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Résumé 

 Milieux essentiels à l'équilibre écologique et au bien-être de l'homme, les écosystèmes côtiers 

fonctionnent comme des puits de "carbone bleu", qui capturent et stockent le dioxyde de carbone 

atmosphérique, jouant ainsi un rôle crucial dans la régulation du climat. En outre, ces zones de 

transition sont des zones cruciales pour la biodiversité, offrant des habitats à une série d'espèces 

aquatiques cruciales y compris pour les espèces clés pour la pêche ance. Elles contribuent donc 

de manière significative aux économies locales et sont d’une haute importance écologique. 

 Pourtant, la résilience et la stabilité à long terme de ces écosystèmes sont de plus en plus 

menacées par toute une série de facteurs environnementaux qui peuvent être impactés par les 

forçages anthropiques. En Guyane française, la nécessité de disposer d'outils de surveillance 

avancés devient encore plus urgente compte tenu de la croissance démographique prévue, où le 

nombre de résidents devrait doubler d'ici 2025. Ces outils sont essentiels pour évaluer les 

impacts potentiels futurs sur le domaine côtier, en particulier dans le contexte actuel 

d'augmentation des forçages anthropiques tels que l'extraction de l'or, la déforestation et l’érosion 

côtière. Ces activités, ainsi que les influences naturelles telles que les bancs de vase et les apports 

des rivières locales, contribuent à la dynamique biogéochimique complexe de la région. 

Cependant, les contributions relatives de ces éléments restent floues en raison de l'insuffisance 

des mesures in situ.  

 Les recherches antérieures menées localement en Guyane française se sont principalement 

concentrées sur deux paramètres classiques, à savoir les particules en suspension (« Suspended 

Particulate Matter » SPM) et la chlorophylle-a (« Chlorophyll-a » Chl-a), qui sont généralement 

associés à la migration des bancs de vase et aux tourbillons du courant nord-brésilien (« North 

Brazil Current » NBC). Bien que ces paramètres soient indéniablement importants, ils peuvent 

ne pas rendre compte de la complexité de la dynamique biogéochimique présente dans la zone 

d'étude. Par exemple, il reste une lacune notable dans notre compréhension des facteurs localisés, 

tels que l'exportation de matière organique à partir des écosystèmes de mangrove et l'influence 

des modulations de marée. C'est pourquoi des paramètres supplémentaires, tels que le carbone 

organique particulaire (« Particulate Organic Carbon » POC) et le carbone organique dissous (« 

Dissolved Organic Carbon » DOC), sont également essentiels pour une compréhension plus 

complète de la qualité des eaux côtières guyanaises. En outre, la turbidité élevée due aux charges 

sédimentaires transportées par le fleuve Amazone et la présence d'un reflet solaire permanent 
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compliquent encore la complexité optique des eaux de la région pour des observations à distance 

efficaces. Par conséquent, une méthodologie plus adaptée est nécessaire pour utiliser 

suffisamment les données satellitaires afin d'améliorer la surveillance de la qualité de l'eau dans 

les eaux côtières de la Guyane française.  

 Compte tenu de ces défis et des lacunes dans les connaissances actuelles, cette recherche 

doctorale est structurée en cinq chapitres distincts. Chaque chapitre a un but spécifique aligné sur 

les objectifs principaux de l'étude : 1) Le premier objectif primaire est le développement d'une 

série temporelle complète de produits de couleur de l'océan clés (Chl-a, SPM, l'absorption de 

matières organiques dissoutes colorées (« Absorption of Colored Dissolved Organic Matter » 

aCDOM), ainsi que POC et DOC). Ces paramètres sont reconnus comme des indicateurs 

importants pour le suivi de la qualité de l'eau dans les régions côtières. 2) Le second objectif est 

de décrire la dynamique biogéochimique temporelle à l'échelle régionale. Il s'agit d'identifier les 

principaux facteurs de variabilité biogéochimique et de proposer des descripteurs 

biogéochimiques pertinents pour le suivi de la qualité de l'eau. Les tendances à long terme seront 

également analysées afin d'évaluer l'influence des variations induites par les forçages 

environnementaux au cours des 20 dernières années. 3) Le troisième et dernier objectif principal 

de cette recherche est de proposer une partition plus efficace des masses d'eau en utilisant des 

méthodes statistiques robustes. Ceci contribuera à la mise en place de politiques de surveillance 

localisées, améliorant ainsi la gestion durable des écosystèmes côtiers de la Guyane française. 

 Le chapitre 1 sert d'introduction à cette recherche et pose les bases en fournissant des 

informations générales essentielles. Il expose les principales raisons de l'étude, en soulignant 

l'importance des écosystèmes côtiers pour l'équilibre écologique, les contributions économiques 

et le bien-être de la société. Ce chapitre identifie les défis actuels auxquels ces écosystèmes sont 

confrontés, tels que la dégradation de l'environnement et l'augmentation des activités humaines, 

soulignant ainsi les lacunes de la recherche existante. En présentant ces problèmes, le chapitre 1 

établit le contexte et articule les questions et les objectifs scientifiques que cette recherche vise à 

aborder. 

 Le chapitre 2 se concentre sur les aspects méthodologiques de la recherche, en détaillant 

spécifiquement les ensembles de données et les approches statistiques utilisées dans cette étude 

doctorale. Il donne un aperçu des types de données utilisées, y compris les données satellitaires 

et les mesures sur le terrain, en expliquant leurs rôles respectifs dans l'amélioration de la 
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compréhension des écosystèmes côtiers. En outre, ce chapitre détaille les méthodes statistiques 

utilisées pour l'interprétation et l'analyse des données, y compris les techniques d'examen des 

tendances à long terme et de catégorisation des types d'eau, entre autres. 

 Le chapitre 3 s'appuie sur les connaissances fondamentales discutées dans le chapitre 1, en 

particulier sur la nécessité de disposer de plus de modèles bio-optiques d'inversion pour 

comprendre la dynamique biogéochimique des eaux de la Guyane française. Bien que des études 

antérieures en Guyane française aient utilisé des modèles bio-optiques dans une certaine mesure, 

une évaluation critique de leur applicabilité à l'échelle régionale a été largement absente, sauf 

dans le cas du SPM. Compte tenu de la complexité optique des conditions des eaux côtières dans 

la zone d'étude, le chapitre donne la priorité à l'adaptation régionale de différents algorithmes 

d'inversion pour dériver des informations quantitatives sur les paramètres biogéochimiques à 

partir de données satellitaires.  

 Le chapitre est divisé en deux sections principales. La première partie est consacrée à une 

évaluation localisée de plusieurs variables, y compris SPM, POC, et aCDOM(412), en prenant 

comme référence les bandes centrales MERIS (Medium Resolution Imaging Spectrometer) dans 

le domaine visible. D'autre part, la dernière partie propose un examen plus détaillé du Chl-a, un 

paramètre crucial largement reconnu comme un descripteur essentiel dans la surveillance de la 

qualité de l'eau. Cette section s'appuie sur un ensemble complet de données in situ recueillies 

dans divers environnements côtiers à travers le monde, et les résultats ont été valorisés par une 

présentation orale lors d'une conférence internationale et par la publication de travaux de 

recherche. 

 Pour ce faire, nous avons adopté une approche basée sur les classes comme cadre 

d'évaluation des formulations historiques pour dériver la concentration des paramètres 

considérés. Afin d'éviter toute redondance, une sélection préliminaire a été effectuée pour 

identifier les modèles suffisamment distincts, ce qui a permis de concentrer l'examen sur les plus 

pertinents. Les versions originales et adaptées à la région de ces modèles ont été évaluées en 

comparant leur performance dans l'extraction de la concentration biogéochimique à partir de la 

réflectance de l'eau dans divers types d'eau optique (« Optical Water Types » OWTs) présents 

dans les eaux marines de la Guyane française.  

 En termes de résultats, l'examen de l'estimation de la SPM a révélé que la majorité des 

algorithmes testés ont donné des résultats satisfaisants. Notamment, l'algorithme BingHan16 est 
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apparu comme le plus précis pour l'estimation du SPM. Dans le cas du POC, la combinaison de 

deux modèles distincts a permis d'obtenir des résultats optimaux : Le17 et KienTran19. Ces 

modèles ont été appliqués sélectivement à des types d'eau optiques spécifiques afin de maximiser 

la précision de l'estimation du POC. Pour l'estimation de l'aCDOM, le modèle Cao18, basé sur une 

méthode de régression multivariée, a été jugé le plus approprié parmi les algorithmes candidats 

pour capturer efficacement la relation entre la réflectance de l'eau et l'aCDOM.  

 En outre, ce chapitre explore en profondeur les défis associés à l'estimation de la Chl-a dans 

diverses conditions d'eau et présente des solutions fiables jusqu'à un certain niveau de turbidité. 

Dans les environnements très turbides avec la présence de constituants coexistants tels que 

CDOM et SPM (eaux du cas 2), les algorithmes conventionnels de rapport de bande bleu/vert 

présentent des limites dans l'obtention d'informations précises sur le Chl-a. Ceci est 

particulièrement évident dans la zone côtière, où les eaux de surface et les eaux souterraines ont 

un rapport de bande bleu/vert élevé. Ceci est particulièrement évident dans la zone côtière de la 

Guyane française, où la complexité optique est accrue en raison des niveaux importants de 

sédiments en suspension. Les modèles d'inversion existants pour la Chl-a ont démontré une 

précision insuffisante dans ce domaine spécifique. En réponse à ce problème, un ensemble 

complet de données a été utilisé pour formuler deux algorithmes distincts : l'un conçu pour les 

eaux claires à moyennement turbides utilisant des rapports de bandes visibles, à savoir 

l'algorithme Multiple Band Ratio (MuBR), et l'autre pour les eaux très turbides avec un niveau 

élevé de Chl-a utilisant un modèle Rouge-NIR adapté basé sur l'indice de différence normalisé de 

la chlorophylle-a (basé sur « Normalized Difference Chlorophyll-a Index » NDCI). Ces 

algorithmes ont ensuite été intégrés dans un cadre de classification optique pour une application 

plus large. Les performances de ces nouveaux algorithmes ont ensuite été évaluées à l'aide de 

données d'observation provenant de Sentinel2-MSI et de Sentinel3-OLCI. Les résultats montrent 

que le traitement POLYMER s'est avéré le plus approprié pour dériver des estimations de Chl-a à 

partir de cette approche intégrée, bien qu'une validation supplémentaire soit nécessaire pour des 

conditions de turbidité et de Chl-a extrêmes. Bien que la méthodologie soit potentiellement 

transférable à d'autres capteurs satellitaires, des recherches supplémentaires sont impératives, en 

particulier pour les capteurs comme MODIS (Moderate Resolution Imaging Spectroradiometer) 

qui offrent des informations limitées dans le domaine du proche infrarouge. L'étude souligne 

également les limites des approches actuelles pour récupérer des informations sur la biomasse du 

phytoplancton dans des environnements ultra-turbides, soulignant la nécessité de développer des 
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approches spécialisées, potentiellement en tirant parti des capacités des futures missions 

hyperspectrales. 

 Le chapitre 4 vise à combler les lacunes existantes dans notre compréhension de la 

dynamique spatio-temporelle des descripteurs biogéochimiques clés dans les eaux de la Guyane 

française. Alors que la recherche historique s'est largement concentrée sur la dynamique 

sédimentaire, en particulier celle des bancs de vase, et dans une moindre mesure sur les échanges 

de carbone entre les domaines terrestres et océaniques, il y a un manque notable d'observations 

régionales globales et à long terme. L'objectif principal de ce chapitre est de caractériser la 

variabilité temporelle des variables biogéochimiques. Ces variables sont estimées à partir de 

l'espace à l'aide d'algorithmes adaptés à la région, qui ont été détaillés au chapitre 3. Divers 

ensembles de données sur la couleur de l'océan, y compris des archives satellitaires à moyenne et 

haute résolution spatiale, sont utilisés à cette fin. Des outils statistiques spécialisés, tels que la 

méthode de décomposition des séries temporelles Census X-11, sont utilisés pour analyser ces 

ensembles de données. Cette approche permet de mieux comprendre les variations des 

concentrations en surface des particules et des matières dissoutes. Une attention particulière est 

accordée à la côte de la Guyane française, où des données provenant de capteurs plus récents 

sont également prises en compte. Un autre objectif de ce chapitre est d'identifier les principaux 

facteurs environnementaux influençant ces variations biogéochimiques, en se concentrant sur 

différentes régions des eaux de la Guyane française. D'autres facteurs, tels que la température et 

la salinité de la surface de la mer, ainsi que les débits des fleuves, sont également pris en compte 

et comparés à d'autres paramètres pour soutenir cet objectif. Le chapitre conclut en proposant un 

ensemble d'indicateurs clés qui peuvent servir de base pour mieux catégoriser les masses d'eau 

en termes de représentativité biogéochimique et de qualité de l'eau. 

 Les résultats obtenus révèlent que les charges sédimentaires près du fleuve Oiapoque sont 

substantiellement plus élevées que celles près de l'embouchure du fleuve Maroni, avec une 

différence de SPM allant de 5 à 10 g.m-3. Ceci suggère une influence plus prononcée du fleuve 

Amazone dans les régions orientales de la côte guyanaise.  

 Dans les zones off-shore, des variations saisonnières significatives ont été observées à des 

latitudes comprises entre 5°N et 7°N et des longitudes comprises entre 52,5°W et 51°W, à plus 

de 50 km de l'estuaire de l'Oiapoque. Ces variations confirment un cycle annuel de flux 

rétrofléchi, particulièrement évident en saison sèche sous l'effet des alizés du sud-est. Le contenu 
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biogéochimique s'étend également vers l'ouest pendant la saison humide, peut-être sous 

l'influence de la bathymétrie et des changements de direction des vents. Bien que ces processus 

affectent toutes les variables biogéochimiques, l'amplitude des variations des substances 

dissoutes et particulaires est relativement plus faible dans l'extension off-shore occidentale, ce 

qui indique des conditions plus stables. Les régions SPM irrégulières dans le domaine off-shore à 

l'ouest de la zone de rétroflexion peuvent être liées à la formation d'tourbillons anticycloniques 

du courant nord-brésilien (NBC), qui se produisent 5 à 6 fois par an et ont un impact plus 

prononcé sur le SPM que sur d'autres paramètres.  

 Dans les zones côtières, des tendances distinctes ont été observées sur le plateau continental, 

illustrant la migration vers le nord-ouest des bancs de vase dérivés de l'Amazone à une vitesse 

moyenne de 1 à 2 km/an. Les fluctuations saisonnières du SPM soulignent le rôle des alizés du 

nord-est dans la modulation de l'accrétion et de l'érosion des bancs de vase. Le contenu 

organique des rivières locales semble être plus important que le total des solides en suspension, 

comme le montre une corrélation plus élevée entre le POC et le débit de la rivière Maroni. La 

modulation périodique du NBC sur le plateau intérieur peut être liée à une ceinture saisonnière 

de SPM apparaissant 1 à 2 mois après que la rétroflexion ait atteint sa position la plus 

septentrionale. Les variations opposées de Chl-a dans cette ceinture peuvent être dues à la 

disponibilité de la lumière pour la croissance du phytoplancton pendant la saison sèche. Les 

fluctuations du POC et de l'aCDOM(412) montrent de fortes variations irrégulières, potentiellement 

dues au carbone organique provenant des mangroves et des sédiments du fleuve Amazone, 

influencés par les changements saisonniers de la direction du vent. Les facteurs de marée 

peuvent également contribuer à la variabilité du bassin de carbone organique dans cette région.  

 Les données à long terme de MERIS couvrant la période 2002-2012 ne montrent pas de 

changements significatifs, à l'exception de la migration des bancs de vase, ce qui suggère un 

impact anthropique minime. Les vents alizés sont identifiés comme étant cruciaux pour 

gouverner la dynamique biogéochimique, en particulier pour les matériaux particulaires dans le 

domaine côtier. Les tests de co-variation entre les paramètres biogéochimiques soulignent 

l'importance du POC et du SPM dans la compréhension des impacts hydrodynamiques et 

environnementaux sur la qualité de l'eau. Le rapport POC/SPM pourrait servir d'indicateur 

potentiel pour le suivi de la qualité de l'eau et de la variabilité biogéochimique dans l'écosystème 

côtier de la Guyane française. 



Résumé 

28 

 Compte tenu des incertitudes liées à la dynamique biogéochimique, des mesures in situ 

supplémentaires et l'inclusion d'autres facteurs tels que le vent et la direction du courant sont 

essentielles pour une compréhension plus complète. Des questions restent sans réponse, comme 

la proportion de composants organiques d'origine locale par rapport à ceux provenant de 

l'Amazone, la raison de l'extension vers l'ouest de tous les paramètres biogéochimiques et 

l'impact plus visible des tourbillons NBC sur les variations de SPM. Par conséquent, un cadre 

efficace est nécessaire pour se concentrer sur des zones ou des types d'eau spécifiques en vue 

d'un échantillonnage efficace. 

 Chapitre 5 est consacré à la tâche cruciale de définir la condition "standard" des eaux 

marines en Guyane française. Cette norme sert de référence essentielle pour les parties prenantes 

engagées dans la surveillance biogéochimique et pour les décideurs politiques qui façonnent les 

stratégies environnementales régionales. L'objectif principal de ce chapitre est d'examiner 

plusieurs approches de classification pour partitionner les masses d'eau marines en Guyane 

française, basées sur les propriétés optiques, les variations temporelles et les proxies de la 

composition particulaire (« Proxy of Particulate Component » PPC, rapports POC/SPM). En 

appliquant ces méthodes de classification à des ensembles de données satellitaires à résolution 

moyenne et élevée, le chapitre vise à réaliser une analyse complète pour élucider les 

caractéristiques biogéochimiques associées à chaque type classifié d'eau marine dans la région.  

 En ce qui concerne la classification optique, nous analysons les spectres de réflectance pour 

distinguer les motifs pouvant indiquer des attributs spécifiques de l'eau, tels que la présence de 

particules en suspension, de matière organique et inorganique dissoute, et de différents types de 

phytoplancton. D'autre part, la classification POC/SPM se concentre sur la segmentation des 

masses d'eau en catégories spécifiques allant de celles riches en matières organiques à celles 

mixtes et enfin à celles dominées par les minéraux. Ce cadre de classification est essentiel pour 

faire progresser notre connaissance sur la distribution spatiale des substances organiques et 

inorganiques à travers différents types d'eau. De plus, la classification temporelle, qui utilise des 

techniques de cartes auto-organisatrices (« Self-Organizing Map » SOM), est utilisée pour 

regrouper des régions ou des pixels présentant une variabilité temporelle analogue. Cette 

approche est particulièrement efficace pour représenter la distribution spatiale des variables 

biogéochimiques au fil du temps et identifier les facteurs environnementaux pouvant être 

attribués à ces variations. Ces méthodes de partitionnement ont été examinées puis synthétisées 

pour fournir une évaluation plus large des propriétés de l'eau sur différentes régions. 
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L'intégration de ces approches distinctes devrait être un outil essentiel pour la planification et 

l'exécution d'études sur le terrain qui surveillent la qualité de l'eau dans divers environnements 

marins, tant côtiers qu'au large.  

 Un autre objectif clé de ce chapitre est de définir une stratégie d'échantillonnage bien définie 

basée sur les schémas de classification précédemment discutés et qui servira de cadre structurel 

pour la conduite de programmes de surveillance régionaux. Ces programmes ne se contenteront 

pas de suivre l'état actuel des propriétés de l'eau, mais évalueront également comment ces 

propriétés pourraient être impactées par les changements environnementaux au fil du temps. 

Compte tenu de l'absence de changements substantiels à long terme dans les eaux marines de la 

Guyane française, comme révélé dans le chapitre 4, un autre objectif clé de ce chapitre est de 

définir une condition de base fondamentale. Cette base sera formulée en utilisant des mesures 

dérivées de satellites et servira de référence critique pour identifier les anomalies ou les 

changements inattendus au sein de l'écosystème marin. L'établissement de cet état de référence 

est d'une importance capitale pour la conservation et la gestion marines, fournissant des 

informations essentielles requises pour mener des stratégies non seulement efficaces mais aussi 

réactives contre les problèmes émergents dans l'environnement marin.  

 Dans ce chapitre, les résultats confirment l'efficacité de la classification optique pour 

segmenter les eaux marines de la Guyane française en quatre types d'eau optique uniques. 

L'alignement entre les données spectrales acquises au sol et par satellite souligne la fiabilité de 

l'utilisation des mesures de couleur de l'océan pour cette classification. Les données à haute 

résolution du Sentinel-2 ont mis en évidence des changements saisonniers dans les OWTs autour 

de la rivière Maroni, surtout pendant les périodes de fortes précipitations. À l'inverse, la région 

de la rivière Oyapock a montré un manque de variation saisonnière significative, indiquant la 

nécessité potentielle d'autres méthodes ou de mesures in situ supplémentaires pour une 

classification précise. 

 En utilisant la technique de la SOM pour effectuer la classification temporelle, en se 

concentrant spécifiquement sur les valeurs de POC/SPM, ce chapitre renforce les conclusions 

présentées au Chapitre 4. Cette méthodologie offre une analyse complète qui explore l'impact de 

l'Amazone sur les eaux au large. Elle prend en compte divers facteurs tels que la présence 

d'tourbillons NBC, la rétroflexion NBC et l'extension vers l'ouest de paramètres biogéochimiques 

clés. Cette approche multifacette améliore notre compréhension des interactions complexes dans 
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l'environnement marin. Cependant, il est important de souligner que la fiabilité et la robustesse 

de cette technique dépendent en partie de l'accès à une série temporelle étendue de données pour 

une interprétation plus précise et nuancée.  

 Le processus de catégorisation basé sur les rapports POC/SPM a donné trois conditions d'eau 

distinctes : dominées par les minéraux, mixtes et dominées par l'organique. Cette classification 

consolide considérablement notre compréhension de la manière dont la distribution de la matière 

organique en suspension varie saisonnièrement dans les zones côtières. Plus précisément, nous 

avons observé que pendant les périodes de fort débit, les fractions organiques dans ces régions 

ont tendance à se contracter spatialement. Cette contraction est probablement due à l'effet de 

dilution causé par l'afflux de grands volumes de décharge d'eau. Fait important, la gamme de 

valeurs de POC/SPM que nous avons obtenues pour différents types d'eau optique OWTs était en 

forte concordance avec les mesures de terrain existantes. Cette cohérence ajoute une couche 

supplémentaire de validation à nos conclusions et souligne la fiabilité de l'utilisation des rapports 

POC/SPM comme paramètre clé pour comprendre la dynamique biogéochimique des différentes 

masses d'eau en Guyane française.  

 En utilisant des informations PPC, nous avons sélectionné et fusionné les techniques de 

partitionnement les plus efficaces pour classer les masses d'eau dans les régions côtières et au 

large de la Guyane française. Cette méthode intégrée sert de vue d'ensemble complète pour la 

délimitation des masses d'eau, offrant un niveau de fiabilité statistique qui pourrait 

potentiellement surmonter les limites des systèmes de classification conventionnels. Pour mettre 

ces conclusions en pratique, nous avons ensuite décrit une stratégie de mesure sur le terrain, 

comportant 12 stations stratégiquement placées à travers différents types d'eau, chacune conçue 

pour capturer les caractéristiques les plus significatives des masses d'eau à travers plusieurs 

régions de la zone d'étude. En particulier, les variations biogéochimiques dans le domaine au 

large sont plus susceptibles d'être caractérisées par des motifs temporels (saisonniers et 

irréguliers). Alors que les eaux mixtes et dominées par les minéraux associées à la manifestation 

de la banque de vase sont plus prononcées dans le domaine côtier de la Guyane française.  

 Les propriétés biogéochimiques liées à chaque OWT ont montré des variations saisonnières 

uniques, offrant des informations précieuses sur la saisonnalité des paramètres étudiés. Des 

valeurs de référence ont été établies pour ces paramètres à travers les quatre OWT pour servir de 

base à l'identification d'événements exceptionnels. Par exemple, un événement de précipitation 
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inhabituellement élevé en septembre 2021 a été détecté par des valeurs élevées de POC/SPM, 

probablement en raison de la dilution due à des précipitations intenses. Enfin, nous avons 

également envisagé la possibilité d'incorporer un large éventail de variables à la fois 

biogéochimiques et physiques dans la technique SOM. Cela nous permettrait d'attribuer une 

importance pondérée à chaque paramètre d'entrée, révélant ainsi l'importance relative de chaque 

variable pour différents types d'eau. Cette approche pourrait ainsi fournir une compréhension 

plus complète de l'écosystème marin. Plus précisément, elle pourrait être essentielle pour 

découvrir les interactions entre les variables biogéochimiques et leur impact sur des habitats 

écologiques spécifiques dans le milieu marin.  

 Bien que l'étude ait produit des conclusions informatives, plusieurs questions cruciales 

restent sans réponse, ce qui nécessite des investigations supplémentaires pour identifier les 

principaux moteurs affectant divers processus, tels que la présence du courant de la Guyane et 

l'extension vers l'ouest des variables biogéochimiques pendant la saison humide (venteuse). Des 

recherches supplémentaires sont nécessaires pour élucider les variations irrégulières de SPM 

potentiellement associées aux tourbillons du NBC. Des méthodologies capables de différencier 

entre les contributions locales (par exemple, les apports fluviaux, les échanges organiques des 

mangroves, les influences anthropiques) et régionales (par exemple, l'influence du fleuve 

Amazone) à la dynamique biogéochimique sont essentielles. Les futures recherches devraient 

privilégier des mesures in situ robustes, guidées par la stratégie d'échantillonnage proposée ici, et 

incorporer des paramètres physiques supplémentaires (par exemple, la dynamique du vent et du 

courant). Des données satellitaires mises à jour avec une résolution spatiale élevée et moyenne 

sont également recommandées pour les analyses temporelles, en particulier dans les régions 

côtières.  

 Les cadres de classification développés dans cette étude, englobant les classifications 

optiques, temporelles et PPC, ont démontré une applicabilité à d'autres environnements 

aquatiques géographiquement similaires. La stratégie d'échantillonnage proposée dans cette 

étude est considérée comme utile pour déployer efficacement des programmes de surveillance in 

situ et fournir également une analyse complète des fluctuations biogéochimiques, y compris 

l'identification des anomalies et les modulations de motifs saisonniers dans les eaux marines de 

la Guyane française. De plus, l'application de la classification SOM sur un ensemble de données 

multi-variables, englobant à la fois des variables biogéochimiques (POC, SPM, Chl-a, aCDOM) et 

physiques (« Sea Surface Temperature » SST, « Sea Surface Salinity » SSS, « Mixed Layer 
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Depth » MLD, dynamique du vent et des vagues), offre la possibilité de définir les paramètres 

significatifs en évaluant leurs poids. Cette approche multi-métrique pourrait apporter des 

éclairages sur les aspects structurels et fonctionnels de l'écosystème marin, tels que la définition 

de niches écologiques et la dynamique des niveaux trophiques supérieurs.  
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INTRODUCTION 

 Coastal ecosystems provide manyfold benefits to human lives and hold enormous importance 

as they encompass diverse inter-connected aspects that are intricately related to ecological 

services, sociocultural factors, and economic development. These transitional regions play a 

significant role in "blue carbon" systems, serve as carbon sinks by capturing and storing carbon 

dioxide from the atmosphere, thus helping to regulate Earth's temperature (Nellemann & 

Corcoran, 2009). The marine vegetated habitats typically associated with coastal environment 

(e.g., mangroves, salt marshes, seagrasses and kelp forests, see Figure 0.1) occupy 

approximately 0.2% of the ocean surface but account for 50% of carbon storage in ocean 

sediments, and contribute 10% of net primary production in the ocean (Duarte et al., 2013). The 

coastal plant communities also serve as substantial elements for littoral protection by dissipating 

wave energy and reducing their impact on the shorelines. Moreover, coastal ecosystems serve as 

the living environments for various fish, shellfish, and other aquatic species that are harvested for 

consumption and commercial purposes. These resources contribute significantly to coastal 

economies as well as income for millions of individuals (Jänes et al., 2020; Theuerkauf et al., 

2021). Monitoring the water quality and the associated biogeochemical mechanisms over coastal 

marine environment is therefore essential to facilitate the establishment of sustainable 

environmental policies and coastal management. 

 

Figure 0.1. The global distribution of Blue Carbon Ecosystems (BCE) with data derived from the 

UN Environment World Conservation Monitoring Centre (Adyel & Macreadie, 2022). 

 Evaluation of environmental impacts on coastal regions appears to be a difficult task due to 

the involvement of multiple forcing variables. These drivers encompass the climate induced 
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variations of ocean/atmosphere properties and human activities which influence the 

biogeochemical dynamics of the water body in different ways. For example, changes in 

temperature and wind can alter the horizontal and vertical structures of water masses, which can 

have implications for nutrient availability and biological productivity (Gjelstrup et al., 2022; 

Loisel et al., 2017). Whereas, changes in precipitation can affect the land/ocean interactions, 

such as freshwater input and sediment transport, which can influence the salinity, turbidity and 

biogeochemistry of coastal waters (Harley et al., 2006; Loisel et al., 2014; Milliman & Kao, 

2005; Vantrepotte et al., 2013). At the same time, anthropogenic impacts have increasingly left 

noticeable evidence on coastal waters through various activities such as dam construction, 

deforestation, intensive agriculture, and urbanization. These forcings have led to visible 

disturbance in the natural circulation of water constituents (i.e., nutrients, sediments, and organic 

carbon) over the land/ocean continuum (Milliman & Kao, 2005; Syvitski et al., 2005). In 

addition to these modifications, human-induced alterations of marine habitats, such as the 

destruction of wetlands and mangroves, have further exacerbated the impact on coastal 

ecosystems (Alongi, 2002). More specifically, overfishing has prompted shifts in food web 

structures, resulting in negative consequences for marine biodiversity and ecosystem function 

(Jackson et al., 2001; Pauly et al., 2002). Indeed, sustainable management of coastal ecosystems 

often requires our ability to provide reliable information through the implementation of 

appropriate numerical tools which can capture accurately the spatial and temporal dynamics of 

marine waters. This also supports facilitating the evaluation of the preservation or deterioration 

of coastal ocean environments, while serving as a useful tool to understand the relative 

contribution of natural and anthropogenic processes to the alteration in the water biogeochemical 

properties. For instance, Gallay et al. (2018) highlighted the effects of gold mining on sediment 

dynamics in the Maroni River by conducting a long-term study using MODIS data. Their 

research identified signs of human interference, as they observed a rising trend in suspended 

sediments that did not correspond with water discharge levels. However, undertaking such an 

analysis is challenging without baseline data like a reference state or the area's climatic 

conditions. 

 Although traditional in-situ observations offer precise information of the water properties, 

this approach typically presents certain disadvantages in terms of space, time, and cost as the 

acquisition of field measurements can be labor-intensive, time-consuming, and restricted to 

specific locations and timeframes. While Ocean Color Radiometry (OCR) serve as a valuable 
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and cost-effective tool for monitoring coastal water quality by providing insights into key 

biogeochemical parameters such as phytoplankton biomass, particulate and dissolved matter, and 

associated organic carbon stock (Mannino et al., 2008; Mélin & Vantrepotte, 2015; Platt & 

Sathyendranath, 2008). The integration of satellite archives from both medium-resolution sensors 

such as MERIS (Medium Resolution Imaging Spectrometer), MODIS (Moderate Resolution 

Imaging Spectroradiometer), and Sentinel-3/OLCI (Ocean and Land Colour Instrument) and 

high-resolution sensors such as Landsat-8/OLI (Operational Land Imager) and Sentinel-2/MSI 

(Multispectral Instrument) has enabled the collection of long-term observational data as well as 

fine details with a focus on specific local regions. Considering the offered advantageous benefits, 

remote sensing techniques have garnered significant attention as a valuable tool for supporting 

international environmental policies (i.e., EU Water Framework Directive (WFD), 

https://environment.ec.europa.eu/topics/water/water-framework-directive_en). Besides the 

mentioned advantages of remote sensing application, such approach also presents several 

inherent limitations including uncertainties in estimated products, information is confined to the 

surface layer, and susceptibility to cloud coverage interference. However, these limitations are 

largely compensated by its ability to provide an extensive spatio-temporal coverage (Gholizadeh 

et al., 2016), allowing a comprehensive view of the water masses over investigated areas.  

 In order to maximize the potential of OCR data to monitor coastal ocean waters, it is 

essential to address several methodological challenges that currently exist in the field. The first 

challenge arises from the optical complexity of coastal ecosystems, which necessitates the 

improvement of inversion algorithms for accurately estimating biogeochemical parameters from 

water color signals (Remote sensing reflectance, Rrs) (Groom et al., 2019; IOCCG, 2000, 2006). 

Case 1 waters are usually found in open ocean environments and are characterized by optical 

properties primarily influenced by phytoplankton and associated organic materials. In contrast, 

Case 2 waters are commonly located in coastal regions and exhibit optical properties shaped by a 

diverse range of constituents. These include not only phytoplankton but also mineral particles 

and various dissolved substances, whose concentrations can fluctuate independently (Gordon & 

Morel, 1983). Owing to the homogeneity in water constituents of Case-1 environments, existing 

inversion algorithms have proven to be effective in retrieving information on water properties in 

these regions. However, the estimation of biogeochemical parameter concentrations in coastal 

waters which are typically related to Case-2 waters, presents a more significant difficulty due to 

the increased optical complexity stemming from the co-existence of multiple components such as 

https://environment.ec.europa.eu/topics/water/water-framework-directive_en
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suspended sediments, dissolved organic matter, and various optically active constituents 

(Dierssen & Karl, 2010). An additional remarkable obstacle in the implementation of remote 

sensing technique for monitoring coastal waters involves correction of atmospheric noises under 

the presence of aerosols, water vapor, and other atmospheric constituents. These elements can 

cause scattering and absorption of light, distorting the water-leaving optical signals before 

detected by satellite sensors (Gordon, 1997). As a matter of fact, accurate atmospheric correction 

is crucial, as any inaccuracies in the satellite-derived Rrs can lead to uncertainties in retrieving 

the information on biogeochemical descriptors. Considering the hydrodynamical complexity of 

transitional zone between land and ocean due to various processes, it is also necessary to develop 

a set of pertinent statistical methods to extract reliable information regarding the quality and 

characteristics of the water body (Loisel et al., 2013). 

 The coastal waters of French Guiana encompass distinct and highly vulnerable environments 

and habitats. In particular, the hydrological cycle and the nutrient availability in the region’s 

marine ecosystem are significantly influenced by the seasonal shifts of the Intertropical 

Convergence Zone (ITCZ) which creates different patterns of precipitation, winds, and ocean 

currents between wet and dry seasons (Chevalier et al., 2008; Waliser & Gautier, 1993). 

Moreover, the shore-fringing mangroves colonizing on highly mobile mudbanks, substantially 

contribute to the “blue carbon” storage (Taillardat et al., 2018) and exchanges due to high above-

ground tree biomass (Fromard et al., 1998; Walcker et al., 2018) and litter fall rates (Betoulle et 

al., 2001). The climate condition and presence of mangrove forests serve as crucial factors in 

regulating biogeochemical dynamics as well as habitats for various fish species (Nagelkerken et 

al., 2008), thus, impacting commercial and subsistence fisheries in French Guiana (Sanz et al., 

2017). 

 The existing knowledge gap and the absence of a long-term in-situ data in French Guiana 

coastal waters present a challenge in understanding and managing coastal ecosystems effectively. 

In addition, a substantial amount of sediment supply originating from the Amazon River plume 

also elevates the optical complexity of the aquatic environments (Eisma et al., 1991; IOCCG, 

2000), which necessitates the development of more adapted statistical tools and accurate ocean 

color products.  

 Until the current time, investigations dedicated to monitoring biogeochemical variability in 

the study area, exploiting ocean color observation, were mainly conducted with the focus on 
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SPM (i.e., Abascal-Zorrilla et al., 2020; Gardel & Gratiot, 2005; Vantrepotte et al., 2013) and 

Chlorophyll-a (Chl-a) (Lampert et al., 2015). Recent studies, which attempt at examining the 

spatio-temporal dynamics at regional scale, was conducted by Institut Français de Recherche 

pour l'Exploitation de la Mer (IFREMER) through 4 annual reports (Akopian & Lampert, 2018; 

Lampert et al., 2015, 2016, 2017). However, the bio-optical inversion algorithms used to derive 

the concentration of these two parameters (Gohin et al., 2002, 2020) have not been regionally 

adapted since these models were initially designed based on the dataset gathered in French 

waters (i.e., Réseau d'Observation et de Surveillance du Phytoplancton et des Phycotoxines 

REPHY). Hence, to obtain a comprehensive understanding of coastal water quality, it is essential 

to consider the local adaptation of inversion models for estimating other innovative 

biogeochemical indicators, such as Particulate Organic Carbon (POC), Colored Dissolved 

Organic Matter (aCDOM), and Dissolved Organic Carbon (DOC). Another obstacle to monitor the 

French Guiana’s coastal waters is the presence of sun glint effect that appears consistently in 

tropical regions (Abascal-Zorrilla et al., 2019) under a condition of solar incidence angles and 

relatively low wind velocities (Harmel & Chami, 2013; Tavares et al., 2021). 

 Indeed, biogeochemical dynamics play a crucial role in shaping marine ecosystem services, 

including fisheries as these processes regulates nutrient cycling, primary productivity, and the 

availability of resources for higher trophic levels (Cloern, 2001; Conley et al., 2009). The 

partition of the water masses taking into account the biogeochemical dynamics also supports 

developing effective regional monitoring policies. In this attempt, the delimitation proposed by 

IFREMER was established in the consideration of 4 zones corresponding to different fishing 

areas as well as the heterogeneity of coastal water body (Akopian & Lampert, 2018). However, 

this partitioning method for the French Guiana marine waters can still be improved through the 

incorporation of more rigorous statistical approaches. 

 Considering the fact that former satellite-based studies at regional scales have not been 

optimally adapted to exploit fully the potential offered by ocean color remote sensing 

observation, the present dissertation consists of five Chapters aiming at answering arose 

scientific questions:  

1) What are the most suitable inversion algorithms to generate pertinent satellite ocean color 

products for monitoring the dynamics of biogeochemical parameters in French Guiana?  
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2) What is the description of the biogeochemical variability at the regional scales and the 

associated driving factors? Are there any long-term changes in the coastal water composition in 

the region? 

3) Which parameters can serve as the key descriptors to follow for monitoring French Guiana’s 

coastal water quality?  

4) How to better partition the water masses in order to support the development of regional 

monitoring policies? 

5) What is the reference state of the French Guiana’s coastal waters? 

 Chapter 1 of this work presents essential background information, establishing the context 

and motivation of the research. This introductory chapter describes the research problem, 

outlines the objectives, and highlights the significance of the study. 

 In Chapter 2, a comprehensive overview of the datasets employed and the statistical 

methodologies utilized throughout this PhD research is provided. This chapter offers a detailed 

account of the data sources, including their acquisition, processing, and quality control measures. 

 Chapter 3 focuses on the methodologies to regional adaptation of inversion algorithms. The 

chapter discusses the development and selection of the most bio-optical models for estimating 

various biogeochemical parameters at a local scale, taking into account the unique environmental 

conditions of the study area. 

 Chapter 4 examines the biogeochemical variability at regional scales, along with the 

associated driving factors, and any potential long-term shifts in French Guiana's coastal water 

composition. This chapter discusses the connections between biogeochemical parameters and 

their possible origins, including environmental factors such as river outflow, tidal influence, and 

ocean currents, etc. This has been done through the temporal analysis performed on medium-

spatial-resolution satellite archives. Additionally, the chapter aims to point out the crucial 

parameters that could function as effective descriptors for monitoring the coastal water quality of 

French Guiana.  

 Chapter 5 aims to facilitate the establishment of regional monitoring policies by analyzing 

the effectiveness and robustness of different partitioning methods considering the adoption of 

both medium and high-spatial resolution data. Furthermore, the chapter highlights the benefits of 

the proposed classification scheme, emphasizing its potential for providing a more 
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comprehensive insight into the biogeochemical dynamics and water properties of French 

Guiana's marine environment compared to the traditional approach. Attempts to establish a 

reference state of the water body considering multiple water quality indicators will also be 

suggested to detect exceptional events.  
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CHAPTER 1: STATE OF THE ART 

 French Guiana's coastal waters present unique and fragile ecosystems and habitats. The 

hydrological cycle and nutrient availability in the region are typically regulated by the 

Intertropical Convergence Zone's (ITCZ) seasonal oscillations, resulting in varied precipitation, 

wind, and ocean current patterns during wet and dry seasons (Chevalier et al., 2008; Waliser & 

Gautier, 1993). In addition, the mobile mudbanks along the shoreline supporting the growth of 

mangroves, which play a significant role in "blue carbon" storage (Taillardat et al., 2018) and 

exchange due to their contribution of above-ground tree biomass (Fromard et al., 1998; Walcker 

et al., 2018) and litterfall rates (Betoulle et al., 2001). 

 The scarcity of in-situ data in French Guiana's marine ecosystem poses a challenge in 

assessing biogeochemical variability, which is also crucial for regional monitoring strategies. 

Despite their potential as powerful tools for monitoring coastal water quality, the application of 

remote sensing techniques to French Guiana’s coastal waters might encounter several obstacles. 

The high turbidity resulting from significant sediment influx from the Amazon River (Eisma et 

al., 1991) increases the optical complexity of the water body. Consequently, quantifying 

biogeochemical concentration becomes a difficult task due to the presence of various colored 

water constituents, for instance, phytoplankton, suspended particulate matter (SPM), and colored 

dissolved organic matter (CDOM) which simultaneously affect the optical signals (IOCCG, 

2000; Mouw et al., 2015; Werdell et al., 2018). Additionally, the persistent sun glint effect in the 

study area further complicates the observations of biogeochemical dynamics from space 

(Abascal-Zorrilla et al., 2019). 

 Until now, research aimed at monitoring biogeochemical variability in French Guiana's 

coastal waters have primarily concentrated on SPM and Chl-a (Abascal-Zorrilla et al., 2020; 

Akopian & Lampert, 2018; Gardel & Gratiot, 2005; Lampert et al., 2015, 2016, 2017; 

Vantrepotte et al., 2013). Nonetheless, the bio-optical inversion algorithms employed for 

determining the concentrations of these parameters have not been sufficiently adapted to the 

region. Thus, to achieve a more in-depth understanding of coastal water quality, it is essential to 

tune these inversion models as well as incorporate additional biogeochemical indicators such as 

POC and DOC. Moreover, the previous delimitation approach of the water masses used for the 

study area was not built from a robust statistical method. 
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 Taking into account that previous satellite-based studies at regional scales did not fully 

harness the capabilities of ocean color remote sensing observations, this thesis aims to: 1) 

develop a collection of ocean color products (Chl-a, SPM, CDOM, POC, and DOC) for 

monitoring coastal water quality in French Guiana as well as offering comprehensive time series 

to local stakeholders; 2) describe the biogeochemical dynamics at the regional level and evaluate 

the related factors leading to the variability of considered parameters; 4) identify the essential 

biogeochemical descriptors and examine the presence of long-term changes; and 5) suggest a 

comprehensive classification scheme for partitioning water masses to facilitate the establishment 

of local monitoring policies and define the reference state that is beneficial to detect exceptional 

events. 

1.1.  Study area 

 

Figure 1.1. Illustration of the French Guiana’s coastal geomorphology with bathymetry and its 

location with respect to the Amazon River mouth  

(MNT Bathymétrique de Façade de La Guyane). 

 The primary drivers affecting French Guiana coastal water quality encompass Amazonian 

mud inputs originating from the Amazon River mouth (Figure 1.1) and local hydrodynamic 

mechanisms (e.g., seasonal fluctuations, resuspension phenomena, etc.,). These drivers are 
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typically regulated by different environmental forcings and physical processes (e.g., wind, 

current, tides factors, and/or seafloor morphology) which significantly contribute to the 

biogeochemical dynamics and overall ecological state of the study area. 

1.1.1. Climatological condition 

 French Guiana’s coast is situated between latitudes 4º and 6º N and is predominantly 

influenced by equatorial climate. Its geographical location is responsible for the hot weather and 

high humidity throughout the year. Precipitation in this region is primarily characterized by the 

presence and displacement of the Intertropical Convergence Zone (ITCZ) from North to South, 

causing seasonal fluctuations defined by two periods of wet and dry seasons (Chevalier et al., 

2004). More specifically, a short-wet season is usually observed from December to January as in 

response to the northward shifts of ITCZ, and a long one occurred between April to July with 

rain deposits intensity above 300 millimeters per month over St. Laurent du Maroni region. For 

the rest of the year, French Guiana experiences two dry seasons (short between February and 

March and long between August and November) with rainfall below 100 millimeters per month 

(French Guiana Climate: Average Weather, Temperature, Precipitation). The highest temperature 

of the year is also observed during this dry period typically in October. In fact, seasonal 

alteration in precipitation regulates the intensity of discharge flow in local rivers and thus impact 

on the biogeochemical dynamics over marine waters, for instance, increase in nutrient loads and 

phytoplankton productivity (Ray et al., 2018). Movement of ITCZ further leads to changes in the 

direction and intensity of Tradewinds, generating different environmental conditions inducing 

multiple hydrological processes such as sediment resuspension and strength of oceanic currents 

acting on Guiana Shield. 

 

Figure 1.2. Precipitation and Temperature in French Guiana (1961-1990) 

(Source : https://crudata.uea.ac.uk/~timo/climgen/national/web/FrenchGuiana/obs.htm) 

https://crudata.uea.ac.uk/~timo/climgen/national/web/FrenchGuiana/obs.htm


STATE OF THE ART 

43 

1.1.2. Hydro-dynamic processes 

1.1.2.1. Waves and Winds 

 Trade winds blowing towards the coast of the Guianas have been documented to be a crucial 

factor for coastal regime at different scales (Augustinus, 2004). The strongest winds have been 

recorded from January to April (from 6 m/s to 9 m/s) blowing from NE to SW direction leading 

to high energic waves approaching the French Guiana coastline. During dry period between June 

and November, manifested South-East Tradewinds alters ocean current direction thus causes 

seasonal impacts on biogeochemical dynamics. The seasonal presence of Tradewinds in relation 

to other physical processes (i.e., ITCZ position, current, local river discharge) is depicted in 

Tradewinds are also responsible for high rainfall during the wet season between December and 

July with a short interruption of a dry month in March (Anthony et al., 2010). The wave 

conditions are subject to these winds and directly act on the coastal dynamics. This has been 

especially documented at regional scale for mudbanks dynamics emphasizing the significant 

impact of trade winds direction and intensity of on erosion/deposition processed and thus on 

migration rate of the mudbanks (Abascal-Zorrilla, 2019; Abascal-Zorrilla et al., 2018; 

Augustinus, 2004; Augustinus et al., 1989; Eisma et al., 1991; Gratiot et al., 2007). 

 

Figure 1.3. Summary of the major environmental physical constraints on the French Guiana 

continental shelf (Chevalier et al., 2004). 

 Waves in the French Guiana coastal domain come from an east-to-northeast direction, which 

is primarily in response to the direction and oscillation of trade winds (Gratiot et al., 2007). 

Significant period (Ts) and significant offshore height (Hs) of waves are observed to be in the 

range of 6 to 10 s and 1 to 2 m respectively Figure 1.4. Interestingly, the strongest trade-wind 

waves have been recorded from December to April and swell waves, however, are usually 

observed in autumn and winter (dry season) (Anthony et al., 2010).  
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Figure 1.4. a) Significant wave high (Hs) and b) wave period (Ts) estimated from ERA40 

(European Reanalysis) wave dataset within 44 years (1960 - 2004) deployed by the European 

Centre for Medium-Range Weather Forecasts (ECMWF) at the location of 5° N, 52° W.  

