Mr Laurent Georges

Mr Mathieu

Mr Jérôme Ermont

Many-core architectures are more promising hardware to design real-time systems than multicore systems as they should enable an easier mastered integration of a higher number of applications, potentially of different level of criticalities. In embedded real-time systems, these architectures will be integrated within backbone Ethernet networks, as they mostly provide Ethernet controllers as Input/Output(I/O) interfaces. Thus, a number of applications of different level of criticalities could be allocated on the Network-on-Chip (NoC) and required to communicate with sensors and actuators. However, the worst-case behavior of NoC for both inter-core and core-to-I/O communications must be established. Several NoCs targeting hard real-time systems, made of specific hardware extensions, have been designed. However, none of these extensions are currently available in commercially NoC-based many-core architectures, that instead rely on wormhole switching with round-robin arbitration. Using this switching strategy, interference patterns can occur between direct and indirect flows on many-cores. Besides, the mapping over the NoC of both critical and non-critical applications has an impact on the network contention these core-to-I/O communications exhibit.

These core-to-I/O flows (coming from the Ethernet interface of the NoC) cross two networks of different speeds: NoC and Ethernet. On the NoC, the size of allowed packets is much smaller than the size of Ethernet frames. Thus, once an Ethernet frame is transmitted over the NoC, it will be divided into many packets. When all the data corresponding to this frame are received by the DDR-SDRAM memory on the NoC, the frame is removed from the buffer of the Ethernet interface. In addition, the congestion on the NoC, due to wormhole switching, can delay these flows. Besides, the buffer in the Ethernet interface has a limited capacity. Then, this behavior may lead to a problem of dropping Ethernet frames. The idea is therefore to analyze the worst case transmission delays on the NoC and reduce the delays of the core-to-I/O flows.

In this thesis, we show that the pessimism of the existing Worst-Case Traversal Time (WCTT) computing methods and the existing mapping strategies lead to drop Ethernet frames due to an internal congestion in the NoC. Thus, we demonstrate properties of such NoC-based wormhole networks to reduce the pessimism when modeling flows in contentions. Then, we propose a mapping strategy that minimizes the contention of core-to-I/O flows in order to solve this problem.

We show that the WCTT values can be reduced up to 50% compared to current state-of-theart real-time packet schedulability analysis. These results are due to the modeling of the real iii impact of the flows in contention in our proposed computing method. Besides, experimental results on real avionics applications show significant improvements of core-to-I/O flows transmission delays, up to 94%, without significantly impacting transmission delays of core-to-core flows. These improvements are due to our mapping strategy that allocates the applications in such a way to reduce the impact of non-critical flows on critical flows. These reductions on the WCTT of the core-to-I/O flows avoid the drop of Ethernet frames. iv Résumé Les architectures pluri-coeurs sont plus intéressantes pour concevoir des systèmes en temps réel que les systèmes multi-coeurs car il est possible de les maîtriser plus facilement et d'intégrer un plus grand nombre d'applications, potentiellement de différents niveau de criticité. Dans les systèmes temps réel embarqués, ces architectures peuvent être utilisées comme des éléments de traitement au sein d'un réseau fédérateur car ils fournissent un grand nombre d'interfaces Entrées/Sorties telles que les contrôleurs Ethernet et les interfaces de la mémoire DDR-SDRAM. Aussi, il est possible d'y allouer des applications ayant différents niveaux de criticités. Ces applications communiquent entre elles à travers le réseau sur puce (NoC) du pluri-coeur et avec des capteurs et des actionneurs via l'interface Ethernet. Afin de garantir les contraintes temps réel de ces applications, les délais de transmission pire cas (WCTT) doivent être calculés pour les flux entre les coeurs ("inter-core") et les flux entre les coeurs et les interfaces entrées/sorties ("core-to-I/O"). Plusieurs réseaux sur puce (NoCs) ciblant les systèmes en temps réel dur ont été conçus en s'appuyant sur des extensions matérielles spécifiques. Cependant, aucune de ces extensions ne sont actuellement disponibles dans les architectures de réseaux sur puce commercialisés, qui se basent sur la commutation wormhole avec la stratégie d'arbitrage par tourniquet. En utilisant cette stratégie de commutation, différents types d'interférences peuvent se produire sur le réseau sur puce entre les flux. De plus, le placement de tâches des applications critiques et non critiques a un impact sur les contentions que peut subir les flux "core-to-I/O". Ces flux "core-to-I/O" parcourent deux réseaux de vitesses différentes: le NoC et Ethernet. Sur le NoC, la taille des paquets autorisés est beaucoup plus petite que la taille des trames Ethernet. Ainsi, lorsque la trame Ethernet est transmise sur le NoC, elle est divisée en plusieurs paquets. La trame sera supprimée de la mémoire tampon de l'interface Ethernet uniquement lorsque la totalité des données aura été transmise. Malheureusement, la congestion du NoC ajoute des délais supplémentaires à la transmission des paquets et la taille de la mémoire tampon de l'interface Ethernet est limitée. En conséquence, ce comportement peut aboutir au rejet des trames Ethernet. L'idée donc est de pouvoir analyser les délais de transmission pire cas sur les NoC et de réduire leurs délais afin d'éviter ce problème de rejet. v Dans cette thèse, nous montrons que le pessimisme de méthodes existantes de calcul de WCTT et les stratégies de placements existantes conduisent à rejeter des trames Ethernet en raison d'une congestion interne sur le NoC. Des propriétés des réseaux utilisant la commutation "wormhole" ont été définies et validées afin de mieux prendre en compte les conflits entre les flux. Une stratégie de placement de tâches qui prend en compte les communications avec les I/O a été ensuite proposée. Cette stratégie vise à diminuer les contentions des flux qui proviennent de l'I/O et donc de réduire leurs WCTTs.

Les résultats obtenus par la méthode de calcul définie au cours de cette thèse montrent que les valeurs du WCTT des flux peuvent être réduites jusqu'à 50% par rapport aux valeurs de WCTT obtenues par les méthodes de calcul existantes. En outre, les résultats expérimentaux sur des applications avioniques réelles montrent des améliorations significatives des délais de transmission des flux "core-to-I/O", jusqu'à 94%, sans impact significatif sur ceux des flux "intercore". Ces améliorations sont dues à la stratégie d'allocation définie qui place les applications de manière à réduire l'impact des flux non critiques sur les flux critiques. Ces réductions de WCTT des flux "core-to-I/O" évitent le rejet des trames Ethernet. vi

List of Tables

 illustratingthe WCTT of the core-to-I/O flows, of the case study A, sharing the Ethernet (0,6) and (0,2) using M ap IO and SHiC approach. illustrating the WCTT of the core-to-I/O flows, of the case study B, sharing the Ethernet (0,6) and (0,2) using M ap IO and SHiC approach.

Table

Table illustrating the WCTT of HM

Table illustrating the different results for applications, of case study A, sharing

the Ethernet (0,6) using M ap IO and SHiC approach.

Table illustrating the different results for HM and FADEC in both case studies

A and B using M ap IO and SHiC approach.

Table reporting the

Motivation

The use of real-time systems continues to spread in many diverse application areas including, engine management, process control, medical electronics, telecommunications, robotics, multimedia and avionics. The underlying idea of real-time systems is not the speed concept but the reactivity: a real-time system operates in a dynamic environment and must constantly adapt to the changes in this environment. This implicates that the response to these changes must be adapted (functional correction), but must also respect the time constraints (time correction).

These time constraints vary considerably in their degree of severity. In soft real-time systems, the late response may be tolerated. In contrast, in hard real-time systems, a failure to respond within the time constraints may constitute a catastrophic failure of the system.

1

In this thesis, we focus on hard real-time systems.

Real-time systems range in complexity from simple controllers implementing a single function, to complex sets of communicating sub-systems, each of which is responsible for performing a number of critical functions. These systems are becoming increasingly complex with the complexity of applications, whether in architectures (number of processors, the presence of networks), or in requirements (criticality of tasks, computing power, energy consumption, etc..).

The need to meet these requirements lead to computer systems that comprised millions of transistors on a single chip, commonly called Systems on Chip or SoC. The most common communication backbone used in SoCs is the shared medium arbitrated bus. However, a bus based SoC does not scale with the number of cores attached, and so the performance is reduced. Thus, a search for the communication backbone of next generation many-core based SoCs supporting new inter-core communication demands started, and lead to the design of what is called Network on Chip (NoC). NoC has emerged as a viable alternative as it consists of various cores connected to a router-based network. Such communication architecture is described as modular and scalable [BDM02b, DT01, KJS + 02].

In this thesis, we focus on the NoC-based many-core architectures.

Many-core architectures are indeed promising hardware to support the design of hard real-time systems [NYP + 14a]. They are based on simpler cores, without complex hardware mechanisms that can be found in multi-core architectures. The timing predictability of cores within manycore architectures are thus easier to analyze. In order to support hard real-time traffic, the guarantees in the worst-case scenarios must be established. Then, the Worst-Case Traversal Time (WCTT) of all the packets generated by a flow must be lower than a predetermined deadline. A deadline marks the latest time that a packet should arrive to its destination.

Thus, Quality-of-Service (QoS) has been a major concern for NoC [START_REF] Bjerregaard | A survey of research and practices of network-on-chip[END_REF]. In fact, packets are routed in a network where resources are shared, thus bringing unpredictable performance.

NoCs can thus be used in hard real-time systems using two approaches. A first approach is to use analytic methods to analyze the WCTTs of flows on existing many-cores. A second one is 1.1. Motivation to modify the hardware architecture in such a way no contentions can occur by design, leading to straightforward WCTT for flows. However, the problem in the second approach is that it does not exist a commercial NoC architecture implementing it.

In this thesis, we focus on the use of NoC architectures in hard real-time systems using the first approach.

In embedded real-time systems, a number of applications of different level of criticalities could be allocated on a NoC and required to communicate with sensors and actuators. As manycores architectures present an important number of Ethernet interfaces, thus, it could be used as processing elements within a backbone Ethernet network. The challenge is then to analyze the worst-case behavior of the underlying NoC [START_REF] Benini | Networks on chips: a new soc paradigm[END_REF] used for both inter-core and core to external memories or peripherals communications. Such real-time packet schedulability analysis have been done for various types of networks by taking into account the type of contentions that can occur between flows. However, none of these works consider in addition the core-to-I/O communications.

In this thesis, we focus on the integration of I/O constraints within NoC communications.

A core-to-I/O flow experiences a change in its speed as it crosses two networks of different types (NoC and Ethernet). However, in NoCs, the congestion is possible especially when using a wormhole switching. A NoC congestion delays the core-to-I/O flow leading to an overflow of the buffer of the Ethernet interface which is of limited capacity. Therefore, incoming Ethernet frames holding critical data could be dropped. Real-time packet schedulability analysis must then be done by taking into account all types of contentions that can occur between all types of flows, which severely complicate its timing analysis.

The objective of this thesis is to analyze the WCTT of all flows on the

NoC and to reduce the WCTT of the core-to-I/O flow in order to

avoid the loss of critical payloads.

Contributions

In the aim to reach the objectives mentioned in the previous section, this thesis presents three main contributions:

• An analysis showing that existing computing methods and congestion-aware mapping strategies are not sufficient to integrate the I/O constraints within the NoC communications. Besides, an explanation of the I/O interfaces and an illustration of the communications between cores and I/O interfaces are presented. To the best of our knowledge, this is the first work that integrates I/O communications within the NoC communications.

• An analytical method to compute the WCTT by including three properties of the wormhole switching when analyzing contentions between flows. This method reduces the pessimism of the existing methods, thus tightest bounds of the delay can be obtained.

• A congestion-aware mapping strategy of critical and non-critical applications that consider not only the core-to-core communications, but also the core-to-I/O communications. This strategy aims to reduce the contention on the core-to-I/O flows and then their WCTTs.

The thesis is organized as follows:

• Chapter 2 presents the main NoC concepts that impact the WCTT of flows over different architectures. Besides, we present some of the existing NoC architectures in order to argue the architecture we assume in this work

• Chapter 3 describes the existing methods to compute the WCTT of the flows on the wormhole networks. It illustrates also the existing mapping strategies that reduce the congestion on the NoC and thus the WCTT of these flows.

• Chapter 4 presents our first contribution: an illustration of the the problems when using NoCs in real-time systems interconnected to sensors and actuators via Ethernet. Thus, first, we present the model of our NoC architecture and the I/O model. Then, we show 1.3. Publications in a motivating case study made of real-time applications what are the limitations of the existing WCTT analysis and mapping methods that lead to these problems.

• Chapter 5 explains our second contribution: an analysis method that reduces the pessimism when computing WCTT of flows. This chapter shows the improvements of our method compared to the existing methods.

• Chapter 6 describes our third contribution: a mapping algorithm that takes into account the core-to-I/O flows and that aims to reduce the contention on these flows.

• Chapter 7 presents an evaluation of our contributions compared to the current state-ofthe-art methods on several case studies. The objective of this chapter is to illustrate the impacts of our proposed approaches on the WCTT of the core-to-I/O and core-to-core flows.

• Chapter 8 concludes the manuscript by summarizing the major contributions of the thesis and proposing interesting research directions as future work.

Publications

This is a list of papers and publications that reflects the results achieved during the developement of the research work presented in this dissertation. A significant part of this thesis is compiled from these papers and publications.

• Laure Abdallah, Mathieu Jan, Jérôme Ermont and Christian Fraboul. "Reducing the contention experienced by real-time core-to-I/O flows over a Network on Chip", In 28th

Euromicro Conference on Real-Time Systems (ECRTS), Toulouse, France, July 2016.

• Laure Abdallah, Mathieu Jan, Jérôme Ermont and Christian Fraboul. "Wormhole networks properties and their use for optimizing worst case delay analysis of many-cores", In 10th IEEE International Symposium on Industrial Embedded Systems (SIES 2015), pages 59-68, Siegen, Germany, June 2015.

• Laure Abdallah, Mathieu Jan, Jérôme Ermont and Christian Fraboul. "I/O contention aware mapping of multi-crticalities real-time applications over many-core architectures", In Proc. of the 22nd IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS), Session Work-In-Progress, Vienna, Austria, April 2016.

• Laure Abdallah, Mathieu Jan, Jérôme Ermont and Christian Fraboul. "Optimizing worst case delay analysis on wormhole networks by modeling the pipeline behavior", In Proc.

of the 13th International Workshop on Real-Time Networks (RTN), Madrid, Spain, July 2014.

• Laure Abdallah, Mathieu Jan, Jérôme Ermont and Christian Fraboul. "Why and how to map real-time core-to-I/O flows over a Tilera-like Network on Chip?", In FNRS Seminar-Real-time networks, Brussels, Belgium, May 2016.

• Laure Abdallah, Mathieu Jan, Jérôme Ermont and Christian Fraboul. "Propriétés des réseaux wormhole pour optimiser l'analyse de délai pire cas dans les many-coeurs", In

NoC components

NoC was introduced in [DT01] as a better alternative to global wiring structures, used to interconnect different Intellectual Property (IP) cores, which are also called Processing Elements (PE). A NoC, being on a single chip, is composed of a number of interconnected tiles. A tile, which is also called a node, contains one or many IP cores and a network router. A NoC also interconnects the tiles to the I/O interfaces such as the external memory, the Ethernet interfaces, etc. Figure 2.1 illustrates the structure of a NoC which is composed of routers, network interfaces and links.

Router

A router is used to send messages from one tile to another. It consists of a set-up of input and output ports that can (or not) contain buffers, an interconnection matrix, and an arbiter.

Routers can have buffers either at input port or at output port [START_REF] James | Principles and practices of interconnection networks[END_REF]. Figure 2.1 illustrates an example of a router with input buffers. These inputs and outputs ports are connected to each other via the interconnection matrix which is controlled by the arbiter [START_REF] De | Networks on chips: technology and tools[END_REF].

Links

Routers communicate to each other by one or more physical channels, i.e. a link [START_REF] De | Networks on chips: technology and tools[END_REF][START_REF] Leroy | Optimizing the on-chip communication architecture of low power systems-on-chip in deep sub-micron technology[END_REF]. This connection could be uni-or bi-directional.

Network interface

Network Interface (NI) provides an interface between the core and the network. It makes NoC transparent for the PEs. It is used by PEs to access the interconnect medium. The data produced by the core have to be encapsulated by the source NI and decapsulated by the destination NI. NI converts the messages into packets for the transmission of the NoC.

A packet is divided into flow control units (flits). A flit is the minimum unit of information that can be transferred across a link [START_REF] David E Culler | Parallel computer architecture: a hardware/software approach[END_REF]. The first flit is called the header. The packet header contains informations about the destination NoC node. These informations are needed by NI to determine the path of the packet. The header is followed by one or several flits which compose the data payload. The data payload is the data transmitted by the IP core across the NoC.

Real-time systems

In a real-time system, the accuracy of the application depends not only on the result but also on the time at which this result is produced. A data packet received by a destination too late could be useless or even cause a severe consequence. Typical examples of real-time systems include control systems for cars, aircraft and space vehicles. In an Antilock Braking System (ABS), not only the breaking pressure must be calculated, but also the time of application is critical to gain a functioning ABS. ABS braking system should not put more than 150ms to receive the information and 1s to react.

Thus, time is an important characteristic for real-time systems. This characteristic distinguishes these systems from other types of computing systems. For on-chip communications, the packet transmission duration is the time which interests us. Assigning a deadline to each packet distinguishes a real-time communication from a non real-time one. A deadline marks the latest time that a packet should arrive to its destination. Thus, a real-time communication means meeting the deadlines, i.e. satisfying the timing constraints. For hard real-time systems, a missed deadline is not tolerated. Thus, communications in these systems must imperatively meet deadlines, otherwise the system might fail and the penalty incurred is catastrophic. It could lead to loss of life, serious damage to the environment or threats to business interests. As an example of hard real-time applications, Full Authority Digital Engine Controller (FADEC) that controls the activities of an aircraft jet engine. The FADEC design requires particular timing requirements. For example, if the FADEC senses that a turbine drive shaft has broken, then the FADEC must respond with a damage mitigating action in a predetermined time.

In this thesis, we are interested in such hard-real time communications, where we focus on the response time communications. Now, let us see how the implementation of NoC concepts impact the delivery of such real-time requirements.

NoC concepts and real-time requirements

A number of metrics are needed to measure and quantifying the performance of a NoC [KPN + 05, DYN03]. In general, it is desirable that a NoC architecture exhibits low latency, high throughput, energy efficiency, low cost, low area overhead and high scalability. In hard real-time systems, the delay bounds of each packet must be guaranteed. As we deal with these systems, we focus on the latency metric where the maximal latency, called Worst-case Traversal Time (WCTT), of each packet must be lower than its deadline. The goal of this section is to introduce a number of NoC concepts that impact the latency and the design complexity. First, let us see what is the latency metric?

Latency and Quality-of-Service

The measurement of the end-to-end network latency is either at the packet or the message level. Thus, the latency of a packet is the time between sending the first flit at the source and receiving the last flit of this packet at the destination. Similarly, the latency of a message is the time between the transmission of the first packet and the reception of the last one.

However, the latency of a packet is the sum of two components [START_REF] Leroy | Optimizing the on-chip communication architecture of low power systems-on-chip in deep sub-micron technology[END_REF]:

1. The conflict-free delay;

2. The blocking delay.

The conflict-free delay includes the router delay, the wire delay and the distance between the source and the destination. The blocking delay results from the possible contention between packets transmitted on the NoC. However, these delays depend on the choices made when designing the elements of a NoC. But, the degree of freedom is large. For this reason, the key NoCs concepts have to be carefully considered by the designer as they affect all the performance metrics. The latency is an important performance metric as it is often associated with a need for Quality-of-Service (QoS). Actually, a QoS defines a certain level of guarantees that is given for packet transfers. [GDvM + 03] identifies two basic QoS classes:

1. Best-Effort (BE):

BE services do not reserve any resources, and hence, provide no guarantees on latency and throughput. Thus, it optimizes the average network resources usage.

Guaranteed services (GS):

In this service, a number of mechanisms are used to allocate the network resources to ensure fixed throughput and/or latency, regardless of network load.

In the context of real-time systems over NoC, the WCTT must be computed. Thus, in this context, either we use different analytic methods to compute the WCTTs of packets in BE NoCs, or we use GS NoCs where the analysis of WCTT is more simpler as it leads to straightforward WCTT values.

The way in which a NoC concept is implemented can determine the QoS class offered for the applications on the NoC. Besides, it impacts the performance of a NoC on several metrics, such as the latency, the throughput, the area, etc.

Main concepts impacting the latency

The need for a QoS affects the way in which NoC concepts are implemented. Let us first see what are the essential NoC concepts that are used to provide a QoS class.

Switching techniques

The switching strategy defines how the flits are transmitted and stored by the routers. There are some points that affect the choice of the strategy, such as the cost, the granularity of data to be transmitted, the complexity of the router and the need of the Quality-of-Service (QoS).

The switching techniques are divided into two categories: the circuit-switching and the packet switching [MMM + 03].

1. Circuit switching: this strategy is usually used to provide guaranteed services, i.e.

guaranteed latency, as it reduces the blocking delays. In fact, in this strategy, the connection between two communicating nodes is reserved before the message is sent by the source node. This reservation is only released when the transfer of data is complete and so received by the destination. Thus, the resources (links, buffers) are only used by this communication and could not be used by another pair of nodes willing to communicate via the same path. This strategy is more adapted to transfer large payload in order to compensate the negotiation time to establish the connexion. Here, we can mention SoCBus [START_REF] Wiklund | Socbus: switched network on chip for hard real time embedded systems[END_REF] that aims to achieve the real-time guarantees by implementing the circuit switching.

The advantages of this strategy is that the available bandwidth and the latency of the message are known. However, one of the disadvantages of circuit switching is the inefficient bandwidth usage.

Packet switching:

In this strategy, packets are injected into the network as soon as the network can accept them, i.e. based on local availability information, without waiting for path setting before sending packets. Thus, in this case there is no guarantee that the path will be entirely available from the source to the destination. Each router takes the decision if a packet should be forwarded to the corresponding output port or whether it should wait in case of unavailability of the port. Thus, a control flow mechanism is required. In case of the unavailability of the port, packets are stored in buffers at intermediate routers.

An advantage of this strategy is the shared network between the communications compared to the circuit-switching where a communication is blocked until the release of the active connexion. Besides, there is no delay to establish a connexion as opposed to circuit-switching. However, this strategy leads to greater delays than on the circuitswitching due to the possible contentions between packets sharing the same resources.

Therefore, the packet switching is rather suitable for traffic with low requirements of QoS, i.e. BE. However, it could provide different QoS classes by implementing with specific arbitration mechanisms as we explain later. There are three basic packet switching schemes for forwarding data: store-and-forward (SF), virtual-cut through (VCT) and wormhole [START_REF] Duato | Interconnection networks: an engineering approach[END_REF]. These schemes are differentiated by their packet transmission granularity, i.e. at the flit level or packet level. SF and VCT schemes are not widely used in NoC architectures as they induce a high area cost of a router. Actually, a router should include at each input port a buffer able to store entire packets. Wormhole scheme is the most widely used scheme by NoC [START_REF] Salminen | Survey of network-on-chip proposals[END_REF] and especially to provide a BE service.

For this purpose, we are interested by this scheme of packet switching. Let us see the functionality of wormhole switching.

Wormhole switching:

Wormhole switching [START_REF] Mohapatra | Wormhole routing techniques for directly connected multicomputer systems[END_REF] reduces the buffer requirement at the flit level. Thus, the buffer capacity of the router is a multiple of flits, and so their size is smaller. The packets are transmitted between routers in units of flits, where a flit is transmitted as soon as there is space for one flit in the buffer of the next router. The header flit contains the routing information and the next flits containing data follow contiguously this header in a pipeline fashion. If a packet is blocked, flits of the packet may be stalled on a sequence of routers.

This technique provides a low router latency because they do not have to store the full packets. In addition, the area cost is reduced because the queues are much smaller. However, a packet may occupy several routers at the same time. In this case, it is possible to block the transmission of other packets, leading to a high level of congestion and inefficient use of channel bandwidth due to chained blocking. This chained blocking could lead to deadlock where messages wait for each other and no one can advance any further. To avoid deadlock, specific buffering and/or routing schemes are combined with the wormhole switching. Wormhole switching can provide more efficient network channel utilization.

For instance, Tilera [START_REF]Tile processor user architecture manual[END_REF], Mango [START_REF] Bjerregaard | A router architecture for connection-oriented service guarantees in the mango clockless network-on-chip[END_REF], Teraflops [HVS + 07], Aethereal [START_REF] Goossens | AEthereal network on chip: concepts, architectures, and implementations[END_REF] and Kalray [START_REF] Dupont De Dinechin | Time-critical computing on a single-chip massively parallel processor[END_REF] NoCs implement this mode.

Buffering

The buffering determines the capacity of storage at the input or output ports of a router.

Increasing buffering capacities can improve the latency and the throughput at the price of the cost of area and power. The relative positioning of the buffers at input and output ports of the router is performed using various strategies. In this section, we distinguish three main strategies used in NoC design: input queuing, output queuing and virtual output queuing which are also called by virtual channels [RGR + 03].

1. Input queuing: In this strategy, N queues are placed at the input ports of the router as illustrated in Figure 2.2a. We note that the router presents N input and N output ports. An arbiter determines when an input queue is connected to an output port so that no conflict occurs. Although this technique is the least expensive on the surface, it can induce to the Head-of-line blocking problem [START_REF] Karol | Input versus output queueing on a space-division packet switch[END_REF]. This happens when a given data in the head of queue cannot access the associated output port, thus blocking other packets in the queue, even though their output ports are free.

2. Output queuing: When the queues are placed at the output of the router as shown in Figure 2.2b, each output port has a number of output queues equals to the number of input ports. This technique presents higher performance than input queuing but it increases the area cost: for a router of N input ports and N output ports, we need N 2 queues.

These two previous schemes are usually used to provide BE services. However, in order to reduce the waiting delay from which a flow can suffer by waiting a place in the next queues, virtual channels are used.

Virtual output queuing or virtual channels: Figure 2.2c illustrates this strategy

which combines the advantages of the input and output queuing. Thus, for each input port, there are a number of input queues that help to buffer the incoming packets in function of their destination or of a level of priority. This strategy is also called virtual channels (VCs) [START_REF] William | Virtual-channel flow control[END_REF][START_REF] Mello | Virtual channels in networks on chip: implementation and evaluation on hermes noc[END_REF] as for each physical channel, i.e. the link between two nodes, there are a number of VCs that share the bandwidth of the link. Thus, in this way, a blocked packet can be doubled by another packet sharing the same physical channel, but stored in another VC. It is used to solve the Head-of-Line blocking problem and to increase the router throughput. Although it implies an increase of the area, VCs have several advantages. They are deadlock free and support guaranteed traffic. Thus, this buffering is either coupled with circuit-switching to provide guaranteed latency, as in MANGO NoC, or with the packet switching. However, in the latter case, it should be implemented with the priority arbitration (which is explained in the next paragraph) by using a priority level for each VC to ensure a low latency for the high priority traffic.

Arbitration mechanisms

An arbitration mechanism is a way to address the contention problem. At each router, when more than one packet on different input ports, compete for the same output port, the arbiter chooses which input port will transfer the packet. Besides, the arbitration mechanisms are required when VCs are implemented in order to select which VC transfers a flit on a link. In the following, we describe the arbitration mechanisms used in NoCs.

