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Chapter 1

Introduction

1.1 Historical background

A hope of everlasting stability

The orbital motion of the Solar System has always been an important subject of inquiry
in Astronomy. But it was not until Newton’s discovery of the gravitational law in 1687
that mathematical descriptions of orbital dynamics could be formulated. Newton with his
law proved that the orbit of a lone planet around its star is an ellipse. This is an elegant
demonstration of the laws of planetary motion proposed earlier by Kepler. But the Solar
System has more than one planet, each of which can even have satellites, like the Moon of
the Earth. Even with one extra body, solving the dynamical equations becomes a much
harder problem, since the gradual accumulation of the perturbation from the extra body
can disturb and even destabilize the system over a long timescale. Newton himself was
greatly troubled by the 3-body problem of Earth-Moon-Sun that he considered it to be
his greatest failure. The long term stability of the Solar System seemed to be impossible
that Newton thought a divine intervention is needed to restore the system once it goes
off-course (e.g. Trinh, 2001).

The first advancement to this n-body problem was laid out during the late 18th

century by the mutual effort of Lagrange (1778) and Laplace (1776) (see Laskar, 2013
for historical details). In these works, the two astronomers simplified the problem with a
secular approach. First, they averaged the fast orbital timescale and only considered the
long-term variation of the orbits. Then, they retained the dominant interaction terms
by treating the Solar System perturbatively due to its two properties: the masses of the
planets are much smaller compared to the Sun, and the planetary orbits are nearly circles
residing close to a common plane. With these simplifications, the long-term evolution of
planetary orbits are determined by a system of linear differential equations with constant
coefficients. Accuracy of the orbit prediction could be increased by including additional
perturbing terms, which induce corrections to the solutions. A notable example was the
great 5:2 inequality of Jupiter and Saturn orbital periods (see Wilson, 1985, for historical
details). The prediction was consistent with the astronomical observations at the time.

1



2 Chapter 1. Introduction

In fact, every apparent deviation in planetary observation seemed to be resolved by a
more accurate theory based on Newtonian gravitation. The success of his theory propelled
Laplace (1814) to articulate his optimistic belief of determinism, that is, any prediction
of future is guaranteed with sufficient information. For the Solar System, the theory
reinforced the belief of its regularity, and by extension, its perpetual stability.

Shift of paradigm

The downfall of the deterministic long-term prediction of the regular planetary orbits
was foreshadowed by Poincaré (1899), who initiated the shift of paradigm to the modern
celestial mechanics that we know today (see Laskar, 2013). Poincaré developed the concept
and applications of phase space, where all the states of a dynamical system reside (see
Nolte, 2010); he also re-examined the problem via Hamiltonian formalism. With these
tools, he showed that the perturbation series that astronomers used to calculate the
planetary motions beyond Lagrange-Laplace theory is generally not convergent. It is not
possible to keep improving accuracy of the prediction forever by continual addition of
extra terms. More importantly, he introduced the notion of what is called now chaos by
pointing out that solutions of many deterministic systems display sensitive dependence
to the initial conditions. This revolutionary idea directly refuted the applicability of
Laplace’s determinism, which permeated the intellectual atmosphere at the time.

Chaos began picking up steam after the birth of electronic computers. It was first
officially observed by Lorenz (1963) when he studied the impact of rounding error in
numerical integrations of his model for the Rayleigh-Benard convection. The popular
butterfly effect is later coined by Lorenz (1972)’s talk “Does the flap of a butterfly’s wings
in Brazil set off a tornado in Texas?”, to conceptualize the idea that small changes can
result in large differences in some situation.

Chaotic dynamics subsequently emerged in many diverse fields: Astrophysics (Hénon
and Heiles, 1964), hydrodynamics (Ruelle and Takens, 1971), biology, of which cardiovas-
cular system (Guevara et al., 1981), brain (Skarda and Freeman, 1990) and respiratory
system (Winkler et al., 1994) were modelled, ecology (Smale, 1976), sociology (Baker,
1993), chemistry (Hudson and Mankin, 1981), engineering (Matsumoto, 1984), finance
and economics (Grandmont, 1988), etc. It was apparent that in non-linear modelling,
chaos becomes the norm, not the exception. The question now pointed towards the most
ancient n-body problem, and arguably the most important non-linear dynamics: the Solar
System.

The route to chaotic Solar System

Paradoxically in celestial mechanics, the domain where the first notion of chaos emerged,
the search for the perpetual regularity of the planetary system was still carried out for
most of the 20th century. The quest was bolstered by the formulation of the Kolmogorov
(1954)–Arnol’d (1963)–Möser (1962) (KAM) theorem. The theorem states that if the
non-linear perturbation of a Hamiltonian dynamical system is weak enough, then quasi-
periodic solutions can still exist. This theory can be applied to the planetary motion,
albeit with a big caveat first remarked by Henon (see Laskar, 2016, for historical details),
that the planetary masses required for the theory to work need to be smaller than the



1.1. Historical background 3

mass of an electron. Notwithstanding, the KAM theory was still considered as an informal
“proof” of the Solar System stability.

A direct way to tell if a complex dynamics, like the Solar System, is chaotic or not, is
via numerical integration. Yet, due to the limit of computational power at the time, it was
not easy to integrate an n-body problem from Newtonian equations with all considerations
of rounding error, relativistic corrections, etc., and it was certainly much more difficult to
extend the integration for millions of years.

The limitation was partially due to the short integrating timestep, which has to be
much smaller than the orbital period of the fastest planet, Mercury, of roughly 80 days. If
the timestep is taken to be 0.3 day for example, integrating the system for 1 million years
(Myr) will require a staggering 109 iterations of calculation. Moreover, integration of a
system is serial computing by nature, and is thus difficult to parallelize. Physicist in early
days had to either make strong assumption of the system and often excluded important
part of the system itself (e.g. Carpino et al., 1987, only considered the outer planets), or
be limited by a short interval of integration (e.g. Quinn et al., 1991, only integrated for 3
Myr). With these difficulties presented, the first person to answer the question “Is the
Solar System chaotic?”, needed to have good computation power and a good approach.

Jacques Laskar, a researcher from Observatory of Paris, had both. With the assistance
of the quickly-developing modern computational power on one hand and the historic
analytical methods of averaging in the tradition of Lagrange, Laplace and Le Verrier on
the other, he was able to finish the work of Poincare. By numerically integrating the
secular model of the Solar System over 200 Myr, Laskar (1989) proved that the Solar
System is chaotic with the Lyapunov time of 5 Myr 1. This was possible due to a very
large timestep of 500 years because the fast orbital motions were averaged. The system
of averaged equation, which was developed based on previous works (e.g. Brumberg and
Chapront, 1973) with dedicated computer algebra programs, consists of 153 825 terms
and is accurate up the second order in planetary masses and 5th order in eccentricity and
inclination.

Only three years later, the MIT researchers, Sussman and Wisdom (1992) presented
the first long direct integration of the whole Solar System over 100 Myr. This was in itself
a remarkable achievement and only feasible due to a new efficient symplectic integration
technique and a new more powerful computer. This direct integration confirmed that the
Solar System is chaotic with roughly the same Lyapunov time of 5 Myr. A tiny uncertainty
in the initial conditions, which is bound to happen due to imperfect ephemerides and
modelling, will blow up exponentially by increasing 10-fold after approximately every 10
Myr.

The route to unstable Solar System

The hope of proving a regular Solar System was finally shattered, yet one could still have
faith that Solar System is stable, at least during its lifetime of 5 billion years (Gyr). This
hope was short-lived as Laskar (1994) showed the possibility of an unstable trajectory
where Mercury could either collide with Venus or escape from the system via a rare event
sampling scheme. This result showed that there is no dynamical constraint, at least for the

1Lyapunov time is the inverse maximal Lyapunov exponent, which is the coefficient characterizing the
exponential separation of close trajectories.
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terrestrial planets, to prevent the eventual destabilization. A catastrophic event, which is
either planetary collision or planetary ejection or both, could potentially occur in the next
5 Gyr. This existence of instability invited even more questions about its quantification,
characterization and description.

It should be noted that there are two notions of stability in celestial mechanics.
The first one characterizes the regularity of a trajectory, or more precisely, the lack of
exponential divergence between two close solutions. The solution of a stable dynamics in
this sense can be analytically computed from a convergent asymptotic series. The second
notion concerns with the stability of the architecture of the dynamical system. Stability in
this sense is defined as the lack of instability, which arises when a catastrophic event, such
as a planetary collision, occurs. For the sake of clarity, for the rest of the manuscript we
use regularity for the notion of stability in the first sense, and retain the original meaning
for the second.

1.2 Modern understanding of the Solar System

We came into the 21st century with a new belief of the chaotic Solar System. It is apparent
that trying to predict the Solar System for its remaining future (5 Gyr), which is 1000
times larger than the its Lyapunov time (5 Myr), is a hopeless venture. Yet, the new
century also equips us with new updated technology to face new challenges, we have better
computers for more intensive integrations, and new space technology for more accurate
planetary measurements. In the spirit of keep pushing forwards to obtain the most precise
solution, long-term integrations of realistic models of the Solar System were realized (Ito
and Tanikawa, 2002; Varadi et al., 2003; Laskar et al., 2004, 2011a; Zeebe, 2017) with
new planetary ephemerides (e.g. Fienga et al., 2009). The limit of validity for a long-term
solution is pushed towards about 60 Myr. Beyond this threshold, a deterministic solution
of the Solar System is no longer reliable.

The limit imposed by chaos raises interesting and practical problems concerning the
two time directions: future and past. Before addressing these two problems in section
1.3 and section 1.4 respectively, I shall introduce in this section important and relevant
characteristics of the Solar System, as well as recent advancements of the field during
these recent years.

1.2.1 Overview

The fundamental frequencies

Figure 1.1 shows the eccentricity of the Earth over 10 million years ago in the past (Ma,
Laskar et al., 2004). Over this period, the evolution of eccentricity, and more generally
all orbital components, can be well approximated by a quasi-periodic series. In fact, the
underlying frequencies of the series can be considered as combinations of the fundamental
secular frequencies of the Solar System.

Each planet is associated with two characteristic frequencies, gj and sj, where j
denotes the order of the planet in terms of distance from closest to furthest to the Sun.
The frequencies (gj)j=1,8 portray the precession of perihelion and evolution of orbital
eccentricity; the frequencies (sj)j=1,8 characterize the precession of the orbital plan in
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precise long-term prediction. Therefore one needs to adopt a probabilistic approach to
probe beyond the chaotic limitation. Instead of integrating one solution from one initial
condition, one needs to propagate in time a probability density function (PDF), which
should mimic the uncertainty in the initial conditions as well as in the model.

Formally, evolution of a density function in phase space of a dynamical system could
be captured exactly by the Liouville equation (Liouville, 1838). For a low-dimensional
chaotic map, the Liouville equation can be solved directly to generate a map for the
density function (e.g. Casati et al., 1979 for the Chirikov standard map, Ford et al., 1991
for Arnold map ). One can also derive from the Liouville equation (e.g. Landau, 1937; see
Escande and Sattin, 2007, for further discussion) a Fokker-Plank equation to describe the
transport of the PDF. The expression of the diffusion coefficient of the transport can be
accordingly obtained (e.g. Rechester and White, 1980 for standard map; Lieberman and
Godyak, 1998 for Fermi map). However, for a complex system involving many degrees of
freedom like the Solar System, both integrating numerically Liouville equation or finding
a Fokker-Plank approximation are extremely difficult problems.

Therefore, in practice, a Monte Carlo method is often used as follows. An ensemble of
initial conditions, which are randomly sampled according to an initial PDF, is numerically
integrated to obtain a sample of time-evolving solutions. The solutions altogether represent
approximately the time-evolving PDF. The solutions are equiprobable, each depicts a
possible future (or past) pathway of the system. They are instrumental to the statistics
of the system, from which we can draw probabilistic long-term prediction.

One can also see each solution like a mobile scanner probing the phase space. Imagine
dropping a droplet of ink in a cup of water. Each of the ink particle will eventually
part away from the clump in its turbulent motion to discover the surrounding accessible
environment. After some time, the concentrated ink droplet forgets its initial state and
dilute itself in the water. Imagine again that we cannot see neither the water nor the cup
holding it, but we want to measure them. Just by following the ink, we can have a good
picture of the cup (what it looks like, its dimension, etc.). In the same manner, we can
understand the constraints in the phase space imposed by the dynamics just by looking
at the ensemble of its chaotic solutions.

Density estimation of orbital elements

Laskar (2008) performed a statistical analysis over 1001 different integrations of secular
equations over 5 Gyr starting from closely-spaced initial conditions. The PDF of the
eccentricity and inclination of the Solar System planets were estimated from the sample
(Fig. 1.5). From the evolution of the PDFs through time, the distinction between the ISS
and OSS is once again clear. The PDFs of the OSS planets remain unchanged for the
whole 5 Gyr, while those of the ISS slowly diffuse overtime. Moreover, it was shown that
the outer planets’ PDFs are in fact the PDFs of quasi-periodic motions. For the ISS, the
PDFs can be reasonably fitted by Rice distributions with parameters characterizing the
diffusion. The eccentricity can range up to 0.45 for Mercury in 5 Gyr and 0.15 for Mars,
while Venus and Earth’s variations are smaller with values being below 0.08.

It is natural and tempting at the same time to make sense of the descriptive statistics
of a chaotic system from a perspective of statistical mechanics. For example, to explore
the distribution of extrasolar planet orbits, Tremaine (2015) makes use of certain stability
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conditions with the shear-sheet approximation of a planetary system, and the equiproba-
bility hypothesis, namely planetary configurations are uniformly distributed conforming
to the stability constraints. What makes such a statistical model attractive is that, from
a few simple hypotheses, one can have a precise prediction for the distribution of any
pertinent orbital parameters, such as eccentricity and semi-major axis relations.

Inspired by Tremaine (2015)’s work, Mogavero (2017) showed that the Laskar (2008)’s
distribution of ISS planets can be understood via the constraint of its total angular
momentum deficit (AMD) (Laskar, 1997, 2000). AMD is the difference of the angular
momentum between a circular planar orbit and its elliptic inclined counterpart. AMD
measures the non-linearity of the secular system, and is thus used in the stability analysis
in the exoplanetary system (Laskar and Petit, 2017). For a secular isolated system, its
total AMD is conserved. Mogavero (2017)’s model assumes the conservation of the ISS’s
AMD and the hypothesis of equiprobability for all states preserving this constraint in
phase space. The correspondence between the PDFs of eccentricity and inclination of this
statistical theory and numerical simulation is excellent for Earth and Venus, acceptable
for Mars but poor for Mercury. Indeed, the hypothesis is problematic since Mercury seems
to still remember its initial state despite 5 Gyr of chaotic evolution. In addition, the AMD
of inner planets is not conserved, because the ISS is not isolated from the OSS due to the
coupling secular resonances (e.g. g1− g5− s1 + s2) between the two systems. Nevertheless,
the result is promising given the simple hypothesis of the model. For a better comparison,
once should look for better dynamical constraints, and prolong the integration so that the
system has sufficient relaxation time to forget its initial state.

1.3 Destabilization of the ISS

1.3.1 Probability of instability

The next logical question after the confirmation of a possibly unstable future of the ISS
(Laskar, 1994) is: What is the probability of destabilization for its remaining life time
of roughly 5 Gyr? From the 1001 solutions of a secular model of the Solar System at
degree 6 in eccentricity and inclination, Laskar (2008) showed that this probability is
about 1%. Nevertheless, one can be skeptical about the veracity of this prediction. Since
the model is equivalent to a secular Hamiltonian developed in eccentricity and inclination
as small parameters, in the event of orbital excitation to high eccentricity, the expansion
of the secular Hamiltonian is generally divergent (Wintner, 2014). Furthermore, such an
event can give rise to the crossing of two planetary orbits, during which emerge important
dynamical factors such as mean motion resonances and variation of planetary semi-major
axis; these factors cannot be captured by the averaged model.

A year later, with a huge computational power in disposal, Laskar and Gastineau
(2009) were able to obtain 2501 direct numerical simulations of the Solar System with an
N -body code. This more complete and non-averaged model confirmed the result of the
secular model, the probability of a catastrophe in the ISS is roughly 1%. This estimation
is subsequently reproduced in later studies (Zeebe, 2015; Abbot et al., 2021). The lower
panel in the Fig. 1.6 shows the maximum eccentricity of Mercury of 2501 integrations of
Laskar and Gastineau (2009). Among these, there were 20 solutions with eccentricity of
Mercury higher than 0.9; most of them became unstable in the late stage of the integration,
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which displays the evolution of the precession frequency of Mercury g1 for collisional
secular solutions of the ISS.

When the two frequencies are comparable, that is g1 − g5 ≈ 0, the resonance between
Mercury and Jupiter is activated as the solution enters and explores its chaotic zone. The
system becomes much more chaotic during this activation with much larger Lyapunov
exponent. As a result, the typical dynamical timescale of this stage, which only last for
a few Myr, is short (Laskar, 2008). This is indicated in the rapid bounce back once g1

reaches g5 in the unstable solution (Fig. 1.7). Despite its short duration, the resonance is
strong and very efficient. The activation of the resonance creates a pathway to significantly
accelerate the transfer of energy and AMD between the smallest planet and the biggest
planet in the Solar System, essentially setting up a highway channel between the ISS and
OSS. As a consequence, the Mercury eccentricity is pumped to a high value, which is often
considered as the first sign of instability. Moreover, since the ISS is tightly connected via
a web of secular resonances (Mogavero and Laskar, 2022), the excitation from Mercury
can be readily transferred to other planets, thereby potentially destabilizing the whole
system (Laskar and Gastineau, 2009).

To model the excitation of Mercury eccentricity, Boué et al. (2012) construct an
integrable 1 degree-of-freedom Hamiltonian of a massless Mercury in vicinity of the
resonance g1 − g5. The Hamiltonian is expanded in ratio of semi-major axis between
two planets instead of eccentricity as usual, so that the model is valid for the full range
of eccentricity value. With this simple dynamics, a rapid excitation of eccentricity over
several Myrs, which is observed in unstable numerical solutions, is captured.

Contribution of General Relativity

Historically, the theory of general relativity (GR) plays an important role in the dynamics
of the Solar System. The prediction from the Newtonian equations for the perihelion
precession of Mercury deviates from the astronomical observations. This problematic
anomaly, which was first remarked by Le Verrier (1859), prompted the astronomer
to formulate an even more problematic hypothesis of a missing planet. The anomaly
is actually out of scope of the classical Newtonian framework. It was not until the
establishment of GR, that Einstein (1916) were able to explain the anomalous precession
of Mercury. In the framework of classical equations, the effect of GR is often included by
a post-Newtonian expansion in 1/c2 as the small parameter (see Will, 2018).

The effect is most prominent for Mercury because it is the closest planet to the
Sun. The perihelion frequency of Mercury g1= 5.59 arcsec yr−1, out of which roughly
0.4 arcsec yr−1 can be attributed to relativistic effects. For other planets, the impacts are
smaller but can still be detected in recent observations (Anderson et al., 1992). The change
in precession of Venus is 0.086 arcsec yr−1, 0.038 arcsec yr−1 for Earth, and 0.01 arcsec yr−1

for Mars (e.g. Laskar, 1999, table 4) For outer planets, the effect is even smaller (e.g.
0.0006 arcsec yr−1 for Jupiter).

This shift in the frequency g1 of Mercury is substantial if we compare it to its chaotic
variation, which is 0.13 arcsec yr−1 after 100 Myr (table 1.1). Dynamically, this GR shift
is comparable to the half-width of the strongest secular resonance (Mogavero and Laskar,
2022). If we consider the instability of the ISS as the chaotic diffusion of g1 towards g5, the
relativistic shift widen the gap between two frequencies by almost 50% from 0.9 arcsec yr−1
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(without GR) to 1.33 arcsec yr−1 (with GR). It is therefore not unexpected that a purely
Newtonian model of the Solar System is more unstable than the one with GR (Laskar,
2008; Batygin and Laughlin, 2008; Laskar and Gastineau, 2009)

What is surprising is the degree of change brought about by the relativistic effect. It
utterly transforms the nature of the Solar System evolution in its lifetime. The contrasting
difference is apparent in the comparison between two scenarios shown in Fig. 1.6. Without
GR, the ISS is no longer marginally stable with small chance of being destabilized. In
fact an unstable future, with the probability of 60% in the next 5 Gyr, is expected to be
a normal occurrence. This is also true for the nearer future. In the next 500 Myr, there is
more than 1-out-of-10 chance that the system is destabilized (Laskar, 2008).

1.3.2 The BMH model

To our knowledge, the only attempt to model the instability of the ISS in its full scope,
that is to give prediction of instability time within a chaotic model, is the work of (Batygin,
Morbidelli and Holman, 2015, BMH). Following the work of (Lithwick and Wu, 2011;
Boué et al., 2012), Batygin et al. (2015) constructs a model of massless Mercury forced by
several eigenmodes, which are composed of secular frequencies of Jupiter (g5) and Venus
(g2, s2). The BMH model has 2.5 degrees of freedom. Its Hamiltonian is expanded up to
degree 4 in eccentricity and inclination of Mercury and only retains several supposedly
relevant harmonics while discarding the rest. In short, the Hamiltonian, which is made up
of about a dozen of monomials and four harmonics, is a small subset of the Hamiltonian
of the forced ISS at degree 4 (Mogavero and Laskar, 2021), which has 6304 monomials
and 2748 harmonics.

Despite its simplicity, the BMH model possesses two important aspects of Mercury:
chaos and instability. Moreover, the model also captures the qualitative disparity between
the chaotic timescale and the instability timescale: its expected instability time of roughly
1 Gyr is three orders of magnitude larger than the Lyapunov time of about 1 Myr.
Nevertheless, the simple model clearly falls short in terms of quantitative aspects: (1) It
is too chaotic, with Lyapunov time 5 times smaller than the expected value, and (2) the
model is too unstable, it predicts Mercury will be almost certainly unstable after 5 Gyr.

Nevertheless, the physics of this simple model is interesting. Its Hamiltonian, which
varies slowly, defines in the phase space a bounded region near the initial condition, and
an unbounded region further away. Because of the bounded constraint, the dynamics is
bifurcated into two different timescales: the fast Lyapunov time, with which solutions
wander inside the bounded topological subspace determined by the Hamiltonian; the slow
diffusion timescale of the Hamiltonian itself, with which the bounded subspaces move and
bring the solutions with it. The dynamics is stable as long as its Hamiltonian bounds the
motion, however, as the Hamiltonian slowly diffuses towards certain values where it can
no longer provide the same restriction, the solution escapes into the open phase space
and becomes unstable.

Based on this model, Woillez and Bouchet (2020) show that the instability statistics of
the BMH model can be reproduced by a simple stochastic model. In this model, which the
Hamiltonian randomly diffuses according to the 1-dimensional standard Brownian motion
with reflective barrier in one side and the critical value of the topological transition leading
to instability in the other. With this statistical model, the analytical probability function
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of the hitting time can be derived exactly. The rare events will concentrate around the
instanton path, which is just a straight line from the initial point to the critical value.
In fact, since the BMH model is too unstable and will destabilize after 5 Gyr with high
probability, so the instanton, defined from the rare event characterization, is no longer
valid at 5 Gyr. Therefore, Woillez and Bouchet (2020) has to reduce the time span to 445
Myr in order to study the instanton.

1.3.3 Problem of instability

Although several descriptive aspects of the destabilization have been revealed, as its
triggering resonance is known and its probability was quantified, a global picture still
remains obscure. The problem appears even more puzzling upon close examination. The
ISS, which is forced by the outer planets, is an open system. It has no apparent integrals
of motions to constrain its chaotic motion, thus a sizeable unstable region in phase space
is accessible for the dynamics. Moreover, the system has plenty of time to discover the
phase space including unstable regions, since the remaining lifespan of the Sun is roughly
5 Gyr, that is 3 orders of magnitudes longer than the Lyapunov time of the dynamics.
All these aspects beg the question of why the ISS is so resistant to calamity? why is there
only 1% chance of destabilization over 5 Gyr? given that the dynamics of the ISS is in a
vigorous and unbounded chaotic motion for so long. Imagine a drunk man walking on a
sidewalk next to a busy highway without any visible barrier all night, it would be puzzling
if there are no accidents in the morning.

This paradox has been recognized for a long time (e.g. Lecar et al., 2001), but it was
not until recently that it was articulated and properly addressed by the BMH model
(Batygin et al., 2015). The quantitative predictions of the model are inconsistent with
our actual knowledge of ISS. The model is more chaotic and more unstable, as its
expected destabilization time (∼ 1 Gyr) is at least one order of magnitude smaller than
a more realistic model (∼ 40 Gyr, c.f. Mogavero and Laskar, 2021). Nevertheless, the
BMH dynamics succeeds in producing two well-separated timescales, Lyapunov time
and destabilization time. In this slow-fast dynamics, the destabilization corresponds
to the topological transition from bounded to unbounded constraint determined by its
Hamiltonian.

The attempt of Batygin et al. (2015) to model the instability of the ISS raises two
important questions concerning its generalization. First, is it possible to build a simple
model that reproduces correctly the statistics of the stability? Indeed, BMH model starts
from the linear Lagrange-Laplace theory and then “sequentially enhance the complexity
until the desired behaviour is adequately represented”. One can thus practically enhance
the complexity by keep adding more terms to the Hamiltonian until the model is complex
enough and the obtained statistics is acceptable. To this end, since there are an infinite
number of terms one can choose, a better question should be what are the important terms,
which play essential roles in the stability of the ISS, and cannot be neglected, that we need
to add to the Hamiltonian? Answering this question would reveal the intricate dynamical
interactions, which are represented by corresponding harmonics, between planets and
their contributions to the system stability.

The second question rises from the slow-fast nature of the BMH model. Does the ISS
have a similar slow-fast dynamics? If yes, how can we tell? It should be remarked that
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the approach of BMH cannot be simply generalized to the whole ISS. Since its bounding
constraint emerges partly from the low dimensionality of the model. If more planets are
added and dimensionality is accordingly increased, the Hamiltonian no longer defines a
bounded region in phase space, there will be no topological transition as the solution can
a priori escape from the get go. Moreover, apart from the Hamiltonian, there are no other
visible constraints.

In the chapter 4 and the chapter 5 of this thesis, we attempt to resolve these two
questions.

1.4 Geology and Astronomy

The question of destabilization is no longer pertinent for the past evolution of the Solar
System, for Mercury exists now, it must have existed before. Indeed, the orbital evolution
of the Solar System since the last 5 billions of years ago, by definition, has already occurred.
Although there can be many possible futures, there is only one true past of the Solar
System, recovery of which is an important problem. Because of the chaos, integration
from a realistic model with precise ephemerides only takes us as far as 60 million years
ago (Laskar et al., 2011a). Beyond this threshold, we need to look for the traces that
the dynamics left on its path, which can be found in the geological records on Earth.
Therefore, the recovery of the history of the Solar System becomes a problem of recovery
of its imprints from the geological data.

1.4.1 Overview

The connection between these two seemingly disconnected fields, namely astronomy and
geology, has been hypothesized and demonstrated for the last 150 years. The connection
officially started with the work of Agassiz (1840), who observed and argued for the cyclic
nature of the ice age, and prompted the search for the origin of these glacial cycles.
Adhémar (1860) and later Croll (1875) with the solution of Le Verrier (1856) laid out the
basic principal of astronomical forcing as the explanation for the long-term climate swings
and the resulted periodic glaciation. The theory with all necessary ingredients was pieced
together by Milankovitch (1941) (see Imbrie, 1982, for more historical details).

The central element of the theory that links the long term climate cycles and the
astronomical variation of Earth’s orbital element is the amount of sun light cast on
Earth, termed insolation (incoming solar radiation). This variation of insolation affects
atmospheric temperature and circulation, which in turn influence oceanic temperature,
oceanic circulation, rainfall pattern and biological productivity, etc. All these factors
control the deposition, transport and composition of sedimentation, leaving on its trail
physical, biological and chemical markers, and forming stratigraphic succession. These
markers - measured on sedimentary records, are thus used as proxy for the climatic
variations; notable examples are rock magnetism, sediment compositions, isotopic ratios,
and even qualitative features like color and facies variation (see e.g., Strasser and Heckel,
2007; Hinnov et al., 2012). Many of these stratigraphic successions, such as layered
sedimentary rocks on mountain sides (i.e. strata), are visible to the naked eye and can be
visually identified with orbital forcings (e.g., Hilgen et al., 2000; Kuiper et al., 2008; Wu
et al., 2013).
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The evidence for Milankovitch theory was established by the landmark study of Hays
et al. (1976) entitled “Variations in the Earth’s orbit: Pacemaker of the Ice Ages”. The
study integrated necessary ingredients for an unambiguous demonstration of astronomical
forcings on paleoclimate: A long and continuous record (deep-sea core documenting
500 000 years of history), on which robust proxy for climate variation (marine δ18O3 as a
proxy for ocean temperature), and controlled by independent timing method (radiocarbon
dating). This study set up basic rationale for the new field cyclostratigraphy, and inspired
geologists to begin the extensive search for astronomical signals in stratigraphic records
(see Fischer, 1986).

Since then, interest in the field surged as many geological records of climate responding
to insolation forcing have been identified. Cyclostratigraphy is said to have entered a
“golden age” (Hinnov, 2018), with multi-million year-long data ranging from the deep-sea
sequence during the recent ice age several millions of years ago (Lisiecki and Raymo,
2005) to the deep-time strata in Australia during the Precambrian 2.5 billions of years
ago (Lantink et al., 2022).

The astronomical solutions, when used to calibrate a stratigraphic sequence, provide
unprecedented high-resolution temporal constraints to the data. This practice, known
as astrochronology, is about tuning the geological record to astronomical forcing (see
Meyers, 2019, for definitions), and convert the record from depth domain into time domain.
By anchoring the geological archive to an absolute astronomical reference, the standard
geological timescales can be robustly constructed (e.g., Gradstein et al., 2004, 2012;
Gradstein and Ogg, 2020). It should be remarked that the value of absolute geological
ages goes far beyond archiving Earth’s geological history. For instance, in order to
understand the impact of the carbon cycle on the historical climate change and thereby
estimate its future projection, it is essential to know the precise timing of forcings like
volcanism, impacts and orbital forcing, etc., as well as the timing of the climate indicators
(e.g., Cramwinckel et al., 2018).

1.4.2 Milankovitch cycles

The long-term variations of orientation and orbits of the Earth, which have direct impacts
on its long-term climate change, are called Milankovitch cycles. The Milankovitch cycles
can be divided into three groups: (1) fluctuation of orbit shape (eccentricity), (2) wobbling
of the rotational axis (precession), (3) oscillation of the angle of the axial tilt with respect
to the orbital plane (obliquity). It should be noticed that although the orbital variations are
often referred to as “cycle”, they are much closer to quasi-periodic motion and should thus
be regarded as such. The Milankovitch cycles are obtained via astronomical solutions of
the orbital dynamics of the Solar System, and the rotational dynamics of the Earth-Moon
system. They are the primary inputs to compute the insolation that Earth receives on
the top of its atmosphere. The insolation equation was first introduce by Meech (1857),
and refined by Milankovitch (1941); modern calculation of insolation is often referred to
(Berger, 1978; Laskar et al., 1993a; Laskar et al., 2004, see Hinnov, 2018, for a recent
review). In the followings, I will discuss about how the Milankovitch cycles qualitatively
affect the insolation, and their quantitative expression in insolation variations, which were
imprinted and can be recovered in stratigraphic sequences.

3δ18O is a measure of ratio between two oxygen isotope 18O and 16O.
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Precession and Obliquity cycle

The rotational axis of Earth is currently tilted with respect to the perpendicular axis of
its orbital plane by an angle of 23.5◦. This angle, which is called obliquity or axial tilt,
presently oscillates from 22.1◦ to 24.6◦ (Laskar et al., 1993b). In addition to being tilted,
the rotational axis of the Earth also precesses, similar to the precession of a spining top.

Effects on insolation Both precession and obliquity cycles have direct impact on the
latitudinal and seasonal distribution of insolation that Earth receives. Here I briefly
demonstrate this influence, more details are referred to (Ruddiman et al., 2001). Obliquity
breaks the symmetry of the incidence angle of insolation with respect to the postion
on Earth’s orbit. As one hemisphere always points towards the Sun half of the year
and spend the other half tilt away from the Sun, obliquity is the reason why the Earth
has seasons. Therefore, variation of obliquity can make seasons either more extreme
(increasing obliquity) or more moderate (decreasing obliquity). Due to geometrical effect,
obliquity’s cycles have greater influence on regions of higher latitude, and in the winter
season.

