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Abstract
Combustion noise is increasing its relative contribution to aircraft noise, while other

sources are being reduced and new low-NOx emission combustion chambers being built.
Two mechanisms are responsible for this noise source: direct noise in which acoustic
waves are generated by the flame and propagate to the outlet of the aero-engine, and
indirect noise, where entropy waves generate noise as they are accelerated and deceler-
ated in the turbine stages. In this work, the analytical models used for the propagation
of waves through non-homogeneous flows, including the generation of indirect noise, are
revised and extended. In the first part, the quasi-1D case is studied, extending the ana-
lytical method to non-zero frequencies and validating the results with numerical methods
and experimental data. In the second part, the 2D method for the case of compact tur-
bine blades is studied and validated using numerical simulations of a rotating blade and
of a complete turbine stage. Finally, in the third part of this thesis, these models are
combined with reactive and compressible Large Eddy Simulations (LES) of combustion
chambers to build a hybrid approach, named CHORUS, able to predict combustion
noise.
Keywords: Combustion noise, indirect noise, aero-acoustics, analytical meth-
ods.

Résumé
Le bruit émis par les nouvelles architectures de moteurs aéronautiques a été con-

sidérablement réduit dans les dernières années. Les différentes sources de bruit ont été
identifiées et pour la plupart réduites. Cependant, la contribution relative du bruit de
combustion au bruit global a augmenté progressivement avec la décroissance des autres
sources. Deux mécanismes de génération de bruit de combustion ont été identifiés : le
bruit direct qui est produit par des fluctuations du dégagement de chaleur dû à la com-
bustion, et le bruit indirect qui est généré par l’accélération des spots d’entropie. Dans
ce travail, les mécanismes de génération et propagation du bruit entropique sont étudiés
par des simulations numériques aux grandes échelles (en anglais LES) et par des mod-
èles analytiques. Dans un premier temps, une configuration simplifiée du phénomène est
étudiée : des spots d’entropie sont créés par des résistances chauffantes et ensuite ac-
célérés par une tuyère pour générer du bruit indirect. Cette configuration a été simulée et
ses résultats validés par des campagnes expérimentales. Ensuite, la simulation numérique
est utilisée pour mieux comprendre les mécanismes de génération du bruit indirect et
ses interactions avec des effets visqueux et non visqueux. Dans une seconde partie, une
configuration de turbine haute pression à un seul étage est utilisée pour étudier le bruit
indirect d’une façon plus réaliste. Dans les deux parties de cette thèse, les résultats
numériques sont comparés à des théories analytiques pour mieux comprendre les avan-
tages et inconvénients d’une méthode par rapport à l’autre.
Mot clés: Bruit de combustion, bruit indirect, aéro-acoustique, mécanique
des fluides numérique.
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Chapter 1

General introduction

Combustion has always been a very important part of society, where it is used for
the very simple objective of heating and cooking as well as very sophisticated processes
like propulsion of space ships, rockets, missiles and aeroplanes. Nowadays, despite the
growth and development of green and renewable energies, combustion produces approx-
imately ninety percent of the total energy in the world. The United States Energy
Information Administration publishes a Monthly Energy Review EIA (2016) containing
statistics of the energy production, consumption, trade and energy prices. Figure 1.1
shows the amount of different energy sources produced or consumed by the United States
per year and out of which one notices that in 2015 the renewable and nuclear energy
production/consumptions represent only 20% of the total energy. The fact that combus-
tion remains the most common energy source, is mainly explained by the large energy
release per unit mass ratio (called heat of combustion or higher heat value HHV) stored
in fossil fuels. Fossil fuels are indeed very suitable for lots of industrial applications,
where weight is a key constraint of the design process. Table 1.1 regroups a short list of
combustion heat released per unit of mass of common fuels extracted from NIST.

Fuel HHV (MJ/Kg)

Hydrogen 141.8
Methane 55.5
Kerosene 46.2
Diesel 44.8
Gasoline 47.3
Coal ≈ 25
Wood 21

Table 1.1 Heat of combustion of some commonly used fuels.

In the aviation industry (which is the main matter of the present work), the Airbus
A380 has become the reference commercial aeroplane for its energetic performances.
This particular super-jumbo has a maximal fuel capacity of 250 tonnes of kerosene
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quadrillion of British Thermal Unit (Btu).

Figure 1.1 Energy production and consumption statistics of the United States delivered by
the Energy Information Administration (EIA) in British thermal units (1 Btu ≈ 1055 J).

and can travel up to 15 000 km, transporting up to 540 passengers (cf. A380 2017).
For this aeroplane the fuel consumption per passenger per km has reduced to 0.033
kg/km/passenger, and according to Tab. 1.1, the corresponding energy consumed to
transport one passenger over one Km is approximatively 2 MJ/Km/passenger. The
principal difficulty for the aviation industry is that it is extremely difficult to store
such an amount of energy per kilogram in other form than through the use of a fossil
fuel. At the same time all combustion processes have an impact to the environment
and health. Indeed, the main combustion products are water and carbon dioxide which
are greenhouse gases. Nitric and sulphur oxides, which are also produced through the
combustion process, contribute to the degradation of air quality and are at the origin
of acid rains. Important technological efforts have been deployed to reduce the use
of fossil fuels, which is the case of the A380. Combustion products are not the only
pollutants released by an aeronautical engine, noise emissions are a new problem and
the heart of this thesis. To limit the damages caused to the environment and health,
multiple organisations have appeared. The Advisory Council for Aviation Research and
Innovation in Europe (ACARE), provides technical and institutional guidance to the
European Commission. Likewise, the International Civil Aviation Organisation (ICAO)
codifies the principles and techniques of international air navigation to ensure safe and
orderly growth. Both of these organisations regulate present pollutant emissions of
aircraft engines and specify future targets to be reached for levels of emitted carbon
dioxide, nitric oxides or even noise emission levels.

According to ACARE (2016), aviation is recognised as one of the top five advanced
technology sectors in Europe. Providing close to nine million of skilled jobs and con-
tributing to 600 billion Euros to Europe’s Gross Domestic Product. Aviation sector
welcomes close to 450 airlines and over 700 airports. Air traffic has grown by 50% in the
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last ten years, yet the needs for fuel has only risen by 3% thanks to the technological ad-
vances. To keep improving designs and pressure on engines manufacturers, ACARE has
set out challenging objectives for future decades in the new Europe Vision for Aviation.
In terms of pollutants emissions, some targets for 2050 are:

1. Reduction of CO2 emissions by 75% relative to year 2000.

2. Reduction of NOx emissions by 90% relative to year 2000.

3. Reduction of perceived noise by 65% relative to year 2000.

4. Aircraft movements emission-free when taxiing.

In terms of noise emissions, which is a big concern in urban zones near the airports,
ICAO (2013) defines maximum overall noise levels emitted by the aircraft (no particular
noise source is aimed, but the overall noise emissions) for three different certification
points showed in Fig. 1.2. In this process, the aircraft manufacturer performs his own
noise measurements and sends the data to organisms that approve the results before
sending it to ICAO. If the data is approved, it is added to the noise certification database
and the aircraft is certified.

Figure 1.2 Certification points for noise emissions.

1.1 Noise sources in aero-engines

Sound radiated from an aircraft is the result of many individual and separate noise
sources, some tonal and other broadband. Noise can be separated roughly in two main
contributors:

1. Airframe noise generated by the fuselage, nacelle, landing gear, wings and other
surfaces.
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Figure 1.3 Illustration of noise sources in a turbo-engine.

2. Engine-core noise generated by fan, compressor, combustor, turbine and jet ex-
haust.

A remarkable work reviewing the noise emitted by an aero-engine is Ihme (2017),
which summarizes the state of the art on combustion and core noise. In this present
PhD work, we will only focus on the core noise contribution.

A turbo-engine can be decomposed into four main components: compressor, com-
bustor, turbine and nozzle (cf. Fig. 1.3). Noise emission from rotating tubomachinery
components (compressor and turbine), is tonal and results from the rotor and harmon-
ics of the blade passing frequency. Superimposed onto this tonal noise, broadband noise
is generated by the scattering of the flow boundary layers, turbulence at the trailing
edge of the blades (Tyler and Sofrin 1962; Griffiths 1964). However, not all this noise
produced is transmitted through all the stages. For example, only low frequencies (wave-
lengths larger than the cord of the stages) and perturbations noise at the last compressor
stages require consideration as potential noise mechanism inside the combustor. Indeed,
broadband perturbations entering the combustor are typically outweighed by turbulent
mixing and combustion processes. Inside the combustor, fluctuations of heat release
generate broadband noise known as combustion noise which was first studied by Strahle
(1972), Chiu and Summerfield (1974), Hassan (1974), Marble and Candel (1977b) and
Cumpsty and Marble (1977a). However, at this time, its relative contribution to global
aircraft acoustic emissions was still low. Earlier, Lighthill (1952) showed the importance
of jet noise in the overall noise emissions, demonstrating that jet noise scales with the
eighth power of the jet-exhaust speed. Since then, new technologies have emerged. The
turbofan, where the bypass ratio is increased by a secondary flow and the jet speed is
diminished, is one example. The introduction of the turbofan decreased the jet noise but
also added the non-negligible contribution of fan noise. As a consequence, core noise,
fan and airframe noise became the leading contributors to the overall noise emissions
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of the aircraft. At the same time, fuel costs and environmental concerns lead to fur-
ther investigation on consumption reduction. As a result, lean pre-vaporized combustion
and associated lean injection systems, and other low-emission combustion technologies
(Hultgren 2011 and Chang et al. 2013) were developed. Despite all these progresses and
new technologies, noise emissions increased due to two facts: turbulence levels present
in the engine increased and the heat release fluctuations of the now partially premixed
turbulent flame also increased as the mixture got closer to the lean extinction point.
With years and the reduction of different airframe noise sources, noise contributions
from the engine core became increasingly important and combustion noise, which had
no important role in the overall noise contributions, started to gain in importance with
a clear increasing share in the overall noise signature of new engines.

1.2 Combustion noise

Combustion noise is known to be a low frequency broadband noise (cf. Hassan 1974).
Nevertheless, the importance of combustion noise in the overall radiated noise is so far
not well-known. Indeed, engine manufacturers are not able to discriminate combustion
noise from exhaust noise and it is often called "core-noise". Combustion noise has been
estimated using scaling laws (cf. Harper-Bourne et al. 2008) based on previous engine
data out of which all known noise sources had been removed (jet, fan, turbomachinery,
and others) out of the engine sound pressure spectra. In terms of physics, combustion
noise finds its roots inside the combustion chamber and is then propagated through the
combustor-downstream engine components before radiating to the far field. Propagation
of acoustic waves through accelerating flows was first studied by Tsien (1952) in a rocket
engine combustion instability framework. But it was Marble and Candel (1977b), who
included the propagation of entropy waves through subsonic as well as supersonic nozzles.
It resulted the definition of two types of combustion noise:

Direct combustion noise: Generation of acoustic waves in the combustor due to the
unsteady heat release.

Indirect combustion noise: Generation of acoustic waves after the combustor due to
the interaction of inhomogeneities in velocity, temperature and mixture composi-
tion with the mean flow and pressure gradients in the turbine and nozzle (Marble
and Candel 1977b, Cumpsty and Marble 1977a,b and Magri et al. 2016).

1.2.1 Direct combustion noise

Direct combustion noise was first studied in open flame configurations. The first
experimental studies were carried out by Smith and Kilham (1963) who investigated
the influence of the burner geometry, mass-flow rate and fuel mixture on the generation
of noise of an open premixed turbulent flame. Hurle et al. (1968) and Price et al.
(1969) evaluated with chemiluminescence of C2 and CH (representative radicals of the
reaction zone of a flame) the heat-release fluctuations and their link to sound generation.

5



Kumar’s (1975) work showed that noise sources in premixed flames are associated with
unsteady fluctuations in the flame surface area, whereas in non-premixed flames they
are associated with dilatational effects generated by mixing and turbulence. All of these
experimental studies showed the monopolar character of direct combustion noise.

The study of direct combustion noise was carried out analytically by Strahle (1971,
1972, 1973) employing the acoustic analogy of Lighthill (1952) to propagate the noise
sources in the open space. Later on, Chiu and Summerfield (1974) as well as Kotake
(1975) extended Phillips’ analogy to reactive flows in the limit of low Mach numbers and
again illustrated the monopole nature of direct combustion noise.

Direct combustion noise is the major source of noise in lab-scale combustion chambers,
where no acceleration of entropy wave exists. Entropy noise for example, appears when
studying the entropy propagation equation with a source term representing any heat
release:

∂s

∂t
+ u · ∇s =

.
Q

ρT
with s = cv ln

(
P

ργ

)

= cp ln

(

P
1/γ

ρ

)

. (1.1)

Linearisation of Eq. (1.1) yields:

∂s′

∂t
+ u · ∇s′ =

.
Q

′

ρT
−

.
Q

ρT

[
p′

p
+
u′

u

]

, (1.2)

where the primed variables (x′) represent fluctuations and the non primed variables are
mean steady quantities around which the system has been linearised. Equation (1.2)
shows that fluctuations of entropy can be generated by two mechanisms : first the fluc-

tuations of heat release (
.

Q′) and second through the interaction of acoustic fluctuations
with the mean heat release (second term of the equation). Equation (1.2) also shows that

in regions far from the flame (
.
Q and

.

Q′= 0), entropy fluctuations are only convected
and no sound is generated. Therefore, the generation of acoustic waves takes place in
the flame region which is called direct noise. However, the large acceleration of entropy
waves through turbine stages usually makes indirect combustion noise a non negligible
noise source, as demonstrated by Leyko et al. (2008) with a 1D model combustor followed
by a chocked nozzle.

1.2.2 Indirect noise

Unlike direct combustion noise, indirect noise cannot be generated in open flame con-
figurations as described in §1.2.1. Indirect combustion noise is generated by the inter-
action of inhomogeneities in temperature and eventually mixture composition (cf. Sinai
1980 and Magri et al. 2016) with the mean flow and pressure gradients.
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From Eq. (1.2), one can see a coupling between entropy and acoustics. The mechanism
that describes this coupling was first identified by Marble and Candel (1977b) using the
linearised quasi-1D Euler equations for an adiabatic flow, neglecting heat release and
diffusion for compact nozzles. The set of equations satisfying these hypotheses are:

D

Dt

(
P ′

γP

)

+ u
∂

∂x

(
u′

u

)

= 0 (1.3a)

D

Dt

(
u′

u

)

+
c2

u

∂

∂x

(
P ′

γP

)

=

[

s′

cp
+ (γ − 1)

P ′

γP
− 2

u′

u

]

du

dx
(1.3b)

D

Dt

(

s

cp

)

= 0 (1.3c)

in which the coupling between acoustics and entropy appears in Eq. (1.3b). The en-
tropy wave acts as a source term of acoustics only if there is an acceleration of the
flow (du/dx 6= 0). Other authors extended the acoustic analogies for sound propagation
to take into account direct and indirect combustion noise sources. This is the case of
Bailly et al. (2010), who introduced the excess density (initially defined by Morfey 1973
as ρe = (ρ− ρ∞) − (P − P∞) /c2

∞) into Lighthill and Phillips’s analogies to compute
and propagate the combustion noise source terms. Indeed, the excess density is associ-
ated to entropy variations and is an important source term which is often neglected in
aeroacoustic applications.

Following these theoretical developments, experiments have been carried out to study
the indirect combustion noise generation, the firsts ones being realised by Zukoski and
Auerbach (1976) and Bohn (1976, 1977) within the simplified framework of nozzles.
In these experiments the amplitude of the upstream induced temperature fluctuation
was very small (≈ 1 K). Furthermore, due to technical restrictions at this time a
post-processing of the acquired data in the time domain was not possible (only a time
period of 0.1 s could be stored). More recently, Bake et al. (2009), Knobloch et al.
(2011, 2015a,b) and Kings et al. (2012) conceived a series of nozzle experiments in which
temperature, acoustic and vorticity disturbances were introduced to study the sound
radiated by the acceleration of the different perturbations. One of these experiments,
the Entropy Wave Generator (EWG) will be used as a reference test case for this PhD
work. After such nozzle test cases, the scientific community developed turbine test cases,
in which acoustic and entropy disturbances were introduced to study indirect combustion
noise. In the work of Gaetani et al. (2015), strokes of hot/cold air are introduced by
11 injectors into a High-Pressure (HP) turbine stage, in which the pressure fluctuations
are measured afterwards to quantify the amount of indirect noise generated. The same
year, Schuster et al. (2015) studied indirect combustion noise in a Honeywell TECH977
engine, pressure and temperature fluctuations were measured at different positions in
the engine to study the propagation of sound and the dissipation of the entropy wave
along the different stages of the machine.
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Analytical studies in combustion noise have also been carried out by different authors.
Williams and Howe (1975) and Howe (2010) studied the convection of an entropy slug
by a non homogeneous mean flow, showing that indirect combustion noise acts as a
dipole source term. They also developed a model in which when the flow separates in
the diffuser, vortex sound and entropy noise correlate and can reduce the overall sound
level. In terms of flow physics, the deformation of the hot slug through the nozzle reduces
the entropy gradients and therefore the amount of noise generated. Dependency on the
operating conditions was addressed by Leyko et al. (2011) and Duran et al. (2013b)
by the use of the compact theory of Marble and Candel (1977b) to study the radiated
sound of an entropy perturbation convected through a subsonic and a supersonic nozzle
with a shock. To finish, Dowling and Mahmoudi (2015) studied the effect of heat release
fluctuations (frequency and mode number) in the generation of indirect and direct noise
in the limit of low Mach numbers.

More recently, the use of Computational Fluid Dynamics (CFD) started to appear in
this specific context. However, the study of combustion noise by numerical simulations
requires to take into account different length scales such as the characteristic acoustic
wave length λ (in a flow at 2000K, λ ≈ m), the characteristic flame length Lt (≈
mm), the Kolmogorov length scale η (≈ µm) and the flame thickness δf (≈ µm). The
separation of these scales depends on the spatial structure of the turbulent flow, the
flame structure and the spatial extent of the acoustic source terms. This wide range
of length scales is the reason why numerical simulation is often used to compute first
noise sources which are then fed to acoustic analogies, Computational Aero-Acoustics
(CAA) or analytical methods for the propagation phase (Ihme et al. 2005, Ihme and
Pitsch 2012, Ullrich et al. 2015, Livebardon et al. 2016 and Férand et al. 2016).

1.3 Objectives and organisation of this thesis

New technologies of aeronautical combustion chambers have the objective of reducing
pollutant emissions and fuel consumption. Nevertheless, these technologies create un-
wanted effects like unstable combustion, extinction of flame and generation of broadband
noise at low frequency. In order to achieve the greening of the European air transport,
new technologies need the development of reliable prediction tools. This task requires
extensive research with experimental test cases and sophisticated numerical as well as
analytical modelling to increase the physical understanding of the core noise generation
mechanisms. In this context, the project called "Research on Core Noise Reduction"
(RECORD) was initiated, in which the major aero-engine manufacturers, laboratories
and Universities of five different European countries collaborate to enable the design of
low core noise aero-engines.

In the RECORD project, theory, experiments and numerical methods are used to-
gether to better understand the different noise sources of a real engine and its transmis-
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sion through turbine stages. Four different Work Packages (WP) were created, each one
with a particular objective:

WP1 - Nozzle flow test cases: Different test-rigs were built to study the generation
and transmission of entropy, vorticity and acoustic waves individually, covering
different operating points for a nozzle (subsonic, transonic and supersonic).

WP2 - Combustor test case: Noise generation mechanisms in a combustion cham-
ber.

WP3 - Turbine test cases: Introduction of acoustic and entropy waves separately
into a high-pressure turbine stage.

WP4 - Exploitation to full scale: Take advantage of the developments and valida-
tion steps done in the other work packages.

In the framework of this PhD thesis, which inscribes itself in the RECORD project,
a considerable amount of work is focused on the study of generation and propagation
of combustion noise in nozzle flows within WP1. Afterwards, the generation of com-
bustion noise is also studied in a high pressure turbine stage (WP3). The methodology
adopted relies on full compressible simulations and comparison to analytical models of
the literature. This manuscript is divided into two main parts:

• Part I: Study of noise generation in nozzle flows.
Generation and transmission of combustion noise in nozzles is addressed in this
first part. The first chapter describes the state of the art of this specific problem,
starting with the analytical and reduced models. In the second chapter, a canon-
ical nozzle test case is extensively studied by means of compressible Large Eddy
Simulation (LES). Throughout this study, analytical models, LES results and ex-
perimental data are compared. Results obtained from the study of this canonical
test case were published and presented in the 22nd AIAA/CEAS Aero-Acoustics
Conference, Becerril et al. (2016). Afterwards, to give a better insight into the
physical phenomena of direct and indirect generation of combustion noise, the
nozzle response to ingoing acoustic and entropy disturbances is assessed through
LES and compared to analytical models.

• Part II: Study of noise generation in a turbine stage.
Generation and transmission of combustion noise in a turbine stage is addressed
in this second part. This specific application adds two supplementary problems
absent in the nozzle case: a strong azimuthal flow deviation induced by the turbine
blades and interactions between a fix and a rotating part. To investigate the gener-
ation and transmission of combustion noise, harmonic fluctuations of temperature
are introduced in LES by a fluctuating energy source term. Noise produced by
this fluctuating source term, as well as the noise generated by the acceleration of
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the temperature spot downstream of the turbine are then compared with an ana-
lytical methodology for combustion noise applications called CHORUS developed
at CERFACS (Leyko 2010, Duran 2013 and Livebardon 2015).

All along this work, multiple comparisons between the numerical simulations and ana-
lytical methods are done to obtain a better insight of the different phenomena neglected
in the models. Furthermore, the different studies are complemented by validation test
cases and further description of the employed tools in specifically dedicated appendices.

10



Part I

Towards a better understanding
of combustion noise:

Study of noise generation in
nozzle flows
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Introduction

Today and this will remain for a long time, it is still too difficult to study combustion
noise generation and transmission in a complex machine like a full aero-engine. One still
requires to simplify such a complex systems into more fundamental problems. Direct
combustion noise for example was first studied in open flame configurations, for which
Lighthill (1952) analogy was reformulated by Bailly et al. (2010) and was applied to
reacting flows. Since indirect combustion noise is generated by the acceleration of flow
inhomogeneities it cannot exist in open flame configurations. Although studying indirect
combustion noise in an accelerated flow through multiple turbine stages is the subject
of the second part of this work, the description of the flow is very complex due to the
stator/rotor blades, wakes, mixing, shocks and other complex phenomena. It is therefore
easier to first describe and apprehend the fundamental generation as well as transmission
of indirect combustion noise in a simpler configuration: i.e. a nozzle, where the flow is
almost axisymmetric. This simpler objective is the focus of this specific part where
analysis and computation is primarily devoted to indirect combustion noise inside this
simpler configuration.

All along Part I, nozzle flow configurations will be studied. First, different types of
modelling are compared, from reduced analytical models (most of the time the isentropic
quasi-1D theory is used), 3D numerical simulation without the effect of viscosity (Euler
equations) to the full compressible Navier-Stokes (NS) simulations (LES in the present
study). The comparison between these types of modelling will allow evaluating the in-
fluence of different parameters in the generation and transmission of combustion noise;
from the importance of the geometry (passage from quasi-1D theory to the 3D Euler
simulation) to the influence of viscous effects (Euler to NS simulation). Part I is orga-
nized as follows: first, different analytic models for one dimensional axisymmetric flow
configurations are presented in Chapter 2. This chapter intends to underline the physics
of indirect combustion noise generation. Then, in Chapter 3, the Entropy Wave Gen-
erator (EWG) experiment, which is a nozzle test rig located at the German Aerospace
Center (DLR) is described and taken as experimental reference case for analytical and
numerical comparisons. Chapter 4 details the use of the analytical methodologies of
Chapter 2 to study two reference test cases of the EWG: one supersonic and one sub-
sonic flow configuration. Finally, Chapter 5 presents a complete study of a subcritical
operating point of the EWG using full compressible 3D LES.
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Chapter 2

Analytic and reduced models:
state-of-the-art for combustion
noise prediction

In this chapter, an overview of analytic methods for the prediction of combustion noise
through a non-uniform quasi-1D flow are reviewed. The starting point (before studying
acoustics or perturbations) is the mean flow through the nozzle. This flow is ultimately
supposed to obey the NS equations, namely:

∂ρ

∂t
+ ∇ · (ρu) = 0, (2.1a)

∂ (ρu)

∂t
+ ∇ · (ρuu) = ∇ · (−pI + τ) , (2.1b)

ρT

(
∂s

∂t
+ u · ∇s

)

= ∇ · (k∇T ) + Φv. (2.1c)

Equations (2.1a–2.1c), respectively, stand for mass, momentum and energy conser-
vation. The primitive variables are the density ρ, the pressure p and the velocity u.
I is the identity matrix, τ the viscous stress tensor, k the thermal conductivity, and Φv

the Rayleigh dissipation function. s stands for the specific entropy, which is related to
the state variables through the equation ds = cp

dT
T − r dpp for a perfect gas, with cp the

specific heat capacity at constant pressure, T the temperature and r the specific perfect
gas constant.

For the present study, some assumptions can be made to simplify this set of equations:

• No heat exchange through the fluid and at boundaries (i.e. adiabatic flow) is
considered.

• Viscous effects are neglected.
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• The flow transformations are reversible (combined with the adiabatic and inviscid
conditions, the flow becomes isentropic).

• The gas is ideal and thermodynamically perfect (i.e. γ, cp and cv are constants).

• The flow/geometry is considered to be quasi-1D.

With these assumptions, the quasi 1D-Euler equations are obtained, reading:

1

ρ

[
∂ρ

∂t
+ u

∂ρ

∂x

]

+
∂u

∂x
= − u

A

dA

dx
, (2.2a)

∂u

∂t
+ u

∂u

∂x
+

1

ρ

∂p

∂x
= 0, (2.2b)

∂s

∂t
+ u

∂s

∂x
= 0, (2.2c)

where A is the duct cross section and is supposed to vary with the axial coordinate x
(A = A(x)).

In the general case, the flow resulting from this last set of simplified equations needs
to be solved numerically. Likewise and under specific constraints (linearisation), an
expression for the disturbed quantities can be found. To linearise Eqs. (2.2a–2.2c), the
flow variables must be split into two contributions: ϕ = ϕ + ϕ′, a mean part (ϕ) and
a fluctuating part ϕ′. Linearisation is possible if the fluctuating contribution is small
compared to its mean value (ϕ

′

ϕ ≪ 1). In this case, the Linearised Euler Equations
(LEE) for a quasi-1D flow can be recast into:

[
∂

∂t
+ u

∂

∂x

](
p′

γp

)

+ u
∂

∂x

(
u′

u

)

= 0, (2.3a)

[
∂

∂t
+ u

∂

∂x

](
u′

u

)

+
c2

u

∂

∂x

(
p′

γp

)

+

[
2u′

u
− (γ − 1)

p′

γp

]
du

dx
=
s′

cp

du

dx
, (2.3b)

[
∂

∂t
+ u

∂

∂x

](

s′

cp

)

= 0, (2.3c)

where for simplicity the symbol ( ) has been dropped.

If the flow is homogeneous (i.e. du
dx = 0), Eq. (2.3b) can be further simplified. Fur-

thermore, manipulating the term u ∂
∂x

(
u′

u

)

to make appear the sound speed,

u
∂

∂x

(
u′

u

)

= u
∂

∂x

(
u′

Mc

)

=
1

M





∂

∂x

(
u′

c

)

− u′

u�
�
�✒

0
∂M

∂x




 , (2.4)
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the system of LEE can be rearranged into:

[
∂

∂t
+ u

∂

∂x

](
p′

γp

)

+ c
∂

∂x

(
u′

c

)

= 0. (2.5a)

[
∂

∂t
+ u

∂

∂x

](
u′

c

)

+ c
∂

∂x

(
p′

γp

)

= 0, (2.5b)

[
∂

∂t
+ u

∂

∂x

](

s′

cp

)

= 0. (2.5c)

Finally, Eq. (2.5a)±Eq. (2.5b) can be recast into a new pair of equations so the LEE
system is rewritten into a system of characteristic equations that read:

[
∂

∂t
+ (u+ c)

∂

∂x

]

A+ = 0, (2.6a)

[
∂

∂t
+ (u− c)

∂

∂x

]

A− = 0, (2.6b)

[
∂

∂t
+ u

∂

∂x

]

σ = 0, (2.6c)

where,

A+ =
1

2

[
p′

γp
+
u′

c

]

, A− =
1

2

[
p′

γp
− u′

c

]

and σ =
s′

cp
=

p′

γp
− ρ′

ρ
(2.7)

are the so called characteristic variables. In this form, they are associated to the pro-
gressive acoustic wave A+, the retrograde acoustic wave A− and the entropy wave σ.
Note that A+ and A− are affected by a 1/2 coefficient to be in accordance with the work
of Marble and Candel (1977b). In terms of physics or mathematical properties, each
wave is propagated at its own velocity: acoustic waves are propagated at the velocity
(u+ c) or (u− c), whereas the entropy wave σ is propagated at the velocity of the flow
u. The propagation direction of the acoustic waves depends on the nature of the flow
(subsonic or supersonic). For a subsonic flow, where the velocity of the sound is greater
than the velocity of the fluid, the acoustic wave A+ propagates downstream, whereas the
acoustic wave A− propagates upstream. When the flow is supersonic, the sound velocity
is greater than the velocity of the fluid. As a consequence, the propagation direction of
A− changes, making both acoustic waves propagate downstream, as shown by Fig. 2.1.
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(a) Waves propagation in a subsonic nozzle (b) Waves propagation in a supersonic nozzle

Figure 2.1 Sketch of a converging diverging nozzle and waves propagation direction.

When the flow is non-homogeneous (inside the nozzle), the acoustic and entropy waves
are coupled by the velocity gradient ( Eq. (2.3b)) and the characteristic solution pro-
posed in Eqs. (2.5a–2.5c) and (2.7) cannot describe the propagation of waves. Other
methodologies like the ones introduced in this chapter need to be used. The simpler one
is to consider the nozzle as an interface. The disturbances wavelengths are hence con-
sidered to be big compared to the nozzle characteristic length (λ >> ln). This theory
was proposed by Marble and Candel (1977b) and is the basis of multiple subsequent
theories and extensions in the acoustic wave propagation through a non-homogeneous
flow. In the following, the compact theory is explained and rederived in order to un-
derstand the fundamental equations that govern the propagation of acoustic waves in
a non-homogeneous flow. Then, the analytical theory of Duran and Moreau (2013a),
that solves the LEE in the frequency domain is introduced and explained. This theory
is used later to compute the response of a nozzle to acoustic and entropy disturbances
and study the generation of entropy noise.

2.1 The compact theory

Marble and Candel (1977b) were the first to propose a theory that introduces the
notion of entropy generated noise. In their pioneering work, they also provide for the
first time the acoustic response of a nozzle to acoustic and entropy perturbations relying
on the so called compact assumption. This specific assumption requires that the acoustic
and entropy wave lengths λ are big compared to the characteristic length of the nozzle
ln. If the wave length is considered to be big, it also means that this method only
works for near zero frequencies. In other words, the temporal dependency of the balance
equations is dropped and no phase shift is induced by the nozzle. For example, the
compact assumption applied to the continuity equation gives:

∂ρA

∂t
+
∂ρuA

∂x
= 0, (2.8)

λ ≫ ln, t ≡ f−1 → ∞ and x ≡ ln, so,

∂ρA

∂t
+
∂ρuA

∂x
= 0 ⇒ ∂ρuA

∂x
= 0 .
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The compactness of the nozzle makes that the different disturbances see the nozzle as
an interface. Therefore, matching conditions can be applied between the inlet (indexed
by the subscript (·)0) and the outlet (indexed by the subscript (·)1) of the nozzle choosing
the variables that are conserved:

• Conservation of the mass flow rate
.
m (continuity equation),

• Conservation of the stagnation temperature TT (adiabatic condition),

• Conservation of entropy s (isentropic condition).

Note that to fullfill the isentropic condition, no shock waves are considered in this
part and they should be treated separately. Linearising the conserved quantities across
the nozzle to obtain jump conditions for fluctuations, one obtains:

( .
m′
.
m

)

0

=

( .
m′
.
m

)

1

, (2.9a)

(
T ′
T

TT

)

0
=

(
T ′
T

TT

)

1
, (2.9b)

(

s′

cp

)

0

=

(

s′

cp

)

1

. (2.9c)

Equations (2.9a–2.9c) show the conservation of the reduced mass flow rate, the stagna-
tion temperature and the entropy along the nozzle. These quantities are called "flow
invariants" and the relations that link them to the primitive variables read:

( .
m′
.
m

)

= ϕ+ ν − σ, (2.10a)

(
T ′
T

TT

)

=
γ − 1

1 + γ−1
2 M2

[

M2ν + ϕ+
σ

γ − 1

]

, (2.10b)

(

s′

cp

)

= σ, (2.10c)

where ϕ = p′

γp , ν = u′

u and σ = s′

cp
are the dimensionless fluctuating pressure, velocity

and entropy respectively.

With this formalism, the problem to be solved is the response of the nozzle in terms
of outgoing waves and ingoing waves. This is usually retrieved by the so called nozzle
transfer functions. This means that ingoing waves are boundary conditions of the prob-
lem (variables to be imposed) while outgoing waves (unknowns) are the response of the
nozzle to the ingoing perturbation. The number of ingoing and outgoing waves depends
on the nature of the flow, as shown in Fig. 2.1. Table 2.1 summarizes the number of
boundary conditions to impose and the number of unknowns to determine when a nozzle
is subsonic or chocked.
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Subsonic Chocked
Boundary conditions Unknowns Boundary conditions Unknowns

A+
0 A+

1 A+
0 A−

0

A−
1 A−

1 σ0 A+
1

σ0 σ1 A−
1

σ1

Table 2.1 Waves to impose and to determine to compute the nozzle transfer functions.

The transfer functions of the nozzle (ratio of an outgoing to an ingoing wave) are
obtained by imposing one ingoing wave at a time (setting the others to zero) and com-
bining Eq. (2.7) with the flow invariants of Eqs. (2.10a–2.10c). For a chocked nozzle the
problem is not closed: four waves need to be determined for only three jump conditions.
One supplementary relation is needed. Usually, the particular point of the nozzle throat,
where the nozzle Mach number is equal to one, is used based upon the relationship:

.
m (M = 1) = A PT

(
γ

r TT

)1/2 (γ + 1

2

) γ+1
2(γ−1)

= ρ u A. (2.11)

Both parts of the equation can be linearised, which yields:

( .
m (M = 1)

)′
.
m (M = 1)

=

.
m′
.
m

⇒ ν +
1 − γ

2
ϕ− 1

2
σ = 0. (2.12)

It should be noted that Eq. (2.12) also states that Mach fluctuation at the nozzle
throat is zero. In other words, the nozzle throat Mach number cannot be different from
one (M ′/M = 0), which holds for the compact nozzle at any point in the nozzle.

Rearranging Eq. (2.12) to make appear the linearised mass flow rate and entropy
conservation invariant equations, Eqs. (2.10a) and (2.10c), it can be shown that for a
supersonic nozzle, ν, ϕ and σ are constant through the nozzle:

ϕ+ ν − σ
︸ ︷︷ ︸
( .

m
′

.
m

)

= cst

+
1

2
σ
︸︷︷︸

(
s′

cp

)

= cst

− γ + 1

2
ϕ = 0. (2.13)

⇒ ϕ = cst, ν = cst.

Finally the transfer functions of the nozzle, which are written as the ratio of the trans-
mitted/reflected wave over the unitary forced wave, can be expressed and are summarized
in Tab. 2.2 and Tab. 2.3.
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Subsonic nozzle
A−

0 A+
1

Response to
M1−M0
1−M0

1+M0
M0+M1

1− γ−1
2
M0M1

1+ γ−1
2
M0M1

2M1
1−M1

1+M0
M0+M1

1+ γ−1
2
M2

1

1+ γ−1
2
M0M1

Response to
−M1−M0

1−M0

1
2
M0

1+ γ−1
2
M0M1

M1−M0
1+M1

1
2
M1

1+ γ−1
2
M0M1

Response to
2M0

1−M0

1−M1
M0+M1

1+ γ−1
2
M2

0

1+ γ−1
2
M0M1

−M1−M0
1+M1

1−M1
M0+M1

1− γ−1
2
M0M1

1+ γ−1
2
M0M1

Table 2.2 Response of a compact subsonic nozzle to acoustic and entropy unitary disturbances.

Supersonic nozzle
A−

0 A+
1 A−

1

Response to 1− γ−1
2
M0

1+ γ−1
2
M0

1+ γ−1
2
M1

1+ γ−1
2
M0

1− γ−1
2
M1

1+ γ−1
2
M0

Response to
− M0

2(1+ γ−1
2
M0)

M1−M0

4(1+ γ−1
2
M0)

− M1+M0

4(1+ γ−1
2
M0)

Table 2.3 Response of a compact supersonic nozzle to acoustic and entropy unitary
disturbances.

The transfer functions for subsonic and choked nozzles have now been established
under the compact assumption. It is however important to note that the flow does not
always leave the nozzle as supersonic and a shock can be formed in the diffuser. In this
case, the nozzle can be split into two regions (cf. Fig. 2.2): an upstream supersonic
nozzle which can be solved using the transfer functions presented in Tab. 2.3 and a
downstream subsonic nozzle where the relations of Tab. 2.2 are applicable. To link both
nozzles, jump conditions across the shock need to be supplied. Stow et al. (2002), Moase
et al. (2007), Goh and Morgans (2011b) and Duran and Moreau (2013a) described a
methodology to obtain the response of a shock to acoustic and entropy perturbations.
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Figure 2.2 Sketch of a supersonic nozzle with a shock.

To do so, the shock is considered to be an infinitesimally small interface located at
the position xs = xs + x′

s, where the fluctuating part x′
s is caused by the acoustic and

entropic perturbations impinging the shock. At this position, four waves travel towards
the shock, namely A+

a , A−
a , σa (from the supersonic part) and A−

b (from the subsonic
part), while only two waves propagate in the outward direction in the subsonic part,
namely A+

b and σb as shown by Fig. 2.2.

Rankine-Hugoniot shock relations for normal shock waves are then used to link the
upstream and downstream states of the shock wave, so that:

M2
b =

1 + γ−1
2 M2

a

γM2
a − γ−1

2

, (2.14a)

pb
pa

=
2γM2

a − γ + 1

γ + 1
, (2.14b)

ρb
ρa

=
ua
ub

=
γ+1

2 M2
a

1 + γ−1
2 M2

a

. (2.14c)

Linearising these relations in the shock reference frame ( )sh yields:

p′
b,sh

γpb
−
p′
a,sh

γpa
=

4M2
a

γ + 1

(
pa
pb

)(M ′
a,sh

Ma

)

, (2.15a)

ρ′
b,sh

ρb
−
ρ′
a,sh

ρa
=

4

M2
a (γ + 1)

(
ua
ub

)(M ′
a,sh

Ma

)

, (2.15b)

u′
b,sh

ub
−
u′
a,sh

ua
=

−4

M2
a (γ + 1)

(
ua
ub

)(M ′
a,sh

Ma

)

, (2.15c)

where the fluctuating pressure and density in the reference frame of the shock can be
decomposed into two contributions: 1) the absolute fluctuation in the reference frame
of the shock; 2) a fluctuation generated by the motion of the shock wave inside the
nozzle multiplied by the gradient of the mean pressure/density (this step can be seen as
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a Taylor expansion up to first order at the shock position):

p′
sh = p′ + x′

s

dp

dx
, (2.16a)

ρ′
sh = ρ′ + x′

s

dρ

dx
. (2.16b)

Similarly, assuming that fluctuations are harmonic in time, exp (iωt), velocity and Mach
number fluctuations in the vicinity of the shock read:

u′
sh = u′ + x′

s

du

dx
− dx′

s

dt
= u′ + x′

s

(
du

dx
− iω

)

, (2.17a)

M ′
sh = M ′ + x′

s

dM

dx
− 1

c

dx′
s

dt
= M ′ + x′

s

(
dM

dx
− iω

c

)

. (2.17b)

To close the system, expressions for the mean density, mean pressure, mean velocity
and mean Mach number are needed. First, the conservation of mass flow rate through
the shock wave can be established, allowing to write a relation linking the Mach numbers
behind and ahead of the shock with the Mach gradients:

M2
b − 1

Mb

(

1 + γ−1
2 M2

b

)
dMb

dx
=

M2
a − 1

Ma

(

1 + γ−1
2 M2

a

)
dMa

dx
. (2.18)

From the definition of the Mach number, a relation for the gradient of velocity can be
written:

du

dx
=
d (Mc)

dx
= c

dM

dx
+M

dc

dx
=

c

1 + γ−1
2 M2

dM

dx
. (2.19)

To express the gradients of pressure and density, the isentropic relations are used:

1

γp

dp

dx
=

1

ρ

dρ

dx
= − −M

1 + γ−1
2 M2

dM

dx
. (2.20)

Writing mean pressure, mean velocity and mean density gradients as functions of
the Mach gradient upstream of the shock wave using Eqs. (2.18–2.20) and replacing
Eqs. (2.16) and (2.17) in Eq. (2.15), the equations for the fluctuating primitive variables
upstream and downstream of the shock wave read:

p′
b

γpb
− p′

a

γpa
=

4M2
a

γ + 1

(
pa
pb

)[
M ′
a

Ma
+ Γp x

′
s

]

, (2.21a)

ρ′
b

ρb
− ρ′

a

ρa
=

4

M2
a (γ + 1)

(
ua
ub

)[
M ′
a

Ma
+ Γρ x

′
s

]

, (2.21b)

u′
b

ub
− u′

a

ua
=

−4

M2
a (γ + 1)

(
ua
ub

)[
M ′
a

Ma
+ Γu x

′
s

]

, (2.21c)
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where the expression for Γx are:

Γp =
1

Ma

[

1 − M2
b −M2

a

2M2
aM

2
b

(
M2
b − 1

)

]

dMa

dx
− iω

Maca
, (2.22a)

Γρ =
1

2Ma

[

1 +
M2
a − 1

M2
b − 1

]

dMa

dx
− iω

Maca
, (2.22b)

Γu =
1

2Ma

[

1 +
M2
a − 1

M2
b − 1

]

dMa

dx
−
(

M2
a + 1

2

)

iω

Maca
. (2.22c)

Only two jump conditions are needed since there are only two outgoing waves issuing
from the shock (A+

b and σb). Hence, the dependency on x′
s can be dropped if Eq. (2.21)

is combined to yield only two jump conditions. Finally, to compute the response of the
shock front to the arriving disturbances, the wave formulation of Eqs. (2.21a–2.21c) is
used. This is done knowing that the Mach number fluctuation in a supersonic nozzle
is given by Eq. (2.12) and that the density fluctuation can be computed using the
definition of the entropy wave ρ′/ρ = ϕ−σ. Hence, the jump relations for a normal shock
are obtained and summarized in Tab. 2.4. It should be noted that the acoustic-entropy
transfer functions differ from Duran and Moreau (2011) by a factor 2 and the entropy-
acoustic transfer function by a factor 1/2. This is due to the definition of the acoustic
waves employed in this manuscript (cf. Eq. (2.7)).
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A+
b σb

Response to

α+

ψ+ 2
[

φ
(
α+

ψ+ − 1
)

− Λ
(

1 − γ−1
2 Ma

)]

Response to

α−

ψ+ 2
[

φ
(
α−

ψ+ − 1
)

+ Λ
(

1 + γ−1
2 Ma

)]

Response to

1
2M

2
aM

2
b
δ
ψ+ 1 + φM2

aM
2
b
δ
ψ+ +MaΛ

Response to

−ψ−

ψ+ 2φ
(

1 − ψ−

ψ+

)

Λ =
1−
(

Γρ
Γp

)

Ma(1+ γ−1
2
M2

a)
δ =

2

(

1− Γu
Γp

)

1+ γ−1
2
M2

a

α± = Γu
Γp

±M2
aM

2
b

[

1 − δ
(

1 ∓ γ−1
2 Ma

)]

φ = 1
2

[

1 − 1
M2

aM
2
b

(
Γρ

Γp

)]

ψ± =
(

Γu
Γp

±M2
aMb

)

Table 2.4 Response of a shock wave to acoustic and entropy unitary disturbances.

The shock transfer functions were derived for the general case. It is important to
notice that the obtained shock relations are frequency dependent which is in agreement
with the analyse of Stow et al. (2002) or Goh and Morgans (2011b) obtained using an
asymptotic expansion of the LEE.

The supersonic part of the nozzle is solved applying directly the transfer functions of
Tab. 2.3. To solve the downstream subsonic nozzle, the inlet waves must be computed
correctly. Indeed, the acoustic and entropy inlet waves for this nozzle will be the sum of
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the different responses of the shock, therefore:

A+
b =

[

A+
b

A+
a

]

A+
a +

[

A+
b

A−
a

]

A−
a +

[

A+
b

σa

]

σa

︸ ︷︷ ︸

A+
b,f

+

[

A+
b

A−
b

]

︸ ︷︷ ︸

Rin

A−
b , (2.23)

σb =

[
σb

A+
a

]

A+
a +

[
σb

A−
a

]

A−
a +

[
σb
σa

]

σa
︸ ︷︷ ︸

σb,f

+

[

σb

A−
b

]

︸ ︷︷ ︸

R′

s

A−
b . (2.24)

The first contribution, here denoted by the subscript f (for forced) results from the
transmitted waves through the shock. The second contribution, called "reflected" is the
result of the reflection of the upstream-propagating wave coming from the outlet of the
nozzle. From here on, the downstream subsonic nozzle can be easily solved applying the
transfer functions of Tab. 2.2.

The analytic transfer functions of a compact subsonic and chocked nozzle with and
without a shock have been rederived following the work of Marble and Candel (1977b).
From this work, multiple extensions to the compact theory have been developed. For
example, the compact non-linear nozzle of Huet and Giauque (2013) and Huet (2016),
proposes analytical second order transfer functions to take into account the non-linear
effects produced by a high amplitude entropy forcing. The work of Stow et al. (2002);
Goh and Morgans (2011b) proposes an asymptotic expansion of the LEE that corrects
the phase of the chocked nozzle transfer functions introducing an equivalent nozzle length
(by definition the compact nozzle is an interface and therefore there is no phase shift
between the waves through the nozzle). Afterwards, and to study the response of the
nozzle to non-zero frequencies, Giauque et al. (2012) proposed the introduction of a linear
mean velocity profile method. This methodology considers that the nozzle is represented
as a series of smaller nozzles, each nozzle being governed by a linear mean velocity profile
forming a piece-wise velocity profile for the entire nozzle. With these assumptions, a
hypergeometric differential equation coupled to the adjacent intervals needs to be solved
to compute the complete solution of the nozzle.