Time Division Multiple Access (TDMA):

This policy is usually coupled with the circuit-switching mode in order to ensure a guaranteed latency (GS) where it leads to straightforward WCTT. This policy divides the time into time-slots. Each time-slot is assigned to a connexion between an input and an output port. Thus, during a time-slot, an input port can have the full access to an output port. However, when these time slots are not carefully aligned, higher latencies cannot be avoided [START_REF] Leroy | Optimizing the on-chip communication architecture of low power systems-on-chip in deep sub-micron technology[END_REF]. The Aethereal NoC uses the TDMA with the circuit-switching to ensure guaranteed services.

Priority-based:

This policy assigns to each packet an individual priority during its transmission from the source to the destination. Thus, when multiple packets on different input ports contend to the same output port, the packet with the highest priority is granted first. This technique is usually used in real time NoCs where the packets with the highest priority must meet their deadlines. It is especially used with virtual channels where to each VC is assigned a priority level. For example, QNOC [START_REF] Bolotin | Qnoc: Qos architecture and design process for network on chip[END_REF] chooses this strategy with virtual channels to provide real-time requirements. However, this policy could lead to a starvation for low priority packets.

Round-Robin (RR):

The RR policy assigns priorities to each input port. In each round of arbitration, the requested input port with the highest priority is served first.

But, the request that is served has then the lowest priority in the next round of arbitration [START_REF] Suyog | The behavior of round robin arbiter in noc architecture[END_REF]. In this way, this policy ensures a fairness between the requested communication from input ports and gives equal chance to the competitors. Besides, it ensures a faster access to an output port than the TDMA policy. Actually, a source port has to wait its time slot to send packets even when there are any competitors to this output port. The drawback of this policy is that does not differentiate the quality of services demanded by the different packets. Thus, it is usually used in BE NoCs. However, the RR policy is widely used in NoC architectures [START_REF] Tatas | Designing 2D and 3D network-on-chip architectures[END_REF] because it is fair and prevents starvation. For example Teraflops [HVS + 07], Aetheral [START_REF] Goossens | AEthereal network on chip: concepts, architectures, and implementations[END_REF], Tilera [START_REF]Tile processor user architecture manual[END_REF],

Kalray [START_REF] Dupont De Dinechin | Time-critical computing on a single-chip massively parallel processor[END_REF] and Mango [START_REF] Bjerregaard | A router architecture for connection-oriented service guarantees in the mango clockless network-on-chip[END_REF] NoCs use this strategy.

To summarize, a GS is provided either by the use of a circuit-switching usually coupled with TDMA arbitration and VCs or the implementation of wormhole switching coupled with a priority arbitration and VCs. A BE NoC usually uses the wormhole routing, the RR arbitration and input buffering.

Main concepts impacting the design complexity

There are other concepts that have an impact on the design complexity of the NoC, such as the topology, the routing algorithms and the flow control. However, The choice of an implementation of these concepts is not inclusive to a certain QoS class. Let us see what are the different possibilities of these concepts implementations and which one is the most used in the NoCs architecture.

Topology

The Topology of a network defines how the routers are interconnected using network links. The choice of the topology directly impacts the timing performance and the area. It is the first step in the design of the network as it defines the routing strategy used [START_REF] Bononi | Simulation and analysis of network on chip architectures: ring, spidergon and 2d mesh[END_REF].

There are a wide variety of network topologies [START_REF] De | Networks on chips: technology and tools[END_REF] that are used in NoCs. 2-D mesh and torus topologies, illustrated in 2.3, constitute over 60% of the NoC architectures [START_REF] Salminen | Survey of network-on-chip proposals[END_REF]. They indeed allow to define simple routing rules and provide good electrical properties. However, the most common topology is the 2D-Mesh 3. It is easy to group IPs that communicate a lot so that they do not consume any unnecessary high amount of resources in the network.

Routing algorithms

The routing algorithm, implemented at each router, determines which path the packet should take through the network, i.e. the output port from which the packet should be delivered.

The selection of the routing algorithm depends on several factors such as the implementation complexity and the performance requirements [START_REF] Umit Y Ogras | Key research problems in noc design: a holistic perspective[END_REF]. Thus, a compromise is needed between an optimal use of the network communication channels and a simple implementation of an algorithm that does not require excessive hardware resources.

A deterministic routing is preferred by NoC designers: according to [START_REF] Salminen | Survey of network-on-chip proposals[END_REF], it is used by more than 70% of the NoCs. It is indeed a simple routing algorithm where the path taken by the packet is completely known in advance for a given source/destination pair [START_REF] Dally | Deadlock-free adaptive routing in multicomputer networks using virtual channels[END_REF].

Then, it is simple to implement and it is inexpensive. Besides, it presents a low latency when the network is not congested. It is deadlock free when wormhole switching is used. As an example of deterministic routing is the XY routing, which is the popular routing algorithm considered on 2D mesh or torus NoCs [START_REF] Ni | A survey of wormhole routing techniques in direct networks[END_REF]. An adaptive routing is more complicated to implement [START_REF] Benini | Networks on chip: a new paradigm for systems on chip design[END_REF] as it provides multiple paths to route a packet from its source to its destination. It may lead to network deadlock or livelock or both. Livelock occurs when a packet does not arrive at its destination and rotates round in the network.

These algorithms can also be determined either at the source (source routing) or constructed sequentially in routers (distributed routing). In the source routing, the source determines the whole path of the packet which will be indicated in the header. In the distributed routing, each router chooses the next destination in function of the final destination. The source routing is simpler than distributed routing but cannot adapt paths in case of traffic congestion as the paths are pre-computed offline. As an example of NoCs that uses the source deterministic routing, we can cite Tilera [START_REF]Tile processor user architecture manual[END_REF] and Mango [START_REF] Bjerregaard | A router architecture for connection-oriented service guarantees in the mango clockless network-on-chip[END_REF] NoCs.

Flow control

The choice of the flow control strategy depends on which switching and buffering schemes/strategies are used. Because of the limited capacity of buffers, a flow control is necessary to avoid buffers to overflow and thus to reject some data. Thus, flow control ensures that a router cannot send any data to the next router if there is not enough space available to buffer it. The common control flow mechanisms proposed in the literature are the followings: ON/OFF [START_REF] Concer | Distributed flit-buffer flow control for networks-on-chip[END_REF],

credit-based protocol [BS04, DRGR03, RDG + 04] and ACK/NACK [START_REF] Pullini | Fault tolerance overhead in network-on-chip flow control schemes[END_REF]. The ON/OFF strategy minimizes the amount of the backpressure signaling by sending only a single control bit that indicates to the upstream router whether it is allowed to send (on) or not (off). In the credit-based mechanism, there is a counter in each upstream router to keep track of the number of free flits within the downstream router. Thus, a router can send a number of flits corresponding to the number of credits. Finally, in the ACK/NACK protocol, the logic flow control must acknowledge each flit received by the receiver port.

In the literature, the credit-based scheme is the most widely used in NoCs because of its high performance with limited buffering [START_REF] Gaillardon | Reconfigurable Logic: Architecture, Tools, and Applications[END_REF].

Assumed NoC architecture

This chapter has introduced the different concepts of NoCs and how they can be implemented to provide different classes of QoS. Thus, designing a NoC is difficult as it depends on a large number of parameters. This design is affected by the QoS needed and by a trade-off between the complexity/cost and ensuring a minimum throughput/latency. In order to give a general view on the state-of-the-art on the NoCs, we present a table summarizing a set of NoCs architectures (Table 2.1). For a more exhaustive list, [START_REF] Salminen | Survey of network-on-chip proposals[END_REF] lists sixty architectures of NoCs.

We classify these works into the following types: BE (Best-Effort) NoCs providing a good average performance, GS (Gauaranteed-Services) NoCs providing hard real-time requirements or GS and BE NoCs where the routers are more complex as they include two switching mode.

The majority of NoCs uses the mesh topology which is explained by the fact that it is the simplest and most flexible solution to implement. Some NoCs rely on torus topology in the aim to reduce the network diameter which could reduce the latency. Also, we can identify that the round-robin scheme is predominating other arbitration policies. Mostly about 70% of NoCs [START_REF] Salminen | Survey of network-on-chip proposals[END_REF] use the deterministic routing due to its advantages over the adaptive routing as mentioned before. Besides, in order to reduce the cost area of routers and especially buffers, virtual channels and output queuing are avoided.

However, the parameters that are directly related to the QoS are the switching mode and the arbitration mechanism. We can notice that wormhole switching with the round-robin arbitration are the most common mechanisms used in BE NoCs, as it provides lower latency, smaller and faster routers than other techniques [START_REF] Leroy | Optimizing the on-chip communication architecture of low power systems-on-chip in deep sub-micron technology[END_REF]. In GS NoCs, the virtual or pure circuit switching is more used and it is coupled with TDMA to ensure a higher predictability for the network as Besides, we show how they consider the different types of interferences in the computation of the WCTT. On the other hand, the WCTT depends on the mapping of the application. Thus, another challenge lies in the ability to reduce the congestion incurred by the flows, whether belonging to the same application or not. At the end of the chapter, we present a state-of-the-art on the mapping strategies used to reduce the contentions between flows and thus their WCTT.

WCTT over wormhole networks

In this section, we present a state-of-the art on the approaches used to analyze the WCTT on priority-based wormhole networks and BE wormhole networks.

Priority-based wormhole networks

Real-time communication over wormhole networks were studied before NoCs were introduced.

The most important mechanism in a wormhole real-time network is the use of virtual channels. Moreover, coupled with a mechanism for preemptive priorities, it allows a message to temporarily stop the transmission of another lower priority message.

The first approaches to upper-bound the latency of transmitted packets over a priority-based wormhole switching with virtual channels were proposed in [START_REF] Mutka | Using rate monotonic scheduling technology for real-time communications in a wormhole network[END_REF][START_REF] Sl Hary | Feasibility test for real-time communication using wormhole routing[END_REF]. Using these ap-proaches, the priority of flows is mapped over the priority bits of VCs. At each router, links are assigned to VCs of the highest priority that have a flit ready to be transmitted. [START_REF] Sl Hary | Feasibility test for real-time communication using wormhole routing[END_REF] presents a feasibility test that determines whether a set of messages can be transmitted in a given network respecting the deadlines of all messages. Each message is periodic and has a different priority level. Each physical link includes a virtual channel for each message that uses it. The principle to compute the worst-case delay of a message m i is to compute the delays of transmission of the messages m j having higher priorities than m i and sharing at least one link with m i . Moreover, as the messages are periodic, multiple instances of the same message can block m i . The authors propose to consider the entire path of a given message as a single shared resource, i.e. as one link which is must be free of any message of highest priority than m i .

Kim et al. [START_REF] Kim | A real-time communication method for wormhole switching networks[END_REF] noticed that neither of those approaches consider the impact of indirect

interference. An indirect interference happens when a message shares at least one link with m j but does not share any link with m i , and thus could have an impact on the latency bounds of m i .

[KKHL98] proposes an algorithm to compute WCTT of flows over priority-based wormhole networks. Compared to [START_REF] Mutka | Using rate monotonic scheduling technology for real-time communications in a wormhole network[END_REF][START_REF] Sl Hary | Feasibility test for real-time communication using wormhole routing[END_REF], the authors use a dependency graph between flows to identify both the direct and indirect contentions a flow may suffer. When an indirect flow is identified, the accuracy of WCTT values is improved, as the blocking effect of indirect flows can thus be modeled to occur only when other (periodic) blocking flows are released simultaneously. Otherwise, this indirect message can not interfere and its impact is not counted in the computation of the upper bound. However, [START_REF] Shi | Real-time communication services for networks on chip[END_REF] shows that this method still introduces excessive interference to the studied flow. Actually, they show on an example that possible parallel communication will take place on disjoint links which reduces the possible interference from higher priority flows.

[LJS05] proposed another improved algorithm. The defect in the approaches in [START_REF] Mutka | Using rate monotonic scheduling technology for real-time communications in a wormhole network[END_REF][START_REF] Sl Hary | Feasibility test for real-time communication using wormhole routing[END_REF] is that they aggregate all the links used by the studied flow and the flows that interfere with it in a single resource. This resource must be fully reserved for the studied flow in order to be transmitted. Thus, if two flows in conflict with the studied flow do not intersect, they can be transferred simultaneously. Therefore, the authors in [START_REF] Lu | Feasibility analysis of messages for on-chip networks using wormhole routing[END_REF] distinguish direct from indirect contentions but by utilizing a contention tree. This tree is further used to identify when parallel transmissions of flows on disjoint concurrent paths can occur, reducing the contention interferences.

Priority-based wormhole was also applied in the context of NoC. [START_REF] Shi | Real-time communication analysis for on-chip networks with wormhole switching[END_REF] is based on previous works and provides another method for verifying the schedulability of a set of messages. It presents a method for computing the WCTT of flows which integrates both direct and indirect interferences of higher-priority flows. The computation proposed by [START_REF] Shi | Real-time communication analysis for on-chip networks with wormhole switching[END_REF] is based on the assumption that a message is undergoing its worst-case delay if it is transmitted at the same time with all higher priority messages. The authors then provide an iterative method and separately compute the delays due to direct and indirect interference. Indirect interferences are treated as additional release jitter on flows that directly interfere with the analyzed flow.

They also show that their method provides tighter bounds than [START_REF] Sl Hary | Feasibility test for real-time communication using wormhole routing[END_REF], but it is not optimal when simultaneous interference exists. Besides, they show that values obtained in [START_REF] Lu | Feasibility analysis of messages for on-chip networks using wormhole routing[END_REF] can be optimistic, as the worst case scenario do not occur when flows are released simultaneously.

However, the authors imply that it is not possible to obtain an exact bound in this case.

Both algorithms proposed in [START_REF] Shi | Real-time communication analysis for on-chip networks with wormhole switching[END_REF] and [START_REF] Lu | Feasibility analysis of messages for on-chip networks using wormhole routing[END_REF] assume that all flows that are in indirect contentions have an impact.

[Shi09] is an evolution of [START_REF] Shi | Real-time communication analysis for on-chip networks with wormhole switching[END_REF] in the aim to reduce the number of priority levels necessary to the proper functioning of this type of network. Indeed, the virtual channels are expensive in terms of memory and power consumption. So the authors propose to share a given priority level between several messages. They also provide a method to compute the transmission delay of a flow in this model. The principle of the computation is as follows: at each priority level, they treat all flows having this level as a single message that must reserve all links used by the messages of the same level in order to be transmitted. The WCTT for this "aggregate message" is then calculated according to the method presented in [START_REF] Shi | Real-time communication analysis for on-chip networks with wormhole switching[END_REF]. The delay for a message is given by the sum of the delay for the "aggregate message" and the delay for the message from the source node.

More recently, [START_REF] Nikolić | Worst-case communication delay analysis for many-cores using a limited migrative model[END_REF] analyzes WCTT of flows of applications designed following a parti-tioning approach but where runtime migrations are decided by the applications themselves. As paths of flows cannot be known at design time, the size of the search space of the worst-case scenario is higher. Compared to [START_REF] Shi | Real-time communication analysis for on-chip networks with wormhole switching[END_REF], a lower complexity but more pessimistic method is thus used.

BE wormhole networks and recursive methods

In contrast to a wormhole real-time network, a wormhole BE network does not provide mechanisms dedicated to respect the real-time constraints, such as priority mechanisms. In the context of BE NoC, [START_REF] Yue Qian | Analysis of worst-case delay bounds for on-chip packet-switching networks[END_REF] extends the contention tree used in [START_REF] Lu | Feasibility analysis of messages for on-chip networks using wormhole routing[END_REF] to identify three basic contention patterns. Indeed, they consider that the shared resources in the network are of three types: the credit flow control, the links and the routers input buffers. Thus, complex contentions are then decomposed into these patterns and Network Calculus (NC) [START_REF] Boudec | Network calculus: a theory of deterministic queuing systems for the internet[END_REF] is used to compute WCTT of flows. However, [START_REF] Ferrandiz | Using network calculus to compute end-to-end delays in spacewire networks[END_REF] clearly showed that this method leads to over-dimensioning the resources.

[Lee03] presents a recursive algorithm to compute the WCTT of flows induced by contentions on the path of the analyzed flow. It presents an algorithm called WCFC (Wormhole Channel Feasibility Checking) which computes a bound on the worst-case delay of a flow and checks that its deadline is fulfilled. This computation is based on a recursive formula that takes into account the contentions in routers traversed successively by a packet and the contentions incurred by the downstream packets that block it. Indeed, WCFC does not assume the existence of a roundrobin mechanism as used in most BE NoC routers and thus gives more pessimistic values of the WCTT bound.

In [RMB + 09, RMB + 13] and [START_REF] Ferrandiz | A method of computation for worst-case delay analysis on spacewire networks[END_REF], the tightness of the WCFC method [START_REF] Lee | Real-time wormhole channels[END_REF] is improved as the round-robin arbitration is modeled. Therefore, only a single flow per port in contention can use the link before the analyzed flow. Indeed, the authors in [RMB + 09, RMB + 13] present two methods to compute the worst-case delay in a BE wormhole network. The first, called LL-RTB (Real-Time Bound for Low Latency traffic), assumes that the interval between two successive packets of the same flow is important enough that packets do not interfere with them.

r 1 r 2 r 3 r 4 r 5 r 6 r 7 r 8 f 1 f 2 f 3 f 4 delay(f 1) = d(f 1) + delay(f 2) + delay(f 3) delay(f 2) = d(f 2) + delay(f 3) + delay(f 4) delay(f 3) = d(f 3) + delay(f 4) delay(f 4) = d(f 4) The second method, named HB-RTB for Real-Time Bound for High Bandwidth traffic, is similar in principle to the first one, but is based on a different traffic hypothesis. Here, it is assumed that successive packets of a flow are transmitted continuously, as long as the network can support them. Furthermore, it assumes that, initially, the network is already fully saturated by packets. This method leads to higher bound values than RTB-LL, but it is more general because it does not require any assumptions about the frequency of packets or a minimum interval. This method was introduced simultaneously with the Recursive Calculus (RC) method presented in [START_REF] Ferrandiz | A method of computation for worst-case delay analysis on spacewire networks[END_REF]. They are both based on computing the worst-case delay of a packet recursively. They analyze the contention incurred by the analyzed flow, by considering that all the intermediate buffers in the routers between the source and the destination are filled to their capacities. Besides, they consider also that the packets can be injected into the network continuously. A packet delivery is assumed to be divided into two phases. In the first phase, the header of the packet is routed to its destination and creates a virtual circuit between the source and the destination. In the second phase, the whole packet is then transferred. The method recursively analyzes the contention in the path of the analyzed flow f. At each router, the direct flows are identified and their delays are computed by thus taking into account the indirect flows of f. As a round-robin arbitration is assumed, at each input port, the maximum delay from the set of flows in direct or indirect contention with f is added. Figure 3.1 illustrates an example of the computation of the WCTT using RC method. In this example, we consider f 1 the analyzed flow, f 2 and f 3 are direct flows to f 1 , while f 4 is an indirect flow. f 1 is blocked by f 2 at r 1 and by f 3 at r 2 . Thus, the delays of f 2 and f 3 , noted by delay(f 2) and delay(f 3), are computed recursively and added to the transmission delay of f 1 , i.e. d(f 1). Actually, f 2 is blocked by f 3 at r 2 and by f 4 at r 5 . Then, to compute delay(f 2), the delays of f 3 and f 4 are computed and added to d(f 2). Similarly, delay(f 3) and delay(f 4) are computed. Then, delay(f 1) = d(f 1) + d(f 2) + 2d(f 3) + 2d(f 4). [START_REF] Ferrandiz | A sensitivity analysis of two worst-case delay computation methods for spacewire networks[END_REF] shows that, in general, NC gives tighter WCTT values than RC. However, RC is less pessimistic than NC when the network is saturated. As in [Lee03, RMB + 09, RMB + 13], this method supposes that packets must reach their destinations before the next one can progress.

Recently, [START_REF] Dasari | Noc contention analysis using a branch-and-prune algorithm[END_REF] introduces a branch-and-prune approach and identifies two main sources of pessimism of the initial RC method over best effort NoC. Indeed, this approach is based on the RC method but it gives tighter WCCT values than RC by reducing the occurrence of a flow to block the analyzed flow. Indeed, an analyzed flow could be blocked directly by two flows f i and f j respectively at routers r i and r j . However, as a recursive method is applied, thus, if f j blocks also f i , then the delay of f j is added twice. To overcome this pessimism, the method in [START_REF] Dasari | Noc contention analysis using a branch-and-prune algorithm[END_REF], introduces for each flow, constraints on the inter-release arrival of packets and the number of packets that can be emitted for a given interval.

All the approaches introduced in this section assume that flows in direct contention must reach their destinations before the analyzed flows can progress, which is pessimistic. Actually, these methods do not model the wormhole switching at the flit granularity.

Contention-aware mapping

Several methods are used in NoCs to allocate hard real-time applications. However, how hard real-time tasks that generate the flows (critical and non-critical) are mapped within cores, is of utmost importance to control the contention over the NoC and thus the WCTT of flows.

Several contention aware mapping strategies are proposed in the literature. We classify these strategies into two groups: task mapping and application mapping. The task mapping presents the strategies used to allocate a single application. It aims to reduce the congestion of the intercore communications belonging to this application, called internal congestion. The application mapping presents the strategies to allocate several applications. It has a goal to reduce not only the internal congestion but also the congestion between applications, called external congestion.

Task mapping

Different strategies exist to reduce the number of contentions that a flow can experience on its path, when allocating an application on the NoC, using minimization functions. A link contention aware mapping problem has appeared in [START_REF] Chou | Contention-aware application mapping for network-on-chip communication architectures[END_REF], where an Integer Linear Programming (ILP) is proposed. It aims to minimize the contention that flows exhibit at each intermediate cores between their sources and their destinations. The authors first analyze the factors that produce a network contention. These factors may be a source-based, a destination-based or a path-based contention. The source-based is due to the flows sharing the same source, while the destination-based are those going to the same destination. The analysis shows that minimizing the path-based contention due to the flows sharing only some links, leads to minimize the network contention. Thus, the authors propose an ILP formulation that minimizes the cost function of flows that share a subset of their paths and have different source and destination cores. The objective function has two parts: 1) a weighted communication distance term, 2) a term emphasizing the link contention of on-chip communication. As this is an NP-complete problem, they proposed to keep only the first term and then reducing only the distance between communicating tasks, which will decrease the number of links shared by the inter-cores communications. The authors claim that by minimizing this distance, the packet latency will eventually decrease.

The authors in [START_REF] Zimmer | Low contention mapping of real-time tasks onto tilepro 64 core processors[END_REF] propose a low-contention mapping algorithm for real-time applications.

They developed a TDMA-like approach to ensure a separation of communications on NoC. Thus, the communications are allocated within several time frames, which minimize the number of interference communications. In order to minimize the contention due to inter-process communications (IPC) sharing the same time frame, an ILP approach based on the number of links shared by flows is used, similarly to [START_REF] Chou | Contention-aware application mapping for network-on-chip communication architectures[END_REF].

[RI12] uses a genetic algorithm to explore the search space of contention aware mapping of tasks. A genetic algorithm is a stochastic search algorithm based on operations of natural genetics. Here, fixed-sized population of chromosomes evolves over a number of generations following the principle of natural selection. Natural operations, such as crossovers and mutations, are represented by operators that presents this behavior. A fitness measure is associated to each chromosome which identifies a potential solution. In [START_REF] Racu | Using genetic algorithms to map hard real-time on noc-based systems[END_REF], the authors investigate the effectiveness of genetic algorithms for static task scheduling in wormhole Network-on-Chipbased systems. They explore the mapping of tasks as well as the priority ordering of the task set. They define a fitness function which select the mapping where all communications of the application meet their deadlines. Indeed, they select randomly two or five mappings (populations). Each mapping is presented as a chromosome: two branches presenting the index of the task and the index or coordinates of the core. Then, crossover and mutation operators are applied on these chromosomes. The chromosomes are selected to participate in the crossover operation. Their parts are exchanged to create new offspring. The mutation operator is implemented by selecting first a parent chromosome, then changing randomly some of its portions.

Then, they use flows response times analysis of each mapping that model contentions as fitness function. This function measures the number of unschedulable flows, and thus the mapping which presents the minimum number is chosen.

A tree-model based contention-aware mapping which takes the bandwidth constraints into consideration is proposed in [START_REF] Yang | Tree-model based contention-aware task mapping on many-core networks-on-chip[END_REF]. It abstracts the NoC into an extend tree by traversing the tiles from the central one. The most communicating task is mapped to the root. Thereafter, at each step, the task having the largest communication volume with the mapped tasks is selected and mapped to one node from the next level of the tree. This node is chosen in such way that the bandwidth constraints are respected. Thus, as [START_REF] Zimmer | Low contention mapping of real-time tasks onto tilepro 64 core processors[END_REF] and [START_REF] Chou | Contention-aware application mapping for network-on-chip communication architectures[END_REF], this method minimizes the distance of the paths between communicating tasks in order to reduce potential contentions.

All these approaches consider the mapping of a single application. However, a NoC presents a large number of computing cores, and a hardware that permits to allocate a mix of real-time applications. Then, these strategies cannot be used to allocate several applications as they do not consider the external congestion. For instance, the underlying genetic algorithms used in [START_REF] Racu | Using genetic algorithms to map hard real-time on noc-based systems[END_REF] should be extended to enable the coexistence of different fitness functions, so that mapping several applications of potentially different levels of criticality can be supported.

Application mapping

Several mapping strategies deal with the problem of reducing the internal and external congestion. The mapping area selection of each application is of the utmost importance. It impacts the mapping of the other applications as we will present in this section.

These strategies divide the mapping into two phases: the application mapping and the task mapping. The application mapping consists on finding the region where to allocate the application. Thus, a first core is selected to define this region. The task mapping uses different heuristics to allocate the tasks of each application. Actually, it maps a first task on the first selected core, and different mapping heuristics are used to allocate the remaining tasks around the first one.

[dSCCM10], [START_REF] Carvalho | Heuristics for dynamic task mapping in noc-based heterogeneous mpsocs[END_REF] divide the NoC arbitrarily into clusters for the application mapping.

Each cluster is dedicated to an application. An initial task in each application is selected and is placed inside a cluster. [START_REF] Chou | Energy-and performanceaware incremental mapping for networks on chip with multiple voltage levels[END_REF] enhance the definition of clusters for applications by making them near convex regions. Thus, generating non-contiguous regions is avoided, which reduces the external congestion. Then, within each cluster a congestion-aware mapping heuristic, similar to one in [START_REF] Zimmer | Low contention mapping of real-time tasks onto tilepro 64 core processors[END_REF], minimizes the bandwidth utilization of NoC links and the distance between communicating tasks. [FRD + 12] shows a problem in these methods: the first core selection policy when building regions, leads to map an application over a fragmented region.

In order to solve this problem, [FRD + 12] proposes a solution, called CoNA, to select the core having the most available neighbors (up to 4) as the first core in the allocation. It aims to avoid region fragmentation and thus decrease both internal and external congestions. The task mapped onto the first core is the one with the largest number of communications. Then, the task graph is traversed in breadth-first order from this first task allocated. The subsequent tasks are mapped to the cores that fit into the smallest square centered in the first core. However, CoNA cannot guarantee that the first core is always surrounded by enough free cores as it only considers direct neighbors when selecting the first core and then still leads to fragmentation of areas.