(Gratiot et al., 2007) 

1.1.2.2. North Brazil Current rings and retroflection 

 North Brazil Current (NBC) has been known as a major western boundary current in the 

tropical Atlantic Ocean. This current conveys warm and rich-nutrient waters from the South 

Atlantic to the North Atlantic (Arnault et al., 1999; Schott et al., 1995). The seasonal transport of 

NBC was documented to be tightly connected to wind stress, which normally reaches its 

maximum from July to August (36 Sv) and minimum from April to May (13 Sv) near 4°N 

(Baklouti et al., 1998). From July to December, the NBC bifurcates and deflects from the South 

American coastline and curves back on itself (retroflects) at 6°N - 8°N to feed the North 

Equatorial Counter Current (NECC), the remaining portion of NBC follows the coast to join 

Guiana current (Baklouti et al., 1998, 2007; Fratantoni & Glickson, 2002). During this process, 

anti-cyclonic rings detach from the retroflection and move in the northwest direction as known as 

NBC rings with a mean diameter of approximately 390 km and a speed of propagation of 12.4 

km/day (Garzoli et al., 2003; Johns et al., 1990). The manifestation of NBC retroflection as well 

as NBC rings play a vital role in spreading Amazon plume encompassing nutrient supply over 

French Guiana continental shelf. These warm-core vortices are detected with a frequency of 5 to 



STATE OF THE ART 

45 

6 times per year and dissipate in the vicinity of the Lesser Antilles as a result of interactions with 

abrupt topography after 3-4 months of propagation (Fratantoni & Glickson, 2002; Goni & Johns, 

2001). 

 

Figure 1.5. Time series of composite SeaWiFS images depicting the evolution of 2 NBC Rings 

through Chlorophyll-a concentration. (Fratantoni & Glickson, 2002) 
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1.1.2.3. Mudbank migration 

 The French Guiana coastline contributes to the world’s longest muddy coast stretching 

between the Amazon’s mouth and the Orinoco River delta (1500 km). As known as the largest 

river system on earth, the Amazon occupies a drainage basin of 6.1 × 106 km2 and represents 

20% of the freshwater discharge to the ocean (Moura et al., 2016). The fine-grained sediments 

forming muddy deposits originate from the Amazon River plume, which are transported 

northwestward along the coast of Guianas with an approximate volume of 1.5 × 108 tons every 

year (Eisma et al., 1991). Due to its special characteristics, the Amazon system generates a large 

area of plumes up to 1.3 × 106 km2.  

 

Figure 1.6. Location and migration of existing mud banks on the French Guianese coastal 

between the dry seasons of 2013 and 2017. The red line corresponds to the footprint delimitation 

using the SPM values method, and the red circle corresponds to the barycenter of each mud 

bank for each year (Abascal-Zorrilla et al., 2018). 
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 The migration of mudbanks along the coastline of Guiana Shield is based on mud recycling 

which is principally driven by wind-generated waves acting on the liquefaction process (Allison 

& Lee, 2004; Chevalier et al., 2004, 2008; Gratiot et al., 2007; Rodriguez et al., 2001). The back 

of the bank is made up of solidified mud and is typically populated with beachfront mangroves. 

The mobilized sediment is subsequently transferred to the leading edge of the bank, causing a 

displacement of the mud bank along the coastline in the direction of the longshore drift directed 

northwestward (Allison & Lee, 2004). For this reason, the accretion and erosion of mudbanks are 

vital processes leading to thereof transportation. Eisma et al., (1991) with an implementation of a 

series of air photographs in the time period of 1947 - 1984, discovered that the mud deposition 

along the Guianese coast is principally linked to the intensity and direction of the northeasterly 

trade winds and does not rely on the severity of sediment loads delivered from the Amazon 

River. 

 In fact, SPM can be referred to as total suspended solids (TSS) or total suspended matter 

(TSM) and is constituted of all particulate materials that pass through a preweighted filter with a 

nominal pore size of 0.7 µm (Neukermans et al., 2012). Therefore, SPM encompasses organic 

(autotrophic and heterotrophic plankton, bacteria, viruses, and detritus) and mineral particles 

existing in the water column (Stramski et al., 2004). Due to this particular property and the 

special process of mud drifts, SPM has been considered as an indicator to monitor the mud bank 

dynamics using ocean color radiometry archives over French Guiana coastal waters. According 

to Gardel & Gratiot, (2005), the optical SPOT (Satellite Pour l’Observation de la Terre) imagery 

with a spatial resolution of 20 m has enabled the discovery of the migration rate of mud banks 

which was recorded to be higher than those reported in earlier studies. In particular, the average 

velocity of the Kourou–Cayenne mud bank was witnessed to be 1.4 km/year in the period of 

1991-2002, meanwhile, the mean velocity of this bank was recorded to be 0.8 km/year from 

1979 to 1984 by the investigation of Froidefond et al., (1988). The latter observations were 

performed by Vantrepotte et al., (2011, 2013) with a specific focus on the variability of TSM. 

More specifically, this study estimates TSM by an adoption of a generic single band algorithm 

proposed by Nechad et al., (2010) with the parameterization of the reflectance at 678 nm which 

corresponds to the red spectral band of the MODIS satellite sensor. The temporal variation of 

TSM was then analyzed based on the Census X-11 time series decomposition and the detection 

of monotonic change (Gilbert, 1988; Pezzulli et al., 2005). The findings over a period of eight 

years demonstrate that mud mobilization is predominantly related to trade winds season and has 
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an average speed of approximately 2 km/year with strong interannual fluctuation in SPM 

reaching up to 6 %/year. The evidence for the migration of mud banks is depicted in Figure 1.7 

and Figure 1.8 through SPM concentration estimated over two transects crossing two adjacent 

mud banks in Kourou and Cayenne. 

 

Figure 1.7. (a) Significant trends in SPM detected over French Guiana coast from the 8-year 

MODIS time series (in %/year) and (b) comparison with the mud banks estimated position and 

morphology (Vantrepotte et al., 2013) 

 

Figure 1.8. Time space diagrams computed over two along-shore transects crossing the areas 

presenting significant 2002-2010 trends in SPM in the Kourou (a) and Cayenne (b) coastal 

regions (from points A to B and C to D, respectively, see Figure 1.7) (Vantrepotte et al., 2013) 

 The formulation as well as the manifestation of mudbanks were further highlighted by 

Gensac et al., (2016) in which the migration of mudbanks has been confirmed to be tightly linked 
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to the massive supply of sediments from the Amazon River. Mudbank detection using high 

resolution satellite sensor (i.e., Landsat8/OLI) with the specific focus on French Guiana coastal 

domain was performed by the recent work of (Abascal-Zorrilla et al., 2018). Five mudbanks, 

which might differ in shapes, were identified over the inner shelf with migration rates (averaged 

value of 2. km/year) slightly higher when comparing with previous records Figure 1.6.  

 Aller & Blair, (2006) pointed out the impacts of mudbanks on the available organic content 

in the inner shelf and the involved chemical and physical processes. In particular, the synthesis 

of tides, wind-induced waves, and coastal currents contribute to the reoxidation of fluid muds as 

well as the remineralization of organic matter along the Amazon–Guianas coastline. Throughout 

the transportation process, sedimentary organic carbon undergoes depletion, causing marine 

sources to predominantly serve as the remineralization substrate. However, this does not appear 

in regions situated near mangrove shorelines. 

1.1.2.4. Local rivers and mangrove ecosystems 

 Part of the “blue carbon” stock in the ocean is stored by mangroves which contribute large 

amounts of organic matter to the surrounding aquatic environment. This organic content consists 

of both particulate and dissolved materials stemming from decomposition and leaching products 

of leaf litter leaves through different physical processes (i.e., resuspension, tidal pumping) 

contribute substantially to the overall productivity of the ecosystem, thus impacting the water 

quality (Kristensen et al., 2008). In particular, mangroves present a crucial function in the 

biogeochemical cycling of carbon and nutrients (Adame & Lovelock, 2011) as they preserve the 

organic carbon thereby providing energy sources for aquatic species (Kristensen et al., 2008).  

 The development of mangroves in relation to the mudbank drifts along the coastline of 

French Guiana has been documented by various historical studies. In particular, at the back of 

the mudbank, erosion occurs and collapses the presence of mangroves. Meanwhile, the accretion 

phase at the front of the mud flat contributes to the establishment of mangrove areas (Berlamont 

et al., 1993; Gardel & Gratiot, 2005). The process of mudbank accretion leading to the 

development of mangroves is described in Figure 1.9. 
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Figure 1.9. Stages in the formulation of mud bars by waves with the evolution of mangrove 

forests (Gardel et al., 2011). 

 Coastal waters in French Guiana are partly governed by freshwaters influence originating 

from the outlets of local rivers located along the shorelines (Figure 1.2). This river system is 

established by eight small rivers (Mana, Counamama, Sinnamary, Kourou, Montsinery, Mahury, 

Kaw, and Approuague,) and two main rivers (Maroni and Oiapoque). Furthermore, the Maroni 

River and Oiapoque River form the border of French Guiana, separating its territory from 

Surinam (in the west) and Brazil (in the east), respectively. In French Guiana, the variation of 

river discharge exhibits a seasonal pattern as a consequence of rainfall alternation. For instance, 

the averaged discharge flow rate recorded in Maroni River can reach up to approximately 5000 

m3/s during high flow period and remain below 1000 m3/s throughout dry season particularly 

from September to November. 

 The contribution of the French Guiana local rivers to the coastal sedimentation is 

insignificant which occupies approximately 1% of the suspended loads transported along the 

shore with a suspended sediment concentration of 0.1-10 mg.L-1 (Lambs et al., 2007; Prost, 
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1989). During the wet season, the French Guiana rivers can supply a significant amount of fresh 

water to the coast, which reduces the salinity in this area (Lambs et al., 2007). The contribution 

of total organic matter from the two Guiana Shield basins (the Maroni and Oiapoque Rivers) was 

recorded to show maximum concentrations in high water stages as a result of organic matter 

accumulated in soils flushed out by rainfall. In contrast, Chl-a exhibited lower concentrations 

during this period which might be attributed to the weakly mineralized waters (Gallay, Mora, et 

al., 2018; Sondag et al., 2010). 

 In addition to this, the seasonal variation of discharge flow in local rivers play a vital role in 

regulating organic pool over the estuarine vicinity as high surface runoff introduces more 

mangrove-derived POC and DOC encompassing the involvement of freshwater phytoplankton 

(Ray et al., 2018). In French Guiana estuarine ecosystem, substantial associations are present 

between intertidal mangrove habitats and estuarine environments in relation to carbon export and 

exchange through diverse mechanisms. These processes formulate a complex system with the 

presence of litter leaching, pore water drainage, sediment erosion, sediment resuspension, 

remineralization, lateral CO2 transport, and methanotrophy. 

 

Figure 1.10. Locations of main rivers along the French Guiana coast 
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1.1.2.5. Tide 

 The tide in French Guiana is recognized as a combination of two daily low and high tides 

with different amplitudes (Service Hydrographique et Océanographique de la Marine, 1975). The 

tidal currents are assumed to not significantly impact the current direction in the outer shelf 

domain, which present as a weak flow of 0.05 - 0.1 m/s during the neap-spring cycle (Bourret et 

al., 2008). However, in the inner shelf, it is witnessed that the tidal currents exhibit a stronger 

influence and can reach up to the velocity of 0.55 m/s in front of the Sinnamary river mouth. For 

this reason, although the erosion and deposition of the mudbanks are predominantly regulated by 

waves, the littoral current and tide modulate these processes (Chevalier et al., 2008).  

1.2. Ocean color observation as a tool for monitoring coastal waters 

1.2.1. Remote sensing technique for monitoring biogeochemical variability 

1.2.1.1. General considerations 

 Conventionally, indicators for water quality including physical, chemical, and biological 

parameters are measured by deploying field measurements in sampling sites and then evaluating 

the samples in the laboratory. This traditional sampling method typically requires manual work 

and is limited in determining the spatial and temporal variability of the biogeochemical variables. 

Ocean color data have been considered as a mean to overcome the addressed issues and facilitate 

the assessment of optically significant constituents in the water bodies (Alparslan et al., 2007; 

Brando & Dekker, 2003; Gholizadeh et al., 2016; Gordon & Morel, 1983; Saad El-Din et al., 

2013).  

 However, the application of remote sensing technique encounters some challenges in 

optically complex waters (Case-2 waters) where the co-occurring water constituents are present. 

This is mainly due to the fact that these components interact with light in different ways leading 

to difficulties to differentiate their respective optical signals. The overlapping absorption, 

scattering spectra, and reflectance also leads to obstacles to directly relate them to one substance 

(IOCCG, 2000). Further challenges were addressed by Loisel et al., (2013) that optical signals in 

coastal waters are potentially influenced by the environmental characteristics encompassing 

presence of clouds, resuspension process in shallow waters, bubbles induced from waves, etc. 

Therefore, the estimation of biogeochemical parameters usually requires more complex and 

sophisticated inversion algorithms than those designed for clear waters (Case-1 water). 
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 The accuracy of ocean color data can also be impacted by atmospheric disturbances caused 

by different factors including aerosols, Rayleigh scattering, water vapor absorption, and sun 

glint. Therefore, atmospheric correction processing also plays an important role in retrieving 

accurately radiometric signals. The necessity of noise removal from Top Of Atmosphere (TOA) 

radiance is due to the fact that qualitative and quantitative information about the bio-optical 

components within the water body derived from inversions algorithm strongly relies on the 

reliability of obtained reflectance (Loisel et al., 2013). 

1.2.1.2. Challenges in Monitoring Coastal Water Quality in French Guiana 

 Historical satellite-based studies conducted over the French Guiana coastal domain have 

confirmed the potential of remotely sensed data assimilation to better understand the hydro-

sedimentary as well as hydro-dynamics in this area through research dedicated to investigation of 

the mudbank manifestation, winds stress, and ocean currents (Fratantoni & Glickson, 2002; J.-M. 

Froidefond et al., 2002; Gardel & Gratiot, 2005; Vantrepotte et al., 2013). The monitoring work 

dedicated to coastal water quality based on the adoption of satellite imagery in French Guiana 

has been mainly carried out by IFREMER (Lampert et al., 2015) with a focus on the analysis of 

two conventional parameters, SPM and Chl-a, which were derived from OC5 algorithm 

developed by Gohin et al., (2002). This algorithm is a modified version of OC4 model proposed 

by The National Aeronautics and Space Administration (NASA) with a correction of the effect 

of SPM at the wavelength of 412 nm and 555 nm. The model was initially designed for the 

dataset collected in French waters through Réseau d'Observation et de Surveillance du 

Phytoplancton et des Phycotoxines (REPHY). In addition, the match-up validation to verify the 

performance of the OC5 model in the study area presents a limitation due to the constrained 

number of in-situ measurements. Hence, to obtain an encompassing understanding about the 

biogeochemical dynamics as well as the coastal water quality in the study area, it is necessary to 

take into account other indicators, in addition to Chl-a and SPM, such as POC, DOC, and CDOM 

with a set of corresponding inversion algorithms adapted regionally using in-situ data collected 

in French Guiana coastal domain. 

 French Guiana coastal ecosystem represents a substantial influence from the Amazon River 

mouth, thus significantly enhancing the optical contrast of the water body through the presence 

of high suspended sediment loads. In other words, the French Guiana coastal waters are 

representative for Case-2 waters where the optical properties of co-existing components are 
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regularly overlapped. For instance, despite its importance as a critical water quality indicator, 

chlorophyll-a (Chl-a) estimates in optically complex waters are often considered unreliable, 

particularly at low concentrations, due to the minimal contribution of phytoplankton absorption 

in such conditions. As discussed in Section 1.2.1.1, this distinct feature further complicated the 

retrieval of bio-optical parameters in the study area. For this reason, an adapted Chl-a model, 

accompanied with a scheme to to assess the reliability of Chl-a estimates at various turbidity 

levels, is of significant importance. 

 French Guiana marine waters appears to be highly impacted by permanent sun glint effects as 

a consequence of geographical location, leading to substantial missing data in terms of ocean 

color observations (Abascal-Zorrilla et al., 2019). This is due to the fact that tropical regions are 

frequently subject to sun glint contamination when sunlight reflects off the surface of the water 

at a certain angle, creating a bright, reflective spot on the water's surface (Kay et al., 2009; 

Mobley, 2015). As a consequence, the sunglint-contaminated pixels typically exhibit an 

overestimation in the reflectance and are usually masked during atmospheric correction process. 

An example depicting the loss of information due to sun glint effects is shown in Figure 1.11. 

Hence, utilizing satellite-based techniques to study biogeochemical dynamics in French Guiana 

requires the implementation of a suitable atmospheric correction scheme capable of dealing with 

sun glint effects. 
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Figure 1.11. Illustration of sun glint effects in French Guiana coastal domain through a 

Landsat8-OLI image. a) TOA reflectance at the wavelength of 665 nm, b) atmospherically 

corrected image with contaminated pixels masked in gray (Abascal-Zorrilla et al., 2019). 

1.2.2. Water Quality significance and partition of the water masses 

1.2.2.1. Coastal water quality context 

 Coastal water quality is a critical issue that can be influenced by a complex and interrelated 

set of sources including pollution from land-based sources (e.g., agricultural runoff, industrial 

and sewage discharges), nutrient enrichment (e.g., nitrogen and phosphorus), physical factors 

(e.g.: temperature, salinity, and pH), and biological factors (e.g., harmful algal bloom). With the 

aim of protection, management, and improvement of the water resources, the Water Framework 

Directive (WFD) was established by different nations in the European Union. The WFD is 

considered as a regulation to apply to all types of water bodies comprising of rivers, lakes, 

groundwater, and coastal waters, which aims to maintain the EU waters to be in a good quality 

and meet the ecological and chemical criteria (European Commission, 2018). Accordingly, the 

EQR (Ecological Quality Ratio) was proposed in Annex V of WFD to assess the ecological 

status of the water body based on a combination of biological, chemical, and physical data. The 

percentage difference between the observed value and the reference values is calculated for each 

water quality indicator and these percentages are then combined to provide a general EQR 

depending on the type of water body WFD (2000/60/EC) Figure 1.12. Nevertheless, the 

assessment of water quality considering WFD as a standard may encounter potential challenges. 
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For example, the information about the reference values is often limited and the degree of 

deviation from reference conditions defining the boundaries between ecological statuses remains 

unclear (Santos et al., 2021).  

  

Figure 1.12. The calculation of EQR (Ecological Quality Ratio)  

 Evaluating the quality of water in coastal environments is a complicated task that typically 

involves multiple indicators including physical, biological, and chemical parameters (Gupta et 

al., 2003; Jha et al., 2015; Ma et al., 2020). The Water Quality Index (WQI) is often used to 

convey an overall evaluation of the water. Th et al., (2013) highlighted the importance of 

defining the weight of each considered indicator to determine coastal water quality index (WQI), 

which includes four essential elements: First, selecting appropriate water quality variables is 

crucial, as WQI values depend on the chosen parameters, which can vary based on the study 

area. Second, assigning weights to each indicator is important to determine the relative 

significance of each parameter. Third, transforming raw data into an index enables comparison 

of water quality across locations and time periods. Lastly, aggregating all parameters into a 

single value represents overall water quality. 

 In an attempt to define the ecological status of French coastal waters, the study of Gohin et 

al., (2008) adopted the P90 values of Chl-a concentration derived from ocean color data to 

determine different thresholds corresponding to 5 categories of EQR (Bad, Poor, Moderate, 

Good, and High). Such classification scheme, however, might present some limitations due to 

the accuracy and reliability of the data as well as the complexity of the link between Chl-a and 

ecological status. 
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1.2.2.2. Current knowledge in French Guiana 

 In the circumstance of French Guiana, knowledge about the quality of coastal waters is still 

limited as the appropriate parameters and their importance have not been defined yet. Indeed, the 

selection of the relevant parameters from remote sensing observation is challenging because the 

water quality involves a variety of elements that might not be directly measured or quantified 

from optical signals.   

 As a matter of fact, the major advantage of partitioning the water masses is to facilitate the 

monitoring process of an aquatic environment spatially and temporally, which supports regional 

policies. The traditional classification method performed on French Guiana coastal waters was 

proposed by IFREMER, which aims to split the coastal domain into four regions based on a 

combination of fishing areas and coast-to-coast sectors. The spatial extensions of these four 

regions are shown in Figure 1.13. Such clustering approach was chosen as these 4 zones are 

associated with historical fishing data since the 1980s that might be useful for the interpretation 

of ocean color observations. Accordingly, zone 2 (in front of Cayenne) was defined to be the 

largest zone with a surface area of 1121 km2 and the smallest zone is zone 4 with a 177 km2 

surface area. High turbidity and abundance in phytoplankton biomass are commonly found in 

zone 1 and zone 4 in which the averaged SPM and Chl-a values can reach up to 30 mg.L-1 and 6 

mg.m-3, respectively. However, this partitioning approach can be improved using more robust 

statistics as it inherently encompasses some disadvantages. For instance, the delimitation of zone 

4 leads to a compact coastal area, which potentially yields a low number of available pixels. 

Further, the delimitation of the four zones does not take into account the information about 

biogeochemical dynamics which play a crucial role in the region’s ecosystem. 
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Figure 1.13. Division of the French Guiana coastal water body into a) four zones considering 

fishing areas, and b) two regions considering coastal and offshore waters 

(Lampert et al., 2015) 

1.3. Conclusion 

 Given the pristine environmental conditions and the anticipated demographic growth in 

French Guiana, for which the predicted population could double by 2025 (Faatau, 2019), it is 

necessary to develop relevant observational tools to assess the potential future impacts on coastal 

domain. In addition to this, the French Guiana river basins have been subject to the influences 

stemming from increasing anthropogenic activities such as gold mining, deforestation, and 

removal soils (Gallay et al., 2018; Laperche et al., 2014). Moreover, changes in biogeochemical 

dynamics over coastal and offshore domains can also be attributed to the environmental factors 

including regional and local forcings (i.e., mudbanks as a consequence of Amazon influence, 

contribution of local river inputs) as well as climate modulations (i.e., waves, winds, and tides). 

The relative contribution to the biogeochemical regime of these elements remains unclear due to 

limited in-situ measurements leading to lack of information discovered in the region. 

Understanding the dynamics and state of the French Guiana marine ecosystem is therefore of 

paramount importance. 

 Previous research has primarily centered on the variability of SPM and Chl-a, which is 

basically dedicated to the mudbank migration and NBC rings. However, these parameters might 

not be adequate to comprehensively depict the biogeochemical dynamics occurring in the study 

area, for instance, elements related to local impacts such as contribution of local rivers, organic 

exports from mangroves, and tidal modulations. In addition to this, the investigation on 
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monitoring coastal water quality often requires the involvement of further parameters such as 

POC and DOC which present the organic content within the water masses. The high turbidity 

due to massive sediment loads from the Amazon River’s plume leading to optical complexity of 

French Guiana coastal waters as well as the presence of permanent sun glint, necessitate a more 

sufficient approach to extensively exploit the potential of satellite data for evaluating the 

environmental and anthropogenic forcings. 

 Considering the addressed challenges and current knowledge, the first objective of this thesis 

is to generate a set of ocean color products, including Chl-a, SPM, CDOM, POC, and DOC, 

which will be adopted to better monitoring of coastal water quality in French Guiana. The 

temporal analysis based on these satellite archives will also provide comprehensive time series 

data to local stakeholders (i.e., Office Français de la Biodiversité (OFB), DEAL, Office de l'Eau 

Guyane) for supporting the development of regional monitoring programs. The second objective 

is to describe the biogeochemical dynamics at the regional scale over time, determining the 

primary factors causing variability and identifying the pertinent biogeochemical descriptors for 

monitoring coastal water quality in French Guiana. The long-term trend will also be addressed to 

evaluate the influence of existing environmental forcings. Finally, the present thesis aims to 

propose a more effective partition of the water masses utilizing robust statistical methods, which 

will contribute to the establishment of local monitoring policies. 

  



Materials and methods 

60 

CHAPTER 2: Materials and methods 

2.1. Introduction 

 As introduced in Chapter 1, French Guiana coastal ecosystem is influenced by various 

environmental factors that contribute significantly to the biogeochemical dynamics over the 

study area in both off-shore and coastal regions. To further understand the variability of different 

water quality parameters and the forcings thereof driving alterations of water constituents within 

the water body, it is necessary to take into account the incorporation of multiple methodologies 

and tools.  

 The present Chapter illustrates the available in-situ dataset including radiometric and 

biogeochemical measurements collected in the French Guiana marine environments. Besides, 

satellite archives with medium and high spatial resolution capturing the dynamics of these 

coastal waters, are also presented.  

 Then, different methods for classifying the water masses and analyzing the time series 

generated in the frame of this PhD thesis to characterize the spatio-temporal pattern of 

biogeochemical variations and provide reliable information to support the establishment of 

regional monitoring programs will be described. 

2.2. In-situ dataset 

2.2.1. Classical in-situ cruises 

 In-situ measurements have been compiled from the data collected during 8 cruises conducted 

by LOG (Laboratoire d'Océanologie et de Géosciences) and LEEISA (Laboratoire Écologie, 

Évolution, Interactions des Systèmes Amazoniens) teams over French Guiana waters between 

2006 and 2017. These sampling missions were deployed as part of diverse research projects (e.g., 

CNES TOSCA Coastal Waters, MODOC, HARDECOT, ANR GlobCoast, ESA S3VT) with the 

focus mainly on coastal waters, estuarine environments, and mudbank regions. The locations of 

these sampling points and deployment time thereof are presented in Figure 2.1.a and Table 

2.1.b, respectively, where the sampling deployments were located < 40 m isobath. 
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Figure 2.1. a) The location of in-situ measurements and b) A focused view on the location of the 

mooring station. 

2.2.2. Autonomous platform 

 An autonomous station was conducted approximately 60 meters away from Insula Saint-

Joseph Island (French Guiana) on 09/01/2020 in the frame of the “French Guiana water quality 

project”, Office de l’eau Guyane, OFB, DEAL). In practice a buoy equipped using a YSI EXO2 

probe (Multiparameter Water Quality, https://www.ysi.com/exo2), was deployed with the aim of 

measuring different variables including Chl-a, FDOM (fluorescence of dissolved organic matter), 

turbidity, temperature, and salinity every 15 minutes Figure 2.1.b. However, the deployment of 

this equipment was stopped on 25/08/2020 due to difficulties in setup conditions during the 

mission period. We however take the advantage of the in-situ dataset extracted from these high-

frequency measurements as additional information for the implementation of the match-up 

exercise. 

2.3. Radiometric measurements 

 In this study, 200 hyperspectral measurements of remote sensing reflectance (Rrs, sr-1) in the 

visible domain of the spectrum ranging from 350 nm to 750 nm were deployed in French Guiana 

coastal waters using TriOS-Radiation Measurement Sensor with Enhanced Spectral resolution 

(RAMSES) radiometers (Figure 2.2).  
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Figure 2.2. Remote sensing reflectance (Rrs(λ)) of the in-situ dataset measured in French Guiana 

waters. 

 The implementation of the reflectance consists of two principal steps in which the first 

radiometer was equipped on the deck to measure the above-surface downward irradiance, 

Ed(0
+
,λ). While the upward radiance, Lu(z, λ), was recorded by the second radiometer. Rrs(λ) was 

estimated following the standard principle of in-water and above-water radiometric 

measurements which can be expressed as in the formula below (Mueller, 2003): 

Rrs(λ) = 
Lu(λ)

Ed(0+, λ)
 2.1 

 where λ indicates the wavelengths, Lu(λ) is the up-welling radiance, and Ed(0
+, λ) 

corresponds to down-welling irradiance. Rrs(λ) is evaluated using the water-leaving radiance Lu 

and Ed in the air, just above the water surface as illustrated in Figure 2.3. It is worth mentioning 

that data points corresponding to unusual Rrs(λ) shapes or negative values of reflectance were 

discarded from the in-situ dataset. This step is crucial as the biases in Rrs(λ) might lead to 

unexpected results in the estimation of biogeochemical variables. 
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Figure 2.3. Illustration of light rays contributing to the irradiance reflectance R (left) and to the 

remote sensing reflectance (right) (Reflectances: Ocean Optics Web Book). 

2.4. Bio-optical and biogeochemical measurements 

 Various methods were employed to obtain a diverse range of surface water samples, ensuring 

comprehensive representation of the study area. Typically, samples were filtered on the research 

vessel immediately after collection to minimize contamination and maintain their integrity. 

Following filtration, samples were stored in suitable containers based on the specific analyte 

under examination. These containers were diligently labeled, sealed, and preserved under 

adapted conditions depending on the unique requirements of each analyte, such as temperature-

controlled environments or darkness to avoid photodegradation. This systematic approach to 

sample collection, storage, and preservation ensures the accurate analysis of the studied samples. 

These discrete water sampling were performed to measure a suite of biogeochemical parameters 

including first analyses of the phytoplankton and particulate matter gathered from filtrations 

performed on GF/F filters over French Guiana marine waters and were used as the database of 

various studies (Bonelli et al., 2021; T. K. Tran et al., 2019; Vantrepotte et al., 2012, 2015). 

These samples were then analyzed in order to obtain information on:  

• Suspended particulate matter concentration (SPM, g.m-3). These measurements were 

performed following the SOMLIT protocol (https://www.somlit.fr) and briefly consist in 

measuring the weight of the particulates retained on a GF/F filter.  

• Chlorophyll-a (Chl-a, mg.m-3) was measured using a fluorometric technique (Holm-

Hansen et al., 1965) samples gathered since 2014 were analyzed in French Guiana 

following the SOMLIT protocol (Salter et al., 2021). 

• Particulate Organic Carbon concentrations (POC, mg.m-3) is here considered as 

particulate carbon from organic origin particles with a diameter between 0.4 and 200 μm, 

https://www.somlit.fr/
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with pre-filtration usually performed following the SOMLIT protocol (Salter et al., 

2021). 

• Absorption of the colored dissolved organic matter (aCDOM, m-1). CDOM absorption 

spectra were measured on filtrates obtained after a filtration on 0.2 µm Millipore filters 

and were measured by spectrophotometry using 10 cm Quartz Cuve and following the 

standard protocol (Mitchell et al., 2003) as detailed in Vantrepotte et al., (2015). 

• Dissolved Organic Carbon (DOC, µmol.L-1) concentration was obtained from filtered 

seawater samples under gentle vacuum (< 5 mm Hg) through 0.7 µm pre-combusted 47 

mm glass fiber membranes (Whatman GF/F) as documented in Vantrepotte et al., (2015). 

In addition, filtration aiming to collect information on the dissolved matter were also 

performed keeping and analyzing the filtrates in the laboratory. 

 It is worth noting that a quality control was performed on the raw dataset to exclude data 

points that are considered as outliers from relationship tests between each pair of biogeochemical 

variables (e.g., Chl-a and Chl-a fluorescence, SPM and Turbidity, SPM and bbp(665), etc.). The 

concentration range and available measurements of each parameter were compiled from eight 

distinct sampling missions conducted in the study area. A comprehensive graphical 

representation of the data, including the range of variability observed in French Guiana waters 

for the different parameters considered, is provided in Figure 2.4. 
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Figure 2.4. The concentration range of a) SPM, b) POC, c) Chl-a, d) DOC, e) aCDOM(412) 

corresponds to 8 cruises conducted in French Guiana coastal waters. 
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Table 2.1. Number of measurements and deployment time of the cruises conducted over French 

Guiana waters.

2.5. Satellite Ocean Color Data 

 To detect the long-term changes in French Guiana marine waters, the merged products of the 

GlobColour data composed of different sensors such as SeaWiFS (Sea-Viewing Wide Field-of-

View Sensor), MERIS, and VIIRS (Visible Infrared Imaging Radiometer Suite) and the 

GlobCoast data (MERIS) will be exploited as these satellite archives offer an extensive temporal 

coverage. Even though the MODIS satellite images allows for a relatively long time series of 

observation, the red band of this sensor, however, was found to be saturated due to the 

atmospheric failures in retrieving the reflectance at the wavelength of 667 nm in turbid 

environments. Such satellite products, therefore, are not considered in this study.  

 The spatio-temporal variability of biogeochemical parameters will be examined through the 

time series analysis conducted on MERIS data since this sensor provides a relevant time span 

with finer spatial details compared to the GlobColour products. Besides, Sentinel-2/MSI and 

Sentinel-3/OLCI data will also be used to obtain additional information for better understanding 

the biogeochemical dynamics in the region with the focus on estuarine areas. 

 As it is necessary to take into account the up-to-date information and the comprehensive 

spatial coverage of the entire coastal domain when defining a reference state, the Sentinel-3 was 

selected to establish a standard condition of the water masses. This data along with Sentinel-2, 

and MERIS archives will be adopted for different classification schemes based on their 

compatibility with the partitioning methods as well as their relevance with the objectives. The 

theorical application of these classification schemes will be further elaborated in the section 2.7. 

 Considering the permanent sun glint effect acting consistently over French Guiana marine 

waters. The POLYMER (POLYnomial-based algorithm applied to MERIS) atmospheric 

correction (AC) algorithm was performed for MERIS and Sentinel-2 data. This AC processor 

was initially developed for MERIS sensor with the advantage of sun-glint effect removal 

 Parameters N Mean Median Min Max Stdv 

SPM (g.m-3) 174 70.90 24.33 1.02 1945.34 174.68 

Chl-a (mg.m-3) 119 6.27 3.74 0.08 48.32 6.68 

aCDOM(412) (m-1) 193 0.94 0.54 0.00 9.24 1.29 

POC (mg.m-3) 92 1150.48 868.79 161.47 4705.48 912.96 

DOC (µmol.L-1) 118 137.65 116.92 35.99 564.08 79.04 
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(Steinmetz et al., 2011) and its performance has been widely validated for both open ocean and 

coastal waters in various studies (Bui et al., 2022; Mograne et al., 2019; Pereira-Sandoval et al., 

2019; Soppa et al., 2021; Warren et al., 2019). 

 The assimilation of remotely sensed data is particularly described in Figure 2.5 in the 

consideration of objectives previously mentioned. A general description of each satellite sensor 

is illustrated in Table 2.2. 

 

Figure 2.5. Flow chart of satellite archives employment considering the objectives mentioned in 

Chapter 1. 

Table 2.2. Description of 4 satellite products including Sentinel-2, Sentinel-3, MERIS 

(GlobCoast), and GlobColour (merged product) used for monitoring coastal water variability in 

French Guiana. 

 Sentinel-2 
MERIS 

(GlobCoast) 
Sentinel-3 

GlobColour 

(merged) 

2A 2B 8-day monthly monthly monthly 

Spatial Resolution 

10 m ✓ ✓     

20 m ✓ ✓     

30 m       

60 m ✓ ✓     

300 m ✓    
✓  

1 km   
✓ ✓   

4 km      
✓ 
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2.5.1. Medium spatial resolution imagery 

 Daily MERIS satellite images (04/2002 - 04/2012) with the reduced spatial resolution (1 × 1 

km2 at nadir) covering the French Guiana coastal zone have been merged and reprojected to 

generate monthly composite data. These ocean color data were atmospherically corrected by a in 

the frame of GlobCoast project (11/2012 - 11/2015), funded by the French National Research 

Agency (ANR) with various ocean color parameters available such as SPM, Chlorophyll-a, 

aCDOM, DOC, Kd, and bbp. The description of the GlobCoast data can be found at  

https://archimer.ifremer.fr/doc/00357/46823/ (Loisel et al., 2017; M. D. Tran et al., 2023). 

 The GlobColour project started in 2005 as an ESA Data User Element (DUE) project to 

provide a continuous data set of merged L3 Ocean Colour products. From May 2015, these 

products also contribute to the Copernicus Marine Environment Monitoring Service (CMEMS). 

The GlobColour data (http://globcolour.info) used in this study has been developed, validated, 

and distributed by ACRI-ST, France. These satellite archives have been accessed in monthly 

format with 4-km spatial resolution spanning from 09/1997 to 03/2021. 

 Monthly reflectance Sentinel-3/OLCI products have been downloaded from CMEMS 

(https://marine.copernicus.eu/) data storage, which were subset to capture the French Guiana’s 

marine regions. Such satellite archives were atmospherically corrected by EUMETSAT 

(European Organisation for the Exploitation of Meteorological Satellites) processing chain which 

implements BAC (Baseline Atmospheric Correction) and C2RCC (Case-2 Regional 

Visible 

Wavelengths (nm) 

412   
✓ ✓ ✓ ✓ 

443 ✓ ✓ ✓ ✓ ✓ ✓ 

490 ✓ ✓ ✓ ✓ ✓ ✓ 

510   
✓ ✓ ✓ ✓ 

560 ✓ ✓ ✓ ✓ ✓ ✓ 

665 ✓ ✓ ✓ ✓ ✓ ✓ 

Revisit Time 

10 

days 

10 

days 
Daily Daily Daily 

5 days    

Sensor MSI MERIS OLCI Merged 

Coverage 13 tiles French Guiana 
French 

Guiana 

French 

Guiana 

Number of images 
2331 1705 

458 121 80 283 
4036 

Storage 3.48 TB 
4.3 

GB 
1.14 GB 10.5 GB 413 MB 

https://archimer.ifremer.fr/doc/00357/46823/
http://globcolour.info/
https://marine.copernicus.eu/
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CoastColour) atmospheric correction schemes for clear waters (Case-1) and optically complex 

waters (Case-2), respectively. 

2.5.2. High spatial resolution imagery 

 The MSI (Multispectral Instrument) onboard Sentinel-2 satellites captures high-resolution 

optical images with a wide range of spectral bands. Sentinel-2 satellites consist of two identical 

units, Sentinel-2A and Sentinel-2B, operating simultaneously to ensure frequent revisit times and 

comprehensive global coverage. The Sentinel-2/MSI Level-1C images have been collected from 

Plateforme d’Exploitation des Produits Sentinel (PEPS: https://peps.cnes.fr/), a platform 

developed by the French space agency CNES with 13 tiles covering mainly the coastal domain 

of French Guiana (Figure 2.6). 

 

Figure 2.6. Location of 13 Sentinel-2 tiles covering French Guiana’s coastal domain. 

2.6. Ancillary data 

 In order to describe the dynamics of French Guiana waters taking into account modulation of 

the environmental conditions, several ancillary data (in-situ, satellite and model) were considered 

in addition to the previous in-situ and ocean color satellite data sets). Sea Surface Temperature 

(SST) and sea surface salinity (SSS) datasets have been downloaded from the available daily 

database distributed by HYCOM (Hybrid Coordinate Ocean Model) (https://www.hycom.org/). 

In particular, this is the global reanalysis database (GOFS 3.1) with a spatial resolution of 1/12° 

with 3-hour interval. HYCOM adopts NCODA 3DVAR model (Navy Coupled Ocean Data 

https://peps.cnes.fr/
https://www.hycom.org/
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Assimilation (NCODA) system, version 3) to simulate SST and SSS by the assimilation of the 

in-situ and satellite data, which is documented in Cummings & Smedstad, (2013). This database 

was processed using an arithmetic averaging method for producing monthly images and 

reprojected within a 1km-spatial-resolution grid to obtain a consistent format with GlobCoast 

data. 

 The flow rate of river discharge was collected from stationary stations located in 2 big rivers 

in French Guiana (Maroni and Oiapoque). This dataset was accessed on Service d’observation 

des ressources en eaux du bassin de l’Amazone (SO-HYBAM, https://hybam.obs-mip.fr/).  

2.7. Algorithm tuning procedure 

 A first step of this PhD consisted of the adaptation of different models used for estimating 

key biogeochemical descriptors from the ocean color signals (i.e., Rrs) at regional scale, 

exploiting the in-situ data set described in the section 2.2. Theoretically, to generate inversion 

models estimating a certain water parameter from signals received from satellite sensors, the 

adequacy of in-situ measurements consisting of reflectance and concentration of the targeted 

water constituent plays an important role in the formulation and accuracy of the bio-optical 

algorithms. Therefore, the existing models proposed by different authors were tuned regionally 

by the modification of the coefficients thereof to match ideally the Rrs(λ) values (predictors) and 

concentration of biogeochemical parameters (response variables) from the in-situ dataset 

collected directly in French Guiana waters. In other words, the meaning of model adaptation can 

be understood as the finding of the least square value. Least-squares (LS) problem has been 

known as one of the significant optimization problems in linear algebra. This problem can be 

expressed as the equation below: 

Ax=b 2.2 

 

where A∈Rm×n and b∈Rm×1. To solve this, we attempt to find x such that Ax=b, which can be 

simplified as: 

argmin
x
‖Ax-b‖2 2.3 

The traditional solution to denote this problem is to transform the equation Ax=b into  

https://hybam.obs-mip.fr/
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x=(ATA)-1ATb 2.4 

However, the inverse of any matrix in numerical linear algebra should be avoided since its 

calculation usually requires many resources especially when a large matrix is involved. 

Therefore, QR decomposition of the matrix A was discovered to deal with the such issue: 

A=QR 2.5 

where Q is an orthogonal matrix and R is an upper-triangular matrix. The solution for the LS 

problem can be rewritten as: 

(QR)T(QR)x=(QR)Tb 2.6 

RTQTQRx=RTQTb 2.7 

RTRx=RTQTb 2.8 

Rx=QTb 2.9 

Rx=v 2.10 

 For this reason, the regional adaptation of bio-optical models especially constructed by one 

or multiple independent variables has been performed using QR decomposition. This technique 

is available as a function (fitlm) supported in MATLAB and adopted to obtain the relevant 

coefficients of the specified linear regression function that represents the optimal fit to the given 

dataset.  

2.8.  Partition of water masses 

 As introduced in the Chapter 1, one of the objectives of this PhD is to partition the water 

masses considering the lack of in-situ measurements conducted over French Guiana marine 

waters. The identification of different water types indeed facilitates the deployment of regional 

monitoring programs as it provides a comprehensive view into the water properties. For this 

reason, different classification schemes including optical, Proxy of Particulate Component 

(PPC), and temporal classification approaches will be examined to better explore their 

appropriateness to delimit the marine waters taking into account off-shore and coastal domains 

of the study area. 
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 More specifically, 3 Optical Water Types (OWTs) will be utilized for the regional adaptation 

of inversion algorithms to estimate different biogeochemical parameters including SPM, POC, 

DOC, and aCDOM(412) from satellite data, considering the limited in-situ measurements deployed 

in French Guiana waters. Additionally, we use 5 OWTs for the development of a Chl-a model as 

such algorithm was established based on an extensive in-situ dataset gathered in various coastal 

ecosystems. Finally, 4 OWTs will be selected for partitioning the water masses in French Guiana 

since this number of OWTs shows the optimal delimitation of the reflectance. 

2.8.1. Optical Classification and Optical Indices 

2.8.1.1. Classification of in-situ Rrs(λ) 

 As a matter of fact, the optical signals acquired on satellite sensors are tightly linked to the 

reflectance value of a given object on the water surface. With this in mind, the raw Rrs were 

necessarily normalized to obtain a deeper view of the reflectance shape. In particular, the 

normalized Rrs subsets were determined by the ratio between their original value and the surface 

below the spectral shape following the formula: 

Rrs
norm = 

Rrs(λ)

∫ Rrs(λ)dλ
λ2

λ1

 2.11 

 Since the measurements were established on a regional scale (French Guiana waters), the 

hyperspectral Rrs collected from in-situ were clustered into different homogeneous optical water 

types (OWTs) using unsupervised classification as described in Lubac & Loisel, (2007) and 

Vantrepotte et al., (2012). In particular, this step was conducted under the implementation of the 

hierarchical classification method of Ward, (1963) which was verified to be the most relevant 

hierarchical decision tree approach in most situations (Ferreira & Hitchcock, 2009). Regarding 

each OTW, a specific biogeochemical feature can be associated with different concentration 

ranges of water constituents. 

2.8.1.2. Satellite Rrs(λ) labeling 

 The OWTs defined in the previous section were used for labelling the satellite Rrs spectra. 

This labelling consists in computing the OWT membership of an input Rrs spectrum (e.g., 

satellite Rrs) to each of the OWTs defined from the in-situ dataset which are characterized by 

specific mean (µ) and covariance (Σ) matrices (Mélin et al., 2011; Vantrepotte et al., 2012). The 
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Mahalanobis distance ∆2 applied to the log-transformed Rrs
norm is then used to estimate the 

distance between input spectrum x and a given OWT ic as follows: 

∆ic
2 (x) = (x-μ

ic
)

T
Σic

-1(x-μ
ic

) 2.12 

where T indicates the matrix transpose.  

 The OWT membership of satellite pixels to each of the defined OWTs was then estimated as 

in Vantrepotte et al., (2012). The probability density function (PDF), corresponding to each 

targeted pixel associated with x=log(Rrs), is calculated based on its Mahalanobis distance (∆M
2

) to 

the distribution of OWT ic and can be expressed as below: 

Pic(x)=
1

(2π)
d/2|Σ|1/2

exp [-
1

2
∆ic

2 (x)] 2.13 

 The computed probability values are then normalized (p*) so that the sum of OWT 

memberships equals 1 by taking the ratio between P for ic OWT and the total P for all OWTs 

considering such as (Mélin & Vantrepotte, 2015): 

p
ic
* =

Pic

∑ Pic
Nc
ic=1

 2.14 

2.8.2. Proxy of Particulate Composition (PPC) classification 

 SPM can be referred to total suspended solids (TSS) or total suspended matter (TSM) and is 

constituted of all particulate materials that pass through a preweighted filter with a nominal pore 

size of 0.7 µm (Neukermans et al., 2012). Therefore, SPM encompasses organic (autotrophic and 

heterotrophic plankton, bacteria, viruses, and detritus) and mineral particles existing in the water 

column (Stramski et al., 2004). Due to this particular property, SPM has been considered as an 

important indicator to investigate the sediment transport (e.g., through the manifestation of ocean 

currents, wave actions, and river discharge), and coastal geo-morphological processes (i.e., 

accretion, erosion, mudbank migration), thus supporting the evaluation of the impacts of 

anthropogenic activities as well as natural forcings (Abascal-Zorrilla et al., 2018; Douillet et al., 

2001; Li et al., 2021; Loisel, et al., 2014; Vanhellemont & Ruddick, 2014; Vantrepotte et al., 

2013). 
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 POC, on the other hand, is one of the main pools of ocean organic carbon, which consists of 

living materials (heterotrophic bacteria, phytoplankton, zooplankton) and detritus (i.e., non-

living cells, dead plant material, decomposing organisms, fecal matter) in suspension. The 

POC/SPM ratio, denoted as Proxy of Particulate Composition (PPC) (Loisel et al., 2023), has 

been typically adopted in various studies to examine the temporal variability in the composition 

and origin of the particulate matter pool (Coynel et al., 2005; Doxaran et al., 2012, 2015; Ehn et 

al., 2019; Emmerton et al., 2008). This variability is often associated with changes in regional 

environmental factors, such as water discharge and phytoplankton bloom. Additionally, the 

POC/SPM ratio allows to better interpret optical properties of in-situ measurements (Babin, 

Morel, et al., 2003; Doxaran et al., 2012; Loisel et al., 2007; Woźniak et al., 2011) and satellite 

ocean color radiometry (OCR) observations (Vantrepotte et al., 2011). 

 In the present thesis, the POC/SPM classification will be conducted according to the defined 

thresholds suggested in Loisel et al., (2023) (i.e., 0.08 and 0.2) in which the water body can be 

categorized as mineral-dominated, mixed, and organic-dominated waters. These threshold values 

were established based on a re-examination of those proposed by Woźniak et al., (2010) through 

the relationship between POC/SPM ratio and bbp/cp optical ratio performed on an extensive in-

situ dataset (Loisel et al., 2023). 

 

Figure 2.7. Relationships between bbp/cp(650) and POC/SPM. The black curve stands for the 

power regression. The vertical dashed lines represent the thresholds delimiting the water types 

according to Woźniak et al., (2010). The vertical solid lines show the new thresholds defined in 

Loisel et al., (2023). 

