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Recent research at the SATIE laboratory has developed a 2D visual SLAM system, HOOFR-SLAM, which has competitive performance in computation time and localization outcomes compared to the state-of-the-art. The method has been evaluated and validated using well-known publicly accessible datasets (KITTI, NewCollege, Malaga, MRT, and St. Lucia).

In the realm of embedded vision systems, innovative 3D vision sensors with color and depth images (stereovision, RGB-D cameras, and LiDAR camera systems) have recently gained popularity. Robots and autonomous vehicles benefit from new 3D perception methods thanks to these sensors. We have investigated the various processing stages of the system, from the sensor to the embedded architecture, to make contributions at the sensor-algorithm coupling and computing architecture levels.

Several RGB-D SLAM algorithms have been studied and evaluated using publicly available datasets without considering sensor specifications or image acquisition modalities that could improve or degrade localization accuracy. This study began by conducting a thorough experimental analysis of the impact of sensor acquisition modalities on localization accuracy. We produced an online indoor Visual Simultaneous Localization And Mapping (V-SLAM) dataset with multiple acquisition modalities to determine their impact on the accuracy of the Visual SLAM algorithm. The dataset consists of sequences recorded using various modalities, such as RGB, IR, and depth images in passive and active stereo modes. For comparison, each sequence was coupled with a Structure from Motion (SfM), and Multi-View Stereo (MVS) based reference trajectory. The datasets have a lot of different areas, some of which have low brightness, change in brightness, are wide, narrow, or have a different texture. Most known SLAM algorithms have been iii selected and evaluated on these datasets. The results showed that the sensor's parameters, especially those related to the field of view, depth threshold, and IR projector, must be tightly coupled in an RGBD-based SLAM system design for accurate localization.

Although various algorithms are available for SLAM RGB-D, most are designed for indoor applications and have not been assessed or adapted to outdoor vehicle applications.

The second stage in the design of our RGB-D SLAM system is based on the research of sensor-algorithm coupling.

We introduced RGB-D HOOFR-SLAM: an RGB-D SLAM method for autonomous vehicle localization based on the HOOFR-SLAM stereo algorithm. This version addresses the most prevalent camera issues in outdoor contexts: environments with an image-dominant overcast sky and the presence of dynamic objects. We used a depth-based filtering method to identify outlier points based on their depth value. The method is robust against outliers and also computationally inexpensive. Improvements have been made to the processorbased SLAM kernel's algorithms by replacing the RANSAC method used for essential matrix estimation with PROSAC. We assessed the algorithm using a self-collected RGB-D dataset gathered by the SATIE laboratory instrumented vehicle. We compared the measurement results to those of the most advanced algorithms by assessing translational error and average processing time. The results revealed a significant reduction in localization errors and a significant gain in processing speed compared to the state-of-the-art stereo and RGB-D algorithms.

Finally, to move the processing as near as possible to the sensor on an embedded device and to fulfill the real-time constraints, we investigated the algorithmic complexity of the front-end task of the HOOFR SLAM and the existing hardware architectures dedicated to embedded systems. We used an approach based on examining the algorithm's complexity, workloads, and functional blocs partitioning. Each block's processing time is evaluated according to the architecture's constraints. We proposed the implementation of the HOOFR SLAM front-end on a CPU-FPGA architecture, including feature extraction and matching functional blocks. A high-level synthesis (HLS) approach employing the OpenCL paradigm has been used to design a new system architecture. The performance of the FPGA-based architecture was compared to a high-performance CPU. This innovative iv architecture delivers superior performance and a trade-off between power consumption and processing time compared to existing systems. v vi V University of Rabat to evaluate the algorithms developed on a hardware platform and use the associated tools.

Finally, I would like to thank my parents, my wife, and my whole family, without whom I would not have achieved the academic path I did.

Résumé

Les travaux de recherche récents du laboratoire SATIE ont permis de développer un système SLAM visuel 2D, appelé HOOFR-SLAM, qui présente des performances compétitives en termes de temps de calcul et de résultats de localisation par rapport à l'état de l'art. La méthode a été évaluée et validée à l'aide de jeux de données publics bien connus (KITTI, NewCollege, Malaga, MRT et St. Lucia).

Dans le domaine des systèmes de vision embarqués, les capteurs de vision 3D innovants, qui fournissent des images en couleur et en profondeur (stéréovision, caméras RGB-D et systèmes de caméras LiDAR), sont devenus de plus en plus répandus ces dernières années. Grâce à ces capteurs, les robots et les véhicules autonomes peuvent bénéficier de nouvelles méthodes de perception 3D. Nous avons étudié les différentes étapes de traitement du système, du capteur à l'architecture embarquée, afin d'apporter des contributions au niveau du couplage capteur-algorithme et de l'architecture de calcul.

Plusieurs algorithmes SLAM RGB-D ont été étudiés et évalués à l'aide de jeux de données disponibles au public sans tenir compte des spécifications du capteur ou des modalités d'acquisition des images qui pourraient améliorer ou dégrader la précision de la localisation. Cette étude a commencé par une analyse expérimentale approfondie de l'impact des modalités d'acquisition des capteurs sur la précision de la localisation. Nous avons réalisé un jeu de données, qui est disponible en ligne, dédié à la localisation et à la cartographie visuelles simultanées (V-SLAM) en indoor avec plusieurs modalités d'acquisition afin de déterminer leur impact sur la précision de l'algorithme SLAM visuel. Le jeu de données se compose de séquences enregistrées à l'aide de diverses modalités, telles que des images RGB, IR et de profondeur en modes stéréo passif et actif. À des fins de comparaison, chaque séquence a été couplée à une trajectoire de référence basée sur la méthode vii d'estimation de la structure à partir du mouvement ( Structure from Motion -SfM ) et la stéréo multi-vues ( Multi-View Stereo -MVS ). Les ensembles de données comportent de nombreuses zones différentes, dont certaines ont une faible luminosité, varient en luminosité, sont larges, étroites ou présentent une texture variée. Les algorithmes SLAM les plus connus ont été sélectionnés et évalués sur ces jeux de données. Les résultats ont montré que les paramètres du capteur, en particulier ceux liés au champ de vision, au seuil de profondeur et au projecteur IR, doivent être fortement couplés dans la conception d'un système SLAM basé sur RGB-D pour une localisation précise. Bien que plusieurs algorithmes soient disponibles pour le SLAM RGB-D, la plupart sont conçus pour des applications en environnements internes (indoor) et n'ont pas été évalués ou adaptés aux applications de véhicules (outdoor). La deuxième étape de la conception de notre système SLAM RGB-D est basée sur cette étude de couplage capteur-algorithme.

Nous introduisons RGB-D HOOFR-SLAM : une méthode SLAM RGB-D pour la localisation de véhicules autonomes basée sur l'algorithme stéréo HOOFR-SLAM. Cette version aborde les problèmes de caméra les plus courants dans les contextes extérieurs : environnements avec un ciel couvert dominant l'image et présence d'objets dynamiques.

Nous avons utilisé une méthode de filtrage basée sur la profondeur pour identifier les points aberrants en fonction de leur valeur de profondeur. Cette méthode est robuste contre les points aberrants et peu coûteuse en termes de calcul. Des améliorations ont été apportées à l'algorithme du calcul de la pose, en remplaçant la méthode RANSAC utilisée pour l'estimation de la matrice essentielle par PROSAC. Nous avons évalué l'algorithme en utilisant un ensemble de données RGB-D collectées par le véhicule instrumenté du laboratoire SATIE. Nous avons comparé les résultats des mesures à ceux des algorithmes les plus avancés en évaluant l'erreur de translation et le temps de traitement moyen. Les résultats ont révélé une réduction significative des erreurs de localisation et un gain important de la vitesse de traitement par rapport aux algorithmes stéréo et RGB-D les plus avancés.

Enfin, pour pousser le traitement au plus près du capteur sur un dispositif embarqué et afin de respecter les contraintes de temps réel, nous avons étudié la complexité algorithmique de la partie front-end du HOOFR-SLAM et les architectures matérielles existantes dédiées viii aux systèmes embarqués. Nous avons utilisé une approche basée sur l'examen de la complexité de l'algorithme, des charges (Workloads) et du partitionnement des blocs fonctionnels. Le temps de traitement de chaque bloc est évalué en fonction des contraintes de l'architecture. Nous avons proposé une implémentation du front-end du HOOFR-SLAM sur une architecture CPU-FPGA, y compris les blocs fonctionnels de l'extraction et la mise en correspondance des primitives. Une approche de synthèse de haut niveau (HLS) employant le paradigme OpenCL a été utilisée pour concevoir une nouvelle architecture. surrounding environment look like? The answer to these two questions has been introduced by a method known as SLAM (Simultaneous Localization And Mapping). It allows a mobile robot to simultaneously identify its surrounding environment and localize itself.

Simultaneous localization and mapping (SLAM) have been considered a pillar of genuinely autonomous robots and, in this regard, is an essential task of autonomous vehicles.