A mapping performance analysis has been made in [START_REF] Fattah | Smart hill climbing for agile dynamic mapping in many-core systems[END_REF] to show the impact of the first core selection. The authors illustrate the drawbacks of the previous mentioned strategies of mapping. They show that these methods lead to allocate applications into fragmented regions on the NoC, which increases the external congestion. starting core within the different clusters defined by the method in [START_REF] Luiz De Souza Carvalho | Dynamic task mapping for mpsocs[END_REF]. These previous methods lead to an allocation of the application App 3 over a fragmented region as shown in Figure 3.2b. Actually, the method in [START_REF] Luiz De Souza Carvalho | Dynamic task mapping for mpsocs[END_REF] and CoNA chooses the core located at (2,2) to be the first core to define the region where App 3 will be allocated. This core has 4 direct neighbors which is sufficient to be selected as first core in CoNA method. The core (1,1) is the first core selected by the method presented in [START_REF] Chou | Energy-and performanceaware incremental mapping for networks on chip with multiple voltage levels[END_REF]. This core is inside a near-convex region. However, in all cases, the first core selection policy does not take into consideration the size of the application to be allocated. Here, App 3 has a size of 11 tasks. Thus, whatever the heuristic used to allocate the tasks within this region, App 3 is fragmented on the NoC. The first contiguous region selected has an area of 9 which is lower than the size of the application.

Smart Hill Climbing (SHiC) approach [FDLP13] finds a contiguous near square region having a number of free cores at least equal to the number of tasks of the application. It considers a new metric called square-factor (SF) for selecting the first core when building region to approximate the contiguous available cores around the selected one. Towards the SF calculation of each core, each application already allocated on the NoC is defined by a rectangle that may include all the tasks of an application or not. Thus, the SF of a core is the maximal size of the square area in which that core can be put in, to which the number of free cores around this square is added. This square must not have any conflicts with the other rectangles, i.e. applications already mapped. The first core is then the one having a SF greater or equal to the size of the application to be mapped, i.e. the number of cores that are needed assuming a core can only execute a single task. The remaining tasks are then allocated in this region as in CoNA method.

Figure 3.3a shows on the example introduced previously, the first core selection policy of SHiC method. The core located at (6,5) has an SF equal to 13. In fact, this core is centered on a square of area 9 and presents 4 cores around this square. Figure 3.3b shows how SHiC method leads to allocate App 3 in a contiguous region without been fragmented.

[FRX + 14] adapts SHiC so that contiguous regions are used to map critical applications, in order to reduce contentions, while non-critical applications are mapped over non-contiguous regions to increase the system throughput. This leads to allocate two tasks repectively from a critical and non-critical applications on the same core. Thus, it needs to schedule the critical tasks with a higher priority; i.e. the non critical tasks are suspended as soon as critical tasks demand for the system resources.

(1,1) (7,1) (7,7) (1,

WCTT and mapping baseline references

The challenges facing the NoCs are mainly in the ability to analyze the behavior of network in order to fulfill hard real-time requirements. Thus, analytic methods are needed to compute the WCTT of the critical flows exchanged on the NoC. In this chapter, we have presented the existing methods to compute the worst-case delays over wormhole networks. As we have chosen a Tilera-like architecture in chapter 2, we focus then on the methods used over Best-Effort networks. The method presented in [START_REF] Dasari | Noc contention analysis using a branch-and-prune algorithm[END_REF] consider all direct and indirect contentions from which a flow suffers. It reduces the pessimism of the existing recursive methods by adding assumptions at the application level. However, we focus first on transmission properties at the network level to reduce the pessimism in the existing methods. Thus, in this work, we refer to recursive calculus method (RC), presented in [START_REF] Ferrandiz | A method of computation for worst-case delay analysis on spacewire networks[END_REF], as it is the best method that could be used in our assumed architecture.

Besides, the mapping of the tasks of the different applications on the NoC impacts the delays of the flows. Thus, several strategies of mapping are proposed in the literature to reduce the congestion on the NoC which reduces the WCTT of the flows generated by these tasks.

These strategies either consider the allocation of an application or several applications. A contention-aware mapping should reduce both the internal and external congestions when allocating different applications on the NoC. The SHiC method, introduced in [FDLP13], is the best multi-application congestion-aware mapping approach that reduces both the internal and external congestions of the inter-core communications. Thus, in this work, we refer to SHiC method as a contention-aware mapping.

The next chapter illustrates the problems when integrating I/O constraints within the NoC communications. We detail the drawbacks of existing mapping strategies and computing methods. In embedded real-time systems, many-cores architectures could be used as processing elements within a backbone Ethernet network, as these architectures present an important number of I/Ointerfaces such as the Ethernet interfaces and the memory controllers. Besides, it is possible to allocate a number of applications of different level of criticalities on the NoC-based many-cores architectures. These applications communicate with sensors and actuators via the Ethernet interfaces. Therefore, in this context, a NoC supports different types of communications either between cores, or between cores and I/Ointerfaces. The real-time constraints concern not only the inter-cores communications but also the I/Ocommunications. In chapter 3, we have presented the analytical methods to compute the WCTT of flows on different NoC architectures and the strategies to reduce the congestion on the NoC. However, these existing works only focus on the inter-core communications and do not consider the I/Opart. The objective of this chapter is to present the problems from which suffer the core-to-I/Oflows when using NoCs in real-time systems connected to a number of sensors and actuators via Ethernet. Thus, in this chapter, we first present an explanation about the I/Ointerfaces in Tilera NoC.

Chapter 4 Managing I/O in many-cores: problems and approach

We illustrate how the communications are done between cores and I/Ointerfaces. Besides, we present the model we assume in this work. Finally, we illustrate the problems on a case study made of several real-time applications and show the limitations of existing works.

System architecture and assumptions

In this section, we first present a description of the I/Ointerfaces in Tilera NoC. Besides, we illustrate the communications between cores and I/Ointerfaces. Then, we show our architectural model based on Tilera NoC, and the different assumptions considered in this work.

Description of I/O in Tilera

A Tilera NoC interconnects cores, Ethernet and DDR-SDRAM memory interfaces that are located on its edges. The term DDR in the remainder of this thesis refers to the DDR-SDRAM memory. In a Tilera NoC, a tile contains only one core. A set of identical controllers are in general spread around the NoC in opposite cardinal directions. For instance, two memory controllers are located north and two south of the NoC in Tilera Tile64, as illustrated in 1. The header and the payload of an Ethernet frame are separated into two buffers.

2. The header is transmitted to a specific tile which determines where the payload will be sent.

3. There are two possibilities to send a payload to a destination core. These possibilities depend on where the data will be stored: Besides, the header is transmitted to a specific tile via IDN (step 2). On the other hand, the flits have a size of 32 bits. Then, the size of an Ethernet frame is generally several time higher than the size of a NoC packet. Thus, several NoC packets are needed to transmit an Ethernet payload to a tile.

A similar process is used for the egress data flows where a data is sent directly to the Ethernet interface via the IDN or through the DDR memory via MDN.

Model of NoC architecture and assumptions

NoC Model

We model a Tilera-like NoC as a mesh network that interconnects L×W routers as illustrated in Figure 4.3. A core of the NoC is identified by its (x,y) coordinates and we assume that the core (1,1) is located on the bottom right of the NoC. The NoC interconnects cores, Ethernet and DDR interfaces.

We assume that a set of tasks is statically allocated over a NoC. These tasks exchange various payloads. A payload is modeled as a flow and we note F the set of m flows of an application.

Each flow f i (i = 1..m) is made of successive packets that are transmitted on the NoC.

We consider the following assumptions related to the model of the NoC architecture, the transmission mode and and the mechanisms used in this NoC: A1. A mesh NoC which tiles are made of a single core. We illustrate such a NoC on a 7 × 7 grid.

A2.

A core can execute only one task.

A3.

The packets are divided into a set of flits of fixed size of 32 bits.

A4.

The transfers are done only on the MDN network, thus the packets are made between 2 and 19 flits.

A5. The packets are injected at a given inter-arrival time to prevent contentions with previous A7. The destination router immediately consumes any flit arriving, as well as forwards back credit to the previous router.

A8.

The latency for a flit to be read from an input buffer, traverse the crossbar, and reach the storage at the input of a neighboring switch is a single cycle.

A9.

A worst-case scenario occurs when each of the NoC packet is blocked at each router by all NoC flows that can be encountered.

A10. Since we consider worst-scenarios and in order to ensure an upper bound of the WCTT of flows, we assume that the input buffer of each router has a size of a single flit. Actually, when the size of the buffer is reduced, the flits of each packet are spread on many routers, which could increase the contentions on the network.

I/OModel

In this work, we assume the NoC to be connected to two memory controllers. One is located to the north and the other one to the south of the NoC, as shown by Figure 4.3. As in Tilera, we assume that each controller can be accessed from the edges of columns 2 to L -1 of the NoC, through the ports 1 to n. We therefore have L ≥ 3. On the Ethernet side, we consider that a set of at least two Ethernet controllers are connected to the east of the NoC, as in Tilera.

Similar to the localization of memory ports, we assume that these Ethernet controllers can be accessed from the east of lines 2 to W -1 of the NoC. We therefore have W ≥ 4 and the maximum number of Ethernet controller equals to W -2. Ethernet interfaces can therefore be shared between several applications to be mapped on the NoC. Note that if W -2 is higher than the actual number of Ethernet controllers, the Ethernet controllers are spaced by some lines of cores. Each Ethernet controller can be accessed from the core adjacent to it through one port.

Hence, the assumptions to model the I/Ointerfaces and the transmission of the I/Oflows are the followings:

A11. 3 Ethernet controllers are located to the east, respectively at the second, fourth and sixth rows of the 7 × 7 grid, i.e. y = 2, 4 and 6. The DDR memory located to the north and to the south are accessed directly from the second till the sixth column, i.e. x = 2 till x = 6.

A12. Single giga-Ethernet interfaces are considered, where the buffer in each interface has a size of 2 KB.

A13. The transfer of data between I/Ointerfaces and tiles are done following the first possibility mentioned in section 4.1.1, i.e. first, from the Ethernet interface to the DDR memory and then from the DDR to the destination core. Thus, the WCTT of a core-to-I/Oflow is the WCTT of this flow to reach the DDR memory added to the WCTT of the flow from the DDR to the core destination. In the remainder of this work, we focus on the WCTT of the core-to-I/Oflow to reach the DDR memory, since this WCTT impacts directly the buffer state on the Ethernet interface.

A14. The Ethernet controller sends the data to the nearest memory and to the first DDR port that might not be used by another Ethernet controller. However, the DDR sends the data to the destination core from the port belonging to the same column of this core. For example, in Figure 4.3, if the south Ethernet controller located at (0,2) sends data to the core (L, 1), it first sends data to port 1 of the south memory and then the data are transmitted by port n to the core (steps 3a.i and 3a.ii of figure 4.2). However, if the Ethernet controller located at (0,4) want to send this data, it sends it first to port 2 of the south memory.

A15.

A payload stored in the buffer of the Ethernet interface is removed only when all its corresponding NoC packets are received by a port of the DDR memory.

A16. The Ethernet frames have a Maximum Transmit Unit (MTU) of 1500 bytes.

An avionic case study

As said previously, a NoC integrates a mix of real-time applications with different levels of criticalities, which communicate to a number of sensors and actuators via Ethernet interfaces.

In the remainder of this work, we consider only two levels of criticalities: critical and noncritical. Flows can have various requirements depending on the applications. For instance, critical applications have critical latency requirements and often a low payload, as it consists of sensors and actuators command. Larger payloads can be exchanged in less critical applications which are received by a larger number of sensors. However, the latency requirement of these flows is less strict than those of critical applications.

Critical applications

The considered critical applications in this work are based on: (1) Full Authority Digital Engine (FADEC) application, (2) Research Open-Source Avionics and Control engineering (ROSACE) application.

FADEC is an application that controls all aspects of aircraft engine performance. It receives low payloads of sensors data from an engine. Thus, we consider that it receives 1500 bytes of data from the Ethernet interface. These data are then divided and distributed to n tasks, noted t f 0 to t f n . These tasks, except t f 6 , exchange 250 bytes of data between them. All these tasks also send 250 bytes of data to the task noted t f 6 . Then, t f 6 stores 130 bytes within a DDR interface and sends back 76 bytes of actuators data through the same Ethernet interface.

Figure 4.4 shows a graph of the core-to-core and core-to-I/O communications between the tasks of the FADEC application, assuming 7 tasks. As the control of aircraft engine is complex, the number of tasks composing this application could be increased. Thus, different instances for this application are considered and noted by F ADEC n where n corresponds to the number of tasks composing the application.

ROSACE is the second critical application taken from the case study introduced in [PSG + 14].

It manages the longitudinal motion of a medium-range civil aircraft in en-route phase. ROSACE is composed of 10 tasks. Figure 4.5 presents the longitudinal flight controller architecture, which is divided into two parts: the environment simulation and the controller. The environment simulation presents the aircraft as well as the engines and elevators that are to be controlled.

The controller is composed of 5 filters and 3 controllers. We modify this application in such a way that it communicates with the I/Ointerfaces: Figure 4.6 shows the task graph that we thus assume. In the original application, data exchanged between the tasks are of low payload (about tens of Bytes). In this work, as we consider data coming from an Ethernet interface where the buffer could store larger payloads (2 KB), we thus increase the size of data exchanged in such a way to be aligned with FADEC application. Hence, we consider that a 600 bytes of payload are transmitted via Ethernet frame. These data are divided and distributed to 5 tasks: hf , azf , vzf , qf and vaf . These tasks then send these data of 120 bytes to vzc or to vac or to both of them. Finally, vzc and vac send these data to respectively eng and elev, which then transfer them to the DDR in order to be sent back to the Ethernet interface. This critical application is considered because it provides different requirements from FADEC. It indeed presents less-constrained communications.

Non-critical applications

The considered non-critical applications are based on: (1) a Health Monitoring (HM) application, (2) a Fast-Fourier Transform (FFT) application.

HM are signal processing applications used to recognize incipient failure conditions of engines.

An HM application continuously receives from a large number of sensors through an Ethernet interface, a set of frames representing data to be processed in order to anticipate engine failures. characterized by its high number of communications with the DDR where its large payloads are stored. HM is a signal processing application that can be easily parallelized on an arbitrary number of cores. For this reason, we consider different instances of the HM application. the result computed by each core is gathered on one tile. In this work, we focus only on this stage as it presents a large number of communications as illustrated in Figure 4.9. Different size of data could be exchanged by tasks of this application. Thus, in this work, we consider arbitrary size of data where we suppose FFT receives 750 bytes of data from the Ethernet interface in order to be aligned with the applications introduced previously. This data is distributed on 15 tasks, noted t f f 0 to t f f 14 . Each of this task performs some computing operations, and sends the results to the task t f f 15 . We vary the size of data sent from these tasks from 8 bytes to 76 bytes, which correspond to the minimal and maximal size of the NoC packets (refer to A4).

Considered case study A

A mix of these realistic applications is considered to illustrate the problem when the NoC is connected to sensors and actuators via Ethernet interfaces. The considered case study, noted A, is made of the following applications: F ADEC 9 , F F T 16 , and two instances of HM noted by HM 11 and HM 12 . Figure 4.10 shows an arbitrary mapping of this case study. The square 3 × 3, whose left corner is located at (7,1) defines the regions where F ADEC 9 is mapped. The In this case study, we consider that the Ethernet interface at (0,4) is not used.

Problem illustration

Different types of communications are exchanged on the NoC: core-to-core and core-to-IO.

However, the core-to-I/Oflows experience a change in their speeds as they traverse two networks of different types: Ethernet and NoC. An Ethernet frame coming to the NoC will first be buffered in a buffer of limited capacity (A12). It is then divided into a number of NoC packets in order to be transmitted on the NoC, and this is due to the difference of the maximum size of packets allowed on each network (A4, A13 and A16). However, if a next frame comes to the same interface and given the assumption A15 , the question will then be: would the buffer overflow and thus lead to drop the frame? To answer the question, the WCTT

Problem identification

Let us first focus on the steps and the timing of the core-to-I/Oflow coming from the Ethernet interface (0,6) for HM 11 . We suppose that an Ethernet frame of HM 11 is transmitted before a frame of F F T 16 . When an Ethernet frame for HM 11 arrives at the Ethernet interface, it is stored into the Ethernet buffer in 12.336 µs (transmission of 1500 bytes of payload at 1Gb/s).

Since the size of the payload of the Ethernet frame for HM 11 is 1500 bytes and the Ethernet buffer size is 2 KB (A12), the Ethernet buffer can then store an additional Ethernet frame of only 500 bytes. The size of a FFT Ethernet frame is however 750 bytes. The HM frame must therefore have been transmitted, through the NoC, to the memory before the FFT frame can be stored (A13). This means that the WCTT of the HM core-to-I/Oflow to reach the memory must be less than the arrival delay of FFT frame to the Ethernet interface. We recall that the HM core-to-I/Oflow is composed from a number of NoC packets corresponding to the HM frame. Due to the maximum packet size over the NoC (A13), the HM frame is divided into 20 packets of 19 flits followed by one packet of 15 flits. Each one of these packets is blocked by the F F T 16 flows that can be encountered (A9). For instance, we consider that core-to-core communications in the FFT application have a size of 8 bytes which is equivalent to 2 flits.

The WCTT of an individual HM packet on the NoC is computed by considering the recursive calculus (RC) method presented in section 3.1.2 of chapter 3. Thus, by using the RC method, RC thus identifies the direct flows and add their delays. Therefore, the value t p returned by RC takes into account indirect flows. For instance, f 1 is the direct flow blocking f a . The flows that block f 1 on its path are identified: f 2 , f 3 , f 4 , f 5 , f 6 , f 7 and f 8 . The delays of these flows are also computed and added to the delay of f 1 . Recursively, for each of these flows, blocking flows are identified and their delays are also added. The blocking delay of f 1 is therefore:

delay(f 1) = d(f 2) + 2d(f 3) + 4d(f 4) + 4d(f 5) + 12d(f 6) + 12d(f 7) + 36d(f 8), where d(f i) is the
transmission delay of a flow to reach its destination. Therefore, t p = d(f 1) + d(f a) + delay(f 1).

Thus, if all the packets of HM core-to-I/Oflow experience their WCTT on the NoC, the global WCTT for the HM core-to-I/Oflow is t 1 = 8.407 µs. However, the transmission of the FFT frame on Ethernet takes t 2 = 6 µs. As we have t 1 > t 2 , then this WCTT leads to drop the FFT frame. Let us see why we have this negative result.

Is improving the computation of the WCTT sufficient?

The second part of Figure 4.11a shows the flits position of the different flows at the moment where the flow f 3 is no more blocked by the flows f 4 and f 5 at the router (4,6). We note that f 3 blocks directly f 1 and indirectly f a . Thus starting from this state, figure 4.11b shows the timeline of the pipeline transmission of the different flits of these flows. Each line represents a router, so once a flit is transmitted to the next router, a credit is also transmitted to the previous router. These transmissions are presented on the timeline by oblique lines. At each router, we show the time of passage of each flit and its delay, which is reprenseted by a small rectangle.

A flow is blocked at a router by different flows that share the same output by respecting the RR arbitration (A6). A blocked flow is presented on the timeline by a line from a router to the next one, without being followed by its flit delay, i.e. the small rectangle. At t 1 , the second flit of the direct blocking flow f 1 leaves the router located at (2,6) to be blocked at the router (3,6). At this moment, its input buffer is thus free and so f a can progress since it is no longer blocked. f a reaches its destination at t 2 = 277ns without being affected by the transmission of the indirect blocking flows, while f 1 progresses slowly waiting for its blocking flows to progress.

Thus, f 1 reaches its destination at t 3 = 314ns. However, in the recursive methods, f a could not progress until f 1 reaches its destination located at the router (4,4).

Thus, recursive methods do not consider the pipeline transmission leading to an over-approximation of WCTT. The delay of f a is made dependent on the remaining distance between its destination and the destination of the flows in contention. Also, these methods always consider all the indirect flows as influent.

Let us now compute the WCTT of the HM 12 core-to-I/O flow where its frame is transmitted before F ADEC 9 frame. We recall that these 2 applications share the second Ethernet interface located at (0,2). The Ethernet frame for HM 12 arrives at the Ethernet interface and is stored into the Ethernet buffer in 12.336 µs. Each packet corresponding to the HM payload is blocked by the HM flows. The WCTT of an individual HM packet on the NoC takes 807.3 ns by using the RC method. The global WCTT of the HM 12 core-to-I/Oflow is therefore 16.944 µs.

However, the transmission of the FADEC frame on Ethernet takes also 12.336 µs as its payload size is 1500 bytes. As FADEC frame reaches the Ethernet interface before the removal of the HM frame and its size is greater than the free size in the Ethernet buffer, then the FADEC frame is dropped.

However, by modeling the real transmission of the pipeline behavior, similar to what is done for the FFT application, the WCTT for the HM frame (16.5 µs) still leads to drop the FADEC frame. Therefore, we need another strategy to reduce this WCTT.

Is a contention-aware mapping strategy the solution?

We know that changing the mapping of tasks of applications, modifies the values of the WCTT of the different flows. Thus, let us see what happens when we modify the mapping of the FFT and HM applications by considering the SHiC method, a congestion-aware mapping presented in section 3.2.2 of chapter 3. Figure 4.12 shows the mapping of our considered case study by applying the SHiC method. We note that in this mapping the regions, where the applications are allocated, are not modified compared to the arbitrary mapping proposed before. Only the mapping of the tasks in each region changes. Actually, SHiC first chooses the core located at (6,2) having a Square Factor (SF) equal to 16, as this core is centered into a square of area 9 and having 7 cores available at its borders. On this core, SHiC allocates the task of F ADEC 9 that has the maximum number of communications, i.e. t f 0 . The other tasks communicating with t f 0 are allocated to the neighboring cores by forming the smallest square including t f 0 .

This same process is applied for the next applications where each of these cores on (2,2), (3,6) and (6,5) presents the first core to start the allocation for respectively HM 12 , F F T 16 , HM 11 with SF = 16, 20 and 12.

We now compute the WCTT of the HM 11 core-to-I/O flow coming from the Ethernet interface at (0,6). The global WCTT of the HM core-to-I/O flow blocked by the FFT communications using recursive calculus method is t 1 = 1.681 µs. Thus, after that HM frame is removed from the Ethernet buffer, the next FFT frame is stored at the buffer and is not dropped as it takes t 2 = 6 µs to reach the Ethernet interface. However, if we consider that packets of 15 flits are exchanged between the FFT tasks, the global WCTT of the HM core-to-I/O flow increases and it takes t 1 = 6.762µs to reach the memory. t 1 is now greater than t 2 , thus this WCTT leads to drop the FFT frame. The problem of dropping the FFT frame is then solved partially.

Besides, this problem remains when analyzing the WCTT of core-to-I/O flow for the HM 12 whose frame is transmitted before F ADEC 9 . The values are the same of those obtained by considering the arbitrary mapping.

Need of a congestion-aware mapping considering the core-to-I/Oflows

The only goal of SHiC and related works mapping strategies is to reduce the congestion on the core-to-core flows. Thus, they do not consider the locations of I/O interfaces within the NoC during applications mapping. But, we saw that these interfaces could be shared between several applications. In this case study, the critical application FADEC is allocated far from Ethernet and DDR controllers. So, a core-to-I/Oflow experiences a delay due to the non-critical application HM, which presents a high number of communications of large payloads, especially with the DDR memory. Besides, the internal mapping of the applications also influences the WCTT of this core-to-I/O flow. In fact, SHiC, similar to most existing strategies, allocates the task with the highest number of communications, approximate at the center of the square where the application is mapped. Thus, for the FFT application, as illustrated in Figure 4.12, it allocates the task t f f 15 at the core located at (3,6) having SF = 16. As this task receives data from all other tasks, the core-to-I/Oflow is then blocked directly by the flow generated by t f f 1 having t f f 15 as destination. However, this flow is also blocked by other flows, such as the flows coming from t f f 11 , t f f 12 , t f f 13 and t f f 14 , which induce indirect contentions with the core-to-I/Oflow. Figure 4.13 illustrates these flows blocking directly and indirectly the coreto-I/Oflow. We note that the flows generated by t f f 11 , t f f 13 and t f f 14 block directly the one generated by t f f 1 at the router (3,6) as they share the same destination. The flow coming from t f f 12 blocks the one generated by t f f 1 as they share the same link. Thus, these direct and indirect contentions with the core-to-I/Oflow lead to an increase in its WCTT. Thus, this internal mapping strategy is not appropriate to reduce the contention on the core-to-I/Oflows as it does not consider these flows when mapping the tasks. In order to reduce the WCTT of a core-to-I/Oflow and avoid the dropping of incoming I/O packet, the number of contentions a core-to-I/O flow experiences should instead be reduced.

Thus, we need to define a mapping application strategy that considers core-to-I/O flows on a Tilera-like NoC as first-class citizen, so that the contentions they exhibit and thus their WCTT are reduced to avoid the aforementioned problem.

Proposal

NoC could be used as processing elements within a backbone Ethernet network as they provide different I/Ointerfaces. Thus, different types of communications can exist in the NoC: core-tocore and core-to-IO. The core-to-I/Oflows experience a change in their speed when crossing two types of network: Ethernet and NoC. However, when a NoC congestion occurs on paths taken by core-to-I/O flows, their estimated WCTTs can be higher than the arrival delay of the next incoming Ethernet frame. In this case, this next Ethernet frame may be dropped due to the lack of space in the Ethernet buffer, which is of limited capacity. Previous Ethernet frames could indeed be stored in this buffer while waiting associated NoC packets can progress towards the DDR interface. For this reason, the WCTT of core-to-I/Oflows should be analyzed on the NoC.

In this chapter, we illustrated this problem using a case study made from critical and non-critical applications of different requirements. We then showed the need to reduce the pessimism that exists in the current state-of-the-art method, i.e. Recursive Calculus, to compute the WCTT of this core-to-I/Oflow. In fact, this analysis method do not take advantage of the pipeline transmission of wormhole-switching. However, adding such capabilities in RC, is not sufficient to avoid dropping Ethernet frames. For this end, we need to change the mapping to reduce the Chapter 4 has shown that the recursive methods do not model the pipeline behavior of the wormhole switching. This is a source of pessimism when computing the WCTT of flows. To reduce this pessimism, the analysis should be done at the granularity of a flit. To compute 61 the WCTT of an analyzed flow f a , we have to explore all the possibilities of transmission of different flows. However, the number of possibilities can be too high, and then they cannot be explored in a reasonable amount of time. In this chapter, we propose to define an improved recursive method, called RC N oC , to analyze the behavior of the network. This method is based on three properties which allow to reduce the number of scenarios and the pessimism of the classical recursive methods. The proposed method is then evaluated on a synthetic benchmark.

First, we propose some notations which will be used to describe our method.

Notations and definitions

The following notations and definitions are used in this chapter in order to explain the properties on which are based our proposed method.

• Notation 1: d s is the switching delay of a flit, i.e. the time required for the router to grant an output port for the packet. In Tilera Tile64 NoC, the switching delay of the header and that of the remaining flits are identical.

• Notation 2: f size is the size of a flit.