2.8.3. Neural Network Self-Organizing Map (SOM) 

 The Self-Organizing Map (SOM) is known as an unsupervised machine learning or more 

specifically a non-supervised clustering method developed by Kohonen, (1998), that attempts to 



Materials and methods 

75 

match the units (neurons or nodes) in a defined network map as closely as possible to the 

observations in the input dataset. The map of these neurons is typically established in the form of 

a hexagonal or rectangular 2-dimensional grid. The execution of SOM is based on competitive 

training. In other words, the Euclidean distances between all the nodes in the network and the 

targeted data point are recalculated after each training iteration to select the Best Matching Unit 

(BMU) which is the closest neuron to the point. The weight of the selected BMU is accordingly 

modified towards the input vector. However, the weights of surrounding neurons are adjusted as 

well since the neurons are connected with each other by a Gaussian function (neighborhood 

function) θ(u,v,s) with the peak corresponding to the location of BMU. The magnitude of the 

adjustment diminishes after each epoch according to the learning coefficient (learning rate) α(s). 

The updated weight vector Wv(s) after step s that can be calculated as follow: 

Wv(s+1)=Wv(s)+θ(u,v,s)×α(s)×[D(t)-Wv(s)] 2.15 

 where s is the step index, Wv(s) is the current weight vector, θ(u,v,s) is the neighborhood 

function representing the relationship between the BMU u and set of neurons v, α(s) is a 

monotonic decreasing learning coefficient which is conditioned by 0 ≤ α(s) ≤ 1 , and D(t) is the 

considered data point. The neighborhood function θ(u,v,s) is expressed as below: 

θ(u,v,s)=exp(-
‖rv-ru‖

2

2σ2(s)
) 2.16 

 where rv, ru are the vectorial locations on the defined grid, and σ is called the radius or the 

width of the neighborhood function which also decreases over time. Eventually, the initial SOM 

network is adjusted to cover the data as much as possible and each neuron is representative of a 

number of data points which refers to the principle of unsupervised classification. In the case of 

multivariate distribution, SOM has also been known as a sufficient method to perform 

dimensionality reduction. In this thesis, the SOM was adopted to partition the time series of 

water masses derived from a specified water quality parameter.  

2.9. Timeseries analysis 

2.9.1. Census X-11 time series decomposition 

 With the aim of analyzing the time series to have a better insight into the biogeochemical 

variability, the Census X-11 time series decomposition method was selected and applied 
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individually to each pixel that is associated with its corresponding time series. This approach was 

initially developed by Julius Shiskin et al., (1967) and colleagues at the U.S Bureau of the 

Census as a result of its various versions previously discovered. Theoretically, once X-11 is 

implemented, it splits a targeted signal (X(t) into three core components (Trend term Tt, 

Seasonal term St, Irregular term It) through an application of moving average calculations such 

as:  

X(t)=S(t)+T(t)+I(t) 2.17 

 It is worth noting that the preparation of the input data should be necessarily taken into 

account to avoid the incorrect estimates potentially generated by the absence of satellite coverage 

due to clouds and/or glint effects. In particular, if the number of available temporal data values of 

a considered pixel corresponding to a given month is less than 50% of the year, the pixel is 

omitted from the procedure. Otherwise, the missing data is inter/extrapolated according to the 

eigenvectors filtering method represented in Ibanez & Conversi, (2002). In this thesis, the 

execution of X-11 was performed following the procedure specifically documented in 

Vantrepotte & Mélin, (2011), which can be described in three fundamental steps: 

• Step 1 (Initial Trend and Seasonal estimates): 

(a) First-estimated Trend series 

 The first estimate of the trend component was conducted using a centered moving average 

with periodicity (p) applied to the input signal (X(t). In this case, p is chosen to correspond to the 

number of months in a year (12 months) since it will be utilized for monthly composite data of 

MERIS sensors. Therefore, the first calculation of the trend-cycle term of the time series X(t) at 

the time step t is expressed as below: 

T1(t)=MA2×12(X(t)) 

= [X (t-
p

2
) +2X (t-

p

2
-1)+…+2X(t)+…2X (t+

p

2
-1)+X (t+

p

2
)] 

=[X(t-6)+2X(t-5)+…+2X(t)+…2X(t+5)+X(t+6)] 

2.18 

(a) First-estimated Seasonal series 

 The trend-adjusted series, Xt-adjusted1(t), is then derived by the subtraction between the initial 

time series, X(t), and the first-estimated trend series, T1(t): Tt-adjusted1(t)=X(t)-T1(t). 
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Subsequently, we performed the moving average on Xt-adjusted1(t) with p=2 to obtain the first 

estimated S1(t). 

S1(t)=MA2×2 (Xt-adjusted(t)) 

=[X(t-6)+2X(t-5)+…+2X(t)+…2X(t+5)+X(t+6)] 

2.19 

 Once S1(t) series is acquired, the first seasonal-adjusted series can be estimated as: 

Xs-adjusted1(t)=X(t)-S1(t). 

• Step 2 (Refined Trend and final Seasonal estimates): 

(a) To retrieve the refined trend-cycle component T2(t), we repeat the operation in Step 1.a 

on the seasonal-adjusted series using annual-centered with a trend filter proposed by 

Henderson, (1916). The advantage of this filter application is that it provides an 

improvement in the trend series with a smoother fluctuation. 

(b) The final seasonal component S(t) is computed by redoing step 1.b on the second trend-

adjusted series Xt-adjusted2(t)=X(t)-T2(t). The second seasonal-adjusted series is formulated 

as: Xs-adjusted2(t)=X(t)-S(t). 

• Step 3 (Final Trend and Irregular estimates): 

(a) The final estimate of trend term T(t) is derived from the repetition of step 2.a on the 

second seasonal-adjusted series Xs-adjusted2(t). 

(b) The residual of the subtraction between the input time series and the sum of the final 

trend and seasonal components are identified as the Irregular term: 

I(t)=X(t)-T(t)-S(t) 2.20 

One of the valuable features of the X-11 procedure is that the seasonal component is deduced 

locally by different filters. Hence, the values computed for a certain year are not influenced or 

biased by events occurring at other times. To assess and potentially map the significance of each 

X-11 component on a given time series, the relative contribution 𝜌𝑧
2 corresponding to the 

targeted component z (where z = S, T, or I) is expressed as: 

ρ
z
2=

σz2

σX2
×100% 2.21 
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where 𝜎𝑋2 represents total variance and can be computed following the formula below: 

Var-X(t)
2
=Var-S(t)

2
+Var-T(t)

2
+Var-I(t)

2
+2cov(S(t),T(t),I(t)) 2.22 

where Var-S(t)
2
, Var-T(t)

2
, and Var-I(t)

2
 are the variance associated with seasonal, trend, and 

irregular terms respectively. 

 

Figure 2.8. The X-11 decomposition of the Nino-3.4 SST time series: a) original series (dashed) 

and X-11 trend component (solid); b) X-11 seasonal component; c) Irregular component. 

(Pezzulli et al., 2005) 

2.9.2.  Trend Detection 

 The detection of monotonic trends in the time series has been derived from an application of 

the seasonal Mann-Kendall (MK) statistic test on the initial signal. Specifically, the principle of 

this test is to recognize whether the time series presents an upward or downward tendency based 

on the null hypothesis (H0) and alternative hypothesis (Ha) corresponding to the absence and 

presence of the monotonic trend. (Hirsch et al., 1982) have indicated that the MK test is 

appropriate where changes are significant. In this thesis, the MK test has been conducted 

according to (Gilbert, 1988) as follows: 
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Sm= ∑ ∑ sgn(xjm-xim)

nm

j=i+1

nm-1

i=1

 2.23 

Where nm presents the number of valid data for the month m and the computation of sgn(xjm-

xim) can be described as: 

sgn(xjm-xim) = {

1 if xjm-xim>0 

0 if xjm-xim=0 or the sign of xjm-xim can not be determined

-1 if xjm-xim<0 

 2.24 

The final test result S is defined by the sum of the monthly statistic: S=∑ Sm
p

m=1 . Then, the 

variance of Var(S) is computed as below: 

Var(S)=
1

18
[n(n-1)(2n+5)-∑ tp(tp-1)(2tp+5)

g

p-1

] 2.25 

Where g is the number of tied groups (number of values that are duplicated in the sequence) and 

tp is the number of observations in the pth group (number of repeated times). Then, the denoted Z, 

which is the standardized value of S, is calculated using the root mean squared of Var(S): 

Z=

{
 
 

 
 

S-1

√Var(S)
if S<0

0 if S=0
S+1

√Var(S)
if S>0

 2.26 

If Z presents a positive value, the series has a tendency to increase with time. Meanwhile, a 

negative value of Z indicates a decreasing trend of the signal. At this point, a type one error rate 

α (0<α< 0.5) is adopted to perform the decision on the hypothesis. In particular, H0 is rejected 

and Ha is accepted if |Z|≥Z1-α/2 where Z1-α/2 is the 100(1-α/2)th percentile of the standard normal 

distribution. We used Sen’s slope (β in % yr-1) which is a robust method developed by Sen, 

(1968) to evaluate the magnitude of the detected trend. The computation of β is based on the 

median of individual slopes bmij of all pairs (Xmj, Xmi): 

bmij= [
Xmj-Xmi

j-i
] 2.27 

With m = 1, 2, …, p and 1 ≤ i < j ≤ nm. 
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2.10. Statistic Indicators 

 The performance evaluation of candidate algorithms is based on different statistical metrics 

including RMSD (Root Mean Square Deviation), MAPD (Mean Absolute Percentage 

Difference), MRAD (Mean Relative Absolute Difference), MB (Mean Bias), Slope, and R2 

(Determination Coefficient). These statistic indicators are computed from the model-derived and 

in-situ concentration of biogeochemical parameters which were transformed into a logarithmic 

scale as the bio-optical variability in the ocean is usually considered to be log-normally 

distributed (Campbell, 1995):  

RMSD={∑
[log

10
(Ci

mod)-log
10

(Ci
obs)]

2

N

N

i=1

}

1
2

 2.28 

MAPD= median [
|log

10
(Ci

mod)-log
10

(Ci
obs)|

log
10
(Ci

obs)
]×100% 2.29 

MRAD=
1

N
×∑

|Ci
mod-Ci

obs|

Ci
obs

N

i=1

×100% 2.30 

MB=
1

N
×∑|log

10
(Ci

mod)-log
10

(Ci
obs)|

N

i=1

 2.31 

log
10
(Cmod)=m×log

10
(Cobs)+c 2.32 

 where C
obs

 represents the in-situ observations and C
mod

 is the Rrs-based estimates.  

 In addition, a linear regression between C
obs

 and C
mod

 was performed for each considered 

model leading to the estimation of a Slope and coefficient of determination (R2) as additional 

statistical descriptors. 

 Radar charts have been further used to compare the performance of the inversion algorithms. 

This graphical display allows the representation of multiple statistical parameters summarized in 

the form of a two-dimensional chart (T. K. Tran et al., 2019). Here an overview of the 

normalized MAPD, RMSD, MRAD, MB, Slope, and R2 (Equations 2.28 – 2.32) is provided, the 

normalization is computed as follows:  
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RMSDnorm(j)=
RMSD(j)

max(RMSD(j),j=1,k)
 2.33 

MAPDnorm(j)=
MAPD(j)

max(MAPD(j),j=1,k)
 2.34 

MRADnorm(j)=
MRAD(j)

max(MRAD(j),j=1,k)
 2.35 

MBnorm(j)=
MB(j)

max(MB(j),j=1,k)
 2.36 

Slope
norm

(j)=
|1-Slope(j)|

max(|1-Slope(j)|,j=1,k)
 2.37 

R2norm
(j)=

min(R2(j),j=1,k)

R2(j)
 2.38 

 where j represents each individual model considered in a defined inter-comparison exercise. 

 Besides a synthetic visual examination, radar plots were also used to compute a unique 

statistical indicator outlining the general performance of the considered inversion methods. This 

consists in practice to compute the area associated with the polygons linking the normalized 

indicators indicated from Equations 2.33 to 2.38 as below: 

Area=
1

2
×

π

6
×[RMSDnorm(j)×MAPDnorm(j)+MAPDnorm(j)×MRADnorm(j)+MRADnorm(j)× 

MBnorm(j)+ MBnorm(j)×Slope
norm(j)+Slope

norm(j)×R2norm
(j)+R2norm

(j)×RMSDnorm(j)] 

2.39 
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CHAPTER 3: Regional adaptation and Selection of Bio-

optical algorithms for French Guiana coastal waters  

3.1. Introduction 

 As illustrated in the Chapter 1, latter studies, which focus on the biogeochemical dynamics of 

the French Guiana waters, partly exploited bio-optical models without specifically evaluated at 

regional scale (Lampert et al., 2015, i.e., Chl-a and Turbidity estimated by default from the OC5 

model, Gohin et al., 2002). SPM was the only parameters which was evaluated specifically for 

recent former regional studies (Gallay et al., 2019; Vantrepotte et al., 2013; Vantrepotte, Loisel, 

et al., 2011). The reliability of the satellite-derived information for describing French Guiana 

waters is however critical considering the optical complexity of these waters gathering ultra-

turbid environments (Vantrepotte et al., 2011, Vantrepotte, et al., 2012, Abascal-Zorrilla, et al., 

2019). 

 The general objective of this chapter was therefore to define a set of bio-optical algorithms 

which are the most adapted to estimate key biogeochemical variables from ocean color 

observation over the water masses of French Guiana. This includes estimates of the near-surface 

concentration of conventional variables, such as SPM and Chl-a, but also of indicators, such as 

POC, aCDOM, DOC, and POC/SPM ratio, which have been estimated more recently from space, 

allowing to gain a more comprehensive understanding of the observation of water quality 

variability. To fulfill this general objective, the general frame of the bio-optical models 

evaluation consisted first at considering formulations already documented for estimating the 

mentioned parameters of interest from the marine reflectance. These candidate algorithms have 

been preselected considering models that are generally similar to avoid redundancy in the 

evaluation process and to focus on the most pertinent models. These candidate models were in 

practice evaluated considering both their original versions as well as versions tuned at regional 

scales. Further, the evaluation frame was based on the consideration of the different optical water 

types (OWTs) composing the French Guiana waters in order to evaluate: 1) What is the relative 

performance of the different inversion methods according to the optical properties of the water 

masses? 2) What is the interest of combining the models most adapted for the different OWT in 

order to optimize the satellite estimates at regional scale? This evaluation was performed 
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considering the different sensors of interest of this work including MERIS, Sentinel3 OLCI, 

Sentinel2-MSI, GlobColour merged products (See section 2.3).  

 In the first part of this chapter, the regional evaluation of the SPM, POC, aCDOM(412) and  

POC/SPM inversion methods will be presented focusing on the regional data set described in 

section 2.2 focusing on the results obtained for MERIS sensor (a comprehensive detail of the 

models selected for all the considered is provided at the end of this chapter).  

 In the second part of this chapter, results related to the evaluation of the Chl-a for S2 and S3 

will be more specifically detailed. Indeed, the evaluation of this parameter which is often used as 

the main descriptor in the coastal environment was particularly important. For that purpose, an 

extended global in-situ data set was considered. This work was presented at the Ocean Optics 

2022 conference through an oral presentation (M. D. Tran et al., 2022) and was also valorized 

through a publication (M. D. Tran et al., 2023) with the full-text version described in Annex 

section. 

 The tuned models according to available Rrs(λ) of MERIS central bands have been used as a 

frame to perform the evaluation of different inversion algorithms as well as the selection of the 

most suitable bio-optical models. This is due to the fact that MERIS’s visible bands and those of 

the majority of satellite sensors are generally similar (e.g., OLCI, MSI, and SeaWiFS). In 

addition, the selected algorithm regarding each biogeochemical variable will be adapted 

considering satellite sensors introduced in section 2.3. Combining different remote sensing 

archives can be advantageous for long-term observations as it offers a wider range of the 

temporal coverage available for analysis, thereby enabling a more comprehensive understanding 

of temporal trends and patterns.  
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 CHAPTER 3 – PART I 

3.2. Optical Water Types (OWTs) definition  

 In order to evaluate the performance of different inversion models, 3 optical water types 

(OWTs) have been defined from the in-situ Rrs(λ) data set gathered in French Guiana (see section 

2.2) following the method described in the section 2.2.1 (Vantrepotte et al., 2012, Mélin and 

Vantrepotte, 2015). The illustration of the 3 OWTs is shown in Figure 3.1 where the 

corresponding shapes of the normalized Rrs(λ) are presented. As the OWTs exhibit an increasing 

pattern in the normalized Rrs(λ) values toward the red part of the spectrum (from OWT 1 to 3), 

the optical characteristics of each OWT can provide a rough information about the turbidity level 

within the water masses. Indeed, an OWT can be representative for specific conditions of the 

water body that can be seen from Table 3.1. For example, the OWT 3, with a significant Rrs(λ) 

peak in the red domain, corresponds to the water mass that is strongly influenced by terrestrial 

inputs with the highest average concentration of SPM (129.56 g.m-3), POC (1050.13 mg.m-3), 

DOC (179.16 µmol.L-1), aCDOM(412) (1.59 m-1) and Chl-a (7.82 mg.m-3) recorded among the 

three OWTs. The OWT 2 can be referred to a mixed situation with a remarkable contribution of 

POC, evidenced by the highest POC/SPM ratio value of 0.12. The OWT 1, with the lowest 

concentration of all variables, is more likely related to clear waters as presenting a significant 

peak in the blue of the reflectance curve. The partitioned water types along with their associated 

characteristics will be elaborated in the Chapter 5 where the in-situ Rrs(λ) data is classified into 4 

OWTs. In the present examination, these unique optical features associated to the 3 defined 

OWTs have been adopted as a general frame with the focus of assessing the accuracy to retrieve 

the concentration of the considered biogeochemical parameters in French Guiana coastal waters. 
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Figure 3.1. The left panels (a-c) show the normalized reflectance associated with the 3 OWTs 

defined from the in-situ dataset. The solid bold lines present the mean of the normalized Rrs(λ). 

The right panels (d-f) show the raw reflectance for the corresponding OWTs with the colors 

indicate conducted missions. 
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Table 3.1. Statistics of the biogeochemical parameters associated with three OWTs defined from 

the in-situ dataset of French Guiana coastal waters. 

 Parameters N min max mean median stdv 

OWT 1 

SPM (g.m-3) 6 2.30 17.75 6.22 4.39 5.76 

Chl-a (mg.m-3) 7 0.42 4.47 2.14 1.36 1.42 

POC (mg.m-3) 5 161.47 1381.09 758.18 729.65 484.02 

aCDOM (412) (m-1) 12 0.00 0.26 0.11 0.09 0.09 

DOC (µmol.L-1) 11 88.92 126.80 102.48 98.27 12.76 

POC/SPM 2 0.03 0.16 0.10 0.10 0.09 

Chl-a/POC 4 0.001 0.003 0.002 0.002 0.001 

aph(400)/ap(400) 7 0.73 0.86 0.81 0.79 0.04 

aCDOM(400)/(aCDOM(400)+ap(400)) 5 0.32 0.84 0.57 0.57 0.22 

OWT 2 

SPM (g.m-3) 71 1.15 44.03 11.03 8.87 8.71 

Chl-a(mg.m-3) 45 0.83 20.09 4.61 3.10 4.43 

POC(mg.m-3) 35 215.97 1368.54 679.60 583.61 319.09 

aCDOM(412) (m-1) 92 0.03 1.61 0.41 0.28 0.33 

DOC (µmol.L-1) 59 35.99 361.82 110.44 102.22 61.20 

POC/SPM 26 0.02 1.17 0.12 0.05 0.22 

Chl-a/POC 19 0.001 0.013 0.005 0.004 0.003 

aph(400)/ap(400) 45 0.77 0.96 0.85 0.84 0.05 

aCDOM(400)/(aCDOM(400)+ap(400)) 42 0.09 0.92 0.63 0.66 0.22 

OWT 3 

SPM (g.m-3) 76 5.93 1945.34 129.56 49.96 250.37 

Chl-a(mg.m-3) 67 0.08 48.32 7.82 5.75 7.77 

POC(mg.m-3) 52 268.03 4705.48 1505.13 1249.85 1051.41 

aCDOM(412) (m-1) 89 0.14 9.24 1.59 0.88 1.65 

DOC (µmol.L-1) 48 83.18 564.08 179.16 156.94 88.97 

POC/SPM 48 0.01 0.14 0.03 0.03 0.03 

Chl-a/POC 43 0.0001 0.016 0.006 0.005 0.004 

aph(400)/ap(400) 67 0.65 1.02 0.86 0.88 0.08 

aCDOM(400)/(aCDOM(400)+ap(400)) 67 0.29 1.00 0.78 0.82 0.17 

Overall 

SPM (g.m-3) 153 1.15 1945.34 69.72 16.67 185.80 

Chl-a (mg.m-3) 119 0.08 48.32 6.27 3.74 6.68 

POC (mg.m-3) 92 161.47 4705.48 1150.48 868.79 912.96 

aCDOM(412) (m-1) 193 0.00 9.24 0.94 0.54 1.29 

DOC (µmol.L-1) 118 35.99 564.08 137.65 116.92 79.04 

POC/SPM 76 0.01 1.17 0.06 0.03 0.14 

Chl-a/POC 66 0.0001 0.016 0.005 0.004 0.004 

aph(400)/ap(400) 119 0.65 1.02 0.85 0.85 0.07 

aCDOM(400)/(aCDOM(400)+ap(400)) 114 0.09 1.00 0.71 0.75 0.21 
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3.3. Suspended particulate matter (SPM) 

3.3.1. Description of candidate SPM models 

 Five historical SPM algorithms including empirical and semi-analytical approaches were 

selected for evaluation in French Guiana coastal waters. Recent machine-learning-based models 

(e.g., Pahlevan et al., 2020), which adopt all information in the visible and NIR regions, were not 

considered in this examination due to the availability of spectral bands offered by GlobCoast and 

GlobColour data as well as the time-consuming computation they might cause. Empirical 

models, such as those introduced by Doxaran et al., (2002), Ngoc et al., (2020), and Siswanto et 

al., (2011), were typically developed based on the statistical relationship between nLw 

(normalized water Leaving radiance) or Rrs(λ) (remote sensing reflectance) and the in-situ SPM 

concentration. While semi-analytical algorithms such as Han et al., (2016); Nechad et al., (2010) 

indirectly estimate SPM by primarily analyzing the connection between Rrs(λ) and IOPs 

(Inherent Optical Properties) of an aquatic environment such as absorption and backscattering 

coefficients. The description of the tested algorithms is shown in Table 3.2. 

Table 3.2. Description of existing SPM models that are selected in the performance evaluation 

(1) Doxaran02 

 The model Doxaran02 is developed by Doxaran et al., (2002) using an in-situ dataset 

collected in the Gironde estuary located in southwest France with the SPM concentration ranging 

from 35 g.m-3 to 2072 g.m-3. This location is known as a good example of case-2 water due to the 

high turbidity observed within the water body. The model used the ratio between the reflectance 

in the Near InfraRed (NIR) and in the green part of the spectrum as the input for an index 

number of a power law function. 

Model Type/Function 
SPM range 

(g.m-3) 

Study 

Area 
Reference 

Doxaran02 
Empirical/ Power-

law 
35 - 2072 

Gironde estuary 

(France) 

(Doxaran et al., 

2002) 

Siswanto11 
Empirical/ 

Multivariable 
0.04 - 340 

Yellow and East China 

Seas (China) 

(Siswanto et al., 

2011) 

DatDN20 
Empirical/ cubic 

polynomial 
0.47 - 240.14 

Vietnamese coastal 

zone & Tonle Sap lake 

(Cambodia) 

(Ngoc et al., 2020) 

Nechad10 Semi-Analytical 1.2 - 110.3 Southern North Sea (Nechad et al., 2010) 

BingHan16 Semi-Analytical 0.154 - 2627 Global Dataset (Han et al., 2016) 
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SPM=exp(
X+0.9614

0.3193
) 3.1 

where  

X1=
Rrs(865)

Rrs(555)
 3.2 

(2) Nechad10 

 Nechad et al., (2010) proposed a semi-analytical model for estimating SPM through a 

relationship test for a continuous range of wavelengths from 520 nm to 885 nm. This algorithm 

(see Equation 3.3) takes the advantage of the red band where a significant correlation was found 

between the signal on this particular band and the measured SPM within a range of 1.24 mg.L-1 

and 110.27 mg.L-1.  

SPM=
Aρρ

w
(670)

1-
ρ

w
(670)

C
ρ

+Bρ 
3.3 

where Aρ is assumed as the ratio of non-particle absorption (anp) to specific particulate 

backscattering coefficient (bbp
* ), Cρ corresponds to the ratio between bbp

*  and specific particulate 

absorption coefficient (ap
* ), Bρ the coefficient represents the errors of measurement and model. 

ρw is the water-leaving reflectance which can be calculated from Rrs: ρw(λ)=πRrs(λ). 

 

(3) Siswanto11 

 The model Siswanto11 is designed for the Yellow and East China Seas where the 

concentration of TSM can reach 340.07 g.m-3 in Spring (Siswanto et al., 2011). The such 

empirical algorithm is developed as a regional adapted version of (Tassan, 1994) which takes 

into account two input variables X1, X2 and can be expressed as the equation below: 

log
10
(SPM)=0.649+25.623X1+0.646X2 3.4 

where  

X1=Rrs(555)+Rrs(670) 3.5 
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 X2=
Rrs(490)

Rrs(555)
 3.6 

(4) BingHan16  

 BingHan16 (Han et al., 2016) is a Semi-Analytical Algorithm (SAA) developed based on a 

global dataset gathered from different sampling sites in Europe, French Guiana, Vietnam, North 

Canada, and China within a variety of aquatic conditions (i.e., river run-off, sediment 

resuspension, phytoplankton bloom, etc.). Generally, this model aims to blend two versions of 

Nechad10 model with tuned coefficients by using a weighting function to optimize the retrieval 

of SPM taking into account low to medium turbid waters and highly turbid waters. In practice, 

the model uses thresholds of Rrs(λ) in the red part of the spectrum (0.03 sr-1 and 0.04 sr-1) to 

classify the water into low and high SPM conditions (see Figure 3.7.c,d). Next, a switching 

method, which is applied to combine the two algorithms corresponding to two defined water 

types to obtain a unique estimation of SPM, is expressed in Equation 3.7.e. Such procedure is 

explained by the following equations: 

SPML=
Aρ

L.ρw(λ0)

1 - 
ρw(λ0)

Cρ
L

 3.7.a 

SPMH=
Aρ

H.ρw(λ0)

1 - 
ρw(λ0)
Cρ

H

 3.7.b 

WL= {

1, if Rrs(λ0) ≤ 0.03 sr-1

0, if Rrs(λ0) ≥ 0.04 sr-1

log10(0.04) – log10[Rrs(λ0)], otherwise

 3.7.c 

WH = {

0, if Rrs(λ0) ≤ 0.03 sr-1

1, if Rrs(λ0) ≥ 0.04 sr-1

log10[Rrs(λ0)] – log10(0.03), otherwise

 3.7.d 

SPM=
WL.SPML+WH.SPMH

WL+WH

 3.7.e 

This model was defined for SeaWiFS, MODIS, MERIS/OLCI/MSI, VIIRS, and OLI sensors; the 

coefficients specific to each satellite are documented in Han et al., 2016 and not recalled here.  

(1) DatDN20-1 & DatDN20-2 
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 In this thesis, two versions of Ngoc et al., (2020) (DatDN20-1 Equation 3.8 and 

DatDN20-2 Equation 3.9) were tested along with other historical models in the performance 

examination. These two versions are developed using the available spectral bands in the 

green and red domain of VNREDSat-1 which bands are similar to Landsat-8 sensor. The 

algorithm was validated on the in-situ dataset gathered in the Vietnamese coastal zone and 

Tonlesap River in Cambodia (Ngoc et al., 2020). The formulation of this model is 

constructed by a cubic polynomial function and can be expressed as below: 

log
10
(SPM)=0.281log

10

3
Rrs(655)+2.48log

10

2
Rrs(655)+7.94log

10
Rrs(655)+9.35 3.8 

log
10
(SPM)=0.663log

10

3 Rrs(655)

Rrs(565)
+1.48log

10

2 Rrs(655)

Rrs(565)
+2.57log

10

Rrs(655)

Rrs(565)
+1.59 3.9 

3.3.2. Selection of the most pertinent SPM model 

 The tested models have been tuned regionally using in-situ measurements collected in French 

Guiana coastal waters. This dataset is clustered into three Optical Water Types (OWTs) based on 

the normalization of measured hyperspectral Rrs(λ). Figure 3.2 depicts the better version of each 

inversion algorithm, where the original forms possibly outperform the tuned ones. This might be 

due to the difference in the SPM range of the development dataset that potentially causes a slight 

discrepancy in the statistics. The DatDN20-1 model, which uses the Rrs(λ) in the red as an 

independent variable, exhibits better performance than DatDN20-2 with an R2 of 0.77 and 

RMSE of 0.29 g.m-3 to rank the second position among the five models after being adapted 

Figure 3.2.e,f. This result emphasizes a greater correlation between SPM and Rrs(665) compared 

to the ratio of Rrs(560)/ Rrs(665) considering the French Guiana dataset. The Doxaran02 model 

presents a fairly good accuracy in retrieving SPM for highly turbid waters (OWT 3), however, 

such an algorithm tends to overestimate SPM concentration in the low to moderate range Figure 

3.2.d. This is understandable since Doxaran02 was initially developed for aquatic conditions 

containing SPM levels more than 35 g.m-3. The optimized version of the Siswanto11 algorithm, 

originally designed for SPM values ranging between 0.33 and 340 g.m-3, shows a relatively good 

SPM prediction illustrated by MAPD of 18.06% and RMSE of 0.32 g.m-3. However, the general 

performance of this model is lower than that of the semi-analytical approach Nechad10. The 

model Nechad10 exhibits outstanding SPM retrieval, as evidenced by the maximum R2 and 

RMSD of 0.78 and 0.28 g.m-3, respectively, despite being built for a narrow range of SPM 
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between 1.2 and 110.3 g.m-3. The use of a constant offset (Bρ) in this model, however, raises the 

possibility of an overestimation of SPM at low concentrations (Han et al., 2016). For this reason, 

the model BingHan16 was proposed using a Nechad10-based core, but without taking the 

aforementioned constant offset into consideration. In addition, the use of a weighting approach 

performed in its formulation presents the best accuracy of SPM estimation in the present dataset 

with the optimal Slope of 0.87 and smallest area of 0.489 in the radar plot Figure 3.2.a,g. 

According to the obtained results, the original version of the BingHan16 model was adopted to 

derive SPM concentration in French Guiana coastal waters. 
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Figure 3.2. Inter-comparison considering MERIS sensor of measured and model-derived SPM 

concentration when the model a) Original BingHan16; b) Tuned Nechad10; c) Tuned 

Siswanto11; d) Doxaran02-1; e) Tuned DatDN20-1; f) Tuned DatDN20-2 are applied to the in-

situ dataset collected in French Guiana coastal waters. Blue, Green, and Red correspond to 

OWT 1, OWT 2, and OWT 3, respectively. The overall comparison described by statistical 

indicators is illustrated in panel g). 
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3.4. Particulate Organic Carbon (POC) 

3.4.1. Description of POC candidate algorithms 

  In open ocean waters, POC has been historically estimated using relationships based on 

the backscattering coefficient, for instance, (Loisel et al., 2007) with a satisfying accuracy. 

Specific models for estimating POC in optically complex environments have been developed 

more recently through dedicated studies in coastal or river-dominated domains (Le et al., 2017; 

T. K. Tran et al., 2019). Here, the evaluation of the performance of the POC concentration by 

using remote sensing observations was performed considering five empirical algorithms which 

are Stramski08 (Stramski et al., 2008), Woźniak16 (Woźniak et al., 2016), Le17 (Le et al., 2017) 

, Le18 (Le et al., 2018) , and KienTran19 (T. K. Tran et al., 2019). These models, which rely on 

empirical relationships between measured different spectral bands and POC concentration 

(Table 3.3), have been considered as the candidate algorithms as they are developed from a 

variety of aquatic conditions including both Case-1 and Case-2 waters.  

Table 3.3. Description of existing POC models that are selected in the performance evaluation 

(1) Stramski08 

 The model Stramski08 (Stramski et al., 2008)  is an empirical algorithm which uses the band 

ratios between green and blue of Rrs(λ) to estimate POC concentration for open ocean waters. 

The in-situ dataset to develop this model was collected within oligotrophic and upwelling waters 

of the Eastern South Pacific Ocean with a POC range between 10 mg.m-3 and 270 mg.m-3. The 

blue-to-green ratio was adopted to be an input variable for a power-law function formulating the 

model. 

Model Type/Function 
POC range 

(mg.m-3) 

Study 

Area 
Reference 

Stramski08 
Empirical/ 

Power-law 
10 - 270 Eastern South Pacific 

(Stramski et al., 

2008) 

Woźniak16 
Empirical/ 

Power-law 
145 – 2370 

Baltic Sea 

Gulf of Gdansk (Poland) 

(Woźniak et al., 

2016) 

Le17 
Empirical/ 

Multivariable 
11.5 - 230 

Louisiana & Mobile Bay 

(Gulf of Mexico) 
(Le et al., 2017) 

Le18 
Empirical/ 

Power-law 
52.6 – 375.2 Global Dataset (Le et al., 2018) 

KienTran19 
Empirical/ 

Power-law 
45.37 - 5744 Global Dataset 

(T. K. Tran et al., 

2019) 
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POC=203.2
Rrs(443)

Rrs(555)

-1.034

 
3.10 

POC=308.3
Rrs(490)

Rrs(555)

-1.639

 
3.11 

(2) Woźniak16 

 (Woźniak et al., 2016) developed a POC algorithm established from the 75 measurements 

sampled in the Gulf of Gdansk (Poland) representing a wide range of POC from 145 mg.m-3 to 

2370 mg.m-3
. Similar to Stramski08, Woźniak16 is formulated using a power-law function based 

on a band ratio in the green part of the visible spectrum as described in the following equation:  

POC=0.814
Rrs(555)

Rrs(589)

-4.42

 
3.12 

(3) Le17 

 The Le17 model (Le et al., 2017) is based on a multiband function initially developed for 

MODIS and SeaWiFS sensors. This model was designed to be suitable for aquatic environments 

characterized by river-dominated estuaries in the Gulf of Mexico with an upper limit of POC 

concentration of 230 mg.m-3. 

POC=exp[-126.22Rrs(488)-120.74Rrs(531)+245.42Rrs(547) 

-493.54Rrs(667)+489.3Rrs(678)-0.59] 
3.13 

POC=exp(-115.69Rrs(490)-53.64Rrs(510)+172.13Rrs(555)-40.06Rrs(670)-0.54) 3.14 

(4) Le18 

 Le et al., (2018) proposed a POC inversion model using a color index CIPOC. This indexis 

computed from Rrs(λ) of three spectral bands centered at 490 nm, 555 nm, and 670 nm. The 

relationship between the in-situ POC of a global dataset (POC in the range of 10-1000 mg.m-3) 

and the index CIPOC was, then, determined by a power-law function which was designed in 

regard to the values of CIPOC. 

CIPOC=Rrs(555)- {Rrs(490)+
555-490

670-490
[Rrs(670)-Rrs(490)]} 

3.15.a 
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CIPOC≤-0.0005:POC=10185.72CIPOC+1.97 3.15.b 

CIPOC≥-0.0005:POC=10485.19CIPOC+2.1 3.15.c 

(5) KienTran19 

 T. K. Tran et al., (2019) examined different existing empirical POC algorithms and deployed 

the inter-comparison to assess their performance based on a global data set gathered in coastal 

environments. The authors also developed an inversion model based on the MBR (Maximum 

Band Ratio) approach tested on a global dataset composed of the in-situ measurements 

conducted in the Baltic Sea, Bay of Biscay, Beaufort Sea Arctic Ocean, Vietnamese East Sea, 

English Channel, French Guiana, North Sea, and South Pacific Ocean with the POC ranging 

between 45.37 and 5744 mg.m-3. This model can be simplified as below: 

POC=100.928X+2.875 3.16 

with  

X=log
10
{max [

Rrs(665)

Rrs(490)
,
Rrs(665)

Rrs(510)
,
Rrs(665)

Rrs(555)
]} 

3.17 

3.4.2. Selection of the most pertinent POC model 

 The inter-comparison of tested POC models was conducted on 92 data points for which both 

Rrs and POC measurements were available in French Guiana. Similar to SPM, the better version 

of selected algorithms for retrieving POC is shown in Figure 3.3. Due to the inherent limitation 

and sensitivity of the Stramski08-BR3 and KienTran19 models which is probably related to the 

highly turbid condition, both original and adapted versions of these two models fail to predict 

POC in French Guiana coastal waters. Clear evidence of this issue can be found in Figure 

3.3.d,e where the poor correlation between estimated and measured POC values is demonstrated. 

This is not unexpected given that the Stramski08-BR3 models only allow for a maximum POC 

concentration of 270 mg.m-3, respectively, which is approximately 13 times lower than the 

highest value of POC reported in the French Guiana dataset (4705.5 mg.m-3). The Le18 model 

shows a clear saturation to estimate the POC concentration that can be seen from the Figure 

3.3.e. A similar propensity can be found in the performance of the Woźniak16 model presenting 

a low correlation between the log-transformed in-situ and model-derived POC (R2 = 0.23) and 

high dispersion from the 1:1 line. The multiband model Le17 exhibits the most satisfying 
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accuracy among the five investigated models in retrieving POC over French Guiana coastal 

waters. By displaying a distribution of the data points, especially those belonging to OWT 3 

close to the 1:1 line, such model proves its reliability to estimate POC concentration in turbid 

environments with RMSD of 0.23 mg.m-3 and MAPD of 5.16%. 

 

Figure 3.3. Inter-comparison of measured and model-derived POC concentration when the 

model a) Tuned KienTran19; b) Tuned Le17; c) Tuned Woźniak16; d) Tuned Stramski08; e) 

Tuned Le18 are applied to the in-situ dataset collected in French Guiana coastal waters. Blue, 

Green, and Red correspond to OWT 1, OWT 2, and OWT 3, respectively. The overall 

comparison described by statistical indicators is illustrated in panel f). 

 Even though the model Le17 globally outperforms the other algorithms from the analysis 

carried out on our in-situ dataset, it fails to estimate POC properly over clear environments. This 

is here underlined by a few points gathered for offshore waters in Figure 3.2.b where we can 

observe an overestimation of POC value for the OWT 1. Although this pattern is here supported 

by a very limited number of data points, it is clearly illustrated when applying Le17 to satellite-
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images where no dynamic is found in the offshore waters (not shown here). As an alternative, we 

therefore suggest combining the models KienTran19 and Le17 using a blending strategy as a 

solution to the data coverage limitation (D’Alimonte et al., 2003; Mélin et al., 2011 Vantrepotte 

et al., 2012). Since the model Le17 has shown its reliability to estimate POC for medium to 

turbid waters, the probability values belonging to OWT 3 has been used as the blending 

coefficient of this model. Meanwhile, the model KienTran19 is applied to data points 

corresponding to OWTs 1 and 2 representing clear waters as documented in T. K. Tran et al., 

(2019) and as confirmed here. The performance of this combined model (KienTran19-Le17) is 

shown in Figure 3.4 where the Slope reaches 0.6 and MAPD between measured and estimated 

POC is 6.98%. 

 

Figure 3.4. Scatter plot between in-situ and model-derived POC from the combination of 

KienTran19 and Le17 models. The dash lines represent 2:1 and 1:2 lines, respectively. The solid 

black line is the 1:1 line. The solid line in red corresponds to the fit line. Blue, Green, and Red 

are OWT 1, OWT 2, and OWT 3, respectively. 

3.5. Absorption of Colored Dissolved Organic Matter (aCDOM) 

 In this section, five inversion algorithms for estimating aCDOM(412) have been evaluated. It is 

worth mentioning that some of the considered formulations were initially developed for 

estimating aCDOM(443) and aCDOM(420), for instance, (D’sa et al., 2006; Kutser et al., 2005). 

These models have been adapted to estimate the CDOM absorption at 412 nm using the in-situ 

data collected in French Guiana waters. Table 3.4 illustrates the description of aCDOM models 

considered in this regional intercomparison exercise. 
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Table 3.4. Description of existing aCDOM models that are selected in the performance evaluation 

3.5.1. Description of aCDOM candidate algorithms 

(1) Kutser05 

 The model Kutser05 developed by Kutser et al., (2005) was aimed to retrieve CDOM in 13 

lakes located in southern Finland and in 21 lakes situated in southern Sweden. This inversion 

model is based on an empirical approach taking into account the ratio of Rrs(565)/Rrs(660) and is 

designed to be suitable for aCDOM range of 0.68 – 11.13 m-1.  

aCDOM(420)=5.13 [
Rrs(565)

Rrs(660)
]

-2.67

 
3.18 

(2) D’Sa06 

 Another empirical model, D’Sa06 likewise based on a power-law function of a band ratio, 

but involving other wavelengths, was suggested by D'sa et al., (2006). In particular, this 

algorithm considers the ratio of Rrs(510)/Rrs(555) as the independent variable to estimate 

aCDOM(412) between 0.04 and 1.2 m-1 on the Louisiana shelf in the Northern Gulf of Mexico. 

aCDOM(412)=0.227
Rrs(510)

Rrs(555)

-2.022

 
3.19 

(3) Cao18 

 The empirical algorithm Cao18 was formulated based on an exponential function of multiple 

linear regression (MLR) with independent variables corresponding to Rrs(λ) at different spectral 

Model Type/Function 
aCDOM range 

(m-1) 

Study 

Area 
Reference 

Kutser05 
Empirical/ 

Power-law 
0.68 – 11.13 Swedish Lake (Kutser et al., 2005) 

D’sa06 
Empirical/ 

Power-law 
0.07 – 0.20 Northern Gulf of Mexico (D’sa et al., 2006) 

Cao18 
Empirical/ 

Multivariable 
0.2 – 37 

Chesapeake Bay,  Delaware 

Bay, Gulf of Mexico 

(Cao, Tzortziou, Hu, 

Mannino, Fichot, del 

Vecchio, et al., 2018) 

Son-B2R 
Empirical/ 

Power-law 
0.004 – 6.06 Global Dataset (In prep) 

Loisel14 
Neural 

Network 
0.04 – 3.65 

Synthetic Dataset, 

European & French Guiana 

coast, NOMAD Global 

Dataset 

(Jamet et al., 2012; 

Loisel et al., 2018; 

Loisel et al., 2014) 
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channels of MODIS and MERIS sensors. The authors note that although this model was first 

created to obtain aCDOM at 300 nm and 350 nm, it also yields a similar result at 412 nm with a 

MAPD of 26.9 % Cao et al., (2018). The approach produces estimation of aCDOM over more than 

two orders of magnitude (for example, aCDOM(300) in the range of 0.2 to 0.37 m-1). 

ln(aCDOM(412))=-0.0206 ln(Rrs(443)) -0.6128 ln(Rrs(448)) -0.007 ln(Rrs(531)) 

-0.4944 ln(Rrs(555))+0.9362 ln(Rrs(667))+0.9666 

3.20 

(4) Son-B2R 

 Son-B2R is an abbreviation of a Blue-to-Red-ratio model developed by Son Nguyen Vu who 

is currently a PhD candidate at LOG (Laboratoire d'Océanologie et de Géosciences). Such a 

model examined the relationship between the ratio of Rrs(483)/Rrs(655) and the in-situ 

aCDOM(412) gathered globally in different sites. The nature of this relationship is expressed in the 

form of a polynomial function of the fourth order. The aCDOM(412) estimated by the model Son-

B2R is represented in the following equation: 

log
10
(aCDOM(412))=0.001823(

Rrs(483)

Rrs(655)
)

4

-0.05377(
Rrs(483)

Rrs(655)
)

3

+ 

0.05442(
Rrs(483)

Rrs(655)
)

2

-0.8855
Rrs(483)

Rrs(655)
-0.2649 

3.21 

(5) Loisel14 

 The estimation of aCDOM(412) by the model Loisel14 was designed by a machine learning 

approach with to two principal steps. More specifically, the first step refers to the establishment 

of a neural network model proposed by Jamet et al., (2012) to retrieve the spectral diffuse 

attenuation coefficient Kd(λ). Such a model considers the inputs of Rrs(λ) at all standard bands in 

the visible spectral range of satellite ocean color sensors. The refinement of this machine 

learning algorithm is documented in Loisel et al., (2018) and its operation relies on a network of 

two hidden layers with five neurons in each layer. The second step is related to the estimation 

aCDOM(412) from the log-transformed parameter X computed by the difference values between 

the diffuse attenuation coefficient, Kd(λ), and the diffuse attenuation coefficient for pure 

seawater, Kw(λ), at two spectral bands of 412 nm and 555nm with a consideration of the impact 

of the particulate fraction ∆p(410)-∆p(555). The initial formulation was developed for 



Regional adaptation and Selection of Bio-optical algorithms for French 

Guiana coastal waters 

100 

aCDOM(410) values ranging from 0.04 to 3.65 m-1 using a quadratic function (Loisel et al., 2014) 

and can be expressed as below: 

log
10
(aCDOM(410))=0.1548[log

10
(X)]

2
+1.1939log

10
(X)+0.0689 3.22 

where 

X=(Kd(410)-Kw(410))-(Kd(555)-Kw(555))- (∆p(410)-∆p(555)) 3.23 

3.5.2. Selection of the most pertinent aCDOM model 

 The inter-comparison results performed on the five bio-optical models including Cao18, Son-

B2R, Kutser05, D’sa06, and Loisel14 introduced in section 3.5.1 and based on a total of 193 

aCDOM(412)-Rrs(λ) measurements are presented in Figure 3.4. In most cases, the adapted versions 

of the models under consideration perform significantly better than those in the original form. It 

is apparent that the model D’Sa06 fails to derive aCDOM(412), especially for turbid waters, as 

evidenced by a low slope of 0.15 and a deviation of the red points from the 1:1 line. This is not 

surprising as the development of this model is constrained to a maximum aCDOM(412) value of 

0.2 m-1. The model Loisel14, which is based on a semi-analytical approach, shows a relatively 

relevant performance with a Slope of 0.61. However, the information on CDOM extracted from 

this algorithm is not optimal, which is represented by a high value of MAPD (73.36%) as well as 

a scattering pattern in the distribution of the data points around the 1:1 line. The two models Son-

B2R and Kutser05 both display a comparable accuracy and tend to overestimate aCDOM(412) in 

highly turbid environments (Figure 3.5.b,c). The areas calculated from the radar plot associated 

with these two algorithms further demonstrate their relatively comparable performance (Figure 

3.5.f, areaSon-B2R = 0.735 and areaKutser05 = 0.707). The modified version of the model suggested 

by Cao et al., (2018) presents the best performance among the models evaluated, as for instance 

indicated by the lowest statistical area value (i.e., areaCao18 = 0.377) found for this algorithm 

among all the formulations evaluated. Therefore, the adapted version of the models of Cao et al., 

(2018) has been chosen as the appropriate inversion model to estimate aCDOM(412) in the coastal 

waters of French Guiana.  
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Figure 3.5. Inter-comparison considering MERIS sensor of measured and model-derived 

aCDOM(412) concentration when the model a) Tuned Cao18, b) Tuned Son-B2R, c)Tuned 

Kutser05, d) Original D’Sa06, e) Original Loisel14 applied to the in-situ dataset collected in 

French Guiana coastal waters. Blue, Green, and Red correspond to OWT 1, OWT 2, and OWT 3, 

respectively; f) The overall comparison described by statistical indicators. 