To understand the impact of the precession on insolation of each hemisphere, one
needs to put the inclined rotational axis on an eccentric orbit. The orientation of the
rotational axis determines the position of winter (when it directs away from the Sun) and
summer (when it directs towards the Sun) of a hemisphere on the orbit. Take the northern
hemisphere for example, winter currently occurs near the perihelion, where the Earth is
closest to the Sun, and summer is around the aphelion, where the Earth is furthest from
the Sun. This moderates the contrast between the two seasons, as Northern hemisphere
in winter is relatively warmer due to closer distance to the Sun and inversely, it is cooler
in summer. On the contrary, the current orientation of the rotational axis widens seasonal
difference for the Southern hemisphere.

This effect is only possible on an eccentric orbit, where the planet can approach
or recede from the star along its orbit. Therefore, the intensity of insolation variation
is controlled by how eccentric the orbit is, hence the eccentricity cycle modulate the
precession cycle via its amplitude. As the rotational axis precesses, the positions of winter
and summer of a hemisphere also precess along the eccentric orbit. Moreover, the eccentric
orbit of Earth also rotates on its orbital plane, this motion is called apsidal precession
of perihelion. The combined effect of this apsidal precession and the precession of the
rotational axis (precession for short) is called climatic precession.

Precession frequency. On a short timescale, the rotational axis of the Earth can be
considered to precess with a constant rate p, known as precession frequency. The period
of one revolution with the current value for p is roughly 25.7 kyr (Laskar et al., 2004).
Combining with the apsidal precession of perihelion of the Earth, marked by the 5 inner
fundamental frequencies (gi)i=1,5, the climatic precession can be analytically approximated
in the short term by quasi-periodic series of p+ gi; the period of climatic precession on
average is around 23 kyr. The amplitude of this climatic precession is determined by
the eccentricity cycles. Similarly, the evolution of Earth’s obliquity in the near future
can be characterized by the combination of the secular inclination frequencies si and the
precession frequency p; the periods of the three dominant terms p+ s3, p+ s4, p+ s6 are
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is small, and scales as e2. On the other hand, eccentricity is very important for seasonal
insolation variation. The difference in distance between the closest point (perihelion)
and the furthest point (aphelion) of Earth’s orbit to the Sun scales with 2e. Considering
also that the solar radiation is proportional to inverse squared distance, the difference in
insolation on Earth between perihelion and aphelion can be accordingly shown to vary as
4e. This difference shown in number is significant: the current value is roughly 6%, and
was more than 20% 1 Myr ago as Earth’s orbit was more eccentric.

The eccentricity influences the seasonal contrast of insolation: it can either amplify or
diminish the difference between winter and summer of a hemisphere depending on the
orientation of the rotational axis. Therefore, the major role of eccentricity cycle is to
modulate the precession cycle, and control the amplitude of expression for the precession
in insolation.

The grand cycles. The evolution of the eccentricity of the Earth in the past 10 Myr
is shown in the Fig. 1.1. The value can go up and down from 0 to 0.06 with many
overlapping quasi-periodic cycles. Currently, we are at a trough of these cycles, with
eccentricity near that lower range at 0.0167. The Fig. 1.8 shows the periodogram of the
last 10 Myr of the Earth’s eccentricity. Most if not all of the peaks can be explained
as the combinations of the five secular fundamental frequencies of the Solar System
(gi)i=1,5. They are the eccentricity cycles. The most prominent peak with period of 405
kyr corresponds to the difference between Venus and Jupiter frequencies g2 − g5. On
the right side of this peak, there are four main shorter eccentricity cycles with periods
around 100 kyr: g3− g2, g4− g2, g3− g5 and g4− g5. On the left side are the longer cycles:
g2− g1, g1− g5 and g4− g3. The longest eccentricity cycle g4− g3 has period of around 2.4
Myr. Since the eccentricity cycles are relatively long, and they determine the amplitude
of climate precession cycles, they are often called “grand cycles” or “modulating cycles”
(Hinnov, 2013).

The metronomes. As time progresses, the fundamental frequencies change along the
dynamical solution, and these cycle change too. Due to the chaotic motion of the Solar
System, the motion can only be traced back as far as about 60 Myr. Nevertheless, some of
the astronomical forcing are stable and prominent enough to be used to calibrate geological
records beyond the chaotic threshold (see Laskar, 2020, for a review). These stable cycles
are called metronomes, and they are the backbone of modern cyclostratigraphy. The
most commonly-used metronome is the 405-kyr eccentricity cycle g2 − g5. The cycle
is stable because both g2 and g5 do not vary significantly (see table 1.1). The g2 − g5

metronome is also the strongest eccentricity cycle (Fig. 1.8), and is thus often visible in
astronomically-forced stratigraphic successions. Recently, the inclination cycle s3−s6 with
period of 174 kyr has also been suggested as a metronome for the obliquity-dominated
stratigraphic sequences (Boulila et al., 2018; Charbonnier et al., 2018). Unlike g2 − g5,
the s3 − s6 cycle is not the strongest component in the obliquity spectrum, but it is far
from other cycles and can be relatively easy identified.

Resonance transition. The transitions between two overlapping resonances, which is
a strong evidence for chaos in the Solar System (Laskar, 1990) and is often found in the
orbital solution (e.g., Laskar et al., 2011a), can also be detected in the geological records of
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paleoclimate. The detected transition is between the two secular resonances of perihelion
precession of Mars and Earth: θ2:1 = 2(g4− g3)− (s4− s3) and θ1:1 = (g4− g3)− (s4− s3).
As previously discussed in Sect. 1.2.2, the Solar System is currently in the θ2:1 resonance,
which means that this combination of resonance is currently close to 0. At present, the
period of the grand eccentricity cycle g4 − g3 is around 2.4 Myr, and the period of the
grand obliquity cycle s4 − s3 = 2(g4 − g3) is roughly 1.2 Myr. Along the chaotic evolution
of the Solar System, if a transition from θ2:1 to θ1:1 occurs, the periods of these two grand
cycles will be equal. Therefore the resonance transition, if it occurred in the distant past
of the Solar System, can be detected by identifying these two cycles in the geological
records. Ma et al. (2017) has found the evidence for this transition in the Libsack core in
North America during the interval 83–90 Ma. Since then, many other geological evidences
in different places from different intervals has been proposed (e.g., Westerhold et al., 2017;
Zeebe and Lourens, 2019; Wu et al., 2022).

1.4.3 Problems of cyclostratigraphy

Despite its ongoing role in revolutionizing the geological dating and setting up important
inputs and constraints to the general framework for geoscience, there is still an underlying
skepticism of the reliability of cyclostratigraphy. The challenges of cyclostratigraphy stem
from two different fields, namely geology and astronomy, that it attempt to connect. The
first problem lies on the quality of the geological data and its ability to record faithfully
astronomical signals. The intermediate processes which propagate the astronomical-
forcing driven insolation to the geological record are prohibitively complex, with numerous
different other factors that can contaminate the signal (see Meyers, 2019, for more indepth
discussion). As a result, the stratigraphic sequences can be highly irregular (due to the
variable formation rate, e.g. Olsen and Kent, 1999; Haerdle et al., 1989), riddled with
missing gaps (known as hiatus, e.g. Gale et al., 1999), distorted by physio-chemical
processes after sedimentary deposition (e.g. diagenesis, Hallam, 1986 ), contaminated by
different sources other than the Milankovitch cycles (e.g. stochastic climate variability,
Hasselmann, 1976). Moreover, even for the analysis of the same stratigraphic sequence,
quantitative outcomes can be different according to different investigators (Sinnesael
et al., 2019). The problems of false negatives and false positives in existence of detectable
astronomical signal in geological records are also brought into discussion (Vaughan et al.,
2011; Hilgen et al., 2015; Weedon et al., 2019). Nevertheless, with the remarkable progress
that cyclostratigraphy as a new field has seen in the recent years, many of these problems
have been acknowledged and addressed (e.g. Hinnov, 2018; Meyers and Malinverno, 2018;
Sinnesael et al., 2019). Some stratigraphic records with well-preserved orbital signal and
analyzed with well-defined techniques can provide consistent and reproducible estimations
for the fundamental secular frequencies (e.g. Olsen et al., 2019), precession frequency (e.g.
Meyers and Malinverno, 2018, Lantink et al., 2022), and offer evidence for the chaotic
transition (e.g. Ma et al., 2017).

The second challenge of cyclostratigraphy is also the challenge of celestial mechanics
of the Solar System. The time limit of a precise orbital solution is about 60 Myr (Laskar
et al., 2011a), this limit is even shorter for obliquity and precession solution (Laskar
et al., 2004). Although the exact astronomical reference is infeasible beyond 60 Myr,
some stable components of the astronomical forcing such as the 405-kyr g2 − g5 cycle
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can still be applicable. These metronomes are often used in tandem with independent
radioisotopic dating to calibrate the stratigraphic sequences beyond the Cenozoic (Hinnov,
2013). However, the chaotic uncertainty of the orbital forcing, even for the metronomes, in
the geological data beyond 60 Myr always persists and gets worse with time due to chaotic
diffusion. Thus, the second problem of cyclostratigraphy concerning the astronomical
signal is how to quantify properly this chaotic uncertainty. This is also the problem that
this thesis attempts to address.

In the resolution of these challenges, we can hope to trace back the orbital variations
in the geological records and use them to constrain the astronomical solutions beyond the
predictability horizon.

1.5 Objectives and organization of this thesis

Because of the chaotic nature of the Solar System (Laskar, 1989), the study of its evolution
in the long term has to be set in a statistical paradigm. In this paradigm, more is better.
The question of obtaining the most accurate parameters and initial conditions from the
most complete model is no longer pertinent, one is never enough. We need thousands, and
possibly millions, to quantify the long-term statistics of the Solar System (e.g. Laskar,
2008). In this context, there are two important non-resolved problems concerning the two
time directions of its evolution.

The problem in the future consists of questions regarding the destabilization of the
inner planets: its quantification, characterization, description. I will address this problem
in the chapter 4 and chapter 5. They are the first two pieces of the forthcoming series
of papers aiming to provide a thorough understanding of the destabilization of the Solar
System. The chapter 4 (published in Hoang, Mogavero and Laskar 2022) examines
the problem with extensive numerical simulations from a hierarchy of comprehensive
secular models of the forced ISS (Laskar, 1990; Mogavero and Laskar, 2021). From these
simulations, we (1) present the descriptive statistics of instability from a wide range of
models, and (2) show what it takes to produce a consistent estimation by pointing out
the surprisingly important impacts of the higher order and non-resonant interaction. In
chapter 5, we demonstrate the hidden slow-fast nature from the chaotic dynamics of the
ISS, in which there exist a wide range of dynamical timescale, implicitly implied in the
spectrum of the Lyapunov exponents. We provide concrete evidences by identifying the
three quasi-integrals of motion via a semi-analytical and a statistical approach. These
quasi-integrals are the dynamical constraints that stabilize and prevent the ISS from
destabilizing quickly within its remaining timespan.

In the reverse direction - the past, the recovery of the history of the Solar System is a
more important and relevant question. Since a precise orbital solution from integrating a
Solar System model is only valid up to 60 Myr (Laskar et al., 2011a), it is required to look
for the traces in the geological records to overcome this limit. This problem is, in its core,
multi-disciplinary. In the chapter 3 (published in Hoang, Mogavero and Laskar 2021),
we address the problem from the astronomical perspective. We provide a large ensemble
of solutions to quantify the chaotic diffusion of the fundamental frequencies of the Solar
System, thereby offering a global view onto the astronomical forcing, particularly for the
metronomes, the eccentricity grand cycles and the resonance transition.
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The chapter 2 introduces basic notations and description of secular dynamics of the
Solar System.
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Chapter 2

Secular dynamics of planetary system

This chapter introduces basic notation and classical results for the secular Hamiltonian of
the Solar System. A detailed development and discussion of the secular Hamiltonian is
referred to (Laskar, 1991; Laskar and Robutel, 1995; Morbidelli, 2002), see also (Mogavero
and Laskar, 2021) for the model of forced inner Solar System.

2.1 General description

The Hamiltonian H of the planets of the Solar System can be written as:

H =
N∑

k=1

(
pk

2

2µk
−Gm0mk

rk

)
+

N∑

k=1

N∑

l=k+1

(
pk · pl
m0

−G mkml

|rk − rl|

)
, (2.1)

where rk’s are the Heliocentric coordinates, pk’s their conjugated momenta, m0 the Sun
mass, mk the planet masses, µk = m0mk/(m0 + mk) the reduced masses, and G the
gravitational constant, N is the number of planets (N=8 for all the planets of the Solar
System) ; index k indicates the planets in radially ascending order, from Mercury to
Neptune. The two first terms on the right side of Eq. (2.1) make up the Keplerian
Hamiltonian - H0; the third term compensates the coordinate change from inertial
coordinates to heliocentric coordinates, and the last one represents the gravitational
interaction between any two planets. Because the Keplerian Hamiltonian is much larger
than the interaction, the problem should be treated as the perturbation of integrable
two-body Hamiltonians. It is then natural to use a set of canonical action-angle variables.
An adapted set of such coordinates for planetary motions are Poincare’s rectangular
coordinates in complex form (λk,Λk, xk,−ix̄k, yk,−iȳk), where λk is the mean longitude,

Λk = µk
√

(m0 +mk)ak (ak is the semi-major axis), the bar over head represent complex
conjugate and

xk =
√

Λk

√
1−

√
1− e2

kE
j̟k , (2.2)

yk =
√

Λk

√√
1− e2

k(1− cos Ik)E
jΩk , (2.3)
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where ek is the eccentricity, Ik the inclination, ̟k the longitude of the perihelion, Ωk

the longitudes of the nodes, and E represents the exponential operator, j stands for the
imaginary unit. The two-body Keplerian Hamiltonian H0 can be expressed neatly:

H0 =
N∑

k=1

−G(m0 +mk)
2µ3

k

2Λ2
k

. (2.4)

With only H0, we recover the two-body problem, where all variables are constant, except
for the mean longitude λk, which increases linearly in time with the rate nk = ∂H0

∂Λk
. It

is also this variable that will be averaged in the secular approach at the first order in
planetary masses,

〈H〉 =
1

(2π)N

∫ 2π

0
dλ1 . . .

∫ 2π

0
dλNH = H0 + Ĥ, (2.5)

where the secular Hamiltonian Ĥ in a Newtonian setting is given by:

Ĥ = −
N∑

k=1

N∑

l=k+1

Gmkml

(2π)2

∫ 2π

0

∫ 2π

0

dλkdλl
|rk − rl|

, (2.6)

which represents the total orbitally averaged interaction between two planets. The function
|rk − rl|−1 in Eq. (2.6) should then be developed in Poincare’s variables. It should be
noticed that the averaged over closed orbits of the third term in Eq. (2.1) amounts to
zero. Because H0 is constant, it could be left out and Ĥ is thus sufficient to describe the
secular evolution of the planetary system. However, for a long-term dynamics, relativistic
correction could be important, especially for Mercury; therefore they must be taken into
account in the secular Hamiltonian (e.g., Will, 2018):

Ĥ = −
N∑

k=1

N∑

l=k+1

Gmkml

(2π)2

∫ 2π

0

∫ 2π

0

dλkdλl
|rk − rl|

−
N∑

k=1

3G2m2
0mk

c2a2
k

√
1− e2

k

, (2.7)

2.1.1 Truncation of secular Hamiltonian

The secular Hamiltonian Ĥ of the entire Solar System, at first order in planetary
masses, can be expanded in series of the complex Poincaré variables of the planets,
i.e. (xi, x̄i, yi, ȳi)

N
i=1 (Laskar and Robutel, 1995). The secular Hamiltonian can be then

truncated in eccentricity and inclination at different degrees. Truncation at total de-
gree 2n results in a polynomial Hamiltonian Ĥ2n. At the lowest degree, Ĥ2 describes
an integrable Laplace-Lagrange dynamics. Its analytical solution can be obtained by a
canonical transformation to the complex proper modes variables (u, v), with correspond-
ing action-angle variables (X, χ; Ψ, ψ) such that (u =

√
XE−jχ; v =

√
ΨE−jψ). Their

vector forms can be written as: X = (X1, . . . ,XN), Ψ = (Ψ1, . . . ,ΨN), χ = (χ1, . . . , χN),
and ψ = (ψ1, . . . , ψN). When expressed in these action-angle variables, the truncated
Hamiltonian is a finite Fourier series:

Ĥ2n(I,θ) =
∑

k

H̃k
2n(I)Ejk·θ, (2.8)

where I = (X,Ψ) and θ = (χ,ψ) are the action and angle variables, respectively and k
is the wave vector of a given harmonic.
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2.1.2 Equations of motion

The Hamiltonian Ĥ2n can be expressed in three different sets of canonical variables. In the
complex Poincare’s rectangular coordinates, the equations of motion for Ĥ2n(x, x̄,y, ȳ):

dx

dt
= −j ∂Ĥ2n

∂x̄
, (2.9)

dy

dt
= −j ∂Ĥ2n

∂ȳ
, (2.10)

where x = (x1, . . . , xN) and y = (y1, . . . , yN). Similarly for the equations of motions of
the secular Hamiltonian Ĥ2n(u, ū,v, v̄) in complex proper mode variables, where :

du

dt
= −j ∂Ĥ2n

∂ū
, (2.11)

dv

dt
= −j ∂Ĥ2n

∂v̄
, (2.12)

where u = (u1, . . . , uN) and v = (v1, . . . , vN). Finally, the equations of motion for the
secular Hamiltonian in the action angle variables of the proper modes Ĥ2n(I,θ):

dI

dt
= −∂Ĥ2n

∂θ
, (2.13)

dθ

dt
=
∂Ĥ2n

∂I
. (2.14)

In practice, the integration are often performed in the first two sets of the complex
variables depending on the objective. If the objective is to simply integrate the secular
dynamics at degree 2n, namely the Hamiltonian Ĥ2n, then it is best to use Eqs. (2.9 -
2.10), since the representation of Ĥ2n is most compact in (x, x̄,y, ȳ). On the other hand,
if the objective is to construct a particular secular Hamiltonian according to specific choice
of harmonics, for the purpose of either simplification or investigation of the their impacts,
the Eqs. (2.11 - 2.12), in the complex proper mode variables (u, ū,v, v̄) should be used.

Notwithstanding, the Hamiltonian in action angle variables Ĥ2n(I,θ) provides better
intuition to understand the secular dynamics. For example, the Lagrange-Laplace secular
Hamiltonian at degree 2 in eccentricity and inclination is simply a linear combination of
the action variables:

Ĥ2(I,θ) = −ωLL · I, (2.15)

where the coefficient vector ωLL = (gLL1 , . . . , gLLN , sLL1 , . . . , sLLN ) contains the dominant
constant contributions of the fundamental secular frequencies of the Solar System. Thus at
degree 2, the action I are constant and the angles θ rotate with constant rates ωLL. One
can also see from Eq. (2.13) with the Fourier expansion of Hamiltonian (Eq. 2.8), that it
is convenient for separating the variation of the action vector I due to each harmonics of
wave vector k: (

dI

dt

)

k

= k
(
−jH̃k

2n(I)Ejk·θ + c.c.
)
, (2.16)

where c.c. denotes complex conjugate. As a result, the direction of variation is also k.
The cumulative variation of a harmonic, that is the integral of Eq. (2.16) with respect to
time, depends on the amplitude of the harmonic as well as its proximity to resonance.
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2.1.3 Forced secular inner Solar System

As previously discussed in the Sect. 1.2.1, the ISS and the OSS are markedly different.
The planets in the OSS, due to being substantially more massive than the inner planets,
are not much perturbed by the ISS. The trajectories of the OSS are also very stable,
they can be effectively modeled by quasi-periodic series (Laskar, 1994) with constant
outer secular frequencies (Laskar et al., 2004, 2011a). Besides, the dynamics of the ISS is
absent of strong mean motion resonances. Basing on these observations, Mogavero and
Laskar (2022) propose a forced secular model of ISS. In this model, trajectories of the
outer planets pre-determined quasi-periodic finite series:

xk(t) =
Mk∑

l=1

x̃klE
jmkl·ωot (2.17)

yk(t) =
Nk∑

l=1

ỹklE
jnkl·ωot (2.18)

for k ∈ {5, 6, 7, 8}, where t is time, ωo is the vector of constant outer secular frequencies
ωo = (g5, g6, g7, g8, s5, s6, s7, s8), x̃kl and x̃kl are constant amplitudes, Mk and Nk are
the number of components in the approximating series, mkl and nkl are wave vectors.
Substituting the Eqs. (2.17 - 2.18) to the Eq. (2.7), the Hamiltonian of the forced secular
inner Solar System is obtained:

H[(xk, yk)k=1,4, t] = Ĥ[(xk, yk)k=1,4, (xk = xk(t), yk = yk(t))k=5,8], (2.19)

with which the total number of degrees of freedom of the dynamics is reduced to 8. The
truncation process of this secular Hamiltonian is also similar to the Sec. 2.1.1 .

2.2 Lagrange-Laplace secular dynamics

Because the eccentricity and inclinations of the planets in the Solar System are relatively
small, Ĥ can be developed as a power series of these variables. By keeping only the
second degree of the secular Hamiltonian, we retrieve the linear Lagrange-Laplace (LL)
Hamiltonian:

ĤLL = −(x̄⊤Ax+ ȳ⊤By), (2.20)

where two matrix A and B are given in the appendix (A). The equations of motion read:

dx

dt
= −j ∂ĤLL

∂x̄
= jAx, (2.21)

dy

dt
= −j ∂ĤLL

∂ȳ
= jBy. (2.22)

Resolving the Lagrange-Laplace dynamics is important, since its integrability allows us
to define the proper variables (i.e. u,v), and their corresponding action-angle variable
(I,θ), which were both discussed in the previous section. The Eqs. (2.21 - 2.22) can be
solved by diagonalizing the matrix through a linear transformation:

x = Sau, (2.23)

y = Sbv, (2.24)
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where Sa and Sb are the real matrices whose columns are eigenvectors of A and B

respectively. With these new variable, the equations of motion read:

du

dt
= jDau, Da = Sa

−1ASa (2.25)

dv

dt
= jDbv, Db = Sb

−1BSb. (2.26)

(2.27)

Da and Db are diagonal matrices diag(gLL1 , . . . , gLLN ) and diag(sLL1 , . . . , sLLN ), which are
made up of eigenvalues of A and B. The constant gLLk and sLLk are known as the
Lagrange-Laplace secular frequencies. The equations

duk
dt

= jgkuk,
dvk
dt

= jskvk (2.28)

will have solutions:
uk = uk(0)Ejgkt, vk = vk(0)Ejskt, (2.29)

where uk and vk are the proper modes of the Solar System. The complete solutions will
then be superpositions of such proper modes.

xi(t) =
N∑

k=1

Saik
uk(t) =

N∑

k=1

Saik
uk(0) exp(jgkt), (2.30)

yi(t) =
N∑

k=1

Sbik
vk(t) =

N∑

k=1

Sbik
vk(0) exp(jskt). (2.31)

One of the mode, which is historically chosen as s5, is put to zero as a consequence of
the conservation of total angular momentum of the system. From Eqs. (2.30 - 2.31) and
the definition of the Poincaré coordinates in Eqs. (2.2 - 2.3), it is clear that eccentricity
cycles are made up of gk, and the obliquity cycles of sk. These frequencies are constant
in Laplace-Lagrange dynamics, however, in models of higher degree in eccentricity and
inclination, the non-linearity, despite being small, can induce chaotic behavior. The
fundamental frequencies are no longer constant in the chaotic model, but change with
time.

2.2.1 Lagrange-Laplace dynamics of the forced inner Solar Sys-

tem

In the forced secular ISS, the first truncation of Hamiltonian (Eq. 2.19) at degree two in
eccentricity and inclination constitutes the integrable Lagrange-Laplace dynamics. For
simplicity the inclination part will be omitted, the LL Hamiltonian reads:

ĤLL = −x̄⊤Ax = −[x̄⊤

in
, x̄⊤

out
]

[
Ain Aint

A⊤
int

Aout

] [
xin
xout

]
,

= −x̄⊤

in
Ainxin − x̄⊤

in
Aintxout − x̄⊤

out
A⊤

int
xin − x̄⊤

out
Aoutxout

(2.32)

where xin = [x1, . . . , x4], xout = [x5, . . . , x8], and A is specified in the appendix A. The
Hamiltonian of the heavy outer Solar System could then be uncoupled, and reads

Ĥout = −x̄⊤

out
Aoutxout, (2.33)
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which then have solutions of Eq. (2.30). More generally, we can assume that the outer
planets follows a pre-constructed quasi-periodic motion (Eq. 2.17 - 2.18). The Hamiltonian
of the inner Solar System now reads:

Ĥin = −x̄⊤

in
Ainxin − x̄⊤

in
Aintxout(t)− x̄⊤

out
(t)Aintxin, (2.34)

where the last two terms represent the forcing of the giant planets. The equation of
motion of the inner Solar System is

dxin
dt

= −j ∂Ĥin

∂x̄in
= jAinxin + jAintxout(t). (2.35)

This equation is solved similarly as the original LL Eq. (2.21). The matrix Ain is
diagonalized with the new variables uin = S⊤xin, where S is a transformation matrix
made of the eigenvectors of Ain. The Eq. (2.35) now reads:

duin
dt

= iDinuin + jA′
int
xout(t), (2.36)

where Din is a diagonal matrix of the eigenvalues of Ain, that are (gLL1 , gLL2 , gLL3 , gLL4 ),
and A′

int
= S⊤Aint is the new interaction matrix. The Eq. (2.36) have the solutions:

uin(t) = ufree(t) + uforced(t), (2.37)

where
ufree(t) = exp(jtDin)u(0), (2.38)

and

uforced(t) = exp(jtDin)
∫ t

0
ds exp(−jsDin)A′

int
xout(t). (2.39)

Finally, the complete LL solution of the forced inner Solar System is:

xin = S(ufree(t) + uforced(t)). (2.40)



Chapter 3

Chaotic diffusion of the fundamental

frequencies of the Solar System

This chapter is published in (Hoang, Mogavero and Laskar, 2021).

3.1 Introduction

Milankovitch (1941) hypothesized that some of the past large climate changes on the
Earth originated from the long-term variations in its orbital and rotational elements.
These variations are imprinted along the stratigraphic sequences of sediments. Using their
correlations with an orbital solution (Laskar et al., 2004, 2011a, Laskar, 2020), some of
the geological records can be dated with precision. This method, named astrochronology,
has become a standard practice in the stratigraphic community and has proven to be a
powerful tool for reconstructing the geological timescale (e.g., Gradstein et al., 2004, 2012;
Gradstein and Ogg, 2020).

The climate rhythms found in the geological records are directly related to the Earth’s
precession constant and to the fundamental secular frequencies of the Solar System:
the precession frequencies (gi)i=1,8 of the planet perihelia and the precession frequencies
(si)i=1,8 of their ascending nodes. The evolution of these fundamental frequencies is
accurately determined up to 60 Myr (Laskar et al., 2004, 2011a, Laskar, 2020). Beyond
this limit, even with the current highest precision ephemerides, it is hopless to obtain a
precise past history of the Solar System simply via numerical integration. This limit does
not lie in the precision of the determination of the initial conditions but originates in the
chaotic nature of the Solar System (Laskar, 1989, 1990, Laskar et al., 2011a). However,
because the astronomical signal is recorded in the geological data, it appears to be possible
to trace back the orbital variations in the geological record and thus to constrain the
astronomical solutions beyond their predictability horizon (Olsen and Kent, 1999; Ma
et al., 2017; Olsen et al., 2019). Nevertheless, a deterministic view of the Solar System is
no longer reliable beyond 60 Myr, and a statistical approach should be adopted. Geological
constraints should likewise be retrieved in a statistical setting. In this spirit, a recent

33
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Bayesian Markov chain Monte Carlo (MCMC) approach has been proposed to provide
geological constraints on the fundamental frequencies (Meyers and Malinverno, 2018). For
such a Bayesian approach to give any meaningful constraint, proper prior distributions of
the fundamental secular frequencies are required, and therefore a statistical study of the
orbital motion of the Solar System planets is needed. This constitutes the motivation for
the present study.

Laskar (2008) performed the first statistical analysis of the long-term chaotic behavior
of the planetary eccentricities and inclinations in the Solar System. Mogavero (2017)
reconsidered the problem from the perspective of statistical mechanics. Our study is a
follow-up of Laskar (2008). We study fundamental frequencies instead of orbital elements
because they are more robust and are closer to the proxies that can be traced in the
geological records. This study is based on the numerical integrations of 120 000 different
solutions of the averaged equations of the Solar System over 500 Myr, 40 000 of which were
integrated up to 5 Gyr. The initial conditions of the solutions are sampled closely around
a reference value that is compatible with our present knowledge of planetary motion.

3.2 Dynamical model

3.2.1 Secular equations

We used the secular equations of motions of (Laskar, 1985, 1990, 2008, and references
therein). They were obtained via series expansions in planetary masses, eccentricities, and
inclinations as well as through second-order analytical averaging over the rapidly changing
mean longitudes of the planets. The expansion was truncated at the second order with
respect to the masses and to degree 5 in eccentricities and inclinations. The equations
include corrections from general relativity and Earth-Moon gravitational interaction. This
leads to the following system of ordinary differential equations:

dω

dt
=
√
−1{Γ + Φ3(ω, ω̄) + Φ5(ω, ω̄)}, (3.1)

where ω = (z1, . . . , z8, ζ1, . . . , ζ8) with zk = ek exp(̟k) and ζk = sin(ik/2) exp(Ωk). The
variable ̟k is the longitude of the perihelion, Ωk is the longitude of the ascending node,
ek is eccentricity, and ik is inclination. The function Φ3(ω, ω̄) and Φ5(ω, ω̄) are the terms
of degree 3 and 5. The 16× 16 matrix Γ is the linear Laplace-Lagrange system, which is
slightly modified to make up for the higher-order terms in the outer Solar System. With
an adapted initial condition, the secular solution is very close to the solution of direct
integration over 35 Myr (Laskar et al., 2004). The major advantage of the secular system
over direct integration is speed. Numerically integrating averaged equations is 2000 times
faster than non-averaged ones due to the much larger step size: 250 years instead of 1.8265
days. It is thus desirable to employ the secular equations to study the statistics of the
Solar System. However, we also compare their predictions to those of a non-averaged
comprehensive dynamical model in Sect. 3.4.
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3.2.2 Frequency analysis

We employed the frequency analysis (FA) technique proposed by (Laskar, 1988, 1993) to
extract the fundamental secular frequencies from the integrated solutions. The method
finds a quasi-periodic approximation f ′(t) =

∑N
k=1 ake

iνkt of a function f(t) over a time
span interval [0, T ]. It first finds the strongest mode, which corresponds to the maximum
of the function:

φ(σ) = 〈f(t)|eiσt〉 =
1

T

∫ T

0
χ(t)f(t)e−iσtdt, (3.2)

where χ(t) is a weight function that improves the precision of the maximum determination;
it was chosen to be the Hanning window filter, that is, χ(t) = 1+cos(πt/T ). The next step
is the Gram-Schmidt orthogonalization. The complex amplitude a1 of the first frequency
ν1 is calculated via the orthogonal projection of the function f(t) on eiν1t. This mode is
then subtracted from the function f(t) to get a new function, f1(t) = f(t)− a1e

νt. The
process is then repeated with this newly obtained function until N desired strongest modes
are obtained. This technique works very well for weakly chaotic systems such as the Solar
System when variables can be decomposed into quasi-periodic modes over a sufficiently
short period of time. It has been proven that this algorithm converges toward the true
frequencies much faster than the classical fast Fourier transform (Laskar, 2005). Therefore,
it is a good tool for studying the chaotic diffusion of the fundamental frequencies. In
this work we used a routine naftab written in the publicly available computer algebra
software TRIP (Gastineau and Laskar, 2011), developed at IMCCE, to directly apply the
frequency analysis.

To extract the fundamental secular frequencies of the Solar System, we applied the
FA to the proper variables (z•

i , ζ
•
i )i=1,8 of the secular equations (Laskar, 1990). Each

fundamental frequency is obtained as the frequency of the strongest Fourier component of
the corresponding proper variable. To track the time evolution of the frequencies, the FA
was applied with a moving interval whose sliding step was 1 Myr. The interval sizes were
10 Myr, 20 Myr, and 50 Myr.