2.2 The invariant method

In this section the analytical non-compact solution of the quasi-1D LEE in the fre-
quency domain developed by Duran and Moreau (2013a) is presented. This solution
allows to study the acoustic response of a nozzle for all frequencies. Indeed, even if
combustion noise is known to radiate broadband noise in the low frequency limit, it is
important to know that the compactness limit (and therefore the validity of the com-
pact solution) is reached rapidly (cf. Leyko et al. 2010) and that the nozzle transfer
functions depend strongly on frequency (cf. Leyko et al. 2009 and Duran et al. 2013b).
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The analytical methodology developed by Duran and Moreau (2013a) does not use the
compact hypothesis for the nozzle and solves the LEE for every point in the nozzle. The
methodology consists in introducing Marble and Candel’s flow invariants (dimensionless
mass flow rate, total temperature and entropy of Eqs. (2.9a–2.9c)) into Eqs. (2.3a–2.3c)
to obtain a linear ordinary differential equation system of the form d [I]/dX = A (X) I,
where I is the invariant vector and A is a matrix.

To do so, the first step is to write the one dimensional LEE (Eqs. (2.3a–2.3c)) into a
dimensionless form. Duran and Moreau have chosen to take as reference state the inlet
of the nozzle (referenced by the subscript 0) to reduce velocity variables. Therefore,
dimensionless space X = x/Ln, dimensionless time τ = tf ′ (here f ′ is the character-
istic frequency of the flow), dimensionless frequency Ω = fLn/c0, dimensionless velocity
u = u/c0, dimensionless speed of sound c = c/c0 and dimensionless primitive variables fluc-
tuations (ϕ, ν and σ) are introduced into the LEE to yield the following set of equations:

[

Ω
∂

∂τ
+ u

∂

∂X

]

ϕ+ u
∂ν

∂X
= 0, (2.25a)

[

Ω
∂

∂τ
+ u

∂

∂X

]

ν +
c2

u

∂ϕ

∂X
+ [2ν − (γ − 1)ϕ− σ]

du

dX
= 0, (2.25b)

[

Ω
∂

∂τ
+ u

∂

∂X

]

σ = 0. (2.25c)

The method consists then in writing the transport equations for the three flow invari-
ants IA =

.
m

′/
.
m, IB = T ′

T/TT and IC = σ instead of solving the conventional LEE. Let
us start with the dimensionless mass flow rate fluctuation invariant transport equation.
Eq. (2.25a) is subtracted from Eq. (2.25c) to yield:

D

Dτ
(IA) = Ω

∂ν

∂τ
, (2.26)

where the substantial derivative is defined as D/Dτ = Ω∂/∂τ + u∂/∂X.

Invariant IB is introduced using the linearised dimensionless momentum equation,
Eq. (2.25b), but first the dependency on the velocity gradient needs to be dropped and
expressed as a function of the Mach number (like the flow invariants),

du

dX
=
d (Mc)

dX
=

(

c

1 + γ−1
2 M2

)

dM

dX
. (2.27)

Then using Eq. (2.27) and multiplying Eq. (2.25a) by M2, the following expression for
IB is obtained:

Ω
∂
(
M2ν

)

∂τ
+ u

(

1 + γ−1
2 M2

γ − 1

)

∂IB
∂X

− u
∂

∂X

(
σ

γ − 1

)

= 0. (2.28)
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Subtracting Eq. (2.25c) from Eq. (2.28) the transport equation for IB becomes:

D

Dτ
(IB) = Ω

(

γ − 1

1 + γ−1
2 M2

)

∂ϕ

∂τ
. (2.29)

The transport equation for the entropy fluctuation invariant IC is obtained directly.

To close the system, expressions for ∂ν/∂τ and ∂ϕ/∂τ are needed, which is done by using
Eq. (2.25a) and Eq. (2.28) to obtain the system:

D

Dτ
(IA) =

u

M2 (γ − 1)

[
∂

∂X
(IC) −

(

1 +
γ − 1

2
M2

)
∂

∂X
(IB)

]

, (2.30a)

D

Dτ
(IB) = − u (γ − 1)

1 + γ−1
2 M2

[
∂

∂X
(IA + IC)

]

, (2.30b)

D

Dτ
(IC) = 0. (2.30c)

If the invariants are assumed to be harmonic, the system can be written as a linear
differential equation system,

[E (X)]
d

dX
[I] = 2πiΩI, (2.31)

where the invariant vector is I = [IA; IB; IC ] and E is a 3x3 matrix,

E (X) = −u
















1
1+ γ−1

2
M2

M2(γ−1)
− 1
M2(γ−1)

γ−1

1+ γ−1
2
M2

1
γ−1

1+ γ−1
2
M2

0 0 1
















. (2.32)

When the determinant of E is non-zero (M 6= 1), the matrix can be inverted leading to:

d

dX
[I] = A (X) I, (2.33)

where A is the complex matrix

A (X) = − 2πΩi

u (M2 − 1)
















M2 −
1+ γ−1

2
M2

γ−1
γ
γ−1

− M2(γ−1)

1+ γ−1
2
M2

M2 −M2(γ−1)+1

1+ γ−1
2
M2

0 0 M2 − 1
















. (2.34)
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Note that for chocked nozzles, where the nozzle throat Mach number is unity MNth
= 1,

the determinant of E is zero and it cannot be inverted. This particular case needs
therefore to be treated separately.

To solve the differential system of Eq. (2.33), which is a set of homogeneous first order
differential equations, Duran et al. (2013b) used the Magnus expansion (Magnus 1954;
Blanes et al. 2009). In this approach, the solution of the system in matrix form can be
written:

I (X) = [C (X)] I0, with C (X) = exp (B (X)) , (2.35)

where I0 is the invariant vector at the inlet. The asymptotic expansion is performed in
terms of B (around Ω → 0) instead of expanding I directly. In the particular case where
the Mach number is constant (e.g. a straight duct), A (X) commutes for any value of
X1 and X2 (A (X1)A (X2) − A (X2)A (X1) = 0). In this case, B (X) does not need to
be expanded and can be integrated directly term by term,

B (X) =

∫ X

0
A (X1) dX1. (2.36)

However, if the Mach number inside the nozzle is not constant, then A (X1)A (X2) −
A (X2)A (X1) 6= 0. Therefore, B (X) is obtained using the Magnus expansion:

B (X) =
∞∑

k=1

B
(k) (X) . (2.37)

The first three terms of the series are (as described by Blanes et al. 2009):

B
(1) (X) =

∫ X

0
A (X1) dX1, (2.38a)

B
(2) (X) =

1

2

∫ X

0
dX1

∫ X2

0
dX2 [A (X1) ,A (X2)] , (2.38b)

B
(3) (X) =

1

6

∫ X

0
dX1

∫ X1

0
dX2

∫ X2

0
dX3 ( [A (X1) , [A (X2) ,A (X3)]] +

[A (X3) , [A (X2) ,A (X1)]] ) , (2.38c)

where [A,A] is the matrix commutator. One should notice that if [A,A] = 0 the first
order of the Magnus expansion is the exact solution of Eq. (2.36) and the other terms
are zero.

To obtain the final solution, C = exp (B) is needed. Duran and Moreau (2013a)
proposed to use a Taylor series to expand the exponential, namely:

C = exp (B) = I + B +
(B)2

2!
+ ...+

(B)n

n!
(2.39)

The advantage of this method is that the Taylor series and the Magnus expansion can
be truncated at the same order. One can verify that at the inlet B (0) = 0, and therefore
C (0) = I, the identity matrix.
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As explained before, the Magnus expansion of the solution I (X) is done around 0.
Therefore, the convergence of the series will be limited by the condition (as shown by
Moan and Niesen 2006):

∫ Xcrit

0
||A (X) ||2 dX < π, (2.40)

where || ||2 stands for the 2-norm, which for a square matrix is equal to the spectral
norm and can be calculated as ||A||2 =

√

λmax (A∗A), where λmax is the largest singular
value and A∗ is the complex conjugate of matrix A. The critical length Xcrit (<X = 1)
depends on the maximal frequency to be resolved Ωmax. Below this critical value, the
convergence of the series only needs a few terms1, otherwise the series may diverge.
To compute analytically the complete solution of the nozzle (from X = 0 to X = 1),
the nozzle is divided into different sub-parts, each one bounded between Xn−1 and Xn

(= Xcrit). The analytical solution of each part n then reads,

I (Xn) = exp (B (Xn, Xn−1)) I (Xn−1) , (2.41)

where I (Xn−1) is the invariant vector at the "inlet" of the sub-part. Then, the concate-
nation of all N parts of the nozzle, i.e. the solution from the inlet to the outlet provides
the nozzle solution which hence reads:

I (XN ) = [exp (B (XN )) · exp (B (XN−1)) · . . . · exp (B (X1))] I0. (2.42)

The analytical approximation of the exact solution of the LEE in the frequency domain
is obtained relating the acoustic and entropy perturbations of each point inside the
nozzle to the perturbations at the inlet through the relation I (X) = [C (X)] I0, where
[C] = exp (

∫
[A] dX). Note that this new expansion produces a solution dependent on the

nozzle length and shape when the analytical solution of Marble and Candel (1977b) (i.e.
the compact solution) indicates that the nozzle has no length, and therefore corresponds
to [C] = I and I (X) = I0.

The last step of the methodology is to impose correctly the inlet invariant vector I0,
which represents the boundary conditions of the system. To do so, it is necessary to
have a representation of this vector in a propagating wave formulation, in which only
the ingoing waves should be imposed.

Considering a straight duct of constant section, the harmonic invariant vector can be
written as:

I = Î exp

(

−i

∫ X

0
K (ζ) dζ

)

(2.43)

K
± =

2πΩ

u± c
and K

s =
2πΩ

u

1Duran and Moreau (2013a): using the EWG subsonic nozzle going up to the third or fifth order of
the Magnus expansion is sufficient for the convergence of the series.
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where K are the wave numbers of the acoustic and entropy perturbations and are the
eigenvalues of the system obtained introducing Eq. (2.43) into Eq. (2.33). The associated
eigenvectors read,

Î = DW =









η+ η− −1

β+ β− ζ

0 0 1

















A+

A−

σ









, (2.44)

where W is the wave vector and η± = 1 ± 1/M, β± = (γ − 1) (1 ±M) ζ and ζ =
(

1 + (γ−1)
2 M2

)−1
.

In the case of a subsonic flow, the waves to be imposed at the inlet of the nozzle are the
downstream propagating acoustic wave A+

0 and the entropy wave σ0 while at the outlet
the upstream propagating acoustic wave A−

1 needs to be prescribed. The different waves
can be imposed directly imposing a value, or indirectly through a reflection coefficient.
The different ingoing waves can hence be written as:

A+
0 = A+

0,f +R0A
−
0 , (2.45a)

A−
1 = A−

1,f +R1A
+
1 +Rsσ1, (2.45b)

σ0 = σ0,f +R′
sA

−
0 , (2.45c)

where subscript 0 indicates the inlet position, 1 the outlet and terms with the subscript
f denote the forcing terms while R are reflection coefficients. The reflection coefficient
Rs is an additional term accounting for the acoustic generation due to an entropy wave
in a chocked flow and R′

s is the ratio of the transmitted entropy wave through a shock
wave over the incident upstream propagating acoustic wave to the shock [σb/A−

b
] as shown

by Eq. (2.24) in the shock relations for the compact theory of §2.1.

Finally, writing the solution of Eq. (2.35) between the inlet and outlet of the nozzle,
namely I1 = CI0, replacing I1 and I0 by relation Eq. (2.44) and introducing the additional
reflection coefficients and forced waves, the system can be written as:

D1






A+

A−
f

σ






1

= C1D0






A+
f

A−

σf






0

, (2.46)

with

D0 =









η+
0 η−

0 +R0η
+
0 −R′

s −1

β+
0 β−

0 +R0β
+
0 − ζ0R

′
s ζ0

0 R′
s 1









, (2.47)
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D1 =









η+
1 +R1η

−
1 η−

1 −1 +Rsη
−
1

β+
1 +R1β

−
1 β−

1 ζ1 +Rsβ
−
1

0 0 1









. (2.48)

This system is solved moving all the forced waves to the right hand side of the equation
and the non forced waves to the left to rewrite the system into:

[

(D1)(i,1) ; − (C1D0)(i,2) ; (D1)(i,3)

]






A+
1

A−
0

σ1




 =

[

(C1D0)(i,1) ; − (D1)(i,2) ; (C1D0)(i,3)

]






A+
1,f

A−
0,f

σ1,f




 .

(2.49)
Note that the second column of matrices D1 and C1D0 have been exchanged in Eq. (2.49)
so that the system can be inverted and then solved.

The case of a chocked nozzle needs to be treated separately, since Eq. (2.32) cannot
be inverted. In this specific case, the chocked condition (i.e. Mth = 1) is treated as a
boundary condition. In the case of a compact nozzle, as done by Marble and Candel
(1977b); Stow et al. (2002); Goh and Morgans (2011a), the condition M ′/M = 0 holds
everywhere in the nozzle and in particular at the outlet (the nozzle is considered to
have no length). In the present case, this condition cannot be imposed at the outlet but
can be imposed at the nozzle throat. At this singular point, the upstream propagating
wave in the convergent A−

u changes its propagation direction to become in the nozzle
diffuser A−

d (as shown in Figure 2.3). The methodology to compute a chocked nozzle
is hence split in two parts: First, the subsonic part is computed solving the system of
Eq. (2.49), afterwards, matching conditions at the nozzle throat are applied to compute
the supersonic part.

Figure 2.3 Sketch of the acoustic and entropy waves in a converging-diverging chocked nozzle.

The matching conditions at the nozzle throat are applied considering the nozzle throat
as a compact element of infinitesimally small length as done by Moase et al. (2007), where
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Mu = 1 − ǫ, Md = 1 + ǫ and subscript u stands for the upstream part of the chocked
throat and d for the downstream part of the chocked throat.

Imposing the condition M ′/M = 0 (cf. Eq. (2.12)) at Xu and assuming ǫ → 0
(i.e. Mu → 1) allows to write the acoustic and entropy waves as A+

u = 1/2 [φ+ ν],
A−
u = 1/2 [φ− ν] and σu. Therefore, the upstream propagating acoustic wave A−

u can be
computed as a function of the two incoming waves:

A−
u = RuA

+
u +Rsσu, (2.50)

with

Ru =
3 − γ

1 + γ
and Rs = − 1

1 + γ
. (2.51)

Ru and Rs must be imposed at the nozzle throat to allow the resolution of the subsonic
half of the chocked nozzle written in Eq. (2.49). For the supersonic half of the nozzle,
three waves have to be imposed at the nozzle throat. This is done knowing that Iu = Id
and using Eq. (2.44). Afterwards, only the supersonic half is needed to be solved via the
relation I1 = CdivergentId.

The last case to be treated corresponds to the supersonic nozzle with a shock wave.
In this case, only the upstream propagation of waves has to be taken into account. The
transmitted waves through the shock are expressed by Eqs. (2.23) and (2.24), and the
upstream reflection coefficients for the shock are taken from Table 2.4. Afterwards, the
system is solved similarly to the subsonic nozzle case.

For the study of indirect combustion noise, an experimentally well parametrised con-
figuration is needed. The characteristics of the mean flow and the acoustic impedances
must be well defined and the measurement of the different acoustic and entropy waves
well managed. To do so, the Entropy Wave Generator (EWG) facility, described in Chap-
ter 3, has been created and already studied extensively using different methodologies.
In this PhD work, the generation and propagation of entropy noise in this nozzle config-
uration is studied analytically using the invariants methodology of Duran and Moreau
(2013a) in Chapter 4. Different operating points, shapes of entropy disturbances and the
influence of the acoustic impedances at the boundary conditions are analysed. It should
be pointed out that an extension of the invariants methodology has been developed by
Duran and Morgans (2015), where the azimuthal velocity fluctuations are taken into
account and used as a fourth invariant. The introduction of an azimuthal velocity com-
ponent allows therefore to compute circumferential modes and vorticity waves, which
generate acoustic waves by the same mechanism as the entropy waves (indirect noise
generation). However, the analytical study conducted in the present work will only be
focused in the study of plane waves and the formalism developed by Duran and Moreau
(2013a) is retained.
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Chapter 3

The Entropy Wave Generator
experiment

Indirect combustion noise was first studied experimentally by Zukoski and Auerbach
(1976) and Bohn (1976) in a nozzle accelerated flow heated by electrical resistances. In
these experiments the amplitude of the induced temperature fluctuation was kept very
low. Furthermore, due to technical restrictions at the time, a post-processing of the
acquired data in the time domain was not possible (only a time period of 0.1 s could be
stored). Three decades later, Harper-Bourne et al. (2008) analysed combustion noise in
a turbofan demonstrator engine using cross-correlations and scaling laws. The results of
this work showed that direct combustion noise is dominant at low frequencies (below 100
Hz) while entropy noise peaks at 200 Hz and appears to dominate the combustor noise
at higher frequencies. Eckstein et al. (2004) evaluated the importance of entropy noise
in a combustor test rig with a self excited combustion instability (rumble) varying the
outlet condition (open or choked nozzle). The investigation showed in the case of the
choked outlet nozzle a clear contribution of entropy noise to the emitted noise spectrum.
Finally, in the study carried out by Leyko et al. (2009), a relation to predict the ratio
between indirect and direct noise for compact frequencies based on Marble and Candel
(1977a) is proposed. This relation is only dependent on the inlet and outlet nozzle Mach
numbers and shows that for laboratory scale experiments, this ratio is very small and
direct noise is the dominant source. It also shows that for modern aero-engines indirect
noise is one order of magnitude greater than direct noise confirming that indirect noise
should be taken into account in the overall noise spectra of real applications. However,
these results are only valid in the low frequency limit and a more complete study should
be carried out considering their dependence on the frequency. In the present work, the
methodology proposed by Duran et al. (2013b) to solve the LEE in the frequency domain
is used to remove the compact limitation.

In an attempt to better characterize the entropy noise generation phenomena, a test
rig called the Entropy Wave Generator (EWG) has been built by Bake et al. (2009) at
the German Aerospace Centre (DLR). The main characteristics of this test rig have been
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defined to have:

• A well defined flow,

• Well defined boundary conditions,

• The possibility of inducing specifically controlled entropy waves,

• The detection of the subsequently generated entropy noise.

The set-up of the EWG basically consists of two straight circular ducts connected
by a convergent-divergent nozzle (cf. Fig. 3.1). The upstream duct is equipped with a
heating module composed of six rings, each of them with ten heating wires covering the
apparatus cross section. Thanks to an electronic circuit, the activation of each heating
ring can be delayed or not, therewith different shapes of entropy waves can be produced.
The upstream duct is equipped with a fast thermocouple and a vibrometer to measure
the temperature fluctuations generated by the heating device. Finally, four wall-flushed
mounted microphones are disposed at different axial positions of the downstream duct
to measure the pressure fluctuations generated by the heating and acceleration of the
entropy wave. Setting the origin of the coordinate system at the nozzle throat plane,
Tab. 3.1 summarizes the axial locations of the different elements of the EWG.

(a) EWG test rig photo (b) EWG sketch

Figure 3.1 Entropy Wave Generator test rig configuration.

The flow that feeds the EWG is supplied by the laboratory compressed air system
monitored through a mass flow controller. This air enters the set-up through a settling
chamber with a honeycomb flow straightener before arriving into the upstream duct.
Different operating points from subsonic to supersonic can be reached by the test rig.
Only two of them are documented in detail in Bake et al. (2009):

Case No. 1: Supersonic operating point.
The mass flow rate is set at 42 kg/h. The entropy wave is generated by the
simultaneous activation of four heating rings (from 3 to 6) for a pulse duration
of 100 ms. This pulse excitation is repeated once per second to enable a phase
averaging over 300 pulse events. The temperature fluctuation (entropy wave) is
measured by a wire thermocouple (R-type) achieving an amplitude of 9.1 K.
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Element Symbol Axial position

Inlet xin -250 mm
1st heated ring xHD1 -145.5 mm
Spacing between heating rings ∆xR 8 mm
Thermocouple xth -72.5 mm
Vibrometer xvib -58 mm
Convergent inlet xNin -13 mm
Nozzle throat xNth

0 mm
Diffuser outlet xNout 250 mm
Microphone 1 xmic1 350.5 mm
Microphone 2 xmic2 730.5 mm
Microphone 3 xmic3 975.5 mm
Microphone 4 xmic4 1150.5 mm
Outlet xout 2250 mm

Table 3.1 Summary of the axial positions of the different elements of the EWG.

Case No. 2: Subsonic operating point.
The mass flow rate is set at 37 kg/h, which corresponds to a subcritical nozzle Mach
number of MNth

= 0.7. The six heating rings are activated but the activation
is delayed according to the flow velocity in the tube and the distance between
each heating ring. Note that, a larger temperature gradient is expected by the
generation of this pulse. The associated temperature fluctuation is measured by
a vibrometer, which evaluates the change of the optical path length through the
tube resulting from the density change in the flow induced by the temperature
fluctuation. For this case, the averaged amplitude of the temperature fluctuation
is measured to reach 13.4 K. The pulse duration is 100 ms and is triggered every
second.

The different geometric, flow and excitation parameters of the two test cases of interest
are summarized in Tab. 3.2.

The EWG is one of the first experiments that showed conclusively the generation of
indirect noise and so the resulting interest in combustion noise grew and different lab-
oratories computed the EWG test cases analytically and numerically. The supersonic
test case was computed analytically and numerically by Leyko et al. (2011). Its ana-
lytical approach assumes a quasi-1D flow field and a compact nozzle (cf. Marble and
Candel 1977a). The LES compressible solver AVBP (Schønfeld and Rudgyard 1999) has
been used for the numerical simulations. However, only Euler equations on a 10◦ az-
imuthal periodic sector have been solved for this study. Results show that the compact
assumption and the knowledge of the acoustic outlet boundary condition are sufficient
to obtain satisfactory results for this test case. Duran et al. (2011; 2013b) computed
the subsonic test case using the same approach as Leyko et al. (2011) but added to
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Parameter Case No. 1 Case No. 2

Mass flow rate
.
m [kg/h] 42 37

Nozzle Mach number MNth
1.0 0.7

Settling chamber pressure [Pa] 111970 105640
Nozzle throat pressure [Pa] 48090 68650
Bulk velocity in the upstream duct [m/s] 12.18 11.39
Pulse duration [s] 0.1 0.1
Pulse repetition rate

[
s−1

]
1 1

Temperature increase ∆T [K] 9.1 13.4
Heating electrical power [W ] 143.7 192.7
Heating power Q (determined with ∆T ) [W ] 106.8 138.2
Heated rings From 3 to 6 From 1 to 6
Activation time delay of the heated rings [ms] no 0.702

Table 3.2 Summary of geometric, flow and excitation parameters of the EWG test cases.

the analytical method the resolution of non zero frequencies by solving the LEE in the
frequency domain. Duran et al. found that the nozzle can be considered as compact,
finding the same result using the compact and non-compact nozzle transfer functions.
In this study, direct noise is found to be dominant over indirect noise. The noise peak
evolution as a function of the flow Mach number has also been computed, obtaining that
the peak increases with the Mach number, which was not the case experimentally. In the
experiment, the maximum noise generated reaches a plateau (cf. Fig. 3.2). To explain
this phenomenon Howe (2010) suggested that in cases with flow separation inside the
diffuser, vortex sound strongly correlates with entropy noise and can reduce the overall
sound level. Furthermore, the strong deformation of the hot slug at the nozzle throat
will reduce the entropy gradients within the front, decreasing the corresponding acoustic
pressure level. Muhlbauer et al. (2009) computed the subsonic and supersonic test cases
by means of URANS coupled to acoustic boundary conditions obtaining also very good
results in comparison with the experiment. The peak for different Mach numbers has also
been computed, obtaining good agreement with the experimental results. Ullrich et al.
(2014; 2015) computed both the subsonic and the supersonic configurations of EWG by
means of RANS simulations for the unforced flow and a Linearised Navier-Stokes Equa-
tions (LNSE) to determine the acoustic-acoustic and entropy-acoustic transfer functions
of the nozzle. Lourier et al. (2014) used a new approach to treat the acoustic boundary
conditions in the time domain (TDIBC) coupled with a URANS approach to solve the
subsonic test case of the EWG. Good results have been found in comparison to the
experimental data, maximal and minimal peaks of the pressure response are indeed well
reproduced, although some overestimations of the signal and some time delays remain.
Finally, this last work by Lourier et al. claimed that the indirect noise dominates direct
noise (which somewhat contradicts previous results by Duran et al. 2011; 2013b).
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Figure 3.2 Normalized entropy noise over nozzle Mach number measured at the EWG test rig
from Bake et al. (2009).

Until this date, EWG experiment has been used as a reference test case for different
studies and has clarified some interrogations concerning combustion noise. Neverthe-
less, some questions remain open or need to be studied in more details. For example,
entropy noise cancellation due to flow separation and distortion of the temperature in-
homogeneities in the nozzle (Howe 2010), entropy dispersion and dissipation (Morgans
et al. 2013) as well as the presence of the plateau reached at high subsonic nozzle Mach
number in the entropy noise measured by Bake et al. (2009) (cf. Fig. 3.2) are features
that still remain to be either understood or clarified. More generally, analytic models fail
to capture specific features for non-understood reasons today. All these points are the
primary motivations for the generation of a full compressible LES of one subsonic test
case of this configuration. This LES can indeed provide valuable information thanks to
its well controlled design, which will be guided by analytical models all along this work.
Once mastered such predictions can ultimately be compared to experimental findings as
well as potential sources of improvement of analytical models.

In the following (i.e. Chapter 4), the subsonic and chocked test cases of the EWG
described in Bake et al. (2009) are computed analytically. The analytical methodology
employed by Duran et al. (2013b) to model the subsonic operating point of the EWG is
revisited to take into account the complete EWG heating device (which was modelled
as a compact element) and its ignition sequence. Furthermore, the analytical solution
of the LEE proposed by Duran and Moreau (2013a) is used to study the response of the
EWG nozzle to acoustic and entropy disturbances for non-compact frequencies.
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Chapter 4

Analytical study of the EWG

In this chapter, the analytical method developed by Duran and Moreau (2013a) is used
to compute the transfer functions of the EWG for the operating points described in the
work of Bake et al. (2009). A methodology is presented to predict the generated noise
caused by the introduction and convection of a hot slug. The advantages of an analytic
method over numerical simulations, are that each noise source (direct or indirect) can
be computed separately to determine its contribution to the overall noise produced.
The time of computation is furthermore negligible compared to numerical simulations,
allowing to investigate the influence of different parameters. In particular, the influence
of the acoustic boundary conditions, the consideration of each heating wire, the ignition
sequence for the generation of the hot slug and the compactness of the nozzle are studied
in this chapter. Note also that all obtained results issued by the above analysis are
compared to results obtained in other studies.

The assumptions for the present study are recalled for clarity:

• The flow is adiabatic: heat exchanges through the nozzle and duct walls are ne-
glected.

• Viscous effects are neglected.

• The undisturbed flow is supposed isentropic.

• Harmonic shape of small amplitude disturbances (linear acoustics).

The analytical modelling of the EWG used in this chapter is based on the works
of Leyko et al. (2011) and Duran et al. (2013b). To compute the transfer functions
of the nozzle and then compare them with the compact transfer functions, the chosen
method relies specifically on the analytical resolution of the LEE proposed by Duran and
Moreau (2013a). As the frequency is low, only plane waves are considered to propagate
in the ducts. Furthermore, the positions of the different elements being known, they
are treated with the introduction of time delays. Since the study is purely analytic, the
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domain considered corresponds to the axisymmetric volume sketched in Fig. 4.1, where
all relevant length scales and indices are provided.

The chapter is organised as follows: First, the model proposed by Leyko et al. (2011)
is extended to take into account the ignition sequence and each heating ring of the
experimental heating device in §4.1. Then, the construction of the system of waves to
solve (ingoing and outgoing waves) is described in §4.2. Finally, in §4.3 and §4.4 the
chocked and subsonic nozzle test cases of Bake et al. (2009) are investigated analytically
with the methodology described in this chapter.

Figure 4.1 Domain considered for the analytical study of the EWG.

4.1 The heating device model

Compressible LES of a full 360◦ configuration of the subsonic test case of Bake et al.
(2009) carried in §5.2 (which has been published in Becerril et al. 2016) shows that the
modelling of the heating device has an important effect on the shape of the measured
temperature fluctuation. Indeed, the ignition sequence of the heating device is seen to
generate a time delay on the measured temperature and pressure signals. The analytical
model considered in this study cannot take into account all the aspects of the LES, in
particular the boundary layers, dissipation and distortion of the temperature fronts, flow
separation and other phenomena. Nevertheless, an effort can be done to reproduce the
different parameters of the experiment as accurately as possible. Among other things,
the need for a reliable model to reproduce the heating device clearly appears.

The EWG heating device is composed of six heating wires. Here, rather than consid-
ering all the heating device as a compact element (as done by Leyko et al. 2011; Duran
et al. 2013b), it will be represented by six compact heating modules. Balance equations
can hence be written for each compact heated ring:

( .
m′
.
m

)

j,0

=

( .
m′
.
m

)

j,1

, (4.1a)
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=
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, (4.1b)
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s′
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)

j,0

+ q′
j =

(

s′

cp

)

j,1

, (4.1c)

where subscript j indicates that the balance equation is applied to the jth ring and
subscripts 0 and 1 stand for upstream and downstream positions of the considered ring
respectively; q′

j is the energy induced by the heating. It should be noticed that the bal-
ance equations for the heating module are written using the flow invariants formulation
of Eqs. (2.10a–2.10c). Expressing the flow invariants as a function of the acoustic and
entropy waves as done in Eq. (2.44), the system can be rewritten as:

(

1 +
1

M0

)

A+
j,0+

(

1 − 1

M0

)

A−
j,0−σj,0 =

(

1 +
1

M0

)

A+
j,1+

(

1 − 1

M0

)

A−
j,1−σj,1, (4.2a)

(1 +M0)A+
j,0+(1 −M0)A−

j,0+
σj,0 + q′

j

γ − 1
= (1 +M0)A+

j,1+(1 −M0)A−
j,1+

σj,1
γ − 1

, (4.2b)

σj,0 + q′
j = σj,1. (4.2c)

Note that, before the introduction of the temperature fluctuation by the heating de-
vice, no acoustic or entropy disturbances are considered. Therefore, all incident waves to
the heated ring may be considered to be zero (A+

j,0 = A−
j,1 = σj,0 = 0), and the outgoing

waves may be computed as a function of the introduced energy and Mach number (which
is assumed to be constant through the heating device), that is,

σj,1 = q′
j , (4.3a)

A+
j,1 =

M0

2 (1 +M0)
q′
j , (4.3b)

A−
j,0 =

M0

2 (1 −M0)
q′
j . (4.3c)

Waves generated by the compact jth ring are represented in Fig. 4.1, where only the
downstream travelling waves are needed and propagated through the nozzle. Therefore,
the overall acoustic wave propagated downstream A+

HD can be represented as the sum-
mation of the downstream travelling waves produced by the each heated ring A+

j,1 and
the upstream travelling wave that has reached the boundary condition Rin and has been
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reflected into a downstream travelling wave RinA
−
j,0. These waves are written at the

inlet of the nozzle, xNin :

A+
HDj

(xNin) = A+
j,1(xHDj) exp

(

−iω
Lj,1

c0 (1 + M0)

)

+

(

RinA
−
j,0

)

(xHDj) exp

[

−iω

(

2Lj,0

c0
(
1 − M2

0

) +
Lj,1

c0 (1 + M0)

)]

, (4.4a)

σHDj (xNin) = σj,1(xHDj) exp

(

−iω
Lj,1

c0M0

)

, (4.4b)

where ω is the angular frequency and the distances Lj,0 and Lj,1 represent the distance
from the inlet xin to the jth ring and the distance from the jth ring to the inlet of the
nozzle xNin respectively, and expressed by:

Lj,0 = xHD1 + (j − 1) ∆xR − xin, (4.5a)

Lj,1 = xNin − xHD1 − (j − 1) ∆xR. (4.5b)

where the subscript HD stands for Heating Device. The values of all the elements of the
EWG configuration (xHD1 , xNin and ∆xR) are summarised in Tab. 3.1.

One last parameter needs to be defined: the energy provided by the heating device
q′
j . This energy has been introduced in the above balance equations as an entropy

perturbation source term. With the assumption of an isobaric entropy perturbation as
done by Huet and Giauque (2013), q′

j = s′

HD/cp can be expressed as a sole temperature
perturbation, for which a delay τj can been introduced to take into account the ignition
sequence of the heating device:

q′
j =

s′
HDj

cp
=
T ′

HDj

T
exp (iωτj) . (4.6)

From this input, the acoustic and entropy waves generated by the whole heating device
at the inlet of the nozzle are described as the summation of the acoustic and entropy
waves generated by the individual rings, A+

HDj
and σHDj , and recast into:

A+
HD =

M0

2
(
1 −M2

0

)

6∑

j

T ′
HDj

T
exp

[

−iω

(
Lj,1

c0 (1 + M0)
− τj

)]

[

1 −M0 + (1 +M0)Rin exp

(

−iω
2Lj,0

c0
(
1 − M2

0

)

)]

, (4.7a)

σHD =
6∑

j

T ′
HDj

T
exp

[

−iω

(
Lj,1

c0M0
− τj

)]

. (4.7b)
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4.2 Propagation of waves through the nozzle

Figure 4.2 Interaction of entropy and acoustics waves through a subcritical nozzle.

The response of a nozzle to an incoming entropy disturbance is a complex coupling
problem involving entropy and acoustics. Figure 4.2 describes this coupling in a subcrit-
ical nozzle configuration: First, the entropy wave is accelerated by the nozzle generating
two acoustic waves A−

0,e and A+
1,e produced by the indirect noise mechanism. If boundary

conditions are non-reflective, the process ends here and acoustic waves leave the domain.
If not, boundary conditions reflect the incident acoustic waves. Reflected waves A+

0 and
A−

1 as well as acoustic forced waves (in the studied case it will be A+
HD) can be considered

as waves produced by the same mechanism: boundary condition interaction. Afterwards,
the passage of such acoustic waves through the nozzle will generate additional noise via
the direct noise mechanism, producing two supplementary acoustic waves A−

0,a and A+
1,a.

Finally, these waves will be reflected once again by the boundary conditions. Writing the
coupling of waves into a mathematical formulation, assuming linear acoustics and the
transport of waves inside the nozzle using the invariants method of Duran et al. (2013b)
(expressing transfer functions between the inlet and outlet of the nozzle as the ratio of
the resulting wave over the forcing wave), the following set of equations for upstream
and downstream acoustic and entropy waves are obtained:

A−
0 = A−

0,e +A−
0,a =

[

A−
0,e

σ0

]

︸ ︷︷ ︸

Rea

σ0 +

[

A−
0,a

A+
0

]

︸ ︷︷ ︸

R+
aa

A+
0 +

[

A−
0,a

A−
1

]

︸ ︷︷ ︸

T−

aa

A−
1 , (4.8a)

A+
0 = A−

0 Rin (xNin) +A+
HD, (4.8b)

A−
1 = A+

1 Rout (xNout) , (4.8c)

A+
1 = A+

1,e +A+
1,a =

[

A+
1,e

σ0

]

︸ ︷︷ ︸

Tea

σ0 +

[

A+
1,a

A+
0

]

︸ ︷︷ ︸

T+
aa

A+
0 +

[

A+
1,a

A−
1

]

︸ ︷︷ ︸

R−

aa

A−
1 , (4.8d)

σ0 = σHD = σ1, (4.8e)

where the nozzle transfer functions are divided into transmission T and reflection R co-
efficients, obtained with the different analytical methods presented in Chapter 2. Sub-
scripts ea and aa stand for entropy-acoustic and acoustic-acoustic interactions respec-
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tively; subscripts + and − indicate the nature of the ingoing disturbance (an acoustic
wave A+ or A−). Note that waves described by Eqs. (4.8a–4.8e) are only valid for a sub-

critical flow. For a supercritical flow, A−
1 =

[
A−

1

A+
0

]

A+
0 and in the case of a supercritical

flow with a shock, the shock relations of Table 2.4 are needed.

Finally, in order to close the system, boundary conditions are specified as upstream and
downstream reflection coefficients Rin (xin) and Rout (xout). In Eqs. (4.8b) and (4.8c),
boundary conditions are written at the inlet and outlet of the nozzle (xNin and xNout),
they have therefore to be shifted to the correct axial position through:

Rin (xNin) = Rin (xin) exp

[

−iω

(

2Lin

c0
(
1 − M2

0

)

)]

, (4.9a)

Rout (xNout) = Rout (xout) exp

[

−iω

(

−2Lout

c1
(
1 − M2

1

)

)]

. (4.9b)

Note that Eqs. (4.8a–4.8e) can be rearranged to obtain the following matrix system to
be solved: 








−1 R+
aa T−

aa 0

Rin −1 0 0

0 0 −1 Rout

0 T+
aa R−

aa −1



















A−
0

A+
0

A−
1

A+
1










=










−Rea σHD

−A+
HD

0

−Tea σHD










. (4.10)

The resolution of this system allows knowing the upstream and downstream acoustic
waves, from which the pressure fluctuations p′ generated by the forced perturbations
σHD and A+

HD can be computed using Eq. (2.7):

p′ = γp
(

A+ +A−
)

(4.11)

Finally, one should note that direct combustion noise alone can be computed setting
σHD to zero and indirect combustion noise is obtained by setting A+

HD to zero in the
right hand side of Eq. (4.10).

4.3 Chocked nozzle test case

In previous studies of the EWG (Leyko et al. 2011; Duran et al. 2013b), the heating
device was considered as a whole and as a compact element for analytical studies. In some
cases it was modelled by the use of a cylindrical source term, including all individual
activated heated rings in numerical simulations (numerical simulation of Muhlbauer
et al. 2009 discretized each heating wire of the heating device). In the experiment,
the supersonic test case ignition sequence activates simultaneously rings from 3 to 6,
generating a temperature fluctuation of ∆Texp = 9.1 K measured by a thermocouple
located at the axial position xth = −58 mm from the nozzle throat. To reproduce
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the shape of the temperature fluctuation recorded by the thermocouple, while avoiding
to simulate the activation sequence, Leyko et al. (2011) introduced a temporal function
using two exponentials. The stiffness of the rising and decreasing phases of the respective
functions are controlled with a unique relaxation parameter noted τ . In the present
study, which follows the same strategy, one relaxation coefficient is used for the rising
phase τ1 and a second one for the decreasing phase τ2:

ξ (t) =







0 if t < t0,

1 − exp
(

− t−t0
τ1

)

if t ∈ [t0; t0 + Tp] ,
[

1 − exp
(

−Tp

τ1

)]

exp
(

− t−t0−Tp

τ2

)

if t > t0 + Tp,

(4.12)

where t0 is the triggering time of the heating device ignition sequence, τ1 and τ2 are
the relaxation parameters to control the stiffness of the rising and decreasing phases
and Tp is the pulse duration. As ∆Texpξ (t) represents the total measurement of the
thermocouple, the assumption of splitting uniformly the energy into nr activated rings
at once is implicitly made. Therefore, the temperature fluctuation delivered by each
heated ring reads:

T ′
HDj

T
= ξ (t)

∆Texp
nr T

. (4.13)

In order to evaluate the influence of the ignition sequence and the discretisation of
the individual heated rings on the temperature signal as well as the generated pressure
fluctuations, two test cases are evaluated: The representation of the heating device as a
single compact element (nr = 1) as done by Leyko et al. (2011) and Duran et al. (2013b),
and the representation of all the individual rings composing the heating device while
following the ignition sequence. In the supersonic test case, the time delay of activation
of the rings is set to 0 (rings 3-6 are activated at the same time), meaning that each
ring generated temperature front arrives at the thermocouple position at different times
(temperature front coming from xHD3 in Fig. 4.1 being the last one to arrive). If the
heating device is considered as a single compact element as done by Leyko et al. (2011),
the position of the compact heating device should be located at xHD6 to respect the time
delays of convection of the temperature front. Figure 4.3 shows the effect of considering 1
or 4 heated rings on the temperature fluctuation measured at the thermocouple position
xth = −72.5 mm. Both temperature signals start their rising and decreasing phases at
the same instant (t0 and t0 +Tp respectively). However, when considering 4 heated rings
instead of 1, a temperature fluctuation profile with smoother raising and decreasing
phases is created. This is due to the summation of the different temperature signals
produced by the different heated rings. Despite all these observations and possible
modelling approaches, the shapes of the temperature fluctuations are very similar and
should not have an important effect on the transmitted noise.

Focusing on the effects of the boundary conditions on noise generation, several points
need specific attention. Leyko et al. (2011) addressed the influence of acoustic boundary
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Figure 4.3 Temperature fluctuations produced by considering nr = 1 or 4 heated rings
extracted at the thermocouple position xth = −72.5 mm. Parameters of the model:

∆Texp = 9.1 K, τ1 = 8 ms, τ2 = 8 ms, t0 = 0.1 s and Tp = 0.1 s.

conditions, showing that for the chocked case, the upstream boundary condition does
not have an important influence on the propagated noise after the nozzle due to chocked
conditions at the nozzle throat. The inlet acoustic boundary condition can however have
an important effect on direct noise generation (wave A+

HD considered in this work). To
assess this specific point, three different inlet reflection coefficients (Rin = −1, 0, 1)
have been tested to evaluate their influence on the value of A+

HD. Figure 4.4 shows the
pressure traces extracted at the thermocouple position resulting from the temperature
fluctuation induced by the heating device. The pressure fluctuations produced by a
single ring (nr = 1 in Fig. 4.4) and the ones generated by the activation of multiple rings
(nr = 4) are all superimposed irrespectively of the inflow acoustic boundary condition.
This is due to the time delay associated with the convection of the acoustic wave through
the total length of the heating device ∆τ ≈ LHD

c ≈ 0.1 ms. According to this time
delay evaluation, the acoustic wave travels merely instantaneously across the heating
device, which is not the case of the entropy wave. The heating device may therefore
be considered as compact for acoustics but not for entropy (in agreement with results
from Fig. 4.3). More importantly, the inlet reflection coefficient is observed to have (as
expected) a crucial influence on the amplitude of the measured noise. The question then
becomes how much of this generated noise remains downstream of the nozzle?

Before going further in this study, the downstream boundary condition has to be set.
Leyko et al. (2011) showed the importance of this boundary condition (which has been
measured experimentally) and fitted it numerically to obtain the best compromise on
the basis of the experimental findings. This was obtained using the NSCBC formulation
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Figure 4.4 Direct noise generated by the heating device plotted at the thermocouple position
for three inlet reflection coefficients: Rin = −1, 0, 1.

of Selle et al. (2004):

Rout = − 1

1 + i ω
Kout

, (4.14)

where Kout = 160 s−1 is found to be the most satisfactory value. This outlet reflection
coefficient is hereafter left unchanged.

Figure 4.5 shows the influence of (a) the consideration of nr = 4 or 1, the compact/non-
compact transfer functions of the nozzle and (b) the effect of the inlet boundary con-
dition, on the pressure fluctuation traces recorded at the first microphone location
xmic1 = 350 mm. In Fig. 4.5a, the same inlet reflection coefficient Rin = −1 is used for
all cases. First of all, the results of the heating model with nr = 1 and the compact
transfer functions are compared to Leyko et al.’s (2011) results. The difference in the
pressure signals between the analytical model using nr = 1 considered in this study and
the case of Leyko et al. comes from the choice of the relaxation coefficients τ1 and τ2.
In the present study, coefficients τ1 and τ2 have been chosen to fit better the experi-
mental temperature measurement if compared to Leyko et al.’s expression. This result
indicates that the choice of the relaxation parameters τ1 and τ2 has an important role
on the shape and amplitude of the recorded pressure signals. Analysing the influence
of the discretisation of the heating device with nr = 4 or nr = 1, both pressure signals
are seen to start their rising phase at the same time (like the temperature fluctuation
in Fig. 4.3). However, a time delay of about 2 ms between the peak values is observed.
This time delay in the pressure signals comes from the time delay of the different tem-
perature fronts of each heated ring to arrive to the nozzle. Indeed, the temperature front
arriving from xHD3 takes about 2 ms longer to arrive to the nozzle than the temperature
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front arriving from xHD6 (i.e. individual temperature signals from Fig. 4.3). Concern-
ing the influence of the non-compact/compact nozzle transfer functions, a small time
delay between obtained pressure signals is observed, which is attributed to the phase
shift present in the non-compact transfer functions. Figure 4.5b shows the influence of
the inlet reflection coefficient, for which the non-compact nozzle transfer functions and
nr = 4 modelling have been used. Results obtained with Rin = −1 and Rin = 0 are very
similar (as already observed by Leyko et al. 2011). However, setting Rin = 1 doubles
the amplitude of the pressure signal. In order to understand these results, one should
look at two different parameters: 1) the spectra of the incident acoustic A+

HD as well as
entropy σHD perturbations, and 2) the transfer functions of the nozzle.
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Figure 4.5 Pressure fluctuation traces recorded at the first microphone position
xmic1

= 350 mm.

