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Titre : Allocation de tâches interdépendantes via la formation de 

coalitions pour les systèmes multi-agents coopératifs 
 
Résumé :  
L'allocation des tâches à plusieurs agents autonomes devant accomplir des tâches complexes 

a été l'un des domaines de recherche récents sur les systèmes multi-agents. Dans de 

nombreuses applications, les agents sont coopératifs et doivent effectuer des tâches qui 
nécessitent chacune une combinaison de différentes capacités dont peut se doter un sous-

ensemble d'agents. Dans ce cas, nous pouvons utiliser la formation de coalitions comme 
paradigme pour affecter des coalitions d'agents à des tâches. Les solutions à ce problème 

d'allocation de tâches, pour les systèmes robotiques en particulier, trouvent plusieurs 

applications dans le monde réel et prennent de plus en plus de l'importance dans les domaines 
de la défense, de l'espace, de la gestion des catastrophes, de l'exploration sous-marine, de la 

logistique, de la fabrication de produits et de l'assistance dans les services de santé. 
 

De multiples mécanismes de formation de coalitions et d'allocation de tâches ont été introduits 

dans l'état de l'art, tenant rarement compte des tâches interdépendantes. Cependant, il est 
récurrent de trouver des tâches dont la qualité ne peut être évaluée sans considérer les autres 

tâches dans des applications réelles. Ces tâches sont appelées interdépendantes par opposition 

aux tâches indépendantes qui, elles, peuvent être évaluées individuellement, ce qui entraîne 
une évaluation globale de l'allocation des tâches qui additionne simplement toutes les 

évaluations des tâches. 
 

La recherche dans le passé a conduit à de nombreuses méthodes d'allocation de tâches qui 

traitent le cas des tâches indépendantes sous différents angles et sous différents paradigmes. 
D'autres travaux résolvent le cas des tâches interdépendantes, mais ils le font soit de manière 

centralisée avec une complexité très élevée, soit uniquement pour le cas des dépendances de 
précédence. Cependant, de nombreuses formes d'interdépendance peuvent exister entre les 

tâches dans les applications du monde réel. Ces applications nécessitent que les mécanismes 

d'allocation des tâches soient décentralisés et anytime, pouvant renvoyer une solution à tout 
moment quitte à l'améliorer s'il reste du temps, pour répondre à des problèmes de sensibilité 

au temps et de robustesse. 

 
Dans cette thèse, nous considérons des environnements multi-agents coopératifs où les tâches 

sont multi-agents et interdépendantes, et les méthodes d'allocation des tâches doivent être 
décentralisées et anytime. À cet égard, nous proposons une formalisation du problème qui 

considère les attributs qualitatifs et quantitatifs des agents et des tâches, et qui capture les 

dépendances des tâches que ça soit au niveau des exigences ou au niveau de l'évaluation des 
allocations. Nous introduisons une nouvelle approche avec un mécanisme de formation de 

coalition décentralisé anytime qui permet aux agents dotés de capacités complémentaires de 
former, de manière autonome et dynamique, des structures de coalitions faisables qui 

accomplissent une tâche globale et composite. Cette approche est basée sur la formation d'une 

structure de coalition faisable permettant aux agents de décider quelle coalition rejoindre et 
donc quelle tâche accomplir afin que toutes les tâches soient faisables. Ensuite, les structures 

formées sont progressivement améliorées via des remplacements d'agents pour optimiser 

l'évaluation globale de l'allocation, le but étant d'accomplir les tâches avec les meilleures 
performances possibles. Nous analysons la complexité de nos algorithmes et montrons que, 

bien que le problème général soit NP-complet, notre mécanisme fournit une solution dans un 
temps acceptable. Des scénarios d'application simulés sont utilisés pour démontrer la valeur 

ajoutée de notre approche. 

 
 

Mots clefs : 
Allocation de tâches ; formation de coalition ; systèmes multi-agents ; tâches 
interdépendantes ; programmation par contraintes 
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Title : Interdependent Task Allocation via Coalition Formation for 

Cooperative Multi-Agent Systems 
 
 

Abstract :  
Task allocation among multiple autonomous agents that must accomplish complex tasks 
has been one of the focusing areas of recent research in multi-agent systems. In many 

applications, the agents are cooperative and have to perform tasks that each requires a 

combination of different capabilities that a subset of agents can have. In this case, we can 
use coalition formation as a paradigm to assign coalitions of agents to tasks. For robotic 

systems, in particular, solutions to this task allocation problem have several and 
increasingly important real-world applications in defense, space, disaster management, 

underwater exploration, logistics, product manufacturing, and support in healthcare 

facilities support. 
 

Multiple coalition formation and task allocation mechanisms were introduced in the prior 
art, seldom accounting for interdependent tasks. However, it is recurrent to find tasks 

whose quality cannot be evaluated without considering the other tasks in real-world 

applications. These tasks are called interdependent in contrast to independent tasks that 
can be individually assessed, resulting in a global evaluation of the tasks' allocation that 

sums all the tasks' evaluations. Research in the past has led to many task allocation 

algorithms that address the case of independent tasks from different angles and under 
different paradigms. Other works solve the case of the interdependent tasks, but they do 

it either centrally with very high complexity or only for the case of precedence 
dependencies. However, many forms of interdependence may exist between tasks in real-

world applications. In addition, these applications need task allocation mechanisms to be 

decentralised and available at anytime to allow them to return a solution at any time and 
to improve it if there is time left, to respond to their time-sensitivity and robustness issues. 

 
In this dissertation, we consider cooperative multi-agent environments where tasks are 

multi-agent and interdependent, and task allocation methods have to be decentralized and 

available at anytime. In this regard, we propose a problem formalisation that considers the 
agents' and the tasks' qualitative and quantitative attributes and captures the tasks' 

dependencies on the requirements level and the allocation evaluation level. We introduce 
a novel approach with a token-passing anytime decentralised coalition formation 

mechanism. The approach enables agents with complementary capabilities to form, 

autonomously and dynamically, feasible coalition structures that accomplish a global, 
composite task. It is based on forming a feasible coalition structure that allows the agents 

to decide which coalition to join and thus which task to do so that all the tasks can be 

feasible. Then, the formed structures are incrementally improved via agent replacements 
to optimise the global evaluation. The purpose is to accomplish the tasks with the best 

possible performance. The analysis of our algorithms' complexity shows that although the 
general problem is NP-complete, our mechanism provides a solution within an acceptable 

time. Simulated application scenarios are used to demonstrate the added value of our 

approach. 

 
 
Keywords : 
Task allocation ; coalition formation ; multi-agent systems ; interdependent tasks; 

constraint programming 
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0Abstract

Task allocation among multiple autonomous agents that must accomplish com-

plex tasks has been one of the focusing areas of recent research in multi-agent

systems. In many applications, the agents are cooperative and have to perform

tasks that each requires a combination of di�erent capabilities that a subset of

agents can have. In this case, we can use coalition formation as a paradigm to

assign coalitions of agents to tasks. For robotic systems, in particular, solutions to

this task allocation problem have several and increasingly important real-world

applications in defense, space, disaster management, underwater exploration,

logistics, product manufacturing, and support in healthcare facilities support.

Multiple coalition formation and task allocation mechanisms were introduced

in the prior art, seldom accounting for interdependent tasks. However, it is

recurrent to �nd tasks whose quality cannot be evaluated without considering

the other tasks in real-world applications. These tasks are called interdependent

in contrast to independent tasks that can be individually assessed, resulting in a

global evaluation of the tasks’ allocation that sums all the tasks’ evaluations.

Research in the past has led to many task allocation algorithms that address the

case of independent tasks from di�erent angles and under di�erent paradigms.

Other works solve the case of the interdependent tasks, but they do it either

centrally with very high complexity or only for the case of precedence depen-
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dencies. However, many forms of interdependence may exist between tasks

in real-world applications. In addition, these applications need task allocation

mechanisms to be decentralised and available at anytime to allow them to return

a solution at any time and to improve it if there is time left, to respond to their

time-sensitivity and robustness issues.

In this dissertation, we consider cooperative multi-agent environments where

tasks are multi-agent and interdependent, and task allocation methods have to be

decentralised and available at anytime. In this regard, we propose a problem for-

malisation that considers the agents’ and the tasks’ qualitative and quantitative

attributes and captures the tasks’ dependencies on the requirements level and the

allocation evaluation level. We introduce a novel approach with a token-passing

anytime decentralised coalition formation mechanism. The approach enables

agents with complementary capabilities to form, autonomously and dynamically,

feasible coalition structures that accomplish a global, composite task. It is based

on forming a feasible coalition structure that allows the agents to decide which

coalition to join and thus which task to do so that all the tasks can be feasible.

Then, the formed structures are incrementally improved via agent replacements

to optimise the global evaluation. The purpose is to accomplish the tasks with

the best possible performance. The analysis of our algorithms’ complexity shows

that although the general problem is NP-complete, our mechanism provides a

solution within an acceptable time. Simulated application scenarios are used to

demonstrate the added value of our approach.
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0Résumé

L’allocation des tâches à plusieurs agents autonomes devant accomplir des tâches

complexes a été l’un des domaines de recherche récents sur les systèmes multi-

agents. Dans de nombreuses applications, les agents sont coopératifs et doivent

e�ectuer des tâches qui nécessitent chacune une combinaison de di�érentes

capacités dont peut se doter un sous-ensemble d’agents. Dans ce cas, nous

pouvons utiliser la formation de coalitions comme paradigme pour a�ecter des

coalitions d’agents à des tâches. Les solutions à ce problème d’allocation de tâches,

pour les systèmes robotiques en particulier, trouvent plusieurs applications dans

le monde réel et prennent de plus en plus de l’importance dans les domaines de la

défense, de l’espace, de la gestion des catastrophes, de l’exploration sous-marine,

de la logistique, de la fabrication de produits et de l’assistance dans les services

de santé.

De multiples mécanismes de formation de coalitions et d’allocation de tâches

ont été introduits dans l’état de l’art, tenant rarement compte des tâches inter-

dépendantes. Cependant, il est récurrent de trouver des tâches dont la qualité

ne peut être évaluée sans considérer les autres tâches dans des applications

réelles. Ces tâches sont appelées interdépendantes par opposition aux tâches

indépendantes qui, elles, peuvent être évaluées individuellement, ce qui entraîne

une évaluation globale de l’allocation des tâches qui additionne simplement

toutes les évaluations des tâches.

La recherche dans le passé a conduit à de nombreuses méthodes d’allocation

de tâches qui traitent le cas des tâches indépendantes sous di�érents angles et

sous di�érents paradigmes. D’autres travaux résolvent le cas des tâches interdé-
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pendantes, mais ils le font soit de manière centralisée avec une complexité très

élevée, soit uniquement pour le cas des dépendances de précédence. Cependant,

de nombreuses formes d’interdépendance peuvent exister entre les tâches dans

les applications du monde réel. Ces applications nécessitent que les mécanismes

d’allocation des tâches soient décentralisés et anytime, pouvant renvoyer une

solution à tout moment quitte à l’améliorer s’il reste du temps, pour répondre à

des problèmes de sensibilité au temps et de robustesse.

Dans cette thèse, nous considérons des environnements multi-agents coopé-

ratifs où les tâches sont multi-agents et interdépendantes, et les méthodes d’al-

location des tâches doivent être décentralisées et anytime. À cet égard, nous

proposons une formalisation du problème qui considère les attributs qualita-

tifs et quantitatifs des agents et des tâches, et qui capture les dépendances des

tâches que ça soit au niveau des exigences ou au niveau de l’évaluation des

allocations. Nous introduisons une nouvelle approche avec un mécanisme de

formation de coalition décentralisé anytime qui permet aux agents dotés de

capacités complémentaires de former, de manière autonome et dynamique, des

structures de coalition faisables qui accomplissent une tâche globale et composite.

Cette approche est basée sur la formation d’une structure de coalition faisable

permettant aux agents de décider quelle coalition rejoindre et donc quelle tâche

accomplir a�n que toutes les tâches soient faisables. Ensuite, les structures for-

mées sont progressivement améliorées via des remplacements d’agents pour

optimiser l’évaluation globale de l’allocation, le but étant d’accomplir les tâches

avec les meilleures performances possibles. Nous analysons la complexité de

nos algorithmes et montrons que, bien que le problème général soit NP-complet,

notre mécanisme fournit une solution dans un temps acceptable. Des scénarios

d’application simulés sont utilisés pour démontrer la valeur ajoutée de notre

approche.
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Chapter 1 General Introduction

1.1 Introduction

This chapter provides a prelude to the work presented in this dissertation. First,

the motivation, the research challenges, and the main contributions are brie�y

outlined. Also, the fundamental concepts examined in this work are introduced

and reviewed. The explored research questions are pointed out, as well as the

contributions stemming from this Ph.D. project. The chapter concludes with

an overview of the thesis’ structure and content of the thesis, along with the

contributions with which we answer the research questions.

1.2 Context and Motivation

In this section, we present the global context in which this thesis was done.

We also underline the core concepts used in this thesis. Finally, we highlight a

brief summary of a part of the work that cannot be exhibited in this manuscript,

which inspired the research directives of this thesis.

The motivational context of the thesis involves several concepts and notions

that are introduced in section 1.3 in detail.

1.2.1 Task allocation in Multi-Agent Systems

In today’s era of rising technological applications such as robotics, autonomous

engines – be they air-bound such as Unmanned Aerial Vehicles (UAVs), ground-

bound such as Unmanned Aircraft Systems (UASs) or water-bound such as

Unmanned Underwater Vehicles (UUVs) – and home appliances, there has been a

renewed interest in multi-agent task allocation technologies. Indeed, the decrease

in robots and drones production costs on the one hand, and the advances in

sensor technologies, communication protocols and computational capacities on

the other hand, encourage the usage of these technologies and accelerate their

advent.

In particular, it is interesting to employ these machines in missions that qualify

as complex, critical and/or time-sensitive. A mission is de�ned by a set of tasks

that compose the global task entrusted to the machines. We use "mission" and

"global task" as equivalent terms for the rest of this document. Indeed, a system

with multiple robots has many advantages over single robot systems. Some

con�gurations are di�cult or impossible to handle by a single robot yet much
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Context and Motivation Section 1.2

easier to solve using a team of robots. These missions typically involve di�erent

tasks each requiring di�erent skills, tools or resources. In general, these tasks

are complementary and inter-related in terms of shared resources, execution

time or e�ciency.

Taking full advantage of these robots requires an embodied intelligence that

makes decisions about their cooperation and organises their ability to work as a

team of individuals sharing a common goal: to achieve their mission e�ciently.

This intelligence enables the robots to coordinate their actions by allocating

tasks or workloads according to their capabilities to be used most conveniently

and e�ciently for the problem at hand. To do that, a robot needs information

about the tasks’ requirements and the evaluation of these tasks realisation by

particular groups of agents. This way, they can make sure to accomplish the

tasks if they have enough capabilities to do it, and more than this, to complete

them with the best possible performance based on tasks evaluation.

In many real-world applications, the evaluation of these tasks cannot be

done for each one of them individually. This happens, for instance, when two

tasks require a shared resource, that must be present either among the agents

dedicated to the �rst task or among those dedicated to the second one. In

such a case, the two tasks cannot be evaluated independently: a task cannot

be evaluated without considering the other. This also occurs when tasks have

some ordering constraints. For example, a task may have another task as a

precondition, meaning that the latter must be completed before the task can be

performed. It may also happen that the quality of execution of the second task

depends on the quality of execution of the �rst one.

As an example, consider the case of a search and rescue mission. A search

task is �rst done by agents that have good vision technology. Those agents

gather information about the number and localisation of the victims in a speci�c

area. Based on this information, a number of agents with speci�c arms perform

a rescue task to retrieve the victims. The quality of the rescue task execution

depends on the information received from the agents that performed the search

task. If these agents were not enough, had bad vision cameras or not enough

fuel to stay longer in the area, they may have reported incomplete or inaccurate

information. This directly a�ects the quality of the rescue task, which may send

fewer agents than required and may not rescue all the victims.

3



Chapter 1 General Introduction

1.2.2 Independent and Interdependent Tasks

The task allocation literature di�erentiates between two di�erent situations. In

some applications, the mission or global task to be performed is composed of

several tasks, but these tasks are entirely independent, in the sense that the

quality of execution of a task does not depend on the other tasks but only on the

agents assigned to it. By contrast, in other applications, one cannot evaluate the

allocation of speci�c agents to a task without considering other tasks’ allocations.

This happens, for example, when two tasks share an essential resource, a task’s

execution quality is in�uenced by another task’s execution quality, or tasks have

some execution order. Such tasks are said to be interdependent.
Interdependence between tasks can be formalised using the concept of utility.

Before explaining this formalisation, let’s �rst precise some notions. We consider

utility functions over groups of tasks. Formally, we de�ne D : 2
) → ℝ, where

) is a set of tasks. For a given set ( = {C1, . . . , C=} of = tasks in ) , the value

D (() is a measure of the quality of the allocation of the tasks in ( . In particular,

individual tasks have an associated utility and so does the global task, which is

de�ned as the collection of all tasks in ) .

Furthermore, utility functions are said to be additive [Brandt et al. 2016] if

∀(1, (2 ⊆ 2
)

: D ((1 ∪ (2) = D ((1) + D ((2) − D ((1 ∩ (2) (1.1)

Admittedly, when the global task is composed of independent tasks, the utility of

the global task is additive. This is reasonable thanks to the tasks’ independence

that makes it possible to evaluate each task allocation locally without considering

any external parameter to the task. Also, there is no intersection between the

di�erent tasks. Thus, the utility is indeed additive. This way, the utility additivity

suggests that the utility of the global task is the sum of the local utilities among

all the tasks composing it, taken individually. Formally:

D () ) =
∑
C 9 ∈)

D (C 9 ) (1.2)

By contrast, when tasks are interdependent, the tasks utilities cannot be

additive. This is due to the impossibility of local evaluation for all the tasks. The

reason is that the interdependent tasks in�uence each others’ utilities. Thus, the

utility of the global task cannot simply be the sum of the utilities of its parts,

which are the tasks. If a global task is composed of interdependent tasks, its

4



Context and Motivation Section 1.2

utility can then be calculated only as a whole even if its components (i.e. the

tasks) are discrete.

Besides, task interdependence can be present in di�erent ways. We can have

two considerations of the notion of interdependence: interdependence on tasks

feasibility constraints and interdependence in the global task allocation utility.

Principally, the �rst consideration represents cases where two or more tasks

cannot be accomplished if they do not verify some condition(s) together. If

these conditions are not satis�ed, the tasks cannot be executed even if their

locally de�ned conditions are satis�ed. This can be illustrated for example by

the necessity of a shared resource between two tasks. For example, if the �rst

task is to clean the table by one agent and the second one is to clean the �oor by

another agent, the two tasks need each a towel so that agents assigned to them

can do the cleaning. But one of the agents must have the detergent product and

pass it to the other so that the two tasks can be completed, since the goal of the

two agents team is to clean the room. At the task allocation level, it does not

matter who of the two agents has this shared resource as long as one of them

has it.

Likewise, the second consideration of interdependencies is expressed in the

di�erent possible task allocation utilities. In several realistic con�gurations,

a task value, mirroring the performance of the agents assigned to it, might

be in�uenced by the cooperative arrangements of other agents and by their

performance on their assigned tasks [T. Sandholm et al. 1999]. For example,

it may happen that, in a Search and Rescue mission, the agents allocated to

the search task do not report the correct number of victims in a speci�c area.

Consequently, based on the wrong information concluded from the search task

due to its agents’ bad performance, just a few agents will be allocated to the rescue

task, and thus, they might fail in rescuing all the victims. On the contrary, if the

search task was well accomplished and its agents succeeded in communicating

the accurate number of victims, the rescuers’ team has more chances to succeed

in their task.

1.2.3 Motivating Case

The work proposed in this thesis, being realised in an industrial framework, is

based on an industrial use case scenario. The problem we examined for that use

case was task allocation for autonomous, cooperative, and heterogeneous agents

that should perform a set of complex tasks.

5
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Assuming tasks are independent, we initially modeled the problem under a

speci�c paradigm that suits our application’s particularities. After that, we have

chosen a task allocation algorithm [Macarthur et al. 2011] that goes with the

speci�c aspects of our application.

Then, as the application’s domain experts were not able to help with the

formulation of a utility function, we had to build an approach using Multi-

Criteria Decision Making (MCDM) techniques [Siskos et al. 2005].

Along these lines, our end-to-end approach includes making agents allocate

themselves to tasks dynamically and measuring the quality of that allocation for

critical, dynamic, and complex missions. We have implemented this approach

and its associated techniques and launched many experiments on a simulator

speci�cally designed for the use case [Gayraud et al. 2021].

We run empirical experiments on the simulator using the chosen task allo-

cation algorithm with the designed utility function. The experiments results

had led to two observations. When tasks did not in�uence each other, we had

promising results in reasonable times. However, the results were unexpected

when there were unavoidable in�uences between tasks and did not correspond to

operational forecasts. Analysing this inconsistency between experts’ evaluation

and the resulting task allocation made us notice the interdependent character of

tasks that we had not considered in our modelisation.

With a deeper look into task interdependence, present in several con�gurations

and numerous real-world applications (see next section), we decided to channel

the research direction of this thesis towards the case of interdependent tasks.

The work we have done on the use case, including modelisation, suggested

approach and results, is documented in a patent [Ahmadoun et al. 2020]. This

patent was �led as classi�ed by the French Government Defense Agency. This

is why we cannot give further details about it in this dissertation.

1.3 Background

Before exploring the thesis research questions, literature, and contributions,

let us set the stage by de�ning some general concepts related to this project’s

subject. This section introduces the fundamental vocabulary in the multi-agent

task allocation community. Since the goal is to remove ambiguity on the �eld’s
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terms by providing basic de�nitions, acquainted and more advanced readers can

skip this section.

1.3.1 Agents

Studying agents is a reasonably recent research domain. Being a part of the

largest �eld of computer science and directly associated with robotic systems, in

particular, much attention has been paid to this �eld as one of the most prominent

and promising technologies.

Seemingly due to its novelty, no consensus on the de�nition of an agent has

been reached. Still, numerous proposals, with some slight variations, have been

more and more embraced.

One of the most popular and trusted de�nitions is Wooldridge and Jennings’s

de�nition [Wooldridge and Nicholas R Jennings 1995]. The two researchers

suggested: “An agent is a computer system that is situated in some environment,

and that is capable of autonomous action in this environment in order to meet

its delegated objectives”. They link the agent with the ecosystem in which

it exists and executes some purposeful actions on its own to reach speci�c

prede�ned goals. The agent is autonomous, which means it can operate without

the intervention of a human or another system. In this way, an agent can

be considered as intelligent, and it should have the following characteristics:

reactivity (i.e., ability to perceive the environment and react to its changes in

a timely manner), proactivity (i.e., ability to take initiatives based on a goal-

oriented behaviour), and sociability (i.e., ability to interact with other agents).

It is also considered that an agent has a list of actions it can perform to change

its environment. The critical problem an agent faces is deciding which of these

actions to do to meet its design objectives [Woolridge et al. 2001].

With the same concepts but on a more general level, Russell and Norvig

de�ned an agent as: “Anything that can be viewed as perceiving its environment

through sensors and acting upon that environment through e�ectors” [Russell

et al. 2002]. With this de�nition, animals like ants, �sh, and birds, or even

humans are considered agents. We have senses (such as eyes, tongue, hands)

that allow us to sense our environment and di�erent organs and body parts as

e�ectors. Also, a software agent is an agent since it collects knowledge about

7
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the environment through the information it receives and encodes bit strings to

make actions. Russel and Norvig consider goal-directed behaviour the essence

of intelligence. They named a goal-oriented agent who always deliberatively

chooses to act with the optimal foreseen outcome, with a term borrowed from

economics, a “rational” agent. With this generic de�nition, a top-level view of

an agent and its interaction with its environment can be illustrated as shown in

�gure 1.1.

Figure 1.1: Simple representation of an agent

With these two de�nitions, we implicitly assume that the agents we deal with

are intelligent. We will also use the general term “agent” throughout this thesis

as a generalisation for “robot” and an abbreviation for “intelligent agent”.

8
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1.3.2 Multi-Agent Systems

As its name implies, a Multi-Agent System (MAS) is composed of multiple agents

populating the same environment and carrying out their actions in this shared

environment. The agents of a MAS are naturally led to interact with each other

to achieve their goals. This capability of interaction, whether to set a competitive

con�guration or to counterbalance each other’s de�ciencies, makes the MASs

applicable to several applications. Some examples include computer networks

due to their increasing complexity as a result of edge computing and Internet

of Things (IoT) emergence [Kovtunenko et al. 2019; X. Liu et al. 2020; Munir

et al. 2019]; robotics as the most intuitive and natural application especially

with their growing use nowadays [Kitano 2000; J. Liu et al. 2018; Stone et al.

2000]; complex systems basically to model them as agents for more �exibility and

expressivity [Bai et al. 2017; Boes et al. 2017; Rzevski 2012]; business management

for optimisation purposes [Coria et al. 2014; J.-H. Lee et al. 2008; Żytniewski

2016]; health care and medical technologies [Moreno 2003; Nealon et al. 2003;

Tapia et al. 2009]; and smart grids to address their multiple challenges using

agents [Pipattanasomporn et al. 2009; Rogers et al. 2012; Wang et al. 2020].

Additional characteristics of MAS environments are that they can be either

static or dynamic. An environment is considered static when it can be assumed

it stays unchanged except by its agents’ actions. On the other hand, when an

environment undergoes changing processes beyond the control of the agents, it

is considered dynamic and thus more complex to deal with [Russell et al. 2002].

The dynamics can a�ect, for example, the agents by adding or removing some

of them. It can regard the agents’ objectives, which may vary throughout the

agents’ execution. It may also involve the other elements of the environment or

agents’ communication by the presence of a speci�c noise.

As stated before, thanks to their important features, MASs applicability in

several domains has signi�cantly improved. Open research questions about the

MASs are being approached. These involve, among others, coordination, nego-

tiation, argumentation, communication, security, learning, and task allocation.

The task allocation challenge is studied in this thesis and is more long-windedly

detailed in section 1.3.4.

We note that in a MAS, agents can be homogeneous or heterogeneous. Namely,

9
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homogeneous agents have the same capabilities and can be interchangeable. By

contrast, when agents are heterogeneous, they have di�erent capabilities.

1.3.3 Cooperative Agent Teams

As stated in section 1.3.2, the interactions between MAS agents can take di�erent

forms: cooperation, coordination, negotiation, competition. From an agent

perspective, we distinguish two types: cooperative agents and competitive

agents.

In a cooperative setting, each agent is principally concerned with maximising

the social welfare of the entire system, albeit it does not necessarily maximise

its personal utility. Cooperative multi-agent systems refer to the particular case

of multi-agent systems where agents have to interact with each other to reach

common goals. An example would be MASs that intend to resolve a complex

problem that an individual agent or a monolithic system cannot solve easily or

cannot solve at all.

By contrast, other con�gurations can involve agents with di�erent stakehold-

ers where each agent has its objectives, preferences, and utilities to maximise

regardless of the consequences on other agents. Those agents are called self-

interested or competitive agents.

Cooperative multi-agent systems represent a very active research area, as it

will be shown in the next chapter. This thesis contributes to a part of it.

From an organisational perspective, the system designer needs to ensure a

particular organisation upon the agents. The designer has to set up the agent

roles, relationships, and authority structures governing their behaviours. Major

organisational paradigms in MASs are reviewed in [Horling et al. 2004]. Among

these paradigms, we are interested in the coalitions paradigm that will be more

detailed later in section 1.3.5, but also in the teams paradigm. This is because we

are interested in cooperative agents who, by design, agreed to work together

toward a shared goal [Kaminka et al. 2002; Scerri et al. 2005; Tambe et al. 1999].

In agents teams, agents coordinate their decisions in a manner supported by

their individual actions and consistent with their objective as a team.

10
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1.3.4 Task Allocation

Tasks are the actions that agents can perform to achieve their design objectives.

In a cooperative setting, the common goal of the agents is a set of di�erent tasks.

Each task has some speci�c requirements to be performed. For example, the task

of surveillance for a speci�c area needs speci�c cameras and a certain lifespan

enabling the agent who performs this task to have enough time to scan the area.

In another example, lifting a heavy table needs either two agents with lifting

arms and high speci�c strength or four with lifting arms with a medium strength

level, but no more than four agents to avoid overcrowding.

Task allocation is an essential requirement for multi-agent systems operating

in cooperative environments. It allows agents to know their individual goals to

improve the overall system performance. The objective of task allocation in a

MAS is to optimise use of the available resources, namely agents, in the most

bene�cial way for the MAS application.

A particular case may occur when the available agents cannot in any way

perform the present tasks. For example, if there are two surveillance tasks, but

among the agents, only one agent has a camera and a very limited remaining

lifespan. In this case, no assignment is possible since the two tasks cannot be

performed together. Otherwise, performance levels are de�ned, and the goal is

to �nd the rearrangement with a good performance outcome. This is applicable

for cases were many di�erent rearrangements between the agents and the tasks

are possible regarding the tasks’ requirements and the agents’ skills.

The performance level is de�ned by what we call a utility. The utility is

derived by a function that maps a state to a real number describing the level

of performance. In our case, a state is a speci�c tasks’ distribution among the

agents. This function, being the explicit mirroring of the cooperation quality,

expresses the whole system’s welfare.

More speci�cally, a multi-agent mission outcome can be in�uenced by many

factors; this includes the heterogeneity of agents, their di�erent capabilities,

tasks disparity, and even auxiliary problems like localisation and navigation.

A utility is de�ned as a valuation quantity to shape the task allocation problem

and measure the likelihood of its success. It synthesises di�erent task allocation

model aspects depending on the application. These aspects may include, for

instance, execution time, traveled distances, or execution quality.

11
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1.3.5 Coalition Formation

A coalition formation is a temporary grouping of agents into coalitions to per-

form complex tasks, otherwise unfeasible by a single agent and requiring the

association of several agents with di�erent skills.

This concept has been widely studied in the game theory �eld [T. W. Sand-

holm et al. 1995; Shenoy 1979]. Its proposed methods are focused on rational

agents seeking to maximise their own utility via coalitions. In addition, the �rst

solutions proposed were centralised and computationally exponential. However,

Distributed Arti�cial Intelligence (DAI) researchers have developed coalition

formation algorithms that are applicable to MASs and focus on distributing the

computations, reducing complexity and making the task allocation e�cient.

They also have developed algorithms, where the agents, as in our problem, are

completely cooperative [Abdallah et al. 2004; Aumann et al. 1974; O. M. Shehory

et al. 1997]. Thus, with these solutions, the agents aim to form a coalition that

provides the highest overall utility - without considering their individual utility.

Similarly, in a cooperative multi-agent scenario, the process of coalition struc-

ture generation aims to produce a distribution of coalitions, each consisting of a

subset of agents allocated to a speci�c task. This way, each task has its own coali-

tion. In addition, in the context of cooperative game theory, many works have

used the coalition formation paradigm as the outcome of a cooperative game can

be de�ned as a coalition structure together with a payo� vector [Chalkiadakis

et al. 2011].

The coalition formation is an adequate paradigm to model the problem when

a problem involves complex tasks, and each needs more than one agent and a

speci�c combination of capabilities or resources to be performed. The aspiration

is to allocate tasks to agents and, as a result, regroup assigned agents for each

task in a group (aka a coalition). The coalition’s agents cooperate to accomplish

their assigned task or perform it with a certain level of e�ciency. In this way, for

each task, the coalition structure, indicating the set of agent coalitions assigned

each to a task, is formed via task allocation.