3.6. Dissolved Organic Carbon (DOC) 

3.6.1. Description of original versions of DOC algorithms 

 Remote-sensing-based retrievals of dissolved organic carbon (DOC) over optically 

contrasted environments remain scarce. This parameter can be estimated from exploiting linear 

relationships between aCDOM and DOC in coastal waters influenced by terrestrial inputs, where 

CDOM and DOC follow the same dilution gradient (Joshi et al., 2017; Le et al., 2013, Mannino 

et al., 2008). However, such relationships have shown clear limitations related to the fact that 

they strongly vary at seasonal scale for a defined coastal site but also from one coastal area to 

another. To overcome these issues different approaches have been proposed focusing mainly on 
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the relationship between the information of the CDOM absorption spectra slopes in the UV 

domain (S275-295) and the specific absorption coefficient (a*
CDOM(λ) = aCDOM(λ)/DOC) (Helms et 

al., 2008, Fichot and Benner., 2011, Valerio et al., 2018). A simplified general relationships was 

proposed by Vantrepotte et al., (2015) (Vantrepotte15) in order to estimate directly 

aCDOM(λ)/DOC from aCDOM(412) on a variety of coastal sites including some samples of French 

Guiana. Here we simply illustrate the performance of this model taking into account the most 

recent samples gathered at regional scale. This algorithm is described by the following equations: 

aCDOM
* (412) = 100.7109log10(aCDOM(412))-2.1722 3.24 

 where 

aCDOM
* (412) = 

aCDOM(412)

DOC
 3.25 

Vantrepotte et al., (2015) also suggested another approach to estimate aCDOM
* (412) from the 

spectral slope in the range from 275 nm to 295 nm (S275-295), as the tight relationship between 

these two parameters has been examined on a gathered dataset. Therefore, this algorithm has also 

been tested to derive aCDOM
* (412) in the present study and is expressed in the equation below: 

aCDOM
* (412)=a(e(b.S275-295)-e(c.S275-295))+d 3.26 

 where a = 12.4761; b = -553.17; c = 0.01097; and d = 12.48124698. 

 

Figure 3.6. Illustration of the performance of the DOC inversion model by proposed by 

Vantrepotte et al. (2015) with a) from S275-295 approach and b) from aCDOM(412).  



Regional adaptation and Selection of Bio-optical algorithms for French 

Guiana coastal waters 

103 

 Considering the fact that the hyperspectral data is more suitable to derive DOC from S275-295 

approach as it offers continuous information of the electromagnetic spectrum, DOC will be 

estimated directly from aCDOM(412) in this thesis. 

3.7. POC/SPM ratio 

 The ratio of particulate organic matter to suspended particulate matter (POC/SPM) can 

provide information on the amount of the particulate matter pool providing an estimate of the 

relative contribution of organic particles to the total suspended solids (Woźniak et al., 2010). 

Here, we examined two approaches to derive the value of POC/SPM including an estimation of 

the POC/SPM considering the approaches selected for estimating individually these two 

parameters at regional scale (see Sections 3.3.2 and 3.4.2, respectively) and a Neural-Network 

(NN) based model recently developed at LOG (Loisel et al., 2023). In practice, this latter model 

estimates the POC/SPM ratio directly from the parameterization of Rrs(λ) at four different 

wavelengths in the visible part of the spectrum (412, 490, 510, 560 nm). This algorithm was 

developed based on a neural network with three hidden layers. The performances of the two 

methods are depicted in Figure 3.7.  

 The POC/SPM-direct approach shows the overall best statistics among the two approaches 

evaluated (Figure 3.6, e.g., MAPD = 46.71% vs 106.5% for the direct and NN methods, 

respectively) although an overestimation of the POC/SPM values in clear waters associated with 

OWT 1 and OWT 2, where the contribution of POC to the SPM is relatively substantial. 

Meanwhile, such deviation pattern is less pronounced in the POC/SPM prediction of the Neural-

Network model Figure 3.7.b. This should however be confirmed using a larger data set in these 

clear environments. The performance of the regional direct approach is clearly more reliable 

when compared to the Neural-Network one in turbid waters where the later model tends to 

provide negative estimates in some cases. In this thesis, the regional direct approach for 

estimating POC/SPM has been therefore selected for further application in French Guiana 

waters.  
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Figure 3.7. Inter-comparison of measured and model-derived DOC concentration when the 

model a) KienTran19-Le17 & BingHan16; b) Neural-Network Model applied to the in-situ 

dataset collected in French Guiana coastal waters. Blue, Green, and Red correspond to OWT 1, 

OWT 2, and OWT 3, respectively. The overall comparison described by statistical indicators is 

illustrated in panel c). 
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CHAPTER 3 – PART II 

3.8. Chlorophyll-a (Chl-a) 

 In fact, the optical signal of Chl-a is significantly influenced by the co-occurrence of other 

constituents (i.e., CDOM, SPM) in highly turbid waters (Case-2 waters) where the typical 

Blue/Green band-ratio algorithms tend to fail in retrieving Chl-a information (Groom et al., 

2019; Lavigne et al., 2021; Mélin & Vantrepotte, 2015). The massive amount of suspended 

sediment transported to French Guiana coastal zone makes this area becomes representative for 

an optically complex environment (Eisma et al., 1991). Due to this signature feature, none of the 

inversion Chl-a models is fully successful to estimate accurately Chl-a over French Guiana 

coastal domain (which will be elaborated in the following sections). Therefore, a global dataset 

was used to develop two algorithms corresponding to clear to medium turbid and turbid/ high 

Chl-a waters. Such models were then combined using an optical classification scheme as a frame 

for global applications. This approach was valorized through a publication of (M. D. Tran et al., 

2023). 

3.8.1.  Introduction  

 The Ocean Color (OC) chlorophyll-a models and related offspring algorithms (O’Reilly et 

al., 1998; O’Reilly & Werdell, 2019), which are based on the use of a Maximum Band Ratio in 

the Blue-Green domain of the visible spectrum, have been especially widely validated over clear 

environments and are now operationally used for deriving Chl-a in open ocean waters (Ford & 

Barciela, 2017; Garnesson et al., 2019; Xi et al., 2020). Estimating Chl-a from space still 

however represents a challenging task in coastal waters (Case-2 waters) (Groom et al., 2019; 

Lavigne et al., 2021). This is related to the high optical diversity of these environments (Mélin & 

Vantrepotte, 2015) where water optical properties are diversely driven, by a variable contribution 

of phytoplankton, suspended particulate matter (SPM), and colored dissolved organic matter 

(CDOM). In high CDOM and/or SPM, phytoplankton impact on the reflectance signal at the 

shortest wavelengths of the visible range. This feature tends to impair the performance of 

classical Blue/Green ratio based empirical Chl-a inversion models (Henderikx Freitas & 

Dierssen, 2019; Loisel et al., 2017; Yang et al., 2018). 

 Specific Chl-a algorithms have been developed taking advantage of the impact of the 

phytoplankton on the water optical properties in the Red and NIR regions of the electromagnetic 
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spectrum. Such Red-NIR models rely on the negligible impact of CDOM and SPM absorption 

while exploiting the optical signature of phytoplankton absorption or chlorophyll fluorescence on 

the reflectance spectra over the two latter spectral domains (Gilerson et al., 2010; J. Gower et al., 

2005; S. T. Gower et al., 1999; Gurlin et al., 2011). These Red-NIR-based approaches are 

however failing in clear waters, where the phytoplankton signal can be masked in relationships 

to the high contribution of pure water absorption at higher wavelengths (Gons et al., 2008; 

Odermatt et al., 2012). 

 An extensive study by Neil et al., (2019) has further illustrated the interest in an adaptive 

framework for dynamically selecting and optimizing Chl-a inversion models in inland waters 

based on optical water types (OWTs). With the main objective to provide ocean color data users 

a simple way to evaluate the reliability of the Chl-a estimates derived from Blue/Green and 

Red/NIR inversion models, (Lavigne et al., 2021) developed quality control tests for improving 

MERIS (OLCI) Chl-a estimates in coastal waters. Besides these recent studies, new alternative 

approaches based on machine-learning-based methods, which may be more computing time-

consuming than standard reflectance ratios, are now developed for deriving Chl-a over a large 

range of Chl-a contents and considering a variety of bio-optical regimes in inland and coastal 

waters (Pahlevan et al., 2020). Although numerous efforts performed during the last decades for 

accurately estimating Chl-a concentration from the remote sensing reflectance using adapted 

inversion, there is still no consensus on the algorithm or the set of algorithms to be applied for 

deriving Chl-a for large-scale applications in coastal waters. 

 Considering the addressed challenges in applicability of historical Chl-a models regarding 

different aquatic environments as well as the potential obstacles in the algorithm combination, 

this study represents a contribution to the continuous efforts for optimizing Chl-a retrieval from 

ocean color observation in coastal waters. More specifically, this work aims at evaluating the 

combination of different band-ratio-based models for estimating Chl-a in contrasted coastal 

waters from Sentinel-2 and Sentinel-3 data. For this purpose, a global in-situ Rrs-Chl-a in-situ 

dataset (N=1244) gathering samples collected over contrasted coastal environments was 

exploited to define the current band ratios methods the most adapted to derive Chl-a from clear 

to highly-turbid coastal environments and illustrate the current limitation associated with such 

approaches.  
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3.8.2.  Materials and Methods 

3.8.2.1. In-situ dataset 

 The in-situ dataset (DS-W, N = 1244, Mean Chl-a = 12.14 mg.m-3) combines concomitant 

measurements of Chl-a and remote sensing reflectance (Rrs) collected between 1997 and 2016 in 

the frame of diverse worldwide distributed field campaigns in contrasted coastal areas (European 

coastal waters (Babin, Stramski, et al., 2003; Lubac et al., 2008; Lubac & Loisel, 2007; 

Neukermans et al., 2012), French Guiana (Vantrepotte et al., 2012, 2015), Eastern Viet Nam Sea 

(Loisel et al., 2017; Loisel, et al., 2014), South Shetland islands, the US coastal waters, The Sea 

of Japan (Werdell & Bailey, 2005), Beaufort Sea North Canada (Be et al., 2008), and Brazil 

(Guanabara Bay, Rio de Janeiro) (E. N. Oliveira et al., 2016) (Figure 3.8). This dataset covers a 

wide range of Chl-a concentrations with values ranging over 4 orders of magnitude (0.03 – 

555.99 µgL-1, Table 3.5) from oligotrophic waters (e.g., Mediterranean Sea, clear polar waters) 

to ultra-eutrophic environments such as Guanabara Bay, Rio de Janeiro (E. N. Oliveira et al., 

2016). The DS-W was further randomly split into a development dataset (DS-D, N = 831, Mean 

Chl-a = 13.63 mg.m-3) and a validation dataset (DS-V, N = 356, Mean Chl-a = 9.45 mg.m-3), 

representing 70 and 30 % of DS-W, respectively, these three datasets follow a similar 

distribution (Figure 3.9). It is worth noting that the proportion of DS-D/DS-V partition was 

performed excluding the points corresponding to OWT5 (N= 57), for which no band-ratio-based 

model development has been performed (see section 3.8.3.2.1 and 3.8.3.3.1). 

 The Chl-a/SPM ratio has been calculated for the whole dataset for providing rough 

information on the relative importance of the Chl-a signal associated with the different water 

masses considered in this study. Considering that the SPM concentration was not available for all 

the in-situ samples in DS-W, SPM was estimated from the Rrs(665) using the model by Han et 

al., (2016) which reliable performance has been illustrated from various former studies in 

contrasted coastal waters (Gensac et al., 2016; Zorrilla et al., 2019). 

Table 3.5. Description of the in-situ dataset of Chl-a (mg.m-3) considered in the frame of this 

study: number of samples (N), minimum (Min), maximum (Max), mean (Mean), and standard 

deviation (StdDev). 

Region 
Temporal 

coverage 
N Min Max Mean StdDev Reference 

 

Vietnam 2011-2014 43 0.66 17.45 4.63 3.75 
(Loisel et al., 2017; 

Loisel, et al., 2014) 
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French Guiana 2006-2016 108 0.41 22.65 6.40 5.45 
(Vantrepotte et al., 

2012, 2015) 

 

Guanabara Bay 

(Brazil) 
2012-2015 161 1.03 555.99 76.06 101.46 

(E. N. Oliveira et al., 

2016) 

 

Beaufort Sea 2014 40 0.03 3.52 0.32 0.64 
(Bélanger et al., 

2008) 

 

Sea of Japan 1999-2001 41 0.13 2.89 0.73 0.64 
(Werdell & Bailey, 

2005) 

 

USA 1999-2007 498 0.08 28.46 1.71 2.79 
(Werdell & Bailey, 

2005) 

 

South Shetland 

islands 
2000-2007 82 0.03 4.01 0.86 0.81 

(Werdell & Bailey, 

2005) 

 

Europe 1997-2012 271 0.05 33.33 3.69 5.42 

(Babin, Stramski, et 

al., 2003; Lubac et 

al., 2008; Lubac & 

Loisel, 2007; 

Neukermans et al., 

2012) 

 

Total 1997-2016 1244 0.03 555.99 12.14 44.13   

 

Figure 3.8. Spatial distribution of in-situ Rrs-Chl-a measurements gathered within the DS-W 

dataset (N = 1244), colors indicate the optical water types to which each in-situ sample is 

associated with (see section 3.8.2.1). 
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Figure 3.9. Chl-a absolute frequency distribution for a) the whole in-situ dataset DS-W (N = 

1244), b) the development dataset (DS-D, N = 832) and the validation dataset (DS-V, N = 355). 

The number of data points corresponding to OWT 5 has been excluded in the DS-D and DS-V. 

3.8.2.2. Satellite and Match-up Dataset 

 Data in DS-W have been acquired before the S2 and S3 time period (from June 2015 and 

February 2016 respectively). An external and independent in-situ dataset, which encompasses 

only Chl-a measurements, has been therefore considered in addition to DS-W for validation 

purposes (Figure 3.10). In practice, Chl-a samples collected along the French coast are in the 

frame of the SOMLIT (Coastal Environment Observation Service, https://www.somlit.fr/) and 

REPHY (Observation and Monitoring Network for Phytoplankton and Hydrology in coastal 

waters, https://www.seanoe.org/data/00361/47248/) French national survey programs. These 

long-lasting in-situ datasets (e.g., continuous monthly data since 1997 for SOMLIT) present the 

advantage of being acquired following a standardized protocol. 

https://www.somlit.fr/
https://www.seanoe.org/data/00361/47248/
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Figure 3.10. Distribution of the REPHY and SOMLIT stations considered in the matchup dataset 

DS-M. 

 In practice, Satellite Sentinel2-MSI A/B (60 m resolution) and Sentinel3-OLCI A/B (300 m 

resolution) Rrs data have been extracted for both SOMLIT and REPHY Chl-a samples over the 

time period 7/09/2015 – 19/03/2021 and 24/05/2016 – 07/04/2021 for MSI and OLCI 

respectively). Specifically, top-of-atmosphere Level 1 products have been processed considering 

three atmospheric correction schemes including POLYMER version 4.13 (Steinmetz et al., 

2011), C2RCC (Brockmann et al., 2016), and ACOLITE (Vanhellemont, 2019). The matchup 

extraction was performed considering a 3×3 window around each in-situ sampling point. Several 

quality control criteria have been then applied (Werdell et al., 2009) considering: (1) the number 

of valid pixels (at least 5 valid pixels among the 9 pixels extracted), (2) the spatial homogeneity 

of the matchup subsets assessed from the variation coefficient within the subset window (CV = 

standard deviation/mean × 100 < 30%) and (3) the time difference between in-situ and satellite 

measurements (lower than 3 hours). 

 After the application of all these criteria, the final matchup dataset (DS-M) is then composed 

of a maximal number of 194 matchup points for MSI and 362 for OLCI with Chl-a 

concentrations ranging between 0.19 and 34.12 mg.m-3 (mean = 2.48 mg.m-3, standard deviation 

= 3.79 mg.m-3) and 0.05 and 52.93 mg.m-3 (mean = 2.52 mg.m-3, standard deviation = 3.7 mg.m-

3), respectively. The Chl-a statistics of the DS-M is further illustrated in Figure 3.11.  
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 In addition to the Sentinel-2 and Sentinel-3 matchup dataset, the global MERIS GlobCoast 

dataset (monthly 1-km spatial resolution) (Loisel et al., 2017; Loisel et al., 2014) was further 

considered for illustrating and discussing the potential applicability of the models selected with 

the frame of this study with a global scale perspective. 

 

Figure 3.11. Box plot showing Chl-a range of the final matchup dataset (DS-M) regarding OLCI 

and MSI sensors. 

3.8.2.3. Optical classification  

 Optical Water Types (OWT) were defined using the procedure defined in Mélin & 

Vantrepotte, 2015) applied to the DS-W Rrs dataset. In practice, normalized Rrs data were 

considered to cluster the reflectance data focusing on the shape of the spectra. The normalization 

was applied to multispectral Rrs data considering 6 wavelengths in the visible part of the 

spectrum (412, 443, 490, 510, 560, and 665 nm) centered on the OLCI bands. The normalized 

Rrs was determined by the ratio between its original value and the surface below the spectral 

shape as follows: 

Rrs
norm = 

Rrs(λ)

∫ Rrs(λ)dλ
λ2

λ1

 3.27 

where Rrs
norm represents the normalized remote sensing reflectance. 

 An unsupervised classification was then applied to the Rrs
normdataset using Ward’s clustering 

method (Ward, 1963) which presents the advantage of being less sensitive to outliers compared 

to other approaches (Vantrepotte et al., 2012). Then, satellite pixel OWT labelling and OWT 
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membership calculation have been performed using the procedure defined in Mélin & 

Vantrepotte, (2015) as described in section 2.8.1. 

 This classification led to the definition of 5 optical water types showing different Rrs spectral 

shapes (Figure 3.12.a). OWTs 1 and 2 (N = 269 and 185, respectively) are associated with clear 

oligotrophic to mesotrophic waters (mean Chl-a = 0.38 ± 0.36 and 0.96 ± 0.74 mg.m-3, 

respectively) with Rrs spectra typically peaking in the blue part of the visible spectrum. OWT 3 

samples are corresponding to mesotrophic waters characterized by high Rrs in the green part of 

the visible spectrum with a Rrs plateau ranging between 490 and 560 nm (N= 426, mean Chl-a = 

2.33 ± 3.09 mg.m-3). The Chl-a/SPM ratio for these 3 OWTs is increasing from the OWT 1 (2.25 

× 10-3) to the OWT 3 (4.04 × 10-3).  

 OWTs 4 and 5 are associated with highly turbid/eutrophic coastal waters. The OWT 4 

corresponds to high Chl-a waters with a Rrs peak at 560 nm (N = 307, Mean Chl-a = 43.72 ± 

80.89 mg.m-3) and shows the maximal Chl-a/SPM ratio among the different OWTs (Chl-a/SPM 

= 13.10-3) related to ultra-eutrophic for these samples. Conversely, OWT 5 samples (N = 57) are 

more likely associated with turbid waters showing a higher proportion of non-algal particles 

(sediments and detritus) when compared to OWT 4 as emphasized from the lower average Chl-a 

(7.15 ± 10.46 mg.m-3) and the lowest Chl-a/SPM ratio (1.43 × 10-3) found for these samples 

(Figure 3.12.c). 
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Figure 3.12. a) Average Rrs
norm spectra corresponding to the optical water types defined from the 

DS-W dataset (N = 1244), boxplots illustrating the distribution of Chl-a b) and Chl-a/SPM ratio 

c) associated with each optical class. While all the samples considered in DS-W are available for 

all the visible wavelengths corresponding to Sentinel2-MSI and Sentinel3-OLCI bands, it is 

worth noticing that the spectral coverage of the Rrs in-situ dataset in the NIR part of the 

spectrum is unequal. For most of the samples associated with OWTs 1, 2, and 3, little 

information was available in the NIR (12.8% for OWTs 1, 2, and 3, respectively) while this 

information was present for most (98 %) of the samples associated with OWTs 4 and 5, for which 

Red and NIR algorithms are devoted (see section 3.8.2.4). 

3.8.2.4. Chl-a candidate inversion algorithms 

 A variety of empirical band-ratio-based bio-optical algorithms have been developed for 

estimating Chl-a concentration from satellite ocean remote sensing observation. Here a selection 

of “standard” models based on different input Rrs data and formulations have been performed 

among the number of different methods available considering models which performances have 

already been shown to be relevant to the diverse types of coastal environments taking into 

account results provided from recent extensive inter-comparison exercises (Neil et al., 2019). In 
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practice, historical models considered here can be split into two categories: Blue/Green (Red) 

ratio-based models more likely adapted to clear to moderately turbid waters (Gohin et al., 2002; 

O’Reilly & Werdell, 2019) and Red/NIR ratio-based methods specifically developed for turbid 

environments (Gilerson et al., 2010; Gons et al., 2008; Gurlin et al., 2011; Mishra & Mishra, 

2012).  

 It is important to mention that all the considered models, except the model OC5 proposed by 

Gohin et al., (2002), have been considered in their original and tuned versions fitting the 

different formulations to the DS-D data corresponding to the optical water types they have been 

designed for (see sections 3.8.3.2 and 3.8.3.3). These coefficients are here provided for each 

original model. 

3.8.2.4.1. Blue/Green(Red) band-ratio-based models 

 Considering the radiometric resolution of Sentinel2-MSI and Sentinel3-OLCI sensors two 

models have been selected for clear to medium turbid waters. These models correspond to the 

empirical NASA OC-family algorithms developed from the NOMAD dataset extensively used to 

produce standard Chl-a products from satellite observation.  

(1) OC6 

This recent algorithm OC6 (O’Reilly & Werdell, 2019) corresponds to an adaptation of the OC4 

model (O’Reilly et al., 1998) which includes additional bands at 412 and 665 nm to extend the 

applicability of this approach, typically applied to open ocean waters, towards coastal waters. 

This model can be described as follow:  

Chl-a=10a0+a1×R+a2×R2+a3×R3+ a4×R4

 3.28 

where 

R=log
10
{

max[Rrs(412),R
rs
(443),Rrs(490),Rrs(510)]

mean[Rrs(560),Rrs(665)]
} 3.29 

The original coefficients for this model are a0 = 0.2424, a1 = −2.2146, a2 = 1.5193, a3 = −0.7702, 

a4 = −0.4291 

(2) OC3 
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 The main equation of the OC3 model to compute Chl-a remains the same as in Equation 

3.28. However, this algorithm uses a different Blue/Green ratio input that is established by 3 

spectral bands in the visible part of the spectrum (O’Reilly & Werdell, 2019). Such ratio can be 

expressed as below:  

R=log
10
{
max[Rrs(443),Rrs(490)]

Rrs(560)]
} 3.30 

 

and coefficients a0 = 0.41712, a1 = −2.56402, a2 = 1.22219, a3 = 1.02751, a4 = −1.56804.  

(3) OC5-Gohin  

 The five channels model by Gohin et al., (2002) was developed in order to correct the 

overestimation of the Chl-a estimated from the OC4 model in coastal waters presenting moderate 

turbidity levels and high CDOM loads. Based on sensor-specific LUTs empirically developed 

from an extensive in-situ dataset. It has been here considered using the LUTs defined for 

MERIS. 

3.8.2.4.2. Red-NIR algorithms 

(1) Gurlin11 

 The empirical model developed by Gurlin et al., (2011) consists of a second-order 

polynomial function based on the Rrs(709)/Rrs(665) band ratio:  

Chl-a = a× [
Rrs(709)

Rrs(665)
]

2

+ b × [
Rrs(709)

Rrs(665)
]+ c 3.31 

where a = 25.28; b = 14.85; c = −15.18 

(2) Gilerson10 

 The model proposed for MERIS by Gilerson et al., (2010) is based on a linear relationship 

between in-situ Chl-a and the NIR/Red ratio of MERIS such as: 

Chl-a=a × [
Rrs(709)

Rrs(665)
]+ b 3.32 

where a = 35.745; b = −19.295; c = 1.124 

(3) Gons08 
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 The Chl-a inversion algorithm developed by Gons et al., (2002) for turbid environments is a 

semi-analytical approach considering IOPs information along with the Red-NIR reflectance ratio 

and the reflectance at 779 nm. The version proposed in Gons et al., (2008) is considered here as 

is expressed as follows:  

Chl-a = 

{[
Rrs(709)
Rrs(665)

]×[aw(709)+bb-aw(665)-bb
p
]}

aphy
* (665)

 3.33 

 where aw(709) and aw(665), the water absorption coefficients at 709 nm and 665 nm were 

estimated as 0.7 m-1 and 0.4m-1, respectively (Pope & Fry, 1997). aphy
* (665) is the chlorophyll-

specific absorption that was defined as 0.016 m2.mg-1. The calculation of the back-scattering 

coefficient bb is estimated from the water leaving reflectance at 779 nm as: 

bb=
1.61×Rw(779)

0.082-0.6Rw(779)
 3.34 

 where Rw (779) is the water-leaving reflectance (Rw = Rrs ×pi)  

Mishra12 

 The model proposed by Mishra & Mishra, (2012) is an empirical model developed for 

application in estuarine and coastal waters. It is based on the calculation of the Normalized 

Difference Chlorophyll Index (NDCI) as an input variable to derive Chl-a:  

NDCI=
Rrs(709)-Rrs(665)

Rrs(709)+Rrs(665)
 3.35 

Chl-a = a + b × NDCI + c × NDCI2 3.36 

where a = 42.197; b = 236.5; c = 314.97 

 The performance of the considered Chl-a models was evaluated considering a set of 

statistical metrics described in section 2.10. 

3.8.3.  Results 

3.8.3.1. Performances of historical models 

 The performance of the historical models described in section 3.8.2.4 in their original version 

was first illustrated considering the whole dataset (DS-W, Figure 3.13 and Figure 3.14) 
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gathering a maximum of 1244 values considering the Rrs input wavelengths for the OC3, OC5, 

and OC6 models (i.e. Rrs at 412, 443, 490, 510, 560, 665 nm), and 470 values for the one used 

for in Gurlin11, Gilerson10, Mishra12; Gons08 (i.e. Rrs at 665, 709, 779 nm). 

 As already documented, models based on the use of the band ratios in the visible part of the 

spectrum (OC6, OC3, and OC5, Figure 3.13.a-c) provide reliable Chl-a estimates for clear to 

medium turbid waters (OWT 1, 2, 3) with R² values of 0.59, 0.61, and 0.57, respectively, Figure 

3.14). The models however show limitations for estimating Chl-a in the most turbid 

environments (OWT 4 and 5) as illustrated by the high scattering found in Figure 3.13 as well as 

by the low R² (< 0.28) found for the OWT 4 samples when applying these models (Figure 3.14). 

The OC-5 model which has been designed for moderately coastal waters providing a correction 

of the overestimation generally provided from the OC4 algorithm also shows clear limitations for 

the OWT 4 (Figure 3.13) in agreement with the previous studies (Gohin et al., 2019; Loisel et 

al., 2017). Loisel et al., (2017) for instance, documented an exponential increase in the 

uncertainties related to OC5-derived Chl-a with increasing turbidity (i.e. SPM concentration > 60 

mg.L-1). As expected, the OC3, OC4 and OC5 models (not based on the NIR band) are totally 

saturated over the whole range of Chl-a for the OWT 5 samples generating quasi-invariant Chl-a 

estimates.  

 Red-NIR-based approaches (Gurlin11, Gilerson10, Mishra12; Gons08, Figure 3.13.d-g) are 

conversely showing poor performances for OWTs 1, 2, and 3 samples with R² remaining below 

0.1 (see Figure 3.14) for these waters whatever the model considered. These models have 

however not been developed for these waters with a relatively low level of turbidity. A general 

better performance is however found for Gilerson10, Gurlin11, Mishra12, and Gons08 models 

for the OWT 4 samples. This confirms the reliable applicability of the latter methods for 

estimating Chl-a over highly turbid and high Chl-a waters (Neil et al., 2019). These models, in 

their original formulations, still however show limitations, more likely related to the data range 

they have been developed. This is for instance emphasized by the saturation pattern found for the 

lower-end Chl-a values for Mishra12 (Figure 3.13.f) already pointed out by previous studies 

(Mishra & Mishra, 2012). The model of Gons08 while providing relatively good Chl-a estimates 

for high Chl-a values (>10 g.L-1) tends to fail for low Chl-a for the OWT 4 samples, highly 

underestimating Chl-a value (Figure 3.13.g) and further generates negative Chl-a (N = 287 vs N 

= 299, 298 and 300 for Gurlin11, Gilerson10, and Mishra12, respectively) in agreement with 

former studies (Gons et al., 2008; Lavigne et al., 2021). 
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 None of the Red-NIR models evaluated are able to produce reliable Chl-a estimates for the 

ultra-turbid waters represented by the OWT 5 samples, due to the very low impact of the Chl-a 

on the reflectance signal for these waters (Lavigne et al., 2021). A clear saturation is found for 

Gilerson10, Gurlin11, and Mishra12 (Figure 3.13.d-f) and low R2 values obtained for these 

models (Figure 3.14), emphasizing the limitation of these Red-NIR-based methods towards 

ultra-turbid waters. The model by Gons et al., (2008) is globally able to reproduce the Chl-a 

gradient found in OWT 5 data although an overall high uncertainty level as illustrated by the 

scattering in Figure 3.13.d for these samples. As previously mentioned for the OWT 4 this 

model tends to produce negative Chl-a values as illustrated by the lower number of estimated 

Chl-a for Gons08 model when compared to Gurlin11, Gilerson10, and Mishra12 algorithms for 

OWT 5 (N = 35 and 57, 57, and 57, respectively).  

 These results are confirming the relative limitations of the different band ratio formulations 

usually considered for estimating Chl-a over contrasted coastal environments. Considering the 

performance of the considered models in their original formulations, an optimization of historical 

models as well a development of new formulation was further performed sub-setting the in-situ 

dataset into two groups: 1) one gathering oligotrophic to mesotrophic waters (OWTs 1, 2, 3) for 

which visible wavelengths have been considered, 2) one gathering highly turbid/high Chl-a 

samples corresponding to the OWT 4. 

 Further considering that all the band-ratio-based evaluated methods were failing for OWT 5 

samples, no adaptation of these existing methods was performed for the corresponding samples. 
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Figure 3.13. Scatterplot (log-log scale) of the in-situ Chl-a (DS-W) vs the Chl-a estimated from 

the different historical band-ratio-based model considered in their original formulations (see 

section 3.8.2.4). 
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Figure 3.14. Determination coefficient (R²) of the linear relationships between the in-situ Chla 

and the estimated Chl-a corresponding to each OWT subset in DS-W (Figure 3.13) for the 

different band ratios based historical models considered in the frame of this study in their 

original versions (section 3.8.2.4). 

3.8.3.2. Chl-a estimates clear to medium turbid waters 

3.8.3.2.1. Development of a new algorithm for OWTs 1, 2, and 3 

 Considering the previous results, OC3 and OC6 models (OC3-Tuned and OC6-Tuned) which 

are the most adapted for clear to medium turbid waters (OWTs 1, 2, and 3) have been optimized 

on the DS-D dataset (N = 617, Table 2) using the QR decomposition method where the design 

matrix of the regression problem into the orthogonal matrix (Q) and a triangular matrix (R). This 

optimization approach is available as “fitlm” function in Matlab. 

Table 3.6. Coefficients of the OC3 and OC6 models adapted to the DS-D dataset for OWTs 1,2,3 

(N = 617). 

Models Tuned Coefficients Equations R2 

OC3 a0 = 0.289; a1 = −2.997; a2 = 1.956; a3 = 2.189; a4 = −3.773 3.28, 3.29 0.63 

OC6 a0 = 0.931; a1 = −2.710; a2 = −2.715; a3 = 8.873; a4 = −5.340 3.28, 3.30 0.60 

 In addition to these adapted historical formulations, an alternative model for oligotrophic to 

mesotrophic waters was developed by exploiting the DS-D dataset. This model named MUBR is 

based on a combination of multiple band ratios which have been shown to provide the best 

performance for estimating Chl-a from DS-D (Figure 3.15). It is worth noticing that the Rrs(412) 

was not considered in the development of the MUBR model considering that this wavelength is 

not available for MSI and that this band is susceptible to be affected by large uncertainties 
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related to the atmospheric correction processes (Mograne et al., 2019). The MUBR algorithm is 

in practice based on the combination of three band ratios using four visible bands from the blue 

to the red available for both Sentinel2-MSI and Sentinel3-OLCI. This formulation is expressed 

as follows:  

ChlMuBR=10a0+a1R1+a2R2+a3R3 3.37 

where 

R1= log
10
[
Rrs(490)

Rrs(443)
] 3.38 

R2=log
10
[
Rrs(560)

Rrs(490)
] 3.39 

R3= log
10
[
Rrs(665)

Rrs(560)
] 3.40 

and where a0 = 0.665, a1 = −3.506, a2 = 3.590, a3 = −0.019  

 

Figure 3.15. a) Relationship between the in-situ vs estimated Chl-a from the MUBR model 

developed on the samples corresponding to OWTs 1, 2, 3 in the DS-D dataset (N = 617). b) 

Histograms of distribution of the Chl-a values corresponding to the OWTs 1, 2, and 3 samples in 

DS-D and for the Chl-a values estimated from the MUBR model. 

3.8.3.2.2. Model selection for clear to medium turbid waters 

 The intercomparison on the performance of the Chl-a estimates on clear to medium turbid 

waters (OWTs 1, 2, and 3) was performed on the independent validation dataset DS-V (N = 263) 
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considering in addition to MUBR, classical clear waters band ratio models adapted on DS-D 

(OC3-Tuned and OC6-Tuned) as well as considering the model OC5 in its original version. 

Results in Figure 3.16.a-c show that the MUBR model provides the best performance 

considering our validation dataset when compared to OC3-Tuned and OC6-Tuned models with 

an overall lower dispersion (e.g., MRAD = 66.72% vs 97.12 % and 86.24 % respectively) as well 

as with a general better estimation of Chl-a value over the whole range of Chl-a for the 

considered subset (e.g., Slope = 0.76 vs 0.69 and 0.64, respectively). We observed a similar 

performance of the OC5 original model on this such clear to medium turbid waters validation 

dataset (Figure 3.16.c) to that obtained for OC3 (e.g., area of 2.109. The better performance for 

the MUBR model is further underlined in the radar plot provided in Figure 3.16.d where the area 

found for MUBR, representing a summary of the statistical parameters considered, is lower 

(1.24) than that for the other three methods considering both their original and adapted versions 

(OC3-Tuned: 2.45 and 2.09, respectively, OC6-Tuned: 2.45 and 2.05, respectively). The lower 

performance of OC3 and OC6 methods on the DS-V subset for OWTs 1, 2, and 3 can be 

explained by an overestimation of the very low Chl-a values as well as by a saturation of the Chl-

a estimated for the highest Chl-a values (Figure 3.16). 

 Our results, therefore, tend to indicate that the model MUBR represents a valuable alternative 

for estimating Chl-a focusing on the clear to moderate turbid waters gathered using the dataset 

considered in the frame of the present study (OWTs 1, 2, 3 data). 
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Figure 3.16. Intercomparison of the performance of the Chl-a inversion models for the OWTs 1, 

2, and 3 samples in the in-situ validation dataset DS-V (N = 263). Relationships between in-situ 

vs estimated Chl-a applying a), b), and c) the OC3, OC6, and OC5-Gohin models adapted to the 

development dataset DV-D and d) for the MUBR model e) summary of the performance of the 

Chl-a inversion models, the lowest area of the polygon associated with each model represented 

in the radar plot corresponds to the best model. Note that the statistics for the original versions 

of OC3 and OC6 are also shown for completeness. 

3.8.3.3. Chl-a estimation in turbid/high Chl-a waters (OWT 4) 

3.8.3.3.1. Development of a new algorithm 

 Considering the results of the previous section, a focus was performed to define the model 

the most adapted for estimating Chl-a over highly turbid/high Chl-a waters corresponding to 

OWT 4 samples only considering that adapting the models considered was useless for the OWT 

5 samples (not shown). In practice, the Red-NIR-based models by Gurlin11, Gilerson10, 

Mishra12, and Gons08 were adapted to our dataset defining new coefficients for each model 

refitting the corresponding formulation on the DS-D samples (not shown, Table 3).  
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Table 3.7. The tuned coefficients for the Gurlin10, Gilerson11, Gons08, and Mishra12 models 

adapted to the DS-D dataset for OWT 4 (N= 210). 

Models Tuned Coefficients Equations R2 

Gurlin11 a = 0.83; b = −11.398; c = 24.923 3.31 0.80 

Gilerson10 a = 13.328; b = −6.373; c = 1.393 3.32 0.80 

Gons08 aphy
* (665) = 0.0139; p = 1.0752 3.33, 3.34 0.79 

Mishra12 a = 13.801; b = 111.673; c = 354.095 3.35, 3.36 0.82 

 In addition, a new formulation (referred as NDCI-based model) was developed for OWT 4 

samples (Figure 3.17) considering the saturation pattern towards low Chl-a values already 

reported for models using the NDCI parameter as an input value (Bi et al., 2022; Mishra & 

Mishra, 2012; Neil et al., 2019) and is expressed as follows: 

Chl-a=10a0+a1NDCI+a2NDCI2

 3.41 

where a0 = 1.179, a1 = 2.689, a2 = −1.083 

 

Figure 3.17. a) Relationship between the in-situ vs estimated Chl-a from the NDCI-based model 

developed on the OWT 4 samples in the DS-D dataset (N = 210). b) Histograms of distribution 

of the OWT 4 Chl-a in DS-D and for the Chl-a values estimated from the NDCI-based model. 

3.8.3.3.2. Model selection for highly turbid/high Chl-a waters 

 The relative performances of these Red-NIR models were then evaluated on the DS-V 

dataset for OWT 4 (Nmax = 90, Figure 3.18). Although very similar statistics are found for all the 

tuned versions of the models evaluated, the new NDCI-based model presents the best 

performances (area = 0.472, Figure 3.18.f). As previously pointed out from the DS-W dataset 
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(Figure 3.13.g) Gons08 tends to generate an underestimation of the lower-end Chl-a 

concentration (i.e. Chl-a < 5 mg.m-3) in OWT 4 potentially conducting to the generation of 

negative values (Figure 3.18.c, N = 86 for the original and tuned versions vs N = 90 for the other 

models). It is worth mentioning that the tuned version of Gons08 does not provide better 

estimates than the original one probably related to the difference in the Chl-a range presented in 

our development dataset (1.37 - 556 mg.m-3) and the one in Gons et al., (2008) (0.37 - 131 mg.m-

3) as the adapted coefficients and the performances corresponding to different inversion models 

in the DS-V might vary according to Chl-a level. The tuned versions of Gilerson10 and Gurlin11 

(Figure 3.18.a-b) globally show satisfactory performances (area = 0.602 and 0.577, 

respectively), confirming the effectiveness of these models to derive Chl-a in turbid 

environments (Neil et al., 2019). Interestingly the tuned version of Mirshra12 (Figure 3.18.d) 

although exhibiting a generally reliable performance, still shows a saturation pattern towards the 

smallest Chl-a for the OWT 4 samples (< 5 mg.m-3). Such saturation pattern is not found when 

applying the modification of this model corresponding to the NDCI-based formulation proposed 

here (Figure 3.18.e).  

 This intercomparison exercise thus suggests that the NDCI-based model represents the most 

adapted model for estimating Chl-a over highly turbid/high Chl-a (OWT 4) waters gathered in 

our in-situ dataset. 
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Figure 3.18. Intercomparison of the performance of the adapted versions of Red-NIR model on 

highly turbid/high Chl-a validation data corresponding to the OWT 4 samples in DS-V (N = 90). 

Scatterplots of the in-situ Chl-a vs the Chl-a estimated from a) Gilerson10, b) Gurlin11, c) 

Gons08, d) Mishra12, and e) NDCI-based models. A summary of the performance of the 

considered model for estimating Chl-a is provided in the radar plot f) where the performance of 

both original and tuned versions of these 4 models is also provided for completeness. 

3.8.3.4. Class-based combination of multiple Chl-a models for OWT 1, 2, 3, and 4 

 The previous algorithms evaluation exercises clearly confirm the inability for a unique 

simple band ratio to deliver reliable estimates over the whole range of Chl-a values found in 

coastal waters (Lavigne et al., 2021; Loisel et al., 2017; Neil et al., 2019). We further illustrate 

that the use of two band ratio formulations considering a first model combining band ratios in the 

visible domain for clear to medium turbid waters (MUBR for OWTs 1, 2, 3) and a Red-NIR 

model (NDCI-based) for highly turbid/high Chla waters (OWT 4).  

 Different methods can be used for producing Chl-a maps by applying different bio-optical 

algorithms on a pixel-per-pixel basis. Diverse former studies have for instance illustrated the 



Regional adaptation and Selection of Bio-optical algorithms for French 

Guiana coastal waters 

127 

interest of using a weighted average to provide smooth Chl-a gradients in transition areas 

between different inversion algorithms. Such weighting approaches were diversely based on the 

use of Chl-a values (Smith et al., 2018) or on the exploitation of the optical characteristics of the 

water masses provided from optical water types defined from the reflectance spectra (Hieronymi 

et al., 2017; Mélin et al., 2011; Neil et al., 2019).  

 Such optical-based weighted approach was considered in the frame of this study using 

weights based on the belonging probability of each sampling point (in-situ sample or satellite 

pixel) to each optical group of optical water types to which a specific Chl-a model should be 

applied (i.e., MUBR for OWTs 1, 2, 3, and Mishra12-Tuned for OWT 4). The combination of 

algorithms from 2 groups of OWTs was performed following the equation (Vantrepotte et al., 

2012): 

Chl-a=(p
1
*+p

2
*+p

3
*) × Chl-a123+ p

4
* × Chl-a4 3.42 

where: 

p
1
*, p

2
*, p

3
*, and p

4
* correspond to the normalized probability for the OWTs 1, 2, 3, and 4 

respectively (Mélin & Vantrepotte, 2015). 

 Chl-a123 is the Chl-a estimated from MuBR designed for OWTs 1, 2, and 3. Chl4 is the Chl-a 

estimated by using Red/NIR models designed for OWT 4. The tuned coefficients for the 

calculation of Chl-a123 and Chl-a4 (Equations 3.37 and 3.41). 
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Figure 3.19. Performance of the combination of the DS-V in-situ and estimated Chl-a combining 

the MUBR model for clear/moderate turbid waters (OWTs 1, 2, and 3) and the NDCI-based 

model (N = 147). 

 The evaluation of this weighted combination is provided in Figure 3.19. It is worth 

mentioning that the number of points presented in Figure 3.19 (N = 147) corresponds to the 

maximal number of points in DS-V with available information from the visible to the NIR for 

samples corresponding to OWTs 1, 2, 3, and 4. An overall good performance is found for the 

MUBR-NDCI-based combination (MAPD = 21.64 %, RMSD = 0.25).  

3.8.3.5. Match-up exercise 

 The validation of the Chl-a estimates performed using the MUBR-NDCI-based combination 

proposed in this study was performed through a matchup exercise based on the DS-M dataset for 

both OLCI and MSI (section 3.8.2.2). Our results emphasize a general expected degradation in 

the accuracy of the Chl-a estimates for these two sensors (Figure 3.20) when compared to the 

performance of the Chla inversion performed using the in-situ validation dataset (Figure 3.19). 

Globally, the best performance is here found when applying the MUBR-NDCI-based 

combination using satellite Rrs(λ) derived from the POLYMER processing for both sensors. The 

Chl-a derived with POLYMER yields the highest number of valid matchups for both OLCI (N = 

358 vs N = 184 and 225 for ACOLITE and C2RCC, respectively) and MSI (N = 188 vs N = 138 

and 143 for ACOLITE and C2RCC, respectively). This result is in agreement with former 

intercomparison exercises, for instance, (Pahlevan et al., 2021). Although an overall high 
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scattering level in the matchups, POLYMER globally provides better estimates from the clear to 

the highly turbid waters with a better performance found for OLCI when compared to MSI 

(Figure 3.20.b and Figure 3.20.e). For both sensors, ACOLITE processing tends to generate an 

overestimation of the retrieved Chl-a also found for C2RCC, especially for the OWT 4 samples, 

suggesting the probable need to improve atmospheric correction in the NIR domain. The patterns 

depicted in Figure 3.19 remain globally valid when considering the common matchup points 

(not shown) for the three atmospheric correction schemes applied to both sensors. A general 

better performance in retrieving Chl-a is still found when applying the MUBR-NCDI-based 

combination to POLYMER data to OLCI (e.g., MAPD =114, 172, and 116 % for POLYMER, 

ACOLITE, and C2RCC, respectively, N = 214) and MSI (e.g., MAPD = 68, 149 and 148 % for 

POLYMER, ACOLITE, and C2RCC, respectively, N = 99) Rrs(λ).  

 Our results therefore relatively differ from previous works (Pahlevan et al., 2021) where 

POLYMER was not found to provide the best performance when evaluating different 

atmospheric corrections schemes (and Chl-a models) for Landsat-8 and Sentinel-2 applications 

over lakes, rivers, and coastal waters. However, this better performance might be related to the 

general good performance of POLYMER when considering band ratios as illustrated from 

former studies in coastal waters (Mograne et al., 2019; Warren et al., 2019). This might be also 

explained by the fact that the current matchup dataset (DS-M) does not contain many very highly 

turbid or high Chl-a waters (max Chl-a = 34.12 mg.m-3 and 52.93 mg.m-3 for MSI and OLCI, 

respectively) underlining the need to perform additional matchup exercises on a larger dataset. 

Investigating more in detail the relative impact of the considered atmospheric correction schemes 

is out of the scope of this study considering that the matchup dataset DS-D contains Chl-a data 

only. However it should be mentioned that up to now no consensual atmospheric correction 

scheme is currently recommended for Sentinel2-MSI and Sentinel3-OLCI applications in coastal 

waters, the performance of the different approaches being susceptible to vary widely according 

to the wavelength as well as according to the water type considered (Bui et al., 2022; Mograne et 

al., 2019; Pahlevan et al., 2021). 
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Figure 3.20. Chl-a matchup validation (DS-M dataset, section 3.8.2.2) computed applying the 

MUBR-Mishra12-Tuned combination on the Rrs(λ) generated applying three atmospheric 

corrections schemes (ACOLITE, POLYMER and C2RCC) for Sentinel3-OLCI (a, b, c) and 

Sentinel2-MSI (d, e, f), respectively.3.1. 

3.8.4. Discussion  

3.8.4.1. Chl-a algorithms combination 

 The results obtained in the previous sections have illustrated that the Red-NIR formulations 

globally demonstrated their ability to retrieve Chl-a value in highly turbid/high Chl-a waters with 

a satisfying accuracy (Figure 3.19). Our results further emphasize the necessity to consider 

compatible models when applying weighting approaches as the one depicted in section 3.8.3.4 

taking care of the applicability of the approaches to be merged especially in transition areas. A 

limitation was for instance found for the formulation by Gons et al., (2008) which tends to 

generate negative Chl-a values for the low Chl-a levels (< 5 mg.m-3) for the OWT-4 waters. Such 

limitations might represent an issue when merging multiple algorithms on a pixel-per-pixel basis. 

As a matter of fact, the application of a combination based on MUBR and Gons08 will lead to a 
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generation of bias or even create negative Chl-a in the transition area between OWT 3 and OWT 

4 (not shown) where pixels can show relatively high-OWT membership values for both OWTs. 

 To avoid such issues, a possible way would consist in considering other approaches than the 

one based on the weighting methods based on pixel OWT membership (Equation 3.42) for 

combining multiple bio-optical models. Lavigne et al., (2021) for instance recently proposed 

pixel-per-pixel-based quality control tests (diversely based on the Chl-a as well as on thresholds 

applied on different MERIS Rrs) for selecting the most appropriate models for estimating Chl-a 

(Gohin et al., 2002; Gons et al., 2008; O’Reilly & Werdell, 2019). As mentioned by these 

authors the main objective of such quality control-based approach is more likely to provide to the 

users a way to evaluate the reliability of the models applied to a defined area. These authors 

further illustrate the possibility to use this selection procedure to eventually merge multiple 

algorithms although such approach might generate discontinuity in the Chl-a maps when 

switching from one algorithm to another. 

