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moment où tu essayais de m’expliquer une notion. Une fois terminé, je t’ai répondu que je
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bien que cela continuera ! Toujours avec une énorme mention spéciale, je remercie également
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C H A P T E R

1
Introduction

“Sooner or later, we will have to recognize that the Earth has
rights, too, to live without pollution. What mankind must
know is that human beings cannot live without Mother
Earth, but the planet can live without humans.”

— Juan Evo Morales Ayma (1959 - )

1.1 Industrial context

In 2011, the High Level Group on Aviation and Aeronautics Research published the Flightpath
2050 Europe’s Vision for Aviation [1]. The main identified objectives are to meet societal and
market needs, to maintain and extend industrial leadership, to ensure safety and security,
to prioritize research and testing capabilities and to protect the environment and the energy
supply. To achieve their last objective, five goals have been defined:

1. In 2050, technologies and procedures available allow a 75% reduction in CO2 emissions
per passenger kilometer to support the ATAG target (Carbon-neutral growth starting
2020 and a 50% overall CO2 emission reduction by 2050) and a 90% reduction in NOx
emissions. The perceived noise emission of flying aircraft is reduced by 65%. These are
relative to the capabilities of typical new aircraft in 2000.

2. Aircraft movements are emission-free when taxiing.
3. Air vehicles are designed and manufactured to be recyclable.
4. Europe is established as a center of excellence on sustainable alternative fuels, including

those for aviation, based on a strong European energy policy.
5. Europe is at the forefront of atmospheric research and takes the lead in the formulation

of a prioritized environmental action plan and establishment of global environmental
standards.

To reduce their environmental footprint, the manufacturers have to improve the efficiency of
their aircraft. Basically, there are three ways to improve the efficiency of an aircraft following
the famous Breguet range equation:

R = V × L
D︸︷︷︸

Aerodynamic
efficiency

× 1
g · SFC︸ ︷︷ ︸

Propulsion
efficiency

× ln
[

Wi

W f

]

︸ ︷︷ ︸
Weight

efficiency

, (1.1)

where R is the aircraft range, V is the flight speed, L/D is the lift-to-drag ratio, g is the
gravity, SFC is the Specific Fuel Consumption, Wi is the initial weight and W f is the final
weight. The first and most obvious way is to improve engines by decreasing the specific fuel
consumption. The second technique consists in increasing the lift-to-drag ratio CL/CD, playing
on aerodynamic shape: one can try to increase the lift, to decrease the drag or to do both. The
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last but the not the least way is based on structural analysis: it consists in reducing the aircraft
mass. The latter two ways of dealing with the Breguet range equation are analyzed in the
context of the European project called AFLoNext (“2nd Generation Active Wing” - Active Flow
Loads & Noise control on next generation wing). Even if manufacturers still work on fuel
consumption and lift-to-drag ratio, one easy way to get a better aircraft consists in reducing
its weight. The A350 is a perfect example of a mass reduction since most of the aircraft is
made of composite materials. However, even if they enable mass saving, composite materials
have structural characteristics that strongly differ from aluminum. This is important since
this structural properties modification can lead to vibrations due to an aeroelastic coupling:
a frequency of the unsteady flow could excite an eigenfrequency of the structure. Indeed,
generally speaking, dealing with the vibrations tends to be a crucial challenge for aircraft
manufacturers.

Fig. 1.1. Picture of A350-900 during landing.The nose landing creates wake vortices. They are convected under
the fuselage and interact with the main landing gear doors. This induces vibrations leading to structure fatigue or
even to rupture.

1.2 Industrial needs

This work focuses on the case where the source of the flow unsteadiness is far from the region
where the structure vibrates for which several examples can be highlighted.

– Emergency descent. In case of cabin altitude warning or rapid depressurization, the
crew should initiate an emergency descent. The airbrakes are then deployed and huge
wake vortices are created. They are convected behind the wings and they can interact
with the Horizontal Tail Plane (HTP). This interaction can lead to a lot of vibrations which
are very uncomfortable for the crew and passengers.

– Jet-flap interaction. During low-speed phases, the high-lift devices are deployed to
increase lift which is necessary for take-off and landing. The engines also operate at full
power. In certain cases, the exhaust gas jet can interact with the deployed flaps leading to
structural vibrations.

– Aeroacoustics. Sound emitted by aircraft tends to be reduced following the certification
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and environmental recommendations.
– Landing gears. During landing or take-off, the nose landing gear creates wake vortices

which are convected under the fuselage. They could impact and interact with the main
landing gear doors thus inducing vibrations leading to structural fatigue and even to
rupture. In this context, aircraft manufacturers pay special attention to the interaction
between the nose landing gear wake and the main landing gear doors. It is therefore of
great importance to be able to compute, capture, transport and analyze the interaction of
the nose landing gear with the main landing system, including doors.

Focusing specifically on Computational Fluid Dynamics, three zones can always be identified
to analyze the flow physics. The first zone is the zone around the source (airbrakes, jets or
nose landing gear) in which the unsteady flow and the wake vortices have to be accurately
computed. The second zone is the convection zone (between the wing and the HTP or between
the landing gears under the fuselage) in which the created wake vortices need to be convected
without being dissipated by numerics. Wake vortices have to be tracked in this propagation
zone. Finally, the third zone is the interaction zone (around the HTP, the flaps or the main
landing gear). In the specific case of the main landing gear doors, the effects of the unsteady
flow have to be analyzed with a special emphasis on the flow frequencies from 10 Hz up
to 200 Hz that could excite the door structure. In addition to the complex flow physics, the
phenomena always occur near complex geometry.

1.2.1 Reproducibility

These vibrations induced by complex flow physics around complex geometries must obviously
be avoided but the analysis depends entirely on the ability to reproduce the phenomenon.
Three kinds of prediction are possible:

1. flight tests,
2. wind tunnel tests,
3. numerical simulations.

The first and second methods are quite efficient but are very expensive and come late in the
design process. Moreover, it is difficult to reproduce in wind tunnel the true range of an aircraft
in both Mach and Reynolds numbers regimes. Furthermore, the aircraft manufacturers tend
to reduce the costs. The third method seems to be attractive but requires to overcome several
difficulties.

1.2.2 CFD challenges

The first challenge is to handle complex geometries such as the landing gear systems. In fact,
the full aircraft at landing or take-off condition with deployed high-lift devices and landing
gears is one of the most complex configurations to deal with: they include many arms, bolts
and cavities. All in all, the definition of the discrete representation of the physical domain is
the first difficulty to address.

The second challenge is to convect unsteady flow physics over a long distance, for example
between the nose and main landing gear systems. Specific numerical methods have to be
developed because standard CFD methods are not able to transport such unsteady aerody-
namics over a long distance without dissipation. Standard industrial computations consider
a Reynolds Averaged Navier-Stokes (RANS) model in which turbulence effects are averaged
in time and space. A recent industrial extension concerns Unsteady Reynolds Averaged
Navier-Stokes (URANS) simulations for which unsteadiness is related to the geometry and
not really to turbulence. Since pressure fluctuations need to be captured, switching to Large
Eddy Simulations (LES) seems to be attractive. The key point is to capture numerically the
large structures of the turbulence and to model the smallest ones. This approach is possible
since large turbulent structures are linked with aircraft geometry while the smallest structures
have a more general behavior and can be modeled. Note that industrialization of LES is still

5



Chapter 1. Introduction

today in its early stages.
The last challenge deals with the High Performance Computing (HPC) capability. Large

Eddy Simulation is very intensive in terms of computation power and storage since the
unsteady flow needs to be accurately computed in space and time.

These three challenges can be summarized by Fig. 1.2 and a numerical method needs to
meet these three requirements at the same time to deal with such complex configurations.

Complex
Geometries

Unsteady
Flow Physics

HPC
Capability

Fig. 1.2. The three building blocks necessary for LES code. The extreme difficulty in designing a LES code meeting
all three requirements at once is represented by the small white area.

1.3 Ph.D. objective

The Ph.D. objective is more general than a simple focus on the landing gear configuration.
The main objective is to find an efficient (in terms of HPC) and accurate (to capture the flow
physics) CFD method to deal with complex geometries and convection of unsteady flow
over long distances.
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Fig. 1.3. `2-norm of the error εu of x-component of the
velocity fluctuation versus the computational time. The
test case deals with the convection of an isentropic com-
pressible vortex (COVO).

Before going into the details, it appears to
be mandatory to be convinced by the neces-
sity of low dispersive and dissipative meth-
ods. A quick numerical experiment was per-
formed to compute the CPU time to obtain a
given accuracy. The test case used here deals
with the convection of an isentropic compress-
ible vortex described in Sec. 4.2. The spa-
tial discretization is achieved with the Spec-
tral Difference Method from the second- to
the sixth-order polynomial reconstruction. A
second-order polynomial reconstruction cor-
responds to a third-order accurate scheme
whereas a sixth-order polynomial reconstruc-
tion corresponds to a seventh-order accurate
scheme. The CPU time is expressed in worku-
nits. The details about the workunit determi-
nation are given in App. E. For instance, to obtain a level of accuracy of 10−3 on the x-component
of the velocity fluctuation, it is much faster in terms of CPU time to discretize the equations
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with the Spectral Difference Method with a sixth-order polynomial. It perfectly illustrates the
comments of Wang et al. [2] summarized by two beliefs. “[First belief:] High-order methods
are expensive”. Indeed, “[the] method efficiency based on the cost [cannot be evaluated] on
the same mesh”. It should be based on the cost to achieve the same error, as shown in Fig. 1.3.
“[Based on this criterion], high-order methods are not necessarily expensive.” “[Second belief:]
High-methods are not needed for engineering accuracy”. The author gives the example of
the flow over a helicopter. As stated in [2], “the aerodynamic loading on the helicopter body
is strongly influenced by the tip vortices generated by the rotor. These vortices travel many
revolutions before hitting the body. It is critical that these vortices be resolved for a long
distance in order to obtain even an engineering accuracy level prediction of the aerodynamic
forces on the helicopter body.” Low-order (< 3) schemes dissipate these vortices when they are
convected over a long distance. This example can be of course related to the emergency descent,
the jet-flap interaction or the nose landing gear/main landing gear interaction, which highlight
and demonstrate the necessity of low dispersion and low dissipation schemes obtained by
high-order methods. The resolution of all these challenges has been split into several steps.

1.3.1 Hybrid approach for the low-order industrial Finite Volume Method

The first step relies on the extension of a standard industrial method for design: the Finite
Volume Method. The elsA solver of ONERA [3, 4], co-developed by CERFACS, implements this
method to solve the Reynolds Average Navier-Stokes (RANS) equations with standard second-
order schemes on structured multiblock meshes. It was extended to deal with unstructured
grids in the context of URANS simulations to bring flexibility for meshing. Near the landing
gears, the geometry is too complex and only unstructured grids can be considered. The key
point concerns the coupling of unstructured and structured blocks and dedicated schemes
inside a single computational domain. The coupling between structured and unstructured
zones can be performed through the use of a Nonconforming Grid Interface (NGI) treatment.
In this work, the chimera technique using overlapping grids is not retained due to the lack of
conservation introduced by the interpolation of solutions between grids. Generally, structured
and unstructured grids are built using different tools and enabling the same discretization on
the common interface is not always possible. This is the reason why a nonconforming grid
interface is the preferred solution to couple both kind of grids and the different schemes.

The first part of the present work will focus on the analysis of a nonconforming grid
interface. The use of a nonconforming grid interface for unsteady flow has never been studied
in the past and the first part of this manuscript concerns the analysis of such a technique to deal
with unsteady flows using structured grids. A special emphasis is done on the Vichnevetsky’s
framework [5] which highlights the fully unsteady behavior of this kind of interface.

The second part of this manuscript will exhaustively validate the hybrid approach for the
convective fluxes for first- and second-order schemes as well as for the diffusive fluxes. The
validation for the convective flux is achieved with the convected vortex test case, whereas the
validation for the diffusive flux is performed with the Taylor-Green vortex.

1.3.2 Towards high-order hybrid simulations

Dealing with the convection of unsteady aerodynamics over a long distance requires high-
order CFD methods or at least low dispersion and low dissipation numerical methods. In 2010,
Fosso [6] extended high-order schemes dedicated to the transport of turbulent structures on
structured meshes in a Finite Volume formalism. This sixth-order scheme is low dissipative
and low dispersive and it is therefore a good solution to compute wake vortices convection.
However, where the geometry is too complex like around the nose landing gear, it is planned
to use unstructured meshes. Both structured and unstructured meshes are then coupled by a
nonconforming grid interface which is studied in the first part of this manuscript. In addition,
this approach is validated in the second part but only for first- and second-order schemes. It
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would also be interesting to be able to couple through the nonconforming grid interface both
the sixth-order structured scheme and a high-order unstructured scheme to be determined.
However, high-order unstructured schemes are much more complicated than the structured
ones. This is the topic of the third part of this manuscript. High-order unstructured schemes
are derived from the standard second-order reconstruction schemes. A Riemann solver is
used after a high-order extrapolation step. This extrapolation is compacted using the gradients
in each cell. The accuracy is directly driven by the accuracy of this gradient. The standard
gradient formulation suffers from a lack of accuracy for general unstructured grids. This is
why a chapter is devoted to the development of an Unstructured Interface Gradient (UIG)
which is second-order accurate on general unstructured grids. The aim is to improve actual
diffusion schemes and to find a high-order unstructured compact scheme for the convection
term. However, this kind of formulation recovers the k-exact formulation. Indeed, to increase
the order of accuracy of any numerical schemes, one needs information on an extended stencil
even if it can be informatically reduced. This kind of formulation can lead to a loss of HPC
efficiency which has led to study more promising high-order methods such as the Spectral
Difference Method.

1.3.3 The Spectral Differences Method on unstructured grids

The Spectral Difference Method is a promising approach to discretize the Navier-Stokes equa-
tions. It belongs to Spectral Discontinuous methods: quantities are represented in any grid
cell as a polynomial and since no continuity is required at cell interface, a Riemann solver
accounts for the discontinuity. CERFACS has been involved for four years in the development
of a new solver called JAGUAR [7] that solves the Navier-Stokes equations using the Spectral
Difference paradigm. The mesh is unstructured and composed of hexahedra which allows to
mesh complex geometries. The user can choose the accuracy and so far, simulations from third
to seventh order have been performed. In the last part of this manuscript, the spectral analysis
for the Spectral Difference Method was revisited and this approach leads to low-dissipation
and low-dispersion schemes which are suitable for Large Eddy Simulations. It is the prerequi-
site to define the number of grid points as a function of turbulent structures to capture. With
the Spectral Difference Method, polynomials are built from polynomial interpolation using the
data at degrees of freedom. As a consequence, several degrees of freedom are located inside
any grid cell. Compared with standard Finite Volume approach with one degree of freedom
per mesh cell, the Spectral Difference approach needs less refined meshes with larger cells.
Moreover, the CPU time is shown to be only weakly sensitive to the polynomial degree leading
to smaller CPU time to obtain the same accuracy compared with low-order methods.

1.3.4 The Lattice-Boltzmann Method

The last promising method is the Lattice-Boltzmann Method. Both previous approaches deal
with the discretization of the Navier-Stokes equations. Formally, the Navier-Stokes equations
can be asymptotically [8] recovered from the Boltzmann equation [9, 10]. The Boltzmann
equation represents the behavior of atoms and molecules. Introduced by McNamara et al. [11],
an alternative consists in solving the Lattice-Boltzmann equations and macroscopic quantities
(density, velocity, temperature) are recovered using quadrature [12, 13]. This method is based
on a Cartesian mesh generated on the fly. This mesh intersects a surface tessellation of the
geometry and dedicated treatments account for the wall. More details about the method can
be found in [14]. This numerical method is very promising since it leads to low dissipation
schemes suitable for Large Eddy Simulation (LES) [15]. Furthermore, the non body-fitted
Cartesian meshes usable by Lattice-Boltzmann solvers allow to easily mesh very complex
geometries. However it suffers from many problems due to its relative youth which include
the resolution transition [16] and a low-Mach number formulation [17]. Computations on
confidential configurations have been carried out by the author acting as a mere user. The
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work is still ongoing and will not be presented in this manuscript for confidentiality reasons.
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C H A P T E R

2
Nonconforming grid interface

“It is paradoxical, yet true, to say, that the more we know,
the more ignorant we become in the absolute sense, for it
is only through enlightenment that we become conscious of
our limitations. Precisely one of the most gratifying results
of intellectual evolution is the continuous opening up of new
and greater prospects.”

— Nikola Tesla (1856 - 1943)

Abstract. In this chapter, a framework is proposed for the spectral analysis of the numerical scheme
applied on a nonconforming grid interface between two structured blocks for the two-dimensional
advection equation, in a cell-centered finite-volume formalism. The conservative flux computation
on the nonconforming grid interface is based on the sum of partial fluxes computed with the
same numerical scheme used for a standard cell interface. This framework is used to analyze the
effect of grid refinement or coarsening on the stability of the second-order centered scheme. New
theoretical results are given and compared to numerical results. Considering the convection of a
two-dimensional isentropic compressible vortex, the refinement/coarsening are shown to be the cause
of instabilities, poor accuracy and reflection of high-frequency waves. A new approach to compute
partial fluxes, which is based both on a high-order extrapolation that accounts for the local metric
and on a Riemann solver, is then proposed to reduce spurious modes. This chapter led to a paper
published in the Journal of Computational Physics [18] and to a conference paper presented at the
3AF conference [19].

2.1 Introduction and problem description

Computational Fluid Dynamics (CFD) based on structured grids (multiblock structured mesh
and dedicated schemes) has entered the aerospace industry for 2D flows and then for 3D flows
some decades ago. People were looking for predictive tools for the analysis of flows around
quite simple geometry. In this context, many efforts were devoted to the Reynolds-Averaged
Navier-Stokes (RANS) equations. During the last 10 years, the focus was made on increasing
solver robustness and on accounting for a more complex geometry. These two points must be
analyzed together. On the one hand, complex multiblock topology is mandatory to account
for complex geometry, playing with the basic grid topologies (H-, O-, or C-grids). On the
other hand, as the mesh is not expected to have a high quality in the whole computational
domain, the solver robustness plays an important role to guarantee a fast convergence of the
computation. Nowadays, experience and best practices give a high confidence in RANS CFD
solutions. For example, the main part of the aircraft flight envelope is accurately computed
with RANS codes, and CFD simulations can help optimize design.

Two main drawbacks characterize the structured approach. The first one is the time spent
to generate a mesh. Except for very simple geometry for which the blocking (division of the
computational domain in structured zones) can be predefined, this can take several weeks as in
the case of a high-lift configuration. Many techniques exist to ease the mesh generation process
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such as the unstructured approach [20], the overset method or Chimera method [21, 22], the
hybrid [4, 23] or DRAGON grid [24] approaches, and the nonconforming grid interface [25, 26,
27, 28]. The second drawback is the following: structured grids are well adapted to cope with
flow anisotropy, and provide a way to align the flow physics along some particular mesh lines.
But for many geometries, the grid refinement near boundary layers extends to downstream
areas as shown in Fig. 2.1. Then, many grid points are located in regions that are sometimes of
low interest for the computation of the flow.

Fig. 2.1. Nonconforming grid interface after the C-grid
around the wing.

The meshing technique based on noncon-
forming grid interface (NGI) addresses both
points. The mesh sizes of two blocks sepa-
rated by a NGI can be different. Mesh lines
can therefore be discontinuous at the inter-
face. On the one hand, the number of use-
less cells can be limited, and the time to per-
form the computation reduced. For aerospace
applications, a typical difference in order of
magnitude between cell aspect ratios on both
sides of the interface may reach 100. A typ-
ical industrial mesh for the computation of
steady lift and drag coefficients is shown in
Fig. 2.1. The key point for the computation
of these coefficients is a good capture of the
wing boundary layer. The steady wake from the wing only has a very small influence on the
overall coefficients. The mesh is composed of a well refined region of high interest (boundary
layer around the wing in Fig. 2.1) and a coarsen region of low interest (wake of the wing in
Fig. 2.1). It is therefore acceptable that the low-interest region suffers from a lack of accuracy.
Nonetheless, the high-interest region must not suffer from a lack of accuracy because of the
adjacent coarsen block and/or the nonconforming grid interface. On the other hand, each block
on both sides of the interface can be meshed separately, and therefore the meshing process is far
more easier. The two previous points can be extended to unsteady simulations. In particular,
meshes used for steady flows can also be used for unsteady flows, especially in industry.

The nonconforming grid interface was firstly introduced by Rai [25, 29, 30], with a conser-
vative treatment of fluxes, for Euler equations in a finite-difference context. The same author
extended this technique to the unsteady thin-layer Navier-Stokes equations, but with a non-
conservative treatment, to compute the flow within an axial turbine stage [31, 32]. Afterwards,
many authors extended this technique to different numerical schemes and other configurations,
either with a conservative or a nonconservative approach. As a few examples, it was used
to compute the steady flow around the F-18 forebody with actuated control strake [33], and
around a generic wing [34]. Rumsey [35] used the nonconforming grid interface to compute
acoustic waves through sliding-zone interfaces. This technique was also applied to study wing
control surfaces using three-dimensional RANS equations [36]. Stability of nonconforming
grid interface for the steady compressible Euler equations was studied by Lerat and Wu [37].
However, the influence of the nonconforming grid interface on an unsteady flow has never
been finely studied in the past.

In practice, the coarsening of a block relative to another block can occur in the tangential
and/or normal directions to the zonal boundary. It will be shown that a large coarsening ratio
will cause spurious mode reflection. These modes can have an amplitude as high as the initial
wave. A lot of solutions are considered in the literature to lower or remove spurious waves in
general.

The first type of methods improves the spectral properties of the basic scheme. Berland et
al.[38] proposed explicit high-order numerical schemes based on Taylor series expansions for
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the accurate computation of multiple-scale problems and for the implementation of boundary
conditions. They showed that, applied on a non-uniform grid, a scheme designed with metric
information gives much better results than a scheme designed without metric information.
Lele [39], Kim and Lee [40], Ashcroft and Zhang [41], Nance et al. [42], Sengupta et al. [43],
and Fosso et al. [6] developed compact schemes to improve the spectral behavior of numerical
schemes. They compare compact schemes with well-known schemes based on Taylor series
expansions. Fosso et al. [6] take into account the local metric with an isoparametric formulation.
Bogey and Bailly [44], Tam and Webb [45], and Popescu et al. [46] propose explicit numerical
methods by minimizing the dispersion and the dissipation errors in the wavenumber space to
obtain the so-called Dispersion-Relation-Preserving (DRP) schemes for computing flow and
noise with a high accuracy.

The second type of methods concerned by spurious waves in general is related to boundary
conditions. When solving a partial differential equation numerically, the energy must remain
constant or decrease, but it must not increase. Otherwise, the computation errors could
grow arbitrarily fast. The fulfillment of this principle can be verified by the energy method
which consists in an integration by parts of partial differential equation. Once this equation
is discretized, it is replaced by a Summation By Parts (SBP), first introduced by Kreiss and
Scherer [47]. This kind of stability analysis takes into account boundary conditions thanks
to the integration by parts. Then, this method was improved by Strand [48] and Olsson [49],
and more recently by Bodony et al. [50] and Carpenter et al. [51]. Based on the work of
Thompson [52], Poinsot and Lele [53] introduced the Navier-Stokes Characteristic Boundary
Conditions (NSCBC) to reduce instabilities and to avoid high-frequency wave reflection. This
boundary condition is deduced from characteristic lines of hyperbolic systems, and is based on
the analysis of the different waves crossing the boundary. This method was also studied by
Kim and Lee [54, 55].

The goal of this chapter is to provide new theoretical and numerical results regarding
the behavior of the nonconforming grid interface between two structured blocks for a two-
dimensional unsteady flow in a cell-centered finite-volume formalism. A theoretical stability
analysis is difficult to perform on the full Navier-Stokes equations. So, the focus is put on
two hyperbolic systems, namely the advection equation and Euler equations. This chapter
gives a general framework for the analysis of refinement/coarsening effects when using
nonconforming grid interfaces and classical low-order industrial schemes. A second-order
central scheme is considered, as in [56] for Large Eddy Simulation. Naturally, Navier-Stokes
equations would be considered for industrial flows, but the treatment of the non-linear diffusion
scheme is not addressed here.

The chapter is organized as follows. A classical 1-D Fourier analysis is performed in Sec. 2.2
after the introduction of the linear convection problem, notations, and the toy problem. Next, it
will also explain how to analyze the numerical treatment of the nonconforming grid interface
in two dimensions. Sec. 2.3 describes the test case used to perform numerical simulations, and
describes in detail the stability and accuracy analysis. The coarsening of one block on the one
side of the nonconforming grid interface is particularly investigated. Inspired by the NSCBC
theory, an approximate Riemann solver is proposed in Sec. 2.4 to make disappear or, at least, to
limit wave reflection. The solution is based on two extrapolations of data on both sides of the
interface and on an approximate Riemann solver to account for the discontinuity. The Roe’s
solver [57, 58] is chosen since it is used for industrial computations. Conclusions are given in
Sec. 2.5.
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Chapter 2. Nonconforming grid interface

2.2 Theoretical aspects

2.2.1 Model problem

Let us consider the advection equation (2.1) for the one-dimensional problem where c is a
constant advective velocity, f is the unknown, and F is the flux vector defined by F (x, y, z) =
(c f , 0, 0)>.

∂ f
∂t

+∇ · F = 0 (2.1)

The linear hyperbolic partial derivative equation (2.1) is used to study the behavior of numerical
schemes. Before analyzing the interface treatment, let us recall a classical property of the finite-
volume discretization.

2.2.2 Spatial discretization

Let F (x, y, z) be a continuously differentiable vector field. Let Ω be an open set, and let ∂Ω be
its boundary. Let n be the unit outward normal vector of ∂Ω. Integrating (2.1) on Ω, it comes:

∫

Ω

∂ f
∂t

dV +
∫

∂Ω
F · n dS = 0. (2.2)

Just for sake of clarity, the stencil for computing the flux is presented for a Cartesian grid in
Fig. 2.2.

i− 3/2 i− 1/2 i + 1/2 i + 3/2

x

ii− 1 i + 1

∆x

Fig. 2.2. Stencil for the Finite Volume Method.

Ω represents the cell i. Both the cell volume V and the interface area S are assumed to be
constant. ∆x is the length of any cell in the x-direction. Discretizing (D.2) over a grid of square
cells, and introducing the mean value f of f over Ω, one obtains

d
dt

(
V f
)

i
+ (cS f )i+1/2 − (cS f )i−1/2 = 0, (2.3)

and
d
dt

f i + c · fi+1/2 − fi−1/2

∆x
= 0, (2.4)

where interface values fi+1/2 and fi−1/2 are unknown. To evaluate them from the mean value
f i, a numerical scheme links interface values with cell-centered data. In the following, a second-
order centered scheme is considered. The numerical mean value of the partial derivative of f
with respect to x is consequently evaluated by

∂ f
∂x

∣∣∣∣∣
i

=
fi+1/2 − fi−1/2

∆x
=

f i+1 − f i−1

2∆x
. (2.5)
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2.2 Theoretical aspects

Formally, (2.5) can be recovered using a simple finite-difference scheme when replacing mean
quantities over each control volume by local values. In the following and for the sake of clarity,
the sign ( ) representing a mean value is omitted.

Now, we consider the two-dimensional toy mesh represented in Fig. 2.3. It is made of
two blocks, the left one and the right one, which are separated by a block interface. This
interface can be made of conforming or nonconforming nodes. Spacings are fixed in each
block. Focusing on the colored cells, two parameters, h and ∆z, will play an important role. h
measures the influence of the opposite cells on the flux balance, while ∆z is a parameter for
mesh sizes. The L (resp. R) subscript refers to a quantity whose value is defined on left (resp.
right) side of the interface, following Fig. 2.3. Of course, a classical conforming interface is
recovered if h = 0 and ∆zR = ∆zL. Note also that h ∈ [0, ∆zL/2].

n−4

n−3

n−2

n−1

n

n+1

n+2

n+3

n+4

n+5

mm−1m−2m−3m−4m−5

n′

n′+1

n′+2

n′+3

n′+4

m′ m′+1 m′+2

Join Right BlockLeft Block

∆xR

∆zR

h

∆xL

∆zL

A

B
M

Fig. 2.3. Toy mesh composed of two blocks: the left one (∆xL, ∆zL) and the right one (∆xR, ∆zR). The right block
is shifted by h along the vertical axis.

In the following, a local Fourier, or Von Neumann, analysis is performed to characterize
the effect of the nonconforming grid interface. But before entering into details, many as-
pects regarding the nonconforming grid interface and its numerical discretization have to be
explained.

In a general framework, the nonconforming grid interface only exists in two or three di-
mensions, and it is then mandatory to analyze the grid interface effects following the tangential
and normal directions of the NGI. Here, the analytical expressions of the partial derivatives of
f are defined in two dimensions, and the Fourier analysis along the x- and z-axis concerns the
cell (m, n).

The procedure is established for the left block, but the same approach leads to similar
relations for the right block. The analytical expressions are given in the general case for
a nonconforming interface. In the following, k is the wave vector, and kx = ‖k‖ · cos(α)
(resp. kz = ‖k‖ · sin(α)) is the projection of k on the x- (resp. z-) axis, and α represents
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Chapter 2. Nonconforming grid interface

the angle between k and the x-axis. In order to perform a spectral analysis, the harmonic
function f = exp [j (kx · x + kz · z)], where j is the imaginary unit (j2 = −1), is assumed
to be solution of (2.1). The discretized value of f for the cell (m, n) of the left block is
fm,n = exp [j (kx ·m∆xL + kz · n∆zL)]. According to (2.5), the corresponding partial derivative
of f with respect to x is evaluated by:

∂ f
∂x

∣∣∣∣
m,n

=
fm+1/2,n − fm−1/2,n

∆xL
, (2.6)

where the interface values fm+1/2,n and fm−1/2,n are still unknown. By applying the second-order
centered scheme, one obtains:

fm−1/2,n =
fm,n + fm−1,n

2
. (2.7)

The other term fm+1/2,n is more complex to assess because of the nonconforming grid interface.
Following notations defined in Fig. 2.3, fm+1/2,n is defined by (2.8) to ensure the conservation of
fluxes. The interface flux accounts for two integrals, on AM and MB respectively, and the flux
through AB is by linearity of integration the sum of both contributions:

fm+1/2,n =
AM
AB
· fAM +

MB
AB
· fMB. (2.8)

Then, by applying the centered scheme, fAM and fMB are evaluated by:

fAM =
fm,n + fm′,n′+1

2
, (2.9)

fMB =
fm,n + fm′,n′+2

2
. (2.10)

By injecting (2.7), (2.8), (2.9) and (2.10) into (2.6), one obtains:

f ′m,n :=
∂ f
∂x

∣∣∣∣
m,n

=
f ∗m+1,n − fm−1,n

2∆xL
, (2.11)

where

f ∗m+1,n =
AM
AB
· fm′,n′+1 +

MB
AB
· fm′,n′+2. (2.12)

By injecting the analytical expression of fm,n into (2.12), one obtains:

f ∗m+1,n =

(
1− h

∆zL

)
exp

[
jkx

(
(m +

1
2
)∆xL +

∆xR

2

)
+ jkz

(
n∆zL +

∆zR

2
− ∆zL

2
+ h
)]

+
h

∆zL
exp

[
jkx

(
(m +

1
2
)∆xL +

∆xR

2

)
+ jkz

(
n∆zL −

∆zR

2
− ∆zL

2
+ h
)]

.

(2.13)

The partial derivative of f with respect to z can be easily computed since on the Cartesian
grid, the z-derivative only needs information from one side of the nonconforming grid interface.
We note sinc(x) := sin(x)/x. Considering again the toy mesh in Fig. 2.3 and the harmonic
function f previously introduced,

∂ f
∂z

∣∣∣∣
m,n

=
fm,n+1 − fm,n−1

2∆zL
= j fm,n · kzsinc (kz∆zL) . (2.14)
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2.2 Theoretical aspects

2.2.3 Basic concepts of spectral analysis

The modified wavenumber k̃x is defined by k̃x := f ′m,n/(j fm,n). f ′m,n and fm,n are complex a
priori, but | fm,n| = 1. Re (resp. Im) representing the real (resp. imaginary) part of complex
number,

k̃x =
Re
(

f ′m,n
)
+ jIm

(
f ′m,n
)

jRe ( fm,n)− Im ( fm,n)
= −Re

(
f ′m,n
)
Im

(
fm,n
)
+ Im

(
f ′m,n
)
Re
(

fm,n
)

− j
[
Re
(

f ′m,n
)
Re
(

fm,n
)
+ Im

(
f ′m,n
)
Im

(
fm,n
)]

. (2.15)

Once (2.15) is implemented, it allows to study the effect of the parameters α, h, ∆xL, ∆xR, ∆zL
and ∆zR on the real and imaginary parts of the modified wavenumber.

If kz = 0, then (2.13) is independent from h and ∆zR, the modified wavenumber is only a
function of ∆xL and ∆xR.

According to the Nyquist-Shannon sampling theorem, If a function x(t) contains no frequencies
higher than B hertz, it is completely determined by giving its ordinates at a series of points spaced
1/(2B) seconds apart. This theorem leads to (2.16) where fs is the sampling frequency and f the
frequency of the signal:

fs > 2 f . (2.16)

For a one-dimensional wave of wavenumber k, one obtains:

1
∆x
> 2 · k

2π
⇔ k · ∆x 6 π.

Indeed, k · ∆x should belong to 0 and π. If ∆x = 1, higher wavenumbers than π are not
resolved. More specifically, since the nonconforming grid interface only exists at least in two
dimensions, both following equations must be satisfied: k cos α · ∆x 6 π and k sin α · ∆z 6 π.
But for sake of clarity, we want to satisfy these equations whatever the value of α. These
equations become: k · ∆x 6 π and k · ∆z 6 π.

2.2.4 Specific case: uniform grid

For a uniform grid where ∆xL = ∆xR = ∆x, ∆zL = ∆zR = ∆z, and when α and h are different
from 0, one obtains with (2.11), (2.12), and (2.13):

∂ f
∂x

∣∣∣∣
m,n

=
fm,n

2∆x

[(
1− h

∆z

)
exp [jkx∆x + jkzh]

+
h

∆z
exp [jkx∆x− jkz∆z + jkzh]− exp [−jkx∆x]

]
. (2.17)

Using (2.17), the modified wavenumber (2.18) can be calculated, and its real and imaginary
parts are respectively given by (2.19) and (2.20).

k̃x =
1

2j∆x

[
(1− h

∆z
) exp [jkx∆x + jkzh] +

h
∆z

exp [jkx∆x− jkz∆z + jkzh]− exp [−jkx∆x]
]

,

(2.18)

Re
(
k̃x
)
=

1
2∆x

[
(1− h

∆z
) sin (kx∆x + kzh) +

h
∆z

sin (kx∆x− kz(∆z− h)) + sin (kx∆x)
]

,

(2.19)

Im
(
k̃x
)
= − 1

2∆x

[
(1− h

∆z
) cos (kx∆x + kzh) +

h
∆z

cos (kx∆x− kz(∆z− h))− cos (kx∆x)
]

.

(2.20)
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Chapter 2. Nonconforming grid interface

For kz = 0, the standard expression for a one-dimensional equation, k̃x = kx · sinc(kx∆x),
is recovered. The spectral analysis is classically performed for a one-dimensional problem.
However, we need to extend it in two dimensions since the nonconforming grid interface only
exists at least in two dimensions.

2.2.5 Extension of spectral analysis in two dimensions

Let us consider the two-dimensional advection equation (2.21), where c = (cx, 0, cz)> is a
constant advective velocity, f is the unknown, and F is the flux vector defined by F (x, y, z) =
(cx f , 0, cz f )>:

∂ f
∂t

+∇ · F = 0. (2.21)

Let us inject a space and time harmonic wave f (x, y, z, t) = exp [j (kxx + kzz−ωt)] in (2.21),
where k = (kx, 0, kz)> is the wave vector, and ω the angular frequency. The exact dispersion
relation (2.22) is obtained.

ω = cxkx + czkz. (2.22)

The same kind of relation can be computed using approximated derivatives previously intro-
duced. If the complex numbers k̃x and k̃z are defined as before, one obtains:

ω̃ = cx k̃x + cz k̃z. (2.23)

General case.

This relation depends on the modified wavenumber which is a function of local metric. The
method that follows is directly inspired from Berland et al. [38]. Take a harmonic wave
f (x, y, z, t = 0) = exp [j (kxx + kzz)] as the initial disturbance. The analytical solution of (2.21)
is given by:

f (x, y, z, t) = exp [j (kxx + kzz−ωt)] .

The solution of (2.21) computed using approximated derivatives is given by:

f̃ (x, y, z, t) = exp [j (kxx + kzz− ω̃t)] . (2.24)

According to the dispersion relation (2.23), (2.24) becomes:

f̃ (x, y, z, t) = exp
[
j
(
kxx + kzz−

(
cx k̃x + cz k̃z

)
t
)]

= exp [j (kxx + kzz−ωt)] · exp
[
jt
(
cxkx + czkz −Re

[
cx k̃x + cz k̃z

])]
·

exp
[
Im

[
cx k̃x + cz k̃z

]
t
]

.

If the field is homogeneous and isotropic (cx = cz = c), one obtains:

f̃ (x, y, z, t) = A(ct) · exp [jπφ(ct)] · exp [j (kxx + kzz−ωt)] . (2.25)

A(ct) and φ(ct) are given by:

A(ct) = exp
[
Im

[
k̃x + k̃z

]
ct
]

,

φ(ct) =
kx + kz −Re

[
k̃x + k̃z

]

π
ct.

The phase error is given by φ(∆x), and the wave amplitude is multiplied by A(∆x) for a
right-running wave propagating over an arbitrary distance ∆x = ct. φ(∆x) quantifies the
dispersion error and A(∆x) represents the amplitude evolution. There is dispersion if φ(∆x) 6=
0, amplification if A(∆x) > 1, and finally, dissipation if A(∆x) < 1. These quantities generalize
the concept of the one-dimensional modified wavenumber in two dimensions.
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2.2 Theoretical aspects

Application to the left and right blocks.

At this point, only general analytical expressions of derivatives for a cell which belongs to a
block have been provided, and this is not sufficient to characterize the nonconforming grid
interface effects. The time integration has to be taken into account when the unsteady flow is
going through the nonconforming grid interface. To highlight the characteristic variables, let
us consider the dispersion relation (2.23). Its expression for the left block is:

ω̃ = c
(

k̃L
x + k̃L

z

)
, (2.26)

where k̃L
x and k̃L

z are the modified wavenumbers computed for the left block. Let us introduce
notations AL (∆x) and φL (∆x):

AL (∆x) = exp
[
Im

[
k̃L

x + k̃L
z

]
∆x
]

,

φL (∆x) =
kL

x + kL
z −Re

[
k̃L

x + k̃L
z
]

π
∆x.

In the same manner, the expression for the right block is:

ω̃ = c
(

k̃R
x + k̃R

z

)
, (2.27)

where k̃R
x and k̃R

z are the modified wavenumbers computed for the right block. Let us introduce
notations AR (∆x) and φR (∆x):

AR (∆x) = exp
[
Im

[
k̃R

x + k̃R
z

]
∆x
]

,

φR (∆x) =
kR

x + kR
z −Re

[
k̃R

x + k̃R
z
]

π
∆x.

Left and right block coupling.

Breakup the analytic time-integration into the left and right parts sequentially to show the
combined effect of the wave crossing the interface, the overall effect of the nonconforming
interface is composed of a contribution of both left and right blocks:

f̃ (t, x, z) = AL exp
[

jπφL
]

︸ ︷︷ ︸
Left contribution

· AR exp
[

jπφR
]

︸ ︷︷ ︸
Right contribution

· exp [j (kxx + kzz−ωt)] .

In the previous two paragraphs, ∆x was an arbitrary distance. To couple left and right block,
∆x is chosen to be equal to min (∆xL, ∆xR).
Specific case: uniform grid.

If the grid is uniform, ∆xL = ∆xR = ∆x and ∆zL = ∆zR = ∆z, the overall effect of the
nonconforming interface is characterized by ANGI (∆x) and φNGI (∆x). They can be seen as
transfer functions and they are written as:

ANGI (∆x) = AL (∆x) · AR (∆x) ,

φNGI (∆x) = φL (∆x) + φR (∆x) .

Specific case: nonuniform grid.

If the grid is not uniform, for instance ∆xL = ∆zL = 1 and ∆xR = ∆zR = 2, it is no longer
possible to compute ANGI (∆x) and φNGI (∆x). Indeed, for the left block, k · ∆x ∈ [0, π] and
for the right block, k · ∆x ∈ [0, π/2] to comply the Nyquist-Shannon sampling theorem.
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Chapter 2. Nonconforming grid interface

2.3 On stability and accuracy of nonconforming interface for the second-order centered
scheme

All numerical results presented in the following are obtained with the elsA software from
ONERA [3, 4]. The effect of nonconforming grid interface is studied on non-uniform grids in the
general case. Theoretical results from Sec. 2.2 are compared with elsA computations in terms of
stability. First of all, the test case, which is used to compare theoretical analysis with numerical
solutions, is presented. Secondly, the mesh is coarsened along the x-axis. Consequently, the
coarsening does not imply a nonconforming interface. Thirdly, it is coarsened along the z-axis.
Then, the specific case of nonconforming grid interface is investigated on uniform grids. Finally,
the mesh is coarsened along both directions, and the reflection of high-frequency waves is
underlined.

2.3.1 Convection of a vortex

The main aim of this work is to compare the theoretical analysis with numerical solutions
computed with the elsA software. Our test case deals with the convection of a compressible
and isentropic vortex on a mean and constant speed flow (p0 = 101325.0 [Pa], T0 = 300.0 [K],
M0 = U0/

√
γRgasT0 = 0.1) inspired by the High-Order Workshop [2]. The characteristic vortex

radius Rc is equal to 0.1 [m]. The vortex intensity β is computed to obtain the desired velocity
fluctuation umax due to the vortex by β = umax

√
e/U0 with umax = 1.5 [m/s]. The fluid is

assumed to be a perfect gas. The ratio of specific heats γ is equal to 1.4, and the gas constant
Rgas is equal to 287.058 [J/kg/K]. The vortex is initialized around the point of coordinates
(xc = 0.5 [m], zc = 0.5 [m]). The flow is initialized by the velocity V = (u, 0, w) and the
temperature T with:

u = U0 −
βU0

Rc
(z− zc) exp

[
− r2

2

]
, (2.28)

w =
βU0

Rc
(x− xc) exp

[
− r2

2

]
, (2.29)

T = T0 −
β2U2

0
2Cp

exp
[
−r2] , (2.30)

where Cp =
γRgas
γ−1 and r2 = (x−xc)

2+(z−zc)
2

R2
c

. Since the vortex is isentropic, the density is computed
using:

ρ = ρ0 ·
(

T
T0

) 1
γ−1

.

This flow is an analytical solution of unsteady compressible Euler equations. The expected
solution is the initial vortex convected without deformation. A reference solution with a
conforming interface was computed with the elsA software. The vortex is convected over one
meter between two blocks. The reference computation was made on a mesh similar to that
in Fig. 2.4, but with both block sizes of (Nx = 200)× (Nz = 400) where Nx is the number of
nodes along the x-axis, and Nz along the z-axis. The boundary conditions are described in
Fig. 2.4. Unsteady compressible Euler equations are solved on a single processor. The explicit
time integration scheme is the 4th-order Runge-Kutta where the Courant-Friedrichs-Lewy
number is equal to 0.1. Time steps are chosen sufficiently small in order to measure dissipation
and dispersion due to the spatial scheme and not due to the temporal integration. The flux
computation is performed with a second-order centered finite-volume scheme.
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Fig. 2.4. Coarse reference mesh and its boundary conditions: I subsonic inlet, � subsonic outlet and - - periodic.
The left block (25× 50) and the right block (25× 50) are separated by a grid interface represented by the bold line.