1.3.6 Decentralisation

Many communication disconnections, mission changes or breakdowns may

occur in real-world applications. This is why we need multi-agent task allocation

12
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mechanisms enabling several cooperating robots (being considered as agents) to

achieve their missions in a completely decentralised and robust manner. The

reason is that in a decentralised con�guration, all the agents have the capability

and the intelligence to make their own decisions. Thus, contrary to a centralised

con�guration where only a central point can do so, agents are not paralysed and

unable to continue their mission execution if an eventual breakdown happens

to that central point or if they lose communication with it.

These methods can distribute tasks among robots and assign computation

charges to nodes in a network. In addition, in many real-world multi-agent appli-

cations, such as human-agent teams [Losey et al. 2020; Zhang et al. 2012], sensor

networks [Farinelli, Rogers, Petcu, et al. 2008; Mainland et al. 2005], disaster

rescue missions [Beck et al. 2016; Hooshangi et al. 2017], satellite constellations

[Schetter et al. 2003; Yao et al. 2019], to whom decentralisation is inherent,

centralised decision-making is not practical and sometimes not possible.

Despite the indisputable advantage in the quality of the results achieved by

centralised methods over decentralised ones, it is worth considering these results’

regarding their solution applicability in many scenarios.

In addition, the centralised methods face the risk of a Single Point of Failure

(SPoF). This is when the central point (or computation engine) responsible for

the decision-making of the whole MAS breaks down. In this case, the system

stays paralysed with no decision nor acting capacities, and thus, the goals cannot

be achieved. When all the system’s agents have the decision making capability,

the system is more autonomous and more robust to the eventual breakdowns.

Besides, centralised methods �rst demand a global view on the system and

strong computation capacities to perform all required calculations and generate

the allocation decisions for all the tasks. Hence, it is impossible to implement

such method on small engines with limited memory and model computational

power, such as drones.

Moreover, even when there are no communication disturbances or noise, the

central point must be able to communicate with all the system’s agents to give

them orders depending on the resulting task allocation. By contrast, in the

decentralised methods, all the agents do not have to be connected to one point

based on some communication network.

In contexts where communication disturbances are possible, a SPoF problem

can happen if the central point loses communication with a part or all of the

agents.

13
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Task allocation decentralisation is not adopted to distribute and simplify

the computations but to make the suggested solutions more practical, robust,

compatible with new technologies, and applicable to real-world applications.

After discussing these elements, we state that a centralized approach does not

apply to the problem settings in this thesis.

1.4 Problem Addressed and Research �estions

The aim of this Ph.D. project is to study multi-agent decentralised task allocation

methods for tasks with dependencies.

In particular, we focus our research on the case where agents cannot execute

more than one task at a time and are heterogeneous by their di�erent capabilities.

These agents must realise, cooperatively as a team, a mission composed of

complex tasks where each of these tasks requires a subset of agents with a

speci�c combination of capabilities for its achievement. This is why agents

should form coalitions to accomplish such tasks.

Furthermore, the tasks are interdependent. The quality of a task does not

depend only on the agents assigned to it but can also depend on other tasks.

Regarding the mission execution environment, we start by considering a static

environment, but we can extend to a dynamic environment where some agents

can break down while others can join the mission on the road, and some tasks

can fail while new agents can be added during the mission. For this reason, we

focus on a decentralised con�guration in order to adapt to the nature of the

intended applications that can be critical with communication instability and

where agents are robots or drones.

In the following, we present the main problem of interest in this thesis along

with the questions and the related challenges it raises. The decision process

has to be decentralised to make it applicable in real-world applications. Also, it

has to be able to propose anytime solutions. This means that agents can have

a solution at each moment if the process has to stop, and they can improve its

quality if more time is given.

The central problem studied in this Ph.D. research project is :
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Multi-Agent decentralised Task Allocation via Coalition Formation for
Interdependent Tasks

We can formulate the problem with the question: “How to allocate interde-

pendent tasks to agents and form coalitions in a decentralised manner?”

The problem of multi-agent task allocation can be described as follows. Given a

set of tasks and a set of agents, we want to de�ne an association between subsets

of agents and tasks to match the capabilities of the agents with the requirements

of the tasks and maximise a utility function. To cooperate, accomplish their

mission, and ensure good performances, the agents (whether robotic or software

ones) need to have the ability to decide which task each agent of the team

should perform. This decision should be based on each agent’s capabilities, other

team agents’ capabilities, and the tasks’ requirements. The mechanism that

allows them to do so must be resilient and robust to the eventual communication

problems or changes concerning agents or tasks.

Figure 1.2 illustrates our problem. The problem’s purpose is to obtain an

online mapping assigning the tasks that form the mission (i.e., the global task)

to the agents who form a team. The output must be a set of agent coalitions

assigned each to a speci�c task. The agents are heterogeneous, meaning that

they are not inter-replaceable. Also, there are several interdependencies between

tasks, and thus the tasks cannot be evaluated separately. The mechanism should

be completely decentralised, and each agent must have the capacity to decide

based on the information it has and communicate with other agents.

To deal with this problem, the main questions to be addressed are :

- How can the task allocation mechanism assure the satisfaction of the tasks

requirements?

- How can agents form coalitions when tasks are interdependent?

- How to measure an allocation quality?

- How to make the allocation mechanism decentralised and anytime?

The tasks we consider in our setting are complex, because they need more

than one agent and combinations of speci�c capabilities to be performed. This
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Figure 1.2: Task allocation problem for multi-agent tasks with inter-dependencies and

heterogeneous cooperative agents

is our proposed allocation mechanism modeled under the coalition formation
paradigm. Thus, the adopted approach proposes to form coalitions and assign

them to tasks in a way that optimises the global performance.

To measure this performance, we need to model a utility function. This

function should represent a numeric value expressing when a system is more or

less e�cient combining di�erent execution criteria. To aggregate the di�erent

execution criteria into one utility function, MCDM techniques are needed. This

part is included in the secret patent work.
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1.5 Research Contributions

The main contributions of this work can be listed as follows:

• A survey of independent and interdependent task allocation approaches

representing di�erent methods families with a detailed analysis on formal-

isation and resolution aspects and a global comparison based on di�erent

factors.

• An end-to-end approach allocating independent tasks in critical, dynamic,

and complex missions (hidden by the secret patent).

• An informal approach to guide designers in modelling a utility function

for independent tasks when the experts cannot provide one (hidden by

the secret patent).

• A generic modeling of interdependent task allocation problems considering

both qualitative and quantitative tasks and agents properties and where

interdependence appears at two di�erent levels: the tasks requirements

and the utility function.

• A novel approach for a feasible coalition structure formation for interde-

pendent task allocation. It introduces two stages algorithm for interdepen-

dent task allocation via coalition formation that is anytime and completely

decentralised with three di�erent extensions and the inter-agents mes-

sages exchange protocol.

These results have been published in a paper [Ahmadoun et al. 2021] and three

patents [Ahmadoun et al. 2021; Ahmadoun et al. 2020; Gayraud et al. 2021] one

of which is characterised as con�dential by the French Government Defense

Agency. For this reason, these results cannot appear in this document. Future

research papers are initiated as well (see our list of perspectives in section 5.3).

These contributions are presented in a detailed manner in section 5.2.

1.6 Thesis Layout

In the remainder of this thesis, we outline the algorithms presented in the task

literature for independent or interdependent tasks. We then present a complete
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formalisation of the interdependent task allocation. We �nally introduce a new

approach with several algorithms to solve the problem of the generation and

improvement of feasible coalition formation for interdependent task allocation

in a decentralised manner.

This is achieved through the course of the remaining chapters. The following

is a general description of this dissertation’s contents. The present doctoral thesis

is organised into two parts and six chapters: the two parts concern independent

and interdependent task allocation problems.

• Chapter 2 presents a survey of the most relevant research work related to

the problem discussed in this thesis. Our survey is composed of two parts.

The �rst concerns independent task allocation and examines di�erent

method families with a discussion for each of them as related to our

problem. The second part exhibits the interdependent task allocation

works in the literature. An analysis of the outlined survey concludes the

chapter.

• Chapter 3 starts by stating the classical task allocation formalisation for

the independent task allocation problem. Then, it proposes a generic and

complete formalisation of the interdependent task allocation problem that

covers agents and tasks speci�cs under the coalition formation paradigm.

• Chapter 4 describes our new two stages approach to interdependent task

allocation via coalition formation. It presents our new anytime algorithms

and mechanisms for the problem that ensures to produce a solution for

the task allocation covering all tasks requirements, even the ones repre-

senting tasks interdependencies, and to improve its utility. This chapter

also presents and discusses the implementation and the experimentation

results.

• Finally, chapter 5 provides the conclusions to this work, focusing on

the contributions and the limitations of the approaches and algorithms

developed. It also identi�es the most promising directions for future work

that can be carried out to extend and enhance the proposed algorithms.
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Chapter 2 Task Allocation State of the Art

2.1 Introduction

This chapter outlines an overview of the main approaches to the task allocation

problem proposed in the literature. We fundamentally focus on a number of the

most popular task allocation method families. We highlight the strengths and

limitations of each family of methods motivating, thus, the research objectives

of this thesis. The discussed methods’ characteristics are discussed in-depth,

starting from their algorithmic complexity and quality bounds to their classi�ca-

tion regarding the large state of the art. This review chapter �rst covers the task

allocation state of the art in the case of independent tasks, followed by the case

of interdependent tasks.

2.2 A taxonomy of task allocation methods

The multi-agent task allocation problem was �rst treated from a robotics perspec-

tive. Several works have therefore been realized on multi-robot task allocation.

These works were generally based on a taxonomy of task allocation problems,

which has evolved with the �eld.

Gerkey’s proposal taxonomy [Gerkey et al. 2004] was widely adopted in the

�eld, and then extended. It provides a link between each method and the types of

problems it can deal with. [Gerkey et al. 2004] also included a literature review

of the task allocation methods, facilitating the identi�cation of many problems

to one of the classes therein discussed. This taxonomy proposes to divide the

methods of task allocation according to three axes:

• SR or MR : Single-Robot or Multi-Robot tasks,

• ST or MT : Single-Task or Multi-Task robots,

• IA or TA : Instantaneous or Time-extended Allocation process.

We use the term "agent" instead of "robot" (present in the taxonomy) to make it

more general and adequate to the terms used in this dissertation.

All the task allocation methods can be found in one of the sub-cubes of

Gerkey’s cube in �gure 2.1. The cube allows to analyze, classify, evaluate and

compare the solutions proposed with their equivalent instances. This formalisa-

tion has been extended by [Korsah et al. 2013; Miloradović et al. 2019].
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Figure 2.1: Gerkey’s cube for classifying task allocation state of the art methods [Gerkey

et al. 2004]

As a generalisation, we use the terms Single-Agent and Multi-Agent instead

of Single-Robot and Multi-Robot for task categorisation. We also use the term

agents instead of robots as a generalisation for the agent categorisation.

It is to be mentioned here that the problem addressed in this thesis lies in

the category of Multi-Agent (MA) tasks, Single-Task (ST) agents, and either

Instantaneous Allocation (IA) or Time extended Allocation (TA) categories de-

pending on the problem’s speci�cities.
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2.3 Independent Task Allocation

We present in this section di�erent method families for decentralised task allo-

cation for cooperative agents when tasks are multi-agent and independent.

2.3.1 Market-Based Algorithms

Similar to economics auctions, market-based approaches propose that the coop-

erative agents perform "auctioning" on the tasks rather than on objects. Each

agent bids on di�erent tasks using the tasks utilities and then negotiate with the

other agents until they agree on the best bids on the whole set of tasks.

This model implies an iteration of three stages. A task is �rst published, and all

agents are aware of it. Then, the agents bid with calculated utilities representing

o�ers. Finally, a winner is identi�ed, and the task is assigned to it, and so on

[Mosteo et al. 2010].

Formalisation

In auction-based methods, the task allocation problem is modeled with a tuple

< �,) ,U > where:

• � is the set of agents,

• ) is the set of tasks,

• U = (u8 9 )8≤ |� |, 9≤ |) | is the vector of utilities where u8 9 is the utility for an

agent 8 to do a task 9 .

Distributed auction allocation methods aim to maximize the sum of the utilities

of each task-agent allocation:

max

∑
8≤ |� |, 9≤ |) |

U8 9 u8 9 (2.1)

where U8 9 = 1 if the task 9 is allocated to the agent 8 , 0 otherwise.

Several algorithms have been proposed for the resolution of the model based

on collaborative auctions. We present some of them in the following sections,

particularly the contract nets and the family of consensus auctions algorithms.
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Solving with Contract Net

Contract net is one of the �rst algorithms introduced in this category; its ap-

plication initially concerned computers and distributed sensors [Smith 1980].

This protocol is essentially based on the formalisation of interactions in multi-

agent systems. It is presented as a task allocation mechanism built on the tasks

subcontracting principle, using the protocol for drawing up contracts in public

contracts where a relationship is established between managers, who propose

the tasks to be resolved, and bidders, who bid on the proposed tasks and can

become contractors as well.

The protocol consists of four stages [Wooldridge 2009]:

1. Call-for-proposals : the manager sends a description of the task to the

agents.

2. Sending of proposals: by the contractors to the manager based on the

description received.

3. Accepting a proposal: by the manager to the best bidder after having

received and evaluated the proposals of all the contactors.

4. Establishment of the contract: between the manager and the winning

bidder who con�rms his commitment. Otherwise, we go back to step 3.

The agents do not have �xed roles as managers and contractors. The roles can

be interchanged if needed.

Figure 2.2 presents the sequence diagram of the contractual network protocol.

It shows detailed operations and interactions between the cooperative agents,

namely the contract net manager and the di�erent contractors.

Solving with consensus auction algorithms

The family of auction and consensus algorithms [Choi et al. 2009] is relatively

new and has received considerable attention. The CBAA version is limited to

the case of ST agents. Its generalisation to a Multi-Task (MT) multi-allocation

problem is formulated in Consensus Based Bandle Algorithm (CBBA).

The CBAA algorithm is based on the iteration of two mechanisms :
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Figure 2.2: Contractual Network Protocol Sequence Diagram

Tasks selection : The auction strategy is internally done for each agent. This

makes it possible for the agent to assign to itself the winning task, the one

that brings it the highest reward (i.e., utility).

Conflicts resolution : This consists of an agreement following local commu-

nication on winning o�ers with consensus mechanisms that allow for

adaptability in di�erent communication topologies.

As illustrated in �gure 2.3, the iteration is ensured by the agent’s awareness

that it is allocated to a task. If it does not have one, it relaunches the auction

to assign itself a new task. Otherwise, it makes a consensus again to unify

the winning o�ers list with its neighbors and eventually yields the task to an

agent who makes the most of it, if there is one. As a result, the agents agree on

o�ers instead of agreeing on world perceptions to avoid inconsistencies. That

signi�cantly reduces the amount of data to be exchanged between neighbors
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and removes the requirement of environmental stability. These algorithms have

completely decentralised functionality due to the dual role of the agents: the

auctioneer who organizes the auction and the bidder who participates in the

auction.

Tasks update

(Consensus)

Task selection

(Auction)

Do I

have a

task?

Task C 9

Yes

No

Figure 2.3: Consensus Based Auction Algorithm (CBAA) main phases

Although they are based on the same principles, the di�erence between CBAA

and CBBA is the number of tasks to assign to each agent each time. While in

CBBA, the agents seek to allocate several tasks simultaneously, when the agents

are multitasking (according to Gerkey in section 2.2), CBAA responds to a

problem of assignment of a task by a single-task agent.

CBBA takes place in two iterative stages. Being an MT multi-allocation algo-

rithm, its �rst step consists of constructing the bundle, where each agent assigns

to itself a list of tasks to realize. Then, to resolve potential con�icts, the next

step is to make a consensus with other agents. The goal is to converge to a list

of winning bids to decide whether to update its assignment to a task, reset it or

leave it as it is.

Nonetheless, these algorithms present some limitations regarding the task

allocation for heterogeneous cooperative agents problems and its relevance to

real-world applications. CBAA and CBBA algorithms do not deal with the real-

time aspect of applications since they assume that the task list is prede�ned. They

also converge only in the case of constant o�ers or even increasing o�ers [Brunet

2008]. This rigidity prevents those algorithms from readjusting to the evolution

of the system and the dynamism of its elements. To solve a part of this issue,

[Buckman et al. 2019] suggested an extension of the CBBA algorithm, making it

possible to address the case where new tasks can continuously appear. The idea is

to re-allocate the new tasks during the execution of the mission without having to
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relaunch the allocation each time a new task arrives. Also, [ElGibreen et al. 2019]

extended the CBAA algorithm and addressed the realistic case of heterogeneous

agents by considering the environment’s dynamism and the uncertainty. The

algorithm introduces a semantics system expressing the agents di�erent physical

capabilities used in a self-ranking negotiation matrix. This matrix is used by

the agents to evaluate themselves based on their capabilities, workload, and an

incremental task cost function that can be updated progressively.

Discussion

First, the problem formalisation of the market-based methods is based on the

use of additive utilities. This is because the core of these methods is to make

proposals on the tasks, each task individually, before agreeing on which agent is

the best at doing it. Thus, the possibility of evaluating a task locally is primordial

and intrinsic to the elementary concepts of market-based solutions. For that

reason, market-based methods cannot solve the interdependent task allocation

problem.

A problem that can arise with the Contract Net algorithm is when allocating

a task to a less quali�ed contractor while a more quali�ed contractor is busy

when the tasks are announced. In addition, it is not very e�ective when the

quality of the communication is not good [Wooldridge 2009], which is the case

for many realistic application cases, notably the case of drones. The reason is

principally the long messages exchanged for establishing the contract. This

negatively a�ects the allocation adaptability with possible dynamic changes in

the environment.

The CBAA and CBBA algorithms and extensions have proven advantages

regarding convergence to allocation without con�icts, robustness to inconsis-

tencies of perception, and dynamism of the communication topology, as long as

the communication is maintained through a connected graph including all the

agents.

However, several problems of realistic use cases have not been treated by this

family of algorithms. First, the interdependence between tasks in its general

aspect has not been addressed and may not be handled in the classical form

of these algorithms in particular and the market-based algorithms in general.

However, some works have focused on presenting solutions for the speci�c
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case of temporal interdependencies. [Luo et al. 2013] presented a market-based

method, di�erent from the ones we have presented, and conveyed the temporal

aspect of the tasks, identifying each task by a speci�c deadline. In this work, a

temporal constraint for a task, particularly its deadline, is local to that task and

does not concern the other tasks, making the tasks independent.

Furthermore, even with the guarantee of a minimum level of performance

of CBAA algorithm and its di�erent extensions, these algorithms are bounded

within 50% of the optimal solutions (meaning that it is proven that the �nal

utility is never less than half the optimal utility) under the assumption of precise

knowledge of the environment. This way, they give the same results as the

centralised greedy algorithms. The greedy algorithms are based on the idea

of choosing the best available agent for each task. They make locally optimal

choices at each stage by following the problem-solving heuristics.

The original CBAA and CBBA algorithms do not solve all the cases of interde-

pendence between the tasks and di�erent aspects of many real-world applications.

They also suppose in practice that agents are "black boxes" with quasi-perfect

capacities ignoring their performance in carrying out the tasks once assigned.

Yet, they are su�ciently extensible to be adapted to the di�erent problem cases

and thus increase their performance and applicability [Dias et al. 2006].

2.3.2 Distributed Constraint Optimisation Problems

Constituting a good part of research in Arti�cial Intelligence (AI) and Operations

Research (OR), Constraint Satisfaction Problems (CSPs) are mathematical prob-

lems whose solving methods seek to �nd for a set of variables a combination of

values that satis�es a set of constraints [Dechter, Cohen, et al. 2003].

The Constraint Optimisation Problem (COP) is an optimisation framework that

generalises CSP by replacing the boolean constraints satisfaction with degrees

of satisfaction over constraints. The objective of this framework is to optimise

the constraints rather than to satisfy them �rmly. However, hard constraints

can also be modeled with a boolean satisfaction degrees system. Otherwise, the

other optimised constraints are considered as preferences specifying the extent

of satisfaction of the associated constraint. They must be maximized if they

represent gain, utility, or minimized if they represent cost, loss.

When the precedent optimisation problem has to be performed in a decen-

tralised manner by di�erent actors or agents, it is called Distributed Constraint

Optimisation Problem (DCOP). Hence, the DCOP framework is the distributed
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version of the COP framework. It can be considered as multi-agent systems

paradigm, where the agents communicate so that each agent can decide the

a�ectation value of its variable, aiming to optimise a global objective function. A

complete and exhaustive presentation of the framework can be found in [Fioretto

et al. 2018].

As it is an optimisation paradigm, DCOP has been employed in several MAS

applications like scheduling, recommendation systems, radio frequency allo-

cation, service-oriented computing, tra�c control and coordination [Fioretto

et al. 2018]. Task allocation for cooperative agents is one of those applications

thanks to the possibility to formulate a multi-agent task allocation problem

under the DCOP paradigm (see the next subsection). Indeed, many e�orts have

been deployed to represent the multi-agent cooperation and the tasks alloca-

tion problem as a DCOP. In particular, RoboCup challenges have demonstrated

how this type of techniques can be used for a task allocation problem [Farinelli,

Rogers, and Nick R Jennings 2014; Parker et al. 2018; Pujol-Gonzalez, Jesus

Cerquides, Farinelli, Meseguer, and Rodríguez-Aguilar 2014; Pujol-Gonzalez,

Jesus Cerquides, Meseguer, et al. 2018; Ramchurn, Farinelli, et al. 2010].

Formalisation

We assume here, that by optimisation, we mean the maximisation of a utility

function. The formalisation is the same if we had cost functions to minimize.

A DCOP, for the case of task allocation, is a tuple < �,-, �, �, U > where:

• � = {01, . . . , 0<} is a set of agents,

• - = {G1, . . . , G=} is a set of variables, representing the decision of what

task to undertake,

• � = {�1, . . . , �=} is the set of �nite domains of the variables in - , with

�8 being the domain of variable G8 . In the task allocation context, each �8
represents the set of tasks that agent 08 can do,

• � = {51, . . . , 5? } is a set of utility (or cost) functions, with 59 :

∏
G8 ∈x9

�8 →

ℝ+ ∪ {⊥} where each 59 represents the utility of a task C 9 , x
9

is the scope

of 58 (the decisions of agents that can do task C 9 ) and the ⊥ symbol means
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that a combination of the values of the variables x
9

is not allowed. The

utility functions can also be called constraints since they represent the

constraints to optimise,

• U : - → � is a surjective function that assigns the control of each

variable G8 to an agent U (G8). In the task allocation context, we assume

that each agent controls one variable that represents its decision, with:

∀G8 ∈ - ∃0: ∈ � : U (G8) = 0: and 8 = : . Thus |�| = |- |.

I De�nition 2.1 (Complete Assignment).
A complete assignment l is a value assignment for all the variables in - . J

I De�nition 2.2 (Solution).
A solution to a DCOP is a complete assignment that satis�es (i.e., does not

violate) all its constraints, i.e., utility functions. A constraint or a utility function

is satis�ed by an assignment l when 59 (lx
9 ) ≠ ⊥. J

I De�nition 2.3 (Optimal solution).
An optimal solution to a DCOP is a complete allocation of values to all the

problem variables, that maximizes the sum of the utility functions. J

The goal in DCOP is to �nd an optimal solution (i.e., an allocation of tasks

to agents represented in the values of the decisions’ variables); a solution that

maximize the total problem utility functions:

l∗ = argmax

l ∈S

∑
59 ∈�
(l

x
9 ) (2.2)

where S is the set of all possible solutions and l
x
9 is a partial assignment to the

variables relevant to utility function 59 in S .

We mention here that we can have, in a given problem, a mix of hard (to satisfy

�rmly) and soft (to optimise) constraints. Hard constraints are represented in this

case by a utility function that can have only two values 59 :

∏
G8 ∈x9

�8 → {1}∪ {⊥}

where 1 means satis�ed and ⊥ unsatis�ed. Soft constraints are represented

normally 59 :

∏
G8 ∈x9

�8 → ℝ+ ∪ {⊥} with di�erent satisfaction levels.
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I Example 2.4.
Here is an example of the application of the DCOP paradigm for a task allocation

problem.

Consider we have a set of agents � = {01, 02, 03} that should accomplish a set

of tasks ) = {C1, C2}.
The formalisation will be as follows:

• � = {01, 02, 03} the agents.

• - = {G1, G2, G3} the variables representing the agents decisions.

• � = {�1, �2, �3} the variables domains. We consider that each agent can

do any task in ) . Then: ) = �1 = �2 = �3.

• � = {51, 52} the set of utility functions where each 59 is the utility function

of task C 9 and each function 59 has as scope the set of all agents decisions,

formally: x
9 = - .

• U the control assignment function where U (G8) = 08 for 8 ∈ {1, 2}.

In this case, the optimal solution is the complete assignment G1 = C1, G2 = C2 and

G2 = C1. J

Several algorithms have been developed to solve DCOPs. By highlighting

quality guarantees, and based on completeness, we can classify them as com-

plete algorithms, approximate algorithms with error bounds and approximate

algorithms without error bounds. Below is a description of those categories with

some examples of algorithms. The exploration processes in DCOP algorithms are

di�erent and can be presented in three categories [Yeoh 2010]. The �rst category

is based on research techniques to explore the space of possible solutions. The

second category is derived from the �elds of dynamic programming and the

propagation of beliefs, and is thereby based on inference , allowing agents to

exploit the structure of the problem graph to aggregate information and gradu-

ally reduce the size of the problem. The last category is based on sampling the

research space to approximate a probability distribution as a product of statistical

inference.
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G1 G2 G3 51(x1) 52(x2)

C1 C1 C1 8 0

C1 C1 C2 6 2

C1 C2 C1 7 4

C1 C2 C2 3 6

C2 C1 C1 7 3

C2 C1 C2 4 5

C2 C2 C1 4 6

C2 C2 C2 0 7

Table 2.1: Example of the utility function for a task allocation problem modeled with

DCOP

Solving with complete algorithms

The complete DCOP algorithms are those that present mathematical proof of

obtaining the optimal solution. Thanks to an exhaustive search of the problem

space, they can guarantee the optimality of their results. However, these algo-

rithms are NP-complete, take a long time, and consume considerable computing

power to produce a solution when the given a problem with a considerable size.

Several works have developed algorithms for this category. We name two

examples, Synchronized Branch and Bound (SyncBB) [Hirayama et al. 1997] and

Asynchronous Distributed OPTimisation (ADOPT), two complete algorithms

based on the space search for possible solutions. SyncBB, as its name suggests,

is a synchronous distributed version of the classic Branch-and-Bound algorithm,

based on a complete heuristic order between variables. ADOPT, on the other

hand, is asynchronous and based on the concept of maintaining and tightening

the lower and upper limits of the utilities of each agent until the two limits are

equal.

Solving with approximate algorithms with error bound

For real-world applications, particularly those on a large scale, requiring real-time

results or involving robotics, problem-solving is done in distributed environ-
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ments with limited computing resources. Finding optimal solutions to DCOP

problems is NP-hard. Thus, solving the problem with a complete algorithm

is sometimes not applicable for some real-world applications. It is, therefore,

necessary to consider faster incomplete algorithms even when losing the guar-

antee of optimality. In fact, unlike complete algorithms, incomplete algorithms

generally do not o�er any guarantee on the quality of the calculated solutions.

However, some approximate algorithms have an error bound, which allows them

to guarantee a speci�c performance in their results. The approximate algorithms

without any guarantee of quality are presented in the next subsection.

Distributed Upper Con�dence Tree (DUCT) [Ottens et al. 2017] and Distributed

Gibbs (D-Gibbs) [Nguyen et al. 2013] are part of these approximate algorithms

with error bounds as a guarantee of the quality of the solutions. The two

algorithms are incomplete, synchronous, and based on sampling. DUCT is

inspired by the Monte Carlo Trees Search and uses con�dence limits to solve

DCOPs. D-Gibbs, meanwhile, extends the Gibbs sampling process by adapting

it for DCOPs in a decentralised manner.

Solving with approximate algorithms without error bound

There are approximate algorithms that do not provide any theoretical error

bounds but can have very good experimental performances. These algorithms

try to limit computation time, complexity and memory usage, making them

practical in contexts where decisions must be taken in real-time.

Most incomplete algorithms fall into this category [Okimoto et al. 2011].

Among others, two popular synchronous algorithms were presented: Distributed

Stochastic Algorithm (DSA) [Fitzpatrick et al. 2003; Maheswaran et al. 2004]

and Max-Sum [Farinelli, Rogers, Petcu, et al. 2008]. DSA is based on a stochas-

tic variant of another incomplete algorithm, Maximum Gain Message (MGM)

[Maheswaran et al. 2004]. It is built on stochastic decision-making to escape

local minima. Max-Sum, on the other hand, is based on inference and beliefs

propagation, and works on factor graphs, where each node represents an agent’s

decision or the utility function related to a task. The main concept is based on

considering the impact of value assignment in the marginalized utility function.

This algorithm has the advantage of being fast with a limited communication

load in memory. It is guaranteed that Max-Sum converges to an optimal solu-

tion on acyclic graphs, but convergence is not guaranteed on cyclic ones. We

mention here that this algorithm has also been used in modern reinforcement
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learning research for cooperative MASs to propagate payo�s and determine an

approximately maximizing joint action [Kok et al. 2006].

Discussion

DCOP provides an interesting framework for the task allocation problem, with

a large panel of algorithms. Being based on an explicit and precise formalisation,

it allows mathematical modeling of any problem, as well as a detailed study of

the behavior of its methods.

The above proposed methods are presented in table 2.2 according to the

following characteristics that are proposed by the survey [Fioretto et al. 2018]

and that allow choosing the most adapted algorithm for a speci�c application by

matching them with the addressed problem’s requirements:

• Completeness, indicates if the algorithm can prove the possibility or not

of convergence to a globally optimal solution, and if not, if it converges to

an approximate solution with a certain error bound;

• Complexity per agent is the asymptotic algorithmic complexity carried

by each agent (since the DCOP algorithms is decentralised);

• Anytime indicates if the algorithm can produce a valid solution at any

time if it is interrupted (i.e., even before it �nishes);

• Number of messages to exchange before convergence;

• Size of messages exchanged in the algorithm;

• Local communication, indicates if the problem can be solved by interact-

ing only with neighboring nodes (graphs being the principle representation

of DCOPs).
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Completeness Algorithm Complexity Anytime # msgs Msgs size Local com.

Complete SyncBB $ (3=) 3 $ (3=) $ (=) 7

Complete ADOPT $ (3=) 7 $ (3=) $ (=) 3

Bounded error DUCT $ (ℓ;3) 3 $ (ℓ=) $ (=) 3

Bounded error D-Gibbs $ (ℓ;3) 3 $ (ℓ=;) $ (1) 3

Unbounded error DSA $ (ℓ;3) 3 $ (ℓ=;) $ (1) 3

Unbounded error Max-Sum $ (ℓ3; ) 3 $ (ℓ=;) $ (3) 3

Unbounded error FMS $ (ℓ3; ) 3 $ (ℓ=;) $ (3) 3

Table 2.2: Summary table of some DCOP algorithms characteristics (Optimality, Run-

time and Communication), taken from [Fioretto et al. 2018]

We summarize in table 2.2 a set of DCOP algorithms with their di�erent

characteristics using the following notations:

• = = |�| the number of variables. It is equal to the number of agents, since

we consider that each agent has exactly one variable.

• 3 = max�8 ∈� |�8 | the largest domain size (number of elements).

