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Abstract

Since the second half of the twentieth century and the advent of the Standard Model,
that unified three fundamental forces (electromagnetism, the strong nuclear force and the
weak nuclear force), a lot of effort has been devoted to unifying the fourth fundamental
force we know: gravity. A theory unifying all forces has remained inconclusive so far
as the quantisation of gravity generates a non-renormalizable theory. A new symmetry
called supersymmetry is one way to build a better behaved theory. A combination of
a theory of gravity with supersymmetry is called supergravity. Mathematically, we can
build multiple theories of supergravities depending on the number of supersymmetries
in the model.

In this thesis, we focus on six-dimensional maximally supersymmetric supergravity
theories. There exist three possible theories of supergravity in six dimensions: the
conventional ' = (2,2) theory and the more exotic N'= (3,1) and N' = (4,0) theories.
The last two theories feature exotic gauge fields with non-standard Young tableaux
representations, subject to self-duality equations of motion. We present these theories
in a 541 split of coordinates allowing us to build new Lagrangians that reproduce both
the six-dimensional equations of motion and the linearized five-dimensional supergravity
theory upon compactification of the singled out coordinate. Then we unify the bosonic
sectors of these three theories under the common framework of Exceptional Field Theory
provided we introduce a modified section constraint whose solution produces the N' =
(4,0), (3,1) and (2,2) theories. Finally, we build the supersymmetric versions of these
Lagrangians allowing us to include the fermionic sectors of each theory.

Key words: supergravity, duality, Exceptional Field Theory, ExFT, supersymmetry,
exotic tensors






Résumé

Depuis la deuxieme moitié du vingtieme siecle et le développement du Modele Standard
de la physique des particules qui a vu l'unification de trois des quatre forces fondamen-
tales (électromagnétisme, force nucléaire forte et force nucléaire faible), I'idée d’unifier
la quatrieme force fondamentale connue — la gravité — a été extrémement fructueuse
méme si le projet n’a toujours pas abouti. En effet, quantifier la théorie de la relativité
générale produit une théorie non-renormalisable c’est-a-dire que le calcul de certaines
observables donne des résultats infinis, ce qui est facheux pour une théorie physique. Une
maniere de résoudre certains de ces problémes est d’introduire une nouvelle symétrie :
la supersymétrie créant ainsi une théorie de supergravité. Il existe plusieurs théories de
supergravité, selon le nombre de supersymétries considéré dans le modele.

Etant donné qu’a ce jour, on a identifié quatre forces fondamentales telles que pour
trois d’entres elles (I’électromagnétisme, la force nucléaire forte et la force nucléaire
faible), les bosons de jauge associés sont de spin 1 et que pour la gravité, le boson
associé devrait étre de spin 2, on considere généralement par économie qu’il n’existe pas
de particule avec un spin supérieur a 2. De plus si on étudie de plus pres des théories de
supergravités qui présenteraient une symétrie globale et seraient invariantes de Lorentz
alors un théoreme no-go dit qu’il est impossible de trouver des couplages satisfaisants
entre les spins supérieurs a 2 et les autres. Dans un espace a quatre dimensions, cela
signifie que la théorie supersymétrique maximale comporte huit supersymétries (aller
d’un spin 2 & -2 requiert huit pas de taille 1/2).

Il est également intéressant de considérer des théories de supergravité a plus de
dimensions car elles peuvent étre vues comme les limites & basse énergie de théories
de cordes qui ont été développées dans des espaces a plus de quatre dimensions. Dans
ce cas, il existe également une dimensions limite, en 'occurrence 11, 1a aussi imposée
par ce théoreme no-go. En effet, au-dela de 11 dimensions d’espace, le multiplet généré
devient trop grand et on obtient automatiquement des particules de spin plus grand que
2. Ainsi l'introduction d’une seule supersymétrie a 11 dimensions, c’est-a-dire contenant
32 supercharges réelles, permet d’avoir un multiplet doté d’un spin 2. Cette théorie



appelée NV = 1 a 11 dimensions est 'unique théorie de supergravité maximalement
supersymétrique.

De cette unique théorie, on peut ensuite créer de nouvelles théories de supergravité
par compactification successive des dimensions sur des cercles pour arriver a la théorie de
supergravité A’ = 8 en dimension 4 apres réduction sur le tore 7. Durant ce processus
de compactification, deux cas intéressants émergent. Premierement, en dimension 10, les
32 supercharges permettent de créer deux gravitini qui peuvent étre de chiralité opposée
ou identique. La premiére théorie (aussi appelée N' = (1,1) ou ITA) est directement
issue de la réduction de la théorie a 11 dimensions. La deuxieéme théorie est appelée 1IB
(ou N' = (2,0)) et n’est pas reliée & la théore & 11 dimensions. Ces deux théories ne
sont pas équivalentes puisqu’elle font intervenir des champs inéquivalents. Cependant,
ces deux théories se réduisent a la méme théorie de supergravité a 9 dimensions.

Le deuxieme cas intéressant est le cas de la dimension 6 qui est 'objet de cette these.
Cette fois, les 32 supercharges permettent de construire 4 gravitini, donc trois cas de
figures s’offrent a nous: les quatre gravitini peuvent avoir la méme chiralité (théorie
N = (4,0)), ou bien trois gravitini peuvent avoir la méme chiralité et un gravitino a
une chiralité opposée (théorie N' = (3,1)) ou enfin deux gravitini ont une chiralité et
les deux autres ont la chiralité opposée (théorie N = (2,2)). La théorie N' = (2,2) est
conventionnelle en ce sens qu’elle dérive de la théorie a 11 dimensions apres compactifi-
cation sur le tore T° tandis que les théories N = (3,1) et A = (4,0) sont plus exotiques.
En effet, ces deux dernieres théories mettent en jeu des champ de jauge qui sont des
tenseurs représentés par des tableaux de Young non standards, qui plus est, satisfont
des équations de self-dualité qui sont plus difficiles a traiter.

Cette these se décompose en quatre parties. Dans le Chapitre 2, nous présentons les
différents champs entrant en jeu dans ces trois théories et nous réécrivons leurs équa-
tions libres du mouvement tel qu'une coordonnée spatiale a été séparée des autres. Cette
décomposition 5+1 nous permet de trouver un tenseur symétrique d’ordre deux parmi
les composantes des champs exotiques de telle maniére que les équations du mouve-
ment peuvent étre réécrites pour reproduire la théorie de supergravité a cinq dimensions
linéarisée.

Dans le Chapitre 3, nous construisons des nouvelles actions reproduisant les dif-
férentes équations du mouvement trouvées dans le Chapitre 2 d’une part et se réduisant
a la théorie de supergravité linéarisée a cinq dimensions apres compactification de la
dimension qui a été séparée des cing autres. Cependant ces caractéristiques viennent au
prix de l'invariance de Lorentz manifeste de ces actions.

Dans le Chapitre 4, nous introduisons le formalisme de la Théorie Exceptionnelle
des Champs (ExFT) pour réécrire les secteurs bosoniques de ces trois théories dans
un formalisme commun. Ce formalisme requiert I'introduction de coordonnées internes
qui parametrent ces champs, cependant la dépendance des champs en ces coordonnées
internes est restreinte par I'introduction d’une contrainte sur les dérivées par rapport
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a ces coordonnées internes (cette contrainte est appelée contrainte de section). Nous
présentons une version modifiée de la contrainte de section dont la résolution reproduit
les couplages des trois théories de supergravité a six dimensions.

Dans le Chapitre 5, nous calculons les transformations de supersymétrie des trois
théories a six dimensions en imposant le fait que les trois algebres doivent se fermer
dans les difféomorphismes et les transformations de jauge. Ensuite nous réécrivons ces
transformations en utilisant la décomposition 5+1 du Chapitre 2, nous permettant de
construire des Lagrangiens supersymétries pour les trois théories N' = (4,0), (3,1) et
(2,2).

Mots-clés : supergravité, dualité, Théorie Exceptionnelle des Champs, ExFT, super-
symétrie, tenseurs exotiques
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CHAPTER

Introduction

1.1 General overview

In the modern understanding of physics, four fundamental forces have been identified:
gravity, electromagnetism, the nuclear strong force and the nuclear weak force. During
the twentieth century, and the improvement of particle colliders, a theory unifying the
last three forces was developed to explain all the different results found thanks to these
colliders. Thus the Standard Model of particle physics was born. To this day, it is
the most precise and comprehensive theory of particle physics we know (enthusiasts of
physics beyond the Standard Model may even say it is depressingly precise).

At the same time, astrophysics also improved greatly with the first observations of
black holes that were predicted to exist in General Relativity. To better understand
what happens at the singularity of black holes, we would need a quantum description
of gravity. However, the quantisation of General Relativity yields a non-renormalizable
theory, that is a theory in which we find infinite values when computing some obervables
but we cannot have that in a theory of physics.

Building such a theory of quantum gravity is one of the central questions of theo-
retical physics and over the recent years has been the subject of intense research. Many
approaches have been developped!. Among the most promising and best studied can-
didates is string theory whose fundamental building blocks are one-dimensional objects
called strings [4,5].

A problem emerging in bosonic string theory is the presence of tachyons (elements
of the specturm with imaginary mass) which would cause issues with causality. However
it was found that in a supersymmetric version of string theory, tachyonic contributions
can be consistently eliminated [6].

1See for example [1-3] for an overview on these approaches.
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Chapter 1. Introduction

Supersymmetry is a new symmetry that was also proposed in particle physics to
circumvent the infinities appearing when computing observables. At its core, it creates
a link between bosons and fermions. This new symmetry improves some of the annoy-
ing divergences but so far, there has been no experimental result of the existence of
supersymmetry.

In global supersymmetry, the set of symmetries of a quantum field theory is extended
from Poincaré transformations (translations and Lorentz transformations with respective
charges P, and Mj,,|) and internal symmetry transformations to include spinor super-
charges %,. Assuming we are in dimension 4, then « is the spacetime spinor index, so
a=1,...,4,and i =1,...,N is an index labeling distinct supercharges. The Poincaré
generators and the supercharges together form a new structure called superalgebra. A
superalgebra contains two classes of generators, even and odd which we call in physics
bosonic (B) and fermionic (F) respectively. The structure relations of these elements
include both commutators and anti-commutators in the pattern

B,B|= B, (1.1)
B, F|=F,
{F,F}=1B. (1.3)

In other words, since the spinors Q' are spin 1/2, they will transform bosons into
fermions and fermions into bosons. The subsequent particles are called superpartners
and have the same mass and momentum as the initial particle. The existence of such
superpartners is one of the many mysteries the Large Hadron Collider is trying to unveil,
to no avail so far.

1.2 Supergravity

Supergravity is a by definition a supersymmetric theory of gravity. Interestingly, super-
gravity theories emerge from low-energy limits of superstring theories [7].

A field theory of gravity has to include a spin-2 field corresponding to the graviton.
Supersymmetry entails that the graviton now has a superpartner: a spin-3/2 gravitino.
When there is only one supersymmetry, there is only one gravitino, and the resulting
theory is called N' = 1 supergravity. Supersymmetry can be extended to include more
than one supersymmetry which means that a graviton would have several superpartner
gravitini. This will of course generate a bigger multiplet however there is a limit to its
size. Indeed, since we only know four fundamental forces of nature, their quantizations
would require the introductions of particles of spin at most 2. For that reason and out
of simplicity, particles with spin higher than 2 are not believed to exist. Moreover, in
flat spacetime and at low-energy, gravity theories exhibiting a global symmetry as well
as Lorentz invariance are restricted by a no-go theorem stating that it is not possible to

16



1.2. Supergravity

find a satisfactory coupling of fields with spins exceeding 2 to other spins [8]. In four-
dimensional space, this means that there cannot be more than eight supersymmetries
(going from a helicity 2 to -2 requires eight 1/2-steps) [7].

Until now, we have only mentioned four-dimensional space, but it is interesting to
look at supergravity theories in more dimensions because they can be seen as the low en-
ergy limit of string theories which have been specifically developed in more dimensions.
There is an upper bound on the dimension, namely 11, imposed by the no-go theorem
mentioned above and in this case, the unique maximally supersymmetric theory con-
tains 32 real supercharges. In this dimension, considering only one supersymmetry thus
building the A/ = 1 supergravity theory is enough to generate a multiplet that already
features a spin 2. Moreover, this multiplet is unique and notably combines a graviton,
gravitino and a three-form in eleven dimensions [9]. From this maximally supersymmet-
ric supergravity theory, we can create new supergravity theories in lower dimensions by
successive compactifications of dimensions on circles such that the eleven-dimensional
theory reduces to the maximally supersymmetric four-dimensional N' = 8 supergravity
when reduced on the torus 77 [10].

During this process of compactification, two interesting cases occur. First, for D =
10, the 32 supercharges allow us to build two gravitini (16 components each) which
can have opposite or identical chirality. The former yields a theory called type ITA
supergravity (also called N' = (1,1)) which is indeed the dimensional reduction of the
eleven-dimensional theory mentioned above. The latter in fact is a new theory called type
IIB supergravity (also called N' = (2,0)) and is not related to the eleven-dimensional
one [11-13]. These theories are not equivalent: they involve different, inequivalent fields
but they both reduce to the same nine-dimensional theory.

The second interesting case happens for D = 6. This time, the 32 supercharges
allow us to construct four gravitini, where we can now distinguish three cases: two left-
handed and two right-handed gravitini (which is noted N' = (2, 2)), three gravitini with
one chirality and one with the opposite (N = (3,1)) and finally all gravitini with the
same chirality (N = (4,0)) [14]. We will see later in further detail that the last two
theories must be exotic since they feature mixed symmetry tensors, therefore they play
a distinguished role among maximally supersymmetric theories [15-19].

As for the ITA and IIB theories, the N' = (2,2) theory is the dimensional reduc-
tion of the eleven-dimensional one while the others are not [20], as summarised more
schematically in Figure 1.1. The chiral N' = (3,1) and N/ = (4,0) theories are only
known on the level of free field theories but looking at Figure 1.1, studying them from
a five-dimensional point of view is a possible angle of attack. After compactification
they all reduce to the same five-dimensional maximal theory: linearized five-dimensional
maximal supergravity. The interacting theories were conjectured by Hull to exist and to
describe strong coupling limits of A/ = 8 theories in five dimensions [14].

Another ingredient that will help us in the analysis of the three six-dimensional the-
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Chapter 1. Introduction

D=11 N=1
\
D=10 N=(1,1) N =(2,0)
-
D=9 N=2

Figure 1.1: Reduction of the maximal D = 11 supergravity theory for 11 to 4
dimensions and the interesting cases occurring for D = 10 and D = 6.

ories is the structure of their global symmetries. Indeed surprisingly, all D-dimensional
interacting theories of the reduction of the eleven-dimensional N' = 1 theory ("main line"
in Fig. 1.1) feature a global symmetry under the exceptional group Ej;_pi—py. The
presence of these groups can be understood by the fact that they are the smallest groups
that contain

o GL(11 — D) which stems from the eleven-dimensional diffeomorphism algebra,

e the R-symmetry group which is the maximal compact subgroup of the global
symmetry group.

In the case of six dimensions, i.e. for the N' = (2,2) theory, the R-symmetry group
is Usp(4) x Usp(4) and the smallest group containing it and GL(5) is Ej) which is
isomorphic to SO(5,5). The other two six-dimensional theories have R-symmetry groups
Usp(6) x Usp(2) in the case of N = (3,1) and Usp(8) in the case of N' = (4,0). The
smallest groups containing both GL(5) and these R-symmetry groups are respectively
Fy4() and Eg). These two groups are conjectured to be the global symmetry groups of
the interacting N' = (3,1) and N = (4, 0) theories respectively [14].

1.3 Review of 6D models

The topic of this thesis is the three six-dimensional N' = (2,2), N' = (3,1) and N’ = (4,0)
supergravity theories and more specifically, they will be studied in Minkowski space with
a "mostly plus" flat metric

nup = diag{—1,1,1,1,1,1} , 4,0 =0,...5. (1.4)
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1.3. Review of 6D models

Helicity G Field Multi. Chir. Characteristics

0  (1,1,5,5) ¢% 25
12 (1,2;5,4) x* 20 -
/2 (2,1,4,5) X 20  +
1 (2,2,4,4) A% 16
1 (3,1;1,5) B, 5 antisymmetric in 0
1 (1,3;5,1) Bg, 5 antisymmetric in i
32 (3,21,4) ¢¢ 4 4
3/2  (2,34,1) ¢ 4 —
2 (3,3;1,1) hy 1 symmetric in i

Table 1.1: Field content of the N' = (2,2) theory. The indices a,a = 1,...,5
refer to the vector representation of SO(5) x SO(5) which is isomorphic to the R-
symmetry group Usp(4) x Usp(4) and o, & = 1,...,4 is the spinor representation
of SO(5) x SO(5). The spinor indices are omitted to avoid cumbersome notation.

In this section we start by discussing their field content. The different multiplets have
been constructed in [21].