An objective criterion is required in order to quantify the error between analytical solutions
and elsA computations. Let f be a function. In the present work, the uniform norm will be
preferred to the `2-norm. It is defined by ‖ f ‖∞ = sup {| f (x)| : x ∈ S}, where S is a closed set.
Indeed, the uniform norm gives a supremum of `2-norm, such that ‖ f ‖2 6 K · ‖ f ‖∞ with K
a constant (that depends on the space measure). It is clear that any function tending to 0 for
the uniform norm tends to 0 for the `2-norm over a bounded space. Thereafter, to compare
analytical solution with elsA computation, we define the error ξ and the relative error η of a
quantity f by:

ξ =
∥∥ fanalytical − fcomputed

∥∥
∞ ,

η =

∥∥ fanalytical − fcomputed
∥∥

∞∥∥ fanalytical
∥∥

∞

.

in Fig. 2.5, the x-component of the velocity fluctuation u−U0 is plotted. The vortex is perfectly
convected as shown in Tab. 2.1 and in Fig. 2.6.

Tab. 2.1. Error analysis of reference test case ∆xL = ∆xR = ∆x and ∆zL = ∆zR = ∆z with α = 0◦ and
h = 0.0.

Error ξ [−] η [−]
u−U0 [m/s] 4.232 · 10−3 0.282%

w [m/s] 1.857 · 10−2 1.238%
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Fig. 2.5. Reference test case on uniform grids, ∆xL = ∆xR = ∆x and ∆zL = ∆zR = ∆z with α = 0◦ and
h = 0.0. x-component of the velocity fluctuation along the z-axis. Cut at x = 0.5 [m] and x = 1.5 [m].
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(a) Initial vortex.
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(b) Convected vortex.

Fig. 2.6. Reference test case on uniform grids, ∆xL = ∆xR = ∆x and ∆zL = ∆zR = ∆z with α = 0◦ and
h = 0.0. Isolines of x-component of the velocity fluctuation. Dash line for negative values. Solid line for positive
values.

2.3.2 Coarsening along the x-axis

A coarsening ratio Ar is introduced to coarsen the right block. The left block spacings are
∆xL = 1.0 and ∆zL = 1.0. The right block spacings are ∆xR = Ar and ∆zR = 1.0. The direction
of propagation is orthogonal to the grid interface with α = 0◦. The analytical expressions of
k̃x and k̃z can be deduced from (2.14) and (2.15) in Sec. 2.2. Remind that for the right block
k · ∆xR ∈ [0, π/Ar] (see end of Sec. 2.2.5).
a. h = 0.0.

In this case, the grid interface is a conforming grid interface. The coarsening along the x-axis
causes dispersion and amplification as shown in Fig. 2.7. The larger Ar is, the larger dispersion
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2.3 On stability and accuracy of nonconforming interface

and amplification become. The numerical computation would be unstable for all coarsening
ratio Ar > 1.
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Fig. 2.7. Coarsening along the x-axis, ∆xL = ∆zL = ∆zR = 1.0 and ∆xR = Ar with α = 0◦ and h = 0.0.

The mesh sizes used for the numerical computations are summarized in Tab. 2.2, and the
corresponding coarsening ratio is pointed out. Cuts at x = 1.5 [m] show the x-component of the
velocity fluctuation for different Ar in Fig. 2.8, and cuts at z = 0.5 [m] show the z-component of
the velocity fluctuation for different Ar in Fig. 2.9. In this case, the conforming grid interface
generates instabilities because of the coarsening along the x-axis.

Tab. 2.2. Coarsening along the x-axis.

Block Nx Nz Ar

Left block 200 400
1.00

Right block 200 400

Left block 200 400
2.01

Right block 100 400

Left block 200 400
4.06

Right block 50 400

Left block 200 400
8.29

Right block 25 400

b. h = 0.5.

In this case, the grid interface is a nonconforming grid interface. Indeed, for ∆zL = 1.0, h ∈
[0, 0.5]. So, the upper bound h = 0.5 is considered to gauge the influence of the nonconforming
grid interface.

Regardless of coarsening ratio, computations with h = 0.0 or h = 0.5 exactly give the same
results as shown in Fig. 2.8 and Fig. 2.9, and in Tab. 2.3. This implies that dissipation and
dispersion are not due to the nonconforming interface, but they are caused by the coarsening
along the x-axis.
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Chapter 2. Nonconforming grid interface

Tab. 2.3. Error analysis on a non-uniform grid ∆xL = ∆zL = ∆zR = 1.0 and ∆xR = Ar with α = 0◦. h effect
on the error of x-component and z-component of the velocity fluctuation.

Error Ar [−] ξ [−] η [−]
h = 0.0 h = 0.5 h = 0.0 h = 0.5

u−U0 [m/s]

1.00 4.232 · 10−3 4.221 · 10−3 0.282% 0.282%
2.01 6.532 · 10−3 6.530 · 10−3 0.435% 0.436%
4.06 2.621 · 10−2 2.621 · 10−2 1.748% 1.748%
8.29 1.783 · 10−1 1.784 · 10−1 11.888% 11.897%

w [m/s]

1.00 1.857 · 10−2 1.861 · 10−2 1.238% 1.241%
2.01 6.633 · 10−2 6.638 · 10−2 4.429% 4.433%
4.06 2.686 · 10−1 2.687 · 10−1 18.030% 18.035%
8.29 8.534 · 10−1 8.535 · 10−1 58.601% 58.608%
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Fig. 2.8. Coarsening along the x-axis, ∆xL = ∆zL = ∆zR = 1.0 and ∆xR = Ar with α = 0◦. h effect on the
x-component of the velocity fluctuation. Cases Ar = 8.29, h = 0 or h = 0.5 lead to the largest dissipation.
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Fig. 2.9. Coarsening along the x-axis, ∆xL = ∆zL = ∆zR = 1.0 and ∆xR = Ar with α = 0◦. h effect on the
z-component of the velocity fluctuation. Cases Ar = 8.29, h = 0 or h = 0.5 lead to the largest instability.

2.3.3 Coarsening along the z-axis

After the study of the coarsening along the x-axis, the coarsening ratio Ar is now used to
investigate the coarsening along the z-axis. The left block spacings are still ∆xL = 1.0 and
∆zL = 1.0, but the right block spacings are now ∆xR = 1.0 and ∆zR = Ar.
a. α = 0◦, h = 0.0.

If the direction of propagation is orthogonal to the coarsening, then the theoretical results
show that the nonconforming interface does not cause dissipation nor dispersion as shown in
Fig. 2.10.
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Fig. 2.10. Coarsening along the z-axis, ∆xL = ∆xR = ∆zL = 1.0 and ∆zR = Ar with α = 0◦ and h = 0.

The mesh sizes used for the numerical computations are summarized in Tab. 2.4. The prime
numbers ensure the existence of a nonconforming interface. As shown in Fig. 2.11 and Fig. 2.12,
and in Tab. 2.5, the numerical computations also indicate that a moderate coarsening along the
z-axis has no effect on dispersion and dissipation. For the largest coarsening ratio (Ar = 7.67),
the right block is not refined enough to accurately capture the vortex after the nonconforming
grid interface, and dispersion and dissipation occur.

Tab. 2.4. Coarsening along the z-axis.

Block Nx Nz Ar

Left block 200 400
1.00

Right block 200 400

Left block 200 400
1.90

Right block 200 211

Left block 200 400
3.91

Right block 200 103

Left block 200 400
7.67

Right block 200 53
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2.3 On stability and accuracy of nonconforming interface

Tab. 2.5. Error analysis on a non-uniform grid ∆xL = ∆xR = ∆zL = 1.0 and ∆zR = Ar with h = 0.0. The
direction of propagation is orthogonal to the interface (α = 0◦). Effect of coarsening along the z-axis on the error
of x-component and z-component of the velocity fluctuation.

Error Ar [−] ξ [−] η [−]

u−U0 [m/s]

1.00 4.232 · 10−3 0.282%
1.90 8.206 · 10−3 0.547%
3.91 2.695 · 10−2 1.808%
7.67 9.406 · 10−2 6.414%

w [m/s]

1.00 1.857 · 10−2 1.238%
1.90 1.934 · 10−2 1.290%
3.91 2.600 · 10−2 1.734%
7.67 2.678 · 10−2 1.786%
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Fig. 2.11. Effect of coarsening along the z-axis on the x-component of the velocity fluctuation. ∆xL = ∆xR =
∆zL = 1.0 and ∆zR = Ar with α = 0◦ and h = 0.
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Fig. 2.12. Effect of coarsening along the z-axis on the z-component of the velocity fluctuation. ∆xL = ∆xR =
∆zL = 1.0 and ∆zR = Ar with α = 0◦ and h = 0.

b. α = 45◦, h = 0.0.

Now, the direction of propagation is not orthogonal to the direction of coarsening anymore. A
significant effect on dispersion and dissipation is shown in Fig. 2.13 compared to Fig. 2.10.

c. α = 45◦, h = 0.5.

In that case shown in Fig. 2.14, the nonconforming interface has a stabilizing effect, but it is
more dispersive. Indeed, the amplification upper bound decreases from 2 to less than 1.5, and
dispersion is always positive.
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Fig. 2.13. Coarsening along the z-axis, ∆xL = ∆xR = ∆zL = 1.0 and ∆zR = Ar with α = 45◦ and h = 0.0.
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Fig. 2.14. Coarsening along the z-axis, ∆xL = ∆xR = ∆zL = 1.0 and ∆zR = Ar with α = 45◦ and h = 0.5.

Instead of being convected over one meter, the vortex is now convected over
√

2 meters.
This implies to increase the number of iterations to maintain a constant CFL number. The
mesh sizes are still summarized in Tab. 2.4. Fig. 2.15 and Fig. 2.16, and Tab. 2.6 show the effect
of the coarsening along the z-axis on the z-component and the x-component of the velocity
fluctuation.
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Fig. 2.15. Effect of coarsening along the z-axis on the z-component of the velocity fluctuation. ∆xL = ∆xR =
∆zL = 1.0 and ∆zR = Ar with h = 0.0 and α = 45◦.
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Chapter 2. Nonconforming grid interface

Tab. 2.6. Error analysis on a non-uniform grid ∆xL = ∆xR = ∆zL = 1.0 and ∆zR = Ar with h = 0.0. The
direction of propagation is not orthogonal to the interface (α = 45◦). Effect of coarsening along the z-axis on the
error of x-component and z-component of the velocity fluctuation.

Error Ar [−] ξ [−] η [−]

u−U0 · cos α [m/s]

1.00 2.899 · 10−2 1.933%
1.90 7.010 · 10−2 4.673%
3.91 2.453 · 10−1 16.454%
7.67 7.352 · 10−1 50.130%

w−U0 · sin α [m/s]

1.00 2.217 · 10−2 1.479%
1.90 2.067 · 10−2 1.379%
3.91 3.883 · 10−2 2.590%
7.67 1.455 · 10−1 9.705%
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Fig. 2.16. Effect of coarsening along the z-axis on the x-component of the velocity fluctuation. ∆xL = ∆xR =
∆zL = 1.0 and ∆zR = Ar with h = 0.0 and α = 45◦.

2.3.4 Specific case of uniform grids

The effect of the grid interface is studied on uniform grids, with ∆xL = ∆xR and ∆zL = ∆zR.
Without loss of generality, these values are set to 1 so that h ∈ [0, 0.5]. The overall effect of the
grid interface is considered by plotting ANGI and φNGI . These variables are compared with
the elsA numerical computations. Computations with different directions of propagation are
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2.3 On stability and accuracy of nonconforming interface

analyzed.
a. α = 0◦.

First, the direction of propagation is orthogonal to the interface. If h is equal to 0, then the
grid interface is conforming, whereas the grid interface is nonconforming if h is equal to 0.5.
Looking at (2.19) and (2.20), α must be different from 0 so that h could have an effect. Fig. 2.17
confirms that h has no effect on dispersion and dissipation for α = 0◦.
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Fig. 2.17. h effect with α = 0◦ on uniform grids ∆xL = ∆xR = ∆zL = ∆zR.

Numerical computations were made with h = 0.0 and h = 0.5. As shown by Fig. 2.8 and
Fig. 2.9 with Ar = 1, the vortex is perfectly convected, and, as expected, h has no effect on
dispersion and dissipation. The error analysis is available in Tab. 2.3.
b. α = 45◦.

In this case, Fig. 2.18 shows that the grid interface is more dispersive for h = 0.5 than for
h = 0.0. Our interpretation is that, if a high-frequency signal reaches its maximum on a node of
the left block, this maximum may not be well-discretized on the right block because nodes of
the right block are shifted from those of the left one (h = 0.5). Consequently, the grid interface
becomes more dispersive. It is still stable, as shown in Fig. 2.18, since the amplification is equal
to one.
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Fig. 2.18. h effect with α = 45◦ on uniform grids ∆xL = ∆xR = ∆zL = ∆zR.

Numerical computations were performed with h = 0.0 and h = 0.5. Instead of being
convected over one meter, the vortex is now convected over

√
2 meters. As expected, there is
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Chapter 2. Nonconforming grid interface

no amplification in Fig. 2.19. The dispersive effect does not appear because the frequency of
the signal is not high enough.

To conclude this section, if the grid is uniform, the grid interface has a good behavior
regardless of the direction of propagation as shown in Tab. 2.3 and Tab. 2.7.

Tab. 2.7. Error analysis on a uniform grid ∆xL = ∆xR = ∆zL = ∆zR. α is equal to 45◦.

Error h [−] ξ [−] η [−]

u−U0 · cos α [m/s] 0.0 2.899 · 10−2 1.933%
0.5 2.899 · 10−2 1.933%

w−U0 · sin α [m/s] 0.0 2.217 · 10−2 1.479%
0.5 2.215 · 10−2 1.477%
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Fig. 2.19. x-component of the velocity fluctuation along the z-axis on uniform grids ∆xL = ∆xR = ∆zL = ∆zR
with α = 45◦. Cut at x = 0.5 [m] and x = 1.5 [m].

2.3.5 Reflection of high-frequency waves

As mentioned in the introduction, the coarsening ratio Ar can be really high for steady RANS
computations. It is interesting to see what happens for unsteady flows. The left block sizes are
200× 400, and the right block sizes are 7× 13. The coarsening ratio Ar is equal to 33.17 along
the x-axis, and 33.25 along the z-axis. A numerical computation is performed with parameters
h = 0 and α = 45◦. As can be seen in Fig. 2.20, some high-frequency waves are reflected by the
interface. When such a grid interface is used, the vortex is expected to dissipate depending on
the mesh refinement, but without wave reflection to protect the upstream flow. At this point,
this behavior can be due to the metric discontinuity or to the nonconforming grid interface.

The analysis presented in the next section shows that the reflected waves are a consequence
of the metric discontinuity. This point can also be explained using a solution analysis based on
wave decomposition. Wave analysis has been performed in one dimension by Vichnevetsky
and Bowles [5] and by Vichnevetsky [59, 60] for boundary conditions and mesh refinement.
They have decomposed any solution as a sum of p and q waves, with p waves traveling
in the hyperbolic direction (positive group velocity) and q waves in the opposite direction
(negative group velocity). They explain that q waves are not necessary present in the flow. But,
if waves with a negative group velocity appear in the flow, they explain that their presence
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2.4 High-order metric-dependent interpolation for Riemann solver

is a consequence of boundary conditions not adapted. If a nonconforming grid interface is
considered as a numerical boundary condition between two blocks, it can be argued that
the data reconstruction on the right-hand side of the nonconforming grid interface is not in
agreement with waves leaving the left block, hence the production of spurious waves.

There is also another way to analyze the result. The metric discontinuity modifies the dis-
persion relation as shown in the previous sections, and this is responsible for waves reflection.
Analogously to electromagnetic waves, a reflected wave is created to satisfy the boundary
conditions at the interface separating two media of different refractive indices.

In the next section, a method is introduced to avoid these spurious modes with a negative
group velocity.
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Fig. 2.20. Reflection of high-frequency waves. z-component of the velocity fluctuation. The coarsening ratio Ar is
equal to 33.17 along the x-axis and 33.25 along the z-axis. h is zero, and α is equal to 45◦.

2.4 High-order metric-dependent interpolation for Riemann solver

This section deals with filtering to avoid reflection of high-frequency waves. We therefore attach
great importance to study and implement a Riemann solver only at the interface. Tests are
performed with the test case described in Sec. 2.3.5. A new numerical scheme is developed to
take into account the local metric as in Fig. 2.21. Indeed, the numerical schemes are often built
assuming that the grid is uniform, but this can no longer be the case if a nonconforming grid
interface is used. Only the flux on the nonconforming grid interface has to be modified. This
new numerical scheme is based on the Roe’s scheme [57, 58] used for industrial computations.
The Roe’s numerical flux is given by:

Fm+1/2 =
1
2

[
F
(

WL
m+1/2

)
+F

(
WR

m+1/2

)]
− 1

2

∣∣∣A
(

WL
m+1/2, WR

m+1/2

)∣∣∣
(

WR
m+1/2 −WL

m+1/2

)
,

where WL
m+1/2 and WR

m+1/2 are the conservative variables interpolated on the left and right sides

of the interface m + 1/2 . A is the Roe’s matrix which satisfies the following list of properties.
• A (W, W) = A (W) where A is the Jacobian matrix
• F

(
WR)−F

(
WL) = A

(
WL, WR) (WR −WL)

• The eigenvectors of A
(
WL, WR) are linearly independent

The Roe’s solver leads to a first-order solution when it is directly applied to mean quantities
issued from the left and right sides of the interface. In order to increase flux accuracy, it is
mandatory to find a high-order extrapolation of the solution on the interface, as for example
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the following third-order accurate extrapolation,

WL
m+1/2 =

5
6

Wm +
1
3

Wm+1 −
1
6

Wm−1, (2.31)

WR
m+1/2 =

5
6

Wm+1 +
1
3

Wm −
1
6

Wm+2. (2.32)

In the following, these extrapolations are adapted to account for the local metric when the
interface i + 1/2 corresponds to a grid interface between two blocks. Beginning with WL

i+1/2,
the expression of the variable is sought in the form WL

i+1/2 = αWi + βWi+1 + γWi−1, with
(α, β, γ) ∈ R3. Let us consider the advection equation with a constant and positive transport
velocity c = 1 [m/s]. The Roe’s numerical flux is then simply the left state. Following (2.5), the
new numerical scheme applied to compute the gradient of the variables with respect to x is
based on an interpolation that is metric-dependent,

∆x
∂W
∂x

∣∣∣∣
i
= WL

i+1/2 −WL
i−1/2 =

(
α− 1

3

)
Wi + βWi+1 +

(
γ− 5

6

)
Wi−1 +

1
6

Wi−2. (2.33)

For the sake of clarity, all details regarding Taylor series expansions are given. Using notations
introduced in Fig. 2.21,

Wi−2 = Wi − 2∆x
∂W
∂x

∣∣∣∣
i
+ 2∆x2 ∂2W

∂x2

∣∣∣∣
i
+O

(
∆x3) , (2.34)

Wi−1 = Wi − ∆x
∂W
∂x

∣∣∣∣
i
+

∆x2

2
∂2W
∂x2

∣∣∣∣
i
+O

(
∆x3) , (2.35)

Wi+1 = Wi + ∆x
Ar + 1

2
∂W
∂x

∣∣∣∣
i
+

∆x2

2

(
Ar + 1

2

)2 ∂2W
∂x2

∣∣∣∣
i
+O

(
∆x3) . (2.36)

i + 1/2

ii− 1 i + 1

NGI

Left Block Right Block

∆x Ar · ∆x

Fig. 2.21. Stencil for the second-order accurate interpolation of the left state. The grid is non-uniform. The left
and right blocks are separated by an interface.

Substituting (2.34), (2.35), and (2.36) in (2.33), one obtains

∆x
∂W
∂x

∣∣∣∣
i
= Wi

(
α− 1

3
+ β + γ− 5

6
+

1
6

)

+
∂W
∂x

∣∣∣∣
i
∆x
(

Ar + 1
2

β +

(
−γ +

5
6

)
− 1

3

)

+
∂2W
∂x2

∣∣∣∣
i
∆x2

(
1
2

(
Ar + 1

2

)2

β +
1
2

(
γ− 5

6

)
+

1
3

)
+O

(
∆x3) .
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Note that the zero-order condition is no longer trivially satisfied as it would have been if the
metric was continuous across the interface. Only a second-order accurate interpolation is now
possible. The coefficients α, β and γ are the solution of the following system of equations:

α− 1
3
+ β + γ− 5

6
+

1
6
= 0 is the zeroth-order condition, (2.37)

β

2
(Ar + 1)− γ +

5
6
− 1

3
= 1 is the first-order condition, (2.38)

β

2

(
Ar + 1

2

)2

+
γ− 5

6
2

+
1
3
= 0 is the second-order condition. (2.39)

Collecting all the terms, one obtains:



1 1 1

0
Ar + 1

2
−1

0
1
2

(
Ar + 1

2

)2 1
2







α
β
γ


 =




1
1
2
1

12


 .

Cramer’s rule gives: α =
9Ar + 1

6 (Ar + 1)
, β =

8
3 (Ar + 1) (Ar + 3)

, and γ = − 3Ar + 1
6 (Ar + 3)

. The new

second-order accurate interpolation for the left state is given by

WL
i+1/2 =

9Ar + 1
6 (Ar + 1)

·Wi +
8

3 (Ar + 1) (Ar + 3)
·Wi+1 −

3Ar + 1
6 (Ar + 3)

·Wi−1.

The asymptotic behavior is given by: lim
Ar→+∞

α =
3
2

, lim
Ar→+∞

β = 0, and lim
Ar→+∞

γ = −1
2

. The

larger Ar is, the less influence the state in cell i+ 1 located in the right block has. Moreover, these
new interpolation weights are consistent since they are equal to the third-order interpolation

of (2.31) when Ar tends to 1: lim
Ar→1

α =
5
6

, lim
Ar→1

β =
1
3

, and lim
Ar→1

γ = −1
6

.

Since the cell centers are not symmetric along the interface, the interpolation for the left
and right states is not symmetric, and new coefficients must be established for the right state.
To do so, let us consider an advection equation with a constant and negative advection velocity
c = −1. The Roe’s numerical flux is then simply the right state. Following the same approach
as for WL

i+1/2, the new second-order accurate interpolation for the right state is given by:

WR
i+1/2 =

7A2
r − 3Ar + 6

6Ar (Ar + 1)
·Wi+1 +

4Ar (3− Ar)

3 (1 + Ar) (3Ar + 1)
·Wi +

5A2
r − 3Ar − 6

6Ar (3Ar + 1)
·Wi+2.

This right-state interpolation is also consistent since Ar = 1 leads to the third-order interpola-
tion of (2.32).

Fig. 2.22 shows the effect of the newly high-order metric-dependent interpolation on high-
frequency waves at the grid interface. The interpolation using the local metric enables to
remove most of the spurious high-frequency waves previously generated with the standard
interpolation. However, some residual oscillations still remain. Indeed, the interpolation
should take into account the discontinuities of spatial discretization in the three dimensions. In
our demonstration, the interpolation is only corrected in the orthogonal direction to the grid
interface.
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Fig. 2.22. z-component of the velocity fluctuation. Cut at z = 1.5 [m]. The coarsening ratio Ar is equal to 33.17
along the x-axis and 33.25 along the z-axis. h is zero, and α is equal to 45◦. The Roe’s scheme which depends on
metric is only used at the interface. The centered scheme is used elsewhere. Most of high-frequency waves are
removed.
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Fig. 2.23. Effect of interpolation of left and right states dependent on metric which is required for the Riemann
solver at the interface. Coarsening along the x-axis ∆xR = 40 · ∆xL, ∆zR = ∆zL with α = 0◦ and h = 0.0.

A test has been carried out only with a coarsening along the x-axis to verify that these
residual oscillations are caused by the interpolation which does not take into account the
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2.5 Conclusion

transverse directions to the grid interface, but only the orthogonal one. In Fig. 2.23, ∆xR =
40 · ∆xL, ∆zR = ∆zL, and the direction of propagation is orthogonal to the interface (α = 0◦).
Consequently, the grid interface is a conforming interface, and there is only a discontinuity of
spatial discretization along the x-axis. As shown in Fig. 2.23, if the interpolation does not take
into account the local metric at the interface, high-frequency waves are reflected. Nonetheless, if
the interpolation is metric-dependent, high-frequency waves are totally removed. The residual
oscillations observed in Fig. 2.22 have totally disappeared, and hence it is absolutely necessary
to take into account the local metric for the interpolation of left and right states at the interface.

2.5 Conclusion

Nonconforming grid interfaces are nowadays introduced in most of industrial configurations,
either for external aerodynamics or for rotor/stator interactions in turbomachinery. The present
chapter addressed the question of the numerical stability of the numerical scheme used at
a nonconforming grid interface for an unsteady flow. To do so, two blocks with different
discretizations were glued with a grid interface. Theoretical results from Fourier or Von
Neumann analysis have been complemented by numerical results for the convection of an
isentropic compressible vortex.

Some conclusions can be drawn with uniform block discretizations with the same cell
dimensions in both blocks. If the direction of propagation is orthogonal to the interface, both
theoretical results and numerical computations show that the grid interface has no effect on
dispersion and dissipation. If the direction of propagation is not orthogonal to the interface, it
is deduced from theoretical results, and confirmed by numerical results, that the grid interface
induces dispersion without dissipation.

Nonconforming grid interfaces are mainly used in computations in order to locally increase
the cell size across the interface. They avoid propagating a mesh refinement in low-interest
regions of a flow. In such a situation, the coarsening ratio can vary between 2 and more than
40 for industrial steady applications. For unsteady flows, the effect of the grid interface on
dispersion and amplification is due to the metric discontinuity rather than to the nonconforming
aspect (parameter h). If the metric discontinuity occurs in the direction orthogonal to the
direction of propagation, neither amplification nor dispersion are observed. If the metric
discontinuity occurs in the direction parallel to the direction of propagation, both amplification
and dispersion are observed. In addition, this can lead to reflections of undesirable high-
frequency waves.

Avoiding spurious reflections is mandatory to get confidence in simulations. Based on
inspiration from studies on NSCBC conditions, an approximate Riemann solver has been
selected to develop a new numerical treatment for the nonconforming grid interface. The key
point is to introduce a high-order extrapolation of quantities that account for the local metric
on both sides of the interface. It has been shown that spurious waves are removed.
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C H A P T E R

3
Vichnevetsky’s framework

“The real voyage of discovery consists not in seeking new
lands but seeing with new eyes.”

— Marcel Proust (1871 - 1922)

Abstract. In this chapter, Vichnevetsky’s framework is detailed to explain in particular the results
obtained in Sec. 2.3.5. First of all, the problem is illustrated by a simple numerical experiment which
points out the reflection of high-frequency waves called spurious. Then, it is shown that standard
tools to analyze schemes stability do not succeed in explaining the observed behavior, hence the
necessity of Vichnevetsky’s framework. It is shown that the reflection coefficient can be predicted and
numerically recovered with a very good accuracy.

3.1 Introductory numerical experiment

To illustrate Vichnevetsky’s framework, let us start by a very simple numerical experiment. In
the whole chapter, only the one-dimensional advection equation (3.1) is considered where u is
the unknown and c the constant advective velocity.

∂u
∂t

+ c
∂u
∂x

= 0. (3.1)

The initial condition is given by u (x, t = 0) = u0 (x). This equation is hyperbolic with only one
characteristic to define information propagation. Here, the advection velocity c is considered
positive in such a way that information propagates from left to right. The dispersion relation is
classically given by (3.2) where ω [s−1] is the angular frequency and k [m−1] the wavenumber.

ω = ck. (3.2)

This equation is solved on a one-dimensional domain with x ∈ [0, 1] with a cell size h =
0.005 [m]. A Dirichlet boundary condition is applied on the left boundary. A characteristic
boundary condition is applied on the right boundary. This is simply achieved with a first-order
upwind scheme. Under these conditions, the analytical solution is simply given by:

u (x, t) = u0 (x− ct) . (3.3)

That means that the problem is physically well-posed, which is a prerequisite to solve it
numerically. The space discretization is achieved by a second-order centered Finite Difference
scheme defined by:

∂u
∂x

∣∣∣∣
i
=

ui+1 − ui−1

2h
, (3.4)

where h is the constant cell size. The characteristic boundary condition is realized by the
first-order upwind scheme:

∂u
∂x

∣∣∣∣
N
=

ui − ui−1

h
, (3.5)
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where N is the cell number of the one-dimensional domain. The time integration is performed
by a low-storage fourth-order Runge-Kutta (RK4) scheme. The CFL number is taken small
enough so that the numerical error associated with the time integration is negligible. The CFL
number is taken equal to 0.1. Solving the advection equation with these numerical parameters,
one obtains the solution represented in Fig. 3.1a, Fig. 3.1b, Fig. 3.2a and Fig. 3.2b. These

solutions are given for a specific initial condition for different values of kh ∈
{

0,
π

20
,

π

10
,

π

5

}
:

u0 (x) = cos(kx) exp

[
− (x− xc)

2

R2
c

]
, (3.6)

where the characteristic length Rc = 0.1 [m] and xc = 0.5 [m]. In Fig. 3.1b, Fig. 3.2a and
Fig. 3.2b, one can see that a high-frequency wave is reflected at the right boundary. Moreover,
the amplitude of this reflected wave seems to increase as the wavenumber of the incident wave
increases. Since the problem is physically well-posed, the reflection should be caused by a
numerical problem. All the next sections will give an answer to this major numerical issue.
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Fig. 3.1. Advection with Dirichlet boundary conditions.
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3.2 Spectral analysis

3.2 Spectral analysis

Performing a standard spatial Fourier transform, the modified wavenumber km for the second-
order centered scheme, which characterizes the dispersion and the dissipation is given by:

kmh = sin(kh). (3.7)

Since the scheme is centered, there is no dissipation. The imaginary part of the modified
wavenumber is indeed equal to zero. The real part of the modified wave number is shown in
Fig. 3.3. At this stage, the high-frequency reflection remains unexplained.

0

0.5

1

1.5

2

2.5

3

0 π/4 π/2 3π/4 π

k m
h

[−
]

kh [−]

Exact
Second-order

Fig. 3.3. Dispersion for the second-order centered Finite Difference scheme.

Again, performing a standard spatial Fourier transform, the modified wavenumber km for
the first-order upwind scheme, which characterizes the dispersion and the dissipation is given
by:

kmh = sin(kh) + j [cos (kh)− 1] . (3.8)

The second-order centered and the first-order upwind Finite Difference scheme have the same
dispersion, as shown in Fig. 3.4a. A classical result from the literature is recovered. The
first-order upwind Finite Difference scheme dissipates all wavenumbers and in particular the
high wavenumbers, as shown in Fig. 3.4b. It implies stability but again, the high-frequency
reflection still remains unexplained.
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Fig. 3.4. Spectral analysis for the first-order upwind scheme.

3.3 Stability analysis

To perform a stability analysis, the advection equation is discretized over the whole one-
dimensional domain by a second-order centered Finite Difference scheme (FDC2) for interior
points, a Dirichlet boundary condition on the left boundary and a first-order upwind Finite
Difference scheme (FDCU1) on the right boundary:

∂U
∂t

= − c
h

A ·U = − c
h




h 0 0 · · · · · · · · · · · · 0

−1/2 0 1/2
. . .

...

0 −1/2 0 1/2
. . .

...
...

. . . . . . . . . . . . . . .
...

...
. . . . . . . . . . . . . . .

...
...

. . . −1/2 0 1/2 0
...

. . . −1/2 0 1/2
0 · · · · · · · · · · · · 0 −1 1




·U, (3.9)

where A
[
aij
]

16i6N
16j6N

is a square matrix of size N × N, aij its coefficients and U = [ui]16i6N is

the solution vector for each mesh point. Then, the fourth-order Runge-Kutta (RK4) scheme is
applied to perform the time integration. The CFL number ν is still equal to 0.1. This can be
written in a matrix form:

Un+1 =

[
IN +

4

∑
m=1

(−1)m νm

m!
Am

]
·Un = G ·Un, (3.10)

where Un =
[
un

i
]

16i6N is the solution vector for each mesh point at the time step n. Thus,
one obtains a matrix which couples space and time discretizations. A geometric progression
converges if the ratio is lower than 1. The spectral radius of a matrix G is the maximum
among the absolute value of eigenvalues. Since (3.10) is a geometric progression, the scheme
is stable if the spectral radius is smaller than 1. To obtain this spectral radius, one computes
the eigenvalues of the matrix G as shown in Fig. 3.5. The cell size is equal to h = 0.02 [m] to
obtain a reasonable number of eigenvalues. In Fig. 3.5, all the eigenvalues are inside the unit
circle which proves the scheme stability but again, the high-frequency wave reflection still
remains unexplained. At this time, several interesting conclusions can be reached that explain
the necessity for Vichnevetsky’s approach.
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• The standard approaches are unable to predict the reflection of high-frequency waves.
• Worse: two numerical schemes, which are absolutely stable when they are taken sepa-

rately, can lead to instabilities and generate the so-called spurious modes when they are
coupled at a boundary condition.
• These waves can be considered as bounded instability and the standard approaches only

detect unbounded instability.
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Fig. 3.5. Stability analysis for the second-order centered Finite Difference scheme coupled with the first-order
Finite Difference scheme at boundaries.

3.4 Necessity of Vichnevetsky’s framework

3.4.1 Inside the domain

Based on [5, 59, 60], let us consider the one-dimensional advection equation taken as model of
hyperbolic equations.

∂u
∂t

+ c
∂u
∂x

= 0. (3.11)

The semi-discretization is given by:

dui

dt
= −c

[
ui+1 − ui−1

2h

]
. (3.12)

Let us note the time Fourier Transform of the semi-discrete numerical solution:

ûi (ω) =
1√
2π

∫ +∞

−∞
ui (t) e−jωt dt. (3.13)

Then, a Fourier Transform is performed in the time domain and not in the space domain where
ω is the angular frequency and k the wavenumber. Taking the Fourier Transform in the time
domain of (3.12):

jωûi = −c
[

ûi+1 − ûi−1

2h

]
, (3.14)
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and rearranging, one obtains:

ûi+1 + 2j
[

ωh
c

]
ûi − ûi−1 = 0, (3.15)

which defines a progression by a recurrence equation. The solution of a geometric progression
is given by the ratio defined by:

ûi+1 = Ê (ω) · ûi. (3.16)

This ratio must satisfy the characteristic equation:

Ê2 + 2j
[

ωh
c

]
Ê− 1 = 0. (3.17)

It is a second-order recurrence relation that can be resolved by seeking characteristic roots.
Assuming ωh/c 6 1 (For more details about the case where ωh/c > 1, see [5]), the equation
has two characteristic roots:

Ê1 = −j
[

ωh
c

]
+

√
1−

[
ωh
c

]2

, (3.18)

Ê2 = −j
[

ωh
c

]
−
√

1−
[

ωh
c

]2

. (3.19)

Note that
∥∥∥Ê1

∥∥∥ =
∥∥∥Ê2

∥∥∥ = 1 since the second-order centered Finite Difference scheme does not

dissipate and Ê−1
1 = −Ê2. The final solution is the sum of both fundamental solutions:

ui (t) = pi (t) + qi (t) , (3.20)

where, using (3.16),

p̂i (ω) = p̂0 (ω)
[

Ê1 (ω)
]i

, (3.21)

q̂i (ω) = q̂0 (ω)
[

Ê2 (ω)
]i

. (3.22)

These two solutions are usually referred to as the p-wave solution and the q-wave solution.
Note the interest of a Fourier Transform in the time domain and not in the space domain since
p and q waves have the same angular frequency but different wavenumbers, as shown in
Fig. 3.6a. As stated in [5], for comparison with (3.20), let us take the Fourier Transform in the
time domain of (3.11):

jωû + c
∂û
∂x

= 0. (3.23)

By analytical integration, the solution is given by:

û (x, ω) = û (0, ω) · exp
[
− jωx

c

]
. (3.24)

It is then possible to find by identification the phase velocity, the group velocity and the
dispersion relation for each wave as shown in Fig. 3.6. Vichnevetsky has shown that the p wave
has a positive group velocity, it propagates from left to right, and the q wave has a negative
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group velocity, it propagates from right to left. In particular, the group velocity vp
g for the p

wave and vq
g for the q wave are given by:

vp
g = c

√
1−

[
ωh
c

]2

, (3.25)

vq
g = −c

√
1−

[
ωh
c

]2

. (3.26)
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Fig. 3.6. Dispersion relation and group velocity of p and q waves.

3.4.2 Reflection coefficient

A p or a q wave is solution of the semi-discretized equation inside the domain. Since the
problem is linear, a linear combination of p and/or q is still a solution. Therefore a linear
combination of p and q waves is sought to be a solution of the complete problem with the
boundary conditions. In this case, with the second-order centered scheme and the first-order
upwind scheme, the linear combination is trivially solution at all points except for the point on
the boundary. Consequently only one equation will be obtained for one reflection coefficient.
Now, it is possible to compute the reflection coefficient which is the ratio of the q wave by
the p wave. Applying the boundary condition at the right boundary and using the semi-
discretization:

duN

dt
= −c

[
uN − uN−1

h

]
, (3.27)

Applying the temporal Fourier Transform, one obtains:

jωûN = −c
[

ûN − ûN−1

h

]
. (3.28)

Moreover, ûN (resp. ûN−1) can be expressed as function of p̂N and q̂N (resp. p̂N−1 and q̂N−1):

ûN = p̂N + q̂N , (3.29)
ûN−1 = p̂N−1 + q̂N−1. (3.30)

Substituting (3.29) and (3.30) in (3.28), one obtains:

jω ( p̂N + q̂N) = −c
[

p̂N + q̂N − p̂N−1 − q̂N−1

h

]
. (3.31)
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Then, using both equalities p̂N−1 = p̂N Ê−1
1 and q̂N−1 = q̂N Ê−1

2 , (3.31) becomes:

jω ( p̂N + q̂N) = −c

[
p̂N + q̂N − p̂N Ê−1

1 − q̂N Ê−1
2

h

]
,

= −c

[
p̂N + q̂N + p̂N Ê2 + q̂N Ê1

h

]
. (3.32)

Hence, the reflection coefficient ρ (ω) =
q̂N

p̂N
is given by:

ρ (ω) =
q̂N

p̂N
= −

j
[

ωh
c

]
+ 1 + Ê2

j
[

ωh
c

]
+ 1 + Ê1

= −
1−

√
1−

[
ωh
c

]2

1 +

√
1−

[
ωh
c

]2
. (3.33)

It is even possible to use the following second-order upwind scheme at the right boundary to
decrease the amplitude of the reflected wave:

duN

dt
= −c

[
3uN − 4uN−1 + uN−2

2h

]
. (3.34)

The reflection coefficient is then:

ρ (ω) =
q̂N

p̂N
=

3 + 2j
[

ωh
c

]
+ 4Ê2 + Ê2

2

3 + 2j
[

ωh
c

]
+ 4Ê1 + Ê2

1

. (3.35)

3.4.3 Reflection coefficient measurement

The reflection coefficients are measured in a numerical experiment to validate the expressions
given by (3.33) and (3.35). To do so, the Fourier Transform in the space domain is computed
for the p and the q wave. Then, the reflection coefficient is simply computed by taking the
ratio of amplitudes of Fourier Transform peaks in the space domain. A very good agreement is
obtained as shown in Fig. 3.7.

3.5 Conclusion

The standard approaches are unable to predict the reflection of high-frequency waves. Even
more unfortunate, when they are coupled together, two stable numerical schemes can lead
to instabilities. These waves can be considered as bounded instability and the standard ap-
proaches only detect unbounded instability. Hence the necessity of adopting the Vichnevetsky’s
approach. The reflection of high-frequency waves can be predicted by Vichnevetsky’s approach
and numerically verified. More generally, the reflection of high-frequency waves appears every
time there is a numerical discontinuity such as:
• Numerical schemes,
• Refinement or coarsening,
• Element type if the mesh is unstructured,
• Nonconforming grid interface,
• Hybrid nonconforming grid interface.

One possibility to avoid the reflection of high-frequency waves is to change the numerical
scheme at the boundary. It has been shown, for instance, that using a second-order upwind
scheme at the boundary leads to a smaller reflection coefficient compared to a first-order
upwind scheme. This explains the results obtained in Chap. 2. The nonconforming grid
interface should be carefully treated and this is why, in this manuscript, the nonconforming
grid interface will be treated with Riemann solvers.
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Fig. 3.7. Reflection coefficient for the first-order upwind scheme (2p scheme) and for the second-order upwind
scheme (3p scheme). Comparison with numerical experiments. A perfect agreement is obtained between theoretical
and numerical results.
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C H A P T E R

4
Hybrid convective fluxes

“When radium was discovered, no one knew that it would
prove useful in hospitals. The work was one of pure science.
And this is a proof that scientific work must not be consid-
ered from the point of view of the direct usefulness of it.”

— Marie Skłodowska Curie (1867 - 1934)

Abstract. In this chapter, the hybrid approach is validated for the convective fluxes. First of all,
some general results are established to properly estimate the effective order of accuracy of a numerical
scheme. Then, the test case, which deals with the convection of an isentropic compressible vortex, is
used to validate the hybrid approach for the first and second-order Roe schemes. The validation is
performed on several meshes with different topologies to test the implementation.

4.1 Preliminary remarks

Let us consider the one-dimensional advection equation (4.1) where c is a constant advective
velocity with c = 1.0 [m/s] and f is the dimensionless unknown.

∂ f
∂t

+ c
∂ f
∂x

= 0. (4.1)

The linear hyperbolic partial derivative equation (4.1) is used to study the behavior of numer-
ical schemes. (4.1) is discretized with a first-order upwind scheme for the convective flux
and a second-order six-stage Runge-Kutta scheme RKo6s [44] for the time integration. For
completeness, the RKo6s coefficients are given in Tab. 9.5. The CFL number is taken small
enough so that the numerical error from the time integration is negligible. CFL = 0.1 is a good
compromise. The resolution domain is for x ∈ [0, L] with L = 0.2 [m] with periodic boundary
conditions. The unknown at the initial time f0 is gaussian:

f (x, t = 0) = f0 (x) = exp

[
−
(

x− xc

Rc

)2
]

, (4.2)

with xc = 0.05 [m] and Rc = 0.01 [m]. Then, the error ε f is computed with the `2-norm for a
given convection distance d:

ε2
f =

∫ L

0
[ f (x, t)− f0 (x− ct)]2 dx. (4.3)

In Fig. 4.1, the error ε f versus the inverse of the number of degrees of freedom #DOF is shown
for different convection distances d. Moreover, first-order slopes are also plotted to estimate the
effective order of accuracy. As expected, when the distance of propagation increases, the error
also increases. Also note that the effective order of accuracy decreases when the convection
distance increases. The effective order of accuracy strongly depends on the convection distance
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d. It means that the effective order of accuracy should be measured in a numerical computation
with a small convection distance to recover the first order. This is due to the large dissipation
of the first-order upwind scheme. The error is indeed bounded on one hand by the machine
epsilon for high numbers of degrees of freedom, and on the other hand by the `2-norm of the
initial solution for low numbers of degrees of freedom. Consequently, an error curve always
has a sigmoid shape.
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d = 0.01

First-order slopes

Fig. 4.1. Effective order of accuracy for the first-order upwind scheme discretizing the one-dimensional linear
advection equation. The effective order of accuracy strongly depends on the distance over which the unknown is
convected.

These results can be analytically recovered. The error ε f can be analytically computed and
is given by Theo. 4.1.1.

Theorem 4.1.1 — Analytical error. Considering a one-dimensional linear advection equation
with a constant advective velocity spatially semi-discretized by the first-order upwind
scheme, the numerical error ε f with the `2-norm induced by this numerical scheme for an
initial gaussian solution with a characteristic length Rc is given by:

ε2
f (η, Rc) = Rc

√
π

2

[
1√

1 + 2η
− 2√

1 + η
+ 1

]
, (4.4)

where η =
d

∆x

(
Rc

∆x

)−2

with d the convection distance and ∆x the cell size.