 The interest of using the OWT membership information to merge the two inversion models 

considered here was further illustrated from a Sentinel2-MSI map in the Vietnamese coastal 

waters close to the Mekong river and Nha Be river estuaries (East Vietnam Sea Figure 3.21.a) 

which shows contrasted water masses ranging from clear (OWT 2) to ultra-turbid (OWT-5) 

waters (Figure 3.21.c). The MUBR-NDCI-based combination was here applied considering for 

each pixel the best model according to the pixel OWT (i.e., without weighting the models, not 

shown) as well as applying the weighing approach described in Equation 3.42 (Figure 3.21.d). 

The need to consider the pixel OWT membership to combine MUBR and NDCI-based models is 

illustrated in Figure 3.21.e where the relative difference between the Chl-a map produced 

without and with a weighting function. It appears that the simple juxtaposition of the most 

pertinent model can generate significant discontinuities in the final Chl-a estimates. As a matter 

of fact, maximum differences reaching 10% are observed in the transition areas between OWTs 

3 and 4. Such possible spatial artifact induced using an unweighted can represent a significant 

issue when using high spatial resolution data such as Sentinel2-MSI (or Landsat8-OLI) which 

are susceptible to capture fine-scale transition gradients in coastal waters (Lavigne et al., 2021; 

Vantrepotte et al., 2012). 
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Figure 3.21. Illustration of the interest of using a weighting function based on the OWT 

membership probability for blending multiple Chl-a from a Sentinel2-MSI (60 m, POLYMER 

processing) image gathered in the Vietnamese coastal waters. a) true color image, b) optical 

water types distribution c) Chl-a estimated from the MUBR-NDCI-based combination where 
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masked grey areas are those belonging to OWT-5, d) relative difference (%) in the Chl-a 

estimated from the MUBR-NDCI-based combination with and without using pixel OWT 

belonging probability as a weighting function (see Equation 3.42). 

3.8.4.2. Applicability of band-ratio-based Chl-a models at global scale and current limitations 

and perspectives. 

 To summarize the results developed in the previous sections regarding the relative 

performance of the different Chl-a inversion methods selected for the different optical OWTs 

defined in the frame of this study, global monthly MERIS 1km Rrs data were associated with the 

five optical OWTs defined in this work. Figure 3.22 shows the most frequent OWT observed for 

each pixel over the MERIS time period. The coastal domain was here defined considering a 

global mask proposed by Mélin & Vantrepotte, (2015) for characterising the optical diversity of 

coastal waters which is based on the combination of criteria based on bathymetry and distance to 

the coast. It appears that pixels corresponding to OWTs 1, 2, and 3 represent 63, 21, and 14 % of 

the considered coastal domain, meaning that the MUBR model can be applied in the vast 

majority (98 %) of the considered waters. OWT 4 pixels where the use of Red/NIR models such 

as the NDCI-based model defined here are the most suitable represent only 2% of the whole 

domain being often corresponding to coastal margins impacted by the dilution of terrestrial 

inputs, including waters offshore river plume or mangrove areas for instance. The OWT 5 

waters, for which none of the tested band-ratio-based Chl-a inversion methods provide accurate 

Chl-a estimates represent 1% of the global domain here considered. Focusing on moderate to 

ultra-turbid waters (OWTs 3, 4, and 5) our results indicate that Chl-a can be estimated with a 

satisfying accuracy (OWTs 3 and 4) over 94 % of the coastal margins and shelf waters.  

 The main limitations in estimating Chl-a from ocean color observation are therefore related 

to ultra turbid waters corresponding to the OWT 5 mainly associated with the proximal part of 

most of the large rivers. Although their restricted spatial extension, an accurate monitoring of the 

recent evolution of the biogeochemical quality of these water masses is however essential 

considering their vulnerability to environmental changes of natural and anthropic origin 

impacting the transfer of matter along the land-sea continuum (Abril et al., 2022). Our results 

however clearly question the pertinence of considering Chl-a concentration as a relevant 

indicator for monitoring from satellite ocean color observation such environments where the 
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phytoplankton signal on the marine reflectance seems to be too low for being detected 

considering band ratios based on both visible and NIR wavelengths. 

 

Figure 3.22. Global distribution of the most frequent optical water type among the 5 optical 

water types considered in the frame of this study observed from the monthly MERIS 1-km 

observation between 2002 and 2012. The histogram chart provides an illustration of the relative 

spatial coverage (in %) associated with each optical water type over the whole domain 

considered here. 

 The present study only allows the pixels for which Chl-a estimates are not reliable 

considering the evaluated models to be dynamically identified using optical water types 

information to potentially mask the corresponding areas. A possible way to overcome this issue 

could consist in adopting alternative methods for instance taking advantage of the new potential 

offered by upcoming hyperspectral satellite sensors (e.g., NASA PACE mission). Cheng et al., 

(2013) for instance, documented the interest of a Rrs derivative-based approach for estimating 

Chl-a in turbid inland waters. More specifically, these authors demonstrated that the first Rrs 

derivative at 699 nm was a good proxy for estimating Chl-a in turbid lakes. The pertinence of 

this approach was evaluated on the OWT 5 dataset testing the best combination considering 

wavelengths ranging from 412 to 740 nm (Cheng et al., 2013). Our preliminary results show that 

the highest correlation with Chl-a (R² = 0.40, N = 57) is obtained when using the second 
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derivative at 671 nm (Rrs
” (671), using Rrs measurements at 671 and Y nm, these two parameters 

follow a linear relationship indicated in Figure 3.23. 

 Derivative-based approach, although its potential interest, will not fully allow to solve the 

issue represented by the Chl-a inversion in ultra-turbid OWT 5 waters (Figure 3.23). Indeed, a 

clear over-estimation of the Chl-a concentration is observed for the low Chl-a samples in OWT 5 

(<1 mg.m-3) which data are corresponding to samples showing extremely to fairly low values for 

the Chl-a/SPM ratio (< 3.9×10-5). However, the performance of this latter model has proven a 

significant improvement in retrieving Chl-a over such optically complex waters when comparing 

the R2 value to that of the traditional approaches (see Figure 3.14). It is also important to 

recognize that additional in-situ observations are required to further confirm the latter statement 

and deliver more robust information on the current limitations of ocean-color-based observation 

for depicting Chl-a in such ultra-turbid environments.  

 

Figure 3.23. Illustration of the potential of a Rrs(671) second derivative-based model for 

estimating Chl-a concentration in ultra-turbid waters (OWT 5). 

3.8.5. Conclusions 

 This work aimed at evaluating the performance of band-ratio-based algorithms for estimating 

Chl-a in coastal waters from Sentinel2-MSI and Sentinel3-OLCI observation from an extensive 

in-situ dataset covering a large spectrum of coastal environments in terms of optical 
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characteristics (from clear to ultra-turbid waters) and trophic status (from oligotrophic to ultra-

eutrophic environments). The best combination found from our dataset consists in mixing a 

visible band ratios model (MUBR) for clear to medium turbid waters (OWTs 1, 2, and 3) and an 

adapted version of the Red-NIR model (NDCI-based) for highly turbid/high Chl-a waters. Such 

combination can provide relevant Chl-a estimates covering 4 orders of magnitude from 

oligotrophic to ultra-eutrophic waters covering the vast part of the coastal domain. From our 

dataset, POLYMER processing was the most adapted to derive Chl-a from the proposed 

approach although additional matchups should be performed considering more data, especially 

towards higher turbidity/Chl-a levels. While the methodology proposed in this work can be 

transposed to other sensors (e.g., MERIS) future works should be performed for other sensors 

(e.g., MODIS) for which less information is available in the NIR domain, which is however 

crucial for coastal waters applications. Finally, classical band-ratio-based methods show clear 

limitations failing, whatever the model considered, for delivering Chl-a in ultra-turbid 

environments (e.g., proximal part of main river plumes). While optical water types information 

could allow to dynamically flag the corresponding pixels, this work further emphasizes the 

necessity to develop specific approaches for these waters (e.g., exploiting the potential offered by 

future hyperspectral missions). 
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CHAPTER 3 – PART III 

3.9. Match-up validation of bio-optical models 

 The match-up exercise has been performed using the in-situ dataset measured within French 

Guiana coastal waters in order to validate the accuracy of the regionally adapted bio-optical 

models. The inversion algorithm corresponding to each considered parameter was applied to the 

satellite Rrs(λ) extracted at different wavelengths of Sentinel-3/OLCI and Sentinel-2/MSI 

sensors. Loss in optical signals due to sun glint effect has been documented to present 

permanently over tropical areas including French Guiana (Abascal-Zorrilla et al., 2019) as in 

response to the combination of high solar incidence angle and the low wind speeds (Harmel & 

Chami, 2013; Tavares et al., 2021). In this examination, the POLYMER atmospheric correction 

method proposed by Steinmetz et al., (2011) has been used to to derive the level 2 products as 

such AC processors have shown its reliability to retrieve the reflectance values for sun-glinted 

pixels (Steinmetz et al., 2011). Through this match-up analysis, we aim at validating the 

accuracy of satellite-derived values of the remote sensing reflectance Rrs(λ) as well as the 

estimated concentrations of different biogeochemical parameters.  

 The comparison between measured and Polymer-derived Rrs(λ), for Sentinel-3/OLCI and 

Sentinel-2/MSI shown in Figure 3.24 and Figure 3.25, indicates an increase in uncertainties to 

retrieve optical signals toward the blue part of the spectrum. In particular, a low R2 value of 0.09 

and a poor Slope of 0.26 were observed at the wavelength of 412 nm, while these values were 

found to be significantly improved at 665 nm (R2 = 0.91, Slope = 1.02) considering OLCI 

matchups. A similar tendency was also witnessed for MSI matchups, which confirms the 

challenge to atmospherically correct the Rrs(λ) in the blue domain (Liu et al., 2022; Mograne et 

al., 2019; Pereira-Sandoval et al., 2019). The limited performances in this spectral region might 

be due to sky glint and backscatter from haze (Pahlevan et al., 2021) or even the low signal-to-

noise effect (Xu et al., 2020) as blue bands have lower energy than red and green bands. Another 

notable feature is that low reflectance values tend to be underestimated and six points were 

marked as being negative at 709 nm, suggesting a limitation of POLYMER algorithm to estimate 

Rrs(λ) in the NIR region. The results of our study also emphasize the significance of utilizing 

satellite sensors that offer a high spatial resolution to retrieve Rrs(λ) from space. This is 

evidenced when comparing the reflectance obtained for the (MSI) sensor to that of (OLCI), the 



Regional adaptation and Selection of Bio-optical algorithms for French 

Guiana coastal waters 

138 

examination on MSI sensor seems to yield better accuracy as demonstrated in Figure 3.24 and 

Figure 3.25. 

 

Figure 3.24. Retrieval of remote sensing reflectance for Sentinel-3/OLCI sensors using 

POLYMER atmospheric correction processor at a) Rrs(412), b) Rrs(443), c) Rrs(490), d) Rrs(510), 

e) Rrs(560), f) Rrs(665), and g) Rrs(709). 
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Figure 3.25. Retrieval of remote sensing reflectance for Sentinel-2/MSI sensors using 

POLYMER atmospheric correction processor at a) Rrs(443), b) Rrs(490), c) Rrs(560), d) Rrs(665), 

and e) Rrs(705). 

 As a matter of fact, the uncertainties associated with the retrieval of reflectance might lead to 

significant bias in bio-optical estimation. These uncertainties can arise from a variety of sources, 

such as variations in the sensor's calibration, the presence of atmospheric aerosols, and changes 

in the water's optical properties over time. Therefore, it is important to keep in mind that the 

results obtained from the match-up analysis of biogeochemical parameters should be interpreted 

with caution due to the presence of noise originating from the atmospheric correction step. The 

match-up performances of the selected algorithms for 5 corresponding water quality indicators 

regarding Sentinel-3/OLCI and Sentinel-2/MSI are shown in Figure 3.26 and Figure 3.27, 

respectively. We found that the retrievals of SPM provide a satisfactory SPM estimation as 

confirmed by a relatively good R2 of 0.67 and excellent Slope of 0.86 considering OLCI 

matchups. This result is consistent with the Rrs(λ) match-up exercise shown in the previous 

section since the POLYMER algorithm performs fairly well for retrieving information in the red 

band. However, the underestimation in SPM retrieval for OLCI sensor, indeed, reflects biases 

stemming from atmospherically corrected Rrs(665) illustrated in Figure 3.24.a. The satellite-
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derived concentrations of the remaining variables are observed to be inferior compared to SPM 

results. This can be explained by the fact that the inversion algorithms corresponding to these 

parameters usually take into account multiple bands in the visible region, especially the blue 

bands, which potentially generates more inaccurate predictions. For example, the estimation of 

POC for both considered sensors exhibits a poor performance, evidenced by a gentler slope of 

0.29 and 0.28, respectively. However, the limitation in the number of data points encompassed in 

our match-up dataset might be inadequate to conclude on the performance of the selected bio-

optical models as well as the atmospheric correction algorithms. In addition, the predictions from 

remotely sensed data did not lead to a strong deviation from the 1:1 line as can be witnessed in 

both cases of Sentinel-2 and Sentinel-3, suggesting a promising solution to combine the selected 

models and POLYMER AC processor to extract the information about the water quality over 

French Guiana coastal domain. 

 

Figure 3.26. Sensitivity of selected algorithms for a) SPM, b) aCDOM(412), c) POC, d) 

POC/SPM, and e) Chl-a to uncertainties in Rrs(λ) retrieved by POLYMER atmospheric 

correction processor applied to Sentinel-3/OLCI sensor. 
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Figure 3.27. Sensitivity of selected algorithms for a) SPM, b) aCDOM(412), c) POC, d) 

POC/SPM, and e) Chl-a to uncertainties in Rrs(λ) retrieved by POLYMER atmospheric 

correction processor applied to Sentinel-2/MSI. 

3.10. Conclusions and perspectives 

 A tuning procedure has been applied to historical inversion algorithms in an attempt to 

determine the most suitable models to estimate the concentration of different water quality 

parameters from space. The results of the selection process are represented in Table 3.8. For 

SPM, the majority of tested algorithms generally perform quite well. In comparison to the Red-

NIR and Green-Red models, the models that were built only through the use of the red channel 

appear to have a more accurate retrieval of SPM. The BingHan16 algorithm, which is developed 

based on a weighting approach with the core of Nechad10, was selected as this model exhibits 

the most accurate SPM estimation globally. The selection of the optimal model for POC was 

induced from the evaluation of five empirical algorithms which estimate POC concentration 

directly from Rrs(λ). Although the model Le17 outperforms the candidate algorithms, this model 

did not provide a satisfied POC estimation in satellite images over clear water, which implies the 

inadequacy of in-situ measurements belonging to open ocean waters. The solution to deal with 
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this issue is to perform a combination of two adapted models Le17 (applied to OWT 3) and 

KienTran19 (applied to OWTs 1 and 2) by using the probabilities corresponding to each group of 

classes as the blending coefficients. Different approaches to predict aCDOM over French Guiana 

waters have been examined. The analysis demonstrates that it is relevant to select the tuned 

model proposed by Cao et al., (2018) which was constructed based on a multivariate regression 

method. Considering the difficulties to estimate accurately Chl-a over French Guiana water, a 

publication focusing on the development of two Chl-a inversion algorithms (MUBR and NDCI-

based models) has been submitted. This work is also dedicated to the establishment of an optical 

classification scheme to combine these two models as well as to identify the distribution of the 

corresponding OWTs at the global scale. The obtained results further emphasized the challenges 

of estimating Chl-a over ultra turbid waters and highlighted the interest of using hyperspectral 

data to retrieve information about phytoplankton biomass in such optically complex 

environments. 

Table 3.8. Selected inversion algorithms for 5 biogeochemical variables regarding high and 

medium spatial resolution sensors. 

         

High spatial resolution Medium spatial resolution 

Sentinel-2 GlobCoast/Sentinel-3 GlobColour Data 

SPM 
Original 

BingHan16 

Original 

BingHan16 

Original 

BingHan16 

aCDOM(412) Adapted Cao18 
Adapted 

Cao18  

Adapted 

Cao18 

POC 
Combined 

KienTran19 & Le17 

Combined 

KienTran19 & Le17 

Combined 

KienTran19 & Le17 

DOC Vantrepotte15 Vantrepotte15 Vantrepotte15 

Chl-a MuBR & NDCI-based MuBR & NDCI-based MuBR & NDCI-based 
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CHAPTER 4: Description of main spatio-temporal variability 

patterns of key biogeochemical parameters over French 

Guiana marine domain 

4.1. Introduction 

 Current knowledge on the spatio-temporal dynamics of key biogeochemical descriptors over 

French Guiana water is still restricted, in which historical studies have been focusing mostly on 

sediment dynamics related to the mudbanks system (Abascal-Zorrilla et al., 2020; Gardel & 

Gratiot, 2005; Gensac et al., 2016; Vantrepotte et al., 2013) and very locally on the carbon 

exchanges along the land sea continuum (Ray et al., 2018). This lack of information is mainly 

due to the missing data of consistent long-lasting observations at regional scale. 

 The first goal of this chapter is to characterize the temporal variability considering 

biogeochemical variables estimated from space using regionally adapted algorithms (Chapter 3). 

This work was conducted with an application to different ocean color data including medium and 

high spatial satellite archives which have been analyzed using adapted statistical tools. In 

particular, the Census X-11 time series decomposition method has been applied to long lasting 

time series (Globcoast and Globcolour data) in order to attain a comprehensive understanding of 

the variation in surface concentration of particulate and dissolved matter while a focus was 

performed on the French Guiana coast exploiting the information of more recent sensors 

(Sentinel-2 and Sentinel-3). Second, we aim at identifying the main environmental drivers that 

govern this variation with a focus on various regions across the French Guiana waters. The 

information about physical factors such as SST and SSS or river discharges, which was 

described in section 2.6, was also considered and compared with different parameters in support 

of this objective. Finally, the selection of the pertinent indicators to follow in terms of 

biogeochemical representativeness and water quality significance will be proposed as a basis for 

better partitioning the water masses.  

 This chapter, therefore, attempts to answer four scientific questions: 1) What is the variability 

of biogeochemical variables in French Guiana coastal waters at different time scales (i.e., 

episodic, seasonal, interannual)? 2) What are the main drivers that are responsible for this 
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variability? 3) What is the co-variation between different parameters and what are the key 

parameters to follow? 4) How about the long-term changes? 

4.2. Description of the biogeochemical dynamics of French Guiana 

waters 

4.2.1. Variability of particulate matter and phytoplankton biomass 

4.2.1.1. General distribution patterns  

 The seasonal distribution of particulate matter and phytoplankton biomass in the study area 

was investigated using SPM, POC, and Chl-a data with monthly climatology maps generated 

from the entire Globcoast MERIS archive (1 km2 of spatial resolution, 04/2002-04/2012). The 

analysis focused on wet and dry seasons, which typically occur from January to June and from 

July to December, respectively. Overall, the spatial distribution of particulate materials exhibits a 

gradual increasing gradient towards from the shore to the open ocean with averaged SPM 

concentration varying from <1 g.m-3 in the off-shore region to > 110 g.m-3 in the vicinity of the 

continental shelf region (Figure 4.1). This observation emphasizes the contribution of particulate 

materials originating from terrestrial inputs on the French Guiana coastal ecosystem. The 

concentration of SPM in the eastern part (Oiapoque River) was found to be relatively higher 

compared to that in the western part (Maroni River), indicating the easterly permanent and strong 

influence of sediment loads from the Amazon River, this area has been identified as the origin 

area of the Amazonian mudbank system (Gardel & Gratiot, 2005; Gratiot et al., 2007). For 

example, the averaged SPM concentration observed close to the Oiapoque estuary can reach up 

to more than 170 g.m-3, meanwhile, this value was recorded to be approximately above 80 g.m-3 

in the Maroni river’s outlet, resulting in a lower value for this parameter. Remarkably, the 

extension of SPM towards off-shore regions reaches its maximum in the eastern areas at 

longitudes -52oW to -51 oW from July to September with the concentration up to approximately 2 

g.m-3 Figure 4.1.b. This observation agrees with previous studies underlining the presence of 

retroflected flow of the North Brazil Current (NBC) and North Equatorial Counter Current 

(NECC) during this period (Carton & Katz, 1990; Garzoli et al., 2004). A similar pattern is also 

found for POC and Chl-a for which the surface concentration can reach up to approximately 700 

mg.m-3 and 2 mg.m-3
 in the retroflection zone, respectively (Figure 4.1.d,f). In the inner shelf, 

regions with high SPM (> 70 g.m-3) interspersed with lower SPM regions (≈ 15 g.m-3) can be 
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observed, illustrating the impact of the resuspension processes related to the Amazonian 

mudbanks (Abascal-Zorrilla et al., 2018; J. M. Froidefond et al., 1988; Gardel & Gratiot, 2005; 

Vantrepotte et al., 2013; Vantrepotte et al., 2011) along the French Guiana coast (Figure 

4.1.a,b). Interestingly, the particulate organic carbon pool in the coastal domain (< 20 km away 

from the coast) tends to be higher in the wet season (> 1000 mg.m-3 in April) compared to that 

recorded during the dry season (800 – 900 mg.m-3 in September). It is worth noting that pixels 

corresponding to ultra-turbid waters (see section 3.8) were masked in this analysis as the Chl-a 

estimate is not reliable for such optical environments. The remaining pixels present a relatively 

similar variability to POC observation in off-shore waters where the NBC separates from the 

Guianese coastline and curves back on itself starting from June to October. 
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Figure 4.1. Climatology maps of particulate matter including (a - b) SPM, (c - d) POC, and (e - 

f) Chl over French Guiana coastal waters during the Wet Season (illustrated here in April) and 

Dry Season (illustrated here in September). 

4.2.1.2. Main patterns of spatio-temporal variability  

 The coefficient of variation maps (CV in %, Figure 4.2) of particulate materials (SPM, POC) 

and phytoplankton biomass (Chl-a) derived from the selected bio-optical models over the 
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MERIS lifetime period. In general, the spatio-temporal variations found for POC and Chl-a tend 

to follow similar patterns. However, in certain locations, these patterns contrast with that found 

for SPM. Remarkably, Chla, SPM and POC variables are witnessed to present the highest CV in 

eastern off-shore waters where the Amazon retroflection occurs. The amplitude of SPM variation 

is significant around the middle shelf (40 – 50 %) and up to 60% in the retroflection zone 

(Figure 4.2.a). This variation adopted a northwest orientation, aligning with the flow direction of 

the NBC and the geomorphology of the French Guiana coastline. In contrast, the variation in 

concentration of Chl-a for open ocean (> 80%) appears to be much higher compared to that 

reported for SPM and POC and diminishes gradually towards the coast. This emphasizes the 

substantial degree of variation in phytoplankton productivity in French Guiana off-shore regions 

and the relative stability thereof close to the shore.  

 The non-significant alterations in amplitude of Chl-a overtime in the ultra-coastal domain 

(bathymetry < 30 m, Figure 1.1) might be related to different aspects that affect phytoplankton 

dynamics such as availability of sunlight supporting photosynthesis, the amount of nutrient 

concentration and/or physical processes (e.g., sediment resuspension, waves, and tidal currents, 

etc.). In addition, the difference in variability between POC and Chl-a is potentially in response 

to the amount of non-living organic matter like detritus within the water column or the organic 

pool exported from local sources (e.g., local rivers, mangroves, mudbanks) as further discussed 

in the next sections. 

 

Figure 4.2. Variation coefficient (CV in %) of a) SPM, b) POC, and c) Chl-a calculated over 10-

year period of monthly MERIS GlobCoast data from 2002-2012. 

 The analysis of long-term changes in SPM across French Guiana coastal waters has been 

carried out using the Census X-11 time series decomposition method, which was applied to 121 

monthly SPM maps derived from MERIS data (see section 2.5.1) in order to assess the relative 
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importance of the temporal variation patterns at different scales (seasonal, interannual, 

irregular/sub-annual) on the variability observed for each parameter.  

 The relative contributions of seasonal, trend and irregular components to SPM temporal 

variability are described in Figure 4.3. Overall, SPM temporal variability is dominated by 

seasonal fluctuations which contribution to the variance of the SPM time series (Var-S) ranges 

from 40 to 90 %. High seasonal variation (60 – 90 %) is observable in the off-shore waters of the 

eastern part of the study area where the the seasonal retroflection of the NBC current transports 

Amazon waters to the north and then the east towards the central Atlantic (Johns et al., 1990). 

Remarkable annual cycle spots are also found in the off-shore areas (Var-S > 70 %) straight from 

the direction of the Maroni estuary, while a seasonal belt (Var-S ≈ 60 %) parallel to the coast, 20 

km off-shore, can also be observed (Figure 4.3.a) The increased variability for SPM in these two 

particular areas is probably due to the influence of oceanic currents that transport the sediment 

loads supplied from the Amazon River plume as well as to the seasonal export of sediments 

related to Amazonian mudbanks (Abascal-Zorrilla, 2019). 

 Importantly, the lowest seasonal contributions appear to the west of the retroflection zone 

(53oW – 52 oW) and are situated about more than 60 km away from the shoreline. This specific 

region is characterized by relatively high irregular variations (Var-I) which contribute up to > 

60% to the total variance Figure 4.3.c. The significant contribution of the irregular variation 

patterns for SPM here is potentially linked to the impact of meso-scale and submeso-scale 

processes (e.g., NBC rings typically occurring 5 to 6 times per year) (Fratantoni & Glickson, 

2002; Goni & Johns, 2001a, 2001; Vantrepotte, Loisel et al., 2011). 

 Interestingly, SPM changes in the inner shelf domain exhibit a relatively high contribution of 

trend components (Var-T > 40 %, see Figure 4.3.b) throughout 10 years of observation, related 

to the presence of moving mudbanks along the coast with an annual velocity of 2 km/year 

(Abascal-Zorrilla et al., 2018; Gardel & Gratiot, 2005; Vantrepotte et al., 2013). 
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Figure 4.3. Relative contribution (in %) of the a) seasonal (Var-S), b) trend (Var-T), c) irregular 

(Var-I) components to the total variance of SPM as calculated using the Census X-11 method 

over the MERIS time period 

 While the analysis on POC shows a substantially higher variability in offshore areas (Figure 

4.4.b), an overall dominance of the seasonal patterns is globally found for this parameter. 

Regions exhibiting high seasonal modulations (Var-S > 60 %) are more precisely observed 

beyond 30 km from the coast (Figure 4.4.a), suggesting strong annual-cycle oscillations of 

particulate organic matter pool occurring in French Guiana’s outer shelf ecosystem. These 

oscillations are characterized by relatively high POC concentration, which can reach up to 500 

mg.m-3. In addition, the map corresponding to the X-11 trend component for POC reveals a 

remarkable correspondence with that found for SPM (Figure 4.3.b). This similar pattern 

between SPM and POC might indicate that the mudbank migration processes as a crucial impact 

not only on the sediment dynamics but more largely the whole biogeochemical dynamics of the 

coastal band. As a matter of fact, a strong correlation between POC and SPM is also found in-
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situ (p < 0.001, N = 85). This finding agrees with previous studies as the organic matter present 

could be attributed to elements originating from the mangrove forests that were destroyed and 

buried during the mudbank migration processes (Berlamont et al., 1993; Gardel & Gratiot, 

2005). Further, a significant contribution of the irregular variations is found within a coastal belt 

located at about 20 km away from French Guiana’s coastline with an irregular contribution to the 

total variance of the POC signal higher than 40 %. 

 

Figure 4.4. Relative contribution (in %) of the a) seasonal (Var-S), b) trend (Var-T), c) irregular 

(Var-I) components to the total variance of POC as calculated using the Census X-11 method 

over the MERIS time period. 

 The X-11 outputs exhibit a relatively similar pattern in variability between POC and Chl-a 

over French Guiana marine waters. The seasonal patterns globally dominate the Chl-a temporal 

variability (> 80%) with maxima mainly recorded in open ocean as well as a Chl-a seasonal belt 

along the shoreline (Figure 4.5.a). This latter feature might be related to the occurrence of 

phytoplankton bloom caused by the nutrients transported from freshwater input originating from 
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local rivers. A relatively high irregular area of 25 % - 40 % is observed at about 20 km from the 

mouth of the Oiapoque River where the NBC is split into two current flows. Except this area, the 

trend and irregular variation patterns seem to slightly govern the Chl-a variability over the 

French Guiana coastal domain with median contributions of Var-T and Var-I of 7.1 % and 16.5 

%, respectively. 

 

Figure 4.5. Relative contribution (in %) of the a) seasonal, b) trend, c) irregular components to 

the total variance of Chl-a as calculated using the Census X-11 method over the MERIS time 

period. 

4.2.2. Variability of dissolved organic matter  

4.2.2.1. General distribution patterns   

 The satellite-derived maps generated for aCDOM(412) and DOC present a very similar pattern 

during the two seasons in French Guiana coastal waters. This is due to the fact that aCDOM(412) is 

the proxy for DOC, which has been estimated through a*
CDOM(412) (Del Vecchio & Blough, 
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2004; Ferrari, 2000; Fichot et al., 2014; Kowalczuk et al., 2010; Mannino et al., 2008; 

Vantrepotte et al., 2015). The extension in the distribution of aCDOM(412) and DOC to the west in 

the rainy season and to the east in the dry season towards the off-shore domain, again confirms 

the seasonal signature of terrestrial inputs driven by physical processes such as river discharge 

and oceanic currents. A notable feature that can be witnessed from this analysis is that the DOC 

and aCDOM(412) values are generally higher in the wet season compared to the dry season. This 

seasonal increase in aCDOM(412) and DOC concentration in the inner shelf of the Cayenne coastal 

region is found to be approximately 17 % and 5.3%, respectively. This different pattern reflects 

the impact of the hydrodynamics and the biological processes occurring in French Guiana 

ecosystems, which can be referred to as significant terrestrial organic pools flushed out through 

river runoff during the rainy season. The Amazon retroflection tends to spread the organic 

substances off-shore as observed in Figure 4.6.a-d especially between June and October.  

 

Figure 4.6. Distribution maps of dissolved matter including a-b) aCDOM(412) and c-d) DOC over 

French Guiana coastal waters during the Wet Season (in April) and Dry Season (in September). 
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4.2.2.2. Main patterns of spatio-temporal variability 

 Interestingly, the amplitude of the temporal variation of the dissolved organic carbon within 

the retroflected flow is found relatively higher in the off-shore domain (bathymetry > 40 m) 

when compared to the coastal one for both aCDOM(412) and DOC, with the corresponding 

averaged CV values of approximately 210% and 60% (Figure 4.7.a,b). The seasonal alteration 

in dissolved organic content is globally consistent to that observed in particulate organic 

materials where the concentration of these components is more pronounced in very coastal 

waters during the wet period (Figure 4.1). 

 

Figure 4.7. Variation coefficient (CV in %) of a) aCDOM(412) and b) DOC calculated over 10-

year period of MERIS data from 2002-2012. 

 The X-11 outputs for aCDOM(412) (Figure 4.8) emphasize that the temporal variability of the 

dissolved organic matter pool in French Guiana is primarily governed by seasonal oscillations, 

which is evidenced by the averaged seasonal contribution over the whole study area of 68% for 

aCDOM(412). The temporal analysis also emphasizes the consistency in variation between 

particulate and dissolved organic carbon especially in off-shore waters. High trend contribution 

is constantly visible along the coast suggesting a similar pattern between dissolved and 

particulate organic content associated with mudbank drift. An irregular belt of dissolved matter 

appears at a distance of 20 km from the shore and irregular contributions of more than 35%. The 

width of this belt (≈ 6 km), is however found to be significantly thinner than that recorded for 

POC (≈ 11 km). These temporal patterns of dissolved and particulate organic carbon should be 

interpreted with caution considering the bias potentially generated from the bio-optical models 

selected in the Chapter 3. However, as aforementioned, such irregular variation in this particular 
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area (approximately 20 km away from the French Guiana continent) could be related to the 

modulated export of organic matter from local origins (i.e., mangroves) and small-scale 

processes tidal impact French Guiana (Ray et al., 2020). 

 

Figure 4.8. Relative contribution (in %) of the a) seasonal, b) trend, c) irregular components to 

the total variance of aCDOM(412) as calculated using the Census X-11 method over the MERIS 

time period. 

4.3. Main drivers of French Guiana waters biogeochemical 

variability 

4.3.1. Off-shore processes 

4.3.1.1. North Brazil Current Retroflection and western extension of biogeochemical variables 

 The observed consistency in seasonal variation of the five optical water quality indicators in 

the eastern areas of the French Guiana off-shore domain (Var-S > 60 %) underlines the strong 
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impact of the NBC retroflected flow on the biogeochemical dynamics over French Guiana 

marine waters, transporting not only dissolved but also particulate matter originating from the 

Amazon plume (Figure 4.9.a-d, Figure 4.10.a-d, and Figure 4.11.a-d). The presence of NBC 

retroflection is further highlighted by the concentration peaks observed during dry season 

between July and October at point A (6°03'25.2"N, 51°33'39.6"W, see Figure 4.9), which 

coincides with the timing and the maximum northerly extent of the NBC retroflection as 

documented in various studies (Baklouti et al., 2007; Hu et al., 2004, Salisbury et al., 2011, 

Medeiros et al., 2015, Fonseca et al., 2004; Garzoli et al., 2004; Johns et al., 1990). 

 

Figure 4.9. Location of the two extracted points A and B in the eastern and western areas 

characterized by strong seasonal fluctuation of a) SPM, b) Chlorophyll-a, c) POC, and d) 

aCDOM(412). 

 More specifically, a remarkable feature at this particular location is that the early and lower 

peaks of particulate and dissolved organic concentration seem to appear one to two months 
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before the main ones in August (Figure 4.11.a,c). This pattern is also observable in the 

fluctuation of Chl-a concentration, suggesting that the particulate organic pool here is rigidly 

related to the development of phytoplankton biomass (Figure 4.10.c). This might be in response 

to the maximum precipitation during the high flow period in May, which leads to a significant 

proportion of the riverine nutrients exported to the ocean. Although the variability of 

biogeochemical parameters at the point A exhibits a prominent seasonal pattern, the amplitude of 

variation for considered biogeochemical parameters here is generally substantial as described in 

sections 4.2.1.2 and 4.2.2.2. This characteristic illustrates a strong biogeochemical dynamic in 

the fluctuations of particulate and dissolved substances within the retroflected flow. In addition, 

the analysis in organic content (POC and CDOM, see Figure 4.11) indicates nutrient-rich waters 

have been conveyed and spread towards the Caribbean Sea by ocean currents, thus impacts on 

French Guiana waters. Some studies further underlined, that a significant portion of nutrients 

carried by rivers to the ocean are used up before the plume reaches the continental margin (as 

noted by Goes et al., 2014). However, some nutrients corresponding to the remaining part are 

further transported off-shore in addition with nutrients produced by nitrogen-fixing symbionts 

can support substantial phytoplankton blooms within the Amazon plume (Foster et al., 2007; 

Subramaniam et al., 2008; Yeung et al., 2012). The fate of the organic matter and the processes 

governing organic matter dynamics within the Amazon plume however still remain unclear 

(Medeiros et al., 2015). 
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Figure 4.10. X-11 term statistics calculated for a-b) SPM, c-d) Chlorophyll-a for the points A 

and B shown in Figure 4.9. The red, blue, and green solid lines correspond to Trend, Seasonal, 

and Irregular terms, respectively. The black solid line presents the original time series. Pink and 

Blue areas indicate wet and dry seasons, respectively. 

 During windy and wet season especially, between March and April, a considerable seasonal 

contribution in the variability of all considered biogeochemical parameters is observed in the 

western areas of the French Guiana off-shore domain (point B (6°42'18.0"N, 53°41'06.0"W), see 

Figure 4.9.a,c and Figure 4.10.a,c). This observation is consistent with the results attained from 

11-year MODIS data (2003-2014) conducted by the work of Lampert et al., (2016) where an 

expansion of Chl-a was identified during the same period. This unique feature is hereby referred 

as an “off-shore extension” of dissolved and particulate materials in the western regions of the 

study area. The lower variation coefficient values considering both particulate and dissolved 

substances (as depicted in Figure 4.10 and Figure 4.11) in this off-shore extension area indicate 

a more stable condition compared to that observed in the retroflection zone in terms of 
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amplitudes. In addition to this, the amount of sediment loads delivered to this region seem to be 

related to cooler water with higher salinity when comparing to the observations in the eastern 

area (Figure 4.12). This might be attributed to of the combined effect of bathymetry (off-shore 

extension of the continental Shelf, Figure 1.1) and seasonal shifts in the wind and current 

directions. Indeed, the interpretation from the present analysis should be performed in 

consideration of the difference in spatial resolution of the data as well as the uncertainties from 

SST and SSS models that need to be validated regionally. Further analysis and in-situ monitoring 

programs dedicated to seasonal alterations of the water body and current regime are necessary to 

better understand the impact of this feature. 

 

Figure 4.11. X-11 term statistics calculated for a-b) POC, c-d) aCDOM(412) for the points A and 

B shown in Figure 4.9. The red, blue, and green solid lines correspond to Trend, Seasonal, and 

Irregular terms, respectively. The black solid line presents the original time series. Pink and 

Blue areas indicate wet and dry seasons, respectively. 
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 The correlation maps (Figure 4.12) depicting the co-variation between the considered 

biogeochemical parameters and other oceanic variables including SST and SSS, shows a deeper 

understanding about the origin of the NBC retroflected flow. In particular, the significant 

positive correlation between SPM and SST and the negative correlation between SPM and SSS 

in the eastern regions (latitudes 5°N - 7°N and longitudes 52.5°W - 51°W), implies that the NBC 

retroflection is related to fresh water origin characterized by a warm and less salty flow. This 

latter feature aligns well with the results obtained from the mooring stations conducted by 

Baklouti et al., (2007).  

  

Figure 4.12. Temporal correlation between SPM and a) SST and b) SSS 

4.3.1.2. North Brazil Current Rings 

 The influence of the NBC Rings on the biogeochemical variability over French Guiana 

marine waters can be illustrated by an irregular pattern observed for SPM as previously 

discussed in the section 4.2.1.2. This assumption is mainly due to the frequency of occurrence 

(time interval between the formulations) of these anti-cyclonic rings that detach from the 

retroflection (i.e., 5 to 6 times per year). According to the obtained results from the X-11 

method, the irregular area implying the manifestation of NBC rings are typically located off-

shore in between the retroflection zone and the western extension (see section 4.3.1.1). To have a 

comprehensive and more specific view about the NBC rings with respect to biological processes 

and organic dynamics, the location of the point C (5°41'49.2"N, 52°17'56.4"W) and the 

corresponding temporal variations considering SPM, Chl-a, and aCDOM(412) are displayed in 

Figure 4.13 and Figure 4.14, respectively. The presence of NBC rings seems to be more visible 
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with the variability of SPM, and less pronounced with that of Chl-a, POC, and aCDOM(412). This 

latter feature suggests the organic pool in this region tends to be modulated by additional 

biological factors leading to the dominance of seasonal patterns (i.e., phytoplankton bloom) as 

higher organic content and Chl-a were found in the rainy season (Figure 4.14.a-c). 

 

Figure 4.13. Location of the extracted point C for the seasonal term of a) SPM, b) Chlorophyll-

a, and c) aCDOM(412). 
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Figure 4.14. X-11 term statistics calculated for a) SPM, b) Chlorophyll-a, and c) aCDOM(412) for 

the point C shown in Figure 4.13. The red, blue, and green solid lines correspond to Trend, 

Seasonal, and Irregular terms, respectively. The black solid line presents the original time 

series. Pink and Blue areas indicate wet and dry seasons, respectively. 

4.3.2. Nearshore processes 

4.3.2.1. Mudbank influence 

 As denoted in section 4.2.1, The migration of mudbanks from Cassiporé Cape to the Orinoco 

River prevails the coastal domain and attaches to the coastline of French Guiana. To discover the 

biogeochemical dynamics associated with mudbanks, the time series extracted for the point D, 

(5°16'58.8"N, 52°41'42.0"W) where the variability of SPM, POC, and aCDOM(412) is 

predominantly characterized by the contribution of interannual (trend-cycle) variation, are shown 

in Figure 4.16. This area exhibits a pronounced mineral-dominated environment, as evidenced 

by the consistently low POC/SPM values, which remain below 0.08 throughout the study period. 

The seasonal fluctuations of both particulate and dissolved matter here typically present an 
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increase from January to May, emphasizing the significant contribution to the biogeochemical 

dynamics of resuspension process as in response to energetic wind-induced waves during the 

windy period (Eisma et al., 1991; Gratiot et al., 2007; Vantrepotte et al., 2013). 

 POC and SPM exhibit a strong correlation in the mudbank areas, which can be seen in both 

in-situ and satellite data as mentioned in section 4.2.1.2. This latter feature further highlights that 

these mudbanks can hold a “stock” of organic matter in addition to the inorganic fraction. This 

can be explained by the presence of organic matter that could be related to exports from the 

mangrove forests that were destroyed and buried during the mudbank migration processes (Aller 

& Blair, 2006; Berlamont et al., 1993; Gardel & Gratiot, 2005). 

 

Figure 4.15. Location of the extracted point D for the trend term of a) SPM, b) Chlorophyll-a, 

and c) aCDOM(412). 
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Figure 4.16. X-11 term statistics calculated for a) SPM, b) POC, and c) aCDOM(412) for the point 

D shown in Figure 4.15. The red, blue, and green solid lines correspond to Trend, Seasonal, and 

Irregular terms, respectively. The black solid line presents the original time series. Pink and 

Blue areas indicate wet and dry seasons, respectively. 

 In order to evaluate the impact of French Guiana rivers on the longshore-distributed 

mudbanks during high flow conditions, the discharge data collected from the station located in 

the Maroni River (see section 2.4) was used to perform the correlation with the satellite-derived 

variation of different considered parameters with a focus on the inner shelf area (Figure 4.17). 

The results show that the organic concentration within the mudbanks seems to be more regulated 

by river discharge when comparing with SPM, which exhibits a higher correlation in the Maroni 

River outlet than that of the Oiapoque River. This finding is in agreement with earlier research 

(Lambs et al., 2007; Prost, 1989) as the amount of suspended sediment originating from local 

sources is relatively minor in comparison with the sediment transported along the shore (see 

section 1.2.1.1). Besides, contribution of dissolved organic substances stemming from local 
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rivers to the coastal domain might be more pronounced during dry season due to the dilution 

effect occurring under high flow condition, which leads to a factor of 1.3 increase in DOC in dry 

period (Ray et al., 2018). This latter feature was further confirmed by the CDOM plume captured 

by Sentinel-2 satellite over the Counamama’s estuarine areas in the end of the wet season 

(Figure 4.18). 

 

Figure 4.17. Correlation between Oiapoque River’s discharge and a) SPM, b) POC, and c) 

aCDOM(412) over 10-year period of MERIS data. 

 

 



Description of main spatio-temporal variability patterns of key 

biogeochemical parameters over French Guiana marine domain 

165 

 

Figure 4.18. Illustration of the river plume captured from Sentinel-2 image in Counamama’s 

estuary in 19/06/2018; a) True color image and b) aCDOM(412)  

4.3.2.2. Seasonal modulation of Guiana excursion 

 A seasonal modulation of NBC excursion can be observed beyond the mudbank areas in the 

seaward direction by a seasonal SPM belt passing through the point E (5°10'30.0"N, 

52°23'20.4"W). This seasonal pattern showed higher sediment loads transported to this area 

between August and October, which appears about 1 – 2 months of delay after the period of 

retroflection (Baklouti et al., 1998; Johns et al., 1998) . The lowest SPM concentration observed 

here is about 1.5 g.m-3 during the rainy season (in March) and can reach up to 8 times higher with 

an SPM value of 12.5 g.m-3 in the dry season Figure 4.20. The factor leading to this annual-

cycle variation in SPM can be related to two possible processes. During the retroflection with a 

maximum intensity of NBC, it bifurcated into two flows with different directions. A part of NBC 

deviated to the North to join the retroflected flow between latitudes 5°N - 7°N. The remaining 

portion of NBC continues flowing over the inner shelf, which delivers a significant amount of 

Amazon sediment loads and also implies an excursion of NBC along the French Guiana’s coast 

with a buffer of about one month (Baklouti et al., 2007; Didden & Schott, 1992; Fonseca et al., 

2004). 

 Unlike the observations obtained in the retroflection zone, the temporal variability of 

phytoplankton biomass within the aforementioned seasonal belt displayed an opposite pattern to 

the fluctuation of SPM. A significant contribution of the seasonal component for Chl-a (≈ 80 %) 

presents remarkable peaks during the rainy season between February and March. The annual 

rainfall and local river runoffs might be responsible for the growth of phytoplankton in this area 

(Cloern, 1996; Harding et al., 2016). On the other hand, another possible process can be related 
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to the sediment transports from the Amazon river’s mouth, which is potentially induced by shifts 

in wind direction during the dry period. This might increase light attenuation which directly 

hampers the development of phytoplankton productivity (Cloern, 1987; Dokulil, 1994). Such 

result is consistent with POC observations in local estuarine waters (the Sinnamary River, See 

Figure 1.10) conducted by Ray et al., (2018) as the source of POC is potentially related to 

freshwater phytoplankton and could be attributed to monsoonal run-off. 

 

Figure 4.19. Location of the extracted points E located about 18 km away from the shore for a) 

seasonal contribution of SPM, b) seasonal contribution of Chl-a, and c) irregular contribution of 

POC. 
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Figure 4.20. X-11 term statistics calculated for a) SPM, b) Chl-a, and c) POC for the point E 

shown in Figure 4.19. The red, blue, and green solid lines correspond to Trend, Seasonal, and 

Irregular terms, respectively. The black solid line presents the original time series. Pink and 

Blue areas indicate wet and dry seasons, respectively. 

 The temporal dynamics of the POC within the irregular belt (Figure 4.19.c and Figure 

4.20.c) are associated with Var-I reaching up to 24 %. Since the seasonal development of 

phytoplankton mainly appears during the wet season, the persist presence of the POC here is 

potentially linked to the contribution of non-living sources such as detritus that could be 

transported from the Amazon river’s plume between August and October (Salisbury et al., 2011). 

In addition, the higher organic concentration generally appears during the high flow period, 

emphasizing the importance of river discharge and surface runoff that potentially introduces 

more mangrove-derived organic matter (Ray et al., 2018). The obtained results also suggest a 

comparable POC pool originating from the Amazon River and local origins, which might lead to 

the unstable variation of organic matter. Further, this might also be due to fine scale processes 
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(tidal pumping) shown as an important driver of organic carbon exchanges in the mangrove-

dominated Sinnamary estuary (Ray et al., 2020) as well as modulations in POC exports towards 

the open ocean in terms of freshwaters inputs or current regimes.  

4.3.2.3. Organic fraction in local estuaries 

 Sentinel-3/OLCI archives have been used to illustrate the impact of the local rivers of French 

Guiana (including Oiapoque and Maroni) as the higher spatial resolution of these satellite 

sensors allows for a more in-depth view into the estuarine regions. Here, we considered the 

averaged maps of POC/SPM presented in Figure 4.21 since this ratio explains the fraction of 

organic pool to the total suspended materials. In off-shore regions, the properties of the waters 

are mainly dominated by organic components with POC/SPM values > 0.06 (Gardner et al., 

2006; Loisel & Morel, 1998; Stramski et al., 2008; Woźniak et al., 2010). An extension of 

POC/SPM content into the mouth of these two rivers and the coastal domain observed during dry 

season clearly indicates an intrusion of organic materials related to the Amazon plume Figure 

4.21.b,d. This aligns well with previous work of Gardel et al., (2021) as a periodic external 

supply of saline waters and mud was recorded from August to December. In contrast, this 

“inorganic boundary” tends to be pushed down stream in wet season as a consequence of 

increased river discharge. Interestingly, the POC/SPM value seems to be more significant during 

high flow period in the upstream areas of the Maroni and Oiapoque rivers, which suggests an 

increased concentration of organic materials flushed out from the local rivers (Figure 4.21.a,c). 