The N = (2,2) theory is perhaps the most well known theory of the three theories
since the full non-linear theory has been constructed in [22]. The fields in the N' = (2, 2)
multiplet transform under the little group (which is the product of the light-like helicity
group and the R-symmetry group)

G = SU(2) x SU(2) x Usp(4) x Usp(4) . (1.5)

The multiplet features 25 scalar fields, 40 Dirac fields, 16 vector fields, 10 two-forms, 8
gravitini and one graviton. The breakdown is summed up in Table 1.3. Interestingly, in
six dimensions, the two-forms are chiral, that is to say, their field strength is self-dual:
instead of satisfying a Maxwell-type equation of motion, self-dual two-forms satisfy a
first order self-duality equation. Historically, building a Lagrangian that reproduces this
type of equation was tricky because implementing both the self-duality condition and
Lorentz invariance leads to the propagation of the Lagrange multiplier parametrizing
the self-duality condition and problems when quantising such fields [23].
The A = (3,1) multiplet transforms under the group

G = SU(2) x SU(2) x Usp(6) x Usp(2) . (1.6)

The multiplet features 28 scalars, 42 Dirac fields, 14 vector fields, 12 self-dual two-forms,
6 gravitini, 2 exotic gravitini and one three-index tensor field called dual graviton. The
breakdown of this multiplet is given in Table 1.2. The N/ = (3, 1) theory is called exotic
because it features unusual fields: unlike a regular gravitino which is a fermionic one-
form, we have two exotic gravitini represented by fermionic two-forms. The most striking
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Chapter 1. Introduction

Helicity G Field Mult. Chir. Characteristics
0 (1,1;14',2) @b 28 antisymmetric, traceless in abc
/2 (1,2;14/,1) ye 14 —  antisymmetric, traceless in abc
1/2 (2,1;14,2) Y% 28 +  antisymmetric, traceless in ab
1 (2,2;14,1) Agb 14 antisymmetric, traceless in ab
1 (3,1;6,2) Biz 12 antisymmetric in i
32 (3,2:6,1) ¢ 6 +
3/2 (4,1;1,2) o 2 + antisymmetric in i
2 (4,2;1,1) Chp, 1 (2,1) Young symmetry

Table 1.2: Field content of the N' = (3,1) theory. The indices a = 1,...,6
and a = 1,...,2 represent the fundamental representation of Usp(6) and Usp(2)
respectively.

difference with the N' = (2,2) theory is the absence of a regular graviton (represented
by a two-index symmetric tensor) which is replaced by a Curtright field represented by a
three-index tensor Cj; » exhibiting a mixed spacetime symmetry, namely a (2,1) Young
symmetry (that is to say Cpp p = —Cpp,p and Clp 5) = 0). Moreover and similarly to the
two-form, in six dimensions, the Curtright field is chiral so the second order Curtright-
type equation of motion [24] can be replaced by a self-duality field equation for which
no second order Lagrangian has been exhibited yet but recently, a fourth order action
was built using the prepotential formalism [25].

The N = (4,0) multiplet transforms under the group
G = SU(2) x SU(2) x Usp(8) . (1.7)

The N = (4, 0) theory is probably the most exotic of the six-dimensional supergravity
theories as it features 42 scalars, 48 Dirac fields, 27 self-dual two-forms, 8 exotic gravitini
and one field mixed symmetry field. The breakdown of the multiplet is given in Table
1.3. The mixed symmetry field is represented by a four-index tensor field T}y 6 with
a (2,2) Young symmetry that is it exhibits the same symmetries a the Riemann tensor:
Lo ps = —Toppe = —Tpvep and Tipp pjs- Similarly to the two-forms, in six dimensions,
this field is chiral as well, so its second order equation of motion can be replaced by a
self-duality field equation [26] for which no second order Lagrangian has been exhibited

yet. Again, a fourth order action was found using the prepotential formalism [27].

1.4 Outline of this thesis

This thesis is organized in four parts. In Chapter 2, we look at the different fields
involved in all three theories and rewrite their free field equations in a way such that one
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1.4. Outline of this thesis

Helicity G Field Mult. Chir. Characteristics
0 (1,1;42) ¢4BCP 42 antisymmetric, traceless in ABC'D
1/2  (2,1;48) xAB¢ 48 +  antisymmetric, traceless in ABC
1 (3,1;27) BjP 27 antisymmetric, traceless AB
. A . . . A A
3/2 (4,1;8) i 8 + antisymmetric in i
2 (5,1;1)  Thspe 1 (2,2) Young symmetry

Table 1.3: Field content of the NV = (4,0) theory. The index A = 1,...,8 repre-
sents the fundamental representation of USp(8).

spatial coordinate has been singled out. This decomposition 5+1 allows us to find a two-
index symmetric tensor in the components of the exotic fields such that their equations
of motion can be split and rewritten to take the form of five-dimensional supergravity
equations.

In Chapter 3, we build new actions allowing us to reproduce the different free equa-
tions of motion found in Chapter 2. Using the rewriting of the equations of motion,
we show that these actions not only completely reproduce the six-dimensional equations
of motion but also all reduce to linearized five-dimensional supergravity upon dimen-
sional reduction. However these very interesting properties come at the cost of manifest
Lorentz invariance of the actions.

In Chapter 4, we introduce the formalism of Exceptional Field Theory (ExFT) to
find a common framework in which we want to rewrite the bosonic sectors of the three
six-dimensional supergravity theories. Exceptional field theory requires the introduc-
tion of internal coordinates parametrizing the different fields however the dependence of
the fields on these internal coordinates is restricted by introducing a constraint on the
derivatives with respect to these internal coordinates (called a section constraint). We
present a modified version of the standard section constraint allowing us to reproduce
the couplings of all three six-dimensional supergravity theories.

In Chapter 5, we compute the six-dimensional supersymmetry transformations of
each theory by requiring the closure of the different algebras into diffeomorphisms and
gauge transformations. Then we reduced these transformations using the decomposition
5+1 of Chapter 2 allowing us to build a supersymmetric action for all three theories.

This thesis led to the publication of two articles [28,29].
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CHAPTER

Decomposition 541

In this chapter, we discuss for every field in the spectrum of the three models, the reor-
ganization of the six-dimensional fields which allows their identification after reduction
to five dimensions. However, we keep the full dependence of all fields on six space-
time coordinates. More precisely, we break six-dimensional Poincaré invariance down to
5+ 1 and perform a standard Kaluza-Klein decomposition on the six-dimensional fields
without dropping the dependence on the sixth coordinate. We then rearrange the equa-
tions of motion such that they take the form of the five-dimensional (free) supergravity
equations however sourced by derivatives of matter fields along the sixth direction. The
resulting reformulation of the six-dimensional models casts their dynamics into a com-
mon framework ultimately allowing us to construct uniform actions for the three models
(presented in the next chapter).
For the purpose of this thesis, we choose the 5 4+ 1 coordinate split

{2} — {2t 2" =y}, {

by singling out one of the spatial coordinates. Of course, an analogous construction can
be performed with a split along the time-like coordinate which may be of interest for
example in a Hamiltonian context.

L=0,...,5,

o (2.1)

2.1 Bosons

2.1.1 Scalar field

The simplest bosonic field involved in these models is the scalar field satisfying the usual
free field equation

"0y =0 . (2.2)
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Chapter 2. Decomposition 541

The 541 decomposition of such a field is straightforward since it has only one component,
one has

M0+ 050 =0. (2.3)

Since we ultimately want to compactify that singled out dimension, we consider that
y represents a circle whose radius R we can choose arbitrarily small. As such, it is
instructive to consider the Fourier series of ¢ with respect to y

St y) = D dulat) M, (2.4)

nez

where ¢,, is the n-th coefficient of the Fourier series and has no y dependancy. Plugging
that expression in (2.3) yields

2
Vnez, 0"0.pn= (213;) On (2.5)
and we observe that more generally, the Kaluza-Klein decomposition of a D-dimensional
massless field generates an infinite tower of (D-1)-dimensional massive fields, all satisfy-
ing a Klein-Gordon equation. The mass of each field can read off from the right-hand
side of equation (2.5). Upon compactification (that is R — 0), all masses diverge except
the one of the zero-mode (n = 0).

2.1.2 Vector field

The vector field is the first instance where one can witness the Kaluza-Klein mechanism
fully at play. A free vector field A; whose field strength is defined as Fjp, = 29, A4y,
satisfies the Maxwell field equations

O"Frp =0, (2.6)
which is invariant under the gauge symmetry
0A; = O\ . (2.7)
The six-dimensional degrees of freedom will be split the following way
{Aﬂ} = {Aua As = ¢}, (2.8)
and their dynamics will now follow modified Maxwell and Klein-Gordon equations:

Oy, — 0, (B — 0y A,) =0, (2.9)
O (D) — Dy A,) =0 . (2.10)

We note that if we reduce these expressions to five dimensions i.e. we assume that A,
and ¢ do not depend on y (that is 9, — 0), both the vector field and the scalar field
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2.1. Bosons

satisfy respectively a five-dimensional Maxwell equation and a five-dimensional massless
Klein-Gordon equation. More interestingly, equation (2.10) suggests the definition of
the covariant derivative of ¢,

D,¢ = 0,0 —0,A, , (2.11)
and if we consider the Fourier expansion of the fields with respect to y like previously,
we have

2inm
Vn € Z, Dugbn = ugbn - TAM’H’ (212)

which reproduces the coupling of the electromagnetic field in the definition of the co-
variant derivative in gauge theory. The gauge symmetry (2.7) also splits into

A, = 0, (2.13)
56 = Oy . (2.14)

2.1.3 Chiral 2-form

The rewriting of the tensor field sector is less canonical since the 6-dimensional dynamics
of a tensor field By is captured by a self-duality equation instead of a Maxwell-like field
equation (but the former implies the latter)

HO™ (2.15)

where Hppp = 303 By and this equation is invariant under the six-dimensional gauge
symmetry

0Bpp =20y - (2.16)

After splitting the tensor field into
(B} = { By, Bus = Au} (2.17)
the self-duality equation becomes a duality equation between a vector field and a 2-form
F. + 0yBu, + ég#,,pgTHP” =0, (2.18)

where we used the convention €,,, 075 = €u1p0r linking the 5-dimensional and 6-dimensional
Levi-Civita symbols. The six-dimensional gauge parameter A; also splits into {A;} —
{Au, A= As} and (2.16) decomposes into

6By = 20, , (2.19)
§A, = 0,N — 9 A, . (2.20)
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2.1.4 Graviton

Now comes the heart of our subject: the spin-2 sector. The N' = (2,2) theory features
a graviton represented by a symmetric tensor hj;, whose linearized curvature is

Rpo po = =003 hp16 + 05005 - (2.21)
The free dynamics of this field is described by the Einstein equation
Rﬂ& = Rﬂ,)ﬁa’l]')ﬁ =0 y (2.22)

and this equation is invariant by the gauge symmetry representing the invariance by
diffeomorphism
(WL[“; = 28(,1{,;) . (2.23)

The 6-dimensional graviton splits into three 5-dimensional objects: a graviton, a vector
field and a scalar field which we parametrise as

{huo} = {hm/ — %mzx(b, hus = Ay, hss = ¢} . (2.24)
This allows us to rewrite a more compact version of the equations of motion
Ry + 9, (—a(uAy) + %@,hw - énﬂyam) _ énwapapqs —0,  (2.25)
&'F,, - 0, (auh/ 9 hy - i@uqb) —0,  (2.26)
0"0,¢ — 0y (2 0"A, — 0yh,” + gay(;ﬁ) =0. (2.27)

Although here, we only consider the linearized theory, the ¢ term in the parametrization
of the five-dimensional graviton is coherent with the reduction of a non linearized theory
of gravity. Starting from the six-dimensional Einstein-Hilbert action, one has to rescale
the metric to make a five-dimensional Einstein-Hilbert term appear in the action. In
our case, that rescaling would take the form g,, — o 39, where gy, is the five-
dimensional metric and ® the scalar field coming from the Kaluza-Klein reduction [30].
The linearization of this rescaling about the Minkowski metric (one writes g, = 7 +h
and ® = 1+ ¢) reproduces our choice of parametrization.
From (2.25), we can write the full linearized Einstein equation

1 1
R“y - 5 77'“1/R = 8y (8(“14,,) — 5

1 2
6yhul’ — Nuv (6pAp — 5 8yhp’0 + g 8y¢>) . (228)
Again, we can define two covariant derivatives,
2
Dyhyp = Ophup — 3 Oy Aunvp (2.29)
D¢ = 0,0 —20,A,, (2.30)
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2.1. Bosons

which allow us to write the linearized Einstein equations in an even more compact form
1 1 o 2
Guw = —3 OyOyhy + 3 OyOyh,’ — 3 OyOy , (2.31)
where G, is the linearized Einstein tensor
G = —0D,h 16Dph 18th L 0’D%h L 0,DPhs°
= = (1 V)p+§p W+§ (1 V)p+§77/w po = 5 v Op o -
(2.32)

The gauge parameter also splits into {{,} — {{,, A = &} and the gauge transformations
descending from the six-dimensional one (2.23) are

2
5h/uz =2 a(y{l/) + g Nuv 8@/A ) (233)
5A, = O+ 0,8, (2.34)
56 =20,\ (2.35)

2.1.5 (2,1) field

As explained previously the N' = (3,1) theory does not contain a standard graviton
but rather a dual graviton which is a mixed-symmetry tensor field Cp 5. It has a (2,1)
Young symmetry, meaning that

H : Cusp=—Coppr Clasy =0- (2.36)

The Young tableau in (2.36) is a pictorial way of representing the symmetries of Cjy 5.
We refer to Appendix A.2 for more information on Young tableaux.

The equations of motion for the free (2,1) field were first exhibited by Curtright
in [24] but as for the 2-form, the equations of motion will be instead replaced by a
self-duality relation for the curvature of that field. Namely, we have

Spopor = %swﬁkx ST (2.37)
where
Spopor = 3050:Cop7 — 30:0,Cop0 » (2.38)
and (2.37) is invariant under the gauge symmetry

60,5 = 2015} + ppo — 9\pBpa) (2.39)

with paramaters aup = ozp) and Bup = Bjpg). The formalism of the Young tableaux
can help us figure out schematically what fields this (2,1) tensor decomposes into. Since
we want to single out the sixth coordinate (called y and has index 5), we look at all
possibilities to put one or several 5s in the tableau.

o L L L (2.40)
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It is not possible to have two 5s in the same column since indices in a column are
antisymmetric. The picture (2.40) tells us that a six-dimensional (2,1) tensor decomposes
into respectively a five-dimensional (2,1) tensor, a symmetric tensor, a 2-form and a
vector. More precisely, we choose to parametrize the six-dimensional (2,1) tensor as

{Cﬂl;,ﬁ} = {C,W,p — ZAUL”V]P; Cusw =huw +Buy; Cuss = ZAM} , (2.41)

with symmetric h,, = h,,, antisymmetric B, = —B,,, and a (2,1) tensor C,, ,. The
self-duality equations (2.38) split into two equations

1 1 1
9, (FW + G Euaor HMT) =0, hutp + 7 Sunrr 040" C™ p + 5 040y Cray

4
1 oT
— Oy0y Apuny)p — 4 Comvot oy F
+ 0y, By — 0y0p By (2.42)
and
1 1 ) 1 1 )
Rul/,pa :E 8p (HMVO’ - 5 Epuvor F ) - 5 ao (H/u/p - 5 Euvpr F )
1 1 1
+ 9 Eprrr 6"8[,16’)‘70] + 9 9y0pCuv,oc — 9 9y Cluv,p
- ayapA[unu]a + 8?;8014[“771/},0 ) (243)
with
F,, =2 8[MA1,] , (2.44)
Hywp =30,,B,, , (2.45)
Rypo = =0p0ul)o + 00l - (2.46)
Once again, we can compute the Einstein equation,
1 o 1 o, 1 o o
Guw = 5 0y0”Cpup) — 3 0y0(,C," + 3 Nuw 0y0°Cls? (2.47)
where G, is the linearized Einstein tensor
p 1 P 1 py 1 P o 1 Pp O
G#V = -0 D(Mh,j)p + 5 8pD h“y + 5 6(pr)hp + 5 77/1,1/8 D hpo' - 5 Um 8pl) he?
(2.48)
defined as in (2.32), but this time with the covariant derivative
Dyhyy = 0uhyp — OyAunu, - (2.49)

We observe that upon dimensional reduction (dy, — 0), the field h,, satisfies the lin-
earized Einstein equations but if we keep the sixth coordinate, the source terms differ
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2.1. Bosons

from those of the regular graviton, confirming that both the A" = (2,2) and N’ = (3,1)
are fundamentally inequivalent.

The field equation (2.43) takes the form of a curl in [po] and using the Poincaré
lemma (see appendix A.3), it can be locally integrated into the first order equation®

1 1 1
8puuy :8[,u,hl/}p + Z EpvrAT 8KC’/\T,0 + 5 (Huyp — 5 Envpr Fﬂ)\)
1
+ 5 8yCMV»P - ayA[unz/]p s (2.50)
with an antisymmetric tensor w,,, = —u,,. This allows us to rewrite (2.42) into
1 RAT 3
8/) F/u/ + 6 EuvrAT H + 5 ayB,uy — 8yuu1/ =0, (2.51)

which can be further integrated into another first order duality equation
1

Fuu+6

Ewmrr H™T + %ayB,W — Oy = 0. (2.52)
Strictly speaking, the integration requires the introduction of an antisymmetric function
fuw which only depends on the sixth coordinate however we observe that we can set this
function f,, to 0 by absorbing it into u,, : if we integrate f,, into fw/ then defining
Uy = Uy — fuv allows us to get rid of f,,, without changing (2.50). To avoid cumbersome
notation, we will keep using w,,, even if we redefined it. Eventually, we can use (2.52)
to further simplify (2.50)

1
Nphup + 4 CrvrAT 8Kc)ﬁp — OplUpy
1 3

A
— 7€#VPH)\ 6y (UH - 5

; (2.53)

. 1
B >\) _ 5 ayCNV»P + 8yA[M77y]p .

We have now cast the original second order self-duality equations (2.37) of the six-
dimensional mixed-symmetry tensor field into the form of two first order duality equa-
tions (2.52) and (2.53) upon parametrizing the six-dimensional field in terms of its com-
ponents (2.41) and introduction of an additional field u,,,. Upon reduction to five dimen-
sions (0, — 0), these equations constitute duality equations relating the vector-tensor
fields, and the graviton-dual graviton fields respectively. The graviton-dual graviton du-
ality equation shows that the dual graviton can be dualized into the standard Pauli-Fierz
field as in [32,33] without adding new degrees of freedom.

