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Abstract

Safety-critical systems depend on the fact that their software components provide
services that behave correctly (i.e. satisfy their requirements). Additionally, in
many cases, these systems have to be adapted or reconfigured in case of failures or
when changes in requirements or in quality of service occur. When these changes
appear at the software level, they can be handled by the notion of substitution.
Indeed, the software component of the source system can be substituted by another
software component to build a new target system. In the case of safety-critical
systems, it is mandatory that this operation enforces that the new target system
behaves correctly by preserving the safety properties of the source system during
and after the substitution operation.

In this thesis, the studied systems are modeled as state-transition systems. In
order to model system substitution, the Event-B method has been selected as it is
well suited to model such state-transition systems and it provides the benefits of
refinement, proof and the availability of a strong tooling with the Rodin Platform.

This thesis provides a generic model for system substitution that entails different
situations like cold start and warm start as well as the possibility of system degrada-
tion, upgrade or equivalence substitutions. This proposal is first used to formalize
substitution in the case of discrete systems applied to web services compensation
and allowed modeling correct compensation. Then, it is also used for systems
characterized by continuous behaviors like hybrid systems. To model continuous
behaviors with Event-B, the Theory plug-in for Rodin is investigated and proved
successful for modeling hybrid systems. Afterwards, a correct substitution mech-
anism for systems with continuous behaviors is proposed. A safety envelope for
the output of the system is taken as the safety requirement. Finally, the proposed
approach is generalized, enabling the derivation of the previously defined models
for web services compensation through refinement, and the reuse of proofs across
system models.
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Introduction

Context
Nowadays, rigorous development methods grounded in mathematical and logical
foundations are mature enough to support the development of complex systems,
using either pure software, pure hardware or mixing software and hardware parts.
Moreover, it is well accepted that these rigorous methods allow increasing the
quality of the developed complex systems but also of the development processes
that lead to the design of these systems.

Formal methods have proved useful in many safety critical application domains
and industries like aeronautics, space, automotive and rail transportation, medical
systems or energy production. Mature tool suites supporting such formal methods
are now available. They assist in the system design through complexity management
(using refinement/abstraction, composition/decomposition). They provide support
tools and techniques to understand systems (with simulation and animation), identify
design errors (with model-checking and tests) and/or demonstrate correctness (with
proofs). Several tooled framework enabling formal methods and techniques have
been developed to handle system development or part of it. Specification, validation,
verification, simulation, design, etc. are some of the activities targeted by formal
methods and associated framework. One key enabler for the large scale use of
formal methods is the identification of domain, problem or application families and
associated verification strategies that ease the application of formal methods in
realistic industrial applications.

One of the important problem family studied in system engineering relates to
system evolution or system changes during its lifetime (for example to integrate
updates or manage and react to failures). Handling the changes of a system is
a key requirement particularly in the case of adaptive, self-healing, autonomous,
or reconfigurable systems and in other situations like maintenance or redundancy.
These changes may occur in different cases like changes in the specification, the
environment, quality of service, running platform, etc. At this level, fundamental
questions related to recording system changes arise:

• What are the preserved system properties?

• What are the lost system properties?

• What are the new properties of the system after changes?
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Handling system evolution requires to answer the above mentioned questions.
When systems are critical systems with hard safety and dependability requirements
and with certification, it is needed to set up verification and validation techniques
that allow developers and customers to have the appropriate confidence on the
developed system. Formal methods have proved useful to fulfill such requirements.

Therefore, when systems are formally modeled, it becomes possible to set up
a formal reasoning allowing developers to manage system evolution using formal
modeling techniques.

In this thesis, we focus on the study of the critical system evolution problem
family, when formally modeled, that may occur either at design time (during system
development) or at runtime (when the system runs). We claim that various system
changes can be formally modeled by a system substitution operation which consists
in substituting a system by another one preserving the original system state. The
provided results will enable a more efficient development based on formal methods of
this kind of systems and provide a better scalability for the use of formal methods.

Objectives of the thesis
As mentioned above, in this thesis we address the problem of handling system
changes and updates at design time and runtime. A system substitution operation
is proposed to handle various types of system changes. We have chosen to model the
considered systems as state-transition systems and to use the Event-B refinement
and proof based formal method as a supporting method for all the developments
we have achieved.

The goal of our work is to define system substitution by a generic development
operation that records system changes from a source system to a target system.
This generic operation thus allows to ease the development of this problem family.
To reach this goal, we have identified the following objectives:

• Define a formal framework to model both system specification and implemen-
tations of such evolutive systems.

• Identify the system substitution operation between systems implementing
(refining) a common specification and the corresponding properties (proof
obligations) of that operation. Provide a formalization for this operation.

• Handle the case of substitution at runtime or at design time (cold or hot
substitution).

• Address degraded, upgraded or equivalent modes of the target system after
substitution.

• Study the case of substitution of a system by itself (self-? systems, autonomous
systems), or by an update of the source system with new parts issued from
another system, or by a new system.
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• Consider different types of systems candidate for substitution: discrete event-
based systems and hybrid systems with continuous behavior.

• Offer the appropriate set of proof techniques to handle both discrete and
continuous proofs associated with the studied systems.

Contributions
As mentioned above, the main objective of our work is to define a formal model for
the system substitution problem family in different situations. We use the Event-B
refinement and proof-based method to model both the systems and the proposed
system substitution operation. Event-B enables us to benefit from refinement and
correctness proofs, all supported by the Rodin Platform.

In our approach, systems are modeled as state-transition systems. We are
concerned with safety properties modeled as invariants. These properties need to
be preserved during and after system substitution. Our contributions consists in
the following:

• Definition of a generic framework for system substitution together with the
identification of the properties to ensure the preservation of the safety require-
ments of the source system.

• Use of the proposed substitution mechanism for systems characterized by
discrete event systems. In this case, we consider instantaneous system substi-
tution. The particular case of web services compensation has been studied.

• Use of the proposed substitution mechanism for hybrid systems characterized
by continuous behaviors. In this case, we consider non-instantaneous system
substitution. The case of a continuous function characterizing system behaviors
is considered.

• Formalization of system substitution as a generic operator that manipulates
systems, states and transitions. The relevant properties of this operator are
also formalized. This operator is used for a class of systems that instantiate
the proposed generic systems descriptions.

These contributions will be detailed in the next chapters of this thesis.

Thesis outline
This thesis is organized as follows.

The first part is devoted to the state of the art. Refinement and proof-based
formal methods with explicit state definition are introduced in Chapter 1. A focus
on the chosen Event-B method is provided.

The second part presents our contributions for system substitution. It shows
how the proposed approach applies for substitution of systems described either by
discrete or continuous behaviors and how it generalizes to a class of systems.
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• The generic framework for system substitution we have defined is presented in
Chapter 4. The key concept of horizontal invariant is introduced. It models
the relation between system states before and after system substitution. Then,
the proposed system substitution approach is deployed in two situations.
(Related publications [1], [6])

1. First, application to discrete systems is addressed in Chapter 5. The
case of web services compensation is used to illustrate how our approach
for system substitution handles web services compensation at runtime.
(Related publications [2], [8])

2. Second, we studied hybrid systems whose behavior is characterized
by the integration of both discrete and continuous behaviors modeled
with continuous functions. Again, in Chapter 7 the proposed system
substitution operator is set up on such systems. Specific features related
to correct modeling of such systems with Event-B are given before in
Chapter 6. (Related publications [3], [5], [7], [9])

• Finally, a generalization of our approach is presented in Chapter 8. The ap-
proach considers systems (state-transition systems) as objects manipulated by
the proposed generalized system substitution operation. (Related publications
[4], [10]).

Last this thesis ends by a conclusion and a review of the perspectives we have
identified.

Publications related to the thesis
The following contributions were accepted and published in conferences and journals.

[1] G. Babin. “A formal approach for correct-by-construction system substitution”.
In: The Tenth European Dependable Computer Conference (EDCC) 2014 –
Student Forum. 2014.
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Proposal with Event-B”. In: IEEE International Conference on Services
Computing (SCC). 2015.

[3] G. Babin, Y. Aït-Ameur, S. Nakajima and M. Pantel. “Refinement and Proof
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Dependable Software Engineering: Theories, Tools, and Applications (SETTA).
2015.

[4] G. Babin, Y. Aït-Ameur and M. Pantel. “Correct Instantiation of a System
Reconfiguration Pattern: A Proof and Refinement-Based Approach”. In:
IEEE 17th International Symposium on High Assurance Systems Engineering
(HASE). 2016.
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This thesis targets the modeling and verification of systems composed of parts
that can change during time, either offline or online. These changes of systems part
can be modeled nicely using system state changes. We thus decided to rely on state-
transition systems as model of computations, on the Event-B method and the Rodin
Platform as support for the system modeling and requirement satisfaction proofs
structured using refinements. We will first summarize these formal techniques.

1.1 Models of systems
Transition systems have been identified as an appropriate generic model for systems.
They support the definition of systems and their behaviors and they allow developers
to reason on their execution traces. One of the design methodologies associated
with transition systems consists in describing a sequence sti of such systems where
sti refines sti−1. The refinement introduces more and more details growing from
an abstract system to a concrete one. Moreover, we target the definition of correct
systems that are possibly parameterized. Therefore, it is required to prove the
correctness of the designed models beyond (partial) testing or bounded model
checking.
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Several formal methods to define and model such systems have been proposed in
the literature. The first class of formal methods is based on the definition of process
algebras. Examples of such modeling languages are CCS [Mil80] or LOTOS [EVD88;
ISO89]. These techniques do not offer well-accepted refinement operations. So we
did not consider them in our work.

The second class of formal methods is the so-called state-based formal meth-
ods. These methods have drawn the attention of several researchers. They are
based on the definition of systems states (through a set of state variables) and
transitions (from a state to another) equipped in general with pre-conditions and
post-conditions [Hoa69] to offer reasoning capabilities. Moreover, this formal model
has been associated to a refinement relation allowing the definition of a sequence of
models linked by this relation. Among these methods we can cite Z [Spi92; ISO02],
VDM [BJ78], B [Abr96], TLA+ [Lam02], Event-B [Abr10] and Statecharts [Har87].
In the recent developments, these methods have been associated to several model
checking techniques and tools offering capabilities for model verification and/or ani-
mation. Examples of such model checkers are NuSMV [Bur+92], CADP [Gar+13],
PROMELA/SPIN [Hol04], ProB [LB03] and TINA [BV06].

A third class of formal methods relates to the so-called “higher-order formal
methods”. Thanks to their higher order characteristics, these methods offer the
capability to describe system models and the associated verification procedure in
a uniform setting. They could be used at a “meta” level: they would need an
encoding of the notions of state and transition using higher-order functions. Such
methods are Isabelle/HOL [NPW02], PVS [ORS92] or Coq [BC04; The16].

In order to benefit from a methodology based on the native notions of state,
transition, refinement, proofs and the availability of a powerful supporting tool (the
Rodin Platform), we have chosen the Event-B formal method to express our models
and prove the associated properties.

The Event-B method [Abr10] is a recent evolution of the B method [Abr96].
This method is based on the notions of pre-conditions and post-conditions from
Hoare [Hoa69], the weakest pre-condition from Dijkstra [Dij97] and the substitution
calculus [Abr96]. It is a formal method based on mathematical foundations: first-
order logic and set theory.

1.2 Event-B models
An Event-B model is characterized by a set of variables, defined in the Variables
clause that evolve thanks to events defined in the Events clause. It encodes a
state-transition system where the variables represent the state and the events
represent the transitions from one state to another. During the execution, events
are interleaved (i.e. at any time, only one event is executed).

An Event-B model is made of several components of two kinds: machines and
contexts. The machines contain the dynamic parts (states and transitions) of a
model whereas the contexts contain the static parts (axiomatization and theories) of
a model. A machine can be refined by another one, and a context can be extended
by another context. Moreover, a machine can see one or several contexts.
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A context is defined by a set of clauses (Model 1.1) as follows.

• Context represents the name of the component that should be unique in a
model.

• Extends declares the context(s) extended by the described context.

• Sets describes a set of abstract and enumerated types.

• Constants represents the constants used by a model.

• Axioms describes, in first-order logic expressions, the properties (definitions)
of the attributes declared in the Constants and Sets clauses. Types and
constraints are described in this clause as well.

• Theorems are logical expressions that can be deduced from the axioms.

Context ctxt_id_2
Extends ctxt_id_1
Sets s
Constants c
Axioms A(s, c)
Theorems Tc(s, c)
End

Machine machine_id_2
Refines machine_id_1
Sees ctxt_id_2
Variables v
Invariants I(s, c, v)
Theorems Tm(s, c, v)
Variant V (s, c, v)
Events
Event Initialisation =̂
Begin
v :| D(s, c, x, v′)

End
Event evtr =̂
Refines evt
Any x
Where G(s, c, v, x)
Then v :| BA(s, c, v, x, v′)
End

End

Model 1.1 – Structures of Event-B contexts and machines

Similarly to contexts, machines are defined by a set of clauses (Model 1.1).

• Machine represents the name of the component that should be unique in a
model.

• Refines declares the machine refined by the described machine.

• Sees declares the list of contexts imported by the described machine.

11
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• Variables represents the state variables of the model of the specification.
Refinements may introduce new variables in order to enrich the described
system.

• Invariants describes, using first-order logic expressions, the properties of the
variables declared in the Variables clause. Typing information, functional
and safety properties are usually given in this clause. These properties shall
remain true at all times. This means that the invariants must hold after the
initialization and that events (more precisely their actions) must preserve
them. This is enough to guarantee that the invariants always hold by means
of mathematical induction.
It also expresses the gluing invariant required by each refinement.

• Theorems defines a set of logical expressions that can be deduced from the
invariants and the context(s). They do not need to be proved for each event,
contrary to the invariants.

• Variant introduces a natural number or finite set that will be used to guar-
antee termination properties.

• Events defines all the events (transitions) that can occur in a given model.
Each event is characterized by its guard and is described by a body of actions.
Each machine must contain an Initialisation event. The events occurring in
an Event-B model affect the state described in the Variables clause.
An event consists of the following clauses (Model 1.1):

– Refines declares the list of events refined by the described event.
– Any lists the parameters of the event.
– Where expresses the guard of the event. An event can be fired (triggered)

when its guard evaluates to true. If several guards evaluate to true, only
one can be fired with a non-deterministic choice.

– Then contains the actions of the event that are used to modify variables.

In order to model termination properties, events are marked as:

– ordinary: there is no restriction regarding the variant,
– convergent: the variant must decrease,
– anticipated: the variant must not increase. This is intended to be used

with refinement.

Event-B offers three kinds of actions (substitutions):

• assignment (x := E) where the variable becomes equal to the value of a
particular expression. This action is deterministic.
Example: x := 4
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• choice (x :∈ S) where the variable takes a value from a set, in a non-deterministic
manner.

Example: x :∈ N\{2}
where the variable x takes as value any natural number other than 2.

• before-after predicate (x :| BA(x,x’)), is the more general form of action. The
new values of the variables become such that the given before-after predicate
holds. The future values are quoted, the current ones are not. This is the
more powerful notation since it can express all the others. It is compulsory
when expressing relations between the future values of multiple variables in an
action, as otherwise actions are independent. However, by adding parameters
with guards, the first form := is sufficient.

Example: x,y :| x’>x ∧ x’+y’ = 5
It asserts that x and y take any values such that x becomes greater than its
previous value and that the sum of the new values of x and y is equal to 5.

1.3 Proof obligation rules
Proof obligations (PO) are associated with any Event-B model to express the
correctness of the developments and refinements. They must be proved to ensure
the correctness of the model.

The rules for generating proof obligations follow the substitutions calculus [Abr10;
Abr96], close to the weakest precondition calculus of Dijkstra [Dij97]. In order to
define proof obligation rules, we use the notations defined in Model 1.1 where s
denotes the seen sets, c the seen constants, and v the variables of the machine.
Seen axioms are denoted by A(s, c) and theorems by Tc(s, c), whereas invariants are
denoted by I(s, c, v) and local (event-specific) theorems by Tm(s, c, v). For an event,
the guard is denoted by G(s, c, v, x) and the action is denoted by the before-after
predicate BA(s, c, v, x, v′). The prime notation v′ denotes the variable v after action
execution.

Table 1.1 – Examples of proof obligations for an Event-B model

Theorems A(s, c)⇒ Tc(s, c) (a)
A(s, c) ∧ I(s, c, v)⇒ Tm(s, c, v) (b)

Invariant preservation A(s, c) ∧ I(s, c, v) ∧G(s, c, v, x) ∧ BA(s, c, v, x, v′)⇒ I(s, c, v′) (c)

Event feasibility A(s, c) ∧ I(s, c, v) ∧G(s, c, v, x)⇒∃v′.BA(s, c, v, x, v′) (d)

Natural variant A(s, c) ∧ I(s, c, v) ∧G(s, c, v, x)⇒ V (s, c, v) ∈ N (e)

Variant progress A(s, c) ∧ I(s, c, v) ∧G(s, c, v, x) ∧ BA(s, c, v, x, v′) (f)
⇒V (s, c, v′) < V (s, c, v)

Table 1.1 shows the main obligation rules associated to an Event-B model.
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• The theorem proof obligation rules (a) and (b) ensure that a proposed context
theorem (a) or machine theorem (b) is indeed correct: it can be deduced from
the axioms and the invariants.

• The invariant preservation proof obligation rule (c) ensures that each invariant
in a machine is preserved by each event.

• The feasibility proof obligation rule (d) ensures that a non-deterministic action
is feasible.

• The natural variant proof obligation rule (e) guarantees that under the guards
of each convergent or anticipated event, a proposed numeric variant is indeed
a natural number.

• The variant proof obligation rule (f) states that each convergent event decreases
the proposed numeric variant.

There are other rules for generating proof obligations to prove the correctness
of refinement. The complete definitions are given in [Abr10].

1.4 Semantics
The new aspect of the Event-B method [Abr10], in comparison with classical B
[Abr96], is related to the semantics. Indeed, the events of a model are atomic events
of a state-transition system. The semantics of an Event-B model is a trace-based
semantics with interleaved events. A system is characterized by the set of licit
traces corresponding to the fired events of the model which respect to the described
properties. The traces define a sequence of states that may be observed by properties.
All the properties will be expressed on these traces.

1.5 Refinement
The refinement operation [AH07] offered by Event-B enables stepwise model devel-
opment. A state-transition system is refined into another state-transition system
with more and more design decisions while moving from an abstract level to a less
abstract one. A refined machine is defined by adding new events, new state variables
and a gluing invariant. Each event of the abstract model is refined in the concrete
model by adding new information expressing how the new set of variables and the
new events evolve. All the new events appearing in the refinement refine the skip
event (which is the event that does nothing and can occur any time). Refinement
preserves the proved properties and therefore it is not necessary to prove them
again in the refined transition system, usually more detailed. This help keeping the
proof sizes reasonable by distributing the proof effort along the refinement tree.

In order to prove the correctness of the development, it is necessary to prove the
correctness of the various refinements it contains. The following proof obligations
are the two key proof obligations.
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• Guard strengthening: a concrete event must be enabled only if the abstract
event is enabled.
For each abstract i-th guard GA

i ,

A ∧ IA ∧ IC ∧GC ∧W ⇒GA
i

where, as a reminder, A denotes the conjunction of the axioms, I the invariants,
G the guards, W the witnesses (predicates linking concrete and abstract
variables) and BA before-after predicates (actions); and ·A relates to the
abstract machine while ·C relates to the concrete one.

• Action simulation: if an abstract event’s action assigns a value to a variable
that is also declared in the concrete machine, it must be proven that the
abstract event’s behavior corresponds to the concrete behavior.

A ∧ IA ∧ IC ∧GC ∧W ∧ BAC ⇒ BAA
i

Remark Note that many different refinements may refine the same given abstract
machine. Each refinement machine corresponds to a possible behavior, implementa-
tion or concretization of the abstract machine. Thus, several candidate refinements
are offered for a given abstract machine. This will be used in later chapters to
characterize the set of correct systems that behave as described by an abstract
system description.

The Event-B method proved its capability to represent event-based systems like
railway systems, embedded systems or web services. Moreover, complex systems
can be gradually built in an incremental manner by preserving the initial properties
thanks to the preservation of a gluing invariant.

1.6 Liveness & deadlock

1.6.1 Liveness properties
The built-in facilities of Event-B are mainly oriented towards guaranteeing safety
properties (absence of bad states) thanks to invariants preservation. However, it is
also possible to verify some liveness properties:

• within Event-B where LTL formulas can be directly encoded [HA11] although
it is not really practical for large formulas.

• using external tools such as the model checking ProB which can verify LTL
formulas on bounded Event-B models [PL10].

It is important to note that, contrary to safety properties, liveness properties
are not systematically preserved by refinement.
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1.6.2 Deadlock-freeness
We define a deadlock as a state in which none of the events are possible: the system
will not progress anymore because none of the transitions are enabled.

We can express the deadlock-freeness invariant (DLF) as the disjunction of the
guards of all events other than the initialization:

DLF =
∨

event e

 ∧
guard Gi of e

Gi


By proving that DLF is a theorem, we can demonstrate that the machine will never
deadlock. Indeed, we prove that, at any time, at least one event has all its guards
evaluating to true. Therefore, at least one event is possible (enabled transition) at
any time.

It is also possible to consider the deadlock-freeness of a subset of events.

1.7 Tools
The main tool available for conducting Event-B based developments is the Rodin
Platform1 [Abr+10]. This is an integrated development environment equipped with
contexts and machines editors, a proof obligation generator, automated provers and
interactive proving capabilities.

Additionally, a wide range of plug-ins are available, which can for instance
extend the modeling (for instance with theories) or proving capabilities (such as
the model checker ProB or the use of SMT solvers).

Animation It is also possible to instantiate the models within the Rodin Platform
and to animate them. This is very useful to check with domain engineers if
the specification produces the intended behaviors, and to verify if the models,
additionally to not violate invariants, can actually exist.

1.8 Uses of reals
In order to model cyber-physical systems where the continuous world meets the
discrete world, time is a mandatory feature that must be modeled as a continuous
variable. Mathematical real numbers are thus needed to model time.

1.8.1 The Theory plug-in
A recent evolution of the Event-B method makes it possible to extend it with
theories similar to algebraic specifications. In the Rodin Platform, this evolution is
provided by the Theory plug-in [Abr+09; BM13; Hoa+17].

1http://www.event-b.org/
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1.8. USES OF REALS

Several theories have been written and are available as a Standard Library2

which contains 3 groups of theories:

• Basic which includes theories BinaryTree (binary trees), BoolOps (boolean op-
erators), List (inductive lists), PEANO (inductive natural numbers), SUMand-
PRODUCT (generalized sum and product) and Seq (sequences)

• RelationOrder which includes theories Connectivity (graph connectivity), Fix-
Point (lower & upper fixpoints), Relation (ordering relations: transitivity,
reflexivity, . . . ), Well_Fondation (well-founded relations), closure (relational
closure), complement (complement & conjugate) and galois (galois connections)

• Real which includes a theory Real of mathematical real numbers

According to the documentation3, a theory definition can include the following
elements.

• Datatypes which are defined by providing the types on which they are poly-
morphic, a set of constructors one of which has to be a base constructor. Each
constructor may or may not have destructors.

• Operators that can be defined as predicate or expression operators. An
expression operator is an operator that “returns” an expression, an example
existing operator is card. A predicate operator is one that “returns” a predicate,
an example existing predicate operator is finite.

• Axiomatic definitions that are defined by supplying the types, a set of operators,
and a set of axioms.

• Rewrite rules which are one-directional equalities that can be applied from
left to right.

• Inference rules that can be used to infer new hypotheses, split a goal into
sub-goals or discharge sequents.

• Polymorphic theorems that can be defined and validated once, and can then
be imported into sequents of proof obligations inside a proof if a suitable type
instantiation is available.

In order to validate the extension, proof obligations are generated to ensure sound-
ness of extensions. This includes, proof obligations for validity of inference and
rewrite rules, as well as proof obligations to validate operator properties such as
associativity and commutativity.

2http://wiki.event-b.org/index.php/Theory_Plug-in#Standard_Library
3http://wiki.event-b.org/index.php/Theory_Plug-in#Capabilities
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1.8.2 Theory Real
We use the theory Real (Appendix A, page 140), written by Abrial and Butler,
which models mathematical real numbers. This theory provides:
• 1 datatype REAL

• 13 operators: plus (+), minus (unary −), mult (×), sub (−), inv (1
·
), leq

(≤), smr (<), gtr (>), cnt (point-wise function continuity), inf (infimum),
sup (supremum) as well as zero and one

• 24 axioms that define the semantics of the operators

• 18 interactive rewrite rules for use in proofs
The theory Real is minimal which makes it mathematically elegant, however it

makes the proofs very long because everything has to be decomposed on very simple
propositions in order to apply the axioms. That is why, during the development
of the models, we defined a context C0_reals (Appendix C, page 221) with 43
additional theorems selected from repetitive interactive proofs. It was crucial in
managing the time spent on proving models. It contains fairly basic theorems such
as:
• a+ c ≤ b+ c⇔ a ≤ b

• a× (−1) = −a

• ∀x ∈ [a, b] f(x) = g(x)⇒ (f continuous on [a,b] ⇔ g continuous on [a,b])

1.8.3 Casting
However, because neither implicit type conversion nor operator overloading are
available in Event-B, we have defined a cast function that maps naturals to their
representation as positive reals, in order to be able to write expressions such as
n× δt where n ∈ N and δt ∈ R.

The function cast has been defined inductively on naturals. Several theorems
such as the fact that cast is an order isomorphism from (NAT, <=) to (REAL|N, leq)
needed to be proved.

Note that the context C3_cast (Model 1.2 & Appendix C, page 233) extends the
context Nat (page 232), written by Thái Sơn Hoàng, which contains the induction
theorem.

1.8.4 Reals and floats
Our developments rely on mathematical real numbers. We decided to stop the
development before the translation to machine numbers (floating-point or fixed-point
numbers) that must be introduced in further refinements if we target the translation
to realistic embedded software. This topic is thus out of the scope of our work and
we do not need a model of floating-point or fixed-point computation. This could
also have been conducted using the Theory plug-in.
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Context C3_cast Extends C0_reals, Nat
Constants cast
Axioms
axm01: cast ∈ N→R+ // type
axm02: cast(0) = zero // initial case
axm03: ∀a · a ∈ N⇒(cast(a+1) = cast(a) plus one) // induction case

Theorems
...
thm11: ∀a,b · (a ∈ N ∧ b ∈ N) // equiv. over ’<’

⇒(a < b ⇔smr(cast(a),cast(b)))
thm12: ∀a,b · (a ∈ N ∧ b ∈ N) // equiv. over ’=’

⇒(a = b ⇔cast(a) = cast(b))
thm13: cast ∈ N �� cast [N] // cast is a bijection
...

End

Model 1.2 – Definition and properties of the cast function

19





2 System substitution

2.1 System substitution: definition and characteristics . . 21
2.1.1 Persistence of the system state after substitution: Cold

and Warm start . . . . . . . . . . . . . . . . . . . . . . 22
2.1.2 Identical, included or disjoint sets of state variables . . . 22
2.1.3 Equivalent, upgraded or degraded substitution . . . . . 23
2.1.4 Instantaneous or delayed (deferred) substitution . . . . 23
2.1.5 Static or dynamic set of substitutes . . . . . . . . . . . 23
2.1.6 Centralized or distributed system substitution . . . . . . 23
2.1.7 Local or global invariant . . . . . . . . . . . . . . . . . . 24

2.2 Studied systems . . . . . . . . . . . . . . . . . . . . . . . 24
2.2.1 Specification of studied systems . . . . . . . . . . . . . . 25
2.2.2 Refinement of studied systems . . . . . . . . . . . . . . 26

2.3 Formal methods & substitution . . . . . . . . . . . . . . 27
2.3.1 System reconfiguration . . . . . . . . . . . . . . . . . . . 27
2.3.2 Fault tolerance . . . . . . . . . . . . . . . . . . . . . . . 27
2.3.3 Autonomic computing and self-? systems . . . . . . . . 27

During a system development and execution, some operations (e.g. maintenance)
or development actions (e.g. upgrade) involve mechanisms that correspond to
changes in system parts that can be represented by sub-system substitution.

2.1 System substitution: definition and charac-
teristics

System substitution is an operation defined as the capability to replace a source
system by another one (target system) that preserves the specification of the source
one. This operation may occur in different situations like failure management,
maintenance, reconfiguration, adaptive systems or autonomous systems. When
substituting a system at runtime, a key requirement is to identify the correct state
of the target system that restores the identified state of the source system. The
correctness of the state restoration relies on the definition of safety properties for
system substitution. Our main concern consists in identifying the relevant properties
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required to be proven in order to assert the correctness of the system substitution.

2.1.1 Persistence of the system state after substitution: Cold
and Warm start

One first characteristic is the persistence of the state after substitution, usually
named cold or warm start. It characterizes the restored state in the substitute
system.

Cold start, tagged as Static substitution, means that the substitute system will
start from its initial state without any data nor state variables values originated
from the state where the original system was halted.

Warm start, tagged as Dynamic substitution, means that the substitute system
will recover as much data and state variable values as possible coming from the
state where the original system was halted. In other words, when a system is halted
in order for a second system to replace it, the second system is positioned in a state
that is functionally identical (or as close as possible) to the state of the first system
when it was stopped. This enables the second system to continue the task the first
system was doing (almost) without interruption, as seen from outside of the system.

2.1.2 Identical, included or disjoint sets of state variables
If we assume that we have two systems – a source and a target – that we model as
state-transition systems where their states are represented as a set of state variables,
then we can distinguish three cases during the substitution of the source system by
the target system.

• The sets of states variables are identical. This situation means that the original
(source) and the substitute (target) systems represent the same system. The
effect of the substitution is to restore a new state, correct with respect to the
represented system substitution properties, after substitution. This situation
usually occurs in case of maintenance or autonomous systems, self-healing
systems.
Example: an e-commerce website that would be replaced by a website offering
the same services.

• The sets of states variables are partially shared. In this case, part of the
original system state variables are restored in the substitute system, and the
substitute system introduces new state variables that describe new behaviors.
Example: an e-commerce website that would be replaced by a smartphone
application and a new website.

• The sets of states variables are disjoint. Disjointness implies that the original
and substitute systems are independent i.e. the substitute system is a new
system. The repair or substitution transfers the control to a completely new
substitute system.
Example: an e-commerce website that would be replaced by a smartphone
application.
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2.1.3 Equivalent, upgraded or degraded substitution
Another characteristic relates to the behavior of the substitute system and the
associated quality of the substitution. Several substitute systems may offer different
functionalities and have different behaviors. Three cases have been identified. The
substitute system may be equivalent to the original system, may upgrade it (enhance
it) or may degrade it.
• Equivalence means that the original system properties are preserved i.e. the

substitute system offers the same functionalities, but may differ from quality
of service point of view.
Example: an e-commerce website that would be replaced by a website selling
the same set of products.

• Upgrade is stronger than equivalence. The substitute system provides the same
functionalities as the original system, but it also provides more functionalities.
Example: an e-commerce website that would be replaced by a website selling
more products than in the original website.

• Degradation is weaker than equivalence. The substitute system provides fewer
functionalities than the original system.
Example: an e-commerce website that would be replaced by a website selling
only a subset of products available in the original website.

2.1.4 Instantaneous or delayed (deferred) substitution
The nature of the system can impact how the substitution will behave. In a discrete
system, the substitution can be instantaneous. In that case, substitution is seen
as an atomic operation: at an instant, a system was running, at the next instant,
another system is running.

However, for cyber-physical systems with continuous behaviors modeled over
continuous time, it is not possible to shut down such a system instantly. The system
needs to be shut down over a period of time, while a substitute system is prepared
to take over. The substitution is more complex in this case, as for some period of
time, both systems are running, and the substitution cannot be considered as an
atomic operation.

2.1.5 Static or dynamic set of substitutes
One can imagine that the set of substitutes may evolve. A substitute system can
be added or removed from the set of substitutes. The set of substitutes would then
be considered dynamic as opposed to a fixed set of substitutes which would be
designated as static.

2.1.6 Centralized or distributed system substitution
In a centralized architecture, there exists a unique controller that can decide whether
or not to trigger a substitution on the components of the system. In a distributed
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architecture, each system will individually decide if and when it is appropriate
to trigger a substitution based on available information (possibly obtained after
communicating with neighbor systems).

2.1.7 Local or global invariant
In the case of a single system, the system tries to maintain an invariant involving its
local state. We can also envision more complex architectures where a set of systems
try to preserve a global invariant involving a collection of their states variables.

2.2 Studied systems
The systems addressed by our approach are formalized by state-transition systems
[Arn88], which proved to be useful to model various kinds of systems and particularly
hybrid systems [Alu11] or cyber-physical systems [LS14]. In particular, controllers
are modeled with state-transition systems.

A system is characterized by a state that may change when a transition occurs.
A state is defined as a set of pairs (variable, value). The values of a given variable
are taken in a set of values satisfying safety properties expressed within invariants
(Kripke structure). A transition characterizes a state change, through updating of
variable values.

Figure 2.1 presents the abstract model of the systems we consider. After being
initialized, these systems run (progress) until they fail or they are stopped.

P C

S

initialisation

progress

failure

stop

Figure 2.1 – System abstraction

By combining two basic systems into a global system as in Figure 2.2, the second
system (here in blue, with elements �T ) can replace the first system (here in red,
with elements �S) when it fails.

We can abstract the global system of Figure 2.2 by the system of Figure 2.3.
The first model (Figure 2.1) is also an abstraction of the last model of Figure 2.3.
From this point forward, we will consider systems with behaviors corresponding

to the ones of Figure 2.4: a system is initialized, then it evolves (progress), relying
on state changes. A failure (fail) can occur during state change. The system may
then be repaired (repair), or isolated (complete failure).

Below, we show how such transition systems are modeled with the Event-B
method.
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stopS

repairprogressT

faultT
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Figure 2.2 – Combination of systems
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Figure 2.3 – System abstraction, with failure

initialisation

progress
fail

repair

complete failure

Figure 2.4 – Studied system behavior pattern

2.2.1 Specification of studied systems
When the studied systems are described as state-transition systems, they are
modeled using Event-B as follows.

• A set of variables, in the Variables clause is used to define system states. The
Invariants clause describes the relevant properties of these variables.

• An Initialisation event determines the initial state of described system by
assigning initial values to the variables.

• A set of (guarded) events defining transitions is introduced. They encode
transitions and record variable changes.
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A state transition system (where the variables clause defines states and the events
clauses define transitions, see Model 2.2) is described in an Event-B machine Spec.
This machine sees the context C0 (see Model 2.1) from which it borrows relevant
definitions and theories.

Context C0
Sets s
Constants c
Axioms A(s, c)
End

Model 2.1 – Context C0

Machine Spec
Sees C0
Variables vA

Invariants IA(s, c, vA)
Events
Event Initialisation =̂
Begin
vA :| DA(s, c, v′A)

End
Event Evt =̂
Any
xA

Where
GA(xA, s, c, vA)

Then
vA :| BAA(xA, s, c, vA, v

′
A)

End
End

Model 2.2 – Machine Spec

Machine SysS
Refines Spec
Sees C0
Variables vS

Invariants IS(s, c, vS , vA)
Variant VN S

Events
Event Initialisation =̂
Begin
vS :| DS(s, c, v′S)
VN S :| VN S_InitV alue

End
Event s_evt =̂
Any xS

Where
GS(xS , s, c, vS)

Then
vS :| BAS(xS , s, c, vS , v

′
S)

End
...
Event Evt Refines Evt =̂...

End

Model 2.3 – Machine SysS

2.2.2 Refinement of studied systems
The previously defined state-transition system may be defined at a given abstraction
level. It constitutes a system specification. Several candidate systems Si may
refine (implement) the same specification Spec. These implementations are more
concrete state-transition systems that refine an abstract one. Model 2.3 shows
such a refinement. A new set of variables and events is introduced that refines the
abstract model.

Refinement relies on the definition of a gluing invariant. The verification of
the correctness of this refinement ensures that the refined system is a correct
implementation of the specification it refines.
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Definition of substitute systems We have chosen to use the refinement re-
lationship in order to characterize all the substitute systems. If we consider a
system characterized by an original specification, then all the systems that refine
this specification are considered as potential substitutes. Obviously, we are aware
that these refining systems are different and may behave differently, but we are sure
that these behaviors include the one of the refined system.

2.3 Formal methods & substitution
Various formal techniques and tools have been proposed by several authors to handle
system substitution. They use different forms of substitution to describe system
adaptation, system reconfiguration or system autonomy.

2.3.1 System reconfiguration
First, many formal tools are used to ensure the correctness of dynamic system
substitution in general. In [Bha13], π-calculus and process algebra are used to model
systems and exploit behavioral matching based on bi-simulation to reconfigure
system appropriately. An extended transaction model is presented to ensure
consistency during reconfiguration of distributed systems in [PLB01].

The B method is applied for validating dynamic system substitution of component-
based distributed systems using proof techniques for consistency checking and
model-checking for timing requirements [LDK11]. A high-level language is used
to model architectures (with categorical diagrams) and to operate changes over a
configuration (with algebraic graph rewriting) [WLF01].

2.3.2 Fault tolerance
Second, system substitution has been defined to ensure system dependability.
Dynamic system substitution can be seen as part of a fault-tolerance mechanism
which represents a major concern for designing dependable systems [LCR06; LR14].
Rodrigues et al. [Rod+12] presented the dynamic membership mechanism as a key
element of a reliable distributed storage system. Event-B is demonstrated in the
specification of cooperative error recovery and dynamic reconfiguration for enabling
the design of a fault-tolerant multi-agent system, and to develop dynamically
reconfigurable systems to avoid redundancy [PTL12; PTL13; Tar+12]. Moreover,
this approach enables the discovery of possible reconfiguration alternatives which
are evaluated through probabilistic verification.

2.3.3 Autonomic computing and self-? systems
Third, dynamic system substitution is used to meet several objectives of autonomic
computing [PH05; An+15] and self-adaptive systems [Wey+12; Lem+13] such as
self-configuration and self-healing. The self-configuring systems require dynamic
reconfiguration that allows the systems to adapt automatically to changes in the
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environment. Similarly, the dynamic reconfiguration makes it possible to correct
faults in self-healing systems. Note that we have identified some approaches dealing
with adaptive systems that address non-functional requirements [FGT12; Pot13;
MPS14].

Next steps In our case, we address system substitution in two situations. The
first case is discrete systems. It will be detailed in Chapter 5 and illustrated with
the modeling of web services compensation. The second case is hybrid systems. It
will be presented in Chapter 7 and illustrated with a controller for a cyber-physical
system. In both cases, we will use Event-B to model the systems.
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In this chapter, we introduce two use cases for our study of system substitution:
a discrete system and a continuous system. For both cases, we give the particulari-
ties, define the requirements for the case study and overview the existing formal
approaches used to address them in the state of the art.

3.1 Discrete case: e-commerce web services

3.1.1 Web services: Introduction
The important increase of the use of the web led to the availability of a huge amount
of web services. These services can be triggered through web browsers or web
applications. The need to compose such services to build more complex services
appeared thereafter. The offered composition mechanism led to the emergence
of a new programming paradigm. Languages and notations to define services
compositions like BPMN [OMG14], XPDL [Wor08], or BPEL [OAS07] have been
designed. They offer different features to compose basic and/or composed web
services. Several composition operators are embedded in these languages, leading
to the design of complex web services compositions.

Similar to the usual complex systems, web service compositions may exhibit
inappropriate behaviors in the presence of failures. Therefore, the above languages
have been equipped with compensation mechanisms to express running services
recovery in case of failures. Compensation is defined as a suspension of the currently
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running process or activity and a transfer of the execution to a compensating process
or activity. For example, BPEL defines a compensate operator to compensate an
activity defined in a scope by another activity when an error is detected. The
modalities of the compensation are chosen at design time. The semantics of this
mechanism is given informally by the standard.

The lack of formal semantics and of theoretical foundations has been identified
in the available definitions of these mechanisms in the standards describing these
languages. Indeed, the defined mechanisms do not ensure safety of the compensation,
which represents a major concern in particular in the case of transactional web
services. In most of the defined languages, ensuring compensation correctness is
left to the designer and there is no guarantee that the compensation is correct.
Checking that the compensating activity equivalently repairs, degrades or upgrades
the compensated activity would help the designers in defining their compensation
handlers.

This will be studied in Chapter 5.

3.1.2 Modeling web services compensation
Formal methods have proved their usefulness in the design of correct systems.
Several formal approaches for modeling and analyzing web services compositions
and languages have been proposed [BBG07]. They promote the use of mathematical
foundations to analyze web services compositions. Compensation has been studied
from the behavioral point of view and only limited attention has been paid to
the functional correctness of the repair due to the limitation of the set up formal
methods. All these approaches mention the lack of formal semantics in traditional
web services composition and workflow standardized languages like BPEL or BPMN.

When analyzing the state of the art, one can identify three categories of formal
methods studying the topic of formal modeling and verification of web services
compositions.

In [LM07], the authors give a formalization of the composition operators of
the BPEL language using the π-calculus. This work shows, with a simple set of
operators, how the whole BPEL language is formalized. Petri nets were used by
[HSS05; Loh+08; Aal+09] to encode BPEL constructs and check classical Petri nets
properties like deadlock or workflow termination.

Classical state-transition systems have been set up by [Fos+06; Nak06; He+08;
MP09] to formalize web services compositions and compatibility problems. Model
checking techniques were used to check the correctness of the defined behaviors.

Process algebra based techniques also addressed the problem of web services
compositions. The LOTOS algebra was studied by [SBS04] and [Fer04]. The CADP
model checker was set up to check the correctness of the described compositions.
Butler et al. proposed operational or trace semantics for long-running business
transactions using CSP [BHF05] or variants of CSP with support for compensation
(StAC [BF04] and Compensating CSP [BR05]). The semantics of compensation,
specified using a set of primitives, are also studied in [Bru+05]. These approaches
have extensively used abstraction techniques, mainly abstracting data, in order to
avoid the state number explosion problem due to the state space exploration used
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by these techniques. As a consequence, they have mainly addressed behavioral
aspects thus neglecting the functional correctness. However, the data aspects of
transactions were modeled using the B notation in [BFN05].

The third category of approaches relates to the refinement and proof-based
techniques. Here we can mention the use of two state-based formal methods that
exploit refinement: the ASM (Abstract State Machines) method for modeling
by refinement BPMN workflows [BT08] and the Event-B method [AA09; AA10;
BW10; AA13]. In both methods, the functional and behavioral aspects have been
addressed, and the Event-B based approach proposed to encode, by refinement, the
web services decomposition mechanism available in BPEL. This approach will be
leveraged in this thesis.

The previously mentioned approaches proposed formal models and verification
techniques for services compositions operators available in languages like BPEL
and BPMN. In all the previous approaches, a clean semantics has been defined and
several properties related to deadlock, termination, correct behavior, etc. have been
verified, either by model checking or by proof-based approaches.

In the same way, the developed approaches have studied various kinds of com-
pensation. Indeed, we can mention dynamic reconfiguration mechanism studied by
[Abo+13] with the π-calculus, dynamic adaptation of web services compositions
with Petri nets addressed by [LZ13] and [MGZ14], process algebra [Fer04], Self-
Healing described by [Ehr+10] and a model for handling transactions with Event-B
defined by [AA13]. These approaches introduce error monitors and trigger a defined
compensating service.

The previous approaches addressing compensation studied the occurrence of a
condition (error, exception, etc.) that causes the compensation. As outlined above,
they have addressed the behavioral correctness, whatever is the function achieved by
the compensating service. In other words, the correctness of the compensation from
the functional point of view is not addressed. This is not surprising when analyzing
the mechanisms provided by the traditional services composition languages like
BPEL or BPMN.

Our objective As mentioned in the introduction, our objective is to go beyond
the capabilities of these languages. Our proposal is twofold. On the one hand, it
proposes to check the preservation of the functionality of compensation services, and
on the other hand, it supports dynamic compensation at runtime. This proposal is
close to the approaches dealing with dynamic system reconfiguration.

In our work, we claim that the capability to handle the functional correctness
of the compensating service can be addressed as well. We propose to improve the
approach based on the Event-B method and defined in [AA13], that we recall in
Section 3.1.3, by adding functional correctness conditions so as the compensating
service fulfills some relevant functional correctness conditions expressed by invariants.
Refinement will be used to preserve such invariant by the compensating service.
Our approach integrates results from formal services compositions modeling and
verification, and from dynamic system reconfiguration.
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3.1.3 Modeling web services composition with Event-B
This section presents an overview of the work achieved to model BPEL web services
compositions. The Event-B method has been used to provide formal models of web
services compositions. This work addressed different facets of the formalization of
web services compositions and a tool was designed to support the defined devel-
opment process. More precisely, in [AA09], the authors used the Event-B method
to model the whole BPEL language constructs and all the services composition
operators:
• Event-B contexts and machines have been used to model these constructs.

Indeed, functions, types, triggered services, messages, etc. have been modeled
in an Event-B context. They represent the static definitions of a BPEL
definition.

• Then, the dynamic part of a service composition has been defined in an
Event-B machine, importing (using the Sees clause) the previously described
context where the basic services are defined. BPEL variables are declared in
the Variables clause, they define the states of the state-transition system
associated to the described BPEL model. The services composition operators
defined in the BPEL language like flow, sequence, throw, etc. have been formal-
ized by Event-B events occurring in the Events Event-B clause. These events
were synchronized accordingly with the semantics of each BPEL composition
operator. The interleaving semantics offered by the Event-B method was used
to formalize the different notions of sequential, parallel, choice and iteration
compositions.

The proposed approach proved useful to formalize BPEL web services composi-
tions defined in a single definition. Several relevant properties have been proved:
message loss, no call with empty message, no deadlock, functional properties, etc.
have been expressed in the obtained Event-B machine and proved using the prover
associated to the Rodin Platform.

As a second step, [AA10] addressed the web services compositions development
process. Decomposition of high level BPEL web services compositions has been
studied by exploiting Event-B refinement. The decomposition operator defined in
BPEL, has been encoded by a refinement operation in [AA10]. This mechanism
offers a stepwise development of web services compositions. The defined mechanism
allows the developer to introduce gradually the properties to be fulfilled by the
defined services compositions. The whole approach has been described in [AA13].

Finally, in [AA15], transactions have been addressed. The compensate BPEL
operator characterizing the compensation of a service defined within a scope has
been formalized. A set of Event-B events supporting the transfer of control from
one service to another one has been defined. This transfer is parameterized by
an invariant that defines the properties of this compensation, but no specific
requirements is set on this invariant. The properties verified in this work were
the absence of invocation with empty message, deadlock freeness, reachability of a
given state and particularly the terminating state and basic transactional properties
related to the triggering of the compensating service.
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But, as mentioned above, the defined approach of [AA15] addresses compensation
from a behavioral point of view like in the approaches of the literature. Indeed,
this approach does not handle the functional correctness of the compensation since
conditions on the invariant are not explicitly set. The approach only checks that
if a compensation is triggered, then it becomes effective. In order to address this
problem, we have sketched in Chapter 5 the first step towards a formal Event-B
method that ensures correct service compensation in the case of equivalence. This
approach to handle compensation correctness has been generalized in Chapter 8 at
a meta level, still using Event-B, in order to guarantee that the methodology for
service compensation works for any web services composition.

3.1.4 Web services: Case study
The case study used to illustrate our approach is a simple scenario borrowed from
electronic commerce. We consider a simple web application enabling the purchase of
a set of products from a supplier. This composition describes a sequence of actions
performed by a user. He or she

• selects some products in a cart,

• pays the corresponding total amount of money,

• receives an invoice from the purchasing system,

• then the products are delivered by the logistics part of the system.

This sequence of events is depicted by a simple state transition system in Figure 3.1.
The application can be described as a composition (a sequence) of web services
corresponding to the labels Selection, Payment, Invoicing and Delivery of this
state-transition system.

Selection Payment Invoicing Delivery

Figure 3.1 – A simple state-transition system describing a sequence of services for
purchasing products

To address the compensation problem, we consider that a compensation condition
occurs during the selection of the products. We suppose that during the selection
activity, a failure occurs due to an error on the supplier website. At this step, the
system triggers a compensating service. The compensation is composed of two
services running in parallel. Each of these services fills a cart of products so that
the purchase can be pursued. When the selection is completed, the union of these
two carts must contain the set of products expected by the user.

The main requirements for compensation are stated as follows.

• Correct compensation. The compensation shall ensure that the user has
purchased the expected set of products whether the products have been purchased
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from one single website with one cart or from two different websites with two
carts. This requirement advocates to take care of the definition of correct
compensating services.

• Compensation at runtime. The set of products already available in the
cart when a failure occurs shall be preserved by the compensation. This
requirement leads to the definition of a process restoring the state of the
halted service.

This case study illustrates several compensation scenarios. We will show in
Chapter 5 how the compensation can be formally verified and how different scenarios
of equivalent, degraded or upgraded compensations are possible in the proposed
approach supported by the Event-B method.

3.2 Continuous case: hybrid systems
System substitution may be instantaneous when state restoration consists in restor-
ing state variables that fulfill the specification invariant. The case of web services
compensation mentioned above and studied in Chapter 5 is an instantaneous system
substitution. But, in case of hybrid systems, substitution may take some time. This
section addresses the case of system substitution where the substitution process
needs a certain amount of time. Thus, we must preserve a “safe” behavior of the
system during the substitution time.

3.2.1 Hybrid systems: Introduction
According to Lee [LS14], cyber-physical systems (CPS) [LS14; Lee14; Lee15;
Akk+16] are defined as integrations of computation, networking, and physical
processes. Embedded computers and networks monitor and control the physical
processes, with feedback loops where physical processes affect computations and
vice versa. The software (the controller) interacts with the physical environment
(the plant) in a closed-loop scheme where input from sensors are processed by the
controller that generates outputs to the actuators. Moreover, the physical plants
are characterized by continuous behaviors while the software controller relies on
discrete computations. Internet of Things (IoT), Industrial Internet, Smart Cities,
Smart Grid, Smart systems (e.g., cars, buildings, homes, manufacturing, hospitals,
appliances), transportation systems, medical devices, . . . are some of the application
domains in which CPS take part. Nowadays, one challenge is to design trustworthy
CPS. The development of safe CPS software controllers using rigorous and formal
modeling techniques contributes to reach this challenge.

