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Chapter 2

RÉSUMÉ EN FRANÇAIS

2.1 Introduction

Le terme d’Intelligence Artificielle (IA) a été prononcé pour la première fois par John
McCarthy lors d’un atelier de réflexion en 1955 [102]. Cet évènement eut lieu au Darth-
mouth College à Hanover dans le New Hampshire. Ce fut Claude Shannon lui-même, le
père de la théorie de l’information [135] qui suggèra cet atelier. Tous considèrent cette
conférence comme la pierre angulaire de l’IA. La création de cette discipline était bien en
avance sur la technique, puisque la puissance de calcul nécessaire était absente à l’époque.
Ce fût un évènement majeur qui marqua aussi bien le début de la discipline que le premier
hiver de l’IA [28].

De nos jours, l’Intelligence Artificielle est un terme au sens très large qui permet
de désigner les algorithmes qui ne fonctionnent pas selon des instructions pré-définies.
Le principe de ces programmes est de traduire une entrée (c’est-à-dire des données) en
sortie (action, décision, interprétation, etc.). Différentes familles existent au sein de l’IA.
En particulier, l’Apprentissage Automatique (ou Machine Learning) a su émerger parmi
le reste. Dans cette famille, on trouve un sous-ensemble d’algorithmes: l’Apprentissage
Profond (Deep Learning). La spécificité de ces derniers est de pouvoir manipuler des
données de grandes dimensions. Les champs d’applications se répartissent majoritairement
en trois catégories:

— Le Traitement Automatique de la Langue (TAL).
— Le Traitement du Signal Audio-Numérique (TSA).
— La Vision par Ordinateur (VO).
C’est à cette dernière catégorie que s’intéresse cette thèse. La VO a récemment connu

un fort gain de popularité en 2022 avec les modèles génératifs tels que DALLE-2 [119],
Imagen [128], ou StableDiffusion [122]. Mais il ne s’agit là que d’une sous-discipline récente
de la VO. L’application principale de la VO reste la classification à laquelle nous allons
nous intéresser. Il s’agit simplement de répondre à la question suivante:

11



Résumé en Français

“Que représente cette image?”
Le challenge ImageNet [32] est un parfait exemple de cette tâche. C’était une compéti-

tion annuelle permettant de classer les performances des classifieurs actuels. Le but étant
de classer des images dans 1 000 catégories (ou classes) prédéfinies, avec plusieurs millions
d’exemples au total. C’est précisément de cette compétition qu’a émergé la domination
de l’Apprentissage Profond. En 2012, Krizhevsky et al. remporte la compétition avec le
Réseau de Neurones Profond (DNN pour Deep Neural Network) nommé AlexNet [79].
Il s’agissait du premier DNN à remporter le concours. Concours qui ne sera par la suite
remporté que par d’autres DNNs qui apporteront leur lot d’innovations. Il s’agit du début
de l’ère de l’Apprentissage Profond.

Figure 2.1 – Un classifieur permet de trier des images en catégories appelées labels. Le
classifieur connaît d’abord une étape d’entraînement durant laquelle il apprend à effectuer
cette répartition.

La notion de sécurité n’est pas toujours présente dans une tâche de classification.
Certaines applications peuvent toutefois s’avérer sensibles dans leur contexte. Il peut
s’agir de défense nationale par exemple (reconnaissance et cartographie), de filtre sur des
réseaux sociaux (empêcher le partage de contenu inapproprié ), ou de véhicules autonomes
(systèmes de navigation). Ces véhicules se basent essentiellement sur de la Vision par
Ordinateur.

Il apparaît essentiel d’explorer toutes les potentielles menaces qui nuiraient à l’intégrité
de ces systèmes. Celles-ci sont nombreuses. Certaines interviennent dès la phase d’apprentissage:

— Empoisonnement: généralement dans le cas de données d’entraînement collectées
automatiquement. Les données sont volontairement dégradées pour déteriorer les
performances du modèle entraîné par la suite. [106].

— Porte Dérobée: La personne qui déploie le modèle peut l’avoir entraîné à réagir
différement sur des données spécifiques. Il peut donc ensuite se soustraire à une
reconnaissance ou détection, ou empêcher une bonne classification [92].

D’autres menaces concernent l’intégrité d’informations importantes, liées à la confi-
dentialité:
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— Inversion de Modèle: l’attaquant cherche à recréer les données qui ont été utilisées
lors de l’entraînement [46, 168].

— Inférence d’Appartenance: similaire à la précédente, l’attaquant essaye ici de trou-
ver si des données spécifiques qu’il détient ont été utilisées lors de l’entraînement
du modèle [60].

— Extraction de Modèle: une telle attaque vise à cloner un modèle existant avec la
plus grande précision [147]. Cela passe généralement par une abondance de requêtes
contre laquelle il peut être nécessaire de se protéger.

Enfin il reste les menaces qui interviennent lors de l’usage final du modèle:
— Attaque par Déni de Service: ces attaques sont bien connues de tous les systèmes

fonctionnant par requête. L’attaquant inonde le service de demandes pour le rendre
inutilisable à d’autres utilisateurs.

— Attaque par reprogrammation: l’attaquant modifie un modèle existant pour l’utiliser
à d’autres fins. [147][39].

— Attaque par Évasion ou Attaque Adversaire: le sujet de cette thèse. Une telle
attaque manipule les données d’entrée de manière imperceptible pour tromper un
classifieur.

Les attaques par évasion créent ce que l’on appelle des exemples adversaires ou ad-
verses. Ces exemples sont des données qui ressemblent à des données normales ou na-
turelles mais qui trompent le DNN. La prédiction est incohérente avec ce qu’un humain
perçoit. Cette thèse propose une étude approfondie de ces exemples: leur création, leur
viabilité, pourquoi ils existent et comment s’en protéger. Voici les différents chapitres au-
tour desquels s’articule cette thèse. Les deux premiers chapitres comportent des éléments
théoriques ainsi qu’une revue de la littérature. Les chapitres suivants s’appuient sur des
contributions publiées au cours de cette thèse.

2.2 Résumé des Chapitres

Le chapitre 4 permet de définir la base du manuscrit. Nous expliquons dans un
premier temps brièvement l’histoire de la classification d’image. Cela amène à suivre les
avancées qui ont mené au début de l’ère du Deep Learning avec l’arrivée d’Alexnet. Cette
première partie du chapitre définit également les bases de l’entraînement des réseaux
de neurones artificiels. La deuxième partie de ce chapitre part à la découverte des vul-
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nérabilités adverses. Les différents cadres d’attaques sont expliqués ainsi que le principe
de base des attaques boîtes-blanches. Celui-ci est intrinsèquement lié à la procédure
d’entraînement. Enfin les différentes notations ainsi que les attaques utilisées tout au
cours de cette thèse sont expliquées.

Le chapitre 5 revient sur l’origine des vulnérabilités adversaires. Dans une première
partie, nous cherchons à comprendre la raison de leur existence. Toutes les sources poten-
tielles de faille sont explorées. Comprendre la raison d’une faille du système permet de
chercher dans la bonne direction pour corriger celle-ci. Dans une deuxième partie, nous
explorons donc les défenses qui existent. Elles sont catégorisées selon leur mécanisme de
fonctionnement et leur spécificité.

Le chapitre 6 correspond à notre premier chapitre de contribution. Ces travaux ont
pour but d’établir un banc d’évaluation des réseaux pour des attaques en boîte-blanche
et en boîte-noire. C’est le seul chapitre qui parlera d’attaque boîte-noire. Nous y définis-
sons également les métriques et les courbes d’évaluation d’une attaque sur un réseau. Ces
courbes sont utilisées tout au long de cette thèse.

Le chapitre 7 parle de travaux qui partent d’une observation simple: la plupart
des travaux sur les exemples adverses ne produisent pas d’image. Même les illustrations
les plus connues dans la littérature ne sont en réalité pas des images adverses. La rai-
son est simple: les attaques sont considérées comme existant dans l’espace des données
traitées par le DNN. Cet espace correspond au pré-traitement que subissent les images.
Or cet espace est pseudo-continu, considéré par la plupart comme continu. Lorsque le
pré-traitement est inversé, les valeurs de pixels ne sont pas entières. Il ne s’agit donc pas
d’images numériques. Arrondir est dans bien des cas une mauvaise solution qui détruit
le signal adverse. Ce chapitre propose une quantification de ces objets aussi bien dans le
domaine spatial que JPEG. Les images ainsi créées restent bien adverses.

Le chapitre 8 est un chapitre qui est lui aussi lié à des notions de quantification.
Comme pour le chapitre précédent, nous cherchons à quantifier des images adverses. Cette
fois-ci en revanche, nous nous inspirons des travaux dans le domaine de la stéganogra-
phie pour le faire. Cette science a pour objectif de dissimuler des informations au sein
d’un medium. Une image par exemple. Les stratégies cherchent évidemment à rendre le
signal inséré le plus discret possible. Nous mettons donc au point dans ce chapitre des
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détecteurs pour identifier les images adverses. Certains de ces détecteurs sont employés en
stéganalyse, la science antagoniste de la stéganographie. Nous montrons alors quels gains
de détectabilité peuvent être obtenus selon les différentes stratégies de quantification.

Le chapitre 9 correspond à des travaux liés à la compréhension et à la défense.
Plutôt que d’étudier un mécanisme de défense, nous explorons l’impact des techniques
de redimensionnement employées au cours du pré-traitement des images. Les réseaux
de neurones sont capables de traiter des tailles différentes d’images, définies par leur
architecture et leur entraînement. Nous cherchons donc à savoir quelle stratégie est la
meilleure pour la défense à ce sujet. Dans une partie théorique, nous évaluons d’abord
l’impact de la taille d’image sur le signal adverse. Nous explorons ensuite les effets des
différentes méthodes de redimensionnement pour trouver la meilleure stratégie à obtenir.

2.3 Résumé des Contributions

La classification d’images est la principale application de la VO. Les réseaux de neu-
rones artificiels dominent largement le domaine. Cependant, on les sait vulnérables à des
petites perturbations sur les entrées: les exemples adversaires. Dans le Chap. 4 nous avons
brièvement expliqué le fonctionnement de ces réseaux, leur entraînement, et la fabrication
d’images adversaires. Dans le Chap. 5 nous avons étudié la raison même de l’existence de
ces exemples ainsi que des travaux qui visent à s’en défendre. Mais une des conclusions
de cette première partie est que les réseaux de neurones sont vulnérables aux attaques de
par leur fonctionnement même.

Le but de cette thèse était d’étudier ces exemples dans un contexte réaliste. Nous
avons pris plusieurs décisions dans cette direction. Nous étudions par exemple la tâche
de classification que nous jugeons la plus réaliste: Imagenet. Les images qui composent
le jeu de données ressemblent à des images qui seraient utilisées pour une application
réelle. Et les exemples adverses devraient également être des images réalistes. Dans les
chapitres 7 et 7, nous cherchons à quantifier des exemples adversaires dont les valeurs ne
sont pas entières. Dans le Chap. 7, il s’agit de minimiser la distorsion dans le domaine
spatial (PNG) ou fréquentiel (JPEG). Dans le Chap. 8, nous cherchons à minimiser la
détectabilité.

Dans le Chap. 8, nous jouons également le rôle de la défense en mettant au point des
détecteurs en partie inspiré de la stéganalyse. On y observe que la détection est efficace
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lorsque l’on connaît exactement le type d’attaque (et quantification). Lorsque l’on change
la stratégie de quantification, dans le but de la rendre moins détectable, les détecteurs
précédents ne parviennent plus vraiment à détecter les adversaires. Et même lorsque l’on
réentraîne des détecteurs sur des adversaire plus discrets, ils ne parviennent pas à retrouver
leur performances initiales (données quantifiées ‘naïvement’).

Dans le Chap. 9, nous étudions également l’attaque et la défense. On y analyse l’impact
de la taille et du redimensionnement sur les images adverses. La taille d’entrée d’un
réseau varie, même pour une même tâche comme Imagenet. Et lorsque l’image n’est pas
à la bonne taille, elle doit être redimensionnée. Cette étape affecte évidemment le signal
adverse sur des données attaquées. On conclue dans une première partie que les réseaux
utilisant des plus petites tailles semblent plus robustes aux attaques. Mais il s’agit aussi
d’un équilibre entre la performance et la robustesse: le ‘No Free Lunch’ décrit dans le
Chap. 5. Une deuxième observation est que le redimensionnement affecte logiquement plus
le signal lorsque de l’anti-crénélage est employé. Celui-ci n’affecte pas les performances du
réseau et devrait toujours être utilisé. Enfin, chaque attaque va être spécifique à la méthode
de redimensionnement utilisée. La transférabilité est négligeable. Mais nous montrons
également que l’utilisation d’un ensemble de modèle peut suffire à attaquer toutes ces
méthodes simultanément. Cela rajoute évidemment de la distorsion lors de l’attaque.

2.3.1 Vers une Evaluation Equitable

Nous n’avons travaillé qu’avec Imagenet. Nous considérons que les données plus petites
peuvent être pratique pour étudier les exemples adversaires, mais que les travaux publiés
devraient s’appliquer à Imagenet pour être comparables. Mais même lorsque les articles
utilisent Imagenet, les données sont rarement les mêmes. Une pratique commune est par
exemple de récupérer aléatoirement 1 000 images du jeu de validation, ce que nous avons
fait dans certains de nos travaux. Mais il n’y a aucun consensus sur ces données. Cette
méthode n’est peut-être pas la meilleure dans le cadre d’évaluation et comparaison. Nous
avons l’exemple en Sect. 5.3.2 des travaux de [159] qui ont extrait 5 000 images. Le taux
de classification correcte est de 100% sur ces images (par le DNN étudié). Ces données
ne semblent donc pas réellement aléatoires. Ce qui se rapproche le plus d’une bonne
pratique est d’utiliser des jeux de données dédiés à la discipline, le Neurips Adversarial
Challenge [80] 2017 par exemple.

Le deuxième critère d’évaluation serait comment l’attaque est utilisée. Les examples
adverses sont généralement construits selon:
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1. Une contrainte de Distorsion: l’exemple est construit avec une distorsion donnée,
quelle que soit sa classification à l’issue.

2. Une contrainte de Succès: l’attaque continue de pousser la distorsion jusqu’à ce
que l’exemple soit adverse.

3. Une Optimisation: l’attaque minimise la distorsion tout en s’assurant que l’exemple
est adverse.

Chacun de ces scenarii peut être utilisé choisi selon l’intérêt des auteurs. Par exemple
pour des travaux de détection, utiliser une contrainte de Distorsion est intéressante. Le
signal a toujours la même intensité et l’exemple est probablement loin derrière la frontière
de classe. A l’opposée, chercher à détruire le signal adverse par traitement quelconque
sera plus compliqué. Ces travaux vont plutôt travailler avec un scnerario d’Optimisation.

Dans l’optique de travailler avec le meilleur des deux mondes, nous avons princi-
palement travaillé avec le scenario d’optimisation. Mais ce choix n’était peut-être pas
toujours optimal. Notamment lorsque nous avons étudié des questions de transférabilité
(chapitres 7 et 9). Nous considèrons toutefois que ce scenario reste le plus réaliste. Pour
cela nous avons principalement utilisé l’attaque BP pour laquelle nous avons développé
une version best-effort (Chap. 6). Cette attaque fonctionne très rapidement et produit des
exemples adverses basse-distorsion de manière très fiable.

2.3.2 Les Images Adverses

Nous avons beaucoup étudié la création d’images adverses. Travailler sur un sce-
nario boîte-blanche signifie connaître le modèle. Mais probablement pas d’avoir accès
aux représentations intermédiaires des données. Ce qui est souvent le cas des exemples
adverses qui sont construits dans le domaine continu (tenseurs) et non discret (pixels).
Dans les chapitres 7 et 8, nous expliquons que cette tâche n’est pas nécessairement triviale,
surtout dans le cadre d’optimisation.

Une attaque dans le monde réelle se basera probablement sur des images postées en
ligne, ou bien même physiques (autocollants par exemple). Des images en ligne pourraient
être utilisées afin de contourner des filtres de contenu, ou pour protéger ses propres données
contre de la collecte automatique de données. Nous avons travaillé sur cette dernière
problématique dans un court article [10] visible en Annexe A. Des applications dans le
monde physique pourraient par exemple servir à tromper des véhicules autonomes, ou
bien à éviter des systèmes de reconnaissance faciale.
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Produire des images adverses est donc en concordance avec cette thèse: faire des at-
taques réalistes. Toutefois, le scenario boîte-blanche n’est pas toujours le plus réaliste. Mais
cela pourrait le devenir avec des attaques plus avancées d’extraction de modèles [147].

2.3.3 Défenses et Perspectives

Nous avons considéré l’aspect défenses plusieurs fois au cours de cette thèse. Notam-
ment pour la détections (chapitre 8), pour les ensembles de modèles (chapitres 7 et 9), et
enfin sur les bonnes pratiques quant à la taille et au redimensionnement (chapitre 9). La
sécurité est un domaine itératif et chaque contribution en attaque permet de progresser
en défense. Par exemple dans le chapitre 8, nous jouons le rôle itératif des deux côtés.

Nous avons également travaillé sur de la robustification de modèles récemment. Mais
ces travaux restent pour le moment non publiés. Un aperçu de ces travaux est donné
en Annexe B. Le principe de ces travaux est de rendre les modèles plus robustes via un
réentraînement non-supervisé. Cette méthode est semblable au logit pairing (décrit dans
le Chap. 5), mais l’appariement s’effectue dans le domaine des features.

2.3.4 Un Dernier Mot

Nous avons parlé plusieurs fois de la compétition entre attaque et défense. Cela donne
parfois naissance à des critiques biaisées sur les travaux de l’autre camp. Le manque
d’unification des moyens d’évaluation est bien souvent un frein à la progression. En con-
clusion nous allons parler de travaux récents de Guo et al. [56]. Ils expliquent que les
réseaux les plus robustes aujourd’hui pourraient être finalement aussi robustes que les neu-
rones biologiques. Pour cela, ils caractérisent un équivalent de signal adverse pour l’oeil
humain. A partir de ce modèle, ils évaluent que nous pourrions être tout aussi sensibles à
des signaux adverses précis. Au cours des dernières années, les progrès ont été tels dans
l’Apprentissage Profond que l’on peut souvent être subjugués par leurs performances. Cela
nous mène probablement à juger leurs vulnérabilités de manière critique. Nous sommes
toutefois nous-mêmes vulnérables dans notre traitement de l’information. Les illusions
d’optique sont un parfait exemple d’exploitation de ces vulnérabilités. La différence reste
sans doute que nous sommes généralement conscients que notre perception est trompée.
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Chapter 3

INTRODUCTION

The term Artificial Intelligence (AI) was first coined at a workshop by John McCarthy
in 1955 [102]. Taking place at Dartmouth College (Hanover, New Hampshire), this work-
shop was proposed by Claude Shannon himself, the father of information theory [135].
This event is widely considered to be the cornerstone of AI. The lack of computational
power and memory however led this new field to immediately know an AI winter [28],
longing for breakthroughs.

Artificial Intelligence is now a broad term to designate algorithms that are not based
on hard-coded rules. These programs can translate an input, i.e. data, to an output.
Different families of algorithms exist in AI. In particular, Machine Learning has emerged
as the most flexible and adaptive system. Deep Learning algorithms are the largest models
of Machine Learning. Their specificity is that they tackle large-dimensional data. Fields
of applications can be sorted into three main categories:

— Natural Language Processing (NLP) which uses text-based data.
— Audio Signal Processing (ASP) which uses audio-based data.
— Computer Vision (CV) which uses image-based data.
The latter is at the heart of this thesis. Each of these fields can be divided into multiple

sub-categories. CV has recently known an explosion in popularity with image generation.
Models like DALLE-2 [119], Imagen [128], or StableDiffusion [122] have brought light on
the impressive possibilities offered by AI.

Yet the first and most popular task in CV remains image classification. It answers one
simple question:

“What does this image represent?”

The ImageNet [32] challenge well represents this task. It is a yearly competition that
establishes a classification benchmark on 1,000 object categories (or classes) over millions
of images. This is precisely on this task that Deep Learning emerged and started its
dominance. In 2012, Krizhevsky et al. won the challenge with their Deep Neural Network
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Figure 3.1 – A classifier sorts images in categories called labels. The classifier underwent
a training procedure during which it learned to recognize a set of classes.

(DNN) AlexNet [79]. It was the first DNN to win the contest that would then only be
won by other DNN models, marking the beginning of the Deep Learning era.

While most classification tasks are not linked to any notion of security, some might have
crucial applications. For example in the case of national defense and security (scouting,
mapping biometrics); in the case of online content filter (possibility of letting harmful or
shocking content through); or in the case of autonomous vehicles, which could affect a
broader population. Navigation systems rely mostly on CV tasks tied together. On such
an important ask, one must investigate the security threats. And there are many. Some
involve malicious intervention during the training phase:

— Poisoning: usually in the case of automatically collected data. The data is inten-
tionally degraded to worsen the performance of the later trained model [106].

— Backdooring: anyone who trains a model might teach the model to react differently
to specific data. This lets the same person to have secret knowledge on how to break
classification [92].

Some other security threats deal with extracting crucial information, closely related
to data privacy:

— Model Inversion: the attacker tries to recreate data used during the training phase [46,
168].

— Membership Inference: similar to the previous one, the attacker here tries to find
whether the specific data in their hands was used to train a model [60].

— Model Extraction: such attack aims at cloning the attacked model with the highest
fidelity [147].

The last category of threats involves downstream usage of the model:
— Denial of Service (DoS): these well-known attacks apply to all request-based sys-

tems. The attack is simple: a user floods the system with requests to either bring
it down or prevent other users from using it.

— Reprogramming Attack: the attacker modifies an existing model to perform another
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task. This other task is done through manipulating data [39].
— Evasion or Adversarial Attack: the hearth of this thesis. Such attacks manipulate

data in an imperceptible fashion so that it fools a classifier.
Evasion attacks create adversarial examples. Such samples of data are similar to other

data processed by the DNN. They however exploit a specific vulnerability that breaks
prediction. This thesis is an extensive study of those: their creation, their tangibility, why
they are made possible, and ways to protect from them. Here are the different chapters
that compose this thesis. The first two are essentially theoretical and a review of existing
works. The following chapters describe our published contributions.

Chapter 4 sets the basics for the rest of this manuscript. It first explains the ba-
sics of image classification with Deep Neural Networks. It then offers an explanation of
how attacks are performed: which setup and the technique involved. Finally, this chapter
introduces the most common attacks seen throughout this thesis.

Chapter 5 is divided in two main sections narrowly tied together. The first part of
this chapter revolves around explainability and tries to understand the very existence
of adversarial examples. The second part of this chapter describes defenses that take
advantage of this knowledge.

Chapter 6 is our first contribution. It is the creation of a benchmark. The goal is to
evaluate the robustness of existing models trained on Imagenet on both white-box and
black-box attacks.

Chapter 7 This work stems from a simple observation: most works on adversarial
examples work in the floating-point domain. While these examples are indeed adversarial,
they are not images and cannot be saved as such. An image indeed is constituted of only
integer values. This work investigates the quantization of such examples in both spatial
and JPEG domains. Images created through this method remain adversarial.

Chapter 8 is a work that gets its inspiration from the field of steganography. This
science aims at hiding information within media and images in particular. The adverse
science is steganalysis which aims at detecting the presence of said information. The
idea behind this study is twofold: use steganography techniques to intelligently quantize
adversarial samples and hide the presence of the adversarial signal; and use techniques of
steganalysis to detect said adversarial images.

Chapter 9 is also a contribution about defense. Rather than exploring another defense
mechanism, it studies the impact of image scale and the rescaling of the adversarial
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signal. DNNs can process various image sizes and it is not trivial to understand which
size will have the best behavior regarding its robustness. Bring theory head to head with
experimentation yields best-practice to adopt for the defender to protect a model.
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Introduction on Adversarial Samples
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Partie I, Chapter 4 – Classifier Model and Adversarial Examples

4.1 Introduction

A Deep Neural Network (DNN) as a classifier is trained to classify images by the
object represented in the picture. This is for instance the well-known ImageNet challenge
encompassing a thousand classes. The state-of-the-art proposes impressive results as clas-
sifiers now do a better job than humans with fewer classification errors and much faster
timings. The advent of the AlexNet DNN in 2012 is often seen as the turning point of
‘Artificial Intelligence’ in Computer Vision.

Yet, the recent literature of adversarial examples reveals that these classifiers are
vulnerable to specific image modifications. The recent field of adversarial attacks explores
ways of fooling DNNs in this fashion since the works of Szegedy et al. [141]. The goal of
an attack is to modify an image with little distortion so that its predicted label differs
from the ground truth. The perturbation is often a weak signal usually invisible to the
human eye. Almost surely, no human would incorrectly classify these adversarial images.
The perturbation is a priori both classifier and image specific. This topic is extremely
interesting as it challenges the ‘Artificial Intelligence’ qualification too soon attributed to
Deep Learning.

The literature considers three setups:
— White-Box: The attacker knows the classification model architecture and param-

eters. Most attacks use the very core strength of DNNs to fool them: gradient
back-propagation. The very first attacks were FGSM [53], IFGSM [81] and Deep-
Fool [104], later on improved by PGD [98], CW [21], or BP [166].

— Black-Box: The attacker only queries the model and observes its output. At-
tacks can not exploit the gradient. They thus either locally estimate it (Hop-
SkipJump [24] or GeoDa [118]) or probe the class frontier such as SurFree [99].

— Gray-Box: The attacker has partial knowledge of his/her target, for instance, the
classification model is public but some front-end defense mechanisms are secret.

These attacks are associated with two possible goals:
— Targeted: The attacker determines which class should the classifier predict over

the adversarial sample.
— Untargeted: The attacker only needs the final predicted class to differ from the

ground-truth.
In this thesis, we explore mostly the setup of white-box and untargeted attacks. This
configuration is the most favorable for the attacker. It allows us to study further the
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4.2. Deep convolutional networks

behavior of DNNs and unfold their secrets.
Adversarial examples are an emerging field in Information Forensics and Security,

addressing the vulnerabilities of Machine Learning algorithms. They are also interesting
in non-security applications. They constitute a means to better understand how deep
learning models work (or do not work) [108]. This comes in addition to the generalization of
the model measured by the accuracy over the validation set. They are key to investigating
the frontiers between classes in the image space. In this non-security perspective, the quest
for more robust models often resorts to adversarial training, smooth labeling, and network
architecture modifications. These mechanisms aim at pushing away the frontiers from the
training samples.

4.2 Deep convolutional networks

4.2.1 A Brief History

Figure 4.1 – Illustration of an artificial neuron.

Deep Learning is an incremental science. Current state-of-the-art models use many
bricks that were laid down over the years. Slowly at first, for a lack of hardware and thus
results. And then increasingly fast since the advent of AlexNet [79].