The decomposition of the gauge transformations (2.39) is a bit more involved since
the symmetric parameter splits into {opp} — {ouw, asy = €, a55 = A} and the an-
tisymmetric parameter splits into {85} — {Buw,Bsu = Au}. Choosing the following

'Here, and in the following we work locally and ignore potential subtleties that may arise
from a non-trivial topology. We refer to [31] for a discussion of such issues in the context of
chiral p-forms.
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parametrization,
o Ay = Npw A %(fu"’g’Au) o Buv %(fu_Au) 9.54
i <§(§u+3Au) o )P =ls, gy T 0 ) B9Y
we get

1
5AN :8NA+ iay (é-,u,_'?)Au) 9

1
6B = 20y + 5 OB
6hlﬂ/ — 2 a(ufy) + 77/11/ ay)\ - 8@/05/11/ )

6Cu.p = 201,y + OpBw — O)p B + Oy (ﬁwulp -3 Awu}p) : (2.55)

The field u,,, also comes with its gauge variation which we can compute by integrating
up the variation of (2.50),

1 1
Oty = Oy + 6 Epor0’ BT + 5 OyBuv - (2.56)

2.1.6 (2,2) field

The N = (4,0) theory features a field which we shall call a double dual graviton. Indeed
the (2,1) field can be thought of as the dual of the graviton since we found a duality
equation (2.53) relating it to the graviton. Conversely, the (2,2) field can be thought of
as the double dualization acting on both indices of h,, leading to the four-index tensor
Typ ps that has a (2,2) Young symmetry. That is to say the same symmetries as the
Riemann tensor

HH : Taspe = —Topps = —Tavop = Tpopos  Tiaspe =0 - (2.57)
The dynamics of this field is defined by a self-duality equation
1

. _ . aBAy
Gﬂﬁ)x,ﬁ&% - 6 5;119)@53, G* ’ypUT ) (2.58)

where Gpu) 5. po7

G

is the second order curvature of T}y 55

ppApor = 3 aﬁa[ﬂTﬁS\],ﬁ +3 a&a[ﬂTf/J\]fﬁ +3 afa[ﬂTﬁi\],p& : (2.59)

The curvature and the field equation (2.58) are invariant under the gauge symmetry

6Tﬂﬁ7ﬁa— = a[ﬂ)\p]7ﬁ& + B[ﬁ)\(ﬂ (2.60)

ST
where the parameter A, s is itself a tensor with a (2,1) Young symmetry. Once again,
we can identify pictorially the different fields the (2,2) field decomposes into

(2.61)

4) )
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2.1. Bosons

Hence the six-dimensional (2,2) tensor decomposes respectively into a five-dimensional
(2,2) tensor, a (2,1) tensor and a symmetric two-index tensor. Concretely, we parametrize
these various components of the six-dimensional (2,2) tensor as

{Tpo,p6} = {Tpwpo s Tyw,ps = Cpwps Tusws = by} - (2.62)

After dimensional reduction to five dimensions, these fields describe the double dual

graviton, the dual graviton and the graviton, respectively. Using this parametrization,

the six-dimensional field equations (2.58) split into two equations?

1 1 1 \
Ry,u,pg = 5 8y8u()pg,,, — 5 Oy&,CpU,H + 5 EpvrAT a[pa’ic TU]
1 1
5 9y0pCluv,o — B Oy Cpv,p
1 1
T CpvrT 0y0" T por + B 0y T po (2.63)

€ uvady aaa[me_]ﬁ’Y = -2 8#8“,007]7,, + 2 ayc’)[pCU -2 8y8[pTM]W , (2.64)

7,1

with the linearized Riemann tensor Ry, ,, defined as in (2.21) for h,,. The second
equation (2.64) has the form of a curl in [po7]| and thus can be integrated up into

1
5 EpvaBy 3°‘Tmﬂ7 + auca"r,u - al/Ca'T,y + ayT’ch,;w =2 8[av7},uu 3 (265)
up to a tensor vr,, = —Vruu, determined by this equation up to the gauge freedom

0V = O7Cuy- Combining (2.65) with the first field equation (2.63), we find
1 1 1 o
Ryv,po = 2 0y0pCuv,e — 2 9y0sCv,p + g EnvrAT 9,0 o o] T 0y0)pVo] v » (2.66)

which in turn is a curl in [po] and can be integrated up into

1 1 1
Oplutp + 7 Epror PCoT, + 5 5Chup+ 5 OyVp = gty (2.67)
up to an antisymmetric field u,, = —u,,. As for the N' = (3,1) model, we have

obtained two first-order duality equations (2.65) and (2.67) from which the second order
field equations can be derived. After reduction to five dimensions, equations (2.65) and
(2.67) describe the duality relations between graviton and dual graviton and between
dual graviton and double dual graviton, respectively. In particular, equation (2.67)
differs from equation (2.53) in the /' = (3,1) model only if fields depend on the sixth
coordinate. Finally, let us note that we can compute the linearized Einstein equations,

1 1 1
G =— 5 9y0"Cppuw) — ) 9y0(,Cu),p” + ) 9y,

1 1
+ 5 v 0y0PCpy” — 3 v 0y0,057" . (2.68)

1
) = ) 90,0 v)p

2Technically, each group of indices can have a 5 in it or not, making for four equations.
However two of these equations are the dualization of the two others, hence there being only two
independant equations.

31



Chapter 2. Decomposition 541

The six-dimensional gauge parameter (2.60) splits into four different parts parametrized
as

2
{Noan} = {)‘p,/w? Apws =20 — 3 Buv s Asus = 25#} ) (2.69)
where o, is symmetric and (,,, antisymmetric. This yields

(Wlw, = 28@5,,) — 28y04,w s

1
0Cuv.p = 201,00y + 0w — OpBu) — 5 Oy Ao »

0T pv,ps = a[u/\VLpa + a[p)\ (2.70)

ol,pv

As for previously, the gauge variation of the new fields is obtained by integrating up
(2.65) and (2.67)

1 1 1
5U,uz/ = a[,ugy] + 6 EM,,)\OTO)‘BUT + g ayﬁ;w + 5 6y<,ul/ s (2'71)
1 2 1
O = 7 Epwmaa "N + 20,0, + 3 0Bt + Op G + 5 Oy (2.72)

where (,,,, is an antisymmetric gauge parameter introduced after (2.65).

2.2 Fermions

The fermionic sector is a bit more subtle than the bosonic sector because the field
equations of the fermions involve v matrices which we shall choose in such a way that
they make the 5+1 decomposition easier. We choose to follow the construction of [34]: we
start by choosing four 4 x 4 matrices representing the four-dimensional Clifford algebra
Cl1(1,3). We can now build a representation of the five-dimensional Clifford algebra by
adding to them the associated chirality matrix v, = i vypy1727y3- To build a representation
of the six-dimensional Clifford algebra CI(1,5), we need to build six 8 x 8 matrices
satisfying the usual anticommutation relations. To that end, we define

N 0
Ay =01 @, = ) u=0,... .4, (2.73)
Y O
. (0 —iny
V5 =02 @1y = (z 1, 0 > ; (2.74)
1
therefore ’A}/* = ’3/012345 = 4 0 5 (275)
0 —14
where 4, is now the chirality matrix associated to the six 4 matrices {Jo,...,%5} we

built to represent CI(1,5), 14 is the 4 x 4 identity matrix and o1 and oy are the two
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Pauli matrices

g1 = <(1] (1)> s (2.76)

oy = (? _OZ> : (2.77)

One can check that the set {4o,...,45} satisfies the property
Yo + Ve = 2np0ls - (2.78)

Finally, the introduction of a chirality matrix 4, allows us to define the two projectors
on the positive and negative chirality

_ Ig £
5 .

P:I:

(2.79)

2.2.1 Dirac field

Any spinor in six dimensions can be decomposed into its positive and negative chirality
parts using the projectors (2.79). Thus we can write

X = (ij) , (2.80)

where y has dimension 8, whereas x* and y~ have dimension 4. Then, the six-
dimensional Dirac equation for a free fermion y

A9, x =0, (2.81)

can be decomposed into
PO = FioxE (2.82)

for the components ™ and y~. Similarly to the discussion about the scalar field, in case
of compactification of the sixth dimension, the Dirac field can be expressed in terms of
its Fourier modes

-
Xt y) =" X (@) R (2.83)
nez

and the Dirac equation becomes

2nm 4

VYnecz, wau;d;: 7 Xn

(2.84)

showing that, as for the scalard field, the masses of the fermion modes are proportional
to n/R.
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2.2.2 Gravitino

The six-dimensional gravitino is a fermionic form which satisfies a Rarita-Schwinger
equation
AP, 5 (2.85)

For a gravitino with positive chirality, the eight-component ¥, can be written

v, — <‘IE)Z> , (2.86)

where \Ifz is four-dimensional. This field equation is invariant under the gauge transfor-

mation
SUF =k, (2.87)
with fermionic parameter k. We shall consider the following split of the components
i
Wy ={vu = v+ guwt A=} (2.88)
and the field equations now become
4i
'Ym/palﬂwbp = iay (’YW/Q;Z)I/ - ?)Z'Y'u)‘> (2'89)
51
VYN = D, (ywﬂ - 3A) (2.90)
The gauge transformations (2.87) can be rewritten in terms of the five-dimensional ob-
jects
0N = Oyk
Oy = Ouk + %’y,ﬁyﬁ . (2.91)

For a gravitino of negative chirality (which is present in the N' = (2,2) model), the
computation is analogous with 9, — —0,.

2.2.3 Fermionic 2-form

There also exists another type of fermionic field: the exotic gravitino. It is called exotic
because it is a fermionic 2-form which is quite an unusual type of field [35]. It satisfies
a generalized Rarita-Schwinger equation

AP s = 0, (2.92)

Only fermionic 2-forms with a positive chirality appear in Tables 1.2 and 1.3 so the
eight-component W, can be written

vt
Uy = ( 6“’) ; (2.93)

34



2.2. Fermions

where \Il:l, is four-dimensional. The field equation is invariant under the gauge transfor-
mation

oW, = Ok (2.94)

with a fermionic one-form parameter x;. We consider the following split of the compo-
nents

(Ut} = {@z;u,, = W, — 2iy, Ul 6 = \1/35} . (2.95)
In this case the field equations become
,YHVPUTapwUT — ay (—i’}/ul’pawpg _ 4’7mlp¢p) , (2‘96)
) 1
PO, b, = O (32 v, — 5 V“”plbyp) . (2.97)
Since in five dimensions we have the identity v, p0r = © €41 p0r 14, We can see that upon
compactification, the equation of motion of 1, implies that it is pure gauge so it does

not carry any degree of freedom. The gauge parameter splits into {x;} — {x,, s} and
(2.94) becomes

1 1
5@5# = 5 @LHO‘ — 5 8y/€# 5

(51/JMV = 8[#,%1,] +1 a[u’yy]lﬁl +1 8y’y[#lil,] . (2.98)
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CHAPTER

Actions

The goal of this chapter is to present, for each model, a linearized action which repro-
duces the equations of motion found in the previous section while identifying a common
part that would be the unique five-dimensional maximal supergravity theory when we
set 0y — 0. The full split Lagrangians can then be written using the equations of mo-
tion computed in the last section as the building blocks for each type of field. The
supersymmetry invariance is not discussed here, but postponed to Chapter 5.

3.1 The N = (2,2) model

As stated before, the N' = (2,2) multiplet corresponding to the maximal supergravity
in six dimensions comprises a metric, 25 scalar fields, 16 vectors and 5 two-forms (which
can be decomposed into 5 self-dual two-forms and 5 anti self-dual two-forms) for its
bosonic part.

3.1.1 Scalars and vectors

The Lagrangians for the scalar field and the vector field can be constructed directly from
the six-dimensional Lagrangians for a free scalar field and a free vector field

1

Lo=—3 M oo™, a=1,...25, (3.1)
1 i i ;
Lo=—7 Fp'F™", i=1,...16. (3.2)
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Chapter 3. Actions

Using the splits into their five-dimensional components (2.8), we have

Lo= _% D1 0,6% — %aywayqsa 7 (3.3)
1 . . 1 . ) . .
T ppvi [ wt ni i 7
Lo=—7 P Fui - 3 (96" — 0,417 (940’ - 0,4,7) (3.4)

3.1.2 Two-form

For the two-form, the construction is a bit more involved. Starting from the six-
dimensional Lagrangian

1
[,gD) == Hﬂf,ﬁbHpr , b=1,...5. (3.5)

and using the split (2.17), we get
6D 1 1
L7 = =5 o HP = (Ft +0,Bu) (PP +0,B") . (36)
leading to the equations of motion

3“(F;wb + ayB/wb) =0, (3.7)
8MHpr = _ay(FWb + 8yB/wb) .

Equation (3.7) implies that we can introduce two-forms Buyb such that
1 -
.’ +0,B," = S Epwpor HPTP (3.9)

where H pr = 38[HBVp}b. In addition, vectors fl#b can be introduced by means of the
equation

~ ~ 1
Fu’+0,B,," = S Eppor HPOTY (3.10)
Integrability of this equation is ensured by (3.8). Thus, we have replaced a system

of five vectors and five two-forms described by second-order equations of motion by a
system of ten vectors and ten two-forms described by first-order duality equations. After

introducing
Al = @Z) and B, = (ﬁz:) , whered=1,...,10, (3.11)
we can rewrite the system of duality equations into the more compact form
Fi, +0,B, = —é Epwpor Bopc HPOTC (3.12)
with
P = (_?15 _815> and 648 = (%5 ]?5) . (3.13)
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3.1. The N = (2,2) model

As a consequence of (3.12), we have the Yang-Mills equation
M(F™ +0,B,, ") =0, (3.14)

We shall now show that the duality equations (3.12) can be derived from the Lagrangian

1
~ 5 P nap OyBWA HyoB (3.15)

which breaks manifest six-dimensional Lorentz invariance. Namely, the variation of
(3.15) with respect to A, yields equation (3.14) whereas variation with respect to B,
yields

1
831 <FMVA + ayBWA + 6 Euvpor UAB(SBCHWTC) =0. (3~16)

which reproduces equations (3.12) up to some function 3, that does not depend on y:
1
F;WA + 8yB;wA + 6 Euvpor WAB(SBCHPUTC = /B;WA ) 8yB;WA =0. (3-17)

Comparing the divergence of this equation to (3.14), we find that locally the field BWA
can be integrated to

Bt =0 = Bu = cuper 00T, (3.18)

in terms of a function bﬂ,,A, such that the field equations (3.17) can be rewritten as
. 1 -
(Fw +0,Buu™) + ¢ €uwpar 30 B 5 =0, (3.19)

with the modified two-form

B,uz/B = B,LLVB - 2b;wB . (320)

Hence, we recover the desired original duality equations (3.12). We have therefore found
an alternative way to describe the dynamics of a six-dimensional two-form after a 541
split of coordinates. An advantage of this new formulation is the fact that the Lagrangian
(3.15) can be straightforwardly generalized to describe chiral two-forms in six dimensions.
This simply corresponds to replacing the matrix nap by dap (or —dap if we want to
describe anti chiral two-forms) such that (3.12) becomes

1
Fi, + 0By, = G Eppor HPTTA (3.21)
This in turn is nothing but the six-dimensional self-duality equation
1 e
A GTAA
Hﬂf,ﬁ = 6 gﬂﬁﬁ&%S\H . (3.22)
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The Lagrangian (3.15) thus provides an action for chiral six-dimensional two-forms upon
sacrificing manifest Lorentz invariance. This is in the spirit of the mechanism proposed
in [23] by Henneaux and Teitelboim who argued that implementing the self-duality
condition (for example with a Lagrange multiplier) after having implemented Lorentz
invariance leads to problems notably upon quantization. A covariant approach has also
been developed in [36-40].

3.1.3 Graviton

The Lagrangian for the graviton can be constructed from the six-dimensional Einstein-

LI =\/lg|R,, (3.23)

where R is the Ricci scalar and g = det(gus). The linearization of (3.23) around the

Hilbert Lagrangian

six-dimensional Minkowski metric (i.e. writing g5 = 735 +hjup) gives rise to the massless
Pauli-Fierz Lagrangian

1 - o1 . | s oh 1 PP
£8P — 5 O Ol + 5 0p1P Opht — 2 0ah" O hps + 7 Db 0" hy?

1 Qoo 1 a0 o
= _Z QH pQﬂ,;ﬁ =+ 5 QH pr,ﬁﬂ + Q“Qﬂ , (3.24)
with Q55 = Oy and Q; = Qﬂ,;l’. Using the split (2.24), we get
L quvp L quvp I
Em:—ZQ qup+§Q Qypu + QHQ,
1 1
—3 (0" —20,A")(0udp — 204A,) — 1 FrE,,
5 2 1 1. ..
+ 9 Oy 0y — 3 Oyho” 0y + 1 Oyho0yh,’ — 1 Oyht" Oyhy (3.25)
where 5
Q/ﬂ,p = 8[Mhl,]p — g 8yA[u77,,]p . (3.26)

We can observe that upon dimensional reduction (9, — 0), we recover a linearized
Pauli-Fierz Lagrangian for a five-dimensional free graviton

1 1
Lpr = ~1 QP + 3 QP Qypu + Q. with  Qup = Ohy, (3.27)
as well as Lagrangians for a free Maxwell field and a free scalar field.

3.1.4 Fermions

Finally, the Lagrangians for the five-dimensional Dirac fields and the gravitini can be
built directly from the Lagrangians of six-dimensional complex free Dirac field and free
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3.2. The N' = (3,1) model

gravitini

Lo = XA Oux* (3.28)
Lops =V AMPO,07 (3.29)
where "+" denotes the chirality of the spinor fields. In six dimensions, it is convenient to

double the spinor fields in order to impose a symplectic Majorana-Weyl reality condition.
As a result the six-dimensional actions of the N' = (2,2) take the form

EOF = X[[dg']]a’?ﬂaﬂx[[dm]a + X[aﬁﬂdﬁﬂaﬂxﬂaﬁﬂd ’ (330)
Lop = UpaA"P0sVG + Wy AP0, 05 (3.31)
Here indices «, & refer to the fundamental representations of the two factors Usp(4) x
Usp(4) of the R-symmetry group. The double bracket [-] indicates the traceless anti-
symmetrization of the indices in these brackets. In table 1.3, we have labelled [a/3] of
indices as a vector index a of SO(5) which is isomorphic to Usp(4). As given in the
table, the fermions y[¢?l* and \Ilg‘ have positive chirality whereas x[*1¢ and ve have
negative chirality.
Applying the split (2.88), we get
Loy :Xﬂd/gﬂa'yuaﬂxﬂdﬂﬂa + ixﬂdﬁﬂaayxﬂdﬁﬂa
+ X[aﬂ]]aVMauX[[aﬁﬂd - i)z[[aﬁﬂdayx[[aﬂ]]d ) (332)
- ~ - , 16 - :
Lop == 2Bua?™ P00 + 20 Vs O + 5 Va0,
- - 16 -
-2 wu,a’}/uupauwgé —2i wu,aV“Vang - ? wu,a")ﬂuay)‘a

_ . 400 - . _ 407 —
- g XV O — % XaOy A — gxawauv + % AaOyA* | (3.33)

and the full Lagrangian of the NV = (2,2) theory is the sum of all these pieces
Logy=Le+ Lo+ Ly+ L+ Lo+ Loy - (3.34)

In the limit 9, — 0, this Lagrangian describes D = 5 maximal supergravity [41].