With the development of sensors, several SLAM algorithms have been developed to solve the mapping and localization problems. The earliest SLAM algorithms were mainly based on laser sensors capable of providing accurate information on the depth of objects in the scene [START_REF] Hahnel | An efficient fastslam algorithm for generating maps of large-scale cyclic environments from raw laser range measurements[END_REF][START_REF] Holz | Mapping with micro aerial vehicles by registration of sparse 3d laser scans[END_REF]. Then, the monocular vision was introduced to substitute laser sensors [START_REF] Davison | Monoslam: Real-time single camera slam[END_REF][START_REF] Klein | Parallel tracking and mapping for small ar workspaces[END_REF][START_REF] Newcombe | Dtam: Dense tracking and mapping in real-time[END_REF]. Therefore, much research has been conducted to develop mathematical algorithms for Visual SLAM that provide the 3D reconstruction of the scene using a simple camera. In the field of embedded vision systems, innovative 3D vision sensors that provide color and depth images (Stereovision, RGB-D cameras, and LiDAR camera systems) have recently gained popularity, paving the way for new 3D perception methods [START_REF] Zollhöfer | State of the art on 3d reconstruction with rgb-d cameras[END_REF][START_REF] Urooj Khan | A comparative survey of lidar-slam and lidar based sensor technologies[END_REF][START_REF] Gao | Stereo visual slam for autonomous vehicles: A review[END_REF] for robots and autonomous vehicles.

In earlier days, the use of RGB-D cameras was limited to gaming and entertainment [START_REF] Berger | A state of the art report on multiple rgb-d sensor research and on publicly available rgb-d datasets[END_REF].

As this type of sensor has evolved, RGB-D cameras are increasingly used in robotics and autonomous vehicles. RGB-D cameras provide an RGB image and the associated depth map, making it possible to solve the problem of scale drift with less complexity and to create a dense 3D environment representation. However, the use of RGB-D sensors is still limited to indoor environments due to some limitations (i.e., Infrared (IR) distortion with LIST OF ABBREVIATIONS ambient IR interference). With the development of new advanced RGB-D cameras (Intel-RealSense), the field of application has also been extended to outdoor environments [START_REF] Brahmanage | Outdoor rgb-d mapping using intelrealsense[END_REF].

In the state-of-the-art, we find that most SLAM algorithms are often evaluated on highperformance computers due to their complexity to ensure real-time processing and to guarantee the consistency of localization and mapping results. The widespread use of SLAM algorithms on robots and autonomous vehicles requires our attention to consider three axes of performance: processing time, consistency, and energy efficiency.

Nowadays, there are various embedded computers with specificities to be used efficiently in the context of SLAM to achieve computational optimizations and efficient embedded SLAM systems. These optimizations can be achieved using multicore processors and massively parallel architectures such as graphical or programmable FPGA architectures.

Nevertheless, the implementation of these algorithms is strongly driven by the nature of the algorithm and the target architecture. As a result, algorithmic and hardware constraints must be considered to define adequate algorithm/architecture mapping.

The latest trend is pushing processing closer to the sensor. FPGAs constitute the perfect architecture for designing smart sensors by providing low latency suitable for real-time applications, such as video streaming, as they supply data directly into the FPGA without needing the CPU. Several studies have been conducted to design smart sensors to perform computer vision tasks [START_REF] Michalik | Real-time smart stereo camera based on fpga-soc[END_REF][START_REF] Gabriel | A survey on fpga-based sensor systems: Towards intelligent and reconfigurable low-power sensors for computer vision, control and signal processing[END_REF][START_REF] Boikos | A scalable fpga-based architecture for depth estimation in slam[END_REF].

Motivation

The field of autonomous vehicles is currently a trend in many research works. Several approaches have been adopted to solve the SLAM problem for autonomous vehicles. The Global Navigation Satellite System (GNSS) is a commonly used technology for localization. Nevertheless, this system has been considered limited due to its signal degradation in dense urban areas and scenarios with shadow effects. The Advanced Driver Assistance System (ADAS) was an alternative method that was evaluated, which was intended to assist vehicle localization. However, the availability of all road information, such as lane markings and road edges, is not ensured on all roads, making this method ineffective. On LIST OF ABBREVIATIONS the other hand, 4G/5G cellular systems, Ultra Wide Band (UWB), Wireless Local Area Network (WLAN), Wireless Sensor Network (WSN), and Bluetooth remain limited in terms of cost, accuracy, security, complexity, and scalability. As a result, vision-based SLAM methodologies, called visual SLAM , have become the mainstream of current research.

Visual SLAM algorithms need to be more robust to cope with the complex and dynamic parameters of the urban environment. Unlike mobile robots on which most SLAM methods developed have been evaluated, autonomous vehicles have more challenging parameters to consider if autonomous driving is desired. These challenges include the environment's size, loop closure, and data association, which are among the problematic parameters that appear in more dynamic environments, such as those found in urban spaces [START_REF] Takleh | A brief survey on slam methods in autonomous vehicle[END_REF].

For this purpose, the design process needs to consider several parameters starting from the sensors to the embedded architecture. Moreover, the emergence of low-power heterogeneous embedded architectures provides a great opportunity to explore the potential of pushing the processing closer to the sensor and ensuring on-the-fly processing.

Objectives and Contribution

This thesis aims to design an RGB-D SLAM system for autonomous vehicle applications.

In this context, several approaches have been proposed by the research community. We build on the HOOFR-SLAM algorithm and extend its use to RGB-D sensors to improve its performance in terms of localization accuracy and processing time. The choice of HOOFR-SLAM is motivated by its accuracy evaluated on numerous datasets and by its low complexity. As our system is devoted to autonomous vehicles, several factors are considered in the design, including the sensor specifications, the environmental dynamics, and the processing rate. This thesis presents four contributions:

• In the first contribution, we propose a methodology of sensor-algorithm coupling, performed on one of the most well-known state-of-the-art algorithm ORB-SLAM2, based on our indoor dataset. This methodology involves exploring and evaluating different acquisition modalities, identifying the parameters correlated to the sensors, and applying an optimization protocol.

• The second contribution aims to extend the HOOFR-SLAM to RGB-D sensors in outdoor environments. We address common problems cameras face in outdoor environments, such as scenes with a dominant sky and dynamic objects. We propose a method of keypoint filtering based on the depth map and optimize the pose computing algorithm.

• To meet the two objectives mentioned above, we have realized several datasets in indoor and outdoor environments to evaluate the different SLAM methods and the optimization protocol.

• The fourth contribution is an optimized partionning of the HOOFR-SLAM frontend (including HOOFR extractor and features matching block) on a heteregeneous architecture (CPU-FPGA), to achieve on-the-fly processing and meet real-time constraint.

Manuscript Organization

The manuscript is organized as follows:

• Chapter 1 : In this chapter, we give an overview of SLAM systems. We outline the various sensors used in the SLAM. We discuss the importance of sensor characterization to achieve an optimal SLAM design. Next, we introduce visual SLAM systems in detail and the various architectures used to implement them.

• Chapter 2 : This chapter presents the methodology adopted in this thesis, beginning with the choice of the sensor, then the selection of algorithms, the indoor and outdoor data acquisition method, and finally, the choice of the architecture and the High-Level Synthesis approach used for the hardware design.

• Chapter 3 : This chapter presents the sensor-algorithm coupling method applied to a state-of-the-art algorithm. The algorithm is evaluated on our dataset. The impact of LIST OF ABBREVIATIONS the different acquisition modalities on the quality of trajectory and the importance of sensor-algorithm coupling are discussed.

• Chapter 4 : This chapter is dedicated to the extension of the HOOFR-SLAM to use RGB-D sensors. We propose an approach based on the depth map to filter the keypoints detected on dynamic objects. For faster processing, we suggest optimization of the pose estimation block. Finally, we evaluate the algorithm on our outdoor dataset using a PC and an embedded architecture.

• Chapter 5 : This chapter presents an implementation based on the bucketing-based HOOFR extractor on FPGA, with which we incorporate a matching block while ensuring real-time processing at the rate of the sensor.

Finally, we summarize the work done in this thesis and give our research perspectives.

Chapter 1 SLAM Systems 1.1 Introduction

Over the last few years, researchers have devoted their efforts to a concept used by autonomous robots and vehicles called Simultaneous Localization And Mapping, or SLAM. SLAM accomplishes its goal by generating a map and estimating the robot's position in an unknown environment. Regarding the design of SLAM systems, one of the most critical and complex challenges is to make the most of the onboard sensors' ability to accurately interpret their surroundings while respecting real-time and hardware resource constraints.

Due to the sensor's low cost, compact size, and ease of usage, the camera-based SLAM algorithm is the most extensively utilized. State-of-the-art describes various techniques and strategies for implementing visual-based SLAM systems. This chapter examines the most widely employed sensors and the underlying ideas behind SLAM algorithms. Next, we will dive into the most commonly used visual-based SLAM techniques (monocular, stereo, RGB-D), providing an overview of the fundamental algorithms and highlighting the significant methodology benefits and drawbacks. Furthermore, we talk about the different hardware architectures used, how the functional blocks of these algorithms could be split up on these architectures, and how well they perform. Lastly, we discuss various datasets used to evaluate the visual SLAM algorithm. CHAPTER 1. SLAM SYSTEMS

SLAM Systems

A SLAM system aims at estimating the state of a robot equipped with onboard sensors and reconstructing a map of an unknown environment simultaneously. In general, the state of a robot is described by its pose (position and orientation). Other quantities, such as speed, acceleration, calibration parameters, and sensor biases, can be included. On the other hand, the map is a model of the robot's operating environment describing interesting aspects such as the positions of landmarks and obstacles. The map is used mainly for path planning and localization. Furthermore, the map allows for correcting the localization error when revisiting known places, also known as loop closure.