In addition, the persistent presence of mineral-dominated waters along the shoreline can explain 

the discontinuity of the POC/SPM gradients.  

 The medium spatial resolution of Sentinel-3/OLCI archives has enabled a comprehensive 

analysis of the impact of local rivers in French Guiana on estuarine regions, highlighting the 

fluctuations of organic and inorganic materials in these areas. Seasonal variations in POC/SPM 

values further underscore the complex interplay between river discharge, Amazon plume 

intrusion, and biogeochemical dynamics in estuarine regions. 
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Figure 4.21. POC/SPM ratio calculated from Sentinel-3/OLCI data in Wet and Dry seasons for 

a, b) the Maroni estuary and for c, d) the Oiapoque estuary. 

 The contribution of dissolved and particulate organic carbon from local rivers is described in 

Figure 4.22, where the monthly fluctuations of different biogeochemical variables in the river 

outlet and the Maroni River discharge are presented as a function of time. The temporal variation 

of POC and aCDOM(412) exhibits a fine covariation with the river flow, while this pattern seems 

to be less pronounced for SPM concentration. In addition, the increasing trend found for all 

parameters from January to April can also be attributed to the influence of strong Trade winds 

through resuspension process (Eisma et al., 1991; Gratiot et al., 2007; Vantrepotte et al., 2013). 
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Figure 4.22. Temporal evolution of monthly a) SPM, b) POC, c) aCDOM(412) extracted in the 

Maroni River outflow, and d) river discharge measured at the station located in the Maroni 

River over GlobCoast time period. 

4.4. Long-term changes 

 In addition to the examination of the spatio-temporal variability patterns of biogeochemical 

parameters, specific analyses were performed to detect the presence of significant long-term 

changes (seasonal Mann Kendall test and Sen’s slope estimator) in the biogeochemical quality of 

the French Guiana marine waters. This was in practice performed over the GlobCoast MERIS 

(2002-2012) and GlobColour (1997-2021) archives (Figure 4.23 and Figure 4.24, respectively).  

 The alteration of increasing-decreasing patterns found for all the parameters considered in the 

ultra-coastal domain up to about 20 km from the shore. This feature, as underlined in previous 

works (Vantrepotte et al., 2011, 2013; Gensac et al., 2016) is associated with the migration of 
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mudbanks along the coast of French Guiana, affecting the biogeochemical properties of the 

whole coastal domain (see section 4.3.2.1). The number of these adjacent accretion-erosion areas 

implies the presence of seven mudbanks stretching over the French Guiana shelf during the 10-

year MERIS time period. Mudbank drift is depicted through the accumulation of both dissolved 

and particulate matter over time as denoted in section 4.3.2.1, for instance at the point D where 

the contribution of trend term (Var-T) was found to be significantly high up to 64.5% for SPM 

(Figure 4.15). The highest rate of change is found in the mudbank located between Sinnamary 

river and Kourou river (52°41'42.0"W, 5°16'58.8"N) with a highly increasing rate of mud 

accumulation up to 17.97 %/year. The highest trends (> 5%/year in absolute value) are clearly 

found for SPM but are also found for CDOM. These trends are less pronounced for both Chl-a 

and POC (< 3%/year in absolute value). Besides these mudbanks, which are related interannual 

changes, indicates no clear pattern can be evidenced over the whole period investigated. This 

result confirms the impact of mudbanks as a main driver in the coastal domain as well as the 

pristine status of the study area as well as the trivial impacts of anthropogenic forcings on the 

French Guiana coastal waters, which is consistent with the MODIS observations conducted by 

Gallay et al., (2018).  

 The analysis over 21 years of GlobColour data (Figure 4.24) offers a limited understanding 

of finer details (4-km spatial resolution) and is more likely designed to assess the changes 

occurring in medium to low turbid waters. When focusing on the most off-shore waters some a 

small but significant decreasing pattern appears for Chl-a (1%/year; Figure 4.24.a) in the area 

significantly impacted by the NBC current retroflection. Conversely, a restricted increase in 

CDOM is also visible in a patchy area corresponding to the transition zone between coastal and 

off-shore waters (Figure 4.24.b) 
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Figure 4.23. Significant monotonic trend in % per year (seasonal Kendall test, p < 0.05) for a) 

SPM, b) POC, c) Chlorophyll-a, and d) aCDOM(412) calculated over the MERIS time period 

(2002 - 2012). Non-significant areas are presented in white. 

  

Figure 4.24. Same as Figure 4.24 but for GlobColour dataset (1997 - 2021) 
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Figure 4.25. X-11 term statistics calculated for a) Chl-a and b) aCDOM(412) for the points F and 

G shown in Figure 4.24 using GlobColour data (1997 - 2021). The red, blue, and green solid 

lines correspond to Trend, Seasonal, and Irregular terms, respectively. The black solid line 

presents the original time series. Pink and Blue areas indicate wet and dry seasons, respectively. 

4.5. Proxies for monitoring French Guiana marine waters 

 To investigate redundancy between various biogeochemical variables, co-variation analyses 

were conducted using the GlobCoast ocean color archive. Indeed, the SPM which represents 

both organic and inorganic content in the water mass, which confirms the importance of this 
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parameter in terms of coastal water quality context. Further, the correlations in the variation 

between SPM and other parameters were fairly different over 12 years of MERIS’s lifetime 

Figure 4.28.a,c. As aforementioned, even though being a crucial parameter for monitoring water 

quality, the estimation of Chl-a over the study area has been found to be not reliable as the 

optical signal of Chl-a is typically influenced by co-occurring constituents such as SPM and 

CDOM within ultra-turbid environments (OWT 5, see section 3.8). Figure 4.26 and Figure 4.27 

clearly illustrate the limitation of Chl-a retrieval in optically complex environments where pixels 

corresponding to ultra-turbid waters (i.e., mudbanks regions) have been masked. While 

POC/SPM values can provide useful information in these particular regions. 

 

Figure 4.26. Sentinel-3/OLCI averaged a) POC/SPM and b) Chlorophyll-a computed over 

French Guiana coastal domain from 04/2016 until 11/2022. The ultra-turbid waters (OWT 5) 

were masked in white (see section 3.8). 
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Figure 4.27. Illustration for the potential of POC/SPM ratio as an indicator to monitor coastal 

water quality in French Guiana. a) True color image of a Sentinel-2 scene capturing Cayenne’s 

coastal zone on 14th August of 2020, b) spatial distribution of the 5 OWTs (see section 3.8) in 

which ultra-turbid waters (OWT 5) were masked, c) Chlorophyll-a and d) POC/SPM ratio 

estimated by the selected model indicated in section 3.7. 

 Moreover, the variation of phytoplankton biomass primarily follows a similar pattern to that 

observed for POC presenting a high Pearson correlation coefficient value (R) of > 0.8 in the off-

shore domain Figure 4.28.b. This can be explained by the fact that phytoplankton biomass 

contributes significantly to the POC pool through their production of organic matter via 

photosynthesis over open ocean (Legendre & Rassoulzadegan, 2012; Stramski et al., 2008). 

Therefore, considering both Chl-a and POC simultaneously might lead to a redundancy which 

potentially elevates the complexity of subsequent analyses. The covariation between SPM and 

POC exhibits a non-significant correlation in the off-shore domain especially where the 

formulation of NBC rings present, signifying the importance of these two parameters in terms of 
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biogeochemical dynamics over the department. Such results also reflect appropriately the 

variability of POC and SPM obtained from the X-11 analysis (Figure 4.28.a,d). In addition, the 

covariation examination deployed on aCDOM(412) demonstrates a strong connection between 

dissolved organic content and sediment loads transported from the Amazon river mouth. This is 

marked by the positive correlation of SPM and aCDOM(412) variations found in different regions. 

In addition, the Proxy of Particulate Composition (PPC) has been identified to serve as a suitable 

indicator for characterizing the nature of the bulk suspended particulate matter (Loisel et al., 

2023). With this in mind, the ratios POC/SPM have been further inspected to identify the 

pertinent variable to follow.  

 

Figure 4.28. Pearson correlation calculated between a) POC and SPM, b) Chl-a and POC, c) 

aCDOM(412) and SPM, and d) aCDOM(412) and POC with p < 0.05 over the period of MERIS’s 

lifetime. 
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 Although the POC concentration at the retroflection zone (the point A) shows the highest 

values from August to October Figure 4.10.e, the proportion of organic pool to the total 

suspended particulate reaches its annual maximum 1-2 months earlier between May and June 

Figure 4.30.a. The variation in POC/SPM ratio in combination with the temporal analysis 

performed on each individual parameter indicates the presence of organic-dominated water 

associated with high seasonal contribution (83 %) at the end of the rainy season in the eastern 

part of the study area. When the retroflection occurs due to southeast winds blowing to a 

northwest direction, POC/SPM value diminishes gradually and remains stable throughout the rest 

of the year, presenting a dominance of mineral composition in this region. This result suggests 

that the Amazon plume transported by the retroflected flow might encompass a significant 

portion of inorganic matter. In contrast, the coastal domain (the point C) of French Guiana is 

likely to be driven by physical factors manifesting during the wet season which is potentially 

related to local sources such as surface run-off from Guianese rivers or/and dilution effects 

caused by higher rainfall. While the irregular pattern has shifted to the west compared to that 

observed for SPM. In addition, the tidal currents are possibly responsible for the irregular 

fluctuation of the POC/SPM ratio in the inner shelf areas Figure 4.29.c. 
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Figure 4.29. Relative contribution (in %) of the a) seasonal, b) trend, c) irregular components to 

the total variance of POC/SPM ratio as calculated using the Census X-11 method over the 

MERIS time period associated with the locations of the extracted points A, B, and C. 
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Figure 4.30. X-11 term statistics calculated for the ratio POC/SPM at the point a) A, b) B, and 

c) C shown in Figure 4.29. The red, blue, and green solid lines correspond to Trend, Seasonal, 

and Irregular terms, respectively. The black solid line presents the original time series. Pink and 

Blue areas indicate wet and dry seasons, respectively. 

4.6. Conclusions and perspectives 

 The biogeochemical variability in French Guiana coastal waters has been inspected using 

spatio-temporal analysis performed on diverse ocean color data sets (monthly MERIS and 

Globcolour, Sentinel-2 and 3 individual images and temporal composites). The amount of 

sediment loads in the estuarine vicinity of the Oiapoque river tends to be higher compared to that 

observed in the Maroni river’s outlet with a difference in SPM of 5 to 10 g.m-3. Such feature 

suggests that the Amazon influence seems to be more significantly pronounced in the eastern 

areas of the Guianese coast.  

 In off-shore domain, high seasonal contribution found at latitudes 5°N - 7°N and longitudes 

52.5°W - 51°W with a distance of beyond 50 km from Oiapoque estuary, confirms the annual-
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cycle variation of retroflected flow occurring in the dry season (July - October) due to the 

manifestation of Trade winds blowing from the southeast direction. An extension of 

biogeochemical content towards the off-shore regions to the west of French Guiana marine 

environment during the wet season could be due to the influence of bathymetry and shifts in 

wind direction. Although these processes were evidenced in the variability of all biogeochemical 

variables considered, the amplitude of variations of dissolved and particulate substances in the 

western off-shore extension were found to be relatively lower with respect to that observed in the 

retroflected flow, indicating a more stable condition. An irregular region of SPM observed in the 

off-shore domain to the west of the retroflection zone is possibly related to the formulation of the 

anti-cyclonic NBC rings generated 5 to 6 times per year. The impacts of these NBC rings seem 

to be more pronounced for SPM compared to other parameters. 

 In the coastal domain, remarkable values of trend component associated with an increase-

decrease pattern have been found in the continental shelf, clearly illustrating the northwestward 

migration of mudbanks originating from the Amazon plume with an average speed of 1-2 

km/year. The seasonal alteration in SPM concentration associated with the mud drifts 

emphasizes the importance of the wind stress caused by northeasterly trade winds (January - 

March) in modulating the accretion and erosion of the mudbanks (Gardel & Gratiot, 2005; 

Vantrepotte et al., 2013). The organic content contributed from local rivers are deemed to be 

more significant compared to the amount of total suspended solids, which is evidenced by a 

higher correlation between POC and the Maroni River’s discharge. 

 The periodic modulation of the NBC excursion (Guiana current) over the inner shelf might 

be related to a seasonal belt of SPM witnessed with a distance of 18 km to the coast, which 

appears 1 to 2 months delay after the retroflection reaches its maximum northerly location. 

However, the opposite variation found for Chl-a in this specific belt is possibly caused by the 

availability of light required for phytoplankton growth in the dry season. Further, the fluctuation 

of POC and aCDOM(412) here exhibits strong irregular variations, which might be explained by 

the organic carbon contents exported from the mangroves in combination with the sediment 

transported from the Amazon river’s mouth which is potentially in response to the seasonal 

alteration of wind direction. Another reason is that the impacts at lower time scales such as tidal 

factors are also potentially responsible for the unstable variability of the organic carbon pool in 

this particular region.  
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 The monotonic trends depicted from MERIS data covering the 10-year period from 2002 to 

2012 shows that there are no significant long-term changes detected except the fingerprint of the 

mudbank migration along the coastline, which confirms the trivial disturbance caused by 

anthropogenic forcings acting on the study area. The tight relationship between biogeochemical 

variability and wind-driven factors over the inner shelf implies that trade winds play a crucial 

role in governing the biogeochemical dynamics especially particulate materials in coastal 

domain. 

 The co-variation test between each pair of biogeochemical parameters highlights the 

importance of the two parameters POC and SPM in explaining the hydrodynamic and 

environmental forcings impacting coastal water quality. Further, the PPC also allows to retrieve 

information over ultra-turbid waters such as those observed in mudbanks regions. This suggests 

that the POC/SPM ratio could serve as a potential representative parameter for discovering the 

biogeochemical variability as well as monitoring water quality over the French Guiana coastal 

ecosystem. 

 Considering the uncertain factors driving changes in biogeochemical dynamics (i.e., NBC 

rings, off-shore western extension, Guiana current), the need for additional and periodic in-situ 

measurements, along with the incorporation of other factors such as wind/current direction and 

intensity, appears to be of paramount importance to enhance our understanding of these complex 

processes and their interactions within the marine ecosystem. Questions remain unanswered, for 

instance, what is the proportion of organic components from local origins compared to that 

transported from the Amazon River? What is the main reason resulting in an off-shore extension 

of all biogeochemical parameters to the west? And why the NBC rings are more visible with the 

variation of SPM compared to other parameters? Therefore, it is crucial to develop an efficient 

framework (i.e., a relevant classification scheme) to facilitate the implementation of regional 

monitoring programs, which allows focus on specific areas or water types to effectively establish 

sampling work.  
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CHAPTER 5: Partition of the water masses and insights into 

monitoring water quality in French Guiana 

5.1. Introduction 

 The delimitation of the French Guiana marine waters and their “standard” status are crucial 

for stakeholders to conduct biogeochemical monitoring campaigns as well as to support the 

regional policies. In this chapter, we aim at examining different classification methodologies to 

partition the water masses of the French Guiana marine domain. These classification schemes 

were developed based on different frames (e.g., optical, temporal, and POC/SPM based) and 

applied to both medium and high spatial resolution satellite archives, allowing for a 

comprehensive analysis of the biogeochemical properties associated with each water type. The 

concept of optical classification involves grouping reflectance spectra and analyzing the 

associated biogeochemical characteristics to comprehend the properties of the water body. By 

examining the variations in spectral shapes, we can identify patterns that correspond to specific 

water properties, such as suspended particulate matter, dissolved organic matter, and 

phytoplankton communities (Lubac & Loisel, 2007; Mélin & Vantrepotte, 2015; Vantrepotte et 

al., 2012). The goal of the POC/SPM classification is to partition the water masses into different 

categories including organic-dominated, mixed, and mineral-dominated, based on the organic 

fraction to the total suspended particulate assemblages (POC/SPM) present in the water body. 

This classification approach allows to better understand the composition and distribution of 

organic and inorganic materials within various water masses, which can provide valuable 

insights into the biogeochemical dynamics of the marine ecosystem (Loisel et al., 2023; Woźniak 

et al., 2010). Whereas, the temporal classification using Self-Organizing Maps (SOM) will be 

used to cluster pixels that exhibit similar variability patterns over time, providing useful 

information about the spatial distribution of biogeochemical variables in different regions. The 

identification of marine waters with comparable temporal variations can facilitate the analysis of 

the biogeochemical dynamics more effectively, which also explains the environmental processes 

driving the changes in the marine ecosystem (El Hourany et al., 2021). The integration of these 

classification schemes for partitioning the water masses from satellite data will be described 

particularly in this chapter, which facilitates the establishment of field cruises for monitoring 

coastal water quality in the study area. 
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 An addition key objective of this chapter is to propose a sampling strategy based on different 

classification schemes that can be used as a framework for conducting regional monitoring 

programs to keep track of the status of the water properties as well as to assess the potential 

impacts of variations in the environmental conditions. Given the fact that no apparent long-term 

disturbance was found as denoted in Chapter 4, this chapter also aims at defining a reference 

state of French Guiana coastal waters for generating a baseline condition that can be used to 

detect exceptional events. These reference values will be generated from satellite-derived 

climatological statistics, allowing the identification of deviations from this state as well as the 

potential disturbances in biogeochemical properties over the marine ecosystems. Such 

information is essential for stakeholders to develop effective conservation and management of 

coastal waters, ensuring that policies and actions are well-informed and responsive to the unique 

characteristics of this marine environment. 

5.2. Optical Classification 

5.2.1. In-situ Rrs(λ) Classification 

 Even though the implementation of in-situ measurements typically is labor-intensive and 

time-consuming, these data offer accurate and direct information about various water quality 

parameters. Therefore, the field data collected over the French Guiana coastal waters serve as a 

valuable ground truth for validating and calibrating the attained outcomes from the assimilation 

of remotely sensed archives, helping to improve the reliability and accuracy of satellite-based 

observations and understand the complex dynamics of coastal water quality. 

 It is crucial to note that French Guiana coastal waters are strongly characterized by the 

influence of the Amazon plume with annual transportation of 1.5 × 108 tons of suspended 

sediments along the Guianese coast (Wells & Coleman, 1977), which leads to a highly turbid 

environment observed in the coastal regions. The statistics for SPM extracted from the present 

dataset confirm this feature as the highest SPM concentration can reach up to 1945.34 g.m-3 

(Table 5.1). As specified in the previous chapter, the highly concentrated SPM and its variability 

are typically linked to different physical factors such as the migration of mud banks, 

resuspension processes, the direction as well as the intensity of winds, and ocean currents (J.-M. 

Froidefond et al., 2002; Gratiot et al., 2007; Vantrepotte et al., 2013). The Chlorophyll-a 

concentration measured over the study area varies from 0.08 to 48.32 mg.m-3 with an average of 

6.27 mg.m-3. The maximal phytoplankton biomass was recorded on the 25th of August, 2015 at a 
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distance of approximately 10 km away from the Mahury estuary. As the majority of the water 

samples were collected within 20 m isobath toward the estuarine vicinity, the summary of the in-

situ data exhibits a strong influence of terrestrial inputs. For example, the average concentrations 

of organic indicators, such as POC, DOC, and aCDOM(412), remain at a remarkable level, with 

values of 1150.45 mg.m-3, 136.65 µmol.L-1, and 0.94 m-1, respectively. Although the number of 

sampling points is not always available for all considered parameters, the statistics calculated 

from our in-situ dataset thoroughly reflect the status of French Guiana coastal waters. 

 Considering the unique biogeochemical conditions of the study area, the unsupervised 

classification has been performed on 200 measurements of hyperspectral Rrs(λ) that were 

normalized in order to partition the water masses into four distinct Optical Water Types (OWTs). 

Indeed, the results obtained from this clustering approach rely on the performance of the 

hierarchical classification proposed by Ward, (1963) as mentioned in section 2.2.1. 

Conceptually, each optical OWT is associated with a number of measurements that are relatively 

similar in terms of spectral reflectance shape. It is worth noting that, the measurements belonging 

to a specific OWT do not necessarily elucidate a similarity in the magnitude of the remote 

sensing reflectance values due to the normalization. 

 Different numbers of OWTs were examined using the in-situ Rrs(λ) data with the aim of 

selecting the optimal number of water types that adequately capture the biogeochemical 

variability in the region. The shape of the most contrasted OWT remains similar across all three 

cases, implying robustness in the classification method (Figure 5.1). However, 3 OWTs might 

not be adequate to represent sufficiently the input data as the clear waters, typically peaking in 

the blue domain, are not apparent in this case. This can be resolved in the case of 4 OWTs 

allowing offshore waters to be more distinguishable. The case of 5 OWTs seems to complicate 

the situation by splitting the OWT 3 of the 4-OWT case into two OWTs, which does not bring 

more useful information. In addition to this, the increase in the number of OWTs in the 

unsupervised classification step also elevates the similarity between OWTs in terms of spectral 

shape, which might be susceptible to uncertainties in satellite image application due to various 

factors (i.e., biases from atmospheric noises, number of samples for each OWT, etc.). Thus, the 

in-situ dataset has been classified into 4 OWTs for further analysis in this chapter. It is worth 

noting that depending on the objectives and how large the dataset is, the number of OWTs might 
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vary accordingly (e.g., 3 OWTs were selected for regional adaptation of inversion algorithms in 

Chapter 3). 

 

Figure 5.1. Unsupervised classification performed on 200 Rrs(λ) spectra collected over French 

Guiana marine waters using Ward’s linkage (see Section 2.2.1) considering the case of a) 3 

OWTs, b) 4 OWTs, and c) 5 OWTs. 

 Overall, our dataset shows that the highest number of samples was found in OWT 3 with 72 

data points, while OWT 1 occupies the smallest proportion with only 16 measurements. The 

tendency in the appearance of the reflectance shapes from OWT 1 to 4 is illustrated by a gradual 

increase in the red domain and a diminishment in the blue part of the spectra (Figure 5.2.a-g). 

These shifts in terms of reflectance values can be attributed to the varying types of particles and 

materials such as sediment or phytoplankton present in the water body (Lubac & Loisel, 2007; 

Vantrepotte et al., 2012). It is essential to understand the defined OWTs in order to interpret 

remote sensing data accurately and to identify different environmental conditions of the water 

masses. Further, the difference in the magnitude of the raw reflectance, as can be seen in Figure 

5.2.b-h, confirms a wide range of variability associated with each OWT. 
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Figure 5.2. The left panels a-g) show the normalized reflectance associated with the 4 optical 

OWTs defined from the in-situ dataset. The solid bold lines present the mean of the normalized 

Rrs(λ). The right panels b-h) show the raw reflectance for the corresponding OWTs with the 

colors indicating the names of conducted missions. 



Partition of the water masses and insights into monitoring water quality in 

French Guiana 

187 

 As a matter of fact, the biogeochemical components within a water body can have direct 

effects on its optical properties, thereby impacting the way remote-sensing reflectance behaves in 

terms of shape and magnitude. Therefore, the defined optical clusters are related to a range of 

biogeochemical conditions covered by the current dataset. The significant parameters of each 

optical OWT are highlighted in bold in Table 5.1. These biogeochemical features associated 

with the corresponding OWT can be elaborated particularly as below: 

OWT 1: The analysis performed on the present dataset shows that the average normalized 

remote sensing reflectance, Rrs(λ), belonging to OWT 1 is primarily characterized by a strong 

peak in the blue-green region, specifically around 490 nm. This peak is followed by a steady 

decline towards 560 nm, before a sharp decrease in the red region around 600 nm. Additionally, 

the statistics extracted from 16 data points of this OWT indicate that OWT 1 exhibits a relatively 

lower concentration of suspended particulate matter (SPM) compared to OWT 2 and significant 

lower than that of OWT 3 and 4. More specifically, the mean and median values of SPM 

concentration of the collected in-situ dataset are 6.22 g.m-3 and 4.39 g.m-3, respectively (Table 

5.1), present an indication of a clear-water environment. Further, the highest value of the 

POC/SPM ratio (up to 0.1) recorded for OWT 1 indicates a substantial contribution of particulate 

organic content. The combination of these features associated with OWT-1 waters (i.e., the 

spectral shape, lower SPM concentration) confirms that this OWT is representative of open 

ocean water. 

OWT 2: OWT 2, which accounts for 43 data points out of a total of 200 samples in our dataset, 

presents a unique characteristic in its reflectance shape. In particular, the average normalized 

reflectance of this OWT shows a strong peak in the green part of the spectrum around the 

wavelength of 560 nm, with the normalized Rrs(560) value of approximately 6 × 10-3, as can be 

seen in Figure 5.2. Unlike OWT-1 waters, which are characterized by a remarkable peak in the 

blue-green region, OWT-2 waters reflect less blue light and display slightly higher reflectance in 

the red (Figure 5.4.a). Such differences in the reflectance values can be attributed to variations 

in the biogeochemical composition of the water, such as the presence of dissolved/particulate 

matter and phytoplankton. This is evidenced by a higher concentration in both particulate and 

dissolved materials compared to OWT 1. In addition to this, the average value of the POC/SPM 

ratio observed for this OWT (0.09) falling between 0.08 and 0.2 (Loisel et al., 2023), indicating a 

mixed situation. 
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OWT 3: Similar to OWT 2, the reflectance value of OWT 3 also exposes a significant amplitude 

in the green part of the visible spectrum. However, we find that OWT-3 water also shows higher 

reflectance values in the red part of the spectrum, which is typically related to the spectral 

absorption signature of Chl-a in blue and red wavebands (Gons et al., 2008). The highest Chl-a 

concentration, with a maximum of 48.32 mg.m-3 and a mean of 8.16 mg.m-3, is recorded in OWT 

3, further emphasizing the specific pattern related to the contribution of relatively high 

phytoplankton biomass to this OWT. This can also be indicated by the highest values observed in 

Chl-a/POC and aph/ap ratios (Figure 5.3). Moreover, the higher values in SPM concentration, and 

lower POC/SPM ratio value (0.05) compared to OWT 1 and OWT 2, imply a relatively high 

contribution of inorganic materials within the water body. Therefore, OWT-3 water serves as an 

illustrative example of the involvement of different biogeochemical components, corresponding 

to mineral-dominated waters with a dominance of phytoplankton population. 

OWT 4: With 49 samples, the average reflectance shape belonging to OWT-4 water appears to 

have strong peaks in the red domain particularly from 590 nm to 665 nm. In contrast, the 

amplitude of normalized Rrs(λ) is significantly less pronounced in the blue region of the 

spectrum. This feature implies that OWT 4 is a good example of Case-2 highly turbid waters, 

which is representative of an optically complex environment. Indeed, the high turbidity level 

within this water type is confirmed by the highest in-situ SPM concentration measured among 

the 4 OWTs within a range of 155.88 ± 278.42 g.m-3. The low value of averaged POC/SPM 

(0.03) presents a significant proportion of mineral particles compared to organic fraction for this 

OWT. 
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Figure 5.3. Box plots of a) SPM, b) Chl-a, c) POC, d) aCDOM(412), e) DOC, f) Chl-a/POC, g) 

POC/SPM, h) aph(440)/ap(440), and i) aCDOM(440)/( ap(440)+ aCDOM(440)) 

Table 5.1. Statistic of the biogeochemical parameters associated with four optical OWTs 

extracted from the in-situ dataset deployed in French Guiana coastal waters. The parameters 

with highest mean values among all OWTs are highlighted in bold.  

 Parameters N min max mean median stdv 

OWT 1 

SPM (g.m-3) 6 2.30 17.75 6.22 4.39 5.76 

Chl-a (mg.m-3) 7 0.42 4.47 2.14 1.36 1.42 

POC (mg.m-3) 5 161.47 1381.09 758.18 729.65 484.02 

aCDOM (412) (m-1) 12 0.004 0.26 0.11 0.09 0.09 

DOC (µmol.L-1) 11 88.92 126.80 102.48 98.27 12.76 

POC/SPM 2 0.03 0.16 0.10 0.10 0.09 
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Chl-a/POC 4 0.001 0.003 0.002 0.002 0.001 

aph(400)/ap(400) 7 0.73 0.86 0.81 0.79 0.04 

aCDOM(400)/(aCDOM(400)+ap(400)) 5 0.32 0.84 0.57 0.57 0.22 

OWT 2 

SPM (g.m-3) 31 1.52 35.55 7.55 6.00 5.98 

Chl-a (mg.m-3) 18 0.96 17.22 3.22 2.31 3.69 

POC (mg.m-3) 20 215.97 1368.54 707.99 566.96 351.52 

aCDOM (412) (m-1) 42 0.03 0.94 0.26 0.21 0.20 

DOC (µmol.L-1) 32 35.99 151.11 90.53 94.83 29.03 

POC/SPM 10 0.03 0.20 0.09 0.07 0.06 

Chl-a/POC 12 0.001 0.010 0.004 0.003 0.003 

aph(400)/ap(400) 18 0.77 0.95 0.83 0.82 0.04 

aCDOM(400)/(aCDOM(400)+ap(400)) 16 0.09 0.88 0.63 0.69 0.20 

OWT 3 

SPM (g.m-3) 56 3.06 148.13 21.38 13.41 24.40 

Chl-a (mg.m-3) 41 0.83 48.32 8.16 5.01 8.60 

POC (mg.m-3) 27 236.90 1739.14 754.82 643.93 410.02 

aCDOM (412) (m-1) 70 0.08 1.61 0.56 0.53 0.35 

DOC (µmol.L-1) 38 51.60 361.82 136.66 115.03 69.66 

POC/SPM 25 0.02 0.16 0.05 0.04 0.04 

Chl-a/POC 16 0.002 0.015 0.008 0.007 0.004 

aph(400)/ap(400) 41 0.77 1.02 0.87 0.87 0.06 

aCDOM(400)/(aCDOM(400)+ap(400)) 40 0.16 0.92 0.62 0.63 0.22 

OWT 4 

SPM (g.m-3) 59 5.93 1945.34 155.88 62.07 278.42 

Chl-a (mg.m-3) 53 0.08 20.24 6.38 4.29 5.60 

POC (mg.m-3) 40 391.73 4705.48 1687.82 1447.39 1106.28 

aCDOM(412) (m-1) 69 0.17 9.24 1.88 1.17 1.77 

DOC (µmol.L-1) 37 83.18 564.08 189.89 169.32 96.89 

POC/SPM 38 0.01 0.14 0.03 0.02 0.03 

Chl-a/POC 34 0.000 0.016 0.005 0.004 0.004 

aph(400)/ap(400) 53 0.65 0.96 0.85 0.86 0.08 

aCDOM(400)/(aCDOM(400)+ap(400)) 53 0.44 1.00 0.82 0.85 0.14 

Overall 

SPM (g.m-3) 121 2.30 1945.34 86.21 29.10 205.93 

Chl-a (mg.m-3) 101 0.08 48.32 6.81 4.29 6.96 

POC (mg.m-3) 72 161.47 4705.48 1273.39 995.77 982.21 

aCDOM (412) (m-1) 151 0.00 9.24 1.13 0.65 1.40 

DOC (µmol.L-1) 86 51.60 564.08 155.19 127.91 84.53 

POC/SPM 65 0.01 0.16 0.04 0.03 0.04 

Chl-a/POC 54 0.0001 0.016 0.005 0.005 0.004 

aph(400)/ap(400) 101 0.65 1.02 0.86 0.86 0.07 

aCDOM(400)/(aCDOM(400)+ap(400)) 98 0.16 1.00 0.73 0.78 0.21 
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5.2.2. Satellite image application 

 It should be noted that the hyperspectral Rrs(λ) considered in this application were resampled 

to multispectral bands of common ocean color satellite sensors (i.e., SeaWiFS, OLCI, MERIS; 

see Figure 5.4) before being used to compute the mean (µ) and the covariance (∑) matrices as 

the input for the Rrs(λ) labelling procedure. This supervised classification technique has been 

implemented according to the process explained in Section 2.2.1. 

 

Figure 5.4. Average reflectance spectra derived from Ward’s hierarchical classification applied 

on a) normalized (OWTs 1, 2, 3, and 4) and b) raw reflectance Rrs(λ). c) Average normalized 

reflectance spectra resampled to MERIS bands. 

5.2.2.1. Medium-spatial-resolution classification 

 The OWT membership labeling for satellite images has been performed on the monthly 

Level 4 products of Sentinel-3/OLCI sensor with 300 m spatial resolution provided by CMEMS 

(see section 2.3.1) between 04/2016 and 11/2022. Figure 5.5.a-d depict the similarity between 

the averaged normalized Rrs(λ) of in-situ measurements and satellite products. The 6-year mean 

spectral reflectance of Sentinel-3 data are globally consistent with those of in-situ samples 

considering four defined OWTs. This latter feature confirms the reliability of using optical 
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classification as a framework to label the corresponding OWTs in remotely sensed data (Mélin & 

Vantrepotte, 2015; Vantrepotte et al., 2012). However, a slight difference can be observed in the 

red band for OWT 4 with a remarkable corresponding standard deviation value of 0.0092 of the 

satellite normalized Rrs(665). Indeed, the interpretation from satellite images should be deployed 

with caution as noises originating from the substantial atmospheric contribution influencing the 

water leaving optical signals (Pahlevan et al., 2021; Vantrepotte et al., 2012). Moreover, the lack 

of in-situ measurements in riverine waters for defining OWT sample distributions might also be 

responsible for this (see Section 2.8.1.2). 

 Figure 5.5.e describes the spatial distribution of the most-frequent OWT computed for each 

pixel. As denoted in the previous section, the turbidity level encompassed in a water body 

increases from OWT 1 to OWT 4, which explains different levels of terrestrial influence on the 

water masses. For instance, the most turbid waters (OWT 4) were frequently detected over the 

inner shelf where the biogeochemical dynamics are dominated by mudbank migration (see 

section 4.3.2.1). Meanwhile, OWT 1, which was identified as a standard illustration of clear 

water, logically appeared further in offshore regions. These observations present a well-

distinguishable delimitation of the water masses and are in good agreement with the optical 

classification results performed by Mélin & Vantrepotte, (2015); Vantrepotte et al., (2012). 

Interestingly, the environments holding a high degree of phytoplankton biomass (OWT 3) with 

Chl-a can reach up to 48.3 mg.m-3 were found adjacent to the areas of mudbank manifestation 

towards the offshore direction. OWT 2, which presents organic-dominated waters according to 

the threshold of POC/SPM values (> 0.02) recently proposed by Loisel et al., (2023), was 

observed to be situated between OWT 1 and OWT 3. The spatial dispersion of OWT over French 

Guiana coastal waters provides valuable insights into the biogeochemical characteristics of the 

water masses that introduce a better understanding of different aquatic environments co-existing 

in the region. 
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Figure 5.5. The averaged normalized Rrs(λ) for a) OWT 1, b) OWT 2, c) OWT 3, and d) OWT 4 

where the solid line represents the mean spectra during the Sentinel-3 period (04/2016-11/2022) 

and the dashed line corresponds to the degraded in-situ spectra (see Figure 5.4.d); e) most-

frequent distribution of OWTs (dominant OWT) over French Guiana coastal waters. 

 In order to further exploit the information offered by the optical classification, the number of 

occurrences for each OWT has been summarized in Figure 5.6. A high frequency of OWT 1 has 

been recorded in the offshore domain, especially on the western side of the study area. This 

observation indicates less turbid waters are significantly concentrated (about 70 % of the 

considered period) in this particular region. The results obtained from the analysis of MERIS 

data in section 4.3.2, particularly presented in Figure 4.12 and Figure 5.6.a, further confirm this 

feature as the concentrations of both particulate and dissolved matter are relatively lower in the 

eastern part (point B) compared to those in the western part (point A). In addition, the 

distribution of OWT 2 was found to be more frequent beyond 15 km from the shore and 

extended further offshore in the retroflection zone at around 52°W to 51°W. The lower 

dispersion of occurrence for OWT 3 and 4 in this region implies that higher contrasted waters 

tend to appear more frequently in the eastern offshore domain due to NBC retroflection. 

 In general, OWT-1 pixels were spatially distributed in the off-shore domain of French 

Guiana marine ecosystem. Whereas, OWT-2 waters were mainly found in the transition zone 

between coastal and clear-water regions with a relative dispersion in the eastern part. OWT 3 
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appeared as a thin belt connecting the shallow coastal waters and the mixed waters of OWT 3. 

The location of the most turbid waters can be identified from the distribution of OWT-4 pixels 

which exclusively dominate the very coastal areas. 

 

Figure 5.6. The frequency of occurrence extracted for a) OWT 1, b) OWT 2, c) OWT 3, and d) 

OWT 4 over Sentinel3/OLCI time period. 

5.2.2.2. High-spatial-resolution classification 

 The adoption of high-spatial-resolution sensors for classification purposes offers advantages 

considering the level of spatial detail. In this thesis, the Sentinel-2/MSI satellite archives with a 

spatial resolution resampled to 60 m have been used to optically classify the water masses in the 

coastal zone of French Guiana. Such ocean-color products have been atmospherically processed 

using POLYMER processor to obtain the Rrs(λ) on the water surface (see section 2.3.1). Indeed, 

the enhancement of spatial resolution allows for deeper insights regarding biogeochemical 

processes as well as the local distribution of OWTs which might be attributed to local 
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environmental factors. In this analysis, the investigation was conducted with a focus on two main 

rivers of French Guiana (i.e., the Maroni and Oiapoque rivers) to discover fine-scale features and 

patterns related to hydro-sedimentary such as Amazon river inputs and the contribution of local 

rivers.  

 The frequency of occurrence and the spatial distribution of the four defined OWTs for wet 

(from January to June) and dry (from July to December) seasons in the Maroni estuary are 

presented in Figure 5.7. The map illustrating the most frequent OWTs during 4 years from 2016 

to 2020 shows that the vicinity of Maroni river’s outlet is mainly characterized by OWT 2, 3, and 

4, while OWT-1 pixels are absent most of the time in this particular area. The extension as well 

as the positions of different OWTs are consistent with that recorded in the analysis of the 

medium-spatial-resolution sensor. The influences of the Maroni River on the coastal ecosystem 

could partly be described through the interpretation from this analysis as an extension of OWTs 

3 and 4 was observed in the rainy season, thus inducing more terrestrial inputs downstream 

during this period (Abascal-Zorrilla et al., 2020). In addition, this augmentation of contrasted 

waters (Figure 5.7.a,b) around the estuarine vicinity might also be attributed to the dominance 

of Trade winds leading to the transportation of Amazon sediment supply through currents and 

local resuspension from January to April (Eisma et al., 1991). It should be noted, however, that 

the lack of available data presented over the Maroni River in the high flow condition is majorly 

due to the presence of cloud pixels that were masked in the statistics. 
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Figure 5.7. The Sentinel-2 summary of frequency and spatial distribution of the four Optical 

Water Types for a) Dry and b) Wet seasons in the Maroni estuary during the period of 2016-

2020. 
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 The analysis for the Oiapoque river outlet is shown in Figure 5.8.a,b in which the coastal 

waters are mainly characterized by OWTs 3 and 4. The spatial distributions of these OWTs are 

relatively stable considering both wet and dry seasons. This result confirms the significance of 

land-based impacts on the coastal domain of French Guiana. In the inner shelf and Oiapoque 

River’s mouth, the water body is primarily controlled by OWT 4 which indicates a high 

contribution of mineral constituents originating from the Amazon River plume. It is worth 

mentioning that even though the suspended sediment supply from local rivers is low (C. J. M. de 

Oliveira & Clavier, 2000), the highly contrasted properties of the water masses observed in the 

riverine areas might be in response to the contribution of Chlorophyll-a or dissolved organic 

matter (Vantrepotte et al., 2012, 2015) that are released through leaf litter from the surrounding 

tropical rainforest upstream or from mangrove fringe (Ray et al., 2018; Tamooh et al., 2012). 

This could partly explain the presence of OWT-3 pixels found in the upstream part of the 

Oiapoque river (Figure 5.8.b). Indeed, the availability of organic and nutrient content, which 

potentially leads to the development of phytoplankton biomass, could also be related to seasonal 

river. No huge seasonal difference in the spatial distribution of OWTs was detected in the 

Oiapoque estuary from our analysis, as evidenced by steady patterns of the considered OWTs 

observed in this particular area Figure 5.8.a,b. However, the seasonal variation might be more 

apparent with further investigations performed for each individual OWT with the integration of 

in-situ measurements considering different physical factors such as wind, wave, river discharge, 

and tidal data as for instance as shown in the study of (Abascal-Zorrilla et al., 2020).  

 The analysis of OWTs performed on the high-resolution satellite images (Sentinel-2) with a 

focus on the two main rivers in French Guiana (i.e., the Maroni and Oiapoque Rivers) shows a 

consistency with that obtained for medium resolution images. No huge seasonal modulation 

regarding the spatial distribution of OWTs was identified in this examination. Although the river 

plume areas are observable however they can be categorized as the same OWT as those 

belonging to mudbanks. This finding suggests that further classification methods allowing finer 

detailed information, such as optical index, Apparent Visible Wavelength (AVW) proposed by 

Vandermeulen et al., (2020), or a more robust in-situ dataset might provide a better performance 

in differentiating riverine and coastal waters at high resolutions. 
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Figure 5.8. The Sentinel-2 summary of frequency and spatial distribution of the four Optical 

Water Types for a) Dry and b) Wet seasons in the Oiapoque estuary during the period of 2016-

2020. 
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5.3. POC/SPM Classification 

 Considering the importance of the POC/SPM ratio in assessing biogeochemical variability in 

Section 4.5, this thesis employs the thresholds proposed by LOG (Loisel et al., 2023) for coastal 

waters. These thresholds were established based on the relationship between POC/SPM and 

bbp/bp ratios, aiming to better define the delimitation suggested by Woźniak et al., (2010) using a 

larger in-situ dataset. Thus, the POC/SPM ratio serves as an indicator to categorize water masses 

into organic-dominated, mixed, and mineral-dominated waters. Accordingly, the new threshold 

values of 0.08 and 0.2 were applied to the monthly averaged Level 4 products of the Sentinel-

3/OLCI sensor, which covered a time period spanning from 2016 to 2022 and featured a 300-

meter spatial resolution. These data were processed by the Copernicus Marine Environment 

Monitoring Service (CMEMS) as outlined in Section 2.3.1.  

 The monthly variation of POC/SPM values focusing on the 4 defined OWTs is presented in 

Figure 5.9. Most offshore waters, OWT 1, exhibit a low amplitude in POC/SPM fluctuations, 

which varies in a range of above 0.2, indicating an organic-dominated environment. In addition, 

the alteration of suspended organic fractions for OWT 2 implies a mixed situation as the 

POC/SPM variation frequently appears between 0.08 and 0.2. This finding aligns with the 

biogeochemical features associated with the OWT 2 as aforementioned in Section 5.2. A high 

contribution of mineral materials to the particulate assemblage was found for OWT-3 and OWT-

4 waters, which are representative of nearshore waters. Overall, the changes in the particulate 

components from the dominance of mineral particles to the dominance of organic particles 

within the water masses over the French Guiana marine ecosystem are described relatively well 

by the optical classification. 
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Figure 5.9. Climatological variation of POC/SPM ratio considering different Optical Water 

Types. 

 Figure 5.10 illustrates the most frequent appearance of the three water types defined by 

POC/SPM classification approach. The dominance of organic fractions mainly appears in 

offshore domain, whereas the mineral-dominated waters is predominantly located over the 

continental shelf in which the manifestation of mudbanks present. Interestingly, the mixed waters 

tend to be more pronounced to west of the French Guiana coastal domain, particularly in a 

coastal area located at a distance of approximately 40 km away from the Maroni river mouth. A 

similar pattern however less pronounced was found about 20 km away from Cayenne. This 

suggest that environmental forcings related to both local and regional origins (i.e., the Amazon 

River and local rivers plume) in these areas induce a strong variation in the composition of the 

particulate matter with varying proportions of organic and mineral particles. However, additional 

in-situ measurements with the integration of physical factors (i.e., winds and currents) 

monitoring conducted are requited to fully understand the biogeochemical dynamics at these 

spots. 

 The subsequent analysis produced a monthly climatology of POC/SPM values, as illustrated 

in Figure 5.11. During the rainy period between March and May, there is a noticeable shift in the 

distribution of minerals and mixed waters along the coast. This is likely due to the increased 

precipitation, which dilutes the inorganic fractions and allows for more organic material to be 

transported to the estuary. It is however worth noting that even though the mineral-dominated 

and mixed water regions appear to be compressed and attach to the coast, the concentration of 

suspended particulate matter might still increase over the inner shelf in the mudbank area. This 

can be explained by the resuspension process caused by stronger trade winds manifesting from 

January to April as mentioned in Section 1.1.2.1. In contrast, these areas expanded further 
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offshore during the dry season when winds blow from the southeast, emphasizing the important 

role of environmental factors in regulating biogeochemical dynamics in the French Guiana 

coastal ecosystem.  

 The partition of the water masses based on the POC/SPM ratio provides a better 

understanding of the distribution of the organic and mineral proportions encompassed in the 

particulate assemblages. The outcomes also show a consistency with the optical classification, 

further enhancing the reliability of this approach to gain valuable insights into the 

biogeochemical processes occurring within the marine ecosystems.  

  

Figure 5.10. a) The most frequent occurrence of three water types defined from POC/SPM 

values calculated from Sentinel-3 data and the corresponding frequency for b) organic-

dominated, b) mixed, and c) mineral-dominated waters. 
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Figure 5.11. Temporal mean of POC/SPM classification over the study area extracted from 

Sentinel-3 data. Red, green, and blue areas correspond to mineral-dominated, mixed, and 

organic dominated waters, respectively. 
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5.4. Temporal Classification 

 As denoted in the section 4.5, the POC/SPM ratio has shown to be a relevant parameter to 

monitor the coastal water quality in French Guiana since its variability captured relatively well 

the hydrodynamic processes acting on the coastal ecosystem of the study area. The importance of 

this parameter is also emphasized by the fact that the variations in POC and SPM exhibit lesser 

spatial redundancies (Figure 4.26). Hence, to obtain a comprehensive temporal partition of water 

masses, the series of POC/SPM maps derived from MERIS sensor were classified using the 

SOM neural network approach previously explained in Section 2.2.3. Such satellite data were 

considered as the input for this temporal clustering method because these data offer a wider time 

coverage compared to that of Sentinel-2 and Sentinel-3 data. In practice, each POC/SPM time 

series of the corresponding pixel was initially treated with gap filling and then standardized 

according to the procedure described in Suominen, (2018) as in the following equation: 

SPOC/SPM=
TSPOC/SPM-μ

POC/SPM

σPOC/SPM

 5.1 

where the terms are defined as follows: 

• SPOC/SPM indicates the standardized time series.  

• TSPOC/SPM corresponds to the initial POC/SPM sequence. 

• µPOC/SPM is the mean of the initial POC/SPM sequence. 

• σPOC/SPM is the standard deviation of the initial POC/SPM sequence. 

 The input matrix for SOM was defined by n rows × m columns, where n corresponds to the 

number of image pixels (number of observations) and m indicates the number of each time step 

(number of features). The parameterization for the SOM implementation also consists of a 

network of 7 × 4 neurons which has been trained iteratively with a radius (the standard deviation 

of the Gaussian function that constraint the movement of surrounding neurons) of 0.1 in 80 

epochs to represent effectively the defined input matrix. The yielded weights for the 

corresponding neurons with respect to the features were then clustered into 4 classes using a 

hierarchical tree with the linkage (distance between clusters) that was defined by Ward’s method 

(Ward, 1963). The illustrations of the dendrogram and the final classified network in this process 

are presented in Figure 5.12.a,b. The distinct groups determined for the neural network map 
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imply a good performance of the SOM to delimit the data, in which no neuron of the belonging 

class was found to be positioned in between those of other classes. 

 

Figure 5.12. a) Dendrogram representing the hierarchical tree attained from Ward’s linkage. b) 

Representation of the SOM network plane, each individual color indicates neurons that were 

clustered in the same class. 