This error depends on the characteristic length Rc of the initial gaussian solution and

η =
d

∆x

(
Rc

∆x

)−2

as shown in Fig. 4.2. η is the ratio between
d

∆x
and

(
Rc

∆x

)2

where
d

∆x

represents the dimensionless convection distance whereas
(

Rc

∆x

)2

represents the square of

the dimensionless characteristic length of the initial gaussian solution. When the convection
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distance decreases, the error decreases. When the number of degrees of freedom used to
discretize the initial solution increases, the error decreases.
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Fig. 4.2. Ratio between ε2
f and Rc versus η.

Proof 4.1.1 Considering the Taylor series expansion

f (x− ∆x) = f (x)− ∆x
∂ f
∂x

(x) +
∆x2

2
∂2 f
∂x2 (x) +O

(
∆x3) , (4.5)

the first-order upwind scheme is recovered:

∂ f
∂x

(x) =
f (x)− f (x− ∆x)

∆x
+

1
2

∆x
∂2 f
∂x2 (x) +O

(
∆x2) . (4.6)

Discretizing (4.1) by the first-order upwind scheme, one obtains:

∂ f
∂t

+ c
f (x)− f (x− ∆x)

∆x
= 0. (4.7)

By injecting (4.6) into (4.7), the modified equation is obtained:

∂ f
∂t

+ c
∂ f
∂x

=
c∆x

2
∂2 f
∂x2 (x) +O

(
∆x2) . (4.8)

The discretization of the advection equation with the first-order upwind scheme gives the
solution of the advection-diffusion equation with an advective velocity c and a diffusivity
ν = c∆x/2. The diffusivity does depend on ∆x which confirms that this upwind scheme is
first-order accurate. Now, solving

∂ f
∂t

+ c
∂ f
∂x

= ν
∂2 f
∂x2 (4.9)
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for (x, t) ∈ R× [0,+∞] with the initial condition f0 (x) = exp

[
−
(

x
Rc

)2
]

, one obtains

f (x, t) =
Rc√

4νt + R2
c

exp

[
− (x− ct)2

4νt + R2
c

]
. (4.10)

Finally, computing

ε2
f =

∫ +∞

−∞

{
Rc√

4νt + R2
c

exp

[
− (x− ct)2

4νt + R2
c

]
− exp

[
−
(

x− ct
Rc

)2
]}2

dx, (4.11)

one can recover the equation (4.4). More details can be found in App. B. �

In Fig. 4.3, the analytical error given by (4.4) is compared to results obtained in Fig. 4.1.
They are in perfect agreement and therefore the approach is validated.
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Fig. 4.3. The analytical errors for different convection distances are compared to those obtained numerically. They
are in perfect agreement.
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The order of accuracy α can then be deduced from the analytical expression of the error
(4.4) in Theo. 4.1.2.

Theorem 4.1.2 — Order of accuracy. Considering a one-dimensional linear advection equation
with a constant advective velocity spatially semi-discretized by the first-order upwind
scheme, the effective order of accuracy α of this numerical scheme for an initial gaussian
solution with a characteristic length Rc is given by:

α =
η

2
· (1 + η)

−3/2 − (1 + 2η)
−3/2

(1 + 2η)
−1/2 − 2 (1 + η)

−1/2 + 1
(4.12)

where η =
d

∆x

(
Rc

∆x

)−2

, d the convection distance and ∆x the cell size.

Proof 4.1.2 The order of accuracy is defined as the slope of log ε f with respect to log η.
Hence,

α =
d
[
log ε f

]

d [log η]
=

d
[
ln ε f

]

d [ln η]
=

d
[
ln ε f

]

dε f

dε f

dη

dη

d [ln η]
=

η

ε f

dε f

dη
. (4.13)

Moreover,
dε2

f

dη
=

dε2
f

dε f

dε f

dη
= 2ε f

dε f

dη
gives

dε f

dη
=

1
2ε f

dε2
f

dη
. Consequently, one obtains:

α =
η

2ε2
f

dε2
f

dη
, (4.14)

=
η

2ε2
f
Rc

√
π

2

[
d

dη

[
(1 + 2η)

−1/2
]
− 2

d
dη

[
(1 + η)

−1/2
]]

, (4.15)

=
η

2ε2
f
Rc

√
π

2

[
(1 + η)

−3/2 − (1 + 2η)
−3/2
]

, (4.16)

=
η

2
· (1 + η)

−3/2 − (1 + 2η)
−3/2

(1 + 2η)
−1/2 − 2 (1 + η)

−1/2 + 1
. (4.17)

�

In Fig. 4.4, this analytical order of accuracy is compared with a numerical experiment. The
numerical order of accuracy is estimated thanks to a first-order upwind scheme between two
consecutive refinements. They are in perfect agreement which indicates the approach relevance.
To recover the order of accuracy in a simulation performed with a first-order upwind scheme,
the simulation parameter has to be chosen such that η is small enough. Indeed,

α(η) ∼
η→0

1− 5
4

η +
95
48

η2 − 55
16

η3 +
14507
2304

η4 +O
(
η5) . (4.18)

This gives best practices to measure the effective order of accuracy of a numerical scheme based
on numerical computations.
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Fig. 4.4. Order of accuracy for the first-order upwind scheme. Comparison between the analytical and numerical
order of accuracy.

4.2 The convection of a vortex: the COVO test case

4.2.1 Objectives

This problem is designed to test whether the hybrid approach preserves vorticity in an unsteady
inviscid flow. Since it is an analytical solution of the unsteady Euler equations, an error analysis
will be conducted to check the effective order of accuracy for a given scheme. Moreover,
this error analysis will be performed on the same topological mesh but with three different
formalisms: structured, unstructured and hybrid. Only the data structure changes. For a given
scheme, the error analysis should give the same results on these three meshes. Indeed, the
extrapolation is done with the Green-Gauss gradient for the three meshes. For unstructured
meshes with a Cartesian topology, the Green-Gauss algorithm is equivalent to a directional
approach such as for the structured mesh.

4.2.2 Description

The test case deals with the convection of a compressible and isentropic vortex within a
mean and constant speed flow (p0 = 105 [Pa], T0 = 300.0 [K], M0 = U0/

√
γRgasT0 = 0.5). This

test case is extracted from the fast vortex test case of the High-Order Workshop [2]. The
characteristic vortex radius Rc is equal to 0.005 [m] and the vortex intensity β is equal to 0.2 [−].
The fluid is assumed to be a perfect gas. The ratio of specific heats γ is equal to 1.4, and the
gas constant Rgas is equal to 287.15 [J/kg/K]. The vortex is initialized around the point of
coordinates (xc = 0.05 [m], yc = 0.05 [m]) and convected over 0.1 [m]. For test cases with a
convection over a short distance in Sec. 4.4 and Sec. 4.5, it is initialized around the point of
coordinates (xc = 0.049 [m], yc = 0.05 [m]) and convected over 0.002 [m]. The flow is initialized
by the velocity V = (u, v)> and the temperature T with:
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u = U0 −
βU0

Rc
(y− yc) exp

[
− r2

2

]
, (4.19)

v =
βU0

Rc
(x− xc) exp

[
− r2

2

]
, (4.20)

T = T0 −
β2U2

0
2Cp

exp
[
−r2] , (4.21)

where Cp =
γRgas

γ− 1
and r2 =

(x− xc)
2 + (y− yc)

2

R2
c

. Since the vortex is isentropic, the density is

computed using ρ = ρ0 ·
(

T
T0

) 1
γ− 1 . x- and y-component of the velocity, temperature and

density fluctuations are shown in Fig. 4.5. As mentioned in the introduction, this flow is an
analytical solution of the unsteady compressible Euler equations. The expected solution is the
initial vortex convected without deformation.
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Fig. 4.5. Initial solution for the COVO test case.

4.2.3 Meshes

The computational domain is square with (x, y) ∈ [0 [m], 0.1 [m]]× [0 [m], 0.1 [m]]. Transla-
tional boundary conditions are imposed on the left/right and top/bottom boundaries. Nine
mesh topologies have been tested and are summarized in Tab. 4.1. The computational domain
is divided into three domains:
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- the first domain is defined by (x, y) ∈ [0.000, 0.025]× [0, 0.1],
- the second domain is defined by (x, y) ∈ [0.025, 0.075]× [0, 0.1],
- the third domain is defined by (x, y) ∈ [0.075, 0.100]× [0, 0.1].

Each domain can be either Structured (S) or Unstructured (U). An Unstructured (U) domain
can be composed with either Quadrangles (Q) or Triangles (T). Finally, an Unstructured (U)
domain can have either perturbed elements (T) which stands for True and (F) which stands
for False. A perturbed mesh is computed from a non-perturbed mesh. All nodes, except the
boundary nodes, are displaced to obtain the new set of coordinates

xp = x + 0.15 r∆x cos θ, (4.22)
yp = y + 0.15 r∆x sin θ, (4.23)

where (x, y) are the original coordinates, r a random number in [0, 1] and θ a random number in
[0, 2π]. The meshes are represented in Fig. 4.6 and Fig. 4.7. They are drawn for the coarse case
32× 32. For hybrid meshes, the grid interface is topologically conforming but is numerically
treated a nonconforming grid interface.

Finally, meshes with topologically nonconforming grid interface were also tested in Fig. 4.8.
Regarding naming conventions, SUS/QF/NGI is the topological nonconforming version of
SUS/QF and so on for other hybrid meshes. The nonconforming grid interface is ensured by
adding two cells in the unstructured domain.

Tab. 4.1. Nine mesh topologies for the order analysis.

Mesh 1st domain 2nd domain 3rd domain Elements Perturbed

SSS Structured Structured Structured - -
UUU/QF Unstructured Unstructured Unstructured Quadrangles 7

SUS/QF Structured Unstructured Structured Quadrangles 7

UUU/QT Unstructured Unstructured Unstructured Quadrangles 3

UUU/TF Unstructured Unstructured Unstructured Triangles 7

UUU/TT Unstructured Unstructured Unstructured Triangles 3

SUS/QT Structured Unstructured Structured Quadrangles 3

SUS/TF Structured Unstructured Structured Triangles 7

SUS/TT Structured Unstructured Structured Triangles 3
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(c) UUU/QT mesh.
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(d) UUU/TF mesh.

Fig. 4.6. (I) 32× 32 meshes for the order analysis. The grid interface for hybrid meshes is conforming but is
numerically treated as a nonconforming grid interface.
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(b) SUS/QT mesh.
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(c) SUS/TF mesh.
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(d) SUS/TT mesh.

Fig. 4.7. (II) 32× 32 meshes for the order analysis. The grid interface for hybrid meshes is conforming but is
numerically treated as a nonconforming grid interface.
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4.2 The convection of a vortex: the COVO test case
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(d) SUS/TT/NGI mesh.

Fig. 4.8. 32× 32 meshes for the order analysis. The grid interface for hybrid meshes is nonconforming.
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4.2.4 Numerics

Even though this test case is two-dimensional, only three-dimensional computations have been
performed. It has been decided to only develop and validate three-dimensional computations
in this work. Depending on the mesh refinement, from 2 to 64 processors were used. The
explicit time integration scheme is the second-order six stage Runge-Kutta scheme RKo6s [44]
where the Courant-Friedrichs-Lewy number is equal to 0.1. Time steps are chosen sufficiently
small in order to measure dissipation and dispersion due to the spatial scheme and not due
to the temporal integration. Space is discretized with the Roe scheme [57, 58] without any
limiter introduced in Sec. 2.4 and detailed in Sec. 6.2 and Sec. 6.3. First-order and second-order
extrapolations were validated. Space discretization around the nonconforming grid interface is
performed with the formalism introduced in Chap. 2.

4.2.5 Error computation

The error εV on the velocity norm V = (u, v)> is computed with the `2-norm as

εV =

[∫
Ω (u− uexact)

2 + (v− vexact)
2 dV∫

Ω dV

]1/2

, (4.24)

where Ω is the computation domain and V the cell volume. This error εV can then be plotted
versus h = 1/

√
#DOF where #DOF is the number of degrees of freedom in a plane located

at a given z. The numerical order of accuracy is estimated using a first-order upwind Finite
Difference formula between two consecutive refinements.

4.3 Results for the first-order Roe scheme

The results for the first-order Roe scheme are given from Tab. 4.2 to Tab. 4.10. Several interesting
conclusions can be reached.
• The SSS, UUU/QF and SUS/QF meshes give exactly the same results. Indeed, the

three meshes are topologically identical. Only the data structure changes. This partially
validates the unstructured and hybrid approach for the first-order Roe scheme.
• Perturbating the mesh has a slight effect on the error compared with the non perturbed

meshes.

• First-order accuracy is never reached. The corresponding η =
d

∆x

(
Rc

∆x

)−2

is too large

for the considered computations. As explained in Sec. 4.1, a large value of η can indeed
only lead to a very bad estimation of the order of accuracy. To be able to measure the
correct order of accuracy, there are several possibilities. The first one is to increase the

ratio
Rc

∆x
and the second one is to decrease the ratio

d
∆x

. Out of simplicity, the second
possibility was chosen to keep the same meshes of Fig. 4.6, Fig. 4.7 and Fig. 4.8 since

increasing the ratio
Rc

∆x
would indeed have required an expansion of the computational

domain.
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4.3 Results for the first-order Roe scheme

Tab. 4.2. Mesh convergence analysis on the SSS mesh for the first-order Roe scheme.

h [−] Error εV [m · s−1] Order [m · s−1]

6.25000000000 · 10−2 3.07883362939 · 100 −
4.16666666667 · 10−2 2.98923141241 · 100 0.07
3.12500000000 · 10−2 2.95386547496 · 100 0.04
2.08333333333 · 10−2 2.87786565459 · 100 0.06
1.56250000000 · 10−2 2.80169149728 · 100 0.09
1.04166666667 · 10−2 2.65755833346 · 100 0.13
7.81250000000 · 10−3 2.52557878590 · 100 0.18
5.20833333333 · 10−3 2.29388978685 · 100 0.24
3.90625000000 · 10−3 2.09821324754 · 100 0.31
2.60416666667 · 10−3 1.78841646048 · 100 0.39
1.95312500000 · 10−3 1.55597292148 · 100 0.48

Tab. 4.3. Mesh convergence analysis on the UUU/QF mesh for the first-order Roe scheme.

h [−] Error εV [m · s−1] Order [m · s−1]

6.25000000000 · 10−2 3.07887844233 · 100 −
4.16666666667 · 10−2 2.98923141241 · 100 0.07
3.12500000000 · 10−2 2.95386547496 · 100 0.04
2.08333333333 · 10−2 2.87786565459 · 100 0.06
1.56250000000 · 10−2 2.80169149728 · 100 0.09
1.04166666667 · 10−2 2.65755833346 · 100 0.13
7.81250000000 · 10−3 2.52557878590 · 100 0.18
5.20833333333 · 10−3 2.29388978685 · 100 0.24
3.90625000000 · 10−3 2.09821324754 · 100 0.31
2.60416666667 · 10−3 1.78841646048 · 100 0.39
1.95312500000 · 10−3 1.55597292148 · 100 0.48

Tab. 4.4. Mesh convergence analysis on the SUS/QF mesh for the first-order Roe scheme.

h [−] Error εV [m · s−1] Order [m · s−1]

6.25000000000 · 10−2 3.07884512383 · 100 −
4.16666666667 · 10−2 2.98923141241 · 100 0.07
3.12500000000 · 10−2 2.95386547496 · 100 0.04
2.08333333333 · 10−2 2.87786565459 · 100 0.06
1.56250000000 · 10−2 2.80169149728 · 100 0.09
1.04166666667 · 10−2 2.65755833346 · 100 0.13
7.81250000000 · 10−3 2.52557878590 · 100 0.18
5.20833333333 · 10−3 2.29388978685 · 100 0.24
3.90625000000 · 10−3 2.09821324754 · 100 0.31
2.60416666667 · 10−3 1.78841646048 · 100 0.39
1.95312500000 · 10−3 1.55597292148 · 100 0.48
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Tab. 4.5. Mesh convergence analysis on the UUU/QT mesh for the first-order Roe scheme.

h [−] Error εV [m · s−1] Order [m · s−1]

6.25000000000 · 10−2 3.13657946156 · 100 −
4.16666666667 · 10−2 2.99642684757 · 100 0.11
3.12500000000 · 10−2 2.96166804152 · 100 0.04
2.08333333333 · 10−2 2.88955166167 · 100 0.06
1.56250000000 · 10−2 2.81270980805 · 100 0.09
1.04166666667 · 10−2 2.66918904578 · 100 0.13
7.81250000000 · 10−3 2.53680753347 · 100 0.18
5.20833333333 · 10−3 2.30291063598 · 100 0.24
3.90625000000 · 10−3 2.10626371314 · 100 0.31
2.60416666667 · 10−3 1.79477035724 · 100 0.39
1.95312500000 · 10−3 1.56122164325 · 100 0.48

Tab. 4.6. Mesh convergence analysis on the UUU/TF mesh for the first-order Roe scheme.

h [−] Error εV [m · s−1] Order [m · s−1]

3.84615384615 · 10−2 3.00507477115 · 100 −
2.54493299280 · 10−2 2.93949372687 · 100 0.05
1.94110729049 · 10−2 2.85506425890 · 100 0.11
1.26836572358 · 10−2 2.70504142671 · 100 0.13
9.63768687807 · 10−3 2.56103837738 · 100 0.20
6.37965835292 · 10−3 2.29170630287 · 100 0.27
4.81236634590 · 10−3 2.09155890990 · 100 0.32
3.21130312701 · 10−3 1.74683680720 · 100 0.45
2.40105900452 · 10−3 1.49780943705 · 100 0.53
1.60253117779 · 10−3 1.17392104186 · 100 0.60
1.20086012388 · 10−3 9.59134215906 · 10−1 0.70

Tab. 4.7. Mesh convergence analysis on the UUU/TT mesh for the first-order Roe scheme.

h [−] Error εV [m · s−1] Order [m · s−1]

3.84615384615 · 10−2 2.99923244430 · 100 −
2.54493299280 · 10−2 2.94303946941 · 100 0.05
1.94110729049 · 10−2 2.86199802476 · 100 0.10
1.26836572358 · 10−2 2.71231029193 · 100 0.13
9.63500241020 · 10−3 2.57238368168 · 100 0.19
6.37732276494 · 10−3 2.30210274057 · 100 0.27
4.81236634590 · 10−3 2.10559275096 · 100 0.32
3.21130312701 · 10−3 1.76290165153 · 100 0.44
2.40035335802 · 10−3 1.51453333346 · 100 0.52
1.60253117779 · 10−3 1.18858735954 · 100 0.60
1.20086012388 · 10−3 9.72451758692 · 10−1 0.70

68



4.3 Results for the first-order Roe scheme

Tab. 4.8. Mesh convergence analysis on the SUS/QT mesh for the first-order Roe scheme.

h [−] Error εV [m · s−1] Order [m · s−1]

6.25000000000 · 10−2 3.07472074533 · 100 −
4.16666666667 · 10−2 2.99945888476 · 100 0.06
3.12500000000 · 10−2 2.96217827020 · 100 0.04
2.08333333333 · 10−2 2.88282314214 · 100 0.07
1.56250000000 · 10−2 2.80796428336 · 100 0.09
1.04166666667 · 10−2 2.66347090530 · 100 0.13
7.81250000000 · 10−3 2.53124708149 · 100 0.18
5.20833333333 · 10−3 2.29837995423 · 100 0.24
3.90625000000 · 10−3 2.10245185231 · 100 0.31
2.60416666667 · 10−3 1.79154482822 · 100 0.39
1.95312500000 · 10−3 1.55859872440 · 100 0.48

Tab. 4.9. Mesh convergence analysis on the SUS/TF mesh for the first-order Roe scheme.

h [−] Error εV [m · s−1] Order [m · s−1]

4.60287308949 · 10−2 3.02701061462 · 100 −
3.07147558417 · 10−2 2.98004076025 · 100 0.04
2.33507231247 · 10−2 2.92674749552 · 100 0.07
1.54746115148 · 10−2 2.82392615078 · 100 0.09
1.16122169049 · 10−2 2.72663765538 · 100 0.12
7.71654557573 · 10−3 2.53686128212 · 100 0.18
5.79381666209 · 10−3 2.37364330772 · 100 0.23
3.85781338764 · 10−3 2.09145482198 · 100 0.31
2.89537794655 · 10−3 1.86874381310 · 100 0.39
1.92836865553 · 10−3 1.53684626487 · 100 0.48
1.44796515279 · 10−3 1.30407214711 · 100 0.57

Tab. 4.10. Mesh convergence analysis on the SUS/TT mesh for the first-order Roe scheme.

h [−] Error εV [m · s−1] Order [m · s−1]

4.60287308949 · 10−2 3.04709224148 · 100 −
3.07147558417 · 10−2 2.97064437328 · 100 0.06
2.33507231247 · 10−2 2.92834723092 · 100 0.05
1.54746115148 · 10−2 2.82601329826 · 100 0.09
1.16122169049 · 10−2 2.72887498328 · 100 0.12
7.71424918976 · 10−3 2.54137153764 · 100 0.17
5.79206705714 · 10−3 2.37840097827 · 100 0.23
3.85603476049 · 10−3 2.09721593772 · 100 0.31
2.89542649292 · 10−3 1.87354209876 · 100 0.39
1.92804604858 · 10−3 1.54231094966 · 100 0.48
1.44782249089 · 10−3 1.30855828018 · 100 0.57

69



Chapter 4. Hybrid convective fluxes

4.4 Results for the first-order Roe scheme on a short convection distance

The results for the first-order Roe scheme on a short convection distance L = 0.002 [m] are
given from Tab. 4.11 to Tab. 4.19. Several interesting conclusions can be reached.
• The SSS, UUU/QF and SUS/QF meshes give exactly the same results. Indeed, the three

meshes are topologically identical. Only the data structure changes.
• Perturbating the mesh has a slight effect on the error compared with the non perturbed

meshes.
• First-order accuracy is always reached and this validates the unstructured and hybrid

approach for the first-order Roe scheme.

Tab. 4.11. Mesh convergence analysis on the SSS mesh for the first-order Roe scheme on short convection distance.

h [−] Error εV [m · s−1] Order [m · s−1]

6.25000000000 · 10−2 1.05310593465 · 100 −
4.16666666667 · 10−2 8.53279842062 · 10−1 0.52
3.12500000000 · 10−2 7.10341338625 · 10−1 0.64
2.08333333333 · 10−2 5.14470546917 · 10−1 0.80
1.56250000000 · 10−2 4.12185256984 · 10−1 0.77
1.04166666667 · 10−2 2.89780235709 · 10−1 0.87
7.81250000000 · 10−3 2.23334380280 · 10−1 0.91
5.20833333333 · 10−3 1.54324132521 · 10−1 0.91
3.90625000000 · 10−3 1.17145291459 · 10−1 0.96
2.60416666667 · 10−3 7.93784788443 · 10−2 0.96
1.95312500000 · 10−3 6.00239576834 · 10−2 0.97

Tab. 4.12. Mesh convergence analysis on the UUU/QF mesh for the first-order Roe scheme on a short convection
distance.

h [−] Error εV [m · s−1] Order [m · s−1]

6.25000000000 · 10−2 1.05310593465 · 100 −
4.16666666667 · 10−2 8.53279842062 · 10−1 0.52
3.12500000000 · 10−2 7.10341338625 · 10−1 0.64
2.08333333333 · 10−2 5.14470546917 · 10−1 0.80
1.56250000000 · 10−2 4.12185256984 · 10−1 0.77
1.04166666667 · 10−2 2.89780235709 · 10−1 0.87
7.81250000000 · 10−3 2.23334380280 · 10−1 0.91
5.20833333333 · 10−3 1.54324132521 · 10−1 0.91
3.90625000000 · 10−3 1.17145291459 · 10−1 0.96
2.60416666667 · 10−3 7.93784788443 · 10−2 0.96
1.95312500000 · 10−3 6.00239576834 · 10−2 0.97
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4.4 Results for the first-order Roe scheme on a short convection distance

Tab. 4.13. Mesh convergence analysis on the SUS/QF mesh for the first-order Roe scheme on a short convection
distance.

h [−] Error εV [m · s−1] Order [m · s−1]

6.25000000000 · 10−2 1.05310593465 · 100 −
4.16666666667 · 10−2 8.53279842062 · 10−1 0.52
3.12500000000 · 10−2 7.10341338625 · 10−1 0.64
2.08333333333 · 10−2 5.14470546917 · 10−1 0.80
1.56250000000 · 10−2 4.12185256984 · 10−1 0.77
1.04166666667 · 10−2 2.89780235709 · 10−1 0.87
7.81250000000 · 10−3 2.23334380280 · 10−1 0.91
5.20833333333 · 10−3 1.54324132521 · 10−1 0.91
3.90625000000 · 10−3 1.17145291459 · 10−1 0.96
2.60416666667 · 10−3 7.93784788443 · 10−2 0.96
1.95312500000 · 10−3 6.00239576834 · 10−2 0.97

Tab. 4.14. Mesh convergence analysis on the UUU/QT mesh for the first-order Roe scheme on a short convection
distance.

h [−] Error εV [m · s−1] Order [m · s−1]

6.25000000000 · 10−2 1.06308011937 · 100 −
4.16666666667 · 10−2 8.31001880442 · 10−1 0.61
3.12500000000 · 10−2 7.23279786131 · 10−1 0.48
2.08333333333 · 10−2 5.22478576079 · 10−1 0.80
1.56250000000 · 10−2 4.18355766337 · 10−1 0.77
1.04166666667 · 10−2 2.94709799188 · 10−1 0.86
7.81250000000 · 10−3 2.26946210660 · 10−1 0.91
5.20833333333 · 10−3 1.56476611732 · 10−1 0.92
3.90625000000 · 10−3 1.19044988917 · 10−1 0.95
2.60416666667 · 10−3 8.06175310904 · 10−2 0.96
1.95312500000 · 10−3 6.09583850122 · 10−2 0.97
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Tab. 4.15. Mesh convergence analysis on the UUU/TF mesh for the first-order Roe scheme on a short convection
distance.

h [−] Error εV [m · s−1] Order [m · s−1]

3.84615384615 · 10−2 8.13994782528 · 10−1 −
2.54493299280 · 10−2 5.84394434103 · 10−1 0.80
1.94110729049 · 10−2 4.50758787532 · 10−1 0.96
1.26836572358 · 10−2 3.00375031625 · 10−1 0.95
9.63768687807 · 10−3 2.38002982917 · 10−1 0.85
6.37965835292 · 10−3 1.61671670227 · 10−1 0.94
4.81236634590 · 10−3 1.27346023331 · 10−1 0.85
3.21130312701 · 10−3 8.54845486506 · 10−2 0.99
2.40105900452 · 10−3 6.45639459852 · 10−2 0.97
1.60253117779 · 10−3 4.44523371326 · 10−2 0.92
1.20086012388 · 10−3 3.32416417096 · 10−2 1.01

Tab. 4.16. Mesh convergence analysis on the UUU/TT mesh for the first-order Roe scheme on a short convection
distance.

h [−] Error εV [m · s−1] Order [m · s−1]

3.84615384615 · 10−2 8.43237009344 · 10−1 −
2.54493299280 · 10−2 6.02945944119 · 10−1 0.81
1.94110729049 · 10−2 4.67498059719 · 10−1 0.94
1.26836572358 · 10−2 3.08400163404 · 10−1 0.98
9.63500241020 · 10−3 2.45007704824 · 10−1 0.84
6.37732276494 · 10−3 1.66353806693 · 10−1 0.94
4.81236634590 · 10−3 1.32746606032 · 10−1 0.80
3.21130312701 · 10−3 8.86458074410 · 10−2 1.00
2.40035335802 · 10−3 6.73655117608 · 10−2 0.94
1.60253117779 · 10−3 4.60035709467 · 10−2 0.94
1.20086012388 · 10−3 3.46921276001 · 10−2 0.98
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4.4 Results for the first-order Roe scheme on a short convection distance

Tab. 4.17. Mesh convergence analysis on the SUS/QT mesh for the first-order Roe scheme on a short convection
distance.

h [−] Error εV [m · s−1] Order [m · s−1]

6.25000000000 · 10−2 1.06898067226 · 100 −
4.16666666667 · 10−2 8.44073225721 · 10−1 0.58
3.12500000000 · 10−2 7.09435428604 · 10−1 0.60
2.08333333333 · 10−2 5.21178188660 · 10−1 0.76
1.56250000000 · 10−2 4.14626360212 · 10−1 0.80
1.04166666667 · 10−2 2.94374848900 · 10−1 0.84
7.81250000000 · 10−3 2.26422038514 · 10−1 0.91
5.20833333333 · 10−3 1.56782012667 · 10−1 0.91
3.90625000000 · 10−3 1.18975704949 · 10−1 0.96
2.60416666667 · 10−3 8.06357228203 · 10−2 0.96
1.95312500000 · 10−3 6.09745141195 · 10−2 0.97

Tab. 4.18. Mesh convergence analysis on the SUS/TF mesh for the first-order Roe scheme on a short convection
distance.

h [−] Error εV [m · s−1] Order [m · s−1]

4.60287308949 · 10−2 7.81269080346 · 10−1 −
3.07147558417 · 10−2 5.47497649936 · 10−1 0.88
2.33507231247 · 10−2 4.75248993588 · 10−1 0.52
1.54746115148 · 10−2 2.95709628753 · 10−1 1.15
1.16122169049 · 10−2 2.42432135025 · 10−1 0.69
7.71654557573 · 10−3 1.60042036562 · 10−1 1.02
5.79381666209 · 10−3 1.25258610577 · 10−1 0.86
3.85781338764 · 10−3 8.64745745880 · 10−2 0.91
2.89537794655 · 10−3 6.51102758786 · 10−2 0.99
1.92836865553 · 10−3 4.38167144180 · 10−2 0.97
1.44796515279 · 10−3 3.35880942069 · 10−2 0.93
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Tab. 4.19. Mesh convergence analysis on the SUS/TT mesh for the first-order Roe scheme on a short convection
distance.

h [−] Error εV [m · s−1] Order [m · s−1]

4.60287308949 · 10−2 8.04462049817 · 10−1 −
3.07147558417 · 10−2 5.72854537965 · 10−1 0.84
2.33507231247 · 10−2 4.92305359193 · 10−1 0.55
1.54746115148 · 10−2 3.10769469267 · 10−1 1.12
1.16122169049 · 10−2 2.51422280268 · 10−1 0.74
7.71424918976 · 10−3 1.67862570789 · 10−1 0.99
5.79206705714 · 10−3 1.29683384334 · 10−1 0.90
3.85603476049 · 10−3 8.93627295624 · 10−2 0.92
2.89542649292 · 10−3 6.77703202366 · 10−2 0.97
1.92804604858 · 10−3 4.55536789093 · 10−2 0.98
1.44782249089 · 10−3 3.46136867841 · 10−2 0.96

Fig. 4.9 shows the mesh convergence for the first-order Roe scheme. The UUU/TF and
SUS/TF meshes give almost the same results. Because of the short convection distance, the
vortex is mostly convected on the unstructured domain leading to the same errors. However,
the number of degrees of freedom in both cases is not the same. The hybrid mesh is made of
less degrees of freedom because the first and the third domains are structured. For the hybrid
mesh, the sum of number of quadrangles in the first and the third domain and the number of
triangles in the second domain is less than the number of triangles of the three domains of
the unstructured mesh. This explains why it seems that the hybrid mesh gives more accurate
results than the unstructured one.

0.03

0.05

0.1

0.2

0.4

1.0

0.002 0.004 0.01 0.02 0.05

ε V
[m

·s
−

1 ]

h [−]

SSS
UUU/TF

SUS/TF
1st-order slope

Fig. 4.9. Mesh convergence for the first-order Roe scheme.

However, it does not explain why the unstructured mesh seems to be more accurate than
the structured one. Considering a mesh of equilateral triangles with sides aT and a mesh
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4.4 Results for the first-order Roe scheme on a short convection distance

of squares with sides aS, a first-order upwind scheme discretizing a simple linear advection

equation leads to the same truncation error with the condition that the relation

√
3

3
aT = aS

is satisfied. Because of the reduced stencil of the first-order upwind scheme, the truncation
error is indeed driven by the mean distance between two degrees of freedom. In the case of

equilateral triangles, this distance is equal to

√
3

3
aT whereas in the case of squares, it is equal to

aS. The same argumentation can be found in the work of Yu et al. [61]. In this paper, it is stated
that the solution errors come either from the space discretization, from the time discretization
or from the round-off error. In this case, round-off error and time discretization (the Courant-
Friedrichs-Lewy number is equal to 0.1) are negligible. Thus, if the truncation errors are

identical because the relation

√
3

3
aT = aS is satisfied, this leads to the same solution errors.

According to [61], assuming the number of triangles NT and the number of squares NS, the total
area of triangular cells is equal to that of square cells for the same domain: NT × ST = NS × SS,

where ST =

√
3

4
a2

T is the triangle area and SS = a2
S is the square area.

NT × ST = NS × SS, (4.25)

NT

√
3

4

(
3√
3

aS

)2

= NSa2
S, (4.26)

3
√

3
4

NT = NS. (4.27)
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Fig. 4.10. Mesh convergence for the first-order Roe scheme.

Consequently, if the relation
3
√

3
4

NT = NS is satisfied, both triangles and squares meshes

discretizing the same domain lead to the same solution error. Furthermore, since
3
√

3
4

> 1,
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Chapter 4. Hybrid convective fluxes

this means that to obtain the same solution error, one needs less triangles than squares for a
first-order upwind scheme, which is absolutely not intuitive, hence the demonstration. Of
course, this can be numerically validated using the results already shown in Fig. 4.9. The error

εV is now plotted versus ζ = NS for the SSS mesh and ζ =
3
√

3
4

NT for the UUU/TF mesh in
Fig. 4.10. Both curves match perfectly, which validates the approach.

4.5 Results for the first-order Roe scheme with NGI on a short convection distance

The results for the first-order Roe scheme on a short convection distance L = 0.002 [m]
with nonconforming grid interfaces are given from Tab. 4.20 to Tab. 4.23. Several interesting
conclusions can be reached.
• Perturbating the mesh has a slight effect on the error compared with the non perturbed

meshes.
• First-order accuracy is always reached and this validates the unstructured and hybrid

approach for the first-order Roe scheme even with nonconforming grid interfaces.

Tab. 4.20. Mesh convergence analysis on the SUS/QF mesh for the first-order Roe scheme on a short convection
distance with a nonconforming grid interface.

h [−] Error εV [m · s−1] Order [m · s−1]

5.52157630374 · 10−2 9.30727733702 · 10−1 −
3.83482494424 · 10−2 7.69681115267 · 10−1 0.52
2.93610109757 · 10−2 6.51801290881 · 10−1 0.62
1.99840191744 · 10−2 4.82288417351 · 10−1 0.78
1.51445633204 · 10−2 3.91541473650 · 10−1 0.75
1.02019573313 · 10−2 2.79395255903 · 10−1 0.85
7.69139752160 · 10−3 2.17108234582 · 10−1 0.89
5.15436527642 · 10−3 1.51348153818 · 10−1 0.90
3.87585253908 · 10−3 1.15418341602 · 10−1 0.95
2.59063880075 · 10−3 7.85832695108 · 10−2 0.95
1.94551056410 · 10−3 5.95685901786 · 10−2 0.97

Tab. 4.21. Mesh convergence analysis on the SUS/QT mesh for the first-order Roe scheme on a short convection
distance with a nonconforming grid interface.

h [−] Error εV [m · s−1] Order [m · s−1]

5.52157630374 · 10−2 9.26257826794 · 10−1 −
3.83482494424 · 10−2 7.64550405629 · 10−1 0.53
2.93610109757 · 10−2 6.62656256470 · 10−1 0.54
1.99840191744 · 10−2 4.94854705962 · 10−1 0.76
1.51445633204 · 10−2 3.98193012790 · 10−1 0.78
1.02019573313 · 10−2 2.83467774294 · 10−1 0.86
7.69139752160 · 10−3 2.20600261151 · 10−1 0.89
5.15436527642 · 10−3 1.53568992515 · 10−1 0.90
3.87585253908 · 10−3 1.17142706290 · 10−1 0.95
2.59063880075 · 10−3 7.98432550816 · 10−2 0.95
1.94551056410 · 10−3 6.04618745445 · 10−2 0.97
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4.6 Results for the second-order Roe scheme

Tab. 4.22. Mesh convergence analysis on the SUS/TF mesh for the first-order Roe scheme on a short convection
distance with a nonconforming grid interface.

h [−] Error εV [m · s−1] Order [m · s−1]

3.92232270276 · 10−2 7.29946071905 · 10−1 −
2.75032662068 · 10−2 4.99822815450 · 10−1 1.07
2.10724875981 · 10−2 4.07299503923 · 10−1 0.77
1.45064713296 · 10−2 2.94648371101 · 10−1 0.87
1.10905919595 · 10−2 2.31551520744 · 10−1 0.90
7.47435092752 · 10−3 1.56541517267 · 10−1 0.99
5.66883950836 · 10−3 1.23518063393 · 10−1 0.86
3.79972779725 · 10−3 8.41340831758 · 10−2 0.96
2.86144409572 · 10−3 6.44520327821 · 10−2 0.94
1.91558227513 · 10−3 4.35928313548 · 10−2 0.97
1.43902023413 · 10−3 3.31537074428 · 10−2 0.96

Tab. 4.23. Mesh convergence analysis on the SUS/TT mesh for the first-order Roe scheme on a short convection
distance with a nonconforming grid interface.

h [−] Error εV [m · s−1] Order [m · s−1]

3.92232270276 · 10−2 7.35991964124 · 10−1 −
2.75032662068 · 10−2 4.96761406813 · 10−1 1.11
2.10724875981 · 10−2 4.17705505185 · 10−1 0.65
1.45064713296 · 10−2 3.04429332751 · 10−1 0.85
1.10905919595 · 10−2 2.40333135618 · 10−1 0.88
7.47435092752 · 10−3 1.63629814828 · 10−1 0.97
5.66883950836 · 10−3 1.28786814091 · 10−1 0.87
3.79972779725 · 10−3 8.73884618527 · 10−2 0.97
2.86144409572 · 10−3 6.69902086403 · 10−2 0.94
1.91558227513 · 10−3 4.54321098989 · 10−2 0.97
1.43902023413 · 10−3 3.45193933872 · 10−2 0.96

4.6 Results for the second-order Roe scheme

The results for the second-order Roe scheme are given from Tab. 4.24 to Tab. 4.32. Several
interesting conclusions can be reached.
• The SSS, UUU/QF and SUS/QF meshes give exactly the same results. Indeed, the three

meshes are topologically identical. Only the data structure changes. The extrapolation is
done with the Green-Gauss gradient for the three meshes. For unstructured meshes with
a Cartesian topology, the Green-Gauss algorithm is equivalent to a directional approach
such as for the structured mesh. This partially validates the unstructured and hybrid
approach for the second-order Roe scheme.
• The second-order of accuracy is always reached except for triangles and perturbed

meshes.
• The perturbed meshes UUU/QT and SUS/QT only give an order between 1.5 and 2. This

is even worse for triangular meshes which give a solution with a first-order accuracy.
This is basically due to the false second-order extrapolation on these kinds of meshes.
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Chapter 4. Hybrid convective fluxes

• The SSS mesh gives a more accurate solution than the SUS/TF mesh than the UUU/TF
mesh due to the false second-order extrapolation on triangular elements. The more the
vortex is convected on quadrangle elements, the more accurate the solution is as shown
in Fig. 4.11.

Tab. 4.24. Mesh convergence analysis on the SSS mesh for the second-order Roe scheme.

h [−] Error εV [m · s−1] Order [m · s−1]

6.25000000000 · 10−2 2.81147243868 · 100 −
4.16666666667 · 10−2 2.40888269496 · 100 0.38
3.12500000000 · 10−2 2.06483497740 · 100 0.54
2.08333333333 · 10−2 1.47975379073 · 100 0.82
1.56250000000 · 10−2 1.05524464762 · 100 1.18
1.04166666667 · 10−2 5.61839327627 · 10−1 1.55
7.81250000000 · 10−3 3.29932391887 · 10−1 1.85
5.20833333333 · 10−3 1.47463873979 · 10−1 1.99
3.90625000000 · 10−3 8.23748502605 · 10−2 2.02
2.60416666667 · 10−3 3.62812076092 · 10−2 2.02
1.95312500000 · 10−3 2.03238752709 · 10−2 2.01

Tab. 4.25. Mesh convergence analysis on the UUU/QF mesh for the second-order Roe scheme.

h [−] Error εV [m · s−1] Order [m · s−1]

6.25000000000 · 10−2 2.81146808423 · 100 −
4.16666666667 · 10−2 2.40888267662 · 100 0.38
3.12500000000 · 10−2 2.06483494947 · 100 0.54
2.08333333333 · 10−2 1.47975375162 · 100 0.82
1.56250000000 · 10−2 1.05524460570 · 100 1.18
1.04166666667 · 10−2 5.61839290189 · 10−1 1.55
7.81250000000 · 10−3 3.29932362237 · 10−1 1.85
5.20833333333 · 10−3 1.47463856382 · 10−1 1.99
3.90625000000 · 10−3 8.23748392103 · 10−2 2.02
2.60416666667 · 10−3 3.62812022983 · 10−2 2.02
1.95312500000 · 10−3 2.03238722212 · 10−2 2.01
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4.6 Results for the second-order Roe scheme

Tab. 4.26. Mesh convergence analysis on the SUS/QF mesh for the second-order Roe scheme.

h [−] Error εV [m · s−1] Order [m · s−1]

6.25000000000 · 10−2 2.81146798894 · 100 −
4.16666666667 · 10−2 2.40888269496 · 100 0.38
3.12500000000 · 10−2 2.06483497740 · 100 0.54
2.08333333333 · 10−2 1.47975379073 · 100 0.82
1.56250000000 · 10−2 1.05524464763 · 100 1.18
1.04166666667 · 10−2 5.61839327648 · 10−1 1.55
7.81250000000 · 10−3 3.29932391917 · 10−1 1.85
5.20833333333 · 10−3 1.47463874019 · 10−1 1.99
3.90625000000 · 10−3 8.23748503035 · 10−2 2.02
2.60416666667 · 10−3 3.62812076547 · 10−2 2.02
1.95312500000 · 10−3 2.03238753171 · 10−2 2.01

Tab. 4.27. Mesh convergence analysis on the UUU/QT mesh for the second-order Roe scheme.

h [−] Error εV [m · s−1] Order [m · s−1]

6.25000000000 · 10−2 2.88647090597 · 100 −
4.16666666667 · 10−2 2.44362757826 · 100 0.41
3.12500000000 · 10−2 2.11164857274 · 100 0.51
2.08333333333 · 10−2 1.52772015522 · 100 0.80
1.56250000000 · 10−2 1.11023874943 · 100 1.11
1.04166666667 · 10−2 6.08577021354 · 10−1 1.48
7.81250000000 · 10−3 3.71996670731 · 10−1 1.71
5.20833333333 · 10−3 1.74003520576 · 10−1 1.87
3.90625000000 · 10−3 1.02042297180 · 10−1 1.86
2.60416666667 · 10−3 4.99514171466 · 10−2 1.76
1.95312500000 · 10−3 3.15623421777 · 10−2 1.60

Tab. 4.28. Mesh convergence analysis on the UUU/TF mesh for the second-order Roe scheme.

h [−] Error εV [m · s−1] Order [m · s−1]

3.84615384615 · 10−2 2.44112519913 · 100 −
2.54493299280 · 10−2 1.79410699784 · 100 0.75
1.94110729049 · 10−2 1.35421079748 · 100 1.04
1.26836572358 · 10−2 7.76326882690 · 10−1 1.31
9.63768687807 · 10−3 4.79899421057 · 10−1 1.75
6.37965835292 · 10−3 2.82269286029 · 10−1 1.29
4.81236634590 · 10−3 1.96098661362 · 10−1 1.29
3.21130312701 · 10−3 1.12699162782 · 10−1 1.37
2.40105900452 · 10−3 8.61692652399 · 10−2 0.92
1.60253117779 · 10−3 5.60737726277 · 10−2 1.06
1.20086012388 · 10−3 4.17267636645 · 10−2 1.02
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Chapter 4. Hybrid convective fluxes

Tab. 4.29. Mesh convergence analysis on the UUU/TT mesh for the second-order Roe scheme.

h [−] Error εV [m · s−1] Order [m · s−1]

3.84615384615 · 10−2 2.60949461942 · 100 −
2.54493299280 · 10−2 1.85371528407 · 100 0.83
1.94110729049 · 10−2 1.49117966005 · 100 0.80
1.26836572358 · 10−2 8.99768938655 · 10−1 1.19
9.63500241020 · 10−3 6.25913618564 · 10−1 1.32
6.37732276494 · 10−3 3.69604325935 · 10−1 1.28
4.81236634590 · 10−3 2.78206205318 · 10−1 1.01
3.21130312701 · 10−3 1.76270538302 · 10−1 1.13
2.40035335802 · 10−3 1.37442173938 · 10−1 0.85
1.60253117779 · 10−3 8.98958691494 · 10−2 1.05
1.20086012388 · 10−3 6.83276982272 · 10−2 0.95

Tab. 4.30. Mesh convergence analysis on the SUS/QT mesh for the second-order Roe scheme.

h [−] Error εV [m · s−1] Order [m · s−1]

6.25000000000 · 10−2 2.81916562394 · 100 −
4.16666666667 · 10−2 2.43104131195 · 100 0.37
3.12500000000 · 10−2 2.09168258677 · 100 0.52
2.08333333333 · 10−2 1.49695688810 · 100 0.83
1.56250000000 · 10−2 1.08106825502 · 100 1.13
1.04166666667 · 10−2 5.86363910906 · 10−1 1.51
7.81250000000 · 10−3 3.50237123459 · 10−1 1.79
5.20833333333 · 10−3 1.58831282792 · 10−1 1.95
3.90625000000 · 10−3 9.13665249969 · 10−2 1.92
2.60416666667 · 10−3 4.26585386637 · 10−2 1.88
1.95312500000 · 10−3 2.52560327165 · 10−2 1.82

Tab. 4.31. Mesh convergence analysis on the SUS/TF mesh for the second-order Roe scheme.

h [−] Error εV [m · s−1] Order [m · s−1]

4.60287308949 · 10−2 2.61823113285 · 100 −
3.07147558417 · 10−2 2.16674316292 · 100 0.47
2.33507231247 · 10−2 1.74916375702 · 100 0.78
1.54746115148 · 10−2 1.13030380756 · 100 1.06
1.16122169049 · 10−2 7.67315788067 · 10−1 1.35
7.71654557573 · 10−3 3.81991363863 · 10−1 1.71
5.79381666209 · 10−3 2.25734341898 · 10−1 1.84
3.85781338764 · 10−3 1.13606585427 · 10−1 1.69
2.89537794655 · 10−3 7.26525343186 · 10−2 1.56
1.92836865553 · 10−3 4.11236953310 · 10−2 1.40
1.44796515279 · 10−3 2.97592473536 · 10−2 1.13
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4.7 Results for the second-order Roe scheme with NGI

Tab. 4.32. Mesh convergence analysis on the SUS/TT mesh for the second-order Roe scheme.

h [−] Error εV [m · s−1] Order [m · s−1]

4.60287308949 · 10−2 2.67179464940 · 100 −
3.07147558417 · 10−2 2.19035418978 · 100 0.49
2.33507231247 · 10−2 1.80204902284 · 100 0.71
1.54746115148 · 10−2 1.19355674754 · 100 1.00
1.16122169049 · 10−2 8.29808675508 · 10−1 1.27
7.71424918976 · 10−3 4.34378021666 · 10−1 1.58
5.79206705714 · 10−3 2.71267493161 · 10−1 1.64
3.85603476049 · 10−3 1.44858849075 · 10−1 1.54
2.89542649292 · 10−3 9.76450302275 · 10−2 1.38
1.92804604858 · 10−3 5.98568059585 · 10−2 1.20
1.44782249089 · 10−3 4.26284494967 · 10−2 1.18
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Fig. 4.11. Mesh convergence for the second-order Roe scheme.