Figure 4.6 shows the modulus of the Discrete Fourier Transform (DFT) of the temper-
ature and pressure disturbances (only direct noise) recorded at the thermocouple axial
position xth = −72.5 mm. As evidenced by the distributions, the inflow impedance has
an important influence on the generated pressure signals (as already shown by Fig. 4.4).
It is furthermore noticed that almost all the energy of the generated disturbances in
the upstream duct is contained in the band 0-10 Hz (very low frequencies), allowing to
show why the non-compact and compact transfer functions give the same result. To
confirm the compactness of the nozzle, the non-compact transfer functions are displayed
in Fig. 4.7. Up to 50 Hz the modulus and phase of the different transfer functions is
almost constant, showing that the compact assumption is valid up to at least 50 Hz.
This result, in addition with Fig. 4.6 justifies why the pressure fluctuations obtained by
the compact and non-compact nozzle transfer functions are almost equal in Fig. 4.5a.
Figures 4.7a and 4.7b display acoustic-acoustic upstream transfer functions (acoustic
waves generated by the forcing of A+

0 in Fig. 4.2). Almost all the incident wave A+

is seen to be reflected by the nozzle (R+
aa ≈ 1) and only ≈ 7% is transmitted to the
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downstream duct. On the contrary, the transmitted and reflected acoustic waves due
to entropy-acoustic interaction (Figs. 4.7c and 4.7d respectively) remain at the same
level. Finally, the time delay observed in Fig. 4.5a between the pressure fluctuations
obtained by the compact and non-compact transfer functions may be explained by the
entropy-acoustic transmitted acoustic wave phase, which is not constant, as shown by
Fig. 4.7c.
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Figure 4.6 Discrete Fourier Transform of incoming disturbances at the thermocouple position
xth = −72.5 mm.

The amount of direct noise produced by the temperature fluctuation is shown to be
strongly dependent on the inlet acoustic impedance (cf. Figs. 4.4 and 4.6). It is therefore
normal to expect that the ratio of indirect to direct noise η = A+

1,e/A+

1,a changes drastically
with the inlet acoustic impedance. The modulus of the indirect over direct noise ratio
‖η‖ is displayed in Fig. 4.8 for the three inlet reflection coefficients tested. In cases where
Rin 6 0, indirect noise is dominant over the whole spectrum, especially for frequencies
lower than 10 Hz. At these very low frequencies, where the temperature fluctuation is
found to be the most energetic, indirect noise is at least 10 times greater than direct
noise. Setting Rin = 1 makes direct noise dominant in the very low frequency range
(0-10 Hz). However, the indirect noise contribution remains non-negligible and becomes
the largest contribution for frequencies higher than 30 Hz. This allows to conclude that
indirect noise generation is the dominant noise source for almost all the inlet acoustic
impedances.

Up to now all results were analysed at an axial position where numerical, analytical
and experimental data are available. This position is however found to be close to the
nozzle, at a location where the effects of the nozzle jet could play a role deforming the
pressure signals. Figure 4.9 proposes a view of the pressure fluctuations at the fourth
microphone position xmic4 = 1150.5 mm instead. The discretisation of the 4 heated
rings and/or the non-compact transfer functions of the nozzle are seen to have only a
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Figure 4.7 Nozzle transfer functions of the chocked test case. Modulus( ): left axis.
Phase( ): right axis.
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marginal influence in this case. The most notable change appears in the shape of the
temperature fluctuation, controlled by the relaxation coefficients τ1 and τ2. In terms
of recommendation, its seems that the inlet reflection coefficient value must approach
-1 in agreement with the observed predictions and the presence of a sudden contrac-
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tion between the tranquillisation chamber and the inlet duct. Its exact value remains
however unknown and is a clear source of uncertainty since it has not been evaluated
experimentally.
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Figure 4.9 Pressure fluctuation recorded at the fourth microphone position
xmic4

= 1150.5 mm for an inlet reflexion coefficient Rin = −1.

4.4 Subsonic nozzle test case

In this section, the subsonic case of Bake et al. (2009), referenced as "Case No. 2"
in Tab. 3.2 is studied using the same analytical approach described in §4.3. However,
besides the nature of the flow (in the present case subsonic), the ignition sequence as well
as the number of activated rings have changed. Concerning the ignition sequence, a time
delay is used for the activation of six heated rings in order to create a sharper temperature
gradient. Note also that for this specific test case the temperature fluctuation is no longer
measured by a thermocouple (local measurement) but by a vibrometer1 which also allows
having access to a mean temperature value in the duct.

The ignition sequence applied in the subsonic test case activates each heating ring one
after the other, starting by the one located at the axial position xHD1 (cf. Fig. 4.1). The
delay between each ring activation corresponds to the time that one temperature front
takes to reach the next ring. Therefore, it can be simply written for each jth ring as:

τj = − (j − 1)
∆xR
M0c0

, (4.15)

so Eq. (4.7b) can be reduced to:

σHD = ξ (t)
∆Texp
T

exp

[

−iω

(
xNin − xHD1

c0M0

)]

, (4.16)

1Non-intrusive measurement that provides the change in the optical path length caused by the change
of density in the flow.
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which is the same expression as the compact expression for the most upstream heated ring
(xHD1). Moreover, since the heating device can be considered as compact for acoustics
(as showed in §4.3), it can be modelled as a compact element located at the axial position
xHD1 and will therefore be modelled as such hereafter.

Similarly to the previous test case, the relaxation coefficients τ1 and τ2 are chosen to fit
at best the experimental measurement of the vibrometer. In Fig. 4.10 the temperature
fluctuation modelled analytically is compared with the experimental measurement as
well as with the results published in Duran et al. (2013b) at the vibrometer position
xvib = −58.5 mm. Note that, at the time, Duran et al. did not study in details the
heating device and located it at the axial position xHDDuran

= −100 mm which induces
a time delay of 3.6 ms in the signals. Temperature and pressure signals have therefore
been shifted by 3.6 ms for proper comparisons of the temperature fluctuation profiles.
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Figure 4.10 Temperature fluctuation produced by the heating device extracted at the
vibrometer position xvib = −58.5 mm. Parameters of the model: ∆Texp = 13.4 K, nr = 1,

τ1 = 3.5 ms, τ2 = 7 ms, t0 = 0.1 s and Tp = 0.1 s.

Pressure fluctuations issued by the temperature hot slug are shown in Fig. 4.11 for
the three inlet reflection coefficients studied in the supersonic case Rin = [−1, 0, 1].
Duran et al. (2013b) considered an inlet reflection coefficient close to 1. Clearly from
Fig. 4.11, none of the results is close to the analytical result obtained by Duran et al.
However, it should be noted that for reflection coefficients different from zero (Rin 6= 0),
the pressure fluctuations obtained with the non-compact transfer functions differ from
the ones obtained with the compact transfer functions, especially the ones obtained for
Rin = −1. This result shows that the nozzle is not compact for this operating point,
which is in disagreement with the results found by Duran et al. (2013b). In an attempt
to retrieve the results obtained by Duran et al. (2013b), the impedances of the numerical
simulation of Duran et al. are approached using the low-pass filter formulation of the
NSCBC boundary conditions derived by Selle et al. (2004) (i.e. Eq. (4.14)). In this
specific case, relaxation coefficients for the inlet and outlet of the configuration are set
to Kin = 100 s−1 and Kout = 160 s−1. As done before, the inlet reflection coefficient
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is tested for a negative and positive value. Pressure fluctuations obtained by partially
reflective inlet and outlet boundary conditions are shown in Fig. 4.12. Compact and
non-compact results are almost the same. Considering however the case of Rin > 0, the
pressure fluctuation signal is almost superimposed with the result obtained by Duran
et al. The variance in the results from Figs. 4.11 and 4.12 shows the great influence
of the inlet impedance in the generated pressure fluctuations. Therefore, without the
precise value of the inlet impedance the comparison of the pressure fluctuations with the
experimental ones can only be inexact or at least not mastered.

-60

-40

-20

 0

 20

 40

 60

 80

 100

 0.1  0.12  0.14  0.16  0.18  0.2  0.22  0.24

P
re

s
s
u

re
 f

lu
c
tu

a
ti
o

n
 [

P
a

]

Time [s]

(a) Rin = −1.

-60

-40

-20

 0

 20

 40

 60

 80

 100

 0.1  0.12  0.14  0.16  0.18  0.2  0.22  0.24

P
re

s
s
u

re
 f

lu
c
tu

a
ti
o

n
 [

P
a

]

Time [s]

(b) Rin = 0.

-60

-40

-20

 0

 20

 40

 60

 80

 100

 0.1  0.12  0.14  0.16  0.18  0.2  0.22  0.24

P
re

s
s
u

re
 f

lu
c
tu

a
ti
o

n
 [

P
a

]

Time [s]

Exp. signal

Non compact

Compact

Duran et al. 2013 - AVBP

Duran et al. 2013 - Compact/non compact

(c) Rin = 1.

Figure 4.11 Pressure traces recorded at the outlet of the EWG (xout = 2100 mm) for different
inlet reflection coefficients Rin and a partially reflecting outlet reflection coefficient Rout

(Kout = 160 s−1).

As done in the study of the supersonic test case described in §4.3, the spectrum of
the upstream temperature and pressure disturbances (only direct noise - A+

HD) in the
upstream duct are analysed for the different inlet reflection coefficients studied. Fig-
ure 4.13 shows the modulus of the DFT of these variables extracted at the vibrometer
position xvib = −58.5 mm. The obtained spectra are very similar to the ones obtained
in the supersonic test case (cf. Fig. 4.6), where almost all the energy is contained in
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(a) Rin = −
1/(1 + iω/Kin).
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(b) Rin = 1/(1 + iω/Kin).

Figure 4.12 Pressure traces recorded at the outlet of the EWG (xout = 2100 mm) for a
partially reflecting inlet and outlet reflection coefficients (Kin = 100 and Kout = 160 s−1).

frequencies lower than 10 Hz. However, the case with the negative partially reflective
inlet boundary condition shows that for frequencies 6 80 Hz, the harmonic amplitudes
of the generated pressure fluctuation remain of the same magnitude, which may question
the compactness of the nozzle (as already observed in Fig. 4.11a). To confirm this, the
transfer functions of the nozzle are displayed in Fig. 4.14. In comparison with the su-
personic nozzle transfer functions (cf. Fig. 4.7), the subsonic transfer functions modulus
and phase are observed to change drastically with frequency, which confirms that the
nozzle cannot be considered as compact for the subsonic operating point. According to
the upstream acoustic-acoustic transfer functions (cf. Figs. 4.14a and 4.14b), at least
30% of the amplitude of A+

HD is transmitted to the downstream duct, while frequencies
> 100 Hz, are almost fully reflected by the nozzle into the upstream duct. Concerning
the generation of indirect noise and according to Figs. 4.14e and 4.14f, its generation
is greater with an increasing frequency. Therefore, direct noise is transmitted by the
lowest frequencies, while indirect noise is produced by higher frequencies attenuating
direct noise (cf. Fig. 4.14a for the transmission of direct noise, Figs. 4.14e and 4.14f
for the generation of indirect noise). Then, the ratio of indirect to direct noise η is
computed and shown in Fig. 4.15. Indirect noise generation increases with frequency as
well as with a decreasing inlet reflection coefficient, which is in agreement with previous
results (maximal generation of direct noise for Rin = 1 and its transmission is greater
in the lowest frequencies). The dominant noise source for almost all the inlet reflection
coefficients tested here seems to be the direct noise, contrarily to the supersonic test
case. However, in the particular case of Rin = −1, a dominant noise source cannot be
determined and the value of ‖η‖ oscillates between 0.5 and 3.

Finally, using the different inlet reflection coefficients tested and the analytical method
presented in this section, the evolution of the peak pressure at the outlet of the EWG
can be computed as a function of the nozzle Mach number. This result is shown in
Fig. 4.16. The evolution of the peak noise is increasing monotonously, except for the
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Figure 4.13 Discrete Fourier Transform of incoming disturbances at the vibrometer position
xvib = −58.5 mm.

partially reflecting case with Rin = −1, which has the same trend as the experimental
values (reaching a maximum value and then decreasing). This result shows, once again
the strong dependency of the peak noise to the inlet reflection coefficient. Without its
experimental value, no conclusion can in fact be drawn in terms of shape or amplitude
of the generated pressure disturbances within the system.

4.5 Conclusion

In this chapter, the analytical methodology proposed by Duran et al. (2013b) has
been revisited introducing a model to take into account the entire heating device and
non-compact transfer functions of the nozzle. The model for the heating device considers
each heated ring of the device as a compact element. Therefore each ring generates its
own acoustic and entropy waves. Note also that a time delay has been introduced to
take into account the ignition sequence of the subsonic test case. Results show that the
heating device may be considered as compact for acoustics, and when no time delay is
considered, the overall entropy front is smoothed by the convective process taking place
when each front is transported from its origin to the next heating ring.

The supersonic test case shows that the nozzle can be considered as compact for the
range of frequencies studied, which confirms the results of Leyko et al. (2011). In this
case, the shape of the pressure signal at the fourth microphone is in agreement with the
experimental measurements and the peak pressure is slightly overestimated. The inlet
reflection coefficient is finally found to have an important role in the determination of
the total direct noise generated. When the value of Rin is between -1 and 0, indirect
noise is at least 10 times higher than the direct noise production. Indeed, a value
for the reflection coefficient equivalent to -1 produces a destructive interaction between
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Figure 4.14 Nozzle transfer functions of the subsonic test case. Modulus( ): left axis.
Phase( ): right axis.

incident and reflected wave, whereas with Rin = 0 no acoustic wave is introduced. It
is also noted that only ≈ 10% of the incident acoustic wave is transmitted through the
nozzle (as shown by Fig. 4.7c). Therefore, acoustic waves in the upstream duct can
be attenuated by the destructive interaction controlled by the inlet boundary condition
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Figure 4.16 Evolution of the noise peak pressure at the outlet of the EWG as a function of
the throat Mach number.

(Rin = −1) or evacuated (Rin = 0). Afterwards, the only sound transmitted is the one
produced by the entropy wave. When Rin = 1, indirect to direct noise ratio is almost
equal to one for the most energetic frequencies (< 10 Hz). This is because the inlet
boundary condition produces a constructive interaction between the incident and the
reflected wave. Acoustic waves in the upstream duct cannot leave the domain by the
boundary condition and direct noise becomes a non negligible noise source.

In the subsonic case, the heating device may be considered as a compact element (no
need to represent each of the six heated rings) thanks to the delay in the activation of
the heated rings. The nozzle transfer functions show however that the nozzle cannot
be considered as compact. Results published by Duran et al. (2013b) were partially re-
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trieved using a partially reflecting inlet and outlet reflection coefficients. Regarding the
dominant noise source, it has been found that it is strongly dependent on the inlet re-
flection coefficient but it is mostly direct noise. However, cases with Rin = −1 (partially
and fully reflective) show that indirect noise is not negligible.

To conclude with this initial analysis, two parameters are found to strongly modify
the generated noise induced by the temperature fluctuation: the shape of the hot slug
(modulated by relaxation parameters τ1 and τ2) controls the peak pressure generated,
and the inlet reflection coefficient modifies the shape of the generated acoustic pressure
signal. This inlet reflection coefficient, linked to the relaxation chamber upstream of
the inlet duct of the EWG seems to be close to -1. Nevertheless, no experimental data
about this inlet impedance is available and this parameter remains unknown. It should
be however noted that the use of a partially reflective condition seems sufficient to
recover the experimental variation of the noise peak pressure at the outlet of the EWG
(cf. Fig. 4.16).

This analytical study of the EWG test cases allowed to assess the influence of different
parameters in the transmitted entropy noise. However, the analytical results of the
subsonic test case have not shown satisfactory results between the experimental and the
analytical ones. Therefore, to have a better insight of the phenomenology generating and
transmitting the so called indirect combustion noise, this subsonic test case is chosen to
be simulated by a full compressible LES in the following chapter.
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Chapter 5

Numerical compressible
simulation of the EWG

In this chapter, the subsonic test case of the EWG studied analytically in §4.4 is
analysed by means of Large Eddy Simulation (LES). A simulation of this kind requires to
solve a large range of characteristic length scales. In particular, the acoustic and entropy
wavelengths (λac ∼ O(m) and λσ ∼ O(mm) respectively) as well as the characteristic
length of the heating device (LHD ∼ O(mm)) and the Kolmogorov length scale for
turbulence (η ∼ O(µm)) are all to be considered for an adequate quality simulation.

The analytical modelling of the EWG has shown that the inlet acoustic impedance
has a great impact on the propagated noise and that without the knowledge of the
experimental value, the comparison between the models/simulations and the experiment
can be misleading (at least for the subsonic case). Nevertheless, LES still remains a
valuable tool that further increases our capacity to more and more accurately understand
the mechanisms at the origin of the generation of noise (i.e. Brès et al. 2012, Giret et al.
2012, 2013, Sanjose et al. 2014 and Wang et al. 2016). Indeed it can provide some useful
information that cannot be captured through Euler simulations or analytical methods
about the generation and transport mechanisms of combustion noise. For example, it
is only through the use of such approaches that one will adequately quantify the effects
of dissipation and dispersion of a hot slug, as done by Morgans et al. (2013), Giusti
et al. (2016) and Hosseinalipour et al. (2017) in the framework of a turbulent channel
flow, or by Papadogiannis et al. (2016) in the framework of a high pressure turbine
stage. The effects of flow separation on indirect combustion noise as described by Howe
(2010) can also be studied further within this specific numerical context. All of these
effects have not been studied in previous works concerning the EWG, which are based on
the coupling of RANS simulations with CAA methodologies (Ullrich et al. 2014, 2015),
URANS simulations (Muhlbauer et al. 2009 and Lourier et al. 2014), Euler simulations
and even analytical modelling (Leyko et al. 2011 and Duran et al. 2013b). LES seems
therefore a good candidate to provide further insight into the physical phenomena of
indirect combustion noise generation and transmission.

63



The EWG subsonic test (MNth = 0.7) case has been chosen to be analysed in LES
due to the non compactness of the nozzle and the amount of direct and indirect (none
of the noise sources can be neglected) noise in the overall noise generated. Furthermore,
the analytical results obtained in §4.4 partly disagree with the experimental data, which
can be explained by their inherent simplifications and the actual flow physics. LES
(if properly conducted) can thus help understanding the weaknesses of the analytical
methods and eventually be at the source of model improvements.

The numerical tool used for the simulations detailed in this chapter is the LES com-
pressible solver AVBP (Schønfeld and Poinsot 1999). AVBP is based on a cell-vertex
formulation, and the commonly used numerical schemes are Lax-Wendroff1 (LW), Two
step-Taylor-Galerkin ’4A’2 and ’C’2 (TTG4A and TTGC) along with an explicit time-
advancement and a linear-preserving artificial viscosity model solve the filtered NS equa-
tions. These numerical techniques allow to control numerical dissipation and to properly
capture acoustic waves. In this framework, AVBP has shown its capability to compute
acoustics in complex geometries, for example Truffin and Poinsot (2005); Martin et al.
(2006); Selle et al. (2006) which used AVBP to study acoustic instabilities or the works of
Giret et al. (2012, 2013), Sanjose et al. (2014) and Salas and Moreau (2016) for the study
of aero-acoustics. When studying acoustics, boundary conditions are a crucial matter.
In the studies of thermo-acoustic instabilities in combustion chambers, the propagation
of acoustic and entropy waves through the inlet and the outlet of the chamber determines
the coupling of acoustics and the flame, producing or not an unstable mode. At these
inflow/outflow boundary conditions, AVBP uses Navier-Stokes Characteristic Boundary
Conditions (NSCBC) to decompose flow variables on the boundaries into ingoing and
outgoing waves (cf. Poinsot and Lele 1992).

This chapter is organised as follows: §5.1 discusses and compares the unperturbed
flow computed by LES with the experimental measurements. In §5.2, the methodology
used to reproduce the experimental conditions and requirements for the forced flow (in
particular the modelling of the heating device and the acoustic impedances) is explained
and compared with the experimental measurements and analytical models. In §5.3
a methodology to compute the nozzle transfer functions from LES is detailed. The
methodology is first validated computing the transfer functions of the nozzle using Euler
equations. Then, the obtained transfer functions are compared to the analytical theory
of Duran et al. (2013b) in §5.3.2. The same process is then used to compute the nozzle
transfer functions on the basis of LES and results are presented in §5.3.3. This specific
step intends to give a better understanding of the real behaviour of the nozzle when
subject to acoustic and entropy disturbances, taking into account the effects neglected
by the analytical models. To finish, the LES transfer functions are directly used in the
analytical modelling of §4.4 to evaluate their impact on the propagation of combustion
noise.

1Finite-volume scheme, precise at the order two in space and time.
2Finite-element scheme, precise at the order three in space an time.
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5.1 The baseline flow

The study of a flow with acoustic or entropy disturbances requires at first a well statis-
tically converged flow to investigate only the effect of the disturbances and avoid any
interaction issued from the transient flow and statistically unsteady base flow. This is
valid for numerical simulations as well as for experiments. Therefore, in this section the
unperturbed flow is first analysed.

The complete domain of the EWG (illustrated in Fig. 5.1) includes a settling chamber
with a plate installed at the inlet to avoid the formation of a jet generated by the sudden
expansion. In addition to the plate, a honeycomb flow straightener (hatched section in
Figure 5.1) has been installed to minimize lateral velocity components and obtain a
straight plug flow entering the nozzle.
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Figure 5.1 Sketch of the EWG complete geometry.

Considering the whole EWG configuration without a model describing the honeycomb
flow straightener, big vortical structures are detached from the plate (Q criterion shown
in Fig. 5.2), generating unwanted acoustic perturbations. Therefore, the complexity
of the flow inside the settling chamber, the lack of model to represent the honeycomb
and the uncertainty issued by the corresponding upstream acoustic reflection coefficient,
inferred to trim the settling chamber from the numerical domain.

For the base flow computation, three numerical meshes were created and then used
to study the indirect combustion noise generation within nozzle flows, each one with a
different purpose. A coarse mesh (M1) is used to reproduce numerically the experiment
carried by Bake et al. (2009), a finer mesh (M2) is then used to compute the nozzle
transfer functions and a very fine mesh (M3) intends to comply with wall resolved (di-
mensionless distance to the wall Y + < 5) LES. M1 and M3 cover the entire EWG
configuration, from the inlet of the upstream duct (x = −250 mm) to the outlet of the
downstream duct (x = 2100 mm). Since the computation of the transfer functions of the
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Figure 5.2 Vortex shedding produced inside the settling chamber.

nozzle does not require to mesh the entire EWG configuration, the domain considered is
smaller (from x = −100 mm to x = 400 mm). Although, calculations carried with M3
are very consuming in terms of CPU and storage, they comply with recommended aca-
demic LES modelling, so this simulation intends to be the reference point of the others.
However, at the time of this document compilation, the computation of the unperturbed
flow on M3 was not statistically fully converged in the entire domain (especially in the
downstream duct) and can be only partially exploited. All meshes are multi-elements
composed of prisms at the walls to improve the resolution of the flow boundary layers
and tetrahedral elements elsewhere. M1 is composed of ≈ 6 M cells (≈ 1.5 M nodes)
with four prism layers, M2 ≈ 22 M cells (≈ 5.4 M nodes) with five prism layers and M3
contains ≈ 300 M cells (≈ 80 M nodes) with six prism layers. The different numerical
domains and associated meshes are illustrated in Fig. 5.3.

The baseline flow is obtained by initialising and imposing a mass flow rate and a
static temperature at the inlet and a static pressure at the outlet (cf. specifications in
Tab. 3.2). Note that, the static pressure at the outlet of M1 and M2 have been corrected
to obtain the appropriate mean operating point. Indeed, in the case of M1, the outlet
pressure needs to be increased to recover the operating point fixed by the nozzle-throat
(indicated by the experimentalist MNth

= 0.7). This adaptation is due to the lack of
resolution near the wall region inside the convergent of M1. The boundary layers are
not well resolved, which results in a smaller effective section of the nozzle. As a conse-
quence, the flow is more accelerated than in the real nozzle. M2 has a smaller domain
than M1 and M3, therefore the outlet pressure of M2 was chosen to be extracted from
the other computations for full equivalence. The numerical set-up for the simulations is
summarized in Table 5.1, where a two-step Taylor–Galerkin (TTG) finite-element nu-
merical scheme developed by Colin and Rudgyard (2000) with the Wall-Adapting Local
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(a) M1: Coarse mesh.

(b) M2: Fine mesh.

(c) M3: Very fine mesh.

Figure 5.3 Numerical grids for the baseline flow of the EWG.
(Distances indicated in millimetres).

Eddy-viscosity (WALE) subgrid-scale model developed by Ducros et al. (1998) and a
CFL adaptive time-step were used.

Boundary conditions

Inlet NSCBC Mass flow rate and static temperature
Outlet NSCBC Static pressure
Walls Non slip adiabatic

Numerical parameters

Governing equations Navier-Stokes
Numerical scheme TTGC
LES model WALE
CFL 0.7

Table 5.1 Numerical set-up of the simulations.

To evaluate the quality of the LES simulations, their ability to resolve the boundary
layers is analysed. To do so, mean profiles of the dimensionless distance to the wall Y +

and wall shear stress τw are extracted. Then, bulk quantities issued by all simulations
are compared with the isentropic quasi-1D theory. For each prediction, experimental
diagnostics are reproduced on the basis of the LES predictions for comparisons with
available data. Finally, axial velocity, Mach number, temperature and pressure mean
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simulation profiles are compared to assess potential sources of differences issued by the
three different meshes.

First, mean flow quantities are detailed and discussed. To do so, a temporal average
followed by an azimuthal average of the flow fields are computed. Mean resulting axial
profiles of Y + and τw are displayed in Fig. 5.4. Values of Y + are represented in Fig. 5.4a
for the three meshes. M1 pictures a maximal Y + ≈ 35 in the convergent zone and Y +

greater than 10 in the upstream and downstream ducts, indicating that the boundary
layer is not well resolved: i.e. not satisfying the requirements of a wall resolved LES
(Jiménez and Moin 1991). M2 reaches its maximum Y + value of 25 in the convergent.
However, in the other zones (diffuser and upstream and downstream duct) Y + values are
always smaller than 6, indicating that wall resolved LES is reached almost everywhere
with M2. Finally, for M3, the value of Y + is below 2 almost everywhere and never
exceeds 5, reflecting a fully wall resolved simulation only for this mesh. Mean wall shear
stress τw axial evolution is displayed in Fig. 5.4b for the three different meshes. τw
is proportional to the normal gradient of the velocity to the wall and representative
of the friction of the flow to the wall. For example, in the particular case of flow
separation, the separation point can be identified by τw = 0. According to τw profiles
shown in Fig. 5.4b, no flow separation (in the temporal averaged mean flow) is captured
in the LES simulations. In the inlet duct, τw is almost constant for x 6 −40 mm,
where the streamlines are straight, then the area constriction of the convergent makes
the streamlines bend and a recirculation zone is formed at the inlet of the convergent.
This recirculation zone is not visible in the temporal averaged mean flow but can be
visualised in the instantaneous velocity field displayed in Fig. 5.5a. This recirculation
zone is responsible for the decrease of τw at the inlet of convergent in the temporal
averaged mean flow. Then, in the first millimetres of the divergent (near the nozzle
throat), the transition to turbulence is triggered and a vortex sheet is created. In this
zone τw decreases rapidly and in M2, the flow is found to be on the verge of separation
(cf. Fig. 5.4b). Instantaneous streamlines are displayed for the first millimetres of the
diffuser in Fig. 5.5b to visualise this transition. To estimate the intensity of the transition
to turbulence in the different meshes, profiles of mean vorticity with respect to θ are
computed, azimuthally averaged and presented in Fig. 5.6. The azimuthal vorticity
profiles are almost equivalent between meshes and the only differences are found to be
inside the boundary layer, where only the most resolved meshes (M2 and M3) capture
an inflection point in the azimuthal vorticity profiles. In M2, where the flow is on the
verge of separation, the azimuthal vorticity intensity in the boundary layer is smaller
than the other calculations, but catches the same profile shape afterwards.

Global mean flow quantities are now analysed. To do so, bulk velocity, bulk tempera-
ture, bulk Mach number and mean pressure are computed and compared with the results
of the quasi-1D isentropic theory. The definition of the different computed quantities
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Figure 5.4 Temporal and azimuthal average of the wall variables Y + and τw represented
agains the axial coordinate. M1 ( ). M2 ( ). M3 ( ).

follows:

ub =

∫
ρudA
∫
ρdA

,

Mb =
ub√
γrTb

,

Tb =

∫
ρuT dA
∫
ρu dA

,

p =
1

A

∫

p dA.

The isentropic operating point used for comparison respects the operating point No. 2
of Tab. 3.2. Figure 5.7 shows the three baseline flow axial evaluations obtained with the
different meshes and compares them to the isentropic quasi-1D theory results. Clearly,
computations on M1 and M2 appear very similar (almost superimposed). However, it is
important to remember that the outlet pressure has been adapted to match the operating
point in M1 and M2, whereas the value at the outlet of M3 uses the atmospheric pressure
(without correction). Furthermore, the total pressure measured in M3 is very close to the
measured one, which confirms the better resolution of the pressure losses. Concerning
the bulk Mach number at the nozzle throat, M1 and M2 are in agreement with the
experimental value, whereas M3 overestimates it slightly. Note however that in the
experiment, the Mach number and the inlet duct bulk velocity are determined by the
use of correlations and are not measured. Therefore, to make a fair comparison with the
experimental data, the same methodology is used to compute the bulk velocity and the
nozzle Mach number on the basis of the LES data. In this approach the bulk velocity
is computed based on measured data that are the inlet duct temperature, pressure and
mass flow rate:

ubulk =
.
m
rT

pA
, (5.1)
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(a)

(b)

Figure 5.5 Streamlines traced from an instantaneous solution of the flow computed in M3.

where T and p are the temperature and pressure measured by a thermocouple or a
vibrometer in the inlet duct and a pressure probe in the settling chamber (assumed
to be constant due to the low Mach number in the settling chamber and inlet duct)
respectively. The nozzle-throat Mach number MNth

is estimated then in the experiment
using an iterative method described by Knobloch et al. (2015b). The methodology
consists in computing a first value of MNth

using the static pressure measured at the
nozzle-throat and the total pressure measured in the settling chamber. Afterwards, a
correction due to the curvature of the streamlines inside the nozzle (related to the flow
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Figure 5.6 Radial profiles of azimuthal averaged vorticity with respect to θ (ξθ) close to the
nozzle throat.

radial equilibrium hypothesis) is applied to the total pressure, as detailed hereafter:

MNth
=

√
√
√
√ 2

γ − 1

[(
pT
p

) γ−1
γ

− 1

]

, (5.2)

pT,corr = pT +
dp

dn
dn = pT − ρu2

Rc
dn = pT − M2Pγ

Rc
dn, (5.3)

where Rc = 13 mm is the nozzle curvature radius and dn the normal to a streamline
set to 1.875 mm (1/4 of the nozzle-throat diameter). Eqs. (5.2) and (5.3) are solved
iteratively until convergence of the Mach number. The measured values of the static
pressure at the nozzle-throat, the total pressure (settling chamber), ambient pressure
and the estimations of the bulk velocity in the upstream duct and nozzle-throat Mach
number are summarized in Tab. 5.2.
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Figure 5.7 Bulk quantities computed from the LES and compared with the isentropic theory.

Mean values obtained from the LES’s and in the experiment are in overall good agree-
ment, in particular for the simulation on M3 whose values of total and static pressure
are the closest to the experimental values. The nozzle Mach number computed using the
experimental methodology seems to be very close to the experimental value for all the
simulations, which is not the case when comparing the bulk Mach number at the nozzle
throat in the fully resolved LES. This variability in the bulk Mach number seems to
indicate that the resolution of boundary layer has an important influence on the nozzle
Mach number determination that is not taken into account in the experimental model
used to compute the nozzle Mach number. The low variability in the isentropic vs bulk
profiles shown in Fig. 5.7 as well as the good comparison with the experimental mea-
surements of Tab. 5.2 allow to conclude that the operating point has been retrieved in
all the simulations.

Up to now, mean profiles of Y +, τw and bulk quantities have been compared (only 1D
information). In the following, axial velocity, Mach number, temperature and pressure at
different axial key points in the domain are detailed: (1) at the inlet of the nozzle xNin =
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Parameter
Experimental

value
Isentropic

LES
M1 M2 M3

Mass flow rate 37 Kg/hr 37 Kg/hr 37 Kg/hr 37 Kg/hr 37 Kg/hr
Total pressure 105640 Pa 108025 Pa 107840 Pa 107730 Pa 104620 Pa
Pressure nozzle 68650 Pa 78050 Pa 69100 Pa 71900 Pa 66640 Pa
Nozzle Mach number
(bulk value)

0.7 0.7 0.688 0.712 0.77

Nozzle Mach number
(exp. methodology)

0.7 0.7 0.72 0.685 0.725

Bulk velocity
(upstream duct)

11.39 m/s 11.33 m/s 11.34 m/s 11.34 m/s 11.67 m/s

Outlet pressure
(boundary condition)

101300 Pa 100800 Pa 104700 Pa 104715 Pa 101300 Pa

Table 5.2 Comparison of parameters of the unperturbed flow between the numerical
simulation and the experiment.

−13 mm, (2) at the nozzle-throat xNth
= 0 mm, (3) inside the diffuser at x = 50 mm

and (4) at the outlet of the diffuser xNout = 250 mm. Profiles at these four locations are
shown in Figs. 5.8–5.11, and are found very much alike for all computations. Figure 5.8
shows the evolution of the axial velocity, as well as a flow boundary layer up to the
nozzle throat (where the acceleration of the flow is the strongest) which seems to be
well captured in the three simulations. A stronger acceleration along the axis is also
seen on the finest mesh. At the outlet of the diffuser, the boundary layer is however
clearly thickened by the coarsest mesh. Figure 5.9 shows the evolution of the Mach
number, whose evolution is the same as the axial velocity. To complement these purely
aerodynamic quantities, the evolution of the temperature is displayed in Fig. 5.10. The
thermal boundary layer thickness at the nozzle throat seems to be the same for the
three calculations and the same temperature value is retrieved at the exit of the nozzle.
Finally, pressure profiles are shown in Fig. 5.11, which are observed to be shifted due to
the augmentation of the pressure at the outlet of the M1 and M2. Despite this drawback
issued by the wall resolution, the shapes and especially the ranges of variations remain
of the same order of magnitude in all the simulations. Indeed, such a pressure profile is
generated at the nozzle throat and is produced by the curvature of the streamlines at this
specific location. A consequence of this flow curvature is the generation of a transverse
pressure gradient that generates an unsteady azimuthal velocity in the divergent section.
This specific effect is described by the local radial equilibrium equation (already used by
the experimentalist to compute the nozzle Mach number), which in its simplified form
reads:

1

ρ

∂p

∂r
≈ u2

θ

r
. (5.4)

This equation stands for the momentum conservation in the radial direction for an
axisymmetric flow without radial velocity, which is only strictly valid at the nozzle
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throat. Yet, the radial velocity remains small in the present slowly-varying divergent.
Note also that the mean tangential velocity remains zero in the present axisymmetric
set-up. The generation of uθ means that vorticity is generated in the axial and radial
directions (ξx and ξr respectively) by the radial pressure gradient. Such vortices are
then stretched and deformed by the flow acceleration through the nozzle and are a
sound generation mechanism that contributes to the indirect noise generation. To study
the axial evolution of the radial pressure gradient (∂P∂r ) and the vorticity intensity in
the different calculations, azimuthally averaged radial profiles of these magnitudes are
extracted at different axial locations and shown in Figs. 5.12–5.14. The maximal radial
pressure fluctuation is located at the nozzle throat (where the streamlines curvature is
the strongest). At this location the stream-wise and radial vorticity values have also
their maximal intensity. The radial pressure gradient is found to be very similar in the
fine mesh computations (M2 and M3), where a very thin boundary layer is captured,
which is not the case for the computation on M1. Then, further in the diffuser, the
radial pressure gradients of all the simulations get closer, become of the same order of
magnitude and almost flat at the outlet of the diffuser. Figures 5.13 and 5.14 show
that the stream-wise and radial vorticity decreases with the pressure radial gradient (as
described in the radial equilibrium Eq. (5.4)). Vorticity captured by M3 is greater than
in the other meshes. Note that a mesh is only capable of transporting vortices bigger
than its characteristic element length. Therefore, the vorticity generated at the nozzle
throat will decrease as a function of the mesh element size increase, indicating that M3
should depict a stronger vorticity intensity at the outlet of the diffuser. Once again,
comparison of all three predictions confirms that flow activity is better resolved with
M2 and M3 (fully resolved mesh), and M3 depicts a stronger vorticity intensity at the
outlet of the diffuser.

The different results shown in this section, from 1D results like the bulk quantities
and the azimuthally averaged wall variables to the 2D azimuthally averaged profiles of
different flow variables prove that the three numerical simulations are representative of
the same operating point. The biggest differences between the different computations
are at the nozzle throat, where the number of points used to describe the boundary
layers is also very different. Despite these observations at the nozzle throat, all the
other quantities compared at different sections (except for the pressure) are found to be
very similar. Due to the huge differences in the computational costs and return time of
simulations with M3 (details of the computational costs are summarised in Table 5.3),
and the small differences in the computed profiles in comparison with the other meshes,
it is concluded that M1 and M2 are well suited for the study of the entropy forced case
of the EWG as well as the nozzle transfer functions. However, it should be kept in
mind that the operating point computed with M1 and M2 is adjusted by modifying the
outlet static pressure and that only the simulation carried with M3 strictly respects the
experimental data.
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Figure 5.8 Temporal and azimuthal average of the axial axial velocity versus the radius.
M1 ( ). M2 ( ). M3 ( ).

Numerical
mesh

Number of cores
and machine

Computed
physical time

Computational cost

M1 360 - Nemo 0.4 s 150 000 hrs

M2 256 - Neptune 0.4 s 1 500 000 hrs

M3

8192 - Turing

0.4 s 20 000 000 hrs
1024 - Ada

3600 - Occigen
360 - Nemo
1200 - Nemo

Table 5.3 Computational costs of the different numerical simulations for the baseline flow.
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Figure 5.9 Temporal and azimuthal average of the Mach number versus the radius. M1 ( ).
M2 ( ). M3 ( ).
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Figure 5.10 Temporal and azimuthal average of the temperature versus the radius. M1 ( ).
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Figure 5.11 Temporal and azimuthal average of the static pressure versus the radius.
M1 ( ). M2 ( ). M3 ( ).
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Figure 5.12 Azimuthal average of the radial pressure gradient at different positions of the
diffuser.
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Figure 5.13 Azimuthal average of the streamwise component of the vorticity (ξx) at different
positions of the diffuser.
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Figure 5.14 Azimuthal average of the radial component of the vorticity (ξr) at different
positions of the diffuser.
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5.2 The entropy forced flow

In this section the Entropy Wave Generator operated in subsonic forced conditions
described by Bake et al. (2009) is simulated using the baseline flow computed with M1
in §5.1. For this exercise, particular attention is taken to the modelling of the heating
device. Indeed, the preliminary analytical study carried in Chapter 4 showed that the
ignition sequence of the heating device and the shape of the generated temperature
fluctuation have an effect on the generated pressure signals. Therefore, the experimental
heating device ignition sequence, the modelling of the six heating rings as well as the gap
presented in the experiment between the heated rings and the duct wall are taken into
account. A reliable parametrised model of the heating device is hence first described.
Based on this model, the introduction of the entropy disturbance is simulated by LES
and analysed in terms of noise transmitted through the nozzle.

5.2.1 The heating device model

In terms of real hardware, the heating device of the EWG is composed of six mod-
ules themselves composed of electric resistances (a picture of one module is shown in
Fig. 5.15), each module being separated from its neighbours by 8 mm. The most up-
stream heating module is located at xHD1 = −145.5 mm from the nozzle-throat. Note
that experimentally a gap of 1.8 mm separates the electrical resistances from the duct
wall to prevent overheating and fusion of the wires. This implies that only part of the
boundary layer and flow are heated, an effect which has to be accounted for in the model
to describe the heating device as accurately as possible in LES.

Figure 5.15 Picture of one heating resistances module.

Leyko et al. (2011), Muhlbauer et al. (2009) and Lourier et al. (2014) have proposed
different models to describe the heating device of the experiment. Usually the model
consists in the introduction of a volumetric power source term in the energy equation. In
this expression, the source term

.
Q is the result of the product of one temporal function

ξ(t) and a spatial function φ(x) (in the analytical analysis of the EWG of Chapter 4,
only the temporal function is used). In order to take into account the gap between the
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heating wires and the duct wall, another function ϕ(r) is introduced here to restrain
the energy deposition to a cylinder of radius Rdep. Furthermore, and for this particular
experimental test case, each heating module is activated one after the other with a delay
corresponding to the convective time of the flow for a distance equal to the module
separation distances (8 mm). Hence, the model proposed here to describe the heating
device follows:

.
Q (x, r, t) =

E0

nr

nr∑

j=1

φ(x) · ϕ(r) · ξ(t)
∫∫∫∞

−∞ φ(x) · ϕ(r)dV
∫∞

0 ξ(t)dt
, (5.5)

φ(x) =
1

2

[

1 + tanh

(
x− xj + Lj/2

d

)

tanh

(

−x− xj − Lj/2

d

)]

, (5.5a)

ξ(t) =







0 if t < tj

1 − exp
(

− t−tj
τ1

)

if t ∈ [tj ; tj + Tp]

φ(tj + Tp) exp
(

− t−tj−Tp

τ2

)

if t > tj + Tp

(5.5b)

ϕ(r) =

{

1 if r ∈ [0;Rdep]

0 if r > Rdep
(5.5c)

where nr is the number of activated rings; xj and tj are the position and the triggering
time of the jth heating ring, while Tp is the duration of the energy deposition. E0 is
the total energy introduced by the model; Lj is the length of heating ring; τ1 and τ2

are the relaxation times of the temporal function ξ and d is the characteristic slope of
the spatial function φ. Here, tj is controlled by a time delay ∆τ in the activation of
each ring: tj = t0 + (j − 1) ∆τ . Note that Eq. (5.5b) is the same as the one used for
the analytical modelling (cf. Eq. (4.12)), but the activation time corresponding to each
heating module tj is directly taken into account in the expression. Figure 5.16 shows an
example of spatial and temporal distributions of energy obtained by the heating device
functions for three activated heating rings.

This model of energy deposition is believed to be generic, being able to introduce
different energy distributions both in time and space. For instance, this model can
reproduce (1) the energy deposition of Leyko et al. (2011) and Duran et al. (2013b)
where all the energy is deposited into a single cylinder that covers the entire length
covered by all the heating rings, (2) the model of Lourier et al. (2014) where the energy
is distributed in six different heating modules, each zone being activated at a different
instant (the delay being based on the convective time of the mean flow).

In the experiment, once the heating device is activated, a hot spot is convected by the
flow and the temperature fluctuation produced by this energy deposition is measured
by a vibrometer located at xvib = −58.5 mm from the nozzle-throat. The vibrome-
ter measures the temperature along a line of sight (in this case the diameter of the
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Figure 5.16 Representation of the spatial (left) and the temporal law (right) of the heating
device model, φ(x) and ξ(t) respectively.

duct). Therefore, the temperature measured by this element can be described as a mean
temperature over the diameter,

Tvib = Tmean =
1

2R

∫ R

y=−R
T (y)dy. (5.6)

Ideally, a relation between the energy introduced by the model and the induced tem-
perature fluctuation must be found to give an estimation of the energy needed to obtain
the temperature fluctuation measured by the vibrometer. This relationship clearly comes
from the flow energy equation without chemical reactions, which reads:

ρ
Dh

Dt
=
DP

Dt
+
∂2λT

∂x2
i

+ τij
∂ui
xj

+
.
Q, (5.7)

where D
Dt = ∂

∂t + ui
∂
∂xi

is the particular derivative, h is the specific enthalpy, ρ the
density, P the pressure, T the temperature, ui the different components of the velocity
vector, λ the thermal conductivity, τij the viscous tensor and

.
Q a volumetric source

term. To derive an expression linking the energy deposition E0 to the temperature
fluctuation, a simplified axisymmetric domain is assumed (i.e. Fig. 5.17). The mean
flow is hence assumed to only depend on the radial coordinate ~U = Ux(r)~x. Additional
assumptions are: an established regime (∂/∂t = 0), no viscous losses (τij = 0), adiabatic
walls (∂T/∂~n|wall = 0), to finish with small temperature fluctuations (cp ≈ constant and
ρ ≈ constant). With these assumptions, the energy balance can be recast into:

ρUxcp
∂T

∂x
= λ

∂2T

∂x2
i

+
.
Q . (5.8)
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Figure 5.17 Simplified domain: Cylindrical duct with adiabatic walls.

To easily integrate Eq. (5.8) in space and time, two magnitudes are introduced: the
bulk velocity and the bulk temperature defined as:

Ubulk =

∫ R
r=0

∫ 2π
θ=0 Ux(r) r dr dθ

A
, Tbulk(x) =

∫ R
r=0

∫ 2π
θ=0 Ux(r)T (x, r, θ)r dr dθ

A Ubulk
,

(5.9)
where A is the duct cross-section and R stands for the duct radius. Note that the bulk
velocity is assumed to be constant in the duct, while the bulk temperature is dependent
on the axial coordinate. Now, Eq. (5.8) can be integrated in the duct volume and
between the energy deposition triggering time t0 and the total energy deposition time
t0 +TP , yielding the identification of the energy to be introduced in the simulation E0:

E0 =
.
m cp∆Tbulk

[

Tp + (τ2 − τ1)

(

1 − exp

(

−Tp
τ1

))]

. (5.10)

Using the experimental data, the values of the specific heat at constant pressure
cp =1004 J.kg−1.K−1 and the deposition duration time Tp = 0.1 s. The best compromise
for the two relaxation times of the heating device τ1 and τ2 found in the analytical evalu-
ation of the EWG subsonic test case are 3.5 ms and 7 ms respectively. Finally, assuming
that ∆Tbulk = ∆Tmean = 13.4 K (which in the particular case of a 1D flow is true but
not in the LES), the total energy E0 to be introduced in the simulation is 14.25 J (which
is very close to the 13.82 J estimated by the experimentalist, cf. Table 3.2). However,
it is important to underline that the model is constructed to use the bulk temperature
fluctuation to estimate the deposition energy E0, whereas the experimental input is the
mean temperature fluctuation. Therefore a correction in E0 is expected if the bulk and
mean temperature are different.

