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Safety-critical systems depend on the fact that their software components provide services that behave correctly (i.e. satisfy their requirements). Additionally, in many cases, these systems have to be adapted or reconfigured in case of failures or when changes in requirements or in quality of service occur. When these changes appear at the software level, they can be handled by the notion of substitution. Indeed, the software component of the source system can be substituted by another software component to build a new target system. In the case of safety-critical systems, it is mandatory that this operation enforces that the new target system behaves correctly by preserving the safety properties of the source system during and after the substitution operation.

In this thesis, the studied systems are modeled as state-transition systems. In order to model system substitution, the Event-B method has been selected as it is well suited to model such state-transition systems and it provides the benefits of refinement, proof and the availability of a strong tooling with the Rodin Platform.

This thesis provides a generic model for system substitution that entails different situations like cold start and warm start as well as the possibility of system degradation, upgrade or equivalence substitutions. This proposal is first used to formalize substitution in the case of discrete systems applied to web services compensation and allowed modeling correct compensation. Then, it is also used for systems characterized by continuous behaviors like hybrid systems. To model continuous behaviors with Event-B, the Theory plug-in for Rodin is investigated and proved successful for modeling hybrid systems. Afterwards, a correct substitution mechanism for systems with continuous behaviors is proposed. A safety envelope for the output of the system is taken as the safety requirement. Finally, the proposed approach is generalized, enabling the derivation of the previously defined models for web services compensation through refinement, and the reuse of proofs across system models.

iii This thesis is organized as follows.

The first part is devoted to the state of the art. Refinement and proof-based formal methods with explicit state definition are introduced in Chapter 1. A focus on the chosen Event-B method is provided.

The second part presents our contributions for system substitution. It shows how the proposed approach applies for substitution of systems described either by discrete or continuous behaviors and how it generalizes to a class of systems.

Introduction

Context

Nowadays, rigorous development methods grounded in mathematical and logical foundations are mature enough to support the development of complex systems, using either pure software, pure hardware or mixing software and hardware parts. Moreover, it is well accepted that these rigorous methods allow increasing the quality of the developed complex systems but also of the development processes that lead to the design of these systems.

Formal methods have proved useful in many safety critical application domains and industries like aeronautics, space, automotive and rail transportation, medical systems or energy production. Mature tool suites supporting such formal methods are now available. They assist in the system design through complexity management (using refinement/abstraction, composition/decomposition). They provide support tools and techniques to understand systems (with simulation and animation), identify design errors (with model-checking and tests) and/or demonstrate correctness (with proofs). Several tooled framework enabling formal methods and techniques have been developed to handle system development or part of it. Specification, validation, verification, simulation, design, etc. are some of the activities targeted by formal methods and associated framework. One key enabler for the large scale use of formal methods is the identification of domain, problem or application families and associated verification strategies that ease the application of formal methods in realistic industrial applications.

One of the important problem family studied in system engineering relates to system evolution or system changes during its lifetime (for example to integrate updates or manage and react to failures). Handling the changes of a system is a key requirement particularly in the case of adaptive, self-healing, autonomous, or reconfigurable systems and in other situations like maintenance or redundancy. These changes may occur in different cases like changes in the specification, the environment, quality of service, running platform, etc. At this level, fundamental questions related to recording system changes arise:

• What are the preserved system properties?

• What are the lost system properties?

• What are the new properties of the system after changes?

INTRODUCTION

Handling system evolution requires to answer the above mentioned questions. When systems are critical systems with hard safety and dependability requirements and with certification, it is needed to set up verification and validation techniques that allow developers and customers to have the appropriate confidence on the developed system. Formal methods have proved useful to fulfill such requirements.

Therefore, when systems are formally modeled, it becomes possible to set up a formal reasoning allowing developers to manage system evolution using formal modeling techniques.

In this thesis, we focus on the study of the critical system evolution problem family, when formally modeled, that may occur either at design time (during system development) or at runtime (when the system runs). We claim that various system changes can be formally modeled by a system substitution operation which consists in substituting a system by another one preserving the original system state. The provided results will enable a more efficient development based on formal methods of this kind of systems and provide a better scalability for the use of formal methods.

Objectives of the thesis

As mentioned above, in this thesis we address the problem of handling system changes and updates at design time and runtime. A system substitution operation is proposed to handle various types of system changes. We have chosen to model the considered systems as state-transition systems and to use the Event-B refinement and proof based formal method as a supporting method for all the developments we have achieved.

The goal of our work is to define system substitution by a generic development operation that records system changes from a source system to a target system. This generic operation thus allows to ease the development of this problem family. To reach this goal, we have identified the following objectives:

• Define a formal framework to model both system specification and implementations of such evolutive systems.

• Identify the system substitution operation between systems implementing (refining) a common specification and the corresponding properties (proof obligations) of that operation. Provide a formalization for this operation.

• Handle the case of substitution at runtime or at design time (cold or hot substitution).

• Address degraded, upgraded or equivalent modes of the target system after substitution.

• Study the case of substitution of a system by itself (self-systems, autonomous systems), or by an update of the source system with new parts issued from another system, or by a new system.

• Consider different types of systems candidate for substitution: discrete eventbased systems and hybrid systems with continuous behavior.

• Offer the appropriate set of proof techniques to handle both discrete and continuous proofs associated with the studied systems.

Contributions

As mentioned above, the main objective of our work is to define a formal model for the system substitution problem family in different situations. We use the Event-B refinement and proof-based method to model both the systems and the proposed system substitution operation. Event-B enables us to benefit from refinement and correctness proofs, all supported by the Rodin Platform.

In our approach, systems are modeled as state-transition systems. We are concerned with safety properties modeled as invariants. These properties need to be preserved during and after system substitution. Our contributions consists in the following:

• Definition of a generic framework for system substitution together with the identification of the properties to ensure the preservation of the safety requirements of the source system.

• Use of the proposed substitution mechanism for systems characterized by discrete event systems. In this case, we consider instantaneous system substitution. The particular case of web services compensation has been studied.

• Use of the proposed substitution mechanism for hybrid systems characterized by continuous behaviors. In this case, we consider non-instantaneous system substitution. The case of a continuous function characterizing system behaviors is considered.

• Formalization of system substitution as a generic operator that manipulates systems, states and transitions. The relevant properties of this operator are also formalized. This operator is used for a class of systems that instantiate the proposed generic systems descriptions.

These contributions will be detailed in the next chapters of this thesis.

Thesis outline

INTRODUCTION

• The generic framework for system substitution we have defined is presented in Chapter 4. The key concept of horizontal invariant is introduced. It models the relation between system states before and after system substitution. Then, the proposed system substitution approach is deployed in two situations. (Related publications [START_REF] Babin | A formal approach for correct-by-construction system substitution[END_REF], [START_REF] Babin | A generic model for system substitution[END_REF])

1. First, application to discrete systems is addressed in Chapter 5. The case of web services compensation is used to illustrate how our approach for system substitution handles web services compensation at runtime. (Related publications [START_REF] Babin | Formal Verification of Runtime Compensation of Web Service Compositions: A Refinement and Proof Based Proposal with Event-B[END_REF], [START_REF] Babin | Web Service Compensation at Runtime: Formal Modeling and Verification Using the Event-B Refinement and Proof Based Formal Method[END_REF])

2. Second, we studied hybrid systems whose behavior is characterized by the integration of both discrete and continuous behaviors modeled with continuous functions. Again, in Chapter 7 the proposed system substitution operator is set up on such systems. Specific features related to correct modeling of such systems with Event-B are given before in Chapter 6. (Related publications [START_REF] Babin | Refinement and Proof Based Development of Systems Characterized by Continuous Functions[END_REF], [START_REF] Babin | Handling Continuous Functions in Hybrid Systems Reconfigurations: A Formal Event-B Development[END_REF], [START_REF] Babin | A System Substitution Mechanism for Hybrid Systems in Event-B[END_REF], [START_REF] Babin | Handling Continuous Functions in Hybrid Systems Reconfigurations: A Formal Event-B Development[END_REF])

• Finally, a generalization of our approach is presented in Chapter 8. The approach considers systems (state-transition systems) as objects manipulated by the proposed generalized system substitution operation. (Related publications [START_REF] Babin | Correct Instantiation of a System Reconfiguration Pattern: A Proof and Refinement-Based Approach[END_REF], [10]).

Last this thesis ends by a conclusion and a review of the perspectives we have identified. This thesis targets the modeling and verification of systems composed of parts that can change during time, either offline or online. These changes of systems part can be modeled nicely using system state changes. We thus decided to rely on statetransition systems as model of computations, on the Event-B method and the Rodin Platform as support for the system modeling and requirement satisfaction proofs structured using refinements. We will first summarize these formal techniques.

Part I

Models of systems

Transition systems have been identified as an appropriate generic model for systems. They support the definition of systems and their behaviors and they allow developers to reason on their execution traces. One of the design methodologies associated with transition systems consists in describing a sequence st i of such systems where st i refines st i-1 . The refinement introduces more and more details growing from an abstract system to a concrete one. Moreover, we target the definition of correct systems that are possibly parameterized. Therefore, it is required to prove the correctness of the designed models beyond (partial) testing or bounded model checking.
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Several formal methods to define and model such systems have been proposed in the literature. The first class of formal methods is based on the definition of process algebras. Examples of such modeling languages are CCS [START_REF] Milner | A Calculus of Communicating Systems[END_REF] or LOTOS [START_REF]The Formal Description Technique LOTOS[END_REF][START_REF] Iso | Information processing systems -Open Systems Interconnection -LOTOS -A formal description technique based on the temporal ordering of observational behaviour[END_REF]. These techniques do not offer well-accepted refinement operations. So we did not consider them in our work.

The second class of formal methods is the so-called state-based formal methods. These methods have drawn the attention of several researchers. They are based on the definition of systems states (through a set of state variables) and transitions (from a state to another) equipped in general with pre-conditions and post-conditions [START_REF] Hoare | An Axiomatic Basis for Computer Programming[END_REF] to offer reasoning capabilities. Moreover, this formal model has been associated to a refinement relation allowing the definition of a sequence of models linked by this relation. Among these methods we can cite Z [Spi92; ISO02], VDM [START_REF]The Vienna Development Method: The Meta-Language[END_REF], B [START_REF] Abrial | The B-Book: Assigning programs to meanings[END_REF], TLA + [Lam02], Event-B [START_REF] Abrial | Modeling in Event-B: System and Software Engineering[END_REF] and Statecharts [START_REF] Harel | Statecharts: a visual formalism for complex systems[END_REF]. In the recent developments, these methods have been associated to several model checking techniques and tools offering capabilities for model verification and/or animation. Examples of such model checkers are NuSMV [START_REF] Burch | Symbolic model checking: 10 20 States and beyond[END_REF], CADP [START_REF] Garavel | CADP 2011: a toolbox for the construction and analysis of distributed processes[END_REF], PROMELA/SPIN [START_REF] Holzmann | The SPIN Model Checker: Primer and Reference Manual[END_REF], ProB [START_REF] Leuschel | ProB: A Model Checker for B[END_REF] and TINA [START_REF] Berthomieu | Time Petri Nets Analysis with TINA[END_REF].

A third class of formal methods relates to the so-called "higher-order formal methods". Thanks to their higher order characteristics, these methods offer the capability to describe system models and the associated verification procedure in a uniform setting. They could be used at a "meta" level: they would need an encoding of the notions of state and transition using higher-order functions. Such methods are Isabelle/HOL [START_REF] Nipkow | Isabelle/HOL -A Proof Assistant for Higher-Order Logic[END_REF], PVS [START_REF] Owre | PVS: A prototype verification system[END_REF] or Coq [START_REF] Bertot | Interactive theorem proving and program development: Coq'Art: the calculus of inductive constructions[END_REF][START_REF] Coq | The Coq Proof Assistant Reference Manual[END_REF].

In order to benefit from a methodology based on the native notions of state, transition, refinement, proofs and the availability of a powerful supporting tool (the Rodin Platform), we have chosen the Event-B formal method to express our models and prove the associated properties.

The Event-B method [START_REF] Abrial | Modeling in Event-B: System and Software Engineering[END_REF] is a recent evolution of the B method [START_REF] Abrial | The B-Book: Assigning programs to meanings[END_REF]. This method is based on the notions of pre-conditions and post-conditions from Hoare [START_REF] Hoare | An Axiomatic Basis for Computer Programming[END_REF], the weakest pre-condition from Dijkstra [START_REF] Edsger | A Discipline of Programming. 1st[END_REF] and the substitution calculus [START_REF] Abrial | The B-Book: Assigning programs to meanings[END_REF]. It is a formal method based on mathematical foundations: firstorder logic and set theory.

Event-B models

An Event-B model is characterized by a set of variables, defined in the Variables clause that evolve thanks to events defined in the Events clause. It encodes a state-transition system where the variables represent the state and the events represent the transitions from one state to another. During the execution, events are interleaved (i.e. at any time, only one event is executed).

An Event-B model is made of several components of two kinds: machines and contexts. The machines contain the dynamic parts (states and transitions) of a model whereas the contexts contain the static parts (axiomatization and theories) of a model. A machine can be refined by another one, and a context can be extended by another context. Moreover, a machine can see one or several contexts.

EVENT-B MODELS

A context is defined by a set of clauses (Model 1.1) as follows.

• Context represents the name of the component that should be unique in a model.

• Extends declares the context(s) extended by the described context.

• Sets describes a set of abstract and enumerated types.

• Constants represents the constants used by a model.

• Axioms describes, in first-order logic expressions, the properties (definitions) of the attributes declared in the Constants and Sets clauses. Types and constraints are described in this clause as well.

• Theorems are logical expressions that can be deduced from the axioms. • Machine represents the name of the component that should be unique in a model.

Context ctxt_id_2

• Refines declares the machine refined by the described machine.

• Sees declares the list of contexts imported by the described machine.

• Variables represents the state variables of the model of the specification.

Refinements may introduce new variables in order to enrich the described system.

• Invariants describes, using first-order logic expressions, the properties of the variables declared in the Variables clause. Typing information, functional and safety properties are usually given in this clause. These properties shall remain true at all times. This means that the invariants must hold after the initialization and that events (more precisely their actions) must preserve them. This is enough to guarantee that the invariants always hold by means of mathematical induction.

It also expresses the gluing invariant required by each refinement.

• Theorems defines a set of logical expressions that can be deduced from the invariants and the context(s). They do not need to be proved for each event, contrary to the invariants.

• Variant introduces a natural number or finite set that will be used to guarantee termination properties.

• Events defines all the events (transitions) that can occur in a given model. Each event is characterized by its guard and is described by a body of actions. Each machine must contain an Initialisation event. The events occurring in an Event-B model affect the state described in the Variables clause.

An event consists of the following clauses (Model 1.1):

-Refines declares the list of events refined by the described event.

-Any lists the parameters of the event.

-Where expresses the guard of the event. An event can be fired (triggered) when its guard evaluates to true. If several guards evaluate to true, only one can be fired with a non-deterministic choice.

-Then contains the actions of the event that are used to modify variables.

In order to model termination properties, events are marked as:

ordinary: there is no restriction regarding the variant, convergent: the variant must decrease, anticipated: the variant must not increase. This is intended to be used with refinement.

Event-B offers three kinds of actions (substitutions):

• assignment (x := E) where the variable becomes equal to the value of a particular expression. This action is deterministic.

Example: x := 4

PROOF OBLIGATION RULES

• choice (x :∈ S) where the variable takes a value from a set, in a non-deterministic manner.

Example: x :∈ N\{2} where the variable x takes as value any natural number other than 2.

• before-after predicate (x :| BA(x,x')), is the more general form of action. The new values of the variables become such that the given before-after predicate holds. The future values are quoted, the current ones are not. This is the more powerful notation since it can express all the others. It is compulsory when expressing relations between the future values of multiple variables in an action, as otherwise actions are independent. However, by adding parameters with guards, the first form := is sufficient.

Example: x,y :| x'>x ∧ x'+y' = 5

It asserts that x and y take any values such that x becomes greater than its previous value and that the sum of the new values of x and y is equal to 5.

Proof obligation rules

Proof obligations (PO) are associated with any Event-B model to express the correctness of the developments and refinements. They must be proved to ensure the correctness of the model. The rules for generating proof obligations follow the substitutions calculus [Abr10; Abr96], close to the weakest precondition calculus of Dijkstra [START_REF] Edsger | A Discipline of Programming. 1st[END_REF]. In order to define proof obligation rules, we use the notations defined in Model 1.1 where s denotes the seen sets, c the seen constants, and v the variables of the machine. Seen axioms are denoted by A(s, c) and theorems by T c (s, c), whereas invariants are denoted by I(s, c, v) and local (event-specific) theorems by T m (s, c, v). For an event, the guard is denoted by G(s, c, v, x) and the action is denoted by the before-after predicate BA (s, c, v, x, v ). The prime notation v denotes the variable v after action execution. Table 1.1 shows the main obligation rules associated to an Event-B model.

Table 1.1 -Examples of proof obligations for an Event-B model
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• The theorem proof obligation rules (a) and (b) ensure that a proposed context theorem (a) or machine theorem (b) is indeed correct: it can be deduced from the axioms and the invariants.

• The invariant preservation proof obligation rule (c) ensures that each invariant in a machine is preserved by each event.

• The feasibility proof obligation rule (d) ensures that a non-deterministic action is feasible.

• The natural variant proof obligation rule (e) guarantees that under the guards of each convergent or anticipated event, a proposed numeric variant is indeed a natural number.

• The variant proof obligation rule (f) states that each convergent event decreases the proposed numeric variant.

There are other rules for generating proof obligations to prove the correctness of refinement. The complete definitions are given in [START_REF] Abrial | Modeling in Event-B: System and Software Engineering[END_REF].

Semantics

The new aspect of the Event-B method [START_REF] Abrial | Modeling in Event-B: System and Software Engineering[END_REF], in comparison with classical B [START_REF] Abrial | The B-Book: Assigning programs to meanings[END_REF], is related to the semantics. Indeed, the events of a model are atomic events of a state-transition system. The semantics of an Event-B model is a trace-based semantics with interleaved events. A system is characterized by the set of licit traces corresponding to the fired events of the model which respect to the described properties. The traces define a sequence of states that may be observed by properties. All the properties will be expressed on these traces.

Refinement

The refinement operation [START_REF] Abrial | Refinement, decomposition, and instantiation of discrete models: Application to Event-B[END_REF] offered by Event-B enables stepwise model development. A state-transition system is refined into another state-transition system with more and more design decisions while moving from an abstract level to a less abstract one. A refined machine is defined by adding new events, new state variables and a gluing invariant. Each event of the abstract model is refined in the concrete model by adding new information expressing how the new set of variables and the new events evolve. All the new events appearing in the refinement refine the skip event (which is the event that does nothing and can occur any time). Refinement preserves the proved properties and therefore it is not necessary to prove them again in the refined transition system, usually more detailed. This help keeping the proof sizes reasonable by distributing the proof effort along the refinement tree.

In order to prove the correctness of the development, it is necessary to prove the correctness of the various refinements it contains. The following proof obligations are the two key proof obligations.

LIVENESS & DEADLOCK

• Guard strengthening: a concrete event must be enabled only if the abstract event is enabled.

For each abstract i-th guard G A i ,

A ∧ I A ∧ I C ∧ G C ∧ W ⇒ G A i
where, as a reminder, A denotes the conjunction of the axioms, I the invariants, G the guards, W the witnesses (predicates linking concrete and abstract variables) and BA before-after predicates (actions); and • A relates to the abstract machine while • C relates to the concrete one.

• Action simulation: if an abstract event's action assigns a value to a variable that is also declared in the concrete machine, it must be proven that the abstract event's behavior corresponds to the concrete behavior.

A ∧ I A ∧ I C ∧ G C ∧ W ∧ BA C ⇒ BA A i
Remark Note that many different refinements may refine the same given abstract machine. Each refinement machine corresponds to a possible behavior, implementation or concretization of the abstract machine. Thus, several candidate refinements are offered for a given abstract machine. This will be used in later chapters to characterize the set of correct systems that behave as described by an abstract system description. The Event-B method proved its capability to represent event-based systems like railway systems, embedded systems or web services. Moreover, complex systems can be gradually built in an incremental manner by preserving the initial properties thanks to the preservation of a gluing invariant.

Liveness & deadlock 1.6.1 Liveness properties

The built-in facilities of Event-B are mainly oriented towards guaranteeing safety properties (absence of bad states) thanks to invariants preservation. However, it is also possible to verify some liveness properties:

• within Event-B where LTL formulas can be directly encoded [START_REF] Sơn | Reasoning about Liveness Properties in Event-B[END_REF] although it is not really practical for large formulas.

• using external tools such as the model checking ProB which can verify LTL formulas on bounded Event-B models [START_REF] Plagge | Seven at one stroke: LTL model checking for high-level specifications in B, Z, CSP, and more[END_REF].

It is important to note that, contrary to safety properties, liveness properties are not systematically preserved by refinement.
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Deadlock-freeness

We define a deadlock as a state in which none of the events are possible: the system will not progress anymore because none of the transitions are enabled.

We can express the deadlock-freeness invariant (DLF ) as the disjunction of the guards of all events other than the initialization:

DLF = event e   guard G i of e G i  
By proving that DLF is a theorem, we can demonstrate that the machine will never deadlock. Indeed, we prove that, at any time, at least one event has all its guards evaluating to true. Therefore, at least one event is possible (enabled transition) at any time.

It is also possible to consider the deadlock-freeness of a subset of events.

Tools

The main tool available for conducting Event-B based developments is the Rodin Platform1 [START_REF] Abrial | Rodin: an open toolset for modelling and reasoning in Event-B[END_REF]. This is an integrated development environment equipped with contexts and machines editors, a proof obligation generator, automated provers and interactive proving capabilities. Additionally, a wide range of plug-ins are available, which can for instance extend the modeling (for instance with theories) or proving capabilities (such as the model checker ProB or the use of SMT solvers).

Animation It is also possible to instantiate the models within the Rodin Platform and to animate them. This is very useful to check with domain engineers if the specification produces the intended behaviors, and to verify if the models, additionally to not violate invariants, can actually exist.

Uses of reals

In order to model cyber-physical systems where the continuous world meets the discrete world, time is a mandatory feature that must be modeled as a continuous variable. Mathematical real numbers are thus needed to model time.

The Theory plug-in

A recent evolution of the Event-B method makes it possible to extend it with theories similar to algebraic specifications. In the Rodin Platform, this evolution is provided by the Theory plug-in [Abr+09; BM13; Hoa+17].

USES OF REALS

Several theories have been written and are available as a Standard Library2 which contains 3 groups of theories:

• Basic which includes theories BinaryTree (binary trees), BoolOps (boolean operators), List (inductive lists), PEANO (inductive natural numbers), SUMand-PRODUCT (generalized sum and product) and Seq (sequences)

• RelationOrder which includes theories Connectivity (graph connectivity), Fix-Point (lower & upper fixpoints), Relation (ordering relations: transitivity, reflexivity, . . . ), Well_Fondation (well-founded relations), closure (relational closure), complement (complement & conjugate) and galois (galois connections)

• Real which includes a theory Real of mathematical real numbers According to the documentation3 , a theory definition can include the following elements.

• Datatypes which are defined by providing the types on which they are polymorphic, a set of constructors one of which has to be a base constructor. Each constructor may or may not have destructors.

• Operators that can be defined as predicate or expression operators. An expression operator is an operator that "returns" an expression, an example existing operator is card. A predicate operator is one that "returns" a predicate, an example existing predicate operator is finite.

• Axiomatic definitions that are defined by supplying the types, a set of operators, and a set of axioms.

• Rewrite rules which are one-directional equalities that can be applied from left to right.

• Inference rules that can be used to infer new hypotheses, split a goal into sub-goals or discharge sequents.

• Polymorphic theorems that can be defined and validated once, and can then be imported into sequents of proof obligations inside a proof if a suitable type instantiation is available.

In order to validate the extension, proof obligations are generated to ensure soundness of extensions. This includes, proof obligations for validity of inference and rewrite rules, as well as proof obligations to validate operator properties such as associativity and commutativity.

Theory Real

We use the theory Real (Appendix A, page 140), written by Abrial and Butler, which models mathematical real numbers. This theory provides:

• 1 datatype REAL

• 13 operators: plus (+), minus (unary -), mult (×), sub (-), inv ( 1

•
), leq (≤), smr (<), gtr (>), cnt (point-wise function continuity), inf (infimum), sup (supremum) as well as zero and one

• 24 axioms that define the semantics of the operators

• 18 interactive rewrite rules for use in proofs The theory Real is minimal which makes it mathematically elegant, however it makes the proofs very long because everything has to be decomposed on very simple propositions in order to apply the axioms. That is why, during the development of the models, we defined a context C0_reals (Appendix C, page 221) with 43 additional theorems selected from repetitive interactive proofs. It was crucial in managing the time spent on proving models. It contains fairly basic theorems such as: 

• a + c ≤ b + c ⇔ a ≤ b • a × (-1) = -a • ∀x ∈ [a, b] f (x) = g(x) ⇒ (f

Casting

However, because neither implicit type conversion nor operator overloading are available in Event-B, we have defined a cast function that maps naturals to their representation as positive reals, in order to be able to write expressions such as n × δt where n ∈ N and δt ∈ R.

The function cast has been defined inductively on naturals. Several theorems such as the fact that cast is an order isomorphism from (NAT, <=) to (REAL |N , leq) needed to be proved.

Note that the context C3_cast (Model 1.2 & Appendix C, page 233) extends the context Nat (page 232), written by Thái Sơn Hoàng, which contains the induction theorem.

Reals and floats

Our developments rely on mathematical real numbers. We decided to stop the development before the translation to machine numbers (floating-point or fixed-point numbers) that must be introduced in further refinements if we target the translation to realistic embedded software. This topic is thus out of the scope of our work and we do not need a model of floating-point or fixed-point computation. This could also have been conducted using the Theory plug-in. During a system development and execution, some operations (e.g. maintenance) or development actions (e.g. upgrade) involve mechanisms that correspond to changes in system parts that can be represented by sub-system substitution.

(0) = zero // initial case axm03: ∀a • a ∈ N ⇒(cast(a+1) = cast(a) plus one) // induction case Theorems ... thm11: ∀ a,b • (a ∈ N ∧ b ∈ N) // equiv. over '<' ⇒(a < b ⇔smr(cast(a),cast(b))) thm12: ∀ a,b • (a ∈ N ∧ b ∈ N) // equiv. over '=' ⇒(a = b ⇔cast(a) = cast(b)) thm13: cast ∈ N cast [N] // cast

System substitution: definition and characteristics

System substitution is an operation defined as the capability to replace a source system by another one (target system) that preserves the specification of the source one. This operation may occur in different situations like failure management, maintenance, reconfiguration, adaptive systems or autonomous systems. When substituting a system at runtime, a key requirement is to identify the correct state of the target system that restores the identified state of the source system. The correctness of the state restoration relies on the definition of safety properties for system substitution. Our main concern consists in identifying the relevant properties CHAPTER 2. SYSTEM SUBSTITUTION required to be proven in order to assert the correctness of the system substitution.

Persistence of the system state after substitution: Cold and Warm start

One first characteristic is the persistence of the state after substitution, usually named cold or warm start. It characterizes the restored state in the substitute system.

Cold start, tagged as Static substitution, means that the substitute system will start from its initial state without any data nor state variables values originated from the state where the original system was halted.

Warm start, tagged as Dynamic substitution, means that the substitute system will recover as much data and state variable values as possible coming from the state where the original system was halted. In other words, when a system is halted in order for a second system to replace it, the second system is positioned in a state that is functionally identical (or as close as possible) to the state of the first system when it was stopped. This enables the second system to continue the task the first system was doing (almost) without interruption, as seen from outside of the system.

Identical, included or disjoint sets of state variables

If we assume that we have two systems -a source and a target -that we model as state-transition systems where their states are represented as a set of state variables, then we can distinguish three cases during the substitution of the source system by the target system.

• The sets of states variables are identical. This situation means that the original (source) and the substitute (target) systems represent the same system. The effect of the substitution is to restore a new state, correct with respect to the represented system substitution properties, after substitution. This situation usually occurs in case of maintenance or autonomous systems, self-healing systems.

Example: an e-commerce website that would be replaced by a website offering the same services.

• The sets of states variables are partially shared. In this case, part of the original system state variables are restored in the substitute system, and the substitute system introduces new state variables that describe new behaviors.

Example: an e-commerce website that would be replaced by a smartphone application and a new website.

• The sets of states variables are disjoint. Disjointness implies that the original and substitute systems are independent i.e. the substitute system is a new system. The repair or substitution transfers the control to a completely new substitute system.

Example: an e-commerce website that would be replaced by a smartphone application.

Equivalent, upgraded or degraded substitution

Another characteristic relates to the behavior of the substitute system and the associated quality of the substitution. Several substitute systems may offer different functionalities and have different behaviors. Three cases have been identified. The substitute system may be equivalent to the original system, may upgrade it (enhance it) or may degrade it.

• Equivalence means that the original system properties are preserved i.e. the substitute system offers the same functionalities, but may differ from quality of service point of view.

Example: an e-commerce website that would be replaced by a website selling the same set of products.

• Upgrade is stronger than equivalence. The substitute system provides the same functionalities as the original system, but it also provides more functionalities.

Example: an e-commerce website that would be replaced by a website selling more products than in the original website.

• Degradation is weaker than equivalence. The substitute system provides fewer functionalities than the original system.

Example: an e-commerce website that would be replaced by a website selling only a subset of products available in the original website.

Instantaneous or delayed (deferred) substitution

The nature of the system can impact how the substitution will behave. In a discrete system, the substitution can be instantaneous. In that case, substitution is seen as an atomic operation: at an instant, a system was running, at the next instant, another system is running. However, for cyber-physical systems with continuous behaviors modeled over continuous time, it is not possible to shut down such a system instantly. The system needs to be shut down over a period of time, while a substitute system is prepared to take over. The substitution is more complex in this case, as for some period of time, both systems are running, and the substitution cannot be considered as an atomic operation.

Static or dynamic set of substitutes

One can imagine that the set of substitutes may evolve. A substitute system can be added or removed from the set of substitutes. The set of substitutes would then be considered dynamic as opposed to a fixed set of substitutes which would be designated as static.

Centralized or distributed system substitution

In a centralized architecture, there exists a unique controller that can decide whether or not to trigger a substitution on the components of the system. In a distributed CHAPTER 2. SYSTEM SUBSTITUTION architecture, each system will individually decide if and when it is appropriate to trigger a substitution based on available information (possibly obtained after communicating with neighbor systems).

Local or global invariant

In the case of a single system, the system tries to maintain an invariant involving its local state. We can also envision more complex architectures where a set of systems try to preserve a global invariant involving a collection of their states variables.

Studied systems

The systems addressed by our approach are formalized by state-transition systems [START_REF] Arnold | Mathematical problems in computation theory[END_REF], which proved to be useful to model various kinds of systems and particularly hybrid systems [START_REF] Alur | Formal verification of hybrid systems[END_REF] or cyber-physical systems [START_REF] Ashford | Introduction to Embedded Systems -A Cyber-Physical Systems Approach[END_REF]. In particular, controllers are modeled with state-transition systems.

A system is characterized by a state that may change when a transition occurs. A state is defined as a set of pairs (variable, value). The values of a given variable are taken in a set of values satisfying safety properties expressed within invariants (Kripke structure). A transition characterizes a state change, through updating of variable values. By combining two basic systems into a global system as in Figure 2.2, the second system (here in blue, with elements T ) can replace the first system (here in red, with elements S ) when it fails.

We can abstract the global system of From this point forward, we will consider systems with behaviors corresponding to the ones of Figure 2.4: a system is initialized, then it evolves (progress), relying on state changes. A failure (fail) can occur during state change. The system may then be repaired (repair), or isolated (complete failure).

Below, we show how such transition systems are modeled with the Event-B method. 

STUDIED SYSTEMS

R S F S R T F T C S initialisation S

Specification of studied systems

When the studied systems are described as state-transition systems, they are modeled using Event-B as follows.

• A set of variables, in the Variables clause is used to define system states. The Invariants clause describes the relevant properties of these variables.

• An Initialisation event determines the initial state of described system by assigning initial values to the variables.

• A set of (guarded) events defining transitions is introduced. They encode transitions and record variable changes.

A state transition system (where the variables clause defines states and the events clauses define transitions, see Model 2.2) is described in an Event-B machine Spec. This machine sees the context C0 (see Model 2.1) from which it borrows relevant definitions and theories.

Context C0 Sets s Constants c Axioms A(s, c) End Model 2.1 -Context C0 Machine Spec Sees C0 Variables v A Invariants I A (s, c, v A ) Events Event Initialisation = Begin v A :| D A (s, c, v A ) End Event Evt = Any x A Where G A (x A , s, c, v A ) Then v A :| BA A (x A , s, c, v A , v A ) End End Model 2.2 -Machine Spec Machine SysS Refines Spec Sees C0 Variables v S Invariants I S (s, c, v S , v A ) Variant VN S Events Event Initialisation = Begin v S :| D S (s, c, v S ) VN S :| VN S _InitV alue End Event s_evt = Any x S Where G S (x S , s, c, v S ) Then v S :| BA S (x S , s, c, v S , v S ) End ... Event Evt Refines Evt =... End Model 2.3 -Machine SysS

Refinement of studied systems

The previously defined state-transition system may be defined at a given abstraction level. It constitutes a system specification. Several candidate systems S i may refine (implement) the same specification Spec. These implementations are more concrete state-transition systems that refine an abstract one. Model 2.3 shows such a refinement. A new set of variables and events is introduced that refines the abstract model. Refinement relies on the definition of a gluing invariant. The verification of the correctness of this refinement ensures that the refined system is a correct implementation of the specification it refines.

FORMAL METHODS & SUBSTITUTION

Definition of substitute systems

We have chosen to use the refinement relationship in order to characterize all the substitute systems. If we consider a system characterized by an original specification, then all the systems that refine this specification are considered as potential substitutes. Obviously, we are aware that these refining systems are different and may behave differently, but we are sure that these behaviors include the one of the refined system.

Formal methods & substitution

Various formal techniques and tools have been proposed by several authors to handle system substitution. They use different forms of substitution to describe system adaptation, system reconfiguration or system autonomy.

System reconfiguration

First, many formal tools are used to ensure the correctness of dynamic system substitution in general. In [START_REF] Bhattacharyya | Formal Modelling and Analysis of Dynamic Reconfiguration of Dependable Systems[END_REF], π-calculus and process algebra are used to model systems and exploit behavioral matching based on bi-simulation to reconfigure system appropriately. An extended transaction model is presented to ensure consistency during reconfiguration of distributed systems in [START_REF] Noël De Palma | Ensuring Dynamic Reconfiguration Consistency[END_REF].

The B method is applied for validating dynamic system substitution of componentbased distributed systems using proof techniques for consistency checking and model-checking for timing requirements [START_REF] Lanoix | Combining Proof and Model-checking to Validate Reconfigurable Architectures[END_REF]. A high-level language is used to model architectures (with categorical diagrams) and to operate changes over a configuration (with algebraic graph rewriting) [START_REF] Wermelinger | A Graph Based Architectural (Re)Configuration Language[END_REF].

Fault tolerance

Second, system substitution has been defined to ensure system dependability. Dynamic system substitution can be seen as part of a fault-tolerance mechanism which represents a major concern for designing dependable systems [LCR06; LR14]. Rodrigues et al. [START_REF] Rodrigues | Automatic Reconfiguration for Large-Scale Reliable Storage Systems[END_REF] presented the dynamic membership mechanism as a key element of a reliable distributed storage system. Event-B is demonstrated in the specification of cooperative error recovery and dynamic reconfiguration for enabling the design of a fault-tolerant multi-agent system, and to develop dynamically reconfigurable systems to avoid redundancy [PTL12; PTL13; Tar+12]. Moreover, this approach enables the discovery of possible reconfiguration alternatives which are evaluated through probabilistic verification.

Autonomic computing and self-systems

Third, dynamic system substitution is used to meet several objectives of autonomic computing [PH05; An+15] and self-adaptive systems [Wey+12; Lem+13] such as self-configuration and self-healing. The self-configuring systems require dynamic reconfiguration that allows the systems to adapt automatically to changes in the CHAPTER 2. SYSTEM SUBSTITUTION environment. Similarly, the dynamic reconfiguration makes it possible to correct faults in self-healing systems. Note that we have identified some approaches dealing with adaptive systems that address non-functional requirements [START_REF] Filieri | A formal approach to adaptive software: continuous assurance of non-functional requirements[END_REF][START_REF] Potena | Optimization of adaptation plans for a serviceoriented architecture with cost, reliability, availability and performance tradeoff[END_REF][START_REF] Mirandola | Adaptation space exploration for service-oriented applications[END_REF].

Next steps

In our case, we address system substitution in two situations. The first case is discrete systems. It will be detailed in Chapter 5 and illustrated with the modeling of web services compensation. The second case is hybrid systems. It will be presented in Chapter 7 and illustrated with a controller for a cyber-physical system. In both cases, we will use Event-B to model the systems. In this chapter, we introduce two use cases for our study of system substitution: a discrete system and a continuous system. For both cases, we give the particularities, define the requirements for the case study and overview the existing formal approaches used to address them in the state of the art.

Discrete case: e-commerce web services

Web services: Introduction

The important increase of the use of the web led to the availability of a huge amount of web services. These services can be triggered through web browsers or web applications. The need to compose such services to build more complex services appeared thereafter. The offered composition mechanism led to the emergence of a new programming paradigm. Languages and notations to define services compositions like BPMN [START_REF] Omg | Business Process Model and Notation (BPMN) Version 2.0.2[END_REF], XPDL [START_REF]Process Definition Interface -XML Process Definition Language[END_REF], or BPEL [START_REF]Web Services Business Process Execution Language (WS-BPEL) Version 2.0[END_REF] have been designed. They offer different features to compose basic and/or composed web services. Several composition operators are embedded in these languages, leading to the design of complex web services compositions.

Similar to the usual complex systems, web service compositions may exhibit inappropriate behaviors in the presence of failures. Therefore, the above languages have been equipped with compensation mechanisms to express running services recovery in case of failures. Compensation is defined as a suspension of the currently running process or activity and a transfer of the execution to a compensating process or activity. For example, BPEL defines a compensate operator to compensate an activity defined in a scope by another activity when an error is detected. The modalities of the compensation are chosen at design time. The semantics of this mechanism is given informally by the standard.

The lack of formal semantics and of theoretical foundations has been identified in the available definitions of these mechanisms in the standards describing these languages. Indeed, the defined mechanisms do not ensure safety of the compensation, which represents a major concern in particular in the case of transactional web services. In most of the defined languages, ensuring compensation correctness is left to the designer and there is no guarantee that the compensation is correct. Checking that the compensating activity equivalently repairs, degrades or upgrades the compensated activity would help the designers in defining their compensation handlers.

This will be studied in Chapter 5.

Modeling web services compensation

Formal methods have proved their usefulness in the design of correct systems. Several formal approaches for modeling and analyzing web services compositions and languages have been proposed [START_REF] Ter Beek | Web Service Composition Approaches: From Industrial Standards to Formal Methods[END_REF]. They promote the use of mathematical foundations to analyze web services compositions. Compensation has been studied from the behavioral point of view and only limited attention has been paid to the functional correctness of the repair due to the limitation of the set up formal methods. All these approaches mention the lack of formal semantics in traditional web services composition and workflow standardized languages like BPEL or BPMN.

When analyzing the state of the art, one can identify three categories of formal methods studying the topic of formal modeling and verification of web services compositions.

In [START_REF] Lucchi | A pi-calculus based semantics for WS-BPEL[END_REF], the authors give a formalization of the composition operators of the BPEL language using the π-calculus. This work shows, with a simple set of operators, how the whole BPEL language is formalized. Petri nets were used by [HSS05; Loh+08; Aal+09] to encode BPEL constructs and check classical Petri nets properties like deadlock or workflow termination.

Classical state-transition systems have been set up by [Fos+06; Nak06; He+08; MP09] to formalize web services compositions and compatibility problems. Model checking techniques were used to check the correctness of the defined behaviors.

Process algebra based techniques also addressed the problem of web services compositions. The LOTOS algebra was studied by [START_REF] Salaün | Describing and reasoning on Web services using process algebra[END_REF] and [START_REF] Ferrara | Web Services: A Process Algebra Approach[END_REF]. The CADP model checker was set up to check the correctness of the described compositions. Butler et al. proposed operational or trace semantics for long-running business transactions using CSP [START_REF] Butler | A Trace Semantics for Long-Running Transactions[END_REF] or variants of CSP with support for compensation (StAC [START_REF] Butler | An Operational Semantics for StAC, a Language for Modelling Long-Running Business Transactions[END_REF] and Compensating CSP [START_REF] Butler | Executable Semantics for Compensating CSP[END_REF]). The semantics of compensation, specified using a set of primitives, are also studied in [START_REF] Bruni | Comparing Two Approaches to Compensable Flow Composition[END_REF]. These approaches have extensively used abstraction techniques, mainly abstracting data, in order to avoid the state number explosion problem due to the state space exploration used
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by these techniques. As a consequence, they have mainly addressed behavioral aspects thus neglecting the functional correctness. However, the data aspects of transactions were modeled using the B notation in [START_REF] Butler | Precise Modelling of Compensating Business Transactions and its Application to BPEL[END_REF].

The third category of approaches relates to the refinement and proof-based techniques. Here we can mention the use of two state-based formal methods that exploit refinement: the ASM (Abstract State Machines) method for modeling by refinement BPMN workflows [START_REF] Börger | Modeling Workflows, Interaction Patterns, Web Services and Business Processes: The ASM-Based Approach[END_REF] and the Event-B method [AA09; AA10; BW10; AA13]. In both methods, the functional and behavioral aspects have been addressed, and the Event-B based approach proposed to encode, by refinement, the web services decomposition mechanism available in BPEL. This approach will be leveraged in this thesis.

The previously mentioned approaches proposed formal models and verification techniques for services compositions operators available in languages like BPEL and BPMN. In all the previous approaches, a clean semantics has been defined and several properties related to deadlock, termination, correct behavior, etc. have been verified, either by model checking or by proof-based approaches.

In the same way, the developed approaches have studied various kinds of compensation. Indeed, we can mention dynamic reconfiguration mechanism studied by [START_REF] Abouzaid | Towards a formal analysis of dynamic reconfiguration in WS-BPEL[END_REF] with the π-calculus, dynamic adaptation of web services compositions with Petri nets addressed by [START_REF] Lanese | Decidability Results for Dynamic Installation of Compensation Handlers[END_REF] and [START_REF] Montesi | Web Services Foundations[END_REF], process algebra [START_REF] Ferrara | Web Services: A Process Algebra Approach[END_REF], Self-Healing described by [START_REF] Ehrig | Formal Analysis and Verification of Self-Healing Systems[END_REF] and a model for handling transactions with Event-B defined by [START_REF] Aït-Sadoune | Stepwise Development of Formal Models for Web Services Compositions: Modelling and Property Verification[END_REF]. These approaches introduce error monitors and trigger a defined compensating service.

The previous approaches addressing compensation studied the occurrence of a condition (error, exception, etc.) that causes the compensation. As outlined above, they have addressed the behavioral correctness, whatever is the function achieved by the compensating service. In other words, the correctness of the compensation from the functional point of view is not addressed. This is not surprising when analyzing the mechanisms provided by the traditional services composition languages like BPEL or BPMN.

