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Résumé: L’objet de cette thèse est la concep-
tion de protocoles pour l’entraînement de modèles
d’apprentissage automatique avec protection des
données d’entraînement. Pour ce faire, nous nous
sommes concentrés sur deux outils de confidential-
ité, la confidentialité différentielle et le chiffrement
homomorphe. Alors que la confidentialité différen-
tielle permet de fournir un modèle fonctionnel pro-
tégé des attaques sur la confidentialité par les util-
isateurs finaux, le chiffrement homomorphe permet
d’utiliser un serveur comme intermédiaire totale-
ment aveugle entre les propriétaires des données,
qui fournit des ressources de calcul sans aucun ac-
cès aux informations en clair. Cependant, ces deux
techniques sont de natures totalement différentes
et impliquent toutes deux leurs propres contraintes
qui peuvent interférer : la confidentialité différen-
tielle nécessite généralement l’utilisation d’un bruit
continu et non borné, tandis que le chiffrement
homomorphe ne peut traiter que des nombres en-
codés avec un nombre limité de bits. Les travaux
présentés visent à faire fonctionner ensemble ces
deux outils de confidentialité en gérant leurs inter-
férences et même en les exploitant afin que les deux
techniques puissent bénéficier l’une de l’autre.

Dans notre premier travail, SPEED, nous éten-
dons le modèle de menace du protocole PATE (Pri-

vate Aggregation of Teacher Ensembles) au cas
d’un serveur honnête mais curieux en protégeant
les calculs du serveur par une couche homomorphe.
Nous définissons soigneusement quelles opérations
sont effectuées homomorphiquement pour faire le
moins de calculs possible dans le domaine chiffré
très coûteux tout en révélant suffisamment peu
d’informations en clair pour être facilement pro-
tégé par la confidentialité différentielle. Ce com-
promis nous contraint à réaliser une opération
argmax dans le domaine chiffré, qui, même si elle
est raisonnable, reste coûteuse. C’est pourquoi
nous proposons SHIELD dans une autre contri-
bution, un opérateur argmax volontairement im-
précis, à la fois pour satisfaire la confidentialité
différentielle et alléger le calcul homomorphe. La
dernière contribution présentée combine la confi-
dentialité différentielle et le chiffrement homomor-
phe pour sécuriser un protocole d’apprentissage
fédéré. Le principal défi de cette combinaison
provient de la discrétisation nécessaire du bruit in-
duite par le chiffrement, qui complique l’analyse
des garanties de confidentialité différentielle et
justifie la conception et l’utilisation d’un nou-
vel opérateur de quantification qui commute avec
l’agrégation.
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Abstract: The purpose of this PhD is to design
protocols to collaboratively train machine learning
models while keeping the training data private. To
do so, we focused on two privacy tools, namely
differential privacy and homomorphic encryption.
While differential privacy enables to deliver a func-
tional model immune to attacks on the training
data privacy by end-users, homomorphic encryp-
tion allows to make use of a server as a totally
blind intermediary between the data owners, that
provides computational resource without any ac-
cess to clear information. Yet, these two tech-
niques are of totally different natures and both en-
tail their own constraints that may interfere: differ-
ential privacy generally requires the use of contin-
uous and unbounded noise whereas homomorphic
encryption can only deal with numbers encoded
with a quite limited number of bits. The pre-
sented contributions make these two privacy tools
work together by coping with their interferences
and even leveraging them so that the two tech-
niques may benefit from each other.

In our first work, SPEED, we built on Private

Aggregation of Teacher Ensembles (PATE) frame-
work and extend the threat model to deal with
an honest-but-curious server by covering the server
computations with a homomorphic layer. We care-
fully define which operations are realised homo-
morphically to make as less computation as possi-
ble in the costly encrypted domain while revealing
little enough information in clear to be easily pro-
tected by differential privacy. This trade-off forced
us to realise an argmax operation in the encrypted
domain, which, even if reasonable, remained ex-
pensive. That is why we propose SHIELD in an-
other contribution, an argmax operator made inac-
curate on purpose, both to satisfy differential pri-
vacy and lighten the homomorphic computation.
The last presented contribution combines differen-
tial privacy and homomorphic encryption to secure
a federated learning protocol. The main challenge
of this combination comes from the fact that the
encryption induces a quantisation of the noise, that
complicates the differential privacy analysis and
justifies the design and use of a novel quantisation
operator that commutes with the aggregation.
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Synthèse en français

L’objet de cette thèse est la conception de protocoles pour l’entraînement collaboratif de modèles
d’apprentissage automatique avec protection des données d’entraînement. Pour ce faire, nous nous sommes
concentrés sur deux outils de confidentialité, la confidentialité différentielle et le chiffrement homomorphe.
La confidentialité différentielle utilise du bruit aléatoire pour cacher l’information sensible des individus.
Grâce à celle-ci, il est possible de fournir un modèle fonctionnel protégé des éventuelles attaques sur la
confidentialité par les utilisateurs finaux. Le chiffrement homomorphe, quant à lui, désigne un ensemble
de techniques cryptographiques qui permettent de réaliser des opérations sur des données chiffrées. En
employant ce type de chiffrement, on peut utiliser un serveur comme intermédiaire totalement aveugle entre
les propriétaires des données, qui fournit des ressources de calcul sans aucun accès aux informations en clair.
Cependant, ces deux outils sont de natures totalement différentes et impliquent tous deux leurs propres
contraintes qui peuvent interférer : la confidentialité différentielle nécessite généralement l’utilisation d’un
bruit continu et non borné, tandis que le chiffrement homomorphe ne peut traiter que des nombres encodés
avec un nombre limité de bits. Les travaux présentés visent à faire fonctionner ensemble ces deux outils de
confidentialité en composant avec leurs interférences et même en les exploitant afin que les deux techniques
puissent bénéficier l’une de l’autre.

Dans notre premier travail SPEED (Secure, PrivatE, and Efficient Deep learning, soit apprentissage
profond sécurisé, confidentiel et rapide), une base de données publique est étiquetée en agrégeant le savoir
de plusieurs modèles professeurs, via un serveur qui choisit la réponse la plus fréquente parmi les réponses
des professeurs, qui sont vues comme des votes. La base de données publique, ainsi étiquetée, est utilisée
pour entraîner un modèle étudiant. SPEED est inspiré du protocole PATE (Private Aggregation of Teacher
Ensembles, soit agrégation confidentielle d’ensembles de professeurs) mais, contrairement au modèle de
menaces de celui-ci, le serveur est considéré comme une menace pour la confidentialité des données des
professeurs. Les calculs du serveur sont donc protégés par une couche homomorphe. Nous définissons
soigneusement quelles opérations sont effectuées homomorphiquement pour faire le moins de calculs possible
dans le domaine chiffré, très coûteux, tout en révélant suffisamment peu d’informations en clair pour que
les données soient facilement protégées par la confidentialité différentielle. Ce compromis nous contraint à
réaliser une opération argmax dans le domaine chiffré, qui, même si elle est raisonnable, reste coûteuse.

C’est pourquoi, dans une autre contribution, nous proposons SHIELD (Secure and Homomorphic Im-
perfect Election via Lightweight Design, soit élection imparfaite sécurisée et homomorphe de conception
algorithmique légère), un opérateur de sélection du vote le plus fréquent volontairement imprécis, à la fois
pour satisfaire la confidentialité différentielle et alléger le calcul homomorphe. Il est particulièrement appro-
prié au protocole SPEED mais son champ d’application se veut plus général puisqu’il pourrait être utilisé
pour des élections avec garanties de confidentialité. La sortie de l’opérateur SHIELD est obtenue en tirant
aléatoirement parmi les votes et l’opérateur est ainsi intrinsèquement probabiliste. Un résultat crucial de
cette contribution est que ce comportement probabiliste donne à SHIELD des garanties de confidentialité
différentielle sans nécessiter une addition de bruit aléatoire. Pour améliorer la précision, l’entropie de la
distribution des votes est réduite grâce à un nombre paramétrable d’additions et de multipilcations homo-
morphes, moins coûteuses à réaliser qu’un argmax homomorphe exact. Par construction, cet opérateur
dépasse les compromis classiques de la cryptographie et de la confidentialité différentielle, respectivement
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sécurité-performance et confidentialité-précision, en alignant les objectifs de performance et de confidential-
ité : relâcher les paramètres permet des calculs efficaces tout en offrant “gratuitement” des garanties de
confidentialité.

La dernière contribution présentée combine la confidentialité différentielle et le chiffrement homomorphe
pour sécuriser un protocole d’apprentissage fédéré. Le principal défi de cette combinaison provient de la
discrétisation nécessaire du bruit induite par le chiffrement. En effet, pour garder des garanties de confiden-
tialité différentielle du point de vue du serveur, les clients se chargent eux-mêmes de bruiter leurs mises à jour
avant de les envoyer au serveur, de sorte que le bruit total après agrégation fournisse les garanties de confi-
dentialité requises. Une discrétisation classique induit un bruit agrégé suivant une distribution complexe ne
permettant pas une analyse de confidentialité simple. Ceci justifie la conception et l’utilisation d’un nouvel
opérateur de discrétisation, fondé sur la distribution de Poisson, et qui commute avec l’agrégation. Étant
ainsi équivalente à un post-traitement, la discrétisation n’a aucun impact sur les garanties de confidentialité
qui s’avèrent donc être les mêmes que celles du très classique mécanisme gaussien.
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Introduction

Machine Learning (ML) techniques have become ubiquitous in almost all fields of industry
and our daily lives. The used algorithms, and especially neural networks, the most popular ones
in many applications among which image processing and natural language processing, require
massive amounts of data to get trained and reach the impressive accuracy that made their
success. This huge need for data together with the omnipresence of the Internet and the boom
of communication exchanges made data the "new oil" (Clive Humby, 2006).

In parallel, confidentiality has raised greater and greater concerns as evidenced by the new
regulations on data privacy (e.g. GDPR [1] in the EU). The COVID crisis has entailed an
increase of personal data sharing and people tracking with the goal of limiting the spread of
the virus. In reaction, the interest and questionings about privacy have become more and
more vivid. While all kinds of data might be considered as private, some fields like healthcare
(e.g. HIPAA [40] in the USA), finance, commercial strategy are especially sensitive to privacy
breaches. In this context, it is well known that, once trained, a machine learning model may
indirectly release some information about its training data [87]. Many researchers have exhibited
attacks on machine learning models, assuming that the adversary, e.g. an end-user of the model,
has access to the parameters of the model (white-box access) or even only to the output of
the inference on some queries it made to the model (black-box access) [73, 158, 167]. These
attacks are even more likely with the emergence of machine learning as a service [151] in recent
years: an adversary, by playing the role of a customer, can have access to many trained models
and learn information about their training data along the queries.

A general trend of the recent advances in machine learning is to train a model using knowl-
edge from several independent entities that take part in the training process. We call this kind
of learning framework collaborative learning. Besides the end-users, other potential adversaries
appear in the context of collaborative learning. Indeed, a learning framework involving several
data owners usually resorts to a server that gathers and computes information from the data
owners. This information access may jeopardise the training data privacy if the server is not
to be trusted. Furthermore, federated learning, a collaborative learning paradigm introduced
in 2016 by McMahan et al. [126] to protect the data by keeping them on the owner’s device,
actually brings in a new kind of adversary - the data owners themselves, known as clients.
Indeed, at each round of the iterative learning process, the clients get some information derived
from all the training data, thus giving any client the opportunity to retrieve information from
the other clients.

To deal with these issues, one of the most popular approaches to data privacy is Differen-
tial Privacy (DP), introduced by Dwork et al. [63], which quantifies the amount of information
leaked by the output of a mechanism about its input. This notion of privacy implies that the
considered mechanism is probabilistic, which is often achieved by applying carefully parame-
terised random noise to a deterministic mechanism. Since 2006, DP has been actively studied
in the context of machine learning (see e.g. [102]).

Cryptography is another field that helps providing protection to sensitive data, in particular

19



at training time, especially since the recent emergence of techniques for computing directly over
encrypted data like Homomorphic Encryption (HE) [149,189] and multi-party computation [134]
(and in particular secure aggregation [25]). As such, these techniques allow a server to perform
secure, blind computations without access to the inputs, and, in the case of HE, to the outputs
either. While this thesis focuses on the threats coming from honest-but-curious adversaries, i.e.
adversaries that properly execute their tasks, HE can also be associated in some cases to tools
such as verifiable computing to bring additional computation integrity guarantees, including in
the context of federated learning [122].

The revolution of AI and especially deep learning that poses great challenges in terms of
privacy together with the discovery of novel tools in cryptography and statistics to enhance
data privacy give rise to an exciting new research field. The interest for privacy-preserving
machine learning boosts research efforts about privacy-enhancing techniques while allowing AI
applications to flourish in the respect of people’s right to privacy.

Summary of the thesis: The purpose of this PhD is to design protocols to collaboratively
train machine learning models while keeping the training data private. To do so, we focused
on two privacy tools, namely DP and HE. While DP enables to deliver a functional model
immune to attacks on the training data privacy by end-users, HE allows to make use of a
server as a totally blind intermediary between the data owners, that provides computational
resources without any access to clear information. Yet, these two techniques are of totally
different natures and both entail their own constraints that may interfere: for example, DP
generally requires the use of continuous and unbounded noise whereas HE can only deal with
numbers encoded with a quite limited number of bits. The presented contributions make these
two privacy tools work together by coping with their interferences and even leveraging them so
that the two techniques may benefit from each other.

In our first work, SPEED, for Secure, PrivatE, and Efficient Deep learning, a public unla-
belled database is labelled by aggregating the knowledge of several teacher models, via a server
that applies the plurality rule on the teachers’ answers, seen as votes. The public database,
once labelled, is used to train a student model. Both the end-users of the student model and
the server are deemed honest-but-curious adversaries. We cover the server computations by a
homomorphic layer and carefully define which operations are realised homomorphically to make
as less computations as possible in the computationally costly homomorphic domain while re-
vealing little enough information in clear to be easily protected by DP. In fact, revealing the
histogram of the teachers’ votes in clear would have required to apply too much noise to main-
tain reasonable DP guarantees, that is why the argmax operation is realised in the encrypted
domain.

In another contribution, we propose SHIELD, Secure and Homomorphic Imperfect Election
via Lightweight Design, an argmax operator which is made inaccurate on purpose, both to
satisfy DP and lighten the homomorphic computations. It is particularly appropriate to SPEED
framework but may have more general applications. SHIELD obtains its output by sampling
in the teachers’ votes distribution and, as such, is inherently probabilistic. A crucial result of
this contribution is that this probabilistic behaviour makes SHIELD differential private, without
need for noise addition. To increase the accuracy, the entropy of the teachers’ votes distri-
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bution is lowered thanks to a limited and parameterisable number of homomorphic additions
and multiplications, simpler to compute than an exact homomorphic argmax. By construc-
tion, this operator goes beyond the classical trade-offs in cryptography and DP, respectively
security-performance and privacy-utility, by aligning the performance and privacy objectives:
loose parameters that allows for efficient computations also offer privacy “for free”.

The last contribution of this manuscript combines DP and HE to secure a federated learning
protocol. The main challenge of this combination comes from the necessary quantisation of the
noise induced by encryption. Indeed, to keep the training differentially private from the point
of view of the server, the clients are in charge of noising their updates before sending them
to the server, so that the total noise after aggregation ensures the required DP guarantees.
Classical quantisation results in a complex aggregated noise that does not allow for a simple
DP analysis. This justifies the design and use of a novel stochastic quantisation operator, based
on the Poisson distribution, that commutes with the aggregation and, being equivalent to a
post-processing, does not have any influence on the DP analysis that boils down to the vanilla
Gaussian mechanism analysis.

Outline of the manuscript: In the first part of this manuscript, we introduce the context
and state of the art, along with some technical background. In a first chapter, we reflect on
the possible reasons of the importance of data privacy in our society, giving examples of privacy
breaches that would clearly need to be addressed, according to a large consensus. We also
present some of the mainstream regulations about data privacy in the world, most of them being
quite recent, before detailing the terminology about privacy concerns in the different relevant
fields. After summarising the notations that will be employed throughout the manuscript,
Chapter 2 presents the technical tools usually used in privacy-preserving machine learning. We
introduce DP, mixing technical definitions and properties with intuitive insight, along with toy
examples, research works and real-life use-cases. A second section deals with cryptographic
primitives and most importantly HE and its several flavours. We briefly mention some works of
the literature. Finally, we compare cryptographic security and DP, seen as different levels of the
privacy-utility trade-off. In the last chapter of this part, we introduce federated learning and
especially the federated averaging algorithm before reviewing the literature about collaborative
learning protocols that protect the training data privacy, most of the works involving federated
learning as it is currently the most popular collaborative learning framework. We focus on
protocols that combine DP and cryptographic primitives to get the best of both worlds.

In a second part, we thoroughly present our three main contributions, named after the
corresponding articles that we summarised above: SPEED: Secure, PrivatE, and Efficient Deep
learning, When approximate design for fast homomorphic computation provides differential
privacy guarantees and Combining homomorphic encryption and differential privacy in federated
learning.

The manuscript is concluded by an overview of how our contributions can help in addressing
the issues presented in the first part. We also propose perspectives on applications of our works
as well as more theoretical lines of research.
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1 - On the importance of data privacy

In 1889, the emergence of photography and sensational journalism urged attorney Samuel
Warren and future U.S. Supreme Court Justice Louis Brandeis to write an article about the right
to privacy, defined as “the right to be let alone” [183]. 117 years later, while machine learning
was about to explode, mathematician and entrepreneur Clive Humby pronounced his famous
sentence “data is the new oil”. The following years confirmed Humby’s quote. Nowadays, the
GAFAM, whose market capitalisation is of the order of magnitude of a trillion dollars, have
access to tremendous amounts of data about their users - habits, decision-making, preferences.
They can use these data to improve their recommendation systems, their search engines, target
the advertisements, turning them to always be more attractive, more and more used and then
giving them access to more and more data. But this virtuous circle and the eagerness for
personal data it entails is dangerous for people’s privacy.

1.1 . Why must some information remain private?

Our society greatly values privacy. Is there an ethical, moral reason that justifies this care
about privacy? Far from claiming to exhaustively study the difficult philosophical question of
privacy, we rather ask some questions and present some very basic ideas to raise the awareness
on an issue which is not as obvious as one may think a priori. It seems indeed quite reasonable to
ask these questions before extensively discussing technical ways of ensuring privacy throughout
this manuscript.

1.1.1 . Individuals’ privacy
First of all, let us clarify what is meant by privacy. In this chapter, and in general in this

thesis, the term privacy will refer to the control over information about oneself and over whom
or what can have access to it. This being stated, we may now wonder why we care about
privacy.

The most obvious, and perhaps more relevant in practise, answer comes from the utilitarian1
point of view: some information may be used maliciously. For instance, one may want to hide
some goods or the fact that one owns these goods for fear from being stolen, as well as keep its
bank password secret. More specifically to the Internet era, cookies that track an individual’s
activity on the web might be used to increase the price of goods or services the individual is
interested in (plane tickets is a famous example). One may also want to keep its location private
to prevent an aggression. In this view, privacy is useful to prevent a danger or a prejudice.

Fairness can also be a justification for privacy. The fight against discrimination of any kind
may need the hiding of some information when, unfortunately, someone in charge of judging
a person or a person’s work is suspected from being biased (this threat justifies anonymised
exams, blind reviews for scientific papers).

1Utilitarianism is a doctrine that states that something’s value must be measured by its useful-ness.
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More generally, it seems that human beings are often reluctant to share personal information
because of a vague distrust towards whom could get this information, not necessarily knowing
what could happen in case of revelation, as if the revelation of private information made us
more exposed to harm. The physical counterpart of this distrust includes a certain coyness
to show nudity and, also, information regarding health status, another exemplar application of
privacy techniques. Indeed, knowing that somebody is ill is knowing this person is vulnerable.
Hence, considering medical data as sensitive might be an heritage of the fear of showing its
vulnerability, which could constitute an incentive to aggression2.

In fact, knowing one’s weaknesses, or, in general, having a detailed vision of one’s person-
ality, gives a lot of power: personal data can be used by an adversary to manipulate people.
Indeed, if one knows somebody’s political orientations or religious beliefs, it will be easier to
convince him/her to have a particular behaviour. The scandal of Cambridge Analytica illus-
trates this risk quite well. The consulting company Cambridge Analytica designed a personality
quiz and prompted people to answer it by offering money and pretending it was for scientific
purposes. Once someone had answered the quiz, she had to access her Facebook profile to get
the financial reward. Cambridge Analytica then had access to the general information and the
likes from her Facebook profile and her Facebook friends’ profiles. The company also bought,
sometimes illegally, additional information about its victims (subscriptions to magazines, travel
tickets). Thanks to this information, Cambridge Analytica sent targeted messages via social
networks to the most persuadable of its victims in order to manipulate them. Among the clients
of Cambridge Analytica were republican supporters during the US presidential election of 2016
when Cambridge Analytica’s messages influenced people so that either they vote for Donald
Trump, or, if they were deemed too hard to convince, they do not vote for the election.

Privacy also allows an individual to act without fearing any judgement, influence, threat
or retaliation, which is the rationale for vote secrecy in democracy for example. This leads
us to a more abstract view of privacy: some authors [59, 162] make the hypothesis that we
value privacy because it allows us to act more freely, in a kind of bubble protected from the
interference and influence of other people. Of course, this argument can be reversed: without
being seen by anybody, one might do any bad action with impunity, as suggests Plato’s myth of
the ring of Gyges. Nevertheless, it seems reasonable to think that some privacy is necessary to
keep individuals’ independence and identity. Without it, the least action would be constrained
by social norms and we may argue that this would greatly harm creativity: an idea that would
be considered as shameful, taboo or simply weird might evolve in a disruptive innovation.
Westin [184] also argues that social life is stressful and we need moments to rest from this
pressure and the urge of social role-playing. Actually, people also need privacy to keep this very
social role-playing intact by hiding their flaws: people always want to appear better than they
are.

For whom does not want to bother with or is not convinced by a reflection about the
possible intrinsic value of privacy, it may simply be argued that privacy inherits its value from
the value of information. Prosaically, it is for the very fact that information is of great economic

2A more trivial argument is that being aware of a client’s illness makes insurance companiesincrease their price for this client.
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value nowadays that it should be protected from curious ears: “if people can make money out
of my data, I want my piece of the cake and I will keep my data private until someone buys me
the right to access them, at due price”.

1.1.2 . Non-individual confidentiality
Whereas privacy refers to limiting the access of information about an individual, confi-

dentiality amounts to the non-divulgation of information in a more general context, possibly
beyond the individual sphere. In the military domain, one of the important application fields
of privacy in computer science, the confidentiality of a state is involved and the disclosure of,
say, technologies or strategic moves may endanger the sovereignty of a country, and, unfortu-
nately, human lives. A famous illustration of the crucial importance of military confidentiality is
the breaking of the German cryptographic system Enigma by Alan Turing during WWII: some
experts estimated that this cryptanalysis shortened the war by two years. While this privacy
breach helped to shorten the war, one easily imagines the terrible consequences of strategic
information leakage in other circumstances. Confidentiality is also crucial in any context that
involves competition like, for example, industry and the fight against industrial espionage, based
on companies’ confidentiality.

The techniques explored in this manuscript may help to protect individuals’ privacy or
confidentiality of bigger entities, depending on the application but we will invariably use the
word privacy to refer to the non-disclosure of sensitive information.

1.2 . Regulations on data privacy

In the European Union, the General Data Protection Regulation (GDPR) gives a unified
legal framework for personal data collection and processing in the European Union since 2018.
Personal data is defined as any information concerning an identified or identifiable physical
person. GDPR is based on several principles:

• finality and minimisation: any data collected must be needed for a specific purpose and
any data that is not required by a purpose must not be collected

• transparency : individuals must be informed of which of their data are revealed, of the
use that is made of these data and of their rights concerning their data

• a company that has access to an individual’s personal data must facilitate the access,
modification or removal by the individual

• personal data must be deleted, anonymised or archived after a clearly defined amount of
time

• privacy by design: a company having access to personal data must take all useful mea-
sures to guarantee the security of these data, during all the life cycle of the data, from
collection to deletion

• privacy by default: by default, the highest level of privacy must be enforced

29



With the adoption of GDPR, Europe has kickstarted a wave of data privacy regulations
around the world. Indeed, to be able to keep on trading with EU a country now requires to
be GDPR-compliant. A few countries outside Europe are considered as such by the European
Commission, among which Canada, Japan, New-Zealand, Argentina.

In the USA, there is no privacy regulation on the federal level but the states have their
own privacy laws, like the California Consumer Privacy Act (CCPA) which is quite similar to
GDPR. Still in the USA, the Health Insurance Portability and Accountability Act (HIPAA),
which was actually promulgated 22 years before GDPR, made the Department of Health and
Human Services (HHS) promulgate five rules to regulate the exchange of individually identifiable
health information between the actors of the medical field.

These regulations, and in particular the two last aforementioned GDPR principles, justify
the use of privacy tools and privacy-preserving protocols like the ones studied in this thesis. Yet,
one might also imagine that the increasing practicality of such tools will enable data trading with
even more privacy constraints than the ones stated in the current laws, for example compelling
servers to process only encrypted data as HE would allow. In addition to the law-to-technology
push, we may thus observe in the future a technology-to-law push, making data exchange more
private than it would have been thought possible.

1.3 . Deanonymisation: Breach privacy can be easier than you think

Anonymisation is the fact of removing from the columns of a database the information that
may (obviously) allow to identify an individual, such as name, address, social security number.
Several events have shown the weakness of this concept to protect people’s privacy.

In [138], Ohm recalls how, as early as the mid-1990s, Latanya Sweeney theatrically invali-
dated the anonymisation guarantees. In Massachusetts, USA, the Group Insurance Commission
had released anonymised medical records of state employees. William Weld, Governor of Mas-
sachusetts, claimed that the employees’ privacy was guaranteed by the removal of identifiers.
Thanks to the combination of ZIP code, birth date and sex data, Sweeney was able to identify
patients from the GIC data, including Weld, to whom she sent his own health records at his
office.

Another example, quite famous, is the Netflix Prize scandal. In 2006, Netflix released the
ratings and date of ratings of nearly half a million of its users, after duly anonymising them.
Nevertheless, Narayanan and Shmatikov soon published a research paper [136] showing that,
by combining the Netflix Prize data with the public, not anonymised, Internet Movie Database
(IMDb), it was easy to reidentify the users behind the ratings. Even if Netflix sincerely thought
that its users’ privacy was protected, the data release could actually reveal, after reidentification,
personal information such as political and sexual orientations, or religious beliefs.

Several other examples of unexpected deanonymisation have been published in the following
years - in a telephone database using four geolocation points [57], in a credit card database
using four places and dates of transactions [58] - and, nowadays, no serious institution trusts
sole anonymisation to protect data.

More recently, in 2019, Garfinkel et al. [75] showed that, using the statistics published by
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the U.S. Census, it was possible to reconstruct records of address, age, gender and ethnicity.
John Abowd, chief scientist at the U.S. Census Bureau, announced that almost half of the U.S.
population records had been reconstructed with this attack [180].

1.4 . Formalisation of privacy

1.4.1 . On the terminology of privacy
In cybersecurity, the term security covers three aspects, gathered in the acronym CIA:

• Confidentiality : only authorised entities can view sensitive information

• Integrity : the data remain intact

• Availability : the data are readily available to their users.

Nevertheless, in the common language of cryptographers, the term security is generally used to
refer to confidentiality in particular.

In machine learning, the community employs the term privacy to refer to the non-disclosure
of sensitive information. In the remainder of this manuscript, the term privacy will be used, for
the sake of consistency.

1.4.2 . Four shades of privacy
Several notions are associated to privacy, and apply in different contexts:

• anonymity : a subject is anonymous from an attacker if the attacker cannot identify the
subject within a set of subjects, called the anonymity set

• unlinkability : two or more items are said unlinkable if the attacker cannot determine
whether they are related or not, given the access to a particular amount of information

• undetectability : an item is undetectable if the attacker cannot decide whether it exists
or not

• pseudonymity : a subject is pseudonymous if it is identified by a pseudonym instead of
its real name

As clarified by these concepts, privacy is not necessarily the total absence of information
but it has often to do with breaking the links between objects and in particular between a
subject’s characteristics and the identity of this subject. The first three aspects of privacy can
be achieved via DP, a powerful privacy tool that will be introduced in Section 2.1.

1.4.3 . Privacy in cryptography
As early as 1949, Shannon [164] defined the perfect secrecy of a cryptosystem as the

property that the distribution of probability of the cleartext knowing one of its encryption is
equal to the a priori distribution of probability of the messages. Goldwasser and Micali [79]
took a more computationally oriented point of view and relaxed this definition by restricting it
to polynomially bounded adversaries, introducing what they called semantic security.
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These two notions of security gave birth to the two principal trends in modern cryptogra-
phy: information-theoretic security derived from Shannon’s perfect secrecy and computational
security derived from Goldwasser and Micali’s semantic security.

In computational security, the security of a cryptosystem is based on the computational
complexity of problems that are conjectured as hard i.e. non-solvable in polynomial time (in
NP \ P ) 3.

Goldwasser and Micali’s semantic security is equivalent to the satisfaction of what modern
cryptographers call IND-CPA (for indistinguishability under chosen plaintext attack) for which
the adversary is assumed to have access to an oracle (or directly the encryption key in a public-
key cryptosystem) that gives it the encryption of any message that it requests. A stronger
security class is IND-CCA (for indistinguishability under chosen ciphertext attack) whereby the
adversary is not only supposed to have access to an encryption oracle but also to an oracle that,
given a ciphertext, returns the output of the decryption function, which is not necessarily a valid
plaintext if the ciphertext was not the result of an encryption but may release information about
the decryption key. IND-CCA is divided into two classes, IND-CCA1 and IND-CCA2 which is
stronger. It has been proved that HE cryptosystems cannot be IND-CCA2 (as IND-CCA2 is
equivalent to non-malleability) and whether a fully homomorphic encryption cryptosystem can
be IND-CCA1 is an open question, at least from a practical point of view. All currently used
fully homomorphic encryption cryptosystems are only IND-CPA.

Unfortunately, in computational security, the perfect equality of the a priori and a posteriori
distributions is unreachable and an adversary might derive some information about the message
from the ciphertext (for instance by using the encryption oracle with brute force). What
needs to be ensured is that, within the computational bounds of the adversary, this amount of
information is negligible. Thus, the system is said secure (for IND-CPA or IND-CCA depending
on the hypothesis on the adversary’s capabilities) if the difference between prior and posterior
probabilities, known as the adversary’s advantage, cannot exceed 2−λ without performing O(2λ)

computations, where λ is the security parameter of the cryptosystem.

3If P ̸= NP , NPC is a strict subset of NP \ P that is why the considered problems are notnecessarily conjectured to be NP-complete.
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2 - Privacy tools

In this section, we present some technical tools that are used to ensure privacy, especially in
machine learning, and give some formal background as well as intuitive insights to understand
these tools. This presentation does not at all aim at being exhaustive and will focus on the two
tools that we employed in our contributions, namely DP and HE.

2.1 . Differential privacy

The word hazard originally comes from Arabic az-zahr, the die. According to some authors,
az-zahr may come from a word meaning flower, because a flower was drawn on one of the
faces of dice. The etymological meaning is then close to the neutral meaning of randomness,
that remains in other languages like French or Spanish. Nevertheless, usage has given the
English word the derogatory connotation of risk, because uncertainty has often worried humans.
However, many scientific discoveries have proven randomness useful, and DP, which protects
data privacy by delivering noised information to the adversary, is one of them.

DP is defined in a context where an adversary has access to the output of a mechanism
and wants to know the input database, hesitating between two databases that differ by only
one individual, called the adversary’s victim. By adding enough random noise to the output
of the mechanism, it is possible to “blur” the print of the differing individual that remained in
the output so that the adversary will not be able to decide which database was the input with
a significant advantage over guessing. A corollary is that the noise obfuscates the information
about the victim that the adversary could have retrieved from the output. Figure 2.1 illustrates
the training of a model under DP guarantees. Note that the adversary that hesitates between
the two databases may know everything about the non-differing individuals.

2.1.1 . Basic definitions

Three years after Nissim and Dinur proved in 2003 that, to be private, a database cannot
answer queries exactly but needs to introduce some noise [61], Dwork et al. proposed and
formalised a novel paradigm to protect data privacy, known as differential privacy (DP) [65]. DP
is now a gold standard concept in privacy-preserving data analysis. It provides a guarantee that,
under a reasonable privacy cost ϵ, two adjacent databases produce statistically indistinguishable
results.

The notion of adjacency varies among authors. In our collaborative frameworks, the term
database denotes the concatenation of all the agents’ datasets and two databases are adjacent
if they have the same number of agents and differ on a single agent (being called teacher
or client depending on the situation), all the others remaining unchanged. Yet, the differing
agents may have totally different data, making our notion of adjacency quite conservative (this
is called user-level privacy). Indeed, user-level privacy protects all the data of a single agent,
making this kind of privacy stronger than sample-level privacy for which two databases are
adjacent when they differ on a single sample.
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Figure 2.1: Differentially private training. Image reproduced from [168], with the kind authorisa-tion of Florent Robert from Industrie et Technologies.

Let us formally define DP and the privacy cost.

Definition 1 (Pure differential privacy). Given ϵ ∈ R+, a probabilistic mechanism A with
output rangeR satisfies (or is) ϵ-DP if, for any two adjacent databases d, d′ and for any subset
S ⊂ R, one has

P [A(d) ∈ S] ≤ eϵP
[
A(d′) ∈ S

]
.

This notion, rarely applicable in practise, was soon extended to the notion of approximate
differential privacy [63].

Definition 2 (Approximate differential privacy). Given (ϵ, δ) ∈ (R+)
2, a probabilisticmech-

anism A with output rangeR satisfies (or is) (ϵ, δ)-DP if, for any two adjacent databases d, d′
and for any subset S ⊂ R, one has

P [A(d) ∈ S] ≤ eϵP
[
A(d′) ∈ S

]
+ δ.

(ϵ, δ) is called the privacy cost.
In the case where δ = 0, we are back to the original notion of Definition 1, that is usually

called pure DP. Unless the contrary is explicitly stated, we will hereafter refer to approximate
DP as, simply, DP.