3.3 Estimation of probability density functions

The samples of this study consist of the secular frequencies of the astronomical solutions
that were obtained by integrating the secular equations (Eq. 3.1) from very close initial
conditions. Due to this initial proximity, the correlation of the solutions in the samples
lasts for a long period of time but will eventually diminish. Our objective is to obtain
a robust estimation of the marginal probability density functions (PDFs) from these
correlated samples. In fact, this correlation is the main motivation for our use of the
estimation methods in this section. Details of our samples are described in the first part
of Sect. 3.4.

We used kernel density estimation (KDE) to estimate the time-evolving marginal PDFs
of the fundamental frequencies of the Solar System. In addition, the statistical uncertainty
of our density estimations (i.e., PDF estimations) was measured by the moving block
bootstrap (MBB) method. To our knowledge, this application of MBB for the KDE of a
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Figure 3.2 — Schematic diagram of the method moving block bootstrap. The original sample
consists of n = 9 data points, divided into 7 blocks of size l = 3. The m bootstrap samples are
obtained by selecting randomly with replacement b = 3 blocks.

where σ̂ is the standard deviation of the sample, IQR is its interquartile range, and β
is a constant of choice. The bandwidth with β = 1/5 corresponds to the Silverman’s
rule of thumb (Silverman, 1986). The BWβ=1/5 is a version of the optimal choice of
bandwidth for Gaussian distributed data that is slightly modified for better adaption to
non-Gaussian data. The bias error and variance error of the KDE with this bandwidth
will be on the same order of magnitude. Under-smoothing, that is, choosing a smaller
bandwidth, shrinks the bias so that the total error is dominated by the variance error,
which can then be estimated by the bootstrap method (Hall et al., 1995); the common
value of β for under-smoothing is 1/3.

When the sample is identically distributed but correlated, KDE is still valid under
some mixing conditions (Robinson, 1983; Hart, 1996). Indeed, in the case of observations
that are not too highly correlated, the dependence among the data that fall in the
support of the kernel function K can actually be much weaker than it is among the entire
sample. This principle is known as “whitening by windowing” (Hart, 1996). Therefore,
the correlation in the sample does not invalidate the use of KDE and only impacts the
variability of the estimation (see Sect. 3.3.2). With regard to the choice of bandwidth,
Hall et al., 1995 suggested that using the asymptotically optimal bandwidth for the
independent data is still a good choice, even for some strongly dependent data sequences.
The samples generated by a chaotic measure-preserving dynamical system (as in the case
of the numerical integration of the Solar System) resemble those of mixing stochastic
processes; therefore, the theory of KDE should also be applicable for dynamical systems,
although the formulation might be different (Bosq and Guégan, 1995; Maume-Deschamps,
2006; Hang et al., 2018).
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3.3.2 Moving block bootstrap

Since the seminal paper by Efron, 1979, bootstrap has become a standard resampling
technique for evaluating the uncertainty of a statistical estimation. Bias and variance errors
of KDE with the choice of bandwidth BW1/5 (Eq. 3.4) are on the same order of magnitude,
and hence one should either under-smooth (i.e., choose a smaller bandwidth) to minimize
the bias (Hall 1995) or use an explicit bias correction with appropriate Studentizing
(Cheng, Chen, et al., 2019; Calonico et al., 2018). However, naively applying the i.i.d.
bootstrap procedure on dependent data could underestimate the true uncertainty because
all the dependence structure would be lost just by “scrambling” data together (Hart,
1996). To remedy the problem, Kunsch, 1989 and Liu, Singh, et al., 1992 independently
devised the MBB, which later became standard practice for evaluating the uncertainty in
dependent data (see Kreiss and Lahiri 2012 for a review). Although the MBB for smooth
functional has been intensively studied, the literature on MBB for the KDE of dependent
data is very limited. Recently, Kuffner et al., 2019 formulated an optimality theory of
the block bootstrap for KDE under an assumption of weak dependence. They proposed
both under-smoothing and an explicit bias correction scheme to obtain the sampling
distribution of the KDE. However, good tuning parameters, which are generally difficult
to find if the data are from an unknown distribution, are required to provide a decent
result. In this paper we propose overcoming this problem with an inductive approach:
The optimal tuning parameters obtained in a known model are tested on different models
and then extrapolated to the subject of our study, the Solar System.

Procedure of MBB We briefly describe the under-smooth MBB for the KDE method
(a more detailed description can be found in Kuffner et al. 2019). We suppose that
X = {X1, X2, . . . , Xn} is a dependent sample of a mixing process with an underlying
density function p(x). The KDE of the sample is p̂h = p̂h(x|X); the hat above a given
quantity denotes its estimated value. We used MBB to estimate the distribution of
δ(x) = p̂h(x)− p(x), where x ∈ Ω and Ω is the domain of interest. Let l be an integer
satisfying 1 ≤ l ≤ n. Then Bi,l = {Xi, Xi+1, . . . , Xi+l−1} with i ∈ {1, . . . , n − l + 1}
denotes all the possible overlapping blocks of size l of the sample. Supposing, for the sake
of simplicity, that l divides n, then b = n/l. The MBB samples are obtained by selecting
b blocks randomly with replacement from {B1,l, . . . , Bn−l+1,l}. Serial concatenation of b
blocks will give n bootstrap observations: X∗

l = {B∗
1,l, . . . , B

∗
b,l}. By choosing sufficiently

large values of l (preferably larger than the correlation length), the MBB sample can retain
the structure of the sample dependence. The schematic diagram of the MBB for a sample
of n data point and block size l = 3 is shown in Fig. 3.2. For k > 0, the KDE of the
bootstrap sample is p̂∗

k,l = p̂k(x|X∗
l ) and its expectation is E[p̂∗

k,l] = p̂k(x|B1,l, . . . , Bn−l+1,l).
We define

δ∗
k,l(x) =

√
k

h
(p̂∗
k,l − E[p̂∗

k,l]) (3.5)

such that if h is chosen properly to reduce the bias to be asymptotically negligible with
respect to the stochastic variation, then the MBB distribution P (δ∗

k,l(x)|X) is a consistent
estimator of the error distribution P (δ(x)) when h→ 0, nh→∞, k → 0, lk →∞, and
n/l →∞. We note that if l = 1, then k = h and MBB reverts to the under-smoothing
procedure for the i.i.d sample studied by Hall et al., 1995. The efficiency of this estimator
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depends sensitively on two tuning parameters, l and k. We are interested in the uncertainty
of the KDE, which is characterized by the confidence interval CI1−α(x) and the confidence
band CB1−α, which are defined as:

P (|δ(x)| < CI1−α(x)) = 1− α, (3.6)

P (|δ(x)| < CB1−α∀x ∈ Ω) = 1− α, (3.7)

where α denote the level of uncertainty; for example, α = 0.05 denotes 95% CI.
They can be estimated by the MBB distribution P (δ∗

k,l(x)|X) as:

P (|δ∗
k,l(x)| < ĈI1−α(x)) = 1− α, (3.8)

P (|δ∗
k,l(x)| < ĈB1−α∀x ∈ Ω) = 1− α. (3.9)

In this paper we also use CB and CI without the hat overhead to denote estimated values.
Our choice of the parameters of the MBB procedure, l and k, is based on the effective

sample size neff, defined as (Kass et al., 1998):

neff =
n

1 + 2
∑∞
k=1 ρ(k)

, (3.10)

where ρ(k) is the sample autocorrelation of lag k. The block length l is chosen by the
sample correlation size lcorr as

l = lcorr :=
n

neff

, (3.11)

and the bootstrap bandwidth is parametrized as

k = h(c0 + (1− c0)l
−γ
corr), (3.12)

where γ and c0 are two optimizing constants. The reason for this choice of parametrization
is twofold. First, when lcorr → 1, the sample become independent, and then k → h.
Secondly, the rate of change of k with respect to l should be greater when lcorr is small
than when it is large. Therefore, when lcorr ≫ 1, the optimal value of k should be quite
stable. We also observe experimentally that the optimal value of k is indeed relatively
stable at around 2h as long as l = lcorr ≫ 1. So we simply chose γ = 1 and c0 = 2. This
choice of parameters turns out to be quite robust, as demonstrated by the two numerical
experiments in Sect. 3.3.3.

The literature on KDE and MBB focuses on stationary, weakly dependent sequences.
The data in our case, however, are different: They are not strictly stationary; the
formulation of the mixing condition might be different (Hang et al., 2018); the correlation
in the sample is not constant but evolving with time; finally, and most importantly,
the data structure is different. Our sample units, which are the orbital solutions, are
ordered based on their initial distances in phase space. The solutions evolve over time
but their order remains unchanged. Therefore, statistical notions such as correlation and
stationarity should be considered within this framework for the sample at fixed values of
time. Because of the differences presented, an optimality theory, which is not currently
available, might be needed for this case. However, we assume that it would not differ
significantly from the orthodox analysis and that a decent working MBB procedure could
be obtained with some good choice of parameters. This is tested in the section below.
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3.4 Application to the Solar System

The goal of this paper is to have a consistent statistical description of the propagation of
the dynamical uncertainty on the fundamental secular frequencies of the Solar System
induced by its chaotic behavior: that is, simply put, to obtain their time-evolving marginal
PDF. We first sampled the initial orbital elements of the Solar System planets that were
close to the reference value, and then numerically integrated the secular equations (Eqs.
3.1) from those initial conditions to obtain a sample of orbital solutions. Kernel density
estimation was then used to estimate the marginal PDF of the frequencies of the sample at
a fixed value of time, and finally the MBB method was applied to estimate the uncertainty
of the density estimation.

The evolution of our sample can be divided into two stages: Lyapunov divergence and
chaotic diffusion. In the first stage, because the initial density is extremely localized around
the reference value, all solutions essentially follow the reference trajectory; the difference
between the solutions is very small but diverges exponentially with a characteristic
Lyapunov exponent of ∼ 1/5 Myr−1 (Laskar, 1989). The solutions in the first stage are
almost indistinguishable and the correlation between them is so great that regardless of
how many solutions in the sample we integrated, the effective size of the sample is close to
one. The second stage begins when the differences between the solutions are large enough
to become macroscopically visible. The Lyapunov divergence saturates and gives place to
chaotic diffusion. The correlation between the solutions starts to decrease, the distribution
of the sample settles, and the memory of the initial conditions fades. It can take several
hundred million years for the sample to forget its initial configuration. Contrary to the
exponential growth in the first stage, the dispersion of the samples expands slowly with a
power law in time (see Fig. 3.12). The time boundary between the two stages depends on
the dispersion of the initial conditions:The wider they are, the faster the second stages
come, and vice versa. If they are chosen to represent the uncertainty of the current
ephemeris, the second stage should take place around 60 Myr in the complete model of
the Solar System (Laskar et al., 2011a; Laskar et al., 2011b).

In this section we focus on the statistical description of the fundamental frequencies
of the Solar System in the second stage. The aim is to obtain a valid estimation of
time-evolving PDFs of the frequencies beyond 60 Myrs. However, the PDF evolution
generally depends on the choice of initial conditions. Moreover, the simplification of the
secular equations compared to the complete model of the Solar System could, a priori,
provide results that are not sufficiently accurate.

3.4.1 Choice of initial conditions

For a complete model of the Solar System, the initial conditions should be sampled in
such a way that they are representative of the current planetary ephemeris uncertainty.
Nevertheless, for a simplified secular model (Eq. 3.1), the difference from the complete
model is greater than the ephemeris uncertainty. An optimized secular solution follows
the complete solution initially but departs from it long before 60 Myr (Laskar et al.,
2004). A direct adaptation of the current planetary ephemeris uncertainty to the initial
conditions of the secular model can thus be misleading. Therefore, we adopted a more
cautious approach, that is, to study first the effect of sampling the initial conditions on
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Solutions Offsets ǫ
Xi −5000 ǫ to 5000 ǫ 10−10

Yi −5000 ǫ to 5000 ǫ 10−8

Zi −5000 ǫ to 5000 ǫ 10−11

Table 3.1 — Offsets of the initial eccentricities of the four planets: {Mercury, Venus, Earth,
Mars}, which corresponds to i = {1, 2, 3, 4}. Different integrations correspond to offsets of Nǫ in
eccentricity of a single planet for N = −5× 103, . . . , +5× 103, while other variables are kept to
their nominal values.

the PDF estimation.

Initial conditions can be sampled in many ways, especially in a high-dimensional
system such as the Solar System. Our choice of initial conditions is quite particular, but
they encompass different possible ways of sampling initial conditions (Table 3.1). There
were three batches, {Xi}, {Yi}, and {Zi}, which correspond to three different variation
sizes ǫ of initial conditions. Each batch was composed of four different sets of samples.
Each set contained 10 000 initial conditions, where the eccentricity of the associated
planet is linearly spaced from the reference value, with the spacing ǫ corresponding to
the batch it belongs to. We then integrated the secular equations (Eqs. 3.1) from these
initial conditions 500 Myr into the past and 500 Myr into the future. For the batch
{Zi}, the integration time is 5 billion years in both directions. The frequencies were
then extracted using FA (Sect. 3.2.2). It should be noted that we do not aim to obtain
the joint probability distribution of all the fundamental frequencies, but rather their
individual marginal PDFs (i.e., the PDF of one frequency at a time). The marginal PDFs
of the frequencies were estimated by the KDE with the rule-of-thumb bandwidth (BW1/5);
upper bounds of their 95% CIs are measured by the MBB method with the bandwidth
h = BW1/3 and the optimized parameters (Eqs. 3.11-3.12) from 1 000 MBB samples.

We first compare the evolution of the density of the four sets in each batch in Sect.
3.4.2, and the second test is performed to compare the statistics between the batches in
Sect. 3.4.3. The robustness of the secular statistics is assessed by these two tests, which
additionally shed light on the initial-condition-dependence aspect of the statistics. All the
density estimations from these sets are compared with those of the 2 500 complete solutions
obtained in the previous work of Laskar and Gastineau (2009) to test the accuracy of the
secular statistics. It should be recalled that this numerical experiment needed 8 million
hours of CPU time, the output of which was saved and could thus be used in the present
study.

When comparing two sets of different sizes, because the rates of divergence in the first
stage are similar, the wider set reaches the chaotic diffusion phase faster than the more
compact set; hence, it is essentially diffusing ahead for a certain time in the second stage.
Therefore, in order to have a relevant comparison, a proper time shift was introduced
to compensate for this effect. We shifted {Xi} and {Yi} ahead by 30 Myr and 20 Myr,
respectively, while keeping the time of {Zi} as reference. This choice was motivated by
the fact that the transition to the chaotic diffusion of {Zi} is around 50 - 60 Myr, which
is indicated by the direct integration of the Solar System (Laskar et al., 2011a; Laskar
et al., 2011b).
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3.4.2 First test: Different samples of the same variation size ǫ

Comparing the density estimation of different sets in the same batch was the first test of
prediction robustness from our secular model. The evolution of the density estimations
are sensitive to how initial conditions are sampled, and therefore this initial-condition
sensitivity must be quantified for a valid prediction. In this first test we compared the
time-evolving PDFs whose initial conditions are sampled with the same variation size ǫ
but in different variables.

The result is quite clear. The different sets of the same batch slowly lose the memory
of their initial differences due to chaos and then converge toward the same distribution.
This convergence is illustrated by Fig. 3.7, which shows that the density estimation of
(g)i=1,4 of the four sets of the batch {Zi} nearly overlap with one another at 150 Myr
in the future. The rates of convergence of different batches are different. So although
{Xi} and {Yi} exhibit the same behavior as {Zi}, they converge differently with disparate
rates: At around 100-150 Myr in the future, the density estimations of the frequencies of
{Xi} nearly overlap with one another; this occurs at 150-200 Myr for {Yi}, depending on
the frequency. Interestingly, for the samples that are integrated in the past, the rates of
convergence are higher and the overlap generally happens at around −100 Myr (see Fig.
3.8).

3.4.3 Second test: Different samples of different variation sizes

Comparing the density estimation of the three batches, {Xi}, {Yi}, and {Zi}, was our
second test of robustness. Although the initial conditions of the three batches were varied
around the same reference values, the ways they were sampled were different since the
variation sizes were different. Differences in the initial variation sizes mean that the
batches enter the diffusion stage at different times and also at different points in the phase
space, so that the convergence between batches, if it exists, takes longer. The result of our
test is summarized by the density estimation of the frequencies at two times in the past,
−100 Myr and −200 Myr (Fig. 3.8). At −100 Myr, the density estimations from different
sets of each batch cluster around one another as described in the previous test. Each
batch forms a cluster of density estimations, and the differences between the three clusters
are noticeable. Moreover, the estimation uncertainty, depicted by the colored band, is
quite large. Fast-forward 100 Myrs of chaotic mixing: at −200 Myr, density estimations
of the frequencies spread out, estimation uncertainty shrinks, and, most importantly,
differences between the three batches are much smaller and continue to diminish even
further with time. In the opposite time direction, the same phenomenon is observed
but the rate of convergence between the batches is slower (Fig. 3.9). At 150 Myr in
the future, the density estimations of the frequencies of {Xi} and {Zi} have practically
converged and those of {Yi} are still trying to, and yet differences between the three
batches are noticeable. However, the estimations of all 12 sets from the three batches
nearly overlap with one another at 350 Myr, which demonstrates that the effect of different
initial samplings vanishes via chaotic mixing. It should be noted that when looking at
some specific properties of the PDF, such as means and variances, the differences between
the sets are small. For example, the differences between the means of the PDF estimation
of the 12 sets are generally smaller than 0.1 ′′/yr for most of the fundamental frequencies
at −100 Myr; at −200 Myr, the differences diminish to twice as small.
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order as the variability of the results from the same secular model. These differences in
the means of the PDFs are generally smaller than 0.05 ”/yr at 350 Myr. Although some
minor differences between the two models are still visible, especially in s1 for example,
these differences diminish with time. This convergence between the two models strongly
suggests the compatibility of the secular system with the direct integration of the realistic
model of the Solar System used in Laskar and Gastineau (2009).

3.4.5 A complementary test on frequency analysis

The fundamental frequencies of the Solar System are central in our work, and the method
to obtain them is thus essential. In this section we briefly examine the FA method (Sect.
3.2.2). The FA method searches a quasi-periodic approximation of the solution of the
Solar System with constant frequencies over a time window ∆t. So unique frequencies at
time t are extracted from an oscillating sequence in the time interval [t−∆t/2, t+ ∆t/2].
For a quasi-periodic solution, the longer we choose the time interval ∆t to be, the more
accurate the extracted frequencies are. Nevertheless, the fundamental frequencies of
the Solar System are expected to vary over a few Lyapunov times, that is, over 5 Myr.
Therefore, we have a trade-off between the extraction accuracy and the time variation of
the frequencies when choosing ∆t: When ∆t is too large, the obtained frequency will tend
to be the average of its variation over the same period. We chose ∆t = 20 Myr as the
standard FA interval. In some circumstances that require the detection of rapid changes
in frequencies, such as the resonance transition, a smaller ∆t is more favorable (see Sect.
3.6.3).

The extracted frequencies are sensitive to the choice of ∆t, and yet their density
estimation is relatively robust. Figure 3.10 compares the density estimation of the
eccentricity frequencies (gi)1,4, which are extracted via FA with three different ∆t at two
different times. The differences are generally small but still notable for g2 and g4 at 150
Myr, and they diminish with time.

3.5 Parametric fitting

From Sect. 3.4 we see that the long-term PDFs of the secular frequencies possess a distinct
Gaussian-like shape that flattens as time passes. It is interesting to approximate these
densities by a simple parametric model, such that its parameters can characterize the
shape of the density and summarize its evolution. The model with its fitting parameters
can also be used as an approximation of the numerical densities for later application.
For this purpose, we used the density estimation of the secular frequencies of the Solar
System from the batch {Zi}, which is composed of 40 000 different orbits over 5 Gyr. The
inner fundamental frequencies (i.e., the frequencies of the inner planets, (gi, si)i=1,4) are
obtained by FA over an interval of 20 Myr. For the outer fundamental frequencies (i.e.,
the frequencies of the outer planets, (gi)i=5,8, (si)i=6,8), the FA interval is 50 Myr. The
frequency s5 is zero due to the conservation of the total angular momentum of the Solar
System.
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µ0 [”/yr] a [”/yr]2 b α0 µ1 [”/yr] σ2
1 [”/yr]2 A1

g1 5.759 + 0.006T 3.37 · 10−2 0.52 − 2.25− 0.50T
g2 7.448− 0.004T 4.17 · 10−4 0.70 1.38 + 0.21T
g3 17.269 + 0.002T 6.63 · 10−3 0.43
g4 17.896 + 0.005T 6.88 · 10−3 0.41 17.6755 0.0034 0.110− 0.012T
s1 − 5.652− 0.032T 2.68 · 10−2 0.83 1.12 + 0.16T
s2 − 6.709 + 0.030T 1.20 · 10−1 0.76 − 2.94− 1.23T
s3 − 18.773 + 0.009T 2.86 · 10−2 0.56 − 3.40− 0.08T − 18.5256 0.0028 0.023
s4 − 17.707 + 0.013T 1.19 · 10−2 0.68 − 1.73− 0.28T

g5 4.257454− 2.1 · 10−6 T 4.63 · 10−10 0.88
g6 28.245226− 1.4 · 10−4 T 1.40 · 10−6 0.84
g7 3.087957− 1.2 · 10−6 T 4.80 · 10−10 1.11
g8 0.673024 9.89 · 10−11 1.49
s6 − 26.347866 + 1.5 · 10−5 T 1.21 · 10−8 0.85
s7 − 2.992527 8.31 · 10−10 1.39
s8 − 0.691737 2.93 · 10−11 1.47

Table 3.2 — Linear and power-law fits for the time evolution of the parameters (Fig. 3.12)
of the skew Gaussian mixture model (Eq. 3.19) for the fundamental frequencies of the Solar
System. Column 1 contains the considered secular frequencies. In Col. 2 we show the linear
fits of µ0 that represent the center of the distribution. The power-law fit of σ2

0 has the form
σ2

0(t) = aT b (Eq. 3.20), where T = t/(1 Gyr) and a and b are given in Cols. 3 and 4, respectively.
Linear fits of the skewness parameter α0 are given in Col. 5. The last three columns show linear
fits of the secondary mode of g4 and s3 (Eq. 3.19). The parameter σ2

0 is fitted from 200 Myr to
5 Gyr in the past, while all the others are fitted from 500 Myr.

3.5.1 Skew Gaussian mixture model

Laskar, 2008 found that the 250 Myr-averaged marginal PDFs of the eccentricity and
inclination of the inner Solar System planets are described quite accurately by the Rice
distribution, which is essentially the distribution of the length of a 2D vector when its
individual components follow independent Gaussian distributions. In in our case, the
density estimations of the fundamental frequencies of the Solar System resemble Gaussian
distributions, but many of them get skewed as time passes; this is especially true for the
inner frequencies. To account for this skewness, we propose the skew normal distribution
as the fitting distribution to the density estimation of the frequencies:

fµ0,σ0,α0
(x) =

2

σ0

φ
(
x− µ0

σ0

)
Φ
(
α
(
x− µ0

σ0

))
, (3.17)

where α is the parameter characterizing the skewness, φ(x) denotes the standard normal
probability density distribution with mean µ0 and standard deviation σ0, and Φ(x) is its
cumulative distribution function given by

Φ(x) =
∫ x

−∞
φ(t) dt =

1

2

[
1 + erf

(
x√
2

)]
, (3.18)

where erf denotes the error function.
Some of the frequencies, interestingly, have several secondary modes in their density

estimation apart from their primary one. Most of the secondary modes, if they exist,
are quite small compared to the primary one. They are also often short lived; most of
them emerge at the beginning of the diffusion stage and disappear quickly thereafter.
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much smaller than the primary mode: A0 ≫
∑m
i=1 Ai. In our case here, m = 1 for g4 and

s3, while the asymptotic secondary modes for the other frequencies can be considered
negligible.

For the outer fundamental frequencies, we do not observe significant skewness or
secondary modes in their density estimations. Therefore, the density estimations of the
outer fundamental frequencies can be approximated by a simple Gaussian distribution.

The density estimations of the frequencies are shown at three well-separated times in
Fig. 3.11. The diffusion is clearly visible as the density estimations get more and more
disperse over time. Moreover, the density estimations get more skewed as time goes by.
For g3 and g4, the skewness of the density estimations is small, so we assume α0 = 0
(Eq. 3.17) for these frequencies for the sake of simplicity. The fundamental frequencies
of the outer planets are very stable. Their variations are much smaller than those of
the inner frequencies. Taking as an example the most unstable of the outer frequencies,
g6, its standard deviation at −4 Gyr is only about 2 · 10−3 ”/yr, while that of the most
stable inner frequency, g2, is 15 times larger. Therefore, when considering a combination
involving an inner fundamental frequency and an outer one, the latter can be effectively
regarded as a constant.

The result of our fitting model is also plotted in Fig. 3.11. It is remarkable that the
density estimations of the frequencies are well approximated by the fitting curve over
three different epochs. It should be noticed that the base of our fitting model – the skew
Gaussian distribution – only has three parameters. Additional parameters are only needed
for some frequencies, for example g4 and s3. Nevertheless, such additional parameters
only account for the minor features, and three parameters are sufficient to represent the
bulk of the density estimations over a long timescale.

3.5.2 Evolution of the parameters

The parameters of our fitting models are extracted by the method of least squares,
implemented by the routine curve_fit in the scipy package in Python. To retrieve
the statistical distribution (mean and standard deviation) of the parameters of a given
model, we implemented a bootstrap approach based on Eq. (3.16), with the assumption
that pointwise standard errors of the KDE estimated by MBB are independent. We
remark that, with such an assumption, the variance of the fitting parameters tends to be
underestimated.

The time evolution of the mean of the parameters of the fitting models is shown in
Fig. 3.12, along with their ±2 standard error, for both the past and the future. It turns
out that the evolution of σ2

0 is robustly fitted from 200 Myr to 5 Gyr in the past by the
power-law function

σ2
0(t) = a T b, (3.20)

where T = t/(1 Gyr), as shown in Fig. 3.12. For all the other parameters, we performed a
linear fit. All these fits are summarized in Table 3.2.

The differences between past and future evolutions are small and generally tend to
decrease with time. Therefore, the fit for the parameters in the past given in Table 3.2
should also be representative of their future evolution. In general, the parameters follow
relatively smooth curves with distinct tendencies. The skewness parameters α0, increasing
in absolute value, show that the PDFs of the inner fundamental frequencies get more and
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more skewed over time. The center of the distributions, indicated by µ0, does not change
significantly compared to α0 and σ2

0 (Fig. 3.12). The secondary modes of g4 and s3 are
also quite stable.

The diffusion of the frequencies is quantified by the increasing σ2
0, which is closely

linked to their distribution variance. As the exponents b of the power laws in Table 3.2 are
different from unity, the chaotic diffusion of the fundamental frequencies turns out to be
an anomalous diffusion process. Interestingly, all the inner frequencies clearly undergo sub-
diffusion, that is, the exponent of the power law b is smaller than 1 (b = 1 corresponding to
Brownian diffusion). Therefore, an extrapolation of the variance of the inner frequencies
based on the assumption of linear diffusion over a short time interval would generally
lead to its overestimation over longer times. On the contrary, the exponents b are either
smaller or larger than unity for the outer frequencies. It should be noted that, because
the variations in the outer frequencies are very small, the value of the corresponding
exponents b might be overestimated due to the finite precision of FA.

3.6 Geological application

The aim of this project is to have a reliable statistical picture of the secular frequencies
of the Solar System beyond 60 Myr. It is interesting to put recent geological results in
this astronomical framework. First, it can be used as a geological test of our study, and
secondly the application provides a glimpse of how astronomical data could be used in a
cyclostratigraphy study. We first show how the uncertainty of a widely used dating tool
in astrochronology can be quantified, then we apply our work to two recent geological
results, which are from the Newark-Hartford data (Olsen et al., 2019) and the Libsack
core (Ma et al., 2017).

3.6.1 Astronomical metronomes

Although it is not possible to recover the precise planetary orbital motion beyond 60 Myr,
some astronomical forcing components are stable and prominent enough such that they
can be used to calibrate geological records in the Mesozoic Era or beyond (see Laskar 2020
for a review). The most widely used is the 405 kyr eccentricity cycle g2 − g5, which is the
strongest component of the evolution of Earth’s eccentricity. The inclination cycle s3 − s6

has also recently been suggested for the time calibration of stratigraphic sequences (Boulila
et al., 2018; Charbonnier et al., 2018). Although s3 − s6 is not the strongest among the
obliquity cycles, it is quite isolated from other cycles and thus easy to identify (Laskar,
2020). The main reason that g2 − g5 and, possibly, s3 − s6 can be used as astronomical
metronomes is their stability. Indeed, their uncertainty has to be small to be reliably used
for practical application.

In previous work, the uncertainty of the frequency combination was derived from the
analysis of a few solutions (Laskar et al., 2004, 2011a; Laskar, 2020). Here we used a much
larger number of solutions and the KDE-MBB method to derive both the PDF of the
frequencies and their statistical errors. Starting from the results of all the sets of orbital
solutions (Sect. 3.4), we produced the compound density estimation of the fundamental
frequencies and their relevant combinations following the conservative approach in Eq.
(3.16). These data are archived with the paper.
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are all consistent with our density estimation as there is a non-negligible possibility of
finding a secular solution that agrees with the geological data. It should be noted that
certain frequencies are significantly correlated, g3 and g4 for example. We cannot assume
that they are independent; therefore, we have to calculate the density estimation of their
combination directly.

Given the unavailability of the uncertainty in geological frequencies, the probability
of finding the geological frequencies in a numerical orbital solution cannot be obtained
directly. However, we can use La2010d, which is the solution from the complete model of
the Solar System that matches best with the Newark-Hartford data, as the benchmark for
our secular statistics. There are several criteria for determining how good a solution is (i.e.,
how well it could match with the geological data). A simple and rather straightforward

criterion that we used is δ =
√

1
4

∑4
i=1(gi − g∗

i )
2, where gi and g∗

i are the frequencies from
the astronomical solution and the geological data, respectively. A better-suited solution
will have smaller δ and vice versa. We found that in the range from −200 Myr to −220
Myr, out of the 120 000 solutions, there are around 5000 (roughly 4.2% of the total number)
that have smaller s than that of La2010d at -210 Myr, which is the value originally used to
compare with the geological data. It should be noted that La2010d is one of 13 available
complete solutions. The 95% CI of the probability of obtaining such a good matching
solution from the complete model of the Solar System is thus (1.37%, 33.31%) (Wilson,
1927). Therefore, with the criterion δ, our result is statistically compatible with that of
Olsen et al. (2019).

3.6.3 Libsack core

Laskar (1990) and Laskar et al. (1992) presented several secular resonances to explain
the origin of chaos in the Solar System. In particular, the argument of the resonance
(s4 − s3)− 2(g4 − g3) is currently in a librational state, that is,

(s4 − s3)− 2(g4 − g3) = 0, (3.21)

and moves out to the rotational state around −50 Myr. The dynamics can even switch to
the librational state of a new resonance:

(s4 − s3)− (g4 − g3) = 0. (3.22)

This transition corresponds to a change from the 2:1 resonance to the 1:1 resonance of
two secular terms, g4 − g3 and s4 − s3.

Ma et al., 2017 found a sudden change in the period of a long cycle from 2.4 Myr to
1.2 Myr in the Libsack core of the Cretaceous basin from around −90 Myr to −83 Myr.
This change was also visible in the La2004 astronomical solution, and the long cycle was
attributed to the frequency combination g4 − g3, which is visible from the spectrum of
the eccentricity of the Earth. Although the exact value before and especially after the
transition is not clear, the change in the period is visible from the band power of the core
(Fig. 1 of Ma et al. 2017).

This change in g4 − g3 observed in the Libsack core corresponds to a transition from
the resonance (s4 − s3) − 2(g4 − g3), which is the resonance that the Solar System is
currently at, to the resonance (s4 − s3)− (g4 − g3). With a large number of astronomical
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solutions, we could better understand this phenomenon. The transition is usually very
fast: The frequency changes quickly to another value and then reverts back just as quickly.
Therefore, to study the transition we used a smaller window for the FA, 10 Myr instead
of 20 Myr. Figure 3.15 shows the density estimation of g4 − g3 at 90 Myr as well as at
300 Myr in the past. Both have a principle population in the range [0.4, 0.8] ′′/yr and a
small but not insignificant one centered around 1.0 ′′/yr, which corresponds to the small
chunk of g4 centered at 18.2 ′′/yr. The transition observed is a sudden jump in frequency
from the main population to the secondary one of g4, and therefore g4 − g3 as well.