A key characteristic of CPS is their sensibility to changes which may occur in
case of failure, loss of quality of service, maintenance, etc. These changes must
be handled by these systems and the service offered by these systems must be
preserved as much as possible. Autonomy, adaptation, reconfiguration are some of
the requirements associated to CPS design requirements when changes occur. It can
be used to ensure high availability in case of failure as required for safety critical
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systems such as avionics, nuclear, automotive and medical devices, where failure
could result in loss of lives, as well as reputation and economical damages. It is
important to maintain the running state of a given system in case of any failure by
preserving the required behavior in the recovering substitute system. So, another
challenge in the design of CPS relates to handling changes while preserving the safe
behavior of the CPS, or offering upgraded or degraded behaviors.

We claim that formal methods are good candidates to handle these challenges.
We address the development of trustworthy CPS. In particular, we contribute to
fulfill two main requirements associated to the two previously identified challenges.
• Modeling both continuous and discrete behaviors. The software component
controls the interaction that shall be soundly designed from the physical
plant described by laws issued from physics (mechanical, electricity, . . . ).
The main questions are related to the use of discrete models by the software
while the physical plant is modeled by continuous functions over continuous
time (solutions of differential equations) and to the semantic relation between
discrete and continuous models. The software (or controller) should have a
correct view of the continuous behaviors and these issues require mathematical
foundations as well as foundations for system engineering. The CPS software
implements a discretization of these functions in order to control the CPS plant.
Proving the correctness of discrete implementations of continuous controllers
is a key challenge in the CPS correctness proof. Formal methods play an
important role in verifying the system requirements to check the correctness
of functional requirements, including the required safety properties. Chapter 6
studies the formal modeling of continuous behaviors.

• Handling reaction to changes. Another key requirement for the design of
trustworthy cyber-physical systems is the capability of a system to react to
changes (e.g., failures, quality of service change, context evolution, mainte-
nance, resilience, etc.). The development of such systems needs to handle
explicitly, and at design time, the reactions to changes occurring at runtime.
Indeed, to prevent a system failure, controllers must react according to environ-
ment changes to keep a desired state or to meet minimum requirements that
maintain a safety envelope for the system. Mostly, safety critical systems use
reconfiguration or substitution mechanisms to prevent any (random) failure,
or losing the quality of system services required for system stability. Hybrid
system substitution is studied in Chapter 7.

3.2.2 Hybrid systems & formal methods
The development of techniques and tools to handle the correct design of cyber-
physical systems has attracted many researchers. Traditional approaches are based
on a formal mathematical expression of the problem using real numbers to model
continuous time and differential equations to express the behavior model of the
studied hybrid system. Then this model is simulated within simulation techniques
in order to check its properties. Ptolemy [Pto14] is a good representative of such
an approach.
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In the past years, several approaches, relying on formal methods, for the de-
velopment of trustworthy cyber-physical systems have been proposed. They may
be gathered in two categories: model checking-based approaches and proof-based
approaches.

Model checking and bounded model checking

According to the nature of the handled differential equations, different approaches
have been proposed.

When a hybrid system is described by linear or affine differential equations, then
model checking [CGP99] techniques can be applied. Hybrid automata [Alu+95;
Hen00] are used to model such systems. Tools like HyTech [HHW97], d/dt [ADM02],
PHaVer [Fre08] or SpaceEx [Fre+11] have been developed to handle the specification
of these systems. They perform exhaustive search and they have proved successful
to establish properties like reachability.

Nonlinear hybrid systems support the description of a richer dynamics of the
studied systems than linear ones. But, in this case and since reachability for
nonlinear systems is not decidable, these approaches do not guarantee termination.
So, the benefits of the above mentioned tools resides more in the analysis of the
counterexamples they produce rather than on the verification capabilities they offer.

In the case of nonlinear hybrid systems, numerical methods are used when specific
assumptions on the boundedness of the continuous variables (bounded horizon)
are set. Tools like Flow∗ [CÁS13] or iSAT [Frä+07] and iSAT-ODE [Egg+11]
and dReal/dReach [GKC13b; GKC13a; Kon+15] use bounded model checking for
reachability analysis.

All the previous approaches use model checking and suffer from the classical
problems encountered by model checking related to state space explosion and to
the boundedness of the considered variables. However, these techniques enable
automatic verification which is crucial for industrial applications. In order to tackle
these limits, classes of automata can be studied through logical analysis [IMN13].

Proof-based approaches

Another category of formal techniques addressing formal modeling of hybrid systems
is based on proof techniques and symbolic verification. These approaches support
the description of any category of hybrid systems and offer semi-automated tools
to handle unbounded variables (i.e. unbounded horizon). Axiomatization of the
real numbers theory and of the theory of control for linear or nonlinear differential
equations is a pre-requisite for the use of these approaches.

Our work belongs to this category of techniques.

S. Boldo et al. approach with Coq and Coquelicot In [Bol+14] the au-
thors use the one-dimensional acoustic wave equation case study to illustrate their
approach. A program (in the C programming language), encoding a discrete rep-
resentation of the continuous differential equation describing the behavior of this
case study, is annotated using two distinct sets of annotations: one relates to the
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continuous definitions (derivation, approximation with Taylor series etc.) and the
second deals with discrete aspects of the program (loop invariants, pre-conditions
and post-conditions of the used functions, etc.). These annotations complete and
enrich the controller description with descriptions of the plant behavior. They are
used to prove the stability and convergence of the programmed numeric scheme
solving the differential equation. The Frama-C1/Jessie [Mar07]/Why [FM07] tool
suite generates proof obligations. They are proved either automatically or interac-
tively using SMT solvers, Gappa2 or interactively using the Coquelicot [BLM15]
Coq [BC04] library.

Finally, note that the developed approach also deals with floating-point arith-
metic manipulated by the analyzed C program.

A. Platzer approach and KeYmaera tool In [Pla08], A. Platzer defines
hybrid programs to describe continuous and discrete behaviors of hybrid systems
in a closed-loop modeling approach together with a logic and its proof system,
namely dynamic logic for dynamic systems. These programs give an abstract
description of a hybrid system. Discrete and continuous behaviors are described as
hybrid programs using discrete assignments, continuous variables evolution along
differential equations, non deterministic choices, iteration, etc.

Properties on the defined hybrid programs are expressed within the dynamic
logic constructs offering classical first order logic constructs together with the �
(denoted [·]) and ♦ (denoted 〈·〉) modalities to express invariants and reachability
properties. KeYmaera [Que+16] is the semi-automatic prover tool supporting the
proof process for the defined hybrid programs. It supports the defined dynamic
logic proof system. The approach has been applied to model hybrid systems like car
control system [Que+16], train control system [PQ09] and flight collision avoidance
system [PC09].

Compared to Event-B-based approaches detailed below, it does not provide a
built-in refinement development operator.

J.-R. Abrial and W. Su approach with Event-B The work initiated in
[SAZ14] proposes to model first the discrete events of a hybrid system and then
refine each event by introducing the continuous elements. Events are partitioned
into environment events and control events. It includes the use of a “now” variable
and a “click” event that jumps in time to the next instant where an event can
be triggered. The authors do not study the possible definition of the continuous
parts by means of differential equations. Only arithmetic on emulated reals is
used. In [SA14] the authors enrich the work of [SAZ14] by incorporating analytical
results from the study of differential equations into the Event-B models through
the complementary use of Matlab/Simulink.

M. Butler, J.-R. Abrial and R. Banach approach with Event-B The
authors of [BAB16] extend the approach of [SAZ14] using the Theory plug-in to

1http://www.frama-c.cea.fr/
2http://gappa.gforge.inria.fr/
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define a theory of real arithmetic (see Section 1.8).
In this approach, hybrid systems are expressed as continuous evolutions of

variable values over time. These evolutions follow monotonic functions ensuring
that no bad behavior occurs between two observed discrete steps. The approach
consists in defining first the continuous behavior. It is first refined by introducing
modes. Then a second refinement introduces a control strategy defining discrete
control steps. Finally, a last refinement merges (i.e. eliminates) the continuous
variables. This refinement describes the final controller, it contains discrete steps
only. The approach has been illustrated by the design of a controller for a water
tank.

R. Banach approach with Hybrid Event-B The second proposed approach
based on Event-B, initiated by Banach, is Hybrid Event-B [Ban+15]. This is an
extension of Event-B which includes pliant events [Ban13] (as opposed to discrete
events) as a way to model continuous behavior, allowing the direct use of differential
equations in the modeling. However, there is no tool currently supporting this
extension whereas our approach enabled us to develop and prove the models using
available tools. Banach also worked on similar topics with ASM [Ban+11; Ban+12].
Applications of the approach have been proposed in [Ban+14; Ban16a; Ban16b].

Modeling of time All the proof-based approaches summarized above use theories
of reals. These theories support the definition of relevant properties like continuity
of functions or invariants to characterize real variables regions or to describe Taylor
series. The approaches of Platzer [Pla08; Que+16], Banach [Ban+15] and Boldo
[Bol+14] support the explicit definition of differential equations. Time is implicitly
considered in these approaches through these differential equations. [Bol+14] deals
with C programs using a suite of proof tools while KeYmaera [Que+16] is deployed
on hybrid programs that provide an abstract model of a hybrid system in a closed-
loop modeling approach. Observe that there are no bibliographic references between
the approaches of [Bol+14] and of [Que+16]. In [Ban+15], the adopted approach
is similar to [Pla08]. The added value of this approach is the use of refinement
to define a stepwise formal development preserving the invariants in the different
refinement levels. But, up to now, there is no tool supporting the approach.

The approaches of [SAZ14] and [BAB16] use Event-B and the Rodin Platform
[Abr+10] to model hybrid systems in a closed-loop model. Time is explicitly modeled
using a specific state variable. The authors consider continuous functions and they
define discrete and continuous transitions preserving invariants characterizing the
correct behavior of the described hybrid system. Refinement proved useful for
the stepwise design of a hybrid system. The approach is tool-supported, all the
developments following these approaches can be formalized within Rodin.
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3.2.3 Hybrid systems: Case study
Hybrid systems

The description of the behavior of hybrid systems relies on the definition of contin-
uous behavior characterized by continuous functions over time. Figure 3.2 depicts
a graphical representation of such functions. To control a system, in particular
for system reconfiguration, it is required to observe (the feedback behavior of the
function) and to control (keep or change system mode) the system. Such observation
and control are performed by a software requiring the discretization of continuous
functions. When software is used to implement such controllers, time is observed
according to specific clocks and frequencies. Therefore, it is mandatory to define
a correct discretization of time that preserves the observed continuous behavior
introduced previously. This preservation entails the introduction of other require-
ments on the defined continuous function. Note that, in practice, these requirements
(assumptions) are usually provided by the physical plant.

M

m

0 t

f

Figure 3.2 – Example of the evolution of the function f

Table 3.1 – Requirements in the abstract specification.

At any time, the feedback information value of the controlled system shall be
less or equal to M in any mode. Req.1

At any time, the feedback information value of the controlled system shall
belong to an interval [m,M ] in progress mode. Req.2

The system feedback information value can be produced either by f , g or
f + g (f and g being associated to Sysf and Sysg)

Req.3

The system Sysf may have feedback information values outside [m,M ] Req.4

At any time, in the progress mode, when using Sysf , if the feedback
information value of the controlled system equals to m or to M , Sysf must
be stopped.

Req.5

Substitution

We consider two continuous functions f and g characterizing the behavior of two
hybrid systems Sysf and Sysg. We also assume that these two systems maintain
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their feedback information value in the safety envelope [m,M ]. As a consequence,
these two systems substitute each other since they fulfill the same safety requirement.
In this chapter, the studied scenario consists in substituting Sysf by Sysg after a
failure occurrence (see requirements of Table 3.1).

Figure 3.3 shows the substitution scenario in both continuous and discrete
cases. The X axis describes time change and the vertical dashed lines model state
transitions. Observe that during the repairing process function f (associated with
Sysf ) decreases due to its failure while function g (associated with Sysg) is booting.

P

M

m

tA B C D

Figure 3.3 – Example of the evolution of the functions f , g and f + g

In our approach, we use refinement to fulfill the first requirement. Several
refinements may implement a single specification. They characterize a class of
systems that are candidate for substitution. Regarding the second requirement, a
relation restoring the state variables of the substituted and substitute system is
defined. It shall preserve the invariant and properties of the original specification.

In the next part, we will start by introducing a general substitution model
in Chapter 4. Then, the discrete case will be presented in Chapter 5 and the
continuous case in Chapter 7, after having studied the modeling of continuous
systems in Chapter 6.
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We rely on formal methods, more precisely the Event-B formal method [Abr10]
that provides proof and refinement for state-based models, to describe both the
studied systems and the introduced substitution operation. We have chosen to
describe systems as state-transition systems.

In this part dedicated to the contributions provided in this thesis, we first
define in Chapter 4 a generic substitution model while explaining how it supports
the expression of different substitution characteristics and how it relates to proof
obligations. Then, in Chapter 5, we show how our proposal applies to discrete
system substitution. The case of service compensation is shown as an illustrating
example. Chapter 6 presents how hybrid systems can be modeled and verified in
Event-B by going from continuous models to discrete ones using refinement. We are
then able to model substitution occurring in hybrid systems in Chapter 7. Finally,
Chapter 8 presents a generalization of our generic model, that enables us to define
a common core part of the proofs. It also shows a model that can be refined to
specific systems. Again, the case of service compensation is shown as a particular
system captured by this generic model.
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Chapter organization. The main contribution of this chapter is presented in
Section 4.2. It describes a stepwise methodology for the design of a correct system
substitution operation. Proof obligations derived from the defined operation are
presented in Section 4.3. The possible ways of applying the defined operation are
discussed in Section 4.4. Finally, a conclusion summarizes our contribution in the
last section.

4.1 Introduction
Our work aims at defining a generic correct-by-construction approach to model
system substitution at runtime.

Objective of this chapter. We want to model system substitutions and prove
the correctness of these substitutions. That is why we define a generic framework
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able to model substitutions with various characteristics while being able to prove
the correctness of these substitutions through the identification of the related proof
obligations.

4.2 System substitution
The availability of several refinements for a given specification means that several
systems may implement a single specification. Each of these systems behaves like
the defined specification. The systems that refine the same specification can be
gathered into a class of systems. The availability of such a class makes it possible to
address the problem of system substitution or system reconfiguration. The stepwise
methodology for system substitution that we propose, considers one system of this
class as a running system, and substitutes it by another system belonging to the
same class. Indeed, when a running system is halted (in case of failure or loss of
quality of service, etc.), a system of this class can be chosen as a substitute. In this
chapter, we describe a formal methodology allowing system developers to define
correct-by-construction system substitution or system reconfiguration. By “correct”,
we mean the preservation of safety properties expressed by the invariants.

4.2.1 A stepwise methodology
Our approach to define a correct system substitution setting is given in several
steps. This stepwise methodology leads to the definition of a system substitution
operator whose properties are discussed later.

• Step 1. Define a system specification. A state transition system characterizing
the functionalities and the suited behavior of the specification system is defined.

• Step 2. Characterize candidate substitute systems. All the refinements of the
specification represent substitutes of the specified system. They preserve the
invariants properties expressed at the specification level. A class of substitutes
is obtained. It contains all the systems refining the same specification.

• Step 3. Introduce system modes. Modes are introduced to identify which
system is running i.e., those that have been halted and the remaining available
systems for substitution. A mode is associated with each system, and at most
one system is running.

• Step 4. Define system substitution as a composition operator. When a
running system is halted, the selected substitute system becomes the new
running system. During this substitution, the state of the halted system shall
be restored in the substitute system. Restoring the state of the halted system
consists in copying the values of the state variables of the halted system to the
variables of the state of the substitute system. To formalize this operation, a
sequence of two specific events is introduced. The first event, named fail,
consists in halting the running system and switching it to a failure mode.
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The second one, namely repair, restores the system state and switches the
control to the substitute system. Because repair depends on the modeling
of the internal state of both systems, it has to be explicitly defined for each
pair of systems (it is a parameter of the substitution operator). Here, we
consider only pairs of systems where the relation between the internal state
of the halted system and of the substituted system can be explicitly defined.

4.2.2 An Event-B model for system substitution
In this section, we give an overview of the Event-B models corresponding to the
stepwise methodology presented above. First a specification Spec of an abstract
system is given, then we show how a source system SS defined as a refinement
SysS of the machine Spec can be substituted by a target system ST defined as
a refinement SysT of the same machine Spec. Two events fail and repair for
halting a system SS and for transferring the control to the target system ST are
introduced.

Step 1. Define a system specification

The specification of the system is given by an abstract description of its function-
alities and its behavior. An Event-B machine Spec, corresponding to the one in
Model 2.2 page 26, defines the system specification. In that model, the behavior
is defined by a single event, but there is no explicit limitation on the number of
events.

More events may be introduced to define this behavior, we have just limited our
description to one single event.

Step 2. Characterize candidate substitute systems

As stated above in Section 4.2.1, a class of substitute systems is defined as the
set of the systems that are described as an Event-B refinement of the original
Event-B machine Spec. Two systems SysS and SysT described by the Event-B
refinements in Models 4.1 and 4.2 are substitute systems for the system described
by the specification Spec. Note that several refinement steps may be required before
the final models of the substitute systems are obtained.

On these two refinements SysS and SysT, we note the presence of:

• new sets of variables,

• an invariant describing the properties of the system and gluing the variables
with the ones of the abstraction in the Spec machine,

• new events that may be either added or refined in order to describe the
behavior of the new variables or define behaviors that were hidden in the
specification,

• a variant: an expression whose value strictly decreases and which models the
progress (or position) of the system, while guaranteeing its termination.
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Machine SysS
Refines Spec
Sees C0
Variables vS

Invariants IS(s, c, vS , vA)
Variant VN S

Events
Event Initialisation =̂
Begin
vS :| DS(s, c, v′S)
VN S :| VN S_InitV alue

End
Event s_evt =̂
Any xS

Where
GS(xS , s, c, vS)

Then
vS :| BAS(xS , s, c, vS , v

′
S)

End
...

Event Evt Refines Evt =̂...
End

Model 4.1 – Machine SysS (reminder)

Machine SysT
Refines Spec
Sees C0
Variables vT

Invariants IT (s, c, vT , vA)
Variant VN T

Events
Event Initialisation =̂
Begin
vT :| DT (s, c, v′T )
VN T :| VN T_InitV alue

End
Event t_evt =̂
Any xT

Where
GT (xT , s, c, vT )

Then
vT :| BAT (xT , s, c, vT , v

′
T )

End
...

Event Evt Refines Evt =̂...
End

Model 4.2 – Machine SysT

We consider that both SysS and SysT see the context C0 of the specification
Spec, and we assume that no new specific element is needed for their own contexts.

Step 3. Introduce system modes

The introduction of modes is a simple operation consisting in defining a new variable
m (standing for mode). The values of the mode variable may be either the system
identifier (S or T ) or the value F to represent a halted system in a failure mode.
Moreover, the invariant related to each substitute system shall be valid when the
variablem is equal to that system identifier. Models 4.3 and 4.4 show the description
of the systems S and T with introduced mode. Again, each of the machines SysS*
and SysT* refine the original specification Spec. At this step, we also anticipate
any name clashes by renaming some elements through the addition of a prefix.

Step 4. Define system substitution as a composition operator

The machines SysS* and SysT* are composed into a single Event-B machine with
two new events fail and repair. The role of the substitution operation is to enable
the following sequence of events.

1. The source system S is the first running system. The variable mode m is
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Machine SysS∗
Refines SysS
Sees C0
Variables vS ,m
Invariants m = S⇒ IS(s, c, vS , vA)
Variant VN S

Events
Event Initialisation =̂
Begin
m := S
vS :| DS(s, c, v′S)
VN S :| VN S_InitV alue

End
Event s_evt =̂
Any yS

Where
m = S ∧GS(yS , s, c, vS)

With
yS = xS

Then
vS :| BAS(yS , s, c, vS , v

′
S)

End
...

Event Evt Refines Evt =̂ ...
End

Model 4.3 – Machine SysS*

Machine SysT∗
Refines SysT
Sees C0
Variables vT ,m
Invariants m = T ⇒ IT (s, c, vT , vA)
Variant VN T

Events
Event Initialisation =̂
Begin
m := T
vT :| DT (s, c, v′T )
VN T :| VN T_InitV alue

End
Event t_evt =̂
Any yT

Where
m = T ∧GT (yT , s, c, vT )

With
yT = xT

Then
vT :| BAT (yT , s, c, vT , v

′
T )

End
...

Event Evt Refines Evt =̂...
End

Model 4.4 – Machine SysT*

initialized to the value S in order to transfer the control to the events of the
system S.

2. When a halting event occurs, the fail event is triggered. This event changes
the value of the mode variable m to the value F . At this state, the system S
is stopped and the invariant IS is valid at that current state. Note that the
event fail can be triggered for any reason in the current formalization.

3. At this stage, the repair event is triggered because its guard (m = F ) is
enabled (Model 4.6). This event serves two purposes. On the one hand, it
restores the state of the halted system by defining the values of the variables
vT of the substitute system ST and on the other hand, it sets up the variable
VN T used to express the variant, to allow the restart of the system ST at the
suited state (or the closer state). Finally, the mode is changed to T so that
the control is transferred to the substitute system ST .
The definition of the repair event (Model 4.6) implies the definition of state
restoration. The new values of the variables of system ST must fulfill safety
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Event fail =̂
Where
m = S

Then
m := F

End

Model 4.5 – Extract of event fail

Event repair =̂
Where
m = F

Then
// New values for state variables
vS , vT := . . .
// New values for variants
VN T := . . .
// Change mode
m := T

End

Model 4.6 – Skeleton of event repair

conditions in order to move the control to ST in order for the invariant IT

to hold in the recovery state. In other words, specific proof obligations are
associated to the repair event.

4.2.3 Substitution as a composition operator
As stated above, the repair event shall be defined so that the state restoration
preserves the safety properties described in the invariants. The definition of this
event is completed in Model 4.7.

At this level, two predicates are defined.

1. The Recover predicate characterizes the new values of the variables vT such
that the invariant IT holds in the next state. It represents the horizontal
invariant that glues the state variables of system SS with the variables of
system ST .

2. The Next predicate describes the next value of the variant. It determines,
which state in the system ST , is used as the new restoring state preserving
the invariant IT .

Event repair =̂
Where
m = F

Then
vS , vT :| Recover(vS , vT , v

′
S , v
′
T )

VN T :| Next(VS , V
′

T )
m := T

End

Model 4.7 – Extract of event repair
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SysG
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initialisation from SysS*
events of SysS*
events of SysT*
fail
repair

SysTSysS

SysT*SysS*

Spec

refines refines
refines

Figure 4.1 – Systems

4.2.4 The obtained composed system with substitution
Once the fail and repair events have been defined, the obtained model is composed
of the two systems SS and ST . The sequence described above is encoded using a
predetermined sequence of assignments of the mode variable m in the corresponding
events.

Moreover, the invariant of the final system is defined by cases depending on
the value of the mode variable. When the system SS is running, the invariant
IS holds, when the system ST is running, the invariant IT holds and finally, as
stated previously, the invariant IS holds when the system SS is halted and being
substituted. The obtained invariant is a conjunction of three implications.

The global system is again described as a refinement of the original specification.
It is formalized by the Event-B machine SysG as shown in Model 4.8.

SG = SS ◦(Recover,Next) ST refines Spec (4.1)

Finally, as defined in Equation (4.1), we can define a composition operator ◦(...,...)
parameterized by the Recover and Next predicates.

The refinement relations are summarized in Figure 4.1.

4.3 Proof obligations for the system substitution
operator

The proof obligations resulting from the definition of our substitution operator
concern invariant preservation by the different events of the Event-B machine SysG.
Let us analyze these proof obligations.

• For the initialization and the events of system SysS, the preservation of the
invariant is straightforward. The proofs are those that have been performed
for the refinement introducing modes in the previous step.
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Machine SysG
Refines Spec
Sees C0
Variables vS , vT ,m
Invariants (m = S⇒ IS(s, c, vS))

∧ (m = F ⇒ IS(s, c, vS))
∧ (m = T ⇒ IT (s, c, vT ))

Variant VN S + VN T

Events
Event Initialisation =̂
Begin
m := S
vS :| DS(s, c, v′S)
vT :| >
VN S :| VN S_InitV alue
VN T :| 0

End
Event s_evt =̂
Any xS

Where
m = S ∧GS(xS , s, c, vS)

Then
vS :| BAS(xS , s, c, vS , v

′
S)

End

Event Evt Refines Evt =̂ ...
Event fail
Where
m = S

Then
m := F

End
Event repair =̂
Where
m = F

Then
vS , vT :| Recover(vS , vT , v

′
S , v
′
T )

VN T :| Next(VS , V
′

T )
m := T

End
Event t_evt =̂
Any xT

Where
m = T ∧GT (xT , s, c, vT )

Then
vT :| BAT (xT , s, c, vT , v

′
T )

End
...

End

Model 4.8 – Machine SysG

• The same situation occurs for the events of system SysT. Again, the associated
proof obligations are those obtained and proved when introducing modes in
the previous step.

• The fail event preserves the invariant since it does not modify any state
variable except the mode. It preserves the invariant IS with (m = S ⇒
IS(s, c, vS)) ∧ (m = F ⇒ IS(s, c, vS)).

• Finally, the repair event considers that IS holds before substitution and it
must ensure that the invariant IT holds after substitution.

So, the introduction of the repair event entails specific proof obligations that
needs to be discharged in order to ensure the correctness of the substitution. The
definition of the Recover predicate is the key point to obtain a correct system
substitution. The proof obligations associated to the repair event consists first in
preserving the invariants and second in restoring the correct variant value.

4.3.1 Invariant preservation proof obligation
Invariant preservation for the repair event requires to establish that the invariant IT

of system ST holds in the recovery state. In other words, under the hypotheses given
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by the axioms A(s, c), the guard m = F , the invariant (m = S ⇒ IS(s, c, vS)) ∧
(m = T ⇒ IT (s, c, vT )) ∧ (m = F ⇒ IS(s, c, vS)) and the new variable values
Recover(vS, vT , v

′
S, v

′
T ) ∧ m′ = T , the invariant (m′ = S ⇒ IS(s, c, v′S)) ∧ (m′ =

T ⇒ IT (s, c, v′T )) ∧ (m′ = F ⇒ IS(s, c, v′S)) hold for the variables in the next state.
The sequent in Equation (4.2) describes this proof obligation.

A(s, c),
(m = S⇒ IS(s, c, vS)) ∧ (m = T ⇒ IT (s, c, vT )) ∧ (m = F ⇒ IS(s, c, vS)),
m = F,

Recover(vS, vT , v
′
S, v

′
T ) ∧m′ = T

`
(m′ = S⇒ IS(s, c, v′S)) ∧ (m′ = T ⇒ IT (s, c, v′T )) ∧ (m′ = F ⇒ IS(s, c, v′S))

(4.2)

After simplification, the previous proof obligation leads to the definition of the
final proof obligation of Equation (4.3) associated to invariant preservation.

A(s, c) ` IS(s, c, vS) ∧Recover(vS, vT , v
′
S, v

′
T )⇒ IT (s, c, v′T ) (4.3)

4.3.2 Variant definition proof obligation
The introduction of the new variant value determines the restoring state in the target
system ST . The predicate Next needs to be defined so that the variant VN S + VN T

of the global system decreases. It is required to establish that VN ′S + VN ′T <
VN S + VN T . The next value of VN ′T determines the restoring state in system ST .
Since the value of the variant VN S does not change, only the variant VN T decreases.
The associated proof obligation is given by the sequent of Equation 4.4.

A(s, c),
(m = S⇒ IS(s, c, vS)) ∧ (m = T ⇒ IT (s, c, vT )) ∧ (m = F ⇒ IS(s, c, vS)),
m = F,

Next(VN S,VN ′T ) ∧m′ = T ∧ VN ′S = VN S

`
VN ′S + VN ′T < VN S + VN T (4.4)

After simplification, the previous proof obligation leads to the definition of the
final proof obligation of Equation (4.5) associated to variant definition.

A(s, c), IS(s, c, vS) ` Next(VN S,VN ′T ) ∧ VN S = VN ′S ⇒ VN ′T < VN T (4.5)
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4.3.3 About restored states
As shown on the proof obligations obtained in Equations (4.3) and (4.5), the
definition of the Recover and Next predicates is identified as the fundamental
characteristics for the correct substitution operation.

The Recover predicate defines the horizontal invariant. This invariant defines
the properties needed to restore the state variables of the original halted system in
the substitute state variables. It also describes the safety property of the substitute
system. According to the definition of this predicate, as discussed in Section 4.4,
different substitution cases are identified.

Regarding the Next predicate, one can note that any value of the variant that
decreases the variant VN T is accepted. For instance, one could set up the variant
to the final state of system ST meaning that the substitution has been done in the
final state. The only condition concerns the Recover predicate which shall restore
the correct values of the variables in this final state.

4.4 Substitution characteristics

4.4.1 Cold and Warm start
In the approach we have sketched in Section 4.2, this characteristic is handled by
the correct definition of the Recover and Next predicates. Indeed, according to the
definition of these predicates, the restored state may be either the initial state (in
the case of a cold start) or a state constructed from the current state to be as close
as possible to the current state from a functional standpoint (in the case of a warm
start).

4.4.2 Identical, included or disjoint sets of state variables
In the framework presented in Section 4.2, vS and vT represent the set of state
variables for the original and substitute systems. According to the properties linking
these two sets in the repair event using the Recover predicate, different substitution
cases occur.

• The sets of variables are identical i.e. vS = vT . The effect of the repair event
is to restore a new state (correct with respect to the given invariants) after
substitution.

• The sets of variables are partially shared i.e. vS ∩ vT 6= ∅.

• The sets of variables are disjoint i.e. vS ∩ vT = ∅. The repair event transfers
the control to a completely new substitute system.

4.4.3 Equivalence, Upgrade and Degradation
Within the provided framework three cases can be identified and handled. The
substitute system SysT may be equivalent to the original system SysS, upgrade it
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(enhance it) or degrade it.
As quality of service is out of scope of our framework, the three previous cases

can be described with adequate definitions of the Recover and Next predicates. In
fact, the definition of each case relies on the provided invariants to be preserved
during substitution i.e. by the repair event.

Let us assume that there exist two predicates Φ and Ψ (Φ 6= False∧Ψ 6= False)
such that IS ∧ Φ⇐⇒ IT ∧Ψ, then the three identified cases can be expressed.

• Equivalence is obtained when IS ⇐⇒ IT . It means that the substitute
preserves the same invariant properties as the original system since Φ ⇐⇒
True and Ψ⇐⇒ True. The case study presented in Section 3.1.4 illustrates
this case. The set of products purchased with the substitute system SysT is
identical to the original system SysS.

• Upgrade occurs when IS∧Φ⇐⇒ IT . Here, the substitute system SysT offers
more functionalities characterized by the invariant part Φ than the original
system. Indeed, IT =⇒ IS which means that the substitute system guaranties
the properties that the previous did. Additionally, IT =⇒ Φ which specifies
that the substitute system also guaranties the new property Φ.

• Degradation is dual to upgrade and it occurs when IS ⇐⇒ IT ∧ Ψ. Here,
the substitute system looses some of the functionalities characterized by the
invariant part Ψ of the original system.

4.4.4 Static or dynamic set of substitutes
In the framework presented in the previous section, we have assumed that the set
of substitute systems is known and does not change (static). Modes have been
introduced to identify the running system and the selected substitute system is
known by the repair event.

To handle a mechanism where the set of substitutes would be dynamic, an
event managing (adding or removing substitutes) a set of modes corresponding to
substitute systems (that refine a common specification) must be added, and the
repair event must select a substitute in this set.

4.5 Conclusion
This chapter addressed the problem of correct system substitution, where systems are
described as state-transition systems. It provides a stepwise correct-by-construction
approach based on refinement and proof supported by the Event-B method. It has
been published in [BAP16a].

This approach relies on two elements:

1. the definition of a class of systems that implement (i.e. refine) the same
specification
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2. a system substitution operator parameterized by a recovery property, namely a
horizontal invariant. This composition operator combines two or more systems
that refine the same specification. It is parameterized by the substitution or
repair property ensuring that the current state (the state where the source
system is halted) is correctly restored in the substitute system.

The defined framework for substitution ensures that, when a system is halted
(a failure occurs for instance), the state of the source system is correctly restored
to the state of the target system. Depending on the definition of the horizontal
invariant, the composition operator entails three types of substitution: equivalent,
degraded or upgraded substitute systems can be obtained. This will be expanded
in Chapter 5.

Two different substitution relationships have been presented. The first one is
a static substitution (corresponding to a cold start). It relies on refinement to
characterize the set of systems that conforms to the same specification. A class of
potential implementation systems are thus characterized by refinement. Here when
a system is halted, the state is restored to the initial state of the substitute system.
The second one addresses the dynamic substitution (substitution at runtime or
warm start) which uses state restoration by transferring the control to the adequate
state in the substitute system.

Furthermore, the fail event can be refined in order to introduce failure condi-
tions like loss of quality of service.

This framework for substitution has been applied to the two use cases presented
in Chapter 3. Discrete system substitution is detailed in Chapter 5. Continuous
system substitution is presented in Chapter 7, using the work of Chapter 6 on the
modeling of continuous systems. A formalization of the generic framework presented
in this chapter together with an instantiation of this model for a discrete case are
presented in Chapter 8.
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Chapter organization. The formal modeling and verification of services com-
positions within Event-B has been discussed in Section 3.1.3. Our view on service
compensation is given in Section 5.2, and Section 5.3 describes the stepwise method-
ology we have proposed to handle such a formal process for services compensations.
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The root model corresponding to the global specification of our case study is given
in Section 5.4. Then, in Section 5.5 we give the application of this approach on the
defined case study where the specific case of equivalent compensation is detailed.
Finally, Section 5.6 presents an overview of the two other compensation cases
(degraded and upgraded cases). At the end of this chapter, a conclusion summarizes
the key contributions and identifies some research directions.

5.1 Introduction
Objective of this chapter. The objective of this chapter is to show how our
approach for system substitution applies to discrete system substitution. We have
chosen to illustrate such systems for web service compensation. In this chapter, we
advocate the use of invariant preservation in order to formally check the correctness
of service compensation. We propose a correct-by-construction approach to handle
compensation at runtime and we model service compensation as a particular case
of system substitution. It can be used as a ground model for runtime service
compensation as defined in languages like BPEL. The approach is based on
refinement and proof using the Event-B method. Safety of the compensation is
guaranteed by invariant preservation corresponding to a liveness property (leads-to
property). Three compensation cases are addressed: equivalent, degraded and
upgraded compensation cases.

5.2 Our view of compensating activities
One of the main requirements of service compensation is consistency. Indeed,
compensation shall:

• complete the functional objective of the compensated service. In our case study,
described in Section 3.1.4, this statement refers to the correct compensation
requirement.

• safely transfer the control from one service to another one at runtime by
preserving, as much as possible, the completed steps of the compensated
service. In our case study, this statement refers to the compensation at
runtime requirement.

The key idea for service compensation, developed in this chapter, is based on
invariant preservation. Invariants are defined at the root level to characterize the
functional correctness property associated to the defined services composition. The
invariants are preserved in further refinements that shall guarantee this preservation.
Invariants are associated to each service, they express the property related to the
function accomplished by a given service.

During compensation, the preservation of such invariants by the compensating
service is required. To preserve these invariants, a relation, fulfilling safety conditions,
shall be defined between the compensated service and the compensating one. In other
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words, the state of the compensated service shall be restored in the compensating
service so as the invariant still holds.

In the rest of this chapter, our approach for service compensation is defined. We
address the case of compensating a source service by another target service. We
consider that such a compensating service is always available, it belongs to the class
of services that refine a global specification of a services composition. Therefore,
the compensating service is chosen following the refinement criteria. Any service
that refines the same global specification is a good candidate for compensation.
Quality of services aspects are not addressed here.

5.2.1 Compensation of a service by another one: definition
Our compensation mechanism relies on the following definition. For a given activity
supported by a service a, a source service s is compensated by a target service t if
and only if the following holds:

1. Activities defined by the services s and t refine the activity defined by the
service a using the gluing invariant Is and It respectively guaranteeing that s
and t realize the same function as a.

2. There exists a logical relation, defining an invariant, linking (gluing) the states
of the source service s and the target service t. It ensures that a repair action
or compensation:

(a) does not violate the refinement of the activity a,
(b) defines a recovered state in the target service that satisfies the defined

invariant and thus ensures the correct refinement of the global specifica-
tion.

These two conditions shall be guaranteed by each defined compensation mech-
anism at runtime. Observe, that compensation can be seen as a specific case of
system substitution as introduced in Chapter 4.

5.2.2 The role of the invariant
The invariant plays a key role to ensure that, during compensation, the source and
target services fulfill the invariant defined in the global specification. This result is
ensured by the correct refinement which introduces the gluing invariant. It shows
that the source service s can be compensated by the target service t but it does not
provide us with information about the recovery state and thus about compensation
at runtime.

So, this definition of the invariant is not enough to guarantee correct state
restoration. According to the defined methodology, the developer shall exhibit a
specific relation between the state of the source service s when halted and the
restored state of the target service. This relation defines the so-called horizontal
invariant. Moreover, modes are used to manage the switching from the halted
service to the compensating one. The mode changes ensure atomicity (discrete case)

59



CHAPTER 5. DISCRETE SYSTEMS SUBSTITUTION

of the compensation since no other service runs during compensation, and thus no
state variable is modified.

When such a relationship and horizontal invariant are provided, different com-
pensation cases become possible: degraded, upgraded or equivalent.

5.2.3 Different compensation cases
Let us assume that services s and t correctly refine the specification described by the
activity or service a. This means that both s and t are correct implementations of a.
As a consequence, s and t belong to the same class of implementation services for a.
Moreover, one can formally assert that service t correctly compensates service s.

Since s and t refine the same service specification a, they both define their own
gluing invariant Is and It ensuring the correct refinement of a.

At this stage of our development, we are able to define the relationship between
the states of each refined service. Indeed, the following logical relation of equivalence
can be expressed. It defines the horizontal invariant and different compensation
cases.

Is ∧ φ⇐⇒ It ∧ ψ

Here φ (6= false) and ψ (6= false) define logical expressions to link both invariants.
So different cases may occur. This relation leads to the four following situations.

1. φ = ψ = true. This situation describes the case where service s is compensated
by an equivalent service t. The two services accomplish the same goal.

2. φ = true and It 2 ψ. This situation describes a case where service t degrades
service s during the compensation. The It invariant does not cover the whole
functional specification of s. The compensation does not guarantee that the
activity performed by s will remain the same in the compensating service
because part of the invariant Is is supported by ψ.

3. Is 2 φ and ψ = true. This situation describes the case where service t upgrades
service s during the compensation. It guarantees both Is and other properties
expressed by φ. It means that t “does” more than s but it preserves the
functional properties targeted by s.

4. φ 6= true and ψ 6= true. Finally, this case corresponds to an unknown situation
where no information about the compensation can be inferred.

Cases 1, 2 and 3 are considered in this chapter. They correspond to the cases
identified in Section 4.4.3 of our methodology for system substitution. They
correspond to realistic situations. Case 4 is not useful and is not considered in our
work.
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5.2.4 Different compensation cases: illustration on the de-
fined case study

In the case study defined in Section 3.1.4, let us consider the selection activity
corresponding to the web service that proceeds to the selection of a set cart
of purchased products according to the global specification of Model 5.3. This
selection event corresponds to one transition in the state-transition system of
Figure 5.1.

selection

Figure 5.1 – The state-transition system for the selection event

Figure 5.1 defines one transition. The selection event, corresponding to the
web service selecting the set of products, will be decomposed by refinement into
other more concrete state-transition system. The resulting decompositions define
different correct refinements corresponding to different compensation modes.

The figures presented here and in the next section use the statechart notation
[Har87; OMG15]. Classical state-transition systems can be described and may
be themselves decomposed into other state-transition systems that may be run in
parallel (interleaved denoted by a dashed vertical line).

Equivalent compensation mode

The first compensation mode corresponds to equivalence. In this case, the logical
expression is φ = ψ = true. Figure 5.2 shows two possible refinements of the
abstract selection service defined in Figure 5.1.

• The first one, on the left-hand side (see Figure 5.2a), corresponds to the case
of a selection of a set of purchased products on a single website. The addItem1
event loops until the products the end user whishes to purchase are selected.

• The second one, depicted on Figure 5.2b, corresponds to a selection of the pur-
chased products realized on two different websites. Two interleaved processes
(running in parallel; dashed lines) addItem2A and addItem2B are triggered.
At the end, the set of selected purchased products is the union of the two sets
obtained by each process.

In both cases, once the selection activity is completed, the selection event is
completed.

Degraded compensation mode

The second compensation case deals with the degraded compensation mode. In our
case study, we have described this situation by identifying lost products when the
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addItem1

selection

(a) Source service on
a single website

addItem2A

endA

addItem2B

endB

selection

(b) Target service on two websites

Figure 5.2 – Equivalent compensation mode

compensation holds. We assume that the selection of the purchased products on
the two websites WS1 and WS2 does not contain all the specified set of products.
The lost ones are collected by an abstract service using the addItemLost event.

addItem1

selection

(a) Source service for
single website

addItem2A

endA

addItem2B

endB

addItemLost

endLost

selection

(b) Target service for two websites with an abstract service
for lost products

Figure 5.3 – Degraded compensation mode

In both cases, once the selection activity is completed, the selection event is
completed.
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Upgraded compensation mode

The last compensation case concerns the definition of an upgraded mode. In our
case study, this situation is shown on Figure 5.4. The source service, on a single
website (Figure 5.4a) collects a set of products that is a subset of the set of specified
products to be purchased. On the same figure, the other products are collected by
an abstract service which adds new products using the event addItemNew loop. On
the right side, the target service of Figure 5.4b collects the exact set of specified
products.

addItem1

end1

addItemNew

endNew

selection

(a) Source service for single website with
an abstract service for new products

addItem2A

endA

addItem2B

endB

selection

(b) Target service on two websites

Figure 5.4 – Upgraded compensation mode

In both cases, once the selection activity is completed, the selection event is
completed.

5.2.5 Remark
In the upgraded and degraded modes, we have introduced what we call abstract
services on one side or the other depending on the compensation case. These
services are characterized by the φ and ψ properties of the horizontal invariant.
These services are introduced to ensure a closed model where purchased products
are modeled even if they are lost (in the case of the degraded mode) or new (in the
case of upgraded mode). This is useful in the model to be able to precisely specify
which products are lost or new. However, these abstract services would not appear
in a concrete implementation of these models.

5.2.6 Cold start vs. warm start
Following the definition given in Section 2.1.1, cold start corresponds to the case
where the restored state of the compensating service is the initial state. In other
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words, the compensating service runs from the beginning and erases the effects of
the compensated service. This compensation mechanism is handled by the correct
refinement. In case of compensation, any web service that refines the specification
can be started or triggered from each initial state. The user will have to reenter all
the input again.

Warm start corresponds to the case where the restored state of the compensating
service is another state that collects the effects of the compensated service as much
as possible. In other words, when a service is halted, the state variables of the
compensating service are correctly updated by the values of the state variables of
the compensated service. The horizontal invariant and the repairing event ensures
that these values are safely copied. The way these variables are copied defines
the equivalent, degraded or upgraded compensation modes. The use of modes to
identify the running and compensating services guarantees the atomicity of the
compensation although time is passing during compensation. The complexity of
the compensation depends on the computations involved in the horizontal invariant
expression defining the state restoration operation.

In the remainder, we deploy the defined methodology, in the case of discrete
systems, for designing correct web services compensation. We show how the
definition of a horizontal invariant makes it possible to define a compensation of a
source service s by a target service t in the three cases shown in Section 5.2.3 and
in the cold or warm start cases.

5.3 Deploying the stepwise methodology for defin-
ing consistent compensations with Event-B

The approach we define is a stepwise approach. This methodology allows a developer
to design services compositions with correct compensations. By correctness, we
mean not only the behavioral correctness, but also the functional correctness which
is not addressed in most of the defined approaches of the literature. The proposed
approach relies on refinement to characterize the correct compensating services
on the one hand, and on invariant preservation to define relationships between a
compensated service and a compensating service on the other hand.

The four steps of the defined methodology are described in the following.

5.3.1 Step 1. Composite web services as transition systems
First, a services composition is defined as a global specification. Then, a set of
services compositions refining the defined global specification is given. Each services
composition belonging to this set is seen as a transition system refining a global
specification. At this step, we obtain a class of possible services compositions that
simulate the global specification. When this process is repeated, a library of classes
of services can be obtained. Each class characterizes all the services that refine the
same activity.
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5.3.2 Step 2. Introduction of failures and failure modes
Failures are introduced using explicit failure events. The effect of these events
consists in suspending the current running service.

For this purpose, two modes are introduced using mode variables. A running
mode stating that a service is currently active and a failure mode stating that a
given service is in failure mode. The introduction of such modes contributes to the
definition of the compensation order.

5.3.3 Step 3. Service recovery
Service recovery is performed thanks to a compensating event. This event selects
the compensating service and transfers the control to this service.

This step requires the identification of the next state in the compensating service.
Here, the defined gluing invariants are important, they define the next state in
the compensating service. At this level, note that no selection criteria has been
considered in this work, but this step can be completed by richer selection criteria,
for example by exploiting quality of service properties. This aspect is out of scope
of this work.

5.3.4 Step 4. Transferring control to the compensating ser-
vice after failure

Finally, once the recovery state in the compensating service is known, it becomes
possible to transfer the control to proceed with the execution of the composed service.
This transfer is realized in two steps. First, the variables of the compensating service
are updated and second, the compensating service mode is set to running mode.
The next two sections show how this methodology is set up on the case study.

5.4 Case study: the root Event-B model
This section presents the formal Event-B root model associated to the case study
defined in Section 3.1.4. This model represents the specification of a services
composition. It will be refined later by several other refinement models that define
possible implementations of this specification. Below, we give the context C1
defining the relevant concepts needed to model the elements manipulated by the
services and then the services composition is given by the M0 abstract machine.

5.4.1 Context definition
The context C1 of Model 5.1 defines the relevant sets for products (a finite set) and
websites (at least two websites for the purpose of the case study). It also defines the
STOCKS relation (Cartesian product). It relates websites to the products offered
for purchasing by these websites. More precisely, it characterizes which products
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are available on a given website. Finally, P , denoting the set of products to be
purchased, is defined.
Context C1
Sets
PRODUCTS // all the products in the world
SITES // all the sites in the world

Constants
STOCKS

Axioms
axm1: finite(PRODUCTS)
axm2: finite(SITES)
axm3: card(SITES) ≥ 2
axm4: STOCKS = SITES × PRODUCTS
axm5: P ⊆ PRODUCTS

End

Model 5.1 – The context C1

5.4.2 Model definition
The root model corresponding to the main Event-B machine M0 in Models 5.2 and
5.3 formalizes the state-transition system of Figure 3.1. This machine is composed
of the following elements.

• The variables carts denoting the cart containing the selected products and
seq describing a sequencing variant on the events. These variables describe
the state variables of the defined state-transition system. All these variables
are defined in the Variables clause.

Machine M0 Sees C1
Variables P , cart, seq
Invariants
inv1: carts ⊆ STOCKS
inv2: seq < 4⇒ ran(cart) = P
inv3: ∀p. p ∈ ran(cart)⇒ card(cart−1[{p}]) = 1

Variant seq

Model 5.2 – An Event-B model of the case study corresponding to Figure 3.1:
variables and invariants

• The safety properties associated with the selection service are described
by invariant properties in the Invariants clause. These properties, to be
preserved by all the events, contain the typing properties for the state variables
(inv1 ). Moreover, they state that:

– cart contains the currently purchased products from websites;
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– once the selection of products to be purchased is completed (seq < 4),
the set of purchased products is the expected one (being P ) by inv2 ;

– a product p in the set of purchased products cart is purchased only once,
by inv3.

The property inv2 of the Invariants clause guarantees that the set up
specification of the web services composition correctly purchases the desired
set of products P . ran(cart) = P is true after triggering the selection event.

So, any refining behavior preserving such an invariant will be considered as a
possible compensating services composition of the service composition defined
by this specification. The definition of the invariant is fundamental in the
correctness of the approach we propose.

Events
Event Initialisation =̂
Begin
act1: cart := ∅
act2: seq := 4

End
Event selection =̂
Any someCart
Where
grd1: seq = 4
grd2: someCart ⊆ SITES × P
grd3: ran(someCart) = P
grd4: ∀p. p ∈ ran(someCart)⇒ card(someCart−1[{p}]) = 1

Then act1: seq := 3
act2: cart := someCart

End
Event payment =̂
Where grd1: seq = 3
Then act1: seq := 2, . . .
End

Event billing =̂
Where grd1: seq = 2
Then act1: seq := 1, . . .
End

Event delivery =̂
Where grd1: seq = 1
Then act1: seq := 0, . . .
End

End

Model 5.3 – An Event-B model of the case study corresponding to Figure 3.1: the
events encoding the activities (in machine M0)
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• The Initialisation event is the first defined event (see Model 5.3). It sets
up the cart to the empty set (meaning that no product is selected yet) and
seq is assigned value 4, the number of sequential events. When seq = 4, it
enforces selection to be the first event to be triggered. The scheduling of
the events is guaranteed by seq;

• The other events define the sequence corresponding to the composed services.
The description of these events and the triggering order defines a suitable
composition. This description uses guards, a variant, non-determinism and in-
terleaving semantics for events offered by Event-B to support either sequential
or parallel composition.
For the purpose of this case study, the following sequence of events has been
defined (see Model 5.3) as follows.

– The selection event sets up the cart (act2 ) to any cart someCart
containing the specified set of products P whatever are the websites
(grd2 and grd3 ). It sets up the seq variable to 3 (act1 ) ensuring that
the next triggered event will be the payment event.
Let’s observe that grd3 and grd4 guarantee that the invariant is preserved.
Indeed, grd3 guarantees that the set of purchased products is P , and
grd4 expresses that a product in someCart is purchased only once.
Once the selection event is triggered, the set of purchased products
corresponds to P .

– When the product selection is completed, the payment, invoicing and
delivery events, describing the corresponding activities, are ready to
be triggered in this order thanks to the seq variant values occurring in
the guards of these events.

Note, that only the selection event is detailed. We do not give the details
of the other events, since we illustrate service compensation on the selection
service (activity).