To study the accuracy of the model in obtaining the desired bulk temperature fluc-
tuation and its difference with the mean temperature, a LES simulating only the duct
upstream of the nozzle is produced using the above analytical value of E0. Figure 5.18
shows the resulting evolution of the bulk and mean temperature when extracted from
this numerical simulation and compared with the experimental reported mean temper-
ature at the vibrometer position. The analytical model is seen to be very accurate.
The bulk temperature of the simulation indeed collapses onto the experimental mean
temperature value, whereas the corresponding mean temperature issued by LES shows a
lower value. This specific difference is due to the thermal boundary layers developed in
the flow. The bulk temperature results from the temperature weighted by the velocity
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profile, therefore, temperature fluctuations inside the boundary layer have less weight
than the ones in the center of the duct. Contrarily, the weight of the temperature is
the same in the mean temperature formulation regardless of the flow velocity profile.
In order to correct the value of the mean temperature obtained from the LES to the
value reported by the experimental data, a linear correction between the energy and the
mean temperature is done, obtaining the new value of E0 = 16.24 J, yielding a mean
temperature profile in full agreement with the experimental data.
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Figure 5.18 Upstream duct: Bulk temperature and mean temperature of the LES compared
with the experimental measurement at vibrometer position (xvib = −58.5 mm).

5.2.2 Numerical simulation of the forced EWG subsonic test case

To simulate the forced EWG experiment, three parameters need to be controlled
numerically:

• A statistically converged baseline flow,

• The energy deposition model,

• The impedances of the boundary conditions.

The statistically converged mean flow and the energy deposition model have been anal-
ysed and presented in §5.1 and §5.2.1. Complemented by the analytical analysis of the
EWG subsonic test case of §4.4, the following two parameters are now known to have a
significant influence on the generation of combustion noise: the heating device and the
acoustic impedances. The heating device is shown to be compact acoustically but it is
not the case for entropy. It is also of note to highlight that the analytical study could
not provide information about the shape of the slug and its influence on the generated
noise, so the numerical simulations will be an important asset on such shortcomings.
Concerning the acoustic impedances, Leyko et al. (2011) numerically fitted the outlet
impedance of the EWG as close as possible to the experimental value. The analytical
analysis, showed that the inlet impedance has also an important impact on the amount
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of direct noise generated, showing that it must be close to -1 due to the sudden expansion
between the upstream duct and the settling chamber.

Numerical implementation of the baseline flow needed a mass flow rate to be imposed
to agree with the experimental data. However, acoustically, imposing the mass flow rate
at the inlet of the configuration corresponds to imposing a positive reflection coefficient,
whereas imposing a pressure results in a negative reflection coefficient. This effect can
be simply shown by the direct definition of the reflection coefficient: the ratio of the
reflected wave over the incident wave:

R =
A+

A− =

p′

γp + u′

c
p′

γp − u′

c

, (5.11)

R
u=cst−−−−→
(u′=0)

1 ; R
p=cst−−−−→
(p′=0)

−1.

Ideally, a pressure should be imposed at the inlet of the EWG to obtain a negative
reflection coefficient as recommended previously. In order to avoid numerical instabilities
while imposing a pressure at the inlet and at the outlet (no degree of freedom left),
a total pressure is preferred at the inlet. To do so, the total pressure is computed
for the inlet plane of the baseline flow simulation and imposed as target value for the
total pressure boundary condition of the entropy forced simulation. Note that, the new
simulation was verified to have the same mass flow rate and nozzle Mach number as
the baseline flow analysed in §5.1. Furthermore, using the expression of Selle et al.
(2004) to determine the value of the reflection coefficient against frequency, a relaxation
parameter Kin = 50000 s−1 is chosen to impose a fully reflective inlet. Figure 5.19
shows the theoretical reflection coefficients imposed in the simulation while Tab. 5.4
summarizes the numerical set-up.

Boundary conditions

Inlet NSCBC Total pressure and total temperature, Kin = 50000 s−1.
Outlet NSCBC Static pressure, Kout = 160 s−1.
Walls Non slip adiabatic

Numerical parameters

Governing equations Navier-Stokes
Numerical scheme TTGC
LES model WALE
CFL 0.7

Table 5.4 Numerical set-up for the entropy forced simulation.

The influence of the shape of the hot slug can be studied modifying the characteristic
lengths, delays and times of the energy deposition model presented in §5.2.1. Two energy
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Figure 5.19 Reflection coefficients imposed in the entropy forced simulation of the subsonic
nozzle test case.

Left axis ( ): modulus of the reflecion coefficient. Right axis ( ): phase of the reflection
coefficient.

deposition shapes will be studied in this work: the one derived from Leyko et al. (2011),
called "Block model" and the one proposed in this manuscript called hereafter "Delayed
model". The main differences between both energy depositions are:

Block : The energy is deposited within a unique cylinder that overlaps the six heating
wire modules activated at the same time. The difference with Leyko et al.’s model
is that the volume of deposition is restrained by a radius Rdep = 13.2 mm (smaller
than the duct). This is because boundary layers are present in the LES and not
in the Euler computation of Leyko et al.

Delayed: The energy is spread over six cylinders of length Ln = 1 mm (5 mesh cells
resolution), and a time delay of activation ∆τ = 0.702 µs between each cylinder is
introduced to closely reproduce the experimental ignition sequence.

According to Eq. (5.5) the values of the different parameters of the deposition model
for the two different test cases are listed in Tab. 5.5.

To illustrate the main difference in both energy depositions, Fig. 5.20 shows a planar
cut normal to the "Z" coordinate displaying the instantaneous volumetric power intro-
duced by the heating device at time t = 200 ms (end of the energy deposition). This
figure illustrates how the energy is distributed into the different rings. Note that when
the deposition volume is smaller, more energy per unit volume is introduced, leading to
a more brutal and shorter heating, which has an impact on the temperature gradients
of the hot slug and therefore the generated direct noise.

To study the influence of the energy deposition on the different flow variables, in-
stantaneous profiles of axial velocity, Mach number, temperature and pressure at two
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Parameter Block Delayed

nr 1 6
E0 16.24 J 16.24 J
x0 -125.5 mm -145.5 mm
∆xr 0 mm 8 mm
Ln 40 mm 1 mm
Rdep 13.2 mm 13.2 mm
d 1 µm 1 µm
t0 0.1 s 0.1 s
∆τ 0 s 0.702 ms
Tp 0.1 s 0.1 s
τ1 3.5 ms 3.5 ms
τ2 7 ms 7 ms

Table 5.5 List of parameters for each deposition model test case.

(a) Block deposition model. (b) Delayed deposition model.

Figure 5.20 Volumetric power deposited in the numerical simulation for the two different
deposition models.

different instants (t1 = 100 ms and t2 = 200 ms) of the "Delayed model" simulation are
compared with the mean profiles extracted from the baseline flow simulation computed
on M1 (cf. §5.1) and showed in Figs. 5.21–5.24. Recall that t1 corresponds to the time
when the deposition starts and t2 when the energy deposition stops. All profiles from
the inlet of the nozzle (xNin) to the nozzle throat (xNth

) are found to be equivalent at
t1 to the mean profiles from the baseline flow simulation. This is due to the fact that
upstream of the nozzle throat, the flow is "laminar" (confirmed by the streamlines in
Fig. 5.5); there is no effect of vortices or any flow perturbation before the nozzle throat.
In the divergent, the effects of the unsteady nozzle jet are visible in the instantaneous
solution profiles, where the profiles are affected by the convection of vortices generated
at the nozzle throat (cf. Figs. (5.21–5.24)(c,d)). Profiles at t2 show the evolution of
the different variables when the temperature is increased by the energy deposition. The
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elevation of the measured temperature in the upstream duct is 13.4 K, which is not
significant enough to modify the velocity or the Mach number profiles. However, this
temperature increase affects slightly the pressure profiles by about 20 Pa. It is worth
noting that at the chosen instants, there is no sound generation by the entropy wave,
at t1 the hot slug has not reached the nozzle and at t2 the first temperature front has
already traversed the nozzle generating a steady state after its passage (the temperature
between t1 and t2 reaches a constant value, cf. Fig. 4.10). Therefore, pressure fluctu-
ations are only the result of boundary condition reflections (cf. Fig. 4.11) and vortex
sound.
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(c) Inside the nozzle diffuser x = 50 mm.
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Figure 5.21 Azimuthal average of the axial velocity versus the radius. Baseline flow
simulation mean profiles on M1 (+++). t1 = 0.1 s - beginning of the energy introduction ( ).

t2 = 0.2 s - end of the energy introduction ( ).

The first instants of the energy deposition are compared with the experimental data.
To do so, only the first 35 ms of the energy deposition are shown in Fig. 5.25, where
the spatially averaged temperature (according to Eq. (5.6)) and pressure fluctuation
traces obtained in the numerical simulations are compared with the analytical results
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(b) Nozzle-throat xNth
= 0.0 mm.
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(c) Inside the nozzle diffuser x = 50 mm.
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xNout = 250 mm.

Figure 5.22 Azimuthal average of the Mach number versus the radius. Baseline flow
simulation mean profiles on M1 (+++). t1 = 0.1 s - beginning of the energy introduction ( ).

t2 = 0.2 s - end of the energy introduction ( ).

obtained in §4.4 (invariants with Rin = −1, Fig. 4.11a) as well as with the experimental
measurements. As already highlighted in the analytical evaluation of the EWG, the
simultaneous activation of all the heating rings (block deposition model) induces a time
delay in the temperature and pressure signals of about 3 ms due to the convection
time of the temperature front between each heating ring. This time delay is taken
into account in the delayed model, and is computed using the mean values reported
by the experimentalist (cf. Bake et al. 2009): the bulk velocity in the upstream duct
Ubulk ≈ 11.4 m/s and the spacing between each heating ring ∆xr = 8 mm, yield a
value of ∆τ = 0.702 ms. This time delay multiplied by the number of heated modules
minus one (number of intervals) provides the total time delay found to be about 3.5 ms.
Figure 5.25a shows the spatially averaged temperature temperature evolution at the
vibrometer position. As expected, a very good agreement between the delayed ignition
model, the analytical modelling and the experiment is found, while the block deposition
model exhibits a time delay with respect to the others signals. The overlapping of the
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(c) Inside the nozzle diffuser x = 50 mm.
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Figure 5.23 Azimuthal average of the temperature versus the radius. Baseline flow simulation
mean profiles on M1 (+++). t1 = 0.1 s - beginning of the energy introduction ( ). t2 = 0.2 s

- end of the energy introduction ( ).

temperature signal produced by the delayed model and the vibrometer measurement
allows verifying two things: first, the parameters chosen to describe the hot slug shape
with the delayed model reproduce the shape of the temperature fluctuation measured
by the vibrometer well; and second, the delay of activation of each heating module as
well as the right convection velocity of the hot slug provides the correct operating point
of the simulation (the hot slug arrives at the proper time at the vibrometer position).
Concerning the pressure fluctuations generated by the heating and the acceleration of
the hot slug through the nozzle, a sliding average has been applied to the numerical
signals to obtain a better signal-to-noise ratio. Indeed, the experimental pressure signals
are the result of a phase average of several hundreds of repetitions of the same pulse,
when only one ignition sequence has been simulated by LES. The time delays of the
different noise sources (direct and indirect) in the pressure signals have been analysed
by Lourier et al. (2014). According to Lourier et al. (2014), the first direct noise signal
(noise produced by the fluctuating heat release of the heating device) starts at about 4
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(b) Nozzle-throat xNth
= 0.0 mm.
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(c) Inside the nozzle diffuser x = 50 mm.
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(d) Outlet of the nozzle diffuser
xNout = 250 mm.

Figure 5.24 Azimuthal average of the pressure versus the radius. Baseline flow simulation
mean profiles on M1 (+++). t1 = 0.1 s - beginning of the energy introduction ( ). t2 = 0.2 s

- end of the energy introduction ( ).

ms after the triggering of the energy deposition and the first indirect noise signal (due to
the acceleration of the hot spot through the nozzle) arrives at about 12.5 ms. Pressure
fluctuations generated by the heating and convection of the hot slug through the nozzle
are represented in Fig. 5.25b at the fourth microphone position (xmic4 = 1150.5 mm),
where time delays computed by Lourier et al. are also depicted. The heating device
is found to be compact for the acoustic waves of interest (cf. Chapter 4) and direct
noise signals arrive at the same time for both models (t ≈ 103.5 ms). Indirect noise
contribution is seen to start earlier for the block deposition model (about 3.5 ms earlier)
compared with the delayed model. Therefore, between t ≈ 103.5 and t ≈ 109.1 ms only
direct noise is recorded by the microphone. However, here due to the noise present in
the numerical results and the small window of time for purely direct noise contribution,
one cannot conclude which model produces more or less direct noise. Nevertheless, the
overall noise produced by the block deposition model is more spread and reaches a lower
peak value. This result is somehow expected, as the same amount of energy is introduced
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by both models and only the volume of deposition differs. The path followed by the flow
in the block deposition approach during the ignition sequence is smoother and more
continuous compared with the delayed deposition. Furthermore, when comparing the
delayed model pressure results with the analytical ones, the shape of the signals is very
similar (cf. Fig. 5.25b) and the starting point of indirect noise signals matches very well
(slightly after Lourier et al. 2014 prediction). In the zone where direct and indirect noise
interact together, the analytical model appears to underestimate the pressure signal by
half when LES seems to overestimate only the peak value, obtaining a better agreement
with the experimental measurement. The differences between the analytical pressure
signal and the numerical one can be attributed to different elements: the vortex shedding
produced in the diffuser and the vortex sound generated at this occasion, the possible
excitation of the nozzle jet by the entropy disturbance, and viscous effects. To better
understand the impact of these effects on the generated noise, the computation of the
nozzle transfer functions by a numerical simulation is presented in §5.3.
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Figure 5.25 Zoom over the first instants of the energy deposition.

Prior to the LES simulations dedicated to the nozzle transfer functions (cf. §5.3),
another numerical simulation in which a temperature fluctuation with the same charac-
teristics as the ones generated by the heating device is introduced in the domain without
the generated direct noise. In such a simulation, one attempts to estimate the amount
of indirect noise generated in the LES. To do so, a plane next to the heating device
(x = −100 mm) is extracted from the forced simulation discussed above to obtain a
2D temperature field that depends on time only. Afterwards, the inlet boundary con-
dition used in the block and delayed models are modified so as to impose the extracted
2D temperature fluctuation signal. Figure 5.26 represents the result of this simulation
and compares it to the delayed deposition model and the experimental results. The
temperature and pressure fluctuations of the "only indirect noise" simulation have been
shifted by 10 ms (convection time of the flow to reach the heating device) to make a
fair comparison. The first phenomenon seen in the temperature fluctuation traces of the
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latter simulation is an attenuation of the maximum value reached. This is due to the
longer path followed by the hot slug to reach the nozzle. Pressure traces indicate that
there is no direct noise (which is one of the principal objectives of this simulation) in
the zone targeted where only direct noise exists. Furthermore, and despite the smaller
maximum temperature fluctuation reached, the amount of indirect noise generated is
observed to be almost the same as the overall contribution of both noise sources, indi-
cating that direct noise has a very small contribution and that indirect noise generation
is the dominant source in this experiment (in agreement with the work of Lourier et al.
2014).
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Figure 5.26 Zoom over the first instants of the energy deposition. Comparison with the
introduction of a hot slug by the inlet boundary condition simulation.

Up to now, the results of LES were compared to the experimental data. Thereafter and
until the end of this section, the deformation of the entropy spot will be studied. Indeed,
the convection of entropy fluctuations through a non homogeneous flow is responsible
for the so called indirect noise. Therefore, it is important to study how the entropy
spot generated by the heating device is distorted through the nozzle and how it is
convected through the downstream duct. This process is similar to the one observed in
real aeronautical engines, where the entropy fluctuations generated in the combustion
chamber are first distorted by the outlet guide vane (replaced by the nozzle in this study)
before being convected to a rotor row. Between the outlet guide vane and the rotor row,
the entropy spots are only convected by the flow (as in the downstream duct of the
EWG), where the entropy wave seems to be attenuated (as described by the studies
conducted by Morgans et al. 2013 and Giusti et al. 2016). To visualise the deformation
of the entropy fronts, the norm of the temperature gradient is computed. In Fig. 5.27,
the numerical simulations of the two energy deposition models are compared. The block
deposition simulation is showed in the upper half and the delayed deposition in the lower
half of each instant. The field represented in this figure is the norm of the gradient of
the temperature T minus the mean temperature of the baseline flow T0 normalized by
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the mean temperature of the baseline flow
||∇(T−T̄0)||

T̄0
. This variable allows tracking

the position and form of the entropy front generated by each energy deposition model.
In the first instant (t = 0.105 s) represented in this figure, the entropy spot is located
in the upstream duct. The block deposition model front is in advance by almost 40
mm (length of the heating device). Steep gradients of temperature are formed near the
wall due to the local energy deposition and the flow boundary layers. At the second
instant (t = 0.115 s), the entropy front arrives inside the nozzle diffuser and its front
shape is already completely distorted by the jet and nozzle geometry. In the last instant
(t = 0.145 s), the front has reached the outlet duct and a "stationary state" has been
reached in the upstream duct. At this stage, the entropy front has been distorted by the
mean flow, where different authors explain that the entropy planar mode is scattered
into higher modes affecting the production of entropy noise. The 2D analytical model
proposed by Zheng et al. (2015), predicts the impact on indirect noise of the entropy
front distortion through a nozzle. The model proposed by Leyko et al. (2010), Duran
and Moreau (2012), Livebardon et al. (2016) and Bauerheim et al. (2016), introduces an
attenuation function to describe this distortion and the conversion of the entropy plane
wave into higher modes are examples of this effect.

Figure 5.27 Norm of the temperature gradient of the forced flow divided by the mean
temperature of the non forced flow (||∇

(
T − T̄0

)
||/T̄0). Only a part of the EWG geometry is

represented (x ∈ [−0.15 : 0.5]).

Instantaneous fields shown in Fig. 5.27 are important to visualise the location of the
entropy gradients and therefore, according to Morgans et al. (2013) and Giusti et al.
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(2016), where the entropy wave is more attenuated. However, it remains only a qual-
itative information of the problem. In order to quantify the amount of remaining en-
tropy, another parameter must be found to better represent the entropy attenuation
phenomena. At the beginning of this numerical study, two definitions of planar average
(integration within a plane normalized by the section of the plane) of the temperature
have been introduced: the mean temperature Tmean (cf. Eq. (5.6)), which is the temper-
ature accessible by the experimental measurements, and the bulk temperature Tbulk (cf.
Eq. (5.9)), introduced to estimate the amount of energy needed to reach the tempera-
ture fluctuation measured in the experiment. One can show that the bulk temperature is
energy conservative by construction (integration of the energy balance, Eq. (5.8)), and
should be used to compare the 1D theory to the 3D simulation. Therefore, the bulk
temperature field is computed for the two entropy forced simulations (block and delayed
deposition representations of the heating device) to construct the dimensionless tem-

perature 1D field Tdimless(x) =
(Tbulk(x)−T̄0,bulk(x))

T 0,bulk(x)
, where T 0,bulk(x) is the time-averaged

bulk temperature of the baseline flow. Both LES are compared with the resolution of
the quasi-1D advection of a hot spot generated by an energy source term

.
Q with the

properties of the block deposition model. For this specific 1D problem, the advection
equation is used to transport the temperature, for which the temperature fluctuation and
the transport in the nozzle are modelled by source terms:

.
Q introduces the temperature

fluctuation and u ∂p∂x the transport inside the nozzle, leading to the expression:






∂T (t,x)
∂t + u(x)∂T (t,x)

∂x = 1
ρ(x)cp

[

u(x)∂p(x)
∂x +

.
Q (t, x)

]

T (t = 0, x) = T (x)
(5.12)

where u(x), ρ(x), T (0, x) and ∂p(x)
∂x are extracted from the isentropic mean flow computed

in §5.1. Note that Eq. (5.12) is a simplified form of the energy conservation equation
(cf. Eq. (5.7)) assuming an adiabatic inviscid flow. This equation satisfies the conser-
vation of the entropy fluctuations through the nozzle, which is the assumption done in
the analytical model of Duran and Moreau (2013a) (cf. Eqs. (2.25c) and (2.30c)) for

the entropy perturbations. The pressure gradient ∂p(x)
∂x and the density ρ fields issued

from the isentropic calculation are compared with the numerical simulation in Fig. 5.28.
Good agreement is found for the pressure gradient between the analytical model and the
simulation. The density is however overestimated by the isentropic theory in the nozzle
diffuser. This is due to the pressure loss neglected (inviscid flow) by the isentropic the-
ory. Velocity, temperature and pressure profiles have been shown in the analysis of the
baseline flow in Fig. 5.7. To respect the perfect gas law and keep the velocity and tem-
perature constant, an increase of the pressure is compensated by an increase of density.

Figure 5.29 shows Tdimless fields computed from Eq. (5.12) and extracted from the
numerical simulations. The position of the heating device is represented by the shaded
region, whereas the vertical lines represent the separation between the different compo-
nents of the geometry: inlet duct, convergent and diffuser of the nozzle, and outlet duct.
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Figure 5.28 Comparison of the isentropic mean flow and the bulk quantities computed from
the time averaged baseline flow LES.

Each sub-figure (a, b, c, d and e) shows a different physical time and is divided in two
parts: the overall evolution of Tdimless along the EWG configuration (upper part), and
a zoom over each element of the nozzle (lower part). In Fig. 5.29a, only 5 ms elapsed
since the energy deposition started. The analytical convection of the entropy spot pro-
posed by Eq. (5.12) correctly predicts the rise and decay of the temperature through
the heating device region compared with the LES block deposition model. However, the
analytical convection of temperature spot is seen to differ from the LES using the block
deposition model, where the spot seems to be convected with a smaller velocity. The
delayed model takes more time to reach the heating device zone as shown by Fig. 5.27.
In Fig. 5.29b, energy has been deposited during 15 ms and the entropy front is located
inside the nozzle. At this point, the mean flow accelerates the temperature front along
the centreline of the nozzle (as showed by Zheng et al. 2015). This effect should be
taken into account by the definition of the bulk temperature since it is weighted by
the velocity. The analytical model predicts a smaller maximum temperature fluctuation
and a shorter distance is travelled by the front (the temperature front moves slowly in
the divergent compared with the LES and no temperature diffusion is present in the
analytical model). The delayed model follows the same shape as the block model but
with a time delay. In Fig. 5.29c, the entropy leading front has reached the outlet duct
and a stationary state has been reached in the nozzle and the upstream duct. At this
point, the hot spot from LES has suffered from dispersion arising from the mean velocity
profile as explained by Morgans et al. (2013), Giusti et al. (2016) and Hosseinalipour
et al. (2017). In these studies, DNS and LES simulations were carried out to study the
dissipation and dispersion of an entropy fluctuation along a fully-developed turbulent
flow. Furthermore, the attenuation of the entropy spot has also been studied by Leyko
et al. (2010), Duran and Moreau (2012), Livebardon et al. (2016) and Bauerheim et al.
(2016) in the framework of turbine configurations. All these works arrived to the con-
clusion that the entropy wave is attenuated mostly by shear dispersion generated by the
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velocity profile. Up to the divergent, the numerical simulations and the analytical model
show the same behaviour: the entropy wave seems to be convected without dissipation
though the nozzle, even if the leading entropy front has been deformed by the flow.
Afterwards, the shape of the hot spot given by the analytical convection model is not
attenuated and remains unchanged, while the shape of the hot spot in the numerical
simulations is dispersed. In Fig. 5.29d the energy deposition is finished and the hot
slug has traversed the nozzle entirely. At this point, the leading front of the hot slugs
from the simulations have been deformed (dispersed and attenuated by the mean flow)
and both energy deposition models follow the same shape. Finally, from Fig. 5.29d to
Fig. 5.29e, the entropy spot has only been convected through a straight circular duct,
where it suffers from bigger deformations and attenuation than at its passage through
the nozzle.
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Figure 5.29 Azimuthal average of the dimensionless temperature
Tdimless = (Tbulk − T0,bulk)/T0,bulk. Shaded region: Heating Device location. Vertical lines:

separation between the inlet duct, the convergent, the diffuser and the outlet duct.
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In order to verify if the entropy fluctuations only suffer from dispersion and not dis-
sipation (as explained by Morgans et al. 2013 and Giusti et al. 2016 in the framework
of constant section turbulent channels flows) through the nozzle, profiles of Tdimless are
extracted at different axial locations of the domain to look at the temporal evolution
of the temperature fluctuations. Figure 5.30 shows the evolution of Tdimless at the inlet
and the outlet of the nozzle, and at x = 0.5 m and x = 1 m from the nozzle throat
for the two LES and the analytical temperature convection model. It appears that the
shape of the temperature fluctuation is conserved through the nozzle and it is only in
the downstream duct where its shape is distorted and attenuated. The entropy hot slug
needs almost one meter for its amplitude to be decreased by the effects of the mean flow.
It is important to remember that the temperature fluctuation generated by the heating
device is composed of almost only very low frequencies (cf. Fig. 4.13) and according to
Giusti et al. (2016), the higher the frequency is, the higher the dispersion of the entropy
perturbation is. However, Giusti et al.’s study was carried out in the framework of a
constant section duct. In the present simulations, additional 3D effects are added with
the presence of the nozzle. In order to estimate the dissipation of the entropy wave
through the nozzle, the temporal relative integral (to the vibrometer position) of each
extracted position is computed and showed in Fig. 5.31, which help us conclude that the
entropy fluctuation is only convected through the nozzle without dissipation.

5.2.3 Conclusion

In this subsection, the subsonic operating point of the EWG experiment (described by
Bake et al. Bake et al. (2009)) has been computed numerically by LES. Particular
attention has been taken to the modelling of the heating device, for which a model
derived from Leyko et al. (2011) has been extended to take into account the experimental
ignition sequence and geometry. Based on the analytical study of the EWG subsonic
test case carried in §4.4, it has been chosen to fix the inlet acoustic reflection coefficient
to be fully reflective (most physical choice) for the range of frequencies studied to have
a comparison point between the analytical theory and the numerical simulations.

Two energy deposition shapes have been studied using the model proposed in §5.2.1:
the one used by Leyko et al. (2011), and the delayed deposition proposed in this work.
From the comparison between these two energy depositions, it has been found that it
is necessary to take into account the time delay between the activation of the heating
modules (as in the experiment) to retrieve the right time delay in the temperature signal
measured at the vibrometer and pressure signals at the microphones. Furthermore,
pressure signal extracted from the simulation at the fourth microphone using the delayed
ignition model clearly reproduces well the experimental signal (even if the inlet acoustic
impedance in not perfectly known). To complement previous findings, the temperature
fluctuation generated by the delayed ignition model has been introduced in another
simulation to estimate the contribution of indirect noise only. Analysis of the results
allows to determine that the pressure fluctuations produced by the acceleration of the
hot slug express almost entirely into indirect noise.
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Figure 5.30 Azimuthal average of the dimensionless bulk temperature
Tdimless = (Tbulk − T0,bulk)/T0,bulk at the different positions of the nozzle against time.

Finally, the convection of the hot spot has been studied and compared with a quasi-
1D convection solution of a hot spot. To do so, the energy conservation equation has
been reduced to a 1D advection equation with two source terms and has been used to
transport the temperature through the nozzle. The source terms in this 1D advection
equation take into account the convection in the nozzle and the introduction of the
temperature fluctuation. This methodology allows to evaluate how the assumption of
entropy conservation through the nozzle done in the analytical theory of Duran and
Moreau (2013a) is valid. First, the convection of the entropy spot using a 1D advection
equation has been validated computing the one dimensional field of the temperature
fluctuations at different instants and comparing it to the numerical simulations. As
expected by the analytical 1D convection of the entropy spot, the amplitude and shape
of the entropy spot remains constant when it is convected through the constant section
ducts, while the amplitude of the entropy spot decreases and its shape is dispersed in the
numerical simulations. However, attenuation and distortion of the entropy spot in the
simulation appears to be negligible through the nozzle and become important only when
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Figure 5.31 Relative magnitude of Tdimless (compared to its value taken at the vibrometer
position) as it is convected through the EWG nozzle.

convected over a long distance (about one metre): i.e. in the downstream duct. It is
also noted that since in this experiment, the dominant frequencies of the entropy forcing
are very low (higher frequencies are hidden by the importance of the low frequencies),
the effects of dispersion due to the mean flow are weak.

Finally, the LES has shown its capability to reproduce the experimental results with
success, while the analytical analysis carried in §4 did not. Therefore, the next sections
are dedicated to the evaluation of the response of the EWG nozzle to incident acoustic
and entropy disturbances. This will allow to understand the phenomenology missing in
the analytical modelling, considering first a non-viscous flow to first study the effects of
the nozzle geometry, and then the effect of viscosity in the determination of the nozzle
transfer functions.
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5.3 Evaluation of the nozzle transfer functions by CFD

The numerical simulation performed in the former section has shown results in good
agreement with the experimental data, even though the exact experimental inlet impedance
is unknown. Despite this shortcoming, identified also through the use of analytical
models, the same analytical methodology does not show close agreement with the ex-
perimental or LES results. Indeed, the analytical evaluation of the subsonic test case
underestimates by half the pressure fluctuations generated by the acceleration of the
hot slug. One key in the analytic approach is the access or model of the nozzle transfer
functions, which can be flawed and yield improper predictions. To further improve on
this specific aspect, the subsonic nozzle transfer functions are computed in a full 360◦

compressible simulation on the shorter M2 mesh with the LES solver AVBP. To do so,
a polychromatic harmonic forcing (sum of multiple frequencies) is introduced through
the boundary conditions. Such a forcing consists in the introduction of acoustic or en-
tropy disturbances using the NSCBC formalism described in Appendix A. Afterwards,
frequency analysis is done to separate each harmonic from the overall polychromatic
fields and study the response of the nozzle to the individual ingoing disturbances.

First and to validate the proposed methodology, the nozzle transfer functions are
computed using the Euler equations only. This validation step allows to compare the
inviscid nozzle transfer functions to the quasi-1D analytical transfer functions obtained
by the methodology of Duran and Moreau (2013a). In the case of the numerical Euler
simulation, the flow is expected to be axisymmetric (2D), which is different from the
quasi-1D assumption considered in the analytical approach. Based on this prediction,
the influence of a 2D flow on the numerically computed transfer functions is evaluated.
Once the methodology is validated, it is used to compute the acoustic response of the
nozzle using the Navier-Stokes LES equations to evaluate the viscous effects on the
different components of such transfer functions.

This section is therefore divided in different parts: §5.3.1 describes how the multi-
harmonic forced signal is constructed. §5.3.2 discusses the validation of the acous-
tic/entropy response of the subsonic nozzle using Euler equations before applying the
same methodology to compute the nozzle transfer functions with LES in §5.3.3.

5.3.1 The forcing signal

In order to study the nozzle response to different disturbances, a harmonic regime
is considered. Assuming full linearity of the system, a polychromatic forcing allows
reducing the computational cost of the simulations by running only one simulation with
the sum of harmonics considered. The forcing signal is composed of a sum of sinus
normalized by the maximum absolute value of the sum (this normalization allows to

have a signal bounded between -1 and 1), f(t) =

∑Nharm
k sin(2πkf0t)

max
∣
∣
∣
∑Nharm
k sin(2πkf0t)

∣
∣
∣

as done by
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Leyko et al. (2014). The fundamental frequency f0 in this study is equal to 10 Hz and
24 harmonics are employed, resulting in a signal composed of the sum of 25 sinus and a
range of frequencies going from 10 to 250 by steps of 10 Hz. The choice of the frequency
range is justified by the fact that the most energetic frequencies in the experiment are
small, and beyond 100 Hz their contribution is negligible compared with that of the
lower frequencies (as showed in Fig. 4.13).

The formulation proposed in Leyko et al. (2014) and used for the forcing f(t) has a
main drawback: a peak that is 20 times larger than the individual harmonics. This will
limit the amplitude A of the forcing to remain in the linear acoustic regime. To solve
this problem, a random phase ϕk is added to each harmonic (methodology already used
by Duran (2013)), yielding the new formulation:

fr(t) =

∑Nharm
k sin(2πkf0t+ ϕk)

max
∣
∣
∣
∑Nharm
k sin(2πkf0t+ ϕk)

∣
∣
∣

, (5.13)

Both forcing formulations are compared in Fig. 5.32. As shown by Fig. 5.32a, both
forcing signals are bounded between -1 and 1, but the oscillations of fr(t) are more
homogeneous than the ones in f(t). Figure 5.32b shows the modulus of the DFT of both
signals, where the amplitude of each harmonic of fr(t) is 4 times greater than f(t). This
result shows that the random phase introduced in the formulation of fr(t) allows higher
amplitudes of each harmonic, obtaining a better signal-to-noise ratio and a higher limit
before reaching a non linear regime induced by the initially proposed signal. For these
reasons, in the following only fr(t) is used as forcing for the acoustic and entropy forced
simulations.
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Figure 5.32 Forcing signal with and without phase shift for each harmonic.
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5.3.2 Euler forced simulations

The forcing methodology being introduced (cf. boundary conditions forcing is detailed
in Appendix A and forcing signal in §5.3.1), acoustic and entropy disturbances are forced
in the EWG configuration. In order to validate the methodology to compute the nozzle
transfer functions (separation of each harmonic from the forced field, computing plane
waves and the nozzle transfer functions), the acoustic and entropy disturbances are
introduced in a reduced domain including only the nozzle of the EWG and small duct
lengths. Figure 5.33 shows a sketch of the reduced domain of the EWG used to compute
the nozzle transfer functions. Note that the upstream and downstream ducts are used
to study the convection of waves in circular ducts (characteristic acoustic and entropy
waves defined in Eq. (2.7)).
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-0.01

 0

 0.01
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-0.1  0  0.1  0.2  0.3  0.4

Figure 5.33 Sketch of the reduced domain of the EWG used to compute the nozzle transfer
functions.

The acoustic response of the nozzle to ingoing disturbances is studied in this section.
The best practice is to impose non-reflecting boundary conditions to avoid the pollution
of the signals by reflections. Nevertheless, a fully non-reflective boundary condition in
the NSCBC formalism (in its relaxed form, it is equivalent to imposing K = 0) does not
ensure that the mean value at the boundary condition remains equal to the target value.
To avoid this drift from the target value, a relaxation coefficient K should be different
from zero, which results in a partially reflecting boundary condition. To avoid as much
as possible the reflections, multiple values of K have been tested to be the less reflective
as possible while maintaining the target values, obtaining K = 20 s−1 as the better
compromise. A direct consequence is that the boundary conditions of the domain are
partially reflective and particular attention needs to be taken to separate the acoustic
response of the nozzle from the overall acoustic waves polluted by reflections from the
boundary conditions.

The characteristic element size of the numerical mesh for this study was based on
the numerical dispersion and dissipation properties of AVBP schemes detailed in Ap-
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pendix C. Indeed, it has been found that the limiting factor for the mesh construction
is the entropy smallest wavelength. Therefore, a series of numerical test cases based
on this wavelength have been carried out to ensure the capability of the AVBP nu-
merical schemes to properly convect these entropy waves with minimal dispersion and
dissipation by an induced inadequately designed mesh for a given numerical scheme
(cf. Appendix C). Following these results, the mesh constructed for the nozzle test case
has at least 20 points per identified wavelength, the rest of the numerical set-up being
summarized in Tab. 5.6.

Boundary conditions

Inlet NSCBC velocity and static temperature,
Kin = 20 s−1.

Outlet NSCBC Static pressure, Kout = 20 s−1.
Walls Slip adiabatic

Numerical parameters

Governing equations Euler
Numerical scheme TTGC
LES model none
CFL 0.7
Artificial viscosity sensor Jameson et al.
Artificial viscosity coefficients1 smu2 = 0 and smu4 = 0.007

Table 5.6 Numerical set-up for the Euler computation of the nozzle transfer functions.

To study the nozzle transfer functions, an unperturbed mean flow must first be com-
puted. The bulk quantities of the computed mean flow are compared with the isentropic
baseline flow described in §5.1 and showed in Fig. 5.34. A perfect match has been
obtained between both numerical Euler simulation and isentropic theory. This result
allows to use the operating point obtained in the simulation to be forced by acoustic
and entropy disturbances and make a fair comparison to the analytical quasi-1D model
of Duran and Moreau (2013a).

In the following, harmonic acoustic and entropy disturbances are introduced into the
EWG reduced domain depicted in Fig. 5.33 to study the acoustic response of the nozzle
to ingoing acoustic and entropy disturbances. First, in §5.3.2.1, entropy harmonic dis-
turbances are introduced through the inlet boundary condition of the reduced EWG do-
main to study the generation of indirect noise through the nozzle. Then, in §5.3.2.2 and
§5.3.2.3, harmonic acoustic waves are introduced through the inlet and outlet boundary
conditions to analyse the acoustic response of the nozzle to ingoing acoustic disturbances.
Finally in §5.3.2.4, the nozzle transfer functions are computed and compared with the
analytical transfer functions computed with the model of Duran and Moreau (2013a).

1Minimal value found to have a stable simulation (cf. Appendix C).
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Figure 5.34 Isentropic quasi-1D variables compared with bulk quantities extracted from the
Euler numerical simulation.
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5.3.2.1 Entropy forced simulation

The methodology to introduce an entropy disturbance through the inlet boundary condi-
tion is detailed in Appendix A. It is emphasized here that the system of waves generated
by such a forcing is more complicated than the one created by a sole acoustic excitation.
Indeed, entropy-acoustic interactions are coupled to acoustic-acoustic interactions. The
acoustic and entropy waves in such a system can be illustrated by Fig. 5.35, in which
acoustic waves produced by entropy-acoustic interactions are denoted by the subscript
ea. In the absence of reflections, only the entropy waves and the entropy-acoustic gener-
ated acoustic waves remain. The reflected acoustic waves generate four supplementary
acoustic waves (two transmitted and two reflected waves) due to acoustic-acoustic inter-
actions with the nozzle.

Figure 5.35 Schematic view of entropy and acoustic waves formed by an entropy forcing with
non-reflective boundary conditions.

In the following simulation, a polychromatic entropy forcing of 15 K amplitude (5% of
the baseline flow temperature in the upstream duct) is introduced at the EWG’s inlet. To
ensure that the NSCBC entropy forcing methodology described in Appendix A works
correctly, the temperature fluctuation extracted from the inlet boundary condition is
compared with the polychromatic forcing signal in Fig. 5.36. Unlike the acoustic waves,
the entropy wave is not subject to reflections and therefore the temperature issued by
the forcing should be equal to the temperature fluctuation extracted at the boundary
condition and hence seen by the code, as confirmed by the superposition of both signals
in Fig. 5.36.

Since entropy waves are transported by the mean flow, they also undergo deformations
issued by any change of the velocity field (as highlighted by Zheng et al. 2015 within
the framework of nozzle flows and by Leyko et al. 2010, Duran and Moreau 2012 and
Bauerheim et al. 2016 in the context of turbine rows). As a consequence, the entropy
wave cannot be considered to remain a plane wave along the nozzle. To illustrate this, the
entropy waves corresponding to each harmonic of the forcing signal are computed with a
DFT (cf. Appendix B) using the 3D fields of the simulation. An instantaneous solution
is saved every 0.5 ms during 0.1 s of simulation, obtaining a total of 200 solutions. The
frequency step of such a sampling is 10 Hz and the maximal resolved frequency is 1000
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Figure 5.36 Temperature fluctuation extracted from the numerical simulation compared with
the forcing signal.

Hz (four points in the largest frequency of interest, that is 250 Hz). Note that, only the
harmonics corresponding to the forced frequencies are kept (sum of 25 sinus composing
the forced signal). Then, a plane normal to ~ez of the baseline flow is used to show
the deformation of vertical particle-lines as they are convected by the flow through the
configuration. Particle-lines and the real part of the entropy wave are compared and
represented in Fig. 5.37. Very good agreement is found between the particle-lines and
the real part of the entropy wave, showing that particle-lines are a very good indicator
of the deformation of the entropy fronts and that for all frequencies. Figure 5.37 also
shows that the entropy wave is strongly dispersed in the downstream duct for the high
frequencies studied. Indeed, the curvature of the nozzle deforms the streamlines and a
non-homogeneous velocity profile is established, which by shear dispersion attenuates
the amplitude of the entropy plane waves (as already explained in the cylindrical test
case with an imposed velocity profile in Appendix C).

To estimate the attenuation of the entropy waves, the entropy flux (cf. Huet 2017) is
computed at different axial positions of the configuration:

W s =

∫∫

ρ u T cp ‖σ‖2dA. (5.14)

Figure 5.38 shows the ratio of W s between different axial positions of the domain (the
inlet and outlet of the nozzle as well as the outlet of the domain) to the inlet value.
In the inlet duct, the entropy flux is almost constant for all frequencies, the largest
dissipation represents ≈ 10% of the inlet entropy plane wave for the largest frequency
computed. In the nozzle, up to 100 Hz, at least 90% of the entropy flux is preserved,
and decreases rapidly afterwards. Finally, in the downstream duct, only the very low
frequencies reach the outlet. The highest frequencies being completely attenuated (as
seen also in Fig. 5.37). This result shows that the strongest attenuation happens in the
downstream duct. Indeed, as explained by Giusti et al. (2016) a smaller wavelength
of the entropy perturbation (i.e. higher frequency) leads to stronger gradients, making
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Figure 5.37 Entropy wave phase compared with particle-lines traced from the inlet of the
baseline flow.

the diffusion process faster. It is important to notice that in this section, the entropy
wave is no longer submitted to the acceleration of the nozzle and therefore no more
indirect noise is generated (the entropy wave is only convected by the flow). It is also
worth noticing that even if the amplitude of the entropy plane wave is attenuated, it is
only scattered spatially and no dissipation of the overall entropy wave is found (more
information about the dissipation of the entropy wave can be found in Appendix D).

Finally, to compare the results from the simulation with the analytical method, a
modal decomposition is done (more details about the modal decomposition can be found
in Appendix B) and the entropy plane wave is plotted as a function of the axial coordinate
in Fig. 5.39. At the inlet of the configuration, all the waves are planar and introduced
with the same amplitude. Afterwards, the entropy wave cannot remain planar due to
the non-homogeneous acceleration of the flow produced by the nozzle and the entropy
wave scatters into radial modes. This scattering of the planar mode energy produces
a decay in the amplitude of the plane wave. The greater the frequency, the smaller
the wavelength and the higher the attenuation of its amplitude is due to the sharper
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gradients generated (cf. Fig. 5.37 and highlighted by Giusti et al. 2016). The attenuation
of the plane entropy wave across the nozzle can be estimated analytically using only the
mean flow as proposed by Leyko et al. (2010) (cf. Appendix C, Eq. (C.1b)). The
ratio of the planar entropy wave through the nozzle can also be described through the
entropy-entropy transmission coefficient:

Tee =
σ1(xout)

σ0(xin)
. (5.15)
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Figure 5.39 Amplitude of the entropy plane wave σ in the upstream and downstream ducts of
the EWG.

(Only harmonics 1, 10, 20 and 25 are presented).

It should be noticed that the attenuation of an entropy plane wave by models based
only on the characteristics of the mean flow has also been addressed by Sattelmayer

112



(2003), Morgans et al. (2013) and Giusti et al. (2016). However, the attenuation expres-
sion of those models only deals with the convection of the entropy plane wave through a
constant duct section. Models like the ones proposed by Leyko et al. (2010) and Zheng
et al. (2015), which are based on the flow streamlines are capable of estimating the at-
tenuation of the entropy wave through a nozzle or even multiple turbine stages (in the
case of the model proposed by Leyko et al. (2010)). Figure 5.40 shows entropy-entropy
transmission coefficient obtained in the simulation compared with the analytical invari-
ants theory of Duran and Moreau (2013a) and the attenuation function of Leyko et al.
(2010). The attenuation function based in the analytical solution of the convection of
the entropy wave (cf. Leyko et al. 2010) has been computed in two cases: performing an
azimuthal average of the mean flow to consider it axisymmetrical and using the full 3D
mean flow. Both attenuation functions are very close to the numerical one. However,
the attenuation functions computed using only the axisymmetrical flow hypothesis un-
derestimates the attenuation of the entropy plane wave for some frequencies. This is due
to the fact that the tangential velocity generated by the transverse pressure gradient (cf.
radial equilibrium at the nozzle) has been neglected in the axisymmetrical flow hypoth-
esis and clearly contributes to the attenuation of the entropy plane wave. Considering
the full 3D field to compute the flow streamlines, a very good agreement between Leyko
et al. (2010) attenuation function and the numerical simulation is found. Concerning the
comparison with the analytical methodology of Duran and Moreau (2013a) for Tee, the
analytical method assumes a quasi-1D flow, where by definition, no radial or azimuthal
velocity gradients can exist and no shear dispersion of the entropy wave can therefore
be expected. This results in the conservation of the amplitude of the entropy plane
wave through the nozzle. However, even if the amplitude of the plane entropy wave
remains constant in the analytical model and cannot be compared with the numerical
simulation, the convection velocity of each harmonic entropy wave (associated with the
phase represented in Fig. 5.40b) is found to be in good agreement between the numerical
simulation and the analytical model. Indeed, the bulk velocity of the flow is the convec-
tion velocity of the entropy wave, which has been verified to be the same between the
numerical simulation and the isentropic relations that govern the mean flow associated
to the analytical method (cf. Fig. 5.34).

Above results show that the entropy plane mode is attenuated as it is convected by
the flow. However, Morgans et al. (2013), Giusti et al. (2016) and results obtained
in Appendix D show that the entropy fluctuations are not dissipated but dispersed by
the mean flow. To understand how the energy is distributed, a modal decomposition
into azimuthal and radial modes (cf. Appendix B) is computed at the inlet and outlet
planes of the nozzle. The amplitude of the planar and the first four radial modes (most
energetic modes found by the modal decomposition) at the inlet and outlet of the nozzle
are represented in Tables 5.7 and 5.8 respectively. Since the entropy wave at the inlet
duct remains planar for almost the total length of the inlet duct (the velocity profile
remains flat) as shown by Fig. 5.37, the modal decomposition at the inlet of the nozzle (cf.
Tab. 5.7) is thus representative of the distortion of the entropy wave induced bending of
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Figure 5.40 Entropy-entropy transmission coefficient Tee.

the streamlines at the convergent. Table 5.7 shows that almost all the energy is contained
in the planar mode and the first two radial modes. At low frequencies, the planar mode
dominates. For larger frequencies, the dominant mode becomes the first radial mode.
The modal decomposition of the entropy wave at the outlet of the nozzle is represented
in Tab. 5.8, where azimuthal modes are also found to be negligible compared to the
planar and first four radial modes. At this point, the entropy wave has been distorted
by the non-homogeneous mean flow produced by the nozzle. The planar mode is found
to dominate only the very low frequencies and when the frequency increases, the order
of the dominant mode increases as well.