• Notation 3: d t is the traversal delay of a link of capacity C. Thus,

d t = f size C
This delay corresponds to the traversal delay for regular data or credits due to the flow control policy.

• Notation 4: d f lit is the delay taken by a flit to be transmitted from a router r k to r k+1 .

Then,

d f lit = d s + d t
In this work, we assume that d s = d t and d f lit = 1 cycle as in the Tilera NoC. • Notation 5: n f i is the size of a packet of a flow f i in numbers of flits.

• Notation 6: a flow f i is described by a set of routers defining its path from the source router, noted r isource , to its destination router, noted r idestination . The path of this flow is noted by path(f i). Then,

path(f i) = r isource , r j , r k , ...,

r idestination

The example in Figure 5.1 is used to illustrate the following notations from 7 till 9.

• Notation 7: f d is a direct flow that blocks f a . The last common router between f a and f d is r d . In the example of Figure 5.1, r d corresponds to r k+2 .

• Notation 8: f id is an indirect flow of f a and which blocks f d at r id . In the example, r id corresponds to r k+4 .

• Notation 9: E r is the number of routers separating f a from f id , i.e. between r d and r id . Thus, in the example, E r = 1, which corresponds to the router r k+3 .

• Definition 1: F is the set of flows in an application.

• Definition 2: F p ⊂ F is the set of flows to be considered when analyzing f a , should they be in direct or indirect contention with f a .

• Definition 3: F i,k is the set of flows blocking f i on a router r k of its path. Due to the wormhole behavior, F p includes not only the flows blocking directly f a in its path, but also the indirect flows that blocks the direct blocking flows. This means that

∪ ∀r k ∈path(fa) F a,k ⊆ F p .

Wormhole network properties

In the following sections, we describe three properties that permit to compute the WCTT and reduce the pessimism in this computation. The first one reduces the number of possible scenarios by studying the arrivals of the flows on each router. The two following ones concern the pipeline behavior of the transmission and its utilization in the WCTT computation.

Local worst-case scenario

Computing a WCTT requires to identify the worst-case scenario. To identify such a worst-case scenario, the possible sequences of flows from F p over routers must be explored, even though all these scenarios do not lead to the WCTT. To reduce the number of scenarios to explore when performing a WCTT analysis, we thus define a first property that identifies the worstcase scenario. The local worst-case scenario is identified when computing the maximal blocking delay of f a at each router.

Property 1: Identifying the worst-case scenario.

For a flow f a , the worst-case scenario, on each router r k ∈ path(f a), occurs when:

1. The port on which f a arrives is the last port served by the round-robin arbitration (RRA). The first condition is obvious. Actually, when f a is the last one served, then it waits for the progression of all flows contending to the same output port. Now, let us prove the condition 2.

The headers of f

Proof. Let us assume that f a is blocked at router r k by two flows f i and f j . These flows have therefore in common a next router r k+1 in their paths towards their destinations. At least one link must be shared between two flows so that they are in (direct) contention. When the headers of f a and f i arrive synchronously on r k , f a must wait till all the flits of f i leave r k+1 before being able to progress, as we consider buffers of capacity of a single flit (A11). This leads to a blocking delay D 1 equals to n f i ×2d f lit , since the two routers r k and r k+1 must have transmitted all the flits of f i before being able to proceed with another flow. Now, let us assume that n cf i flits of f i have already been transmitted by r k before the header of f a arrives at r k . Then, the blocking delay of f a before being able to progress is

D 2 = (n f i -n cf i) × 2d f lit .
Therefore, the arrival of the header of f a with any flit of f i , except the header, leads to a lower delay of f a , where D 2 < D 1 . Thus, the synchronous arrival of headers is a worst-case scenario.

To illustrate this behavior, let us consider the example in Figure 5.2. This example uses 3 flows. f 1 is the analyzed flow f a , f 2 and f 3 are direct flows blocking f 1 at r 1 . We assume that all packets are made of 4 flits. We focus, first, on the transmission of f 1 and f 2 . Proof. If f j arrives after the current round of arbitration, it is clear that f a is going to progress before f j . In this case, the worst-case blocking delay that f a suffers (due to f b) is equal to Note that if f j arrives synchronously with the arrival of f a and f b (i.e. n cf b = 0), the RRA and the first condition of Property 1 ensure that f a will be the last flow whose flits will be transmitted by r k . r k will either transmit f b or f j first, however the blocking delay that f a will suffer is still equal to D 3 .

D 1 ,
Figure 5.5 illustrates the third condition of Property 1 when the 3 flows of our example are considered. Figure 5.5a presents a first scenario where f 3 arrives synchronously with f 2 and f 1 . The second scenario, shown in Figure 5.5b, illustrates the case where f 3 arrives when r 1 has transmitted a number of flits of f 2 . Here, we assume that f 1 and f 2 arrive synchronously, as previously, and that f 3 arrives with the fourth flit of f 2 . At this time, r 1 has transmitted

r 1 r 2 r 3 r 4 r 5 r 6 r 7 r 8 f 1 f 2 f 3 (a) r 1 r 2 r 3 r 4 r 5 r 6 r 7 r 8 f 1 f 2 f 3 (b)
Figure 5.5: Different scenarios illustrating the third condition of property 1 three flits of f 2 . f 1 has thus been waiting for 3 × 2d f lit and has to wait that r 1 transmits the last flit of f 2 . This total additional delay is thus equal to 4 × 2d f lit . The timeline of figure 5.6 illustrates this scenario noted by (b). We can see that f 1 will only be able to progress after all flits of f 3 have been transmitted by r 1 , i.e. at t 1 since f 1 has arrived on the last port served by the RRA. This corresponds to an additional delay of 4 × 2d f lit . Thus, the blocking delay of f a is equal to 8 × 2d f lit and delay(f 1) = 8 × 2d f lit + d(f 1) = 24cycles. However, this delay is the same if f 3 arrives synchronously with f 1 and f 2 , as shown in Figure 5.6 in the scenario noted by (a). In this case, RRA serves f 2 , f 3 and then f 1 . Thus, f 1 waits until the progression of all flits of f 2 and f 3 .

We claim that the global worst-case scenario is obtained when Property 1 is recursively applied to each flow that affects f a . This is illustrated by an example in Figure 5.7, where f 3 blocks f 2 and delays f 1 and f a = f 1 . As mentioned before, f 1 has to wait that the second common router between f 1 and f 2, i.e.

r 2 , transmits all the flits of f 2 . However, f 2 will be blocked by f 3 at r 4 . Again, two scenarios can be defined at router r 4 , as shown in Figures 5.8 and 5.9. The scenario leading to the worst- case delay corresponds to the first scenario, i.e. Figure 5.8a, illustrated in the timeline of the Figure 5.8b. In this scenario, f 2 has indeed to wait that r 4 transmit all flits of f 3 before being able to progress. f 1 is thus blocked for a delay D 5 equals to (n f 3 + n f 2) × 2d f lit before being able to progress, leading to a delay of f 1 equal to 25 cycles. In the second scenario, plotted in Figure 5.9b, n cf 3 flits of f 3 have already been transmitted by r 4 before f 2 arrives at this router.

r 1 r 2 r 3 r 4 r 5 r 6 r 7 r 8 f 1 f 2 f 3 (a) time (
f 1 thus waits for a delay equal to (n

f 3 -n cf 3 + n f 2) × 2d f lit
, that is lower than D 5 . This scenario leads to a delay of f 1 equal to 19 cycles.

Direct and indirect contentions

To reduce the pessimism when computing WCTT, two properties are defined. The first property computes the maximal delay from which a flow can suffer. The second property eliminates some f 2 header f 1 header f 3 header f 2 2 nd , 3 rd , 4 th flits f 1 2 nd , 3 rd , 4 th flits f 3 2 nd , 3 rd , 4 th flits 12 14 16 18

f 1 1 st flit arrives If f a is blocked by an unblocked flow f j , its maximal blocking delay is bounded by n f j × 2d f lit .

This delay corresponds to the time needed by the last flit of f j to leave the blocked router.

As seen previously, if f a is blocked by f j at router r k , then these flows must have in common a next router r k+1 in their paths towards their destinations. Due to the pipeline transmission, f a can progress only when the last flit of f j leaves their next common router r k+1 . f a is thus blocked for an amount of time equals to n f j × 2d f lit . The scenario (a) on the timeline of Figure 5.4 is an example of this behavior. f 1 is blocked by the unblocked flow f 2 . We can see that f 1 waits for a delay t that is equal to n f 2 × 2d f lit , i.e. 8 cycles, before it can progress. Now, let us prove by contradiction that this delay t is the maximal blocking delay f a can suffer when it is blocked by an unblocked flow.

Proof. Let us assume that a bigger blocking delay t 1 for f a exists. Since t 1 > n f j × 2d f lit , the header of f j has moved from r k to r k+2n f j . Actually, when a flit moves from a router r k+1 to a router r k+2 , r k+1 transmits a credit back to r k allowing the transmission of the next flit. This explains why flits of a flow are separated by one router when these flits follow the header in a pipeline way. To explain this behavior, let us go back to the scenario (a) of Figure 5.4, where we consider r 1 = r k . We can see that when the header of f 2 is at the router r k+7 , i.e. at r 8 , then the 2 nd flit is at r k+5 , i.e. at r 6 . The 3 rd and 4 th flits are respectively at r 4 and r 2 .

Therefore, after t 1 , the header of f j should have been transmitted by router r k+2n f j . The last flit of f j is then located within router r k+2 . f a has therefore progressed at router r k+1 which is contradictory with the initial assumption.

We note that when n unblocked flows block f a at r k , then the blocking delay of f a is equal to n n f j × 2d f lit . This is the case presented in the timeline of Figure 5.6. f 1 waits first for all flits of f 2 to quit the router r 2 , i.e. n f 2 × 2d f lit . Then, it waits the progression of all flits of f 3 to leave the router r 2 , i.e. n f 3 × 2d f lit .

However, a flow f i could block f j at router r l . f j should be unblocked first, in order to unblock f a . This property must thus be applied recursively on all blocking flows. For this reason, we consider the property 2-bis.

Property 2-bis: If f a is blocked by a blocked flow f j , the maximal blocking delay of f a incurred by f j , when this one is unblocked, depends on the number of hops separating r k from r l .

When f j is blocked by f i at r l , f j has progressed from r k before being blocked at r l . Once blocked, f j waits for an amount of time equal to t, i.e. n f i × 2d f lit , to receive the credit from r l+1 . Meanwhile, f a is blocked at r k and waits for the credit from r k+1 to progress: this blocking delay depends on the number of hops, noted n hops , separating r k and r l . Three cases exists:

1. n hops = n f j . In this case, the last flit of f j is located within r k+1 when f j has reached r l , where it is blocked by f i . Actually, r l can be noted as r k+n hops which is equal in this case to r k+n f j . This means that the header of f j is blocked at r k+n f j , and so the last flit is located at r k+1 . f a can immediately progress when each flit of f j progresses one router, i.e. the last flits leaves r k+1 . This is possible when f j is no more blocked by f i . Then, from this instant, the blocking delay that f 1 suffers, noted D is thus equal to:

n f j × d f lit .
We illustrate this case of this property on the example of Figure 5.10a where we consider three flows, each one has a size of three flits: f 1 , f 2 and f 3 . In this case, f 1 is blocked at r 1 by f 2 , while f 2 is blocked by f 3 at r 4 . Then, here n hops = n f 2 = 3. The timeline 2. n hops > n f j . Compared to the previous case, some flits of f a must have already been transmitted by r k when f j reaches r l . The previous blocking delay D of f a at r i is thus lowered by the number of routers the header of f a has crossed. This number is equal to n hops -n f j , as when f j is blocked at r k+n hops , the header of f a has reached r k+n hops -n f j . Then, the blocking delay of f a at r k when f j is no more blocked corresponds to:

r 1 r 2 r 3 r 4 r 5 r 6 r 7 r 8 f 1 f 3 f 2 (a) time (cycles)
D -(n hops -n f j) × d f lit .
r 1 r 2 r 3 r 4 r 5 r 6 r 7 r 8 To illustrate this case, we modify the previous example, where f 2 is now blocked at r 5 . We illustrate this example in Figure 5.11a, where n hops = 4. The delay D, computed in the previous case, is lowered by (n hops -n f j) = 1 as shown in Figure 5.11b. In fact, the header of f 1 has progressed n hops -n f j , i.e. one router, when f 2 is blocked at r 2 .

f 1 f 3 f 2 (a) time (cycles)
3. n hops < n f j . In this case, a number of flits of f j must be located on r k and possibly on previous routers. f a is thus blocked till these flits of f j are transmitted by r k . This number is equal to n f j -n hops . The blocking delay of f a of the first case therefore increases to:

D + (n f j -n hops) × d f lit .
This case is illustrated in Figure 5.12a, where n hops = 2 as f 2 is blocked at r 3 . As illustrated in Figure 5.12b, when n hops < n f 2 , only 2 flits of f 2 among 3 flits can progress before being blocked by f 3 at the router r 3 . Thus f 1 , blocked at r 1 , should wait for the last flit of f 2 , i.e. the (n f 2 -n hops) flits, to progress from r 1 to r 3 . So, when f 2 is no more blocked, the blocking delay of f 1 at r 1 is equal to D + (n f j -n hops) × d f lit = 4 cycles. Finally, we recall that to obtain the total blocking delay of f a , the blocking delay computed in each case must be added to the transmission delay of the header of f j to reach r l and its blocking delay at this router.

Property 3: Reducing the delays by identifying the non-influencing indirect flows.

f d is a direct flow blocking f a , while f id is an indirect flow that blocks f d (Notations 7 and 8). f id does not impact the progression of f a when E r ≥ n f d -1. We recall that E r corresponds to the number of routers separating f a and f id (Notation 9). Proof. Let us first consider Figure 5.13 in order to illustrate f a , f d and

r d-2 r d-1 r d r d+1 r id r id+1 r id+2 r id+3 r id-1 ... f a f d f id
f id . If E r ≥ n f d -1,
the header of f d must therefore be blocked on r id and the remaining flits are located on routers r d+1 up to r id-1 . r d can therefore transmit the first flit of f a which will then be able to progress in a pipeline way. Consequently, f a is not affected by f id , and thus its delay is independent from f id .

To illustrate this property , we consider the example in Figure 5.14 where E r = 2, as r 4 and r 5

separates f 1 from f 3 . Let us first suppose that f 2 has a size of 3 flits, i.e. E r = n f 2 -1. This case is illustrated in Figure 5.15. In this case, the header of f 2 is blocked at r 6 . The 2 nd and 3 rd flits are located at r 5 and r 4 as shown in Figure 5.15a. Hence, the path of f 1 is no more blocked.

The timeline in Figure 5.15b illustrates the transmission of these flows where we can see that

f 3 does not affect the transmission of f 1 . Here, delay(f 1) = n f 2 × 2d f lit + d f 1 = 13 cycles. However, if E r < n f d -1, a flit of f d must be located on r d since f d is blocked at r id by f id . f a
is thus blocked on its path by f d and thus indirectly delayed by f id . This is the case when f 2 , in this example, has a size of 4 flits. This case is illustrated in Figure 5.16. In this case, E r is less than n f 2 -1, thus the 4 th flit of f 2 is located at r 3 , blocking the progression of f 1 as shown in Figure 5.16a. f 1 should wait for the progression of f 3 . The timeline, illustrating this transmission in Figure 5 waits for f 2 to become unblocked by f 3 , in order that the last flit of f 2 leaves the router r 3 at t 1 . This case leads to a delay of f 1 that is equal to 25 cycles.

Description of the proposed pipeline-based algorithm

The pessimism when computing the WCTT can be reduced by modeling the pipeline behavior.

Thus, the analysis should be performed at the granularity of flits, as presented in Properties 2 and 3. In this section, we illustrate on an example our algorithm RC N oC to compute WCTT of flows. We then describe how RC N oC implements the properties introduced at the previous section. Figure 5.16: Timelines of transmission of flows f 1 , f 2 and f 3 of the case in Figure 5.14 where we consider a size of 4 flits for each packet.

An illustrating example

In order to understand the behavior of our proposed algorithm, we propose to study the example in Figure 5.17. This example is made of 5 flows: f 1 , f 2 , f 3 , f 4 and f 5 . f 1 is the studied flow, i.e. the flow that we want to compute its WCTT. f 2 and f 3 are in direct contention with f 1 .

f 4 and f 5 are in indirect contention with f 1 as they are in direct contention with f 2 and share no common routers with f 1 .

In order to compute the WCTT of f 1 , we have to determine the list of flows that block directly and indirectly f 1 . Thus first, we have to build, for each flow f i , the list of flows that are in direct contention with f i , and impacts f 1 , by using Property 1. We note L f i this list and it is made of a set of couples < f j , r k > where f j is a flow in direct contention with f i and r k is the first router where f j blocks f i . The flows are ordered by the round robin arbitration, assuming Property 1. To identify when f i can be transmitted by a router r k and then progress, i.e. it is no longer blocked at r k , f i is also added in L f i when passing from a router to another.

For instance, in our example,

L f 1 = {< f 2 , r 2 > < f 3 , r 2 > < f 1 , r 2 >}.
This means that f 2 and f 3 block f 1 at the same router r 2 as they share with f 1 a common link between r 2 and r 3 .

Considering the RRA, f 2 is sent before f 3 . As f 2 and f 3 are two blocking flows of f 1 at r 2 , then their blocking flows may also have an impact on the transmission of f 1 . This requires to build their list of blocking flows starting from r 3 . Thus,

L f 2 = {< f 4 , r 6 > < f 2 , r 6 > < f 5 , r 7 > < f 2 , r 7 >} and L f 3 = {< f 3 , r 2 >}.
Actually, f 2 blocks f 1 at r 2 and it is transmitted before f 3 due to RRA. This RRA at r 2 explains the reason why we do not consider f 3 as a blocking flow to f 2 and vice versa. f 2 can progress without being blocked till the router r 6 . The recursion of Property 1 applies, and thus, f 2 is blocked by f 4 at r 6 . When f 2 is no more blocked by f 4 , it can progress to be blocked by f 5 at r 7 . Now, f 2 is no more blocked on its path. For f 3 , it progresses after f 2 . On its path, f 3 is not blocked.

Similar to f 2 and f 3 , as f 4 and f 5 block f 2 at r 6 and r 7 respectively, then their blocking flows could also have an impact on f 1 . Thus, we build their list of blocking flows starting respectively from r 7 and r 8 . Then, L f 4 = {< f 5 , r 7 > < f 4 , r 7 >} and L f 5 = {< f 5 , r 7 >}.

Now, we have finished to build the list of flows that have an impact, directly and indirectly, on the analysis of f 1 . Let us now see how to analyze the WCTT of f 1 by stepping through these lists by starting from L f 1 , as f 1 is the studied flow. L f 1 indicates that f 2 is the first direct flow blocking f 1 . Therefore, we have to analyze L f 2 in order to compute the maximal blocking delay after which the next flows after f 2 in L f 1 , i.e. f 3 and f 1 , could progress. Since both f 4 and f 5 in L f 2 are indirect flows of f 3 and f 1 , i.e the next flows that progress after f 2 in L f 1 , then two scenarios can occur:

• First scenario:

n f 2 = 2.
Property 3 is applied: f 4 has no indirect influence over f 3 and f 1 , since one router at minimum separates f 4 from these flows, i.e. E r = n f 2 -1 = 1. Consequently, f 2 becomes an unblocked flow for the flow after f 2 in L f 1 , i.e. f 3 . This means that f 3 can progress directly after f 2 when its last flit leaves the router r 3 . Thus, the blocking of f 4 to f 2 does not impact the transmission of f 3 . Property 2 is therefore applied: the maximal blocking delay of f 3 before it can progress is computed and is equal to n f 2 × 2d f lit . Now, f 3 can progress. Thus, we step to L f 3 to compute the maximal blocking delay from which suffer the next flow after f 3 in L f 1 , i.e. f 1 , before it can progress. L f 3 indicates that f 3 is an unblocked flow. Thus, the next flow f 1 waits only the transmission of f 3 . Property 2 applies that f 1 waits n f 3 × 2d f lit before it can progress. Now, f 1 can progress and thus the transmission time of f 1 till its destination must be added to compute its WCTT. This WCTT is thus equal to:

d(f 1) + (n f 2 + n f 3) × 2d f lit .
The timeline in Figure 5.18 illustrates the transmission of these flows where we can see that • Second scenario:

W CT T (f 1) ≈ 13cycles.
n f 2 > 2.
Two cases could be considered in this scenario.

-First case: n f 2 = 3. In this case, f 4 does not impact the transmission of the flow f 3 but impacts f 1 . Actually, there are one router separating f 4 from f 1 and thus E r < n f 2 -1.

On the other hand, there are two routers separating f 4 from f 3 , which means that

E r = n f 2 -1.
-Second case: n f 2 > 3. In this case, f 4 has an indirect influence on both f 3 and f 1 , as the number of routers separating f 4 from f 1 or f 3 is less than n f 2 -1.

In this example, we show the analysis by considering the second case. As f 4 has an influence on both of these flows, therefore we need to analyze L f 4 . L f 4 tells us that f 4 is blocked by f 5 , which requires the analysis of L f 5 in order to compute the maximal blocking delay of f 4 . However, f 5 is not blocked, as presented in L f 5 , so Property 2 computes the maximal delay of f 4 , which is now no more blocked as there are no more flows in L f 4 . Now, as f 4 is an unblocked flow, the maximal blocking delay that the flow after f 4 in L f 2 suffers from it is computed by Property 2. Going back to L f 2 , f 2 can now progress but this list indicates that f 2 progress only one router, i.e. r 6 , before being blocked by f 5 at r 7 . Here, f 5 has an influence on f 3 and f 1 , i.e. the flows after f 2 in L f 1 . Thus, the analysis of both L f 3 and L f 5 is required.

This behavior has been implemented into an algorithm that is described in the next section.

Identifying the global worst-case scenario

RC N oC is divided into two parts. The goal of the first part, illustrated in Algorithm 1, is to identify the set of blocking flows of f a , denoted F p (Definition 2). The second part described in Algorithm 3 computes the WCTT of f a by adding the delays of the blocking flows by considering the properties defined in section 5.2.

Computing the blocking flows F p

This first part consists to build F p from the set of all flows exchanged in a given configuration, i.e. F (Definition 1). This part is composed from four steps as described in Algorithm 1.

Algorithm 1 Compute_Blocking(F) if (r jblocked in < f j , r jblocked > = r kblocked in next(< f j , r jblocked >)) then 23:

1: F p .insert(f a) 2: f i ← F p .head() 3: do 4: F.remove(f i) #Step 1: Compute the direct blocking flows of f a 5: if ((f i = f a)||(f i .same_source(f a)) then 6: for all r k ∈ [r isource , r idestination] in f i do 7: Compute_direct_blocking(F p , F, f i , L f i , r k) 8:
Compute_direct_blocking(F p , F, f i , L f i ,
for all f j ∈ L f i do 15: if ((!f j .samesource(f a)) & (f j .sameport(∀f l ∈ L f i , r jblocked))) then 16: F.remove(f l) 17: F p .remove(< f l , r jblocked >) 18: L f i .remove(< f l , r jblocked >)
L f i .insert(< f i ,
f i = F p .next() 27: while !F p.last_reached()
In the first step, we compute the direct blocking flows of f a that block its path (Notation 6) from the source router r asource to the destination router r adestination (lines 5 to 8). Thus, here we consider the flows blocking f a at the source, i.e. sharing the same source, and on its path, i.e. sharing the same links.

The second step consists to compute the indirect blocking flows of f a . As seen previously, it is necessary to consider the blocking flows of each flow f i in F p (initially from L fa). Their L f i must thus also be computed and any flow f j ∈ L f i (f j / ∈ F P) must be added in F p (lines 10 to 12).

In the third step, i.e. after computing the different blocking flows, we must consider the RRA to choose one blocking flow from each port of each router r jblocked , i.e. the router where f j blocks a flow f i in L f i (lines 14 to 20).

The final step consists on following the progression of each flow on their blocked routers. Thus, the flow f i is also added to its list of blocking flows L f i each time that f i can progress some routers before it is blocked by other flows at the following routers on its path (lines 21 to 25).

How to compute the blocking flows?

The function Compute_direct_blocking(), described in Algorithm 2, identifies the direct blocking flows of a flow f i . Thus, for the analyzed flow f a , we must consider two types of direct blocking flows. The first type are the flows that block f a at its source (lines 2 to 4). The second type are the direct flows sharing a part of the path or the same destination with the analyzed flow. Thus, in this type, it is sufficient to identify two consecutive common routers between the analyzed flow and a flow f j to consider f j as a direct blocking flow (lines 6 to 10).

Therefore, each flow of L fa , identified as blocking flow, is added in F p . The blocking flows of f i are computed by determining the flows sharing a part of its path. But, we must consider this path from the next router of r iblocked where f i blocks f a (line 10 in Algorithm 1). We note that the flows blocking f i at the router r iblocked are not added to L f i as they blocked f i once due to the RRA.

Algorithm 2 Compute_direct_blocking(F p , F, f i , L f i , r k) 1: for all ((f j ∈ F) & (f j / ∈ L f i)) do #Step 1: Compute the direct blocking flows sharing the same source of f a 2: if (f j .same_source(f a) & (f i = f a)) then 3: F p .insert_head(< f j , r isource >) 4: L f i .insert_head(< f j , r isource >) #
Step 2: Compute the direct blocking flows sharing the same path of f a or f i 5:

else if (!f j .same_port(f i , r k)) then 6: if ((r k .common_router(f i , f j)) & (r k .next().common_router(f i , f j))) then 7: r jblocked = r k 8: F p .push(< f j , r jblocked >) 9: L f i .push(< f j , r jblocked >) 10: end if 11:
end if 12: end for Example. We go back to the example in Figure 5.17, to describe how to build the list of blocking flows using Algorithms 1 and 2. In Algorithm 1, we thus begin by the first step (lines from 5 to 8), where we have to consider the path of the studied flow f 1 from r 2 to r 4 in order to determine its direct blocking flows. f 1 is not blocked at source but it is only blocked at its path. Thus, the second step in Algorithm 2 (lines from 6 to 10) applies that r 2 and r 3 are two common consecutive routers between f 2 and f 1 . Then, f 2 is added to F p and < f 2 , r 2 > is added to L f 1 . Similar to f 2 , f 3 is also a direct blocking flow of f 1 and so f 3 is added to F p and

< f 3 , r 2 > is added to L f 1 .
As now there are no more direct blocking flows for f 1 on its path, we move to the next step (Step 2 from line 10 to 12), where we build the list of blocking flows for the flows in F p , i.e. f 2 and f 3 . Actually, f 3 is not considered a direct blocking flow to f 2 as both f 2 and f 3 block f 1 at the same router. f 4 and f 5 are identified by the second step of Algorithm 2 as direct blocking flows of f 2 . Thus, F p contains now f 3 , f 4 and f 5 . This recursion of this step is applied on the different flows in F p and ends when no new flows are added to F p .

Finally, the step 4 of Algorithm 1 is applied on

L f 1 , L f 2 , L f 3 , L f 4 and L f 5 . For example, it adds < f 1 , r 2 > at the end of L f 1 to indicate that f 1 can progress.

Implementation of direct and indirect contention analysis

This part consists to compute the WCTT of f a by stepping through the list of blocking flows, L f , built in the previous algorithm. Each direct blocking flow is identified and its blocking delay, after which it leaves the blocked router, is computed.