For many years, SLAM has been the topic of technical research. SLAM is employed extensively for practical applications in many fields, thanks to significant advances in computing speed and the availability of low-cost sensors. Unmanned aerial vehicles (UAVs) [START_REF] Schmuck | Multi-uav collaborative monocular slam[END_REF][START_REF] Latif | Slam algorithms implementation in a uav, based on a heterogeneous system: A survey[END_REF][START_REF] Hening | 3d lidar slam integration with gps/ins for uavs in urban gps-degraded environments[END_REF], robots for indoor service, Virtual/Augmented reality systems (VR/AR) [START_REF] Klein | Parallel tracking and mapping for small ar workspaces[END_REF][START_REF] Chekhlov | Ninja on a plane: Automatic discovery of physical planes for augmented reality using visual slam[END_REF], and autonomous vehicles [START_REF] Henning Lategahn | Visual slam for autonomous ground vehicles[END_REF][START_REF] Ouardi | Feature extractors evaluation based v-slam for autonomous vehicles[END_REF][START_REF] Gao | Stereo visual slam for autonomous vehicles: A review[END_REF] are just a few of the applications for this field of research that have gotten a lot of interest. SLAM's history started with filter-based solutions. This era is known as the classical age (1986)(1987)(1988)(1989)(1990)(1991)(1992)(1993)(1994)(1995)(1996)(1997)(1998)(1999)(2000)(2001)(2002)(2003)(2004). In this period, the SLAM problem was formulated in the 1980s [START_REF] Smith | On the representation and estimation of spatial uncertainty[END_REF][START_REF] Durrant-Whyte | Uncertain geometry in robotics[END_REF][START_REF] Leonard | Simultaneous map building and localization for an autonomous mobile robot[END_REF], and probabilistic formulations were introduced, including approaches based on Extended Kalman Filters (EKF), and particle filters [START_REF] Montemerlo | Fastslam 2.0: An improved particle filtering algorithm for simultaneous localization and mapping that provably converges[END_REF][START_REF] Davison | Monoslam: Real-time single camera slam[END_REF]. Recently, modern SLAM systems have adopted an optimization-oriented approach. This approach led to better localization accuracy and lower memory utilization compared to filtering-based methods [START_REF] Chghaf | Camera, lidar and multi-modal slam systems for autonomous ground vehicles: a survey[END_REF].

In the state-of-the-art, a SLAM system is generally decomposed into two blocks as shown by Figure 1.1: the front-end block, which handles the sensors' signals, and the back-end block, which is sensor-agnostic and in charge of optimizing the pose and the map.

CHAPTER 1. SLAM SYSTEMS

Sensor data Map & Localization

Sensor Processing type as in [START_REF] Chghaf | Camera, lidar and multi-modal slam systems for autonomous ground vehicles: a survey[END_REF][START_REF] Macario Barros | A comprehensive survey of visual slam algorithms[END_REF].
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Map & Pose Optimization

Back-end

Sensors

Several sensor technologies are integrated in SLAM systems, alone or in a multi-sensor configuration. Such sensors may contribute in two perception modalities: proprioceptive and exteroceptive. Proprioceptive sensors measure the ego-vehicle's state, while exteroceptive sensors gather information about the environment.

Proprioceptive Sensors

The most commonly used proprioceptive sensors in SLAM systems is the Inertial Measurement Unit (IMU). The inertial measurement unit (IMU) integrates a gyroscope, an accelerometer, and sometimes a magnetometer. It offers measurements of angular velocity (provided by a gyroscope) and acceleration (provided by an accelerometer) along the x, y, and z axes, in addition to the magnetic field that surrounds the instrument (magnetometer). Although IMU is more accurate in the short term and can provide continuous data at a very high rate (at several hundred Hz), its major drawback is its performance degradation over time. Such sensors' data are often combined with other data sources such CHAPTER 1. SLAM SYSTEMS as cameras and Light Imaging Detection and Ranging (LiDAR). Several SLAM methods use the IMU to increase localization accuracy. For instance, Visual Inertial-SLAM is one of those approaches. According to sensor fusion type, VI-SLAM may be loosely or tightly coupled [START_REF] Servieres | Visual and visual-inertial slam: State of the art, classification, and experimental benchmarking[END_REF]. The loosely coupled approach process the IMU and camera data separately and use both information to track the pose. Instead, the tightly coupled method combines directly visual and inertial raw data [START_REF] Chen | Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs[END_REF]. As an illustration of loose coupling, Weiss et al. [START_REF] Weiss | Real-time onboard visual-inertial state estimation and self-calibration of mavs in unknown environments[END_REF] proposed an inertial-optical flow module for pose initialization and a fallback option when a keyframe-based VSLAM module's tracking fails. In SOFT-SLAM, Cvisic et al. [START_REF] Cvisic | Soft-slam: Computationally efficient stereo visual simultaneous localization and mapping for autonomous unmanned aerial vehicles[END_REF] employ IMU to reduce computation complexity by eliminating outliers and substituting 5-point RANSAC with 1-point RANSAC. The recent research is focused on a tightly-coupled approach. VI-ORB-SLAM [START_REF] Mur | Visual-inertial monocular slam with map reuse[END_REF] uses a visual-inertial initialization to estimate accurate states including sensor pose, velocity, and IMU biase before fixing states by tracking and local Bundle Adjustment (BA). They estimate the gyroscope's bias, approximate the scale and the gravity without considering accelerometer bias, and then estimate the accelerometer bias with scale and gravity direction refinement and, finally, the velocity vector. ORB-SLAM3 [START_REF] Martinez | Orb-slam3: An accurate open-source library for visual, visual-inertial and multi-map slam[END_REF] improved on this method by offering a quick and accurate IMU initialization mechanism and extended to monocular-inertial and stereo-inertial SLAM using pinhole and fisheye cameras. Adding an IMU may improve the environment's information density and accuracy, increasing the algorithm's complexity, particularly during the initialization phase (15 seconds to converge within 1% scale error [START_REF] Martinez | Orb-slam3: An accurate open-source library for visual, visual-inertial and multi-map slam[END_REF]). In addition, VI-SLAM has exhibited significant performance in indoor environments. However, its performance in outdoor spaces and on long trajectories is still minor compared to that of Visual-only SLAM [START_REF] Schubert | The tum vi benchmark for evaluating visual-inertial odometry[END_REF].

Exteroceptive Sensors

In the exteroceptive category, the most commonly used detectors are Global Navigation Satellite System (GNSS), RADAR (short for Radio Detection and Ranging), LiDAR Radar is a sensor that identifies the existence of a distant object, its size, velocity, and direction by sending radio waves and detecting changes in the reflected wavelengths or the frequency difference between the transmitted and received signals. RadarSLAM [START_REF] Hong | Radarslam: Radar based large-scale slam in all weathers[END_REF] uses Frequency-Modulated Continuous-Wave (FMCW) technology, a type of radar whose transmitter sends waveforms continuously, and the receiver waits for the echo reflected from the targets. Although this technology is robust to weather conditions, it is more susceptible to noise than LiDAR. This technology operates well in variable lighting and weather conditions indoors and outdoors, providing excellent reliability and consistency, it has lower resolution and updates measurements less often than LiDAR and cameras. Its output frequently includes spurious detections (i.e., false detections) and other undesirable artifacts [START_REF] Hong | Radarslam: Radar based large-scale slam in all weathers[END_REF].

LiDAR, like RADAR, is a ranging technology. It emits infrared light pulses instead of radio waves and then measures the distance of the scanning points from its center by the time-of-flight method. Every second, LiDAR gathers millions of accurate measurement points, from which a 3D map of its surroundings can be created. LiDAR is unaffected by variations in ambient light and works well in all low-light situations. LiDAR may also be utilized both indoors and outdoors. Unlike RADAR, LiDAR has limitations in adverse weather conditions (snow, rain, fog). One of the most popular LiDAR-based SLAM systems is LOAM [START_REF] Zhang | Loam: Lidar odometry and mapping in real-time[END_REF], a low-drift and read-time odometry and mapping method based on LiDAR data. In this algorithm, the authors extract features by determining the roughness of a point in its local region. The main novelty in this approach is dividing the problem into two parallel threads. The first one estimates the velocity with low accuracy while running at a high frequency. The second one maps the environment with higher fidelity but at lower frequency. Finally, both estimates are fused. An extension to this method was proposed in LeGO-LOAM [START_REF] Shan | Lego-loam: Lightweight and ground-optimized lidar odometry and mapping on variable terrain[END_REF], where the authors presented a lightweight and ground-optimized LOAM for the pose estimation of ground vehicles. This strategy has three main advantages over LOAM. First, it segments ground points which helps to remove unreliable features. Second, it uses a two-step Levenberg-Marquardt (LM) method to speed up the optimization process. Finally, it integrates the ability to perform loop closures to correct the motion estimation drift.

Camera-based SLAM is the most attractive system due to its low cost, ease of configuration, and compact size. We found standard, RGB-D, and event cameras in the family of visual sensors. In monocular SLAM, a single camera moving through its environment is used to estimate the pose by detecting and tracking salient spots using image processing algorithms. The main drawback of monocular cameras is the drift of the scale factor when calculating distances between points due to the lack of depth information.