In 1957, F. Rosenblatt conceptualized and simulated the first artificial neuron further
theorized in his published work in 1961 [124]. Psychologist at first and then a neurobi-
ologist, he drew inspiration from biological neurons to model the artificial neuron. The
concept is simple: a linear combination of multiple inputs is calculated (Fig. 4.1). A non-
linear activation function acts as a threshold that ‘fires’ or simply outputs a signal if the
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processed input signal is sufficient. The artificial neuron is activated. From multiple neu-
rons, stacked in layers (or fully-connected layer), one can build a Multi-Layer-Perceptron
(MLP). Layers (or hidden layers when they are intermediary) are rows of perceptrons
stacked one after another (Fig. 4.2). The MLP is capable of extracting complex informa-
tion and relationship within the input data.

Another notable step towards modern Deep Learning was studied by H.J. Kelley in
1960 [76]. In his works, Kelley set the basics for gradient back-propagation for complex
systems optimization. This contribution is arguably less visible than the perceptron. It
is however the very mechanism that made learning possible. The learning phase consists
in assigning the right weights θ to the model. This learning phase, further explained in
Sect. 4.2.4, will long remain the main obstacle of Deep Learning.

Figure 4.2 – Illustration of a Multi-Layer Perceptron. Output is C-dimensional. The size
and number of hidden layers are parameters chosen when designing the model.

Towards Convolutions

The very first convolutional neural network (CNN) was developed by K. Fukushima
in 1970 [48]. All moderns Deep Neural Networks (DNNs) are CNNs. In fact, the only
difference is purely arbitrary. A DNN is simply a CNN that stacked enough layers to be
deemed “Deep”.

Called Neocognitron, this CNN introduced convolutional layers as well as pooling
layers. These two new additions are very important features of DNNs. Convolutional
layers are specific layers of artificial neurons. A filter is a group of neurons, that has
few weights and only considers a small neighborhood of the input, for example, 5 × 5.
And a layer consists of multiple filters. The first convolutional layer might extract basic
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information such as straight lines and colors. The second layer will calculate a combination
of these extracted features which yields slightly more complex information such as angles
for example. The complexity of the patterns gets increasingly important. In the final layers
of a modern DNN, features may represent a class itself.

Figure 4.3 – Illustration of the first convolution operation in a DNN, followed by a pooling.
Size is decreased by a factor 2.

The second contribution of this work is the pooling layers. A specificity of convolutional
layers is that they preserve spatial dimension. On a color image, the 3-dimensional input
has a size h × w × c. Where h is the number of pixels in the height dimension, w in the
width dimension and c the depth dimension (or channels, e.g.: Red, Green and Blue).
After a convolutional layer, this input is transformed to another object of dimension
h × w × nf , where nf is the number of filters in said layer. Pooling layers are ways of
reducing the size of this object. Pooling is an operation done on a small neighborhood as
well, usually 2×2, which effectively reduces the size by a factor 2 (Fig. 4.3). The operation
can be max-pooling: the maximum value of the neighborhood is kept, the rest is tossed; or
average-pooling: values are averaged over the neighborhood. Combined with convolutions,
this operation leads to a necessity in image classification: translation equivariance. This
means that an object will be recognized as such by the system regardless of its position
on the image.

Once all the different elements were available Lecun et al. [83] built Lenet5 in 1998. It
is the first CNN with a practical application: reading hand-written digits on postcodes.
It is also the first CNN to outperform the competition on any specific task. The so-called
LeNet5 was trained using back-propagation, which was the missing link to make the train-
ing procedure work. Its name stems from the 5 hidden layers. There are 3 convolutional
layers (with 2 pooling layers after the first two), and 2 fully-connected layers.

Convolutional layers act as feature extractors to build semantic information for the
fully-connected layers. The final fully-connected layer then outputs a score for each class
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(before activation) called logits. These logits are transformed to a probability mapping us-
ing a Softmax activation (Eq. (4.1)). Softmax had been investigated before on MLPs [15].

Softmax(x)k = exk∑C
i=1 e

xi
(4.1)

LeNet5 is the result of almost a decade of research after Lecun had proposed the first
conceptual LeNet in 1989. Its success was made possible by the progress in computer
hardware. This is also the reason of the stagnation over the next 14 years. Computational
power was simply not enough to make significant progress.

Alexnet: A Deep Learning Revolution

Although the works of Lecun et al. [83] brought light on the possible success of CNNs,
the real Deep Learning revolution came in 2012. Krizhevsky et al. released AlexNet[79] and
caused a major paradigm shift in Computer Vision. Their prowess was to win ImageNet
Large Scale Visual Recognition Challenge (ILSVRC), or simply ImageNet [32] challenge
this year. It is a famous event within the CV community in which classifier models compete
with each other in correctly predicting images on 1,000 different classes. Alexnet in terms
of architecture is similar to LeNet5, but with 8 hidden layers this time. It can be called
the first Deep Neural Network.

Saying that Krizhevsky et al. merely capitalized on increased computational power
would be greatly undermining their work. Alexnet brought its load of much-needed inno-
vations to the community. Most of which tackle issues that were unsolved until then. The
first is a new activation function called the Rectified Linear Unit (ReLU):

ReLu(x) = max(0, x) (4.2)

Researchers had mostly experimented with two activation functions until then: sig-
moid: f(x) = (1 + e−ax)−1, with a > 0 the slope factor) and the hyperbolic tangent:
f(x) = tanh(ax). Figure 4.4 shows an important property of these functions: their gradi-
ent is null outside a small range centered around 0. ReLU has two possible values of gradi-
ent: 0 for negative input and 1 for positive input. This simple function allowed Krizhevsky
et al. to build a deeper CNN. As is further explained in Sect. 4.2.4, the gradient is at the
heart of the training procedure. Having a small value of gradient until then caused the
phenomenon of vanishing gradient. This is caused by the gradient of all the layers being
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Figure 4.4 – Comparison of different activation functions around 0. First and second curves
show the impact of the factor a in the sigmoid function

multiplied together: limn→∞
∏n
i xi = 0, |xi| < 1. When the gradient is superior to 1, the

opposite phenomenon of exploding gradient appears: limn→∞
∏n
i xi = ±∞, |xi| > 1. Both

issues are fixed with the ReLu function: limn→∞
∏n xi = ±1, |xi| = 1.

Another innovation is the introduction of Local Response Normalization (LRN). This
step normalizes the output of convolutions layers. This prevents specific filters from having
a response so large that it takes over the others. This heavily impairs training and keeps the
DNN stuck in non-favorable local minima. This normalization remained in use for some
years. In 2015, Ioffe et al. introduced Batch Normalization [69] (or BatchNorm) which
is a data-specific normalization. It adds trainable parameters that normalize outputs of
convolutions with regards to the training set. Although it is more effective and helped
reach higher accuracy, the drawback of BatchNorm is that it is very dependent on the
training data. If test data comes from a different distribution, its effectiveness can be
compromised.

AlexNet also popularized Dropout, developed by the same team [63]. It is a regular-
ization technique that randomly ‘turns off’ neurons during training phase. This prevents
decision paths from being reinforced every step and taking over the other.

Finally, the generalization of AlexNet over such diverse test data was made possible
through data augmentation. Simply put, data augmentation is a technique that modifies
the input to enrich the training set. Modifications vary from random cropping, translation,
rotation, and vertical or horizontal flipping of the images. It can be seen as another
regularization technique that prevents overfitting.

All these additions made Deep Learning emerge from a potential technology to the
standard of Computer Vision. In the years that followed, the competition was won by
only deeper and larger DNNs. Although the challenge was discontinued in 2017, Imagenet
is still widely used as a dataset today. Accuracy on test set is still a good benchmark to
rank vision models, and it is the largest labeled image dataset that can often be useful for
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pretraining. Models have nowadays become much larger, and keep increasing in terms of
parameter count. But let us not downplay the progress that was made following Alexnet.

GoogleNet or Inception V1 [140] in 2014 introduced many tricks and novel techniques.
They use two outputs to their DNN: one intermediary and one final. The first output
serves as a way to propagate further information through the gradient that ended up
being too weak otherwise. They also created Inception layers that combine and concate-
nate simultaneous convolutions of different sizes. Among these sizes, the surprising 1× 1
convolution kernels were introduced, serving as depth reduction.

In 2015 Simonyan et al. introduced VGG family of DNNs [137]. These DNNs ranging
from VGG-11 to VGG-19 were parameters-heavy at the time. Their smallest implemen-
tation used 133M parameters and their largest 144M. As a comparison, Alexnet ‘only’
had 62.4M and GoogleNet 6.4M. The architecture did not use many innovations. Their
creators argue that their main contribution is the use of small 3× 3 convolutions kernels.
The real prowess remains that they successfully trained this many layers. It was a feature
itself at the time.

Lastly, Resnets were released in 2018 [13] and are another notable contribution. Their
main contribution is using ‘skip’ connections within the convolutional layers to transmit
the information from previous layers to the rest of the network. These connections are
simply an identity function that ensures a complete transmission of the information.

Many other DNNs were developed over the years and continued performing better
and better as is shown on Fig. 4.5. Among the most recent models, Attention networks
made a noticeable impact [150]. Attention networks apply priority over certain regions of
an image, deeming what part of it is more relevant to classification. Another important
breakthrough that tends to become the standard is the Transformer network or Self-
Attention network. Inspired by NLP model Bert [33], ViT [37] popularized the use of
transformers for vision. Transformers tend to generalize better than other DNNs and
avoid biases.

We will now see notations used throughout this manuscript to define models, images,
and attacks.

4.2.2 Model and Data Notation

Let I ∼ D be a digital image in the domain J0, 255Kn where n is the number of pixels
and J0, 255K := {0, 1, . . . , 255}. This image is preprocessed before feeding a DNN. This
stage is defined during the training phase of the DNN to improve its learning capability
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Figure 4.5 – Top-1 accuracy (i.e.: correctly predicted images) on DNNs since Alexnet. The
interactive chart is available at https://paperswithcode.com/sota/image-classification-on-
imagenet

over the data. After the DNN was successfully trained, it expects data preprocessed in
the same fashion to make a prediction. This preprocessing is usually done in two steps:
range reduction from [0, 255] to [0, 1], and normalization:

x := I/255− µdata
σdata

, (4.3)

where µdata and σdata are respectively the mean and standard deviation computed over the
training data. These constants are usually channel-specific (i.e. each channel has its own
normalization), sometimes set to arbitrary values such as 0.5. We call x ∼ X the tensor
image which lies in a pseudo-continuous ensemble. Its values are in the floating-point
domain.

4.2.3 Classifier Model

Let f : [0, 255]n → [0, 1]C be a classifier mapping a tensor image x ∼ X to class logits l̂
for C classes. l̂ is a C-dimensional vector. Probability vector ŷ is obtained with a Softmax
function: ŷ = Softmax(l̂) (Eq. (4.1)). The predicted class is defined as:

ĉ(x) := argmax
k

ŷk(x). (4.4)
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The classifier makes a correct prediction if ĉ(x) = c(x), where c(x) denotes the ground-
truth class of x. c(x) class is embedded in a one-hot ground-truth vector y, another C-
dimensional vector. The c-th value is 1, rest is 0. A perfect classifier yields ŷ = y. But
to achieve this, the classifier must first undergo a training phase. This is how it learns to
make a good mapping of input image to correct classification.

4.2.4 Training a Classifier

Training a classifier is the very first step to having a functioning model. A model does
not initially ensure ĉ(x) = c(x). It is first initialized with random weights under some
form of uniform Gaussian distribution. The probability of making a correct prediction
is entirely random: 1/C. As discussed previously in Sect. 4.2.1, the training phase is far
from easy. We will see in Sect. 4.3 that this procedure is also at the heart of White-Box
attacks. We will now have a quick overview of this procedure.

DNNs are complex systems with millions to billions of parameters nowadays. The
problems that DNNs try to solve are non-convex, high-dimensional, and optimized over a
large volume of data. No optimal parametrization can be computed in a single step. The
solution comes from iterative approximation.

To achieve this, a particular algorithm is helpful: gradient descent (shown in Eq. (4.5)).
This method, when it converges successfully, finds a good approximation of the solution
by minimizing an cost function or loss function. Convergence is however far from trivial
and almost certainly the algorithm ends in a local minimum. It has been observed that
these local minima are however close to the theoretical global minimum. Some even argue
that local minima are global minima [75].

Formally, parameters θ of the model are updated at each iteration with the following
rule:

θt+1 ← θt − η ×
∂L
∂θt

(4.5)

Where θt represent the set of parameters θ at iteration t. L is a loss function, usually
categorical cross-entropy in the case of classification (Eq. (4.9)). And η is the learning
rate. The gradient is calculated using the chain rule:

∂x

∂z
= ∂x

∂y
× ∂y

∂z
(4.6)

The gradient is calculated from the output, we call this procedure back-propagation.
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Let us consider a DNN that has l layers. Parameters ωh of a hidden layer h are thus
updated as follows:

ωht+1 ← ωht − η ×
∂ωh+1

t

∂ωht
× · · · × ∂ωlt

∂ωl−1
t

× ∂L
∂ωlt

(4.7)

Gradient descent updates the weights θt layer per layer in order to minimize the loss.
This is the basic gradient descent algorithm. The optimal set of parameters θ? is thus:

θ? = argmin
θ

E
x∼X
L(θ, x, y) (4.8)

Most training procedures nowadays use slight variations of gradient descent. Stochastic
Gradient Descent (SGD) with Momentum [113] adds an aggregation of past gradients to
control the descent. This reduces bias on a single step and quickens convergence. Root
Mean Square Propagation (RMSProp) [64] is another optimization algorithm that uses a
mobile exponential average of gradients to regularize the update term. The most popular
optimizer remains Adam [77] which simply is a combination of both SGD and RMSProp.

A loss function translates the error that a classifier makes on its predictions. In multi-
label classification, the categorical cross-entropy is the most common. It is defined as
follows:

L = −
C∑
k=1

yk · log ŷk (4.9)

This differentiable loss thus computes the error between prediction and ground-truth.
Minimizing this loss effectively improves the accuracy of the DNN. The procedure is the
following: the DNN is ‘fed’ a batch of images, then the loss (Eq. (4.9)) is computed over
this batch, and finally, parameters of the DNN are updated using Eq. (4.5). A batch of
images is used rather than a single image as another regularization method. This ensures
better convergence. Single images generate too much bias over one step that takes time
to be corrected. At the end of the training phase, we have ideally θ ≈ θ?. This means that
the classifier reached the highest accuracy possible.

These were the basics of classifiers and training. We will see how adversarial examples
in a white-box setup are crafted using similar methods. In fact, attacks can be seen as a
form of gradient descent performed over the image rather than the DNN.
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4.3 Adversarial Examples

4.3.1 Adversarial Vulnerabilities of DNNs

Adversarial attacks were brought to light by the works of Szegedy et al.[53, 141]. The
famous image (Fig. 4.6) of a panda turned into a gibbon through an invisible perturbation
has been seen by many deep learning enthusiasts.

Figure 4.6 – Famous illustration of an adversarial example from the work of Goodfellow
et al. [53]. The perturbation signal is voluntarily amplified to understand the addition
(see the factor 0.007).

This image is an adversarial example, and the perturbation can be called the adversar-
ial signal. It is the result of an evasion attack. Although this signal may look like noise, it
is carefully crafted. The mechanism behind it is the very same one used to train a model:
gradient descent using back-propagation.

Adversarial examples can be a surprising result. Especially now that state-of-the-art
DNNs perform better than a single human on a classification task. This has been observed
in medical diagnosis [17, 121] for instance. These works [53, 141] gave birth to a whole
new field dedicated to adversarial examples. Works vary from theoretical studies of their
very existence, to how to craft them in different setups, with better performance, or how
to defend against them. We will now study the crafting procedure of these adversarial
examples. We will see in Chap. 7 that this panda is however not an adversarial image.

4.3.2 Fooling a classifier

Evasion attacks are performed at evaluation stage. The DNN is trained, and ready
to operate on its task and its weights are frozen. The attack leaves DNN in its exact
same state, only the input is modified to affect the prediction. The optimization problem
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seen in Eq. (4.5) takes place on the image instead. But this time the goal is to degrade
prediction, so it can rather be seen as a gradient ascent:

xa ← x0 + η × ∂L
∂x0

(4.10)

Where xa is the created adversarial image from an image x0 we call natural. The
gradient is calculated using back-propagation as seen in Eq. (4.7). Chain rule is propagated
one further (Fig. 4.7). Note that the attacker has access to gradients only in a white-box
setup (or a gray-box setup to some extent). Unless stated otherwise, we consider white-box
attacks throughout this thesis.

A completed attack forges an adversarial sample xa such that:

ĉ(xa) 6= c(x0). (4.11)

The resulting class ĉ(xa) is either chosen by the attacker in a targeted scenario or any
class that verifies Eq. (4.11) in an untargeted scenario. An attack optimizes the perturba-
tion xa − xo according to a given metric, usually the `0,`1, `2 or `∞-norm. This gives the
following optimization problem on a generic `m-norm:

x?a := min
ĉ(xa)6=c(x0)

||xa − x0||m. (4.12)

Throughout this thesis, we consider attacks in their `2-norm form. This is common practice
in image processing: The PSNR gives the logarithmic scale of the `2-norm. Indeed, for
natural images (i.e. ImageNet [32], but not MNIST), `2 reflects distortion perceived by
humans when comparing similar images with very low distortion. Researchers also often
consider the case of `∞-norm (maximum distortion over a pixel) or more rarely `0-norm
(number of modified pixels).

Equation (4.11) displays the paradigm of an untargeted scenario. In a targeted setup,
the attacker picks the predicted label or adversarial class. The optimization performed
on the image is this time a normal gradient descent:

xa ← x0 − η ×
∂L
∂x0

(4.13)

L = −
C∑
i=1

yti · log ŷi (4.14)
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Where yti is a one-hot vector. The 1-value is on the targeted class t. The difference
between targeted and untargeted attacks lies mostly in this + or − sign. The optimization
is a gradient descent just like during the training phase. The objective is to minimize the
loss characterizing the prediction of the targeted class. The following works will now be
presented in their untargeted version.

Figure 4.7 – Similarity and difference between an evasion attack and training phase.

These definitions and optimization problems apply to classification tasks. They can
however easily be transferred to other DNN-based tasks. In Computer Vision, adversari-
ality has been studied in various scenarii such as:

1. Object segmentation [2, 45, 62]
2. Object detection and tracking [89, 156]
3. Video recognition models [72, 87]

But adversariality is not limited to Computer Vision. This phenomenon is seen in
numerous other application fields and tasks:

1. Audio (speech-to-text) [20, 26]
2. Text (sentiment analysis) [73, 153]
3. Reinforcement Learning (prevent the agent from learning) [67, 90]
4. Anomaly detection [78]

This is just a mere overview of what is possible. Adversariality has been studied in
most Deep Learning application, and literature is very rich in this domain. This thesis
is however about classification in Computer Vision. The next sections will dive into the
construction of adversarial examples in a white-box setup.
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4.3.3 Usual White-box Attacks

White-box attacks have access to the entire model and parameters. This is convenient
to use gradients, as seen in Eq. (4.10). We now define a slightly different loss that we call
adversarial loss Ladv. This will prove useful to craft perturbations:

Ladv(x) := ŷc(x)− ŷa(x), (4.15)

Where ŷc(x) is the predicted probability of x belonging to the ground truth class c(x0).
The second term ŷa(x) is the probability of the adversarial class. Note that both terms
can be replaced by logits l̂c(x) and l̂a(x) for similar results. In a targeted scenario, class
a = t is a parameter of the attack. In an untargeted scenario, it is the best prediction
excluding the ground-truth of the original:

a = arg max
k 6=c

ŷk(x). (4.16)

Using this trick, we still consider the attack to be untargeted, but the adversarial class
is guided. Attacks are however iterative processes and the adversarial class can change
over time. This is not the case when the probability ŷa(x) is already high. It does change
more frequently when ŷc(x) ≈ 1.

The optimization problem is thus similar to a targeted scenario as shown in Eq. (4.13).
Loss needs to be decreased to ensure adversariality instead of increased. Moreover, it has
an interesting property that justifies its use. When Ladv(x) < 0, the predicted class is
not the ground-truth label c and x is adversarial. It thus provides both a direction and
a stopping criterion. We will now introduce notable attacks that we use throughout this
thesis. Attacks are defined with this loss Ladv.

Fast Gradient Sign Method FGSM

FGSM [53] is the first and most basic attack. It uses the sign of the gradient on the
original image:

xa = clip[0,255] (x0 − ε× sign (∇Ladv(x0))) , (4.17)

where clipI is the clipping of the component within the interval I. This attack is not iter-
ative, it is a single-step process relying on only one parameter ε. Note that the adversarial
sample is a quantized image only for an integer value of ε.
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Iterative Fast Gradient Sign Method iFGSM

iFGSM [81] is an iterative version of FGSM.

x(i+1)
a = clip[0,255]

(
x(i)
a − ε× sign

(
∇Ladv(x(i)

a )
))
. (4.18)

This attack uses two parameters: the descent rate ε previously seen in FGSM and the
number of iterations Niter.

Projected Gradient Descent PGD

This attack is an iterative attack whose updates are defined as follows in its `2-norm
version PGD2 [98]:

x(i+1)
a = clip[0,255]

(
projα

(
x(i)
a − ε

∇Ladv(x(i)
a )

‖∇Ladv(x(i)
a )‖

))
. (4.19)

PGD2 revolves around a projection projα on the ball centered on x0 of radius α. This
projection is effective only if the `2-norm of the perturbation exceeds α. PGD2 also uses
an `2 normalized gradient to have better control of the perturbation update. This attack
uses 3 parameters: the radius α, the descent rate ε, and the number of iterations Niter.
Other versions of PGD can use different norms, which affects the projection step.

Boundary Projection BP

BP [166] is a fast two-step iterative attack. The first step quickly finds an adversarial
sample while the second step refines it by reducing its distortion. Stage 1 is defined as
follows:

x(i+1)
a = clip[0,255]

(
x(i)
a − γiε

∇Ladv(x(i)
a )|

‖∇Ladv(x(i)
a )‖

)
, (4.20)

where γi is an acceleration term ranging from a predetermined γmin at the first iteration
to 1 at the final one. Stage 2 refines the adversarial sample found through projection using
the same parameters and normalized gradient of Ladv.
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Carlini & Wagner CW

This attack minimizes the following Lagrangian formulation in its `2-norm version
CW2 [21]:

J(xa, µ) = ||xa − x0||2 + µ|Ladv(xa)−m|+ (4.21)

where |z|+ = max(0, z) and m ≤ 0 is a margin. The minimum of this equation is found
with ADAM optimizer within an inner loop. The outer loop does a line search over µ.
When both outer and inner loops are done, the adversarial sample with the least distortion
is returned. This attack uses five parameters: the amount of iterations over both loops,
the margin m, and the learning rate and momentum for ADAM.

4.4 Chapter Conclusion

This chapter allowed us to set the basics for the rest of this thesis. We first saw an
overview of the history of DNNs and how each of the essential bricks was brought to
the community over a long period of time. This was until the advent of Alexnet. Then,
successive DNNs started to use the same bricks and improve on them. We briefly reviewed
notable innovations and architecture principles. This allowed us to define a classifier model
and study the important first phase of every classification project: the training phase.

We however exposed that this training phase, the strength of DNNs, can have an
inconvenient side-effect. This is the existence of adversarial examples in a white-box setup.
It is also worth mentioning that many Black-Box attacks exist as well. It is a whole
different paradigm that is more constrained for the attacker. Attacks can be based on
prediction scores [96, 163]; or only decision ([24, 86, 99, 118]). Some aim at estimating
the gradient to reproduce similar mechanisms, while others do not.

In this thesis, we however mostly consider DNNs to be a white-box. The only exception
is Chap. 6 which partly uses black-box attacks. We then studied in little more detail some
popular white-box attacks. All these attacks are studied throughout this thesis. Many
others exist and listing all of them would be tedious. This was not the purpose of this
chapter. We will now dive into a less practical chapter and analyze the very existence of
adversarial examples. Understanding how they exist also leads to defending from them.
This will be the second part of the chapter.

41



Chapter 5

ADVERSARIALITY: ANALYSIS AND
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5.1 Introduction

Within every security topic, two sides of the coin coexist. Attack and Defense. The
field of adversarial examples is no exception to this rule. Security is played as an iterative
game where each party makes a move one after another. The attacking side is however
usually one step ahead. A flaw in the system is found. The Attacker sees the opportunity
to exploit it. The defense then fixes the issue and hopefully focuses on extending the so-
lution to other similar potential flaws. Being one step behind as the defender is obviously
not desirable. This led companies over the world to hire ethical hackers (also known as
white-hat hackers). Their purpose is simple: break a system to identify threats that will
need fixing. The pattern we see here is simple:
Identify a flaw and attack→ Gain knowledge over the system→ Defend and fix the issue
→ Identify further risks and start over.

Defense and understanding of a system are thus closely tied together. DNNs are still
vastly considered to be black-boxes. We understand the operations done within but we
do not know what is the purpose of each intermediate step. Even DNNs with the fewest
parameters have millions of them.

Figure 5.1 – Illustration of the iterative game between attack and defense. The frontier
between both sides is always blurry. There is an everlasting race to find issues.

5.2 Understanding Adversarial Examples

A classifier is usually built from two bricks: convolutional layers stacked together and
a fully-connected layer. The purpose of the convolutional layers is to extract intermediary
representations or features. The fully-connected layer creates a probability map given the
existing features.
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The first convolutional layers extract simple information such as contours, texture,
and color. The following layers piece together these small bits to extract larger and more
complex patterns. The final convolutional layer builds a feature map: a high-dimensional
vector representing features on the whole picture.

In terms of explainability we can for example easily analyze the first layer of convo-
lution and understand the patterns considered by the DNN. The first layer usually looks
for straight or curved lines, and color presence. But as we get to deeper layers, it is harder
and harder to understand the macro-patterns, made of small patterns pieced together.

The construction of feature maps is part of the black-box. A human for instance might
identify a car through the presence of two or more wheels, a parallelepiped-like structure,
a windshield, etc. The features extracted and used to make a prediction by the DNN are
however unknown. And they vary greatly from one model to another. ResNet-18 has a
512-dimensional feature map while ResNet-50 has a 2048-dimensional feature map. This
is true for any architecture, a bigger model (more parameters) usually uses a higher-
dimensional feature map. Features extracted between two networks simply cannot be the
same. All the intermediary phases (convolutional operations) are thus unintelligible. We
can understand how the whole system works, but we do not know the steps leading to
the result.

The very existence of adversarial examples can be useful to understand and unfold the
black-box. Understanding how the DNN is fooled gives insight into how it was correct in
the first place. First, we need to identify the possible culprits. We denote three of them:

— Data: DNNs are vulnerable to adversarial examples because the data it was fed
during the training phase is incomplete or misleading.

— Training Phase: The DNN is not taught correctly how to process images or given
too much freedom.