Our objective

As mentioned in the introduction, our objective is to go beyond the capabilities of these languages. Our proposal is twofold. On the one hand, it proposes to check the preservation of the functionality of compensation services, and on the other hand, it supports dynamic compensation at runtime. This proposal is close to the approaches dealing with dynamic system reconfiguration.

In our work, we claim that the capability to handle the functional correctness of the compensating service can be addressed as well. We propose to improve the approach based on the Event-B method and defined in [START_REF] Aït-Sadoune | Stepwise Development of Formal Models for Web Services Compositions: Modelling and Property Verification[END_REF], that we recall in Section 3.1.3, by adding functional correctness conditions so as the compensating service fulfills some relevant functional correctness conditions expressed by invariants. Refinement will be used to preserve such invariant by the compensating service. Our approach integrates results from formal services compositions modeling and verification, and from dynamic system reconfiguration.

Modeling web services composition with Event-B

This section presents an overview of the work achieved to model BPEL web services compositions. The Event-B method has been used to provide formal models of web services compositions. This work addressed different facets of the formalization of web services compositions and a tool was designed to support the defined development process. More precisely, in [START_REF] Aït-Sadoune | A Proof Based Approach for Modelling and Verifying Web Services Compositions[END_REF], the authors used the Event-B method to model the whole BPEL language constructs and all the services composition operators:

• Event-B contexts and machines have been used to model these constructs.

Indeed, functions, types, triggered services, messages, etc. have been modeled in an Event-B context. They represent the static definitions of a BPEL definition.

• Then, the dynamic part of a service composition has been defined in an Event-B machine, importing (using the Sees clause) the previously described context where the basic services are defined. BPEL variables are declared in the Variables clause, they define the states of the state-transition system associated to the described BPEL model. The services composition operators defined in the BPEL language like flow, sequence, throw, etc. have been formalized by Event-B events occurring in the Events Event-B clause. These events were synchronized accordingly with the semantics of each BPEL composition operator. The interleaving semantics offered by the Event-B method was used to formalize the different notions of sequential, parallel, choice and iteration compositions.

The proposed approach proved useful to formalize BPEL web services compositions defined in a single definition. Several relevant properties have been proved: message loss, no call with empty message, no deadlock, functional properties, etc. have been expressed in the obtained Event-B machine and proved using the prover associated to the Rodin Platform.

As a second step, [START_REF] Aït-Sadoune | Stepwise Design of BPEL Web Services Compositions: An Event-B Refinement Based Approach[END_REF] addressed the web services compositions development process. Decomposition of high level BPEL web services compositions has been studied by exploiting Event-B refinement. The decomposition operator defined in BPEL, has been encoded by a refinement operation in [START_REF] Aït-Sadoune | Stepwise Design of BPEL Web Services Compositions: An Event-B Refinement Based Approach[END_REF]. This mechanism offers a stepwise development of web services compositions. The defined mechanism allows the developer to introduce gradually the properties to be fulfilled by the defined services compositions. The whole approach has been described in [START_REF] Aït-Sadoune | Stepwise Development of Formal Models for Web Services Compositions: Modelling and Property Verification[END_REF].

Finally, in [START_REF] Aït-Sadoune | Correct Software in Web Applications and Web Services[END_REF], transactions have been addressed. The compensate BPEL operator characterizing the compensation of a service defined within a scope has been formalized. A set of Event-B events supporting the transfer of control from one service to another one has been defined. This transfer is parameterized by an invariant that defines the properties of this compensation, but no specific requirements is set on this invariant. The properties verified in this work were the absence of invocation with empty message, deadlock freeness, reachability of a given state and particularly the terminating state and basic transactional properties related to the triggering of the compensating service.
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But, as mentioned above, the defined approach of [START_REF] Aït-Sadoune | Correct Software in Web Applications and Web Services[END_REF] addresses compensation from a behavioral point of view like in the approaches of the literature. Indeed, this approach does not handle the functional correctness of the compensation since conditions on the invariant are not explicitly set. The approach only checks that if a compensation is triggered, then it becomes effective. In order to address this problem, we have sketched in Chapter 5 the first step towards a formal Event-B method that ensures correct service compensation in the case of equivalence. This approach to handle compensation correctness has been generalized in Chapter 8 at a meta level, still using Event-B, in order to guarantee that the methodology for service compensation works for any web services composition.

Web services: Case study

The case study used to illustrate our approach is a simple scenario borrowed from electronic commerce. We consider a simple web application enabling the purchase of a set of products from a supplier. This composition describes a sequence of actions performed by a user. He or she

• selects some products in a cart,

• pays the corresponding total amount of money,

• receives an invoice from the purchasing system,

• then the products are delivered by the logistics part of the system. This sequence of events is depicted by a simple state transition system in Figure 3.1. The application can be described as a composition (a sequence) of web services corresponding to the labels Selection, Payment, Invoicing and Delivery of this state-transition system. To address the compensation problem, we consider that a compensation condition occurs during the selection of the products. We suppose that during the selection activity, a failure occurs due to an error on the supplier website. At this step, the system triggers a compensating service. The compensation is composed of two services running in parallel. Each of these services fills a cart of products so that the purchase can be pursued. When the selection is completed, the union of these two carts must contain the set of products expected by the user.

Selection

The main requirements for compensation are stated as follows.

• Correct compensation. The compensation shall ensure that the user has purchased the expected set of products whether the products have been purchased CHAPTER 3. USE CASES from one single website with one cart or from two different websites with two carts. This requirement advocates to take care of the definition of correct compensating services.

• Compensation at runtime. The set of products already available in the cart when a failure occurs shall be preserved by the compensation. This requirement leads to the definition of a process restoring the state of the halted service.

This case study illustrates several compensation scenarios. We will show in Chapter 5 how the compensation can be formally verified and how different scenarios of equivalent, degraded or upgraded compensations are possible in the proposed approach supported by the Event-B method.

Continuous case: hybrid systems

System substitution may be instantaneous when state restoration consists in restoring state variables that fulfill the specification invariant. The case of web services compensation mentioned above and studied in Chapter 5 is an instantaneous system substitution. But, in case of hybrid systems, substitution may take some time. This section addresses the case of system substitution where the substitution process needs a certain amount of time. Thus, we must preserve a "safe" behavior of the system during the substitution time.

Hybrid systems: Introduction

According to Lee [START_REF] Ashford | Introduction to Embedded Systems -A Cyber-Physical Systems Approach[END_REF], cyber-physical systems (CPS) [LS14; Lee14; Lee15; Akk+16] are defined as integrations of computation, networking, and physical processes. Embedded computers and networks monitor and control the physical processes, with feedback loops where physical processes affect computations and vice versa. The software (the controller) interacts with the physical environment (the plant) in a closed-loop scheme where input from sensors are processed by the controller that generates outputs to the actuators. Moreover, the physical plants are characterized by continuous behaviors while the software controller relies on discrete computations. Internet of Things (IoT), Industrial Internet, Smart Cities, Smart Grid, Smart systems (e.g., cars, buildings, homes, manufacturing, hospitals, appliances), transportation systems, medical devices, . . . are some of the application domains in which CPS take part. Nowadays, one challenge is to design trustworthy CPS. The development of safe CPS software controllers using rigorous and formal modeling techniques contributes to reach this challenge.

A key characteristic of CPS is their sensibility to changes which may occur in case of failure, loss of quality of service, maintenance, etc. These changes must be handled by these systems and the service offered by these systems must be preserved as much as possible. Autonomy, adaptation, reconfiguration are some of the requirements associated to CPS design requirements when changes occur. It can be used to ensure high availability in case of failure as required for safety critical
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systems such as avionics, nuclear, automotive and medical devices, where failure could result in loss of lives, as well as reputation and economical damages. It is important to maintain the running state of a given system in case of any failure by preserving the required behavior in the recovering substitute system. So, another challenge in the design of CPS relates to handling changes while preserving the safe behavior of the CPS, or offering upgraded or degraded behaviors.

We claim that formal methods are good candidates to handle these challenges. We address the development of trustworthy CPS. In particular, we contribute to fulfill two main requirements associated to the two previously identified challenges.

• Modeling both continuous and discrete behaviors. The software component controls the interaction that shall be soundly designed from the physical plant described by laws issued from physics (mechanical, electricity, . . . ).

The main questions are related to the use of discrete models by the software while the physical plant is modeled by continuous functions over continuous time (solutions of differential equations) and to the semantic relation between discrete and continuous models. The software (or controller) should have a correct view of the continuous behaviors and these issues require mathematical foundations as well as foundations for system engineering. The CPS software implements a discretization of these functions in order to control the CPS plant.

Proving the correctness of discrete implementations of continuous controllers is a key challenge in the CPS correctness proof. Formal methods play an important role in verifying the system requirements to check the correctness of functional requirements, including the required safety properties. Chapter 6 studies the formal modeling of continuous behaviors.

• Handling reaction to changes. Another key requirement for the design of trustworthy cyber-physical systems is the capability of a system to react to changes (e.g., failures, quality of service change, context evolution, maintenance, resilience, etc.). The development of such systems needs to handle explicitly, and at design time, the reactions to changes occurring at runtime. Indeed, to prevent a system failure, controllers must react according to environment changes to keep a desired state or to meet minimum requirements that maintain a safety envelope for the system. Mostly, safety critical systems use reconfiguration or substitution mechanisms to prevent any (random) failure, or losing the quality of system services required for system stability. Hybrid system substitution is studied in Chapter 7.

Hybrid systems & formal methods

The development of techniques and tools to handle the correct design of cyberphysical systems has attracted many researchers. Traditional approaches are based on a formal mathematical expression of the problem using real numbers to model continuous time and differential equations to express the behavior model of the studied hybrid system. Then this model is simulated within simulation techniques in order to check its properties. Ptolemy [START_REF] Ptolemaeus | System Design, Modeling, and Simulation using Ptolemy II. Ptolemy.org[END_REF] is a good representative of such an approach.

In the past years, several approaches, relying on formal methods, for the development of trustworthy cyber-physical systems have been proposed. They may be gathered in two categories: model checking-based approaches and proof-based approaches.

Model checking and bounded model checking

According to the nature of the handled differential equations, different approaches have been proposed. When a hybrid system is described by linear or affine differential equations, then model checking [START_REF] Clarke | Model checking[END_REF] techniques can be applied. Hybrid automata [START_REF] Alur | The algorithmic analysis of hybrid systems[END_REF][START_REF] Henzinger | The Theory of Hybrid Automata[END_REF] are used to model such systems. Tools like HyTech [START_REF] Henzinger | HyTech: A Model Checker for Hybrid Systems[END_REF], d/dt [START_REF] Asarin | The d/dt Tool for Verification of Hybrid Systems[END_REF], PHaVer [START_REF] Frehse | PHAVer: algorithmic verification of hybrid systems past HyTech[END_REF] or SpaceEx [START_REF] Frehse | SpaceEx: Scalable Verification of Hybrid Systems[END_REF] have been developed to handle the specification of these systems. They perform exhaustive search and they have proved successful to establish properties like reachability.

Nonlinear hybrid systems support the description of a richer dynamics of the studied systems than linear ones. But, in this case and since reachability for nonlinear systems is not decidable, these approaches do not guarantee termination. So, the benefits of the above mentioned tools resides more in the analysis of the counterexamples they produce rather than on the verification capabilities they offer.

In the case of nonlinear hybrid systems, numerical methods are used when specific assumptions on the boundedness of the continuous variables (bounded horizon) are set. Tools like Flow * [CÁS13] or iSAT [START_REF] Fränzle | Efficient Solving of Large Non-linear Arithmetic Constraint Systems with Complex Boolean Structure[END_REF] and iSAT-ODE [START_REF] Eggers | Improving SAT Modulo ODE for Hybrid Systems Analysis by Combining Different Enclosure Methods[END_REF] and dReal/dReach [GKC13b; GKC13a; Kon+15] use bounded model checking for reachability analysis.

All the previous approaches use model checking and suffer from the classical problems encountered by model checking related to state space explosion and to the boundedness of the considered variables. However, these techniques enable automatic verification which is crucial for industrial applications. In order to tackle these limits, classes of automata can be studied through logical analysis [START_REF] Ishii | Inductive Verification of Hybrid Automata with Strongest Postcondition Calculus[END_REF].

Proof-based approaches

Another category of formal techniques addressing formal modeling of hybrid systems is based on proof techniques and symbolic verification. These approaches support the description of any category of hybrid systems and offer semi-automated tools to handle unbounded variables (i.e. unbounded horizon). Axiomatization of the real numbers theory and of the theory of control for linear or nonlinear differential equations is a pre-requisite for the use of these approaches.

Our work belongs to this category of techniques.

S. Boldo et al. approach with Coq and Coquelicot

In [START_REF] Boldo | Trusting computations: A mechanized proof from partial differential equations to actual program[END_REF] the authors use the one-dimensional acoustic wave equation case study to illustrate their approach. A program (in the C programming language), encoding a discrete representation of the continuous differential equation describing the behavior of this case study, is annotated using two distinct sets of annotations: one relates to the
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continuous definitions (derivation, approximation with Taylor series etc.) and the second deals with discrete aspects of the program (loop invariants, pre-conditions and post-conditions of the used functions, etc.). These annotations complete and enrich the controller description with descriptions of the plant behavior. They are used to prove the stability and convergence of the programmed numeric scheme solving the differential equation. The Frama-C1 /Jessie [Mar07]/Why [START_REF] Filliâtre | The Why/Krakatoa/-Caduceus Platform for Deductive Program Verification[END_REF] tool suite generates proof obligations. They are proved either automatically or interactively using SMT solvers, Gappa2 or interactively using the Coquelicot [START_REF] Boldo | Coquelicot: A User-Friendly Library of Real Analysis for Coq[END_REF] Coq [START_REF] Bertot | Interactive theorem proving and program development: Coq'Art: the calculus of inductive constructions[END_REF] library. Finally, note that the developed approach also deals with floating-point arithmetic manipulated by the analyzed C program.

A. Platzer approach and KeYmaera tool In [START_REF] Platzer | Differential Dynamic Logic for Hybrid Systems[END_REF], A. Platzer defines hybrid programs to describe continuous and discrete behaviors of hybrid systems in a closed-loop modeling approach together with a logic and its proof system, namely dynamic logic for dynamic systems. These programs give an abstract description of a hybrid system. Discrete and continuous behaviors are described as hybrid programs using discrete assignments, continuous variables evolution along differential equations, non deterministic choices, iteration, etc.

Properties on the defined hybrid programs are expressed within the dynamic logic constructs offering classical first order logic constructs together with the (denoted [•]) and ♦ (denoted • ) modalities to express invariants and reachability properties. KeYmaera [START_REF] Quesel | How to model and prove hybrid systems with KeYmaera: a tutorial on safety[END_REF] is the semi-automatic prover tool supporting the proof process for the defined hybrid programs. It supports the defined dynamic logic proof system. The approach has been applied to model hybrid systems like car control system [START_REF] Quesel | How to model and prove hybrid systems with KeYmaera: a tutorial on safety[END_REF], train control system [START_REF] Platzer | European Train Control System: A Case Study in Formal Verification[END_REF] and flight collision avoidance system [START_REF] Platzer | Formal Verification of Curved Flight Collision Avoidance Maneuvers: A Case Study[END_REF].

Compared to Event-B-based approaches detailed below, it does not provide a built-in refinement development operator.

J.-R. Abrial and W. Su approach with Event-B The work initiated in [START_REF] Su | Formalizing hybrid systems with Event-B and the Rodin Platform[END_REF] proposes to model first the discrete events of a hybrid system and then refine each event by introducing the continuous elements. Events are partitioned into environment events and control events. It includes the use of a "now" variable and a "click" event that jumps in time to the next instant where an event can be triggered. The authors do not study the possible definition of the continuous parts by means of differential equations. Only arithmetic on emulated reals is used. In [START_REF] Su | Aircraft Landing Gear System: Approaches with Event-B to the Modeling of an Industrial System[END_REF] the authors enrich the work of [START_REF] Su | Formalizing hybrid systems with Event-B and the Rodin Platform[END_REF] by incorporating analytical results from the study of differential equations into the Event-B models through the complementary use of Matlab/Simulink. M. Butler, J.-R. Abrial and R. Banach approach with Event-B The authors of [START_REF] Butler | From Action Systems to Distributed Systems: The Refinement Approach[END_REF] extend the approach of [SAZ14] using the Theory plug-in to CHAPTER 3. USE CASES define a theory of real arithmetic (see Section 1.8).

In this approach, hybrid systems are expressed as continuous evolutions of variable values over time. These evolutions follow monotonic functions ensuring that no bad behavior occurs between two observed discrete steps. The approach consists in defining first the continuous behavior. It is first refined by introducing modes. Then a second refinement introduces a control strategy defining discrete control steps. Finally, a last refinement merges (i.e. eliminates) the continuous variables. This refinement describes the final controller, it contains discrete steps only. The approach has been illustrated by the design of a controller for a water tank.

R. Banach approach with Hybrid Event-B

The second proposed approach based on Event-B, initiated by Banach, is Hybrid Event-B [START_REF] Banach | Core Hybrid Event-B I: Single Hybrid Event-B machines[END_REF]. This is an extension of Event-B which includes pliant events [START_REF] Banach | Pliant Modalities in Hybrid Event-B[END_REF] (as opposed to discrete events) as a way to model continuous behavior, allowing the direct use of differential equations in the modeling. However, there is no tool currently supporting this extension whereas our approach enabled us to develop and prove the models using available tools. Banach also worked on similar topics with ASM [START_REF] Banach | Formalising the Continuous/Discrete Modeling Step[END_REF][START_REF] Banach | ASM and Controller Synthesis[END_REF]. Applications of the approach have been proposed in [START_REF] Banach | A Continuous ASM Modelling Approach to Pacemaker Sensing[END_REF][START_REF] Banach | Formal Refinement and Partitioning of a Fuel Pump System for Small Aircraft in Hybrid Event-B[END_REF][START_REF] Banach | Hemodialysis Machine in Hybrid Event-B[END_REF].

Modeling of time

All the proof-based approaches summarized above use theories of reals. These theories support the definition of relevant properties like continuity of functions or invariants to characterize real variables regions or to describe Taylor series. The approaches of Platzer [Pla08; Que+16], Banach [START_REF] Banach | Core Hybrid Event-B I: Single Hybrid Event-B machines[END_REF] and Boldo [START_REF] Boldo | Trusting computations: A mechanized proof from partial differential equations to actual program[END_REF] support the explicit definition of differential equations. Time is implicitly considered in these approaches through these differential equations. [START_REF] Boldo | Trusting computations: A mechanized proof from partial differential equations to actual program[END_REF] deals with C programs using a suite of proof tools while KeYmaera [START_REF] Quesel | How to model and prove hybrid systems with KeYmaera: a tutorial on safety[END_REF] is deployed on hybrid programs that provide an abstract model of a hybrid system in a closedloop modeling approach. Observe that there are no bibliographic references between the approaches of [START_REF] Boldo | Trusting computations: A mechanized proof from partial differential equations to actual program[END_REF] and of [START_REF] Quesel | How to model and prove hybrid systems with KeYmaera: a tutorial on safety[END_REF]. In [START_REF] Banach | Core Hybrid Event-B I: Single Hybrid Event-B machines[END_REF], the adopted approach is similar to [START_REF] Platzer | Differential Dynamic Logic for Hybrid Systems[END_REF]. The added value of this approach is the use of refinement to define a stepwise formal development preserving the invariants in the different refinement levels. But, up to now, there is no tool supporting the approach.

The approaches of [START_REF] Su | Formalizing hybrid systems with Event-B and the Rodin Platform[END_REF] and [START_REF] Butler | From Action Systems to Distributed Systems: The Refinement Approach[END_REF] use Event-B and the Rodin Platform [START_REF] Abrial | Rodin: an open toolset for modelling and reasoning in Event-B[END_REF] to model hybrid systems in a closed-loop model. Time is explicitly modeled using a specific state variable. The authors consider continuous functions and they define discrete and continuous transitions preserving invariants characterizing the correct behavior of the described hybrid system. Refinement proved useful for the stepwise design of a hybrid system. The approach is tool-supported, all the developments following these approaches can be formalized within Rodin.
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Hybrid systems: Case study

Hybrid systems

The description of the behavior of hybrid systems relies on the definition of continuous behavior characterized by continuous functions over time. Figure 3.2 depicts a graphical representation of such functions. To control a system, in particular for system reconfiguration, it is required to observe (the feedback behavior of the function) and to control (keep or change system mode) the system. Such observation and control are performed by a software requiring the discretization of continuous functions. When software is used to implement such controllers, time is observed according to specific clocks and frequencies. Therefore, it is mandatory to define a correct discretization of time that preserves the observed continuous behavior introduced previously. This preservation entails the introduction of other requirements on the defined continuous function. Note that, in practice, these requirements (assumptions) are usually provided by the physical plant. 3.1 -Requirements in the abstract specification.

At any time, the feedback information value of the controlled system shall be less or equal to M in any mode. Req.1

At any time, the feedback information value of the controlled system shall belong to an interval [m, M ] in progress mode. Req.2

The system feedback information value can be produced either by f , g or f + g (f and g being associated to Sys f and Sys g ) Req.

3

The system Sys f may have feedback information values outside [m, M ] Req.4

At any time, in the progress mode, when using Sys f , if the feedback information value of the controlled system equals to m or to M , Sys f must be stopped.

Req.5

Substitution

We consider two continuous functions f and g characterizing the behavior of two hybrid systems Sys f and Sys g . We also assume that these two systems maintain CHAPTER 3. USE CASES their feedback information value in the safety envelope [m, M ]. As a consequence, these two systems substitute each other since they fulfill the same safety requirement. In this chapter, the studied scenario consists in substituting Sys f by Sys g after a failure occurrence (see requirements of Table 3.1). Figure 3.3 shows the substitution scenario in both continuous and discrete cases. The X axis describes time change and the vertical dashed lines model state transitions. Observe that during the repairing process function f (associated with Sys f ) decreases due to its failure while function g (associated with Sys g ) is booting. In our approach, we use refinement to fulfill the first requirement. Several refinements may implement a single specification. They characterize a class of systems that are candidate for substitution. Regarding the second requirement, a relation restoring the state variables of the substituted and substitute system is defined. It shall preserve the invariant and properties of the original specification.

In the next part, we will start by introducing a general substitution model in Chapter 4. Then, the discrete case will be presented in Chapter 5 and the continuous case in Chapter 7, after having studied the modeling of continuous systems in Chapter 6.

Part II Contributions

We rely on formal methods, more precisely the Event-B formal method [START_REF] Abrial | Modeling in Event-B: System and Software Engineering[END_REF] that provides proof and refinement for state-based models, to describe both the studied systems and the introduced substitution operation. We have chosen to describe systems as state-transition systems.

In this part dedicated to the contributions provided in this thesis, we first define in Chapter 4 a generic substitution model while explaining how it supports the expression of different substitution characteristics and how it relates to proof obligations. Then, in Chapter 5, we show how our proposal applies to discrete system substitution. The case of service compensation is shown as an illustrating example. Chapter 6 presents how hybrid systems can be modeled and verified in Event-B by going from continuous models to discrete ones using refinement. We are then able to model substitution occurring in hybrid systems in Chapter 7. Finally, Chapter 8 presents a generalization of our generic model, that enables us to define a common core part of the proofs. It also shows a model that can be refined to specific systems. Again, the case of service compensation is shown as a particular system captured by this generic model. Chapter organization. The main contribution of this chapter is presented in Section 4.2. It describes a stepwise methodology for the design of a correct system substitution operation. Proof obligations derived from the defined operation are presented in Section 4.3. The possible ways of applying the defined operation are discussed in Section 4.4. Finally, a conclusion summarizes our contribution in the last section.

Introduction

Our work aims at defining a generic correct-by-construction approach to model system substitution at runtime.

Objective of this chapter. We want to model system substitutions and prove the correctness of these substitutions. That is why we define a generic framework able to model substitutions with various characteristics while being able to prove the correctness of these substitutions through the identification of the related proof obligations.

System substitution

The availability of several refinements for a given specification means that several systems may implement a single specification. Each of these systems behaves like the defined specification. The systems that refine the same specification can be gathered into a class of systems. The availability of such a class makes it possible to address the problem of system substitution or system reconfiguration. The stepwise methodology for system substitution that we propose, considers one system of this class as a running system, and substitutes it by another system belonging to the same class. Indeed, when a running system is halted (in case of failure or loss of quality of service, etc.), a system of this class can be chosen as a substitute. In this chapter, we describe a formal methodology allowing system developers to define correct-by-construction system substitution or system reconfiguration. By "correct", we mean the preservation of safety properties expressed by the invariants.

A stepwise methodology

Our approach to define a correct system substitution setting is given in several steps. This stepwise methodology leads to the definition of a system substitution operator whose properties are discussed later.

• Step 1. Define a system specification. A state transition system characterizing the functionalities and the suited behavior of the specification system is defined.

• Step 2. Characterize candidate substitute systems. All the refinements of the specification represent substitutes of the specified system. They preserve the invariants properties expressed at the specification level. A class of substitutes is obtained. It contains all the systems refining the same specification.

• Step 3. Introduce system modes. Modes are introduced to identify which system is running i.e., those that have been halted and the remaining available systems for substitution. A mode is associated with each system, and at most one system is running.

• Step 4. Define system substitution as a composition operator. When a running system is halted, the selected substitute system becomes the new running system. During this substitution, the state of the halted system shall be restored in the substitute system. Restoring the state of the halted system consists in copying the values of the state variables of the halted system to the variables of the state of the substitute system. To formalize this operation, a sequence of two specific events is introduced. The first event, named fail, consists in halting the running system and switching it to a failure mode.

The second one, namely repair, restores the system state and switches the control to the substitute system. Because repair depends on the modeling of the internal state of both systems, it has to be explicitly defined for each pair of systems (it is a parameter of the substitution operator). Here, we consider only pairs of systems where the relation between the internal state of the halted system and of the substituted system can be explicitly defined.

An Event-B model for system substitution

In this section, we give an overview of the Event-B models corresponding to the stepwise methodology presented above. First a specification Spec of an abstract system is given, then we show how a source system S S defined as a refinement

SysS of the machine Spec can be substituted by a target system S T defined as a refinement SysT of the same machine Spec. Two events fail and repair for halting a system S S and for transferring the control to the target system S T are introduced.

Step 1. Define a system specification

The specification of the system is given by an abstract description of its functionalities and its behavior. An Event-B machine Spec, corresponding to the one in Model 2.2 page 26, defines the system specification. In that model, the behavior is defined by a single event, but there is no explicit limitation on the number of events. More events may be introduced to define this behavior, we have just limited our description to one single event.

Step 2. Characterize candidate substitute systems As stated above in Section 4.2.1, a class of substitute systems is defined as the set of the systems that are described as an Event-B refinement of the original Event-B machine Spec. Two systems SysS and SysT described by the Event-B refinements in Models 4.1 and 4.2 are substitute systems for the system described by the specification Spec. Note that several refinement steps may be required before the final models of the substitute systems are obtained.

On these two refinements SysS and SysT, we note the presence of:

• new sets of variables,

• an invariant describing the properties of the system and gluing the variables with the ones of the abstraction in the Spec machine,

• new events that may be either added or refined in order to describe the behavior of the new variables or define behaviors that were hidden in the specification,

• a variant: an expression whose value strictly decreases and which models the progress (or position) of the system, while guaranteeing its termination. 

v T Invariants I T (s, c, v T , v A ) Variant VN T Events Event Initialisation = Begin v T :| D T (s, c, v T ) VN T :| VN T _InitV alue End Event t_evt = Any x T Where G T (x T , s, c, v T ) Then v T :| BA T (x T , s, c, v T , v T ) End ... Event Evt Refines Evt =...

End

Model 4.2 -Machine SysT

We consider that both SysS and SysT see the context C0 of the specification Spec, and we assume that no new specific element is needed for their own contexts.

Step 3. Introduce system modes

The introduction of modes is a simple operation consisting in defining a new variable m (standing for mode). The values of the mode variable may be either the system identifier (S or T ) or the value F to represent a halted system in a failure mode. Moreover, the invariant related to each substitute system shall be valid when the variable m is equal to that system identifier. Models 4.3 and 4.4 show the description of the systems S and T with introduced mode. Again, each of the machines SysS* and SysT* refine the original specification Spec. At this step, we also anticipate any name clashes by renaming some elements through the addition of a prefix.

Step 4. Define system substitution as a composition operator

The machines SysS* and SysT* are composed into a single Event-B machine with two new events fail and repair. The role of the substitution operation is to enable the following sequence of events. 

m = T ⇒ I T (s, c, v T , v A ) Variant VN T Events Event Initialisation = Begin m := T v T :| D T (s, c, v T ) VN T :| VN T _InitV alue End Event t_evt = Any y T Where m = T ∧ G T (y T , s, c, v T ) With y T = x T Then v T :| BA T (y T , s, c, v T , v T ) End ... Event Evt Refines Evt =... End Model 4.4 -Machine SysT*
initialized to the value S in order to transfer the control to the events of the system S.

2. When a halting event occurs, the fail event is triggered. This event changes the value of the mode variable m to the value F . At this state, the system S is stopped and the invariant I S is valid at that current state. Note that the event fail can be triggered for any reason in the current formalization.

3. At this stage, the repair event is triggered because its guard (m = F ) is enabled (Model 4.6). This event serves two purposes. On the one hand, it restores the state of the halted system by defining the values of the variables v T of the substitute system S T and on the other hand, it sets up the variable VN T used to express the variant, to allow the restart of the system S T at the suited state (or the closer state). Finally, the mode is changed to T so that the control is transferred to the substitute system S T .

The definition of the repair event (Model 4.6) implies the definition of state restoration. The new values of the variables of system S T must fulfill safety conditions in order to move the control to S T in order for the invariant I T to hold in the recovery state. In other words, specific proof obligations are associated to the repair event.

Substitution as a composition operator

As stated above, the repair event shall be defined so that the state restoration preserves the safety properties described in the invariants. The definition of this event is completed in Model 4.7. At this level, two predicates are defined.

1. The Recover predicate characterizes the new values of the variables v T such that the invariant I T holds in the next state. It represents the horizontal invariant that glues the state variables of system S S with the variables of system S T .

2. The Next predicate describes the next value of the variant. It determines, which state in the system S T , is used as the new restoring state preserving the invariant I T . 

Event repair = Where m = F Then v S , v T :| Recover(v S , v T , v S , v T ) VN T :| N ext(V S , V T ) m := T End Model 4.7 -Extract of event repair 4.3. PROOF OBLIGATIONS FOR THE SYSTEM SUBSTITUTION OPERATOR SysG                initialisation from

The obtained composed system with substitution

Once the fail and repair events have been defined, the obtained model is composed of the two systems S S and S T . The sequence described above is encoded using a predetermined sequence of assignments of the mode variable m in the corresponding events. Moreover, the invariant of the final system is defined by cases depending on the value of the mode variable. When the system S S is running, the invariant I S holds, when the system S T is running, the invariant I T holds and finally, as stated previously, the invariant I S holds when the system S S is halted and being substituted. The obtained invariant is a conjunction of three implications.

The global system is again described as a refinement of the original specification. It is formalized by the Event-B machine SysG as shown in Model 4.8.

S G = S S • (Recover,N ext) S T refines Spec (4.1)
Finally, as defined in Equation (4.1), we can define a composition operator • (...,...) parameterized by the Recover and Next predicates.

The refinement relations are summarized in Figure 4.1.

Proof obligations for the system substitution operator

The proof obligations resulting from the definition of our substitution operator concern invariant preservation by the different events of the Event-B machine Sys G .

Let us analyze these proof obligations.

• For the initialization and the events of system SysS, the preservation of the invariant is straightforward. The proofs are those that have been performed for the refinement introducing modes in the previous step.

Machine SysG

Refines Spec Sees C0 Variables v S , v T , m Invariants (m = S ⇒ I S (s, c, v S )) ∧ (m = F ⇒ I S (s, c, v S )) ∧ (m = T ⇒ I T (s, c, v T )) Variant VN S + VN T Events Event Initialisation = Begin m := S v S :| D S (s, c, v S ) v T :| VN S :| VN S _InitV alue VN T :| 0 End Event s_evt = Any x S Where m = S ∧ G S (x S , s, c, v S ) Then v S :| BA S (x S , s, c, v S , v S ) End Event Evt Refines Evt = ... Event fail Where m = S Then m := F End Event repair = Where m = F Then v S , v T :| Recover(v S , v T , v S , v T ) VN T :| N ext(V S , V T ) m := T End Event t_evt = Any x T Where m = T ∧ G T (x T , s, c, v T ) Then v T :| BA T (x T , s, c, v T , v T ) End ...

End

Model 4.8 -Machine SysG

• The same situation occurs for the events of system SysT. Again, the associated proof obligations are those obtained and proved when introducing modes in the previous step.

• The fail event preserves the invariant since it does not modify any state variable except the mode. It preserves the invariant

I S with (m = S ⇒ I S (s, c, v S )) ∧ (m = F ⇒ I S (s, c, v S )).
• Finally, the repair event considers that I S holds before substitution and it must ensure that the invariant I T holds after substitution.

So, the introduction of the repair event entails specific proof obligations that needs to be discharged in order to ensure the correctness of the substitution. The definition of the Recover predicate is the key point to obtain a correct system substitution. The proof obligations associated to the repair event consists first in preserving the invariants and second in restoring the correct variant value.

Invariant preservation proof obligation

Invariant preservation for the repair event requires to establish that the invariant I T of system S T holds in the recovery state. In other words, under the hypotheses given

PROOF OBLIGATIONS FOR THE SYSTEM SUBSTITUTION OPERATOR by the axioms

A(s, c), the guard m = F , the invariant (m = S ⇒ I S (s, c, v S )) ∧ (m = T ⇒ I T (s, c, v T )) ∧ (m = F ⇒ I S (s, c, v S )
) and the new variable values

Recover(v S , v T , v S , v T ) ∧ m = T , the invariant (m = S ⇒ I S (s, c, v S )) ∧ (m = T ⇒ I T (s, c, v T )) ∧ (m = F ⇒ I S (s, c, v S )
) hold for the variables in the next state. The sequent in Equation (4.2) describes this proof obligation.

A(s, c), (m = S ⇒ I S (s, c, v S )) ∧ (m = T ⇒ I T (s, c, v T )) ∧ (m = F ⇒ I S (s, c, v S )), m = F, Recover(v S , v T , v S , v T ) ∧ m = T (m = S ⇒ I S (s, c, v S )) ∧ (m = T ⇒ I T (s, c, v T )) ∧ (m = F ⇒ I S (s, c, v S )) (4.2)
After simplification, the previous proof obligation leads to the definition of the final proof obligation of Equation ( 4.3) associated to invariant preservation.

A(s, c) I S (s, c, v S ) ∧ Recover(v S , v T , v S , v T ) ⇒ I T (s, c, v T ) (4.3)

Variant definition proof obligation

The introduction of the new variant value determines the restoring state in the target system S T . The predicate Next needs to be defined so that the variant VN S + VN T of the global system decreases. It is required to establish that VN S + VN T < VN S + VN T . The next value of VN T determines the restoring state in system S T . Since the value of the variant VN S does not change, only the variant VN T decreases. The associated proof obligation is given by the sequent of Equation 4.4.

A(s, c),

(m = S ⇒ I S (s, c, v S )) ∧ (m = T ⇒ I T (s, c, v T )) ∧ (m = F ⇒ I S (s, c, v S )), m = F, N ext(VN S , VN T ) ∧ m = T ∧ VN S = VN S VN S + VN T < VN S + VN T (4.4)
After simplification, the previous proof obligation leads to the definition of the final proof obligation of Equation (4.5) associated to variant definition.

A(s, c), I S (s, c, v S ) N ext(VN S , VN T ) ∧ VN S = VN S ⇒ VN T < VN T (4.5)

About restored states

As shown on the proof obligations obtained in Equations (4.3) and (4.5), the definition of the Recover and Next predicates is identified as the fundamental characteristics for the correct substitution operation.

The Recover predicate defines the horizontal invariant. This invariant defines the properties needed to restore the state variables of the original halted system in the substitute state variables. It also describes the safety property of the substitute system. According to the definition of this predicate, as discussed in Section 4.4, different substitution cases are identified.

Regarding the Next predicate, one can note that any value of the variant that decreases the variant VN T is accepted. For instance, one could set up the variant to the final state of system S T meaning that the substitution has been done in the final state. The only condition concerns the Recover predicate which shall restore the correct values of the variables in this final state.

Substitution characteristics

Cold and Warm start

In the approach we have sketched in Section 4.2, this characteristic is handled by the correct definition of the Recover and Next predicates. Indeed, according to the definition of these predicates, the restored state may be either the initial state (in the case of a cold start) or a state constructed from the current state to be as close as possible to the current state from a functional standpoint (in the case of a warm start).

Identical, included or disjoint sets of state variables

In the framework presented in Section 4.2, v S and v T represent the set of state variables for the original and substitute systems. According to the properties linking these two sets in the repair event using the Recover predicate, different substitution cases occur.

• The sets of variables are identical i.e. v S = v T . The effect of the repair event is to restore a new state (correct with respect to the given invariants) after substitution.

• The sets of variables are partially shared i.e. v S ∩ v T = ∅.

• The sets of variables are disjoint i.e. v S ∩ v T = ∅. The repair event transfers the control to a completely new substitute system.

Equivalence, Upgrade and Degradation

Within the provided framework three cases can be identified and handled. The substitute system SysT may be equivalent to the original system SysS, upgrade it 4.5. CONCLUSION (enhance it) or degrade it.

As quality of service is out of scope of our framework, the three previous cases can be described with adequate definitions of the Recover and Next predicates. In fact, the definition of each case relies on the provided invariants to be preserved during substitution i.e. by the repair event.

Let us assume that there exist two predicates Φ and Ψ (Φ = F alse ∧ Ψ = F alse) such that I S ∧ Φ ⇐⇒ I T ∧ Ψ, then the three identified cases can be expressed.

• Equivalence is obtained when I S ⇐⇒ I T . It means that the substitute preserves the same invariant properties as the original system since Φ ⇐⇒ T rue and Ψ ⇐⇒ T rue. The case study presented in Section 3.1.4 illustrates this case. The set of products purchased with the substitute system SysT is identical to the original system SysS.

• Upgrade occurs when I S ∧Φ ⇐⇒ I T . Here, the substitute system SysT offers more functionalities characterized by the invariant part Φ than the original system. Indeed, I T =⇒ I S which means that the substitute system guaranties the properties that the previous did. Additionally, I T =⇒ Φ which specifies that the substitute system also guaranties the new property Φ.

• Degradation is dual to upgrade and it occurs when

I S ⇐⇒ I T ∧ Ψ.
Here, the substitute system looses some of the functionalities characterized by the invariant part Ψ of the original system.

Static or dynamic set of substitutes

In the framework presented in the previous section, we have assumed that the set of substitute systems is known and does not change (static). Modes have been introduced to identify the running system and the selected substitute system is known by the repair event.

To handle a mechanism where the set of substitutes would be dynamic, an event managing (adding or removing substitutes) a set of modes corresponding to substitute systems (that refine a common specification) must be added, and the repair event must select a substitute in this set.

Conclusion

This chapter addressed the problem of correct system substitution, where systems are described as state-transition systems. It provides a stepwise correct-by-construction approach based on refinement and proof supported by the Event-B method. It has been published in [START_REF] Babin | A generic model for system substitution[END_REF].

This approach relies on two elements:

1. the definition of a class of systems that implement (i.e. refine) the same specification 2. a system substitution operator parameterized by a recovery property, namely a horizontal invariant. This composition operator combines two or more systems that refine the same specification. It is parameterized by the substitution or repair property ensuring that the current state (the state where the source system is halted) is correctly restored in the substitute system.

The defined framework for substitution ensures that, when a system is halted (a failure occurs for instance), the state of the source system is correctly restored to the state of the target system. Depending on the definition of the horizontal invariant, the composition operator entails three types of substitution: equivalent, degraded or upgraded substitute systems can be obtained. This will be expanded in Chapter 5.

Two different substitution relationships have been presented. The first one is a static substitution (corresponding to a cold start). It relies on refinement to characterize the set of systems that conforms to the same specification. A class of potential implementation systems are thus characterized by refinement. Here when a system is halted, the state is restored to the initial state of the substitute system. The second one addresses the dynamic substitution (substitution at runtime or warm start) which uses state restoration by transferring the control to the adequate state in the substitute system.

Furthermore, the fail event can be refined in order to introduce failure conditions like loss of quality of service.

This framework for substitution has been applied to the two use cases presented in Chapter 3. Discrete system substitution is detailed in Chapter 5. Continuous system substitution is presented in Chapter 7, using the work of Chapter 6 on the modeling of continuous systems. A formalization of the generic framework presented in this chapter together with an instantiation of this model for a discrete case are presented in Chapter 8. Chapter organization. The formal modeling and verification of services compositions within Event-B has been discussed in Section 3.1.3. Our view on service compensation is given in Section 5.2, and Section 5.3 describes the stepwise methodology we have proposed to handle such a formal process for services compensations.

The root model corresponding to the global specification of our case study is given in Section 5.4. Then, in Section 5.5 we give the application of this approach on the defined case study where the specific case of equivalent compensation is detailed. Finally, Section 5.6 presents an overview of the two other compensation cases (degraded and upgraded cases). At the end of this chapter, a conclusion summarizes the key contributions and identifies some research directions.

Introduction

Objective of this chapter. The objective of this chapter is to show how our approach for system substitution applies to discrete system substitution. We have chosen to illustrate such systems for web service compensation. In this chapter, we advocate the use of invariant preservation in order to formally check the correctness of service compensation. We propose a correct-by-construction approach to handle compensation at runtime and we model service compensation as a particular case of system substitution. It can be used as a ground model for runtime service compensation as defined in languages like BPEL. The approach is based on refinement and proof using the Event-B method. Safety of the compensation is guaranteed by invariant preservation corresponding to a liveness property (leads-to property). Three compensation cases are addressed: equivalent, degraded and upgraded compensation cases.

Our view of compensating activities

One of the main requirements of service compensation is consistency. Indeed, compensation shall:

• complete the functional objective of the compensated service. In our case study, described in Section 3.1.4, this statement refers to the correct compensation requirement.

• safely transfer the control from one service to another one at runtime by preserving, as much as possible, the completed steps of the compensated service. In our case study, this statement refers to the compensation at runtime requirement.

The key idea for service compensation, developed in this chapter, is based on invariant preservation. Invariants are defined at the root level to characterize the functional correctness property associated to the defined services composition. The invariants are preserved in further refinements that shall guarantee this preservation. Invariants are associated to each service, they express the property related to the function accomplished by a given service.

During compensation, the preservation of such invariants by the compensating service is required. To preserve these invariants, a relation, fulfilling safety conditions, shall be defined between the compensated service and the compensating one. In other words, the state of the compensated service shall be restored in the compensating service so as the invariant still holds.

In the rest of this chapter, our approach for service compensation is defined. We address the case of compensating a source service by another target service. We consider that such a compensating service is always available, it belongs to the class of services that refine a global specification of a services composition. Therefore, the compensating service is chosen following the refinement criteria. Any service that refines the same global specification is a good candidate for compensation. Quality of services aspects are not addressed here.