3.2 The N = (3,1) model

3.2.1 Main result

The N = (3,1) theory features 28 scalars, 42 Dirac fields, 14 vectors, 12 self-dual two-
forms, 6 gravitini, 2 exotic gravitini and a self-dual Curtright field as listed in table
1.2. For scalars, vectors and standard fermions, we use the same Lagrangians as for the
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Chapter 3. Actions

N = (2,2) case above. The twelve two-forms in this model are self-dual in six dimensions
but as explained above, after a 5+1 split, they can be described by the Lagrangian

fa= (FWA + 8me,A> 0AB (F“”B + 8yB“”B)

1

4

1

~ 5 eMPOT § 4 Oy B HporP (3.35)

where A =1,...,12. This Lagrangian is identical to (3.15) except we have changed nap
into d4p3.

However we have two new types of fields for which we need to build a Lagrangian.

First, after the split (2.41), the dynamics of the six-dimensional Curtright field Cy; 5 is

given by equations (2.52) and (2.53). As a main result of this section, we shall show

that these equations can be derived from the Lagrangian

1~ A 1~ ~ ~~ 1 ~ ~
zg::—ZQW%@W+§QW%nW+Q%h—16wW”@Lﬁ)@qu 556
3 9 3 ~ )
— L F = 16 @ 0, BBy = 2 & 0, Byu, 0,Chor
with
N 1 -
QW’P = 8[uhu]p - 8yA[u77u}p + 5 8310#1’,!7 ) (3'37)
é,uzx,p = C,ul/,p + Epvpor u’’ ) (338)
3
.7:“,, = 28[HA1,] + 5 8wa, . (3.39)

Similarly to the case of the two-form, we can thus describe the dynamics of a self-dual
Curtright field by an action after sacrificing part of the manifest Lorentz invariance. The
Lagrangian (3.36) is invariant under the gauge transformations

8Qup = 9p0E — 0y0LBup (3.40)
~ 1 o
0Cw,p = 2000y = 201By)p + 9y <§W7V}p =3 A, + 9 Epvpapl 'B) ) (3.41)
1
0F = Oy (a[ufu] + 9 8y/8ul/> : (3.42)

After reduction to five dimensions (i.e. d, — 0), this Lagrangian reduces to the
Fierz-Pauli Lagrangian for h,, (3.27) together with a free Maxwell Lagrangian for A,
and the dual fields CA',M,) and By, drop out in this limit. The derivation of equations
(2.52) and (2.53) is presented in the next subsection.

The second new field appearing in the N' = (3,1) theory is the chiral fermionic
two-form W;. In six dimensions, this field can be described by the Lagrangian [27]

Lgp = Vi, ad"P7T 0,0 (3.43)
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3.2. The N' = (3,1) model

where o = 1,2 represents the fundamental representation of the Usp(2) factor of the
R-symmetry group.
Using the split (2.95), we get
L F :ﬁuua'}/uypUTapd)g-r + Z'szuua'yuypgayd}?o +4 Jjuvaﬁ/w}pﬁbg
— 260 PO, S + 6i Guay™ Dy (3.44)
This Lagrangian reproduces the equations of motion (2.96) and (2.97).
The full Lagrangian of the free N' = (3,1) theory then is the sum of all the different
pieces
Li31)y=Le+ Lo+ L+ L+ Lop + Lop + L, - (3.45)

This is one of the main results of this chapter.

3.2.2 Derivation of the dynamics of the Curtright field

It is not obvious that the Lagrangian (3.36) reproduces the equations of motion (2.52)
and (2.53). In order to show that, we derive the equations of motion of the fields
appearing in the Lagrangian (3.36), then rewrite them in terms of the original fields
appearing in (3.39). The variation of (3.36) with respect to 4,, and B,,, gives respectively
3 1
0" F + 3 0y0" By, — 3 Oy (0"hyy — Oyhyt — 0,Cyut +40,A,) =0, (3.46)
and

3 1
9, <F,W + 5 0By = Dy + 5 ewmapB”> =0. (3.47)

The second equation is almost the duality equation (2.52) we want to obtain, however
still under derivative d,. We can integrate (3.47) with respect to y, thus introducing an
antisymmetric function p,, independent of y

3
Fuy + 5 awa/ a u/'“/ + 8/“/,007-8 B pl‘”/ . (348)
Combining this equation with (3.46) gives
1
Oyt uy,, = 5 Oy (O hy — Oyhyt — 0,Cyt +40yAL) — O puw - (3.49)

Since CA’W”O is reducible under the Lorentz gorup, the variation of (3.36) with respect
to Clu,p gives an equation of motion which is itself reducible. Its (2,1) Young symmetry
part reads

0=09, (% vip + 07 haluhp = Mo Oy ho”
L
4

T ]' oT
W,\M@/\C - 18,\07[Wa Com )

i) 890‘“”9 — Moy Cpie” + 30y Apniip

_apu/“/ + a[puuy] -2 8"%[“171,],3) , (3.50)
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which can be integrated with respect to y by introducing a function r,,, , independent
of y which is itself has the (2,1) Young symmetry

Puvp = Ophu)p + 0% haluiu)p = Mol Ou ho”

1 A YoT 1 A YOT
+ Zg,uu)\m—a C p 15)\07—[“1/8 C )

1 ag
+ 5 ayc;w,p - np[yayC#]g +3 %Amn,,]p
— pUyy + 8[pum,] -2 aaua[uny]p . (3.51)

Contracting this equation with n#* yields

1 1
Muy,, = 5 (0"hyw — Ouhy M — 0,CL )t +40yA,) + 3 Tt (3.52)
meaning that together with (3.49), we can define locally a two-form b,,,, independent of

y, such that

1
Puv = ) 5,uzzpo-rapbm—' (3.53)

This two-form can be absorbed in By, following exactly the same process as the dis-
cussion around (3.20) such that from (3.47) we recover the six-dimensional equation
(2.52).

The process to recover the other equation (2.53) is more tedious. First, the variation
of (3.36) with respect to hy, gives

1
G + §8y (8PCP(M7,,) + 8(MCZ,)F,” — nuuapCpg"> =0, (3.54)

where G, is the linearized Einstein tensor defined in (2.48). The contraction of (3.51)
with O yields a reducible equation whose symmetric part is

1 o o
Gup + B Oy (8‘ucu(y,p) - nupauclw + 8(901/)0 ) = &MTM(V’P) ’ (3.55)

immediately giving us

M7y =0 - (3.56)

As for the antisymmetric part, it reads

1
20Mr -5 AorpOt 0N CT 4+ 20M0),u

wlv.pl = vp

0y (0" Clgyg) + 0,Cuto” — 30,4 ) - (3.57)
The totally antisymmetric part of the variation of (3.36) with respect to 6#!/;) is

Oy (8'”6)“,7,, +201,C)," + €upor0°u’T — 30, <“m/ — SB’W)> =0, (3.58)
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3.2. The N' = (3,1) model

which can be integrated as well, provided we introduce a y-independent antisymmetric
function g,

0°Clwp +201,C," + Epvpor0°u’" — 30y (uw, — ;)BW> = Quu - (3.59)

We can compute the curl of this equation

1 1
_ - guvaﬂvaaqw - _ G Euvaﬁvaa 8°Clup + 2 aaa[auﬁv]

6
1 proBy 3
+ 3 Oye On | Upp — 5 B ) (3.60)
and combining it with (3.57) and (3.47), we eventually get
1
20" ufup) =~ Evpnopdq™” . (3.61)
Using the other condition (3.56) we found for the divergence of r, we have
1
0" (27 + GEuppapd™) = 0. (3.62)

Hence, there exists locally a function ¢y, of (2,1) Young symmetry and a totally anti-
symmetric function a,,,, both independent of y, such that

1 1

2 Tuv,p 6€Mupa6qaﬁ = 5 guuaﬁ’yaa(cﬂvp + aﬁﬂfp) . (363)

Consequently

1
T,uuu = Z 5#1/04&780‘@67# ) (364)
and
1 1

Tup = 7 5,”04576&(057,, + aﬁ”’p) ~1 eaﬁw[wﬁa(cﬁvp] + amp}) ) (3.65)

Assembling the expression for 7, ,, the expression for its trace we get

1 1
20hw)p + 2 5“””8/\0”0 -5 8AW[Wa/\CWTp}

2
—1—81/0“,/”0 -2 ayA[H’nl,]p -2 apu/“, + 2 8[puw]
1 (03 1 (0%
=3 Envagr 0% (7 p +a™,) — B} Eaprlwd® (75 +a7y)
1 [0} (e
+ geaﬁfya[,ua aﬁ’y M) ps (366)

To help us transform some expressions, we need the following two Schouten identities!

0= 5[/11/&5780“5“//)] =~ (v Op)Gasy + 3 o™ [ @p)By > (3.67)
0= g[duaﬁvaaaﬁwm]p
= 2€0870(u 00" N1 — 0pEprouwa™ 7 + 3eapyu0*a’, . (3.68)

'A Schouten identity is a non trivial identity that is the result of the antisymmetrization of
an expression on more indices than there are space-time dimensions, which is trivially zero.
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Using these identities, and the dualization of (3.59) which removes the totally antisym-
metric part of (3.66), it follows

1 1
0=20yhy, + 5 EW/\UTa/\(CUTp =Ty + (HWp D) guvpaﬁFaﬂ)

2
+ 0y(Cpvp — 2 Apmu)p) — 20, (“;w + 11—2 5Wa67a0¢/37) , (3.69)
and we recover equation (2.53) after the following redefinitions:
Uy — Uy + % €@ (3.70)
By — By — by (3.71)
Cuvp = Cuvp — Cuvp - (3.72)

We have thus derived the first order duality equations (2.52) and (2.53) from the La-
grangian (3.36).

3.3 The N = (4,0) model

3.3.1 Main result

The N = (4,0) features 42 scalars, 48 Dirac fields, 28 self-dual two-forms, 8 exotic
gravitini and one (2,2) Young symmetry tensor as listed in table 1.3. For almost all of
the fields listed, their dynamics has been described by a Lagrangian above. The only
new field for which we have to build a Lagrangian is tha six-dimensional (2,2) Young
symmetry field Ty ;5. After the split (2.41), the dynamics of this field is given by
equations (2.52) and (2.53). As a main result of this section, we shall show that these
equations can be derived from the Lagrangian in the N' = (4,0) model, can be derived
from the Lagrangian

15,8 15,4 PPN 1 ~ ~
Leg= = WPy + 5 WPy + V' — < ior 9C7 9, C™
1 1 1
+ 55 Emowr 0'C7p DL — 2 0,Cory OUTHT + 2 0yCrx 7 O°T 7,

1 1
+ 1 0,Copl 0T - — 3 0yCopt 0°T7,™" — 61 Euvafy 0T, O T+ "
1 1 1
~ 33 Oy L yr y Oy TH T 4 3 Oy Tyt 0T - — 32 Oy Tyt 0,T,-°7 ,  (3.73)
with
. ~ 1
Quvp = Ouhu)p + 0yCuv,p — §8ycw,p J

oT
Cuvyp = Cuvp + Epvpor v,

Covp = Cuvp = Vo + 2V 1] + 2 €pwpor v . (3.74)
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3.3. The N = (4,0) model

Similarly to the (2,1) Yound symmetry field, we have thus found a Lagrangian describ-
ing the dynamics of a self-dual (2,2) Young symmetry field at the price of sacrificing
manifest Lorentz invariance. After reduction to five dimensions (i.e. when d, — 0), this
Lagrangian reduces to the Fierz-Pauli Lagrangian for h,, (3.27); the dual fields CA’W"O,
Cuv,p, and T}, ,o drop out in this limit. In presence of the sixth dimension, variation
of the Lagrangian (3.73) with respect to the dual fields yields the first-order duality
equations (2.65) and (2.67), however under an overall derivative d,. In a similar as for
the N/ = (3,1) model, a rather lengthy computation allows to establish the equivalence
with (2.65) and (2.67). The details of that computation are give in the next subsection.

Let us spell out the gauge transformations (2.70), (2.72) in terms of the fields (3.74)

5§Wp = 0p0u€y) — %aya[uﬁl/]ﬂ = 0y0,Gp + i "N, Evlmorp 5 (3.75)
56#!4;) =200y = 20uBy)p + Epwpor 978" + % EpvporOy (BUT + g CUT)
0 (3.76)
Chup =2 Epar 7€ — % BuButp + 2036 + g EuporOy (BT + g )
+ %émp[u " AT = Oy v s (3.77)

which allows to confirm the gauge invariance of the Lagrangian (3.73).

The Lagrangian for the full A/ = (4,0) model is finally given by combining (3.73)
with the Lagrangians for the remaining fields of the theory. Putting everything together,
we obtain

£(470) =L, +£E+£E+£’F +£EF . (3.78)

This is one of the main results of this chapter.

3.3.2 Derivation of the dynamics of 7}, ),

In this subsection, we shall show that the Lagrangian (3.73) describes the dynamics of
a self-dual (2,2) dual given by the equations (2.65) and (2.67). First the variation of
(3.73) with respect to hy, exactly gives the Einstein equation (2.68)

1 1 1 1
G = — 9 8yapcp(u,l/) D) 8y8(uCV)pp + 9 8yapv(uw)p 9 8ya(uq)pr/)p

1 1
g M o Cp” = s By (3.79)
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Let us now look at the variation of (3.73) with respect to CA’W,p. Since this a reducible
field, we get two new equations: one for the (2,1) part

0= ay (a[uhy]p + 8aho¢[u77V],0 - nP[VaN] ha®
1 o 1 a

+ quvaﬁva ch, — Zgaﬂv[wa Cmp]
= Optp + Ot — 20%Ua )y

1 « «
+§ Oy (Chwp + Vp = Vjp,uw)) = Oypi (Cpja™ + v u}a)> J (3.80)

and one for the antisymmetric part
1 By 1
0=20, Z&ﬂgﬁ{[‘uya C o — 3[puﬂy] + B 8yv[p,,uu] . (3.81)

We will also need the antisymmetric part of the variation of (3.73) with respect to Cp.,,

1 . 1 N 1
0 =9, (SanW@ CP )+ 5 Caprluw 00y = Oty + 5 ayv[W]> - (382

These three equations can be integrated with respect to y after the introduction of the
(2,1) function 7,4, and the two antisymmetric functions g, and ., all independent
of y such that

Tuvp = Ohup + 0% hafuiiv)p = Moy ha®
1 N 1 .
+ Zgwaﬁwa Cmp - Zsaﬁv[wa Cmp]

= Ot + Opttyn) — 2 0%Uafuni)p

1 o o
+ 5 Ay(Cuvp + Vo = Vipw]) = Oyl (Cpja™ + 1% a) (3.83)
1 1
Qo =7 a0 C™Y o) = Olptyu) + 5 OyVipyu (3.84)
and
5 1 a By 1 a,, By 1
Quvp = geaﬁw[uva C7p) + 1 Eapyluw V)" — Oty + ) Ay Vlp,uv) - (3.85)

Using (3.79), we can show that

1 -
a“(’l”/ﬂ/p + q,uz/p) = § ay(Eypaﬁ’y(an’y - qaﬂv)) =0. (386)

Hence, we can define locally a totally antisymmetric a,,, and a ¢y, , which is (2,1) such
that of (2,1) type, such that

1
Tuvp + Quup = 1 Euvapr (a7 + 7)) . (3.87)
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In analogous fashion to the case of the N’ = (3, 1) model, namely using the same Schouten
identities, we finally have

1 1
a[uhV]p+Z Euvaﬁvaacmp — Oppw + 2 9y (Chv,p + Vpv,p)

= Tuwp T Quup + 3 Talu Mip

1 1
=1 5Mm578acmp + 3 8,,8Wa57aaﬂ'y. (3.88)
After the redefinition
Cuvp = Cuvp = Cuvp » (3-89)
1
Upw = U + 5 €vapr a7l . (3.90)

we recover the six-dimensional equation (2.67)
Oty + - 9*CP, -9 La,c =0 3.91
(u/w)p + 1 EpvaBy p — Oplpy + ) y(Cuvyp + Vurp) = 0. (3.91)
Contracting this equation with more derivatives, it gives rise to the (modified) Cur-

tright equation

1
30,00, — 39,0 0m), = 3 NN D, (8, Conp + OrVp e — Oprmn) - (3.92)

It remains to study the other duality equation (2.65) which follows from the La-
grangian by using the last two equations we still have not used, that is the (2,1) part of
the variation of (3.73) with respect to Cp..,

0=09, (a[uhV]p + 0%hafuivp = Ny Opha”
1 (6% 1 (6%
+ g@waﬁva 7, — gEaﬁw[uva Cmp}
= Optiyw + Opupn) — 20%Uafu)p
1 « «
+ 92 ay(CMV,P + Upuv — U[p,;w}) - 8y77p[u(cu]a +v ,u}oz)

1 1
+ 7 Ewapy @07 — Zgaﬁv[uva%lo]m

4
1 1 1 1
2 O Topuw + ia[uTV]a,pa + B ”p[vaaTu]B,aﬁ 1 np[vau}Taﬁa’B)
- Pluy7p 5 (3-93)
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and the variation of (3.73) with respect to the irreducible field 7},, 5o

1 1
0=0y (2 Eapruw 0T po + 9 €aprpe 0Ty — 5aﬁv[uvaaTﬁ7pol

+203.(Clpol ) = V) o) T 20((Cluv),o) = Vo))

—20%(Cap,(u = Y lap) Mo = 20%(Coo,(u = V(u,Jac)) e

= 20%Cap,p = VpJap) Moy = 20%(Cav,(p = Vpar|)o)u

= 2051 00) (Cpa™ — v%pa) = 21p(u00) (Coa™ — v%0)

= 214090 (Cua™ = v%va) = 21y(p05) (Cra™ — v a)