Inspired from the human eyes, a stereoscopic camera uses two monocular cameras mounted on a platform at a fixed distance (called baseline) with an overlapping view.

A stereo camera is used to compute scene depth information by matching and triangulation. However, its range is influenced by the baseline. An increased baseline will increase the depth range and the minimum distance to the camera. High Dynamic Range (HDR) [START_REF] Jiao | Comparing representations in tracking for event camera-based slam[END_REF][START_REF] Gallego | Event-based vision: A survey[END_REF]. Nevertheless, they are still expensive [START_REF] Zaffar | Sensors, slam and long-term autonomy: A review[END_REF]. Most of the methods and concepts used in visual SLAM were developed for intensity images (feature detection, matching, etc.) and do not apply to a sequence of asynchronous events.

Therefore, the challenge is to design new SLAM techniques that can take advantage of the benefits of event-driven cameras. In the last decade, research works have been conducted

to design event-based SLAMs, and they are still in their early stages of research [START_REF] Chghaf | Camera, lidar and multi-modal slam systems for autonomous ground vehicles: a survey[END_REF].

Hence, in visual SLAM, several approaches are proposed in the literature and classified into three categories based on the sensor type: monocular, stereo, and RGB-D SLAM.

Sensor Characterization

Before using a sensor, the assessment of its capacities and limitations is crucial for an accurate system design. For example, Schops et al. [START_REF] Schops | Bad slam: Bundle adjusted direct rgb-d slam[END_REF] proved that direct RGB-D SLAM systems are highly sensitive to rolling shutter, RGB and depth sensor synchronization, and calibration errors. Andreopoulos et al. [START_REF] Andreopoulos | On sensor bias in experimental methods for comparing interest-point, saliency, and recognition algorithms[END_REF] proposed an evaluation of the effects of camera shutter speed and voltage gain under simultaneous changes in illumination and demonstrated significant differences in the sensitivities of popular vision algorithms under those variations. Wu & Tsotsos [START_REF] Wu | Active control of camera parameters for object detection algorithms[END_REF] showed the sensor bias of vision algorithms that requires a finer control of camera parameters to make these algorithms functional in real-world applications. In Chapter 3, we investigate the effect of sensor acquisition modalities on localization accuracy and provide a parametric optimization technique to enhance localization accuracy in a given environment. formed to compute the pose between two consecutive frames. Then, the initialization of the trajectory is done by defining the global coordinate system and providing an initial estimation of the variables to be optimized through the back-end block. This latter employs algorithms based on filtering or optimization to reduce the cumulative error and increase estimation accuracy. The loop closure identifies the places previously visited to estimate and correct the drift accumulated during the sensor movement between the pose of a previously visited place and the current pose. The process starts with place recognition. Most of the place recognition method compares new keyframes with a database of previously obtained views using a bag-of-words approach, as the DBoW2 method proposed by [START_REF] Galvez | Bags of binary words for fast place recognition in image sequences[END_REF].

When a potential similarity has been identified, multiple verification stages are used to decide whether or not it corresponds to a loop. 

Front-end

The visual SLAM front-end consists of three steps: Image processing, data matching, and map/trajectory Initialization. The image processing step consists of extracting the valuable data contained in frames. This data will be used to infer the map structure and the trajectory. There are two types of image processing: direct and feature-based (indirect).

• The direct approach exploits the raw image pixels' intensities to minimize the photometric error. It can be categorized as dense or semi-dense. Semi-dense methods employ only pixels with a brightness gradient above a defined threshold, whereas dense methods use every pixel.

• The feature-based approach relies on detecting points of interest in the image, associating a description to each point, and finding the match between different points on successive frames. To ensure good tracking, the extractor must provide keypoints that verify repeatability and uniqueness [START_REF] Dai-Duong Nguyen | Hoofr: An enhanced bio-inspired feature extractor[END_REF]. Famous descriptors include SURF [START_REF] Bay | Surf: Speeded up robust features[END_REF], SIFT [START_REF] David G Lowe | Distinctive image features from scale-invariant keypoints[END_REF], ORB [START_REF] Rublee | Orb: An efficient alternative to sift or surf[END_REF], and HOOFR [START_REF] Dai-Duong Nguyen | Hoofr: An enhanced bio-inspired feature extractor[END_REF]. Feature-based methods are robust to geometric distortions due to rolling shutter, automatic exposure changes, and lens vignetting [START_REF] Servieres | Visual and visual-inertial slam: State of the art, classification, and experimental benchmarking[END_REF]. Historically, the feature-based approach exhibited low computational complexity, making it suitable for embedded systems [START_REF] Chien | Hw/sw co-design and fpga acceleration of a feature-based visual odometry[END_REF][START_REF] Chien | Hardware-software co-design of an image feature extraction and matching algorithm[END_REF][START_REF] Dai Duong Nguyen | Fpga implementation of hoofr bucketing extractor-based real-time embedded slam applications[END_REF].

Image processing methods can be associated with different map representations. These include sparse maps consisting of a cloud of sparse features, dense maps which use the full image information, and semi-dense maps which use a dense representation in specific zones of interest. The most common approaches are indirect/sparse and direct/dense or semi-dense.

After the image processing step, features or dense raw information are fed to the data association bloc to establish the correspondences used to compute the pose between two successive frames. The matching step, in turn is classified as a direct and indirect method.

• The direct method is based on brightness consistency constraint, it aims to find the true motion that minimize the overall photometric difference in the image, which is a sum of pixel-wise photometric errors.

• Indirect methods can be applied by matching 2D features detected on successive frames (2D-2D), by matching given a set of 3D points in the world with their corresponding 2D projections in the new frame (2.5D), or by matching 3D points in the world frame with the reconstructed map (3D-3D). This latter is more prone to uncertainties than 2.5D, while 2D-2D is the standard solution for pure Visual Odometry (VO) methods [START_REF] Servieres | Visual and visual-inertial slam: State of the art, classification, and experimental benchmarking[END_REF].

Finally, the map and trajectory initialization determine the global coordinate system and provide an initial set of map points by computing spatial transformation between successive frames. Map initialization is mandatory for monocular SLAM as the depth cannot be recovered from a single image. For example, ORB-SLAM computes two geometric models in parallel: a homography assuming a planar scene and a fundamental matrix assuming a non-planar scene. The model is then selected using a heuristic based on symmetric transfer errors [START_REF] Hartley | Multiple View Geometry in Computer Vision[END_REF][START_REF] Mur-Artal | Orb-slam: A versatile and accurate monocular slam system[END_REF]. Other SLAM algorithms, such as LSD-SLAM, use a random initialization, the algorithm initializes the first keyframe with a random depth map and large variance, and after a couple of keyframes, the algorithm converges to a correct depth configuration [START_REF] Engel | Lsd-slam: Large-scale direct monocular slam[END_REF].
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Back-end

This block represents the core of the SLAM. Modern SLAM uses optimization-based methods that perform batch processing in contrast to filter-based approaches, which correspond to iterative processes suited to online SLAM. Optimization-based SLAM can be divided into two approaches: Bundle Adjustment (BA) and Graph SLAM.

Bundle Adjustment (BA) is a technique that simultaneously refines a 3D structure and the camera pose, given a sequence of images presenting several 3D points from different viewpoints. The concept used in SLAM consists of optimizing an objective function Equ.1.1, which minimizes the reprojection error, using the Levenberg-Marquardt algorithm [START_REF] Pire | Stereo parallel tracking and mapping for robot localization[END_REF]. The bundle adjustment (BA) formulation is:

min {X i },{(R j ,t j )} ∑ i, j u i, j -f (X i |R j ,t j ) 2 2 (1.1) 
where u i, j is a set of observations, {X i } is the 3D coordinates of the scene points, {(R j ,t j )} are the 6DOF poses of the images I j and f (X i |R j ,t j ) is the projection of X i onto I j (assuming calibrated cameras) [START_REF] Parra Bustos | Visual slam: Why bundle adjust[END_REF].

This optimization can reduces the reprojection error resulting in the best camera and landmark positions. However, the computation can be expensive due to the optimized variables dimension [START_REF] Bresson | Simultaneous localization and mapping: A survey of current trends in autonomous driving[END_REF].

Graph SLAM models the SLAM problem using a graph. Nodes represent the trajectory and the landmark map. The sensor measurements are associated with Gaussian noise and give spatial constraints between the nodes. Edges model such spatial constraints. Among them two types are distinguished:

• Motion edges connect two consecutive pose nodes;

• Observation edges connect landmarks to pose nodes if observed from it.

GraphSLAM consists of re-estimating, in addition to the current position, the whole trajectory from the initial state by considering all the measurement history. Once the graph is built, the system's state can be estimated via a global optimization of the graph. The optimization consists in finding a configuration (trajectory and map) that best fits the constraints introduced by the edges. This optimization problem can be solved by finding the minimum of a cost function that follows this form Equ.1.2.

F(x, m) = ∑ i j e i j (x, m) T Ω i j e i j (x, m) (1.2)
where x is the vector of poses, m is the map, e i, j is the error function which computes the distance between the expected observation and the real observation and Ω i j is the associated information matrix between the node i and the node j. In practice, the minimization of F(x, m) is typically solved by a local approximation using common methods like Gauss-Newton or Levenberg-Marquardt [START_REF] Grisetti | A tutorial on graph-based slam[END_REF][START_REF] Bresson | Simultaneous localization and mapping: A survey of current trends in autonomous driving[END_REF]. 