5.4.3 Refining the root model
The root model represents the global specification of the defined services composition.
Following the methodology described in Section 4.2, all the Event-B models that
refine this root model are correct implementations of the defined specification. These
implementations simulate, in the sense of the simulation relationship [Mil80; Mil89],
the behavior of the specification.

Our approach exploits the refinement offered by Event-B. All the correct
refinements of the global specification are candidates to implement the specification.
This result gives us a way to characterize all the compensating services for a
given specification. Indeed, it is enough to identify a refinement to get a possible
compensating service. Refinement allows a developer to formally characterize a
class of compensating services. But, yet, we did not describe the compensating
process, we just identified the good compensating services.
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In the following, we show how an implementation of the selection activity can be
compensated by another implementation. We will exploit the refinement capability
offered by Event-B.

5.5 A formal Event-B model for web services fail-
ure/compensation

This section applies the previous steps on the case study of Section 3.1.4. As
mentioned previously, we are concerned with the compensation of the selection
activity of the web services composition depicted on Figure 3.1 page 33 and whose
Event-B model is given by the Models 5.2 and 5.3. Therefore, the other services
payment, invoicing and delivery are not addressed in the developments presented
below.

As mentioned in Section 5.2.4, two specific web services refining the selection
activity are introduced.

• The first one, denoted WS1, allows a user to purchase the set of products P
on a single website (namely site1).

• The second one, denoted WS2, allows a user to purchase the set of products
P using the combination of two different websites (namely site2A and site2B).

Each of these services fills a cart of products denoted cartW S1 for WS1 and cartW S2
for WS2.

The defined compensation considers that WS1 is the running service. The
failure and compensate events are introduced in order to switch from WS1 to
WS2 in case of failure.

According to Section 5.2.4, this case study shows three compensation cases:
equivalent, degraded and upgraded compensations. In the following, we describe in
details how the defined methodology works for the case of equivalent compensation.
The main development activities are described for the two other compensations
cases (degraded and upgraded compensations).

5.5.1 Equivalent compensation: application to the case study
The equivalent compensation case corresponds to the refined selection event
defined by the state-transition system depicted on Figure 5.2. The left and right
sides of this figure describe the state-transition systems that behave equivalently
from a functional point of view (the goal of the service).

Following the definition of the compensation given in Section 5.2.1, the horizontal
invariant corresponding to the compensation depicted on Figure 5.2 is

cartW S1 = P ⇐⇒ cartAW S2 ∪ cartBW S2 = P

According to the identified compensation cases of Section 5.2.3, we can assert
that the compensation is performed by an equivalent service (See Section 5.2.4 with
φ = ψ = true).

69



CHAPTER 5. DISCRETE SYSTEMS SUBSTITUTION

The equivalence relation in the previous expression enables us to repair both
the WS1 and WS2 services. From left to right, WS1 is compensated (repaired)
by WS2. This expression splits cartW S1 into two carts cartAW S2 and cartBW S2. From
right to left, WS2 is compensated (repaired) by WS1 by the union of cartAW S2 and
cartBW S2 carts in the cart cartW S1.

The global system can continue the execution seamlessly without losing any
product. Moreover, we guarantee the functional correctness of the global system
through the proof of the refinement of the specification.

Having described the different resources needed to set up the compensation of
WS1 by WS2, we are ready to describe the whole Event-B development encoding
this compensation following the stepwise methodology of Chapter 4 applied to this
case.

Step 1. Composite web services as transition systems

A machine refining the M0 machine is defined for each system. Two events
(selection_WS1 and selection_WS2) refining the selection event in the Event-B
model of Model 5.3 are defined. They correspond to WS1 and WS2. They are
defined as follows.

1. The first refinement R1, described in Model 5.4, defines one possible web
service implementing the selection activity in case of a single website site1.
It introduces a new event triggered as long as the cart cartW S1 associated
to the website site1 does not contain the suited set P of products (grd1
of the addItem_WS1 event). The chosen product item is added to the cart
(act1 ). Once the cart contains all the products of the set P , then, the event
selection_WS1 refining the selection event can be triggered, since its guard
grd1 becomes true.
Note that this refinement introduces a new variable sys, acting as a mode
variable, defining the current running system (here the web service WS1 with
one website).

2. The second refinement R2, described in Model 5.5, defines a second web
service implementing the selection activity in the case of two websites site2A

and site2B. Here again, this refinement consists in introducing two events
triggered as long as the union of the two carts cartAW S2 and cartBW S2 does not
contain the set of all products P to be purchased (events addItemA_WS2 and
addItemB_WS2). In the same manner, once the cart contains all the products,
the event selection_WS2 refining the selection event can be triggered, since
its guard grd1 is true.
Here again, note that this refinement introduces a new variable sys, acting as
a mode variable, defining the current running system (here the web service
WS2 with two websites).
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Event addItem_WS1 =̂
Any item
Where grd1: item ∈ P \ ran(cartW S1)

grd2: sys = 1
Then act1: cartW S1 := cartW S1 ∪ {site1 7→ item}
End

Event selection_WS1 Refines selection =̂
Where grd1: ran(cartW S1) = P

grd2: sys = 1
Then act1: cart := cartW S1
End

Model 5.4 – Refinement of selection for a single website (machine R1 refining
M0)
Event addItemA_WS2 =̂
Any item
Where grd1: item ∈ P \ ran(cartAW S2 ∪ cartBW S2)

grd2: sys = 2
Then act1: cartAW S2 := cartAW S2 ∪ {site2A 7→ item}
End

Event addItemB_WS2 =̂
Any item
Where grd1: item ∈ P \ ran(cartAW S2 ∪ cartBW S2)

grd2: sys = 2
Then act1: cartBW S2 := cartBW S2 ∪ {site2B 7→ item}
End

Event selection_WS2 Refines selection =̂
Where grd1: ran(cartAW S2 ∪ cartBW S2) = P

grd2: sys = 2
Then act1: cart := cartAW S2 ∪ cartBW S2
End

Model 5.5 – Refinement of selection for two websites(machine R2 refining M0)

Step 2. Introduction of failures and failure modes

Failure modes are introduced by a new context C11 extending the C1 context (see
Model 5.6). It defines the FAILURE_MODES set of modes and two constants
indicating if a system is in a failure state or not. axm1 states that they define a
partition of the FAILURE_MODES set (i.e. OK and NOK are different).
Context C11 Extends C1
Sets FAILURE_MODES
Constants OK, NOK
Axioms
axm1: partition(FAILURE_MODES, {OK}, {NOK})

End

Model 5.6 – Introduction of a context for failure modes
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A machine R3 refining the M0 machine is defined. A new variable failureStatus
is introduced to complete the definition of modes. It records if the system is in
a failure mode or not. sys still describes which web service is currently running
among the available services. A new event, named failure_WS1 is introduced. It
is triggered when a failure occurs on WS1. Model 5.7 defines this event.
Event failure_WS1 =̂
Where
grd1: sys = 1
grd2: failureStatus = OK

Then
act1: failureStatus := NOK

End

Model 5.7 – Failure event (in machine R3 refining M0)

The effect of this event is to switch the global web services composition from a
normal mode to a failure mode (act1 ).

Step 3. Service recovery

At this level, the whole web services composition is halted (grd2 ). The repairing
event exploiting the horizontal invariant can be triggered. Model 5.8 shows how the
compensation is handled.

The compensate_WS1_WS2 event copies the current state variables of the failed
service (act3 and act4 ) into the new state variables of the compensating service.
The variable sys changes value to 2 (WS2 ) and the failureStatus is turned to an
OK mode. At this stage, the compensating service is ready to run.
Event compensate_WS1_WS2 =̂
Any aCartAW S2, aCart

B
W S2

Where
grd1: sys = 1
grd2: failureStatus = NOK
grd3 : aCartA

WS2 ∪ aCartB
WS2 = cartWS1

grd4: aCartAW S2 ∩ aCartBW S2 = ∅
Then
act1: sys := 2
act2: failureStatus := OK
act3: cartAW S2 := aCartAW S2
act4: cartBW S2 := aCartBW S2

End

Model 5.8 – The compensating event exploiting the horizontal invariant (in machine
R3 refining M0)

Step 4. Transferring control to the compensating service after failure

At this level, compensation is completed. Indeed, the compensate_WS1_WS2 event
of Model 5.8 has set up to true all the conditions to trigger the addItemA_WS2,
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Figure 5.5 – Proofs size (number of nodes in the proof trees)

addItemB_WS2 and selection_WS2 events of the compensating service with two
websites.

5.5.2 Some remarks
The previous development showed on a case study how the refinement offered
by Event-B supports the definition of correct compensation mechanisms for web
services compositions. It illustrated how the proposed methodology for system
substitution that was defined in Chapter 4 applies to discrete system substitution.
This development led to a completely proved formal development available in
Appendix B.

Table 5.1 shows the results of the experiments we conducted within the Rodin
Platform for Event-B. The presented development has been entirely encoded
and proved. Deadlock freeness, correct behavior, refinements and compensation
correctness properties have all been proved. The results show that few proof
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Table 5.1 – Statistics related to the proofs performed with the Rodin Platform

Machine Automated PO Interactive PO

Root Machine M0 27 4
Refinement for WS1 (R1) 27 1
Refinement for WS2 (R2) 56 1
Refinement with compensation (R3) 214 16

Total 324 22

obligations (PO) required interactive proofs (22 among 324 generated POs).
The sizes of the various proofs for the various machines and contexts are available

in Figure 5.5.

5.6 Other compensation cases: upgraded and de-
graded

As mentioned previously, in this section, we consider the two remaining compensation
cases among the three identified ones (i.e. upgraded and degraded modes).

5.6.1 Compensation in presence of degrading services
The second case of compensation is the degraded case. It corresponds to the case
where products are lost when a compensation is performed. This case is depicted
in Section 5.2.4 on Figure 5.3. The following horizontal invariant is introduced to
characterize this situation.

cartW S1 = P ⇐⇒ cartAW S2 ∪ cartBW S2 ∪ Lost = P

It states that the compensating service looses a set of products Lost that were
originally in the compensated service’s cart. We have followed the same methodology
as for the equivalent case. The main difference occurs in Step 3, where the repairing
(compensating) event must guarantee the horizontal invariant.

The repairing event exploiting the horizontal invariant can be triggered. Model 5.9
shows how the compensation is handled.

The compensate_WS1_WS2_deg event splits the current cart of the failed service
(act3 and act4 ) into the new state variables of the compensating service. A new
state variable, the set Lost, is defined in the compensating service. This variable is
introduced to guarantee that the horizontal invariant holds. The other substitutions
behave as for the equivalent compensation case.
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Event compensate_WS1_WS2_deg =̂
Any aCartAW S2

aCartBW S2
aLost // products that will be lost

Where
grd1: sys = 1
grd2: failureStatus = NOK
grd3: aCartA

WS2 ∪ aCartB
WS2 ∪ aLost = cartWS1

grd4: aCartAW S2 ∩ aCartBW S2 = ∅
grd5: aCartAW S2 ∩ aLost = ∅
grd6: aCartBW S2 ∩ aLost = ∅

Then
act1: sys := 2
act2: failureStatus := OK
act3: cartAW S2 := aCartAW S2
act4: cartBW S2 := aCartBW S2
act5: Lost := aLost

End

Model 5.9 – Compensating event and horizontal invariant (degraded case)

5.6.2 Compensation in presence of upgrading services
The third case of compensation is the upgraded case which corresponds to the
case where more products than specified are purchased. This case is depicted in
Section 5.2.4 on Figure 5.4. The following horizontal invariant is introduced to
characterize this situation.

cartW S1 ∪New = P ⇐⇒ cartAW S2 ∪ cartBW S2 = P

It states that the compensating service offers a New set of products that were not
originally in the compensated service’s cart. Again, we have followed the same
methodology as for the equivalent case. The main difference occurs in Step 3 where
the repairing (compensating) event must guarantee the horizontal invariant. This
repairing event exploiting the horizontal invariant can be triggered. Model 5.10
shows how the compensation is handled.

The compensate_WS1_WS2_upg event copies the current state variables of the
failed service (act3 and act4 ) into the new state variables of the compensating
service, but the New set is included in cartAW S2 ∪ cartBW S2. The other substitutions
behave as for the equivalent case.

If applied to two web services, it corresponds to the case where the compensating
service offers more functionalities than offered by the compensated service. For
example, when purchasing flight tickets, one can use a website that offers more
products to purchase like booking hotel rooms, car rentals, etc.
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Event compensate_WS1_WS2_upg =̂
Any aCartAW S2

aCartBW S2
aNew // products that will be added

Where
grd1: sys = 1
grd2: failureStatus = NOK
grd3: aCartA

WS2 ∪ aCartB
WS2 = cartWS1 ∪ aNew

grd4: aCartAW S2 ∩ aCartBW S2 = ∅
Then
act1: sys := 2
act2: failureStatus := OK
act3: cartAW S2 := aCartAW S2
act4: cartBW S2 := aCartBW S2

End

Model 5.10 – Compensating event and horizontal invariant (upgraded case)

5.7 Conclusion
Several approaches have been defined and succeeded in verifying correct behaviors
of composite web services compensations.

Due to the abstraction of services input/output to avoid state number explosion,
little attention has been paid to the verification of functional correctness of service
compensation.

In this chapter, we have applied our methodology for correct substitution to
the discrete case of service compensation. It has been published in [BAP15] and
[BAP17].

The approach we have developed in this chapter relies on the definition of
horizontal invariants that establish a relation between services’ states. This relation
leads to the definition of a class of equivalent services with respect to the defined
relation (loose coupling of services). Each service refining (implementing) a given
activity is a candidate to compensate a service. Indeed, each service refining a
service specification is a candidate for correct compensation in a cold start context.

Then, a stepwise methodology consisting in gradually introducing failure and
compensating events has been defined. It is compatible with the definition of
compensation available in languages like BPEL. We have shown on a case study
how this approach works and a whole Event-B development has been described.
Moreover, the proposed approach also addressed two major aspects of compensation.

• The first one is the capability to make compensation at runtime. Indeed, the
definition of horizontal invariants makes it possible to define compensation
events that repair the suspended activity and switch from a failed service to a
compensating one by affecting its variables consistently.
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• The second key point concerns the nature of the horizontal invariant. Indeed,
equivalent, degraded or upgraded compensations can be expressed. The
equivalence relation defined allows a developer to check the quality of the
compensating service. This situation has been shown on three compensation
cases whose definition relies on the provided horizontal invariant.

Then, the defined compensation mechanism supports a dynamic compensation.
When the horizontal invariant is correctly chosen (by correct, we mean that it
preserves the one of the original specification), then the repairing event recovers
the state of the compensated service in the compensating service. This feature is
relevant for defining compensation on-the-fly during service orchestration.

Finally, the proposed approach promotes openness. Indeed, the definition of
compensating services can be done dynamically. It requires adding new compen-
sating services to the class of services, provided they define a correct refinement of
the compensated activity. In this case, the service may be chosen to compensate a
failed service. In other words, refinement allows a service designer to characterize a
whole set (a class) of compensating services.

In this chapter we detailed a compensation mechanism based on discrete sub-
stitution using our modeling framework. In the next chapter (Chapter 6), we will
introduce the modeling of continuous systems in Event-B. Then in the following
chapter (Chapter 7), we will present our work on continuous system substitution.
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Chapter organization. Section 6.2 overviews the addressed problem of dis-
cretization. The refinement strategy for any continuous function together with the
corresponding requirements are given in Section 6.3, while the complete Event-B
development handling these requirements is provided in Section 6.4.

6.1 Introduction
Before addressing the case of non-instantaneous (non-atomic) system substitution,
we first study how systems with models relying on continuous time over real numbers
can be modeled using the refinement and proof method Event-B. These models
allow designers to describe hybrid systems. We show how, under some hypotheses,
continuous systems descriptions are correctly discretized.

In the past years, several approaches relying on formal methods, like Hybrid
automata [Hen00] and model checking [Alu11], have been set up to describe the
behavior of the software controllers. Our proposal focuses on the synthesis of correct
discrete controllers for hybrid systems.
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Objective of this chapter. This chapter shows how proof and refinement based
approaches handle the development of a correct-by-construction discrete controller
starting from a continuous time function specification of the continuous controller.
A complete incremental development relying on a theory of reals is conducted to
synthesize a correct discretization of a continuous function. The approach exploits an
axiomatization of mathematical reals. It maintains a safety invariant characterizing
the physical plant of the studied system. Such an invariant defines a safety envelope
(which we also named safety corridor) modeling a stability property in which the
system must evolve i.e. for a continuous function f , we write ∀t ∈ R+, f(t) ∈ [m,M ]
where t is a continuous time parameter belonging to R+ and the reals m and M
define respectively minimum and maximum values in R+ ensuring a correct behavior
of the physical plant, whose behavior is modeled by the function f . In general, these
values are the result of the physics of the studied system. The Event-B method
is used to handle such formal developments. We illustrate our proposal with the
development of a simple stability controller for a generic plant model. Next, we will
address system substitution where systems are characterized by such models.

6.2 Discretization of continuous functions
The behavior of many systems can be characterized by three phases: the initial
boot, the nominal behavior, and the halting of the system. Several CPS integrating
physical plants and software controllers follow this state evolution pattern. Examples
of such systems are energy production systems, smart systems, medical systems, etc.
These systems are usually modeled by differential equations specifying continuous
time functions. In order to design a software controller running on discrete time
steps to handle their behavior, one has to discretize these continuous functions.
The main safety property concerns stability where the function values shall be
maintained inside a safety envelope, i.e. an interval of correct values, called corridor.

The correct implementation of such continuous functions is a key point in
ensuring CPS safety. They shall be correctly discretized i.e., guarantee that the
discrete behavior simulates the continuous one. In other words, the continuous
states existing between two observed consecutive states of the discretization shall
also be in the safety corridor.

To achieve this goal, we follow a correct-by-construction approach based on
a formal development of any continuous function discretization, making our de-
velopment reusable and scalable. The approach relies on refinement and on the
preservation of invariants. Discretization information is incrementally added while
moving from the continuous level to the discrete one. Event-B [Abr10] and the
Rodin Platform [Abr+10] have been set up to handle the developments.

6.3 Refinement strategy
We sketch here the mathematical model and the specification of the system behavior.
Following the approach defined in [SAZ14], the adopted refinement strategy consists
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in three steps: first, as shown in Figure 6.1, we use three states to define a simple
abstract controller that models the system by introducing modes; then, in a first
refinement, we introduce a continuous controller characterizing its behaviors with a
continuous function; finally, a second refinement builds a discrete controller of the
system.

6.3.1 The illustrating system

1 2 3init boot

run

stop

Figure 6.1 – Controller automaton

The behavior of the considered system is defined through three phases. Figure 6.1
depicts its general behavior using a state-transition system. First, it is booted
(transition boot from state 1 to state 2). After a while (time passing), once in state 2,
it becomes operational in a nominal mode (run transition). Then, it stays a given
amount of time in the nominal or running mode. When in nominal mode, it may be
halted (stop transition from state 2 to state 3) for example in case a failure occurs
or for maintenance purposes. This behavior is the one of a simple abstract system
controller. We have considered that, when booting, the system cannot be stopped
until it reaches the nominal mode. Other complex scenarios can be defined with
more complex transition systems.

Table 6.1 – Requirements for the top level

At any time, in any mode, the output value of the
controlled system shall be less or equal to M . Req.1

At any time, in running mode, the output value of the
controlled system shall belong to an interval [m,M ]. Req.2

At any time, in running mode, if any future output
value of the controlled system does not belong to an
interval [m,M ], then the system is stopped.

Req.3

In order to guarantee a correct behavior of the system, the previously defined
controller shall fulfill the requirements from Table 6.1. These ones ensure that the
system is correctly controlled. For example, an energy production system requires
that the power produced by a given system belongs to a specific interval or a
pacemaker must be pacing when a sensed signal belongs to another specific interval.

6.3.2 Continuous controller
After modeling the system at an abstract level using three states, the continuous
controller is introduced through the definition of a continuous function of the
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continuous time f : R+ → R to characterize the behavior of the system.
The requirements identified in the previous section, are rewritten (refined) to

handle the introduced continuous function behavior (see Table 6.2).

Table 6.2 – Requirements for the first refinement

m < M Req.0

∀t ∈ R+, f(t) ≤M Req.1

∀t ∈ R+, state(t) = 2⇒ f(t) ∈ [m,M ] Req.2.1

∀t1, t2 ∈ R+, t1 < t2, state(t1) = 2 ∧ f(t2) ∈ [m,M ]⇒ state(t2) ∈ {2, 3} Req.2.2

∀t1, t2 ∈ R+, t1 < t2, state(t1) = 2 ∧ f(t2) 6∈ [m,M ]⇒ state(t2) = 3 Req.3

The control action over this system is a simple one. It consists in shutting down
the system if the value of f goes out of range. The obtained continuous controller
corresponds to a refinement of the abstract one from the previous section, it is
described by a hybrid automaton. We are aware that the control actions of the
defined system are very simple. Our objective is to show how a controller (char-
acterized by a simple state transition system) and a physical plant (characterized
by a continuous function) can be formally integrated into a single Event-B formal
development encoding incrementally a hybrid automaton.

One possible behavior corresponding to the previous description is depicted by
the graph in Figure 6.2a. The system is initialized (at point A corresponding to
the transition init to enter state 1). It reaches the running mode state at point B
(corresponding to the event boot and entering state 2). The system remains in
the safety corridor (between m and M in state 2). When point C is reached, the
controller switches its state from state 2 to state 3 with the transition stop in order
to prevent f from going over the threshold M . The system is then halted to reach
point D (corresponding to state 3).

6.3.3 Discrete controller
In order to implement the previous controller, we need to discretize the observation
of the system behavior. In practice, when using computers to implement such con-
trollers, time is observed according to specific clocks and periods or frequencies. In
other words, observations are discrete and depend on the available clocks. Therefore,
it is mandatory to define a correct time discretization that preserves the continu-
ous behavior introduced previously. This preservation entails the introduction of
other requirements (hypotheses) on the defined continuous function. Note that, in
practice, these requirements correspond to requirements issued from the physical
plant.

We introduce a margin allowing the controller to anticipate the next observable
behavior before an incorrect behavior occurs. Let z be this margin. z is defined
such that the evolution of the function f between two observed consecutive instants
ti and ti+1 shall not be greater than z.
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Figure 6.2 – Examples of the evolution of the function f

In order to formally define z, we first declare δt the fixed discretization interval,
i.e. δt > 0 and ∀i ∈ N, δt = ti+1− ti and ∀i ∈ N, ti = i× δt. Because of the physical
nature of the system, we assume the function f to be Lipschitz continuous (the
differential of f is bounded by a constant K, called the Lipschitz constant):

∃K ∈ R+, ∀t1, t2 ∈ R+, |f(t1)− f(t2)| ≤ K × |t1 − t2|

We can assume that there exists z such that:

∀t ∈ R+, |f(t)− f(t+ δt)| ≤ z

It is possible to derive the property related to the bounded variation of the function f
inside a discrete interval as follows:

∀i ∈ N, ∀t ∈ [ti, ti+1], |f(ti)− f(t)| ≤ z

Finally, we obtain a safe progress property stating that if the value of f is in the
[m+ z,M − z] interval, then, the safety property f(t) ∈ [m,M ] is preserved until
the next discrete instant:

∀i ∈ N, f(ti) ∈ [m+ z,M − z]⇒∀t ∈ [ti, ti+1], f(t) ∈ [m,M ]

Additionally, for the problem to be well-defined, we impose that δt be small enough
so that the property m+ z < M − z holds.

The set D of observation instants can be defined as:

D = {ti | ti ∈ R ∧ i ∈ N ∧ ti = i× δt}

As a consequence of this definition, the safety corridor becomes the interval
[m+ z,M − z]. Moreover, it becomes possible to observe, in the running mode,
two consecutive instants ti and ti+1 such that:

f(ti) ∈ [m+ z,M − z]
f(ti+1) 6∈ [m+ z,M − z]
f(ti+1) ∈ [m,M ]
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Table 6.3 – Requirements for the second refinement

z > 0 ∧m+ z < M − z Req.0

∀ti ∈ D, f(ti) ≤M Req.1

∀ti ∈ D, state(ti) = 2⇒ f(ti) ∈ [m+ z,M − z] Req.2.1

∀ti ∈ D, state(ti) = 2 ∧ f(ti + δt) ∈ [m,M ]⇒ state(ti + δt) ∈ {2, 3}
⇔ ∀ti ∈ D, state(ti) = 2 ∧ f(ti+1) ∈ [m,M ]⇒ state(ti+1) ∈ {2, 3} Req.2.2
⇔ ∀n ∈ N, state(n δt) = 2 ∧ f((n+ 1) δt) ∈ [m,M ]⇒ state((n+ 1) δt) ∈ {2, 3}

∀ti ∈ D, state(ti) = 2 ∧ f(ti + δt) 6∈ [m+ z,M − z]⇒ state(ti + δt) = 3
⇔ ∀ti ∈ D, state(ti) = 2 ∧ f(ti+1) 6∈ [m+ z,M − z]⇒ state(ti+1) = 3 Req.3
⇔ ∀n ∈ N, state(n δt) = 2 ∧ f((n+ 1) δt) 6∈ [m+ z,M − z]

⇒ state((n+ 1) δt) = 3

This condition characterizes a behavior that exits the safety corridor and thus it
identifies the condition for stopping the system (i.e. moving to a stopping mode).
Again, the previous requirements are refined to consider the discretization of time,
using the two new parameters z and δt, and D (Table 6.3).

The safety margin z is defined such that if f(n× δt) is in [m+ z,M − z] then
the value of f observed by the controller, f((n+ 1)× δt), is in [m,M ]. The defined
discretization guarantees that Req.2.1 is fulfilled until the next discrete instant
due to ∀n ∈ N, ∀t ∈ [n× δt, (n+ 1)× δt], |f(t)− f(n δt)| ≤ z. If the controller
observes a value in [m,m+ z[ or in ]M − z,M ], it shuts the system down because,
the value might be out of range (Req.3 ) in the next step.

6.3.4 Top-down development

According to the previous definitions, refinement starts from a generic definition
of the system with the three identified events. The first refinement introduces
the continuous function and the corresponding requirements of Table 6.2. We
start with a continuous model Mc of the system, describing the complete relevant
physical behavior of the system. Then a second refinement defines the discrete
model Md of the behavior correctly glued with the continuous one. Here, the refined
requirements of Table 6.3 are taken into account. Gluing invariants, formalizing the
refined requirements, are introduced in order to preserve the proofs and the behavior
of the abstraction. When proving the refinement, we formally establish that our
discrete model is a correct implementation of the desired continuous behavior (the
specification).

To summarize, in Mc, the continuous function fc : R −→ R is considered. In
Md, we introduce a discrete function fd : N −→ R, where i ∈ N is an instant and δt
is the time discretization interval duration. The functions fd and fc are glued by
the following property: ∀n ∈ 0..i, fc(n× δt) = fd(n).
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i × δt (i+1) × δt

RFT ROT
RBT RBT RBTRBT

δt

t

RBT

dt dt dt

V times

Figure 6.3 – Collapsing continuous time micro steps into a discrete time macro step

6.3.5 About the modeling of time
In order to reduce the complexity of the proof of the discretization refinement
corresponding to the introduction of fd, we have split the behavior of fc during an
ith discrete macro step [ti, (ti + δt)] into three kinds of smaller finite discrete micro
steps (see Figure 6.3). For example, at the running state (or nominal phase), we
define the following micro steps.

1. RFT: run from tick is the first micro step inside a macro step starting at a tick
(a discrete time ti = i× δt). Its duration is strictly smaller than δt.

2. RBT: run between ticks is a micro step strictly in the macro step (not the first
nor the last micro step in a macro step). Its duration is denoted dt > 0. A
macro step contains V occurrences of such micro steps.

3. ROT: run on ticks is the last micro step in the macro step.

Because δt the duration of the steps can be infinitely small, there could be an
infinite number of steps: this is called the Zeno problem. It is avoided here by
guaranteeing that the number of micro steps of type RBT is finite, and that dt > 0.
From a modeling point of view, it will be formalized as a decreasing variant (natural
number V in N). The trace of micro steps between ti and ti+1 = ti + δt is defined
as RFT (RBT)V ROT. The correctness of the discretization ensures that we can take
a finite number that depends on the physical parameters of the system.

Our Event-B models introduce events aligned with these macro and micro steps
either in the continuous case of in the discrete one.

6.4 A formal development of a discrete controller
with Event-B

Our developments expressed using Event-B follow the refinement strategy defined in
Section 6.3. Following [SAZ14], three development steps have been used. Contexts
and machines are defined according to Figure 6.4.

6.4.1 Abstract machine: the top-level specification
The top-level specification introduces the abstract controller with three events
according to Figure 6.1.
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C0_reals

C1_corridor

C2_margin

C4_discrete

C3_cast

Nat

M0_spec

M1_cntn_ctrl

M2_dsct_ctrl

refines

refines

sees

sees

seesextends

extends

extends

extends

Figure 6.4 – Project structure

Needed theories

To be able to handle mathematical real numbers and the corresponding theory, we
have defined the context C0_reals which uses the theory defining mathematical
reals. Model 6.1 gives an extract of this context with axioms and theorems.

Several other axioms and theorems have been defined and proven. We show an
extract of this theory (see the Appendix C). As mentioned in Section 1.8, specific
operators for manipulating reals are used.

A second context defines the safety corridor with the values of m and M .
Model 6.2 defines this context C1_corridor extending the context C0_reals.

Context C0_reals
Constants REAL_POS, REAL_STR_POS
Axioms
def01: REAL_POS={x | x ∈ REAL ∧leq(zero,x)} // ‘‘leq’’ is ≤ for reals
def02: REAL_STR_POS={x | x ∈ REAL ∧smr(zero,x)} // ‘‘smr’’ is < for reals
...

Theorems
thm01: ∀a,b · ( a ∈ REAL ∧b ∈ REAL ) ⇒( smr(zero,b) ⇒smr(a sub b , a) )
thm02: ∀a,b · smr(a,b) ⇔¬ leq(b,a)
...

End

Model 6.1 – Part of context C0_reals

Context C1_corridor
Extends C0_reals
Constants m, M
Axioms
axm01: m ∈ REAL_STR_POS
axm02: M ∈ REAL_STR_POS
axm03: smr(m,M)

End

Model 6.2 – Part of context C1_corridor
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The top-level Event-B machine

It defines the global continuous variables issued from the controlled system. The
machine introduces invariant inv03, guaranteeing Req.1 and Req.2.1 stating that
in running mode (identified by active = TRUE), the real values of the continuous
variables (defining the values of a continuous function introduced in the first
refinement) fv shall be correct. This machine also models the abstract controller
with three events boot, run and stop corresponding to the transition system of
Figure 6.1. These events manipulate fv the real positive value of the continuous
variables corresponding to the current continuous values without explicit definition
of a function f .

Model 6.3 gives an extract of the top specification machine M0_spec.

Machine M0_spec Sees C1_corridor
Variables fv, active
Invariants
inv01: fv ∈ REAL_POS
inv02: active ∈ BOOL
inv03: active = TRUE ⇒leq(m,fv) ∧leq(fv,M)
inv04: active = FALSE ⇒fv = zero

Events
Event Initialisation =̂
Begin
act01: active := FALSE
act02: fv := zero

End
Event boot =̂ ...
Event run =̂
Any new_fv Where
grd01: active = TRUE
grd02: new_fv ∈ REAL_POS
grd03: leq(m,new_fv) ∧leq(new_fv,M) // new_fv ∈ [m,M]

Then
act01: fv := new_fv

End
Event stop =̂ ...

End

Model 6.3 – Extract of machine M0_spec

Only details for the event run are given here. The complete Event-B develop-
ments can be found in Appendix C. Therefore, Req.3 is not explicitly handled in
this description, it mainly concerns the stop event.

87



CHAPTER 6. HYBRID SYSTEMS: CONTINUOUS TO DISCRETE MODELS

6.4.2 The first refinement: introducing continuous func-
tions

Needed theories

As shown on Figure 6.4, the context C2_margin introducing margin z is defined.
Note that axm02 corresponds to the requirement Req.0.
Context C2_margin Extends C1_corridor
Constants z
Axioms
axm01: z ∈ REAL_POS // z ∈ R+
axm02: gtr(M sub m , (one plus one) mult z) // M−m > 2∗z

End

Model 6.4 – Extract of context C2_margin

The Event-B first refinement with continuous functions

The first refinement M1_cntn_ctrl of the controller explicitly introduces:

• the continuous function fc producing the values fv of the abstract machine
and the corresponding invariant prop01,

• continuous time with the current instant noted now,

• an important invariant glue01 gluing the continuous variables of the abstrac-
tion with the continuous function defined on continuous time fv = fc(now),

• the variable active_t recording the continuous time where the system enters
a running mode and the corresponding invariants glue02, glue03 and glue04
gluing the behavior of active_t with the active boolean variable of the top
level specification.

The events of the M1_cntn_ctrl machine refine the ones of the top level speci-
fication. The boot event fixes the value of active_t and the run event builds the
continuous function fc with steps of duration dt. fc becomes the function nfc, acting
until now + dt instant.

The current instant now is increased by the step duration dt as well. The guards
of the event run introduce the relevant conditions to trigger this event.

Note that during the time interval dt, the function fc shall be continuous and
monotonic so that its value is never outside the safety corridor (grd09 to grd11 ).
This condition is fundamental when the function is discretized. Thus, grd09 through
grd12 guarantee the requirement Req.2.2 and are of particular importance when
discretizing.
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Machine M1_cntn_ctrl Refines M0_spec Sees C2_margin
Variables fv, active, fc , now, active_t
Invariants
type01: now ∈ REAL_POS
type02: fc ∈ REAL_POS →REAL_POS
type03: active_t ∈ REAL_POS
prop01: cnt_int(fc , zero, now) // fc is continuous on [0,now]
glue01: fv = fc(now)
glue02: active = TRUE ⇒( ∀t ·t ∈ REAL ∧leq(active_t,t) ∧ leq(t ,now) ⇒

( leq(m plus z , fc(t)) ∧ leq(fc(t) , M sub z) ))
glue03: ∀t · t ∈ REAL ∧leq(zero,t) ∧ leq(t ,now) ⇒leq(fc(t ),M)
glue04: active = TRUE ⇒leq(active_t,now)

Events
Event Initialisation =̂ ...
Event boot =̂ Refines boot ...
Then

...
act04: now := now plus dt
act05: active_t := now plus dt

End
Event run =̂ Refines run
Any
dt, nfc , new_fv

Where
...
grd04: dt ∈ REAL_STR_POS // dt > 0
grd05: nfc ∈ REAL_POS 7→REAL_POS
grd06: dom(nfc) = {t | t ∈ REAL ∧leq(now,t) ∧leq(t , now plus dt)}

// dom(nf) = [now,now+dt]
grd07: nfc(now) = fc(now)
grd08: nfc(now plus dt) = new_fv
grd09: leq(fv ,new_fv) ⇒(∀ t1,t2 · t1 ∈ dom(nfc) ∧t2 ∈ dom(nfc)

∧ leq(t1,t2) ⇒leq(nfc(t1) , nfc(t2)))
// nfc is monotonic on [t1,t2]

grd11: leq(new_fv,fv) ⇒(∀ t1,t2 · t1 ∈ dom(nfc) ∧t2 ∈ dom(nfc)
∧ leq(t1,t2) ⇒leq(nfc(t2) , nfc(t1)))

grd10: cnt_int(nfc , now , now plus dt) // continuous on [now,now+dt]
grd12: ∀t · t ∈ dom(nfc) ⇒leq(m plus z , nfc(t) ∧ leq(nfc(t) , M sub z)

Then
...
act02: now := now plus dt
act03: fc := fc C−nfc

End
Event stop =̂ Refines stop...

End

Model 6.5 – Extract of machine M1_cntn_ctrl
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6.4.3 The second refinement: introducing discrete repre-
sentation

This refinement introduces the discretization function fd corresponding to the
continuous function fc on each discrete observed instants. This fundamental property
corresponds to requirement Req.2.2 of Table 6.3. It is expressed by the invariants
gluing the continuous controller and the discrete controller. It links the continuous
fc and discrete fd functions by the property ∀n ∈ 0 .. i⇒ fc(n× δt) = fd(n) and is
represented in invariant glue01.

Needed theories

Two contexts are introduced. The first context C3_cast is a technical context
related to casting reals and integers (see Section 1.8.3). For example, the invariant
∀n ∈ 0 .. i⇒ fc(n× δt) = fd(n) corresponding to glue01 is written as:
∀ n · n ∈ 0..i ⇒ fc(cast(n) mult tstep) = fd(n).

Context C3_cast Extends C0_reals, Nat
Constants cast
Axioms
axm01: cast ∈ N→REAL_POS // type
axm02: cast(0) = zero // initial case
axm03: ∀a · a ∈ N⇒ // induction case

(cast(a+1) = cast(a) plus one)
Theorems

...
thm11: ∀a,b · (a ∈ N ∧ b ∈ N) // equiv. over ’<’

⇒(a < b ⇔smr(cast(a),cast(b)))
thm12: ∀a,b · (a ∈ N ∧ b ∈ N) // equiv. over ’=’

⇒(a = b ⇔cast(a) = cast(b))
thm13: cast ∈ N �� cast [N] // cast is a bijection
...

End

Model 6.6 – Definition and properties of the cast function (reminder)

The last context C4_discrete introduces the discrete time macro steps duration
tstep corresponding to δt on Figure 6.3 and the values RBT and RV (run_variant)
to identify the different events corresponding to the run event. It also defines the
max_df constant corresponding to the maximum evolution of the function in a
macro step, which is never more than margin z (axm03 ). This assumption usually
comes from the conditions on the physical plant.
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Context C4_discrete Extends C2_margin
Sets VT
Constants
tstep // discrete time step duration (δt)
max_df // maximum delta for f during tstep
RBT, RV

Axioms
axm01: tstep ∈ REAL_STR_POS
axm02: max_df ∈ REAL_POS

// max diff of f during tstep
axm03: leq(max_df,z)
axm04: partition(VT, {RBT}, {RV})

End

Model 6.7 – Extract of context C4_discrete

The Event-B refinement with discretization

The defined machine M2_dsct_ctrl (Model 6.8) produces the discrete behavior of the
continuous function fc with the discrete function fd glued by invariant glue01. The
other invariants inv01 and inv02 preserve Req.2.2 and inv03 states that the elapsed
time et is less than the discrete time tstep. According to Figure 6.3, three events for
ROT, RBT and RFT are defined, refining the run event. The run_from_tick (RFT)
event starts the computation between two consecutive discrete values of function fd
and fixes an arbitrary value of the variant rs.

The most interesting part in this machine relates to the run_between_tick
(RBT) event which shall avoid the Zeno problem. For this purpose, each time this
event is active, it triggers the event run_variant which decreases the variant.
Once, this variant reaches the value 0, the run_on_tick (ROT) event is triggered to
compute the final value corresponding to next discrete value of the function fd.

Note that the guard grd15 is fundamental to guarantee that values are not out
of the safety corridor. This assumption results from the physical plant definition.

Implementation The machine M2_dsct_ctrl could be used as the basis for a
concrete implementation where only discrete variables (such that i and fd) would
be considered and where only the event run_on_tick would be used to generate
code.
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Machine M2_dsct_ctrl
Refines M1_cntn_ctrl Sees C3_cast, C4_discrete
Variables
fv ,
active ,
fc ,
now,
active_t,
fd // discrete power function
i // the current instant number
et // time elapsed from previous discrete value sampling time
rs // remaining continuous micro steps inside the discrete macro step
nv // next variant−related event type

Invariants
type01: fd ∈ 0..i →REAL_POS
type02: i ∈ N
type03: et ∈ REAL_POS
type04: rs ∈ N
type05: nv ∈ VT
glue01: ∀ n · n ∈ 0..i ⇒fc(cast(n) mult tstep) = fd(n)

// n ∈ 0..i ⇒fc(n∗tstep) = fd(n)
glue02: now = (cast(i) mult tstep) plus et // now = i∗tstep + et
inv01: ∀ n · n ∈ 0..i−1 ⇒(

∀ t · (leq(cast(n) mult tstep , t)
∧ leq(t , cast(n+1) mult tstep))

⇒(leq(fd(n) sub max_df , fc(t))
∧ leq(fc(t) , fd(n) plus max_df)))

inv02: ∀ t · (leq(cast( i ) mult tstep , t) ∧ leq(t , now)) ⇒(
leq(fd( i ) sub max_df , fc(t)) ∧ leq(fc(t) , fd( i ) plus max_df))

inv03: smr(et,tstep)
Variant
rs

Events
Event run_from_tick =̂Refines run
Any new_fv, dt, nfc
Where

...
grd13: et = zero
grd14: smr(dt , tstep)
grd15: ∀t · t ∈ dom(nfc) ⇒

leq(fd( i ) sub max_df , nfc(t))
∧ leq(nfc(t) , fd( i ) plus max_df) // physical assumption

Then
...
act04: et := et plus dt
act05: rs :∈ N
act06: nv := RBT

End
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Event run_between_ticks =̂Refines run
Any new_fv, dt, nfc
Where

...
grd13: smr(zero, et)
grd14: smr(et plus dt , tstep)
grd15: ∀t · t ∈ dom(nfc) ⇒

leq(fd( i ) sub max_df , nfc(t))
∧ leq(nfc(t) , fd( i ) plus max_df)

grd16: nv = RBT
grd17: rs > 0

Then
...
act04: et := et plus dt
act05: nv := RV

End
Event run_variant =̂
Where
grd01: nv = RV
grd02: rs > 0

Then
act01: rs :| rs ’ ∈ N ∧ rs ’ < rs
act02: nv := RBT

End
Event run_on_tick =̂Refines run
Any new_fv, dt, nfc
Where

...
grd13: et plus dt = tstep
grd14: smr(zero,et)
grd15: ∀t · t ∈ dom(nfc) ⇒

leq(fd( i ) sub max_df , nfc(t))
∧ leq(nfc(t) , fd( i ) plus max_df)

grd16: rs = 0
Theorems
thm03: cast(i+1) mult tstep = now plus dt

Then
...
act04: i := i + 1
act05: fd( i+1) := new_f
act06: et := zero

End
End

Model 6.8 – Extract of machine M2_dsct_ctrl
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6.4.4 Proofs statistics
All these models have been formalized using the Rodin Platform. As shown on
Table 6.4, the main machine and the refinements led to 265 proof obligations. 67
were proven automatically and 198 needed numerous interactive proof steps.

The interactive proofs mainly relate to the use of the Theory plug-in to handle
reals. The lack of dedicated heuristics due to the representation of reals as an
abstract data type, and not as a native type led to more interactive proofs.

Table 6.4 – Rodin proofs statistics

Event-B model Automated proofs Interactive proofs Total

C0_reals 1 29 30
C1_corridor 0 6 6
C2_margin 0 10 10
C3_cast 11 26 37
C4_discrete 0 1 1
M0_spec (top-level) 11 6 17
M1_cntn_ctrl (1st ref.) 22 51 73
M2_dsct_ctrl (2nd ref.) 22 67 89

Total 67 198 265

The sizes of the various proofs for the various machines and contexts are depicted
in Figure 6.5.

In our development we use mathematical reals. We do not use floating-point
numbers, they may be introduced in further refinements which is out of the scope
of our work. So, we are not exploiting the results from automated verification
tools on floating-point numbers [Mul+10]. Static analysis [Gou01] or abstract
interpretation [CC77] (with tools such as Astrée [Cou+05]) have proved very
powerful to analyze such programs. Our approach remains at a modeling level.
Moreover, the set of axioms for reals in the Theory plug-in we have used does
not define reals in a constructive manner. So, we were not able to use the results
obtained by the Coq [BLM15] advanced proof tactics on reals. Indeed, our proofs
have been discharged using the interactive prover of Rodin, leading to a large proof
effort.

6.5 Conclusion
The development of cyber-physical systems requires to handle the behavior of the
physical plant (environment). This behavior is usually defined using continuous
time and is thus described by continuous functions producing feedback information
to the controller, which in turns produces orders to the actuators. In this chapter,
we have shown that it is possible to compose the development of both a controller
and the corresponding behavior of the physical plant. The controller corresponds
to a hybrid automaton. A simple one, with a single controlled variable, has been
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Figure 6.5 – Proofs size (number of nodes in the proof trees)

considered in this chapter. It consists in booting, running and then stopping a
physical plant (see Figure 6.1).

The main contribution concerns the synthesis of a discrete controller. We have
shown that the synthesis of a correct-by-construction discretization of a continuous
function associated to the behavior of a physical plant can be obtained by refinement.
The proof of the preservation of the invariants gluing the continuous and discrete
levels guarantees this correctness. We have introduced at the discrete level a variant
guaranteeing that the model is Zeno-free. The Theory plug-in for the Rodin Platform
and a theory of real numbers have been used to model continuous functions. To
the best of our knowledge, this is the first attempt to model continuous controller
discretization with the Event-B method and mathematical reals with Rodin. This
work has been published in [Bab+15].

In the next chapter (Chapter 7), we show how the substitution framework
presented in Chapter 4 is set up to model the substitution of continuous systems
introduced in this chapter.
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Chapter organization. Section 7.2 explores an incremental proof-based formal
development of system substitution for hybrid systems. Finally, Section 7.4 concludes
the chapter with some future research directions.

7.1 Introduction
In previous chapters, we proposed the development of a system substitution mecha-
nism (Chapters 4 & 5) and the development of discrete controllers derived from
continuous ones (Chapter 6). More precisely, we defined the reconfiguration mech-
anism to maintain a safety property for a system (defined as a state-transition
system) during failure by switching from one supporting system to another. The
defined approach has been successfully applied, for the discrete case, on web services
(Chapter 5). But it is not applicable straightforwardly for hybrid systems which need
to handle continuous features. In Chapter 6, we presented the formal development
of a continuous controller that is refined by a discrete controller preserving the
continuous functional behavior and the required safety properties. This work helped
us formulate more general strategies, introduced in this chapter, for the development
of system substitution for hybrid systems using formal techniques.

Hybrid systems are dynamic systems that combine continuous and discrete
behaviors to model complex critical systems, such as avionics, medical, and automo-
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tive, where an error or a failure can lead to grave consequences. For critical systems,
recovering from any software failure state and correcting the system behavior at
runtime is mandatory. Our system substitution mechanism is an approach that can
be used to recover from failure by replacing the failed system.

Objective of this chapter. Our prime objective is to model hybrid systems, and
to provide modeling patterns for reconfiguration, using a correct-by-construction
approach. This chapter contributes to setting up a novel technique for formalization
and verification of a generic system substitution mechanism for hybrid systems that
allows a system to be maintained in a safety envelope after failure by switching
from one supporting system to another. We use stepwise refinement in Event-B.
Moreover, we also show how the defined substitution or reconfiguration mechanism
allows handling hybrid systems characterized by continuous functions and continuous
time. We use the results of the previous chapter with discrete functions to address
the problem of modeling the continuous systems in discrete form while preserving
the continuous behavior. Particularly for hybrid systems, the system substitution is
not instantaneous, and it takes time to restore the state of the substituted system.
In fact, we require special treatment to handle it. The primary use of the models is
to assist in the construction, clarification, and validation of the continuous controller
requirements to build a digital controller in case of system reconfiguration or system
substitution. In this development, we use the Rodin Platform to manage model
development, refinement, proofs checking, verification and validation.

Reminder. As detailed in Section 3.2.3, we want to combine two systems whose
behavior and output are represented by Figure 7.1 in order to obtain a global system
whose behavior and output are modeled by Figure 7.2 and is able to substitute a
system by another one in case of failure.

1 2 3init

boot

start

progress

stop

stop

(a) Behavior

 
 

f

m

t 

M

0
booting running stopping

1 2 3

(b) Output

Figure 7.1 – Single system behavior and output

The studied systems are formalized as state-transition systems. The behavior of
such systems is characterized by three states: boot (1), progress (2) and stop (3).
The boot state is known as initial state, and the progress state is known as nominal
state of studied systems. According to Figure 7.1a, after initialization, a system
enters into the booting state, denoted as state 1, which may take a certain amount of
time. If a system does not require the booting phase, then the system initialization
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Figure 7.2 – Global system behavior and output

is followed by the start transition without any delay. After the start transition, the
system moves into the progress state, denoted as state 2, known as running state.
If the system stops, it switches into the stop state that is denoted as state 3.

7.2 Formal development
In this chapter, we model the system defined in Section 3.2.

This section describes the stepwise formal development of the systems selected
for our pattern of system behavior, composed of an abstract model and a sequence
of refined models. The abstract model formalizes only the system’s basic behavior,
while the refined models are used to define the concrete and more complex behaviors
in a progressive manner that preserves the required safety properties at every
refinement level.

Complete formal models are available in Appendix D.

7.2.1 The required contexts
The context C_reals (already presented in Model 6.1 page 86) defines the positive
mathematical real numbers and theorems helpful for discharging the proofs.

Model 7.1 introduces the constants defining the different system modes: MODE_F,
MODE_G and MODE_R for Sysf , Sysg and Repair modes) belonging to the
MODES set.

The next two contexts (C_envelope and C_margin) deal with the definition of the
safety envelope. As mentioned in the requirements defined in Table 3.1, we define
the interval of safe values in [m,M ] in the continuous case and in [m+ z,M − z]
with margin z in the discrete case.
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Context C_modes
Sets
MODES

Constants
MODE_F, MODE_R, MODE_G

Axioms
axm1: partition(MODES, {MODE_F}, {MODE_R}, {MODE_G})

End

Model 7.1 – Modes definition

Context C_envelope // Safety envelope
Extends C_reals
Constants
m, M

Axioms
axm01: m ∈ REAL_STR_POS
axm02: M ∈ REAL_STR_POS
axm03: smr(m,M)

Theorems
thm01: m ≤M
thm02: 0 ≤ m
thm06: 0 ≤M
thm03: ∀x · m ≤ x ⇒x ∈ REAL_POS
thm05: ∀a · m ≤ a ⇒0 ≤ a

End

Model 7.2 – Context C_envelope

Context C_margin // Safety envelope margin
Extends C_envelope
Constants
z

Axioms
axm01: z ∈ REAL_POS // z ∈ R+
axm02: M−m > 2∗z

Theorems
thm03: 0 ≤M−z
thm06: z ≤M−m
thm07: m ≤M−z
thm08: m+z ≤M
thm10: m+z ≤M−z

...
End

Model 7.3 – Context C_margin
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7.2.2 Abstract model: definition of a mode controller

As shown in Figure 7.2a, we use three states to define a simple abstract controller
(a mode automaton) that models system substitution through mode changes. Ma-
chine M0 (see Model 7.4) describes the abstract specification corresponding to the
reconfiguration state-transition system depicted in Figure 7.2a. The modes are used
in the guards of events to switch from one state to another. At initialization, Sysf

is started (MODE_F), it becomes active when the active variable is true (Sysf

ended the booting phase). When a failure or a halting condition occurs, progress of
Sysf is stopped. The controller enters in the repairing mode MODE_R. Once the
system is repaired, the mode is switched to MODE_G and Sysg enters into the
progress state.