Compensation of a service by another one: definition

Our compensation mechanism relies on the following definition. For a given activity supported by a service a, a source service s is compensated by a target service t if and only if the following holds:

1. Activities defined by the services s and t refine the activity defined by the service a using the gluing invariant I s and I t respectively guaranteeing that s and t realize the same function as a.

2. There exists a logical relation, defining an invariant, linking (gluing) the states of the source service s and the target service t. It ensures that a repair action or compensation:

(a) does not violate the refinement of the activity a, (b) defines a recovered state in the target service that satisfies the defined invariant and thus ensures the correct refinement of the global specification.

These two conditions shall be guaranteed by each defined compensation mechanism at runtime. Observe, that compensation can be seen as a specific case of system substitution as introduced in Chapter 4.

The role of the invariant

The invariant plays a key role to ensure that, during compensation, the source and target services fulfill the invariant defined in the global specification. This result is ensured by the correct refinement which introduces the gluing invariant. It shows that the source service s can be compensated by the target service t but it does not provide us with information about the recovery state and thus about compensation at runtime.

So, this definition of the invariant is not enough to guarantee correct state restoration. According to the defined methodology, the developer shall exhibit a specific relation between the state of the source service s when halted and the restored state of the target service. This relation defines the so-called horizontal invariant. Moreover, modes are used to manage the switching from the halted service to the compensating one. The mode changes ensure atomicity (discrete case) of the compensation since no other service runs during compensation, and thus no state variable is modified.

When such a relationship and horizontal invariant are provided, different compensation cases become possible: degraded, upgraded or equivalent.

Different compensation cases

Let us assume that services s and t correctly refine the specification described by the activity or service a. This means that both s and t are correct implementations of a. As a consequence, s and t belong to the same class of implementation services for a. Moreover, one can formally assert that service t correctly compensates service s.

Since s and t refine the same service specification a, they both define their own gluing invariant I s and I t ensuring the correct refinement of a.

At this stage of our development, we are able to define the relationship between the states of each refined service. Indeed, the following logical relation of equivalence can be expressed. It defines the horizontal invariant and different compensation cases.

I s ∧ φ ⇐⇒ I t ∧ ψ
Here φ ( = false) and ψ ( = false) define logical expressions to link both invariants. So different cases may occur. This relation leads to the four following situations.

1. φ = ψ = true. This situation describes the case where service s is compensated by an equivalent service t. The two services accomplish the same goal.

2. φ = true and I t ψ. This situation describes a case where service t degrades service s during the compensation. The I t invariant does not cover the whole functional specification of s. The compensation does not guarantee that the activity performed by s will remain the same in the compensating service because part of the invariant I s is supported by ψ.

3. I s φ and ψ = true. This situation describes the case where service t upgrades service s during the compensation. It guarantees both I s and other properties expressed by φ. It means that t "does" more than s but it preserves the functional properties targeted by s.

4. φ = true and ψ = true. Finally, this case corresponds to an unknown situation where no information about the compensation can be inferred.

Cases 1, 2 and 3 are considered in this chapter. They correspond to the cases identified in Section 4.4.3 of our methodology for system substitution. They correspond to realistic situations. Case 4 is not useful and is not considered in our work.

Different compensation cases: illustration on the defined case study

In the case study defined in Section 3. The figures presented here and in the next section use the statechart notation [Har87; OMG15]. Classical state-transition systems can be described and may be themselves decomposed into other state-transition systems that may be run in parallel (interleaved denoted by a dashed vertical line).

Equivalent compensation mode

The first compensation mode corresponds to equivalence. In this case, the logical expression is φ = ψ = true. Figure 5.2 shows two possible refinements of the abstract selection service defined in Figure 5.1.

• The first one, on the left-hand side (see Figure 5.2a), corresponds to the case of a selection of a set of purchased products on a single website. The addItem1 event loops until the products the end user whishes to purchase are selected.

• The second one, depicted on Figure 5.2b, corresponds to a selection of the purchased products realized on two different websites. Two interleaved processes (running in parallel; dashed lines) addItem2A and addItem2B are triggered. At the end, the set of selected purchased products is the union of the two sets obtained by each process.

In both cases, once the selection activity is completed, the selection event is completed.

Degraded compensation mode

The second compensation case deals with the degraded compensation mode. In our case study, we have described this situation by identifying lost products when the In both cases, once the selection activity is completed, the selection event is completed.

OUR VIEW OF COMPENSATING ACTIVITIES

Upgraded compensation mode

The last compensation case concerns the definition of an upgraded mode. In our case study, this situation is shown on Figure 5.4. The source service, on a single website (Figure 5.4a) collects a set of products that is a subset of the set of specified products to be purchased. On the same figure, the other products are collected by an abstract service which adds new products using the event addItemNew loop. On the right side, the target service of Figure 5.4b collects the exact set of specified products. In both cases, once the selection activity is completed, the selection event is completed.

Remark

In the upgraded and degraded modes, we have introduced what we call abstract services on one side or the other depending on the compensation case. These services are characterized by the φ and ψ properties of the horizontal invariant. These services are introduced to ensure a closed model where purchased products are modeled even if they are lost (in the case of the degraded mode) or new (in the case of upgraded mode). This is useful in the model to be able to precisely specify which products are lost or new. However, these abstract services would not appear in a concrete implementation of these models.

Cold start vs. warm start

Following the definition given in Section 2.1.1, cold start corresponds to the case where the restored state of the compensating service is the initial state. In other words, the compensating service runs from the beginning and erases the effects of the compensated service. This compensation mechanism is handled by the correct refinement. In case of compensation, any web service that refines the specification can be started or triggered from each initial state. The user will have to reenter all the input again.

Warm start corresponds to the case where the restored state of the compensating service is another state that collects the effects of the compensated service as much as possible. In other words, when a service is halted, the state variables of the compensating service are correctly updated by the values of the state variables of the compensated service. The horizontal invariant and the repairing event ensures that these values are safely copied. The way these variables are copied defines the equivalent, degraded or upgraded compensation modes. The use of modes to identify the running and compensating services guarantees the atomicity of the compensation although time is passing during compensation. The complexity of the compensation depends on the computations involved in the horizontal invariant expression defining the state restoration operation.

In the remainder, we deploy the defined methodology, in the case of discrete systems, for designing correct web services compensation. We show how the definition of a horizontal invariant makes it possible to define a compensation of a source service s by a target service t in the three cases shown in Section 5.2.3 and in the cold or warm start cases.

Deploying the stepwise methodology for defining consistent compensations with Event-B

The approach we define is a stepwise approach. This methodology allows a developer to design services compositions with correct compensations. By correctness, we mean not only the behavioral correctness, but also the functional correctness which is not addressed in most of the defined approaches of the literature. The proposed approach relies on refinement to characterize the correct compensating services on the one hand, and on invariant preservation to define relationships between a compensated service and a compensating service on the other hand. The four steps of the defined methodology are described in the following.

Step 1. Composite web services as transition systems

First, a services composition is defined as a global specification. Then, a set of services compositions refining the defined global specification is given. Each services composition belonging to this set is seen as a transition system refining a global specification. At this step, we obtain a class of possible services compositions that simulate the global specification. When this process is repeated, a library of classes of services can be obtained. Each class characterizes all the services that refine the same activity.

Step 2. Introduction of failures and failure modes

Failures are introduced using explicit failure events. The effect of these events consists in suspending the current running service. For this purpose, two modes are introduced using mode variables. A running mode stating that a service is currently active and a failure mode stating that a given service is in failure mode. The introduction of such modes contributes to the definition of the compensation order.

Step 3. Service recovery

Service recovery is performed thanks to a compensating event. This event selects the compensating service and transfers the control to this service.

This step requires the identification of the next state in the compensating service. Here, the defined gluing invariants are important, they define the next state in the compensating service. At this level, note that no selection criteria has been considered in this work, but this step can be completed by richer selection criteria, for example by exploiting quality of service properties. This aspect is out of scope of this work.

Step 4. Transferring control to the compensating service after failure

Finally, once the recovery state in the compensating service is known, it becomes possible to transfer the control to proceed with the execution of the composed service. This transfer is realized in two steps. First, the variables of the compensating service are updated and second, the compensating service mode is set to running mode. The next two sections show how this methodology is set up on the case study.

Case study: the root Event-B model

This section presents the formal Event-B root model associated to the case study defined in Section 3.1.4. This model represents the specification of a services composition. It will be refined later by several other refinement models that define possible implementations of this specification. Below, we give the context C1 defining the relevant concepts needed to model the elements manipulated by the services and then the services composition is given by the M0 abstract machine.

Context definition

The context C1 of Model 5.1 defines the relevant sets for products (a finite set) and websites (at least two websites for the purpose of the case study). It also defines the 

STOCKS relation (Cartesian product

Model definition

The root model corresponding to the main Event-B machine M0 in Models 5.2 and 5.3 formalizes the state-transition system of Figure 3.1. This machine is composed of the following elements.

• The variables carts denoting the cart containing the selected products and seq describing a sequencing variant on the events. These variables describe the state variables of the defined state-transition system. All these variables are defined in the Variables clause.

Machine M0 Sees C1 Variables P , cart, seq • The safety properties associated with the selection service are described by invariant properties in the Invariants clause. These properties, to be preserved by all the events, contain the typing properties for the state variables (inv1 ). Moreover, they state that:

Invariants inv1: carts ⊆ ST OCKS inv2: seq < 4 ⇒ ran(cart) = P inv3: ∀p. p ∈ ran(cart) ⇒ card(cart -1 [{p}]) = 1 Variant seq Model 5.
cart contains the currently purchased products from websites;

CASE STUDY: THE ROOT EVENT-B MODEL

once the selection of products to be purchased is completed (seq < 4), the set of purchased products is the expected one (being P ) by inv2 ; a product p in the set of purchased products cart is purchased only once, by inv3.

The property inv2 of the Invariants clause guarantees that the set up specification of the web services composition correctly purchases the desired set of products P . ran(cart) = P is true after triggering the selection event.

So, any refining behavior preserving such an invariant will be considered as a possible compensating services composition of the service composition defined by this specification. The definition of the invariant is fundamental in the correctness of the approach we propose. • The Initialisation event is the first defined event (see Model 5.3). It sets up the cart to the empty set (meaning that no product is selected yet) and seq is assigned value 4, the number of sequential events. When seq = 4, it enforces selection to be the first event to be triggered. The scheduling of the events is guaranteed by seq;

Events

• The other events define the sequence corresponding to the composed services. The description of these events and the triggering order defines a suitable composition. This description uses guards, a variant, non-determinism and interleaving semantics for events offered by Event-B to support either sequential or parallel composition.

For the purpose of this case study, the following sequence of events has been defined (see Model 5.3) as follows.

-The selection event sets up the cart (act2 ) to any cart someCart containing the specified set of products P whatever are the websites (grd2 and grd3 ). It sets up the seq variable to 3 (act1 ) ensuring that the next triggered event will be the payment event.

Let's observe that grd3 and grd4 guarantee that the invariant is preserved. Indeed, grd3 guarantees that the set of purchased products is P , and grd4 expresses that a product in someCart is purchased only once.

Once the selection event is triggered, the set of purchased products corresponds to P .

-When the product selection is completed, the payment, invoicing and delivery events, describing the corresponding activities, are ready to be triggered in this order thanks to the seq variant values occurring in the guards of these events.

Note, that only the selection event is detailed. We do not give the details of the other events, since we illustrate service compensation on the selection service (activity).

Refining the root model

The root model represents the global specification of the defined services composition. Following the methodology described in Section 4.2, all the Event-B models that refine this root model are correct implementations of the defined specification. These implementations simulate, in the sense of the simulation relationship [START_REF] Milner | A Calculus of Communicating Systems[END_REF][START_REF] Milner | Communication and Concurrency[END_REF], the behavior of the specification. Our approach exploits the refinement offered by Event-B. All the correct refinements of the global specification are candidates to implement the specification. This result gives us a way to characterize all the compensating services for a given specification. Indeed, it is enough to identify a refinement to get a possible compensating service. Refinement allows a developer to formally characterize a class of compensating services. But, yet, we did not describe the compensating process, we just identified the good compensating services.

A FORMAL EVENT-B MODEL FOR WEB SERVICES FAILURE/COMPENSATION

In the following, we show how an implementation of the selection activity can be compensated by another implementation. We will exploit the refinement capability offered by Event-B.

A formal Event-B model for web services failure/compensation

This section applies the previous steps on the case study of Section 3.1.4. As mentioned previously, we are concerned with the compensation of the selection activity of the web services composition depicted on Figure 3.1 page 33 and whose Event-B model is given by the Models 5.2 and 5.3. Therefore, the other services payment, invoicing and delivery are not addressed in the developments presented below.

As mentioned in Section 5.2.4, two specific web services refining the selection activity are introduced.

• The first one, denoted WS1, allows a user to purchase the set of products P on a single website (namely site 1 ).

• The second one, denoted WS2, allows a user to purchase the set of products P using the combination of two different websites (namely site 2A and site 2B ). Each of these services fills a cart of products denoted cart W S1 for WS1 and cart W S2 for WS2.

The defined compensation considers that WS1 is the running service. The failure and compensate events are introduced in order to switch from WS1 to WS2 in case of failure.

According to Section 5.2.4, this case study shows three compensation cases: equivalent, degraded and upgraded compensations. In the following, we describe in details how the defined methodology works for the case of equivalent compensation. The main development activities are described for the two other compensations cases (degraded and upgraded compensations).

Equivalent compensation: application to the case study

The equivalent compensation case corresponds to the refined selection event defined by the state-transition system depicted on Figure 5.2. The left and right sides of this figure describe the state-transition systems that behave equivalently from a functional point of view (the goal of the service).

Following the definition of the compensation given in Section 5.2.1, the horizontal invariant corresponding to the compensation depicted on Figure 5.2 is

cart W S1 = P ⇐⇒ cart A W S2 ∪ cart B W S2
= P According to the identified compensation cases of Section 5.2.3, we can assert that the compensation is performed by an equivalent service (See Section 5.2.4 with The global system can continue the execution seamlessly without losing any product. Moreover, we guarantee the functional correctness of the global system through the proof of the refinement of the specification.

φ = ψ = true).
Having described the different resources needed to set up the compensation of WS1 by WS2, we are ready to describe the whole Event-B development encoding this compensation following the stepwise methodology of Chapter 4 applied to this case.

Step 1. Composite web services as transition systems

A machine refining the M0 machine is defined for each system. Two events (selection_WS1 and selection_WS2) refining the selection event in the Event-B model of Model 5.3 are defined. They correspond to WS1 and WS2. They are defined as follows.

1. The first refinement R1, described in Model 5.4, defines one possible web service implementing the selection activity in case of a single website site 1 .

It introduces a new event triggered as long as the cart cart W S1 associated to the website site 1 does not contain the suited set P of products (grd1 of the addItem_WS1 event). The chosen product item is added to the cart (act1 ). Once the cart contains all the products of the set P , then, the event selection_WS1 refining the selection event can be triggered, since its guard grd1 becomes true.

Note that this refinement introduces a new variable sys, acting as a mode variable, defining the current running system (here the web service WS1 with one website).

2. The second refinement R2, described in Model 5.5, defines a second web service implementing the selection activity in the case of two websites site 2A and site 2B . Here again, this refinement consists in introducing two events triggered as long as the union of the two carts cart A W S2 and cart B W S2 does not contain the set of all products P to be purchased (events addItemA_WS2 and addItemB_WS2). In the same manner, once the cart contains all the products, the event selection_WS2 refining the selection event can be triggered, since its guard grd1 is true.

Here again, note that this refinement introduces a new variable sys, acting as a mode variable, defining the current running system (here the web service WS2 with two websites). The effect of this event is to switch the global web services composition from a normal mode to a failure mode (act1 ).

A FORMAL EVENT-B MODEL FOR WEB SERVICES FAILURE/COMPENSATION

Step 3. Service recovery

At this level, the whole web services composition is halted (grd2 ). The repairing event exploiting the horizontal invariant can be triggered. Model 5.8 shows how the compensation is handled.

The compensate_WS1_WS2 event copies the current state variables of the failed service (act3 and act4 ) into the new state variables of the compensating service. The variable sys changes value to 2 (WS2 ) and the failureStatus is turned to an OK mode. At this stage, the compensating service is ready to run.

Event compensate_WS1_WS2 = Any aCart A W S2 , aCart B W S2
Where

grd1: sys = 1 grd2: f ailureStatus = N OK grd3 : aCart A WS2 ∪ aCart B WS2 = cart WS1 grd4: aCart A W S2 ∩ aCart B W S2 = ∅ Then act1: sys := 2 act2: f ailureStatus := OK act3: cart A W S2 := aCart A W S2 act4: cart B W S2 := aCart B W S2

End

Model 5.8 -The compensating event exploiting the horizontal invariant (in machine R3 refining M0 )

Step 4. Transferring control to the compensating service after failure At this level, compensation is completed. Indeed, the compensate_WS1_WS2 event of Model 5.8 has set up to true all the conditions to trigger the addItemA_WS2, addItemB_WS2 and selection_WS2 events of the compensating service with two websites.

A FORMAL EVENT-B MODEL FOR WEB SERVICES FAILURE/COMPENSATION
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Some remarks

The previous development showed on a case study how the refinement offered by Event-B supports the definition of correct compensation mechanisms for web services compositions. It illustrated how the proposed methodology for system substitution that was defined in Chapter 4 applies to discrete system substitution. This development led to a completely proved formal development available in Appendix B. The sizes of the various proofs for the various machines and contexts are available in Figure 5.5.

Other compensation cases: upgraded and degraded

As mentioned previously, in this section, we consider the two remaining compensation cases among the three identified ones (i.e. upgraded and degraded modes).

Compensation in presence of degrading services

The second case of compensation is the degraded case. It corresponds to the case where products are lost when a compensation is performed. This case is depicted in Section 5.2.4 on Figure 5.3. The following horizontal invariant is introduced to characterize this situation.

cart W S1 = P ⇐⇒ cart A W S2 ∪ cart B W S2
∪ Lost = P It states that the compensating service looses a set of products Lost that were originally in the compensated service's cart. We have followed the same methodology as for the equivalent case. The main difference occurs in Step 3, where the repairing (compensating) event must guarantee the horizontal invariant.

The repairing event exploiting the horizontal invariant can be triggered. Model 5.9 shows how the compensation is handled.

The compensate_WS1_WS2_deg event splits the current cart of the failed service (act3 and act4 ) into the new state variables of the compensating service. A new state variable, the set Lost, is defined in the compensating service. This variable is introduced to guarantee that the horizontal invariant holds. The other substitutions behave as for the equivalent compensation case.

OTHER COMPENSATION CASES: UPGRADED AND DEGRADED

Event compensate_WS1_WS2_deg = Any aCart A W S2 aCart B W S2
aLost // products that will be lost Where grd1: sys = 1 grd2:

f ailureStatus = N OK grd3: aCart A WS2 ∪ aCart B WS2 ∪ aLost = cart WS1 grd4: aCart A W S2 ∩ aCart B W S2 = ∅ grd5: aCart A W S2 ∩ aLost = ∅ grd6: aCart B W S2 ∩ aLost = ∅ Then act1: sys := 2 act2: f ailureStatus := OK act3: cart A W S2 := aCart A W S2 act4: cart B W S2 := aCart B W S2
act5: Lost := aLost End Model 5.9 -Compensating event and horizontal invariant (degraded case)

Compensation in presence of upgrading services

The third case of compensation is the upgraded case which corresponds to the case where more products than specified are purchased. This case is depicted in Section 5.2.4 on Figure 5.4. The following horizontal invariant is introduced to characterize this situation.

cart W S1 ∪ N ew = P ⇐⇒ cart A W S2 ∪ cart B W S2
= P It states that the compensating service offers a New set of products that were not originally in the compensated service's cart. Again, we have followed the same methodology as for the equivalent case. The main difference occurs in Step 3 where the repairing (compensating) event must guarantee the horizontal invariant. This repairing event exploiting the horizontal invariant can be triggered. Model 5.10 shows how the compensation is handled.

The compensate_WS1_WS2_upg event copies the current state variables of the failed service (act3 and act4 ) into the new state variables of the compensating service, but the New set is included in

cart A W S2 ∪ cart B W S2
. The other substitutions behave as for the equivalent case.

If applied to two web services, it corresponds to the case where the compensating service offers more functionalities than offered by the compensated service. For example, when purchasing flight tickets, one can use a website that offers more products to purchase like booking hotel rooms, car rentals, etc.

Event compensate_WS1_WS2_upg = Any aCart A W S2 aCart B W S2
aNew // products that will be added Where grd1: sys = 1 grd2:

f ailureStatus = N OK grd3: aCart A WS2 ∪ aCart B WS2 = cart WS1 ∪ aNew grd4: aCart A W S2 ∩ aCart B W S2 = ∅ Then act1: sys := 2 act2: f ailureStatus := OK act3: cart A W S2 := aCart A W S2 act4: cart B W S2 := aCart B W S2

End

Model 5.10 -Compensating event and horizontal invariant (upgraded case)

Conclusion

Several approaches have been defined and succeeded in verifying correct behaviors of composite web services compensations. Due to the abstraction of services input/output to avoid state number explosion, little attention has been paid to the verification of functional correctness of service compensation.

In this chapter, we have applied our methodology for correct substitution to the discrete case of service compensation. It has been published in [START_REF] Babin | Formal Verification of Runtime Compensation of Web Service Compositions: A Refinement and Proof Based Proposal with Event-B[END_REF] and [START_REF] Babin | Web Service Compensation at Runtime: Formal Modeling and Verification Using the Event-B Refinement and Proof Based Formal Method[END_REF].

The approach we have developed in this chapter relies on the definition of horizontal invariants that establish a relation between services' states. This relation leads to the definition of a class of equivalent services with respect to the defined relation (loose coupling of services). Each service refining (implementing) a given activity is a candidate to compensate a service. Indeed, each service refining a service specification is a candidate for correct compensation in a cold start context. Then, a stepwise methodology consisting in gradually introducing failure and compensating events has been defined. It is compatible with the definition of compensation available in languages like BPEL. We have shown on a case study how this approach works and a whole Event-B development has been described. Moreover, the proposed approach also addressed two major aspects of compensation.

• The first one is the capability to make compensation at runtime. Indeed, the definition of horizontal invariants makes it possible to define compensation events that repair the suspended activity and switch from a failed service to a compensating one by affecting its variables consistently.

• The second key point concerns the nature of the horizontal invariant. Indeed, equivalent, degraded or upgraded compensations can be expressed. The equivalence relation defined allows a developer to check the quality of the compensating service. This situation has been shown on three compensation cases whose definition relies on the provided horizontal invariant.

Then, the defined compensation mechanism supports a dynamic compensation. When the horizontal invariant is correctly chosen (by correct, we mean that it preserves the one of the original specification), then the repairing event recovers the state of the compensated service in the compensating service. This feature is relevant for defining compensation on-the-fly during service orchestration.

Finally, the proposed approach promotes openness. Indeed, the definition of compensating services can be done dynamically. It requires adding new compensating services to the class of services, provided they define a correct refinement of the compensated activity. In this case, the service may be chosen to compensate a failed service. In other words, refinement allows a service designer to characterize a whole set (a class) of compensating services.

In this chapter we detailed a compensation mechanism based on discrete substitution using our modeling framework. In the next chapter (Chapter 6), we will introduce the modeling of continuous systems in Event-B. Then in the following chapter (Chapter 7), we will present our work on continuous system substitution.

6 Hybrid systems: Continuous to discrete models Chapter organization. Section 6.2 overviews the addressed problem of discretization. The refinement strategy for any continuous function together with the corresponding requirements are given in Section 6.3, while the complete Event-B development handling these requirements is provided in Section 6.4.

Introduction

Before addressing the case of non-instantaneous (non-atomic) system substitution, we first study how systems with models relying on continuous time over real numbers can be modeled using the refinement and proof method Event-B. These models allow designers to describe hybrid systems. We show how, under some hypotheses, continuous systems descriptions are correctly discretized.

In the past years, several approaches relying on formal methods, like Hybrid automata [START_REF] Henzinger | The Theory of Hybrid Automata[END_REF] and model checking [START_REF] Alur | Formal verification of hybrid systems[END_REF], have been set up to describe the behavior of the software controllers. Our proposal focuses on the synthesis of correct discrete controllers for hybrid systems.

Objective of this chapter. This chapter shows how proof and refinement based approaches handle the development of a correct-by-construction discrete controller starting from a continuous time function specification of the continuous controller. A complete incremental development relying on a theory of reals is conducted to synthesize a correct discretization of a continuous function. The approach exploits an axiomatization of mathematical reals. It maintains a safety invariant characterizing the physical plant of the studied system. Such an invariant defines a safety envelope (which we also named safety corridor) modeling a stability property in which the system must evolve i.e. for a continuous function f , we write ∀t ∈ R + , f (t) ∈ [m, M ] where t is a continuous time parameter belonging to R + and the reals m and M define respectively minimum and maximum values in R + ensuring a correct behavior of the physical plant, whose behavior is modeled by the function f . In general, these values are the result of the physics of the studied system. The Event-B method is used to handle such formal developments. We illustrate our proposal with the development of a simple stability controller for a generic plant model. Next, we will address system substitution where systems are characterized by such models.

Discretization of continuous functions

The behavior of many systems can be characterized by three phases: the initial boot, the nominal behavior, and the halting of the system. Several CPS integrating physical plants and software controllers follow this state evolution pattern. Examples of such systems are energy production systems, smart systems, medical systems, etc. These systems are usually modeled by differential equations specifying continuous time functions. In order to design a software controller running on discrete time steps to handle their behavior, one has to discretize these continuous functions. The main safety property concerns stability where the function values shall be maintained inside a safety envelope, i.e. an interval of correct values, called corridor.

The correct implementation of such continuous functions is a key point in ensuring CPS safety. They shall be correctly discretized i.e., guarantee that the discrete behavior simulates the continuous one. In other words, the continuous states existing between two observed consecutive states of the discretization shall also be in the safety corridor.

To achieve this goal, we follow a correct-by-construction approach based on a formal development of any continuous function discretization, making our development reusable and scalable. The approach relies on refinement and on the preservation of invariants. Discretization information is incrementally added while moving from the continuous level to the discrete one. Event-B [Abr10] and the Rodin Platform [START_REF] Abrial | Rodin: an open toolset for modelling and reasoning in Event-B[END_REF] have been set up to handle the developments.

Refinement strategy

We sketch here the mathematical model and the specification of the system behavior. Following the approach defined in [START_REF] Su | Formalizing hybrid systems with Event-B and the Rodin Platform[END_REF], the adopted refinement strategy consists 6.3. REFINEMENT STRATEGY in three steps: first, as shown in Figure 6.1, we use three states to define a simple abstract controller that models the system by introducing modes; then, in a first refinement, we introduce a continuous controller characterizing its behaviors with a continuous function; finally, a second refinement builds a discrete controller of the system. The behavior of the considered system is defined through three phases. Figure 6.1 depicts its general behavior using a state-transition system. First, it is booted (transition boot from state 1 to state 2). After a while (time passing), once in state 2, it becomes operational in a nominal mode (run transition). Then, it stays a given amount of time in the nominal or running mode. When in nominal mode, it may be halted (stop transition from state 2 to state 3) for example in case a failure occurs or for maintenance purposes. This behavior is the one of a simple abstract system controller. We have considered that, when booting, the system cannot be stopped until it reaches the nominal mode. Other complex scenarios can be defined with more complex transition systems.

The illustrating system

Table 6.1 -Requirements for the top level

At any time, in any mode, the output value of the controlled system shall be less or equal to M .

Req.1

At any time, in running mode, the output value of the controlled system shall belong to an interval [m, M ]. Req.2

At any time, in running mode, if any future output value of the controlled system does not belong to an interval [m, M ], then the system is stopped.

Req.3

In order to guarantee a correct behavior of the system, the previously defined controller shall fulfill the requirements from Table 6.1. These ones ensure that the system is correctly controlled. For example, an energy production system requires that the power produced by a given system belongs to a specific interval or a pacemaker must be pacing when a sensed signal belongs to another specific interval.

Continuous controller

After modeling the system at an abstract level using three states, the continuous controller is introduced through the definition of a continuous function of the continuous time f : R + → R to characterize the behavior of the system.

The requirements identified in the previous section, are rewritten (refined) to handle the introduced continuous function behavior (see Table 6.2). Table 6.2 -Requirements for the first refinement

m < M Req.0 ∀t ∈ R + , f (t) ≤ M Req.1 ∀t ∈ R + , state(t) = 2 ⇒ f (t) ∈ [m, M ] Req.2.1 ∀t 1 , t 2 ∈ R + , t 1 < t 2 , state(t 1 ) = 2 ∧ f (t 2 ) ∈ [m, M ] ⇒ state(t 2 ) ∈ {2, 3} Req.2.2 ∀t 1 , t 2 ∈ R + , t 1 < t 2 , state(t 1 ) = 2 ∧ f (t 2 ) ∈ [m, M ] ⇒ state(t 2 ) = 3 Req.3
The control action over this system is a simple one. It consists in shutting down the system if the value of f goes out of range. The obtained continuous controller corresponds to a refinement of the abstract one from the previous section, it is described by a hybrid automaton. We are aware that the control actions of the defined system are very simple. Our objective is to show how a controller (characterized by a simple state transition system) and a physical plant (characterized by a continuous function) can be formally integrated into a single Event-B formal development encoding incrementally a hybrid automaton.

One possible behavior corresponding to the previous description is depicted by the graph in Figure 6.2a. The system is initialized (at point A corresponding to the transition init to enter state 1). It reaches the running mode state at point B (corresponding to the event boot and entering state 2). The system remains in the safety corridor (between m and M in state 2). When point C is reached, the controller switches its state from state 2 to state 3 with the transition stop in order to prevent f from going over the threshold M . The system is then halted to reach point D (corresponding to state 3).

Discrete controller

In order to implement the previous controller, we need to discretize the observation of the system behavior. In practice, when using computers to implement such controllers, time is observed according to specific clocks and periods or frequencies. In other words, observations are discrete and depend on the available clocks. Therefore, it is mandatory to define a correct time discretization that preserves the continuous behavior introduced previously. This preservation entails the introduction of other requirements (hypotheses) on the defined continuous function. Note that, in practice, these requirements correspond to requirements issued from the physical plant.

We introduce a margin allowing the controller to anticipate the next observable behavior before an incorrect behavior occurs. Let z be this margin. z is defined such that the evolution of the function f between two observed consecutive instants t i and t i+1 shall not be greater than z. In order to formally define z, we first declare δt the fixed discretization interval, i.e. δt > 0 and ∀i ∈ N, δt = t i+1 -t i and ∀i ∈ N, t i = i × δt. Because of the physical nature of the system, we assume the function f to be Lipschitz continuous (the differential of f is bounded by a constant K, called the Lipschitz constant):

• • • • • • • • • • • • • • • • • • • • E F G H I (b) Discrete controller
∃K ∈ R + , ∀t 1 , t 2 ∈ R + , |f (t 1 ) -f (t 2 )| ≤ K × |t 1 -t 2 |
We can assume that there exists z such that:

∀t ∈ R + , |f (t) -f (t + δt)| ≤ z
It is possible to derive the property related to the bounded variation of the function f inside a discrete interval as follows:

∀i ∈ N, ∀t ∈ [t i , t i+1 ], |f (t i ) -f (t)| ≤ z
Finally, we obtain a safe progress property stating that if the value of f is in the [m + z, M -z] interval, then, the safety property

f (t) ∈ [m, M ] is preserved until the next discrete instant: ∀i ∈ N, f (t i ) ∈ [m + z, M -z] ⇒ ∀t ∈ [t i , t i+1 ], f (t) ∈ [m, M ]
Additionally, for the problem to be well-defined, we impose that δt be small enough so that the property m + z < M -z holds.

The set D of observation instants can be defined as:

D = {t i | t i ∈ R ∧ i ∈ N ∧ t i = i × δt}
As a consequence of this definition, the safety corridor becomes the interval [m + z, M -z]. Moreover, it becomes possible to observe, in the running mode, two consecutive instants t i and t i+1 such that:

     f (t i ) ∈ [m + z, M -z] f (t i+1 ) ∈ [m + z, M -z] f (t i+1 ) ∈ [m, M ] Table 6.3 -Requirements for the second refinement z > 0 ∧ m + z < M -z
Req.0

∀t i ∈ D, f (t i ) ≤ M Req.1 ∀t i ∈ D, state(t i ) = 2 ⇒ f (t i ) ∈ [m + z, M -z] Req.2.1 ∀t i ∈ D, state(t i ) = 2 ∧ f (t i + δt) ∈ [m, M ] ⇒ state(t i + δt) ∈ {2, 3} ⇔ ∀t i ∈ D, state(t i ) = 2 ∧ f (t i+1 ) ∈ [m, M ] ⇒ state(t i+1 ) ∈ {2, 3} Req.2.2 ⇔ ∀n ∈ N, state(n δt) = 2 ∧ f ((n + 1) δt) ∈ [m, M ] ⇒ state((n + 1) δt) ∈ {2, 3} ∀t i ∈ D, state(t i ) = 2 ∧ f (t i + δt) ∈ [m + z, M -z] ⇒ state(t i + δt) = 3 ⇔ ∀t i ∈ D, state(t i ) = 2 ∧ f (t i+1 ) ∈ [m + z, M -z] ⇒ state(t i+1 ) = 3 Req.3 ⇔ ∀n ∈ N, state(n δt) = 2 ∧ f ((n + 1) δt) ∈ [m + z, M -z] ⇒ state((n + 1) δt) = 3
This condition characterizes a behavior that exits the safety corridor and thus it identifies the condition for stopping the system (i.e. moving to a stopping mode). Again, the previous requirements are refined to consider the discretization of time, using the two new parameters z and δt, and D (Table 6.3).

The safety margin z is defined such that if 

f (n × δt) is in [m + z, M -z] then the value of f observed by the controller, f ((n + 1) × δt), is in [m, M ].

Top-down development

According to the previous definitions, refinement starts from a generic definition of the system with the three identified events. The first refinement introduces the continuous function and the corresponding requirements of Table 6.2. We start with a continuous model M c of the system, describing the complete relevant physical behavior of the system. Then a second refinement defines the discrete model M d of the behavior correctly glued with the continuous one. Here, the refined requirements of Table 6.3 are taken into account. Gluing invariants, formalizing the refined requirements, are introduced in order to preserve the proofs and the behavior of the abstraction. When proving the refinement, we formally establish that our discrete model is a correct implementation of the desired continuous behavior (the specification).

To summarize, in M c , the continuous function f c : R -→ R is considered. In 

About the modeling of time

In order to reduce the complexity of the proof of the discretization refinement corresponding to the introduction of f d , we have split the behavior of f c during an i th discrete macro step [t i , (t i + δt)] into three kinds of smaller finite discrete micro steps (see Figure 6.3). For example, at the running state (or nominal phase), we define the following micro steps.

1. RFT: run from tick is the first micro step inside a macro step starting at a tick (a discrete time t i = i × δt). Its duration is strictly smaller than δt.

2. RBT: run between ticks is a micro step strictly in the macro step (not the first nor the last micro step in a macro step). Its duration is denoted dt > 0. A macro step contains V occurrences of such micro steps.

3. ROT: run on ticks is the last micro step in the macro step.

Because δt the duration of the steps can be infinitely small, there could be an infinite number of steps: this is called the Zeno problem. It is avoided here by guaranteeing that the number of micro steps of type RBT is finite, and that dt > 0. From a modeling point of view, it will be formalized as a decreasing variant (natural number V in N). The trace of micro steps between t i and t i+1 = t i + δt is defined as RFT (RBT) V ROT. The correctness of the discretization ensures that we can take a finite number that depends on the physical parameters of the system.

Our Event-B models introduce events aligned with these macro and micro steps either in the continuous case of in the discrete one.

A formal development of a discrete controller with Event-B

Our developments expressed using Event-B follow the refinement strategy defined in Section 6.3. Following [START_REF] Su | Formalizing hybrid systems with Event-B and the Rodin Platform[END_REF], three development steps have been used. Contexts and machines are defined according to Figure 6.4.

Abstract machine: the top-level specification

The top-level specification introduces the abstract controller with three events according to Figure 6.1. 

Needed theories

To be able to handle mathematical real numbers and the corresponding theory, we have defined the context C0_reals which uses the theory defining mathematical reals. Model 6.1 gives an extract of this context with axioms and theorems.

Several other axioms and theorems have been defined and proven. We show an extract of this theory (see the Appendix C). As mentioned in Section 1.8, specific operators for manipulating reals are used.

A second context defines the safety corridor with the values of m and M . Model 6.2 defines this context C1_corridor extending the context C0_reals.

Context C0_reals

Constants REAL_POS, REAL_STR_POS Only details for the event run are given here. The complete Event-B developments can be found in Appendix C. Therefore, Req.3 is not explicitly handled in this description, it mainly concerns the stop event.

The first refinement: introducing continuous functions

Needed theories

As shown on Figure 6.4, the context C2_margin introducing margin z is defined. Note that axm02 corresponds to the requirement Req.0. The Event-B first refinement with continuous functions

The first refinement M1_cntn_ctrl of the controller explicitly introduces:

• the continuous function fc producing the values fv of the abstract machine and the corresponding invariant prop01,

• continuous time with the current instant noted now,

• an important invariant glue01 gluing the continuous variables of the abstraction with the continuous function defined on continuous time fv = fc(now),

• the variable active_t recording the continuous time where the system enters a running mode and the corresponding invariants glue02, glue03 and glue04 gluing the behavior of active_t with the active boolean variable of the top level specification.

The events of the M1_cntn_ctrl machine refine the ones of the top level specification. The boot event fixes the value of active_t and the run event builds the continuous function fc with steps of duration dt. fc becomes the function nfc, acting until now + dt instant.

The current instant now is increased by the step duration dt as well. The guards of the event run introduce the relevant conditions to trigger this event.

Note that during the time interval dt, the function fc shall be continuous and monotonic so that its value is never outside the safety corridor (grd09 to grd11 ). This condition is fundamental when the function is discretized. Thus, grd09 through grd12 guarantee the requirement Req.2.2 and are of particular importance when discretizing. 

A FORMAL DEVELOPMENT OF A DISCRETE CONTROLLER WITH EVENT-B

Needed theories

Two contexts are introduced. The first context C3_cast is a technical context related to casting reals and integers (see Section 1.8.3). For example, the invariant The last context C4_discrete introduces the discrete time macro steps duration tstep corresponding to δt on Figure 6.3 and the values RBT and RV (run_variant) to identify the different events corresponding to the run event. It also defines the max_df constant corresponding to the maximum evolution of the function in a macro step, which is never more than margin z (axm03 ). This assumption usually comes from the conditions on the physical plant. 

∀n ∈ 0 .. i ⇒ f c (n × δt) = f d (n) corresponding to glue01 is written as: ∀ n • n ∈ 0..i ⇒ fc(cast(n) mult tstep) = fd(n). Context C3_cast Extends C0_reals, Nat Constants cast Axioms axm01: cast ∈ N →REAL_POS // type axm02: cast(0) = zero // initial case axm03: ∀a • a ∈ N ⇒ //

A FORMAL DEVELOPMENT OF A DISCRETE CONTROLLER WITH EVENT-B

The Event-B refinement with discretization

The defined machine M2_dsct_ctrl (Model 6.8) produces the discrete behavior of the continuous function fc with the discrete function fd glued by invariant glue01. The other invariants inv01 and inv02 preserve Req.2.2 and inv03 states that the elapsed time et is less than the discrete time tstep. According to Figure 6.3, three events for ROT, RBT and RFT are defined, refining the run event. The run_from_tick (RFT) event starts the computation between two consecutive discrete values of function fd and fixes an arbitrary value of the variant rs.

The most interesting part in this machine relates to the run_between_tick (RBT) event which shall avoid the Zeno problem. For this purpose, each time this event is active, it triggers the event run_variant which decreases the variant. Once, this variant reaches the value 0, the run_on_tick (ROT) event is triggered to compute the final value corresponding to next discrete value of the function fd.

Note that the guard grd15 is fundamental to guarantee that values are not out of the safety corridor. This assumption results from the physical plant definition.

Implementation

The machine M2_dsct_ctrl could be used as the basis for a concrete implementation where only discrete variables (such that i and fd) would be considered and where only the event run_on_tick would be used to generate code. 

Machine M2_dsct_ctrl

type01: fd ∈ 0..i →REAL_POS type02: i ∈ N type03: et ∈ REAL_POS type04: rs ∈ N type05: nv ∈ VT glue01: ∀ n • n ∈ 0..i ⇒fc(cast(n) mult tstep) = fd(n) // n ∈ 0..i ⇒fc(n * tstep) = fd(n) glue02: now = (cast(i) mult tstep) plus et // now = i * tstep + et inv01: ∀ n • n ∈ 0..i-1 ⇒( ∀ t

Proofs statistics

All these models have been formalized using the Rodin Platform. As shown on Table 6.4, the main machine and the refinements led to 265 proof obligations. 67 were proven automatically and 198 needed numerous interactive proof steps.

The interactive proofs mainly relate to the use of the Theory plug-in to handle reals. The lack of dedicated heuristics due to the representation of reals as an abstract data type, and not as a native type led to more interactive proofs. The sizes of the various proofs for the various machines and contexts are depicted in Figure 6. [START_REF] Babin | Handling Continuous Functions in Hybrid Systems Reconfigurations: A Formal Event-B Development[END_REF].

In our development we use mathematical reals. We do not use floating-point numbers, they may be introduced in further refinements which is out of the scope of our work. So, we are not exploiting the results from automated verification tools on floating-point numbers [START_REF] Muller | Handbook of Floating-Point Arithmetic[END_REF]. Static analysis [START_REF] Goubault | Static Analyses of the Precision of Floating-Point Operations[END_REF] or abstract interpretation [START_REF] Cousot | Abstract Interpretation: A Unified Lattice Model for Static Analysis of Programs by Construction or Approximation of Fixpoints[END_REF] (with tools such as Astrée [START_REF] Cousot | The ASTRÉE Analyzer[END_REF]) have proved very powerful to analyze such programs. Our approach remains at a modeling level. Moreover, the set of axioms for reals in the Theory plug-in we have used does not define reals in a constructive manner. So, we were not able to use the results obtained by the Coq [START_REF] Boldo | Coquelicot: A User-Friendly Library of Real Analysis for Coq[END_REF] advanced proof tactics on reals. Indeed, our proofs have been discharged using the interactive prover of Rodin, leading to a large proof effort.

Conclusion

The development of cyber-physical systems requires to handle the behavior of the physical plant (environment). This behavior is usually defined using continuous time and is thus described by continuous functions producing feedback information to the controller, which in turns produces orders to the actuators. In this chapter, we have shown that it is possible to compose the development of both a controller and the corresponding behavior of the physical plant. The controller corresponds to a hybrid automaton. A simple one, with a single controlled variable, has been The main contribution concerns the synthesis of a discrete controller. We have shown that the synthesis of a correct-by-construction discretization of a continuous function associated to the behavior of a physical plant can be obtained by refinement. The proof of the preservation of the invariants gluing the continuous and discrete levels guarantees this correctness. We have introduced at the discrete level a variant guaranteeing that the model is Zeno-free. The Theory plug-in for the Rodin Platform and a theory of real numbers have been used to model continuous functions. To the best of our knowledge, this is the first attempt to model continuous controller discretization with the Event-B method and mathematical reals with Rodin. This work has been published in [START_REF] Babin | Refinement and Proof Based Development of Systems Characterized by Continuous Functions[END_REF].