+ 9y (2 Tuvpr = 400w Tiya™ = 4pw T +2 nu(an)VTaﬁaﬁ)

+ 40,010 (Cap” — v° a5)>

= Q,u,y,po‘ . (394)
Then,
1 o o 1 B
0= 5 Quy,pa - Tlu[pQ ol,av + nu[pQ ol,op + 6 (n,u[pno}y - nu[pno],u) Q b
—2 5aBuV[pPaBU]
=0yEmpor (3.95)
where
1 fe%

Euvpr = 5 Eapyuwd T s +201,Clool ] — 20pV0) v + OyTpvpor » (3.96)

which is the equation of motion (2.65). The goal of the following is to show that we can
remove the 0, in (3.95). Equation (3.95) can be integrated to

Euy,pa = Quu,pa(l') s (397)

where €, ,» does not depend on y. For later use, we parametrize this field as

QM Qv 4 sl ol
po — po + § p ol » (398)
with traceless Q¥ po and the trace part given by
1
O py = Q4 505, 0% (3.99)
Eventually, we need to show that

gw/,pa =0, (3100)
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3.3. The N = (4,0) model

(after potential re-definition of T}, ,» and v, ), which is a genuine field equation of
the six-dimensional N = (4,0) theory. To begin with, using the field equations that are
already established, we can show that the particular combination of derivatives

3OS ) = 3010, Cp5)” = 30701, C o) = 30y 0 Tpo)™
(3.95)

= 30%01,Cp0)” =300, Cpe)"
1
_ 5 E;mApU 8:1/ (8uCn)\V + 8)\111/“5 o aVU/\,,Lm)
(2% (3.101)

vanishes. In particular, contraction of this equation shows that
20,0 ,, = 0,8, =0 =  0,(Q",-,0",)=0. (3.102)
Which can be integrated to
1
=51, Q0 =M, = O, =0, - 19 WM (3.103)

Next, consider another derivative acting on (3.101), giving rise to the second order
differential equation
0= 8”0[7_Qlwpg] . (3.104)

Using the parametrization (3.98) and the relation (3.102), this equation reduces to

0= 0,0, 9" 01 , (3.105)

for the traceless part of 2. Dualizing the first two indices on ﬁ, defines the object
Qusopr = 5 s O |
afy,po = 5 EaByuv po (3 06)

corresponding to an irreducible Young tableau @3 Using the generalized Poincaré

Lemma [42](see Appendix A.3) for this object then allows to integrate up equation
(3.105) into

~ 1 4
Uy = = 0 Dty po + 20,8 o) + 3 0 95" 1 (3.107)

in terms of two gauge parameters t,, ,, and s, ,. The first one corresponds to an
irreducible Young tableau Bﬂ, while the parameter s,, ,, antisymmetric in its first
two indices and traceless s,,” = 0, — such that the dual 5,4,, = %eagwy st , is an

irreducible Young tableau Ej The last term in (3.107) implements the projection onto

the traceless part.
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Chapter 3. Actions

Putting together (3.107) and (3.103), we arrive at

1 4
Oy = 3 chvaBy Doty po +200,5" o) + 3 5[;)‘[# 35811};4‘0]

4 1
— 30 b e 5 — 50" o W™

We can plug this back into (3.101) to arrive at
0 = 39,0

4 v 4 v 1 v AR
pol = 3 0p0yps™ ) — 3 O™ o1 + 3 Oe” OpOn™

which in turn is a curl in [po] can be integrated into
Ops'" ¢ — 0wt 5 + 260” NN = 0,6V .
This further reduces the result (3.108) and allows to put it into the form
1 2
Qg = 3 P Datipy po + 200, (5o + 5 05 €) .
Using this result in (3.97), we finally arrive at our initial goal (3.100)
Ewpe =0,
upon shifting

Tyw,po = Tuvpo + tuv,po

2
Vp,uv — Vp v + Spvp + 3 Toln £y -

(3.108)

(3.109)

(3.110)

(3.111)

(3.112)
(3.113)

We have thus show that the variation of the Lagrangian (3.73) gives the first order

equations (2.65) and (2.67).
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CHAPTER

Exceptional Field Theory framework

In the previous sections, we have constructed Lagrangians (3.25), (3.36), and (3.73),
for the three six-dimensional models which share a number of universal features and
structures. In particular, after dimensional reduction to five dimensions they all re-
duce to the same Lagrangian corresponding to linearized maximal supergravity in five
dimensions. This Lagrangian includes the Pauli-Fierz Lagrangian (3.27) and standard
Lagrangians for vector and scalar fields. The three distinct six-dimensional theories are
then described as different extensions of this Lagrangian by terms carrying derivatives
along the sixth dimension. In the various matter sectors, these terms ensure covarianti-
zation under non-trivial gauge structures and provide sources to the field equations of
five-dimensional supergravity.

This reformulation within a common framework is very much in the spirit of excep-
tional field theories [43-46]. In that framework, higher-dimensional supergravity theories
are reformulated in terms of the field content of a lower-dimensional supergravity keep-
ing the dependence on all coordinates. More precisely, their formulation is based on
a split of coordinates into D external and n internal coordinates of which the latter
are formally embedded into a fundamental representation R, of the global symmetry
group Ejy_p 11-p) of D-dimensional maximal supergravity. Different embeddings of
the internal coordinates into R, then correspond to different higher-dimensional origins.
However, the introduction of new coordinates requires a tool to eliminate the dependence
of the physical fields with respect to a suitable number of extra dimensions called a sec-
tion constraint. Solving this constraint will select the appropriate number of physical
dimensions and allows us to build higher-dimensional supergravities. Here, we will dis-
cuss a similar uniform description of the six-dimensional models based on D = 5 external
dimensions which encompasses the three different models upon proper identification of
the sixth coordinate within the internal coordinates. This will require an enhancement
of the internal coordinates of exceptional field theory by an additional exotic coordinate
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Chapter 4. Exceptional Field Theory framework

related to the singlet central charge in the D = 5 supersymmetry algebra.[insert ref Hull
BPS]

4.1 Linearized ExFT and embedding of the N =
(2,2) model

The theory relevant for our discussion is Eg(g) exceptional field theory (ExFT) [45,46].
Its bosonic field content is given by a graviton g,, together with 27 vector fields A“M
and their dual tensors By, i, together with 42 scalars parametrizing the internal metric
Muyn = (VY1) un with V a representative of the coset space Egg)/USp(8). Fields
depend on 5 external and 27 internal coordinates with the latter transforming in the
fundamental 27 of Eg) and with internal coordinate dependence of the fields restricted
by the section constraint [44]

dEMN 9y @0 =0, (4.1)

with the two differential operators acting on any couple of fields and gauge parameters
of the theory. The tensor d¥M¥Y denotes the cubic totally symmetric Eg(6) invariant
tensor, which we normalize as dM™NPdyno = g . The section condition (4.1) admits
two inequivalent solutions [45,47] which reduce the internal coordinate dependence of all
fields to the 6 internal coordinates from D = 11 supergravity, or 5 internal coordinates
from IIB supergravity, respectively. For details of the ExFT Lagrangian we refer to [45,
46]. Here, we spell out its “free” limit, obtained by linearizing the full theory according
to

v = Nuv + huu 5 MMN = AMN + (Z)MN ) (42)

around the constant background given by the Minkowski metric 7, and the identity ma-
trix Apsn. The scalar fluctuations ¢y are further constrained by the coset properties
of Mysn . To quadratic order in the fluctuations, the ExFT Lagrangian then yields

1 1 1
['EXFT,free = - 1 QHVPQMW) + 5 Qw/pﬂupu + Q#Qu - 1 JTJWM fMyN ANYIN

5 1
-3 10777 dMNEQ B, 1iONBor i — o D, oMY Dl oyn
+ Lot (4.3)
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4.1. Linearized ExFT and embedding of the ' = (2,2) model

with indices M, N raised and lowered by Aj;n and its inverse, and with the various
elements of (4.3) given by
2 M — v
Q,uup :B[Mh,,}p - g 8]\/[./4[“ Mp s Q# = Q#V s
fMVM =2 8[MAZ,]M + 10 dMNE ONBuw K
2
— 200k A" dpppdREMANP
1 1 1
Lpot = = 5 AN 0N Ondrcr + S AN 0N FOLON K — 5 Onhy” O MY
1 1
+3 AMN Gy b O by — 1 AMN 90 b Onhy, (4.4)

The Lagrangian we have presented above for the six-dimensional NV = (2,2) model
naturally fits into this framework. This does not come as a surprise since the six-
dimensional model is nothing but linearized maximal supergravity known to be described
by Ege) ExFT upon proper selection of the sixth coordinate among the internal Oy .
This choice is uniquely fixed by the requirement that the resulting theory exhibits the
global SO(5,5) symmetry group of maximal six-dimensional supergravity, thus breaking

Ege — SO(5,5) , 27 — 13916910,
{0} — {00, 05, 0a} (4.5)

and keeping only coordinate-dependence along the SO(5,5) singlet. In this split, the
Eg(6) invariant symmetric tensor dMNEK has the non-vanishing components

1 . 1 .
J0ab — ab 7 499 — — (TY)¥ 4.6
Vi o () (4.6)
in terms of SO(5,5) I'-matrices and its invariant tensor 7% of signature (5, 5), showing
that the section constraint (4.1) is trivially satisfied is 9; = 0 = 0, . Putting this together
with the linearized ExFT Lagrangian (4.3), and splitting fields as

{AMY = {A,, A4, ete., (4.7)
we arrive at

1 1 1 1
£(2,2) = — Z QHW’QMW) + 5 Q/‘VPQV’DM + Q“QH _ Z F,LWFMV o Z FHv zFMVz

1 1
= 3 (B + 0B (F** 4 0,B"*) = o "7 1y 0By Hprr”
1 1 1 ) ) ) )
_ 5 8H¢aau¢a - 5 ay¢a8y¢a . 5 (8#¢1 _ ayA/ll) (8/L¢Z o 8yA;/,Z)
1 8. 8 5
- 5 (8 ¢ - g ayA )(aﬂ¢ - g 8yA#> + 6 ayd)ay(ls
2 1 1
= 3 0uho" 0y + | OyhoOyhy” — L Oyh Dy (4.8)
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Chapter 4. Exceptional Field Theory framework

which precisely produces the sum of Lagrangians (3.4), (3.15), (3.25), after proper rescal-
ing of the singlet scalar field ¢. The non-trivial checks of this coincidence include all the
coefficients in the various connection terms, as well as in the Stiickelberg-type couplings
between vector and tensor fields, and the coefficients in front of the various d,¢0d,¢ terms
in the last line. Again, this is not a surprise but a consequence of the proven equiva-
lence of ExFT with higher-dimensional maximal supergravity. Note that although the
free theory only exhibits a compact USp(4) x USp(4) global symmetry, the couplings
exhibited in (4.8) are far more constrained than allowed by this symmetry and witness
the underlying Eg ) structure broken to SO(5,5) according to (4.5), (4.6).

The ExFT Lagrangian is to a large extent determined by invariance under gener-
alized internal diffeomorphisms acting with a gauge parameter AM in the 27. After
linearization (4.2) these diffeomorphisms act as

2
Somn =2 A OnyAS + 3 O A Ay —20d" 5 Rdgy 0y Aynyp Ok A", (4.9)
SAM = 9,AM (4.10)
2
Ohy = 3 oA 1 (4.11)

and one can show invariance of the linearized Lagrangian (4.8), provided the section
constraint (4.1) is satisfied.

4.2 Beyond standard ExFT: embedding of the
N = (3,1) and (4,0) couplings

The charges carried by the massive BPS multiplets [48] in the reduction of the N' = (3,1)
and the N' = (4, 0) model, respectively, suggest that an inclusion of these models into the
framework of ExFT necessitates an extension of the space of 27 internal coordinates by
an additional exotic coordinate corresponding to the singlet central charge [48]. Denoting
derivatives along this coordinate by 0, , this would amount to a relaxation of the standard
section constraint (4.1) to a constraint of the form

1
dEMN 9y @ Oy — il AEM (D)) @ Dy + 06 @ Opr) =0, (4.12)

which at the present stage only makes sense in the linearized theory where AKM is a
constant background tensor. Apart from the standard ExFT solutions

dEMN 9 @O =0,  8.=0, (4.13)
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4.2. embedding of the A" = (3,1) and (4,0) couplings

of this constraint, which allow the embedding of the N/ = (2,2) model as described
above, the extended section constraint also allows for two exotic solutions

(3,1): 853’1) = 53 d = —20., with the Fyyy singlet do C dr ,
(4,0): 980 = —0,, =0, (4.14)

corresponding to the two exotic six-dimensional models in precise correspondence with
the central charges carried by the corresponding BPS multiplets [48]. While the (4,0)
solution trivially solves the constraint (4.12), the N/ = (3,1) solution is based on the
decomposition

E6(6) — F4(4) , 27 — 1D 26 ,{8]\/1} — {80,6A} ,

under which the symmetric d-tensor decomposes into

V30 VB0

with the Fy4 invariant symmetric tensor nAB of signature (14,12), and the symmetric

gooo _ 2 oaB _ 1 _ap  aBC 7 (4.15)

invariant tensor d4B¢ satisfying

14
Ao =0, dapcd*P = - cP (4.16)

This shows explicitly how the (3,1) assignment of (4.14) also provides a solution to the
extended section constraint (4.12).

It is intriguing to study the fate of diffeomorphism invariance of the ExFT Lagrangian
(4.3) if the original section constraint is relaxed to (4.12). Except for the last term
in (4.3), the Lagrangian remains manifestly invariant without any use of the section
constraint. Explicit variation of the potential term Lo under linearized diffeomorphisms
(4.11) on the other hand yields (up to total derivatives)

OaLpor = (5 Ars dXMNAKPL —10AMNAKE 41 ¢pdPQY) NS Dpdgdrdnic
—10 h”M AMEK dKLRdRPQ 6M8P6QAL , (4.17)
which consistently vanishes modulo the standard section constraint (4.1). For the weaker
constraint (4.12), this variation no longer vanishes and may be recast in the following

form

OaLpot = AEM AN 90,0000 0N K — 41" DeBeONAY (4.18)

after repeated use of (4.12) and further manipulation of the expressions. In order to
compensate for this variation let us first note that there is no possible covariant extension
of the transformation rules (4.12) by terms carrying d,A™, such that invariance can only
be restored by extending the potential. A possible such extension is given by

1
Loons = Loot — 53 erin0a6™™ =2 00700, + 5 O Ouly, (4.19)

S7



Chapter 4. Exceptional Field Theory framework

and it is straightforward to verify that the variation of the additional terms in (4.19)
precisely cancels the contributions in (4.18), such that

A Lpote = 0. (4.20)

For the exotic solutions of the section constraint, the OearnGed™ Y terms in (4.19) give
rise to additional contributions of the type 0,¢0,¢ in the Lagrangian. Collecting all
such terms in (4.19) for the two exotic solutions (4.14) yields

1
(3.1) — —50y0°0,0% . a=1,...28,

1
(4,0) — -5 010,07 A=1,...,42. (4.21)

These are precisely the terms found in our explicit construction of actions (3.45) and
(3.78) above! In other words, the relaxation (4.12) of the section constraint together
with generalized diffeomorphism invariance precisely implies the correct scalar couplings
in the Lagrangians of the exotic models. In addition, the ¢hdeh terms in (4.19) cancel
the corresponding terms in Lo (4.4) upon selecting the (3,1) solution of the section
constraint (4.14), just as required in order to reproduce the correct Lagrangian of the
N = (3,1) model (3.36).!

We may continue the symmetry analysis for the tensor gauge transformations given
by a gauge parameter A, ) in standard ExFT. For these transformations there is a
natural extension of the standard ExFT transformation rules in presence of the exotic
coordinate and exotic fields as

Op, A = —10d"NE O Ak — VIOAME OA k¢ (4.22)
On,Buw s =20, M) 0 - (4.23)

Computing the action of these transformations on the connection featuring in the co-

'In contrast, these terms appear in conflict with embedding the spin-2 sector of the N =
(4,0) model as they survive under the (4,0) solution in (4.14) but should be absent in the final
Lagrangian (3.73). We come back to this in section 4.3.
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4.2. embedding of the A" = (3,1) and (4,0) couplings

variant scalar derivatives DuqﬁM Nin (4.4), we obtain after some manipulation®
dp, D™ =10 (; AMN 559+ AR 5, N)
—10A° (MdN)QRdRsp> dPEL 9 A,
—-2V10 <?1) AMN §p@ 4 5p(MANIQ
—10 AL(MdN)QRdRpL) APEQROA, g . (4.24)

The resulting expression precisely vanishes with the modified section constraint (4.12).
This shows the necessity of the 94 A, ps terms in (4.23) in order to maintain gauge invari-
ance of the kinetic term Du¢M NDHroyn in presence of the relaxed section constraint.
It is straightforward to verify that these additional terms in the transformation induce
a modification of the gauge invariant vector field strengths to

Fu =20, A, +10d" VKON B, ik + VIOAME 9,8, (4.25)

as well an extension of the topological term, such that the combined vector-tensor cou-
plings take the form

1
£Vt,o = - Z AMN FMVM]:HVN
— ZWUT 0Byt (\/E dMNEONByr i + AMK@.BUTK> : (4.26)

and are invariant under these gauge transformations. Let us work out the effect of
these modifications for the exotic solutions of the section constraint. With the kinetic
scalar term unchanged, the resulting couplings are directly inferred from evaluating the
covariant derivatives (4.4) for the d-symbol (4.15), giving rise to

(3,1) — f% (016" — 0,417 (9u¢’ - 0,4,7) — % 960,07

(4,0) — —3 99"0,0" (127)

where i = 1,...,14, « = 1,...,28 and A = 1,...,42. This precisely reproduces the
vector-scalar couplings found in the explicit Lagrangians (3.45), (3.78) above. As for the

2A useful identity for this computation is given by
1 1 1
dPERApgrdEME Dy 0y, = o SEaLOM oo + % M AR LY, + % SLAMELY Ly,
1
—3 d°MRdpgpd™ ok oy

generalizing equations (2.12), (2.13) of [46].
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Chapter 4. Exceptional Field Theory framework

vector-tensor couplings, evaluating the Lagrangian (4.26) with (4.15) for the solutions
(4.14) gives rise to the explicit couplings

1 3v3 L, 3V3 5
(3,1) — — 1 (Fuw + 5 Oy By ) (F* + 5 9yB")
1 v v 1 Vi ]
_ Z (ij _|_ayBHVa) (F“ a+8yBu a) ZFM ZF;WZ
3

1
o E EMVpUTayB,uproT o ﬂ chvpoT ayBuya Hpm_a ’

(4,0) — - i (B + 0y B M) (P 4 9, B M)

1
~ 5 P77 9, Bu™ Hypor™ | (4.28)
with indices in range ¢ = 1,...,14, a =1,...,12, M =1,...,27, as above. Again, this
precisely reproduces the couplings found above (after proper rescaling of the vector field
AL)!
To summarize, in the scalar, vector and tensor sector, we have constructed an ex-
tension of the ExFT Lagrangian (at the linearized level), given by

1
L= _5 DM¢MNDN¢MN + ﬁvt,o + ﬁpot,o > (429)

which is invariant under the gauge transformations (4.11), (4.23) modulo the relaxed
section constraint (4.12). The weaker section constraint necessitates a numer of addi-
tional contributions to the Lagrangian (and transformation rules) which precisely re-
produce the explicit couplings found in the Lagrangians of the exotic models (3.45),
(3.78) constructed above. It is remarkable that this match confirms the couplings that
have been determined from an underlying non-compact Eg(g) and Fy4) structure, respec-
tively, despite the fact that the free theory only exhibits invariance under the compact
R-symmetry subgroup USp(2A/;) x USp(2/N_) which might in principle allow for much
more general couplings. We take this as evidence for the conjectured Eg(g) and Fyy)
invariance of the putative interacting theories [14].