Machine M0
Sees C_modes
Variables
active // true the system is started
md // running mode of the system

Invariants
type01: active ∈ BOOL
type03: md ∈MODES
tech01: active = FALSE

⇒md = MODE_F
Events
Event Initialisation =̂
Begin
act1: active := FALSE
act2: md := MODE_F

End
Event boot =̂
Where
grd1: active = FALSE
grd2: md = MODE_F

End
Event start =̂
Where
grd1: active = FALSE
grd2: md = MODE_F

Then
act1: active := TRUE

End

Event progress =̂
Where
grd2: active = TRUE
grd1: md = MODE_F

∨ md = MODE_G
End

Event fail =̂
Where
grd2: active = TRUE
grd1: md = MODE_F

Then
act1: md := MODE_R

End
Event repair =̂
Where
grd2: active = TRUE
grd1: md = MODE_R

End
Event repaired =̂
Where
grd2: active = TRUE
grd1: md = MODE_R

Then
act1: md := MODE_G

End
End

Model 7.4 – The mode automaton
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7.2.3 First refinement: introduction of the safety envelope
The first refinement introduces the safety envelope [m,M ] representing the main
invariant property fulfilled by all the functions f , f + g during substitution and g
after substitution. Machine M1, defined in Model 7.5, refines M0. It preserves the
behavior defined in M0 and introduces two kinds of events [SAZ14]:

• environment events (event name prefixed with ENV): they produce the system
feedback observed by the controller. In this refinement, three new real
variables f , g and p are introduced. The variables f and g record the feedback
information of Sysf and Sysg individually, while p records the feedback
information of the global system before, during and after substitution. The
variable p corresponds to f of Sysf in MODE_F, g of Sysg in MODE_G
and f + g of combined Sysf and Sysg in MODE_R corresponding to the
system repair (invariants mode01 to mode05 ). In all cases, p shall belong to
the safety envelope (invariants envelope01 and envelope02 ).
The ENV events observe real values corresponding to the different situations
where Sysf and Sysg are running or when Sysf fails and Sysg boots. This
last situation corresponds to the repair case.

• controller events (event name prefixed with CTRL): they correspond to refine-
ments of the abstract events of M0. They modify the control variable active
and md.

Machine M1 Refines M0
Sees C_envelope, C_modes
Variables

active , md, p, f , g
Invariants

...
envelope01: p ≤M
envelope02: active = TRUE ⇒m ≤ p

mode01: md = MODE_F ⇒p = f
mode04: md = MODE_F ⇒g = 0
mode02: md = MODE_R ⇒p = f + g
mode03: md = MODE_G ⇒p = g
mode05: md = MODE_G ⇒f = 0

Theorems
...

Events
Event Initialisation =̂

...
Event CTRL_started Refines start =̂
Where

grd3: m ≤ p ∧p ≤M
End
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Event ENV_evolution_f Refines progress =̂
Any new_f
Where

grd2: active = TRUE ∧md = MODE_F
grd5: f 6= m ∧ f 6= M
grd3: m ≤ new_f
grd4: new_f ≤M

Then
act1: f := new_f
act2: p := new_f

End

Event CTRL_limit_detected_f Refines fail =̂
Where

grd5: f = m ∨f = M
End

Event ENV_evolution_fg Refines repair =̂
Any new_f, new_g
Where

grd3: m ≤ new_f + new_g
grd4: new_f + new_g ≤M
grd5: 0 ≤ new_f
grd6: new_f ≤ f
grd7: g ≤ new_g
grd8: new_g ≤M

Then
act1: f := new_f
act2: g := new_g
act3: p := new_f + new_g

End

Event CTRL_repaired_g Refines repaired =̂
Where

grd3: m ≤ g
grd4: g ≤M
grd5: f = 0 // f+g to g is continuous

End

Event ENV_evolution_g Refines progress =̂
...

End

Model 7.5 – Refinement with ENV and CTRL events
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7.2.4 Second refinement: continuous behavior and contin-
uous time

We introduce a continuous controller defined on continuous time which character-
izes its behaviors with continuous functions. It is described in Machine M2 (see
Model 7.6). It models the behavior corresponding to Figure 7.3a. Once the modes
and the observed values are correctly set, the next refinements are straightforward.
They correspond to a direct reuse of the development of a correct discretization of
a continuous function as realized in Chapter 6. Indeed, continuous functions fc, gc,
pc and mdc corresponding to the variables f , g, p and md in M1 are introduced.
A real positive variable now is defined to represent the current time. The gluing
invariants (for example glue01 : p = pc(now)) connect the variables of machine M1
with the continuous functions values at time now in M2.

Machine M2 Refines M1
Sees C_corridor, C_thms
Variables

now, p_c, f_c, g_c
...

Invariants
type01: now ∈ REAL_POS
glue01: p = p_c(now)
glue02: f = f_c(now)
glue03: g = g_c(now)
corridor01 : ∀t · t ∈ [0, now] ⇒p_c(t) ≤M
...

Events
...
Event ENV_evolution_f
Refines ENV_evolution_f =̂
Any dt, new_f_c
Where

...
grd5: f_c(now) = new_f_c(now)
grd6: ∀ t · t ∈ [now,now+dt] ⇒new_f_c(t) ∈ [m,M]

With
new_f: new_f = new_f_c(now + dt)

Then
act1: now := now + dt
act2: p_c := p_c C−new_f_c
act3: f_c := f_c C−new_f_c
...

End
...
End

Model 7.6 – Machine M2
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In the same way, each event of M1 is refined. Time steps dt are introduced
and the continuous functions are updated by the environment ENV events. The
continuous functions are updated on the interval [now, now + dt] and now with
now := now + dt. The control CTRL events observe the value pc(now) to decide
whether specific actions on the mode mdc variable are to be performed or not.
Model 7.6 shows an extract of this machine and the detailed description of this
refinement is given in Chapter 6.

7.2.5 Third refinement: discretization of the continuous be-
havior

This last refinement models a discrete controller. A discrete function is associated to
values of the continuous function at each discrete time steps. The discrete behavior
is described in Machine M3 (see Model 7.7). It models the behavior corresponding
to Figure 7.3b. Here again, we follow the same approach as for the refinement of
the continuous behavior. As mentioned in the context C_margin, the margin z
is defined, such that 0 < z ∧m + z < M − z ∧ M −m > 2 × z. This margin
defines, at the discrete level, the new safety envelope [m+ z,M − z] ⊂ [m,M ]. The
new discrete variables fd, gd, pd and mdd of M3 are glued to fc, gc, pc and mdc of
M2. They correspond to discrete observations feedback of fc, gc, pc and mdc. The
discretization step is defined as δt. Each environment event corresponding to a
continuous event is refined into three events following our strategy presented in
Chapter 6. The discrete controller only observes the events on time jumps i.e. at
instants n× δt.
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Figure 7.3 – Continuous and discrete system substitution

Note that due to the discretization and to the introduction of the z margin, a
possible failure can be detected when pd(now) ∈ [m,m+ z[ ∨ pd(now) ∈]M − z,M ].
The predicted behavior is enforced by the discrete controller that detects a limit
before the value of m or M is reached. This situation is depicted in Figure 7.3b at
instant G.
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Machine M3 Refines M2
Sees C_discrete, ...
Variables

p_d, f_d, g_d
i // the current instant number
et // time elapsed from previous discrete value sampling time
...

Invariants
type01: p_d ∈ 0..i →REAL_POS
type02: i ∈ N
glue01: ∀ n· n ∈ 0..i ⇒p_c(n∗tstep)=p_d(n)
glue02: now = i∗tstep + et

...
Events
...
Event ENV_evolution_f_on_tick
Refines ENV_evolution_f =̂
Any dt, new_f_c
Where

...
Then

act01: f := new_f
act02: now := now + dt
act03: f_c := f_c C−new_f_c
act04: i := i + 1
act05: f_d(i+1) := new_f_c
act06: et := 0
...

End
...
End

Model 7.7 – Machine M3

7.3 Proof effort
Table 7.1 shows the proof statistics of the development with the Rodin Platform. To
guarantee the correctness of the system behavior, we established various invariants
in the incremental refinements. This development resulted in 732 (100%) proof
obligations, of which 202 (28%) were proven automatically, and the remaining 530
(72%) were proven interactively using the Rodin prover (see Table 7.1). These
interactive proof obligations are mainly related to the complex mathematical expres-
sions and the use of Theory plug-in for REAL datatype (i.e. the mathematical real
numbers), which are simplified through interaction, providing additional information
for assisting the Rodin prover.

We use the Theory plug-in for describing the hybrid systems and the required
properties. In this experiment, we found that proofs are quite complex and the
existing Rodin tool support is not powerful enough to prove the generated proof
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Table 7.1 – Proof statistics

Model Total number Automated Interactive
of POs proofs proofs

Abstract model (M0) 5 5 (100%) 0 (0%)
First refinement (M1) 93 48 (52%) 45 (48%)
Second refinement (M2) 209 71 (34%) 138 (66%)
Third refinement (M3) [projections] 425 78 (18%) 347 (82%)

Total 732 202 (28%) 530 (72%)
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Figure 7.4 – Proofs size (number of nodes in the proof trees)
obligations automatically. In fact, we need to assist the Rodin provers in finding the
required assumptions and predicates to discharge the generated proof obligations.
On the other hand, we also found that the Theory plug-in is not yet complete. This
work was done using Rodin 2.8, the Theory plug-in 2.0.2 and the Real theory from
the Standard Library 0.1. In order to discharge successfully the proof obligations,
we had to define several theorems, some of them as axioms, so as not to prove basic
mathematical properties on reals.

The sizes of the various proofs for the various machines and contexts are available
in Figure 7.4.
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7.4 Conclusion
In this chapter, we have used our existing approaches for addressing the challenges
related to formal modeling and verification for the system substitution for hybrid
systems. This work is a preliminary step for applying the system substitution
mechanism for hybrid systems. It has been published in [Bab+16b] and [Bab+16a].

We identified the following development steps to integrate the system substitution
mechanism for hybrid systems:

1. Define a set of modes for the controller;

2. Define a safety envelope to preserve the desired behavior;

3. Handle the continuous behavior and continuous time;

4. Model the discretization of the continuous function.

Use of system substitution mechanisms for hybrid systems is a challenging
problem as it requires to maintain a safety envelope through discrete implementation
of continuous functions. To address this problem, we have presented a refinement-
based formal modeling and verification of system reconfiguration or substitution for
hybrid systems by proving the preservation of the required safety envelope during
the system substitution process. In this chapter, we have extended the work of
Chapter 5 on system substitution to handle systems characterized by continuous
models. First, we formalized the system substitution at continuous level, then we
developed a discrete model through refinement by preserving the original continuous
behavior. The whole approach is supported by proofs and refinements based on
the Event-B method. Refinements proved useful to build a stepwise development
which allowed us to gradually handle the requirements. Moreover, the availability
of a theory of mathematical real numbers allowed us to introduce continuous
behaviors which usually rise from the description of the physics of the controlled
plants. All the models have been encoded within the Rodin Platform. These
developments required many interactive proofs in particular after the introduction
of real numbers. The interactive proofs mainly relate to the use of the Theory
plug-in for handling mathematical real numbers. Up to our understanding, the lack
of dedicated heuristics due to the representation of real numbers as an axiomatically
defined abstract data type, and not as a native Event-B type together with our
limited experience in defining tactics led to this number of interactive proofs.

After showing how our proposed substitution mechanism applies to both dis-
crete and continuous systems, we address, in the next chapter (Chapter 8), the
generalization of our framework.
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Chapter organization. The mathematical setting that describes the generaliza-
tion of the approach is presented in Section 8.2. Next, the corresponding Event-B
models handling this generalized model are described in Section 8.3 and the asso-
ciated instantiation mechanism is explained in Section 8.4. An example is used
to instantiate this generic model in Section 8.5. Then, an assessment of the pro-
posed approach is shown in Section 8.6, and finally, a conclusion summarizes our
contribution and some future research paths are discussed in the last section.
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8.1 Introduction

In this chapter we propose a generalization of our substitution framework introduced
in Chapter 4. In order to demonstrate it, we will instantiate it on the discrete case
already presented in Chapter 5 and obtain a similar final refined model.

Objective of this chapter. This chapter proposes a generic system reconfigura-
tion formal model developed using correct-by-construction stepwise refinement and
proof-based formal methods. Event-B supports the whole formal development of
the system substitution operator. The developed generic model can be instantiated
to any number of systems to be substituted. The proposed approach is generic:
it depends on neither the internals of the systems nor the type of repair. An
instantiation mechanism, based on a specific refinement with witnesses, is proposed
to overcome the state space explosion problem usually encountered when model
checking-based verification techniques are set up.

Every time a substitution case needs to be considered, we have to perform a
complete formal development in order to apply the approach detailed in the previous
chapters. In this sense, the previous approach provides a correct substitution
mechanism, but it is not generic. Neither the development nor the verification
processes can be reused. Instead of applying the previously described development
for every system, we advocate the use of a generic correct-by-construction approach.
The proposed generalization consists in expressing the system elements as first-order
objects manipulated by the Event-B models and then building specific systems as
instances of these objects. Systems, states, transitions, invariants, variants, etc.
become objects of the proposed model, and the described system behavior conforms
to Figure 2.4 page 25.

8.2 Mathematical setting for substitution

The formal mathematical setting to handle the system substitution is given below,
providing the basic mathematical definitions to characterize systems. All the
elements describing systems and their behavior are introduced: variables, states,
variants, invariant, events and systems

8.2.1 Variables and states

Variables represent states. They belong to a set Variables. Their values are taken in
the set ValueElements. Variables are associated to their values by a partial function,
called valuation, belonging to the set Valuations, defined as:

V aluations ⊆ V ariables 7→ P(V alueElements)
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8.2.2 Systems
Systems belong to the set Systems of all the systems. A system is a tuple defined
as a structure involving all the features composing a system. So, for all system in
Systems, we define

system =
〈
variables, variant, invariant, init, progress

〉
where:

• variables is a set of variables representing the state of the system:

variables ⊆ V ariables

• variant is a function producing the natural value of the variant from a valuation
of the variables:

variant ∈ V aluations→ N

• invariant is a predicate defined on the variables values:

invariant ∈ V aluations→ BOOL

• init and progress are two generic before-after predicates recording state
changes.

8.2.3 Initialization and progress
The initialization of the global system selects the first system to run. The progress
event models a trace of assignments of new valuations for the system state variables
that satisfy the invariant.

8.2.4 Systems substitution relation
System substitution requires the definition of a relation associating the source
system states with the target system ones. As defined in Equation (8.1), this
relation is given by the definition of an invariant, named horizontal invariant, as
defined in previous chapters (see Section 4.3.3).

∀SS, ST ∈ Systems.
∀InvH(SS, ST ) ∈ states(SS)× states(ST )→ BOOL.
substitute_states(SS, ST ) =

{(sS, sT ) ∈ states(SS)× states(ST ) | InvH(SS, ST )(sS, sT )} (8.1)

Here:1
1If E is a set, then E2 denotes the Cartesian product E × E
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• states is a function returning the possible valuations of a given system:

states ∈ System→ V aluations

• InvH is a predicate defining the horizontal invariant involving the values of
the variables of the source and target systems:

InvH ∈ System2→ V aluations2→ BOOL

The invariant InvH links the source and target states. It plays the role of
Recover in the proof obligation defined in Equation (4.3) page 53. In the generic
model, its definition is given by an equivalence relation. This definition entails the
definition of the repair relation: repair ∈ Systems2× (V aluations→BOOL)2. It is
parameterized by two predicates ψ and ϕ according to the definition of Section 5.2.3.

∀SS, ST ∈ Systems.
∀ψ ∈ states(SS)→ BOOL. ∀ϕ ∈ states(ST )→ BOOL.
repair(SS, ST , ψ, ϕ) = {(sS, sT ) ∈ substitute_states(SS, ST ) |

InvS(SS)(sS) ∧ ψ(sS)⇔ InvS(ST )(sT ) ∧ ϕ(sT )} (8.2)

where InvS(SX)(sX) is the value (satisfied or not) of the system invariant of the
system SX in the state sX .

Recall. The predicates ψ and ϕ (both different from False) define different repair
or substitution modes.

• ψ = True∧ϕ = True in the case ST is an equivalent system substitute. This
is the only case addressed in this chapter;

• ψ 6= True ∧ ϕ = True in the case ST upgrades SS;

• ψ = True ∧ ϕ 6= True in the case ST degrades SS.

8.2.5 Substitution property
The condition to substitute a system SS by a system ST in the case of equivalence is
given by the repairable_equiv predicate characterizing the set of substitute systems.

repairable_equiv(SS) = ∃ST ∈ Systems · repair(SS, ST , T rue, True) 6= ∅

(8.3)
According to Equation (8.2), here the predicates ψ and ϕ are set to True in

Equation (8.3) to obtain the equivalence addressed in this contribution.
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The generic setting

Finally, the generic system of systems setting is given by a graph characterized by
the pair SoS = 〈Systems, repair〉 where Systems is the set of available systems
(nodes) and repair is the relation among the available systems (edges). The obtained
graph of systems may be constrained by additional properties. For example, a
property could be that each system has at least two substitute systems. This is out
of the scope of this contribution.

8.3 An Event-B model for system substitution
The mathematical setting described above has been completely formalized within the
Event-B method. The complete Event-B development is available in Appendix E.
This development first expresses the system substitution strategy at a higher level,
and then reuses this development for each specific system substitution. The specific
system is obtained by instantiation of the generic model. Instantiation is defined
by a particular use of refinement. Specific systems, defining instances, are witnesses
of the generic development. This formalization led to the definition of a context C0
and of two machines M0 and its refinement M1.

8.3.1 Static part: required definitions
The context C0 (Model 8.1) implements the theory associated to the system
substitution relation. It introduces all the elements describing systems as formalized
previously in Section 8.2.

Context C0
Sets

Variables, ValueElements
Constants

Valuations, VariablesSets , Systems, Systems_states, system_of,
HorizontalInvs, varval_of

Axioms
set1 : finite (Variables)
set2 : finite (ValueElements)
type1: Valuations ⊆ Variables 7→P (ValueElements)
type2: VariablesSets ⊆ P (Variables)
prop1: VariablesSets 6= ∅
prop2: ∀ v1,v2 · (v1 ∈ VariablesSets ∧ v2 ∈ VariablesSets ∧ v1 6= v2)

⇒v1 ∩v2 = ∅

Model 8.1 – Context C0 containing basic definitions and properties (part 1 of 3)

Two basic sets Variables and ValueElements are defined. They represent finite
sets (set1 and set2 axioms in Model 8.1) of possible system variables and their
possible values. They are used to characterize other elements defined in the
Constants clause of Model 8.1.
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• Valuations defines the possible values for variables (type1 ), and

• VariablesSets is a non empty (prop1 ) set (type2 ) containing disjoint sets
(prop2 ) of the powerset of the Variables set.

The following elements are introduced:

• Systems, Systems_states, system_of to characterize the considered systems,
their states and a function which returns the system associated to an input
state,

• HorizontalInvs the invariant to repair two systems,

• varval_of function which returns the variant associated to a given system.

Their properties are described in the next section.

States and systems.

State variables are manipulated by the defined recovery mechanism. Systems is a set
(finite and non empty in prop3 in Model 8.2) characterizing the potentially available
systems involved in a substitution. As stated above, they are considered as state-
transition systems. In the context C0 (Model 8.2) systems are characterized (type3
and type4 ) by their set of state variables together with their possible values. To
identify the system a state belongs to, we have introduced the system_of function
(fun1 ) returning the system of an input state. Being a function, system_of ensures
that a state belongs to a single system.

Remark. Observe that transitions between states are not given in the C0 context,
they will be introduced in the machine part of this generic Event-B model.

type3: Systems ⊆ VariablesSets ×(Valuations 7→N)
type4: Systems_states ⊆ Systems ×Valuations
...
prop3: finite (Systems) ∧Systems 6= ∅
...
prop5: Systems_states 6= ∅
prop6: dom(Systems_states) = Systems
...
fun1: system_of = (λ syst_st ∈ System_states | prj1(sys_st)))

Model 8.2 – Context C0 containing basic definitions and properties (part 2 of 3)

Systems properties: invariants and variants.

The last part of this context (Model 8.3) introduces the properties required for
system substitution i.e. the horizontal invariant for the preservation of the global
system invariant and the variant to identify the recovery state.
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• The statement type10 defines the type of the horizontal invariant which
associates corresponding repair states in systems.

• Property prop7 guarantees that, for every system, the domain of the valuation
function is the set of variables.

• Property prop8 ensures that this invariant is well-defined on the states to be
recovered.

• The variant expression is accessed by the fvar_of function in fun4. It returns,
for a given state, the function computing the value of the variant, while
the varval_of function (of fun5 ) returns, for a given state, the value of this
variant.

type10: HorizontalInvs
∈ (Systems ×Systems) 7→((Systems_states ×Systems_states) 7→BOOL)

prop7: ∀ sys_st · sys_st ∈ Systems_states
⇒dom(prj2(sys_st))= prj1(prj1(sys_st))

prop8: ∀ s1,s2, sst1 , sst2 ,b ·
((s1 7→ s2) 7→ {(sst17→ sst2) 7→ b} ∈ HorizontalInvs )

⇒( s1 = system_of(sst1) ∧s2 = system_of(sst2) )
...
fun4: fvar_of = (λ syst_st ∈ System_states | prj2(prj1(sys_st))))
fun5: varval_of = (λ syst_st ∈ System_states |

fvar_of(sys_st)(prj2(sys_st))))
...

End

Model 8.3 – Context C0 containing basic definitions and properties (part 3 of 3)

8.3.2 Dynamic part: modeling the recovery behavior
The previous context introduced the definition of systems and their states, together
with the notion of horizontal invariant describing the repair condition to guarantee
preservation of the safety system properties. The second part of our generic model
defines the Machine part to represent the behavior and system transitions.

The refinement strategy. A first machine and two refining machines are defined
to model the behavioral part of our model. This decomposition has been defined to
ease the proof process. At the top level (Machine M0), we introduce the generic
specification of the system level. We observe the running system, its failure and
repair and the case of complete failure (no system available for repair). The first
refinement introduces the behavior of the running system (by introducing the
progress event) and strengthens the definition of the repairing event (repair
event) exploiting the horizontal invariant. The definition of the obtained model
conforms to the system behavior pattern depicted by the transition system of
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Figure 2.4. Finally, the last refinement is devoted to the instantiation of the generic
model for specific cases.

As mentioned, we identify four categories of transitions. Each category cor-
responds to an Event-B event in the generic Event-B models. The full model
containing the four transition categories (initialization, progress, failure
and repair) is obtained in two steps: a top-level machine and one single refinement.
This decomposition has been defined to ease the proof process The definition of
the final obtained model conforms to the system behavior pattern depicted by the
transition system of Figure 2.4.

The top level specification.

The first abstract machine M0 introduces systems without manipulating system
states since system behavior is not considered yet (Models 8.4 and 8.5).

Current system and state (Model 8.4). The available_systems and current_system
variables define respectively all the available healthy systems for substitution and
the current running system.
Machine M0 Sees C0
Variables
current_system, available_systems

Invariants
type1: available_systems ⊆ Systems
type2: current_system ∈ Systems

Model 8.4 – Skeleton of machine M0 (part 1 of 2)

The Initialisation event (Model 8.5). It defines the set of all available systems
(act1 ) and the first running system arbitrary chosen (act2 ) in Systems, the set of
all systems.

The events describing the system life cycle (Model 8.5). At this first level
of modeling, only the life cycle of the systems is captured. The internal behavior of
each system is not observed yet.

This machine defines system modes and the failure occurrence together with
the associated repair action:

• The Repair (repair event) consists in switching the current running system
to another one selected among the available set of systems.

• When a system fails (fail event), it is removed from the available systems
set.

• The global system (made of all the systems) has completely failed when the
set of available systems is empty (complete_failure event).
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First refinement.

Machine M1 of Model 8.6 refines M0 to define the final complete generic substitution
model by introducing the internal system behavior.

Events
Event Initialisation =̂
Begin
act1: available_systems := Systems
act2: current_system :∈ Systems

End
Event Fail =̂
Any system
Where
grd1: system ∈ available_systems

Then
act1: available_systems := available_systems \{system}

End
Event Repair =̂
Any next_system
Where
grd1: next_system ∈ available_systems
grd2: current_system /∈ available_systems

Then
act1: current_system := next_system

End
Event Complete_failure =̂
Where
grd1: available_systems = ∅

Then
skip

End
End

Model 8.5 – Skeleton of machine M0 (part 2 of 2)

Machine M1 Refines M0 Sees C0
Variables
current_system_state, available_system_states

Invariants
type1: available_systems_states ⊆ Systems_states
type2: current_system_state ∈ System_states
glue1: available_systems = dom(available_system_states)
glue2: current_system = system_of(current_system_state)

Variant
var1: varval(current_system_state)

Model 8.6 – Extract of the machine M1 (part 1 of 4)
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Strengthening the invariants in the refined machine (Model 8.6). The
refined machine defines new model variables in addition to the variables of the
abstraction (available_systems and current_system). These new model variables
deal with system states: current_system_state to model the state of the running
system current_system and available_system_states to define all the states of the
systems in the available_systems set. These variables are used to describe the
internal behavior of systems which remained abstract in the top machine.

Two relevant gluing invariants are introduced:

• glue1 guarantees that the considered states are exactly those corresponding
to the available systems, and

• glue2 guarantees that the current_state variable corresponds to the current
state of the running system current_system.

Finally, a variant value is associated with the current state of the running system
by statement var1.

Unchanged events (Model 8.7). The new variables are initialized at the initial
state of the running system for the current_system_state. complete_failure and
fail events remain unchanged.
Events
Event Initialisation =̂ ...
Event Fail Refines Fail =̂ ...
Event Complete_failure Refines Complete_failure =̂...

Model 8.7 – Extract of the machine M1 (part 2 of 4)

Introducing system behaviors: the progress event (Model 8.8). The new
progress event introduces the behavior of the current system: progress changes
the new state valuation (act1 ) to the new value defined as new_valuation parameter.
Event Progress =̂
Any
new_valuation

Where
grd1: current_system ∈ available_systems
grd2: new_valuation ∈ Valuations
grd3: dom(new_valuation) = dom(valuation_of(current_system_state))
grd4: fvar_of(current_system_state)(new_valuation)

< varval_of(current_system_state)
Then
act1: current_system_state :=

system_of(current_system_state) 7→ new_valuation
End

Model 8.8 – Extract of the machine M1 (part 3 of 4)
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The guard of this event requires that the new_valuation parameter is a possible
valuation for the variables of the current state of the running system (grd1, grd2
and grd3 ). Moreover, this valuation shall decrease the value of the variant to ensure
progress (grd4 ).

The progress event at the generic level only models the coherence of the
behavior but does not model any specific of the systems. Each concrete system will
be a refinement of this model, and will detail its behavior by refining this progress
event. We do not model the concrete behavior of the systems at the generic level.

Refinement of the repair event to handle system behaviors (Model 8.9).
The refined event repair switches the current system to the substitute one (act1 )
and defines the recovery state in the substitute system (act2 ). Both these ele-
ments are described in terms of the variables new_variables, new_variant and
new_valuation which are the results of the following guards:

Event Repair Refines Repair =̂
Any new_variables, new_variant, new_valuation, h_inv
Where
grd1: current_system /∈ available_systems
grd2: new_variables ∈ VariablesSets
grd3: new_variant ∈ Valuations 7→N
grd4: new_valuation ∈ Valuations
grd5: (new_variables 7→ new_variant) 7→ new_valuation

∈ available_systems_states
grd6: new_variables 6= variables_of(current_system_state)
grd7: new_variant(new_valuation) = varval_of(current_system_state)
grd8: h_inv =

HorizontalInvs(current_system 7→ (new_variables 7→ new_variant))
grd9: h_inv(current_system_state 7→

((new_variables 7→ new_variant) 7→ new_valuation))= TRUE
grd10: current_system 7→ (new_variables 7→ new_variant)

∈ dom(HorizontalInvs)
With
next_system: next_system = new_variables 7→ new_variant

Then
act1: current_system := new_variables 7→ new_variant
act2: current_system_state :=

(new_variables 7→ new_variant) 7→ new_valuation
End

Model 8.9 – Extract of the machine M1 (part 4 of 4)

• grd2 : the new variables set is one of the possible variable sets (typing con-
straint)

• grd3 : the new variant has the correct type (partial function of the variables
which outputs a natural)

119



CHAPTER 8. GENERALIZATION

• grd4 : the new valuation is a member of the possible valuations set (typing
constraint)

• grd5 : the new state constituted of new_variables, new_variant and new_valuation
exists and is available (has not yet failed)

• grd6 : the new variables are not variables of the current system, which ensures
that the substitute system is different from the failed one

• grd7 : the value of the new variant computed on the new valuation of the
variables is equal to the value of the variant at the current state of the system
being replaced. This means that the new system will continue the work where
the previous one stopped because the variant are constructed here to model
the progress of the system.

• grd8 : the horizontal invariant corresponding to the pair of systems composed
of the current system and the new system is extracted from the context in
the variable h_inv

• grd9 : the specific horizontal invariant h_inv is enforced to be true on the pair
on system states. This means that the state of the new system corresponds to
the state of the replaced system as defined in the horizontal invariant relation.

• grd10 : there exists an horizontal invariant defined for the pair of systems
composed of the current system and the new system

Finally, a witness (With clause) is provided to make explicit the substitute
system giving its new state variables and variant value.

8.4 Instantiation of generic Event-B by refine-
ment

In the previous section, we have presented a generic model for system substitution
corresponding to the pattern depicted on Figure 2.4. This model is divided in two
parts: one modeling systems, states, variables, variants and invariants; and a second
modeling the behavior of systems and of the substitution mechanism. Instantiation
consists in setting up the obtained generic model for specific systems. It is obtained
after two steps, described below, corresponding to the instantiation of each modeling
part.

8.4.1 Step 1. The instantiation context
First, specific values of the abstract sets defined in the context C0 presented in
Section 8.3.1 are introduced. An instantiation context C0_instance, extending the
context C0 (Model 8.1), is defined with concrete values for all the sets (Variables,
ValueElements) and for the constants (Valuations, VariablesSets, Systems and
System_states). In the case of our example, they are given in Model 8.11.
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COMPENSATION

8.4.2 Step 2. Refinement and witnesses for instantiation
In order to use the concrete values defined in the context C0_instance, a machine M2
refining M1 is defined. This machine contains all the specifics of the system. The
behavior of the system, previously modeled in a generic way by the event progress,
is now detailed by events progress_sysX_ABC corresponding to the progress events
i.e. transitions in the specific system sysX. Concrete event variables of M2 and
abstract variables of M1 – previously defined with event parameters (Any clause) –
are glued thanks to the use of witnesses (using the With clause). Model 8.10 shows
an example of such an instantiation: the parameter new_status is instantiated in
this particular case with the value OPEN . The guard grd1 ensures that this event
modeling the open transition in sys1 is only enabled when the running system is
sys1. The second guard grd2 models a specific element of this transition open.

Event progress =̂
Any
new_status

Then
act1: state := new_status

End

Event progress_sys1_open
Refines progress =̂
Where
grd1: current_system = sys1
grd2: state = CLOSED

With
new_status = OPEN

Then
act1: state := OPEN

End

Model 8.10 – Instantiation principle: use of refinement with witnesses

8.5 Application to the case study on web service
compensation

In this section, the case study presented in Section 3.1 is developed again as an
instance of the generic model of Section 8.2 following the instantiation principle of
Model 8.10. It is formalized as an instance of the generic approach.

8.5.1 Step 1. The instantiation context. Application to the
case study

The instantiation context C0_instance of Model 8.11 provides concrete values for
the deferred sets of the context C0. All the sets corresponding to the static charac-
terization of the systems like Variables, ValueElements, Valuations, VariableSets,
Systems_states, Systems and HorizontalInvs are valued by set comprehensions of
possible instances. They characterize specific systems corresponding to the case
study of Section 3.1.
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• The three variables defined by axm1 are the cart of the first system (C1 ) and
the carts of the second system (C2a and C2b).

• The values of the variables are elements from ValueElements which is consti-
tuted of the 5 available products Prod1 to Prod5 .

• The valuations are restricted to only depend on the sets of variables of the
systems. This prevents incoherent functions that would depend on variables
from disjoint systems.

• The sets of variables of the systems are specified explicitly by axiom axm4.

• The first system Sys1 is defined in axm5 by its variable (C1 ) and its variant
(5− card(C1)).

• The second system Sys2 is defined in axm6 by its variables (C2a and C2b)
and its variant (5− card(C2a ∪ C2b)).

• The set of all systems is defined as composed of Sys1 and Sys2 .

• The fundamental axiom axm9 defines the horizontal invariants set, which is
here a singleton, describing a horizontal invariant from Sys1 to Sys2 : C1 =
C2a ∪ C2b. It corresponds to the repair property introduced in Section 4.2.

Context C0_instance Extends C0
Constants
C1, C2a, C2b, Prod1, Prod2, Prod3, Prod4, Prod5, Sys1, Sys2

Axioms
axm1: partition(Variables, {C1}, {C2a}, {C2b})
axm2: partition(ValueElements, {Prod1}, {Prod2}, ... , {Prod5})
axm3: Valuations = ({C1} →P (ValueElements))

∪ ({C2a,C2b} →P (ValueElements))
axm4: VariablesSets = {{C1},{C2a,C2b}}
axm5: Sys1 = {C1} 7→ (λ val ·val ∈ {C1} →P (ValueElements) |

card(ValueElements) −card(val(C1)))
axm6: Sys2 = {C2a,C2b} 7→ (λ val ·val ∈ {C2a,C2b} →P (ValueElements) |

card(ValueElements) − card(val(C2a) ∪val(C2b)))
axm7: Systems = {Sys1,Sys2}
axm8: Systems_states = Systems ×Valuations
axm9: HorizontalInvs = {(Sys1 7→ Sys2)7→ (λ (sst1 7→ sst2) ·

sst1 ∈ {Sys1}×({C1}→ P (ValueElements))
∧ sst2 ∈ {Sys2}×({C2a,C2b} →P (ValueElements)) |

bool(valuation_of(sst1)(C1) =
valuation_of(sst2)(C2a) ∪valuation_of(sst2)(C2b)))}

...
End

Model 8.11 – The instantiation context C0_instance
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8.5.2 Step 2. Refinement and witnesses for instantiation.
Application to the case study

The events of machine M1 are refined by machine M2 (Models 8.12 & 8.13) for
instantiation according to the principle of Section 8.4.2. M2 models the instantiated
machine for the events of the case study on web service compensation defined in
Section 3.1.

In this machine, the concrete variables sys1_cart, sys2_cart1 and sys2_cart2
have been defined as instantiation of the abstract variables C1 , C2a and C2b. The
invariants glue1 and glue2 ensure the coherence between the two abstraction levels.

In the repair_sys1_to_sys2 event, grd6 expresses the concrete form of the
horizontal invariant which was previously specified by h_inv, now only visible in
the witness. We can also see the connection between the abstract and the concrete
variables in grd7 and act2.

The progress_sys1 event (detailled in Model 8.13) corresponds to the event
addItem_WS1 (Model 5.4) of Sys1 (one website system). It consists in adding a
product (new_prod) in the cart C1 of the website site1. The event is defined in
terms of the concrete variables and the connection with the abstract parameters is
given by the witness (as well as enforced by the invariants).
Event progress_sys1 Refines progress =̂
Any new_prod
Where
grd1: current_system = Sys1
grd2: Sys1 ∈ available_systems
grd3: new_prod ∈ ValueElements
grd4: new_prod /∈ sys1_cart

With
new_valuation: new_valuation = {C1 7→ (sys1_cart ∪{new_prod})}

Then
act1: sys1_cart := sys1_cart ∪{new_prod}
act2: current_system_state := Sys1 7→ {C1 7→ (sys1_cart ∪{new_prod})}

End

Model 8.13 – The generic progress event for one website of machine M2

8.6 Assessment
The main benefit of this proposal resides in the fact that the proof of correctness
for the substitution strategy is performed only once. However, this proof together
with the proof of refinement are more complex as they are generic.

8.6.1 Proof statistics
Table 8.1 shows the proof statistics for the whole Event-B developments. We note
that a lot of efforts are devoted to the interactive proof of the instantiation. All
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Machine M2 Refines M1 Sees C0_instance
Variables
available_systems, available_systems_states
current_system, current_system_state
sys1_cart, sys2_cart1, sys2_cart2

Invariants
glue1: system_of(current_system_state) = Sys1 ⇒

valuation_of(current_system_state)(C1) = sys1_cart
glue2: system_of(current_system_state) = Sys2 ⇒

valuation_of(current_system_state)(C2a) = sys2_cart1
∧ valuation_of(current_system_state)(C2b) = sys2_cart2

Events
Event Initialisation =̂ ...
Event failure_sys1 Refines failure =̂ ...
Event failure_sys2 Refines failure =̂ ...
Event repair_sys1_to_sys2 Refines repair =̂
Any new_sys2_cart1, new_sys2_cart2
Where
grd1: new_sys2_cart1 ∈ P (ValueElements)
grd2: new_sys2_cart2 ∈ P (ValueElements)
grd3: current_system = Sys1
grd4: Sys1 /∈ available_systems
grd5: Sys2 ∈ available_systems
grd6: sys1_cart = new_sys2_cart1 ∪new_sys2_cart2
grd7: Sys2 7→ {C2a 7→ new_sys2_cart1, C2b 7→ new_sys2_cart2} ∈

available_systems_states
With
h_inv: h_inv = HorizontalInvs(Sys1 7→ Sys2)

Then
act1: current_system := Sys2
act2: current_system_state := Sys2 7→ {C2a 7→ new_sys2_cart1,

C2b 7→ new_sys2_cart2}
act3: sys2_cart1 := new_sys2_cart1
act4: sys2_cart2 := new_sys2_cart2

End
Event complete_failure Refines complete_failure =̂ ...
Event progress_sys1 Refines progress =̂ ...
Event progress_sys2_c1 Refines progress =̂ ... // detailed below
Event progress_sys2_c2 Refines progress =̂ ...

End

Model 8.12 – The instantiation machine obtained M2 by refinement
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the proof obligations associated with the formal Event-B development presented
here have been proved either with the automatic provers associated in the Rodin
Platform or using interactive proofs handled by the developer on the Rodin Platform
as well.

The key point related to scalability concerns the instantiation of specific systems.
Indeed, the development presented above is a generic one, defined at a meta-level,
where the proof obligations associated to the correctness of the system substitution
obtained in Section 4.3.1 act as meta-theorems.

The use of the generalized substitutions (Any constructs) shows that the devel-
opment considers any transition system described by a template corresponding to
Figure 2.4 together with the associated invariants expressed in the corresponding
Event-B models.

Table 8.1 – Rodin proofs statistics

Event-B Generated proof Automated Interactive
model obligations proofs proofs

Context C0 7 5 2
Machine M0 5 5 0
Machine M1 28 22 6

Instantiation context C0_context 3 2 1
Instantiation machine M2 54 39 15

Total 97 73 24

This looks very interesting and promising because this means that the sub-
stitution mechanism pattern has only to be proved once. However, the proof is
more difficult than the concrete system alone. Therefore, the choice depend on
the possibility to reuse a particular substitution pattern in several development
projects.

Note that model checking techniques can be applied to automatically check the
correctness of the instantiation. The exploration of all the possible states is possible
since the sets are defined with a finite number of values in the context C0_instance.
However, these techniques face the state explosion problem. For instance, the
difficulty of the proofs in our approach is not affected by the number of products
whereas a method which would have to explicitly enumerate all the possible values
of the carts would be severely limited by the huge numbers of possibilities due to
combinatorics.

The sizes of the various proofs for the various machines and contexts are available
in Figure 8.1.

8.6.2 Correct-by-construction formal methods
The proposed approach is a generic one. The context C0 describes the manipulated
system concepts explicitly (systems, variables, HorizontalInvs, etc.). These concepts
are manipulated as first-order objects in the machines M0 and M1 in order to
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Figure 8.1 – Proofs size (number of nodes in the proof trees)

encode the behavior pattern described with the events Initialization, progress,
fail, repair and complete_failure as show on Figure 2.4. Let us note that
transitions are not manipulated as first order objects and thus not defined within
the context C0.

One may wonder why the transitions between states are not defined explicitly
in this context C0. There are two main reasons for that.

• First, transitions are not explicitly manipulated by the substitution mechanism
we introduced. This reduces heavily the complexity of the generic model
because it relies upon the refinement capabilities of Event-B to handle the
modeling of the core behavior of the system.

• Second, the Event-B method provides a powerful built-in inductive proof
technique based on invariant preservation by the events (see Table 1.1). This
enables us to split the overall proof into smaller, more manageable proofs.

Therefore, we rely on the definition of Event-B events to define generic transitions
(using the progress event). The proofs of invariant preservation and of variant
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decrease are achieved at the abstract level of machine M1. They are preserved by
any other machine that refines it.

To instantiate these generic events for a specific system acting as a system
instance, the abstract events of machine M1 are refined. An event refining an
abstract event is introduced for each concrete event of the system instance (e.g.
the event progress_sys1 corresponding to the concrete addItem_WS1 event refines
the abstract progress event). The only proof effort relates to the correct event
refinement.

Note that in other traditional correct-by-construction techniques like Coq [BC04;
The16] or Isabelle [NPW02; Wen16], classical inductive proof schemes are offered.
One has:

• first to describe the inductive structure associated to the formalized systems,

• then to give a specific inductive proof scheme for this defined inductive
structure and,

• finally to prove the correct instantiation.

In the core definition of these techniques, the inductive process associated to
transition systems corresponding to the pattern of Figure 2.4 and the refinement
capability are not available as a built-in inductive proof process (like in Event-B
where this notion is available through state variables and events). The developer
would have to formalize the notion of transition together with corresponding induc-
tive proof principles and the instantiation of transitions because event refinement is
not available.

Compared to the Event-B method, there is a need of another meta level specifi-
cation and proof process.

8.7 Conclusion
In this chapter, we have presented an approach for correct system substitution that is
generic and that can be instantiated to any number of systems, thus it could scale in
practice. An instantiation mechanism based on the definition of witnesses has been
defined. Note that, since instantiation is performed by refinement, solely the last
refinement step shall be proved for each new instantiation. It corresponds to checking
that the witnesses belong to the set of correct systems. From a methodological
point of view, when instantiation by model checking does not scale up, one may
use the defined instantiation mechanism based on witnesses. The whole proposed
approach has been modeled within the Event-B method. Refinement and proof
have been extensively used to obtain the whole model and its instantiations. We
believe our results could be used in other formalisms because only the use of the
Event-B refinement relation to link the pattern and its instantiations is specific of
our tool. This work has been published in [BAP16b].

We did not apply our generic approach to systems with continuous behaviors.
However, considered the work presented in the previous chapters on the modeling
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of the substitution in continuous systems at a concrete level, we believe that our
generic approach could be applied to a continuous system.
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Conclusion and perspectives

Conclusion
In this thesis, we addressed the problem of correct system substitution as a system
development activity to handle the problem family of system evolution at design
time or runtime. We consider that a source system can be substituted (replaced) by
another system, namely a target system. A generic system substitution operation
has been defined and formalized. Applicability of this operation on both discrete
event-based systems and hybrid systems has also been demonstrated. Several
contributions resulted from our work:

• First, we propose a model for a stepwise correct-by-construction method which
encompasses the various characteristics of the system substitution operator
we have defined. The proposed approach is based on refinement and proof
and uses the Event-B method as support for the development.
A class of systems refining a shared specification is formally developed. They
represent the set of systems that may substitute each other. The designed
substitution operator is parameterized by a safety property, named horizontal
invariant, ensuring the quality of the services offered by the substitute system.
This operator is able to restore the state of the source system, using this
horizontal invariant, in the identified corresponding state of the target system.
This substitution operator offers several modeling options for system substitu-
tion:

– It can be used to replace systems at design time (when the state of the
restored system is the initial state) or at runtime (when the state of the
restored system is an identified state of the target system corresponding
to the halting state of the source system).

– According to the definition of the gluing invariant, this operation offers
the capability to define different substitution modes: equivalent, degraded
and upgraded modes.

– When the states of the source and target systems are disjoint, the
substitution corresponds to a replacement of a system by a new one. But
other capabilities are offered when the halting state of the source and the
restarting state of the target systems are identical (e.g. self-? systems,
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autonomous systems, etc.) or when part of the source and target system
states are shared (e.g. maintenance).

• Second, we have experimented the use of the defined system substitution
operation in two situations that correspond to semantically different categories
of systems where the system substitution operation was instanciated in order
to handle:

– discrete systems whose behavior is formalized by discrete models namely
state-transition systems in our case. This use was illustrated with the
web services compensation case where compensation is modeled as a
service substitution. Web services compensation at runtime has been
modeled as a specific definition of the proposed substitution operator.
This proposal led to the definition of a new compensation mechanism
for web services that is not yet formalized in the current standards of
web services.

– hybrid systems, or cyber-physical systems, whose behavior is continuous
and require the introduction of continuous mathematical features for
their modeling. We relied on the theory plug-in in Event-B in order to
model these aspects.
In general, halting and starting these systems is not instantaneous. The
proposed formalization of our system substitution operator enabled us to
define a system substitution on such systems. We have shown that the
state restoration maintains the safety invariants even when substitution
is not instantaneous, provided that some properties of the physics of the
system are taken into account in the formal model.
A formalization of the discretization of the defined continuous behaviors
has been defined, it allows a developer to identify how such systems are
controlled.

• Finally, we naturally studied the capability to develop the substitution opera-
tion as a generic operator that can be instantiated for any system defined as
a state-transition system.
We succeeded in generaling our approach and defined a generic model formal-
izing the defined substitution operator using an explicit model for states and
for the horizontal invariants using lambda expressions (deep modeling) and
the events of the Event-B machines to model the transitions of the considered
systems (shallow modeling).
The system substitution we defined for web services compensation has been
obtained by instantiating the defined generalization. Web services and the
corresponding gluing invariant has been provided as instances of the defined
generalized model.
Moreover, this generic model enabled us to concentrate the proof effort on the
generalized level (reusable level of abstraction) in order to share this proof
effort among several particular instantiations.
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Perspectives
The results obtained in this thesis opened several new research directions. Below,
we give a non-exhaustive list of the perspectives to our work.

Two types of perspectives have been identified.
The first category relates to the specific case studies of web services and cyber-

physical systems modeling.

The case of web services management

• Web services compensation. Our model of service compensation does not
make explicit the choice of the compensating service. This could be addressed
using quality of service properties that may complete the functional invariants.
Defining classes of services can be a solution for such a characterization.
The substitute web service would be selected at runtime among the services
belonging to this class.

• Several ontology models have been introduced to define semantic web services.
In these ontologies, classes of functionally equivalent web services are defined
and hierarchically structured using a subsumption relationship. A link between
the ontology classes of target services and a given source web service could be
formally established.

The cyber-physical systems

The developments we have conducted on continuous models for cyber-physical
systems led to several possible extensions:

• The refinement we have defined for the discretization of continuous definitions
relies on mathematical real numbers. In order to further develop our models
of substitution in cyber-physical systems, it is needed to introduce another
refinement from mathematical reals to floating-point numbers as another
discretization step. One issue to define the gluing invariant would be to use the
intermediate value theorem as gluing invariant between the discretization level
with mathematical real numbers and the discretization level with floating-point
level. This would enable a correct concrete implementation of the controller.

• The models defined in our work handled a single variable for information
feedback (one parameter for the continuous function) with a simple safety
envelope (interval that the value must belong to). Investigating an extension
of the function descriptions to a set of variable parameters (vector) is needed
as in traditional models in control theory. As a consequence, the safety
envelope, which was defined as a simple interval, becomes a complex constraint
expression denoting a constraint solving problem. More precisely, it could
first be an extension of intervals to higher dimension boxes as it is done
in classical interval arithmetics; but precision might require more complex
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relational envelopes. Proving the correctness of such models requires more
powerful proof techniques.

• The other extension that needs to be studied relates to the manipulation
of the continuous functions. We have used an explicit representation of
a function while control theory uses differential equations to describe the
continuous behaviors. We believe that our developments can manipulate
function derivatives but it will also require modeling derivates and integrals
using the theory plug-in and more appropriate proof techniques.

The second category of perspectives concerns the possible extensions of the
defined system substitution operation:

System substitution operation

• The system substitution operation we have defined considers a fixed number
of systems. One may study the case where the systems enter and/or leave the
set of systems dynamically. In this case, the set of available systems evolves
dynamically. This situation occurs in the case of adaptive and/or autonomic
systems. In this case, the substitute system is chosen among a dynamic set of
possible substitute systems and quality of service criteria may be introduced
for the selection.

• Studying the formalization of the other situations like the case of self-? systems
with shared variables between source and target systems, or more detailed
situations for upgraded and degraded modes need to be studied in more
details.

• Structuring system substitutions as relations (edges) in a graph with systems
as nodes allows a designer to select which substitute systems can be used
(neighbor nodes). Additionally, constraints (QoS, upgrade/degrade, etc.) can
be added to the edges or to the whole graph (e.g. each node has at least three
neighbor nodes). Thus, the graph expressing the substitution possibilities
would be exploited for selecting target systems for substitution.

• Adding probability of failures and its corresponding calculus is an issue to
address in case of safety analysis of critical systems.

• Finally, one important extension would be the substitution of a set of systems
by another set of systems. The objective is to maintain an invariant for the
global system (global invariant) corresponding to a property of an offered
service while some systems composing the global system may leave or enter the
global system. Each local system is characterized by its own invariant (local
invariant). An example of such a system could be a farm of wind turbines
that produce an amount of energy where some particular wind turbines may
start production (windy case) or may stop (missing wind).