4.7 Results for the second-order Roe scheme with NGI

The results for the second-order Roe scheme with nonconforming grid interfaces are given
from Tab. 4.33 to Tab. 4.36. Several interesting conclusions can be reached.
• The second-order of accuracy is only reached for the SUS/QF mesh.
• The perturbed mesh SUS/QT only gives an order between 1.5 and 2. This is even worse

for triangular meshes which give a solution with a first-order accuracy. Again, this is
basically due to the false second-order extrapolation on these kinds of meshes.
• The nonconforming grid interface does not change the results obtained in Sec. 4.6, which

validates the approach for the second-order Roe scheme.
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Tab. 4.33. Mesh convergence analysis on the SUS/QF mesh for the second-order Roe scheme.

h [−] Error εV [m · s−1] Order [m · s−1]

5.52157630374 · 10−2 2.69859453278 · 100 −
3.83482494424 · 10−2 2.34862127438 · 100 0.38
2.93610109757 · 10−2 2.00398056363 · 100 0.59
1.99840191744 · 10−2 1.42871107619 · 100 0.88
1.51445633204 · 10−2 1.01747718790 · 100 1.22
1.02019573313 · 10−2 5.43641412663 · 10−1 1.59
7.69139752160 · 10−3 3.21004896133 · 10−1 1.87
5.15436527642 · 10−3 1.44650832286 · 10−1 1.99
3.87585253908 · 10−3 8.11839544528 · 10−2 2.03
2.59063880075 · 10−3 3.59301304915 · 10−2 2.02
1.94551056410 · 10−3 2.01761869114 · 10−2 2.02

Tab. 4.34. Mesh convergence analysis on the SUS/QT mesh for the second-order Roe scheme.

h [−] Error εV [m · s−1] Order [m · s−1]

5.52157630374 · 10−2 2.69911316214 · 100 −
3.83482494424 · 10−2 2.37191980892 · 100 0.35
2.93610109757 · 10−2 2.02940792717 · 100 0.58
1.99840191744 · 10−2 1.45863919094 · 100 0.86
1.51445633204 · 10−2 1.04933806324 · 100 1.19
1.02019573313 · 10−2 5.61030066516 · 10−1 1.58
7.69139752160 · 10−3 3.39272090329 · 10−1 1.78
5.15436527642 · 10−3 1.55965344749 · 10−1 1.94
3.87585253908 · 10−3 9.06490198650 · 10−2 1.90
2.59063880075 · 10−3 4.22903928713 · 10−2 1.89
1.94551056410 · 10−3 2.52570366494 · 10−2 1.80

Tab. 4.35. Mesh convergence analysis on the SUS/TF mesh for the second-order Roe scheme.

h [−] Error εV [m · s−1] Order [m · s−1]

3.92232270276 · 10−2 2.58177861153 · 100 −
2.75032662068 · 10−2 2.17006249623 · 100 0.49
2.10724875981 · 10−2 1.74798733054 · 100 0.81
1.45064713296 · 10−2 1.13430841708 · 100 1.16
1.10905919595 · 10−2 7.60544582398 · 10−1 1.49
7.47435092752 · 10−3 3.75927964556 · 10−1 1.79
5.66883950836 · 10−3 2.30320926856 · 10−1 1.77
3.79972779725 · 10−3 1.14157683699 · 10−1 1.75
2.86144409572 · 10−3 7.31421349101 · 10−2 1.57
1.91558227513 · 10−3 4.11078114818 · 10−2 1.44
1.43902023413 · 10−3 2.95310259562 · 10−2 1.16
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Tab. 4.36. Mesh convergence analysis on the SUS/TT mesh for the second-order Roe scheme.

h [−] Error εV [m · s−1] Order [m · s−1]

3.92232270276 · 10−2 2.62158635738 · 100 −
2.75032662068 · 10−2 2.20047835635 · 100 0.49
2.10724875981 · 10−2 1.78998293584 · 100 0.78
1.45064713296 · 10−2 1.18528766445 · 100 1.10
1.10905919595 · 10−2 8.13807966070 · 10−1 1.40
7.47435092752 · 10−3 4.25141543137 · 10−1 1.65
5.66883950836 · 10−3 2.70849483481 · 10−1 1.63
3.79972779725 · 10−3 1.42927670571 · 10−1 1.60
2.86144409572 · 10−3 9.53171279842 · 10−2 1.43
1.91558227513 · 10−3 5.80466382240 · 10−2 1.24
1.43902023413 · 10−3 4.26375827412 · 10−2 1.08
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C H A P T E R

5
Hybrid diffusive fluxes

“A numerical simulation is like sex. If it is good, then it is
great. If it is bad, then it is still better than nothing.”

— Denys Dutykh (1982 - )

Abstract. In this chapter, the hybrid approach is validated for the diffusive fluxes using the Taylor-
Green Vortex (TGV) test case. It is designed to test the accuracy of the direct numerical simulation
of a flow transitioning to turbulence. It is tested on the same topological meshes but with different
data structures, namely structured, unstructured and hybrid, to validate the hybrid approach.

5.1 The Taylor-Green Vortex: the TGV test case

5.1.1 Objectives

As stated during the High-Order Workshop [2], the Direct Numerical Simulation (DNS) of
the Taylor-Green Vortex at Re = 1600 is designed to test the accuracy of the DNS of the
Navier-Stokes equations. It uses a three-dimensional periodic and transitional flow initialized
as follow:

u0 = V∞ sin
( x

L

)
cos

( y
L

)
cos

( z
L

)
, (5.1)

v0 = −V∞ cos
( x

L

)
sin
( y

L

)
cos

( z
L

)
, (5.2)

w0 = 0, (5.3)

p0 = p∞ +
ρ∞V2

∞
16

[
cos

(
2x
L

)
+ cos

(
2y
L

)] [
cos

(
2z
L

)
+ 2
]

. (5.4)

The quantity u (resp. v, w and p) represents the velocity along the x-axis (resp. the velocity
along the y-axis, the velocity along the z-axis and the pressure). All these quantities depend on
space (x, y, z) and time t. The notation u0 (resp. v0, w0 and p0) stands for u (x, y, z, t = 0) (resp.
v (x, y, z, t = 0), w (x, y, z, t = 0) and p (x, y, z, t = 0)). This flow transitions to turbulence, with
the creation of small scales, followed by a decay phase similar to decaying homogeneous
turbulence (yet here non isotropic) according to [2].

5.1.2 Description

This test case is computed by discretizing the three-dimensional compressible Navier-Stokes
equations although the flow is governed by the three-dimensional incompressible Navier-
Stokes equations. The Mach number M∞ = V∞/

√
γRgasT∞ = 0.1 [−] is taken small enough

to obtain solutions as close as possible to incompressible solutions. The fluid is assumed to
be a perfect gas. The ratio of specific heats γ is equal to 1.4, the Prandtl number Pr is equal
to 0.71 [−], and the gas constant Rgas is equal to 287.058 [J/kg/K]. The initial temperature
field is taken uniform T = T∞ = 300.0 [K]. The Reynolds number of the flow is defined as
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Re = ρ∞V∞L/µ∞ = 1600 with L = 1.0 [m]. The dynamic viscosity is computed using the
Sutherland’s law [62]:

µ∞ = µre f

[
T∞

Tre f

]3/2 Tre f + S
T∞ + S

, (5.5)

with the reference temperature Tre f = 288.15 [K], the reference dynamic viscosity at the refer-
ence temperature µre f = 1.78938 · 10−5 [kg/m/s] and the Sutherland temperature S = 110.4 [K].
From the Reynolds number expression, one obtains the density ρ∞ = 8.506 · 10−4 [kg/m3] and
finally, thanks to the perfect gas law, one obtains the pressure p∞ = 73.254 [Pa]. The physical
duration of the computation is based on the characteristic convective time tc = L/V0 and is set
to t f inal = 20 tc.

5.1.3 Meshes

The computational domain is cubic with (x, y, z) ∈ [−πL, πL]3. Translational boundary con-
ditions are imposed in the three directions. The computational domain is divided into three
domains:

- the first domain is defined by (x, y, z) ∈ [−πL ,−πL/2]× [−πL, πL]× [−πL, πL],
- the second domain is defined by (x, y, z) ∈ [−πL/2, πL/2]× [−πL, πL]× [−πL, πL],
- the third domain is defined by (x, y, z) ∈ [ πL/2, πL ]× [−πL, πL]× [−πL, πL].

−π

−π/2

0

π/2

π

−π −π/2 0 π/2 π

y
[m

]

x [m]

(a) Mesh topology. The computational domain is divided
into three domains.
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(b) SSS, UUU or SUS mesh. Only the data structure
is changed.

Fig. 5.1. 32× 32× 32 example mesh for the TGV test case. The grid interface for hybrid meshes is conforming
but is numerically treated as a nonconforming grid interface.

Each domain can be either Structured (S) or Unstructured (U). An Unstructured (U) domain is
only composed of hexahedra. Three meshes have been tested with a total size of 256× 256× 256:
• the SSS mesh composed of Structured meshes for the three domains,
• the UUU mesh composed of Unstructured meshes for the three domains,
• the SUS mesh composed of Structured meshes for the first and the third domains and an

Unstructured mesh for the second domain.
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5.2 Results

For the hybrid mesh, the grid interface is topologically conforming but is numerically treated
as a nonconforming grid interface. Since all the unstructured elements are hexahedra, the
three meshes SSS, UUU and SUS are topologically identical as shown in Fig. 5.1. Only the data
structure changes.

5.1.4 Numerics

The computations have been carried out on 256 processors. The explicit time integration
scheme is the second-order six stage Runge-Kutta scheme RKo6s [44] where the Courant-
Friedrichs-Lewy (CFL) number is equal to 0.7. Space is discretized by the second order Roe
scheme [57, 58] without any limiter introduced in Sec. 2.4. Space discretization around the
nonconforming grid interface is performed with the formalism introduced in Chap. 2.

5.1.5 Error computation

The main interest of this test case is to compute the kinetic energy dissipation rate ε in order to
see if the numerical scheme is able to reproduce the temporal evolution of the kinetic energy
Ek of a transitional flow. Roughly speaking, the kinetic energy is defined by

Ek (t) =
∫

Ω

1
2

ρ
[
u2 + v2 + w2] dV , (5.6)

where Ω is the computation domain and V the cell volume, and the kinetic energy dissipation
rate ε by

ε (t) = −dEk

dt
(t) . (5.7)

The kinetic energy dissipation rate is computed by derivating the kinetic energy with a first-
order upwind scheme. Then, the results are compared to a reference incompressible flow
solution given by the the High-Order Workshop [2]. This solution was obtained using a
dealiased pseudo-spectral code (developed at Université catholique de Louvain, UCL) for
which, spatially, neither numerical dissipation nor numerical dispersion errors occur. The
time-integration is performed using a low-storage 3-steps Runge-Kutta scheme [63], with a
dimensionless timestep of 10−3. These results have been grid-converged on a 512× 512× 512
grid (a grid convergence study for a spectral discretization was also done by van Rees et al. in
[64]). This means that all Fourier modes up to the 256th harmonic with respect to the domain
length have been captured exactly (apart from the time integration error of the Runge-Kutta
scheme).

5.2 Results

The time is rendered dimensionless by tc = L/V∞. The kinetic energy is rendered dimensionless
by the initial kinetic energy E0

k = Ek (t = 0) computed by (5.8).

E0
k =

+πL∫

−πL

+πL∫

−πL

+πL∫

−πL

1
2

ρ0
[
u2

0 + v2
0 + w2

0
]

dx dy dz = π3L3ρ∞V2
∞. (5.8)

The kinetic energy dissipation rate is rendered dimensionless by εc = E0
k /tc = π3L2ρ∞V3

∞. In
the High-Order Workshop [2], the kinetic energy dissipation rate is wrongly non-dimensionalized
by 8π3L2ρ∞V3

∞ = 8εc. Fig. 5.2a shows the comparison between the solution computed with
the spectral code and the one computed with the SSS mesh. A good agreement is observed
except that the kinetic energy dissipation rate is overestimated between t/tc ∈ [5, 10] as shown
in Fig. 5.3 leading to a lower kinetic energy. This is not surprising since the second-order
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Chapter 5. Hybrid diffusive fluxes

Roe scheme dissipates more than the spectral code. Fig. 5.2b shows the absolute value of the
difference of the dimensionless kinetic energy between the one computed with the SUS or
UUU mesh and the one computed with the SSS mesh. A perfect agreement is achieved which
validates the hybrid and unstructured approaches. This is not surprising as well since the
three meshes SSS, UUU and SUS are topologically identical as shown in Fig. 5.1. Only the data
structure changes.
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Fig. 5.2. The kinetic energy for three meshes. All give the same solution. Indeed, the three meshes SSS, UUU and
SUS are topologically identical and only the data structure structure changes.
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Fig. 5.3. The kinetic energy dissipation rate.

5.3 Conclusion

In both previous chapters, the hybrid approach was validated for both convective and diffusive
fluxes. First of all, some general results were established to properly estimate the effective order
of accuracy of a numerical scheme. For the convective fluxes, the validation has covered a large
variety of meshes, including structured, unstructured and hybrid meshes, with the convection
of an isentropic compressible vortex. Since it is an analytical solution of the Euler equations,
it has been possible to compute the error to assess the hybrid approach. Using a first-order
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5.3 Conclusion

Roe scheme, an effective first-order accuracy was always reached even with nonconforming
grid interface. Using a second-order Roe scheme, an effective second-order accuracy was
reached except with meshes composed of triangles or perturbed elements. This being said,
note that the presence of nonconforming grid interfaces does not affect the effective order
of accuracy. For diffusive fluxes, the validation was performed on the Taylor-Green Vortex
(TGV) test case with the same topological meshes but with different data structures, namely
structured, unstructured and hybrid. For applications where second-order schemes are broadly
acceptable, typically dealing with RANS or URANS simulations, the hybrid approach was
successfully validated and could be used for these kinds of applications. However, for more
complex applications requiring high-order schemes, typically dealing with LES applications
convecting unsteady flows over long distances or computing farfield aeroacoustics, the hybrid
approach failed. Indeed, for structured zones, high-order schemes are available since the work
of Fosso [6] but for unstructured zones, the situation is much more complex and will be the
topic of the next part of this manuscript.
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C H A P T E R

6
High-order reconstruction on

unstructured grids

“Science, my lad, is made up of mistakes, but they are mis-
takes which it is useful to make, because they lead little by
little to the truth.”

— Jules Gabriel Verne (1828 - 1905)

Abstract. In this chapter, a high-order extrapolation is developed to feed a Riemann solver for given
left and right states. First of all, the first-order and the second-order extrapolations are developed.
Based on the observation that the second-order extrapolation formulation is compacted by using the
state and the gradient of this state for each cell, a third-order extrapolation is developed. Numerical
tests are then carried out to validate this approach at least on the UUU/QF mesh.

6.1 The Roe solver

Widely used in industrial computations, Roe’s numerical flux is given by:

Fm+1/2 =
1
2

[
F
(

WL
m+1/2

)
+F

(
WR

m+1/2

)]
− 1

2

∣∣∣ ¯̄A
(

WL
m+1/2, WR

m+1/2

)∣∣∣
(

WR
m+1/2 −WL

m+1/2

)
,

where WL
m+1/2 and WR

m+1/2 are the conservative variables interpolated on the left and right sides
of the interface m + 1/2. The next section will describe how these variables can be interpolated.
¯̄A is the Roe’s matrix which satisfies the following list of properties.
• ¯̄A (W, W) = A (W) where A is the Jacobian matrix.
• F

(
WR)−F

(
WL) = ¯̄A

(
WL, WR) (WR −WL).

• The eigenvectors of ¯̄A
(
WL, WR) are linearly independent.

6.2 First-order extrapolation

Analogously to the demonstration of Sec. 2.4 and considering the advection equation with a
constant and positive transport velocity c = 1 [m/s], the Roe’s numerical flux is then simply
the left state and one obtains the flux balance δW|i:

δW|i = ∆x
∂W
∂x

∣∣∣∣
i
= WL

i+1/2 −WL
i−1/2. (6.1)

The Roe solver leads to a first-order solution when it is directly applied to mean quantities
issued from the left and right sides of the interface. It is simply realized by taking WL

m+1/2 = Wm

and WR
m+1/2 = Wm+1. Applying the first-order Roe scheme, one obtains the flux balance δW|1i ,

where the superscript 1 means that the flux balance is discretized by a first-order extrapolation,

δW|1i = Wi −Wi−1. (6.2)
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Considering the Taylor series expansion of Wi−1, one obtains:

Wi−1 = Wi − ∆x
∂W
∂x

∣∣∣∣
i
+O

(
∆x2) . (6.3)

Substituting (6.3) in (6.2), one proves that this scheme is first-order accurate:

δW|1i = ∆x
∂W
∂x

∣∣∣∣
i
+O

(
∆x2) . (6.4)

Indeed, the first derivative is first-order accurate if the flux balance is second-order accurate.
One order of convergence is lost when taking the derivative of an expression.

6.3 Second-order extrapolation

To obtain a second-order extrapolation, the left and the right states are extrapolated [65] by:

WL
m+1/2 = Wm +

1
2
∇W cc

m ·OmOm+1, (6.5)

and

WR
m+1/2 = Wm+1 −

1
2
∇W cc

m+1 ·OmOm+1, (6.6)

where Om is the center of cell m and the cell centered gradient ∇W cc
m for the cell m is defined

by:

∇W cc
m =

Wm+1 −Wm−1

2∆x
. (6.7)

Applying the Roe scheme, one obtains the flux balance δW|2i , where the superscript 2 means
that the flux balance is discretized by a second-order extrapolation,

δW|2i =

[
Wi +

Wi+1 −Wi−1

4

]
−
[

Wi−1 +
Wi −Wi−2

4

]
, (6.8)

=
1
4

Wi−2 −
5
4

Wi−1 +
3
4

Wi +
1
4

Wi+1. (6.9)

Considering the Taylor series expansion of Wi−2, Wi−1 and Wi+1, one obtains:

Wi−2 = Wi − 2∆x
∂W
∂x

∣∣∣∣
i
+ 2∆x2 ∂2W

∂x2

∣∣∣∣
i
+O

(
∆x3) , (6.10)

Wi−1 = Wi − ∆x
∂W
∂x

∣∣∣∣
i
+

∆x2

2
∂2W
∂x2

∣∣∣∣
i
+O

(
∆x3) , (6.11)

Wi+1 = Wi + ∆x
∂W
∂x

∣∣∣∣
i
+

∆x2

2
∂2W
∂x2

∣∣∣∣
i
+O

(
∆x3) . (6.12)

Substituting (6.10), (6.11) and (6.12) in (6.8), one proves that this scheme is second-order
accurate:

δW|2i = ∆x
∂W
∂x

∣∣∣∣
i
+O

(
∆x3) . (6.13)
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6.4 Third-order extrapolation

6.4 Third-order extrapolation

To obtain a third-order extrapolation, the left and the right states are extrapolated by:

WL
m+1/2 = Wm +

1
2

[
(1− β)∇W cc

m + β∇W ic
m

]
·OmOm+1, (6.14)

and

WR
m+1/2 = Wm+1 −

1
2

[
(1− β)∇W cc

m+1 + β∇W ic
m

]
·OmOm+1, (6.15)

where the interface centered gradient ∇W ic
m for the cell m is defined by:

∇W ic
m =

Wm+1 −Wm

∆x
. (6.16)

The parameter β is free. If β = 0, the standard second-order extrapolation defined in the
previous section is recovered and β = 1/3 gives a third-order extrapolation. Indeed, applying
this extrapolation scheme, one obtains the flux balance δW|3i , where the superscript 3 means
that the flux balance is discretized by a third-order extrapolation,

δW|3i =

[
Wi + (1− β)

Wi+1 −Wi−1

4
+ β

Wi+1 −Wi

2

]
(6.17)

−
[

Wi−1 + (1− β)
Wi −Wi−2

4
+ β

Wi −Wi−1

2

]

=
1
6

Wi−2 −Wi−1 +
1
2

Wi +
1
3

Wi+1. (6.18)

Considering the Taylor series expansion of Wi−2, Wi−1 and Wi+1, one obtains:

Wi−2 = Wi − 2∆x
∂W
∂x

∣∣∣∣
i
+ 2∆x2 ∂2W

∂x2

∣∣∣∣
i
− 4∆x3

3
∂3W
∂x3

∣∣∣∣
i
+O

(
∆x4

)
, (6.19)

Wi−1 = Wi − ∆x
∂W
∂x

∣∣∣∣
i
+

∆x2

2
∂2W
∂x2

∣∣∣∣
i
− ∆x3

6
∂3W
∂x3

∣∣∣∣
i
+O

(
∆x4

)
, (6.20)

Wi+1 = Wi + ∆x
∂W
∂x

∣∣∣∣
i
+

∆x2

2
∂2W
∂x2

∣∣∣∣
i
+

∆x3

6
∂3W
∂x3

∣∣∣∣
i
+O

(
∆x4

)
. (6.21)

Substituting (6.19), (6.20) and (6.21) in (6.17), one proves that this scheme is third-order accurate:

δW|3i = ∆x
∂W
∂x

∣∣∣∣
i
+O

(
∆x4

)
. (6.22)

6.5 Results for the third-order Roe scheme

The numerical setup to test the third-order Roe scheme is defined in Sec. 4.2. The aim of
this section is to test the unstructured formulation of this Roe scheme. This is why only
four unstructured mesh types were tested among those described in Sec. 4.2: the UUU/QF,
UUU/QT, UUU/TF and UUU/TT meshes. The results for the third-order Roe scheme are
given from Tab. 6.1 to Tab. 6.4. Several interesting conclusions were reached.
• The UUU/QF mesh gives third-order accurate results. This was naturally expected since

the third-order extrapolation is built to be third-order accurate on this type of mesh.
• However, the UUU/QT, UUU/TF and UUU/TT meshes only give first-order accurate

results. Indeed, the third-order extrapolation does not take into account the local metrics
since the coefficients are constant and not dependent on the local metrics. On general
unstructured grids, this scheme is absolutely not efficient.
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• Looking at (6.14) and (6.15), it seems to be unavoidable to find a better evaluation of the
cell centered and interface centered gradients. Including the metrics into the evaluation
of these gradients could improve the accuracy of the extrapolation: this is the topic of the
next chapter.

Tab. 6.1. Mesh convergence analysis on the UUU/QF mesh for the third-order Roe scheme.

h [−] Error εV [m · s−1] Order [m · s−1]

6.25000000000 · 10−2 2.71283294809 · 100 −
4.16666666667 · 10−2 2.21773714423 · 100 0.50
3.12500000000 · 10−2 1.79068993330 · 100 0.74
2.08333333333 · 10−2 1.10768881137 · 100 1.18
1.56250000000 · 10−2 6.75289847793 · 10−1 1.72
1.04166666667 · 10−2 2.72056704277 · 10−1 2.24
7.81250000000 · 10−3 1.27660698051 · 10−1 2.63
5.20833333333 · 10−3 4.03960774836 · 10−2 2.84
3.90625000000 · 10−3 1.73612318685 · 10−2 2.94
2.60416666667 · 10−3 5.20401698177 · 10−3 2.97
1.95312500000 · 10−3 2.20601903504 · 10−3 2.98

Tab. 6.2. Mesh convergence analysis on the UUU/QT mesh for the third-order Roe scheme.

h [−] Error εV [m · s−1] Order [m · s−1]

6.25000000000 · 10−2 2.79403573837 · 100 −
4.16666666667 · 10−2 2.26480472572 · 100 0.52
3.12500000000 · 10−2 1.85311543384 · 100 0.70
2.08333333333 · 10−2 1.17997017257 · 100 1.11
1.56250000000 · 10−2 7.58129574205 · 10−1 1.54
1.04166666667 · 10−2 3.53798634672 · 10−1 1.88
7.81250000000 · 10−3 2.07508062465 · 10−1 1.85
5.20833333333 · 10−3 9.59772645293 · 10−2 1.90
3.90625000000 · 10−3 6.16577070161 · 10−2 1.54
2.60416666667 · 10−3 3.53783525826 · 10−2 1.37
1.95312500000 · 10−3 2.55318144096 · 10−2 1.13

96



6.5 Results for the third-order Roe scheme

Tab. 6.3. Mesh convergence analysis on the UUU/TF mesh for the third-order Roe scheme.

h [−] Error εV [m · s−1] Order [m · s−1]

3.84615384615 · 10−2 2.46382205125 · 100 −
2.54493299280 · 10−2 1.86187018517 · 100 0.68
1.94110729049 · 10−2 1.42262917879 · 100 0.99
1.26836572358 · 10−2 8.45341763240 · 10−1 1.22
9.63768687807 · 10−3 5.39963756698 · 10−1 1.63
6.37965835292 · 10−3 3.15023367407 · 10−1 1.31
4.81236634590 · 10−3 2.17373336372 · 10−1 1.32
3.21130312701 · 10−3 1.25827094196 · 10−1 1.35
2.40105900452 · 10−3 9.42775595367 · 10−2 0.99
1.60253117779 · 10−3 6.07787443992 · 10−2 1.09
1.20086012388 · 10−3 4.52585499353 · 10−2 1.02

Tab. 6.4. Mesh convergence analysis on the UUU/TT mesh for the third-order Roe scheme.

h [−] Error εV [m · s−1] Order [m · s−1]

3.84615384615 · 10−2 6.32321543693 · 100 −
2.54493299280 · 10−2 1.88118208562 · 100 2.94
1.94110729049 · 10−2 1.50097781878 · 100 0.83
1.26836572358 · 10−2 9.42932928481 · 10−1 1.09
9.63500241020 · 10−3 6.51643183789 · 10−1 1.34
6.37732276494 · 10−3 3.94538795755 · 10−1 1.22
4.81236634590 · 10−3 2.96214715129 · 10−1 1.02
3.21130312701 · 10−3 1.90014440499 · 10−1 1.10
2.40035335802 · 10−3 1.46879118265 · 10−1 0.88
1.60253117779 · 10−3 9.59953279797 · 10−2 1.05
1.20086012388 · 10−3 7.32851792311 · 10−2 0.94
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Fig. 6.1. Mesh convergence for the third-order Roe scheme.
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7
The unstructured interface

gradient

“If the facts don’t fit the theory, change the facts.”

— Albert Einstein (1879 - 1955)

Abstract. In this chapter, a review of Finite Volume gradient computation is made. Several
methods are reviewed among which the standard and enhanced Green-Gauss formulations, the
Least-Squares Method and the diamond cell approach. Then, a new formulation for Unstructured
Interface Gradient (UIG) computation is developed and leads to a second-order accurate scheme on
general unstructured grids. This gradient can be used to compute the Laplacian operator which is
first-order accurate on general unstructured grids. The numerical tests to validate this gradient
formulation have not been performed yet, but upon achievement they will constitute the gist of paper
in preparation for Journal of Scientific Computing [66].

7.1 Finite Volume gradient review

Before reviewing the bibliography, let us introduce the general form of standard Partial Differ-
ential Equations (PDE) with a diffusion term:

∂W
∂t

+∇ · D(W,∇W) = 0, (7.1)

where W stands for the unknown andD is the general form of any operator involving both state
variable W and its gradient ∇W . Since we are interested in solving (7.1) with a cell-centered
Finite Volume approach, the computational domain is first split into several non overlapping
volumes denoted Ωi. The intersection between two volumes Ωi and Ωj is either one of the
mesh interfaces denoted F(i,j) or empty ∅. For a volume Ωi, the list of its direct neighbor
indexes is denoted Fi: for any index j ∈ Fi, the face F(i,j) is a true mesh face that separates cells
Ωi and Ωj. Then, integrating (7.1) over Ωi and using Gauss formula, it comes:

d
dt

(ViW i) + ∑
j∈Fi

∫

F(i,j)
D(W,∇W)n(i,j) dS = 0, (7.2)

where Vi is the volume of cell Ωi and W i is the mean value of W over cell Ωi. (7.2) shows that
starting from the averaged quantity over any mesh cell, advancing the equation in time is
possible once integrals on mesh interfaces are known, taking care that the unit normal vector
n(i,j) is directed outward (from Ωi to Ωj). It is therefore mandatory to define an interface
gradient to compute any diffusion term of a PDE.

For industrial Computational Fluid Dynamics solvers, the time integration is only possible
once a convection scheme is introduced. The standard way to deal with any hyperbolic equa-
tion follows information transport along characteristic curves and an exact or approximated
Riemann solver is introduced. For a second order of accuracy, Van Leer introduced the notion
of MUSCL reconstruction [65]: the flux is not computed directly using left and right states but
using reconstructed quantities obtained as linear extrapolation of the cell-centered quantities.
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Such an extrapolation involves a cell-centered gradient which must be computed first by taking
into account the surrounding cells. In this section, several methods to define an interface
gradient are introduced and it is shown that most of the diffusion schemes build the interface
gradient using the cell-centered gradients as input.

Before entering into the details, we wish to remind one key point regarding the diffusion
operator. The diffusion operator, as the convection operator, must satisfy the discrete maximum
principle. Roughly speaking, the Discrete Maximum Principle (DMP) of the diffusion operator
and the shape of its associated matrix on the computational domain are strongly linked. In
practice, it is well-known that if the associated matrix is an M−Matrix, then all the desired
properties hold. We recall that an M−matrix is a Z−matrix with eigenvalues whose real
parts are positive and a Z−matrix is such that off-diagonal entries are less than or equal to
zero. Even it won’t be recalled in the following, the definition of a second-order discretization
of the Laplacian with the discrete maximum property is still an open problem for general
unstructured grids. Only few second-order diffusion schemes are monotonic on special grid
shapes and the property does not hold in general. In [67, 68], a general form for diffusion
schemes dedicated to 2D and 3D unstructured meshes is proposed, with a structure such
that the Local Maximum Property (LMP) is guaranteed. However, most of diffusion schemes
currently applied in CFD are not LMP on general unstructured grids. Finally, following the
work of Le Potier and co-authors, the LMP can be recovered for consistent schemes [68, 69, 70,
71].

Remark: In the present bibliographic review, only schemes applied to Finite Volume are
considered. A complete analysis may also include schemes for spectral discontinuous methods
such as the Discontinuous Galerkin, Spectral Difference, Spectral Volume, Flux Reconstruction
techniques.

7.1.1 Techniques based on Green-Gauss formulation on mesh elements

The standard Green-Gauss method (identified by GG in the following) uses the Green-Gauss
formulation to compute the cell-centered averaged gradient using states at the interface. It is
generally defined as an arithmetic average of quantities from both sides, using either a pure
centered approximation or a weighted formulation taking into account cell volume. Following
notations introduced in (7.2), the formulation becomes:

∫

Ωi

∇W dV = ∑
j∈Fi

∫

F(i,j)
Wn(i,j) dS , (7.3)

and (7.3) can be discretized as:

Vi∇W i = ∑
j∈Fi

VjW i + ViW j

Vi + Vj
S(i,j)n(i,j), (7.4)

where S(i,j) represents the area of the face F(i,j).

Standard Green-Gauss formulation.

The interface gradient is then defined as an arithmetic average of quantities of both sides, using
either a pure centered approximation or a weighted formulation taking into account opposite
element volume:

∇W |F(i,j) =
Vj∇W i + Vi∇W j

Vi + Vj
. (7.5)

The implementation is straightforward in a standard CFD code using a face-based data struc-
ture: the computation of the interface gradient only needs two loops on all mesh faces. For
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the pure centered approach, the interface gradient involves two centered averages and such
a scheme does not damp high frequency modes. Moreover, the scheme leads to an odd /
even decoupling. Such a scheme was recently analyzed for unstructured grids composed of
quadrangles, triangles and polygons [72].

The scheme defined by (7.4) and (7.5) is shown to be conservative and consistent on regular
elements (equilateral triangles, squares or rectangles of a given size). It is stable and monotonic
for equilateral triangles, squares, parallelograms and regular rectangles. Moreover, the method
is found to be second order accurate for squares and equilateral triangles but since the schemes
does not involve any metrics associated with cell shapes, its accuracy is reduced on irregular
elements.

An alternative to (7.5) consists in averaging the gradients by a weighted formulation taking
into account local element volume:

∇W |F(i,j) =
Vi∇W i + Vj∇W j

Vi + Vj
. (7.6)

This consists in defining the interface gradient as the mean gradient computed on a “composite”
cell composed of the two cells that share the interface. Using standard Taylor expansion rules,
basic arithmetic rules can show that (7.6) is not consistent with the interface gradient in 1D.

Enhanced Green-Gauss formulation.

In the context of vertex-centered Finite Volume approximation on dual grids, Galle [73] pro-
posed to compute the gradients at mesh nodes by a GG formulation on dual cells as shown
in Fig. 7.1 built around mesh nodes using cell centers and face centers in 2D (and mid-edges
in 3D). The gradient on the interface located between nodes i and j is then the average of the
gradients in nodes i and j.

i

j

Fig. 7.1. Definition of the dual volume around node i including face centers (squares) and cell centers (stars). In
2D, face center and mid-edges are located at the same place.

In 1997, Crumpton [74] introduced a correction called CGG for Corrected Green-Gauss
to improve the stability for meshes with a large cell aspect ratio. The correction consists in
replacing the GG interface gradient by a centered finite difference gradient in the direction
of the mesh edge ij. Such a correction can be easily introduced in the context of cell-centered
Finite Volume approximation. It involves a correction of the interface gradient in the direction
of the cell centers for both control volumes that share the considered face. The new interface
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gradient ∇W
∣∣

F(i,j)
is now:

∇W
∣∣

F(i,j)
= ∇W |F(i,j) −

[
∇W |F(i,j) · CiCj −

(
Wj −Wi

)] CiCj∥∥CiCj
∥∥2 , (7.7)

where Ci and Cj are the cell centers of Ωi and Ωj respectively, and the other notations are the
same as in (7.3).

The CGG method correctly damps high frequencies and the CPU overhead is negligible
compared with the standard GG technique. Moreover, the technique introduces a new coupling
which prevents checkerboard instability found in the GG formulation. This scheme is shown to
be conservative, consistent, monotonic and second-order accurate on rectangular meshes only.

An alternative to the CGG method was proposed by Cary, Dorgan and Mani [75] in order to
correct the lack of accuracy of the cell-centered gradient for the drag prediction. They proposed
to use the cell centered quantities to define a gradient in the direction of the cell centers and to
introduce the cell-center value of a cell that shares a vertex with the considered face to account
for a contribution in another direction. In such a way, linear solution can be recovered exactly
and formally, the proposed scheme is second-order accurate. Unfortunately, such a method
introduces a minimal amount of dissipation and the authors explain that the procedure was
found to lack robust stability properties on practical arbitrary meshes. For this reason, it will
not be considered in the following.

7.1.2 Least-Squares Method for cell-centered gradient

The second technique for computing the cell-centered gradient is based on the Least-Squares
Method. Such a gradient [76] was first introduced to tackle the second order of accuracy for
convection terms by means of linear extrapolation and slope limiter procedure [65] to satisfy
the Total Variation-Diminishing (TVD) property. The Least-Squares Method was analyzed for
the advection-diffusion equation by Ollivier-Gooch et al. in 2002 [77] and revisited in 2003 by
Mavriplis [78].

A recent exhaustive analysis for the diffusion scheme was performed by Jalali, Sharbatdar
and Ollivier-Gooch in 2014 [79]. The Least-Squares reconstruction was also analysed by Sozer,
Brehm and Kiris [72] for the definition of the second-order hyperbolic flux. The Least-Squares
Method was improved very recently by Sejekan et al. [80]. Here, the goal is to perform the
Least-Squares Method in the H1 norm instead of the standard L2 norm. Such a change enables
to control at the same time the reconstruction of the field and of the gradient and the resulting
gradients are second-order accurate.

The Least-Squares cell-centered reconstruction is at the basis of the composite gradient
introduced in [75] for computing the diffusion flux on the mesh interfaces. Cary et al. [75]
introduced the interface gradient as the averaged gradient on the composite cell (as in (7.6))
consisting of the two cells that share the face which the gradient is desired. An additional term
proportional to the face area and reconstructed discontinuity (generally called jump term) is
introduced in the direction normal to the face. In contrary with (7.7) where the correction is
based on the cell-centered quantities, the procedure proposed by Cary needs a correction term
propositional to the jump of the extrapolated quantities at the face center.

The procedure to define the cell-centered gradient is simple. First, a Taylor expansion of
the solution is performed locally around a cell Ωi. It is of course required that the integral of
the Taylor expansion over Ωi recovers the average value W i, while the integral of the Taylor
expansion over the adjacent cell Ωj of Ωi will recover W j.

Finally, the interface gradient is estimated using a simple averaging procedure or using an
advanced treatment that depends on local metrics [79]. A first enhanced approach proposed by
Shima et al. consists in blending the Green-Gauss approach and the Least-Squares reconstruc-
tion [81] for second-order convection scheme on polyhedral unstructured grids. Two different
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improvements were proposed recently by Sejekan and Ollivier-Gooch [80]. The first modifi-
cation concerns the definition of the local reference point inside the cell. Here, the authors
propose to choose the containment center, the center of the smallest circle that can enclose a
given mesh triangle. The introduction of an interface jump term is the second improvement.
This jump term is computed at any Gauss quadrature point on the mesh interface and it is
based on the standard linear extrapolation of unknowns plus a second-order correction based
on the Hessian matrix in the direction normal to the interface.

Currently, the Least-Squares reconstruction approach is considered as the standard way to
compute gradients. It requires the pre-computation of the coefficients of the pseudo-inverse
matrix [82, 83] and these coefficients only depend on local metrics. In practice, the accuracy
of the Least-Squares formulation strongly depends on the local accuracy of the polynomial
reconstruction. In general, the considered stencil includes the direct neighbors and extra cells
but here, we decided to consider the simplest stencil, involving only the direct neighbors.

7.1.3 Quasi-Green and Quasi-Least-Squares methods

Starting from the definition of the Green-Gauss and Least-Squares methods, it is clear that
the cell-centered gradient can be seen as a linear combination of the averaged quantities over
the chosen stencil. By performing Taylor expansion, taking care of local metrics and on the
definition of the cell-centered quantities, it is possible to perform a local accuracy analysis.
Both Green-Gauss and Least-Squares methods are found to be not consistent for any general
unstructured grid. The principle of Quasi-Green and Quasi-Least-Squares methods is to correct
the computed gradients in order to increase their accuracy [84, 85]. Such a technique is applied
successfully for the k−exact reconstruction technique introduced in Chap. 8 and is derived in
[86, 87] in the context of the successive correction algorithm. With the later, it is possible to
build the Taylor expansion derivative per derivative using a compact stencil (the current cell
and its direct neighbors only).

7.1.4 Diamond cell approaches

The third class of techniques to compute interface gradients follows the diamond path ap-
proach introduced by Coirier [88] for Cartesian grids and the cell-centered Finite Volume
approximation. The principle of the proposed approach is to define a dual cell around any
mesh interface and to compute an averaged gradient on it using the Green-Gauss rule as shown
in Fig. 7.2. The dual cell is based on both face nodes and adjacent cell centers. The dual cell
gradient is then chosen as interface gradient for the diffusion flux on the face. Following the

N

S

RL

Fig. 7.2. Definition of the dual volume around the face SN. Cell centers are represented by the black star.

definition of the four nodes in Fig. 7.2 and introducing the normal vector nNL (resp. nLS, nSR,
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nRN) normal to the face NL (resp. LS, SR, RN) and directed toward the outside of the diamond
cell, the final expression of the gradient over the diamond cell is simply:

Vd∇W =
WN + WL

2
nNL +

WL + WS

2
nLS +

WS + WR

2
nSR +

WR + WN

2
nRN , (7.8)

with Vd the volume of the diamond cell. A diamond cell technique requires the definition of
the solution at mesh nodes S and N and there are several ways to compute them.