4.3 The spin-2 sector

The above findings have revealed a very intriguing common structure of the couplings
in the scalar, vector and tensor sectors of the different models which can be consistently
embedded into an extension of (linearized) exceptional field theory. For the spin-2 sector
carrying the Pauli-Fierz field and its duals on the other hand the picture appears not
yet complete. Extrapolation of the Lagrangian of the ' = (4,0) model (3.73) suggests
an extension of the standard ExFT Lagrangian by couplings carrying d, derivatives and
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the dual graviton fields as

1508 15008 P 1 ~ S
E = — Z QMV’OQ’“VP + 5 QMV'DQVp,u + QMQ;L + g Euymﬂ)\ 8MC Up BQCH P

1 1 1
— 35 Smwom 0'C7, DeCrMP + g 0Cor QT = 20:Crop ~ I~ T,

1 1 1
- Z 8VCO'MM 80TUT’V7- + g 8.65;,4# 8JTTVTV + GZ 5,uuaﬁ'y 80[]107'/6’y 80TMV’UT
1

1 1
3 8.TM7W OeTH T + 3 8.TUM7V“ 0T . — 3 8.TMV’W OeT5"
9 ~
+ 1 ghvpPor dKMNaKBWM 8NCW,T , (4.30)

with 9 1
Q,pr = 8[Mhy]p — § 8MA[MM Mvlp — O.CW,,; + 58.6“1,,,, . (4.31)

By construction, this reproduces the N' = (2,2) and the A" = (4,0) models upon choos-
ing the corresponding solutions of the section constraint. It remains unclear however,
how the spin-2 sector of the N' = (3,1) model can find its place in this construction. In
particular, the appearance of the extra fields C,,, , and T},, o appearing in (4.30), whose
couplings remain present upon selecting the (3,1) solution (4.14) of the section con-
straint, poses a challenge for recovering the Lagrangian (3.45) of the A' = (3,1) model.
The structure of the gauge transformations of C as extrapolated from (3.77) appears to
suggest a gauge fixing of the (,,,, and X, ,, gauge symmetries — absent in the V' = (3, 1)
model — in order to remove this field. Another apparent problem in the spin-2 sector is
the lacking reconciliation between the J¢hdeh terms from (4.19) and the 0,70 T terms
of (4.30) which mutually violate the correct limits to the exotic models. Resolution of
this problem may require to implement algebraic relations between the Pauli-Fierz h,,
field and the double dual graviton [49] (see also [50]).
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CHAPTER

Supersymmetry

In the previous chapter, we used the formalism of Exceptional Field Theory to rewrite
the bosonic sectors of the three six-dimensional theories. In this chapter, we shall rewrite
the fermionic sectors of these theories by considering their supersymmetric extensions.
To that end, we follow different strategies. For the N' = (2,2) theory, we can linearize
the already known supersymmetric ExFT action to deduce the full supersymmetric La-
grangian. For the A/ = (4,0) theory, such an ExFT action is not known, so we shall
compute the six-dimensional supersymmetry variations of the fields and write them in
the 541 split form introduced above. Since the fields of the (4,0) model already ap-
pear in a form covariant under Usp(8) which is the five-dimensional R-symmetry group,
finding the full supersymmetric Lagrangian is relatively straightforward. The strategy
for the N = (3,1) theory is the same. We work out the supersymmetry variations of
the fields in six dimensions and their 5+1 split form. A final step, which remains to be
worked out, is the embedding of the fields (which are covariant under Usp(6) x Usp(2))
into Usp(8). We leave this for future work.

51 N =(2,2)

The supersymmetric extension of the N' = (2,2) model can be obtained by lineariz-
ing the supersymmetric exceptional field theory [51]. The fermions of the model have
been introduced in Section 3.1.4 above, in terms of a Usp(4) x Usp(4) formulation. In
ExFT, they combine in Usp(8) objects xyAZ¢ and 1/);:‘ where A labels the fundamental
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Chapter 5. Supersymmetry

representation of Usp(8). The fields are embedded as

Xagy = QapX]
1
Xapa = X[afla ~ 6 as Xa
XABC _ B B Q[[ 6] 6 B (5.1)
Xapy = *¥apXA]
Xapa = X[af]a — %Qaﬁ Xa
P
P = { . (5.2)
12 wua

The bosonic sector has been formulated in terms of Egg) objects in the previous section.
For the coupling two fermions, we need to rewrite the bosonic fields in terms of Usp(8)

objects.
M AB
Al — A (5.3)
B,uz/,M — B,Lw,AB (54)
¢MN N ¢ABCD ’ (55)

with vectors and two-forms in the 27 of Usp(8) and scalars in the 42 of Usp(8). Under
Usp(4) x Usp(4) the vectors further decompose as

AﬁB - {AH[[am]: A,u[[dﬁ]]v A#adv A,u} ’ (5'6)

where Au‘m are the six-dimensional vector fields, Auﬂaﬂﬂ and AM[dB]] are components of
the six-dimensional two-forms and A,, is a component of the six-dimensional graviton in
accordance with Table 1.3. Two-forms and scalars allow for a similar decomposition to
match the field content of Table 1.3.

Similarly, internal derivatives are labelled as d4p under Usp(8) and the section con-
straint (4.1) takes the form

1
QACGCD&:)B + g OupB 8CD80D =0. (5.7)
Its solution describing six-dimensional maximal supergravity takes the form
1 1
aa/@}:igaﬁay, 8d~ =—§Qa58y (58)

This corresponds to keeping only the coordinate dependence along the SO(5,5) singlet
coordinate as discussed in equation (4.5) above.

In terms of these objects, linearization of the supersymmetric ExFT Lagrangian
of [51] yields

PN L 50ndy ong S
L=—7 QMP Qs + 3 QP o + QY — 3 DF¢ apcp Dy PP
1 8 _ 7
2 FH apFu™? — 3 XaBeV Oux P = 240, 4" P01,
+ Epot 9 (59)
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where

QIWP = Ophugp — gaABA[uABTMP )
]_—WAB _ FWAB 1 2QClAyBID Buco
DM[)ABCD _ auquBCD + ;a[[ABAuCD]} ‘ (5.10)
and Lo collects all the terms carrying two internal derivatives as given in (4.4).

The Lagrangian (5.9) is invariant under supersymmetry transformations given by

§EABCD _ el BOD]

=1€
5AA = chyux —1 6[[Aw5]] )
0B = — iécmun PO + 2y, y 00

5huu = GA’Y(;ﬂ/}V)

. 3
6XABC =3 ’VMEDDM(ZSABCD _ E VHVGHAfﬁcﬂ

3

n s OpE ¢DE[[AB € 1 20p8 ¢ABC’D 2

A_ Uy raB L ora(a 596
S = — s e Fal + T en T — o7 (Qor — 2000 )

i 1 1

- O Bh,yen + 3 ¢ 8ABAMBC -5 ¢ dcpA,PA
1

2
— —8 CAHBCE — fzachSCDAB Yu€B (5.11)

3

which are also obtained by linearizing the variations given in [51]. Similar to our dis-
cussion of the bosonic sectors in the previous chapter, we expect the supersymmetry
variations of the N' = (4,0) and N' = (3,1) theories to coincide with (5.11) up to ad-
ditional terms carrying an internal derivative along the extra singlet coordinate d,. We
will show that at least for the N' = (4,0) model, this is indeed the case (while the
computation is not complete yet for the N' = (3,1) model).

5.2 N =(4,0)

We next turn to the N' = (4,0) theory for which the field content and their actions have
been discussed in Section 3.3. To find the supersymmetry variations in six dimensions,
our strategy is to impose the closure of the six-dimensional supersymmetry algebra.
Next, we reduce the result in the 5+1 split form notably (2.62) and (2.95) and simplify the
result by fermionic gauge transformation. Furthermore, we identify a field redefinition
allowing us to write the supersymmetric variations in a more compact form. Finally we
present the supersymmetric Lagragian of the full linearized theory written in terms of
these new fields.
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Chapter 5. Supersymmetry

5.2.1 Supersymmetry variations of the (4,0) model

In this subsection, we present the six-dimensional supersymmetric transformations of
the A/ = (4,0) model. These transformations have been worked out in the prepotential
formalism [34]. Here we determine the transformations directly in terms of the original
six-dimensional fields.

The six-dimensional supersymmetric transformations have to close into six-dimensional
diffeomorphisms (up to gauge transformations) in the following way.

(01, 2) X = €0, X + gauge transformation , (5.12)

where 01 and d2 are variations of the fields with different parameters €; 4, €2 4 which then
enter the diffeomorphism parameter ¢#. This parameter must be the same for any field
X, which restricts the form of the supersymmetry variations. In the following, we shall
illustrate this explicitly for the simplest field, namely the scalar field $A2¢P. The most
general form of the supersymmetry variation compatible with its Usp(8) representation
is

§ABCD Z-E[[AXBCD]] ’ (5.13)

4 is a suitably normalized supersymmetry parameter. As above, the notation

where €
[ABCD] refers to Usp(8)-traceless antisymmetrization. The factor i comes from the
reality condition of the spinors. Similarly, we can write the general form of the super-

symmetry variation of the Dirac fermions x
oxABC = 419, B Pep + B terms (5.14)

where the B terms involve the field strengths the two-form fields BMAB which are not
relevant for the moment (but will become relevant later on). To calculate the supersym-
metry algebra, we look at the commutator of two variations on the scalar field given by
(5.13) and (5.14)

(61, 029 ABCD = EgA’Ayﬂaﬂ¢BCD]]EeLE — (14> 2) + B terms . (5.15)

This expression is not immediately in the form of (5.12), but this can be achieved using
the following Schouten identity

A . p
0= 6[2 ,yuel7Eaﬂ¢WXYZQBWQCXQDYQEZ}
A q _[A L
—4 6[2 ,YueLEaﬂquCD}E . 46[1 7pez’Eaﬂd)BCD]E
+ €2E,’)‘/1161’E611¢ABCD —6 €2,Wﬁ/ﬂ€1,E8ﬂ¢WE[ABQCD]. (516)
We therefore find for (5.15)
_[Axn 1 5.4
& 5 e1,p0u0" P — (16 2) = = &4Per 596" PP, (5.17)
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5.2. N = (4,0)

such that we can read off the diffeomorphism parameter
po _Lopap
& = —g @ e (5.18)

From the point of view of group theory, the Schouten identity (5.16) has extracted the
singlet component in the decomposition of 42 ® 42 of Usp(8) in the sense of

1
= 6xbapcpd PP, (5.19)

papcx ¢ P = 3

Group theory also explains why the B terms in (5.15) eventually drop out. Indeed, the
only combination which could appear in the right-hand side of (5.15) is

EEA’?ﬂﬁﬁﬁlBHpﬁpCDﬂ - (1+2), (5.20)

of which the spinor bilinear vanishes identically due to symmetry reasons. The B terms
will however enter into the calculation of the closure relation for yA2¢. Indeed, imposing
the same form of (5.12) allows us to iteratively fix the entire six-dimensional algebra.

After lengthy computations, the final algebra is
SGABCD _ el BOD]

,YWPHMA[[AB C]]

Sy ABC = Z-,Ay;laﬂd)ABC’DﬁD - =
0By = —iecHux P — 2zeﬂA¢W :
i, AB ABs 4 L apA A
by =5V Huos" en = 3 Hapy i en = 35577535 1™
0T p6 = — 1 €A (AWZJ?& +Apohip — 2’Y[ﬂp¢,‘§‘&]) : (5.21)
where
Sﬂl)ﬁﬁ—f— =3 8[,1Tl;ﬁ]7&+ . (5.22)

These supersymmetry transformations are written in terms of the original six-dimensional
fields. In the next step, we shall decompose them in the 5+1 split form.

5.2.2 5+41 split of the supersymmetry transformations

Using the 5+1 decomposition discussed in chapter 2, we can derive from (5.21) the
transformation of the various components of the fields. We furthermore use the duality
relations (2.18) and (2.67) to trade H,,,”” and 9,Cyp),o for their dual field strengths
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F WAB and 9, h,|, respectively. After lengthy computations, (5.21) gives rise to
§GABCD _ A\ BCD]
0ALT =eomx ¢ —iddyl
OBAP = — iecmux PO + 2y, ] - 2idAyll
Shyw = €ay(uby)
6Cup = €a ((Vpﬂ)fy — Wo¥im)) = & = W) — iiﬁﬁm]p) :
0T yv.po = — €A (wu@b,‘i‘a + YooV — 2 V[Ww;j‘g])

— A A
+2¢€a (’WM [p¥a] T VpTlo] Wu]) :

. 3
5XABC — Z’YMGDau(bABCD - ay¢ABCD€D - TG ,YuuﬁﬂA(FlﬁC}] + ayBEVC]]) ’
i ]
Su = — S aen(FAP + 0,BAP) + L Pen(FAE + 0,B45)
1 o4 1 1 1
T3 Ve | Oahpy + §8ycaﬁ,u + Zayvu,aﬁ - §8uuaﬁ )

3
sy, = g(F;‘VB + 0,8, e

[N 1
+ -7 e <8[Mh,j]a — ayCa[W] + §8yv[w]a + %uy}a)

3
1 A 1 7 A

= 16 7€ 0u(Claglu) = 5U08) = 76 € Optias
1 ;

- ﬁ”aﬁﬁA@gTaﬁvW - 3*2%“5 €40,V 05 - (5.23)

These transformations can be simplified further by using a fermionic gauge transforma-
tion (2.98) with the specific parameters

1
A A
6~ 1*67/“/6 U
1 1
"fﬁ = _EF}/UTGA (CO'T,,[A - 5 Vy,or — E;m)\m'uﬁ)\) . (524)

Indeed the last two transformations of (5.23) reduce to

i, i
o =~ 17 en(Fy’ +0,B5)) + S W en(Fas + 0, B45)
1

1
- g WQBGA (8ah6u + 81/ (Caﬁ,u - 5 5;1,&6/{)\“’{)\)) )

3 i
0, = 5 (Fin + 0y B ) + 57 (huja + 0y (Cuna + Eparru™))
1 o
- 372%5 o, (Taﬁ,w + €apralu (C R I T ))

(5.25)
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At this point we observe that these variations can written even more compactly in terms
of the new fields 7, o7, Qv and FWAB defined as

ﬁw,po =Thw,po +2 (nu[pha]v - nV[phU}u)
+ Eporalu CH/\V] ~ EporA[u V] "
= 41fp Ugly + A1 Yoy »
éﬂ%ﬂ =Clv,p + Epvpor u7"
Qv =000 + 0yChunp
]_—WAB :FWAB I 8yBWAB .

In terms of these fields, the fermionic supersymmetry transfomations take the compact

form
) 3
SXAPC — _ iyPepd, 6 ABOD = i AFBC] _ g 4ABCD
6wA:_z,7V€BfAB+£,7UTEB]_—AB_i,yUTGA(Q 98 )
I 4 v 8 I oT 16 oT, [ Ho,T ?
3 1 ~ 1 ~
S, :gf:lyBeB +3 AP Dy — gvaﬁ“‘ay (7;%5 — 4napuhy ﬁ) . (5.30)

In order to find the supersymmetric extension of our bosonic Lagrangian (3.73), we
still need to determine the supersymmetry variations of the fields u,, and v, ,, which
we have introduced in section 2.1.6 by integrating the field equations of the (2,2) field
into first-order duality equations. We will do this in the next subsections.