Studying the previously identified perspectives will certainly improve the engi-
neering of system substitution, maintenance, reconfiguration and adaptation.
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A Theories

Components:

• Theory Real (page 140)

• Theory RealPos (page 145)

The models are also available at: http://babin.perso.enseeiht.fr/r/thesis/
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THEORY

Real
   //   Real Theory
   //   Jean-Raymond Abrial, Michael Butler
   //   June 2014

AXIOMATIC DEFINITIONS

real_def
TYPES
REAL

OPERATORS
• plus:  plus(a : REAL, b : REAL) EXPRESSION INFIX  REAL
• zero:  zero() EXPRESSION PREFIX  REAL
• minus:  minus(a : REAL) EXPRESSION PREFIX  REAL
• mult:  mult(a : REAL, b : REAL) EXPRESSION INFIX  REAL
• one:  one() EXPRESSION PREFIX  REAL
• inv:  inv(a : REAL) EXPRESSION PREFIX  REAL
        well-definedness condition
        a ≠ zero

• leq:  leq(a : REAL, b : REAL) PREDICATE PREFIX  
• sup:  sup(A : ℙ(REAL)) EXPRESSION PREFIX  REAL
        well-definedness condition
        A≠∅   //   A is not empty
        ∃m · m∈REAL ∧ (∀x · x∈A ⇒ leq(x,m))   //   A has an upper bound

• inf:  inf(A : ℙ(REAL)) EXPRESSION PREFIX  REAL
        well-definedness condition
        A≠∅   //   A is not empty
        ∃m · m∈REAL ∧ (∀x · x∈A ⇒ leq(m,x))   //   A has a lower bound

• smr:  smr(a : REAL, b : REAL) PREDICATE PREFIX  
• sub:  sub(a : REAL, b : REAL) EXPRESSION INFIX  REAL
• cnt:  cnt(f : ℙ(REAL×REAL), x : REAL) PREDICATE PREFIX  
        well-definedness condition
        f ∈ REAL→REAL

• gtr:  gtr(a : REAL, b : REAL) PREDICATE PREFIX  
AXIOMS
axm1:   ∀x,y · (x plus y) = (y plus x) addition is commutative
axm2:   ∀x,y,z · ((x plus y) plus z) = (x plus (y plus z))  addition is associative
axm3:   ∀x · (x plus zero) = x addition has an identity
axm4:   ∀x · (x plus (minus (x))) = zero addition has an inverse
axm5:   ∀x,y · (x mult y) = (y mult x) multiplication is commutative
axm6:   ∀x,y,z · ((x mult y) mult z) = (x mult (y mult z)) multiplication is associative
axm7:   ∀x · (x mult one) = x multiplication has an identity

axm8:   ∀x · x≠zero ⇒ (x mult (inv (x))) = one
multiplication has an inverse 
(except for zero)

axm9:   zero ≠ one zero different from one

axm10:  
∀x,y,z · (x mult (y plus z)) = 
                      ((x mult y) plus (x mult z))

multiplication is distributive 
over addition

axm11:  ∀x · leq(x,x) order is reflexive
axm12:  ∀x,y · leq(x,y) ∧ leq(y,x) ⇒ x=y order is antisymmetric
axm13:  ∀x,y,z · leq(x,y) ∧ leq(y,z) ⇒ leq(x,z) order is transitive
axm14:  ∀x,y · leq(x,y) ∨ leq(y,x) order is total

axm15:  ∀x,y,z · leq(x,y) ⇒ leq(x plus z, y plus z)
order is compatible with 
addition

axm16:  
∀x,y,z · leq(x,y) ∧ leq(zero,z) ∧ z≠zero ⇒ 
                          leq(x mult z, y mult z)

order is compatible with 
positive multiplication

APPENDIX A. THEORIES
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axm17:  

∀A · A⊆REAL ∧
     A≠∅ ∧
     (∃m · m∈REAL ∧ (∀x · x∈A ⇒ leq(x,m)))
   ⇒
     (∀x · x∈A ⇒ leq(x,sup(A)))

sup(A) is an upper bound of A

axm18:  

∀A,v · A⊆REAL ∧
       A≠∅ ∧
       (∃m · m∈REAL ∧ (∀x · x∈A ⇒ leq(x,m))) ∧     
       (∀x · x∈A ⇒ leq(x,v))
     ⇒
       leq(sup(A),v)

sup(A) is the least upper 
bound of A

axm19:  

∀A · A⊆REAL ∧
     A≠∅ ∧
     (∃m · m∈REAL ∧ (∀x · x∈A ⇒ leq(m,x)))
   ⇒
     (∀x · x∈A ⇒ leq(inf(A),x))

inf(A) is a lower bound of A

axm20:  

∀A,v · A⊆REAL ∧
       A≠∅ ∧
       (∃m · m∈REAL ∧ (∀x · x∈A ⇒ leq(m,x))) ∧
       (∀x · x∈A ⇒ leq(v,x))
     ⇒
       leq(v,inf(A))

inf(A) is the greatest 
lower bound of A

axm21:  ∀x,y · smr(x,y) ⇔ leq(x,y) ∧ x≠y
Definition of relation 
"strictly smaller"

axm24:  ∀x,y · gtr(x,y) ⇔ leq(y,x) ∧ x≠y
Definition of relation 
"strictly greater"

axm22:  ∀x,y · (x sub y) = (x plus minus(y)) Definition of subtraction

axm23:  

∀f,c · f∈REAL→REAL ∧ c∈REAL ∧ cnt(f,c)
     ⇒
       (∀e · smr(zero,e)
           ⇒
             (∃d · smr(zero,d) ∧
                   (∀x · smr(c sub d,x) ∧
                         smr(x,c plus d)
                       ⇒
                         smr(f(c) sub e,f(x)) ∧
                         smr(f(x),f(c) plus e)
                   )
             )
       )

Definition of continuity

PROOF RULES

add_com : 
Metavariables
▪ a ∈ REAL
▪ b ∈ REAL

Rewrite Rules
• rew1 : a plus b      (case-incomplete, interactive)      add_com
▪ rhs1   :   ⊤   ▶   b plus a
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add_assoc : 
Metavariables
▪ x ∈ REAL
▪ y ∈ REAL
▪ z ∈ REAL

Rewrite Rules
• rew2 : (x plus y) plus z      (case-incomplete, interactive)      add_assoc
▪ rhs1   :   ⊤   ▶   x plus (y plus z)

add_id : 
Metavariables
▪ x ∈ REAL

Rewrite Rules
• rew3 : x plus zero      (case-incomplete, interactive)      add_id
▪ rhs1   :   ⊤   ▶   x

add_inv : 
Metavariables
▪ x ∈ REAL

Rewrite Rules
• rew4 : x plus minus(x)      (case-incomplete, interactive)      add_inv
▪ rhs1   :   ⊤   ▶   zero

add_assoc2 : 
Metavariables
▪ x ∈ REAL
▪ y ∈ REAL
▪ z ∈ REAL

Rewrite Rules
• rew5 : x plus (y plus z)      (case-incomplete, interactive)      add_assoc2
▪ rhs1   :   ⊤   ▶   (x plus y) plus z

add_id2 : 
Metavariables
▪ x ∈ REAL

Rewrite Rules
• rew6 : zero plus x      (case-incomplete, interactive)      add_id2
▪ rhs1   :   ⊤   ▶   x

add_inv2 : 
Metavariables
▪ x ∈ REAL

Rewrite Rules
• rew7 : minus(x) plus x      (case-incomplete, interactive)      add_inv2
▪ rhs1   :   ⊤   ▶   zero

mult_com : 
Metavariables
▪ x ∈ REAL
▪ y ∈ REAL

Rewrite Rules
• rew8 : x mult y      (case-incomplete, interactive)      mult_com
▪ rhs1   :   ⊤   ▶   y mult x
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mult_assoc : 
Metavariables
▪ x ∈ REAL
▪ y ∈ REAL
▪ z ∈ REAL

Rewrite Rules
• rew9 : (x mult y) mult z      (case-incomplete, interactive)      mult_assoc
▪ rhs1   :   ⊤   ▶   x mult (y mult z)

mult_id : 
Metavariables
▪ x ∈ REAL

Rewrite Rules
• rew10 : x mult one      (case-incomplete, interactive)      mult_id
▪ rhs1   :   ⊤    ▶   x

mult_inv : 
Metavariables
▪ x ∈ REAL

Rewrite Rules
• rew11 : x mult inv(x)      (case-incomplete, interactive)      mult_inv
▪ rhs1   :   x≠zero   ▶   one

mult_assoc2 : 
Metavariables
▪ x ∈ REAL
▪ y ∈ REAL
▪ z ∈ REAL

Rewrite Rules
• rew12 : x mult (y mult z)      (case-incomplete, interactive)      mult_assoc2
▪ rhs1   :   ⊤   ▶   (x mult y) mult z

mult_id2 : 
Metavariables
▪ x ∈ REAL

Rewrite Rules
• rew13 : one mult x      (case-incomplete, interactive)      mult_id2
▪ rhs1   :   ⊤   ▶   x

mult_inv2 : 
Metavariables
▪ x ∈ REAL

Rewrite Rules
• rew14 : inv(x) mult x      (case-incomplete, interactive)      mult_inv2
▪ rhs1   :   x≠zero   ▶   one

mult_distrib : 
Metavariables
▪ x ∈ REAL
▪ y ∈ REAL
▪ z ∈ REAL

Rewrite Rules
• rew15 : x mult (y plus z)      (case-incomplete, interactive)      mult_distrib
▪ rhs1   :   ⊤   ▶   (x mult y) plus (x mult z)
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mult_distrib2 : 
Metavariables
▪ x ∈ REAL
▪ y ∈ REAL
▪ z ∈ REAL

Rewrite Rules
• rew16 : (x plus y) mult z      (case-incomplete, interactive)      mult_distrib2
▪ rhs1   :   ⊤   ▶   (x mult z) plus (y mult z)

sub_plus : 
Metavariables
▪ x ∈ REAL
▪ y ∈ REAL

Rewrite Rules
• rew19 : x sub y      (case-incomplete, interactive)      sub_plus
▪ rhs1   :   ⊤   ▶   x plus minus(y)

gtr_smr : 
Metavariables
▪ x ∈ REAL
▪ y ∈ REAL

Rewrite Rules
• rew20 : gtr(x,y)      (case-incomplete, interactive)      gtr_smr
▪ rhs1   :   ⊤   ▶   smr(y,x)

END
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THEORY

RealPos

IMPORTS THEORY PROJECTS

[RealTheory] 
THEORIES
Real

AXIOMATIC DEFINITIONS

real_pos_def
OPERATORS
• cnt_int:  cnt_int(f : ℙ(REAL×REAL), a : REAL, b : REAL) PREDICATE PREFIX  
        well-definedness condition
        f ∈ REAL ⇸ REAL
        a ∈ REAL
        b ∈ REAL
        leq(a,b)
        {x ∣ x ∈ REAL ∧ leq(a,x) ∧ leq(x,b)} ⊆ dom(f)

AXIOMS
axm1: ∀f,a,b · f ∈ REAL ⇸ REAL

       ∧ a ∈ REAL
       ∧ b ∈ REAL
       ∧ leq(a,b)
       ∧ {x ∣ x ∈ REAL ∧ leq(a,x) ∧ leq(x,b)} ⊆ dom(f) ⇒
(cnt_int(f,a,b)
   ⇔
   (∀c · leq(a,c) ∧ leq(c,b) ⇒
      (∀e· smr(zero,e)
         ⇒
         (∃d·smr(zero,d) ∧
            (∀x· leq(a,x) ∧ leq(x,b) ⇒
               (smr(c sub d,x) ∧
                smr(x,c plus d)
                ⇒
                smr(f(c) sub e,f(x)) ∧
                smr(f(x),f(c) plus e))
            )
         )
      )
   )
)

   //   Definition of 
   //   continuity
   //   on an interval

END
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B Discrete systems substitution

In Chapter 5, a simplified version of the tree of machines is presented:

• M0 corresponds to M_1 in the complete models.

• R1 corresponds to M_11 & M_111 combined.

• R2 corresponds to M_12, M_121 & M_1211 combined.

• R3 corresponds to M_15, M_151, M_1512 & M_15121 combined.

Components:

• C_1_ (page 149)

• C_11_failure_status (page 150)

• M_1_ (page 151)

• WS1 only

– M_11_selection_oneWebsite (page 153)
– M_111_ (page 155)

• WS2 only

– M_12_selection_twoWebsites (page 157)
– M_121_ (page 159)
– M_1211_ (page 162)

• WS1 or WS2 (one of them, chosen at init)

– M_14_selection_one_or_two_websites (page 166)
– M_141_ (page 168)
– M_1411_ (page 170)
– M_14111_ (page 173)
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• WS1 and WS2, with failures

– M_15_failure (page 178)
– M_151_ (page 181)
– Using reboot
∗ M_1511_reboot (page 185)
∗ M_15111_ (page 190)

– Using repair
∗ M_1512_repair (page 196)
∗ M_15121_ (page 202)

• N systems, with failures

– M_16_failure_N (page 211)
– M_161_ (page 213)
– M_1611_ (page 215)

The models are also available at: http://babin.perso.enseeiht.fr/r/thesis/
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CONTEXT C 1

SETS

PRODUCTS all the products in the world

SITES all the sites in the world

CONSTANTS

STOCKS

P products we want to buy

AXIOMS

axm1: finite(PRODUCTS)

axm2: finite(SITES)

axm3: card(SITES) ≥ 2

axm4: STOCKS = SITES × PRODUCTS

axm5: P ⊆ PRODUCTS

END
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CONTEXT C 11 failure status

EXTENDS C 1

SETS

FAILURE STATUS

CONSTANTS

OK

NOT OK

AXIOMS

axm1: partition(FAILURE STATUS, {OK}, {NOT OK})
END

APPENDIX B. DISCRETE SYSTEMS SUBSTITUTION
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MACHINE M 1

SEES C 1

VARIABLES

var M 1 seq -

carts -

INVARIANTS

type1: var M 1 seq ∈ N
type2: 〈theorem〉 P ⊆ PRODUCTS

type3: carts ⊆ STOCKS

prop1: (var M 1 seq < 4)⇒ ran(carts) = P

we have all the products we wanted in our carts after the ’selection’ step

prop2: ∀p·p ∈ ran(carts)⇒ card(carts−1[{p}]) = 1

each product has been selected in only one site

DLF 1: ¬(∃someCarts·
(var M 1 seq = 4

∧ someCarts ⊆ SITES × P

∧ ran(someCarts) = P

∧ (∀p·p ∈ ran(someCarts)⇒ card(someCarts−1[{p}]) = 1))

∨ var M 1 seq = 3

∨ var M 1 seq = 2

∨ var M 1 seq = 1)

⇒
var M 1 seq = 0

(deadlock => finished)

VARIANT

var M 1 seq

EVENTS

Initialisation

begin
act1: var M 1 seq := 4

act3: carts := ∅
end

Event selection 〈convergent〉 =̂
any

someCarts

where
grd1: var M 1 seq = 4

grd2: someCarts ⊆ SITES × P

grd3: ran(someCarts) = P

grd4: ∀p·p ∈ ran(someCarts)⇒ card(someCarts−1[{p}]) = 1

then
act1: var M 1 seq := var M 1 seq − 1

act2: carts := someCarts

end

Event payment 〈convergent〉 =̂
when

grd1: var M 1 seq = 3

then
act1: var M 1 seq := var M 1 seq − 1

end

Event billing 〈convergent〉 =̂
when
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grd1: var M 1 seq = 2

then
act1: var M 1 seq := var M 1 seq − 1

end

Event delivery 〈convergent〉 =̂
when

grd1: var M 1 seq = 1

then
act1: var M 1 seq := var M 1 seq − 1

end

END

APPENDIX B. DISCRETE SYSTEMS SUBSTITUTION
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MACHINE M 11 selection oneWebsite

REFINES M 1

SEES C 1

VARIABLES

var M 1 seq -

carts -

carts ref -

var M 11 loop -

site -

INVARIANTS

type1: carts ref ⊆ SITES × P

type2: var M 11 loop ∈ N
type3: site ∈ SITES

VARIANT

var M 1 seq + var M 11 loop

EVENTS

Initialisation

begin
act1: var M 1 seq := 4

act2: var M 11 loop := card(P )

act3: carts := ∅
act4: carts ref := ∅
act5: site :∈ SITES

end

Event addItemToCart loop 〈convergent〉 =̂

any
someProduct

where
grd1: var M 1 seq = 4

grd2: var M 11 loop > 0

grd3: someProduct ∈ P \ ran(carts ref)

then
act1: var M 11 loop := var M 11 loop− 1

act2: carts ref := carts ref ∪ {site 7→ someProduct}
end

Event confirmCarts 〈convergent〉 =̂

refines selection

when
grd1: var M 1 seq = 4

grd2: var M 11 loop = 0

grd3: ran(carts ref) = P

grd4: ∀p·p ∈ ran(carts ref)⇒ carts ref−1[{p}] = {site}
with

someCarts: someCarts = carts ref

then
act1: var M 1 seq := var M 1 seq − 1

act2: carts := carts ref

end

Event payment 〈convergent〉 =̂

extends payment

when
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grd1: var M 1 seq = 3

then
act1: var M 1 seq := var M 1 seq − 1

end

Event billing 〈convergent〉 =̂

extends billing

when
grd1: var M 1 seq = 2

then
act1: var M 1 seq := var M 1 seq − 1

end

Event delivery 〈convergent〉 =̂

extends delivery

when
grd1: var M 1 seq = 1

then
act1: var M 1 seq := var M 1 seq − 1

end

END
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MACHINE M 111

REFINES M 11 selection oneWebsite

SEES C 1

VARIABLES

var M 1 seq -

carts -

carts ref -

var M 11 loop -

site -

var M 111 seq -

selectedItem -

INVARIANTS

type1: var M 111 seq ∈ N
type2: selectedItem ∈ P (P )

prop1: var M 111 seq ≥ 1⇒ card(selectedItem) = 0

prop2: var M 111 seq < 1⇒ card(selectedItem) = 1

VARIANT

var M 1 seq + var M 11 loop+ var M 111 seq

EVENTS

Initialisation 〈extended〉
begin

act1: var M 1 seq := 4

act2: var M 11 loop := card(P )

act3: carts := ∅
act4: carts ref := ∅
act5: site :∈ SITES

act6: var M 111 seq := 1

act7: selectedItem := ∅
end

Event selectItemInItemList 〈convergent〉 =̂

any
someProduct

where
grd1: var M 1 seq = 4

grd2: var M 11 loop > 0

grd3: var M 111 seq = 1

grd4: someProduct ∈ P \ ran(carts ref)

then
act1: var M 111 seq := var M 111 seq − 1

act2: selectedItem := {someProduct}
end

Event addSelectedItemToCart 〈convergent〉 =̂

refines addItemToCart loop

any
item used to access the element in selectedItem

where
grd1: var M 1 seq = 4

grd2: var M 11 loop > 0

grd3: var M 111 seq = 0

grd4: ∃p·p ∈ P \ ran(carts ref) ∧ selectedItem = {p}
grd5: selectedItem = {item}
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with
someProduct: selectedItem = {someProduct}

then
act1: var M 11 loop := var M 11 loop− 1

act2: carts ref := carts ref ∪ {site 7→ item}
end

Event selection 〈convergent〉 =̂

extends confirmCarts

when
grd1: var M 1 seq = 4

grd2: var M 11 loop = 0

grd3: ran(carts ref) = P

grd4: ∀p·p ∈ ran(carts ref)⇒ carts ref−1[{p}] = {site}
then

act1: var M 1 seq := var M 1 seq − 1

act2: carts := carts ref

end

Event payment 〈convergent〉 =̂

extends payment

when
grd1: var M 1 seq = 3

then
act1: var M 1 seq := var M 1 seq − 1

end

Event billing 〈convergent〉 =̂

extends billing

when
grd1: var M 1 seq = 2

then
act1: var M 1 seq := var M 1 seq − 1

end

Event delivery 〈convergent〉 =̂

extends delivery

when
grd1: var M 1 seq = 1

then
act1: var M 1 seq := var M 1 seq − 1

end

END
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MACHINE M 12 selection twoWebsites

REFINES M 1

SEES C 1

VARIABLES

var M 1 seq -

carts -

var M 12 par A -

var M 12 par B -

INVARIANTS

type1: var M 12 par A ∈ N
type2: var M 12 par B ∈ N

VARIANT

var M 1 seq + var M 12 par A+ var M 12 par B

EVENTS

Initialisation 〈extended〉
begin

act1: var M 1 seq := 4

act3: carts := ∅
act4: var M 12 par A := 1

act5: var M 12 par B := 1

end

Event selection A 〈convergent〉 =̂
when

grd1: var M 1 seq = 4

grd2: var M 12 par A = 1

then
act1: var M 12 par A := var M 12 par A− 1

end

Event selection B 〈convergent〉 =̂
when

grd1: var M 1 seq = 4

grd2: var M 12 par B = 1

then
act1: var M 12 par B := var M 12 par B − 1

end

Event selection join A B 〈convergent〉 =̂
refines selection

any
someCarts

where
grd1: var M 1 seq = 4

grd2: someCarts ⊆ SITES × P

grd3: ran(someCarts) = P

grd4: ∀p·p ∈ ran(someCarts)⇒ card(someCarts−1[{p}]) = 1

grd5: var M 12 par A = 0

grd6: var M 12 par B = 0

then
act1: var M 1 seq := var M 1 seq − 1

act2: carts := someCarts

end

Event payment 〈convergent〉 =̂
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extends payment

when
grd1: var M 1 seq = 3

then
act1: var M 1 seq := var M 1 seq − 1

end

Event billing 〈convergent〉 =̂
extends billing

when
grd1: var M 1 seq = 2

then
act1: var M 1 seq := var M 1 seq − 1

end

Event delivery 〈convergent〉 =̂
extends delivery

when
grd1: var M 1 seq = 1

then
act1: var M 1 seq := var M 1 seq − 1

end

END
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MACHINE M 121

REFINES M 12 selection twoWebsites

SEES C 1

VARIABLES

var M 1 seq -

carts -

carts ref -

var M 12 par A -

var M 12 par B -

site A -

site B -

var M 121 loop A -

var M 121 loop B -

INVARIANTS

type1: carts ref ⊆ SITES × P

type2: var M 121 loop A ∈ N
type3: var M 121 loop B ∈ N
type4: site A ∈ SITES

type5: site B ∈ SITES

VARIANT

var M 1 seq+var M 12 par A+var M 12 par B+var M 121 loop A+var M 121 loop B

EVENTS

Initialisation

begin
act1: var M 1 seq := 4

act2: var M 121 loop A, var M 121 loop B :|
var M 121 loop A′ + var M 121 loop B′ = card(P )

∧ var M 121 loop A′ ∈ N
∧ var M 121 loop B′ ∈ N

act3: carts := ∅
act4: var M 12 par A := 1

act5: var M 12 par B := 1

act6: carts ref := ∅
act7: site A :∈ SITES

act8: site B :∈ SITES

end

Event selection A loop 〈convergent〉 =̂

any
someProduct

where
grd1: var M 1 seq = 4

grd2: var M 12 par A = 1

grd3: var M 121 loop A > 0

grd4: someProduct ∈ P \ ran(carts ref)

then
act1: var M 121 loop A := var M 121 loop A− 1

act2: carts ref := carts ref ∪ {site A 7→ someProduct}
end

Event selection A loop end 〈convergent〉 =̂

extends selection A
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when
grd1: var M 1 seq = 4

grd2: var M 12 par A = 1

grd3: var M 121 loop A = 0

then
act1: var M 12 par A := var M 12 par A− 1

end

Event selection B loop 〈convergent〉 =̂

any
someProduct

where
grd1: var M 1 seq = 4

grd2: var M 12 par B = 1

grd3: var M 121 loop B > 0

grd4: someProduct ∈ P \ ran(carts ref)

then
act1: var M 121 loop B := var M 121 loop B − 1

act2: carts ref := carts ref ∪ {site B 7→ someProduct}
end

Event selection B loop end 〈convergent〉 =̂

extends selection B

when
grd1: var M 1 seq = 4

grd2: var M 12 par B = 1

grd3: var M 121 loop B = 0

then
act1: var M 12 par B := var M 12 par B − 1

end

Event confirmCarts 〈convergent〉 =̂

refines selection join A B

when
grd1: var M 1 seq = 4

grd2: ran(carts ref) = P

grd3: ∀p·p ∈ ran(carts ref)⇒
(carts ref−1[{p}] = {site A} ∨ carts ref−1[{p}] = {site B})

grd4: var M 12 par A = 0

grd5: var M 12 par B = 0

grd6: var M 121 loop A = 0

grd7: var M 121 loop B = 0

with
someCarts: someCarts = carts ref

then
act1: var M 1 seq := var M 1 seq − 1

act2: carts := carts ref

end

Event payment 〈convergent〉 =̂

extends payment

when
grd1: var M 1 seq = 3

then
act1: var M 1 seq := var M 1 seq − 1

end

Event billing 〈convergent〉 =̂
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extends billing

when
grd1: var M 1 seq = 2

then
act1: var M 1 seq := var M 1 seq − 1

end

Event delivery 〈convergent〉 =̂

extends delivery

when
grd1: var M 1 seq = 1

then
act1: var M 1 seq := var M 1 seq − 1

end

END
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MACHINE M 1211

REFINES M 121

SEES C 1

VARIABLES

var M 1 seq -

carts -

carts ref -

var M 12 par A -

var M 12 par B -

site A -

site B -

var M 121 loop A -

var M 121 loop B -

var M 1211 seq A -

var M 1211 seq B -

selectedItem A -

selectedItem B -

INVARIANTS

type1: var M 1211 seq A ∈ N
type2: var M 1211 seq B ∈ N
type3: selectedItem A ∈ P (P )

type4: selectedItem B ∈ P (P )

prop1: var M 1211 seq A ≥ 1⇒ card(selectedItem A) = 0

prop2: var M 1211 seq A < 1⇒ card(selectedItem A) = 1

prop3: var M 1211 seq B ≥ 1⇒ card(selectedItem B) = 0

prop4: var M 1211 seq B < 1⇒ card(selectedItem B) = 1

VARIANT

var M 1 seq+var M 12 par A+var M 12 par B+var M 121 loop A+var M 121 loop B+

var M 1211 seq A+ var M 1211 seq B

EVENTS

Initialisation 〈extended〉
begin

act1: var M 1 seq := 4

act2: var M 121 loop A, var M 121 loop B :|
var M 121 loop A′ + var M 121 loop B′ = card(P )

∧ var M 121 loop A′ ∈ N
∧ var M 121 loop B′ ∈ N

act3: carts := ∅
act4: var M 12 par A := 1

act5: var M 12 par B := 1

act6: carts ref := ∅
act7: site A :∈ SITES

act8: site B :∈ SITES

act9: var M 1211 seq A := 1

act10: selectedItem A := ∅
act11: var M 1211 seq B := 1

act12: selectedItem B := ∅
end

Event selectItemInItemList A 〈convergent〉 =̂

any
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someProduct

where
grd1: var M 1 seq = 4

grd2: var M 12 par A = 1

grd3: var M 121 loop A > 0

grd4: var M 1211 seq A = 1

grd5: someProduct ∈ P \ ran(carts ref)

then
act1: var M 1211 seq A := var M 1211 seq A− 1

act2: selectedItem A := {someProduct}
end

Event addSelectedItemToCart A 〈convergent〉 =̂

refines selection A loop

any
item used to access the element in selectedItem A

where
grd1: var M 1 seq = 4

grd2: var M 12 par A = 1

grd3: var M 121 loop A > 0

grd4: var M 1211 seq A = 0

grd5: ∃p·p ∈ P \ ran(carts ref) ∧ selectedItem A = {p}
grd6: selectedItem A = {item}

with
someProduct: selectedItem A = {someProduct}

then
act1: var M 121 loop A := var M 121 loop A− 1

act2: carts ref := carts ref ∪ {site A 7→ item}
end

Event selection A loop end 〈convergent〉 =̂

extends selection A loop end

when
grd1: var M 1 seq = 4

grd2: var M 12 par A = 1

grd3: var M 121 loop A = 0

then
act1: var M 12 par A := var M 12 par A− 1

end

Event selectItemInItemList B 〈convergent〉 =̂

any
someProduct

where
grd1: var M 1 seq = 4

grd2: var M 12 par B = 1

grd3: var M 121 loop B > 0

grd4: var M 1211 seq B = 1

grd5: someProduct ∈ P \ ran(carts ref)

then
act1: var M 1211 seq B := var M 1211 seq B − 1

act2: selectedItem B := {someProduct}
end

Event addSelectedItemToCart B 〈convergent〉 =̂

refines selection B loop

any
item used to access the element in selectedItem B

163



where
grd1: var M 1 seq = 4

grd2: var M 12 par B = 1

grd3: var M 121 loop B > 0

grd4: var M 1211 seq B = 0

grd5: ∃p·p ∈ P \ ran(carts ref) ∧ selectedItem B = {p}
grd6: selectedItem B = {item}

with
someProduct: selectedItem B = {someProduct}

then
act1: var M 121 loop B := var M 121 loop B − 1

act2: carts ref := carts ref ∪ {site B 7→ item}
end

Event selection B loop end 〈convergent〉 =̂

extends selection B loop end

when
grd1: var M 1 seq = 4

grd2: var M 12 par B = 1

grd3: var M 121 loop B = 0

then
act1: var M 12 par B := var M 12 par B − 1

end

Event confirmCarts 〈convergent〉 =̂

extends confirmCarts

when
grd1: var M 1 seq = 4

grd2: ran(carts ref) = P

grd3: ∀p·p ∈ ran(carts ref)⇒
(carts ref−1[{p}] = {site A} ∨ carts ref−1[{p}] = {site B})

grd4: var M 12 par A = 0

grd5: var M 12 par B = 0

grd6: var M 121 loop A = 0

grd7: var M 121 loop B = 0

then
act1: var M 1 seq := var M 1 seq − 1

act2: carts := carts ref

end

Event payment 〈convergent〉 =̂

extends payment

when
grd1: var M 1 seq = 3

then
act1: var M 1 seq := var M 1 seq − 1

end

Event billing 〈convergent〉 =̂

extends billing

when
grd1: var M 1 seq = 2

then
act1: var M 1 seq := var M 1 seq − 1

end

Event delivery 〈convergent〉 =̂

extends delivery
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when
grd1: var M 1 seq = 1

then
act1: var M 1 seq := var M 1 seq − 1

end

END

165



MACHINE M 14 selection one or two websites

REFINES M 1

SEES C 1

VARIABLES

var M 1 seq -

carts -

var M 14 cho -

INVARIANTS

type1: var M 14 cho ∈ N
VARIANT

var M 1 seq + var M 14 cho

EVENTS

Initialisation 〈extended〉
begin

act1: var M 1 seq := 4

act3: carts := ∅
act4: var M 14 cho :∈ {1, 2}

end

Event selection oneWebsite 〈convergent〉 =̂
when

grd1: var M 1 seq = 4

grd2: var M 14 cho = 1

then
act1: var M 14 cho := 0

end

Event selection twoWebsites 〈convergent〉 =̂
when

grd1: var M 1 seq = 4

grd2: var M 14 cho = 2

then
act1: var M 14 cho := 0

end

Event selection 〈convergent〉 =̂
extends selection

any
someCarts

where
grd1: var M 1 seq = 4

grd2: someCarts ⊆ SITES × P

grd3: ran(someCarts) = P

grd4: ∀p·p ∈ ran(someCarts)⇒ card(someCarts−1[{p}]) = 1

grd5: var M 14 cho = 0

then
act1: var M 1 seq := var M 1 seq − 1

act2: carts := someCarts

end

Event payment 〈convergent〉 =̂
extends payment

when
grd1: var M 1 seq = 3

then
act1: var M 1 seq := var M 1 seq − 1
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end

Event billing 〈convergent〉 =̂
extends billing

when
grd1: var M 1 seq = 2

then
act1: var M 1 seq := var M 1 seq − 1

end

Event delivery 〈convergent〉 =̂
extends delivery

when
grd1: var M 1 seq = 1

then
act1: var M 1 seq := var M 1 seq − 1

end

END
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MACHINE M 141

REFINES M 14 selection one or two websites

SEES C 1

VARIABLES

var M 1 seq -

carts -

var M 14 cho -

var M 141 par A -

var M 141 par B -

INVARIANTS

type1: var M 141 par A ∈ N
type2: var M 141 par B ∈ N

VARIANT

var M 1 seq + var M 14 cho+ var M 141 par A+ var M 141 par B

EVENTS

Initialisation 〈extended〉
begin

act1: var M 1 seq := 4

act3: carts := ∅
act4: var M 14 cho :∈ {1, 2}
act5: var M 141 par A := 1

act6: var M 141 par B := 1

end

Event selection oneWebsite 〈convergent〉 =̂
extends selection oneWebsite

when
grd1: var M 1 seq = 4

grd2: var M 14 cho = 1

then
act1: var M 14 cho := 0

end

Event selection twoWebsites A 〈convergent〉 =̂
when

grd1: var M 1 seq = 4

grd2: var M 14 cho = 2

grd3: var M 141 par A = 1

then
act1: var M 141 par A := var M 141 par A− 1

end

Event selection twoWebsites B 〈convergent〉 =̂
when

grd1: var M 1 seq = 4

grd2: var M 14 cho = 2

grd3: var M 141 par B = 1

then
act1: var M 141 par B := var M 141 par B − 1

end

Event selection twoWebsites join A B 〈convergent〉 =̂
extends selection twoWebsites

when
grd1: var M 1 seq = 4
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grd2: var M 14 cho = 2

grd3: var M 141 par A = 0

grd4: var M 141 par B = 0

then
act1: var M 14 cho := 0

end

Event selection 〈convergent〉 =̂
extends selection

any
someCarts

where
grd1: var M 1 seq = 4

grd2: someCarts ⊆ SITES × P

grd3: ran(someCarts) = P

grd4: ∀p·p ∈ ran(someCarts)⇒ card(someCarts−1[{p}]) = 1

grd5: var M 14 cho = 0

then
act1: var M 1 seq := var M 1 seq − 1

act2: carts := someCarts

end

Event payment 〈convergent〉 =̂
extends payment

when
grd1: var M 1 seq = 3

then
act1: var M 1 seq := var M 1 seq − 1

end

Event billing 〈convergent〉 =̂
extends billing

when
grd1: var M 1 seq = 2

then
act1: var M 1 seq := var M 1 seq − 1

end

Event delivery 〈convergent〉 =̂
extends delivery

when
grd1: var M 1 seq = 1

then
act1: var M 1 seq := var M 1 seq − 1

end

END
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MACHINE M 1411

REFINES M 141

SEES C 1

VARIABLES

var M 1 seq -

carts -

var M 14 cho -

var M 141 par A -

var M 141 par B -

carts ref -

var M 1411 loop 1 -

var M 1411 loop 2 A -

var M 1411 loop 2 B -

site 1 -

site 2 A -

site 2 B -

INVARIANTS

type1: carts ref ⊆ SITES × P

type2: var M 1411 loop 1 ∈ N
type3: var M 1411 loop 2 A ∈ N
type4: var M 1411 loop 2 B ∈ N
type5: site 1 ∈ SITES

type6: site 2 A ∈ SITES

type7: site 2 B ∈ SITES

prop1: var M 14 cho = 1⇒ dom(carts ref) ⊆ {site 1}
prop2: var M 14 cho = 2⇒ dom(carts ref) ⊆ {site 2 A, site 2 B}

VARIANT

var M 1 seq+var M 14 cho+var M 141 par A+var M 141 par B+var M 1411 loop 1+

var M 1411 loop 2 A+ var M 1411 loop 2 B

EVENTS

Initialisation

begin
act1: var M 1 seq := 4

act2: var M 1411 loop 1, var M 1411 loop 2 A, var M 1411 loop 2 B :|
var M 1411 loop 1′ = card(P )

∧ var M 1411 loop 2 A′ + var M 1411 loop 2 B′ = card(P )

∧ var M 1411 loop 2 A′ ∈ N
∧ var M 1411 loop 2 B′ ∈ N

act3: carts := ∅
act4: var M 14 cho :∈ {1, 2}
act5: var M 141 par A := 1

act6: var M 141 par B := 1

act7: carts ref := ∅
act8: site 1 :∈ SITES

act9: site 2 A :∈ SITES

act10: site 2 B :∈ SITES

end

Event selection oneWebsite loop 〈convergent〉 =̂

any
someProduct
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where
grd1: var M 1 seq = 4

grd2: var M 14 cho = 1

grd3: var M 1411 loop 1 > 0

grd4: someProduct ∈ P \ ran(carts ref)

then
act1: var M 1411 loop 1 := var M 1411 loop 1− 1

act2: carts ref := carts ref ∪ {site 1 7→ someProduct}
end

Event selection oneWebsite 〈convergent〉 =̂

extends selection oneWebsite

when
grd1: var M 1 seq = 4

grd2: var M 14 cho = 1

grd3: var M 1411 loop 1 = 0

then
act1: var M 14 cho := 0

end

Event selection twoWebsites A loop 〈convergent〉 =̂

any
someProduct

where
grd1: var M 1 seq = 4

grd2: var M 14 cho = 2

grd3: var M 141 par A = 1

grd4: var M 1411 loop 2 A > 0

grd5: someProduct ∈ P \ ran(carts ref)

then
act1: var M 1411 loop 2 A := var M 1411 loop 2 A− 1

act2: carts ref := carts ref ∪ {site 2 A 7→ someProduct}
end

Event selection twoWebsites A 〈convergent〉 =̂

extends selection twoWebsites A

when
grd1: var M 1 seq = 4

grd2: var M 14 cho = 2

grd3: var M 141 par A = 1

grd4: var M 1411 loop 2 A = 0

then
act1: var M 141 par A := var M 141 par A− 1

end

Event selection twoWebsites B loop 〈convergent〉 =̂

any
someProduct

where
grd1: var M 1 seq = 4

grd2: var M 14 cho = 2

grd3: var M 141 par B = 1

grd4: var M 1411 loop 2 B > 0

grd5: someProduct ∈ P \ ran(carts ref)

then
act1: var M 1411 loop 2 B := var M 1411 loop 2 B − 1

act2: carts ref := carts ref ∪ {site 2 B 7→ someProduct}
end
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Event selection twoWebsites B 〈convergent〉 =̂

extends selection twoWebsites B

when
grd1: var M 1 seq = 4

grd2: var M 14 cho = 2

grd3: var M 141 par B = 1

grd4: var M 1411 loop 2 B = 0
then

act1: var M 141 par B := var M 141 par B − 1
end

Event selection twoWebsites join A B 〈convergent〉 =̂

extends selection twoWebsites join A B

when
grd1: var M 1 seq = 4

grd2: var M 14 cho = 2

grd3: var M 141 par A = 0

grd4: var M 141 par B = 0
then

act1: var M 14 cho := 0
end

Event confirmSelection 〈convergent〉 =̂

refines selection

when
grd1: var M 1 seq = 4

grd3: ran(carts ref) = P

grd4: ∀p·p ∈ ran(carts ref)⇒ card(carts ref−1[{p}]) = 1

grd5: var M 14 cho = 0
with

someCarts: someCarts = carts ref
then

act1: var M 1 seq := var M 1 seq − 1

act2: carts := carts ref
end

Event payment 〈convergent〉 =̂

extends payment

when
grd1: var M 1 seq = 3

then
act1: var M 1 seq := var M 1 seq − 1

end

Event billing 〈convergent〉 =̂

extends billing

when
grd1: var M 1 seq = 2

then
act1: var M 1 seq := var M 1 seq − 1

end

Event delivery 〈convergent〉 =̂

extends delivery

when
grd1: var M 1 seq = 1

then
act1: var M 1 seq := var M 1 seq − 1

end

END
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MACHINE M 14111

REFINES M 1411

SEES C 1

VARIABLES

var M 1 seq -

carts -

var M 14 cho -

var M 141 par A -

var M 141 par B -

carts ref -

var M 1411 loop 1 -

var M 1411 loop 2 A -

var M 1411 loop 2 B -

site 1 -

site 2 A -

site 2 B -

var M 14111 seq 1 -

var M 14111 seq 2 A -

var M 14111 seq 2 B -

selectedItem 1 -

selectedItem 2 A -

selectedItem 2 B -

INVARIANTS

type1: var M 14111 seq 1 ∈ N
type2: var M 14111 seq 2 A ∈ N
type3: var M 14111 seq 2 B ∈ N
type4: selectedItem 1 ∈ P (P )

type5: selectedItem 2 A ∈ P (P )

type6: selectedItem 2 B ∈ P (P )

prop1: var M 14111 seq 1 ≥ 1⇒ card(selectedItem 1) = 0

prop2: var M 14111 seq 1 < 1⇒ card(selectedItem 1) = 1

prop3: var M 14111 seq 2 A ≥ 1⇒ card(selectedItem 2 A) = 0

prop4: var M 14111 seq 2 A < 1⇒ card(selectedItem 2 A) = 1

prop5: var M 14111 seq 2 B ≥ 1⇒ card(selectedItem 2 B) = 0

prop6: var M 14111 seq 2 B < 1⇒ card(selectedItem 2 B) = 1

VARIANT

var M 1 seq+var M 14 cho+var M 141 par A+var M 141 par B+var M 1411 loop 1+

var M 1411 loop 2 A+var M 1411 loop 2 B+var M 14111 seq 1+var M 14111 seq 2 A+

var M 14111 seq 2 B

EVENTS

Initialisation 〈extended〉
begin

act1: var M 1 seq := 4

act2: var M 1411 loop 1, var M 1411 loop 2 A, var M 1411 loop 2 B :|
var M 1411 loop 1′ = card(P )

∧ var M 1411 loop 2 A′ + var M 1411 loop 2 B′ = card(P )

∧ var M 1411 loop 2 A′ ∈ N
∧ var M 1411 loop 2 B′ ∈ N

act3: carts := ∅
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act4: var M 14 cho :∈ {1, 2}
act5: var M 141 par A := 1

act6: var M 141 par B := 1

act7: carts ref := ∅
act8: site 1 :∈ SITES

act9: site 2 A :∈ SITES

act10: site 2 B :∈ SITES

act11: var M 14111 seq 1 := 1

act12: selectedItem 1 := ∅
act13: var M 14111 seq 2 A := 1

act14: selectedItem 2 A := ∅
act15: var M 14111 seq 2 B := 1

act16: selectedItem 2 B := ∅
end

Event selectItemInItemList 1 〈convergent〉 =̂

any
someProduct

where
grd1: var M 1 seq = 4

grd2: var M 14 cho = 1

grd3: var M 1411 loop 1 > 0

grd4: var M 14111 seq 1 = 1

grd5: someProduct ∈ P \ ran(carts ref)

then
act1: var M 14111 seq 1 := var M 14111 seq 1− 1

act2: selectedItem 1 := {someProduct}
end

Event addSelectedItemToCart 1 〈convergent〉 =̂

refines selection oneWebsite loop

any
item used to access the element in selectedItem 1

where
grd1: var M 1 seq = 4

grd2: var M 14 cho = 1

grd3: var M 1411 loop 1 > 0

grd4: var M 14111 seq 1 = 0

grd5: ∃p·p ∈ P \ ran(carts ref) ∧ selectedItem 1 = {p}
grd6: selectedItem 1 = {item}

with
someProduct: selectedItem 1 = {someProduct}

then
act1: var M 1411 loop 1 := var M 1411 loop 1− 1

act2: carts ref := carts ref ∪ {site 1 7→ item}
end

Event selection oneWebsite 〈convergent〉 =̂

extends selection oneWebsite

when
grd1: var M 1 seq = 4

grd2: var M 14 cho = 1

grd3: var M 1411 loop 1 = 0

then
act1: var M 14 cho := 0

end

Event selectItemInItemList 2 A 〈convergent〉 =̂
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any
someProduct

where
grd1: var M 1 seq = 4

grd2: var M 14 cho = 2

grd3: var M 141 par A = 1

grd4: var M 1411 loop 2 A > 0

grd5: var M 14111 seq 2 A = 1

grd6: someProduct ∈ P \ ran(carts ref)

then
act1: var M 14111 seq 2 A := var M 14111 seq 2 A− 1

act2: selectedItem 2 A := {someProduct}
end

Event addSelectedItemToCart 2 A 〈convergent〉 =̂

refines selection twoWebsites A loop

any
item used to access the element in selectedItem 2 A

where
grd1: var M 1 seq = 4

grd2: var M 14 cho = 2

grd3: var M 141 par A = 1

grd4: var M 1411 loop 2 A > 0

grd5: var M 14111 seq 2 A = 0

grd6: ∃p·p ∈ P \ ran(carts ref) ∧ selectedItem 2 A = {p}
grd7: selectedItem 2 A = {item}

with
someProduct: selectedItem 2 A = {someProduct}

then
act1: var M 1411 loop 2 A := var M 1411 loop 2 A− 1

act2: carts ref := carts ref ∪ {site 2 A 7→ item}
end

Event selection twoWebsites A 〈convergent〉 =̂

extends selection twoWebsites A

when
grd1: var M 1 seq = 4

grd2: var M 14 cho = 2

grd3: var M 141 par A = 1

grd4: var M 1411 loop 2 A = 0

then
act1: var M 141 par A := var M 141 par A− 1

end

Event selectItemInItemList 2 B 〈convergent〉 =̂

any
someProduct

where
grd1: var M 1 seq = 4

grd2: var M 14 cho = 2

grd3: var M 141 par B = 1

grd4: var M 1411 loop 2 B > 0

grd5: var M 14111 seq 2 B = 1

grd6: someProduct ∈ P \ ran(carts ref)

then
act1: var M 14111 seq 2 B := var M 14111 seq 2 B − 1

act2: selectedItem 2 B := {someProduct}
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end

Event addSelectedItemToCart 2 B 〈convergent〉 =̂

refines selection twoWebsites B loop

any
item used to access the element in selectedItem 2 B

where
grd1: var M 1 seq = 4

grd2: var M 14 cho = 2

grd3: var M 141 par B = 1

grd4: var M 1411 loop 2 B > 0

grd5: var M 14111 seq 2 B = 0

grd6: ∃p·p ∈ P \ ran(carts ref) ∧ selectedItem 2 B = {p}
grd7: selectedItem 2 B = {item}

with
someProduct: selectedItem 2 B = {someProduct}

then
act1: var M 1411 loop 2 B := var M 1411 loop 2 B − 1

act2: carts ref := carts ref ∪ {site 2 B 7→ item}
end

Event selection twoWebsites B 〈convergent〉 =̂

extends selection twoWebsites B

when
grd1: var M 1 seq = 4

grd2: var M 14 cho = 2

grd3: var M 141 par B = 1

grd4: var M 1411 loop 2 B = 0

then
act1: var M 141 par B := var M 141 par B − 1

end

Event selection twoWebsites join A B 〈convergent〉 =̂

extends selection twoWebsites join A B

when
grd1: var M 1 seq = 4

grd2: var M 14 cho = 2

grd3: var M 141 par A = 0

grd4: var M 141 par B = 0

then
act1: var M 14 cho := 0

end

Event confirmSelection 〈convergent〉 =̂

extends confirmSelection

when
grd1: var M 1 seq = 4

grd3: ran(carts ref) = P

grd4: ∀p·p ∈ ran(carts ref)⇒ card(carts ref−1[{p}]) = 1

grd5: var M 14 cho = 0

then
act1: var M 1 seq := var M 1 seq − 1

act2: carts := carts ref

end

Event payment 〈convergent〉 =̂

extends payment

when
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grd1: var M 1 seq = 3

then
act1: var M 1 seq := var M 1 seq − 1

end

Event billing 〈convergent〉 =̂

extends billing

when
grd1: var M 1 seq = 2

then
act1: var M 1 seq := var M 1 seq − 1

end

Event delivery 〈convergent〉 =̂

extends delivery

when
grd1: var M 1 seq = 1

then
act1: var M 1 seq := var M 1 seq − 1

end

END
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MACHINE M 15 failure

REFINES M 1

SEES C 11 failure status

VARIABLES

var M 1 seq -

carts -

var M 15 cho -

failureStatus 1 (one website)

failureStatus 2 (two websites)

INVARIANTS

type1: var M 15 cho ∈ N
type2: failureStatus 1 ∈ FAILURE STATUS

type3: failureStatus 2 ∈ FAILURE STATUS

DLF 2: ¬((var M 1 seq = 4

∧ var M 15 cho = 1

∧ failureStatus 1 = OK)

∨ (var M 1 seq = 4

∧ var M 15 cho = 1

∧ failureStatus 1 = NOT OK

∧ failureStatus 2 = OK)

∨ (var M 1 seq = 4

∧ var M 15 cho = 2

∧ failureStatus 2 = OK)

∨ (var M 1 seq = 4

∧ var M 15 cho = 2

∧ failureStatus 2 = NOT OK

∧ failureStatus 1 = OK)

∨ (var M 1 seq = 4

∧ var M 15 cho = 1

∧ failureStatus 1 = OK)

∨ (var M 1 seq = 4

∧ var M 15 cho = 2

∧ failureStatus 2 = OK)

∨ (∃someCarts·
(var M 1 seq = 4

∧ someCarts ⊆ SITES × P

∧ ran(someCarts) = P

∧ (∀p·p ∈ ran(someCarts)⇒ card(someCarts−1[{p}]) = 1)

∧ var M 15 cho = 0))

∨ var M 1 seq = 3

∨ var M 1 seq = 2

∨ var M 1 seq = 1)

⇒
(var M 1 seq = 0

∨ (failureStatus 1 = NOT OK ∧ failureStatus 2 = NOT OK))

deadlock => (finished or total failure)

