre-segmentation tools for the new data to accelerate the annotation pro-
cess.
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FIGURE 5.3: An example of BF microscopic image
of Cryptosporidium parasite.

5.2.2 Exploitation of a new form of data for Cryptosporid-
ium: bright-field microscopic images

Context and motivations – During this thesis, we mainly exploited the
fluorescence microscopic image for the analysis of the Cryptosporidium

parasite. Nevertheless, there exists a raw data named Bright-Field (BF)
image (without fluorescent markers) that is often used in the study of
Cryptosporidium parasites. Indeed, the raw format permits to study the
entire life cycle (asexual and sexual) of the parasites without killing the
experimented cell cultures following the usage of the fluorescent marker.
However, as illustrated in Fig 5.3, it is difficult for biologists to identify
parasites using this raw format. Therefore, artificial intelligence (AI) tech-
nology could be exploited to face issue [109].

Future work for analyzing this type of image can be carried out in two
successive steps: The first one is to identify whether the BF image presents
an infection or not. In the positive case, the second step is to provide a
coarse quantification of that infection. For this second step and as shown
in Fig 5.4, the deep learning model proceeds by subdividing into small
square crops the input BF image and then detect possible presence of the
parasite into each crop. By this way, the AI is able to calculate the rate of
infection by the parasite.
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FIGURE 5.4: Deep learning method for parasite de-
tection and quantification.

A potential AI framework for BF image analysis – Fig 5.5 illus-
trates a design of an AI framework for parasite detection and quantifica-
tion. First, we use as input BF images associated with their ground truths
as input examples to train Model 1 for a global infection detection. The
output of Model 1 permits to decide whether a finer analysis is required
or not. Then Model 2 gives as output a binary information to indicate if
an individual crop contains or not some parasites. An infection rate could
be finally calculated based on the previous output of Model 2 over all the
crops of an image. The main difference between the two models is the
data used to feed them during the training process (global BF image vs
crop BF image). It is worth mentioning that the choice of quantifying the
positive patches instead of segmenting individually the parasites permits
to overcome the challenge of segmenting manually these parasites by the
biologists which is required for preparing the training data.

FIGURE 5.5: AI framework for BF image analysis.
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