• ; = max08 ∈� |#08 | the largest number of neighbouring agents, where #08
is the list of agent 08 ’s neighbors.

• ℓ the number of iterations (for incomplete algorithms).

This table presents for each algorithm its completeness (i.e. its ability to prove

optimality or unsatis�ability), and if it is incomplete the existence or not of an

error bound. It also presents whether the algorithm is anytime or not (i.e. it o�ers

a possible solution at any moment), the number and the size of the exchanged

messages and �nally the fact that agents only need to communicate with their

direct neighbors or not.

The DCOP framework takes advantage of its interactions with di�erent

paradigms, notably decision theory, constraint programming, and game theory,

to extend to new models ranging from dynamic DCOPs (for dynamic environ-

ments with changing utility functions) [Ramchurn, Farinelli, et al. 2010; Yeoh
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et al. 2015] to probabilistic DCOPs (for environments with stochastic behav-

iors) [Nguyen et al. 2012; Wu et al. 2014]. Thus, this model o�ers a panoply of

methods with di�erent properties adaptable to various application cases, execut-

ing in environments with various behaviors (deterministic or stochastic), that

evolve di�erently (static or dynamic). The di�erent DCOP methods also apply

to agents with very varied aspects, at the level of their behavior (deterministic

or stochastic), their knowledge (total or partial), or their positioning with regard

to cooperation between agents (cooperative or competitive).

The paradigm applies to di�erent multi-agent applications, including task

allocation applications. Given that DCOPs are NP-hard, approximate algorithms

as in Max-Sum and its extension Fast-Max-Sum have been used for task allocation

for di�erent applications such as RoboCup challenges [Pujol-Gonzalez, Jesus

Cerquides, Farinelli, Meseguer, and Rodriguez-Aguilar 2015; Ramchurn, Farinelli,

et al. 2010], sensor networks [Farinelli, Rogers, and Nick R Jennings 2014; Vinyals

et al. 2011] and mobile sensing robots [Yedidsion et al. 2018]. The Fast Max-Sum

algorithm, proposed in [Ramchurn, Farinelli, et al. 2010], optimises the algorithm

Max-Sum exploiting the binary relation in an agent-task couple (allocated or

not allocated). This algorithm also reduces the number and size of messages and

the computation time in comparison with Max-Sum. It is shown to be robust to

dynamism regarding the numbers of the problem’s tasks. However, being based

on additive utilities as in equation (2.1), DCOP methods only de�ne local utilities

regarding the tasks and therefore do not address the task allocation problem

when the tasks are interdependent.

2.4 Interdependent Task Allocation

As seen earlier in this chapter, an important part of the task allocation literature

focuses on the independent tasks case. Nevertheless, real-world applications go

beyond the inter-tasks independence. In fact, it is common that tasks exhibit

di�erent types of interdependencies with di�erent forms of in�uence between

them.

2.4.1 Interdependent Tasks in Organization Design

When we talk here about interdependent tasks or task utilities, it is essential

to mention that they di�er from interdependent valuations, mainly used for
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competitive agents. For example, interdependent valuations are described in

[Ramchurn, Mezzetti, et al. 2009] where they are introduced in competitive

agent scenarios with the purpose of separate utilities among several agents:

for each task, an agent gives a valuation that is a�ected by the other agents’

valuations for this task, based on a trust model. By contrast, we focus in our work

on completely cooperative agents where there is no notion of dividing utility.

Also, in a competitive con�guration, the underlying concept is to consider other

agents’ perspectives to calculate its individual contribution and then own it.

However, in a cooperative con�guration, it is instead the team that is considered;

we may need to calculate individual incomes in speci�c methods but with the

objective of gathering and not dividing.

Now, let us de�ne the task interdependence we are considering. Task inter-

dependence is a familiar concept with the organization design domain. This

domain mainly examines processes, roles, work�ows, structures, and systems to

ensure organizations’ goals e�ectively. In the same �eld, [Puranam et al. 2012]

de�ned task interdependence as follows: "two tasks are interdependent if the

value generated from performing each one is di�erent when the other task is

performed versus when it is not". Typically, the studied interdependence, in this

work, is called agent-agnostic. This is when tasks are interdependent regardless

of who accomplishes them. Di�erent levels of task interdependence are described

to characterize the in�uence between the outputs of di�erent organizational

units [Thompson et al. 2017]. In [Coyote et al. 1967], three levels of interdepen-

dence are distinguished, capturing increasing complexity along a Guttman scale

(a single ordinal scale designed to arrange items with respect to an attribute

[Guttman 1944]): tasks can be characterized by pooled, sequential, or reciprocal

interactions. Firstly, pooled interdependence is when tasks are performed sep-

arately with minimal interaction between tasks performers without a�ecting

each other’s performance. Secondly, sequential interdependence is when there

is a prede�ned order over the execution of the tasks, and thus a task’s execution

state a�ects the performance of the following tasks. Finally, reciprocal interde-

pendence concerns high levels of interdependence with speci�c agents’ skills or

characteristics. Temporal interactions might occur between tasks but not neces-

sarily; there may be cases where tasks can be executed following �exible orders.

In �gure 2.4, we are illustrating this categorisation through a multi-agent system.

Due to the joint activity that humans may have with robots in human-robots

systems, the human-robot teams’ research community studies task interdepen-
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dence in human-robot teams on di�erent levels of interdependence [Johnson

et al. 2014; Lematta et al. 2019; Zhao et al. 2020].

Figure 2.4: Interdependence levels on a multi-agent system inspired by [Zhao et al.

2020]

In the multi-agent task allocation context, existing methods often assume that

tasks are independent and rarely consider tasks and groups dynamics. This may

be because autonomous decomposition of tasks into smaller sub-tasks has not

yet been extensively studied [Brutschy et al. 2014]. On the other hand, due to

the apparent presence of inter-tasks sequentiality in di�erent applications and

the problem in task planning and coordination solutions, tasks with temporal

interdependence, such as sequentiality, present a big part of the interdependent

task allocation literature as discussed in section 2.4.3.

2.4.2 Interdependent Tasks in Coalition Formation

In this thesis, the case we are dealing falls in the single-task robots and multi-

robot tasks (ST-MR) category, which is among the classes of task allocation

problems de�ned by [Gerkey et al. 2004]. Since we intend to address the inter-

tasks dependencies in their generality and not only the temporal ones, the

last category (instantaneous or time-extended assignment) is not speci�ed. As

introduced in section 1.3.5, allocation of tasks to subgroups of agents has been

dealt with by several approaches, including coalition formation methods [O.

Shehory et al. 1998].

The models for coalition structure formation, falling into the game theory

framework, are called coalition function games [Hajduková 2006]. In coali-

tion formation, two types of games exist following the in�uencing factors for
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a coalition’s value: Characteristic Function Games (CFGs) and Partition Func-

tion Games (PFGs). In CFGs, the value of each coalition only depends on its

composition, i.e., its members. By contrast, the PFGs address the problem of

interdependent coalitions where the value of each coalition depends not only on

its members’ identities but also on the other coalitions compositions [Myerson

1977].

Multiple methods have been used to solve CFGs. One approach is to rely on

COP and Constraint Satisfaction Problems [Dechter 2003] and their solutions, to

�nd suitable ways to form coalitions, while enforcing constraints on the coalition

structure. For instance, [Ramchurn, Polukarov, et al. 2010] dealt with the problem

of task allocation with spatial and temporal constraints. Their method allocates

agents to tasks so that coalitions may be feasible with respect to the locations,

tasks workloads, deadlines, and the number of completed tasks is maximized.

However, the method is centralised and does not generalise to other constraints.

CSPs have also been used in other contexts relevant to task allocation.

In a CFG, a speci�c coalition has one and only one value. However, in a

PFG, the same coalition has as many possible values as the number of possible

partitions of the agents outside it. Hence, we can observe that CFGs are a subclass

of PFGs [Rahwan, T. P. Michalak, et al. 2015]. Consequently, it is much easier to

work with CFGs, which can explain their signi�cant presence in the literature.

By contrast, since PFGs coalition values also depend on the way non-members

are partitioned, computing coalition structures in PFGs is very challenging on a

computational level.

Given an arbitrary partition function, an exhaustive search is required to

provide an optimal coalition structure [Präntare et al. 2020] unless externalities-

based models are studied for the partition function to reduce complexity and

allow a solution in a reasonable time. An externality is a natural aspect of PFGs

describing the di�erence in a coalition value, in a speci�c coalition structure, that

results from the merge of two other coalitions in that same coalition structure

[Rahwan, T. P. Michalak, et al. 2015]. This is because the utility of a speci�c

coalition is a�ected by external moves related to the formation of other coalitions.

There are speci�c sub-classes of PFGs based on this. We have, for example, games

with negative externalities noted PFG
−

representing games where the merge

of any two coalitions is bene�cial to the other coalitions (as when agents have

overlapping or partially overlapping objectives). We also have games with
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positive externalities noted PFG
+

representing situations detrimental to other

coalitions (when self-interested agents have to use shared bounded resources)

[T. Sandholm et al. 1999]. In addition, [Rahwan, T. Michalak, et al. 2012] de�ned

a speci�c kind of externalities representing inter-coalition e�ects (for example,

assumptions on utility functions and coalition mergers). Since in our problem,

agents are cooperative, meaning they have completely overlapping goals, we

are more interested in the PFG
+
. In such games con�guration, agents that are

not members of a speci�c coalition may change the world to the closest state of

the coalition’s goal, making it more a�ordable for the coalition’s members to

achieve their goal. Nevertheless, our use of the coalition formation paradigm

in a task allocation application �xes the number of coalitions to the number of

tasks in the problem. For that, we cannot consider merging the coalitions and

thus use the externalities-based methods.

Several approaches were proposed to solve the Partition Function Form Game

problem [Kóczy 2018]. However, these methods are centralised, and the notion

of agents is either absent or subject to a centralised allocation. The agents are

not completely autonomous and do not make their own decisions: their orders

are provided by the centralised planning agent. Such a centralised approach is

inapplicable in our case.

Because of their centralised property, these methods are unable to deal with

cases where the agents cannot communicate with the central point, either be-

cause it is too far or because the communication with it is unreliable. This central

point can be one of the agents or a speci�c external calculator.

Finally, in interdependence cases other than precedence dependencies, [O.

Shehory et al. 1998] proposed to combine interdependent tasks into uni�ed tasks

and to solve dependencies with CSP techniques. Nevertheless, the proposed

algorithms cover only the precedence order and the resource consumption task

dependencies cases.

2.4.3 Temporally Interdependent Tasks

In the task allocation literature, many studies address the interdependent task

allocation problem. Nevertheless, these works mainly focus on the speci�c case

of temporal interdependencies. Such interdependencies are expressed through

the consideration of constraints of precedence and required concurrency be-

tween tasks. Those are often mutually studied for the planning problem [Coles
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et al. 2009]. Basically, tasks without temporal constraints can all be executed

simultaneously, in parallel, if enough agents are available with su�cient re-

sources. However, even with this abundance of agents and resources, we might

have an application where temporal constraints are inherent. Let’s consider an

example where agents have munitions that need to be recharged and that are

needed in speci�c tasks. An agent has to start by recharging its munition, it

then moves to the task’s position where it �nally uses the munition; there is a

natural precedence order between these two tasks. Hence, precedence order con-

straints are when agents assigned to a task should wait for the accomplishment

of another task to start executing theirs, following a speci�c precedence order.

On the other hand, required concurrency constraints between two tasks, for

example, necessitates concurrent execution of these tasks. The two tasks are thus

conditioned to be executed in parallel. An example is of two tasks of mending

fuses in the dark and lighting a match. The �rst task cannot be executed without

the second and the second, has no utility in the absence of the �rst [Coles et al.

2009].

[Behrens et al. 2019] examined tasks with spatio-temporal requirements and

task ordering constraints, on a use case application treating industrial dual-arm

and multi-arm robots working on manipulation and assembly tasks. The issue

addressed by [Behrens et al. 2019] covers not only the allocation of task steps

and actions to the individual arms but also optimal planning. The problem is

named Simultaneous Task Allocation and Motion Scheduling (STAAMS). The

goal is to compute executable optimal motion plans while considering di�erent

allocations of partially-ordered tasks to the individual robot arms. This work

proposes a descriptive model to de�ne the tasks and their temporal requirements.

In addition, it suggests a centralised constraint programming approach to obtain

the arm allocation and the plan of tasks. For this, the solver must integrate the

task and robot motion models into the constraint optimisation problems to be

solved and resolve them with heuristics for higher e�ciency.

Another work that examines the temporal and ordering constraints in the

problem of multi-robot task allocation is [Gini 2017]. It suggests to name this

class of problems Multi-Robot Task Allocation with Temporal and Ordering

Constraints (MRTA/TOC). For this problem, it o�ers a literature review that

covers di�erent aspects of time-extended assignments using several temporal

models, optimization objectives, and typical solution approaches. These solution
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approaches include decentralized methods mainly based on auction models or

DCOPs.

[Beck et al. 2016] deals with the same precedent problem, joining the collab-

oration and task allocation aspect to task planning due to tasks’ temporal and

order conditions. However, it studies a di�erent con�guration of problems and is

applied to Collaborative Search and Rescue, a classic application in the literature.

Search and Rescue missions consist of heterogeneous robots performing actions

for the rescue part and piling up knowledge about future tasks for the search

part. For these reasons, the work proposes an online approach, thus dynamic to

adapt to newfound tasks; and that considers incomplete information, consisting

of having a set of probable uncertain tasks in addition to the set of known and

certain tasks. According to [Gerkey et al. 2004]’s taxonomy, the problem exam-

ined here falls into the category ST-SR-TA for Single-Task robots, Single-Robot

tasks, and Time-extended Assignment. Due to the spatial character of the tasks,

coordinating robots’ tasks is mandatory to increase performance. The coordina-

tion need is answered by holding dependency between tasks and hence forming

a preferred space-based ordering. The paper suggests an algorithm to solve

what it denominates as Uncertain Multi-Robot Task Allocation (UMRTA) and an

online planning approach resulting in a joint plan to coordinate the collaborative

robots.

Similar to the search and rescue application, a use case describing the temporal

interdependent tasks of harvesting and storing objects is studied in [W. Lee et

al. 2020]. Tasks are simultaneously performed at di�erent locations, and the

posterior tasks should be processed after completing the prior tasks to complete

the overall task. The method, applied to a swarm robotic system, suggests

that robots continuously calculate their response threshold of tasks that varies

depending on the task demand and the number of neighboring robots performing

the task. The response threshold-based model is continuously updated in each

robot, making the whole self-organized swarm converge to the objective task

distribution.

In [Dahl et al. 2009], interdependencies between tasks are referred to as the

group dynamics. As the focus is on spatially explicit environments and due to

di�erent group densities and eventual clutters and collisions, the studied group

dynamics perceive interactions from a temporal point of view. The problem
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considered falls into the ST-SR-TA’s category in the taxonomy of [Gerkey et

al. 2004], and the multi-robot task allocation problem is regarded through the

scheduling prism where jobs have to be assigned to machines. A Vacancy Chain

Scheduling (VCS) model, a bio-inspired resource allocation process loaning the

concept from the example of attributing vacancies to employees after a senior’s

retirement following a promotions Vacancy Chain process answers this problem.

The model focuses on homogeneous agents but can be generalised to hetero-

geneous ones and calculates robots’ contributions to di�erent tasks. Breaking

global performance into these individual contributions simpli�es the general

scheduling problem. A VCS algorithm based on this model and using Reinforce-

ment Learning techniques is proposed. Concretely, Q-learning is adopted to

assess the local task utility that grasps the group dynamics e�ects subject to

other robot allocations. The reward function employed in the learning process

explicitly exposes the temporal character of the performance. This algorithm

relies on the emanation of optimal allocation patterns from robot interactions

stigmergy.

In the context of swarm robotics, [Brutschy et al. 2014] suggests a near-optimal

self-organized method for sequential task allocation. To answer robustness,

scalability and dynamism challenges, di�cult to tackle with optimal methods

in the literature, the global allocation in this method is the result of individual

local decisions. Any task change is mainly based on the time the robots wait in

a task, denoted the interface delay, relative to an other amount of time waited in

another task, relying on local interactions and each robot perception.

Finally, [Capezzuto et al. 2021] deals with the problem of a multi-agent task

allocation problem where tasks have deadlines and workloads and agents need

to cooperate in coalitions to be e�cient and complete the maximum of tasks. It

names the problem as Coalition Formation with Spatial and Temporal constraints

Problem (CFSTP) and extends the work of [Ramchurn, Polukarov, et al. 2010]

by optimising the mathematical programming formulation of the CFSTP and

designing a distributed version of the suggested algorithm with the use of the

DCOP paradigm. The algorithm is tested on a realistic test framework that

simulates the mobilization of �re�ghters. The results show that the algorithm

stands out in situations where the number of agents monotonically decreases

over time.
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2.5 Analysis and Discussion

Figure 2.5: Representation of the di�erent task allocation methods families

Figure 2.5 presents the discussed methods with an illustration of their mecha-

nisms and guarantees.

Table 2.3 outlines an overview using the taxonomy given in section 2.2, in

addition to the two elements mentioned above: computational complexity and

guarantees in terms of optimality. The presented approaches have very di�erent

characteristics.

It is sometimes more important to have guarantees in terms of optimality

rather than having a reduced calculation time, for example, when long compu-

tations need to be distributed on nodes. In this case, it may be useful to use

an optimal algorithm, or at least one with performance guarantees, even if the

allocation process is longer. Other critical applications require ensuring the

treatment of all the tasks. It is then necessary to formalise the compromises

to achieve the best success for the mission. Having access to a formal utility

function, which represents these compromises, and having algorithms that can

�nd the optimal solution is essential, even if it means taking a little more time to

converge to an allocation. DCOP exact algorithms are the most suitable for these

problems. In other cases, it may be necessary to quickly �nd an allocation, even
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if it means �nding a sub-optimal allocation. For example, this can be the case

for a drone, particularly in the case where the environment is changing rapidly,

and where the allocation has to be revalued. Approximate and market-based

approaches are therefore more appropriate in this case.

On the other hand, the study of interdependent task allocation and the coalition

formation literature leads us to two conclusions.

First, the few works addressing the task allocation problem with interde-

pendencies focus on the speci�c case of temporal interdependencies, where

constraints of precedence and concurrency are considered. Di�erent techniques

are used to solve the task allocation in cases of precedence dependencies between

tasks as extensions of market-based methods and the constraint satisfaction prob-

lems. However, no method that surpasses the precedence dependencies to more

general dependencies for the task allocation exists.

Secondly, the interdependent coalitions are expressed in the coalitions for-

mation literature by PFG. The current state of the art presents this coalition’s

case as only solvable by brute-force search unless externalities-based models are

analyzed. However, PFGs are based on the notion of payo�s and utility parti-

tion among coalitions which corresponds more to rational competitive contexts

rather than altruist cooperative ones. This notion of payo� con�gurations and

their allocation deriving from the coalitional utility is, thus, not relevant to the

problem at hand, rendering as such PFGs and related models not bene�cial in

this thesis work. Those externalities are related to merging coalitions, which

are not adapted to task allocation where the number of coalitions is �xed (same

as the number of tasks). Besides, since the PFGs solving is highly complex

without considering externalities, it has only been addressed in a centralised

con�guration.

Finally, another trait of externalities-based models that impedes their use in

our work is their assumption that externalities are known a priori. At the same

time, this is problematic in most real-world settings we are targetting.

This being said, the literature research works do not propose solutions to

our problem. No method has been suggested to �nd a task allocation among

agents under the coalition formation in a decentralized manner for a multi-agent

system in the case where there is an interdependence between the tasks in the

general meaning of tasks interdependence.
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Chapter 2 Task Allocation State of the Art

2.6 Conclusion

This chapter reviewed task allocation methods existing in the literature for both

independent and interdependent tasks cases. Since this thesis problem concerns

interdependent tasks, let us start with the interdependent tasks.

Among all the works we have reviewed, the proposed task allocation methods

for interdependent tasks only solve the precedence interdependence. Though

this is a natural and prevalent interdependence type in real-world applications,

general interdependence cannot be reduced only to that case. Tasks may show

dependencies other than ordering and temporality-related ones, as in resource

sharing and quality in�uence situations. The coalition formation, in which

our problem can be situated due to the multi-agents property of the tasks we

consider, proposes to deal with interdependent coalitions. Nevertheless, because

of the complexity of the problem, the only solutions proposed to reduce that

complexity involve externalities. A central aspect of cooperative game theoretic

work is sharing payo�s among the agents of emerging coalitions. However,

there is no need to tackle this problem in this work since the agents are entirely

cooperative and do not need to calculate their individual payo�s. Therefore,

utilising models or algorithms in the literature concerning cooperative games in

general (including PFGs) is not valuable for the problem at hand and thus of not

much interest in this thesis.

Hence, the current works are not dealing with the general case of multi-agent

task interdependencies for the task allocation problem in entirely cooperative

contexts.

However, a vast majority of task allocation methods for cooperative agents

have been carried out upon the assumption of task independence. This is why

we have outlined, earlier, task allocation approaches in the case of independent

tasks. We concluded for each family of methods by discussing the methods’

properties and examining the possibility of adapting them for interdependent

tasks.
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3.1 Introduction

The previous chapter discussed the shortfall of the task allocation literature

methods concerning the problem of decentralised multi-agent task allocation

where tasks have inter-tasks dependencies in their general case. We studied the

task allocation literature where each task valuation depends only on the task

itself and the agents assigned to it, but also when an overall evaluation cannot be

avoided. Those are the independent and interdependent tasks respectively. The

task allocation methods discussed, albeit very popular, have some limitations

that we address below. Mainly, they do not address problems where tasks have

dependencies, which is a recurrent problem in real-world applications.

Concretely, this chapter starts by recalling the classical task allocation formu-

lation. Then, it introduces a formalisation for the interdependent task allocation

problem. This formulation, which is one of this thesis contributions, describes

the components of the task allocation problem, essentially the agents and the

tasks, considering both qualitative and quantitative information about them. Not

only the agents and tasks are modeled, but also their interactions and goal. The

task dependencies in this model appear at both levels of the tasks’ requirements

and the utility function.

3.2 Classical Independent Task Allocation Problem
Formalisation

Before we introduce our modelisation of the interdependent task allocation

problem, we start in this section by exposing the classical task allocation problem

formalisation for independent tasks.

The task allocation problem formalisation di�ers depending on whether the

tasks require the participation of a single agent or a group of agents. When tasks

require a single agent, which we call single-agent tasks in chapter 2, the task

allocation is ensured between the set of tasks and the set of agents. However, in

the case of multi-agent tasks, the task allocation is done between the tasks’ set

and the agent’s subsets.
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3.2.1 Allocation of tasks requiring a single agent

For single-agent tasks, the task allocation can be formalised as follows :

• � = {01, 02, . . . , 0 |� |} is a set of agents.

• ) = {C1, C2, . . . , C |) |} is a set of tasks.

• 5 : � × ) → ℝ is a utility function. It is a function that associates a

cardinal utility value 5 (08 , C 9 ) in ℝ to a pair made of an agent 08 ∈ � and

a task C 9 ∈ ) .

Denoting ` an allocation of tasks to agents such that for each agent 08 and each

task C 9 , `08 ,C 9 = 1 if C 9 is allocated to 08 and 0 if not. The objective is to �nd an

allocation ` that maximises the global utility:

`∗ = argmax

`∈{0, 1} |�|×|) |

∑
08 ∈�

∑
C 9 ∈)

`08 ,C 9 × 5 (08 , C 9 ) (3.1)

We mention here that in speci�c applications, some constraints can be speci�ed

to make it possible or not for an agent to accomplish a task.

3.2.2 Allocation of tasks requiring many agents

As presented in the section 2.2, a task can be single-agent or multi-agent. A

formalisation concept of the multi-agent aspect of these tasks is the coalition

formation paradigm, de�ned in section 1.3.5.

The allocation of multi-agent tasks can be modeled as follows:

• � = {01, 02, . . . , 0 |� |} is a set of agents.

• ) = {C1, C2, . . . , C |) |} is a set of tasks.

• 5 : 2
� ×) → ℝ ∪ {⊥} is a utility function. It is a function that associates

a cardinal utility value 5 (B, C 9 ) in ℝ to a pair made of an agents subset

B ⊆ � and a task C 9 ∈ ) . The ⊥ symbol is used to represent that some

combinations of the values of the variables in B ∈ 2
�

are not allowed for

the task C 9 .
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This allocation output, as a coalition formation generation process, is a coali-

tion structure ( that covers all the tasks in ) such as ( = {�C1,�C2, . . . ,�C |) | }
where ∀C 9 ∈ ) , the coalition �C 9 ∈ ( is composed of the agents to which the task

C 9 is allocated.

Similarly, the goal is to �nd an allocation of agents, i.e. a coalition structure

that maximises the value of the global utility under a certain set of constraints

(that are application-dependent) with:

(∗ = argmax

(⊆2
�

∑
� 9 ∈�(

∑
C 9 ∈)

5 (� 9 , C 9 ) (3.2)

Since we are in the Multi-Robot (MR)-ST case according to Gerkey’s taxonomy

(cf. section 2.2), all the coalitions are disjoint : 8 ≠ 9 ⇒ �8 ∩� 9 = ∅.

3.2.3 Discussion

The task allocation formalisms we outlined in previous sections are general and

describe the problem at a very high level. We presented them to spot the details

we want to focus on for our interdependent task allocation problem formalism.

First, is necessary to consider the agents-tasks matching in terms of skills and

needs before considering the quality of the allocation. This is why introducing

these elements is essential. Second, since we consider a multi-agent tasks case,

our task allocation problem can be formalised under the coalition formation

paradigm. Finally, since we are dealing with interdependent tasks, the utility

function cannot be separated from the di�erent tasks and should be globally

designed.

3.3 Modelling Interdependent Task Allocation

We aim to �ll the lack of decentralised allocation solutions for tasks with general

types of interdependencies. We propose in the next section a complete generic

problem formulation that will be adopted for the rest of this work.

Here we consider the problem of decentralised allocation for a set of interde-

pendent tasks ) = {C1, C2, . . . , C |) |} necessary to accomplish a global task ) , to a

set of heterogeneous cooperative agents � = {01, 02, . . . , 0 |� |}. The global task)

represents the global goal that the team of the cooperative agents has to achieve.
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3.3.1 Agents

A speci�c pro�le can describe each agent. For instance, in a given application,

an agent can be described by its type, ownership or not of a resource, position

on a grid, remaining fuel, or distances to the di�erent tasks.

I De�nition 3.1 (Agent characteristics).
Consider a set of heterogeneous agents � = {01, 02, . . . , 0 |� |}.

An agent 08 ∈ � is described by a set of attributes - = {G1, . . . , G |- |} where

G: (08) denotes the value of 08 under attribute : . Without loss of generality, we

consider each attribute as a function G: : �→ �: , �: is the domain of values

for attribute : . We call these attributes agent characteristics. J

We notice here that our model characteristics capture the qualitative values,

like the type and possession of a resource, and the quantitative values, like the

position, quantity of the remaining fuel, and distances to tasks simultaneously.

I Example 3.2.
Let us consider a set of six agents � = {01, 02, 03, 04, 05, 06} scattered on a square
grid of 8m side length.
The agents are described by three characteristics - = {G1, G2, G3}. Notably, the

agents are characterised by their remaining energy G1, their location G2 and their
payload G3 (either a normal camera � or a thermal one ').

Agent characteristics domains and values are presented in table 3.1. J

G: �: G: (01) G: (02) G: (03) G: (04) G: (05) G: (06)
G1 [0, 10] 4 4 7 8 9 6

G2 [0, 10]2 (0, 0) (3, 3) (1, 2) (5, 3) (6, 2) (6, 5)
G3 {�, '} � ' � � ' �

Table 3.1: Example of agent characteristics

3.3.2 Tasks

The agents have to perform tasks as de�ned below:

I De�nition 3.3 (Single task requirements).
A task C 9 ∈ ) is described by a set of attributes �C 9={W1, . . . W<} where W; (C 9 ) is
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the value of task C 9 under the attribute ; . Without loss of generality, we consider

each attribute as a function W; : ) →  ; ,  ; is the domain of values for attribute

; . We call the attributes �C 9 single task requirements.
J

As seen in agent characteristics, task requirements also depend on the ap-

plication and can be qualitative or quantitative. A requirement concerning

a speci�c type of resources or agents is a qualitative requirement. By contrast,

a minimum number of available agents or maximal distances are quantitative

requirements. The following example illustrates the established concepts.

Example 3.2, continued.
In continuation to our example, we suppose that agents must perform three di�erent
tasks, ) = {C1, C2, C3}.
Each task has four requirements � = {W1, W2, W3, W4}. We consider here that all

the tasks have the same set of single requirements. W1 states the minimum energy
necessary for each task to perform the task. W2 represents a composed requirement
stating the position of the task, and the maximal allowed distance between that
position and each of the agents positions. W3 states the set of the minimum required
typed payloads for the task brought by all the agents (it is possible to have more).
Finally, W4 states the minimum number of agents, that possess a payload, needed to
accomplish the task.
Table 3.2 presents the requirements for each task C 9 in ) .

W;  ; W; (C1) W; (C2) W; (C3)
W1 [0, 10] ≥ 3 ≥ 7 ≥ 6

W2 〈[0, 10]2, [0, 10]〉 〈(3, 0), ≤ 4〉 〈(4, 4), ≤ 10〉 〈(2, 6), ≤ 7〉
W3 〈(4, 4), 10〉 ⊇ {(�, 1)} ⊇ {(�, 1), (', 1)} ⊇ {(�, 1)}
W4 È1, 4É ≥ 1 ≥ 2 ≥ 1

Table 3.2: Example of single task requirements

We mention that in our example, all the tasks have the same set of requirements
� = �C1 = �C2 = �C3 with di�erent attribute values for each task.
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Besides single task requirements, verifying the mapping between each task

and some agents, macro-level requirements may be required to express the

presence of interdependencies and to check their manageability.

I De�nition 3.4 (Task combination requirements).
Consider a set of attributes L21C 9={_1, .., _=} concerning task combinations such

that _; (21C 9 ) is the value of task combination 21C 9 ∈ )21C , )21C ⊆ 2
)

, under

attribute ; . Without loss of generality, we consider each attribute as a function

_; : )21C → �; , �; is the domain of values for attribute ; . We call the attributes

L21C 9 task combinations requirements. J

Examples of single task requirements can be the number of agents that allow

accomplishing a task or other application related constraints that have to be

satis�ed for the tasks to be accomplished. Task combination requirements can be

seen as constraints that have to be satis�ed to address the interdependence among

tasks (for example, temporal constraints imposing accomplishment order).

These task combination requirements are a general representation of the

inter-task dependencies. In real-world applications, several tasks can have joint

requirements. For example, in a given situation, two tasks (or more) may need

to have a minimal number of resources as a single task requirement and need

mutually an additive resource, that of the tasks’ coalitions might lend if needed.

A dependency, or a task combinations requirement, can even concern all the

tasks at once.

We continue in following our example by illustrating the task combination

requirements.

Example 3.2, continued.
We have the set of task combinations )21C = {{C1, C2, C3}, {C2, C3}, {C1, C3}} that we
denote )21C = {21C1, 21C2, 21C3}.
For each 21C 9 in )21C , one task combination requirement is de�ned and denoted

L21C 9 = {_ 9 }.
For the �rst task combination 21C1 = {C1, C2, C3}, the task combination require-

ment _1 sets the maximum number of agents allocated to all the tasks (in certain
applications, it may be necessary to keep some agents available for a potential
task coming in the way). For the second task combination 21C2 = {C1, C2} and the
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third task combination 21C3 = {C1, C3}, task combination requirements _2 and _3 are
de�ned for each one, respectively. They both state that for each task combination, in
addition to the locally required payload (expressed by the single task requirements)
an additional payload of type � is required to be a joker payload in case of need.