In the next chapter (Chapter 7), we show how the substitution framework presented in Chapter 4 is set up to model the substitution of continuous systems introduced in this chapter. Chapter organization. Section 7.2 explores an incremental proof-based formal development of system substitution for hybrid systems. Finally, Section 7.4 concludes the chapter with some future research directions.

Introduction

In previous chapters, we proposed the development of a system substitution mechanism (Chapters 4 & 5) and the development of discrete controllers derived from continuous ones (Chapter 6). More precisely, we defined the reconfiguration mechanism to maintain a safety property for a system (defined as a state-transition system) during failure by switching from one supporting system to another. The defined approach has been successfully applied, for the discrete case, on web services (Chapter 5). But it is not applicable straightforwardly for hybrid systems which need to handle continuous features. In Chapter 6, we presented the formal development of a continuous controller that is refined by a discrete controller preserving the continuous functional behavior and the required safety properties. This work helped us formulate more general strategies, introduced in this chapter, for the development of system substitution for hybrid systems using formal techniques.

Hybrid systems are dynamic systems that combine continuous and discrete behaviors to model complex critical systems, such as avionics, medical, and automo-97 CHAPTER 7. HYBRID SYSTEMS: SUBSTITUTION tive, where an error or a failure can lead to grave consequences. For critical systems, recovering from any software failure state and correcting the system behavior at runtime is mandatory. Our system substitution mechanism is an approach that can be used to recover from failure by replacing the failed system.

Objective of this chapter. Our prime objective is to model hybrid systems, and to provide modeling patterns for reconfiguration, using a correct-by-construction approach. This chapter contributes to setting up a novel technique for formalization and verification of a generic system substitution mechanism for hybrid systems that allows a system to be maintained in a safety envelope after failure by switching from one supporting system to another. We use stepwise refinement in Event-B. Moreover, we also show how the defined substitution or reconfiguration mechanism allows handling hybrid systems characterized by continuous functions and continuous time. We use the results of the previous chapter with discrete functions to address the problem of modeling the continuous systems in discrete form while preserving the continuous behavior. Particularly for hybrid systems, the system substitution is not instantaneous, and it takes time to restore the state of the substituted system. In fact, we require special treatment to handle it. The primary use of the models is to assist in the construction, clarification, and validation of the continuous controller requirements to build a digital controller in case of system reconfiguration or system substitution. In this development, we use the Rodin Platform to manage model development, refinement, proofs checking, verification and validation.

Reminder. As detailed in Section 3.2.3, we want to combine two systems whose behavior and output are represented by Figure 7.1 in order to obtain a global system whose behavior and output are modeled by Figure 7.2 and is able to substitute a system by another one in case of failure. The studied systems are formalized as state-transition systems. The behavior of such systems is characterized by three states: boot (1), progress (2) and stop (3). The boot state is known as initial state, and the progress state is known as nominal state of studied systems. According to Figure 7.1a, after initialization, a system enters into the booting state, denoted as state 1, which may take a certain amount of time. If a system does not require the booting phase, then the system initialization is followed by the start transition without any delay. After the start transition, the system moves into the progress state, denoted as state 2, known as running state.

If the system stops, it switches into the stop state that is denoted as state 3.

Formal development

In this chapter, we model the system defined in Section 3.2. This section describes the stepwise formal development of the systems selected for our pattern of system behavior, composed of an abstract model and a sequence of refined models. The abstract model formalizes only the system's basic behavior, while the refined models are used to define the concrete and more complex behaviors in a progressive manner that preserves the required safety properties at every refinement level.

Complete formal models are available in Appendix D.

The required contexts

The context C_reals (already presented in Model 6.1 page 86) defines the positive mathematical real numbers and theorems helpful for discharging the proofs. Model 7.1 introduces the constants defining the different system modes: MODE_F, MODE_G and MODE_R for Sys f , Sys g and Repair modes) belonging to the MODES set. The next two contexts (C_envelope and C_margin) deal with the definition of the safety envelope. As mentioned in the requirements defined in Table 3.1, we define the interval of safe values in [m, M ] in the continuous case and in [m + z, M -z] with margin z in the discrete case.

FORMAL DEVELOPMENT

Abstract model: definition of a mode controller

As shown in Figure 7.2a, we use three states to define a simple abstract controller (a mode automaton) that models system substitution through mode changes. Machine M0 (see Model 7.4) describes the abstract specification corresponding to the reconfiguration state-transition system depicted in Figure 7.2a. The modes are used in the guards of events to switch from one state to another. At initialization, Sys f is started (MODE_F ), it becomes active when the active variable is true (Sys f ended the booting phase). When a failure or a halting condition occurs, progress of Sys f is stopped. The controller enters in the repairing mode MODE_R. Once the system is repaired, the mode is switched to MODE_G and Sys g enters into the progress state. 

First refinement: introduction of the safety envelope

The first refinement introduces the safety envelope [m, M ] representing the main invariant property fulfilled by all the functions f , f + g during substitution and g after substitution. Machine M1, defined in Model 7.5, refines M0. It preserves the behavior defined in M0 and introduces two kinds of events [SAZ14]:

• environment events (event name prefixed with ENV): they produce the system feedback observed by the controller. In this refinement, three new real variables f , g and p are introduced. The variables f and g record the feedback information of Sys f and Sys g individually, while p records the feedback information of the global system before, during and after substitution. The variable p corresponds to f of Sys f in MODE_F, g of Sys g in MODE_G and f + g of combined Sys f and Sys g in MODE_R corresponding to the system repair (invariants mode01 to mode05 ). In all cases, p shall belong to the safety envelope (invariants envelope01 and envelope02 ).

The ENV events observe real values corresponding to the different situations where Sys f and Sys g are running or when Sys f fails and Sys g boots. This last situation corresponds to the repair case.

• controller events (event name prefixed with CTRL): they correspond to refinements of the abstract events of M0. They modify the control variable active and md. 

FORMAL DEVELOPMENT

In the same way, each event of M1 is refined. Time steps dt are introduced and the continuous functions are updated by the environment ENV events. The continuous functions are updated on the interval [now, now + dt] and now with now := now + dt. The control CTRL events observe the value p c (now) to decide whether specific actions on the mode md c variable are to be performed or not. Model 7.6 shows an extract of this machine and the detailed description of this refinement is given in Chapter 6.

Third refinement: discretization of the continuous behavior

This last refinement models a discrete controller. A discrete function is associated to values of the continuous function at each discrete time steps. The discrete behavior is described in Machine M3 (see Model 7.7). It models the behavior corresponding to Figure 7.3b. Here again, we follow the same approach as for the refinement of the continuous behavior. As mentioned in the context C_margin, the margin z is defined, such that 0 Note that due to the discretization and to the introduction of the z margin, a possible failure can be detected when

< z ∧ m + z < M -z ∧ M -m > 2 × z.
p d (now) ∈ [m, m + z[ ∨ p d (now) ∈]M -z, M ].
The predicted behavior is enforced by the discrete controller that detects a limit before the value of m or M is reached. This situation is depicted in Figure 7.3b at instant G. obligations automatically. In fact, we need to assist the Rodin provers in finding the required assumptions and predicates to discharge the generated proof obligations.

PROOF EFFORT

On the other hand, we also found that the Theory plug-in is not yet complete. This work was done using Rodin 2.8, the Theory plug-in 2.0.2 and the Real theory from the Standard Library 0.1. In order to discharge successfully the proof obligations, we had to define several theorems, some of them as axioms, so as not to prove basic mathematical properties on reals. The sizes of the various proofs for the various machines and contexts are available in Figure 7.4.

Conclusion

In this chapter, we have used our existing approaches for addressing the challenges related to formal modeling and verification for the system substitution for hybrid systems. This work is a preliminary step for applying the system substitution mechanism for hybrid systems. It has been published in [START_REF] Babin | Handling Continuous Functions in Hybrid Systems Reconfigurations: A Formal Event-B Development[END_REF] and [START_REF] Babin | A System Substitution Mechanism for Hybrid Systems in Event-B[END_REF].

We identified the following development steps to integrate the system substitution mechanism for hybrid systems:

1. Define a set of modes for the controller; Use of system substitution mechanisms for hybrid systems is a challenging problem as it requires to maintain a safety envelope through discrete implementation of continuous functions. To address this problem, we have presented a refinementbased formal modeling and verification of system reconfiguration or substitution for hybrid systems by proving the preservation of the required safety envelope during the system substitution process. In this chapter, we have extended the work of Chapter 5 on system substitution to handle systems characterized by continuous models. First, we formalized the system substitution at continuous level, then we developed a discrete model through refinement by preserving the original continuous behavior. The whole approach is supported by proofs and refinements based on the Event-B method. Refinements proved useful to build a stepwise development which allowed us to gradually handle the requirements. Moreover, the availability of a theory of mathematical real numbers allowed us to introduce continuous behaviors which usually rise from the description of the physics of the controlled plants. All the models have been encoded within the Rodin Platform. These developments required many interactive proofs in particular after the introduction of real numbers. The interactive proofs mainly relate to the use of the Theory plug-in for handling mathematical real numbers. Up to our understanding, the lack of dedicated heuristics due to the representation of real numbers as an axiomatically defined abstract data type, and not as a native Event-B type together with our limited experience in defining tactics led to this number of interactive proofs.

After showing how our proposed substitution mechanism applies to both discrete and continuous systems, we address, in the next chapter (Chapter 8), the generalization of our framework. Chapter organization. The mathematical setting that describes the generalization of the approach is presented in Section 8.2. Next, the corresponding Event-B models handling this generalized model are described in Section 8.3 and the associated instantiation mechanism is explained in Section 8.4. An example is used to instantiate this generic model in Section 8.5. Then, an assessment of the proposed approach is shown in Section 8.6, and finally, a conclusion summarizes our contribution and some future research paths are discussed in the last section.

Introduction

In this chapter we propose a generalization of our substitution framework introduced in Chapter 4. In order to demonstrate it, we will instantiate it on the discrete case already presented in Chapter 5 and obtain a similar final refined model.

Objective of this chapter. This chapter proposes a generic system reconfiguration formal model developed using correct-by-construction stepwise refinement and proof-based formal methods. Event-B supports the whole formal development of the system substitution operator. The developed generic model can be instantiated to any number of systems to be substituted. The proposed approach is generic: it depends on neither the internals of the systems nor the type of repair. An instantiation mechanism, based on a specific refinement with witnesses, is proposed to overcome the state space explosion problem usually encountered when model checking-based verification techniques are set up.

Every time a substitution case needs to be considered, we have to perform a complete formal development in order to apply the approach detailed in the previous chapters. In this sense, the previous approach provides a correct substitution mechanism, but it is not generic. Neither the development nor the verification processes can be reused. Instead of applying the previously described development for every system, we advocate the use of a generic correct-by-construction approach. The proposed generalization consists in expressing the system elements as first-order objects manipulated by the Event-B models and then building specific systems as instances of these objects. Systems, states, transitions, invariants, variants, etc. become objects of the proposed model, and the described system behavior conforms to Figure 2.4 page 25.

Mathematical setting for substitution

The formal mathematical setting to handle the system substitution is given below, providing the basic mathematical definitions to characterize systems. All the elements describing systems and their behavior are introduced: variables, states, variants, invariant, events and systems

Variables and states

Variables represent states. They belong to a set Variables. Their values are taken in the set ValueElements. Variables are associated to their values by a partial function, called valuation, belonging to the set Valuations, defined as:

V aluations ⊆ V ariables → P(V alueElements)

MATHEMATICAL SETTING FOR SUBSTITUTION

Systems

Systems belong to the set Systems of all the systems. A system is a tuple defined as a structure involving all the features composing a system. So, for all system in Systems, we define system = variables, variant, invariant, init, progress where:

• variables is a set of variables representing the state of the system:

variables ⊆ V ariables
• variant is a function producing the natural value of the variant from a valuation of the variables:

variant ∈ V aluations → N
• invariant is a predicate defined on the variables values:

invariant ∈ V aluations → BOOL
• init and progress are two generic before-after predicates recording state changes.

Initialization and progress

The initialization of the global system selects the first system to run. The progress event models a trace of assignments of new valuations for the system state variables that satisfy the invariant.

Systems substitution relation

System substitution requires the definition of a relation associating the source system states with the target system ones. As defined in Equation ( 8 Here:

1 1 If E is a set, then E 2 denotes the Cartesian product E × E 111 CHAPTER 8. GENERALIZATION
• states is a function returning the possible valuations of a given system:

states ∈ System → V aluations
• Inv H is a predicate defining the horizontal invariant involving the values of the variables of the source and target systems: 

Inv H ∈ System 2 → V
, ψ, ϕ) = {(s S , s T ) ∈ substitute_states(S S , S T ) | Inv S (S S )(s S ) ∧ ψ(s S ) ⇔ Inv S (S T )(s T ) ∧ ϕ(s T )} (8.2)
where Inv S (S X )(s X ) is the value (satisfied or not) of the system invariant of the system S X in the state s X .

Recall. The predicates ψ and ϕ (both different from False) define different repair or substitution modes.

• ψ = T rue ∧ ϕ = T rue in the case S T is an equivalent system substitute. This is the only case addressed in this chapter;

• ψ = T rue ∧ ϕ = T rue in the case S T upgrades S S ;

• ψ = T rue ∧ ϕ = T rue in the case S T degrades S S .

Substitution property

The condition to substitute a system S S by a system S T in the case of equivalence is given by the repairable_equiv predicate characterizing the set of substitute systems.

repairable_equiv(S S ) = ∃S T ∈ Systems • repair(S S , S T , T rue, T rue) = ∅ (8.3) According to Equation (8.2), here the predicates ψ and ϕ are set to True in Equation (8.3) to obtain the equivalence addressed in this contribution.

• Valuations defines the possible values for variables (type1 ), and

• VariablesSets is a non empty (prop1 ) set (type2 ) containing disjoint sets (prop2 ) of the powerset of the Variables set.

The following elements are introduced:

• Systems, Systems_states, system_of to characterize the considered systems, their states and a function which returns the system associated to an input state,

• HorizontalInvs the invariant to repair two systems,

• varval_of function which returns the variant associated to a given system.

Their properties are described in the next section.

States and systems.

State variables are manipulated by the defined recovery mechanism. Systems is a set (finite and non empty in prop3 in Model 8.2) characterizing the potentially available systems involved in a substitution. As stated above, they are considered as statetransition systems. In the context C0 (Model 8.2) systems are characterized (type3 and type4 ) by their set of state variables together with their possible values. To identify the system a state belongs to, we have introduced the system_of function (fun1 ) returning the system of an input state. Being a function, system_of ensures that a state belongs to a single system.

Remark. Observe that transitions between states are not given in the C0 context, they will be introduced in the machine part of this generic Event-B model. 

Systems properties: invariants and variants.

The last part of this context (Model 8.3) introduces the properties required for system substitution i.e. the horizontal invariant for the preservation of the global system invariant and the variant to identify the recovery state.

AN EVENT-B MODEL FOR SYSTEM SUBSTITUTION

• The statement type10 defines the type of the horizontal invariant which associates corresponding repair states in systems.

• Property prop7 guarantees that, for every system, the domain of the valuation function is the set of variables.

• Property prop8 ensures that this invariant is well-defined on the states to be recovered.

• The variant expression is accessed by the fvar_of function in fun4. It returns, for a given state, the function computing the value of the variant, while the varval_of function (of fun5 ) returns, for a given state, the value of this variant.

type10: HorizontalInvs ∈ (Systems ×Systems) →((Systems_states ×Systems_states) →BOOL) prop7: 

∀ sys_st • sys_st ∈ Systems_states ⇒dom(prj2(sys_st))= prj1(prj1(sys_st)) prop8: ∀ s1,s2, sst1 , sst2 ,b • ((s1 → s2) → {(sst1 → sst2) → b} ∈ HorizontalInvs ) ⇒( s1 = system_of(sst1) ∧s2 = system_of( sst2 

Dynamic part: modeling the recovery behavior

The previous context introduced the definition of systems and their states, together with the notion of horizontal invariant describing the repair condition to guarantee preservation of the safety system properties. The second part of our generic model defines the Machine part to represent the behavior and system transitions.

The refinement strategy.

A first machine and two refining machines are defined to model the behavioral part of our model. This decomposition has been defined to ease the proof process. At the top level (Machine M0 ), we introduce the generic specification of the system level. We observe the running system, its failure and repair and the case of complete failure (no system available for repair). The first refinement introduces the behavior of the running system (by introducing the progress event) and strengthens the definition of the repairing event (repair event) exploiting the horizontal invariant. The definition of the obtained model conforms to the system behavior pattern depicted by the transition system of As mentioned, we identify four categories of transitions. Each category corresponds to an Event-B event in the generic Event-B models. The full model containing the four transition categories (initialization, progress, failure and repair) is obtained in two steps: a top-level machine and one single refinement. This decomposition has been defined to ease the proof process The definition of the final obtained model conforms to the system behavior pattern depicted by the transition system of Figure 2.4.

The top level specification.

The first abstract machine M0 introduces systems without manipulating system states since system behavior is not considered yet (Models 8.4 and 8.5).

Current system and state (Model 8.4). The available_systems and current_system variables define respectively all the available healthy systems for substitution and the current running system. The Initialisation event (Model 8.5). It defines the set of all available systems (act1 ) and the first running system arbitrary chosen (act2 ) in Systems, the set of all systems.

The events describing the system life cycle (Model 8.5). At this first level of modeling, only the life cycle of the systems is captured. The internal behavior of each system is not observed yet. This machine defines system modes and the failure occurrence together with the associated repair action:

• The Repair (repair event) consists in switching the current running system to another one selected among the available set of systems.

• When a system fails (fail event), it is removed from the available systems set.

• The global system (made of all the systems) has completely failed when the set of available systems is empty (complete_failure event).
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Strengthening the invariants in the refined machine (Model 8.6). The refined machine defines new model variables in addition to the variables of the abstraction (available_systems and current_system). These new model variables deal with system states: current_system_state to model the state of the running system current_system and available_system_states to define all the states of the systems in the available_systems set. These variables are used to describe the internal behavior of systems which remained abstract in the top machine. Two relevant gluing invariants are introduced:

• glue1 guarantees that the considered states are exactly those corresponding to the available systems, and

• glue2 guarantees that the current_state variable corresponds to the current state of the running system current_system.

Finally, a variant value is associated with the current state of the running system by statement var1.

Unchanged events (Model 8.7). The new variables are initialized at the initial state of the running system for the current_system_state. complete_failure and fail events remain unchanged. 
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The guard of this event requires that the new_valuation parameter is a possible valuation for the variables of the current state of the running system (grd1, grd2 and grd3 ). Moreover, this valuation shall decrease the value of the variant to ensure progress (grd4 ).

The progress event at the generic level only models the coherence of the behavior but does not model any specific of the systems. Each concrete system will be a refinement of this model, and will detail its behavior by refining this progress event. We do not model the concrete behavior of the systems at the generic level.

Refinement of the repair event to handle system behaviors (Model 8.9). The refined event repair switches the current system to the substitute one (act1 ) and defines the recovery state in the substitute system (act2 ). Both these elements are described in terms of the variables new_variables, new_variant and new_valuation which are the results of the following guards: • grd2 : the new variables set is one of the possible variable sets (typing constraint)

• grd3 : the new variant has the correct type (partial function of the variables which outputs a natural)

• grd4 : the new valuation is a member of the possible valuations set (typing constraint)

• grd5 : the new state constituted of new_variables, new_variant and new_valuation exists and is available (has not yet failed)

• grd6 : the new variables are not variables of the current system, which ensures that the substitute system is different from the failed one

• grd7 : the value of the new variant computed on the new valuation of the variables is equal to the value of the variant at the current state of the system being replaced. This means that the new system will continue the work where the previous one stopped because the variant are constructed here to model the progress of the system.

• grd8 : the horizontal invariant corresponding to the pair of systems composed of the current system and the new system is extracted from the context in the variable h_inv

• grd9 : the specific horizontal invariant h_inv is enforced to be true on the pair on system states. This means that the state of the new system corresponds to the state of the replaced system as defined in the horizontal invariant relation.

• grd10 : there exists an horizontal invariant defined for the pair of systems composed of the current system and the new system Finally, a witness (With clause) is provided to make explicit the substitute system giving its new state variables and variant value.

Instantiation of generic Event-B by refinement

In the previous section, we have presented a generic model for system substitution corresponding to the pattern depicted on Figure 2.4. This model is divided in two parts: one modeling systems, states, variables, variants and invariants; and a second modeling the behavior of systems and of the substitution mechanism. Instantiation consists in setting up the obtained generic model for specific systems. It is obtained after two steps, described below, corresponding to the instantiation of each modeling part.

Step 1. The instantiation context

First, specific values of the abstract sets defined in the context C0 presented in Section 8.3.1 are introduced. An instantiation context C0_instance, extending the context C0 (Model 8.1), is defined with concrete values for all the sets (Variables, ValueElements) and for the constants (Valuations, VariablesSets, Systems and System_states). In the case of our example, they are given in Model 8.11.

APPLICATION TO THE CASE STUDY ON WEB SERVICE COMPENSATION

Step 2. Refinement and witnesses for instantiation

In order to use the concrete values defined in the context C0_instance, a machine M2 refining M1 is defined. This machine contains all the specifics of the system. The behavior of the system, previously modeled in a generic way by the event progress, is now detailed by events progress_sysX_ABC corresponding to the progress events i.e. transitions in the specific system sysX. Concrete event variables of M2 and abstract variables of M1 -previously defined with event parameters (Any clause)are glued thanks to the use of witnesses (using the With clause). Model 8.10 shows an example of such an instantiation: the parameter new_status is instantiated in this particular case with the value OPEN . The guard grd1 ensures that this event modeling the open transition in sys1 is only enabled when the running system is 

Application to the case study on web service compensation

In this section, the case study presented in Section 3.1 is developed again as an instance of the generic model of Section 8.2 following the instantiation principle of Model 8.10. It is formalized as an instance of the generic approach.

Step 1. The instantiation context. Application to the case study

The • The three variables defined by axm1 are the cart of the first system (C1 ) and the carts of the second system (C2a and C2b).

• The values of the variables are elements from ValueElements which is constituted of the 5 available products Prod1 to Prod5 .

• The valuations are restricted to only depend on the sets of variables of the systems. This prevents incoherent functions that would depend on variables from disjoint systems.

• The sets of variables of the systems are specified explicitly by axiom axm4.

• The first system Sys1 is defined in axm5 by its variable (C1 ) and its variant (5 -card(C1)).

• The second system Sys2 is defined in axm6 by its variables (C2 a and C2b) and its variant (5 -card(C2a ∪ C2b)).

• The set of all systems is defined as composed of Sys1 and Sys2 .

• The fundamental axiom axm9 defines the horizontal invariants set, which is here a singleton, describing a horizontal invariant from Sys1 to Sys2 : 

C1 = C2a ∪ C2b. It
: Sys1 = {C1} → (λ val •val ∈ {C1} →P (ValueElements) | card(ValueElements) -card(val(C1))) axm6: Sys2 = {C2a,C2b} → (λ val •val ∈ {C2a,C2b} →P (ValueElements) | card(ValueElements) -card(val(C2a) ∪ val(C2b))) axm7: Systems = {Sys1,Sys2} axm8: Systems_states = Systems ×Valuations axm9: HorizontalInvs = {(Sys1 → Sys2) → (λ (sst1 → sst2) • sst1 ∈ {Sys1}×({C1}→ P (ValueElements)) ∧ sst2 ∈ {Sys2}×({C2a,C2b} →P (ValueElements)) | bool(valuation_of(sst1)(C1) = valuation_of(sst2)(C2a) ∪valuation_of(sst2)(C2b)))} ...

Step 2. Refinement and witnesses for instantiation. Application to the case study

The events of machine M1 are refined by machine M2 (Models 8.12 & 8.13) for instantiation according to the principle of Section 8.4.2. M2 models the instantiated machine for the events of the case study on web service compensation defined in Section 3.1.

In this machine, the concrete variables sys1 _cart, sys2 _cart1 and sys2 _cart2 have been defined as instantiation of the abstract variables C1 , C2a and C2b. The invariants glue1 and glue2 ensure the coherence between the two abstraction levels.

In the repair_sys1_to_sys2 event, grd6 expresses the concrete form of the horizontal invariant which was previously specified by h_inv, now only visible in the witness. We can also see the connection between the abstract and the concrete variables in grd7 and act2.

The progress_sys1 event (detailled in Model 8.13) corresponds to the event addItem_WS1 (Model 5.4) of Sys1 (one website system). It consists in adding a product (new_prod) in the cart C1 of the website site 1 . The event is defined in terms of the concrete variables and the connection with the abstract parameters is given by the witness (as well as enforced by the invariants). 

Assessment

The main benefit of this proposal resides in the fact that the proof of correctness for the substitution strategy is performed only once. However, this proof together with the proof of refinement are more complex as they are generic. 

Proof statistics

glue1: system_of(current_system_state) = Sys1 ⇒ valuation_of(current_system_state)(C1) = sys1_cart glue2: system_of(current_system_state) = Sys2 ⇒ valuation_of(current_system_state)(C2a) = sys2_cart1 ∧ valuation_of(current_system_state)(C2b) = sys2_cart2

End

Model 8.12 -The instantiation machine obtained M2 by refinement 8.6. ASSESSMENT the proof obligations associated with the formal Event-B development presented here have been proved either with the automatic provers associated in the Rodin Platform or using interactive proofs handled by the developer on the Rodin Platform as well.

The key point related to scalability concerns the instantiation of specific systems. Indeed, the development presented above is a generic one, defined at a meta-level, where the proof obligations associated to the correctness of the system substitution obtained in Section 4.3.1 act as meta-theorems.

The use of the generalized substitutions (Any constructs) shows that the development considers any transition system described by a template corresponding to Figure 2.4 together with the associated invariants expressed in the corresponding Event-B models. This looks very interesting and promising because this means that the substitution mechanism pattern has only to be proved once. However, the proof is more difficult than the concrete system alone. Therefore, the choice depend on the possibility to reuse a particular substitution pattern in several development projects.

Note that model checking techniques can be applied to automatically check the correctness of the instantiation. The exploration of all the possible states is possible since the sets are defined with a finite number of values in the context C0_instance. However, these techniques face the state explosion problem. For instance, the difficulty of the proofs in our approach is not affected by the number of products whereas a method which would have to explicitly enumerate all the possible values of the carts would be severely limited by the huge numbers of possibilities due to combinatorics.

The sizes of the various proofs for the various machines and contexts are available in Figure 8.1.

Correct-by-construction formal methods

The proposed approach is a generic one. The context C0 describes the manipulated system concepts explicitly (systems, variables, HorizontalInvs, etc.). These concepts are manipulated as first-order objects in the machines M0 and M1 in order to 125 One may wonder why the transitions between states are not defined explicitly in this context C0. There are two main reasons for that.

• First, transitions are not explicitly manipulated by the substitution mechanism we introduced. This reduces heavily the complexity of the generic model because it relies upon the refinement capabilities of Event-B to handle the modeling of the core behavior of the system.

• Second, the Event-B method provides a powerful built-in inductive proof technique based on invariant preservation by the events (see Table 1.1). This enables us to split the overall proof into smaller, more manageable proofs.

Therefore, we rely on the definition of Event-B events to define generic transitions (using the progress event). The proofs of invariant preservation and of variant 8.7. CONCLUSION decrease are achieved at the abstract level of machine M1. They are preserved by any other machine that refines it.

To instantiate these generic events for a specific system acting as a system instance, the abstract events of machine M1 are refined. An event refining an abstract event is introduced for each concrete event of the system instance (e.g. the event progress_sys1 corresponding to the concrete addItem_WS1 event refines the abstract progress event). The only proof effort relates to the correct event refinement.

Note that in other traditional correct-by-construction techniques like Coq [START_REF] Bertot | Interactive theorem proving and program development: Coq'Art: the calculus of inductive constructions[END_REF][START_REF] Coq | The Coq Proof Assistant Reference Manual[END_REF] or Isabelle [NPW02; Wen16], classical inductive proof schemes are offered. One has:

• first to describe the inductive structure associated to the formalized systems,

• then to give a specific inductive proof scheme for this defined inductive structure and,

• finally to prove the correct instantiation.

In the core definition of these techniques, the inductive process associated to transition systems corresponding to the pattern of Figure 2.4 and the refinement capability are not available as a built-in inductive proof process (like in Event-B where this notion is available through state variables and events). The developer would have to formalize the notion of transition together with corresponding inductive proof principles and the instantiation of transitions because event refinement is not available.

Compared to the Event-B method, there is a need of another meta level specification and proof process.

Conclusion

In this chapter, we have presented an approach for correct system substitution that is generic and that can be instantiated to any number of systems, thus it could scale in practice. An instantiation mechanism based on the definition of witnesses has been defined. Note that, since instantiation is performed by refinement, solely the last refinement step shall be proved for each new instantiation. It corresponds to checking that the witnesses belong to the set of correct systems. From a methodological point of view, when instantiation by model checking does not scale up, one may use the defined instantiation mechanism based on witnesses. The whole proposed approach has been modeled within the Event-B method. Refinement and proof have been extensively used to obtain the whole model and its instantiations. We believe our results could be used in other formalisms because only the use of the Event-B refinement relation to link the pattern and its instantiations is specific of our tool. This work has been published in [START_REF] Babin | Correct Instantiation of a System Reconfiguration Pattern: A Proof and Refinement-Based Approach[END_REF].

We did not apply our generic approach to systems with continuous behaviors. However, considered the work presented in the previous chapters on the modeling of the substitution in continuous systems at a concrete level, we believe that our generic approach could be applied to a continuous system.

Part III

Conclusion

Conclusion and perspectives

Conclusion

In this thesis, we addressed the problem of correct system substitution as a system development activity to handle the problem family of system evolution at design time or runtime. We consider that a source system can be substituted (replaced) by another system, namely a target system. A generic system substitution operation has been defined and formalized. Applicability of this operation on both discrete event-based systems and hybrid systems has also been demonstrated. Several contributions resulted from our work:

• First, we propose a model for a stepwise correct-by-construction method which encompasses the various characteristics of the system substitution operator we have defined. The proposed approach is based on refinement and proof and uses the Event-B method as support for the development.

A class of systems refining a shared specification is formally developed. They represent the set of systems that may substitute each other. The designed substitution operator is parameterized by a safety property, named horizontal invariant, ensuring the quality of the services offered by the substitute system. This operator is able to restore the state of the source system, using this horizontal invariant, in the identified corresponding state of the target system.

This substitution operator offers several modeling options for system substitution:

-It can be used to replace systems at design time (when the state of the restored system is the initial state) or at runtime (when the state of the restored system is an identified state of the target system corresponding to the halting state of the source system).

-According to the definition of the gluing invariant, this operation offers the capability to define different substitution modes: equivalent, degraded and upgraded modes.

-When the states of the source and target systems are disjoint, the substitution corresponds to a replacement of a system by a new one. But other capabilities are offered when the halting state of the source and the restarting state of the target systems are identical (e.g. self-systems, autonomous systems, etc.) or when part of the source and target system states are shared (e.g. maintenance).

• Second, we have experimented the use of the defined system substitution operation in two situations that correspond to semantically different categories of systems where the system substitution operation was instanciated in order to handle:

discrete systems whose behavior is formalized by discrete models namely state-transition systems in our case. This use was illustrated with the web services compensation case where compensation is modeled as a service substitution. Web services compensation at runtime has been modeled as a specific definition of the proposed substitution operator. This proposal led to the definition of a new compensation mechanism for web services that is not yet formalized in the current standards of web services.

hybrid systems, or cyber-physical systems, whose behavior is continuous and require the introduction of continuous mathematical features for their modeling. We relied on the theory plug-in in Event-B in order to model these aspects.

In general, halting and starting these systems is not instantaneous. The proposed formalization of our system substitution operator enabled us to define a system substitution on such systems. We have shown that the state restoration maintains the safety invariants even when substitution is not instantaneous, provided that some properties of the physics of the system are taken into account in the formal model. A formalization of the discretization of the defined continuous behaviors has been defined, it allows a developer to identify how such systems are controlled.

• Finally, we naturally studied the capability to develop the substitution operation as a generic operator that can be instantiated for any system defined as a state-transition system.

We succeeded in generaling our approach and defined a generic model formalizing the defined substitution operator using an explicit model for states and for the horizontal invariants using lambda expressions (deep modeling) and the events of the Event-B machines to model the transitions of the considered systems (shallow modeling).

The system substitution we defined for web services compensation has been obtained by instantiating the defined generalization. Web services and the corresponding gluing invariant has been provided as instances of the defined generalized model.

Moreover, this generic model enabled us to concentrate the proof effort on the generalized level (reusable level of abstraction) in order to share this proof effort among several particular instantiations.

Perspectives

The results obtained in this thesis opened several new research directions. Below, we give a non-exhaustive list of the perspectives to our work. Two types of perspectives have been identified. The first category relates to the specific case studies of web services and cyberphysical systems modeling.

The case of web services management

• Web services compensation. Our model of service compensation does not make explicit the choice of the compensating service. This could be addressed using quality of service properties that may complete the functional invariants. Defining classes of services can be a solution for such a characterization. The substitute web service would be selected at runtime among the services belonging to this class.

• Several ontology models have been introduced to define semantic web services. In these ontologies, classes of functionally equivalent web services are defined and hierarchically structured using a subsumption relationship. A link between the ontology classes of target services and a given source web service could be formally established.

The cyber-physical systems

The developments we have conducted on continuous models for cyber-physical systems led to several possible extensions:

• The refinement we have defined for the discretization of continuous definitions relies on mathematical real numbers. In order to further develop our models of substitution in cyber-physical systems, it is needed to introduce another refinement from mathematical reals to floating-point numbers as another discretization step. One issue to define the gluing invariant would be to use the intermediate value theorem as gluing invariant between the discretization level with mathematical real numbers and the discretization level with floating-point level. This would enable a correct concrete implementation of the controller.

• The models defined in our work handled a single variable for information feedback (one parameter for the continuous function) with a simple safety envelope (interval that the value must belong to). Investigating an extension of the function descriptions to a set of variable parameters (vector) is needed as in traditional models in control theory. As a consequence, the safety envelope, which was defined as a simple interval, becomes a complex constraint expression denoting a constraint solving problem. More precisely, it could first be an extension of intervals to higher dimension boxes as it is done in classical interval arithmetics; but precision might require more complex relational envelopes. Proving the correctness of such models requires more powerful proof techniques.

• The other extension that needs to be studied relates to the manipulation of the continuous functions. We have used an explicit representation of a function while control theory uses differential equations to describe the continuous behaviors. We believe that our developments can manipulate function derivatives but it will also require modeling derivates and integrals using the theory plug-in and more appropriate proof techniques.

The second category of perspectives concerns the possible extensions of the defined system substitution operation:

System substitution operation

• The system substitution operation we have defined considers a fixed number of systems. One may study the case where the systems enter and/or leave the set of systems dynamically. In this case, the set of available systems evolves dynamically. This situation occurs in the case of adaptive and/or autonomic systems. In this case, the substitute system is chosen among a dynamic set of possible substitute systems and quality of service criteria may be introduced for the selection.

• Studying the formalization of the other situations like the case of self-systems with shared variables between source and target systems, or more detailed situations for upgraded and degraded modes need to be studied in more details.

• Structuring system substitutions as relations (edges) in a graph with systems as nodes allows a designer to select which substitute systems can be used (neighbor nodes). Additionally, constraints (QoS, upgrade/degrade, etc.) can be added to the edges or to the whole graph (e.g. each node has at least three neighbor nodes). Thus, the graph expressing the substitution possibilities would be exploited for selecting target systems for substitution.

• Adding probability of failures and its corresponding calculus is an issue to address in case of safety analysis of critical systems.

• Finally, one important extension would be the substitution of a set of systems by another set of systems. The objective is to maintain an invariant for the global system (global invariant) corresponding to a property of an offered service while some systems composing the global system may leave or enter the global system. Each local system is characterized by its own invariant (local invariant). An example of such a system could be a farm of wind turbines that produce an amount of energy where some particular wind turbines may start production (windy case) or may stop (missing wind).

Studying the previously identified perspectives will certainly improve the engineering of system substitution, maintenance, reconfiguration and adaptation. // A has a lower bound multiplication is distributive over addition axm11: ∀x • leq(x,x) order is reflexive axm12: ∀x,y • leq(x,y) ∧ leq(y,x) ⇒ x=y order is antisymmetric axm13: ∀x,y,z • leq(x,y) ∧ leq(y,z) ⇒ leq(x,z) order is transitive axm14: ∀x,y • leq(x,y) ∨ leq(y,x) order is total axm15: ∀x,y,z • leq(x,y) ⇒ leq(x plus z, y plus z) order is compatible with addition axm16: ∀x,y,z • leq(x,y) ∧ leq(zero,z) ∧ z≠zero ⇒ leq(x mult z, y mult z)
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order is compatible with positive multiplication axm17: In Chapter 5, a simplified version of the tree of machines is presented:

∀A • A⊆REAL ∧ A≠∅ ∧ (∃m • m∈REAL ∧ (∀x • x∈A ⇒ leq(x,m))) ⇒ (∀x • x∈A ⇒ leq(x,sup(A))) sup(A) is an upper bound of A axm18: ∀A,v • A⊆REAL ∧ A≠∅ ∧ (∃m • m∈REAL ∧ (∀x • x∈A ⇒ leq(x,m))) ∧ (∀x • x∈A ⇒ leq(x,v)) ⇒ leq(sup(A),v) sup(A) is the least upper bound of A axm19: ∀A • A⊆REAL ∧ A≠∅ ∧ (∃m • m∈REAL ∧ (∀x • x∈A ⇒ leq(m,x))) ⇒ (∀x • x∈A ⇒ leq(inf(A),x)) inf(A) is a lower bound of A axm20: ∀A,v • A⊆REAL ∧ A≠∅ ∧ (∃m • m∈REAL ∧ (∀x • x∈A ⇒ leq(m,x))) ∧ (∀x • x∈A ⇒ leq(v,x)) ⇒ leq(v,inf(A)) inf ( 
f ∈ REAL ⇸ REAL a ∈ REAL b ∈ REAL leq(a,b) {x | x ∈ REAL ∧ leq(a,x) ∧ leq(x,b)} ⊆ dom(f) AXIOMS axm1: ∀f,a,b • f ∈ REAL ⇸ REAL ∧ a ∈ REAL ∧ b ∈ REAL ∧ leq(a,b) ∧ {x | x ∈ REAL ∧ leq(a,x) ∧ leq(x,b)} ⊆ dom(f) ⇒ (cnt_int(f,
• M0 corresponds to M_1 in the complete models.