5.2.3 CT duality equation and 6v, ),

Let us derive the supersymmetry variations for u,, and v, ,; by varying the first-order
duality equations by which these fields are defined. As we are working on-shell, we will
need to make use of the Rarita-Schwinger equations (2.96) and (2.97)

PP Dy, = JHA

Ot = Jup™ (5.31)
for the five-dimensional gravitino field qﬁ‘; and the exotic gravitino wfp, respectively with
sources

. 1
J,A =0, (32 YV’ A — QWWWPA) : (5.32)
1 e
Turn™ = T5upasdy (7" Mbera + 417" a) (5.33)

In order to compute the variation v, ,, under supersymmetry, let us start from our
first-order field equation (2.65)

1
2016Vr) o = 5 Euvaty Ty + 0,Cory — 0yCorp + Oy Ty - (5.34)
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Taking the variation of this equation and using the explicit result (5.23) we obtain (to
avoid cumbersome notation, all the expressions in the following should be understood
as antisymmetrized in [pv] and [o7])

1
20160011y =5 Epvaty 0Ty P + 20,007, + 20,0 Tsr

{ _
= — 5 ewasn €4 (110U 4 70r 0T 2970007 4)

3
4 _

+ § €A (’Yva,uw?r - ’Yffaﬂwfu>

+ €uvaBo gA’YBaaQZ)f — Euvrary EA'Yaaagb’YA
4

- § T€A (’Yarauébf - 'YTV@##?) -2 EAauqb?nTV

4 _
- gl €A (ryp,l/awaT + 7078y¢£y -2 'Yuaawau)

+ 4€a (Ve 0y d2 + Yoy i)

. o 1
=1t ‘Euz/B7 €A (%wamwfr] + 3 Vor0a¥sy) A — Vo Ofary) A)

g (2 |
+1 gw,ﬁ’y €A <3 Vﬂya[awﬁa + g Vﬁ[Taa]w’ya A)
_ 1 2 1
+4éx <7ua[p¢?7} + 5 %3[#1%47] - g VVa[Uwﬁu + 6 V[Taa]wfy>
+ 2 EA'}/,uz/on' 3a¢f + 2iy0 gz‘&’)/,uToryaaCb’y A +1 gA'Y,ul/T'yaa(b’yA
4. _ o
- gl €A ('Yara,uﬁbf - 771/8#@5?) — 21 6A8M¢£nTV

4.
- gl €A (%Vayiﬁfr + %Tay%fu —2 ’Yuoaydjfu)

+4€y (’Y[wy][a@yﬂf] + ’Y[ﬂﬂ[uayﬁbf]) : (5.35)

Now we have to rewrite this expression on the right-hand side as a curl on [o7] to
identify the variation of v;,,. We will do this computation piece by piece, starting
with the terms containing the gravitino qbuA and spacetime derivatives. These terms
are collected in the fourth and fifth line of (5.35). Once again, the following should be
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understood as antisymmetrized on [pv] and [o7]

T i ar G2+ 20 s Yyuran 6 — iy 0
4 :
- gz (707'8#@1)3 - 77'1/8#@5?) —21 a“¢£nTV

= — 4iYur” Oa®y) + 20 1o Yurar 074
4 . 8. )
- gz 707’8[#(%?] + §Z fYTua[Mgb?] —4i nTVa[M(b?}

. 4. .
—1 ’Yum"yaaqs’yA + gz /YTuatTd)ﬁ —2i Uuradf’f . (536)

Using the Rarita-Schwinger equation (5.32), this expression can be put into the form

[Mﬂ;] — 43 'Ym/ap a[T¢;‘] — 4 Nyo %’pa["'¢;’%

4. 8. . . 8.
- 71’)/078@(?5} + 72’)/0#8[1/(??] —4i naua[u¢f] + 81 Nop a[u(ﬁf] + glf}/,uua[o¢£]

3 3
4 8

. A . A . A . A

— 1 Vury0g 7 + 3¢ V0o by — 2017060, — 3! VO 5
8 2 L, 4
+ 2140 Yrdy — 3 Nuo Yvdr + 3 Nvo MYl + 3 Nuo ’YV’YTpJp
81 8. 4 8. 8. A
= g ”V,Lwa[VQST} - gz 'Yuaa[ud)q—] - gl 'V,uua[aqﬁr] + §Z 7#V8[a¢7—}

43 4 A

+ 3 Vo) — 517708y

— 4inyo Oy br) — 4i M0y + 81 1o Oy O

. 4. . 8.
- erNVT'yao'QbVA + gl 'YTVBO'QS;‘ -2 nVTao'QZ)ﬁ - gl ’Yuuao'ﬁbf

4 8 4 2
= 3 o Yot & 3 Mo Yoy + 200 Yorpd” = S Norl ) + 3 VoMl T

3 3
1. 4. 2. .
= 260 <_2 Z’V,ul/‘r'yqzwA - gz’y,uz/ﬁbf - g Z’Yﬂ'ugbf + Z"?Tuqz)juq)
2 4
+ § 'Y;WUJT - g PYO'T;LJI/ + Qnua'}’lmpv]p s (5.37)

We have thus recast these terms into the form of a curl in [o7] up to terms carrying
the source JMA which all appear under 0, derivative. These terms will eventually cancel
against similar contributions. Let us now turn to the exotic gravitino terms in (5.35)
that are not already in a curl on [o7] form. They are in the first and third line of (5.35)
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and after some manipulations on the indices, they can be put into the form

P n (= ™o Oy — 6 ety + 200 Oy

2 2
+ 5 Muo "YVTaB,ya[awgﬂ — 5 Nop 771/7'70&7 3[&%‘7]

3 3
— 4%8[,,%‘7] + 2%8[u1/1,f‘71)
2 8 _
+ Oy (3 eV, — 3¢ A’Y[Wﬁf) : (5.38)

The last line of this equation is now in a curl form while all the remaining terms are
proportional to the Rarita-Schwinger equation of the exotic gravitino (5.31) and can be
replaced by the corresponding source. Finally, we note that the second line of (5.35) is
already in a curl form

2

[ru‘ﬂ;ﬂ aa (2 gA,y'qu wfp + 3

Nur gA'YVaﬂ Q,Z)£5> . (5.39)
Let us now bring all of these pieces together. Equation (5.35) then yields
1 _ A 4 _ A
205607) 0 =205 3 €AYV — 3 EA’Y[uwu]r
_ 1 _
+20, <€A'Y;wp ¢fp + g Nur GA'VVQB wﬁﬁ)

3
+,(...) . (5.40)

1. 4. 2. .
+ 260 (_2 Z'Y;WT'Y(;WA - *Z'Yuuqbf - g Z%’,uﬁbf + lnTMQSf)

where the last term denotes all the terms carrying a d, derivative, in particular all the
source terms in the Rarita-Schwinger equations. For consistency, one may check that
these terms mutually cancel. We are thus left with the variation

_ _ _ 1 _
57)7’,#1/ = EA’Y/UJP Q;Z)fp + EA’YTw:?y -2 6A’7[T¢,fy} + g Nriw EA’YV]QB ¢£B

1. . . . _
~ 35 7 EA’V;WT'y?b’YA -1 EA'Y/U/@Z)f -1 GA'V[,uugbf} +1 777[#€A¢f] . (5'41)

5.2.4 hC duality equation and du,,

Now that we have computed the variation of v, ,,, we can now compute the variation
of w,,,. For this we start from the first order duality equation (2.67)

1 1
5 0yCuvp — 5 Oyvp v (5.42)

1 A
pul)p + 4 Ervdor O°C7"p = Opupy — 9 5

Taking its variation and using the expression (5.23) above, we obtain
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1 1
5 (a[uh,,]p + 7 sor aACUTp> =00h, +  Sprror PO,

(] 1. — oT 3. T
.“: gl Nup 6A7VA078[>\w 1A + ZZ €A’YHV)\ a[/\q’/)TP}A

1 1_
- EZ EAPY,uu)\Tapwa - geAﬁ)/,uV)\aP(bf

1_
- 5 EA’Yuapﬁbf

3 _ 1 _
+ 1 €AV dp) = 2w dp — 3 Nou€ayinJ™ . (5.43)

The first two terms carry the exotic gravitino and can be replaced by their source term.
Combining this with equation (5.42), one may check that all terms carrying 9, cancel
and we can conclude that

1_ 1_ 1 _
6“;1,1/ = —5 6A7[N¢f} — gEA")/'qu¢’? — EZ GA’y#ypalﬂ?U . (544)
With these results we may now compute the supersymmetric variation of the new field
Tyw,po introduced in equation (5.26). After some lengthy computation this leads to the
suprisingly compact result

57;1/,;)0 =2 EAﬁ)/pcr w;:ly . (545)

—

5.2.5 The field 7,, ¢

We have seen in the above that the supersymmetry variations of the fields take a very
compact form when expressed in terms of the field ﬁy,pa introduced in (5.26). Contrary
to the original field T}, p», the new field is no irreducible under the Lorentz group i.e. it
carries all the components of the tensor product

H@H: o | ‘@ , (5.46)

and not just the H} component. In this section we present the field equations in terms
of this new field. A lengthy computation shows that the first-order duality equations
(2.65) and (2.67) imply that the curl of 7, - is given by

3 a[,u’?\:/p},ch = 8ys.7,uup70'r s (547)
with the current
3 . . N
jw/p,UT = 5 8<77—/~t)\[,u7:/p] A +6 na[#clzp},'r -6 nT[uCup],o -6 EUT)\[,uuhp])\ ) (548)
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and the field CA'Wﬁp defined in (5.27) above. We can also show that the gauge transfor-
mations (2.70) and (3.77) imply that the new field transforms as

T KA
0T pw.po =200 oo = Eparrlu o)™ = 41p[u0yTvjo + 47061, 0y )0
A e OyET (5.49)

where the gauge parameters are related to the original ones

F,uu =0py — Bw/ )

Au,pa :Au,pa + %5%00&)\ CKA - ggupmf)\ ﬁﬁ)\ - 47’1/[;2 ga} ) (550)
The form of the field equations (5.47) shows that after dimensional reduction (9, — 0),
the field ’f,w,pg is pure gauge and can be set to 0 using (5.49). This reflect the fact that
the double dual graviton in five dimensions does not carry separate degrees of freedom
but can be related to the spin-2 field by an algebraic relation [49,50]. Furthermore the
field equation (5.47) can be obtained by variation of the Chern-Simons type Lagrangian

1 ~ ~ 1 ~
E = _674 gul/paTa.u‘,];pzaﬁay%Taﬁ + % EMVpO—TaynV7aﬁay‘7/;0'Ta6 (5'51)
with
/ 3 T KA ~ ~ A
Tuwpor = 1 EormaluTvp] T 670uCrplr = 60, Cuplo = 6 Eorafuhy)” - (5.52)

Indeed, after plugging (5.26) into this Lagrangian, we recover all the corresponding cou-
plings from (3.73) above. This Lagrangian is invariant under the gauge transformations

5huu = 28(#&,) — 28yr(w,)

0Cp =2 8[url,]p + €uvpor07E" + 8yA[u’,j]p — Eppor Oy 7T — 2 np[#{?y&y] , (5.53)

combined with (5.49) above. This provides a compact way of expressing the dynamics
of the exotic tensor field of this model.

5.2.6 The N = (4,0) supersymmetric Lagrangian in 5+1
split

The new set of fields provides a convenient starting point to construct a supersymmet-
ric Lagrangian of the N' = (4,0) model. First, one may verify that the full bosonic
Lagrangian of (3.78) takes the form
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14, ~ 14, ~ A~
£(4,0), bos — — Z QMVPQMVP + 5 QMVPQVPH + QMQM
1
3 5 ‘F“VABFMVAB
1 HVPOT o T T aff 1 UVPOT O ! af
Y € OuTop,ap0yTor™" + 9% € ayﬁl/,aﬂayjpar )
1 1 ~ N
= &7 0uByy, B0y By AP — 5" 0uCupa 0y Cor”
8
_ g y

8
— Z d"Gapcpdpt PP —

3 3
¢ABCDay¢ABCD + Z ayh,ua 8yha-'u - Z ayhuu ayhyl/ ) (554)

with J’,,5 o- defined in equation (5.52) above. The fermionic field equations (2.96) and
(2.97) can be obtained by the Lagrangian

8 _ _
Lo, tor = = 5 XABEYV OuX P = 208 47" 0b™ + Dy 4777 O

8%

- g XABC ayXABC +61 TZ_J,u A'Y“l/awa

+ ,L /IZ),U«V A’Y‘uypo—ay@b;?a' + 4 ,(E}Ll/ A’y“ypay’l;z);? 9 (555)

so that the full Lagrangian is given by

L4,0) = L(4,0), bos T L£(4,0), fer » (5.56)

and one may check that it is supersymmetric under the transformations

§GABCD _ A, BCD]
FA = EomP —idlyfl,
. _ B .
5B;:1VB = —1 GC’YMVXABC +2 6[[14,}/[“,9&”]]] -2 EﬂAwfyﬂ >

Shyw = €avuby)

~ B 7
5Cuy,p = GA’pr;?y + ) €A (4 Yolu")k — 2 Ne[uMv]p + ’Yul//m) IPHA )
577w,pa = =2 EA’Ypa w;?y )
. 3
SYABC = jtepd, tBOD _ £ i JAFBC) _ g sABOD
i i oT 1 oT O O
51#;? = —3 'y”erfVB + 13 T epFAB — 67 A (QUT’M — QQW,T) ,
1 1 ~ 1 -~
A AB A A
s, = SFAPen+ 217y — 259040, (T — Anahugs) » (557)

derived above. This is the main result of this section.
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The Lagrangian is invariant under the gauge transformations for the bosonic fields

Shyw =200,€) — 20, ()
5AuAB _ OMAAB _ 8yEHAB :
0B P =20,5,7
8Cup =200, + Epporr0°E™ + Oy tp — Eppor Oy T — 211,0,0,6, |
577“4!70 =200 M) pe = Eporrlu Iy A4 MoluOyLv)o + 4100y L),
— A ppor OYET (5.58)

and on the fermionic fields
A A . A . A
5wl“1 =2 8[/”@,] +1 a[u’yy]lﬁl + 21 ay’y[uliy] s
S = Ouk™ — 20y, . (5.59)
In addition the Lagrangian is invariant under translations of all the fields
6@ = =+9,® + =%0,® (5.60)

One may show that the supersymmetry transformations (5.57) close on-shell into gauge
transformations with parameters

=P
EPhup

~ 1
= =6
F,ul/ == Cpuﬂj + 5 = h,LLI/ y

Apyw = Ea?pa,w +2 E[uhV]p ’
AB = —2iécqaep 168D (5.61)

and translations with parameters

— 1_ — T _
=H = Z 627,4’}/#614 =6 — _Z 62,A€114 . (562)

53 N =(3,1)

Finally, we look at the N' = (3, 1) theory whose six-dimensional field content is reviewed
in Table 1.2 and whose action (in the 541 split form) has been discussed in Section 3.2.
The strategy to derive the supersymmetry variations of the fields follows what was done
for the A/ = (4,0) theory: we first compute the six-dimensional variations by imposing
the closure of the algebra, after which we rewrite the result in a 5+1 split form. This
will be discussed in this section. A Usp(8)-covariant formulation of this model as would
be required for an ExFT formulation (discussed in Chapter 4 for the bosonic sector) is
left for future work.
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5.3.1 Supersymmetry variations of the (3,1) model

We start building the supersymmetry algebra in six dimensions by making an ansatz on
its general form. Since the structure of all possible terms must match the structure of the
fields in terms of spacetime indices, spinorial indices and R-symmetry indices, the system
is very constrained. Compared to the N' = (4,0) model, the algebra is more involved
since the R-symmetry group is a product Usp(6) x Usp(2). Consequently, there are two
supersymmetry parameters € and €, transforming in the fundamental representations
of Usp(6) and Usp(2) respectively. The most general ansatz for the supersymmetry
variations of all fields of the N' = (3,1) model is as follows

e _ g ey clo el (5.6
5P = 30, + 4R FLote] (5.64)
SXO = 41D, + A FILE 4 W”ngf‘eb]] : (5.65)
BAT =y X vy Eadix ™ + &g vy €5 (5.66)

5BZ§:WXEW[L,; aba 4 ga a >+ Wy €1 pl/Jw + xy €9, p"l/}
+ Vo E‘ng] + 7y € Vo lbﬁ ) (5.67)
o, =up 'YVFMEb + VF Aa P Fibe, + Uy %VWH&;&&
+ac Uppp” ’}/ +bCVl)ﬁﬂ ’)/ e® +COVﬂﬁ’f, e
+ Uspo g7 € + ke Vs op 7P € (5.68)

05y =wi HigsA €0 + xu H3g ;7% pjea

+d¢ UA,;ﬁ’pE + ec V[M|P| ,,]pe —|— lo Uﬂ,}ﬁ’@’}/pa * 4+ me Vo, p6y AP% ¢

+pc Vior s ™ € + ac Upss, A €

+10 Vs [l, } PoTex 4 sc Upss, [V,m]pcw e, (5.69)
0Cpp,p =My Eq (’?Aagﬁ/}?ﬁ - ?[ﬂagwﬁym) + Py €a (%wgﬁ - 'Ay[ﬁzﬂgl’])

+ dy € (Faoty — Aaothly) + T Eanplatsl - (5.70)

Here Uﬂ,;ﬁ@ = 38[,@0,;/3}7& and Vﬂ,}ﬁ& = 8&Cﬂg,ﬁ — 6,30[“)7& are the two first-order field
strengths of the Curtright field and the notation [abc] denotes the Usp(6)-traceless
antisymmetrization. These variations comprise all possible independent tensor structures
that are compatible with regards to the space-time, spinorial, and R-symmetry indices.
They contain numerical coefficients uy, vy, ..., 1y, which we determine in the following
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Chapter 5. Supersymmetry

through consistency conditions of the algebra.!

We note that certain structures have already been removed in (5.63-5.70) which
are redundant due to gauge transformations or duality relations of the 4 matrices or
Bianchi identities of U and V. There are other simplifications we can perform: due to
the definition of U and V' we have

Ulpope) = 0 = Vigo,pe) » (5.71)

leading to the following non trivial relations

0= 49U 131051 + 47 Usons (5.72)
0 =3P Us056 — 3,7ﬂ19ﬁUAﬂﬁ7ﬁ (5.73)
0 =" Vis,pe + 34" Voo o + 259" Vapp oo (5.74)
0 =3 Vis 5 — 4" Vo (5.75)

Furthermore, using
APV po = 06APPCpiop — 47°P03Cips = =A™ PUpsp 6 (5.76)

allows us to remove all terms of the form Vi 55 such that we can set k¢ = r¢ = 0
in (5.63-5.70). The relation (5.74) allows us to identify Vjs 259°° in (5.69) as a gauge
transformation such that we can choose m¢c = 0. We also note that

po - &nggﬁﬁ& + 2 O[ﬂC’lg} Aﬁ-’?ﬁ - Vﬂp,&ﬁ’?ﬁ& + 2 a[ﬂCZ;mg, P (577)

1
2
where the second term in the last equation can be absorbed in a gauge transformation
for 15 so we can choose Ic = 0.