The size of the secondary population is defined as the proportion of the solutions whose
g4−g3 > 0.9 ”/yr and is denoted as P(g4−g3 > 0.9 ′′/yr). The rate of transition is defined
as the proportion of the solutions whose g4 − g3 > 0.9 ′′/yr over 10 Myr and is denoted as
P10Myr(g4 − g3 > 0.9 ”/yr). Both are shown in Fig. 3.16. During the predictable period,
that is, from now until −50 Myr, no transition is observed. After −50 Myr, a transition
can occur; its rate rises until 100 Myr, when the percentage of a secondary population
stays relatively stable at around 2.1% ± 0.5% at a time, and the rate of the transition
could also be determined to be 8%± 1% every 10 Myr during this period. At 80-90 Myr,
when the transition was detected in the Libsack core, that rate of transition during this
period is found with our numerical solutions to be 7.7%± 4.5%.

3.7 Conclusion

In this work we give a statistical description of the evolution of the fundamental frequencies
of the Solar System beyond 60 Myr, that is, beyond the predictability horizon of the
planetary motion, with the aim to quantify the uncertainty induced by its chaotic behavior.
The base of our analysis is 120 000 orbital solutions of the secular model of the Solar
System. The PDF of the frequencies is estimated by the KDE, and its uncertainty is
evaluated by the MBB; both methods are tested via numerical experiments.

We benchmarked the secular model by sampling the initial conditions in different
ways and then compared the density estimation of their solutions with one another and
finally with the complete model. The results are twofold. First, regardless of how initial
conditions were sampled, their density estimation will converge toward a single PDF;
after this overlap, a robust estimation is guaranteed. Secondly, the density estimation
of the secular model is compatible with that of the complete model of the Solar System.
This agreement means that the results of the secular model, with superior computational
simplicity, can be used for application to geological data.

We observe that the density estimations of the fundamental frequencies can be well
fitted by skew Gaussian mixture models. The time evolution of the parameters σ2

0,
related to the frequency variances, follows power-law functions. Interestingly for the inner
fundamental frequencies, the exponents of such power laws are all smaller than 1, which
indicates that they undergo sub-diffusion processes.

We show several examples of how this result can be used for geological applications.
First, the uncertainty of any astronomical frequency signal is fully quantified, so that,
for example, a proper quantitative response can be given to the question of how stable
the astronomical metronomes are. With this statistical framework, previous results from
geological records beyond 60 Myr can also be interpreted with a more comprehensive
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approach. A more quantitative answer, not only about the possibility but also about the
probability of the occurrence of an astronomical signal in geological data, can be made.
Apart from these direct applications, a more systematic approach could make full use of
the density estimation of frequencies. The method TimeOpt from Meyers and Malinverno,
2018, for example, shows that it is possible to combine the uncertainty from astronomical
signals with geological records to derive an effective constraint for both. In fact, any
similar Bayesian method could use the density estimation of frequencies as proper priors.



Chapter 4

Long-term instability of the inner Solar

System: numerical experiments

This chapter is published in (Hoang, Mogavero and Laskar, 2022).

4.1 Introduction

Even though the planet orbits in the inner Solar System (ISS) are chaotic with a Lyapunov
time of about 5 million years (Laskar, 1989, 1990; Sussman and Wisdom, 1992; Mogavero
and Laskar, 2021), they are still statistically very stable over a timescale that is a thousand
times longer. The probability of a Mercury eccentricity higher than 0.7 over the next 5
billion years, for example, is about 1% from direct integrations of the Solar System (Laskar
and Gastineau, 2009; Abbot et al., 2021). This percentage agrees with the statistics of
a dynamical instability observed in secular models where the dynamics is averaged over
the planet mean longitudes (Laskar, 2008; Mogavero and Laskar, 2021). The statistical
stability of the ISS over the remaining lifetime of the Sun as a main sequence star is
intriguing, if one considers that it represents an open system, as it is forced by the very
regular motion of the outer planets (Laskar, 1990; Mogavero and Laskar, 2021). No
exactly conserved quantities, such as the energy or angular momentum, can bound a priori
the chaotic wanderings of the system in its high-dimensional phase space.

The disproportion between the Lyapunov time and the destabilisation timescale of
the ISS has been addressed by Batygin et al. (2015), building on previous works by
Lithwick and Wu (2011) and Boué et al. (2012). Boué et al. (2012) consider the first-
order secular dynamics of a mass-less Mercury in the gravitational field of all the other
planets, whose orbits are predetermined to a quasi-periodic form. They use a multipolar
expansion of the Hamiltonian to show that very high Mercury eccentricities appear in
the reduced phase space of the resonance g1 − g5 (involving the fundamental precession
frequencies of the Mercury and Jupiter perihelia), which confirms the role of this harmonic
in the destabilisation of the ISS (Laskar, 2008; Batygin and Laughlin, 2008; Laskar and
Gastineau, 2009). Batygin et al. (2015) expand the secular Hamiltonian to degree 4 in
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emax H4 H6 H8 H10 H L4 L6 LG09

0.35 38.79339.037
38.549 58.9159.16

58.66 56.9057.68
56.11 52.9553.74

52.16 49.6750.47
48.87 40.28940.558

40.020 47.2047.44
46.96 49.2251.54

46.90

0.4 13.29413.464
13.124 31.6231.85

31.39 29.0529.77
28.33 25.3326.03

24.65 21.1921.85
20.55 13.69813.887

13.510 24.4724.67
24.26 25.5527.63

23.58

0.5 0.4830.519
0.450 5.125.24

5.02 5.045.39
4.70 2.953.23

2.70 2.042.27
1.82 0.7300.778

0.685 3.853.94
3.76 3.964.97

3.15

0.6 0.0120.019
0.008 1.531.59

1.47 2.402.65
2.17 1.151.33

0.99 0.520.65
0.42 0.0560.070

0.044 1.841.90
1.77 0.961.53

0.60

0.7 0.0010.004
0.000 1.061.11

1.01 2.072.31
1.86 1.081.26

0.93 0.450.57
0.35 0.0100.017

0.006 1.411.47
1.36 0.921.48

0.57

0.8 0.0010.004
0.000 0.750.79

0.71 1.912.14
1.70 1.021.19

0.87 0.400.57
0.28 0.410.52

0.32 0.0060.011
0.003 1.201.25

1.15 0.881.43
0.54

0.9 0.0000.003
0.000 0.420.45

0.38 1.782.00
1.58 1.001.17

0.85 0.140.26
0.08 0.400.51

0.31 0.0000.003
0.000 0.850.89

0.80 0.841.38
0.51

Table 4.1 — Probability P (supt≤5 Gyr e1(t) ≥ emax) in percent and its 90% confidence interval,
where e1 is Mercury’s eccentricity, for the dynamical models H2n, H, L2n, and LG09. LG09
represents the 2 501 direct integrations of Laskar and Gastineau (2009). H denotes the 10 560
orbital solutions of Gauss’ dynamics in ML21, and the two values of the last two rows of H
correspond to the lower and upper bounds of the estimations, as explained in the text.

eccentricities and inclinations of the planets, and study a few of its Fourier harmonics
related to the fundamental frequencies g1, g2, g5, s1, and s2. Their simplified dynamics is
however much more unstable than realistic models, the typical time for the destabilisation
of Mercury orbit being around 1 Gyr (Woillez and Bouchet, 2020). Recently, Mogavero
and Laskar (2021, ML21 from now on) have proposed the model of a forced secular ISS,
in which the outer planets only are frozen to quasi-periodic orbits. With a numerical
experiment over 100 Gyr, they estimate the dynamical half-life of Mercury at 40 Gyr,
consistently with the small probability of an instability over 5 Gyr.

Here we employ the computer algebra software TRIP (Gastineau and Laskar, 2011,
2021) to perform truncation of the forced secular ISS at different degrees in eccentricities
and inclinations. Through ensembles of 103 to 105 numerical integrations spanning 5 to
100 Gyr, we show how dynamical contributions usually deemed as unimportant, that is,
high-degree terms of the Hamiltonian and non-resonant harmonics, strongly affect the
probability of an instability over 5 Gyr.

4.2 Dynamical models

In the forced secular model of the ISS (detailed presentation in ML21), the orbits of
the outer planets are predetermined to a quasi-periodic form, whose frequencies and
amplitudes are inferred from frequency analysis (Laskar, 1988, 2005) of a comprehensive
model of the Solar System (Laskar et al., 2011a). The secular gravitational interactions
are considered at first order in planetary masses, which corresponds to Gauss’ dynamics
of Keplerian rings (Gauss, 1818), and the leading contribution of general relativity (GR)
is included. We remark that the shift of the frequency g1 due to GR is comparable to the
half-width of the principal secular resonances (Mogavero and Laskar, 2022), and cannot
be considered as a small correction.

With the aid of TRIP, the secular Hamiltonian Ĥ of the entire Solar System, at first
order in planetary masses, can be expanded in series of the complex Poincaré variables
of the planets, i.e. (xi, x̄i, yi, ȳi)

8
i=1 (Laskar and Robutel, 1995). The planets are indexed

in order of increasing semi-major axis, as usual. Truncation at total degree 2n results
in a polynomial Hamiltonian Ĥ2n. When the predetermined orbits of the outer planets
(xi(t), yi(t))

8
i=5 are substituted, one obtains the Hamiltonian of the forced ISS truncated
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at degree 2n, i.e. H2n((xi, yi)
4
i=1, t) = Ĥ2n((xi, yi)

4
i=1, (xi = xi(t), yi = yi(t))

8
i=5). The non

truncated Hamiltonian, formally H = H∞, represents Gauss’ dynamics of the forced ISS.

At the lowest degree, H2 describes an integrable forced Laplace-Lagrange dynamics. Its
analytical solution can be obtained by a canonical transformation to the complex proper
modes variables (ui, vi)

4
i=1, with corresponding action-angle variables (Xi, χi; Ψi, ψi) such

that (ui =
√
XiE

−jχi; vi =
√

ΨiE
−jψi)1. When expressed in these action-angle variables,

the truncated Hamiltonian is a finite Fourier series:

H2n(I,θ, t) =
∑

k,ℓ

H̃
k,ℓ
2n (I)Ej(k·θ+ℓ·ωot), H̃

k,ℓ
2n =

n∑

p=1

H̃
k,ℓ
(2p), (4.1)

where I = (X,Ψ) and θ = (χ,ψ) are the eight-dimensional vectors of the action and angle
variables, respectively, t is the time, ωo = (g5, g6, g7, g8, s6, s7, s8) is the septuple of the
constant fundamental frequencies of the outer orbits (Laskar, 1990), and (k, ℓ) ∈ Z

8 × Z
7

is the wave vector of a given harmonic. The amplitude of a harmonic H̃
k,ℓ
2n consists of

partial contributions H̃
k,ℓ
(2p) from terms of the same degree 2p ≤ 2n. To identify these

partial contributions we define

Fk,ℓ(2p) = H̃
k,ℓ
(2p)E

j(k·θ+ℓ·ωot) + c.c. for k 6= 0, l 6= 0,

F0,0
(2p) = H̃

0,0
(2p),

(4.2)

where c.c. refers to the complex conjugate. The order of a harmonic is defined as the even
integer ‖(k, ℓ)‖1 ≤ 2n, where ‖ · ‖1 denotes the 1-norm. Since the quasi-periodic form of
the outer orbits contains harmonics of order higher than one, the dynamics of H2n and
H2n are not exactly the same. Yet, the difference is unimportant for the results of this
work, so we shall treat the two Hamiltonians as equivalent from now on.

Second order in planetary masses. To investigate the effect of the order of the
secular averaging on the long-term statistics, we employ the autonomous polynomial
equations of motion of Laskar (1985, 1990) for the ensemble of the Solar System planets.
These equations formally derive from a Hamiltonian of order two in masses and degree 6
in eccentricities and inclinations, and will be denoted as L6 throughout the paper. In this
work, we also implement a variant of this dynamics, in which the equations for the inner
planets are truncated at total degree 3 in eccentricities and inclinations, while those of
the outer planets are kept at degree 5 (Appendix B.1). This new model, denoted as L4, is
meant as an analogue of H4 at second order in masses.

4.3 Numerical Experiments

We systematically derive the equations of motion for the truncated Hamiltonians H2n in
TRIP. They are numerically integrated via an Adams PECE scheme of order 12, with a
time step of 250 years. Typical integration times are given in ML21 (table 1). All the

1E represents the exponential operator, j stands for the imaginary unit.
29 out of the original 2501 solutions were damaged during data storage.
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the leading contribution coming from the Hamiltonian terms of degree 6. The practical
stability of H4 over 5 Gyr is unexpected, since it still reproduces the chaotic dynamics
of the ISS with the same long-term statistical distribution of the maximum Lyapunov
exponent as in H6 or Gauss’ dynamics (Mogavero and Laskar, 2022). It also shows the
same destabilisation mechanism, that is, the activation of the resonance g1 − g5. Previous
works on the instability of Mercury orbit studied a simplified dynamics in which only a
few Fourier harmonics of H4 are considered (Batygin et al., 2015; Woillez and Bouchet,
2020). This latter model is actually considerably more unstable than the reference model
LG09, in deep contrast with the practical stable dynamics of H4 over 5 Gyr.

The secular models of degree higher than 4 give predictions that generally agree with
the N -body integrations LG09. While Gauss’s dynamics tends to underestimate, and H8

overestimates the instability probability, H10 gives accurate predictions (this is probably a
coincidence related to the behaviour of the series expansion). At times shorter than 5 Gyr
and for a threshold of 0.7, the estimations of H6, H10, and L6 generally agrees with the
results of a refined method of rare event detection applied to direct integrations (Abbot
et al., 2021)3: for L6, the probability of Mercury orbit having eccentricity larger than
0.7 in the next 2 Gyr is 0.025% with a 90% confidence interval (0.019%, 0.034%), while
it is 0.2% with a 90% confidence interval (0.18%, 0.22%) over 3 Gyr. The Hamiltonians
of degree 4 and 6 show a relatively pronounced decay of the probability from 0.7 to 0.9
(see also Fig. B.1). This interesting phenomenon is inherent to degree 6 or lower, because
the probability of the models of higher degree is fairly constant across high values of
Mercury’s eccentricity: if e1 reaches 0.7 along a solution, it also probably goes beyond 0.9.

4.4.2 Ranking of harmonics according to their contributions to

g1

In order to explain the difference between the statistics of H4 and H6, we shall switch to
the proper mode variables and the Fourier representation of Eq. (4.1). The Hamiltonian
H6 contains substantially more harmonics than H4, 69 339 compared to 2 748. For each
harmonic of H4, H6 includes additional terms of degree 6 in its amplitude. Despite the
large difference in the number of terms, most of the contributions of H6 are negligible.
We aim to identify here the Fourier harmonics that have an important impact on the
destabilisation mechanism, that is, the activation of the resonance g1 − g5. Because g5 is
constant in the forced dynamics, we shall focus on the fundamental precession frequency
of Mercury perihelion g1.

Following ML21, the instantaneous value of the frequency g1 for the Hamiltonian H2n

is defined as:

ĝ
(2n)
1 = −θ̇1 = −∂H2n

∂I1

=
∑

k,ℓ

n∑

p=1

ĝk,ℓ1(2p), (4.4)

where the partial contributions at degree 2p of each harmonic are

ĝk,ℓ1(2p) = −
∂Fk,ℓ(2p)(I)

∂I1

= −
∂H̃k,ℓ

(2p)(I)

∂I1

Ej(k·θ+ℓ·ωot) + c.c. for k 6= 0, l 6= 0,

ĝ0,0
1(2p) = −

∂F0,0
(2p)(I)

∂I1

= −
∂H̃0,0

(2p)(I)

∂I1

.

(4.5)

3The definition of instability in Abbot et al. (2021) is however different.
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i Harmonic F i(4) Ck,ℓ(4) Harmonic F i(6) Ck,ℓ(6)

1 0 −0.836 0 −0.614
2 s1 − s2 −0.790 s1 − s2 −0.573
3 2g1 − s1 − s2 0.413 2g1 − s1 − s2 0.268
4 2g1 − 2s1 0.366 2g1 − 2s1 0.237
5 g1 − g5 −0.126 g1 − g2 −0.071
6 2g1 − 2s2 0.117 2g1 − 2s2 0.054
7 g1 − g2 + s1 − s2 −0.054 g1 − g5 −0.053
8 g1 − g2 0.035 g1 − g2 + s1 − s2 −0.044
9 g1 − g2 − s1 + s2 −0.027 2s1 − 2s2 0.044
10 s1 − s3 0.024 g1 − g2 − s1 + s2 −0.039

Table 4.2 — Rankings of Fourier harmonics. Partial contributions to g1 (arcsec yr−1) from the
harmonics at degree 4 (F i(4)) and 6 (F i(6)), along the unstable solution of H6 of Fig. 4.2. The

maximum filtered contributions are denoted by Ck,ℓ(2p) = gk,ℓ1(2p)(t
⋆), with t⋆ = arg maxt≤T |gk,ℓ1(2p)(t)|

(Eqs. (4.5), (4.6)). For each partial degree, the harmonics are ranked according to |Ck,ℓ(2p)| with
T = 2Gyr, which is shortly after the first activation of the resonance g1 − g5.

In this form, each harmonic manifests its importance via its direct contribution
to g1, which varies along an orbital solution according to the position in the phase
space, i.e. ĝk,ℓ1(2p)(t) = ĝk,ℓ1(2p)(I(t),θ(t), t). To identify the main harmonics involved in
the destabilisation of the dynamics, Eqs. (4.4) and (4.5) are evaluated along unstable
solutions. Short-term oscillations are suppressed by the low-pass Kolmogorov-Zurbenko
(KZ) filter (Yang and Zurbenko, 2010), which is applied to the instantaneous frequency
g1 and its harmonic contributions. We use the KZ filter with 3 iterations of the moving
average and a cutoff frequency of (1 Myr)−1 (ML21, appendix B) to obtain the filtered
values

g
(2n)
1 = KZ(ĝ

(2n)
1 ), gk,ℓ1(2p) = KZ(ĝk,ℓ1(2p)) (4.6)

The harmonics can then be ranked according to the maximum value of their absolute
filtered contribution over the time interval [0, T ]. The timespan T is chosen to be slightly
larger than the time of the first activation4 of the resonance g1 − g5. After this point, the
system either exhibits a secular collision right away or enters a period of excited dynamics
before an eventual collision. This unstable state typically lasts longer for a solution of H6

than for a Hamiltonian of higher degree.
We establish the harmonic ranking on an unstable solution of H6, whose Mercury’s

eccentricity over time is shown in Fig. 4.2 (the ranking of the leading harmonics is quite
robust when we switch to other unstable solutions). The first entrance into the chaotic
zone of the resonance g1 − g5 occurs just after 1.97 Gyr (see Fig. 4.3a), during which the
eccentricity of Mercury is pumped to 0.65 and the harmonic contributions generally reach
their maximum values (see Fig. 4.3b). The ranking is computed over the first 2 Gyr to
capture the contributions of the harmonics at the resonance. Table 4.2 shows two harmonic
rankings based on the partial contributions at degree 4 and 6, respectively. It is surprising
to find that the contributions to g1 at degree 6 are slightly less, but still roughly the same

4Throughout the paper, by activation we mean the exploration of the chaotic zone of the resonance,
independently of the entrance in a libration state.
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amount as those at degree 4. Because the principal contributions at degree 6 come from
harmonics of order 2 and 4, what H6 mainly offers is not new resonances, but rather
corrections to the existing harmonics of H4. The corrections at degree 6 help to push
g1 toward g5 and bring the solution closer to the destabilizing resonance. Geometrically
speaking, in the phase space the resonance g1 − g5 defined by H6 is closer to the current
ISS than that of H4.

Figure 4.3b gives a closer look at the time evolution of the leading harmonic contri-
butions to g1 at degree 6. They are small at the beginning when the solution is stable,
but get much bigger when the eccentricity of Mercury becomes higher, that is during and
after the first activation of the resonance g1− g5 at 1.97 Gyr. During this period, which is
shown in the lower panel of Fig. 4.3b, the strongest terms are the null-frequency harmonic,
i.e. the integrable part of the Hamiltonian H̃

0,0
(6) , and the harmonic s1 − s2, which also

enters resonance. These two terms tend to destabilize the system by decreasing g1 by
substantial amounts, which are even greater than the leading GR correction of 0.4′′ yr−1

at degree 2 at some point. In the opposite direction, the two harmonics 2g1 − (s1 + s2)
and 2(g1 − s1) raise g1, moving it away from g5. Although these terms are non resonant,
they are extremely crucial for the stability of Mercury orbit (see Section 4.4.3). Other
harmonics also contribute to g1 at degree 6 in an alternating pattern, but to a lesser
extent.

To confirm the crucial role of the terms of degree 6, we add them to H4 to construct
partial Hamiltonians (Mogavero and Laskar, 2022):

H4,m = H4 +
m∑

i=1

F i(6), (4.7)

where F i(6) = Fki,ℓi

(6) is the ith harmonic from the ranking at degree 6 of Table 4.2, and m is
the total number of such harmonics that are considered. Figure 4.3a shows the filtered g1

computed from different Hamiltonians along the same unstable trajectory of H6 of Fig. 4.2.
Initially, when the solution is stable and Mercury’s eccentricity is relatively low, the
frequency g

(4)
1 of H4 is almost indistinguishable from the corresponding g

(6)
1 of H6. Across

the activation of the resonance g1− g5, the difference between the two frequencies becomes
considerable: g

(6)
1 almost reaches g5, while g

(4)
1 does not. The difference is mainly due to

the integrable term H̃
0,0
(6) , which is included in H4,1, and to the first leading harmonics

contained in H4,4.
The statistics of the high Mercury eccentricities from H4,m should approximate that

of H6 better than H4. In order to test this expectation, we integrate the dynamics of
H4,1, H4,4 and H4,51 from 10 800 and 1 080 initial conditions over 5 Gyr and 100 Gyr,
respectively. The initial conditions are taken from the same ensembles employed for H2n.
The CDFs of the first time that Mercury eccentricity reaches 0.7 for H4,m are shown
in Fig. 4.1. The wide discrepancy between H4 and H6 is first bridged by adding the
integrable term H̃

0,0
(6) , with which the curve of H4,1 attains a probability of 0.2% at 5 Gyr.

Including the next three leading harmonics brings the curve to the same level as Gauss’
dynamics. Adding additional terms makes the statistics oscillate around that of H6.

The impact of the choice of the initial conditions on the present analysis deserves a
discussion. As stated in Section 4.3, the nominal initial conditions of the truncated forced
dynamics H2n are chosen to be the same as those of Gauss’ dynamics H. In principle, they
should be adapted to each model according to the harmonics that are dropped from the
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to be the same as in Section 4.4.2, that is, m ∈ {1, 4, 51}. We integrate the equations of
motion defined by H

∗
4 and H

∗
4,m over 5 Gyr from the same ensemble of initial conditions

defined in Section 4.3, to obtain 10 800 solutions.

Figure 4.4 shows the comparison between H4, H4,m and H
∗
4, H

∗
4,m for the CDF of the

first time that Mercury’s eccentricity reaches 0.7 over 5 Gyr. For all the models, removing
the three non-resonant harmonics makes the dynamics significantly more unstable, with
at least one order of magnitude of difference. For comparison, the dynamics of H4 is a
thousand times more stable than H6 over 5 Gyr, but taking away the three harmonics
brings the model H

∗
4 basically to the same level of instability of H6. If we consider

the Hamiltonian H
∗
4,51, based on H4,51 which is the closest dynamics to H6 among the

presented partial Hamiltonians, its probability of instability is around 20% at 5 Gyr, that
is, twenty times more than the instability rate of H6. These numerical experiments show
the crucial role of these non-resonant harmonics in stabilizing the ISS. Interestingly enough,
all the three harmonics permits the exchange of angular momentum deficit between the
eccentricity and inclination degrees of freedom, that is, between the proper modes (ui)
and (vi). These results also show the sensitivity of the destabilisation probability to the
details of the dynamics, and may explain, at least partially, the great instability shown by
the simplified models considered in literature (Batygin et al., 2015; Woillez and Bouchet,
2020).

4.4.4 Statistics over 100 Gyr

To explore the dynamics in a regime where highly excited orbits no longer represent
rare events, we follow ML21 and prolong 1080 integrations of the different Hamiltonians
previously considered to 100 Gyr. Figure 4.5 shows the CDFs of the first time that Mercury
eccentricity reaches 0.7 and the corresponding probability density functions (PDFs). The
PDFs are estimated by the debiased kernel density estimation (KDE) method (Cheng,
Chen, et al., 2019), with Gaussian kernel and Silverman (1986)’s rule-of-thumb bandwidth
(Appendix B.4). We use the log transformation and the pseudo-data method (Cowling
and Hall, 1996) to remove the boundary effects induced by the KDE at 0 and 100 Gyr,
respectively. The confidence intervals of the PDFs are estimated by bootstrap (Efron,
1979) of the debiased KDEs; for the CDFs, we use Wilson’s score interval.

The CDFs of H6 and H8 are close to each other, with medians of 30 Gyr, while that
of H10 is around 35 Gyr. The increasing values of the medians may suggest a convergence
toward the value of 40 Gyr of Gauss’ dynamics. On the other hand, the difference between
H4 and the other truncated forced dynamics is still considerable. The median time for H4

is 75 Gyr, roughly doubling the value of H6. If we assume that the PDFs follow a Levy
distribution ρ(τ) = (T0/πτ

3)1/2E−T0/τ over short times (ML21), with T0 proportional to
the median of the distribution, one easily understands how a difference by a factor of
two in the medians of the PDFs results in very different probabilities over 5 Gyr. Indeed,
the fact that the destabilisation over 5 Gyr is a rare event greatly amplifies the disparity
between H4 and the models of higher degree.

There is practically no difference between the statistics ofH6 and L6 over this timescale,
which confirms the secondary effect of the second order in masses for the forced ISS and
the statistics of the high Mercury eccentricities in particular. However, this effect is
magnified for H4, the CDF of L4 approaching halfway the curves of higher degrees, with
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of its action variables (Hénon, 1974; Flaschka, 1974; Ferguson et al., 1982; Benettin et al.,
2013). Although not integrable, and indeed chaotic, the Hamiltonian H4 plays a role
similar to the Toda Hamiltonian, as it does not allow essentially any dynamical instability
over 5 Gyr. The main question at this point is why the dynamics of H4 is practically
stable over 5 Gyr. Once this is assessed, the small 1% probability of an instability of the
ISS may be conceived as a natural perturbative effect of terms of degree 6 and higher.
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Chapter 5

Timescales of chaos in the Inner Solar

System

This chapter was submitted and is currently under review for publication.

5.1 Introduction

The planetary orbits in the inner Solar System (ISS) are chaotic, with a Lyapunov time
distributed around 5 million years (Myr) (Laskar, 1989, 1990; Sussman and Wisdom,
1992; Mogavero and Laskar, 2021). Still, they are statistically very stable over a timescale
that is a thousand times longer. The probability that the eccentricity of Mercury exceeds
0.7, leading to catastrophic events (i.e. close encounters, collisions or ejections of planets),
is only about 1% over the next 5 billion years (Gyr) (Laskar, 2008; Laskar and Gastineau,
2009; Hoang et al., 2022). The dynamical half-life of Mercury orbit has recently been
estimated at 30 to 40 billion years (Mogavero and Laskar, 2021; Hoang et al., 2022). A
disparity of nearly four orders of magnitude between the Lyapunov time and the timescale
of dynamical instability is intriguing, since the chaotic variations of the orbits of the inner
planets cannot be constrained a priori. While the total energy and angular momentum of
the Solar System are conserved, the disproportion of masses between the outer and inner
planets implies that unstable states of the ISS are in principle easily realizable through
exchanges of these quantities. The surprising stability of the ISS deserves a global picture
in which it can emerge more naturally.

To our knowledge, the only study addressing the timescale separation in the long-term
dynamics of the ISS is based on the simplified secular dynamics of a mass-less Mercury
(Batygin et al., 2015): All the other planets are frozen on regular quasi-periodic orbits;
secular interactions are expanded to first order in masses and degree 4 in eccentricities
and inclinations; an a priori choice of the relevant terms of the Hamiltonian is made. The
typical instability time of about 1 Gyr (Batygin et al., 2015; Woillez and Bouchet, 2020)
is however too short and in significant contrast with realistic numerical integrations of the
Solar System, which show a general increase of the instability rate with the complexity of
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the dynamical model (Hoang et al., 2022). We have indeed shown that truncating the
secular Hamiltonian of the ISS at degree 4 in eccentricities and inclinations results in
an even more stable dynamics, with an instability rate at 5 Gyr that drops by orders
of magnitude when compared to the full system1. From the perspective of these latest
findings, the small probability of 1% of an instability over the age of the Solar System may
be naturally regarded as a perturbative effect of terms of degree 6 and higher. Clearly,
the striking stability of the dynamics at degree 4 is even more impressive in the present
context, and remains to be explained.

A strong separation in dynamical timescales is not uncommon among classical quasi-
integrable systems (e.g. Milani and Nobili, 1992; Morbidelli and Froeschlé, 1996). This is
notably evinced by the Fermi-Pasta-Ulam-Tsingou (FPUT) problem, which deals with
a chain of coupled weakly-anharmonic oscillators (Fermi et al., 1955). Far from KAM
and Nekhoroshev regimes (as is likely to be pertinent to the ISS, see Sect. 5.3), one
can generally state that the exponential divergence of close trajectories occurring over
a Lyapunov time is mostly tangent to the invariant tori defined by the action variables
of the underlying integrable problem, and hence contributes little to the diffusion in
the action space (Lam and Kurchan, 2014; Goldfriend and Kurchan, 2019). In other
words, the Lyapunov time and the diffusion/instability time scale differently with the
size of the terms that break integrability, and this can result in very different timescales
(e.g. Morbidelli and Froeschlé, 1996). However, this argument is as general as poorly
satisfactory in addressing quantitatively the timescale separation in a complex problem
as the present one. Moreover, even though order-of-magnitude estimates of the chaotic
diffusion in the ISS suggest that it may take hundreds of million years to reach the
destabilizing secular resonance g1 − g5

2, the low probability of an instability over 5 Gyr
still remains unexplained (Mogavero and Laskar, 2021). Establishing more precisely why
the ISS is statistically stable over a timescale comparable to its age is a valuable step
in understanding the secular evolution of planetary systems through metastable states
(Laskar, 1996; Mogavero and Laskar, 2021)3. With its 8 secular degrees of freedom (DOFs),
this system also constitutes a peculiar bridge between the low-dimensional dynamics often
addressed in celestial mechanics and the systems with a large number of bodies studied in
statistical mechanics: It cannot benefit from the straightforward application of standard
methods of the two fields (e.g. Mogavero and Laskar, 2022, Appendix A).

This work aims to open a window on the long-term statistical behavior of the inner
planet orbits. Section 5.2 briefly recalls the dynamical model of forced secular ISS intro-
duced in (Mogavero and Laskar, 2021). Section 5.3 presents the numerical computation
of its Lyapunov spectrum. Section 5.4 introduces the quasi-symmetries of the resonant
harmonics of the Hamiltonian and the corresponding quasi-integrals of motion. Section 5.5
establishes a geometric connection between the quasi-integrals and the slowest DOFs of
the dynamics via a principal component analysis of the orbital solutions. Section 5.6
states the implications of the new findings on the long-term stability of the ISS. We finally

1The dynamics truncated at degree 4 produces nevertheless the same chaos of the full system, as
measured by the finite-time maximum Lyapunov exponent (Mogavero and Laskar, 2022).

2This resonance involves the fundamental precession frequencies of Mercury and Jupiter perihelia
(Laskar, 2008; Batygin and Laughlin, 2008; Boué et al., 2012).

3“At each stage of its evolution, the system should have a time of stability comparable with its age”
(Laskar, 1996)
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discuss the connections with other classical quasi-integrable systems and the methods
used in this work.

5.2 Dynamical model

The long-term dynamics of the Solar System planets consists essentially of the slow
precession of their perihelia and nodes, driven by secular, orbit-averaged gravitational
interactions (Laskar, 1990; Laskar et al., 2004). At first order in planetary masses, the
secular Hamiltonian corrected for the leading contribution of general relativity reads (e.g.
Morbidelli, 2002; Mogavero and Laskar, 2021)

Ĥ = −
8∑

i=1



i−1∑

l=1

〈
Gmiml

‖ri − rl‖

〉
+

3G2m2
0mi

c2a2
i

√
1− e2

i


 . (5.1)

The planets are indexed in order of increasing semi-major axes (ai)
8
i=1, m0 and mi are the

Sun and planet masses, respectively, ei the eccentricities, G the gravitational constant
and c the speed of light. The vectors ri are the heliocentric positions of the planets, and
the bracket operator represents the averaging over the mean longitudes resulting from the
elimination of the non-resonant Fourier harmonics of the N -body Hamiltonian (Morbidelli,
2002; Mogavero and Laskar, 2021). Hamiltonian (5.1) generates Gauss’s dynamics of
Keplerian rings (Gauss, 1818; Mogavero and Laskar, 2021), whose semi-major axes ai are
constants of motion of the secular dynamics.