Results from Table 5.8 are used to estimate the importance of each mode at the
outlet of the nozzle when compared to the planar entropy mode introduced at the inlet
using the definition of the entropy flux of Eq. (5.14) (as done in Fig. 5.38). The ratio
of the entropy flux between nozzle outlet and inlet of the CFD domain is shown in
Fig. 5.41. The planar mode is clearly not sufficient to represent the evolution of the
entropy wave through the nozzle, as its amplitude decreases rapidly and higher modes
gain in amplitude with the frequency. Few modes (for instants the planar mode and
the first four radial modes) are however sufficient to describe the attenuation of the
overall entropy wave. The attenuation of the entropy wave through the nozzle should be
taken into account since the amount of indirect noise generated is directly related to the
amplitude of the entropy wave. Clearly, based on this diagnostics, an analytical model
as the one proposed by Zheng et al. (2015), where the radial deformation of the entropy
wave is estimated using the mean flow, will be more effective to describe the convection
of the entropy wave through a nozzle. It furthermore allows to consider this attenuation
to compute the indirect generated noise.
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Zero-th
mode

(m,µ)=(0,0)

First radial
mode

(m,µ)=(0,1)

Second
radial
mode

(m,µ)=(0,2)

Third
radial
mode

(m,µ)=(0,3)

Fourth
radial
mode

(m,µ)=(0,4)

10 Hz

100 Hz

200 Hz

250 Hz

Table 5.7 Modulus of the entropy wave extracted at the inlet plane of the nozzle (xNin
).

All the analysis made until now for the entropy forcing was concentrated solely on
the entropy wave. Let’s now study the acoustic waves generated when the entropy wave
travels through the nozzle. Due to the huge difference between the flow and sound veloc-
ities in the upstream and downstream ducts, acoustic waves can be considered as planar
(their propagation velocity is very close to the velocity of sound) and their propagation
far from the nozzle can be described by a 1D advection equation. The progressive and
retrograde acoustic plane waves, A+ and A− respectively are computed using Eq. (2.7)
and the DFT procedure described in the above paragraphs. It is important to notice
that in the downstream duct, these definitions for the acoustic waves are not rigorously
correct due to the vorticity waves generated by the radial entropy modes generated and
accelerated through the nozzle (cf. Duran and Morgans 2015 and Emmanuelli et al.
(2017)). To separate the vorticity fluctuations from the acoustic ones, a characteristic
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Zero-th
mode

(m,µ)=(0,0)

First radial
mode

(m,µ)=(0,1)

Second
radial
mode

(m,µ)=(0,2)

Third
radial
mode

(m,µ)=(0,3)

Fourth
radial
mode

(m,µ)=(0,4)

10 Hz

100 Hz

200 Hz

250 Hz

Table 5.8 Modulus of the entropy wave extracted at the outlet plane of the nozzle (xNout
).

filtering (cf. Kopitz et al. (2005)) is applied in the downstream duct. Figures 5.42 and
5.43 show the evolution of A+ and A− acoustic waves respectively along the EWG up-
stream and downstream ducts. According to the distribution of acoustic and entropy
waves shown in Fig. 5.35, in the absence of an acoustic forcing, ingoing acoustic waves
(A+

0 and A−
1 ) are reflections due to the non-reflective boundary conditions. Indeed, as

shown by Figs. 5.42 and 5.43, A+
0 and A−

1 have a small amplitude compared to the acous-
tic waves generated by the interactions with the nozzle (outgoing waves A−

0 and A+
1 ).

These reflections can be confirmed computing the reflection coefficients of the boundary
conditions using the low pass filter formulation of Selle et al. (2004) and comparing them
to the reflection coefficient computed from the overall acoustic waves of the simulation.
Figures 5.44 and 5.45 confirm the good agreement between the theoretical reflection
coefficient and the one computed with the overall acoustic waves, confirming that waves
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A+
0 and A−

1 are effectively the result of reflections.

0.00*10
0

8.00*10
-6

1.60*10
-5

2.40*10
-5

3.20*10
-5

4.00*10
-5

-0
.1

-0
.0

75

-0
.0

5

-0
.0

25

x [m]x [m]x [m]x [m]

||
A

+
||

 0
.2

5

 0
.2

75  0
.3

 0
.3

25
 0

.3
5

 0
.3

75  0
.4

x [m]x [m]x [m]x [m]x [m]

10 Hz
100 Hz
200 Hz
250 Hz

(a) Modulus of A+.

-π

-π/2

0

π/2

π

-0
.1

-0
.0

75

-0
.0

5

-0
.0

25

x [m]x [m]x [m]x [m]x [m]

P
h
a
s
e
(A

+
)

 0
.2

5

 0
.2

75  0
.3

 0
.3

25
 0

.3
5

 0
.3

75  0
.4

x [m]x [m]x [m]x [m]x [m]x [m]

(b) Phase of A+.

Figure 5.42 Acoustic wave A+ in the upstream and downstream ducts of the nozzle.
(Only harmonics 1, 10, 20 and 25 are presented).

To compute the entropy-acoustic transfer functions of the simulation and compare
them to the analytical ones, a formalism to separate the generated acoustic waves from
the entropy forcing (cf. Fig. 5.35) from the overall acoustic waves is however needed. To
do this, the acoustic-acoustic transfer functions of the nozzle are needed and computed
following the strategy described below.

117



0.00*10
0

1.20*10
-5

2.40*10
-5

3.60*10
-5

4.80*10
-5

6.00*10
-5

-0
.1

-0
.0

75

-0
.0

5

-0
.0

25

x [m]x [m]x [m]x [m]

||
A

- ||

 0
.2

5

 0
.2

75  0
.3

 0
.3

25
 0

.3
5

 0
.3

75  0
.4

x [m]x [m]x [m]x [m]x [m]

10 Hz
100 Hz
200 Hz
250 Hz

(a) Modulus of A−.

-π

-π/2

0

π/2

π

-0
.1

-0
.0

75

-0
.0

5

-0
.0

25

x [m]x [m]x [m]x [m]x [m]

P
h
a
s
e
(A

- )

 0
.2

5

 0
.2

75  0
.3

 0
.3

25
 0

.3
5

 0
.3

75  0
.4

x [m]x [m]x [m]x [m]x [m]x [m]

(b) Phase of A−.

Figure 5.43 Acoustic wave A− in the upstream and downstream ducts of the nozzle.
(Only harmonics 1, 10, 20 and 25 are presented).
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Figure 5.44 Reflection coefficient computed from the extracted waves at the inlet boundary
condition of the simulation.
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Figure 5.45 Reflection coefficient computed from the extracted waves at the outlet boundary
condition of the simulation.

119



5.3.2.2 Upstream acoustic forcing simulation

The NSCBC acoustic forcing methodology used to introduce acoustics through the
inlet boundary condition detailed in Appendix A is used in this section. The amplitude
of the forced acoustic wave is chosen to be a very small velocity perturbation for which
A = 0.75 m/s (barely 7% of the baseline flow bulk velocity), to stay in the linear
regime for acoustics. The system of waves generated by such a forcing can be described
by Fig. 5.46, where in the absence of reflections, only three waves remain inside the
domain: the acoustic forced wave A+

0,f and the response of the nozzle to this incoming

disturbance, the reflected wave A−
0,r, and the transmitted wave A+

1,t. The system is more
complex when the boundary conditions are reflective, since there is a coupling between
the reflected waves and the already existing acoustic waves.

Figure 5.46 Schematic view of acoustic waves formed by an upstream acoustic forcing with
non-reflective boundary conditions.

Before computing acoustic waves and the transfer functions of the nozzle, it is im-
portant to retrieve the forcing signal from the simulation to understand the coupling
between forced, reflected and transmitted waves. To do so, the velocity signal at the
inlet boundary condition is compared with the velocity induced by the forcing signal
0.75fr(t) in Fig. 5.47a. If the inlet boundary condition was perfectly non-reflecting,
both signals should be equal. In the case of the present simulation this is however not
satisfied because to maintain the target values at the boundary condition, a relaxation
coefficient K = 20 s−1 is found to be needed, making the boundary conditions to be
partially reflecting. The velocity fluctuation extracted from the simulation in Fig. 5.47a
(dark continuous line) is hence the result of the coupling of both upstream and down-
stream travelling acoustic waves in the upstream duct:

A+
0 = A+

0,f +A+
0,r, (5.16)

A−
0 = A−

0,t +A−
0,r.

The forced wave A+
0,f can be isolated if the reflected wave A+

0,r can be computed. To
do so, the reflection coefficient must be known, allowing to write it as a function of the

reflected wave (Rin =
A+

0,r

A−

0

). Using Selle et al.’s formulation for the reflection coefficient

with K = 20 s−1, the expression for Rin is known and the forced wave can be written

120



as a function of the overall acoustic waves and Rin:

A+
0,f = A+

0 −RinA
−
0 . (5.17)

The overall fluctuating velocity (cf. dark line from Fig. 5.47a) is computed subtracting

the overall acoustic waves: u′ = c
(

A+
0 −A−

0

)

(cf. acoustic wave definitions of Eq. (2.7)),

whereas the forcing velocity is only the result of the forced wave A+
0,f and should be

computed as u′
f = cA+

0,f . Figure 5.47b shows the fluctuating velocity u′
f computed from

the simulation at the inlet boundary condition compared with the forcing signal. Note
that, retrieving the forced velocity signal from the overall velocity fluctuation allows
verifying whether the boundary condition is introducing correctly the intended forced
signal.
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Figure 5.47 Axial velocity extracted at the inlet boundary condition compared with the
forcing signal.

Now, the reflection and transmission of the enforced acoustic waves through the nozzle
is studied. To do so, the acoustic waves are computed in the temporal domain using the
definitions of Eq. (2.7). Afterwards, a 3D field of waves corresponding to each harmonic
of the forcing signal is obtained using a DFT (same sampling and signal length as used
in the previous section). The acoustic waves are then averaged over the duct cross-
sections and plotted against the stream-wise coordinate in Figs. 5.48 and 5.49. Thanks
to such plots it is clear that the acoustic waves in the ducts obey the advection equations
described by Eqs. (2.5a) and (2.5b) well (constant module and linear phase). The non
compactness of the nozzle showed analytically in §4.4 is furthermore confirmed by the
simulation, a phase shift appearing when waves are going through the nozzle.

Note that the use of partially-reflective boundaries infers that all the harmonics of the
downstream travelling acoustic wave of the upstream duct A+

0 have different amplitudes
(without reflections A+

0 = A+
0,f , which is constant, cf. Fig. 5.32b). In addition, these
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Figure 5.48 Acoustic wave A+ in the upstream and downstream ducts of the EWG.
(Only harmonics 1, 10, 20 and 25 are presented).
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Figure 5.49 Acoustic wave A− in the upstream and downstream ducts of the EWG.
(Only harmonics 1, 10, 20 and 25 are presented).

partially-reflective boundaries induce also the presence of a retrograde acoustic wave in
the downstream duct A−

1 (cf. Fig. 5.49), when ideally (non-reflective case) this wave is
absent. To verify that A−

1 are indeed reflected waves, the reflection coefficient at the

outlet boundary condition Rout =
A−

1

A+
1

is computed and compared with the analytical

expression of Selle et al. (2004) and shown in Fig. 5.50. As indicated by these results,
the reflection coefficient of the simulation corresponds perfectly with the one computed
with the analytical expression, which again confirms the diagnostics.

To finish, the acoustic transfer functions associated with the upstream acoustic forcing
can be computed using the acoustic waves obtained in Figs. 5.48 and 5.49. However,

122



 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  50  100  150  200  250  300

||
R

o
u
t|
|

Frequency [Hz]

Selle et al. 2004
Simulation

(a) Modulus of the outlet reflection
coefficient.

-π

-π/2

0

π/2

π

 0  50  100  150  200  250  300

P
h

a
s
e

(R
o
u
t)

Frequency [Hz]

Selle et al. 2004
Simulation

(b) Phase of the outlet reflection coefficient.

Figure 5.50 Reflection coefficient computed from the extracted waves at the outlet boundary
condition of the simulation.

the overall acoustic waves extracted from the simulation are polluted by reflections at
the boundary conditions and need to be filtered from this contribution. In order to
separate these reflections from the transmitted/reflected waves by the nozzle, the transfer
functions associated with the downstream acoustic forcing are needed and computed in
§5.3.2.4.

5.3.2.3 Downstream acoustic forcing simulation

The system of waves that forms after the introduction of an acoustic disturbance
through the outlet boundary condition is very similar to the one described in the former
section, and is shown in Fig. 5.51.

Figure 5.51 Schematic view of acoustic waves formed by a downstream acoustic forcing with
non-reflective boundary conditions.

The amplitude of the forcing disturbance has been set to 100 Pa (amplitude of the
pressure fluctuation generated at the outlet by the upstream acoustic forcing). To verify
the proper functioning of the outlet boundary condition, the forced signal is compared
to the outlet static pressure signal in Fig. 5.52a as well as with the reconstruction of
the forced acoustic pressure extracted from the simulation in Fig. 5.52b (as done for
the inlet acoustic forcing in the former section). The overall fluctuating pressure (in
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particular the one at the outlet boundary condition) is the addition of the two acoustic

waves p′ = γp
(

A+
1 +A−

0

)

, whereas the pressure fluctuation generated by the forced

wave depends only on the acoustic forced wave, p′
f = γpA−

1,f . To separate the forced

wave from the overall downstream travelling acoustic wave A−
1 , the analytical expression

of Selle et al. for the reflection coefficients is used to obtain A−
1,f = A−

1 −RoutA
+
1 .
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Figure 5.52 Static pressure extracted at the outlet boundary condition compared with the
forcing signal.

Comparison of the different contributors confirm the perfect match between the forced
pressure disturbance and the forced signal, Fig. 5.52b. This again shows that the bound-
ary condition introduces the right signal into the simulation. In the following, harmonic
acoustic plane waves are computed using the same methodology used in §5.3.2.2. Fig-
ures 5.53 and 5.54 show the 1D fields of downstream and upstream travelling acoustic
waves, A+ and A− respectively, in the EWG ducts. From Fig. 5.52, one can already
see that reflections at the outlet boundary condition are very small, which is confirmed
by Fig. 5.54, where the amplitude of all the harmonics is found to be almost the same
(like the forced signal in Fig. 5.32b). The amplitude of the upstream travelling acoustic
wave in the upstream duct A+

0 is very small and should correspond to the reflections
induced by the upstream boundary condition (there is only one wave A+ in the upstream
duct, as represented in the schematic view of waves in Fig. 5.51). Therefore, using the
overall acoustic waves in the upstream duct A+

0 and A−
0 , the inlet reflection coefficient

of the simulation is computed and compared with its analytical formulation in Fig. 5.55,
obtaining also a very good agreement for all harmonics.

Finally, the set of acoustic waves generated by the different forcings (acoustic and
entropy) is complete. As explained in the preceding sections, these acoustic waves are
polluted by reflections at the boundary conditions. In the following section, the noz-
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Figure 5.53 Acoustic wave A+ in the upstream and downstream ducts of the EWG.
(Only harmonics 1, 10, 20 and 25 are presented).
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Figure 5.54 Acoustic wave A− in the upstream and downstream ducts of the EWG.
(Only harmonics 1, 10, 20 and 25 are presented).

zle transfer functions are computed adopting a methodology to separate the boundary
conditions reflected waves from the transmitted and reflected acoustic waves through
the nozzle (methodology already adopted in the indirect combustion noise experimental
study of the HAT nozzle of Knobloch et al. 2015a).
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Figure 5.55 Reflection coefficient computed from the extracted waves at the inlet boundary
condition of the simulation.
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5.3.2.4 Euler nozzle transfer functions

A wave transfer function is a ratio of an outgoing wave to an ingoing wave. In this
case, they are classified in two types: reflection and transmission, denoted by R and
T respectively. Subscripts (·)aa and (·)ea are used to indicate the type of interaction
between the generated waves as well as the ingoing wave and whose nature can be either
acoustic-acoustic or entropy-acoustic interactions respectively. Finally, in the case of
acoustic-acoustic interactions, the superscripts + and − indicate if the ingoing wave is
a progressive or a regressive acoustic wave, A+ or A− respectively. In the present study,
as they are chosen at the inlet and outlet of the domain. This yields:

For an upstream acoustic forcing







R+
aa =

A−

0,r(xin)

A+
0 (xin)

,

T+
aa =

A+
1,t(xout)

A+
0 (xin)

.

(5.18a)

For a downstream acoustic forcing







R−
aa =

A+
1,r(xout)

A−

1 (xout)
,

T−
aa =

A−

0,t(xin)

A−

1 (xout)
.

(5.18b)

For an entropy forcing







R−
ea =

A−

ea−r(xin)

σ0(xin) ,

T−
ea =

A+
ea−t(xout)

σ0(xin) .

(5.18c)

where acoustic waves are denoted as in Fig. 5.35. Furthermore, since the overall acoustic
waves in the upstream and downstream ducts corresponds to the upstream and down-
stream forcings (cf. Figs. 5.46 and 5.51), they yield:

A+
0 |u =

(

A+
0,f +A+

0,r

)

u
,

A−
0 |u =

(

A−
0,t +A−

0,r

)

u
,

A+
1 |u =

(

A+
1,t +A+

1,r

)

u
,

A−
1 |u =

(

A−
1,r

)

u
.

(5.19)

A+
0 |d =

(

A+
0,r

)

d
,

A−
0 |d =

(

A−
0,t +A−

0,r

)

d
,

A+
1 |d =

(

A+
1,t +A+

1,r

)

d
,

A−
1 |d =

(

A−
1,f +A−

1,r

)

d
,

(5.20)

where subscripts (·)u and (·)d indicate whether the forcing is from the upstream or the
downstream boundary condition. Introducing relations from Eq. (5.19) into Eq. (5.18a),
and Eq. (5.20) into Eq. (5.18b), the acoustic-acoustic transfer functions can be rewritten
using only the overall acoustic waves and the other transfer functions,

R+
aa =

A−
0 −A−

0,t

A+
0

∣
∣
∣
∣
∣
u

=
A−

0

A+
0

∣
∣
∣
∣
∣
u

− A−
1

A+
0

∣
∣
∣
∣
∣
u

T−
aa, (5.21a)
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T+
aa =

A+
1 −A+

1,r

A+
0

∣
∣
∣
∣
∣
u

=
A+

1

A+
0

∣
∣
∣
∣
∣
u

− A−
1

A+
0

∣
∣
∣
∣
∣
u

R−
aa, (5.21b)

R−
aa =

A+
1 −A+

1,t

A−
1

∣
∣
∣
∣
∣
d

=
A+

1

A−
1

∣
∣
∣
∣
∣
d

− A+
0

A−
1

∣
∣
∣
∣
∣
d

T+
aa, (5.21c)

T−
aa =

A+
0 −A+

0,r

A−
1

∣
∣
∣
∣
∣
d

=
A−

0

A−
1

∣
∣
∣
∣
∣
d

− A+
0

A−
1

∣
∣
∣
∣
∣
d

R+
aa. (5.21d)

Finally, rearranging Eqs. (5.21a–5.21d), the acoustic-acoustic transfer functions can be
written as a function of the overall acoustic waves only:

R+
aa =

A−

0

A−

1

∣
∣
∣
∣
u

− A−

0

A−

1

∣
∣
∣
∣
d

A+
0

A−

1

∣
∣
∣
∣
u

− A+
0

A−

1

∣
∣
∣
∣
d

, (5.22) T+
aa =

A+
1

A−

1

∣
∣
∣
∣
u

− A+
1

A−

1

∣
∣
∣
∣
d

A+
0

A−

1

∣
∣
∣
∣
u

− A+
0

A−

1

∣
∣
∣
∣
d

, (5.23)

R−
aa =

A+
1

A+
0

∣
∣
∣
∣
u

− A+
1

A+
0

∣
∣
∣
∣
d

A−

1

A+
0

∣
∣
∣
∣
u

− A−

1

A+
0

∣
∣
∣
∣
d

, (5.24) T−
aa =

A−

0

A+
0

∣
∣
∣
∣
u

− A−

0

A+
0

∣
∣
∣
∣
d

A−

1

A+
0

∣
∣
∣
∣
u

− A−

1

A+
0

∣
∣
∣
∣
d

. (5.25)

Acoustic-acoustic transfer functions from the acoustically forced numerical simulations
presented in §5.3.2.2 and §5.3.2.3 are hence computed using Eqs. (5.22–5.25). They are
compared with the transfer functions computed using the overall acoustic waves, and
with the analytical transfer functions obtained by the analytical theory of Duran and
Moreau (2013a) in Figs. 5.56–5.59. The latter formulation of the transfer functions (cf.
Eqs. (5.22–5.25)) corrects the low frequency values, which results from the NSCBC low-
pass filter reflection coefficients (low frequencies are reflected) and a very good agreement
between the Euler and the analytical transfer functions is found. This result, where the
exact analytical solution of the quasi-1D LEE equations of Duran and Moreau (2013a)
is compared with the Euler simulation numerical results, allows to validate the proposed
methodology to compute the acoustic-acoustic nozzle transfer functions associated with
the numerical acoustic forcings.

The acoustic-acoustic transfer functions being studied, let’s focus on the entropy-
acoustic interactions. First, the overall acoustic waves generated by an entropy forcing
in the upstream and downstream ducts yield (cf. Fig. 5.35):

A+
0

∣
∣
∣
ent

=
(

A+
0,r

)

ent
,

A−
0

∣
∣
∣
ent

=
(

A−
0,ea−r +A−

0,t +A−
0,r

)

ent
,

A+
1

∣
∣
∣
ent

=
(

A+
1,ea−t +A+

1,t +A+
1,r

)

ent
,

A−
1

∣
∣
∣
ent

=
(

A−
1,r

)

ent
.

(5.26)
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Figure 5.56 Upstream reflecting coefficient R+
aa filtered from the boundary conditions
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Figure 5.57 Upstream transmission coefficient T+
aa filtered from the boundary conditions

reflections.

where the acoustic waves related to the entropy-acoustic transfer functions are the ones
denoted with the subscript (·)ea. Introducing overall acoustic waves generated by an
entropy forcing defined in Eq. (5.26) into Eq. (5.18c), and using the acoustic-acoustic
transfer functions defined in Eqs. (5.18a) and (5.18b), the entropy-acoustic transfer func-
tions can be written as a function of the overall acoustic waves of the entropy forced
simulation as well as the acoustic-acoustic transfer functions, yielding:

Tea =
A+

1

σ0

∣
∣
∣
∣
∣
ent

− A+
0

σ0

∣
∣
∣
∣
∣
ent

T+
aa − A−

1

σ0

∣
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Figure 5.58 Downstream reflecting coefficient R−
aa filtered from the boundary conditions

reflections.
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Figure 5.59 Downstream transmission coefficient T−
aa filtered from the boundary conditions

reflections.

The entropy-acoustic transfer functions are presented in Figs. 5.60 and 5.61. Results
match very well analytical expressions for frequencies lower than 100 Hz. For higher
frequencies, the numerical simulation predicts a smaller amplitude in the transmitted
and reflected waves. Indeed, the amplitude of the generated acoustic waves is known
to be proportional to the amplitude of the entropy wave, therefore if the amplitude of
the entropy plane wave decays through the nozzle (as highlighted by the entropy forced
numerical simulation in §5.3.2.1, cf. Fig. 5.40), it is logical to expect an amplitude
of the generated acoustic waves that decays with the attenuation of the entropy wave.
However, recent studies published by Duran and Morgans (2015) in the framework of
annular nozzle flows, show that the acceleration of an azimuthal entropy wave generates
also vorticity waves. These vorticity waves, when accelerated by the nozzle also generate
acoustic waves which interact with the already existing acoustic waves. In the case of
the present study, no azimuthal entropy wave is forced. However, the distortion of the
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plane entropy wave through the nozzle generates radial entropy fluctuations which may
induce vorticity waves. To evaluate the magnitude of these vorticity waves, vorticity
fluctuations may be written as:

ξ′
x =

1

2πf

[
1

r

(
∂ (r u′

θ)

∂r
− ∂u′

r

∂θ

)]

, (5.28a)

ξ′
θ =

1

2πf

[
∂u′

r

∂x
− ∂u′

x

∂r

]

, (5.28b)

ξ′
r =

1

2πf

[
1

r

∂u′
x

∂θ
− ∂u′

θ

∂x

]

. (5.28c)

Cross-sectional averaged values of vorticity are presented as a function of the axial
coordinate. Note that here the amplitude of the axial and radial vorticity fluctuations
is negligible compared to the amplitude of the azimuthal vorticity fluctuation (two or-
ders of magnitude greater). Figure 5.62 shows the amplitude of the azimuthal vorticity
fluctuation plotted against the stream-wise coordinate, where the maximal amplitude is
reached at the nozzle throat and is almost the same for all the harmonics computed.
However, the greatest amplitude is reached at the lowest frequencies (as also observed
by Duran and Morgans 2015), for which no significant differences in the entropy-acoustic
transfer functions have been found in Figs. 5.44 and 5.45 when comparing the analytical
theory and the simulation. It is however noteworthy to stress that the entropy-acoustic
transfer functions computed from the simulation take into account the sound generation
of the coupled entropy and vorticity waves accelerated through the nozzle, the contribu-
tion of each process being not separable in the numerical simulation. Nevertheless, an
estimation of the generated acoustic wave by the acceleration of a vorticity wave can be
done using the compact relations from Cumpsty and Marble (1977a). In this process,
the characteristics of the mean flow at the nozzle throat and the exit of the nozzle are
used as jump conditions. It should be noted that the equivalent vorticity wave taken
into account in Cumpsty and Marble (1977a) is the radial vorticity wave (obtained by
the 2D flow considered in this study), whose vorticity-acoustic transfer function reads:

Tva =
A+
xi

ξ′ , (5.29)

Therefore, the vorticity generated acoustic wave through the nozzle yields A+
ξ′ = Tvaξ

′.
To estimate the importance of the vorticity generated acoustic wave with respect to the
entropy wave, A+

ξ′ is divided by the amplitude of the entropy wave introduced in the

simulation to obtain an entropy-acoustic transfer function related to A+
ξ′ :

Tea−ξ′ =
Tvaξ

′

σ
, (5.30)

where Tva is a constant obtained from the compact relations of Cumpsty and Marble
(1977a) and ξ′ is replaced by the amplitude of the different vorticity waves computed at
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the nozzle throat. Figure 5.63 shows the result of this estimation, where the amplitude of
Tea−ξ′ is clearly negligible compared with the amplitude of the entropy-acoustic transfer
function from Fig. 5.60. This result shows that the generated acoustic wave from the
acceleration of vorticity waves through the nozzle diffuser is negligible and not responsible
for the differences between the Euler numerical simulation and the analytical method
from Fig. 5.60. Therefore, these high-frequency differences are attributed to the entropy
plane wave attenuation through the nozzle.
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Figure 5.60 Entropy-acoustic transmission coefficient Tea filtered from the boundary
conditions reflections.
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Figure 5.61 Entropy-acoustic reflection coefficient Rea filtered from the boundary conditions
reflections.

5.3.2.5 Conclusion

In this subsection, a subsonic inviscid flow has been computed to study the EWG nozzle
transfer functions. To do so, acoustic and entropy plane waves have been introduced
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through the boundary conditions using the NSCBC formalism. Particular attention has
been taken to exclude the reflections due to the boundary conditions from the computed
transfer functions, and a methodology to separate the various contributions has been
proposed. The obtained transfer functions have been then compared with the analytical
model of Duran and Moreau (2013a). Acoustic waves in the simulations are found to
remain planar and a very good agreement between the numerical simulations and the
acoustic-acoustic transfer functions is found whenever using analytical theory or numeri-
cal simulations. Before analysing the entropy-acoustic transfer functions, the convection
of the entropy wave along the EWG configuration has been studied. It has been found
that the entropy wave undergoes distortions due to the non-homogeneous flow through
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the nozzle, which produces an attenuation of the entropy wave. The higher the fre-
quency is, the higher the attenuation of the entropy wave is (as highlighted by Morgans
et al. 2013 and Giusti et al. 2016). This attenuation of the entropy wave is found to
be responsible for the differences between the entropy-acoustic transfer functions of the
nozzle computed from the numerical simulation and the analytical quasi-1D theory of
Duran and Moreau (2013a) (in particular at the highest frequencies, where the attenu-
ation is stronger). The analytical model proposed by Zheng et al. (2015), is capable of
computing analytically the entropy-acoustic nozzle transfer functions while considering
the attenuation of the entropy through a non-compact nozzle. In this model, acoustic
waves are assumed as planar, which has been in agreement with the results obtained in
this subsection. Finally, the generation of vorticity waves due to the acceleration of the
distorted entropy wave (as explained by Duran and Morgans 2015) is highlighted by the
numerical simulation. The process of generation of acoustic waves from the acceleration
of these vorticity waves through the nozzle has been addressed using the 2D compact
theory of Cumpsty and Marble (1977a), concluding that vortex sound in the entropy
forced Euler simulation is negligible.
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5.3.3 Navier-Stokes nozzle transfer functions

In the previous section, the methodology to force acoustic and entropy disturbances
to study the nozzle transfer functions has been introduced. Thanks to the previous
analysis, the acoustic-acoustic transfer functions between a Euler 360◦ simulation and
the quasi-1D analytic theory were found to be equivalent. It furthermore showed that
for the frequencies and the operation point studied, the acoustic-acoustic interactions
remain 1D (as assumed by Zheng et al. (2015)). This is not the case for the entropy
wave, which undergoes deformations caused by the non-homogeneous mean flow pro-
duced by the nozzle. Indeed, this non-homogeneous mean flow produces dispersion of
the entropy wave, which increases with the frequency (smaller wavelength) and energy
transfer from the low-order planar mode to higher order modes. In the present section,
the methodology used to determine the nozzle transfer coefficients is applied to compute
the Navier-Stokes transfer functions (NS-TF) of the same nozzle. The objective is to
take into account the viscous effects absent in the Euler simulation, and which will in-
duce turbulent mixing at the nozzle throat or the effects of wall boundary layers on the
acoustic and entropy transfer functions.

The baseline flow used in this study is the one computed in the numerical mesh M2,
which has been analysed in §5.1. Now the results of the acoustic and entropy forced
simulations are presented and compared with the Euler simulations as well as with the
analytical theory of Duran and Moreau (2013a).

5.3.3.1 Acoustic forcing Navier-Stokes simulations

The acoustic-acoustic transfer functions resulting from the upstream and downstream
forcing of the LES simulation are presented in this section. To verify that the boundary
condition introduces the correct forcing signal, the axial velocity and pressure forced sig-
nals from the inlet and outlet acoustic forcings are computed and presented in Fig. 5.64.
Similarly to previous computations, the velocity and pressure forced signals extracted
from the simulation are in good agreement with the introduced forcing signals.

To compare with the analytical method, the 1D fields of acoustic waves are computed
using the methodology described in §5.3.2.2. Acoustic 1D waves computed from the
acoustic forcing simulations are showed in Figs. 5.65–5.68, where 1D wave fields from
the Euler simulations are also showed for comparison. Figures 5.65 and 5.66 show the
acoustic waves extracted from the inlet acoustic forcing computation and Figs. 5.67
and 5.68 the acoustic waves extracted from the outlet acoustic wave forcing. Globally,
the resulting fields of amplitude and phase are very different whenever comparing the
Euler and the LES computations. Concerning the comparison of the phase issued by
the Euler and LES computations, it is worth noting that it is not the value of the phase
which is important but its slope. Indeed, the value of the phase depends on the initial
state t0 from which the DFT is computed, but its slope reflects the convection velocity
of the wave. Regarding the amplitude of the waves, the amplitude of the forced acoustic
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Figure 5.64 Reconstruction of the forced signal from the information at the boundary
conditions for the acoustic forced simulations.

waves (A+
0 of Fig. 5.65 and A−

1 of Fig. 5.68) remains constant, whereas the transmitted
and reflected waves generated by the interaction with the nozzle oscillate around a
mean value. In other words, the outgoing disturbances may contain a contribution of
hydrodynamics perturbations caused by the nozzle jet (in the case of the downstream
duct). However, looking closely at the amplitude of these oscillations around the mean
value, they are not very important (the greatest is the case of A+

1 of the downstream
acoustic forcing of Fig. 5.67). The slope of the phase remains furthermore constant,
which means that the propagation velocity of the acoustic wave remains the same.
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Figure 5.65 Inlet acoustic forcing: Acoustic wave A+ in the upstream and downstream ducts
of the EWG. Navier-Stokes simulation (lines), Euler simulations (lines with symbols).

(Only harmonics 1, 10, 20 and 25 are presented).
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Figure 5.66 Inlet acoustic forcing: Acoustic wave A− in the upstream and downstream ducts
of the EWG. Navier-Stokes simulation (lines), Euler simulations (lines with symbols).

(Only harmonics 1, 10, 20 and 25 are presented).
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Figure 5.67 Outlet acoustic forcing: Acoustic wave A+ in the upstream and downstream
ducts of the EWG. Navier-Stokes simulation (lines), Euler simulations (lines with symbols).

(Only harmonics 1, 10, 20 and 25 are presented).

The separation of acoustic from hydrodynamic perturbations has also been assessed
for the computation of the nozzle transfer functions. Usually these methods are based on
the convection velocity and wavelengths of the different disturbances. This is the case of
the methodologies proposed by Kopitz et al. (2005) and Bonneau et al. (2014). Kopitz
et al. consider the propagation of an acoustic wave as a characteristic wave. Therefore,
an acoustic wave at an initial position x0 at the time t0 will be the same acoustic wave
at the position x0 + ∆x with a time delay t0 + ∆t, the time delay being associated with
the propagation velocity of the wave that is ∆t = ∆x

u+c . Using this property, the acoustic
wave is computed at different axial positions and transported as a characteristic wave
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Figure 5.68 Outlet acoustic forcing: Acoustic wave A− in the upstream and downstream
ducts of the EWG. Navier-Stokes simulation (lines), Euler simulations (lines with symbols).

(Only harmonics 1, 10, 20 and 25 are presented).

to a position x0. For a harmonic regime it yields:

Â(f, x0) =
1

n

n−1∑

i=0

A exp

(

−i2πf
∆x

u + c

)

, (5.31)

where A is the acoustic wave, Â is the filtered acoustic wave, ∆x is the distance of
the plane to the initial position x0 and n is the number of axial positions used for the
filtering. It is worth noting that the number of planes n used for the filtering has an
influence on the filtered frequencies since the number of planes per wavelength diminish
with the frequency.

The methodology proposed by Bonneau et al. (2014) is based on the hydrodynamic
convection wave number Kc = 2πf

u , where the hydrodynamic contribution is estimated
as:

A(f, x0)hydro =
Kc

2π

∫ x0+ π
Kc

x0− π
Kc

A(f, x) exp (iKcx) dx. (5.32)

From here on, it only remains to subtract the hydrodynamic contribution from the overall
wave to obtain the filtered wave as:

Â(f, x0) = A(f, x0) −A(f, x0)hydro exp (−iKcx0) . (5.33)

To compute the acoustic transfer functions of the nozzle, the characteristic filtering
of Kopitz et al. is used to filter the contribution of hydrodynamic fluctuations from
the computed acoustic waves. Afterwards, the transfer functions are computed using
Eqs. (5.22–5.25) to remove the contribution of reflections at the boundary conditions.
The transmission and reflection coefficients corresponding to the acoustic forced simula-
tions are shown in Figs. 5.69–5.72. Regarding the upstream acoustic forcing: the forced
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acoustic wave through the inlet boundary condition needs first to reach the nozzle to
scatter itself into a reflected and a transmitted wave. The evaluation of this scattering
into transmitted or reflected waves is represented by the transfer functions shown in
Figs. 5.69 and 5.70. The amplitude of the transmitted wave appears to be diminished by
the nozzle jet at low frequencies. In the case of the EWG experiment, it has been shown
that the lowest frequencies are the most energetic (Fig. 4.15) and the transfer function
T+
aa is directly related to the transmission of direct noise, which has been found to be

overestimated by the analytical evaluations in §4.4 when compared with the experimen-
tal measurements (all the comparisons with the analytical results obtained in §4.4 and
the numerical simulations are related to the case with Rin = −1, cf. Fig. 4.11a). The
decay in the amplitude of the transmitted acoustic wave found in the acoustic forced
numerical simulation seems therefore coherent with the LES of the experiment presented
in §5.2.2. The amplitude of the acoustic wave reflected by the nozzle (cf. Fig. 5.70) fol-
lows the same trend as the analytical one, whereas its phase indicates that the reflected
acoustic wave is almost constant for the frequency range studied.

In the case of the downstream acoustic forcing: the acoustic wave that travels through
the nozzle towards the upstream duct (Fig. 5.71) also has an amplitude decay at low
frequencies, whereas for larger frequencies it follows the same trend as the analytical
transfer function. Regarding the reflected wave by the nozzle, i.e. Fig. 5.72, its ampli-
tude remains almost constant for the range of frequencies studied, and the low frequen-
cies amplitude is larger for the LES computation. It should be noticed that turbulent
vortices are produced at the nozzle throat, and that the acceleration of vortices is also
a noise generation mechanism. The contribution of this supplementary noise source
(that seems to affect the low frequencies) is taken into account in the NS computed
nozzle transfer functions. Vorticity cross-section averaged fluctuations from the acoustic
forced simulations are computed and plotted against the axial coordinate in Figs. 5.73
and 5.74, where the axial vorticity fluctuations are found to be negligible compared with
the other two components of vorticity and therefore not shown. The amplitude of the
computed 1D vorticity fields is found to be much higher than in the Euler case, not
only concentrated at the nozzle throat and particularly significant at low frequencies,
where from 10 to 100 Hz its amplitude decays by one order of magnitude. It is also
worth noting that azimuthal and radial vorticity fluctuations are much larger in the NS
simulation, while only the azimuthal component was relevant in the Euler simulation.
According to this result, the differences in the acoustic-acoustic transfer functions shown
in Figs. 5.69–5.72 at low frequencies may be attributed to the generated vortex noise.
To estimate the contribution of the generated acoustic wave from a vorticity forcing in
the acoustic-acoustic transfer functions, the methodology applied in §5.3.2.4 to compute
the generated acoustic wave from a vorticity forcing is used here. Instead to be applied
to the entropy forced wave, it is applied to the acoustic forced waves. In the case of the
NS simulation and according to Figs. 5.73 and 5.74, the maximal vorticity fluctuations
are reached at an axial position of approximatively 5 mm from the nozzle throat (tran-
sition to turbulence, cf. Figs. 5.4b and 5.5). Therefore, Cumpsty and Marble (1977a)
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jump conditions are applied between the axial positions x = 5 mm and the outlet of
the nozzle (xNout = 250 mm). The resultant acoustic waves from the vorticity forcings
(A+

ξ′

t
and A+

ξ′

r
) are divided by the amplitude of the acoustic forcings (A+

0 for the inlet

acoustic forcing and A−
1 for the outlet acoustic forcing) and represented in Figs. 5.69

and 5.72 respectively. This approximate result shows that the generated vortex sound
is not negligible and is almost concentrated at the lowest frequencies, where the greater
discrepancies between the analytical transfer functions and the Navier-Stokes transfer
functions (NS-TF1) are located. Furthermore, the obtained vortex sound is at least of
the same order of magnitude as the difference between the analytical transfer functions
and the NS-TF, indicating that this noise mechanism may be a good candidate to ex-
plain these differences and highlight that this contribution should be taken into account.
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Figure 5.69 Upstream transmission coefficient T+
aa without the contribution of reflections.
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Figure 5.70 Upstream reflecting coefficient R+
aa without the contribution of reflections.

1In the present case NS or EU refers to the set of equations used for the LES computations.
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Figure 5.71 Downstream transmission coefficient T−
aa without the contribution of reflections.
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Figure 5.72 Downstream reflecting coefficient R−
aa without the contribution of reflections.

Acoustically forced LES simulations are found to be in a strong disagreement with
the analytical acoustic-acoustic transfer functions at the low frequencies studied, and
vortex sound seems to be a good candidate to explain these differences. To confirm this
hypothesis, 1D vorticity waves have been computed along the nozzle and the compact
theory of Cumpsty and Marble (1977a) has been used to estimate the generated vortex
sound. The obtained results have shown that vortex sound is not negligible and may
effectively explain the highlighted discrepancies between the analytical and NS acoustic-
acoustic transfer functions. Furthermore, it has been found that direct noise produced
in LES should be less than the one estimated by the analytical method or the Euler
computations (cf. Fig. 5.69). It remains to evaluate the influence of the viscous effects
on the noise generated by the acceleration of the entropy wave.
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Figure 5.73 Modulus of the azimuthal vorticity fluctuation ||ξ′
θ|| for different harmonics along

the axial coordinate.
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Figure 5.74 Modulus of the radial vorticity fluctuation ||ξ′
R|| for different harmonics along the

axial coordinate.
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5.3.3.2 Entropy forcing Navier-Stokes simulation

In this last section of the EWG, the effects of the boundary layers and the nozzle jet
on the entropy-entropy and entropy-acoustic transfer functions are studied. First, and
as done for each forcing, the forced signal is compared to the temperature fluctuation
at the inlet boundary condition to ensure that the correct signal is introduced by the
boundary condition. Figure 5.75 shows that the temperature fluctuation extracted from
the inlet boundary condition is in good agreement with the forced signal, which confirms
the proper boundary condition setting.
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Figure 5.75 Temperature fluctuation extracted from the numerical simulation compared with
the forcing signal.

In the following, harmonic 3D fields of characteristic waves (A+, A− and σ) are com-
puted using DFT. The real part of the entropy wave is compared with particle-lines
traced from the inlet of the baseline flow simulation computed in M2 (cf. §5.1) and
showed in Fig. 5.76. In the case of the NS simulation, the plane entropy wave intro-
duced at the inlet is immediately deformed by the no-slip condition imposed at the walls,
forming a thermal boundary layer (which is not the case of the Euler simulation where
the entropy wave is convected as a plane wave through the inlet duct, cf. Fig. 5.37).
Therefore, from the inlet of the configuration, the entropy plane mode energy is trans-
ferred to radial modes. In the inlet duct, the prediction of the entropy front deformation
computed with the particle-lines is in good agreement with the real part of the entropy
wave. However, when the entropy front travels through the nozzle, it undergoes the
effects of the nozzle jet: turbulent mixing, the nozzle jet modulation, the azimuthal
velocity produced by the conservation of the radial equilibrium (cf. Figs. 5.12 and 5.13),
and the acceleration at the centreline of the nozzle. Attenuation of the entropy wave
(highlighted in Fig. 5.76) in this case is due to strong 3D effects produced by the nozzle.
These phenomena are not taken into account when considering only particle-lines from
a 2D transverse (XY) mean field, which assumes an axisymmetrical flow. However, it
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gives an idea of the distortion of the entropy front through the nozzle. Two particle-lines
traced from the inlet of the configuration (x = −0.1 mm) are shown in Fig. 5.77. The
first particle-line represents a time lapse of 1 ms, where the entropy wave has already
lost its planar shape. The second particle-line is traced at 18.5 ms and is seen to be
stretched over the entire nozzle length. A large part this particle-line is found to be
inside (or very close to) the boundary layer, where the largest gradients in the velocity
profile responsible for the entropy attenuation are located.

Figure 5.76 Entropy wave real part compared with particle-lines traced from the inlet of the
baseline flow.

The entropy wave in the inlet duct is decomposed into radial modes due to the bound-
ary layer and the suction of the convergent, whereas in the downstream duct, azimuthal
modes are generated due to the radial pressure gradient generated by the nozzle (radial
equilibrium) as well as the motion of the nozzle jet. The five most important modes
obtained by a modal decomposition (detailed in Appendix B) of the entropy fluctuation
at the inlet and outlet of the nozzle are shown in Tables 5.9 and 5.10. Note that the
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Figure 5.77 Particles traced from the inlet of the baseline flow for two time lapses: 1 and 18.5
ms.

color scale in Table 5.10 has been voluntarily saturated to see the shape of the differ-
ent modes. At the inlet of the nozzle, the amplitude of the planar entropy mode is of
the same order of magnitude as the second/third radial modes. However, the dominant
mode is not planar but is instead the first radial mode (the planar mode dominates the
low to mid frequencies in the Euler simulation, cf. Tab. 5.7). Moreover, the repartition
of the energy between the different modes seems to be almost the same for all the fre-
quencies. At the outlet of the nozzle, the energy scatters into radial modes, as in the
inlet of the nozzle, but also into azimuthal and mixed modes. However, the amplitude
of the different modes in the downstream ducts is highly attenuated after its passage
through the nozzle. It is important to notice that the resultant modal decomposition
between the Euler and Navier-Stokes (NS) nozzle outlet plane is completely different.
In the case of the Euler simulation, the most important modes are only the planar and
radial modes (cf. Table 5.8). In the NS simulation, the azimuthal modes at the outlet
of the nozzle are dominant, which can be associated with the modal content of free jets
(Juve et al. 1979).