Since we are interested in the on-shell linearized supersymmetry variations, it is
possible to futher simplify the terms involving U and V. C satisfies a second order
duality equation:

Spppet = —=Enpsa 5,5% 52, (5.78)

5l.Ja:7]- Since both sides can be considered as a curl on the second

group of indices, it is possible to integrate this equation once into
1 X
Upops + ééwmmUQm& = 05 Zp0p, (5.79)

where Z is a 3-form. Using this identity and the duality relation for the 4 matrices, we
can take s = 0.

!The rescaling ambiguity in the supersymmetry closure relations has already been fixed in
(5.63-5.70) by a suitable normalization of all fields. As a result, not all terms carry a free
coefficient.
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53. N = (3,1)

As explained in the previous Section 5.2.1, the supersymmetry algebra (5.63-5.70)
has to close onto six-dimensional diffeomorphisms and gauge transformations as in (5.12).
To determine the diffeomorphism parameter in terms of these supersymmetry parame-
ters, we compute the commutator of two supersymmetry transformations of the scalar
field. Hence

[0(e1), 0(e2)] 6™ = &40 ) 40,0 1 e84fe; 50" — (15 2) +...,  (5.80)

where we did not spell out terms involving F; M“b and Hp;“. To put this expression in
the appropriate form, we have to use two Schouten identities

ﬂ"ﬂel 58A¢abcﬂ —(12) = gg,?ﬂelﬂaﬂgbabca ’ (5.81)
1 A [ abco
l®4ier g0pgtdIe — (145 2) = 55‘37“617d8ﬂ¢ bear (5.82)
In this way we find for (5.80)

[0(€e1), (5(62)]¢“bca = §ﬂ8ﬂ¢“bca + ..., (5.83)

where the diffeomorphism parameter takes the form

i Laden B
&= 367 €14 + &9 €1 . (5.84)

After lengthy computations, we can show that with a unique choice of the parameters
n (5.63-5.70), all closure relations can be brought into the form of (5.12). The final
six-dimensional supersymmetry transformations therefore takes the form

avp ?

5¢abca — Xflbc + 6[[‘1 bcﬂa , (585)
5Xabc _ ua g[)abcae _'_,YMVFﬂCALbEC] , (5.86)
5Xaba _ A,ua ¢abca€c + ,y,uuFabea + ,y,quH[[a\M b] (587)

1 1
SAR = 7 €A™ +  Eadix ™ + &y (5.88)
1 1
OB}5 = g5 &hwX""" + 3 €9 + €U . (5.89)
1 1 1
51/}/% D) v Fabeb BRTRE ) VpFabeb T3 9 'AYMVPUH%&% + Usps, M'AVVW e, (5.90)
2 1 R ~ 56
51#59 - 9 Huup7 €a — 18 Hgg[#,ypﬂ 1€a + Vﬂz%ﬁ&’)’pgea ) (5.91)
1_ /. 1 .
Mppp = — 1 o (’Yﬁwga - plﬁ,w]) — €a (’Y;M/Jp ’maw;‘])
1 _
+ m anﬁjnﬁ}ﬁ ) (592)

where, as above, Uppp s = 38[[Lcﬁﬁ]ﬁ and Vip p6 = 8&0[”9”3 — aﬁCﬂl}’gf.
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Chapter 5. Supersymmetry

5.3.2 5+41 split of the supersymmetry transformations

In order to construct the supersymmetric extension of the Lagrangian (3.45) (3.44),
which we have constructed above, we will have to rewrite the six-dimensional super-
symmetry transformations in a 5+1 split form using the decomposition of the fields
introduced in chapter 2.

Eventually, for the various components, we obtain

5¢abca _ Eaxabc + g[[axbc]]oz 7 (593)
6¢ab _ %Ecxabc + igaxaba + g[[aAb]] , (594)
1 1 i
DAY = JEmux™ + peamux ™ + @yl — ety (5.95)
. . )

5 Ame = 3% ™ g €N % Y + T (5.96)
A, = — e — Lo 4 gy (5.97)
mT 162 T T g el T g Vs '
By = A ear AT 4 & e 6% b — b — e (5.98)

mT 162 R A T R e I DA
1 i 1 .
5Bf;10jl = % €b’yu,/xaba — § Ea’}/uy)\a + g Ea’}/[ud}g] + 27 €a’}/[“¢loj] + Eai/)ﬁy 5 (599)
1. i
6h,u1/ = Z GOL’Y(quZ[) + E 6(1’7(1/1/)5) ’ (5100)
5Chp = = 380l — W) + 7ol = W) + s Eatl]
wp = 7 1 €a\TpWun = Vp¥u] 79 Ca\ T Wp = VM ¥p] 79 CaVlulv]p
i i
+ ZEa(’mquf - y[quSZ‘]) + Eead)ﬁ;,ny}p ) (5101)

B waugbabmea — 25 H (ﬁugb[[ab — 8yAI[Lab> el + WWFIE‘ibec]] +1 Oygbabw‘ea , (5.102)
6Xaboz _ ")/Mauﬁbabcaﬁc +2 ,_)//L (au(bab o ayAZb) € — iay¢abcaec

+ " Fibe® — 3iy (el 4+ 9, Bl e, (5.103)
1 / 3
0N == 57" (8™ = 0 A) @+ T3 V" Fves — 59" (i + 9, B ea
5 1
— 12i4" (FW + 5 OB — 5 ayuw) €, (5.104)

29 4 1
S = = 5 (0,0 — 0,A%)e, + 57" Fibey — 5 3 Fikey

— 4iy" (Fi + 0y Bi)ea + i P (FL + 0, By ea
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) 1
+ 8+Y (FW + 1 OyB,, — 3 8yuw,> €?
v ) 1 a
+ 4’>/M p <pr + 1 8yBVp - 5 3yu,,p) €
1 1

— 123 ’}/Vp (8,,hp# + &,BW + EOMBW - 5 a,uuup

0y (Copp 2Aynpu))ea , (5.105)

« 2 I8 nlele] ax 1 KA aq aq
5¢# = §’Y (F,uu + ayB/W)ea + 178’7!1 ( kA T 8@} K,\)fa
1

— 29" (Dhay — OBy )€ — 4in” <8VAM — 5 Oy Bw)) ¢, (5.106)

24
3

+ Vuu,pa’)/paea -2 7[u< —2 PYN)\(anh/\\u] - 8HB)\|V]>6a

oy, == = (Fis + 0y Bys)ea + 20 (0y(Chp — 2 Apmip) — 0By ) 1€

. 1 .

The variation of the fermionic fields appear rather complicated but as for the N=(4,0)
model, they can be brought in a more compact form by employing the freedom of gauge
transformation. Using the gauge transformation (2.91) for A* and (G

ON = Oyr”
SU = DK + %wayma : (5.108)
with the fermionic parameter
a . _af _a 1 1
K = —12iy*Pe ZBQ5+§UQ5 , (5.109)
we find
1 i 3
OX = = 2" (9ut™ = 0,4 ) @+ 15 7" Fyer — 59" (Fis + 9, B )
— 120" Fpe® (5.110)

.
U = (00— DA ey — i (S + D, B+ i S+ 0, B e
4 1
+ 9 ’y”Fﬁﬁeb -3 'y“”pFl‘}geb + 8 Fue® — 27, P F, "
— 129" (D — 20y ) € (5.111)
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where F,,,, and Q/w,p are defined in (3.39). Moreover, defining

D”gbab — aﬂgbab _ 6yAZb ;
Fpu® = F 4 0,B% | (5.112)

allows to put these variations into yet more compact form

1 ) 3
IN = — 5 Dy + < Fibey — " e
— 120" Fe®
9
Oy, = *gz D™ ey — 4in" Fuu ea + i v Fup™ea
4 v pab 1 vp pab v a vp a
+ §7 F,wﬁb - 5% F,,peb + 8y Fuve® — 27, F €
= 1209 (Quppy — 20y ) € (5.113)

Similarly, we may simplify the variations of ¢f, and ¢y, by modifying them with the
gauge transformation (2.98)

1 1
(S(;SZ[ = 5 8;“{86 — 5 aylifj s
5wz‘y = 8[MI~€3} +1 a[u’yy} kg +1i Oyv[um‘j] . (5.114)
with the parameters
Ky = (4i 7#mum\ — 807" Buy + 417" hyw + 2 VHACHA,M + 4’Y/LHAF») e,
e — (2 VB — i %AA) e« (5.115)

K

As a result, we find

2 1
5¢3 = — § ,YV]_‘NVG,Oéea + E r}/p,l{)\Fﬁ;)\aaEa + 4’L ,yl/]:luyea . ,[:,YMH)\]:HAEQ
-2 ’Yﬂ)\ (Qﬁ/\,,u —2 Q,un,)\) e )
Y%, = — 8 Fuv€™ + 8i7 Qe . (5.116)

This final result is much more compact than the original expressions (5.108), features the
covariant objects (5.112) and strongly resembles the variations of the N' = (4,0) model
(5.30). This suggests there is a common framework as for the bosonic sector into which
all three supersymmetic models can be embedded. A first step towards this unification
would necessitate a reformulation of the A' = (3,1) model in terms of Usp(8)-covariant
objects. This is left for future work.
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CHAPTER

Conclusion and outlook

In Chapter 1, we presented supergravity with particular focus on the topic of this thesis:
six-dimensional maximal supergravity. In this case, there exists three different super-
symmetry multiplets containing gravitational degrees of freedom transforming in the
N =(2,2), N =(3,1) and N = (4,0) supersymmetry algebras respectively. We explic-
itly presented the field contents of these theories. A particular feature of the N' = (3,1)
and N = (4,0) theories are “exotic" tensor fields, notably with (2,1) and (2,2) Young
symmetry. Their dynamics are not very well understood since they have to satisfy certain
(self)-duality relations which are difficult to encode in a usual Lagrangian formulation.
However an important observation is that these three theories must all reduce to the
same description in five dimensions, that is five-dimensional maximally supersymmetric
supergravity. This suggests that there exists a common framework that unifies these
three descriptions.

In Chapter 2, we discussed in detail all individual fields involved in the theories
mentioned above, that is their six-dimensional free equations of motion and their gauge
symmetries. We furthermore wrote this dynamics in a 5+1 split form by singling out one
of the spatial coordinates. Although losing manifest six-dimensional Lorentz invariance,
this formulation not only helped us to encode the duality relations of the exotic fields
mentioned above, but also guides us towards a common framework unifying all three
theories. Concretely, we analyzed the dynamics of the (2,1) and (2,2) tensor fields and
transformed their second order field equations into first order equations (2.53), (2.65)
and (2.67) by introducing auxiliary fields.

This 5+1 decomposition then allowed us to write down new actions for these fields
in Chapter 3. In particular we found an action for the chiral two-form (3.15) which
results in a self-duality equation of motion and similarly for the (2,1) and (2,2) tensor
fields (3.36) and (3.73). These actions encode the free six-dimensional dynamics. While
no longer manifestly invariant, six-dimensional symmetries are retained in the form of
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five-dimensional gauge transformations which we specified.

The three actions built in the previous chapter exhibit common structures. To further
elucidate these features, we then used the tools of Exceptional Field Theory in Chapter
4 to write the bosonic sectors of the three six-dimensional descriptions in a common
framework, leading to the compact Lagrangian (4.30) which is invariant under combined
symmetry transformations which we also specified. This reformulation hinged on a
particular section constraint (4.13) which is a differential condition mixing derivatives
with respect to internal coordinates with the group structures specific to each of the
three models.

Chapter 5 was dedicated to a supersymmetric exension of the actions discussed in
Chapter 3. To this end, we started by calculating explicitly the supersymmetry trans-
formations for each theory where we used different strategies in each case. For the
N = (2,2) (see (5.9)), we linearized the known ExFT formulation from the literature.
Since no such formulation for the N' = (3,1) and N' = (4, 0) cases is known, we computed
the six-dimensional supersymmetry variations from consistency arguments and reduced
them into a 5+1 split form. In the case of the ' = (4,0) theory, a particular field redef-
inition allowed to write the free supersymmetric Lagrangian in the very compact form
(5.54). The analysis of the N' = (3, 1) theory is not fully complete yet as we still require
a mechanism to deal with the exotic gravitino. Indeed despite a Usp(8)-covariance of
the eight gravitini in the ExFT formulation, the dynamics of six of them has to become
trivial in the end. There are several different mechanisms that seem possible: i) the
field equations could be pure gauge such that these gravitini are not physical degrees
of freedom (this indeed happens in the five-dimensional reduction of the theory), ii) the
dynamics remains non trivial but completely decouples from the rest of the theory, iii)
the dynamics of the fields needs to be constrained further, for example by imposing
a stronger version of the section constraint on the gravitini. While these options look
viable at first glance, each of them poses further questions notably when in view of a
possible generalization of the actions discussed here to a fully interacting theory.

The work presented here is a first step towards a unified understanding of six-
dimensional maximally supersymmetric supergravity theories. As this work was lim-
ited to discussing free fields, an obvious generalization is to include non trivial inter-
actions. As a first step, this would require to better understand the structure of the
scalar fields and their geometric interpretation. A superspace formulation such as [52]
may provide useful tools in this direction. Moreover, in this work, fields dual to the
graviton have played a prominent role, it would be interesting to study explicit solutions
of their field equations to gain insight of new possible structures such as higher-spin
theories [33,53,54]. Even if we argued that we would not consider higher spins in this
thesis, the reasoning we presented (splitting dimensions until the identification of more
standard structures) could still be applied to higher-spin theories. Additionally, the fact
that our formulation features exotic fields and more conventional gravity fields which

84



come with an action that allows a natural embedding into the full non-linear Einstein-
Hilbert suggests that all these fields may become part of a tensor hierarchy that extends
to the gravity sector thus the non-linear dynamics would arise from a hierarchy of duality
relations as in [55].
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APPENDIX

Conventions and mathematical tools

A.1 Conventions
We are working in Minkowski space with a "mostly plus" flat metric
nﬂﬁzdiag{—l,l,l,l,l,l} , [,v=0,...5. (A.1)

We choose the symmetrization and antisymmetrization operations to have global weight
1 that is

Tm in) = Z T o(fi1)..o(fin) (A.2)
UGG
1
Tl i) = 2(; () To(in)...o(itn) - (A.3)
oclGn

where the indices in the parentheses are symmetrized while those in the brackets are
antisymmetrized. Moreover, G,, is the permutation group of order n and (o) denotes
the signature of the permutation o.

A.2 Young tableaux

Young tableaux are a schematic way to represent irreducible representations (of GL(D)
in our case) that correspond to tensors. Each index of a tensor corresponds to a cell in
a tableau. The cells are organized in columns of non increasing sizes that encodes the
symmetries of the indices of the tensor it represents. For instance

(A.4)
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is a possible tableau, whereas

| (A.5)

is invalid. The symmetries of tensor can be read directly from the tableau using the
following rules

o all indices in a same column are totally antisymmetric,

e the antisymmetrization of indices in a column and a cell on the right of that
column vanishes.

Hence an antisymmetric tensor is represented by H (per the first rule) whereas a sym-
metric tensor is represented by [T (per the second rule, if a two-index tensor has no
antisymmetric part, then it must be symmetric). The structure becomes richer when
the number of cells increases. A general three-index tensor 7}, can be decomposed into
three parts

* a completely symmetric part T{ represented by the diagram [T,

Lvp)

* a completely antisymmetric part 7], represented by the diagram @,

o a mixed-symmetry part A, = Tywp — Tuwp) — Tjuwp) represented by the "hook”
diagram Bj such that A,,, is antisymmetric on its first two indices and satisfies
a Bianchi-like identity Aj,,,; = 0.

Young tableaux can also be of use to determine the decomposition of tensor products
using the Littlewood-Richardson rule [56]. Say we want to decompose the product
Ty ® Ts. To do this

1. assign distinct labels to cells in each row of Ty (e.g. [¢),

2. attach cells labelled by a to T3 in all possible ways such that no two as appear in
the same column and the result is still a Young tableau,

3. repeat with bs, etc.,

4. for each tableau, form the sequence by reading each row from right to left while
going from top to botton. A tableau will be valid if when reading the sequence,
there is at least as many as as bs (etc.) at any point in the sequence.
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A 3. Generalized Poincaré lemma

Let us look at an example

Heg-Fo-F

a\b\@ a

The sequences for these tableaux are ba, ab, ab, ab, ba, so the first and last tableaux are
invalid.

A.3 Generalized Poincaré lemma

As we are solving differential equations involving mixed-symmetry tensors, we need a

version of the Poincaré lemma that applies to such tensors presented and proved in [42].

Let us first recall the standard Poincaré lemma. We define QP (M) the set of p-forms on a

D-dimensional pseudo-riemannian manifold M. A p-form w is defined by its components
1

w= ol Wi i dz" A--- Ada'r (A.6)

and its differential is

1 . )
dw = m ailwl'2...ip+1 d.’L’Zl VASERRIVA dl‘zlﬁq . (A?)
The standard Poincaré lemma states that if dw = 0, then we can locally define a
(p — 1)-form « such that w = da. In terms of Young tableaux, we can write

l ]
(A.8)
o 5

In our case, we need such a similar lemma for tensors whose Young tableau has two
columns. To that end, we define QP4(M) the tensor product (M) @ Q4(M) and
Q57 (M) the set of tensors represented by the Young tableau with two columns of sizes
p and ¢. A bi-form in QP9(M) (also called (p, ¢)-form) T" has components

SnkCE

1 ) . . .
r= plg! Ty oipjy gy A Ao Ada' @ da?t A= Adade (A.9)
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After defining the differential with respect to each column

dy : QPI(M) — QPTLI( M) | (A.10)
dy : QPUM) — QPITH M) | (A.11)
we can define the projections of these maps onto suitable Young tableaux
dL = [P(p—i-l,q) o d1 , (A12)
dR = ﬂj(p’q_,_l) o dg 5 (A13)

where P, ,) is the projector on the Young tableau with two columns of sizes m and n.
In the context of bi-forms, the Poincaré lemma is in fact two different lemmas The first

one reads
dpw=dpw =0 = Jac Q. u=didga, (A.14)

which can be represented schematically by

= .— =0 = i i~ Il (A.15)

The second lemma reads
drdpw =0 = o, Be Q5 QI = dra+dgfs, (A.16)

or more schematically

57:0 = Emzp_lq‘@za. (A.17)
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