— DNNs themselves: adversarial examples are simply a feature of Deep Learning.
Obviously, neither of these three is the sole responsible. We need to dive into each

category and investigate their share of responsibility.

5.2.1 Data Is The Enemy

Data is commonly pointed at when it comes to adversarial robustness. How could a
DNN be robust if its data is misleading? The strength and weakness of Deep Learning
is the amount of data. This can be mitigated with data augmentation, but only to some
extent. To train a good classifier, one needs an enormous amount of data. Table 5.1
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gives an overview of the most popular datasets in image classification. Even for small
classification problems such as MNIST or CIFAR-X, the amount of data is considerable.
But as we tackle harder tasks, the amount becomes overwhelming, especially in the case
of ImageNet. Most of our work throughout this thesis was done using ImageNet classifiers.
We will now consider this dataset for the rest of this section.

Name Image Size Image Count Classes Count
MNIST 28× 28 60, 000 10

CIFAR-10 32× 32 60, 000 10
CIFAR-100 32× 32 60, 000 100

Tiny-ImageNet 64× 64 100, 000 200
MS-COCO > 224× 224 330, 000 80 + 91
ImageNet > 224× 224 > 14M 1, 000

ImageNet-21k > 224× 224 > 14M 21, 841

Table 5.1 – Most popular image classification datasets. MS-COCO has 80 object categories
and 91 ‘other’ categories such as background, sky, ground...

Data labeling

It would be tedious work to check the label of every single image within Imagenet. It
would take over 38 years for someone to cover the whole dataset if they were to inspect
1,000 images a day. So how exactly were these images annotated?

It was done through crowdsourcing with Amazon’s Mechanical Turk (AMT) 1. A bot
first queries the internet to find images of a specific class. Humans then validate whether
the queried class is indeed present in the image. The protocol seems pretty sound at first
but there are many flaws with it.

Dogs ? Dogs. And some more

The choice of classes within the 1,000 existing is questionable. It seems obvious that
reaching a thousand categories was a goal in itself. It is probable that some categories were
added just to reach that number. We can for instance hope that people who participated

1. The name is inspired by a famous automaton named the Mechanical Turk, built in 1770. It was
supposed to be a self-operating machine that played chess. It was however quickly discovered that it was
a hoax and a human was operating the ‘automaton’, hiding within the table that displayed the chess
set...
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Figure 5.2 – Image A: 182:‘Border Terrier’, Image B: 184:‘Irish Terrier’,
Image C: 185:‘Norwich Terrier’, Image D: 186:‘Norfolk Terrier’, Image E:
187:‘Yorkshire Terrier’, Image F: 189:‘Lakeland Terrier’.

in AMT were dog enthusiasts. We count no less than 118 dog breeds within classes. Many
breeds are easily distinguishable from one another. Additionally, people surely looked up
what each of them looked like prior to confirming their presence. But even so, this task is
likely complicated. We extracted an example of 6 different classes, displayed on Fig. 5.2.
This will allow you to test your own differentiation abilities on these breeds. This task is
definitely not trivial.

Labeling error is indeed found throughout the even most popular datasets as per North-
cutt et al. [107]. They estimate that the validation set on Imagenet has at least 6% error.
It is also suggested that more recent models overfit on these errors. Overfitting on vali-
dation or test sets is an indirect consequence of cross-validation. While the DNN is not
trained directly on these sub-sets, it is evaluated on them. Thus the model that will be
picked in the end is the one that has the best accuracy on validation sets. This might
come at the cost of indirect overfitting.

An improved (e.g. more curated) dataset is released along with this work [107], avail-
able at https://labelerrors.com/. This website also offers good visualization of the existing
errors in the data. It is worth seeing for yourself if you were to work with this set.

Trained with this cleaner Imagenet, a Resnet-18 outperforms off-the-shelf Resnet-
50 while on cleaner CIFAR-10, VGG-11 outperforms VGG-19. Resnet-50 should perform
better (resp. VGG-19). They however generalized on wrong data which hinders prediction
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confidence or even classification on clean data. Low prediction confidence is a strong
enemy. It means the class frontier could easily be crossed. The image lies close to it, and
thus a small perturbation will suffice to fool said classifier.

Finally, some labels in ImageNet are plainly duplicates:
— 638:‘maillot’ and 639:‘maillot, tank suit’
— 134:‘crane’ and 517:‘crane’
— 657:‘missile’ and 744:‘projectile, missile’
— 620:‘laptop, laptop computer’ and 681:‘notebook, notebook computer’
— 836:‘sunglass’ and 837:‘sunglasses, dark glasses, shades’
Images from both 657:‘missile’ and 744:‘projectile, missile’ could be from

either class (as is illustrated on Fig. 5.3). The same goes for 620 and 681, 836 and 837,
and 638 and 639 (not shown for decency reasons, but we invite you to see for yourself
that both class contain the exact same type of images). In the case of 134:‘crane’ and
517:‘crane’ there is however a difference since the former designate birds and the latter
building machines. But surely this ambiguity led to errors.

Figure 5.3 – We extracted images from the validation set for two classes. Top row: images
of class 657:‘missile’. Bottom row: images of class 744:‘projectile, missile’.

Labeling error is not the only threat here. Feature maps will more likely be extremely
correlated. This results in high class proximity within the feature space. Section 5.2.3
provides a further analysis of this phenomenon.

Many people participated in labeling these images. While the effort is admirable, we
can still question the quality of such work. It is hard to find statistics about this whole
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work, data is unavailable. We can however hope that there was a lot of overlap on reviewed
images. Having each image checked by multiple people would effectively reduce the error
made. Still, labeling is a long and tedious task and the community is grateful to have
access to such a large dataset. Labeling errors is the human factor. But it is not the only
issue with ImageNet and image datasets in general. Images themselves can be misleading
and poor lessons for the DNN to learn.

Data representation

An important work by Birodkar et al. [9] analyzes redundancy in datasets. They for in-
stance estimate that ImageNet or CIFAR-10 contain at least 10% of semantic redundancy.
Images within the same class overlap a lot in visual information which hinders learning
and proper generalization. A basic example of redundancy is the DNN that learns to rec-
ognize the street to predict a car. Streets are not a ‘car’ per se, but appear to be closely
related. If the classifier is then shown a car on a beach, it might struggle. This is an
example of ‘background’ redundancy as is shown on Fig. 5.4.

Figure 5.4 – Figure 1 from [9] that helps visualize different types of redundancies within
ImageNet pictures. Images highlighted with a green box are kept for an improved dataset
while the others are deemed redundant. They are discarded.

Other issues are pointed at by Berer et al. [8]. The main complaint is the single
annotation per image. Many images have multiple possible labels represented. Having a
single label is misleading because the DNN might find the exact features of a secondary
class but it is taught to ignore it. This in turn is detrimental to the learning procedure.
Features of all present classes are mixed and the fully-connected layer adjusts its decision
based on them. The harm caused is twofold:

— Secondary classes count for the prediction of the primary one. An image containing
only an object from a secondary class will have less confidence on its correct label.
The primary class might have a non-null and even non-negligible probability.
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— Features from secondary classes are not discriminant for prediction. The construc-
tion of their features is tuned down. This results in poor learning of these off-classes.

These issues will especially be problematic in the case of strongly correlated classes.
Figure 5.5 from their work illustrates some of these situations. In the case of 477:"carpenter’s
kit, tool kit", one can assume that 784:‘screwdriver’ will be present in many in-
stances (Fig. 5.6 displays a few examples).

Figure 5.5 – Illustration from [8] showing images with multiple classes within. Red: original
labels found in the dataset. Green: suggested improved labels if multiple annotations are
considered.

Figure 5.6 – Looking through images of 477:"carpenter’s kit, tool kit" reveals an
logical abundance of 784:‘screwdriver’.

Playfully titled ‘Are we done with ImageNet?’ [8], their work questions the relevance
of ImageNet nowadays. We just showed that there is indeed room for improvement. A lot
of improvement. But it is still the best data there is for image classification. A DNN is
likely to be trained on it to at least learn a diversity of features, before being fine-tuned
on another specific task. This is especially convenient if this new task contains little data.
Finally and mostly, it is still the ultimate benchmark in the community. Hopefully, it will
be supplanted in a near future, but it is our best option at the time.
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5.2.2 Learning the Hard Way

The way information is treated stems from the training phase that we originally de-
fined. The DNN is taught to minimize an error, without clear instructions on how to
achieve this. Training a DNN is entirely empirical and usually requires multiple attempts
before having a satisfying result. Convergence of gradient descent is never ensured and
can suffer from many phenomenons detrimental to the training procedure:

— Overshoot: learning rate too high, the gradient descent is unable to remain in a
minimum and diverges.

— Undershoot: learning rate too small, the loss function gets stuck in a local mini-
mum.

— Gradient explosion: the back-propagation of the gradient increases its value mul-
tiplicatively which makes the algorithm diverge.

— Gradient vanishing: the back-propagation of the gradient decreases its value mul-
tiplicatively which stops the convergence.

Finally, a DNN in its converged state is inherently dependent on initialization. This
first step is done in a well-thought-out fashion but remains random. So how do we know
that two different DNNs (same architecture) that underwent the exact same training phase
will end up in the same state? The answer is simple: we know that they do not and that
they are not the same classifier. The landscape of a loss function is highly non-smooth.
This is due to the high dimensionality of the problem tackled. Two DNNs might end up
with the same loss scores on training and validation sets. But they will not be equal. This
is one of the prowess of Deep Learning: the loss of a converged DNN finishes in a local
minimum that is close in value to the global minimum. Yet we cannot identify this global
minimum and can only assume that gradient descent made the loss close to it.

Generalization

The strength of DNNs lies in their ability to generalize. Images are complex data and
extracting the right information is not an easy task. This led Computer Vision community
to investigate invariance in their classification systems, well before DNNs. Classifiers are
usually built from two bricks: feature extraction and category sorting. It so happens that
DNNs have both within a single network even if both tasks are not done with the same
layers (for instance convolutional layers for feature extraction and fully-connected for
classification).
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Before DNNs, independent feature extractors were used for this first half of classifica-
tion. Notably Scale-Invariant Feature Transform (SIFT) [94] that introduced, as its name
suggests, scale invariance. Another Oriented FAST and Rotated BRIEF 2(ORB) [126]
introduced rotation robustness. Complete invariance is equivalent to a perfect conceptual-
ization of an object. Formally, let us note x ∈ Rn a class representation, f(x) : Rn → Rnf

a feature extractor and g : Rn → Rn an input transformation:

f(x) = f(g(x)) (5.1)

In a perfect extractor, this is true for any transformation or composition of trans-
formations. A transformation is a modification of the representation of a given object.
This includes translation, rotation, color change, scale, viewpoint, contrast, saturation,
etc. No extractor is perfect to the point of reaching perfect equality between both terms
of Eq. (5.1).

Figure 5.7 – Illustration of a perfect feature extractor. Every feature vector is equal,
regardless of the transformation applied to the image. The object is perfectly conceptu-
alized.

The role of convolutional and pooling layers is to bring scale and translation invariance
to the DNN. Other invariances are however acquired during the learning stage. These are
taught through the sheer amount of data as well as data augmentation. The amount of
data required by DNN is mostly to improve generalization and push the DNN away from
training set biases. But how much generalization is too much generalization?

2. FAST being itself an improved version of SIFT[125] and BRIEF another feature extractor [18]
robust to pixel intensity. We can certainly notice a pattern of puns well-appreciated by the community.
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Excessive Invariance

The work of Jacobsen [71] points this excess in state-of-the-art models. DNNs develop
invariances to a lot of contextual information that should not be ignored. They propose
an invariance-based attack akin to adversarial attacks. Their attack however adds pertur-
bation to an image such that its logits matches the logits of another image. Images shown
on Fig. 5.8 display the surprising inability of a DNN to differentiate entirely different
images (more examples are available in the full article [71]). They study this phenomenon
through two different tools.

Figure 5.8 – Figure 1 of [71] showing visually different images that share the same logits
(displayed above) through a ResNet152. The first image is unmodified.

The first one is a toy dataset called adversarial spheres [50] It is a simple classification
problem in which both categories are two concentric high-dimensional spheres of different
radii. This dataset was introduced to study the detrimental effect of high dimensions in-
herent to image data. This translates into high data sparsity and many degrees of freedom
for the attack to be performed. This is a prime example of curse of dimensionality [6]

The second one is an iRevNet [70] model. It is a DNN invertible up until the last pro-
jection onto class vectors. By removing this last projection, convert it to a fully-invertible
network called fi-RevNet. This network has two outputs zs for classification (semantic
variables) and zn (nuisance variables). Its classification performances on ImageNet are
only slightly lower than the competition. It is thus a decent classifier.

It is demonstrated that a perfect classifier should maximize the conditional mutual in-
formation I(y; zs|zn) while decreasing the mutual information I(y; zn) [71]. The identified
culprit is cross-entropy loss. A training phase using this cost function will only increase
I(y; zs). This hinders the capacity of DNNs to understand the presence of possible nui-
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sance that could be linked to a given class. This can be read in echo with the presence of
redundancies studied above in Sect. 5.2.1.

Adversarial Spheres [50] were also used in other works to blame BatchNorm [49].
We briefly mentioned BatchNorm [69] in Sect. 4.2.1 as an improvement to LRN. It is
a normalization, applied batch-wise onto data after going through a layer. BatchNorm
operate a 0-mean and unit standard-deviation as well as the following operation: xBN ←
γ ∗ xNorm + β. Where xBN is the input after BatchNorm and xNorm after normalization.
Both gamma and beta are parameters that were however learned during the training
phase. Adversarial images are not part of the same distribution as natural images. It is
easy to see how this could backfire, and [49] provides experimental observation of it.

We have so far identified many possible culprits for adversarial vulnerabilities. Among
them: data labels, data itself, data dimension, cross-entropy loss, BatchNorm, etc. It seems
that there is room for improvement. However, any classifier, even a human, will misclassify
an image at a certain level of distortion. It is time to look into this capacity in DNNs.

5.2.3 Adversarial Examples Are Inevitable

Figure 5.9 – Illustration of class projection on a 2-label problem. Dashed lines illustrate
the scalar product of fl−1(x) on each class vector. The natural image x has a greater logit
score on class 1. The modified adversarial image xa has been modified so it crosses class
frontier. It is now classified as label 2.

The works of Cubuk et al. in 2017 titled “Intriguing Properties of Adversarial Exam-
ples” [30] as a nod to Szegedi et al. [141] state in their abstract:

“Here we argue that the origin of adversarial examples is primarily due to an inher-
ent uncertainty that neural networks have about their predictions. We show that the
functional form of this uncertainty is independent of architecture, dataset, and training
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protocol; and depends only on the statistics of the logit differences of the network, which
do not change significantly during training.”

It is a strong statement about adversarial vulnerability. In the previous section, we
identified bricks of DNNs that increased an existing flaw in the system. But this work [30]
offers a pessimistic view of the problem. They argue that the success of an attack is
affected by two elements. The first one is the input-logit Jacobian of the model and the
logits themselves. In the case of a semi-random attack, this had previously been quantized
by [43]. There is a clear dependency on dimensions and distances in the feature space.
This subspace is very informative to understand adversariality. It is convenient to have a
look at the construction of logits to gain further knowledge on the problem.

Class Projection and Logits

Logits are the scores calculated for each class considered by a model. This is before
going through a SoftMax activation that turns logits into class probabilities. So what are
these scores exactly?

Let us consider a DNN f(x) built from two bricks: convolutional layers and a fully-
connected layer. This DNN has l layers. We call fi(x) the output of the i-th layer whose
weights are Ωi. An input image x is transformed into a feature vector fl−1(x) after con-
volutions. The weights of the fully-connected layer are such that:

Ωl =


ω1
l

ω2
l
...
ωCl

 (5.2)

Logits are obtained through matrix multiplication: Ωl × fl−1(x). The logit score of
class k is thus a scalar projection of fl−1(x) onto ωkl . For clarity we note these vectors:
f(x), resp. ωk for the rest of this section. Seeing logits as projection eases geometric
interpretation (Fig. 5.9). A scalar product is dependent on two values: norms of both
vector and the cosine of the angle between them. Class logit scores are thus determined
by two values ‖ωk‖ and cos( ̂ωk, f(x)). Table 5.2 tells us that class vectors do not differ
by a lot in norm. The most discriminant value is thus the angle cos( ̂ωk, f(x)).

It is interesting to note that f(x) ∈ R
nf

+ but ωk ∈ Rnf ,∀k ∈ {0, 1, ..., C}. Feature
vector is indeed obtained after a ReLu activation, which makes all its values ≥ 0. There
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Model nf ‖ω̄k‖ std(‖ωk‖) min(‖ωk‖) max(‖ωk‖)
VGG16: 4,096 1.18 0.08 0.98 1.43
Resnet18: 512 1.57 0.10 1.30 1.80
Resnet50: 2,048 0.87 0.05 0.72 1.06

EfficientNet-b0: 1,280 2.38 0.16 1.83 3.01

Table 5.2 – Class vectors in the fully-connected layer of popular models. nf is the input
or feature dimension.

is no such restriction on ωk 3.

Class Proximity

Label # 182 184 185 186 187 189
182 1.00 0.42 0.43 0.37 0.23 0.39
184 0.42 1.00 0.41 0.31 0.21 0.40
185 0.43 0.41 1.00 0.62 0.44 0.36
186 0.37 0.31 0.62 1.00 0.43 0.36
187 0.24 0.21 0.44 0.43 1.00 0.28
189 0.39 0.40 0.36 0.36 0.27 1.00

Table 5.3 – Correlations of classes vector in the fully-connected layer of Resnet18.
Studied classes are expected to have high correlations:182:Border Terrier, 184:Irish
Terrier, 185:Norwich Terrier, 186:Norfolk Terrier, 187:Yorkshire Terrier, and
189:Lakeland Terrier

We discussed earlier in Sect. 5.2.1 the problem of class proximity. Frontiers between
two classes k and l is highly dependent on cos(ωk, ωl). If this value is small, confidence
can be affected by this phenomenon. A high logit score on either class yields a somewhat
high value on the other. And works of Cubuk et al. [30] tell us that close logit scores are
linked to high vulnerability.

We can calculate cos(ωk, ωl) easily through the definition of scalar product:

cos(ωk, ωl) =
∑nf

i=0 ωi
kωi

l

‖ωk‖‖ωl‖
(5.3)

Let us note Cω the symmetric matrix in RC×C such that Cωk,l = cos(ωk, ωl). Table 5.3
gives us the values of Cω for dog labels mentioned in Sect. 5.2.1. For comparison, Tab. 5.4

3. Features therefore lies in a tiny fraction of ωk space Rnf

+ : 1
2nf . In the case of even the smallest nf

of Resnet18, it represents 7.46× 10−153 % of it.
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Label# 182 184 185 186 187 189
579 0.02 -0.04 0.00 0.06 0.02 -0.03
580 -0.01 0.02 0.01 0.04 -0.02 -0.03
581 -0.04 -0.04 -0.02 -0.10 -0.05 -0.05
582 -0.04 0.00 -0.03 0.00 -0.06 -0.11
583 -0.07 -0.04 0.02 -0.01 0.01 0.00
584 -0.08 -0.06 -0.03 -0.01 0.08 -0.13

Table 5.4 – Correlations of the same classes vector as Tab. 5.3. New classes
are expected to have low correlations:579: grand piano, grand, 580: greenhouse,
nursery, glasshouse, 581: grille, radiator grille, 582: grocery store, 583:
guillotine, and 584: hair slide

gives coefficients for a random set of consecutive labels. These are not a priori semantically
related to dog breeds. The difference is flagrant. The correlation between dog breeds
is sometimes really important. In the untargeted paradigm, these classes are especially
vulnerable.

Then a solution appears: train class vectors to be uncorrelated to each other. But
this would affect accuracy. Insisting once more on dog breeds: classes vectors from these
classes need to be correlated. It appears that a trade-off exists between robustness and
accuracy. It is the (in)famous No Free Lunch Theorem.

No Free Lunch Theorem

‘No Free Lunch’ is a phrase often seen in adversarial-related works. It states that
additional robustness on a given trained system comes necessarily at the cost of accuracy.
The works of Tsipras et al. [148] discussed this theorem. Through experimentation, they
evidence this equilibrium. It persists even in simple settings, or a theoretical case of infinite
data [148]. This even holds true on adversarially robust models (see Sect. 5.3.4). In short,
DNNs are doomed to be vulnerable to adversariality. It is an indirect consequence of their
efficiency.

Using toy examples, Zhang et al. [167] push the analysis further. They propose a
theoretical model of the trade-off. Robustness is basically defined by two terms: natural
error and boundary error. Natural error is a classification error on untouched images.
Boundary error is a measure of the margin of confidence around natural images. But
then again, further works such as [117] exploit this definition of the trade-off to increase
it. Once an issue is understood, we can improve on it. The future of robust DNNs is
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thus not hopeless. We investigated in this section the reasons for adversarial vulnerability.
There is room for improvement on some aspects of it. Data, in the case of Imagenet for
instance, seems to have a lot of room for improvement. But literature is rich in novel ideas
to defend DNNs. We will now study existing defenses.

5.3 Defending Against Evasion

Adversarial vulnerabilities necessarily exist. At least to some extent. This does not
mean we cannot defend from them. In this final section of the chapter, we will dive into
existing defenses. We can sort defenses into two distinct categories:

1. Reactive defenses: the defender acknowledges the vulnerability of a DNN. It does
not try to interfere with the attack. Focus is set instead on the corruption of
data. The goal is to either detect image manipulation or to remove (reform) the
adversarial signal.

2. Proactive defenses: the defender tries to patch the vulnerability and/or make it
more difficult to attack their system. More distortion is required to build an ad-
versarial sample.

Both strategies are the source of numerous works. We do not try to benchmark the
following defenses. The purpose of this section is to give insight into each strategy and
sub-strategies.

5.3.1 Reactive Defenses

Two strategies exist to counter an adversarial example: detection or reformation.
Attack-wise, the arms race is about reducing the distortion of the perturbation. Papers
on either strategy thus assume low-distortion samples. When it comes to data reforming,
this eases the job. But this might make the detection job harder to accomplish. We will
now see the different approaches that have been considered by researchers.

5.3.2 Data Reforming

We explained in Chap. 4 that white-box attacks rely mostly on back-propagating the
gradient. In a classifier, convolutional filters all overlap on the image. This generates
interference in the gradient computed on the image. Moreover, attacks are usually run in
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a multiple-step process. This implies even local stability (image-wise) of the adversarial
signal. Therefore perturbation usually lies in the high-frequency domain. This is a crucial
observation from which reforming stems. It is easier to remove a noisy signal than a low-
frequency one. Within the iterative attack-defense security game, this inspired research
on low-frequency attacks [57].

To remove high-frequencies, the most common approach is a form of compression. This
technique especially aims at reducing local variance to decrease overall information. The
works of Guo at al. [58] in particular use four different methods (Fig. 5.10). The first one is
bit-depth reduction. Natural 256-level 8-bit images ({0, 1, ..., 255}) are converted to images
with as low as 8-level 3-bit images. The loss of top-1 clean accuracy on Imagenet amounts
to ≈ 8%. Considering the amount of compression, this is pretty low. DNNs are resilient
to compression. The second method is JPEG compression. They use a quality factor of 75
for their experiments. This does not amount to a lot of compression and clean accuracy is
almost unaffected. The third method is total-variation (TV) minimization. TV measures
the norm (`2) of the difference between pixels and their neighborhood. Minimizing TV
builds an image locally smooth. The resulting compression is strong, which results in a
loss of ≈ 15% of clean accuracy on Imagenet. Finally, they use image quilting as a means
of compression. The image is split into patches along a predefined grid. Each patch is
replaced by its closest counterpart within a database. This result in a tremendous impact
on clean accuracy: a loss of ≈ 40% A greater gain in robustness is at the cost of worse clean
accuracy. Except for bit-depth reduction, which gains in robustness do not compensate
for the loss of accuracy.

Figure 5.10 – Experiments of [58] over Imagenet validation dataset (50,000 images). y-axis
is the accuracy, x-axis the L2-dissimilarity: ‖x0−xa‖

‖x0‖ . Resnet-50 is attacked with Deepfool
(left) and C&W (right).
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Most works in adversarial reforming use derivatives of these ideas. It is however difficult
to make a fair comparison between different methods. Different norms are used to craft
adversarial samples (`2, `∞ or less common `0). Different data is used as well. Interesting
work from Xie et al. [159] uses a subset of 5,000 images from the validation set. But
clean accuracy on this data is 100%. This means that data was cherry-picked. This is
problematic for a fair evaluation. Their idea is to perform random cropping and padding
within the classifier. But without a unified evaluation, it is impossible to draw conclusions.

Some works however differ from the others. A defense called PixelDefend [138] aims at
projecting data back onto a known manifold (training data). They justifiably argue that
adversarial examples lie in low-probability regions of feature maps. This idea is seen in
other works such as Samangouei et al. [130] that uses a Generative Adversarial Network
(GAN [54]) to do so.

In general, reforming data comes at a cost: natural accuracy. Unsurprisingly, these
methods drag us back to No Free Lunch (Sect. 5.2.3). Hopefully, the impact of such
methods is greater on manipulated data. But it will still alter clean images, which in turn
decreases accuracy. Reforming data can be favorable, especially with very low distortion,
but is to be used cautiously.

5.3.3 Adversarial Detection

Detection is a very special case of defense. It does not respond to a form of trade-off
between accuracy and robustness. Neither is directly affected by detection. Accuracy will
however indirectly be affected by false positives (image is not classified). An important
aspect of this method is that it requires a detectable signal. If a network has very low
robustness, adversarial images are crafted with very little perturbation. They become
indistinguishable from natural images. Thankfully a detector is far more effective than
the human eye. But a detector might require a somewhat robust network to work for. The
problem of No Free Lunch is just displaced to another step of the whole process.

One of the cornerstones of detection is Feature Squeezing [162]. It is heavily inspired
by works on reformation. It was first developed using bit-depth reduction and spatial
smoothing. But any method seen previously can be used. The idea is to use a reformation
method or squeezer on an image. Logits outputs of clean and reformed data are compared.
If the difference is above a learned threshold, the input image is deemed adversarial.

Multiple squeezers can be used in parallel to increase confidence. Method is illustrated
on Fig. 5.11. Feature Squeezing works under an important assumption: the adversarial
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Figure 5.11 – Illustration of Feature Squeezing from [162]. Two squeezers are used here,
but more could be added.

image is more affected by the squeezer than a natural image. Reformation works under
the same assumption. Feature Squeezing has a big advantage over its competitors as it is
indirectly improved as a new squeezer is available.

This detector, as well as others, comes at the cost of training time. Most other works
build and train DNNs. In the paper of Metzen et al [103], sub-DNNs are integrated into
the original classifier. Each convolutional layer has a secondary output that goes through a
sub-classifier. The spatial size of feature maps decreases along the DNN. Each sub-classifier
is thus built differently. The idea behind is that the distributions of adversarial images
and natural images are vastly unaligned. Resulting feature maps thus lie in improbable
spots of feature spaces.