VARIANT

var M 1 seq + var M 15 cho

EVENTS

Initialisation 〈extended〉
begin

act1: var M 1 seq := 4
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act3: carts := ∅
act4: var M 15 cho :∈ {1, 2}
act5: failureStatus 1 := OK

act6: failureStatus 2 := OK

end

Event failure 1 〈ordinary〉 =̂
when

grd1: var M 1 seq = 4

grd2: var M 15 cho = 1

grd3: failureStatus 1 = OK

then
act1: failureStatus 1 := NOT OK

end

Event treat failure 1 〈ordinary〉 =̂
when

grd1: var M 1 seq = 4

grd2: var M 15 cho = 1

grd3: failureStatus 1 = NOT OK

grd4: failureStatus 2 = OK

then
act1: var M 15 cho := 2

end

Event failure 2 〈ordinary〉 =̂
when

grd1: var M 1 seq = 4

grd2: var M 15 cho = 2

grd3: failureStatus 2 = OK

then
act1: failureStatus 2 := NOT OK

end

Event treat failure 2 〈ordinary〉 =̂
when

grd1: var M 1 seq = 4

grd2: var M 15 cho = 2

grd3: failureStatus 2 = NOT OK

grd4: failureStatus 1 = OK

then
act1: var M 15 cho := 1

end

Event selection oneWebsite 〈convergent〉 =̂
when

grd1: var M 1 seq = 4

grd2: var M 15 cho = 1

grd3: failureStatus 1 = OK

then
act1: var M 15 cho := 0

end

Event selection twoWebsites 〈convergent〉 =̂
when

grd1: var M 1 seq = 4

grd2: var M 15 cho = 2

grd3: failureStatus 2 = OK

then
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act1: var M 15 cho := 0

end

Event selection 〈convergent〉 =̂
extends selection

any
someCarts

where
grd1: var M 1 seq = 4

grd2: someCarts ⊆ SITES × P

grd3: ran(someCarts) = P

grd4: ∀p·p ∈ ran(someCarts)⇒ card(someCarts−1[{p}]) = 1

grd5: var M 15 cho = 0

then
act1: var M 1 seq := var M 1 seq − 1

act2: carts := someCarts

end

Event payment 〈convergent〉 =̂
extends payment

when
grd1: var M 1 seq = 3

then
act1: var M 1 seq := var M 1 seq − 1

end

Event billing 〈convergent〉 =̂
extends billing

when
grd1: var M 1 seq = 2

then
act1: var M 1 seq := var M 1 seq − 1

end

Event delivery 〈convergent〉 =̂
extends delivery

when
grd1: var M 1 seq = 1

then
act1: var M 1 seq := var M 1 seq − 1

end

END
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MACHINE M 151

REFINES M 15 failure

SEES C 11 failure status

VARIABLES

var M 1 seq -

carts -

var M 15 cho -

failureStatus 1 (one website)

failureStatus 2 (two websites)

var M 151 par A -

var M 151 par B -

INVARIANTS

type1: var M 151 par A ∈ N
type2: var M 151 par B ∈ N
DLF 3: ¬((var M 1 seq = 4

∧ var M 15 cho = 1

∧ failureStatus 1 = OK)

∨ (var M 1 seq = 4

∧ var M 15 cho = 1

∧ failureStatus 1 = NOT OK

∧ failureStatus 2 = OK)

∨ (var M 1 seq = 4

∧ var M 15 cho = 2

∧ failureStatus 2 = OK)

∨ (var M 1 seq = 4

∧ var M 15 cho = 2

∧ failureStatus 2 = NOT OK

∧ failureStatus 1 = OK)

∨ (var M 1 seq = 4

∧ var M 15 cho = 1

∧ failureStatus 1 = OK)

∨ (var M 1 seq = 4

∧ var M 15 cho = 2

∧ var M 151 par A = 1

∧ failureStatus 2 = OK)

∨ (var M 1 seq = 4

∧ var M 15 cho = 2

∧ var M 151 par B = 1

∧ failureStatus 2 = OK)

∨ (var M 1 seq = 4

∧ var M 15 cho = 2

∧ failureStatus 2 = OK

∧ var M 151 par A = 0

∧ var M 151 par B = 0)

∨ (∃someCarts·
(var M 1 seq = 4

∧ someCarts ⊆ SITES × P

∧ ran(someCarts) = P

∧ (∀p·p ∈ ran(someCarts)⇒ card(someCarts−1[{p}]) = 1)

∧ var M 15 cho = 0))

∨ var M 1 seq = 3

∨ var M 1 seq = 2

∨ var M 1 seq = 1)
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⇒
(var M 1 seq = 0

∨ (failureStatus 1 = NOT OK ∧ failureStatus 2 = NOT OK))

deadlock => (finished or total failure)

VARIANT

var M 1 seq + var M 15 cho + var M 151 par A + var M 151 par B

EVENTS

Initialisation 〈extended〉
begin

act1: var M 1 seq := 4

act3: carts := ∅
act4: var M 15 cho :∈ {1, 2}
act5: failureStatus 1 := OK

act6: failureStatus 2 := OK

act7: var M 151 par A := 1

act8: var M 151 par B := 1

end

Event failure 1 〈ordinary〉 =̂
extends failure 1

when
grd1: var M 1 seq = 4

grd2: var M 15 cho = 1

grd3: failureStatus 1 = OK

then
act1: failureStatus 1 := NOT OK

end

Event treat failure 1 〈ordinary〉 =̂
extends treat failure 1

when
grd1: var M 1 seq = 4

grd2: var M 15 cho = 1

grd3: failureStatus 1 = NOT OK

grd4: failureStatus 2 = OK

then
act1: var M 15 cho := 2

end

Event failure 2 〈ordinary〉 =̂
extends failure 2

when
grd1: var M 1 seq = 4

grd2: var M 15 cho = 2

grd3: failureStatus 2 = OK

then
act1: failureStatus 2 := NOT OK

end

Event treat failure 2 〈ordinary〉 =̂
extends treat failure 2

when
grd1: var M 1 seq = 4

grd2: var M 15 cho = 2

grd3: failureStatus 2 = NOT OK

grd4: failureStatus 1 = OK

then
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act1: var M 15 cho := 1

end

Event selection oneWebsite 〈convergent〉 =̂
extends selection oneWebsite

when
grd1: var M 1 seq = 4

grd2: var M 15 cho = 1

grd3: failureStatus 1 = OK

then
act1: var M 15 cho := 0

end

Event selection twoWebsites A 〈convergent〉 =̂
when

grd1: var M 1 seq = 4

grd2: var M 15 cho = 2

grd3: var M 151 par A = 1

grd4: failureStatus 2 = OK

then
act1: var M 151 par A := var M 151 par A− 1

end

Event selection twoWebsites B 〈convergent〉 =̂
when

grd1: var M 1 seq = 4

grd2: var M 15 cho = 2

grd3: var M 151 par B = 1

grd4: failureStatus 2 = OK

then
act1: var M 151 par B := var M 151 par B − 1

end

Event selection twoWebsites join A B 〈convergent〉 =̂
extends selection twoWebsites

when
grd1: var M 1 seq = 4

grd2: var M 15 cho = 2

grd3: failureStatus 2 = OK

grd4: var M 151 par A = 0

grd5: var M 151 par B = 0

then
act1: var M 15 cho := 0

end

Event selection 〈convergent〉 =̂
extends selection

any
someCarts

where
grd1: var M 1 seq = 4

grd2: someCarts ⊆ SITES × P

grd3: ran(someCarts) = P

grd4: ∀p·p ∈ ran(someCarts)⇒ card(someCarts−1[{p}]) = 1

grd5: var M 15 cho = 0

then
act1: var M 1 seq := var M 1 seq − 1

act2: carts := someCarts
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end

Event payment 〈convergent〉 =̂
extends payment

when
grd1: var M 1 seq = 3

then
act1: var M 1 seq := var M 1 seq − 1

end

Event billing 〈convergent〉 =̂
extends billing

when
grd1: var M 1 seq = 2

then
act1: var M 1 seq := var M 1 seq − 1

end

Event delivery 〈convergent〉 =̂
extends delivery

when
grd1: var M 1 seq = 1

then
act1: var M 1 seq := var M 1 seq − 1

end

END
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MACHINE M 1511 reboot

REFINES M 151

SEES C 11 failure status

VARIABLES

var M 1 seq -

carts -

var M 15 cho -

failureStatus 1 (one website)

failureStatus 2 (two websites)

var M 151 par A -

var M 151 par B -

carts ref -

var M 1511 loop 1 -

var M 1511 loop 2 A -

var M 1511 loop 2 B -

site 1 -

site 2 A -

site 2 B -

INVARIANTS

type1: carts ref ⊆ SITES × P

type2: var M 1511 loop 1 ∈ N
type3: var M 1511 loop 2 A ∈ N
type4: var M 1511 loop 2 B ∈ N
type5: site 1 ∈ SITES

type6: site 2 A ∈ SITES

type7: site 2 B ∈ SITES

prop1: var M 15 cho = 1⇒ dom(carts ref) ⊆ {site 1}
prop2: var M 15 cho = 2⇒ dom(carts ref) ⊆ {site 2 A, site 2 B}

VARIANT

var M 1 seq+var M 15 cho+var M 151 par A+var M 151 par B+var M 1511 loop 1+

var M 1511 loop 2 A+ var M 1511 loop 2 B

EVENTS

Initialisation

begin
act1: var M 1 seq := 4

act2: var M 1511 loop 1, var M 1511 loop 2 A, var M 1511 loop 2 B :|
var M 1511 loop 1′ = card(P )

∧ var M 1511 loop 2 A′ + var M 1511 loop 2 B′ = card(P )

∧ var M 1511 loop 2 A′ ∈ N
∧ var M 1511 loop 2 B′ ∈ N

act3: carts := ∅
act4: var M 15 cho :∈ {1, 2}
act5: failureStatus 1 := OK

act6: failureStatus 2 := OK

act7: var M 151 par A := 1

act8: var M 151 par B := 1

act9: carts ref := ∅
act10: site 1 :∈ SITES

act11: site 2 A :∈ SITES

act12: site 2 B :∈ SITES
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end

Event failure 1 〈ordinary〉 =̂

extends failure 1

when
grd1: var M 1 seq = 4

grd2: var M 15 cho = 1

grd3: failureStatus 1 = OK

then
act1: failureStatus 1 := NOT OK

end

Event treat failure 1 〈ordinary〉 =̂

extends treat failure 1

when
grd1: var M 1 seq = 4

grd2: var M 15 cho = 1

grd3: failureStatus 1 = NOT OK

grd4: failureStatus 2 = OK

then
act1: var M 15 cho := 2

act2: carts ref := ∅
carts ref is reinitialized to rebuild the initial state

end

Event failure 2 〈ordinary〉 =̂

extends failure 2

when
grd1: var M 1 seq = 4

grd2: var M 15 cho = 2

grd3: failureStatus 2 = OK

then
act1: failureStatus 2 := NOT OK

end

Event treat failure 2 〈ordinary〉 =̂

extends treat failure 2

when
grd1: var M 1 seq = 4

grd2: var M 15 cho = 2

grd3: failureStatus 2 = NOT OK

grd4: failureStatus 1 = OK

then
act1: var M 15 cho := 1

act2: carts ref := ∅
carts ref is reinitialized to rebuild the initial state

end

Event selection oneWebsite loop 〈convergent〉 =̂

any
someProduct

where
grd1: var M 1 seq = 4

grd2: var M 15 cho = 1

grd3: failureStatus 1 = OK

grd4: var M 1511 loop 1 > 0

grd5: someProduct ∈ P \ ran(carts ref)

then
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act1: var M 1511 loop 1 := var M 1511 loop 1− 1

act2: carts ref := carts ref ∪ {site 1 7→ someProduct}
end

Event selection oneWebsite 〈convergent〉 =̂

extends selection oneWebsite

when
grd1: var M 1 seq = 4

grd2: var M 15 cho = 1

grd3: failureStatus 1 = OK

grd4: var M 1511 loop 1 = 0

then
act1: var M 15 cho := 0

end

Event selection twoWebsites A loop 〈convergent〉 =̂

any
someProduct

where
grd1: var M 1 seq = 4

grd2: var M 15 cho = 2

grd3: failureStatus 2 = OK

grd4: var M 151 par A = 1

grd5: var M 1511 loop 2 A > 0

grd6: someProduct ∈ P \ ran(carts ref)

then
act1: var M 1511 loop 2 A := var M 1511 loop 2 A− 1

act2: carts ref := carts ref ∪ {site 2 A 7→ someProduct}
end

Event selection twoWebsites A 〈convergent〉 =̂

extends selection twoWebsites A

when
grd1: var M 1 seq = 4

grd2: var M 15 cho = 2

grd3: var M 151 par A = 1

grd4: failureStatus 2 = OK

grd5: var M 1511 loop 2 A = 0

then
act1: var M 151 par A := var M 151 par A− 1

end

Event selection twoWebsites B loop 〈convergent〉 =̂

any
someProduct

where
grd1: var M 1 seq = 4

grd2: var M 15 cho = 2

grd3: failureStatus 2 = OK

grd4: var M 151 par B = 1

grd5: var M 1511 loop 2 B > 0

grd6: someProduct ∈ P \ ran(carts ref)

then
act1: var M 1511 loop 2 B := var M 1511 loop 2 B − 1

act2: carts ref := carts ref ∪ {site 2 B 7→ someProduct}
end

Event selection twoWebsites B 〈convergent〉 =̂
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extends selection twoWebsites B

when
grd1: var M 1 seq = 4

grd2: var M 15 cho = 2

grd3: var M 151 par B = 1

grd4: failureStatus 2 = OK

grd5: var M 1511 loop 2 B = 0

then
act1: var M 151 par B := var M 151 par B − 1

end

Event selection twoWebsites join A B 〈convergent〉 =̂

extends selection twoWebsites join A B

when
grd1: var M 1 seq = 4

grd2: var M 15 cho = 2

grd3: failureStatus 2 = OK

grd4: var M 151 par A = 0

grd5: var M 151 par B = 0

then
act1: var M 15 cho := 0

end

Event confirmSelection 〈convergent〉 =̂

refines selection

when
grd1: var M 1 seq = 4

grd2: ran(carts ref) = P

grd3: ∀p·p ∈ ran(carts ref)⇒ card(carts ref−1[{p}]) = 1

grd4: var M 15 cho = 0

with
someCarts: someCarts = carts ref

then
act1: var M 1 seq := var M 1 seq − 1

act2: carts := carts ref

end

Event payment 〈convergent〉 =̂

extends payment

when
grd1: var M 1 seq = 3

then
act1: var M 1 seq := var M 1 seq − 1

end

Event billing 〈convergent〉 =̂

extends billing

when
grd1: var M 1 seq = 2

then
act1: var M 1 seq := var M 1 seq − 1

end

Event delivery 〈convergent〉 =̂

extends delivery

when
grd1: var M 1 seq = 1

then
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act1: var M 1 seq := var M 1 seq − 1

end

END
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MACHINE M 15111

REFINES M 1511 reboot

SEES C 11 failure status

VARIABLES

var M 1 seq -

carts -

var M 15 cho -

failureStatus 1 (one website)

failureStatus 2 (two websites)

var M 151 par A -

var M 151 par B -

carts ref -

var M 1511 loop 1 -

var M 1511 loop 2 A -

var M 1511 loop 2 B -

site 1 -

site 2 A -

site 2 B -

var M 15111 seq 1 -

var M 15111 seq 2 A -

var M 15111 seq 2 B -

selectedItem 1 -

selectedItem 2 A -

selectedItem 2 B -

INVARIANTS

type1: var M 15111 seq 1 ∈ N
type2: var M 15111 seq 2 A ∈ N
type3: var M 15111 seq 2 B ∈ N
type4: selectedItem 1 ∈ P (P )

type5: selectedItem 2 A ∈ P (P )

type6: selectedItem 2 B ∈ P (P )

prop1: var M 15111 seq 1 ≥ 1⇒ card(selectedItem 1) = 0

prop2: var M 15111 seq 1 < 1⇒ card(selectedItem 1) = 1

prop3: var M 15111 seq 2 A ≥ 1⇒ card(selectedItem 2 A) = 0

prop4: var M 15111 seq 2 A < 1⇒ card(selectedItem 2 A) = 1

prop5: var M 15111 seq 2 B ≥ 1⇒ card(selectedItem 2 B) = 0

prop6: var M 15111 seq 2 B < 1⇒ card(selectedItem 2 B) = 1

VARIANT

var M 1 seq+var M 15 cho+var M 151 par A+var M 151 par B+var M 1511 loop 1+

var M 1511 loop 2 A+var M 1511 loop 2 B+var M 15111 seq 1+var M 15111 seq 2 A+

var M 15111 seq 2 B

EVENTS

Initialisation 〈extended〉
begin

act1: var M 1 seq := 4

act2: var M 1511 loop 1, var M 1511 loop 2 A, var M 1511 loop 2 B :|
var M 1511 loop 1′ = card(P )

∧ var M 1511 loop 2 A′ + var M 1511 loop 2 B′ = card(P )

∧ var M 1511 loop 2 A′ ∈ N
∧ var M 1511 loop 2 B′ ∈ N
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act3: carts := ∅
act4: var M 15 cho :∈ {1, 2}
act5: failureStatus 1 := OK

act6: failureStatus 2 := OK

act7: var M 151 par A := 1

act8: var M 151 par B := 1

act9: carts ref := ∅
act10: site 1 :∈ SITES

act11: site 2 A :∈ SITES

act12: site 2 B :∈ SITES

act13: var M 15111 seq 1 := 1

act14: selectedItem 1 := ∅
act15: var M 15111 seq 2 A := 1

act16: selectedItem 2 A := ∅
act17: var M 15111 seq 2 B := 1

act18: selectedItem 2 B := ∅
end

Event failure 1 〈ordinary〉 =̂

extends failure 1

when
grd1: var M 1 seq = 4

grd2: var M 15 cho = 1

grd3: failureStatus 1 = OK

then
act1: failureStatus 1 := NOT OK

end

Event treat failure 1 〈ordinary〉 =̂

extends treat failure 1

when
grd1: var M 1 seq = 4

grd2: var M 15 cho = 1

grd3: failureStatus 1 = NOT OK

grd4: failureStatus 2 = OK

then
act1: var M 15 cho := 2

act2: carts ref := ∅
carts ref is reinitialized to rebuild the initial state

end

Event failure 2 〈ordinary〉 =̂

extends failure 2

when
grd1: var M 1 seq = 4

grd2: var M 15 cho = 2

grd3: failureStatus 2 = OK

then
act1: failureStatus 2 := NOT OK

end

Event treat failure 2 〈ordinary〉 =̂

extends treat failure 2

when
grd1: var M 1 seq = 4

grd2: var M 15 cho = 2

grd3: failureStatus 2 = NOT OK
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grd4: failureStatus 1 = OK

then
act1: var M 15 cho := 1

act2: carts ref := ∅
carts ref is reinitialized to rebuild the initial state

end

Event selectItemInItemList 1 〈convergent〉 =̂

any
someProduct

where
grd1: var M 1 seq = 4

grd2: var M 15 cho = 1

grd3: failureStatus 1 = OK

grd4: var M 1511 loop 1 > 0

grd5: var M 15111 seq 1 = 1

grd6: someProduct ∈ P \ ran(carts ref)

then
act1: var M 15111 seq 1 := var M 15111 seq 1− 1

act2: selectedItem 1 := {someProduct}
end

Event addSelectedItemToCart 1 〈convergent〉 =̂

refines selection oneWebsite loop

any
item used to access the element in selectedItem 1

where
grd1: var M 1 seq = 4

grd2: var M 15 cho = 1

grd3: failureStatus 1 = OK

grd4: var M 1511 loop 1 > 0

grd5: var M 15111 seq 1 = 0

grd6: ∃p·p ∈ P \ ran(carts ref) ∧ selectedItem 1 = {p}
grd7: selectedItem 1 = {item}

with
someProduct: selectedItem 1 = {someProduct}

then
act1: var M 1511 loop 1 := var M 1511 loop 1− 1

act2: carts ref := carts ref ∪ {site 1 7→ item}
end

Event selection oneWebsite 〈convergent〉 =̂

extends selection oneWebsite

when
grd1: var M 1 seq = 4

grd2: var M 15 cho = 1

grd3: failureStatus 1 = OK

grd4: var M 1511 loop 1 = 0

then
act1: var M 15 cho := 0

end

Event selectItemInItemList 2 A 〈convergent〉 =̂

any
someProduct

where
grd1: var M 1 seq = 4

grd2: var M 15 cho = 2
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grd3: failureStatus 2 = OK

grd4: var M 151 par A = 1

grd5: var M 1511 loop 2 A > 0

grd6: var M 15111 seq 2 A = 1

grd7: someProduct ∈ P \ ran(carts ref)

then
act1: var M 15111 seq 2 A := var M 15111 seq 2 A− 1

act2: selectedItem 2 A := {someProduct}
end

Event addSelectedItemToCart 2 A 〈convergent〉 =̂

refines selection twoWebsites A loop

any
item used to access the element in selectedItem 2 A

where
grd1: var M 1 seq = 4

grd2: var M 15 cho = 2

grd3: failureStatus 2 = OK

grd4: var M 151 par A = 1

grd5: var M 1511 loop 2 A > 0

grd6: var M 15111 seq 2 A = 0

grd7: ∃p·p ∈ P \ ran(carts ref) ∧ selectedItem 2 A = {p}
grd8: selectedItem 2 A = {item}

with
someProduct: selectedItem 2 A = {someProduct}

then
act1: var M 1511 loop 2 A := var M 1511 loop 2 A− 1

act2: carts ref := carts ref ∪ {site 2 A 7→ item}
end

Event selection twoWebsites A 〈convergent〉 =̂

extends selection twoWebsites A

when
grd1: var M 1 seq = 4

grd2: var M 15 cho = 2

grd3: var M 151 par A = 1

grd4: failureStatus 2 = OK

grd5: var M 1511 loop 2 A = 0

then
act1: var M 151 par A := var M 151 par A− 1

end

Event selectItemInItemList 2 B 〈convergent〉 =̂

any
someProduct

where
grd1: var M 1 seq = 4

grd2: var M 15 cho = 2

grd3: failureStatus 2 = OK

grd4: var M 151 par B = 1

grd5: var M 1511 loop 2 B > 0

grd6: var M 15111 seq 2 B = 1

grd7: someProduct ∈ P \ ran(carts ref)

then
act1: var M 15111 seq 2 B := var M 15111 seq 2 B − 1

act2: selectedItem 2 B := {someProduct}
end
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Event addSelectedItemToCart 2 B 〈convergent〉 =̂

refines selection twoWebsites B loop

any
item used to access the element in selectedItem 2 B

where
grd1: var M 1 seq = 4

grd2: var M 15 cho = 2

grd3: failureStatus 2 = OK

grd4: var M 151 par B = 1

grd5: var M 1511 loop 2 B > 0

grd6: var M 15111 seq 2 B = 0

grd7: ∃p·p ∈ P \ ran(carts ref) ∧ selectedItem 2 B = {p}
grd8: selectedItem 2 B = {item}

with
someProduct: selectedItem 2 B = {someProduct}

then
act1: var M 1511 loop 2 B := var M 1511 loop 2 B − 1

act2: carts ref := carts ref ∪ {site 2 B 7→ item}
end

Event selection twoWebsites B 〈convergent〉 =̂

extends selection twoWebsites B

when
grd1: var M 1 seq = 4

grd2: var M 15 cho = 2

grd3: var M 151 par B = 1

grd4: failureStatus 2 = OK

grd5: var M 1511 loop 2 B = 0

then
act1: var M 151 par B := var M 151 par B − 1

end

Event selection twoWebsites join A B 〈convergent〉 =̂

extends selection twoWebsites join A B

when
grd1: var M 1 seq = 4

grd2: var M 15 cho = 2

grd3: failureStatus 2 = OK

grd4: var M 151 par A = 0

grd5: var M 151 par B = 0

then
act1: var M 15 cho := 0

end

Event confirmSelection 〈convergent〉 =̂

extends confirmSelection

when
grd1: var M 1 seq = 4

grd2: ran(carts ref) = P

grd3: ∀p·p ∈ ran(carts ref)⇒ card(carts ref−1[{p}]) = 1

grd4: var M 15 cho = 0

then
act1: var M 1 seq := var M 1 seq − 1

act2: carts := carts ref

end

Event payment 〈convergent〉 =̂
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extends payment

when
grd1: var M 1 seq = 3

then
act1: var M 1 seq := var M 1 seq − 1

end

Event billing 〈convergent〉 =̂

extends billing

when
grd1: var M 1 seq = 2

then
act1: var M 1 seq := var M 1 seq − 1

end

Event delivery 〈convergent〉 =̂

extends delivery

when
grd1: var M 1 seq = 1

then
act1: var M 1 seq := var M 1 seq − 1

end

END
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MACHINE M 1512 repair

REFINES M 151

SEES C 11 failure status

VARIABLES

var M 1 seq -

carts -

var M 15 cho -

failureStatus 1 (one website)

failureStatus 2 (two websites)

var M 151 par A -

var M 151 par B -

carts ref -

var M 1511 loop 1 -

var M 1511 loop 2 A -

var M 1511 loop 2 B -

site 1 -

site 2 A -

site 2 B -

INVARIANTS

type1: carts ref ⊆ SITES × P

type2: var M 1511 loop 1 ∈ N
type3: var M 1511 loop 2 A ∈ N
type4: var M 1511 loop 2 B ∈ N
type5: site 1 ∈ SITES

type6: site 2 A ∈ SITES

type7: site 2 B ∈ SITES

prop1: var M 15 cho = 1⇒ dom(carts ref) ⊆ {site 1}
prop2: var M 15 cho = 2⇒ dom(carts ref) ⊆ {site 2 A, site 2 B}
prop3: ∀p·p ∈ ran(carts ref)⇒ card(carts ref−1[{p}]) = 1

tech1: var M 15 cho = 1⇒ card(P )− card(ran(carts ref)) = var M 1511 loop 1

tech2: var M 15 cho = 2⇒ card(P ) − card(ran(carts ref)) = var M 1511 loop 2 A +

var M 1511 loop 2 B

thm1: 〈theorem〉 ∀A,B, e·(finite(A)∧ finite(B)∧A ⊆ PRODUCTS ∧B ⊆ A∧ card(A)−
card(B)− 1 = 0 ∧ e ∈ A \B)⇒B ∪ {e} = A

tech3: (var M 15 cho = 1 ∧ var M 1511 loop 1 = 0)⇒ ran(carts ref) = P

tech4: (var M 15 cho = 2 ∧ var M 1511 loop 2 A = 0 ∧ var M 1511 loop 2 B = 0)⇒
ran(carts ref) = P

DLF 4: ¬(

(

var M 1 seq = 4

∧ var M 15 cho = 1

∧ failureStatus 1 = OK

) ∨ (

var M 1 seq = 4

∧ var M 15 cho = 1

∧ failureStatus 1 = NOT OK

∧ failureStatus 2 = OK

) ∨ (

var M 1 seq = 4

∧ var M 15 cho = 2
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∧ failureStatus 2 = OK

) ∨ (

var M 1 seq = 4

∧ var M 15 cho = 2

∧ failureStatus 2 = NOT OK

∧ failureStatus 1 = OK

) ∨ (

∃someProduct·
(var M 1 seq = 4

∧ var M 15 cho = 1

∧ failureStatus 1 = OK

∧ var M 1511 loop 1 > 0

∧ someProduct ∈ P \ ran(carts ref))

) ∨ (

var M 1 seq = 4

∧ var M 15 cho = 1

∧ failureStatus 1 = OK

∧ var M 1511 loop 1 = 0

) ∨ (

∃someProduct·
(var M 1 seq = 4

∧ var M 15 cho = 2

∧ failureStatus 2 = OK

∧ var M 151 par A = 1

∧ var M 1511 loop 2 A > 0

∧ someProduct ∈ P \ ran(carts ref))

) ∨ (

var M 1 seq = 4

∧ var M 15 cho = 2

∧ var M 151 par A = 1

∧ failureStatus 2 = OK

∧ var M 1511 loop 2 A = 0

) ∨ (

∃someProduct·
(var M 1 seq = 4

∧ var M 15 cho = 2

∧ failureStatus 2 = OK

∧ var M 151 par B = 1

∧ var M 1511 loop 2 B > 0

∧ someProduct ∈ P \ ran(carts ref))

) ∨ (

var M 1 seq = 4

∧ var M 15 cho = 2

∧ var M 151 par B = 1

∧ failureStatus 2 = OK

∧ var M 1511 loop 2 B = 0

) ∨ (

var M 1 seq = 4

∧ var M 15 cho = 2

∧ failureStatus 2 = OK

∧ var M 151 par A = 0

∧ var M 151 par B = 0

∧ var M 1511 loop 2 A = 0

∧ var M 1511 loop 2 B = 0

) ∨ (
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var M 1 seq = 4

∧ ran(carts ref) = P

∧ (∀p·p ∈ ran(carts ref)⇒ card(carts ref−1[{p}]) = 1)

∧ var M 15 cho = 0

) ∨ (

var M 1 seq = 3

) ∨ (

var M 1 seq = 2

) ∨ (

var M 1 seq = 1

))

⇒
(var M 1 seq = 0

∨ (failureStatus 1 = NOT OK ∧ failureStatus 2 = NOT OK))

deadlock => (finished or total failure)

VARIANT

var M 1 seq+var M 15 cho+var M 151 par A+var M 151 par B+var M 1511 loop 1+

var M 1511 loop 2 A + var M 1511 loop 2 B

EVENTS

Initialisation

begin
act1: var M 1 seq := 4

act2: var M 1511 loop 1, var M 1511 loop 2 A, var M 1511 loop 2 B :|
var M 1511 loop 1′ = card(P )

∧ var M 1511 loop 2 A′ + var M 1511 loop 2 B′ = card(P )

∧ var M 1511 loop 2 A′ ∈ N
∧ var M 1511 loop 2 B′ ∈ N

act3: carts := ∅
act4: var M 15 cho :∈ {1, 2}
act5: failureStatus 1 := OK

act6: failureStatus 2 := OK

act7: var M 151 par A := 1

act8: var M 151 par B := 1

act9: carts ref := ∅
act10: site 1 :∈ SITES

act11: site 2 A :∈ SITES

act12: site 2 B :∈ SITES

end

Event failure 1 〈ordinary〉 =̂

extends failure 1

when
grd1: var M 1 seq = 4

grd2: var M 15 cho = 1

grd3: failureStatus 1 = OK

then
act1: failureStatus 1 := NOT OK

end

Event treat failure 1 〈ordinary〉 =̂

extends treat failure 1

when
grd1: var M 1 seq = 4

grd2: var M 15 cho = 1

grd3: failureStatus 1 = NOT OK
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grd4: failureStatus 2 = OK

then
act1: var M 15 cho := 2

act2: carts ref := {p·p ∈ ran(carts ref)|site 2 A 7→ p}
act3: var M 1511 loop 2 A, var M 1511 loop 2 B :|

var M 1511 loop 2 A′+var M 1511 loop 2 B′ = var M 1511 loop 1

∧ var M 1511 loop 2 A′ ∈ N
∧ var M 1511 loop 2 B′ ∈ N

end

Event failure 2 〈ordinary〉 =̂

extends failure 2

when
grd1: var M 1 seq = 4

grd2: var M 15 cho = 2

grd3: failureStatus 2 = OK

then
act1: failureStatus 2 := NOT OK

end

Event treat failure 2 〈ordinary〉 =̂

extends treat failure 2

when
grd1: var M 1 seq = 4

grd2: var M 15 cho = 2

grd3: failureStatus 2 = NOT OK

grd4: failureStatus 1 = OK

then
act1: var M 15 cho := 1

act2: carts ref := {p·p ∈ ran(carts ref)|site 1 7→ p}
act3: var M 1511 loop 1 := var M 1511 loop 2 A + var M 1511 loop 2 B

end

Event selection oneWebsite loop 〈convergent〉 =̂

any
someProduct

where
grd1: var M 1 seq = 4

grd2: var M 15 cho = 1

grd3: failureStatus 1 = OK

grd4: var M 1511 loop 1 > 0

grd5: someProduct ∈ P \ ran(carts ref)

then
act1: var M 1511 loop 1 := var M 1511 loop 1− 1

act2: carts ref := carts ref ∪ {site 1 7→ someProduct}
end

Event selection oneWebsite 〈convergent〉 =̂

extends selection oneWebsite

when
grd1: var M 1 seq = 4

grd2: var M 15 cho = 1

grd3: failureStatus 1 = OK

grd4: var M 1511 loop 1 = 0

then
act1: var M 15 cho := 0

end
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Event selection twoWebsites A loop 〈convergent〉 =̂

any
someProduct

where
grd1: var M 1 seq = 4

grd2: var M 15 cho = 2

grd3: failureStatus 2 = OK

grd4: var M 151 par A = 1

grd5: var M 1511 loop 2 A > 0

grd6: someProduct ∈ P \ ran(carts ref)

then
act1: var M 1511 loop 2 A := var M 1511 loop 2 A− 1

act2: carts ref := carts ref ∪ {site 2 A 7→ someProduct}
end

Event selection twoWebsites A 〈convergent〉 =̂

extends selection twoWebsites A

when
grd1: var M 1 seq = 4

grd2: var M 15 cho = 2

grd3: var M 151 par A = 1

grd4: failureStatus 2 = OK

grd5: var M 1511 loop 2 A = 0

then
act1: var M 151 par A := var M 151 par A− 1

end

Event selection twoWebsites B loop 〈convergent〉 =̂

any
someProduct

where
grd1: var M 1 seq = 4

grd2: var M 15 cho = 2

grd3: failureStatus 2 = OK

grd4: var M 151 par B = 1

grd5: var M 1511 loop 2 B > 0

grd6: someProduct ∈ P \ ran(carts ref)

then
act1: var M 1511 loop 2 B := var M 1511 loop 2 B − 1

act2: carts ref := carts ref ∪ {site 2 B 7→ someProduct}
end

Event selection twoWebsites B 〈convergent〉 =̂

extends selection twoWebsites B

when
grd1: var M 1 seq = 4

grd2: var M 15 cho = 2

grd3: var M 151 par B = 1

grd4: failureStatus 2 = OK

grd5: var M 1511 loop 2 B = 0

then
act1: var M 151 par B := var M 151 par B − 1

end

Event selection twoWebsites join A B 〈convergent〉 =̂

extends selection twoWebsites join A B

when
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grd1: var M 1 seq = 4

grd2: var M 15 cho = 2

grd3: failureStatus 2 = OK

grd4: var M 151 par A = 0

grd5: var M 151 par B = 0

grd6: var M 1511 loop 2 A = 0

grd7: var M 1511 loop 2 B = 0

then
act1: var M 15 cho := 0

end

Event confirmSelection 〈convergent〉 =̂

refines selection

when
grd1: var M 1 seq = 4

grd3: ran(carts ref) = P

grd4: ∀p·p ∈ ran(carts ref)⇒ card(carts ref−1[{p}]) = 1

grd5: var M 15 cho = 0

with
someCarts: someCarts = carts ref

then
act1: var M 1 seq := var M 1 seq − 1

act2: carts := carts ref

end

Event payment 〈convergent〉 =̂

extends payment

when
grd1: var M 1 seq = 3

then
act1: var M 1 seq := var M 1 seq − 1

end

Event billing 〈convergent〉 =̂

extends billing

when
grd1: var M 1 seq = 2

then
act1: var M 1 seq := var M 1 seq − 1

end

Event delivery 〈convergent〉 =̂

extends delivery

when
grd1: var M 1 seq = 1

then
act1: var M 1 seq := var M 1 seq − 1

end

END
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MACHINE M 15121

REFINES M 1512 repair

SEES C 11 failure status

VARIABLES

var M 1 seq -

carts -

var M 15 cho -

failureStatus 1 (one website)

failureStatus 2 (two websites)

var M 151 par A -

var M 151 par B -

carts ref -

var M 1511 loop 1 -

var M 1511 loop 2 A -

var M 1511 loop 2 B -

site 1 -

site 2 A -

site 2 B -

var M 15111 seq 1 -

var M 15111 seq 2 A -

var M 15111 seq 2 B -

selectedItem 1 -

selectedItem 2 A -

selectedItem 2 B -

INVARIANTS

type1: var M 15111 seq 1 ∈ N
type2: var M 15111 seq 2 A ∈ N
type3: var M 15111 seq 2 B ∈ N
type4: selectedItem 1 ∈ P (P )

type5: selectedItem 2 A ∈ P (P )

type6: selectedItem 2 B ∈ P (P )

prop1: var M 15111 seq 1 ≥ 1⇒ card(selectedItem 1) = 0

prop2: var M 15111 seq 1 < 1⇒ card(selectedItem 1) = 1

prop3: var M 15111 seq 2 A ≥ 1⇒ card(selectedItem 2 A) = 0

prop4: var M 15111 seq 2 A < 1⇒ card(selectedItem 2 A) = 1

prop5: var M 15111 seq 2 B ≥ 1⇒ card(selectedItem 2 B) = 0

prop6: var M 15111 seq 2 B < 1⇒ card(selectedItem 2 B) = 1

DLF 5: ¬(

(

var M 1 seq = 4

∧ var M 15 cho = 1

∧ failureStatus 1 = OK

) ∨ (

var M 1 seq = 4

∧ var M 15 cho = 1

∧ failureStatus 1 = NOT OK

∧ failureStatus 2 = OK

) ∨ (

var M 1 seq = 4
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∧ var M 15 cho = 2

∧ failureStatus 2 = OK

) ∨ (

var M 1 seq = 4

∧ var M 15 cho = 2

∧ failureStatus 2 = NOT OK

∧ failureStatus 1 = OK

∧ var M 15111 seq 2 A = 0

) ∨ (

var M 1 seq = 4

∧ var M 15 cho = 2

∧ failureStatus 2 = NOT OK

∧ failureStatus 1 = OK

∧ var M 15111 seq 2 A 6= 0

∧ var M 15111 seq 2 B = 0

) ∨ (

var M 1 seq = 4

∧ var M 15 cho = 2

∧ failureStatus 2 = NOT OK

∧ failureStatus 1 = OK

∧ var M 15111 seq 2 A 6= 0

∧ var M 15111 seq 2 B 6= 0

) ∨ (

∃someProduct·
(var M 1 seq = 4

∧ var M 15 cho = 1

∧ failureStatus 1 = OK

∧ var M 1511 loop 1 > 0

∧ var M 15111 seq 1 = 1

∧ someProduct ∈ P \ ran(carts ref))

) ∨ (

∃item·
(var M 1 seq = 4

∧ var M 15 cho = 1

∧ failureStatus 1 = OK

∧ var M 1511 loop 1 > 0

∧ var M 15111 seq 1 = 0

∧ (∃p·p ∈ P \ ran(carts ref) ∧ selectedItem 1 = {p})
∧ selectedItem 1 = {item})
) ∨ (

var M 1 seq = 4

∧ var M 15 cho = 1

∧ failureStatus 1 = OK

∧ var M 1511 loop 1 = 0

) ∨ (

∃someProduct·
(var M 1 seq = 4

∧ var M 15 cho = 2

∧ failureStatus 2 = OK

∧ var M 151 par A = 1

∧ var M 1511 loop 2 A > 0

∧ var M 15111 seq 2 A = 1

∧ someProduct ∈ P \ ran(carts ref))

) ∨ (

∃item·
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(var M 1 seq = 4

∧ var M 15 cho = 2

∧ failureStatus 2 = OK

∧ var M 151 par A = 1

∧ var M 1511 loop 2 A > 0

∧ var M 15111 seq 2 A = 0

∧ (∃p·p ∈ P \ ran(carts ref) ∧ selectedItem 2 A = {p})
∧ selectedItem 2 A = {item})
) ∨ (

var M 1 seq = 4

∧ var M 15 cho = 2

∧ var M 151 par A = 1

∧ failureStatus 2 = OK

∧ var M 1511 loop 2 A = 0

) ∨ (

∃someProduct·
(var M 1 seq = 4

∧ var M 15 cho = 2

∧ failureStatus 2 = OK

∧ var M 151 par B = 1

∧ var M 1511 loop 2 B > 0

∧ var M 15111 seq 2 B = 1

∧ someProduct ∈ P \ ran(carts ref))

) ∨ (

∃item·
(var M 1 seq = 4

∧ var M 15 cho = 2

∧ failureStatus 2 = OK

∧ var M 151 par B = 1

∧ var M 1511 loop 2 B > 0

∧ var M 15111 seq 2 B = 0

∧ (∃p·p ∈ P \ ran(carts ref) ∧ selectedItem 2 B = {p})
∧ selectedItem 2 B = {item})
) ∨ (

var M 1 seq = 4

∧ var M 15 cho = 2

∧ var M 151 par B = 1

∧ failureStatus 2 = OK

∧ var M 1511 loop 2 B = 0

) ∨ (

var M 1 seq = 4

∧ var M 15 cho = 2

∧ failureStatus 2 = OK

∧ var M 151 par A = 0

∧ var M 151 par B = 0

∧ var M 1511 loop 2 A = 0

∧ var M 1511 loop 2 B = 0

) ∨ (

var M 1 seq = 4

∧ ran(carts ref) = P

∧ (∀p·p ∈ ran(carts ref)⇒ card(carts ref−1[{p}]) = 1)

∧ var M 15 cho = 0

) ∨ (

var M 1 seq = 3

) ∨ (
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var M 1 seq = 2

) ∨ (

var M 1 seq = 1

))

⇒
(var M 1 seq = 0

∨ (failureStatus 1 = NOT OK ∧ failureStatus 2 = NOT OK))

deadlock => (finished or total failure)

VARIANT

var M 1 seq+var M 15 cho+var M 151 par A+var M 151 par B+var M 1511 loop 1+

var M 1511 loop 2 A+var M 1511 loop 2 B+var M 15111 seq 1+var M 15111 seq 2 A+

var M 15111 seq 2 B

EVENTS

Initialisation 〈extended〉
begin

act1: var M 1 seq := 4

act2: var M 1511 loop 1, var M 1511 loop 2 A, var M 1511 loop 2 B :|
var M 1511 loop 1′ = card(P )

∧ var M 1511 loop 2 A′ + var M 1511 loop 2 B′ = card(P )

∧ var M 1511 loop 2 A′ ∈ N
∧ var M 1511 loop 2 B′ ∈ N

act3: carts := ∅
act4: var M 15 cho :∈ {1, 2}
act5: failureStatus 1 := OK

act6: failureStatus 2 := OK

act7: var M 151 par A := 1

act8: var M 151 par B := 1

act9: carts ref := ∅
act10: site 1 :∈ SITES

act11: site 2 A :∈ SITES

act12: site 2 B :∈ SITES

act14: var M 15111 seq 1 := 1

act15: selectedItem 1 := ∅
act16: var M 15111 seq 2 A := 1

act17: selectedItem 2 A := ∅
act18: var M 15111 seq 2 B := 1

act19: selectedItem 2 B := ∅
end

Event failure 1 〈ordinary〉 =̂

extends failure 1

when
grd1: var M 1 seq = 4

grd2: var M 15 cho = 1

grd3: failureStatus 1 = OK

then
act1: failureStatus 1 := NOT OK

end

Event treat failure 1 〈ordinary〉 =̂

extends treat failure 1

when
grd1: var M 1 seq = 4

grd2: var M 15 cho = 1

grd3: failureStatus 1 = NOT OK
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grd4: failureStatus 2 = OK

then
act1: var M 15 cho := 2

act2: carts ref := {p·p ∈ ran(carts ref)|site 2 A 7→ p}
act3: var M 1511 loop 2 A, var M 1511 loop 2 B :|

var M 1511 loop 2 A′+var M 1511 loop 2 B′ = var M 1511 loop 1

∧ var M 1511 loop 2 A′ ∈ N
∧ var M 1511 loop 2 B′ ∈ N

act4: var M 15111 seq 2 A := var M 15111 seq 1

act5: selectedItem 2 A := selectedItem 1

end

Event failure 2 〈ordinary〉 =̂

extends failure 2

when
grd1: var M 1 seq = 4

grd2: var M 15 cho = 2

grd3: failureStatus 2 = OK

then
act1: failureStatus 2 := NOT OK

end

Event treat failure 2 0 〈ordinary〉 =̂

extends treat failure 2

when
grd1: var M 1 seq = 4

grd2: var M 15 cho = 2

grd3: failureStatus 2 = NOT OK

grd4: failureStatus 1 = OK

grd5: var M 15111 seq 2 A = 0

then
act1: var M 15 cho := 1

act2: carts ref := {p·p ∈ ran(carts ref)|site 1 7→ p}
act3: var M 1511 loop 1 := var M 1511 loop 2 A + var M 1511 loop 2 B

act4: var M 15111 seq 1 := var M 15111 seq 2 A

act5: selectedItem 1 := selectedItem 2 A

end

Event treat failure 2 1 〈ordinary〉 =̂

extends treat failure 2

when
grd1: var M 1 seq = 4

grd2: var M 15 cho = 2

grd3: failureStatus 2 = NOT OK

grd4: failureStatus 1 = OK

grd5: var M 15111 seq 2 A 6= 0

grd6: var M 15111 seq 2 B = 0

then
act1: var M 15 cho := 1

act2: carts ref := {p·p ∈ ran(carts ref)|site 1 7→ p}
act3: var M 1511 loop 1 := var M 1511 loop 2 A + var M 1511 loop 2 B

act4: var M 15111 seq 1 := var M 15111 seq 2 B

act5: selectedItem 1 := selectedItem 2 B

end

Event treat failure 2 2 〈ordinary〉 =̂

extends treat failure 2
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when
grd1: var M 1 seq = 4

grd2: var M 15 cho = 2

grd3: failureStatus 2 = NOT OK

grd4: failureStatus 1 = OK

grd5: var M 15111 seq 2 A 6= 0

grd6: var M 15111 seq 2 B 6= 0

then
act1: var M 15 cho := 1

act2: carts ref := {p·p ∈ ran(carts ref)|site 1 7→ p}
act3: var M 1511 loop 1 := var M 1511 loop 2 A + var M 1511 loop 2 B

end

Event selectItemInItemList 1 〈convergent〉 =̂

any
someProduct

where
grd1: var M 1 seq = 4

grd2: var M 15 cho = 1

grd3: failureStatus 1 = OK

grd4: var M 1511 loop 1 > 0

grd5: var M 15111 seq 1 = 1

grd6: someProduct ∈ P \ ran(carts ref)

then
act1: var M 15111 seq 1 := var M 15111 seq 1− 1

act2: selectedItem 1 := {someProduct}
end

Event addSelectedItemToCart 1 〈convergent〉 =̂

refines selection oneWebsite loop

any
item used to access the element in selectedItem 1

where
grd1: var M 1 seq = 4

grd2: var M 15 cho = 1

grd3: failureStatus 1 = OK

grd4: var M 1511 loop 1 > 0

grd5: var M 15111 seq 1 = 0

grd6: ∃p·p ∈ P \ ran(carts ref) ∧ selectedItem 1 = {p}
grd7: selectedItem 1 = {item}

with
someProduct: selectedItem 1 = {someProduct}

then
act1: var M 1511 loop 1 := var M 1511 loop 1− 1

act2: carts ref := carts ref ∪ {site 1 7→ item}
end

Event selection oneWebsite 〈convergent〉 =̂

extends selection oneWebsite

when
grd1: var M 1 seq = 4

grd2: var M 15 cho = 1

grd3: failureStatus 1 = OK

grd4: var M 1511 loop 1 = 0

then
act1: var M 15 cho := 0

end
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Event selectItemInItemList 2 A 〈convergent〉 =̂

any
someProduct

where
grd1: var M 1 seq = 4

grd2: var M 15 cho = 2

grd3: failureStatus 2 = OK

grd4: var M 151 par A = 1

grd5: var M 1511 loop 2 A > 0

grd6: var M 15111 seq 2 A = 1

grd7: someProduct ∈ P \ ran(carts ref)

then
act1: var M 15111 seq 2 A := var M 15111 seq 2 A− 1

act2: selectedItem 2 A := {someProduct}
end

Event addSelectedItemToCart 2 A 〈convergent〉 =̂

refines selection twoWebsites A loop

any
item used to access the element in selectedItem 2 A

where
grd1: var M 1 seq = 4

grd2: var M 15 cho = 2

grd3: failureStatus 2 = OK

grd4: var M 151 par A = 1

grd5: var M 1511 loop 2 A > 0

grd6: var M 15111 seq 2 A = 0

grd7: ∃p·p ∈ P \ ran(carts ref) ∧ selectedItem 2 A = {p}
grd8: selectedItem 2 A = {item}

with
someProduct: selectedItem 2 A = {someProduct}

then
act1: var M 1511 loop 2 A := var M 1511 loop 2 A− 1

act2: carts ref := carts ref ∪ {site 2 A 7→ item}
end

Event selection twoWebsites A 〈convergent〉 =̂

extends selection twoWebsites A

when
grd1: var M 1 seq = 4

grd2: var M 15 cho = 2

grd3: var M 151 par A = 1

grd4: failureStatus 2 = OK

grd5: var M 1511 loop 2 A = 0

then
act1: var M 151 par A := var M 151 par A− 1

end

Event selectItemInItemList 2 B 〈convergent〉 =̂

any
someProduct

where
grd1: var M 1 seq = 4

grd2: var M 15 cho = 2

grd3: failureStatus 2 = OK

grd4: var M 151 par B = 1

grd5: var M 1511 loop 2 B > 0
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grd6: var M 15111 seq 2 B = 1

grd7: someProduct ∈ P \ ran(carts ref)

then
act1: var M 15111 seq 2 B := var M 15111 seq 2 B − 1

act2: selectedItem 2 B := {someProduct}
end

Event addSelectedItemToCart 2 B 〈convergent〉 =̂

refines selection twoWebsites B loop

any
item used to access the element in selectedItem 2 B

where
grd1: var M 1 seq = 4

grd2: var M 15 cho = 2

grd3: failureStatus 2 = OK

grd4: var M 151 par B = 1

grd5: var M 1511 loop 2 B > 0

grd6: var M 15111 seq 2 B = 0

grd7: ∃p·p ∈ P \ ran(carts ref) ∧ selectedItem 2 B = {p}
grd8: selectedItem 2 B = {item}

with
someProduct: selectedItem 2 B = {someProduct}

then
act1: var M 1511 loop 2 B := var M 1511 loop 2 B − 1

act2: carts ref := carts ref ∪ {site 2 B 7→ item}
end

Event selection twoWebsites B 〈convergent〉 =̂

extends selection twoWebsites B

when
grd1: var M 1 seq = 4

grd2: var M 15 cho = 2

grd3: var M 151 par B = 1

grd4: failureStatus 2 = OK

grd5: var M 1511 loop 2 B = 0

then
act1: var M 151 par B := var M 151 par B − 1

end

Event selection twoWebsites join A B 〈convergent〉 =̂

extends selection twoWebsites join A B

when
grd1: var M 1 seq = 4

grd2: var M 15 cho = 2

grd3: failureStatus 2 = OK

grd4: var M 151 par A = 0

grd5: var M 151 par B = 0

grd6: var M 1511 loop 2 A = 0

grd7: var M 1511 loop 2 B = 0

then
act1: var M 15 cho := 0

end

Event confirmSelection 〈convergent〉 =̂

extends confirmSelection

when
grd1: var M 1 seq = 4
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grd3: ran(carts ref) = P