1.2.

Monocular SLAM

The first SLAM proposed in this category was MonoSLAM (2007) [START_REF] Davison | Monoslam: Real-time single camera slam[END_REF]. This method uses a feature-based approach on the front-end and an extended Kalman filter on the back-end. The algorithm operates in real-time, and the literature has several embedded implementations based on this algorithm [START_REF] Vincke | Efficient implementation of ekf-slam on a multi-core embedded system[END_REF][START_REF] Vincke | Design and evaluation of an embedded system based slam applications[END_REF]. However, its complexity increases proportionally to the size of the environment.

The key breakthrough in V-SLAM was the introduction of Parallel Tracking and Mapping (PTAM) (2007) [START_REF] Klein | Parallel tracking and mapping for small ar workspaces[END_REF], a feature-based algorithm. It is the first algorithm to separate tracking and mapping into two threads running in parallel and the first to use the concept of keyframes. Although, this algorithm uses the concept of keyframes to reduce computational consumption. It is worth noticing that BA optimization entails a high complexity and requires a high-performance computing system. That makes this approach unsuitable for low-cost and low-power embedded systems due to its significant power consumption [START_REF] Serrata | An intelligible implementation of fastslam2.0 on a low-power embedded architecture[END_REF].

Inspired by PTAM, ORB-SLAM (2015) [START_REF] Mur-Artal | Orb-slam: A versatile and accurate monocular slam system[END_REF] uses three parallel threads: tracking, local mapping, and loop closing. The dense tracking block deals with the alignment of an image of the dense model projected into a virtual camera and the current image to estimate the motion parameters. This method is computationally intensive and can only be implemented through extensive GPU parallelization [START_REF] Forster | Svo: Fast semi-direct monocular visual odometry[END_REF]. Also, the algorithm assumes brightness constancy in all reconstruction stages, which makes the algorithm not robust to real-world global illumination changes.

A precise and faster algorithm was proposed by Forster et al. [START_REF] Forster | Svo: Fast semi-direct monocular visual odometry[END_REF]; Semi-Direct Visual Odometry (SVO) (2014) uses a hybrid approach combining the feature-based and direct methods. Like PTAM [START_REF] Klein | Parallel tracking and mapping for small ar workspaces[END_REF], it uses two parallel threads as shown in Figure 1.5, one for estimating the camera motion and the other for mapping. In the mapping thread, for each 2D feature corresponding to the 3D point to be estimated, a probabilistic depth-filter is initialized with a large depth uncertainty, and at each incoming frame, the estimated depth is updated. Once the uncertainty is small enough, the new 3D point is inserted into the map and used for the motion estimation. SVO can run at high rates since feature extraction and matching are not required for motion estimation, making it possible to be embedded on low-cost embedded systems. However, being a pure VO approach, it only performs short-term data association, limiting its accuracy [START_REF] Martinez | Orb-slam3: An accurate open-source library for visual, visual-inertial and multi-map slam[END_REF]. Large-Scale Direct Monocular SLAM (LSD-SLAM) (2014) [START_REF] Engel | Lsd-slam: Large-scale direct monocular slam[END_REF] is a direct algorithm that tracks camera motion and builds a semi-dense map of a large-scale environment. The Figure 1.6 shows the three main components of the algorithm: tracking, depth map estimation, and map optimization. The tracking estimates the pose of each image. In the depth map estimation, the tracked frames are used to replace the current keyframe or to refine the current keyframe's depth by using several small-baseline stereo comparisons.

The final step is map optimization, which adds the new keyframe to the map and optimizes the pose graph. Although, LSD-SLAM can build semi-dense maps of large-scale environments, its accuracy is less than that of PTAM and ORB-SLAM [START_REF] Martinez | Orb-slam3: An accurate open-source library for visual, visual-inertial and multi-map slam[END_REF].

CHAPTER 1. SLAM SYSTEMS LSD-SLAM has been expanded to Direct Sparse Odometry (DSO) (2016) [START_REF] Engel | Direct sparse odometry[END_REF], where it applies a local photometric bundle adjustment on a sliding window of keyframes and the inverse depth map. Xiang et al. [START_REF] Gao | Ldso: Direct sparse odometry with loop closure[END_REF] extended DSO to a monocular visual SLAM system with loop closure detection and pose-graph optimization (LDSO).

Stereo SLAM

As we saw, visual SLAM can be done using only a monocular camera. Since depth isn't observable from one camera, the map's and estimated trajectory's scale are up to an unknown global scale factor. The system bootstrapping requires multi-view or filtering approaches to create an initial map, which cannot be triangulated from the first frame.

Also, monocular SLAM suffers from scale drift and may fail in rotations. Using a stereo or RGB-D camera overcomes all these concerns and makes Visual SLAM more reliable.

Most of the stereo algorithms we will mention in this section are based on the above monocular versions.

Based on its monocular version, Stereo LSD-SLAM (2015) [START_REF] Engel | Large-scale direct slam with stereo cameras[END_REF] combines temporal and static stereo allowing multiple baseline directions. The authors used a modified cost function similar to the normalized cross-correlation (NCC) invariant to affine lighting changes to solve the violated brightness constancy assumption in the real world. Stereo DSO (2017) [START_REF] Wang | Stereo dso: Large-scale direct sparse visual odometry with stereo cameras[END_REF], also based on its monocular version DSO, uses the combination of temporal CHAPTER 1. SLAM SYSTEMS and static stereo. S-PTAM (2017) [START_REF] Pire | S-ptam: Stereo parallel tracking and mapping[END_REF] integrates stereo constraints in initialization, mapping, and tracking to improve accuracy and robustness. ORB-SLAM2 (2017) [START_REF] Mur | Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras[END_REF] has extended its monocular version to support stereo and RGB-D cameras. The stereo version extracts ORB features in the rectified stereo image pairs. Then, matched keypoints of the image pairs are selected as stereo keypoints and classified into close or far depending on whether their associated depth is less than a threshold related to the baseline distance.

Close keypoints can be triangulated to estimate depth, scale, translation, and rotation information, while far keypoints provide accurate rotation information. This way, camera poses are estimated and optimized using motion-only BA. HOOFR-SLAM (2019) [START_REF] Dai-Duong Nguyen | Hoofr slam system: An embedded vision slam algorithm and its hardware-software mapping-based intelligent vehicles applications[END_REF],

a recent feature-based algorithm with competitive performance, exploits the HOOFR extractor for feature detection and matching [START_REF] Dai-Duong Nguyen | Hoofr: An enhanced bio-inspired feature extractor[END_REF]. The HOOFR-SLAM uses stereo images to compute the depth of the keypoints. The stereo images are assumed rectified, and the disparity computation is performed using the five pixels-SSD method. The scale factor is then obtained by applying a 1-point scheme to the different factors computed from the ratio of static and temporal stereo. HOOFR-SLAM implements a processing structure that maximizes parallelism and avoids the need to optimize camera poses by applying bundle adjustments on keyframes or saving the history of map points by estimating the relative poses of the current input frame with a set of previous neighboring frames. The optimal pose is obtained by averaging the relative poses with weighted factors.

Traditional visual SLAM systems use a monocular or stereo camera as input, which involves complex initialization of the map and computationally intensive triangulation steps of the map points required for 3D map reconstruction. These problems were solved with the advent of the RGB-D camera, which provides an RGB image and an associated depth map.

RGB-D SLAM

RGB-D cameras can simultaneously provide colored and depth images for all regions in the field of view with or without textures, making dense reconstruction straightforward and removing the need for map initialization. Also, the RGB-D camera is an excellent asset for embedded SLAM systems since computing the depth map of stereo images is CHAPTER 1. SLAM SYSTEMS computationally intensive [START_REF] Ttofis | A low-cost realtime embedded stereo vision system for accurate disparity estimation based on guided image filtering[END_REF][START_REF] Zhang | Implementation of stereo matching using a high level compiler for parallel computing acceleration[END_REF]. The emergence of RGB-D sensors has motivated researchers to develop innovative SLAM systems.

The KinectFusion (2011) [START_REF] Newcombe | Kinectfusion: Real-time dense surface mapping and tracking[END_REF] was the first direct RGB-D camera method. The method generates a dense vertex and normal map pyramid using the raw depth. Each frame's vertex map and normal map are used to build a global model represented by a volumetric, truncated signed distance function (TSDF). The pose estimation is then performed using Iterative Closest Point (ICP) alignment between the current surface and the predicted one.

An overview of the algorithm's steps is shown in Figure 1.7. The algorithm is limited to small workspaces and accumulates drift errors due to the lack of loop closing [START_REF] Jin | Visual slam with rgb-d cameras[END_REF]. Dense Visual Odometry (DVO-SLAM) (2013) [START_REF] Kerl | Dense visual slam for rgb-d cameras[END_REF] is a dense direct SLAM that minimizes the photometric and depth error for pose calculation. The algorithm uses an entropy-based method for keyframe selection and loop closure, significantly reducing the drift. The map is represented by a pose graph optimized using the g2o framework [START_REF] Kummerle | G2o: A general framework for graph optimization[END_REF].