By developing the 2-body perturbing function (Laskar, 1991; Laskar and Robutel,
1995) in the computer algebra system TRIP (Gastineau and Laskar, 2011, 2021), the
secular Hamiltonian can be systematically expanded in series of the Poincaré rectangular
coordinates in complex form,

xi =
√

Λi

√
1−

√
1− e2

iE
j̟i ,

yi =
√

2Λi

(
1− e2

i

) 1
4 sin(Ii/2)EjΩi ,

(5.2)

where Λi = µi[G(m0 +mi)ai]
1/2, µi = m0mi/(m0 +mi) being the reduced masses of the

planets, Ii the inclinations, ̟i the longitudes of the perihelia and Ωi the longitudes of the
nodes4. Pairs (xi,−jxi) and (yi,−jyi) are canonically conjugate momentum-coordinate
variables. When truncating at a given total degree 2n in eccentricities and inclinations,
the expansion provides Hamiltonians Ĥ2n = Ĥ2n[(xi, x̄i, yi, ȳi)

8
i=1] that are multivariate

polynomials.
Valuable insight into the dynamics of the inner planets is provided by the model of a

forced ISS recently proposed (Mogavero and Laskar, 2021). It exploits the great regularity
of the long-term motion of the outer planets (Laskar, 1990; Laskar et al., 2004; Hoang
et al., 2021) to predetermine their orbits to a quasi-periodic form:

xi(t) =
Mi∑

l=1

x̃il E
jmil·ωot, yi(t) =

Ni∑

l=1

ỹil E
jnil·ωot, (5.3)

4E represents the exponential operator and j stands for the imaginary unit. The overline on variables
denotes complex conjugate.
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for i ∈ {5, 6, 7, 8}, where t denotes time, x̃il and ỹil are complex amplitudes, mil and
nil integer vectors, and ωo = (g5, g6, g7, g8, s6, s7, s8) represents the septuple of the con-
stant fundamental frequencies of the outer orbits. Frequencies and amplitudes of this
Fourier decomposition are established numerically by frequency analysis (Laskar, 1988,
2005) of a comprehensive orbital solution of the Solar System (Mogavero and Laskar,
2021, Appendix D). Gauss’s dynamics of the forced ISS is obtained by substituting the
predetermined time dependence in Eq. (5.1),

H = Ĥ[(xi, yi)
4
i=1, (xi = xi(t), yi = yi(t))

8
i=5], (5.4)

so that H = H[(xi, yi)
4
i=1, t]. The resulting dynamics consists of two DOFs for each inner

planet, corresponding to the xi and yi variables, respectively. Therefore, the forced secular
ISS is described by 8 DOFs and an explicit time dependence. As a result of the forcing
from the outer planets, no trivial integrals of motion exist and its orbital solutions live in
a 16-dimensional phase space.

A truncated Hamiltonian H2n for the forced ISS is readily obtained by substituting
Eq. (5.3) in the truncated Hamiltonian Ĥ2n of the entire Solar System. At the lowest
degree, H2 generates a linear, forced Laplace-Lagrange (LL) dynamics. This can be
analytically integrated by introducing complex proper mode variables (ui, vi)

4
i=1 via a

time-dependent canonical transformation (xi,−jxi)→ (ui,−jui), (yi,−jyi)→ (vi,−jvi)
(Mogavero and Laskar, 2021). Action-angle pairs (Xi, χi), (Ψi, ψi) are introduced as

ui =
√
XiE

−jχi , vi =
√

ΨiE
−jψi . (5.5)

When expressed in the proper modes, the truncated Hamiltonian can be expanded as a
finite Fourier series:

H2n(I,θ, t) =
∑

k,ℓ

H̃
k,ℓ
2n (I)Ej(k·θ+ℓ·φ(t)), (5.6)

where I = (X,Ψ) and θ = (χ,ψ) are the 8-dimensional vectors of the action and angle
variables, respectively, and we introduced the external angles φ(t) = −ωot. The wave
vectors (k, ℓ) belong to a finite subset of Z8 × Z

7. At degree two, one has H2 = −ωLL · I,
where ωLL = (g

LL
, sLL) ∈ R

4 × R
4 are the LL fundamental precession frequencies of the

inner planet perihelia and nodes. Hamiltonian H2n is in quasi-integrable form.
The quasi-periodic form of the outer orbits in Eq. (5.3) contains harmonics of order

higher than one, that is, ‖mil‖1 > 1 and ‖nil‖1 > 1 for some i and l, where ‖ · ‖1 denotes
the 1-norm. Therefore, the dynamics of H2n and H2n are not exactly the same (Mogavero
and Laskar, 2021). Still, the difference is irrelevant for the results of this work, so we
shall treat the two Hamiltonians as equivalent from now on. Despite the simplifications
behind Eqs. (5.1) and (5.3), the forced secular ISS has been shown to constitute a realistic
model that is consistent with the predictions of reference integrations of the Solar System
(Laskar, 1990; Laskar et al., 2004; Laskar, 2008; Laskar and Gastineau, 2009). It correctly
reproduces the finite-time maximum Lyapunov exponent (FT-MLE) and the statistics of
the high eccentricities of Mercury over 5 Gyr (Mogavero and Laskar, 2021).

5.3 Lyapunov spectrum

Ergodic theory provides a way, through the Lyapunov characteristic exponents (LCEs),
to introduce a fundamental set of timescales for any differentiable dynamical system
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ż = F (z, t) defined on a phase space P ⊆ R
P (Oseledec, 1968; Eckmann and Ruelle, 1985;

Gaspard, 1998; Skokos, 2010). If Φ(z, t) denotes the associated flow and z(t) = Φ(z0, t)
the orbit that emanates from the initial condition z0, the LCEs λ1 ≥ λ2 ≥ · · · ≥ λP are
the logarithms of the eigenvalues of the matrix Λ(z0) defined as

lim
t→∞

(
M(z0, t)

TM(z0, t)
)1/2t

= Λ(z0), (5.7)

where M(z0, t) = ∂Φ/∂z0 is the fundamental matrix and T stands for transposition
(Eckmann and Ruelle, 1985; Gaspard, 1998). Introducing the Jacobian J = ∂F /∂z, the
fundamental matrix allows to write the solution of the variational equations ζ̇ = J(z(t), t)ζ
as ζ(t) = M(z0, t)ζ0, where ζ(t) ∈ Tz(t)P belongs to the tangent space of P at point z(t)
and ζ0 = ζ(0). The multiplicative ergodic theorem of Oseledec (1968) states that if ρ is
an ergodic (i.e. invariant and indecomposable) measure for the time evolution and has
compact support, then the limit in Eq. (5.7) exists for ρ-almost all z0, and the LCEs
are ρ-almost everywhere constant and only depend on ρ (Eckmann and Ruelle, 1985).
Moreover, one has

lim
t→∞

1

t
log ‖M(z0, t)ζ0‖ = λ(i) if ζ0 ∈ E(i)

z0
\ E(i+1)

z0
, (5.8)

for ρ-almost all z0, where λ(1) > λ(2) > . . . are the LCEs without repetition by multiplicity,
and E(i)

z0
is the subspace of RP corresponding to the eigenvalues of Λ(z0) that are smaller

than or equal to expλ(i), with Tz0
P = E(1)

z0
⊃ E(2)

z0
⊃ · · · . The specific choice of the

R
P -norm ‖·‖ in Eq. (5.8) is irrelevant (Eckmann and Ruelle, 1985; Skokos, 2010). Once the

LCEs have been introduced, a characteristic timescale can be defined from each positive
exponent as λ−1

i . In the case of the maximum Lyapunov exponent, λ1, the corresponding
timescale is commonly called the Lyapunov time.

For a Hamiltonian system with p DOFs (i.e. P = 2p), the fundamental matrix is
symplectic and the set of LCEs is symmetric with respect to zero, that is,

∆λi := λi + λ2p−i+1 = 0 for all 1 ≤ i ≤ p. (5.9)

If the Hamiltonian is time independent, a pair of exponents vanishes. In general, the
existence of an integral of motion C = C(z) implies a pair of null exponents, one of them
being associated with the direction of the tangent space that is normal to the surface of
constant C (e.g. Gaspard, 1998).

The ISS is a clear example of a dynamical system that is out of equilibrium. Its phase-
space density diffuses seamlessly over any meaningful timescale (Laskar, 2008; Hoang
et al., 2021). Therefore, the infinite time limit in Eq. (5.7) is not physically relevant.
The non-null probability of a collisional evolution of the inner planets (Laskar, 1994,
2008; Batygin and Laughlin, 2008; Laskar and Gastineau, 2009) implies that such limit
does not even exist as a general rule. Most of the orbital solutions stemming from the
current knowledge of the Solar System are indeed asymptotically unstable (Mogavero
and Laskar, 2021; Hoang et al., 2022). Physically relevant quantities are the finite-time
LCEs (FT-LCEs), λi(z0, t), defined from the eigenvalues m1 ≥ m2 ≥ · · · ≥ mP of the
time-dependent symmetric positive-defined matrix M(z0, t)

TM(z0, t) as

λi(z0, t) =
1

2t
logmi(z0, t). (5.10)
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On the top of that, a computation of the exponents for an ensemble of trajectories is
advisable for a non-ergodic dynamics (Mogavero and Laskar, 2021). These considerations
show how demanding the computation of the Lyapunov spectrum of the Solar System
planets is. Nevertheless, a 5-Gyr integration of the forced ISS takes only a couple of hours
for Gauss’s dynamics (H) and a few minutes at degree 4 (H4). This dynamical model
thus provides an unique opportunity to compute all the FT-LCEs that are mainly related
to the secular evolution of the inner orbits.

We compute the Lyapunov spectrum of the truncated forced ISS using the standard
method of Benettin et al. (1980), based on Gram-Schmidt orthogonalization. Manipulation
of the truncated HamiltonianH2n in TRIP allows us to systematically derive the equations
of motion and the corresponding variational equations, which we integrate through an
Adams PECE method of order 12 and a timestep of 250 years. Parallelization of the
time evolution of the 16 tangent vectors, between two consecutive reorthonormalization
steps of the Benettin et al. (1980) algorithm, significantly reduces the computation time.
Figure 5.1a shows the positive FT-LCEs expressed as angular frequencies over the next 10
Gyr for the Hamiltonian truncated at degree 4. The FT-LCEs are computed for 150 stable
solutions, with initial conditions very close to the nominal values of Gauss’s dynamics
and random sets of initial tangent vectors (Mogavero and Laskar, 2022, Appendix C).
The figure shows the [5th, 95th] percentile range of the marginal PDF of each exponent
estimated from the ensemble of solutions. For large times, the exponents of each solution
become independent of the initial tangent vectors, the renormalization time, and the norm
chosen for the phase-space vectors (Appendix C.1, Fig. C.1a). In this asymptotic regime,
the Benettin et al. (1980) algorithm purely retrieves the FT-LCEs as defined in Eq. (5.10),
and the width of their distributions only reflects the out-of-equilibrium dynamics of the
system. The convergence of our numerical computation is also assessed by verifying the
symmetry of the spectrum stated in Eq. (5.9) (Appendix C.1, Fig. C.1b).

The spectrum in Fig. 5.1a has distinctive features. A set of intermediate exponents
follow the MLE, ranging from 0.1 to 0.01′′ yr−1, while the smallest ones fall below 0.01′′ yr−1.
Figure 5.1a reveals the existence of a hierarchy of exponents and corresponding timescales
that spans two orders of magnitude, down to a median value of λ−1

8 ≈ 500 Myr. The
number of positive exponents confirms that no integral of motion exists, as one may expect
from the forcing of the outer planets. We also compute the spectrum for the Hamiltonian
truncated at degree 6. As shown in Appendix C.1 (Fig. C.2), the asymptotic distributions
of the exponents are very similar to those at degree 4. This result suggests that long-term
diffusion of the phase-space density is very close in the two cases. The different instability
rates of the two truncated dynamics mainly relates to the geometry of the instability
boundary, which is closer to the initial position of the system for H6 than for H4 (Hoang
et al., 2022).

The relevance of the Lyapunov spectrum in Fig. 5.1a emerges from the fact that the
existence of an integral of motion implies a pair of vanishing exponents. This is a pivotal
point: By a continuity argument, the presence of positive exponents much smaller than
the leading one constitutes a compelling indication that there are dynamical quantities
whose chaotic decoherence over initially very close trajectories takes place over timescales
much longer than the Lyapunov time. In the long term, such quantities should diffuse
much more slowly than any LL action variable. Therefore, Fig. 5.1a suggests that the
secular orbits of the inner planets are characterized by a slow-fast dynamics that is much



84 Chapter 5. Timescales of chaos in the Inner Solar System

more pronounced than the well-known timescale separation arising from the LL integrable
approximation. The existence of slow quantities, which are a priori complicated functions
of the phase-space variables, is crucial in the context of finite-time stability as they
can effectively constrain the long-term diffusion of the phase-space density towards the
unstable states. Next section addresses the emergence of these slow quantities from the
symmetries of the Fourier harmonics that compose the Hamiltonian.

5.4 Quasi-integrals of motion

The emergence of a chaotic behavior of the planetary orbits can be explained in terms
of the pendulum-like dynamics generated by each Fourier harmonic that composes the
Hamiltonian in Eq. (5.6) (e.g. Chirikov, 1979). One can write H2n(I,θ, t) = H̃

0,0
2n (I) +∑Mn

i=1 Fi(I,θ, t), with

Fi(I,θ, t) = H̃
ki,ℓi

2n (I) Ej(ki·θ+ℓi·φ(t)) + c.c., (5.11)

where (ki, ℓi) 6= (0,0),Mn is the number of harmonics in H2n with a non-null wave vector,
and c.c. stands for complex conjugate. Chaos arises from the interaction of resonant
harmonics, that is, those harmonics Fi whose frequency combination ki · θ̇ + ℓi · φ̇(t)
vanishes at some point along the motion. Using the computer algebra system TRIP, the
harmonics of H10 that enter into resonance along the 5-Gyr nominal solution of Gauss’s
dynamics have been systematically retrieved, together with the corresponding time statistic
of the resonance half-widths ∆ω (Mogavero and Laskar, 2022). The resonances have then
been ordered by decreasing time median of their half-widths. The resulting ranking of
resonances will be denoted asR1 from now on. Table 5.1 recalls the 30 strongest resonances
that are active for more than 1% of the 5-Gyr time span of the orbital solution. The wave
vector of each harmonic is identified by the corresponding combination of frequency labels
(gi, si)

8
i=1, that is, k ·ωi +ℓ ·ωo, with ωi = (g1, g2, g3, g4, s1, s2, s3, s4). Table 5.1 also shows

the order of each harmonic, defined as the even integer O = ‖(k, ℓ)‖1. The support of the
asymptotic ensemble distribution of the FT-MLE shown in Fig. 5.1a overlaps in a robust
way with that of the time distribution of the half-width of the strongest resonances. In
other words,

2πλ1 ≈ ∆ωR1 , (5.12)

where ∆ωR1 stands for the half-width of the uppermost resonances of ranking R1. Equa-
tion (5.12) shows the dynamical sources of chaos in the ISS by connecting the top of the
Lyapunov spectrum with the head of the resonance spectrum. Computer algebra allows
us to establish such a connection in an unbiased way despite the multidimensional nature
of the dynamics. We stress that such analysis is built on the assumption that the time
distribution of physical observables along the 5-Gyr nominal solution of Gauss’s dynamics
should be representative of their ensemble distribution (defined by a set of stable orbital
solutions with very close initial conditions) at some large time of the order of billions of
years (Mogavero and Laskar, 2022).

We remark that, strictly speaking, ranking R1 is established on the Fourier harmonics
of the Lie-transformed Hamiltonian H

′
2n (Mogavero and Laskar, 2022, Appendix G). New

canonical variables are indeed defined to transform H2n in a Birkhoff normal form to
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Table 5.1 — Top of ranking R1. First 30 resonant harmonics of H10 along the 5-Gyr nominal
solution of Gauss’s dynamics, in order of decreasing time median of the resonance half-width
∆ω (arcsec yr−1). O is the order of the harmonic. τ res is the fraction of time the harmonic
is resonant. Only harmonics with τ res > 1% are shown. 5th and 95th percentiles of the time
distribution of ∆ω as subscripts and superscripts, respectively. Adapted from (Mogavero and
Laskar, 2022, Table 2).

i Fourier harmonic Fi Oi τ res
i ∆ωi

1 g3 − g4 − s3 + s4 4 12% 0.3320.526
0.093

2 g1 − g2 + s1 − s2 4 19% 0.3020.611
0.154

3 g2 − g5 − 2s1 + 2s2 6 23% 0.1050.223
0.041

4 2g3 − 2g4 − s3 + s4 6 70% 0.0760.159
0.023

5 g1 − g5 − s1 + s2 4 10% 0.0740.178
0.056

6 g2 − g4 + s2 − s4 4 6% 0.0660.098
0.025

7 g1 − 2g2 + g4 + s1 − 2s2 + s4 8 5% 0.0610.074
0.051

8 g1 − g3 + s2 − s3 4 17% 0.0560.090
0.028

9 g1 + g3 − 2g4 + s2 − s3 6 5% 0.0530.061
0.037

10 3g3 − 3g4 − s3 + s4 8 9% 0.0520.140
0.007

11 g2 − g3 − s1 + 2s2 − s3 6 5% 0.0380.047
0.028

12 g1 − 2g3 + g4 + s2 − s4 6 36% 0.0380.083
0.016

13 2g1 − g3 − g5 + s2 − s4 6 5% 0.0370.043
0.028

14 g4 − g5 − s2 + 2s3 − s4 6 2% 0.0330.036
0.031

15 g1 − 2g3 + g4 + s1 + s3 − 2s4 8 25% 0.0330.045
0.014

16 g1 − g4 + s1 − s4 4 23% 0.0320.054
0.017

17 g1 − 2g2 + g5 + 3s1 − 3s2 10 6% 0.0320.039
0.023

18 g1 − g4 + s2 − s3 4 18% 0.0310.073
0.016

19 3g1 − g2 − g4 − g5 + s1 − s3 8 2% 0.0310.042
0.023

20 2g1 − g2 − g3 + s1 − s3 6 29% 0.0280.051
0.016

21 2g1 − g2 − g4 + s1 − s3 6 3% 0.0260.028
0.021

22 3g3 − 3g4 − 2s3 + 2s4 10 8% 0.0250.055
0.012

23 2g1 − g2 − 2g3 + g4 + s1 − s4 8 3% 0.0230.036
0.012

24 2g3 − g4 − g5 − s1 + s4 6 16% 0.0230.048
0.010

25 g1 − 3g3 + 2g4 + s2 − s4 8 7% 0.0210.030
0.008

26 g1 − g2 − g3 + g4 + s1 − s2 6 6% 0.0210.032
0.004

27 g1 + g3 − 2g4 + s1 − s4 6 3% 0.0210.022
0.017

28 g1 + g2 − 2g5 − 3s1 + 3s2 10 4% 0.0200.028
0.006

29 3g1 − g2 − g4 − g5 + s2 − s3 8 4% 0.0200.027
0.008

30 2g1 − g4 − g5 + s2 − s4 6 7% 0.0200.029
0.007
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degree 4. The goal is to let the interactions of the terms of degree 4 in H2n to appear
more explicitly in the amplitudes of the harmonics of higher degrees in H

′
2n, the physical

motivation being that the non-linear interaction of the harmonics at degree 4 constitutes
the primary source of chaos (Mogavero and Laskar, 2022). Keeping in mind the quasi-
identity nature of the Lie transform, here we shall drop for simplicity the difference
between the two Hamiltonians. Moreover, all the new analyses of this work will involve
the original variables of Eq. (5.5).

5.4.1 Quasi-symmetries of the resonant harmonics

In addition to the dynamical interactions responsible for the chaotic behavior of the orbits,
Table 5.1 provides information on the geometry of the dynamics in the action variable
space. Ranking the Fourier harmonics allows to consider partial Hamiltonians constructed
from a limited number m of leading terms (Mogavero and Laskar, 2022; Hoang et al.,
2022), that is,

H2n,m = H̃
0,0
2n +

∑m
i=1Fi. (5.13)

The dynamics of a Hamiltonian reduced to a small set of harmonics is generally character-
ized by several symmetries and corresponding integrals of motion. We shall be interested
in how these symmetries are progressively destroyed when one increases the number of
terms taken into account in Eq. (5.13).

Consider a set of m harmonics of H2n and a dynamical quantity that is a linear
combination of the action variables, that is,

Cγ = γ · I, (5.14)

γ ∈ R
8 being a parameter vector. From Eq. (5.11), the partial contribution of the m

harmonics to the time derivative of Cγ along the flow of H2n is

Ċγ,m = 2
m∑

i=1

γ · ki Im{H̃ki,ℓi

2n (I) Ej(ki·θ+ℓi·φ(t))}, (5.15)

and Ċγ = Ċγ,Mn
, where Mn is the total number of harmonics with a non-null wave

vector that appear in H2n. Any quantity Cγ with γ · ki = 0 is conserved by the one-DOF
dynamics generated by the single harmonic Fi. In other words, such a quantity would
be an integral of motion if Fi were the only harmonic to appear in the Hamiltonian.
Considering now m different harmonics, these do not contribute to the change of the
quantity Cγ if γ ⊥ span(k1,k2, . . . ,km), that is, if the vector γ belongs to the orthogonal
complement of the linear subspace of R8 spanned by the wave vectors (ki)mi=1. We shall
also consider the quantity

C ′
γ = H2n + γ · I. (5.16)

Due to the explicit time dependence in the Hamiltonian, the partial contribution of a set
of m harmonics to the time derivative of C ′

γ along the flow of H2n is

Ċ ′
γ,m = 2

m∑

i=1

(γ · ki + ℓi · ωo) Im{H̃ki,ℓi

2n (I) Ej(ki·θ+ℓi·φ(t))}, (5.17)
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the harmonics in Table 5.1 verify the relation
∑4
i=1 k

inc
i = 0, where kinc = (kinc

1 , . . . , kinc
4 ).

Therefore, denoting γ1 = (04,14), the quantity

Cinc := Cγ1
= Ψ1 + Ψ2 + Ψ3 + Ψ4 (5.19)

is conserved by these resonances. Cinc is the angular momentum deficit (AMD) (Laskar,
1997) contained in the inclination DOFs. This symmetry can be then interpreted as
a remnant of the conservation of the AMD of the entire (secular) Solar System. We
remark that the AMD contained in the eccentricity DOFs, Cecc =

∑4
i=1 Xi, is not invariant

under the leading resonances because of the eccentricity forcing mainly exerted by Jupiter
through the mode g5. The conservation of Cinc depends on two facts: the inclination
modes s6, s7, s8 of the external forcing do not appear in Table 5.1; low-order harmonics
like 2g1 − s1 − s2, 2g1 − 2s1 and 2g1 − 2s2 are never resonant (even if they can raise large
quasi-periodic contributions), so that two AMD reservoirs Cecc and Cinc are decoupled in
Table 5.1. We recall that the absence of an inclination mode s5 in the external forcing
relates to the fixed direction of the angular momentum of the entire Solar System (Laskar,
1990; Morbidelli, 2002; Boué and Laskar, 2009).

Third symmetry. The first two symmetries could be expected to some extent on the
basis of physical intuition of the interaction between outer and inner planets. However,
it is not easy to even visually guess the third one from Table 5.1. Consider the 30 × 8
matrix K30 whose rows are the wave vectors (ki)30

i=1 of the listed resonances. A singular
value decomposition shows that the rank of K30 is equal to 6. Therefore, the linear
subspace V30 = span(k1,k2, . . . ,k30) spanned by the wave vectors has dimension 6. A
Gram–Schmidt orthogonalization allows to determine two linearly independent vectors
that span its orthogonal complement V ⊥

30 . One choice consists in V ⊥
30 = span(γ2,γ

⊥
2 ), with

C2 := Cγ2
= −X3 − X4 + Ψ1 + Ψ2 + 2Ψ3 + 2Ψ4,

C⊥
2 := Cγ⊥

2
= X3 + X4 + Ψ1 + Ψ2.

(5.20)

Since the second symmetry clearly requires that γ1 ∈ V ⊥
30 , the three quantities Cinc, C2, C⊥

2

are not independent and one has indeed Cinc = (C2 +C⊥
2 )/2. We remark that (C2−C⊥

2 )/2 =
−X3 − X4 + Ψ3 + Ψ4. The additional symmetry can be thus interpreted in terms of a
certain decoupling between the DOFs 3, 4 and 1, 2, representing in the proper modes the
Earth-Mars and Mercury-Venus subsystems, respectively.

The aforementioned symmetries, that exactly characterize the resonances listed in
Table 5.1, naturally represent quasi-symmetries when considering the entire spectrum of
resonances R1. They are indeed broken at some point by weak resonances (see Sect. 5.4.3).
Quantities E2n, Cinc, and C2 are the corresponding QIs of motion. The persistence of the
three symmetries under the 30 leading resonances is somewhat surprising. Concerning
Cinc and C2, for example, one might reasonably expect that, since the ISS has 8 DOFs, the
subspace spanned by the wave vectors of just a dozen of harmonics should already have
maximal dimension, destroying all possible symmetries.

We remark that, differently from Cinc and C2, the quantity E2n is a non-linear function
of the action-angle variables. However, as far as stable orbital evolutions are concerned,
the convergence of the series expansion of the Hamiltonian is sufficiently fast that the
linear LL approximation E2 = H2 + g518 · I = Cγ3

, with γ3 = −ωLL + g518, reproduces
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reasonably well E2n along the flow of H2n for n > 1. The vector γ3 will be used in Sect. 5.5,
together with γ1 and γ2, to deal with the geometry of the linear action subspace spanned
by the QIs. The explicit expressions of these vectors are given in Appendix C.2. We
mention that, differently from γ1 and γ2, the components of γ3 are not integer and they
have the dimension of a frequency.

5.4.2 Slow variables

The QIs of motion E2n, Cinc, C2 are clearly strong candidates for slow variables once
evaluated along the orbital solutions. In what follows, to assess the slowness of a dynamical
quantity when compared to the typical variations of the action variables, we shall consider
the variance of its time series along a numerical solution.

We define the dimensionless QIs

Ĉinc =
Cinc

‖γ1‖C0

, Ĉ2 =
C2

‖γ2‖C0

, Ê2n =
E2n

‖γ3‖C0

, (5.21)

where C0 stands for the current total AMD of the inner planets, that is, the value of
Cecc + Cinc at time zero. We stress that, by introducing the unit vectors γ̂i = γi/‖γi‖
for i ∈ {1, 2, 3}, one has Ĉinc = Cγ̂1

/C0 and Ĉ2 = Cγ̂2
/C0. At degree 2, one also has

Ê2 = Cγ̂3
/C0. We then consider the ensembles of numerical integrations of H4 and H6,

with very close initial conditions and spanning 100 Gyr in the future, that have been
presented in ref. (Hoang et al., 2022). The top row of Fig. 5.2 shows the time evolution
over 5 Gyr of the dimensionless QIs and of two components of the dimensionless action
vector Î = I/C0 along the nominal orbital solutions of the two ensembles. We subtract
from each time series its mean over the plotted time span. The time series are low-pass
filtered by employing the Kolmogorov-Zurbenko (KZ) filter with three iterations of the
moving average (Zurbenko and Smith, 2018; Mogavero and Laskar, 2021). A cutoff
frequency of 1 Myr−1 is chosen to highlight the long-term diffusion that can be hidden by
short-time quasi-periodic oscillations. This is in line with our definition of quasi-integrals
based on contribution from resonant harmonics only. Figure 5.2 clearly shows that the
QIs are slowly-diffusing variables when compared to an arbitrary function of the action
variables. The behavior of the QIs along the nominal orbital solutions of Fig. 5.2 is
confirmed by a statistical analysis in Appendix C.3. Figure C.3 shows the time evolution
of the distributions of the same quantities as Fig. 5.2 over the stable orbital solutions of
the entire ensembles of 1080 numerical integrations of ref. (Hoang et al., 2022). Figure C.4
details the growth of the QI dispersion over time.

We remark that C2 and E2n show very similar time evolutions along stable orbital
solutions, as can be seen in the top row Fig. 5.2. This is explained by the interesting
observation that the components of the unit vectors γ̂2 and γ̂3 differ from each other by
only a few percent, as shown in Appendix C.2. However, we stress that the two vectors
are in fact linearly independent: C2 does not depend on the actions X1 and X2, while E2n

does. The two QIs move away from each other when high eccentricities of Mercury are
reached, that is, for large excursions of the Mercury-dominated action X1.
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Table 5.2 — Top of ranking R2. First 10 symmetry-breaking resonances of H10 along the
5-Gyr nominal solution of Gauss’s dynamics, that change E2n, Cinc, and C2, respectively (see
Table 5.1 for details).

i Fourier harmonic Fi Oi τ res
i ∆ωi

E2n

1 g1 + g2 − 2g5 + s2 − s7 6 1% 0.0180.020
0.016

2 g1 − 2g2 + g6 − s2 + s6 6 4% 0.0170.024
0.008

3 g3 − g6 + s2 − s4 4 10% 0.0170.022
0.009

4 g5 − g7 + s3 − s4 4 5% 0.0170.024
0.010

5 g4 − g6 + s2 − s4 4 4% 0.0160.021
0.007

6 g2 − 2g4 + g6 4 12% 0.0160.027
0.009

7 g1 − g3 − g5 + g6 − s1 + s4 6 6% 0.0150.024
0.011

8 2g3 − 2g4 + g5 − g7 6 25% 0.0140.022
0.006

9 g2 + g3 − 3g4 + g6 6 3% 0.0140.017
0.010

10 g2 − 2g3 + g6 + s3 − s4 6 3% 0.0110.018
0.003

Cinc

1 g1 + g2 − 2g5 + s2 − s7 6 1% 0.0180.020
0.016

2 g1 − 2g2 + g6 − s2 + s6 6 4% 0.0170.024
0.008

3 g2 − g6 + s1 − s6 4 8% 0.0110.017
0.003

4 g4 − g6 − 2s3 + 3s4 − s6 8 5% 0.0100.012
0.002

5 2g1 − 2g5 + s1 − s7 6 1% 0.0070.008
0.005

6 4g1 − 3g2 − g5 − s2 + s7 10 7% 0.0060.015
0.003

7 g3 − g6 − 2s3 + 3s4 − s6 8 2% 0.0060.011
0.003

8 4g1 − g2 − g3 − s1 − 2s2 + s4 10 2% 0.0060.009
0.001

9 2g1 − g2 − g5 + 3s1 − 2s2 − s7 10 3% 0.0060.008
0.002

10 3g1 − 3g2 + s1 − 2s2 + s7 10 19% 0.0060.009
0.002

C2

1 g1 + g2 − 2g5 + s2 − s7 6 1% 0.0180.020
0.016

2 g1 − 2g2 + g6 − s2 + s6 6 4% 0.0170.024
0.008

3 g3 − g6 + s2 − s4 4 10% 0.0170.022
0.009

4 g4 − g6 + s2 − s4 4 4% 0.0160.021
0.007

5 g2 − 2g4 + g6 4 12% 0.0160.027
0.009

6 g1 − g3 − g5 + g6 − s1 + s4 6 6% 0.0150.024
0.011

7 g2 + g3 − 3g4 + g6 6 3% 0.0140.017
0.010

8 g2 − 2g3 + g6 + s3 − s4 6 3% 0.0110.018
0.003

9 g1 − g3 − g4 + g6 + s1 − s2 6 4% 0.0110.013
0.008

10 g2 − g6 + s1 − s6 4 8% 0.0110.017
0.003
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5.4.3 Weak resonances and Lyapunov spectrum

A fundamental result from Table 5.1 is that the symmetries introduced in Sect. 5.4.1
are still preserved by resonances that have half-widths an order of magnitude smaller
than those of the strongest terms. It is natural to extract from ranking R1 the weak
resonances that break the three symmetries. A new ranking of resonances R2 is defined
in this way. Table 5.2 reports the 10 strongest symmetry-breaking resonances that change
E2n, Cinc, C2, respectively. As in Table 5.1, only harmonics that are resonant for more than
1% of the 5-Gyr time span of the nominal solution of Gauss’s dynamics are shown. The
leading symmetry-breaking resonances have half-widths of about 0.01′′ yr−1. For each QI,
the dominant contribution comes from harmonics involving Fourier modes of the outer
planet forcing other than g5: the Saturn-dominated modes g6, s6 and the modes g7, s7

mainly associated to Uranus. In the case of Cinc, there is also a contribution that starts
at about 0.006′′ yr−1 with F8 = 4g1 − g2 − g3 − s1 − 2s2 + s4 and comes from high-order
internal resonances, that is, resonances that only involve the DOFs of the inner planets.
We remark that the decrease of the resonance half-width with the index of the harmonic
in Table 5.2 is steeper for Cinc than for E2n, C2, and is accompanied by a greater presence
of high-order resonances. This may notably explain why the secular variations of Cinc

are somewhat smaller in the top row of Fig. 5.2. We finally point out the important
symmetry-breaking role of the modes g7, s7, representing the forcing mainly exerted by
Uranus. Differently from what one might suppose, these modes cannot be completely
neglected when addressing the long-term diffusion of ISS. This recalls the role of the modes
s7 and s8 in the spin dynamics of Venus (Correia and Laskar, 2003), and is basically a
manifestation of the long-range nature of the gravitational interaction.