grd4: ∀p·p ∈ ran(carts ref)⇒ card(carts ref−1[{p}]) = 1

grd5: var M 15 cho = 0

then
act1: var M 1 seq := var M 1 seq − 1

act2: carts := carts ref

end

Event payment 〈convergent〉 =̂

extends payment

when
grd1: var M 1 seq = 3

then
act1: var M 1 seq := var M 1 seq − 1

end

Event billing 〈convergent〉 =̂

extends billing

when
grd1: var M 1 seq = 2

then
act1: var M 1 seq := var M 1 seq − 1

end

Event delivery 〈convergent〉 =̂

extends delivery

when
grd1: var M 1 seq = 1

then
act1: var M 1 seq := var M 1 seq − 1

end

END
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MACHINE M 16 failure N

REFINES M 1

SEES C 11 failure status

VARIABLES

var M 1 seq -

carts -

nb sys -

var M 16 cho number (id) of the current system that we are using

failureStatus

INVARIANTS

type1: nb sys ∈ N1

number of systems

type2: var M 16 cho ∈ 0 .. nb sys

type3: failureStatus ∈ 1 .. nb sys↔ FAILURE STATUS

VARIANT

var M 1 seq + var M 16 cho

EVENTS

Initialisation 〈extended〉
begin

act1: var M 1 seq := 4

act3: carts := ∅
act4: nb sys, failureStatus, var M 16 cho :|

nb sys′ ∈ N1

∧ failureStatus′ = {n·n ∈ 1 .. nb sys′|n 7→ OK}
∧ var M 16 cho′ ∈ 1 .. nb sys′

end

Event failure n 〈ordinary〉 =̂
any

n

where
grd1: var M 1 seq = 4

grd2: n ∈ dom(failureStatusB {OK})
then

act1: failureStatus := {n 7→ NOT OK} ∪ ({n}C− failureStatus)

end

Event treat failure 〈ordinary〉 =̂
any

n

where
grd1: var M 1 seq = 4

grd2: var M 16 cho ∈ dom(failureStatusB {NOT OK})
the current system has failed

grd3: n ∈ dom(failureStatusB {OK})
then

act1: var M 16 cho := n

end

Event complete failure 〈ordinary〉 =̂
when

grd1: var M 1 seq = 4

grd2: dom(failureStatusB {OK}) = ∅
then

skip
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end

Event selection n 〈convergent〉 =̂
when

grd1: var M 1 seq = 4

grd2: var M 16 cho ∈ dom(failureStatusB {OK})
the current system is OK

then
act1: var M 16 cho := 0

end

Event selection 〈convergent〉 =̂
extends selection

any
someCarts

where
grd1: var M 1 seq = 4

grd2: someCarts ⊆ SITES × P

grd3: ran(someCarts) = P

grd4: ∀p·p ∈ ran(someCarts)⇒ card(someCarts−1[{p}]) = 1

grd5: var M 16 cho = 0

then
act1: var M 1 seq := var M 1 seq − 1

act2: carts := someCarts

end

Event payment 〈convergent〉 =̂
extends payment

when
grd1: var M 1 seq = 3

then
act1: var M 1 seq := var M 1 seq − 1

end

Event billing 〈convergent〉 =̂
extends billing

when
grd1: var M 1 seq = 2

then
act1: var M 1 seq := var M 1 seq − 1

end

Event delivery 〈convergent〉 =̂
extends delivery

when
grd1: var M 1 seq = 1

then
act1: var M 1 seq := var M 1 seq − 1

end

END

APPENDIX B. DISCRETE SYSTEMS SUBSTITUTION
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MACHINE M 161

REFINES M 16 failure N

SEES C 11 failure status

VARIABLES

var M 1 seq -

carts -

nb sys -

var M 16 cho number (id) of the current system that we are using

failureStatus

EVENTS

Initialisation

begin
act1: var M 1 seq := 4

act3: carts := ∅
act4: nb sys, failureStatus, var M 16 cho :|

nb sys′ = 2

∧ failureStatus′ = {n·n ∈ 1 .. nb sys′|n 7→ OK}
∧ var M 16 cho′ ∈ 1 .. nb sys′

end

Event failure n 〈ordinary〉 =̂
extends failure n

any
n

where
grd1: var M 1 seq = 4

grd2: n ∈ dom(failureStatusB {OK})
then

act1: failureStatus := {n 7→ NOT OK} ∪ ({n}C− failureStatus)

end

Event treat failure 〈ordinary〉 =̂
extends treat failure

any
n

where
grd1: var M 1 seq = 4

grd2: var M 16 cho ∈ dom(failureStatusB {NOT OK})
the current system has failed

grd3: n ∈ dom(failureStatusB {OK})
then

act1: var M 16 cho := n

end

Event complete failure 〈ordinary〉 =̂
extends complete failure

when
grd1: var M 1 seq = 4

grd2: dom(failureStatusB {OK}) = ∅
then

skip
end

Event selection sys1 〈convergent〉 =̂
extends selection n

when
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grd1: var M 1 seq = 4

grd2: var M 16 cho ∈ dom(failureStatusB {OK})
the current system is OK

grd3: var M 16 cho = 1

then
act1: var M 16 cho := 0

end

Event selection sys2 〈convergent〉 =̂
extends selection n

when
grd1: var M 1 seq = 4

grd2: var M 16 cho ∈ dom(failureStatusB {OK})
the current system is OK

grd3: var M 16 cho = 2

then
act1: var M 16 cho := 0

end

Event selection 〈convergent〉 =̂
extends selection

any
someCarts

where
grd1: var M 1 seq = 4

grd2: someCarts ⊆ SITES × P

grd3: ran(someCarts) = P

grd4: ∀p·p ∈ ran(someCarts)⇒ card(someCarts−1[{p}]) = 1

grd5: var M 16 cho = 0

then
act1: var M 1 seq := var M 1 seq − 1

act2: carts := someCarts

end

Event payment 〈convergent〉 =̂
extends payment

when
grd1: var M 1 seq = 3

then
act1: var M 1 seq := var M 1 seq − 1

end

Event billing 〈convergent〉 =̂
extends billing

when
grd1: var M 1 seq = 2

then
act1: var M 1 seq := var M 1 seq − 1

end

Event delivery 〈convergent〉 =̂
extends delivery

when
grd1: var M 1 seq = 1

then
act1: var M 1 seq := var M 1 seq − 1

end

END
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MACHINE M 1611

REFINES M 161

SEES C 11 failure status

VARIABLES

var M 1 seq -

carts -

nb sys -

var M 16 cho number (id) of the current system that we are using

failureStatus -

var M 1611 par A -

var M 1611 par B -

INVARIANTS

type1: var M 1611 par A ∈ N
type2: var M 1611 par B ∈ N

VARIANT

var M 1 seq + var M 16 cho+ var M 1611 par A+ var M 1611 par B

EVENTS

Initialisation 〈extended〉
begin

act1: var M 1 seq := 4

act3: carts := ∅
act4: nb sys, failureStatus, var M 16 cho :|

nb sys′ = 2

∧ failureStatus′ = {n·n ∈ 1 .. nb sys′|n 7→ OK}
∧ var M 16 cho′ ∈ 1 .. nb sys′

act5: var M 1611 par A := 1

act6: var M 1611 par B := 1

end

Event failure n 〈ordinary〉 =̂
extends failure n

any
n

where
grd1: var M 1 seq = 4

grd2: n ∈ dom(failureStatusB {OK})
then

act1: failureStatus := {n 7→ NOT OK} ∪ ({n}C− failureStatus)

end

Event treat failure 〈ordinary〉 =̂
extends treat failure

any
n

where
grd1: var M 1 seq = 4

grd2: var M 16 cho ∈ dom(failureStatusB {NOT OK})
the current system has failed

grd3: n ∈ dom(failureStatusB {OK})
then

act1: var M 16 cho := n

end

Event complete failure 〈ordinary〉 =̂
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extends complete failure

when
grd1: var M 1 seq = 4

grd2: dom(failureStatusB {OK}) = ∅
then

skip
end

Event selection sys1 〈convergent〉 =̂
extends selection sys1

when
grd1: var M 1 seq = 4

grd2: var M 16 cho ∈ dom(failureStatusB {OK})
the current system is OK

grd3: var M 16 cho = 1

then
act1: var M 16 cho := 0

end

Event selection sys2 B 〈convergent〉 =̂
when

grd1: var M 1 seq = 4

grd2: var M 16 cho = 2

grd3: var M 1611 par B = 1

grd4: var M 16 cho ∈ dom(failureStatusB {OK})
then

act1: var M 1611 par B := var M 1611 par B − 1

end

Event selection sys2 join AB 〈convergent〉 =̂
extends selection sys2

when
grd1: var M 1 seq = 4

grd2: var M 16 cho ∈ dom(failureStatusB {OK})
the current system is OK

grd3: var M 16 cho = 2

grd4: var M 1611 par A = 0

grd5: var M 1611 par B = 0

then
act1: var M 16 cho := 0

end

Event selection 〈convergent〉 =̂
extends selection

any
someCarts

where
grd1: var M 1 seq = 4

grd2: someCarts ⊆ SITES × P

grd3: ran(someCarts) = P

grd4: ∀p·p ∈ ran(someCarts)⇒ card(someCarts−1[{p}]) = 1

grd5: var M 16 cho = 0

then
act1: var M 1 seq := var M 1 seq − 1

act2: carts := someCarts

end

Event payment 〈convergent〉 =̂
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extends payment

when
grd1: var M 1 seq = 3

then
act1: var M 1 seq := var M 1 seq − 1

end

Event billing 〈convergent〉 =̂
extends billing

when
grd1: var M 1 seq = 2

then
act1: var M 1 seq := var M 1 seq − 1

end

Event delivery 〈convergent〉 =̂
extends delivery

when
grd1: var M 1 seq = 1

then
act1: var M 1 seq := var M 1 seq − 1

end

Event selection sys2 A 〈convergent〉 =̂
when

grd1: var M 1 seq = 4

grd2: var M 16 cho = 2

grd3: var M 1611 par A = 1

grd4: var M 16 cho ∈ dom(failureStatusB {OK})
then

act1: var M 1611 par A := var M 1611 par A− 1

end

END
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C Hybrid systems: Continuous to
discrete models

For technical reasons, the names in the actual complete models are slightly different
from those in the partial models of Chapter 6 (which are more consistent):

Chapter 6 Rodin models

M0 fv p
new_fv new_p

M1 fc pc
nfc np

M2 fd pd

Components:

• C0_reals theorems about functions and reals (page 221)

• C1_corridor definition of the safety envelope (page 224)

• M0_spec abstract controller (page 225)

• C2_margin definition of the safety margin (page 227)

• M1_cntn_ctrl continuous controller (page 228)

• Nat induction on naturals (page 232)

• C3_cast (page 233)

• C4_discrete definition of the discrete time step (page 235)

• M2_dsct_ctrl discrete controller (page 236)

Theories used in this development: Real (page 140) and RealPos (page 145)
The models are also available at: http://babin.perso.enseeiht.fr/r/thesis/

219

http://babin.perso.enseeiht.fr/r/thesis/


APPENDIX C. HYBRID SYSTEMS: CONTINUOUS TO DISCRETE MODELS

220



CONTEXT C0 reals
theorems concerning continuous mathematical functions

CONSTANTS

REAL POS

REAL STR POS

AXIOMS

def01: REAL POS = {x|x ∈ REAL ∧ leq(zero, x)}
def02: REAL STR POS = {x|x ∈ REAL ∧ smr(zero, x)}
thm01: 〈theorem〉 REAL POS ⊆ REAL

thm02: 〈theorem〉 REAL STR POS ⊆ REAL POS

thm03: 〈theorem〉 REAL STR POS ⊆ REAL

thm39: 〈theorem〉 ∀a, b·a ∈ REAL ∧ b ∈ REAL⇒ (a = a plus b⇒ b = zero)

thm04: 〈theorem〉 zero ∈ REAL POS

thm05: 〈theorem〉 leq(zero, zero)
thm06: 〈theorem〉 ∀n,A, f, a·n ∈ N

∧A ⊆ REAL

∧ f ∈ 0 .. n→A

∧ a ∈ A

⇒ f ∪ {n+ 1 7→ a} ∈ 0 .. n+ 1→A

thm07: 〈theorem〉 ∀a, b, c·(a ∈ REAL ∧ b ∈ REAL ∧ c ∈ REAL)⇒
(leq(a plus c, b plus c)⇔ leq(a, b))

a+c ≤ b+c ⇔ a≤ b

thm08: 〈theorem〉 ∀x·x ∈ REAL⇒
(leq(zero, x)⇔ leq(minus(x), zero))

0≤ x ⇔ -x≤ 0

thm09: 〈theorem〉 ∀a, b·(a ∈ REAL ∧ b ∈ REAL)⇒
(leq(a, b)⇔ leq(zero, b sub a))

a≤ b ⇔ 0≤ b-a

thm10: 〈theorem〉 ∀a, b·(a ∈ REAL ∧ b ∈ REAL)⇒
(leq(zero, a)⇔ leq(b, b plus a))

0≤ a ⇔ b≤ b+a

thm11: 〈theorem〉 ∀a, b·(a ∈ REAL ∧ b ∈ REAL)⇒
(leq(zero, b)⇒ leq(a, a plus b))

0≤ b ⇒ a ≤ a+b

thm14: 〈theorem〉 ∀a, b·a ∈ REAL ∧ b ∈ REAL⇒
(a = b⇔ b = a)

a=b ⇔ b=a

thm13: 〈theorem〉 ∀a, b·a ∈ REAL ∧ b ∈ REAL⇒
(¬(a = b)⇔¬(b = a))

¬(a=b) ⇔ ¬(b=a)

thm12: 〈theorem〉 ∀a, b·(a ∈ REAL ∧ b ∈ REAL)⇒
(smr(zero, b)⇒ smr(a, a plus b))

0<b ⇒ a < a+b

thm33: 〈theorem〉 ∀a·zeromult a = zero

0 * a = 0

thm38: 〈theorem〉 ∀a·amult minus(one) = minus(a)

a*(−1) = −a
thm41: 〈theorem〉 ∀a·minus(minus(a)) = a

−(−a) = a

thm17: 〈theorem〉 leq(zero, one)
0≤ 1
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thm15: 〈theorem〉 smr(zero, one)

0<1

thm34: 〈theorem〉 ∀a, b·(a ∈ REAL ∧ b ∈ REAL)⇒
(leq(zero, b)⇒ leq(a sub b, a))

0≤ b ⇒ a-b ≤ a

thm16: 〈theorem〉 ∀a, b·(a ∈ REAL ∧ b ∈ REAL)⇒
(smr(zero, b)⇒ smr(a sub b, a))

0<b ⇒ a-b < a

thm18: ∀a, b, c, f ·(a ∈ REAL ∧ b ∈ REAL ∧ c ∈ REAL ∧ leq(a, b) ∧ leq(b, c)

∧ f ∈ REAL 7→ REAL ∧ {x|x ∈ REAL ∧ leq(a, x) ∧ leq(x, c)} ⊆
dom(f))⇒

(cnt int(f, a, c)⇔ cnt int(f, a, b) ∧ cnt int(f, b, c))

continuous on [a,c] ⇔ continuous on [a,b] and [b,c]

thm19: ∀a, b, f, g ·(a ∈ REAL ∧ b ∈ REAL ∧ leq(a, b)

∧f ∈ REAL 7→REAL∧{x|x ∈ REAL∧leq(a, x)∧leq(x, b)} ⊆ dom(f)

∧g ∈ REAL 7→REAL∧{x|x ∈ REAL∧leq(a, x)∧leq(x, b)} ⊆ dom(g)

∧ (∀x·x ∈ REAL ∧ leq(a, x) ∧ leq(x, b)⇒ f(x) = g(x)))⇒
(cnt int(f, a, b)⇔ cnt int(g, a, b))

f and g equal on [a,b] ⇒ (f continuous on [a,b] ⇔ g continuous on [a,b])

thm20: 〈theorem〉 ∀a, b·(a ∈ REAL ∧ b ∈ REAL)⇒
(leq(a, b) ∧ leq(b, a)⇔ a = b)

a≤ b ∧ b≤ a ⇔ a=b

thm21: 〈theorem〉 ∀a, b·(a ∈ REAL ∧ b ∈ REAL)⇒
(¬leq(a, b)⇔ gtr(a, b))

¬(a≤ b) ⇔ a>b

thm22: ∀a, b·(a ∈ REAL POS ∧ b ∈ REAL POS)⇒
(amult b ∈ REAL POS)

a ∈ R+ ∧ b ∈ R+ ⇒ a*b ∈ R+

thm23: ∀a, b·(a ∈ REAL ∧ b ∈ REAL)⇒
((∃c·c ∈ REAL STR POS ∧ a = b plus c)⇔ smr(b, a))

(∃ c > 0, a = b+c) ⇔ b<a

thm24: ∀a, b, c·(a ∈ REAL ∧ b ∈ REAL ∧ c ∈ REAL)⇒
(smr(a, b) ∧ smr(b, c)⇒ smr(a, c))

a<b ∧ b<c ⇒ a<c

thm26: 〈theorem〉 ∀a, b, c·(a ∈ REAL ∧ b ∈ REAL ∧ c ∈ REAL)⇒
(leq(a, b) ∧ smr(b, c)⇒ smr(a, c))

a≤ b ∧ b<c ⇒ a<c

thm25: ∀a, b, now·now ∈ REAL POS∧a ∈ REAL POS∧b ∈ REAL POS∧smr(a, b)⇒
(∃dt, np·

dt ∈ REAL STR POS ∧
np ∈ REAL POS 7→REAL POS ∧
dom(np) = {t·leq(now, t) ∧ leq(t, now plus dt)|t} ∧
np(now) = a ∧
np(now plus dt) = b ∧
(∀t1, t2·t1 ∈ dom(np)∧t2 ∈ dom(np)∧smr(t1, t2)⇒smr(np(t1), np(t2)))∧

cnt int(np, now, now plus dt))

∀a,b∈ R+, there exists a continuous and strictly increasing function on [now,now+dt]

whose range is [a,b]

thm28: ∀a, b, now·now ∈ REAL POS ∧a ∈ REAL POS ∧ b ∈ REAL POS ∧ leq(a, b)⇒
(∃dt, np·

dt ∈ REAL STR POS ∧
np ∈ REAL POS 7→REAL POS ∧
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dom(np) = {t·leq(now, t) ∧ leq(t, now plus dt)|t} ∧
np(now) = a ∧
np(now plus dt) = b ∧
(∀t1, t2·t1 ∈ dom(np)∧t2 ∈ dom(np)∧leq(t1, t2)⇒leq(np(t1), np(t2)))∧
cnt int(np, now, now plus dt))

∀a,b∈ R+, there exists a continuous and increasing function on [now,now+dt] whose

range is [a,b]

thm29: ∀a, b, now·now ∈ REAL POS ∧a ∈ REAL POS ∧ b ∈ REAL POS ∧ leq(b, a)⇒
(∃dt, np·

dt ∈ REAL STR POS ∧
np ∈ REAL POS 7→REAL POS ∧
dom(np) = {t·leq(now, t) ∧ leq(t, now plus dt)|t} ∧
np(now) = a ∧
np(now plus dt) = b ∧
(∀t1, t2·t1 ∈ dom(np)∧t2 ∈ dom(np)∧leq(t1, t2)⇒leq(np(t2), np(t1)))∧
cnt int(np, now, now plus dt))

∀a,b∈ R+, there exists a continuous and decreasing function on [now,now+dt] whose

range is [a,b]

thm27: 〈theorem〉 ∀a, b·leq(a, b) ∨ leq(b, a)

a≤ b ∨ b≤ a

thm30: ∀a, b, c·(a ∈ REAL POS ∧ b ∈ REAL POS ∧ c ∈ REAL STR POS)⇒
(smr(a, b)⇒ smr(amult c, bmult c))

a ≥ 0 ∧ b ≥ 0 ∧ c > 0 ⇒ (a < b ⇒ a*c < b*c)

thm31: ∀a, b, c·(a ∈ REAL POS ∧ b ∈ REAL POS ∧ c ∈ REAL POS)⇒
(leq(a, b)⇒ leq(amult c, bmult c))

a ≥ 0 ∧ b ≥ 0 ∧ c ≥ 0 ⇒ (a ≤ b ⇒ a*c ≤ b*c)

thm40: ∀a, b, c·(a ∈ REAL POS ∧ b ∈ REAL POS ∧ c ∈ REAL STR POS)⇒
(leq(amult c, bmult c)⇒ leq(a, b))

a ≥ 0 ∧ b ≥ 0 ∧ c > 0 ⇒ (a*c ≤ b*c ⇒ a ≤ b)

thm32: 〈theorem〉 ∀a, b·smr(a, b)⇔¬leq(b, a)
a<b ⇔ ¬ b≤ a

thm35: ∀a·a ∈ REAL STR POS⇒ (

∃b·b ∈ REAL STR POS ∧ smr(b, a))

∀ a > 0, ∃ b > 0, b < a

thm36: ∀a, b·smr(a, b)⇔ smr(zero, b sub a)

a < b ⇔ 0 < b − a

thm37: ∀a, b, c·smr(a, b)⇔ smr(a plus c, b plus c)

a < b ⇔ a+c < b+c

END
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CONTEXT C1 corridor
energy corridor

EXTENDS C0 reals

CONSTANTS

m

M

AXIOMS

axm01: m ∈ REAL STR POS

axm02: M ∈ REAL STR POS

axm03: smr(m,M)

thm01: 〈theorem〉 leq(m,M)

thm02: 〈theorem〉 leq(zero,m)

thm06: 〈theorem〉 leq(zero,M)

thm03: 〈theorem〉 ∀x·leq(m,x)⇒ x ∈ REAL POS

thm04: 〈theorem〉 leq(m,m)

thm05: 〈theorem〉 ∀a·leq(m,a)⇒ leq(zero, a)

END
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MACHINE M0 spec

SEES C1 corridor

VARIABLES

p

active

INVARIANTS

inv01: p ∈ REAL POS

inv02: active ∈ BOOL

inv03: active = TRUE⇒ leq(m, p) ∧ leq(p,M)

active ⇒ p ∈ [m,M]

inv04: active = FALSE⇒ p = zero

¬active ⇒ p = 0

thm01: 〈theorem〉 leq(zero, p) ∧ leq(p,M)

p ∈ [0,M]

DLF: 〈theorem〉 (
(active = FALSE)

∧ (p = zero)

) ∨ (

∃new p·(
(active = TRUE)

∧ (new p ∈ REAL POS)

∧ (leq(m,new p) ∧ leq(new p,M))

)

) ∨ (

(active = TRUE)

∧ (leq(m, p) ∧ leq(p,M))

)

at least one event is enabled

deterministic1: 〈theorem〉 ¬(
(

(active = FALSE)

∧ (p = zero)

) ∧ (

∃new p·(
(active = TRUE)

∧ (new p ∈ REAL POS)

∧ (leq(m,new p) ∧ leq(new p,M))

)

)

)

events ’start’ and ’produce’ are never enabled simultaneously

deterministic2: 〈theorem〉 ¬(
(

(active = FALSE)

∧ (p = zero)

) ∧ (

(active = TRUE)

∧ (leq(m, p) ∧ leq(p,M))

)

)

events ’start’ and ’stop’ are never enabled simultaneously

EVENTS

Initialisation
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begin
act02: active := FALSE

act01: p := zero

end

Event start 〈ordinary〉 =̂
when

grd02: active = FALSE

grd01: p = zero

then
act01: active := TRUE

act02: p :| leq(m, p′) ∧ leq(p′,M)

end

Event produce 〈ordinary〉 =̂
any

new p

where
grd02: active = TRUE

grd03: new p ∈ REAL POS

grd01: leq(m,new p) ∧ leq(new p,M)

then
act01: p := new p

end

Event stop 〈ordinary〉 =̂
when

grd02: active = TRUE

grd01: leq(m, p) ∧ leq(p,M)

then
act01: active := FALSE

act02: p := zero

end

END
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CONTEXT C2 margin
energy corridor margin

EXTENDS C1 corridor

CONSTANTS

z

AXIOMS

axm01: z ∈ REAL POS

z ∈ R+

axm02: gtr(M subm, (one plus one) mult z)

M−m > 2*z

thm01: 〈theorem〉 leq(zero, z)
0 ≤ z

thm02: 〈theorem〉 leq(zero,m plus z)

0 ≤ m+z

thm09: 〈theorem〉 leq(z,M)

z ≤ M

thm03: 〈theorem〉 leq(zero,M sub z)

0 ≤ M−z
thm04: 〈theorem〉 leq(m,m plus z)

m ≤ m+z

thm05: 〈theorem〉 leq(M sub z,M)

M−z ≤ M

thm06: 〈theorem〉 leq(z,M subm)

z ≤ M−m
thm07: 〈theorem〉 leq(m,M sub z)

m ≤ M−z
thm08: 〈theorem〉 leq(m plus z,M)

m+z ≤ M

thm10: 〈theorem〉 leq(m plus z,M sub z)

m+z ≤ M−z
END
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MACHINE M1 cntn ctrl

REFINES M0 spec

SEES C2 margin

VARIABLES

p

active

now

pc

active t has a sense only if active is TRUE ; time (moment) when S became active

INVARIANTS

type01: now ∈ REAL POS

type02: pc ∈ REAL POS→REAL POS

type03: active t ∈ REAL POS

glue01: p = pc(now)

prop01: cnt int(pc, zero, now)

pc is continous on [0,now]

prop02: active = TRUE⇒
(∀t·t ∈ REAL ∧ leq(active t, t) ∧ leq(t, now)⇒

(leq(m plus z, pc(t)) ∧ leq(pc(t),M sub z)))

(x = S ∧ active) ⇒ (∀ t ∈ [active t,now], pc(t) ∈ [m+z,M−z])
prop03: ∀t·t ∈ REAL ∧ leq(zero, t) ∧ leq(t, now)⇒ leq(pc(t),M)

∀ t ∈ [0,now] ⇒ pc(t) ≤ M

prop04: active = TRUE⇒ leq(active t, now)

DLF start produce: 〈theorem〉 (
∃dt, np·(

(active = FALSE)

∧ (p = zero)

∧ (dt ∈ REAL STR POS)

∧ (np ∈ REAL POS 7→REAL POS)

∧ (dom(np) = {t·t ∈ REAL ∧ leq(now, t) ∧ leq(t, now plus dt)|t})
∧ (np(now) = pc(now))

∧ (np(now plus dt) = m plus z)

∧ (∀t1, t2·t1 ∈ dom(np) ∧ t2 ∈ dom(np) ∧ smr(t1, t2)⇒ smr(np(t1), np(t2)))

∧ (cnt int(np, now, now plus dt))

)

) ∨ (

∃new p, dt, np·(
(active = TRUE)

∧ (new p ∈ REAL POS)

∧ (leq(m,new p) ∧ leq(new p,M))

∧ (dt ∈ REAL STR POS)

∧ (np ∈ REAL POS 7→REAL POS)

∧ (dom(np) = {t·t ∈ REAL ∧ leq(now, t) ∧ leq(t, now plus dt)|t})
∧ (np(now) = pc(now))

∧ (np(now plus dt) = new p)

∧ (leq(p, new p) ⇒ (∀t1, t2·t1 ∈ dom(np) ∧ t2 ∈ dom(np) ∧ leq(t1, t2) ⇒
leq(np(t1), np(t2))))

∧ (leq(new p, p) ⇒ (∀t1, t2·t1 ∈ dom(np) ∧ t2 ∈ dom(np) ∧ leq(t1, t2) ⇒
leq(np(t2), np(t1))))

∧ (cnt int(np, now, now plus dt))

∧ (∀t·t ∈ dom(np)⇒ leq(m plus z, np(t)) ∧ leq(np(t),M sub z))

)

)
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EVENTS

Initialisation 〈extended〉
begin

act02: active := FALSE

act01: p := zero

act06: now := zero

act07: pc := λt·t ∈ REAL POS|zero
act08: active t :∈ REAL POS

end

Event start 〈ordinary〉 =̂
refines start

any
dt

np

where
grd02: active = FALSE

grd01: p = zero

grd04: dt ∈ REAL STR POS

dt > 0

grd05: np ∈ REAL POS 7→REAL POS

np ∈ R+ 7→ R+

grd06: dom(np) = {t|t ∈ REAL ∧ leq(now, t) ∧ leq(t, now plus dt)}
dom(np) = [now,now+dt]

grd07: np(now) = pc(now)

np(now) = pc(now)

grd08: np(now plus dt) = m plus z

np(now+dt) = m+z

grd09: ∀t1, t2·t1 ∈ dom(np) ∧ t2 ∈ dom(np) ∧ smr(t1, t2)⇒
smr(np(t1), np(t2))

np is a monotonically strictly increasing function : a<b ⇒ np(a)<np(b)

grd12: cnt int(np, now, now plus dt)

np is continuous on [now,now+dt]

thm02: 〈theorem〉 smr(now, now plus dt)

thm01: 〈theorem〉 dom(pcC− np) = REAL POS

then
act01: active := TRUE

act02: p := m plus z

act03: now := now plus dt

act04: pc := pcC− np
act05: active t := now plus dt

end

Event produce safe 〈ordinary〉 =̂
extends produce

any
new p

dt

np

where
grd02: active = TRUE

grd03: new p ∈ REAL POS

grd01: leq(m,new p) ∧ leq(new p,M)

grd10: dt ∈ REAL STR POS

dt > 0

thm02: 〈theorem〉 smr(now, now plus dt)
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grd11: np ∈ REAL POS 7→REAL POS

np ∈ R+ 7→ R+

grd06: dom(np) = {t|t ∈ REAL ∧ leq(now, t) ∧ leq(t, now plus dt)}
dom(np) = [now,now+dt]

grd07: np(now) = pc(now)

np(now) = pc(now)

grd08: np(now plus dt) = new p

np(now+dt) = new p

grd09: leq(p, new p) ⇒ (∀t1, t2·t1 ∈ dom(np) ∧ t2 ∈ dom(np) ∧ leq(t1, t2) ⇒
leq(np(t1), np(t2)))

np is a monotonic function

grd14: leq(new p, p) ⇒ (∀t1, t2·t1 ∈ dom(np) ∧ t2 ∈ dom(np) ∧ leq(t1, t2) ⇒
leq(np(t2), np(t1)))

np is a monotonic function

grd12: cnt int(np, now, now plus dt)

np is continuous on [now,now+dt]

thm01: 〈theorem〉 dom(pcC− np) = REAL POS

grd13: ∀t·t ∈ dom(np)⇒ leq(m plus z, np(t)) ∧ leq(np(t),M sub z)

∀ t ∈ [now,now+dt] ⇒ np(t) ∈ [m+z,M−z]
then

act01: p := new p

act02: now := now plus dt

act03: pc := pcC− np
end

Event safety stop 〈ordinary〉 =̂
extends stop

any
dt

np

where
grd02: active = TRUE

grd01: leq(m, p) ∧ leq(p,M)

grd10: dt ∈ REAL STR POS

dt > 0

thm02: 〈theorem〉 smr(now, now plus dt)

grd11: np ∈ REAL POS 7→REAL POS

np ∈ R+ 7→ R+

grd06: dom(np) = {t|t ∈ REAL ∧ leq(now, t) ∧ leq(t, now plus dt)}
dom(np) = [now,now+dt]

grd07: np(now) = pc(now)

np(now) = pc(now)

grd08: np(now plus dt) = zero

np(now+dt) = 0

grd12: cnt int(np, now, now plus dt)

np is continuous on [now,now+dt]

thm01: 〈theorem〉 dom(pcC− np) = REAL POS

grd53: ∀t·t ∈ dom(np)⇒ leq(np(t),M)

∀ t ∈ [now,now+dt] ⇒ np(t) ≤ M

grd54: ∃t·t ∈ dom(np)⇒¬(leq(m plus z, np(t)) ∧ leq(np(t),M sub z))

∃ t ∈ [now,now+dt] ⇒ ¬ np(t) ∈ [m+z,M−z] ; safety risk

then
act01: active := FALSE

act02: p := zero

act03: now := now plus dt

act04: pc := pcC− np
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end

Event stop 〈ordinary〉 =̂
extends stop

any
np

dt

where
grd02: active = TRUE

grd01: leq(m, p) ∧ leq(p,M)

grd04: dt ∈ REAL STR POS

dt > 0

thm02: 〈theorem〉 smr(now, now plus dt)

grd05: np ∈ REAL POS 7→REAL POS

np ∈ R+ 7→ R+

grd06: dom(np) = {t|t ∈ REAL ∧ leq(now, t) ∧ leq(t, now plus dt)}
dom(np) = [now,now+dt]

grd07: np(now) = pc(now)

np(now) = pc(now)

grd08: np(now plus dt) = zero

np(now+dt) = 0

grd09: ∀t1, t2·t1 ∈ dom(np) ∧ t2 ∈ dom(np) ∧ smr(t1, t2)⇒
gtr(np(t1), np(t2))

np is a monotonically strictly decreasing function : a<b ⇒ np(a)>np(b)

grd12: cnt int(np, now, now plus dt)

np is continuous on [now,now+dt]

thm01: 〈theorem〉 dom(pcC− np) = REAL POS

then
act01: active := FALSE

act02: p := zero

act03: now := now plus dt

act04: pc := pcC− np
end

END

231



CONTEXT Nat
From: Hoang, Thai Son - 2013-01-21 09:53:01

Rodin-b-sharp-user Mailing List

http://sourceforge.net/p/rodin-b-sharp/mailman/message/30378566/

AXIOMS

well-order: 〈theorem〉 ∀S ·S ⊆ N ∧ S 6= ∅⇒ (∃m·m ∈ S ∧ (∀x·x ∈ S⇒m ≤ x))

induction: 〈theorem〉 ∀S ·S ⊆ N ∧ 0 ∈ S ∧ (∀x·x ∈ S⇒ x+ 1 ∈ S)⇒ N ⊆ S

END
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CONTEXT C3 cast

EXTENDS C0 reals,Nat

CONSTANTS

cast

AXIOMS

axm01: cast ∈ N→REAL POS

type and domain

axm02: cast(0) = zero

initial case

axm03: ∀a·a ∈ N⇒ (

cast(a+ 1) = cast(a) plus one)

induction case

thm00: 〈theorem〉 dom(cast) = N
thm02: 〈theorem〉 ran(cast) = cast[N]
thm01: 〈theorem〉 cast(1) = one

thm04: 〈theorem〉 ∀a, b·(a ∈ N ∧ b ∈ N)⇒ (

cast(a+ b) = cast(a) plus cast(b))

(proof by induction on b)

thm06: 〈theorem〉 ∀a, b·(a ∈ N ∧ b ∈ N)⇒ (

a < b⇒ smr(cast(a), cast(b)))

(proof by induction on b)

thm07: 〈theorem〉 ∀a, b·(a ∈ N ∧ b ∈ N)⇒ (

a = b⇒ cast(a) = cast(b))

thm08: 〈theorem〉 ∀a, b·(a ∈ N ∧ b ∈ N)⇒ (

a 6= b⇒ cast(a) 6= cast(b))

thm09: 〈theorem〉 ∀a, b·(a ∈ N ∧ b ∈ N)⇒ (

a ≤ b⇒ leq(cast(a), cast(b)))

thm10: 〈theorem〉 ∀a, b·(a ∈ N ∧ b ∈ N)⇒ (

smr(cast(a), cast(b))⇒ a < b)

thm11: 〈theorem〉 ∀a, b·(a ∈ N ∧ b ∈ N)⇒ (

a < b⇔ smr(cast(a), cast(b)))

equivalence over ’<’

thm12: 〈theorem〉 ∀a, b·(a ∈ N ∧ b ∈ N)⇒ (

a = b⇔ cast(a) = cast(b))

equivalence over ’=’

thm13: 〈theorem〉 ∀a, b·(a ∈ N ∧ b ∈ N)⇒ (

a 6= b⇔ cast(a) 6= cast(b))

equivalence over ’6= ’

thm14: 〈theorem〉 ∀a, b·(a ∈ N ∧ b ∈ N)⇒ (

a ≤ b⇔ leq(cast(a), cast(b)))

equivalence over ’≤ ’

thm03: 〈theorem〉 ∀x·x ∈ ran(cast)⇒ (∃i·i ∈ N ∧ cast−1(x) = i)

thm17: 〈theorem〉 cast ∈ N�� cast[N]
thm18: 〈theorem〉 cast−1 ∈ cast[N]�� N
thm16: 〈theorem〉 cast−1 ◦ cast = NC id

thm15: 〈theorem〉 cast ◦ cast−1 = cast[N]C id

thm19: 〈theorem〉 cast−1 ◦ cast = dom(cast)C id

thm20: 〈theorem〉 cast ◦ cast−1 = ran(cast)C id

thm21: 〈theorem〉 cast ∈ dom(cast)�� ran(cast)

cast is a bijection
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thm22: 〈theorem〉 ∀n·n ∈ N⇒ leq(zero, cast(n))

∀ n ∈ N, 0 ≤ cast(n)

END
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CONTEXT C4 discrete

EXTENDS C2 margin

SETS

VT

CONSTANTS

tstep discrete time step

max dp maximum delta for P during tstep

PBT

PV

AXIOMS

axm01: tstep ∈ REAL STR POS

axm03: max dp ∈ REAL POS

max variation of P during tstep

axm02: leq(max dp, z)

axm04: partition(V T, {PBT}, {PV })
tech01: 〈theorem〉 leq(zero, tstep)

END
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MACHINE M2 dsct ctrl

REFINES M1 cntn ctrl

SEES C3 cast,C4 discrete

VARIABLES

active

active t

now

p abstract power value

pc continuous power function

pd discrete power function

i the current instant number

et time elapsed from previous discrete value sampling time

rs remaining continuous steps inside the discrete interval

nv next variant-related event type

INVARIANTS

type01: pd ∈ 0 .. i→REAL POS

type02: i ∈ N
glue01: ∀n·n ∈ 0 .. i⇒ pc(cast(n) mult tstep) = pd(n)

n ∈ 0..i ⇒ pc(n*tstep) = pd(n)

glue02: now = (cast(i) mult tstep) plus et

now = i*tstep + et

prop02: ∀n·n ∈ 0 .. i− 1⇒ (

∀t·(leq(cast(n) mult tstep, t)

∧ leq(t, cast(n+ 1) mult tstep))⇒ (

leq(pd(n) submax dp, pc(t))

∧ leq(pc(t), pd(n) plusmax dp)))

∀ n < i, ∀ t ∈ [n*tstep , (n+1)*tstep], pd(n) − max dp ≤ pc(t) ≤ pd(n) + max dp

prop03: ∀t·(leq(cast(i) mult tstep, t)

∧ leq(t, now))⇒ (

leq(pd(i) submax dp, pc(t))

∧ leq(pc(t), pd(i) plusmax dp))

∀ t ∈ [i*tstep , now], pd(n) − max dp ≤ pc(t) ≤ pd(n) + max dp

type03: et ∈ REAL POS

prop01: smr(et, tstep)

type04: rs ∈ N
type05: nv ∈ V T
DLF produce: 〈theorem〉 (

∃dt·(
(dt ∈ REAL STR POS)

∧ (et = zero)

∧ (smr(dt, tstep))

)

) ∨ (

∃dt·(
(dt ∈ REAL STR POS)

∧ (smr(zero, et))

∧ (smr(et plus dt, tstep))

∧ (nv = PBT )

∧ (rs > 0)

)

) ∨ (
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(nv = PV )

∧ (rs > 0)

) ∨ (

∃dt·(
(dt ∈ REAL STR POS)

∧ (et plus dt = tstep)

∧ (smr(zero, et))

∧ (rs = 0)

)

)

DLF on ’produce *’ events regarding dt,et,nv,rs

VARIANT

rs

EVENTS

Initialisation 〈extended〉
begin

act02: active := FALSE

act01: p := zero

act06: now := zero

act07: pc := λt·t ∈ REAL POS|zero
act08: active t :∈ REAL POS

act09: i := 0

act11: pd := {0 7→ zero}
act12: et := zero

act13: rs :∈ N
no impact

act14: nv :∈ V T
no impact

end

Event start 〈ordinary〉 =̂
extends start

any
dt

np

n step

pd start

where
grd02: active = FALSE

grd01: p = zero

grd04: dt ∈ REAL STR POS

dt > 0

grd05: np ∈ REAL POS 7→REAL POS

np ∈ R+ 7→ R+

grd06: dom(np) = {t|t ∈ REAL ∧ leq(now, t) ∧ leq(t, now plus dt)}
dom(np) = [now,now+dt]

grd07: np(now) = pc(now)

np(now) = pc(now)

grd08: np(now plus dt) = m plus z

np(now+dt) = m+z

grd09: ∀t1, t2·t1 ∈ dom(np) ∧ t2 ∈ dom(np) ∧ smr(t1, t2)⇒
smr(np(t1), np(t2))

np is a monotonically strictly increasing function : a<b ⇒ np(a)<np(b)

grd12: cnt int(np, now, now plus dt)

np is continuous on [now,now+dt]
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thm02: 〈theorem〉 smr(now, now plus dt)

thm01: 〈theorem〉 dom(pcC− np) = REAL POS

grd13: n step ∈ N1

grd19: dt = cast(n step) mult tstep

grd14: et = zero

thm04: 〈theorem〉 now = cast(i) mult tstep

thm03: 〈theorem〉 now plus dt = cast(i+ n step) mult tstep

grd16: pd start ∈ i .. i+ n step→REAL POS

thm05: 〈theorem〉 ∀n·n ∈ N⇒
(n ∈ dom(pd start)⇔ cast(n) mult tstep ∈ dom(np))

grd18: pd start(i) = pd(i)

grd17: ∀n·n ∈ dom(pd start)⇒
np(cast(n) mult tstep) = pd start(n)

grd20: ∀n·n ∈ i .. i+ n step− 1⇒ (

∀t·(leq(cast(n) mult tstep, t)

∧ leq(t, cast(n+ 1) mult tstep))⇒
leq(np(t), pd start(n) plusmax dp))

thm06: 〈theorem〉 ∀n·n ∈ 0 .. i− 1⇒ n ∈ dom(pd) ∧ n /∈ dom(pd start)

(pdC−pd start)(n), case 1/2: n < i

thm07: 〈theorem〉 ∀n·n ∈ i .. i+ n step− 1⇒ n ∈ dom(pd start)

(pdC−pd start)(n), case 2/2: n ≥ i

thm11: 〈theorem〉 ∀n, t·(n ∈ 0 .. i− 1 ∧ t 6= now

∧ leq(cast(n) mult tstep, t) ∧ leq(t, cast(n+ 1) mult tstep))

⇒ t ∈ dom(pc) ∧ t /∈ dom(np)

(pcC−np)(t), case 1/3: n < i ∧ t 6= now

thm10: 〈theorem〉 ∀n, t·(n ∈ 0 .. i− 1 ∧ t = now

∧ leq(cast(n) mult tstep, t) ∧ leq(t, cast(n+ 1) mult tstep))

⇒ t ∈ dom(np)

(pcC−np)(t), case 2/3: n < i ∧ t = now

thm09: 〈theorem〉 ∀n, t·(n ∈ i .. i+ n step− 1

∧ leq(cast(n) mult tstep, t) ∧ leq(t, cast(n+ 1) mult tstep))

⇒ t ∈ dom(np)

(pcC−np)(t), case 3/3: n ≥ i

then
act01: active := TRUE

act02: p := m plus z

act03: now := now plus dt

act04: pc := pcC− np
act05: active t := now plus dt

act06: i := i+ n step

act07: pd := pdC− pd start
end

Event produce from tick 〈ordinary〉 =̂
extends produce safe

any
new p

dt

np

where
grd02: active = TRUE

grd03: new p ∈ REAL POS

grd01: leq(m,new p) ∧ leq(new p,M)

grd10: dt ∈ REAL STR POS

dt > 0

thm02: 〈theorem〉 smr(now, now plus dt)
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grd11: np ∈ REAL POS 7→REAL POS

np ∈ R+ 7→ R+

grd06: dom(np) = {t|t ∈ REAL ∧ leq(now, t) ∧ leq(t, now plus dt)}
dom(np) = [now,now+dt]

grd07: np(now) = pc(now)

np(now) = pc(now)

grd08: np(now plus dt) = new p

np(now+dt) = new p

grd09: leq(p, new p) ⇒ (∀t1, t2·t1 ∈ dom(np) ∧ t2 ∈ dom(np) ∧ leq(t1, t2) ⇒
leq(np(t1), np(t2)))

np is a monotonic function

grd14: leq(new p, p) ⇒ (∀t1, t2·t1 ∈ dom(np) ∧ t2 ∈ dom(np) ∧ leq(t1, t2) ⇒
leq(np(t2), np(t1)))

np is a monotonic function

grd12: cnt int(np, now, now plus dt)

np is continuous on [now,now+dt]

thm01: 〈theorem〉 dom(pcC− np) = REAL POS

grd13: ∀t·t ∈ dom(np)⇒ leq(m plus z, np(t)) ∧ leq(np(t),M sub z)

∀ t ∈ [now,now+dt] ⇒ np(t) ∈ [m+z,M−z]
grd15: et = zero

grd17: smr(dt, tstep)

grd16: ∀t·t ∈ dom(np)⇒ leq(pd(i)submax dp, np(t))∧ leq(np(t), pd(i)plusmax dp)

physical assumption

then
act01: p := new p

act02: now := now plus dt

act03: pc := pcC− np
act06: et := et plus dt

act07: rs :∈ N
act08: nv := PBT

end

Event produce between ticks 〈ordinary〉 =̂
extends produce safe

any
new p

dt

np

where
grd02: active = TRUE

grd03: new p ∈ REAL POS

grd01: leq(m,new p) ∧ leq(new p,M)

grd10: dt ∈ REAL STR POS

dt > 0

thm02: 〈theorem〉 smr(now, now plus dt)

grd11: np ∈ REAL POS 7→REAL POS

np ∈ R+ 7→ R+

grd06: dom(np) = {t|t ∈ REAL ∧ leq(now, t) ∧ leq(t, now plus dt)}
dom(np) = [now,now+dt]

grd07: np(now) = pc(now)

np(now) = pc(now)

grd08: np(now plus dt) = new p

np(now+dt) = new p

grd09: leq(p, new p) ⇒ (∀t1, t2·t1 ∈ dom(np) ∧ t2 ∈ dom(np) ∧ leq(t1, t2) ⇒
leq(np(t1), np(t2)))
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np is a monotonic function

grd14: leq(new p, p) ⇒ (∀t1, t2·t1 ∈ dom(np) ∧ t2 ∈ dom(np) ∧ leq(t1, t2) ⇒
leq(np(t2), np(t1)))

np is a monotonic function

grd12: cnt int(np, now, now plus dt)

np is continuous on [now,now+dt]

thm01: 〈theorem〉 dom(pcC− np) = REAL POS

grd13: ∀t·t ∈ dom(np)⇒ leq(m plus z, np(t)) ∧ leq(np(t),M sub z)

∀ t ∈ [now,now+dt] ⇒ np(t) ∈ [m+z,M−z]
grd18: smr(zero, et)

grd15: smr(et plus dt, tstep)

grd16: ∀t·t ∈ dom(np)⇒ leq(pd(i)submax dp, np(t))∧ leq(np(t), pd(i)plusmax dp)

physical assumption

grd17: nv = PBT

grd19: rs > 0

then
act01: p := new p

act02: now := now plus dt

act03: pc := pcC− np
act04: et := et plus dt

act05: nv := PV

end

Event produce variant 〈convergent〉 =̂
when

grd01: nv = PV

grd02: rs > 0

then
act01: rs :| rs′ ∈ N ∧ rs′ < rs

act02: nv := PBT

end

Event produce on tick 〈ordinary〉 =̂
extends produce safe

any
new p

dt

np

where
grd02: active = TRUE

grd03: new p ∈ REAL POS

grd01: leq(m,new p) ∧ leq(new p,M)

grd10: dt ∈ REAL STR POS

dt > 0

thm02: 〈theorem〉 smr(now, now plus dt)

grd11: np ∈ REAL POS 7→REAL POS

np ∈ R+ 7→ R+

grd06: dom(np) = {t|t ∈ REAL ∧ leq(now, t) ∧ leq(t, now plus dt)}
dom(np) = [now,now+dt]

grd07: np(now) = pc(now)

np(now) = pc(now)

grd08: np(now plus dt) = new p

np(now+dt) = new p

grd09: leq(p, new p) ⇒ (∀t1, t2·t1 ∈ dom(np) ∧ t2 ∈ dom(np) ∧ leq(t1, t2) ⇒
leq(np(t1), np(t2)))

np is a monotonic function
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grd14: leq(new p, p) ⇒ (∀t1, t2·t1 ∈ dom(np) ∧ t2 ∈ dom(np) ∧ leq(t1, t2) ⇒
leq(np(t2), np(t1)))

np is a monotonic function

grd12: cnt int(np, now, now plus dt)

np is continuous on [now,now+dt]

thm01: 〈theorem〉 dom(pcC− np) = REAL POS

grd13: ∀t·t ∈ dom(np)⇒ leq(m plus z, np(t)) ∧ leq(np(t),M sub z)