This idea is seen throughout many works. Ma et al. [97] for instance train classifiers
with natural, noisy, and adversarial images. Their argument is that noise does not bring
a natural image far out of distribution. But noise counters the adversarial signal to some
extent. It therefore drags adversarial images back to the distribution of natural images.
Learning how either will react to added noise is key to detection.

We mentioned earlier that detection does not respond to the No Free Lunch theorem.
However such methods will fail if a DNN allows very low-distortion adversarial examples
to exist. Proactive defenses can be helpful either on their own or combined with detection.
We will now study these defenses

5.3.4 Proactive Defenses

What is striking at first is how adversarial samples look unaltered even to an expert
eye. This is due to the signal being diluted over a whole image, and also to the great
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vulnerability of DNNs. But this vulnerability can be decreased to some extent. This is
the goal of proactive defenses. We identified earlier some reasons in Sect. 5.2. Proactive
defenses have indeed worked at fixing most of these possible issues. This starts with data.

Enhancing Data

It has been observed times and times that DNNs do achieve human-level performances
on natural images. DNNs could even surpass panels of experts. This can be seen in medical
diagnosis [17, 121] for instance. We can assume that there is nothing inherently wrong
with the training procedure. DNNs do learn what they are taught. However humans may
not be the best teachers. We saw previously (Sect. 5.2.1) that data could sometimes be
improved. But we may also not be able to teach the classifier to learn the right elements.
As per [68], DNNs learn features that are not robust. For instance, texture or colors
can be somewhat useful, but mostly non-informative. Contours and shapes seem better
strategies.

Figure 5.12 – Illustration of training experimented by Ilyas et al. [68]. A robust dataset
is used on the diagram (a) and a non-robust dataset is used on diagram (b).

The authors build two different datasets. The first one is obtained by removing non-
robust features. The resulting images may come as surprising as the pictured class seems
less visible (illustration (a) of Fig. 5.12). Models that learn from this data both end up
having a good clean accuracy and robustness. More surprisingly, they build a dataset
of visually mislabeled data (illustration (b) of Fig. 5.12). These images are adversarial
examples on a teacher DNN. The student DNN ends up having poor robustness but good
clean accuracy. This is really telling about the weak features that DNNs learn. Forcing a
DNN to learn strong features (first set of data) gives it good robustness.
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The other side of data are the labels. It is argued by some works that a one-hot
encoding of the pictured class is not a good lesson for the classifier. We saw for instance
the case of 477:"carpenter’s kit, tool kit" and 784:‘screwdriver’ (Fig. 5.6). A
solution some have come up with is label distillation. The idea is to use class probabilities
that another classifier (called teacher) outputs. The idea dates back to 2015 [65] and
was initially introduced for dimensionality reduction. The improvement brought to this
method by Papernot et al. [110] is to use the same architecture for both student and
teacher. In an iterative fashion, the student can become the teacher of a new student, and
so on.

These works increased robustness by improving the quality of the training data. But
we saw earlier that data was not the only one responsible for adversarial vulnerability
and we can have a look at how to modify the building bricks of DNNs to improve their
robustness.

Model Tweaking

We discussed at length the problematic of class proximity in the feature subspace in
Sect. 5.2.3. Some works aim at changing the way classification is performed. Instead of
relying on scalar projection (Sect. 5.2.3), the works of Mustafa et al. [105] instead rely
on building class polytopes. Each polytope is trained to be maximally separated from
other polytopes. This decreases the correlation between classes, which in turn increases
robustness. Their training objective includes two terms: one to minimize the distance from
a feature vector to its class centroid, and the other to push centroids apart.

Figure 5.13 displays a projection of different images in the feature space. We notice
the direction vectors for classical correlation Softmax training and the diposition of cen-
troids in their method. Experiments are run on MNIST and CIFAR-10. These are easy
classification tasks. When it comes to ImageNet, more correlation between classes exists
semantically. We mentioned in Sect. 5.2.3 that correlation between vectors may be nec-
essary for correct classification. To insist once more on dog breeds: they do share many
characteristics and could not be entirely separated in well-trained feature space. Trying
to reproduce such results on Imagenet may not be possible.

The idea is interesting and the visualization is really telling of the classical class
proximity paradigm. Especially when feature vectors have small norms, an adversarial
example might be at a close distance (see the left side of Fig. 5.13). It is however hard to
tell whether this could work on a more complex Imagenet.
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Figure 5.13 – 2D projection of feature vectors of natural images, extracted from [105].
Comparison is given between their method and classical correlation and Softmax training.
The projection of natural images and their adversarial counterpart is also displayed.

Other attempts at improving classification and feature space exist. For instance, the
works of Pang et al. [109] also changed the Softmax and cross-entropy to a ‘MaxMa-
halanobis center (MMC)’ loss. Execution is different, but the idea remains the same.
Their training aims at creating class centroids. They however acknowledge the additional
difficulty of complex Imagenet. They, therefore, propose an improved loss called ‘elas-
tic Max-Mahalanobis center loss’. They however do not provide substantial experimental
work on Imagenet to confirm gains in robustness.

Other works have studied modifying models for robustness purposes. For example,
Dhillon et al. [34] who suggest a random pruning of activations (preferably lower mag-
nitude ones) at inference. A good aspect of their method is that it does not require
additional training and can be performed easily. But once again they do not experiment
on Imagenet. We did try to perform pruning on Imagenet models to obtain absolutely no
gain until accuracy degradation. Our experimental work was brief, and we do not dismiss
this work as potential good practice.

Works that attempt at modifying models to earn robustness are not necessarily the
most promising. In terms of proactive defenses, the next section is by far the most active.
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Adversarial Training

The very idea of adversarial training (or retraining) came early with the works of
Goodfellow et al. in 2015 [53]. The idea is simple although it exists in different forms.
The main idea is to train a model using adversarial examples in the training set. Then
the optimization problem lies in minimizing a normal classification loss:

θ? = argmin
θ

E
x∼X

max
||xa−x||≤ε

L(θ, xa, y) (5.4)

This optimization is done over a constrained attack. Under a given norm, ||xa − x||
can not exceed ε. This is akin to a classical training procedure as previously seen. The
other optimization is a little different:

θ? = argmax
θ

E
x∼X

min
c 6=ĉ(xa)

||xa − x|| (5.5)

Here the goal is to maximize the margin between classes frontier. The lowest distor-
tion (unconstrained) adversarial example xa is pushed further away from x. Of course,
both of these optimizations are done in parallel with regular training. This ensures both
correct classification and good robustness. In practice, only the first formulation is used
for adversarial training.

Ideally, adversarial training is achieved with knowledge of the threat model. Knowing
how xa is generated ensures better robustness against the attack. The first adversarial
training suggested in [53] used for instance FGSM (Sect. 4.3.3). In general, adversarial
training with gradient-based attacks transfers well to other attacks. It can be however
preferable to use iterative attacks. This is what was done by Madry et al. [98] in which
they both introduced and trained against PGD (Sect. 4.3.3). While their robustness is
unmatched, it comes at the cost of a great loss of accuracy. Obviously, adversarial training
falls right into the No Free Lunch.

Another important work by Kannal et al. [74] brought many novel ideas to the field.
First, they minimize the distance between logits rather than reducing classification error.
The optimization problem is close to the first one (Eq. (5.4)):

θ? = argmin
θ

E
x∼X

max
||xa−x||≤ε

||l̂(xa)− l̂(x)|| (5.6)

This is Adversarial Logits Pairing (ALP). The adversarial example is constrained and
built using a PGD attack. The norm reduced is `2 but they argue that optimization would
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work for other norms. Other ideas in this work are interesting. This first one is Clean
Logits Pairing (CLP) in which they match logits of different images of the same class
together. They empirically show that this increased model robustness. The best results
were obtained with added Gaussian noise for regularization. And the final interesting
result they show is Logits Squeezing in which they simply reduce the norm of logits. They
obtain increased robustness as well from this experiment. This last result can be a little
surprising when considering the previous illustration of feature space (Fig. 5.13). It seems
preferable to have large norms to increase the distance between classes. Their experiments
however show otherwise.

Plenty of other works exist in this model robustification, but most derive from these.
Adversarial training (or sometimes retraining) is probably one of the hottest topics defense-
wise. Protecting a model from this vulnerability is preferably done upfront. This works
also display really good results. Some adversarialy trained models can be attacked only
through visible perturbations. To a human that is.

5.4 Chapter Conclusion

The efficiency of defenses is sometimes questioned. Some defenses rely on preventing
correct gradient calculation, often through randomization. This kind of defense is largely
proven ineffective by the works of Athalye et al. [3]. They developed the Backward-Pass
Differentiable Approximation (BPDA) that can be used in many scenarii to approximate
gradient. The attack is then performed as if the defense was absent and the results are
convincing. Other critics [120] claim that more recent works in robustification are simply
mitigating overfitting in adversarial training. Finally, some argue that robustification is
performed only on small distortion increments [111]. This regime would not be effective
against larger increments and would bear no added robustness against black-box attacks.

Still, each form of defense is interesting differently. A combination of both proactive
and reactive defenses might be desirable. The synergy between robustness and detection
is strong for instance. High-distortion examples are however not desirable for reformation.
These techniques are more effective against small signals. But their advantage over others
is that they can usually be implemented without further training. If time is a constraint
to deploy a system, this situation can be favorable. Otherwise, the first solution might
yield the best results.

Finally, No Free Lunch Theorem may not be so rigid. Works have shown that the
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trade-off can be shifted towards one or another quantity. Notably, Xie et al. improved the
accuracy of EfficientNet [158] as well as its robustness. Either quantity is however only
mildly improved. Their work is inspired by adversarial training, they introduce AdvProp
as a form of adversarial crafting. Overfitting is mitigated and No Free Lunch is defeated.

66



Part II

Contributions

67





Chapter 6

BENCHMARKING MODELS AGAINST

WHITE-BOX AND BLACK-BOX ATTACKS

69



Partie II, Chapter 6 – Benchmarking Models Against White-box and Black-box Attacks

6.1 Introduction

A deluge of research papers now propose defenses to block an attacker, and adaptive
attacks against these defenses. This is an endless arms race, and systematic benchmarks
to evaluate the state of the threat are greatly required.

It is currently extremely difficult to have a clear view on what is truly working in this
domain. The cliché is that no two papers report the same statistics for the same attack
against the same model over the same image set. This is mostly due to that an attack
is an algorithm with many parameters. Its power is indeed highly dependent of these
parameters. These values are rarely specified in research papers.

There exist benchmarks in the litterature, such as ARES [36], RobustBench [29], RobustVision [82],
ADBD [23]. They aim at providing a better understanding of the robustness of image clas-
sifiers. Yet, they fall short because their slowness prevents them from tackling large image
dataset like ImageNet. They only operate on CIFAR-10 or MNIST. Also, they resort to
attacks which are not all state-of-the-art.

This chapter proposes RoBIC, to consider these concerns and develop a benchmark
tool to measure the robustness of image classifiers in a modern setup.

6.2 Difficulties

This section explains the difficulties for setting up a benchmark measuring the robust-
ness of image classifiers.

6.2.1 Notation

An attack is a process forging an image Ia = A(I0,M,Π), where Io is the original
image, M is the target model, and Π is a set of attack parameters. The ground truth
label of I0 is denoted by y0. The boolean function 1(Ia, y0) = [M(Ia) 6= y0] tells whether
the attack deludes classifier M in the untargeted attack scenario: the prediction M(Ia) is
not the ground truth. The distortion between I0 and Ia is denoted by d(Ia, I0).

Some statistics like the probability of success and the average distortion are extracted
from the adversarial images forged from the test set. They depend on the attack A and
its set of parameters Π. Therefore, it can not play the role of a measure of robustness of
a given model. The first difficulty is to get rid off the impact of parameters Π.
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6.2.2 The best effort mode

The parameters Π have a huge impact on the power of an attack. For instance, some
attacks like FGSM [53], I-FGSM [81], PGD [81] are distortion constrained in the sense that Π
is strongly connected to a distortion budget. If this budget is small, the probability of the
success of the attack is small. If it is large, this probability is close to 1 but the distortion
is too big. Hence, it is hard to find the best setting to make these attacks competitive. Our
strategy, so-called ‘best effort mode’, reveals the intrinsic power of an attack by finding
the best setting for any image: Ia = A(I0,M,Π?) with

Π? = arg min
Π:1(A(I0,M,Π),y0)=1

d(A(I0,M,Π), I0). (6.1)

The best effort mode makes the measurement of the robustness independent from an
arbitrary global setting Π. Yet, it is costly in terms of computations. Attacks with few
parameters are preferred since the search space is smaller.

6.2.3 Worst case attacks

A second difficulty is to make the robustness score independent of the attack. Ideally,
we would like to know the worst case attack to certify the robustness of a model. An
option proposed by benchmarks RobustVision [82] and ARES [36] is to consider a set of
J = 11 attacks as outlined in Tab. 6.1. This is again costly as each image of the test set
has to be attacked J times. Yet, a benchmark happens to be useful if it is fast enough
so to assess the robustness of many models. The best effort mode over an ensemble of
attacks is out of reach. This is the reason why we need to focus on fast worst case attacks
in the sense that they achieve their best effort mode within limited complexity. Section
6.4 focuses on these attacks.

6.2.4 Metrics

In this thesis, we present results in two forms: graphs or table. We call operating curve
the graph showing the success-rate of an attack (y-axis) at a given `2-distortion (x-axis)
such as in Fig. 6.1. We believe this curves to represent fair evaluation of optimized attacks.
Distortion is measured in the pixel domain J0, 255K as

d(xa, xo) := ‖xa − xo‖2/
√
n, (6.2)
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Benchmark Domain Nb. attacks Measures Runtime
RoBIC J0, 255Kn 1 WB + 1 BB Half-distortion `2 43s

RobustBench [29] [0, 1]n 3 WB + 1 BB Success-Rate for 48s
fixed budget (`2 or `∞)

ADBD [23] [0, 1]n 1 BB Distance `∞ 360s
RobustVision [82] [0, 1]n 6 WB + 5 BB Median Distance `2 200s

ARES [36] [0, 1]n 5 WB + 10 BB Success-Rate vs Budget Too long
(`2, `∞ or queries)

Table 6.1 – Benchmarks Comparison. Average Runtimes per ImageNet Image with
ResNet50 [98].

where N is the number of pixels. This is easily interpretable: If for any pixel i, xa,i = xo,i±ε
(as in FGSM) then d(xa, xo) = ε. The operating curve sums up the impact of an attack
against a classifier over a set of test images Stest by the following function:

d→ P (d) = |{xo ∈ Stest : d(xa, xo) ≤ d}|
|Stest|

. (6.3)

Note that P (0) = 1− η > 0, where η is the accuracy of the classifier. This is the fraction
of original images which are misclassified, hence considered as already adversarial.

Figure 6.1 shows operating curves of several attacks against two well-known classifiers.
We choose a complexity budget allowing an attack to perform at its best capacity under
the best effort mode: FGSM runs on Niter = 30 iterations, BP on Niter = 50, IFGSM,
PGD2 on Niter = 10× 10, and CW2 on 10× 100 iterations (i.e. outer loop × inner loop).
We formulate three remarks:

— CW2 requires even more iterations to successfully attack all images against ResNet-
50.

— BP achieves by far the best trade-off between complexity, distortion, and success
rate.

— These attacks yield adversarial images with unquantized pixel values, and the aver-
age distortion is lower than 0.5 for most images. Rounding these values to J0, 255K
erases the adversarial perturbation in most pixel positions so that the result is no
longer an adversarial image [12]. Chapter 7 studies this thoroughly.
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Figure 6.1 – Operating curves of EfficientNet-b0 (left) and ResNet-50 (right) against four
attacks in best-effort mode and without quantization.

6.3 The benchmark

This section justifies the recommendations made in our benchmark and defines the
measure of robustness.

Pixel domain. Our benchmark is dedicated to image classification. As a consequence,
the distortion is defined on the pixel domain: An image I is defined in the space J0, 255Kn

with n = 3RC pixels for 3 color channels, R rows and L columns. Most papers in the
field measure distortion after the transformation of the image in a tensor x ∈ X n. This is
a mistake preventing a fair comparison: for most models X = [0, 1], but for some others
X = [−1, 1] or X = [−3, 3].

We outline that an adversarial image is above all an image, i.e. a discrete object
Ia ∈ J0, 255Kn. Again, most attacks output a continuous tensor xa ∈ X n, neglecting the
quantization. This is a mistake: in real-life, the attacker has no access to xa, which is an
auxiliary data internal of the model.

Measure of robustness. Let us define the accuracy function η(d) := 1− P (d). The
value η(0) is the classical accuracy of the model over original images. Function η(d) is by
construction non increasing and should converge to 0 as the distortion d increases. After
observing many accuracy functions η for different models and attacks, we notice that they
share the same prototype:

η(d) = η(0) e−λd with λ ∈ R+. (6.4)

Like in nuclear physics, we define the half-distortion d1/2 as the distortion needed to reduce
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to half the initial accuracy:

η(d1/2) = η(0)/2, d1/2 = λ−1 log(2). (6.5)

This approximation is verified experimentally with an average coefficient of determi-
nation R2 of 99%. The half-distortion d1/2 will be the keystone of the proposed metric of
robustness. A model is then characterized by three separated concepts: its generalization
ability η(0) and its robustnesses d1/2 against black-box and white-box attacks.

6.4 Fast Attacks

The recent trend in adversarial examples is to design fast attacks with state-of-the-art
performances.

6.4.1 Fast black-box attacks

In the black-box decision based setup, the attacker can query a model and observes
the predicted class. The complexity of the attack is gauged by the number of queries K
needed to find an adversarial image of low distortion.

There has been a huge improvement on the amount of queries recently. Brendel et
al. report in the order of one million of queries for one image in one of the first deci-
sion based black-box BA [14, Fig. 6]. Then, the order of magnitude went down to tens
of thousands [24, Fig. 4] [86, Fig. 5] and even some thousands in [118, Fig. 2]. Cur-
rent benchmarks use others black-box attacks, which are either decision-based (Square
Attack [1] in RobustBench [29] is score-based), or not state-of-the-art (like Gaussian noise
in RobustVision [82], or BA [14] in ARES [36]).

SurFree [99] and RayS [23] are the only decision-based papers with less than one
thousand of calls on ImageNet. Yet, RayS [23] is designed to minimize the `∞ distortion,
whereas SurFree [99] targets `2. Sect. 6.5 investigates which attack is the best candidate
for a fast benchmark.

6.4.2 White-Box Attacks and “Best-effort Mode"

White-box attacks are a family of processes parametrized by one or more parame-
ters. One parameter setting may not be adequate from one classifier to another, and for
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any image. This explains why experimental results in this literature lack reproducibil-
ity. The complexity is usually gauged by the number of gradient computations. Current
benchmarks use different white-box attacks: RobustBench [29] relies on PGD [81] (with 2
parameters Π), RobustVision [82] use DeepFool [104], and ARES [36] CW [21].

In this chapter, we propose the concept of best-effort mode enabling a fair comparison
of attacks and classifiers. It consists of automatically setting the attack to perform as well
as possible on a given iteration budget. It finds the parameters such that the attack is
successful and the `2-norm of the perturbation is minimized. (The attack parameters are
usually defined within ranges and the optimization may fail providing adversarial).

The implementation of CW is already optimized and therefore needs no tweaking.
Two parameters are still defined by the user: boundaries of research and the number of
iterations for iterative attacks.

FGSM This attack depends on one parameter ε. Best-effort simply means running a
binary search to find the lowest value that successfully crafts an adversarial perturbation.

iFGSM This attack also depends on one parameter ε, for a given number of iterations.
We perform the iterative search in the same fashion as previously.

PGD Our best-effort mode runs a binary search on the radius α. The iterations budget
is equally distributed between the number of iterations and the binary search (e.g. if
Niter = 100, 10 radii are tested with Nrun = 10 iterations each), while ε is set to 2α/Nrun.
With this value of ε, adversarial samples are not projected back onto the `2-ball of radius
α at least within the first half of the Nrun iterations. Our experiments confirm that this
empirical choice is good.

BP This attack leads to very good results when set up correctly. It finds an adversarial
sample (stage 1) that is then refined (stage 2). For stability, we aim at finishing stage 1
within roughly the same number of iterations for each image. Inspired by Deepfool [104],
this is done through a first-order approximation of the loss:

Ladv(xo + u) ≈ Ladv(xo) + u>∇Ladv(xo). (6.6)

75



Partie II, Chapter 6 – Benchmarking Models Against White-box and Black-box Attacks

Branching this linearization with (4.20) gives the value of α canceling the loss within κ
iterations:

α = Ladv(xo)
‖∇Ladv(xo)‖2

∑κ
j=1 γj

. (6.7)

We set κ = d0.2×Nitere and experimentally observe that stage 1 is more or less completed
when desired, leaving ≈ 0.8×Niter iterations to stage 2.

Section 6.5 compares PGD, C&W and PGD to show differences in complexity.

6.4.3 Quantization

The adversarial samples are quantified in the pixel domain to create images. The first
option considers the quantization as a post-processing not interfering with the attack.
The second option performs quantization at the end of any iteration.These options are
tested on several black and white box attacks. The quantization will be a post-processing
for white-box attacks as detailed in Chap. 7, whereas the second option give better results
on black-box attacks.

6.5 Experiments

All the attacks are run on 1000 ImageNet images from ILSVRC2012 validation set
with size n = 3× 224× 224.

6.5.1 Selecting the worst case attacks

Black box attacks: Figure 6.2 compares the evolution of the half-distortion (6.5)
in function of the query amount for four decision-based black-box attacks: SurFree [99],
RayS [23], GeoDA [118], and QEBA [86]. SurFree and RayS reach their best effort within
3000 queries, while QEBA and GeoDA do not since their d1/2 still decrease after 5000 queries.
Yet, SurFree obtains quantified adversarials with much lower distortion. Therefore, our
benchmark only needs this attack. The number of queries is kept at 5000 to be sure to
reach the optimal value of d1/2.

White box attacks: Figure 6.3 compares three white-box-attacks in the best effort
mode: PGD [81], CW [21], and BP [166] with our trick 6.7. They all reach the same d1/2 when
given a large complexity budget. Yet, BP converges faster than the others. Our benchmark
uses this version of BP to evaluate the white-box-robustness.
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Figure 6.2 – Evolution of d1/2 with the complexity budget for black box setup. Attacks on
EfficientNet [142]

6.5.2 Comparison with other benchmarks

Table 6.1 lists several benchmarks. Most of them evaluate the robustness as the success-
rate under a prescribed `2 or `∞ distortion budget. But, these budgets are set arbitrarily
or even not constant within the same benchmark for RobustML. Our half-distortion (6.5)
is parameter-free. It returns an accurate, reliable and fair measurement of robustness.

Some benchmarks need many attacks to get a full vision of the robustness: ARES [36]
and RobustVision [82] use 11 attacks. This is too time-consuming. On the contrary,
ADBD [23] focuses on a single black-box attack, which is indeed outdated. RobustBench [29]
condenses four attacks in one measure elegantly: for a given image, if the first simple
attack does not succeed within the distortion budget, then the second more complex one
is launched etc. The total runtime heavily depends on the distortion budget. Yet, black-box
and white-box attacks use different mechanisms. Our benchmark reports a measurement
for each separately.

6.5.3 Benchmarking models

Table 6.2 compares standard models from timm [157] and torchvision [101] libraries.
Here are some intriguing results.
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Figure 6.3 – Evolution of d1/2 with the complexity budget for white box setup. Attacks on
EfficientNet [142]

Robustness in white box vs. black box. One does not imply the other. Fig. 6.4
even shows a negative correlation. However, some models escape this rule. For instance,
VGG16 is neither robust in black box nor in white box. EfficientNet AdvProp [158] follows
the opposite trend. We believe that black-box robustness reveals the complexity of the
borders between classes, and white-box robustness indicates how close natural images are
from the borders. This highlights the importance of having two different measurements.

The importance of the training procedure. There is on average a factor 20
between the half-distortions in white and black box. This factor drops to 4 and 10 for the
models adversarially trained: ResNet50 [98], EfficientNet AdvProp [158].

Table 6.2 lists four EfficientNet models sharing the same architecture but different
training procedures. Their accuracies are similar but there is up to a factor of 2 between the
robustnesses. The same holds on the three variants of Resnet50. The gaps in accuracy and
robustness are noticeable with standard models from timm [157] and torchvision [101]. It
is even more visible with adversarial training from [98]: the gain in robustness is impressive
but at the cost of a big drop in accuracy.
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Model Parameters Accuracy d1/2

(millions) η(0) white box black box
AlexNet [137] 62.38 56.8 0.19 2.17

CSPResNeXt50 [152] 20.57 84.6 0.13 4.48
DualPathNetworks 68b [88] 12.61 83.8 0.08 3.82

MixNet Large [144] 7.33 84.2 0.12 2.96
MobileNetV2 [131] 5.83 80.1 0.09 2.90
ReXNet 200 [31] 16.37 85.4 0.14 3.89
RegNetY 032 [116] 19.44 85.8 0.11 4.94

SEResNeXt50 32x4d [66] 27.56 85.9 0.12 5.01
VGG16 [137] 138.00 74.9 0.09 2.44

EfficientNet AdvProp [158] 5.29 84.3 0.31 4.35
EfficientNet EdgeTPU Small [142] 5.44 82.8 0.15 3.16
EfficientNet NoisyStudent [160] 5.29 82.7 0.19 2.37

EfficientNet [142] 5.29 82.8 0.17 3.56
ResNet50 (torchvision) [61] 25.56 77.9 0.10 2.77

ResNet50 (timm) [61] 25.56 80.5 0.15 4.35
ResNet50 AdvTrain [98] 25.56 60.8 2.56 9.88

Table 6.2 – Benchmark of models with 1.000 ImageNet Images

6.6 Chapter Conclusion

This chapter introduced a rigorous benchmark based on a new and independent mea-
surement of robustness: the half distortion. RoBIC is faster than the other benchmarks.
This allows to tackle larger images which is more realistic.

In addition to the accuracy, RoBIC gives the black box robustness, and white box
robustness. We believe that the first indicates how far away the class boundaries lie
from the images whereas the last reflects how curved are the boundaries. As the other
benchmarks, two limitations hold: The network must be differentiable to run a white box
attack, and deterministic to run a black box attack.
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Figure 6.4 – Black-box d1/2 as a function of white-box d1/2.
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7.1 Introduction

Recent attacks aim at reducing the distortion (usually measured as `2 or `∞ norm),
increasing the probability of success, and speeding up the process. Even if some learning
procedures result in more robust classifiers [98] and some images are harder to attack,
recent white-box attacks craft perturbation invisible to the human eye in most cases
provided their complexity budget is large enough.