3: < f b ,r b > = L f .get_f b () 4: < f bb ,r bb > = L f b .get_f b () 5: < f.f bnext , f.r bnext >= L f .get_f b ().next() 6: < f bbnext ,r bbnext > = L f b .get_f b ().next()
#Case 1: f b can progress some routers, we verify if it will be blocked or not?

7: if (f b == f bb) then 8: delay+ = check_N ext(L f , f b , f bbnext , L) 9: end if #Case 2: f b is
delay+ = check_inf luence(L f , f b , f bb , f bnext , L) 17: end if 18: return delay

Implementing the Property 2: Check whether blocking flows are blocked or not

By definition on how lists of blocking flows are built, the case f bb = f b means that f b can progress some routers before it is blocked by a flow f bbnext or it is not or no more blocked. At line 8, the function check_N ext deals with the cases where f b is blocked or not. Algorithm 4 describes this function. In the case where f b is blocked, f bbnext is not NULL (lines 1 to 6). This means that f b can be blocked by several f bbnext at r bbnext before no longer blocking f at r b . f b can thus first progress from its current location r bb to the first r bbnext . This delay is computed by the function progress_up() and is equal to:

d f lit × (r bbnext -r bb).
However, as f b can progress in its path, this progression can release the path of the flow f blocked by f b . Thus, if a flow blocked by f exists, its analysis started in a previous iteration must next be resumed, in order to check whether f bbnext is now non influent over f bnext and can also be discarded (Property 3). The function Compute_delay() is iterated on the last flow blocked by f in the list L (which is expressed at line 4). If not, the analysis of f must be continued on the next flow blocking f , i.e. calling compute_Delay with f bb set to f bbnext (lines In the other case (lines 7 to 17), when f b is no longer blocked, f b can therefore progress to give the credit to f bnext at router r bnext , i.e. f b leaves the router r bnext . This corresponds to the use of the Property 2 to compute the maximal delay before that f bnext can progress. This delay is computed by the function give_credit(). Also, here the same iteration is done as in the previous case to identify the state of progression of the flow previously blocked. However, in the case where f b is the flow f a , so the analyzed flow is no more blocked and can progress to its destination router r adestination from the last router r b where it was blocked. This delay is equal to d f lit × (r adestination -r b + 1) + 2d f lit × (n fa -1), and it is computed by the function progress_leave() at line 9. We note that d f lit ×(r adestination -r b +1) computes the transmission delay of f a to reach its destination.

Algorithm 4 check_Next(L f , f b , f bbnext , L) #Case 1: f b is blocked 1: if (f bbnext = N U LL) then 2: delay+ = f b .progress_up(r bbnext) 3: f b .setT o(f bbnext

Implementing Properties 2 and 3: Check whether blocking flows are direct or not

In the other case where f b = f bb , f b is blocked by f bb . However, f bb can be either in direct or indirect contention with the flow f bnext . If f bb is in direct contention, the time needed by f b to progress to r bb , i.e. its blocking router, must first be accounted by using the function progress_up() (line 11). Then, f b must be analyzed to compute its blocking delay until it can progress and so allowing the progression of f bnext . Thus, f b is added to the list L (lines 12 and 13).

Otherwise, when f bb is an indirect contention with f bnext , the function check_inf luence (line 15) establishes whether f bb is influent over f bnext or not by applying Property 3. Algorithm 5 describes this function. The computation to be performed when f bb is influent is identical to the case where f bb is in direct contention with f bnext (lines 4 to 7 which are similar to lines 10 to 13 in Algorithm 3). However, two cases must be considered when f bb is non influent.

The first case is when f bb has no influence over any remaining flow f x in L f (f x = f b and f x = f bnext)(line 11 and lines 17 to 22). Thus, at r bnext , f b gives the credit to f bnext , i.e. f b can progress and leaves the router r bnext , allowing the transmission of f bnext . This blocking delay of f bnext , by waiting the progression of f b , is computed by applying Property 2. If a flow blocked by f exists, its analysis must next be resumed. If not, the analysis of f must be continued with f bb set to f bbnext . The second case is when f bb has an influence on a flow f x (line 13 and lines 23 to 37). In this case, the maximal delay is obtained by exploring two scenarios as the impact of future contentions are unknown at this point. In the first scenario (lines 24 to 29), all the flows in L f before f x are skipped when further analyzing f . Before, the analysis continues similarly to the direct case (lines 11 and 12 in Algorithm 3) but with f bnext = f x . In the second scenario (lines 30 to 35), the computation skips f bb and f b gives the credit to f bnext . And so the analysis is similar to the first case.

Example. Let us illustrate how this algorithm is applied on the first scenario of the proposed example in section 5.3.1 (n f 2 = 2).

First, lets recall the list of blocking flows:

• L f 1 = {< f 2 , r 2 > < f 3 , r 2 > < f 1 , r 2 >} • L f 2 = {< f 4 , r 6 > < f 2 , r 6 > < f 5 , r 7 > < f 2 , r 7 >} Algorithm 5 check_influence(L f , f b , f bb , f bnext , L) 1: delay_ind = 0 2: delay_d = 0 3: L ind = L #Case 1: Property 3 indicates that f bb is influent to f bnext 4: if (f bb .is_inf luent(f bnext)) then 5: delay+ = f b .progress_up(r bb) 6: L.add(f b) 7: return delay + Compute_Delay(f b , L f b , r bnext) #Case 2: Property 3 indicates that f bb is not influent to f bnext 8: else 9: for all f x ∈]f bnext , f] in L f do 10: if ((f bb .is_non_inf luent(f x)) then 11: inf luent = F alse
f bnext_init = f bnext 25: f bnext = f x f bnext in L f is set to f x 26: delay d = f b .progress_up(r bb) 27:
L.add(f b)

28:

delay d + = Compute_delay(f b , L f b , r bnext)
29:

f bnext = f bnext_init 30: delay_ind = f b .give_credit(r bnext) 31:
f.setT o(f bnext 32:

L.remove(f b) 33:

L.previous_tail()

34:

delay_ind+ = Compute_delay(f, L f , r bnext) 35:
end if

36:

return delay+ = max(delay_ind, delay d) 37: end if

• L f 3 = {< f 3 , r 2 >} • L f 4 = {< f 5 , r 7 > < f 4 , r 7 >} • L f 5 = {< f 5 , r 7 >}
We start by L f 1 as f 1 is the studied flow. Initially, L contains f 1 . Let us compute f b , f bb , f bnext and f bbnext (lines from 3 to 6 in Algorithm 3):

• < f b , r b >=< f 2 , r 2 >: f 2 blocks directly f 1 . • < f bb , r bb >=< f 4 , r 6 >: f 4 blocks directly f 2 .
• < f bnext , r bnext >=< f 3 , r 2 >: f 3 is the next flow that progress after f 2 .

• < f bbnext , r bbnext >=< f 2 , r 6 >: f 2 is the next flow that progress after f 4 .

As f b = f bb , then we have to check the influence of f bb , i.e. f 4 , on f bnext , i.e. f 3 . f 4 is an indirect flow over f 3 (line 5 in Algorithm 3), thus the function check_inf luence() is used to apply Property 3 and identifies the influence of f 4 over f 3 . By considering the first scenario of this example, Property 3 applies that f 4 is a non influent flow to f 3 . This implies to check this influence over f x ∈]f bnext , f] in L f (line 9 in Algorithm 5), i.e. f x ∈]f 3 , f 1] in L f 1 . In this case, f x corresponds only to f 1 . f 4 , in the same scenario, does not have an influence over f 1 (inf luent = f alse). Then, f 2 can progress and leaves the router r 3 , allowing the transmission of f 3 by applying Property 2. f 3 waits only n f 2 × 2d f lit .

f b is now equal to f 3 in L f 1 .
We iterate the function Compute_blocking() on f 1 as it is the last flow blocked in L. Here:

• < f b , r b >=< f 3 , r 2 > • < f bb , r bb >=< f 1 , r 2 > • < f bnext , r bnext >=< f 3 , r 2 > • < f bbnext , r bbnext >= N U LL f b = f bb
means that f b , i.e. f 3 , can progress. This is the case described in lines from 7 to 9 in Algorithm 3. Thus, the function check_N ext() is applied to verify if f 3 is blocked or not.

f bbnext is N U LL in this example. As f 3 = f a , the flow f 3 can progress to leave the router r 2 allowing the transmission of f 1 (lines 11 to 16 in Algorithm 4). This means that Property 2 is applied, where f 1 waits only n f 3 × 2d f lit , which is computed by the function give_credit(r 2).

As f 1 still the last blocked flow in L so the function Compute_blocking() is iterated on L f 1 and f b is set to f bnext , i.e. f 1 . Now:

• < f b , r b >=< f 1 , r 2 > • < f bb , r bb >= N U LL • < f bnext , r bnext >=< f 1 , r 2 > • < f bbnext , r bbnext >= N U LL In this iteration, f b = f bb , f bnext = N U LL and f b = f a (line 8 in Algorithm 4
). This indicates that f 1 can progress to its destination r 4 . This delay is computed by the function progress_leave(r 2) and it is equal to:

(r 4 -r 2 + 1) × d f lit + 2d f lit × (n fa -1) = 3d f lit + 2d f lit = 5d f lit .
We note that (r 4 -r 2 + 1) × d f lit corresponds to the transmission delay of the header from r 2 to r 4 . If we consider that the packets are made of 2 flits, thus:

W CT T (f 1) = 5d f lit + (n f 2 + n f 3) × 2d f lit = 13 cycles.
This value corresponds to the timeline obtained in Figure 5.18.

Unitary evaluation of the properties

This section presents an evaluation of our algorithm made over a synthetic benchmark. The evaluation over the synthetic benchmark reports how Properties 2 and 3 can reduce the pes-simism of the WCTT by comparing to the classical RC method. To quantify the improvements against the RC method, we compute the following metric:

(d RC -d A)×100 d RC
, where d RC is the WCTT value returned by the RC method and d A the value returned by RC N oC . We also report on how the modifications of some parameters, such as the number of flits or the size of the NoC, affect our results.

We used a SpaceWire application described in [START_REF] Ferrandiz | A method of computation for worst-case delay analysis on SpaceWire networks[END_REF]. Since NoCs used within many-cores are larger than a SpaceWire network, we vary the destination of flows of the initial SpaceWire application. We consider the mapping shown in Figure 5.19a, extracted from the SpaceWire application. We compute the WCTT of f 1 , i.e. f a = f 1 , and present several configurations to explain the gain due to the properties 2 and 3. Impact of Property 2. The goal of this first configuration is to quantify, over specific mapping of flows over a NoC, how Property 2 improves the computation of the WCTT. As shown in Figure 5.19a, we generate different mapping of flows by modifying the destination of some of the direct flows represented in dotted lines. For each mapping, we compute the WCTT in order to study how the number of hops, they make after the destination of f 1 , affects the results. For instance, a number of hops equals to 0 means that these direct flows have the same destination as f 1 , while a number of hops 3 corresponds to the dotted lines.

Figure 5.19b shows the gain obtained for various number of hops and different length of packets. In the classical RC method, a flow cannot progress until its direct blocking flows reach their destinations. The WCTT computed by RC therefore increases with the number of hops.

Conversely, Property 2 states that this delay only depends on the number of flits of the direct flow. Then, by using RC N oC , for each packet of a given number of flits, the WCTT remains constant when increasing the number of hops. The blocked flow indeed always waits for the same amount of time the credit from the blocking direct flow, independently of its destination.

This difference between the classical RC and RC N oC explains the shape of each curve.

For a given number of hops, the gain decreases when increasing in the number of flits of the packet. The blocking delay in both methods indeed increases as more flits of the direct blocking flows have to be transmitted by routers. Also, the larger the packet is, the closer is the maximum blocking delay of a flow blocked by f i to the waiting delay for f i to reach its destination.

Impact of Property 3. The goal of this second configuration is to quantify the gain, over specific mapping of flows, due to Property 3. Compared to the previous configuration, we therefore add an indirect flow f 7 , that blocks f 5 a direct flow of f 1 , as shown in Figure 5.20a.

We also set the destination of f 5 21 hops after the destination of f 1 . The value of E r is one parameter that determines whether an indirect flow is influent or not. The router where f 7 blocks f 5 ranges from r 5 to r 23 . that f 5 performs to reach its destination which are accounted in the WCTT computed by the RC method. The existence of the two constants gains comes from whether Property 3 applies or not, i.e. either f 7 is influent or not. This graph does not show only the gain due to Property 3, but it includes the constant gain due to the Property 2. In order to show only the gain due to Property 3, we deduced from the initial gain, the one when the empty routers are equal or less than the number of flits. The graph 3 in the figure 5.20c, presents the gain due only to property 3.

When E r < n f i (left part of the curves), f 7 indirectly blocks f 1 and thus influences its WCTT.

However, when E r ≥ n f i the RC method still assumes that f 7 influences f 1 and thus adds it in the computation of the WCTT of f 1 . RC N oC instead identifies that f 7 is not influent as Property 3 applies. This difference leads to an increase in the obtained gain and the second plateau in the curves shown in Figure 5.20b and so the curves shown in Figure 5.20c.

Discussion

Considering the pipeline transmission of flits in the WCTT computation reduces the pessimism introduced by the classical RC method. This improvement depends on the type of contentions, the size of the NoC and the size of packets. Property 2 improves WCTT values when the size of NoC is large and the size of packets is small or when the number of hops performed by the flows is greater than the size of packets in flits. Property 3 helps when the size of NoC is sufficient for indirect contentions to occur with a minimum spacing between analyzed flows and indirect ones. Let us stress that while our examples assume that all packets have the same size, the properties we stated do not. Besides, these properties could also be generalized allowing to overcome the assumption A10.

Conclusion

In this chapter, we have shown that the classical RC method leads to pessimistic values for the WCTT of the flows. It is explained by the fact that the pipeline way of transmitting flits in the wormhole networks is not taken into account. The current existing methods consider that an analyzed flow can be blocked by others flows till they have reach their destinations.

Besides, it considers all indirect flows as blocking flows. Thus the transmission delays of all blocking flows, i.e. direct and indirect, are added to the transmission delay of the analyzed flow f a , leading to an over-approximation of the WCTT of f a . However, we have shown that the pipeline transmission of flits over NoC can be used to reduce the maximal blocking delay of flows, thus tightening computed WCTTs.

In this way, we introduce three properties to either reduce the number of scenarios to be explored when performing a WCTT analysis or to reduce the pessimism when computing WCTTs:

1. Reducing the number of scenarios: The first property states the worst-case scenario when computing the maximal blocking delay a flow can suffer when a round-robin arbiter is used.

Computing maximal delays:

The second property states that the maximal blocking delay a flow can suffer is bounded. This eliminates the need to wait till the blocking flow reaches its destination.

Reducing the delays:

A third property allows to check whether an indirect flow influences the transmission delay of an analyzed flow.

These properties are implemented in an algorithm based on a recursive method in order to improve the WCTT, as shown in the evaluation we report. We compare our algorithm noted RC N oC to the RC method by considering a synthetic benchmark. We showed how some parameters affect the gain we obtained related to RC thanks to the use of these properties. The evaluation shows a significant reduction of the WCTT due to the properties 2 and 3, especially with small packets. The reduction of the WCTT is of utmost importance as it permits to flows to respect their constraints. Besides, as shown in Chapter 4, the computation of WCTT has an impact on the behavior of the core-to-I/O flows. The evaluation of RC N oC on the problem stated in Chapter 4, is illustrated in Chapter 7.

to-I/O communications is needed.

This mapping strategy presents two objectives:

• Objective 1: Minimizing the distance separating the placement of critical applications from both of the DDR and Ethernet controllers. We note that it depends on the region where the applications are mapped on the NoC (A14). Both d 2 and d 3 depend on where the destination core is mapped on the NoC, as well as on the memory port that is used.

• Objective 2: Reducing the contention on the core-to-I/O flow.

Once the distance of a core-to-I/O flow is minimized, the second goal is to minimize the contention that this flow can experience on its path. As the path taken by a core-to-I/O flow is induced by the XY routing, the allocation of specific tasks on and around this path can reduce its contention. In the first phase illustrated in steps from a to d, we allocate the applications on the different regions on the NoC. The idea is to allocate critical applications in the corners of the NoC where applications. However, allocating arbitrarily critical applications at the corner could fragment the remaining regions on the NoC. For this reason, we have to follow a unique direction in the allocation. Thus, we begin from a corner of the NoC on the side of DDR and Ethernet and we follow one circular direction in order to not fragment the regions on the NoC. The applications are ordered in such a way to allocate the critical applications near of both Ethernet and DDR controllers to minimize the distance d. In order to avoid the contention between the applications, we use rectangular shapes when mapping the applications in the regions, due to the XY routing. The shapes are chosen in such a way to correspond to the size of the region where they are allocated.

Overview of our strategy of mapping: M ap IO

In the example of Figure 6.1, we begin by the non-critical application F F T 16 by choosing a shape 4×4, as shown in the step a. On the next region 3×4, we choose a non-critical application whose size is closest to the size of this region, i.e. HM 12 . Similarly, in the step c, on the region 7 × 3, HM 11 is allocated by a rectangular shape 4 × 3. And finally, the critical application F ADEC 9 is then allocated near to Ethernet and DDR controllers.

After allocating the applications in the different regions on the NoC, we are interested now in reducing the contention on the core-to-I/O flows. These core-to-I/O flows follow a fixed path (A13 and A14). Thus, the second phase consists in allocating the tasks of the applications, placed near to the Ethernet, controllers in such a way to reduce this contention.

As illustrated in the task mapping of FFT application, the task t f f 15 is allocated to the core located at (1,6). Actually, this task does not send any flow to the other tasks, thus it does not block directly the path of the core-to-I/O flow. Also, F ADEC 9 present a task t f 6 which only receives data from the other tasks. Then, if we allocate this task at the core (2,2), this task will not generate a flow to the task located at (2,1), i.e. t f 2 , and thus not blocking the Y path of the core-to-I/O flow at the router (2,2).

The following sections illustrates the details of each phase.

Phase 1: Core-to-I/O flows distance minimization

This section focuses on the first phase of M ap IO strategy over a Tilera-like architecture. This first phase allocates in priority critical applications in a dedicated region close to memory and Ethernet controllers. To this end, we have first to order the applications in a list, noted L app , in order to be followed when allocating the applications. This phase is divided into three steps to reach our first objective. The first step consists on filling the applications in the different regions on the NoC. It matches each region to a corresponding application, by following both L app and a circular direction. Then, the second step assigns a rectangular shape to each application. However, when this is not possible we authorize the definition of arbitrary shape, possibly leading to inter-application contention due to the XY routing policy used within NoC.

Finally, the third step reclaims cores unused within assigned shapes to the regions where critical applications are allocated in order to be used by the second phase of this strategy. These unused cores can be allocated on the path of the core-to-I/O flow in order to reduce its contention. These steps are described in Algorithm 6, which will be explained progressively in the following sections.

In this section, we consider another case study, noted B, made of two instances of FADEC: F ADEC 8 , F ADEC 9 and 3 instances of HM: HM 14 , HM 9 , HM 8 . This case study is used to explain the different steps of the first phase of M ap IO .

Filling NoC regions with applications

We note L region the list of rectangular subsets of the NoC, called regions. L region initially contains a single region of size equals to the size of the NoC, i.e. L × W . L app is the list of applications that remain to be mapped. As mentioned in the previous sections, the objective is to allocate critical applications in the corner close to memory and Ethernet controllers. Besides, we have to follow a circular direction in order to avoid the fragmentation of the different regions on the NoC. The organization of the applications within L app is essential to reach this objective.

How the applications in L app are organized?

Non-critical applications are first inserted in L app , while critical applications are then inserted between the head and the tail. All applications are inserted in decreasing order of their size, noted SA i . SA i is the number of cores an application uses. Then, the larger a critical application is, the closer to the memory and Ethernet controllers it is located to. Therefore, starting the allocation from a corner on the NoC (side of Ethernet interfaces) and following both L app and the circular direction on the NoC, ensure the placement of the critical applications near both DDR and Ethernet controllers.

However, another objective of our mapping is to reclaim the unused cores from regions assigned to non-critical applications in order to give them to the regions that will later on be assigned to critical applications. We note that UNused cores value (UN) corresponds to the number of cores remaining free if we allocate all the applications on the NoC and thus it is equal to:

U N = (L × W) - n i SA i .
These unused cores will be useful to reach our "objective 2": reducing the contention on the path of the core-to-I/O flow, and so, for the second phase. However, this can not be done if we do not choose correctly which application should be placed in head or in tail of the list L app . For example, in the case of one critical application and U N ≥ 0, when inserting the critical application at the head and beginning by mapping this application, it avoids to give the unused cores to the critical application. Actually, if we choose to reclaim the unused cores at the beginning, we can not ensure a regular shape for the remaining applications.

For this reason, we choose to allocate the critical application at the end, and insert it at the tail, and in this way, when we can reclaim unused cores from non-critical applications, it could be used within the region of the critical application.

How critical applications are inserted between the head and the tail of L app in order to reclaim unused cores?

How critical applications are allocated between the head and the tail of L app depends on the value of U N . If U N = 0, the critical applications are thus inserted at the head of L app except one which is inserted at the tail when there are more than one critical application, since no free cores can be reclaimed. Thus, in this case, the critical applications are allocated first which ensures rectangular shapes to these applications. If however U N ≥ 0, then it is the opposite: critical applications are inserted at the tail except one at the head. In this case, critical applications are allocated at the end while retrying to reclaim unused nodes from the non-critical applications. In both cases, we ensure that at least two critical applications are allocated in the two corners near to DDR and Ethernet interfaces.

How to fill the applications into the regions?

Once L app is built, we can thus fill the applications into the different regions on the NoC.

We start to fill regions from one corner of the NoC. We then proceed following a clockwise or counterclockwise direction, depending on whether the initial corner is located respectively on the bottom or the top of the NoC. The function Search_App_to_M ap() (line 9 of Algorithm 6) searches for the corresponding application to allocate to the current region.

Algorithm 6 M ap_IO(L app)

1: Region = L region .head() 2: while (Region = N U LL) do 3: App i = Search_App_to_M ap(L app) #There is no application that has a size less than the size of the current region, then aggregate regions 10:

App i = head(L app) #There is only one application in L app which is allocated on the remaining regions on the NoC

if (App i = N U LL) then 11:

Aggregate_Regions(L region) #An application is found to be allocated in the current region

end if 23: end while

The current head of L app defines the criticality level that is considered when performing this lookup process to select an application. The application verifying this criticality level and has the highest SA i value that is equal or less than the size of the considered region is selected to fill this region. Whenever a part of a region is filled by an application, after performing the second and third steps (lines 13 to 18 which are explained in the next sections), we say that this application is mapped and it is removed from L app . L region is thus updated with the remaining rectangular regions of the NoC. If the size of the considered region is strictly inferior to the size of any application (lines 10 to 12), the head of L region and the next region are associated by the function Aggregate_Regions(). The size of this aggregated region is computed and the lookup process is repeated until a region of sufficient size is build. Nevertheless, when it remains only one application to allocate in L app (lines 4 to 8), this application will be assigned to the remaining regions in L region .

Finally, as rectangular shapes are used to avoid inter-application contention, an application may use additional unused cores (U N ≥ 0) to define such a rectangular area. Thus, the value of U N dynamically changes when mapping an application. However, if these cores are used by non-critical applications and so UN moves to 0, they can prevent the mapping of critical applications. To avoid this situation when U N = 0 (lines 19 to 22), we reverse the lists L region and L app and therefore continue from the other corner. We also inverse the direction followed to fill regions.

Example.

In our new case study B, we have U N = 1 and we have more than one critical application. F ADEC 9 is thus inserted at the head of L app while F ADEC 8 is inserted at the tail. Therefore, L app contains {F ADEC 9 , HM 14 , HM 9 , HM 8 , F ADEC 8 }. However, in the case study A illustrated in Figure 6.1, there is one critical application F ADEC 9 which is inserted at the tail of L app as U N = 1. Now, let us see in the next section in which shapes these applications are allocated on the NoC.

Application shape and its assignment to regions

Filling a part of a region with an application requires to define the actual rectangular shape taken by this application. This choice of the rectangular is not arbitrary as we will see in this second step of the first phase of M ap IO .

Each application App i is described by its size SA i , assuming each core is dedicated to a task.

For each shape, we note U N i the number of UNused cores by App i and we therefore have

U N i = (X i × Y i) -SA i .
We arbitrarily compute three possible rectangular X i × Y i shapes of minimal U N i values and whose sizes are equal or higher than SA i . These computed shapes are as close as possible to squares to avoid inter-application contentions. We thus forbid X i and its Y i to be equal 1 if SA i > 3.

How to choose the appropriate rectangular shape for each application? When an application is mapped on the NoC, its most appropriate shape is selected. However, this selection depends on the possible shapes of other applications to avoid generating a remaining region unable to map any other application. The goal is to optimize the shape of these newly created regions so that next applications can be mapped without being fragmented, i.e. assigned on two regions. To this end, the minimum value of the X i and Y i of all applications, noted by min xy is computed by the function min_X_Y () (line 13). min xy represents the minimum size for either the row or the column of an application. Thus, the function Choose_Shape() (line 14) includes the following constraints on min xy and therefore selects the shape that avoids an application to be fragmented on several regions.

((L -X i ≥ min xy) ∨ (L -X i = 0)) ∧ (6.1) ((W -Y i ≥ min xy) ∨ (W -Y i = 0)) (6.2)
Example. Figure 6.2 illustrates the different steps of the application mapping for this case study. Table 6.1 shows the computed rectangular shapes for each application of the case study B as well as the value of U N i .

F ADEC 9 HM 14 HM 9 HM 8 F ADEC 8 X × Y U N X × Y U N X × Y U N X × Y U N X × Y U N 3 × 3 0 2 × 7 0 3 × 3 0 2 × 4 0 2 × 4 0 2 × 5 1 3 × 5 1 5 × 2 1 3 × 3 1 3 × 3 1 3 × 4 3 4 × 4 2 4 × 3 3 2 × 5 2 2 × 5 2
Table 6.1: Different shapes and their free cores for each application.

The application at the head of L app is a critical application. We thus have to consider only critical applications. The first matching critical application which has the highest SA i value that is equal or less than the size of the NoC is F ADEC 9 (SA F ADEC 9 = 9). To select the shape of F ADEC 9 , we compute min xy which is equal to 2. Since the first shape 3 × 3 for F ADEC 9 keeps free more than 2 columns and 2 rows, then this shape is selected. We start by filling the NoC from its top right corner and therefore map F ADEC 9 on this corner, as shown in Figure 6.2a. We then follow a counterclockwise direction as explained in the step 1, as shown by the other steps of Figure 6.2. The next region that is considered is of size 4 × 3. HM 14 is now at the head of the list L app , thus a non-critical application should be selected. SA HM 14 is greater than the size of this next region, then HM 14 does not correspond to this region. Therefore, HM 9 is selected to fill this region as its SA i value is less than the size of this region. At this step, min xy is still equal to 2. The first shape that is considered for HM 9 is 3 × 3. However, it does not keep free min xy , i.e. 2 columns, in order to be able to map a next application with a rectangular shape, i.e. it does not verify the equation 6.1 ((7 -3) -3 ≥ 2).