As stated in Sect. 5.3, a pair of Lyapunov exponents would vanish if there were an
exact integral of motion. In presence of a weakly broken symmetry, one may expect a
small positive Lyapunov exponent whose value relates to the half-width of the strongest
resonances driving the time variation of the corresponding QI. Such an argument is a
natural extension of the correspondence between the FT-MLE and the top of the resonance
spectrum given in Equation (5.12). Comparison of Table 5.2 with the Lyapunov spectrum
in Fig. 5.1a shows that the time statistics of the half-widths of the symmetry-breaking
resonances of ranking R2 overlaps with the ensemble distribution of the three smallest
FT-LCEs, that is, λ6, λ7, λ8. One can indeed write

2πλ6 ≈ ∆ωR2 , (5.22)

where ∆ωR2 stands for the half-width of the uppermost resonances of rankingR2. Table 5.2
and Fig. 5.1a suggest a relation between the QIs and the smallest Lyapunov exponents:

λ6, λ7, λ8 ←→ E2n, Cinc, C2. (5.23)

Equation (5.23) is not a one-to-one correspondence, nor it should be understood as an exact
relation since, for example, λ6 is not well separated from the larger exponents. Its physical
meaning is that the QIs are among the slowest DOFs of the ISS dynamics. Such claim is
one of the core points of this work. In Sect. 5.5, we will show its statistical validity in the
geometric framework established by a principal component analysis of the orbital solutions.
Moreover, Sect. 5.4.4 shows that Eq. (5.23) can be stated more precisely in the case of a
simplified dynamics that underlies H2n. We remark that E2n, Cinc, C2 constitute a set of three
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Table 5.3 — Top of ranking R3. First 10 symmetry-breaking resonances of H10 along the
5-Gyr nominal solution of Gauss’s dynamics, that only involve g5 among the external modes
and change E2n, Cinc, and C2, respectively. For Cinc, Only harmonics that are resonant for more
than one percent of time are shown, i.e. τ res > 1%

i Fourier harmonic Fi Oi τ res
i ∆ωi

E2n

No resonances

Cinc
1

1 4g1 − g2 − g3 − s1 − 2s2 + s4 10 2.0% 0.0060.009
0.001

2 2g1 + g2 − g4 − 2s1 − s2 + s3 8 2.5% 0.0030.008
0.002

3 3g1 − g2 − s1 − 3s2 + s3 + s4 10 1.5% 0.0030.005
0.001

4 2g1 − g4 + g5 − s1 − 2s2 + s4 8 1.3% 0.0030.006
0.001

5 4g1 − g2 − g4 − s1 − 2s2 + s4 10 1.4% 0.0030.004
0.001

6 4g1 − g2 − g4 − 3s2 + s3 10 1.3% 0.0030.005
0.001

7 3g1 − g4 − 2s1 − s2 + s4 8 1.8% 0.0030.004
0.001

8 3g1 − g3 − 2s1 − s2 + s4 8 1.6% 0.0020.006
0.000

9 2g1 − g3 + g5 − s1 − 2s2 + s4 8 1.0% 0.0020.004
0.000

10 g1 + g2 − g3 + g5 − 2s1 − s2 + s3 8 1.3% 0.0020.003
0.001

C2

1 g1 − 3g2 + 2g5 − s1 + 2s2 − s4 10 0.01o/oo 1e−41e−4

1e−4

2 2g1 − 4g2 + 2g5 + s2 − s4 10 0.08o/oo 8e−51e−4

2e−5

3 3g2 − 3g5 + s1 − 2s2 + s3 10 0.01o/oo 3e−53e−5

3e−5

4 g1 − 4g2 + g3 + 2g5 − s1 + s2 10 0.13o/oo 3e−55e−5

2e−6

5 g1 + 3g2 − 4g5 − s2 + s4 10 0.56o/oo 3e−54e−5

2e−5

6 g1 − 4g2 + 3g5 + s2 − s4 10 0.01o/oo 2e−52e−5

2e−5

7 3g2 − 3g5 + s1 − 2s2 + s4 10 0.13o/oo 1e−53e−5

7e−6

8 4g2 − g3 − g4 − 2g5 + s1 − s3 10 0.03o/oo 1e−51e−5

9e−6

9 2g1 − 5g2 + g4 + 2g5 10 0.02o/oo 9e−69e−6

9e−6

10 2g1 − 5g2 + g3 + 2g5 10 0.14o/oo 6e−68e−6

3e−6

QIs that are independent and nearly in involution, and it is thus meaningful to associate
three different Lyapunov exponents with them. On the one hand, the independence is
easily checked at degree 2 as the vectors γ1,γ2,γ3 are linearly independent. On the other
hand, one has the Poisson bracket {Cinc, C2} = 0, since the two quantities are functions of
the action variables only. One also has {E2n, Cinc} = {H2n, Cinc} = Ċinc and {E2n, C2} = Ċ2.
Only weak resonances contribute to these Poisson brackets and the three QIs are therefore
nearly in involution.

5.4.4 A new truncation of the Hamiltonian

The fundamental role of the external modes g6, g7, s6, s7 in Table 5.2 raises the question
of which symmetry-breaking resonances persist if one excludes all the Fourier harmonics
that involve external modes other than g5. Therefore, we define a new ranking R3 by



5.4. Quasi-integrals of motion 93

extracting such resonances from ranking R2. Table 5.3 reports the 10 strongest resonances
per each broken symmetry. The difference with respect to Table 5.2 is manifest. As g5

is the only external mode remaining, there are no resonances left that can contribute to
the time evolution of E2n. For the remaining two QIs, the only harmonics that appear in
Table 5.3 are of order 8 or higher, and this is accompanied by a significant drop in the
half-width of the leading resonances. In the case of Cinc, the half-width of the uppermost
resonances is now around 0.005′′ yr−1. One can appreciate that the activation times τ res

of the resonances do not exceed a few percent, differently from Table 5.2. The most
impressive change is however related to C2: only harmonics of order 10 appear in Table 5.3
and the half-width of the uppermost resonances drops by two orders of magnitude. We
stress that such harmonics are resonant for very short periods of time along the 5 Gyr
spanned by the nominal solution of Gauss’s dynamics. To retrieve the time statistic of
the resonances affecting C2 we indeed chose to repeat the computations of ref. (Mogavero
and Laskar, 2022) by increasing the cutoff frequency of the low-pass filter applied to time
series of the action-angle variables from (5 Myr)−1 to 1 Myr−1 (Mogavero and Laskar,
2022, Appendices F.2 and G.5). The filtered time series have then been resampled with a
timestep of 50 kyr. Many harmonics shown in Table 5.3 and related to C2 are resonant for
a few timesteps and their time statistic is very tentative. More precise estimations of the
half-widths should be obtained over an ensemble of different orbital solutions, possibly
spanning more than 5 Gyr. Anyway, the fundamental point here is the drastic reduction
in the size of the uppermost resonances with respect to Table 5.2, and this is a robust
result. We remark that resonances of order 12 and higher may also carry an important
contribution at these scales, but they are excluded by the truncation at degree 10 adopted
in ref. (Mogavero and Laskar, 2022) to establish the resonant harmonics, so that they do
not appear in the tables of this work.

Hamiltonian H
•
2n. The implications of Table 5.3 suggest to introduce an additional

truncation in the Hamiltonian H2n. This consists in dropping the harmonics of Eq. (5.6)
that involve external modes other than g5:

H
•
2n(I,θ, t) =

∑

k,ℓ1

H̃
k,ℓ•

2n (I)Ej(k·θ+ℓ1φ1(t)), (5.24)

where φ1(t) = −g5t and ℓ• = (ℓ1, 0, . . . , 0), with ℓ1 ∈ Z. Consistently with the absence of
symmetry-breaking resonances related to E2n in Table 5.3, the corresponding dynamics
admits the exact integral of motion

E•
2n = H

•
2n + g5

∑4
i=1(Xi + Ψi), (5.25)

which represents the transformed Hamiltonian under the canonical change of variables that
eliminates the explicit time dependence in Eq. (5.24). We point out that, as the additional
truncation is applied to the action-angle formulation of Eq. (5.6), the external modes
other than g5 still enter the definition of the proper modes of the forced Laplace-Lagrange
dynamics (Mogavero and Laskar, 2021). The orbital solution arising from H

•
2n is initially

very close to that of H2n. A frequency analysis over the first 20 Myr shows that the
differences in the fundamental frequencies of the motion between H

•
2n and H2n are of

the order of 10−3 arcsec yr−1, an order of magnitude smaller than the typical frequency
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differences between H4 and H6 (Mogavero and Laskar, 2021, Table 3). Therefore, even
though H

•
2n constitutes a simplification of H2n, it should not be regarded as a toy model.

Its dynamics, in particular, still possesses 8 DOFs.
We compute the Lyapunov spectrum of the Hamiltonian H

•
4 in the same way as

described in Sect. 5.3 in the case of H2n. Since its dynamics turns out to be much more
stable then that of H4 (see Sect. 5.6, Fig. 5.7), we extend the computation to a time span
of 100 Gyr. The marginal ensemble PDFs of the positive FT-LCEs are shown in Fig 5.1b.
Comparing to the Lyapunov spectrum of H4, one notices that the distributions of the
leading exponents turn out to be quite similar, apart from being more spaced and except
for a slight decrease in their median values. However, such a decrease is more pronounced
for smaller exponents, and the drop in the smallest exponents is drastic. The smallest
one, λ8, decreases monotonically, consistently with the fact that E•

4 from Eq. (5.25) is an
exact integral of motion. The exponent λ7 drops by more than an order of magnitude,
and apparently begins to stabilize around a few 10−4 arcsec yr−1, while λ6 also reduces
significantly, by a factor of three, to about 0.005′′ yr−1. The drop in the smallest exponents
agrees remarkably well with that of the half-width of the leading symmetry-breaking
resonances when switching from Table 5.2 to Table 5.3. One can indeed write

2πλ6 ≈ ∆ωR3,Cinc ,

2πλ7 ≈ ∆ωR3,C2 ,

λ8 = 0,

(5.26)

where ∆ωR3,Q stands for the half-width of the uppermost resonances of ranking R3 related
to the quasi-integral Q. The hierarchy of the three smallest exponents in the spectrum of
Fig. 5.1b consistently follows that of the QIs suggested in Table 5.3 by the very different
sizes of the leading resonances. In other words, one can state:

λ6 ←→ Cinc,

λ7 ←→ C2,

λ8 ←→ E•
2n.

(5.27)

These one-to-one correspondences are a particular case of Eq. (5.23) and support the
physical intuition behind it. In Sect. 5.5, we will prove the validity of Eq. (5.27) in the
geometric framework established by a principal component analysis of the orbital solutions
of H•

2n.

Numerical integrations. We compute ensembles of 1080 orbital solutions of the
dynamical models H

•
4 and H

•
6, with initial conditions very close to the nominal ones of

Gauss’s dynamics and spanning 100 Gyr in the future. This closely follows what did in
ref. (Hoang et al., 2022) in the case of the models H2n. The bottom row of Fig. 5.2 shows
the filtered dimensionless QIs along the nominal solutions of the two models over the first
5 Gyr. The hierarchy of the QIs stated in Eq. (5.27) is manifest. The quantity C2 has
secular variations much slower than Cinc, while the latter is itself slower with respect to its
counterpart in the orbital solutions of H2n. We remark that, as E•

2n is an exact integral of
motion for the model H•

2n, we do not plot it. From Fig. 5.2 it is also evident how difficult
can be the retrieval of the short-lasting resonances affecting C2 from a solution of H•

2n

spanning only a few Gyr.
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The hierarchy of the QIs is confirmed by a statistical analysis in Appendix C.3.
Figure C.3 shows the entire time evolution of the distributions of the filtered dimensionless
QIs over the stable orbital solutions of the ensembles of 1080 numerical integrations.
Figure C.4 details the growth of the QI dispersion over time. As suggested by Table 5.3,
the drop in the diffusion rates of the QIs when switching from H2n to H

•
2n is manifest.

5.5 Statistical detection of slow variables

Section 5.4 shows how the slow-fast nature of the ISS dynamics, indicated by the Lyapunov
spectrum, emerges from the quasi-symmetries of the resonant harmonics of the Hamiltonian.
QIs of motion can be introduced semi-analytically and they constitute slow quantities when
evaluated along stable orbital solutions. In this section, we will consider the slow variables
that can be systematically retrieved from a numerically integrated orbital solution by
means of a statistical technique, the principal component analysis (PCA). We will show
that, in the case of the forced secular ISS, the slowest variables are remarkably close to
the QIs, and this can be established in a precise geometric framework.

5.5.1 Principal component analysis

PCA is a widely used classical technique for multivariate analysis (Pearson, 1901; Hotelling,
1933). For a given dataset, PCA aims to find an orthogonal linear transformation of
the variables such that the new coordinates offer a more condensed and representative
view of the data. The new variables are called principal components (PCs). They are
uncorrelated and ordered according to decreasing variance: the first PC and last one have
respectively the largest and the smallest variance of any linear combination of the original
variables. While one is typically interested in the PCs of largest variance, in this work
we employ the variance of the time series of a dynamical quantity to assess its slowness
when compared to the typical variations of the action variables (see Sect. 5.4.2). We will
thus perform a PCA of the action variables I and focus on the last PCs, as they give
a pertinent statistical definition of slow variables. We stress that, when coupled to a
low-pass filtering of the time series, the statistical variance provides a measure of chaotic
diffusion.

Implementation. Our procedure for the PCA is described briefly as follows (for general
details e.g. Jolliffe, 2002; Jolliffe and Cadima, 2016). Let I(t) = (X(t),Ψ(t)) be the
8-dimensional time series of the action variables evaluated along a numerical solution of
the equations of motion. As in Sect. 5.4.2, we apply the KZ low-pass filter with three
iterations of the moving average and a cutoff frequency of 1 Myr−1 to obtain the filtered
time series Î(t) (Zurbenko and Smith, 2018; Mogavero and Laskar, 2021). In this way,
the short-term quasi-periodic oscillations are mostly suppressed, which better reveals the
chaotic diffusion over longer timescales. We finally define the mean-subtracted filtered
action variables over the time interval [t0, t0 + T ] as Ĩ(t) = Î(t)− n−1∑n−1

i=0 Î(t0 + i∆t),
where the mean is estimated by discretization of the time series with a sampling step ∆t
such that T = (n− 1)∆t. The discretized time series over the given interval is stored in a
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8× n matrix:
D = [Ĩ(t0), Ĩ(t0 + ∆t), . . . , Ĩ(t0 + (n− 1)∆t)]. (5.28)

The PCA of the data matrix D consists in a linear transformation P = ATD, where A is
an 8×8 orthogonal matrix (i.e. A−1 = AT) defined as follows. By writing A = [a1, . . . ,a8],
the column vectors ai ∈ R

8 are chosen to be the normalized eigenvectors of the sample
covariance matrix, in order of decreasing eigenvalues: (n − 1)−1DDT = AΣAT, where
Σ = diag(σ1, . . . , σ8) and σ1 ≥ · · · ≥ σ8. The PCs are defined as the new variables after
the transformation, that is, PCi = ai ·I with i ∈ {1, . . . , 8}. The uncorrelatedness and the
ordering of the PCs can be easily seen from the diagonal form of their sample covariance
matrix, (n− 1)−1PPT = Σ, from which it follows that the variance of PCi is σi.

Among all the linear combinations in the action variables I, the last PC, i.e. PC8,
has the smallest variance over the time interval [t0, t0 + T ] of a given orbital solution.
The second last PC, i.e. PC7, has the second smallest variance and is uncorrelated with
PC8, and so on. It follows that the linear subspace spanned by the last k PCs is the
k-dimensional subspace of minimum variance: the variance of the sample projection
onto this subspace is the minimum among all the subspaces of the same dimension.
These properties indicate that the last PCs provide a pertinent statistical definition of
slow variables along numerically integrated solutions of a dynamical system. The linear
structure of the PCA, in particular, seems adapted to quasi-integrable systems close to a
quadratic Hamiltonian, like the ISS. In such a case, one may reasonably expect that the
slow variables are, to a first approximation, linear combinations of the action variables.
We remark that the mutual orthogonality allows to associate a linear DOF to each PC.

Aggregated sample. Instead of considering a specific solution, it is also possible to
take the same time interval from m different solutions, and stack them together to form an
aggregated sample: Dagg = [D1,D2, . . . ,Dm], where Di is the data matrix of Eq. (5.28)
for the i-th solution. Since this work deals with a non-stationary dynamics, as the ISS
ceaselessly diffuses in the phase space (Hoang et al., 2022), we always consider the same
time interval for each of the m solutions. The aggregated sample is useful in capturing
globally the behavior of the dynamics, because it averages out temporary and rare episodes
arising along specific solutions.

5.5.2 Principal components and quasi-integrals

Both the QIs and the last PCs represent slow variables, but are established through two
different methods. Equations (5.23) and (5.27) claim that the QIs found semi-analytically
in Sect. 5.4 are among the slowest DOFs of the ISS dynamics. This naturally suggests
to compare the three QIs with the three last PCs retrieved from numerically integrated
orbital solutions. In this part, we first introduce the procedure that we implement to
establish a consistent and systematic correspondence between QIs and PCs. We then
present both a visual and a quantitative geometric comparison between them.

Tweaking the QIs

The three last components PC8, PC7, PC6 are represented by the set of vectors SPCs =
{a8,a7,a6} belonging to R

8. By construction, these PCs have a linear, hierarchical, and
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orthogonal structure. In other words: the PCs are linear combinations of the action
variables I; denoting by � the order of statistical variance, one has PC8 � PC7 � PC6;
the unit vectors (ai)

8
i=6 are orthogonal to each other. On the other hand, the QIs of

motion Cinc, C2, E2n do not possess these properties. Therefore, we will adjust them in such
a way to reproduce the same structure.

Linearity. While Cinc and C2 are linear functions of the action variables, E2n is not
when n > 1. Nevertheless, as explained in Sect. 5.4.1, as far as one considers stable
orbital solutions, the linear LL approximation E2 = γ3 · I reproduces E2n reasonably
well. Therefore, we shall consider the three linear QIs of motion Cinc, C2, E2, which are
respectively represented by the set of R8-vectors SQIs = {γ1,γ2,γ3}. In this way, the
3-dimensional linear subspaces of the action space spanned by the sets SQIs and SPCs can
be compared.

Ordering. We shall define a set of QIs that are ordered by statistical variance, as it
is the case for the PCs. We follow two different approaches according to model H•

2n in
Eq. (5.24) or H2n in Eq. (5.6) (clearly n > 1).

H
•
2n A strong hierarchy of statistical variances among the QIs emerges from the size of the

leading symmetry-breaking resonances in Table 5.3 and from the orbital solutions
in Figs. 5.2, C.3 and C.4. One has E•

2n ≺ C2 ≺ Cinc. While E•
2n is an exact non-linear

integral of motion, we expect that its linear truncation E•
2 = E2 varies more than

C2 and Cinc. Therefore, we consider the ordered set of QIs of motion {C2, Cinc, E2}
represented by the ordered set of vectors S ′

QIs = {γ2,γ1,γ3}.

H2n Since the leading resonances affecting the QIs in Table 5.2 have comparable sizes,
there is no clear order of statistical variances that can be inferred. We then
implement a systematic approach that orders the QIs by simply inheriting the
ordering of the PCs. More precisely, we define a set of ordered vectors S ′

QIs through
the projections of the three last PCs onto the linear subspace generated by the
QIs: S ′

QIs = {projSQIs
(a8), projSQIs

(a7), projSQIs
(a6)}6. As a result, the new set of

QIs mirrors the hierarchical structure of the PCs. We stress that S ′
QI spans the

same subspace of R8 as SQI, since the ordered QIs are just linear combinations of
the original ones.

Orthogonality. We apply the Gram-Schmidt process to the ordered set S ′
QIs to obtain

the orthonormal basis S ′′
QIs = {α1,α2,α3}. The set S ′′

QIs clearly spans the same subspace
as SQIs. Moreover, the Gram-Schmidt process preserves the hierarchical structure, that
is, the two m-dimensional subspaces spanned by the first m ≤ 3 vectors of S ′

QIs and S ′′
QIs,

respectively, are identical.

In the end, we obtain a linear, ordered, and orthogonal set of modified QIs of motion
{QI1,QI2,QI3}, where QIi = αi · I.

6The projection of a vector q onto the subspace spanned by a set of vectors S can be written in a
vectorial form as B(BT

B)−1
B

Tq, where the column space of the matrix B is the subspace spanned by
the set S.
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Hamiltonian H
•
4. The modified QIs can be explicitly derived in this case and comprise

interpretable physical quantities. One has QI1 proportional to C2 and QI2 proportional to
C⊥

2 . Moreover, QI3 is the component of E2 that is orthogonal to both C2 and C⊥
2 . Figure 5.3

shows the comparison between the modified QIs and the corresponding PCs for three
different time intervals along sol. #1 of H•

4 (see Fig. 5.2 bottom left for its time evolution).
The agreement of the pairs (QI1,PC8), (QI2,PC7), and (QI3,PC6) across different intervals
is manifest and even impressive. One can appreciate that, the “slower" the PC, the more
similar it is to its corresponding QI. The overlap between the modified QIs and the three
last PCs means that the QIs of motion span the slowest 3-dimensional linear subspace of
the action space. Therefore, to a linear approximation, they represent the three slowest
DOFs of the H

•
4 dynamics. The quasi-integral C2 represents the slowest linear DOF: it

coincides with the last principal component PC8, which has the smallest variance among
all the linear combinations of the action variables. Cinc and E2 represent the second and
the third slowest linear DOF, respectively: the component of Cinc orthogonal to C2, i.e.
C⊥

2 , matches the second last principal component PC7; the component of E2 orthogonal
to the subspace generated by (C2, Cinc) matches the third last principal component PC6.
The strong hierarchical structure of the slow variables for the simplified dynamics H

•
4 is

clearly confirmed by the almost frozen basis vectors of the PCs.

Hamiltonian H4. In this case, the QIs of motion Cinc, C2, E2 do not show a clear
hierarchical structure in terms of statistical variance. Therefore, we consider the whole
subspace spanned by the three QIs with respect to that spanned by three last PCs. Since
it is not easy to visually compare two 3-dimensional subspaces of R8, we compare their
basis vectors instead. The basis α1,2,3 of modified quasi-integrals QI1,2,3 is computed
according to the algorithm presented in Sect. 5.5.2.

Figure 5.4 presents the comparison between the modified QIs and the corresponding
PCs across three different time intervals of three solutions of H4 (see Fig. 5.5 for their
time evolution). The first two, sols. #1 and #2, show thorough agreement between the
pairs of QIs and PCs across all intervals, which indicates close proximity between the
two subspaces VQIs = span(SQIs) and VPCs = span(SPCs). One can appreciate that the
directions of the basis vectors are quite stable. The last component PC8, in particular,
remains close to Cinc. In line with the discussion in Sect. 5.4.3, the slowest DOF of H4 can
be thus deduced to be close to Cinc, to a linear approximation at least. Such a result shows
how interesting physical insight can be gained through the PCA. Some changes in the basis
vectors can arise, however, as for the first time interval of sol. #2. This may be expected
from a dynamical point of view. Differently from H

•
4, there is no pronounced separation

between the slowest DOFs at the bottom of the Lyapunov spectrum in Fig. 5.1a: the
marginal distributions of consecutive exponents can indeed touch or overlap each other.
Therefore, the hierarchy of slow variables is not as frozen as in H

•
4 and it can change along

a given orbital solution.

Solutions #1 and #2 represent typical orbital evolutions. If the same time intervals
of all the 1080 solutions are stacked together to form an aggregated sample on which
the PCA is applied, the features mentioned above persist: the agreement between QIs
and PCs, the stability of the basis vectors and the similarity between PC8 and Cinc (see
Fig. 5.4). Once again, the PCA confirms that the subspace spanned by the three QIs is
overall close to the slowest 3-dimensional linear subspace of the action space. Therefore,
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to a linear approximation, they represent the three slowest DOFs of the H4 dynamics. We
remark that the slowness of the 3-dimensional subspace spanned by the QIs is a much
stronger constraint than the observation that each QI is a slow variable. To give an
example, let Q = q̂ · I be a slow variable with unit vector q̂. If ǫ is an arbitrary small
vector, i.e. ‖ǫ‖ ≪ 1, then Q′ = (q̂ + ǫ) · I can be also considered as a slow variable,
whereas the normalized difference of two quantities, ǫ̂ · I, is generally not. Therefore, the
linear subspace spanned by Q and Q′, that is, by q̂ and ǫ̂, is not a slow 2-dimensional
subspace.

Solution #3 in Fig. 5.4 represents an edge case (see Fig. 5.5 for its time evolution).
Typically, the variances of the QIs are at least one order of magnitude smaller than those
of the action variables, which allows a clear separation. Nevertheless, the distinction
between the QIs and faster DOFs can be more difficult in two rare possibilities. Firstly,
if the change in a QI accumulates continually in one direction, its variance can inflate
over a long time interval. This is the case for the interval [0, 5] Gyr of sol. #3. Secondly,
the variance of a variable that is typically fast can suddenly dwindle during a certain
period of time, for example Ψ3 over the interval [1, 2] Gyr of sol. #3. In both cases, the
slow subspace defined by the three last PCs can move away from the QI subspace due to
the contamination by DOFs that are typically faster. This is reflected in the mismatch
of QI3 and PC6 on the last two time intervals of sol. #3 in Fig. 5.4. We remark that
PC8,7 are still relatively close to QI1,2, which indicates that the slowest 2-dimensional
subspace spanned by PC8,7 still resides inside the QI subspace. It should be stressed that
this disagreement between QIs and PCs does not mean that the QIs are not slow variables
in this case. The mismatch has a clear dynamical origin instead. The resonance tables of
this work has been retrieved from a single, very long orbital solution, with the idea that
its time statistics is representative of the ensemble statistics over a set of initially very
close solutions (Mogavero and Laskar, 2022). Therefore, the QIs derived from these tables
characterize the dynamics in a global sense. The network of resonances can temporarily
change in an appreciable way along specific solution, or be very particular along rare
orbital solutions. In these cases, a mismatch between the last PCs and the present QIs
may naturally arise. Moreover, the contamination of the QIs by DOFs that are typically
faster may also be expected from the previously mentioned lack of a strong hierarchical
structure of the slow variables. The Lyapunov spectrum in Fig. 5.1a shows that the
marginal distributions of the exponents λ5 and λ6, for example, are not separate but
overlap each other.

Distance between the subspaces of PCs and QIs

The closeness of the two 3-dimensional linear subspaces VPCs, VQIs ⊂ R
8 spanned by the

sets of vectors SPCs and SQIs, respectively, can be quantitatively measured in terms of a
geometric distance. This can be formulated using the principal (canonical) angles (Jordan,
1875; Van Loan and Golub, 1996; Ye and Lim, 2016).

Let A and B be two sets of m ≤ n independent vectors in R
n. The principal vectors
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(pk, qk)
m
k=1 are defined recursively as solutions to the optimization problem

maximize p · q
subject to: p ∈ span(A), q ∈ span(B),

‖p‖ = 1, ‖q‖ = 1,

p · pi = 0, q · qi = 0, i = 1, . . . , k − 1,

(5.29)

for k = 1, . . . ,m. The principal angles 0 ≤ θ1 ≤ · · · ≤ θm ≤ π/2 between the two
subspaces span(A) and span(B) are then defined by

cos θk = pk · qk, k = 1, . . . ,m. (5.30)

The principal angle θ1 is the smallest angle between all pairs of unit vectors in span(A) and
span(B); the principal angle θ2 is the smallest angle between all pairs of unit vectors that
are orthogonal to the first pair; and so on. Given the matrices defining the two subspaces,
the principal angles can be computed from the singular value decomposition of their
correlation matrix. The result is the canonical correlation matrix diag(cos θ1, . . . , cos θm).
This cosine-based method is often ill-conditioned for small angles. In such case, a sine-
based algorithm can be employed (Björck and Golub, 1973). In this work, we use the
combined technique detailed in (Knyazev and Argentati, 2002).

Once the principal angles have been introduced, different metrics can be defined to
measure the distance between two subspaces. In this work, we choose the normalized
chordal distance (Ye and Lim, 2016):

d(A,B) =

(
1

m

m∑

k=1

sin2 θk

)1/2

. (5.31)

The distance is null if A and B are the same subspace and equal to 1 when they are
orthogonal. We will use this metric to show that the subspace closeness suggested by
Figs. 5.3 and 5.4 is indeed statistically significantly. More precisely, we will provide
evidence against the null hypothesis that the distribution of distances between VPCs and
VPCs, arising from the H

•
4 and H4 dynamics, coincides with that of randomly drawn 3-

dimensional subspaces of R8. The PDF of the distance between two random 3-dimensional
subspaces of R8 is shown in Fig. 5.6 in blue color (such random subspaces can be easily
generated by sampling sets of 3 vectors uniformly on the unit 7-sphere, Muller, 1959).
While the range of possible distances is [0,1], the distribution concentrates on the right
side of the interval, with a probability of approximately 99.3% that the distance is larger
than 0.6. In this regard, we remark that the notion of distance in high-dimensional spaces
is very different from our intuition in a 3-dimensional world. If we draw randomly two
vectors in a very high-dimensional space, it is extremely likely that they will be close to
mutual orthogonality.

The upper panel of Fig. 5.6 shows in green color the PDF of the distance between
VPCs and VQIs arising from the time interval [0, 5] Gyr of the 1080 orbital solutions of
model H•

4. In the lower panel, we consider a larger ensemble of 10 800 solutions of model
H4 spanning the same time interval (Hoang et al., 2022), and plot the corresponding PDF
of the distance between VPCs and VQIs. In both cases, the distance stemming from the
aggregated sample of all the solutions is indicated by a vertical dark green line. We also
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dynamics which is used to infer the QIs. Solution #3 in Fig. 5.4 represents in this sense
an edge case of the distance distribution, while sol. #2 is a typical solution close to the
PDF median.

5.6 Implications on long-term stability

The existence of slow variables can have crucial implications on the stability of the ISS.
The QIs of motion can effectively constraint in an adiabatic way the chaotic diffusion of
the planet orbits over long timescales, forbidding in general a dynamical instability over a
limited time span, e.g. several billions of years. Here we give compelling arguments for
such a mechanism.