Regardless their complexity, very few attacks consider the specificity of the medium.
A raster image is in its digital form a 3-dimensional matrix of integers, such as the
PNG image format. JPEG images [151] are coded as integer matrices representing DCT
coefficients in different color spaces. To forge an adversarial image rather than just a
sample encoded in a floating-point tensor, one needs to craft an integral perturbation.
Added to the original image, the result must remain within the defined boundaries (i.e.
[0, 255]n with n the number of pixels in the spatial domain).

Attacks rarely address this constraint. It is sometimes argued that the attack is per-
formed inside the classifier in the white-box setup and thus is not required to be integral.
While debatable, we consider this assumption to be very niche. Ironically every attack
still clips their samples within the boundaries of a pre-processed image (i.e. [0,255]). The
white-box setup means that the attacker can replicate the model in his/her garage to pre-
pare an attack that will later on be deployed against a remote classifier service analyzing
integral images.

The first idea that comes to mind is to round pixel-wise the crafted perturbation to
the nearest integer. This is not working. Perturbations are so small that they are par-
tially erased (set to zero) by rounding. Table 7.1 gives a first insight of this problem. This
preliminary experiment is run on 1,000 randomly selected images from ImageNet. The
same images are used throughout this chapter. The studied classifier is EfficientNet-b0.
Rounding an optimized attack significantly increases the accuracy (decreases the success
rate of the attack). An alternative is to round after every step of an iterative attack like
PGD2. This requires significantly more distortion at every iteration so that the perturba-
tion is not erased by rounding. This is displayed as PGD2 round in Table 7.1: it succeeds in
beating classification but generates 64% more distortion than our quantization. Figure 7.1
illustrates further these results.
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Figure 7.1 – Operating curves of EfficientNet-b0 against FGSM and PGD in best-effort
mode with floating point (plain) or quantized (dotted) pixel values.
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Figure 7.2 – Example of adversarial images quantized with our method. Attacked network
is EfficientNet-b0. The predicted label is displayed below.

JPEG compression smoothes the image by cancelling high frequencies, especially at
low quality factor. This has little effect on the accuracy of the classifier over natural images
while adversarial perturbations are very sensitive to it. Even an attack with an increased
distortion budget does not easily fool a classifier after a JPEG compression especially at
low-quality factor. Table 7.1 shows that JPEG compressing images forged by FGSM or
PGD does not create adversarial examples.

This is the reason why some works propose JPEG as a defense against adversarial at-
tacks [93, 134]. Backward Pass Differentiable Approximation (BPDA [3]) was developed
to beat this defense and can be used to create JPEG adversarial images as well. BPDA
approximates the JPEG compression by a differentiable transformation. This approxima-
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tion is less accurate for low JPEG quality factors. BPDA then fails to attack some images
although it generates more distortion than our quantization. Table 7.1 shows that our
method JPEG quantizes images which remain adversarial almost surely with a distortion
comparable to the compression itself (see section 7.4).

7.1.1 Contributions

This chapter proposes a quantization dedicated to adversarial perturbation so that
samples can be saved as adversarial images as shown in Fig.7.2. It is a post-process to
be used on top of any attack. This method however relies on gradients available in the
white-box setup. It is quick in the sense that it typically needs fewer iterations than the
attack per se. Our intensive experimental study shows that forging real images, be it in
the raster or JPEG format, is not a hard constraint for the attacker when quantization is
properly managed. In other words, our quantization adds little to no extra distortion.

Quantization is restricted to a desired range of values providing control over `∞-
distortion (see Sect. 7.2). We also extend this method to the JPEG domain (see Sect. 7.3).
This proves to be challenging since this compression erases high-frequencies typical of an
adversarial perturbation. Finally we also propose best-effort mode for multiple attacks (see
Sect. 6.4.2). This mode finds the best parameter setting for each original image in order
to reveal the intrinsic power of an attack. This allows a fair comparison of the attacks.

Note that generating adversarial contents in the quantized domain can also be used
in another context. The Euclidean distortion can for example be replaced by a stegano-
graphic cost to increase the undetectability of adversarial perturbation (see Chap. 8)).
The attacker may also target a network which is not a classifier, like a regression function
evaluating the visual quality (see Appendix A).

7.1.2 Outlines

Sections 7.2 and 7.3 detail our improved post-processing in both spatial and JPEG
domains. Section 7.4 presents experimental results in various scenarios as well as a thor-
ough study of the impact of each parameter. This further motivates our choice of default
parameters. Example images are also displayed throughout this section.

Our code is available at gitlab.inria.fr/bbonnet/adversarial-quantization
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7.2. Smart Quantization in the Spatial Domain

Table 7.1 – Accuracy (in %) and mean average distortion of FGSM and PGD2 attacks
against EfficientNet-b0 in best-effort mode (see section 6.4.2) over 1,000 randomly selected
images from ImageNet.

floats PNG JPEG90 JPEG75 JPEG60
Attack Acc. Dist. Acc. Dist. Acc. Dist. Acc. Dist. Acc. Dist.
None 83.0 0.00 83.0 0.00 83.0 3.0 81.0 5.2 81.0 6.4
FGSM 11.6 0.33 66.4 0.41 83.0 3.0 81.2 5.2 81.4 6.4
PGD2 0.2 0.16 81.7 0.04 83.0 3.0 81.2 5.2 81.4 6.4

PGD2 round 0.2 0.28 0.2 0.28 - - - - - -
PGD2 BPDA - - - - 0.6 3.9 6.6 5.8 12.5 6.8
PGD2 ours 0.2 0.16 0.2 0.17 0.6 3.0 0.6 5.2 1.0 6.5

7.2 Smart Quantization in the Spatial Domain

We saw in 4.2.2 the principle of pre-processing I0 to x0. Values in tensor x0 are encoded
as floating-point variables so that their domain is pseudo-continuous. Yet, Eq. (4.3) shows
that there are only 256 different possible values for a given entry of x0. White-box attacks
modify x0 into xa ∈ [0, 1]n which entries may not equal one of the 256 admissible values.
This means that by reversing the preprocessing (4.3), the attacker gets xa ∈ [0, 255]n

whose pixel values may not be integers. For readability, we integrate the preprocessing to
our models as the first layer. The sequel focuses on images x ∈ [0, 255]n whereas original
images are in J0, 255Kn. In particular, x0 ∈ J0, 255Kn.

Assume that an attack has forged the adversarial sample xa ∈ [0, 255]n, which is
not quantized, i.e. pixel values are a priori not in J0, 255Kn. This section presents our
mechanism carefully quantizing the pixel values to keep adversarial images adversarial.

7.2.1 Problem Statement

Our mechanism casts xa ∈ [0, 255]n to xq ∈ J0, 255Kn. Its goal is to solve the optimiza-
tion problem defined in (4.12) with the additional integral constraint: xa is eventually
replaced by xq ∈ J0, 255Kn. Since we are working in a white-box environment, our method
can rely on the following quantities:

— the original image x0 ∈ J0, 255Kn,
— the unquantized adversarial image xa ∈ [0, 255]n,
— the adversarial loss Ladv(x) and its gradient ∇Ladv(x) (see Eq. (4.15)).
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We introduce the following weak signals:

u := xa − x0, (7.1)

q := xq − xa. (7.2)

The quantization noise q plays the central role in our approach. We redefine the distortion
and the loss functions w.r.t. this variable:

D(q) := ‖xq − x0‖2 = ||u+ q||2 (7.3)

L(q) := Ladv(xq) = Ladv(xa + q). (7.4)

There is obviously a trade-off between these two quantities. For instance, the choice

q† = arg minD(q) = −u (7.5)

cancels the perturbation and makes xq = xo not adversarial.

Finding the adversarial image xq minimizing distortion D(q) can be expressed as:

min
q∈Q,L(q)<0

D(q), (7.6)

where Q is the set of admissible solutions. Remark that xq − xo = q + u ∈ ZN since it is
the difference of two integer vectors. This implies that q ∈ Q ⊂ Zn − u, i.e. the grid Zn

shifted by translation −u. For instance, quantizing by rounding the perturbation gives

q = [xa]− xa = [xo + u]− (xo + u) = [u]− u, (7.7)

where [u] is the closest integer value of u component-wise.

We add the other constraint of q being of limited amplitude. We introduce a new
parameter df ∈ N∗, so-called degree of freedom which reflects the number of choices per
component:

qi + ui =



[ui] if df = 0

buic or duie if df = 1

[ui]− 1, [ui], or [ui] + 1 if df = 2

. . .
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The case df = 0 amounts to rounding the perturbation and there is no freedom to choose
another integer. This implies that the `∞-norm of the quantization noise is bounded by
‖q‖∞ ≤ 1/2. In the general case, this norm is bounded by ‖q‖∞ ≤ (df + 1)/2. The case
df = ∞ means that the perturbation is quantized to integers but there is no control on
the norm ‖q‖∞.

In the end, the set of admissible quantization noises is defined by the product space
Q = ⊗Ni=1Qi with

Qi =

{[ui]−
df

2 , . . . , [ui] + df

2 } − ui if df is even,

{buic − df−1
2 , . . . , duie+−df−1

2 } − ui if df is odd.
(7.8)

Note that the number of admissible solutions is exponential with N : |Q| = (d+ 1)N .
We now assume that ∀q ∈ Q, q is small enough to make a first order approximation

of the loss:
L(q) := Ladv(xq) ≈ Ladv(xa) + q>g, (7.9)

where g := ∇Ladv(xa). For instance, the choice

q‡i =

min(Qi) if sign(gi) > 0

max(Qi) if sign(gi) < 0
(7.10)

minimizes the first order approximation of L(q). For df large enough, this certainly en-
sures that L(q) < 0 and xq is adversarial but the distortion is large. The solution to
problem (7.6) can consequently be seen as a compromise between (7.5) minimizing the
distortion and (7.10) minimizing the loss.

7.2.2 Solution

The solution of (7.6) is given by a Lagrangian formulation. Define the following func-
tional:

Jλ(q) := D(q) + λL(q), (7.11)

where λ ∈ R+ is the Lagrangian multiplier balancing adversariality and distortion quan-
tities. Suppose we know how to efficiently minimize that functional by q?λ := minQ Jλ(q),
∀λ ∈ R+. The expected behavior along λ is for L(q?λ) to decrease while D(q?λ) increases
(see Fig. 7.3). For instance,

87



Partie II, Chapter 7 – Generating Quantized Adversarial Images

1. When λ = 0, all importance is given to D(q). This results in a distortion-based
quantization q† erasing the perturbation u as seen in (7.5).

2. When λ → +∞, all importance is given to L(q). This results in a gradient-based
quantization q‡ of (7.10).

Since the distortion strictly increases with λ, the optimal solution of problem (7.6) is
then q?λ? where λ? = min{λ : L(q?λ) < 0}. We practically compute this optimal solution in
a two step approach.

Minimizing the functional

Finding the minimum of Jλ is difficult, except if we rely on approximation (7.9), then
we can write that

Jλ(q) ≈ ‖u+ q‖2 + λLadv(xa) + λq>g (7.12)

is convex and thus is minimized when ∇Jλ(q) = 0. This happens for q = q̃λ, where

q̃λ := −λ2 g − u. (7.13)

Yet this solution is not admissible because it does not belong to Q a priori. We rewrite
the approximation (7.12) as

Jλ(q) ≈ ‖q − q̃λ‖2 + λ2

4 ‖g‖
2 + λ(g>q̃λ + Ladv(xa)) (7.14)

to outline that the minimizer on Q is just its closest element to q̃λ. This amounts to first
quantize q̃λ onto ZN − u and then clip:

q?λ,i = clip[min(Qi),max(Qi)] ([−λgi/2]− ui) . (7.15)

Finding the optimal λ?

The relaxation of the integral constraint and the linearisation of the loss provides a
first approximation of λ?. Inserting (7.13) in (7.9) yields:

λc := 2(Ladv(xa)− u>g)
‖g‖2 . (7.16)

88



7.3. Smart Quantization in the JPEG Domain

We find the value of λ∗ by looking around λc. Similarly to our previous work [12], we run a
line search in the interval [0.01λc, 100λc]. For every value tested, we compute the optimal
perturbation (7.15), add it to xa, and submit this to the classifier. If it is adversarial, then
the value of λ is decreased. It is increased otherwise. In other words, the computation of
the best quantization noise q?λ given λ relies on the linear approximation (7.9), but the
finding of λ? implies to evaluate the classifier.

7.3 Smart Quantization in the JPEG Domain

The JPEG file format represents an image as a 3-dimensional tensor of scaled DCT
coefficients quantized to integers. Extending our quantization to the DCT domain enables
us to craft JPEG adversarial images.

7.3.1 JPEG Compression

The JPEG compression is schematically done in four stages (excluding entropic source
coding). A RGB image (Red, Green, Blue) is linearly converted to Y CbCr (Luminance,
blue-Chroma, red-Chroma). This linear transform ensures that all values lie in the range
[0, 255]. Then each channel undergoes the 8×8 block DCT-transform. The resulting DCT
coefficients are finally divided by quantization steps which depend on their frequency bin
and the quality factor. A lower quality factor increases the quantization steps s.t. the
following quantization loses more information.

This pipeline is linear and thus can be summarized by X = Jx + C, where X ∈ Rn

stores the scaled DCT coefficients and C is a constant vector encoding the shift in the
conversion RGB to Y CbCr. We have supposed here that n = 3LC where the numbers
of columns C and lines L are multiple of 8. The matrix J ∈ Rn×n encodes the color
conversion, the block DCT, and the division by the quantization steps. It is cumbersome
to express it due to the flattening of images in n dimensional vectors. The main properties
are that J is invertible and that it is not an isometry, i.e. ‖Jx‖ 6= ‖x‖ in general. This is
due to the scaling with the quantization steps but also to the color domain conversion [169].

Vectors in this JPEG domain are denoted with capital letters: Xo, Xa, Xq, U , and Q
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with:

U = Xa −Xo = J(xa − xo) = Ju, (7.17)

Q = Xq −Xa = J(xq − xa) = Jq. (7.18)

The scenario is the following: As in the previous section, an attack forges xa and we have
to craft its JPEG version. This amounts to convert it in the JPEG domain, Xa = Jxa+C,
and to quantize these coefficients with care so that the image remains adversarial. Note
that Xo = Jxo+C is a priori not an element of ZN , unless the original image was already
quantized in the JPEG domain.

7.3.2 Quantization

We write the problem by focusing on the quantization noise Q in the JPEG domain.
Since xq = J−1(Xq − C), Eq. (7.9) is written as:

Ladv(xq) = L(J−1(Xa +Q− C)) = L(xa + J−1Q)

≈ Ladv(xa) + (J−1Q)>g, (7.19)

where g is the gradient of the loss function in the pixel domain. As for the Euclidean
distortion, we have

‖xq − xo‖2 = ‖u+ q‖2 = ‖u+ J−1Q‖2. (7.20)

Finally, the Lagrangian functional defined in (7.11) becomes:

D(J−1Q) + λL(J−1Q). (7.21)

Following the same reasoning as in the spatial domain, the minimum of this functional
when relaxing the quantization constraint amounts to set J−1Q to q̃λ given in (7.13).
Equivalently:

Q̃λ = −λ2Jg − U. (7.22)

Yet, this time the rounding is done with respect to Xa since we need Xa + Q to be an
integral vector:

Q?
λ =

[
−λ2Jg − U +Xa

]
−Xa. (7.23)
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Like in the spatial domain, this value is clipped to belong to the set Q, defined in (7.8)
replacing u by U . Note that if the original image is in JPEG format with the same quality
factor so thatXo is an integer vector, thenQ?

λ =
[
−λ
2 Jg

]
−U , and we recover a quantization

similar to (7.15).

7.4 Experimental Work

7.4.1 Implementation Details and Setup

We make the following implementation choices.
One can either implement the transformation J−1 as a preprocessing layer like previ-

ously discussed in Sect. 4.2.2. This allows to directly feed the classifier with JPEG images.
Attacks also naturally adapt to this new object as the gradient back-propagates through
the transformation layer. Yet, this approach makes the attack domain-specific. Our choice
of design is to implement our quantization separately on top of any attack. Our method
forges JPEG images from a spatial adversarial sample xa resulting from an attack on xo.

Our implementation builds on the Python library Pillow to be as close as possible to
the official JPEG standard. Two differences remain: JPEG may apply a sub-sampling on
the Cb and Cr channels. Taking into account sub-sampling is straightforward with back-
propagation and auto-differentiation. For the sake of simplicity, we work on JPEG images
without sub-sampling and the color channels have all the same size. JPEG may apply
clipping when converting from one color domain to another. These border effects produce
small information losses. We do not apply this lossy step to keep the transformation linear.

The experiments use 1,000 PNG versions of images from the validation set of Imagenet
ILSVR 2012 [127]. Unless stated otherwise, the attacked classifier is EfficientNet-b0 [142].
EfficientNet in its b0 configuration is a recent and lightweight classifier that achieves
high accuracy on ImageNet. Our previous work [12] shows that distortion created by
quantization is proportional to the distortion created by the attack. We thus choose BP
to be the default attack. It performs well with few iterations in its best-effort setup as seen
in Fig. 6.1. The research on the optimal value of λ is done by default over 10 iterations.
Finally, both spatial and JPEG quantization are run by default with degree of freedom
df = 1 unless specified otherwise.

The protocol is the following. For the spatial domain, xq = xo if the original image is
already misclassified, otherwise BP produces xa that our method quantizes to xq. For the
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JPEG domain, xo is first converted in the JPEG format. If this triggers a misclassification,
then this JPEG version of xo is the adversarial image Xq. Otherwise, BP produces xa from
the JPEG original that our method quantizes to Xq.

Operating curves in both domains are displayed as follow:
— Distortion is calculated w.r.t. the original spatial image.
— Misclassified original images in each domain are considered as already adversarial

at null distortion.
Note that compressed JPEG images do not have a null distortion since they differ from
the original spatial image. For the sake of clarity, we however consider they do. This choice
is further motivated in Section 7.4.3.

7.4.2 Investigations on the Search of λ?

Figure 7.3 shows the behavior of the adversarial loss and the distortion as functions
of λ, for one image in the spatial and the JPEG domains. To plot these curves we use the
quantized (7.15) (resp. (7.22) for JPEG) and unquantized solution (7.23) (resp. (7.13)).
The same behavior is observed on other images through other classifiers up to a change
of ranges of values.

Without quantization, the distortion is the same in both domains and it strictly in-
creases w.r.t. λ as predicted by (7.13) or (7.22). With quantization and clipping (with
d = 1), the distortion increases much more in the JPEG domain because of the coarser
quantization steps in the high-frequency bins. It also does not start at 0 but at the dis-
tortion induced by the regular JPEG compression of the original image.

In the spatial domain, the adversarial losses (with or without quantization and/or
clipping) are well-approximated by (7.9) for small perturbation, i.e. when λ is small. In
particular, they converge to Ladv(xo) when λ → 0. The linear approximation is useful
for predicting when the loss cancels. Adding quantization and clipping constrains the
problem and we observe that λ? > λc. This implies a stronger distortion. Of course, the
linear approximation is very wrong when predicting losses below −1.

The picture is less clear in the JPEG domain. The approximation holds true in the
beginning and until Ladv(Xq) reaches 0. The approximation λc remains extremely rele-
vant. However Ladv sometimes becomes non-monotonic as λ → ∞ because of the strong
distortion.

For this reason, our search of λ∗ slightly differs. It starts from λc given in (7.16). This
is the same value for both spatial and JPEG domains. In the spatial domain, a line search
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Figure 7.3 – Comparing the approximated loss (7.9) (resp. (7.19)) with the loss without
rounding: L(q̃λ) in (7.13) (resp. L(J−1Q̃λ) in (7.22)) and the loss with quantization L(q?λ)
in (7.15) (resp. L(J−1Q?

λ) in (7.23)) as a function of λ in the (left) spatial domain, resp.
(right) JPEG90. Distortion is also displayed with scale on the right.

within [0.01 · λc, 100 · λc] works well because the loss is almost monotonically decreasing.
In the JPEG domain, the loss is less predictable and we instead sample n values in this
interval:

λi : = λc · 10αi , (7.24)

αi := 2 · n− 2i
n

. (7.25)

The lowest value tested that verifies Ladv < 0 is necessarily the best since distortion
strictly increases with λ.

It is expected that the line search in the spatial domain is more efficient than the
uniform sampling in the JPEG domain. This is indeed illustrated by Fig. 7.4. Quantiza-
tion in the spatial domain converges faster thanks to the line search. However, for both
approaches, searching for λ? with n = 10 steps is sufficient. Note that each step only
makes a forward pass through the classifier network. In comparison running BP makes
Niter = 50 forward and backward passes. Our quantization is thus faster than the attack.
It gets slowed down by the DCT transform in JPEG domain however.

7.4.3 Impact of Quality Factor in JPEG Domain

The quality factor of JPEG determines the values of the quantization steps applied
on the DCT coefficients. A lower quality factor leads to a bigger loss in information and
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Figure 7.4 – The impact of the number of tested values of λ on the operating curve.
EfficientNet, BP, df = 1, spatial (left) and JPEG90 (right).

degradation of the image. This is especially true for high frequencies of the image which are
coarsely quantized. The gradients computed during attacks look like noisy patterns and
the resulting adversarial perturbation is thus in the high-frequency range. Its distortion
needs to be amplified to preserve the adversarial property of the perturbation at a lower
quality factor.

Figure 7.8 shows operating curves for adversarial images crafted for different JPEG
quality factors (plain curves) which confirm this last statement. For the sake of compari-
son, the distortion of the JPEG compression on the original images is also displayed as a
cumulative sum over all the 1,000 images (dashed curves). We observe that our adversarial
quantization returns a distortion very close to regular JPEG compression. This leads to
the interesting result that some adversarial images quantized in JPEG often have the same
distortion (or even less in few cases) than just the original image compressed. Figure 7.13
illustrates this result with JPEG75. On three of the four examples displayed, distortion
of the adversarial image is equal or very close to the distortion of the compressed image.
In other words, a perturbation being compliant to JPEG is not a strong constraint for
the attacker as it is almost distortion-free.

The price to pay is a small extra complexity thanks to our method. This is necessary
as the JPEG compression alone is not working as an attack. Table 7.1 indicates that only
17.0% (JPEG90 and JPEG100) or 19.0% (JPEG75 and JPEG60) of compressed original
images are misclassified.

We plot the same operating curve as previously considering JPEG compression as
an attack on Fig. 7.8 (dash plots). Its discloses which images were naturally adversarial
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Figure 7.5 – Visible artifacts on images quantized as JPEG60. Predicted class is displayed
in red, ground-truth in blue.

after JPEG compression and which ones needed to be attacked and quantized by our
method. There is no correlation between the distortion due to JPEG and the chance that
it succeeds as an attack. Indeed, most of these images are already misclassified in PNG
and still adversarial once in JPEG.

Figure 7.6 shows the operating curve w.r.t. to the Euclidean distance from the original
image compressed to JPEG format. These curves start at a success rate of 17.0% (resp.
19.0%) since a null distortion corresponds to misclassified original JPEG images. Except
for these specific images, our method forges an attacked JPEG image different than its
original JPEG version although both of them are equivalently far away from the original
PNG image.

Distortion is mostly imperceptible when the quality factor is high. It does start to
be noticeable with JPEG75. Fig. 7.13 displays for example at the last row some little
artifacts at the bottom of the lighter which are not typical from a JPEG compression.
On JPEG60, quantization artifacts are more frequent and important. Figure 7.5 displays
two examples. These patterns are especially visible on smooth image regions usually not
affected by JPEG compression. Quantized attacks remain imperceptible when the image
is highly textured.

We conclude this section by the following remarks.
— The classifier is very robust to JPEG compression alone.
— For any tested quality factor, almost all images are successfully attacked and quan-
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Figure 7.6 – Operating curve of
Efficientnet-b0 against BP + JPEG
quantization (df = 1). Distortion is
calculated w.r.t. to the original image
compressed in JPEG domain Xo.
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Figure 7.7 – Operating curve of
Efficientnet-b0 against BP + JPEG
quantization (df = 1). Distortion is cal-
culated w.r.t.to original spatial image
xo. Images that are already adversarial
after compression are considered to have
null distortion for readability.

tized. A few images were unsuccessful at low quality factors (1% for JPEG60).
— Little distortion is added to the inherent distortion of the JPEG compression.
— Yet, at low quality factor, the adversarial perturbation is not typical from JPEG

compression artifact.
Figure 7.7 summarizes the results but this time assuming that misclassified images have
null distortion. We consider this procedure to carry out the main information about the
efficiency of the attack and we use this setup to display the following results.

7.4.4 Impact of the Degree of Freedom

A previous iteration of this work [12] considered only quantization in the spatial do-
main with df = 1. The method here is more general with higher degrees of freedom. Is
that useful?

When df = 0, quantization is equivalent to rounding the perturbation samples to
the nearest integer. Figures 7.10 shows that this mostly leads to unsuccessful attack.
Indeed, the perturbation is a weak signal partially destroyed by rounding. The success
rate converges to approximately 20% for the different JPEG quality factors, close to the
proportion of misclassified original images (see Fig. 7.8). This demonstrates the robustness
of the classifier against JPEG.

When attacking EfficientNet-b0, df = 1 seems enough to quantize almost every image
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Figure 7.8 – The operating curve of Efficientnet-b0 against BP + JPEG quantization with
df = 1 (plain) and against JPEG compression alone (dot). For the sake of comparison,
the cumulative distribution function of the distortion due to JPEG compression is also
displayed (dashed). Distortion is measured from the original spatial image xo.

in both domains and the benefit of increasing df seems rather low. A higher value of df
is not necessarily a better choice. This is particularly visible in Fig. 7.10 with the quality
factor 100.

The reason lies in the metrics used. The distortion (6.2) is proportional to the `2-
norm, i.e. the square root of the squared-difference, summed over all pixels. Adding +2
on one coefficient thus costs 2 whereas adding +1 on two coefficients costs

√
2. The

degree of freedom constrains the `∞ norm of the total perturbation u + q (or U + Q in
the JPEG domain). This clipping increases the spreading of the perturbation over all
the coefficients: since the coefficients with large gradient amplitude can not host a large
perturbation, λ increases to compensate this clipping on the other components. This
more uniform distribution of the perturbation energy over the coefficients yields a lower
Euclidean distortion but also a lower perceptual impact. Figure 7.9 shows two images
quantized with two different quality factors each quantized with df = 1 and df = ∞.
Their Euclidean distortion w.r.t. the original image is similar but the artefact are more
visible for df =∞ (quantization but no clipping). We notice that this holds for any image.

7.4.5 Quantization on Different Classifiers and Attacks

This study considers four recent classifiers: EfficientNet-b0 [142] and its adversari-
ally trained counterpart EfficientNet-b0-advprop [158]; RegNetX-032 [116], and the older
ResNet50 [61].