Below, table 3.3 outlines the task combinations requirements for each task com-
bination 21C 9 ∈ )21C and each associated requirement _ 9 ∈ L)21C9 .

21C 9 � 9 _ 9 _ 9 (21C 9 )
21C1 = {C1, C2, C3} _1 È1, |�|É ≤ 5

21C2 = {C1, C2} _2 {�,) } × È1, 2É ⊇ {(�, 1)}
21C3 = {C1, C3} _3 {�,) } × È1, 2É ⊇ {(�, 1)}

Table 3.3: Example of task combination requirements

To accomplish the global task ) , all the single task requirements and task

combination requirements should be ful�lled (as it will be de�ned later).

Task requirements and task combination requirements are easily translated

into constraints. Single task requirements (for example, the cardinality of

the coalitions that allow accomplishing a task or other application-related con-

straints) can be seen as constraints de�ned locally on tasks. These must be

satis�ed for the tasks to be performed. Task combination requirements can

be seen as constraints over the global task ) that must be satis�ed to address

dependencies among tasks (for example, temporal constraints imposing accom-

plishment order or dependence of a task’s accomplishment on the achievement

degree of another one).

Combined characteristics of a set of agents may allow ful�lling task require-

ments, or generate con�icts with such requirements.

3.3.3 Fulfilment

I De�nition 3.5 (Ful�llment relation).
Let B = {01, ..., 0 |B |} be a set of agents, -B = {-01

, ..., -0 |B | } their characteristics,

C 9 ∈ ) a task and ⊲⊳ denoting the satisfaction (with respect to a mathematical

operator, for example =, ≤, ≥,... according to the case) of the assignment of a

value to a requirement W; (C 9 ) by the assignment of a value to some characteristic

G: (08). We say that B can ful�l a requirement W; ∈ �C 9 denoted B22 	 W; (C 9 ) if
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there exists a combination of characteristics 22 = {G: , ..., GA } ⊆ -01
∪, ...,∪-0 |B |

such that

∑ |B |
8=1
G: (08) ⊲⊳ W; (C 9 ) for some G: ∈ 22 or GA (08) ⊲⊳ W; (C 9 ) for some

GA ∈ 22 with A ≠ : , saying (slightly abusing the notation) that 22 ⊲⊳ W; . In

contrast, we say that B22 has a con�ict with the requirement W; ∈ �C 9 , if ∃G: ∈ 22
such that G: is in con�ict with this requirement W; denoted as G: 6⊲⊳ W; . J

When a subset of agents is in con�ict on a task requirement, it means that

the subset cannot “contribute” to the task according to this speci�c requirement.

The violation of the requirement cannot be amended adding any agent or agents

of any possible combination of characteristics.

To illustrate these concepts, we present examples of their application related

to the example we started earlier.

Example 3.2, continued.
To assess how a set of agents can satisfy some task requirements, particularly
for the second tasks requirement W2, we �rst compute agent distances from task
positions (see table 3.4). Agents scattering is represented in �gure 3.1. For the sake
of simplicity and without loss of generality, we use here Manhattan distances.
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Figure 3.1: Agents and tasks scattered in the grid
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38BC (08 , C 9 ) 01 02 03 04 05 06

C1 3 3 4 5 5 8

C2 8 2 5 2 4 3

C3 8 4 5 6 8 5

Table 3.4: Manhattan distance between agents and tasks in the example

Here are some examples:

• {01} 	 W2(C1)
01 respects the maximal distance from C1, then 01 satis�es W2(C1).

• {01, 03, 04} 	 W1(C2)
01, 02 and 03 have the minimal energy needed to perform C2, then {01, 03, 04}
satis�es W1(C2).

• {01, 02} 	 W3(C1)
01 brings the resource � , then {01, 02} satis�es W3(C1).

• 02 6⊲⊳ W1(C2)
02 does not have enough energy to perform C2, then 02 is in con�ict with
W1(C2).

• {04, 05} 6⊲⊳ W2(C3)
05 does not respect the maximal distance from C3, then {04, 05} is in con�ict
with W2(C3).

For the task combination requirements :

• For BB = {{01, 02}, {03, 04}, {05, 06}} and 21C1 = {C1, C2, C3}:
BB 6⊲⊳ _1(21C1)
BB contains six agents, then it is in con�ict with _1({C1, C2, C3}).

• For BB = {{01, 02}, {03, 05}} and 21C3 = {C1, C3}:
BB 6⊲⊳ _2(21C3)
An additional common � payload is missing in BB , then BB is in con�ict with
_2(21C2).
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3.3.4 Coalition Structures

Agents can form coalitions to accomplish a task C 9 ∈ ) .

I De�nition 3.6 (Coalitions).
Let a set of agents � = {01, 02, ..., 0 |� |}, a set of tasks ) = {C1, C2, ..., C |) |} compos-

ing the global task ) and g : �→ ) a function assigning an agent 08 to a task C 9
when ∃G: ∈ -08 , ∃W; ∈ �C 9 such that G: ⊲⊳ W; , and �G< ∈ -08 such that G< 6⊲⊳ W?
for any W? ∈ �C 9 with ? ≠ ; . A coalition �C 9 ∈ 2

�
whose task is C 9 is a subset of

agents �C 9 ∈ 2
�

such that �C 9 = {08 ∈ � | g (08) = C 9 }. J

To perform a global task ) we need a set of coalitions ( , called coalition
structure. Each coalition�C 9 ∈ ( is assigned a task C 9 ∈ ) . When ( can accomplish

) we call it a feasible coalition structure. Formally:

I De�nition 3.7 (Feasible coalition structure).
Let a global task) = {C1, C2, ..., C |) |} and a coalition structure ( = {�C1,�C2, ...,�C |) | }
over the set of tasks ) . ( is a feasible coalition structure (called also feasible

solution) denoted ( 5 if and only if ∀C 9 ∈ ) such that �C 9 ∈ ( 5 it holds that

∀W; ∈ �C 9 , there exists a set B22 ⊆ �C 9 such that B22 	 W; (C 9 ) and if L21C is a set of

requirements concerning the combination of tasks then -( 5 ⊲⊳ L21C . J

Note that agents are single-task, i.e., they can accomplish only one task at a

time (see [Gerkey et al. 2004]). Thus, an agent should exist in no more than one

coalition of the coalition structure. From the perspective of coalitions, this is

equivalent to stating that two di�erent coalitions cannot contain the same agent,

formally: �C 9 ,�C: ∈ ( , 9 ≠ : then�C 9
⋂
�C: = ∅. However, some agents can have

no task assigned to them, and thus not exist in any coalition of the structure,

formally:

⋃ |) |
9=1
�C 9 ⊆ �.

Example 3.2, continued.
(
5

1
= {{01}, {03, 04, 05}, {06}} is a feasible coalition structure: the requirements of

the three tasks are all ful�lled, as well as the task combination requirements over
the global task.
Another feasible coalition structure is : ( 5

2
= {{01, 02}, {03, 04, 05}, {06}}.

However, (3 = {{01, 02}, {03, 04}, {06}} is not a feasible coalition structure: task
C2 is not ful�lled since the requirement W3(C2) is not satis�ed by the corresponding
coalition �C2 = {03, 04}. This is because 03 and 04 possess only a C camera each
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and thus cannot satisfy the requirement W3 of having at least one C camera and
one R camera for the task C2.
Another infeasible coalition structure is (4 = {{01, 02}, {03, 05}, {04, 06}}. Even

if all the single task requirements are ful�lled by the coalitions for all the tasks, the
requirement _2({C1, C2}) over the global task is not.
Similarly (5 = {{01, 02}, {03, 04, 05}, {06}} is not a feasible coalition structure

either since the requirement _1({C1, C2, C3}) is not satis�ed.

Let us note �( is the set of all the possible coalition structures.

Since agents may be added or removed as things progress in the task allocation

process, we need coalition structure modi�cation functions.

⊕ is the addition function ⊕ : �( × (� × ) ) → �( , used to add a speci�c

agent to a speci�c coalition.

The resulting coalition structure from ( ⊕ (08 , C 9 ) is a coalition structure

in which �C 9 ← �C 9
⋃{08}, unless 08 was already in �C 9 in ( , and ∀: ≠ 9

�C: are the same as in ( .

	 is the removal function 	 : �( × (� ×) ) → �( , used to remove a speci�c

agent from a speci�c coalition.

The resulting coalition structure from ( 	 (08 , C 9 ) is a coalition structure

in which �C 9 ← �C 9 \ {08} and ∀: ≠ 9 , �C: do not change.

3.3.5 Global Utility Function

A utility function is de�ned following the application needs. It should consider

the globality of the tasks to cover the interdependencies between tasks and not

be simply a sum of utilities over tasks.

We can now suggest a de�nition of how to evaluate coalition structures with

respect to the accomplishment of a global task.

I De�nition 3.8 (Coalition Structure Evaluation).
Consider �( = {(1, . . . , (=} be the set of all possible coalition structures that

could be assigned to a global task ) . We introduce a set of criteria � such that

for each 6: ∈ � there exists a weak order �: upon the set �( , �: ⊆ �(2
such

that if ((, ( ′) ⊆ �: , then ( � ( ′ and ∃6: : �( → ℝ, 6: (() ≥ 6: (( ′). J
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Then, without loss of generality, we can de�ne the following decision problem:

∀: max(ℎ ∈�( 6: ((ℎ), which should identify the coalition structures (ℎ maximis-

ing “simultaneously” the performance of such structures upon all the criteria in

� for a global task ) .

Note that we consider interdependent tasks. Hence, it is necessary to de�ne

a function that evaluates a coalition structure ( as a whole considering the

interdependence among the coalitions in the structure. Evaluating the whole

structure based only on individual evaluations of the coalitions would not be

su�cient due to interdependencies between tasks and thus between coalitions.

Provided the conditions of commensurability, compensation and preferential

independence are satis�ed among the criteria in � (see [Bouyssou et al. 2000]),

a global additive value function D6;>10; of the following type is applicable. This

function is of the type:

D6;>10; (() = O:D: (6: (()) (3.3)

If D: (6: (()) is normalized to the interval [0,1] we have:

D6;>10; (() = O:|:D̄: (6: (()) (3.4)

where D̄: represents the normalised functions and|: are weights representing

the relative importance of the criteria.

We want to design an algorithm that �nds a feasible coalition structure (∗5

that maximises D6;>10; (().

D6;>10; ((∗5 ) = max

( ∈�(
D6;>10; (() (3.5)

For our speci�c example of a utility function:

D6;>10; ((∗5 ) = max

( ∈�(
O:|:D̄: (6: (()) (3.6)

However our approach is generic and therefore other types of evaluation func-

tions could be considered.

Example 3.2, continued.
Several utility functions can be de�ned for this running example. Here, we de�ne 5
criteria to evaluate a coalition structure ( :
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• Number of agents that are near (with respect to a given threshold) the task
they are allocated:

61(() = O�C 9 ∈( |{08 ∈ �C 9 |38BC (G1(08), l2(C 9 )1 ≤ Cℎ
C 9
1
}|

• Number of agents whom energy is greater than a threshold:

62(() = O�C 9 ∈( |{08 ∈ �C 9 |G1(08) ≥ Cℎ
C 9
2
}|

• Number of agents that bring the needed resources:

63(() = O�C 9 ∈( |{08 ∈ �C 9 |G3(08) = Cℎ
C 9
3
}|

• Number of coalitions which allocated agents number respects the minimum
threshold of the coalition’s task:

64(() = O�C 9 ∈( (1 if |�C 9 | ≥ W4(C 9 ); else |�C 9 |/W4(C 9 ))

• And on the global level:

65(() = 1 if the maximum number of agents in ( allocated to the global task
) (and thus to the sum of the tasks) is respected, 65(() = 0 otherwise.

Assuming that the weights are the same for all criteria, we de�ne the functions
D̄: (6: (()) (normalised between 0 and 1) as follows, to compute the utility of each
coalition structure.

D6;>10; (() =
1

5

(61(() + 62(() + 63(()
|�| + 64(()

|) | + 65(())

If we assume that CℎC1
1
= Cℎ

C2
1
= 3, CℎC1

2
= 6, CℎC2

2
= 9, CℎC1

3
= � , CℎC2

3
= � ∨ ', we

have:
D6;>10; (( 51 ) =

1

5

( 2 + 3 + 4

6

+ 3

3

+ 1) = 0.7

D6;>10; (( 52 ) =
1

5

( 3 + 4 + 5

6

+ 3

3

+ 1) = 0.8
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3.4 Conclusion

This thesis aims to address the general case of task interdependencies for the

multi-agent task allocation problem. Therefore, this chapter sets the stage by

introducing a modelisation of this problem.

We provide generic modelling of the interdependent task allocation problem

components, properties, and evaluation techniques, along with an illustrative

example. In this formalisation, agents are described by characteristics, and

tasks are described by requirements. Depending on the application, the agents’

characteristics and tasks’ requirements can take any possible values, qualitative

or quantitative. The problem’s goal is to �nd a coalition structure in which

coalitions are assigned to the tasks. The due coalition structure has to ful�l the

de�ned requirements and thus be feasible. Tasks dependencies are modelled in

a general manner and on two di�erent levels. First, the dependencies concern

the task combination requirements and thus the common feasibility constraints.

Second, the interdependencies are represented by a global task allocation utility

that takes the whole coalition structure as a parameter. Hence, the utility function

tackles the dependencies between the coalitions of the coalition structure in

question and thus between the tasks. The suggested model is used for the rest

of this work. This modelisation has been presented in [Ahmadoun et al. 2021].

In the next chapter, we present algorithms that are proposed as solutions to

our problem.
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4.1 Introduction

This chapter presents the algorithms that are proposed to the interdependent

task allocation problem. In practical use cases, agents need to �nd quickly a

task allocation where the task requirements are met. If there is enough time,

they may improve the allocation they found so that they can improve the global

utility and thus their team’s performance. We thus present algorithms that allow

a two stages decision. The goal of the �rst stage is to �nd a coalition structure in

which agents ful�ll all the task requirements. In the second stage, agents start

from the feasible coalition structure found in stage 1 and try to �nd another one

with a greater global utility. These algorithms allow the decision making process

to be anytime and applicable to real-world contexts. The suggested approach

is published in a paper [Ahmadoun et al. 2021] and a patent [Ahmadoun et al.

2021].

4.2 Our Approach

As stated above, the main aim of our work is to �nd the best feasible coali-

tion structure with respect to the global utility D6;>10; if it exists, or detect the

nonexistence of a feasible coalition structure as early as possible. We propose

a decentralised solution approach based on token-passing among the agents,

candidate members of di�erent coalitions assigned to the tasks composing the

global task.

The process is divided into rounds. In each round, the token is circulated

among the agents. The round ends when all agents have received the token

once. Agent ordering depends on application-based criteria. For example, in

an application with a speci�c hierarchy, the token may be sent from the most

important, and thus possibly best candidate in the team, to the less important,

the one with fewer resources and qualities for the application. In a spatial-placed

application, the token can be passed from an agent to its nearest agent.

At the beginning, each agent knows its own characteristics and the global

task ) to be accomplished. Information about the other agents and the evolu-

tion of the coalition structure formation arrives via the token-passing process.

When agent 08 sends the token to agent 0 9 , the next agent (de�ned according to

di�erent application-based criteria) adds information on the best (with respect
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to D6;>10; ) feasible coalition structure ( formed so far, the accumulated expertise

(i.e. characteristics) -( of the participating agents in ( , and the number of agents

=3 who have not changed the coalition structure (have not decided to join a

coalition).

Holding the token, agent 08 may decide to join (or initiate) a coalition �C 9
assigned to task C 9 , if it can contribute to the accomplishment of task C 9 or if its

participation can increase the global utility function D6;>10; . Where applicable,

agent 08 updates the information it received with the changes it had applied.

Then, agent 08 passes the token to the next agent. If it has not joined a coalition,

it passes the token to the next agent by forwarding the information from the

previous agent.

We assume that agents can exchange messages and we describe the com-

munication protocol that organizes the messages exchange between agents (in

section 4.3.1). Yet, the underlying communication infrastructure (i.e. studying

questions such as whether there is a message board, the agents acknowledge

message receipts, communication is asynchronous, there is any noise) is beyond

this work’s scope.

Concretely, our mechanism has two stages:

Stage I coincides with the �rst round. In this stage, agents try to �nd a feasible

coalition structure ( 5 , if one exists.

Hence, an agent joins a coalition only if it can satisfy some task require-

ments not yet satis�ed by other coalition members, regardless of the impact

on D6;>10; (i.e., the improvement of the D6;>10; value is not a precondition).

If no ( 5 is found in stage I, no such ( 5 exists considering the requirements

of the tasks and the characteristics of the available agents.

We call the method implementing this stage FICSAM.

Stage II implements our second method incrementally improving the feasible

coalition structure found so far.

This method starts from round 2. Once a feasible coalition structure was

found at the end of round 1, agents improve D6;>10; via replacements

or swaps between single or groups of agents. The resulting improved

structure must preserve feasibility by respecting all the single task and

task combination requirements.
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We call the method implementing the �rst stage combined to this second

stage IFICSAM.

In the following sections, we will start by presenting the general algorithm

that allows an agent to join (or not) a speci�c coalition to distributively create a

feasible coalition structure. We will then detail di�erent methods we propose

for an agent to decide and participate in improving the global utility.

4.3 Feasible Interdependent Coalition Structure
Anytime Method (FICSAM)

4.3.1 General Process

Here, we present the general process for the decentralisation of the coalition

formation generation.

Algorithm 1 implements the behavior of an agent participating in the process.

This agent acts either as the process initiator (lines 1-15) or as a candidate

member of some coalitions of a certain coalition structure ( (lines 16-34). These

two roles are illustrated in their globality in �gure 4.1 for the initiator agent

and in �gure 4.2 for the other agents, or the initiator agent when it receives a

message later on in the process.

It is to be mentioned here that the messages in these algorithms follow the FIPA

ACL messages structure [Fipa 2002]. Thus, a message is structured this way:

<4BB064 = ?4A 5 >A<0C8{4 (B4=34A, A4248{4A, < 2>=C4=C >). The performative

denotes the type of the communicative act (either an informative or proposition

message in our case). The �rst parameter represents the agent that sends the

message and the second parameter represents the agent receiving it. Finally,

in our case, the content of the message depends on the message’s type that

is represented in the �rst parameter of the content (either ”6C” for the token

passage messages, ”0CB” for the anytime solution messages or ”4=3” for the end

process messages).

As described in algorithm 1, an initiator agent 08 starts its activity by initial-

izing its maximal coalition structure (<0G (regarding the global utility D6;>10; )

and its current coalition structure ( and incrementing its round to the �rst
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Algorithm 1: coalition-formation(08 , ) , �, �) , L21C , msg(perf (0; , 08 , <

2>=C4=C >)))

1 if agent 08 makes the �rst proposal then
2 (<0G ← ∅; ( ← ∅; ' [8] ← ' [8] + 1

3 -( ← ∅; )08 ← ∅; =3 ← 0

4 for C 9 ∈ ) such that 08 ⊲⊳ �C 9 do
5 )08 ← )08 ∪ {C 9 }
6 Get C 9 ∈ )08
7 ( ← ( ⊕ (08 , C 9 )
8 -( ← -( ∪ -08
9 8B_5 40B81;4 (() ← check-feasibility(), �) , L21C , �, ()

10 if 8B_5 40B81;4 (() then
11 (<0G ← (

12 for 0; ∈ � do
13 send(propose(08 , 0; , 〈”0CB”, (, -( , ', =3〉))

14 send(propose(08 , =4GC (08 ), 〈”6C”, (, -( , ', =3〉))
15 while true do
16 Get msg(perf (0; , 08 , < 2>=C4=C >))

17 switch perf (0; , 08 , < 2>=C4=C >) do
18 case propose(0; , 08 , 〈”0CB”, (, -( , ', =3〉) do
19 if requirement_anytime_solution then
20 3428B8>= ← ”BD224BB”

21 End of coalition formation process with a feasible coalition

structure

22 else
23 8B_5 40B81;4 (() ← CAD4

24 call decide(08 , -08 ,) , �) , L23C , ( , -( , ', =3,�, 8B_5 40B81;4 (())
25 case propose(0; , 08 , 〈”6C”, (, -( , ', =3〉) do
26 8B_5 40B81;4 (() ← 5 0;B4

27 call decide(08 , -08 ,) , �) , L23C , (, -( ,', =3,�, 8B_5 40B81;4 (())
28 case inform(0; , 08 , 〈”4=3”, ∅, ∅, 1〉) do
29 3428B8>= ← ”5 08;DA4”

30 End of the coalition process in �rst round with no feasible coalition

structure found

31 case inform(0; , 08 , 〈”4=3”, (, -( , '〉) do
32 3428B8>= ← ”BD224BB”

33 End of coalition formation process with a feasible and improved

(with respect to global utility) solution
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round ' [8] (line 2). The agent 08 initiates (line 3) -( the set of characteristics of

agents in ( , )08 the set of tasks it can perform, and =3 the number of unchanged

decisions (i.e., how many agents did not change coalition structure until now).

It then continues by building )08 , the tasks with requirements that match its

characteristics (i.e., -08 ⊲⊳ �C 9 ) and thus can perform (lines 4–5). It then picks one

of them, say C 9 (line 6), and initializes a coalition in the structure ( (line 7) that is

assigned to C 9 . We mention here that ( is at the beginning a coalition structure

with empty coalitions. Following this, the agent adds its characteristics to -(
(initially empty) (line 8) that accumulate the characteristics of all the members

of the coalitions in structure ( . Next, it checks the feasibility of the structure (

(line 9) by using the procedure check-feasibility (explained in section 4.3.4).

Figure 4.1: First agent process

In the unlikely case where structure ( is feasible (e.g., if ) contains only the

task C 9 and C 9 is ful�lled by this exact initiator agent), this coalition structure
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becomes an anytime coalition structure. Agent 08 considers ( as a feasible

coalition structure to explore and sends this proposal to all the agents in � via

a message propose(0; , 08 , 〈”0CB”, (, -( , ', =3〉) (lines 12-13). The �rst parameter

of the message content ”0CB”, for anytime solution, means it is a message that

informs that an anytime solution has been found. Then, in both cases, whether

coalition structure ( is feasible or not, agent 08 initializes the decentralised

process of coalition structure formation by sending a message to the next agent

0 9 (line 14). With this message, agent 08 passes the token to agent 0 9 , who enters

the process. 08 informs 0 9 about the structure ( , the characteristics gathered so

far -( , the current round ' (i.e., �rst round), and the number of agents that did

not change their decision in the last round =3 (here zero). Figure 4.1 presents

globally the main steps the �rst agent goes through in the process.

When an agent 08 acts as a candidate member of a coalition structure, its

activity depends on the messages it receives from other agents<B6(?4A 5 (0; , 08 , <
2>=C4=C >)) (lines 16-17). This is illustrated in �gure 4.2. Three types of messages

exist.

In the case of a propose(0; , 08 , 〈”0CB”, (, -( , ', =3〉) message, if an anytime solu-

tion is required, the coalition formation process terminates with ( as the best

(with respect to D6;>10; ) feasible coalition structure found so far. This can occur

either at the end of the �rst round or in the middle of any other round (i.e. all the

available agents do not have the possibility to check whether they can contribute

to improving this feasible coalition structure).

Otherwise, the receiving agent considers that ( is a feasible coalition struc-

ture (line 23) that might be further improved (with respect to D6;>10; ). For that,

the receiving agent uses procedure decide (see algorithm 2). The message pro-
pose(0; , 08 , 〈”6C”, (, -( , ', =3〉) means that ( is not a feasible coalition structure

and the sender passes the token (6C meaning give token) to the receiving agent

who uses procedure decide for looking whether it can contribute to the search

for a feasible coalition structure. The message inform(0; , 08 , 〈”4=3”, ∅, ∅, 1〉) in-

forms the agents that no feasible coalition structure has been found at the end

of �rst round and therefore the process ends with failure, while message in-
form(0; , 08 , 〈”4=3”, (, -( , '〉) informs agents that the process ends with a feasible

and improved (with respect to the feasible coalition structure found in the �rst

round) solution, meaning that none of the available agents can furthermore

improve the current feasible coalition structure.
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Figure 4.2: Global process

4.3.2 Decision Process

Algorithm 2 describes the decision process of an agent 08 that is triggered when

it gets a message from another agent during the coalition formation process. The

agent’s decision depends on the received message content and the round ' in

which the process is found. Table 4.1 gathers the description of the parameters

of the decision algorithm.

First (line 3), agent 08 checks the feasibility of the received coalition structure ( .

This is done using a feasibility checking procedure (see section 4.3.4) according

to the feasibility criteria of the given application. Notably, the feasibility is based

on the single task and task combinations requirements of the application.
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Parameter Description

08 The agent running the decision algorithm

-08 The agent 08 ’s characteristics

) The list of tasks

�) The single task requirements of the tasks in )

L21C The task combination requirements

( The last received coalition structure

-( The characteristics of the agents in ( ’s coalition

' The rounds of the agents

=3 The number of unchanged decisions

� The list of agents

8B_5 40B81;4 (() A boolean parameter indicating if ( is feasible or no

Table 4.1: Description of the algorithm 2’s parameters

Then, if ' [8] = 1, i.e., the process is in the �rst round, and the received

coalition structure ( is not yet feasible, the agent computes a feasible structure,

accounting for the set of tasks ) that have to be accomplished, task-level and

combination-level requirements �) and L21C , and its potential contribution in

case it joins ( . This is done by using the procedure s-f-st (line 5) that implements

a Constraint Satisfaction Problem (CSP) to generate a feasible coalition structure

if it exists. More details about this procedure are presented in section 4.3.3.

As said, when agent 08 holds the token, it adds the information about its

characteristics to-( , the set of agent characteristics gathered by preceding agents.

Thus, when agent 08 gets the token in the �rst round, it has to solve a locally

centralised coalition formation problem based on the knowledge accumulated

so far. This knowledge concerns more precisely the agents that have already

joined the coalition structure and their characteristics. Based on this knowledge,

agent 08 tries to �nd whether preceding agents, regarding their characteristics
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in -( , along with 08 are su�cient for satisfying all of the requirements of both

individual tasks and task combinations.

As said above, requirements are modeled as hard constraints (see, for example

[Dechter 2003]), and a CSP problem is solved (see section 4.3.3). Note that in

the case where no feasible coalition structure is found in the �rst round of the

decision process (i.e., the CSP problem has no solution with the accumulated

knowledge on agents until now), the process is to be terminated as there is no

solution at all. In this case, the absence of a solution is proved the following way.

Thanks to the transfer of the agents’ characteristics in-( with the token-passing,

at the end of round 1 marking a complete passage of the token to all the agents,

the last agent has complete knowledge of all the agents’ characteristics. If a

solution existed, the last agent would have found it using this knowledge running

the CSP. Therefore, if all the agents received the token and the last one did not

�nd a solution, it is concluded that no solution exists, and the process can stop

by sending end process messages to all the agents. Otherwise, the process can

proceed to gradually improve the initial feasible structure, as it will be discussed

in the next section.

The use of this procedure during the �rst round allows to detect early on

whether there is a feasible coalition structure, i.e. whether the characteristics of

the available agents in� are su�cient to accomplish the tasks in) . Subsequently,

either we seek afterwards to improve the performance of the coalition structure

(with respect to the D6;>10; ) based on a decentralised approach (knowing that

we have at least one feasible coalition structure) or we abandon the e�ort by

avoiding to consume resources unnecessarily. That is why this procedure does

not consider the maximization of D6;>10; when looking for a feasible coalition

structure during the �rst round. This avoids losing time and computation by

trying to maximize the global utility for a problem for which we could discover

later on that it has no solution considering the available resources (i.e., the agents

�). That also allows an anytime method, which �nds an applicable solution in a

minimal time and then improves it gradually.

Let’s continue at line 6 where agent 08 checks the feasibility of the coalition

structure ( returned by the s-f-st algorithm (see section 4.3.3). The feasibility

test is done using the procedure check-feasibility (see section 4.3.4). If the answer

is positive that means that we found the �rst feasible coalition structure ( 5 . This

feasible coalition structure ( 5 corresponds to an anytime solution and is sent by
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Algorithm 2: decide(08 , -08 ,) , �) , L21C , (, -( , ', =3,�, 8B_5 40B81;4 (())
1 (>;3 ← (

2 ' [8] ← ' [8] + 1

3 if ' [8] = 1 then
4 if =>C (8B_5 40B81;4 (()) then
5 (<0G ← (

6 ( ← s-f-st (), �) , L21C , {08 } ∪ (, 08 , -08 ∪ -(\{08 })
7 8B_5 40B81;4 (() ← check-feasibility(), �) , L21C , �, ()
8 if 8B_5 40B81;4 (() then
9 ( 5 ← ( ; =3 ← 0

10 (<0G ← ( 5

11 for �C 9 ∈ ( do
12 for 0; ∈ �C 9 do
13 send(propose(08 , 0; , 〈”0CB”, (, -( , ', =3〉))

14 else
15 if ' ≠ 〈1, . . . , 1〉 then
16 )08 ← ∅
17 for C 9 ∈ ) such that 08 ⊲⊳ �C 9 do
18 )08 ← )08 ∪ {C 9 }
19 Get C 9 ∈ )08
20 ( ← ( ⊕ (08 , C 9 )
21 -( ← -( ∪ -08
22 if D6;>10; (() > D6;>10; ((<0G ) then
23 (<0G ← ( ; =3 ← 0

24 send(propose(08 , =4GC (08 ), 〈”6C”, (, -( , ', =3〉)
25 =3 ← 0

26 send(propose(08 , =4GC (08 ), 〈”6C”, (, -( ,', =3〉))
27 else
28 ( 5 ← 〈[], [], . . . , []〉
29 for �C 9 ∈ ( do
30 for 0; ∈ �C 9 do
31 send(inform(08 , 0; , 〈”4=3”, ∅, ∅, 1〉))

32 else
33 ( 5 ← (

34 call 8<?A>{4_8 5 82B0<_{0A80=C (08 ,)08 , () where

{0A80=C ∈ {B|0?, 2><18=0C8>=B, 14BC2><18=0C8>=B}
35 8B_5 40B81;4 (() ← check-feasibility(), �) , L21C , �, ()
36 if 8B_5 40B81;4 (() and ( ≠ ( 5 then
37 ( 5 ← ( ; =3 ← 0

38 for C 9 ∈ ) do
39 for 0; ∈ �C 9 do send(propose(08 , 0; , 〈”0CB”, (, -( , ', =3〉))

40 else ( ← (>;3

41 if =3 < |�| and ( = (>;3 then
42 =3 ← =3 + 1

43 send(propose(08 , =4GC (08 ), 〈”6C”, (, -( , ', =3〉))
44 else
45 for 0; ∈ � do
46 send(inform(08 , 0; , 〈”4=3”, (, -( , '〉))
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agent 08 to all the members of the coalitions of the structure formed so far, along

with -( and initialized counter =3 ← 0 as it stands for "number of unchanged

decisions". =3 is initialized by an agent when a feasible new coalition structure

is introduced in the process by an agent. It is incremented when an agent is

unable to improve the current feasible coalition structure. This corresponds to a

statement "nothing to say" and serves to terminate the whole process when a

solution cannot be further improved by any available agents.