To estimate the attenuation of the entropy harmonic fluctuations, the entropy flux
is computed following Eq. (5.14) at different sections of the EWG: (1) the inlet of the
mesh (x = -0.1 mm), (2) the inlet of the nozzle (x=-0.013 mm), (3) the outlet of the
nozzle (x = 0.25 mm), and (4) the outlet of the mesh (x = 0.4 mm). Then the ratio
between the entropy flux at these different sections is compared with the inlet entropy
flux in Fig. 5.78. The attenuation of an entropy wave in a turbulent channel flow has
already been addressed by Morgans et al. (2013) and Giusti et al. (2016). In these
works, dissipation of the entropy wave is found to be negligible, while its attenuation is
almost solely due to shear dispersion issued by the mean velocity profile. In this case,
no turbulence is present in the inlet duct, however turbulent structures are developed
due to the turbulent vortices created near the nozzle throat. Attenuation due to the
non-homogeneous mean velocity profile is also present everywhere in the domain. From
Fig. 5.78, it can be seen that a strong attenuation of the entropy wave has been induced
by the nozzle (in comparison with the Euler simulation). The cumulative effect of the
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First five most important modes

10 Hz

(m,µ)=(0,0) (m,µ)=(0,1) (m,µ)=(0,2) (m,µ)=(0,3) (m,µ)=(0,4)

100 Hz

(m,µ)=(0,0) (m,µ)=(0,1) (m,µ)=(0,2) (m,µ)=(0,3) (m,µ)=(0,4)

200 Hz

(m,µ)=(0,0) (m,µ)=(0,1) (m,µ)=(0,2) (m,µ)=(0,3) (m,µ)=(0,4)

250 Hz

(m,µ)=(0,0) (m,µ)=(0,1) (m,µ)=(0,2) (m,µ)=(0,3) (m,µ)=(0,4)

Table 5.9 Modulus of the entropy wave modal decomposition extracted at the inlet plane of
the nozzle (xNin

). m: order of the azimuthal mode, µ: order of the radial mode.

strong acceleration of the entropy wave trough the nozzle and the no-slip condition
imposed at the walls produces a strong stretching of the entropy front (cf. Fig. 5.77).
These two effects generate strong gradients in the velocity profile and therefore in the
entropy front, resulting in a stronger attenuation if compared to the Euler simulation.
However, even if the entropy fluctuation is found to be strongly attenuated (the ratio of
the entropy flux between the outlet of the nozzle and the inlet of the domain is almost
zero at high frequencies), the entropy wave is mainly scattered spatially and it is not
really dissipated (cf. Appendix D).

To evaluate the importance of the attenuation of the different modes through the
nozzle, the entropy flux ratio is computed between the outlet of the nozzle and the inlet
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First five most important modes

10 Hz

(m,µ)=(0,0) (m,µ)=(1,0) (m,µ)=(-1,0) (m,µ)=(0,1) (m,µ)=(-2,0)

100 Hz

(m,µ)=(0,0) (m,µ)=(1,0) (m,µ)=(2,0) (m,µ)=(0,2) (m,µ)=(1,1)

200 Hz

(m,µ)=(1,0) (m,µ)=(1,1) (m,µ)=(-1,0) (m,µ)=(2,0) (m,µ)=(1,2)

250 Hz

(m,µ)=(-1,0) (m,µ)=(0,0) (m,µ)=(1,1) (m,µ)=(0,2) (m,µ)=(-5,0)

Table 5.10 Modulus of the entropy wave modal decomposition extracted at the outlet plane of
the nozzle (xNout

) ordered by the importance of its module. m: order of the azimuthal mode,
µ: order of the radial mode.

of the domain for the most energetic modes. In Fig. 5.79, the entropy flux contribution
of the planar mode, the first three radial modes ((m,µ)=(0,1), (0,2) and (0,3)) and
the first azimuthal mode ((m,µ)=(-1,0) and (1,0)) are compared with the inlet planar
entropy mode flux. Up to about 60 Hz, the entropy planar mode appears to be the
dominant mode. Afterwards, for higher frequencies, the contribution of the different
modes (including the planar mode) is of the same order of magnitude and negligible
compared to the amplitude of the inlet planar mode. One can hence conclude that after
about 80 Hz, the entropy plane wave is almost fully attenuated through the nozzle.
Furthermore, in comparison to the modal contribution obtained in the Euler simulation
at the outlet of the nozzle (cf. Fig. 5.41), much more modes are needed to describe the
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Figure 5.78 Entropy flux ratio between different sections of the EWG (inlet and outlet of the
nozzle and outlet of the domain) to the inlet of the domain.
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To compare with the analytical model presented in §2.2, only the planar mode is
considered. The axial evolution of the entropy plane mode is shown in Fig. 5.80, where
the amplitude of different harmonics is compared with the Euler simulation in Fig. 5.80a.
For clarity, only the phase of the entropy plane wave computed in the LES is shown in
Fig. 5.80b. The formation of a boundary layer by the NS simulation has an impact on the
plane entropy mode, whose energy is transmitted into higher order modes immediately
after its introduction through the inlet (x = −0.1 m) making its amplitude decay. At
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very low frequencies, the amplitude of the plane mode at the inlet of the nozzle is smaller
than its amplitude at the outlet of the nozzle, which shows that the energy is not only
transmitted into higher order modes but can also be redistributed into lower order modes.
In the downstream duct, up to 100 Hz, the attenuation of the entropy planar mode seems
to be almost linear along the stream-wise direction. For higher frequencies, the amplitude
of the entropy plane wave is too attenuated to correctly estimate its attenuation in the
stream-wise direction, as shown in Tab. 5.10 and Fig. 5.78.
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Figure 5.80 Entropy wave σ in the upstream and downstream ducts of the EWG.
Navier-Stokes simulation (lines). Euler simulation (lines with symbols).

(Only harmonics 1, 10, 20 and 25 are presented).

The attenuation of the entropy plane wave can be estimated using the attenuation
function of Leyko et al. (2010) (as done in the Euler numerical simulation in §5.3.2.1).
In Fig. 5.81, the entropy transmission coefficient computed between the inlet and the
outlet of the LES domain is compared with Leyko et al. (2010) attenuation function and
with the analytical transmission coefficient of the entropy wave computed by Duran and
Moreau (2013a) methodology. The analytical method of Duran and Moreau assumes a
quasi-1D flow, therefore no dispersion of the entropy wave due to transverse gradients
of the mean flow can exist and the entropy wave is only convected through the nozzle
(without attenuation). The attenuation function of Leyko et al. is the analytical solution
of the convection of the entropy wave along a streamline computed from the baseline flow,
therefore exact. In this case, the analytical evaluation of the attenuation of the entropy
plane wave in 2D (performing an azimuthal average of the mean flow) and in 3D is found
to be equivalent. However, this analytic evaluation underestimates the attenuation of the
entropy plane wave obtained in the numerical simulation. This result is very important
because it highlights that the attenuation of the entropy wave in this nozzle test case
is not only due to the effects of the mean flow as found by Morgans et al. (2013) and
Giusti et al. (2016), but it seems to be enhanced by other unsteady features of the flow
like the turbulent mixing. However, this supplementary attenuation of the entropy plane
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wave does not mean that the entropy wave is dissipated by the unsteady phenomena, the
entropy wave is only scattered into higher modes as explained in Appendix D. Finally,
concerning the phase of the entropy-entropy transfer function (i.e. Fig. 5.81b), a good
agreement is found between the LES and the analytic model. This result was however
expected since the bulk velocity of the NS simulation and the isentropic velocity are
found to be in very good agreement (cf. Fig. 5.7), as a consequence, the entropy plane
wave is convected at the same velocity in both simulations.
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Figure 5.81 Entropy-entropy transfer function Tee.

Once the attenuation of the entropy wave in the NS simulation has been addressed,
the generation of acoustic waves produced by the acceleration of this entropy wave
through the nozzle can be studied. To do so, the characteristic acoustic plane waves
are computed using the same methodology already explained in the previous sections.
Then, the characteristic filtering of Kopitz et al. (2005) is applied to the acoustic waves
to remove the contribution of hydrodynamic perturbation from the computed acoustic
waves. Finally, the entropy-acoustic transfer functions of the nozzle are computed using
Eqs. (5.27a) and (5.27b) to remove the reflected acoustic waves at the boundary condi-
tions. Figures 5.82 and 5.83 show the entropy-acoustic transfer functions of the nozzle
computed from the compressible Navier-Stokes LES simulation. Figure 5.82 shows the
entropy-acoustic transmission coefficient, whose amplitude and phase are found to be
in complete disagreement with results obtained at low frequencies with the analytical
model. Yet, the amplitude of this transmission coefficient from mid to high frequencies
(f > 120 Hz) appears to be in better agreement with the Euler numerical simulation.
Indeed, the numerical simulations take into account the dispersion/attenuation of the
entropy wave through the nozzle, whose effect increases with frequency. The analytical
model predicts an amplitude that increases monotonously with the frequency (where the
compact solution is close to zero), whereas in the NS numerical simulation, the ampli-
tude of the transmitted wave seems to decrease with the frequency (for the frequencies
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of interest). Furthermore, the greater disagreement with the NS LES simulation is found
to be at the lowest frequencies, where the Euler simulation and the analytical theory are
found to be in good agreement. Therefore, the disagreement in the transfer functions
found at low frequencies can only be attributed to viscous effects and will be discussed
later in this section. Concerning the phase, the delay between the acoustic and the
entropy wave of the numerical simulation seems to be smaller than the one predicted by
the analytical method. Now, Fig. 5.83 shows the entropy-acoustic reflection coefficient,
whose amplitude and phase are very similar to the transmission coefficient. The greater
disagreement in the amplitude is found to be at the lowest frequencies, where the Euler
simulation and the analytical model are in agreement and predict almost a nil amplitude
of the reflection coefficient. For larger frequencies, the numerical simulations amplitude
is in better agreement. Finally, the phase delay between the reflected acoustic wave and
the entropy wave is smaller (lower slope) in the numerical NS simulation.
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Figure 5.82 Entropy-acoustic transmission coefficient Tea filtered from boundary condition
reflections.

In both entropy-acoustic transfer functions, the analytical solution of the Euler equa-
tions (cf. Duran and Moreau 2013a) predicts no (or almost zero) acoustic wave produced
by the entropy disturbance close to the zero-frequencies. This result has also been con-
firmed by the transfer functions obtained in the Euler simulations of §5.3.2.4. It is
important to remember that the experimental entropy spot characteristic time scale is
0.1 s (f = 10 Hz). Therefore, according to the analytical and Euler entropy-acoustic
transfer functions, almost no acoustic wave is generated at this frequency. On the con-
trary, the NS-TF show that it is at the very low frequencies that the amplitude of
the generated acoustic waves is stronger. This result may explain the disagreement
between the analytical modelling and the full compressible NS LES simulation of the
EWG subsonic test case shown in Fig. 4.11a. Indeed, the indirect noise at low frequen-
cies was strongly underestimated by the analytical modelling. It has been shown in
the above paragraphs that the acceleration of vorticity waves created near the nozzle

151



 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0.016

 0  50  100  150  200  250

||
R

e
a
||

Frequency [Hz]

Duran et al. 2013
EU simulation
NS simulation

(a) Modulus.

0

π

2π

3π

4π

5π

 0  50  100  150  200  250

P
h
a
s
e
(R

s
a
)

Frequency [Hz]

(b) Phase

Figure 5.83 Entropy-acoustic reflection coefficient Rea filtered from the boundary conditions
reflections.

throat produces an additional noise source particularly important at the low frequencies.
Furthermore, according to Duran and Morgans (2015) (and highlighted in the entropy
forced Euler simulations of §5.3.2.4) the acceleration of an azimuthal entropy wave pro-
duces a vorticity wave. Therefore, following the methodology already used in §5.3.2.4
and §5.3.3.1, the entropy-acoustic transmission coefficient associated to the generated
acoustic wave from a vorticity forcing is estimated using the compact theory of Cump-
sty and Marble (1977a). To do so, 1D vorticity fields are computed and compared to
the ones obtained in the entropy forced Euler simulation. These 1D vorticity fields are
represented in Figs. 5.84 and 5.85, where the axial vorticity is found to be negligible
in comparison to the other vorticity components. The amplitude of the obtained vor-
ticity fluctuations is at least one order of magnitude higher than the one obtained in
the Euler simulations and decreases more slowly in the NS simulation. The azimuthal
vorticity fluctuation is found to be the dominant component. The radial vorticity com-
ponent in the case of the NS simulation is however of the same order of magnitude
and 1000 times stronger than the one computed in the Euler simulation. The effect of
vorticity seems to be concentrated at the low frequencies, for higher frequencies their
amplitude decreases rapidly (as already found in the acoustic forced simulations). The
maximal vorticity fluctuation is located at approximatively x = 5 mm from the nozzle,
where Cumpsty and Marble (1977a) jump conditions are computed between this position
and the nozzle outlet (xNout = 250 mm). From here, an entropy-acoustic transmission
coefficient associated to the acoustic wave generated by a vorticity forcing can be com-
puted. These transmission coefficients (associated to each vorticity wave) are illustrated
in Fig. 5.82a, where their amplitude at low frequencies is not negligible and of the same
order of magnitude as the entropy-acoustic transmission coefficient. This result confirms
that vortex sound is responsible for the differences highlighted in the entropy-acoustic
transfer functions at low frequencies and that vortex sound should be taken into account
in the computation of these transfer functions. The study of Howe (2010), describes
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the influence of vorticity on the sound emitted by the acceleration of an entropy wave
enunciating that vortex sound is strongly correlated to the entropy noise and can reduce
the overall sound level (specially at higher subsonic Mach numbers). However, in the
present study, vorticity waves computed from the entropy forced simulation seem to be
coupled with the entropy wave (generation of vorticity wave) in a constructive way so
that it generates more acoustic waves and this at low frequencies.
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Figure 5.84 Amplitude of the azimuthal vorticity wave (||ξ′
t||) along the stream-wise

coordinate for different harmonics.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0  0.05  0.1  0.15  0.2  0.25  0.3

||
ξ
’ r
||

x [m]

(a) Navier-Stokes LES simulation.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0  0.05  0.1  0.15  0.2  0.25  0.3

||
ξ
’ r
||

x [m]

10 Hz
100 Hz
200 Hz
250 Hz

(b) Euler simulation.

Figure 5.85 Amplitude of the radial vorticity wave (||ξ′
r||) along the stream-wise coordinate

for different harmonics.

The transfer functions of the EWG nozzle were computed by LES using the Euler and
the NS equations, allowing to determine the influence of the viscous effects. In the next
section, these nozzle transfer functions are introduced in the analytical modelling of the
EWG presented in §4.4. The main objective is to verify if these nozzle transfer functions,
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that consider acoustic plane waves only are capable of retrieving the numerical results
of the EWG LES simulation (cf. §5.2).

5.3.3.3 Application of the LES nozzle transfer functions into an analytical
model

In this final section of combustion noise in nozzle flows, the NS-TF are introduced into the
analytical propagation model described in §4.4. Indeed, replacing the analytical trans-
fer functions obtained by the analytical resolution of the LEE (cf. Duran et al. 2013b)
by the NS-TF should allow to retrieve the full compressible LES simulation presented
in §5.2. To do so, the transfer functions need to be extrapolated to 0 Hz and inter-
polated. Instead of the classical approach of interpolation between points, it has been
chosen to fit a polynomial through the computed points to obtain continuous functions
rather than a piece-wise function. The interpolated transfer functions are represented in
Figs. 5.86–5.91. These interpolated transfer functions, which resulted to be very different
from the analytical ones can be directly introduced in the analytical model presented in
§4.4. Doing this, viscous and geometry effects taken into account in the NS-TF can be
introduced artificially in the analytical model of §4.4 to first compare the experiment
LES simulation described in §5.2.2 to the new analytical result and then study different
shapes and amplitudes of entropy forcings, different acoustic impedances, duct length
and other parameters to study the generation of indirect combustion noise. To do so,
the bulk temperature fluctuation measured in the numerical simulation of the EWG
experiment is used as the reference temperature fluctuation (∆Tbulk ≈ 16 K) instead of
the mean temperature indicated in the experimental data (∆Tmean = 13.4 K). The same
relaxation coefficients of the simulation are used to model the reflection coefficients in
the analytical method, namely Kin = 50000 and Kout = 160 s−1. Finally, the pressure
traces extracted at the fourth microphone position (xmic4 = 1150.5 mm) obtained by
the different approaches used in this manuscript are compared in Fig. 5.92. The viscous
transfer functions (NS-TF), the inviscid analytical transfer functions (Invariants-TF)
and the numerical simulation (LES) are compared. The numerical simulation and the
analytical approach with the NS-TF are in very good agreement in terms of shape and
amplitude of the signal. In Fig. 5.93, the analytical pressure signal obtained using the
Invariants-TF and the NS-TF are decomposed into direct and indirect noise, showing (as
already demonstrated by the LES analysis in §5.2) that direct noise in this simulation is
negligible. The dissociation of direct and indirect noise shows (in the present test case)
that direct noise is overestimated (as already highlighted by the amplitude of the acous-
tic transmission coefficient, i.e. Fig. 5.69) and indirect noise has been underestimated
by the analytical solution of the LEE. These results show that viscous effects taken into
account in the LES simulation, in particular the generation of vorticity fluctuations in
the low frequency limit (Euler vorticity fluctuations being almost solely around the az-
imuthal direction and negligible compared to the NS vorticity fluctuations, cf. Figs. 5.84
and 5.85), have an important influence in the acoustic response of the nozzle to entropy
and acoustic disturbances. Away from the low frequency limit, the generated vortic-
ity fluctuation amplitude is negligible and the attenuation of the entropy wave through
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the nozzle (taken into account in both the Euler and NS simulations) is responsible for
the differences highlighted with the analytical model entropy-acoustic transfer functions.
The use of the 2D methodology proposed by Zheng et al. (2015) computes the nozzle
transfer functions taking into account the attenuation of the entropy waves through
the nozzle, while considering acoustic generated waves as planar waves. This analytical
methodology seems to be the most physical representation to describe the mid-to-high
frequencies studied in this case. Nevertheless, the generation of vorticity waves is not
taken into account and is found to have an important acoustic contribution at low fre-
quencies. The methodology proposed by Duran and Morgans (2015), is capable of taking
into account vorticity waves without the compact assumption used in this manuscript
and could be a first step to better explain the differences found in the low frequency
limit in the nozzle transfer functions.
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Figure 5.87 Interpolated Navier-Stokes upstream acoustic-acoustic reflection coefficient R+
aa.
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Figure 5.89 Interpolated Navier-Stokes downstream acoustic-acoustic reflection coefficient
R−

aa.

To conclude this chapter, the noise peak evolution investigated analytically in Chap-
ter 4, Fig. 4.16, that has pushed the scientific community to understand why indirect
combustion noise saturates for Mach numbers close to the choked condition is plotted
again in Fig. 5.94. This time, the new point that corresponds to the LES of the ex-
periment conducted in §5.2 and the analytical model developed in Chapter 4 with the
NS-TF is added. This plot allows to illustrate multiple characteristics of the generation
of indirect combustion noise in this experiment: First, the different analytical curves
(Invariants-TF and Duran et al. 2013b) show the strong variability of the generated
noise issued by the effect of the inlet acoustic impedance. Second, the viscous effects
taken into account in the LES simulation and the NS-TF, have also a very important
role in the generated peak noise, where for strictly the same configuration the NS-TF
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Figure 5.91 Interpolated Navier-Stokes upstream entropy-acoustic reflection coefficient Rea.

predicts a peak noise twice as big as the one predicted with the Invariants-TF. And
third, that noticeable progress in the understanding of the indirect combustion noise
generation mechanism has been achieved.
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Figure 5.93 Contribution of direct/indirect noise on the pressure traces measured at the
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5.4 Conclusions

Within this chapter, the EWG experiment by Bake et al. (2009), designed to study the
generation and transmission of indirect combustion noise has been studied using different
approaches: from the analytical modelling to the numerical simulation using the Euler
and the NS set of equations. First, the analytical compact studies carried out by Leyko
et al. (2011) in the framework of the chocked nozzle with a shock and by Duran et al.
(2013b) in the framework of a subcritical nozzle flow (MNth

= 0.7) have been recomputed.
This time, the non-compact frequencies have been taken into account solving analytically
the LEE using the invariants methodology of Duran and Moreau (2013a). The operating
points studied showed that two parameters have a strong influence on the generated
pressure signals: the shape of the temperature fluctuation and the acoustic impedances
(boundary conditions). The shape of the temperature fluctuation is controlled by the
model describing the heating device. Therefore, the model proposed by Leyko et al.
(2011) has been extended to consider individually each of the heated rings composing the
heating device and the experimental ignition sequence. As for the acoustic impedances,
the outlet acoustic impedance was measured and Leyko et al. (2011), using NSCBC
boundary conditions, fitted the relaxation coefficient Kout numerically to be the closest
as possible to the experimental value. However, the inlet acoustic impedance has not
been measured and it is found to have an important influence on the generated pressure
signals, especially for the subsonic test case. Indeed, analytical results obtained for the
supersonic test case have small variability when considering an inlet reflection coefficient
between -1 and 0, taking into account the different heating rings or the compact/non-
compact solution. However, the inlet acoustic impedance, the ignition sequence of the
heating device and the non-compact solution have a strong influence on the generated
pressure signals of the subsonic test case. The heating device is found to be compact
for acoustics but non-compact for the convection of the entropy wave. Therefore, the
ignition sequence of the heating device is important and needs to be taken into account.
The inlet acoustic impedance has also a strong variability in the results of the generated
pressure fluctuations, where the closest results to the experimental data were found to
be with a reflection coefficient between -1 and 0. The non-compactness of the nozzle
has also been demonstrated, and for Rin = −1, the compact solution predicts almost
solely direct noise, while the non-compact solution predicts an indirect noise dominance.
Finally, the analytical study of the EWG subsonic test case did not succeed to find a
correct agreement with the experimental data. However, guidelines about the influence
of the different parameters have been found.

To obtain better insight in the indirect noise generation phenomena, the subsonic test
case, in which the analytical methodology seems to lack understanding to reproduce the
experimental results, has been chosen to be studied with LES. Indeed, other studies
like the ones conducted by Muhlbauer et al. (2009) and Lourier et al. (2014), in which
an URANS methodology has been used to reproduce the EWG subsonic test case have
found good agreement with the experiment. Therefore, viscous effects, at least on the
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mean flow (RANS do not give any turbulent fluctuations), can be a key element in the
acoustic response of the nozzle to entropy disturbances. With this in mind, the EWG
subsonic test case has been computed using a LES methodology. Following the analytical
guidelines, a reliable model to describe the heating device has been proposed and the
inlet acoustic reflection coefficient has been set to Rin = −1. For the heating device,
it has been chosen to introduce an energy source term to model the heating produced
by each heated ring. Doing so, direct noise is generated when the temperature rises or
decreases and indirect noise is generated with the acceleration of the hot spot through the
nozzle (as in the experiment). The results of the LES simulation are in good agreement
with the experimental values, even if the exact inlet acoustic impedance is not known. In
parallel, in order to study the generation of only indirect noise, the 2D temperature field
generated next to the heating device has been extracted and introduced as a temperature
fluctuation by the inlet boundary condition of a new LES prediction. Doing so, no direct
noise is generated. This simulation showed that the experiment produces almost solely
indirect noise (which is in agreement with the analytical study using the same acoustic
impedances and the non-compact solution of the LEE). Finally, the convection of the
entropy hot slug through the EWG configuration has been studied. An analytical method
based on the energy transport equation has been proposed to follow the position of the
hot slug along the EWG without dissipation (as assumed by the analytical model of
Duran and Moreau 2013a). Comparing the shape of the entropy hot slug at different
positions and times between the numerical LES simulations and the analytical transport
of the same hot slug allowed to estimate the dispersion undergone by the hot slug through
the EWG configuration. Conclusions are that the hot slug shape is conserved through
the nozzle and only dispersed by non-homogeneous mean flow in the downstream duct,
in agreement with the previous DNS of Morgans et al. (2013) and Giusti et al. (2016).

In order to understand why the results obtained in the LES simulation are in better
agreement with the experiment, the acoustic response of the nozzle to ingoing harmonic
acoustic and entropy disturbances has been computed. First, the transfer functions of the
nozzle have been computed neglecting the viscous effects (using Euler equations). This
step, allowed to validate the methodology to compute the nozzle transfer functions in the
framework of quick and low storage simulations. Furthermore, since the characteristics of
the flow are almost the same as the ones assumed by the solution of the quasi-1D LEE
used for the analytical model (Duran and Moreau 2013a), similar transfer functions
should be obtained. The methodology has been validated and the acoustic-acoustic
transfer functions of the nozzle Euler simulation are superimposed with the analytical
model of Duran and Moreau (2013a). However, when computing the entropy-entropy
transmission coefficient, the scattering of the entropy plane wave into radial modes, and
the generation of vorticity waves due to the acceleration of a radial entropy disturbance
through the nozzle are highlighted. The attenuation of the entropy plane wave at higher
frequencies is found to be responsible for the differences between the entropy-acoustic
transfer functions computed in the Euler simulation compared with the analytical theory.
Concerning the vorticity generated waves produced by the acceleration of a radial entropy
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disturbance, which should affect the lowest frequencies, no significant differences with
the simulation and the analytical theory have been found.

Finally, the transfer functions of the nozzle have been computed taking into account
viscous effects (using compressible NS equations). These transfer functions are found
to have significant differences at the low frequency range compared with the analytical
theory and the computed Euler transfer functions, where vortex sound may be responsi-
ble for these discrepancies. Indeed, the vorticity waves amplitude generated in the Euler
simulations is found to be negligible compared to the amplitude of vorticity wave in the
NS simulations. The influence of the generated acoustic waves due to the acceleration
of a vorticity wave has been estimated using the compact theory of Cumpsty and Mar-
ble (1977a), finding that vortex sound can not be neglected from the computation of
the nozzle transfer functions. Concerning the convection of entropy disturbances, the
entropy plane wave is highly attenuated through the nozzle. The coupling of the no-slip
boundary condition applied at the walls and the strong acceleration of the flow produced
by the nozzle make the entropy front to be strongly stretched through the nozzle (the
front occupies the total nozzle length), generating strong gradients that attenuate the
entropy wave. Furthermore, in the LES simulation, the scattering of the entropy wave
into radial, azimuthal and even mixed modes produced by the unsteadiness of the nozzle
jet has been highlighted. In this case, the entropy transfer function has been computed
using the attenuation model of Leyko et al. (2010), where an azimuthal average of the
flow has been performed to compute 2D streamlines and compared to the attenuation
function obtained using 3D streamlines. Both attenuation functions are found to be
equivalent (in the NS simulation) and both underestimate the attenuation of the en-
tropy plane wave extracted from the simulation. This result suggests that the unsteady
features of the flow as turbulent mixing improve the attenuation of the entropy plane
wave. Finally, the entropy generated noise is found to be coupled to vorticity generated
noise in a constructive way. This observation contradicts the results found by Howe
(2010), where vorticity generated noise attenuates entropy generated noise.

Differences found between the NS and the analytical entropy-acoustic transfer func-
tions are attributed to two effects: in the low frequency range, where the vorticity
fluctuations are the strongest, the interaction between vortex sound and entropy noise
is responsible for the increased generated acoustics. For higher frequencies, it has been
found that it is the deformation of the entropy wave through the nozzle that is respon-
sible for the decay of the amplitude of the generated indirect noise. Finally, in the last
part of this chapter, the analytical nozzle transfer functions used in §4.4 to carry out the
analytical study of the EWG subsonic test case are replaced by the transfer functions
obtained by the LES simulations and compared with the numerical simulation of the
experiment described in §5.2.2. The generated pressure signal obtained by the analyti-
cal modelling using the transfer functions obtained in LES is found to be in very good
agreement with the numerical simulation pressure signal at the fourth microphone posi-
tion. Using this analytical methodology, the contribution of direct and indirect noise on
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the overall pressure signal can be obtained, showing that the transmitted noise in the
experiment is almost solely resulting from the indirect noise generation mechanism.

Some perspectives for this work are: for the entropy-acoustic transfer functions at high
frequencies, the attenuation of the entropy wave should be taken into account. This can
be done by the 2D analytical model of Zheng et al. (2015). Another proposition should
by extending the invariants methodology of Duran and Moreau (2013a) to consider the
attenuation of the entropy wave using the attenuation function of Leyko et al. (2010),
which in according with the presented results is very reliable. Nonetheless, none of these
methods is capable to consider azimuthal fluctuations as vorticity, which has been found
to have an important influence in transfer functions at low frequency. The first step to
improve these developments could be to use the Cumpsty and Marble (1977a) compact
assumptions (as done in this manuscript) or its non-compact extension proposed Duran
and Morgans (2015). However, the vorticity generation at the nozzle due to the transition
to turbulence throat is still to be computed.

In the next part of this thesis, combustion noise is studied in a more realistic config-
uration, i.e. a high pressure, transonic turbine stage. In this turbine case, the nature
of the flow makes that a quasi-1D model as the one used in this section is no longer
valid and more advanced modelling is necessary. Indeed, the turbine blades induce a
strong tangential deviation of the flow, the annular duct cross-section is rarely constant,
which induce a variation in the radial component of the velocity and the presence of
secondary flows make the topology of the turbine flow strongly 3D. However, for its
analytical study, the strong assumption of a 2D flow is done considering only the axial
and azimuthal components of the velocity vector. Furthermore, other difficulties as the
rotation of the rotor, flow separation and the presence of shock waves will render the
analysis of combustion noise more realistic and complicated.
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Chapter 6

Study of indirect combustion
noise in a high-pressure turbine
stage

6.1 Introduction

The study of combustion noise generation and transmission in an aeronautical engine is
quite complex. The heat release fluctuations responsible for the direct noise generation
mechanism are indeed generated by a turbulent reacting flow, where turbulence and
combustion alone are already complex phenomena to describe (very small characteristic
lengths and time scales). Temperature and pressure fluctuations (acoustic waves) gen-
erated by these heat release fluctuations are then transported through the combustion
chamber and the turbine stages, where indirect combustion noise generation takes place
(transport of temperature fluctuations through a non-homogeneous flow). To better un-
derstand the responsible phenomena of combustion noise generation, each problematic is
usually subdivided into more fundamental independent problems. In Part I, the genera-
tion and transmission of indirect combustion noise has been addressed in the framework
of temperature fluctuations generated by a heating device and accelerated through a
nozzle. This studied test case involved multiple simplifications of the initial complex
geometry problem: no combustion, a globally axisymmetrical flow (without deviation
produced by the turbine blades), no rotating parts and a shape and frequency of the
induced temperature fluctuations that were controlled by a heating device and not just
the result of the interaction between turbulence and flames. In this Part II, the com-
bustion chamber and combustion itself are still not taken into account. Instead, the
heat release fluctuations responsible for direct and indirect noise generation produced
by a burner are chosen to be modelled using a cylindrical fluctuating energy source
term. The temperature fluctuations generated by this fluctuating energy source term
are then convected through a high pressure turbine stage and the resulting entropy noise
is analysed. It is worth noting that the study of this entropy forced turbine test case
involves different phenomena not taken into account in the test case studied in Part I.
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First of all, the entropy fluctuation size, in comparison with the nozzle test case, the
introduced temperature fluctuation in the turbine is very small compared to the annular
cross-section. Second, a strong azimuthal flow is induced by the turbine blades. Third,
interactions with shocks and wakes are present. Finally, a rotating part (the turbine ro-
tor) is taken into account in the simulations. All these differences make the study of the
generation of indirect noise much more complex. However, this study is more realistic
and represents the flow in a real turbo-engine better. It also generalizes the prior works
of Papadogiannis et al. (2016) and Wang et al. (2016) to more realistic temperature
spots as was done in the RECORD EU-project (cf. Gaetani et al. 2015 and Gaetani and
Persico 2017).

The configuration chosen for this specific study is the transonic high-pressure turbine
stage MT1 (32 stator and 60 rotor blades) designed by Rolls-Royce. The experiment has
been conducted by Beard et al. (2009, 2011), RANS numerical simulations by Hosseini
et al. (2011) and Salvadori et al. (2011), while LES results have been obtained by Wang
et al. (2013, 2014a, 2016) and Papadogiannis et al. (2014, 2016). The converged baseline
flow computed in the work of Papadogiannis et al. (2016) and Wang et al. (2016) is here
used to investigate the generation of indirect noise by non-planar entropy waves.

This final chapter is divided in four sections: In §6.2.1 the numerical methodology
adopted for the computation of the moving domain is explained. The second section,
§6.2.2, describes the numerical simulation of the non forced baseline flow. §6.2.3 de-
scribes the numerical simulation in which a volumetric cylindrical energy source term is
introduced to generate polychromatic temperature fluctuations. Note that, the gener-
ated temperature fluctuations are of the same magnitude as the temperature fluctuations
produced in a real combustor engine (T ′ ≈ 100 K). Finally in §6.2.4, the results of the
entropy forced simulation are compared with the compact actuator disc theory of Cump-
sty and Marble (1977b), which is the basis of the CHORUS analytical tool (Leyko 2010,
Duran 2013 and Livebardon et al. 2015, 2016) developed at CERFACS dedicated to the
study of the propagation of combustion noise through turbine stages.
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6.2 The MT1 turbine stage indirect combustion noise anal-
ysis

MT1 is an unshrouded, single stage, high-pressure turbine stage configuration studied
in the framework of the European project "Turbine Aero-Thermal External Flows 2"
(TATEF-II). Experimental measurements have been conducted at the Oxford Turbine
Research Facility (OTRF) (a sketch is illustrated in Fig. 6.1) by Beard et al. (2011). The
OTRF is a short duration, isentropic light piston turbine facility used for representative
engine aerodynamics and heat transfer investigation of single-stage (stator/rotor) or
11/2 stage (high-pressure (HP) stage and intermediate-pressure(IP) or low-pressure (LP)
vane) turbines. In the present study the OTRF was operated using the MT1 HP turbine
stage. A classical test sequence operated in the OTRF is described by the following steps:
Prior to a test the working section is evacuated, allowing the rotating assembly to be
spun to the turbine design speed by an air motor. The test gas is contained within the
piston tube (cf. Fig. 6.1) and is separated from the working section by a fast-acting
plug valve. When the correct turbine speed is achieved, high-pressure air is injected
into the piston tube behind the light free piston, causing the piston to travel down the
piston tube, compressing and heating the working gas ahead of it. When the correct
conditions of test gas pressure and temperature are reached, the plug valve is opened
and the working gas is allowed to pass through the turbine and into the dump tank. The
turbine pressure ratio is set by an adjustable choked throat downstream of the stage.
The run ends as the piston reaches the end of the piston tube. The quasi-steady run
time with the MT1 turbine is approximately 400 ms. The operating point of interest to
this study is summarized in Table 6.1.

Figure 6.1 Sketch of the Oxford Turbine Research Facility.

Experimental results were afterwards compared with RANS numerical simulations
performed by Beard et al. (2011), Hosseini et al. (2011) and Salvadori et al. (2011) as
well as LES simulations performed by Wang et al. (2013, 2014a, 2016) and Papadogian-
nis et al. (2014, 2016). In this work, the LES baseline flow obtained in the study of
Papadogiannis et al. (2016) and Wang et al. (2016) is used to perform a new entropy
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Parameter Exp. value Wang et al. (2013, 2014a) LES

Rotational speed (r/min) 9500 ±1% 9500 9500
Inlet total pressure (bar) 4.6 ±1% 4.5 4.5
Inlet total temperature (K) 444 ±1% 444 444
Outlet static pressure (bar) 1.428 ±1% 1.428 1.428
Pressure ratio (pTxin

/pxP near,hub
) 3.22 3.15 3.17

Blade wall temperature (K) — 288.5 288.5

Table 6.1 MT1 operating conditions.

forced LES in which a cylindrical fluctuating energy source term is introduced to model
the behaviour of more realistic entropy spots generated by a flame and study the radi-
ated noise. Note that in this latter study, the reduced blade count technique of Mayorca
et al. (2011) has been used to scale the number of blades in the stator from 32 to 30
blades allowing to reduce the computational cost. This scaling indeed allows to reduce
the domain to a periodic sector of 12 degrees (instead of 90 degrees from the initial con-
figuration with 32 stator and 60 rotor blades). Hosseini et al. (2011), studied the effect
of the number of blades in the MT1 turbine by means of RANS simulations, concluding
that the impact of the scaling on the mean flow is minimal (as along as the solidity1 and
the blade angles are maintained). However, it should be noted that the unsteady flow
is impacted as the blade passing frequency (BPF) is modified and hence the associated
unsteady flow dynamics.

In the following sections, the numerical methodology employed to simulate the cou-
pling of the static and rotating parts of the HP turbine stage is first described in §6.2.1.
Then, the unperturbed flow characteristics are briefly detailed (work published by Pa-
padogiannis et al. 2016 and Wang et al. 2016). Finally, the entropy harmonic forcing of
the MT1 turbine stage is analysed.

6.2.1 Numerical methodology

The numerical simulation of a turbomachine needs a special treatment for the moving
and static parts of the domain. In this work, the Multi Instances Solver Coupled on
Overlapping Grids (MISCOG) methodology (cf. Wang et al. 2014a,b, Papadogiannis
et al. 2014, 2016, Bonhomme et al. 2014, Labarrere et al. 2016 and de Laborderie et al.
2016) is used. In MISCOG, two or more instances of the same LES solver (namely
AVBP), each with their own computational domain, are coupled through the parallel
coupler OpenPALM (Piacentini et al. 2011; Duchaine et al. 2013). To handle the in-
terface between the different instances, an overset grid method (overlapping between
meshes) is introduced along with the use of interpolation of the conservative variables
wherever needed. To do so, an efficient distributed search algorithm is implemented in

1Solidity: Geometrical parameter defined as the ratio of the chord length to pitch.
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the OpenPALM coupler to locate the points in the partitioned mesh blocks and a Her-
mitian interpolation (3rd order interpolation) is used for the data exchange, ensuring
low dissipation and dispersion. Issues of numerical stability of the coupled solution and
convergence of this coupled problem are directly linked to the size of the overlapped
region as well as the stencil of the numerical schemes used (Wang et al. 2014a). The
MISCOG methodology has been validated extensively in different test cases and configu-
rations: Bonhomme et al. (2014) studied the turbulent flow generated in a closed vessel
stirred by six fans coupling seven AVBP instances, Labarrere et al. (2016) computed
an experimental device dedicated to the study of the constant volume combustion in
which two rotating valves close and open the combustion chamber. Furthermore, it has
been extensively used to simulate with success turbo-machinery flows for the study of
aero-acoustics and combustion noise in compressor and turbine configurations. Some
examples of this applications are the works of Wang et al. (2014b) and de Laborderie
et al. (2016) in compressor applications, Leonard et al. (2016) simulating a scale-model
turbofan and Wang et al. (2013, 2014a, 2016) and Papadogiannis et al. (2014, 2016) sim-
ulating the present MT1 turbine stage configuration together with validation test cases
of acoustic propagation, vortex convection and even a turbulent pipe flow to validate
the low dispersion and dissipation between the instances.

For the MT1 turbine stage simulation described in this chapter, the domain is divided
into two AVBP instances: one corresponding to the static part (AVBP01) and another
to the rotating part (AVBP02). For the rotating parts, the code uses the moving-mesh
approach in the absolute reference frame, while the remaining unit simulates the flow in
the stationary part in the same coordinate system. Figure 6.2 shows a radial cut of the
stator/rotor instances composing the MT1 configuration. The stator and rotor meshes
are composed of 9.4 and 21 million cells respectively, where 10 prismatic layers surround
the blades to improve the resolution of boundary layers. The numerical set-up employed
for the LES numerical simulations are summarized in Tab. 6.2.

Boundary conditions

Stator inlet NSCBC total pressure and total temperature.
Rotor outlet NSCBC static pressure.
Blades Wall law iso-temperature.
Walls Wall law adiabatic.

Numerical parameters

Governing equations Navier-Stokes
Numerical scheme TTG4A
LES model WALE
Time step 0.025 µs

Table 6.2 Numerical set-up of the MT1 numerical simulations.
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Overlapping zone

AVBP01

AVBP02

Figure 6.2 Numerical domains corresponding to each AVBP instance.

6.2.2 The MT1 baseline flow simulation

The baseline flow of the MT1 turbine stage has been analysed and compared with the
experiment by Wang et al. (2013, 2014a). However, the mesh used in Wang et al. (2013,
2014a) studies is coarser (5 and 8 million cells for the stator and rotor domains respec-
tively) than the one employed here. Therefore, the different mean variables measured in
the experiment are extracted from this LES and compared with the experimental and
Wang et al. (2013, 2014a) data. The principal elements (probes and planes) locations
used for the comparisons are detailed in Fig. 6.3 and Tab. 6.3, where extraction planes
are illustrated in blue and probes by black squares. The radial position of the probes
is r0 = 0.284 m and all of them are set in a fixed reference frame. Figure 6.4a shows
the isentropic Mach number profile of the stator blade and Fig. 6.4b the mean static
pressure of the rotor blade, both extracted at 50% span. For both blades, results are
very similar to the ones already obtained by Wang et al. (2013, 2014a) with the coarser
mesh, and very close to the experimental data. Small differences are highlighted on the
pressure side of the stator blade that can be attributed to the position of the shock
wave. Azimuthally averaged total pressure, absolute Mach number and yaw angle pro-
files at the rotor exit near and far planes are plotted against the percentage rotor vane
height in Fig. 6.5. LES results are compared with the experimental data and with Wang
et al. (2013, 2014a) coarser simulation. For all the profiles, the present LES reproduces
the experimental results better, showing that this LES is better resolved. Furthermore,
mean quantities used to ensure that the correct operating point has been reached are
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summarized in Tab. 6.1. All of these quantities are imposed by the boundary conditions,
except the pressure ratio, which in this case and when compared to the experimental
value, is an indicator of the pressure loss, which is better captured in the present LES.
Finally, the flow topology is analysed using an iso-surface of the Q-criterion (second
invariant of the velocity gradient tensor) coloured by the absolute Mach number of an
instantaneous solution in Fig. 6.6. The Q-criterion iso-surface selected allows to identify
different secondary flow structures:

W: The region of the stator wake, which goes across the stator/rotor interface without
interference and impinges the rotor blades.

H: In the vicinity of the rotor leading-edge and the hub, the span-wise pressure gra-
dient generates a vortex roll-up called horseshoe vortex (cf. Praisner and Smith
(2005a,b)). This vortex is composed of two legs, one on the pressure-side of the
blade and the other one on the suction-side.

C: The suction-side leg of the horseshoe vortex interacts with the stator wake turning
into a corner vortex.

I, L and S: Are a group of structures studied by You et al. (2007), the induced vor-
tex (I), the tip-leakage vortex (L) and the tip-separation vortex (S). All of these
structures are considered as the tip secondary structures.

P : Tip-passage vortex that joins the tip-leakage vortex in the suction of the rotor blade.

(a) Side view. (b) Top view.

Figure 6.3 MT1 elements positions.

All of these structures have already been identified in the works of Wang et al. (2014a)
(with the coarser mesh) and Wang et al. (2016) (with the present mesh). However,
secondary flows are not the only structures that characterize the flow in a transonic
turbine stage. Shock waves are also present in this kind of configuration, and have an
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Element Symbol Axial position

Stator domain inlet xin -0.21 m
Rotor domain outlet xout 0.202 m
Stator inlet plane xPSin

0 m
Inter-blade plane xPint 0.047 m
Rotor blade plane xProt 0.07 m
Rotor exit near plane xPnear ≈0.091 m
Rotor exit far plane xPfar

≈0.198 m

Probe 1 xp1 -0.0035 m
Probe 2 xp2 0.040 m
Probe 3 xp3 0.083 m
Probe 4 xp4 0.083 m
Probe 5 xp5 0.12 m

Table 6.3 Summary of the axial positions of the different elements of the MT1 numerical
domain.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0  0.2  0.4  0.6  0.8  1

Is
e

n
tr

o
p

ic
 M

a
c
h

 n
u

m
b

e
r 

[-
]

x/Cax

(a) Stator blade: Isentropic Mach number.

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 0  0.2  0.4  0.6  0.8  1

S
ta

ti
c
 p

re
s
s
u

re
 [

P
a

]

x/Cax

LES
Wang et al. 2014
Exp. data

(b) Rotor blade: Static pressure.

Figure 6.4 Mean profiles extracted at 50% span: LES predictions compared with the
numerical simulations of Wang et al. (2013, 2014a) and experimental data.

important impact in the flow dynamics and acoustics. To visualize the shock structures in
the MT1 transonic stage, the reduced norm of the density gradient (||∇ρ/ρ||) is computed
and shown in Fig. 6.7, where shock waves are represented with red lines. It should be
noticed that these shock waves are not static and interact with the blades (producing
reflected shock waves) and flow. Figure 6.7 also reveals the propagation of acoustic
waves from the trailing edge of the stator and the leading of the rotor blades, as well
as the wakes generated by the bluntness of the trailing edges. All of these mechanisms
are sources of noise generation that should be taken into account (filtered) when the
generation of acoustics by an entropy wave is studied. The spectral content of the
baseline flow has been studied by means of local probes in the stator and rotor domains
as well as by Dynamic Mode Decomposition (DMD) analysis by Wang et al. (2016) and
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Figure 6.5 Azimuthal mean profiles. LES predictions ( ). Wang et al. (2013, 2014a)
predictions ( ). Experimental data (∗).

Papadogiannis et al. (2016). Both analyses have shown the same spectral features: stator
and rotor BPFs at 9.5 kHz and 4.75 kHz respectively, the BPFs harmonics over the full
frequency range and the signature of the stator and rotor vortex shedding. However,
something that has not been addressed by any study is the "ability" of the baseline
flow to generate entropy noise. Indeed, strong temperature fluctuations are generated
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Figure 6.6 Iso-surface of the Q criterion coloured by the
absolute Mach number.

Figure 6.7 Field of ||∇ρ||/ρ of an
instantaneous field at R = 0.284

mm.

mostly in the wake regions due to the sheared flow (conversion of vorticity modes into
entropy modes) and the isothermal boundary condition applied to the stator and rotor
blades. Temperature instantaneous fluctuations are shown in a blade to blade view at
R = 0.284 m in Fig. 6.8. It is found that the amplitude of the temperature fluctuations
in the rotor domain is at least three times greater than in the stator. Furthermore,
the temperature fluctuations generated in the rotor domain are due to the strong shock
present in the suction side of the rotor blades (cf. Fig. 6.7). To quantify the amount of the
fluctuating temperature, probes in the fixed reference frame shown in Fig. 6.3 are used to
register the temperature fluctuations signals, which are plotted against time in Fig. 6.9.
No temperature fluctuation is registered in the upstream section of the stator blade (cf.
p1, Fig. 6.9a). In the inter-stage vane, p2 shows a maximal temperature fluctuation of
≈ 5 K (cf. Fig. 6.9b), even though the probe is not located in the wake trajectory. Then,
near the rotor blades trailing edge (p3 and p4) the temperature fluctuation increases up
to ≈ 40 K (cf. Figs. 6.9c and 6.9d) due to the shock wave before being attenuated by
the mixing of the wakes to about 15 K as shown in Fig. 6.9e.

All of the above discussed features (shock waves, secondary flows, flow separation and
turbulence), make the analysis of the MT1 forced flow difficult to study. Uncorrelated
events as turbulence need to be filtered from the harmonic forcing. Such a concern will
nonetheless be treated by the use of Fourier analysis, as detailed in Papadogiannis et al.
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(a) Stator domain. (b) Rotor domain.