• R1 corresponds to M_11 & M_111 combined. • R2 corresponds to M_12, M_121 & M_1211 combined. • R3 corresponds to M_15, M_151, M_1512 & M_15121 combined.
Components:

• C_1_ (page 149)

• C_11_failure_status (page 150)

• M_1_ (page 151) we have all the products we wanted in our carts after the 'selection' step

•
prop2: ∀p•p ∈ ran(carts) ⇒ card(carts -1 [{p}]) = 1
each product has been selected in only one site where grd1: current system ∈ available systems grd2: new valuation ∈ V aluations grd3: dom(new valuation) = dom(valuation of (current system state)) same system variables grd4: f var of (current system state)(new valuation) < varval of (current system state) the value of the variant decreases then act1: current system state := system of (current system state) → new valuation 

DLF 1: ¬(∃someCarts• (var M 1 seq = 4 ∧ someCarts ⊆ SIT ES × P ∧ ran(someCarts) = P ∧ (∀p•p ∈ ran(someCarts) ⇒ card(someCarts -1 [{p}]) = 1)) ∨ var M 1 seq = 3 ∨ var M 1 seq = 2 ∨ var M 1 seq = 1) ⇒ var M 1 seq = 0 (deadlock => finished)
prop1: var M 15111 seq 1 ≥ 1 ⇒ card(selectedItem 1) = 0 prop2: var M 15111 seq 1 < 1 ⇒ card(selectedItem 1) = 1 prop3: var M 15111 seq 2 A ≥ 1 ⇒ card(selectedItem 2 A) = 0 prop4: var M 15111 seq 2 A < 1 ⇒ card(selectedItem 2 A) = 1 prop5: var M 15111 seq 2 B ≥ 1 ⇒ card(selectedItem 2 B) = 0 prop6: var M 15111 seq 2 B < 1 ⇒ card(selectedItem 2 B) = 1
thm06: theorem ∀n, A, f, a•n ∈ N ∧ A ⊆ REAL ∧ f ∈ 0 .. n → A ∧ a ∈ A ⇒ f ∪ {n + 1 → a} ∈ 0 .. n + 1 → A thm07: theorem ∀a, b, c•(a ∈ REAL ∧ b ∈ REAL ∧ c ∈ REAL) ⇒ (leq(a plus c, b plus c) ⇔ leq(a, b)) a+c ≤ b+c ⇔ a≤ b thm08: theorem ∀x•x ∈ REAL ⇒ (leq(zero, x) ⇔ leq(minus(x), zero)) 0≤ x ⇔ -x≤ 0 thm09: theorem ∀a, b•(a ∈ REAL ∧ b ∈ REAL) ⇒ (leq(a, b) ⇔ leq(zero, b sub a)) a≤ b ⇔ 0≤ b-a thm10: theorem ∀a, b•(a ∈ REAL ∧ b ∈ REAL) ⇒ (leq(zero, a) ⇔ leq(b, b plus a)) 0≤ a ⇔ b≤ b+a thm11: theorem ∀a, b•(a ∈ REAL ∧ b ∈ REAL) ⇒ (leq(zero, b) ⇒ leq(a, a plus b)) 0≤ b ⇒ a ≤ a+b thm14: theorem ∀a, b•a ∈ REAL ∧ b ∈ REAL ⇒ (a = b ⇔ b = a) a=b ⇔ b=a thm13: theorem ∀a, b•a ∈ REAL ∧ b ∈ REAL ⇒ (¬(a = b) ⇔ ¬(b = a)) ¬(a=b) ⇔ ¬(b=a) thm12: theorem ∀a, b•(a ∈ REAL ∧ b ∈ REAL) ⇒ ( 
: theorem ∀a, b•(a ∈ REAL ∧ b ∈ REAL) ⇒ (smr(zero, b) ⇒ smr(a sub b, a)) 0<b ⇒ a-b < a thm18: ∀a, b, c, f •(a ∈ REAL ∧ b ∈ REAL ∧ c ∈ REAL ∧ leq(a, b) ∧ leq(b, c) ∧ f ∈ REAL → REAL ∧ {x|x ∈ REAL ∧ leq(a, x) ∧ leq(x, c)} ⊆ dom(f )) ⇒ (cnt int(f, a, c) ⇔ cnt int(f, a, b) ∧ cnt int(f, b, c)) continuous on [a,c] ⇔ continuous on [a,b] and [b,c] thm19: ∀a, b, f, g•(a ∈ REAL ∧ b ∈ REAL ∧ leq(a, b) ∧f ∈ REAL →REAL∧{x|x ∈ REAL∧leq(a, x)∧leq(x, b)} ⊆ dom(f ) ∧g ∈ REAL →REAL∧{x|x ∈ REAL∧leq(a, x)∧leq(x, b)} ⊆ dom(g) ∧ (∀x•x ∈ REAL ∧ leq(a, x) ∧ leq(x, b) ⇒ f (x) = g(x))) ⇒ (cnt int(f, a, b) ⇔ cnt int(g, a, b)) f and g equal on [a,b] ⇒ (f continuous on [a,b] ⇔ g continuous on [a,b]) thm20: theorem ∀a, b•(a ∈ REAL ∧ b ∈ REAL) ⇒ (leq(a, b) ∧ leq(b, a) ⇔ a = b) a≤ b ∧ b≤ a ⇔ a=b thm21: theorem ∀a, b•(a ∈ REAL ∧ b ∈ REAL) ⇒ (¬leq(a, b) ⇔ gtr(a, b)) ¬(a≤ b) ⇔ a>b thm22: ∀a, b•(a ∈ REAL P OS ∧ b ∈ REAL P OS) ⇒ (a mult b ∈ REAL P OS) a ∈ R+ ∧ b ∈ R+ ⇒ a*b ∈ R+ thm23: ∀a, b•(a ∈ REAL ∧ b ∈ REAL) ⇒ ((∃c•c ∈ REAL ST R P OS ∧ a = b plus c) ⇔ smr(b, a)) (∃ c > 0, a = b+c) ⇔ b<a thm24: ∀a, b, c•(a ∈ REAL ∧ b ∈ REAL ∧ c ∈ REAL) ⇒ (smr(a, b) ∧ smr(b, c) ⇒ smr(a, c)) a<b ∧ b<c ⇒ a<c thm26: theorem ∀a, b, c•(a ∈ REAL ∧ b ∈ REAL ∧ c ∈ REAL) ⇒ (leq(a, b) ∧ smr(b, c) ⇒ smr(a, c)) a≤ b ∧ b<c ⇒ a<c thm25: ∀a, b, now•now ∈ REAL P OS ∧ a ∈ REAL P OS ∧ b ∈ REAL P OS ∧ smr(a, b) ⇒ (∃dt,
thm27: theorem ∀a, b•leq(a, b) ∨ leq(b, a) a≤ b ∨ b≤ a thm30: ∀a, b, c•(a ∈ REAL P OS ∧ b ∈ REAL P OS ∧ c ∈ REAL ST R P OS) ⇒ (smr(a, b) ⇒ smr(a mult c, b mult c)) a ≥ 0 ∧ b ≥ 0 ∧ c > 0 ⇒ (a < b ⇒ a*c < b*c) thm31: ∀a, b, c•(a ∈ REAL P OS ∧ b ∈ REAL P OS ∧ c ∈ REAL P OS) ⇒ (leq(a, b) ⇒ leq(a mult c, b mult c)) a ≥ 0 ∧ b ≥ 0 ∧ c ≥ 0 ⇒ (a ≤ b ⇒ a*c
: i ∈ N glue01: ∀n•n ∈ 0 .. i ⇒ pc(cast(n) mult tstep) = pd(n) n ∈ 0..i ⇒ pc(n*tstep) = pd(n) glue02: now = (cast(i) mult tstep) plus et now = i*tstep + et prop02: ∀n•n ∈ 0 .. i -
theorem ∀n•n ∈ N ⇒ (n ∈ dom(pd start) ⇔ cast(n) mult tstep ∈ dom(np)) grd18: pd start(i) = pd(i) grd17: ∀n•n ∈ dom(pd start) ⇒ np(cast(n) mult tstep) = pd start(n) grd20: ∀n•n ∈ i .. i + n step -1 ⇒ ( ∀t•(leq(cast(n) mult tstep, t) ∧ leq(t, cast(n + 1) mult tstep)) ⇒ leq(np(t), pd start(n) plus max dp)) thm06: theorem ∀n•n ∈ 0 .. i -1 ⇒ n ∈ dom(pd) ∧ n / ∈ dom(pd start) (pd -pd start)(n), case 1/2: n < i thm07: theorem ∀n•n ∈ i .. i + n step -1 ⇒ n ∈ dom(pd start) (pd -pd start)(n), case 2/2: n ≥ i thm11: theorem ∀n, t•(n ∈ 0 .. i -1 ∧ t = now ∧ leq(cast(n) mult tstep, t) ∧ leq(t, cast(n + 1) mult tstep)) ⇒ t ∈ dom(pc) ∧ t / ∈ dom(np) (pc -np)(t), case 1/3: n < i ∧ t =

APPENDIX E. GENERALIZATION

Safety-critical systems depend on the fact that their software components provide services that behave correctly (i.e. satisfy their requirements). Additionally, in many cases, these systems have to be adapted or reconfigured in case of failures or when changes in requirements or in quality of service occur. When these changes appear at the software level, they can be handled by the notion of substitution. Indeed, the software component of the source system can be substituted by another software component to build a new target system. In the case of safety-critical systems, it is mandatory that this operation enforces that the new target system behaves correctly by preserving the safety properties of the source system during and after the substitution operation. In this thesis, the studied systems are modeled as state-transition systems. In order to model system substitution, the Event-B method has been selected as it is well suited to model such state-transition systems and it provides the benefits of refinement, proof and the availability of a strong tooling with the Rodin Platform. This thesis provides a generic model for system substitution that entails different situations like cold start and warm start as well as the possibility of system degradation, upgrade or equivalence substitutions. This proposal is first used to formalize substitution in the case of discrete systems applied to web services compensation and allowed modeling correct compensation. Then, it is also used for systems characterized by continuous behaviors like hybrid systems. To model continuous behaviors with Event-B, the Theory plug-in for Rodin is investigated and proved successful for modeling hybrid systems. Afterwards, a correct substitution mechanism for systems with continuous behaviors is proposed. A safety envelope for the output of the system is taken as the safety requirement. Finally, the proposed approach is generalized, enabling the derivation of the previously defined models for web services compensation through refinement, and the reuse of proofs across system models.

Keywords: formal methods, correct-by-construction systems, system substitution, refinement

Une approche formelle pour la substitution correcte par construction de systèmes

Les systèmes critiques dépendent du fait que leurs composants logiciels fournissent des services aux comportements corrects (c'est-à-dire satisfaisant leurs exigences). De plus, dans de nombreux cas, ces systèmes doivent être adaptés ou reconfigurés en cas de pannes ou quand des évolutions d'exigences ou de qualité de service se produisent. Quand ces évolutions peuvent être capturées au niveau logiciel, il devient possible de les traiter en utilisant la notion de substitution. En effet, le composant logiciel du système source peut être substitué par un autre composant logiciel pour construire un nouveau système cible. Dans le cas de systèmes critiques, cette opération impose que le nouveau système cible se comporte correctement en préservant, autant que possible, les propriétés de sécurité et de sûreté du système source pendant et après l'opération de substitution. Dans cette thèse, les systèmes étudiés sont modélisés par des systèmes états-transitions. Pour modéliser la substitution de systèmes, la méthode Event-B a été choisie car elle est adaptée à la modélisation de systèmes états-transitions et permet de bénéficier des avantages du raffinement, de la preuve et de la disponibilité d'un outil puissant avec la plate-forme Rodin. Cette thèse fournit un modèle générique pour la substitution de systèmes qui inclut différentes situations comme le démarrage à froid et le démarrage à chaud, mais aussi la possibilité de dégradation ou d'extension de systèmes ou de substitution équivalente. Cette approche est d'abord utilisée pour formaliser la substitution dans le cas de systèmes discrets appliqués à la compensation de Services Web. Elle permet de modéliser la compensation correcte. Par la suite, cette approche est mise en oeuvre dans le cas des systèmes caractérisés par des comportements continus comme les systèmes hybrides. Pour modéliser des comportements continus avec Event-B, l'extension Theory pour Rodin est examinée et s'avère performante pour modéliser des systèmes hybrides. Cela nous permet de proposer un mécanisme de substitution correct pour des systèmes avec des comportements continus. L'exigence de sûreté devient alors le maintien de la sortie du système dans une enveloppe de sûreté. Pour finir, l'approche proposée est généralisée, permettant la dérivation des modèles précédemment définis pour la compensation de Services Web par le raffinement et la réutilisation de preuves entre des modèles de systèmes.

Mots-clés : méthodes formelles, systèmes corrects par construction, substitution de systèmes, raffinement
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  Invariants I(s, c, v) Theorems T m (s, c, v) Variant V (s, c, v) Events Event Initialisation = Begin v :| D(s, c, x, v ) End Event evtr = Refines evt Any x Where G(s, c, v, x) Then v :| BA(s, c, v, x, v ) End End Model 1.1 -Structures of Event-B contexts and machines Similarly to contexts, machines are defined by a set of clauses (Model 1.1).

  TheoremsA(s, c)⇒ T c (s, c) (a) A(s, c) ∧ I(s, c, v) ⇒ T m (s, c, v) (b) Invariant preservation A(s, c) ∧ I(s, c, v) ∧ G(s, c, v, x) ∧ BA(s, c, v, x, v ) ⇒ I(s, c, v ) (c) Event feasibility A(s, c) ∧ I(s, c, v) ∧ G(s, c, v, x) ⇒ ∃v .BA(s, c, v, x, v ) (d) Natural variant A(s, c) ∧ I(s, c, v) ∧ G(s, c, v, x) ⇒ V (s, c, v) ∈ N (e) Variant progress A(s, c) ∧ I(s, c, v) ∧ G(s, c, v, x) ∧ BA(s, c, v, x, v ) (f) ⇒V (s, c, v ) < V (s, c, v)

  continuous on [a,b] ⇔ g continuous on [a,b])
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 2 2 by the system of Figure 2.3. The first model (Figure 2.1) is also an abstraction of the last model of Figure 2.3.
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 31 Figure 3.1 -A simple state-transition system describing a sequence of services for purchasing products
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 32 Figure 3.2 -Example of the evolution of the function f
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 33 Figure 3.3 -Example of the evolution of the functions f , g and f + g
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 46 values for state variables v S , v T := . . . // New values for variants VN T := . . . // Change mode m := T Skeleton of event repair

  Figure 4.1 -Systems
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 1451 Figure 5.1 -The state-transition system for the selection event Figure 5.1 defines one transition. The selection event, corresponding to the web service selecting the set of products, will be decomposed by refinement into other more concrete state-transition system. The resulting decompositions define different correct refinements corresponding to different compensation modes.The figures presented here and in the next section use the statechart notation [Har87; OMG15]. Classical state-transition systems can be described and may be themselves decomposed into other state-transition systems that may be run in parallel (interleaved denoted by a dashed vertical line).

  Target service on two websites
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 52 Figure 5.2 -Equivalent compensation mode

  Target service for two websites with an abstract service for lost products

Figure 5 . 3 -

 53 Figure 5.3 -Degraded compensation mode

  Target service on two websites
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 54 Figure 5.4 -Upgraded compensation mode

  2 -An Event-B model of the case study corresponding to Figure 3.1: variables and invariants

  Event Initialisation = Begin act1: cart := ∅ act2: seq := 4 End Event selection = Any someCart Where grd1: seq = 4 grd2: someCart ⊆ SIT ES × P grd3: ran(someCart) = P grd4: ∀p. p ∈ ran(someCart) ⇒ card(someCart -1 [{p}]) = 1 Then act1: seq := 3 act2: cart := someCart End Event payment = Where grd1: seq = 3 Then act1: seq := 2, . . . End Event billing = Where grd1: seq = 2 Then act1: seq := 1, . . . End Event delivery = Where grd1: seq = 1 Then act1: seq := 0, . . . End End Model 5.3 -An Event-B model of the case study corresponding to Figure 3.1: the events encoding the activities (in machine M0 )

  Event failure_WS1 = Where grd1: sys = 1 grd2: f ailureStatus = OK Then act1: f ailureStatus := N OK End Model 5.7 -Failure event (in machine R3 refining M0 )

Figure 5 . 5 -

 55 Figure 5.5 -Proofs size (number of nodes in the proof trees)
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 61 Figure 6.1 -Controller automaton
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 62 Figure 6.2 -Examples of the evolution of the function f

  The defined discretization guarantees that Req.2.1 is fulfilled until the next discrete instant due to ∀n ∈ N, ∀t ∈ [n × δt, (n + 1) × δt], |f (t) -f (n δt)| ≤ z. If the controller observes a value in [m, m + z[ or in ]M -z, M ], it shuts the system down because, the value might be out of range (Req.3 ) in the next step.

M

  d , we introduce a discrete function f d : N -→ R, where i ∈ N is an instant and δt is the time discretization interval duration. The functions f d and f c are glued by the following property: ∀n ∈ 0..i, f c (n × δt) = f d (n).
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 63 Figure 6.3 -Collapsing continuous time micro steps into a discrete time macro step

CHAPTER 6 .Figure 6 . 4 -

 664 Figure 6.4 -Project structure

Axioms def01 :EndModel 6 . 3 -

 def0163 REAL_POS={x | x ∈ REAL ∧leq(zero,x)} // ''leq'' is ≤ for reals def02: REAL_STR_POS={x | x ∈ REAL ∧smr(zero,x)} // ''smr'' is < for reals ... Theorems thm01: ∀a,b • ( a ∈ REAL ∧b ∈ REAL ) ⇒( smr(zero,b) ⇒smr(a sub b , a) ) thm02: ∀a,b • smr(a,b) ⇔¬ leq(b,a) ... End Model 6.1 -Part of context C0_reals Context C1_corridor Extends C0_reals Constants m, M Axioms axm01: m ∈ REAL_STR_POS axm02: M ∈ REAL_STR_POS axm03: smr(m,M) End Model 6.2 -Part of context C1_corridor6.4. A FORMAL DEVELOPMENT OF A DISCRETE CONTROLLER WITH EVENT-BThe top-level Event-B machineIt defines the global continuous variables issued from the controlled system. The machine introduces invariant inv03, guaranteeing Req.1 and Req.2.1 stating that in running mode (identified by active = TRUE), the real values of the continuous variables (defining the values of a continuous function introduced in the first refinement) fv shall be correct. This machine also models the abstract controller with three events boot, run and stop corresponding to the transition system of Figure6.1. These events manipulate fv the real positive value of the continuous variables corresponding to the current continuous values without explicit definition of a function f . Model 6.3 gives an extract of the top specification machine M0_spec.Machine M0_spec Sees C1_corridorVariables fv, active Invariants inv01: fv ∈ REAL_POS inv02: active ∈ BOOL inv03: active = TRUE ⇒leq(m,fv) ∧leq(fv,M) inv04: active = FALSE ⇒fv = zero Events Event Initialisation = Begin act01: active := FALSE act02: fv := zero End Event boot = ... Event run = Any new_fv Where grd01: active = TRUE grd02: new_fv ∈ REAL_POS grd03: leq(m,new_fv) ∧leq(new_fv,M) // new_fv ∈ [m,M] Then act01: fv := new_fv End Event stop = ... Extract of machine M0_spec

  induction case (cast(a+1) = cast(a) plus one) Theorems ... thm11: ∀ a,b • (a ∈ N ∧ b ∈ N) // equiv. over '<' ⇒(a < b ⇔smr(cast(a),cast(b))) thm12: ∀ a,b • (a ∈ N ∧ b ∈ N) // equiv. over '=' ⇒(a = b ⇔cast(a) = cast(b)) thm13: cast ∈ N cast [N] // cast is a bijection ... End Model 6.6 -Definition and properties of the cast function (reminder)

  Theorems thm03: cast(i+1) mult tstep = now plus dt Then ... act04: i := i + 1 act05: fd( i+1) := new_f act06: et := zero End End Model 6.8 -Extract of machine M2_dsct_ctrl

Figure 6 . 5 -

 65 Figure 6.5 -Proofs size (number of nodes in the proof trees)
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 71 Figure 7.1 -Single system behavior and output
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 72 Figure 7.2 -Global system behavior and output
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 74 The mode automaton

MachineTheorems

  M1 Refines M0 Sees C_envelope, C_modes Variables active , md, p, f , g Invariants ... envelope01: p ≤ M envelope02: active = TRUE ⇒m ≤ p mode01: md = MODE_F ⇒p = f mode04: md = MODE_F ⇒g = 0 mode02: md = MODE_R ⇒p = f + g mode03: md = MODE_G ⇒p = g mode05: md = MODE_G ⇒f = 0 Event CTRL_started Refines start = Where grd3: m ≤ p ∧p ≤ M End 102 7.2. FORMAL DEVELOPMENT Event ENV_evolution_f Refines progress = Any new_f Where grd2: active = TRUE ∧md = MODE_F grd5: f = m ∧ f = M grd3: m ≤ new_f grd4: new_f ≤ M Then act1: f := new_f act2: p := new_f End Event CTRL_limit_detected_f Refines fail = Where grd5: f = m ∨f = M

  With new_f: new_f = new_f_c(now + dt) Then act1: now := now + dt act2: p_c := p_c -new_f_c act3: f_c := f_c -new_f_c ... End ... End Model 7.6 -Machine M2

  This margin defines, at the discrete level, the new safety envelope [m + z, M -z] ⊂ [m, M ]. The new discrete variables f d , g d , p d and md d of M3 are glued to f c , g c , p c and md c of M2. They correspond to discrete observations feedback of f c , g c , p c and md c . The discretization step is defined as δt.Each environment event corresponding to a continuous event is refined into three events following our strategy presented in Chapter 6. The discrete controller only observes the events on time jumps i.e. at instants n × δt.
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 73 Figure 7.3 -Continuous and discrete system substitution
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 74 Figure 7.4 -Proofs size (number of nodes in the proof trees)

2 .

 2 Define a safety envelope to preserve the desired behavior; 3. Handle the continuous behavior and continuous time; 4. Model the discretization of the continuous function.

  type3: Systems ⊆ VariablesSets ×(Valuations →N) type4: Systems_states ⊆ Systems ×Valuations ... prop3: finite (Systems) ∧Systems = ∅ ... prop5: Systems_states = ∅ prop6: dom(Systems_states) = Systems ... fun1: system_of = (λ syst_st ∈ System_states | prj1(sys_st))) Model 8.2 -Context C0 containing basic definitions and properties (part 2 of 3)

  ) ) ... fun4: fvar_of = (λ syst_st ∈ System_states | prj2(prj1(sys_st)))) fun5: varval_of = (λ syst_st ∈ System_states | fvar_of(sys_st)(prj2(sys_st)))) ... End Model 8.3 -Context C0 containing basic definitions and properties (part 3 of 3)

Figure 2 . 4 .

 24 Figure 2.4. Finally, the last refinement is devoted to the instantiation of the generic model for specific cases.As mentioned, we identify four categories of transitions. Each category corresponds to an Event-B event in the generic Event-B models. The full model containing the four transition categories (initialization, progress, failure and repair) is obtained in two steps: a top-level machine and one single refinement. This decomposition has been defined to ease the proof process The definition of the final obtained model conforms to the system behavior pattern depicted by the transition system of Figure2.4.

  ⊆ Systems type2: current_system ∈ Systems Model 8.4 -Skeleton of machine M0 (part 1 of 2)

sys1.Model 8 . 10 -

 810 The second guard grd2 models a specific element of this transition open. Instantiation principle: use of refinement with witnesses

  instantiation context C0_instance of Model 8.11 provides concrete values for the deferred sets of the context C0. All the sets corresponding to the static characterization of the systems like Variables, ValueElements, Valuations, VariableSets, Systems_states, Systems and HorizontalInvs are valued by set comprehensions of possible instances. They characterize specific systems corresponding to the case study of Section 3.1.

End

  Model 8.11 -The instantiation context C0_instance 8.6. ASSESSMENT

Event progress_sys1

 progress_sys1 Refines progress = Any new_prod Where grd1: current_system = Sys1 grd2: Sys1 ∈ available_systems grd3: new_prod ∈ ValueElements grd4: new_prod / ∈ sys1_cart With new_valuation: new_valuation = {C1 → (sys1_cart ∪{new_prod})} Then act1: sys1_cart := sys1_cart ∪{new_prod} act2: current_system_state := Sys1 → {C1 → (sys1_cart ∪{new_prod})} End Model 8.13 -The generic progress event for one website of machine M2

EventsEvent

  Initialisation = ... Event failure_sys1 Refines failure = ... Event failure_sys2 Refines failure = ... Event repair_sys1_to_sys2 Refines repair = Any new_sys2_cart1, new_sys2_cart2 Where grd1: new_sys2_cart1 ∈ P (ValueElements) grd2: new_sys2_cart2 ∈ P (ValueElements) grd3: current_system = Sys1 grd4: Sys1 / ∈ available_systems grd5: Sys2 ∈ available_systems grd6: sys1_cart = new_sys2_cart1 ∪new_sys2_cart2 grd7: Sys2 → {C2a → new_sys2_cart1, C2b → new_sys2_cart2} ∈ available_systems_states With h_inv: h_inv = HorizontalInvs(Sys1 → Sys2) Then act1: current_system := Sys2 act2: current_system_state := Sys2 → {C2a → new_sys2_cart1, C2b → new_sys2_cart2} act3: sys2_cart1 := new_sys2_cart1 act4: sys2_cart2 := new_sys2_cart2 End Event complete_failure Refines complete_failure = ... Event progress_sys1 Refines progress = ... Event progress_sys2_c1 Refines progress = ... // detailed below Event progress_sys2_c2 Refines progress = ...
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 81 Figure 8.1 -Proofs size (number of nodes in the proof trees)

  • smr: smr(a : REAL, b : REAL) PREDICATE PREFIX • sub: sub(a : REAL, b : REAL) EXPRESSION INFIX REAL • cnt: cnt(f : ℙ(REAL×REAL), x : REAL) PREDICATE PREFIX well-definedness condition f ∈ REAL→REAL • gtr: gtr(a : REAL, b : REAL) PREDICATE PREFIX AXIOMS axm1: ∀x,y • (x plus y) = (y plus x) addition is commutative axm2: ∀x,y,z • ((x plus y) plus z) = (x plus (y plus z)) addition is associative axm3: ∀x • (x plus zero) = x addition has an identity axm4: ∀x • (x plus (minus (x))) = zero addition has an inverse axm5: ∀x,y • (x mult y) = (y mult x) multiplication is commutative axm6: ∀x,y,z • ((x mult y) mult z) = (x mult (y mult z)) multiplication is associative axm7: ∀x • (x mult one) = x multiplication has an identity axm8: ∀x • x≠zero ⇒ (x mult (inv (x))) = one multiplication has an inverse (except for zero) axm9: zero ≠ one zero different from one axm10: ∀x,y,z • (x mult (y plus z)) = ((x mult y) plus (x mult z))

  A) is the greatest lower bound of A axm21: ∀x,y • smr(x,y) ⇔ leq(x,y) ∧ x≠y Definition of relation "strictly smaller" axm24: ∀x,y • gtr(x,y) ⇔ leq(y,x) ∧ x≠y Definition of relation "strictly greater" axm22: ∀x,y • (x sub y) = (x plus minus(y)) Definition of subtraction axm23: ∀f,c • f∈REAL→REAL ∧ c∈REAL ∧ cnt(f,c) ⇒ (∀e • smr(zero,e) ⇒ (∃d • smr(zero,d) ∧ (∀x • smr(c sub d,x) ∧ smr(x,c plus d) ⇒ smr(f(c) sub e,f(x)) ∧ smr(f(x),f(c) plus e)

  a,b) ⇔ (∀c • leq(a,c) ∧ leq(c,b) ⇒ (∀e• smr(zero,e) ⇒ (∃d•smr(zero,d) ∧ (∀x• leq(a,x) ∧ leq(x,b) ⇒ (smr(c sub d,x) ∧ smr(x,c plus d) ⇒ smr(f(c) sub e,f(x)) ∧ smr(f(x),f(c) plus e))

•

  WS1 or WS2 (one of them, chosen at init) -M_14_selection_one_or_two_websites (page 166) -M_141_ (page 168) -M_1411_ (page 170) -M_14111_ (page 173) CONTEXT C 1 SETS PRODUCTS all the products in the world SITES all the sites in the world CONSTANTS STOCKS P products we want to buy AXIOMS axm1: finite(P RODU CT S) axm2: finite(SIT ES) axm3: card(SIT ES) ≥ 2 axm4: ST OCKS = SIT ES × P RODU CT S axm5: P ⊆ P RODU CT S partition(F AILU RE ST AT U S, {OK}, {N OT OK}) var M 1 seq ∈ N type2: theorem P ⊆ P RODU CT S type3: carts ⊆ ST OCKS prop1: (var M 1 seq < 4) ⇒ ran(carts) = P