When agent 08 cannot �nd a feasible coalition structure with -( (i.e., the

gathered characteristics so far), it examines ways of contribution to future

feasible coalition structures that are found (if any exist) by agents that have not

yet had the token in that round, provided it is not the last agent to receive the

token. This is done by examining tasks it can perform with requirements that

match its characteristics, i.e., tasks in )08 (-08 ⊲⊳ W; ) (line 16). Then, 08 picks a

task C 9 ∈ )08 (line 18), joins �C 9 ∈ ( , and adds its characteristics to -( .

As before, agent 08 checks whether the updated coalition structure ( improves

D6;>10; . If it is the case, this coalition structure becomes the best among those

(not feasible yet) built so far. In any case, agent 08 sends the token to the next

agent, including ( ,-( , =3 , and ' (here round 1) in the message. However, if agent

08 is the last to receive the token, it implies that there is no feasible coalition

structure. 08 informs the agents in ( that the process must end as a feasible

coalition structure cannot be found.

If ' [8] > 1, i.e., the current round is greater than one, this means that a

solution was already found (line 34), and this is where the FICSAM algorithm

ends.

Lines 40 − 45 concern the situation where a feasible coalition structure ( is

found and 08 cannot improve it. In this case, if all the agents have not received

the token yet, i.e. =3 < |�|, 08 increments =3 and passes the token to the next

agent. Otherwise (i.e., =3 ≥| � |), that means that the current feasible coalition

structure cannot be improved anymore, and08 informs the agents that the process

is ending with ( as the best feasible coalition structure found so far.

Figure 4.3 presents the process of the decision algorithm.
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Figure 4.3: Decision process
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4.3.3 Feasible Structure Generation Process

The s-f-st procedure is used in the �rst stage of our method. It is called exactly

at line 6 of algorithm 2 with s-f-st (), �) , L21C , {08} ∪ (, 08 , -08 ∪ -(\{08 }). This

procedure allows the deciding agent to �nd a feasible coalition structure or to

conclude the temporary non-existence of such an allocation. This agent uses

the knowledge it has of agents characteristics -( and of itself -08 to look for

distribution of the tasks among agents, represented by a coalition structure,

where the requirements in �) and L21C are ful�lled. It is a sort of a locally

centralised feasible coalition structure generator that only considers feasibility

but not utility.

The goal is to �nd a feasible coalition structure where agents are assigned to

tasks in) . A coalition structure feasibility results from ful�lling of the tasks and

task combinations requirements by its coalitions. Many centralised coalition

formation solutions can answer this need. For example, the methods of [O. She-

hory et al. 1998] can be applied. We have chosen to use a Constraint Satisfaction

Problem (CSP) to make use of the mirroring between tasks requirements and

constraints.

A CSP is normally de�ned by three elements: a set of variables, a set of these

variables’ respective domains of values and a set of constraints. In our CSP

model, variables represent agents’ assignments and each variable’s domain is

the set of singletons of tasks in) and the empty set. This way, the decision of an

agent, represented by its corresponding variable, can have as a value one of the

tasks, if a task is allocated to him, or no task, otherwise. This allocation of tasks

in the domains to the agents in the variables can be seen as a coalition formation

where each task has a coalition composed of agents whose variables have this

task as a value. Finally, the constraints of our CSP implement the single task

requirements and the task combination requirements satisfaction with respect

to the agents characteristics. The satisfaction of a constraint is equivalent to

the ful�lment of its requirement. Formally, the output of the CSP should be a

coalition formation (�(% where:
-(�(% 	 �)

-(�(% 	 L21C

(4.1)

At each run, the s-f-st procedure starts by creating from its parameters the
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variables, the domains, and the constraints. With these elements as inputs, it

runs the CSP via a solver. If the solver returns a solution, it is reconstructed to a

coalition structure and returned. If not, an empty coalition structure is returned.

In the following, we are presenting an example that illustrates the use of this

procedure and the CSP modelisation.

I Example 4.1.
As in example 3.2 in the previous chapter but a lighter version, we consider a set of
agents and a set of tasks.

Consider 4 agents, � = {01, 02, 03, 04} scattered on a square grid of 10m side
length, that must perform two di�erent tasks, ) = {C1, C2}. The agents have 3
characteristics: their location G1, energy G2, and payload G3 (either a normal camera
� or a thermal one '). Agent characteristics values are presented in table 4.2.

G: G8 (01) G8 (02) G8 (03) G8 (04)
G1 (0, 0) (3, 3) (1, 2) (5, 3)
G2 10 5 7 8

G3 � ' � '

Table 4.2: Example of agents’ characteristics

Each task has 4 requirements. W1 states the position of the task, and the maximal
allowed distance of an agent from that position. W2 states the minimum energy
necessary to perform the task, andW3 states the set of theminimum required payloads
for the task brought by all the agents. Finally, W4 states the minimum number of
agents needed to accomplish the task. Requirements of {C1, C2} are presented in
table 4.3.

We also de�ne a requirement on combinations of tasks over the maximum number
of agents allocated to a task. Here L21C = {_1}, where _1({C1, C2}) ≤ 3.

To illustrate the s-f-st procedure use, here are the outputs of the procedure if
called with these speci�c parameters:

• If agent 01 calls the procedure with s-f-st(), �) , L21C , {02}, {01}, -01
∪ -02

),
the result will be an empty coalition structure {{}, {}}. This is because the
agents 01 and 02 cannot ful�ll all the requirements in �) and L21C . Thus,
there is no feasible coalition structure involving only those agents.
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W; W; (C1) W; (C2)
W1 〈(3, 0), ≤ 4〉 〈(4, 4), ≤ 10〉
W2 ≥ 3 ≥ 7

W3 ⊇ {(�, 1)} ⊇ {(�, 1), (', 1)}
W4 ≥ 1 ≥ 2

Table 4.3: Example of single tasks’ requirements

• If agent 04 calls the procedure with s-f-st(), �) , L21C , {01, 02, 03}, {04}, -04
∪

- {01,02,03 }), the result will be a coalition structure {{01}, {03, 04}}. Thus, there
is a feasible coalition structure that is considered as an anytime solution.

J

4.3.4 Feasibility Check Process

To check if a coalition structure ( is feasible or not, we also use a CSP. The

modelisation of the CSP consists of a set of variables representing the agents

assignments, their respective domains where each represents an empty set or

the task that is allocated to the agent depending on the agent’s assignment in

the coalition structure ( , and the constraints corresponding to local and global

requirements.

If the coalition structure ( is feasible, the solver returns it. This means that this

assignment satis�es the problem’s constraints meaning that all the requirements

are ful�lled by the agents coalitions in ( and thus that ( is feasible. Otherwise,

it returns that no solution exists, meaning that the coalition structure violates

one or many constraints of the problem, making it unfeasible.

The CSP used to check the feasibility of a coalition structure bears similarities

with the one used to search for a feasible coalition structure. The di�erence is at

the variables domains. In the feasibility check CSP, we already have a coalition

structure, and we just want to check if this coalition structure satis�es all the

constraints of the problem. This is why we only give the agents assignments in

the coalition structure in question for the variables domains. The CSP returns

the same entries if the coalition structure turns out to be feasible, whereas it does

not return anything if it is not. In the search for a feasible coalition structure

with s-f-st, we use a CSP to construct a feasible coalition structure from scratch
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thanks to the knowledge we have about tasks and precedent agents, ignoring

the unfeasible current coalition structure (we know is not feasible thanks to the

test in line 4 of algorithm 2).

4.3.5 Run-Through Example

Here is a continuation of example 4.4.

I Example 4.2.
For simplicity, we assume that the token goes from 01 to 02, then to 03 and to 04.

Agent 01 starts by invoking algorithm 1. Following lines 1 and 2, ( , (<0G , -( ,
and )1 are initialized with the empty set, whereas ' [1] = 1 and =3 = 0. On lines 4
and 5, 01 sets)1 = {C1, C2}. 01 gets one of these tasks, C1, for example, and adds itself
to coalition �C1 , to obtain a �rst coalition structure ( = {{01}}. This structure is
not feasible (line 9), and 01 passes the token to 02 (line 15) while waiting to receive
a message.

Agent 02 receives the token and calls decide (line 28). In algorithm 2, 02 keeps the
current coalition structure in (>;3 , and updates its round to 1. Conditions in lines
2 and 3 are satis�ed, the best coalition structure so far, ( , is put in (<0G , and 02

searches for a feasible structure by calling s-f-st. As it only knows the characteristics
of 01 and 02, it cannot �nd one. Since check-feasibility(() is false (line 7), we jump
to line 13. As not all agents got the token yet, 02 looks for tasks it can contribute to,
(lines 16-17), and obtains )2 = {C1}. It joins then coalition �C1 in ( , that becomes
( = {{01, 02}}, and adds its characteristics to -( . We now have D6;>10; (() = 0.55

and D6;>10; ((<0G ) = 0.45. As the utility of the newly founded ( is greater than the
one of (<0G , ( becomes the new best solution (<0G , and =3 is reinitialized to 0 (we
start working on a new solution). Finally, 02 passes the token to 03 (line 23).

Agent 03 receives the token from 02, and calls the procedure decide in line 28
of algorithm 1. As 02 just did, 03 keeps the current coalition structure in (>;3 , and
updates its round to 1. Conditions in lines 2 and 3 are satis�ed, ( = {{01, 02}} is
put in (<0G , and 03 searches for a feasible structure by calling s-f-st. It cannot �nd
one, and jumps to line 13. As 04 has not had the token yet, 03 looks for the tasks
it can contribute to, in lines 16 and 17, and obtains )3 = {C1, C2}. Assume that C2
is selected (line 18), we obtain ( = {{01, 02}, {03}}, with D6;>10; (() = 0.65. Once
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again, the condition in line 21 is satis�ed, ( is the new best solution, =3 = 0, and 03

passes the token to 04 in line 23.

As previously, agent 04 receives the token from 03, calls decide, updates (>;3 and
its round ' [4] = 1, and looks for a feasible coalition structure (algorithm 2, line
5). As it knows all the information from all the agents, it �nds one, for example
( = {{01}, {03, 04}}. As ( is feasible (line 7), we go to line 8, (<0G and ( 5 take the
value of ( , =3 = 0, and 04 informs 01 and 03 that a feasible coalition structure has
been found, in case an anytime solution is required.

Here is the end of the �rst stage, and thus of algorithm FICSAM, with an anytime
solution. J

4.4 Improved Feasible Interdependent Coalition
Structure Anytime Method (IFICSAM)

As stated in the previous section, the algorithm’s �rst stage consists in �nding

a feasible coalition structure to allow agents to have a decision that deals with

the problem’s constraints represented by the task requirements. This decision

corresponds to an anytime solution. The second stage incrementally improves

feasible coalition structures in terms of utility. It starts from the second round,

once ( 5 was found in round 1.

In this stage, agents examine improvements in D6;>10; through replacements

or swaps between single or groups of agents. The resulting improved structure

must preserve the feasibility of the improved solution through the respect of

both single tasks and task combinations requirements.

As shown in algorithm 2, if the current round is greater than one, ' [8] > 1,

that means that a feasible coalition structure was already found (line 34), and

the agents seek another feasible coalition structure that increases global utility

D6;>10; (i.e., greater utility than the global utility of the coalition structure found

in the �rst round).

To this end, agent 08 can use di�erent algorithms to search for better solutions.

It can try to swap its place with another agent or replace another agent allocated

to a di�erent task. It may also swap its place with a certain agent in another

coalition. And after each swapping trial, it should check if the coalition structure
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that results from this possible change has a greater utility than the old coalition

structure. The next sections present in-depth that di�erent versions exist of the

improvement trials. After the call of one of these improvement algorithms (line

34), the agent checks the returned coalition structure’s feasibility (line 35). If the

algorithm returns an improved feasible coalition structure (line 36), then this

coalition structure becomes the current best feasible one and it corresponds to a

new anytime feasible coalition structure for all the agents (line 37). In this case,

08 sends this solution to all the agents in the structure. If the returned structure

is not feasible, it is not considered anymore for further improvement. Hence,

agent 08 reconsiders the feasible coalition structure that it received from the

previous agent (line 40).

Next we present the di�erent alternatives for this improvement implemented

as algorithms 3, 4 and 6.

4.4.1 Swap Improvement Process

Algorithm 3 implements a method that allows agents to improve the global

utility D6;>10; (() of a feasible structure ( with one-to-one swapping with other

agents.

Once agent 08 receives the token, it assumes that the received structure (

maximizes D6;>10; (line 1). It then checks whether it can contribute to improving

the global utility D6;>10; by exploring two possibilities.

The �rst consists of assigning agent 08 to another task (and thus to another

coalition). For this reason, agent 08 examines the possibility to move to a coalition

of one of the tasks that it can contribute to. For each of these tasks, let say C 9 , it

checks if its move to coalition�C 9 can result in a coalition structure ( ⊕ (08 , C 9 ) 	
(08 , g (08 , ()) that has a greater utility than the coalition structure with the best

utility until now (<0G (line 3). This is built on the idea that there may be a task

C 9 ∈ )08 that, if 08 contributes to its performance instead of its contribution to

g (08 , (), its current task in ( , D6;>10; increases.

Switching its task is relevant if none of the requirements of C 9 (i.e., W; ∈ �C 9 ) is

violated and if D6;>10; increases when 08 participates in the accomplishment of

task C 9 instead of task g (08 , () (line 3). In that case, the new coalition structure

becomes the best current one (line 4).

The second possibility consists of switching the agents. There is two possible
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Algorithm 3: improve_i�csam_swap(08 ,)08 , ()

1 (<0G ← (

2 for C 9 ∈ )08 \ g (08 , () do
3 if ∀W; ∈ � such that 08 ⊲⊳ W; (C 9 ) and D6;>10; (( ⊕ (08 , C 9 )	

(08 , g (08 , ()) > D6;>10; ((<0G ) then
4 (<0G ← ( ⊕ (08 , C 9 ) 	 (08 , g (08 , ())
5 for 0: ∈ �C 9 such that ∀W; ∈ � : 0: ⊲⊳ W; (g (08 , ()) do
6 if D6;>10;

(
( ⊕ (08 , C 9 ) 	 (0: , C 9 ) 	 (08 , g (08 , ())

)
>

D6;>10;
(
( ⊕ (08 , C 9 ) ⊕ (0: , g (08 , ()) 	 (08 , g (08 , ()) 	 (0: , C 9 )

)
then

7 (=4| ← ( ⊕ (08 , C 9 ) 	 (0: , C 9 ) 	 (08 , g (08 , ())
8 else
9 (=4| ← ( ⊕ (08 , C 9 ) ⊕ (0: , g (08 , ()) 	 (08 , g (08 , ()) 	 (0: , C 9 ))

10 if D6;>10; ((=4|) > D6;>10; ((<0G ) then
11 (<0G ← (=4|

12 if D6;>10; ((=4|) > D6;>10; ((<0G ) then
13 (<0G ← (=4|

14 return (<0G

scenarios that are tested. First, the deciding agent can take the place of another

agent that is already allocated in a coalition. That means that the replaced

agent leaves the coalition structure. If this case happens, the deciding agent

can swap its place in its coalition with an agent assigned to another coalition,

and thus to another task. To do this, agent 08 examines the two scenarios for

each task C 9 . Indeed, it checks whether it can replace or swap with another

agent 0: that currently ful�lls the requirements of task C 9 assigned to �C 9 ∈ (
by ful�lling the requirements of the task g (08 , () that is currently ful�lled by 08
in the coalition assigned to the task g (08 , () in ( . If such a change increases the

global utility D6;>10; of the resulting coalition structure in comparison with the

latest coalition structure found with the best utility (<0G , the resulting coalition

structure is kept as the best current coalition structure in terms of utility in (<0G .

Coalition structure (<0G is updated to obtain a new coalition structure where

D6;>10; ((<0G ) > D6;>10; (() (see lines 6-13).
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The feasibility of this new coalition structure is then veri�ed in algorithm 2

(line 36) to decide if it is considered as a new solution or if the feasibility is

broken by the change.

Next is the follow-up of example 4.4 in the case where agents continue to the

second stage using the one-to-one improvement in algorithm 3.

I Example 4.3.
At the end of the �rst stage, agents have found an anytime solution: ( = {{01}, {03, 04}}.
Now, they continue to the second stage. The last agent to receive the token 04 sends
the token to agent 01.

Agent 01 has the token �rst, and when receiving the message it goes to line 19 of
algorithm 1. We assume that we do not need an anytime solution, and proceed to
line 23. By receiving the performative "ats", 01 knows that ( is feasible (line 24), and
calls decide. In line 1 of algorithm 2, ' [1] is incremented to 2, and 01 jumps to line
33. ( 5 is initialized with the last feasible coalition structure found, {{01}, {03, 04}}
here, and 01 can call algorithm improve-i�csam (i.e., algorithm 3) to check whether
a better solution (with respect to the global utility D6;>10; ) can be found.

After recording the current structure in (<0G , 01 browses the tasks it can contribute
to )01

, except for C1. The only remaining task is C2, and 01 checks on line 3 if it
can improve the global utility of ( by switching on C2. The structure would then
be {{}, {01, 03, 04}}, with a utility of 0.55, which does not improve the utility of
(<0G = 0.7. Next, 01 looks if it can switch places with another agent. By switching
places with 03 (line 6), (=4| is created as (=4| = {{03}, {01, 04}} (line 7). As
D6;>10; ((=4|) = 0.75 is greater than the utility of (<0G (line 10), this coalition is
returned (lines 11,12).

Returning from the call of algorithm 3, 01 checks if ( = {{03}, {01, 04}} is still
feasible (algorithm 2, line 36). As it is, and as ( has changed during the process,
condition line 37 is veri�ed. 01 updates ( 5 to the new structure ( , reinitializes =3 to
0 (line 38), and informs 03 and 04 (lines 39 and 40).

Agent 03 gets the token, goes to line 22 of algorithm 1, and calls decide on line
27. On line 1 of algorithm 2, ' [3] is incremented to 2, and 03 jumps to line 33. As (
is the best feasible coalition structure for this example, condition line 37 is always
false, whatever algorithm is called on line 35. ( thus retrieves its previous value
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(line 41). Since =3 = 0 and ( = (>;3 , we go at line 43, =3 is incremented to 1, and
the token passes to 04.

All the agents receive this message (line 32 of algorithm 1 1), and the process
ends with a feasible and improved solution ( = {{03}, {01, 04}}. J

4.4.2 Combinations Improvement Process

Instead of the one-to-one swap proposed in the previous algorithm, agents may

try to swap with many agents in their e�orts to improve the coalition structure

utility.

To do so, algorithm 4 is called by algorithm 2 (line 34). Contrary to the previous

algorithm where deciding agents consider only one-to-one swapping with other

agents, this algorithm proposes to discover more widely the search space by

considering many-to-one swaps. For this, using algorithm 4, an agent 08 checks

whether, for each task C 9 ∈ )08 , it is bene�cial to replace each agent 0: member

of the coalition �C 9 assigned to C 9 , by a combination 21 of agents that includes 08
(lines 4-7) whose characteristics-21 match the requirements �C 9 of task C 9 (line 4).

These changes should take place if they increase the global utilityD6;>10; (line 10).

All the agents’ combinations that can contribute to task C 9 are considered. The

coalition structure, among the possible coalition structures via these changes

that has the greater global utility, is retained in (<0G .

Algorithm 4: improve_i�csam_combinations(08 ,)08 , ()

1 (<0G ← (

2 ( ′← (

3 for C 9 ∈ )08 do
4 for 21 ∈ 2

�
such that 21 ⊲⊳ �C 9 and 08 ∈ 21 do

5 for 0: ∈ �C 9 do ( ′← ( 	 (0: , C 9 )
6 for 0; ∈ 21 do ( ′← ( ⊕ (0; , C 9 )
7 if D6;>10; (( ′) > D6;>10; (() then (<0G ← ( ′

8 return (<0G

Algorithm 4 with its many-to-one swapping trials allows discovering a wider

part of the search space on the possible coalition structures. Nonetheless, due to

its combinatorial complexity, it does not scale well to large problems. To deal
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with problems of large dimensions (number of tasks and number of agents), a

large number of agent combinations has to be checked for each task by each

agent that possesses the token. This way, the cost of improving the solution’s

utility with algorithm 4 may be too high.

4.4.3 CSP Improvement Process

To deal with the highly combinatorial problem related to the many-to-one swaps

in algorithm 4, we propose algorithm 6 using a CSPs approach. This algorithm

suggests using single task requirements as hard constraints (i.e., required to

be satis�ed) to reduce the search space. The idea is to eliminate the coalition

structures in the search space that do not satisfy the problem’s constraints and

thus the tasks’ requirements before processing them and calculate their utility.

Algorithm 6 is called by algorithm 2 (line 34) and is explained in details later in

this section.

The goal of algorithm 6 is to optimise the combinatorial part of the many-

to-one swap improvement algorithm in case of scalability. In algorithm 4, each

agent veri�es if it can with any subset of agents replace an agent to perform

a task and thus increase the global utility. Agents do not bene�t from their

knowledge of the tasks requirements and the global utility in this search. This is

why they perform the tests on global utility improvement even for subsets that

do not ful�ll the requirements of the task in question. Hence, the latest algorithm

(algorithm 4) consumes useless computations for subsets that cannot be a part

of a feasible coalition structure since they do not satisfy the requirements of

the task they are candidates for. Instead of checking all the agents’ subsets,

the variant of algorithm 6 uses CSPs to lighten the space of possibilities of

these subsets by selecting the locally optimal one. In addition to the single task

requirements used as hard constraints for the CSP, we can design soft constraints

(or preferences) that can help orient the research towards subsets allowing higher

chances to increase the global utility function. Implementing such concepts in

our algorithm 6 is equivalent to doing for each task the selection of an optimal

subset of agents regarding the application’s requirements and preferences.

Selecting the optimal agents’ subset according to the requirements of the tasks

and the preferences dictated by the utility function in the application amounts

to computing optimal subsets of a set of items. For that, [Binshtok et al. 2007]
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proposed the Branch and Bound over Constraint Satisfaction Problems (BB-CSP)

algorithm that allows �nding the optimal items’ subset regarding a preference

speci�cation. Given that this work exactly answers our demand, we chose to

employ and adapt its algorithm to our context and explain it as follows.

A preference speci�cation is a description of the problem’s elements, aka

the items, the item subsets, and a preference order over the properties of these

subsets. BB-CSP introduces a formalism for the preference speci�cation. It starts

with the item properties designation based on which the set properties (%: ):≤=
are de�ned. Once the set properties are de�ned, set preferences are built over

the comparison of the values of these set properties through conditional value

preference statements or relative importance statements. The conditional value

preference statement is when for speci�c values of the properties %81, %82, ..., %8 9 ,

we prefer a value ?: for the property %: over a value ? ′
:
. The relative importance

statements are when for speci�c values of the properties %81, %82, ..., %8 9 , the prop-

erty %: is more important than the property %; and thus we prefer a better value

for %: even if we compromise on %; ’s value. We can set preferences de�ning an

order over the properties and their values based on these comparison statements.

This order generates a tree with di�erent properties combinations. Each node in

this tree represents a combination of properties and is associated with a set of

candidate subsets. The leaf nodes represent combinations composed of all the

properties and assign a value for each property in (%: ):≤= .

For example, let us consider a preference speci�cation where there is only two

set properties %1 and %2, that are both boolean (i.e., they either take the value

true or false and we note %8 when it is true and %8 otherwise) and where %1 is

more important than %2 and true properties are the preferred ones. The resulting

tree is as presented in �gure 4.4.

In searching for an optimal set, [Binshtok et al. 2007] proposed a Branch &

Bound search. This is used to prune the nodes which property combinations are

sub-optimal. Then, a CSP is run in each tree node and in the speci�ed order by

the preference tree. In this CSP, the variables representing items take 1, if the

item in question appears in the output subset or 0 otherwise. The CSP aims to

look for a subset of items that has associated preferred properties to its node.

Since each tree node is mapped to a CSP, the entire tree is viewed as a tree of

CSPs. The B&B on the tree-of-CSPs enables �nding an optimal subset of items

denoted,>?C regarding the preference speci�cation. That is, a set,>?C ⊆ ,
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Figure 4.4: Example of a tree of CSPs in [Binshtok et al. 2007]

such that for any other set, ′ ⊆, , we have that the properties that the subset

,>?C satis�es are no less desirable than the properties, ′ satis�es.

We found the model and algorithm relevant to our problem of selecting the best

subset of agents for the many-to-one swap and applicable after some adaptation.

Analogically, the items in our problem are the agents, the item properties are

the agent characteristics, and the set properties are the requirements’ state of

ful�llment by the set of agents in the set. We can, in addition, de�ne some new

desired requirements that can lead to utility increase. For example, if a given

task requires at least two agents, but the more agents we have, the greater the

utility function, we can de�ne the desired requirement of having four agents.

In [Binshtok et al. 2007], only preferences are considered. Hence, the set

properties preferred values can be seen as soft constraints, and the goal is to

satisfy the maximum preferred ones. In our problem, however, for a given task

C 9 ∈ ) , C 9 ’ requirements are hard constraints that we denote �C 9 . Besides, we add

some soft constraints, denoted as %C 9 for each task C 9 ∈ ) , in a speci�c decreasing

order of importance (i.e. from the more important to the less important), helping

orient the search towards the subset of agents that, by doing the concerned task,

increases the global utility. Hence, the main adaptation concerns the addition of

the hard constraints in the preference speci�cation and thus in the CSPs’s tree.

Instead of having an empty root for the tree of CSPs, we are starting with the

set of true properties representing the hard constraints we want our subsets of

agents to satisfy. This guarantees the assigned coalition’s local feasibility. In

�gure 4.5, an example of the tree of CSPs over which we apply our adaptation of

the algorithm in [Binshtok et al. 2007], where a task has three task requirements
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(| �C 9 |= 3), and thus three hard constraints and two soft constraints were added

based on the utility function.

Figure 4.5: Example of the application tree of algorithm 5

I Example 4.4.
We illustrate here how the preference speci�cation can be set for the CSP improve-
ment algorithm (algorithm 6).

Preference speci�cation

What follows is an illustration of the preference speci�cation that can be used in
our adaptation of the method of [Binshtok et al. 2007]. In this method, preference
speci�cation of subsets is based on items properties.

For a given task C 9 :

Item properties The items’ properties are equivalent to agents’ characteristics in
our modelisation (see chapter 3). Let’s consider that each agent 08 has four
characteristics:

G1(08) is the type of the agent 08 where the agents types are �1 = {X1, X2},
G2(08) is the distance to the task of the agent 08 ,

G3(08) is the remaining autonomy of the agent 08 ,

G4(08) is a boolean variable to verify if agent 08 has the needed resource or
not.
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Set properties Let’s describe each subset B of agents in � by a set of boolean
properties that we denote here (d 9 )9≤= :

- The subset of agents contains the minimum necessary number of agents of
each type for the task C 9

d1 : 〈|{08 ∈ B | G1(08) = X1}| ≥ 1 and |{08 ∈ B | G1(08) = X2}| ≥ 1〉

- All the subset’s agents are at a maximal distance allowed for this task C 9
which is equal to 3

d2 : 〈max08 ∈B G2(08) ≤ 3〉

- All the subset’s agents have enough autonomy regarding the minimal auton-
omy that is required for task C 9 which is 5 (the agent with the less remaining
autonomy has more autonomy than the minimal threshold)

d3 : 〈min08 ∈B G3(08) ≥ 5〉

- The number of agents for each type necessary for task C 9 that does not exceed
the maximum allowed number, namely 3 agents of type X1 and 5 agents of
type X2

d4 : 〈|{08 ∈ B | G1(08) = X1}| ≤ 3 and |{08 ∈ B | G1(08) = X2}| ≤ 1〉

- The subset of agents have more than the required resources for task C 9 that is
1

d5 : 〈|{08 ∈ B | G4(08) = >}| > 1〉

The three �rst properties are equivalent to the tasks requirements that de�ne the
minimal number of agents of each type for the task, the maximal distance that
the agents should not exceed and the minimal autonomy that the agents need to
perform the task.

We consider the two last properties as soft constraints and that the utility function,
for that application, optimises the number of participating agents. The utility
function gives greater utility to tasks assigned with less than a threshold number of
agents of each type. It also tends to valuate more when extra resources are present
to be used if the required ones are wasted. Nevertheless, it is more valuable not to
use too many agents than to have supplementary resources.
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As an example, we consider a set of agents � = {01, 02, 03, 04, 05} where:

08 G1(08) G2(08) G3(08) G4(08)

01 X1 2 5 ⊥

02 X1 3 6 >

03 X1 2 4 >

04 X1 4 7 >

05 X2 2 5 >

06 X2 2 8 ⊥

Table 4.4: Example data to illustrate the preference speci�cation

We denote U8 = 1 if agent 08 is in the solution, the subset at the output, and U8 = 0

otherwise. As mentioned earlier, we denote the hard constraints by � 9 and the soft
ones by % 9 . Next is how the set properties are translated to constraints that are fed
to the CSP. For the example in table 4.4, we list the constraints used in the CSPs
to generate the best subset of agents in � to do task C 9 regarding this preference
speci�cation:

• �1 : U1 + U2 + U3 + U4 ≥ 1 and U5 + U6 ≥ 1

• �2 : U3 = 0

• �3 : U4 = 0

• %1 : U1 + U2 + U3 + U4 ≤ 3 and U5 + U6 ≤ 1

• %2 : U2 + U3 + U4 + U5 ≥ 1

Based on these constraints, their categorization among hard and soft constraints,
and the order of soft constraints (here %1 preferred to %2), a tree of CSPs can be
generated as in �gure 4.5 and we can run algorithm 5 on it. J

Algorithm 5 presents the adaptation of the BB-CSP algorithm. It allows agent

08 to compute the best local combination of agents concerning the requirements
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of task C 9 and the utility dictated desirability via the resolution of a tree of CSP

problems.

For this CSP variant, when the agent 08 calls 8<?A>{4_8 5 82B0< (line 34 of

algorithm 2), algorithm 5 is called for each task C 9 in )08 by the improvement

algorithm we present later. First, let us describe the best subset selecting al-

gorithm used to �nd coalitions improving the coalition structure, provided in

algorithm 5.

Algorithm 5: best_csp(08 , C 9 , �C 9 , %C 9 , �, -�)

1 & ← {�C 9 }
2 14BC ← 〈0, . . . , 0〉
3 while & ≠ ∅ do
4 # ← %>? (&)
5 (B>;DC8>=,D??4A ) ← �(% (# )
6 if B>;DC8>= ≠ �0;B4 and D??4A > {0;D4 (14BC) then
7 if {0;D4 (B>;DC8>=) > {0;D4 (14BC) then
8 14BC ← B>;DC8>=

9 if %C 9 (C 9 ) ≠ ∅ then
10 ? ← %>?_5 8ABC (%C 9 )
11 & ← & ∪ {# ∪ {?}, # ∪ {?}}

12 �14BC ← {08 ∈ � | 14BC8 = 1}
13 return �14BC

Algorithm 5 works as follows: agent 08 �rst initiates a queue & with the hard

constraints�C 9 (line 1). For a given application and a task C 9 , the hard constraints,

since they represent the task’s requirements, are formulated based on �C 9 . The

algorithm then iterates on possible sets of constraints (initially only the set of

hard constraints). The agent 08 then keeps popping the constraints of the set in

the order of importance. Each time, the agent puts the popped constraint in the

set of active constraints # (lines 3–5). Then, the agent 08 proceeds by solving

the CSP with the active constraints (line 5), where the variables are boolean

(with 1 and 0 as values) for each agent representing its presence or not in the

combination, the constraints are the currently selected set of constraints, and

the objective function {0;D4 is a function aggregating the soft constraints. If a
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solution is found with an upper bound better than the current best solution, the

solution is kept and considered as candidate for the locally optimal subset (line

6). Then, 08 computes the solution’s value and compares it to the current best

value (lines 7). If the new solution is better, 08 sets the best solution as the newly

found solution and saves it in 14BC as the new best agents combination (line 8).