  The results of this classification scheme are depicted in Figure 5.13, where each time series 

of a given pixel has been assigned to a cluster representing a specific temporal pattern of 

POC/SPM values over the MERIS time period. The POC/SPM variation for these 4 clusters is 

further described in Figure 5.14 in the consideration of the thresholds for mineral-dominated, 

mixed, and organic-dominated waters as defined in Loisel et al., (2023). The temporal 

characteristics of each class and its associated biogeochemical processes are particularly 

described as follows: 

Class 1: Situating in proximity to the shore Figure 5.13, Class-1 waters appear to be a crucial 

region that primarily is subjected to terrestrial influences. As discussed in section 4.3.2.1, this 

area was found to be tightly related to the migration of mudbanks. This interface between 

oceanic and local impacts exhibits a strong domination of mineral particles as demonstrated by 

the low POC/SPM values consistently remaining below 0.08. The variability of POC/SPM for 

this class seems to be more pronounced from April to June which potentially suggests an 

enhanced contribution of organic origins during the Wet season. However, the prevalence of 

inorganic substances presented within the water body confirms the significant role of mudbank 

manifestation for this water type. 
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Class 2: The Class-2 pixels are mainly located in the western part of the French Guiana offshore 

domain. The temporal variability of this water type displays strong seasonal fluctuations in 

which the organic proportion usually reaches its peaks between April and July (Figure 5.14). 

Even though the spatial distribution of Class-2 waters is plausibly connected to an extension of 

both dissolved and particulate matter from January to June as mentioned in section 4.3.1.1. The 

variation of POC/SPM over the Class-2 regions tend to be more stable compared to other areas 

with a CV of 26.23%. 

Class 3: The majority of Class-1 pixels are located in the offshore domain with a relatively high 

irregular variation of 28.54 % to the total variance, as shown by anomalous increases in 

POC/SPM values. This might be related to the presence of NBC rings established in this area, 

which is in good agreement with the results obtained in section 4.3.1.2 as the NBC ring cycle is 

related to variations at a shorter time period (i.e., 5-6 times/year). The POC/SPM variability 

corresponding to this class exhibits a fairly high averaged variation coefficient (31.21%), 

implying a substantial amplitude in the fluctuation throughout the examined period. 

Class 4: Unlike Class-2 waters in which the POC/SPM ratio normally presents the highest values 

from April to July, Class-4 pixels display consistently higher suspended organic fractions during 

the wet season then gradually diminish until November. This temporal shift indicates the 

Amazons’ influence in transporting freshwaters to this particular region through the NBC 

retroflection. The seasonal modulation of the Guiana current during this period is also visible and 

described by an extension of the Class-4 pixels parallel to the coast. Further, the averaged VC 

value obtained for this class is higher than the other classes, underlining a substantial difference 

in minimum and maximum values of POC/SPM. 

 The SOM classification performed on the MERIS archives has proven as a relevant 

partitioning method for characterizing the temporal variability of four regions associated with 

different variations in POC/SPM values. The attained results are consistent with the analysis 

deployed in Section 4.3 where areas related to NBC retroflection, NBC rings, western extension 

of biogeochemical dynamics, seasonal modulation of the Guiana current, and mudbank are 

identified clearly from the satellite data. In addition, the SOM classification is also capable to 

provide the information on the weights of the input features (in this case, each time step). The 

application of such approach considering multiple biogeochemical variables, therefore, might 

give an idea about most significant parameters for each class. 
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Figure 5.13. Spatial distribution of 4 classes defined using SOM classification scheme applied to 

POC/SPM MERIS data (2016-2022) 

 

Figure 5.14. Temporal variability of POC/SPM ratio considering 4 Classes defined from the 

SOM classification performed on the MERIS data. Red and blue dashed lines represent the two 

thresholds of 0.08 and 0.2 as suggested in Loisel et al., (2023). Values of the relative 

contribution of Census X-11 terms are provided corresponding to the 4 classes. 
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5.5. Climatological analysis and reference state  

5.5.1. Monthly Climatological interpretation 

 The monthly Sentinel-3 archives have been used to perform the climatological analysis based 

on the mask extracted from the most frequent OWT map (Figure 5.5). The results from this 

analysis are shown in Figure 5.15 where the monthly median values corresponding to each 

parameter have been presented in the box plots considering different OWTs. The biogeochemical 

variables generally exhibit a gradual increase in concentration towards very coastal waters (from 

OWT 1 to OWT 4). In the offshore domain, phytoplankton biomass and organic materials seem 

to be governed by rainfall intensity, as demonstrated by higher concentrations found during high 

flow conditions for OWTs 1 and 2 (Figure 5.15.b-d). This latter feature suggests that nutrient-

rich freshwater from local river runoff potentially plays an important role in marine productivity 

in the study area. However, the monthly variation of SPM over this region, especially for OWT 

2, shows an increased amount during the dry season, describing relatively well the influence of 

NBC retroflection occurring from July to October. In coastal regions, the majority of considered 

parameters tend to be significantly modulated by the manifestation of Trade winds blowing from 

NE between January to April (Augustinus, 2004; Chevalier et al., 2004; Gratiot et al., 2007), 

which can be seen from the fluctuations of SPM, POC, and Chl-a for OWTs 3 and 4. This result 

confirms the impact of wind-induced waves in the biogeochemical dynamics in the French 

Guiana coastal domain through for instance resuspension process as aforementioned in Section 

4.3.2. Nevertheless, the variability of dissolved organic materials in near-shore waters presents a 

different pattern peaking between the months of April and May, which implies a considerable 

contribution of CDOM stemming from local rivers during the high discharge period. 

 The climatological analysis from satellite data describes effectively the biogeochemical 

characteristics associated with the four OWTs considering offshore and coastal waters in French 

Guiana. This provides deeper insights into the seasonal variability of the investigated parameters 

and is in good agreement with the observations indicated in Chapter 4. 
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Figure 5.15. Monthly climatological cycles of the 4 Optical Water Types considering a) SPM, b) 

POC, c) Chlorophyll-a, d) aCDOM(412) using Sentinel-3/OLCI archives (04/2016 - 11/2022). 



Partition of the water masses and insights into monitoring water quality in 

French Guiana 

209 

5.5.2. Reference state definition and exceptional event detection 

 To establish a reference state that can be used to support local monitoring programs as well 

as to detect exceptional events, the yearly percentile 90 (P90) values have been statistically 

extracted over 7 years (2016-2022) of the Sentinel-3 archives focusing on different OWTs. The 

concentration ranges of biogeochemical parameters defined for the reference state are presented 

in Table 5.2. To better understand the potential deviations from the normal conditions, the 

information of an unusual occurrence where an exceptional rainfall was recorded in September 

of 2021 was used to compare with the baseline defined from the P90 of Sentinel-3 data. As 

mentioned in Section 1.1.1, September is usually the driest month in French Guiana. However, 

148% excess rainfall was observed in the department and the temperature was higher than the 

normal level of the dry season (+0.6°C) during this period. The activity of the ITCZ might be 

responsible for this phenomenon when the southern margin of the ITCZ remained close to 

French Guiana (Bulletin climatique mensuel de Guyane Septembre 2021 Par Météo-France). It is 

however important to note that the ranges of the referenced values defined from satellite data in 

this examination might be higher than that observed with in-situ data especially OWT-1 waters. 

This can be explained due to the fact that our in-situ measurements are very restricted to the 

coast leading to a small number of data points belonging to clear waters (OWT 1). Another 

reason is that the reference state has been established based on the P90 values which are 

relatively close to the upper limit of the satellite-derived concentration of each biogeochemical 

variable. 
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Table 5.2. The reference values for each OWT considering different parameters defined by the 

P90 values extracted from Sentinel-3 satellite archives over 7 years (2016-2022). 

 Parameters min max mean median stdv 

OWT 1 

SPM (g.m-3) 0.683 0.945 0.811 0.826 0.091 

POC (mg.m-3) 134.860 170.051 153.673 151.903 12.165 

Chl-a (mg.m-3) 0.709 1.269 1.030 1.061 0.209 

aCDOM(412) (m-1) 0.078 0.179 0.117 0.109 0.034 

POC/SPM 0.474 0.558 0.522 0.523 0.025 

OWT 2 

SPM (g.m-3) 4.232 5.114 4.716 4.678 0.321 

POC (mg.m-3) 383.663 441.134 409.671 411.100 25.535 

Chl-a (mg.m-3) 2.285 3.064 2.609 2.646 0.275 

aCDOM(412) (m-1) 0.635 1.702 1.068 0.942 0.389 

POC/SPM 0.143 0.275 0.216 0.231 0.042 

OWT 3 

SPM (g.m-3) 17.633 20.441 19.385 19.694 1.152 

POC (mg.m-3) 647.551 693.339 673.498 672.933 19.797 

Chl-a (mg.m-3) 4.580 5.362 4.944 4.914 0.297 

aCDOM(412) (m-1) 0.841 1.210 0.998 0.940 0.144 

POC/SPM 0.056 0.135 0.095 0.090 0.025 

OWT 4 

SPM (g.m-3) 90.299 207.992 144.327 138.717 48.663 

POC (mg.m-3) 1267.050 1515.118 1388.479 1367.800 89.401 

Chl-a (mg.m-3) 6.758 7.415 7.074 7.087 0.200 

aCDOM(412) (m-1) 1.799 2.095 1.937 1.919 0.105 

POC/SPM 0.034 0.067 0.046 0.047 0.011 

 The SPM concentration in September of 2021 in very coastal waters (OWT 4) was found to 

be significantly lower than the median value typically observed (138.7 g.m-3), registering at 41.4 

g.m-3, whereas the standard range is from 90.3 to 208 g.m-3. This might be attributed to the 

dilution caused by excessive precipitation associated with low sediment loads contributed by the 

French Guiana rivers. The lower particulate materials (POC and SPM) compared to the standard 

can also be explained by the fact that the resuspension process driven by Trade winds is less 

pronounced in September (see Section 1.1.2.1). The higher rainfall might also lead to an increase 

in the phytoplankton biomass flushed toward the estuarine vicinity, as evidenced by a higher 

concentration of Chl-a within OWT-4 waters compared to the reference values (Ray et al., 2018). 

However, dissolved organic materials exhibit a minor deviation from the P90 ranges, indicating 

that their response to the event was relatively trivial. Interestingly, the POC/SPM values over the 

continental shelf were recorded to be higher than the normal state regarding all OWTs. 
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 Figure 5.16 depicts the comparison between the distribution of the 4 OWTs during the 

exceptional event in consideration of their reference states (i.e., the most frequent occurrence). 

More specifically, there was a spatial contraction of OWTs 2, 3, and 4 toward the coastline, 

whereas areas corresponding to OWT-1 waters presented an extension, implying that substantial 

suspended inorganic fractions were diluted, and more organic materials were introduced into the 

coastal domain under the high rainfall and discharge condition. 

 The changes in concentration of the biogeochemical variables during the presence of 

exceptional events remained unclear except a dilution of SPM can be witnessed for OWT-4 

waters. Meanwhile, POC/SPM values demonstrate a substantial response to the extreme 

precipitation in September of 2021. This result confirms the reliability of the POC/SPM ratio as a 

metric in detecting abnormal events (i.e., environmental, or anthropogenic forcings) as well as 

monitoring coastal waters quality in French Guiana. 

 

Figure 5.18. Reference ranges of a) SPM, b) POC, c) Chlorophyll-a, d) aCDOM(412), and e) 

POC/SPM considering 4 OWTs defined in Section 5.2. Red stars correspond to the P90 

concentrations of different parameters extracted for the monthly Sentinel-3 scene in September 

of 2021. 
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Figure 5.16. The distribution of the 4 OWTs in September of 2021 (solid lines) concerning their 

most frequent occurrence over the Sentinel-3 time period. 

5.6. Classification summary and interest for refining regional 

monitoring strategy. 

 The relationship between the water types defined by Optical, Temporal, and POC/SPM 

classification approaches reveals a consistency regarding spatio-temporal patterns of 

biogeochemical variability in French Guiana marine waters. In particular, the climatological 

variation range of POC/SPM values for each OWT suggests that OWT 3 and 4 characterized as 

mineral-dominated, OWT 2 as mixed, and OWT 1 as organic-dominated environments (Figure 

5.9). At the same time, Classes 2, 3, and 4 yielded from the temporal classification are 

predominantly represent organic-dominated waters, since their POC/SPM variations were 

typically observed to reach above 0.2 during the MERIS time period. In contrast, Class 1 

signifies mineral-dominated environments, with its POC/SPM variation generally falling below 

0.08 (Figure 5.14). Moreover, the classification schemes explored in this study demonstrate 

greater robustness and provide a more detailed information about the biogeochemical attributes 

of the water masses compared to traditional classification techniques. This is due to the fact that 

the new technique is developed based on actual satellite data capturing the French Guiana coastal 

zone, encompassing detailed biogeochemical features in both coastal and offshore domains (see 

Sections 5.2, 5.3, and 5,4). Moreover, the conventional methods often result in delimitations that 
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closely attached to the coast presenting a spatial limitation as illustrated in Figure 5.17.a,b 

where the extension of the 4 zones is relatively restricted to the coast. Such disadvantage might 

lead to insignificant difference found in the seasonal variability patterns between the defined 

zones Figure 5.17.c in which the variations of Chl-a over these zones present higher values 

typically in wet period. 

 Therefore, considering POC/SPM classification as a frame, a summary of the outcomes from 

the optical and temporal classification schemes was proposed aiming at developing a monitoring 

strategy. More specifically, Classes 2, 3, and 4 obtained from the temporal classification were 

selected as the main descriptor in offshore waters (organic-dominated waters), whereas OWTs 2, 

3, and 4 defined from the optical classification were considered as the primary delimitation in 

coastal domain (mixed and mineral-dominated waters). This classification combination is 

presented in Figure 5.18 where the French Guiana marine waters have been partitioned into six 

domains. Accordingly, 12 stations located over different aquatic environments of French Guiana 

marine waters have been suggested with three field campaigns that can be conducted from 

Cayenne, Sinnamary, and Maroni rivers (Figure 5.18, Table 5.3). This sampling strategy was 

established with a consideration of the biogeochemical dynamics denoted in Chapter 4. For 

instance, stations 4, 8, and 12 are strategically placed to monitor the Amazon's influence on 

offshore regions, including the NBC retroflection, NBC rings, and the westward extension of 

biogeochemical variables. In coastal waters, stations 3, 7, and 11, located within OWT-2 regions, 

are designed to observe changes in marine waters characterized by both mineral and organic 

compositions. This is particularly relevant at station 11, where the presence of mixed waters is 

significantly pronounced (Figure 5.10). Stations 2, 6, and 10, corresponding to OWT-3 waters, 

offer valuable insights into the development of phytoplankton biomass in the coastal region of 

French Guiana. Moreover, stations within OWT-2 and OWT-3 pixels can be utilized to monitor 

biogeochemical alterations induced by the Guiana current and/or freshwater discharge from local 

rivers. Lastly, stations 1, 5, and 9 can be beneficial for investigating mudbank phenomena and 

their associated hydro-sedimentary processes. Indeed, the implementation of the in-situ 

monitoring at these locations should take into account the seasonality of multiple forcings acting 

on the study area such as strong wind period, dry, and wet seasons. Simultaneous measurements 

of different parameters (i.e., SPM, Chl-a, POC, DOC, aCDOM(412), SSS, and SST) will deliver a 

better understanding about the biogeochemical dynamics occurring in the region. The synergistic 

application of the mentioned classification schemes and the sampling plan serve as a 
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recommendation to effectively support coastal management strategies and policies considering 

the unique characteristic and complexity of French Guiana marine ecosystem. 

 Regarding practical deployment, it is suggested that the Cayenne cruise (Table 5.3) including 

stations 1, 2, and 3 should be prioritized to conduct in-situ measurements due to the availability 

of accessible shipping facility and infrastructure required for the implementation of sampling 

work. Moreover, the biogeochemical alterations at the location of these stations can provide 

valuable information on the manifestation of significant coastal processes such as mudbank 

migration, local river influence (Mahury river), tide/wind modulation, phytoplankton biomass 

oscillation, presence of mixed water, and Guiana current. 

Table 5.3. Information on the proposed sampling strategy considering offshore and coastal 

waters with the spatial location of stations shown in Figure 5.18. 

Cruise Station 

Location 

(longitude, 

latitude) 

Description 
Water 

Properties 
Domain 

Cayenne 

1 
-52.2425, 

4.9307 

Mudbanks and local river 

interface, tide/wind modulation 

Mineral-

dominated 
Coastal 

2 
-52.2091, 

4.9974 

Phytoplankton contribution, 

Guiana current 

Mineral-

dominated 
Coastal 

3 
-52.0869, 

5.2696 
Mixed water, Guiana current 

Mineral-

dominated 
Coastal 

4 
-51.9369, 

5.6530 
NBC Retroflection 

Organic-

dominated 
Offshore 

Sinnamary 

5 
-53.0147, 

5.4807 

Mudbanks and local river 

interface, tide/wind modulation 

Mineral-

dominated 
Coastal 

6 
-52.9647, 

5.5252 

Phytoplankton contribution, 

Guiana current 

Mineral-

dominated 
Coastal 

7 
-52.9091, 

5.6585 
Mixed water, Guiana current Mixed Coastal 

8 
-52.8091, 

5.9141 
NBC Rings 

Organic-

dominated 
Offshore 

Maroni 

9 
-53.9592, 

5.8030 

Mudbanks and local river 

interface, tide/wind modulation 

Mineral-

dominated 
Coastal 

10 
-53.9869, 

5.9530 
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Figure 5.17. The historical classification schemes in French Guiana considering a) fishing areas 

and b) coastal and offshore waters. c) seasonal variability of Chl-a extracted for four zones 

(Lampert et al., 2015). 

 

Figure 5.18. Summary of Optical and Temporal Classification schemes, with sampling station 

locations proposed in the present study. 

 To better understand the biogeochemical dynamics in the location of the autonomous station 

established near Saint-Joseph Island (Iles du Salut archipelago) since 09/01/2020 (see Section 
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2.2), the POC/SPM timeseries of the pixel at this location has been extracted over the time period 

of Sentinel-3 data. However, due to the spatial resolution limitation which leads to a masked 

pixel, the considered location here was shifted 2 km to the west of the autonomous station at 

5°16'46.6"N 52°36'00.0"W and is presented in Figure 5.19.a. The water properties in this region 

primarily vary from mineral-dominated to mixed conditions and present a strong seasonal 

oscillation in which the organic proportions appear to be more pronounced in the beginning of 

high flow period. This is consistent to the previous analysis denoted in Section 5.3 as the most 

frequent OWT presented here is OWT 3. Therefore, the establishment of this station can provide 

useful information about the significance of phytoplankton biomass as well as the associated 

environmental forcings such as the Guiana current, organic exchanges from mangroves. The 

results from this analysis confirms the relevance of establishing the autonomous station even 

though its collapse was due to practical issues. 

 

Figure 5.19. a) Locations of the autonomous station and the shifted pixel and b) Variability of 

POC/SPM extracted for the shifted pixel over Sentinel-3 period. 
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5.7. Conclusions and perspectives 

 The optical classification was used to partition the water masses into 4 different OWTs 

ranging from clear to highly contrasted waters. The consistency between the in-situ and satellite 

Rrs(λ) spectra shapes have proven the reliability of adopting ocean color data in delimiting the 

marine waters in French Guiana. The analysis performed on high-spatial-resolution data 

(Sentinel-2) showed that the Maroni River exhibits a spatial extension in OWTs during the wet 

season, meanwhile, no significant seasonal difference was found in the estuarine vicinity of the 

Oiapoque River, suggesting alternative approaches (e.g., Apparent Visible Wavelength) and/or 

the deployment of additional in-situ measurements could potentially enhance the identification of 

boundaries between riverine and coastal waters when utilizing high-resolution satellite archives. 

 The Temporal Classification using the Self-Organizing Map (SOM) technique, which was 

performed on POC/SPM values, aligns well with the findings discussed in Chapter 4. This 

classification approach provides a comprehensive description of the Amazon influence on off-

shore waters, taking into account factors such as NBC rings, NBC retroflection, and westward 

extensions of biogeochemical parameters. However, it is important to note that this approach 

requires a long time series of data to generate robust and reliable results. 

 The POC/SPM partitioning outcomes including the identification of mineral-dominated, 

mixed, and organic-dominated environments offer a better understanding about the seasonal 

alteration in suspended organic fractions in coastal regions which typically presents a spatial 

contraction during high flow conditions, which is probably due to the dilution caused by high 

rainfall. Variability range of POC/SPM values regarding different OWTs aligns well with the 

field measurements.  

 The information on PPC (i.e., POC/SPM-based classification) has been used as a frame to 

select and combine the optimal partitioning methods over French Guiana marine waters 

considering both coastal and off-shore domains. Such combination approach serves as a general 

summary for the delimitation of the water masses that provides more in-depth information about 

the biogeochemical characteristics of French Guiana marine waters regarding both temporal and 

spatial patterns (i.e., classification of the time series, optical water types) with a more robust 

statistical computation which might be a limitation of the historical classification technique. 

Accordingly, a field measurement strategy was proposed through the combined classification 
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scheme with 12 stations located over a variety of water types in order to provide to stakeholders 

a generic framework for deploying regional monitoring programs and policies. 

 The biogeochemical properties associated with each OWT, which exhibits unique patterns in 

seasonal variation throughout the year, offering valuable insights into the seasonality of the 

investigated parameters. The reference values were defined for considered parameters regarding 

four OWTs with the aim of establishing a baseline to identify exceptional events. The presence 

of an unusual extreme precipitation event in September of 2021 was clearly detected by the 

higher POC/SPM values compared to the reference ranges, which might be attributed to the 

dilution caused by high rainfall intensity. This result highlights the appropriateness of using 

POC/SPM parameter as an indicator to identify unusual deviations for French Guiana marine 

waters. 

 It is worth mentioning that the involvement of multiple biogeochemical variables (i.e., POC, 

SPM, Chl-a, aCDOM) and physical variables (i.e., SST, SSS, Mixed Layer Depth (MLD), Winds, 

and Waves) can be considered as the parameterization for the SOM classification method. Since 

such approach has the capability to provide the weights for the input parameters, the importance 

of each variable regarding each water type thus can be revealed. This information could be 

valuable to attain more profound knowledge of the water body that could be closely related to 

ecological niches as the relationship between biogeochemical dynamics and ecological 

distribution is a fundamental aspect of ecosystem functioning and structure. 
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GENERAL CONCLUSION 

Main findings 

 This dissertation contributes to the efforts to better characterize the French Guiana’s coastal 

water quality using remote sensing technique through the examination performed on regional 

variability of various biogeochemical parameters, and the analysis of different classification 

schemes.  

 The adaptation of bio-optical inversion algorithms in Chapter 3 reveals that the tuned version 

of existing models is sufficient to estimate the concentration of most considered water quality 

descriptors except Chl-a. In particular, the model proposed by Han et al., (2016) is the most 

accurate model for estimating SPM over the French Guiana coastal waters. Whereas, a 

combination of two adapted models suggested by T. K. Tran et al., (2019) and Le et al., (2017) 

has proven its reliability to predict POC. The tuned model of Cao et al., (2018) was selected to 

derive aCDOM(412) which can be used as a proxy to compute the DOC through an approach 

documented in Vantrepotte et al., (2015). However, the performance of existing Chl-a models on 

the in-situ dataset did not yield a satisfying result primarily due to the signature characteristics of 

the water body. Such unique characteristics are typically related to highly turbid environment 

caused by excessive sediment loads transported from the Amazon River’s mouth. The retrieval 

of information on phytoplankton biomass over the entire marine domain of the study area, 

therefore, requires a combination of multiple inversion algorithms (i.e., MuBR, and NDCI-

based) with a consideration of different OWTs as a frame. The challenges of estimating Chl-a 

over ultra-turbid waters are also addressed, highlighting the potential of using hyperspectral data 

in optically complex environments (M. D. Tran et al., 2023). 

 The temporal analysis on biogeochemical variability of French Guiana marine waters in 

Chapter 4 indicates the influence of the Amazon River through different hydro-dynamic 

processes. The NBC retroflection were identified to exhibit a seasonal pattern through all 

considered parameters that typically occurs between July and October in the eastern regions. 

Whereas, NBC rings were found to be more sensitive to irregular variations of SPM. An offshore 

extension of both dissolved and particulate materials in the western regions might be in response 

to the effect of bathymetry and wind modulation. These processes were detected to primarily 

present significant influence on French Guiana off-shore domain. The variations of different 
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biogeochemical parameters over coastal waters are attributed to the manifestation of mudbank 

migration which is typically regulated by the wind-induced waves from January to April. The 

impact of Guiana current during dry season and/or dilution effects caused by high rainfall 

intensity might be responsible for a seasonal belt in SPM found with a distance of 20 km from 

the coast. The irregular variation of POC and aCDOM(412) here is also potentially related to the 

organic exchange from the local mangroves. Results show that no evidence of significant long-

term changes has been detected except the fingerprint of mudbank migration along the coast. The 

study also suggests POC/SPM value as one of the most important parameters in describing the 

biogeochemical variability and monitoring coastal water quality over French Guiana marine 

ecosystem. 

 Optical classification applied on Sentinel-2 data showed a spatial extension of OWT over 

Maroni River in the wet season, while no significant change occurred near Oiapoque River, 

indicating alternative approaches (e.g., AVW) or additional in-situ measurements could improve 

the delimitation between riverine and coastal waters. The PPC partitioning results illustrate a 

spatial contraction of suspended organic fractions from February to May which might be in 

response to the dilution effect caused by high discharge condition. Results attained from 

temporal classification using the SOM technique performed on POC/SPM values aligns well 

with the findings discussed in Chapter 4 in which the NBC rings, NBC retroflection, and off-

shore extensions to the west were detected. 

 The PPC-based classification method has been employed as a frame to select and combine 

the optimal partitioning schemes for French Guiana's marine waters, including coastal and 

offshore areas. This approach offers a comprehensive overview of the water masses and presents 

spatial and temporal advancements compared to traditional approach performed in French 

Guiana by using more reliable statistical calculations. A field measurement plan with 12 stations 

across various water types has been suggested, which can be a helpful foundation for regional 

monitoring programs and policies. Reference values were established for these OWTs to identify 

unusual events. For example, an exceptional rainfall event in September 2021 led to higher 

POC/SPM values recorded for all OWTs, which could be attributed to dilution caused by high 

precipitation. This demonstrates the effectiveness of using POC/SPM as one of important 

indicators for detecting anomalies in French Guiana's marine waters. 
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Perspectives 

 Besides the attained results, the main drivers responsible for different processes acting on the 

study area are left to be discovered. This involves the factors leading to the presence of Guiana 

current through a seasonal belt of SPM and an extension of all biogeochemical variables to the 

western part in the off-shore domain during the wet and windy seasons. Further research should 

be conducted with the aim of seeking explanations for the irregular variations of SPM that is 

potentially related to NBC rings. It is also necessary to develop advanced and appropriate 

methodologies to quantify or at least differentiate the contribution of local (i.e., river inputs, 

organic exchanges from mangroves, human forcings) and regional (i.e., the Amazon River’s 

influence) origins to the biogeochemical dynamics over the French Guiana marine ecosystem. To 

gain a better understanding about these remaining questionable issues, future efforts are 

suggested to focus on obtaining more robust and adequate in-situ measurements, which can be 

conducted according to the proposed sampling strategy with the integration of other physical 

factors related to winds and currents. Longer and more recent time series of high and medium 

spatial resolution satellite products are required for the temporal analysis with the focus on 

coastal domain to obtain more up-to-date observations. 

 The proposed partitioning schemes, such as optical classification (through different OWTs), 

temporal classification (through an application of SOM), and PPC classification (through 

POC/SPM values) accompanied with the summarized classification can be applied to other 

aquatic environments in different geographic locations (e.g., regions that are also influenced by 

the Amazon’s mudbank system including North Brazil, Suriname, Guyana, and Venezuela 

coastal waters). In this thesis, these methods have proven to be a promising tool to support the 

deployment of in-situ monitoring programs over French Guiana’s marine waters. Further, such 

approaches are also useful to extract a comprehensive insight into the biogeochemical dynamics 

considering both spatial and temporal patterns such as the detection of anomalies and 

understanding about the fate of Amazon’s input in the context of climate impacts or modulation 

of the seasonal patterns.  

 Moreover, the potential to gain more in-depth knowledge about the water properties can be 

accomplished through the application of SOM classification on multiple biogeochemical 

variables (i.e., POC, SPM, Chl-a, aCDOM) and physical variables (i.e., SST, SSS, Mixed Layer 

Depth (MLD), Winds, and Waves) for identifying the importance of each parameter regarding 
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different water types. For instance, the MLD alteration can be related to vertical mixing and 

availability of nutrient/light, which contribute to changes of biogeochemical properties in coastal 

waters. Further, such information might also be useful to better understand the regional marine 

ecosystem’s structure and functioning (e.g., ecological niches definition) and the dynamics of the 

higher trophic levels. 
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ANNEX 

Table A.1. Adaptation of inversion models to derive biogeochemical concentration considering MERIS, OLCI, and MSI sensors 

  

Sensors 
Spectral 

bands 
Algorithm formulation Coefficients Plot 

SPM 

MERIS/ 

OLCI/ 

MSI 

 Original BingHan16 Aρ
L Cρ

L Aρ
H Cρ

H 

 

665 

SPML=
Aρ

L.ρw(λ0)

1 - 
ρw(λ0)

Cρ
L

 

SPMH=
Aρ

H.ρw(λ0)

1 - 
ρw(λ0)
Cρ

H

 

WL= {

1, if Rrs(λ0) ≤ 0.03 sr-1

0, if Rrs(λ0) ≥ 0.04 sr-1

log10(0.04) – log10[Rrs(λ0)], otherwise

 

WH = {

0, if Rrs(λ0) ≤ 0.03 sr-1

1, if Rrs(λ0) ≥ 0.04 sr-1

log10[Rrs(λ0)] – log10(0.03), otherwise

 

 

SPM=
WL.SPML+WH.SPMH

WL+WH
 

396.01 0.5 1208.48 0.34 
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POC 

MERIS/ 

OLCI 

412 

443 

490 

510 

560 

665 

Tuned Le17 (OWT 3) a b c d e 

 

POC=1000×exp[a×Rrs(490)+b×Rrs(510) 
+c×Rrs(560)+d×Rrs(665)+e] 

738.57 -836.3 110.71 52.52 -0.49 

KienTran19 (OWTs 1 & 2) a b 

POC=10aX+b 

X=log
10
{max [

Rrs(665)

Rrs(490)
,
Rrs(665)

Rrs(510)
,
Rrs(665)

Rrs(555)
]} 

0.928 2.875 

MSI 

443 

490 

560 

665 

Tuned Le17 (OWT 3) a b c d 

 

POC=1000×exp[a×Rrs(490)+b×Rrs(560) 
c×Rrs(665)+d] 

99.25 -103.67 64.39 -0.46 

KienTran19 (OWTs 1 & 2) a b 

POC=10aX+b 

X=log
10
[
Rrs(490)

Rrs(560)
] 

-1.824 2.34 
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aCDOM(412) 

MERIS/

OLCI 

443 

490 

510 

560 

665 

Tuned Cao18 a b c d e f 

 

ln(aCDOM(412))= a×ln(Rrs(443)) 

+ b×ln(Rrs(490))+ c×ln(Rrs(560))  

+d×ln(Rrs(665))+e 
3.03 -20.51 20.22 -4.76 1.3 -2.89 

MSI 

443 

490 

560 

665 

Tuned Cao18 a b c d e 

 

ln(aCDOM(412))= a×ln(Rrs(443)) 

+ b×ln(Rrs(490))+ c×ln(Rrs(560))  

+d×ln(Rrs(665))+e 

0.77 -2.08 -0.92 1.52 -2.7 
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Figure A.1. Monthly SPM climatology based on the entire MERIS archive. 
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Figure A.2. Monthly POC climatology based on the entire MERIS archive. 
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Figure A.3. Monthly Chl-a climatology based on the entire MERIS archive. 
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Figure A.4. Monthly aCDOM(412) climatology based on the entire MERIS archive. 
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Abstract (short version) 

 French Guiana marine waters hold unique marine environments and habitats representing areas of 

high ecological, societal, and economical importance. These interface regions (land/Amazon-ocean) 

are vulnerable to changes in environmental conditions of natural or anthropogenic origins acting on 

both land and ocean geosystems. Monitoring these coastal waters appears therefore as a priority for 

supporting the development of sustainable, ecosystem-based environmental policies. Up to now, the 

lack of in-situ observation in the area represents a limitation to assess the variability of these marine 

ecosystems. In that context, satellite observation can represent a valuable and cost-effective tool to 

synoptically depict the biogeochemical spatio-temporal variability of these ecosystems at sufficient 

spatial and temporal resolutions to also describe local and episodic features. However, ocean color 

remote sensing application in optically complex waters such as the ones of French Guiana requires the 

use of 1) adapted inversion methods to deliver valuable information on key biogeochemical descriptors 

and 2) adapted statistical approaches for extracting insights into the spatiotemporal dynamics of the 

water masses. 

 This PhD has been built in this context and divided into 5 Chapters with the principal aims of 1) 

developing a set of ocean color products (Chlorophyll-a, Chl-a, Suspended Particulate Matter, SPM, 

Colored Dissolved Organic Matter, CDOM, Particulate And Dissolved Organic Carbon, POC and 

DOC, respectively) to monitor water quality in French Guiana, 2) describing the biogeochemical 

dynamics at the regional scale to assess the main factors driving this variability as well as the key 

biogeochemical descriptors to monitor at the regional scale, and 3) proposing a partition of the water 

masses in order to support the development of regional monitoring policies. 

 Chapter 1 provides background information introducing the rationale of this work. Chapter 2 

introduces the datasets and statistical approaches used in the frame of this PhD. Chapter 3 presents the 

methodological developments performed to improve a set of inversion algorithms at the regional scale 

for diverse high (e.g., Sentinel-2 with 10 m) and medium (e.g., MERIS and Sentinel-3 with 1 km and 

300 m, respectively) spatial resolution sensors. The most adapted inversion models for delivering 

information on phytoplankton, particulate, and dissolved matter were defined from regional 

optimization/validation exercises. Our results further emphasized the challenges in estimating Chl-a 

over optically complex waters and a general framework based on optical classification was established 

to combine different Chl-a models for global applications. Chapter 4 describes the spatio-temporal 

variability of the considered biogeochemical parameters using time series analysis performed on the 

generated ocean color archives. Regions under the influence of the Amazon River’s plume have been 
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well identified from multispectral satellite data (i.e., mudbank migration, North Brazil Current (NBC) 

retroflection). Our results show no evidence of significant long-term changes has been detected except 

the fingerprint of mudbank migration along the coast. It is also suggested that POC/SPM ratio might be 

an appropriate descriptor to monitor French Guiana’s coastal water quality. Chapter 5 focuses on the 

partition of the French Guiana water masses considering different approaches (i.e., optical and 

temporal classification). In particular, an optical classification scheme can provide a comprehensive 

and dynamic view of the water masses characteristics in the French Guiana coastal domain. An 

illustration of the potential offered by temporal variation-based classifications for delimiting French 

Guiana waters is further illustrated. Such partition of the French Guiana waters can represent a 

valuable frame to assess reference status, develop in-situ monitoring programs and evaluate potential 

impact of changes in the environmental conditions on these ecosystems. 

Keywords: Ocean Color, biogeochemical dynamics, coastal water quality, Chlorophyll-a, optical 

classification.  
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Résumé (version courte) 

 Les eaux marines de la Guyane française abritent des environnements et des habitats marins 

uniques représentant des zones de grande importance écologique, sociétale et économique. Ces régions 

d'interface (terre/Amazone/océan) sont vulnérables aux changements des conditions environnementales 

d'origine naturelle ou anthropique. La surveillance de ces eaux côtières apparaît donc comme une 

priorité pour soutenir le développement de politiques environnementales durables. Le manque 

d'observations in situ dans la zone représente cependant une limitation forte. Dans ce contexte, 

l'observation spatiale couleur de l’eau représente un outil précieux pour décrire de manière synoptique 

la variabilité biogéochimique de ces écosystèmes à des résolutions spatiales et temporelles suffisantes 

pour décrire également des variations locales ou épisodiques. Cependant, l'application de cet outil dans 

des eaux optiquement complexes telles que celles de la Guyane Française nécessite l'utilisation 1) de 

méthodes d'inversion adaptées pour fournir des informations précieuses sur les descripteurs 

biogéochimiques clés et 2) d'approches statistiques adaptées pour extraire des informations sur la 

dynamique spatio-temporelle des masses d'eau. 

 Cette thèse a été construite dans ce contexte a pour objectifs principaux de 1) développer un 

ensemble de produits de couleur de l'océan (Chlorophylle a, Chl-a, particules en suspension, SPM, 

Matière Organique Dissoute Colorée, CDOM, carbone organique particulaire et dissous, POC et DOC, 

respectivement) pour surveiller la qualité de l'eau en Guyane française, 2) décrire la dynamique 

biogéochimique à l'échelle régionale afin d'évaluer l’impact des principaux forçages environnementaux 

et de définir les descripteurs biogéochimiques clés à surveiller à l'échelle régionale, et 3) proposer une 

partition des masses d'eau afin de soutenir le développement de politiques de suivi. 

 Le Chapitre 1 fournit des informations sur l’état de l’art alors que le Chapitre 2 présente les 

données et les approches statistiques utilisées dans ce doctorat. Le Chapitre 3 présente les 

développements méthodologiques réalisés pour améliorer un ensemble d'algorithmes d'inversion à 

l'échelle régionale pour diverses capteurs à haute (Sentinel-2) et moyenne résolution spatiale (MERIS, 

Sentinel-3). Les modèles d'inversion les plus adaptés pour fournir des informations sur le 

phytoplancton, les matières particulaires et dissoutes ont été définis à partir d'exercices 

d'optimisation/validation régionaux. Un cadre général basé sur la classification optique pour combiner 

différents modèles afin d’estimer ce paramètre dans les eaux côtières est également proposé à l’échelle 

globale. Le Chapitre 4 décrit la variabilité spatio-temporelle des paramètres biogéochimiques 

considérés via des analyses des séries temporelles réalisées sur les archives de la couleur de l'océan 

générées permettant notamment de caractériser l’impact de l’Amazone sur les eaux Guyanaises. Nos 



Résumé (version courte) 

254 

résultats ne montrent aucun changement significatif à long terme, à l'exception de ceux liés à la 

migration des bancs de vase le long de la côte. Il est également suggéré que le rapport POC/SPM 

pourrait être un descripteur approprié pour surveiller la qualité des eaux côtières de Guyane française. 

Le Chapitre 5 se concentre sur la partition des masses d'eau de Guyane en considérant différentes 

approches (i.e., classification optique et temporelle). En particulier, une classification optique de ces 

masses d'eau est proposée afin de fournir une vue globale et dynamique de la distribution des masses 

d'eau marines de la Guyane française. Une illustration du potentiel offert par les classifications basées 

sur les variations temporelles est également présentée. De telles partitions des eaux de Guyane peuvent 

représenter un cadre pertinent pour évaluer l'état de référence, développer des programmes de 

surveillance in situ de ces écosystèmes et évaluer l'impact potentiel des changements 

environnementaux. 

Mots-clés: Couleur de l'océan, dynamique biogéochimique, qualité des eaux côtières, chlorophylle-a, 

classification optique. 
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Abstract: Chlorophyll-a concentration (Chl-a) is a crucial parameter for monitoring the water qual-

ity in coastal waters. The principal aim of this study is to evaluate the performance of existing Chl-

a band ratio inversion models for estimating Chl-a from Sentinel2-MSI and Sentinel3-OLCI obser-

vation. This was performed using an extensive in situ Rrs-Chl-a dataset covering contrasted coastal 

waters (N = 1244, Chl-a (0.03–555.99) µg/L), which has been clustered into five optical water types 

(OWTs). Our results show that the blue/green inversion models are suitable to derive Chl-a over 

clear to medium turbid waters (OWTs 1, 2, and 3) while red/NIR models are adapted to retrieve 

Chl-a in turbid/high-Chl-a environments. As they exhibited the optimal performance considering 

these two groups of OWTs, MuBR (multiple band ratio) and NDCI (Normalized Difference Chloro-

phyll-a Index)-based models were merged using the probability values of the defined OWTs as the 

blending coefficients. Such a combination provides a reliable Chl-a prediction over the vast majority 

of the global coastal turbid waters (94%), as evidenced by a good performance on the validation 

dataset (e.g., MAPD = 21.64%). However, our study further illustrated that none of the evaluated 

algorithms yield satisfying Chl-a estimates in ultra-turbid waters, which are mainly associated with 

turbid river plumes (OWT 5). This finding highlights the limitation of multispectral ocean color 

observation in such optically extreme environments and also implies the interest to better explore 

hyperspectral Rrs information to predict Chl-a. 

Keywords: chlorophyll-a; coastal waters; ocean color remote sensing; optical water types 

 

1. Introduction 

Phytoplankton biomass, estimated through the Chlorophyll-a (Chl-a) concentration, 

represents a key parameter for monitoring the response of the coastal domain to environ-

mental changes of natural or anthropogenic origins. The evaluation of human impacts on 

coastal ecosystems’ structure and functioning leading for instance to eutrophication pro-

cesses (e.g., [1]) represents a crucial scientific and societal objective, which strongly relies 

on the availability of long-lasting consistent Chl-a times series. Satellite ocean observation 

represents in this context a relevant tool since it provides a continuous synoptic view of 

the coastal waters over more than two decades. At the same time, the spatial and temporal 

resolutions of ocean color observations are fine enough for allowing local studies or cap-

turing episodic events advantageously complementing classical in situ monitoring. Re-

cent ocean color sensors onboard satellites from the ESA Sentinel constellation (i.e., Sen-

tinel2-MSI and Sentinel3-OLCI) have further increased the availability of ocean satellite 

data. These satellite archives are now considered an essential observation tool for 
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supporting the development of sustainable environmental policies (EU Water Framework 

Directive and Marine Strategy Framework Directive, [2,3]). 

While Chl-a concentration represents the pioneer product of ocean color observation, 

efforts are still required for improving the accuracy of Chl-a estimation in optically com-

plex waters [4,5]. Chl-a inversion algorithms have indeed been first dedicated to the oce-

anic (Case-1) waters where the variability of optical properties is mainly driven by phyto-

plankton [6]. The ocean color (OC) chlorophyll-a models and related offspring algorithms 

[7,8] are typically based on the use of a maximum band ratio in the blue–green domain of 

the visible spectrum. Such algorithms have been widely validated over clear environ-

ments and are now operationally used for deriving Chl-a in open ocean waters (e.g., [9–

11]). Estimating Chl-a from space still, however, represents a challenging task in coastal 

waters (Case-2 waters, [5,12]). This is related to the high optical diversity of these environ-

ments [13] where water optical properties are diversely driven by a variable contribution 

of phytoplankton, suspended particulate matter (SPM), and colored dissolved organic 

matter (CDOM). In high-CDOM and/or -SPM phytoplankton conditions, the co-occur-

rence of different water constituents presents impacts on the reflectance signal, especially 

at the shortest wavelengths of the visible range. This feature tends to impair the perfor-

mance of classical blue/green ratio-based inversion models [14–16]. 

For this reason and considering the crucial need to monitor Chl-a over turbid coastal 

environments, specific Chl-a algorithms have been developed taking advantage of the im-

pacts of phytoplankton on the water optical properties in the red and near-infrared (NIR) 

regions. These models rely on the negligible impacts of CDOM and SPM absorption as 

well as the optical signature of phytoplankton absorption or chlorophyll fluorescence over 

the red–NIR domain of the electromagnetic spectrum (e.g., [17–20]). Such red–NIR ap-

proaches are, however, failing in clear waters, where the phytoplankton signal can be 

masked in relationships to the high contribution of pure water absorption at higher wave-

lengths [21,22]. 

Regional inversion models have been considered to be a convenient way for optimiz-

ing ocean color products over a defined coastal area. Such approaches present, however, 

numerous limitations being dependent on the representativeness of the dataset used and 

are intrinsically limited in terms of spatial applicability [23]. Alternative approaches based 

on the applications of a defined model on a pixel-per-pixel basis according to the water 

optical characteristics have been shown to represent a valuable alternative for combining 

different algorithms for estimating ocean color satellite products in coastal waters [23–25]. 

An extensive study by Neil et al. [26] has further illustrated the interest in an adaptive 

framework for dynamically selecting and optimizing Chl-a inversion models in inland 

waters based on optical water types (OWTs). With the main objective to provide ocean 

color data users a simple way to evaluate the reliability of the Chl-a estimates derived 

from blue/green and red/NIR inversion models, Lavigne et al. [12] developed quality con-

trol tests for improving MERIS and OLCI Chl-a estimates in coastal waters. In addition to 

these recent studies, new alternative approaches that rely on machine learning, which 

may be more computing-time-consuming than standard reflectance ratios, are now devel-

oped for deriving Chl-a over a large range of Chl-a contents and considering a variety of 

bio-optical regimes in inland and coastal waters [27]. Although there were numerous ef-

forts performed during the last decades for accurately estimating Chl-a concentration 

from the remote sensing reflectance using adapted inversion, there is still no consensus 

on the algorithm or the set of algorithms to be applied for deriving Chl-a for large-scale 

applications in coastal waters. 

This study contributes to ongoing efforts to optimize the retrieval of Chl-a from ocean 

color observations in coastal waters, with a specific focus on Sentinel-2/MSI and Sentinel-

3/OLCI observations. A comprehensive global in situ remote sensing reflectance (Rrs)–Chl-

a dataset (N = 1244) of samples collected in contrasted environments has been gathered. 

This dataset was classified into five OWTs ranging from clear to ultra-turbid waters. Using 

OWTs as a general framework, this work first aims at illustrating the limitations of 
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historical band-ratio-based algorithms for deriving Chl-a and selecting the most appro-

priate inversion models by evaluating novel formulations and state-of-the-art algorithms 

adapted for different OWTs considered. This study further presents the interest and re-

quirements (e.g., compatibility of inversion algorithms to provide accurate Chl-a esti-

mates, discontinuities in the map when merging Chl-a models) of band-ratio-based blend-

ing approaches to provide reliable Chl-a across diverse coastal environments. The applica-

bility of band-ratio-based approaches at a global scale, as well as possible future improve-

ments in Chl-a retrieval, especially in ultra-turbid environments, by exploiting the poten-

tial of upcoming hyperspectral observations, is specifically discussed. 

2. Materials and Methods 

An overview of the study process, including the performed development and pro-

cessing, can be seen in the flow chart (Figure 1). 

 

Figure 1. Flow chart of the present study illustrating the general methodology for development and 

validation of the combined Chl-a model. 

2.1. In Situ Dataset 

The in situ dataset (DS-W, N = 1244, mean Chl-a = 12.14 µg/L) combines concomitant 

measurements of Chl-a and remote sensing reflectance (Rrs) collected between 1997 and 

2016 in the frame of diverse worldwide distributed field campaigns in contrasted coastal 

areas (European coastal waters [28–31], French Guiana [23,32], Eastern Viet Nam Sea 

[15,33], South Shetland Islands, the US coastal waters, The Sea of Japan [34], Beaufort Sea 

North Canada [35], and Brazil (Guanabara Bay, Rio de Janeiro) [36]) (Figure 2). This da-

taset covers a wide range of Chl-a concentrations with values ranging over 4 orders of 

magnitude (0.03–555.99 µg/L, Table 1) from oligotrophic waters (e.g., Mediterranean Sea, 

clear polar waters) to ultra-eutrophic environments (Guanabara Bay, Rio de Janeiro; [36]). 