Averaging procedure.

In the original approach proposed by Coirier [88] for Cartesian grids, the unknowns at the
mesh node M are defined by an arithmetic average with constant weights of contributions
from all cells built with the node M. For a Cartesian grid, the reconstruction stencil is compact
and the number of elements sharing a node is known a priori. However, such a reconstruction
presents two drawbacks for unstructured grids. First, all cells are assumed to have the same
size, which is not the case on general unstructured grids. Moreover, the number of cells sharing
a given node is assumed constant, due to the general form of the Cartesian grids. Extensions
were proposed by Coirier [88] to correct the Cartesian grid limitations.

Least-Squares reconstruction.

In Coudière et al. [89], the reconstruction at a node is performed with a Least-Squares Method
and involves any cell based on the considered node. For the sake of clarity, the Least-Squares
formulation is described below in two-dimensional case. Let f j be a linear function defined on
Vj, the set of mesh elements that share node j. Due to its definition, f j takes the following form:

f j(x, y) = a + bx + cy, (7.9)

where a, b and c are the three unknowns. The Least-Squares interpolation consists in choosing
the coefficients a, b and c such that the distance dj between the reconstructed value using f j
and the averaged cell-centered values in the cells of Vj is minimized:

dj = ∑
Ωi∈Vj

(
Wi − f j(xi, yi)

)2

, (7.10)

where (xi, yi) represents the coordinates of the cell center of Ωi. Moreover, since the gradient of
any function is zero when the function is at its minimum, the procedure consists in computing
the derivative of dj as a function of a, b and c. It leads to a 3× 3 linear system of equations.
The system can be inverted upon condition on the cell center positions. For three different cell
centers Ci, Ck and Cl of cells in Vj, the vectors CiCk and CiCl must not be linearly connected.

Choice of the local stencil for reconstruction.

Le Potier [90] proposed a new approach to simplify the interpolation process. Instead of
solving the whole Least-Squares system involving all cells surrounding the node, Le Potier
proposed to take into account the minimum number of cells, closest to the mesh node on which
interpolation must be performed. This enables the definition of the nodal quantity from a
simple arithmetic averaging procedure using weights chosen as the inverse of the distance
between the mesh node and the cell center.

Enhancement of the method.

An extension of the method was proposed. For instance, Hermeline [91], Domelevo and Omnès
[92] proposed to introduce the same kind of dual grid as Le Potier and to solve the diffusion
problem on both grids. Of course, the procedure establishes a coupling between the unknown
on the original and dual grids. Such a procedure is not retained for the current analysis since
the computational cost associated with such a technique is by nature larger than when only
one problem is solved.
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7.1.5 Multi Flux Point Approximation

The Multi Point Flux Approximation (MPFA) schemes assume that the solution is piecewise
linear in some sub-cells around each vertex. They introduce additional edge unknowns around
each vertex, and express the linear variation of the solution to compute gradients and thus
fluxes in these sub-cells. The edge unknowns are eliminated by writing continuity equations
for the solution and conservativity equations for the fluxes. Finally, the fluxes are consistent,
conservative and expressed in terms of cell unknowns only.

A general review of MPFA schemes is proposed by Droniou [93] and many adaptations
have been proposed in the past. A complete review is out of the scope of the current thesis but
an interested reader can carefully read the first papers [94, 95, 96] and some recent extensions
[97, 98, 99, 100, 101, 102]. Among them, the scheme of Droniou and Le Potier [100] is easy
to implement, positive and consistent. It preserves the DMP. It was successfully applied to
radiative hydrodynamics [103, 104].

Let us consider the notations introduced in Fig. 7.3. K and L define the cells that share
the face i on which the flux needs to be estimated. The point MK,i (resp. ML,i) is located on
the line normal to the interface and issued from the cell center of cell K (resp. L). The values
of the unknowns in MK,i or ML,i are obtained as a convex combination of the cell-centered
unknowns with weights precomputed using geometric properties. A simple Finite Difference
approximation using the unknowns in K and MK,i and in L and ML,i is a good approximation
of the gradient on these lines. In other words, two upwind approximations of the flux can be
defined. The final flux is then written as a combination of both fluxes using weights based
on the local unknowns. This is the reason why the approach is non-linear. Such a scheme
preserves the Discrete Maximum Property but is first-order accurate.

J2

J1

L

K

MK,i

ML,i

nK,i

nL,i

Face i

Fig. 7.3. Definition of MK,i and ML,i points. The rays [KMK,i) and [LML,i) are orthogonal to the face i. MK,i
(resp. ML,i) belongs to the triangle KLJ2 (resp. KLJ1).

7.1.6 Diffusion on curvilinear meshes

It is easily demonstrated that standard diffusion scheme loose their accuracy on curvilinear
meshes. Two techniques are proposed, the first one for CFD and the later one for magnetic
fields.
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The Curvilinear Gradient Method (CGM).

An alternative way to compute the gradients follows a simple idea: a gradient can be de-
fined accurately on structured grids by simple relations built using finite differences. With
the curvilinear gradient method [72], the unstructured (polygonal) grid is mapped to a uni-
form Cartesian mesh and the gradient is computed using a structured-grid approach on this
Cartesian grid.

For this mapping, a four-point stencil (six-point stencil in 3D) must be selected from the
available cell neighbors (Fig. 7.4). The selection procedure evaluates every possible combination
of stencil point pairs to pick the curvilinear directions ξ and η (Fig. 7.4). To do so, the mapping
M between the original mesh and the Cartesian grid is first computed and the Jacobian matrix
J of the mapping is computed. The largest determinant of the Jacobian gives the best choice
in the computational domain. In the reference domain, a central differencing formula gives:





∂ϕ

∂ξ
= ϕi+1 − ϕi−1

∂ϕ

∂η
= ϕj+1 − ϕj−1.

(7.11)

Finally, the gradient in the computational domain follows:




∂ϕ

∂x
∂ϕ

∂y


 = J −1




∂ϕ

∂ξ

∂ϕ

∂η


 . (7.12)

It should be highlighted that since four-point stencil is the smaller stencil to consider in
2D, it seems a priori impossible to apply such a method to meshes composed of triangles. On
triangles, the method can be applied without modification but the stencil pairs are then allowed
to share points (Fig. 7.5). This procedure seems attractive and since the definition of the local
stencil is purely geometric, the treatment can be performed one time at the beginning of the
time loop. To our knowledge, such a procedure is not applied in many CFD codes and only
one paper addresses the analysis of such a method. Finally, the curvilinear gradient method
needs the smallest stencil among the considered techniques.

C6

C1

C2

C3

C4

C5

ξ = 0

ϕi−1

ξ = 1

ϕi+1

η = 1
ϕj+1

η = 0
ϕj−1

Fig. 7.4. Curvilinear gradient stencil and mapping.

The Magnetic Field Aligned Meshes (MFAM).

In the context of electric propulsion devices, the standard plasma transport theory states that
the perpendicular electron transport coefficient is inversely proportional to the square of the

106



7.1 Finite Volume gradient review

Fig. 7.5. Shared-point curvilinear gradient stencil for a triangle.

magnetic field strength B−2 and is always smaller, up to various orders of magnitude, than
the parallel transport coefficient. This anisotropy of the transport coefficients may induce a
numerical error when numerically solving the flow transport equations, the error becoming
more significant if the computational mesh is misaligned with the principal magnetic directions,
leading to numerical diffusion. In [105], the authors proposed to define first a new mesh
generation algorithm in order to align mesh lines with diffusion direction. The generation of
this type of meshes presents some challenges and several meshing strategies are implemented
and analyzed in order to provide insight into achieving acceptable mesh regularity. Once
the mesh generation is performed, the second analysis in [105] deals with the comparison
of standard diffusion schemes on such grids. And as expected, standard diffusion schemes
perform better when mesh lines and physical variations are aligned. In many aspects, the
MFAM method can be seen as a mesh adaptation procedure and the mesh is locally optimized
in order to minimize numerical errors.

7.1.7 Other diffusion schemes

Diffusion scheme dedicated to anisotropic operator.

Eymard, Gallouët and Herbin [106] proposed a solver for diffusion equation with anisotropic
operators. Diffusive flux of the isotropic operator is solved by Finite Difference and the
anisotropic operator is solved by a dedicated solver proposed by the authors. This method
requires that the “fictitious edge” between two neighboring cell centers and the interface are
orthogonal. It is possible if the cell center is assumed to be the center of the circumscribed
circle. However, the technique cannot be extended straightforwardly to any element shape.

Method based on the Finite Element approximation.

For a cell-vertex Finite Volume approximation, dual cells are built around mesh nodes using
cell centers, face centers and edge mid-points as shown in Fig. 7.1. The P1 Finite Element
method provides a simple framework for the computation of gradients on triangular meshes.
In fact, an unknown is expressed on the basis of shape functions and by linearity, gradients are
computed from the gradient of the shape functions. Moreover, an extension was proposed to
handle general unstructured elements using new gradient still based on the P1 Finite Element
approximation [107].

Flandrin et al. [108, 109] proposed to blend the cell-centered Finite Volume approximation
for convection and the vertex-based Finite Element approximation for diffusion in an unstruc-
tured cell-centered Finite Volume solver. The motivation behind the approach is to use the high
flexibility of the Finite Element technique to define the gradient by means of shape function
gradient. To do so, the initial computational domain is covered by a new triangulation and
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there are two ways to build this triangulation.
In the first approach, triangles involve both mesh nodes and cell centers. In this case, the

diffusion flux on a two-dimensional face is always divided into two contributions with two
different gradients as shown in Fig. 7.6. This approach can be seen as an extension of the
diamond cell approach of Coirier, the main difference being in the way gradients are computed.
Such an approach maintains the need for an interpolation to mesh nodes, something that is
difficult to achieve in a parallel framework using a cell-centered Finite Volume solver with a
face-based data structure. Hence, this approach will not be considered in the current study.

In the second approach, the triangulation only considers the cell centers. The new triangle
grid intersects the initial mesh faces and produces facets as shown in Fig. 7.6. A gradient is
then computed and applied for the flux integral computation on each facet. The definition
of local facets is quite obvious in a two-dimensional framework. In a three-dimensional case,
the situation is not straightforward and in general, the intersection of a mesh element with
a tetrahedron can produce complex polyhedra. This approach is also not considered in this
chapter due to its inherent complexity and high CPU cost since it requires to compute one
gradient per facet.

(a) Definition of the triangulation
for the first approach.

(b) Definition of the triangulation
for the second approach.

Fig. 7.6. Definition of the triangulation for both approaches. Mesh edges are represented with solid line, cell
centers with stars and the triangulation by dashed lines.

Least-Squares Method for interface gradient.

The previous Least-Squares approach in Sec. 7.1.2 consists in computing first a cell-centered
gradient. This cell-centered gradient then serves to define the interface gradient for the
evaluation of the viscous flux. In 1991, Dubois [110, 111] proposed to use a Least-Squares
approach to define directly the interface gradient. The idea is the following. Any gradient is a
local and linear function of the solutions Wi in a predefined neighborhood VΣ around a face Σ
of the mesh. As a consequence, the gradient is evaluated using:

∇WΣ = ∑
i∈VΣ

αΣ,iWi, (7.13)

where Wi is the averaged solution in cell i of the neighborhood VΣ and αΣ,i is a weighted
coefficient. (7.13) can be seen as a linear system of unknowns αΣ,i. Defining the origin of the
local reference frame as the center of the face, an interpolation Lagrange polynomial is first
defined on the stencil VΣ and then differentiated to obtain the weights. Fig. 7.7 gives two
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examples of neighborhood reconstruction using mesh faces or mesh nodes. Of course, the
quality of this approach depends on the stencil for the polynomial reconstruction and this
technique requires the storage of the interpolation coefficients and the cell indices for the face
neighborhood.

(a) Neighborhood based on faces. (b) Neighborhood based on nodes.

Fig. 7.7. Dubois’ approach.

7.1.8 Partial conclusion

Several classes of diffusion schemes were introduced:
• The Green-Gauss formulation in standard or corrected formulations,
• The Least-Squares technique for cell-centered gradient,
• The diamond cell approaches,
• The Finite Element approaches from cell-centered quantities with/without mesh-node

quantities,
• A diffusion operator dedicated to anisotropic diffusion,
• The Least-Squares Method coupled with Lagrange interpolation for interface gradient.

Both Least-Squares and Green-Gauss formulations for computing cell-centered gradients and
then interface gradients are widely used. The other techniques are not very popular. From our
point of view, the method of Dubois using least square technique and Lagrange interpolation
is a viable alternative to standard methods due to its compact stencil and simple algorithm.
Since the standard methods always follow a two-step procedure, a new interface gradient
will be introduced. This interface gradient has a very compact stencil, is compatible with a
cell-centered formulation on unstructured multi-element-shape grids and is easy to implement.

7.2 The new interface gradient scheme

The standard Finite Volume approach for diffusion involves an integral of the gradient over a
mesh interface (7.2). In this section, we propose now a new technique to directly compute an
interface gradient to be used in the flux computation. This method requires the definition of a
new computational cell, called dual cell in this section, around the interface and the averaged
gradient on the dual cell serves as interface gradient. In some aspects, the new diffusion
scheme tends to take the benefit of the simplicity of diamond cell formulation, but avoids the
interpolation to mesh nodes. This algorithm is optimized for a face-based data structure, as
generally encountered in unstructured Finite Volume solvers.
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7.2.1 Building a new dual cell including the interface

Let F(i,j) be the interface between cells Ωi and Ωj: F(i,j) = Ωi ∩ Ωj. (Li)(i,j) (resp. (Lj)(i,j))
denotes the list of faces of the volume Ωi (resp. Ωj) that share a node (resp. an edge) with
F(i,j) in a two-dimensional (resp. in a three-dimensional) case. Note that the face F(i,j) does not
belong to (Li)(i,j) nor (Lj)(i,j). Let’s take two examples. For a tetrahedron, (Li)(i,j) contains
all the triangular faces but F(i,j). For a prism, if F(i,j) is a triangle, (Li)(i,j) contains the three
quadrangular faces.

The new dual cell surrounding the interface can now be defined for two-dimensional and
three-dimensional faces.

Remark: The procedure to define the new dual cell looks like the one applied in the
vertex-centered finite-volume approach. It takes ingredients of the well-known extension of
the definition of the median dual volume from simplex to primitive elements introduced by
Dervieux [112] for the Euler equations and by Rostand and Stoufflet [113] for the Navier–Stokes
equations.

Two-dimensional dual cell.

A general view of the dual volume for a mesh composed of triangles is shown in Fig. 7.8. The
dual cell is limited by the face nodes and the midpoints for all edges in (Li)(i,j) and (Lj)(i,j).
These facets define a local region around F(i,j) which is partially closed. In Ωi, the closure
involves these new midpoints and the cell center. The same approach is applied on Ωj.

h

ig

j
k

l

a

b

(Li)(i,j)

(
Lj
)
(i,j)

F(i,j)

Fig. 7.8. Definition of the dual volume around the face F(i,j) for a two-dimensional mesh composed of triangles.
Squares (resp. stars) represent the face centers (resp. cell centers). The indexes g, h, l and k refer to the direct
neighbors of the volumes i and j in a face-based framework.

Three-dimensional dual cell.

The three-dimensional dual cell definition is an extension of the two-dimensional approach.
Now, the dual cell is limited by two kinds of facets. The first kind of facets is built using the
faces in (Li)(i,j) (resp. (Lj)(i,j)) for Ωi (resp. Ωj). The facets are limited by the face nodes, the
face center and the midpoints for edges that share one node with the face. This first kind
of facets is introduced in Fig. 7.9. The second kind of facets is illustrated on Fig. 7.10. It is
composed of triangles only. Any new triangle is based on:

1. The center of faces of (Li)(i,j) and (Lj)(i,j),
2. The edge midpoints of the faces belonging to (Li)(i,j) and (Lj)(i,j),
3. The centers of the volume Ωi or Ωj.
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a b

c

a b

c

Face of (Li)(i,j)

F(i,j)

Fig. 7.9. Part of the dual cell for the face (a, b, c) of a prism and a tetrahedron. The (background) face of interest is
dark gray and the facet of the dual cell is in light grey. The square symbol represent edge midpoint while the circle
represent the face center.

a b

c

a b

c

Face of (Li)(i,j)

F(i,j)

Fig. 7.10. Part of the dual cell for the face (a, b, c) of a prism and a tetrahedron. The (background) face of interest
is dark gray and the facets of the dual cell are in light gray. The square symbol represent edge midpoint while the
circle represent the face center and the star is the cell center.
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Chapter 7. The unstructured interface gradient

7.2.2 Computation of the new gradient for the diffusive flux

Naive definition.

The procedure follows the one introduced for the diamond cell approach. A constant gradient
is obtained over the dual cell and this gradient is chosen as interface gradient to be introduced
in the surface integral issued from the diffusion term. The gradient is computed using a
standard Green-Gauss approach. Such an approach involves the definition of the quantities on
the different facets of the dual cell introduced previously. For the facets defined with the use
of the cell centers, the interface unknown is the mean quantity over the cell. Other facets are
defined from the mesh faces that separate two cells. The interface value is then defined as an
average of the mean quantities on both sides of the interface. In 2D, following the notations
introduced in Fig. 7.8:

V∗d ∇W |F(i,j) = W i ni
(i,j) + W j nj

(i,j)

+
W i + Wg

2
S(i,g)

2
n(i,g) +

W i + Wh

2
S(i,h)

2
n(i,h)

+
W j + Wk

2
S(j,k)

2
n(j,k) +

W j + W l

2
S(j,l)

2
n(j,l) (7.14)

where V∗d is the volume of the dual cell. ni
(i,j) is the outward vector defined as the sum of the

normal vectors of the facets represented in dashed lines in Fig. 7.8. Following the notations
introduced in Fig. 7.8, we have ni

(i,j) = − 1
2 n(i,j) and nj

(i,j) =
1
2 n(i,j) for a triangle.

It can be highlighted that this very simple procedure will not be accurate. Actually, a second-
order gradient definition needs a third-order extrapolation of the unknowns in the face centers.
It is clear that the definition of interface quantities for the facets in (Li)(i,j) is not third-order
accurate. The same situation occurs for facets based on the cell-center node. It can be shown
that, used for the Laplacian operator computation, this gradient formulation leads to a non
consistent Laplacian operator. Consequently, this formulation must be corrected but this naive
approach is helpful to explain the basics of the procedure.

Correction procedure.

The general formulation of the naive gradient definition can be seen as a linear combination of
cell-centered averaged quantities over a predefined stencil based on cells that share a face (or
a part of face) with the dual control volume. Our idea is now to keep the stencil unchanged
but to allow a new definition of the weights in order to attain both consistence and desired
accuracy.

3

2
1

5
6

4

a

b

(Li)(i,j)

(
Lj
)
(i,j)

F(i,j)

Fig. 7.11. Definition of six neighboring cells of the face F(i,j) for the correction procedure.
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7.2 The new interface gradient scheme

Let us consider a mesh composed of triangles only, as in Fig. 7.11. For a triangle, the
formulation involves the six states of neighboring cells of the face F(i,j) The formulation of the
Unstructured Interface Gradient (UIG) is then simply corrected by writing a linear combination
of these states:

∇W |F(i,j) =
6

∑
i=1

Wi ξiξiξi, (7.15)

where ξiξiξi = (αi, βi)
> are two-dimensional vectors. Considering the Taylor series expansion, it

is possible to write two linear systems, one for the x-component to find the αi coefficients, one
for the y-component to find the βi coefficients, to ensure the second-order of accuracy:

6

∑
i=1

αi = 0, (7.16)

6

∑
i=1

αi (xi − xF) = 1, (7.17)

6

∑
i=1

αi (yi − yF) = 0, (7.18)

6

∑
i=1

αi (xi − xF)
2 = 0, (7.19)

6

∑
i=1

αi (yi − yF)
2 = 0, (7.20)

6

∑
i=1

αi (xi − xF) (yi − yF) = 0, (7.21)

and
6

∑
i=1

βi = 0, (7.22)

6

∑
i=1

βi (xi − xF) = 0, (7.23)

6

∑
i=1

βi (yi − yF) = 1, (7.24)

6

∑
i=1

βi (xi − xF)
2 = 0, (7.25)

6

∑
i=1

βi (yi − yF)
2 = 0, (7.26)

6

∑
i=1

βi (xi − xF) (yi − yF) = 0, (7.27)

where the point of coordinates (xF, yF) is the center of the face F(i,j). Both systems are then
solved using the Moore-Penrose pseudo-inverse technique [82, 83]. By definition, a consistent
second-order gradient evaluation is obtained on general unstructured grids since the metrics is
taken into account. The conservation property is straightforward due to the definition of an
unique gradient on any face. This gradient can now be used to compute the Laplacian operator
which is first-order accurate on general unstructured grids. Furthermore, it will not lead to
checkerboard instability since it involves all the stencil states and in particular, the nearest
neighbors.
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General comments.

For a face shared by two quadrangles, the new gradient method needs six cells to construct the
value at the interface. Green-Gauss and Least-Square Methods have a larger stencil composed
of eight cells. The proposed technique needs a smaller stencil. The same situation occurs in
3D. For instance, for a face shared by two hexahedra, the new gradient method needs ten cells
whereas other methods require twelve cells.

Moreover, the computation of the weights needs only local information, especially in
agreement with the basic formulation of a cell-centered Finite Volume solver with a face-based
data structure. In particular, such a scheme is designed to avoid a complex stencil definition,
especially in a parallel environment when all cells do not have the same shape.

In addition, the proposed technique is applied to faces based on 3 points (triangles) or 4
points (quadrangles). The procedure can be easily extended to polygonal facets. In this case,
depending on the definitions of (Li)(i,j) and (Lj)(i,j), the stencil is extended but the general
framework for the solution, based on Moore-Penrose pseudo-inverse method, can be kept.

Actually, this procedure can also be applied on an incomplete dual cell for the computation
of the boundary gradient, when a Dirichlet condition is considered. This is of strong importance
since a simple copy of the averaged gradient in the cell adjacent to a Dirichlet boundary face is
seen as a zeroth-order recopy. Coupled with a second-order scheme, it makes the solution lose
one order of accuracy: a first-order solution is recovered.

Finally, it should be highlighted that the proposed procedure guarantees a second-order
accurate gradient. Such a procedure can also be identified as a 1−exact reconstruction of the
gradient on the face. The idea of the definition of the local correction uses ideas introduced in
Chap. 8.

Numerical tests were performed first using the naive definition of the schemes. With the
naive reconstruction, the proposed scheme performs as well as the standard Green-Gauss
formulation and it is more accurate than the least-square formulation on regular quadrangles.
The results are not provided here since the conclusions will change according to the proposed
correction based on local metrics. Today, the numerical tests using the enhanced formulation
have not been carried out to validate this gradient formulation yet. It is planned to complete
the analysis by numerical experiments and to submit then a paper to the Journal of Scientific
Computing [66].
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C H A P T E R

8
k-exact schemes

“It is vain to do with more what can be done with less.”

— William of Ockham (1287 - 1347)

Abstract. In this chapter, a review of Finite Volume high-order convection schemes is made that
includes the k-exact reconstruction with the Successive Corrections Method (SCM), the Essentially
Non-Oscillatory (ENO) or Weighted Essentially Non-Oscillatory (WENO) schemes and the Multi-
dimensional Optimal Order Detection (MOOD) approach. It is shown that all these methods are
more of less equivalent since for a given set of points, it only exists one polynomial. Basically, only
these schemes lead to high-order schemes in an unstructured cell-centered Finite Volume paradigm.
Then, a simple example is described to learn how the SCM works. Several conclusions are then
drawn, in particular about the efficiency of the method and the CPU time.

8.1 Bibliography

In Sec. 7.2, a new Unstructured Interface Gradient was proposed. It was not discussed in this
manuscript but basically, it could be imagined that this gradient could be used to define a
new convection scheme and inserted into (6.14) and (6.15). It is then obvious that the accuracy
of this convection scheme is strongly related to the accuracy of the Unstructured Interface
Gradient. This means that this convection scheme would be written as a linear combination
of states and their gradients for each cell. But why should the reconstruction be limited to an
expression including only the states and their gradients? Why not adding the Hessian matrix
in the formulation? This is exactly the principle of the k-exact approach. Of course, several
approaches were developed but are all based on the k-exact approach. They follow the same
idea of polynomial reconstruction and can be denoted as k-exact.

The principle of the k-exact reconstruction was introduced in the pioneering work of Barth
and Frederickson [114] and developed by [115, 116, 117]. It consists in representing the local
variations of the unknowns as polynomials of degree k. The stencil is chosen large enough
to couple the monomials with the cell-centered unknowns through the resolution of a linear
system of equations. Such a system can be solved directly but generally, the stencil is larger
than the number of unknowns and the system is solved in a Least-Squares sense. Jalali and
Ollivier-Gooch [118] use the Least-Squares Method over a large stencil to define high order
polynomial approximation in the k−exact framework. They apply successfully the procedure
to RANS simulations on anisotropic meshes and introduce several local corrections to remove
(or at least reduce) the least-square method sensitivity to space directions.

An efficient implementation of the k-exact procedure was proposed by Haider et al. [87,
119, 120] with the Successive Corrections Method (SCM), Caraeni et al. [121, 122] and Yang et
al. [123]. Here, the computation of the monomials of the k-reconstruction follows a successive
differentiation technique. It is done by applying recursively a first-order accurate gradient on
general unstructured grids. Such a procedure allows to consider only local reduced stencil to
compute the p-th order derivative from the (p− 1)-th order derivative and some corrections are
introduced in order to keep the accuracy at each step in agreement with the requirements. The
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k-exact reconstruction can be chosen to define a high-order representation of the cell-centered
gradient in order to produce a high-order approximation of the interface state. Then, a Riemann
solver computes the interface fluxes from the left and right states. Although this approach does
not reduce the size of the stencil necessary to reconstruct the interface state, it is compact in
terms of communications.

The Essentially Non-Oscillatory scheme (ENO) was first proposed by Harten et al. [124]
and developed in [125, 126]. This approach is closely related to k-exact reconstruction. The
ENO approach builds several polynomials by using different stencils in an unstructured Finite
Volume framework. The smoothest polynomial is then selected to compute fluxes at the
interface to prevent oscillations due to discontinuities. Unfortunately, the stencil is composed
of several tens of cells for a fourth- or fifth-order reconstruction which may induce a large
computational cost. Further details about this approach can be found in [127]. Similarly to
the ENO scheme, the Weighted Essentially Non-Oscillatory scheme, firstly introduced in [128]
and developed in [129, 130], defines several polynomials. Instead of choosing the smoothest
polynomial however, the final polynomial is a weighted average of all polynomials.

The MOOD reconstruction [131, 132, 133] differs from the k-exact technique essentially by
the form of the polynomial reconstruction. The polynomial is by nature able to recover the
local averaged quantity over the considered cell. Such a result is not guaranteed by the k-exact
reconstruction since the monomials are found by solving a least-squares problem.

8.2 One-dimensional Finite Difference example on a non-uniform mesh

In this section, the third-order Successive Corrections Method (SCM3) is applied on a one-
dimensional linear advection equation over a non-uniform mesh with a constant advective
velocity c = 1.0 [m/s] to discretize the convective term simply equal to the first derivative. f is
the unknown and corresponds to the convected variable. The first derivative is noted f ′ and
the second derivative f ′′. The stencil is shown in Fig. 8.1. Let us choose the Finite Difference
framework to avoid the necessary distinction needed in a Finite Volume framework between
the nodal value at cell center and the mean value over the cell.

i i + 1 i + 2i − 1i − 2 x

hi hi+1hi−1hi−2

Fig. 8.1. Stencil for the third-order Successive Corrections Method (SCM3).

As stated in [85], to be able to build a third-order reconstruction, one needs a second-order
derivative and a first-order second derivative. First of all, a first-order operator D(1) for the
first derivative is required. Considering the Taylor expansion for fi−1 and fi+1, one obtains:

fi−1 = fi − hi−1 f ′i +
h2

i−1

2
f ′′i +O

(
h3) , (8.1)

fi+1 = fi + hi f ′i +
h2

i
2

f ′′i +O
(
h3) . (8.2)

From both these Taylor expansions, the operator D(1) is deduced:

D(1) fi =
hi−1 fi+1 − (hi−1 − hi) fi − hi fi−1

2hihi−1
, (8.3)

= f ′i +
hi − hi−1

4
f ′′i +O

(
h2) , (8.4)
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which gives indeed a first-order derivative operator in the case of non-uniform meshes. On
uniform meshes, it gives a second-order derivative operator but it will never be the case for
general unstructured grids. With this operator, f ′i−1, f ′i and f ′i+1 are evaluated. Then, the second
derivative is computed by:

D(1) f ′i =
hi−1 f ′i+1 − (hi−1 − hi) f ′i − hi f ′i−1

2hihi−1
, (8.5)

=
h2

i + 4hi−1hi + hi−2hi + h2
i−1 + hi−1hi+1

8hihi−1
f ′′i +O (h) . (8.6)

This expression gives a non consistent formulation of the second derivative which must be
corrected by multiplying by α−1 where the metric dependent coefficient α is defined by:

α =
h2

i + 4hi−1hi + hi−2hi + h2
i−1 + hi−1hi+1

8hihi−1
, (8.7)

and the first-order second derivative is obtained. Let us notice that the metric dependent
coefficient α does not have a compact formulation since it depends on hi−2, hi−1, hi and hi+1
This first-order second derivative is then used to correct the derivative to obtain a second-order
derivative. Indeed,

D(1) fi −
hi − hi−1

4
α−1D(1) f ′i = f ′i +O

(
h2) . (8.8)

Finally, f ′i is second-order accurate and f ′′i is first-order accurate. This gives a second-order
Finite Difference convection scheme even on non-uniform meshes. Consequently, the third-
order Successive Corrections Method (SCM3) gives a second-order convection scheme on
general non-uniform meshes.

8.3 One-dimensional Finite Volume example on a non-uniform mesh

In this section, the third-order Successive Corrections Method (SCM3) is applied on a one-
dimensional linear advection equation over a non-uniform mesh with a constant advective
velocity c = 1.0 [m/s] to discretize the convective term. f is the unknown and corresponds to
the convected variable. The first derivative is noted f (1), the second derivative f (2) and the third
derivative f (3). The stencil is shown in Fig. 8.2. hi is the size of cell i and di = (hi + hi+1) /2 is
the distance between the center of cell i and the center of cell i + 1. Finally, let us assume that it
exists ∀i ∈ [1, N], (ai, bi) ∈ R2 such as hi = aih = O (h) and di = bih = O (h) where N is the
number of cell of the considered mesh.

ii − 1i − 2i − 3 i + 1 i + 2 x

hi−3 hi−2 hi−1 hi hi+1 hi+2

di di+1di−1di−2di−3

Fig. 8.2. Stencil for the third-order Successive Corrections Method (SCM3). The black dots are the cell centers. hi
is the size of cell i and di = (hi + hi+1) /2 is the distance between the center of cell i and the center of cell i + 1.

According to (2.4), the Finite Volume formulation for a one-dimensional linear advection
with a constant advective velocity c is given by:

d
dt

f̄i + c · fi+1/2 − fi−1/2

hi
= 0, (8.9)
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where f i is the mean value of f over the cell i.

8.3.1 Link between nodal value and averaged value

The link between nodal value and averaged value is established. For sake of clarity, let us
consider the cell i of size h. Let us note δh = h/2. The center xi of cell i is taken equal to 0.
Considering the Taylor expansion of f (x) at x = 0:

f (x) =
n−1

∑
k=0

f (k)i (x)
xk

k!
+O (xn) . (8.10)

Taking the mean value f i of f (x) over the cell i, one obtains:

f i =
1
h

∫ +δh

−δh
f (x) dx, (8.11)

=
1
h

∫ +δh

−δh

n−1

∑
k=0

f (k)i (x)
xk

k!
dx +O (hn) , (8.12)

=
1
h

n−1

∑
k=0

f (k)i (x)
k!

∫ +δh

−δh
xk dx +O (hn) , (8.13)

=
1
h

n−1

∑
k=0

f (k)i (x)
k!

[
xk+1

k + 1

]+δh

−δh
+O (hn) , (8.14)

=
1
h

n−1

∑
k=0

f (k)i (x)
(k + 1)!

[
δhk+1 − (−δh)k+1

]
+O (hn) , (8.15)

=
n−1

∑
k=0

f (k)i (x)
2k+1 (k + 1)!

[
hk − (−1)k+1 hk

]
+O (hn) . (8.16)

Besides, hk − (−1)k+1 hk = 0 if k is odd and hk − (−1)k+1 hk = 2hk if k is even. Finally, a general
formula of order 2n + 2 is obtained:

f i =
n

∑
k=0

f (2k)
i (x)

(2k + 1)!

(
h
2

)2k

+O
(
h2n+2) , (8.17)

from which one deduces the fourth- and sixth-order formulas:

f i = fi +
h2

24
f (2)i +O

(
h4
)

, (8.18)

f i = fi +
h2

24
f (2)i +

h4

1920
f (4)i +O

(
h6) . (8.19)

8.3.2 k-exact principle

Like all Finite Volume schemes, the k-exact schemes aim to reconstruct an approximation for
the interface fluxes. In particular, a 2-exact scheme builds an approximation of interface fluxes
by a a polynomial of degree 2. It then gives a third-order approximation of interface fluxes.
The interface flux at i + 1/2 for an advection equation with a positive advective velocity is given
by f L

i+1/2 where the superscript L means left. Then, the third-order upwind approximation of
f L
i+1/2 is extrapolated by:

f L
i+1/2 = fi +

hi

2
f (1)i +

h2
i

8
f (2)i +O

(
h3) . (8.20)
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This third-order upwind extrapolation formula requires a second-order first derivative and
a first-order second derivative. But, first of all, a first-order first derivative operator D(1) is
built. Then, this operator is recursively applied to the first-order first derivative. This leads
to an inconsistent second derivative. By taking into account the metrics, this inconsistent
second derivative is corrected to obtain a first-order second derivative. Finally, this first-order
second derivative is used to correct the first-order first derivative to obtain a second-order first
derivative.

8.3.3 First-order operator for the first derivative

Let us build the first-order operator D(1) to approximate the first derivative. Considering the
Taylor expansion of fi−1 and fi+1 at the center of cell i, one obtains:

fi−1 = fi − di−1 f (1)i +
d2

i−1

2
f (2)i − d3

i−1

6
f (3)i +O

(
h4
)

, (8.21)

fi+1 = fi + di f (1)i +
d2

i
2

f (2)i +
d3

i
6

f (3)i +O
(

h4
)

. (8.22)

Using the relation between fi and f i, one finds:

fi−1 = f i −
h2

i
24

f (2)i − di−1 f (1)i +
d2

i−1

2
f (2)i − d3

i−1

6
f (3)i +O

(
h4
)

, (8.23)

fi+1 = f i −
h2

i
24

f (2)i + di f (1)i +
d2

i
2

f (2)i +
d3

i
6

f (3)i +O
(

h4
)

, (8.24)

and

fi−1 = f i − di−1 f (1)i +

(
d2

i−1

2
− h2

i
24

)
f (2)i − d3

i−1

6
f (3)i +O

(
h4
)

, (8.25)

fi+1 = f i + di f (1)i +

(
d2

i
2
− h2

i
24

)
f (2)i +

d3
i

6
f (3)i +O

(
h4
)

. (8.26)

Using the relation between fi−1 and f i−1 and fi+1 and f i+1, it comes:

f i−1 −
h2

i−1

24
f (2)i−1 = f i − di−1 f (1)i +

(
d2

i−1

2
− h2

i
24

)
f (2)i − d3

i−1

6
f (3)i +O

(
h4
)

, (8.27)

f i+1 −
h2

i+1

24
f (2)i+1 = f i + di f (1)i +

(
d2

i
2
− h2

i
24

)
f (2)i +

d3
i

6
f (3)i +O

(
h4
)

. (8.28)

Considering the Taylor expansion of f (2)i−1 and f (2)i+1 at the center of cell i, one obtains:

f (2)i−1 = f (2)i − di−1 f (3)i +O
(
h2) , (8.29)

f (2)i+1 = f (2)i + di f (3)i +O
(
h2) . (8.30)

Substituting (8.29) in (8.27) and (8.30) in (8.28), it comes:

f i−1 = f i − di−1 f (1)i +

(
d2

i−1

2
− h2

i
24

+
h2

i−1

24

)
f (2)i

−
(

d3
i−1

6
+

h2
i−1di−1

24

)
f (3)i +O

(
h4
)

,

(8.31)

f i+1 = f i + di f (1)i +

(
d2

i
2
− h2

i
24

+
h2

i+1

24

)
f (2)i +

(
d3

i
6
+

h2
i+1di

24

)
f (3)i +O

(
h4
)

. (8.32)
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Computing di−1 f i+1 − (di−1 − di) f i − di f i−1, one finds:

di−1 f i+1 − (di−1 − di) f i − di f i−1 = 2di−1di f (1)i

+

(
di−1d2

i
2
− h2

i di−1

24
+

h2
i+1di−1

24

)
f (2)i

−
(

d2
i−1di

2
− h2

i di

24
+

h2
i−1di

24

)
f (2)i

+

(
di−1d3

i
6

+
h2

i+1di−1di

24

)
f (3)i

+

(
d3

i−1di

6
+

h2
i−1di−1di

24

)
f (3)i +O

(
h5) .

(8.33)

From (8.33), one can deduce the first-order operator D(1) for the first derivative:

D(1) f i =
di−1 f i+1 − (di−1 − di) f i − di f i−1

2di−1di
. (8.34)

Indeed, simplifying (8.33), one finally finds:

D(1) f i = f (1)i

+

(
di

4
− h2

i
48di

+
h2

i+1

48di
− di−1

4
+

h2
i

48di−1
− h2

i−1

48di−1

)
f (2)i

+

(
d2

i
12

+
h2

i+1

48
+

d2
i−1

12
+

h2
i−1

48

)
f (3)i +O

(
h3) .

(8.35)

Thereafter, for sake of clarity, let us note ∀i ∈ [1, N]:

αi =
di

4
− h2

i
48di

+
h2

i+1

48di
− di−1

4
+

h2
i

48di−1
− h2

i−1

48di−1
=

hi+1 − hi−1

6
, (8.36)

βi =
d2

i
12

+
h2

i+1

48
+

d2
i−1

12
+

h2
i−1

48
. (8.37)

The first-order operator D(1) for the first derivative is then given by:

D(1) f i = f (1)i + αi f (2)i + βi f (3)i +O
(
h3) . (8.38)

Let us notice that αi = O (h) and βi = O
(
h2).

8.3.4 First-order operator for the second derivative

Let us recursively apply the first-order operator D(1) to approximate the second derivative:

D(2) f i = D(1)
(
D(1) f i

)
(8.39)

=
di−1D(1) f i+1 − (di−1 − di)D(1) f i − diD(1) f i−1

2di−1di
. (8.40)

Substituting (8.38) in (8.40), one obtains:

2di−1diD(2) f i =di−1

(
f (1)i+1 + αi+1 f (2)i+1 + βi+1 f (3)i+1

)

− (di−1 − di)
(

f (1)i + αi f (2)i + βi f (3)i

)

− di

(
f (1)i−1 + αi−1 f (2)i−1 + βi−1 f (3)i−1

)
+O

(
h4
)

.

(8.41)
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Considering the Taylor expansion of f (1)i−1, f (2)i−1, f (3)i−1, f (1)i+1, f (2)i+1 and f (3)i+1 at the center of cell i,
one obtains:

f (1)i−1 = f (1)i − di−1 f (2)i +
d2

i−1

2
f (3)i +O

(
h3) (8.42)

f (2)i−1 = f (2)i − di−1 f (3)i +O
(
h2) (8.43)

f (3)i−1 = f (3)i +O (h) (8.44)

f (1)i+1 = f (1)i + di f (2)i +
d2

i
2

f (3)i +O
(
h3) (8.45)

f (2)i+1 = f (2)i + di f (3)i +O
(
h2) (8.46)

f (3)i+1 = f (3)i +O (h) . (8.47)

Substituting (8.42), (8.43), (8.44), (8.45), (8.46) and (8.47) in (8.41), one finds:

2di−1diD(2) f i = di−1

(
f (1)i + di f (2)i +

d2
i

2
f (3)i

)

+ di−1αi+1

(
f (2)i + di f (3)i

)

+ di−1βi+1 f (3)i

− (di−1 − di)
(

f (1)i + αi f (2)i + βi f (3)i

)

− di

(
f (1)i − di−1 f (2)i +

d2
i−1

2
f (3)i

)

− diαi−1

(
f (2)i − di−1 f (3)i

)

− diβi−1 f (3)i +O
(

h4
)

.

(8.48)

Gathering the terms, one obtains:

2di−1diD(2) f i = (2di−1di + di−1αi+1 − αi (di−1 − di)− diαi−1) f (2)i

+

(
di−1d2

i
2

+ di−1diαi+1 + di−1βi+1 − βi (di−1 − di)

− d2
i−1di

2
+ di−1diαi−1 − diβi−1

)
f (3)i +O

(
h4
)

.

(8.49)

Finally, the approximation of the second derivative is given by:

D(2) f i =

(
1 +

αi+1

2di
− αi (di−1 − di)

2di−1di
− αi−1

2di−1

)
f (2)i

+

(
di

4
+

αi+1

2
+

βi+1

2di
− βi (di−1 − di)

2di−1di

− di−1

4
+

αi−1

2
− βi−1

2di−1

)
f (3)i +O

(
h2) .

(8.50)

Thereafter, for sake of clarity, let us note ∀i ∈ [1, N]:

γi = 1 +
αi+1

2di
− αi (di−1 − di)

2di−1di
− αi−1

2di−1
, (8.51)

δi =
di

4
+

αi+1

2
+

βi+1

2di
− βi (di−1 − di)

2di−1di
− di−1

4
+

αi−1

2
− βi−1

2di−1
. (8.52)
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The approximation of the second derivative is then given by:

D(2) f i = γi f (2)i + δi f (3)i +O
(
h2) . (8.53)

Let us notice that γi = O (1) and δi = O (h). However, one can notice that the operator D(2)

gives an inconsistent approximation for the second derivative because γi is different from 1 for
general unstructured grids. To obtain a first-order second derivative, this operator must be
corrected by multiplying by γ−1

i and one obtains:

f (2)i = γ−1
i D(2) f i − γ−1

i δi f (3)i +O
(
h2) . (8.54)

8.3.5 Correction procedure: second-order operator for the first derivative

At this stage, a first-order second derivative and a first-order first derivative are available.
However, according to (8.20), a second-order first derivative is required. It is obtained by
correcting the first-order first derivative with the first-order second derivative:

f (1)i = D(1) f i − αi f (2)i − βi f (3)i +O
(
h3) (8.55)

= D(1) f i − αi

(
γ−1

i D(2) f i − γ−1
i δi f (3)i

)
− βi f (3)i +O

(
h3) . (8.56)

Consequently, the second-order first derivative is obtained by:

f (1)i = D(1) f i − αiγ
−1
i D(2) f i +

(
αiγ
−1
i δi − βi

)
f (3)i +O

(
h3) . (8.57)

Indeed, the operator D(1) f i − αiγ
−1
i D(2) f i is second-order accurate to approximate the first

derivative f (1)i since αiγ
−1
i δi − βi = O

(
h2).