Figure 7.12 shows two images misclassified by two different classifiers. It is interesting
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Quantization with df = 1 Quantization with df =∞

d(J−1(Xq), xo) = 2.81 d(J−1(Xq), xo) = 2.89
130 ‘flamingo’ 130 ‘flamingo’

ground-truth: 129 ‘spoonbill’
d(J−1(Xq,df =1), d(J−1(Xq,df =∞)) = 0.67

d(J−1(Xq), xo) = 5.90 d(J−1(Xq), xo) = 5.92
432 ‘tank suit’ 432 ‘tank suit’

ground-truth: 776 ‘sax, saxophone’
d(J−1(Xq,df =1), d(J−1(Xq,df =∞)) = 0.46

Figure 7.9 – Visual artifacts for two adversarial images on JPEG90 (top) and JPEG60
(bottom) with and without clipping. Visual artifacts on JPEG60 are due to the compres-
sion factor. Distortion is naturally high. JPEG 90 however represents low compression.
Notice the non-smooth sky around the flamingo. Effect is especially visible for df =∞.
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Figure 7.10 – The operating curves of EfficientNet-b0 against BP in the spatial and JPEG
domain with different degree of freedom. Distortion is measured from the original spatial
image.

to note that both neural networks misclassified the right image as the same class (828:
tray) whereas the left image is misclassified with different labels yet semantically very
close. These classification errors are also understandable from a human point of view. As
a final comment on classifiers: all images misclassified by EfficientNet-b0 (170 total) are
misclassified by RegNetX-032 as well, and RegNetX-032 misclassified 6 more images (176
total).

Figure 7.11 shows the operating curves of all four classifiers. They are attacked with
BP or PGD2 and quantized in both spatial and JPEG90 domains. Gradients from one
classifier to another vary with the number and nature of hidden layers. This affects how
an attack behaves. The hierarchy between unquantized attacks however remains the same
from one classifier to another as seen in Fig. 6.1. This order remains after quantization in
the spatial domain: BP outperforms PGD2.

Nevertheless, the differences between classifiers and attacks are barely noticeable in the
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JPEG domain. Distortion added by JPEG compression takes over as Sec. 7.4.3 explains
and imposes the common shape of the operating curve. This shows the adaptability of
our quantization w.r.t. which neural network is attacked.
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Figure 7.11 – The operating curves of several classifiers against BP (plain) and PGD2
(dotted) with quantization in spatial (left) and JPEG90 (right) domains.

BP+spatial quant. BP+spatial quant.

ground-truth: 639 ‘tank suit’ ground-truth: 828 ‘strainer’
EfficientNet-b0: 602 EfficientNet-b0: 868
‘horizontal bars’ ‘tray’

RegNetX:702 ‘parallel bars’ RegNetX: 868 ‘tray’

Figure 7.12 – Misclassification of two images from our dataset through two classifiers:
EfficientNet-b0 and RegNetX-032.

7.4.6 Transferability

Our quantization method aims at creating an adversarial image with minimum dis-
tortion. The image therefore lies just behind the frontier of correct classification for the
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targeted classifier. Therefore, no transferability to other deep neural networks is guar-
anteed. We consider the scenario where the attacker knows that the deployed classifier
belongs to an ensemble but she/he does not know which one exactly. The goal is to forge
images adversarial for all the classifiers in the ensemble. Our strategy is to aggregate the
losses of the classifiers with the maximum operator so that we focus on the most robust
element of the ensemble and to aggregate their gradients with the average operator like
in Expectation over Transformation (EoT [3, 4]). Figure 7.11 shows that beating all the
classifiers in the ensemble does not amount to beat the most robust one (i.e. EfficientNet-
b0 advprop). More distortion is required instead in spatial domain. In JPEG domain we
observe that the slope of the ensemble curve is similar to the curve of any single model.
The distortion created by the quantization is still on par with compression alone. We do
note however that quantizing for several classifiers is a more difficult task in JPEG. The
final accuracy is 6.7% in JPEG, 0% in spatial domain.

7.4.7 JPEG Compression as a Defense

As mentioned several times throughout this chapter, JPEG compression usually erases
adversarial perturbations while not spoiling the accuracy of the classifier over natural im-
ages. For this reason, JPEG compression has been studied as a means of defense against
adversarial samples [93, 134]. It acts as a low-pass filter reforming the input image. Ta-
ble 7.2 shows this is indeed true for our spatially quantized images. While a quality factor
of 90 reforms 42% of our adversarial PNG images, a quality factor of 60 reforms ≈ 70%.
This proves to be a very effective defense against adversarial samples.

However, our adversarial images quantized in the JPEG domain are naturally more
robust to JPEG compression. The results show interesting properties:

— The performance of the attack is maximized when the quality factor matches the
one used at the defense.

— Compressing at the same quality factor does however reform few images (< 1% in
all three cases) because JPEG is not idempotent.

— Quantized adversarials at a given quality factor are robust to defenses with a higher
quality factor.
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Table 7.2 – Accuracy (in %) of EfficientNet-b0 equipped with a JPEG compression as a
defense front-end reformer against our quantized best-effort BP.

Defense
Atttack None JPEG100 JPEG90 JPEG75 JPEG60
Spatial 0.1 4.0 42.1 63.0 70.4

JPEG100 0.6 1.0 39.8 71.4 76.6
JPEG90 0.6 0.7 0.6 60.0 69.8
JPEG75 0.6 0.7 2.4 0.6 14.7
JPEG60 1.0 1.0 1.3 6.4 1.1

7.5 Chapter Conclusion

We have proposed a method (improved from an initial work [12]) to effectively quantize
adversarial samples in order to craft adversarial images in spatial or JPEG domains. This
quantization guarantees adversariality while minimizing the distortion. It runs within few
forward calls to the network making it faster than simple attacks and it conveniently
operates on top of any white box attacks for broader usability.

When dealing with JPEG compression, the distortion induced by the attack is a very
small fraction of the distortion induced by sole compression, and crafting adversarial
images in JPEG at low-quality factors also provides robustness to countermeasures based
on JPEG compression.

The presented methodology is moreover ubiquitous and it could be transferred to
other domains such as JPEG2000 [165] or HEIF [59], and the optimization setup can also
be used for other metrics than classification (for example regression as proposed in [10])
and on other distances such as steganographic costs [11] in order to generate adversarial
images that are less prone to be statistically detected.
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Natural BP+spatial quant. JPEG75 compression BP+JPEG75 quant.

2 ‘white shark’ 3 ‘tiger shark’ 2 ‘white shark’ 3 ‘tiger shark’
d(xq, xo) = 0.0 d(xq, xo) = 0.02 d(J−1(X0), xo) = 3.15 d(J−1(Xq), xo) = 3.15

791 ‘shopping cart’ 161 ‘basset hound’ 791 ‘shopping cart’ 161 ‘basset hound’
d(xq, xo) = 0.0 d(xq, xo) = 0.53 d(J−1(X0), xo) = 6.88 d(J−1(Xq), xo) = 7.52

754 ‘radio, wireless’ 766 ‘rotisserie’ 754 ‘radio, wireless’ 766 ‘rotisserie’
d(xq, xo) = 0.0 d(xq, xo) = 0.17 d(J−1(X0), xo) = 3.63 d(J−1(Xq), xo) = 3.65

626 ‘lighter, light’ 470 ‘candle, taper’ 626 ‘lighter, light’ 470 ‘candle, taper’
d(xq, xo) = 0.0 d(xq, xo) = 0.21 d(J−1(X0), xo) = 3.72 d(J−1(Xq), xo) = 3.79

Figure 7.13 – Examples of attacked images with spatial and JPEG75 quantizations.
JPEG75 compression of the original image is also displayed in the third column.
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8.1 Introduction

The connection between adversarial examples and forensics/anti-forensics is obvious.
First, adding an adversarial perturbation to delude a processing is an image manipulation
per se and therefore detecting adversarial examples is a forensic task by itself. Second,
techniques forging adversarial examples are also used to fool forensics detectors as pro-
posed in [55][5]. In this case, the adversarial attack is a counter-forensics strategy to
conceal an image manipulation.

Paper [115] makes the connection between adversarial examples and information hiding
(be it watermarking or steganography). Both fields modify images (or any other type of
media) in the pixel domain so that the content is moved to a targeted region of the feature
space. That region is the region associated to a secret message in information hiding or to
a wrong class in adversarial examples. Indeed, paper [115] shows that adversarial examples
benefits from ideas proven efficient in watermarking, and vice-versa.

This chapter contributes to the same spirit by investigating what both steganography
and steganalysis bring to the the “cat-and-mouse" game of adversarial examples. There
are two natural ideas:
Steganalysis aims at detecting weak perturbations in images. This field is certainly useful
for the defender.
Steganography is the art of modifying an image while being non-detectable. This field
is certainly useful for the attacker.

These two sides of the same coin allow to mount a defense and to challenge it in
return, as done in other studies [3, 19, 146]. This chapter aims at revealing the status of
the game between the attacker and the defender at the time of writing, i.e. when both
players use up-to-date tools: state-of-the-art image classifiers with premium steganalyzers,
and best-in-class steganography embedders. This chapter proposes three contributions:

— Assess the robustness of very recent image classifiers, EfficientNet [142] and its
robust version [158],

— Apply one state-of-the-art steganalyzer (SRNet [13]) for forensics purposes, i.e. to
detect adversarial images,

— Use the best steganographic schemes to craft counter-forensics perturbations re-
ducing the detectability: HILL [84] uses empirical costs, MiPod [133] models un-
detectability from a statistical point of view, while GINA [85, 155] synchronizes
embeddings on color channels.
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Section 8.2 reviews the connections between forensics, steganography, and adversarial ex-
amples. Our main contribution on counter-forensics and experimental results are detailed
in Sect. 8.3 and 8.4.

8.2 Related Works

8.2.1 Steganalysis for forensic purposes

Steganalysis has always been bounded to steganography, obviously. Yet, a recent trend
is to resort to this tool for other purposes than detecting whether an image conceals
a secret message. For instance, paper [114] claims the universality of SRM and LBP
steganalyzers for forensic purposes detecting image processing (like Gaussian blurring,
gamma correction) or splicing. The authors of [41] used this approach during the IEEE
IFS-TC image forensics challenge. The same trend holds as well on audio forensics [95]. As
for camera model identification, the inspiration from steganalysis (co-occurrences, color
dependencies, conditional probabilities) is clearly apparent in [149].

This reveals a certain versatility of steganalysis. It is not surprising since the main goal
is to model and detect weak signals. Modern steganalyzers are no longer based on hand-
crafted features like SRM [47]. They are no more no less than Deep Neural Networks
like Xu-Net [161] or SRNet [13]. The frontier between steganalysis and any two-class
image classification problem (such as image manipulation detection) is blurred. Yet, these
networks have a specific structure able to focus on weak signal detection. They for example
avoid subsampling or pooling operations in order to preserve high frequency signals, they
also need large databases combined with augmentation techniques and curriculum learning
to converge [164].

However, this general-purpose strategy based on steganalysis method has some draw-
backs. It lacks fine-grained tampering localization, which is often an issue in forensics [40].
Paper [25] goes a step further in the cat-and-mouse game with an counter-forensic method:
knowing that the defender uses a steganalyzer, the attacker modifies the perturbation (ac-
counting for a median filtering or a contrast enhancement) to become less detectable.

As for adversarial images detection, this method is not new as well. The authors of [132]
wisely see steganalysis detection as a perfect companion to adversarial re-training. This
last mechanism fights well against small perturbations. It however struggles in correctly
classifying coarser and more detectable attacks. Unfortunately, this idea is supported with
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a proof of concept (as acknowledged by the authors): the steganalyzer is rudimentary,
the dataset is composed of tiny images (MNIST). On the contrary, the authors of [91]
outline that steganalysis works better on larger images like ImageNet (ILSVRC-2016).
They however use a deprecated classifier (VGG-16 [137]) with outdated steganalyzers
based on hand-crafted features (SPAM and SRM).

8.2.2 Adversarial examples

As mentioned multiple times throughout this manuscript, an untargeted adversarial
attack aims at finding the optimal point:

x?a = arg min
x:ĉ(x)6=c(xo)

‖x− x0‖, (8.1)

where ‖ · ‖ is usually the Euclidean distance.
Discovering this optimal point is difficult because the space dimension n is large. Even

in a white-box scenario, all attacks are sub-optimal iterative processes.
As outlined in Chap. 7, definition (8.1) is very common in literature, yet it is in-

complete. The final goal of the attacker is to create an adversarial image Ia ∈ D in the
pixel domain, not xa ∈ X . Applying the inverse pre-processing is not solving the is-
sue because this a priori makes non integer pixel values. Rounding to the nearest integer,
Ia = round(xa), is simple but ineffective. Most networks are so vulnerable that u = xa−x0

is a weak signal partially destroyed by rounding. xa is no longer adversarial. Note that
DDN is a rare example of a powerful attack natively offering quantized pixel values.

Chapter 7 proposed a post-processing Q on top of any attack that makes sure xq =
Q(xa) is (i) an image (integral constraint), (ii) remains adversarial, and (iii) has a low
Euclidean distortion ‖xq−x0‖. This chapter follows the same approach but adds another
constraint: (iv) be non-detectable.

Figure 8.1 shows the characteristic function measuring the probability of success of an
attack [12] as a function of the distortion budget (L2-norm) against landmark classifiers
in the history of ImageNet challenge. Unlike other chapters, distortion is not normalized
w.r.t. n. The characteristic function starts at 1−η, where η is the accuracy of the classifier:
a proportion 1−η of original images are naturally adversarial since there are misclassified.
As we know, the accuracy of the networks increases as time goes by: AlexNet (2012) [79] <
VGG-16 (2015) [137] < GoogLeNet (2015) [139] < ResNet-50 [61] (2016) < EfficientNet-
b0 [142] (2019). On the other hand, the robustness to this attack can be measured by the
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Table 8.1 – Robustness of recent classifiers against PGD2 followed by quantization

Acc (%) Psuc (%) L2
Alexnet 57.0 100 104
VGG-16 75.0 100 56.5
GoogLeNet 77.2 99.8 72.9
ResNet-50 80.0 97.2 81
Vanilla EfficientNet-b0 [142] 82.8 99.1 115
Robust EfficientNet [158] 84.3 98.5 192

average distortion necessary for hacking the images (cf. Tab. 8.1). This reveals a different
hierarchy: ResNet-50 and VGG-16 are quite fragile contrary to the old AlexNet. Overall,
the recent EfficientNet is both more accurate and more robust.

Figure 8.1 – Characteristic function of quantized attack (PGD in best-effort) against well
known (vanilla) classifiers for ImageNet.

8.2.3 Defenses

The literature proposes four types of defenses or counter-attacks against adversarial
examples white-box attacks as seen in Chap. 5. In this work, we consider detection as
means of defense against our quantized adversarial images. We evaluate steganalysis as a
candidate for this task. We evaluate its efficiency against standard quantization from the
previous chapter as well as a steganographic-oriented quantization explained below
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8.2.4 Steganographic costs

Undetectability is usually tackled by the concept of costs in the steganographic liter-
ature: each pixel location i of a given cover image is assigned a set of costs (wi(`))` that
reflects the detectability of modifying the i-th pixel by ` quantum. Usually, wi(0) = 0,
wi(−`) = wi(`), and wi(|`|) is increasing. The goal of the steganographer is to embed a
message m while minimizing the empirical steganographic distortion:

D(`) :=
n∑
i=1

wi(`i). (8.2)

This is practically achieved using Syndrome Trellis Codes [44]. This chapter proposes to
use the steganographic distortion (instead of L1, L2 or L∞ norms in adversarial literature)
in order to decrease detectability.

Note that this distortion is additive, which is equivalent to consider that each pixel
modification yields a detectability independent from the others. Yet, one strategy takes
into account potential interactions between neighboring modifications. The image is first
decomposed into disjoint lattices to be sequentially embedded where costs are then se-
quentially updated after the embedding over one lattice [85].

This work uses three families of steganographic costs. The first one, HILL [84], is
empirical and naive, but has nevertheless been widely used in steganography thanks to its
simplicity. The cost map w associated to ±1 is computed using two low-pass averaging
filters L1 and L2 of respective size 3× 3 and 15× 15 and one high pass filter H: (∗ means
convolution)

w = 1
|I ∗H| ∗ L1

∗ L2,with H =


−1 2 −1

2 −4 2
−1 2 −1

 . (8.3)

The second one, derived from MiPod [133], assumes that the residual signal is dis-
tributed asN (0, σ2

i ) for the original image, andN (`i, σ2
i ) for the stego image. The variance

σ2
i is estimated on each pixel using Wiener filtering and a least square approximation on a

basis of cosine functions. The cost is the log likelihood ratio between the two distributions
evaluated at 0, i.e.:

wi(`i) = `2
i /σ

2
i . (8.4)

Unlike HILL, this model handles modifications other than ±1.
The last one is a cost updating strategy favoring coherent modifications between pixels
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within a spatial or color neighborhood. It is called GINA [155] and it is derived from
CMD [85]. It splits the color images into 4 disjoint lattices per channel, i.e. 12 lattices.
The embedding performs sequentially starting by the green channel lattices. The costs on
one lattice is updated according to the modifications done on the previous ones as:

w′i (`i) = 1
9wi (`i) , if sign(`i) = sign(µi), (8.5)

with µi the average of the modifications already performed in the spatial or colour neigh-
borhood of location i.

8.2.5 Looking at Adversarial Examples with Stega Glasses

First, note that adversarial images recently became a source of inspiration for steganog-
raphy: paper [145] proposes the concept of steganography with an adversarial embedding
fooling a DNN-based steganalyzer. References [7] and [136] propose both to cast the prob-
lem of adversarial embedding as a game-theoretical problem. A protocol to train efficiently
new adversaries and to generate less detectable stego contents using a min max strategy
is presented in [7]. The reference [136] solves the game between one embedder and one
steganalyst using both different levels of adversarial perturbations.

Paper [132] stresses however one fundamental difference between steganography and
adverarial examples: Steganalysis has two classes, where the class ‘cover’ distribution
is given by Nature, whereas the class ‘stego’ distribution is a consequence of designed
embedding schemes. On the other hand, a perfect adversarial example and an original
image are distributed as by the class ĉ(xa) or c(xo), which are both given by Nature.

We stress another major difference: Steganographic embedding is essentially a stochas-
tic process. Two stego-contents derived from the same cover are different almost surely
with STC [44]. This is a mean to encompass the randomness of the messages to be em-
bedded. This is also the reason why steganographic embedders turns the costs (wi(`))`
into probabilities (πi(`))` of modifying the i-th pixel by ` quantum. These probabilities
are derived to minimize the detectability under the constraint of an embedding rate given
by the source coding theorem:

R = − 1
n

∑
i

∑
`i

πi(`i) log2 (πi(`i)) bits. (8.6)

In contrast, an attack is a deterministic process always giving the same adversarial version
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of one original image. Adversarial imaging does not need these probabilities.

8.3 Steganographic Post-Processing

This section presents the use of steganography in our post-processing Q mounted on
top of any adversarial attack.

8.3.1 Optimal post-processing

Starting from an original image, we assume that an attack has produced xa. The
problem is that xa ∈ [0, 255]n, i.e. its pixel values are a priori not quantized. Our post-
processing specifically deals with that matter, outputting xq = Q(xa) ∈ {0, . . . , 255}n. In
this chapter, we call ` the quantized 1 perturbation:

u := xa − x0 ∈ Rn, (8.7)

` := xq − x0 ∈ Zn. (8.8)

The design of Q amounts to finding a good `. This is more complex than just rounding
perturbation u.

We first restrict the range of `. We define the degree of freedom df as the number of
possible values for each `i, 1 ≤ i ≤ n. This is an even integer greater than or equal to
2. The range of `i is centered around ui. For instance, when df = 2, `i ∈ {buic, duie}. In
general, the range is given by

Li := {duie − df/2, . . . , duie − 1, duie, . . . , duie+ df/2− 1}. (8.9)

Over the whole image, there are dnf possible sequences for `.
We now define two quantities depending on `. The classifier loss at xq = xa − u+ `:

L(`) := ŷc0(xa − u+ `)− ŷca(xa − u+ `), (8.10)

where c0 is the ground truth class of xo and ca is the predicted class after the attack. When
the attack succeeds, it means that xa is classified as ca 6= co because ŷca(xa) > ŷc0(xa)
so that L(u) < 0. Our post-processing cares about maintaining this adversariality. This

1. Notation differs from previous chapter. Here ` is equal to u + q seen previously
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constrains ` s.t. L(`) < 0.
The second quantity is the detectability. We assume that a black-box algorithm gives

the stego-costs (wi(`))` for a given original image. The overall detectability of xq is gauged
by D(`) as given by (8.2). In the end, the optimal post-processing Q minimizes detectabil-
ity while maintaining adversariality:

`? = arg min
`:L(`)<0

D(`). (8.11)

8.3.2 Our proposal

The complexity for finding the solution of (8.11) a priori scales as O(dnf ). Two ideas
from the adversarial examples literature help reducing this cost. First, the problem is
stated as an Lagrangian formulation as in [21]:

`λ = arg minD(`) + λL(`). (8.12)

where λ ≥ 0 is the Lagrangian multiplier. This means that we must solve this problem
for any λ and then find the smallest value of λ s.t. L(`λ) < 0.

Second, the classifier loss is linearized around xa, i.e. for ` around u: L(`) ≈ L(u) +
(`− u)>g, where g = ∇L(u). This transforms problem (8.12) into

`λ = arg min
n∑
i=1

wi(`i) + λ(ui − `i).gi. (8.13)

The solution is now tractable because the functional is separable: we can solve the problem
pixel-wise. The algorithm stores in df ×n matrix W the costs, and in df ×n matrix G the
values ((ui − `i).gi)i for `i ∈ Li (8.9). For a given λ, it computes W + λG and looks for
the minimum of each column 1 ≤ i ≤ n. In other words, it is as complex as n minimum
findings, each over df values, which scales as O(n log df ).

Note that for λ = 0, Q quantizes xa,i ‘towards’ x0,i to minimize detectability. Indeed,
if `i = 0 is admissible (0 ∈ Li holds if |ui| ≤ df/2), then Q(xa,i) = x0,i at λ = 0.

On top of solving (8.13), a line search over λ is required. The linearization of the
loss being a crude approximation, we make calls to the network to check that Q(xa) is
adversarial: When testing a given value of λ, `λ is computed to produce xq that feeds
the classifier. If xq is adversarial then L(`λ) < 0 and we test a lower value of λ (giving
more importance to the detectability), otherwise we increase it. The search is performed
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Figure 8.2 – Rounding the minimizer when the stego-cost is quadratic.

over log2(n) steps. The images we used are of dimension 224×224×3 which gives 18 steps.
Optimal λ varies widely in value between different images.

8.3.3 Simplification for quadratic stego-costs

We now assume that the stego-costs obey to the following expression: wi(`) = `2/σ2
i

as in (8.4). This makes the functional of (8.13) (restricted to the i-th pixel) equals to
`2
i /σ

2
i − λgi`i + λpi which minimizer is ˜̀

i = λgiσ
2
i /2.

Yet, this value in general is not an integer belonging to Li (8.9). This issue is easily
solved because a quadratic function is symmetric around its minimum, therefore the
minimum over Li is its value closest to ˜̀

i as shown in Fig. 8.2. The range Li being
nothing more than a set of consecutive integers, we obtain a closed form expression:

`λ,i = min(max([λgiσ2
i /2], duie − df/2), duie+ df/2− 1), (8.14)

where [·] is the rounding to the nearest integer. The post-processing has now a linear
complexity.

In this equation, the min and max operate a clipping so that `λ,i belongs to Li. This
clipping is active if ˜̀

i /∈ Li, which happens if λ ≥ λ̄i with

λ̄i :=


∣∣∣∣2dpie−df

giσ2
i

∣∣∣∣
+

if gi < 0∣∣∣∣2dpie+df−2
giσ2

i

∣∣∣∣
+

if gi > 0,
(8.15)

where |a|+ = a if a > 0, 0 otherwise. This remark is important because it shows that for
any λ > maxi λ̄i, the solution `λ of (8.14) remains the same due to clipping. Therefore,
we can narrow down the line search of λ to [0,maxi λ̄i].
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8.4 Experimental Investigation

8.4.1 Experimental setup

Our experimental work uses 18,000 images from ImageNet of dimension 224×224×3.
This subset is split in 1,000 for testing and comparing, 17,000 for training. An image
is attacked only if the classifier predicts its correct label beforehand. This happens with
probability equaling the accuracy of the network Acc. We measure L2 the average Eu-
clidean distance of the perturbation ` and Psuc the probability of a successful attack only
over correctly labeled images.

We attack the networks with 4 different attacks: FGSM [53], PGD2 [98], CW [21] and
DDN [123]. All these attacks are run in a best-effort fashion with a complexity limited to
100 iterations. This means that for FGSM and PGD2 the distortion is gradually increased
until the image is adversarial. For more complex CW and DDN attacks, different param-
eters are used over a total maximum of 100 iterations. The final attacked version is the
adversarial image with the smaller distortion. Since DDN is the only attack that creates
integer images, the other 3 are post-processed either by the enhanced quantization [12],
which is our baseline, or by our method explained in Sect. 8.3.2.

The adversarial image detectors are evaluated by the true positive rate TPR5 when
the false positive rate FPR is fixed to 5%.

8.4.2 Robustness of recent classifiers: there is free lunch

Our first experiment compares the robustness of the famous ResNet-50 network to
the recent classifiers: the vanilla version of EfficientNet-b0 [142] and its robust version
trained with AdvProp [158]. Note that the authors of [158] apply adversarial re-training
for improving accuracy. As far as we known, the robustness of this version was not yet
established.

Figure 8.3 shows the same characteristic function as in Fig. 8.1 with this time the
vanilla EfficientNet-b0 against its robust version. Table 8.1 gives measurements Psuc and
L2 as a summary of the characteristic function shown in Fig 8.1. This confirms that
modern classifiers are more accurate and more robust (lower Psuc and/or bigger L2). This
is indeed a surprise: It pulls down the myth of ‘No Free Lunch’ in adversarial machine
learning literature [35, 148] (the price to pay for robustifying a network is allegedly a
lower accuracy).
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Figure 8.3 – Characteristic function of attack [12] (PGD in best effort with quantization)
against Vanilla EfficientNet-b0 and its Robust counterpart. Distortion is not normalized
for n.

8.4.3 Detection with forensics detectors

We use three steganalyzers to detect adversarial images. Their training set is composed
of 15,651 pairs of original and adversarial images. The latter are crafted with best-effort
FGSM against vanilla EfficientNet-b0.