Shifting away from the focus on pose graphs initially founded on sparse methods, Elastic-Fusion (2016) [START_REF] Whelan | Elasticfusion: Real-time dense slam and light source estimation[END_REF] is a map-centric system reconstructing a surfel-based map. By incorporating many small local model-to-model loop closures in conjunction with larger-scale global loop closures, the algorithm produces globally consistent reconstructions without using pose graph optimization. Although the reconstruction is well detailed and the localization is pretty accurate, the algorithm is limited to room size maps as the complexity increases with the number of surfels [START_REF] Mur | Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras[END_REF].

The environment scale issue has been solved for RGB-D systems by extending ORB-SLAM to the use of RGB-D sensors. ORB-SLAM2 (2017) [START_REF] Mur | Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras[END_REF] uses depth information to CHAPTER 1. SLAM SYSTEMS synthesize a stereo coordinate, so the system is agnostic of the input being stereo or RGB-D. They demonstrated that using RGB-D with bundle adjustment performs better than direct methods or ICP, as well as being less computationally expensive and not requiring GPU processing to run in real-time.

On the other hand, Sch et al. [START_REF] Schops | Bad slam : Bundle adjusted direct rgb-d slam[END_REF] showed that their direct approach, BAD SLAM (2019), outperforms ORB-SLAM2 on their RGB-D SLAM benchmark with synchronized global shutter cameras, consequently stating that existing datasets only give a partial picture of the performance of SLAM algorithms. BAD SLAM uses surfels and keyframes to represent the map, reducing the amount of data for BA. The front-end part of this algorithm tracks the RGB-D camera's movement in real-time. The back-end refines the camera trajectory and geometry using a direct adjustment bundle using geometric constraints based on depth maps and photometric constraints.

Most indoor SLAM methods assume that the environment is static. A significant problem visual SLAM algorithms face in real life is the dynamic environment. Therefore, many variable factors are involved in the scene, such as lighting, dynamic targets, occlusion, etc. GMSK-SLAM (2021) [START_REF] Wei | Gmsk-slam: a new rgb-d slam method with dynamic areas detection towards dynamic environments[END_REF] is a method that combines Grid-based Motion Statistics (GMS) feature points matching with the K-means clustering method to distinguish the dynamic areas of the image and keep the static points in these areas. The algorithm is based on ORB-SLAM2 [START_REF] Mur | Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras[END_REF] and runs the dynamic area detection thread in parallel with the tracking thread as shown in Figure 1.8. to a BA model. The algorithm was evaluated on two indoor datasets [START_REF] Sturm | A benchmark for the evaluation of rgb-d slam systems[END_REF][START_REF] Handa | A benchmark for RGB-D visual odometry, 3D reconstruction and SLAM[END_REF] and a real scenario in a corridor. The algorithm improved the accuracy and robustness, especially in low-textured areas and blurred sequences. Table 1.1 summarizes the main characteristics of the visual SLAM algorithms presented above.

In Chapter 4, we choose for our study the HOOFR-SLAM for two main reasons: Its high accuracy evaluated on many outdoor datasets and its adequacy to be implemented on embedded architectures. Our contribution is extending the HOOFR-SLAM towards RGB-D sensors to increase the localization accuracy and performance. ture. The first focuses on embedding the front-end processing [START_REF] Dai-Duong Nguyen | Hoofr slam system: An embedded vision slam algorithm and its hardware-software mapping-based intelligent vehicles applications[END_REF][START_REF] Dai Duong Nguyen | Fpga implementation of hoofr bucketing extractor-based real-time embedded slam applications[END_REF][START_REF] Chien | Hardware-software co-design of an image feature extraction and matching algorithm[END_REF], and the second is concerned with the back-end [START_REF] Latif | Slam algorithms implementation in a uav, based on a heterogeneous system: A survey[END_REF][START_REF] Dine | Graph-based slam embedded implementation on low-cost architectures: A practical approach[END_REF]. To bring the processing as near as possible to the sensor, we will focus on works performed on the SLAM front-end.

CPU-GPU based SLAM

The CPU-GPU architectures are widely used in robotics, especially in computer vision, since a GPU can offer many cores for parallel Single Instruction, Multiple Data (SIMD)

processing. Based on DTAM [START_REF] Newcombe | Dtam: Dense tracking and mapping in real-time[END_REF], Ondruvska et al. [START_REF] Ondrúška | Mobilefusion: Real-time volumetric surface reconstruction and dense tracking on mobile phones[END_REF] exploited the GPU of various mobile phones to implement a pipeline that creates a connected 3D surface model directly on the device in real-time. They assigned sequential tasks, including keyframe selection and dense camera alignment, to the CPU, as the camera alignment requires an accumulation of errors across the entire input image. Also, they used SIMD instructions which led to a processing of 4 pixels at a time. On the other hand, GPU was run in parallel carrying stereo depth computation, model update, and raycasting. Even though this architecture allows volumetric surface reconstruction and dense 6DoF camera tracking in real-time, the GPU hardware constraints limit the voxel resolution.

In the category of indirect approaches, Aldegheri et al. Nguyen et al. [START_REF] Dai-Duong Nguyen | Hoofr slam system: An embedded vision slam algorithm and its hardware-software mapping-based intelligent vehicles applications[END_REF] found that the features matching block has a high computational cost and low data dependence, so they proposed to parallelize the HOOFR-SLAM feature matching block on GPU. On the other hand, they employed OpenMP to implement HOOFR feature extraction for two reasons: firstly, the extractor uses FAST detection, where a pixel can be rejected after one or two pixel tests, leading to a difference in processing cost for each pixel, so the GPU computation resources are not well used due to unbalanced complexity. Secondly, the Hessian filtering is much more rapid on CPU thanks to the binary classification, which needs a dynamic memory allocation that is not supported on GPU. Figure 1.11 shows the CPU-GPU mapping of HOOFR-SLAM. The performance obtained on the Jetson TX1 is real-time if we consider the KITTI [START_REF] Geiger | Vision meets robotics: The kitti dataset[END_REF] Although these GPU implementations provide real-time processing, the energy consumption of such architecture is still a challenge for robotics and autonomous vehicle applications, where autonomy is a crucial asset.

CPU-FPGA based SLAM

Recently, CPU-FPGA architectures have gained considerable interest in the scientific community thanks to the advantages of this type of architecture, which include lower power consumption and data flow pipelining, which makes it more suitable for on-the-fly processing applications [START_REF] Liu | Edflow: Event driven optical flow camera with keypoint detection and adaptive block matching[END_REF]. Much research on this type of architecture is devoted to the front-end part of the SLAM.

Liu et al. [START_REF] Liu | Eslam: An energyefficient accelerator for real-time orb-slam on fpga platform[END_REF] proposed eSLAM, an implementation based on ORB-SLAM on a Zynq platform. The front-end part, including feature extraction and matching, has been accelerated on FPGA and was compared to the ARM processor's version. Figure 1.12 shows the architecture of eSLAM. First, the ORB extractor was reformulated as a rotationally symmetric pattern for hardware-friendly implementation. To reduce the computation cost of the rotation procedure, they pre-computed the rotated BRIEF patterns and built it as a lookup table to obtain the descriptors when necessary. Moreover, to reduce the extra resources needed to store the lookup table, they proposed a 32-fold rotationally symmetric BRIEF pattern (RS-BRIEF) generated by rotating two sets of seeded locations. Then, a parallelized pipeline mechanism is proposed. They adopted two cases pipeline, standard frame and keyframe case. For standard frame processing, the ORB Extractor and Several Visual SLAM systems use semantic information to enhance the robustness of the dynamic scene. Deep learning increases system complexity, making it hard to implement real-time semantic SLAM on a low-power embedded platform. A semantic segmentation module cannot be processed on the CPU in real-time. On the other hand, using a GPU for computing acceleration limits the deployment of battery-powered mobile robots. Wu et al. [START_REF] Wu | An fpga based energy efficient ds-slam accelerator for mobile robots in dynamic environment[END_REF] proposed the acceleration of the inference of the semantic segmentation network, SegNet [START_REF] Badrinarayanan | Segnet: A deep convolutional encoder-decoder architecture for image segmentation[END_REF], on an FPGA using the high-level synthesis tool OpenCL [START_REF] Group | Opencl -open standard for parallel programming of heterogeneous systems[END_REF]. They started by adopting a quantization strategy by combining convolution and batch normalization into one operation and grouping convolution filters with different data distributions. The quantization operation is processed on the CPU and is used to reduce the needed storage and computational complexity without significantly affecting the precision. The accelerator architecture uses a multi-level memory access optimization scheme, including off-chip DRAM and on-chip memory (channels, registers). The architecture includes the design of convolution kernel, pooling kernel, and unpooling kernel implemented in a configurable pipeline, allowing flexibility and expansibility in implementing different network frameworks. Although the accuracy of the DS-SLAM accelerator slightly decreased as a result of model quantization, the accelerator achieves a significant frame rate and energy efficiency improvement.

Following the work proposed in [START_REF] Dai-Duong Nguyen | Hoofr slam system: An embedded vision slam algorithm and its hardware-software mapping-based intelligent vehicles applications[END_REF], Nguyen et al. [START_REF] Dai Duong Nguyen | Fpga implementation of hoofr bucketing extractor-based real-time embedded slam applications[END_REF] presented the implementation of the HOOFR extractor on an Arria 10 SoC-FPGA using the OpenCL paradigm. They design a feature extraction system incorporating a bucketing method to ensure the homogeneous distribution of keypoints. The HOOFR extractor has been divided into four functional blocks (4 kernels), including FAST detection, Hessian score computing, filtering, and description, as shown in the Figure 1.13. All four kernels are launched concurrently.