8.3.6 Extrapolation formula

Combining (8.57) and (8.54) into (8.20), one obtains:

f L
i+1/2 = fi +

hi

2

(
D(1) f i − αiγ

−1
i D(2) f i +

(
αiγ
−1
i δi − βi

)
f (3)i

)

+
h2

i
8

(
γ−1

i D(2) f i − γ−1
i δi f (3)i

)
+O

(
h4
)

.
(8.58)

Using the relation between fi and f i and (8.54), one finds:

fi = f i −
h2

i
24

f (2)i +O
(

h4
)

(8.59)

= f i −
h2

i
24

(
γ−1

i D(2) f i − γ−1
i δi f (3)i

)
+O

(
h4
)

(8.60)

= f i −
h2

i γ−1
i

24
D(2) f i +

h2
i γ−1

i δi

24
f (3)i +O

(
h4
)

. (8.61)

Using (8.58) and (8.61), one obtains:

f L
i+1/2 = f i −

h2
i γ−1

i
24
D(2) f i +

h2
i γ−1

i δi

24
f (3)i

+
hi

2

(
D(1) f i − αiγ

−1
i D(2) f i +

(
αiγ
−1
i δi − βi

)
f (3)i

)

+
h2

i
8

(
γ−1

i D(2) f i − γ−1
i δi f (3)i

)
+O

(
h4
)

.

(8.62)
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Finally, the third-order upwind approximation of f L
i+1/2 is extrapolated by:

f L
i+1/2 = f i +

hi

2
D(1) f i +

(
h2

i γ−1
i

12
− hiαiγ

−1
i

2

)
D(2) f i

+

(
hi

2

(
αiγ
−1
i δi − βi

)
− h2

i γ−1
i δi

12

)
f (3)i +O

(
h4
)

,

(8.63)

Indeed, one has:

hi

2

(
αiγ
−1
i δi − βi

)
− h2

i γ−1
i δi

12
= O

(
h3) . (8.64)

Let us remark that the Finite Volume operator XFV defined by:

XFV

(
f i

)
= f i +

hi

2
D(1) f i +

(
h2

i γ−1
i

12
− hiαiγ

−1
i

2

)
D(2) f i, (8.65)

is only a linear combination of f i+2, f i+1, f i, f i−1 and f i−2, which are the only quantities
available in a Finite Volume code.

8.3.7 Truncation error

Following (8.63), a similar expression can be found for f L
i−1/2. The truncation error E for the

flux balance f L
i+1/2 − f L

i−1/2 is then given by:

E
(

f L
i+1/2 − f L

i−1/2

)
=

(
hi

2

(
αiγ
−1
i δi − βi

)
− h2

i γ−1
i δi

12

)
f (3)i

−
(

hi−1

2

(
αi−1γ−1

i−1δi−1 − βi−1

)
− h2

i−1γ−1
i−1δi−1

12

)
f (3)i−1

+O
(

h4
)

.

(8.66)

Let us remark that f (3)i−1 = f (3)i +O (h) and note:

ε i =
hi

2

(
αiγ
−1
i δi − βi

)
− h2

i γ−1
i δi

12
, (8.67)

it comes:

E
(

f L
i+1/2 − f L

i−1/2

)
= (ε i − ε i−1) f (3)i +O

(
h4
)

. (8.68)

Finally, the truncation error of the Finite Volume discretization is:

E
(

f L
i+1/2 − f L

i−1/2

hi

)
=

ε i − ε i−1

hi
f (3)i +O

(
h3) . (8.69)

Noticing that ε i = O
(
h3), this proves that this Finite Volume scheme is second-order accurate

on general unstructured grids. More generally, as established in App. D, the truncation error of
the spatial discretization is p− 1-th order accurate if the extrapolation formula for the interface
fluxes is p-th order accurate.
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8.3.8 Specific case: uniform mesh

In the specific case of uniform meshes, several simplifications appear. First of all, ∀i ∈ [1, N],
the different coefficients previously introduced reads:

hi = di = h, (8.70)
αi = δi = 0, (8.71)

βi =
5h2

24
, (8.72)

γi = 1. (8.73)

Consequently, this simplifies the operator D(1):

D(1) f i =
f i+1 − f i−1

2h
, (8.74)

= f (1)i +
5h2

24
f (3)i +O

(
h3) . (8.75)

This offers a free second-order operator for the first derivative. No correction with the first-
order operator for the second derivative is needed. Similarly, this also simplifies the operator
D(2):

D(2) f i =
f i+2 − 2 f i + f i−2

4h2 , (8.76)

= f (2)i +O
(
h2) . (8.77)

This offers a free second-order operator for the second derivative. Finally, the third-order
upwind approximation of f L

i+1/2 is simply extrapolated by:

f L
i+1/2 = f i +

h
2
D(1) f i +

h2

12
D(2) f i −

5h3

48
f (3)i +O

(
h4
)

(8.78)

= f i +
f i+1 − f i−1

4
+

f i+2 − 2 f i + f i−2

48
− 5h3

48
f (3)i +O

(
h4
)

(8.79)

=
48 f i + 12 f i+1 − 12 f i−1 + f i+2 − 2 f i + f i−2

48
− 5h3

48
f (3)i +O

(
h4
)

(8.80)

=
f i+2 + 12 f i+1 + 46 f i − 12 f i−1 + f i−2

48
− 5h3

48
f (3)i +O

(
h4
)

. (8.81)

Analogously, the third-order upwind approximation of f L
i−1/2 is simply extrapolated by:

f L
i−1/2 = f i−1 +

h
2
D(1) f i−1 +

h2

12
D(2) f i−1 −

5h3

48
f (3)i−1 +O

(
h4
)

(8.82)

=
f i+1 + 12 f i + 46 f i−1 − 12 f i−2 + f i−3

48
− 5h3

48
f (3)i−1 +O

(
h4
)

. (8.83)

In the specific case of uniform meshes, the Finite Volume operator XFV becomes:

XFV

(
f i

)
=

f i+2 + 12 f i+1 + 46 f i − 12 f i−1 + f i−2

48
− 5h3

48
f (3)i . (8.84)

The truncation error E for the flux balance f L
i+1/2 − f L

i−1/2 is then given by:

E
(

f L
i+1/2 − f L

i−1/2

)
=

5h3

48

(
f (3)i−1 − f (3)i

)
+O

(
h4
)

. (8.85)
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Let us remark that f (3)i−1 = f (3)i +O (h) and it comes:

E
(

f L
i+1/2 − f L

i−1/2

)
= O

(
h4
)

. (8.86)

Finally, the truncation error of the Finite Volume discretization is:

E
(

f L
i+1/2 − f L

i−1/2

h

)
= O

(
h3) . (8.87)

This proves that this Finite Volume scheme is third-order accurate but only on uniform grids
and one can compute f L

i+1/2 − f L
i−1/2:

f L
i+1/2 − f L

i−1/2 =
f i+2 + 11 f i+1 + 34 f i − 58 f i−1 + 13 f i−2 − f i−3

48
+O

(
h4
)

. (8.88)

8.4 HPC efficiency

Pont [84] computed the number of points per wavelength necessary to fulfill a given error on
dispersion and dissipation for second-order, third-order, fourth-order and fifth-order schemes.
Moreover, he also evaluated the CPU time for each scheme. Based on both these considerations,
it seems that increasing the order of accuracy of the k-exact scheme may not be so attractive.
In other words, in certain cases, it seems to be more efficient in terms of CPU time to use the
second-order scheme with more degrees of freedom than to use the third-order scheme with
less degrees of freedom to achieve the same level of accuracy. For this reason, our choice was
to study more promising high-order methods such as the Spectral Difference Method which
belongs to the family of Spectral Discontinuous Methods.
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C H A P T E R

9
Spectral analysis

“Science is not everything, but science is very beautiful.”

— Julius Robert Oppenheimer (1904 - 1967)

Abstract. The spectral analysis is a basic tool to characterize the behavior of any convection scheme.
By nature, the solution projected onto the Fourier basis enables to estimate the dissipation and the
dispersion associated with the spatial discretization of the hyperbolic linear problem. In this chapter,
we wish to revisit such analysis, focusing the attention on two key points. The first point concerns
the effects of time integration on the spectral analysis. It is shown with standard high-order Finite
Difference schemes dedicated to aeroacoustics that the time integration has an effect on the required
number of points per wavelength. The situation depends on the choice of the coupled schemes (one
for time integration, one for space derivative and one for the filter) and here, the compact scheme
with its eighth-order filter seems to have a better spectral accuracy than the considered dispersion-
relation preserving scheme with its associated filter, especially in terms of dissipation. Secondly,
such a coupled space-time approach is applied to the new class of high-order Spectral Discontinuous
approaches, focusing especially on the Spectral Difference method. A new way to address the specific
spectral behavior of the scheme is introduced first for wavenumbers in [0, π], following the Matrix
Power method. For wavenumbers above π, an aliasing phenomenon always occurs but it is possible
to understand and to control the aliasing of the signal. It is shown that aliasing depends on the
polynomial degree and on the number of time steps. A new way to define dissipation and dispersion
is introduced and applied to wavenumbers larger than π. Since the new criteria recover the previous
results for wavenumbers below π, the new proposed approach is an extension of all the previous ones
dealing with dissipation and dispersion errors. At last, since the standard Finite Difference schemes
can serve as reference solution for their capability in aeroacoustics, it is shown that the Spectral
Difference method is as accurate as (or even more accurate than) the considered Finite Difference
schemes. This chapter led to a paper published in the Journal of Computational Physics [134] and
to two conference papers presented at the TILDA - Symposium & Workshop on Industrial LES &
DNS [135, 136].

9.1 Introduction

Because of the continuous growth of available computational resources during the last decade,
there was an increased interest in performing Large Eddy Simulation -LES- to solve industrial
problems. Among these problems, aeroacoustics requires to compute and to transport accu-
rately pressure waves around complex geometries and over a long distance. Many classes of
schemes were proposed to perform LES during the last 30 years, depending on the underlying
mathematical framework considered to discretized the Navier-Stokes equations.

First, in the context of Finite Difference -FD- formalism, high-order centered schemes for
structured grids were built following the Taylor’s expansion technique and their accuracy was
compared with the one of spectral methods [137]. Any (high) order of accuracy can be attained
but the number of degrees of freedom to update the solution at one point can be large. Two
optimizations of FD schemes were introduced: the compact formulation of Lele [39] that leads
to a spectral-like resolution and the Dispersion-Relation-Preserving -DRP- technique of Tam
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and Webb [45] dedicated to aeroacoustics. The compact approach links several derivatives
with unknowns located closely. By this way, a linear (implicit) system of equations links all
derivatives with unknowns. For a given accuracy, the stencil of DRP schemes is larger than for
the standard FD approach and the extra unknowns enable to control the numerical properties
of the scheme: dissipation and dispersion. Both approaches being centered, they are non
dissipative and a filter stabilizes the computations by dissipating wavenumbers. In this chapter,
we consider compact and DRP schemes as standard ingredients for LES and it is assumed that
they will provide reference results.

More recently, a new generation of high-order techniques denoted as spectral discontinuous
emerged. Following the pioneering work of Reed and Hill [138], the Discontinuous Galerkin
-DG- formulation was first applied to hyperbolic equations by Cockburn, Shu and co-authors
[139, 140, 141] and opened many years of research and papers (see [142] as an example of
reference book on DG method). The idea is to solve problems defined in the weak form inside
any mesh cell, without requiring the solution to be continuous at the mesh interfaces. At the
interface, the fluxes are computed using standard Riemann solvers, as in Finite Volume -FV-
formalism. Therefore, the FV flux computation enables the coupling of the weak problems in
surrounding cells and the FV fluxes make information going across mesh interfaces. Several
alternative high-order methods have been recently introduced. Following the staggered-grid
multidomain spectral method [143] for structured grids, Liu, Vinokur and Wang [144, 145]
introduced the Spectral Difference -SD- method aiming at a simpler to implement and more
efficient method than the current state of the art for the DG method. The approach was then
extended to mixed elements [146]. The SD method takes benefit of the resolution of the strong
differential form of the equations, as in FD, but does not assume that the solution is continuous
on the whole mesh, as in FV. Another way to define a high-order polynomial reconstruction
follows the definition of averaged quantities, as in FV. With the Spectral Volume -SV- approach
[147, 148, 149, 150, 151], a polynomial reconstruction is defined inside any cell using the
averaged quantities over sub-cells built by subdivision of the initial mesh elements. As before,
several Riemann problems are solved on mesh boundaries since the solution polynomials are
not required to be continuous at mesh interfaces. Finally, the Flux Reconstruction method
introduced in 2007 by Huynh [152] solves the strong form of the equation. It can be seen
as a collocated Spectral Difference scheme but the main difference occurs in the definition
of the flux polynomial: now, a lifting operator [153, 154, 155, 156] is introduced to increase
the polynomial degree of the initial flux polynomial by one. This is mandatory to recover
the required polynomial degree after the computation of the divergence (hyperbolic) term.
The main advantage of FR method is its ability to recover SD, SV and DG approaches for the
linear advection equation, depending on the lifting operator [157]. Compared to the standard
schemes for structured grids, the major advantage of DG, SV, SD and FR methods lies in
their natural ability to handle unstructured meshes, which is a prerequisite to treat complex
geometries. Moreover, such schemes use a very compact stencil, defined locally inside any
mesh cell. This is also an advantage in terms of high performance computing required by
massively-parallel LES.

When dealing with aeroacoustics, the first question to answer concerns the spectral accu-
racy of the chosen scheme: the key point concerns the required number of grid points per
wavelength. The spectral analysis [5] consists of dealing with the space derivative and in
comparing the numerical spatial derivative with the theoretical derivative, after projection
onto the Fourier basis. This analysis is performed on the linear advection equation in a periodic
domain with a harmonic initial solution:





∂u
∂t

+ c
∂u
∂x

=
∂u
∂t

+ c D(u) = 0

u0(x) = u(0, x) = exp(jkx) with j2 = −1,
(9.1)
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where the function u(x, t) is the unknown, c the constant advective velocity, k the constant
wavenumber and D represents the spatial derivative operator. As a consequence, (9.1) will play
an important role and for sake of clarity, the notation for the unknowns will be kept unchanged
along the whole document.

The formulation of the Fourier spectral analysis makes the analysis simple for standard
schemes based on Finite Difference paradigm. This is due to the fact that the degrees of
freedom are coupled by the numerics and not by the method itself. As introduced by Hu et
al. in 1999 [158] for the DG method, the situation is more complex for spectral discontinuous
methods. For DG method, the authors show that the degrees of freedom are coupled by the
definition of the local polynomial -inside any mesh cell-. Finally, the Fourier analysis can be
performed as for FD approach but the final equation changes. Instead of one equation giving
the complex-valued numerical wavenumber, one obtains, even for a scalar equation, a set of
linear equations. Depending on the polynomial degree p, p+ 1 waves are solutions of the linear
set of equations. In [158], it is then explained that among the p + 1 waves traveling at different
phase speeds, one mode is the physical mode as its frequency approximates the exact dispersion
relation for a range of wavenumbers, while the others are the parasite modes due to the scheme.
In other words, the solution is the superposition of one physical mode and p parasite modes.
Such results were also obtained by Zhang et al. for three different formulations of the DG
method [159]. The same kind of analysis with p + 1 waves, one physical mode and p parasite
modes, was also proposed for the SV approach [160], for the SD approach [161] and for the FR
technique [154, 162, 163]. Finally, even if the occurrence of parasite modes is demonstrated, the
proposed analysis does not explain the role of these parasite modes. Moreover, even if it can
be proved that the eigenvalues of the system are periodic (with a period of 2π), the spectral
analysis presented in [154, 158, 159, 160, 161, 162, 163] shows that the spectral behavior, playing
with the wavenumber and the order p of the polynomials, is no longer 2π-periodic. This point
is clearly not in agreement with mathematical requirements.

In this chapter, we introduce a new way to perform the Fourier spectral analysis for
polynomial discontinuous methods and we compare the accuracy of the SD technique with
two standard centered and stabilized FD schemes, the compact scheme of Lele [39] and a DRP
scheme developed by Bogey and Bailly [44]. The remainder of this chapter unfolds as follows.
In Sec. 9.3, the space-time Fourier spectral analysis is applied to the considered spatial FD
schemes coupled with a low-storage second-order Runge Kutta scheme. In Sec. 9.4, a new
analysis of the spectral Fourier approach for spectral discontinuous methods is introduced
and applied to the SD method. In Sec. 9.5, we explicitly address the case of a wavenumber
larger than π and we give the analysis in terms of number of points per wavelength for the
SD method. Before concluding, standard FD schemes and SD scheme are finally compared in
Sec. 9.6.

9.2 Spectral analysis for high-order Finite Difference methods

In this section, the standard Fourier analysis is applied to two FD schemes and standard results
are recovered. They will play an important role for comparison with the new results shown in
Sec. 9.3.

9.2.1 Spatial discretization

Let us introduce a one-dimensional domain decomposed of elements with uniform length ∆x.
In 1D, any convection equation with a constant advection velocity is linear and the key point
concerns the definition of the numerical derivative. Let ui be the discrete unknown at the point
i and u′i its derivative at the same location. The length of the computational domain is not
taken into consideration: the goal is to derive scheme expressions for a given point far from the
boundary (in order to have access to the whole scheme stencil). In the following, two schemes
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frequently applied to aeroacoustics simulations are considered.
The first scheme is the sixth-order compact scheme of Lele [39] denoted CS6. This scheme

is purely centered and for stabilization, damping high frequency waves is mandatory. Here,
the compact filter denoted CF8 is the eighth-order filter designed by Visbal and Gaitonde [164].
The Lele’s sixth-order compact scheme CS6 approximates the first-order spatial derivative
with:

1
3

u′i−1 + u′i +
1
3

u′i+1 =
14
9

ui+1 − ui−1

2∆x
+

1
9

ui+2 − ui−2

4∆x
, (9.2)

while the eighth-order compact filter CF8 designed by Visbal and Gaitonde is defined by:

α f u f
i−1 + u f

i + α f u f
i+1 =

4

∑
l=0

bl
ui+l + ui−l

2
, (9.3)

where the superscript f means filtered. The bl coefficients in (9.3) are summarized in Tab. 9.1.
α f is the filter coefficient and it is equal to 0.47. This numerical setup is used by, e.g., Aikens et
al. [165] or Le Bras et al. [166].

Tab. 9.1. CF8 compact filter coefficients.

b0 b1 b2 b3 b4

93 + 70α f

128
7 + 18α f

16
−7 + 14α f

32
1− 2α f

16
−1 + 2α f

128

The second scheme of interest is the optimized fourth-order DRP scheme designed by
Bogey and Bailly [44], denoted FDo11p. It uses a symmetric stencil with 11 points and its
expression is:

u′i =
1

∆x

5

∑
l=−5

alui+l . (9.4)

The scheme is stabilized by an optimized sixth-order filter denoted SFo11p [167] which is
defined on the same stencil:

u f
i = ui − σd

5

∑
l=−5

dlui+l . (9.5)

The optimized coefficients for the FDo11p scheme (al) and for the SFo11p filter (dl) are summa-
rized in Tab. 9.2. σd in (9.5) is generally chosen such that σd = 1.0 [167]. To illustrate the need
of high-order schemes, the first- and second-order upwind scheme were added to this study.
The first-order upwind scheme (UP1) evaluates the spatial first derivative with:

u′i =
ui − ui−1

∆x
. (9.6)

The second-order upwind scheme (UP2) evaluates the spatial first derivative with:

u′i =
3ui − 4ui−1 + ui−2

2∆x
. (9.7)

The full space and time integration is as follows. First, the spatial derivative u′i is computed
thanks to the numerical scheme (FDo11p or CS6). Then, the standard Runge-Kutta time
integration is performed and finally, the filter (SFo11p or CF8) is applied to the solution.
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Tab. 9.2. FDo11p scheme and SFo11p filter coefficients.

(a) Coefficients of the fourth-order scheme FDo11p
using 11 points with a−j = −aj and a0 = 0.

a1 0.872756993962
a2 −0.286511173973
a3 0.090320001280
a4 −0.020779405824
a5 0.002484594688

(b) Coefficients of the sixth-order filter SFo11p us-
ing 11 points with d−j = dj.

d0 0.234810479761700
d1 −0.199250131285813
d2 0.120198310245186
d3 −0.049303775636020
d4 0.012396449873964
d5 −0.001446093078167

9.2.2 Spectral analysis

The principle of the spectral analysis consists in comparing analytical and numerical derivatives
for a harmonic function u(x) = exp(jkx) with j2 = −1 and k the constant wavenumber. The
exact derivative of u is u′(x) = jk exp(jkx) = jku(x) and the wavenumber can be defined a
posteriori by

k =
u′(x)
ju(x)

. (9.8)

Using the discretized value of u at a point i denoted ui = exp(ji k∆x), the numerical derivative
u′i is computed with the scheme and the ratio of discrete quantities u′i/(jui) can be also obtained.
This complex-valued ratio represents the modification of the wavenumber due to numerics and
is called the modified wavenumber km = u′i/(jui). The dispersive behavior appears if the real
part of km and the exact wavenumber k differ, while amplification (resp. dissipation) occurs
when the imaginary part of km is larger (resp. lower) than 0. Moreover, due to the sampling
theorem of Nyquist-Shannon [168], at least two points are mandatory to discretize a wave and
the wavenumber behaves in [0, π].

Both CS6 and FDo11p schemes are centered and thus not dissipative. On the contrary,
the filters only introduce dissipation and do not create any dispersion. By applying a spatial
Fourier transform to (9.2) and (9.4), the modified wavenumber km is obtained for the Lele’s
sixth-order compact schemes CS6 in (9.9) and for the fourth-order explicit scheme FDo11p in
(9.10), respectively:

[km∆x]CS6 =

14
9

sin (k∆x) +
1
18

sin (2k∆x)

1 +
2
3

cos (k∆x)
, (9.9)

[km∆x]FDo11p = 2
5

∑
l=1

aj sin (l k∆x) . (9.10)

A perfect scheme recovers exactly the theoretical wavenumber km = k and dispersion is
measured either by km∆x defined from k∆x, or by the difference |k∆x− km∆x|. The modified
wavenumber km is obtained for the first-order upwind scheme UP1 in (9.11) and for the
second-order upwind scheme UP2 in (9.12), respectively:

[km∆x]UP1 = sin(k∆x) + j [cos (k∆x)− 1] , (9.11)

[km∆x]UP2 =

[
2 sin (k∆x)− 1

2
sin (2k∆x)

]
+ j
[

2 cos (k∆x)− 1
2

cos (2k∆x)− 3
2

]
. (9.12)

The same Fourier transform is now applied to the filters defined in (9.3) and (9.5). Here, the
analysis is immediately performed by comparing the unfiltered data with the filtered ones. On
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the contrary, the filters only introduce dissipation and do not create any dispersion. When a
Fourier mode is considered as an initial solution, the dissipation rates F = u f

i /ui obtained for
the eighth-order compact filter CF8 and for the sixth-order explicit filter SFo11p are defined in
(9.13) and in (9.14) respectively:

[F (k∆x)]CF8 =
1

1 + 2α f cos (k∆x)

4

∑
l=0

bl cos (l k∆x) , (9.13)

[F (k∆x)]SFo11p = 1− σdd0 − 2σd

5

∑
l=1

dl cos(l k∆x). (9.14)

A filter amplifies (resp. dissipates) when F is larger (resp. lower) than 1. Dispersion and
dissipation for both schemes and their filters are shown in Fig. 9.1a and Fig. 9.1b respectively.
To draw a comparison, dispersion and dissipation for both upwind schemes are shown in
Fig. 9.2a and Fig. 9.2b respectively. For wavenumbers below π/2 (equivalent to four points per
wavelength), numerical dispersion (resp. dissipation) fits very well with the exact dispersion
(resp. dissipation). In order to analyze more accurately the difference between numerics and
theory, dispersion and dissipation deviations are also shown in Fig. 9.3a, Fig. 9.3b, Fig. 9.4a
and Fig. 9.4b.
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(a) Modified wavenumber for the sixth-order compact
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with σd = 1.0 SFo11p.

Fig. 9.1. Spectral analysis of standard schemes used in Computational AeroAcoustics (CAA).
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(b) Imaginary part of the modified wavenumber for the
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Fig. 9.2. Spectral analysis of the second-order upwind scheme UP2 and the first-order upwind scheme UP1.
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Fig. 9.3. Spectral analysis of standard schemes used in Computational AeroAcoustics (CAA) in logarithmic scale
to focus on differences between numerics and theory.
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Fig. 9.4. Spectral analysis of the second-order upwind scheme UP2 and the first-order upwind scheme UP1.
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9.2.3 Points Per Wavelength (PPW)

The number of points per wavelength is representative of the resolution power of any numerical
scheme. The criteria proposed by Bogey and Bailly [44] are chosen to measure the maximum
wavenumber properly (resp. accurately), defined with subscript p (resp. with subscript a)
and calculated for both dispersion and dissipation (superscript φ and E respectively). The
four criteria are expressed as an optimization problem. For the dispersion, the optimization
problems are:

Look for kφ
p∆x solution of: max

k∆x
|k∆x− km∆x| 6 5π × 10−4,

Look for kφ
a ∆x solution of: max

k∆x
|k∆x− km∆x| 6 5π × 10−5.

Similarly, the optimization problems for dissipation are:

Look for kE
p ∆x solution of: max

k∆x
|1−F (k∆x)| 6 2.5× 10−3,

Look for kE
a ∆x solution of: max

k∆x
|1−F (k∆x)| 6 2.5× 10−4.

Tab. 9.3a and Tab. 9.3b summarize the number of points per wavelength for both schemes and
filters. These values are the same as those proposed by their respective authors, which shows
that our analysis is in agreement with previous works. To draw a comparison, Tab. 9.4a and
Tab. 9.4b summarize the number of points per wavelength for both upwind schemes.

Tab. 9.3. Number of points per wavelength (PPW) for the centered CS6 and FDo11p schemes and their corre-
sponding filters CF8 and SFo11p.

(a) Accuracy in term of dispersion measured by the
scheme.

λ
φ
p/∆x λ

φ
a /∆x

CS6 5.42 7.45
FDo11p 3.93 4.65

(b) Accuracy in term of dissipation measured by
the filter.

λE
p /∆x λE

a /∆x

CF8 4.21 5.66
SFo11p 4.85 5.76

Tab. 9.4. Number of points per wavelength (PPW) for the first-order upwind UP1 and second-order upwind UP2
scheme.

(a) Accuracy in term of dispersion.

λ
φ
p/∆x λ

φ
a /∆x

UP1 29.72 64.07
UP2 37.35 80.68

(b) Accuracy in term of dissipation.

λE
p /∆x λE

a /∆x

UP1 88.78 280.97
UP2 19.78 35.29

Up to now, it should be noticed that the time integration was not taken into account yet. It
means that the time integration discretization has no effect on the equivalent wavenumber for
a given scheme / filter. This is only true if the time integration is performed exactly. Moreover,
the CF8 filter leads to a slightly better resolution power than the SFo11p filter. Finally, it seems
that the FDo11p scheme is better than the CS6 scheme in terms of dispersion.

9.3 Effect of time integration on the spectral analysis

As an introduction, we briefly explain how the space-time spectral analysis is performed. This
advanced method is then applied to two Finite Difference schemes. The results obtained in
this section will notably play an important role later for purpose of comparison with the new
results shown in Sec. 9.4.
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9.3.1 Time discretization

The advection equation (9.1) is now time-marched using a standard explicit time integration
procedure based on the Runge-Kutta Method. In the whole chapter, the low-storage DRP
second-order six-stage Runge-Kutta (RKo6s) scheme of Bogey and Bailly [44] is chosen. For
completeness, the Runge-Kutta coefficients are given in Tab. 9.5.

Tab. 9.5. Coefficients of the low-storage second-order six-stage Runge-Kutta (RKo6s).

γ1 1.000000000000
γ2 0.500000000000
γ3 0.165919771368
γ4 0.040919732041
γ5 0.007555704391
γ6 0.000891421261

The full space and time integration is as follows. First, the spatial derivative u′i is computed
thanks to the numerical scheme (either FDo11p or CS6). Then, the standard Runge-Kutta time
integration is performed and finally, the filter (either SFo11p or CF8) is applied to the updated
solution.

The analysis being performed in both space and time, u (x, t) is discretized by un
i =

u (i∆x, n∆t), where the index i (resp. n) refers to space (resp. time) position and ∆t to the time
step. The fully discrete space-time scheme then reads:

un+1
i = un

i +
6

∑
l=1

γl (−c∆tD(un
i ))

l , (9.15)

where D is the derivative operator introduced in (9.1).
Introducing the Courant-Friedrichs-Lewy -CFL- number defined by ν = c∆t/∆x and the

discretized normal mode

un
i = exp (−jn ω∆t + ji k∆x)

into (9.15) and applying the filter transfer function, the expression of the dispersion relation of
the space-time scheme with filtering is:

exp (−jω∆t) = F (k∆x)

(
1 +

6

∑
l=1

γl (−jν km∆x)l

)
. (9.16)

(9.16) contains two new quantities. km represents the modification of the spatial mode k when
the spatial scheme is applied. Moreover, F (k∆x) represents the transfer function associated
to either CF8 or SFo11p filters. The analytical expressions for F and the analytical relations
between km and k are given in Sec. 9.2.2.

Such a dispersion relation must be compared with the exact one ω = kc. The corresponding
dimensionless dispersion relation is ω∆t = νk∆x. Let us now introduce:

G (k∆x) = F (k∆x)

(
1 +

6

∑
l=1

γl (−jν km∆x)l

)
, (9.17)

ϕ = − arg (G) /ν ∈]− π, π], (9.18)
ρ = |G|. (9.19)

For a non dispersive scheme, ϕ is equal to ω∆t/ν = k∆x. For a non dissipative scheme, ρ
is equal to 1. ρ > 1 gives amplification, whereas ρ < 1 gives dissipation. Such a coupled
space-time approach has been previously introduced in [169, 170, 171].

Remark: The quantities ρ and ϕ are defined for one iteration of the time integration process.
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9.3.2 Stability analysis based on CFL criterion

The space-time discretization is stable under a CFL condition. Before performing the Fourier
analysis, the maximum CFL number for stable computation is computed. Starting from (9.15),
the iterative process to find un

i is convergent if ρ is strictly lower than 1. Looking for the largest
time step to maintain ρ strictly lower than 1 for all k∆x is an optimization problem and the
stability limits (that we obtained) are summarized in Tab. 9.6. Stability limits are also given for
both upwind schemes in Tab. 9.7.

Tab. 9.6. CFL stability for the RKo6s-SFo11p-FDo11p and RKo6s-CF8-CS6 combinations.

Runge-Kutta Filter Scheme ν

RKo6s SFo11p FDo11p 2.053740
RKo6s CF8 CS6 1.997980

Tab. 9.7. CFL stability for the RKo6s-UP1 and RKo6s-UP2 combinations.

Runge-Kutta Scheme ν

RKo6s UP1 2.077149
RKo6s UP2 1.038574

9.3.3 Spectral analysis

Three CFL numbers (0.1, 1.0 and 1.9, respectively) are chosen in agreement with the stability
constraints in Tab. 9.6 and both dispersion and dissipation are estimated from (9.17). Numerical
results are shown in Fig. 9.5 and Fig. 9.6 for dispersion and dissipation, respectively. These
curves show that the spectral behavior changes with the CFL number and as highlighted in the
next section, this change in spectral behavior has a strong impact on the number of grid points
per wavelength.

9.3.4 Number of Points Per Wavelength (PPW)

The definition of the number of points per wavelength follows the approach introduced in
Sec. 9.2.3. For the coupled space-time analysis, the results may now depend on the CFL number
ν. The results obtained for the considered schemes are summarized in Tab. 9.8 and Tab. 9.9.
It can be found that, when the CFL number ν tends to 0, the relative error on dispersion and
dissipation due to the time integration procedure decreases and the (standard) results for
the (standard) spatial spectral analysis are obviously recovered. In terms of dispersion, the
required number of points per wavelength does not necessary increase when the CFL number
ν increases since the dispersion curves are non-monotonic. In contrast, in terms of dissipation,
the required number of points per wavelength increases when the CFL number ν increases.

9.3.5 Summary

It has been shown that the time integration procedure has an effect on the spectral behavior of
the scheme. Of course, standard results are recovered when the CFL number tends to 0. For
the CS6 compact scheme, accounting for the time integration procedure does not really change
the required number of points per wavelength up to ν = 1. However, the situation differs for
the DRP scheme FDo11p since the number of points per wavelength must be increased. Both
filters CF8 and SFo11p are not specifically sensitive to the CFL number ν up to ν = 1. As a
consequence, this analysis shows that the coupled space-time approach is a prerequisite to
deduce the number of grid points per wavelength.
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Moreover, a general method to study the spectral behavior of space-time discretization has
been recalled. As shown next in Sec. 9.4, such a coupled approach is mandatory to describe the
spectral behavior of spectral discontinuous techniques.
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Fig. 9.5. Effect of time integration on dispersion for the proposed FD schemes.
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Fig. 9.6. Effect of time integration on dissipation for the proposed FD schemes.

Tab. 9.8. Number of points per wavelength for the space-time coupled approach using the RKo6s-SFo11p-FDo11p
combination.

ν λ
φ
p/∆x λ

φ
a /∆x λE

p /∆x λE
a /∆x

0.01 3.93 4.65 4.85 5.76
0.1 3.93 4.68 4.85 5.76
0.5 3.89 5.26 4.85 5.76
0.7 3.90 9.64 4.85 5.76
0.9 4.01 10.75 4.85 5.77
1.0 4.15 11.23 4.85 5.77
1.5 5.95 13.28 4.94 5.80
1.9 7.27 14.50 5.63 6.57
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Tab. 9.9. Number of points per wavelength for the space-time coupled approach using the RKo6s-CF8-CS6
combination.

ν λ
φ
p/∆x λ

φ
a /∆x λE

p /∆x λE
a /∆x

0.01 5.42 7.45 4.21 5.66
0.1 5.42 7.42 4.21 5.66
0.5 5.31 6.86 4.22 5.67
0.7 5.27 6.54 4.22 5.68
0.9 5.28 6.38 4.22 5.69
1.0 5.33 6.39 4.22 5.70
1.5 6.20 11.84 4.61 5.77
1.9 7.38 12.96 5.61 6.66

9.4 Spectral analysis of the Spectral Difference method

This section is devoted to the Fourier analysis of the SD method. As before, the analysis is
performed on the advection equation (9.1).

9.4.1 Description of the Spectral Difference method

The spectral difference method solves in any cell the strong form of the equation per direction,
as in the FD approach. The concept of the SD approach is simple: if the solution u evolves as a
polynomial of degree p, the divergence of the flux must also be a polynomial of degree p and
therefore the flux polynomial must be a polynomial of degree p + 1. Instead of defining any
polynomial by its monomial coefficients, polynomials are defined by their values on a set of
points and by Lagrange interpolation. We introduce the set of p + 1 points called solution points
denoted as (SPl)1≤l≤p+1 and the p + 2 points called flux points denoted as (FPl)1≤l≤p+2. In the
following, the explanation related to the position of the degrees of freedom is performed in
[−1, 1], since any 1D cell can be cast into [−1, 1] by an isoparametric transformation.

The unknown polynomial for u is totally defined by its values at the solution points and
here, the solution points are selected as the roots of the Chebyshev polynomial (of the first
kind) of degree p defined by:

SPl = − cos
(

2l − 1
2p + 2

π

)
for 1 6 l 6 p + 1. (9.20)

It is shown in [161] that the SD approach is independent of the solution point location and our
choice is given for completeness.

The flux polynomial is defined by p + 2 flux points (1 point more than the solution). Fol-
lowing Kopriva and Kolias [143], two flux points are located at the segment boundaries and
any other p flux point is located between two solution points. The approach is staggered. In
this chapter, we choose the p flux points as the roots of the Legendre polynomials of degree p
and the two segment end points, as Huynh [152]. We found that this choice is the best one for
stability and in particular, the other standard choice (Chebyshev-Gauss-Lobatto) is proved to
be weakly unstable for p > 2 [161, 172].

Both solution and flux polynomials are based on the Lagrange polynomials using the
solution points SPl and the flux points FPl respectively. The Lagrange polynomials Ll of degree
p based on the solution point index l is:

Ll (x) =
p+1

∏
r=1
r 6=l

x− SPr

SPl − SPr
(9.21)
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and the solution in cell i ui(x, t) can be expanded over this basis as:

ui (x, t) =
p+1

∑
l=1

ui (SPl , t) Ll (x) . (9.22)

In the same way, the Lagrange polynomials Tl of order p + 1 based on the flux point index l is:

Tl (x) =
p+2

∏
r=1
r 6=l

x− FPr

FPl − FPr
(9.23)

and the flux function polynomial fi(x, t) in cell i ( fi(x, t) = cui(x, t) for the advection equation)
can be expanded over the basis as:

fi (x, t) =
p+2

∑
l=1

fi (FPl , t) Tl (x) . (9.24)

The SD procedure is now as follows. First, the solution is extrapolated at the flux point
locations using (9.22). At the interior flux points, the flux is computed immediately from
the solution. The flux on border flux points is the solution of a Riemann problem since the
two extrapolated quantities (one at each side) can differ. Finally, the divergence of the flux
polynomial is evaluated at the solution point locations by differentiation of (9.24) as:

∂ fi

∂x
(x, t) =

p+2

∑
l=1

fi (FPl , t) T ′l (x) , where T ′l (x) =
dTl

dx
(x) . (9.25)

9.4.2 Matrix form of the SD procedure

Since the polynomials are defined on a Lagrange basis, any polynomial is defined by its values
at the control points (either solution points or flux points). We introduce U i (t), the column
vector of size p + 1 (whose components are the solutions at solution points) as:

U i (t) = [ui (SPl , t)]>16l6p+1 , (9.26)

where > means the transpose operation.
The first step is the extrapolation of the solution at the flux points using the form of

polynomials, leading to the column vector V i (t) of size p + 2 defined by:

V i (t) = [ui (FPl , t)]>16l6p+2 =

[
p+1

∑
r=1

ui (SPr, t)Lr (FPl)

]>

16l6p+2

. (9.27)

Since a Riemann problem must be solved on the cell boundaries, informations from neighboring
cells i− 1 and i + 1 are required. Solutions at solution points Ũ i (t) and solutions at flux points
Ṽ i (t) including solutions on the border flux points from adjacent cells are now defined as
column vectors of size 3× (p + 1) and p + 4, respectively :

Ũ i (t) =




U i−1 (t)
U i (t)

U i+1 (t)


 , (9.28)

Ṽ i (t) =




ui−1
(

FPp+2, t
)

V i (t)
ui+1 (FP1, t)


 . (9.29)
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Defining Om,n as the zero matrix of dimension m× n and In the identity matrix of size n, the
extrapolation matrix E of size (p + 4)× (3× (p + 1)) such that Ṽ i (t) = EŨ i (t) reads as:

E =




[
Ll
(

FPp+2
)]

16l6p+1 O1,p+1 O1,p+1

O1,p+1 [Ll (FP1)]16l6p+1 O1,p+1

O1,p+1 [Ll (FP2)]16l6p+1 O1,p+1
...

...
...

O1,p+1
[
Ll
(

FPp+2
)]

16l6p+1 O1,p+1

O1,p+1 O1,p+1 [Ll (FP1)]16l6p+1




. (9.30)

The second step consists of computing the flux. Here, the Riemann problem is solved using
the (upwind) Godunov scheme:

FRiemann (uL, uR) = c
(

1 + sign(c)
2

uL +
1− sign(c)

2
uR

)
, (9.31)

where sign(c) = c/|c|. The computation of the flux at the flux points can be defined by the
matrix F of size (p + 2)× (p + 4):

F = c




1 + sign(c)
2

1− sign(c)
2

O1,p 0 0

Op,1 Op,1 Ip Op,1 Op,1

0 0 O1,p
1 + sign(c)

2
1− sign(c)

2


 . (9.32)

For the last step, the flux polynomial is differentiated and its divergence is computed at the
solution points. The derivative matrix D of size (p + 1)× (p + 2) is then

D =
[
T ′l (SPr)

]
16r6p+1
16l6p+2

.

The overall process for computing the divergence term from the solution points can now
be written in the following compact matrix form as:

M1 = DFE, (9.33)

with M1 a matrix of size (p + 1)× (3(p + 1)).

9.4.3 Matrix form for the spectral analysis

The generating pattern for a one-dimensional problem is given by one cell, so let us introduce
the discretized normal mode within this period U i (t) = Û i (t) exp (ji k∆x) such that Ũ i (t) =
LÛ i (t). Introducing the complex-valued matrix L of size 3(p + 1)× (p + 1):

L =




exp (−j k∆x) Ip+1
Ip+1

exp (j k∆x) Ip+1


 , (9.34)

it comes easily:

∂Û i (t)
∂t

= MÛ i (t) , (9.35)

where M = −DFEL = −M1L.
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9.4.4 Time discretization

(9.35) is a system of linear differential equations whose integration is carried out using the
low-storage second-order six-stage Runge-Kutta scheme of Bogey and Bailly [44], as in Sec. 9.3.
Û i (t) is discretized by Û

n
i = Û i (n∆t) and the discrete solution is advanced in time using

Û
n+1
i =

[
Ip+1 +

6

∑
l=1

γl∆tl Ml

]
Û

n
i = GÛ

n
i . (9.36)

G is a square complex-valued matrix of size p + 1 which accounts for both space and time
integration. G depends on the polynomial degree p, on the wavenumber k and of course on
the CFL number ν = c∆t/∆x. It is important to note that we keep here the standard definition
of the CFL number for an advection equation.

9.4.5 Stability analysis based on CFL criterion

The SD method with the Runge-Kutta time integration is stable under a CFL condition, similarly

as the FD method. Starting from (9.36), the matrix geometric progression between Û
n+1
i and

Û
n
i is convergent if the spectral radius ρ of matrix G is strictly lower than 1. The stability limits

found are summarized in Tab. 9.10. To be able to compare with the FD method, let us define a
new CFL number as ν̂ = (c∆t/∆x) (p + 1) = ν (p + 1) with a length scale which corresponds
to the mean distance between two adjacent degrees of freedom.

Tab. 9.10. CFL stability bounds for the SD method with Runge-Kutta time integration (RKo6s).

·

p ν ν̂

2 0.542304 1.626913
3 0.337879 1.351515
4 0.233186 1.165928
5 0.172017 1.032102

9.4.6 Application of the Nyquist-Shannon sampling theorem

The Nyquist-Shannon sampling theorem states that at least two points are mandatory to
capture a given frequency. Such an approach is routinely applied in standard schemes such as
FD. Here, let us consider a vector Û

n
i sampled over a cell of size ∆x. The sampling frequency

fs is therefore fs = 1/∆x. It is assumed that the vector U i represents the normal mode as in
Sec. 9.4.3:

U i (t, k) = Û i (t) exp (ji k∆x) . (9.37)

Computing now the same kind of relation for a new normal mode with k′ = k + m(2π/∆x) =
k + m(2π fs) (m ∈ Z), one finds:

U i
(
t, k′
)
= Û i (t) exp

(
ji k′∆x

)
,

= Û i (t) exp (ji (k + 2mπ/∆x)∆x) ,

= Û i (t) exp (ji k∆x + ij 2mπ) ,

= U i (t, k) ,

because im ∈ Z. As a consequence, any normal mode U i (t, k + 2mπ/∆x) with m ∈ Z has the
same representation after sampling at the solution points and we note that, in order to avoid
aliasing, k∆x should belong to [0, π]. This is a key point and in all previous studies on spectral
accuracy (for DG, SD, SV and FR), such a property was always lost [154, 158, 159, 160, 161, 162,
163]. An illustration of the aliasing phenomenon for k∆x > π will be shown in Sec. 9.5.
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9.4.7 A naive approach for the spectral analysis

(9.36) introduces the transfer matrix G between time steps n and n + 1:

Û
n+1
i = GÛ

n
i . (9.38)

Introducing a normal mode projected onto the SD basis

Û
n
i = exp (−jn ω∆t) [exp (j k (SPl + i∆x))]>16l6p+1 (9.39)

and injecting it into (9.41), it comes:

exp (−jω∆t) [exp (jk (SPl + i∆x))]>16l6p+1 = G [exp (jk (SPl + i∆x))]>16l6p+1 . (9.40)

(9.40) represents a system of relations between the components of two column vectors. The
naive approach for the spectral analysis consists of performing the analysis component by
component. As a consequence, one can introduce for any solution point l the ratio ρl of the
corresponding l-th components of the two vectors. ρl is a complex number which approximates
exp (−jω∆t) for each solution point and such approximation allows to evaluate the dispersion
relation for each solution point. |ρl | gives the amplification or the dissipation at the l-th solution
point: |ρl | > 1 gives amplification and |ρl | < 1 dissipation. The argument ϕ = − arg (ρl) /ν
gives the phase delay or the dispersion. It is of great importance to remind that since p + 1
solution points were introduced, the spectral behavior is characterized by p + 1 curves. These
curves must be compared with the exact dispersion relation ω = kc or with its dimensionless
expression ω∆t = νk∆x.