Figure 6.8 Temperature fluctuations instantaneous fields. Radial cut at r0 =0.284 m.
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Figure 6.9 Temperature fluctuations registered at different probes inside the MT1 baseline
flow simulation.

(2016). In their work, DMD analysis was used to identify a harmonic entropy planar
wave forced through the MT1 inlet. Results of this study show that at least six periods
(and up to ten periods) of the entropy forcing wave (2000 Hz) are needed to correctly
retrieve the BPFs and forced frequency peaks in the DMD spectrum. Indeed, adding
more snapshots to the treated signal increases the signal length, which improves the
spectral resolution decreasing the amplitude of the irrelevant modes (a better signal to
noise ratio is obtained). The present study is not focused on the whole range of fre-
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Figure 6.9 Temperature fluctuations registered at different probes inside the MT1 baseline
flow simulation.

quencies already addressed by Wang et al. (2016) and Papadogiannis et al. (2016). Only
a reduced range of frequencies, where harmonic entropy perturbations are introduced
(f ∈ [100; 3000]) is of interest. Since the contribution of different phenomena present
in the baseline flow to the overall spectrum is unknown, DMD analysis is an ideal tool
to identify their signature without having a multiple of the sampling frequency. There-
fore, DMD analysis is performed in planes at the interstage region and near the rotor
blades trailing edge, Pint (in the stator domain) and Pnear (in the rotor domain) re-
spectively. The velocity magnitude and temperature spectra of the stator and rotor
planes are represented in Figs. 6.10a and 6.10b respectively. A hump in the velocity
magnitude and the temperature appears between 1500 Hz and 3000 Hz in the plane
extracted at the stator wake (Pint, Fig. 6.10a). To understand the phenomena taking
place at this frequency range, the most important modes are extracted (f = 2185 Hz
and f = 2500 Hz) and reconstructed in the temporal space to be compared with the
corresponding instantaneous field in Figs. 6.11 and 6.12. Note that fluctuations are rep-
resented in both figures and that the mode at 2500 Hz is present in both stator and
rotor wakes. As evidenced by the instantaneous velocity fluctuations in Fig. 6.11, flow
separation occurs earlier in the near hub region. This is due to the presence of a second
shock wave located approximatively at the half of the axial chord of the stator blade and
highlighted by the dilatation representation in Fig. 6.11. Both extracted modes show
strong velocity fluctuations in the wake region, particularly near the hub, where the
flow separation generates the strongest fluctuations. The temperature fluctuation of the
instantaneous flow and the reconstructed temperature fluctuation from both extracted
modes are represented in Fig. 6.12. A temperature fluctuation pattern is more difficult
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to identify in the instantaneous temperature field, where temperature fluctuations are
present almost everywhere. However, the separation zone, the stator wake and the shock
can be identified. The DMD reconstruction for the first extracted mode (f = 2185 Hz),
which is located in the middle of the stator hump DMD spectrum, shows a clear con-
version of vorticity to entropy modes. The second mode however is less correlated with
the velocity fluctuations (as shown by the DMD stator spectrum, cf. Fig. 6.10a) and
exhibits temperature fluctuations near the hub. Note that this temperature mode is
also present in the rotor DMD spectrum. The rotor relative velocity and temperature
fluctuations are shown in Figs. 6.13 and 6.14. In this case, fluctuations generated by the
instantaneous flow are too strong to be compared directly with the DMD most energetic
mode reconstruction (f = 1250 and 2500 Hz). Therefore, two color scales are used for
the comparison. Relative velocity fluctuations computed at xPnear in the rotor domain
wake are shown in Fig. 6.13. The instantaneous velocity fluctuation field shows that
almost all the activity takes place in the wake regions. However, reconstructing the first
extracted mode (f = 1250 Hz) shows that strong velocity fluctuations take place in the
wakes and near the tip, where tip vortical structures are generated and convected. The
second extracted mode, which according to the DMD spectrum (cf. Fig. 6.10b) is a
temperature mode, shows mostly structures generated by the wakes. The temperature
fluctuation fields computed in the rotor wake are shown in Fig. 6.14. As in the sta-
tor DMD instantaneous fields, it is difficult to identify the source of the temperature
fluctuations. However, once again, the first mode shows a strong correlation between
the velocity and the temperature mode, particularly in the tip region, where the mode
conversion is clearly evidenced. The second extracted mode, however, once again seems
to be a temperature mode alone and shows temperature fluctuations with sources almost
everywhere.
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(a) Pint extracted in the stator reference
frame.
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Figure 6.10 DMD spectra of the velocity magnitude and the temperature inside the stator
and rotor wakes.
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Figure 6.11 Strongest velocity fluctuation modes in the DMD analysis of the stator wake
extracted in plane Pint.

The objective of this last analysis is to highlight the generation of entropy by the
baseline flow and therefore the difficulty to dissociate the entropy generation source,
whether it is coming from the baseline flow or the entropy forced wave. In the following
section, the MT1 baseline flow here described is used to introduce harmonic temperature
fluctuations and study the entropy radiated noise. Then, the LES flow field upstream
of the stator blades is used as input to compute acoustic and entropy waves and then
propagate them with the analytical tool CHORUS to the outlet of the turbine.
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Figure 6.12 Strongest temperature fluctuation modes in the DMD analysis of the stator wake
extracted in plane Pint.
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Figure 6.13 Strongest velocity fluctuation (relative velocity) modes in the DMD analysis of
the rotor wake extracted in plane Pnear.
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Figure 6.14 Strongest temperature fluctuation modes in the DMD analysis of the rotor wake
extracted in plane Pnear.
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6.2.3 The MT1 entropy forced simulation

Noise generation mechanisms and propagation in a turbine have been studied widely by
different authors. For example, 2D numerical simulations of a turbine stage at mid-span
have been performed by Leyko et al. (2010), Leyko et al. (2014), Duran et al. (2011,
2013a) and Duran and Moreau (2013b). In these works, the study of noise generation
due to acoustic and entropy disturbances has been first carried in a stator alone con-
figuration by Leyko et al. (2010, 2014). Then, Duran et al. (2011, 2013a) studied the
same mechanism of sound generation but in an isolated rotor configuration. Finally, it
was Duran and Moreau (2013b) and Bauerheim et al. (2016) that complemented these
early studies addressing the propagation and generation of acoustic waves by an entropy
and acoustic forcing in the full stator/rotor configuration. All of these 2D numerical
simulations allowed to validate the analytical core-noise propagation tool in turbine con-
figuration CHORUS (which is discussed later in in this section) developed at CERFACS.
Then, 3D full-compressible LES simulations of the forcing of a 2 kHz entropy plane wave
through the inlet of the MT1 12◦ periodic sector configuration were performed by Pa-
padogiannis et al. (2016) and Wang et al. (2016). Results of these simulations have been
compared to the 2D numerical simulations and analytical results of Duran and Moreau
(2013b). This time, the conclusions of these works were multiple: first of all, the genera-
tion of acoustic waves by the acceleration of an entropy wave (indirect entropy noise) has
been highlighted with a visible peak in the temperature and pressure spectrum (DMD
analysis of the forced flow) at the forcing frequency, even though no acoustic wave has
been introduced with the entropy wave forcing. Second, the number of snapshots used
to perform the DMD has an important influence on the positions of the peaks of the
BPF±2000 kHz (the entropy forced wave frequency). For this study, convergence of the
DMD in terms of number of periods of the entropy forced wave is found to be at least
10. Third, the compact theory results are dependent on the frequency due to the phase
shift applied to the waves when travelling through the inter-stage zone (not considered
as compact). It is important to notice that this assumption does not mean that the com-
pact theory is valid for larger frequencies. In this case, good agreement between the 2D
numerical simulations and the compact theory has been found up to 1000 Hz. Results
between the 2D and 3D simulations are very close when considering the entropy-acoustic
transfer functions. Finally, the entropy wave in the 3D simulation is found to be more
attenuated than in the 2D simulations and in the analytical model. This result can be
explained by the presence of walls (generation of a boundary layer) as well as secondary
flows in the 3D simulation. Both generate an increase of the inhomogeneity of the flow
and mixing, resulting in a higher attenuation of the entropy wave.

In the present study, the generation of noise produced by a non-planar entropy pertur-
bation is studied. A cylindrical pulsating energy source term is introduced in the energy
transport equation (strategy similar to the one used in §5.2.1 for the EWG heating de-
vice) to model the heat release fluctuations generated by an aeronautical burner. It is
worth noting that the introduction of an energy source term results in the generation of
direct noise, which will be coupled to indirect noise generation once the entropy streak
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is convected through the stator vanes and rotor blades. Therefore, acoustic-acoustic and
entropy-acoustic transfer functions will be difficult to compute without a model to sep-
arate the contribution of each noise source to the overall acoustic waves (cf. computing
the EWG nozzle transfer functions in §5.3.2.4 and §5.3.3). However, this is the real be-
haviour of an aero-engine: both direct and indirect noise mechanisms interact together.
Experimental studies of this kind of temperature forcing have been carried by Gaetani
and Persico 2017, in which hot air is injected (steadily) in a subsonic HP turbine stage.
The influence of the position of the injectors with respect to the stator blade leading edge
(clocking) was studied. It has been found that the temperature forcing may enhance the
generation of secondary flows, which will play an important role in the dispersion of the
hot streak.

The formulation of the introduced energetic source term is composed of two spatial
functions, f(x) and g(y, z) as well as one temporal function fr(t), which yield:

.
Q=

E0
∫∫∫

f(x) · g(y, z) · dV · f(x) · g(y, z) · fr(t), (6.1)

f(x) =

{

1 if x ∈ [xHD;xHD + LHD]

0 if x /∈ [xHD;xHD + LHD]
(6.1a)

g(y, z) =







∑ncyl

i=1 cos
(
πdi(y,z)
2Rdep

)

if di ≤ Rdep

0 if di > Rdep
(6.1b)

di(y, z) =
[

(y − r0cos(θ0 + (i− 1)∆θ))2 + (z − r0sin(θ0 + (i− 1)∆θ)2
]1/2

,

∫∫∫

f(x) · g(y, z) · dV =

(
π2 − 4

)

2π
R2
dep LHD ncyl, (6.1c)

where f(x) limits the energy of the deposition into a volume contained between x0 and
x0 +LHD; g(y, z) scatters the energy into ncyl cylindrical source terms, each one located
at [r0; θ0 + (i− 1) ∆θ]. Inside these cylindrical source terms, the spatial distribution
of the energy in the x-normal plane is a bell shape, with its maximum at the center
of the disc. Finally, fr(t) is the temporal forcing signal, defined in Eq. (5.13). In the
12◦ periodic test case studied, only one burner is modelled by a cylindrical source term
located next to the stator blade leading edge. An illustration of the geometrical position
of the energy source term is illustrated in Fig. 6.3 by the red rectangle. Table 6.4
summarizes the different parameter values for the heating deposition model. The choice
in the energy deposition location can be compared to the leading edge injection of hot
fluid in the study of Gaetani and Persico (2017).
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Function Parameter Value

f(x)
x0 -0.0185 m
LHD 0.01 m

g(y, z)

r0 0.284 m
θ0 -1.658 rad
Rdep 3 mm
∆θ 0
ncyl 1

fr(t)
f0 100 Hz

Nharm 29

Table 6.4 List of values for the energy deposition model of the MT1 entropy forced simulation.

Prior to the harmonic analysis of the temperature fluctuations generated by the energy
deposition and its attenuation through the turbine stage, the instantaneous fields are
analysed using the reduced norm of the density gradient (||∇ρ||/ρ) and the Q-criterion
colored by the Mach number magnitude in Fig. 6.15. A blade to blade view at R =
0.284 m is used for this analysis (same one used for the prior analysis of the baseline
flow). In comparison with the baseline flow topology, the forced flow exhibits the same
characteristics in terms of shock waves and secondary flows. However, the path taken by
the temperature streak and its deformation is revealed by the reduced norm of the density
gradient. First, at the inlet of the stator, the temperature streak is entrained by the
suction side of the stator blade and travels close to the blade wall. Then, the temperature
streak is found to be trapped in the stator wake, where it follows a strong deformation
(the streak seems to wrap the wakes as it is convected by them, cf. Fig. 6.15a). It
should be noticed that the temperature spot is in the trajectory of the wake, as in
the experimental study of Gaetani and Persico (2017) when the injection of hot fluid
takes place next to the stator blade leading edge. Afterwards, the deviation of the flow
caused by the stator blade makes the streak to be spread in the azimuthal direction
before entering the rotor domain, where the non-homogeneous flow distorts the streak.
Indeed, the flow is faster on the suction side of the blade and slower on the pressure
side. Then, the deformed streak travels close to the tip passage vortex (cf. Fig. 6.15a),
which should contribute to the dispersion of the streak. After this zone, the streak is no
more visible and most likely deformed and mixed by the tip-leakage, separation vortices
as well as the rotor wakes. In Fig. 6.15b, another instant is chosen to look further in
the path followed by the temperature streak, where shock waves are highlighted by red
lines. From Figs. 6.15a and 6.15b, one can conclude that the stator downstream shock
does not have an important influence on the trajectory or the shape of the temperature
streak and it arrives almost "unaltered" to the stator wake. In Fig. 6.15b, the trace of
the temperature streak can be followed up to the rotor wakes, where in this case, the
trace of the temperature streak close to the suction side is lost after the shock and its
trace on the suction side is lost when the streak arrives in the rotor wakes.
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(a) Iso-surface of Q-criterion coloured by the
absolute Mach number.

(b) Visualisation of shock structures.

Figure 6.15 Instantaneous fields of ||∇ρ||/ρ at r0 = 0.284 m.

Figure 6.15 shows a global view of the temperature-fluctuation field. To quantify
the amount of temperature fluctuations generated, the temperature fluctuations are ex-
tracted at the probes illustrated in Fig. 6.3. Temperature fluctuations registered at these
probes are compared with the temperature-fluctuation envelope (maximal and minimal
values represented by horizontal lines) generated by the baseline flow alone (cf. Fig. 6.9)
in Fig. 6.16. For probes located before the rotor blades (p1 and p2), the temperature fluc-
tuation generated by the energy source term can be easily identified (as already shown
by Fig. 6.15). However, when the temperature spot traverses the rotor blades (probes
p3, p4 and p5), the streak has already been dispersed by the stator and rotor wakes,
as well as the secondary flows and shocks. Here, it becomes difficult to distinguish the
contribution of the temperature forcing and the temperature fluctuation produced by
the baseline flow. However, this information is still useful to be compared with exper-
imental studies, as the one realised by Schuster et al. (2015). In this experiment, the
Honeywell TECH977 engine1, which is a realistic aeronautical turbo-engine is equipped
with temperature and pressure probes before and after each turbine stage to study com-
bustion noise. In this experiment, the maximum temperature registered at the outlet of
the combustion chamber is about 110 K, while in the present MT1 forced simulation it
reaches (between the energy deposition and the stator blade, at p1) about 150 K, which
represents about 30% of the mean temperature value. Then, the temperature fluctuation
registered after the first HP turbine stage in the experiment is ≈ 10 K, which is of the

1The Honeywell TECH977 is a 7000 lb thrust class engine with a two stage high pressure turbine
and a three stage low pressure turbine
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same order of magnitude at p5 in the MT1 configuration. In both cases it represents an
attenuation of one order of magnitude of the initial value.
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Figure 6.16 Temperature fluctuations registered at different probes inside the MT1 domain.

Now that the global characteristics of the generated temperature fluctuation have
been studied, DMD analysis is performed in Pint and Pnear planes. DMD spectra of
the velocity magnitude and the temperature in the extracted planes is represented in
Fig. 6.17, where the baseline flow spectrum is added for comparison in dashed lines.
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Note that the absolute velocity magnitude is computed in the stator reference frame
(Pint) and the relative velocity magnitude in the rotor reference frame (Pnear). In the
stator reference frame (cf. Fig. 6.17a), the velocity magnitude spectrum is very similar
to the one computed in the baseline flow simulation, with a hump in between 1500 and
3000 Hz. Concerning the computed temperature spectrum, each harmonic of the entropy
forcing signal is correctly retrieved by its corresponding peak (every 100 Hz). In the rotor
domain computed DMD (cf. Fig. 6.17b), relative velocity fluctuations are of the same
order of magnitude, except for the peak at 1250 Hz, which doubles its amplitude. In
the temperature spectrum computed in the rotor domain plane, the harmonic peaks
are difficult to visualise. Indeed, temperature fluctuations generated by the baseline
flow are of the same order of magnitude as the temperature forcing at this position,
making difficult to visualise their contribution and are shown as broadband oscillations.
However, an increase in the temperature fluctuation amplitudes is perceived, due to the
temperature forcing. Furthermore, the maximum temperature amplitude modes shown
in the baseline flow analysis ((peaks at 1250 and 2500 Hz) are still at the same positions
in the forced flow DMD spectrum. This latter result (the temperature peaks at the same
position) shows that the same mechanisms of entropy generation are still present in the
entropy forced simulation.
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(a) Pint extracted in the stator reference frame.
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(b) Pnear extracted in the rotor reference frame.

Figure 6.17 DMD spectra of the velocity magnitude and the temperature inside the stator
and rotor wakes. ( ) Forced flow. ( ) Baseline flow.

The global characteristics of the baseline flow are shown to be present in the forced
flow. To push this analysis further, Fourier analysis is performed over the 3D instan-
taneous fields of the MT1 forced simulation. Knowing that the fundamental forced
frequency is 100 Hz, the temporal signal to capture this frequency needs to be at least
0.01 s (one period). The last forced harmonic is 3000 Hz, which is the largest fre-
quency of interest in the present study. From Shannon-Nyquist theorem, a sampling of
∆t = 0.16 ms is at least needed to solve the whole frequency range of interest. The
signal sampling is therefore chosen to be ∆t = 40 µs (equivalent to eight points over
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the highest frequency period). Afterwards, DFT analysis is applied over the complete
3D stator and rotor instantaneous fields. The convergence of the DFT fields is stud-
ied varying the length of the studied signal (as already done in the previous study of
Papadogiannis et al. 2016). According to the EWG nozzle transfer functions analysis
performed in §5.3.3, quantities like the temperature fluctuations are the last to converge
and are very sensitive to turbulence. The highest wavelength to be resolved is the one
corresponding to the highest entropy forcing frequency. According to the bulk veloc-
ity and the characteristic cell length, this harmonic entropy wave contains at least 18
points per wavelength, that is to say three times more than the minimal required by the
numerical scheme to correctly convect the waves without dispersion or dissipation (cf.
Appendix C). In the following the temperature fluctuation is used to assess the conver-
gence of the DFT analysis carried in this study. Figures 6.18–6.26 show the modulus of
the temperature fluctuation computed by DFT in the stator and rotor attached reference
frames for different frequencies and run time lengths. Only three frequencies are shown
for three different run time lengths: 100 Hz (the fundamental frequency), 1500 Hz (a
mid-range frequency) and 3000 Hz (the last forced harmonic) for one, five, nine and ten
periods of the fundamental frequency. In these figures, different types of cuts are used to
illustrate the path and deformation followed by the temperature streak: radial cuts at
R = 0.284 m, which corresponds to the radius where the energy source term is located,
as well as axial cuts located at xPSin

= 0 m (stator inlet), xPint = 0.047 m (inter-stage
vane) and xPnear ≈ 0.091 m (experimental plane near the rotor blades). Figures 6.18–
6.20 show a blade to blade view of some of the frequencies of interest (100, 1500 and
3000 Hz). For the stator DFT (Figs. (6.18–6.20)(a)), results are found to be very similar
when comparing the influence of the run time length. The only difference is found to be
in the stator wake, where DFT carried over 9 and 10 periods filter the non-correlated
structures showing a more continuous wake in cone shaped form. This filtering effect
can be seen as a phase average of the fields where a temporal signal is decomposed into
three contributions (when harmonic regime is assumed):

φ(t, x) = φ̄(x) + φ′
det(t, x) + φ′

stoc(t, x) (6.2)

where φ̄ is the mean value of the signal, φ′
det is the deterministic part of the signal

(function fr(t) in Eq. (6.1)) and φ′
stoc is the stochastic part, which is assumed to be non

correlated to the deterministic part and should be considered here as noise. Therefore,
adding more periods to the studied signal improves the spectral resolution of the DFT
increasing the signal to noise ratio and so filtering the stochastic contribution. This
filtering effect is more visible in the rotor domain DFT field view, where the amplitude
of the temperature fluctuation in the wakes decreases strongly with the number of pe-
riods considered. Furthermore, the shape of the entropy streak can be better visualised
considering more periods. In the stator (Figs. (6.18–6.20)(a)) the temperature streak is
continuous, its radius changes along its passage through the stator domain being spread
in the azimuthal direction when arriving to the stator wake (cf. axial cuts in Figs. 6.21,
6.23 and 6.25 allow a better insight). Before the stator blade, the streak has a radius
equal to the deposition radius Rdep in Eq. (6.1). During its passage through the stator
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vane the radius is contracted and when it reaches the stator wake it is spread by the
wakes. In this zone, the streak traverses the stator shock wave, which seems to have small
influence in the shape, or the trajectory of the streak, and this for all the frequencies
studied. Concerning the attenuation of the entropy wave, the temperature fluctuation
magnitude is observed to decrease during the passage of the streak and the attenuation
is more important when the frequency increases. This attenuation is mostly due to dis-
persion of the hot streak due to the non-homogeneous flow. The higher the frequency
is, the stronger the attenuation of the streak is, as described by Leyko et al. (2010),
Morgans et al. (2013) and Giusti et al. (2016) and evidenced in Chapter 5 in the EWG
nozzle. In the rotor domain, the entropy streak is spread into the azimuthal direction (cf.
Figs. (6.18–6.20)(b)). Indeed, the rotor DFT is computed in the rotor moving reference
frame. Therefore, the rotor domain sees an entropy fluctuation that is introduced at
different azimuthal positions as time marches. It is also noted that the entropy streak is
found to be discontinuous at the stator/rotor interface, and some stripes are perceived.
Those stripes may be related to an insufficient sampling to recover a continuous signal
in the rotor. Indeed, the rotating speed of this operating point is 9500 rpm (57000◦/s)
while the chosen frequency of sampling 40 µs. It results that the entropy streak will be
effectively seen by the 12◦ periodic rotor domain approximatively 5.3 times per passage,
generating the observed stripes. Afterwards, when the streak arrives near the rotor blade
trailing edge, supplementary temperature fluctuations are generated at the separation
zone induced by the shock highlighted in Fig. 6.15b. Furthermore, the shock wave and
secondary flows present in the rotor vane disrupt completely the streak and no more
stripes are perceived after this position. Figures 6.21–6.26 show axial planes for the dif-
ferent harmonics and run times. Figures 6.21, 6.23 and 6.25 show axial cuts of the DFT
performed in the stator fixed reference frame at the inlet and outlet planes (xPSin

and
xPint). The entropy streak enters the stator with a well defined circular shape (as defined
by Eq. (6.1)) and leaves the stator with an oval form. This dispersion into an oval form
is mostly due to the flapping modulation by the vortex shedding of the stator wake as
seen in Fig. 6.6. Furthermore, an attenuation of the maximum value of the temperature
magnitude is observed along the stator. This attenuation is even stronger for the case at
3000 Hz, where the maximum temperature value is already diminished at the entrance
of the stator (cf. Fig. 6.25a), even though the energy is equally distributed into all the
harmonics. One can furthermore compare the attenuation of the entropy streak through
the stator to the experimental study carried by Gaetani and Persico (2017). To make a
fair comparison between these studies, the modulus of the total temperature fluctuation
at 100 Hz (considering that the attenuation followed by a 100 Hz temperature distur-
bance can be compared to the one followed by a steady hot inflow) is computed at the
inlet and outlet planes of the stator. Then, the reduced total temperature fluctuation is
computed (total temperature fluctuation of the forced flow over the mean total temper-
ature of the baseline flow) and the maximum values between the inlet and outlet planes
are compared. An attenuation from 0.042 to 0.015, that is to say almost 3 times the
initial spot temperature is obtained, which is in the same order of magnitude as the one
obtained experimentally by Gaetani and Persico (2017) from 0.2 to 0.05 (for a bigger
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characteristic injection length). Moving on to the passage of the temperature streak
from the stator to the rotor, axial cuts from Figs. (6.21, 6.23, 6.25)(b) and Figs. (6.22,
6.24, 6.26)(a) are located at the same axial position (xPint) but extracted in the stator
and rotor reference frames respectively. Since the DFT in the rotor is computed in its
own reference frame, the entropy streak is no more seen as a circle but as a band located
at a mean radius R = 0.284 m, which covers the complete azimuthal length of the sec-
tor. However, this band is found to be discontinuous and exhibiting several streaks most
likely produced by the sampling of the signal (as already highlighted in the radial cuts).
As expected, the amplitude of the temperature fluctuation in the stator reference frame
is much higher than the one computed in the rotor reference frame due to the spreading
of the streak along the azimuthal direction of the rotor. Another axial cut is extracted
near the rotor blades leading edge and close to the rotor shock wave position (xProt)
in Figs. (6.22, 6.24, 6.26)(b). Here, the signature of secondary flows appears near the
suction side of the rotor blades. The hub passage vortex moves towards the tip and the
tip-leakage vortex seems to push the streak towards the hub. Afterwards, in Figs. (6.22,
6.24, 6.26)(c), the axial position xPnear is represented. Here, the entropy streak remains
in the upper part (close to the tip), where the tip-leakage vortex grows and intensi-
fies, which result in a mixing of the entropy streak. At this point, the entropy streak
has already been attenuated by different phenomena along the turbine stage and it is
difficult to identify the original circular pattern, which remains visible for the smallest
frequencies). Considering more periods of the forced signal clearly enhance the filtering
of turbulent structures, rendering the visualisation of the temperature streak possible.
However, convergence of the DFT results is only reached with 9 and 10 periods, where
the DFT fields are equivalent (c.f. Figs. 6.18–6.26). Furthermore, convergence yields the
typical chequerboard pattern downstream caused by mixing of stator and rotor wakes.

Figures (6.18–6.26) show a global view of the temperature fluctuation harmonics com-
posing the forcing signal of the MT1 entropy forced simulation. To quantify the evolution
of the entropy wave through this high pressure turbine stage, several ~x normal planes
along the MT1 domain are extracted every millimetre from the inlet to the outlet of
the complete configuration. The acoustic and entropy waves are computed following
Eq. (2.7) and the surface integral weighted by the mass flow rate is computed for each
plane. The axial evolution of the entropy wave through the MT1 turbine is shown in
Figs. 6.27–6.29 for the entropy forced flow and the baseline flow. Gray zones represent
the positions of the stator and rotor vanes. The comparison of the entropy wave between
the entropy forced flow and the baseline flow is all the more important here as entropy
waves are also generated by the unsteady wakes of the entropy forced flow and are not
yet completely been filtered by the DFT computation. Therefore, computing the axial
evolution of the entropy wave in the baseline flow allows quantifying the entropy fluc-
tuations not coming from the forcing, which from results shown in Figs. (6.27–6.29)(b)
might not be negligible. Computing the entropy generated by the baseline flow allows
to confirm that: the supplementary generation of entropy waves is indeed in the wake
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(a) DFT in the stator fixed
reference frame.

(b) DFT in the rotor moving reference frame.

Figure 6.18 DFT of the MT1 instantaneous fields computed for different run time lengths.
Extraction of the fundamental forcing frequency: 100 Hz. Radial cut at r0 = 0.284 m.

and shock regions and that the stochastic part of Eq. (6.2) is not correlated to the de-
terministic part (its amplitude decreases with the number of periods taken into account
in the DFT). However, it is clear that convergence of the baseline flow has not been
reached and this result should only be seen as an estimation of the entropy produced by
the baseline flow. Concerning the evolution of the entropy wave in the forced flow (cf.
Figs. (6.27, 6.28, 6.29)(a)), the zone where the energy deposition takes place is evidenced
by the rapid increase in entropy before the stator blades. After the deposition zone and
up to the exit of the stator blade, the entropy streak seems to be almost constant and
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(a) DFT in the stator fixed
reference frame.

(b) DFT in the rotor moving reference frame.

Figure 6.19 DFT of the MT1 instantaneous fields computed for different run time lengths.
Extraction of the harmonic at 1500 Hz. Radial cut at r0 = 0.284 m.

transported with almost no attenuation. Indeed, since the entropy forcing is not a planar
wave it is less sensitive to the dispersion produced by the heterogeneous flow. Instead it
acts as a passive scalar that follows the streamlines of the flow without (or less) defor-
mation. In this case, the smaller its characteristic length is (in this case Rdep), the less
sensitive to the mean flow dispersion the streak is. Nevertheless, when the frequency of
the forcing is high, the dispersion effect is stronger and attenuates the entropy wave as
highlighted by Morgans et al. (2013) and Giusti et al. (2016) (cf. Fig. 6.29a). After-
wards, when the streak arrives in the rotor domain, it is attenuated due to the mixing
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(a) DFT in the stator fixed
reference frame.

(b) DFT in the rotor moving reference frame.

Figure 6.20 DFT of the MT1 instantaneous fields computed for different run time lengths.
Extraction of the harmonic at 3000 Hz. Radial cut at r0 = 0.284 m.

induced by the natural rotational velocity of the rotor. It is worth noting that once
the entropy wave traverses the rotor and assuming that no energy can be transmitted
between modes, no entropy gain can exist (besides the one caused by the rotor wakes
and shocks) and the entropy wave shall be attenuated or remain constant after the rotor
wake. For this reason and the fact that the entropy plane wave evolution against the
axial coordinate remains almost the same between 9 and 10 periods, one can conclude
that the DFT results are converged and representative of the evolution of the entropy
wave in this MT1 configuration.

197



Figure 6.21 DFT in the stator
reference frame, extraction of the

fundamental frequency: 100 Hz. Axial
cuts at positions xPSin

and xPint
for

different run time lengths.

Figure 6.22 DFT in the rotor reference frame,
extraction of the fundamental forcing

frequency: 100 Hz. Axial cuts at positions: (a)
xPSin

, (b) xProt
and (c) xPnear

for different run
time lengths.

In the following section, the results of the numerical simulation are compared with the
analytical methodology CHORUS (Leyko 2010, Duran 2013 and Livebardon et al. 2015,
2016) developed at CERFACS, which is based on the compact actuator disk theory of
Cumpsty and Marble (1977a). This analysis allows to evaluate the limitations of this
reduced model on the prediction of combustion noise in the framework of a realistic
industrial configuration.
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Figure 6.23 DFT in the stator
reference frame, extraction of the

harmonic at 1500 Hz. Axial cuts at
positions xPSin

and xPint
for different

run time lengths.

Figure 6.24 DFT in the rotor reference frame,
extraction of the harmonic frequency: 1500 Hz.
Axial cuts at positions: (a) xPSin

, (b) xProt
and

(c) xPnear
for different run time lengths.

6.2.4 Comparison of the numerical results to the analytical compact
actuator disk theory

In this section, the analytical methodology CHORUS is used to extract the acoustic and
entropy waves at the inlet of the MT1 configuration and then analytically compute the
transmitted noise at the outlet of the turbine stage. In the general case, this methodology
starts with a LES computation of the combustor alone to correctly predict entropy,
vorticity and acoustic waves generated by the turbulent combustion process. The next
step is the extraction of several planes perpendicular to the engine axis at the outlet of
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Figure 6.25 DFT in the stator
reference frame, extraction of the

harmonic at 3000 Hz. Axial cuts at
positions xPSin

and xPint
for different

run time lengths.

Figure 6.26 DFT in the rotor reference frame,
extraction of the harmonic frequency: 3000 Hz.
Axial cuts at positions: (a) xPSin

, (b) xProt
and

(c) xPnear
for different run time lengths.

the combustion chamber. In these planes, primitive variables are used to compute the
upstream and downstream propagating waves (namely the entropy wave σ, the vorticity
wave ξ′ and the upstream and downstream acoustic waves, A− and A+ respectively)
used in the 2D actuator disk theory of Cumpsty and Marble (1977a) model. However,
the passage from primitive variables to waves is not direct and several steps are needed:

1. Radial averaging is performed to extract the zero-th radial mode from the unsteady
fields extracted at the different outlet planes of the combustion chamber to be
consistent with the 2D model of Cumpsty and Marble (1977a).
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Figure 6.27 Axial evolution of the entropy wave at frequency f = 100 Hz.
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Figure 6.28 Axial evolution of the entropy wave at frequency f = 1500 Hz.

2. Temporal Fourier transform is performed over the radial averaged primitive vari-
ables.

3. Spatial Fourier transform over the azimuthal direction bounded by the angular
extrema of the domain (in the present MT1 simulation it is a 12◦ sector) allows
performing an azimuthal modal decomposition.

4. Dispersion relations derived from the 2D LEE are used to transform the primitive
variables into the wave formulation.

Then, the different planes extracted at the outlet of the combustion chamber are used
to filter the set of waves using a characteristic filtering (cf. Kopitz et al. 2005). Filtered
waves are afterwards propagated through the different turbine stages using the analytical
compact model of Cumpsty and Marble (1977a) for each blade row. Therefore, matching
conditions are applied to determine the interactions produced between waves. For an
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Figure 6.29 Axial evolution of the entropy wave at frequency f = 3000 Hz.

incident wave, the transmission and reflection coefficients are obtained as well as the
generation of new waves (e.g. an azimuthal entropy wave produces a vorticity wave, cf.
§5.3.2.4). The convection of waves between two consecutive rows is taken into account
by introducing a phase shift based on the wave convection time. Finally, a simplified at-
tenuation function for the entropy plane wave (according to findings presented by Leyko
et al. 2010, 2014) based on the characteristic pitch of a blade row can be applied at each
comact row. Regarding this matter, Bauerheim et al. (2016) proposes the modelling
of the velocity profile through the blades using an asymmetric power law, allowing to
estimate the entropy attenuation function of Leyko et al. (2010) analytically. The at-
tenuation of the entropy wave when estimating entropy noise is an important matter.
The amount of entropy noise generated is proportional to the amplitude of the entropy
wave, which is attenuated at each blade row passage. Therefore, entropy noise is mostly
generated in the first stages, where the amplitude of the entropy wave is stronger.

Here, CHORUS is used to evaluate analytically the direct and indirect noise contribu-
tions, discriminating noise generated by entropy, vorticity and acoustic waves through
any number of turbine stages. However, it is important to notice that this methodol-
ogy neglects several phenomena naturally present in the numerical simulation, e.g. the
generation of entropy and vorticity modes in the stator and rotor wakes, the generation
of entropy due to the isothermal boundary conditions applied to the stator and rotor
blades and the entropy and vorticity modes generated by the unsteady shock waves.

In the case of the present simulation, the application of CHORUS is slightly different
from the one described in the above paragraphs. Here, neither combustion chamber,
nor turbulent combustion process has been simulated. The heat release fluctuations
are generated by the introduction of a fluctuating energy source term in the upstream
annular section (see Fig. 6.3). Eight extraction planes are located between the energy
deposition and the leading edge of the stator blades, from x = −8 mm to x = −1 mm,

202



with a spacing of 1 mm between each plane. As only one sector of the MT1 complete
geometry has been computed, only plane waves are considered in this study, which is
sufficient to describe the pressure field. However, the entropy field is a composition of
several modes, even if only the plane mode is considered. However, even if circumferential
modes were to be considered, acoustic waves generated by higher entropy modes cannot
be propagated through the turbine stages because the first circumferential mode available
is the one corresponding to the first multiple of the number of sectors (here m = 30),
with a cut-off frequency far beyond the frequency range of interest. Let us first compute
the entropy-entropy transfer function for the planar entropy mode between the outlet
of the MT1 domain and the last extracted plane (x = −1 mm) in the stator domain.
Figure 6.30 shows the comparison of the entropy transfer function computed by the
analytical model (cf. attenuation function of Leyko et al. 2010 using the parabolic axial
velocity profile of Livebardon 2015) and the ones computed within the simulation using
different run times as well as the one obtained by Papadogiannis et al. (2016) pulsating a
2000 Hz entropy plane wave. The first remark concerning the entropy transfer function
computed in the present study is that the variability of the DFT results is very sensitive
to the number of periods used and that convergence of the result is only reached between
9 and 10 periods. The numerical transfer function shows characteristics not shown in the
prior study of the EWG nozzle (cf. §5.3.3), where the entropy wave is almost completely
attenuated through the passage of the nozzle (at 50 Hz only 20% of the entropy plane
wave reaches the outlet of the EWG). In this turbine case study, the conversion of
vorticity into entropy modes and the entropy generated waves due to the isothermal
boundary condition applied to the blades seems to compensate the attenuation of the
entropy wave through the turbine stage. For some cases the entropy wave amplitude at
the outlet of the MT1 is even greater than the one introduced at the inlet. Furthermore,
the fact that the entropy forcing was not a plane wave from the beginning but a small
deposition radius makes the entropy streak less sensitive to attenuation. This effect is
clearly highlighted when comparing the 2000 Hz harmonic with the numerical simulation
of Papadogiannis et al. (2016) (entropy plane wave forcing), where the amplitude of the
entropy wave in the present simulation is twice as big. Furthermore, when comparing
to the attenuation function computed by the CHORUS methodology, a good agreement
is found up to ≈ 900 Hz. It should be noticed that the attenuation of the entropy
plane wave estimated by CHORUS is only taken into account at the stator and rotor
vanes and not in the annular ducts, as taken into account in the numerical computed
attenuation function. In order to estimate the attenuation of the entropy plane wave by
the mean flow effects only, the methodology of Leyko et al. (2010) is applied, where 3D
streamlines are traced from the inlet of the MT1 configuration. This procedure is done in
three different steps: first, streamlines are traced in the stator domain using the absolute
velocity vector. Second, streamlines are traced at the rotor moving parts domain (the
blades and the hub) using the relative velocity vector (subtracting the rotational speed
of the blades). Finally, in the last part of the rotor domain, streamlines are traced using
the absolute velocity. Figure 6.31, shows the resultant streamlines for each sub-domain
of the MT1 configuration. Notice that only a part of the whole set of the generated

203



streamlines is represented for an easier visualisation of the mean flow characteristics. In
the stator domain, where no secondary flows are highlighted by the Q-criterion shown
in Fig. 6.15a, the streamlines bypass the stator blade and go through the stator domain
smoothly leaving almost with a straight trajectory. In the rotor vane, some streamlines
are captured by the secondary flows: some travel in the tip region from the pressure
to the suction side of the blade and then roll in the tip vortices and others are seen to
be absorbed by the hub passage vortex. Finally, in the outlet annular section of the
rotor domain, streamlines are again smooth an almost straight. However, in the upper
part of the duct the flow is found to be dominated by the axial velocity, whereas in
the bottom part of the duct a strong contribution of the tangential velocity deviates
the streamlines. To compute the attenuation function of the entropy plane wave, the
elapsed time of a particle seeded from the inlet of each sub-domain to reach the outlet
(of the sub-domain) of all the traced streamlines are needed. The spatial distribution of
this elapsed time at the outlet of each sub-domain is what Leyko et al. (2010) defines
as the function td(r, θ) and is shown in Fig. 6.32. At the outlet of the stator and rotor
vanes (cf. Figs. 6.31a and 6.31c), the wakes are clearly visualised by the regions with the
longest particle times. At the outlet of the rotor annular duct (cf. Fig. 6.31c) streamlines
deviated by the tangential velocities are the ones taking the longest to reach the outlet.
Once the function td(r, θ) is known, the entropy plane wave attenuation function of each
sub-domain can be computed using Eq. (C.1b) and compared with the one estimated by
CHORUS. Figure 6.33 shows the different attenuation functions of each MT1 sub-domain
compared with the analytical estimations of CHORUS. A fair estimation of the entropy
plane wave attenuation is done by CHORUS at the stator and rotor vanes. However,
this result shows the entropy plane wave suffers a strong attenuation in the rotor outlet
duct (a similar result has been found in the EWG configuration studied in Chapter 5).
This is not very important, since in the entropy wave is only convected and does not
generate acoustic waves. However, this attenuation should be taken into account if
the inter-stage vane is too long. Finally, the global attenuation function is shown in
Fig. 6.30, where it seems to be in a very good agreement with the forced numerical
simulation up to ≈ 500 Hz. Afterwards, one can consider that the discrepancies between
the forced simulation and the 3D streamline dissipation function methodology are due
to the conversion of vorticity modes into entropy modes. It should be noticed that
the attenuation function based on the 3D streamlines methodology superimposes the
dot at 2000 Hz, where the reference simulation of Papadogiannis et al. (2016) shows a
greater attenuation. This result may be due to the surface integration formulation used
in this manuscript, where mass weighted integration is used. However, this result has its
bigger influence on the entropy waves, which are not only planar (as already shown in
Chapter 5) and less on the acoustic waves which still can be considered as plane waves
(when properly filtered from the hydrodynamic contributions).

Up to now, this study was focused on the evolution, distortion and attenuation of
the entropy wave. Now, CHORUS is used to estimate the contribution of each wave
(computed at the extracted planes) to the overall noise emission radiated at the outlet
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Figure 6.30 Comparison of the entropy-entropy transmission coefficient between the
analytical model (CHORUS), the numerical simulation using different run times and

Papadogiannis et al. (2016) entropy forced simulation.

of the MT1 configuration. To do so, the acoustic power (P) at the outlet of the MT1
turbine is computed using the Bretherton and Garrett (1968) formula, which takes into
account the convective terms,

P(m,ω)out = [(M cos θ + cos ν) (1 +M cos (θ − ν))]out

(

A+
out

)2
(γpcA)out , (6.3)

and measures the outgoing acoustic power per propagating mode. In this equation m is
the order of the azimuthal mode; ω is the angular frequency; M represents the absolute
Mach number, θ and ν are respectively the flow angle and the angle of the wave vector;
p and c are the mean pressure and sound velocity of the flow; γ is the ratio of specific
heat capacities and A is the section of the turbine outlet. To make a proper compari-
son between the simulation and the analytical model, one should evaluate the validity
limit of the analytical results within the compact theory. To do so, the 3D numerical
simulation of Papadogiannis et al. (2016), in which the entropy plane wave has been
introduced without the generating acoustics (direct noise) is used as reference simula-
tion to compare the entropy-acoustic transmission coefficient obtained by CHORUS. In
this case, and unlike the transfer functions presented by Papadogiannis et al. (2016),
the transfer functions are computed using the 3D mean flow characteristics of the MT1
simulation and not the 2D flow of Duran and Moreau (2013b). Figure 6.34 shows the
entropy-acoustic transmission coefficient of the MT1 stator/rotor configuration. It is
worth noting that to be coherent with the definition of the acoustic waves used in this
manuscript (cf. Eq. (2.7)), the entropy-acoustic transfer result obtained by Papadogian-
nis et al. (2016) has been multiplied by 2. The vertical dashed line in Fig. 6.34 represents
the compactness theoretical limit (Helmholtz number computed using the length of the
stator blade axial chord and the mean velocity at the inlet of the MT1). A good agree-
ment is found between the entropy-acoustic transmission coefficient computed by the
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(a) Stator domain (absolute velocity vector). (b) Rotor vanes (relative velocity vector).

(c) Rotor outlet annular duct (absolute
velocity vector).

Figure 6.31 MT1 baseline mean flow streamlines coloured by the elapsed time of a particle
over the streamline.

analytical model using the MT1 3D mean flow data and the numerical simulation of Pa-
padogiannis et al. (2016). Assuming that the compact results for the entropy-acoustic
transmission coefficient are still valid up to at least 2000 Hz (even though no information
has been acquired between 0 and 2000 Hz), the acoustic power can be evaluated and
considered as a good approximation up to this limit. Furthermore, the entropy-acoustic
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(a) Stator domain outlet
(x = 0.047 m).

(b) Rotor vanes outlet
(x = 0.0851 m).

(c) Rotor duct outlet
(x = 0.202 m).

Figure 6.32 MT1 elapsed time spatial distribution at the outlet of the MT1 sub-domains
(function td(r, θ)).
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(a) Stator domain.
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(b) Rotor vanes.
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(c) Rotor outlet duct.

Figure 6.33 Attenuation functions of each MT1 sub-domain.

transfer function computed numerically within the simulation is added for comparison.
It is worth noting that this numerical computed transfer function is an estimation of the
real one, in which multiple assumptions are done. Indeed, the entropy wave at the inlet
of the configuration (in this case taken next to the energy deposition) is not a purely
plane wave and is the result of a mass weighted integration at this axial position. The
second strong approximation made is that the acoustic wave considered at the outlet of
the configuration is an overall acoustic wave and not the purely acoustic wave generated
by the entropy forcing alone. Therefore, the numerical entropy-acoustic transfer function
is representative of all the generated acoustic waves at the outlet of the configuration:

• reflected acoustic waves at the boundary conditions and the rotor blades,

• acoustic waves generated by the acceleration of the entropy forcing,

• acoustic waves generated by the energy source term (direct noise),
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• acoustic waves generated by the acceleration of entropy waves generated by the
wakes and shocks,

• acoustic waves generated by the acceleration vorticity waves,

compared to the inlet entropy plane wave. In this case, the separation of each contri-
bution is not possible (as done in §5.3.3), since the complete set of transfer functions is
unknown to built the system described in Eqs. (5.22–5.25). However, some characteris-
tics found in the EWG analysis are also found in this complex case geometry. In the low
frequency range (up to ≈1500 Hz), where according to the DMD spectrum of the base-
line flow computed in the stator wake (cf. Fig. 6.10a), the generation of supplementary
entropy waves is less important and compensates only the attenuation of the entropy
wave, the generation of indirect noise decreases with the increasing frequency (cf. EWG
entropy-acoustic transfer function in Fig. 5.82). In this case, since the attenuation of the
entropy wave is compensated by the generation of new entropy modes, the generation of
acoustic waves is also stronger compared with the analytical theory. It is worth noting
that with all of the assumptions made for this entropy-acoustic transfer function, a very
good agreement between the analytical and the simulation result is found below 1500 Hz
and the same trend is retrieved. For higher frequencies (1500 Hz to 3000 Hz), strong
modes conversion from vorticity to entropy modes have been highlighted and a hump in
the generation of acoustic waves also appears in Fig. 6.34 at this frequency range. The
strong disagreement between the analytical model and the numerical simulation is due
to the lack of a model to predict the generation of new entropy modes in the wakes and
shocks regions, which enhances the production of more entropy noise.