The bucketing detection is performed by dividing the image into a grid, and a specific number of keypoints is extracted for each image cell. The image cells are thus processed in a pipeline. When a kernel finishes processing an image cell, the following kernel starts to process it immediately. The communication between the kernels is ensured using channels. During experiments, the authors found that the FAST and Hessian score computing kernels were bottlenecks of the algorithm flow, so they decided to physically duplicate those kernels as they do not consume many logic resources. When evaluating the architecture on a publicly available dataset, the speedup factor was up to 9x compared to the implementation on the embedded ARM processor while achieving the same detection result on hardware as on software. In Chapter 5 and following the work done in [START_REF] Dai Duong Nguyen | Fpga implementation of hoofr bucketing extractor-based real-time embedded slam applications[END_REF], we propose a full implementation of the HOOFR extractor and the matching block on FPGA while maintaining the quality of the results on the CPU and assuring real-time processing at the rate of most modern cameras (30 FPS), to ensure an on-the-fly processing.

FPGA
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Visual SLAM Datasets

As research in SLAM systems progresses, the need for diverse datasets representing the real world arises. Several datasets exist with various sensor types and data. As we are developing an RGB-D system, our scope in this section is limited to RGB-D datasets. The TUM RGB-D [START_REF] Sturm | A benchmark for the evaluation of rgb-d slam systems[END_REF] is the most popular dataset in the state-of-the-art. The dataset consists of several sequences in indoor environments, recorded with a Microsoft Kinetic on two platforms: robot and handheld. The dataset contains color images, depth maps, and associated ground-truth camera information acquired using a motion capture system. Also, the authors propose two evaluation metrics that can be used to assess the performance of visual odometry and visual SLAM system: Relative pose error and absolute trajectory error. Another widely used reference dataset is the ICL-NUIM [START_REF] Handa | A benchmark for rgb-d visual odometry, 3d reconstruction and slam[END_REF]. This dataset focuses on RGB-D algorithms and provides data for evaluating 3D reconstruction across eight synthetically generated indoor scenes. The ground truth includes a 3D surface model and the estimated trajectory by a SLAM algorithm [START_REF] Whelan | Real-time large-scale dense rgb-d slam with volumetric fusion[END_REF]. The Bonn RGB-D Dynamic Dataset [START_REF] Palazzolo | ReFusion: 3D Reconstruction in Dynamic Environments for RGB-D Cameras Exploiting Residuals[END_REF] is a dataset containing 24 dynamic indoor sequences. The authors provide the ground truth pose of the sensor recorded with a motion capture system. The sequences are in the same format as the TUM RGB-D Dataset, so the same evaluation tools can be used. Unfortunately, to date, there are no outdoor RGB-D datasets due to the limited capabilities of RGB-D cameras. However, the evolution of technology has led to the development of more powerful RGB-D cameras like the Intel Realsense D455/435i/435. In Chapter 2, we use these sensors to record our first indoor and outdoor dataset. 

Conclusion

In this chapter, we presented the different SLAM systems' sensors. We have noticed that most of the works focus on evaluating the algorithm on the publicly available datasets without considering the characteristics of the sensor. We also introduced the various well-known visual SLAM algorithms. We have seen that most algorithms are tested in indoor environments and evaluated on laptops. We explored how many works exploit the 

Introduction

This thesis aims to develop a SLAM system for automotive applications. Therefore, the system must be equipped with sensors capable of providing much information about the environment while also handling highly dynamic and large-scale environments. Accordingly, an RGB-D camera is a good choice because of its low cost and properties well suited for SLAM, including RGB images, their associated depth maps, and the pattern projector. Earlier generations of RGB-D cameras had range limitations, restricting their use in indoor environments. As RGB-D cameras have been developed to meet higher range requirements, the use cases have also been extended to outdoor environments.

As we have seen, SLAM systems can be sensitive to the sensors' parameters, so our strategy involves characterizing the RGB-D sensor's influence on localization accuracy, then integrating the RGB-D sensor in the HOOFR-SLAM algorithm and improving its accuracy in outdoor conditions. In order to ensure real-time processing on the fly on an embedded architecture, algorithm-architecture mapping is performed. In this chapter, we will present our choice of sensor and algorithms used for the evaluation, then the indoor and outdoor datasets acquired for the assessment. Finally, we introduce the paradigm used CHAPTER 2. SYSTEM DESIGN AND EVALUATION METHODOLOGY for the implementation and the different architectures used for the performance evaluation of the RGB-D HOOFR-SLAM algorithm.

Sensor Choice

RGB-D cameras are sensors providing RGB images and depth maps which are images

where each pixel has a value representing the distance to the camera. This information is a significant asset for measuring the exact dimensions of a physical object, which remains challenging even for machine learning algorithms.

Different technologies are used to get the depth map, including passive stereo, structured light, Time-of-flight (ToF), and active stereo. Passive stereo uses two cameras to acquire two images from different viewpoints. Given the calibration of the camera parameters, depth is computed by matching pixels between the images from each camera and triangulating the pixel depth using the baseline. The major limitation of stereo cameras is that the scene should not be poorly textured to find the correspondence, which can only succeed if both cameras see the same features. A wide operating range characterizes this technology, making most of them suitable for acquisition at distances up to 15m. However, it is not suitable for close-range use, as a wider baseline and focal length allow for better accuracy at long range, but at the same time increase the minimum distance at which the depth can be determined [START_REF] Ulrich | Analysis of rgb-d camera technologies for supporting different facial usage scenarios[END_REF]. This fact makes this type of sensor highly recommended for outdoor use.

Active systems incorporate an infrared (IR) projector with a single or stereo camera. They use IR pattern projection to analyze the distortion of these patterns and extract depth, such as structured light, or by directly measuring the depth by employing the time it takes for IR light to be captured after being reflected from objects, such as the time of flight (ToF). The main advantage of this type of approach is that it works very well in low-light environments. However, this type of system performs poorly in outdoor environments where objects are out of reach of the projector, or the projection is overloaded by ambient light, thus explaining their poor performance in outdoor environments. For the autonomous vehicle application, we chose the Intel Realsense D455 camera for the outdoor environment, a version more suitable for outdoor environments. This camera features a broader 95mm baseline, improving depth error to less than 2% at 4m. The camera has an acquisition rate of 30 FPS, ensuring a good overlap for most vehicle movement applications. Also, the camera has a sufficiently wide field of view, which is well suited for large environments so that the SLAM is accurate and robust without worrying about the distortion problems that must be managed in the case of fisheye and omnidirectional cameras.

Intel® RealSense™ Depth Camera D435i Intel® RealSense™ Depth Camera D455 

Algorithm Choice

Visual SLAM Direct methods estimate camera movement by minimizing photometric errors between consecutive images. Their strength lies in high accuracy, thanks to dense image exploitation. The drawback is the sensitivity of these methods to brightness variations or illumination changes. In contrast, feature-based methods use an indirect representation of images, usually in the form of feature points, tracked and then used to estimate the pose by minimizing projection errors. Although indirect methods provide relevant results in well-textured environments, they suffer from failure in poorly textured scenes or motion blur, temporarily wiping out feature points. Direct methods are likely to be computationally expensive, while indirect methods are less computationally expensive. This study's framework is part of the design of an embedded system using RGB-D SLAM for autonomous vehicle applications. For this reason, the choice of an efficient algorithm regarding accuracy and complexity is a critical asset.

For the first part of the algorithmic study, we have selected ORB-SLAM2, a baseline algorithm providing satisfactory results and can be embedded [START_REF] Peng | Evaluating the power efficiency of visual slam on embedded gpu systems[END_REF], for its low complexity compared to other algorithms. ORB-SLAM2 is for monocular, stereo, and RGB-D cameras, allowing us to compare stereo and RGB-D (front-end part) without worrying about the back-end. Therefore, the correlation between the sensor and the front-end can be studied. To consolidate our research, we chose RTAB-Map [START_REF] Labbe | Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation[END_REF], a library implementing SLAM with different methods and supporting various sensors (including stereo and RGB-D). RTAB-Map offers real-time processing thanks to its appearance-based loop closure approach with memory management making it suitable for large-scale and for long-term operation. The RTAB-Map is used as a baseline method for comparing the acquisition modes' effect without optimizing its parameters.

For the second part of the algorithmic study, our system is devoted to autonomous vehicle applications, and the algorithm selection must satisfy the requirements of localization accuracy, real-time processing, and limited embedded architecture resources. We choose the HOOFR-SLAM for those purposes:

• The HOOFR-SLAM incorporates the HOOFR bio-inspired extractor, which provides a better balance between speed and matching quality than other state-of-theart methods.

• The processing complexity of HOOFR-SLAM is decreased to accommodate embedded systems while preserving a significant localization accuracy.

• The ability to integrate the front-end on an embedded CPU-FPGA SoC architecture.

Dataset Acquisition

Indoor dataset

Several datasets exist in state-of-the-art dedicated to the evaluation of SLAM algorithms.

However, these datasets do not consider assessing the impact of the sensor-algorithm coupling on the trajectory quality since each dataset is recorded with only one modality.