If there still are soft constraints, agent 08 removes the �rst soft constraint from

the set (to respect the preference order) and adds it at the end of the queue of

all constraints (lines 9–11). The lines 12–13 are only used to retrieve the best

coalition structure and return it.

After having described the locally optimal subset of agents process, we present

the algorithm of CSP improvement in this variant. Algorithm 6 is the one called

when the agent 08 calls 8<?A>{4_8 5 82B0< (line 34 of algorithm 2).

Algorithm 6: improve_i�csam_bestcombinations(08 ,)08 , ()

1 (<0G ← (

2 for C 9 ∈ )08 do
3 ( ′← (

4 � ← �C 9
5 � ′C 9 ← 14BC_2B? (08 , C 9 , �C 9 , %C 9 , �, -�)
6 while ( ′C 9 ≠ ∅ and D6;>10; (( ′) ≤ D6;>10; (() (or after a number of tries)

do
7 � ← � ∪

{
�C 9 ≠ �

′
C 9

}
8 � ′C 9 ← 14BC_2B? (08 , C 9 , �, %C 9 , �, -�)
9 if D6;>10; (( ′) > D6;>10; (() then
10 (<0G ← ( ′

11 return (<0G

In algorithm 6, we duplicate coalition structure ( in ( ′ (line 3), where we

replace the coalition� ′C 9 with the best subset returned by algorithm 5 (line 5). We

then repeat the process of the optimal subset selection until we �nd a coalition

with which the resulting coalition structure increases the global utility or after a

certain number of tries that we �x depending on our application’s computational
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capacity or time-sensitivity level (line 6). We remind here that even in time-

sensitive contexts, when we are in the improvement process (i.e., in the second

stage of the algorithm), the agents already have a feasible coalition structure that

indicates what each agent should do and with which all the tasks are feasible.

After that, agent 08 must check if, with the �nal obtained coalition for task C 9 ,

the global utility D6;>10; is improved (lines 9 - 10 in algorithm 6). If it is the case,

it updates the coalition structure (<0G with the new coalition structure ( ′, where

the coalition assigned to task C 9 is replaced by the resulting coalition � ′C 9 (the

same way it is done in algorithm 4). The coalition structure that algorithm 6

returns passes through a feasibility check test in algorithm 2 (line 25) to decide

whether to keep it as the current best feasible coalition structure or ignore it.

4.5 Complexity Analysis

We discuss the complexity of Algorithm 2 and Algorithm 1. These algorithms may

rely on others, in which case we may discuss the complexity of those algorithms

too. Algorithm 2 appears as a simple procedure, linear in |) | and |�|. However,

one can observe that it calls other procedures, i.e., s-f-st and check_feasibility, that

are solving CSPs [Dechter 2003] whose complexity is NP-complete (one can show

reduction from the 3-SAT problem). Hence, Algorithm 2 is NP-complete as well.

This may seem prohibitive but CSP solvers like the one we use (Chu�ed [Chu

et al. 2018]) allow to deal with high complexity problems e�ciently. Algorithm

1 also seems linear in |) | and |�|. However, it calls Algorithm 2. Hence, it is

NP-complete too, but solvable in practice for the problem sizes addressed in this

work.

4.6 Empirical Evaluation

We illustrate the added value of our approach and evaluate its performance by

benchmarking on a sample application. We also compare with performances

obtained using a centralised method.
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4.6.1 The Scenarios Generator

We evaluate our approach with a set of scenarios generated automatically. These

are used to benchmark FICSAM, IFICSAM (the one-to-one and many-to-one

variants) and a centralised solution.

The scenarios are generated according to the following settings: a �eet of

Unmanned Aerial Vehicles (UAVs) is assigned a mission in a seaport. The (UAV)

agents must inspect the hulls of boats in the port. The UAVs are relying on

Unmanned Surface Vehicles (USVs), where they can charge. There are typically

tens of UAV agents. However, to stretch-test our approach and compare it to a

centralised approach, we experimented with up to 100 agents and 20 tasks. The

USVs are scattered across the port so that the UAVs can easily charge for handling

new tasks. Our scenario generator implements this by randomly positioning

USVs (with a uniform distribution) on the port grid. We assume that the drones

are initially uniformly positioned, but di�erent distributions can be plausible

depending on the application.

Inspection tasks may require various sensors. Here, we rely on two sensor

types: High De�nition (HD) cameras and LASERs (see for example, [Agnisarman

et al. 2019]). The quantity of each resource required by a task depends on the

boat hull. In our scenario generator, the number of resources of each type is

uniformly sampled between 0 and

=064=CB

2·=C0B:B . This maintains scenario diversity and

simpli�es comparison across scenarios and settings, as averages are the same

and can be compared without normalization. In addition to resource constraints,

the generator introduces task interdependence via constraints on sets of tasks.

Finally, each task has a deadline.

The scenario generator also generates UAV agents. For the sake of simplicity,

all UAVs have the same maximum speed. Therefore, the travel time to a task is

proportional to the distance between the task and the UAV. Given a grid size � ,

the generator randomly and uniformly draws UAV distances from [�/2,�].

The agents are provided with sensors such that 25% of them have both sensors,

37.5% have only a LASER, and 37.5% have only an HD camera.

The token-passing strategy implemented is based on inter-agents distances.

An agent holding the token sends it to the nearest agent that has not yet received

the token in the current round.
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Finally, the global utility function is a normalized additive function computed

for tasks and task combinations by accumulating their values, meeting their

requirements, matched against coalitions’ and agents’ characteristics. Specif-

ically, the utility function we used is global and includes the agents’ di�erent

properties regarding their allocated tasks. It sums the average of each of the

number of agents that respect the maximal distance de�ned by their tasks by

a certain margin, the number of allocated agents that have at least a resource,

the number of agents, the number of tasks with a supplementary agent in their

coalitions and the number of tasks with coalitions containing agents with a

lifespan that exceeds a certain threshold.

The generator produces both feasible and infeasible scenarios. The latter is of

interest for method comparison, as it requires that the algorithms prove unsatis-

�ability, which might take a long time. It is to be reminded that a centralized

approach does not apply to the problem settings of these scenarios, mainly to

avoid the single point of failure problem and as a result of the distributed nature

of the drones and the possibility of communication failures.

4.6.2 Implementation

The previous scenario generator was built over the class diagram represented

in �gure 4.6. The base classes represent the core of our algorithms, and the

inheriting classes represent their instantiations to our experimental use case.

4.6.3 Setup

To understand the impact of the number of agents |�| and tasks |) |, simulations

are performed considering sample mission scenarios with |�| ∈ È5, 100É and

|) | ∈ È2, 20É. Tasks are handled by multiple agents. That is why we consider

that the number of agents is always larger than the number of tasks, hence

|�| > |) |. The reported results include algorithms’ execution time taken by the

algorithms to terminate, utilities of the structures they return and the number

of exchanged messages.

For each {|�|, |) |} pair, we executed 200 runs. In each run, the agent charac-

teristics and task requirement attributes are randomly generated.

The execution platform was a 3.70 GHz Intel(R) Core(TM) i9-10900X CPU

running Python, the MiniZinc tool chain and the Chu�ed solver.
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Figure 4.6: Class diagram of our experiments’ implementation

4.6.4 Centralised Solution

To compare the results and performances of our algorithms, we developed a

decentralised method. Our decentralised approach allows agents to make local
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decisions and avoid mission crashes because of a single point of failure. However,

the comparison to a centralised solution facilitates evaluating our solution’s

distance from optimum and execution time.
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For the centralised method, we modeled our allocation problem as a Constraint

Optimisation Problem and solved it with the Lazy Clause Generation based

constraint solver Chu�ed [Chu et al. 2018] through the constraint modeling

language MiniZinc [Nethercote et al. 2007]. The following �gures show the

model expressed in the MiniZinc language.

int: nb_agents;
int: nb_tasks;
int: margin_autonomy_min;
int: margin_distance_max;
int: margin_nb_agents;

set of int: agents = 1..nb_agents;
set of int: tasks = 1..nb_tasks;
set of int: tasks0 = 0..nb_tasks; % 0 means no task

array[tasks] of int : tasks_autonomy_min;
array[tasks] of int : tasks_autonomy_one;
array[tasks] of int : tasks_distance_max;
array[tasks] of int : tasks_resA;
array[tasks] of int : tasks_resB;
array[tasks] of int : tasks_agents_min;
array[tasks] of tasks : tasks_nearest;
array[tasks] of tasks : tasks_nearest_sd;

array[agents] of int : agents_autonomy;
array[agents] of bool : agents_resA;
array[agents] of bool : agents_resB;

array[tasks, agents] of int: distances;

Figure 4.7: Parameters of the centralised method for the experimentations in the

MiniZinc language

Figure 4.7 represents the list of parameters that are given as input data to the

solver. It contains data of the agents characteristics, the tasks requirements and

the thresholds used in the utility function.

In �gure 4.8, the assignment array represents the problem’s decision variables,

which are for each mono-task agent the index of the potential task it can be

assigned to and where zero means no assignment. The constraints are then

listed to represent the tasks requirements. Finally, the objective function to be

maximized is contained in the decision variable obj.
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% C1: Mono-task agents array
array[agents] of var tasks0: assignment;

var int: obj;

% C2: Maximal distance
constraint forall (j in tasks, i in agents)
(assignment[i] == j -> distances[j, i] <= tasks_distance_max[j]);

% C3: Resources A for single tasks
constraint forall (j in tasks)
(sum(i in agents where agents_resA[i])(assignment[i]==j) >= tasks_resA[j]);

% C4: Resources B for single tasks
constraint forall (j in tasks)
(sum(i in agents where agents_resB[i])(assignment[i]==j) >=

tasks_resB[j]);

% C5: Resources A for couples of nearest tasks
constraint forall (j in tasks where tasks_resA[j] > 0) (
(nb_tasks < 5 /\ exists(k in tasks where tasks_nearest[j] == k)

(sum(i in agents where agents_resA[i]) (assignment[i] == j) +
sum(i in agents where agents_resA[i]) (assignment[i] == k) >=

tasks_resA[j] + tasks_resA[k] + 1))
\/ (nb_tasks >= 5 /\ exists(k, l in tasks where tasks_nearest[j] == k

/\ tasks_nearest_sd[j] == l)
(sum(i in agents where agents_resA[i]) (assignment[i] == j) +

sum(i in agents where agents_resA[i]) (assignment[i] == k) +
sum(i in agents where agents_resA[i]) (assignment[i] == l) >=

tasks_resA[j] + tasks_resA[k] + tasks_resA[l] + 1))
);

% C6: Minimal number of agents
constraint forall (j in tasks)
(sum(i in agents)(assignment[i] == j) >= tasks_agents_min[j]);

obj =
(sum(i in agents)(bool2int(exists(j in tasks)(assignment[i] == j /\
agents_autonomy[i] >= tasks_autonomy_min[j] + margin_autonomy_min))) +
sum(i in agents)(bool2int(exists(j in tasks)(assignment[i] == j /\

distances[j, i] <= tasks_distance_max[j] - margin_distance_max))) +
sum(i in agents where agents_resA[i])

(bool2int(assignment[i] != 0)) +
sum(i in agents where agents_resB[i])

(bool2int(assignment[i] != 0)) +
sum(i in agents)(bool2int(assignment[i] != 0))) * nb_tasks+

(sum(j in tasks)(bool2int(sum(i in agents)
(bool2int(assignment[i] == j /\
agents_autonomy[i] >= tasks_autonomy_one[j]))

>= tasks_agents_min[j])) +
sum(j in tasks)(bool2int(sum(i in agents)

(bool2int(assignment[i] == j))
>= tasks_agents_min[j] + margin_nb_agents))) * nb_agents;

solve maximze obj;

Figure 4.8: Variables, constraints and objective of the centralised method for the

experimentations in the MiniZinc language
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Since the proof of unsatis�ability or the proof of optimality might be very long,

we instrumented our code with a timeout. Whenever the search is interrupted,

we consider the problem as unsatis�able for the �rst case and as the best solution

found so far for the second case. In addition, to prevent pathological cases, we

�lter the instances with series of necessary and su�cient conditions (for example,

if the number of available agents is less than the sum of the required number of

agents in all the tasks, it is useless to run the COP). Hence, no need to call the

solver in such cases, which might take a long time to prove unsatis�ability.

4.6.5 Results Evaluation

Number

of

Agents

Number

of

Tasks

Average Utilities Average Execution Time (in s)

FICSAM IFICSAM COP FICSAM IFICSAM COP

5 2 0.58 0.73 0.83 0.9 (± 0.0) 1.4 (± 0.0) 0.2 (± 0.0)

10 2 0.59 0.79 0.85 1.6 (± 0.0) 3.0 (± 0.1) 0.2 (± 0.0)

10 5 0.55 0.70 0.78 1.7 (± 0.0) 2.9 (± 0.1) 48.0 (± 5.3)

20 2 0.53 0.73 0.85 3.6 (± 0.01) 6.8 (± 0.1) 0.2 (± 0.0)

20 5 0.53 0.75 0.86 3.4 (± 0.1) 6.1 (± 0.1) 0.2 (± 0.0)

20 10 0.53 0.70 0.79 42.0 (± 6.9) 43.9 (± 7.0) 1184.4 (± 9.0)

50 2 0.51 0.67 0.85 7.0 (± 0.2) 11.6 (± 0.3) 4.6 (± 6.0)

50 5 0.49 0.67 0.86 69.1 (± 11.1) 76.4 (± 11.3) 0.3 (± 0.0)

50 10 0.54 0.71 0.86 387.6 (± 25.4) 398.4 (± 25.4) 25.1 (± 7.2)

50 20 0.44 0.61 0.80 212.6 (± 25.1) 222.2 (± 25.1) 1195.7 (± 4.5)

100 2 0.48 0.62 0.85 70.2 (± 14.2) 83.4 (± 14.3) 1.8 (± 0.4)

100 5 0.48 0.61 0.86 189.7 (± 24.1) 209.3 (± 24.0) 1.2 (± 7.3)

100 10 0.48 0.63 0.86 446.5 (± 24.7) 468.9 (± 24.4) 32.0 (± 7.3)

100 20 0.53 0.65 0.83 1043.9 (± 45.8) 1073.8 (± 45.8) 1158.6 (± 12.6)

Table 4.5: Experimental results on average time and utilities for FICSAM and IFICSAM

in its swap (1-to-1) variant compared with the centralised method

We present in tables 4.5 and 4.6 the results of the application of our algorithms

FICSAM, IFICSAM with the one-to-one swapping variant (algorithm 3), and the
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aforementioned centralised approach for each metric. Every single result in the

table is an average of experiments with 200 randomly generated scenarios by

the scenario generator. The three methods were all tested on the same scenarios.

The remainder of this section presents the results in terms of global utility

value for the system, runtime, and the number of messages exchanged for the

decentralised version (this metric has no meaning for the centralised approach).

Not surprisingly, the utilities of the solutions generated by the decentralised

approaches are below those of the centralised approach (that are optimal, except

for cases when the time limit is reached). However, impressively, they are

rather close to that optimum. FICSAM solution utilities, being the �rst feasible

coalition structures agents �nd, are below those of IFICSAM solutions where

agents continue searching for other feasible coalition structures with better

utilities. The utilities of FICSAM are consistently above 50% of the utilities of

the centralised approach. IFICSAM utilities are always above 70% of the utilities

of the centralised approach utilities, and are at 75% from optimum on average.

IFICSAM’s search of a better solution through inversion shows that even without

reaching optimality, this policy allows �nding signi�cantly better solutions in

a decentralised manner. We observed that, performance slightly degrades for

a large number of agents (50 or 100). We believe that this may result from

di�culties in �nding an initial solution (as discussed below).

Notice that our algorithms terminate quickly. For the largest instances with

100 agents and 20 tasks, despite the message exchange overhead and the com-

putations performed by disparate agents, both FICSAM and IFICSAM are faster

than the centralised algorithm on almost all the tests we performed. Further, the

latter, given a 1200 seconds timeout, sometimes terminates without reaching an

optimal solution. That is the case where the problem is the most combinatorial,

typically when the ratio of number of available agents per task is the tightest.

Otherwise, the runtime varies across scenarios. It depends not only on the

number of agents and the number of tasks but also on scenario complexity. For

instance, in scenarios with a larger numbers of tasks, a smaller average number

of agents is needed for each task. Therefore, the problem becomes simpler in

some cases as its combinatorial complexity is lower, which favors decentralised

algorithms. For instance, for 50 agents, scenarios with 20 tasks take less time

than with 10 tasks. Eventually, there are scenarios where the centralized solution

is clearly out of the question with respect to the execution time. Consequently,
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not only our approach comes close to the optimal in terms of the solution’s

utility but it can still provide solutions in realistic times when the centralized

method fails to.

Additional tasks, keeping the number of agents �xed, increase the di�culty

for agents to �nd the �rst solution and send an anytime message to other agents.

This can explain the drop in the number of exchanged messages when there

are more tasks for the same number of agents. When the number of tasks is

very small, the problem is inverted; the number of agents required for each

task is larger. This agent multiplicity produces many symmetries among the

variables representing the agents in the centralised COP solution, imposing

additional computation. This can explain why the centralised algorithm for 50

Number

of

Agents

Number

of

Tasks

Average Number of Messages

FICSAM IFICSAM

5 2 18.4 25.9

10 2 36.8 71.7

10 5 38.0 61.8

20 2 71.5 177.2

20 5 71.8 170.7

20 10 75.6 158.2

50 2 178.3 557.6

50 5 176.0 576.3

50 10 181.7 526.8

50 20 180.3 511.7

100 2 351.3 1349.9

100 5 349.7 1204.1

100 10 350.6 1419.5

100 20 362.2 1147.1

Table 4.6: Experimental results on the average number of messages for FICSAM and

IFICSAM in its swap (1-to-1) variant compared with the centralised method
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and 100 agents, requires more time to solve scenarios with two tasks compared

to scenarios with �ve.

As mentioned above, some of the generated scenarios are infeasible because

task requirements cannot be covered by the generated set of agents. In such

cases, the number of exchanged messages in our mechanism is always twice the

number of agents. This results from the number of token-passing messages, to

which we add the number of end messages with the mentioned failure. In fact,

the token is passed via a message to all agents, from each to the next one. Then

the last one that receives the token without succeeding �nding a solution sends

to its previous end message and so on until the �rst agent is reached.

Moreover, FICSAM and IFICSAM take signi�cantly less time than the cen-

tralised algorithm to terminate when there is a large number of agents and tasks.

For 20 agents and 10 tasks, for example, they terminate after 70 seconds on

average, while the centralised algorithm takes 400 seconds. For 50 agents and

10 tasks, they terminate after 360 seconds while the centralised, interrupted by

the timeout, takes 1200 seconds. This observation sheds light on the cost of

computing an unsatis�ability certi�cate by COP methods. This cost appears

signi�cantly larger than the computational cost exhibited by the decentralised

approaches presented in this paper.

4.6.6 Results for the many-to-one swapping improvements

We also wanted putting in evidence the added value of algorithm 6. We recall

that this algorithm uses CSP techniques for each task to �nd the better coalition

locally. In this way, the decision-maker agent performs a many-to-one swapping

of this coalition with the one that is already assigned to that task, aiming to �nd

another coalition structure with a greater utility. We used the same generator of

experiments, and we replaced the LASER sensors with arms. The agents with

the arms can lift objects, and two armed agents are needed to lift each object.

This is why we added a constraint requiring a couple of armed agents for each

task since one-armed agent cannot perform the lifting alone.

In addition to the application’s hard constraints, we also used an ordered list

of preferences (i.e., soft constraints) in algorithm 6. With the �rst preference we

considered only agents that are not assigned to the current coalition structure in

order to minimize the chances of breaking the feasibility of the resulting coalition

structure after the swapping. With the second preference we considered only
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agents whose positions are closer to the task’s position by also considering a

supplementary margin. With the third preference we considered only agents with

greater autonomy than the minimum required for this task by also considering an

additional margin. These preferences helped us orienting the research towards

feasible coalition structures with better utilities.

For each {|�|, |) |} couple, we executed 1000 runs.

Number

of

Agents

Number

of

Tasks

Average Utilities
Cases where

IFICSAM (many to 1)

solutions are optimal
FICSAM

IFICSAM

COP

1 to 1 many to 1

5 2 0.46 0.48 0.85 0.88 60%

10 2 0.44 0.53 0.64 0.89 8%

10 5 0.52 0.53 0.52 0.86 6 %

Table 4.7: Experimental results on average time and utilities for FICSAM and IFICSAM

in its two variants swap and bestcombinations (1-to-1 and many-to-many) compared

with the centralised method

In these experiments (with the way we generate our scenarios), we planned to

run the algorithm 6 a limited number of times. We �xed the number of iterations

at �ve by looking for a local better coalition that allows increasing the coalition

structure utility (line 6 of algorithm 6).

For small instances of our scenarios (i.e., where the number of agents does

not exceed 10), the use of algorithm 6 allows (with the de�ned hard and soft

constraints) �nding the locally best subset that increases the global utility in

the �ve �rst iterations. However, for instances with more agents, the scenar-

ios generator must be updated for generating scenarios with more constraints

on combinations involving several agents, which are recurrent in real-world

applications. Moreover, the number of iterations has to be con�gured (i.e., in-

creased) with respect to the application time limits and the problem’s size for

approaching the optimal solution. Finally, more soft constraints can be added to

help algorithm 6 become more e�cient.
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Nevertheless, the results on small instances show that, on average, algorithm 6

outperforms algorithm 3 in many instances just by adding one single task requir-

ing speci�c combinations (here a couple) of agent characteristics (here armed

agents). In this case, the �rst variant of our IFICSAM algorithm (i.e., the one-to-

one swapping algorithm 3) fails to obtain a coalition structure with a greater

utility. The reason is that this algorithm can only add or exchange an agent with

one agent each time and cannot add couples of armed agents to the coalitions.

Consequently, algorithm 6 may improve global utility. Our experiments fo-

cused on small instances, but our objective for future work is to create an

optimized scenario generator to demonstrate its e�ciency also for larger in-

stances.

4.7 Discussion

Algorithms FICSAM and IFICSAM are based on a novel approach with token-

passing decentralised coalition formation algorithms for multi-agent systems.

They enable the cooperative agents to make decisions related to a task allo-

cation problem when tasks are interdependent. A communication protocol

underlines the decision-making process for the inter-agents exchange of mes-

sages. Hence, the algorithm Feasible Interdependent Coalition Structure Anytime

Method (FICSAM) allows �nding collectively an anytime solution, a feasible

coalition structure, �rst. When agents require an anytime solution, they can stop

here and start their execution. In a second time, with the algorithm IFICSAM

in addition, the agents can improve their solution’s quality to increase their

collective performance expressed by the utility function. The �rst solution found

guarantees that the tasks can be performed by agent coalitions each task is

allocated to. This �rst coalition structure is found in a very reasonable time,

even with large instances. The �rst solutions, especially the solutions after the

one-to-one swapping improvement, have very good utilities compared to the

centralised solutions that produce optimal utilities. Besides, in the beginning,

the agents start making decisions with partial information along with gath-

ering information about other agents’ characteristics. At the end of the �rst

round, all the agents have information about all the other agents’ characteristics.

This is what makes it safe to decide that no solution exists covering the tasks

requirements at the end of the �rst round at the latest.
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The algorithms presented in this chapter are entirely decentralised, anytime,

solve the interdependent task allocation problem, built on a communication

protocol with a reasonable number of short messages to be exchanged, can scale

to large instances, and produce coalition structures that are feasible with very

good utilities.

The improvements we proposed in this chapter and more extensions can be

tested and developed. For example, the impact of the token-passing order on

results if multiple orders are possible can be interesting to study. In our approach,

and since the information and the solution are constructed, the decision is

sequential and only one agent at a time has the decision token. A study of the

possibility of paralleling the decision in speci�c cases can be examined.
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5.1 Introduction

This chapter concludes our dissertation by summarising the work and the con-

tributions presented in the preceding chapters. Furthermore, it discusses some

directions for possible improvements and future works on the subject of this

thesis.

5.2 Thesis Results

Motivated by the need to design cooperative agents capable of making decisions

about their task allocation in contexts where the tasks are interdependent, this

dissertation makes several contributions to the �eld of Multi-agent Systems.

Our contributions are a mix of scienti�c and practical contributions. These

contributions are communicated in a paper and three patents listed in section 5.3

and are summarised as follows:

• A survey of task allocation approaches with a detailed analysis on formal-

isation and resolution aspects. We have presented various solutions that

we globally compare based on di�erent factors for each family of methods.

The survey tackles both cases of independent and interdependent tasks.

In the case of the interdependent tasks, we have examined the problem

from a coalition formation perspective and the task allocation perspective

with sequential tasks. It focuses on multi-agent tasks and decentralised

con�gurations.

• An end-to-end approach to allocate tasks in critical, dynamic and complex

missions. The approach applies to multi-agent independent tasks and

heterogeneous cooperative agents. It includes an informal approach to

guide designers in modelling a utility function when the experts cannot

provide one, and implementing a state of the art task allocation algorithm.

We have run empirical experiments on our use case with our simulator.

The approach, the use case, and the results cannot be presented in this

document for con�dentiality reasons.

• We have proposed a general modelisation of the interdependent task allo-

cation problem considering both qualitative and quantitative properties

for tasks and agents. Our modelisation is generic and covers the agent

108



Thesis Results Section 5.2

characteristics, the di�erent task requirements, both for a single task or a

combination of tasks, the di�erent agents-tasks relations, and the utility

function. The tasks being multi-agent, our modelisation of the task alloca-

tion problem falls into the coalition formation framework. Furthermore,

the dependencies between tasks can appear on two levels. Firstly, they

appear in the requirements that concern a task combination rather than a

single task. The task combination requirements make the corresponding

tasks interdependent since their coalitions must ful�l that requirement

together. Secondly, task dependencies are expressed by the global utility

function that involves the whole coalition structure as a whole and does

not simply represent a sum of de�ned utilities for each coalition.

• We have introduced a novel approach for a feasible coalition structure

formation for interdependent task allocation under the coalition formation

paradigm. The approach is fully decentralised, based on a token-passing

process and a messages exchange protocol, and composed of two stages.

As the anytime solution proposal was the main requirement, the �rst stage

aims to �nd a feasible coalition structure representing an anytime solution.

The second stage allows �nding other feasible coalition structures with

better utilities. When the goal is limited to �nding a feasible coalition

structure, the process ends by the end of the �rst stage. This is noted as

the algorithm FICSAM. In this algorithm, we implemented a CSP method

to generate a feasible coalition structure or check a coalition structure

feasibility, using the mirroring between our modelisation of the task re-

quirements and the constraints. When more time is available for �nding a

better solution in terms of utility, we have developed for the second stage

three extensions to the previous algorithm under the name IFICSAM. In

the �rst extension, agents test di�erent one-to-one swapping with other

agents to check if the swap can result in another coalition structure that is

feasible too, yet that increases the global utility. In the second extension,

agents try to do many-to-one swapping where each tries to shift its place

with a combination of agents. We improve this second extension by a

third one where we use a Branch & Bound CSP technique to choose the

best combination of agents that is a candidate to a swap with the agent in

question.

• We have built a scenario generator for a speci�c use case to test our
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approaches. Our generator randomly generates the attributes’ values

of agent characteristics, single task requirements, and task combination

requirements. This allows for an extensive and various benchmark of

scenarios.

• We have developed the global procedure algorithm used to orchestrate the

token passing to de�ne the underlying communication protocol between

agents. This procedure de�nes the agents’ behaviour when they receive

each of the di�erent types of messages and their content. Each agent knows

only its own characteristics at the beginning of this process. However,

this algorithm allows agents to share their characteristics with others and

update their knowledge of the other agents. In addition, the token passing

organisation allows having mandatory sequential decision-making due to

the interdependent character of the tasks.

• We have presented several experimental results showing that the agents

can e�ciently cooperate and form coalitions and that e�cient task allo-

cation can be achieved by decentralisation even when tasks are interde-

pendent. We compared the results of our approach with the results of

a centralised method built with COP techniques. We have shown that

our decentralised approaches terminate in very reasonable times with

near-optimal performances.

5.3 Limitations and Recommendations for Future
Work

The present research work leads to several open fronts and research perspectives

that merit to be investigated:

• The �rst research direction concerns the development of use cases with

con�guration that shows the advantages of the IFICSAM extension with

the many-to-one swapping using the B&B CSP techniques. Due to lack of

time, we could not generate scenarios that highlight the features of this

approach.

• The second research direction regards the study of the token passing

strategy. We observed the order by which the agents receive the token and,
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thus, the token passing graph in�uence the resulting coalition structures.

The token passing process is, of course, application-dependent. However,

if the application allows di�erent con�gurations, a study on the e�ects

of these di�erent con�gurations on the results can lead to optimisation

suggestions.

• It is to be noticed that, for more e�ectiveness, our algorithm can bene�t

from some heuristics. The objective is to obtain not only a feasible initial

task allocation but also a “good” initial task allocation. The third research

direction concerns adding heuristics to our algorithms. Furthermore, this

might be advantageous for the second stage of the algorithm that continues

improving the task allocation. The heuristics can be for instance: to be

greedy regarding the coalition to join in the �rst stage, prioritise tasks

with more demanding requirements, namely tasks that are more “di�cult”

to cover by the set of available agents, or start allocating tasks that require

the rarest agents characteristics.

• Even though our algorithms are conceived to be dynamic, we have only

tested them on static environments. Another research direction concerns

the study of our approach in the case of a dynamic environment. The

goal is to relax the assumption of having a static environment and make

some minor changes to our algorithms to guarantee their robustness to

dynamism. The basic idea is to have a trigger announcing a change in the

environment. This trigger activates an intermediary stage that makes the

agents update their current coalition structure depending on the occurring

changes and resume the process normally.

• A research direction, focusing on the constraint solving techniques, regards

the implementation of FICSAM and IFICSAM with other solvers. The

objective is to analyse the results using di�erent solvers. Notably, we

would like to implement the OR-Tools solver, the winner of the Minizinc

competition for the last few years. It could be interesting to test IBM’s CP

or SCIP solvers that are known to have very good performances.

• From a utility function design perspective, a research direction concerns

treating more speci�c cases of interdependent tasks and the appropriate

utility function formulation. We observed that expressing the utility func-

tion is not always easy without one given by the end-user. The idea is to
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provide an approach to guide the utility function design for speci�c, more

common task dependencies cases.

• In the same previous research direction, a sub-direction concerns focusing

on coalitional utility functions of speci�c types or classes to enhance

the coalition structure generation in terms of quality and execution time.

For example, it is interesting to examine coalition structure generation

assuming superadditive or subadditive functions [Bista�a, Farinelli, Jesús

Cerquides, et al. 2014; Bista�a, Farinelli, Chalkiadakis, et al. 2017; Dang

et al. 2006].