One easily sees that the lower are ϵ and δ, the closer are the output distributions and the
more private is the mechanism. Besides, the mechanism A cannot be deterministic otherwise
the only way to get a finite privacy cost would be to give the same output to two adjacent
databases leading, by transitivity, to a constant mechanism that would be totally useless.

Some differentially private (DP) mechanisms are probabilistic by construction (see Chapter 2
from Part II) but most of them derives from deterministic functions on which random noise is
applied. One of the most widely used DP mechanism is the Gaussian mechanism, which simply
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adds a Gaussian noise of mean 0 and standard deviation σ ∈ R∗
+, to each component of the

output. Laplace mechanism, with Laplace noise, is also frequently used and has the advantage
of yielding pure DP guarantees.

A fundamental notion in DP is the sensitivity, defined below. When the considered mech-
anism is obtained by adding random noise on a deterministic function, the sensitivity measures
the influence of any single sample (resp. agent) - and thus typically the adversary’s victim - on
the output of the function. It somehow plays the role of a Lipschitz constant with respect to
the adjacency relation.

Definition 3. Let A be a randomised mechanism obtained by adding random noise on a
deterministic function f . Given a norm ∥ · ∥, the ∥ · ∥-sensitivity of f is

S = max
d,d′ adjacent

∥f(d)− f(d′)∥

where the maximum is taken over all pairs of adjacent databases.

The sensitivity is used in works involving DP to scale the added noise (or, more properly,
its standard deviation): the more sensitive to the input data the deterministic function is, the
more noise we will need to add to protect these data.

Figure 2.2 illustrates the role of sensitivity in a randomised mechanism, namely the Laplace
mechanism. Clearly, the greater the sensitivity is, the greater is the shift between the two
distributions and the higher is the ratio of probabilities to bound. This ratio is actually constant
on R in the case of the Laplace mechanism. The DP guarantee δ is then null while ϵ is equal
to the logarithm of this constant ratio.

Several alternative notions of DP have appeared in the literature [60] to keep track of
the privacy cost more tightly or account for the specificity of some problems; among the
most famous are concentrated DP [67], Rényi DP [132], computational DP [133]. Authors
generally provide connections between these alternative notions and the original definition,
such as implications from one notion to the other.

2.1.2 . Differential privacy in examples

To give a more concrete grasp of how DP can be applied in practise, let us present two
examples that use quite different techniques.

As a first example, let us explain the randomised response algorithm, described in [66] to
introduce DP. A statistical agency conducts a survey in order to estimate the number of illegal
drug consumers in a country. Simply asking to each person if he or she consumes illegal drugs
seems difficult since many consumers would not want to answer the truth. A solution, actually
used in social sciences, is to tell the respondents to answer the truth with a certain probability
p, 1

2 < p < 1. In that case, whatever is the respondent’s answer, it can never be known with
certainty whether this respondent consumes drugs or not. But, if p is large enough, the noised
number of consumers obtained from the survey ((2p− 1)c+(1− p)n in expectation if n is the
total number of respondents and c the number of respondents that consume drugs) is close to
the true number of drug consumers.
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The second example is closer to most of the works in the literature and the works that will
be presented in this manuscript (except Chapter 2 from Part II) and deals with a randomised
mechanism constituted by a deterministic function on which a random noise is added. We
suppose that one asks for the average age of the inhabitants of a small village of, say, 100

people. It is besides assumed that the asking entity may be an adversary that knows the age of
everybody in the village but one person, called its victim. The goal of the adversary’s query is
to learn its victim’s age. Indeed, given the average age, the adversary only needs to multiply it
by 100 and subtract the ages of all the villagers except its victim. The result will be its victim’s
age. If we consider the villagers’ ages as sensitive information, we face an issue of privacy
violation. Hence, the idea is to noise the average age before delivering it to the querying entity.
For instance, we can add a Gaussian noise of standard deviation, say 6 months (i.e. 0.5 year), to
the average. Such a noise would not harm the useful information too much, since six months
is quite a short time compared to the age of a person. However, the adversary would get,
after multiplication by 100 and subtraction of the known ages, its victim’s age plus a noise of
standard deviation 100× 0.5 = 50 years, which would totally obfuscate the victim’s age1. The
efficiency of DP in this example stems from the gap between the amount of noise added to
the sensitive information and the one induced on the useful information. The ratio between
the two standard deviations is equal to the number of villagers. Actually, it is a general fact in
DP that hiding the information from one single individual among a population becomes easier

1To derive actual DP guarantees, one would need to bound the victim’s age to get a sensitivityvalue.
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when the population is greater.
Obviously, machine learning is currently one of the main application fields of DP. In most

cases, one wants to protect the training data privacy so the mechanism to sanitise is the function
that takes the training dataset as input and outputs an inference result. To do so, some noise is
added in the training process or at inference time. Since this thesis focuses on this application
field, we give further details in a devoted section (Section 2.1.7).

2.1.3 . Almost-omniscient adversary
The classical assumption of DP that the adversary may perfectly know all the individuals of

the database except its victim (let us say in this case that the adversary is almost-omniscient)
might seem a bit exaggerated at first sight. The justification is that it is the most conservative
assumption for an adversary that has a victim it wants to learn about, i.e. any adversary that
knows less will a fortiori be defended against by the DP mechanism. Moreover, making this
assumption greatly simplifies the DP analysis in most cases.

Under this assumption of almost-omniscience, one may find superfluous to even give any
new information to the adversary since this new DP information is supposed not to reveal
anything (or rather not to reveal much) about the victim and hence, could already be deduced
by the almost-omniscient adversary. In the example of the average age, the almost-omniscient
adversary could obtain a rather accurate average age by computing the average of the ages of
all the inhabitants except its victim.

But a DP-protected output can be seen as the common reasonable answer to two types of
queries corresponding to two types of queriers, when the data owner does not know which type
she is facing:

• a genuine query from someone who does not know much (or anything) about the dataset
and wants to have a statistic on it

• a malicious query from an almost-omniscient adversary that wants to infer some infor-
mation about an individual of the database; in this case the adversary will not get much
new useful information from the answer since the noised mechanism is precisely designed
to give an output that is practically indistinguishable if the victim was or was not involved

Note that the DP-protected output is also a reasonable answer to any intermediary querier
between these two types (typically an adversary that may know something about the database
but that is not almost-omniscient).

The data owner wants to give the almost-omniscient adversary the information it already
has, and nothing more. Why then not giving it the exact statistic, with all the individuals except
its victim as an input? This is because the data owner does not know who is the adversary’s
victim. The data owner then has to give the adversary an answer that does not leak much
information, whoever is its victim.

2.1.4 . Composition across multiple queries
It is clear that the privacy cost that we introduced in Definition 2 is associated to the

information of a single drawing of the output distribution and, hence, to a single query. If the
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adversary queries the probabilistic mechanism several times, it will get more information about
the output distribution and, at the limit of an infinite number of queries, it will be able to
reconstruct this distribution exactly and deduce the input database.

That is why, to determine the privacy cost of a protocol, a two-fold approach is traditionally
adopted. First of all, one determines the privacy cost per query and, in a second step, one
composes the privacy costs of each query to get the overall cost. The classical composition
theorem (see e.g. [66]) states that the guarantees ϵ and δ of sequential queries add up. Nev-
ertheless, training a deep neural network, even with a collaborative framework, requires a large
amount of calls to the databases, precluding the use of this classical composition. Therefore,
to obtain reasonable DP guarantees, one needs to keep track of the privacy cost with a more
refined tool. The one that we will use in our contributions is the moments accountant [2], that
we introduce here.

Definition 4. Themoments accountant is defined for any l ∈ N∗ as

αA(l) := max
aux,d,d′

log

(
Eo∼A(aux,d)

[(
P[A(aux, d) = o]

P[A(aux, d′) = o]

)l
])

where the maximum is taken over any auxiliary input aux and any pair of adjacent databases
(d, d′).

The moments accountant (which is closely related to Rényi DP [132]) allows for a new DP
composition. In fact, Theorem 1 shows that the moments accountant of adaptive queries sum
up.

Theorem1 ( [2]). Let p ∈ N∗. Let us consider amechanismA defined on a setD that consists of
a sequence of adaptive mechanismsA1, . . . ,Ap where, for any i ∈ {1, . . . , p},Ai :

∏i−1
j=1Rj×

D 7→ Ri. Then, for any l ∈ N∗,

αA(l) ≤
p∑

i=1

αAi(l).

Finally, once δ is chosen, the DP guarantee is derived from the overall moments accountant
applying the tail bound property, stated in Theorem 2 from [2]. Note that a mechanism like
the Laplace mechanism that gives pure DP guarantees for one query will lose this advantage
when the moments accountant method is used for composition.

Theorem 2 ( [2]). For any ϵ ∈ R∗
+, the mechanism A is (ϵ, δ)-differentially private for δ =

minl∈N∗ exp(αA(l)− lϵ).

In practice, composing the moments accountant and getting back to the standard DP
guarantees afterwards gives far better results than the traditional method. For instance, in [2],
δ = 10−5 being fixed, the moment accountant technique allows to pass from ϵ = 9.34 to
ϵ = 1.26 for the training of a neural network via DP-SGD (Differentially Private Stochastic
Gradient Descent) for image classification.
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2.1.5 . Post-processing

It is both intuitive and well-known that applying a function, deterministic or probabilistic,
does not increase the amount of information: the output contains less (or the same quantity
of) information than the input2. This translates in the immunity of DP to post-processing, as
stated below.

Proposition 1 ( [66]). LetA be a probabilistic mechanism, with output rangeR, that is (ϵ, δ)-
differentially private, with (ϵ, δ) ∈ (R+)

2. Let ϕ : R → R′ be an arbitrary probabilistic map-
ping. Then ϕ ◦ A is (ϵ, δ)-differentially private.

This property is a key advantage of DP and is widely used in the literature to analyse
complex mechanisms.

2.1.6 . Differential privacy and information theory

The concept of DP can be linked to information theory in the sense that it aims at reducing
the amount of information about an individual given to the adversary by the output of a
mechanism. [177] proposes a tutorial that surveys how current works view DP in the information-
theoretic scope, building bridges between DP and tools from information theory like mutual
information, min entropy, Kullback-Leibler divergence, rate-distortion function. Among these
works, Mir [131] shows that DP arises from information-theoretic optimisations: the mechanism
that minimises mutual information between the output and the input, given a distortion rate, is
the exponential mechanism, which is DP. Similarly, the mechanism that follows the minimum
discrimination information principle, given a distortion rate, is also the exponential mechanism.
Using the graph structure properties of the adjacency relation, Alvim et al. [9] prove that (pure)
DP implies an upper bound for information leakage (measured by Rényi min entropy) for all
the databases and for a single individual.

2.1.7 . Differential privacy in machine learning

DP has become an inescapable tool in machine learning for whoever wants to protect the
training data privacy. Indeed, it has been shown that an adversary that has access to the model
once it is trained (typically an end-user) may retrieve information about the training data,
even with a black box access 3. Even if some attacks are possible on generative adversarial
networks, variational auto-encoders [47, 90, 94] or other kinds of algorithms such as decision
trees, linear and logistic regressions [93, 175, 190], principal component analysis [191] support
vector machines and hidden Markov models [10], we will hereafter speak about classical neural
networks, which are by far the most targeted machine learning model as shown in the survey
of Rigaki et al. [152].

These attacks can be seen as reverse engineering, a sort of incomplete inversion of the
function that maps the training database to the trained model, as illustrated by Figure 2.3.

2Interestingly, if the applied function is injective, no information is lost.3Black box access means that one can only see the inference output of the model when givingit a certain input. On the contrary, a white box access assumes that one knows all the parametersof the model (architecture, weights and biases for a neural network).
39



The incomplete information that can be retrieved can be of different kinds as the following
classification of attacks shows:

• membership inference: the adversary wants to know if a given sample was part of the
training set [36, 95,119,158,167,175]

• data reconstruction: the adversary aims at reconstructing a training sample

– either reconstructing the totality or unknown features of an actual training sample
(attribute inference) [37,139,140,195]

– or generating a typical representative of a given class [73,96,193]

• property inference: the adversary has access to some information about a data sample and
tries to infer a property of this sample that is independent of the learning task [74,130,170]

Figure 2.3: Seeing privacy attacks as reverse engineering
Unfortunately, by construction, DP cannot defend against the data reconstruction attacks

that generate an average of the samples of the targeted class but only against attacks that
focus on one single individual’s data, namely membership inference, attribute inference and
property inference.

Note that, by Proposition 1, no post-processing involved by these attacks will be able to
retrieve more information than stipulated by the DP guarantees.

To defend against these attacks via DP, one has to decide where to add noise in the sequence
of computations that constitute the training. The most straightforward solution would be to
add the noise on the parameters of the trained model just before releasing it like in the toy
example of the average age (Section 2.1.2) However, thanks to the post-processing property
(Section 2.1.5), one may turn private any of the successive results that lead to the trained
model (or even any of the successive inference steps in the case of a black box access). While
most works in deep learning add noise to the gradients, using DP-SGD (differentially private

40



gradient descent) [2], some authors proposed to noise the output or the objective function via
what is known as output or objective perturbation algorithms [146,147,187] or even noise the
input features [148]. This choice of the “place” where adding the noise obviously depends on
the learning procedure and will highly impact the privacy-utility trade-off. The noise should
be added to values whose sensitivity can be tightly bounded so that the level of noise - more
formally its standard deviation - can be optimised and set to the smallest value necessary to
get the required privacy guarantees.

Indeed, as in any application using DP, there is a trade-off between privacy and utility: the
more noise is added, the more protected are the data but the less accurate will be the model.
Nevertheless, in machine learning, this trade-off curse is not a fatality. Some authors [15, 103]
showed that the DP noise may actually help the model to generalise better, like a sort of
regularisation, even if most works see this noise as a threat to model accuracy.

In some cases, when it is an actual actor of the training, an adversary may have access to
sensitive information throughout the learning phase, and not only to the trained model as an
end-user. For instance, if a server takes part in the training, it will see some data before its
own processing, which constitutes a greater information leakage than seeing only the processed
data. This threat is common in collaborative learning even if, in many papers whose focus is
elsewhere, the server is considered as trustworthy [77, 127, 141, 142, 166]. When it is not, one
solution is to employ what is called local differential privacy [62, 107, 108]. This consists in
the data owner applying enough noise to its data before outsourcing them. Nevertheless, this
generally has a strong utility cost [108, 176] especially for deep learning applications. As an
illustrative example, let us consider a collaborative setting with n ∈ N∗ data owners, and let
us assume that the data from one owner need a random noise of standard deviation σ ∈ R∗

+

to be protected with the required DP guarantees. Supposing that the noises sampled by the
data owners are independent and identically distributed (i.i.d.) and that the server will sum
up all the noised values received from the data owners (as in Federated Averaging described in
Section 3.1 for example) then, the sum of the values will be noised with a standard deviation of
σ
√
n. On the contrary, if only the end-users were a threat and the server were trusted, it would

have been enough to noise the sum of values, on the server side, with a standard deviation of
σ, gaining a factor

√
n regarding the distortion of the data.

Another solution is to use cryptographic techniques to get rid of the server threat as we
will see in Chapter 3. Thanks to such techniques, the server has only access to the aggregation
of the values from the clients (or nothing in the case of HE), which is far easier to protect
than the individual values. We can link the aggregation trick to the notion of anonymity:
since the aggregation operator is permutation-invariant, it provides anonymity to the individual
values. It is thus not surprising that the protection entailed by aggregation (gaining a

√
n

factor comparing to local DP) is better than the protection provided by shuffling (gaining a√
log(1/δ)n factor comparing to local DP [68]).

2.1.8 . Real-life applications
Nowadays, DP has been mainly used in research even if open-source implementations are

now available, such as Tensorflow privacy or Opacus. Nevertheless, this powerful tool has
started to be used in real-world applications. The US census Bureau used DP on its 2020 Census
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(https://www.ncsl.org/health/differential-privacy-for-census-data-explained)
which has raised several practical and ethical questions about the impact of that new method
on the census, particularly accuracy and fairness issues. Apple collects data about the habits
of use of its clients in order to improve the user experience with, e.g., quickType suggestions,
emoji suggestions. To do so without jeopardising their clients’ privacy, they make use of DP
(https://www.apple.com/privacy/docs/Differential_Privacy_Overview.pdf).

2.2 . Cryptographic primitives

2.2.1 . The homomorphic encryption paradigm
Homomorphic encryption (HE) is a kind of cryptographic method allowing to perform com-

putations over encrypted data without decryption. Let us consider Λ and Ω which respectively
are the set of cleartexts (a.k.a. the clear domain) and the set of ciphertexts (a.k.a. the encrypted
domain). As any cryptosystem, a HE system first consists in two algorithms Encpk : Λ −→ Ω

and Decsk : Ω −→ Λ where pk and sk are data structures which represent the public encryption
key and the private decryption key of the cryptosystem. In a symmetric-keyed cryptosystem,
the encryption and decryption keys are the same key, which is, obviously, private.

Any (decent) HE scheme possesses the semantic security property, equivalent to IND-CPA
(cf. Section 1.4.3), meaning that, given Enc(m) and polynomially many pairs (mi, Enc(mi)) it
is hard4 to gain any information on m with a significant advantage over guessing. In particular,
the semantic security implies that HE systems are by necessity probabilistic, meaning that some
randomness has to be involved in the Enc function and that the ciphertexts set Ω is significantly
much larger than the cleartexts set Λ. Indeed, if we consider a deterministic asymmetric system
encrypting binary values, an adversary could encrypt both 0 and 1 and compare these encryptions
to the encrypted value it observes, leading it to discover the clear value with certainty.

Most importantly, a HE scheme offers two other operators ⊕ and ⊗ where

• Enc(m1)⊕ Enc(m2) = Enc(m1 +m2) ∈ Ω

• Enc(m1)⊗ Enc(m2) = Enc(m1m2) ∈ Ω

Figure 2.4 shows a simple protocol where an HE-blinded server enables two parties to get
a function of the union of their data without compromising their privacy.

When these two operators are supported without restriction by a homomorphic scheme, it
is said to be a fully homomorphic encryption (FHE) scheme. A FHE scheme with Λ = Z2

is Turing-complete and, as such, is in principle sufficient to perform any computation in the
encrypted domain with a computational overhead depending on the security target5. In practice,
though, the⊕ and⊗ are much more computationally costly than their clear domain counterparts

4“Hard” means that it requires solving a reference (conjectured) computationally hard problemon which the security of the cryptosystem hence depends. From a practical viewpoint, given asecurity target λ, the concrete parameters of a homomorphic scheme are chosen such that thebest known (exponential-time) algorithms for solving the underlying reference problem requirean order of magnitude of 2λ nontrivial operations.5Polynomial in λ.
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Figure 2.4: Homomorphic encryption. Image reproduced from [168], with the kind authorisationof Florent Robert from Industrie et Technologies.

which has led to the development of several approaches to HE schemes design each with their
pros and cons.

2.2.2 . Somewhat homomorphic encryption
Somewhat homomorphic encryption schemes, such as BGV [31] or BFV [69], provide both

operators but with several constraints. Indeed, in these cryptosystems the ⊗ operator is much
more costly than the ⊕ operator and the cost of the former strongly depends on the multiplica-
tive depth of the calculation, that is the maximum number of multiplications that have to be
chained (although this depth can be optimised [11]). Interestingly, most SHE schemes offer a
batching capability by which multiple cleartexts can be packed in one ciphertext resulting in
(quite massively) parallel homomorphic operations i.e.,

Enc(m1, ...,mκ)⊕ Enc(m′
1, ...,m

′
κ) = Enc(m1 +m′

1, ...,mκ +m′
κ) (2.1)

(and similarly for ⊗). Typically, several hundreds such slots are available, which often allows
to significantly improve the amortised computation time (nevertheless, the latency may remain
important).

2.2.3 . Fully homomorphic encryption
Besides the computational cost of the homomorphic operators, the results of homomorphic

additions and multiplications are noisy, and this noise increases as more operations are applied.
As a consequence, the number of operations that can be computed in the encrypted domain
before the result is totally useless is limited. To solve this fundamental issue, Gentry proposed
the bootstrapping technique in 2009 [76]. By designing a homomorphic cryptosystem that is
able to evaluate its own decryption circuit, the noised ciphertexts can be refreshed and the level
of noise maintained bounded, for any number of operations. Therefore, such a cryptosystem
can theoretically perform any function in the encrypted domain, giving birth to FHE.

FHE schemes offer both the ⊕ and ⊗ operators without restrictions on multiplicative depth.
At the time of writing, only the FHE-over-the-torus approach, instantiated in the TFHE cryp-
tosystem [50], offers practical performances. In this cryptosystem, ⊕ and ⊗ have the same
constant cost. On the downside, TFHE offers no batching capabilities.

2.2.4 . Homomorphic encryption in practice
The bottom line of xHE calculations practice is to use the most appropriate cryptosystem

for the problem at hand. Low (multiplicative-)depth calculations (say 5 and below) are generally
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performed more efficiently by means of SHEs while higher (multiplicative-)depth ones (say above
5) requires resorting to the full-blown FHE machinery of TFHE. Furthermore, to get the best
of all worlds, the TFHE scheme is often hybridised with SHE by means of operators allowing
to homomorphically switch among several ciphertext formats [27,120] to perform each part of
calculation with the most appropriate scheme (see e.g. [197]).

Additionally, it should be emphasised that the natural threat model against HE is limited to
honest-but-curious adversaries. Such an adversary, i.e. the server which performs the encrypted-
domain calculations, properly executes the task it is in charge of but attempts by all possible
passive means to retrieve information about the private data values. Therefore, in a machine
learning context, it may make use of any data it legitimately has access to, directly or indi-
rectly by performing some (polynomial-time) computations on them, in order to retrieve some
information about the private data, yet without harming the learning (or inference) process.

2.2.5 . Homomorphic encryption for machine learning
Most of the works applying HE to machine learning models focus on the inference stage [28,

41,42,78,91,99,121,160] and not on the training stage. The first papers on privacy-preserving
machine learning training focused on a centralised setting where all data are outsourced and
where the models are only linear [19, 38, 109]. When it comes to non-linear models, the few
approaches that ran a complete centralised training of neural networks on encrypted data
have impractical performances or huge cryptographic parameters [120]. One of the biggest
challenges, both at inference and training stages, is to homomorphically compute the activation
functions of the model. This can be achieved by low-degree polynomial approximation [48,100,
144] or discretisation (splitting the activation functions in several affine parts) [172] but this is
time-consuming and the accuracy is degraded.

A way to address this computational issue is to leverage the knowledge of a model that
was already trained on a public dataset and fine-tune it with the new dataset, using transfer
learning techniques [120,123].

Other frameworks like the one presented in Chapter 3 may also be employed in order to
concentrate the homomorphic computations on a core of very few aggregating operations, thus
reducing to the minimum the computations evaluated in the encrypted domain.

2.2.6 . Other cryptographic primitives
Several other cryptographic primitives have been used in machine learning literature to

protect data privacy. In particular, Secure Multi-Party Computation is a general approach that
enables several parties to collaboratively perform a given computation without revealing to the
other parties any more information than the result of this computation.

For instance, additive secret sharing allows to distribute to n parties shares of a secret
randomly noised and whose sum is equal to the secret. Hence, knowing the totality of the
shares is required to reveal the secret, and no strict subset of the shares gives any information
about the secret (see e.g. [56]).

Shamir’s secret sharing [163] has a more general utility since it allows any subset of t ≤ n
parties, t being a fixed parameter, to reveal the secret with their shares, while preventing any
subset of size strictly smaller than t from knowing the secret.
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While they are often less computationally intensive than HE, a major drawback of both
additive and Shamir’s secret sharings is their lack of malleability. Additive secret sharing only
supports addition, and Shamir’s secret sharing does not allow to perform operations directly on
encrypted values. Moreover, contrarily to HE, the model itself is not hidden from the server,
which is required in many application scenarios.

Although these approaches are very close in intent to FHE-based ones they achieve different
trade-offs. While FHE is computationally intensive and non-interactive, Secure Multi-Party
Computation puts more stress on protocol interactions. Indeed, these techniques require a
lot of information exchanges (garbled circuit generation and evaluation, oblivious input key
retrieval, secret key sharing), which consume time and bandwidth. Moreover, they generally
fail when some parties do not play their role - or fixing the fault tolerance issue implies additional
rounds of communication [24,25]. On the contrary, the FHE approach is more versatile, requires
no interaction among the teachers and is robust to temporary client unavailability, except in
the multi-key setting.

Closer to HE is functional encryption [26], which gathers cryptosystems with a public key
and a master secret key. For a function f , a specific secret key can be generated using the
master secret key. Applied on a ciphertext c encoding a plaintext x, this specific secret key
enables to output f(x) without revealing any additional information on x. A third party that
generates the master secret key is usually required but some authors proposed decentralised
versions of functional encryption [52,53]. A major drawback of functional encryption is that, in
practice, the only functions it supports are inner products [52] and quadratic functions [154],
and composition of functions is not possible. For more complex functions, it is much more
computationally intensive than FHE.

At the intersection of secret sharing and functional encryption is function secret sharing [30].
This technique extends secret sharing by allowing several parties to compute encrypted shares
of a function f . When a third-party receives these shares, it is able to output the result of f
applied on all the parties’ values, without learning anything else than this result. Furthermore,
any strict subset of the function shares is insufficient to retrieve f . Interestingly, Ryffel et
al. [153] extended 2-party function secret sharing to train a model via federated learning.

While these cryptographic primitives are of great interest, HE has specific features that
make it more appropriate to certain problems and, as such, it deserves attention in its own
right. That is why this PhD focuses on HE and the contributions presented in Part II will use
this primitive.

2.2.7 . Comparison of cryptographic security and differential privacy
The notions of privacy enforced by cryptography on one hand and DP on the other hand

seem to be of different natures. In fact, while cryptography ensures an (almost) perfect secrecy,
thus making the ciphertext unusable without decrypting it, DP provides useful statistics about
a group that do not reveal too much information about any member of the group. However,
the difference between these two privacy paradigms can actually be seen as a quantitative
difference, rather than a qualitative one. Letting decryption aside, cryptography and DP occupy
two different positions of the privacy-utility continuum represented in Figure 2.5.

Thus, it is the very fact that DP allows some information leaking that makes it more
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Figure 2.5: The continuum of privacy-utility trade-off

accurate. It appears that this information leaking, quantified by the privacy cost in DP, can
actually be formally related to the security parameter in cryptography as shown in the following.

On the one hand, let us consider a binary problem where, given a ciphertext c, the adversary
needs to decide if c is the encryption of 0 or 1. The adversary’s advantage is then defined as
|psuccess − pmax| where psuccess is the probability that the adversary guesses the true plaintext
that c encrypts and pmax is the probability of the most probable plaintext a priori i.e. the
probability of guessing with success without access to c (since the adversary will bet on the
most probable answer). Then, if λ ∈ R∗

+ is the security parameter of the cryptosystem,

psuccess − pmax ≤ 2−λ. (2.2)
On the other hand, let us consider an ϵ-DP mechanism A, ϵ ∈ R∗

+, and an adversary that
sees an output o of A and hesitates between (only) two possible inputs: the adversary needs to
decide whether o = A(D) or o = A(D′), where D and D′ are two adjacent databases. Since
A is ϵ-DP, aux being the auxiliary information of the adversary, e−ϵ ≤ P[A(D)=o|aux]

P[A(D′)=o|aux] ≤ e
ϵ.

We have

P[A(D) = o|aux]
P[A(D′) = o|aux]

=
P[A(x) = o|x = D, aux]

P[A(x) = o|x = D′, aux]

=
P[x = D| A(x) = o, aux]P[x = D′|aux]
P[x = D′| A(x) = o, aux]P[x = D|aux]

(via Bayes formula)

Without loss of generality, we assume that P[x = D| A(x) = o, aux] ≥ P[x = D′| A(x) =

o, aux]. Consequently, the adversary that wants to maximise its chance of success will bet on D
as an input and we get that the probability of success is psuccess = P[x = D| A(x) = o, aux].
Moreover, thanks to the auxiliary information, the adversary knows that the input is either D
or D′ then P[x = D′| A(x) = o, aux] = 1−P[x = D| A(x) = o, aux] = 1− psuccess. We then
get

P[A(D) = o|aux]
P[A(D′) = o|aux]

=
psuccess

1− psuccess
× P[x = D′|aux]

P[x = D|aux]

and thus

psuccess
1− psuccess

× P[x = D′|aux]
P[x = D|aux]

≤ eϵ. (2.3)
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We can now compare inequalities 2.2 and 2.3 and remark that, in 2.2, the constraint on
psuccess is additive whereas it is multiplicative in 2.3.

To go further, let us assume that, in both contexts, the two answers are a priori equally
probable according to the adversary. Then, Inequation 2.2 becomes

psuccess −
1

2
≤ 2−λ ⇐⇒ psuccess ≤ 2−λ +

1

2

and Inequation 2.3 becomes

psuccess
1− psuccess

≤ eϵ ⇐⇒ 1

1− psuccess
− 1 ≤ eϵ

⇐⇒ psuccess ≤ 1− 1

eϵ + 1
.

Hence, 1− 1
eϵ+1 plays in DP the role of 2−λ + 1

2 in cryptography. Solving the equation, we
get

ϵ = log

(
1

1
2 − 2−λ

− 1

)

and, for λ approaching infinity:

ϵ ∼
λ→+∞

22−λ = 4× 2−λ.

Hence, we can make the approximation that the DP guarantee ϵ of a cryptosystem decreases
exponentially with its security parameter λ.

Given that traditional values for ϵ in DP are usually greater than one (or, at best, slightly
lower than one), and that the recommended security parameter by the CNIL (Commission
Nationale de l’Informatique et des Libertés), the French national commission for informatics
and liberty, is 128, 192 or even 256 bits, it is easy to understand the huge gap between privacy-
utility trade-offs chosen in cryptography and DP.

Another difference is that, as far as DP is concerned, the adversary is assumed to make a
limited number of queries whereas, in cryptography, the adversary is only bounded in terms of
computational complexity (even if some settings impose a constant number of operations).

Note that, except for its local version, DP also leverages the dilution of individual infor-
mation within a group to improve the privacy guarantees. The guarantee ϵ decreases in

√
n

in a group of size n. Hence, a mechanism satisfying local DP with ϵ = 1 and an accuracy
a would need, to keep the same accuracy a with the security guarantees of a cryptosystem
with a 128-bit security parameter, to dilute the individual information in a group of size around

1
(2−126)2

= 2252 ≈ 1076 i.e. only 10000 times less than the estimated number of atoms in the
universe !
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3 - Collaborative learning

When several data owners want to train a global model that use the knowledge of all their
data, a naive approach is to make all the owners send their data to the server and let the server
perform the training. This obviously creates severe issues of:

• communication: the transfer of the raw data from the owners to the server is highly
demanding in terms of bandwidth and in general the raw data are much heavier than the
models. In particular, this precludes the use of HE1.

• computational resources: having the server perform all the training requires much com-
puting power (the use of is precluded in this case, as explained in Section 2.2.5)

• privacy: if they deem their data as sensitive, the data owners may not be willing to send
them entirely or partially to the server

In the following, we will present some frameworks that enable several data owners to jointly
train a global model, often with the help of an aggregation server but in a more subtle way that
addresses all or part of the aforementioned issues (even, as we shall see in part II, with HE in
the picture). These techniques are gathered under the wide term collaborative learning. One
of the most popular and widely studied in the current literature is federated learning.

3.1 . Background on federated learning

With the emergence of smartphones, researchers wondered how to use the huge amounts
of new data such as text messages to train machine learning models. The naive option of
sending all the data to a central server and letting it perform the whole training is not practical
as explained above. In 2016, researchers from Google introduced a new training paradigm
addressing this problem, federated learning [126].

Federated learning (FL) is a decentralised framework, illustrated in Figure 3.1, that enables
multiple agents, called clients, to collaboratively train a shared global model under the orches-
tration of a central server while keeping the training data localised on the client devices. After
a common (server-side) arbitrary initialisation of the global model, the FL process consists of
successive rounds of communication between the server and the clients. At every iteration, a
fraction of the clients receive the current model parameters and update them by minimising a
local loss function. Then, they sent the updates back to the server that aggregates them to
refresh the global model parameters. This method allows the training data to stay on the client

1Transciphering [35] can solve this communication problem. The data owners encrypt theirdata with a symmetric-key cryptosystem which results in negligible size overhead compared toplaintexts. The encrypted data are sent to the server that encrypts them with a HE cryptosys-tem and perform the symmetric-key decryption homomorphically. Yet, since this homomorphicdecryption is very costly, transciphering basically converts the communication overhead in a com-putational overhead on the server side.
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devices thus helping to protect data privacy and reducing the communication costs comparing
to the centralised solution since only the updates are sent to the server. Moreover, the compu-
tations are parallelised among all the clients, resulting in a reduction of the wallclock duration
of the whole training.

∫
Aggregation of the
updates by the server

The server sends
the updated model
back to the clients

Global model

Locally updated models

Local databases

Figure 3.1: Federated learning scheme. Image inspired from [168], with the kind authorisation ofFlorent Robert from Industrie et Technologies.

A typical application is the training of next-word prediction algorithms on smartphones [89]
for which the training data - texts from smartphones users- are both very numerous and private.
This is an example of cross-device federated learning i.e. a framework that involves a large
number of clients (thousands or even millions) that have relatively few and unbalanced data
each, with a restricted computational power. On the contrary, cross-silo federated learning
deals with much fewer clients (less than 1000 in general) that have a large amount of data and
computational resources - the clients in cross-silo federated learning are typically companies or
institutions.

The most common approach to optimisation for FL is the Federated Averaging algorithm
[128] (see Algorithm 1), also known as FedAvg. At the beginning of each round, the server
selects a subset of clients to take part in training for this round, we call these particular clients
the participants. The server sends the current global model to the participants and each of
them trains the model locally with several epochs of mini-batch stochastic gradient descent
(SGD) using its own data. The participants then communicate only the updated parameters
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or the updates2 themselves (depending on the setting) back to the server. Finally, the server
computes the weighted average of these updates before accumulating them into the global
model, thereby concluding the round. The weight associated to a participant in the average is
generally the fraction of training samples owned by the participant.