In fact, the remaining region 1×3 has a size that is less than the minimum size of the remaining applications. Then, it is impossible to allocate an application within this region without being fragmented. On the other hand, the shape 2 × 5 does not fit in the selected region 4 × 3. Thus, the selected shape is thus 4×3 which verifies the equation 6.1, as show in Figure 6.2b. However, this shape has a size greater than the size of the application, and thus, it generates an number of unused cores. Let us see, in the next section, the next step (step 3) to be performed when selecting a shape having U N i > 0.

Reclaiming unused cores within shapes

A selected shape can generate a number of unused cores U N i which indicates whether these cores could be reclaimed or not. The function M ap_update() of the third step (line 15) determines which case is applied for the selected shape in the second step. Algorithm 7 describes this function. There are two cases:

• Case 1: The unused cores are eliminated from the shape of an application when

U N i > U N or U N i ≥ min xy .
When U N i ≥ min xy , these unused cores could in fact form a contiguous region with the one of the critical application. Thus, we reclaim these cores to allocate them to a critical application. On the other hand, when U N i > U N , these unused cores must be eliminated in order to allocate all the applications on the NoC. The shape must be modified by eliminating a number of unused cores from either the column or the row. This choice depends on whether the remaining region, after the removal of cores from the column, corresponds to the size of one existing application. For this reason, we compute first the remaining region when eliminating the unused cores from the column (lines 2 and 3). The size of the remaining region is thus col_remaining_region.col × col_remaining_region.row. If this computed region could correspond to the size of an application having the same level of criticality, then the unused cores are eliminated from the columns (lines 4 to 7). The new shape, noted Accepted_Shape, is recomputed using the function Compute_Shape_col. Otherwise, we remove these cores from the row and the new shape is recomputed using the function Compute_Shape_row (lines 9 to 12). This choice is in fact due to the clockwise or counterclockwise direction chosen to progress between the regions. This direction increases the probability to have the maximum number of cores presented next to the remaining region when eliminating the cores from row. Thus, it avoids to allocate the remaining applications into fragmented regions.

• Case 2: The unused cores cannot be eliminated from the shape of an application when

U N i ≤ U N and U N i < min xy .
When U N i < min xy , there are no applications that can benefit from these unused cores as they cannot form a contiguous region. Then, there is no need to eliminate these unused cores. However, we have to verify that U N i ≤ U N in order to guarantee a sufficient number of remaining cores to allocate all applications. Then, the definitive shape is the one that was selected in the previous part, i.e. the second step (line 14).

Finally, L region is updated by computing the remaining regions (line 16).

Example.

In our example, the shape selected for HM 9 , i.e. 4 × 3, presents 3 unused cores.

This number exceeds the allowed number of unused cores which is U N = 1. We therefore have to removed these 3 unused cores from the shape. This removal is done from the row.

Actually, the elimination from the column generates a region of size 1 × 3, which does not corresponds to the size of any remaining application. Figure 6.2b and 6.2c present these steps to select the definitive shape for HM 9 which is 4 × 2 + 1 × 1. L region therefore contains two remaining regions which are {< 3 × 1 >; < 7 × 4 >}. These two remaining regions are then aggregated to cope with the size of the remaining non-critical application HM 14 . The region 3 × 1 handles a part of HM 14 . The size of the remaining part of HM 14 is equal to 11 which fits in the region 7 × 4. A new computation of candidate shapes is done at this step by considering the size 11, in the same way as described in section 6.3.2. The selected shape is 3 × 4 since it verifies the equations 6.1 and 6.2. These steps are shown by the Figures 6.2d and 6.2e. This last shape does not need to be redefined as U N i < min xy . The definitive shape of HM 14 is an aggregated shape of < 3 × 1 > and < 3 × 4 >. L region contains a single region which is {< 4 × 4 >} and we now have U N = 0. We therefore have to reverse both L region and L app , leading to L app = {F ADEC 8 , HM 8 }. We then continue from the bottom right corner of the NoC and follow a clockwise direction. This ensures to map the critical F ADEC 8 application near to both the Ethernet and DDR controllers. Its first candidate shape 2 × 4 is the definitive shape as it verifies the equations 6.1 and 6.2. Besides, it does not generate any unused cores.

Finally, the remaining region of 2 × 4 is left to the remaining application HM 8 . These steps are illustrated on the part f and g of Figure 6.2. Y part (x i < m and y i > n) of the path of the core-to-I/O flow is located within the region of App i . These other cases are illustrated by the Figure 6.3b and 6.3c. In these latter cases, the remaining parts of the critical path belongs to another application, and so the same principle will be applied for this application. Note also that an application can thus be crossed by several core-to-I/O flows and can therefore have several critical paths associated to it.

Algorithm 7 M ap_U pdate(Region, L region , App i , min_xy, min_app_size, U N) #Case 1: U N i can be reclaimed 1: if ((App.Selected_shape.U N i ≥ min xy) (App.Selected_shape.U N i > U N)) then #Compute
Example. Let us focus, in the case study B illustrated in Figure 6.2, on the Ethernet controllers located at:

• (0, 2) which is shared between F ADEC 8 and HM 8 ,

• (0, 4) which is used by HM 14 .

Let us first consider the mapping of F ADEC 8 whose bottom right edge is located at (1,1) and follow the same path), which comes from the Ethernet controller located at (0, 2) and goes to the DDR port located at (2, 0). The second critical path is a subset of the core-to-I/O flow of HM 8 , which comes from (0, 4) and goes to (3, 0). This critical path is defined as from (0, 4) to

(2, 4). The remaining part, from (3, 4) to (3, 0), is the critical path of HM 8 .

Impact of the critical path on the WCTT

The critical path is the path taken by the core-to-I/O flow going from Ethernet to DDR For this reason, we have to divide the solution into two parts. First, we have to choose the corresponding tasks to be allocated on the critical path. Second, as these tasks on the critical path could generate different communications with other tasks, thus it is important to choose also the placement of these remaining tasks. Let us see how to allocate the tasks on and around the critical path.

Mapping tasks on the critical paths

Let us consider an application App i with several critical paths. We sort the critical paths by increasing length. Let us consider a critical path from (0, y i) to (x i , 0). The contention level on a critical path can be reduced by limiting the number of flows in direct contention with the corresponding core-to-I/O flow. Note that the minimum value is simply obtained by not mapping tasks on the critical path due to the XY routing policy. We thus alternatively select a core from the row y i and from the column x i in order to map tasks. Figure 6.5 illustrates the order to follow in the different cases of the critical path of App i . For the row y i and the column

x i , we start respectively from the cores located at (1, y i) and (x i , 1) and end up when the limit of the critical path within App i is reached. When the end of the row or the column is reached, and x i = y i , we continue in sequence with the cores on the remaining direction of the critical path as illustrated in Figure 6.5a. This alternation returns to the fact that this order of cores present the most blocking effect on the path of core-to-I/O flow. To explain this alternation, we have to show first how much it is interesting to leave the cores unused by following this order to reduce the contention when U N i = 0.

Specific mapping rules when unused cores exist

When U N i > 0 for an application App i , leaving cores on one of its critical path unused, i.e.

without tasks being mapped on them, reduces the contention the core-to-I/O flow experiences.

Let us first focus on the X part of a critical path. The first reason is that the number of flows in direct contention with the core-to-I/O flow is indeed reduced. This is illustrated by Figures 6.6a and 6.6b that shows that if we do not map a task on (1, y i), the number of Egress communications (EC) blocking the critical path is reduced. This example can be easily adapted (1,n) (m,n) (m,1)

(1,1)

(x i ,y i) (x i ,0) (0,y i) (b) (c) (d)
Figure 6.6: The different communications that could block the X and Y part of a critical path depending on where free cores are localized.

order where to choose the unused cores on the column of the critical path by reasoning now on the flows received by the tasks. Thus, when we allocate a task on (x i , 1), all flows received from the tasks allocated on the NoC, except the first row, block the critical path, even in its Y part or in its XY part. Furthermore, the flows sent from this task to all columns having

x < x i block the outgoing I/O flow. However, these number of blocking flows is reduced when we allocate a task on (x i , 2) and we keep free the core (x i , 1) as illustrated in Figure 6.6d.

This explains the order to follow when allocating the tasks on the cores on the critical path. This is the same order when we choose to keep a core unused on this path. Note that the number of cores of the critical path (both the X and Y parts) with no tasks mapped on them depends on the value of U N i . If U N i is greater than the number of cores on the critical path, then all cores on the critical path are unused. Besides, we keep unused the cores in the region where x < x i and y < y i as this region could affect directly the path of the I/O outgoing flow.

Let us see now, which tasks are chosen to be allocated on the critical path.

Mapping rules when no unused cores exist

When U N i = 0, all the cores on the critical path should be allocated by following the order illustrated in Figure 6.5a. Once a core is selected, we distinguish whether it is located in the X part or the Y part of the critical path when we apply the mapping rules.

Allocation on the X part. On the X part of the critical path, we allocate tasks from (1, y i) to (x i -1, y i). We then map a task on (j, y i) if it does not directly block the core-to-I/O flow, i.e. follows the following set of constraints:

• when j = 1, the task (1, y i) must not send data to DDR controllers: A task on (1, y i) that communicates with DDR, generates a flow in contention with the X part of the critical.

This condition is specific to Tilera architecture as the first column of the NoC is not connected directly to the first DDR port.

• must not send any data to the tasks allocated on (x i , k), with k ∈ [1, j -1]: A task sending data to (x i , k) generates a flow that is in direct contention with the X and Y path of the core-to-I/O flow.

• must not receive any data from the tasks allocated on (j -1, y i) (when j ∈ [2, x i]): A task on (2, y i) sending data to (3, y i) generates a flow in direct contention with the X path of the core-to-I/O flow. For this reason, the task that should be allocated on (3, y i) must not receive data from the tasks allocated on (2, y i) and (1, y i).

We order the list of tasks that fulfill these constraints in an increasing number of EC. Let us suppose that the task of highest EC is allocated on (1, y i). The probability that it sends data to the tasks allocated on other columns than the one to which it belongs increases. Only the flows sent to the tasks belonging to its column, i.e. the first one, do not block the X part of the critical path. For this reason, we have to allocate on (1, y i) the task that verifies these rules and has the minimum number of EC. However, a task on (2, y i) could sent to two columns, i.e

x = 1 and x = 2 without blocking this X path. Thus, this constraint decreases while increasing

x i .
Allocation on the Y part. On the Y part of the critical flow, similar rules can be defined when we allocate tasks from (x i , 1) to (x i , y i -1). Thus, a task is allocated to (x i , j) must verify the following rules:

• must not send data to the tasks allocated on (x i , k), with k ∈ [1, j -1] to avoid the Y contention with the critical path;

• must not receive data from tasks allocated on (l, y i), with l ∈ [1, j] to avoid the contention on the XY part of the critical path.

The list of tasks that fulfill these constraints is ordered in an increasing number of Ingress Communication (IC). Let us suppose that the task of highest number of IC is allocated on (x i , 1). The probability that it receives data from the tasks allocated on other rows than the one to which it belongs increases and so could block directly the Y part of the critical path.

Therefore, we have to allocate on (x i , 1) the task that verifies these rules and has the minimum number of IC, as it can only receives from tasks belonging to its row without blocking the critical path.

Finally, note that if other critical paths exist within an application, coming from other Ethernet interfaces (0, y m), we must take into consideration all the critical paths. Thus, the tasks for example on the cores from (1, y m) to (x i , y m), with y m > y i , must not send to the tasks allocated on cores from (x i , 1) to (x i , y i -1). This avoids the contention with the Y path of the core-to-I/O flow.

Allocation on the XY part. The tasks mapped on (x i , y i) must not receive data from tasks mapped on their rows and not send data to those on their columns to avoid the XY contention with the critical path.

Example. The two steps 1 of Figure 6.4 show for both HM 8 and F ADEC 8 the task mapping on their critical paths. We start by the shortest critical path in F ADEC 8 , i.e. the one of F ADEC 8 or HM 8 that comes from (0, 2). We first have to select a task to be mapped on (1, 2). The task must have the minimum EC value but also it must not send data to DDR.

t f 6 is the task of minimum EC value, however it sends data to the DDR. We therefore have to choose another task. As the remaining tasks have the same characteristics, t f 4 is arbitrarily chosen. We must map on (2, 1) the task with the minimum IC value and that not receive data from t f 4 . The matching task is t f 2 . Finally, t f 6 is mapped on (2, 2) as it is the sole task that do not send to t f 2 . Let us now consider the second critical path from (0, 4) to (2, 4), i.e. the one of HM 8 . The task on (1, 4) must have the minimum EC value and must not send data to the tasks on the column of the first critical path. Moreover, the task on (2, 4) must also not receive from the one allocated on (1, 4). Arbitrary tasks are however chosen since all the tasks have the same characteristics. The mapping on the critical path in HM 8 is shown by the upper part of Figure 6.4. t h0 is mapped on (3, 1) as it is the task having the minimum IC value. On the cores above, we have to ensure to allocate the tasks that not send data to the allocated tasks below.

Mapping tasks around the critical path

Once the task mapping is performed on the critical path, we have to map the remaining tasks around the critical path. Actually, the objective is that the remaining tasks, i.e. are not yet allocated, communicating with the tasks allocated on the critical path, do not generate flows in direct contention with the core-to-I/O flow. To reduce the number of contentions in the X or Y part of the critical paths, flows from these tasks should cross the critical path perpendicularly.

For this reason, we consider different regions around the critical path, as shown in Figure 6.7, where in each region, we allocate the tasks that generate perpendicular flows with the critical path.

For each configuration of a critical path, Figure 6.8 illustrates the different areas that must then be considered. In the general case (Figure 6.8a), i.e. the entire critical path belongs to the current application, 4 areas must be considered: I) x < x i and y < y i , II) x > x i and y ≤ y i , III) x < x i and y > y i and IV) x > x i and y > y i . However, the number of regions can be reduced to two (Figures 6.8b and 6.8c). Note that if several critical paths exist, the one with the highest values for both x i and y i is used to define the areas to consider.

Mapping in region I (x < x i and y < y i)

Let us first focus on the case of Figure 6.8a where the cores in this region share the same rows and columns with the critical path. We have to take into consideration the characteristics of the tasks allocated on the critical path. We recall that the tasks allocated on the row y i present a minimum EC, while those on the column x i have a minimum IC. Therefore, each task that might be mapped on (x, y) in this region, should send data to the tasks on its row and belonging to the critical path, i.e. on (x i , y). These tasks must also receive data from the tasks on their column and belonging to the critical path, i.e. on (x, y i). However, these tasks should not send to all tasks mapped on the rows of critical path, starting from (x i , 1) till (x i , y -1).

This last condition avoid a Y contention with the critical path. In the other cases, i.e. shown by Figures 6.8b and 6.8c, one of these conditions is applied depending on the part of critical path that belongs to the current application. Note that if we can not find any tasks verifying at least one condition, for the moment we allocate unused cores and then we apply the rules to Example. The step 2 for F ADEC 8 , shown on the bottom part of Figure 6.4, puts in this region I the task t f 7 on (1, 3) that receives from t f 1 and t f 4 . A similar condition is applied for the task mapped on (1, 1). The tasks on the third row must also not send to t f 6 and t f 2 while the one on (1, 1) have to send to t f 2 .

Mapping in region II (x > x i and y ≤ y i)

As in this region the cores share only the same rows with the critical path (Figures 6.8a and 6.8b), then we have to apply only the conditions related to the row of the critical path. Therefore, in this region, each task mapped on the core (x, y) should send data to the tasks on (x i , y). Besides, it should not send data to all tasks mapped on the row of critical path, starting from (x i , 1) till (x i , y -1).

Example. For instance, the step 2 for HM 8 , shown by Figure 6.4, puts in this region II a task on (4, 4) that send to t h7 and not send to t h5 , t h3 and t h0 , i.e. t h6 . Similarly, t h4 is mapped on (4, 3) as it sends to t h5 and not send to t h3 and t h0 . The same rules are applied to allocate the tasks on the remaining cores, i.e. (4, 2) and (4, 1).

Mapping in region III (x < x i and y > y i)

Since x < x i , each task on (x, y) must receive data from the tasks on the column of its critical path, i.e. (x, y i). However, in order to reduce the contention on the Y part with the critical path, it must also not send data to tasks on the column of the critical path starting from (x i , 1) till (x i , y -1), as in the case of Figure 6.8a.

Mapping in region IV (x > x i and y > y i)

The cores in this region do not share any row or column of the critical path. However, we have to ensure that the tasks in this region do not send any data to the tasks on the row of the critical path starting from (x i , 1) till (x i , y -1).

Minimizing the contention of outgoing flows

The rules detailed before minimize the WCTT of the flow incoming from Ethernet. We also define tasks mapping rules that reduce the latency of outgoing core-to-I/O flows, i.e. from the DDR to the Ethernet controller. These rules are applied when tasks remain to be mapped.

The first rule is to allocate the tasks sending to Ethernet on the nearest cores to both the DDR and Ethernet controllers, as this minimize d 2 and d 3 and thus the delay from the task to the DDR and from the DDR to the Ethernet. In fact, the tasks sending to Ethernet send first the data to the DDR controller and then this last one transfer data to Ethernet. Thus, we identify some conditions for mapping the remaining tasks. Where these currently unmapped tasks are going to be allocated can indeed affect the outgoing flows on the NoC, going from the port x o , and which uses the first row then the first column to reach the Ethernet controller.

Remaining tasks that might be allocated on (x, 1) must not send data to the tasks allocated on (x j , 1), with x j < min(x, x o). Actually, when we allocate a task on (x, 1) with x < x o , then this task must not send to the tasks allocated on (x j , 1) with x j < x. This condition can avoid the contention with the X part of the path of the I/O outgoing flow. However, it can send to the tasks on (x j , 1) with x j > x, due to the use of the bidirectional links, which eliminate the possible contention with the I/O outgoing flow. On the other hand, when x > x o , the task on (x, 1) should not send to any task allocated on (x j , 1) with x j < x o , in order to avoid this X contention with the I/O outgoing flow.

A task on (x, 1) must also not send to the tasks allocated on the first column, in order to avoid the contention with the Y part of the path of the path of the I/O outgoing flow. These conditions can minimize the number of flows that could block the flows outgoing from DDR to Ethernet controller. As show in Figure 6.9, when considering a task on (x, 1) that sends data to tasks allocated on the first row and/or first column, it generates flows blocking directly the path of the I/O outgoing flow.

After applying all rules and allocating the tasks verifying these rules, the remaining tasks are mapped arbitrarily on the cores. Actually, in this work, we do not consider any conditions to map the remaining tasks on the remaining cores.

Choosing the DDR port to which tasks should communicate

Once all tasks have been mapped, we have to check the tasks communicating with the DDR.

In fact, in this work we consider the communications with DDR controllers even as a final destination, or an intermediate destination. The flows coming from the tasks communicating with DDR and located at the column x i or at the first column when x i = 2, interfere with the critical path as shown in Figure 6.10a. For this reason, we have to choose for each task communicating with DDR, the corresponding port to which it should send data without interfering with the critical path. Therefore, we consider virtual tasks that will be allocated on the x i + 1 port as a destination port for the tasks located at the column x i and at the first column when x i = 2, as illustrated in Figure 6.10b.

We note that when it exists more than one critical path in the application, we consider the one with the highest x i value. However, we also modify the destination of tasks from other applications: we modify the port from x = x i + 1 to x i + 2.

Example. For F ADEC 8 of our case study B, the task t f 6 should send data to the port 1 of the DDR. However, this port is used by the critical path coming from the Ethernet interface located at (0,2). Thus, we modify the DDR port destination for this task. The port 2 is used by the critical path coming from the Ethernet interface at (0,6). To avoid the contention with these critical paths, the port 3 is chosen as the destination port for the task t f 6 , as illustrated on the step 3 in Figure 6.4. Figure 6.11 illustrates the internal mapping of F ADEC 9 sharing the Ethernet (0, 6) with HM 9 . This mapping applies the same rules as in the mapping of F ADEC 8 , where t f 6 is allocated on (2, 6). This task sends to DDR, and thus could not be allocated at (1, 6) even it presents a minimum number of EC. However, as it is the sole task that does not receive data from t f 4 allocated at (1, 6), t f 6 is thus allocated at (2, 6) as illustrated at the step 1. Besides, the step 6 shows that t f 6 sends data to the port 2 to avoid the direct contention with the critical path.

Example: Case study A. Now let us go back to the case study illustrated in Figure 6.1 to explain how the tasks are allocated within FFT. t f f 15 is a task that does not send to DDR and also presents the minimum number of EC. Thus, this task is allocated on the core at (1, 6).

Besides, on the core located at (2, 7), we choose a task with a minimum number of IC and does not receive from t f f 15 , i.e. t f f 8 . Finally, a task that does not receive from t f f 15 and does not send to t f f 8 is chosen to be allocated at (2, 6), i.e. t f f 12 . However, the remaining tasks are allocated arbitrarily on the remaining regions as they present the same characteristics.

Conclusion

Chapter 4 has shown that reducing the pessimism when computing the WCTT is a strategy to avoid Ethernet frames to be dropped. However, this strategy is not always sufficient to solve the problem as illustrated in the considered case study A. Existing contention-aware mapping strategies aim at minimizing the inter-core congestion without taking into account requirements of I/O communications of applications. However, the WCTT of core-to-I/O flows depends on the congestions generated by the mapping of both critical and non-critical applications. This chapter presents a description of our static mapping strategy of critical and non critical real-time flows that reduces the WCTT of core-to-I/O communications over Tilera-like NoC, called M ap IO . M ap IO splits the NoC into regions and then allocates in priority critical applications in a dedicated region close to memory and Ethernet controllers. The path of core-to-I/O and the outgoing I/O flows of critical applications are thus reduced. These regions are contiguous and non-fragmented which avoids the contention between applications. Besides, it permits us to allocate a number of applications whose size is equal to the size of the NoC.

Then, the second part of M ap IO is the mapping of the tasks within the regions in order to reduce the contentions that core-to-I/O flows can experience over their paths. The evaluation of M ap IO method compared to the SHiC method, a method of the state-of-the-art, is presented in the next chapter. Chapter 5 has presented RC N oC , a method that allows to reduce the pessimism of the computed WCTT. Its evaluation on a synthetic benchmark shows a significant reduction of the WCTT values compared to the RC method. Besides, chapter 6 has described M ap IO , an application placement strategy, that takes into account the communications between cores and I/O interfaces. In this chapter, we propose to evaluate these two methods. the impact of these methods, applied independently and then together, on the initial problem: dropping of Ethernet frames for critical or non-critical applications. Later, we evaluate the impact of these methods, applied together, on the WCTT of both core-to-I/O and core-to-core flows. We thus explain the impact of M ap IO rules and the number of unused cores, generated by this strategy, on these WCTT values.

For these evaluations, we use different case studies: A and B (introduced in the previous chapter), C and D (new case studies which are introduced in this chapter). In order to facilitate the access to these case studies, we illustrate, in the beginning of this chapter, the mapping of the case studies A and B, in Actually, this result shows that RC N oC models this pipeline behavior, where Property 3 is applied to remove the impact of the indirect flows as presented in the timeline. In fact, when f 1 is no more blocked by f 2 , f 3 is the sole indirect flow that impact the analyzed flow f a , i.e. the HM core-to-I/O flow. Indeed, Property 3 indicates a separation of n f 1 -1, i.e. one router corresponding to (3,6), between f a and f id , to classify f id as non-influent. As f 3 is not separated from the HM core-to-I/O flow by any router, then f 3 is an influent indirect flow (see Figure 4.11a). Thus, when f 1 arrives to the router located at (3,6), an HM packet progresses without being affected by the flows blocking f 1 , i.e. indirect flows: f 4 , f 5 , f 6 , f 7 and f 8 . Besides, Property 2 reduces the pessimism by computing the progression of flows without waiting the blocking flows to reach their destination. For example, f 1 does not wait f 3 to reach its destination at (4,4) before it progresses, and thus its maximal blocking delay is computed.

Therefore, the WCTT of the 21 packets corresponding to the HM core-to-I/O flow is equal to 5.8 µs which is less than the transmission delay of the FFT frame, i.e. 6 µs. In this case, the FFT frame is no more dropped.

Reducing the pessimism in the computation not sufficient

Let us increase the number of flits composing the FFT core-to-core flows, for example to 3 flits, then the WCTT of a packet of HM core-to-I/O flow increases to 490.47 ns. In this case, additional indirect flows are considered as influent on the core-to-I/O flow. Thus, this core-to-I/O flow takes 10.29 µs to send all the payload to the DDR. This delay is greater than the transmission delay of FFT frame on Ethernet leading to drop it.

On the other hand, a packet of the HM 11 core-to-I/O coming from the Ethernet interface at (0,2) takes 790.05 ns to reach the DDR memory. Comparing to the RC method, we reduce the WCTT value of only 2%. Actually, Property 3 can not be applied due to the absence of indirect blocking flows. Besides, the flows are made of 19 flits that crosses at maximum four routers. The maximal blocking delay is therefore close to the waiting delay for the blocking flow to reach its destination. Thus, Property 2 does not provide a significant gain against the RC method. This gain of 2% is not sufficient to avoid to drop the FADEC frame as the global WCTT of the HM core-to-I/O flow is equal to 16.5 µs and thus greater than the transmission delay of the FADEC frame.

Impact of M ap IO on the core-to-I/O flows Problem solved: packets are no longer dropped

As seen previously, reducing the pessimism when computing the WCTT is not sufficient in some cases to avoid dropping Ethernet frames for the case study A. In this section, we compare the mapping generated by M ap IO , called M ap IO mapping, against the mapping generated by the SHiC method, called SHiC mapping. We also show that the problem mentioned above is solved.

We recall that Figure 7.1a.i illustrates M ap IO mapping, while Figure 7.1a.ii shows SHiC mapping. WCTT values of the HM core-to-I/O flow blocking F F T 16 and the third one reports these of the HM core-to-I/O flow blocking F ADEC 9 . In both mapping strategies, we indicate whether the problem of dropping Ethernet frame is solved or not.

As mentioned in the section 4.3, when we increase the size of packets of the FFT core-to-core flows to 15 flits, then the FFT frame is dropped when allocating the FFT tasks using the SHiC mapping. Actually, the WCTT of the HM 11 core-to-I/O flow takes 6.704µs to send all the payload to the DDR by considering RC N oC and 6.762µs by applying RC method. In both cases, the delay of the HM core-to-I/O flow is greater than the arrival delay of the FFT frame, i.e 6µs. However, in M ap IO mapping, FFT is still near to Ethernet but we apply M ap IO rules to change the mapping of the tasks into FFT. In this mapping, FFT share the Ethernet interface with HM 12 . The HM 12 core-to-I/O flow is not blocked. Its global WCTT is equal to 0.98µs and thus the FFT frame is not dropped. We note that in this case, this WCTT is independent from the number of flits making the FFT core-to-core flows, unlike when considering the SHiC mapping. In the SHiC mapping, the HM 11 core-to-I/O flow is blocked by the FFT core-to-core flows, and so depends from the size of their packets. Thus, when increasing the size of these packets, the indirect flows become influent, and the blocking delay of the HM 11 core-to-I/O flow increases.