The first detector is trained on SRM feature vectors [47], with dimensions 34,671.
SRM is a model that applies to only one channel. It is computed on the luminance of the
image in our experimental work. The classifier separating these high-dimensional vectors
into two classes is the linear regularized classifier [27]. The second detector is based on
the color version of SRM: SCRMQ1 [52] with dimension 18,157. The classifier is the same.
The third detector is SRNet [13], one of the best detectors in steganalysis. Training is

Table 8.2 – Detection probabilities (TPR5) with forensics detectors of adversarial images
targeting classifier vanilla EfficientNet-b0 [142]

Psuc L2 SRM(%) SCRMQ1(%) SRNet(%)
FGSM+[12] 89.7 286 72.00 83.3 93.5
PGD2+[12] 98.6 113 65.02 83.1 93.8
CW+[12] 89.7 97 68.78 83.6 94.5
DDN 83.2 186 79.53 91.9 94.8
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Table 8.3 – Undetectability of steganographic embedding on PGD2
against the vanilla model (Van) and its robust version (Rob).

df Psuc (%) L2 SCRMQ1(%) SRNet(%)
Van Rob Van Rob Van Rob Van Rob

[12] 2 98.6 98.3 101 167 83.1 84.6 93.8 90.1
HILL 2 98.6 98.3 113 177 78.0 76.6 87.6 88.5
HILL 4 98.9 98.5 125 181 76.0 73.3 87.4 88.2
MiPod 2 98.3 98.3 176 242 77.4 76.2 86.6 87.7
MiPod 4 98.7 98.0 164 247 74.4 70.2 84.5 87.7
GINA 2 98.5 98.1 283 337 24.4 32.4 68.3 82.9
GINA 4 98.8 98.2 300 330 18.6 24.3 50.9 85.2

performed on 180 epochs: The first 100 with a learning rate of 10−3, the remaining 80 with
10−4. Data augmentation is also performed during training. First, there is a probability
p1 = 0.5 of mirroring the pair of images. Then, there is another probability p2 = 0.5 of
rotating them by 90 degrees.

The attacks: Table 8.2 shows the results of detection on all 4 attacks. PGD2 achieves
a high Psuc at almost a third of the distortion FGSM would obtain. DDN and CW being
harder to optimize attain both lower Psuc and higher distortion under the given con-
straints. For the rest of the study we therefore focus on PGD2 to give the best attacking
setup with reasonable complexity.

The detectors: Table 8.2 gives also the TPR5 associated to the detectors. Although [91]
achieves good performances with SRM, we do not obtain the high detection rates reported
in the reference. This cab be due to both finer attacks (best effort mode) and quantization.
Our results show also that the detectors generalize well: although trained to detect images
highly distorted by FGSM, they can detect as well and sometimes even better more subtle
attacks like CW. Moreover, SRNet always outperforms SCRMQ1 and is the most accurate
of the three detectors. From Tab. 8.2, we can also deduce that PGD2+[12] is the worst-
case scenario for defense. The probability of fooling both the classifier EfficientNet-b0 and
the detector SRNet in this setup combines to only 0.88× (1− 0.933) = 5.9%.
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8.4.4 Post-processing with a Steganographic Embedder

We now play the role of the attacker. We use PGD2 with best effort as the base attack to
compare the detectability of four post-processings: The non-steganographic insertion [12]
as a baseline, HILL (8.3), MiPod (8.4), and GINA (8.5). GINA uses the quadratic method
explained in Sect. 8.3.3 sequentially over the 12 lattices. Quadratic stego-costs are updated
with CMD strategy (8.5). Each lattice contributes to a 1/12 of the initial classification
loss.

Table 8.3 illustrates how each strategy is detected by either SCRMQ1 or SRNet. Both
detectors are trained on FGSM with [12] quantization as ‘stego’ images crafted on their
respective network. Distortion increases with each method and along the degree of freedom
df . The use of Steganographic costs therefore enables to reduce the detectability while
increasing the L2 distortion.

From the attacker perspective, the best strategy to fool the detector PGD2 is GINA
costs with df = 4. This scenario now has 48.0% chance of fooling both Vanilla EfficientNet-
b0 and SRNet and 80.4% with SCRMQ1 as the detector. Fig. 8.4 shows the two examples
with highest distortion on EfficientNet-b0 that still fool SRNet. The added distortion
remains imperceptible to the human eye even in these cases.

The conclusion on Robust EfficientNet-b0 is however different. Since the distortion
needed to attack the network is higher, it is consequently expected that the detectors will
be more accurate. If SCRMQ1 detects GINA distortion slightly better than on Vanilla
EfficientNet-b0, SRNet is however very efficient to detect each strategy even if it was
trained on FGSM.

8.4.5 Training on adversarial images with GINA costs

We finally play the role of the defender again. We want to detect GINA perturbation
with the highest possible TPR. To achieve this we retrain our detectors in the same setups
as before, but with images using GINA perturbation as adversarial images. Since Tab. 8.3
shows that in most cases df = 4 is indeed the worst-case for the defense side, we attacked
the training set of "cover" images with PGD2 and GINA costs with df = 4.

The first result we report is that under the same setup, SRNet was never able to
distinct both distributions of images. The average confidence on the whole test set is
roughly 50%. Trying to train SRNet with a finer learning rate did not lead to any better
result. There is probably a set of hyperparameters that would lead to a more effective
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‘Angora rabbit’ ‘woolen’

‘hare’, L2 = 488 ‘knot’, L2 = 449

Figure 8.4 – Top row: Cover images with their label below. Bottom row: adversarial images
with steganographic embedding GINA (df=4). Below them are their new label and the
distortion

training. However this result illustrates that GINA distortion is harder to detect.

Table 8.4 shows TPR5 for SCRMQ1 under such training setup. The detector is able to
detect GINA mechanism at a higher rate than in Tab. 8.3 but generalizes poorly on other
attacks. A conclusion to this final experiment is that GINA can be stealthy to general
detectors, but it is still better detected after another iteration of the defender. The detec-
tion accuracy is however lower when using GINA costs, and drops from 83.1% to 68.5%.
The price of detecting GINA is also to become more specific and to lose performance on
the other attacks.
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Table 8.4 – Detection on SCRMQ1 after training on adversarial images embedded with
GINA (df=4)

d SCRMQ1(%)
Van Rob

[12] 2 55.9 56.7
HILL 2 53.4 53.6
HILL 4 50.4 53.9
MiPod 2 56.1 55.9
MiPod 4 53.9 54.9
GINA 2 77.7 78.4
GINA 4 68.5 79.7

8.5 Chapter Conclusion

This chapter explores both sides of adversarial image detection with steganographic
glasses.

On the Attack side, our work using distortions designed for steganographic purposes
is able to reduce the detection rates. Steganographic distortion target specific regions and
pixels of an image to quantize the attack. The L2 distortion increases w.r.t. the original
attack, but remains imperceptible by the human eye (Fig. 8.4) and less detectable by a
targeted detector. This paper consequently shows the possibility of tweaking an attack to
make it harder to detect while remaining invisible.

On the Defense side, we use SRNet [13], state-of-the-art in steganalysis to detect
adversarial images. Training it on images attacked with the basic FGSM shows excellent
performance. Detection also generalizes well even on the finest attacks such as PGD2 [98]
and CW [21].

Finally both Attack and Defense are affected by the considered neural network. The
effect of adversarial training on EfficientNet-b0 [Xie:2019aa] is twofold: it increases the
classification accuracy as well as robustifying the network. An increased robustness trans-
lates into a higher attacking distortion, which itself translates into a higher detectability.
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9.1 Introduction

The topic of adversarial examples has recently attracted a huge interest with more than
3,000 papers published in the last four years. As far as image classification is concerned,
most articles consider toy datasets like MNIST composed of 28 × 28 images (10 classes)
and CIFAR 32×32 images (10 or 100 classes). These are far from nowadays typical image
sizes. Few papers deal with the more realistic ImageNet dataset composed of large images
(1000 classes). Yet, classifiers usually process these images once downscaled to 224× 224
or 256× 256. This is still about the size of thumbnails on Internet websites, so not yet a
modern image. Indeed, no work uses the original ImageNet with larger images.

This chapter considers forging realistic, i.e. large, adversarial images under a white-box
setup for two scenarios:

A. The image classifier can natively process large images. This means that the model
underneath is a wide and deep neural network.

B. The image classifier first downscales the images to a smaller size, say 224 × 224,
and then uses a neural network to make a prediction.

Scenario A questions how the energy of the adversarial perturbation evolves with the
size of the input data. On one hand, the classifier gets more pixels to make a decision
which stems into a higher accuracy on natural images. On the other hand, the attacker
has more degrees of freedom to delude the classifier. This chapter shows experimental
evidence that a bigger size indeed benefits more to the attacker (under some conditions).

In scenario B, the downscaling is part of the classifier box. The small image is thus an
internal data that the attacker cannot have access to: The goal is to forge an adversarial
version of the large image and not its downscaled version. White-box attacks rely on com-
puting the gradient of a loss function w.r.t. a neural network using back-propagation. The
difficulty is therefore how to propagate further this information through the downscaling
back to the space of large images. Another point of interest is the choice of downscaling
method for the defender and whether its knowledge is key to forge adversarial examples
for the attacker.

In the end, we also compare the distortion of perturbations that delude a classifier
according to scenario A or B. This yields the best practice for the defender.
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9.2 Related Works

Several theoretical works study how the dimension n of the inputs makes the forgery
of adversarial examples easier. However, they use different arguments and terminology. It
is difficult to verify that they evidence the same phenomenon.

We denote by n the dimension of the input and call by input deviation its natural
standard deviation σX(n). If the input x ∈ Rn is a centered random vector, it is typically
measured by

√
E[‖x‖2]/n where ‖·‖ is the Euclidean distance. In the same way, we measure

the adversarial distortion σA(n) by the typical value of
√
E[‖u‖2]/n of the adversarial

perturbation u for signals of dimension n.
The early attempt [50] considers a synthetic example where data points are uniformly

distributed over spheres of constant radius R: the input deviation σX(n) obviously scales
as R/

√
n. Paper [50] then proves that the `2 norm of the adversarial perturbation in

expectation scales as O(1/√n) for a fixed classification accuracy. This translates into an
adversarial distortion σA(n) scaling as O(1/n).

Papers [35, 42] generalizes this result to many data distributions verifying the Tala-
grand W2 transportation-cost inequality. They state that the `2 norm of the perturbation
scales as the natural “intra-class noise level” σX (for a fixed accuracy). For instance, if
x ∼ N (µk, σ2

XIn) for class k, then the `2 norm of the attack is proportional to the power
of x, which remains constant as n increases (see [35, Sec. 2.5.2]).

We propose to summarize this literature by the following rule of thumb:

σA(n) ∝ σX(n)/
√
n. (9.1)

More precisely, [35] shows that the proportional constant is upper bounded by κ(n) =√
−2 log(1− η(n)) +

√
π/2, where η(n) is the accuracy of the classifier.

How do these theoretical results transfer to images? For square color images of size
`, there are n = 3`2 pixel values. One argument is that the diameter of the hypercube
[0, 255]n grows as 255

√
n, which reflects the typical distance between inputs, hence a

constant input deviation. In the same way, up or downscaling does not change the his-
togram of the pixel values, yielding a constant standard deviation σX(n). Plugging this
hand-waving justification into (9.1) yields an adversarial distortion scaling as κ(n)/

√
n.

On the contrary, paper [38] claims that the expectation of the `2 norm of the per-
turbation vanishes as O(1/√n) assuming images are 1/f2 power spectrum processes. This
would make σA(d) = O(1/n) contradicting the previous paragraph.
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No work provide clear experimental evidence. Paper [22] investigates this topic on
simple datasets MNIST and CIFAR. By upscaling to higher resolutions, it finds that
network accuracy and attack efficiency remain the same whatever the dimension. This is
not convincing because upscaling does not create any new information.

In the end, this section shows that there is no clear report about adversarial example
as the dimension of the inputs grows as far as realistic image classification is concerned.

9.3 Problem formulation

This section proposes to include the downscaling inside the neural network, i.e. this is
scenario B in Sect. 9.1. It outlines that running an adversarial attack in the large image
space or the small image space does not produce the same effect.

9.3.1 Including the downscaler inside the network

The classifier is a neural network composed of several layers. Each layer applies a
linear transformation (be it a convolution or a fully connected layer) followed the non-
linear activation function φ(.).

ak = φ(zk), (9.2)

zk = Wkak−1 + bk, (9.3)

with ak the output of the k-th layer ∀k s.t. 1 ≤ k ≤ K. The final vector aK is the predicted
logit per class (usually the last layer has no non-linearity). Since the downscaling is also a
linear function, it can be incorporated inside the network as the layer 0 without activation:
a0 := x = DX, where X is the large L × L input image, and D the 3`2 × 3L3 matrix
downscaling to a smaller `× ` image x.

For instance, if ` = L/2, one pixel of xo is interpolated from 4 pixels of Xo, and under
a proper flattening we have:

D =


δ1 δ2 δ3 δ4 0 0 0 0 . . .

0 0 0 0 δ1 δ2 δ3 δ4 . . .
... ... ... ... ... ... ... ... . . .

 (9.4)

where {δi} are the positive weights of the downscaling kernel (summing up to 1). Another
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case is the nearest neighbor interpolation where there is single 1 in each row of D, e.g.
δ1 = 1, δi = 0 for i 6= 1.

9.3.2 Attacking in the large or small image space

In an untargeted white-box setup, the attacker usually defines the loss L(X) =
aK(co)−maxc6=co aK(k), where co is the ground-truth label of image Xo. The attack aims
at finding a perturbation u s.t. L(Xo +u) is negative and ‖u‖ is small. White box attacks
use the gradient of this loss or its first term:

∇XL(X) := (dL(X)/dX)> = D>g with (9.5)

g := W>
1 φ
′
1 . . .W

>
K−1φ

′
K−1W

>
K−1∇L(aK)

With φ′k a shortcut for φ′(ak). In other words, by back-propagating through the down-
scaler, the gradient in the large image space is nothing more than the gradient g in the
small image space through the matrix D>.

The attack usually computes Xo − ε∇XL(Xo) = Xo − εD>g. The downscaling maps
this to xo − εDD>g. Yet, the same attack in the small input space would give xo − εg.

With the nearest neighbor interpolation, DD> = I` and there is no difference. If L is
a multiple of ` as in (9.4), DD> = (∑i δ

2
i ) I`, with

∑
i δ

2
i ≤ 1. There is a loss of energy

but the downscaled perturbation stays colinear with g.
If L is not a multiple of ` or if the downscaler is not the nearest neighbor interpolation,

there is also a misalignment because DD> is not proportional to identity matrix I`. This
is especially true when several pixels of the small image depend on the same pixel of the
large image, e.g. due to anti-aliasing. This shows that the downscaling has an impact on
the forgery of adversarial images.

9.4 Experimental Works

9.4.1 Models, data, and attacks

We experiment with four families of classifiers: EfficientNet [142] and its Lite im-
plementation, EfficientNet-V2 [143], and NFNet family [16]. One family is composed of
several models tackling `× ` color images with, for instance, ` ranging from 224 to 600 for
EfficientNet, or from 256 to 576 for NFNet (see Fig. 9.1). Family members share the same
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architecture but with wider activation maps and are trained with the same procedure.
This is important for a fair comparison.
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Figure 9.1 – Accuracies with downscaling. Stripes define max and min accuracies over
the 6 downscalers for a given model. Numbers are the sizes ` of the downscaled images,
n = 3`2.

We created a subset of 1,000 images from the validation set of Imagenet 2012. Each
image is the first occurrence of a class within the original dataset. Each image is first
center-cropped and resized to L × L with L = 600 and bilinear interpolation (default on
opencv library). This is the image size natively processed by EfficientNet-b7, the largest
size used by the CNN of our experimental work.

For scenario B, we use four different downscaling methods: Nearest, Bilinear, Bicubic
and Area. The first three methods interpolate one pixel from the 1, 4, or 16 (resp.)
closest pixels. Area performs an average pooling on the image. Paper [112] highlights the
lack of antialiasing in PyTorch implementation except for method Area. We implement
two antialiasing methods: average and Gaussian. Both use a kernel size ksize = d`/Le.
Gaussian values are generated with a standard deviation σ = 1.6 × ksize as inspired by
SIFT scale space construction [94]. Figure 9.1 shows the accuracies of all models and over
all downscalers (except when ` = L). Our observations are twofold: the accuracy increases
with the model size `; and the downscaling method has little impact.

We choose the white-box attack BP [166] in its best-effort [100] implementation be-
cause of its high probability of success, low distortion, and speed. Distortion is measured
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as the Root Mean Squared Error: d(xa, x0) = ‖xa − x0‖/
√
n where x0 (resp. xa) is the

original (resp. adversarial) image. For scenario B, we implement downscaling as a first
layer in order to back-propagate the gradient as detailed in Sect. 9.3.

9.4.2 Scenario A: comparison with theoretical results

We measure the adversarial distortion for different image sizes by downscaling the
baseline images to the input size ` of the model with bilinear interpolation. The attacker
modifies these `×` images in this scenario. According to section 9.2 Eq. (9.1), we measure
the normalized adversarial distortion σA(n)/κ(n) as a function of n = 3`2.

Figure 9.2 plots this function in logarithmic scale. These experimental results partially
confirm the theory found in literature. For three families, in the range ` ∈ [224, 416], this
gives almost a trend line whose slope is ≈ −1/2. This gives more credit to papers [35,
42, 50] rather than [38] predicting −1. Yet, in the range ` ∈ [456, 600] the adversarial
deviation is stable or even increasing, and the family EfficientNet-Lite completely violates
the theory.
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Figure 9.2 – Experimental measurement of the normalized adversarial distortion
σA(n)/κ(n) as a function of log10(n).
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9.4.3 Scenario B: attacking through downscaling

Figure 9.3 shows the success rate of the attack logically increases with distortion.
As Sect. 9.3.2 suspected, there is a noticeable hierarchy in the downscaling methods,
especially on smaller sizes like ` = 256 for NFNet-F0. With Nearest, any pixel on the
smaller image matches exactly a pixel on the bigger one. The perturbation signal is crafted
on these pixels and entirely goes through the downscaling. In every other method, the
adversarial signal is diluted through the back-propagation on neighboring pixels. This
creates a counter effect detrimental to the attack. Nearest is thus easier to attack because
it requires less distortion. Conversely, methods with anti-aliasing such as Area are the
best options as a defense.

The impact of the downscaling decreases as the network takes a bigger input size. This
results in narrower differences in the plotted curves for ` = 512 with NFNet-F4 (Fig. 9.3).

We observe the same behavior with the other network families. For instance, with
Efficient-Net, Tab. 9.1 second column shows that the attack distortion goes up as ` in-
creases for Nearest, whereas Area is more robust when downscaling a lot, e.g. down to b0
(` = 224).
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Figure 9.3 – Attacking NFNet-F0 (left, ` = 256) and NFNet-F4 (right, ` = 512) through
every downscaling method with the attack BP.

9.4.4 Scenario B: transferability

This section assumes that the attacker does not know which downscaling method
is used. The attack targets a specific interpolation and is tested through another one.
Table 9.2 shows these results when downscaling from ` = 600 to ` = 224.

Transferability of the attack is poor except for Bilinear (attack) displaying good trans-
ferability over Bicubic (defense). Our explanation is that BP adds very small perturba-
tions. Adversarial examples thus lie right behind the frontier of the ground-truth class for
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9.4. Experimental Works

Table 9.1 – Distortion for attacking 90% of the images for the EfficientNet family

Model Downscaling Ensemble
Size ` Nearest Area Average Worst
b0: 224 0.15 0.39 0.54 0.53
b1: 240 0.16 0.37 0.56 0.47
b2: 260 0.17 0.37 0.47 0.49
b3: 300 0.17 0.34 0.46 0.44
b4: 380 0.21 0.33 0.40 0.54
b5: 456 0.26 0.33 0.38 0.42
b6: 528 0.25 0.31 0.36 0.37
b7: 600 0.37 0.37 0.37 0.37

a targeted classifier. A change in the downscaling method modifies these frontiers which
in return classify the sample accurately again.

Table 9.2 – Accuracy (%) when downscaling from size L = 600 to ` = 224 for EfficientNet-
b0

Attack
Defense Bil. Bic. Area Near. BilG BilAg

Bil 0.7 70.7 74.6 75.1 73.5 8.2
Bic. 5.6 0.9 75.6 75.9 74.1 9.6
Area 72.8 72.8 0.3 72.8 69.8 71.9
Near. 75.6 75.6 35.5 0.8 69.4 75.6
BilG 73.4 73.5 72.6 73.4 0.50 72.2
BilAg 74.0 73.9 73.2 75.0 72.2 0.7

9.4.5 Scenario B: ensemble model

In order to achieve better transferability, the attacker fights against an ensemble of
classifiers. For a given model (e.g. EfficientNet-b0), we gather all downscaling methods
in an ensemble of classifiers. This gives birth to as many gradients, which need to be
aggregated into a single one to be exploited by BP attack. We explore two options:

1. A basic averaging of the gradients over all the ensemble, also referred to as EOT [154].

2. A worst-case gradient selection, a trick inspired by Deepfool [104].

For a given classifier / downscaler, the second method estimates the distance dadv an image
is from the frontier as if the classifier were linear [104]: dadv = Ladv(x)

‖∇Ladv(x)‖ . The classifier
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Partie II, Chapter 9 – Scale and Rescaling as Means of Robustness

with the biggest distance is deemed as the worst for the attacker, who then targets it in
the next iteration of the attack. In other words, the aggregated gradient is simply the
gradient of the worst classifier of the ensemble.

For both methods, an image is deemed adversarial if it deludes all the classifiers of the
ensemble. For this experiment we use another subset of 100 randomly picked images from
the validation set of Imagenet 2012 as a matter of computational time. Table 9.1 shows
the distortion at which 90% of the images are successfully misclassified. Here are the
lessons: Attacking an ensemble consumes more distortion than targeting a single classifier
; so guaranteed transferability is possible at the cost of a bigger distortion. There is no
clear better option for attacking an ensemble. Distortion increases as the scale goes down.
A better defense strategy is to run a model on small scale images and to randomly pick
a downscaler over an ensemble at each inference.

9.5 Chapter Conclusion

In this chapter, we have studied the impact of downscaling when attacking large
images. The best practice appears to be scenario B: downscaling to a small size ` with a
wide downscaling kernel like ‘Area’ or ‘Bil+Gauss’.

The transferability of an adversarial attack to other interpolation kernels is nearly
insignificant when running optimized (low-distortion) attacks. This opens the door to a
random resizing method as a means of defense. The attacker can however circumvent
this issue by attacking an ensemble, if the pool of downscaling methods is disclosed.
Nevertheless, this defense increases the distortion by ≈ 35% compared to the best pure
strategy without sacrificing accuracy.
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CONCLUSION AND PERSPECTIVES

Image classification is the main application of Computer Vision. Deep Learning-based
classifiers quickly became the best option to tackle a such task. They were however found
to be vulnerable to specific perturbations. This created the field of adversarial examples.
In Chap. 4, we briefly introduce Deep Neural Networks, how they are trained, and how
they are fooled. We then describe a few White-Box attacks that are used throughout the
manuscript. We then study the existence of a such vulnerability in Chap. 5. Many culprits
are identified. Adversarial vulnerability comes from the shared responsibility of data,
architecture, and training phase. But eventually, we conclude that DNNs are vulnerable
by design.

The purpose of this thesis is to study adversarial examples in a realistic context.
We make many choices in this direction. First, we work on a classification task that we
estimate to be realistic: the Imagenet classification task. This task is what resembles the
most a real-world application. Adversarial examples should also be realistic images. We
discuss in Chap. 7 how most works on adversarial examples do not craft images. Instead,
they work in the floating-point domain and generate data that can be processed by an
off-the-shelf DNN but cannot be saved as an image. Chapter 7 shows that quantization
is not a trivial task, especially when considering a lossy image format such as JPEG.

Chapter 8 also aims at crafting spatial images. We consider both the perspective
of a defender and the attacker. First, we build detection systems that could prevent a
DNN from working on a corrupted image. Then, we modify our quantization method
to follow steganographic strategies. We finally build detection systems to detect these
new examples. This gives insight into the iterative attack-defense game. Each time a
player moves, the other answers. We conclude that detection can be prevented in many
cases, even after retraining on these stealthy images. One of our detectors is still able
to perform a little. The other one could not even be trained successfully on stealthy
adversarial examples.

Chapter 9 is also a contribution that studies both perspectives. We analyze the impact
that image size can have on adversarial examples. Images from Imagenet are processed
in different sizes that are DNN-specific. We show that models using larger images usually
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are more accurate. They are also larger in terms of parameters, which is a reason for
this performance. However, the scaling of adversarial examples (distortion-wise) is almost
entirely a function of the input dimension. And this does not act in favor of larger models.
The “No Free Lunch theorem” is at stake and we can not draw a hard conclusion on what
model to adopt. This is obviously very task-specific. Yet, smaller models have comparable
performances and offer more robustness. This should be known when deploying a classifier.
The second point in our conclusion is that resizing obviously affects adversarial examples.
If the image will undergo a downscaling, the adversarial signal should remain effective. An
evident aspect of resizing is that it should rely on antialiasing to dilute the signal. Attacks
are downscaler-specific. Defenses could thus use a random resizing method to hinder the
attack. However, we show that even a such strategy can be defeated using an ensemble
model if the resizing options are known. But this comes at the cost of higher distortion.

Towards Fair Evaluation

We worked solely using ImageNet. Smaller datasets can be useful to understand ad-
versarial examples or as a mere playground. We believe however that most works should
be applied to Imagenet for fair comparisons. This is not the case. But even then, data
is rarely the same. A common practice, that we ourselves did, is to pick random images
from the validation set. Say 1,000. But there is no consensus on which images to pick.
We had the example in 5.3.2 of the works of [159] that randomly picked 5,000 images.
Accuracy on these images is 100%. Should we still consider data random? It appears to
be cherry-picked. A best practice would be the use of unified data such as Neurips Vision
Challenge [80].

The other main aspect is the attack used and how it is used. Adversarial examples can
be crafted along:

1. Distortion constraint: create a sample with a given distortion and evaluate whether
it is indeed adversarial or not.

2. Success constraint: push the attack until the sample is adversarial.

3. Optimize: ensure adversariality at minimum distortion.

Each scenario can be pushed to the authors’ best interest. For instance, the distortion
constraint can be convenient for detection. If the signal always is of the same intensity and
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probably far beyond the adversarial frontier. We observed this when reviewing literature
for Chap. 8 .

Once again, in a matter of studying the best of both worlds, we mostly studied the
Optimize setup. But this may not always be adequate. Transferability is a such situation.
Pushing attacks further is probably a better option and we did not. Still, we consider this
scenario to be the most likely. An attack like BP, in its best-effort implementation (see
Chap. 6) is impressively effective with few iterations as shown in Chap. 6.

Extend the Image Paradigm

We studied at length the creation of adversarial images and not samples. We believed
this last point to be an important factor. Having access to the model (white-box) does
not mean you have access to inner representations of your data.

A likely attack will use images online or even in the real world. Online adversarial
images could be used to bypass content filters online or to protect your data from data
collection. This was the purpose of our short work [10] (see Appendix A). Real-world
images could be applied to endanger passengers of autonomous vehicles or to evade facial
recognition or any detection system.