Finally, once the limitations of the compact theory assessed, the total acoustic power
can be computed. Figure 6.35a shows the total acoustic power at the outlet of the
MT1 forced simulation when considering 10 periods of the entropy forced signal for the
DFT computation compared with its analytical estimation using the CHORUS method-
ology. As expected, the generated noise in the LES simulation is greater than the one
estimated by CHORUS. However, the global trend of the acoustic power estimated by
CHORUS is also obtained in the numerical results, where the maximal acoustic power
is radiated by the smallest frequencies. The contribution of the different noise sources
to the overall radiated acoustic power in the numerical simulation cannot be computed.
In the CHORUS methodology, which considers linear acoustics, the contribution of each
noise source is computed and shown in Fig. 6.35b. According to CHORUS, the gen-
eration and propagation of direct noise by the introduction of the energy source term
is negligible compared with the generation and propagation of entropy noise. However,
since this study is only limited to the propagation of plane waves, the convection of an
entropy plane wave does not generate vorticity waves which generate vorticity noise (as
highlighted in Chapter 5 and explained by Duran and Morgans 2015). Furthermore,
CHORUS is not capable of computing vortex noise when no vorticity wave is captured
at the extraction planes (which is the case in this simulation) and no model allows to
estimate the vorticity waves generated in the wakes. For all of these reasons it is normal
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to obtain an underestimation of the generated acoustic power by the CHORUS method-
ology. However, the global trend and the order of magnitude obtained by the analytical
estimation is in a very good agreement with the 3D-full compressible LES simulation.
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Figure 6.34 Entropy-acoustic transmission coefficient computed numerically compared with
CHORUS and Papadogiannis et al. (2016) 3D MT1 simulation.
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Figure 6.35 Acoustic power at the outlet of the MT1 turbine.
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6.3 Conclusions

In this second part of the manuscript, combustion noise generation is studied within a
high pressure transonic turbine stage. In this case, the flow cannot be considered as ax-
isymmetrical, as done in Part I due to a strong azimuthal deviation of the flow produced
by the stator and rotor blades as well as the rotational velocity of the rotor. Due to the
different flow topology (in comparison with the nozzle flow studied in Chapter 5), differ-
ent combustion noise tools prediction need to be developed based on equations taking
into account the azimuthal deviation of the flow (cf. Cumpsty and Marble 1977a). For
this study in combustion noise generation, the numerical simulation performed by Wang
et al. (2016) and Papadogiannis et al. (2016), where an entropy plane wave is introduced
at the inlet of MT1 turbine stage is revisited. In this case, to be more realistic with the
actual production of hot streaks in a real aero-engine, a cylindrical energy source term
is introduced in the upstream annular section of the domain to generate harmonic tem-
perature fluctuations. The path followed by this temperature streak, its attenuation and
the interactions between the streak, shock waves and secondary flows are studied. An
energy deposition model based on the one proposed in Chapter 5 is adapted to generate
a cylindrical harmonic pulsating temperature fluctuation. The generated temperature
fluctuation is transported by the flow and is found to be absorbed by the suction side
of stator blade, where it follows its path close to the blade wall. Close to the blade
leading edge, the streak traverses a shock wave, which seems to have little influence on
the trajectory and the shape of the streak. Then, the streak trajectory is found to be in
the wake, in accordance with Gaetani and Persico (2017) measurements. In this wake
zone, the streak follows its first important deformation, where the streak is wrapped
around the vortex shedding. Furthermore, the attenuation of the maximal value of the
temperature is also in good agreement with Schuster et al. (2015) and Gaetani and
Persico (2017) measurements. Inside the rotor, the streak is strongly deformed by the
non-homogeneous flow and interacts with the secondary flows and shock waves. Here
again, the attenuation of the temperature maximum value is in agreement with Schuster
et al. (2015) measurements.

The analysis of noise generation and entropy attenuation has been carried in the fre-
quency domain to be compared with prior studies and analytical methods. In this case,
the numerical simulation of Papadogiannis et al. (2016) and Wang et al. (2016) has been
taken as reference entropy forced simulation, while the analytical methodology (CHO-
RUS) used for the comparison is based in the actuator disc theory of Cumpsty and
Marble (1977a). To do so, DFT of the complete 3D fields is performed and its conver-
gence is evaluated using different sampling lengths. The convergence of the DFT analysis
has been evaluated using the temperature fluctuation fields and has been reached using
10 periods of the fundamental forcing frequency (100 Hz). In order to be rigorous and
compare with the analytical methodology, a radial average must be done before com-
puting the DFT followed by a modal decomposition into azimuthal modes. However,
since the numerical simulation considers only a 12◦ periodic sector, the corresponding
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first azimuthal mode is the 30th mode, for which the cut-off frequency should be far
beyond the combustion noise generation frequency range. Thanks to this fact, only the
planar mode is considered and its evolution along the MT1 configuration is obtained by
a successive surface (mass-weighted) integration at different axial positions of each DFT
field. Doing so, the evolution of the entropy plane wave and therefore its attenuation
can be followed along the complete stator/rotor. It has been highlighted that the sep-
aration of the flow produced by the shock waves on the suction side of the stator vane
and rotor blades is an entropy source. This feature has been identified in the forced
and unforced flow and corresponds to a transfer of energy between vorticity to entropy
modes. In the low frequency range (between 100 and ≈1500 Hz), where the entropy
mode is less submitted to dispersion produced by the heterogeneous flow (cf. Morgans
et al. (2013) and Giusti et al. (2016)), this entropy source is sufficient to compensate the
attenuation of the entropy wave, leaving its entropy-entropy transfer function to be ≈ 1.
For higher frequencies (between 1500 and 3000 Hz), a strong generation of entropy and
velocity fluctuations is identified by DMD analysis at the stator wake region of the base-
line flow. In this frequency range, the generation of entropy by the wakes and shocks
is strong enough to not only compensate the attenuation of the entropy plane wave,
but to be stronger than the generated entropy wave at the inlet of the configuration
(entropy-entropy transfer function > 1). Comparing the attenuation of this cylindrical
entropy forcing with the reference plane wave forcing carried by Papadogiannis et al.
(2016) and Wang et al. (2016), it has been found that the cylindrical forcing (non-planar
wave) is less sensitive to the attenuation of the non-homogeneous flow: in this case the
attenuation of the 2000 Hz entropy plane wave is divided by two compared with Papado-
giannis et al. (2016) plane wave forcing simulation. Indeed, since the cylindrical forcing
is not a plane wave, it acts as a passive scalar that follows the streamlines of the flow,
where its attenuation should be dependent on its characteristic length (in this case the
radius): the bigger the radius is, the closer to a plane wave the forcing is and therefore
the stronger the dispersion of the wave due to the non-homogeneous flow is. Afterwards,
the generation of acoustic waves in the simulation has been compared with the analytical
generation and propagation of acoustic waves due to a planar entropy forcing using the
CHORUS methodology. It has been found that more acoustic waves are generated in the
simulation, where up to 1500 Hz both results follow the same trend: maximum genera-
tion of acoustics at low frequencies and then decreasing of the generation of acoustics, as
already found in Chapter 5. Afterwards, for larger frequencies, the generation of supple-
mentary entropy modes make the generation of acoustic waves stronger and therefore in
disagreement with the analytical findings. Indeed, the analytical methodology neither
takes into account the entropy sources located in the wakes and shocks, nor the vortex
noise generated at the wakes. Finally, the radiated acoustic power at the outlet of the
MT1 has been computed. The same trend as in the entropy-acoustic transfer function
has been obtained, where the maximum production of acoustics is found to be in the
lowest frequencies and the numerical simulation shows a stronger acoustic power gener-
ated. The advantage of the analytical methodology is that the contribution of each noise
source can be split, showing that acoustic waves generated by the heating produced by
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the energy source term (direct noise) are negligible compared with the entropy generated
acoustic waves (indirect noise). However, the contribution of vortex noise is not taken
into account in the analytical model due to the fact that no vorticity wave is present
in the extraction planes in the CHORUS methodology and there is no model that takes
into account vorticity sources in the wakes. In the case of the numerical simulation,
the overall acoustic waves are taken into account in the radiated acoustic power: vortex
noise, entropy noise, direct noise and even reflected waves at the boundary conditions,
which are very small and concentrated only in the very small frequencies (6300 Hz).

Finally the last conclusion of this chapter is that the CHORUS methodology gives
a very good estimation of the propagated noise in this case. Even though, one of the
strongest assumptions is the compact limit, a good agreement has been found in all the
presented results up to 3000 Hz, while the compact limit has been estimated to be at
≈ 250 Hz. However, a model to take into account the vorticity and entropy generated
at the wakes is needed to improve the predictions.
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General conclusions and
perspectives

Over the years, the constant increase in air traffic led to the public awareness of the
associated consequences that are fuel consumption, pollutant emissions, and other dis-
turbances. To control the outcome of this traffic growth, international regulations were
enforced. One of these impacts the specific phase of aircraft in the near zone airports.
Indeed, in this usually busy environment, perceived noise is of importance. Due to the
different governmental constraints put in place over the years, all of the noise identified
sources of an aircraft have been considerably reduced with the exception of combustion
noise, which becomes today a potentially limiting factor for further reduction. In this
PhD work, our objectives were to: 1) review and understand the limits of reduced models
whenever applied to combustion noise predictions, 2) rely on high-fidelity LES simula-
tions to improve our understanding and 3) address a complex geometry application.

To ease the understanding and assess numerical methods to predict indirect noise
generation, neither the combustion chamber nor the combustion process have been con-
sidered. In Part I combustion noise generation is studied in the simplest configuration: a
subsonic nozzle flow. Indeed, the flow can be considered axisymmetric and isentropic, al-
lowing a strong simplification of the governing equations. Throughout this present work,
numerical results are compared or guided by analytical methods presented in Chapter 2.
For this specific study and adequate validation, the chosen configuration is a well defined
nozzle flow called the Entropy Wave Generator (EWG) introduced in Chapter 3, and
for which experimental data is available. For this configuration, the analytical methods
presented in Chapter 2 are used to make a parametric study of the influence of the inlet
acoustic boundary condition and the modelling of the introduced temperature fluctua-
tion in Chapter 4. It is concluded that the correct modelling of the experimental heating
device allows to retrieve the correct shape of the temperature fluctuation as well as the
correct timing of the pressure fluctuation signal (which was not the case in the prior
studies carried by Duran et al. 2013b). The inlet acoustic boundary condition plays an
important role on the generation of entropy noise and without an accurate evaluation of
its experimental value, an exact reproduction of the experiment by numerics or analyt-
ics is very difficult. Overall analytical results show disagreement between the predicted
pressure signals and the measurements. To obtain a better insight in the mechanisms re-
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sponsible for combustion noise generation and understand why the analytical modelling
fails to reproduce the subsonic experiment, full compressible Large Eddy Simulations
(LES) are detailed in Chapter 5 for the EWG. Here, special care is taken to model cor-
rectly the two important parameters identified in the analytical analysis of the nozzle
(i.e. the heating device and the inlet acoustic impedance). The electrical resistances
of the experiment are taken into account in the CFD simulation by the introduction
of an energetic source term in the energy transport equation while the inlet reflection
coefficient is set to the most physical value, i.e. Rin = −1 due to the upstream settling
chamber. The EWG LES pressure signals agree very well with the measurements, which
highlights the lack of physics in the reduced models. To get an improved understand-
ing on the effects missing in the analytical models, the nozzle transfer functions are
computed by LES and compared with the analytical ones. First, in order to respect as
much as possible the hypothesis made by the analytical model (i.e. isentropic flow) and
validate the numerical methodology to compute the nozzle transfer functions, the Euler
set of governing equations is used. The acoustic-acoustic transfer functions of the nozzle
are found to be equivalent between the non-compact analytical method of Duran and
Moreau (2013a) and the Euler 3D simulation. However, the entropy-acoustic transfer
functions and the entropy-entropy transmission coefficient are found to disagree for the
range of frequencies between 100 and 250 Hz. This reveals a geometry effect not taken
into account by the analytical quasi-1D theory. Indeed, the distortion of the entropy
plane wave through the nozzle causes this disagreement. The entropy plane wave is
scattered into higher order modes (mostly radial modes in the case of Euler simulation)
due to the flow distortion and streamlines curvature at the nozzle. This attenuation of
the entropy plane wave can be taken into account by models like Leyko et al. (2010) and
Zheng et al. (2015). The attenuation model of Leyko et al. (2010) is found to be very
precise when comparing to the results obtained in the Euler numerical simulation and
other exact models like the one proposed by Giusti et al. (2016). Second, the LES based
Navier-Stokes (NS) equations are used to take into account all the physics of the problem
(specially the viscous effects neglected by the isentropic model) and the nozzle transfer
functions are re-obtained. This time, all the nozzle transfer functions at low frequency
(below 100 Hz approximatively) are found to be in disagreement with the analytical
predictions. The transition to turbulence at the nozzle throat generates vorticity, which
produces vorticity waves that generate more acoustic waves. The generation of vorticity
and its associated noise is another phenomenon neglected by the analytical model and
seems to be an important contributor of the generated acoustics at low frequency as
already found by Howe (2010). Finally, the analytical model presented in Chapter 4
is used together with the LES NS transfer functions, to reproduce the results obtained
by the EWG LES. This time, the resulting pressure signals are in good agreement with
the EWG LES, which confirms the importance of viscous and geometry effects naturally
present in the LES NS transfer functions. For this final case, and although the entropy
wave is found to be scattered into higher order modes, only plane waves have been con-
sidered to reproduce the results of the EWG LES. This result confirms that acoustic
waves remain 1D, as proposed in the analytical model of Zheng et al. (2015).
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In Part II, combustion noise is studied in a more realistic framework: a high pressure
turbine stage by use of LES. The selected configuration is the MT1 turbine stage, whose
baseline flow topology is first studied in §6.2.2. Then, in order to better represent the
physics in a real aero-engine, the temperature fluctuations generated by a burner are
modelled by the introduction of a cylindrical fluctuating energy source term. For this
specific simulation, particular attention has been taken to introduce temperature fluctu-
ation amplitudes of the same order magnitude as the ones measured in real aero-engines
(cf. Schuster et al. 2015). To get further insight in the attenuation of the generated tem-
perature fluctuation and the generation of combustion noise, Fourier analysis is carried
based on the unsteady simulations. For this complex geometry flow, the analysis is found
to be much more complex due to the presence of secondary flows, shock waves, wakes
and rotor motion. It has been found that the baseline flow generates entropy modes by
two mechanisms, the motion of the unsteady shock waves and the conversion of vorticity
modes into entropy modes. The attenuation of the entropy plane wave in the simulation
is compared with the 3D entropy dissipation function computed using the model of Leyko
et al. (2010), which has been proven to give precise results in nozzle flows. However this
time, since only the velocity mean field is used to estimate the attenuation of the en-
tropy plane wave, only the effects of the mean flow are taken into account, neglecting
the generation of entropy waves by the unsteady baseline flow, thereby underestimating
the entropy transmission coefficient. The results of the numerical simulation are also
compared to an analytical model, the CHORUS methodology developed at CERFACS,
which is based on the 2D compact model of Cumpsty and Marble (1977a). Once again,
important features such as strong 3D effects as well as viscous effects are neglected by
the analytical model. Therefore, and as expected, the acoustic generation due to the in-
troduction and acceleration of temperature fluctuations is underestimated (cf. Figs. 6.30
and 6.34). This is mostly due to the lack of a model taking into account the generation
of entropy modes and vorticity waves (as already found in the nozzle flow analysis) by
the unsteady baseline flow. It is also highlighted that entropy noise is the dominant noise
source (cf. Fig. 6.35) for this configuration and a reliable model to take into account the
attenuation of the entropy wave needs to be developed. However, despite the fact that
the generation of acoustic waves by the analytical model is underestimated, CHORUS
is capable of predicting the generated noise and this using the compact assumption.

A first perspective of the present PhD work is to improve analytical models and the
understanding of combustion noise generation and propagation. The invariants method-
ology of Duran and Moreau (2013a) should be first extended to take into account the
attenuation of the entropy wave through the nozzle, using for example the attenuation
function of Leyko et al. (2010). New models are needed to be developped to take es-
timate the vorticity waves generated by the unsteadiness of the flow (eg. transition to
turbulence or wakes). A model is also needed to take into account the conversion of
vorticity modes into entropy modes as well as the generation of entropy modes by shock
waves. To further improve the understanding in combustion noise generation in a turbine
stage, the same analysis carried for the EWG nozzle to compute the transfer functions
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is needed. To do so, instead of introducing an energy source term, acoustic and entropy
plane waves need to be introduced properly through the boundary conditions, and this
taking particular care to the reflections at boundary conditions. Finally, in this study
of the MT1 turbine stage, only planar waves were considered in the diagnostics. This is
justified by the simplification of the full geometry into a 12◦ periodic sector, for which
the first azimuthal mode corresponds to the 30th azimuthal mode of the full annular con-
figuration. In real engines, the first azimuthal mode could appear as a strong contributor
in the total acoustic power, as shown by Livebardon et al. (2015). In such a case, the
acoustic planar mode representation is not sufficient to describe the pressure field and
the full geometry needs to be taken into account. Such an exercise is today quite CPU
intensive and although possible, basic fundamental questions seem to be addressed first
for a viable exploitation of such a LES.
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Appendix A

Characteristic Boundary Conditions

Usually, numerical codes solve equations for conservative or primitive variables inside
a numerical grid bounded by boundary conditions. When the equations solved by nu-
merical code are compressible, the propagation of acoustic waves is possible and the
code needs to handle these acoustic waves properly. A decomposition from conserva-
tive/primitive variables to waves is hence usually done at the boundary conditions to
handle properly the acoustics separately from other waves. To do so, the character-
istic decomposition is used. Although the characteristic method works for hyperbolic
systems (as the Euler equations) as described by Thompson (1987) who developed the
Euler Characteristic Boundary Conditions (ECBC), this method can not be directly
applied in the Navier-Stokes equations. Poinsot and Lele (1992) extended the ECBC
methodology to Navier-Stokes Characteristic Boundary Conditions (NSCBC) adding the
contribution of viscous dissipation and thermal diffusion with supplementary relations.
Baum et al. (1994); Moureau et al. (2005) then extended the NSCBC formalism to react-
ing flows while Yoo and Im (2007); Lodato et al. (2008) developed the transverse terms
of NSCBC to take into account three dimensional effects that were usually neglected.

A.1 NSCBC general formalism

The main step of the NSCBC formalism consists in decomposing flow variables into
characteristic variables (waves) in the reference frame of the boundary condition. The
obtained waves are two acoustic waves (L1 and L2), two vorticity waves (L3 and L4)
and one entropy wave (L5). Some of these waves are ingoing while others are outgoing
depending on their nature, flow (whether subsonic or supersonic), and the local position
with respect to the computational domain: inlet or outlet. Outgoing waves are waves
computed by the numerical code at the end of a time iteration. Ingoing waves are waves
that have to be imposed by the NSCBC strategy. For example, Fig. A.1 shows the
wave decomposition for a subsonic inflow and outflow. For the inlet, four waves must
be imposed (L1, L3, L4 and L5) and for the outlet only the ingoing acoustic wave L2

needs to be imposed.
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Figure A.1 NSCBC waves decomposition for a subsonic inflow and outflow.

For a single-species flow (no chemical reaction), the variations of characteristic vari-
ables in terms of primitive variables read:

∂L1 = ∂un +
1

ρc
∂p, (A.1a)

∂L2 = − ∂un +
1

ρc
∂p, (A.1b)

∂L3 = ∂ut1 , (A.1c)

∂L4 = ∂ut2 , (A.1d)

∂L5 =
ρ (γ − 1)

2c

(

∂L1 + ∂L2
)

− ρ

T
∂T, (A.1e)

where subscripts n, t1 and t2 represent the normal and tangential components attached
to the reference frame of the boundary condition and "∂" indicates a fluctuation be-
tween the specified value at the boundary condition (called target value) and the value
computed at the end of the iteration (called state value).

Let’s take the example of a subsonic inflow where the velocity and the temperature
fields are imposed. For a subsonic inflow, four ingoing waves are needed: the upstream
acoustic travelling acoustic wave L1, the two vorticity waves L3 and L4 and the entropy
wave L5 (cf. Fig. A.1). Therefore, Eq. (A.1) should be written in terms of the known
variables (outgoing acoustic wave L2, velocity field and temperature):

∂L1 = 2∂un + ∂L2, (A.2a)

∂L3 = ∂ut1 , (A.2b)

∂L4 = ∂ut2 , (A.2c)

∂L5 =
ρ (γ − 1)

c

(

∂un + ∂L2
)

− ρ

T
∂T. (A.2d)
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If these conditions are applied directly (in particular Eq. (A.2a)), the boundary condi-
tion will act as acoustically fully reflective, which in some cases will end in a physically
and/or numerically unstable problem. To introduce an acoustic wave and avoid reflec-
tions, the relaxed formulation is used. To do so, the dependence on the outgoing wave
L2 need to be dropped from incoming waves L1 and L5 and fluctuations are written as
the difference between the "target" and the "state" values.

∂L1 = 2Kun

(

utn − usn

)

∆t, (A.3a)

∂L3 = Kut1

(

utt1 − ust1

)

∆t, (A.3b)

∂L4 = Kut2

(

utt2 − ust2

)

∆t, (A.3c)

∂L5 =
ρs (γ − 1)

cs

[

Kun

(

utn − usn

)

∆t
]

− ρs

T s
KT

(

T t − T s
)

∆t, (A.3d)

where superscripts t and s stand for target and state values respectively, K is the relax-
ation coefficient related to the different variables in the reference frame of the boundary
condition and ∆t is the time step of the iteration. Note that this formulation acts like
a spring, where the stiffness of the spring is controlled by the relaxation coefficient K.
The greater the value of K, the greater the correction of the system (the ingoing wave
introduced). Therefore, the value of K is directly related to the reflection coefficient of
the boundary condition (as explained by Selle et al. (2004)).

A subsonic outflow is easier to treat, since the only ingoing wave is the downstream
travelling acoustic wave L2. When static pressure is imposed and using the relaxed
formulation, the expression for ∂L2 reads:

∂L2 =
2Kp

ρscs

(

pt − ps
)

∆t. (A.4)

This formalism for boundary conditions is used for the inlet and outlet for every
numerical simulation computed with AVBP in the present work. For the acoustically
and entropy forced simulations, an extension of the above presented NSCBC formal-
ism is needed for the introduction of the disturbances while keeping the same acoustic
impedances.

A.2 NSCBC extension for forcing waves

In the present section a methodology to introduce acoustic and entropy disturbances
through the boundary conditions adding a forcing term in the NSCBC formalism is
detailed. The forcing signal is a user defined function that depends only on time f(t).
In the next paragraphs, the extended NSCBC forcing methodology is briefly explained
for three cases:

1. Acoustic forcing through a subsonic inlet boundary condition where the velocity
and temperature are imposed.
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2. Entropy forcing through a subsonic inlet boundary condition where the velocity
and temperature are imposed.

3. Acoustic forcing through a subsonic outlet boundary condition where the static
pressure is imposed.

A.2.1 Upstream acoustic forcing methodology

The forcing of an acoustic perturbation through the inlet boundary condition is added
to the expression of the acoustic ingoing wave ∂L1 (cf. Eq. (A.1a)). The NSCBC for-
malism was formulated in terms of fluctuations, therefore the forced signal is introduced
as a time derivative A

df(t)
dt source term, where A is the amplitude of the forcing and f(t)

the forcing signal. However, the introduction alone of this source term in the expression
of ∂L1 reacts as a modification of the target value, modifying therefore the value of
the ingoing wave and therefore the reflection coefficient of the boundary condition. To
avoid this effect, a term is needed to compensate the introduction of the forcing term,
in other words the velocity perturbations generated by the introduction of the forced
wave written: AKunf(t). Following these steps, the set of resulting waves yields (when
imposing velocity and temperature):

∂L1 = 2Kun

(

utn − usn

)

∆t+ 2A

[

Kunf(t) +
df(t)

dt

]

∆t

︸ ︷︷ ︸

Acoustic forcing contribution

, (A.5a)

∂L3 = Kut1

(

utt1 − ust1

)

∆t, (A.5b)

∂L4 = Kut2

(

utt2 − ust2

)

∆t, (A.5c)

∂L5 =
ρs (γ − 1)

cs

[

Kun

(

utn − usn

)

∆t
]

− ρs

T s
KT

(

T t − T s
)

∆t −

A
ρs

T s
KT f(t)∆t,

︸ ︷︷ ︸

Temperature fluctuation generated
by the forced acoustic wave

(A.5d)

It should be noticed that the acoustic forced wave generates an entropy wave coming
from Eq. (A.1e). If no temperature fluctuation is introduced in ∂L5, extra entropy
waves will be generated at the same time, due to the NSCBC conditions trying to fix
the temperature to the target value T t.

A.2.2 Downstream acoustic forcing methodology

The forcing of an acoustic perturbation through the outlet boundary condition is
added in the expression of the acoustic ingoing wave ∂L2 (cf. Eq. (A.1b)). The principle
is the same as in the inlet acoustic forcing: two source terms are added, one to introduce
the forcing signal and one that compensate (in the present case) the pressure fluctuations
generated by the introduction of the forcing. Therefore, the expression of an acoustic
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forcing through the outlet boundary condition extended from Eq. (A.4), leads to (when
imposing static pressure):

∂L2 =
2Kp

ρscs

(

pt − ps
)

∆t+
2A

ρscs

[

Kpf(t) +
df(t)

dt

]

∆t

︸ ︷︷ ︸

Acoustic forcing contribution

, (A.6)

A.2.3 Entropy forcing methodology

The forcing of an entropy perturbation through the inlet boundary condition is added
in the expression of the entropy ingoing wave ∂L5. The forcing signal is introduced
in Eq. (A.3d), resulting in the following set of equations (when imposing velocity and
temperature):

∂L1 = 2Kun

(

utn − usn

)

∆t, (A.7a)

∂L3 = Kut1

(

utt1 − ust1

)

∆t, (A.7b)

∂L4 = Kut2

(

utt2 − ust2

)

∆t, (A.7c)

∂L5 =
ρs (γ − 1)

cs

[

Kun

(

utn − usn

)

∆t
]

− ρs

T s
KT

(

T t − T s
)

∆t −

A
ρs

T s

[

KT f(t) +
df(t)

dt

]

∆t

︸ ︷︷ ︸

Entropy forcing contribution

, (A.7d)
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Appendix B

Spectral and modal decomposition

The spectral decomposition methods are used to separate the contribution of different
harmonics from a signal. Once in the spectral space, a modal decomposition can be
furthermore done into azimuthal and radial modes. In the case of nozzle flows for
example, due to the axi-symmetric nature of the studied flow, it could be interesting
to study the radial modes. In the case of the LES simulation, azimuthal modes can be
triggered due to the nozzle jet, and an azimuthal decomposition can be helpful to study
their importance.

B.1 Spectral decomposition

In the present study, the harmonics that compose the forcing signal are well known.
Hence, the transformation of the temporal forced signal into a Fourier’s series can be
simply done by a Discrete Fourier Transform (DFT). The DFT consists in decomposing
a periodic signal S containing N discrete points into a sum of complex numbers through
the relation:

Sk =
∞∑

n=−∞
sn exp (iωnk/N) , (B.1)

where Sk is the kth point of the discrete signal S, sn is the nth Fourier’s coefficient
(corresponding to the nth harmonic) and ωn = 2πn is the angular frequency. The
Fourier coefficients sn are computed by the following relation:

sn =
1

N

N−1∑

k=0

Sk exp (−iωnk/N) . (B.2)

This expression is used in each node of the numerical grid using a total of N in-
stantaneous solutions. The result is a 3D field of each harmonic composing the forcing
signal.
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B.2 Azimuthal mode decomposition

For each harmonic, a decomposition into azimuthal modes can be done. The azimuthal
decomposition of a ring of radius r, discretised by Nt points from −π to π into the
Fourier space can be written:

snk(r, θ, x) =
∞∑

m=−∞
snm(r, x) exp (−imθ) , (B.3)

where the azimuthal Fourier coefficients snm are given by the relation:

snm(r, x) =
1

Nt

Nt∑

k=1

snk(r, θ, x) exp (imθk) . (B.4)

It is important to notice that the azimuthal mode of order m has m lobes and its
angular rotation speed is of ω/m.

B.3 Radial mode decomposition

It is possible to decompose each azimuthal mode into radial modes. Nevertheless,
there is no periodicity over the radius and a different formalism for the radial modes
decomposition is applied.

The radial mode decomposition for a cylindrical duct of constant section is issued from
the wave equation (Rienstra and Hirschberg 2003, Chap. 7 - Duct acoustics):

∂2A

∂x2
+
∂2A

∂r2
+

1

r

∂2A

∂θ2
+ ω2A = 0, (B.5)

where A is a wave. Using the method of separation of variables for the wave A(r, θ, x) =
Ar(r)Aθ(θ)Ax(x), it can be shown that the radial component Ar(r) satisfies the equation:

r2d
2Ar
dr2

+ r
dAr
dr

+
(

r2k2 −m2
)

Ar = 0, (B.6)

where, imposing the boundary condition ∂A
∂r |r=R = 0 (rigid wall), the proper solutions

of Eq. (B.6) are written in the form:

Emµ(r) = AmµJm(χmµr), (B.7)

with Jm the ordinary Bessel function (corresponding to the azimuthal order m) of the
first kind, µ the order of the radial mode and Amµ and χmµ the modal coefficients of
the cylindrical duct which are determined using the boundary conditions.
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In order to express each azimuthal mode as the sum of radial modes, the proper
solutions Emµ(r) are normalised such that the norm of the scalar product defined as:

〈f |g〉 =

∫ R

0
rf(r)g(r)dr, (B.8)

is equal to 1 (〈Emµ(r)|Emµ(r)〉 = 1). In that case, the azimuthal modes yield:

Anm(r) =
+∞∑

µ=0

AnmµEmµ(r) =
+∞∑

µ=0

〈Anm(r)|Emµ(r)〉Emµ(r). (B.9)
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Appendix C

Numerical dissipation/dispersion of
the entropy wave

Before introducing any perturbation in the numerical simulation, it is important to
choose a numerical scheme capable of transporting without dissipation and dispersion
the different disturbances. AVBP classical numerical schemes are: LW, TTGC and
TTG4A. In the work of Lamarque (2007), the numerical dissipation and dispersion
properties of AVBP numerical schemes were studied. The dissipation of the numerical
scheme is given by the amplification coefficient of the scheme |G| and corresponds to
an error on the amplitude of the convected waves. Figures C.1a and C.2a show the
dissipation introduced by the different numerical schemes for CFL=0.1 and CFL=0.7
(∆ being the characteristic length of a mesh element) respectively. TTGC scheme shows
performances close to a compact numerical scheme of 6th order, being the best AVBP
scheme to convect disturbances without dissipation. Dispersion of the scheme is a phase
error that changes according to the wavelength. Indeed, the oscillations are transported
with a wrong velocity. The study of the dispersion of a scheme is done analysing the
phase velocity and the real part of the modified wave number (K∗

R). Figures C.1b and
C.2b show the real part of the modified dimensionless wave number (K∗

R∆) compared
with the dimensionless wave number for different values of CFL (0.1 and 0.7). A value
of K∗

R > K indicates that the scheme has a phase in advance, whereas K∗
R < K indicates

a phase in retard. LW and TTG4A schemes dissipate more than TTGC. However, LW
and TTG4A schemes disperses less, in particular when the CFL number increases.

For a given CFL, the number of points per wavelength needed to avoid dispersion is
considered to be the maximum value of K∆ allowing to have less then 5% of error in the
phase velocity. This number of points per wavelength can be computed from Figs. C.1b
and C.2b. Table C.1 summarizes the maximum wave numbers and wavelengths to obtain
less than 5% of error in the phase velocity. The best result is obtained for TTGC scheme
with 5.37 points per wavelength. It remains to know the minimum wavelength to be
resolved in the numerical simulations to construct a numerical mesh that respect at least
6 points per wavelength. Knowing that 250 Hz is the highest computed frequency and
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Figure C.1 Numerical dissipation and dispersion introduced by the different numerical
schemes of AVBP computed with a CFL=0.1.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.5  1  1.5  2  2.5  3  3.5

m
o

d
(G

)

Dimensionless wave number (κ∆)

LW
TTG4A
TTGC

(a) Numerical dissipation.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0  0.5  1  1.5  2  2.5  3  3.5

D
im

e
n

s
io

n
le

s
s
 m

o
d

if
ie

d
w

a
v
e

 n
u

m
b

e
r 

(κ
* R

∆
)

Dimensionless wave number (κ∆)

LW
TTG4A
TTGC
κ∆

(b) Real parts of the modified dimensionless
wave number (dispersion).

Figure C.2 Numerical dissipation and dispersion introduced by the different numerical
schemes of AVBP computed with a CFL=0.7.

the convection velocity of the different transported waves, the different wavelengths can
be computed: λσ = |u|

250 , λA+ = |u+c|
250 and λA− = |u−c|

250 . Using the isentropic relations,
an estimation of the bulk quantities inside the nozzle (velocity and sound velocity) can
be obtained. Figure C.3 shows the evolution of the different wavelengths along the axial
coordinate. The wavelength is proportional to the wave convection velocity, therefore, it
is the entropy wave which determines the smallest wavelength and the limiting factor of
the characteristic element size of the mesh. According to the bulk quantities computed
using the isentropic relations, the convection velocity of the entropy wave reaches its
minimum in the upstream and downstream ducts of the EWG. The wavelengths inside
each duct are of about 45 and 25 mm respectively, and according to Tab. C.1, the
characteristic length of the mesh elements inside the upstream and downstream ducts
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should be of about 8 and 5 mm respectively.

Scheme
CFL = 0.7
k∆ λ

LW 0.46 13.66∆
TTG4A 1.099 5.72∆
TTGC 1.17 5.37∆

Table C.1 Wave numbers and wavelengths to obtain less than 5% error in the phase velocity.
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Figure C.3 Wavelengths of the disturbances at 250 Hz along the EWG numerical domain.

It has been shown that the characteristic element length of the mesh for the study of
the acoustic transfer functions of the nozzle depends on the smallest entropy wavelength
convected, which corresponds to the highest frequency studied. Therefore, a series of
test cases to evaluate the capability of the numerical scheme to properly convect entropy
waves without dissipation and dispersion along the domain are carried out. The test
cases consist in the introduction of an entropy perturbation of 15 K of amplitude (5%
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of the mean temperature of the flow at the inlet) in a cylindrical straight duct of 15
mm of radius (inlet duct of the EWG) and 0.5 m of length (total length of the domain
considered for this study). The fluid is considered to be inviscid (Euler equations are
solved) and the walls of this cylindrical duct are considered to be adiabatic slip walls
(only the velocity normal to the wall is zero). The test cases are:

1. Convection of a sinusoidal entropy plane wave of 250 Hz of frequency by a flat
velocity profile.

2. Convection of a sinusoidal entropy plane wave of 250 Hz of frequency by a non-flat
velocity profile imposed at the boundary condition.

3. Convection of an entropy impulsion by a non-flat velocity profile imposed at the
inlet boundary condition.

The first test case evaluates the capability of the numerical scheme to properly con-
vect the entropy wave without dissipation and dispersion produced by the numerical
scheme. The second test case assesses the distortion of the entropy plane wave by a
non-homogeneous mean flow. Finally, the third test case evaluates the conservation of
an entropy perturbation. Second and third test cases should demonstrate that the en-
tropy wave is not dissipated but only redistributed in space by the non-homogeneous
flow (conclusion of the of work Morgans et al. 2013 in the framework of a fully developed
turbulent channel flow).

The numerical scheme chosen is TTGC, two meshes are constructed with only tetrahe-
dral elements: M1 with characteristic element length 3.75 mm (12 points per wavelength)
and M2 with characteristic element length of 2.2 mm (20 points per wavelength). Fig-
ure C.4 shows the fluctuations of the temperature along the central line of the cylindrical
domain (R=0) for the first test case (flat velocity profile imposed at the inlet), where
smu2 and smu4 are coefficients that control the 2nd and 4th dissipation operators for ar-
tificial viscosity. In the cases where no artificial viscosity is added, the convection of the
entropy wave produces artificial noise that exceeds the amplitude of the introduced wave
(15 K). Adding more points convects the temperature wave generating much less artifi-
cial noise. Note that for both meshes, if no artificial viscosity is present the simulation
crashes. Artificial viscosity is needed to stabilize the computations, however artificial
viscosity consequently dissipates the entropy wave. Therefore, the artificial viscosity
introduced needs to have the smallest possible value. After multiple computations, this
value seems to be smu2 = 0 and smu4 = 0.007, which allows convecting the wave prop-
erly. In the case of the coarser mesh M1, 63% of the introduced amplitude fluctuation
reaches the outlet of the duct, whereas in M2 90% of the initial amplitude reaches the
outlet of the duct.

In the second test case, only M2 is used. The velocity profile imposed at the inlet
boundary condition obeys the law:

ux(r) = A+B cos (2πCr) ,
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Figure C.4 Temperature fluctuations extracted at the central line (R=0) of the cylindrical
duct domain with and without artificial viscosity.

where A = 11.95, B = 2.5, and C = 200π
3 are coefficients chosen to conserve the mass

flow rate imposed in the isentropic baseline flow computed in §5.1, and provide an axial
velocity fluctuation of about 5 m/s between the wall and the centreline. In Fig. C.5,
the velocity profile is plotted against the radius at three different positions of the duct:
the inlet, the middle and the outlet of the duct. Ideally, in the simulation of a straight
cylindrical duct with constant section following only the Euler equations, the radial
velocity profile should remain the same through the duct. In the present simulation, even
though the artificial viscosity added in the simulation is fixed to the smallest possible
value, it has an effect on the velocity profiles, smoothing them (the velocity profile loses
10% of its maximal value). In Fig. C.6, the evolution of the real part of the entropy wave
is showed. The plane entropy wave is first distorted by the velocity profile and then it is
highly attenuated. This attenuation has been studied by different authors: Sattelmayer
(2003) and Leyko et al. (2013) introduced a dissipation function of the entropy wave
in the framework of a cylindrical duct flow and turbine rows respectivelly. Morgans
et al. (2013) and Giusti et al. (2016) carried out DNS and LES studies respectively of
a fully-developed turbulent flow in which an entropy wave was convected. It has been
found that for small values of the Helmholtz number, the decay on the entropy wave
magnitude is mostly due to shear dispersion arising from the non-uniform mean velocity
profile. For larger values of the Helmholtz number, turbulent mixing and diffusion
become more important. In the case of the present simulation, the effects of turbulence
are not present, therefore the attenuation is solely due to the non-homogeneities in
the velocity profile. Perturbations in the middle of the duct move faster compared to
the perturbations close to the walls. The hot and cold spots collide with each other
losing the planar form imposed at the inlet boundary. This also generates gradients in
the radial direction, leading to radial diffusion that further contributes to the mixing
between hot and cold spots. These effects are expected to increase with the residence
time and with the decrease of the entropy wavelength. A smaller wavelength of the
entropy perturbation leads to higher gradients making the diffusion process faster. To
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illustrate the attenuation of the entropy wave, different attenuation models describing
the ratio of the entropy wave along the stream-wise coordinate σ(x) to the entropy
wave introduced at the boundary condition σ0 are compared in Fig. C.7. The results
are showed against the Helmholtz number St = x f

ub
. The formulations of the different

models are:

σ(x)

σ0

∣
∣
∣
∣
Sattelmayer

= exp (−iωτ)
sin (−iωKτ)

ωKτ
, (C.1a)

σ(x)

σ0

∣
∣
∣
∣
Leyko

=
1

R2

∫ R

0
r exp (−iωtd(r)) dr, (C.1b)

σ(x)

σ0

∣
∣
∣
∣
Morgans

= exp

(

− ω2

4πA2
IR

)

exp (−iωτ) , (C.1c)

σ(x)

σ0

∣
∣
∣
∣
Giusti

=
2

R2ub

∫ R

0
r ux(r) exp

(

−iω
x

ux(r)

)

dr, (C.1d)

where τ = x
ub

is the characteristic convection time of the entropy wave, K is a constant
measuring the dispersion rate of the entropy wave, td is a function measuring the time
lapse of a particle over a streamline to go from the inlet to x, and AIR is a model
parameter found from a Gaussian model of the amplitude of the impulse response (e.g.
obtained from the probability density function of the residence time of the entropy wave)
that depends on the axial position and the bulk velocity. Giusti et al. (2016) introduced
a constant A′ to replace AIR that depends only on the shape of the mean velocity profile,
where A′ = xAIR√

πub
. It is worth noting that all the models, except the one proposed by

Leyko et al. are only valid for a constant duct section. The most representative of the
physical phenomena are the ones proposed by Leyko et al. and Giusti et al., where
no constant needs to be fitted and correspond to the direct resolution of the entropy
conservation equation. Besides, they are the ones that reproduce better the numerical
results in terms of shape and amplitude.
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velocity profile.
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Figure C.6 Real part of the entropy wave of the cylindrical test case with a velocity profile.

Finally, in third test case, only M2 and the same velocity profile used for the second
test case are used. An impulsion of 15 K of amplitude corresponding to a half period of
a sinusoidal wave of 250 Hz is introduced through the inlet boundary condition (f(t) =

15 sin(2π250t) for t ∈
[

1
2(250) ; 1

250

]

). The temporal evolution of the averaged value of T ′/T̄

over the cylindrical duct cross-section along time for different axial positions is shown in
Fig. C.8a. The relative entropy integral of each axial position to the inlet are plotted in
Fig. C.8b. The entropy amplitude of the impulse is attenuated as it is convected along
the duct, but its integral remains constant, which demonstrate that the entropy wave is
not dissipated but only redistributed in space (in agreement with Morgans et al. 2013).
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Figure C.7 Attenuation functions of the entropy wave based on the mean flow compared with
the entropy attenuation extracted from the numerical simulation.
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Figure C.8 Convection of an entropy impulsion along a straight cylindrical duct by a
non-homogeneous flow.
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Appendix D

Conservation of the entropy wave
through a nozzle flow

In this section the dissipation of an entropy pulse through the EWG nozzle configuration
is studied following the methodology already proposed by Morgans et al. (2013). An
entropy pulse is introduced into the domain through the inlet boundary condition and
is convected by the flow. This study is realised for two cases: using the Euler and the
NS set of equations to model the flow. The corresponding converged mean flows used
to convect the entropy pulse are the ones described in §5.3.2 (for the Euler simulation)
and §5.1 on M2 (for the NS simulation). The entropy pulse corresponds to half a
period of a sinusoidal temperature wave of 15 K amplitude (f(t) = 15 sin(2π250t) for

t ∈
[

1
2(250) ; 1

250

]

) introduced as a plane wave through the inlet boundary condition.

Figure D.1 shows the convected entropy pulse at different instants, where the upper half
of each sub-figure represents the Euler numerical simulation and the lower part the NS
numerical simulation. From the firsts instants after the introduction of the entropy pulse,
the entropy front is distorted from its planar shape in the NS simulation, while it remains
planar in the Euler simulation. Indeed, the velocity profile developed in NS simulation
induces this deformation, where the velocity is zero at the walls and reaches its maximal
value at the centreline of the duct. After traversing the nozzle, the amplitude of the
entropy pulse in the NS simulation is more attenuated than in the Euler simulation.
This is due to strong 3D effects present in the NS simulation like the turbulent mixing
that induces the mixing of the spot. Finally, when the entropy fluctuation is convected
through the downstream duct, the Euler slug is found to be strongly attenuated, while
this attenuation seems to have less importance in the NS simulation.

To estimate the dissipation of the entropy pulse, the temperature fluctuations mass-
weighted cross-section average trace at different axial positions of the domain is extracted
and shown in Fig. D.2. The key positions are: 1. the inlet of the domain, 2. the inlet
of the nozzle, 3. the outlet of the nozzle and 4. the outlet of the domain. Clearly, the
entropy fluctuation is strongly attenuated in both simulations (as already highlighted
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(a)

(b)

(c)

(d)

Figure D.1 Progression of the entropy pulse through a nozzle viscous and inviscid flow.

in Fig. D.1). However, the attenuation followed in both simulations is not the same.
According to Morgans et al. (2013) and Giusti et al. (2016) dispersion generated by the
non-homogeneous velocity profile is the responsible for this attenuation. To illustrate
this, the absolute value of the radial gradient of the axial velocity (||∂Ux/∂R||) is shown
in Fig. D.3. This field is representative of the radial deformation of the velocity profile,
where clearer zones represent a flat velocity profile, while darker zones are representative
of strong velocity gradients. As already illustrated by Figs. D.1 and D.2, the entropy gust
is almost convected without attenuation in the upstream duct in the Euler simulation,
where the entropy fluctuation keeps its planar shape, the attenuation in this duct is
caused by the curvature of the streamlines near the convergent. In the NS simulation, the
attenuation in the upstream duct is due to the non-homogeneous mean profile caused by
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the wall boundary layers. The presence of the nozzle generates strong velocity gradients,
where also the entropy spot is strongly attenuated in both simulations. Finally, in the
downstream duct strong gradients of velocity are present in the Euler simulation, where
the entropy wave is also strongly attenuated, while almost no gradients are shown in
the NS simulation and the attenuation is found to be negligible in the downstream
duct. Therefore, in agreement with Morgans et al. (2013) and Giusti et al. (2016),
inhomogeneities in the velocity profile are responsible of attenuation by shear dispersion
of the entropy wave.
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(b) Navier-Stokes simulation

Figure D.2 Variation of T ′/T0 along the EWG configuration against time.

Figure D.3 Absolute value axial velocity radial gradient (||∂Ux/∂R||) computed from the
baseline flow of the numerical simulations.

Figs. D.1–D.3 have highlighted the attenuation of the entropy wave. However, to verify
if the entropy wave is dissipated or only redistributed in space, the relative integral (to the
inlet of the configuration) of the temperature fluctuations registered at different sections
in Fig. D.2 is computed and shown in Fig. D.4. This results reveals that even through a
nozzle, where strong 3D effects are taken into account by the numerical simulation, the
dissipation of the entropy wave is negligible during its advection (in agreement with the
turbulent channel flow study of Morgans et al. 2013).
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Figure D.4 Relative magnitude of the temperature fluctuation as it is advected through the
EWG configuration.
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