VARIANT var M 1 1 SEES 2 ∧

 112 seq EVENTS Initialisation begin act1: var M 1 seq := 4 act3: carts := ∅ end Event selection convergent = any someCarts where grd1: var M 1 seq = 4 grd2: someCarts ⊆ SIT ES × P grd3: ran(someCarts) = P grd4: ∀p•p ∈ ran(someCarts) ⇒ card(someCarts -1 [{p}]) = 1 then act1: var M 1 seq := var M 1 seq -1 act2: carts := someCarts end Event payment convergent = when grd1: var M 1 seq = 3 then act1: var M 1 seq := var M 1 seq -1 end Event billing convergent = when grd1: var M 1 seq = 2 then act1: var M 1 seq := var M 1 seq -1 end Event delivery convergent = when grd1: var M 1 seq = 1 then act1: var M 1 seq := var M 1 seqcarts ref ⊆ SIT ES × P type2: var M 11 loop ∈ N type3: site ∈ SIT ES VARIANT var M 1 seq + var M 11 loop EVENTS Initialisation begin act1: var M 1 seq := 4 act2: var M 11 loop := card(P ) act3: carts := ∅ act4: carts ref := ∅ act5: site :∈ SIT ES end Event addItemToCart loop convergent = any someProduct where grd1: var M 1 seq = 4 grd2: var M 11 loop > 0 grd3: someP roduct ∈ P \ ran(carts ref ) then act1: var M 11 loop := var M 11 loop -1 act2: carts ref := carts ref ∪ {site → someP roduct} end Event confirmCarts convergent = refines selection when grd1: var M 1 seq = 4 grd2: var M 11 loop = 0 grd3: ran(carts ref ) = P grd4: ∀p•p ∈ ran(carts ref ) ⇒ carts ref -1 [{p}] = {site} with someCarts: someCarts = carts ref then act1: var M 1 seq := var M 1 seq -1 act2: carts := carts ref end Event payment convergent = extends payment when grd1: var M 1 seq = 3 then act1: var M 1 seq := var M 1 seq -1 end Event billing convergent = extends billing when grd1: var M 1 seq = 2 then act1: var M 1 seq := var M 1 seq -1 end Event delivery convergent = extends delivery when grd1: var M 1 seq = 1 then act1: var M 1 seq := var M 1 seq -1 var M 111 seq ∈ N type2: selectedItem ∈ P (P ) prop1: var M 111 seq ≥ 1 ⇒ card(selectedItem) = 0 prop2: var M 111 seq < 1 ⇒ card(selectedItem) = 1 VARIANT var M 1 seq + var M 11 loop + var M 111 seq EVENTS Initialisation extended begin act1: var M 1 seq := 4 act2: var M 11 loop := card(P ) act3: carts := ∅ act4: carts ref := ∅ act5: site :∈ SIT ES act6: var M 111 seq := 1 act7: selectedItem := ∅ end Event selectItemInItemList convergent = any someProduct where grd1: var M 1 seq = 4 grd2: var M 11 loop > 0 grd3: var M 111 seq = 1 grd4: someP roduct ∈ P \ ran(carts ref ) then act1: var M 111 seq := var M 111 seq -1 act2: selectedItem := {someP roduct} end Event addSelectedItemToCart convergent = refines addItemToCart loop any item used to access the element in selectedItem where grd1: var M 1 seq = 4 grd2: var M 11 loop > 0 grd3: var M 111 seq = 0 grd4: ∃p•p ∈ P \ ran(carts ref ) ∧ selectedItem = {p} grd5: selectedItem = {item} with someProduct: selectedItem = {someP roduct} then act1: var M 11 loop := var M 11 loop -1 act2: carts ref := carts ref ∪ {site → item} end Event selection convergent = extends confirmCarts when grd1: var M 1 seq = 4 grd2: var M 11 loop = 0 grd3: ran(carts ref ) = P grd4: ∀p•p ∈ ran(carts ref ) ⇒ carts ref -1 [{p}] = {site} then act1: var M 1 seq := var M 1 seq -1 act2: carts := carts ref end Event payment convergent = extends payment when grd1: var M 1 seq = 3 then act1: var M 1 seq := var M 1 seq -1 end Event billing convergent = extends billing when grd1: var M 1 seq = 2 then act1: var M 1 seq := var M 1 seq -1 end Event delivery convergent = extends delivery when grd1: var M 1 seq = 1 then act1: var M 1 seq := var M 1 seq -var M 12 par A ∈ N type2: var M 12 par B ∈ N VARIANT var M 1 seq + var M 12 par A + var M 12 par B EVENTS Initialisation extended begin act1: var M 1 seq := 4 act3: carts := ∅ act4: var M 12 par A := 1 act5: var M 12 par B := 1 end Event selection A convergent = when grd1: var M 1 seq = 4 grd2: var M 12 par A = 1 then act1: var M 12 par A := var M 12 par A -1 end Event selection B convergent = when grd1: var M 1 seq = 4 grd2: var M 12 par B = 1 then act1: var M 12 par B := var M 12 par B -1 end Event selection join A B convergent = refines selection any someCarts where grd1: var M 1 seq = 4 grd2: someCarts ⊆ SIT ES × P grd3: ran(someCarts) = P grd4: ∀p•p ∈ ran(someCarts) ⇒ card(someCarts -1 [{p}]) = 1 grd5: var M 12 par A = 0 grd6: var M 12 par B = 0 then act1: var M 1 seq := var M 1 seq -1 act2: carts := someCarts end Event payment convergent = extends payment when grd1: var M 1 seq = 3 then act1: var M 1 seq := var M 1 seq -1 end Event billing convergent = extends billing when grd1: var M 1 seq = 2 then act1: var M 1 seq := var M 1 seq -1 end Event delivery convergent = extends delivery when grd1: var M 1 seq = 1 then act1: var M 1 seq := var M 1 seq -loop Avar M 121 loop B -INVARIANTS type1: carts ref ⊆ SIT ES × P type2: var M 121 loop A ∈ N type3: var M 121 loop B ∈ N type4: site A ∈ SIT ES type5: site B ∈ SIT ES VARIANT var M 1 seq+var M 12 par A+var M 12 par B+var M 121 loop A+var M 121 loop B EVENTS Initialisation begin act1: var M 1 seq := 4 act2: var M 121 loop A, var M 121 loop B :| var M 121 loop A + var M 121 loop B = card(P ) ∧ var M 121 loop A ∈ N ∧ var M 121 loop B ∈ N act3: carts := ∅ act4: var M 12 par A := 1 act5: var M 12 par B := 1 act6: carts ref := ∅ act7: site A :∈ SIT ES act8: site B :∈ SIT ES end Event selection A loop convergent = any someProduct where grd1: var M 1 seq = 4 grd2: var M 12 par A = 1 grd3: var M 121 loop A > 0 grd4: someP roduct ∈ P \ ran(carts ref ) then act1: var M 121 loop A := var M 121 loop A -1 act2: carts ref := carts ref ∪ {site A → someP roduct} end Event selection A loop end convergent = extends selection A when grd1: var M 1 seq = 4 grd2: var M 12 par A = 1 grd3: var M 121 loop A = 0 then act1: var M 12 par A := var M 12 par A -1 end Event selection B loop convergent = any someProduct where grd1: var M 1 seq = 4 grd2: var M 12 par B = 1 grd3: var M 121 loop B > 0 grd4: someP roduct ∈ P \ ran(carts ref ) then act1: var M 121 loop B := var M 121 loop B -1 act2: carts ref := carts ref ∪ {site B → someP roduct} end Event selection B loop end convergent = extends selection B when grd1: var M 1 seq = 4 grd2: var M 12 par B = 1 grd3: var M 121 loop B = 0 then act1: var M 12 par B := var M 12 par B -1 end Event confirmCarts convergent = refines selection join A B when grd1: var M 1 seq = 4 grd2: ran(carts ref ) = P grd3: ∀p•p ∈ ran(carts ref ) ⇒ (carts ref -1 [{p}] = {site A} ∨ carts ref -1 [{p}] = {site B}) grd4: var M 12 par A = 0 grd5: var M 12 par B = 0 grd6: var M 121 loop A = 0 grd7: var M 121 loop B = 0 with someCarts: someCarts = carts ref then act1: var M 1 seq := var M 1 seq -1 act2: carts := carts ref end Event payment convergent = extends payment when grd1: var M 1 seq = 3 then act1: var M 1 seq := var M 1 seq -1 end Event billing convergent = APPENDIX B. DISCRETE SYSTEMS SUBSTITUTION extends billing when grd1: var M 1 seq = 2 then act1: var M 1 seq := var M 1 seq -1 end Event delivery convergent = extends delivery when grd1: var M 1 seq = 1 then act1: var M 1 seq := var M 1 seqvar M 1211 seq A ∈ N type2: var M 1211 seq B ∈ N type3: selectedItem A ∈ P (P ) type4: selectedItem B ∈ P (P ) prop1: var M 1211 seq A ≥ 1 ⇒ card(selectedItem A) = 0 prop2: var M 1211 seq A < 1 ⇒ card(selectedItem A) = 1 prop3: var M 1211 seq B ≥ 1 ⇒ card(selectedItem B) = 0 prop4: var M 1211 seq B < 1 ⇒ card(selectedItem B) = 1 VARIANT var M 1 seq+var M 12 par A+var M 12 par B+var M 121 loop A+var M 121 loop B+ var M 1211 seq A + var M 1211 seq B EVENTS Initialisation extended begin act1: var M 1 seq := 4 act2: var M 121 loop A, var M 121 loop B :| var M 121 loop A + var M 121 loop B = card(P ) ∧ var M 121 loop A ∈ N ∧ var M 121 loop B ∈ N act3: carts := ∅ act4: var M 12 par A := 1 act5: var M 12 par B := 1 act6: carts ref := ∅ act7: site A :∈ SIT ES act8: site B :∈ SIT ES act9: var M 1211 seq A := 1 act10: selectedItem A := ∅ act11: var M 1211 seq B := 1 act12: selectedItem B := ∅ end Event selectItemInItemList A convergent = any APPENDIX B. DISCRETE SYSTEMS SUBSTITUTION where grd1: var M 1 seq = 4 grd2: var M 12 par A = 1 grd3: var M 121 loop A > 0 grd4: var M 1211 seq A = 1 grd5: someP roduct ∈ P \ ran(carts ref ) then act1: var M 1211 seq A := var M 1211 seq A -1 act2: selectedItem A := {someP roduct} end Event addSelectedItemToCart A convergent = refines selection A loop any item used to access the element in selectedItem A where grd1: var M 1 seq = 4 grd2: var M 12 par A = 1 grd3: var M 121 loop A > 0 grd4: var M 1211 seq A = 0 grd5: ∃p•p ∈ P \ ran(carts ref ) ∧ selectedItem A = {p} grd6: selectedItem A = {item} with someProduct: selectedItem A = {someP roduct} then act1: var M 121 loop A := var M 121 loop A -1 act2: carts ref := carts ref ∪ {site A → item} end Event selection A loop end convergent = extends selection A loop end when grd1: var M 1 seq = 4 grd2: var M 12 par A = 1 grd3: var M 121 loop A = 0 then act1: var M 12 par A := var M 12 par A -1 end Event selectItemInItemList B convergent = any someProduct where grd1: var M 1 seq = 4 grd2: var M 12 par B = 1 grd3: var M 121 loop B > 0 grd4: var M 1211 seq B = 1 grd5: someP roduct ∈ P \ ran(carts ref ) then act1: var M 1211 seq B := var M 1211 seq B -1 act2: selectedItem B := {someP roduct} end Event addSelectedItemToCart B convergent = refines selection B loop any item used to access the element in selectedItem B where grd1: var M 1 seq = 4 grd2: var M 12 par B = 1 grd3: var M 121 loop B > 0 grd4: var M 1211 seq B = 0 grd5: ∃p•p ∈ P \ ran(carts ref ) ∧ selectedItem B = {p} grd6: selectedItem B = {item} with someProduct: selectedItem B = {someP roduct} then act1: var M 121 loop B := var M 121 loop B -1 act2: carts ref := carts ref ∪ {site B → item} end Event selection B loop end convergent = extends selection B loop end when grd1: var M 1 seq = 4 grd2: var M 12 par B = 1 grd3: var M 121 loop B = 0 then act1: var M 12 par B := var M 12 par B -1 end Event confirmCarts convergent = extends confirmCarts when grd1: var M 1 seq = 4 grd2: ran(carts ref ) = P grd3: ∀p•p ∈ ran(carts ref ) ⇒ (carts ref -1 [{p}] = {site A} ∨ carts ref -1 [{p}] = {site B}) grd4: var M 12 par A = 0 grd5: var M 12 par B = 0 grd6: var M 121 loop A = 0 grd7: var M 121 loop B = 0 then act1: var M 1 seq := var M 1 seq -1 act2: carts := carts ref end Event payment convergent = extends payment when grd1: var M 1 seq = 3 then act1: var M 1 seq := var M 1 seq -1 end Event billing convergent = extends billing when grd1: var M 1 seq = 2 then act1: var M 1 seq := var M 1 seq -1 end Event delivery convergent = extends delivery APPENDIX B. DISCRETE SYSTEMS SUBSTITUTION MACHINE M 14 selection one or two websites REFINES M 1 SEES C 1 VARIABLES var M 1 seqcartsvar M 14 cho -INVARIANTS type1: var M 14 cho ∈ N VARIANT var M 1 seq + var M 14 cho EVENTS Initialisation extended begin act1: var M 1 seq := 4 act3: carts := ∅ act4: var M 14 cho :∈ {1, 2} end Event selection oneWebsite convergent = when grd1: var M 1 seq = 4 grd2: var M 14 cho = 1 then act1: var M 14 cho := 0 end Event selection twoWebsites convergent = when grd1: var M 1 seq = 4 grd2: var M 14 cho = 2 then act1: var M 14 cho := 0 end Event selection convergent = extends selection any someCarts where grd1: var M 1 seq = 4 grd2: someCarts ⊆ SIT ES × P grd3: ran(someCarts) = P grd4: ∀p•p ∈ ran(someCarts) ⇒ card(someCarts -1 [{p}]) = 1 grd5: var M 14 cho = 0 then act1: var M 1 seq := var M 1 seq -1 act2: carts := someCarts end Event payment convergent = extends payment when grd1: var M 1 seq = 3 then act1: var M 1 seq := var M 1 seq -1 APPENDIX B. DISCRETE SYSTEMS SUBSTITUTION end Event billing convergent = extends billing when grd1: var M 1 seq = 2 then act1: var M 1 seq := var M 1 seq -1 end Event delivery convergent = extends delivery when grd1: var M 1 seq = 1 then act1: var M 1 seq := var M 1 seq -1 end END MACHINE M 141 REFINES M 14 selection one or two websites SEES C 1 VARIABLES var M 1 seqcartsvar M 14 chovar M 141 par Avar M 141 par B -INVARIANTS type1: var M 141 par A ∈ N type2: var M 141 par B ∈ N VARIANT var M 1 seq + var M 14 cho + var M 141 par A + var M 141 par B EVENTS Initialisation extended begin act1: var M 1 seq := 4 act3: carts := ∅ act4: var M 14 cho :∈ {1, 2} act5: var M 141 par A := 1 act6: var M 141 par B := 1 end Event selection oneWebsite convergent = extends selection oneWebsite when grd1: var M 1 seq = 4 grd2: var M 14 cho = 1 then act1: var M 14 cho := 0 end Event selection twoWebsites A convergent = when grd1: var M 1 seq = 4 grd2: var M 14 cho = 2 grd3: var M 141 par A = 1 then act1: var M 141 par A := var M 141 par A -1 end Event selection twoWebsites B convergent = when grd1: var M 1 seq = 4 grd2: var M 14 cho = 2 grd3: var M 141 par B = 1 then act1: var M 141 par B := var M 141 par B -1 end Event selection twoWebsites join A B convergent = extends selection twoWebsites when grd1: var M 1 seq = 4 APPENDIX B. DISCRETE SYSTEMS SUBSTITUTION grd2: var M 14 cho = 2 grd3: var M 141 par A = 0 grd4: var M 141 par B = 0 then act1: var M 14 cho := 0 end Event selection convergent = extends selection any someCarts where grd1: var M 1 seq = 4 grd2: someCarts ⊆ SIT ES × P grd3: ran(someCarts) = P grd4: ∀p•p ∈ ran(someCarts) ⇒ card(someCarts -1 [{p}]) = 1 grd5: var M 14 cho = 0 then act1: var M 1 seq := var M 1 seq -1 act2: carts := someCarts end Event payment convergent = extends payment when grd1: var M 1 seq = 3 then act1: var M 1 seq := var M 1 seq -1 end Event billing convergent = extends billing when grd1: var M 1 seq = 2 then act1: var M 1 seq := var M 1 seq -1 end Event delivery convergent = extends delivery when grd1: var M 1 seq = 1 then act1: var M 1 seq := var M 1 seq -carts ref ⊆ SIT ES × P type2: var M 1411 loop 1 ∈ N type3: var M 1411 loop 2 A ∈ N type4: var M 1411 loop 2 B ∈ N type5: site 1 ∈ SIT ES type6: site 2 A ∈ SIT ES type7: site 2 B ∈ SIT ES prop1: var M 14 cho = 1 ⇒ dom(carts ref ) ⊆ {site 1} prop2: var M 14 cho = 2 ⇒ dom(carts ref ) ⊆ {site 2 A, site 2 B} VARIANT var M 1 seq+var M 14 cho+var M 141 par A+var M 141 par B+var M 1411 loop 1+ var M 1411 loop 2 A + var M 1411 loop 2 B EVENTS Initialisation begin act1: var M 1 seq := 4 act2: var M 1411 loop 1, var M 1411 loop 2 A, var M 1411 loop 2 B :| var M 1411 loop 1 = card(P ) ∧ var M 1411 loop 2 A + var M 1411 loop 2 B = card(P ) ∧ var M 1411 loop 2 A ∈ N ∧ var M 1411 loop 2 B ∈ N act3: carts := ∅ act4: var M 14 cho :∈ {1, 2} act5: var M 141 par A := 1 act6: var M 141 par B := 1 act7: carts ref := ∅ act8: site 1 :∈ SIT ES act9: site 2 A :∈ SIT ES act10: site 2 B :∈ SIT ES end Event selection oneWebsite loop convergent = any someProduct APPENDIX B. DISCRETE SYSTEMS SUBSTITUTION where grd1: var M 1 seq = 4 grd2: var M 14 cho = 1 grd3: var M 1411 loop 1 > 0 grd4: someP roduct ∈ P \ ran(carts ref ) then act1: var M 1411 loop 1 := var M 1411 loop 1 -1 act2: carts ref := carts ref ∪ {site 1 → someP roduct} end Event selection oneWebsite convergent = extends selection oneWebsite when grd1: var M 1 seq = 4 grd2: var M 14 cho = 1 grd3: var M 1411 loop 1 = 0 then act1: var M 14 cho := 0 end Event selection twoWebsites A loop convergent = any someProduct where grd1: var M 1 seq = 4 grd2: var M 14 cho = 2 grd3: var M 141 par A = 1 grd4: var M 1411 loop 2 A > 0 grd5: someP roduct ∈ P \ ran(carts ref ) then act1: var M 1411 loop 2 A := var M 1411 loop 2 A -1 act2: carts ref := carts ref ∪ {site 2 A → someP roduct} end Event selection twoWebsites A convergent = extends selection twoWebsites A when grd1: var M 1 seq = 4 grd2: var M 14 cho = 2 grd3: var M 141 par A = 1 grd4: var M 1411 loop 2 A = 0 then act1: var M 141 par A := var M 141 par A -1 end Event selection twoWebsites B loop convergent = any someProduct where grd1: var M 1 seq = 4 grd2: var M 14 cho = 2 grd3: var M 141 par B = 1 grd4: var M 1411 loop 2 B > 0 grd5: someP roduct ∈ P \ ran(carts ref ) then act1: var M 1411 loop 2 B := var M 1411 loop 2 B -1 act2: carts ref := carts ref ∪ {site 2 B → someP roduct} end Event selection twoWebsites B convergent = extends selection twoWebsites B when grd1: var M 1 seq = 4 grd2: var M 14 cho = 2 grd3: var M 141 par B = 1 grd4: var M 1411 loop 2 B = 0 then act1: var M 141 par B := var M 141 par B -1 end Event selection twoWebsites join A B convergent = extends selection twoWebsites join A B when grd1: var M 1 seq = 4 grd2: var M 14 cho = 2 grd3: var M 141 par A = 0 grd4: var M 141 par B = 0 then act1: var M 14 cho := 0 end Event confirmSelection convergent = refines selection when grd1: var M 1 seq = 4 grd3: ran(carts ref ) = P grd4: ∀p•p ∈ ran(carts ref ) ⇒ card(carts ref -1 [{p}]) = 1 grd5: var M 14 cho = 0 with someCarts: someCarts = carts ref then act1: var M 1 seq := var M 1 seq -1 act2: carts := carts ref end Event payment convergent = extends payment when grd1: var M 1 seq = 3 then act1: var M 1 seq := var M 1 seq -1 end Event billing convergent = extends billing when grd1: var M 1 seq = 2 then act1: var M 1 seq := var M 1 seq -1 end Event delivery convergent = extends delivery when grd1: var M 1 seq = 1 then act1: var M 1 seq := var M 1 seq -1 end END APPENDIX B. DISCRETE SYSTEMS SUBSTITUTION act4: var M 14 cho :∈ {1, 2} act5: var M 141 par A := 1 act6: var M 141 par B := 1 act7: carts ref := ∅ act8: site 1 :∈ SIT ES act9: site 2 A :∈ SIT ES act10: site 2 B :∈ SIT ES act11: var M 14111 seq 1 := 1 act12: selectedItem 1 := ∅ act13: var M 14111 seq 2 A := 1 act14: selectedItem 2 A := ∅ act15: var M 14111 seq 2 B := 1 act16: selectedItem 2 B := ∅ end Event selectItemInItemList 1 convergent = any someProduct where grd1: var M 1 seq = 4 grd2: var M 14 cho = 1 grd3: var M 1411 loop 1 > 0 grd4: var M 14111 seq 1 = 1 grd5: someP roduct ∈ P \ ran(carts ref ) then act1: var M 14111 seq 1 := var M 14111 seq 1 -1 act2: selectedItem 1 := {someP roduct} end Event addSelectedItemToCart 1 convergent = refines selection oneWebsite loop any item used to access the element in selectedItem 1 where grd1: var M 1 seq = 4 grd2: var M 14 cho = 1 grd3: var M 1411 loop 1 > 0 grd4: var M 14111 seq 1 = 0 grd5: ∃p•p ∈ P \ ran(carts ref ) ∧ selectedItem 1 = {p} grd6: selectedItem 1 = {item} with someProduct: selectedItem 1 = {someP roduct} then act1: var M 1411 loop 1 := var M 1411 loop 1 -1 act2: carts ref := carts ref ∪ {site 1 → item} end Event selection oneWebsite convergent = extends selection oneWebsite when grd1: var M 1 seq = 4 grd2: var M 14 cho = 1 grd3: var M 1411 loop 1 = 0 then act1: var M 14 cho := 0 end Event selectItemInItemList 2 A convergent = APPENDIX B. DISCRETE SYSTEMS SUBSTITUTION any someProduct where grd1: var M 1 seq = 4 grd2: var M 14 cho = 2 grd3: var M 141 par A = 1 grd4: var M 1411 loop 2 A > 0 grd5: var M 14111 seq 2 A = 1 grd6: someP roduct ∈ P \ ran(carts ref ) then act1: var M 14111 seq 2 A := var M 14111 seq A -1 act2: selectedItem 2 A := {someP roduct} end Event addSelectedItemToCart 2 A convergent = refines selection twoWebsites A loop any item used to access the element in selectedItem 2 A where grd1: var M 1 seq = 4 grd2: var M 14 cho = 2 grd3: var M 141 par A = 1 grd4: var M 1411 loop 2 A > 0 grd5: var M 14111 seq 2 A = 0 grd6: ∃p•p ∈ P \ ran(carts ref ) ∧ selectedItem A = {p} grd7: selectedItem 2 A = {item} with someProduct: selectedItem 2 A = {someP roduct} then act1: var M 1411 loop 2 A := var M 1411 loop 2 A -1 act2: carts ref := carts ref ∪ {site 2 A → item} end Event selection twoWebsites A convergent = extends selection twoWebsites A when grd1: var M 1 seq = 4 grd2: var M 14 cho = 2 grd3: var M 141 par A = 1 grd4: var M 1411 loop 2 A = 0 then act1: var M 141 par A := var M 141 par A -1 end Event selectItemInItemList 2 B convergent = any someProduct where grd1: var M 1 seq = 4 grd2: var M 14 cho = 2 grd3: var M 141 par B = 1 grd4: var M 1411 loop 2 B > 0 grd5: var M 14111 seq 2 B = 1 grd6: someP roduct ∈ P \ ran(carts ref ) then act1: var M 14111 seq 2 B := var M 14111 seq B -1 act2: selectedItem 2 B := {someP roduct} end Event addSelectedItemToCart 2 B convergent = refines selection twoWebsites B loop any item used to access the element in selectedItem 2 B where grd1: var M 1 seq = 4 grd2: var M 14 cho = 2 grd3: var M 141 par B = 1 grd4: var M 1411 loop 2 B > 0 grd5: var M 14111 seq 2 B = 0 grd6: ∃p•p ∈ P \ ran(carts ref ) ∧ selectedItem 2 B = {p} grd7: selectedItem 2 B = {item} with someProduct: selectedItem 2 B = {someP roduct} then act1: var M 1411 loop 2 B := var M 1411 loop 2 B -1 act2: carts ref := carts ref ∪ {site 2 B → item} end Event selection twoWebsites B convergent = extends selection twoWebsites B when grd1: var M 1 seq = 4 grd2: var M 14 cho = 2 grd3: var M 141 par B = 1 grd4: var M 1411 loop 2 B = 0 then act1: var M 141 par B := var M 141 par B -1 end Event selection twoWebsites join A B convergent = extends selection twoWebsites join A B when grd1: var M 1 seq = 4 grd2: var M 14 cho = 2 grd3: var M 141 par A = 0 grd4: var M 141 par B = 0 then act1: var M 14 cho := 0 end Event confirmSelection convergent = extends confirmSelection when grd1: var M 1 seq = 4 grd3: ran(carts ref ) = P grd4: ∀p•p ∈ ran(carts ref ) ⇒ card(carts ref -1 [{p}]) = 1 grd5: var M 14 cho = 0 then act1: var M 1 seq := var M 1 seq -1 act2: carts := carts ref end Event payment convergent = extends payment when APPENDIX B. DISCRETE SYSTEMS SUBSTITUTION MACHINE M 15 failure REFINES M var M 15 cho ∈ N type2: f ailureStatus 1 ∈ F AILU RE ST AT U S type3: f ailureStatus 2 ∈ F AILU RE ST AT U S DLF 2: ¬((varM 1 seq = 4 ∧ var M 15 cho = 1 ∧ f ailureStatus 1 = OK) ∨ (var M 1 seq = 4 ∧ var M 15 cho = 1 ∧ f ailureStatus 1 = N OT OK ∧ f ailureStatus 2 = OK) ∨ (var M 1 seq = 4 ∧ var M 15 cho = 2 ∧ f ailureStatus 2 = OK) ∨ (var M 1 seq = 4 ∧ var M 15 cho = 2 ∧ f ailureStatus 2 = N OT OK ∧ f ailureStatus 1 = OK) ∨ (var M 1 seq = 4 ∧ var M 15 cho = 1 ∧ f ailureStatus 1 = OK) ∨ (var M 1 seq = 4 ∧ var M 15 cho = 2 ∧ f ailureStatus 2 = OK) ∨ (∃someCarts• (var M 1 seq = 4 ∧ someCarts ⊆ SIT ES × P ∧ ran(someCarts) = P ∧ (∀p•p ∈ ran(someCarts) ⇒ card(someCarts -1 [{p}]) = 1) ∧ var M 15 cho = 0)) ∨ var M 1 seq = 3 ∨ var M 1 seq = 2 ∨ var M 1 seq = 1) ⇒ (var M 1 seq = 0 ∨ (f ailureStatus 1 = N OT OK ∧ f ailureStatus 2 = N OT OK)) deadlock => (finished or total failure) VARIANT var M 1 seq + var M 15 cho EVENTS Initialisation extended begin act1: var M 1 seq := 4 APPENDIX B. DISCRETE SYSTEMS SUBSTITUTION act3: carts := ∅ act4: var M 15 cho :∈ {1, 2} act5: f ailureStatus 1 := OK act6: f ailureStatus 2 := OK end Event failure 1 ordinary = when grd1: var M 1 seq = 4 grd2: var M 15 cho = 1 grd3: f ailureStatus 1 = OK then act1: f ailureStatus 1 := N OT OK end Event treat failure 1 ordinary = when grd1: var M 1 seq = 4 grd2: var M 15 cho = 1 grd3: f ailureStatus 1 = N OT OK grd4: f ailureStatus 2 = OK then act1: var M 15 cho := 2 end Event failure 2 ordinary = when grd1: var M 1 seq = 4 grd2: var M 15 cho = 2 grd3: f ailureStatus 2 = OK then act1: f ailureStatus 2 := N OT OK end Event treat failure 2 ordinary = when grd1: var M 1 seq = 4 grd2: var M 15 cho = 2 grd3: f ailureStatus 2 = N OT OK grd4: f ailureStatus 1 = OK then act1: var M 15 cho := 1 end Event selection oneWebsite convergent = when grd1: var M 1 seq = 4 grd2: var M 15 cho = 1 grd3: f ailureStatus 1 = OK then act1: var M 15 cho := 0 end Event selection twoWebsites convergent = when grd1: var M 1 seq = 4 grd2: var M 15 cho = 2 grd3: f ailureStatus 2 = OK then act1: var M 15 cho := 0 end Event selection convergent = extends selection any someCarts where grd1: var M 1 seq = 4 grd2: someCarts ⊆ SIT ES × P grd3: ran(someCarts) = P grd4: ∀p•p ∈ ran(someCarts) ⇒ card(someCarts -1 [{p}]) = 1 grd5: var M 15 cho = 0 then act1: var M 1 seq := var M 1 seq -1 act2: carts := someCarts end Event payment convergent = extends payment when grd1: var M 1 seq = 3 then act1: var M 1 seq := var M 1 seq -1 end Event billing convergent = extends billing when grd1: var M 1 seq = 2 then act1: var M 1 seq := var M 1 seq -1 end Event delivery convergent = extends delivery when grd1: var M 1 seq = 1 then act1: var M 1 seq := var M 1 seq -par B -INVARIANTS type1: var M 151 par A ∈ N type2: var M 151 par B ∈ N DLF 3: ¬((var M 1 seq = 4∧ var M 15 cho = 1 ∧ f ailureStatus 1 = OK) ∨ (var M 1 seq = 4 ∧ var M 15 cho = 1 ∧ f ailureStatus 1 = N OT OK ∧ f ailureStatus 2 = OK) ∨ (var M 1 seq = 4 ∧ var M 15 cho = 2 ∧ f ailureStatus 2 = OK) ∨ (var M 1 seq = 4 ∧ var M 15 cho = 2 ∧ f ailureStatus 2 = N OT OK ∧ f ailureStatus 1 = OK) ∨ (var M 1 seq = 4 ∧ var M 15 cho = 1 ∧ f ailureStatus 1 = OK) ∨ (var M 1 seq = 4 ∧ var M 15 cho = 2 ∧ var M 151 par A = 1 ∧ f ailureStatus 2 = OK) ∨ (var M 1 seq = 4 ∧ var M 15 cho = 2 ∧ var M 151 par B = 1 ∧ f ailureStatus 2 = OK) ∨ (var M 1 seq = 4 ∧ var M 15 cho = 2 ∧ f ailureStatus 2 = OK ∧ var M 151 par A = 0 ∧ var M 151 par B = 0) ∨ (∃someCarts• (var M 1 seq = 4 ∧ someCarts ⊆ SIT ES × P ∧ ran(someCarts) = P ∧ (∀p•p ∈ ran(someCarts) ⇒ card(someCarts -1 [{p}]) = 1) ∧ var M 15 cho = 0)) ∨ var M 1 seq = 3 ∨ var M 1 seq = 2 ∨ var M 1 seq = 1)⇒ (var M 1 seq = 0 ∨ (f ailureStatus 1 = N OT OK ∧ f ailureStatus 2 = N OT OK)) deadlock => (finished or total failure) VARIANT var M 1 seq + var M 15 cho + var M 151 par A + var M 151 par B EVENTS Initialisation extended begin act1: var M 1 seq := 4 act3: carts := ∅ act4: var M 15 cho :∈ {1, 2} act5: f ailureStatus 1 := OK act6: f ailureStatus 2 := OK act7: var M 151 par A := 1 act8: var M 151 par B := 1 end Event failure 1 ordinary = extends failure 1 when grd1: var M 1 seq = 4 grd2: var M 15 cho = 1 grd3: f ailureStatus 1 = OK then act1: f ailureStatus 1 := N OT OK end Event treat failure 1 ordinary = extends treat failure 1 when grd1: var M 1 seq = 4 grd2: var M 15 cho = 1 grd3: f ailureStatus 1 = N OT OK grd4: f ailureStatus 2 = OK then act1: var M 15 cho := 2 end Event failure 2 ordinary = extends failure 2 when grd1: var M 1 seq = 4 grd2: var M 15 cho = 2 grd3: f ailureStatus 2 = OK then act1: f ailureStatus 2 := N OT OK end Event treat failure 2 ordinary = extends treat failure 2 when grd1: var M 1 seq = 4 grd2: var M 15 cho = 2 grd3: f ailureStatus 2 = N OT OK grd4: f ailureStatus 1 = OK then APPENDIX B. DISCRETE SYSTEMS SUBSTITUTION act1: var M 15 cho := 1 end Event selection oneWebsite convergent = extends selection oneWebsite when grd1: var M 1 seq = 4 grd2: var M 15 cho = 1 grd3: f ailureStatus 1 = OK then act1: var M 15 cho := 0 end Event selection twoWebsites A convergent = when grd1: var M 1 seq = 4 grd2: var M 15 cho = 2 grd3: var M 151 par A = 1 grd4: f ailureStatus 2 = OK then act1: var M 151 par A := var M 151 par A -1 end Event selection twoWebsites B convergent = when grd1: var M 1 seq = 4 grd2: var M 15 cho = 2 grd3: var M 151 par B = 1 grd4: f ailureStatus 2 = OK then act1: var M 151 par B := var M 151 par B -1 end Event selection twoWebsites join A B convergent = extends selection twoWebsites when grd1: var M 1 seq = 4 grd2: var M 15 cho = 2 grd3: f ailureStatus 2 = OK grd4: var M 151 par A = 0 grd5: var M 151 par B = 0 then act1: var M 15 cho := 0 end Event selection convergent = extends selection any someCarts where grd1: var M 1 seq = 4 grd2: someCarts ⊆ SIT ES × P grd3: ran(someCarts) = P grd4: ∀p•p ∈ ran(someCarts) ⇒ card(someCarts -1 [{p}]) = 1 grd5: var M 15 cho = 0 then act1: var M 1 seq := var M 1 seq -1 act2: carts := someCarts end Event payment convergent = extends payment when grd1: var M 1 seq = 3 then act1: var M 1 seq := var M 1 seq -1 end Event billing convergent = extends billing when grd1: var M 1 seq = 2 then act1: var M 1 seq := var M 1 seq -1 end Event delivery convergent = extends delivery when grd1: var M 1 seq = 1 then act1: var M 1 seq := var M 1 seqcarts ref ⊆ SIT ES × P type2: var M 1511 loop 1 ∈ N type3: var M 1511 loop 2 A ∈ N type4: var M 1511 loop 2 B ∈ N type5: site 1 ∈ SIT ES type6: site 2 A ∈ SIT ES type7: site 2 B ∈ SIT ES prop1: var M 15 cho = 1 ⇒ dom(carts ref ) ⊆ {site 1} prop2: var M 15 cho = 2 ⇒ dom(carts ref ) ⊆ {site 2 A, site 2 B} VARIANT var M 1 seq+var M 15 cho+var M 151 par A+var M 151 par B+var M 1511 loop 1+ var M 1511 loop 2 A + var M 1511 loop 2 B EVENTS Initialisation begin act1: var M 1 seq := 4 act2: var M 1511 loop 1, var M 1511 loop 2 A, var M 1511 loop 2 B :| var M 1511 loop 1 = card(P ) ∧ var M 1511 loop 2 A + var M 1511 loop 2 B = card(P ) ∧ var M 1511 loop 2 A ∈ N ∧ var M 1511 loop 2 B ∈ N act3: carts := ∅ act4: var M 15 cho :∈ {1, 2} act5: f ailureStatus 1 := OK act6: f ailureStatus 2 := OK act7: var M 151 par A := 1 act8: var M 151 par B := 1 act9: carts ref := ∅ act10: site 1 :∈ SIT ES act11: site 2 A :∈ SIT ES act12: site 2 B :∈ SIT ES end Event failure 1 ordinary = extends failure 1 when grd1: var M 1 seq = 4 grd2: var M 15 cho = 1 grd3: f ailureStatus 1 = OK then act1: f ailureStatus 1 := N OT OK end Event treat failure 1 ordinary = extends treat failure 1 when grd1: var M 1 seq = 4 grd2: var M 15 cho = 1 grd3: f ailureStatus 1 = N OT OK grd4: f ailureStatus 2 = OK then act1: var M 15 cho := 2 act2: carts ref := ∅ carts ref is reinitialized to rebuild the initial state end Event failure 2 ordinary = extends failure 2 when grd1: var M 1 seq = 4 grd2: var M 15 cho = 2 grd3: f ailureStatus 2 = OK then act1: f ailureStatus 2 := N OT OK end Event treat failure 2 ordinary = extends treat failure 2 when grd1: var M 1 seq = 4 grd2: var M 15 cho = 2 grd3: f ailureStatus 2 = N OT OK grd4: f ailureStatus 1 = OK then act1: var M 15 cho := 1 act2: carts ref := ∅ carts ref is reinitialized to rebuild the initial state end Event selection oneWebsite loop convergent = any someProduct where grd1: var M 1 seq = 4 grd2: var M 15 cho = 1 grd3: f ailureStatus 1 = OK grd4: var M 1511 loop 1 > 0 grd5: someP roduct ∈ P \ ran(carts ref ) then APPENDIX B. DISCRETE SYSTEMS SUBSTITUTION act1: var M 1511 loop 1 := var M 1511 loop 1 -1 act2: carts ref := carts ref ∪ {site 1 → someP roduct} end Event selection oneWebsite convergent = extends selection oneWebsite when grd1: var M 1 seq = 4 grd2: var M 15 cho = 1 grd3: f ailureStatus 1 = OK grd4: var M 1511 loop 1 = 0 then act1: var M 15 cho := 0 end Event selection twoWebsites A loop convergent = any someProduct where grd1: var M 1 seq = 4 grd2: var M 15 cho = 2 grd3: f ailureStatus 2 = OK grd4: var M 151 par A = 1 grd5: var M 1511 loop 2 A > 0 grd6: someP roduct ∈ P \ ran(carts ref ) then act1: var M 1511 loop 2 A := var M 1511 loop 2 A -1 act2: carts ref := carts ref ∪ {site 2 A → someP roduct} end Event selection twoWebsites A convergent = extends selection twoWebsites A when grd1: var M 1 seq = 4 grd2: var M 15 cho = 2 grd3: var M 151 par A = 1 grd4: f ailureStatus 2 = OK grd5: var M 1511 loop 2 A = 0 then act1: var M 151 par A := var M 151 par A -1 end Event selection twoWebsites B loop convergent = any someProduct where grd1: var M 1 seq = 4 grd2: var M 15 cho = 2 grd3: f ailureStatus 2 = OK grd4: var M 151 par B = 1 grd5: var M 1511 loop 2 B > 0 grd6: someP roduct ∈ P \ ran(carts ref ) then act1: var M 1511 loop 2 B := var M 1511 loop 2 B -1 act2: carts ref := carts ref ∪ {site 2 B → someP roduct} end Event selection twoWebsites B convergent = extends selection twoWebsites B when grd1: var M 1 seq = 4 grd2: var M 15 cho = 2 grd3: var M 151 par B = 1 grd4: f ailureStatus 2 = OK grd5: var M 1511 loop 2 B = 0 then act1: var M 151 par B := var M 151 par B -1 end Event selection twoWebsites join A B convergent = extends selection twoWebsites join A B when grd1: var M 1 seq = 4 grd2: var M 15 cho = 2 grd3: f ailureStatus 2 = OK grd4: var M 151 par A = 0 grd5: var M 151 par B = 0 then act1: var M 15 cho := 0 end Event confirmSelection convergent = refines selection when grd1: var M 1 seq = 4 grd2: ran(carts ref ) = P grd3: ∀p•p ∈ ran(carts ref ) ⇒ card(carts ref -1 [{p}]) = 1 grd4: var M 15 cho = 0 with someCarts: someCarts = carts ref then act1: var M 1 seq := var M 1 seq -1 act2: carts := carts ref end Event payment convergent = extends payment when grd1: var M 1 seq = 3 then act1: var M 1 seq := var M 1 seq -1 end Event billing convergent = extends billing when grd1: var M 1 seq = 2 then act1: var M 1 seq := var M 1 seq -1 end Event delivery convergent = extends delivery when grd1: var M 1 seq = 1 then APPENDIX B. DISCRETE SYSTEMS SUBSTITUTION act1: var M 1 seq := var M 1 seq -1 end END act3: carts := ∅ act4: var M 15 cho :∈ {1, 2} act5: f ailureStatus 1 := OK act6: f ailureStatus 2 := OK act7: var M 151 par A := 1 act8: var M 151 par B := 1 act9: carts ref := ∅ act10: site 1 :∈ SIT ES act11: site 2 A :∈ SIT ES act12: site 2 B :∈ SIT ES act13: var M 15111 seq 1 := 1 act14: selectedItem 1 := ∅ act15: var M 15111 seq 2 A := 1 act16: selectedItem 2 A := ∅ act17: var M 15111 seq 2 B := 1 act18: selectedItem 2 B := ∅ end Event failure 1 ordinary = extends failure 1 when grd1: var M 1 seq = 4 grd2: var M 15 cho = 1 grd3: f ailureStatus 1 = OK then act1: f ailureStatus 1 := N OT OK end Event treat failure 1 ordinary = extends treat failure 1 when grd1: var M 1 seq = 4 grd2: var M 15 cho = 1 grd3: f ailureStatus 1 = N OT OK grd4: f ailureStatus 2 = OK then act1: var M 15 cho := 2 act2: carts ref := ∅ carts ref is reinitialized to rebuild the initial state end Event failure 2 ordinary = extends failure 2 when grd1: var M 1 seq = 4 grd2: var M 15 cho = 2 grd3: f ailureStatus 2 = OK then act1: f ailureStatus 2 := N OT OK end Event treat failure 2 ordinary = extends treat failure 2 when grd1: var M 1 seq = 4 grd2: var M 15 cho = 2 grd3: f ailureStatus 2 = N OT OK grd4: f ailureStatus 1 = OK then act1: var M 15 cho := 1 act2: carts ref := ∅ carts ref is reinitialized to rebuild the initial state end Event selectItemInItemList 1 convergent = any someProduct where grd1: var M 1 seq = 4 grd2: var M 15 cho = 1 grd3: f ailureStatus 1 = OK grd4: var M 1511 loop 1 > 0 grd5: var M 15111 seq 1 = 1 grd6: someP roduct ∈ P \ ran(carts ref ) then act1: var M 15111 seq 1 := var M 15111 seq 1 -1 act2: selectedItem 1 := {someP roduct} end Event addSelectedItemToCart 1 convergent = refines selection oneWebsite loop any item used to access the element in selectedItem 1 where grd1: var M 1 seq = 4 grd2: var M 15 cho = 1 grd3: f ailureStatus 1 = OK grd4: var M 1511 loop 1 > 0 grd5: var M 15111 seq 1 = 0 grd6: ∃p•p ∈ P \ ran(carts ref ) ∧ selectedItem 1 = {p} grd7: selectedItem 1 = {item} with someProduct: selectedItem 1 = {someP roduct} then act1: var M 1511 loop 1 := var M 1511 loop 1 -1 act2: carts ref := carts ref ∪ {site 1 → item} end Event selection oneWebsite convergent = extends selection oneWebsite when grd1: var M 1 seq = 4 grd2: var M 15 cho = 1 grd3: f ailureStatus 1 = OK grd4: var M 1511 loop 1 = 0 then act1: var M 15 cho := 0 end Event selectItemInItemList 2 A convergent = any someProduct where grd1: var M 1 seq = 4 grd2: var M 15 cho = 2 grd3: f ailureStatus 2 = OK grd4: var M 151 par A = 1 grd5: var M 1511 loop 2 A > 0 grd6: var M 15111 seq 2 A = 1 grd7: someP roduct ∈ P \ ran(carts ref ) then act1: var M 15111 seq 2 A := var M 15111 seq A -1 act2: selectedItem 2 A := {someP roduct} end Event addSelectedItemToCart 2 A convergent = refines selection twoWebsites A loop any item used to access the element in selectedItem 2 A where grd1: var M 1 seq = 4 grd2: var M 15 cho = 2 grd3: f ailureStatus 2 = OK grd4: var M 151 par A = 1 grd5: var M 1511 loop 2 A > 0 grd6: var M 15111 seq 2 A = 0 grd7: ∃p•p ∈ P \ ran(carts ref ) ∧ selectedItem A = {p} grd8: selectedItem 2 A = {item} with someProduct: selectedItem 2 A = {someP roduct} then act1: var M 1511 loop 2 A := var M 1511 loop 2 A -1 act2: carts ref := carts ref ∪ {site 2 A → item} end Event selection twoWebsites A convergent = extends selection twoWebsites A when grd1: var M 1 seq = 4 grd2: var M 15 cho = 2 grd3: var M 151 par A = 1 grd4: f ailureStatus 2 = OK grd5: var M 1511 loop 2 A = 0 then act1: var M 151 par A := var M 151 par A -1 end Event selectItemInItemList 2 B convergent = any someProduct where grd1: var M 1 seq = 4 grd2: var M 15 cho = 2 grd3: f ailureStatus 2 = OK grd4: var M 151 par B = 1 grd5: var M 1511 loop 2 B > 0 grd6: var M 15111 seq 2 B = 1 grd7: someP roduct ∈ P \ ran(carts ref ) then act1: var M 15111 seq 2 B := var M 15111 seq B -1 act2: selectedItem 2 B := {someP roduct} end Event addSelectedItemToCart 2 B convergent = refines selection twoWebsites B loop any item used to access the element in selectedItem 2 B where grd1: var M 1 seq = 4 grd2: var M 15 cho = 2 grd3: f ailureStatus 2 = OK grd4: var M 151 par B = 1 grd5: var M 1511 loop 2 B > 0 grd6: var M 15111 seq 2 B = 0 grd7: ∃p•p ∈ P \ ran(carts ref ) ∧ selectedItem 2 B = {p} grd8: selectedItem 2 B = {item} with someProduct: selectedItem 2 B = {someP roduct} then act1: var M 1511 loop 2 B := var M 1511 loop 2 B -1 act2: carts ref := carts ref ∪ {site 2 B → item} end Event selection twoWebsites B convergent = extends selection twoWebsites B when grd1: var M 1 seq = 4 grd2: var M 15 cho = 2 grd3: var M 151 par B = 1 grd4: f ailureStatus 2 = OK grd5: var M 1511 loop 2 B = 0 then act1: var M 151 par B := var M 151 par B -1 end Event selection twoWebsites join A B convergent = extends selection twoWebsites join A B when grd1: var M 1 seq = 4 grd2: var M 15 cho = 2 grd3: f ailureStatus 2 = OK grd4: var M 151 par A = 0 grd5: var M 151 par B = 0 then act1: var M 15 cho := 0 end Event confirmSelection convergent = extends confirmSelection when grd1: var M 1 seq = 4 grd2: ran(carts ref ) = P grd3: ∀p•p ∈ ran(carts ref ) ⇒ card(carts ref -1 [{p}]) = 1 grd4: var M 15 cho = 0 then act1: var M 1 seq := var M 1 seq -1 act2: carts := carts ref end Event payment convergent = APPENDIX B. DISCRETE SYSTEMS SUBSTITUTION extends payment when grd1: var M 1 seq = 3 then act1: var M 1 seq := var M 1 seqend Event billing convergent = extends billing when grd1: var M 1 seq = 2 then act1: var M 1 seq := var M 1 seqend Event delivery convergent = extends delivery when grd1: var M 1 seq = 1 then act1: var M 1 seq := var M 1 seqcarts ref ⊆ SIT ES × P type2: var M 1511 loop 1 ∈ N type3: var M 1511 loop 2 A ∈ N type4: var M 1511 loop 2 B ∈ N type5: site 1 ∈ SIT ES type6: site 2 A ∈ SIT ES type7: site 2 B ∈ SIT ES prop1: var M 15 cho = 1 ⇒ dom(carts ref ) ⊆ {site 1} prop2: var M 15 cho = 2 ⇒ dom(carts ref ) ⊆ {site 2 A, site 2 B} prop3: ∀p•p ∈ ran(carts ref ) ⇒ card(carts ref -1 [{p}]) = 1 tech1: var M 15 cho = 1 ⇒ card(P )card(ran(carts ref )) = var M 1511 loop 1 tech2: var M 15 cho = 2 ⇒ card(P )card(ran(carts ref )) = var M 1511 loop 2 A + var M 1511 loop 2 B thm1: theorem ∀A, B, e•(finite(A) ∧ finite(B) ∧ A⊆ P RODU CT S ∧ B ⊆ A ∧ card(A)card(B) -1 = 0 ∧ e ∈ A \ B) ⇒ B ∪ {e} = A tech3: (var M 15 cho = 1 ∧ var M 1511 loop 1 = 0) ⇒ ran(carts ref ) = P tech4: (var M 15 cho = 2 ∧ var M 1511 loop 2 A = 0 ∧ var M 1511 loop 2 B = 0) ⇒ ran(carts ref ) = P DLF 4: ¬( ( var M 1 seq = 4 ∧ var M 15 cho = 1 ∧ f ailureStatus 1 = OK ) ∨ ( var M 1 seq = 4 ∧ var M 15 cho = 1 ∧ f ailureStatus 1 = N OT OK ∧ f ailureStatus 2 = OK ) ∨ ( var M 1 seq = 4 ∧ var M 15 cho = f ailureStatus 2 = OK ) ∨ ( var M 1 seq = 4 ∧ var M 15 cho = 2 ∧ f ailureStatus 2 = N OT OK ∧ f ailureStatus 1 = OK ) ∨ ( ∃someP roduct• (var M 1 seq = 4 ∧ var M 15 cho = 1 ∧ f ailureStatus 1 = OK ∧ var M 1511 loop 1 > 0 ∧ someP roduct ∈ P \ ran(carts ref )) ) ∨ ( var M 1 seq = 4 ∧ var M 15 cho = 1 ∧ f ailureStatus 1 = OK ∧ var M 1511 loop 1 = 0 ) ∨ ( ∃someP roduct• (var M 1 seq = 4 ∧ var M 15 cho = 2 ∧ f ailureStatus 2 = OK ∧ var M 151 par A = 1 ∧ var M 1511 loop 2 A > 0 ∧ someP roduct ∈ P \ ran(carts ref )) ) ∨ ( var M 1 seq = 4 ∧ var M 15 cho = 2 ∧ var M 151 par A = 1 ∧ f ailureStatus 2 = OK ∧ var M 1511 loop 2 A = 0 ) ∨ ( ∃someP roduct• (var M 1 seq = 4 ∧ var M 15 cho = 2 ∧ f ailureStatus 2 = OK ∧ var M 151 par B = 1 ∧ var M 1511 loop 2 B > 0 ∧ someP roduct ∈ P \ ran(carts ref )) ) ∨ ( var M 1 seq = 4 ∧ var M 15 cho = 2 ∧ var M 151 par B = 1 ∧ f ailureStatus 2 = OK ∧ var M 1511 loop 2 B = 0 ) ∨ ( var M 1 seq = 4 ∧ var M 15 cho = 2 ∧ f ailureStatus 2 = OK ∧ var M 151 par A = 0 ∧ var M 151 par B = 0 ∧ var M 1511 loop 2 A = 0 ∧ var M 1511 loop 2 B = 0 ) ∨ ( var M 1 seq = 4 ∧ ran(carts ref ) = P ∧ (∀p•p ∈ ran(carts ref ) ⇒ card(carts ref -1 [{p}]) = 1) ∧ var M 15 cho = 0 ) ∨ ( var M 1 seq = 3 ) ∨ ( var M 1 seq = 2 ) ∨ ( var M 1 seq = 1 )) ⇒ (var M 1 seq = 0 ∨ (f ailureStatus 1 = N OT OK ∧ f ailureStatus 2 = N OT OK)) deadlock => (finished or total failure) VARIANT var M 1 seq+var M 15 cho+var M 151 par A+var M 151 par B+var M 1511 loop 1+ var M 1511 loop 2 A + var M 1511 loop 2 B EVENTS Initialisation begin act1: var M 1 seq := 4 act2: var M 1511 loop 1, var M 1511 loop 2 A, var M 1511 loop 2 B :| var M 1511 loop 1 = card(P ) ∧ var M 1511 loop 2 A + var M 1511 loop 2 B = card(P ) ∧ var M 1511 loop 2 A ∈ N ∧ var M 1511 loop 2 B ∈ N act3: carts := ∅ act4: var M 15 cho :∈ {1, 2} act5: f ailureStatus 1 := OK act6: f ailureStatus 2 := OK act7: var M 151 par A := 1 act8: var M 151 par B := 1 act9: carts ref := ∅ act10: site 1 :∈ SIT ES act11: site 2 A :∈ SIT ES act12: site 2 B :∈ SIT ES end Event failure 1 ordinary = extends failure 1 when grd1: var M 1 seq = 4 grd2: var M 15 cho = 1 grd3: f ailureStatus 1 = OK then act1: f ailureStatus 1 := N OT OK end Event treat failure 1 ordinary = extends treat failure 1 when grd1: var M 1 seq = 4 grd2: var M 15 cho = 1 grd3: f ailureStatus 1 = N OT OK grd4: f ailureStatus 2 = OK then act1: var M 15 cho := 2 act2: carts ref := {p•p ∈ ran(carts ref )|site 2 A → p} act3: var M 1511 loop 2 A, var M 1511 loop 2 B :| var M 1511 loop 2 A +var M 1511 loop 2 B = var M 1511 loop 1 ∧ var M 1511 loop 2 A ∈ N ∧ var M 1511 loop 2 B ∈ N end Event failure 2 ordinary = extends failure 2 when grd1: var M 1 seq = 4 grd2: var M 15 cho = 2 grd3: f ailureStatus 2 = OK then act1: f ailureStatus 2 := N OT OK end Event treat failure 2 ordinary = extends treat failure 2 when grd1: var M 1 seq = 4 grd2: var M 15 cho = 2 grd3: f ailureStatus 2 = N OT OK grd4: f ailureStatus 1 = OK then act1: var M 15 cho := 1 act2: carts ref := {p•p ∈ ran(carts ref )|site 1 → p} act3: var M 1511 loop 1 := var M 1511 loop 2 A + var M 1511 loop 2 B end Event selection oneWebsite loop convergent = any someProduct where grd1: var M 1 seq = 4 grd2: var M 15 cho = 1 grd3: f ailureStatus 1 = OK grd4: var M 1511 loop 1 > 0 grd5: someP roduct ∈ P \ ran(carts ref ) then act1: var M 1511 loop 1 := var M 1511 loop 1 -1 act2: carts ref := carts ref ∪ {site 1 → someP roduct} end Event selection oneWebsite convergent = extends selection oneWebsite when grd1: var M 1 seq = 4 grd2: var M 15 cho = 1 grd3: f ailureStatus 1 = OK grd4: var M 1511 loop 1 = 0 then act1: var M 15 cho := 0 end Event selection twoWebsites A loop convergent = any someProduct where grd1: var M 1 seq = 4 grd2: var M 15 cho = 2 grd3: f ailureStatus 2 = OK grd4: var M 151 par A = 1 grd5: var M 1511 loop 2 A > 0 grd6: someP roduct ∈ P \ ran(carts ref ) then act1: var M 1511 loop 2 A := var M 1511 loop 2 A -1 act2: carts ref := carts ref ∪ {site 2 A → someP roduct} end Event selection twoWebsites A convergent = extends selection twoWebsites A when grd1: var M 1 seq = 4 grd2: var M 15 cho = 2 grd3: var M 151 par A = 1 grd4: f ailureStatus 2 = OK grd5: var M 1511 loop 2 A = 0 then act1: var M 151 par A := var M 151 par A -1 end Event selection twoWebsites B loop convergent = any someProduct where grd1: var M 1 seq = 4 grd2: var M 15 cho = 2 grd3: f ailureStatus 2 = OK grd4: var M 151 par B = 1 grd5: var M 1511 loop 2 B > 0 grd6: someP roduct ∈ P \ ran(carts ref ) then act1: var M 1511 loop 2 B := var M 1511 loop 2 B -1 act2: carts ref := carts ref ∪ {site 2 B → someP roduct} end Event selection twoWebsites B convergent = extends selection twoWebsites B when grd1: var M 1 seq = 4 grd2: var M 15 cho = 2 grd3: var M 151 par B = 1 grd4: f ailureStatus 2 = OK grd5: var M 1511 loop 2 B = 0 then act1: var M 151 par B := var M 151 par B -1 end Event selection twoWebsites join A B convergent = extends selection twoWebsites join A B when APPENDIX B. DISCRETE SYSTEMS SUBSTITUTION grd1: var M 1 seq = 4 grd2: var M 15 cho = 2 grd3: f ailureStatus 2 = OK grd4: var M 151 par A = 0 grd5: var M 151 par B = 0 grd6: var M 1511 loop 2 A = 0 grd7: var M 1511 loop 2 B = 0 then act1: var M 15 cho := 0 end Event confirmSelection convergent = refines selection when grd1: var M 1 seq = 4 grd3: ran(carts ref ) = P grd4: ∀p•p ∈ ran(carts ref ) ⇒ card(carts ref -1 [{p}]) = 1 grd5: var M 15 cho = 0 with someCarts: someCarts = carts ref then act1: var M 1 seq := var M 1 seq -1 act2: carts := carts ref end Event payment convergent = extends payment when grd1: var M 1 seq = 3 then act1: var M 1 seq := var M 1 seq -1 end Event billing convergent = extends billing when grd1: var M 1 seq = 2 then act1: var M 1 seq := var M 1 seq -1 end Event delivery convergent = extends delivery when grd1: var M 1 seq = 1 then act1: var M 1 seq := var M 1 seq -var M 15111 seq 1 ∈ N type2: var M 15111 seq 2 A ∈ N type3: var M 15111 seq 2 B ∈ N type4: selectedItem 1 ∈ P (P ) type5: selectedItem 2 A ∈ P (P ) type6: selectedItem 2 B ∈ P (P )
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 54 ¬( ( var M 1 seq = 4 ∧ var M 15 cho = 1 ∧ f ailureStatus 1 = OK ) ∨ ( var M 1 seq = 4 ∧ var M 15 cho = 1 ∧ f ailureStatus 1 = N OT OK ∧ f ailureStatus 2 = OK ) ∨ ( var M 1 seq = var M 15 cho = 2 ∧ f ailureStatus 2 = OK ) ∨ ( var M 1 seq = 4 ∧ var M 15 cho = 2 ∧ f ailureStatus 2 = N OT OK ∧ f ailureStatus 1 = OK ∧ var M 15111 seq 2 A = 0 ) ∨ ( var M 1 seq = 4 ∧ var M 15 cho = 2 ∧ f ailureStatus 2 = N OT OK ∧ f ailureStatus 1 = OK ∧ var M 15111 seq 2 A = 0 ∧ var M 15111 seq 2 B = 0 ) ∨ ( var M 1 seq = 4 ∧ var M 15 cho = 2 ∧ f ailureStatus 2 = N OT OK ∧ f ailureStatus 1 = OK ∧ var M 15111 seq 2 A = 0 ∧ var M 15111 seq 2 B = 0 ) ∨ ( ∃someP roduct• (var M 1 seq = 4 ∧ var M 15 cho = 1 ∧ f ailureStatus 1 = OK ∧ var M 1511 loop 1 > 0 ∧ var M 15111 seq 1 = 1 ∧ someP roduct ∈ P \ ran(carts ref )) ) ∨ ( ∃item• (var M 1 seq = 4 ∧ var M 15 cho = 1 ∧ f ailureStatus 1 = OK ∧ var M 1511 loop 1 > 0 ∧ var M 15111 seq 1 = 0 ∧ (∃p•p ∈ P \ ran(carts ref ) ∧ selectedItem 1 = {p}) ∧ selectedItem 1 = {item}) ) ∨ ( var M 1 seq = 4 ∧ var M 15 cho = 1 ∧ f ailureStatus 1 = OK ∧ var M 1511 loop 1 = 0 ) ∨ ( ∃someP roduct• (var M 1 seq = 4 ∧ var M 15 cho = 2 ∧ f ailureStatus 2 = OK ∧ var M 151 par A = 1 ∧ var M 1511 loop 2 A > 0 ∧ var M 15111 seq 2 A = 1 ∧ someP roduct ∈ P \ ran(carts ref )) ) ∨ ( ∃item• (var M 1 seq = 4 ∧ var M 15 cho = 2 ∧ f ailureStatus 2 = OK ∧ var M 151 par A = 1 ∧ var M 1511 loop 2 A > 0 ∧ var M 15111 seq 2 A = 0 ∧ (∃p•p ∈P \ ran(carts ref ) ∧ selectedItem 2 A = {p}) ∧ selectedItem 2 A = {item}) ) ∨ ( var M 1 seq = 4 ∧ var M 15 cho = 2 ∧ var M 151 par A = 1 ∧ f ailureStatus 2 = OK ∧ var M 1511 loop 2 A = 0 ) ∨ ( ∃someP roduct• (var M 1 seq = 4 ∧ var M 15 cho = 2 ∧ f ailureStatus 2 = OK ∧ var M 151 par B = 1 ∧ var M 1511 loop 2 B > 0 ∧ var M 15111 seq 2 B = 1 ∧ someP roduct ∈ P \ ran(carts ref )) ) ∨ ( ∃item• (var M 1 seq = 4 ∧ var M 15 cho = 2 ∧ f ailureStatus 2 = OK ∧ var M 151 par B = 1 ∧ var M 1511 loop 2 B > 0 ∧ var M 15111 seq 2 B = 0 ∧ (∃p•p ∈ P \ ran(carts ref ) ∧ selectedItem 2 B = {p}) ∧ selectedItem 2 B = {item}) ) ∨ ( var M 1 seq = 4 ∧ var M 15 cho = 2 ∧ var M 151 par B = 1 ∧ f ailureStatus 2 = OK ∧ var M 1511 loop 2 B = 0 ) ∨ ( var M 1 seq = 4 ∧ var M 15 cho = 2 ∧ f ailureStatus 2 = OK ∧ var M 151 par A = 0 ∧ var M 151 par B = 0 ∧ var M 1511 loop 2 A = 0 ∧ var M 1511 loop 2 B = 0 ) ∨ ( var M 1 seq = 4 ∧ ran(carts ref ) = P ∧ (∀p•p ∈ ran(carts ref ) ⇒ card(carts ref -1 [{p}]) = 1) ∧ var M 15 cho = 0 ) ∨ ( var M 1 seq = 3 ) ∨ ( var M 1 seq = 2 ) ∨ ( var M 1 seq = 1 )) ⇒ (var M 1 seq = 0 ∨ (f ailureStatus 1 = N OT OK ∧ f ailureStatus 2 = N OT OK)) deadlock => (finished or total failure) VARIANT var M 1 seq+var M 15 cho+var M 151 par A+var M 151 par B+var M 1511 loop 1+ var M 1511 loop 2 A+var M 1511 loop 2 B+var M 15111 seq 1+var M 15111 seq 2 A+ var M 15111 seq 2 B EVENTS Initialisation extended begin act1: var M 1 seq := 4 act2: var M 1511 loop 1, var M 1511 loop 2 A, var M 1511 loop 2 B :| var M 1511 loop 1 = card(P ) ∧ var M 1511 loop 2 A + var M 1511 loop 2 B = card(P ) ∧ var M 1511 loop 2 A ∈ N ∧ var M 1511 loop 2 B ∈ N act3: carts := ∅ act4: var M 15 cho :∈ {1, 2} act5: f ailureStatus 1 := OK act6: f ailureStatus 2 := OK act7: var M 151 par A := 1 act8: var M 151 par B := 1 act9: carts ref := ∅ act10: site 1 :∈ SIT ES act11: site 2 A :∈ SIT ES act12: site 2 B :∈ SIT ES act14: var M 15111 seq 1 := 1 act15: selectedItem 1 := ∅ act16: var M 15111 seq 2 A := 1 act17: selectedItem 2 A := ∅ act18: var M 15111 seq 2 B := 1 act19: selectedItem 2 B := ∅ end Event failure 1 ordinary = extends failure 1 when grd1: var M 1 seq = 4 grd2: var M 15 cho = 1 grd3: f ailureStatus 1 = OK then act1: f ailureStatus 1 := N OT OK end Event treat failure 1 ordinary = extends treat failure 1 when grd1: var M 1 seq = 4 grd2: var M 15 cho = 1 grd3: f ailureStatus 1 = N OT OK 205 grd4: f ailureStatus 2 = OK then act1: var M 15 cho := 2 act2: carts ref := {p•p ∈ ran(carts ref )|site 2 A → p} act3: var M 1511 loop 2 A, var M 1511 loop 2 B :| var M 1511 loop 2 A +var M 1511 loop 2 B = var M 1511 loop 1 ∧ var M 1511 loop 2 A ∈ N ∧ var M 1511 loop 2 B ∈ N act4: var M 15111 seq 2 A := var M 15111 seq 1 act5: selectedItem 2 A := selectedItem 1 end Event failure 2 ordinary = extends failure 2 when grd1: var M 1 seq = 4 grd2: var M 15 cho = 2 grd3: f ailureStatus 2 = OK then act1: f ailureStatus 2 := N OT OK end Event treat failure 2 0 ordinary = extends treat failure 2 when grd1: var M 1 seq = 4 grd2: var M 15 cho = 2 grd3: f ailureStatus 2 = N OT OK grd4: f ailureStatus 1 = OK grd5: var M 15111 seq 2 A = 0 then act1: var M 15 cho := 1 act2: carts ref := {p•p ∈ ran(carts ref )|site 1 → p} act3: var M 1511 loop 1 := var M 1511 loop 2 A + var M 1511 loop 2 B act4: var M 15111 seq 1 := var M 15111 seq 2 A act5: selectedItem 1 := selectedItem 2 A end Event treat failure 2 1 ordinary = extends treat failure 2 when grd1: var M 1 seq = 4 grd2: var M 15 cho = 2 grd3: f ailureStatus 2 = N OT OK grd4: f ailureStatus 1 = OK grd5: var M 15111 seq 2 A = 0 grd6: var M 15111 seq 2 B = 0 then act1: var M 15 cho := 1 act2: carts ref := {p•p ∈ ran(carts ref )|site 1 → p} act3: var M 1511 loop 1 := var M 1511 loop 2 A + var M 1511 loop 2 B act4: var M 15111 seq 1 := var M 15111 seq 2 B act5: selectedItem 1 := selectedItem 2 B end Event treat failure 2 2 ordinary = extends treat failure 2 APPENDIX B. DISCRETE SYSTEMS SUBSTITUTION when grd1: var M 1 seq = 4 grd2: var M 15 cho = 2 grd3: f ailureStatus 2 = N OT OK grd4: f ailureStatus 1 = OK grd5: var M 15111 seq 2 A = 0 grd6: var M 15111 seq 2 B = 0 then act1: var M 15 cho := 1 act2: carts ref := {p•p ∈ ran(carts ref )|site 1 → p} act3: var M 1511 loop 1 := var M 1511 loop 2 A + var M 1511 loop 2 B end Event selectItemInItemList 1 convergent = any someProduct where grd1: var M 1 seq = 4 grd2: var M 15 cho = 1 grd3: f ailureStatus 1 = OK grd4: var M 1511 loop 1 > 0 grd5: var M 15111 seq 1 = 1 grd6: someP roduct ∈ P \ ran(carts ref ) then act1: var M 15111 seq 1 := var M 15111 seq 1 -1 act2: selectedItem 1 := {someP roduct} end Event addSelectedItemToCart 1 convergent = refines selection oneWebsite loop any item used to access the element in selectedItem 1 where grd1: var M 1 seq = 4 grd2: var M 15 cho = 1 grd3: f ailureStatus 1 = OK grd4: var M 1511 loop 1 > 0 grd5: var M 15111 seq 1 = 0 grd6: ∃p•p ∈ P \ ran(carts ref ) ∧ selectedItem 1 = {p} grd7: selectedItem 1 = {item} with someProduct: selectedItem 1 = {someP roduct} then act1: var M 1511 loop 1 := var M 1511 loop 1 -1 act2: carts ref := carts ref ∪ {site 1 → item} end Event selection oneWebsite convergent = extends selection oneWebsite when grd1: var M 1 seq = 4 grd2: var M 15 cho = 1 grd3: f ailureStatus 1 = OK grd4: var M 1511 loop 1 = 0 then act1: var M 15 cho := 0 end Event selectItemInItemList 2 A convergent = any someProduct where grd1: var M 1 seq = 4 grd2: var M 15 cho = 2 grd3: f ailureStatus 2 = OK grd4: var M 151 par A = 1 grd5: var M 1511 loop 2 A > 0 grd6: var M 15111 seq 2 A = 1 grd7: someP roduct ∈ P \ ran(carts ref ) then act1: var M 15111 seq 2 A := var M 15111 seq 2 A -1 act2: selectedItem 2 A := {someP roduct} end Event addSelectedItemToCart 2 A convergent = refines selection twoWebsites A loop any item used to access the element in selectedItem 2 A where grd1: var M 1 seq = 4 grd2: var M 15 cho = 2 grd3: f ailureStatus 2 = OK grd4: var M 151 par A = 1 grd5: var M 1511 loop 2 A > 0 grd6: var M 15111 seq 2 A = 0 grd7: ∃p•p ∈ P \ ran(carts ref ) ∧ selectedItem 2 A = {p} grd8: selectedItem 2 A = {item} with someProduct: selectedItem 2 A = {someP roduct} then act1: var M 1511 loop 2 A := var M 1511 loop 2 A -1 act2: carts ref := carts ref ∪ {site 2 A → item} end Event selection twoWebsites A convergent = extends selection twoWebsites A when grd1: var M 1 seq = 4 grd2: var M 15 cho = 2 grd3: var M 151 par A = 1 grd4: f ailureStatus 2 = OK grd5: var M 1511 loop 2 A = 0 then act1: var M 151 par A := var M 151 par A -1 end Event selectItemInItemList 2 B convergent = any someProduct where grd1: var M 1 seq = 4 grd2: var M 15 cho = 2 grd3: f ailureStatus 2 = OK grd4: var M 151 par B = 1 grd5: var M 1511 loop 2 B > 0 grd6: var M 15111 seq 2 B = 1 grd7: someP roduct ∈ P \ ran(carts ref ) then act1: var M 15111 seq 2 B := var M 15111 seq 2 B -1 act2: selectedItem 2 B := {someP roduct} end Event addSelectedItemToCart 2 B convergent = refines selection twoWebsites B loop any item used to access the element in selectedItem 2 B where grd1: var M 1 seq = 4 grd2: var M 15 cho = 2 grd3: f ailureStatus 2 = OK grd4: var M 151 par B = 1 grd5: var M 1511 loop 2 B > 0 grd6: var M 15111 seq 2 B = 0 grd7: ∃p•p ∈ P \ ran(carts ref ) ∧ selectedItem 2 B = {p} grd8: selectedItem 2 B = {item} with someProduct: selectedItem 2 B = {someP roduct} then act1: var M 1511 loop 2 B := var M 1511 loop 2 B -1 act2: carts ref := carts ref ∪ {site 2 B → item} end Event selection twoWebsites B convergent = extends selection twoWebsites B when grd1: var M 1 seq = 4 grd2: var M 15 cho = 2 grd3: var M 151 par B = 1 grd4: f ailureStatus 2 = OK grd5: var M 1511 loop 2 B = 0 then act1: var M 151 par B := var M 151 par B -1 end Event selection twoWebsites join A B convergent = extends selection twoWebsites join A B when grd1: var M 1 seq = 4 grd2: var M 15 cho = 2 grd3: f ailureStatus 2 = OK grd4: var M 151 par A = 0 grd5: var M 151 par B = 0 grd6: var M 1511 loop 2 A = 0 grd7: var M 1511 loop 2 B = 0 then act1: var M 15 cho := 0 end Event confirmSelection convergent = extends confirmSelection when grd1: var M 1 seq = 4 grd3: ran(carts ref ) = P grd4: ∀p•p ∈ ran(carts ref ) ⇒ card(carts ref -1 [{p}]) = 1 grd5: var M 15 cho = 0 then act1: var M 1 seq := var M 1 seq -1 act2: carts := carts ref end Event payment convergent = extends payment when grd1: var M 1 seq = 3 then act1: var M 1 seq := var M 1 seq -1 end Event billing convergent = extends billing when grd1: var M 1 seq = 2 then act1: var M 1 seq := var M 1 seq -1 end Event delivery convergent = extends delivery when grd1: var M 1 seq = 1 then act1: var M 1 seq := var M 1 seq -1 end END APPENDIX B. DISCRETE SYSTEMS SUBSTITUTION MACHINE M 16 failure N REFINES M 1 SEES C 11 failure status VARIABLES var M 1 seqcartsnb sysvar M 16 cho number (id) of the current system that we are using failureStatus INVARIANTS type1: nb sys ∈ N1 number of systems type2: var M 16 cho ∈ 0 .. nb sys type3: f ailureStatus ∈ 1 .. nb sys ↔ F AILU RE ST AT U S VARIANT var M 1 seq + var M 16 cho EVENTS Initialisation extended begin act1: var M 1 seq := 4 act3: carts := ∅ act4: nb sys, f ailureStatus, var M 16 cho :| nb sys ∈ N1 ∧ f ailureStatus = {n•n ∈ 1 .. nb sys |n → OK} ∧ var M 16 cho ∈ 1 .. nb sys end Event failure n ordinary = any n where grd1: var M 1 seq = 4 grd2: n ∈ dom(f ailureStatus {OK}) then act1: f ailureStatus := {n → N OT OK} ∪ ({n}f ailureStatus) end Event treat failure ordinary = any n where grd1: var M 1 seq = 4 grd2: var M 16 cho ∈ dom(f ailureStatus {N OT OK}) the current system has failed grd3: n ∈ dom(f ailureStatus {OK}) then act1: var M 16 cho := n end Event complete failure ordinary = when grd1: var M 1 seq = 4 grd2: dom(f ailureStatus {OK}) = ∅ then skip end Event selection n convergent = when grd1: var M 1 seq = 4 grd2: var M 16 cho ∈ dom(f ailureStatus {OK}) the current system is OK then act1: var M 16 cho := 0 end Event selection convergent = extends selection any someCarts where grd1: var M 1 seq = 4 grd2: someCarts ⊆ SIT ES × P grd3: ran(someCarts) = P grd4: ∀p•p ∈ ran(someCarts) ⇒ card(someCarts -1 [{p}]) = 1 grd5: var M 16 cho = 0 then act1: var M 1 seq := var M 1 seq -1 act2: carts := someCarts end Event payment convergent = extends payment when grd1: var M 1 seq = 3 then act1: var M 1 seq := var M 1 seq -1 end Event billing convergent = extends billing when grd1: var M 1 seq = 2 then act1: var M 1 seq := var M 1 seq -1 end Event delivery convergent = extends delivery when grd1: var M 1 seq = 1 then act1: var M 1 seq := var M 1 seq -1 end END APPENDIX B. DISCRETE SYSTEMS SUBSTITUTION MACHINE M 161 REFINES M 16 failure N SEES C 11 failure status VARIABLES var M 1 seqcartsnb sysvar M 16 cho number (id) of the current system that we are using failureStatus EVENTS Initialisation begin act1: var M 1 seq := 4 act3: carts := ∅ act4: nb sys, f ailureStatus, var M 16 cho :| nb sys = 2 ∧ f ailureStatus = {n•n ∈ 1 .. nb sys |n → OK} ∧ var M 16 cho ∈ 1 .. nb sys end Event failure n ordinary = extends failure n any n where grd1: var M 1 seq = 4 grd2: n ∈ dom(f ailureStatus {OK}) then act1: f ailureStatus := {n → N OT OK} ∪ ({n}f ailureStatus) end Event treat failure ordinary = extends treat failure any n where grd1: var M 1 seq = 4 grd2: var M 16 cho ∈ dom(f ailureStatus {N OT OK}) the current system has failed grd3: n ∈ dom(f ailureStatus {OK}) then act1: var M 16 cho := n end Event complete failure ordinary = extends complete failure when grd1: var M 1 seq = 4 grd2: dom(f ailureStatus {OK}) = ∅ then skip end Event selection sys1 convergent = extends selection n when grd1: var M 1 seq = 4 grd2: var M 16 cho ∈ dom(f ailureStatus {OK}) the current system is OK grd3: var M 16 cho = 1 then act1: var M 16 cho := 0 end Event selection sys2 convergent = extends selection n when grd1: var M 1 seq = 4 grd2: var M 16 cho ∈ dom(f ailureStatus {OK}) the current system is OK grd3: var M 16 cho = 2 then act1: var M 16 cho := 0 end Event selection convergent = extends selection any someCarts where grd1: var M 1 seq = 4 grd2: someCarts ⊆ SIT ES × P grd3: ran(someCarts) = P grd4: ∀p•p ∈ ran(someCarts) ⇒ card(someCarts -1 [{p}]) = 1 grd5: var M 16 cho = 0 then act1: var M 1 seq := var M 1 seq -1 act2: carts := someCarts end Event payment convergent = extends payment when grd1: var M 1 seq = 3 then act1: var M 1 seq := var M 1 seq -1 end Event billing convergent = extends billing when grd1: var M 1 seq = 2 then act1: var M 1 seq := var M 1 seq -1 end Event delivery convergent = extends delivery when grd1: var M 1 seq = 1 then act1: var M 1 seq := var M 1 seq -1 end END APPENDIX B. DISCRETE SYSTEMS SUBSTITUTION MACHINE M 1611 REFINES M 161 SEES C 11 failure status VARIABLES var M 1 seqcartsnb sysvar M 16 cho number (id) of the current system that we are using failureStatusvar M 1611 par Avar M 1611 par B -INVARIANTS type1: var M 1611 par A ∈ N type2: var M 1611 par B ∈ N VARIANT var M 1 seq + var M 16 cho + var M 1611 par A + var M 1611 par B EVENTS Initialisation extended begin act1: var M 1 seq := 4 act3: carts := ∅ act4: nb sys, f ailureStatus, var M 16 cho :| nb sys = 2 ∧ f ailureStatus = {n•n ∈ 1 .. nb sys |n → OK} ∧ var M 16 cho ∈ 1 .. nb sys act5: var M 1611 par A := 1 act6: var M 1611 par B := 1 end Event failure n ordinary = extends failure n any n where grd1: var M 1 seq = 4 grd2: n ∈ dom(f ailureStatus {OK}) then act1: f ailureStatus := {n → N OT OK} ∪ ({n}f ailureStatus) end Event treat failure ordinary = extends treat failure any n where grd1: var M 1 seq = 4 grd2: var M 16 cho ∈ dom(f ailureStatus {N OT OK}) the current system has failed grd3: n ∈ dom(f ailureStatus {OK}) then act1: var M 16 cho := n end Event complete failure ordinary = extends complete failure when grd1: var M 1 seq = 4 grd2: dom(f ailureStatus {OK}) = ∅ then skip end Event selection sys1 convergent = extends selection sys1 when grd1: var M 1 seq = 4 grd2: var M 16 cho ∈ dom(f ailureStatus {OK}) the current system is OK grd3: var M 16 cho = 1 then act1: var M 16 cho := 0 end Event selection sys2 B convergent = when grd1: var M 1 seq = 4 grd2: var M 16 cho = 2 grd3: var M 1611 par B = 1 grd4: var M 16 cho ∈ dom(f ailureStatus {OK}) then act1: var M 1611 par B := var M 1611 par B -1 end Event selection sys2 join AB convergent = extends selection sys2 when grd1: var M 1 seq = 4 grd2: var M 16 cho ∈ dom(f ailureStatus {OK}) the current system is OK grd3: var M 16 cho = 2 grd4: var M 1611 par A = 0 grd5: var M 1611 par B = 0 then act1: var M 16 cho := 0 end Event selection convergent = extends selection any someCarts where grd1: var M 1 seq = 4 grd2: someCarts ⊆ SIT ES × P grd3: ran(someCarts) = P grd4: ∀p•p ∈ ran(someCarts) ⇒ card(someCarts -1 [{p}]) = 1 grd5: var M 16 cho = 0 then act1: var M 1 seq := var M 1 seq -1 act2: carts := someCarts end Event payment convergent = APPENDIX B. DISCRETE SYSTEMS SUBSTITUTION extends payment when grd1: var M 1 seq = 3 then act1: var M 1 seq := var M 1 seqend Event billing convergent = extends billing when grd1: var M 1 seq = 2 then act1: var M 1 seq := var M 1 seqend Event delivery convergent = extends delivery when grd1: var M 1 seq = 1 then act1: var M 1 seq := var M 1 seqend Event selection sys2 A convergent = when grd1: var M 1 seq = 4 grd2: var M 16 cho = 2 grd3: var M 1611 par A = 1 grd4: var M 16 cho ∈ dom(f ailureStatus {OK}) then act1: var M 1611 par A := var M 1611 par A -REAL P OS = {x|x ∈ REAL ∧ leq(zero, x)} def02: REAL ST R P OS = {x|x ∈ REAL ∧ smr(zero, x)} thm01: theorem REAL P OS ⊆ REAL thm02: theorem REAL ST R P OS ⊆ REAL P OS thm03: theorem REAL ST R P OS ⊆ REAL thm39: theorem ∀a, b•a ∈ REAL ∧ b ∈ REAL ⇒ (a = a plus b ⇒ b = zero) thm04: theorem zero ∈ REAL P OS thm05: theorem leq(zero, zero)