FedAvg reaches similar accuracy to the one of centralised setting in the case of i.i.d. (in-
dependent identically distributed) data. On the contrary, if the clients’ data do not all have
the same distribution, the convergence is degraded [105,182]. Nevertheless, the advantages in
terms of communication, computational resources and privacy are generally considered as a fair
compensation to this loss as the current popularity of federated learning shows.

Other aggregation rules than the average may be used, for example aggregation rules that
are robust to Byzantine attacks, such as Krum, the median, the trimmed mean [70,118].

Algorithm 1: Federated Averaging (FedAvg)
1 Server executes:
Input : M : total number of clients

K: number of participants per round
nk: number of data points of participant k
wt: model parameters at round t

Output: model parameters wt+1 at final round
2 initialise w0;
3 for each round t do
4 Kt ← random set ofK ≤M clients;
5 for each client k ∈ Kt in parallel do
6 ukt+1 ← ClientUpdate(k,wt);
7 wt+1 ← wt +

∑K
k=1

nk

n u
k
t+1 where n =

∑K
k=1 nk

8

9 ClientUpdate(k,w):
Input : k: id number of the participant

Dk: training set of participant k
B: local mini-batch size
E: number of local epochs
η: learning rate
w: global model parameters
L: local loss function

Output: updates wk − w after last epoch
10 initialise wk = w;
11 B ← split the nk samples ofDk into batches of size B;
12 for each epoch from 1 to E do
13 for each batch b ∈ B do
14 wk ← wk − η

`
L(wk; b);

2Difference between the updated parameters and the old ones.
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3.2 . Privacy-preserving collaborative learning

3.2.1 . Distributed differential privacy
One of the crucial issues of privacy-preserving collaborative learning is the threat of a

distrusted server that has access to many data throughout the training phase. As mentioned
in Section 2.1.7, local DP is an option. Nevertheless, we saw that it often requires to apply
too much noise, at the expense of utility. To recover the centralised setting’s privacy-utility
trade-off, an idea is to make use of cryptographic techniques to hide the data from the server
while it is computing them [4,135].

In this context, two options are possible. The model can remain hidden from the server
after training, in that case there is no information leakage on the training data from the server’s
point of view. Otherwise, if the server has access to the trained model, the noise can obviously
not be generated by the server since there is no DP guarantee towards an entity that knows
the noise that has been sampled to protect the data. A common solution is called distributed
differential privacy [63]: the data owners sample and add noise themselves to their data so
that after the aggregation by the server, the resulting noise is sufficient to ensure the required
privacy guarantees. The easiest example is probably the distributed Gaussian mechanism that
uses the stability by addition of the normal law. If there are n ∈ N∗ and the server is to add
the values it receives (like in FedAvg), every data owner applies a noise of standard deviation
σ√
n

to its data so that the sum of the values is noised with a standard deviation of σ ∈ R∗
+.

Some works combined distributed DP with secure aggregation techniques like additive secret
sharing [3, 80, 165] or secure shuffling [22, 49, 68] to get rid of the assumption of a trusted
server.

In the case of additive secret sharing, the values to be sent by the clients and summed up
by the server are noised with both the DP noise and the secret sharing mask. This implies
that, beforehand, the clients used a protocol to collaboratively determine individual masks that
sum up to zero. At aggregation, the masks cancel out and the summed DP noises result in the
desired amount of noise that ensure the required DP guarantees.

Secure shuffling resorts to the ESA method - Encode, Shuffle, Analyse - where a data
are sent encrypted to a shuffler that receives them into batches, eliminates the metadata and
shuffles the batches. The shuffler then sends the data to an analyser that decrypts them and
performs the required computations. Shuffling allows anomymity and unlinkability of the data
(see Section 1.4.2 for the definitions) thus allowing for a better privacy-utility trade-off that lies
between the local DP trade-off and the central DP one (without shuffler), while avoiding the
assumption of a trusted server.

Nevertheless, these methods are demanding in terms of communication and require an
additional trusted entity to generate and send the random masks to the clients or shuffling the
clients’ contributions. Also note that secure shuffling yields a worse privacy-utility trade-off
than secure aggregation.

3.2.2 . Fault tolerance
When implementing distributed DP, the risk of a data owner not showing up and thus pre-

venting correct noise generation arises. To address this problem of fault tolerance, some authors
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make the server generate the noise that some users did not generate [13] while others assume
that the data owners themselves adapt the noise they generate to the possible failures [44].
These works imply that the server, respectively the data owners, know who or at least how
many data owners did not generate the noise. Another solution is to make the data owners
send a second noise, which will be used in case of default of another data owner [185] but this
increases the communication cost. One may also accept this risk of default and analyse how
the DP guarantees evolve when a certain fraction of the data owners do not add noise [156],
as we did in our contributions from Chapters 1 and 2 from Part II. With such an analysis, one
can also determine how much extra noise has to be added per data owner to guarantee a fixed
privacy cost even if a certain ratio of data owners do not add noise.

3.2.3 . Federated learning gets along well with homomorphic encryption

In federated learning, and more specifically when FedAvg is employed, the server compu-
tations are limited to a simple (possibly weighted) sum, which is quite easy to implement for
various cryptographic techniques (one-time pads, additive secret sharing, HE). That is why
several authors have used such techniques with federated learning in a context of sensitive user
data [24, 25, 149, 153, 192]. The clients encrypt their local updates (or directly the gradients)
of the model’s parameters obtained by gradient descent and send them to the server which
perform the aggregation of the encrypted value (homomorphically or on the masked values).
The result of the aggregation is sent back to the clients and decrypted by them in the case of
HE (already clear in the case of additive secret sharing).

Closer to our contributions, some works have combined cryptographic primitives and DP
[45, 155, 156]. Yet, in this context of iterative protocols and large number of parties, classical
multi-party computation techniques suffer from their important communication requirements
[25,134]. HE gets the most out of the game because it needs much less communication rounds
than most of the other cryptographic primitives. Its relative computational heaviness is not
such a burden here because FedAvg only needs additive cryptosystems, which are much less
computationally intensive than fully homomorphic schemes, especially in the case of a large
multiplicative depth. Along with distributed DP, a few papers propose the use of HE to protect
the clients’ data from the server [88, 174] but do not take into account the quantisation of
the DP noise due to encryption. In Chapter 3 from Part II, we present a contribution about
privacy-preserving federated learning with use of distributed DP and that focuses on this noise
quantisation.

3.2.4 . Alternatives to federated learning

Decentralised federated learning: To solve the issue of the untrustworthy server, an
interesting alternative to classical federated learning is decentralised federated learning that
simply gets rid of the server. The information spreads across the clients following a graph whose
nodes are the clients and whose edges represent communication channels between clients: a
client can only exchange data with its neighbours in the graph. Two approaches are possible
to update the model parameters: random-walk based stochastic gradient descent [54] and
gossip-based stochastic gradient descent [55, 156, 157]. The graph structure is crucial to this
framework and, with a well chosen graph, it is possible to match the centralised federated
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learning’s privacy-utility trade-off in both approaches (up to a logarithmic factor in the number
of clients in [54, 55]). Nevertheless, [156] and [157] resort to secure aggregation that requires
a central coordinator and thus is not compatible with full decentralisation. As far as [54]
and [55] are concerned, the authors use a relaxation of standard DP which makes their privacy
guarantees less conservative and vulnerable to colluding clients and eavesdroppers. Moreover,
they provide a mean privacy loss and no explicit guarantees on the maximum privacy loss, as
standard DP provides. Finally, their privacy-utility trade-off holds for a learning process that
takes a very high number of iterations - scaling with the square of the number of clients in the
random-walk approach - and makes the convergence very slow.

Private Aggregation of Teacher Ensembles (PATE): In [141] and [142], the authors
proposed a quite different method to privately aggregate the knowledge of several data owners.
Each data owner trains a local model with its own data, called a teacher model. Assuming
the existence of a public unlabelled database, all the teacher models vote to label the samples
of the public database and the most frequent class is chosen, via plurality rule. The public
database labelled in this way is used to train a global model, called the student. This method
has the advantage of being agnostic to the type and architecture of both the teacher and
student models. Besides, they obtain good data-dependent DP guarantees thanks to a detailed
analysis of the noisy argmax that is used to implement private plurality. Yet, their approach
requires the server to be trusted and, in particular, not curious. We build upon this framework
in our contributions of Chapters 1 and 2 from Part II, with an honest-but-curious server.
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1 - SPEED: Secure, PrivatE, and Efficient Deep
learning

Abstract We introduce a deep learning framework able to deal with strong privacy con-
straints. Based on collaborative learning, differential privacy and homomorphic encryption, the
proposed approach advances state-of-the-art of private deep learning against a wider range of
threats, in particular the honest-but-curious server assumption. We address threats from both
the aggregation server, the global model and potentially colluding data holders. Building upon
distributed differential privacy and a homomorphic argmax operator, our method is specifically
designed to maintain low communication loads and efficiency. The proposed method is sup-
ported by carefully crafted theoretical results. We provide differential privacy guarantees from
the point of view of any entity having access to the final model, including colluding data holders,
as a function of the ratio of data holders who kept their noise secret. This makes our method
practical to real-life scenarios where data holders do not trust any third party to process their
datasets nor the other data holders. Crucially the computational burden of the approach is
maintained reasonable, and, to the best of our knowledge, our framework is the first one to be
efficient enough to investigate deep learning applications while addressing such a large scope
of threats. To assess the practical usability of our framework, experiments have been carried
out on image datasets in a classification context. We present numerical results that show that
the learning procedure is both accurate and private.

N.B.: This chapter is the reproduction of the article SPEED: secure, PrivatE, and efficient
deep learning, joint work with Rafaël Pinot, Martin Zuber, Cédric Gouy-Pailler and Renaud
Sirdey, published in Machine Learning journal, via ECML-PKDD journal track 2020 [83].

1.1 . Introduction

Application scenarios. We consider n hospitals, each of which owns a (personal) labelled
database composed of medical records from its patients and a model (e.g. neural network)
trained on this database to predict if a new patient is victim of a given disease, say cancer.
The hospitals’ goal is to collaborate in order to improve the early detection of cancer. Building
a model from a larger dataset than the personal databases would lead to improved detection
capabilities. Nevertheless, these medical databases are highly-sensitive and the information
they contain about the patients cannot be disclosed [143]. In such a setting, the hospitals
wish to collaboratively train a global model while preserving confidentiality of their records. To
do so, the idea is to rely on an aggregating institution (e.g. the World Health Organisation).
This would amount to creating a three-party architecture: hospitals, aggregating institution,
global model. Note that in our example, and in many real-world settings, all the training data
providers may be recipients of the global model, or the global model may even be totally public.
Hence, the global model may be exposed to attacks like membership inference attacks [167] that
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could indicate with high accuracy the probability that one patient was present in a database.
Also, given a set of instances, the risk of a model inversion attack [186] which tries to infer
sensitive attributes on the instances from a supposedly non-sensitive (often white-box) access
to the model, is to be seriously taken into account as it would allow to infer for example that
some of the hospital databases contain more ill patients than others. Besides, the aggregating
institution might be the target of cyberattacks aimed at stealing data from it. For all these
reasons, the three-party architecture we consider has to be resistant to threats coming from
both the aggregation server and the global model recipients.

Another motivating example, from the field of cybersecurity, is when several actors each hold
a database of cybersecurity incident signatures that have occurred on their customer networks.
The actors would rely on a third-party server to train the global model. In this scenario, it is a
great security issue if the global model suffers from an attack (e.g. if the model features can
be inferred [173, 181, 188] with limited access to the model). In this case, this would clearly
leak some information on the detection capabilities of the actors, giving a clear advantage to
cyberattackers on the networks they supervise.

Deployment scenario and threat model. To perform the aggregation in a private
way, we work in the tripartite setting summarised in Figure 1.1 and formally detailed in Sec-
tion 1.4. The student (who holds the global model, a.k.a. the student model) is the owner
of the homomorphic encryption scheme under which encrypted-domain computations will be
performed by the aggregation server. This means that the student generates and knows both
the encryption and decryption keys pk and sk. Then, when being submitted an unlabelled input,
the data holders (a.k.a. the teachers) noise the predictions from their personal models, encrypt
them under pk and send these encryptions to the server. The server has the responsibility to
homomorphically perform the aggregation in order to produce an encryption of the output (e.g.
a label) which will be sent back to the student and used by the latter for learning, after due
decryption. Homomorphic encryption thus provides a countermeasure to confidentiality threats
on the teachers’ predictions from the aggregation server, while the noise introduced by the
actor addresses, via differential privacy, the issue of attacks against the student model. In this
setting, we assume that the student model is public or at least available to all the actors of
the protocol, namely the teachers, the aggregation server and, of course, the student. Our
mechanism is differentially private in this context, and our guarantees still hold against a ma-
licious teacher, who has the information of the noise she generated, or even against colluding
teachers (see Section 1.5). On the contrary, we do not address threats whereby the student and
the aggregation server collude in the sense that the student does not share sk with the server
(in which case they would both get access to the teachers’ predictions). We do not consider
either threats where the aggregation server behaves maliciously, e.g. to prevent the student
model from effectively learning from the teachers, leading to more or less stealthy forms of
denial-of-service, or to perform a chosen ciphertext attack via selected queries to the student
model. This is the typical scenario in which homomorphic encryption intervenes and our setting
thus covers the threat model whereby the aggregation server is assumed to operate properly
but may perform computations on observed data to retrieve information. This threat model is
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commonly known as the honest-but-curious model [24,82,98].
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Figure 1.1: SPEED - Teacher models send to the aggregation server their encrypted noisy answersto the student’s queries. The server homomorphically performs the aggregation in the encrypteddomain and sends the result to the student model which decrypts it and uses it for training

Our contribution. In this paper, we present a complete collaborative learning protocol
which is secure along the whole workflow regarding a large scope of threats. We ensure pro-
tection of the data against any malicious actor of the protocol during the learning phase and
prevent indirect information leakage from the final model using both homomorphic encryption
and differential privacy. While our framework is agnostic to the kind of models used by both
the teachers and the student, to the best of our knowledge this is the first work with this level
of protection to be efficient enough to apply to deep learning, therefore allowing very good
accuracy on difficult tasks such as image classification, as shown by the experiments we ran.
Our framework is also bandwidth-efficient and does not require more interactions than required
by the baseline protocol.

Outline of the paper. Section 1.2 relates our work to the literature. In Section 1.3,
we give some technical background on differential privacy and homomorphic encryption. We
describe our SPEED framework in Section 1.4 and analyse its differential privacy guarantees in
Section 1.5. Section 1.6 presents our experimental results - SPEED achieves state-or-the-art
accuracy and privacy with a mild computational overhead w.r.t previous works. Section 1.7
concludes the paper and states some open questions for further works.

1.2 . Related work

Differential privacy (DP). Recent works considered to use differential privacy in collab-
orative settings close to the one we consider [17, 21, 45, 77, 141, 142]. Among them, the
most efficient technique in terms of accuracy and privacy guarantees is Private Aggregation
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of Teacher Ensembles (PATE) first presented in [141] and refined in [142]. PATE uses semi-
supervised learning to transfer to the student model the knowledge of the ensemble of teachers
by using a differentially private aggregation method. This approach considers a setting very
close to ours with the notable difference that the aggregation server is trusted. Hence, applying
PATE in our scenario makes the teacher models vulnerable. To tackle this issue, our work builds
upon PATE idea with two key differences: we let the responsibility of generating the noise to
the teachers and we add a layer of homomorphic encryption in order for the overall learning
to be kept private. Another difference can also be noted. To derive privacy guarantees, PATE
assumes that two databases d and d′ are adjacent if only one sample of the personal database
di of one teacher i changes, with the hypothesis that the personal databases di are disjoint.
We do not need this hypothesis and we only consider the teacher models, not the personal
databases they use to train them. This leads us to a more powerful definition of adjacency:
two databases d and d′ are adjacent if they differ by one teacher.

Homomorphic Encryption (HE). HE allows to perform computations over encrypted
data. In particular, this can be used so that the model can perform both training and pre-
diction without handling cleartext data. In terms of learning, the naive approach would be to
have the training sets homomorphically encrypted, sent to a server for training to be done in
the encrypted domain and the resulting (encrypted) model sent back to the participants for
decryption. However, putting aside many subtleties, even by deploying all the arsenal available
in the HE practitioner toolbox (batching, transciphering, etc.) this would be impractical as
“classical” learning is both computation and know-how intensive and HE operations are intrin-
sically costly. As a consequence, there are only very few works that capitalise on HE for private
training [82, 92, 120] and inference [78, 104] of machine learning tasks. Moreover, since some
attacks can be performed in a black-box setting, the system is still vulnerable to attacks from
the end user who has access to the decryption key. In our framework, we do not use HE directly
to build the model, we use it as a mean for the aggregation to be kept private. That way, we
are protected against potential threats from the aggregation server, which does not have the
decryption key, and we keep a manageable computational overhead.

Federated learning. Federated learning approaches gather several users who own data
and make them collaborate in an iterative workflow in order to train a global model. The
most famous federated learning algorithm is federated averaging [126] which is a parallelised
stochastic gradient descent. In a context of sensitive user data, several works proposed privacy-
preserving federated learning or closely related distributed learning that make use of differential
privacy [77, 166], cryptographic primitives [24, 25, 153] or both [45, 155, 156]. These meth-
ods require online communication between the parties whereas our solution takes advantage of
homomorphic encryption and the existence of personal trained models to avoid online communi-
cation and drastically limit the interactions, that are both bandwidth-consuming and vulnerable
to attacks.
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Private aggregation. Several approaches have been considered to limit the need for a
trusted server when applying differential privacy, for example by considering local differential
privacy [62, 107, 108]. In practice it often results in applying too much noise, and maintaining
utility can be difficult [108, 176] especially for deep learning applications. In order to recover
more accuracy while keeping privacy, some works combined decentralised noise distribution
(a.k.a. distributed differential privacy [165]) and encryption schemes [3, 80, 150, 165] in the
context of aggregation of distributed time-series. Our work contributes to this line of research.
However, our framework is the first one to be efficient enough to investigate deep learning ap-
plications while combining distributed DP and HE. Another advantage of our solution concerns
fault tolerance regarding the added noise. Some works addressed the problem of fault tolerance
by making the server generate the noise that some users did not generate [13] while other works
assume that the users themselves adapt the noise they generate to the possible failures [44]. In
our setting, because of the encryption and the absence of communication between the teachers,
we cannot suppose that any honest entity knows if some failures occurred. Moreover, the addi-
tion of noise to compensate a failure does not solve the problem of colluding teachers who may
still send noise but do not keep it secret. In our protocol, the task of an honest actor (teacher
or server) does not depend on the number of failures and we provide privacy guarantees as a
function of the number of failures (see Section 1.5) - it then suffices to assume an upper bound
on this number to ensure a privacy guarantee.

SecureMulti-Party Computation (SMPC). Secure Multi-Party Computation is a gen-
eral approach that enables several parties to collaboratively perform a given computation without
revealing to the other parties any more information than the result of this computation. In par-
ticular, secure aggregation regroups approaches which use SMPC techniques as one-time pads
masking [24, 25] or secret-sharing [56] to perform aggregation over sensitive data. Although
these approaches are very close in intent to FHE-based ones, as the present one, they achieve
different trade-offs. In a nutshell, when FHE is computation-intensive and non-interactive,
SMPC puts more stress on protocol interactions. SMPC requires a lot of communication (gar-
bled circuit generation and evaluation, oblivious input key retrieval, secret key sharing), both
time-consuming and vulnerable to attacks, and needs in general that all teachers play their role
in the protocol for it to terminate - or fixing the fault tolerance issue implies additional rounds
of communication [24, 25]. On the contrary, the FHE approach is more versatile, requires no
interaction among the teachers and is robust to temporary teacher unavailability. Still, at the
time of writing, it is the authors’ opinion that both approaches are worth investigating in their
own right (and this paper obviously belongs to the FHE thread of research).

1.3 . Preliminaries

1.3.1 . Differential privacy
Let us also present a famous and widely used differentially private mechanism, known as

the report noisy max mechanism.

Definition 5. Let K ∈ N∗, and let X be a set that can be partitioned into K subsets X1, . . . ,
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XK . Themechanism that, given a database d of elements ofX , reports argmaxk∈[K] [nk + Yk] ,

where [K] := {1, . . . ,K}, nk := |d ∩ Xk| and Yk is a Laplace noise with mean 0 and scale 1
γ

(with probability density x 7→ γ
2e

−γ|x|), γ ∈ R∗
+, is called report noisy max.

Theorem 3 ( [66]). Let A be the report noisy max as above. Then A is (2γ, 0)-differentially
private.

We now define the notion of infinite divisibility that we will use to implement distributed
differential privacy.

Definition 6. A random variable Y is said to be infinitely divisible if, for anym ∈ N∗, we can
find a family (Xm,i)i∈[m] of independent and identically distributed (i.i.d.) random variables
such that Y has the same distribution as

∑m
i=1Xm,i.

The following proposition from [112] claims that the Laplace distribution is infinitely divis-
ible 1, enabling to distribute its generation among an arbitrary number of agents.

Proposition 2 ( [112]). Letm ∈ N∗ and γ ∈ R∗
+. LetG

(i)
p , for (i, p) ∈ [m]× [2], be i.i.d. random

variables following the Gamma distribution of shape 1
m and scale 1

γ . Then
∑m

i=1

(
G

(i)
1 −G

(i)
2

)
follows the Laplace distribution of mean 0 and scale 1

γ . The Laplace distribution is said to beinfinitely divisible.
1.4 . SPEED: Secure, Private, and Efficient Deep Learning

1.4.1 . A distributed learning architecture

Let us consider a set of n owners (a.k.a. teachers) each holding a personal sensitive model
fi. We assume that we also have an unlabelled public database D. The goal is to label
D using the knowledge of the private (teacher) models to train a collaborative model (a.k.a.
student model) mapping an input space X to an output space [K] = {1, . . . ,K}. To do so
while keeping the process private, we follow the setting illustrated by Figure 1.1 relying on a
(distrusted) aggregation server:

1. For every sample x of the public database D, the student sends x to the aggregator
requesting it to output a label for x. The aggregator forwards this request to the n
teachers.

2. Each teacher i labels x using its own private model fi. Then each teacher adds noise
to the label (see Section 1.4.2) and encrypts the noisy label before sending it to the
aggregation server.

1Another well-known example of infinitely divisible probability distribution is the Gaussian dis-tribution which can be seen as the sum of Gaussian distributions of well chosen scale param-eter. In a possible further work, we could indeed replace the (distributed) Laplace noise by a(distributed) Gaussian noise.
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3. The aggregator performs a homomorphic aggregation of the noisy labels and returns the
result to the student model, namely the most common answered label (see Section 1.4.3).

4. The student, who owns the decryption key, decrypts the aggregated label and is then
able to use the labelled sample to train its model.

Our framework addresses two kinds of threats using two complementary tools. On the one
hand, differential privacy protects the sensitive data from attacks against the student model.
Indeed, some model inversion attacks [186] might disclose the training data of the student
model, and especially the labels of database D. But differential privacy ensures that the noise
applied to the teachers’ answers prevents the aggregated labels from leaking information about
the sensitive models fi 2. On the other hand, the homomorphic encryption of the teachers’
answers prevents the aggregator to learn anything about the sensitive data while enabling it to
blindly compute the aggregation.

1.4.2 . Noise generation and threat models

When requested to label a sample x, each owner i uses its model fi to infer the label of
x. In order for the aggregator to compute the most common label in the secret domain, the
owner must send a one-hot encoding of the label. That is, rather than sending fi(x), the i-th
teacher sends a K-dimensional vector, say z(i), whose fi(x)-th coordinate is an encryption of
1 while all the other coordinates are encryptions of 0. To guarantee differential privacy (see
Section 1.5 for the formal analysis), the owner adds to this one-hot encoding a noise drawn
from G

(i)
1 −G

(i)
2 where the G(i)

1 and G(i)
2 are 2n i.i.d. K-dimensional random variables following

the Gamma distribution of shape 1
n and scale 1

γ , where γ ∈ R∗
+. Then, i sends the (encrypted)

noisy one-hot encoded vector whose k-th coordinate corresponds to z(i)k +G
(i)
k,1 −G

(i)
k,2.

Assuming that the aggregator has access to the student model, distributing the responsibility
of adding the noise among all the teachers instead of delegating this task to the aggregator
(see paragraph on centralised noise below) is necessary to protect the data against an honest-
but-curious aggregator. Indeed, such an aggregator could use the information of the noise it
generated to break the differential privacy guarantees and, potentially, recover the sensitive
data by model inversion on the student model. Note that such an attack does not break the
honest-but-curious assumption since the aggregator still performs its task correctly.

Beyond the honest-but-curiousmodel In a model that would go beyond the honest-
but-curious aggregator hypothesis, the capability for an aggregator to add its own noise is even
more harmful for the privacy (and of course, the accuracy) than not using noise at all, if the
aggregator has access to the student model after training. Indeed it gives the aggregator much
more freedom to attack. As an example, think about a malicious aggregator that wants to know
a characteristic χ on a particular teacher, called its victim. Given a query, for all k ∈ [K], we
write nk := |{i : fi(x) = k}| and call it the number of votes for class k. Let us suppose that,
for a given query, changing the value of the victim’s characteristic χ from χ0 to χ1 also changes

2Thanks to the DP guarantees, the labels ofD could actually be published as well.
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the victim’s vote from a class k0 to a class k1. Hence, by denoting nk0 = ν0 and nk1 = ν1 if
χ = χ0, we get nk0 = ν0−1 and nk1 = ν1+1 if χ = χ1. Then, if the aggregator knows all the
nk for k ∈ [K]\{k0, k1} and knows ν0 and ν1 (which are the classical hypotheses in differential
privacy), it can add just as much noise as needed for the class k0 to be the argmax if and only
if χ = χ0

3. The result from the homomorphic argmax would then leak the information about
the value of the victim’s characteristic χ.

Centralised noise generation In a context in which the student model is kept private
and, especially, not available to the aggregator, we can consider a centralised way of generating
the noise. If we do not trust the teachers to generate the noise, we can charge the aggregator
to do it, since it will not be able to use the knowledge of the noise to attack the sensitive
data via the student model. The aggregator only needs to generate a Laplace noise (in the
clear domain), and homomorphically add it to the unnoisy encryption of nk it receives from
the teachers. The infinite divisibility of the Laplace distribution (Proposition 2) shows that the
resulting noise is the same as in the case presented above in which each teacher generates an
individual noise drawn from the difference of two Gamma distributions. The privacy cost of one
request is simply the privacy cost of the report noisy max, namely 2γ (Theorem 3).

In a nutshell, we can consider the following different threat models regarding the server:

• honest (H) : the aggregation server performs its tasks properly and do not try to retrieve
information from the data it has access to

• honest-but-curious (HBC) : the aggregation server performs its tasks properly but it may
compute the available data to get sensitive information

• beyond honest-but-curious (BHBC) : the aggregation server performs the aggregation
correctly but cannot be trusted to properly generate the noise necessary to the DP
guarantees. Note that this threat model is only slightly beyond the honest-but-curious
model since the honesty of the server is only relaxed regarding the noise generation, but
not the aggregation.

Table 1.1 summarises against which kind of server our protocol is protected, depending on
the access the server has to the student model and on the way the noise is generated. As
already emphasised, in the following we focus on the case whereby the student model is public
and the noise is distributively generated by the teachers because it is the most general model
among the realistic threat models and thus gives the better trade-off between flexibility and
security.

1.4.3 . Technical details on the homomorphic aggregation
Summing the noisy counts The aggregation server receives the n encrypted noisy la-
bels and sums them up in the secret domain. Due to the infinite divisibility of the Laplace

3For example, add ν0− 1
2 −nk to all the classes except k0 and k1, ν0− 1− ν1 to the class k1 andnothing to the class k0.
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Table 1.1: Robustness of our framework depending on the availability of the student model andthe noise generation
Private model Public modelCentralised noise HBC HDistributed noise BHBC BHBC

distribution, the server obtains a K-dimensional vector whose k-th (k ∈ [K]) coordinate is an
encryption of:

n∑
i=1

(
z
(i)
k +G

(i)
k,1 −G

(i)
k,2

)
= nk + Yk

where nk := |{i : fi(x) = k}| and Yk is a Laplace noise with mean 0 and scale 1
γ .

So far, we have only needed homomorphic addition which is a good start. Then an argmax
operator must be performed after the summation. However, efficiently handling the highly
nonlinear argmax function by means of FHE is much more challenging.

M(i, 2l) =M(i, 2l−1)⊗ θ(N(i, 2l−1), N(i+ 2l−1, 2l−1))

⊕M(i+ 2l−1, 2l−1)⊗ (1⊖ θ(N(i, 2l−1), N(i+ 2l−1, 2l−1)))

N(i, 2l) = N(i, 2l−1)⊗ θ(N(i, 2l−1), N(i+ 2l−1, 2l−1))

⊕N(i+ 2l−1, 2l−1)⊗ (1⊖ θ(N(i, 2l−1), N(i+ 2l−1, 2l−1)))

Computing the argmax. Most prior work on secure argmax computations use some
kind of interaction between a party that holds a sensitive vector of values and a party that
wants to obtain the argmax over those values. The non-linearity of the argmax operator
presents unique challenges that have mostly been handled by allowing the two interested parties
to exchange information. This means increased communication costs and, in some cases,
information leakage. This is with the exception of [197]. They provide a fully non-interactive
homomorphic argmax computation scheme based on the TFHE encryption. We implemented
and parameterised their scheme to fit the specific training problems presented in Section 1.6.
We present here the main idea behind this novel FHE argmax scheme. For more details, see
the original paper. The TFHE encryption scheme provides a bootstrap operation that can be
applied on any scalar ciphertext. Its purpose is threefold: switch the encryption key; reduce the
noise; apply a non-linear operation on the underlying plaintext value. This underlying operation
can be seen as a function

gt,a,b(x) =

{
a if x > t

b if x < t.

One notable application is that of a "sign" bootstrap: we can extract the sign of the input with
the underlying function g0,1,0(x). The argmax computation in the ciphertext space is made as
follows. For every k, k′, k ̸= k′, we compare the values nk+Yk and nk′+Yk′ with a subtraction
(nk+Yk−nk′−Yk′) and application of a sign bootstrap operation. This yields θk,k′ , a variable
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with value 1 if nk+Yk > nk′ +Yk′ and 0 otherwise. Therefore the complexity will be quadratic
in the number of classes. For a given k we can then obtain a Boolean truth value (0 or 1) for
whether nk + Yk is the maximum value. To this end, we compute

Θk =
∑
i ̸=k

θk,i.

nk is the max if and only if, for all i one has θk,i = 1 i.e. Θk = K − 1. We can therefore
apply another bootstrap operation with gK− 3

2
,1,0. If Θk = K − 1, the bootstrap will return

an encryption of 1, and return an encryption of 0 otherwise. Once decrypted, the position
of the only non-zero value is the argmax. Because the underlying function gt,a,b is applied
homomorphically, its output is inherently probabilistic. In the FHE scheme used, an error is
inserted in all the ciphertexts at encryption time to ensure an appropriate level of security. This
means that if two values are too close, then the sign bootstrap operation might return the
wrong result over their difference. The exact impact of this approximation on the accuracy is
evaluated in Section 1.6.

Remark. Another solution would be to send the noisy histogram nk + Yk of the counts for
each class k to the student and let her process the argmax in the clear domain. This could indeed
be performed with a plain-old additively-homomorphic cryptosystem such as Paillier or (additive-
flavoured) ElGamal, avoiding the machinery of the homomorphic argmax. Nevertheless, this
approach was put aside because sending the whole histogram instead of the argmax would
provide much worse DP guarantees.

1.5 . Differential privacy analysis

In this section, we will give privacy guarantees considering that two databases d and d′ are
adjacent if they differ by one teacher i.e. there exists i0 ∈ [n] such that fi0 ̸= f ′i0 and, for all
i ∈ [n] \ {i0}, fi = f ′i . This definition of adjacency is quite conservative and is strictly larger
than the definition of adjacency from [141] (indeed, in the assumption whereby the personal
teacher databases di are disjoint, changing one sample from a personal database changes at
most one teacher).

Robustness against colluding teachers. We have decided not to trust the aggrega-
tion server to generate the noise necessary to the privacy guarantees. Hence, we may also
assume that a subset of teachers might be malicious and collude by communicating their gen-
erated noise. This gives the same DP guarantees from the point of view of a colluding teacher
as if they would have not generated any noise. To this extent, our protocol, which addresses
this issue, is fault tolerant. The following theorem quantifies the privacy cost of such failures.

In the following, we call A the aggregation mechanism that outputs the argmax of the noisy
counts. A(d,Q) is the output of A for the database d and the query Q. Let γ ∈ R∗

+ be the
inverse scale parameter of the distributed noise. Considering the DP guarantees from the point
of view of an entity E , let τ ∈ (0, 1) be the ratio of the teachers whose noise is ignored by E .
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Theorem 4. Let us define I : v ∈ R∗
+ 7→

∫ +∞
0 (t+ v)τ−1 tτ−1e−2tdt and g : t ∈ R 7→∫+∞

γt e−vI(v)dv∫+∞
γ(t+2) e

−vI(v)dv
.

Then, from E ’s point of view, A is (ϵ, 0)-differentially private, with

ϵ = log

(
1 + 2

∫ γ
0 e

−vI(v)dv∫ +∞
2γ e−vI(v)dv

)
.

Moreover, if τ > 1
2 , g is differentiable in 0 and A is (ϵ′, 0)-differentially private, with

ϵ′ = min
[
ϵ, log

(
g(0)− g′(0)

)]
where g′(0) = γ

Γ(τ)2

2
e−2γI(2γ)−I(0)

∫+∞
2γ e−vI(v)dv(∫+∞

2γ e−vI(v)dv
)2 .

Sketch of proof: Adapting the proof of the privacy cost of the report noisy max from [66],
we first show that, if we can find a function M of γ and τ such that, for any t ∈ R, g(t) ≤M ,
then A is (log(M), 0)-differentially private. This motivates us to find an upper bound of g.