Figure 5.7 shows the cumulative distribution function (CDF) of the first time that
Mercury eccentricity reaches a value of 0.7, from the ensembles of 1080 orbital solutions of
H

•
4 and H

•
6 introduced in Sect. 5.4.4. We recall that such a high eccentricity is a precursor

of the dynamical instability (i.e. close encounters, collisions or ejections of planets) of the
ISS (Laskar and Gastineau, 2009). We also report the same CDF for the models H4 and
H6, which we recently computed in ref. (Hoang et al., 2022). One can appreciate that the
time corresponding to a probability of instability of 1% is greater than 100 Gyr for the H

•
4

model, while it is about 15 Gyr for H4. At degree 6, this time still increases from 5 Gyr
for H6 to about 20 Gyr in H

•
6. The dynamics arising from H

•
4 and H

•
6 can be considered

as stable in an astronomical sense. Recalling that the main difference between H
•
2n and

H2n relates to the smallest Lyapunov exponents (Fig. 5.1), and this is accompanied by
a much slower diffusion of the QIs for H

•
2n (Figs. 5.2, C.3 and C.4), Fig. 5.7 indicates

that the dynamical half-life of the ISS is linked to the speed of diffusion of these slow
quantities in a critical way. We stress that the slower diffusion towards the dynamical
instability in the H

•
2n model derives from neglecting the external forcing mainly exerted

by Saturn, Uranus and Neptune.
We also observe that, to a linear approximation, the knowledge of Cinc and E2 allows to

bound the variations of the action variables X,Ψ. Recalling that the actions are positive
quantities, from Eq. (5.19) one sees that fixing a value of Cinc puts an upper bound to the
variations of the inclination actions Ψ. As a consequence, at degree 2 in eccentricities
and inclinations, fixing a value of the QI

E2 = γ3 · I = γecc
3 ·X + γ inc

3 ·Ψ, (5.32)

with γ3 = (γecc
3 ,γ inc

3 ), also bounds the upper variations of the eccentricity actions X, since
the components of γecc

3 have all the same sign, as those of γ inc
3 (see Appendix C.2). This

is an important point, as we stated in Sect. 5.1 that the lack of any bound on the chaotic
variations of the planet orbits is one of the reasons that complicate the understanding of
their long-term stability. We remark that the secular planetary phase space can be bound
by fixing the value of the total AMD, that is, Cecc + Cinc (Laskar, 1997). A statistical
study of the density of states that are a priori accessible can then be realized (Mogavero,
2017). It is not, however, fully satisfying to consider a fixed value of total AMD of the ISS,
as we showed that Cecc is changed by some of the leading resonances of the Hamiltonian,
as a result of the eccentricity forcing mainly exerted by Jupiter through the mode g5.
Moreover, the destabilization of the ISS consists indeed in a large transfer of eccentricity
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5.7 Discussion

This work introduces a framework that naturally justifies the statistical stability shown
by the ISS over a timescale comparable to its age. Considering a forced secular model
of the inner planet orbits, the computation of the Lyapunov spectrum indicates the
existence of very different dynamical timescales. Using the computer algebra system
TRIP, we systematically analyze the Fourier harmonics of the Hamiltonian that become
resonant along a numerically integrated orbital solution spanning 5 Gyr. We uncover
three symmetries that characterize the strongest resonances and that are broken by weak
resonant interactions. These quasi-symmetries generate three QIs of motion that represent
slow variables of the secular dynamics. The size of the leading symmetry-breaking
resonances suggests that the QIs are related to the smallest Lyapunov exponents. The
claim that the QIs are among the slowest DOFs of the dynamics constitutes the central
point of this work. On the one hand, it is supported by the analysis of the underlying
Hamiltonian H

•
2n, in which one neglects the forcing mainly exerted by Saturn, Uranus

and Neptune and, as a consequence, the diffusion of the QIs is greatly reduced. On the
other hand, the geometric framework established by the PCA of the orbital solutions
independently confirms that the QIs are statistically the slowest linear variables of the
dynamics. We give strong evidence that the QIs of motion play a critical role in the
statistical stability of the ISS over the Solar System lifetime, by adiabatically constraining
the long-term chaotic diffusion of the orbits.

5.7.1 The inner Solar System among classical quasi-integrable

systems

It is valuable to contextualize the dynamics of the ISS in the class of classical quasi-
integrable systems. A comparison with the FPUT dynamics, in particular, deserves to
be made. In the FPUT problem, the proper modes of the chain of oscillators remain
far from the energy equipartition expected from statistical mechanics for a very long
time (Fermi et al., 1955). One way to explain the lack of energy equipartition reported
by Fermi and collaborators is through the closeness of FPTU problem to the integrable
Toda dynamics (Hénon, 1974; Flaschka, 1974; Manakov, 1974). This translates in a very
slow thermalization of the action variables of the Toda problem and of the corresponding
integrals of motion along the FPTU flow (Manakov, 1974; Ferguson et al., 1982; Benettin
et al., 2013; Goldfriend and Kurchan, 2019; Christodoulidi and Efthymiopoulos, 2019;
Grava et al., 2020). In the framework of the present study, the very long dynamical
half-life of the ISS is also likely to be the result of the slow diffusion of some dynamical
quantities, the QIs of motion. We found, in particular, an underlying Hamiltonian H

•
2n

for which this diffusion is greatly reduced, as a consequence of neglecting the forcing
mainly exerted by Saturn, Uranus and Neptune. This results in a dynamics that can be
considered as stable in an astronomical sense. We stress that, differently from the FPTU
problem, H•

2n is not integrable as the Toda Hamiltonian. It is indeed chaotic and shares
with the original Hamiltonian H2n the leading Lyapunov exponents. The QIs that we
found in this work are only a small number of functions of the action-angle variables of
the integrable LL dynamics, and are related to the smallest Lyapunov exponents of the
dynamics. Our study suggests that in the FPUT problem the very slow thermalization
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occurring beyond the Lyapunov time might be understood in terms of combinations of
the Toda integrals of motion diffusing over very different timescales.

The long-term diffusion in chaotic quasi-integrable systems should be generally char-
acterized by a broad range of timescales that results from the progressive, hierarchical
breaking of the symmetries of the underlying integrable problem by resonant interactions
(Ford, 1961; Onorato et al., 2015; Pistone et al., 2019). A hierarchy of Lyapunov exponents
spanning several orders of magnitude, in particular, should be common among this class
of systems (e.g. Malishava and Flach, 2022).

5.7.2 Methods

The long-term dynamics of the ISS is described by a moderate but not small number
of DOFs, which places it far from the typical application fields of celestial mechanics
and statistical physics. The first discipline often studies dynamical models with very few
degrees of freedom, while the second one deals with the limit of a very large number of
bodies. Chaos also requires a statistical description of the inner planet orbits. But the
lack of a statistical equilibrium, resulting from a slow but ceaseless diffusion of the system,
places the ISS outside the standard framework of ergodic theory. The kind of approach
developed in this work is heavily based on computer algebra, in terms of systematic
series expansion of the Hamiltonian, manipulation of the truncated equations of motion,
extraction of given Fourier harmonics, retrieval of polynomial roots, etc. (Mogavero and
Laskar, 2021; Mogavero and Laskar, 2022). This allows us to introduce QIs of motion in
a 16-dimensional dynamics by analyzing how action-space symmetries are progressively
broken by resonant interactions. Our effective method based on the time statistics of
resonances arising along a single, very long numerical integration is alternative to formal
approaches that define QIs via series expansions (e.g. Contopoulos, 1960; Kruskal, 1962).
The practical usefulness of these formal expansions for a dynamics that covers an intricate,
high-dimensional network of resonances seems indeed doubtful. Through the retrieval
of the half-widths of the symmetry-breaking resonances, computer algebra also permits
to extend the correspondence between the Lyapunov spectrum and the spectrum of
resonances well beyond the standard relation linking the Lyapunov time to the strongest
resonances7.

In the context of dynamical systems with a number of DOFs that is not small, this
work also considers an approach based on PCA. The role of this statistical technique
can be twofold. We used PCA as an independent test to systematically validate the
slowness of the QIs. While being introduced semi-analytically as dynamical quantities
that are not affected by the leading resonances, they can indeed be related to the last
PCs. By extension, the first PCs should probe the directions of the main resonances. This
leads to a second potential application of the PCA, which should offer a way to retrieve
the principal resonant structure of a dynamical system. In this sense, PCA represents
a tool to systematically probe numerical integrations of a complex dynamics and distil
important hidden insights. We emphasise that PCA is the most basic linear technique of
dimensionality reduction and belongs to the more general class of the unsupervised learning
algorithms. There are more sophisticated methods of feature extraction, that can be

7In this regard, it should be noted that a relation between QIs and Lyapunov exponents has been
already highlighted in simple systems by some authors (Contopoulos et al., 1978; Benettin et al., 1980)
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more robust (e.g. Candès et al., 2011; Markopoulos et al., 2014) and can incorporate non-
linearity (Lee and Verleysen, 2007). These methods are often less intuitive to understand,
less straightforward to apply and harder to interpret than PCA. Yet, they might be more
effective and worth pursuing for future works.
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Chapter 6

Conclusion

In this thesis, I study the long-term evolution of the Solar System in the past and in the
future. The two time directions represent two important problems: the recovery of the
past history and a possible future destabilization. The two problems are both important
and different in their own ways: one is multi-disciplinary and requires practical geology
expertise, the other is a celestial mechanics problem that is often treated analytically in
Hamiltonian formalism. Nevertheless, due to the chaotic nature of the Solar System, the
approaches to both problems share the common denominator of statistical analysis, which
is based on a large number of long-term orbital solutions.

The first part of this thesis, presented in chapter 3 and published in (Hoang, Mogavero
and Laskar, 2021), showcases the first step in the overarching goal of recovering the Solar
System orbital history by geological constraints. We develop the estimation of the chaotic
uncertainty of the fundamental frequencies of the Solar System beyond 60 Myr, via their
probability density function (PDF) by the kernel density estimator. We benchmark and
implement the statistical estimators, namely moving block bootstrap, to gauge the error
of the density estimation of the frequencies. The significance of these PDFs are twofold.
First, they provide a global view from an astronomical perspective to assess the geological
signals. Instead of working with only one or several orbital integrations, cyclostratigrapher
can now make use of hundreds of thousands astronomical solutions to statistically evaluate
their results. We illustrate the applications of our solutions on the two geological data sets:
the Newark-Hartford records (Olsen et al., 2019) and the Libsack core (Ma et al., 2017).
The constraint of chaos provided is essential to hypothesis testing not only for geological
findings but also for promising but unproven theory of the Solar System. For example,
Spalding et al. (2018) propose that the Sun lost several percents of its mass during its
lifetime, to explain for the faint young Sun paradox1. Their simulations show that the
astronomical forcing g2 − g5 roughly scale linearly with the Sun mass and can thus be
used as its proxy. The chaotic constraint that we provided for the secular frequencies is
necessary in order to test this hypothesis.

1Faint young Sun paradox is the contradiction between the geological evidence of warm, wet early
Earth, and the low-luminosity Sun in the same epoch from astrophysical models (see Feulner, 2012).

111



112 Chapter 6. Conclusion

These are two general routes for the future works in this direction. In particular, there
is a recent surge on the cyclostratigraphy literature of new geological confirmation of
the resonance transition (e.g. Ma et al., 2017). A robust and consistent assessment of
the transition probability, which is currently missing, is undoubtedly necessary for the
community. With a large number of orbital solutions that we have, the proper response to
this question, which is illustrated in the Sect. 3.6.3, is straight-forward and actionable. The
second direction is also our primary objective, that is to effectively combine the geological
signal with the chaotic astronomical solutions to provide constraints that are beneficial to
both. A potential and promising route is to apply the Bayesian method, pioneered by
Meyers and Malinverno (2018), who use simple and non-realistic Gaussian functions as
priors for secular frequencies. This Bayesian approach can already be improved to a large
extent by simply adopting our PDFs of secular frequencies as priors.

The second part of this thesis, presented in chapter 4 (published in Hoang, Mogavero
and Laskar 2022) and chapter 5 (submitted for publication), studies the destabilization
of the inner Solar System. The chapter 4 details a comprehensive semi-analytical study
of instability statistics on a hierarchy of models. This chapter also marks the transition
in our work from the descriptive statistics towards the exploratory statistics of the ISS,
where physical insight can be extracted from the data. By either intentionally including
or omitting secular terms to construct new secular Hamiltonians and comparing the
difference in their instability statistics, we can show the impact of specific terms on the
destabilization of the ISS. For instance, we have surprisingly found that the non resonant
secular harmonics at degree 6 in eccentricity and inclination, which are often overlooked in
the literature, are essential to correctly reproduce the destabilization timescale. Without
these terms, the secular Hamiltonian at degree 4 is overly stable, with the instability
probability within 5 Gyr dropping by several orders of magnitude.

The chapter 5 asserts the slow-fast nature of the ISS on the chaotic timescale. The
first sign of the disparate timescale separation can be seen from the discrete spectrum
of Lyapunov exponents spanning two orders of magnitude, the largest of which is the
maximal Lyapunov exponent of 5 Myr−1, and the smallest exponent is around 500 Myr−1.
Moreover, we show concrete evidences for the slow-fast dynamics by identifying the slow
variables. From the ranking of active resonances (see Mogavero and Laskar, 2022, table 2),
we find three symmetries among the leading resonances, from which three quasi-integrals
of motion can be defined. We use the principle component analysis to look for and confirm
that these quasi-integrals represent the slowest degree of freedom of the dynamics.

The role of these quasi-integrals for the stability of the inner planets will be demon-
strated in the future work. I summarize the key idea as follows. The quasi-integrals set up
constraints for the dynamics and thereby crucially slow down system in its the pathway
towards the destabilization, similar to the role of the slowly-varying Hamiltonian in the
simplified dynamics of Mercury of (Batygin et al., 2015). The quasi-integrals roughly
define a bounded region; in this region, the dynamics is stable with rapid chaotic motion
over the timescale of Lyapunov time. Due to the slow diffusion of the quasi-integrals, the
bounded region accordingly expands slowly, so the dynamics can be stable for billions of
years. When the bounded region touches the resonance g1 − g5, and opens the possibility
of activating it, the system can be destabilized. In this picture, there are two important
factors controlling the instability statistics: the diffusion rate of the quasi-integrals and
the relative distance of the system to the destabilizing resonance g1− g5. While the former
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is primarily governed by the long-range interactions characterized by harmonics involving
Saturn (g6, s6) and Uranus (g7, s7) secular frequencies, the latter is strongly influenced by
the harmonics at degree 62. Both factors are determined by and thus sensitive to these
interactions, which were weak and hidden before our work. Yet, they are crucial for the
dynamical stability of the system.

2apart from the important relativistic corrections.
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Appendix A

Lagrange-Laplace matrix

The matrices A and B in the Laplace-Lagrange Hamiltonian (2.20) are (N x N) real
matrices. The components of A are (Laskar and Robutel, 1995):

Ajj =
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k=1

nj
mk
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C3

(
ak
aj

)
+

N∑
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The components of B:
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The functions C2(α) and C3(α) are:

C2(α) =
3

8
αb

(0)
3/2 −

(
1

4
+

1

4
α2
)
b

(1)
3/2(α),

C3(α) =
1

4
αb

(1)
3/2,

(A.3)

where b
(j)
k ’s are Laplace coefficients, which arises from the expansion of the inverse of a

term related to distance; that is:

(1 + α2 − 2α cos θ)−k =
1

2

∞∑

j=−∞

b
(j)
k (α) cos(jθ), (A.4)

Where α = a/a′ < 1. Therefore,

b
(j)
k (α) =

2

π

∫ π

0

cos(jθ)

(1 + α2 − 2α cos θ)k
dθ. (A.5)

Higher order planetary Hamiltonian should be referred to (Laskar and Robutel, 1995)
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Appendix B

Long-term instability of the inner Solar

System: numerical experiments

This section assembles the appendices for the chapter 4 from (Hoang, Mogavero and Laskar,
2022).

B.1 Secular dynamics at second order in planetary

masses

We use the secular equations of motions of (Laskar, 1985, 1990, 2008, and references
therein). They were obtained via series expansions in planetary masses, eccentricities, and
inclinations, as well as through second-order analytical averaging over the rapidly changing
mean longitudes of the planets. The expansion was truncated at the second order with
respect to the masses and to degree 5 in eccentricities and inclinations. The equations
include corrections from general relativity and Earth-Moon gravitational interaction. This
leads to the following system of ordinary differential equations, denoted by L6 throughout
this paper:

dω

dt
=
√
−1{Γ + Φ3(ω, ω̄) + Φ5(ω, ω̄)}, (B.1)

where ω = (z1, . . . , z8, ζ1, . . . , ζ8), with zk = ekE
j̟k and ζk = sin(ik/2)EjΩk . The planets

are indexed in order of increasing semi-major axis, as usual. The variable ̟k is the
longitude of the perihelion, Ωk is the longitude of the ascending node, ek is eccentricity,
and ik is inclination. The function Φ3(ω, ω̄) and Φ5(ω, ω̄) are the terms of degree 3 and
5, respectively. The 16 × 16 matrix Γ is the linear Laplace-Lagrange system, which is
slightly modified to make up for the higher-order terms in the outer Solar System.

To mimic H4, we define the new model L4 by dropping the terms of degree 5 from the
equations of the inner planets, that is:

dω

dt
=
√
−1{Γ + Φ3(ω, ω̄) + DΦ5(ω, ω̄)}, (B.2)
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Variable Offsets ǫ N T
ki −Nǫ to Nǫ 10−11 5000 100 Gyr
ei −Nǫ to Nǫ 10−11 10000 5 Gyr

Table B.1 — Offsets of the initial variables ki = ei cos ̟i and eccentricity ei, with i ∈ {1, 2, 3, 4}
corresponding to the inner planets {Mercury, Venus, Earth, Mars}. Different initial conditions
correspond to offsets of nǫ in a single variable of a single planet for n = −N, . . . , N , while other
variables are kept to their nominal values. Each initial condition is used to compute a solution
over the time interval [0, T ].

where we introduced the diagonal matrix D = diag(0,1,0,1), with 0 = (0, 0, 0, 0) and 1 =
(1, 1, 1, 1). It should be noted that the truncations behind the models L6 and L4 are defined
with respect to the classical variables zk, ζk, differently from the models H2n which result
from the expansion of H in the complex Poincaré variables xk ∝ (1− (1− e2

k)
1/2)1/2 Ej̟k

and yk ∝ (1− e2
k)

1/4 sin(ik/2) EjΩk .

We define ensembles of initial conditions by slightly varying a single variable of an
inner planet at a time, while keeping other variables identical to their reference values, as
shown in Table B.1. For the integrations over 100 Gyr, we use the initial conditions varied
from the variables (ki = ei cos̟i)i=1,4 of the four inner planets, except for the solutions of
L4, where only those varied from k1 are used. For the solutions computed over 5 Gyr, the
variables (ei)i=1,4 are varied to obtain the initial conditions. The solutions integrated up
to 100 Gyr are included in the analysis of the statistics of the first 5 Gyr. Equations (B.1)
and (B.2) are integrated from these ensembles of initial conditions to obtain the solutions
of L6 and L4.

B.2 Statistics with different thresholds of Mercury’s

eccentricity

We compute the CDFs of the first hitting time of Mercury’s eccentricity at the three
levels 0.7, 0.8, and 0.9, in order to test the dependency of the instability statistics on
different thresholds. The results are shown in Fig. B.1. Up to 5 Gyr, when the instability
constitutes a rare event, the models of degree higher than 6 show consistency across high
values of eccentricity. The difference between the CDFs of the three thresholds is relatively
significant for the models at degree 6 (H6, L6), and even more so at degree 4 (H4, L4).
For H6 and L6, only about half of the integrations exceeding 0.7 also goes beyond 0.9
in 5 Gyr. It should be noted that if Mercury’s eccentricity goes beyond 0.9, it is likely
that a catastrophic event will shortly ensue, whether it is a secular collision (ML21) or
a numerical instability in the truncated dynamics. Therefore, the expected time that a
solution of H6 spends in an unstable state of high Mercury eccentricity is longer, which
makes H6 a prime model for the study of the unstable states of the ISS. Over a longer
timescale of 100 Gyr, when the destabilisation is no longer a rare event, the difference of
the CDFs with respect to the choice of the eccentricity threshold is small for the models
at degree 4 and negligible for the rest.
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|p̃h − p(x)|, from the sample of the B bootstrap KDEs we can compute an asymptotically
valid estimation of the piecewise confidence interval CI1−α(x), defined as:

P (|p̃h − p(x)| < CI1−α(x)) = 1− α. (B.5)

Boundary correction. Kernel density estimation of a PDF on a finite interval can be
affected by non-negligible bias at the boundaries. In our work, the interval is defined
by the total integration time, that is, [0, 100] Gyr in Fig. 4.5. The nature of the two
boundaries is different, and they should be treated differently. At t = 0, the integrations
start closely around a nominal value of e1 ≈ 0.2, therefore the PDF of the first hitting
time of e1 = 0.7 should be 0 when t = 0. This constraint suggests the log-transformation
of the sample before applying the KDE (Charpentier and Flachaire, 2015).

The boundary at 100 Gyr has no similar constraints, and we employ a pseudodata
method to correct the bias (Cowling and Hall, 1996). The idea is to use the original
dataset to generate fictitious data outside the interval of interest. Let X(1) < · · · < X(n)

be the order statistics of the data X1, . . . , Xn on the interval [0, 1]. The extra data points
generated in the range (−∞, 0) are defined by the three-point rule:

X(−i) = −6X(i) + 4X(2i) − 3X(3i). (B.6)

To adapt the upper limit of the interval [0, 100] Gyr to this rule, we simply transform
the data as X(i) → (100−X(i))/100. The pseudodata are then generated according to
Eq. (B.6), and the ensemble is back-transformed at the end. The number of pseudodata
points is taken to be about 10% of the sample size.
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Appendix C

Timescales of chaos in the Inner Solar

System

This section assembles the appendices for the chapter 5.

C.1 Lyapunov spectrum

Convergence. We perform two tests to address the convergence of our implementation
of the Benettin et al. (1980) method. We first compute the FT-LCEs for a single initial
condition of H4 and an ensemble of 150 different random sets of initial tangent vectors.
Figure C.1a shows the [5th, 95th] percentile range of the resulting marginal distributions
of the positive FT-LCEs over a time span of 10 Gyr. The distributions shrink with
increasing time, eventually collapsing on single time-dependent values. In this asymptotic
regime, the Benettin et al. (1980) algorithm looses memory of the initial tangent vectors
and purely retrieves the FT-LCEs as defined in Eq. (5.10). Therefore, Fig. 5.1a shows
asymptotically the dependence of the FT-LCEs on the initial condition z0 and represents
their statistical distribution over the phase-space domain explored by the dynamics in
a non-ergodic way. The convergence of the computation is clearly slower for smaller
exponents, but a comparison with Fig. 5.1a indicates that, even in the case of λ8, the
numerical uncertainty on the FT-LCEs of each orbital solution at 10 Gyr is negligible
with respect to the width of their ensemble distributions.

To quantitatively estimate the numerical precision on the computed FT-LCEs, we
exploit the symmetry of the spectrum stated in Eq. (5.9). For a single orbital solution,
the relative numerical error on each exponent λi can be estimated as

ǫi =

∣∣∣∣∣
∆λi
λi

∣∣∣∣∣ . (C.1)

We plot in Fig. C.1b the medians of ǫi for the ensemble of 150 orbital solutions of Fig. 5.1a.
The relative errors decrease asymptotically with time, as expected. Even in the case of
the smallest exponent, λ8, the median error is less than 10% at 10 Gyr.
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C.3 Ensemble distributions of the quasi-integrals over

time

To retrieve the long-term statistical behavior of the QIs we consider the ensembles of
1080 numerical integrations of the dynamical models H4 and H6, with very close initial
conditions and spanning 100 Gyr in the future, that have been presented in ref. (Hoang
et al., 2022). We also consider the similar ensembles of solutions for the simplified
Hamiltonians H

•
4 and H

•
6 that have been introduced in Sect. 5.4.4. We report in Fig. C.3

the time evolution of the ensemble PDFs of the low-pass filtered dimensionless QIs and
dimensionless actions X1,Ψ3 for the different models (the cutoff frequency of the time
filter is set to 1 Myr−1, as in Sec. 5.4.2). More precisely, to highlight the growth of the
statistical dispersion, we consider at each time the PDF of the signed deviation from the
ensemble mean, so that all the plotted distributions have a null mean. At each time,
the PDF estimation only takes into account the stable orbital solutions, that is, those
solutions whose running maximum of Mercury eccentricity is smaller than 0.7 (Hoang
et al., 2022). Figure C.3 shows that the QIs are indeed slow quantities when compared to
the LL action variables. The growth of the QI dispersion is detailed in Fig. C.4, where we
report the time evolution of the interquartile range (IQR) of their distributions. After a
transient phase lasting about 100 Myr and characterized by the exponential separation
of close trajectories, the time growth of the IQR follows a power law typical of diffusion
processes. Figures C.3 and C.4 clearly show the slower diffusion of Cinc and C2 in the
model H•

2n when compared to H2n. We recall that E•
2n is an exact integral of motion for

the model H•
2n (see Sect. 5.4.4) and its PDF has null dispersion.



128 Appendix C. Timescales of chaos in the Inner Solar System



Bibliography

Abbot, D. S., Webber, R. J., Hadden, S., Seligman, D. and Weare, J. (2021). Rare event sampling
improves mercury instability statistics. The Astrophysical Journal, 923.2, p. 236.

Adhémar, J. A. (1860). Révolutions de la mer, déluges périodiques. Vol. 1. Lacroix-Comon.
Agassiz, L. (1840). Etudes sur les glaciers. Aux frais de l’auteur. En commission chez Jent et

Gassmann, libraires.
Anderson, J., Campbell, J., Jurgens, R. and Lau, E. (1992). “Recent developments in solar-system

tests of general relativity.” In: Marcel Grossmann Meeting on General Relativity, p. 353.
Arnol’d, V. I. (1963). Small Denominators and Problems of Stability of Motion in Classical and

Celestial Mechanics. Russian Mathematical Surveys, 18.6, R02.
Baker, P. L. (1993). Chaos, order, and sociological theoy. Sociological inquiry, 63.2, pp. 123–149.
Batygin, K. and Laughlin, G. (2008). On the Dynamical Stability of the Solar System. ApJ ,

683.2, pp. 1207–1216.
Batygin, K., Morbidelli, A. and Holman, M. J. (2015). Chaotic disintegration of the inner solar

system. The Astrophysical Journal, 799.2, p. 120.
Benettin, G., Galgani, L., Giorgilli, A. and Strelcyn, J. M. (1978). All Lyapunov characteristic

numbers are effectively computable. Academie des Sciences Paris Comptes Rendus Serie B
Sciences Physiques, 286, pp. 431–433.

Benettin, G., Galgani, L., Giorgilli, A. and Strelcyn, J. M. (1980). Lyapunov characteristic
exponents for smooth dynamical systems and for Hamiltonian systems - A method for
computing all of them. I - Theory. II - Numerical application. Meccanica, 15, pp. 9–30.

Benettin, G., Christodoulidi, H. and Ponno, A. (2013). The Fermi-Pasta-Ulam Problem and Its
Underlying Integrable Dynamics. Journal of Statistical Physics, 152.2, pp. 195–212.

Berger, A. (1978). Long-term variations of daily insolation and Quaternary climatic changes.
Journal of Atmospheric Sciences, 35.12, pp. 2362–2367.

Björck, A. and Golub, G. H. (1973). Numerical methods for computing angles between linear
subspaces. Mathematics of computation, 27.123, pp. 579–594.

Bosq, D. and Guégan, D. (1995). Nonparametric estimation of the chaotic function and the
invariant measure of a dynamical system. Statistics & probability letters, 25.3, pp. 201–212.

Boué, G. and Laskar, J. (2009). Spin axis evolution of two interacting bodies. Icarus, 201.2,
pp. 750–767.

Boué, G., Laskar, J. and Farago, F. (2012). A simple model of the chaotic eccentricity of Mercury.
Astronomy & Astrophysics, 548, A43.

Boulila, S., Vahlenkamp, M., De Vleeschouwer, D., Laskar, J., Yamamoto, Y., Pälike, H., Turner,
S. K., Sexton, P. F., Westerhold, T. and Röhl, U. (2018). Towards a robust and consistent
middle Eocene astronomical timescale. Earth and Planetary Science Letters, 486, pp. 94–107.

Bretagnon, P (1974). Termes à longues périodes dans le système solaire. Astron. Astrophys, 30.1,
pp. 141–154.

129



130 Bibliography

Brown, G. and Rein, H. (2020). A Repository of Vanilla Long-term Integrations of the Solar
System. Research Notes of the American Astronomical Society, 4.12, 221, p. 221.

Brumberg, V. and Chapront, J (1973). Construction of a general planetary theory of the first
order. Celestial mechanics, 8.3, pp. 335–355.

Calonico, S., Cattaneo, M. D. and Farrell, M. H. (2018). On the effect of bias estimation on
coverage accuracy in nonparametric inference. Journal of the American Statistical Association,
113.522, pp. 767–779.

Candès, E. J., Li, X., Ma, Y. and Wright, J. (2011). Robust principal component analysis?
Journal of the ACM (JACM), 58.3, pp. 1–37.

Carpino, M, Milani, A and Nobili, A. M. (1987). Long-term numerical integrations and synthetic
theories for the motion of the outer planets. Astronomy and Astrophysics, 181, pp. 182–194.

Casati, G., Chirikov, B., Izraelev, F. and Ford, J. (1979). “Stochastic behavior of a quantum
pendulum under a periodic perturbation”. In: Stochastic behavior in classical and quantum
Hamiltonian systems. Springer, pp. 334–352.

Charbonnier, G., Boulila, S., Spangenberg, J. E., Adatte, T., Föllmi, K. B. and Laskar, J. (2018).
Obliquity pacing of the hydrological cycle during the Oceanic Anoxic Event 2. Earth and
Planetary Science Letters, 499, pp. 266–277.

Charpentier, A. and Flachaire, E. (2015). Log-transform kernel density estimation of income
distribution. L’Actualité économique, 91.1-2, pp. 141–159.

Cheng, G., Chen, Y.-C., et al. (2019). Nonparametric inference via bootstrapping the debiased
estimator. Electronic Journal of Statistics, 13.1, pp. 2194–2256.

Chirikov, B. V. (1979). A universal instability of many-dimensional oscillator systems. Physics
reports, 52.5, pp. 263–379.

Christodoulidi, H. and Efthymiopoulos, C. (2019). Stages of dynamics in the Fermi-Pasta-Ulam
system as probed by the first Toda integral. Mathematics in Engineering, 1.2, pp. 359–377.

Contopoulos, G. (1960). A third Integral of Motion in a Galaxy. Z. Astrophys., 49, p. 273.
Contopoulos, G., Galgani, L. and Giorgilli, A. (1978). On the number of isolating integrals in

Hamiltonian systems. Phys. Rev. A, 18.3, pp. 1183–1189.
Correia, A. C. M. and Laskar, J. (2003). Long-term evolution of the spin of Venus. II. numerical

simulations. Icarus, 163.1, pp. 24–45.
Cowling, A. and Hall, P. (1996). On pseudodata methods for removing boundary effects in kernel

density estimation. Journal of the Royal Statistical Society: Series B (Methodological), 58.3,
pp. 551–563.

Cramwinckel, M. J., Huber, M., Kocken, I. J., Agnini, C., Bijl, P. K., Bohaty, S. M., Frieling,
J., Goldner, A., Hilgen, F. J., Kip, E. L., et al. (2018). Synchronous tropical and polar
temperature evolution in the Eocene. Nature, 559.7714, pp. 382–386.

Croll, J. (1875). Climate and time. Nature, 12.304, pp. 329–329.
Darwin, G. H. (1879). XIII. On the precession of a viscous spheroid, and on the remote history

of the Earth. Philosophical Transactions of the Royal Society of London, 170, pp. 447–538.
Eckmann, J. P. and Ruelle, D. (1985). Ergodic theory of chaos and strange attractors. Reviews

of Modern Physics, 57.3, pp. 617–656.
Efron, B. (1979). Bootstrap Methods: Another Look at the Jackknife. Ann. Statist., 7.1, pp. 1–26.
Einstein, A. (1916). Die Grundlage der allgemeinen Relativitätstheorie. Annalen der Physik,

354.7, pp. 769–822.
Escande, D. and Sattin, F (2007). When can the Fokker-Planck equation describe anomalous or

chaotic transport? Physical Review Letters, 99.18, p. 185005.
Farhat, M., Laskar, J. and Boué, G. (2022a). Constraining the Earth’s Dynamical Ellipticity

From Ice Age Dynamics. Journal of Geophysical Research: Solid Earth, 127.5, e2021JB023323.



Bibliography 131

Farhat, M., Auclair-Desrotour, P., Boué, G. and Laskar, J. (2022b). The resonant tidal evolution
of the Earth-Moon distance. Astronomy & Astrophysics, 665, p. L1.

Ferguson W. E., J., Flaschka, H. and McLaughlin, D. W. (1982). Nonlinear Normal Modes for
the Toda Chain. Journal of Computational Physics, 45.2, pp. 157–209.

Fermi, E., Pasta, P, Ulam, S and Tsingou, M (1955). Studies of Nonlinear Problems. Tech. rep.
Los Alamos National Laboratory.