Fig. 9.7a and Fig. 9.7b give the dispersion and the amplification for (p, ν) = (2, 0.1). It
numerically seems that the scheme is unstable since |ρ1| > 1 for k∆x > 0. It is clear in Fig. 9.7b
that |ρ1| > 1 for k∆x > π/2.
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Fig. 9.7. Spectral analysis for (p, ν) = (2, 0.1): naive approach.

However, even if |ρ1| > 1 for k∆x > 0, the scheme is stable. Fig. 9.8 gives an illustration
of the spectral analysis previously achieved. Any black cross defines the position of one
solution point and any full black circle represents an initial solution defined at the solution
point locations. After time integration (9.41), the new solution is defined at the same solution
points using the empty black circles. The new solution is obtained from the initial curve by
adding the basic ingredients of numerical schemes: dissipation and dispersion. Thanks to this
illustration, it can be seen that at some solution points, the solution is amplified whereas it is
dissipated at the other solution points even if the solution is globally dissipated. Fig. 9.8 justifies
the fact that a purely local analysis, based on values at solution points, is not the right way
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to analyze the spectral behavior. The spectral analysis requires a global trend and the naive
analysis looses the coupling of the solutions at solution points through the definition of the
local polynomial. In other words, the solution polynomial plays the most important role, not the data
used to define it.

Fig. 9.8. Illustration of the spectral analysis. The mesh is composed of four cells delimited by vertical dotted
lines. Any black cross (+) represents one solution point. The initial solution at one solution point is after time
integration at the solution points.

9.4.8 Matrix Power Method for the spectral analysis

(9.36) introduces the transfer matrix G between time steps n and n + 1:

Û
n+1
i = GÛ

n
i . (9.41)

and using properties of geometric progressions and (9.41), one obtains, raising G to the power
n:

Û
n
i = GnÛ

0
i . (9.42)

Carrying out an unsteady computation (for the advection equation) with the Spectral Difference
method simply consists of computing the n-th power of the matrix G in order to obtain the
solution at the n-th time iteration from the initial solution. The computation of the n-th power
of any matrix is at the core of the Matrix Power Method (MPM) also called Power Iteration
or Power Method [173, 174]. The main properties of the MPM are summarized below for
completeness.

The MPM gives a well-known algorithm for the computation of the spectral radius of a
matrix, i.e. the eigenvalue with the largest modulus. The proof of the theorem can be found in
[173] and it is introduced hereafter since it enables to establish a general result for the spectral
analysis of the SD Method. Since (9.41) is the expression of a matrix geometric progression, its
behavior is given by the eigenvalue with the largest modulus when n tends to infinity because
among all the modes, the considered one has the least dissipation. This is the reason why,
even if all the eigenvalues were computed, only the one with the largest modulus was retained
according to the MPM.

The Matrix Power Method for SD

G is a (p + 1)× (p + 1) matrix with complex coefficients. Consider the eigenvalue problem
GÛ i = λÛ i, where Û i 6= 0, Û i ∈ C(p+1)×1 and λ ∈ C. Û i is indeed a column vector.

145



Chapter 9. Spectral analysis

Assumptions: We assume that the eigenvalue problem Gvl = λlvl with λl ∈ C and vl ∈
C(p+1)×1 admits a complete normalized eigenvector space

(
v1, v2, ..., vp+1

)
spanning C(p+1) with

corresponding eigenvalues satisfying |λ1| < |λl |, l 6= 1 and |λl | <
∣∣λp+1

∣∣, l 6= p + 1.

From now on, let the initial condition Û
0
i be a given vector, for which

Û
0
i =

p+1

∑
l=1

α
(0)
l vl , with α

(0)
p+1 6= 0, (9.43)

and let

∀n ∈ {1, 2, ...} , Û
n
i = GÛ

n−1
i , (9.44)

be the basic recursive sequence. From (9.43) and (9.44), it comes immediately:

Û
n
i =

p+1

∑
l=1

α
(0)
l Gnvl .

Furthermore, Gnvl = λn
l vl , for all l ∈ {1, 2, ..., p + 1}, and as a consequence:

Û
n
i =

p+1

∑
l=1

α
(0)
l λn

l vl

or equivalently:

Û
n
i = α

(0)
p+1λn

p+1


vp+1 +

p

∑
l=1

α
(0)
l

α
(0)
p+1

(
λl

λp+1

)n

vl


 .

Hence, using
∣∣∣ λl

λp+1

∣∣∣ = 1− |λp+1|−|λl |
|λp+1| , it comes:

∥∥∥∥∥∥
vp+1 −

1

α
(0)
p+1λn

p+1

Û
n
i

∥∥∥∥∥∥
∞

6
p

∑
l=1

∣∣∣∣∣∣
α
(0)
l

α
(0)
p+1

∣∣∣∣∣∣
(
1− ap+1

)n , (9.45)

where

ap+1 = min
l∈{1,...,p}

l 6=p+1

∣∣∣∣∣

∣∣λp+1
∣∣− |λl |

λp+1

∣∣∣∣∣ .

Noticing that
lim

n→+∞

(
1− ap+1

)n
= 0,

one can easily deduce from (9.45) that

Û
n
i ∼

n→+∞
α
(0)
p+1λn

p+1vp+1. (9.46)

So, Û
n
i behaves as α

(0)
p+1λn

p+1vp+1 when the number of iterations of the time integration n is large.
Moreover, the difference between the true behavior and its asymptotic approximation depends
on how the ratios

∣∣λl/λp+1
∣∣ for l ∈ {1, ..., p} decay to 0. For a large number of iterations and

for any guess Û0
i with α

(0)
p+1 6= 0, Ûn

i behaves in the direction of the dominant eigenvector vp+1.
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Results of the MPM for SD

The Matrix Power Method gives a way to perform the spectral analysis of the Spectral Differ-
ence method. The dispersion and the amplification are simply given by the spectral radius
|λp+1| of the matrix G. Between the iterations n and n + 1, the dispersion is given by the
argument ϕ = − arg

(
λp+1

)
/ν and the amplification is given by ρ =

∣∣λp+1
∣∣.

Remark: In all the cases presented in this chapter, we found numerically that the eigenvalue
problem Gvl = λlvl always satisfied the assumptions given above. We did not succeed in demonstrating
mathematically such a result for any value of the polynomial degree p. This is left as a future line of
research.
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Fig. 9.9. Spectral analysis for the RKo6s-SD schemes with CFL condition ν = 0.1: effect of the order of the
solution reconstruction.

Remark: It should be noted that the Matrix Power Method can be applied to any kind of
high-order spectral discontinuous method, since the discrete space-time integration can be
written in the form of (9.44) for an advection equation.

9.4.9 Comparison with numerical results

Numerical solutions in 1D are now computed to support the theoretical results on dispersion
and dissipation in Fig. 9.9a and Fig. 9.9b. The advection equation (9.1) with c = 1.0 [m/s] is
solved using the Spectral Difference method previously mentioned with ν = 0.1. The initial
solution is u0(x) = sin(kx). The one-dimensional mesh is composed of 40 regular cells with
a cell length ∆x = 2.0. The system is closed with periodic boundary conditions. Indeed,
numerical computations are performed with k∆x = 0.1πn with n ∈ N, 1 6 n 6 9 for p = 2
and 2 6 n 6 9 for p = 3 and p = 4. One obtains 2n periods on this specific mesh.

The initial solution is transported over a sufficient number of discrete time instants to
measure the dissipation and the dispersion. The amplification and the phase shift are identified
by a minimization process using the least squares method to solve:

min
A∈R+∗

φ∈[0,2π[

‖ f (x, t)− A sin(kx + φ)‖2 , (9.47)

where ‖·‖2 is the standard L2 norm for functions. It is shown in Fig. 9.10a and Fig. 9.10b
that theoretical and numerical behaviors for dispersion and dissipation are in a very good
agreement, for p = 2, p = 3 and p = 4 respectively.
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Fig. 9.10. Spectral analysis for t he RKo6s-SD schemes with CFL condition ν = 0.1: comparison of theoretical
spectral behaviors with numerical solutions and effect of different polynomial orders.

9.5 Extension to high wavenumbers for the Spectral Difference method

It was shown in Sec. 9.4.6 that the standard spectral analysis, with Fourier modes, cannot
be applied to wavenumbers greater than π. This is a consequence of the Nyquist-Shannon
sampling theorem. However, the spectral analysis published in the literature allows to capture
wavenumbers greater than π [154, 158, 159, 160, 161, 162, 163]. This section is devoted to the
analysis of this phenomenon when the wavenumber is larger than π.

9.5.1 Aliasing and initial solution projection

In this section, we want to analyze the aliasing that occurs with high-order spectral methods.
We consider as before an advection equation problem with periodic conditions. For a given
∆x, two simulations are performed. For the first one, the wavenumber k is chosen such that
k∆x = π/2, while for the second case, the wavenumber k is such that k∆x = 3π/2. For both
cases, we select p = 3.

For the first computation, the initial, final solutions, and their corresponding Fourier
transform, are shown in Fig. 9.11 and Fig. 9.12. The solution is almost conserved and the energy
repartition per mode does not change significantly.

Regarding the second case with k∆x = 3π/2, the initial solution and the associated Fourier
spectrum are shown in Fig. 9.13. After many iterations (we do not define the number of
iterations here since it is the topic of Sec. 9.5.3 and Sec. 9.5.4), the final solution and the
associated spectrum are shown in Fig. 9.14. We remark that the mode k∆x = π/2 now contains
the largest part of the energy, while the mode k∆x = 3π/2 initially had the largest energy.
All modes larger than π are damped and it remains essentially the mode associated with
k∆x = π/2.

This numerical experiment points out the aliasing phenomenon revealed by our analysis.
Such aliasing occurs for any value of p, but the time to see an effect varies with p, the number of
iterations, the CFL number and the wavenumber one looks for. Moreover, the standard Fourier
spectral analysis can only be applied once the initial wavenumber is unchanged: dissipation
and dispersion are defined for a given frequency. Here, since the frequency (with the main
part of the energy) changes, it is mandatory to introduce a new way to estimate dissipation
and dispersion. In the following, dissipation is expressed using relations defined with energy
preserving relations, while dispersion is obtained from a scalar product.
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Fig. 9.11. Initial solution for k∆x = π/2.
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Fig. 9.12. Final solution for k∆x = π/2.
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Fig. 9.13. Initial solution for k∆x = 3π/2.
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Fig. 9.14. Final solution for k∆x = 3π/2.

9.5.2 Mathematical consideration

Let us define the space L2 ([−1,+1]) of complex-valued functions on the closed interval
[−1,+1] and the associated complex scalar product by:

∀ ( f , g) ∈
(

L2 ([−1,+1])
)2

, 〈 f , g〉 =
∫ +1

−1
f (x)× conj(g) (x) dx, (9.48)

where conj(g) is the complex conjugate of g. Obviously, the norm associated with this scalar
product is defined by:

∀ f ∈ L2 ([−1,+1]) , ‖ f ‖ =
√∫ +1

−1
| f (x)|2 dx. (9.49)

Moreover,
∥∥α ejβ f

∥∥ = α ‖ f ‖ and 〈α ejβ f , g〉 = α ejβ〈 f , g〉 for all (α, β) ∈ R+ × [0, 2π[ by
sesquilinearity of the complex scalar product.

Let us use this complex scalar product to compute the dispersion and the dissipation of
the Spectral Difference method. For wavenumbers in [0, π], the spectral analysis follows the
MPM. However, for wavenumbers larger than π, coming back to the physical meaning of
dissipation and dispersion, dissipation can be expressed as the rate of loss in energy of the signal, while
dispersion is the phase shift of the signal. In the case of spectral analysis, the functions f are simply
represented by the complex exponential basis f n (x) = exp (−jωn∆t + jkx) = α ejβ f 0 (x). The
dissipation and the dispersion after n iterations can be expressed as the product of the initial
solution by α ejβ. Mathematically, the dissipation is defined as the loss of the L2-norm of the
signal f between time 0 and n by:

‖ f n‖
‖ f 0‖ =

∥∥α ejβ f 0
∥∥

‖ f 0‖ = α. (9.50)

The phase shift of the signal f between time 0 and n can be simply expressed as:

arg
(
〈 f n, f 0〉

)
= arg

(
〈α ejβ f 0, f 0〉

)
= arg

(
α ejβ〈 f 0, f 0〉

)
= arg

(
α ejβ ∥∥ f 0∥∥2

)
= β. (9.51)

The complex scalar product is defined on L2 ([−1,+1]) and this is the right way to take
into account the fact that all quantities are defined by polynomials. However, (9.50) and (9.51)
are obtained using only the sesquilinearity of the complex scalar product since the definition of
the scalar product (9.48) is never explicitly used. Actually, the definition of both dispersion
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9.5 Extension to high wavenumbers for the Spectral Difference method

and dissipation does not depend on the considered scalar product. It is more convenient (and
simple!) to replace the L2 norm for functions by the `2-norm ‖·‖2 of vectors in Cp+1, playing
directly with the solutions at solution points. Of course, this norm is derived from the following
complex scalar product:

∀ (x, y) ∈
(
Cp+1

)2
, 〈x, y〉 =

p+1

∑
l=1

xl × conj(yl). (9.52)

9.5.3 Energy loss estimation

As explained before, we replace the standard L2-norm of functions by the `2-norm of the
solution point vectors Ûn

i . Let us introduce the ratio ρn,m for (n, m) ∈ N+ ×N+ with n > m:

ρn,m =

∥∥∥Ûn
i

∥∥∥
2∥∥∥Ûn−m

i

∥∥∥
2

. (9.53)

By definition, ρn,m represents the energy loss of the solution between iteration n−m (n ≥ m)
and iteration n. The MPM gives the behavior of ρn,m when n is sufficiently large:

ρn,m =

√√√√√√√√

p+1
∑

l=1

∣∣∣α(0)
l λn

l

∣∣∣
2

p+1
∑

l=1

∣∣∣α(0)
l λn−m

l

∣∣∣
2
∼

n→+∞

∣∣∣λm
p+1

∣∣∣ ∼
n→+∞

ρm. (9.54)

Using (9.54), it is clear that ρn,m is a generalization of the standard criterion for scheme dis-
sipation and ρn,m behaves as the spectral radius raised to a power equal to the number of
iterations.

Let ρn = ρn,n represent an estimation of the energy loss by the initial signal after n iterations.
In Fig. 9.15, the loss in energy for two values of p is shown as a function of the number of
iterations for computations performed at CFL number ν = 0.1. As expected, the loss in energy
increases with the number of iterations to perform. ρn measures the dissipation effect above π
but we need to introduce a new quantity to account for dispersion.
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Fig. 9.15. Loss in energy for two values of p as a function of the number of iterations (ν = 0.1).

9.5.4 Phase shift estimation

Let us introduce δϕn,m for (n, m) ∈ N+ ×N+ with n > m:

δϕn,m = arg
(
〈Ûn

i , Ûn−m
i exp (−jmν k∆x)〉

)
. (9.55)

151



Chapter 9. Spectral analysis

δϕn,m represents the phase shift of the solution between iterations n−m and n. Indeed, the
factor exp (−jmν k∆x) takes into account the theoretical advection given by the analytical
solution of the advection equation with a constant advective velocity c. We have:

δϕn,m ∼
n→+∞

arg
(

α
(0)
p+1λn

p+1conj(α(0)
p+1λn−m

p+1 ) exp (jmν k∆x)
)

(9.56)

∼
n→+∞

arg
( ∣∣∣α(0)

p+1

∣∣∣
2

ρn exp (−jnνϕ) ρn−m exp (j (n−m) νϕ) exp (jmν k∆x)
)

(9.57)

∼
n→+∞

arg
(

ρ2n−m
∣∣∣α(0)

p+1

∣∣∣
2

exp (jmν (k∆x− ϕ))

)
(9.58)

∼
n→+∞

mν (k∆x− ϕ) . (9.59)

This criterion computes the phase shift of the signal induced by the numerical scheme between
iteration n and iteration n − m. Let us note δϕn,n = δϕn which computes an estimation of
the phase delay between the signal after n iterations and the initial signal which has been
analytically convected. It measures the overall dispersion induced by the time integration
loop. This latter is a generalization of the usual criterion but it takes into account the effect of
the time integration. Indeed, the spectral behavior evolves during the number of iterations.
Furthermore, δϕn/2π gives the phase shift length per number of wavelength. For example,
δϕn/2π = 0.1 means that both signals are separated by 0.1λ where λ is the signal wavelength.
In Fig. 9.16, the phase shifts for SD3 and SD5 are shown as a function of the number of iterations,
in a similar way as for Fig. 9.15.
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Fig. 9.16. Phase shift for two values of p as a function of the number of iterations (ν = 0.1).

9.5.5 Summary

In this section, new criteria for dissipation and dispersion have been introduced. The criteria
take into account both space and time schemes. It is shown that for wavenumbers above
π, aliasing occurs but the aliasing speed depends on the CFL number, the time integration
procedure, the number of time steps and the polynomial degree p. The new criteria based
on energy loss and phase shift are extensions of the standard Fourier approach introduced in
the previous sections. In particular, the results presented in Sec. 9.4 are recovered by the new
approach for wavenumbers in [0, π] and a large number of iterations (asymptotic behavior).
We note that the new criteria are general in the sense that they can be applied to any kind of
numerical scheme.

In the next section, these criteria are used to compare the Spectral Difference scheme with
the Finite Difference approaches introduced in Sec. 9.3.
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9.6 Comparison with standard high-order schemes

This section is devoted to the comparison of the spectral behavior between the standard
schemes for aeroacoustics and the Spectral Difference method.

9.6.1 Naive comparison

For standard spectral analysis of FD schemes, G (k∆x) defined in (9.17) can be seen as the
transfer function between ûn

i and ûn+1
i after applying the spatial numerical scheme, the time

integration and the filter. Like all transfer functions, it can be characterized by its modulus,
which was called ρ = |G|, and its argument, which was called ϕ = − arg (G) /ν. Note that
the argument of G (k∆x) was (i) multiplied by (−1) because of the normal mode choice
un

i = exp ((−1)jn ω∆t + ji k∆x) and (ii) divided by the CFL number ν to obtain a quantity
which is always equal to k∆x in the exact case since the dimensionless dispersion relation is
ω∆t = νk∆x. For the spectral analysis of the Spectral Difference method, the transfer function
is λp+1. Indeed, when the number of iterations is large, Ûn+1

i is obtained from Ûn
i multiplied

by λp+1. Analogously, ϕ = − arg
(
λp+1

)
/ν and ρ =

∣∣λp+1
∣∣ were defined. These quantities are

plotted in Fig. 9.17a and Fig. 9.17b respectively.
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Fig. 9.17. Spectral analysis for ν = 0.1: comparison of the schemes. For SD schemes, these results are obviously
those given by the MPM.

In the light of these figures, the RKo6s-SD2 scheme seems to have a similar spectral behavior
as both RKo6s-CF8-CS6 and RKo6s-SFo11p-FDo11p. Nevertheless one has to remember that
several degrees of freedom are located within any mesh element in the Spectral Difference
approach. It is therefore preferable to introduce a new criterion that takes into account the total
number of degrees of freedom instead of the number of mesh elements and their size.

9.6.2 Rescaling by the number of degrees of freedom

For a fair comparison, the analysis may be performed considering the dimensionless wavenum-
ber k∆x′ built with the mean distance between two degrees of freedom and not with the element
size ∆x. It means that, for the Spectral Difference method, the dimensionless wavenumber
should be k∆x/ (p + 1) whereas, for standard schemes, the dimensionless wavenumber re-
mains k∆x. Of course, the same rescaling is performed for the CFL number: ν̂ = (p + 1) c∆t/∆x
for the SD method while ν = c∆t/∆x for FD schemes. Dispersion and dissipation are now
defined as a function of the number of points per wavelength (PPW) and two definitions are
introduced: PPW = (p + 1) λ/∆x for the Spectral Difference method while PPW = λ/∆x for
the FD schemes. Moreover, the CFL number is kept constant: ν̂ = 0.7 for SD method and
ν = 0.7 for standard schemes. This choice is motivated by the fact that both the SD and the
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finite difference methods lead to the same physical time step. Moreover, the CFL value is
chosen in agreement with the one for previous aeroacoustic computations using the compact
scheme.

Finally, it must be mentioned that the new quantity ν |k∆x− ϕ| is introduced to account for
the change in CFL number definition for analyzing dispersion.

In terms of dispersion, the RKo6s-SD4 method seems to be equivalent to the RKo6s-CF8-CS6
combination whereas in terms of dissipation, the RKo6s-CF8-CS6 combination is between the
RKo6s-SD4 and RKo6s-SD5 method (Fig. 9.18). However, two problems can be observed. First,
the dimensionless wavenumber belongs to [0, π/(p + 1)] for the SD method. So, it cannot be
compared on the full range of wavenumbers in [0, π]. Moreover, dispersion and dissipation in
[0, π/(p + 1)] come from the asymptotic behavior introduced in Sec. 9.4.8 and do not benefit
from the matrix form of the SD method for wavenumbers higher than π/(p + 1). It is thus
mandatory to extend the analysis in energy loss and phase shift to standard schemes for a fair
comparison.
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Fig. 9.18. Spectral analysis for ν = 0.7: comparison of the considered schemes.

9.6.3 New criteria extension to standard aeroacoustic schemes

For the considered Finite Difference schemes with time integration and filtering, the solution is
updated using a simple multiplication:

ûn+1
i = G ûn

i (9.60)

Introducing as before the loss in energy and the phase shift, it comes:

ρn =

∥∥ûn
i

∥∥
2∥∥û0

i

∥∥
2

=

∥∥Gnû0
i

∥∥
2∥∥û0

i

∥∥
2

= |G|n = ρn. (9.61)

and

δϕn = arg
(

ûn
i conj(û0

i exp (−jnνk∆x))
)

, (9.62)

= arg
(
Gnû0

i conj(û0
i exp (−jnνk∆x))

)
, (9.63)

= arg
(
Gn exp (jnν k∆x)

)
, (9.64)

= nν k∆x + n arg (G) , (9.65)
= nν (k∆x− ϕ) . (9.66)
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Remark: The previous expressions are equalities and not asymptotic limits since G is a
scalar quantity.

9.6.4 Points Per Wavelength (PPW) - Dissipation-based criterion

Introducing the new criteria for Finite Difference schemes, it is now possible to define a cut-off
wavenumber kε

c∆x that is associated with the conservation of a certain percentage 1− ε of
energy after n iterations. To do so, it is mandatory to solve the following problem:

For a given set (n, ν, p) ∈
(
N∗ ×R+∗ ×N∗

)
, look for

k∆x ∈ [0, kε
c∆x] such that ρn (k∆x, n, ν, p) > 1− ε

This cut-off wavenumber can be obviously interpreted as a number of points per wave-
length (PPW). The dissipation-based criteria is finally shown in Fig. 9.19 for the four Finite
Difference schemes (RKo6s-UP1, RKo6s-UP2, RKo6s-CF8-CS6 and RKo6s-SFo11p-FDo11p),
and for the Spectral Difference approach with p ranging from 2 to 5 and n from 104 to 107 at
CFL number ν = 0.7. The cases with n = 104 and n = 105 correspond to the typical numbers
of iterations for standard LES. The extreme cases with n > 105 are only computed to illustrate
the asymptotic behavior.

Finally, the PPW criterion is now written as a function of the number of iterations and as a
function of the accepted loss of accuracy in Tab. 9.11, Tab. 9.12, Tab. 9.13 and Tab. 9.14.

As expected, when the dissipation criterion is less restrictive, the number of PPW needed
to discretize the signal decreases. For Spectral Difference schemes, when the polynomial
order p increases, the number of PPW needed to discretize the signal decreases as well. The
RKo6s-SFo11p-FDo11p needs more PPW than the RKo6s-CF8-CS6 according to this dissipation
criterion. This fact could be explained by the accuracy of the associated filters (sixth-order
versus eighth-order). Finally, the RKo6s-SD5 is equivalent to the RKo6s-CF8-CS6 in terms
of dissipation. Note the extreme PPW requirements needed for RKo6s-UP1 and RKo6s-UP2
schemes to fulfill the criteria.

Tab. 9.11. PPW for dissipation criterion n = 104.

ρ104 = 99.99% ρ104 = 99.9% ρ104 = 99%

RKo6s-UP1 37170.90 11751.82 3707.86
RKo6s-UP2 406.38 228.49 128.34

RKo6s-SFo11p-FDo11p 40.30 27.03 17.67
RKo6s-CF8-CS6 21.08 15.54 11.52

RKo6s-SD2 85.51 58.38 39.74
RKo6s-SD3 40.87 29.89 22.17
RKo6s-SD4 25.52 19.86 15.59
RKo6s-SD5 19.01 15.18 12.32
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Tab. 9.12. PPW for dissipation criterion n = 105.

ρ105 = 99.99% ρ105 = 99.9% ρ105 = 99%

RKo6s-UP1 117544.69 37162.53 11725.29
RKo6s-UP2 722.66 406.33 228.23

RKo6s-SFo11p-FDo11p 59.55 40.29 27.00
RKo6s-CF8-CS6 28.89 21.07 15.53

RKo6s-SD2 126.03 85.89 58.45
RKo6s-SD3 53.39 39.68 29.61
RKo6s-SD4 32.22 25.10 19.73
RKo6s-SD5 25.46 19.11 15.18

Tab. 9.13. PPW for dissipation criterion n = 106.

ρ106 = 99.99% ρ106 = 99.9% ρ106 = 99%

RKo6s-UP1 371709.00 117518.24 37078.62
RKo6s-UP2 1285.09 722.58 405.87

RKo6s-SFo11p-FDo11p 87.70 59.55 40.26
RKo6s-CF8-CS6 40.26 28.89 21.06

RKo6s-SD2 185.17 126.14 85.86
RKo6s-SD3 70.83 52.88 39.54
RKo6s-SD4 41.97 32.08 25.04
RKo6s-SD5 36.73 25.52 19.11

Tab. 9.14. PPW for dissipation criterion n = 107.

ρ107 = 99.99% ρ107 = 99.9% ρ107 = 99%

RKo6s-UP1 1175450.70 371625.29 117252.90
RKo6s-UP2 2285.25 1284.95 721.76

RKo6s-SFo11p-FDo11p 128.96 87.69 59.50
RKo6s-CF8-CS6 57.46 40.25 28.87

RKo6s-SD2 271.85 185.19 126.06
RKo6s-SD3 94.57 70.61 52.80
RKo6s-SD4 57.36 41.92 32.05
RKo6s-SD5 54.66 36.74 25.51
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Fig. 9.19. Spectral analysis for ν = 0.7: analysis of the dissipation-based criterion.
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9.6.5 Points Per Wavelength (PPW) - Dispersion-based criterion

A cut-off wavenumber kφ
c ∆x associated with the phase shift error φ after n iterations can be

defined in a similar way as for the dissipation-based criterion:

For a given set (n, ν, p) ∈
(
N∗ ×R+∗ ×N∗

)
, look for

k∆x ∈
[
0, kφ

c ∆x
]

such that δϕn/2π (k∆x, n, ν, p) 6 φ

This cut-off wavenumber can be obviously interpreted as a number of points per wave-
length (PPW). The phase-based criterion is finally shown in Fig. 9.20 for the four Finite Dif-
ference schemes (RKo6s-UP1, RKo6s-UP2, RKo6s-CF8-CS6 and RKo6s-SFo11p-FDo11p), and
for the Spectral Difference approach with p ranging from 2 to 5 and n from 104 to 107 at CFL
number ν = 0.7.

As before, the PPW criterion is now written as a function of the number of iterations and as
a function of the accepted phase shift in Tab. 9.15, Tab. 9.16, Tab. 9.17 and Tab. 9.18.

As expected, when the dispersion criterion is less restrictive, the number of PPW needed to
discretize the signal decreases. For Spectral Difference schemes, when the polynomial order p
increases, the PPW needed to discretize the signal decreases as well except for pathological
cases. This is due to the non-monotonic behavior of dispersion curves, for example, for the
RKo6s-SD2 with n = 106. The RKo6s-SFo11p-FDo11p approximatively needs the same number
of PPW as for the RKo6s-CF8-CS6 according to this dispersion criterion. Finally, the RKo6s-SD4
is equivalent to the RKo6s-CF8-CS6 in terms of dispersion. Note the extreme PPW requirements
needed for RKo6s-UP1 and RKo6s-UP2 schemes to fulfill the criteria.

Tab. 9.15. PPW for dispersion criterion n = 104.

δϕ104 /2π = 0.001 δϕ104 /2π = 0.01 δϕ104 /2π = 0.1

RKo6s-UP1 358.19 166.25 77.16
RKo6s-UP2 451.78 209.68 97.29

RKo6s-SFo11p-FDo11p 48.07 23.86 11.95
RKo6s-CF8-CS6 46.51 21.39 6.76

RKo6s-SD2 54.78 36.56 23.38
RKo6s-SD3 46.09 16.65 13.21
RKo6s-SD4 46.51 21.31 9.32
RKo6s-SD5 46.52 21.45 7.38
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Tab. 9.16. PPW for dispersion criterion n = 105.

δϕ105 /2π = 0.001 δϕ105 /2π = 0.01 δϕ105 /2π = 0.1

RKo6s-UP1 771.70 358.19 166.25
RKo6s-UP2 973.35 451.78 209.68

RKo6s-SFo11p-FDo11p 101.14 48.07 23.86
RKo6s-CF8-CS6 100.34 46.51 21.39

RKo6s-SD2 75.16 54.96 36.61
RKo6s-SD3 100.30 46.07 16.66
RKo6s-SD4 100.34 46.51 21.31
RKo6s-SD5 100.34 46.52 21.46

Tab. 9.17. PPW for dispersion criterion n = 106.

δϕ106 /2π = 0.001 δϕ106 /2π = 0.01 δϕ106 /2π = 0.1

RKo6s-UP1 1662.58 771.70 358.19
RKo6s-UP2 2097.03 973.35 451.78

RKo6s-SFo11p-FDo11p 216.62 101.14 48.07
RKo6s-CF8-CS6 216.24 100.34 46.51

RKo6s-SD2 200.71 75.22 54.97
RKo6s-SD3 216.24 100.30 46.07
RKo6s-SD4 216.24 100.34 46.51
RKo6s-SD5 216.24 100.34 46.52

Tab. 9.18. PPW for dispersion criterion n = 107.

δϕ107 /2π = 0.001 δϕ107 /2π = 0.01 δϕ107 /2π = 0.1

RKo6s-UP1 3581.93 1662.58 771.70
RKo6s-UP2 4517.91 2097.03 973.35

RKo6s-SFo11p-FDo11p 466.08 216.62 101.14
RKo6s-CF8-CS6 465.91 216.24 100.34

RKo6s-SD2 459.89 200.68 75.22
RKo6s-SD3 465.90 216.24 100.30
RKo6s-SD4 465.91 216.24 100.34
RKo6s-SD5 465.91 216.24 100.34
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Fig. 9.20. Spectral analysis for ν = 0.7: analysis of the dispersion-based criterion.
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9.6.6 Computational cost

The spectral analysis shows that the Spectral Difference method is a viable alternative to the
standard aeroacoustic schemes for its accuracy. However, the interest is also motivated by
the CPU cost associated with the method when solving the Navier-Stokes equations, since
providing accurate results in a low restitution time is of utmost importance in an industrial
setting.

The numerical methods of this chapter are implemented in three different codes. The
RKo6s-CF8-CS6 is implemented in the industrial elsA (standing for ensemble logiciel de
simulation en Aérodynamique) software of ONERA [3, 6]. Even if the implementation is
optimized, the performance attained is not the best one could obtain with a dedicated solver.
In fact, elsA is a generic solver able to compute external aerodynamics and turbomachinery
flows with RANS, URANS, LES and DES modeling. Such flexibility is associated with a
CPU overhead per degree of freedom. The RKo6s-SFo11p-FDo11p is implemented in the
ALESIA (standing for Appropriate Large Eddy SImulation for Aeroacoustics) in-house CFD
code developed by Dr. Christophe Bogey [175] for research purpose. The code is optimized
to run computations on massively parallel platforms. Such an optimized solver is likely to
be providing the best performance. Finally, the Spectral Difference method is implemented
in the JAGUAR (standing for proJect of an Aerodynamic solver using General Unstructured
grids And high ordeR schemes) code of CERFACS [7]. The structure of JAGUAR has been
optimized in order to tackle the best CPU performance in serial and parallel computations,
including OpenMP and MPI paradigms [176]. In particular, the restitution time [7] is shown to
be only weakly sensitive to the polynomial degree p.

Tab. 9.19. Computational cost τ in µs per iteration n and per Degree Of Freedom (DOF) for the three considered
solvers. The computational cost τ (measured on a Intel Bi-Xeon E5-2660v3) is related to the simulation of an
academic jet noise configuration when solving the complete Navier-Stokes equations.

CFD code JAGUAR elsA ALESIA

Schemes RKo6s-SD RKo6s-CF8-CS6 RKo6s-SFo11p-FDo11p
Mesh Unstructured Structured Structured

Approach SD FV FD
τ [µs/n/DOF] 8 10 3

Tab. 9.19 demonstrates that the Spectral Difference method on unstructured grids is a viable
alternative to the standard high-order schemes for aeroacoustics applied to structured grids. It
opens a new research area for the application of this unstructured paradigm to problems of
industrial relevance, including geometrical complexity.

9.7 Conclusion

The spectral analysis based on Fourier modes is one of the standard tools for defining the
behavior of a convection scheme. Injecting a solution projected onto the Fourier basis in the
derivative, the exact and numerical approximation of the derivative can be compared, leading
to a loss in amplitude (dissipation) and a phase-shift (dispersion). In this chapter, we have
revisited the spectral analysis focusing our attention on four aspects.

First, we account for the time discretization in the analysis. Such an approach is applied to
two sets of standard schemes for aeroacoustics simulations, the compact scheme of Lele and
the DRP scheme of Bogey and Bailly (both with filters), while the time integration is performed
with the second-order DRP scheme of Bogey and Bailly. The introduction of the time integration
is shown to be able to have strong effects on the overall scheme capability, which results in
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changes in the standard Point-Per-Wavelength criterion. To the authors’ knowledge, this first
kind of result had never been highlighted before for the two proposed schemes.

Secondly, the space-time spectral analysis is applied to one of the spectral discontinuous
schemes, namely the Spectral Difference scheme. The analysis shows that any solution is a
combination of projected components on the set of eigenvectors. In the previous studies, one
mode was referred to as a main mode and the others were called spurious. We think that this
naming is prone to possible misunderstandings since the solution is always projected onto the
whole set of eigenvalues / eigenvectors. Moreover, after simple algebraic simplifications, it is
shown that the spectral behavior is well-defined for wavenumbers in [0, π] and aliasing always
occurs for wavenumbers larger than π. Such a behavior is general and valid for any high-order
spectral discontinuous method. However, aliasing was not found in dissipation and dispersion
figures published in the literature. Focusing on wavenumbers in [0, π], since the Spectral
Difference approach behaves as a solution projected onto a set of eigenvalues and eigenvectors,
only the component associated with the eigenvector with the largest eigenvalue modulus
is kept when the number of iterations to perform is large. For wavenumbers larger than π,
aliasing always occurs. A naive conclusion would be to assume that spectral discontinuous
methods are not competitive with respect to standard Finite Difference schemes applied in
aeroacoustics: the cell size would be the same, but the number of degrees of freedom increases
with the polynomial order p.

Thirdly, we were able to extend the space-time analysis for wavenumbers larger than π and
we introduced two new criteria to define dissipation and dispersion. Dissipation is measured
by an energy loss while dispersion is measured by a phase-shift. These new criteria are general
enough to be applied to any kind of scheme, including (of course) Spectral Difference, Spectral
Volume, Discontinuous Galerkin or Flux Reconstruction schemes. The criteria recover the
standard criteria for any scheme with one degree of freedom per cell / mesh node. Figures
related to both dissipation and dispersion were introduced for a range of polynomial order p
and number of iterations, for a given CFL number and for a given input wavenumber.

Finally, the accuracy of standard Finite Difference and Spectral Difference schemes is
compared. It is shown that the number of Points-Per-Wavelength of the compact scheme of
Lele coupled with the time integration procedure and the associated filter is also obtained with
the Spectral Difference scheme with p = 5 (sixth order of accuracy) in terms of dissipation and
p = 4 (fifth order of accuracy) in terms of dispersion and the same time integration procedure.
In fact, the spectral accuracy of the Lele’s scheme coupled with the time integration and the
filter is recovered by the Spectral Difference approach coupled with the same time integration
procedure. To the best of our knowledge, it is the first time that a method for unstructured grids
presents the same spectral accuracy as the compact scheme. As a consequence, it offers the
numerical capability required in aeroacoustics computations. It is also shown using dedicated
solvers that the CPU times per degree of freedom for the three considered approaches are of the
same order of magnitude. Therefore, the SD method presents the same numerical efficiency as
the standard Finite Difference schemes and the Spectral Difference method can be considered
as an alternative to the Finite Difference schemes. Moreover the Spectral Difference method
provides the additional flexibility of unstructured grids necessary to perform computations
with complex geometries of industrial interest. Hence we plan to use the Spectral Difference
method to perform aeroacoustics simulations for both academic and industrial configurations
in a near future.
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C H A P T E R

10
Conclusion

“Science is built up of facts, as a house is with stones. But a
collection of facts is no more a science than a heap of stones
is a house.”

— Jules Henri Poincaré (1854 - 1912)

The objective of this Ph.D. work was to find an efficient (in terms of HPC) and accurate
(to capture the flow physics) CFD method to deal with complex geometries and convection
of unsteady flow over a long distance. It relied on the extension of a method commonly used
by industries during preliminary design stages: the Finite Volume Method implemented in
the elsA solver co-developed by ONERA and CERFACS. The Reynolds Average Navier-Stokes
(RANS) equations are solved with standard second-order schemes on structured multiblock
meshes. elsA was recently extended to deal with unstructured grids in the context of URANS
simulations to bring flexibility for meshing. To treat always more complex industrial appli-
cations, it was decided to develop a hybrid approach to be able to compute simultaneously
on structured and unstructured zones. This being said, the focus can be put on the coupling
of unstructured and structured blocks and dedicated schemes inside a single computational
domain. In the present work, the coupling between structured and unstructured zones was
performed through the use of a nonconforming grid interface (NGI) treatment.

In Chap. 2, the nonconforming grid interface was studied in details with a special emphasis
on unsteady flows using structured grids. For this purpose, a new framework was proposed to
handle the spectral analysis of numerical schemes applied on a nonconforming grid interface
between two structured blocks for the two-dimensional advection equation. To avoid spurious
reflection, a dedicated treatment, based on an approximate Riemann solver, should be applied
to take into account the potential discontinuity of metrics.

In Chap. 3, the attention beared on the Vichnevetsky’s framework which highlights the fully
unsteady behavior of this kind of interface. It explains the reflection of spurious waves when
a discontinuity occurs in the computation. Among these discontinuities, there are numerical
schemes discontinuities, refinement or coarsening discontinuities, element type discontinuities
if the mesh is unstructured, nonconforming grid interface or even hybrid nonconforming grid
interface.

In Chap. 4, the hybrid approach for the convective flux for first- and second-order schemes
was validated. The used test case deals with the convection of an isentropic compressible
vortex. The validation was performed on several meshes with different topologies to test
the implementation. Expected results for low-order schemes were obtained. In Chap. 5, the
hybrid approach for the diffusive flux was also validated. The validation for the diffusive flux
was performed with the Taylor-Green vortex and gave the expected results. For applications
where second-order schemes are broadly acceptable, typically dealing with RANS or URANS
simulations, the hybrid approach was successfully validated and could be used for these kinds
of application.
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What is more, dealing with the convection of unsteady aerodynamics over a long distance
also requires high-order CFD methods or at least low dispersion and low dissipation numer-
ical methods. For the structured side, Fosso [6] developed high-order schemes dedicated to
the transport of turbulent structures. This sixth-order scheme has low dissipation and low
dispersion properties and it is therefore a good solution to compute wake vortices convection.
The key point was to develop high-order unstructured schemes. However, high-order unstruc-
tured schemes are much more complicated than the structured ones. Chap. 6 was dedicated
to high-order reconstruction on unstructured grids derived from the standard second-order
reconstruction schemes. The reconstruction is compacted using the gradients in each cell and
therefore, the accuracy is directly driven by the accuracy of this gradient. A Riemann solver is
used after a high-order extrapolation step. It was shown that the metrics must be included into
this gradient to improve the accuracy of the extrapolation.

In Chap. 7, an Unstructured Interface Gradient (UIG) was developed since the standard
gradient formulation suffers from a lack of accuracy for general unstructured grids. This
new gradient is second-order accurate on general unstructured grids. The goal was also to
improve actual diffusion schemes and to find a high-order unstructured compact scheme for the
convection term. However, Chap. 8 showed that this kind of formulation recovers the k-exact
formulation. Indeed, to increase the order of accuracy of any numerical scheme, information
is needed and this implies the need for an extended stencil even if it can be informatically
reduced. This kind of formulation can however lead to a loss of HPC efficiency which is why
the focus was put on more promising high-order methods.

An alternative approach, the Spectral Difference Method, is studied in Chap. 9. Starting
from the point that the accuracy of a LES depends on the local mesh refinement and the scheme
properties, the spectral analysis of Spectral Discontinuous Methods was revisited. Several
key points were highlighted. The first point concerned the effects of time integration on the
spectral analysis. It was shown, with standard high-order Finite Difference schemes dedicated
to aeroacoustics, that the time integration has an effect on the required number of points per
wavelength. Secondly, a coupled space-time approach based on the Matrix Power Method is
applied to the new class of high-order Spectral Discontinuous approaches, focusing especially
on the Spectral Difference method. It was shown that the Spectral Difference method is as
accurate as the considered Finite Difference schemes or even more which leads to believe that
this kind of method is very promising. Moreover, the computational time appears to be only
weakly dependent on the order of the scheme.

166



C H A P T E R

11
Perspectives

“Your theory is crazy, but it’s not crazy enough to be true.”

— Niels Henrik David Bohr (1885 - 1962)

In this Ph.D. work, the hybrid approach was successfully validated with low-order schemes.
One of the most obvious perspectives is to compute an application where second-order schemes
are broadly acceptable, typically in RANS or URANS simulations. Moreover, it could be
interesting to implement the k-exact approach in the unstructured kernel of the elsA software
even if this kind of schemes does not seem to be efficient in terms of computation time. All in
all, the unstructured k-exact schemes could be coupled with the sixth-order scheme of Fosso
[6] to be able to do a high-order hybrid computation, even if, again, this solution does not seem
to be very attractive, according to the results of the spectral analysis and to the efficiency in
terms of computation time of the Spectral Difference Method.

In Chap. 9, the spectral analysis was revisited for Spectral Discontinuous Methods. In
particular, the time integration effect was taken into account in (9.41). The matrix G depends on
the polynomial order, on the Courant-Friedrichs-Lewy (CFL) number and on the coefficients
of the Runge-Kutta integration. The basic idea is therefore to perform an optimization on
this Runge-Kutta coefficients to increase the CFL stability limit of the time integration. It
is even possible to consider this optimization to build low dispersion and low dissipation
space/time coupled schemes. The first results are very encouraging since the technique allows
to gain up to 60% on the CFL stability limit. Low dissipation and low dispersion schemes
are not designed yet. But once they are designed, a paper will be submitted in the Journal
of Computational Physics [177] and presented at the AIAA Conference [178]. Another time
integration procedure can be also considered such as Implicit-Explicit (IMEX) time integration
or exponential integrator.