1 thm15:

 1 smr(zero, b) ⇒ smr(a, a plus b)) 0<b ⇒ a < a+b thm33: theorem ∀a•zero mult a = zero 0 * a = 0 thm38: theorem ∀a•a mult minus(one) = minus(a) a*(-1) = -a thm41: theorem ∀a•minus(minus(a)) = a -(-a) = a thm17: theorem leq(zero, one) 0≤ theorem smr(zero, one) 0<1 thm34: theorem ∀a, b•(a ∈ REAL ∧ b ∈ REAL) ⇒ (leq(zero, b) ⇒ leq(a sub b, a)) 0≤ b ⇒ a-b ≤ a thm16

  ≤ b*c) thm40: ∀a, b, c•(a ∈ REAL P OS ∧ b ∈ REAL P OS ∧ c ∈ REAL ST R P OS) ⇒ (leq(a mult c, b mult c) ⇒ leq(a, b)) a ≥ 0 ∧ b ≥ 0 ∧ c > 0 ⇒ (a*c ≤ b*c ⇒ a ≤ b) thm32: theorem ∀a, b•smr(a, b) ⇔ ¬leq(b, a) a<b ⇔ ¬ b≤ a thm35: ∀a•a ∈ REAL ST R P OS ⇒ ( ∃b•b ∈ REAL ST R P OS ∧ smr(b, a)) ∀ a > 0, ∃ b > 0, b < a thm36: ∀a, b•smr(a, b) ⇔ smr(zero, b sub a) a < b ⇔ 0 < ba thm37: ∀a, b, c•smr(a, b) ⇔ smr(a plus c, b plus c) a < b ⇔ a+c < b+c END begin act02: active := FALSE act01: p := zero end Event start ordinary = when grd02: active = FALSE grd01: p = zero then act01: active := TRUE act02: p :| leq(m, p ) ∧ leq(p , M ) end Event produce ordinary = any new p where grd02: active = TRUE grd03: new p ∈ REAL P OS grd01: leq(m, new p) ∧ leq(new p, M ) then act01: p := new p end Event stop ordinary = when grd02: active = TRUE grd01: leq(m, p) ∧ leq(p, M ) then act01: active := FALSE act02: p := zero end END APPENDIX C. HYBRID SYSTEMS: CONTINUOUS TO DISCRETE MODELS CONTEXT C2 margin energy corridor margin EXTENDS C1 corridor CONSTANTS z AXIOMS axm01: z ∈ REAL P OS z ∈ R+ axm02: gtr(M sub m, (one plus one) mult z) M-m > 2*z thm01: theorem leq(zero, z) 0 ≤ z thm02: theorem leq(zero, m plus z) 0 ≤ m+z thm09: theorem leq(z, M ) z ≤ M thm03: theorem leq(zero, M sub z) 0 ≤ M-z thm04: theorem leq(m, m plus z) m ≤ m+z thm05: theorem leq(M sub z, M ) M-z ≤ M thm06: theorem leq(z, M sub m) z ≤ M-m thm07: theorem leq(m, M sub z) m ≤ M-z thm08: theorem leq(m plus z, M ) m+z ≤ M thm10: theorem leq(m plus z, M sub z) m+z ≤ M-z

  then act01: p := new p act02: now := now plus dt act03: pc := pcnp act04: et := et plus dt act05: nv := P V end Event produce variant convergent = when grd01: nv = P V grd02: rs > 0 then act01: rs :| rs ∈ N ∧ rs < rs act02: nv := P BTend Event produce on tick ordinary = extends produce safe any new p dt np where grd02: active = TRUE grd03: new p ∈ REAL P OS grd01: leq(m, new p) ∧ leq(new p, M ) grd10: dt ∈ REAL ST R P OS dt > 0 thm02: theorem smr(now, now plus dt) grd11: np ∈ REAL P OS → REAL P OS np ∈ R+ → R+ grd06: dom(np) = {t|t ∈ REAL ∧ leq(now, t) ∧ leq(t, now plus dt)} dom(np) = [now,now+dt] grd07: np(now) = pc(now) np(now) = pc(now) grd08: np(now plus dt) = new p np(now+dt) = new p grd09: leq(p, new p) ⇒ (∀t1, t2•t1 ∈ dom(np) ∧ t2 ∈ dom(np) ∧ leq(t1, t2) ⇒ leq(np(t1), np(t2))) np is a monotonic function grd14: leq(new p, p) ⇒ (∀t1, t2•t1 ∈ dom(np) ∧ t2 ∈ dom(np) ∧ leq(t1, t2) ⇒ leq(np(t2), np(t1))) np is a monotonic function grd12: cnt int(np, now, now plus dt) np is continuous on [now,now+dt] thm01: theorem dom(pcnp) = REAL P OS grd13: ∀t•t ∈ dom(np) ⇒ leq(m plus z, np(t)) ∧ leq(np(t), M sub z) ∀ t ∈ [now,now+dt] ⇒ np(t) ∈ [m+z,M-z] grd15: et plus dt = tstep grd18: smr(zero, et) grd17: rs = 0 thm03: theorem cast(i + 1) mult tstep = now plus dt grd16: ∀t•t ∈ dom(np) ⇒ leq(pd(i) sub max dp, np(t)) ∧ leq(np(t), pd(i) plus max dp) physical assumptionthen act01: p := new p act02: now := now plus dt act03: pc := pcnp act04: i := i + 1 act05: pd(i + 1) := new p act06: et := zero end Event safety stop ordinary = pd(i) is in the safe zone (now) pd(i+1) is not in the safe zone (safety risk) pd(i+n step)=0

  then act01: active := FALSE act02: p := zero act03: now := now plus dt act04: pc := pcnp act05: i := i + n step act06: pd := pdpd stopend Event stop ordinary = extends stop any np dt n step pd stop where grd02: active = TRUE APPENDIX C. HYBRID SYSTEMS: CONTINUOUS TO DISCRETE MODELS grd01: leq(m, p) ∧ leq(p, M ) grd04: dt ∈ REAL ST R P OS dt > 0 thm02: theorem smr(now, now plus dt) grd05: np ∈ REAL P OS → REAL P OS np ∈ R+ → R+ grd06: dom(np) = {t|t ∈ REAL ∧ leq(now, t) ∧ leq(t, now plus dt)} dom(np) = [now,now+dt] grd07: np(now) = pc(now) np(now) = pc(now) grd08: np(now plus dt) = zero np(now+dt) = 0 grd09: ∀t1, t2•t1 ∈ dom(np) ∧ t2 ∈ dom(np) ∧ smr(t1, t2) ⇒ gtr(np(t1), np(t2)) np is a monotonically strictly decreasing function : a<b ⇒ np(a)>np(b) grd12: cnt int(np, now, now plus dt) np is continuous on [now,now+dt] thm01: theorem dom(pcnp) = REAL P OS grd13: n step ∈ N1 grd19: dt = cast(n step) mult tstep grd14: et = zero thm03: theorem now = cast(i) mult tstep thm04: theorem now plus dt = cast(i + n step) mult tstep grd16: pd stop ∈ i .. i + n step → REAL P OS thm05: theorem ∀n•n ∈ N ⇒ (n ∈ dom(pd stop) ⇔ cast(n) mult tstep ∈ dom(np)) grd18: pd stop(i) = pd(i) grd17: ∀n•n ∈ dom(pd stop) ⇒ np(cast(n) mult tstep) = pd stop(n) grd20: ∀n•n ∈ i .. i + n step -1 ⇒ (

1 thm15:

 1 then act01: active := FALSE act02: p := zero act03: now := now plus dt act04: pc := pcnp act05: i := i + n step act06: pd := pdpd stop end END APPENDIX C. HYBRID SYSTEMS: CONTINUOUS TO DISCRETE MODELS partition(M ODES, {M ODE F }, {M ODE R}, {M ODE G}) END APPENDIX D. HYBRID SYSTEMS: SUBSTITUTION CONSTANTS REAL POS REAL STR POS AXIOMS def01: REAL P OS = {x|x ∈ REAL ∧ leq(zero, x)} def02: REAL ST R P OS = {x|x ∈ REAL ∧ smr(zero, x)} thm01: theorem REAL P OS ⊆ REAL thm02: theorem REAL ST R P OS ⊆ REAL P OS thm03: theorem REAL ST R P OS ⊆ REAL thm39: theorem ∀a, b•a ∈ REAL ∧ b ∈ REAL ⇒ (a = a plus b ⇒ b = zero) thm04: theorem zero ∈ REAL P OS thm05: theorem leq(zero, zero)thm06: theorem ∀n, A, f, a•n ∈ N ∧ A ⊆ REAL ∧ f ∈ 0 .. n → A ∧ a ∈ A ⇒ f ∪ {n + 1 → a} ∈ 0 .. n + 1 → A thm07: theorem ∀a, b, c•(a ∈ REAL ∧ b ∈ REAL ∧ c ∈ REAL) ⇒(leq(a plus c, b plus c) ⇔ leq(a, b)) a+c ≤ b+c ⇔ a≤ b thm08: theorem ∀x•x ∈ REAL ⇒ (leq(zero, x) ⇔ leq(minus(x), zero)) 0≤ x ⇔ -x≤ 0 thm09: theorem ∀a, b•(a ∈ REAL ∧ b ∈ REAL) ⇒ (leq(a, b) ⇔ leq(zero, b sub a)) a≤ b ⇔ 0≤ b-a thm10: theorem ∀a, b•(a ∈ REAL ∧ b ∈ REAL) ⇒ (leq(zero, a) ⇔ leq(b, b plus a)) 0≤ a ⇔ b≤ b+a thm11: theorem ∀a, b•(a ∈ REAL ∧ b ∈ REAL) ⇒ (leq(zero, b) ⇒ leq(a, a plus b)) 0≤ b ⇒ a ≤ a+bthm14: theorem ∀a, b•a ∈ REAL ∧ b ∈ REAL ⇒ (a = b ⇔ b = a) a=b ⇔ b=a thm13: theorem ∀a, b•a ∈ REAL ∧ b ∈ REAL ⇒ (¬(a = b) ⇔ ¬(b = a)) ¬(a=b) ⇔ ¬(b=a) thm12: theorem ∀a, b•(a ∈ REAL ∧ b ∈ REAL) ⇒ (smr(zero, b) ⇒ smr(a, a plus b)) 0<b ⇒ a < a+bthm33: theorem ∀a•zero mult a = zero 0 * a = 0 thm38: theorem ∀a•a mult minus(one) = minus(a) a*(-1) = -a thm41: theorem ∀a•minus(minus(a)) = a -(-a) = a thm17: theorem leq(zero, one) 0≤ theorem smr(zero, one) 0<1thm34: theorem ∀a, b•(a ∈ REAL ∧ b ∈ REAL) ⇒ (leq(zero, b) ⇒ leq(a sub b, a)) 0≤ b ⇒ a-b ≤ a thm16: theorem ∀a, b•(a ∈ REAL ∧ b ∈ REAL) ⇒ (smr(zero, b) ⇒ smr(a sub b, a)) 0<b ⇒ a-b < a thm20: theorem ∀a, b•(a ∈ REAL ∧ b ∈ REAL) ⇒ (leq(a, b) ∧ leq(b, a) ⇔ a = b) a≤ b ∧ b≤ a ⇔ a=b thm21: theorem ∀a, b•(a ∈ REAL ∧ b ∈ REAL) ⇒ (¬leq(a, b) ⇔ gtr(a, b)) ¬(a≤ b) ⇔ a>b thm22: ∀a, b•(a ∈ REAL P OS ∧ b ∈ REAL P OS) ⇒ (a mult b ∈ REAL P OS) a ∈ R+ ∧ b ∈ R+ ⇒ a*b ∈ R+ thm23: ∀a, b•(a ∈ REAL ∧ b ∈ REAL) ⇒ ((∃c•c ∈ REAL ST R P OS ∧ a = b plus c) ⇔ smr(b, a)) (∃ c > 0, a = b+c) ⇔ b<a thm24: ∀a, b, c•(a ∈ REAL ∧ b ∈ REAL ∧ c ∈ REAL) ⇒ (smr(a, b) ∧ smr(b, c) ⇒ smr(a, c)) a<b ∧ b<c ⇒ a<c thm26: theorem ∀a, b, c•(a ∈ REAL ∧ b ∈ REAL ∧ c ∈ REAL) ⇒ (leq(a, b) ∧ smr(b, c) ⇒ smr(a, c)) a≤ b ∧ b<c ⇒ a<c thm27: theorem ∀a, b•leq(a, b) ∨ leq(b, a) a≤ b ∨ b≤ a thm30: ∀a, b, c•(a ∈ REAL P OS ∧ b ∈ REAL P OS ∧ c ∈ REAL ST R P OS) ⇒ (smr(a, b) ⇒ smr(a mult c, b mult c))a ≥ 0 ∧ b ≥ 0 ∧ c > 0 ⇒ (a < b ⇒ a*c < b*c) thm31: ∀a, b, c•(a ∈ REAL P OS ∧ b ∈ REAL P OS ∧ c ∈ REAL P OS) ⇒ (leq(a, b) ⇒ leq(a mult c, b mult c)) a ≥ 0 ∧ b ≥ 0 ∧ c ≥ 0 ⇒ (a ≤ b ⇒ a*c ≤ b*c) thm40: ∀a, b, c•(a ∈ REAL P OS ∧ b ∈ REAL P OS ∧ c ∈ REAL ST R P OS) ⇒ (leq(a mult c, b mult c) ⇒ leq(a, b)) a ≥ 0 ∧ b ≥ 0 ∧ c > 0 ⇒ (a*c ≤ b*c ⇒ a ≤ b) thm32: theorem ∀a, b•smr(a, b) ⇔ ¬leq(b, a) a<b ⇔ ¬ b≤ a thm35: ∀a•a ∈ REAL ST R P OS ⇒ ( ∃b•b ∈ REAL ST R P OS ∧ smr(b, a)) ∀ a > 0, ∃ b / 0 < b < a thm36: ∀a, b•smr(a, b) ⇔ smr(zero, b sub a) a < b ⇔ 0 < ba thm37: ∀a, b, c•smr(a, b) ⇔ smr(a plus c, b plus c) a < b ⇔ a+c < b+c thm42: theorem ∀a, b, f, g• a ∈ REAL P OS ∧ leq(a, b) ∧ f ∈ {t|leq(zero, t) ∧ leq(t, a)} → REAL P OS ∧ g ∈ {t|leq(a, t) ∧ leq(t, b)} → REAL P OS ⇒ fg ∈ {t|leq(zero, t) ∧ leq(t, b)} → REAL P OS APPENDIX D. HYBRID SYSTEMS: SUBSTITUTION thm43: ∀a, b, c, f • a ∈ REAL P OS ∧ leq(a, b) ∧ f ∈ {t|leq(zero, t) ∧ leq(t, a)} → REAL P OS ⇒ (f -(λt•leq(a,t) ∧ leq(t, b)|c))(b) = c END EXTENDS C0 reals CONSTANTS m M AXIOMS axm01: m ∈ REAL ST R P OS axm02: M ∈ REAL ST R P OS axm03: smr(m, M ) thm01: theorem leq(m, M ) thm02: theorem leq(zero, m) thm06: theorem leq(zero, M ) thm03: theorem ∀x•leq(m, x) ⇒ x ∈ REAL P OS thm04: theorem leq(m, m) thm05: theorem ∀a•leq(m, a) ⇒ leq(zero, a) END APPENDIX D. HYBRID SYSTEMS: SUBSTITUTION CONTEXT C6 thms EXTENDS C0 reals,C5 modesAXIOMS thm01: theorem ∀a, b, f, g• a ∈ REAL P OS ∧ leq(a, b) ∧ f ∈ {t|leq(zero, t) ∧ leq(t, a)} → M ODES ∧ g ∈ {t|leq(a, t) ∧ leq(t, b)} → M ODES ⇒ fg ∈ {t|leq(zero, t) ∧ leq(t, b)} → M ODES thm02: ∀a, b, c, f • a ∈ REAL P OS ∧ leq(a, b) ∧ f ∈ {t|leq(zero, t) ∧ leq(t, a)} → M ODES ⇒ (f -(λt•leq(a, t) ∧ leq(t, b)|c))(b) = cEND then skip end Event fail f ordinary = when grd2: active = TRUE grd1: md = M ODE F then act1: md := M ODE R end Event repair ordinary = when grd2: active = TRUE grd1: md = M ODE R then skip end Event repaired g ordinary = when grd2: active = TRUE grd1: md = M ODE R then act1: md := M ODE G end END MACHINE M1 REFINES M0 SEES C1 corridor,C5 modes VARIABLES active [refined] (should only be modified by CTRL events) md [refined] (should only be modified by CTRL events) p p is the amount of power produced by the system (should only be modified by ENV events) f (should only be modified by ENV events) g (should only be modified by ENV events) INVARIANTS type02: p ∈ REAL P OS type04: f ∈ REAL P OS type05: g ∈ REAL P OS corridor01: leq(p, M ) p ≤ M corridor02: active = TRUE ⇒ leq(m, p) active ⇒ m ≤ p mode01: md = M ODE F ⇒ p = f mode04: md = M ODE F ⇒ g = zero mode02: md = M ODE R ⇒ p = f plus g mode03: md = M ODE G ⇒ p = g mode05: md = M ODE G ⇒ f = zero thm01: theorem p = f plus g thm02: theorem leq(f, M ) f ≤ M thm03: theorem leq(g, M ) g ≤ M EVENTS Initialisation extended begin act1: active := FALSE act3: md := M ODE F act2: p := zero act4: f := zero act5: g := zero end Event ENV starting f ordinary = extends boot any new f where grd1: active = FALSE grd2: md = M ODE F grd4: leq(f, new f ) f ≤ new f (f is increasing) APPENDIX D. HYBRID SYSTEMS: SUBSTITUTION grd3: leq(new f, M ) new f ≤ M then act1: f := new f act2: p := new f end Event CTRL started ordinary = extends start when grd1: active = FALSE grd2: md = M ODE F grd3: leq(m, p) grd4: leq(p, M ) then act1: active := TRUE end Event ENV evolution f ordinary = refines progress any new f where grd2: active = TRUE grd1: md = M ODE F grd5: f = m grd6: f = M grd3: leq(m, new f ) m ≤ new f grd4: leq(new f, M ) new f ≤ M then act1: f := new f act2: p := new f end Event CTRL limit detected f ordinary = extends fail f when grd2: active = TRUE grd1: md = M ODE F grd5: f = m ∨ f = M then act1: md := M ODE R end Event ENV evolution fg ordinary = extends repair any new f new g where grd2: active = TRUE grd1: md = M ODE R grd3: leq(m, new f plus new g) m ≤ new f + new g grd4: leq(new f plus new g, M ) new f + new g ≤ M grd5: leq(zero, new f ) 0 ≤ new f grd6: leq(new f, f ) new f ≤ f (f is decreasing) grd7: leq(g, new g) g ≤ new g (g is increasing) grd8: leq(new g, M ) new g ≤ M then act1: f := new f act2: g := new g act3: p := new f plus new g end Event CTRL repaired g ordinary = extends repaired g when grd2: active = TRUE grd1: md = M ODE R grd3: leq(m, g) m ≤ g grd4: leq(g, M ) g ≤ M grd5: f = zero so that going from 'f+g' to 'g' is continuous then act1: md := M ODE G end Event ENV evolution g ordinary = refines progress any new g where grd2: active = TRUE grd1: md = M ODE G grd3: leq(m, new g) m ≤ new g grd4: leq(new g, M ) new g ≤ M then act1: g := new g act2: p := new g end END APPENDIX D. HYBRID SYSTEMS: SUBSTITUTIONMACHINE M2 REFINES M1 SEES C1 corridor,C6 thms VARIABLES active [refined] active t has a sense only if active is TRUE time (moment) when active became true (should only be modified by CTRL events) md [refined] md c now (should only be modified by ENV events) p c (should only be modified by ENV events) f c (should only be modified by ENV events) g c (should only be modified by ENV events) INVARIANTS type01: now ∈ REAL P OS type06: active t ∈ REAL P OS type02: p c ∈ {t|leq(zero, t) ∧ leq(t, now)} → REAL P OS type03: f c ∈ {t|leq(zero, t) ∧ leq(t, now)} → REAL P OS type04: g c ∈ {t|leq(zero, t) ∧ leq(t, now)} → REAL P OS type05: md c ∈ {t|leq(zero, t) ∧ leq(t, now)} → M ODES mode02: ∀t•leq(zero, t) ∧ leq(t, now) ∧ md c(t) = M ODE R ⇒ p c(t) = f c(t) plus g c(t) mode01: ∀t•leq(zero, t) ∧ leq(t, now) ∧ md c(t) = M ODE F ⇒ p c(t) = f c(t) mode04: ∀t•leq(zero, t) ∧ leq(t, now) ∧ md c(t) = M ODE F ⇒ g c(t) = zero mode03: ∀t•leq(zero, t) ∧ leq(t, now) ∧ md c(t) = M ODE G ⇒ p c(t) = g c(t) glue01: p = p c(now) glue02: f = f c(now) glue03: g = g c(now) glue04: md = md c(now) glue05: active = TRUE ⇒ leq(active t, now) corridor01: ∀t•leq(zero, t) ∧ leq(t, now) ⇒ leq(p c(t), M ) ∀ t ∈ [0,now], p c(t) ≤ M corridor02: active = TRUE ⇒ (∀t•leq(active t, t) ∧ leq(t, now) ⇒ leq(m, p c(t))) active ⇒ ∀ t ∈ [active t,now], m ≤ p c(t)mode05: ∀t•leq(zero, t) ∧ leq(t, now) ∧ md c(t) = M ODE G ⇒ f c(t) = zero THM 01: theorem ∀t•leq(zero, t)∧leq(t, now)⇒md c(t) = M ODE F ∨md c(t) = M ODE G∨ md c(t) = M ODE R glue06: active = FALSE ⇒ (∀t•leq(zero, t) ∧ leq(t, now) ⇒ md c(t) = M ODE F ) ¬active ⇒ ∀ t ∈ [0,now], md c(t) = MODE FTHM 02: theorem leq(now, now) now ≤ now EVENTS Initialisation begin act1: active := FALSE act4: active t :∈ REAL P OS act3: md := M ODE F act2: md c := {zero → M ODE F } act6: now := zero act7: p c := {zero → zero} act8: f c := {zero → zero} act9: g c := {zero → zero} end Event ENV starting f ordinary = refines ENV starting f any dt new f c where grd1: active = FALSE grd2: md c(now) = M ODE F grd3: smr(zero, dt) dt > 0 THM 2: theorem leq(now, now plus dt)now ≤ now + dt THM 3: theorem leq(zero, now plus dt)0 ≤ now + dt grd4: new f c ∈ {t|leq(now, t) ∧ leq(t, now plus dt)} → REAL P OS new f c ∈ [now,now+dt] → R+ grd5: f c(now) = new f c(now) grd6: ∀t1, t2•t1 ∈ dom(new f c) ∧ t2 ∈ dom(new f c) ∧ leq(t1,t2) ⇒ leq(new f c(t1), new f c(t2)) ∀ t1,t2 ∈ [now,now+dt], t1 ≤ t2 ⇒ new f c(t1) ≤ new f c(t2) grd7: leq(new f c(now plus dt), M ) THM 1: theorem g c(now) = zero with new f: new f = new f c(now plus dt) then act1: now := now plus dt act2: p c := p cnew f c act3: f c := f cnew f c act4: g c := g c -(λt•leq(now, t) ∧ leq(t, now plus dt)|zero) act5: md c := md c -(λt•leq(now, t) ∧ leq(t, now plus dt)|M ODE F ) end Event CTRL started ordinary = refines CTRL started when grd1: active = FALSE grd2: leq(m, p c(now)) grd3: leq(p c(now), M ) then act1: active := TRUE act2: active t := now end Event ENV evolution f ordinary = refines ENV evolution f any dt new f c where APPENDIX D. HYBRID SYSTEMS: SUBSTITUTION grd1: active = TRUE grd2: md c(now) = M ODE F grd3: smr(zero, dt) dt > 0 THM 2: theorem leq(now, now plus dt)now ≤ now + dt THM 3: theorem leq(zero, now plus dt)0 ≤ now + dt grd8: f c(now) = m grd9: f c(now) = M grd4: new f c ∈ {t|leq(now, t) ∧ leq(t, now plus dt)} → REAL P OS new f c ∈ [now,now+dt] → R+ grd5: f c(now) = new f c(now) grd6: ∀t•t ∈ dom(new f c) ⇒ leq(m, new f c(t)) ∀ t ∈ [now,now+dt], m ≤ new f c(t) grda: ∀t•t ∈ dom(new f c) ⇒ leq(new f c(t), M ) ∀ t ∈ [now,now+dt], new f c(t) ≤ M THM 1: theorem g c(now) = zero with new f: new f = new f c(now plus dt)then act1: now := now plus dt act2: p c := p cnew f c act3: f c := f cnew f c act4: g c := g c -(λt•leq(now, t) ∧ leq(t, now plus dt)|zero) act5: md c := md c -(λt•leq(now, t) ∧ leq(t, now plus dt)|M ODE F ) end Event CTRL limit detected f ordinary = refines CTRL limit detected f when grd2: active = TRUE grd1: md c(now) = M ODE F grd5: f c(now) = m ∨ f c(now) = M THM 1: theorem g c(now) = zero then act1: md := M ODE R act2: md c(now) := M ODE R end Event ENV evolution fg ordinary = refines ENV evolution fg any dt new f c new g c where grd1: active = TRUE grd2: md c(now) = M ODE R grd3: smr(zero, dt) dt > 0 THM 2: theorem leq(now, now plus dt) now ≤ now + dt THM 3: theorem leq(zero, now plus dt) 0 ≤ now + dt grd4: new f c ∈ {t|leq(now, t) ∧ leq(t, now plus dt)} → REAL P OS new f c ∈ [now,now+dt] → R+ grd5: f c(now) = new f c(now) grd7: new g c ∈ {t|leq(now, t) ∧ leq(t, now plus dt)} → REAL P OS new g c ∈ [now,now+dt] → R+ grd8: g c(now) = new g c(now) grd9: ∀t1, t2•t1 ∈ dom(new f c) ∧ t2 ∈ dom(new f c) ∧ leq(t1, t2) ⇒ leq(new f c(t2), new f c(t1)) ∀ t1,t2 ∈ [now,now+dt], t1 ≤ t2 ⇒ new f c(t2) ≤ new f c(t1) grdb: ∀t1, t2•t1 ∈ dom(new g c) ∧ t2 ∈ dom(new g c) ∧ leq(t1, t2) ⇒ leq(new g c(t1), new g c(t2)) ∀ t1,t2 ∈ [now,now+dt], t1 ≤ t2 ⇒ new g c(t1) ≤ new g c(t2) grdc: leq(new g c(now plus dt), M ) grd6: ∀t•leq(now, t) ∧ leq(t, now plus dt) ⇒ leq(m, new f c(t) plus new g c(t)) ∀ t ∈ [now,now+dt], m ≤ new f c(t) + new g c(t) grda: ∀t•leq(now, t) ∧ leq(t, now plus dt) ⇒ leq(new f c(t) plus new g c(t), M ) ∀ t ∈ [now,now+dt], new f c(t) + new g c(t) ≤ M with new f: new f = new f c(now plus dt) new g: new g = new g c(now plus dt) then act1: now := now plus dt act3: f c := f cnew f c act4: g c := g cnew g c act2: p c := p c -(λt•leq(now, t) ∧ leq(t, now plus dt)|new f c(t) plus new g c(t)) act5: md c := md c -(λt•leq(now, t) ∧ leq(t, now plus dt)|M ODE R) end Event CTRL repaired g ordinary = refines CTRL repaired g when grd2: active = TRUE grd1: md c(now) = M ODE R grd3: leq(m, g c(now)) m ≤ g c(now) grd4: leq(g c(now), M ) g c(now) ≤ M grd5: f c(now) = zero f c(now) = 0 then act1: md := M ODE G act2: md c(now) := M ODE Gend Event ENV evolution g ordinary = refines ENV evolution g any dt new g c where grd1: active = TRUE grd2: md c(now) = M ODE G grd3: smr(zero, dt) dt > 0 THM 2: theorem leq(now, now plus dt) now ≤ now + dt THM 3: theorem leq(zero, now plus dt) 0 ≤ now + dt THM 4: theorem leq(now plus dt, now plus dt) now + dt ≤ now + dt grd4: new g c ∈ {t|leq(now, t) ∧ leq(t, now plus dt)} → REAL P OS new g c ∈ [now,now+dt] → R+ grd5: g c(now) = new g c(now) grd6: ∀t•t ∈ dom(new g c) ⇒ leq(m, new g c(t)) ∀ t ∈ [now,now+dt], m ≤ new g c(t) grda: ∀t•t ∈ dom(new g c) ⇒ leq(new g c(t), M ) ∀ t ∈ [now,now+dt], new g c(t) ≤ M THM 1: theorem f c(now) = zerowith new g: new g = new g c(now plus dt) then act1: now := now plus dt act2: p c := p cnew g c act4: f c := f c -(λt•leq(now, t) ∧ leq(t, now plus dt)|zero) act3: g c := g cnew g c act5: md c := md c -(λt•leq(now, t) ∧ leq(t, now plus dt)|M ODE G) end END MACHINE M0 SEES C0 VARIABLES available systems all the healthy systems current system INVARIANTS inv1: available systems ⊆ Systems inv2: current system ∈ Systems EVENTS Initialisation begin act1: available systems := Systems act2: current system :∈ Systems end Event failure ordinary = any system where grd1: system ∈ available systems then act1: available systems := available systems \ {system} end Event treat failure ordinary = any next system where grd1: next system ∈ available systems grd2: current system / ∈ available systems then act1: current system := next system end Event complete failure ordinary = when grd1: available systems = ∅ then skip end END APPENDIX E. GENERALIZATION grd6: new variables = variables of (current system state) different system grd7: new variant(new valuation) = varval of (current system state) same variant grd10: current system → (new variables → new variant) ∈ dom(HorizontalInvs) grd8: h inv = HorizontalInvs(current system → (new variables → new variant)) grd9: h inv(current system state → ((new variables → new variant) → new valuation)) = TRUE with next system: next system = new variables → new variant then act1: current system := new variables → new variant act2: current system state := (new variables → new variant) → new valuation end Event complete failure ordinary = extends complete failure when grd1: available systems = ∅ then skip end Event progress convergent = any new valuation