To do so, we prove that g has a maximum on R and that this maximum is reached on the
interval [−1; 0]. On one hand, we show that, for all t ∈ [−1; 0], g(t) ≤ 1+2

∫ γ
0 e−vI(v)dv∫+∞

2γ e−vI(v)dv
. On

the other hand, we prove that, if besides τ > 1
2 , then g is concave on [argmax(g); 0] and thus,

for all t ∈ [−1; 0], g(t) ≤ g(0)− g′(0) (note that g is not differentiable in 0 if τ ≤ 1
2). □

Let us denote S the subset of teachers who are honest (i.e. do not collude). Assuming
that the colluding teachers do add noise but communicate it among them, this theorem allows
us to control the privacy cost by the ratio τ of the teachers who kept their noise secret, from
the point of view of both:

• a colluding teacher, taking τ = |S|
n

• an honest teacher, taking τ = n−1
n

• any entity who has access to the student model but is not a teacher, taking τ = 1

Note that we can also use Theorem 4 in the hypothesis whereby the colluding teachers
publish their noise (to the whole world), adapting τ in consequence 4. For τ = 1, the privacy
guarantee is given by lim

τ→1
ϵ′ which, as shown by Proposition 3, is the classical bound of the

report noisy max with a centralised Laplace noise.

Proposition 3. For all γ ∈ R∗
+, lim

τ→1
[log(g(0)− g′(0))] = 2γ.

Furthermore, Proposition 4 shows that, naturally, the privacy cost tends to be null when
the noise becomes infinitely large (γ approaches 0).

4e.g. the privacy guarantee for an honest teacher would be computed with τ = |S|−1
n .
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Proposition 4. For all τ ∈ (0, 1), lim
γ→0

[
log

(
1 + 2

∫ γ
2

0 e−vI(v)dv∫+∞
γ e−vI(v)dv

)]
= 0.

Let us also give an upper bound of the probability that the noisy argmax is different from
the true argmax.

Proposition 5. Let k∗ be the class corresponding to the true argmax.
If τ ∈ (12 ; 1),

P[A(d;Q) ̸= k∗] ≤
∑
k ̸=k∗

e−γ∆k

[
1

2
+

(γ∆k)
2τ−1

τ24τ−2Γ(τ)2

]

where ∆k := nk∗ − nk for any k ∈ [K] and Γ : β ∈ R∗
+ 7→

∫ +∞
0 tβ−1e−tdt is the gamma

function.
If τ ∈ (0; 12 ],

P[A(d;Q) ̸= k∗] ≤
∑
k ̸=k∗

e−γ∆k

[
1

2
+

(γ∆k)
τ
2

τ2
5
2
τ−1Γ(τ)2

×
(
3

2
τ

) 3
2
τ (2

τ
− 3

)1− 3
2
τ
]
.

Sketch of proof: The event (A(d;Q) ̸= k∗) is the union of the events (nk+Yk ≥ nk∗+Yk∗),
for k ∈ [K] \ {k∗}, and thus P[A(d;Q) ̸= k∗] ≤

∑
k ̸=k∗ P(nk + Yk ≥ nk∗ + Yk∗). We remark

that, for any k ∈ [K] \ {k∗},

P(nk + Yk ≥ nk∗ + Yk∗) = P(Yk∗ ≤ Yk −∆k)

=

∫ 0

−∞
f(t)F (t−∆k)dt+

∫ ∆k

0
f(t)F (t−∆k)dt+

∫ +∞

∆k

f(t)F (t−∆k)dt

where f : u ∈ R∗ 7→ γ
Γ(τ)2

e−γ|u|I(γ|u|) and F : t ∈ R 7→
∫ t
−∞ f(u)du.

We show that
∫ +∞
∆k

f(t)F (t − ∆k)dt ≤ 3
8e

−γ∆k and
∫ 0
−∞ f(t)F (t − ∆k)dt ≤ 1

8e
−γ∆k .

Moreover, using Hölder’s inequality, we show that, for all q ∈ ( 1
1−τ ; +∞), calling p := 1

1− 1
q

,∫ ∆k

0 f(t)F (t−∆k)dt ≤ e−γ∆k

τ2
4τ−2+1

q Γ(τ)2
× (γ∆k)

2τ−1+1
q

p
1
p [q(1−τ)−1]

1
q
. For τ > 1

2 , we take the particular (and

classic) case of the limit of the previous bound when q tends to +∞. For τ ≤ 1
2 , we take

q = 1
1− 3

2
τ
. □

Theorem 4 and Proposition 5 serve as building blocks to which we apply the following
theorem from [141].

Theorem 5 ( [141]). Let ϵ, l ∈ R∗
+. Let A be a (ϵ, 0)-differentially private mechanism and

q ≥ P[A(d) ̸= k∗] for some outcome k∗. If q < eϵ−1
e2ϵ−1

, then for any additional information aux
and any pair (d, d′) of adjacent databases, A satisfies

αA(l; aux, d, d
′) ≤ min

[
ϵl,
ϵ2l(l + 1)

2
, log

(
(1− q)

(
1− q
1− eϵq

)l

+ qeϵl

)]
.
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As in [141], Theorem 5 coupled with some properties of the moments accountant (com-
posability and tail bound) allows one to devise the overall privacy budget (ϵ, δ) for the learning
procedure (see Section 1.6 for numerical results). We refer the interested reader to Section A
of the appendix for more details and for the extended proofs of our claims.

Influence of the cryptographic layer. One must be aware that the cryptographic
layer perturbs the noisy votes because the computation of the homomorphic argmax has a
small probability of error. Although this topic deserves further investigations, we make the
assumption that these perturbations are negligible and that they do not change the privacy
guarantees as they basically constitute an additional noise on the votes. We further discuss this
point in Appendix A.3.

1.6 . Experimental results

The experiments presented below enable us to validate the accuracy of our framework on
well-known image classification tasks and illustrate the practicality of our method in terms
of performance, since the computational overhead due to the homomorphic layer remains
reasonable. The source codes necessary to run the following experiments are available on
https://github.com/Arnaud-GS/SPEED.

HE time overhead. We implemented the homomorphic argmax computation presented in
Section 1.4.3. Without parallelising, a single argmax query for 10 classes and 250 teachers
requires just under 4 seconds to compute on an Intel Core i7-6600U CPU. Importantly, this
does not depend on the input data. The costliest operation is the computation of θ. Any other
part of the scheme is negligible in comparison. Therefore, once the parameters are set, the time
performance depends solely on the number of classes (the number of bootstrap comparisons is
quadratic in the number of classes). As such, 100 queries require 6.5 minutes and 1000 queries
65 minutes. Of course, the queries can be performed in parallel to decrease the latency allowing
for much more challenging applications.

Homomorphic argmax accuracy. As we mention in Section 1.4.3, the homomorphic
computation of the argmax is inherently probabilistic. This is due both to the noise added to
any ciphertext at encryption time, and to limitations of the bootstrapping operation in terms of
accuracy. On MNIST dataset [113], we evaluate the method with τ = 1/0.9/0.7 and compare
the cleartext argmax to our homomorphic argmax. Our implementation of the HE argmax has
an average accuracy of 99.4%, meaning that it retrieves the cleartext argmax 99.4% of the
time.
To obtain a more general and conservative measure of the inherent accuracy of the HE argmax
(which can be applied on any dataset), we make the teachers give uniformly random answers
to the queries. In this setting, most counts nk are likely to be close to one another, which
makes even a classical argmax useless. This kind of scenario can be seen as worst-case, since
the teacher voting is adversarial to argmax computation. Even in this scenario, and with the
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same parameters as for MNIST, our implementation of the HE argmax algorithm still produces
an average accuracy of 90%. Hence, an accuracy of 90% can be considered a lower bound for
any adaptation of this argmax technique to other datasets. Yet in practice a tweaking of the
parameters can yield a better accuracy even for this worst-case scenario, at the cost of time
efficiency.

Learning setup. To evaluate the performances of our framework, we test our method on
MNIST [113] and SVHN [137] datasets. To represent the data holders, we divide the training set
in 250 equally distributed and disjoint subsets, keeping the test set for learning and evaluation
of the student model. Then we apply the following procedures. We refer the interested reader
to Section C of the appendix for more details on the hyper-parameters and learning procedure.

• Teacher models. For MNIST, given a dataset, a data holder builds a local model by
stacking two convolutional layers with max pooling and a fully connected layer with
ReLu activations. Two additional layers have been added for SVHN.

• Student model. Following the idea from [141], we train the student in a semi-supervised
fashion. Unlabelled inputs are used to estimate a good prior distribution using a GAN-
based technique first introduced in [159]. Then we use a limited amount of queries (100
for MNIST, 500 for SVHN) to obtain labelled examples which we use to fine tune the
model.

For MNIST experiments, as the student model can substantially vary based on the selected
subset of labelled examples, the out-of-sample accuracy has been evaluated 15 times, with 100

labelled examples sampled from a set of 9000 ones. For each experiment, the remaining 1000

examples have been used to evaluate the student model accuracy. For SVHN, the computations
being much more heavy, the out-of-sample accuracy has been evaluated 3 times, with 500

examples sampled from a set of 10000 ones. We used 16032 examples to test the student
model accuracy.

Performances on MNIST. Table 1.2 displays our experimental results for SPEED with
MNIST and compares them to a non-private baseline (without DP or HE) and to the framework
that we call Trusted which assumes that the server is trusted and thus only involves DP and not
HE. Trusted can be considered as PATE framework from [141] with some subtle differences:
the noise is generated in a distributed way in Trusted and the notion of adjacency is larger.
Even if the inverse noise scale γ we use is greater than the one in [141] (0.1 instead of 0.05),
which should lead to a worse DP guarantee, an argmax-specific analysis of the privacy cost
per query allowed us to provide a better DP guarantee (ϵ = 1.41 instead of ϵ = 2.04 with
δ = 10−5 and 100 queries). To be more conservative in terms of accuracy, the experiments
were run considering that the colluding teachers did not generate any noise, which does not
change anything in terms of DP. That is why, in spite of the variability of the accuracy, we
observe a trade-off between accuracy and DP. Indeed, even if the reported average accuracy
does not vary much across conditions, consistent rankings of the methods have been observed,
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Figure 1.2: Differential privacy guaranteesfor MNIST as a function of γ, with τ = 0.9
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Figure 1.3: Differential privacy guaranteesfor MNIST as a function of τ , with γ = 0.1

confirming the expected average rank of the method based on the amount of added noise. As
expected, the best DP guarantee (ϵ = 1.41) is obtained when all the teachers generated noise
(τ = 1), but this is the case where the accuracy is the lowest. On the contrary, when some
teachers failed to generate noise (τ = 0.9 and τ = 0.7), the counts are more precise, leading to
a slightly better accuracy but worse DP guarantees. It should also be noted that the variance is
high in each condition. It masks the fact that the distribution is highly skewed, with a majority
of results in the 97.5%− 98.5% range, and a few samplings yielding an out-of-sample accuracy
around 90%.

Table 1.2: Results for MNIST dataset with 250 teachers and 100 student queries. We used aninverse noise scale γ = 0.1. The DP guarantees, computed by composability with the momentsaccountant method over the 100 queries, are given for δ = 10−5.
Framework ϵ Acc. (± std) [%] HE overhead
Non-private - 96.22 (±2.27) -Trusted 1.41 95.95 (±2.97) -
τ = 1 1.41 95.91 (±2.57)

6.5 minτ = 0.9 1.66 96.02 (±2.92)
τ = 0.7 2.37 96.06 (±2.61)

Figure 1.2 shows the evolution of our DP guarantee as a function of γ, with τ = 0.9 fixed.
Note that the privacy cost decreases for γ ≥ 2 which may seem counter-intuitive but the reason
is thoroughly explained in Section A.4 of the appendix. Anyway, we observed empirically that
the privacy cost has a finite limit in +∞ (approximately 2.87) and remains greater than this
limit for any γ ≥ 2. The asymptote is shown by a dashed line on Figure 1.2.

Figure 1.3 shows the evolution of the DP guarantee as a function of τ , with γ = 0.1 fixed.
As explained before, the greater τ , the better the DP guarantee.
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Performances on SVHN. Table 1.3 presents our experimental results on SVHN dataset 5.
The variance on the accuracy is much smaller than for MNIST dataset because the test set
is constituted of 16032 samples. Similarly to the MNIST experiment, the accuracy and the
privacy cost increase when less noise is applied because less teachers noised their votes (i.e.
when τ is small). The DP guarantees are not as good as for MNIST, this is due to the high
amount of queries (500) necessary to obtain a good accuracy because the learning task is more
complex.

Table 1.3: SVHN experimental results for 500 queries, with noise inverse scale γ = 0.1, δ = 10−5

Framework ϵ Acc. [%] HE overhead
Non-private - 84.7 -Trusted 4.73 83.7 -
τ = 1 4.73 83.5

32.5 minτ = 0.9 5.59 83.8
τ = 0.7 8.16 84.6

1.7 . Conclusion and open questions for further works

Our framework allows a group of agents to collaborate and put together their sensitive
knowledge while protecting it via two complementary technologies - differential privacy and
homomorphic encryption - against any entity contributing to the learning or having access to
the final model. Crucially, our experiments showed that our method is practical for deep learning
applications, combining high accuracy, mild computational overhead and privacy guarantees
adapting to the number of malicious teachers.

An interesting further work could investigate the fault tolerance of the privacy guarantees
with other noises (e.g. Gaussian noise) or other infinite divisions (Laplace distribution can
also be infinitely divided using individual Gaussian noises or individual Laplace noises [81]). A
more ambitious direction towards collaborative deep learning with privacy would be to design
new aggregation operators, more suitable to FHE performances yet still providing good DP
bounds. In particular, a linear or quadratic aggregation operator would be amenable to almost
negligible homomorphic computations overhead. This lighter homomorphic layer would enable
to extend the applicability of our framework to more complex datasets. Such aggregation
operators would also allow to associate homomorphic calculations with verifiable computing
techniques (e.g. [71]) whereby the server would provide an encrypted aggregation result along
with a formal proof that aggregation was indeed done correctly. These perspectives would then
allow to address threats beyond the honest-but-curious model.

5Note that our DP guarantee ϵ for Trusted cannot be directly compared with PATE’s one sincewe do not use the same δ.
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A - DP analysis of the learning procedure

In this appendix, we describe the procedure that computes the overall DP guarantees of the
student model learning stage. We summarise this procedure in Section A.1, and demonstrate
the theorems we use in Sections A.2 and A.4.

We callA the aggregation mechanism that outputs the argmax of the noisy counts. A(d,Q)

is the output of A for the database d and the query Q.

Let γ ∈ R∗
+ be the inverse scale parameter of the distributed noise. Considering the DP

guarantees from the point of view of an entity E , let τ ∈ (0, 1) be the ratio of the teachers
whose noise is ignored by E . Typically, from the point of view of a colluding teacher, τ is the
ratio of the teachers who do not collude.

A.1 . Analysis algorithm

Let us suppose that for every query Q from the student model, we have a privacy guarantee
using Theorem 4 and that we can upper bound the probability P[A(d;Q) ̸= k∗] that A outputs
some specific output k∗ (in practice we choose k∗ to be the unnoisy argmax). Then, Theorem 5
from [141] gives us an upper bound on the moments accountant per query1. The computation
of these building blocks is detailed in Sections A.2 and A.4, and the procedure is summarised
in Algorithm 2.

Using the moments accountant per query, we evaluate the overall moments accountant by
composability, applying Theorem 1 from [2]. Finally, parameter δ being chosen, the privacy
guarantee is derived from the overall moments accountant applying the tail bound property,
stated in Theorem 2 from [2].

1Note that only the third value over which the minimum is taken in Theorem 5 is data-dependent and, as such, requires this upper bound of P[A(d;Q) ̸= k∗].
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Algorithm 2: Algorithm to determine the overall privacy guarantee of thelearning procedure
Input : number of teachers n, number of classes K, ratio τ of teachers with secret noise,

set of queries Q, unnoisy teachers’ counts nk, inverse noise scale γ, lmax
a, δ

Output: ϵ
1 for l in [lmax] do
2 α(l)← 0
3 for query Q in Q do
4 Compute the privacy cost of Q and an upper bound of P[A(d;Q) ̸= k∗];
5 Derive the moments accountant αQ(l) with Theorem 5;
6 α(l)← α(l) + αQ(l);
7 end
8 ϵ(l)← α(l)−δ

l ;
9 end
10 ϵ← minl∈[lmax] ϵ(l);

aTo determine the DP guarantees presented in Chapter 1, we took lmax = 25 because it seemsempirically that it captures the best moments accountant in every case.

A.2 . DP guarantee per query in the BHBC framework

Preliminaries on the generalised Laplace distribution. For every teacher j who
did send noise and whose noise is secret, the noise sent by j is distributed as G(j)

1 −G
(j)
2 where

G
(j)
1 and G(j)

2 are two i.i.d. random variables with gamma density u 7→ 1(
1
γ

) 1
n
Γ( 1

n)
u

1
n
−1e−γu

and characteristic function t 7→
(

1
1−i t

γ

) 1
n

(see [112]). Hence, the characteristic function

of G(j)
1 − G

(j)
2 is ψ : t 7→

(
1

1+
(

t
γ

)2

) 1
n

. By summing over all the teachers who did send a

secret noise, we get a total noise whose characteristic function is ψτn : t 7→

(
1

1+
(

t
γ

)2

)τ

. The

corresponding moment generating function is t 7→

(
1

1−
(

t
γ

)2

)τ

. According to [125], this is the

moment generating function of a generalised Laplace distribution whose density is

fγ,τ : u ∈ R∗ 7→


1(

1
γ

)2τ
Γ(τ)2

eγu
∫ +∞
u tτ−1 (t− u)τ−1 e−2γtdt if u > 0

1(
1
γ

)2τ
Γ(τ)2

eγu
∫ +∞
0 tτ−1 (t− u)τ−1 e−2γtdt if u < 0
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which is actually

u ∈ R∗ 7→ 1(
1
γ

)2τ
Γ (τ)2

eγ|u|
∫ +∞

|u|
tτ−1 (t− |u|)τ−1 e−2γtdt

=
γ2τ−1

Γ (τ)2
eγ|u|

∫ +∞

0

(
v

γ
+ |u|

)τ−1(v
γ

)τ−1

e−2(v+γ|u|)dv

(by the substitution v = γ(t− |u|))
= Lγ,τe

−γ|u|Iτ (γ|u|)

where Iτ : v ∈ R∗
+ 7→

∫ +∞
0 (x+ v)τ−1 xτ−1e−2xdx and Lγ,τ = γ

Γ(τ)2
.

Let us remark that, since τ − 1 ≤ 0, Iτ is decreasing on R∗
+.

As a density function, fγ,τ is integrable on R (it can also be proved using Lemma 4). We
call Fγ,τ the associated cumulative distribution function:

Fγ,τ : t ∈ R 7→
∫ t

−∞
fγ,τ (u)du

Note that, lim
+∞

Fγ,τ = 1 and, since fγ,τ is pair, Fγ,τ (0) =
1
2 and

∀t ∈ R, Fγ,τ (t) + Fγ,τ (−t) = 1. (A.1)
If there is no ambiguity on the parameters γ and τ , we will only write f , F , I and L.

Lemma1. Let r be a random variable following the generalised Laplace distribution as defined
above. Suppose that we can find a functionM of γ and τ such that, for any t ∈ R, P[r≥t]

P[r≥t+2] ≤
M .

Then A is (log(M), 0)-differentially private.

Proof. Wewill mimic the proof of the privacy guarantee of the report noisy max from [66]
(Claim 3.9), but with two key adaptations.

First of all, let us warn that our definition of the adjacency of two databases is different
from the one of [66]. Changing one teacher is analogous to changing one individual in the
counting queries context. This is why the hypotheses must be adapted. Indeed, d and d′
being two adjacent databases (in our sense), since atmost one teacher will change its vote
between d and d′, we have the property |nk − n′k| ≤ 1 for any k ∈ [K] but we do not have
the property of monotonicity of the counts used in [66] 2.

The second difference is that, r being a random variable following the generalised
Laplace distribution, we have to substitute the classical upper bound e2γ (valid for the
Laplace distribution) of P[r≥t]

P[r≥t+2] byM .
2We could have consider a database d̃ such that d is adjacent to d̃ and d′ is adjacent to d̃ withDwork’s definition. Then we could have applied twice the result of [66] (usingM instead of eγ as

upper bound of P[r≥t]
P[r≥t+2] for (d, d̃) and (d̃, d′)). Nevertheless, we performed numerical experimen-

tations that make us believe that it would have given worse privacy guarantees than the presentresult.
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We consider a query Q. Let k0 ∈ [K].
For any event E, we write P[E|r−k0 ] the probability of E under the condition that the

draw from the (K−1)-dimensional generalised Laplace distribution, used for all the noisy
counts except the k0-th count, is equal to r−k0 . We now suppose this draw r−k0 fixed.We define r∗ = min{rk0 |∀k ∈ [K] \ {k0}, nk0 + rk0 ≥ nk + rk}. Note that, whatever isthe tie-breaking policy, r−k0 being fixed, k0 is the output of A for database d if rk0 > r∗

and k0 is not the output of A if rk0 < r∗. Since P[rk0 = r∗] = 0, we have P[A(d,Q) =

k0|r−k0 ] = P[rk0 > r∗] = P[rk0 ≥ r∗]. Moreover, for all k ∈ [K] \ {k0},
n′k0 + r∗ + 2 ≥ nk0 + r∗ + 1 (because |nk0 − n′k0 | ≤ 1)

≥ nk + rk + 1 (by definition of r∗)
≥ n′k + rk (because |nk0 − n′k0 | ≤ 1)

We deduce that, if rk0 > r∗ + 2, then k0 is the output of A for database d′. Therefore,
P[A(d′, Q) = k0|r−k0 ] ≥ P[rk0 > r∗ + 2] = P[rk0 ≥ r∗ + 2].

Since P[rk0 ≥ r∗] ≤MP[rk0 ≥ r∗ + 2] by assumption, we can deduce that P[A(d,Q) =

k0|r−k0 ] ≤ MP[A(d′, Q) = k0|r−k0 ]. This being true for any draw r−k0 , the law of total
probability gives us P[A(d,Q) = k0] ≤MP[A(d′, Q) = k0].As d and d′ play perfectly symmetric roles (unlike in the proof of the report noisy max
guarantee from [66]), we also have P[A(d′, Q) = k0] ≤ MP[A(d,Q) = k0]. Since this istrue for any query Q, we can conclude that A is (log(M), 0)-differentially private.

By definition of F , r being a random variable following the generalised Laplace distribution,
for all t ∈ R,

P[r ≥ t] = 1− F (t).

Let a ∈ R∗
+.

In the following, we exhibit upper bounds of g : t ∈ R 7→ 1−F (t)
1−F (t+a) (Propositions 6 and 7)

to derive privacy guarantees for A (Theorem 4) taking a = 2. Let us first state some useful
lemmas.

Lemma 2. Let β ∈ R+. The application h : z ∈ R∗
+ 7→

I(z)
I(z+β) is decreasing.

Proof. We will prove that h is differentiable and that its derivative is non-positive.
Let ϕ : (z, t) ∈ (R∗

+)
2 7→ (t+ z)τ−1 tτ−1e−2γt. ϕ has a partial derivative in the first

variable and, for all (z, t) ∈ (R∗
+)

2, ∂ϕ
∂z (z, t) = (τ − 1) (t+ z)τ−2 tτ−1e−2γt. ϕ and ∂ϕ

∂z are
continuous in both variables.

Let b ∈ R∗
+. For all (z, t) ∈ [b,+∞) × R∗

+, |∂ϕ∂z (z, t)| ≤ ψ(t) where ψ : t ∈ R∗
+ 7→

(1− τ) (t+ b)τ−2 tτ−1e−2γt. ψ is continuous and integrable on [b,+∞). Applying Leibniz’s
theorem, we deduce that I is differentiable on [b,+∞) and that, for all z ∈ [b,+∞), I ′(z) =∫ +∞
0 (τ − 1) (t+ z)τ−2 tτ−1e−2γtdt. Since this is true for all b ∈ R∗

+, we know that I is
differentiable onR∗

+ and that, for all z ∈ R∗
+, I ′(z) = ∫ +∞

0 (τ−1) (t+ z)τ−2 tτ−1e−2γtdt. As
a consequence, h is differentiable onR∗

+ and, for all z ∈ R∗
+, h′(z) = I(z+β)I′(z)−I(z)I′(z+β)

I(z+β)2
.
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Let z ∈ R∗
+.

I(z + β)I ′(z)− I(z)I ′(z + β)

=

∫ +∞

0
(x+ z + β)τ−1 xτ−1e−2xdx×

∫ +∞

0
(τ − 1) (y + z)τ−2 yτ−1e−2ydy

−
∫ +∞

0
(y + z)τ−1 yτ−1e−2ydy ×

∫ +∞

0
(τ − 1) (x+ z + β)τ−2 xτ−1e−2xdx

= (τ − 1)

[∫ +∞

0
(x+ z + β)τ−1 xτ−1e−2x

∫ +∞

0
(y + z)τ−2 yτ−1e−2ydydx

−
∫ +∞

0
(x+ z + β)τ−2 xτ−1e−2x

∫ +∞

0
(y + z)τ−1 yτ−1e−2ydydx

]
= (τ − 1)

[∫ +∞

0

∫ +∞

0
(x+ z + β)τ−1 (y + z)τ−2 (xy)τ−1e−2(x+y)dydx

−
∫ +∞

0

∫ +∞

0
(x+ z + β)τ−2 (y + z)τ−1 (xy)τ−1e−2(x+y)dydx

]
= (τ − 1)

∫ +∞

0

∫ +∞

0
(xy)τ−1e−2(x+y)

×
[
(x+ z + β)τ−1 (y + z)τ−2 − (x+ z + β)τ−2 (y + z)τ−1

]
dydx

= (τ − 1)

∫ +∞

0

∫ +∞

0
(x+ z + β)τ−2 (y + z)τ−2 (xy)τ−1e−2(x+y)

× [(x+ z + β)− (y + z)] dydx

= (τ − 1)

∫ +∞

0

∫ +∞

0
(x+ z + β)τ−2 (y + z)τ−2 (xy)τ−1e−2(x+y)

× (x+ β − y) dydx

≤ (τ − 1)

∫ +∞

0

∫ +∞

0
(x+ z + β)τ−2 (y + z)τ−2 (xy)τ−1e−2(x+y)(x− y)dydx (A.2)

(because τ − 1 ≤ 0 and β ≥ 0)
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Similarly, we show that
I(z + β)I ′(z)− I(z)I ′(z + β)

=

∫ +∞

0
(y + z + β)τ−1 yτ−1e−2ydy ×

∫ +∞

0
(τ − 1) (x+ z)τ−2 xτ−1e−2xdx

−
∫ +∞

0
(x+ z)τ−1 xτ−1e−2xdx×

∫ +∞

0
(τ − 1) (y + z + β)τ−2 yτ−1e−2ydy

= (τ − 1)

[∫ +∞

0
(x+ z)τ−2 xτ−1e−2x

∫ +∞

0
(y + z + β)τ−1 yτ−1e−2ydydx

−
∫ +∞

0
(x+ z)τ−1 xτ−1e−2x

∫ +∞

0
(y + z + β)τ−2 yτ−1e−2ydydx

]
= (τ − 1)

∫ +∞

0

∫ +∞

0
(xy)τ−1e−2(x+y)

×
[
(x+ z)τ−2 (y + z + β)τ−1 − (x+ z)τ−1 (y + z + β)τ−2

]
dydx

= (τ − 1)

∫ +∞

0

∫ +∞

0
(x+ z)τ−2 (y + z + β)τ−2 (xy)τ−1e−2(x+y)

× (y + β − x)dydx

≤ (τ − 1)

∫ +∞

0

∫ +∞

0
(x+ z)τ−2 (y + z + β)τ−2 (xy)τ−1e−2(x+y)(y − x)dydx (A.3)

Alternatively, we can use A.2 to deduce A.3 directly using Fubini’s theorem and ex-
changing the roles of x and y.

From A.2 and A.3, we get:
2×

[
I(z + β)I ′(z)− I(z)I ′(z + β)

]
≤ (τ − 1)

∫ +∞

0

∫ +∞

0
(x+ z + β)τ−2 (y + z)τ−2 (x− y) (xy)τ−1e−2(x+y)dydx

+ (τ − 1)

∫ +∞

0

∫ +∞

0
(x+ z)τ−2 (y + z + β)τ−2 (y − x) (xy)τ−1e−2(x+y)dydx

= (τ − 1)

∫ +∞

0

∫ +∞

0
(x− y) (xy)τ−1e−2(x+y)

×
[
(x+ z + β)τ−2 (y + z)τ−2 − (x+ z)τ−2 (y + z + β)τ−2

]
dydx

Let (x, y) ∈ (R∗
+)

2.
Note that (x+ z + β) (y + z)− (x+ z) (y + z + β) = β(y − x) and then
(x+ z + β)τ−2 (y + z)τ−2 ≥ (x+ z)τ−2 (y + z + β)τ−2

⇔ (x+ z + β) (y + z) ≤ (x+ z) (y + z + β) (because τ − 2 < 0)
⇔ x ≥ y.

We deduce that[
(x+ z + β)τ−2 (y + z)τ−2 − (x+ z)τ−2 (y + z + β)τ−2

]
(x− y) ≥ 0.
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This inequality being true for all (x, y) ∈ (R∗
+)

2 and, since τ − 1 ≤ 0, we have:
(τ − 1)

∫ +∞

0

∫ +∞

0

[
(x+ z + β)τ−2 (y + z)τ−2 − (x+ z)τ−2 (y + z + β)τ−2

]
× (x− y) (xy)τ−1e−2(x+y)dydx ≤ 0

Finally, I(z + β)I ′(z)− I(z)I ′(z + β) ≤ 0 and h′(z) ≤ 0.
Since this is true for any z ∈ R∗

+, we can conclude that h is decreasing on R∗
+.

Lemma 3. The function g has a maximum on R, and this maximum is reached in the interval
[−a

2 ; 0].

Proof. Since f is defined on R∗, F is differentiable on R∗. Thus g is differentiable on R∗ \
{−a} and, for all t ∈ R∗ \ {−a},

g′(t) =
(1− F (t))f(t+ a)− (1− F (t+ a))f(t)

(1− F (t+ a))2
.

First of all, let us prove that g is increasing on (−∞;−a
2 ). For all t ∈ (−∞;−a), |t| =

−t ≥ −t − a = |t + a| and, for all t ∈ (−a;−a
2 ), |t| = −t ≥ t + a = |t + a|. Let t ∈

(−∞;−a) ∪ (−a;−a
2 ). Then, since x 7→ e−γxI(γx) is decreasing on R∗

+, e−γ|t|I(γ|t|) ≤
e−γ|t+a|I(γ|t+a|)which means f(t) ≤ f(t+a). Besides, F is increasing then, since a ≥ 0,
1−F (t+a) ≤ 1−F (t). Since f(t), f(t+a), 1−F (t) and 1−F (t) are all positive quantities,
we deduce that g′(t) ≥ 0. Then, g is increasing on (−∞;−a) and on (−a;−a

2 ) and since gis defined and continuous in −a, g is increasing on (−∞;−a
2 ).Let us now prove that g is decreasing on R+. Let t ∈ R∗

+.
(1− F (t+ a))2

L2
g′(t)

=
1

L2
[(1− F (t))f(t+ a)− (1− F (t+ a))f(t)]

= e−γ|t+a|I(γ|t+ a|)
∫ +∞

t
e−γ|u|I(γ|u|)du

− e−γ|t|I(γ|t|)
∫ +∞

t+a
e−γ|u|I(γ|u|)du

= e−γ(t+a)I(γ(t+ a))

∫ +∞

t
e−γuI(γu)du− e−γtI(γt)

∫ +∞

t+a
e−γuI(γu)du

= e−γ(t+a)I(γ(t+ a))

∫ +∞

t
e−γuI(γu)du

− e−γtI(γt)

∫ +∞

t
e−γ(v+a)I(γ(v + a))dv

(by the substitution v = u− a)
= e−γ(t+a)

[∫ +∞

t
e−γu [I(γ(t+ a))I(γu)− I(γt)I(γ(u+ a))] du

]
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For any u ∈ [t; +∞), Lemma 2 with β = γa tells us that I(γu)
I(γ(u+a)) ≤

I(γt)
I(γ(t+a)) whichmeans I(γ(t+ a))I(γu)− I(γt)I(γ(u+ a)) ≤ 0.

Therefore, ∫ +∞
t e−γu [I(γ(t+ a))I(γu)− I(γt)I(γ(u+ a))] du ≤ 0 and finally g′(t) ≤ 0.

This being valid for all t ∈ R∗
+ and g being continuous in 0, we deduce that g is decreasing

on R+.
From the two previous discussions and from the fact that g is continuous on [−a

2 ; 0],we conclude that g has a maximum onR and that this maximum is reached in [−a
2 ; 0].

Proposition 6. For all t ∈ [−a
2 ; 0],

g(t) ≤ 1 + 2

∫ γa
2

0 e−vI(v)dv∫ +∞
γa e−vI(v)dv

.