∀ t ∈ [now,now+dt] ⇒ np(t) ∈ [m+z,M−z]
grd15: et plus dt = tstep

grd18: smr(zero, et)

grd17: rs = 0

thm03: 〈theorem〉 cast(i+ 1) mult tstep = now plus dt

grd16: ∀t·t ∈ dom(np)⇒ leq(pd(i)submax dp, np(t))∧ leq(np(t), pd(i)plusmax dp)

physical assumption

then
act01: p := new p

act02: now := now plus dt

act03: pc := pcC− np
act04: i := i+ 1

act05: pd(i+ 1) := new p

act06: et := zero

end

Event safety stop 〈ordinary〉 =̂
pd(i) is in the safe zone (now)

pd(i+1) is not in the safe zone (safety risk)

pd(i+n step)=0

extends safety stop

any
dt

np

n step

pd stop

where
grd02: active = TRUE

grd01: leq(m, p) ∧ leq(p,M)

grd10: dt ∈ REAL STR POS

dt > 0

thm02: 〈theorem〉 smr(now, now plus dt)

grd11: np ∈ REAL POS 7→REAL POS

np ∈ R+ 7→ R+

grd06: dom(np) = {t|t ∈ REAL ∧ leq(now, t) ∧ leq(t, now plus dt)}
dom(np) = [now,now+dt]

grd07: np(now) = pc(now)

np(now) = pc(now)

grd08: np(now plus dt) = zero

np(now+dt) = 0

grd12: cnt int(np, now, now plus dt)

np is continuous on [now,now+dt]

thm01: 〈theorem〉 dom(pcC− np) = REAL POS

grd53: ∀t·t ∈ dom(np)⇒ leq(np(t),M)

∀ t ∈ [now,now+dt] ⇒ np(t) ≤ M

grd54: ∃t·t ∈ dom(np)⇒¬(leq(m plus z, np(t)) ∧ leq(np(t),M sub z))

∃ t ∈ [now,now+dt] ⇒ ¬ np(t) ∈ [m+z,M−z] ; safety risk

grd33: n step ≥ 2
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grd13: 〈theorem〉 n step ∈ N1

grd19: dt = cast(n step) mult tstep

grd14: et = zero

thm03: 〈theorem〉 now = cast(i) mult tstep

thm04: 〈theorem〉 now plus dt = cast(i+ n step) mult tstep

grd16: pd stop ∈ i .. i+ n step→REAL POS

thm05: 〈theorem〉 ∀n·n ∈ N⇒
(n ∈ dom(pd stop)⇔ cast(n) mult tstep ∈ dom(np))

grd18: pd stop(i) = pd(i)

grd17: ∀n·n ∈ dom(pd stop)⇒
np(cast(n) mult tstep) = pd stop(n)

grd20: ∀n·n ∈ i .. i+ n step− 1⇒ (

∀t·(leq(cast(n) mult tstep, t)

∧ leq(t, cast(n+ 1) mult tstep))⇒ (

leq(pd stop(n) submax dp, np(t))

∧ leq(np(t), pd stop(n) plusmax dp)))

grd21: smr(pd stop(i+ 1),m plus z) ∨ gtr(pd stop(i+ 1),M sub z)

(pd stop(i+1) < m + z) ∨ (pd stop(i+1) > M−z)
grd09: ∀t1, t2·leq(nowplus tstep, t1)∧ t1 ∈ dom(np)∧ t2 ∈ dom(np)∧ smr(t1, t2)⇒

gtr(np(t1), np(t2))

np is a monotonically strictly decreasing function after the next discrete instant :

(now+tstep≤ a ∧ a<b) ⇒ np(a)>np(b)

thm06: 〈theorem〉 ∀n·n ∈ 0 .. i− 1⇒ n ∈ dom(pd) ∧ n /∈ dom(pd stop)

(pdC−pd stop)(n), case 1/2: n < i

thm07: 〈theorem〉 ∀n·n ∈ i .. i+ n step− 1⇒ n ∈ dom(pd stop)

(pdC−pd stop)(n), case 2/2: n ≥ i

thm11: 〈theorem〉 ∀n, t·(n ∈ 0 .. i− 1 ∧ t 6= now

∧ leq(cast(n) mult tstep, t) ∧ leq(t, cast(n+ 1) mult tstep))

⇒ t ∈ dom(pc) ∧ t /∈ dom(np)

(pcC−np)(t), case 1/3: n < i ∧ t 6= now

thm10: 〈theorem〉 ∀n, t·(n ∈ 0 .. i− 1 ∧ t = now

∧ leq(cast(n) mult tstep, t) ∧ leq(t, cast(n+ 1) mult tstep))

⇒ t ∈ dom(np)

(pcC−np)(t), case 2/3: n < i ∧ t = now

thm09: 〈theorem〉 ∀n, t·(n ∈ i .. i+ n step− 1

∧ leq(cast(n) mult tstep, t) ∧ leq(t, cast(n+ 1) mult tstep))

⇒ t ∈ dom(np)

(pcC−np)(t), case 3/3: n ≥ i

then
act01: active := FALSE

act02: p := zero

act03: now := now plus dt

act04: pc := pcC− np
act05: i := i+ n step

act06: pd := pdC− pd stop
end

Event stop 〈ordinary〉 =̂
extends stop

any
np

dt

n step

pd stop

where
grd02: active = TRUE
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grd01: leq(m, p) ∧ leq(p,M)

grd04: dt ∈ REAL STR POS

dt > 0

thm02: 〈theorem〉 smr(now, now plus dt)

grd05: np ∈ REAL POS 7→REAL POS

np ∈ R+ 7→ R+

grd06: dom(np) = {t|t ∈ REAL ∧ leq(now, t) ∧ leq(t, now plus dt)}
dom(np) = [now,now+dt]

grd07: np(now) = pc(now)

np(now) = pc(now)

grd08: np(now plus dt) = zero

np(now+dt) = 0

grd09: ∀t1, t2·t1 ∈ dom(np) ∧ t2 ∈ dom(np) ∧ smr(t1, t2)⇒
gtr(np(t1), np(t2))

np is a monotonically strictly decreasing function : a<b ⇒ np(a)>np(b)

grd12: cnt int(np, now, now plus dt)

np is continuous on [now,now+dt]

thm01: 〈theorem〉 dom(pcC− np) = REAL POS

grd13: n step ∈ N1

grd19: dt = cast(n step) mult tstep

grd14: et = zero

thm03: 〈theorem〉 now = cast(i) mult tstep

thm04: 〈theorem〉 now plus dt = cast(i+ n step) mult tstep

grd16: pd stop ∈ i .. i+ n step→REAL POS

thm05: 〈theorem〉 ∀n·n ∈ N⇒
(n ∈ dom(pd stop)⇔ cast(n) mult tstep ∈ dom(np))

grd18: pd stop(i) = pd(i)

grd17: ∀n·n ∈ dom(pd stop)⇒
np(cast(n) mult tstep) = pd stop(n)

grd20: ∀n·n ∈ i .. i+ n step− 1⇒ (

∀t·(leq(cast(n) mult tstep, t)

∧ leq(t, cast(n+ 1) mult tstep))⇒
leq(pd stop(n) submax dp, np(t)))

thm06: 〈theorem〉 ∀n·n ∈ 0 .. i− 1⇒ n ∈ dom(pd) ∧ n /∈ dom(pd stop)

(pdC−pd stop)(n), case 1/2: n < i

thm07: 〈theorem〉 ∀n·n ∈ i .. i+ n step− 1⇒ n ∈ dom(pd stop)

(pdC−pd stop)(n), case 2/2: n ≥ i

thm11: 〈theorem〉 ∀n, t·(n ∈ 0 .. i− 1 ∧ t 6= now

∧ leq(cast(n) mult tstep, t) ∧ leq(t, cast(n+ 1) mult tstep))

⇒ t ∈ dom(pc) ∧ t /∈ dom(np)

(pcC−np)(t), case 1/3: n < i ∧ t 6= now

thm10: 〈theorem〉 ∀n, t·(n ∈ 0 .. i− 1 ∧ t = now

∧ leq(cast(n) mult tstep, t) ∧ leq(t, cast(n+ 1) mult tstep))

⇒ t ∈ dom(np)

(pcC−np)(t), case 2/3: n < i ∧ t = now

thm09: 〈theorem〉 ∀n, t·(n ∈ i .. i+ n step− 1

∧ leq(cast(n) mult tstep, t) ∧ leq(t, cast(n+ 1) mult tstep))

⇒ t ∈ dom(np)

(pcC−np)(t), case 3/3: n ≥ i

then
act01: active := FALSE

act02: p := zero

act03: now := now plus dt

act04: pc := pcC− np
act05: i := i+ n step
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act06: pd := pdC− pd stop
end

END
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D Hybrid systems: Substitution

Components:

• C5 modes (page 246)

• C0 properties on reals (page 247)

• C1 envelope (page 250)

• C6 some technical theorems (page 251)

• M0 modes (page 252)

• M1 f , g, p (page 254)

• M2 f(t), g(t), p(t) (page 257)

Theory used in this development: Real (page 140)

The models are also available at: http://babin.perso.enseeiht.fr/r/thesis/
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CONTEXT C5 modes

SETS

MODES

CONSTANTS

MODE F

MODE R

MODE G

AXIOMS

axm1: partition(MODES, {MODE F}, {MODE R}, {MODE G})
END
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CONTEXT C0 reals
theorems concerning continuous mathematical functions

CONSTANTS

REAL POS

REAL STR POS

AXIOMS

def01: REAL POS = {x|x ∈ REAL ∧ leq(zero, x)}
def02: REAL STR POS = {x|x ∈ REAL ∧ smr(zero, x)}
thm01: 〈theorem〉 REAL POS ⊆ REAL
thm02: 〈theorem〉 REAL STR POS ⊆ REAL POS

thm03: 〈theorem〉 REAL STR POS ⊆ REAL
thm39: 〈theorem〉 ∀a, b·a ∈ REAL ∧ b ∈ REAL⇒ (a = a plus b⇒ b = zero)

thm04: 〈theorem〉 zero ∈ REAL POS

thm05: 〈theorem〉 leq(zero, zero)
thm06: 〈theorem〉 ∀n,A, f, a·n ∈ N

∧A ⊆ REAL
∧ f ∈ 0 .. n→A

∧ a ∈ A
⇒ f ∪ {n+ 1 7→ a} ∈ 0 .. n+ 1→A

thm07: 〈theorem〉 ∀a, b, c·(a ∈ REAL ∧ b ∈ REAL ∧ c ∈ REAL)⇒
(leq(a plus c, b plus c)⇔ leq(a, b))

a+c ≤ b+c ⇔ a≤ b

thm08: 〈theorem〉 ∀x·x ∈ REAL⇒
(leq(zero, x)⇔ leq(minus(x), zero))

0≤ x ⇔ -x≤ 0

thm09: 〈theorem〉 ∀a, b·(a ∈ REAL ∧ b ∈ REAL)⇒
(leq(a, b)⇔ leq(zero, b sub a))

a≤ b ⇔ 0≤ b-a

thm10: 〈theorem〉 ∀a, b·(a ∈ REAL ∧ b ∈ REAL)⇒
(leq(zero, a)⇔ leq(b, b plus a))

0≤ a ⇔ b≤ b+a

thm11: 〈theorem〉 ∀a, b·(a ∈ REAL ∧ b ∈ REAL)⇒
(leq(zero, b)⇒ leq(a, a plus b))

0≤ b ⇒ a ≤ a+b

thm14: 〈theorem〉 ∀a, b·a ∈ REAL ∧ b ∈ REAL⇒
(a = b⇔ b = a)

a=b ⇔ b=a

thm13: 〈theorem〉 ∀a, b·a ∈ REAL ∧ b ∈ REAL⇒
(¬(a = b)⇔¬(b = a))

¬(a=b) ⇔ ¬(b=a)

thm12: 〈theorem〉 ∀a, b·(a ∈ REAL ∧ b ∈ REAL)⇒
(smr(zero, b)⇒ smr(a, a plus b))

0<b ⇒ a < a+b

thm33: 〈theorem〉 ∀a·zeromult a = zero

0 * a = 0

thm38: 〈theorem〉 ∀a·amult minus(one) = minus(a)

a*(−1) = −a
thm41: 〈theorem〉 ∀a·minus(minus(a)) = a

−(−a) = a

thm17: 〈theorem〉 leq(zero, one)
0≤ 1
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thm15: 〈theorem〉 smr(zero, one)

0<1

thm34: 〈theorem〉 ∀a, b·(a ∈ REAL ∧ b ∈ REAL)⇒
(leq(zero, b)⇒ leq(a sub b, a))

0≤ b ⇒ a-b ≤ a

thm16: 〈theorem〉 ∀a, b·(a ∈ REAL ∧ b ∈ REAL)⇒
(smr(zero, b)⇒ smr(a sub b, a))

0<b ⇒ a-b < a

thm20: 〈theorem〉 ∀a, b·(a ∈ REAL ∧ b ∈ REAL)⇒
(leq(a, b) ∧ leq(b, a)⇔ a = b)

a≤ b ∧ b≤ a ⇔ a=b

thm21: 〈theorem〉 ∀a, b·(a ∈ REAL ∧ b ∈ REAL)⇒
(¬leq(a, b)⇔ gtr(a, b))

¬(a≤ b) ⇔ a>b

thm22: ∀a, b·(a ∈ REAL POS ∧ b ∈ REAL POS)⇒
(amult b ∈ REAL POS)

a ∈ R+ ∧ b ∈ R+ ⇒ a*b ∈ R+

thm23: ∀a, b·(a ∈ REAL ∧ b ∈ REAL)⇒
((∃c·c ∈ REAL STR POS ∧ a = b plus c)⇔ smr(b, a))

(∃ c > 0, a = b+c) ⇔ b<a

thm24: ∀a, b, c·(a ∈ REAL ∧ b ∈ REAL ∧ c ∈ REAL)⇒
(smr(a, b) ∧ smr(b, c)⇒ smr(a, c))

a<b ∧ b<c ⇒ a<c

thm26: 〈theorem〉 ∀a, b, c·(a ∈ REAL ∧ b ∈ REAL ∧ c ∈ REAL)⇒
(leq(a, b) ∧ smr(b, c)⇒ smr(a, c))

a≤ b ∧ b<c ⇒ a<c

thm27: 〈theorem〉 ∀a, b·leq(a, b) ∨ leq(b, a)

a≤ b ∨ b≤ a

thm30: ∀a, b, c·(a ∈ REAL POS ∧ b ∈ REAL POS ∧ c ∈ REAL STR POS)⇒
(smr(a, b)⇒ smr(amult c, bmult c))

a ≥ 0 ∧ b ≥ 0 ∧ c > 0 ⇒ (a < b ⇒ a*c < b*c)

thm31: ∀a, b, c·(a ∈ REAL POS ∧ b ∈ REAL POS ∧ c ∈ REAL POS)⇒
(leq(a, b)⇒ leq(amult c, bmult c))

a ≥ 0 ∧ b ≥ 0 ∧ c ≥ 0 ⇒ (a ≤ b ⇒ a*c ≤ b*c)

thm40: ∀a, b, c·(a ∈ REAL POS ∧ b ∈ REAL POS ∧ c ∈ REAL STR POS)⇒
(leq(amult c, bmult c)⇒ leq(a, b))

a ≥ 0 ∧ b ≥ 0 ∧ c > 0 ⇒ (a*c ≤ b*c ⇒ a ≤ b)

thm32: 〈theorem〉 ∀a, b·smr(a, b)⇔¬leq(b, a)
a<b ⇔ ¬ b≤ a

thm35: ∀a·a ∈ REAL STR POS⇒ (

∃b·b ∈ REAL STR POS ∧ smr(b, a))

∀ a > 0, ∃ b / 0 < b < a

thm36: ∀a, b·smr(a, b)⇔ smr(zero, b sub a)

a < b ⇔ 0 < b − a

thm37: ∀a, b, c·smr(a, b)⇔ smr(a plus c, b plus c)

a < b ⇔ a+c < b+c

thm42: 〈theorem〉 ∀a, b, f, g ·
a ∈ REAL POS

∧ leq(a, b)

∧ f ∈ {t|leq(zero, t) ∧ leq(t, a)}→REAL POS

∧ g ∈ {t|leq(a, t) ∧ leq(t, b)}→REAL POS

⇒
f C− g ∈ {t|leq(zero, t) ∧ leq(t, b)}→REAL POS
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thm43: ∀a, b, c, f ·
a ∈ REAL POS

∧ leq(a, b)

∧ f ∈ {t|leq(zero, t) ∧ leq(t, a)}→REAL POS

⇒
(f C− (λt·leq(a, t) ∧ leq(t, b)|c))(b) = c

END
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CONTEXT C1 corridor
energy corridor

EXTENDS C0 reals

CONSTANTS

m

M

AXIOMS

axm01: m ∈ REAL STR POS

axm02: M ∈ REAL STR POS

axm03: smr(m,M)

thm01: 〈theorem〉 leq(m,M)

thm02: 〈theorem〉 leq(zero,m)

thm06: 〈theorem〉 leq(zero,M)

thm03: 〈theorem〉 ∀x·leq(m,x)⇒ x ∈ REAL POS

thm04: 〈theorem〉 leq(m,m)

thm05: 〈theorem〉 ∀a·leq(m,a)⇒ leq(zero, a)

END
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CONTEXT C6 thms

EXTENDS C0 reals,C5 modes

AXIOMS

thm01: 〈theorem〉 ∀a, b, f, g ·
a ∈ REAL POS

∧ leq(a, b)

∧ f ∈ {t|leq(zero, t) ∧ leq(t, a)}→MODES

∧ g ∈ {t|leq(a, t) ∧ leq(t, b)}→MODES

⇒
f C− g ∈ {t|leq(zero, t) ∧ leq(t, b)}→MODES

thm02: ∀a, b, c, f ·
a ∈ REAL POS

∧ leq(a, b)

∧ f ∈ {t|leq(zero, t) ∧ leq(t, a)}→MODES

⇒
(f C− (λt·leq(a, t) ∧ leq(t, b)|c))(b) = c

END
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MACHINE M0

SEES C5 modes

VARIABLES

active active is true once the system has started

md the mode of the system

INVARIANTS

type01: active ∈ BOOL

type03: md ∈ MODES

tech01: active = FALSE⇒md = MODE F

DLF: 〈theorem〉 (

(active = FALSE)

∧ (md = MODE F )

) ∨ (

(active = FALSE)

∧ (md = MODE F )

) ∨ (

(active = TRUE)

∧ (md = MODE F ∨md = MODE G)

) ∨ (

(active = TRUE)

∧ (md = MODE F )

) ∨ (

(active = TRUE)

∧ (md = MODE R)

) ∨ (

(active = TRUE)

∧ (md = MODE R)

)

EVENTS

Initialisation

begin
act1: active := FALSE

act3: md := MODE F

end

Event boot 〈ordinary〉 =̂
when

grd1: active = FALSE

grd2: md = MODE F

then
skip

end

Event start 〈ordinary〉 =̂
when

grd1: active = FALSE

grd2: md = MODE F

then
act1: active := TRUE

end

Event progress 〈ordinary〉 =̂
when

grd2: active = TRUE

grd1: md = MODE F ∨md = MODE G
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then
skip

end

Event fail f 〈ordinary〉 =̂
when

grd2: active = TRUE

grd1: md = MODE F

then
act1: md := MODE R

end

Event repair 〈ordinary〉 =̂
when

grd2: active = TRUE

grd1: md = MODE R

then
skip

end

Event repaired g 〈ordinary〉 =̂
when

grd2: active = TRUE

grd1: md = MODE R

then
act1: md := MODE G

end

END
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MACHINE M1

REFINES M0

SEES C1 corridor,C5 modes

VARIABLES

active

[refined]

(should only be modified by CTRL events)

md

[refined]

(should only be modified by CTRL events)

p

p is the amount of power produced by the system

(should only be modified by ENV events)

f (should only be modified by ENV events)

g (should only be modified by ENV events)

INVARIANTS

type02: p ∈ REAL POS

type04: f ∈ REAL POS

type05: g ∈ REAL POS

corridor01: leq(p,M)

p ≤ M

corridor02: active = TRUE⇒ leq(m, p)

active ⇒ m ≤ p

mode01: md = MODE F ⇒ p = f

mode04: md = MODE F ⇒ g = zero

mode02: md = MODE R⇒ p = f plus g

mode03: md = MODE G⇒ p = g

mode05: md = MODE G⇒ f = zero

thm01: 〈theorem〉 p = f plus g

thm02: 〈theorem〉 leq(f,M)

f ≤ M

thm03: 〈theorem〉 leq(g,M)

g ≤ M

EVENTS

Initialisation 〈extended〉
begin

act1: active := FALSE

act3: md := MODE F

act2: p := zero

act4: f := zero

act5: g := zero

end

Event ENV starting f 〈ordinary〉 =̂
extends boot

any
new f

where
grd1: active = FALSE

grd2: md = MODE F

grd4: leq(f, new f)

f ≤ new f (f is increasing)
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grd3: leq(new f,M)

new f ≤ M

then
act1: f := new f

act2: p := new f

end

Event CTRL started 〈ordinary〉 =̂
extends start

when
grd1: active = FALSE

grd2: md = MODE F

grd3: leq(m, p)

grd4: leq(p,M)

then
act1: active := TRUE

end

Event ENV evolution f 〈ordinary〉 =̂
refines progress

any
new f

where
grd2: active = TRUE

grd1: md = MODE F

grd5: f 6= m

grd6: f 6= M

grd3: leq(m,new f)

m ≤ new f

grd4: leq(new f,M)

new f ≤ M

then
act1: f := new f

act2: p := new f

end

Event CTRL limit detected f 〈ordinary〉 =̂
extends fail f

when
grd2: active = TRUE

grd1: md = MODE F

grd5: f = m ∨ f = M

then
act1: md := MODE R

end

Event ENV evolution fg 〈ordinary〉 =̂
extends repair

any
new f

new g

where
grd2: active = TRUE

grd1: md = MODE R

grd3: leq(m,new f plus new g)

m ≤ new f + new g

grd4: leq(new f plus new g,M)

new f + new g ≤ M
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grd5: leq(zero, new f)

0 ≤ new f

grd6: leq(new f, f)

new f ≤ f (f is decreasing)

grd7: leq(g, new g)

g ≤ new g (g is increasing)

grd8: leq(new g,M)

new g ≤ M

then
act1: f := new f

act2: g := new g

act3: p := new f plus new g

end

Event CTRL repaired g 〈ordinary〉 =̂
extends repaired g

when
grd2: active = TRUE

grd1: md = MODE R

grd3: leq(m, g)

m ≤ g

grd4: leq(g,M)

g ≤ M

grd5: f = zero

so that going from ’f+g’ to ’g’ is continuous

then
act1: md := MODE G

end

Event ENV evolution g 〈ordinary〉 =̂
refines progress

any
new g

where
grd2: active = TRUE

grd1: md = MODE G

grd3: leq(m,new g)

m ≤ new g

grd4: leq(new g,M)

new g ≤ M

then
act1: g := new g

act2: p := new g

end

END
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MACHINE M2

REFINES M1

SEES C1 corridor,C6 thms

VARIABLES

active [refined]

active t

has a sense only if active is TRUE

time (moment) when active became true

(should only be modified by CTRL events)

md [refined]

md c

now (should only be modified by ENV events)

p c (should only be modified by ENV events)

f c (should only be modified by ENV events)

g c (should only be modified by ENV events)

INVARIANTS

type01: now ∈ REAL POS

type06: active t ∈ REAL POS

type02: p c ∈ {t|leq(zero, t) ∧ leq(t, now)}→REAL POS

type03: f c ∈ {t|leq(zero, t) ∧ leq(t, now)}→REAL POS

type04: g c ∈ {t|leq(zero, t) ∧ leq(t, now)}→REAL POS

type05: md c ∈ {t|leq(zero, t) ∧ leq(t, now)}→MODES

mode02: ∀t·leq(zero, t) ∧ leq(t, now) ∧md c(t) = MODE R⇒ p c(t) = f c(t) plus g c(t)

mode01: ∀t·leq(zero, t) ∧ leq(t, now) ∧md c(t) = MODE F ⇒ p c(t) = f c(t)

mode04: ∀t·leq(zero, t) ∧ leq(t, now) ∧md c(t) = MODE F ⇒ g c(t) = zero

mode03: ∀t·leq(zero, t) ∧ leq(t, now) ∧md c(t) = MODE G⇒ p c(t) = g c(t)

glue01: p = p c(now)

glue02: f = f c(now)

glue03: g = g c(now)

glue04: md = md c(now)

glue05: active = TRUE⇒ leq(active t, now)

corridor01: ∀t·leq(zero, t) ∧ leq(t, now)⇒ leq(p c(t),M)

∀ t ∈ [0,now], p c(t) ≤ M

corridor02: active = TRUE⇒
(∀t·leq(active t, t) ∧ leq(t, now)⇒ leq(m, p c(t)))

active ⇒ ∀ t ∈ [active t,now], m ≤ p c(t)

mode05: ∀t·leq(zero, t) ∧ leq(t, now) ∧md c(t) = MODE G⇒ f c(t) = zero

THM 01: 〈theorem〉 ∀t·leq(zero, t)∧leq(t, now)⇒md c(t) = MODE F∨md c(t) = MODE G∨
md c(t) = MODE R

glue06: active = FALSE⇒
(∀t·leq(zero, t) ∧ leq(t, now)⇒md c(t) = MODE F )

¬active ⇒ ∀ t ∈ [0,now], md c(t) = MODE F

THM 02: 〈theorem〉 leq(now, now)

now ≤ now

EVENTS

Initialisation

begin
act1: active := FALSE

act4: active t :∈ REAL POS
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act3: md := MODE F

act2: md c := {zero 7→MODE F}
act6: now := zero

act7: p c := {zero 7→ zero}
act8: f c := {zero 7→ zero}
act9: g c := {zero 7→ zero}

end

Event ENV starting f 〈ordinary〉 =̂
refines ENV starting f

any
dt

new f c

where
grd1: active = FALSE

grd2: md c(now) = MODE F

grd3: smr(zero, dt)

dt > 0

THM 2: 〈theorem〉 leq(now, now plus dt)

now ≤ now + dt

THM 3: 〈theorem〉 leq(zero, now plus dt)

0 ≤ now + dt

grd4: new f c ∈ {t|leq(now, t) ∧ leq(t, now plus dt)}→REAL POS

new f c ∈ [now,now+dt] → R+

grd5: f c(now) = new f c(now)

grd6: ∀t1, t2·t1 ∈ dom(new f c) ∧ t2 ∈ dom(new f c) ∧ leq(t1, t2)

⇒ leq(new f c(t1), new f c(t2))

∀ t1,t2 ∈ [now,now+dt], t1 ≤ t2 ⇒ new f c(t1) ≤ new f c(t2)

grd7: leq(new f c(now plus dt),M)

THM 1: 〈theorem〉 g c(now) = zero

with
new f: new f = new f c(now plus dt)

then
act1: now := now plus dt

act2: p c := p cC− new f c

act3: f c := f cC− new f c

act4: g c := g cC− (λt·leq(now, t) ∧ leq(t, now plus dt)|zero)
act5: md c := md cC− (λt·leq(now, t) ∧ leq(t, now plus dt)|MODE F )

end

Event CTRL started 〈ordinary〉 =̂
refines CTRL started

when
grd1: active = FALSE

grd2: leq(m, p c(now))

grd3: leq(p c(now),M)

then
act1: active := TRUE

act2: active t := now

end

Event ENV evolution f 〈ordinary〉 =̂
refines ENV evolution f

any
dt

new f c

where
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grd1: active = TRUE

grd2: md c(now) = MODE F

grd3: smr(zero, dt)

dt > 0

THM 2: 〈theorem〉 leq(now, now plus dt)

now ≤ now + dt

THM 3: 〈theorem〉 leq(zero, now plus dt)

0 ≤ now + dt

grd8: f c(now) 6= m

grd9: f c(now) 6= M

grd4: new f c ∈ {t|leq(now, t) ∧ leq(t, now plus dt)}→REAL POS

new f c ∈ [now,now+dt] → R+

grd5: f c(now) = new f c(now)

grd6: ∀t·t ∈ dom(new f c)⇒ leq(m,new f c(t))

∀ t ∈ [now,now+dt], m ≤ new f c(t)

grda: ∀t·t ∈ dom(new f c)⇒ leq(new f c(t),M)

∀ t ∈ [now,now+dt], new f c(t) ≤ M

THM 1: 〈theorem〉 g c(now) = zero

with
new f: new f = new f c(now plus dt)

then
act1: now := now plus dt

act2: p c := p cC− new f c

act3: f c := f cC− new f c

act4: g c := g cC− (λt·leq(now, t) ∧ leq(t, now plus dt)|zero)
act5: md c := md cC− (λt·leq(now, t) ∧ leq(t, now plus dt)|MODE F )

end

Event CTRL limit detected f 〈ordinary〉 =̂
refines CTRL limit detected f

when
grd2: active = TRUE

grd1: md c(now) = MODE F

grd5: f c(now) = m ∨ f c(now) = M

THM 1: 〈theorem〉 g c(now) = zero

then
act1: md := MODE R

act2: md c(now) := MODE R

end

Event ENV evolution fg 〈ordinary〉 =̂
refines ENV evolution fg

any
dt

new f c

new g c

where
grd1: active = TRUE

grd2: md c(now) = MODE R

grd3: smr(zero, dt)

dt > 0

THM 2: 〈theorem〉 leq(now, now plus dt)

now ≤ now + dt

THM 3: 〈theorem〉 leq(zero, now plus dt)

0 ≤ now + dt

grd4: new f c ∈ {t|leq(now, t) ∧ leq(t, now plus dt)}→REAL POS

new f c ∈ [now,now+dt] → R+
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grd5: f c(now) = new f c(now)

grd7: new g c ∈ {t|leq(now, t) ∧ leq(t, now plus dt)}→REAL POS

new g c ∈ [now,now+dt] → R+

grd8: g c(now) = new g c(now)

grd9: ∀t1, t2·t1 ∈ dom(new f c) ∧ t2 ∈ dom(new f c) ∧ leq(t1, t2)

⇒ leq(new f c(t2), new f c(t1))

∀ t1,t2 ∈ [now,now+dt], t1 ≤ t2 ⇒ new f c(t2) ≤ new f c(t1)

grdb: ∀t1, t2·t1 ∈ dom(new g c) ∧ t2 ∈ dom(new g c) ∧ leq(t1, t2)

⇒ leq(new g c(t1), new g c(t2))

∀ t1,t2 ∈ [now,now+dt], t1 ≤ t2 ⇒ new g c(t1) ≤ new g c(t2)

grdc: leq(new g c(now plus dt),M)

grd6: ∀t·leq(now, t) ∧ leq(t, now plus dt)⇒ leq(m,new f c(t) plus new g c(t))

∀ t ∈ [now,now+dt], m ≤ new f c(t) + new g c(t)

grda: ∀t·leq(now, t) ∧ leq(t, now plus dt)⇒ leq(new f c(t) plus new g c(t),M)

∀ t ∈ [now,now+dt], new f c(t) + new g c(t) ≤ M

with
new f: new f = new f c(now plus dt)

new g: new g = new g c(now plus dt)

then
act1: now := now plus dt

act3: f c := f cC− new f c

act4: g c := g cC− new g c

act2: p c := p cC− (λt·leq(now, t) ∧ leq(t, now plus dt)|new f c(t) plus new g c(t))

act5: md c := md cC− (λt·leq(now, t) ∧ leq(t, now plus dt)|MODE R)

end

Event CTRL repaired g 〈ordinary〉 =̂
refines CTRL repaired g

when
grd2: active = TRUE

grd1: md c(now) = MODE R

grd3: leq(m, g c(now))

m ≤ g c(now)

grd4: leq(g c(now),M)

g c(now) ≤ M

grd5: f c(now) = zero

f c(now) = 0

then
act1: md := MODE G

act2: md c(now) := MODE G

end

Event ENV evolution g 〈ordinary〉 =̂
refines ENV evolution g

any
dt

new g c

where
grd1: active = TRUE

grd2: md c(now) = MODE G

grd3: smr(zero, dt)

dt > 0

THM 2: 〈theorem〉 leq(now, now plus dt)

now ≤ now + dt

THM 3: 〈theorem〉 leq(zero, now plus dt)

0 ≤ now + dt
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THM 4: 〈theorem〉 leq(now plus dt, now plus dt)

now + dt ≤ now + dt

grd4: new g c ∈ {t|leq(now, t) ∧ leq(t, now plus dt)}→REAL POS

new g c ∈ [now,now+dt] → R+

grd5: g c(now) = new g c(now)

grd6: ∀t·t ∈ dom(new g c)⇒ leq(m,new g c(t))

∀ t ∈ [now,now+dt], m ≤ new g c(t)

grda: ∀t·t ∈ dom(new g c)⇒ leq(new g c(t),M)

∀ t ∈ [now,now+dt], new g c(t) ≤ M

THM 1: 〈theorem〉 f c(now) = zero

with
new g: new g = new g c(now plus dt)

then
act1: now := now plus dt

act2: p c := p cC− new g c

act4: f c := f cC− (λt·leq(now, t) ∧ leq(t, now plus dt)|zero)
act3: g c := g cC− new g c

act5: md c := md cC− (λt·leq(now, t) ∧ leq(t, now plus dt)|MODE G)

end

END
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E Generalization

Components:

• C0 (page 264)

• M0 abstract systems (page 266)

• M1 abstract systems with states (page 267)

• C0_instance (page 269)

• M2 concrete systems (page 270)

The models are also available at: http://babin.perso.enseeiht.fr/r/thesis/
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CONTEXT C0
ProB configuration:

– MAXINT = 6

– MAX INITIALISATIONS = 1

– SYMBOLIC = TRUE

– TIME OUT = 600000

ProB annotations:

Systems states, system of, valuation of, variables of, fvar of, varval of and HorizontalInvs

are “symbolic”

SETS

Variables

ValueElements values that the variables can take

CONSTANTS

Valuations

VariablesSets each system has a set of variables

Systems

Systems states

system of system of a system state

valuation of valuation of a system state

variables of variables of a system state

fvar of variant function of a system state

varval of variant value of a system state

HorizontalInvs

AXIOMS

set1: finite(V ariables)

set2: finite(V alueElements)

type1: V aluations ⊆ V ariables 7→ P (V alueElements)

type2: V ariablesSets ⊆ P (V ariables)

prop1: V ariablesSets 6= ∅
prop2: ∀v1, v2·(v1 ∈ V ariablesSets ∧ v2 ∈ V ariablesSets ∧ v1 6= v2)

⇒ v1 ∩ v2 = ∅
systems do not share variables

type3: Systems ⊆ V ariablesSets× (V aluations 7→ N)

prop3a: finite(Systems)

prop3b: Systems 6= ∅
prop4: ∀vars, f var·(vars 7→ f var) ∈ Systems⇒

(∀val·val ∈ V aluations⇒
(val ∈ dom(f var)⇔ dom(val) = vars))

the variant function depends only on valuations whose domain is the system variables;

and all valuations of the system variables are in the domain of the variant function

prop11: ∀vars, f var·(vars 7→ f var) ∈ Systems⇒
dom(f var) = vars→ P (V alueElements)

type4: Systems states ⊆ Systems× V aluations
prop5: Systems states 6= ∅
prop12: Systems states = (

⋃
sys·sys ∈ Systems|{sys}×(prj1(sys)→P (V alueElements)))

prop6: dom(Systems states) = Systems

prop7: ∀sys st·sys st ∈ Systems states⇒
dom(prj2(sys st)) = prj1(prj1(sys st))

the valuation depends on all system variables, and only those
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fun1: system of = (λsys st·sys st ∈ Systems states|prj1(sys st))

type5: 〈theorem〉 dom(system of) = Systems states

fun2: valuation of = (λsys st·sys st ∈ Systems states|prj2(sys st))

type6: 〈theorem〉 dom(valuation of) = Systems states

fun3: variables of = (λsys st·sys st ∈ Systems states| prj1(prj1(sys st)))

type7: 〈theorem〉 dom(variables of) = Systems states

fun4: fvar of = (λsys st·sys st ∈ Systems states| prj2(prj1(sys st)))

type8: 〈theorem〉 dom(fvar of) = Systems states

prop9: ∀sys·sys ∈ Systems⇒
ran({sys}C Systems states) = dom(prj2(sys))

type11: 〈theorem〉 ∀sys st·sys st ∈ Systems states⇒prj2(sys st) ∈ dom(fvar of(sys st))

fun5: varval of = (λsys st·sys st ∈ Systems states|fvar of(sys st)(prj2(sys st)))

type9: 〈theorem〉 dom(varval of) = Systems states

type10: HorizontalInvs ∈ (Systems×Systems) 7→((Systems states×Systems states) 7→
BOOL)

prop8: ∀s1, s2, sst1, sst2, b·((s1 7→ s2) 7→ {(sst1 7→ sst2) 7→ b} ∈ HorizontalInvs)
⇒ (s1 = system of(sst1)

∧ s2 = system of(sst2))

prop10: ∀s1, s2·(s1 7→ s2) ∈ dom(HorizontalInvs)⇒
dom(HorizontalInvs(s1 7→ s2)) = ({s1} × (prj1(s1)→ P (V alueElements)))

× ({s2} × (prj1(s2)→ P (V alueElements)))

END
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MACHINE M0

SEES C0

VARIABLES

available systems all the healthy systems

current system

INVARIANTS

inv1: available systems ⊆ Systems

inv2: current system ∈ Systems

EVENTS

Initialisation

begin
act1: available systems := Systems

act2: current system :∈ Systems

end

Event failure 〈ordinary〉 =̂
any

system

where
grd1: system ∈ available systems

then
act1: available systems := available systems \ {system}

end

Event treat failure 〈ordinary〉 =̂
any

next system

where
grd1: next system ∈ available systems

grd2: current system /∈ available systems

then
act1: current system := next system

end

Event complete failure 〈ordinary〉 =̂
when

grd1: available systems = ∅
then

skip
end

END
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MACHINE M1

REFINES M0

SEES C0

VARIABLES

available systems all the healthy systems

available systems states

current system

current system state

INVARIANTS

type1: available systems states ⊆ Systems states

type2: current system state ∈ Systems states

glue1: available systems = dom(available systems states)

glue2: current system = system of(current system state)

VARIANT

varval of(current system state) variant function of the current system, evaluated on the

current values of the variables of the system

EVENTS

Initialisation

begin
act1: available systems, available systems states :|

available systems states′ = Systems states

∧ available systems′ = dom(available systems states′)

∧ available systems′ = Systems

act2: current system, current system state :|
current system state′ ∈ Systems states

∧ current system′ = system of(current system state′)

end

Event failure 〈ordinary〉 =̂
extends failure

any
system

where
grd1: system ∈ available systems

then
act1: available systems := available systems \ {system}
act2: available systems states := {system}C− available systems states

end

Event treat failure with state repair 〈ordinary〉 =̂
refines treat failure

any
new variables

new variant

new valuation

h inv

where
grd1: current system /∈ available systems

grd2: new variables ∈ V ariablesSets

grd3: new variant ∈ V aluations 7→ N
grd4: new valuation ∈ V aluations

grd5: (new variables 7→ new variant) 7→ new valuation ∈ available systems states
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grd6: new variables 6= variables of(current system state)

different system

grd7: new variant(new valuation) = varval of(current system state)

same variant

grd10: current system 7→ (new variables 7→ new variant) ∈ dom(HorizontalInvs)

grd8: h inv = HorizontalInvs(current system 7→ (new variables 7→ new variant))

grd9: h inv(current system state 7→ ((new variables 7→ new variant) 7→ new valuation)) =

TRUE

with
next system: next system = new variables 7→ new variant

then
act1: current system := new variables 7→ new variant

act2: current system state := (new variables 7→ new variant) 7→ new valuation

end

Event complete failure 〈ordinary〉 =̂
extends complete failure

when
grd1: available systems = ∅

then
skip

end

Event progress 〈convergent〉 =̂
any

new valuation

where
grd1: current system ∈ available systems

grd2: new valuation ∈ V aluations

grd3: dom(new valuation) = dom(valuation of(current system state))

same system variables

grd4: fvar of(current system state)(new valuation)

< varval of(current system state)

the value of the variant decreases

then
act1: current system state := system of(current system state) 7→ new valuation

end

END
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CONTEXT C0 instance
ProB command (after export to ProB Classic):

probcli C0 instance ctx.eventb -init -disable-timeout \

-p MAXINT 6 -p MAX INITIALISATIONS 1 -p SYMBOLIC TRUE

– with 1 product:

execution: 2 to 2.5 sec ; peak memory usage: 157 MB

– with 2 products:

execution: 1.5 to 2.5 sec ; peak memory usage: 158 MB

– with 3 products:

execution: 5 to 6 sec ; peak memory usage: 244 MB

– with 4 products:

execution: 47 sec ; peak memory usage: 6.83 GB

– with 5 products:

execution: ?? ; peak memory usage: > 400 GB

EXTENDS C0

CONSTANTS

C1

C2a

C2b

Prod1

Prod2

Prod3

Prod4

Sys1

Sys2

AXIOMS

axm1: partition(V ariables, {C1}, {C2a}, {C2b})
carts

axm2: partition(V alueElements, {Prod1}, {Prod2}, {Prod3}, {Prod4})
products

axm3: V aluations = ({C1}→ P (V alueElements))

∪ ({C2a,C2b}→ P (V alueElements))

axm4: V ariablesSets = {{C1}, {C2a,C2b}}
axm5: Sys1 = {C1} 7→ (λval·val ∈ {C1}→ P (V alueElements)|

card(V alueElements)− card(val(C1)))

axm6: Sys2 = {C2a,C2b} 7→ (λval·val ∈ {C2a,C2b}→ P (V alueElements)|
card(V alueElements)− card(val(C2a) ∪ val(C2b)))

axm7: Systems = {Sys1, Sys2}
axm8: Systems states = ({Sys1} × ({C1}→ P (V alueElements)))

∪ ({Sys2} × ({C2a,C2b}→ P (V alueElements)))

axm9: HorizontalInvs = {
(Sys1 7→ Sys2) 7→

(λ(sst1 7→ sst2)·sst1 ∈ {Sys1} × ({C1}→ P (V alueElements))

∧ sst2 ∈ {Sys2} × ({C2a,C2b}→ P (V alueElements))|
bool(

valuation of(sst1)(C1)

= valuation of(sst2)(C2a) ∪ valuation of(sst2)(C2b)))}
END
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MACHINE M2

REFINES M1

SEES C0 instance

VARIABLES

available systems all the healthy systems

available systems states

current system

current system state

sys1 cart cart (in Sys1)

sys2 cart1 cart #1 (in Sys2)

sys2 cart2 cart #2 (in Sys2)

INVARIANTS

type1: sys1 cart ∈ P (V alueElements)

type2: sys2 cart1 ∈ P (V alueElements)

type3: sys2 cart2 ∈ P (V alueElements)

glue1: system of(current system state) = Sys1⇒
valuation of(current system state)(C1) = sys1 cart

glue2: system of(current system state) = Sys2⇒
valuation of(current system state)(C2a) = sys2 cart1

∧ valuation of(current system state)(C2b) = sys2 cart2

thm1: 〈theorem〉 current system = Sys1⇒
{C1} = dom(valuation of(current system state))

thm2: 〈theorem〉 current system = Sys2⇒
{C2a,C2b} = dom(valuation of(current system state))

EVENTS

Initialisation

begin
act1: available systems := Systems

act2: available systems states := Systems states

act3: current system := Sys1

act4: current system state := Sys1 7→ {C1 7→ ∅}
act5: sys1 cart := ∅
act6: sys2 cart1 := ∅
act7: sys2 cart2 := ∅

end

Event failure sys1 〈ordinary〉 =̂
refines failure

when
grd1: Sys1 ∈ available systems

with
system: system = Sys1

then
act1: available systems := available systems \ {Sys1}
act2: available systems states := {Sys1}C− available systems states

end

Event failure sys2 〈ordinary〉 =̂
refines failure

when
grd1: Sys2 ∈ available systems

with
system: system = Sys2
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then
act1: available systems := available systems \ {Sys2}
act2: available systems states := {Sys2}C− available systems states

end

Event treat failure with state repair sys1 to sys2 〈ordinary〉 =̂
refines treat failure with state repair

any
new sys2 cart1

new sys2 cart2

where
grd1: new sys2 cart1 ∈ P (V alueElements)

grd2: new sys2 cart2 ∈ P (V alueElements)

grd3: current system = Sys1

grd4: Sys1 /∈ available systems

grd5: Sys2 ∈ available systems

grd6: sys1 cart = new sys2 cart1 ∪ new sys2 cart2

grd7: Sys2 7→ {C2a 7→ new sys2 cart1, C2b 7→ new sys2 cart2} ∈ available systems states

with
new variables: new variables = prj1(Sys2)

new variant: new variant = prj2(Sys2)

new valuation: new valuation = {C2a 7→ new sys2 cart1, C2b 7→ new sys2 cart2}

h inv: h inv = HorizontalInvs(Sys1 7→ Sys2)

then
act1: current system := Sys2

act2: current system state := Sys2 7→ {C2a 7→ new sys2 cart1, C2b 7→ new sys2 cart2}

act3: sys2 cart1 := new sys2 cart1

act4: sys2 cart2 := new sys2 cart2

end

Event complete failure 〈ordinary〉 =̂
extends complete failure

when
grd1: available systems = ∅

then
skip

end

Event progress sys1 〈convergent〉 =̂
refines progress

any
new prod

where
grd1: current system = Sys1

grd2: Sys1 ∈ available systems

grd3: new prod ∈ V alueElements

grd4: new prod /∈ sys1 cart

with
new valuation: new valuation = {C1 7→ (sys1 cart ∪ {new prod})}

then
act1: sys1 cart := sys1 cart ∪ {new prod}
act2: current system state := Sys1 7→ {C1 7→ (sys1 cart ∪ {new prod})}

end

Event progress sys2 c1 〈convergent〉 =̂
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refines progress

any
new prod

where
grd1: current system = Sys2

grd2: Sys2 ∈ available systems

grd3: new prod ∈ V alueElements

grd4: new prod /∈ sys2 cart1

grd5: new prod /∈ sys2 cart2

with
new valuation: new valuation = {C2a 7→ (sys2 cart1∪{new prod}), C2b 7→ sys2 cart2}

then
act1: sys2 cart1 := sys2 cart1 ∪ {new prod}
act2: current system state := Sys2 7→ {C2a 7→ (sys2 cart1 ∪ {new prod}), C2b 7→

sys2 cart2}
end

Event progress sys2 c2 〈convergent〉 =̂
refines progress

any
new prod

where
grd1: current system = Sys2

grd2: Sys2 ∈ available systems

grd3: new prod ∈ V alueElements

grd4: new prod /∈ sys2 cart1

grd5: new prod /∈ sys2 cart2

with
new valuation: new valuation = {C2a 7→ sys2 cart1, C2b 7→ (sys2 cart2∪{new prod})}

then
act1: sys2 cart2 := sys2 cart2 ∪ {new prod}
act2: current system state := Sys2 7→ {C2a 7→ sys2 cart1, C2b 7→ (sys2 cart2 ∪
{new prod})}

end

END
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A formal approach for correct-by-construction system substitution

Safety-critical systems depend on the fact that their software components provide services that behave
correctly (i.e. satisfy their requirements). Additionally, in many cases, these systems have to be adapted
or reconfigured in case of failures or when changes in requirements or in quality of service occur. When
these changes appear at the software level, they can be handled by the notion of substitution. Indeed, the
software component of the source system can be substituted by another software component to build a new
target system. In the case of safety-critical systems, it is mandatory that this operation enforces that the
new target system behaves correctly by preserving the safety properties of the source system during and
after the substitution operation.
In this thesis, the studied systems are modeled as state-transition systems. In order to model system
substitution, the Event-B method has been selected as it is well suited to model such state-transition systems
and it provides the benefits of refinement, proof and the availability of a strong tooling with the Rodin
Platform.
This thesis provides a generic model for system substitution that entails different situations like cold start
and warm start as well as the possibility of system degradation, upgrade or equivalence substitutions.
This proposal is first used to formalize substitution in the case of discrete systems applied to web services
compensation and allowed modeling correct compensation. Then, it is also used for systems characterized
by continuous behaviors like hybrid systems. To model continuous behaviors with Event-B, the Theory
plug-in for Rodin is investigated and proved successful for modeling hybrid systems. Afterwards, a correct
substitution mechanism for systems with continuous behaviors is proposed. A safety envelope for the output
of the system is taken as the safety requirement. Finally, the proposed approach is generalized, enabling the
derivation of the previously defined models for web services compensation through refinement, and the reuse
of proofs across system models.

Keywords: formal methods, correct-by-construction systems, system substitution, refinement

Une approche formelle pour la substitution correcte par construction de systèmes

Les systèmes critiques dépendent du fait que leurs composants logiciels fournissent des services aux com-
portements corrects (c’est-à-dire satisfaisant leurs exigences). De plus, dans de nombreux cas, ces systèmes
doivent être adaptés ou reconfigurés en cas de pannes ou quand des évolutions d’exigences ou de qualité de
service se produisent. Quand ces évolutions peuvent être capturées au niveau logiciel, il devient possible de
les traiter en utilisant la notion de substitution. En effet, le composant logiciel du système source peut être
substitué par un autre composant logiciel pour construire un nouveau système cible. Dans le cas de systèmes
critiques, cette opération impose que le nouveau système cible se comporte correctement en préservant,
autant que possible, les propriétés de sécurité et de sûreté du système source pendant et après l’opération de
substitution.
Dans cette thèse, les systèmes étudiés sont modélisés par des systèmes états-transitions. Pour modéliser la
substitution de systèmes, la méthode Event-B a été choisie car elle est adaptée à la modélisation de systèmes
états-transitions et permet de bénéficier des avantages du raffinement, de la preuve et de la disponibilité
d’un outil puissant avec la plate-forme Rodin.
Cette thèse fournit un modèle générique pour la substitution de systèmes qui inclut différentes situations
comme le démarrage à froid et le démarrage à chaud, mais aussi la possibilité de dégradation ou d’extension
de systèmes ou de substitution équivalente. Cette approche est d’abord utilisée pour formaliser la substitution
dans le cas de systèmes discrets appliqués à la compensation de Services Web. Elle permet de modéliser la
compensation correcte. Par la suite, cette approche est mise en œuvre dans le cas des systèmes caractérisés par
des comportements continus comme les systèmes hybrides. Pour modéliser des comportements continus avec
Event-B, l’extension Theory pour Rodin est examinée et s’avère performante pour modéliser des systèmes
hybrides. Cela nous permet de proposer un mécanisme de substitution correct pour des systèmes avec des
comportements continus. L’exigence de sûreté devient alors le maintien de la sortie du système dans une
enveloppe de sûreté. Pour finir, l’approche proposée est généralisée, permettant la dérivation des modèles
précédemment définis pour la compensation de Services Web par le raffinement et la réutilisation de preuves
entre des modèles de systèmes.

Mots-clés : méthodes formelles, systèmes corrects par construction, substitution de systèmes, raffinement
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