Another future research field concerns the initialization of the solution when using the
Spectral Difference Method. Indeed, this method uses a polynomial basis on which the initial
solution has to be projected. This topic is of utmost importance when computing the error.
Since the Spectral Difference Method has excellent dissipation and dispersion properties, the
projection step onto the polynomial basis can leave some numerical artifacts that can distort
the error analysis. A paper is under preparation for the Journal of Computational Physics [179]
to properly define how to compute an error with this method and to show what happens in
the opposite case.

Other perspectives of this Ph.D. work are related to the treatment of more complex geome-
tries. Indeed, at the moment, the Spectral Difference Method is restricted to hexahedra. For
sure, it exists extensions of the Spectral Difference Method on triangles [180, 181] but nothing
on tetrahedra. It would be worth spending some time working on an extension of the method
on tetrahedral meshes. Then, it could be also interesting to develop the sliding mesh capability
for turbomachinery applications thanks to the Mortar element Method. Zhang et al. [182] only
developed this capability for two-dimensional computations but not for three-dimensional
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computations. To treat very complex geometries, the Spectral Difference Method could be also
extended to polyhedral meshes to treat body-fitted Cartesian meshes.

Finally, the last future line of research deals with shock-capturing methods adapted to
the Spectral Difference Method if the latter is successfully extended to tetrahedra. One of the
solutions could be the tetrahedral mesh adaptation. It could be used to refine the meshes only
in the close vicinity of the shocks to improve the accuracy of their capture. Moreover, since
the order of accuracy is an input of the Spectral Difference Method thanks to the polynomial
basis, it could be possible to couple the space adaptation previously mentioned, called the h
refinement, with the refinement of the polynomial order, called the p refinement, to implement
hp refinement.

Julien Vanharen, March 2017.

168



A The elsA workflow . . . . . . . . . . . . . . . . . . . . . . . . . 171
A.1 Hybrid mesh generation
A.2 Hybrid splitter
A.3 Face-based connectivity
A.4 Coprocessing

B Analytical order of accuracy . . . . . . . . . . . . . . . . 173
B.1 Preliminaries
B.2 Heat equation
B.3 Advection-diffusion equation
B.4 Error computation

C The COVO analytic solution . . . . . . . . . . . . . . . . 177

D Order analysis for unsteady equations . . . . . . . 183
D.1 Truncation error
D.2 Discretization error

E About the work unit evaluation . . . . . . . . . . . . . 187

VII Appendices





C H A P T E R

A
The elsA workflow

“I decry the current tendency to seek patents on algorithms.
There are better ways to earn a living than to prevent other
people from making use of one’s contributions to computer
science.”

— Donald Ervin Knuth (1938 - )

In this appendix, the elsA worflow is detailed with a special emphasis on hybrid mesh
generation, hybrid splitter, face-based connectivity computation and coprocessing.

A.1 Hybrid mesh generation

No industrial tools are available to generate hybrid meshes. Structured and unstructured
meshes are separately generated. Structured meshes are generated either by Python scripts or
by Ansys ICEM CFD whereas unstructured meshes are generated either by Gmsh [183] or by
CENTAUR. Then, the concept of mesh algebra was developed to be able to couple structured
and unstructured mesh through the nonconforming grid interface. Basically, each mesh is read
and then dumped into a CGNS [184] file. A data structure readable by elsA is added into the
CGNS tree to define the nonconforming grid interface. It is indicated either by families or by
geometric reconstruction by computing the convex hull of windows which are shared by the
nonconforming grid interface.

A.2 Hybrid splitter

A hybrid splitter was developed. It couples the elsA splitter for structured meshes and an
unstructured splitter based on Metis [185] for unstructured meshes. The load balancing is
based on the number of faces.

A.3 Face-based connectivity

1 3

2

4

Fig. A.1. Tetrahedral element connectivity.

elsA needs the face-based connectivity for its
unstructured kernel. Following the notations
of Fig. A.1, the element-based connectivity
is given by (1, 2, 3, 4) and should be trans-
formed into the face-based connectivity given
by (1, 3, 2), (1, 2, 4), (2, 3, 4) and (3, 1, 4). This
face-based connectivity requires the compu-
tation of the dual graph based on the Metis
[185] library.
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A.4 Coprocessing

Unsteady computations generates a lot of data. Because elsA benefits from a Python wrapper,
it allows the execution of Python code during the computation. A set of coprocessing tools
based on Antares [186] was developed to extract on the fly the quantities of interest.
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B
Analytical order of accuracy

“Science has not yet taught us if madness is or is not the
sublimity of the intelligence.”

— Edgar Allan Poe (1809 - 1849)

In this appendix, the solution of the advection-diffusion equation is detailed to demonstrate
(4.10) and how to obtain (4.4) from (4.11).

B.1 Preliminaries

B.1.1 Fourier transform

Let us define the Fourier TransformFT and the Inverse Fourier TransformFT −1 for a function
f ∈ L2 (Rd) where d is the dimension. This definition is used in the whole appendix.

{FT [ f (x)]} (ξ) = f̂ (ξ) =
1

[2π]
d/2

∫

Rd
f (x) e−jxξ dx, (B.1)

{
FT −1

[
f̂ (ξ)

]}
(x) = f (x) =

1

[2π]
d/2

∫

Rd
f̂ (ξ) e+jxξ dξ. (B.2)

Moreover, the Fourier Transform of the derivative is given by:
{
FT

[
dn f
dxn (x)

]}
(ξ) = (jξ)n f̂ (ξ) . (B.3)

Finally, the Fourier Transform of a gaussian function is given by:
{
FT

[
exp

(
−
(

x
Rc

)2
)]}

(ξ) =
Rc√

2
exp

[
−R2

c ξ2

4

]
, (B.4)

where Rc is a free parameter.

B.1.2 The Gaussian integral

The Gaussian integral is given by:
∫ +∞

−∞
exp

[
−x2] dx =

√
π. (B.5)

Then, considering the substitution y =
x

Rc
, dy =

1
Rc

dx, one obtains:

∫ +∞

−∞
exp

[
−
(

x
Rc

)2
]

dx = Rc

∫ +∞

−∞
exp

[
−y2] dy, (B.6)

= Rc
√

π. (B.7)
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B.2 Heat equation

Let us start by the diffusion equation also called the heat equation for x ∈ R and t > 0,

∂ f
∂t

(x, t) = ν
∂2 f
∂x2 (x, t) , (B.8)

with f (x, t = 0) = f0 (x) = exp

[
−
(

x
Rc

)2
]

and ν the constant diffusion coefficient. Taking

the Fourier Transform of the heat equation, one obtains:

∂ f̂
∂t

(ξ, t) = −νξ2 f̂ (ξ, t) . (B.9)

Integrating this ordinary differential equation for a given ξ, one obtains:

f̂ (ξ, t) = f̂0 (ξ, t) exp
(
−νξ2t

)
. (B.10)

By taking the Inverse Fourier Transform, one obtains the general solution:

f (x, t) =
1√
2π

∫ +∞

−∞
f̂0 (ξ, t) e−νξ2te+jxξ dξ. (B.11)

Using (B.4), one obtains:

f (x, t) =
Rc√

2
1√
2π

∫ +∞

−∞
exp

[
−νξ2t− R2

c ξ2

4

]
e+jxξ dξ, (B.12)

=
Rc√

2

{
FT −1

[
exp

(
−4νt + R2

c
4

ξ2
)]}

(x) , (B.13)

=
Rc√

2

√
2√

4νt + R2
c

exp
[
− x2

4νt + R2
c

]
. (B.14)

Finally, the solution of the diffusion equation with the given initial solution is:

f (x, t) =
Rc√

4νt + R2
c

exp
[
− x2

4νt + R2
c

]
. (B.15)

B.3 Advection-diffusion equation

Let us consider the advection-diffusion equation for x ∈ R and t > 0,

∂ f
∂t

(x, t) + c
∂ f
∂x

(x, t) = ν
∂2 f
∂x2 (x, t) , (B.16)

with f (x, t = 0) = f0 (x) = exp

[
−
(

x
Rc

)2
]

, c the constant advective velocity and ν the

constant diffusion coefficient. Considering the substitution τ = t and σ = x− ct and injecting
into (B.16), one obtains:

∂ f
∂σ

∂σ

∂t
+

∂ f
∂τ

∂τ

∂t
+ c

(
∂ f
∂σ

∂σ

∂x
+

∂ f
∂τ

∂τ

∂x

)
= ν

(
∂

∂σ

∂σ

∂x
+

∂

∂τ

∂τ

∂x

)(
∂ f
∂σ

∂σ

∂x
+

∂ f
∂τ

∂τ

∂x

)
. (B.17)

Since
∂σ

∂t
= −c,

∂σ

∂x
= 1,

∂τ

∂t
= 1 and

∂τ

∂x
= 0, one finds:

−c
∂ f
∂σ

+
∂ f
∂τ

+ c
∂ f
∂σ

= ν
∂2 f
∂σ2 , (B.18)

∂ f
∂τ

= ν
∂2 f
∂σ2 . (B.19)
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The solution of (B.19) is given in Sec. B.2. One obtains:

f (σ, τ) =
Rc√

4ντ + R2
c

exp
[
− σ2

4ντ + R2
c

]
. (B.20)

Finally, by expressing σ and τ, the solution of the advection-diffusion equation with the given
initial solution is:

f (x, t) =
Rc√

4νt + R2
c

exp

[
− (x− ct)2

4νt + R2
c

]
. (B.21)

B.4 Error computation

Let us start from:

ε2
f =

∫ +∞

−∞

{
Rc√

4νt + R2
c

exp

[
− (x− ct)2

4νt + R2
c

]
− exp

[
−
(

x− ct
Rc

)2
]}2

dx, (B.22)

= I1 − 2I2 + I3, (B.23)

where I1, I2 and I3 are given by:

I1 =
∫ +∞

−∞

R2
c

4νt + R2
c

exp

[
−2 (x− ct)2

4νt + R2
c

]
dx, (B.24)

I2 =
∫ +∞

−∞

Rc√
4νt + R2

c
exp

[
− (x− ct)2

4νt + R2
c
− (x− ct)2

R2
c

]
dx, (B.25)

I3 =
∫ +∞

−∞
exp

[
−2 (x− ct)2

R2
c

]
dx, (B.26)

(B.27)

Then, considering the substitution y = x− ct, dy = dx, one obtains:

I1 =
∫ +∞

−∞

R2
c

4νt + R2
c

exp
[
− 2y2

4νt + R2
c

]
dy, (B.28)

I2 =
∫ +∞

−∞

Rc√
4νt + R2

c
exp

[
− y2

4νt + R2
c
− y2

R2
c

]
dy, (B.29)

I3 =
∫ +∞

−∞
exp

[
−2y2

R2
c

]
dy, (B.30)

(B.31)

Using the integral (B.7), one finds:

I1 =
R2

c
4νt + R2

c

∫ +∞

−∞
exp

[
− 2y2

4νt + R2
c

]
dy, (B.32)

=
R2

c
4νt + R2

c

√
4νt + R2

c
2

√
π, (B.33)

=
R2

c√
4νt + R2

c

√
π

2
. (B.34)
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I2 =
Rc√

4νt + R2
c

∫ +∞

−∞
exp

[
− y2

4νt + R2
c
− y2

R2
c

]
dy, (B.35)

=
Rc√

4νt + R2
c

∫ +∞

−∞
exp

[
−y2 2R2

c + 4νt
R2

c (R2
c + 4νt)

]
dy, (B.36)

=
Rc√

4νt + R2
c

√
R2

c
(

R2
c + 4νt

)

2R2
c + 4νt

√
π, (B.37)

=
R2

c√
R2

c + 2νt

√
π

2
. (B.38)

I3 =
∫ +∞

−∞
exp

[
−2y2

R2
c

]
dy, (B.39)

= Rc

√
π

2
. (B.40)

Finally, one obtains:

ε2
f = I1 − 2I2 + I3, (B.41)

= Rc

√
π

2

[
Rc√

4νt + R2
c
− 2Rc√

R2
c + 2νt

+ 1

]
. (B.42)

Since ν =
c∆x

2
and t =

d
c

where d is the convection distance, one finds νt =
d∆x

2
and,

ε2
f = Rc

√
π

2

[
Rc√

R2
c + 2d∆x

− 2Rc√
R2

c + d∆x
+ 1

]
, (B.43)

= Rc

√
π

2




1√
1 + 2

d∆x
R2

c

− 2√
1 +

d∆x
R2

c

+ 1




. (B.44)

Introducing η =
d∆x
R2

c
=

d
∆x

(
Rc

∆x

)−2

, one recovers (4.4):

ε2
f (η, Rc) = Rc

√
π

2

[
1√

1 + 2η
− 2√

1 + η
+ 1

]
. (B.45)
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C H A P T E R

C
The COVO analytic solution

“A scientific truth does not triumph by convincing its op-
ponents and making them see the light, but rather because
its opponents eventually die and a new generation grows up
that is familiar with it.”

— Max Karl Ernst Ludwig Planck (1858 - 1947)

In this appendix, the analytic solution of the convection of a vortex is demonstrated. The
demonstration is inspired by Masatsuka [187]. Let us consider the two-dimensional Euler
equations, where ρ is the density, V = (u, v)> is the velocity, p is the pressure, and e is the
specific internal energy. The gravity and all other exterior forces are neglected. The system of
equations is:

∂ρ

∂t
+∇ · (ρV) = 0, (C.1)

∂V
∂t

+ V · ∇V +
∇p
ρ

= 0, (C.2)

∂e
∂t

+ V · ∇e +
p
ρ
∇ · V = 0. (C.3)

(C.3) may be replaced by several forms of the energy equation, in particular by the entropy
equation. The entropy is noted s.

∂s
∂t

+ V · ∇s = 0. (C.4)

Let us seek an homentropic solution. A homentropic flow has uniform and constant entropy.
It distinguishes itself from an isentropic or particle isentropic flow, where the entropy level
of each fluid particle does not change with time, but may vary from particle to particle. This
means that a homentropic flow is necessarily isentropic, but an isentropic flow need not be
homentropic. So (C.4) and (C.3) are trivially satisfied. Moreover, let us seek a solution for which
the velocity field is the superposition of a constant mean flow (V0, T0) where V0 = (u0, v0)

>

and a perturbation (V ′, T′) convected by the mean flow where V ′ = (u′, v′)>:

V (x, t) = V0 + V ′ (x− x0 − V0t) , (C.5)
T (x, t) = T0 + T′ (x− x0 − V0t) , (C.6)

where x is the point of coordinate (x, y)> and x0 = (x0, y0)
> indicates a reference center

location of the perturbation field. The density ρ and the pressure p may be written in the
following form:

ρ (x, t) = ρ (x− x0 − V0t) , (C.7)
p (x, t) = p (x− x0 − V0t) , (C.8)
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Let us define:

(x− x0 − V0t)> = (ξ (x, t) , η (x, t))> (C.9)

= (x− x0 − u0t, y− y0 − v0t)> , (C.10)

and (C.1) becomes:

∂ρ

∂t
(ξ, η) +∇ · (ρV) = 0, (C.11)

∂ρ

∂ξ

∂ξ

∂t
+

∂ρ

∂η

∂η

∂t
+ V0 · ∇ρ +∇ ·

(
ρV ′
)
= 0, (C.12)

−u0
∂ρ

∂ξ
− v0

∂ρ

∂η
+ (u0, v0)

> ·
(

∂ρ

∂x
,

∂ρ

∂y

)>
+∇ ·

(
ρV ′
)
= 0, (C.13)

−u0
∂ρ

∂ξ
− v0

∂ρ

∂η
+ (u0, v0)

> ·
(

∂ρ

∂ξ

∂ξ

∂x
,

∂ρ

∂η

∂η

∂y

)>
+∇ ·

(
ρV ′
)
= 0, (C.14)

−u0
∂ρ

∂ξ
− v0

∂ρ

∂η
+ (u0, v0)

> ·
(

∂ρ

∂ξ
,

∂ρ

∂η

)>
+∇ ·

(
ρV ′
)
= 0, (C.15)

−u0
∂ρ

∂ξ
− v0

∂ρ

∂η
+ u0

∂ρ

∂ξ
+ v0

∂ρ

∂η
+∇ ·

(
ρV ′
)
= 0, (C.16)

∇ ·
(
ρV ′
)
= 0. (C.17)

Applying the same transformation to (C.2) projected on x-axis:

∂u
∂t

+ u
∂u
∂x

+ v
∂u
∂y

+
1
ρ

∂p
∂x

= 0, (C.18)

∂u′

∂t
+
(
u0 + u′

) ∂u′

∂x
+
(
v0 + v′

) ∂u′

∂y
+

1
ρ

∂p
∂x

= 0, (C.19)

∂u′

∂ξ

∂ξ

∂t
+

∂u′

∂η

∂η

∂t
+
(
u0 + u′

) ∂u′

∂x
+
(
v0 + v′

) ∂u′

∂y
+

1
ρ

∂p
∂x

= 0, (C.20)

−u0
∂u′

∂ξ
− v0

∂u′

∂η
+
(
u0 + u′

) ∂u′

∂x
+
(
v0 + v′

) ∂u′

∂y
+

1
ρ

∂p
∂x

= 0, (C.21)

−u0
∂u′

∂ξ
− v0

∂u′

∂η
+
(
u0 + u′

) ∂u′

∂ξ

∂ξ

∂x
+
(
v0 + v′

) ∂u′

∂η

∂η

∂y
+

1
ρ

∂p
∂x

= 0, (C.22)

−u0
∂u′

∂ξ
− v0

∂u′

∂η
+
(
u0 + u′

) ∂u′

∂ξ
+
(
v0 + v′

) ∂u′

∂η
+

1
ρ

∂p
∂x

= 0, (C.23)

u′
∂u′

∂ξ
+ v′

∂u′

∂η
+

1
ρ

∂p
∂x

= 0, (C.24)

u′
∂u′

∂x
+ v′

∂u′

∂y
+

1
ρ

∂p
∂x

= 0. (C.25)

Applying the same transformation to (C.2) projected on y-axis, a similar demonstration gives:

u′
∂v′

∂x
+ v′

∂v′

∂y
+

1
ρ

∂p
∂y

= 0. (C.26)

All in all, (C.25) and (C.26) can be written in a vector form:

V ′ · ∇V ′ +
∇p
ρ

= 0. (C.27)
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Since the flow is homentropic, one obtains:

p =
p0

Tγ/γ−1
0

Tγ/γ−1, (C.28)

∂p
∂x

=
p0

Tγ/γ−1
0

∂Tγ/γ−1

∂x
, (C.29)

∂p
∂x

=
p0

Tγ/γ−1
0

γ

γ− 1
Tγ/γ−1−1 ∂T

∂x
, (C.30)

∂p
∂x

=
p

Tγ/γ−1

γ

γ− 1
Tγ/γ−1−1 ∂T

∂x
, (C.31)

∂p
∂x

=
p
T

γ

γ− 1
∂T
∂x

, (C.32)

Using the perfect gas law p = ρRgasT, one obtains:

1
ρ

∂p
∂x

=
γRgas

γ− 1
∂T
∂x

. (C.33)

Analogously, one obtains:

1
ρ

∂p
∂y

=
γRgas

γ− 1
∂T
∂y

. (C.34)

It is now possible to rewrite the pressure gradient divided by the density:

∇p
ρ

=
γRgas

γ− 1
∇T′. (C.35)

Finally, the Euler equations are reduced to:

∇ ·
(
ρV ′
)
= 0, (C.36)

V ′ · ∇V ′ +
γRgas

γ− 1
∇T′ = 0. (C.37)

Expressing in polar coordinates (r, θ), one obtains:

V ′ = v′rer + v′θeθ, (C.38)
T′ = T′ (r, θ) , (C.39)
ρ = ρ (r, θ) , (C.40)
p = p (r, θ) . (C.41)

By choosing all variables independent of θ and the perturbation velocity such as

v′r = 0, (C.42)
v′θ = f (r) , (C.43)

it trivially satisfies

∇ ·
(
ρV ′
)
=

1
r

∂

∂r
[
rρ (r) v′r

]
+

1
r

∂

∂θ

[
ρ (r) v′θ

]
, (C.44)

=
1
r

∂

∂θ
[ρ (r) f (r)] , (C.45)

= 0. (C.46)
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Indeed, v′r = 0 and v′θ = f (r) is independent from θ. Let us compute V ′ · ∇V ′ in polar
coordinates:

V ′ · ∇V ′ =

[
v′r

∂v′r
∂r

+
v′θ
r

∂v′r
∂θ
− [v′θ ]

2

r

]
er +

[
v′r

∂v′θ
∂r

+
v′θ
r

∂v′θ
∂θ
− v′θv′r

r

]
eθ, (C.47)

= − [v′θ ]
2

r
er, (C.48)

= − [ f (r)]2

r
er. (C.49)

Finally, (C.37) simply becomes:

[ f (r)]2

r
=

γRgas

γ− 1
dT′

dr
. (C.50)

Integrating this equation from +∞ to r, one obtains:

T′ =
γ− 1
γRgas

∫ r

+∞

[ f (r)]2

r
dr. (C.51)

Now, the form of f (r) needs to be chosen so that this can be fully integrated. In particular,
when r tends to infinity, the perturbation is assumed to vanish. One chooses:

f (r) =
βV0r
Rc

exp
[
− r2

2R2
c

]
, (C.52)

with V2
0 = u2

0 + v2
0 and β and Rc are two free parameters. Substituting (C.52) in (C.51), one

obtains:

T′ = β2V2
0

γ− 1
γRgas

∫ r

+∞

r
R2

c
exp

[
− r2

R2
c

]
dr, (C.53)

=
β2V2

0
2

γ− 1
γRgas

[
− exp

[
− r2

R2
c

]]r

+∞
, (C.54)

= −β2V2
0

2
γ− 1
γRgas

exp
[
− r2

R2
c

]
. (C.55)

Finally, one obtains:

V = V0 + v′θeθ, (C.56)

= V0 +
βV0r
Rc

exp
[
− r2

2R2
c

]
eθ, (C.57)

T = T0 + T′, (C.58)

= T0 −
β2V2

0
2

γ− 1
γRgas

exp
[
− r2

R2
c

]
. (C.59)

Using the following expressions:

x− x0 − u0t = r cos θ, (C.60)
y− y0 − v0t = r sin θ, (C.61)
eθ · ex = − sin θ, (C.62)
eθ · ey = cos θ, (C.63)
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the analytical solution is expressed in cartesian coordinates:

u = u0 −
βV0

Rc
(y− y0 − v0t) exp

[
− (x− x0 − u0t)2 + (y− y0 − v0t)2

2R2
c

]
, (C.64)

v = v0 +
βV0

Rc
(x− x0 − u0t) exp

[
− (x− x0 − u0t)2 + (y− y0 − v0t)2

2R2
c

]
, (C.65)

T = T0 −
β2V2

0
2

γ− 1
γRgas

exp

[
− (x− x0 − u0t)2 + (y− y0 − v0t)2

R2
c

]
. (C.66)

In the specific case where V0 = (U0, 0)>, t is equal to 0 to express the initial solution and the
reference center x0 is chosen to be equal to xc = (xc, yc)

>, one recovers the expressions of (4.19),
(4.20) and (4.21):

u = U0 −
βU0

Rc
(y− yc) exp

[
− (x− xc)

2 + (y− yc)
2

2R2
c

]
, (C.67)

v =
βU0

Rc
(x− xc) exp

[
− (x− xc)

2 + (y− yc)
2

2R2
c

]
, (C.68)

T = T0 −
β2U2

0
2

γ− 1
γRgas

exp

[
− (x− xc)

2 + (y− yc)
2

R2
c

]
. (C.69)
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C H A P T E R

D
Order analysis for

unsteady equations

“It is not knowledge, but the act of learning, not possession
but the act of getting there, which grants the greatest enjoy-
ment.”

— Carl Friedriech Gauss (1777 - 1855)

D.1 Truncation error

Let us consider the one-dimensional conservation equation (D.1). W is the unknown. F is
the flux vector. The following proof is general and the complete definition of the flux is not
necessary. The general form of the equation reads:

∂W
∂t

+∇ · F (W,∇W) = 0. (D.1)

Let Ωi be an open set, and let ∂Ωi be its boundary. Let n be the unit outward normal vector of
∂Ωi. Integrating (D.1) on Ωi, it comes:

∫

Ωi

∂W
∂t

dV +
∫

∂Ωi

F · n dS = 0. (D.2)

We assume that the cell volume V and the interface area S are constant. ∆x is the length of any
cell in the x-direction. Discretizing (D.2) over a one-dimensional grid of uniform cells, and
introducing the mean value W i of W over Ωi, one obtains:

d
dt

W i +
Fi+1/2 − Fi−1/2

∆x
= 0, (D.3)

where interface fluxes Fi+1/2 and Fi−1/2 are unknown. Since the mesh is kept unchanged during
the time process, the equation (D.3) is the one that is solved using the Finite Volume Method.
Now, let us suppose that one is able to find an extrapolation formula for the interface fluxes of
order p:

Fi+1/2 = Fnum
i+1/2 +O (∆xp) , (D.4)

Fi−1/2 = Fnum
i−1/2 +O (∆xp) . (D.5)

Integrating in time by the Euler explicit algorithm, one obtains:

Wn+1
i −Wn

i
∆t

+
Fnum

i+1/2
− Fnum

i−1/2

∆x
= 0, (D.6)

where ∆t is the time step. The interface fluxes are computed with the states at the time step n.
Computing the truncation error E (∆t, ∆x) given by the difference between (D.3) and (D.6):

E (∆t, ∆x) =
d
dt

W i −
Wn+1

i −Wn
i

∆t
+

Fi+1/2 − Fi−1/2

∆x
−

Fnum
i+1/2
− Fnum

i−1/2

∆x
. (D.7)
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Simplifying, one finds:

E (∆t, ∆x) = O (∆t) +O
(

∆xp−1
)

. (D.8)

As a consequence, the truncation error of the spatial discretization is (p− 1)-th order accurate.
It must also be highlighted that for some configurations, the p−th order of accuracy can be
recovered on uniform grids. This is due to the fact that one can obtain a p + 1-th accurate flux
balance Fi+1/2− Fi−1/2. Indeed, the error term in ∆xp can be identical for Fi+1/2 and Fi−1/2 and the
contribution vanishes. Examples of such a situation are given in Sec. 6.2, Sec. 6.3 and Sec. 6.4
by equations (6.4), (6.13) and (6.22). This feature then gives a truncation error of the spatial
discretization which is p-th order accurate with an extrapolation formula for the interface
fluxes of order p. Obviously, this feature is lost on general unstructured grids.

D.2 Discretization error

However, in practice, the measure of accuracy is generally performed by computing the discrete
`2-norm of the discretization error D (∆t, ∆x). The discretization for the cell i at time step n is
the difference between the exact solution Vn

i and its numerical approximation Wn
i :

Dn
i (∆t, ∆x) = Vn

i −Wn
i . (D.9)

Let us define the progression for k ∈ [1, n]:

Ak
i = Dk

i −Dk−1
i , (D.10)

=
(

Vk
i −Wk

i

)
−
(

Vk−1
i −Wk−1

i

)
, (D.11)

=
(

Vk
i −Vk−1

i

)
−
(

Wk
i −Wk−1

i

)
. (D.12)

Besides,

d
dt

Vi =
Vn

i −Vn−1
i

∆t
+O (∆t) , (D.13)

Wn
i −Wn−1

i = − ∆t
∆x
(

Fnum
i+1/2 − Fnum

i−1/2

)
, (D.14)

where the interface fluxes are computed with the states at the time step n− 1. Substituting
(D.13) and (D.14) in (D.12), one obtains:

Ak
i = ∆t

(
d
dt

Vi +O (∆t)
)
+

∆t
∆x
(

Fnum
i+1/2 − Fnum

i−1/2

)
, (D.15)

=
∆t
∆x
(
− (Fi+1/2 − Fi−1/2) + Fnum

i+1/2 − Fnum
i−1/2 +O (∆t)

)
, (D.16)

=
∆t
∆x

(O (∆xp) +O (∆t)) , (D.17)

= ∆t
(
O
(

∆xp−1
)
+O (∆t)

)
. (D.18)

The computation of the sum of all Ak
i gives:

n

∑
k=1
Ak

i = Dn
i −D0

i , (D.19)

and assuming that the initial numerical approximation W0
i is the initial exact solution V0

i , it
comes easily:

n

∑
k=1
Ak

i = Dn
i . (D.20)
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D.2 Discretization error

Using (D.18) and (D.20), one obtains:

Dn
i =

n

∑
k=1
Ak

i (D.21)

=
n

∑
k=1

∆t
(
O
(

∆xp−1
)
+O (∆t)

)
, (D.22)

= n∆t
(
O
(

∆xp−1
)
+O (∆t)

)
, (D.23)

= tn
(
O
(

∆xp−1
)
+O (∆t)

)
, (D.24)

= O
(

∆xp−1
)
+O (∆t) , (D.25)

where tn is the physical time of the whole computation. Summing the discretization error Dn
i

for the cell i for all N cell of the considered mesh, one finally finds the discretization error
Dn (∆t, ∆x):

Dn (∆t, ∆x) = O
(

∆xp−1
)
+O (∆t) . (D.26)

As a consequence, the discretization error of the spatial discretization is (p − 1)-th order
accurate. Again, it must also be highlighted that for some configurations, the p−th order of
accuracy can be recovered on uniform grids. This is due to the fact that one can obtain a p+ 1-th
accurate flux balance Fi+1/2 − Fi−1/2. Indeed, the error term in ∆xp can be identical for Fi+1/2

and Fi−1/2 and the contribution vanishes. Examples of such a situation are given in Sec. 6.2,
Sec. 6.3 and Sec. 6.4 by equations (6.4), (6.13) and (6.22). This feature then gives a discretization
error of the spatial discretization which is p-th order accurate with an extrapolation formula
for the interface fluxes of order p. Obviously, this feature is lost on general unstructured
grids. However, supra-convergence phenomenon can occur in very specific cases. Indeed, as
stated in [188], “a qualitative explanation of supra-convergence observed for [Finite Volume
discretization] schemes on irregular grids was suggested by Giles [189]. Giles’ arguments can
be illustrated as follows. First consider a node-centered [Finite Volume discretization] scheme
on a sequence of regular grids. On such grids, truncation and discretization errors would
converge with the same design order. [This is confirmed by (D.8) and (D.26).] Now consider
effects of a local irregularity introduced, for example, by shifting one node. The node shift
leads to changes in faces (and corresponding fluxes) of the control volume containing this
node and its neighboring control volumes. Fluxes outside of this immediate neighborhood
remain unchanged. Each (changed) flux at an internal face contributes equal and opposite
amounts to the undivided truncation errors on both sides of the face. Thus, the change
introduced into the local truncation error can be large (the change in a flux divided by the
control volume), but the mean value (and, often, higher moments) of the changes introduced
into the undivided truncation errors is zero. If the convolution kernel is sufficiently smooth,
e.g., for all nodes outside of the immediate neighborhood of the perturbed node, the weighting
factors do not vary too much over the control volumes with perturbed truncation errors, then
the discretization error changes are close to zero outside of this immediate neighborhood.
Even within this neighborhood, the discretization error changes are small comparing with the
changes in the truncation errors because of the averaging effect.”

185





C H A P T E R

E
About the work unit

evaluation

“Science is a differential equation. Religion is a boundary
condition.”

— Alan Mathison Turing (1912 - 1954)

In this appendix, the evaluation of the work unit time τw is detailed. The cost of a computa-
tion should be expressed in work units. The work unit time is used to assess the computation
time regardless of the machine. But, obviously, it should be measure on each machine. Here, it
was measured on nodes composed of 12 bi-socket Intel Haswell (E5-2680v3) cores at 2.5 Ghz
with 64 GB RAM. To estimate the work unit time, 1000 TauBench runs were launched and
the computation time for each run is reported in Fig. E.1. TauBench was launched with the
command

mpirun -np 1 ./TauBench -n 250000 -s 10

where the option -n specifies the number of grid points and the option -s specifies the number
of pseudo-steps. The TauBench is an unstructured grid benchmark. The respective kernels are
derived from Tau [190, 191, 192], a Navier Stokes solver of DLR. Finally, the mean work unit
time is 7633 [ms] with a standard deviation of 18 [ms].
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Fig. E.1. Evaluation of the work unit time τw with several computations. The mean work unit time is 7633 [ms]
with a standard deviation of 18 [ms].
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Vieweg+Teubner Verlag (1970), 115–225. (Cited on page 8). http://dx.doi.org/10.1007/
978-3-322-84986-1 3.

[10] L. Boltzmann. Further studies on the thermal equilibrium of gas molecules. The Kinetic
Theory Of Gases 1 (2003), 262–349. (Cited on page 8). http://dx.doi.org/10.1142/
9781848161337 0015.

[11] G.R. McNamara and G. Zanetti. Use of the Boltzmann equation to simulate lattice-gas
automata. Phys. Rev. Lett. 61 (20) (1988), 2332–2335. (Cited on page 8). http://dx.doi.
org/10.1103/PhysRevLett.61.2332.

[12] X. He and L. Luo. A priori derivation of the Lattice Boltzmann equation. Phys. Rev. E 55
(6) (1997), R6333–R6336. (Cited on page 8). http://dx.doi.org/10.1103/PhysRevE.55.
R6333.

191

http://ec.europa.eu/transport/sites/transport/files/modes/air/doc/flightpath2050.pdf
http://ec.europa.eu/transport/sites/transport/files/modes/air/doc/flightpath2050.pdf
http://dx.doi.org/10.1002/fld.3767
http://dx.doi.org/10.1002/fld.3767
http://dx.doi.org/10.1051/meca/2013056
http://dx.doi.org/10.2514/6.2011-3379
http://dx.doi.org/10.2514/6.2011-3379
http://dx.doi.org/10.1137/1.9781611970876
http://dx.doi.org/10.1016/j.jcp.2010.03.027
https://www.researchgate.net/profile/Guillaume_Puigt/publication/271014084_JAGUAR_a_new_CFD_code_dedicated_to_massively_parallel_high--order_LES_computations_on_complex_geometry/links/54e755af0cf2cd2e02934f93.pdf?origin=publication_list
https://www.researchgate.net/profile/Guillaume_Puigt/publication/271014084_JAGUAR_a_new_CFD_code_dedicated_to_massively_parallel_high--order_LES_computations_on_complex_geometry/links/54e755af0cf2cd2e02934f93.pdf?origin=publication_list
https://www.researchgate.net/profile/Guillaume_Puigt/publication/271014084_JAGUAR_a_new_CFD_code_dedicated_to_massively_parallel_high--order_LES_computations_on_complex_geometry/links/54e755af0cf2cd2e02934f93.pdf?origin=publication_list
https://www.researchgate.net/profile/Guillaume_Puigt/publication/271014084_JAGUAR_a_new_CFD_code_dedicated_to_massively_parallel_high--order_LES_computations_on_complex_geometry/links/54e755af0cf2cd2e02934f93.pdf?origin=publication_list
https://books.google.fr/books?id=Cbp5JP2OTrwC
https://books.google.fr/books?id=Cbp5JP2OTrwC
http://dx.doi.org/10.1007/978-3-322-84986-1_3
http://dx.doi.org/10.1007/978-3-322-84986-1_3
http://dx.doi.org/10.1142/9781848161337_0015
http://dx.doi.org/10.1142/9781848161337_0015
http://dx.doi.org/10.1103/PhysRevLett.61.2332
http://dx.doi.org/10.1103/PhysRevLett.61.2332
http://dx.doi.org/10.1103/PhysRevE.55.R6333
http://dx.doi.org/10.1103/PhysRevE.55.R6333


[13] X. He and L. Luo. Theory of the Lattice Boltzmann method: from the Boltzmann
equation to the Lattice Boltzmann equation. Phys. Rev. E 56 (6) (1997), 6811–6817. (Cited
on page 8). http://dx.doi.org/10.1103/PhysRevE.56.6811.
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[15] S. Marié, D. Ricot, and P. Sagaut. Comparison between lattice Boltzmann method and
Navier-Stokes high order schemes for computational aeroacoustics. J. Comput. Phys. 228
(4) (2009), 1056–1070. (Cited on page 8). http://dx.doi.org/10.1016/j.jcp.2008.10.021.

[16] D. Lagrava, O. Malaspinas, J. Latt, and B. Chopard. Advances in multi-domain Lat-
tice Boltzmann grid refinement. J. Comput. Phys. 231 (14) (2012), 4808–4822. (Cited on
page 8). http://dx.doi.org/10.1016/j.jcp.2012.03.015.

[17] Y.H. Qian and S.A. Orszag. Lattice BGK Models for the Navier-Stokes equation: nonlin-
ear deviation in compressible regimes. EPL 21 (3) (1993), 255. (Cited on page 8). http:
//dx.doi.org/10.1209/0295-5075/21/3/001.

[18] J. Vanharen, G. Puigt, and M. Montagnac. Theoretical and numerical analysis of noncon-
forming grid interface for unsteady flows. J. Comput. Phys. 285 (2015), 111–132. (Cited
on page 13). http://dx.doi.org/10.1016/j.jcp.2015.01.013.

[19] J. Vanharen, G. Puigt, and M. Montagnac. Two-dimensional spectral analysis of noncon-
forming grid interface. Emphasis on unsteady flows. 50th 3AF International Conference
on Applied Aerodynamics. (FP36-2015-vanharen). Toulouse, France. (2015). (Cited on
page 13). http://www.cerfacs.fr/∼cfdbib/repository/TR CFD 15 23.pdf.

[20] D.J. Mavriplis. Unstructured grid techniques. Ann. Rev. Fluid Mech. 29 (1) (1997), 473–514.
(Cited on page 14). http://dx.doi.org/10.1146/annurev.fluid.29.1.473.

[21] J.L. Steger, F.C. Dougherty, and J.A. Benek. A Chimera Grid Scheme. Advances in
grid generation. Proceedings of the Applied Mathematics, Bioengineering, and Fluids
Enginneering Conference. Edited by K.N. Ghia and U. Ghia. Houston (TX), USA. The
American Society of Mechanical Engineers volume 5 (1983), 59–69. (Cited on page 14).
https://ntrs.nasa.gov/search.jsp?R=19840028795.

[22] B. Landmann and M. Montagnac. A highly automated parallel Chimera method for
overset grids based on the implicit hole cutting technique. Int. J. Numer. Meth. Fluids 66
(6) (2011), 778–804. (Cited on page 14). http://dx.doi.org/10.1002/fld.2292.

[23] X. He, X. He, L. He, Z. Zhao, and L. Zhang. HyperFLOW: A structured/unstructured
hybrid integrated computational environment for multi-purpose fluid simulation. Pro-
cedia Eng. 126 (2015), 645–649. (Cited on page 14). http://dx.doi.org/10.1016/j.proeng.
2015.11.254.

[24] K.-H. Kao and M.-S. Liou. Advance in overset grid schemes - From Chimera to DRAGON
grids. AIAA J. 33 (10) (1995), 1809–1815. (Cited on page 14). http://dx.doi.org/10.2514/
3.12921.

[25] M.M. Rai. A conservative treatment of zonal boundaries for Euler equation calculations.
J. Comput. Phys. 62 (2) (1986), 472–503. (Cited on page 14). http://dx.doi.org/10.1016/
0021-9991(86)90141-5.

[26] S. Le Bras, H. Deniau, and C. Bogey. A flux reconstruction technique for non-conforming
grid interfaces in aeroacoustic simulations. 22nd AIAA/CEAS Aeroacoustics Confer-
ence. (AIAA-2016-2972). Lyon, France. (2016). (Cited on page 14) http://dx.doi.org/10.
2514/6.2016-2972.

192

http://dx.doi.org/10.1103/PhysRevE.56.6811
http://dx.doi.org/10.1007/978-3-319-44649-3
http://dx.doi.org/10.1016/j.jcp.2008.10.021
http://dx.doi.org/10.1016/j.jcp.2012.03.015
http://dx.doi.org/10.1209/0295-5075/21/3/001
http://dx.doi.org/10.1209/0295-5075/21/3/001
http://dx.doi.org/10.1016/j.jcp.2015.01.013
http://www.cerfacs.fr/~cfdbib/repository/TR_CFD_15_23.pdf
http://dx.doi.org/10.1146/annurev.fluid.29.1.473
https://ntrs.nasa.gov/search.jsp?R=19840028795
http://dx.doi.org/10.1002/fld.2292
http://dx.doi.org/10.1016/j.proeng.2015.11.254
http://dx.doi.org/10.1016/j.proeng.2015.11.254
http://dx.doi.org/10.2514/3.12921
http://dx.doi.org/10.2514/3.12921
http://dx.doi.org/10.1016/0021-9991(86)90141-5
http://dx.doi.org/10.1016/0021-9991(86)90141-5
http://dx.doi.org/10.2514/6.2016-2972
http://dx.doi.org/10.2514/6.2016-2972


[27] S. Deparis, D. Forti, P. Gervasio, and A. Quarteroni. INTERNODES: an accurate interpo-
lation-based method for coupling the Galerkin solutions of PDEs on subdomains featur-
ing non-conforming interfaces. Comput. Fluids 141 (2016), 22–41. (Cited on page 14). http:
//dx.doi.org/10.1016/j.compfluid.2016.03.033.
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Abstract: This work deals with high-order numerical methods for unsteady flows
around complex geometries. In order to cope with the low-order industrial Finite Volume
Method, the proposed technique consists in computing on structured and unstructured
zones with their associated schemes: this is called a hybrid approach. Structured and
unstructured meshes are then coupled by a nonconforming grid interface. The latter is
analyzed in details with special focus on unsteady flows. It is shown that a dedicated
treatment at the interface avoids the reflection of spurious waves. Moreover, this hybrid
approach is validated on several academic test cases for both convective and diffusive
fluxes. The extension of this hybrid approach to high-order schemes is limited by the
efficiency of unstructured high-order schemes in terms of computational time. This is
why a new approach is explored: The Spectral Difference Method. A new framework is
especially developed to perform the spectral analysis of Spectral Discontinuous Methods.
The Spectral Difference Method seems to be a viable alternative in terms of computational
time and number of points per wavelength needed for a given application to capture the
flow physics.

Keywords: Finite Volume, Nonconforming Grid Interface, Hybrid Approach, High-
Order Unstructured Schemes, Spurious Waves, Spectral Difference, Spectral Analysis.

Résumé : Dans ce travail, on s’intéresse aux méthodes numériques d’ordre élevé
pour des écoulements instationnaires autour de géométries complexes. On commence par
analyser l’approche hybride pour la méthode industrielle des Volumes Finis à l’ordre faible.
Cela consiste à calculer en même temps sur des maillages structurés et non structurés
avec des schémas numériques dédiés. Les maillages structurés et non structurés sont
ensuite couplés par un raccord non conforme. Ce dernier est analysé en détails avec une
attention particulière pour des écoulements instationnaires. On montre qu’un traitement
dédié à l’interface empêche la réflexion d’ondes parasites. De plus, l’approche hybride
est validée sur plusieurs cas académiques à la fois pour les flux convectifs et pour les flux
diffusifs. L’extension de cette approche hybride à l’ordre élevé est limitée par l’efficacité
des schémas non structurés d’ordre élevé en terme de temps de calcul. C’est pourquoi
une nouvelle approche est explorée : la méthode des différences spectrales. Un nouveau
cadre est spécialement développé pour réaliser l’analyse spectrale des méthodes spectrales
discontinues. La méthode des différences spectrales semble être une alternative viable en
terme de temps de calcul et de nombre de points par longueur d’onde nécessaires à une
application donnée pour capturer la physique de l’écoulement.

Mots-clefs : Volume Finis, Raccords Non Conformes, Approche Hybride, Schémas
Non Structurés d’Ordre Elevé, Ondes Parasites, Différences Spectrales, Analyse Spectrale.
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