Proof. For all t ∈ [−a
2 ; 0], g(t) = 1 + F (t+a)−F (t)

1−F (t+a) .
Calling ϕ : t ∈ [−a

2 ; 0] 7→ F (t + a) − F (t), we know that ϕ is differentiable on [−a
2 ; 0)and that ϕ′ : t ∈ [−a

2 ; 0) 7→ f(t + a) − f(t). Since x ∈ R∗
+ 7→ e−xI(x) is decreasing, we

have, for all t ∈ [−a
2 ; 0),

ϕ′(t) ≥ 0⇔ e−γ|t+a|I(γ|t+ a|) ≥ e−γ|t|I(γ|t|)
⇔ |t+ a| ≤ |t|
⇔ t+ a ≤ −t (because t+ a ≥ 0 and t ≤ 0)
⇔ t ≤ −a

2

Since ϕ is continuous in 0, we deduce that ϕ is decreasing on [−a
2 ; 0] and then, for all

t ∈ [−a
2 ; 0], F (t + a) − F (t) ≤ F (a2 ) − F (−a

2 ). Moreover, since F is increasing, for all
t ∈ [−a

2 ; 0], 1− F (t+ a) ≥ 1− F (a).
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Finally, for all t ∈ [−a
2 ; 0],

g(t) ≤ 1 +
F (a2 )− F (−

a
2 )

1− F (a)

= 1 +
L
∫ a

2

−a
2
e−γ|u|I(γ|u|)du

L
∫ +∞
a e−γ|u|I(γ|u|)du

= 1 +

L
γ

∫ γa
2

− γa
2
e−|v|I(|v|)dv

L
γ

∫ +∞
γa e−|v|I(|v|)dv

(by the substitutions v=γu)

= 1 +

∫ 0
− γa

2
e−|v|I(|v|)dv +

∫ γa
2

0 e−|v|I(|v|)dv∫ +∞
γa e−|v|I(|v|)dv

= 1 +

∫ γa
2

0 e−|v′|I(|v′|)dv′ +
∫ γa

2
0 e−|v|I(|v|)dv∫ +∞

γa e−|v|I(|v|)dv
(by the substitution v′=−v)

= 1 +
2
∫ γa

2
0 e−|v|I(|v|)dv∫ +∞

γa e−|v|I(|v|)dv

= 1 + 2

∫ γa
2

0 e−vI(v)dv∫ +∞
γa e−vI(v)dv

Proposition 7. Let us suppose that τ > 1
2 .

For all t ∈ [−a
2 ; 0],

g(t) ≤ g(0)− a

2
g′(0).

with

g′(0) = γ

Γ(τ)2

2 e−γaI(γa)− I(0)
∫ +∞
γa e−vI(v)dv(∫ +∞

γa e−vI(v)dv
)2 .

Proof. The result basically comes from the fact that g is concave on [argmax(g); 0] which
we prove hereafter.

From the proof of Lemma 3 we know that g is differentiable on [−a
2 ; 0) and g′ : t 7→

(1−F (t))f(t+a)−(1−F (t+a))f(t)
(1−F (t+a))2

= g(t)f(t+a)−f(t)
1−F (t+a) . In the proof of Lemma 2, we saw that I is dif-

ferentiable onR∗
+ and thus f is differentiable onR∗

+. Finally, we get that g′ is differentiable
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on (−a; 0) and, for all t ∈ (−a; 0),
g′′(t) =

1

(1− F (t+ a))2
[
(1− F (t+ a))[g′(t)f(t+ a) + g(t)f ′(t+ a)− f ′(t)]

+f(t+ a)[g(t)f(t+ a)− f(t)]]

=
1

(1− F (t+ a))2
[
(1− F (t+ a))[g′(t)f(t+ a) + g(t)f ′(t+ a)− f ′(t)]

+(1− F (t+ a))f(t+ a)g′(t)
]

= 2g′(t)
f(t+ a)

1− F (t+ a)
+

(1− F (t+ a))[g(t)f ′(t+ a)− f ′(t)]
(1− F (t+ a))2

= 2g′(t)
f(t+ a)

1− F (t+ a)
+

(1− F (t))f ′(t+ a)− (1− F (t+ a))f ′(t)

(1− F (t+ a))2
.

Since I ′ is strictly negative on R∗
+, for all u < 0, f ′(u) = Lγ[eγuI(−γu) − eγuI ′(−γu)] > 0

and, for all u > 0, f ′(u) = Lγ[−e−γuI(γu) + e−γuI ′(γu)] < 0. Then, for all t ∈ (−a; 0),
f ′(t) > 0 and f ′(t+a) < 0 and, since 1−F (t) > 0 and 1−F (t+a) > 0, (1−F (t))f ′(t+a) < 0

and (1− F (t+ a))f ′(t) > 0. We deduce that, for all t ∈ (−a; 0),
g′′(t) < 2g′(t)

f(t+ a)

1− F (t+ a)
+

(1− F (t))f ′(t+ a)

(1− F (t+ a))2
(A.4)

where 2 f(t+a)
1−F (t+a) > 0 and (1−F (t))f ′(t+a)

(1−F (t+a))2
< 0.

According to Lemma 3, g has a maximum, which is reached on [−a
2 ; 0]. Let tmax =

argmax(g). If tmax ̸= 0, we can argue that g′(tmax) = 0 and then, from Inequation A.4,
g′′ is strictly negative on a neighbourhood of tmax. This implies that g′ is decreasing on a
neighbourhood of (tmax)

+ and then strictly negative on a neighbourhood of (tmax)
+.

Removing the assumption that tmax ̸= 0, we need to be slightly more subtle since g′
is not differentiable in 0 (because I is not differentiable in 0).

Since τ > 1
2 , v 7→ v2τ−2e−2v is integrable on R∗

+ and we can extend the definition of I
to R+. This implies in particular that F and then g are differentiable on the whole interval
(−a; +∞) (with g′(0) = (1−F (0))f(a)−(1−F (a))f(0)

(1−F (a))2
). Then g′(tmax) = 0 and, from Inequa-

tion A.4, lim
(tmax)+

g′′ < (1−F (tmax))f ′(tmax+a)
(1−F (tmax+a))2

< 0. Thus g′′ (not defined in 0) is strictly negative
on a neighbourhood of (tmax)

+. Then g′ is strictly decreasing on a neighbourhood of
(tmax)

+ and, by continuity in tmax, strictly negative on a neighbourhood of (tmax)
+.

Let us suppose that g′′(t) ≥ 0 for a t in [tmax; 0) (trivially false if tmax = 0 since [tmax; 0)is empty in this case). We fix such a t and call it t0. Then, from Inequation A.4, g′(t0) > 0

and we can fix t1 = inf{t ∈ [tmax; t0]|g′(t) ≥ 0}. g′ is non-negative on a neighbourhood
of (t1)+ thus t1 > tmax. We also know that g′ is non-positive on [tmax; t1) by definition of
t1. This implies g′(t1) = 0. Since g′(t1) = 0, from Inequation A.4, we know that g′′(t1) < 0

and then g′ is strictly negative on a neighbourhood of (t1)+. We get a contradiction so
g′′(t) < 0 for all t ∈ [tmax; 0). We deduce that g′ is decreasing on [tmax; 0).Thus, for all t ∈ [tmax; 0), g′(t) ≥ g′(0). As a consequence, since tmax ≤ 0, g(tmax) ≤
g(0)+tmaxg

′(0). Besides, tmax ≥ −a
2 and g′(0) ≤ g′(tmax) = 0, thus g(tmax) ≤ g(0)−a

2g
′(0).
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Finally, by definition of tmax, for all t ∈ R,
g(t) ≤ g(0)− a

2
g′(0)

with
g′(0) =

(1− F (0))f(a)− (1− F (a))f(0)
(1− F (a))2

=
1
2Le

−γaI(γa)− L2I(0)
∫ +∞
a e−γuI(γu)du(

L
∫ +∞
a e−γuI(γu)du

)2
=

1
2Le

−γaI(γa)− I(0)
∫ +∞
a e−γuI(γu)du(∫ +∞

a e−γuI(γu)du
)2

=

Γ(τ)2

2γ e−γaI(γa)− 1
γ I(0)

∫ +∞
γa e−vI(v)dv(

1
γ

∫ +∞
γa e−vI(v)dv

)2 (by the substitutions v=γu)

= γ

Γ(τ)2

2 e−γaI(γa)− I(0)
∫ +∞
γa e−vI(v)dv(∫ +∞

γa e−vI(v)dv
)2 .

Theorem 6. The aggregation mechanism A is (ϵ, 0)-differentially private, with

ϵ = log

(
1 + 2

∫ γ
0 e

−vI(v)dv∫ +∞
2γ e−vI(v)dv

)
.

Moreover, if τ > 1
2 , g is differentiable in 0 and A is (ϵ′, 0)-differentially private, with

ϵ′ = min
[
ϵ, log

(
g(0)− g′(0)

)]
.

Proof. Thanks to Lemma 3, we can use Propositions 6 and 7 to upper bound g, for a = 2.
We then just have to apply Lemma 1 to conclude.
Lemma 4. For all v ∈ R∗

+, I(v) ≤ vτ−1 Γ(τ)
2τ .

Proof. Let v ∈ R∗
+.

I(v) =

∫ +∞

0
(t+ v)τ−1 tτ−1e−2tdt

≤ vτ−1

∫ +∞

0
tτ−1e−2tdt (because τ − 1 ≤ 0)

= vτ−1

∫ +∞

0

(u
2

)τ−1
e−udu

2
(by the substitution u = 2t)

= vτ−1Γ(τ)

2τ
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Proposition 8. For all τ ∈ (0, 1), lim
γ→0

[
log

(
1 + 2

∫ γ
0 e−vI(v)dv∫+∞

2γ e−vI(v)dv

)]
= 0.

Proof. For all v ∈ R∗
+, e−vI(v) > 0 thus, supposing γ ∈ (0, 1], ∫ +∞

2γ e−vI(v)dv ≥
∫ +∞
2 e−vI(v)dv >

0. Therefore, it suffices to prove that lim
γ→0

[∫ γ
0 e

−vI(v)dv
]
= 0 to deduce the announced

result.
Applying Lemma 4, we get∫ γ

0
e−vI(v)dv ≤ Γ(τ)

2τ

∫ γ

0
e−vvτ−1dv

≤ Γ(τ)

2τ

∫ γ

0
vτ−1dv

=
Γ(τ)

2τ
γτ

τ

which gives lim
γ→0

[∫ γ
0 e

−vI(v)dv
]
= 0.

Proposition 9. For all γ ∈ R∗
+, lim

τ→1
[log (g(0)− g′(0))] = 2γ.

Proof. We use the dominated convergence theorem to determine the limit of f and F
when τ approaches 1. Let us suppose in the following that τ ∈ (34 ; 1).First of all, we determine the limit of I and deduce the one of f . Let v ∈ R+.For all x ∈ (0; 1], (x + v)τ−1xτ−1e−2x ≤ x2τ−2e−2x ≤ x−

1
2 e−2x. As x 7→ x−

1
2 e−2x is

integrable on (0; 1], and, for all x ∈ (0; 1],
lim
τ→1

[
(x+ v)τ−1xτ−1e−2x

]
= e−2x, by the dominated convergence theorem we get that

lim
τ→1

[∫ 1
0 (x+ v)τ−1xτ−1e−2xdx

]
=
∫ 1
0 e

−2xdx.
Similarly, as, for all x ∈ [1; +∞), (x+ v)τ−1xτ−1e−2x ≤ e−2x and

lim
τ→1

[
(x+ v)τ−1xτ−1e−2x

]
= e−2x, by the dominated convergence theorem,

lim
τ→1

[∫ +∞
1 (x+ v)τ−1xτ−1e−2xdx

]
=
∫ +∞
1 e−2xdx.

From the two points above, we deduce that
lim
τ→1

I(v) = lim
τ→1

[∫ 1

0
(x+ v)τ−1xτ−1e−2xdx+

∫ +∞

1
(x+ v)τ−1xτ−1e−2xdx

]
=

∫ 1

0
e−2xdx+

∫ +∞

1
e−2xdx

=

∫ +∞

0
e−2xdx

=
1

2

and, for any u ∈ R, lim
τ→1

f(u) = lim
τ→1

[
γ

Γ(τ)2
e−γ|u|I(γ|u|)

]
= 1

2γe
−γ|u|.

Let us now determine the limit of F .
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Let u0 ∈ [0; 1γ ] and u1 ∈ [0; 1γ ] such that u0 < u1. According to Lemma 4, for all
u ∈ (u0;u1], e−γuI(γu) ≤ e−γu(γu)τ−1 Γ(τ)

2τ ≤ e−γu(γu)−
1
4
Γ( 3

4
)

2
3
4

because γu ≤ 1 and Γ is
decreasing on (0; 1]. Since u 7→ e−γu(γu)−

1
4
Γ( 3

4
)

2
3
4

is integrable on (u0;u1] and, for all u ∈
(u0;u1], lim

τ→1
[e−γuI(γu)] = e−γu

2 , by the dominated convergence theorem, lim
τ→1

[∫ u1

u0
e−γuI(γu)du

]
=∫ u1

u0

e−γu

2 du.
Let u0 ∈ [ 1γ ; +∞) and u1 ∈ [ 1γ ; +∞) ∪ {+∞} such that u0 < u1. Similarly, as, for all

u ∈ [u0;u1), e−γuI(γu) ≤ e−γu(γu)τ−1 Γ(τ)
2τ ≤ e−γu Γ( 3

4
)

2
3
4
. Since u 7→ e−γu Γ( 3

4
)

2
3
4

is integrable
on [u0;u1) and, for all u ∈ [u0;u1), lim

τ→1
[e−γuI(γu)] = e−γu

2 , by the dominated convergence
theorem,
lim
τ→1

[∫ u1

u0
e−γuI(γu)du

]
=
∫ u1

u0

e−γu

2 du.
We deduce that, whatever are the bounds u0 ∈ [0; +∞) and u1 ∈ [0; +∞)∪{+∞}with

u0 < u1, lim
τ→1

[∫ u1

u0
e−γuI(γu)du

]
=
∫ u1

u0

e−γu

2 du. By substitution, we also have lim
τ→1

[∫ u1

u0
eγuI(−γu)du

]
=∫ u1

u0

eγu

2 du for any u0 ∈ (−∞; 0] ∪ {−∞} and u1 ∈ (−∞; 0] with u0 < u1.Finally, for any u0 ∈ (−∞; 0]∪ {−∞} and u1 ∈ [0; +∞)∪ {+∞} such that u0 < u1, we
have lim

τ→1

[∫ u1

u0
e−γ|u|I(γ|u|)du

]
=
∫ u1

u0

e−γ|u|

2 du. In particular, for all z ∈ R,
lim
τ→1

F (z) = lim
τ→1

(L)×
∫ z

−∞

e−γ|u|

2
du

= γ

∫ z

−∞

e−γ|u|

2
du

=

{
1
2e

γz if z < 0

1− 1
2e

−γz if z ≥ 0

which is actually the expression of the Laplace cumulative distribution function.
From what precedes we can conclude that, with a = 2,

lim
τ→1

[
g(0)− g′(0)

]
= lim

τ→1

[
1− F (0)
1− F (2)

− (1− F (0))f(2)− (1− F (2))f(0)
(1− F (2))2

]
=

1
2

1
2e

−2γ
− 1

2

1
2 ×

1
2γe

−2γ − 1
2e

−2γ × 1
2γ

(12e
−2γ)2

= e2γ

A.3 . Influence of the HE layer on the DP guarantee per query

The computation of the homomorphic argmax induces some perturbations on the noisy
counts and, as such, could harm the DP guarantees that we just gave. The three kinds of
perturbations due to the HE layer are:
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• the addition of (Gaussian) noise at the time of TFHE encryption which is inherently
probabilistic

• the addition of a constant value A on the noisy counts to ensure that all the noisy counts
are positive (with high probability) (see Section B)

• a possible mistake on the argmax if two noisy counts are too close (see Section 1.6)

While these perturbations can be seen as some post-processing applied on the clear noisy
histogram, they cannot be seen as a post-processing on the clear noisy argmax on which we
showed DP guarantees in Section A.2. Nevertheless, if we can prove that these perturbations
consist of an addition of noise on the clear histogram, the upper bound on P[r≥t]

P[r≥t+2] , r being
the total noise (generalised Laplace noise and HE perturbations) applied to the histogram of
the nk’s, would still hold, leading to the same DP guarantees. The additions of Gaussian noise
and constant A at encryption have, by commutativity, the same effect as the addition of a sum
of Gaussian noises and nA after summation and they will anyway change the output of the
homomorphic argmax with very low probability. However, some further work needs to be done
in order to check whether the third kind of perturbation can be simulated as a noise addition
on the histogram.

A.4 . Upper bound of the probability of a report noisy max mistake

In this subsection, we give an upper bound of the probability that A outputs a wrong
argmax because of the added noise following the generalised Laplace distribution.

Lemma 5. Let u0 ∈ R+. Let q ∈
(

1
1−τ ; +∞

)
and p := 1

1− 1
q

.

We have ∫ +∞

u0

e−γuI(γu)du ≤ Γ(τ)

2τγ

e−γu0

p
1
p

(γu0)
τ−1+ 1

q

[q(1− τ)− 1]
1
q

.

Proof. Let u0 ∈ R+. Let (p, q) ∈ (R∗
+

)2 such that 1
p + 1

q = 1 and q > 1
1−τ .∫ +∞

u0

e−γuI(γu)du

≤ Γ(τ)

2τ

∫ +∞

u0

e−γu(γu)τ−1du (according to Lemma 4)
=

Γ(τ)

2τγ

∫ +∞

γu0

e−vvτ−1dv (by the substitution v = γu)

By assumption, q > 1
1−τ so, since τ < 1, q(τ − 1) < −1 and then v ∈ R∗

+ 7→ vq(τ−1)

is integrable in the neighbourhood of +∞. Then we can apply Hölder’s inequality in the
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following manner:
∫ +∞

u0

e−γuI(γu)du

≤ Γ(τ)

2τγ

(∫ +∞

γu0

e−pvdv

) 1
p
(∫ +∞

γu0

vq(τ−1)dv

) 1
q

=
Γ(τ)

2τγ
×
(
e−pγu0

p

) 1
p

×

(
−(γu0)q(τ−1)+1

(q(τ − 1) + 1)

) 1
q

=
Γ(τ)

2τγ
× e−γu0

p
1
p

× (γu0)
τ−1+ 1

q

[q(1− τ)− 1]
1
q

Lemma 6. Let us consider a query Q. Let k∗ ∈ [K] be the unnoisy argmax (for all k ∈ [K],
nk∗ ≥ nk). For all k ∈ [K], we define∆k := nk∗ −nk ≥ 0. Then, for all q ∈ ( 1

1−τ ; +∞), calling
p := 1

1− 1
q

,

P[A(d,Q) ̸= k∗] ≤
∑
k ̸=k∗

e−γ∆k

[
1

2
+

1

τ2
4τ−2+ 1

qΓ(τ)2
× (γ∆k)

2τ−1+ 1
q

p
1
p [q(1− τ)− 1]

1
q

]
.

Proof. In the following, we will assume that ∆k > 0 and the upper bound for ∆k = 0 is
obtained by continuity.

For any k ∈ [K], let us denote Yk the random variable following the generalised
Laplace distribution generated by the sum of the τn individual noises.

Let k ∈ [K].

P(nk + Yk ≥ nk∗ + Yk∗)

= P(Yk∗ ≤ Yk −∆k)

=

∫ +∞

−∞
f(t)F (t−∆k)dt

=

∫ 0

−∞
f(t)F (t−∆k)dt+

∫ ∆k

0
f(t)F (t−∆k)dt+

∫ +∞

∆k

f(t)F (t−∆k)dt (A.5)

We will now upper bound each one of the three above integrals separately. The two
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extreme integrals can be nicely bounded by decreasing exponentials in∆k:

∫ +∞

∆k

f(t)F (t−∆k)dt

=

∫ +∞

0
f(v +∆k)F (v)dv (by the substitution v = t−∆k)

= L

∫ +∞

0
e−γ|v+∆k|I(γ|v +∆k|)F (v)dv

= L

∫ +∞

0
e−γ(v+∆k)I(γ(v +∆k))F (v)dv

= Le−γ∆k

∫ +∞

0
e−γvI(γ(v +∆k))F (v)dv

≤ Le−γ∆k

∫ +∞

0
e−γvI(γv)F (v)dv (because I is decreasing)

= Le−γ∆k

∫ +∞

0
e−γ|v|I(γ|v|)F (v)dv

= e−γ∆k

∫ +∞

0
f(v)F (v)dv

= e−γ∆k ×
lim
+∞

F 2 − F (0)2

2

= e−γ∆k ×
1− 1

4

2

=
3

8
e−γ∆k (A.6)

and
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∫ 0

−∞
f(t)F (t−∆k)dt

= L

∫ 0

−∞
f(t)

∫ t−∆k

−∞
e−γ|u|I(γ|u|)dudt

= L

∫ 0

−∞
f(t)

∫ t−∆k

−∞
eγuI(−γu)dudt

= L

∫ 0

−∞
f(t)

∫ t

−∞
eγ(v−∆k)I(γ(∆k − v))dudt

(by the substitution v = u+∆k)
= Le−γ∆k

∫ 0

−∞
f(t)

∫ t

−∞
eγvI(γ(∆k − v))dudt

≤ Le−γ∆k

∫ 0

−∞
f(t)

∫ t

−∞
eγvI(−γv)dudt (because I is decreasing)

= Le−γ∆k

∫ 0

−∞
f(t)

∫ t

−∞
e−γ|v|I(γ|v|)dudt

= e−γ∆k

∫ 0

−∞
f(t)F (t)dt

= e−γ∆k ×
F (0)2 − lim

−∞
F 2

2

=
1

8
e−γ∆k . (A.7)

As for the middle integral, we have∫ ∆k

0
f(t)F (t−∆k)dt

= L

∫ ∆k

0
f(t)

∫ t−∆k

−∞
e−γ|u|I(γ|u|)dudt

= L

∫ ∆k

0
f(t)

∫ +∞

∆k−t
e−γ|v|I(γ|v|)dvdt (by the substitution v = −u)

= L

∫ ∆k

0
f(t)

∫ +∞

∆k−t
e−γvI(γv)dvdt

Since, for all t ∈ [0;∆k], 0 ≤ ∆k − t, we can apply Lemma 5. Let q ∈ ( 1
1−τ ; +∞

)
and p = 1

1− 1
q

. We have, for all t ∈ (0;∆k), ∫ +∞
∆k−t e

−γvI(γv)dv ≤ Γ(τ)
2τγ ×

1

p
1
p [q(1−τ)−1]

1
q
×

e−γ(∆k−t)[γ(∆k − t)]
τ−1+ 1

q . Since τ − 1 + 1
q > −1, t 7→ [γ(∆k − t)]

τ−1+ 1
q is integrable

on a neighbourhood of (∆k)
− and then, since t 7→ f(t)e−γ(∆k−t) is bounded on a neigh-

89



bourhood of∆k, t 7→ f(t)e−γ(∆k−t)[γ(∆k − t)]τ−1+ 1
q is integrable on a neighbourhood of

(∆k)
−.
Thus, we can write

∫ ∆k

0
f(t)F (t−∆k)dt

≤ LΓ(τ)

2τγ
× 1

p
1
p [q(1− τ)− 1]

1
q

×
∫ ∆k

0
f(t)e−γ(∆k−t)[γ(∆k − t)]τ−1+ 1

q dt

= L2Γ(τ)

2τγ
× 1

p
1
p [q(1− τ)− 1]

1
q

×
∫ ∆k

0
e−γ|t|I(γ|t|)e−γ(∆k−t)[γ(∆k − t)]τ−1+ 1

q dt

=
γ

2τΓ(τ)3
× 1

p
1
p [q(1− τ)− 1]

1
q

×
∫ ∆k

0
e−γtI(γt)e−γ(∆k−t)[γ(∆k − t)]τ−1+ 1

q dt

=
e−γ∆k

2τΓ(τ)3
× γ

p
1
p [q(1− τ)− 1]

1
q

×
∫ ∆k

0
I(γt)[γ(∆k − t)]τ−1+ 1

q dt

t 7→ (γt)τ−1 is integrable on a neighbourhood of 0+ because τ − 1 > −1. Therefore,
t 7→ (γt)τ−1 Γ(τ)

2τ [γ(∆k − t)]τ−1+ 1
q is integrable on (0;∆k) so we can apply Lemma 4:

∫ ∆k

0
f(t)F (t−∆k)dt

≤ e−γ∆k

2τΓ(τ)3
× γ

p
1
p [q(1− τ)− 1]

1
q

×
∫ ∆k

0
(γt)τ−1Γ(τ)

2τ
[γ(∆k − t)]τ−1+ 1

q dt

=
e−γ∆k

22τΓ(τ)2
× γ∆k

p
1
p [q(1− τ)− 1]

1
q

×
∫ 1

0
(γ∆ku)

τ−1[γ(∆k −∆ku)]
τ−1+ 1

q du

(by the substitution u =
t

∆k
)

=
e−γ∆k

22τΓ(τ)2
× (γ∆k)

2τ−1+ 1
q

p
1
p [q(1− τ)− 1]

1
q

×
∫ 1

0
uτ−1(1− u)τ−1+ 1

q du
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Note that∫ 1

0
uτ−1(1− u)τ−1+ 1

q du

=

∫ 1
2

0
uτ−1(1− u)τ−1+ 1

q du+

∫ 1

1
2

uτ−1(1− u)τ−1+ 1
q du

≤
∫ 1

2

0
uτ−1 1

2
τ−1+ 1

q

du+

∫ 1

1
2

1

2τ−1
(1− u)τ−1+ 1

q du

(because τ − 1 +
1

q
< 0 and τ − 1 < 0)

=
1

2
τ−1+ 1

q

∫ 1
2

0
uτ−1du+

1

2τ−1

∫ 1
2

0
v
τ−1+ 1

q dv

(by the substitution v = 1− u)
=

1

2
τ−1+ 1

q

× 1

τ2τ
+

1

2τ−1
× 1

(τ + 1
q )2

τ+ 1
q

=
1

2
2τ−1+ 1

q

(
1

τ
+

1

τ + 1
q

)
≤ 1

τ2
2τ−2+ 1

q

Therefore ∫ ∆k

0
f(t)F (t−∆k)dt ≤

e−γ∆k

τ2
4τ−2+ 1

qΓ(τ)2
× (γ∆k)

2τ−1+ 1
q

p
1
p [q(1− τ)− 1]

1
q

. (A.8)
Using A.5, A.6, A.7 and A.8, we get

P(nk + Yk ≥ nk∗ + Yk∗) ≤ e−γ∆k

[
1

2
+

1

τ2
4τ−2+ 1

qΓ(τ)2
× (γ∆k)

2τ−1+ 1
q

p
1
p [q(1− τ)− 1]

1
q

]
.

The overall upper bound for P[A(d;Q) ̸= k∗] is obtained using the fact that the event
(A(d;Q) ̸= k∗) is the union of the events (nk + Yk ≥ nk∗ + Yk∗), for k ∈ [K] \ {k∗}, and
then P[A(d;Q) ̸= k∗] ≤

∑
k ̸=k∗ P(nk + Yk ≥ nk∗ + Yk∗).

Proposition 10. If τ ∈ (12 ; 1),

P[A(d;Q) ̸= k∗] ≤
∑
k ̸=k∗

e−γ∆k

[
1

2
+

(γ∆k)
2τ−1

τ24τ−2Γ(τ)2

]
.

If τ ∈ (0; 12 ],

P[A(d;Q) ̸= k∗] ≤
∑
k ̸=k∗

e−γ∆k

[
1

2
+

(γ∆k)
τ
2

τ2
5
2
τ−1Γ(τ)2

×
(
3

2
τ

) 3
2
τ (2

τ
− 3

)1− 3
2
τ
]
.
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Proof. Let us distinct two cases according to the value of τ .
First case: τ > 1

2Taking the limit when q approaches +∞ in A.8 (which actually amounts to substitute
vτ−1 by its upper bound (γu0)

τ−1 in the integral ∫ +∞
γu0

e−vvτ−1dv of the proof of Lemma 5,
without needing Hölder’s inequality), we get

P[A(d;Q) ̸= k∗] ≤
∑
k ̸=k∗

e−γ∆k

[
1

2
+

(γ∆k)
2τ−1

τ24τ−2Γ(τ)2

]

Second case: τ ≤ 1
2By convention, if τ = 1

2 , we have 1
1−2τ = +∞.

We take q < 1
1−2τ (it is possible since 1

1−2τ >
1

1−τ ) andwrite q = 1
1−2τ+ϵ , with 0 < ϵ < τ .

Then, 1p = 1− 1
q = 2τ − ϵ and we get

P[A(d;Q) ̸= k∗]

≤
∑
k ̸=k∗

e−γ∆k

[
1

2
+

(2τ − ϵ)2τ−ϵ

τ22τ−1+ϵΓ(τ)2
×
(
1− 2τ + ϵ

τ − ϵ

)1−2τ+ϵ

× (γ∆k)
ϵ

]

For example, with ϵ = τ
2 (i.e. q = 1

1− 3
2
τ
), we have

P[A(d;Q) ̸= k∗]

≤
∑
k ̸=k∗

e−γ∆k

[
1

2
+

1

τ2
5
2
τ−1Γ(τ)2

×
(
3

2
τ

) 3
2
τ (2

τ
− 3

)1− 3
2
τ

× (γ∆k)
τ
2

]

Note that, whatever is the value of τ ∈ (0; 1), our upper bound of P(nk +Yk ≥ nk∗ +Yk∗)
tends to 0 when ∆k approaches +∞ which follows the intuition that P(nk + Yk ≥ nk∗ + Yk∗)

tends to 0 when the true argmax k∗ has a much higher count than k. The upper bound
tends to 1

2 when ∆k approaches 0, which is consistent with the actual value of the probability
P(nk + Yk ≥ nk∗ + Yk∗) when the counts nk∗ and nk are equal.

Similarly, the upper bound tends to 0 when γ tends to +∞ and to 1
2 when γ approaches

0. These are the expected values of the probability P(nk + Yk ≥ nk∗ + Yk∗) when there is no
noise or an infinitely wide noise respectively.

Finally, let us remark that we recover the upper bound P[A(d;Q) ̸= k∗] ≤
∑

k ̸=k∗
2+γ∆k

4eγ∆k

from [141] (obtained with a centralised Laplace noise) when we consider the limit when τ tends
to 1.

Remark. The data-dependent bound αA(l; aux, d, d
′)≤ log

(
(1−q)

(
1−q
1−eϵq

)l
+qeϵl

)
from

Theorem 5 is non-monotonic in γ. This may appear counter-intuitive since a smaller noise
(greater γ) usually gives worse privacy guarantees and, as one would expect, a bigger moments
accountant. Nevertheless, a smaller noise means that the probability of outputting the true
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(unnoisy) argmax is closer to 1, which may lower the moments accountant. Indeed, two
adjacent databases will both output the true argmax with high probability, giving less chance to
an adversary to distinguish them. This non-monotonicity of the data-dependent bound induces
the non-monotonicity of the overall privacy cost ϵ. This is illustrated in Figure 1.2 on which we
can see, however, that choosing a small γ still gives better guarantees.
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B - FHE argmax implementation details

We implemented the FHE argmax algorithm using the C++ TFHE library [51]. Table B.1
presents all of the parameters needed to reproduce our results and build a fully homomorphic
argmax scheme using the TFHE library. The first two lines present our values for the standard
TFHE parameters: the first line for initial ciphertext encryption; the second line for the two
bootstrapping keys we use. Given the parameters that we use here, we achieve a security
parameter of 110. We base the security of our scheme on the lwe-estimator1 script. The
estimator is based on the work presented in [8] and is consistently kept up to date.

Table B.1: Parameters for our implementation. The top line presents the overall security (λ), andthe parameters for the initial encryption: σ is the Gaussian noise parameter and N is the size ofpolynomials. In the TFHE encryption scheme, there is a parameter k (different from the one used inChapter 1) which, in our case, is always equal to 1. The second line presents the parameters neededto create the two bootstrapping keys we are using. For these two lines, we used the notationsfrom [197] and [50]. The third line presents parameters specific to our implementation given thespecificities of the data to process. A is the value to add to the ciphertexts before subtracting
nk + Yk − nk′ − Yk′ as per the notations in Section 1.4.3. bi is the modulus with which the valuesare rescaled at encryption time to obtain values in [0, 1] and to allow for a correct result of the θ
computation. b(1)θ is the output modulus of the first bootstrapping operation creating the θ values.
b
(2)
θ is the output modulus of the second and final bootstrapping operation.

N σ
1024 1e−9

Nb σb Bg ℓ
1024 1e-9 64 6

A bi b
(1)
θ b

(2)
θ

900 4102 36 4

The third line presents parameters that are specific to our implementation. Because of the
use of Gamma distributions, the values sent by the teachers can be negative. This can be an
important issue: if a value is negative, then it will be interpreted in the ciphertext space as a
very high positive value and the resulting argmax will be wrong. Therefore, after summing the
ciphertexts from the teachers, we add a constant value (we can add a clear value to a ciphertext
value) A to ensure that the nk+Yk+A are all positive before subtraction. We evaluated that,
given the parameters of the Gamma distributions used, choosing A = 900 gives us less than
a 2−64 probability of failure: with Yk following a Laplace distribution (as seen in Section 1.4),
then we have P(Yk < −A) < 2−64. The bi variable corresponds to the value by which we
rescale the cleartexts before encryption. Indeed, the cleartext and ciphertext spaces of the
TFHE encryption scheme are both T = ([0, 1],+). Additionally, for a correct θ computation,
we need to have |nk+Yk−nk′−Yk′

bi
| < 1

2 , which is true if, for all k ∈ [K], nk+Yk+A
bi

∈ [0, 12). Since

1https://bitbucket.org/malb/lwe-estimator/raw/HEAD/estimator.py
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P(Yk ≥ A) < 2−64 by symmetry, bi = 2(n + 2A) = 4100 (with n the number of teachers)
is sufficient to have |nk+Yk−nk′−Yk′

bi
| < 1

2 with high probability. b
(1)
θ is the output modulus

of the first bootstrapping operation. It needs to be chosen so that we have Θk >
1
2 for one

and only one k. That k will then be considered the argmax. b(2)θ is the modulus for the final
bootstrapping operation.
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C - Detailed experimental settings

In this section, we provide the reader with additional details regarding experimental settings.
In order to reproduce experimental results, all necessary source codes are available on https:
//github.com/Arnaud-GS/SPEED.

C.1 . Experimental settings for MNIST

Following PATE experimental conditions, we built our framework based on the code repos-
itories1 accompanying [141]. The teacher models are based on two convolutional layers with
max-pooling and one fully connected layer with ReLUs. Code modifications have been performed
on the initial repository, and are available on https://github.com/Arnaud-GS/SPEED. The
execution environment consists in Python 3 and Tensorflow 1.15.0. The batch size, learning
rate and max steps parameters have been respectively set to 128, 0.01 and 5000. As stated
in [141], this yields an aggregate test-error rate of 93%. A semi-supervised technique proposed
in [159] has been used2, in an execution environment consisting of Python 3 and Theano 0.7.
Besides modifications available on https://github.com/Arnaud-GS/SPEED, the learning rate
and number of epochs have been set to 0.001 and 500 respectively.