  with new variables: new variables = prj 1 (Sys2) new variant: new variant = prj 2 (Sys2) new valuation: new valuation = {C2a → new sys2 cart1, C2b → new sys2 cart2} h inv: h inv = HorizontalInvs(Sys1 → Sys2) then act1: current system := Sys2 act2: current system state := Sys2 → {C2a → new sys2 cart1, C2b → new sys2 cart2} act3: sys2 cart1 := new sys2 cart1 act4: sys2 cart2 := new sys2 cart2 end Event complete failure ordinary = extends complete failure when grd1: available systems = ∅ then skip end Event progress sys1 convergent = refines progress any new prod where grd1: current system = Sys1 grd2: Sys1 ∈ available systems grd3: new prod ∈ V alueElements grd4: new prod / ∈ sys1 cart with new valuation: new valuation = {C1 → (sys1 cart ∪ {new prod})} then act1: sys1 cart := sys1 cart ∪ {new prod} act2: current system state := Sys1 → {C1 → (sys1 cart ∪ {new prod})}
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Machine SysT Refines Spec Sees C0 Variables

  Evt Refines Evt =...

	Machine SysS
	Refines Spec
	Sees C0
	Variables v S
	Invariants I S (s, c, v S , v A )
	Variant VN S
	Events
	Event Initialisation =
	Begin
	v S :| D S (s, c, v S )
	VN S :| VN S _InitV alue
	End
	Event s_evt =
	Any x S
	Where
	G S (x S , s, c, v S )
	End
	Model 4.1 -Machine SysS (reminder)

Then

v S :| BA S (x S , s, c, v S , v S ) End ... Event

  1. The source system S is the first running system. The variable mode m is4.2. SYSTEM SUBSTITUTION

	Machine SysS *	Machine SysT *
	Refines SysS	Refines SysT
	Sees C0	Sees C0
	Variables v S , m	Variables v T , m
	Invariants m = S ⇒ I S (s, c, v S , v A )	Invariants
	Variant VN S	
	Events	
	Event Initialisation =	
	Begin	
	m := S	
	v S :| D S (s, c, v S )	
	VN S :| VN S _InitV alue	
	End	
	Event s_evt =	
	Any y S	
	Where	
	m = S ∧ G S (y S , s, c, v S )	
	End	
	Model 4.3 -Machine SysS*	

With y S = x S Then v S :| BA S (y S , s, c, v S , v S ) End ... Event Evt Refines Evt = ...

  , denoting the set of products to be purchased, is defined.

	Context C1
	Sets
	P RODU CT S // all the products in the world
	SIT ES // all the sites in the world
	Constants
	ST OCKS
	Axioms
	axm1: f inite(P RODU CT S)
	axm2: f inite(SIT ES)
	axm3: card(SIT ES) ≥ 2

). It relates websites to the products offered for purchasing by these websites. More precisely, it characterizes which products are available on a given website. Finally, P axm4: ST OCKS = SIT ES × P RODU CT S axm5: P ⊆ P RODU CT S End Model 5.1 -The context C1

  The equivalence relation in the previous expression enables us to repair both the WS1 and WS2 services. From left to right, WS1 is compensated (repaired) by WS2. This expression splits cart W S1 into two carts cart A W S2 and cart B W S2 . From right to left, WS2 is compensated (repaired) by WS1 by the union of cart A W S2 and cart B W S2 carts in the cart cart W S1 .

Introduction of failures and failure modes

  Then act1: cart W S1 := cart W S1 ∪ {site 1 → item} Failure modes are introduced by a new context C11 extending the C1 context (seeModel 5.6). It defines the FAILURE_MODES set of modes and two constants indicating if a system is in a failure state or not. axm1 states that they define a partition of the FAILURE_MODES set (i.e. OK and NOK are different). R3 refining the M0 machine is defined. A new variable failureStatus is introduced to complete the definition of modes. It records if the system is in a failure mode or not. sys still describes which web service is currently running among the available services. A new event, named failure_WS1 is introduced. It is triggered when a failure occurs on WS1. Model 5.7 defines this event.

	Event addItem_WS1 =
	Any item
	Where grd1: item ∈ P \ ran(cart W S1 )
	grd2: sys = 1
	End
	Event selection_WS1 Refines selection =
	Where grd1: ran(cart W S1 ) = P
	grd2: sys = 1
	Then act1: cart := cart W S1
	End
	Model 5.4 -Refinement of selection for a single website (machine R1 refining M0 )
	A W S2 ∪ cart B W S2 )
	grd2: sys = 2
	Then act1: cart B W S2 := cart B W S2 ∪ {site 2B → item}
	End
	Event selection_WS2 Refines selection =
	Where grd1: ran(cart A W S2 ∪ cart B W S2 ) = P
	grd2: sys = 2
	Then act1: cart := cart A W S2 ∪ cart B W S2
	Context C11 Extends C1
	Sets F AILU RE_M ODES
	Constants OK, N OK

Event addItemA_WS2 =

Any item Where grd1:

item ∈ P \ ran(cart A W S2 ∪ cart B W S2 ) grd2: sys = 2 Then act1: cart A W S2 := cart A W S2 ∪ {site 2A → item}

End Event addItemB_WS2 = Any item Where grd1: item ∈ P \ ran(cart End Model 5.5 -Refinement of selection for two websites(machine R2 refining M0 ) Step 2. Axioms axm1: partition(F AILU RE_M ODES, {OK}, {N OK}) End Model 5.6 -Introduction of a context for failure modes A machine

Table 5 .

 5 1 shows the results of the experiments we conducted within the Rodin Platform for Event-B. The presented development has been entirely encoded and proved. Deadlock freeness, correct behavior, refinements and compensation correctness properties have all been proved. The results show that few proof CHAPTER 5. DISCRETE SYSTEMS SUBSTITUTION

Table 5 .

 5 1 -Statistics related to the proofs performed with the Rodin Platform

	Machine	Automated PO Interactive PO
	Root Machine M0	27	4
	Refinement for WS1 (R1 )	27	1
	Refinement for WS2 (R2 )	56	1
	Refinement with compensation (R3 )	214	16
	Total	324	22
	obligations (PO) required interactive proofs (22 among 324 generated POs).
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4.3 The second refinement: introducing discrete repre- sentation

  Machine M1_cntn_ctrl Refines M0_spec Sees C2_margin Variables fv, active, fc , now, active_t Refines boot ... (nfc , now , now plus dt) // continuous on [now,now+dt] grd12: ∀t • t ∈ dom(nfc) ⇒leq(m plus z , nfc(t) ∧ leq(nfc(t) , M sub z) This refinement introduces the discretization function fd corresponding to the continuous function fc on each discrete observed instants. This fundamental property corresponds to requirement Req.2.2 of Table 6.3. It is expressed by the invariants gluing the continuous controller and the discrete controller. It links the continuous f c and discrete f d functions by the property ∀n ∈ 0 .. i ⇒ f c (n × δt) = f d (n) and is represented in invariant glue01.

	Invariants
	type01: now ∈ REAL_POS
	type02: fc ∈ REAL_POS →REAL_POS
	type03: active_t ∈ REAL_POS
	prop01: cnt_int(fc , zero , now) // fc is continuous on [0, now]
	glue01: fv = fc(now)
	glue02: active = TRUE ⇒( ∀t •t ∈ REAL ∧leq(active_t,t) ∧ leq(t ,now) ⇒
	( leq(m plus z , fc (t)) ∧ leq( fc (t) , M sub z) ))
	glue03: ∀t • t ∈ REAL ∧leq(zero,t) ∧ leq(t ,now) ⇒leq(fc(t ), M)
	glue04: active = TRUE ⇒leq(active_t,now)
	Then
	...
	act04: now := now plus dt
	act05: active_t := now plus dt
	Any
	dt, nfc , new_fv
	Where
	...
	grd04: dt ∈ REAL_STR_POS // dt > 0
	grd05: nfc ∈ REAL_POS →REAL_POS
	grd06: dom(nfc) = {t | t ∈ REAL ∧leq(now,t) ∧leq(t , now plus dt)}
	// dom(nf) = [now,now+dt]
	grd07: nfc(now) = fc(now)
	grd08: nfc(now plus dt) = new_fv
	grd09: leq(fv ,new_fv) ⇒(∀ t1,t2 • t1 ∈ dom(nfc) ∧t2 ∈ dom(nfc)
	∧ leq(t1,t2) ⇒leq(nfc(t1) , nfc(t2 )))
	// nfc is monotonic on [t1,t2]
	grd11: leq(new_fv,fv) ⇒(∀ t1,t2 • t1 ∈ dom(nfc) ∧t2 ∈ dom(nfc)
	∧ leq(t1,t2) ⇒leq(nfc(t2) , nfc(t1 )))
	grd10: cnt_intThen
	...
	act02: now := now plus dt
	act03: fc := fc -nfc

Events

Event Initialisation = ... Event boot = End Event run = Refines run End Event stop = Refines stop... End Model 6.5 -Extract of machine M1_cntn_ctrl 6.

  Refines M1_cntn_ctrl Sees C3_cast, C4_discrete // the current instant number et // time elapsed from previous discrete value sampling time rs // remaining continuous micro steps inside the discrete macro step nv // next variant-related event type

	Variables
	fv ,
	active ,
	fc ,
	now,
	active_t,
	fd // discrete power function
	i Invariants

Table 6 .

 6 4 -Rodin proofs statistics

	Event-B model	Automated proofs Interactive proofs Total
	C0_reals	1	29	30
	C1_corridor	0	6	6
	C2_margin	0	10	10
	C3_cast	11	26	37
	C4_discrete	0	1	1
	M0_spec (top-level)	11	6	17
	M1_cntn_ctrl (1st ref.)	22	51	73
	M2_dsct_ctrl (2nd ref.)	22	67	89
	Total	67	198	265

4 Second refinement: continuous behavior and contin- uous time

  We introduce a continuous controller defined on continuous time which characterizes its behaviors with continuous functions. It is described in Machine M2 (seeModel 7.6). It models the behavior corresponding to Figure7.3a. Once the modes and the observed values are correctly set, the next refinements are straightforward. They correspond to a direct reuse of the development of a correct discretization of a continuous function as realized in Chapter 6. Indeed, continuous functions f c , g c , p c and md c corresponding to the variables f , g, p and md in M1 are introduced. A real positive variable now is defined to represent the current time. The gluing invariants (for example glue01 : p = p c (now)) connect the variables of machine M1 with the continuous functions values at time now in M2.

	Where
	Invariants	grd3: m ≤ new_f + new_g
	grd4: new_f + new_g ≤ M type01: now ∈ REAL_POS grd5: 0 ≤ new_f glue01: p = p_c(now) grd6: new_f ≤ f glue02: f = f_c(now) grd7: g ≤ new_g glue03: g = g_c(now) grd8: new_g ≤ M corridor01 : ∀t • t ∈ [0, now] ⇒p_c(t) ≤ M
	...	
	Where	
	Where ... grd3: m ≤ g grd5: f_c(now) = new_f_c(now) grd4: g ≤ M grd6: ∀ t • t ∈ [now,now+dt] ⇒new_f_c(t) ∈ [m,M]
		grd5: f = 0 // f+g to g is continuous
	End	
	Event ENV_evolution_g Refines progress =
	...	

End Event ENV_evolution_fg Refines repair = Any new_f, new_g Then act1: f := new_f act2: g := new_g act3: p := new_f + new_g End Event CTRL_repaired_g Refines repaired = End Model 7.5 -Refinement with ENV and CTRL events 7.2.Machine M2 Refines M1 Sees C_corridor, C_thms Variables now, p_c, f_c, g_c ... Events ... Event ENV_evolution_f Refines ENV_evolution_f = Any dt, new_f_c

Table 7 .

 7 1 -Proof statistics

	Model	Total number Automated Interactive of POs proofs proofs
	Abstract model (M0)	5	5 (100%)	0 (0%)
	First refinement (M1)	93	48 (52%)	45 (48%)
	Second refinement (M2)	209	71 (34%)	138 (66%)
	Third refinement (M3) [projections]	425	78 (18%)	347 (82%)
	Total	732	202 (28%)	530 (72%)
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  aluations 2 → BOOL The invariant Inv H links the source and target states. It plays the role of Recover in the proof obligation defined in Equation (4.3) page 53. In the generic model, its definition is given by an equivalence relation. This definition entails the definition of the repair relation: repair ∈ Systems 2 × (V aluations → BOOL) 2 . It is parameterized by two predicates ψ and ϕ according to the definition of Section 5.2.3.

∀S S , S T ∈ Systems. ∀ψ ∈ states(S S ) → BOOL. ∀ϕ ∈ states(S T ) → BOOL. repair(S S , S T

  corresponds to the repair property introduced in Section 4.2.

	Context C0_instance Extends C0
	Constants
	C1, C2a, C2b, Prod1, Prod2, Prod3, Prod4, Prod5, Sys1, Sys2
	Axioms
	axm1: partition(Variables, {C1}, {C2a}, {C2b})
	axm2: partition(ValueElements, {Prod1}, {Prod2}, ... , {Prod5})
	axm3: Valuations = ({C1} →P (ValueElements))
	∪ ({C2a,C2b} →P (ValueElements))
	axm4: VariablesSets = {{C1},{C2a,C2b}}
	axm5

Table 8 .

 8 

	Machine M2 Refines M1 Sees C0_instance
	Variables
	available_systems, available_systems_states
	current_system, current_system_state
	sys1_cart, sys2_cart1, sys2_cart2
	Invariants

[START_REF] Babin | A formal approach for correct-by-construction system substitution[END_REF] 

shows the proof statistics for the whole Event-B developments. We note that a lot of efforts are devoted to the interactive proof of the instantiation. All 123 CHAPTER 8. GENERALIZATION

Table 8 .

 8 1 -Rodin proofs statistics

	Event-B	Generated proof Automated Interactive
	model	obligations	proofs	proofs
	Context C0	7	5	2
	Machine M0	5	5	0
	Machine M1	28	22	6
	Instantiation context C0_context	3	2	1
	Instantiation machine M2	54	39	15
	Total	97	73	24

  APPENDIX C. HYBRID SYSTEMS: CONTINUOUS TO DISCRETE MODELS dom(np) = {t•leq(now, t) ∧ leq(t, now plus dt)|t} ∧ ∀a, b, now•now ∈ REAL P OS ∧ a ∈ REAL P OS ∧ b ∈ REAL P OS ∧ leq(b, a) ⇒

	np(now) = a ∧ np(now plus dt) = b ∧ (∀t1, t2•t1 ∈ dom(np)∧t2 ∈ dom(np)∧leq(t1, t2)⇒leq(np(t1), np(t2)))∧ cnt int(np, now, now plus dt))
	∀a,b∈ R+, there exists a continuous and increasing function on [now,now+dt] whose range is [a,b]
	thm29: (∃dt, np•
	dt ∈ REAL ST R P OS ∧ np ∈ REAL P OS → REAL P OS ∧ dom(np) = {t•leq(now, t) ∧ leq(t, now plus dt)|t} ∧ np(now) = a ∧ np(now plus dt) = b ∧ (∀t1, t2•t1 ∈ dom(np)∧t2 ∈ dom(np)∧leq(t1, t2)⇒leq(np(t2), np(t1)))∧ cnt int(np, now, now plus dt))
	∀a,b∈ R+, there exists a continuous and decreasing function on [now,now+dt] whose range is [a,b]
	np•
	dt ∈ REAL ST R P OS ∧ np ∈ REAL P OS → REAL P OS ∧ dom(np) = {t•leq(now, t) ∧ leq(t, now plus dt)|t} ∧ np(now) = a ∧ np(now plus dt) = b ∧ (∀t1, t2•t1 ∈ dom(np)∧t2 ∈ dom(np)∧smr(t1, t2)⇒smr(np(t1), np(t2)))∧
	cnt int(np, now, now plus dt))
	∀a,b∈ R+, there exists a continuous and strictly increasing function on [now,now+dt] whose range is [a,b]

thm28: ∀a, b, now•now ∈ REAL P OS ∧ a ∈ REAL P OS ∧ b ∈ REAL P OS ∧ leq(a, b) ⇒ (∃dt, np• dt ∈ REAL ST R P OS ∧ np ∈ REAL P OS → REAL P OS ∧

  REAL P OS → REAL P OS np ∈ R+ → R+ grd06: dom(np) = {t|t ∈ REAL ∧ leq(now, t) ∧ leq(t, now plus dt)} grd11: np ∈ REAL P OS → REAL P OS np ∈ R+ → R+ grd06: dom(np) = {t|t ∈ REAL ∧ leq(now, t) ∧ leq(t, now plus dt)} cnt int(np, now, now plus dt) np is continuous on [now,now+dt] thm01: theorem dom(pcnp) = REAL P OS grd13: ∀t•t ∈ dom(np) ⇒ leq(m plus z, np(t)) ∧ leq(np(t), M sub z)

	EVENTS end CONTEXT C4 discrete
	Initialisation extended Event stop ordinary = EXTENDS C2 margin
	END begin act02: active := FALSE act01: p := zero act06: now := zero act07: pc := λt•t ∈ REAL P OS|zero act08: active t :∈ REAL P OS end Event start ordinary = refines start any dt np where grd02: active = FALSE grd01: p = zero grd04: dt ∈ REAL ST R P OS dt > 0 grd05: np ∈ dom(np) = [now,now+dt] grd07: np(now) = pc(now) np(now) = pc(now) grd08: np(now plus dt) = m plus z grd12: cnt int(np, now, now plus dt) np is continuous on [now,now+dt] thm02: theorem smr(now, now plus dt) act01: active := TRUE act02: p := m plus z act03: now := now plus dt grd12: cnt int(np, now, now plus dt) extends produce np(now+dt) = 0 Event produce safe ordinary = grd08: np(now plus dt) = zero end np(now) = pc(now) act05: active t := now plus dt grd07: np(now) = pc(now) act04: pc := pc -np dom(np) = [now,now+dt] grd06: dom(np) = {t|t ∈ REAL ∧ leq(now, t) ∧ leq(t, now plus dt)} np ∈ R+ → R+ grd11: np ∈ REAL P OS → REAL P OS then thm02: theorem smr(now, now plus dt) thm01: theorem dom(pc -np) = REAL P OS grd02: active = TRUE grd10: dt ∈ REAL ST R P OS dt > 0 END grd01: leq(m, p) ∧ leq(p, M ) end act04: pc := pc -np np is a monotonically strictly increasing function : a<b ⇒ np(a)<np(b) where act03: now := now plus dt smr(np(t1), np(t2)) np act02: p := zero grd09: ∀t1, t2•t1 ∈ dom(np) ∧ t2 ∈ dom(np) ∧ smr(t1, t2) ⇒ dt act01: active := FALSE np(now+dt) = m+z extends stop SETS dom(np) = [now,now+dt] any VT grd07: np(now) = pc(now) np CONSTANTS active np(now) = pc(now) grd08: np(now plus dt) = new p np(now+dt) = new p grd09: leq(p, new p) ⇒ (∀t1, t2•t1 ∈ dom(np) ∧ t2 ∈ dom(np) ∧ leq(t1, t2) ⇒ leq(np(t1), np(t2))) np is a monotonic function grd14: dt tstep discrete time step active t where max dp maximum delta for P during tstep now grd02: active = TRUE PBT p abstract power value grd01: leq(m, p) ∧ leq(p, M ) PV pc continuous power function grd04: dt ∈ REAL ST R P OS dt > 0 AXIOMS pd discrete power function leq(new p, p) ⇒ (∀t1, t2•t1 ∈ dom(np) ∧ t2 ∈ dom(np) ∧ leq(t1, t2) ⇒ leq(np(t2), np(t1))) np is a monotonic function any then thm01: theorem dom(pc -np) = REAL P OS extends stop np is continuous on [now,now+dt] Event safety stop ordinary = grd08: np(now plus dt) = zero np(now+dt) = 0 grd09: ∀t1, t2•t1 ∈ dom(np) ∧ t2 ∈ dom(np) ∧ smr(t1, t2) ⇒ gtr(np(t1), np(t2)) np is a monotonically strictly decreasing function : a<b ⇒ np(a)>np(b) grd12: cnt int(np, now, now plus dt) END grd12: end thm02: theorem smr(now, now plus dt) grd05: np ∈ REAL P OS → REAL P OS np ∈ R+ → R+ i the current instant number axm01: tstep ∈ REAL ST R P OS et time elapsed from previous discrete value sampling time axm03: max dp ∈ REAL P OS max variation of P during tstep rs remaining continuous steps inside the discrete interval grd06: dom(np) = {t|t ∈ REAL ∧ leq(now, t) ∧ leq(t, now plus dt)} axm02: leq(max dp, z) nv next variant-related event type dom(np) = [now,now+dt] grd07: np(now) = pc(now) np(now) = pc(now) tech01: theorem leq(zero, tstep) axm04: partition(V T, {P BT }, {P V }) INVARIANTS
	any	np is continuous on [now,now+dt]
	new p dt np where thm01: theorem dom(pc -np) = REAL P OS grd53: ∀t•t ∈ dom(np) ⇒ leq(np(t), M ) ∀ t ∈ [now,now+dt] ⇒ np(t) ≤ M

grd02: active = TRUE grd03: new p ∈ REAL P OS grd01: leq(m, new p) ∧ leq(new p, M ) grd10: dt ∈ REAL ST R P OS dt > 0 thm02: theorem smr(now, now plus dt) ∀ t ∈ [now,now+dt] ⇒ np(t) ∈ [m+z,M-z] then act01: p := new p act02: now := now plus dt act03: pc := pcnp grd54: ∃t•t ∈ dom(np) ⇒ ¬(leq(m plus z, np(t)) ∧ leq(np(t), M sub z)) ∃ t ∈ [now,now+dt] ⇒ ¬ np(t) ∈ [m+z,M-z] ; safety risk then act01: active := FALSE act02: p := zero act03: now := now plus dt act04: pc := pcnp type01: pd ∈ 0 .. i → REAL P OS type02

  grd11: np ∈ REAL P OS → REAL P OS np ∈ R+ → R+ grd06: dom(np) = {t|t ∈ REAL ∧ leq(now, t) ∧ leq(t, now plus dt)} cnt int(np, now, now plus dt) np is continuous on [now,now+dt] thm01: theorem dom(pcnp) = REAL P OS grd13: ∀t•t ∈ dom(np) ⇒ leq(m plus z, np(t)) ∧ leq(np(t), M sub z) ∀ t ∈ [now,now+dt] ⇒ np(t) ∈ [m+z,M-z] grd15: et = zero grd17: smr(dt, tstep) grd16: ∀t•t ∈ dom(np) ⇒ leq(pd(i) sub max dp, np(t)) ∧ leq(np(t), pd(i) plus max dp) np is a monotonic function grd14: leq(new p, p) ⇒ (∀t1, t2•t1 ∈ dom(np) ∧ t2 ∈ dom(np) ∧ leq(t1, t2) ⇒ leq(np(t2), np(t1))) np is a monotonic function grd12: cnt int(np, now, now plus dt) np is continuous on [now,now+dt] thm01: theorem dom(pcnp) = REAL P OS grd13: ∀t•t ∈ dom(np) ⇒ leq(m plus z, np(t)) ∧ leq(np(t), M sub z) ∀ t ∈ [now,now+dt] ⇒ np(t) ∈ [m+z,M-z] grd18: smr(zero, et) grd15: smr(et plus dt, tstep) grd16: ∀t•t ∈ dom(np) ⇒ leq(pd(i) sub max dp, np(t)) ∧ leq(np(t), pd(i) plus max dp)

		dom(np) = [now,now+dt]
		grd07: np(now) = pc(now)
		np(now) = pc(now)
		grd08: np(now plus dt) = new p
		np(now+dt) = new p
		grd09: leq(np(t1), np(t2))) leq(p, new p) ⇒ (∀t1, t2•t1 ∈ dom(np) ∧ t2 ∈ dom(np) ∧ leq(t1, t2) ⇒
		np is a monotonic function
		grd14: leq(np(t2), np(t1))) leq(new p, p) ⇒ (∀t1, t2•t1 ∈ dom(np) ∧ t2 ∈ dom(np) ∧ leq(t1, t2) ⇒
		np is a monotonic function physical assumption
		grd17: nv = P BT grd12: physical assumption grd19: rs > 0
	then	
		act01: p := new p
		act02: now := now plus dt
	⇒ t ∈ dom(np) act03: pc := pc -np act06: et := et plus dt (pc -np)(t), case 2/3: n < i ∧ t = now act07: rs :∈ N thm09: theorem ∀n, t•(n ∈ i .. i + n step -1 act08: nv := P BT ∧ leq(cast(n) mult tstep, t) ∧ leq(t, cast(n + 1) mult tstep)) ⇒ t ∈ dom(np) Event produce between ticks ordinary = end (pc -np)(t), case 3/3: n ≥ i then extends produce safe act01: active := TRUE any act02: p := m plus z new p act03: now := now plus dt dt act04: pc := pc -np np act05: active t := now plus dt where act06: i := i + n step grd02: active = TRUE act07: pd := pd -pd start end Event produce from tick ordinary = extends produce safe grd03: new p ∈ REAL P OS grd01: leq(m, new p) ∧ leq(new p, M ) grd10: dt ∈ REAL ST R P OS dt > 0
	any	thm02: theorem smr(now, now plus dt)
	new p dt np where grd11: np ∈ REAL P OS → REAL P OS np ∈ R+ → R+ grd06: dom(np) = {t|t ∈ REAL ∧ leq(now, t) ∧ leq(t, now plus dt)} dom(np) = [now,now+dt]
		grd07: np(now) = pc(now)
		np(now) = pc(now)

now thm10: theorem ∀n, t•(n ∈ 0 .. i -1 ∧ t = now ∧ leq(cast(n) mult tstep, t) ∧ leq(t, cast(n + 1) mult tstep)) grd02: active = TRUE grd03: new p ∈ REAL P OS grd01: leq(m, new p) ∧ leq(new p, M ) grd10: dt ∈ REAL ST R P OS dt > 0 thm02: theorem smr(now, now plus dt) grd08: np(now plus dt) = new p np(now+dt) = new p grd09: leq(p, new p) ⇒ (∀t1, t2•t1 ∈ dom(np) ∧ t2 ∈ dom(np) ∧ leq(t1, t2) ⇒ leq(np(t1), np(t2)))

  REAL ST R P OS dt > 0 thm02: theorem smr(now, now plus dt) grd11: np ∈ REAL P OS → REAL P OS np ∈ R+ → R+ grd06: dom(np) = {t|t ∈ REAL ∧ leq(now, t) ∧ leq(t, now plus dt)} dom(np) = [now,now+dt] grd07: np(now) = pc(now) np(now) = pc(now) grd08: np(now plus dt) = zero np(now+dt) = 0 grd12: cnt int(np, now, now plus dt) np is continuous on [now,now+dt] thm01: theorem dom(pcnp) = REAL P OS grd53: ∀t•t ∈ dom(np) ⇒ leq(np(t), M ) ∀ t ∈ [now,now+dt] ⇒ np(t) ≤ M grd54: ∃t•t ∈ dom(np) ⇒ ¬(leq(m plus z, np(t)) ∧ leq(np(t),M sub z)) ∃ t ∈ [now,now+dt] ⇒ ¬ np(t) ∈ [m+z,M-z] ; safety risk grd33: n step ≥ 2 grd13: theorem n step ∈ N1 grd19: dt = cast(n step) mult tstep grd14: et = zero thm03: theorem now = cast(i) mult tstep thm04: theorem now plus dt = cast(i + n step) mult tstep grd16: pd stop ∈ i .. i + n step → REAL P OS thm05: theorem ∀n•n ∈ N ⇒ (n ∈ dom(pd stop) ⇔ cast(n) mult tstep ∈ dom(np)) grd18: pd stop(i) = pd(i) grd17: ∀n•n ∈ dom(pd stop) ⇒ np(cast(n) mult tstep) = pd stop(n) grd20: ∀n•n ∈ i .. i + n step -1 ⇒ ( ∀t•(leq(cast(n) mult tstep, t) ∧ leq(t, cast(n + 1) mult tstep)) ⇒ ( leq(pd stop(n) sub max dp, np(t))∧ leq(np(t), pd stop(n) plus max dp))) grd21: smr(pd stop(i + 1), m plus z) ∨ gtr(pd stop(i + 1), M sub z)(pd stop(i+1) < m + z) ∨ (pd stop(i+1) > M-z) grd09: ∀t1, t2•leq(now plus tstep, t1) ∧ t1 ∈ dom(np) ∧ t2 ∈ dom(np) ∧ smr(t1, t2) ⇒gtr(np(t1), np(t2)) np is a monotonically strictly decreasing function after the next discrete instant :(now+tstep≤ a ∧ a<b) ⇒ np(a)>np(b) thm06: theorem ∀n•n ∈ 0 .. i -1 ⇒ n ∈ dom(pd) ∧ n / ∈ dom(pd stop) (pd -pd stop)(n), case 1/2: n < i thm07: theorem ∀n•n ∈ i .. i + n step -1 ⇒ n ∈ dom(pd stop) (pd -pd stop)(n),case 2/2: n ≥ i thm11: theorem ∀n, t•(n ∈ 0 .. i -1 ∧ t = now ∧ leq(cast(n) mult tstep, t) ∧ leq(t, cast(n + 1) mult tstep)) ⇒ t ∈ dom(pc) ∧ t / ∈ dom(np) (pc -np)(t), case 1/3: n < i ∧ t = now thm10: theorem ∀n, t•(n ∈ 0 .. i -1 ∧ t = now ∧ leq(cast(n) mult tstep, t) ∧ leq(t, cast(n + 1) mult tstep)) ⇒ t ∈ dom(np) (pc -np)(t), case 2/3: n < i ∧ t = now thm09: theorem ∀n, t•(n ∈ i .. i + n step -1 ∧ leq(cast(n) mult tstep, t) ∧ leq(t, cast(n + 1) mult tstep)) ⇒ t ∈ dom(np) (pc -np)(t), case 3/3: n ≥ i

	extends safety stop
	any
	dt
	np
	n step
	pd stop
	where

grd02: active = TRUE grd01: leq(m, p) ∧ leq(p, M ) grd10: dt ∈

  ∀t•(leq(cast(n) mult tstep, t) ∧ leq(t, cast(n + 1) mult tstep)) ⇒ leq(pd stop(n) sub max dp, np(t))) thm06:theorem ∀n•n ∈ 0 .. i -1 ⇒ n ∈ dom(pd) ∧ n / ∈ dom(pd stop) (pd -pd stop)(n), case 1/2: n < i thm07: theorem ∀n•n ∈ i .. i + n step -1 ⇒ n ∈ dom(pd stop) (pd -pd stop)(n), case 2/2: n ≥ i thm11: theorem ∀n, t•(n ∈ 0 .. i -1 ∧ t = now ∧ leq(cast(n) mult tstep, t) ∧ leq(t, cast(n + 1) mult tstep)) ⇒ t ∈ dom(pc) ∧ t / ∈ dom(np) (pc -np)(t), case 1/3: n < i ∧ t = now thm10: theorem ∀n, t•(n ∈ 0 .. i -1 ∧ t = now ∧ leq(cast(n) mult tstep, t) ∧ leq(t, cast(n + 1) mult tstep)) ⇒ t ∈ dom(np) (pc -np)(t), case 2/3: n < i ∧ t = now thm09: theorem ∀n, t•(n ∈ i .. i + n step -1∧ leq(cast(n) mult tstep, t) ∧ leq(t, cast(n + 1) mult tstep)) ⇒ t ∈ dom(np) (pc -np)(t), case 3/3: n ≥ i

  available systems := available systems \ {Sys2} act2: available systems states := {Sys2}available systems states end Event treat failure with state repair sys1 to sys2 ordinary = refines treat failure with state repair any Sys2 ∈ available systems grd6: sys1 cart = new sys2 cart1 ∪ new sys2 cart2 grd7: Sys2 → {C2a → new sys2 cart1, C2b → new sys2 cart2} ∈ available systems states

	APPENDIX E. GENERALIZATION
	then
	act1: new sys2 cart1
	new sys2 cart2
	where
	grd1: new sys2 cart1 ∈ P (V alueElements) grd2: new sys2 cart2 ∈ P (V alueElements) grd3: current system = Sys1
	grd4: Sys1 / ∈ available systems grd5:
	end
	END

http://www.event-b.org/

http://wiki.event-b.org/index.php/Theory_Plug-in#Standard_Library

http://wiki.event-b.org/index.php/Theory_Plug-in#Capabilities

http://www.frama-c.cea.fr/
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Context C_modes

Sets

MODES

Constants

MODE_F, MODE_R, MODE_G

Proof effort

Table 7.1 shows the proof statistics of the development with the Rodin Platform. To guarantee the correctness of the system behavior, we established various invariants in the incremental refinements. This development resulted in 732 (100%) proof obligations, of which 202 (28%) were proven automatically, and the remaining 530 (72%) were proven interactively using the Rodin prover (see Table 7.1). These interactive proof obligations are mainly related to the complex mathematical expressions and the use of Theory plug-in for REAL datatype (i.e. the mathematical real numbers), which are simplified through interaction, providing additional information for assisting the Rodin prover. We use the Theory plug-in for describing the hybrid systems and the required properties. In this experiment, we found that proofs are quite complex and the existing Rodin tool support is not powerful enough to prove the generated proof

AN EVENT-B MODEL FOR SYSTEM SUBSTITUTION

The generic setting

Finally, the generic system of systems setting is given by a graph characterized by the pair SoS = Systems, repair where Systems is the set of available systems (nodes) and repair is the relation among the available systems (edges). The obtained graph of systems may be constrained by additional properties. For example, a property could be that each system has at least two substitute systems. This is out of the scope of this contribution.

An Event-B model for system substitution

The mathematical setting described above has been completely formalized within the Event-B method. The complete Event-B development is available in Appendix E. This development first expresses the system substitution strategy at a higher level, and then reuses this development for each specific system substitution. The specific system is obtained by instantiation of the generic model. Instantiation is defined by a particular use of refinement. Specific systems, defining instances, are witnesses of the generic development. This formalization led to the definition of a context C0 and of two machines M0 and its refinement M1.

Static part: required definitions

The context C0 (Model 8.1) implements the theory associated to the system substitution relation. It introduces all the elements describing systems as formalized previously in Section 8.2.

Context C0

Sets

Variables, ValueElements

Constants

Valuations, VariablesSets , Systems, Systems_states, system_of, HorizontalInvs, varval_of 

List of Publications

A Theories

Components:

• Theory Real (page 140)

• Theory RealPos (page 145)

The models are also available at: http://babin.perso.enseeiht.fr/r/thesis/ The models are also available at: http://babin.perso.enseeiht.fr/r/thesis/ The models are also available at: http://babin.perso.enseeiht.fr/r/thesis/ MACHINE M0 SEES C5 modes VARIABLES active active is true once the system has started md the mode of the system 

EVENTS

E Generalization

Components:

• C0 (page 264)

• M0 abstract systems (page 266)

• M1 abstract systems with states (page 267)

• C0_instance (page 269)

• M2 concrete systems (page 270)

The models are also available at: http://babin.perso.enseeiht.fr/r/thesis/ type3: sys2 cart2 ∈ P (V alueElements)

glue1: system of (current system state) = Sys1 ⇒ valuation of (current system state)(C1) = sys1 cart glue2: system of (current system state) = Sys2 ⇒ valuation of (current system state)(C2a) = sys2 cart1 ∧ valuation of (current system state)(C2b) = sys2 cart2 thm1: theorem current system = Sys1 ⇒ {C1} = dom(valuation of (current system state))

thm2: theorem current system = Sys2 ⇒ {C2a, C2b} = dom(valuation of (current system state)) 

EVENTS