On the other hand, for the Ethernet interface at (0,2), when considering the SHiC mapping, the HM 12 core-to-I/O flow takes 16.5 µs (16.944 µs by applying RC method) to reach the DDR controller. This delay is greater than the arrival delay of the FADEC frame, i.e. 12.336 µs, and leads to drop FADEC frame. Compared to the SHiC mapping, let us simply permute the HM 12 and F ADEC 9 applications. The SHiC mapping of tasks on F ADEC 9 leads to a WCTT for the HM 12 core-to-I/O flow of 15.5 µs. This delay is reduced compared to the initial one. However, it is still higher than the transmission delay of the F ADEC 9 frame on Ethernet, i.e. 12.336 µs, which leads to drop FADEC frame. This demonstrates the need for a task mapping within applications that further reduces the WCTT of core-to-I/O flows. Actually, this difference between the values obtained by RC N oC and the RC method is explained by the applicability of Property 2. This property computes the maximal blocking delay of each blocking flow (either direct or indirect flow) without waiting it to reach its destination. We note that in M ap IO mapping, the HM 12 core-to-I/O flow is blocked directly by one flow generated by t h15 which explains the values obtained by M ap IO mapping compared to SHiC mapping (see Figure 7.2a.i).

WCTT of flows

As this case study shows the need to combine RC N oC and M ap IO , thus in the following evaluations, we use RC N oC to compute the WCTT values of the different flows.

Impact of M ap IO on both core-to-I/O and core-tocore flows

The previous evaluations show the positive impact of M ap IO , combined with RC N oC , on the WCTT of the core-to-I/O flows leading to solve the problem of dropping Ethernet frames. In this section, we illustrate on different case studies the impact of the internal mapping rules and the presence of unused cores generated by M ap IO not only on the core-to-I/O flows but also on the core-to-core flows.

WCTT of flows

M ap IO SHiC approach HM 9 , HM Impact on the core-to-core flows. On the other hand, M ap IO has a positive effect on the internal congestion as it reduces the average WCTT by 29.7 %. Although the number of routers traversed by the flows increase by allocating the task t f f 15 at (1,6), this placement reduces for each flow the blocking delay at the destination. Actually, when t f f 15 is located at (3,6), i.e. in the SHiC mapping, a flow coming to this core will be blocked by 3 flows having t f f 15 as destination and coming from 3 different ports. This blocking is due to the Round-Robin arbitration where for example a flow coming to the core (3,6) from the east port, will be blocked before reaching the destination core by flows coming from the north, south and west ports. However, when this task is allocated at (1,6), a flow can only be blocked at the destination by 2 flows coming from 2 ports. For example, a flow coming to the core (1,6) from the west is blocked by 2 flows entering respectively from the north and the south ports.

Therefore, each of these 15 flows having t f f 15 as destination, has their blocking delay reduced at the destination core.

Case studies A and B: F ADEC 9 and HM applications Table 7.5 refers to both case studies. For the case study B, HM 14 shares with F ADEC 9 the Ethernet interface (0,2) when considering the SHiC mapping. In M ap IO mapping, it is HM 9 F ADEC 9 , as illustrated in Figure 7.1b.ii, explaining the reduced internal congestion.

Impact of unused cores

The goal of this variant of the case studies introduced before is to show the impact of unused cores on the WCTT values, i.e. when U N > 0. Besides, we show the impact of M ap IO on a less-constrained critical application. The modified case study noted D is made of two critical and two non-critical applications. The critical applications are now ROSACE 10 in addition to F ADEC 9 , while the non critical applications are HM 14 and HM 10 . WCTT of both the core-to-I/O flows of: 1) HM 10 that shares the Ethernet controller located at (0, 2) with F ADEC 9 , and 2) HM 14 which shares the Ethernet controller located at (0, 6) with ROSACE 10 . Using M ap IO , the non-blocked core-to-I/O flow of HM 10 takes advantage of the unused cores that are put in priority on its critical path. This explains the decrease from a WCTT of 16.58 µs in case studies A and B to 0.98 µs. However, thanks to M ap IO task mapping rules, the WCTT value of HM 14 is also equal to 0.98 µs, even though no unused cores are available into the region of the ROSACE application. Actually, as shown in the step 1 of Impact on ROSACE core-to-core flows. The average WCTT of core-to-core flows for ROSACE 10 increases by 28.8%, compared to this obtained when using SHiC mapping. The arbitrary mapping of the tasks of ROSACE 10 in the 3 × 2 region (see step 2 of Figure 7.4), whose right corner is located at (3, 7), explains this increased value. In the 6th row, V af , qf and ah send data to the same task V zc. Each flow generated by these tasks are thus blocked at each router before reaching V zc. However, in SHiC mapping, V zc that presents a maximum number of communications is allocated at the center, thus reducing the number of cores crossed by the flows to reach V zc and so decreases the number of contention in their path.

Impact on FADEC core-to-core flows. On the other hand, the average WCTT of core-tocore flows for F ADEC 9 is however decreased by 7.4%, compared to SHiC. Our task mapping, also shown by step 3 of Figure 7.4, indeed leaves unused the core located at (2, 4). This thus reduces the number of contentions for the other flows. Let us take as an example a flow coming from t f 4 to t f 3 . This flow in M ap IO mapping is not blocked at the core (2, 4) by any flow as it is an unused core. However, in the SHiC mapping illustrated in Figure 7.2b.ii, this flow is blocked at the core (6, 2) by a flow generated from t f 0 to t f 3 . Besides, t f 6 is mapped at (3, 1) when using M ap IO . Due to the XY routing policy, all incoming flows towards this task can only come from the north port of core located at (3, 1). There is thus no more contention at the destination core when a flow arrives to the router located at (3, 1). Then, the arbitration for accessing to the next link has fewer input requests to consider, as they are not coming from all directions (we assume a RRA strategy).

What happens when modifying the number of unused cores?

Let us now show the influence of U N i in the FADEC application on the WCTT of the coreto-I/O flow of HM 10 . We increase the size of the FADEC application and vary it from 11 up to 15 and with therefore a value of U N i ranging respectively from 4 to 0. The second line of Table 7.7 reports the computed WCTT in each configuration. We recall that M ap IO task mapping rules put the unused cores in priority on the critical path by the following order of priority: {(1, 2), (2, 1), (2, 2) and (1, 1)}. Figure 7.5 illustrates the internal mapping of FADEC tasks when varying the number of unused cores from 4 to 0.

U N i (M ap IO) 4 3 2 1 0 WCTT of ETH → DDR flow 0.98µs 0.98µs 0.98µs 6.45µs 23.7µs Average core-to-core impact +11.8% +16.4% +7.4% -14.5% -20.8% In M ap IO mapping, the 2 unused cores located at (2, 2), (1, 2) reduces the contention between flows. If we take the flows coming from t f 10 respectively to t f 2 and t f 5 , then these flows are not blocked at these cores by any flow. But, in the SHiC mapping, these flows will be blocked at (6, 4) by the flows generated by t f 9 , and the contention is only reduced by one unused core, i.e. (7, 4), for the flow going to t f 5 . However, when moving from F ADEC 11 to F ADEC 12 , the positive effect of M ap IO increases, while the value of U N i decreases. We explain this discrepancy by the inability of the SHiC to include unused cores in the region allocated to F ADEC 12 . As seen in the Figure 7.6 when U N i = 3, SHiC indeed allocates a 3 × 4 region, with thus no unused cores. However, M ap IO still uses a 3 × 5 region, with thus 3 unused cores as for the F ADEC 11 case. This positive impact reduces for F ADEC 13 but still higher than the SHiC mapping. Even that the SHiC mapping presents more unused cores than M ap IO mapping, the placement of t f 6 at the corner in M ap IO mapping, i.e. at (3, 1), reduces the number of blocking flows at this core. Actually, each flow arriving to the core (3, 1) will be blocked at this core by two flows coming respectively from the east and the north port. In the case of the SHiC mapping, t f 6 is allocated at the core (5, 3) and each flow received by this task, will be blocked at this core by 3 flows coming respectively from the north, south and west ports.

When decreasing the number of unused nodes to U N i = 1 and U N i = 0, t f 6 is now allocated at the core (2, 2) as we have to apply M ap IO mapping rules, i.e. t f 6 does not send any flow to the t f 13 allocated at (2, 1). Thus, each flow received by t f 6 will incur a contention with two to three flows at the core (2, 2). These flows are coming from the different ports of the router due to the RRA. This contention at t f 6 is the same in the case of the SHiC mapping as t f 6 is also allocated approximatively at the center of the region, i.e. at (5, 3) as illustrated in Figure 7.6. However, in these cases, the SHiC mapping provides respectively 2 and 3 unused cores when allocating F ADEC 14 and F ADEC 15 , while M ap IO mapping includes respectively 1 and 0 unused cores.

This explains the negative impact on the core-to-core internal congestion.

We have to note that in SHiC mapping, F ADEC 14 and F ADEC 15 could not be allocated on the NoC when considering all the applications of the case study D. Thus, these unused cores presented in SHiC mapping are considered in the case where FADEC is allocated sole on the NoC.

Discussion

The results in this chapter show the positive impact of M ap IO , combined with RC N oC , on the WCTT values of the core-to-I/O flow leading to solve the problem of dropping Ethernet frames. We have seen that M ap IO leads to a significant reduction of 94% for the WCTT values, in two cases: 1) when including unused cores in the region of the critical applications, and 2) when allocating a less-constrained critical application. However, this mapping has a reasonably limited impact on the core-to-core congestions. Actually, we have shown that there is a positive impact of the presence of unused cores on the core-to-core flows congestions. However, in the case of U N i = 0, this impact could be negative.

Conclusion

This chapter presents an evaluation of both of RC N oC and M ap IO . We have first shown on the case study A how RC N oC impacts the WCTT of the core-to-I/O flows, avoiding in some cases to drop Ethernet frames. However, the reduction of the WCTT values is not sufficient to avoid this problem. Thus, applying M ap IO on this case study is a solution to solve this problem and this by reducing the contention on the core-to-I/O flows.

However, the mapping strategy applied without reducing the pessimism in the computation of the WCTT could not be the best solution. We have illustrated on the case study C the need these methods consider that an analyzed flow can be blocked by others flows while these last flows have not reach their destinations. Besides, they add the transmission delays of all direct and indirect blocking flows to the transmission delay of the analyzed flow.

The pessimism values of the WCTT, especially for the core-to-I/O flows, leads to drop Ethernet frames.

2. Existing contention-aware mapping strategies aim to minimize only the inter-core congestion without taking into account the requirements of I/O communications of applications.

Then, the WCTT of core-to-I/O flows depends on the congestions generated by applications allocated next to the Ethernet interfaces. These mapping strategies cannot reduce the congestion on the core-to-I/O flows, leading to drop Ethernet frames.

In order to reach our objective, i.e. to avoid the drop of Ethernet frames, two approaches have been proposed:

1. A WCTT computing method, noted RC N oC , that models the pipeline transmission of flits. For this purpose, we have defined three properties to reduce both the number of scenarios to be explored when performing a WCTT analysis and the computed WCTTs values. Using these properties, we compute the maximal blocking delay a flow can suffer from the blocking flow. This leads to eliminate the need to wait till the blocking flow reaches its destination. Besides, we identify the indirect flows that do not impact the transmission of an analyzed flow. Then, the delay of these flows are not added to the transmission delay of the analyzed flow. We have implemented these properties in an algorithm based on a recursive method to compute the WCTT of the flows.

2. A static mapping strategy of critical and non critical real-time flows, noted M ap IO that reduces the WCTT of core-to-I/O communications over Tilera-like NoC. This mapping is divided into two phases. In the first phase, the NoC is split into regions where critical applications are allocated in priority in dedicated regions close to memory and Ethernet controllers. Thus, the lengths of core-to-I/O communications of critical and non-critical applications are thus reduced. This phase ensures a mapping of all applications without being fragmented over the NoC. In the second phase, the tasks of each application is mapped within its region in such a way that the contentions core-to-I/O communications experience are reduced.

We have first evaluated the impact of RC N oC on the WCTT of core-to-core flows. We compared the results against an existing recursive method (RC) on a synthetic benchmark. These results

shown a significant improvement of this WCTT. The last chapter has shown the impact of RC N oC and M ap IO on the core-to-I/O flows over several realistic case studies. We have evaluated their behavior facing the initial problem compared to current state-of-the-art method. The results have shown the need to combine both methods in order to avoid the drop of Ethernet frames. Besides, these methods lead to a significant improvement of the WCTT of the coreto-I/O flows. This WCTT is reduced by up to 29% when a critical application presenting an all-to-all communicate is allocated in the region near to I/O interfaces. However, this reduction reaches 94% when unused cores are allocated in the region of this critical application. Besides, we find a similar result when a less-constrained critical application is allocated in this region without the presence of unused cores.

The impact of our approach on the core-to-core flows is also evaluated. The internal congestion for the core-to-core flows can increase up to 28.8%, but slightly impacting this congestion in most the other cases we have considered.

In the end, the work in this thesis addresses a new problem where the I/O constraints are integrated within NoC communications. This work has led to find an approach to avoid the problem of the drop of Ethernet frames and computing tightness values of the WCTT. The study done during this thesis research opens several perspectives that we detail in the next section.

Future Work

The analysis on the case study D, which shows a negative impact of M ap IO on the internal congestion on the NoC, leads to the first perspective: consider a mapping strategy where a to study how to adapt our mapping strategy when assuming for instance a torus network and non-blocking routers, as in the MPPA many-core from Kalray [START_REF] Dupont De Dinechin | Time-critical computing on a single-chip massively parallel processor[END_REF], or simply different arbitration mechanisms than Round-Robin, such as priority arbitration [START_REF] Burns | A wormhole noc protocol for mixed criticality systems[END_REF].

Besides, the RC N oC method could be also generalized regardless of the NoC architectures.

Actually, the properties of this method are based on the pipeline transmission of the wormhole networks which is the most used in the different NoC architectures. Thus, we have to study the WCTT when assuming buffers within routers having a capacity of more than one flit and/or supporting of multiple VCs.

As reducing the WCTT is important in real-time applications, then our third perspective is: consider different mechanisms to reduce the WCTT of the flows. For this purpose, an extension of the RC N oC is to add the assumptions at the application level: [START_REF] Dasari | Noc contention analysis using a branch-and-prune algorithm[END_REF], is thus complementary to our work and could be used to further reduce the pessimism of computed WCTTs. Besides, the segmentation mechanisms of the packets introduced by [LBBN16] could be extended to further reduce the computed WCTTs. Actually, the segmentations of specific packets could generate non-influent indirect flows. For example, let us consider the scenario of Finally, it is interesting to study and analyze the behavior of existing NoC architectures in real-time systems. This analysis could lead to find the most adapted architecture to be used in a given real-time context with a minimal hardware complexity.

2. 1

 1 Table reporting some examples of NoC architectures. 6.1 Different shapes and their free cores for each application. 7.1 Table

 12 blocking HM 16 of the case study C and sharing the Ethernet (0,6) using the different mapping strategies and computing methods. .

 WCTT of core-to-I/O flows for the applications of the case study D using M ap IO and the SHiC method. 7.7 Table reporting the WCTT of the core-to-I/O flow of HM when varying the number of unused cores (U i) by F ADEC 9 . xi xii List of Figures 2.1 The NoC components. 2.2 The different buffering strategies. 2.3 Example of topologies that are most used in NoCs. 3.1 An example illustrating Recursive Calculus method. 3.2 Allocating App 3 using the mapping strategies presented in [dSCCM10], [FRD + 12] and [COM08]. 3.3 Allocating App 3 using SHiC method presented in[FDLP13]. 4.1 An overview of a Tilera architecture. 4.2 The different steps of the ingress data flows. 4.3 A Tilera-like NoC architecture. 4.4 Task graph of core-to-core and core-to-I/O communications of the FADEC application assuming 7 tasks. 4.5 ROSACE case study, extracted from [PSG + 14]. 4.6 Task graph illustrating ROSACE case study. 4.7 Task graph illustrating HM application assuming 5 tasks. 5

Figure 2 . 1 :

 21 Figure 2.1: The NoC components.

Figure 2 . 2 :

 22 Figure 2.2: The different buffering strategies.

Aethereal [GDR05]

 GDR05 and Nostrum[START_REF] Penolazzi | A high level power model for the nostrum noc[END_REF][START_REF] Millberg | Guaranteed bandwidth using looped containers in temporally disjoint networks within the nostrum network on chip[END_REF]. Other NoCs use the packet switching mode with the priority-based arbitration to ensure guaranteed services such as QNoC[START_REF] Bolotin | Qnoc: Qos architecture and design process for network on chip[END_REF] and Faust[START_REF] Durand | Faust: On-chip distributed architecture for a 4g baseband modem soc[END_REF] NoCs. Thus, in order to provide guarantees to hard real-time traffic, GS NoCs present a complex hardware architecture. Thus, no contentions can occur by design, leading to straightforward WCTT for packets but with penalizing the average performance. Besides, none of these NoCs targeting hard real-time constraints are available in commercially existing

Figure 3 . 1 :

 31 Figure 3.1: An example illustrating Recursive Calculus method.

Figure 3

 3 Figure 3.2: Allocating App 3 using the mapping strategies presented in [dSCCM10], [FRD + 12] and [COM08].

Figure 3

 3 Figure 3.3: Allocating App 3 using SHiC method presented in[FDLP13].

Contents 4 . 1

 41 System architecture and assumptions 40 4.1.1 Description of I/O in Tilera . 40 4.1.2 Model of NoC architecture and assumptions 43 4.2 An avionic case study . 46 4.3 Problem illustration . 51 4.3.1 Is improving the computation of the WCTT sufficient? 53 4.3.2 Is a contention-aware mapping strategy the solution? 56 4.4 Proposal . 58

Figure 4 Figure 4 . 1 :

 441 Figure 4.1. However, it only provides Ethernet controllers on the east of its NoC. Finally, each I/O interface can be accessed from the core adjacent to this interface through specific ports.For instance, each memory controller of the Tile64 has 3 ports. The 6 central columns (out of

Figure 4 . 2 :

 42 Figure 4.2: The different steps of the ingress data flows.

Figure 4

 4 Figure 4.3: A Tilera-like NoC architecture.

Figure 4 . 4 :

 44 Figure 4.4: Task graph of core-to-core and core-to-I/O communications of the FADEC application assuming 7 tasks.

Figure 4

 4 Figure 4.5: ROSACE case study, extracted from [PSG + 14].

Figure 4 . 7 :

 47 Figure 4.7: Task graph illustrating HM application assuming 5 tasks.

FFT

 Figure 4.8: The 6 FFT communication stages.

Figure 4

 4 Figure 4.9: Task graph illustaring FFT application assuming 16 tasks.

Figure 4 .

 4 Figure 4.10: Arbitrary mapping of a case study made of one FADEC, one FFT and two HM applications.

 an HM packet made of 19 flits takes t p = 400.775 ns to reach the memory. The analyzed flow noted f a , i.e. a packet of an HM core-to-I/O flow, can indeed be blocked by direct and indirect flows.

 figure presents one direct blocking flow: f 1 , and seven indirect flows: f 2 till f 8 . At each router,

Figure 4 .

 4 Figure 4.11: (a) Core-to-core blocking flows of HM core-to-I/Oflow and their flits position, (b) Transmission timeline of core-to-core and core-to-I/Ocommunications.

Figure 4 .

 4 Figure 4.13: FFT flows blocking the HM core-to-I/Oflow by considering SHiC mapping.

 WCTT of the core-to-I/O flows. Nevertheless, existing mapping strategies consider only the objective to reduce the contention of core-to-core communications. We illustrated that such a mapping, i.e. SHiC mapping, does not consider the contention on the path of core-to-I/O flows which lead to drop critical and non-critical Ethernet frames. Thus, a static mapping strategy of critical and non critical real-time flows that reduces the WCTT of core-to-I/O communications over a Tilera-like NoC is needed. The next chapters present our approaches to avoid the aforementioned problem: dropping Ethernet frame. Thus, in Chapter 5, we describe our analytical method to reduce the pessimism when compting the WCTT of flows. In chapter 6, we present our mapping strategy that takes into account both core-to-I/O flows and coreto-core communications in order to reduce the WCTT of the core-to-I/Oflows. The evaluation of these approaches is illustrated in Chapter 7. Notations and definitions . 5.2 Wormhole network properties . 5.2.1 Local worst-case scenario . 5.2.2 Direct and indirect contentions . 5.3 Description of the proposed pipeline-based algorithm 5.3.1 An illustrating example . 5.3.2 Identifying the global worst-case scenario 5.3.3 Implementation of direct and indirect contention analysis 5.4 Unitary evaluation of the properties . 5.5 Conclusion .

Figure 5 . 1 :

 51 Figure 5.1: Example illustrating the number of routers separating an analyzed flow f a from its indirect flow f id .

 a and a flow f b ∈ F a,k arrive synchronously on r k . 3. The other flows f j ∈ F a,k (f j = f b) arrive on r k either synchronously with f a and f b or no later than the release of the output port by the served flow (i.e. f b or another f j), consequently before the next round of arbitration.

Figure 5

 5 Figure 5.2: Example illustrating the second condition of Property 1.

Figure 5 . 3 :Figure 5 . 4 :

 5354 Figure 5.3: Different scenarios to illustrate the second condition of property 1.

 previously introduced. Let us assume that f j arrives before the next round of arbitration and when n cf b flits of f b have been transmitted by r k . Meanwhile, f a was blocked for an amount of time equal to n cf b × 2d f lit . However, the next round of arbitration only occurs when all flits of f b are transmitted by r k . The blocking delay that f a suffers is thus equal to n f b × 2d f lit , independently from the number of flits that was transmitted before f j arrives. This blocking delay corresponds to:n cf b × 2d f lit + (n f b -n cf b) × 2d f lit , where the second term (n f b -n cf b) × 2d f litis the blocking delay that f a suffers since the arrival of f j at r k . The next round of arbitration is won by f j due to the first condition of Property 1. Hence, f a is again blocked till all flits of f j are transmitted by r k . In total, f a is thus blocked for an amount of time D 3 = (n f b + n f j) × 2d f lit . Now, let us assume that f j arrives before the synchronous arrival of f a and f b . When f a arrives at r k , it is thus blocked for an amount of time corresponding to the transmission of the remaining flits by r k . The same rationale leads to a total worst-case blocking delay for f a equal to D 4 = (n f b + n cf j) × 2d f lit . As D 4 < D 3 , the worst-case blocking delay of f a is obtained when f j arrives either synchronously with f a and f b or before the next round of arbitration.

Figure 5 . 6 :Figure 5 . 7 :

 5657 Figure 5.6: Timeline of the transmission of flows of the example shown in Figure 5.5.

Figure 5

 5 Figure 5.8: A worst-case scenario of the example in Figure 5.7 illustrating the recursion of Property 1.

Figure 5

 5 Figure 5.9: A second configuration of the example in Figure 5.7 which does not lead to a worst-case scenario.

Figure 5

 5 Figure 5.10: An example illustrating the case where n hops = n f j .

Figure 5

 5 Figure 5.11: An example illustrating the case where n hops > n f j

Figure 5 . 12 :

 512 Figure 5.12: An example illustrating the case where n hops < n f j .

Figure 5 .

 5 Figure 5.13: Example illustrating the analyzed flow f a , the direct flow f d and the indirect flow f id .

Figure 5 . 14 :

 514 Figure 5.14: Example illustrating Property 3.

Figure 5 .

 5 Figure 5.15: Transmission of flows f 1 , f 2 and f 3 of the case in Figure 5.14 where we consider a size of 3 flits for each packet.

 r

Figure 5

 5 Figure 5.17: Example illustrating the method of computation.

Figure 5

 5 Figure 5.18: Timeline illustrating the transmission of flows of the example in Figure 5.17 and considering the first scenario.

 r k ∈]r iblocked , r idestination] in f i do 11:

 the progression of f i in L f i 21:for all f j ∈ L f i do 22:

 Algorithm 3 describes this computation of the WCTT of f a . For each analyzed flow f , we compute (lines 3 to 6): its first direct blocking flow in L f (noted f b), its next direct blocking flow in L f (f bnext), the blocking flow of f b in L f b (f bb) and the next blocking flow of f b in L f b (f bbnext). These variables are used to compute the delay incurred by f b , potentially blocked by f bb , in order to give the credit to the router allowing the progression of f bnext . A list L is defined to add at each time the flow that is blocked and so it helps to indicate which flow can progress after the release of the path of the blocking flows. Initially, L contains the analyzed flow f a . Algorithm 3 Compute_Delay(f , L f , r leave) 1: delay = 0 2: inf luent = f alse #Step 1: Compute the first direct blocking flows of f i and their blocking flows

 return delay + Compute_Delay(f, L f , r bnext) #Case 2: f b is no more blocked 7: else 8: if (f b == f a) then 9: return delay + f a .progress_leave(r adestination) = f b .give_credit(r bnext) 12: f.setT o(f bnext) 13: L.remove(f b) 14: f = L.previous_tail() 15: 16: return delay + Compute_Delay(f, L f , r bnext)

 Property 3 indicates that f bb is not influent to f x 17: if inf luent = f alse then 18: delay+ = f b .give_credit(r bnext) 19: f.setT o(f bnext) 20: L.remove(f b) 21: f = L.previous_tail() 22: return delay + Compute_delay(f, L f , r bnext) #Case 3: Property 3 indicates that f bb is influent to f x 23: else 24:

Figure 5

 5 Figure 5.19: Mapping of flows in the first configuration and normalized gain compared to the RC method.

Figure 5 .Figure 5

 55 Figure 5.20b shows the gain for various values of E r and for different length of packets. For a given length of packets, the two constant obtained gains are explained by the fixed 21 hops

 If we note d the total distance, in number of hops, of the path taken by a core to I/O flow. We have d = d 1 + 2d 2 + d 3 with d 1 the distance from the Ethernet to the memory controller, d 2 the distance between the DDR controller and the destination core of the core-to-I/O flow, and d 3 the distance of the outgoing I/O flow from the DDR to the Ethernet controller. The first goal is then: min(d 1 + d 2 + d 3) as minimizing the distance of a flow reduces the number of times it can be in contention with other flows. The values of d 1 depends on which Ethernet interface is coming the core-to-I/O flow.

Figure 6 .

 6 Figure 6.1 illustrates the different steps of M ap IO which allocates the different applications of the case study A presented in Chapter 4. This mapping is divided into two phases following the two objectives introduced previously.

Figure 6 . 1 :

 61 Figure6.1: The different steps of our approach M ap IO for mapping FADEC, HM and FFT applications of case study A.

 app .Size == 1) then 5: App i .Accepted_Shape.Insert(L region) contains more than one application #Step 1: Search the corresponding application to the current region on the NoC 9:

14 :

 14 the corresponding rectangular shape for the selected App i 13: min_xy = min_X_Y (App i , L app) App i .Selected_shape = Choose_Shape(min_xy, Region, App i) #Step 3: Reclaim unused cores within the selected shape 15: M ap_U pdate(Region, L region , App i , min_xy, min_app_size, U N) #The application App i is allocated 16: App i .Remove(L app) 17: Region.Remove(L region) 18: end if #Update L app and L region depending on the U N value 19: if ((U N == 0)&&(Initial_U N ! = 0)) then 20: L app .Inverse() 21: L region .Inverse() 22:

Figure 6 . 2 :

 62 Figure 6.2: Mapping of FADEC and HM applications of the case study B using our approach M ap IO .

i cannot be reclaimed 14 :Figure 6 . 3 :

 1463 Figure 6.3: Different cases of a possible critical path, shown in blue, for a core-to-I/O flow (path shown in red) of an application (whose mapping is shown in yellow).