Making images was thus in line with our direction in this thesis: making attack realistic.
Arguably, a white-box setup is not the most likely setup. But its likelihood increase with
the advent of model extraction (euphemism for stealing) attacks [147].

About Defense and Perspectives

We considered the Defense side a few times throughout this thesis. Notably when
considering detectors in Chap. 8, the effect of ensemble models (Chap. 7 and Chap. 9),
or best-practice for image size and resizing in Chap. 9. Contribution on the attack side
can also be considered an iteration towards better defense. Especially in Chap. 8 when we
both built detection and studied the effect of steganographic strategies to fool detectors.

We also have been working on adversarial training recently but our work remains
unpublished to this day. Insight into our experiments and results is displayed in Appendix
B. Our method yields robustification with unsupervised retraining. It is akin to logit
pairing, only it is performed on feature maps.
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A Final Word

We mentioned many times that both attack and defense compete against each other.
This can sometimes give birth to biased critics of opposing works. The lack of unity in
the evaluation may sometimes hinder progression. As a conclusion, we would like to bring
attention to a recent work by Guo et al. [56]. They argue that currently robust DNN
could be as robust as biological neurons. This paper runs experiments to characterize
similar adversarial signals in the human eye. Leveraging this model, they go on to show
that the human eye is as easily fooled as robust models. We can easily be baffled by the
performance of DNNs and forget that we ourselves can be vulnerable to adversity. We are
all familiar with optical illusions. Yet, we think that DNNs should not be fooled under
any circumstances. The only difference may lie in the ability we have to understand that
we are being fooled.
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NOTATIONS

f Classifier model
θ Parameters of a model
I0 Natural (unmodified) image
Ia Adversarial image
x0 Tensor natural image
xa = x0 + u Tensor adversarial image
u Perturbation (adversarial signal)
X Distribution of natural images
D Distribution of tensor natural images
l̂ = f(x, θ) Logits output
ŷ = f(x, θ) Class probability output
y ∈ {0, 1}C One-hot ground-truth vector
n Number of pixels
C Number of classes
c = argmaxk y Ground-truth class
ĉ = argmaxk ŷ Predicted class
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ABSTRACT
This paper presents our work on the 2020 MediaEval task: “Pixel
Privacy: Quality Camouflage for Social Images". Blind ImageQuality
Assessment (BIQA) is an algorithm predicting a quality score for any
given image. Our task is to modify an image to decrease its BIQA
score while maintaining a good perceived quality. Since BIQA is a
deep neural network, we worked on an adversarial attack approach
of the problem.

1 INTRODUCTION
The internet is flooded with images. This is especially true with the
growth of social networks over the last decade. All this data is used
to perform analysis to bring out new trends or to train predictive
models. When it comes to images, deep neural networks vastly lead
the landscape of machine learning. These deep neural networks
are especially known to thrive on big datasets. This leads to the
idea that more data leads to better models. While there certainly is
truth to that affirmation, better learning mostly comes out of better
data. Good data is data that both fits the task (e.g. people, places,
objects detection) and whose quality is good. Due to the amount of
available data, a human could not perform this cherry-picking of
good data. Automated classifiers like BIQA [4] have been trained
to assess the quality of an image. This classifier was trained on
images whose quality was labeled based on the perceived quality of
the media (e.g. resolution, compression artifacts). To protect one’s
data, images can be manipulated and slightly modified to defeat the
automatic quality assessment [6]. We chose an adversarial attack
approach to achieve this goal.

2 APPROACH
2.1 Adversarial Examples
Adversarial examples were first introduced by Szegedy et al. [8] in
early 2014. They are usually studied in the case of image classifi-
cation: An attack effectively crafts a perturbation of an image to a
small extent but enough to fool even the best classifiers.

In this setup, an original image 𝑥0 is given as an input to the
trained neural network to estimate the probabilities (𝑝𝑘 (𝑥0))𝑘 of
being from class 𝑘 ∈ {1, . . . , 𝐾}. The predicted class is given by:

𝑐 (𝑥0) = argmax
𝑘
𝑝𝑘 (𝑥0) . (1)

The classification is correct if 𝑐 (𝑥0) = 𝑐 (𝑥0) the ground truth class
for 𝑥0. The goal of an attack is to craft an imperceptible perturbation
𝑝 such that the adversarial sample 𝑥𝑎 = 𝑥0 + 𝑝 verifies ideally:

Copyright 2020 for this paper by its authors. Use permitted under Creative Commons
License Attribution 4.0 International (CC BY 4.0).
MediaEval’20, December 14-15 2020, Online

𝑥★𝑎 = arg min
𝑥 :𝑐 (𝑥)≠𝑐 (𝑥0)

∥𝑥 − 𝑥𝑜 ∥, (2)

Where ∥ · ∥ is a measure of distortion, in most cases the Eu-
clidean distance. A small distortion makes it less likely for human
to perceive that the image was manipulated.

BIQA is a deep neural network and as such is vulnerable to ad-
versarial attacks. However BIQA is not a classifier returning a class
prediction but a regressor giving a quality score 𝐵𝐼𝑄𝐴(𝑥) ∈ [0, 100].
The notion of adversarial sample thus needs to be redefined. In our
case, we set a target score 𝑠𝑎 ∈ [0, 100]. Regardless of the original
score 𝐵𝐼𝑄𝐴(𝑥𝑜 ), our adversarial sample now ideally verifies:

𝑥★𝑎 = arg min
𝑥 :𝐵𝐼𝑄𝐴(𝑥)<𝑠𝑎

∥𝑥 − 𝑥𝑜 ∥, (3)

2.2 Quantization
An original image 𝑥0 in the spatial domain (e.g. PNG format) is
a 3-dimensional discrete tensor: 𝑥0 ∈ {0, 1, . . . , 255}𝑛 (with 𝑛 =
3 × 𝑅 ×𝐶 , 3 color channels, 𝑅 rows and 𝐶 columns of pixels). The
main objective of this task is to craft images: 𝑥𝑎 ∈ {0, 1, . . . , 255}𝑛 .
This additional constraint to the attack is yet not easy to enforce.

In a deep neural network, this input image is first preprocessed
onto a range domain that usually reduces variance of the data.
Its purpose is to ease the learning phase and thus to increase the
performance of a deep neural network. This preprocessing is defined
by design before the training stage and cannot bemodified at testing.
In the case of BIQA, the range domain is [−0.5, 0.5]𝑛 .

Most attacks of the literature are performed in this domain with-
out consideration of the transformation it represents. This leads
to an adversarial sample 𝑥𝑎 ∈ [0, 255]𝑛 after reverting the prepro-
cessing. To save this adversarial sample 𝑥𝑎 as an image, the first
step is then to round it which will erase most of the perturbation
in the case of a low-distortion attack. Rounding is therefore likely
to remove the adversarial property of the sample.

Paper [1] addresses this problem presenting a post-processing
added on top of any attack to efficiently quantize a perturbation: It
keeps the adversarial property while lowering the added distortion.
The method is based on a classification loss to ensure adversariality
defined as follows:

𝐿(𝑥) = log(𝑝𝑐 (𝑥0) (𝑥)) − log(𝑝𝑐 (𝑥) (𝑥)) . (4)

To adapt this method to the context of BIQA, we only need to
redefine it to:

𝐿(𝑥) = 𝐵𝐼𝑄𝐴(𝑥) − 𝑠𝑎 . (5)

For a given x, 𝐿(𝑥) < 0 ensures x scores under the target 𝑠𝑎 .
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3 EXPERIMENTAL WORK
In this task, we know the classifier (BIQA) and its parameters. We
are therefore in a white-box setup. Most modern attacks are devel-
oped in this scenario, from the most basic FGSM [3] and IFGSM [5]
to the most advanced PGD [7], C&W [2], BP [10]. FGSM is a non-
iterative attack bringing a fast solution of the problem. Our work
used this attack in the early stages as a proof of concept bringing
a quick further understanding of the problem. Artifacts were vis-
ible. Instead all the results reported here are crafted using more
the advanced PGD attack [7] in its 𝐿2 optimization version. One
input parameter is the distortion budget. We run the attack over 7
iterations with different distortion budgets (whose maximum value
is set to 2000). A binary search quickly finds an adversarial sample
with the lowest distortion.

3.1 JPEG compression
The final images will be evaluated on their JPEG [9] counterpart.
This compression is done with a quality factor of 90. However there
are many image compression sofwares providing different results.
We used the command line $ convert to simulate this compression.

Tables 1 and 2 show for different methods both 𝑃𝑃𝑁𝐺 and 𝑃 𝐽 𝑃𝐸𝐺
respectively the percentage of images successfully beating the tar-
get score in the PNG domain and the JPEG domain. Additionally
Table 2 shows results of the jury as well.

3.2 Quantization
3.2.1 Spatial domain. The work [1] serves as a baseline for

quantization. We only slightly adapt it as stated in Sect. 2.2. Table 1
reports our results for two target scores: 𝑠𝑎 = 30 and 𝑠𝑎 = 50. It
appears that the perturbation crafted in the pixel domain is fragile
when facing a JPEG compression.

3.2.2 DCT domain. The final image being evaluated after a JPEG
compression, we explore a method adapting the quantization [1]
to the DCT domain. Using the same notations [1]: Let 𝑋𝑜 denote
the image in the DCT domain, 𝑋𝑎 = 𝑋𝑜 + 𝑃 is the result of an
initial attack like PGD, and 𝑋𝑞 = 𝑋𝑜 + 𝑃 + 𝑄 the final quantized
transformed coeffcients. We solve a Lagrangian formulation:

𝑋𝑞 = 𝑋𝑜 + 𝑃 + argmin
𝑄

𝐷 (𝑄) + 𝜆𝐿(𝑄), (6)

where 𝜆 is the Lagrangian multiplier controlling the tradeoff be-
tween the distortion 𝐷 (𝑄) and 𝐿(𝑄) defined in (5). The distortion
𝐷 (𝑄) is defined as the squared 𝐿2 norm of added perturbation:
𝐷 (𝑄) = ∥Δ × (𝑃 +𝑄)∥2.

The quantization noise𝑄 is s.t. 𝑋𝑜 +𝑃 +𝑄 ∈ ΔZ𝑛 , where Δ ∈ N𝑛
is the quantization step matrix for JPEG QF=90. If we use a first
order approximation of 𝐿(𝑄), we can develop (6) in a second-degree
polynomial function. For any coefficient 𝑗 , this function is locally
minimized by:

𝑄★( 𝑗) = −𝑃 ( 𝑗) − 𝜆 𝐺 ( 𝑗)
2Δ( 𝑗) , (7)

where 𝐺 = ∇𝐿(𝑄) |𝑄=0 the gradient computed at 𝑄 = 0. This
minimum however does not enforce (𝑃 + 𝑄★) ∈ Z𝑛 . A simple
rounding of (𝑃 +𝑄) will then finalize the quantization. Finally we
need to control a maximum allowed distortion. If 𝜆 gets big, 𝑄 ( 𝑗)
become a very high value which is not desirable. The final value

Figure 1: Image Places365_val_00019601c.png when quan-
tized in the DCT domain at 𝑠𝑎 = 30.

Table 1: Probabilities of success with a spatial Quantization

𝑃𝑃𝑁𝐺 𝑃 𝐽 𝑃𝐸𝐺
𝑠𝑎 = 30 99.0% 0.7%
𝑠𝑎 = 50 100.0% 11.1%

Table 2: Probabilities of success with a DCT Quantization

𝑃𝑃𝑁𝐺 𝑃 𝐽 𝑃𝐸𝐺

Accuracy
after(JPEG90)

Number of times
selected "best"

𝑠𝑎 = 30 77.5% 63.8% 23.82 40
𝑠𝑎 = 50 96.9 % 91.6% 0.91 57

for the quantized perturbation in the DCT domain is thus bounded
by [− 1

Δ ,
1
Δ ]. These images were submitted to the jury.

4 RESULTS AND ANALYSIS
Tables 1 and 2 show the importance of considering the JPEG com-
pression. When the image is quantized by the 𝐿2 optimization in
the spatial domain, most images will successfully be adversarial
images. However, very few of them remain adversarial after the
JPEG compression. The BIQA score on most images increases up to
10 points. If the quantization is done in the DCT domain, most of
them remain adversarial and the task is successful. It is however
obviously more difficult to beat a lower target score 𝑠𝑎 . An inter-
esting property of the DCT quantization is that it creates typical
JPEG artifacts as seen on Figure 1. This is especially true in low
frequency images since it is harder to remain undetectable in a such
situation.

5 DISCUSSION AND OUTLOOK
The MediaEval task was a good opportunity to extend our previous
work [1] to 1) a regressor BIQA, and 2) in the DCT domain. Saving
the DCT coefficients directly into a JPEG image is more consistent as
it offers a better control on adversariality. Another difficulty of this
task was the lack of knowledge about the compression algorithm.
We therefore worked in a ‘gray’ box setup. The results showed
that JPEG compression have a big effect on the BIQA score of, at
least, adversarial images (and probably any other quality estimator).
Hopefully our JPEG compression is close to the one used in the
contest which allowed transferability of our adversarial images.
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9.6 Introduction and Related Works

We discussed in Chap. 5 the existence of different techniques to make a DNN more
resilient to evasion attacks. We call this resilience robustness, and the process robustifica-
tion. The most commonly used method is undeniably adversarial training or retraining.
The main idea is pretty simple: feed the DNN adversarial examples during the training
phase. Optimization may differ from one work to another. Notably, we mentioned the
existence of two paradigms:

— Minimize cross-entropy loss L on adversarial examples. Examples are crafted with
a given distortion constraint. (Eq. (5.4))

— Maximize distortion between a natural image and its closest adversarial example.
(Eq. (5.5))

A slightly different optimization is suggested by Kannan et al. [74]. Called Logits
Pairing, their method mixes both paradigms (Eq.(5.6)). The type of training they propose
is akin to label distillation [65]. We saw in Chap. 5 the works of Papernot et al. [110]
that extended this idea to improve robustness. A teacher DNN performs a prediction
on data, which in turn is fed to a student DNN as labels along with the same data.
Training is performed on the student as if labels were the ground-truth. Teacher DNN
remains unmodified throughout the procedure. Through this distillation of knowledge,
they demonstrate gains in robustness.

The works of Kannan et al. [74] add to this procedure the presence of distortion-
constrained adversarial examples. Distillation is this time performed on logits rather than
class probabilities. Goldblum et al. [51] also use adversarial samples but perform more
classical label distillation to display gains in robustness.

Our work is in the same line of distillation. We however propose a retraining phase
on features instead of logits. We use the final features (i.e. one step before logits) to
do so. We estimate that most of the vulnerability lies in feature extraction rather than
classification. We display results that back this idea in Sect. 9.8. Feature vectors are richer
in information than logits and thus a better candidate for such unsupervised training.

9.7 Problem Formulation

Let f(x) : Rn → RC be a trained DNN, built from a feature extractor g(x) : Rn → Rnf

and fully-connected layer h(x) : Rnf → RC . We initially clone this model to obtain
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Figure 9.4 – Illustration of our training procedure. Features are extracted from a natural
image x0. An adversarial example of this image xa is built in parallel. Features of xa are
then extracted.

ft(x) = ht(gt(x)) a teacher model, and fs(x) = hs(gs(x)) a student model. The teacher
remains unmodified throughout the training phase while the student is retrained.

We call gt(x0) natural teacher features (resp. gs(x0) natural student features) and
gs(xa) adversarial student features. Note that we do not need gt(xa) the adversarial teacher
features. Adversarial examples are built from fs(x0) as detailed below. In these experi-
ments, we only the feature extraction half of the DNN. Both convolutional filters and
BatchNorm are retrained. We identified BatchNorm to be partially responsible for adver-
sarial vulnerabilities in Sect. 5.2.2.

An accurate student classifier yields gs(x0) ≈ gt(x0). Since the fully-connected layer is
not trained, the best accuracy is a priori obtained when feature extraction is identical. A
robust classifier yields gs(xa) ≈ gs(x0). A robust classifier should extract similar features
out of an adversarial example. We introduce two losses: Lnat := dist(gs(x0), gt(x0)) and
Lrob := dist(gs(xa), gs(x0)). Where dist is a metrics to be defined in Sect 9.7.2. Both are
optimized throughout our retraining with Ltot := Lnat + Lrob.
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9.7.1 Building Adversarial Examples

Our training procedure is unsupervised. We can however attack images regardless
of their ground-truth class c but w.r.t. their predicted class ĉ. Adversarial samples are
also model-specific. Our student model evolves during its retraining. Adversarial samples
should become more and more different between the student and the teacher model. They
are strictly equal only at the first iteration.

During this first phase, we therefore build adversarial samples through fs(x). We use
a PGD-like attack:

x(i+1)
a = x(i)

a −
√
n

ε

Niter

∇Ladv(x(i)
a )

‖∇Ladv(x(i)
a )‖

. (9.6)

With:
Ladv(x) := ŷc(x)− ŷa(x), (9.7)

Where c(x) is the argmax of ŷ and a(x) its second argmax. This attack ensures a final
distortion of a maximum of d(xa, x0) = ε. Note that in the case of Niter > 1, we set a(x)
to remain the same as during the first iteration. This prevents the adversarial example
from going back and forth between the same two classes.

9.7.2 Optimization

We explore several distances to achieve our robustification: Mean Squared Error (MSE),
Mean Squared Logarithm Error (MSLE), and Cosine Correlation (CC).

Mean Squared Error This metrics is commonly seen in problems involving a pairing
of vectors:

MSE(g1, g2) := E[(g1 − g2)2] (9.8)

Mean Squared Logarithmic Error This metrics is more rarely used is such problems.
In this specific task, it can be used since feature maps are strictly positive. It offers more
stability over MSE whose values may explode.

MSLE(g1, g2) := E[(log(g1 + 1)− log(g2 + 1))2] (9.9)
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Cosine Correlation We worked multiple times cosine distances since Sect.5.2.3:

cos(g1, g2) := 〈g1, g2〉
‖g1‖ · ‖g2‖

(9.10)

Where ‖ · ‖ is the Euclidian distance. This distance needs to be maximized instead of
minimized. We call Cosine Correlation our last metrics that minimizes the sine value of
this angle using the trigonometric identity:

CC(g1, g2) := 1− cos(g1, g2)2 (9.11)

Theoretical Scaling We observed in Chap. 9 the scaling of adversarial examples. We
established that σA(n) scaled as O(1/√n). This yields σA(n1)×√n1 = σA(n2)×√n2. This
is true only if σX(n1) = σX(n2). Let us consider g(x) a mere downscaling operation. We
can now establish the distortion that the adversarial signal should have in the feature
space:

σA(g(xa))
σX(g(x0))

√
nf = σA(xa)

σX(x0)
√
n (9.12)

We call σobj the scaled distortion such that:

σobj(g(xa)) := σX(g(x0))‖xa − x0‖2

‖x0‖2

√
n

√
nf

(9.13)

This could be useful to reformulate Lrob. In the case of a Root Mean Square Error (RMSE)
optimization normalized for dimension, we could write:

Lrob := max[σA(g(xa)), σobj(g(xa))] (9.14)

We however did not obtain substantial gains using this scaling yet and we do not provide
results using this scaling.

9.8 Experimental Work

9.8.1 Experimental Setup

We use MS-COCO unlabeled 2017 dataset. There 123, 000 images that we split in
120, 000 for training and 3, 000 for validation. Our justification to using this data is that
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it represents complex scenes and we hope to extract rich feature vectors.
Our test set is Neurips Adversarial Challenge 2017 [80] dataset. 1,000 images akin to

Imagenet compose this set. We only studied robustification on Resnet-18. In the testing
phase, we attack these images with BP in best-effort mode.

The only available comparison on Resnet-18 we found comes from Salman et al. [129]
(Fig. 9.6). Out of the different available model weights, we pick two: ε = 0.05 because
clean accuracy is barely affected, and ε = 0.5 because it is at the frontier of a notable
accuracy drop. Both stem from vanilla adversarial training from scratch.

During the training phase, we reduce Ltot = Lnat+Lrob with Adam optimizer on every
convolution and BatchNorm of Resnet-18. The learning rate is set to 10−4. We use a
batch size of 256 images. Training is performed over 10 epochs at which point we observe
convergence.

Class Vectors

Before diving into experimental work, we would like to display an interesting result. In
Sect. 5.2.3 we introduced Cω the symmetric matrix in RC×C such that Cωk,l = cos(ωk, ωl).
We now study the Cosine Correlation between Cω of different classifiers.

Eff.Net-b0 Res18 Res181 Res182 Res50 Res501 Res502 Res503

Eff.Net-b0 1.00 0.70 0.71 0.70 0.85 0.85 0.85 0.67
Res18 1.00 0.91 0.92 0.75 0.75 0.75 0.74
Res181 1.00 0.91 0.75 0.76 0.76 0.74
Res182 1.00 0.75 0.75 0.75 0.74
Res50 1.00 1.00 1.00 0.89
Res501 1.00 1.00 0.92
Res502 1.00 0.85
Res503 1.00

Table 9.3 – Correlations of Cω matrices from different classifiers. Three architectures
are studied: EfficientNet-b0, Resnet18, and Resnet50. Three robustification methods are
studied: 1 [129](ε = 0.05), 2 [129](ε = 0.5), and 3 [98](ε = 3.0). Results are symmetrical,
only half is displayed for clarity.

Table 9.3 display correlation for these matrices for different classifiers. We draw two
observations. First, distances between class vectors seem to be mostly similar from one
architecture to another. Second, Distances are even closer from one training to another
on the same architecture. This observation led us to believe that most robustness is to be
earned on feature extraction.
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Figure 9.5 – Comparison between dif-
ferent optimization methods seen in
Sect. 9.7.2. Attack is performed with
Niter = 1 and ε = 1.
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Figure 9.6 – Effect of the value of ε
on our method. Optimization is done
through MSE and attack is performed
Niter = 1. State-of-the-Art [129](SotA)
is displayed.

Optimization Method

We experiment with the different distances discussed in Sect. 9.7.2. Figure 9.5 display
results for each of them. Behavior is fairly similar for each of them, gains in robustness
are obtained at the cost of a small loss in clean accuracy. We note that MSE however
has the best trade-off. We observe good robustness as well as better accuracy than other
methods.

Adversarial Distortion

We also experiment with the effect of ε during the generation of the adversarial exam-
ple. Figure 9.6 display results for ε = 0.5, ε = 1, and ε = 2. Performances of the robust
model from [129] are also visible.

We observe that our method gets better robustness with higher values of ε. But this
comes in exchange to clean accuracy. Overall, it seems that ε = 1 yields the best of both
quantities. Its clean accuracy is roughly equal to the training with ε = 0.5 but with better
robustness. Since there is a trade-off, the idea of a “best” method is debatable.

We can see that our method is not on par with [129]. Their lower-distortion training
with ε = 0.05 seems equally as robust as our method with ε = 0.5. But their clean
accuracy is better. Their higher-distortion training with ε = 0.5 display great robustness
with a loss in a clean accuracy equivalent to our method with ε = 1. And our retrained
model is far more vulnerable.
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Iterative Attacks

In this last experiment, we observe the effect of an iterative adversarial generation
on robustification. Figure 9.7 display results of this experiment. We surprisingly do not
observe any gain in either accuracy or robustness with multi-step generation.
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Figure 9.7 – Effect of the number of steps Niter used during the attack. The attack is
performed with ε = 1 and the training procedure is optimized with MSE

9.9 Discussion

Our work is currently still in progress. Experiments are iterative and we are hoping to
improve our results further. We have however displayed interesting gains in robustness on
DNNs. Moreover, it can be difficult to compare ourselves with the existing method. There
are two reasons for that. The first is that our method proposes unsupervised retraining
and the best works in model robustification train models from scratch. The use case is
different since our method could be used to robustify DNNs trained on any task.

We identify that our data may not be the most adequate. We chose it to bring a
variety of visual representations. Pseudo-classification used to create adversarial images
is however heavily biased towards certain classes. Over 5% of pseudo-classification predict
562: ‘fountain’ and over 5% predict 807: ‘solar dish, solar collector, solar
furnace’. Label 611: ‘jigsaw puzzle’ even appears in over 10% of all predictions.
This is far above an average of 0.1% that would represent fairly all classes. These images
likely do not represent solar dishes but instead fall in improbable regions of classification.
Data is too different from Imagenet distribution that the DNN was trained on. We wanted
to have rich data, agnostic to Imagenet classification but we did not use the best data.
Representation within MS-COCO is very different and not adequate.
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Titre : Comprendre, Apprivoiser, et se Protéger des Exemples Adversaires

Mot clés : Réseaux de Neurones Artificiels, Exemples Adversaires

Résumé : L’Intelligence Artificielle est une dis-
cipline qui a connu un fort essor au cours
de ces dernières années, notamment en Vi-
sion par Ordinateur où l’application la plus
commune est la classification d’image. Aujour-
d’hui, les réseaux de neurones artificiels pro-
fonds sont d’excellents classifieurs inférant ce
que représente une image. Des travaux ont
cependant rapidement montré qu’ils sont vul-
nérables aux attaques par évasion, aussi ap-
pelés les exemples adverses. Ces exemples
sont des images qui pour un humain semblent
être une représentation normale d’un objet.
Mais le classifieur attaqué ne parviendra pas à
prédire correctement ce qu’elles représentent.

Cette thèse étudie les mécanismes de
création de ces exemples, la raison de leur
existence et la vulnérabilité des classifieurs.
En particulier, ce travail replace ces exemples
adverses dans un contexte réaliste. Première-
ment, il propose des attaques rapides même
sur des grandes images avec un fort taux
de succès et une distortion imperceptible
ou indétectable. Deuxièmement, il ajoute la
contrainte que les exemples adversaires sont
avant tout des images, c’est à dire des si-
gnaux quantifiés dans le domaine spatial (for-
mat PNG) ou dans le domaine DCT (format
JPEG).

Title: Understanding, Taming, and Defending from Adversarial Examples

Keywords: Deep Neural Networks, Adversarial Examples

Abstract: Artificial Intelligence is nowadays
one of the most essential disciplines of com-
puter science. These algorithms perform par-
ticularly well on Computer Vision tasks, es-
pecially classification. A classifier infers what
an image represents. Nowadays Deep Neu-
ral Networks are largely used for these prob-
lems. These neural networks first undergo a
training phase during which they are given
many examples. These images are accompa-
nied by labels: information on what the image
represents. However, it was quickly found that
the same logic used during the training phase
could be used maliciously. This is the creation
of Adversarial Examples through an Evasion

Attack.
Such examples are seemingly normal im-

ages. A human understands what it repre-
sents as if it was not manipulated. But the
attacked classifier will make an incorrect pre-
diction. In this manuscript, we study the cre-
ation of such examples, the reason for their
existence, and the underlying vulnerability of
classifiers. In particular, we study these exam-
ples in a realistic context. First, attacks are op-
timized (high success rate and low distortion).
Second, we add the constraint that adversarial
examples should be images. We thus work on
spatially-quantized (PNG) or DCT-quantized
images (JPEG).
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