C.2 . Experimental settings for SVHN

For SVHN, two additional layers have been added to the teacher models which were learned
using a node with 8 NVIDIA v100. The batch size, learning rate and max steps parameters
have been respectively set to 64, 0.08 and 2000. The student model also uses the improved
GAN semi-supervised model, relying on Python 3 and Theano 0.8.2. The learning rate and
number of epochs have been set to 0.0003 and 600 respectively.

1https://github.com/tensorflow/privacy/tree/master/research/pate_20172https://github.com/openai/improved-gan
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2 - When approximate design for fast homomorphic
computation provides differential privacy guaran-
tees

Abstract While machine learning has become pervasive in as diversified fields as industry,
healthcare, social networks, privacy concerns regarding the training data have gained a critical
importance. In settings where several parties wish to collaboratively train a common model
without jeopardising their sensitive data, the need for a private training protocol is particularly
stringent and implies to protect the data against both the model’s end-users and the actors of
the training phase. Differential privacy (DP) and cryptographic primitives are complementary
popular countermeasures against privacy attacks. Among these cryptographic primitives, fully
homomorphic encryption (FHE) offers ciphertext malleability at the cost of time-consuming
operations in the homomorphic domain. In this paper, we design SHIELD, a probabilistic
approximation algorithm for the argmax operator which is both fast when homomorphically
executed and whose inaccuracy is used as a feature to ensure DP guarantees. Even if SHIELD
could have other applications, we here focus on one setting and seamlessly integrate it in the
SPEED collaborative training framework from [83] to improve its computational efficiency. Af-
ter thoroughly describing the FHE implementation of our algorithm and its DP analysis, we
present experimental results. To the best of our knowledge, it is the first work in which relaxing
the accuracy of the algorithm is constructively usable as a degree of freedom to achieve better
FHE performances.

N.B.: This chapter is the reproduction of the article When lightweight design for fast ho-
momorphic computation provides differential privacy guarantees, joint work with Martin Zuber,
Oana Stan, Renaud Sirdey and Cédric Gouy-Pailler, to be submitted [85].

2.1 . Introduction

As a protocol for training neural network without explicit sharing of the learning data, the
Private Aggregation of Teacher Ensembles (PATE) approach has received much attention since
its inception in the seminal work of Papernot et al [141]. In a nutshell, the PATE protocol labels
a subset of a public dataset and uses this partially labeled dataset to train a student model in a
semi-supervised way. The labelization is achieved by aggregating, usually by means of majority
voting, the labels - considered as votes - provided by a set of teachers which are the owners
of private data sets. Since the teachers’ labels would leak information on their training data,
the PATE protocol makes use of differential privacy (DP). To get a reasonable privacy-utility
trade-off, the vote aggregation is performed on an independent server, the single elected vote
seen by the student model being much easier to sanitize than the full histogram of the votes.

Still, in such a setting, the server has to be trusted since it sees the clear votes sent by the
teachers. This is why SPEED [83] builds upon the work from [141] and uses fully homomorphic
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encryption (FHE) to blind the server by having it performing the aggregation directly over
encrypted votes, therefore with neither knowledge of the individual votes nor of the consolidated
one. In that work the authors associate a distributed Laplacian noise generation mechanism
and carefully crafted homomorphic histogram and argmax computations. Still, FHE being
computationally intensive, this comes at significant communication and computation costs on
the server (6.5 minutes to compute the homomorphic argmax for 100 queries).

In this paper, we revisit the association of DP and FHE in a radically different fashion.
Indeed, rather than proceeding in two steps (noise addition and then homomorphic aggregation)
we proceed by designing a new aggregation algorithm which has the desirable property of being
much more efficient to evaluate over FHE but the less desirable property of being (stochastically)
inaccurate. We then demonstrate that the inaccuracies of our algorithm translate into consistent
DP guarantees, and therefore that explicit noise addition becomes unnecessary for DP. In doing
so, and by means of a carefully crafted FHE implementation of the algorithm, we are able to
achieve a reduction of 20% in the computational burden of the aggregation server compared
to the state of the art [97]. By opposition to CKKS-based approaches in which the post-
decryption noise of approximate FHE is leveraged to provide DP guarantees [116], to the best
of our knowledge, our work is the first one in which relaxing the accuracy of a homomorphic
calculation at the algorithmic level is constructively usable as a degree of freedom to achieve
better FHE performances and privacy guarantees.

The paper is organised as follows. First of all, we explore the related work in Section 2.2 and
remind some preliminaries about HE and DP in Section 2.3. Then, we introduce and describe
our argmax operator SHIELD in Section 2.4 and more specifically its FHE implementation in
Section 2.5, before presenting SPEED application case in Section 2.6. Section 2.7 develops an
analysis of SHIELD from the points of view of DP and HE. Finally, our experimental results are
presented in Section 2.8.

2.2 . Related work

In [180], the authors survey recent works in which DP and cryptographic primitives take
advantage of each other, either

• cryptography for DP: cryptographic primitives allow to get the privacy-utility trade-off of
a standard DP mechanism but without the need of a trusted server [6, 49, 68, 80]. This
is an improvement compared to local DP which, by making the data owners noise their
data before outsourcing them, does not need a trusted server either but gives a poorer
privacy-utility trade-off [108,176]

• or DP for cryptography: design “leaky” cryptographic primitives that ensure DP and are
more efficient than traditional primitives [16,178,179]

[16, 178, 179] are tailored to specific applications, respectively SQL queries, anonymous com-
munication systems and oblivious RAM. Our work follows this line of DP for cryptography but
in the context of election.
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In [196], the authors propose an algorithm with a close goal, namely heavy-hitters (most
frequent items) detection, which is inherently differentially private thanks to random sampling.
Nevertheless, the goal of this inherent probabilistic behaviour is not computational efficiency
since the method is not articulated with cryptographic primitives. Moreover, this algorithm
works on sequential data. Even if it does not restrict its generality since any data can be seen
as sequential, the utility does depend on the sequential representation of the data, which may
not be optimal if there is no semantic value to this representation. Finally, the algorithm is
iterative and thus requires a lot of communication with the users.

As far as federated learning is concerned, the work from [171] is interesting because it
leverages the error induced by encryption to derive DP guarantees. The aggregation protocol is
based on the security of LWE problem and on the Multi-Party Computation protocol of Packed
Shamir secret sharing scheme [72]. Nevertheless, LWE is not used to directly encrypt the values
of interest but rather to generate one-time pads of the same dimension of these values while
only needing to communicate much smaller vectors to the server. These one-time pads allow a
secure aggregation and DP guarantees are ensured by the error induced by LWE encryption.

2.3 . Preliminaries on BFV homomorphic cryptosystem

In this section we recall the general principles of the BFV homomorphic cryptosystem [69]
which will be used in a batched manner. Since we know in advance the function to be evaluated
homomorphically, we can stick to the somewhat homomorphic version described below. Let
R = Z [x] /Φm (x) denote the polynomial ring modulo the m-cyclotomic polynomial with
n = φ(m). The ciphertexts in the scheme are elements of polynomial ring Rq, where Rq is
the set of polynomials in R with coefficients in Zq. The plaintexts are polynomials belonging
to the ring Rt = R/tR. For a ∈ R, we denote by [a]q the element in R obtained by applying
modulo q to all its coefficients. As such, BFV scheme is defined by the following probabilistic
polynomial-time algorithms:

BFV.ParamGen(λ) → (n, q, t, χkey, χerr, w). It uses the security parameter λ to fix
several other parameters such as n, the degree of the polynomials, the ciphertext modulus q,
the plaintext modulus t, the error distributions, etc.

BFV.KeyGen(n, q, t, χkey, χerr, w) → (pk, sk, evk). Taking as input the parameters gen-
erated in BFV.ParamGen, it calculates the private, public and evaluation key. Besides the
public and the private keys, an evaluation key is generated to be used during computation on
ciphertexts in order to reduce the noise.

BFV.Encpk(m)→ c = (c0, c1). For m ∈ Rt, compute the ciphertext c = (c0, c1) ∈ R2
q ,

using the public key pk.
BFV.Decsk(c)→ m. It computes the plaintext m from the ciphertext c, using private key

sk.
BFV.Add(c1, c2)→ cadd with cadd =

(
[c1,0 + c2,0]q , [c1,1 + c2,1]q

)
.

BFV.Mulevk(c1, c2) → cmul = (c0, c1, c2) with c0 =
[⌊

t
q · c1,0 · c2,0

⌉]
q
,

c1 =
[⌊

t
q · (c1,0 · c2,1 + c1,1 · c2,0)

⌉]
q

and c2 =
[⌊

t
q · c1,1 · c2,1

⌉]
q
.
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In order to reduce the number of elements in the ciphertexts obtained after a multipli-
cation, a relinearisation method is proposed: BFV.Rel(c0, c1, c2) → ct′ = (c′0, c

′
1) such that[

c0 + c1 ∗ sk + c2 ∗ s2
]
q
= [c′0 + c′1 ∗ sk + r]q with the norm ||r|| small.

For further details on the precise two relinearisation methods and the full description of the
scheme, we refer the reader to the original paper [69]. Let us also note that to this original
scheme, one can apply batching (also known as packing), an optimization method for FHE
allowing to put several clear messages into a single ciphertext and execute parallel operations
on them into a SIMD (Single Instructions Multiple Data) manner. The technique of ciphertext-
packing is based on polynomial CRT (Chinese Reminder Theorem) and was originally described
in [169], [32].

2.4 . SHIELD: Secure and Homomorphic Imperfect Election via Lightweight
Design

In this paper, for any m ∈ N, [m] will denote the set {1, ...,m} (which is, by convention,
the empty set if m = 0).

Let K be the number of classes of the classification problem. Let n be the number of voters
or teachers and, given a sample and k ∈ [K], let nk be the number of teachers who voted for
class k.

2.4.1 . Principle of SHIELD
We propose a novel operator that can be viewed as an aggregation operator for categorical

data, as well as a voting rule, or even a probabilistic argmax. This operator, called SHIELD
(Secure and Homomorphic Imperfect Election via Lightweight Design) aims at computing the
aggregation of categorical data - or equivalently the winner of an election - on a server while
ensuring the privacy of the inputs from both the server and the end-users that may try to
retrieve sensitive information from the output. Let us now formally introduce SHIELD.

First of all, SHIELD is meant to be computed in the homomorphic domain. Here are some
notations we will use to describe its homomorphic behaviour. Enc and Dec respectively denote
the encryption and decryption functions of some homomorphic encryption system defined on
Z2. ⊕ and ⊗ respectively represent the homomorphic addition and multiplication. When
these operators are applied on vectors, they denote the element-wise corresponding operations.
Note that the negation of x ∈ Z2 is homomorphically performed via Enc(1) ⊕ Enc(x) and
the homomorphic or operator, denoted ∨⃝, between x ∈ Z2 and y ∈ Z2 is performed via
[Enc(x)⊕ Enc(y)]⊕ [Enc(x)⊗ Enc(y)] and will be written Enc(x) ∨⃝ Enc(y) in the following.

Definition 7. LetK ∈ N∗. A vector z ∈ (Z2)
K is said to be a one-hot encoding vector if there

exists k0 ∈ [K] such that zk0 = 1 and, for all k ∈ [K] \ {k0}, zk = 0. In this case, we say that
z codes for the class k0 or that z is the one-hot encoding of the class k0.

Let (p, a) ∈ (N∗)2. Let Sp,a denote SHIELD operator with parameters p and a, that we
define in the following.

Let (n,K) ∈ (N∗)2 that we consider fixed in the remainder of this section. Let Z =

(Enc(z(i)))i∈[n] be a list of n encrypted one-hot encoding K-dimensional vectors, some of
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these vectors being possibly equal (it is necessarily the case for some vectors when K < n).
Then Sp,a(Z) is an encryption of one of the z(i), and with high probability (see Section 2.8
for quantitative results) Sp,a(Z) is an encryption of the most frequent of the one-hot encoding
vectors of Z. Sp,a is formally defined in Algorithm 3 where, for the sake of clarity, we do not
explicitly write the encryption function (e.g. res = z(i0) instead of res = Enc(z(i0))). Sp,a
draws p vectors of Z with replacement in a uniformly random manner and multiply them. The
resulting vector π is an encryption of the one-hot encoding of the class k0, k0 ∈ [K], if all
the p drawn encrypted vectors code for the same class k0. Otherwise, π is the null vector
of (Z2)

K . If a non-null vector has already been found, the current π is ignored (since the
bit found_not_null has been set to 1). Of course, since the algorithm is computed in the
encrypted domain, it has to run until the end of the for loop but everything works as if the
algorithm repeated this operation until it gets a non-null vector and then ignored the remaining
product vectors. This first non-null vector is the output of Sp,a. If no non-null vector was
produced after a iterations, a null vector is output and we say that Sp,a failed.

Algorithm 3: SHIELD
Input : number of vectors n, number of classesK , list of encrypted votes Z , number ofmultiplications p, number of terms a
Output: res = z(i0) where i0 ∈ [n]

1 res← (0, . . . , 0) ∈ (Z2)
K ;

2 found_not_null← 0;
3 for j in [a] do
4 π ← (1, . . . , 1) ∈ (Z2)

K ;
5 for l in [p] do
6 Draw a vector z of Z uniformly at random;
7 π ← π ⊗ z;
8 end
9 res← res⊕ (1⊕ found_not_null)⊗ π;
10 is_not_null←⊕K

k=1 πk;
11 found_not_null← found_not_null ∨⃝ is_not_null;
12 end

a being fixed, the choice of p must consider the tradeoff between, on one hand, the accuracy
of the operator, e.g. the probability of getting the truly most frequent vector (see the considered
accuracy metrics in Section 2.7.1), and, on the other hand, the probability of avoiding a failure
and the computational complexity. Indeed, when p increases, the probability of getting a null
vector (and then failing) increases, as well as the computational complexity, but the probability
of getting the most frequent vector, knowing that the algorithm did not fail, increases too.

2.4.2 . Multi-degree SHIELD

We can imagine a parameter p that decreases as the iterations run, as if it adapted to
the vote distribution. Indeed, on one hand, a high p for the first iterations ensures (with high
probability) that we get the truly most frequent vector if getting a non-null vector is easy (i.e.
probable), which happens if a vast majority of the vectors code for the same class (e.g. a vast
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majority of voters agree on one candidate). On the other hand, if the first iterations failed,
which suggests that getting a non-null vector is not so probable, the number p of multiplications
decreases in order to make the production of a non-null vector easier. In this framework,
our SHIELD operator can be represented by a polynomial

∑D
p=1 apX

p with positive integer
coefficients, where

∑D
p=1 ap = a and some ap’s may be null. We call

∑D
p=1 apX

p ∈ N[X]

the polynomial parameterisation of SHIELD. There is indeed a bijection between the set of
operators and N[X] since the order of the terms of different degrees is constrained to be the
one of decreasing degrees. Nevertheless, the analogy seems to stop here since the algebraic
structure of N[X] does not apply to the set of operators (think about a factorisation like
X2
∑D

p=0 apX
p−2, that would draw for once two vectors and use them for all the a terms,

whereas we here want to independently draw the vectors for each term).
Note that we can easily ensure that multi-degree SHIELD does not fail by imposing a1 = 1.

Indeed, when we draw only one one-hot encoding vector, without multiplying it with others, we
cannot get a null vector. Moreover, a1 > 1 is useless since the first draw of a single vector will
succeed.

It is easily seen that multi-degree SHIELD is a generalization of SHIELD and, as such, in
the remainder of this article, multi-degree SHIELD will simply be referred to as SHIELD.

2.4.3 . Offset parameter
The SHIELD operator as defined above cannot always provide finite DP guarantees. Let

us consider two adjacent databases d and d′ such that, in d, a class c was chosen by no voter
and, in d′, c was chosen by one voter. Then, with input d, SHIELD will never output c because
it cannot pick a one-hot encoding for c, the probability of outputting c is then null. On the
contrary, with input d′, there is a non-null probability (even if it is small) of outputting c. Hence,
the ratio of probabilities of outputting c is not bounded and we get an infinite privacy cost.

To avoid this problem, we force all the classes to have at least one vote by creating a
dummy one-hot encoding for each class. More generally, ω dummy one-hot encodings can be
created for each class, where ω is another parameter of SHIELD, called the offset.

Algorithm 4 gives the pseudocode of the multi-degree version of SHIELD with the offset
parameter.

In our experiments, we fixed ω to 1, letting the optimisation of this parameter for further
work. It is nevertheless intuitive that the greater ω, the worse the accuracy because, when
ω is large, the distribution of the votes is flattened and the probability of outputting the true
argmax is lower.

2.4.4 . Exponential argmax operator
As an inherently stochastic mechanism that does not resort to noise addition but rather

outputs a value with a probability that is an increasing function of its utility (if we deem
that the vote frequency of a class constitutes its utility), SHIELD can be compared to the
exponential mechanism (introduced in [129]) which samples its output following the softmax
distribution of the utility. However, the sampling in the encrypted domain constrains the shape
of the probability distribution and introduces a dependency of the practically implementable
distributions with the computational efficiency of the operator.

104



Algorithm 4:Multi-degree SHIELD
Input : number of vectors n, number of classesK , list of encrypted votes Z , polynomial

(ap)p∈[D], offset ω
Output: res = z(i0) where i0 ∈ [n]

1 Z ← Z augmented by ω encrypted one-hot encodings for each class;
2 res← (0, . . . , 0) ∈ (Z2)

K ;
3 found_not_null← 0;
4 for p in [D] do
5 for j in [ap] do
6 π ← (1, . . . , 1) ∈ (Z2)

K ;
7 for l in [p] do
8 Draw a vector z of Z uniformly at random;
9 π ← π ⊗ z;
10 end
11 res← res⊕ (1⊕ found_not_null)⊗ π;
12 is_not_null←⊕K

k=1 πk;
13 found_not_null← found_not_null ∨⃝ is_not_null;
14 end
15 end

Note that softmax has been approximately implemented in FHE through polynomial approx-
imation [115] but this requires a quite high multiplicative depth (with a polynomial of degree
12 for approximating the exponential function and even more for approximating the inverse
function) and results in a significant computational overhead. Moreover, using such an imple-
mentation would still require additional homomorphic operations like comparisons to actually
sample the output according to this distribution.

Rather, a sampling method that follows the exponential distribution by construction, in
the spirit of SHIELD as presented in this paper, would be more seducing. Sampling each
vote independently with a fixed probability would actually yield an output distribution that
exponentially depends on the vote frequencies but it seems that the probability of failing by not
outputting any class would be quite high for practical parameters. We let further work on this
question as a perspective.

2.5 . FHE implementation of SHIELD

Algorithm 4 is a generic version of SHIELD that actually needs to be adapted for an
implementation using an HE cryptosystem. And first, there are two kinds of possible encodings
depending on the encryption scheme that is used:

• Single Instruction, Multiple Data (SIMD). Using the BFV cryptosystem, a number of
values are encoded simultaneously in a polynomial which is then encrypted. A single
operation on a ciphertext leads to the same operation applied to all values encoded
inside the ciphertext.

• Single Instruction, Single Data (SISD). One way of using the TFHE cryptosystem is to
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use a single ciphertext to encrypt a single value. This is less efficient than using SIMD but
unlocks a set of complex operations on that ciphertext that are impossible to implement
otherwise.

We implement SHIELD with two separate methods: one uses the BFV cryptosystem with
SIMD operations; the other uses the TFHE cryptosystem with SISD operations.

2.5.1 . Implementing SIMD-SHIELD

Although using BFV allows us to speed up SHIELD considerably by batching different sam-
ples together in the same ciphertext, some constraints require adapting parts of Algorithm 4
for them to work.

a. Multiplicative depth. As it is the case for other similar HE schemes, we need to set the
parameters of BFV according to the multiplicative depth of the computation. The higher the
multiplicative depth, the larger the parameters, and the less efficient the overall computation.
For this reason, some parts of the algorithm, like Line 9, need to be changed. We can store all of
the values for Enc(z) over the loop and multiply them in a classic tree-based approach (instead
of multiplying them sequentially) which reduces the multiplicative depth of the computation
from p to log2(p).

The same change is applied everywhere it is needed, that is to say at Lines 11 and 13 of
Algorithm 4.

b. Selecting the teacher. Selecting the voter, also called teacher because of SPEED
application case (see Section 2.6), at lines 8 and 9 of Algorithm 4 is easy enough when the
SHIELD algorithm is called for a single sample at once. However, in order to speed up the
algorithm and make use of the SIMD property of the BFV cryptosystem fully, we actually run
the SHIELD algorithm for a number of samples at a time.

For instance, if π(i) is the π vector of K values for sample i, then the actual vector encoded
in the ciphertext for the packed algorithm would be

π =
(
π
(1)
1 , . . . , π

(1)
K , π

(2)
1 , . . . , π

(2)
K , . . .

) (2.1)
This allows us to use the full size of the polynomials we encrypt. These polynomials have

degrees in the order of ≈ 215 while K is usually in the order of ≈ 10.
Therefore the teacher selection step has to be modified. The new encoding of teachers t’s

vote for sample i is: (
0, . . . , 0|0, . . . , 0| . . . |z(i)t | . . . |0, . . . , 0|

)
∈ BN×K

which is a vector with N slots of K binary values where z(i)t is teacher t’s original one-hot
encoded vote for sample i. It is located at the ith slot of the encoding. From now on we’ll
call z(i)t this new encoding of the teacher’s votes. Algorithm 5 presents the process for teacher
selection and creation of the π vector using this new encoding.
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Algorithm 5: Teacher selection. With n the total number of teachers, thisalgorithm describes the actual steps for selecting the teachers that get tovote in the SIMD encoding paradigm.
1 for j in [ap] do
2 for l in [p] do
3 for t in [n] do
4 zt ← (0, . . . , 0);
5 end
6 for i in [N ] do
7 Draw a vector z(i)t of Z uniformly at random;
8 zt ← zt ⊕ z(i)t ;
9 updatemt ;
10 end
11 π ← (1, . . . , 1);
12 for t in [n] do
13 zt ← zt ⊕mt ;
14 π ← π ⊗ zt ;
15 end
16 end
17 end

At Line 9 a mask mt is updated. For every teacher t, the mask mt is a plaintext vector
that contains 0s in the place of samples for which the teacher is selected and 1s in the place of
samples for which the teacher is not selected. As an example, for K = 2 and N = 4, if teacher
t votes for samples 1 and 3, then mt = (0, 0|1, 1|0, 0|1, 1).

This mask is then added to zt before the multiplication to the π vector so that all the
samples for which the teacher is not selected do not impact the result: their slots are filled by
ones. If the mask is not used, then all non-selected slots will be filled with 0s and therefore
would set everything to 0 after the multiplication.

For this multiplication, as mentioned before, we opt to store all of the zt vectors and create
a multiplication tree to reduce the multiplicative depth.

c. Rotations. One other constraint that schemes such as BFV suffer from, is that it is
very hard and costly to extract certain values from the ciphertext to apply an operation only
to them. Such is the case when trying to implement Line 12 in Algorithm 4. The individual
πk values cannot be extracted and summed together in a straight-forward manner. One thing
we can do however, at a relatively low cost (both in terms of performance and noise inside the
ciphertext), is to rotate the vector encoded in the ciphertext. This leads to an implementation
of Line 12 that we present using the example π(i) = (0, 0, 0, 1, 0, 0, 0, 0, 0, 0).
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(0, 0, 0, 1, 0, 0, 0, 0, 0, 0)

+ (0, 0, 0, 0, 0, ?, ?, ?, ?, ?) ← rotate by 5

=(0, 0, 0, 1, 0, ?, ?, ?, ?, ?)

+ (0, 1, 0, ?, ?, ?, ?, ?, ?, ?) ← rotate by 2

= . . .

One can see how, using log2(K) rotations and sums, we can obtain
∑

j π
(i)
j in the first

coordinate of the π(i) vector. The question marks ? represent values that are rotated over from
the next slot, (recall the complete form of π in equation 2.1).

Therefore, we cannot control the values in the rest of the coordinates. And this is not
enough. For Line 13 to work, we need to have a vector where all coordinates π(i)j are filled with∑

j π
(i)
j , not just the first one. To obtain this, we have to multiply by a plaintext with values

(1, 0, 0, . . . ) to select only for the first coordinate of π and then re-populate the rest of the
coordinates using rotations and sums exactly in the opposite way as used for the computation
of the sum of the π(i)j values.

d. Packing the polynomial rounds together. Up until now, for clarity, we presented a
version of our algorithm that packed all or some of the N samples together in a single ciphertext.
In practice, to speed up the computation further, we also pack the polynomial rounds together.
What we mean by "polynomial rounds" is the two for loops at Lines 1 and 2 in Algorithm 5.
We can remove these for loops and compute them in parallel in a single ciphertext.

2.6 . An application case: SPEED

2.6.1 . SPEED workflow
Our SHIELD operator is actually tailored to a learning protocol called SPEED, from [83],

itself inspired from PATE [141]. SPEED method is illustrated by Figure 2.1, inspired from [83].
Assuming the existence of a public unlabelled database ∆ (we will keep this notation throughout
the paper), SPEED enables several data-owners, called teachers, to collaboratively train a
classification model without outsourcing their data that are considered private. The idea is to
label ∆ and use it to train the final classification model, called the student model or simply the
student. To do so, each teacher is asked to train a model beforehand for the same task as the
student’s target task with its own data only and, for each sample of ∆ to label, every teacher
infers a label through their model and sends this label to an aggregation server. The server
then counts the number of labels received for each class, also seen as votes, and outputs the
dominant class which is sent to the student for training.

As it was described, the protocol does not protect the data from the server or the end-users.
Before explaining how data privacy is ensured, let us present the threat model.

2.6.2 . Threat model
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Figure 2.1: SPEED learning protocol

All the actors of the protocol, namely the teachers, the server and the student are considered
honest-but-curious. This means that they execute their task correctly but may use the data
they have access to to retrieve sensitive information about the teachers’ data. The end-users are
also considered curious, the honest part not being relevant for end-users that are not involved
in the training. Note that, in many real-life cases, the teachers may be end-users of the student
model.

A limitation to the threat model is that the server is not considered to have access to the
trained student model since our DP analysis assumes that the adversary only sees the output
class, which is not exactly the case of the server (see 2.7.2 for more details).

2.6.3 . Data protection

To prevent the student and a fortiori the end-users (by postprocessing) from discovering
sensitive information by attacks such as e.g. model inversion or membership inference, we apply
DP. The teachers noise their votes before sending them to the server.

One could argue that the noise added by the teachers would also blur the sensitive informa-
tion to the server. Nevertheless, the added noise is precisely scaled so that it protects the output
of the aggregation, i.e. the dominant class, without harming too much the student accuracy.
If the individual votes sent to the server were to be protected by DP before aggregation, thus
achieving what is called local DP [62,107,108], this would require much more noise, too much
noise to ensure a reasonable accuracy for the student model. As a consequence, the votes need
to be protected from the server another way. This is where homomorphic encryption makes its
entrance. After noising their votes, the teachers encrypt them. The server then receives the
encrypted votes and perform their aggregation (sum and argmax) in the homomorphic layer.
Finally, the output of the aggregation is sent to the student that owns the decryption key and
is therefore able to decrypt it.

By the honest-but-curious hypothesis, we then assume that:

• the teachers send their votes correctly noised and encrypted to the server
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• the server performs the aggregation in the homomorphic domain as it is asked to

• the student decrypts the data and get trained; importantly, it does not share the decryp-
tion key with the server.

A real-life scenario could involve hospitals that own patients’ medical data and aim at
training a global model that would help the early diagnosis of a specific disease. In this case,
the end-users would be the hospitals themselves.

2.6.4 . Faster SPEED with SHIELD

Our SHIELD operator can be used to replace the sum and argmax computations on the
server side in SPEED (represented by the gear wheel in Figure 2.1). After receiving all the votes
from the teachers, the server randomly picks some vectors with replacement as described in
Section 2.4.1. Note that, being honest-but-curious, the server is trusted to compute SHIELD
without mistake. Interestingly, the rest of SPEED protocol remains unchanged, except the
sending of dummy one-hot encodings by some teachers, according to the offset parameter (see
Section 2.4.3).

2.7 . Analysis of SHIELD

2.7.1 . A priori accuracy metrics

The ultimate accuracy that we want to maximize in SPEED application case is obviously
the testing accuracy of the student model. Nevertheless, it could be interesting to measure
the accuracy of the argmax operator itself, independently of the student training. Also, even if
this depends on the teachers’ votes and thus on the used dataset, this enables us to evaluate
polynomial parameterizations without performing the student training, which is much faster and
allows to test much more parameterizations. We call such an accuracy an a priori accuracy.

The most straightforward way to define the argmax accuracy is probably to consider the
probability of getting the exact argmax. Nevertheless, this approach treats any mistake the
same way. It could be argued that outputting, say, the class that received the second greatest
number of votes is better than outputting the least preferred class. Taking such a concern into
account in our metric would also give a better hint about the student accuracy since, while the
most preferred class (i.e. the exact argmax) is not always the ground truth class, a class with
a lot of votes is more likely to be the ground truth class.

We could then make the assumption that the frequency of votes for a class is proportional to
the probability of this class being the ground truth class of the sample (which is not necessarily
the most preferred class). This would correspond to an assumption of well-calibrated vote
distributions. In this context, another accuracy metric would be the probability of outputting
the ground truth class of the sample. We call this metric the ground truth accuracy, since it
does not focus on outputting the exact argmax but rather the ground truth class. If pk denotes
the probability of SHIELD outputting class k, for k ∈ [K], the ground truth accuracy, written

110



GTA, is:

GTA =
K∑
k=1

nk
n
pk.

Of course, both metrics must be averaged on all the samples sent to the teachers.

2.7.2 . Differential privacy analysis
Since the student model training requires many requests to the teachers and, indirectly, to

their private datasets, we use, as in [83], the moments accountant technique [2] to get a better
privacy cost over composition.

We here consider that two databases d and d′ are adjacent if they are the concatenations of
the datasets from the same number of teachers and only one teacher differs from one database
to the other. This implies that either all the n′k, counts for database d′, for k ∈ [M ], are equal
to the nk, counts for database d, in which case the corresponding moments accountant is null,
or the n′k differ from the nk only for two values of k, say k1 and k2, such that n′k1 = nk1 − 1

and n′k2 = nk2 + 1 (i.e. the differing teacher votes for k1 in d and k2 in d′).
The stochastic behaviour of our operator uncommonly does not come from an additional

random noise, since the operator is inherently probabilistic. This is this very property of our
operator that we leverage to ensure DP. Computing the privacy cost of the training, as well as
the a priori accuracy, thus requires knowing the probabilities of outputting each class.

2.7.3 . Computing the probability distribution of the output
We compute the probability distribution of the output of the algorithm SHIELD with a

given polynomial parameterisation in a recursive manner.
For a sample x of ∆, let AP,x be the mechanism that takes the whole database (concate-

nation of the teachers’ datasets) as input and outputs the class sent to the student i.e. the
output of SHIELD, with the polynomial parameterization P ∈ N[X].

Let d be the database composed of the teachers’ data. Let k be a class of the problem.
If P = X, P[AP,x(d) = k] = nk

n .
If P = Xp +Q(X), where Q ∈ N[X] and p ∈ N∗ is greater or equal than the degree of Q,

P[AP,x(d) = k] =
(nk
n

)p
+

1−
K∑
j=1

(nj
n

)pP[AQ,x(d) = k].

Using these expressions, we simply compute the moments accountant for each query by
taking the maximum over all pairs (d, d′) such that d is the database constituted by the
concatenation of the teachers’ database and d′ is a database adjacent to d. We then derive the
overall privacy cost using Theorems 1 and 2.

Note that the obtained DP guarantees are data-dependent since we explored only the pairs
of adjacent databases such that one of them is the actual database given by our application.
The very values ϵ and δ of these guarantees then reveal some information about the training
data. In a real-life scenario, these values should be sanitized before being published, as in [142]
for instance, but this is beyond the scope of this work.
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2.7.4 . The differential privacy analysis does not apply to the server

When we compute the probabilities of outputting a class, we do not suppose anything about
whose votes are drawn i.e. we do not condition the probabilities on some particular drawing
event. This amounts to assume that the adversary only sees the output class, and does not
know, in particular, which teachers were selected in the sampling. This assumption cannot
apply to the server since it draws the one-hot encodings itself and knows which teacher they
come from, for having receiving the encodings one by one from the teachers.

To give an insight of why this subtlety is problematic, let us propose some concrete situations
where the DP guarantees are obviously not protecting the vote of the server’s victim, i.e. the
teacher whose vote the server wants to know.

• With the polynomial parameterization Xk +X, k ∈ N ∗ \{1}, if the server draws k − 1

teachers and its victim for the term Xk and then its victim for the term X, then the
server will know that the class sent to the student is its victim’s vote.

• Supposing that the server knows the votes of all the teachers except its victim’s (classical
assumption in DP), it will be able to recover its victim’s votes in many cases. For instance,
with the polynomial parameterizationXk+X, k ∈ N∗\{1}, if the server draws k teachers
who do not all have the same vote for the term Xk and its victim for the term X, then
the class sent to the student is its victim’s vote.

To address this vulnerability, we could think of an additional entity that receives the votes
from the teachers and shuffles them before sending them to the server. However, the server
would know if a same vote was drawn several times (remind that the drawing is with replace-
ment), which still constitutes some information we did not account for in our DP analysis.
Suppose that the server knows that all the teachers except its victim voted for a class c. More-
over, suppose that the offset parameter is set to 1 and that there are |C| classes in the problem.
Then, there are |C|−1 votes different than c and the victim’s vote, which is unknown. Assume
that the polynomial parameterization is |C|X2 +X. If the 2|C|+1 votes that the server drew
are all from different sources - teachers or dummy one-hot encodings - (remind that the server
knows it) and the output class is not c, then the server knows with certainty that its victim did
not vote for c (otherwise, there would have been |C|+1 drawn votes for c and, among the |C|
pairs the server drew for the term in X2, no pair would have been composed of two identical
votes different from c and at least one pair would have been composed of two votes for c and
then the output would have been c).

These observations show that we need to constrain the server not to see the student model
once it is trained. Note that the information leakage induced by the server’s knowledge may
not jeopardize much the data privacy in practice. We only argue here that our DP analysis
does not allow us to derive DP guarantees from the point of view of the server, which might
be possible with a more involved (and likely quite complex) analysis, although with probably
worse guarantees.