The DS-W was further randomly split into a development dataset (DS-D, N = 831, mean 

Chl-a = 13.63 µg/L) and a validation dataset (DS-V, N = 356, mean Chl-a = 9.45 µg/L), rep-

resenting 70 and 30% of the DS-W, respectively; these three datasets follow a similar dis-

tribution (Figure 3). It is worth noting that the proportion of DS-D/DS-V partition was 

performed excluding the points corresponding to OWT5 (N = 57), for which no band-ratio-

based model development has been performed (see Sections 3.2.1 and 3.3.1). 

The Chl-a/SPM ratio has been calculated for the whole dataset for providing rough 

information on the relative importance of the Chl-a signal associated with the different 
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water masses considered in this study. Considering that the SPM concentration was not 

available for all the in situ samples in the DS-W, SPM was estimated from the Rrs(665) 

using the model by Han et al. [37], which has had a reliable performance illustrated from 

various former studies in contrasted coastal waters (e.g., [38,39]). 

Table 1. Description of the in situ dataset of Chl-a (µg/L) considered in the frame of this study: 

number of samples (N), minimum (Min), maximum (Max), mean (Mean), and standard deviation 

(StdDev). 

Region Temporal Coverage N Min Max Mean StdDev Reference 

Vietnam 2011–2014 43 0.66 17.45 4.63 3.75 [15,33] 

French Guiana 2006–2016 108 0.41 22.65 6.40 5.45 [23,32] 

Guanabara Bay 

(Brazil) 
2012–2015 161 1.03 555.99 76.06 101.46 [36] 

Beaufort Sea 2014 40 0.03 3.52 0.32 0.64 [35] 

Sea of Japan 1999–2001 41 0.13 2.89 0.73 0.64 [34] 

USA 1999–2007 498 0.08 28.46 1.71 2.79 [34] 

South Shetland 

Islands 
2000–2007 82 0.03 4.01 0.86 0.81 [34] 

Europe 1997–2012 271 0.05 33.33 3.69 5.42 [28–31] 

Total 1997–2016 1244 0.03 555.99 12.14 44.13  

 

Figure 2. Spatial distribution of in situ Rrs-Chl-a measurements gathered within the DS−W dataset 

(N = 1244) collected in (a) the Beaufort Sea, (b) the United States coastal waters, (c) the French Guiana 

coastal waters, (d) Guanabara Bay, (e) the South Shetland Islands, (f) European coastal waters, (g) 

Vietnamese coastal waters, and (h) the Sea of Japan: colors indicate the optical water types each in 

situ sample is associated with (see Section 2.3). 
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Figure 3. Chl-a absolute frequency distribution for (a) the whole in situ dataset DS−W (N = 1244), 

(b) the development dataset (DS−D, N = 831), and the validation dataset (DS−V, N = 356). The num-

ber of data points corresponding to OWT 5 is not considered in the DS−D and DS−V. 

2.2. Satellite and Matchup Dataset 

Data in the DS-W have been acquired before the S2 and S3 time period (from June 

2015 and February 2016, respectively). An external and independent in situ dataset, which 

encompasses only Chl-a measurements, has been therefore considered in addition to the 

DS-W for validation purposes (Figure 4). In practice, Chl-a samples collected along the 

French coast are in the frame of the SOMLIT (Coastal Environment Observation Service, 

https://www.somlit.fr/, accessed on 15 June 2021) and REPHY (Observation and Monitor-

ing Network for Phytoplankton and Hydrology in coastal waters, 

https://www.seanoe.org/data/00361/47248/, accessed on 15 June 2021) French national 

survey programs. These long-lasting in situ datasets (e.g., continuous monthly data since 

1997 for SOMLIT) present the advantage of being acquired following a standardized pro-

tocol. 

 

Figure 4. Distribution of the REPHY and SOMLIT stations considered in the matchup dataset DS−M. 

In practice, Satellite Sentinel2-MSI A/B (60 m resolution) and Sentinel3-OLCI A/B 

(300 m resolution) Rrs data have been extracted for both SOMLIT and REPHY Chl-a sam-

ples over the time periods from 7 September 2015 to 19 March 2021 and from 24 May 2016 

to 7 April 2021 for MSI and OLCI, respectively). Specifically, top-of-atmosphere Level 1 

products have been processed considering three atmospheric correction schemes 
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including POLYMER (version 4.13, [40]), C2RCC [41], and ACOLITE [42]. The matchup 

extraction was performed considering a 3 × 3 window around each in situ sampling point. 

Several quality control criteria were then applied [43] considering the following: (1) the 

number of valid pixels (at least 5 valid pixels among the 9 pixels extracted), (2) the spatial 

homogeneity of the matchup subsets assessed from the variation coefficient within the 

subset window (CV = standard deviation/mean. 100 < 30%), and (3) the time difference 

between in situ and satellite measurements (lower than 3 h). 

After the application of all these criteria, the final matchup dataset (DS-M) is then 

composed of a maximal number of 194 matchup points for MSI and 362 for OLCI with 

Chl-a concentrations ranging between 0.19 and 34.12 µg/L (mean = 2.48 µg/L, standard 

deviation = 3.79 µg/L) and 0.05 and 52.93 µg/L (mean = 2.52 µg/L, standard deviation = 3.7 

µg/L), respectively. The Chl-a statistic of the DS-M is further illustrated in Figure 5. 

In addition to the Sentinel2 and Sentinel3 matchup dataset, the global MERIS Glob-

Coast dataset (monthly 1 km spatial resolution, [15,33]) was further considered for illus-

trating and discussing the potential applicability of the models selected with the frame of 

this study with a global-scale perspective. 

 

Figure 5. Box plot showing Chl-a range of the final matchup dataset (DS−M) regarding OLCI and 

MSI sensors. 

2.3. Optical Classification 

2.3.1. Optical Water Types Definition 

Optical water types (OWTs) were defined using the procedure defined in [23] ap-

plied to the DS-W Rrs dataset. In practice, normalized Rrs data were considered to cluster 

the reflectance data focusing on the shape of the spectra. The normalization was applied 

to multispectral Rrs data considering 6 wavelengths in the visible part of the spectrum 

(412, 443, 490, 510, 560, and 665 nm) centered on the OLCI bands. The normalized Rrs was 

determined by the ratio between its original value and the surface below the spectral 

shape as follows: 

Rrs
norm = 

Rrs(λ)

∫ Rrs(λ)dλ
λ2

λ1

 (1) 

where Rrs
norm represents the normalized remote sensing reflectance. 

An unsupervised classification was then applied to the Rrs
norm dataset using Ward’s 

clustering method [44], which presents the advantage of being less sensitive to outliers 

compared to other approaches [23]. 

This classification led to the definition of 5 optical water types showing different Rrs 

spectral shapes (Figure 6a). OWTs 1 and 2 (N = 269 and 185, respectively) are associated 

with clear oligotrophic to mesotrophic waters (mean Chl-a = 0.38 ± 0.36 and 0.96 ± 0.74 

µg/L, respectively) with Rrs spectra typically peaking in the blue part of the visible 
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spectrum. OWT 3 samples correspond to mesotrophic waters characterized by high Rrs in 

the green part of the visible spectrum with an Rrs plateau ranging between 490 and 560 nm 

(N = 426, mean Chl-a = 2.33 ± 3.09 µg/L). The Chl-a/SPM ratio for these 3 OWTs increases 

from OWT 1 (2.25 × 10−3) to OWT 3 (4.04 × 10−3). 

OWTs 4 and 5 are associated with highly turbid/eutrophic coastal waters. OWT 4 

corresponds to high-Chl-a waters with an Rrs peak at 560 nm (N = 307, mean Chl-a = 43.72 

± 80.89 µg/L) and shows the maximal Chl-a/SPM ratio among the different OWTs (Chl-

a/SPM = 13 × 10−3) related to ultra-eutrophic for these samples. Conversely, OWT 5 sam-

ples (N = 57) are more likely associated with turbid waters showing a higher proportion 

of non-algal particles (sediments and detritus) when compared to OWT 4 as emphasized 

from the lower average Chl-a (7.15 ± 10.46 µg/L) and the lowest Chl-a/SPM ratio (1.43 × 

10−3) found for these samples (Figure 6c). 

 

Figure 6. (a) Average Rrs
norm  spectra corresponding to the optical water types defined from the 

DS−W dataset (N = 1244); box plots illustrating the distribution of Chl-a (b) and Chl-a/SPM ratio (c) 

associated with each optical class. While all the samples considered in DS−W are available for all 

the visible wavelengths corresponding to Sentinel2−MSI and Sentinel3−OLCI bands, it is worth no-

ticing that the spectral coverage of the Rrs in situ dataset in the NIR part of the spectrum is unequal. 

For most of the samples associated with OWTs 1, 2, and 3, little information was available in the 

NIR (12.8% for OWTs 1, 2, and 3, respectively) while this information was present for most (98%) of 

the samples associated with OWTs 4 and 5, for which red and NIR algorithms are devoted (see 

Section 2.4). 

2.3.2. Satellite Pixel Optical OWT Labeling, OWT Membership Calculation 

The five OWTs defined in the previous section were used for labeling the satellite Rrs 

spectra. This labeling consists of computing the OWT membership of an input Rrs spec-

trum (e.g., satellite Rrs) to each of the OWTs defined from the in situ dataset, which are 

characterized by specific mean (µ) and covariance (Σ) matrices [23,25]. The Mahalanobis 

distance ∆2 applied to the log-transformed Rrs
norm is then used to estimate the distance be-

tween input spectrum x and a given OWT ic as follows: 

∆ic
2 (x) = (x - μ

ic
)

T
Σic

-1(x - μ
ic

) (2) 
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where T indicates the matrix transpose. 

The OWT membership of satellite pixels to each of the defined OWTs was then esti-

mated as in [23]. The probability density function (PDF), corresponding to each targeted 

pixel associated with x = log(Rrs), is calculated based on its Mahalanobis distance (∆M
2 ) to 

the distribution of OWT ic and can be expressed as below: 

Pic(x) = 
1

(2π)d/2|Σ|1/2
exp [-

1

2
∆ic

2 (x)] (3) 

The computed probability values are then normalized (p*) so that the sum of OWT 

memberships equals 1 by taking the ratio between P for ic OWT and the total P for all 

OWTs considering such as follows [13]: 

p
ic
* =

Pic

∑ Pic
Nc
ic=1

 (4) 

2.4. Chl-a Candidate Inversion Algorithms 

A variety of empirical band-ratio-based bio-optical algorithms have been developed 

for estimating Chl-a concentration from satellite ocean remote sensing observation. Here, 

a selection of “standard” models based on different input Rrs data and formulations have 

been performed among the number of different methods available considering models 

whose performances have already been shown to be relevant to the diverse types of 

coastal environments taking into account results provided from recent extensive inter-

comparison exercises (e.g., [26]). In practice, historical models considered here can be split 

into two categories: blue/green(Red) ratio-based models more likely adapted to clear to 

moderately turbid waters ([8,45]) and red/NIR ratio-based methods specifically devel-

oped for turbid environments [17,18,21,46]. 

It is important to mention that all the considered models (except the model OC5, [45]) 

have been considered in their original and tuned versions fitting the different formula-

tions to the DS-D data corresponding to the optical water types they have been designed 

for (see Sections 3.2 and 3.3). These coefficients are here provided for each original model. 

2.4.1. Blue/Green (Red) Band-Ratio-Based Models 

Considering the radiometric resolution of Sentinel2-MSI and Sentinel3-OLCI sensors, 

two models have been selected for clear to medium turbid waters. These models corre-

spond to the empirical NASA OC-family algorithms developed from the NOMAD dataset 

extensively used to produce standard Chl-a products from satellite observation. 

(1) OC6 

This recent algorithm OC6 [8] corresponds to an adaptation of the OC4 model [7], 

which includes additional bands at 412 and 665 nm to extend the applicability of this ap-

proach, typically applied to open ocean waters, towards coastal waters. This model can 

be described as follow: 

Chl-a = 10 a0 + a1 × R +a2 × R2 + a3 × R3 + a4 × R4
 (5) 

where 

R = log
10

{
max[Rrs(412), R

rs
(443), Rrs(490), Rrs(510)]

mean[Rrs(560), Rrs(665)]
} (6) 

The original coefficients for this model are a0 = 0.2424, a1 = −2.2146, a2 = 1.5193, a3 = 

−0.7702, and a4 = −0.4291 

(2) OC3 

The main equation of the OC3 model to compute Chl-a remains the same as in Equa-

tion (5). However, this algorithm uses a different blue/green ratio input that is established 
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by 3 spectral bands in the visible part of the spectrum [8]. Such a ratio can be expressed as 

below: 

R = log
10

{
max[(490), Rrs(490)]

Rrs(560)]
} (7) 

and the coefficients are a0 = 0.41712, a1 = −2.56402, a2 = 1.22219, a3 = 1.02751, and a4 = 

−1.56804. 

(3) OC5—Gohin 

The five channels model by Gohin et al. [45] was developed in order to correct the 

overestimation of the Chl-a estimated from the OC4 model in coastal waters presenting 

moderate turbidity levels and highCDOM loads, based on sensor-specific LUTs empiri-

cally developed from an extensive in situ dataset. It has been considered here using the 

LUTs defined for MERIS. 

2.4.2. Red–NIR Algorithms 

(1) Gurlin11 

The empirical model developed by Gurlin et al. [17] consists of a second-order poly-

nomial function based on the Rrs(709)/Rrs(665) band ratio: 

Chl-a = a× [
Rrs(709)

Rrs(665)
]

2

+ b × [
Rrs(709)

Rrs(665)
] + c (8) 

where a = 25.28; b = 14.85; c = −15.18 

(2) Gilerson10 

The model proposed for MERIS by Gilerson et al. [18] is based on a linear relationship 

between in situ Chl-a and the NIR/red ratio of MERIS, such as the following: 

Chl-a = a × [
Rrs(709)

Rrs(665)
] + b (9) 

where a = 35.745; b = −19.295; c = 1.124 

(3) Gons08 

The Chl-a inversion algorithm developed by Gons et al. [47] for turbid environments 

is a semi-analytical approach considering IOPs information along with the red–NIR re-

flectance ratio and the reflectance at 779 nm. The version proposed in [21] is considered 

here and is expressed as follows: 

Chl-a = 
{[

Rrs(709)
Rrs(665)

] ×[aw(709)+bb-aw(665)-bb
p

]}

aphy
* (665)

 (10) 

where aw(709) and aw(665), the water absorption coefficients at 709 nm and 665 nm, were 

estimated as 0.7 m−1 and 0.4 m−1, respectively [48]. aphy
* (665) is the chlorophyll-specific 

absorption that was defined as 0.016 m2 mg−1. The calculation of the back-scattering coef-

ficient bb is estimated from the water-leaving reflectance at 779 nm as follows: 

bb=
1.61 × Rw(779)

0.082-0.6Rw(779)
 (11) 

where Rw (779) is the water-leaving reflectance (Rw = Rrs × pi) 

(4) Mishra12 

The model proposed by Mishra and Mishra [46] is an empirical model developed for 

application in estuarine and coastal waters. It is based on the calculation of the Normal-

ized Difference Chlorophyll Index (NDCI) as an input variable to derive Chl-a: 
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NDCI = 
Rrs(709)-Rrs(665)

Rrs(709) + Rrs(665)
 (12) 

Chl-a = a + b × NDCI + c × NDCI2 (13) 

where a = 42.197; b = 236.5; c = 314.97 

2.5. Statistical Indicators for Algorithm Performance Assessment 

The performance of the considered Chl-a models was evaluated considering a set of 

statistical descriptors including the following: 

RMSD = {∑
[log

10
(Chl-ai

mod)-log
10

(Chl-ai
obs)]

2

N

N

i=1

}

1
2

 (14) 

MAPD = median [
|log

10
(Chl-ai

mod)-log
10

(Chl-ai
obs)|

log
10

(Chl-ai
obs)

]  × 100% 
(15) 

MRAD = 
1

N
× ∑

|Chl-ai
mod-Chl-ai

obs|

Chl-ai
obs

N

i=1

 × 100% 
(16) 

MB = 
1

N
× ∑|log

10
(Chl-ai

mod)-log
10

(Chl-ai
obs)|

N

i=1

 
(17) 

log
10

(Chl-amod) = m × log
10

(Chl-aobs) + c (18) 

where Chl-aobs  represents the in situ Chl-a observations and Chl-amod  the Rrs-based 

Chl-a estimates. 

In addition, a linear regression between Chl-aobs and Chl-amod was performed for 

each considered model leading to the estimation of a slope and coefficient of determina-

tion (R2) as additional statistical descriptors. 

Radar charts have been further used to compare the performance of the Chl-a inver-

sion algorithms. This graphical display allows the representation of multiple statistical 

parameters summarized in the form of a two-dimensional chart [49]. Here, an overview 

of the normalized MAPD, RMSD, MRAD, MB, slope, and R2 (Equations (14)–(18)) is pro-

vided, and the normalization is computed as follows: 

RMSDnorm(j) = 
RMSD(j)

max(RMSD(j), j = 1, k)
 (19) 

MAPDnorm(j) = 
MAPD(j)

max(MAPD(j), j = 1, k)
 (20) 

MRADnorm(j) = 
MRAD(j)

max(MRAD(j), j = 1, k)
 (21) 

MBnorm(j) = 
MB(j)

max(MB(j), j = 1, k)
 (22) 

Slopenorm(j) = 
|1-Slope(j)|

max(|1-Slope(j)|,j = 1, k)
 (23) 
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R2norm
(j) = 

min(R2(j), j = 1, k)

R2(j)
 (24) 

where j represents each individual Chl-a model considered in a defined intercomparison 

exercise. 

In addition to a synthetic visual examination, radar plots were also used to compute 

a unique statistical indicator outlining the general performance of the considered Chl-a 

inversion methods. This consists in practice to compute the area associated with the pol-

ygons linking the normalized indicators indicated from (19) to (24) as below: 

Area=
1

2
×

π

6
 × [RMSDnorm(j) × MAPDnorm(j) + MAPDnorm(j) × MRADnorm(j) + MRADnorm(j) × 

MBnorm(j) + MBnorm(j) × Slopenorm(j) + Slopenorm(j) × R2norm
(j) + R2norm

(j) × RMSDnorm(j)] 
(25) 

3. Results 

3.1. Performances of Historical Models 

The performances of the historical models described in Section 2.4 in their original 

version were first illustrated considering the whole dataset (DS-W, Figures 7 and 8) gath-

ering a maximum of 1244 values considering the Rrs input wavelengths for the OC3, OC5, 

and OC6 models (i.e., Rrs at 412, 443, 490, 510, 560, and 665 nm) and 470 values for the one 

used in Gurlin11, Gilerson10, Mishra12, and Gons08 (i.e., Rrs at 665, 709, and 779 nm). 

As already documented, models based on the use of the band ratios in the visible 

part of the spectrum (OC6, OC3, and OC5, Figure 7a–c) provide reliable Chl-a estimates 

for clear to medium turbid waters (OWTs 1, 2, and 3) with R2 values of 0.59, 0.61, and 0.57, 

respectively (Figure 8). The models, however, show limitations for estimating Chl-a in the 

most turbid environments (OWTs 4 and 5) as illustrated by the high scattering found in 

Figure 7 as well as by the low R2 (<0.28) found for the OWT 4 samples when applying 

these models (Figure 8). The OC5 model, which has been designed for moderately coastal 

waters providing a correction of the overestimation generally provided from the OC4 al-

gorithm, also shows clear limitations for the OWT 4 (Figure 7) in agreement with the pre-

vious studies [12,15]. Loisel et al. [15], for instance, documented an exponential increase 

in the uncertainties related to OC5-derived Chl-a with increasing turbidity (i.e., SPM con-

centration > 60 mg.L−1). As expected, the OC3, OC4, and OC5 models (not based on the 

NIR band) are totally saturated over the whole range of Chl-a for the OWT 5 samples 

generating quasi-invariant Chl-a estimates. 

Red–NIR-based approaches (Gurlin11, Gilerson10, Mishra12, and Gons08; Figure 

7d–g) are conversely showing poor performances for OWT 1, 2, and 3 samples with the R2 

remaining below 0.1 (see Figure 8) for these waters whatever the model considered. These 

models have, however, not been developed for these waters with a relatively low level of 

turbidity. A general better performance is, however, found for Gilerson10, Gurlin11, 

Mishra12, and Gons08 models for the OWT 4 samples. This confirms the reliable applica-

bility of the latter methods for estimating Chl-a over highly turbid and high-Chl-a waters 

[26]. These models, in their original formulations, still, however, show limitations, more 

likely related to the data range they have been developed. This is emphasized, for in-

stance, by the saturation pattern found for the lower-end Chl-a values for Mishra12 (Fig-

ure 7f) already pointed out by previous studies [46]. The model of Gons08 while providing 

relatively good Chl-a estimates for high Chl-a values (>10 g.L−1) tends to fail for low Chl-

a for the OWT 4 samples, highly underestimating the Chl-a value (Figure 7g), and further 

generates negative Chl-a (N = 287 vs. N = 299, 298, and 300 for Gurlin11, Gilerson10, and 

Mishra12, respectively) in agreement with former studies (e.g., [12,21]). 

None of the red–NIR models evaluated are able to produce reliable Chl-a estimates 

for the ultra-turbid waters represented by the OWT 5 samples, due to the very low impact 

of the Chl-a on the reflectance signal for these waters [12]. A clear saturation is found for 
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Gilerson10, Gurlin11, and Mishra12 (Figure 7d–f) and low R2 values were obtained for 

these models (Figure 8), emphasizing the limitation of these red–NIR-based methods to-

wards ultra-turbid waters. The model by Gons et al. [21] is globally able to reproduce the 

Chl-a gradient found in OWT 5 data although it has an overall high uncertainty level as 

illustrated by the scattering in Figure 7d for these samples. As previously mentioned for 

OWT 4, this model tends to produce negative Chl-a values as illustrated by the lower 

estimated Chl-a for the Gons08 model when compared to Gurlin11, Gilerson10, and 

Mishra12 algorithms for OWT 5 (N = 35 and 57, 57, and 57, respectively). 

These results are confirming the relative limitations of the different band-ratio for-

mulations usually considered for estimating Chl-a over contrasted coastal environments. 

Considering the performance of the considered models in their original formulations, an 

optimization of historical models as well a development of a new formulation was further 

performed, subsetting the in situ dataset into two groups: (1) one gathering oligotrophic 

to mesotrophic waters (OWTs 1, 2, 3) for which visible wavelengths have been considered 

and (2) one gathering highly turbid/high-Chl-a samples corresponding to OWT 4. 

Further considering that all the band-ratio-based evaluated methods were failing for 

OWT 5 samples, no adaptation of these existing methods was performed for the corre-

sponding samples. 

 

Figure 7. Scatterplot (log–log scale) of the in situ Chl-a (DS−W) vs. the Chl-a estimated from the 

different historical band-ratio-based models (a) OC3, (b) OC6, (c) OC5−Gohin, (d) Gurlin11, (e) 

Gilerson10, (f) Mishra12, and (g) Gons08 considered in their original formulations (see Section 2.4). 
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Figure 8. Determination coefficient (R2) of the linear relationships between the in situ Chl-a and the 

estimated Chl-a corresponding to each OWT subset in DS−W (Figure 6) for the different band-ratio-

based historical models considered in the frame of this study in their original versions (Section 2.4). 

3.2. Chl-a Estimates for Clear to Medium Turbid Waters 

3.2.1. Development of a New Algorithm for OWTs 1, 2, and 3 

Considering the previous results, OC3 and OC6 models (OC3-Tuned and OC6-

Tuned), which are the most adapted for clear to medium turbid waters (OWTs 1, 2, and 

3), have been optimized on the DS-D dataset (N = 617, Table 2) using the QR decomposi-

tion method where the input matrix of the regression problem can be presented as a prod-

uct of the orthogonal matrix (Q) and a triangular matrix (R). This optimization approach 

is available as the “fitlm” function in Matlab. 

Table 2. Coefficients of the OC3 and OC6 models adapted to the DS-D dataset for OWTs 1, 2, and 3 

(N = 617). 

Models Tuned Coefficients Equations R2 

OC3 a0 = 0.289; a1 = −2.997; a2 = 1.956; a3 = 2.189; a4 = −3.773 (5), (6) 0.63 

OC6 a0 = 0.931; a1 = −2.710; a2 = −2.715; a3 = 8.873; a4 = −5.340 (5), (7) 0.60 

In addition to these adapted historical formulations, an alternative model for oligo-

trophic to mesotrophic waters was developed by exploiting the DS-D dataset. This model 

named MUBR is based on a combination of multiple band ratios, which have been shown 

to provide the best performance for estimating Chl-a from DS-D (Figure 9). It is worth 

noticing that the Rrs(412) was not considered in the development of the MUBR model con-

sidering that this wavelength is not available for MSI and that this band is susceptible to 

be affected by large uncertainties related to the atmospheric correction processes ([50]). 

The MUBR algorithm is in practice based on the combination of three band ratios using 

four visible bands from the blue to the red available for both Sentinel2-MSI and Sentinel3-

OLCI. This formulation is expressed as follows: 

ChlMuBR = 10a0 + a1R1 + a2R2 + a3R3 (26) 

where 

R1 = log
10

[
Rrs(490)

Rrs(443)
] (27) 

R2 = log
10

[
Rrs(560)

Rrs(490)
] (28) 
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R3 = log
10

[
Rrs(665)

Rrs(560)
] (29) 

and where a0 = 0.665, a1 = −3.506, a2 = 3.590, and a3 = −0.019. 

 

Figure 9. (a) Relationship between the in situ vs. estimated Chl-a from the MUBR model developed 

on the samples corresponding to OWTs 1, 2, and 3 in the DS−D dataset (N = 617). (b) Histograms of 

distribution of the Chl-a values corresponding to OWT 1, 2, and 3 samples in DS−D and for the Chl-

a values estimated from the MUBR model. 

3.2.2. Model Selection for Clear to Medium Turbid Waters 

The intercomparison on the performance of the Chl-a estimates on clear to medium 

turbid waters (OWTs 1, 2, and 3) was performed on the independent validation dataset 

DS-V (N = 263) considering, in addition to the MUBR, classical clear waters band-ratio 

models adapted on DS-D (OC3-Tuned and OC6-Tuned) as well as considering the model 

OC5 in its original version. The results in Figure 10a–c show that the MUBR model pro-

vides the best performance considering our validation dataset when compared to OC3-

Tuned and OC6-Tuned models with an overall lower dispersion (e.g., MRAD = 66.72% vs. 

97.12% and 86.24%, respectively) as well as with a general better estimation of Chl-a value 

over the whole range of Chl-a for the considered subset (e.g., slope = 0.76 vs. 0.69 and 0.64, 

respectively). We observed a similar performance of the OC5 original model in the clear 

to medium turbid waters on the validation dataset (Figure 10c) to that obtained for OC3 

(e.g., area of 2.109). The better performance for the MUBR model is further underlined in 

the radar plot provided in Figure 10d where the area found for the MUBR, representing a 

summary of the statistical parameters considered, is lower (1.24) than that for the other 

three methods considering both their original and adapted versions (OC3-Tuned: 2.45 and 

2.09, respectively; OC6-Tuned: 2.45 and 2.05, respectively). The lower performance of the 

OC3 and OC6 methods on the DS-V subset for OWTs 1, 2, and 3 can be explained by an 

overestimation of the very low Chl-a values as well as by a saturation of the Chl-a esti-

mated for the highest Chl-a values (Figure 10). 

Our results, therefore, tend to indicate that the model MUBR represents a valuable 

alternative for estimating Chl-a focusing on the clear to moderate turbid waters gathered 

using the dataset considered in the frame of the present study (OWTs 1, 2, and 3 data). 
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Figure 10. Intercomparison of the performance of the Chl-a inversion models for the OWT 1, 2, and 

3 samples in the in situ validation dataset DS−V (N = 263): relationships between in situ vs. estimated 

Chl-a applying (a–c) the OC3, OC6, and OC5−Gohin models adapted to the development dataset 

DV−D and (d) for the MUBR model; (e) summary of the performance of the Chl-a inversion models 

where the lowest area of the polygon associated with each model represented in the radar plot cor-

responds to the best model. Note that the statistics for the original versions of OC3 and OC6 are also 

shown for completeness. 

3.3. Chl-a Estimation in Turbid/high-Chl-a Waters (OWT 4) 

3.3.1. Development of a New Algorithm 

Considering the results of the previous section, a focus was performed to define the 

model most adapted for estimating Chl-a over highly turbid/high-Chl-a waters corre-

sponding to OWT 4 samples only. This is also due to the fact that none of the adapted 

models has been found to provide accurate Chl-a retrieval for OWT 5 samples (not 

shown). In practice, the Red-NIR-based models by Gurlin11, Gilerson10, Mishra12, and 

Gons08 were adapted to our dataset defining new coefficients for each model refitting the 

corresponding formulation on the DS-D samples (not shown, Table 3). 

Table 3. The tuned coefficients for the Gurlin10, Gilerson11, Gons08, and Mishra12 models adapted 

to the DS-D dataset for OWT 4 (N = 210). 

Models Tuned Coefficients Equations R2 

Gurlin11 a = 0.83; b = −11.398; c = 24.923 (8) 0.80 

Gilerson10 a = 13.328; b = −6.373; c = 1.393 (9) 0.80 

Gons08 aphy
* (665) = 0.0139; p = 1.0752 (10), (11) 0.79 

Mishra12 a = 13.801; b = 111.673; c = 354.095 (12), (13) 0.82 
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In addition, a new formulation (referred to as the NDCI-based model) was developed 

for OWT 4 samples (Figure 11) considering the saturation pattern towards low Chl-a val-

ues already reported for models using the NDCI parameter as an input value [26,46,51] 

and is expressed as follows: 

Chl-a = 10a0 + a1NDCI + a2NDCI2

 (30) 

where a0 = 1.179, a1 = 2.689, and a2 = −1.083 

 

Figure 11. (a) Relationship between the in situ vs. estimated Chl-a from the NDCI-based model 

developed on the OWT 4 samples in the DS−D dataset (N = 210). (b) Histograms of distribution of 

the OWT 4 Chl-a in DS−D and for the Chl-a values estimated from the NDCI-based model. 

3.3.2. Model Selection for Highly Turbid/High-Chl-a Waters 

The relative performances of these red–NIR models were then evaluated on the DS-

V dataset for OWT 4 (Nmax = 90, Figure 12). Although very similar statistics are found for 

all the tuned versions of the models evaluated, the new NDCI-based model presents the 

best performances (area = 0.472, Figure 12f). As previously pointed out from the DS-W 

dataset (Figure 7g), Gons08 tends to generate an underestimation of the lower-end Chl-a 

concentration (i.e., Chl-a < 5 µg/L) in OWT 4, potentially leading to the generation of neg-

ative values (Figure 12c, N = 86 for the original and tuned versions vs. N = 90 for the other 

models). It is worth mentioning that the tuned version of Gons08 does not provide better 

estimates than the original one, which is probably related to the difference in the Chl-a 

range presented in our development dataset (1.37–556 µg/L) and the one in [21] (0.37–131 

µg/L) as the adapted coefficients and the performances corresponding to different inver-

sion models in the DS-V might vary according to Chl-a level. The tuned versions of Giler-

son10 and Gurlin11 (Figure 12a,b) globally show satisfactory performances (area = 0.602 

and 0.577, respectively), confirming the effectiveness of these models to derive Chl-a in 

turbid environments [26]. Interestingly the tuned version of Mirshra12 (Figure 12d), alt-

hough exhibiting a generally reliable performance, still shows a saturation pattern to-

wards the smallest Chl-a for the OWT 4 samples (<5 µg/L). Such a saturation pattern is 

not found when applying the modification of this model corresponding to the NDCI-

based formulation proposed here (Figure 12e). 

This intercomparison exercise thus suggests that the NDCI-based model represents 

the most adapted model for estimating Chl-a over highly turbid/high-Chl-a (OWT 4) wa-

ters gathered in our in situ dataset. 
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Figure 12. Intercomparison of the performance of the adapted versions of Red-NIR model on highly 

turbid/high-Chl-a validation data corresponding to the OWT 4 samples in DS−V (N = 90): scatter-

plots of the in situ Chl-a vs. the Chl-a estimated from (a) Gilerson10, (b) Gurlin11, (c) Gons08, (d) 

Mishra12, and (e) NDCI-based models; a summary of the performance of the considered model for 

estimating Chl-a is provided in the radar plot (f) where the performance of both original and tuned 

versions of these 4 models is also provided for completeness. 

3.4. Class-Based Combination of Multiple Chl-a Models for OWTs 1, 2, 3, and 4 

The previous algorithm evaluation exercises clearly confirm the inability for a unique 

simple band ratio to deliver reliable estimates over the whole range of Chl-a values found 

in coastal waters [12,15,26]. We further illustrate the use of two band-ratio formulations 

considering a first model combining band ratios in the visible domain for clear to medium 

turbid waters (MUBR for OWTs 1, 2, 3) and a red–NIR model (NDCI-based) for highly 

turbid/high-Chl-a waters (OWT 4). 

Different methods can be used for producing Chl-a maps by applying different bio-

optical algorithms on a pixel-per-pixel basis. Diverse former studies have, for instance, 

illustrated the interest of using a weighted average to provide smooth Chl-a gradients in 

transition areas between different inversion algorithms. Such weighting approaches were 

diversely based on the use of Chl-a values [52] or on the exploitation of the optical char-

acteristics of the water masses provided from optical water types defined from the reflec-

tance spectra [25,26,53]. 

Such an optical-based weighted approach was considered in the frame of this study 

using weights based on the belonging probability of each sampling point (in situ sample 

or satellite pixel) to each optical group of optical water types to which a specific Chl-a 

model should be applied (i.e., MUBR for OWTs 1, 2, and 3 and Mishra12-Tuned for OWT 

4). The combination of algorithms from two groups of OWTs was performed following 

the equation [23]: 
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Chl-a = (p
1
*  + p

2
*  + p

3
* ) × Chl-a123 + p

4
*  × Chl-a4 (31) 

where the terms are defined as follows: 

• p
1
* , p

2
* , p

3
* , and p

4
*  correspond to the normalized probability for OWTs 1, 2, 3, and 4, 

respectively (Equation (4), [13]). 

• Chl-a123 is the Chl-a estimated from MuBR designed for OWTs 1, 2, and 3. Chl4 is the 

Chl-a estimated by using red/NIR models designed for OWT 4. The tuned coefficients 

are used for the calculation of Chl-a123 and Chl-a4 (Equations (26) and (30)). 

The evaluation of this weighted combination is provided in Figure 13. It is worth 

mentioning that the number of points presented in Figure 13 (N = 147) corresponds to the 

maximal number of points in DS-V with available information from the visible to the NIR 

for samples corresponding to OWTs 1, 2, 3, and 4. An overall good performance is found 

for the MUBR-NDCI-based combination (MAPD = 21.64%, RMSD = 0.25). 

 

Figure 13. Performance of the combined model between the MUBR model for clear/moderate turbid 

waters (OWTs 1, 2, and 3) and the NDCI-based model on the DS−V (N = 147). 

3.5. Matchup Exercise 

The validation of the Chl-a estimates performed using the MUBR-NDCI-based 

combination proposed in this study was performed through a matchup exercise based on 

the DS-M dataset for both OLCI and MSI (Section 2.2). Our results emphasize a general 

expected degradation in the accuracy of the Chl-a estimates for these two sensors (Figure 

14) when compared to the performance of the Chl-a inversion performed using the in situ 

validation dataset (Figure 13). Globally, the best performance is here found when 

applying the MUBR-NDCI-based combination using satellite Rrs(λ) derived from the 

POLYMER processing for both sensors. The Chl-a derived with POLYMER yields the 

highest number of valid matchups for both OLCI (N = 358 vs. N = 184 and 225 for 

ACOLITE and C2RCC, respectively) and MSI (N = 188 vs. N = 138 and 143 for ACOLITE 

and C2RCC, respectively). This result is in agreement with former intercomparison 

exercises (e.g., [54]). Although it has an overall high scattering level in the matchups, 

POLYMER globally provides better estimates from the clear to the highly turbid waters 

with a better performance found for OLCI when compared to MSI (Figure 14b,e). For both 

sensors, ACOLITE processing tends to generate an overestimation of the retrieved Chl-a 

also found for C2RCC, especially for the OWT 4 samples, suggesting the probable need to 

improve atmospheric correction in the NIR domain. The patterns depicted in Figure 13 

remain globally valid when considering the common matchup points (not shown) for the 

three atmospheric correction schemes applied to both sensors. A general better 

performance in retrieving Chl-a is still found when applying the MUBR-NCDI-based 
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combination to POLYMER data to OLCI (e.g., MAPD = 114, 172, and 116% for POLYMER, 

ACOLITE, and C2RCC, respectively; N = 214) and MSI (e.g., MAPD = 68, 149, and 148% 

for POLYMER, ACOLITE, and C2RCC, respectively; N = 99) Rrs(λ). 

Our results therefore relatively differ from previous works [54] where POLYMER 

was not found to provide the best performance when evaluating different atmospheric 

correction schemes (and Chl-a models) for Landsat-8 and Sentinel-2 applications over 

lakes, rivers, and coastal waters. However, this better performance might be related to the 

general good performance of POLYMER when considering band ratios as illustrated from 

former studies in coastal waters [50,55,56]. This might also be explained by the fact that 

the current matchup dataset (DS-M) does not contain many very highly turbid or high-

Chl-a waters (max Chl-a = 34.12 µg/L and 52.93 µg/L for MSI and OLCI, respectively) 

underlining the need to perform additional matchup exercises on a larger dataset. 

Investigating in more detail the relative impact of the considered atmospheric correction 

schemes is out of the scope of this study considering that the matchup dataset DS-D 

contains Chl-a data only. However, it should be mentioned that up to now no consensual 

atmospheric correction scheme is currently recommended for Sentinel2-MSI and 

Sentinel3-OLCI applications in coastal waters, as the performance of the different 

approaches is susceptible to vary widely according to the wavelength as well as according 

to the water type considered [50,54,57]. 

 

Figure 14. Chl-a matchup validation (DS−M dataset, Section 2.2) computed applying the MUBR-

Mishra12-Tuned combination (Section 3.4) on the Rrs(λ) generated applying three atmospheric cor-

rections schemes (ACOLITE, POLYMER, and C2RCC) for Sentinel3−OLCI (a–c) and Sentinel2−MSI 

(d–f), respectively. 
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4. Discussion 

4.1. Chl-a Algorithms Combination 

The results obtained in the previous sections have illustrated that the red–NIR for-

mulations globally demonstrated their ability to retrieve Chl-a values in highly tur-

bid/high-Chl-a waters with a satisfying accuracy (Figure 13). Our results further empha-

size the necessity to consider compatible models when applying weighting approaches, 

such as the one depicted in Section 3.4, taking care of the applicability of the approaches 

to be merged especially in transition areas. A limitation was, for instance, found for the 

formulation by Gons et al. [21], which tends to generate negative Chl-a values for the low 

Chl-a levels (<5 µg/L) for the OWT 4 waters. Such limitations might represent an issue 

when merging multiple algorithms on a pixel-per-pixel basis. As a matter of fact, the ap-

plication of a combination based on MUBR and Gons08 will lead to a generation of bias 

or even create negative Chl-a in the transition area between OWT 3 and OWT 4 (not 

shown) where pixels can show relatively high OWT membership values for both OWTs. 

To avoid such issues; a possible way would consist of considering other approaches 

than the one based on the weighting methods based on pixel OWT membership (Equation 

(31)) for combining multiple bio-optical models. Lavigne et al. [12], for instance, recently 

proposed pixel-per-pixel-based quality control tests (diversely based on the Chl-a as well 

as on thresholds applied on different MERIS Rrs(λ)) for selecting the most appropriate 

models for estimating Chl-a [8,21,45]. As mentioned by these authors, the main objective 

of such a quality-control-based approach is more likely to provide the users with a way 

to evaluate the reliability of the models applied to a defined area. These authors further 

illustrate the possibility to use this selection procedure to eventually merge multiple algo-

rithms although such an approach might generate discontinuity in the Chl-a maps when 

switching from one algorithm to another. 

The interest of using the OWT membership information to merge the two inversion 

models considered here was further illustrated from a Sentinel2-MSI map in the Vietnam-

ese coastal waters close to the Mekong River and Nha Be River estuaries (East Vietnam 

Sea, Figure 15a), which shows contrasted water masses ranging from clear (OWT 2) to 

ultra-turbid (OWT 5) waters (Figure 15c). The MUBR-NDCI-based combination was here 

applied considering for each pixel the best model according to the pixel OWT (i.e., without 

weighting the models, not shown) as well as applying the weighing approach described 

in Equation (31) (Figure 15d). The need to consider the pixel OWT membership to combine 

MUBR- and NDCI-based models is illustrated in Figure 15e where the relative difference 

between the Chl-a map produced without and with a weighting function is shown. It ap-

pears that the simple juxtaposition of the most pertinent model can generate significant 

discontinuities in the final Chl-a estimates. As a matter of fact, maximum differences 

reaching 10% are observed in the transition areas between OWTs 3 and 4. Such possible 

spatial artifacts induced using an unweighted function can represent a significant issue 

when using high-spatial-resolution data, such as from Sentinel2-MSI (or Landsat8-OLI), 

which are susceptible to capturing fine-scale transition gradients in coastal waters [12,23]. 
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Figure 15. Illustration of the interest of using a weighting function based on the OWT membership 

probability for blending multiple Chl-a from a Sentinel2−MSI (60 m, POLYMER processing) image 

capturing the Vietnamese coastal waters: (a) Location of the Sentinel2 (Tile 48PYS) (b) true color 

image; (c) optical water types distribution; (d) Chl-a estimated from the MUBR-NDCI-based com-

bination where masked gray areas are those belonging to OWT 5; (e) relative difference (%) in the 

Chl-a estimated from the MUBR-NDCI-based combination with and without using pixel OWT be-

longing probability as a weighting function (see Equation (31)). 
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4.2. Applicability of Band-Ratio-Based Chl-a Models at Global Scale and Current Limitations 

and Perspectives 

To summarize the results developed in the previous sections regarding the relative 

performance of the different Chl-a inversion methods selected for the different optical 

OWTs defined in the frame of this study, global monthly MERIS 1 km Rrs data were 

associated with the five optical OWTs defined in this work. Figure 16 shows the most 

frequent OWTs observed for each pixel over the MERIS time period. The coastal domain 

was here defined considering a global mask proposed by Mélin and Vantrepotte [13] for 

characterizing the optical diversity of coastal waters, which is based on the combination 

of criteria based on bathymetry and distance to the coast. It appears that pixels 

corresponding to OWTs 1, 2, and 3 represent 63, 21, and 14% of the considered coastal 

domain, meaning that the MUBR model can be applied in the vast majority (98%) of the 

considered waters. OWT 4 pixels, where the use of red/NIR models such as the NDCI-

based model defined here are the most suitable, represent only 2% of the whole domain, 

often corresponding to coastal margins impacted by the dilution of terrestrial inputs, 

including waters offshore river plume or mangrove areas, for instance. The OWT 5 waters, 

for which none of the tested band-ratio-based Chl-a inversion methods provide accurate 

Chl-a estimates, represent 1% of the global domain here considered. Focusing on 

moderate to ultra-turbid waters (OWTs 3, 4, and 5), our results indicate that Chl-a can be 

estimated with a satisfying accuracy (OWTs 3 and 4) over 94% of the coastal margins and 

shelf waters. 

The main limitations in estimating Chl-a from ocean color observation are therefore 

related to ultra-turbid waters corresponding to OWT 5, mainly associated with the 

proximal part of most of the large rivers. Despite the restricted spatial extension of OWT-

5 regions, an accurate monitoring of the recent evolution of the biogeochemical quality of 

these water masses is, however, essential considering their vulnerability to environmental 

changes of a natural and anthropic origin impacting the transfer of matter along the land–

sea continuum [1]. Our results, however, clearly question the pertinence of considering 

Chl-a concentration as a relevant indicator for monitoring from satellite ocean color ob-

servation such environments where the phytoplankton signal on the marine reflectance 

seems to be too low for being detected considering band-ratio-based methods on both 

visible and NIR wavelengths. 

The present study only allows the pixels for which Chl-a estimates are not reliable, 

considering the evaluated models to be dynamically identified using optical water types 

information to potentially mask the corresponding areas. A possible way to overcome this 

issue could consist of adopting alternative methods, for instance, taking advantage of the 

new potential offered by upcoming hyperspectral satellite sensors (e.g., the NASA PACE 

mission). Cheng et al. [58], for instance, documented the interest of an Rrs derivative-based 

approach for estimating Chl-a in turbid inland waters. More specifically, these authors 

demonstrated that the first Rrs derivative at 699 nm was a good proxy for estimating Chl-

a in turbid lakes. The pertinence of this approach was evaluated on the OWT 5 dataset 

testing the best combination considering wavelengths ranging from 412 to 740 nm [58]. 

Our preliminary results show that the highest correlation with Chl-a (R2 = 0.40, N = 57) is 

obtained when using the second derivative at 671 nm (Rrs
” (671)); using Rrs(l) measure-

ments at X and Y nm, these two parameters follow a linear relationship indicated in Figure 

17. 
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Figure 16. Global distribution of the most frequent optical water type among the 5 optical water 

types considered in the frame of this study observed from the monthly MERIS 1 km observation 

between 2002 and 2012. The histogram chart provides an illustration of the relative spatial coverage 

(in %) associated with each optical water type over the whole domain considered here. 

The derivative-based approach, although it has potential interest, will not fully allow 

for the solving of the issue represented by the Chl-a inversion in ultra-turbid OWT 5 wa-

ters (Figure 17). Indeed, a clear overestimation of the Chl-a concentration is observed for 

the low Chl-a samples in OWT 5 (<1 µg/L), for which the data correspond to samples 

showing extremely to fairly low values for the Chl-a/SPM ratio (<3.9 × 10−5). However, the 

performance of this latter model has proven a significant improvement in retrieving Chl-

a over such optically complex water when comparing the R2 value to that of the traditional 

approaches (see Figure 8). It is also important to recognize that additional in situ observa-

tions are required to further confirm the latter statement and deliver more robust infor-

mation on the current limitations of ocean-color-based observation for depicting Chl-a in 

such ultra-turbid environments. 

 

Figure 17. Illustration of the potential of an Rrs(671) second derivative-based model for estimating 

Chl-a concentration in ultra-turbid waters (OWT 5). 
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5. Conclusions 

This work aimed at evaluating the performance of band-ratio-based algorithms for 

estimating Chl-a in coastal waters from Sentinel2-MSI and Sentinel3-OLCI observation 

from an extensive in situ dataset covering a large spectrum of coastal environments in 

terms of optical characteristics (from clear to ultra-turbid waters) and trophic status (from 

oligotrophic to ultra-eutrophic environments). The best combination found from our da-

taset consists of mixing a visible band-ratio model (MUBR) for clear to medium turbid 

waters (OWTs 1, 2, and 3) and an adapted version of the red–NIR model (NDCI-based) 

for highly turbid/high-Chl-a waters. Such a combination can provide relevant Chl-a esti-

mates covering four orders of magnitude from oligotrophic to ultra-eutrophic waters cov-

ering the vast part of the coastal domain. From our dataset, POLYMER processing was 

the most adapted to derive Chl-a from the proposed approach although additional match-

ups should be performed considering more data, especially towards higher turbidity/Chl-

a levels. While the methodology proposed in this work can be transposed to other sensors 

(e.g., MERIS), future works should be performed for other sensors (e.g., MODIS) for which 

less information is available in the NIR domain, which is, however, crucial for coastal wa-

ters applications. Finally, classical band-ratio-based methods show clear limitations, fail-

ing, whatever the model considered, for delivering Chl-a in ultra-turbid environments 

(e.g., proximal part of main river plumes). While optical water types information could 

allow for the dynamic flagging of the corresponding pixels, this work further emphasizes 

the necessity to develop specific approaches for these waters (e.g., exploiting the potential 

offered by future hyperspectral missions). 
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