Fermi, E. (1949). On the origin of the cosmic radiation. Physical review, 75.8, p. 1169.
Feulner, G. (2012). The faint young Sun problem. Reviews of Geophysics, 50.2, RG2006, RG2006.
Fienga, A, Laskar, J, Morley, T, Manche, H, Kuchynka, P, Le Poncin-Lafitte, C, Budnik, F,

Gastineau, M and Somenzi, L (2009). INPOP08, a 4-D planetary ephemeris: from asteroid and
time-scale computations to ESA Mars Express and Venus Express contributions. Astronomy
& Astrophysics, 507.3, pp. 1675–1686.

Fischer, A. G. (1986). Climatic rhythms recorded in strata. Annual Review of Earth and Planetary
Sciences, 14, p. 351.

Flaschka, H. (1974). The Toda lattice. II. Existence of integrals. Phys. Rev. B, 9.4, pp. 1924–1925.
Ford, J. (1961). Equipartition of Energy for Nonlinear Systems. Journal of Mathematical Physics,

2.3, pp. 387–393.
Ford, J., Mantica, G. and Ristow, G. H. (1991). The Arnol’d cat: Failure of the correspondence

principle. Physica D: Nonlinear Phenomena, 50.3, pp. 493–520.
Gale, A., Young, J., Shackleton, N., Crowhurst, S. and Wray, D. (1999). Orbital tuning of Ceno-

manian marly chalk successions: towards a Milankovitch time-scale for the Late Cretaceous.
Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical
and Engineering Sciences, 357.1757, pp. 1815–1829.

Gaspard, P. (1998). Chaos, Scattering and Statistical Mechanics. Cambridge Nonlinear Science
Series. Cambridge University Press.

Gastineau, M. and Laskar, J. (2011). Trip: a computer algebra system dedicated to celestial
mechanics and perturbation series. ACM Communications in Computer Algebra, 44.3/4,
pp. 194–197.

Gastineau, M. and Laskar, J. (2021). TRIP 1.4.120. TRIP Reference manual. www.imcce.fr/trip.
Paris Observatory: IMCCE.

Gauss, C. (1818). Determinatio attractionis quam in punctum quodvis positionis datae exerceret
[etc]. Werke, 3, pp. 331–356.

Goldfriend, T. and Kurchan, J. (2019). Equilibration of quasi-integrable systems. Phys. Rev. E ,
99.2, 022146, p. 022146.

Goldreich, P. (1966). History of the lunar orbit. Reviews of Geophysics, 4.4, pp. 411–439.
Gradstein, F. M., Ogg, J. G., Smith, A. G., Bleeker, W. and Lourens, L. J. (2004). A new geologic

time scale, with special reference to Precambrian and Neogene. Episodes, 27.2, pp. 83–100.
Gradstein, F. M., Ogg, J. G., Schmitz, M. and Ogg, G. (2012). The geologic time scale 2012.

elsevier.
Gradstein, F. and Ogg, J. (2020). “The chronostratigraphic scale”. In: Geologic Time Scale 2020.

Elsevier, pp. 21–32.
Grandmont, J.-M. (1988). Nonlinear Difference Equations, Bifurcations and Chaos. CEPREMAP

paper , 8811.
Grava, T., Maspero, A., Mazzuca, G. and Ponno, A. (2020). Adiabatic Invariants for the FPUT

and Toda Chain in the Thermodynamic Limit. Communications in Mathematical Physics,
380.2, pp. 811–851.

Guevara, M. R., Glass, L. and Shrier, A. (1981). Phase locking, period-doubling bifurcations, and
irregular dynamics in periodically stimulated cardiac cells. Science, 214.4527, pp. 1350–1353.



132 Bibliography

Haerdle, W, Vieu, P and Hart, J (1989). Asymptitic optimal data-driven bandwidths for
regression under dependence. Preprint,

Hall, P., Horowitz, J. L. and Jing, B.-Y. (1995). On blocking rules for the bootstrap with
dependent data. Biometrika, 82.3, pp. 561–574.

Hallam, A (1986). Origin of minor limestone-shale cycles: Climatically induced or diagenetic?
Geology, 14.7, pp. 609–612.

Hang, H., Steinwart, I., Feng, Y. and Suykens, J. A. (2018). Kernel density estimation for
dynamical systems. The Journal of Machine Learning Research, 19.1, pp. 1260–1308.

Hart, J. D. (1996). Some automated methods of smoothing time-dependent data. Journal of
nonparametric statistics, 6.2-3, pp. 115–142.

Hartung, J., Knapp, G. and Sinha, B. K. (2011). Statistical meta-analysis with applications.
Vol. 738. John Wiley & Sons.

Hasselmann, K. (1976). Stochastic climate models part I. Theory. tellus, 28.6, pp. 473–485.
Hastings, W. K. (1970). Monte Carlo sampling methods using Markov chains and their applica-

tions. Biometrika, 57.1, pp. 97–109.
Hays, J. D., Imbrie, J., Shackleton, N. J., et al. (1976). Variations in the Earth’s orbit: pacemaker

of the ice ages. Science, 194.4270, pp. 1121–1132.
Hénon, M. (1974). Integrals of the Toda lattice. Phys. Rev. B, 9.4, pp. 1921–1923.
Hénon, M. and Heiles, C. (1964). The applicability of the third integral of motion: some numerical

experiments. The astronomical journal, 69, p. 73.
Hilgen, F., Krijgsman, W, Raffi, I, Turco, E and Zachariasse, W. (2000). Integrated stratigraphy

and astronomical calibration of the Serravallian/Tortonian boundary section at Monte
Gibliscemi (Sicily, Italy). Marine Micropaleontology, 38.3-4, pp. 181–211.

Hilgen, F. J., Hinnov, L. A., Abdul Aziz, H., Abels, H. A., Batenburg, S., Bosmans, J. H.,
Boer, B. de, Hüsing, S. K., Kuiper, K. F., Lourens, L. J., et al. (2015). “Stratigraphic conti-
nuity and fragmentary sedimentation: the success of cyclostratigraphy as part of integrated
stratigraphy”. In: The Geological Society of London.

Hinnov, L., Hilgen, F., Gradstein, F., Ogg, J., Schmitz, M, Ogg, G, et al. (2012). Cyclostratigraphy
and astrochronology. The geologic time scale 2012 , p. 63.

Hinnov, L. A. (2013). Cyclostratigraphy and its revolutionizing applications in the earth and
planetary sciences. Bulletin, 125.11-12, pp. 1703–1734.

Hinnov, L. A. (2018). “Cyclostratigraphy and astrochronology in 2018”. In: Stratigraphy &
Timescales. Vol. 3. Elsevier, pp. 1–80.

Hoang, N. H., Mogavero, F. and Laskar, J. (2021). Chaotic diffusion of the fundamental
frequencies in the Solar System. A&A, 654, A156.

Hoang, N. H., Mogavero, F. and Laskar, J. (2022). Long-term instability of the inner Solar
System: numerical experiments. Monthly Notices of the Royal Astronomical Society, 514.1,
pp. 1342–1350.

Hotelling, H. (1933). Analysis of a complex of statistical variables into principal components.
Journal of educational psychology, 24.6, p. 417.

Hudson, J. L. and Mankin, J. C. (1981). Chaos in the Belousov-Zhabotinskii reaction. J. Chem. Phys.,
74.11, pp. 6171–6177.

Imbrie, J. (1982). Astronomical theory of the Pleistocene ice ages: A brief historical review.
Icarus, 50.2-3, pp. 408–422.

Ito, T. and Tanikawa, K. (2002). Long-term integrations and stability of planetary orbits in our
Solar system. MNRAS , 336.2, pp. 483–500.

Jolliffe, I. T. (2002). Principal component analysis. Springer.



Bibliography 133

Jolliffe, I. T. and Cadima, J. (2016). Principal component analysis: a review and recent devel-
opments. Philosophical Transactions of the Royal Society A: Mathematical, Physical and
Engineering Sciences, 374.2065, p. 20150202.

Jordan, C. (1875). Essai sur la géométrie à n dimensions. Bulletin de la Société mathématique
de France, 3, pp. 103–174.

Kass, R. E., Carlin, B. P., Gelman, A. and Neal, R. M. (1998). Markov chain Monte Carlo in
practice: a roundtable discussion. The American Statistician, 52.2, pp. 93–100.

Knyazev, A. V. and Argentati, M. E. (2002). Principal angles between subspaces in an A-
based scalar product: algorithms and perturbation estimates. SIAM Journal on Scientific
Computing, 23.6, pp. 2008–2040.

Kolmogorov, A. N. (1954). “On conservation of conditionally periodic motions for a small change
in Hamilton’s function”. In: Dokl. Akad. Nauk SSSR. Vol. 98, pp. 527–530.

Kreiss, J.-P. and Lahiri, S. N. (2012). “Bootstrap methods for time series”. In: Handbook of
statistics. Vol. 30. Elsevier, pp. 3–26.

Kruskal, M. (1962). Asymptotic Theory of Hamiltonian and other Systems with all Solutions
Nearly Periodic. Journal of Mathematical Physics, 3.4, pp. 806–828.

Kuffner, T. A., Lee, S. M.-S. and Young, G. A. (2019). Block bootstrap optimality for density
estimation with dependent data. arXiv preprint arXiv:1909.02662 ,

Kuiper, K., Deino, A., Hilgen, F., Krijgsman, W., Renne, P. and Wijbrans, J. (2008). Synchro-
nizing rock clocks of Earth history. science, 320.5875, pp. 500–504.

Kunsch, H. R. (1989). The jackknife and the bootstrap for general stationary observations. The
annals of Statistics, pp. 1217–1241.

Lagrange, J. L. (1778). Recherches sur les équations séculaires des mouvemens des noeuds, et
des inclinaisons des orbites des planètes. de l’Imprimerie Royale.

Lam, K.-D. N. T. and Kurchan, J. (2014). Stochastic Perturbation of Integrable Systems: A
Window to Weakly Chaotic Systems. Journal of Statistical Physics, 156.4, pp. 619–646.

Landau, L. D. (1937). On the theory of phase transitions. I. Zh. Eksp. Teor. Fiz., 11, p. 19.
Lantink, M. L., Davies, J. H., Ovtcharova, M. and Hilgen, F. J. (2022). Milankovitch cycles in

banded iron formations constrain the Earth–Moon system 2.46 billion years ago. Proceedings
of the National Academy of Sciences, 119.40, e2117146119.

Laplace, P.-S. (1776). Recherches sur l’intégration des équations différentielles aux différences
finies et sur leur usage dans la théorie des hasards. Mémoires de l’Académie Royale des
Sciences de Paris, 7, pp. 69–197.

Laplace, P.-S. (1785). Théorie de Jupiter et de Saturne. Mem. Acad. royale des Sci. de Paris,
année 1785, 1788, Œuvres, t. XI, p. 95.

Laplace, P. S. (1814). Essai Philosophique sur les Probabilites (FW Truscott & FL Emory,
Trans.)

Laskar, J. (1990). “Systèmes de Variables et Eléments”. In: Modern Methods in Celestial
Mechanics. Ed. by D. Benest and C. Froeschle. Editions Frontières, Gif -Sur-Yvette, pp. 63–
87.

Laskar, J (1991). “Analytical framework in Poincaré variables for the motion of the solar system”.
In: Predictability, Stability, and Chaos in N-Body Dynamical Systems. Springer, pp. 93–114.

Laskar, J. (1991). “Analytical framework in Poincaré variables for the motion of the solar
system”. In: Predictability, Stability, and Chaos in N-Body Dynamical Systems. Vol. 272.
NATO Advanced Study Institute (ASI) Series B, pp. 93–114.

Laskar, J. (1994). Large-scale chaos in the solar system. Astronomy and Astrophysics, 287,
pp. L9–L12.



134 Bibliography

Laskar, J. (1999). The limits of Earth orbital calculations for geological time-scale use. Philo-
sophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and
Engineering Sciences, 357.1757, pp. 1735–1759.

Laskar, J. (2016). “Michel Hénon and the stability of the Solar System”. In: Une vie dédiée aux
systemèmes dynamiques: Hommage à Michel Hénon. Hermann, pp. 71–81.

Laskar, J. (2020). “Astrochronology”. In: Geologic Time Scale 2020. Elsevier, pp. 139–158.
Laskar, J. and Simon, J. L. (1988). Fitting a line to a sine. Celestial Mechanics, 43.1-4, pp. 37–45.
Laskar, J., Quinn, T. and Tremaine, S. (1992). Confirmation of resonant structure in the solar

system. Icarus, 95, pp. 148–152.
Laskar, J, Joutel, F and Boudin, F (1993a). Orbital, precessional, and insolation quantities for

the Earth from-20 Myr to+ 10 Myr. Astronomy and Astrophysics, 270, pp. 522–533.
Laskar, J., Robutel, P., Joutel, F., Gastineau, M., Correia, A. and Levrard, B. (2004). A long-term

numerical solution for the insolation quantities of the Earth. Astronomy & Astrophysics,
428.1, pp. 261–285.

Laskar, J., Fienga, A., Gastineau, M. and Manche, H. (2011a). La2010: a new orbital solution
for the long-term motion of the Earth. Astronomy & Astrophysics, 532.

Laskar, J., Gastineau, M., Delisle, J.-B., Farrés, A. and Fienga, A. (2011b). Strong chaos induced
by close encounters with Ceres and Vesta. Astronomy & Astrophysics, 532, p. L4.

Laskar, J. (1985). Accurate methods in general planetary theory. Astronomy and Astrophysics,
144, pp. 133–146.

Laskar, J. (1988). Secular evolution of the solar system over 10 million years. Astronomy and
Astrophysics, 198, pp. 341–362.

Laskar, J. (1989). A numerical experiment on the chaotic behaviour of the solar system. Nature,
338.6212, p. 237.

Laskar, J. (1990). The chaotic motion of the solar system - A numerical estimate of the size of
the chaotic zones. Icarus, 88, pp. 266–291.

Laskar, J. (1993). Frequency analysis for multi-dimensional systems. Global dynamics and
diffusion. Physica D: Nonlinear Phenomena, 67.1-3, pp. 257–281.

Laskar, J. (1996). Large Scale Chaos and Marginal Stability in the Solar System. Celestial
Mechanics and Dynamical Astronomy, 64.1-2, pp. 115–162.

Laskar, J. (1997). Large scale chaos and the spacing of the inner planets. A&A, 317, pp. L75–L78.
Laskar, J. (2000). On the spacing of planetary systems. Physical Review Letters, 84.15, p. 3240.
Laskar, J. (2005). “Frequency map analysis and quasiperiodic decompositions”. In: Hamiltonian

Systems and Fourier Analysis: New Prospects For Gravitational Dynamics. Ed. by D. B. Lega,
C. Froeschlé and E. arXiv: math/0305364. Cambridge Scientific Publishers Ltd, pp. 93–114.

Laskar, J. (2008). Chaotic diffusion in the Solar System. Icarus, 196, pp. 1–15.
Laskar, J. (2013). “Is the solar system stable?” In: Chaos. Springer, pp. 239–270.
Laskar, J., Joutel, F. and Robutel, P. (1993b). Stabilization of the Earth’s obliquity by the

Moon. Nature, 361.6413, pp. 615–617.
Laskar, J. and Robutel, P. (1995). Stability of the planetary three-body problem. Celestial

Mechanics and Dynamical Astronomy, 62.3, pp. 193–217.
Laskar, J. and Gastineau, M. (2009). Existence of collisional trajectories of Mercury, Mars and

Venus with the Earth. Nature, 459.7248, p. 817.
Laskar, J. and Petit, A. (2017). AMD-stability and the classification of planetary systems.

Astronomy & Astrophysics, 605, A72.
Le Verrier, U. (1859). Lettre de M. Le Verrier à M. Faye sur la théorie de Mercure et sur le

mouvement du périhélie de cette planète. Comptes rendus hebdomadaires des séances de
l’Académie des sciences, 49, pp. 379–383.



Bibliography 135

Le Verrier, U. J. (1856). “Recherches astronomiques:(suite)”. In: Annales de l’Observatoire de
Paris. Vol. 2.

Lecar, M., Franklin, F. A., Holman, M. J. and Murray, N. W. (2001). Chaos in the solar system.
Annual Review of Astronomy and Astrophysics, 39.1, pp. 581–631.

Lee, J. A. and Verleysen, M. (2007). Nonlinear dimensionality reduction. Vol. 1. Springer.
Lieberman, M. A. and Godyak, V. A. (1998). From Fermi acceleration to collisionless discharge

heating. IEEE transactions on plasma science, 26.3, pp. 955–986.
Liouville, J. (1838). Note sur la Théorie de la Variation des constantes arbitraires. Journal de

mathématiques pures et appliquées, pp. 342–349.
Lisiecki, L. E. and Raymo, M. E. (2005). A Pliocene-Pleistocene stack of 57 globally distributed

benthic δ18O records. Paleoceanography, 20.1.
Lithwick, Y. and Wu, Y. (2011). Theory of secular chaos and Mercury’s orbit. The Astrophysical

Journal, 739.1, p. 31.
Liu, R. Y., Singh, K., et al. (1992). Moving blocks jackknife and bootstrap capture weak

dependence. Exploring the limits of bootstrap, 225, p. 248.
Lorenz, E. (1972). Predictability: does the flap of a butterfly’s wing in Brazil set off a tornado in

Texas?
Lorenz, E. N. (1963). Deterministic nonperiodic flow. Journal of atmospheric sciences, 20.2,

pp. 130–141.
Ma, C., Meyers, S. R. and Sageman, B. B. (2017). Theory of chaotic orbital variations confirmed

by Cretaceous geological evidence. Nature, 542.7642, p. 468.
Malishava, M. and Flach, S. (2022). Lyapunov Spectrum Scaling for Classical Many-Body

Dynamics Close to Integrability. Phys. Rev. Lett., 128.13, 134102, p. 134102.
Manakov, S. V. (1974). Complete integrability and stochastization of discrete dynamical systems.

Zhurnal Eksperimentalnoi i Teoreticheskoi Fiziki, 67, pp. 543–555.
Markopoulos, P. P., Karystinos, G. N. and Pados, D. A. (2014). Optimal algorithms for L_{1}-

subspace signal processing. IEEE Transactions on Signal Processing, 62.19, pp. 5046–5058.
Matsumoto, T. (1984). A chaotic attractor from Chua’s circuit. IEEE Transactions on Circuits

and Systems, 31.12, pp. 1055–1058.
Maume-Deschamps, V. (2006). Exponential inequalities and functional estimations for weak

dependent data: applications to dynamical systems. Stochastics and Dynamics, 6.04, pp. 535–
560.

Meech, L. W. (1857). On the relative intensity of the heat and light of the Sun upon different
latitudes of the Earth. Vol. 9. Smithsonian Institution.

Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H. and Teller, E. (1953).
Equation of state calculations by fast computing machines. The journal of chemical physics,
21.6, pp. 1087–1092.

Meyers, S. R. (2019). Cyclostratigraphy and the problem of astrochronologic testing. Earth-
Science Reviews, 190, pp. 190–223.

Meyers, S. R. and Malinverno, A. (2018). Proterozoic Milankovitch cycles and the history of the
solar system. Proceedings of the National Academy of Sciences, 115.25, pp. 6363–6368.

Milani, A. and Nobili, A. M. (1992). An example of stable chaos in the Solar System. Nature,
357.6379, pp. 569–571.

Milankovitch, M. (1941). Canon of insolation and the iceage problem. Koniglich Serbische
Akademice Beograd Special Publication, 132.

Mogavero, F. (2017). Addressing the statistical mechanics of planet orbits in the solar system.
Astronomy & Astrophysics, 606, A79.

Mogavero, F. and Laskar, J. (2021). Long-term dynamics of the inner planets in the Solar System.
A&A, 655, A1.



136 Bibliography

Mogavero, F. and Laskar, J. (2022). The origin of chaos in the Solar System through computer
algebra. Astronomy & Astrophysics, 662, p. L3.

Morbidelli, A. (2002). Modern celestial mechanics: aspects of solar system dynamics. Taylor &
Francis.

Morbidelli, A. and Giorgilli, A. (1995). On a connection between KAM and Nekhoroshev’s
theorems. Physica D Nonlinear Phenomena, 86.3, pp. 514–516.

Morbidelli, A. and Froeschlé, C. (1996). On the Relationship Between Lyapunov Times and
Macroscopic Instability Times. Celestial Mechanics and Dynamical Astronomy, 63.2, pp. 227–
239.

Möser, J (1962). On invariant curves of area-preserving mappings of an annulus. Nachr. Akad.
Wiss. Göttingen, II , pp. 1–20.

Muller, M. E. (1959). A Note on a Method for Generating Points Uniformly on N-Dimensional
Spheres. Commun. ACM , 2.4, pp. 19–20.

Murray, N and Holman, M (1999). The origin of chaos in the outer solar system. Science,
283.5409, pp. 1877–1881.

Murray, N. W., Lieberman, M. A. and Lichtenberg, A. J. (1985). Corrections to quasilinear
diffusion in area-preserving maps. Physical Review A, 32.4, p. 2413.

Neron de Surgy, O and Laskar, J. (1997). On the long term evolution of the spin of the Earth.
Astronomy and Astrophysics, 318, pp. 975–989.

Nolte, D. D. (2010). The tangled tale of phase space. Physics today, 63.4, pp. 33–38.
Olsen, P. E. and Kent, D. V. (1999). Long-period Milankovitch cycles from the Late Triassic and

Early Jurassic of eastern North America and their implications for the calibration of the Early
Mesozoic time–scale and the long–term behaviour of the planets. Philosophical Transactions
of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences,
357.1757, pp. 1761–1786.

Olsen, P. E., Laskar, J., Kent, D. V., Kinney, S. T., Reynolds, D. J., Sha, J. and Whiteside, J. H.
(2019). Mapping Solar System chaos with the Geological Orrery. Proceedings of the National
Academy of Sciences, p. 201813901.

Onorato, M., Vozella, L., Proment, D. and Lvov, Y. V. (2015). Route to thermalization in
the α-Fermi-Pasta-Ulam system. Proceedings of the National Academy of Science, 112.14,
pp. 4208–4213.

Oseledec, V. I. (1968). A multiplicative ergodic theorem. Lyapunov characteristic numbers for
dynamical systems. Trans.Moscow Math.Soc., 19, pp. 197–231.

Parzen, E. (1962). On estimation of a probability density function and mode. The annals of
mathematical statistics, 33.3, pp. 1065–1076.

Pearson, K. (1901). LIII. On lines and planes of closest fit to systems of points in space. The
London, Edinburgh, and Dublin philosophical magazine and journal of science, 2.11, pp. 559–
572.

Pistone, L., Chibbaro, S., Bustamante, M. D., Lvov, Y. V. and Onorato, M. (2019). Universal route
to thermalization in weakly-nonlinear one-dimensional chains. Mathematics in Engineering,
1.4, 672–698.

Poincaré, H. (1899). Les méthodes nouvelles de la mécanique céleste. Vol. 3. Gauthier-Villars et
fils.

Quinn, T. R., Tremaine, S. and Duncan, M. (1991). A three million year integration of the
Earth’s orbit. The Astronomical Journal, 101, pp. 2287–2305.

Ragone, F. and Bouchet, F. (2020). Computation of extreme values of time averaged observables
in climate models with large deviation techniques. Journal of Statistical Physics, 179.5,
pp. 1637–1665.



Bibliography 137

Rechester, A. and White, R. B. (1980). Calculation of turbulent diffusion for the Chirikov-Taylor
model. Physical Review Letters, 44.24, p. 1586.

Robinson, P. M. (1983). Nonparametric estimators for time series. Journal of Time Series
Analysis, 4.3, pp. 185–207.

Rosenblatt, M. (1956). A central limit theorem and a strong mixing condition. Proceedings of
the National Academy of Sciences of the United States of America, 42.1, p. 43.

Ruddiman, W. F. et al. (2001). Earth’s Climate: past and future. Macmillan.
Ruelle, D. and Takens, F. (1971). On the nature of turbulence. Les rencontres physiciens-

mathématiciens de Strasbourg-RCP25 , 12, pp. 1–44.
Silverman, B. W. (1986). Density estimation for statistics and data analysis. Vol. 26. CRC press.
Simonoff, J. S. (2012). Smoothing methods in statistics. Springer Science & Business Media.
Sinnesael, M., De Vleeschouwer, D., Zeeden, C., Batenburg, S. J., Da Silva, A.-C., Winter,

N. J. de, Dinarès-Turell, J., Drury, A. J., Gambacorta, G., Hilgen, F. J., et al. (2019). The
Cyclostratigraphy Intercomparison Project (CIP): consistency, merits and pitfalls. Earth-
Science Reviews, 199, p. 102965.

Skarda, C. A. and Freeman, W. J. (1990). Chaos and the new science of the brain. Concepts in
neuroscience, 1.2, pp. 275–285.

Skokos, C. (2010). The Lyapunov Characteristic Exponents and Their Computation. In: Dynamics
of Small Solar System Bodies and Exoplanets. Ed. by J. J. Souchay and R. Dvorak. Berlin,
Heidelberg: Springer Berlin Heidelberg, pp. 63–135.

Smale, S. (1976). On the differential equations of species in competition. Journal of Mathematical
Biology, 3.1, pp. 5–7.

Spalding, C., Fischer, W. W. and Laughlin, G. (2018). An orbital window into the ancient Sun’s
mass. The Astrophysical Journal Letters, 869.1, p. L19.

Strasser, A. H. and Heckel, P. H. (2007). Cyclostratigraphy concepts, definitions, and applications.
Newsletters on Stratigraphy, 42.2, pp. 75–114.

Sussman, G. J. and Wisdom, J. (1992). Chaotic evolution of the solar system. Science, 257.5066,
pp. 56–62.

Touma, J. and Wisdom, J. (1994). Evolution of the Earth-Moon system. The Astronomical
Journal, 108, pp. 1943–1961.

Tremaine, S. (2015). The statistical mechanics of planet orbits. The Astrophysical Journal, 807.2,
p. 157.

Trinh, X. T. (2001). Chaos and Harmony: perspectives on scientific revolutions of the twentieth
century.

Van Loan, C. F. and Golub, G (1996). Matrix computations. London: The Johns Hopkins
University Press.

Varadi, F, Runnegar, B and Ghil, M (2003). Successive refinements in long-term integrations of
planetary orbits. The Astrophysical Journal, 592.1, p. 620.

Vaughan, S, Bailey, R. and Smith, D. (2011). Detecting cycles in stratigraphic data: Spectral
analysis in the presence of red noise. Paleoceanography, 26.4.

Webber, R. J., Plotkin, D. A., O’Neill, M. E., Abbot, D. S. and Weare, J. (2019). Practical
rare event sampling for extreme mesoscale weather. Chaos: An Interdisciplinary Journal of
Nonlinear Science, 29.5, p. 053109.

Weedon, G. P., Page, K. N. and Jenkyns, H. C. (2019). Cyclostratigraphy, stratigraphic gaps and
the duration of the Hettangian Stage (Jurassic): insights from the Blue Lias Formation of
southern BritainGP Weedon et al. Cyclostratigraphy of the Blue Lias Formation. Geological
Magazine, 156.9, pp. 1469–1509.



138 Bibliography

Westerhold, T., Röhl, U., Frederichs, T., Agnini, C., Raffi, I., Zachos, J. C. and Wilkens, R. H.
(2017). Astronomical calibration of the Ypresian timescale: implications for seafloor spreading
rates and the chaotic behavior of the solar system? Climate of the Past, 13.9, pp. 1129–1152.

Will, C. M. (2018). Theory and experiment in gravitational physics. Cambridge university press.
Williams, J. G. (1994). Contributions to the Earth’s obliquity rate, precession, and nutation.

The Astronomical Journal, 108, pp. 711–724.
Wilson, C. (1985). The great inequality of Jupiter and Saturn: from Kepler to Laplace. Archive

for history of exact sciences, 33.1/3, pp. 15–290.
Wilson, E. B. (1927). Probable inference, the law of succession, and statistical inference. Journal

of the American Statistical Association, 22.158, pp. 209–212.
Winkler, M., Combs, A. and Daley, C. (1994). A chaotic systems analysis of the nasal cycle.

Behavioral Science, 39.4, pp. 285–292.
Wintner, A. (2014). The analytical foundations of celestial mechanics. Courier Corporation.
Woillez, E. and Bouchet, F. (2020). Instantons for the destabilization of the inner Solar System.

Physical Review Letters, 125.2, p. 021101.
Wu, H., Zhang, S., Hinnov, L. A., Jiang, G., Feng, Q., Li, H. and Yang, T. (2013). Time-calibrated

Milankovitch cycles for the late Permian. Nature Communications, 4.1, pp. 1–8.
Wu, H., Hinnov, L. A., Zhang, S., Jiang, G., Yang, T., Li, H., Xi, D., Ma, X. and Wang, C. (2022).

Continental geological evidence for Solar System chaotic behavior in the Late Cretaceous.
GSA Bulletin,

Yang, W. and Zurbenko, I. (2010). Kolmogorov–Zurbenko filters. WIREs Computational Statis-
tics, 2.3, pp. 340–351.

Ye, K. and Lim, L.-H. (2016). Schubert varieties and distances between subspaces of different
dimensions. SIAM Journal on Matrix Analysis and Applications, 37.3, pp. 1176–1197.

Zeebe, R. E. (2015). Highly stable evolution of Earth’s future orbit despite chaotic behavior of
the Solar System. The Astrophysical Journal, 811.1, p. 9.

Zeebe, R. E. (2017). Numerical solutions for the orbital motion of the Solar System over the
past 100 Myr: limits and new results. The Astronomical Journal, 154.5, p. 193.

Zeebe, R. E. and Lourens, L. J. (2019). Solar System chaos and the Paleocene–Eocene boundary
age constrained by geology and astronomy. Science, 365.6456, pp. 926–929.

Zurbenko, I. G. and Smith, D. (2018). Kolmogorov–Zurbenko filters in spatiotemporal analysis.
WIREs Computational Statistics, 10.1, e1419.






	Acknowledgement
	Introduction
	Historical background
	Modern understanding of the Solar System
	Overview
	Origin of chaos of the ISS
	Statistics of the Solar System

	Destabilization of the ISS
	Probability of instability
	The BMH model
	Problem of instability

	Geology and Astronomy
	Overview
	Milankovitch cycles
	Problems of cyclostratigraphy

	Objectives and organization of this thesis

	Secular dynamics of planetary system
	General description
	Truncation of secular Hamiltonian
	Equations of motion
	Forced secular inner Solar System

	Lagrange-Laplace secular dynamics
	Lagrange-Laplace dynamics of the forced inner Solar System


	Chaotic diffusion of the fundamental frequencies of the Solar System
	Introduction
	Dynamical model
	Secular equations
	Frequency analysis

	Estimation of probability density functions
	Kernel density estimation
	Moving block bootstrap
	Numerical experiments
	Combining samples

	Application to the Solar System
	Choice of initial conditions
	First test: Different samples of the same variation size 
	Second test: Different samples of different variation sizes
	Final test: Comparison with the complete model
	A complementary test on frequency analysis

	Parametric fitting
	Skew Gaussian mixture model
	Evolution of the parameters

	Geological application
	Astronomical metronomes
	Newark-Hartford data
	Libsack core

	Conclusion

	Long-term instability of the inner Solar System: numerical experiments
	Introduction
	Dynamical models
	Numerical Experiments
	Statistics of Mercury's eccentricity
	Small changes, big differences over 5 Gyr
	Ranking of harmonics according to their contributions to g_1
	Importance of non-resonant harmonics
	Statistics over 100 Gyr

	Discussion

	Timescales of chaos in the Inner Solar System
	Introduction
	Dynamical model
	Lyapunov spectrum
	Quasi-integrals of motion
	Quasi-symmetries of the resonant harmonics
	Slow variables
	Weak resonances and Lyapunov spectrum
	A new truncation of the Hamiltonian

	Statistical detection of slow variables
	Principal component analysis
	Principal components and quasi-integrals

	Implications on long-term stability
	Discussion
	The inner Solar System among classical quasi-integrable systems
	Methods


	Conclusion
	Lagrange-Laplace matrix
	Long-term instability of the inner Solar System: numerical experiments
	Secular dynamics at second order in planetary masses
	Statistics with different thresholds of Mercury's eccentricity
	Difference between past and future for the statistics of Mercury's eccentricity
	PDF estimation

	Timescales of chaos in the Inner Solar System
	Lyapunov spectrum
	Coefficients of the linear quasi-integrals of motion
	Ensemble distributions of the quasi-integrals over time

	Bibliography