• Last but not least, another research direction concerns studying scrupu-

lously the impact of our scenario generator variations on the complexity

of constrained allocation problems it is called for.
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A Résumé long en Français

A.1 Introduction

A.1.1 Contexte et Motivation

Les avancées technologiques dans la construction des robots, les technologies

des capteurs et les capacités de calcul ont renouvelé l’intérêt pour les méthodes

d’allocation de tâches multi-agents. Avec la baisse des coûts de production,

ces progrès accélèrent l’avènement de ces technologies et encouragent leur

utilisation dans des missions quali�ées de complexes et critiques avec des con-

�gurations di�ciles voire impossibles à gérer par un seul robot mais beaucoup

plus faciles à résoudre en utilisant une équipe de robots. Tirer pleinement parti

de ces robots nécessite une intelligence incarnée leur permettant de s’allouer des

tâches en fonction de leurs capacités, des exigences des tâches de la mission et de

l’évaluation de la réalisation de ces tâches par des groupes particuliers d’agents.

On peut distinguer deux situations di�érentes. Dans certaines applications, les

tâches composant la tâche globale sont indépendantes, i.e. la qualité d’exécution

d’une tâche ne dépend que des agents qui lui sont a�ectés mais pas des autres

tâches. Dans ce cas, l’utilité de la tâche globale est additive (la somme des utilités

individuelles des tâches). En revanche, dans d’autres applications, il n’est pas

possible d’évaluer l’allocation d’agents spéci�ques à une tâche localement sans

considérer les allocations des autres tâches. Ainsi, les utilités des tâches ne

peuvent pas s’additionner et l’utilité de la tâche globale ne peut être calculée que

dans son ensemble. Cela se produit, par exemple, lorsque deux tâches partagent

une ressource essentielle ou quand les tâches ont un certain ordre d’exécution.

Ces tâches sont dites interdépendantes. En plus de cette inclinaison liée à l’utilité

globale de l’interdépendance, cette dernière peut être présente au niveau des

contraintes de faisabilité. C’est le cas où deux ou plusieurs tâches ne peuvent pas

être accomplies si elles ne véri�ent pas ensemble certaines contraintes. Sinon, les

tâches individuelles concernées ne peuvent pas être exécutées même si chacune

remplit ses contraintes locales.
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La thèse, réalisée dans un cadre industriel, est basée sur un cas d’utilisation

dont les agents sont autonomes, coopératifs et hétérogènes, devant e�ectuer un

ensemble de tâches complexes. En assumant l’indépendance des tâches, nous

avons modélisé le problème sous un paradigme spéci�que, choisi un algorithme

d’allocation de tâches convenant aux particularités de l’application, établi un

guide avec des techniques MCDM pour la modélisation de la fonction d’utilité et

implémenté ces techniques sur un simulateur spécialement conçu [Gayraud et al.

2021]. Les expérimentations empiriques donnaient de bons résultats lorsque

les tâches n’avaient pas des e�ets les unes sur l’exécution des autres. Dans le

cas contraire, nous avons eu des résultats inattendus par rapport aux prévisions

opérationnelles. L’analyse de cette incohérence a relevé le caractère interdépen-

dant des tâches que nous n’avons pas pris en compte dans notre modélisation.

Un examen plus approfondi de l’interdépendance des tâches et l’observation

de sa présence dans de nombreuses applications du monde réel, ont précipité

l’orientation de ce travail vers le cas des tâches interdépendantes.

Le travail réalisé incluant la modélisation, l’approche suggérée et les résultats

est documenté dans un brevet [Ahmadoun et al. 2020] qui a été mis au secret

par l’Agence du Gouvernement français de la Défense.

A.1.2 Problématique de Recherche

Ce projet doctoral se focalise sur des agents mono-tâches et hétérogènes, de par

leurs di�érentes capacités. Ces agents doivent réaliser, coopérativement, une

mission composée de tâches interdépendantes dont chacune nécessite un sous-

ensemble d’agents avec une combinaison spéci�que de capacités, d’où le besoin

de former des coalitions. L’environnement est considéré statique, mais nous

pouvons étendre à un environnement dynamique. Pour s’adapter à la nature

des applications du monde réel critiques, avec une communication instable et

avec des robots ou des drones comme agents, nous nous concentrons sur une

con�guration décentralisée et anytime.
La problématique centrale étudiée dans cette thèse est: L’allocation décen-

tralisée de tâches via la formation de coalition pour des tâches inter-
dépendantes. Le but est de dé�nir une a�ectation de coalitions d’agents aux

tâches en faisant correspondre les capacités des agents avec les exigences des

tâches et en maximisant une fonction d’utilité même si les tâches ne peuvent

pas être évaluées séparément vu leur interdépendance. Le mécanisme doit être

complètement décentralisé et chaque agent doit pouvoir décider en fonction
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des informations dont il dispose et communiquer avec d’autres agents. En�n,

nous considérons des contextes où les tâches sont multi-agents vu leur complex-

ité et leur exigence de combinaisons particulières de capacités de la part des

agents pour qu’elles soient faisables. D’où la formalisation du problème sous le

paradigme de la formation de coalitions.

A.1.3 Contributions de la Thèse

Cette thèse a abouti à de nombreuses contributions. D’abord, une étude des

di�érentes familles de méthodes d’allocation de tâches indépendantes et inter-

dépendantes avec une comparaison globale basée sur un nombre de facteurs.

Ensuite, une approche de bout en bout pour allouer des tâches indépendantes

dans des missions critiques, dynamiques et complexes accompagné d’un guide

informel de la modélisation d’une fonction d’utilité pour les concepteurs [Ah-

madoun et al. 2020; Gayraud et al. 2021]. Aussi, une modélisation générale

du problème d’allocation de tâches interdépendantes considérant à la fois les

propriétés qualitatives et quantitatives des agents et des tâches. En plus, une

nouvelle approche pour la formation de structure de coalitions faisable pour

l’allocation de tâches interdépendantes [Ahmadoun et al. 2021]. En�n un al-

gorithme anytime et décentralisé en deux étapes pour l’allocation de tâches

interdépendantes via la formation de coalitions avec trois extensions di�érentes

ainsi qu’un protocole de communication inter-agents [Ahmadoun et al. 2021;

Ahmadoun et al. 2021].

A.1.4 Plan du Résumé

Dans la suite de ce résumé, sont décrites les méthodes phares de la littérature

de l’allocation de tâches dans le chapitre A.2. Une formalisation de l’allocation

des tâches interdépendantes est ensuite présentée dans le chapitre A.3. Dans le

chapitre A.4, une nouvelle approche est introduite avec di�érents algorithmes

décentralisés pour résoudre le problème de la génération puis de l’amélioration

de structures de coalitions faisables pour l’allocation de tâches interdépendantes.

Ce travail est en�n conclu avec les apports et les limites de nos contributions

ainsi que des perspectives pour le travail futur.
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A.2 Etat de l’art

Ce chapitre donne un aperçu des principales approches de la littérature abordant

le problème d’allocation de tâches. Nous nous concentrons fondamentalement

sur un certain nombre des familles de méthodes d’allocation de tâches les plus

populaires.

De nombreuses méthodes ont été proposées pour coordonner les agents

coopératifs et produire une allocation de tâches indépendantes. Les méthodes

basés sur le marché [Dias et al. 2006; Mosteo et al. 2010] proposent des enchères

collaboratives sur des tâches avec les algorithmes CBAA et CBBA [Brunet 2008;

Buckman et al. 2019; Choi et al. 2009; ElGibreen et al. 2019] ou contract nets

[Smith 1980; Wooldridge 2009]. Le processus de décision multi-agents de Markov

(l’un des cadres les plus courants pour l’optimisation multi-agents) introduit

la programmation dynamique [Boularias et al. 2008; Hansen et al. 2004], la

recherche heuristique exacte [Szer et al. 2005], méthodes approximatives [Amato

et al. 2007; Kochenderfer 2015; Oliehoek et al. 2016] ou encore l’apprentissage par

renforcement multi-agents [Buşoniu et al. 2010; Hausknecht et al. 2015; Sutton

et al. 1998]. Les problèmes distribués d’optimisation des contraintes (DCOP)

(une présentation exhaustive peut être trouvée dans [Fioretto et al. 2018]), est

un paradigme multi-agent qui présente des méthodes allant des algorithmes

complets [Hirayama et al. 1997; Modi et al. 2005] aux algorithmes approximatifs

avec [ottens2012duct; Nguyen et al. 2013] et sans limites d’erreur [Farinelli,

Rogers, Petcu, et al. 2008; Fitzpatrick et al. 2003; Maheswaran et al. 2004; Okimoto

et al. 2011].

Les méthodes décentralisées d’allocation des tâches peuvent être étudiées selon

plusieurs critères. Le premier critère est le type de problème que ces méthodes

peuvent traiter tel qu’il est proposé par la classi�cation de Gerkey [Gerkey et al.

2004]. Cependant, selon le problème abordé, d’autres caractéristiques peuvent

être essentielles. En particulier, le temps de convergence de l’algorithme en

fonction du nombre d’échanges entre agents, ainsi que la complexité des calculs

e�ectués par chaque agent, sont des éléments essentiels selon les cas d’utilisation.

L’aspect spéci�que de l’allocation des tâches à un système multi-agents (lié à

notre problématique de recherche) est décrit dans la littérature par le concept

de formation de coalitions. Ce concept est largement étudié dans le domaine de

la théorie des jeux [Aumann et al. 1974; Shenoy 1979] mais il est aussi tout à

fait applicable dans un contexte plus général d’allocation de tâches [O. Shehory
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et al. 1998]. Dans ce cadre, les coalitions interdépendantes sont exprimées par les

PFGs, se référant aux Partition Function Games, contrairement aux CFGs, pour

Characteristic Function Games [Rahwan, T. P. Michalak, et al. 2015]. L’état actuel

de l’état de l’art présente le cas des coalitions interdépendantes, qui nous intéresse

a�n de traiter les tâches interdépendantes, comme résolvable uniquement par

recherche par force brute, à moins que des hypothèses supplémentaires, appelées

externalités, ne soient placées sur la fonction de partition [Präntare et al. 2020].

Ces externalités sont liées à la fusion des coalitions, ce qui n’est pas adapté à un

problème d’allocation de tâches où le nombre de coalitions est �xe (identique au

nombre de tâches).

Dans les familles de méthodes évoquées et autres, il est souvent assumé

que les tâches sont indépendantes. Les quelques travaux abordant le problème

d’allocation des tâches interdépendentes se focalisent sur le cas particulier des

interdépendances temporelles, où les contraintes de précédence sont considérées

[Beck et al. 2016; Behrens et al. 2019; Brutschy et al. 2014; Dahl et al. 2009].

Ceci dit, les travaux de recherche présents dans la littérature ne proposent pas

de solutions à notre problème. Aucune méthode n’a été suggérée pour trouver

de manière décentralisée pour un système multi-agents une allocation des tâches

entre agents sous le paradigme de la formation de coalitions dans le cas où il

existe une interdépendance entre les tâches au sens général de l’interdépendance

des tâches et qui vise à être appliquée aux applications du monde réel, et doit

ainsi être anytime.

A.3 Modélisation du problème

L’objectif de ce chapitre est de modéliser le problème de l’alloacation de tâches

sous le paradigme de la formation de coalitions dans le cas des tâches interdépen-

dantes général.

Le problème consiste à dé�nir un ensemble d’agents coopératifs mono-tâches

� = {01, . . . , 0 |� |}. Chaque agent est décrit par un ensemble de caractéristiques

dans - = {G1, . . . , G |- |} avec G: ∈ - un attribut considéré comme une fonction

G: : �→ �: , où �: est le domaine de valeurs pour l’attribut G: et G: (08) est la

valeur de la caractéristique G: pour l’agent 08 .

On dé�nit également un ensemble de tâches composant la tâche globale

) = {C1, . . . , C |) |}. Ces tâches ont des exigences qui sont dé�nies sur deux

niveaux: au niveau des tâches individuellement et au niveau des combinaisons
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des tâches. D’abord, chacune des tâches C 9 ∈ ) est décrite par un ensemble

d’exigences �C 9 = {W1, ..., W<} avec W; ∈ �C 9 un attribut considéré comme une

fonction W; : ) →  ; , où  ; est le domaine de valeurs pour l’attribut W; et W; (C 9 )
est la valeur de l’exigence W; pour la tâche C 9 .

Ensuite, on dé�nit des exigences pour toute combinaison de tâches 21C 9 dans

)21C = {21C1, . . . , 21C=} où )21C ⊆ 2
)

. Ainsi, chaque combinaison de tâches

21C 9 ∈ )21C est décrite par un ensemble d’exigences L21C 9 = {_1, . . . , _? } avec

_; ∈ L21C 9 un attribut considéré comme une fonction L21C 9 : ) → �; , où �; est

le domaine de valeurs pour l’attribut _; et _; (21C 9 ) est la valeur de l’exigence _;
pour la combinaison de tâches 21C 9 .

Une structure de coalition ( = {�C1, . . . ,�C |) | } est un ensemble de coalitions

d’agents dont chaque coalition �C 9 (de par ses agents) est a�ectée à une tâche

C 9 ∈ ) . L’objectif est donc de trouver une structure de coalition ( faisable qui

maximise l’évaluation d’allocation, exprimée par une fonction d’utilité globale.

La faisabilité d’une structure de coalitions est conditionnée par la satisfaction

de toutes les exigences, que ça soit celles dé�nies au niveau des tâches ou celles

dé�nies pour des combinaisons de tâches.

En plus de la satisfaction de ces exigences qui représentent des contraintes

dures, la fonction d’utilité, étant globale et portant sur l’ensemble de la structure

de coalitions à la fois, exprime aussi les interdépendances des tâches et est

maximisable. Elle doit être dé�nie selon les besoins spéci�ques de l’application

et doit doit prendre en compte la globalité des tâches pour couvrir les leurs

interdépendances plutôt que d’être simplement une somme d’utilités dé�nies

sur des tâches.

A.4 Algorithmes et Résultats

Dans ce chapitre, nous avons présenté l’approche que nous proposons pour

résoudre la problématique de l’allocation des tâches interdépendantes.

L’objectif principal de notre travail est de trouver la meilleure structure de

coalition faisable par rapport à l’utilité globaleD6;>10; si elle existe, ou de détecter

la non-existence d’une structure de coalition faisable le plus tôt possible. Nous

proposons une approche de solution décentralisée basée sur le passage de jetons

entre les agents candidats des di�érentes coalitions qui seront a�ectés aux tâches

composant la tâche globale.

136



Le processus est divisé en tours. A chaque tour, le jeton circule parmi les

agents. Le tour se termine lorsque tous les agents ont reçu le jeton une fois.

L’ordre du passage de token entre les agents dépend de l’application. Par exemple,

dans une application avec une certaine hiérarchie, le jeton peut être envoyé

du plus important, et donc peut-être le meilleur candidat de l’équipe, au moins

important, celui qui a le moins de ressources et de qualités pour l’application.

Dans une application placée dans l’espace, le jeton peut être transmis d’un agent

à l’agent le plus proche.

Au départ, chaque agent connaît ses propres caractéristiques et la tâche globale

) à accomplir. Les informations sur les autres agents et l’évolution de la formation

de la structure de coalitions arrivent via le jeton échangé. Lorsque l’agent 08
envoie le jeton à l’agent 0 9 qui est son suivant, ce dernier reçoit avec le jeton

des informations sur la meilleure structure de coalitions faisable (par rapport à

D6;>10; ) ( formée jusqu’à présent, l’expertise accumulée (i.e. les caractéristiques)

-( des agents participants à ( , et le nombre d’agents =3 qui n’ont pas changé de

structure de coalitions (n’ont pas décidé de rejoindre une coalition).

Détenant le jeton, l’agent 08 peut décider de rejoindre (ou initier) une coalition

�C 9 a�ectée à la tâche C 9 , si elle peut contribuer à l’accomplissement de la tâche C 9
ou si sa participation peut augmenter la fonction d’utilité globale D6;>10; . Cette

organisation est assurée par un algorithme global schématisé dans les �gures A.1

et A.2. Le cas échéant, l’agent 08 met à jour les informations qu’il a reçues avec

les modi�cations qu’il a appliquées. Ensuite, l’agent 08 passe le jeton à l’agent

suivant. S’il n’a pas rejoint une coalition, il passe le jeton à l’agent suivant en

transmettant simplement les informations qu’il a obtenues de l’agent précédent.

Nous supposons que les agents peuvent échanger des messages et nous

décrivons le protocole de communication qui organise l’échange de messages

entre agents (dans �gure A.2). Pourtant, l’infrastructure de communication

sous-jacente est au-delà de la portée de ce travail.

Notre approche repose principalement sur deux phases:

Phase I C’est la phase qui coïncide avec le premier tour. Dans ce tour, les agents

ont comme objectif primaire de trouver une structure de coalitions ( 5

faisablie, si l’en existe.

Par conséquent, un agent ne rejoint une coalition que s’il peut satisfaire
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Figure A.1: Processus du premier agent

certaines exigences de tâches non encore satisfaites par d’autres membres

de la coalition, quel que soit l’impact sur D6;>10; (i.e. l’amélioration de la

La valeur D6;>10; n’est pas une condition préalable à ce stage). Si aucune

( 5 n’est trouvée à la phase I, on peut déclarer qu’aucune telle structure ( 5

n’existe compte tenu des exigences des tâches et des caractéristiques des

agents disponibles.

Nous appelons la méthode implémentant cette étape FICSAM.

Phase II implémente notre deuxième méthode qui se focalise sur l’amélioration

progressive de la structure de coalition faisable trouvée jusqu’à présent.

Cette méthode commence à partir du deuxième tour. Une fois qu’une

structure de coalitions faisable a été trouvée à la �n du premier tour (et par

conséquent de la phase I), les agents essaient d’améliorer D6;>10; via des

remplacements ou des échanges entre un seul ou des groupes d’agents. La
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Figure A.2: Processus global

structure de coalitions améliorée qui en résulte doit préserver la faisabilité

en respectant toutes les exigences des tâches et des combinaisons de tâches.

Nous appelons la méthode implémentant la première étape combinée à

cette deuxième étape IFICSAM.

Figure A.3 schématise l’algorithme que nous proposons pour le processus de

décision. En e�et, quand un agent 08 reçoit un jeton d’un autre agent pendant le

processus de formation de la coalition, ce processus est déclenché. La décision

de l’agent dépend du contenu du message reçu et du tour ' dans lequel se trouve

le processus. Dans la première phase (i.e. premier tour), l’agent applique une

méthode de formation de coalitions en utilisant ces connaissances accumulés sur

les autres agents et ces connaissances sur les tâches pour générer une structure

de coaltions. Pour ceci, il appelle la méthode s-f-st. Nous avons choisi d’utiliser
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Figure A.3: Processus de décision
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un solveur en modélisant ce problème par un CSP. Nous avons utilisé ce solveur

CSP également pour véri�er la faisabilité des structures de coalition générées ou

construites.

Dans la deuxième phase, et dans la quête d’autres structures de coalitions

faisables avec des utilités plus grandes, nous proposons trois variantes di�érents.

Dans la première, l’agent en possession du jeton essaie de rejoindre une coalition

ou d’échanger sa place avec un agent dans une coalition et véri�e si un tel

changement augmentera l’utilité globale. Dans la seconde, et pour explorer plus

de structures de coalitions possibles, l’agent cherche à échanger les places des

agents dans une des coalitions par un sous-groupe d’agents dont il appartient.

Cette solution permet d’explorer plus de possibilités mais vu le nombre de

véri�cations à faire, n’est pas scalable. Pour ce, dans la troisième variante nous

proposons de faire l’échange des agents d’une coalitions avec un certain sous-

groupe d’agents, mais qui est choisi en utilisant un CSP qui repose sur des

contraintes solides qui représentent les exigences de la tâche en question, mais

aussi des préférences dé�nies selon l’application. Cela permet de trouver la

meilleur coalition pour la tâche.

Ces di�érentes variantes ont été testés sur un benchmark de scénarios. Pour

ce, nous avons construit un générateur de scénarios basés sur un cas d’utilisation

de drones de surveillance.

Les résultats empiriques montrent que nos algorithmes, notamment FICSAM,

IFICSAM avec la première variante et IFICSAM avec la troisième variante pren-

nent un temps raisonnable pour terminer. Les utilités, comparées aux utilités

optimales, s’approchent de l’optimal pour les versions IFICSAM. La première

variante a des résultats meilleurs lorsque la nature de l’application permet de

faire des échanges sans risquer d’invalider les exigences des autres tâches. Tan-

dis que la troisièle a de meilleurs résultats lorsqu’il y a dans l’application plus

d’exigences qui ne peuvent être remplis que par une combinaison particulière

d’agents.

A.5 Conclusion et Perspectives

A.5.1 Conclusion

L’objectif de cette thèse a été de contribuer à l’état de l’art du problème de

l’allocation des tâches dans les systèmes multi-agents dans le cas des tâches
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interdépendantes visant des applications du monde réel. Dans ces applications, il

est récurrent d’opter pour des solutions décentralisées pour la prise de décision

d’abord pour la nature des agents utilisés (robots, drones, ...) mais aussi en raison

des contraintes environnementales et des besoins de robustesse. En plus, les

tâches dans les applications du monde réel peuvent être interdépendantes sous

di�érentes formes: partage des ressources, in�uence de l’exécution, contraintes

d’ordre, synchronisation, ...

Une étude minutieuse et analytique de l’état de l’art du problème de l’allocation

de tâches dans un contexte où les agents sont coopératifs et hétérogènes, a mené

à la conclusion que les méthodes existantes supposent l’indépendance des tâches

ou le cas échéant une interdépendance limitée à une interdépendance temporelle.

Cependant, ayant besoin d’un algorithme pour les applications où les tâches

peuvent exhiber une interdépendance plus générale, nous avons proposé une ap-

proche couvrant à la fois un algorithme d’allocation décentralisé avec di�érentes

extensions et une dé�nition formelle du problème en formulant les dépendances

inter-tâches et en précisant la nuance entre une solution qui satisfait les tâches

et une autre solution qui en plus en optimise la performance. Notre approche

a été testée sur un bunch d’expérimentations produites avec un générateur de

scénarios qui ont montré que nos méchanismes fournissent des solutions fais-

ables et améliorables dans des temps acceptables tout en étant décentralisées et

anytime. Ainsi, cette thèse couvre e�cacement diverses questions visant à faire

progresser les mécanismes de prise de décision des agents pour construire de

manière robuste des équipes multi-agents.

A.5.2 Perspectives pour de futurs travaux

Notre approche et nos contributions, ayant comme objectif de contribuer à la

nouvelle piste de recherche concernant les tâches interdépendantes, ont des

limitations. Ainsi, plusieurs pistes se présentent pour les travaux futurs à la suite

de ce travail. Premièrement, et a�n de tester expérimentalement l’extension

IFICSAM qui utilise les techniques B&B CSP pour chercher une solution avec une

meilleure utilité, un cas d’utilisation avec une con�guration où c’est avantageux

de faire des échanges de plusieurs agents avec un agent est à développer. Ensuite,

nous pourrons tester d’autres solveurs pour les CSPs appelés par nos algorithmes

FICSAM et IFICSAM et faire l’analyse de leurs di�érents résultats. En partic-

ulier, nous aimerions implémenter le solveur OR-Tools, vainqueur du concours

minizinc ces dernières années. Aussi, nous aimerions assouplir l’hypothèse du
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statisme de l’environnement en rajoutant un déclencheur annonçant un change-

ment dans l’environnement qui, lui, active une étape intermédiaire obligeant les

agents à mettre à jour leur structure de coalition en fonction du changement qui

se produit. Si l’algorithme, et comme on le prévoit, facilement dynamisable, il

pourra s’appliquer à un éventail encore plus large des applications du monde

réel. Dans notre approche, l’ordre de passage de jetons est prédé�ni. Cependant,

il serait intéressant d’étudier l’impact des changements de graphes de passage de

jetons sur les structures de coalition résultantes. En�n, nous aimerions examiner

de la possibilité de parallélisation du passge de jeton, et ainsi de la prise de

décision, dans des cas particuliers.
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Abstract—This paper addresses the problem of task allocation
among multiple autonomous agents that must accomplish a
complex global task. Solutions to the problem have real-world
applications in defense, space, disaster management, etc. We solve
this problem via agent coalition formation. Multiple coalition
formation mechanisms were introduced in prior art, seldom
accounting for interdependent tasks. We address this challenge.
We introduce an anytime decentralized coalition formation mech-
anism that enables agents with complementary capabilities to
form, autonomously and dynamically, feasible coalition structures
that accomplish a global, composite task. The formed structures
are incrementally improved via agent replacements to optimize a
global utility. We analyze the complexity and show that, although
the general problem is NP-hard, our mechanism provides a so-
lution within acceptable time. We present extensive experimental
results that illustrate the added value of our approach.

Index Terms—coalition formation, multi-agent systems, task
allocation, task interdependence, constraint programming

I. INTRODUCTION

With the rise of low-cost robotics and drones, multi-agent
coordination (MAC) has proven very effective for robotic
teamwork (e.g., [20] [11]). Many MAC problems require mul-
tiple heterogeneous agents to concurrently perform a joint task,
comprised of sub-tasks. E.g., in search and rescue problems
[2], robots with complementary capabilities perform a set of
tasks that jointly address a global task. Yet, the vast majority
of such solutions assume task independence. In this study we
assume task interdependence.

Such MAC problems are commonly solved via agent coali-
tion formation [19]. Thus, the global task is accomplished
by a set of coalitions comprising a coalition structure [16].
Optimal coalition formation and coalition structure generation
are exponentially complex. Recent progress lead to complex-
ity reduction in specific domains, however optimal solutions
remain exponential. Task interdependence further increases
complexity as the formation of a coalition and its utility may
depend on other coalitions. Distributed solutions that attempt
to ease complexity, e.g. [12], opt for an anytime approach,
where quality improves as the formation process progresses.

In this paper we present a novel decentralized, anytime
coalitions formation and task allocation mechanism, that di-
verges from the art in several ways. Specifically, we address
coalition formation where sub-tasks and coalition utilities
are interdependent, thus affecting the global utility of the
coalition structure. To address this, our mechanism simultane-
ously considers local and global task requirements, account-
ing for interrelations thereof. Such interrelations are seldom
considered in prior art. Additionally, our approach explicitly
represents both qualitative and quantitative information on
agent characteristics and task requirements.

Our coalition formation and task allocation mechanism is
fully decentralized, thus preventing a single point of failure.
Initially, agents only know their own characteristics, the global
task and its sub-tasks and their respective requirements, and
the set of the available agents. Gradually, agents may accu-
mulate information on the characteristics of other agents and
on potential coalitions and coalition structures. Throughout
the process, each agent matches task requirements against its
characteristics (and characteristics of other agents it learned
about) and accordingly decides which coalition it should join
to maximize global utility.

Our mechanism comprises 2 stages. Stage I finds a fea-
sible coalition structure if one exists. Denote the method
of stage I as Feasible Interdependent Coalition Structure
Anytime Method (FICSAM). If a solution is found, in stage
II agents incrementally improve it in a decentralized manner
via replacements of single agents in the coalition structure,
while maintaining feasibility (i.e. no single or global task
requirements are violated). Thus, we guarantee at anytime,
the generation of a solution that systematically increases the
global utility. Denote the method of stage II as Improved
Feasible Interdependent Coalition Structure Anytime Method
(IFICSAM).

Extensive experiments show promising performance: the
global utility with up to 100 agents and up to 20 tasks is
close to optimal, and computation time is very sensible.



II. PROBLEM FORMULATION

Given a global task T = {t1, t2, .., t|T |} and a set of agents
A = {a1, a2, .., a|A|}, we solve the problem of decentralized
allocation of tasks tj ∈ T to agents ai ∈ A, to accomplish T .

Definition 1 (Agent characteristics). ai ∈ A is described by
a set of attributes X = {x1, .., x|X|}, xk(ai) is the value of
ai under attribute k. We consider each attribute as a function
xk : A → Dk, Dk the domain of values for k. We call these
attributes agent characteristics.

The agents have to perform tasks as defined below:

Definition 2 (Single task requirements). tj ∈ T is described
by a set of attributes Γtj ={γ1, .., γm}, γl(tj) is the value
of task tj under attribute l. We consider each attribute as
a function γl : T → Kl, Kl the domain of values for attribute
l. We call the attributes Γtj single task requirements.

Definition 3 (Task combinations requirements). Consider a set
of attributes Λcbtj ={λ1, .., λn} concerning task combinations
s.t. λk(cbtj) the value of task combination cbtj ∈ Tcbt, Tcbt ⊆
2T , under attribute k. We consider each attribute as a function
λi : Tcbt → Lk, Lk the domain of values for k. We call the
attributes Λcbtj task combinations requirements.

Single task requirements can be seen as constraints that
have to be satisfied for the tasks to be accomplished. Task
combinations requirements can be seen as constraints that have
to be satisfied to address interdependence among tasks (e.g.
temporal constraints imposing accomplishment order).

Example 1. Consider A = {a1, a2, a3, a4} scattered on a
10m × 10m grid, that must perform T = {t1, t2}. Agent
characteristics are location x1, energy x2 and payload x3
(normal camera C or thermal one R). See Table I.

xk xk(a1) xk(a2) xk(a3) xk(a4)

x1 (0, 0) (3, 3) (1, 2) (5, 3)

x2 10 5 7 8
x3 C R C R

TABLE I: Example of characteristics of agents

Each task has 4 requirements. γ1: task location and the
maximal allowed distance of an agent from that location. γ2:
minimum energy needed to perform the task. γ3 minimum
required payload for the task (brought by all the agents). γ4:
minimum number of agents needed to accomplish the task.
Requirements of {t1, t2} are presented in Table II.

γl γl(t1) γl(t2)

γ1 〈(3, 0),≤ 4〉 〈(4, 4),≤ 10〉
γ2 ≥ 3 ≥ 7

γ3 ⊇ {(C, 1)} ⊇ {(C, 1), (R, 1)}
γ4 ≥ 1 ≥ 2

TABLE II: Example of requirements of tasks

We also define a requirement on combinations of tasks over
the maximum number of agents allocated to the tasks. Here
Λcbt = {λ1}, where λ1({t1, t2}) ≤ 3.

Combined characteristics of a set of agents may allow to
fulfil task requirements, or conflict with such requirements.

Definition 4 (Fulfillment relation). Let s = {a1, .., a|s|} a set
of agents, Xs = {Xa1

, .., Xa|s|} their characteristics, tj ∈ T
a task and ./ denoting the satisfaction (w.r.t. a mathematical
operator e.g. =,≤,≥,... according to the case) of the assign-
ment of a value to a requirement γl(tj) by the assignment
of a value to some characteristic xk(ai). We say that s can
fulfil a requirement γl ∈ Γtj denoted scc 	 γl(tj) if there
exists a combination of characteristics cc = {xk, .., xr} ⊆
Xa1
∪, ..,∪Xa|s| such that

∑|s|
i=1 xk(ai) ./ γl(tj) for some

xk ∈ cc or xr(ai) ./ γl(tj) for some xr ∈ cc with r 6= k,
saying (slightly abusing the notation) that cc ./ γl. In contrast,
we say that scc has a conflict with the requirement γl ∈ Γtj , if
∃xk ∈ cc s.t. xk is in conflict with this γl denoted as xk 6./ γl.

Example 1. Continued. To assess requirement fulfilment, we
first compute agent distances from task locations (see Table
III). For simplicity, w.l.o.g., we use Manhattan distances.

d(ai, tj) a1 a2 a3 a4 d(ai, tj) a1 a2 a3 a4

t1 3 3 4 5 t2 8 2 5 2

TABLE III: Manhattan distance between agents and tasks

For example, {a1} 	 γ1(t1), as a1 respects the maximal
distance from t1; {a1, a3, a4} 	 γ2(t2), as these agents have
the minimal energy needed to perform t2; {a1, a2} 	 γ3(t1),
as a1 brings the resource C. However, x2(a2) 6./ γ2(t2) as a2
does not have enough energy to perform t2.