Figure 6 . 4 :

 64 Figure 6.4: The different steps of internal mapping for F ADEC 8 and HM 8 .

 controller. A strategy to avoid the initial problem of dropping Ethernet frames, stated in chapter 4, is to reduce the WCTT of the core-to-I/O flows. A solution consists of reducing the contention experienced by the core-to-I/O flows. Thus, it is important to allocate the tasks in such a way that they do not generate flows in direct contention with the core-to-I/O flow.

Figure 6 . 7 :

 67 Figure 6.7: Perpendicular communications with the critical path avoids the contention with the core-to-I/O flow.

Figure 6 . 8 :

 68 Figure 6.8: For each possible configuration of a critical path, the defined areas and their order in the tasks mapping.

(x o , 0)

 0 Figure 6.9: Flows blocking directly the path of the outgoing flow.

Figure 6

 6 Figure 6.10: The configuration in (a) shows how the communications with DDR interfere the critical path while this interference is avoided by our mapping as shown in (b).

Figure 6 .

 6 Figure 6.11: Mapping of F ADEC 9 of the case study B.

 Impact of RC N oC on the core-to-I/O flows 128 7.2 Impact of M ap IO on the core-to-I/O flows 129 7.3 Combining our M ap IO and RC N oC is necessary 132 7.4 Impact of M ap IO on both core-to-I/O and core-to-core flows 133 7.4.1 Impact of M ap IO rules . 134 7.4.2 Impact of unused cores . 137 7.4.3 Discussion . 145 7.5 Conclusion . 145

Figure 7 .

 7 Figure 7.2: mapping of flows of case studies C and D by applying M ap IO mapping and SHiC mapping.

 Figure 7.1, and the one of C and D in Figure 7.2. In these figures, we show the mapping obtained by M ap IO and SHiC methods.7.1 Impact of RC N oC on the core-to-I/O flowsIn order to evaluate the impact of RC N oC proposed in Chapter 5 on the core-to-I/O flows, we refer to the case study A introduced at Chapter 4 and illustrated in Figure4.10. We recall that FFT and HM 11 share the same Ethernet interface at (0,6), while FADEC and HM 12 share the Ethernet interface at (0,2). As shown in the section 4.3, the RC method computes the WCTT of a packet of the HM core-to-I/O flow by adding the WCTT of all direct and indirect flows blocking this packet. This computation leads to drop the FFT frame. We recall that the WCTT of a packet of the HM core-to-I/O flow is equal to 400.775 ns by considering the RC method. However, by applying RC N oC , we can note a reduction of 31% which corresponds to a WCTT of 277.725 ns. This delay is equal to the delay obtained by the timeline illustrated in Figure4.11b modeling the real pipeline behavior of flits transmission.

Figure 7 . 3 :

 73 Figure 7.3: The different steps for mapping the applications of the case study D using M ap IO .

Figures 7 .

 7 Figures 7.3 and 7.4 illustrate the application and task mapping steps of M ap IO . We assume that only two Ethernet interfaces are used. The applications are allocated in this order: ROSACE 10 , HM 14 , HM 10 and F ADEC 9 , as shown in Figure 7.3, due to the presence of

Figure 7 . 4 :

 74 Figure 7.4: The different steps of M ap IO task mapping for ROSACE and FADEC applications of the case study D.

Figure 7

 7 Figure7.4, and by referring to the ROSACE task graph in Figure4.6, we allocate first on the core (1,6) the task with the minimum EC, i.e V zc. As this task generates only one flow to the task elev, this one is allocated at the same column with V zc (see step 2 of Figure7.4), avoiding the contention with the X path of the core-to-I/O flow. Besides, on the core (2,7), we allocate the task with the minimum IC, i.e. hf . Thus, there are no flows coming to this task and so it avoids the Y contention with the critical path. Finally, we choose a task that does not send to hf and does not receive from V zc to be allocated at the core (2,6), i.e. azf . Therefore, there are no flows in direct contention with the core-to-I/O flow. This explains why the HM 14 coreto-I/O flow is not blocked in this case. However, in SHiC mapping illustrated in Figure7.2b.ii, the core-to-I/O flow is blocked directly by the HM 10 core-to-memory communications at 3 routers as in the previous case study.We note that the WCTT of the outgoing I/O flows are also reduced thanks to M ap IO application mapping that allocates the critical applications near to both the Ethernet and DDR controllers.Besides, we allocate the tasks sending to Ethernet via the DDR controller, i.e. elev and eng, at the available cores near to the both interfaces, i.e. (1,7) and (3,6). Thus, the outgoing I/O flow will cross less routers to reach the Ethernet interface compared to the SHiC mapping (see Figure 7.2b.i).

Figure 7 . 6 :

 76 Figure 7.6: SHiC mapping of FADEC when varying the number of unused cores U N i referring to M ap IO mapping.

Figure 7 .

 7 Figure7.6 shows the internal mapping tasks of FADEC by considering the SHiC mapping, when varying the unused cores from U N i = 4 to U N i = 0 referring to M ap IO mapping in terms of U N i . Thus, when mapping F ADEC 11 , i.e. U N i = 4, we can see that M ap IO mapping in Figure7.5 allocates FADEC within a region of 3 × 5, thus including these 4 unused cores in its region, while the SHiC mapping allocates FADEC within a region of 3 × 4, and thus including only one unused core.

Figure 8 . 1 :

 81 Figure 8.1: Other possibility of the task mapping for ROSACE using our approach.

Figure 5 .

 5 Figure5.14 where f 1 the analyzed flow. If we suppose that f 2 has a size of 6 flits, then in this case f 3 is an indirect flow impacting the transmission of f 1 . However, if we segment the packet of f 2 into 2 packets of size respectively of 3 flits, then f 3 becomes an indirect non-influent flow.

Table 2 .

 2 1: Table reporting some examples of NoC architectures. many-core architectures.In hard real-time systems, analytic methods are used to compute the WCTT in BE NoCs. For instance, Tilera[START_REF]Tile processor user architecture manual[END_REF] and Kalray[START_REF] Dupont De Dinechin | Time-critical computing on a single-chip massively parallel processor[END_REF] are commercially BE NoCs. Besides, this class of QoS optimizes the average network resources usage. For this reason, we base our work on an existing commercial NoC architecture and we choose a Tilera like NoC. Tilera is a commercial BE NoC implementing the most common used options (Mesh topology, Wormhole switching,

	Round-Robin arbitration, input buffers). Besides, the documentation on this architecture was
	available when this study was made.

In this work, we are interested in real-time packet schedulability analysis for many-cores networks. Thus, we need to analyze the worst-case behavior for both inter-core and core to external memories or peripherals communications by taking into account the different contentions that could occur between packets. The next chapter presents a state-of-the-art of the existing methods that are used to analyze, compute and reduce the WCTT.

Chapter 3 Related works around Worst Case Traversal Time (WCTT) Contents 3.1 WCTT over wormhole networks . 26

	3.1.1 Priority-based wormhole networks . 26
	3.1.2 BE wormhole networks and recursive methods 29
	3.2

Contention-aware mapping . 31

	3.2.1 Task mapping . 32
	3.2.2 Application mapping . 34
	3.3

WCTT and mapping baseline references 37

	reasonable amount of time, and at the same time compute WCTT values that are not too pes-
	simistic. The complexity of the analysis depends on the NoC concepts implemented. Virtual
	circuit switching relying on a TDMA leads to WCTT that can be easily computed. In fact,
	no contention can therefore occur. However, in wormhole networks, the analysis of the system
	behavior becomes more complex due to different types of interferences. Thus, in this chapter,
	we focus on approaches used to compute the WCTT over wormhole networks. Even we have
	assumed a BE NoC architecture in the remainder of the work, we focus in this chapter not only
	on BE wormhole networks but also on priority-based wormhole networks. Actually, we are in-
	terested to present how the existing approaches model the behavior of the wormhole switching.
	Chapter 2 has shown different NoCs architectures that provide different classes of QoS. Re-
	gardless of the NoC architecture, in distributed hard real-time systems, the WCTT of all the
	packets generated by a flow must be lower than a predetermined deadline. Such real-time
	packet schedulability analysis have been done for various types of networks by taking into
	account the type of contentions that can occur between flows. The challenge lies in the abil-
	ity to define analysis techniques that have a limited complexity, in order to give results in a
	25

 Figure 4.12: SHiC mapping of the case study A made of one FADEC, one FFT and two HM applications.

	HM 11 t h9 t h10		t ff7 FFT 16	t ff14	t ff8	t ff0		7
	t h6	t h0	t h5	t ff11	t ff15	t ff12	t ff1	(0,6)	6
	t h7	t h1	t h4	t ff10	t ff13	t ff9	t ff2		5
	(6,0) port 5 FADEC 9 t f8 t f3 t f7 t f1 t f0 t f2 t h2 t h8	port 4 t f6 t f4 t f5 t h3	port 1 (2,0) t h2 t h6 t h0 port 2 t h9 t h8 port 3 t h11 t h10 t h7 t h1 HM 12 t ff6 t ff5 t ff4	t h3 (1,1) t h4 t h5 t ff3	(0,0) (0,2)	0 1 2 3 4
	7	6	5	4	3	2	1	0	

 r k)

	12:	end for
	13:	end if
		#Step 3: Applying the RRA
	14:	

 r jblocked >)

	24:	end if
	25:	end for
	26:	

 blocked directly by f bb , and f bb is in direct contention with f bnext 10: if (f bb .is_direct(f.f bnext)) then

	11:	delay+ = f b .progress_up(r bb)	
	12:	L.add(f b)	f b / ∈ L
	13:		

return delay + compute_Delay(f b , L f b ,

r bnext) 14: end if #Case 3: f b is blocked directly by f bb , and f bb is in indirect contention with f bnext 15: if (f bb .is_indirect(f bnext)) then 16:

 Table 7.1 summarizes the WCTT of the core-to-I/O flows obtained when applying M ap IO and SHiC method for the considered case study A. The second line of this table reports the µs =⇒ F ADEC 9 received 16.5 µs =⇒ F ADEC 9 dropped Table 7.1: Table illustrating the WCTT of the core-to-I/O flows, of the case study A, sharing the Ethernet (0,6) and (0,2) using M ap IO and SHiC approach.

	WCTT of flows	M ap IO	SHiC approach
	HM 11 in SHiC and		
	HM 12 blocking	in M ap IO F F T 16 :	0.98 µs =⇒ F F T 16 received	6.704 µs =⇒ F F T 16 dropped
	ETH → DDR		
	HM 12 in SHiC and		
	HM 11 blocking F ADEC 9 : in M ap IO	11.8	
	ETH → DDR		

Table 7 .

 7 2: Table illustrating the WCTT of the core-to-I/O flows, of the case study B, sharing the Ethernet (0,6) and (0,2) using M ap IO and SHiC approach.M ap IO mapping of F ADEC 9 , shown by Figure7.1a, leads to a WCTT for the HM 11 core-to-I/O flow of 11.8 µs. We note that this core-to-I/O flow uses the same Ethernet controller as F ADEC 9 , i.e. the one located (0, 2). This delay is lower than the transmission delay of the F ADEC 9 frame on Ethernet. Therefore, the F ADEC 9 frame reaches the Ethernet interface after the removal of the HM 11 frame from the Ethernet buffer.Besides, we evaluate M ap IO on the case study B introduced in the previous chapter in order to compare it to SHiC mapping illustrated in Figure7.1b. Table7.2 reports the WCTT values of the HM core-to-I/O flows blocking respectively F ADEC 9 in the second line, and F ADEC 8 in the third line. The results show that the WCTT values obtained in M ap IO lead to avoid the dropping of F ADEC 8 and F ADEC 9 Ethernet frames. Also, we can notice that the WCTT values of the HM core-to-I/O flow in the second line are not reported for SHiC mapping.Actually, SHiC mapping cannot allocate the critical application F ADEC 8 as illustrated inThe previous section has shown that applying M ap IO on the case studies A and B solve the problem of dropping Ethernet frames. But, is it sufficient to apply only the mapping strategy without considering the computing method? To answer this question, we consider the following case study, noted C, where figures 7.2a.i and 7.2a.ii illustrate respectively M ap IO mapping and HM 16 and HM 12 . We consider that the HM 12 Ethernet frame, transmitted before the HM 16 frame, holds a payload of 684 Bytes. Besides, we suppose that the core-to-core flows exchanged in the HM applications are made of 16 flits.In this section, we focus on the Ethernet interface (0,6) which is shared between HM 12 and HM 16 in both mapping. Table7.3 shows the WCTT of the HM 12 core-to-I/O flow computed when applying RC N oC and the RC method in both mapping illustrated in figures 7.2a.The results show that by considering the SHiC mapping and whatever is the computing method, the HM 16 Ethernet frame is dropped. In fact, the WCTT of a packet of the HM 12 takes 672.75 ns (RC N oC) to reach the DDR. However, the HM 12 frame is divided into 9 NoC packets. Thus, the global WCTT of HM 12 core-to-I/O flow to reach the DDR is 6.05 µs which is greater than the transmission delay of HM 16 on the Ethernet link (5.808 µs). This delay is due to the fact that HM 12 core-to-I/O flow in SHiC mapping is blocked by 3 direct flows coming from t h7 , t h1 and t h2 (see Figure7.2a.ii).

	M ap IO	SHiC approach

This case study is made of the following applications: F F T 12 , F ADEC 9 and two instances of HM:

On the other hand, when considering M ap IO , the WCTT of the core-to-I/O flow computed by RC method leads to drop the HM 16 frame. The WCTT of a packet of HM 12 computed by the

Table 7 .

 7 3: Table illustrating the WCTT of HM 12 blocking HM 16 of the case study C and sharing the Ethernet (0,6) using the different mapping strategies and computing methods.RC method is 651.47 ns and thus its global WCTT to reach DDR is 5.86 µs. This WCTT is greater than 5.808 µs. However, RC N oC presents a reduction of 2.55% of the WCTT of the HM 12 packet, where the global WCTT of the HM 12 core-to-I/O flow is 5.7 µs. This WCTT is less than 5.808 µs where the HM 12 payload is removed from the Ethernet interface buffer before the arriving of HM 16 Ethernet frame.

 [START_REF]FRX +[END_REF] , HM 11 and HM 12 : ETH → DDR Table7.5: Table illustrating the different results for HM and FADEC in both case studies A and B using M ap IO and SHiC approach. flow in direct contention with the core-to-I/O flow generated by the task allocated at (1,6) and having t f f 15 as destination, i.e. the flow coming from t f f 1 to t f f 15 (see Figure7.1a.ii). This direct blocking flow is also blocked at the core (2,6) by the flow coming from t f f 12 , as it shares the same link between (2,6) and (3,6). Besides, it is also blocked at (3,6) by other flows coming to the destination of t f f 15 , as they share the same destination. This explains the increased value of the WCTT of HM core-to-I/O flow when considering the SHiC mapping.

		11.8 µs	16.58 µs
	F ADEC 9 : t f 6 → ETH	3341.9 ns	7028.8 ns
	F ADEC 9 : core-to-cores	3344.522 ns	2872.4 ns

 Table 7.6 presents the WCTT of core-to-I/O flows from Ethernet controllers for both M ap IO and SHiC mapping. Note that SHiC mapping allocates the HM applications near to the Ethernet controllers. The second line of Table 7.6 reports the WCTT of flows M ap IO SHiC Both HM 14 and HM 10 : ETH → DDR 0.98 µs 16.58 µs F ADEC 9 : t f 6 → ETH 1262.125 ns 7028.8 ns ROSACE 10 : elev → ETH 399 ns 621 ns ROSACE 10 : eng → ETH 335 ns 1620.925 ns Table 7.6: Table reporting the WCTT of core-to-I/O flows for the applications of the case study D using M ap IO and the SHiC method.

Table 7 .

 7 7: Table reporting the WCTT of the core-to-I/O flow of HM when varying the number of unused cores (U i) by F ADEC 9 .Figure 7.5: M ap IO mapping of FADEC when varying the number of unused cores U N i .

	port 1 t f1 t f0 t f4 t f5 t f2 t f9 UNi = 4 / FADEC 11 port 2 ETH ETH t f6 t f7 t f3 t f8 t f10 (1,1) (3,5)	port 1 t f1 t f0 t f4 t f5 UNi = 3 / FADEC 12 port 2 ETH ETH t f6 t f7 t f3 t f8 (3,5) t f9 t f2 t f10 (1,1) t f11

Acknowledgements

Chapter 4 has shown that even if we reduce the pessimism in the values computed for the 95 WCTT, the problem of rejecting critical frames remains. A strategy of mapping that reduces the WCTT of the core-to-I/O flows is thus needed. However, as mentioned in Chapter 4, the existing mapping methods consider only core-to-core and core-to-memory communications with the objective to minimize their contentions. Thus, these methods do not reduce the contention on the core-to-I/O flows, leading to drop Ethernet frames. In order to avoid this problem, we propose a new mapping strategy, called M ap IO . This strategy takes into account the position of the I/O interfaces and aims to reduce the contention on the path of the core-to-I/O flows.

How can the WCTT of core-to-I/O flows be reduced?

In Chapter 4, we have shown on the case study A, in section 4.3.2, that existing mapping strategies do not consider where I/O interfaces are located within a NoC architecture when mapping applications. We recall that this case study is made of 1 critical application and 3 non-critical applications. Let us explain how the allocation of a critical application, taking into account the location of the I/O interfaces, may impact the WCTT of the core-to-I/O flows.

When allocating a critical application far from Ethernet, a core-to-I/O flow may therefore suffer from the large payload of the non-critical flows. Besides, the distance, in number of hops, taken by the path of the core-to-I/O flow from DDR to Ethernet increases. Thus, the probability that the core-to-I/O flow is blocked on its path increases. Then, the WCTT of the core-to-I/O flow may increase. However, if a critical application is allocated far away from the DDR, the distance taken by the path of the core-to-I/O flow going from/to DDR to/from the core destination increases. This allocation leads also to increase the distance taken by the path of the core-to-I/O flow coming from Ethernet to the DDR. Therefore, the WCTT of the core-to-I/O flow may increase due to this allocation as the probability that this core-to-I/O flow is on contention on different routers with the flows of non-critical applications increases. However, we have shown that even we map an application near to both DDR and Ethernet controllers, the internal mapping of the applications may no longer be appropriate to the objective of reducing the contention on the path of the core-to-I/O flow. Therefore, a static mapping strategy of critical and non critical real-time flows that reduces the WCTT of core-6.2. Overview of our strategy of mapping: M ap IO

Phase 2: Core-to-I/O flows contention minimization

The second phase of M ap IO maps the tasks of each application within its assigned subset of the Tilera-like NoC. It reduces the WCTT of the core-to-I/O flows by applying specific rules for mapping tasks on and around the paths taken by these flows. These rules favor the perpendicular communications to the core-to-I/O flow as the XY routing is used. In this section, we present these rules where first we begin the allocation on the path of the core-to-I/O flow, noted by the critical path. Then, we allocate the tasks around this path and finally, we apply some rules to reduce the contention on the I/O outgoing flow, i.e. from the DDR to the Ethernet interface. We note that the following rules are described by considering the core-to-I/O flows going to the DDR memory located south of the NoC. However, to apply these rules on the core-to-I/O flows using the DDR memory located north of the NoC, we have just to inverse the Y axis.

On the other hand, we apply the SHiC method (described in Chapter 3 in section 3.2.2) to allocate the tasks within the applications mapped far away from Ethernet interfaces and which region is not crossed by core-to-I/Oflows.

Before explaining the rules used in the second phase, let us first describe how to determine the critical path.

I/O critical paths within applications

Let us assume an application App i whose bottom right edge is located at (1,1) and the associated region, obtained from the first phase, is of size m × n. A core-to-I/O flow, traversing its region, follows a path from (0, y i), where is located the used Ethernet controller, to (x i , 0), where is located the used DDR port. This path may thus be located entirely or partially within the region of App i depending on the values of m and n. The part of the path located within this region is called the critical path of the core-to-I/O flow. When x i < m and y i < n, the path from (0, y i) to (x i , 0) belongs to App i as shown by Figure 6.3a. It is therefore the critical path of this flow. In the other cases, only either a subset of the X part (x i > m and for the Y part of a critical path.

When allocating a task on (1, y i) but keeping unused the core (2, y i), all flows sent from this task to any task on the NoC, except those on its first column, block directly the critical path. They indeed share the same links. We therefore define a mapping rule for leaving on the row y i cores unused: the closest one to (0, y i) are leaved unused if possible (U i > 0). This task mapping rule also impacts the outgoing core-to-I/O flows, i.e. from DDR to Ethernet controllers. These flows are indeed also directly blocked by flows received from the tasks located on the first row till y i-1 . The number of blocking flows is however reduced by simply inversing the mapping, as shown by Figure 6.6b. The task on (2, y i) can indeed: 1) send to the columns 1 and 2 and 2) receives from any task, except those located on the first row with x > 2, without blocking the outgoing core-to-I/O flow in both cases.

A similar strategy applies for the Y part of the critical path. Figure 6.6c and 6.6d justifies the

Impact of M ap IO rules

We consider the case studies A and B and provide the WCTT values of the core-to-core flows for the critical applications. Besides, we explain how M ap IO rules lead to the different WCTT values for the core-to-I/O and core-to-core flows. We compare these values to those obtained when applying SHiC method. The second column of Tables 7.4 and 7.5 report WCTT values when the mapping is build using M ap IO , while the third column reports values assuming the SHiC mapping. WCTT Impact on the core-to-core flows. M ap IO increases the internal congestion of F ADEC 9 by 16% compared to the congestion obtained when applying the SHiC method. Mapping the task with the maximum number of communications at the center reduces the internal congestion, as this core will be the nearest to all cores around it. The center of F ADEC 9 region is, in M ap IO mapping, the core located at (2, 6) (see Figure 7.1b.i). M ap IO mapping allocates t f 6 on this core. However, t f 6 has the lowest number of communications link with other tasks, as it only receives data from other tasks. SHiC maps t f 0 , instead of t f 6 , at the center of the region of Impact on HM core-to-I/O flow. When the flow is not blocked by any other flows, its WCTT is equal to 0.98µs (cases where U N i = 4 up to U N i = 2, i.e. the unused cores are located at (1, 2) and (2, 1)). When we allocate two tasks on cores ((2, 2) and (1, 1)), i.e. cases where U N i = 3 and U N i = 2, the core-to-I/O flow is not in direct contention with other flows on its critical path, even if these tasks generate flows or receive flows. These flows do not impact directly the path of the core-to-I/O flow. However, if we allocate a task on core (2, 1), as in the case where U N i = 1, i.e. t f 13 , then this task generates a flow that is in direct contention as it receives data from the tasks allocated above the first row. Thus, the core-to-I/O flow is blocked by one flow at the core (2, 2), i.e. the one coming from t f 2 to t f 13 . We note that when U N i = 1, we allocate t f 6 at the core (2, 2) as it does not send data to t f 13 and thus reduces the number of flows blocking the core-to-I/O flow. However, the WCTT further increases significantly when U i = 0 and reaches 23 µs. In this case, the core-to-I/O flow is blocked by a flow generated from the task allocated at (1, 2), i.e. t f 14 . Besides, it is blocked by the flows coming to t f 13 . Indeed, these blocking flows are assumed to be blocked at each router of their path, which increases the blocking delay of the core-to-I/O flow. To summarize, with a few number of unused cores

(2 here) the WCTT of the core-to-I/O is significantly reduced.

Impact on FADEC core-to-core flows. Let us now evaluate how the value of U N i , in the various instances of the FADEC application, influences the average value of the WCTT of its core-to-core flows, i.e. its internal congestion. We note AW CT T SHiC and AW CT T O the average value of the WCTT of core-to-core flows computed using respectively the SHiC method and our approach, M ap IO . The last line of Table 7.7 thus reports the impact of M ap IO compared to the SHiC method using the following equation:

When reducing the value of U N i : 1) the absolute values of the internal congestion obviously increases, as the number of tasks is increased and 2) the impact of M ap IO on the internal congestion changes from a positive effect to a negative one compared to SHiC (except for U N i = 3). For instance, for F ADEC 11 having U N i = 4, M ap IO has a positive effect of 11.8% on the internal congestion compared to SHiC. For F ADEC 15 having U N i = 0, M ap IO has however a negative effect of 20.8%. Reducing the number of unused cores indeed simply to combine RC N oC with M ap IO to avoid dropping Ethernet frames. The results show on this case study that even applying M ap IO , the WCTT values computed by the recursive method leads to drop the Ethernet frame. Despite the small reduction of this WCTT when applying RC N oC (2.5%), this is sufficient to solve the problem.

Finally, we evaluate the impact of the rules of M ap IO and the presence of the unused cores generated by this strategy on both core-to-I/O and core-to-core flows. Our results show on realistic avionics case studies that the core-to-I/O transmission delays are significantly reduced, up to 94%. Meanwhile, the internal congestion for the core-to-core flows can increase up to 28.8%, but slightly impacting this congestion in the other cases we have considered. Besides, we have noticed on some case studies the inability of existing mapping strategy to allocate all applications whose size does not exceed the size of NoC, unlike M ap IO .

Chapter 8 Actually, in real-time applications, the WCTT of the different flows must be lower then a predetermined deadline. Thus, we have to merge our mapping method, M ap IO with the congestionaware strategies for core-to-core flows. We then allocate a number of tasks using M ap IO in the region impacting the core-to-I/O flows in such a way to ensure that the Ethernet frame will not be dropped. The remaining tasks are allocated in the remaining region by applying the congestion-aware strategies for core-to-core flows. Besides, we have shown the positive impact of the unused cores not only on the core-to-I/O flows but also on the core-to-core flows. Thus, we can exploit the presence of the unused cores in order to reach the objective of this perspective.

Conclusion

The evaluation on the case study D, has shown an increasing value of the internal congestion of ROSACE application. The average WCTT of core-to-core flows for ROSACE increases by 28.8%, compared to the mapping generated by a current state-of-the-art method (SHiC). Our mapping method, M ap IO , has allocated the tasks on the square 2 × 2 near to Ethernet interface in order to reduce the contention on the path of the core-to-I/O flow (see steps 1 and 2 of Figure 7.4). These tasks are chosen arbitrary among a number of tasks verifying the M ap IO rules. Besides, as explained in section 7.4.2, the remaining tasks are allocated arbitrary in the remaining region 3 × 2 (see steps 2 and 3 of Figure 7.4). Then, M ap IO method could generate different possibilities of mapping by changing the tasks chosen with applying always the M ap IO rules. Thus, during this work, we have considered another mapping, generated by M ap IO , for ROSACE tasks as illustrated in Figure 8.1. This mapping leads to the same average WCTT of core-to-core flows as in the SHiC method. Actually, in this mapping, we apply our mapping rules on the critical path so the core-to-I/O flow is still unblocked. We reduce the internal congestion by applying rules of the SHiC method. Then, we allocate the tasks presenting the maximum number of communications, i.e. V zc and V ac, at the center of the remaining region 3 × 2.

This work was based on a Tilera-like architecture. Thus, it is important to consider this second perspective: generalize the problem addressed in this work regardless of NoC architecture.

This needs first to address this problem on different number of architectures. Then, we plan