2.7.5 . Extension of the threat model
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We could extend the threat model and assume that the server has access to the final model
by designing a more complex algorithm for which the teachers would be homomorphically
selected via encrypted masks.

Another interesting idea mentioned above would be to make use of an intermediate entity
that would shuffle the encrypted votes before the server receives them, with inspiration from the
ESA (Encode, Shuffle, Analyze) method from [22]. Nevertheless, the server would still know if
it selected several times the same teacher, even without knowing which one it is, and this is
still theoretically an information leakage that is not simple to analyze (cf. Section 2.7.4). A
way to solve this issue and to actually leverage the anonymity provided by the shuffling would
be to design an algorithm that uses sampling without replacement and to force the teachers
to send a new encryption of their votes for each polynomial rounds, which would significantly
increase the complexity of the protocol and its communication cost.

Aware of this weakness of our threat model compared to SPEED’s one in [83], we let these
improvements for further work.

2.7.6 . Computational complexity of SHIELD

Compared with previous argmax HE computation methods, SHIELD is unique in that its
complexity only linearly depends on the number of classes for the chosen machine learning
problem. Indeed, the main impact of an increase in the number of classes is that the encoding
space increases by the same amount (and therefore the time overhead is linear). A secondary
impact is the logarithmic increase in the number of rotations needed for the computation of∑

j π
(i)
j as seen in Section 2.5.1. All previous work uses one (or a combination) of two methods

to evaluate an exact argmax over a number of values: a tournament method or a league
method. We refer the reader to [43, 97] for specific implementation details. Here we focus on
their complexity with respect to the number of classes.

• a league is a system of comparison where every value is compared with every other value.
The winner is the value that was greater than every other one. Think of a football league
like French first division league (“Ligue 1”) for this kind of system. The use of a league
method yields a quadratic complexity in the number of classes. This leads to very high
performance overheads as the number of classes increases. However, contrary to the
tournament method, increasing the number of classes does not affect the multiplicative
depth of the circuit to be evaluated. This is what makes this method useful in the
homomorphic domain in spite of its complexity.

• a tournament is a system where values are compared two-by-two and the losers are
discarded at every round. Think of the FIFA World Cup for this kind of system. Using
a tournament method has a - theoretical - linear complexity in the number of classes.
In practice, this is not the case. As the number of classes increases, the comparison
tree used for the evaluation increases in depth logarithmically. For levelled homomorphic
schemes such as BFV or BGV (those we use in this article) used in [97], this means an
increase in parameter size to match the multiplicative depth of the new tree. In turn, this
impacts the performance of the overall scheme on top of the theoretical linear increase.
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After a given point, the increase in parameter size becomes prohibitive and one needs to
resort to finishing the computation using a league method as they do in [97].

Compared to all other existing works therefore, ours scales much better with the number
of classes and therefore fits particularly well with use-cases with high numbers of classes.

2.8 . Experimental results

2.8.1 . Choice of the polynomial parameterization

We tested SPEED with SHIELD on MNIST dataset [114]. While the offset parameter has
been set to 1, a key aspect of our experiments is the choice of a polynomial parameterisation that
realises a good trade-off between model accuracy, DP guarantees and computational efficiency.
Since the computational time overall depends on the sum of coefficients and the degree of
the polynomial parameterisation, we proceeded by constraining the maximum degree and the
maximum value for the sum of coefficients of the polynomials. We fixed the maximum degree
to 4 because higher degrees resulted in too high computational complexity. For several integer
values (6, 12, 17, 32), we considered all the polynomials of degree at most 4 whose sum of
coefficients is less than this value. We do not go beyond a sum of coefficients equal to 32 to keep
the computational time low. We then computed the DP guarantee ϵ, δ = 10−5 being fixed, for
each polynomial, as well as its GTA that acts as a proxy for the student model accuracy which
could not be determined in reasonable time for so many polynomials. Finally, we focused on the
polynomials belonging to the Pareto front for these two criteria - DP guarantee ϵ and GTA -
and picked the ones that yielded among the best DP guarantees without harming the accuracy
too much. In practice, as it can be seen on Figure 2.2 the DP guarantee guided more our choice
because the GTA, besides being only a heuristic for the actual student model accuracy, did not
vary much among the polynomials of the Pareto front. Note that the GTA of the exact argmax
is 72.35%. The chosen polynomials are respectively 2X3+3X2+X, 2X4+6X3+3X2+X,
6X4 + 6X3 + 4X2 +X and 8X4 + 6X3 + 4X2 +X for a sum of coefficients of at most 6,
12, 17, 321. We did not display the Pareto front for a sum of coefficients of at most 6 because
it only contains one polynomial.

Table 2.1 displays the GTA, the student model accuracy and the DP guarantee ϵ for the
chosen polynomial parameterizations, δ = 10−5 being fixed. The GTA and DP guarantee are
averaged on the whole set of 8000 samples used for semi-supervised training, the DP guarantee
being remultiplied by 100, the number of actual queries to the teachers. The student model
accuracy is averaged over ten runs, each of which used a different random subset of 100 samples
as labelled samples. The table also displays the number of correctly labelled samples (comparing
to the ground truth label) out of the 8000 samples. The variance of the model accuracy among
the runs is quite important and may explain why the accuracy surprisingly does not increase
when the polynomial is better in terms of both GTA and number of correct labels.

1The chosen polynomial among the ones with a sum of coefficients at most 32 has a sum ofcoefficients equal to 19 only. This is good news for computational complexity because it allows usto batch all samples into a single ciphertext and therefore optimise the computation.
114



71.3

D
P
 g

u
a
ra

n
te

e
 ε

Ground truth accuracy (%)

: sum of coef. at most 12

: sum of coef. at most 17

: sum of coef. at most 32

71.4 71.5 71.6 71.7 71.8 71.9

Figure 2.2: Pareto fronts of the polynomials for a fixed maximum sum of coefficients. The poly-nomials we chose for running the student model training are indicated by red-edged diamonds.

polynomial GTA number ofcorrect labels modelaccuracy ϵ

exact argmax 72.35% 7516 (93.95%) 95.36% ∞
2X3 + 3X2 +X 70.06% 7166 (89.58%) 90.91% 2.39

2X4 + 6X3 + 3X2 +X 71.26% 7327 (91.59%) 94.66% 2
6X4 + 6X3 + 4X2 +X 71.56% 7358 (91.98%) 93.39% 1.92
8X4 + 6X3 + 4X2 +X 71.62% 7367 (92.09%) 93.15% 1.91

Table 2.1: Accuracy and DP guarantee (with δ = 10−5) obtained with several polynomial parame-terizations.
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polynomial samples time (s) time/sample (s)
2X3 + 3X2 +X

100 87.2 0.87
341 112 0.33

2X4 + 6X3 + 3X2 +X
100 123 1.23
143 135 0.94

6X4 + 6X3 + 4X2 +X 100 138 1.38
8X4 + 6X3 + 4X2 +X 100 144 1.44

paper samples time (s) time/sample (s)
[83] 100 390 3.9[83] + [43] 100 160 1.6

[97]∗ 100 152 1.52
5220 152 0.03

Table 2.2: Performance for the SIMD implementation of SHIELD (for 10 classes) for different poly-nomial parameterizations compared with previous work implementing exact argmax computa-tions.
∗ Times for [97] are presented but cannot directly compare with our results for reasons that areexpanded upon below.

2.8.2 . SIMD SHIELD with BFV
For our implementation of the SIMD SHIELD algorithm, we use the BFV cryptosystem

in the openFHE library [12]. The parameters we choose are the following: log2(q) = 540 ;
p = 65537 ; m = 65536 ; N = 32768. These parameters achieve a security level of λ = 128

bits with a standard deviation of 3.2. Our implementation was tested on a machine with an
AMD Opteron(tm) Processor 6172 using a single thread.

We achieve performances presented in Table 2.2 for a set of different polynomial parame-
terisations. Although we tested using the MNIST data set, the performance of an HE algorithm
does not depend on the underlying data by construction. Otherwise one could infer something
on the data from seeing the computation happen in the encrypted domain. For our imple-
mentation, we need to run the SHIELD algorithm over 100 samples. In the table however,
we also present computation times for the case whereby we optimise the batching space with
a higher number of samples to give an idea of what computation times could be achieved by
optimising parameters further. For now, these optimisations are not yet possible in keeping
with the Homomorphic Encryption Security Standard [7] which recommends the use of power-
of-two cyclotomic polynomials. A new standard is reported to be in the works which would
open applications to the secure use of non-power-of-two cyclotomic polynomials. That would
allow us to optimise our parameters further.

Table 2.2 also compares our method with previous existing methods for exact argmax com-
putations. Among these methods, the one presented in [83] as well as its later improvement
in [43] perform worse overall for all polynomial parameterizations that we tested. It is important
to note that these methods do not use batching by construction. Therefore the time per sample
is fixed and does not depend on the amount of samples processed.
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polynomial samples time (s) time/sample (s)
2X3 + 3X2 +X 100 495,3 4,95

2X4 + 6X3 + 3X2 +X 100 14287,8 14,29
6X4 + 6X3 + 4X2 +X 100 20936,7 20,93

Table 2.3: Performance for the Cingulata with TFHE implementation of SHIELD

[97] on the other hand does make use of batching. In effect, by construction, they are con-
strained to batching sizes much higher than ours, therefore an amortised time of 0.03s could
not be obtained over 100 samples. Times in Table 2.2 for [97] are taken from their Table 4
because it most closely matches our use-case. However important differences remain: we report
their timings for 8 classes as it is the closest to 10 in the Table; timings are for a minimum
computation, which is less time-consuming than an argmin computation, but no times are given
for an argmin in the paper.

2.8.3 . Bitwise (SISD) SHIELD with Cingulata
To show the interest of the batching approach, we also implemented the basic version of

SHIELD, as described in Alg. 4, with Cingulata crypto-compiler and its TFHE back-end.
Let us remind that Cingulata, formerly known as Armadillo [39], is a toolchain and run-

time environment (RTE) for implementing applications running over homomorphic encryption.
Cingulata provides high-level abstractions and tools to facilitate the implementation and the
execution of privacy-preserving applications expressed as Boolean circuits.

Table 2.3 shows the execution times of SHIELD for different polynomial parameterisations
when performed in a SISD fashion with TFHE and Cingulata. The experiments were performed
with a single thread on an Intel Xeon processor with 16 GB of memory and Ubuntu 20.04
operating system. As shown in the table, the execution time of SHIELD increases with the
degree of the polynomial and the sum of the polynomial coefficients. As expected, the overall
performances are highly below the ones obtained when using BFV and its batching capabilities.

2.9 . Conclusion and perspectives

We proposed SHIELD, a homomorphic stochastic operator whose lightweight design nec-
essary for fast homomorphic computations yields DP as a natural “by-product”. This work
reconciliates two complementary but usually independent - or even mutually constraining -
privacy tools in an all-in-one operator whose inaccuracy is a crucial feature.

We hope this work will encourage new works on the design of private algorithms where
FHE (or other cryptographic primitives) and DP leverage the advantages of each other. For
instance, developing algorithms that would be useful in other settings than an election and
broaden the scope of machine learning applications seems promising. In this perspective, an
argmax algorithm that takes an histogram of the votes as input rather than the “physical” votes
represented as vectors would have a more general applicability.

Testing SHIELD on more difficult datasets and especially datasets with numerous classes
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could reveal its full potential. Besides, a more thorough theoretical study to get results that may
lead us through the choice of the parameters (polynomial, offset) is desirable. Other versions
including sampling without replacement (Section 2.7.5) or an exponential version of SHIELD
(Section 2.4.4) would also deserve theoretical and experimental analyses. Studying SHIELD in
terms of strategy-proofness and fairness could be interesting too and would extend the added
value of SHIELD to the area of computational social choice and voting rules.
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D - On counter-productive noise for data-dependent
differential privacy guarantees

D.1 . Null data-dependent privacy cost of the exact argmax

While doing experiments on a subset of MNIST with polynomial parameterizations that
yield better and better accuracies (up to the probability of getting the true argmax being more
than 99,99%) we remarked that the value epsilon of the privacy cost did not increase much
and did not seem to approach infinity. This surprising result suggested that the exact argmax
operator had a finite privacy cost. Actually, on the subset we were working on, for every sample,
the dominant class had at least two more votes than the second dominant class. We will say
in the following that the distribution has a highly dominant argmax. This implies that, any
database which is adjacent (i.e. differs from at most one teacher) to the database d we were
working on has the same dominant class as d for every sample. As a consequence, the output
of the argmax does not leak any information about which of two adjacent databases was used
as input. In other words, the privacy cost of the exact argmax operator is null in this case.

D.2 . Counter-productivity of the noise regarding privacy

On the contrary, the so-called private argmax operator (noised by an additional random noise
as in PATE [141, 142] and SPEED [83] or intrinsically stochastic as in SHIELD) may output
any class and the probabilities of outputting a class depends on the frequencies of the votes for
all classes. As a consequence, even changing only one teacher will change the probabilities of
outputting some (or rather all) of the classes, even if the effect is mild. Therefore, the output
of the DP argmax operator does give information on the probability of outputting a class and
then on the frequencies of the classes in the votes. We end up in a (particular) situation where
applying noise is counter-productive in the sense that it increases the privacy cost of revealing
the output (by an infinite factor actually). Note, however, that this was not the case for the
entire MNIST training set but only for a certain subset of it.

D.3 . The case of data-independent DP guarantees

This consideration only applies to data-dependent DP guarantees. In the data-independent
case, the privacy cost of the exact argmax would be infinite because we would consider the
maximum over all the pairs of adjacent databases i.e. all the possible pairs of distributions
of n votes among K classes that differ by one vote on two classes. In this perspective, the
question of the definition domain of the databases is crucial. Only giving data-dependent DP
guarantees for the aforementioned subset of MNIST dataset, where, for every sample, the vote
distribution has a highly dominant argmax, amounts to give a data-independent DP guarantee
with a definition domain of the databases included in the set of databases such that the vote

119



distributions have a highly dominant argmax. This is obviously restricting the problem to a too
easy subset of situations, and, as we showed above, this restricted problem is trivially solved by
the deterministic exact argmax.

D.4 . Example of the age’s sign

The noise addition degrading privacy guarantees is very counter-intuitive and may surprise
a priori. Let us take a simple example to understand how the noise affects privacy. Revealing
the sign of the age of a person is infinitely private (epsilon and delta null) if we assume that the
adversary already knows that a person must have a positive age (quite natural assumption!).
Imagine now that we noise the age with a unimodal noise, whose mode is zero, say a Gaussian
noise, before computing the sign. The lesser the unnoised age, the more likely the sign of the
noised age will be negative. This implies that revealing the sign of the noised age does leak
some information about the unnoised age. Clearly, the noise addition does harm the privacy
guarantees in this case. Nevertheless, note that this does not contradict the post-processing
immunity of DP. Indeed, the noise is not added at the end, over the infinitely private sign of
the age, rather, it is added before the computation of the sign, inside the mechanism and not
afterwards. Thus, the noise addition cannot be considered as a post-processing.
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3 - Combining homomorphic encryption and differ-
ential privacy in federated learning

Abstract Recent works have investigated the relevance and practicality of using techniques
such as Differential Privacy (DP) or Homomorphic Encryption (HE) to strengthen training data
privacy in the context of Federated Learning protocols. As these two techniques cover different
sources of confidentiality threats (other clients/end-users for the former, aggregation server for
the latter), there is a need to consistently combine them in order to bridge the gap towards more
realistic deployment scenarios. In this paper, we achieve that goal by means of a novel stochas-
tic quantisation operator which allows us to establish DP guarantees when the noise is both
quantised and bounded due to the use of HE. The paper is concluded by experiments on the
FEMNIST dataset which show that the precision required to get state-of-the-art privacy/utility
trade-off (which directly impacts HE parameters and, hence, HE operations performances) re-
sults in a 3.6% computation time overhead imputable to HE calculations, for the whole training
of a 500k parameters model.

N.B.: This chapter is the reproduction of the article Protecting data from all parties:
Combining fhe and dp in federated learning, joint work with Renaud Sirdey, Oana Stan and
Cédric Gouy-Pailler, to be submitted (preprint available on [84]).

3.1 . Introduction

In 2016, McMahan et al. proposed a new paradigm of collaborative learning that they
called Federated Learning (FL) [126]. This collaborative method allows to train a machine
learning algorithm across multiple actors without exchanging data samples. Instead, there are
local trainings based on local data samples and an exchange of the model’s parameters in
order to generate a global model. The most classical federated learning setting relies on a
central aggregation server which coordinates the other participating actors (also called clients)
and aggregates the model updates. Along with the reduction of communication load and the
parallelism it allows, a claimed key advantage is the protection of data due to the fact that
each client keeps its own data locally. However, although FL gives some protection to the data
with regards to the server, it gives rise to a new type of potential adversaries - the other clients.
Several attacks that take advantage of this new threat were proposed in [96,130].

3.1.1 . Our contribution

The contribution of this paper is an approach to consistently combine countermeasures of
different natures, namely Differential Privacy and Homomorphic Encryption, with the aim to
enable the integration of both in more secure FL frameworks. Indeed, the above-mentioned
attacks on the training data can be mitigated via DP, either if they come from the other par-
ticipants of the training process or from the end-users of the model. Other potential threats
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come from the central aggregation server. Homomorphic encryption can then allow to mitigate
these later threats without any communication between the clients: the clients send encrypted
information to the server which will do the necessary computations in the encrypted domain,
without seeing either the sent information or the result of its computations. In order to consis-
tently articulate DP and HE we introduce a new stochastic quantisation operator based on the
Poisson distribution. This operator behaves as if it was applied as post-processing of a Gaus-
sian mechanism, keeping the DP guarantees of this standard mechanism unchanged without
any supplementary analysis and allowing to seamlessly get rid of the quantisation issue due to
the use of HE. Note that this harmless quantisation technique is of independent interest in a
context of communication constraints and DP requirements, even without use of cryptographic
techniques.

An illustrative application scenario could be in the medical field. We may consider several
hospitals that own medical data from their patients and wish to collaborate in order to train a
global model that would detect a certain disease. In many countries, patient data are sensitive
and the hospitals are not allowed to share them with other hospitals. A solution is to use
a Federated Learning protocol (e.g. from an institutional entity) but without the hospitals
disclosing their data to the aggregation server. Note that the parameters we used for our
experiments on FEMNIST (see Section 3.5) make our privacy building blocks scale at a level
which can be for example compatible with the number of medical facilities in a reasonably large
country.

The paper is organised as follows. A review of the literature on the issues of data privacy in
a FL context follows this introduction in Section 3.2. Then, Section 3.3 provides the technical
prerequisites on HE schemes necessary to understand our method, that we thoroughly explain
in Section 3.4. The results of the experiments that we ran to illustrate the feasibility of our
solution are presented in Section 3.5, before concluding remarks and perspectives for further
work (Section 3.6).

3.2 . Related work

3.2.1 . Differentially private federated learning

Due to the additional threats from the other clients, DP has been quite popular in collab-
orative and especially FL frameworks. For instance, McMahan et al. [127] trained a next word
prediction algorithm in a federated way, using text data from users’ smartphones, protected by
DP. Nevertheless, this work is hardly comparable to ours because the task for which the model
is trained is very different from our targeted classification tasks (e.g. FEMNIST in our experi-
ments), inducing very different learning parameters and thus a quite different privacy challenge.
Closer to our work is the one from [77] which presents a differentially private FL process tested
on MNIST, yet a notably easier task than FEMNIST, with a quite high privacy cost (ϵ = 8 and
δ = 10−3, 10−5, 10−6). Shokri et al. [166] also experimented a differentially private distributed
learning setting - similar to a FL setting due to the use of distributed stochastic gradient de-
scent - on MNIST, and SVHN, another famous image dataset. In [156], Sabater et al. ensure
privacy and utility of their distributed learning setting as long as each participant communicates
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with only a logarithmic number of other participants. Abadi et al. [2] introduced the moments
accountant method, a useful tool for our DP analysis, that enables to keep track of the privacy
cost more tightly than the traditional composition theorem when many calls to the database
are done, typically for training a deep neural network.

3.2.2 . Cryptographic primitives for federated learning

Most of the works applying HE to machine learning models focus on the inference stage
(CryptoNets [78], TAPAS [160], NED [91]) and not on the training stage. The first papers on
privacy-preserving machine learning training focused on a centralised setting where all data are
outsourced and where the models are only linear [19,38]. When it comes to non-linear models,
the few approaches that ran a complete centralised training of neural networks on encrypted
data have impractical performances or huge cryptographic parameters [120].

While some authors propose solutions in the case of multi-servers either for clustering
or regression, many methods employing HE have been recently proposed for a collaborative
learning task with no central server. They mostly apply on linear models [117, 194] and, more
recently, Sav et al. focused on neural networks [161]. As far as centralised FL is concerned,
there are a few recent papers proposing the use of HE to protect the clients’ data from the
server [149,189,192], where [149] and [189] are only theoretical.

More general than HE, multi-party computation protocols for the problem of secure aggre-
gation allow several agents to collaborate and compute a function on their data such that each
agent knows no more than its own input and, if requested, the output, and learns nothing about
the other agents’ inputs. The combination of the high-communication costs of the multi-party
computation and the inherent distributed nature of FL makes FL methods based on multi-party
computation or ad hoc approaches (e.g. [25, 134]) difficult to implement efficiently. Among
these approaches, [101] interestingly makes use of DP techniques to further protect the private
data.

The work from [171] combines DP with secure aggregation for federated learning and
proposes two versions of the same protocol: one for the case of trusted (semi-honest) server
and another, more advanced, for malicious server. The aggregation protocol is based on the
security of LWE problem and on the MPC protocol of Packed Shamir secret sharing scheme [72].
The DP guarantees are ensured by the error induced by LWE encryption. As for the case of
malicious server, they extend the protocol with the Benaloh’s verifiable secret scheme [18]. We
remark however that the communication and computation complexities are quite high.

3.2.3 . Quantisation and differential privacy

The principal focus and key contribution of our paper deals with the interference between
DP and HE. The main issue induced by this interference is that the domain of the messages to
be encrypted (which are the noised updates in our work) has to be discrete and bounded (and
encoded with as few bits as possible for better efficiency of the FHE computations). For other
reasons (unrelated to encryption), some authors have studied the possibility of using discrete
noises for differential privacy.

For instance, the authors of [6] propose a secure and communication efficient distributed
learning framework. They perform the DP analysis of their learning mechanism using a bino-
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mial noise because the effect of quantisation on the Gaussian mechanism is unclear, especially
after aggregation if the noise is generated in a distributed way. The analysis is quite involved
and only provides DP bounds for the multidimensional binomial mechanism for one round of
learning. Indeed, the moments accountant method is not easily applicable to the binomial
distribution. Moreover, the presented DP guarantee is worse than the Gaussian mechanism’s
one and needs the quantisation scale to tend to zero (and hence the communication cost to
infinity) to approach it.

In [111], Koskela et al. present a privacy accountant for discrete-valued mechanisms for
non-adaptive queries using privacy loss distribution formalism and Fast Fourier Transform. In
particular, they give DP guarantees for the binomial mechanism in one dimension and extend
them in the multidimensional case but with quite demanding constraints that compel them
to brutally approximate the gradients by their sign in their experiments. Cannone et al. [34]
introduce the discrete Gaussian mechanism and studied its DP guarantees that scale well with
composition, even in the multivariate case. Nevertheless, contrary to binomial noise, discrete
Gaussian noise is not bounded as required for our framework. More critically, the discrete
Gaussian distribution is not stable by addition, thus precluding its direct use in a context of
distributively generated noise that a collaborative learning task with untrusted server requires
(see Section 3.4.1).

In [5, 106], the authors propose federated learning protocols protected by DP and secure
aggregation (which requires discrete and bounded values, as HE, but needs communication
before learning as mentioned in 3.2.2). These works respectively use the discrete Gaussian
mechanism and the Skellam mechanism to ensure DP. At the cost of a careful DP analysis,
they show that, for fine enough quantisation scale, their DP guarantees approach the Gaussian
mechanism’s ones. Our work proposes a much simpler way to obtain the very same guarantee
as the Gaussian mechanism, without needing to constrain the quantisation scale and with
much simpler mathematical analysis. Moreover, the two previous works have to make use of
conditional randomised rounding to ensure that the rounding of the unnoised values does not
increase their norm too much. Since we perform quantisation after noising with a quantisation
that can be viewed (from the DP perspective) as a post-processing (see Section 3.4.3), we do
not have such an issue.

3.3 . Preliminaries on homomorphic encryption schemes

A common characteristic of some of the most popular HE schemes (BGV [31], BFV [69]) is
their plaintext domain defined over the ring Rt = R/tR with R = Z [x] /f (x) the polynomial
ring modulo the function f and the integer t ≥ 2. The typical choice for f is (Xn + 1) with
n a power of 2. As such, before encryption, each message has to be encoded as a plaintext
consisting in a polynomial of degree smaller than n with integer coefficients from the range (0,
t-1), and all operations over individual elements are performed modulo (Xn + 1), and modulo
t. The ciphertext space for these schemes is Rq = R/qR.

Moreover, a lot of HE schemes, like BFV that we use in our experiments (Section 3.5), offer
a batching capability by which multiple cleartexts can be packed in one ciphertext resulting in

124



SIMD (Single Instructions Multiple Data) homomorphic operations i.e.,

Enc(m1, ...,mκ)⊕ Enc(m′
1, ...,m

′
κ) = Enc(m1 +m′

1, ...,mκ +m′
κ)

(and similarly so for ⊗). Typically, several hundreds such slots are available (for BFV, the max-
imal number of slots coincides with n), which often allows to significantly speed up encrypted
domain calculations. In order to apply batching for BFV, t has to be prime and t = 1 mod[2n].

3.4 . An illustrative privacy-preserving federated learning framework

In this section, we present a simple FL framework (depicted in Figure 3.1). As this paper
focuses on quantisation techniques suitable to derive DP guarantees when an FL aggregation
server works in the FHE domain, this framework is meant to be illustrative. In particular, it
should be emphasised that any realistic secure FL framework would depend on additional (mostly
off-the-shelf) countermeasures (e.g. strong authentication of all involved parties, confidentiality
and integrity of all messages, realistic key generation and agreement protocols, etc.) that are
beyond the scope of the present paper. So, in our simplified framework, the entities that take
part of the learning process are the server and the clients, that own a private FHE decryption
key (note that the techniques presented in this paper are compliant with more recent multikey
FHE approaches such as [145]) and among which participants are sampled at each round. After
a common initialisation of the model, the process at each iteration is the following:

• the server sends the encrypted current model parameters to the participants;

• each participant decrypts the parameters thanks to the decryption key (except at the
first iteration when the parameters may not be encrypted);

• each participant performs a stochastic gradient descent of the loss function using its local
data;

• each participant applies on the computed updates the successive transformations required
by DP and HE (clipping, noising and quantisation);

• each participant encrypts and sends the transformed updates to the server;

• the server aggregates (averages) the updates in the encrypted domain.

On the need to combine DP and HE: Per se, the simple architecture described above
is limited in terms of threat model to honest-but-curious non-colluding actors. This is true of
the clients which are then assumed to properly perform their task but attempt to infer as much
information as possible on the training data of other clients from what they legitimately see.
This is also true of the end-users (the clients themselves or the entities which do not participate
in the training process and see only the final model) and of the server. Under this very basic
model, DP mitigates confidentiality threats (on the clients’ training data) from the clients and
end-users, while HE mitigates confidentiality threats (on the clients’ training data) from the
server. This exemplifies the need for being able to articulate both techniques to address even
the most basic threat models emerging from the previous illustrative framework.
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Figure 3.1: An illustrative baseline secure federated learning architecture.
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3.4.1 . Distributed noise generation
When willing to protect the training data by DP in a collaborative learning process, having

the participants generate the noise in a distributed way [83,156] rather than to rely on the server
to do so is desirable to mitigate a server that would communicate the noise to some clients or
end-users and then break the DP guarantees. Of course this would not be stricto sensu needed
for the most basic threat models dealing only with honest-but-curious non colluding adversaries.
In that case, the central noise would be generated in the clear domain and homomorphically
added to the aggregated updates, and quantisation would not cause any difficulty.

The distributed noise generation, that we here adopt, is especially practical when one wants
the resulting noise to follow a Gaussian distribution, since this distribution is stable by addition.
The participants simply need to generate Gaussian noises with well-chosen variances. However,
DP in a FL context still requires adaptations of the FL process:

1. clipping the updates in L2-norm with the clipping bound S (i.e. substituting participant
k’s vector of updates uk by min

(
1, S

∥uk∥2

)
.uk) to bound the sensitivity (i.e. the im-

pact of changing from one dataset to an adjacent one) since unbounded sensitivity is
incompatible with any DP guarantee;

2. adding noise to the gradients (e.g. Gaussian noise);

3. fix all the coefficients of the mean to 1
K , independently of the size of the participant’s

dataset, to bound the sensitivity more easily.

3.4.2 . Problem of the limited number of bits and first approaches
In our scenario, the information sent by the participants to the server is encrypted via HE.

Since floating-point homomorphic calculations (although in principle possible) are prohibitively
costly, we have to switch to a fixed-point representation while avoiding using too many bits (as
the cost of FHE calculations will increase, due to several factors discussed in Section 3.5, with
the number of bits required to represent the plaintexts). This means that, unlike the usual case
where the noise is represented by a double-precision float (i.e. finite but very fine precision)
and where we make the assumption that it perfectly follows the desired distribution, we here
have to explicitly take into account bounds on the noise and quantisation of this noise (and of
the updates themselves). However, if we round the noised updates in a traditional way (scaling
and rounding to the nearest integer), the aggregated noise is not Gaussian any more, but it is
a sum of noises that follow rounded Gaussian distributions. Unfortunately, the distribution of
a sum of rounded Gaussian variables does not have a simple expression (in particular, it is not
a rounded Gaussian distribution as shown in Appendix E)1.

A naive approach would be to try to compare the complicated distribution of a sum of
rounded Gaussians with the one of a sum of perfect Gaussians i.e. a Gaussian. Indeed, if the
quantisation scale is fine enough, the sum of rounded Gaussians should intuitively be close to a
Gaussian. The final privacy cost should be the sum of the one of a classical Gaussian mechanism

1If such a distribution were easily dealt with, the issue of boundedness could be addressed byconsidering the modulo operation induced by encryption, like in 3.4.5.
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and a hopefully small additional privacy cost due to the approximation. Nevertheless, this
analysis is quite involved and may result in overestimated DP bounds.

Another idea is to use binomial noise instead of Gaussian noise as in [6,111] but, as explained
in Section 3.2.3, due to the fact that it is not rotation invariant, the binomial distribution is
hard to use in multidimensional problems and the moments accountant method does not apply
directly to it, as it does for the Gaussian distribution. Besides, the DP guarantee obtained in [6]
with an involved mathematical analysis needs the quantisation scale to tend to 0 to get close
to the Gaussian mechanism’s guarantee while communication constraints precisely require this
scale to be large.

We will now show that, under natural practical assumptions and with the use of a novel
specific quantisation function, we may significantly simplify the DP analysis, with no privacy loss
compared to the Gaussian mechanism. Most importantly, our DP guarantee does not depend on
the quantisation scale, keeping us free from the trade-off between privacy and communication
faced in [5, 6, 106].

3.4.3 . Poisson quantisation
We here propose a new probabilistic quantisation operator that commutes with the sum2,

and is therefore harmless for the DP guarantee of the mechanism. In the following, P(λ)
denotes the Poisson law of parameter λ ∈ R∗

+ whose support is N and whose probability mass
function is k ∈ N 7→ λk

k! e
−λ. We fix the quantisation scale s ∈ R∗

+ and the dimension d ∈ N∗

of the problem (the number of parameters of the model in our case).

Definition 8. Let µ ∈ sZ. We define the probabilistic function

Qs,µ : x ∈]µ; +∞[7→ sY + µ

where Y ∼ P
(x−µ

s

)
. We call it the Poisson quantisation of scale s and offset µ.

Similarly, we define

Qs,µ : x =
(
x(i)
)
i∈J1;dK

∈]µ; +∞[d 7→
(
Qs,µ

(
x(i)
))

i∈J1;dK
.

Given µ ∈ sZ, for all x ∈]µ; +∞[d, Qs,µ (x)’s support is (sZ)d and its mean is equal to x
so we can actually consider the Poisson quantisation as a function of probabilistic quantisation.
Proposition 11 shows that the Poisson quantisation on the terms of a sum can be considered
as a post-processing on the sum.

Proposition 11. Letm ∈ N∗, x1, . . . , xm ∈ R. Let µ ∈ sZ such that µ < min{xi|i ∈ J1;mK}.
Qs,mµ (

∑m
i xi) has the same distribution as

∑m
i Qs,µ (xi).

Proof.
∑m

i Qs,µ (xi) ∼
∑m

i (sYi + µ) = s
∑m

i Yi + mµ where, for all i ∈ J1;mK, Yi ∼
P(xi−µ

s ). By stability of the Poisson lawby addition, we know that∑m
i Yi ∼ P

(∑m
i

xi−µ
s

)
=

P
(∑m

i xi−mµ
s

). We then directly get the result.
2Commutativity must be understood in a large sense, as the offset parameter of the quantisa-tion changes depending on the order of the operators.
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Proposition 11 together with Proposition 1 enables us to conclude that Poisson quantisation
has no influence on the DP guarantee. Indeed, the output distribution is the same as if we
had applied the Poisson quantisation after the aggregation of the continuously noised updates.
Since adding continuous Gaussian noises distributively on the updates and add them afterwards
amounts to add a Gaussian noise to the sum of the unnoised updates, the Poisson quantisation
acts as if it was applied on top of the Gaussian mechanism. Hence, the huge advantage of our
Poisson quantisation operator is that it allows to reduce the DP analysis back to the vanilla
analysis of the Gaussian mechanism (see Section 3.4.6).

Note that, since Poisson quantisation is probabilistic, it might harm the accuracy of the
model. Given µ ∈ sZ and x ∈]µ; +∞[, the variance of Qs,µ(x) is s2 x−µ

s = s(x − µ). For a
small enough s, this variance is very small since x is bounded, and there is actually no impact
on accuracy in our experiments (Section 3.5).