Agents can form coalitions to accomplish a task tj ∈ T .

Definition 5 (Coalition). Let τ : A→ T a function assigning
ai to tj when ∃xk ∈ Xai

, ∃γl ∈ Γtj s.t. xk ./ γl, and @xm ∈
Xai

s.t. xm 6./ γp for any γp ∈ Γtj with p 6= l. Coalition Ctj

whose task is tj is Ctj = {ai ∈ A | τ(ai) = tj} ∈ 2A.

A global task T requires a set of coalitions S, called
coalition structure. Each Ctj ∈ S is assigned a task tj ∈ T .
When S can accomplish T it is a feasible coalition structure.

Definition 6 (Feasible coalition structure). Let a coalition
structure S = {Ct1 , Ct2 , ..., Ct|T |} over T . S is a feasible
coalition structure (or feasible solution) denoted Sf iff ∀tj ∈ T
s.t. Ctj ∈ Sf it holds that ∀γl ∈ Γtj , ∃scc ⊆ Ctj s.t.
scc 	 γl(tj) and if Λcbt is a set of requirements concerning
combination of tasks then XSf ./ Λcbt.

Example 1. Continued. Sf
1 = {{a1}, {a3, a4}} and Sf

2 =
{{a3}, {a1, a4}} are the only two feasible coalition struc-
tures: the requirements of t1, t2 and T are all fulfilled.
One can observe that no other structure is feasible. E.g.,
S = {{a1, a2}, {a3, a4}} is not feasible: if t1, t2 requirements
are fulfilled, the requirement over T is not.

We refer to single-task agents [9], i.e., can accomplish only
one task at a time. Thus, Ctj , Ctk ∈ S, j 6= k⇒ Ctj∩Ctk = ∅.
Some agents have no task assignment, thus

⋃|T |
j=1 Ctj ⊆ A.

We define means to evaluate coalition structures w.r.t. T .



Definition 7. Let CS be the set of all possible coalition
structures that could be assigned to a global task T . Let G be
a set of criteria s.t. ∀gk ∈ G there exists a weak order Gk upon
the set CS, Gk ⊆ CS2 s.t. if (S, S′) ⊆ Gk, then S � S′ and
∃gk : CS → R, gk(S) ≥ gk(S′). Then, w.l.o.g., we define the
decision problem: ∀k,maxS∈CS gk(S), which should identify
the coalition structures S maximizing “simultaneously” the
performance of such structures upon all gk ∈ G for T .

To consider task interdependence, we need to define a
function that evaluates a coalition structure S as a whole,
accounting for coalition interdependence. Provided that the
conditions of commensurability, compensation and preferential
independence are satisfied among the criteria in G (see [4]),
a global additive value function uglobal is applicable:

uglobal(S) = Σkuk(gk(S))

We normalize to the interval [0,1]. ūk are the normalized
functions and wk are criteria importance weights. We get:

uglobal(S) = Σkwkūk(gk(S))

Our study aims to design an algorithm that finds a feasible
coalition structure S∗f that maximizes uglobal(S). Our generic
approach allows considering other evaluation functions too.

uglobal(S
∗f ) = max

S∈CS
Σkwkūk(gk(S))

We use coalition structure modification functions:
• ⊕ : CS × (A × T ) → CS, to add a specific agent to

a specific coalition. S ⊕ (ai, tj) is a structure in which
Ctj ← Ctj ∪ {ai} and ∀k 6= j, Ctk does not change.

• 	 : CS×(A×T )→ CS, to remove a specific agent from
a specific coalition. S 	 (ai, tj) is a structure in which
Ctj ← Ctj \ {ai} and ∀k 6= j, Ctk does not change.

Example 1. Continued. We define 5 criteria to evaluate a
coalition structure S:
• # agents near (w.r.t a threshold) the task they are allo-

cated: g1(S) = ΣCtj
∈S |{ai ∈ Ctj |dist(ai, tj) ≤ th

tj
1 }|

• # agents whose energy is greater than a threshold:
g2(S) = ΣCtj

∈S |{ai ∈ Ctj |x2(ai) ≥ th
tj
2 }|

• # agents that bring the resources that are needed:
g3(S) = ΣCtj

∈S |{ai ∈ Ctj |x3(ai) = th
tj
3 }|

• # agents allocated to each task, given task threshold:
g4(S) = ΣCtj

∈S(1 if |Ctj | ≥ γ4(tj) else |Ctj |/γ4(tj))
• g5: 1 if the maximum # agents allocated to the global

task is respected, 0 otherwise.
With equal criteria weights, we define the normalized functions
ūk(gk(S)) to compute the utilities of coalition structures.

uglobal(S) = 1/5((g1 + g2 + g3)/|A|+ g4/|T |+ g5)

If we assume that tht11 = tht21 = 3, tht12 = 4, tht22 = 9,
tht13 = C, tht23 = C ∨R, we have:

uglobal(S
f
1 ) = 1/5((2 + 1 + 3)/4 + 2/2 + 1) = 0.7

uglobal(S
f
2 ) = 1/5((2 + 2 + 3)/4 + 2/2 + 1) = 0.75

III. OUR APPROACH

A. General Description

As stated above, we aim at finding the best feasible coalition
structure (w.r.t. uglobal), if it exists, or detect nonexistence
early on. In our solution, a structure comprises agent coalitions
and a task assigned to each coalition. We propose a decen-
tralized solution approach based on token passing among the
agents. The process is divided into rounds. In each round the
token is circulated among the agents. The round ends when all
agents have received the token once. Agent ordering depends
on application-based criteria.

At start, each agent knows its own characteristics and the
global task to be accomplished. Information about the other
agents and the evolution of the coalition structure formation ar-
rives via the token passing process. When ai sends the token to
aj , it adds information on the best feasible coalition structure
S formed so far, XS , and the round of the process. Holding
the token, ai may decide to join (or initiate) a coalition Ctj

assigned to tj , if it can contribute to the accomplishment of
tj or its participation can increase uglobal. Where applicable,
ai updates the information it received with the changes it
has applied. Then, ai passes the token to the next agent.
Agents communicate by exchanging messages following the
communication protocol described in algorithm 3.

Our mechanism has 2 stages. Stage I coincides with the first
round, implementing the FICSAM method. It finds a feasible
coalition structure Sf , if one exists. Hence, an agent joins a
coalition only if it can satisfy some task requirements not yet
satisfied by other coalition members, regardless of the impact
on uglobal. If no Sf is found in stage I, no such Sf exists.

Stage II implements the IFICSAM method, incrementally
improving the feasible coalition structure found so far. It
starts from round 2, once Sf was found in round 1. Agents
improve uglobal via replacements or swaps between agents.
The resulting improved structure must preserve feasibility,
respecting all requirements.

B. Agent Decision Process

Algorithm 1 describes the decision process of agent ai,
triggered when ai gets a message from some aj during
the coalition formation process. Its decision depends on the
message content and the round R of the process. Firstly (line
3), ai checks the feasibility of the received coalition structure
S according to feasibility criteria of the given application.
Then, if R[i] = 1 and S not yet feasible, it computes a
feasible structure w.r.t. T , task-level and combination-level
requirements, and its potential contribution if it joins S.
For this, it uses procedure s-f-st (line 5) that models this
problem as a constraint satisfaction problem (CSP) where
variables represent agents (i.e. {ai} ∪ S) decisions, each
variable’s domain is the task set T and constraints implement
tasks requirements satisfaction w.r.t. agents characteristics, i.e.,
(Xai

∪ XS\ai
) ./ ΓT and (Xai

∪ XS\{ai}) ./ Λcbt. We use
the Lazy Clause Generation based constraint solver Chuffed
[6] but other solvers can be used as well.



As said earlier, when ai holds the token it adds the in-
formation about its characteristics to XS . Thus, in round 1,
when ai gets the token, it has to solve a centralized coalition
formation problem based on the knowledge accumulated so
far. ai tries to find whether the characteristics in XS are
sufficient to satisfy all requirements of both individual tasks
and task combinations. Requirements are modeled as hard
constraints [8] and a CSP is solved. Other centralized coalition
formation methods, e.g., [19], can be applied too. If no feasible
structure is found in round 1 (i.e., the CSP has no solution),
the process terminates as there is no solution. Else, the process
proceeds to gradually improve the initial feasible structure.

In line 6 ai checks the feasibility of S returned by s-f-st
by executing check-feasibility. The latter is implemented as a
CSP whose input includes agent variables, tasks, constraints
corresponding to local and global requirements and the so-
lution represented as the variables domains. If the structure
is feasible the solver returns it. Otherwise it proves that no
solution exists. If S is feasible, we found the first feasible
solution Sf . This structure is sent by ai to all members of
the coalitions of the structure formed so far, along with XS

and initializes counter nd ← 0 (”nd” stands for ”number of
decisions”). nd is initialized when a new solution is introduced
in the process by an agent. It is incremented when an agent
is unable to improve the current feasible structure.

When ai cannot find a feasible structure with XS , it joins a
coalition to contribute to feasible structures that can be found
by agents that haven’t received the token yet. It examines tasks
whose requirements match its characteristics, i.e., tasks in Ti
(line 16). Then ai picks a task tj ∈ Ti (line 18), joins Ctj ∈
S, and adds its characteristics to XS . As before, ai checks
whether the updated S improves uglobal. ai sends the token to
the next agent, including S and XS in the message. However,
if ai is the last to receive the token, it implies that there is no
feasible solution. ai informs the agents in S about this.

If R[i] > 1, a feasible solution was already found (line 34)
and the agents seek another feasible solution that maximizes
uglobal. For this, ai can use Algorithm 2, (line 35), presented
later. If the returned improved coalition structure is feasible
(line 37) then it becomes the best current feasible one (line
38). In this case ai sends this solution to all the agents in
the structure. If the returned structure is not feasible, it is not
further considered. Hence, ai reconsiders the feasible structure
that it received from the previous agent (line 41).

Lines 42−47 concern cases where S is feasible but ai could
not improve it. Here, if nd < |A|, ai increments nd and passes
the token to the next agent. Otherwise S cannot be improved
anymore and ai informs the agents that the process is ending
with S as the best feasible solution found so far.

C. Improved FICSAM (IFICSAM)

Algorithm 2 allows agents to improve in R > 1. Once ai
receives the token, it assumes that the received structure S
maximizes uglobal (line 1). It then checks whether it can in-
crease uglobal in two ways. The first consists of ai switching to
another task (and coalition). Agent ai examines its contribution

Algorithm 1: decide(ai, Xai
, T,ΓT ,Λcbt, S,XS , R, nd,A,

is f(S))
1 Sold ← S; R[i]← R[i] + 1
2 if R[i] = 1 then
3 if not(is f(S)) then
4 Smax ← S
5 S ← s-f-st(T,ΓT ,Λcbt, {ai} ∪ S, ai,

Xai ∪XS\{ai})
6 is f(S)← check-feasibility(T,ΓT ,Λcbt, A,S)
7 if is f(S) then
8 Sf ← S; nd← 0
9 Smax ← Sf

10 for Ctj ∈ S do
11 for al ∈ Ctj do
12 send(propose(ai, al, 〈”ats”, S,XS , R, nd〉))

13 else
14 if R 6= 〈1, ..., 1〉 then
15 Ti ← ∅
16 for tj ∈ T s.t. Xai ./ Γtj do
17 Ti ← Ti ∪ {tj}
18 Get tj ∈ Ti
19 S ← S ⊕ (ai, tj)
20 XS ← XS ∪Xai
21 if uglobal(S) > uglobal(Smax) then
22 Smax ← S; nd← 0
23 send(propose(ai, next(ai), 〈”gt”, S,XS ,

R,nd〉)
24 nd← 0
25 send(propose(ai, next(ai), 〈”gt”, S,XS ,

R,nd〉))
26 else
27 (i.e. R = 〈1, ..., 1〉)
28 Sf ← 〈[], [], ..., []〉
29 for Ctj ∈ S do
30 for al ∈ Ctj do
31 send(inform(ai, al, 〈”end”, ∅, ∅, 1〉))

32 else
33 (i.e. R[i] > 1)
34 Sf ← S
35 call IFICSAM(ai, Ti, S)
36 is f(S)← check-feasibility(T,ΓT ,Λcbt, A, S)
37 if is f(S) and S 6= Sf then
38 Sf ← S; nd← 0
39 for tj ∈ T do
40 for al ∈ Ctj do

send(propose(ai, al, 〈”ats”, S,XS , R, nd〉))

41 else S ← Sold

42 if nd < |A| and S = Sold then
43 nd← nd+ 1
44 send(propose(ai, next(ai), 〈”gt”, S,XS , R, nd〉))
45 else
46 for al ∈ A do
47 send(inform(ai, al, 〈”end”, S,XS , R〉))



to its coalition Ctj ∈ S. There may be tk ∈ Ti that, if ai
contributes to its performance instead of contributing to tj ,
uglobal increases. Task switching is relevant if no requirement
of tj is violated and if uglobal increases when ai participates
in the accomplishment of tk instead of tj (line 3). In that case
the new structure becomes the maximal one (line 4).

The second consists of agent switching. ai checks whether
it can replace another agent al that currently fulfils the
requirements of tj assigned to Ctj ∈ S (i.e. al leaves S) or
to swap with it, by fulfilling the requirements of tk currently
fulfilled by ai in the coalition assigned to tk. If the change
increases uglobal it is implemented, and S is updated to a new
structure S′, uglobal(S′) > uglobal(S) (lines 6-13). Feasibility
of this new solution is verified in Algorithm 1 (line 36).

Algorithm 2: IFICSAM(ai, Ti, S)
1 Smax ← S
2 for tj ∈ Ti \ τ(ai, S) do
3 if doesn’t exist γm ∈ Γtj s.t. Xai 6./ γm(tj) and

uglobal(S ⊕ (ai, tj)	 (ai, τ(ai, S)) > uglobal(Smax)
then

4 Smax ← S ⊕ (ai, tj)	 (ai, τ(ai, S))

5 for ak ∈ Ctj s.t. doesn’t exist γl ∈ Γτ(ai,S) with
Xak 6./ γl(τ(ai, S)) do

6 if uglobal
(
S ⊕ (ai, tj)	 (ak, tj)	 (ai, τ(ai, S))

)
>

uglobal
(
S ⊕ (ai, tj)⊕ (ak, τ(ai, S))	

(ai, τ(ai, S))	 (ak, tj)
)

then
7 Snew ← S ⊕ (ai, tj)	 (ak, tj)	 (ai, τ(ai, S))

8 else
9 Snew ← S ⊕ (ai, tj)⊕ (ak, τ(ai, S))	

(ai, τ(ai, S))	 (ak, tj))

10 if uglobal(Snew) > uglobal(Smax) then
11 Smax ← Snew

12 if uglobal(Snew) > uglobal(Smax) then
13 Smax ← Snew

14 return Smax

D. Coalition Formation Global Procedure

Algorithm 3 implements the global behavior of agents par-
ticipating in the process and acting either as process initiators
(lines 1-15) or as candidate members of coalitions in S (lines
16-34). An initiator starts by initializing round 1 (line 2),
then looking for tasks in T with requirements that match its
characteristics (i.e. Xai ./ Γtj ) (line 4). It builds Ti ⊆ T , the
list of tasks it can perform (line 5). It picks one, say tj (line
6), and initializes a coalition in S (line 7) that is assigned to
tj . It adds its characteristics to XS (initially empty) (line 8).
XS will accumulate the characteristics of all members of the
coalitions in S. Then, it checks feasibility of S using check-
feasibility. In the (less probable) case that S is feasible (e.g.,
if T contains only task tj), S becomes an anytime solution.
ai considers S as a feasible structure to explore (nd ← 0)
and sends this proposal to all agents in A (lines 12-13). Thus,
it initiates a process that checks whether there exists another
feasible coalition structure S′ that improves uglobal(S). If S

is not feasible, ai initializes a coalition structures formation
process by sending a message to the next agent aj (line 15).
With this message ai passes the token to aj who will enter the
process. ai informs aj about S, the characteristics accumulated
so far and the current round (i.e. round 1).

When agent ai acts as a candidate member of a
coalition structure its activity depends on the mes-
sages it receives from other agents. In case of a pro-
pose(al, ai, 〈”ats”, S,XS , R, nd〉) message, if an anytime so-
lution is required, the process terminates with S as the best
feasible structure found so far (w.r.t. uglobal). This can occur
either at the end of round 1 or in the middle of another
round. Otherwise the receiving agent ai considers that S is
a feasible structure (line 24) that can be possibly further
improved (wrt uglobal) and for that it uses procedure decide.
The message propose(al, ai, 〈”gt”, S,XS , R, nd〉) means that
S is not a feasible solution and the sender al passes the
token (gt) to ai who will use decide to examine whether
it can contribute to finding a feasible solution. The message
inform(al, ai, 〈”end”, ∅, ∅, 1〉) informs the agents that no fea-
sible structure was found in round 1 and the process ends
with failure, while message inform(al, ai, 〈”end”, S,XS , R〉)
informs of an end with a feasible and improved solution.

E. Complexity

We discuss the complexity of Algorithm 1 and Algorithm
3. These algorithms may rely on others, in which case we may
discuss the complexity of those algorithms too. Algorithm 1
appears as a simple procedure, linear in |T | and |A|. However,
one can observe that it calls other procedures, i.e., s-f-st and
check feasibility, that are solving CSPs [8] whose complexity
is NP-complete (one can show reduction from the 3-SAT
problem). Hence, Algorithm 1 is NP-complete as well. This
may seem prohibitive but CSP solvers like the one we use
(Chuffed [6]) allow to efficiently deal with high complexity
problems. Algorithm 3 also seems linear in |T | and |A|.
However, it calls Algorithm 1. Hence, it is NP-complete too,
but solvable in practice.

IV. EXPERIMENTAL EVALUATION

We illustrate the added value of our approach and evaluate
its performance by benchmarking on a sample application. We
also compare performances to a centralized method.

A. The scenario generator

We evaluate our approach with a set of scenarios generated
automatically. These are used to benchmark FICSAM, IFIC-
SAM and a centralized solution. The scenarios are generated
according to the following settings: a fleet of Unmanned Aerial
Vehicles (UAVs) are assigned a mission in a seaport. The
(UAV) agents must inspect hulls of boats in the port. The
UAVs are lying on Unmanned Surface Vehicles (USVs), where
they can charge. There are typically tens of UAV agents.
However, to stretch-test our approach and compare it to a
centralized approach, we experiment with up to 100 agents
and 20 tasks. The USVs are scattered across the port, so that



Algorithm 3: coalition-formation(T , A, ΓT , Λcbt,
msg(perf (al, ai, < content >)))

1 if agent ai makes the first proposal then
2 Smax ← ∅; S ← ∅; R[i]← R[i] + 1
3 XS ← ∅; Ti ← ∅; nd← 0
4 for tj ∈ T s.t. Xai ./ Γtj do
5 Ti ← Ti ∪ {tj}
6 Get tj ∈ Ti
7 S ← S ⊕ (ai, tj)
8 XS ← XS ∪Xai
9 is f(S)← check-feasibility(T,ΓT ,Λcbt, A, S)

10 if is f(S) then
11 Smax ← S
12 for al ∈ A do
13 send(propose(ai, al, 〈”ats”, S,XS , R, nd〉))

14 else
15 send(propose(ai, next(ai), 〈”gt”, S,XS , R, nd〉))

16 while true do
17 Get msg(perf (al, ai, < content >))
18 switch msg(perf (al, ai, < content >)) do
19 case propose(al, ai, 〈”ats”, S,XS , R, nd〉) do
20 if requirement anytime solution then
21 decision← ”success”
22 End of coalition formation process with a

feasible solution
23 else
24 is f(S)← true
25 call decide(ai, Xai , T,ΓT ,Λcbt, S,

XS , R, nd,A, is f(S))

26 case propose(al, ai, 〈”gt”, S,XS , R, nd〉) do
27 is f(S)← false
28 call decide(ai, Xai , T,ΓT ,Λcbt, S,XS ,

R,nd,A, is f(S))
29 case inform(al, ai, 〈”end”, ∅, ∅, 1〉) do
30 decision← ”failure”
31 End of the coalition process in first round with

no feasible solution found
32 case inform(al, ai, 〈”end”, S,XS , R〉) do
33 decision← ”success”
34 End of coalition formation process with a

feasible and improved (wrt global utility)
solution

the UAVs can easily charge to handle new tasks. Our scenario
generator implements this by random positioning of USVs
(with a uniform distribution) on the port grid.

Inspection tasks may require various sensors. Here, we rely
on two sensor types: HD cameras and LASERs (see e.g., [1]).
The quantity of each resource required by a task depends on
boat hull. In our scenario generator, the number of resources
of each type is uniformly sampled between 0 and nagents

2·ntasks
.

This maintains scenario diversity and simplifies comparison
across scenarios and settings, as averages are the same and can
be compared without normalization. In addition to resource
constraints, the generator introduces task interdependence via
constraints on sets of tasks. Finally, each task has a deadline.

The scenario generator also generates UAV agents. For the
sake of simplicity, all UAVs have the same maximum speed.

Therefore, the travel time to a task is proportional to the
distance between the task and the UAV. Given a grid size G,
the generator randomly and uniformly draws UAV distances
from [G/2, G]. The agents are provided with sensors s.t. 25%
of them have both sensors, 37.5% have only a LASER and
37.5% have only an HD camera. The token passing strategy
implemented is based on inter-agents distances. An agent that
holds the token sends it to the nearest agent that hasn’t yet
received the token in the current round. Finally, the global
utility function is a normalized additive function computed
for tasks and task combinations by accumulating their values,
meeting their requirements, matched against coalitions’ and
agents’ characteristics.

The generator produces both feasible and infeasible sce-
narios. The latter are of interest for method comparison, as it
requires that the algorithms prove unsatisfiability, which might
take a long time.

B. Setup

To understand the impact of the number of agents |A|
and tasks |T |, simulations are performed considering sample
mission scenarios with |A| ∈ J5, 100K and |T | ∈ J2, 20K.
Tasks are handled by multiple agents, hence |A| > |T |. The
reported results include algorithms’ execution time, utilities
of the structures they return and the number of exchanged
messages. For each {|A|, |T |} pair, we executed 200 runs.
The execution platform was a 3.70 GHz Intel(R) Core(TM)
i9-10900X CPU running Python and the MiniZinc tool chain.

C. Centralized Solution

Our decentralized approach allows agents to make local
decisions and avoid a single point of failure. However, com-
parison to a centralized solution facilitates evaluation of our
solution’s distance from optimum, and execution time.

For the centralized method, we modeled our allocation
problem as a Constraint Optimization Problem (COP) and
solved it with the Lazy Clause Generation based constraint
solver Chuffed [6] through the constraint modeling language
MiniZinc [14].

Since the proof of unsatisfiability or the proof of optimality
might be very long, we instrumented our code with a timeout.
Whenever the search is interrupted, we consider the problem as
unsatisfiable for the first case and as the best solution found
so far for the second case. In addition, in order to prevent
pathological cases, we filter the instances with a series of
necessary and sufficient conditions. No need to bother the
solver in such cases, which might take a long time to prove
their unsatisfiability.

D. Results Evaluation

We present in Table IV the results of FICSAM, IFICSAM
and the aforementioned centralized approach for each metric.
Each single result in the table is an average over experiments
with 200 scenarios that were randomly generated by the
scenario generator. The three methods were all tested on the
same scenarios. The remainder of this section presents the



Agents
number

Tasks
number

Utilities Execution time (sec) Messages number

FICSAM IFICSAM Centralized FICSAM IFICSAM Centralized FICSAM IFICSAM

5 2 0.58 0.73 0.83 0.9 1.4 0.2 18.4 25.9
10 2 0.59 0.79 0.85 1.6 3.0 0.2 36.8 71.7
10 5 0.55 0.70 0.78 1.7 2.9 48.0 38.0 61.8
20 2 0.53 0.73 0.85 3.6 6.8 0.2 71.5 177.2
20 5 0.53 0.75 0.86 3.4 6.1 0.2 71.8 170.7
20 10 0.53 0.70 0.79 42.0 43.9 1184.4 75.6 158.2
50 2 0.51 0.67 0.85 7.0 11.6 4.6 178.3 557.6
50 5 0.49 0.67 0.86 69.1 76.4 0.3 176.0 576.3
50 10 0.54 0.71 0.86 387.6 398.4 25.1 181.7 526.8
50 20 0.44 0.61 0.80 212.6 222.2 1195.7 180.3 511.7

100 2 0.48 0.62 0.85 70.2 83.4 1.8 351.3 1349.9
100 5 0.48 0.61 0.86 189.7 209.3 1.2 349.7 1204.1
100 10 0.48 0.63 0.86 446.5 468.9 32.0 350.6 1419.5
100 20 0.53 0.65 0.83 1043.9 1073.8 1158.6 362.2 1147.1

TABLE IV: Experimental results

results in terms of utility for the system, runtime and number
of messages exchanged for the decentralized version (this
metric has no meaning for the centralized approach). For space
reasons, only the results for feasible scenarios are presented.

Not surprisingly, the utilities of the solutions generated by
the decentralized approaches are below those of the centralized
approach (that are optimal, except for cases when the time
limit is reached). However, impressively, they are rather close
to that optimum. FICSAM solution utilities, being the first
feasible coalition structures agents find, are below those of
IFICSAM solutions where agents continue searching for other
feasible coalition structures with better utilities. The utilities
of FICSAM are consistently above 50% of the utilities of the
centralized approach. The utilities of IFICSAM are always
above 70% of the utilities of the centralized approach, and are
at 75% from optimum on average. We can observe that, for
a large number of agents (50 or 100), performance slightly
degrades. We believe that this may result from difficulty in
finding an initial solution (as discussed below).

Notice that our algorithms terminate quickly. For the largest
instance (100 agents, 20 tasks), despite the message exchange
overhead and the computations performed by disparate agents,
both FICSAM and IFICSAM are faster than the centralized
algorithm. Further, the latter, given a 1200 seconds timeout,
sometimes terminates without reaching an optimal solution.
The runtime varies across scenarios. It depends not only on the
number of agents and the number of tasks, but also on scenario
complexity. For instance, in scenarios with larger numbers
of tasks, a smaller average number of agents is needed for
each task. Therefore, in some cases, the problem becomes
simpler as its combinatorial complexity is lower, which favors
decentralized algorithms. For instance, for 50 agents, scenarios
with 20 tasks take less time than with 10 tasks.

However, additional tasks, keeping the number of agents
intact, increase the difficulty for agents to find a first solution
and send an anytime message to other agents. This can explain
the drop in the number of exchanged messages when we
have more tasks for the same number of agents. In our
scenarios, when the number of tasks is very small, the problem

is inverted; the number of agents required for each task is
larger. This agent multiplicity might produce many symmetries
among the variables representing the agents in the centralized
COP solution, imposing additional computation. This can
explain why the centralized algorithm, for 50 and 100 agents,
requires more time to solve scenarios with 2 tasks compared
to scenarios with 5 tasks. A deeper study of the impact of
scenario variations on the complexity of constrained allocation
problems is called for. We leave this for future work.

As mentioned above, a part of generated scenarios are
infeasible whenever task requirements cannot be covered by
the generated set of agents. In such cases, the number of
exchanged messages in our mechanism is always twice the
number of agents. This results from the number of token pass-
ing messages, to which we add the number of end messages
with the mention failure. Moreover, FICSAM and IFICSAM
take significantly less time than the centralized algorithm to
terminate. For 20 agents and 10 tasks, for example, they
terminate after 70 seconds on average, while the centralized
algorithm takes 400 seconds. For 50 agents and 10 tasks, they
terminate after 360 seconds while the centralized, interrupted
by the timeout, takes 1200 seconds. This observation sheds
light on the cost of computing an unsatisfiability certificate by
COP methods. This cost appears significantly larger than the
computational cost exhibited by the decentralized approaches
presented in this paper.

V. RELATED WORK

Task allocation to groups of agents has been addressed
by several approaches, including coalition formation methods
[19]. Among the classes of task allocation problems defined
by [9], the case we address in this paper falls in the category
of single-task robots and multi-robot tasks (ST-MR).

Some coalition formation studies address the problem of
interdependent coalitions via Partition Function Games (PFGs)
[13], in contrast with Characteristic Function Games (CFGs).
In PFGs, a coalition’s value depend not only on the iden-
tity of its members but also on the way non-members are
partitioned. Therefore, computing coalition structures in PFGs



is very challenging: given an arbitrary partition function, an
exhaustive search is required to provide an optimal coalition
structure [15] unless additional assumptions – externalities –
are provided. Indeed, [17] define a specific kind of externalities
that represent inter-coalition effects (e.g., assumptions on util-
ity functions, and coalition mergers). That solution approach
is inapplicable in our case, where each task is associated with
one coalition, as the set of tasks dictates a fixed number of
coalitions, and mergers are therefore irrelevant. Other similar
coalition structure generation solutions [16] focus on com-
plexity reduction, however distribution and partial information
are usually not their main focus. Several approaches were
proposed to solve the PFGs [10]. However, these methods are
centralized, and the notion of agents is either absent or subject
to a centralized allocation. The agents are not autonomous and
do not make their own decisions: their orders are provided by
the centralized planning agent. Such a centralized approach
is inapplicable in our case. Multiple methods have been
used to solve CFGs. One approach is to rely on Constraints
Optimization Problems (COP) and Constraint Satisfaction
Problems [8] and their solutions, to find suitable ways to
form coalitions, while enforcing constraints on the coalition
structure. For instance, in [18], task allocation with spatial and
temporal constraints is presented. That method allocates agents
to tasks so that coalitions are feasible w.r.t. the locations, tasks
workloads, deadlines, and the number of completed tasks is
maximized. However, the method is centralized and does not
generalize to other constraints. CSPs have also been used in
other contexts relevant to task allocation.

Studies that address the interdependent task allocation prob-
lem mainly focus on the specific case of temporal interdepen-
dencies, where constraints of precedence and sequentiality are
considered (see e.g. [2], [3], [5], [7]). Our study addresses
diverse interdependencies, not necessarily temporal.

VI. CONCLUSION

We propose a novel decentralized approach for dealing with
the problem of coalition formation for task allocation. Given
the exponential complexity of finding optimal solutions, we
opted for an anytime approach implemented in two stages that
gradually improves solution quality or prove unsatisfiability.
While many practical solutions address only specific types
of task interdependence (or none at all), our solution is
not limited to specific interdependencies. Furthermore, our
solution explicitly handles diverse agent characteristics and
task requirements. It facilitates both qualitative and quantita-
tive agent characteristics and task requirements information,
allowing matching thereof. By using CSP-based techniques,
we provide an efficient way to deal with large scale instances
of the problem we are concerned with in this paper. To
illustrate the added value of our approach we ran an extensive
number of experiments, with a variety of numbers of agents
and tasks, that have proven that our approach is very efficient
both for finding a first solution at the end of the first stage
(i.e., the end of the first round) and then to significantly
improve it during the second stage (through several rounds).

The algorithm can be interrupted at anytime, yet it will always
return a solution if the problem is feasible. In future work we
plan to apply our approach in different real world application
problems. Several domains may benefit from our approach:
for instance, the coordination of mobile or fixed radars, or the
coordination of rovers or Autonomous Underwater Vehicles
(AUVs) for de-mining. We specifically aim to apply this ap-
proach in application domains of the Thales Group corporation
and develop it towards deployment in large programs (e.g.
Maritime Mine Counter Measures).
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