An important point to notice is that Poisson quantisation implies that the values to quantise
have an a priori common lower bound (otherwise the sum of the quantised values may depend
on these values and not only on their sum). In our case, these values are the noised updates.
The updates are already bounded by the clipping: as we will see in Section 3.4.6, this clipping
constrains the L2-norm of the updates (considered as vectors of the updates of all parameters)
and thus it also constrains the absolute value of each parameter update. As for the noises,
the following section shows we can consider that the noises have a common lower bound in
practice.

3.4.4 . Bounded Gaussian noises

The most common algorithms to sample from a Gaussian distribution are Box-Muller trans-
form in its Cartesian and polar forms ( [29, 110]) and the ziggurat algorithm ( [124]). As they
rely on a source of uniform randomness, we here show that all these algorithms actually gener-
ate values whose range have bounds which are way smaller than the range of double-precision
floats.

Box-Muller transform (Cartesian form) [29]: The Cartesian form of the Box-Muller
transform samples two independent uniform random variables U1 and U2 in [0; 1]. The random
variables Z1 =

√
−2 log(U1) cos(2πU2) and Z2 =

√
−2 log(U1) sin(2πU2) are independent

and follow a standard normal distribution (standard deviation 1 and mean 0). Since the function
cos and sin are bounded by −1 and 1, we see that the maximum absolute value of Z1 and Z2

is reached for the minimum value of U1 which is 2−nBits where nBits is the number of bits
used to represent an integer. For 64 bits, we get

√
−2 log(2−64) ≈ 9.42.

Box-Muller transform (polar form) [110]: The polar form of Box-Muller transform
samples two independent uniform random variables U1 and U2 in [−1; 1] and calculates s =

U2
1+U

2
2 . The random variables Z1 =

√
−2 log(s) U1√

s
and Z2 =

√
−2 log(s) U2√

s
are independent

and follow a standard normal distribution. In this case, U1√
s

and U2√
s

always belong to [−1; 1]
hence the maximum absolute value reached by Z1 and Z2 is

√
−2 log(smin) where smin is the

minimum value possibly reached by s, namely smin = (2−nBits)2 + (2−nBits)2 = 2−2nBits+1.
For a 64-bit processor, this gives

√
−2 log(2−127) ≈ 13.27.

Ziggurat algorithm [124]: The ziggurat algorithm applies to monotonically decreasing
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probability distributions and extends to symmetric unimodal distributions like the normal one
by randomly choosing on which side of the mode the sampled value will fall. The algorithm
works by covering the distribution by stacked rectangular regions of same area. What matters
for our problem of finding the bound of the sampling process is only the tail rectangle. In the
rare case where the value did not fall into one of the other rectangles, a fallback algorithm is
used to sample the value from the tail. Let xtail be the abscissa of the right side of the last
rectangular region before the tail. The fallback algorithm for the normal distribution samples two
independent uniform random variables U1 and U2 from [0; 1] and defines x = − log(U1)/xtail,
y = − log(U2). It then tests if 2y > x2 and returns x+ xtail if yes. Otherwise, it restarts with
two new samples U1 and U2. Thus, the biggest value in the monotonic case, also the biggest
absolute value in the symmetric case, is − log(2−nBits)/xtail + xtail. In [124], Marsaglia and
Tsang calculate that, for 255 rectangles, xtail ≈ 3.65. For 64 bits, we then get the bound
15.81.

These "artificial" bounds, that we cannot avoid in practice anyway, are justified by the very
low probability of a draw outside them: less than 10−20 for the lowest bound, 9.42, and less than
10−55 for the highest, 15.81. To get a sample from an arbitrary normal distribution, it suffices
to scale the sample of the standard normal distribution by the wanted standard deviation and
then add the wanted mean. This discussion allows us to exhibit a lower bound for the Gaussian
noises and, the unnoised updates being bounded by the clipping, for the noised updates. As a
consequence we can apply Poisson quantisation.

Note that the distributions followed by the outcomes of those popular sampling algorithms
are almost invariably (and implicitly) considered in the literature as perfect normal distributions.
We will make the same assumption here and deem that, if we can represent the output of these
algorithms without any loss of information (perfectly represent all double-precision floats in
[−16; 16] for example) then the limited number of bits of the messages does not have any
impact on the span of the noise. We can thus ignore the boundedness of the noise in the DP
analysis.

3.4.5 . The problem of the unbounded Poisson distribution is not a problem

A drawback of Poisson quantisation is that it is not bounded, while the cryptosystem only
works on a finite set of values. Indeed, even if the Gaussian noises are bounded by the practical
limitations of their sampling algorithm, the quantised noised updates are not. However, we
show in this section that this is actually not a problem for our method.

A first argument to address the issue of the theoretically infinite range of the Poisson
distribution would be to study Poisson sampling algorithms and find a practical bound, like
we did for the normal distribution (Section 3.4.4). Nevertheless, this does not seem that
straightforward for the Poisson case3.

Rather, let us see what happens if the Poisson sample falls out of the bounds imposed
by the cryptosystem plaintext domain (i.e. exceeds the plaintext modulus). At encryption, a
modulo operation will automatically be applied to the value. The same modulo operation will

3Although traditional sampling algorithms only generate very large size outcomes with very lowprobability and very large computation time.
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be performed on the aggregated updates on the server side. Observation 1 shows that these
two modulo operations amount to a single modulo operation on the sum of the updates, which
constitutes a post-processing on this sum and, as such, does not affect the DP analysis.

Observation 1. Let (xi)i∈J1;KK ∈ ZK , N ∈ N∗.
K∑
i=1

(xi mod N) mod N =

K∑
i=1

xi mod N.

Recall that only integer values can be manipulated in the encrypted domain. This implies
that the quantised noised updates are multiplied by the inverse quantisation scale 1

s before
being encrypted, and that the participants rescale the averaged updates by s once received
from the server at the next round.

Let us now consider the influence of this modulo operations on the accuracy of the model.
First of all, the result of the Poisson quantisation may be non-positive due to the negative offset
µ and thus may fall out of [0, . . . , N−1], where N denotes the plaintext modulus. To avoid this
situation, we make the participants send the quantised updates without adding the (potentially
non-positive) offset µ. When they receive the averaged updates from the server, they just have
to add µ to them to get the actual averaged updates. The second case is encountered when
a sample exceeds the plaintext modulus. Nevertheless, this event is very rare if the modulus is
big enough. With the parameters we use (Section 3.5), we show, using Chebyshev’s inequality,
that the probability for a quantised gradient to exceed the plaintext modulus is lower than
1.01× 10−9. Similarly, the probability that the aggregation (sum) of the K quantised gradient
exceeds the plaintext modulus is lower than 1.61× 10−5, to compare to the number 486, 654
of parameters. In any case, our experiments prove that this has no practical influence on the
model accuracy.

3.4.6 . DP analysis of the Gaussian mechanism
According to the discussion above, our mechanism has the same DP guarantee as a mech-

anism where true unbounded and continuous Gaussian noise is added by the server after ag-
gregation, a.k.a. the Gaussian mechanism. The noise introduced as a side-effect by Poisson
quantisation may even improve the privacy but, for simplicity, we consider it as banal post-
processing and do not take it into account in the DP analysis. Hence, the DP analysis reduces
to the Gaussian mechanism’s analysis. As explained in 2.1.4 and pretty much like in [77] for
instance, we use the moments accountant [2] to compose privacy costs in an efficient way
across the multiple learning rounds.

Formally, given σ ∈ R∗
+ the standard deviation for the aggregated noise and S ∈ R∗

+

the clipping bound in L2-norm, let us consider the two density functions corresponding to two
adjacent databases respectively not containing and containing the adversary’s target client:

f1 : x ∈ R 7→ 1

σ
√
2π
e−

x2

2σ2

and

f2 : x ∈ R 7→ 1− q
σ
√
2π
e−

x2

2σ2 +
q

σ
√
2π
e−

(x−2S)2

2σ2
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where q = K
M is the fraction of participants by round i.e. the probability of a given client being

chosen to participate in a given round. Since q < 1, we get privacy amplification by subsampling.
Without loss of generality since the integral for the moments accountants computation is on
whole R, f1 is defined with mean 0. Note that the part corresponding to the event whereby the
target client is chosen as participant has an offset of 2S rather than S because, if the absolute
values are constrained by the clipping bound S, the actual span of the values is 2S. As a result,
changing the participant may modify the updates by 2S.

The moments accountant of order l ∈ R∗
+ corresponding to a single query to the private

database, i.e. a single learning round, is:

α(l) = max

[∫
R

(
f1(x)

f2(x)

)l

f1(x)dx,

∫
R

(
f2(x)

f1(x)

)l

f2(x)dx

]
.

The total moments accountant of the learning process is αtotal ≤ T maxl∈R∗
+
α(l) where

T is the number of learning rounds. In practice, we compute the max for l being an integer
varying in [1, . . . , 20]. Finally, we apply Theorem 2 to derive the DP guarantee ϵ from αtotal,
δ << K being chosen (in our experiments, we took δ = 10−5).

Privacy cost from the point of view of a participant

For a comprehensive analysis, one must not forget that, from the point of view of a participant
k, the noise generated by k does not participate in the privatisation process4. Hence, we
must take into account only the other participants’ noises. The individual noises added by the
participants are calibrated such that their sum has a certain standard deviation σ i.e. these
individual noises have standard deviation σ√

K
, K being the number of participants in each

round. As a result, the DP guarantee from the point of view of a single participant must be
computed by substituting σ by

√
K−1√
K

σ, which has an insignificant influence if K is large (1000
in our experiments). Note that this is still quite conservative as it assumes that the considered
participant may participate to all training rounds.

We can also interestingly extend our threat model in a straightforward way by considering
that some clients may collude and share their noises with each other, quite like in [83]. From
the point of view of a colluding client, the noise added by all the colluding clients would be
known and it would therefore not participate in the DP protection of the data. The aggregated
noise would then have a standard deviation of

√
1− χσ and this would result in a degraded DP

guarantee, obtained by substituting σ by
√
1− χσ where χ is the ratio of colluding participants.

This modification of the DP guarantees also applies in the case of some clients dropping out.
Figure 3.3 illustrates the loss of confidentiality due to collusion of clients.

3.4.7 . Homomorphic encryption protects the data (and the model) against
the server

While considering our learning framework protected by a distributed noising, it may not be
clear why the framework ever needs to make use of cryptography. Indeed, the server receives

4For instance, if one knows the noise that was added to a value, one just has to remove thisnoise from the noised value to get the initial value.
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the updates from the participants after they have been noised. However, each individual noise
has been calibrated such that the aggregated noise will obfuscate the sensitive information of a
specific participant. If σ is the standard deviation necessary to hide the data of one participant,
the standard deviation of each individual noise is σ√

K
. However, since without HE the server

would see each individual noise updates before aggregation, the individual noise should be equal
to σ if it were to protect the updates from the server. Such a setting is referred to as local
DP in the literature. Yet, in our case, this would result in an aggregated standard deviation
of
√
Kσ (for the sum, or σ√

K
for the average) which would heavily harm the utility of the

averaged updates and thus the accuracy of the model.
In terms of concrete HE, the fact that we are considering the simple FederatedAveraging

operator allows us to spare much computation time by using additive-only schemes such as
in [122] where the Paillier cryptosystem is used with batching. In the experimental results
reported in the next section we have used the BFV cryptosystem which allows for more massive
batching and, as such, results in much lower (amortised) overheads. Additionally, one key
contribution of [122] was to associate Paillier-based homomorphic calculations to Verifiable
Computing (VC) techniques (e.g. [71]) to further extend the server threat model beyond the
honest-but-curious one and bring execution integrity, as [121] did with BFV scheme. However,
these works lacked DP. Indeed, adding the DP noise on the server requires a tag that can only
be generated with knowledge of the VC scheme secret key (i.e. by a client), meaning, in the
Federated Learning context, that at least one of the clients would have knowledge of the total
noise added (resulting in a collapse of the DP guarantee regarding this client, even when that
knowledge is uncertain). We could actually imagine that the server generates K noises that sum
to the required noise and send each of them to a participant for tag generation but this would
double the communication cost. Hence, associating DP with VC for server-side computation
integrity maintaining a reasonable communication cost requires a distributed noise generation
as provided in this paper. As such, the noise generation technique proposed in this work is
directly applicable to setups where homomorphic calculations are paired with VC techniques.

As a very interesting side-effect, the HE layer also hides the model parameters from the
server throughout the training. This may be valuable when the clients want to keep their model
private, or give only a black-box access to it, either for privacy or economic reasons (cf. machine
learning as a service).

3.5 . Experimental results

To prove the practicality of the combination of our Poisson quantisation technique with
HE, we performed experiments that enable us to evaluate training performance in terms of
accuracy, precision requirements and computation time. We chose the Federated Extended
MNIST (FEMNIST) dataset5 to run the experiments. The extended version of MNIST contains
62 classes (digits, upper and lower letters) of hand-written characters from 3,596 writers and
comes with the writer id. FEMNIST, the federated version, was built by partitioning the data
based on the writer [33]. The network architecture is the same as in [122]: a standard CNN

5Dataset available at https://www.nist.gov/itl/products-and-services/emnist-dataset
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composed of two convolution layers (respectively with 5 ∗ 5 kernel size and 128 channels, and
with 3 ∗ 3 kernel size and 64 channels, each followed with 2 ∗ 2 max pooling), a fully connected
layer with 128 units and ReLu activation, and a final softmax output layer (486,654 parameters).

Table 3.1 shows the influence on the model accuracy of the adaptations necessary to ensure
DP. Starting from a non-DP baseline from the state of the art [122], we successively modified
parameters of the framework, each of these modifications being required by the DP analysis6.
The successive steps are:

• reduce the number of learning rounds from 200 to 100, hence reducing the amount of
queries to the clients’ sensitive datasets: as shown in Table 3.1, this has a very mild
influence on the model accuracy whereas, for smaller number of learning rounds, the
accuracy starts decreasing more significantly

• increase the total number M of clients (to 3596, the total number of writers for FEM-
NIST) and the number K of participants per round to 1000. This has two advantages.
Firstly, we can make the ratio q = K

M smaller, decreasing the probability of a target
client participating at a given round and thus the probability of this target releasing any
information during this round. Secondly, the absolute value K is greater, so that the
information of the target participant is more diluted in the averaged updates. In prac-
tice, the experiments show that, with a fixed distortion ratio σ

K , which gives roughly the
same model accuracy, the DP guarantee ϵ decreases when K increases. We then chose
K = 1000, in our opinion the largest reasonable value so that a substantial ratio of the
clients can stay idle at each round. The impact on the accuracy of the increasing of M
and K is due to the larger number of writers, inducing a higher variety in the training
samples (non-i.i.d. across the different writers) which makes the classification task more
complex.

• assign the same coefficient 1
K to all the participants in the weighted average (rather than

the proportion nk
n of training samples owned by participant k) so that the sensitivity of

the average for every participant is S
K rather than maxk∈J1;KK

nk
n S, where maxk∈J1;KK

nk
n

may be much larger than 1
K

• clip updates with clipping bound S to ensure finite sensitivity (we took S = 1 which has
a mild impact on accuracy and allows for good DP guarantees)

• on the participant side, quantify the noised updates via Poisson quantisation

• apply a modulo operation on the noised updates on the participant side, and on their
sum on the server side, which is automatically done by encryption

• add the Gaussian noise necessary to make the learning process differentially private. We
chose σ = 6 for the total noise because it gives a good trade-off between privacy and
model accuracy as shown in Figure 3.2.

6Note that the order in which we made these successive adaptations does not correspond tothe order in which they are executed in the learning workflow.
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Figure 3.2: Model accuracy and DP guarantee vs noise standard deviation (δ = 10−5)

We fixed the scale for Poisson quantisation to 10−4, as in [122], since it does not much
affect the accuracy. We used as common lower bound µ of the Gaussian noises the lower bound
from the ziggurat algorithm with 255 rectangles, i.e. −15.81 (see Section 3.4.4), multiplied
by the standard deviation of the distribution. This lower bound is greater (in absolute value)
and then more conservative than the lower bounds of the two other sampling algorithms we
considered. Moreover and quite importantly, ziggurat algorithm with 255 rectangles is actually
the algorithm chosen by the numpy library we used.

The whole training process is (ϵ, δ)-differentially private, with ϵ = 5.31 and δ = 10−5.
Actually, for δ = 10−5, ϵ = 5.306 for an end-user which is not a participant and ϵ = 5.309 for a
participant (see discussion at the end of Section 3.4.6). More widely, Figure 3.3 represents the
privacy cost, from the point of view of a colluding participant i, as a function of the ratio of
participants who collude with i. As expected, we see that the privacy cost increases smoothly
with the ratio of colluding participants and, up to say 20% of colluding participants (i.e. 200

colluding teachers) the privacy cost remains reasonably close to the one in the non-colluding
case.

These DP guarantees together with the model accuracy of 76.84% give us the same pri-
vacy/utility trade-off as [5, 106] got with secure aggregation. Nevertheless, if communication
is a critical issue, we may use a greater quantisation scale, at the expense of accuracy, but
this would not harm the DP guarantee, contrary to [5, 106]. Interestingly, we experimentally
notice that the quantisation and the modulo operation have no influence on the accuracy: the
model trained with noise but without quantisation or modulo operation still has an accuracy of
76.84%.

The experimental results for HE were realised with BFV in batched mode and Palisade
library (version 1.1.6) on an Intel Core i7 with 4 cores at 3 GHz with 32 GB Ram on Ubuntu
18.04. The security level was set to 128 bits and the batch size used was of 8,192. Following this
the overall 486,654 updates can be packed in only 60 ciphertexts (where each of the 8,192 slots
contains one gradient update). Table 3.2 provides the overall homomorphic computation time
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Figure 3.3: DP guarantee vs ratio of colluding participants (δ = 10−5)

Table 3.1: Influence of successive adaptations on accuracy.
AccuracyState of the art [122] 84.6%Decrease the number of learning rounds T 83.58%IncreaseM andK 81.04%Assign same coefficients 80.21%Clipping of the updates 79.26%quantisation 79.03%Modulo operation 79.07%Adding random noise 76.84%

Table 3.2: Computation time (in seconds) of HE operations with a 26 bits modulus for the full486654 weights model.
Number of participantsK 1000Context and key generation 0, 05698Encoding 0, 05704Encryption 0, 84642Evaluation 26, 22508Decryption 0, 29308
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for the full model for a 26 bits modulus and 1000 participants per round resulting in a (fairly
practical) maximum of 26 seconds of homomorphic calculations (per FL round). Performing
the full FL cycle (without communications) on a GPU-based HPC cluster takes around 20 hours
(i.e., 12 minutes per FL round), resulting in a 3.6% computation time overhead imputable to
HE calculations.

The choice of a 26 bits modulus is due to an empirical investigation. For 26 bits or more,
the model trains correctly, with almost no impact of the modulo operation on the accuracy (see
Table 3.1). Below 26 bits, the model does not learn at all. This sharp change of behaviour
is due to the fact that the modulus exponentially depends on the number of bits and that
the distribution of the quantised noised updates is actually very peaked - the ratio standard
deviation over expectation is lower than 2.22× 10−3.

3.6 . Conclusion and perspectives

In this work, we addressed the problem of rigorously combining Differential Privacy and Ho-
momorphic Encryption in order to strengthen the training data privacy of collaborative learning
protocols. Starting from the popular FL framework we provided a number of confidentiality-
oriented building blocks. Firstly, by having the clients add random noise on the information
they send to the server, we made the learning mechanism differentially private from the point of
view of any end-user of the model and that of the clients themselves. Secondly, following [122],
we added a HE layer on the server side so that the server cannot see the updates coming from
the clients, that may release sensitive information about the training data. Yet, the HE layer
has a major impact on the random noise added to ensure DP, essentially because of the limited
number of bits available for a reasonable computation time. However, we proved that this in-
terference can be seamlessly dealt with in terms of privacy thanks to some adaptations among
which a new carefully crafted quantisation operator that frees the method from the trade-off
between privacy and computation time/communication.

We ran experiments on the FEMNIST dataset that illustrate the practicality of our approach
in terms of accuracy, precision requirement and computation time, and we thoroughly analysed
the cost of DP in accuracy compared to a non-DP baseline.

On the server side, the present work could be extended to cover more advanced threat mod-
els, making the learning process robust to a server who would, willingly or not, make mistakes
in its computations. As argued in Section 3.4.7, this could be done using verifiable computing
techniques, as in [122], in a quite straightforward further work thanks to the fact that the server
is not in charge of adding the random noise necessary to DP. It should also be emphasised that
our quantisation technique may also prove useful when combined with other cryptographic tech-
niques for computing over encrypted data such as MPC and Functional Encryption which also
have applications in Federated Learning. Of course, our quantisation operator also addresses
the issue of communication overload even in a cryptography-free context.

Testing our approach on a larger, more cross-device-oriented dataset would be quite inter-
esting to further estimate its scalability. Moreover, this could be advantageous from the privacy
point of view since this would allow to increase M , the number of clients and thus having
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simultaneously a large number of participants K and a low ratio K
M , conditions that will both

improve the DP guarantees of the learning mechanism.
Another quantisation function or a more involved analysis that would not need to lower

bound the random noise added to the updates would allow us to get rid of the argument of the
imperfect sampling algorithms and to use our framework with other noise distributions, possibly
unbounded, even in practice.

138



E - Sums of rounded Gaussian variables are not
rounded Gaussian variables

In this appendix, we show that the sum of rounded Gaussian variables does not follow the
distribution of a rounded Gaussian variable in general. We exhibit a counter-example for the
sum of two rounded Gaussian variables.

Let ⌊·⌉ be one of the two following operators: the deterministic rounding (rounding to the
nearest integer) or the traditional stochastic rounding (x ∈ R is rounded to ⌊x⌋ with probability
⌊x⌋ + 1 − x and to ⌊x⌋ + 1 with probability x − ⌊x⌋, where ⌊x⌋ is the floor of x). We may
apply this operator to a real or a real valued random variable.

Let X1, X2 be two independent random variables both following the normal law of mean 1
2

and standard deviation σ ∈ R∗
+.

When σ approaches 0, for all i ∈ {1, 2}, P(⌊Xi⌉ = 0) and P(⌊Xi⌉ = 1) both approach 1
2 .

Let us then choose σ small enough, such that P(⌊Xi⌉ = 0) ≥ 1
4 and P(⌊Xi⌉ = 1) ≥ 1

4 for all
i ∈ {1, 2}. As a consequence,

P(⌊X1⌉+ ⌊X2⌉ = 0) ≥ P(⌊X1⌉ = 0 ∧ ⌊X2⌉ = 0)

= P(⌊X1⌉ = 0)P(⌊X2⌉ = 0)

≥ 1

16
. (E.1)

Moreover,

P(⌊X1⌉+ ⌊X2⌉ = 1) ≥ P(⌊X1⌉ = 0 ∧ ⌊X2⌉ = 1) + P(⌊X1⌉ = 1 ∧ ⌊X2⌉ = 0)

= P(⌊X1⌉ = 0)P(⌊X2⌉ = 1) + P(⌊X1⌉ = 1)P(⌊X2⌉ = 0)

≥ 1

8
. (E.2)

Suppose that ⌊X1⌉+ ⌊X2⌉ follows the distribution of a rounded Gaussian. We call Y the
Gaussian variable such that ⌊X1⌉+ ⌊X2⌉ follows the same distribution as ⌊Y ⌉. Let σ′ be the
standard deviation of Y and µ′ its mean.

X1 and X2 being independent and symmetric around 1
2 , ⌊X1⌉+⌊X2⌉ is symmetric around 1

and so is ⌊Y ⌉. In particular P(⌊Y ⌉ = 0) = P(⌊Y ⌉ = 2). If µ′ < 1, P(⌊Y ⌉ = 0) > P(⌊Y ⌉ = 2)

and, similarly, if µ′ > 1, P(⌊Y ⌉ = 0) < P(⌊Y ⌉ = 2). Thus µ′ = 1.
Then, when σ′ approaches 0, P(⌊Y ⌉ ≠ 1) approaches 0. Since E.1 implies that P(⌊Y ⌉ ≠

1) ≥ 1
16 , σ

′ is greater than a certain s1 ∈ R∗
+.

Moreover, when σ′ approaches infinity, P(Y ∈ [a, b]) approaches 0 for any (a, b) ∈ R2,
a < b. Inequality E.2 implies that P(Y ∈ [0, 2]) ≥ 1

8 so it also implies that σ′ is lower than a
certain s2 ∈ R∗

+.
s1 ≤ σ′ ≤ s2 gives us a lower bound on P(Y ≤ −1). Let p ∈]0; 1] be a strict lower bound

for P(Y ≤ −1). Hence P(⌊Y ⌉ ≤ −1) ≥ P(Y ≤ −1) > p.
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The definition of p only comes from the fact that the Gaussian variable Y has mean 1 and
satisfies P(⌊Y ⌉ ≠ 1) ≥ 1

16 and P(Y ∈ [0, 2]) ≥ 1
8 . As such, p is independent of σ as soon as σ

is small enough to ensure P(⌊Xi⌉ = 0) ≥ 1
4 and P(⌊Xi⌉ = 1) ≥ 1

4 for all i ∈ {1, 2}. Moreover,
p > 0 and then

√
1−p
2 < 1

2 . Hence, we can choose σ such that, besides P(⌊Xi⌉ = 0) ≥ 1
4

and P(⌊Xi⌉ = 1) ≥ 1
4 , we also have P(⌊Xi⌉ = 0) ≥

√
1−p
2 and P(⌊Xi⌉ = 1) ≥

√
1−p
2 , for all

i ∈ {1, 2}.
Then,

P(⌊X1⌉+ ⌊X2⌉ = 1) ≥ P(⌊X1⌉ = 1 ∧ ⌊X2⌉ = 0) + P(⌊X1⌉ = 0 ∧ ⌊X2⌉ = 1)

= P(⌊X1⌉ = 1)P(⌊X2⌉ = 0) + P(⌊X1⌉ = 0)P(⌊X2⌉ = 1)

≥ 1− p
2

. (E.3)
Besides,

P(⌊X1⌉+ ⌊X2⌉ = 0) ≥ P(⌊X1⌉ = 0 ∧ ⌊X2⌉ = 0)

= P(⌊X1⌉ = 0)P(⌊X2⌉ = 0)

≥ 1− p
4

(E.4)
and, by symmetry,

P(⌊X1⌉+ ⌊X2⌉ = 2) ≥ 1− p
4

. (E.5)
Inequalities E.3, E.4 and E.5 give

P(⌊Y ⌉ ≤ −1) ≤ 1− P(⌊X1⌉+ ⌊X2⌉ = 1)− P(⌊X1⌉+ ⌊X2⌉ = 0)− P(⌊X1⌉+ ⌊X2⌉ = 2)

≤ p

which gives a contradiction and shows that ⌊X1⌉+ ⌊X2⌉ does not follow the distribution of a
rounded Gaussian variable.
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Conclusion

With the boom of machine learning and its ever-increasing greed for countless data from any
kind of source, the privacy issues for artificial intelligence are subject to more and more tension
and privacy requirements are often unnegotiable. In a nutshell, privacy-preserving machine
learning is becoming a standard, enforced by constraining regulations around the world. Due to
the variety of potential adversaries and attacks, many diverse techniques have been developed
as countermeasures. Yet, the combination of these techniques in efficient and well integrated
protocols still poses many challenges and constitutes an active field of research.

In our three contributions, we leveraged the complementarity of two of these techniques,
differential privacy (DP) and homomorphic encryption (HE), to widen the scope of addressed
threats and preserve the training data privacy against any actor of the learning protocol and
the end-users. In the contributions of Chapters 1 and 3 of Part II, the combination of these
two very different privacy tools appeared like a constraint. In SPEED (Chapter 1), the set
of computations to realise in the encrypted domain is decided following a trade-off between
revealing the less leaky output (argmax rather than histogram) and limiting the complexity
of the computations in the homomorphic domain. In Combining homomorphic encryption and
differential privacy in federated learning (Chapter 3), the quantisation induced by the encryption
and the unsuitability of discrete noise mechanisms compelled us to propose a new quantisation
operator. Thanks to this operator, we were able to combine additive HE - which only induces
a computational time overhead of less than 5% - with distributed DP, letting the possibility to
integrate verifiable computing techniques in the line of our other contribution A secure federated
learning framework using HE and verifiable computing. On the contrary, SHIELD (Chapter 2
of Part II) makes DP and HE help each other and play together in the same direction: the
approximate design of this operator makes it faster to compute in the homomorphic domain
while turning it error-prone, thus ensuring DP. This opens a new paradigm of optimisation with
an additional degree of freedom: the trade-off between accuracy, privacy and computational
performance rather than a binary trade-off as privacy-accuracy in DP and security-performance
in FHE.

Our works provide different solutions for privacy-preserving server-based collaborative learn-
ing. In the context of the recent privacy rules, like GDPR for example, a wide range of
applications is possible. One of the most obvious application scenarios lies in the medical
field: teachers or clients can be hospitals that own medical data from patients, do not want
to jeopardise their privacy (think about HIPAA that specifically regulates privacy in healthcare)
but aim at aggregating these data to train a global model that would, for instance, detect
a certain disease from radiographic images. Defence is also an important application field
where unwanted information leakage may result in serious consequences. Actually, DGA (Di-
rection Générale de l’Armement)1, interested by our SPEED solution, contacted us to design

1the French Government Defence agency responsible for the development, purchase and ex-portation of French weapon systems
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a realistic application scenario against cyberattacks in the context of Opération i-Naval 2022
https://2022.i-naval.fr/. Another application field is cybersecurity. Indeed, many sys-
tems register signatures of attacks that they suffered in the past. If the register is discovered
by an adversary, it could reveal the weaknesses of the system and make a future attack much
more efficient. More generally, any learning framework that involves several parties that own
sensitive data, either for personal or strategic reasons, is a potential application.

As suggested by our experimental results, the number of data owners involved can guide the
choice of the framework: SPEED and SHIELD work well with a quite small number of teachers
(a few hundreds) whereas our secure federated learning solution can deal with thousands of
clients. Besides, SPEED approach is agnostic to the nature of the models and thus allows to
work with large-scale models without additional cost in the homomorphic domain. In contrast,
federated learning is specific to neural networks and limits the server computations to the
aggregation and, in case of FedAvg, to a simple addition, reducing the homomorphic overhead
to the minimum.

Precisely, among the perspectives of our line of research is the design of another aggregation
operator for federated learning, which would be both quick to compute in the homomorphic
domain and robust to Byzantine attacks i.e. attacks from clients that send incorrect updates,
either random or adversarial. This perspective is challenging because the most common aggre-
gation operators that are robust to Byzantine attacks (e.g. median, Krum, multi-Krum) make
use of comparisons, which are costly operations in the homomorphic domain. We think that
DP may also help to reach Byzantine robustness. In [86], the authors explain that DP is incom-
patible with the variance-to-norm (VN) condition that implies Byzantine resilience and needs to
be relaxed to get along with DP. Nevertheless, since DP aims at obfuscating the contribution
of one specific client (or even a group of clients, depending on the adjacency definition), this
precisely could mitigate the malicious influence of a Byzantine adversary and, in some cases,
DP and Byzantine robustness - apprehended from another point of view than the VN condition
- might have aligned objectives.

Another extension to not only honest-but-curious adversaries could rely on verifiable com-
puting. In [122], we already proposed a federated learning framework secured by verifiable
computing and HE but it lacked DP. As stated in Chapter 3 of Part II, we could easily add a
verifiable feature to our method thanks to the fact that the noise is generated in a distributed
manner among the participants.

An interesting line of research is the use of the intrinsic noise induced by encryption to
ensure DP guarantees. As noted in Chapter 2 of Part II, in some scenarios when we need both
HE and DP, cryptologists may spend a lot of efforts to make the homomorphic layer accurate,
which increases the computational complexity. Afterwards, some noise is added to ensure DP.
One can feel that this approach is not optimal and the idea here is to let the HE operators be
somehow inaccurate, enabling low computational complexity and, at the same time, providing
DP guarantees. Since encryption is necessarily probabilistic, if we managed to characterise the
distribution of the encryption noise, we could tune the cryptosystem parameters in order to
get the required amount of noise for DP from encryption, which would also result in a lighter
computational load than in the case of a very accurate operator. CKKS is a good candidate
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for this approach since the ratio between the noise added at encryption and the message is
more important than in most of the other cryptosystems. This follows the same philosophy as
SHIELD but is closer to [171] because, rather than having a stochastic algorithm by design, we
would get this stochastic behaviour from the noise induced by encryption.

Further work could also include wider reflections about DP, its limits and its possible re-
laxations. For instance, what is a reasonable ϵ remains unclear [64] and in many applications
or even research works, the choice of ϵ is more or less arbitrary, sometimes leading to little to
no privacy [23]. Even if the idea of the continuum on the privacy-utility axis on which lie both
cryptography and DP, explained in Section 2.2.7 of Part I, gives a comparison point for the value
of ϵ, the notion of security in cryptography is so conservative and so far from practical levels
of “useful” privacy in DP that this comparison is of little help for the determination of a good
epsilon value. Non-expert clients would highly benefit from automatic mechanisms that would
allow them to control the privacy-utility trade-off more easily by, among other functionalities,
suggesting reasonable values of ϵ and δ depending on the application, ensuring a maximum
number of queries to a given database. A good starting point towards these mechanisms is the
Epsilon Registry, a public collaborative document that gathers empirical knowledge about DP
implementations, for which Dwork et al. call in [64].

Extensions of DP could be more adapted to the frameworks we worked on, especially
SHIELD. Among them is the setting whereby it is not assumed that the adversary knows
everything about all the individuals in the database except its victim, but that it may know
less. As explained in [14,20], the uncertainty on the individuals results in increased noise on the
sensitive information, thus leading to better DP guarantees, or even privacy guarantees without
noise addition. Using DP based on other metrics than the Hamming distance, as proposed
in [46], would grasp a notion of privacy that goes beyond the pairs of adjacent databases and
may be more suitable to certain settings. In particular, such an extended notion of DP could
solve the paradox of counter-productive noise mentioned in the final remark of Appendix A.4
and especially in Appendix D.
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