In our research aiming at studying the sensor algorithm coupling and its impact on localization accuracy, we need a dataset representing the same environment recorded with different modalities (Stereo, RGB-D, IR-D, with and without pattern projector). Since state-of-the-art does not provide such a dataset, we have collected our dataset in the laboratory's corridors and the basement parking, as shown in Figure 2.2. We recorded using an RGB-D camera with a laptop equipped with an Intel Celeron N4100 Quad-Core CPU, 8G RAM and 512GB SSD memory. The experiment was carried out using different ac- Finally, a model can be exported, containing the camera information, the images including all the keypoints and the reconstructed pose of an image specified as the projection of the world to the camera coordinate system of an image using a quaternion and a translation vector, and finally the 3D points in the dataset. After the model is acquired, the reconstructed poses of the images are used to calculate the coordinates of the center of the projection/camera using Eq. 2.1.

    1 0 0 0 1 0 0 0 1     1 0 0 0 1 0 0 0 1   Transl (m)   -0.0148 -0.0001 -0.0002     0 0 0     0.0502 0 0  
c c = -R T t (2.1)
where c c is the coordinates vector of the camera center, R T is the transpose of the rotation matrix obtained from the quaternions, and t is the translation vector. For the scaling of the 

Outdoor dataset

As discussed in the previous chapter, most RGB-D datasets are created in indoor environments. To our knowledge, there is currently no RGB-D dataset for vehicle applications like the one from KITTI [START_REF] Geiger | Vision meets robotics: The kitti dataset[END_REF] 

AT E i = G -1 i SP i (2.2)
The root mean squared error over all time indices of the translational components is computed as

RMSE(AT E 1:n ) = ( 1 n n ∑ i=1 ∥trans(AT E i )∥ 2 ) 1/2 (2.
3)

The Relative Pose Error (RPE) is used to find the rotational error. These metrics allow an assessment of the estimated trajectory quality compared to the referenced trajectory. RPE metric is measured over a fixed time interval of ∆ = 1s (30 frames) which gives us the drift per second on a sequence recorded at 30 Hz. RPE at time step i is defined as

RPE i = (G -1 i G i+∆ ) -1 (P -1 i P i+∆ ) (2.4)
The root mean squared error over all time indices of the translational components is computed as

RMSE(RPE 1:n , ∆) = ( 1 m ∑ m i=1 ∥trans(RPE i )∥ 2 ) 1/2 m = n -∆ (2.5)

Hardware architectures

By leveraging the latest hardware and software implementation technologies, the embedded system design addressed the need to improve overall system performance and reliability while minimizing design and production costs. As the performance is articulated on three bases, timing, power consumption, and reliability, researchers have turned their attention to multicore and reconfigurable designs. The transition to multicore architectures results from the challenge of enhancing serial performance. For a single core to execute instructions faster, more silicon area is needed, increasing power consumption and thermal output. Also, due to memory access latencies, increasing the frequency of single-core processors is no longer adequate, prompting the development of multicore and reconfigurable designs [START_REF] Schauer | Multicore processors -a necessity[END_REF].

Reconfigurable and multicore architectures are capable of processing a large number of tasks in parallel to speed up the processing flow. In the quest for higher speed, computers have come a long way, from the first central processing units (CPUs) to modern parallel designs like graphics processing units (GPUs) and field programmable gate arrays (FP-GAs). We distinguish two types of computing systems: homogeneous and heterogeneous systems. A homogeneous system includes only one type of computational unit. On the other hand, a heterogeneous system combines several computational units of different types (Multicore CPUs, GPUs, DSPs, FPGAs...). Each type of calculator has its pros and cons. Using a given computational unit may be more suitable for a given task than for another. The Algorithm-Architecture Adequacy (AAA) [START_REF] Vincke | Efficient implementation of ekf-slam on a multi-core embedded system[END_REF][START_REF] Vincke | Design and evaluation of an embedded system based slam applications[END_REF][START_REF] Dai-Duong Nguyen | Hoofr slam system: An embedded vision slam algorithm and its hardware-software mapping-based intelligent vehicles applications[END_REF][START_REF] Vincke | Multiprocessing improvements on a lowcost system based simultaneous localization and mapping[END_REF] approach simultaneously studies the algorithmic and architectural aspects by considering their interactions.

Algorithm-architecture adequacy allows for the distribution of the tasks of an algorithm on the different available processing units to achieve optimal performance. In recent years, significant progress has been made in the design of embedded architectures. Nvidia Jetson AGX, for example, offers a high-performance CPU similar to that of the desktop and a GPU with a maximum power consumption of 30W. This architecture is widely used for AI and computer vision applications [START_REF] Verucchi | Real-time clustering and lidar-camera fusion on embedded platforms for self-driving cars[END_REF][START_REF] Hossain | Deep learning-based real-time multiple-object detection and tracking from aerial imagery via a flying robot with gpu-based embedded devices[END_REF][START_REF] Cowley | Upslam: Union of panoramas slam[END_REF].

Regarding online processing, FPGAs are the best choice [START_REF] Schwiegelshohn | Fpga based traffic sign detection for automotive camera systems[END_REF][START_REF] Johnston | Implementing image processing algorithms on fpgas[END_REF][START_REF] Boikos | A scalable fpga-based architecture for depth estimation in SLAM[END_REF][START_REF] Stein | A computer vision system on a chip: a case study from the automotive domain[END_REF]. FPGAs have I/O blocks, which allow external devices to be connected to the FPGA using memory and interfaces. This architecture model reduces the communication path between the FPGA accelerator and the peripherals. Also, FPGAs inherently offer low latency suitable for real-time applications, such as video streaming, by ingesting the video directly into the FPGA's interfaced memories, bypassing the CPU, which remains mandatory for dataflow control. The properties of FPGAs have encouraged several works to develop FPGA-based sensors [START_REF] Stein | A computer vision system on a chip: a case study from the automotive domain[END_REF][START_REF] De La Piedra | Sensor systems based on fpgas and their applications: A survey[END_REF]. In front-end processing, the processing should be the closest possible to the sensor's frequency to ensure on-the-fly processing. Different target architectures are used for the algorithm evaluation:

• Laptop: The algorithm is first evaluated on a high-performance PC equipped with an 8-core AMD Ryzen 9 CPU with a base frequency of 3 GHz, an L3 cache memory of 8 MB, an L2 of 4MB, and an L1 of 64KB. The RAM is 24GB DDR4. This platform also integrates an NVIDIA GeForce RTX 2060 Max-Q graphics card with 1920 Shading units, 6 GB of global memory with a bandwidth of 264.0 GB/s. The CPU consumption is 35W, while that of the GPU is 64W. These features will enable real-time processing for a well-optimized SLAM system. However, power consumption remains a hurdle for battery-based applications.

• Nvidia Jetson AGX: For autonomous vehicles, the NVIDIA Jetson AGX Xavier development kit is a platform that offers the performance of a GPU workstation in a less than 30W embedded module. The platform includes a 512-core NVIDIA Volta GPU with 64 Tensor Cores, as shown in Figure 2 GX FPGA features integrated transceivers that transfer at up to 12.5 Gbps, allowing the DE5a-Net DDR4 to be fully PCI Express version 3.0 compliant. For designs requiring high capacity and speed for memory and storage, the DE5a-Net DDR4 offers two independent banks of 16GB DDR4 memory module, running at over 75 Gbps, up to 7.876 GB/s data transfer via PCIe Gen 3x8 edge between FPGA and host PC. Arria 10 GX FPGA features 1150K logic elements, 67-Mbits embedded memory, and 1518 Variable-precision DSP block. As our autonomous vehicle application needs to perform on-the-fly processing, we opt for a front-end processing architecture on FPGA, thus requiring a large amount of resources, making the Arria 10 a good choice for implementing such an architecture. Figure 2.9 shows the heterogeneous architecture used for the evaluation. The DE5a-Net DDR4 board is interfaced with a host CPU via PCIe Gen 3x8. The CPU is an Intel Xeon Silver 4108 processor with eight cores with a base frequency of 1.8GHz.

Arria 10 GX DDR4

Intel Xeon Silver 4108 The FPGA offers great flexibility in the design of embedded systems, with low power consumption compared to programmable processors. Its spectrum of use is vast. It can be found in almost every field [START_REF] Reaz | Partial encryption of compressed images employing fpga[END_REF][START_REF] Xu | Cnnbased feature-point extraction for real-time visual slam on embedded fpga[END_REF][START_REF] Wu | An fpga based energy efficient ds-slam accelerator for mobile robots in dynamic environment[END_REF][START_REF] Arias-Estrada | Real-time field programmable gate array architecture for computer vision[END_REF]. While FPGAs offer advantages in parallelism and power consumption, the description of FPGA-based architectures is relatively complex compared to programmable processors. Since FPGAs emerged in the 80s, design approaches and tools have evolved considerably to facilitate hardware description [START_REF] Dine | Localisation et cartographie simultanées par optimisation de graphe sur architectures hétérogènes pour l'embarqué[END_REF].

FPGAs are typically programmed using hardware description languages (HDL), such as Verilog or VHDL. To design a high-performance accelerator, the programmer needs expertise in hardware design. Moreover, HDL-based designs require cycle-level simulations and debugging, making the design process time-consuming. As the complexity of algorithms has grown, HDL has become inefficient since it becomes challenging for designers to develop circuit details and control states for large and complex FPGAs. However, this limitation has been addressed by a technique called high-level synthesis (HLS).This latter facilitates the complete design of the entire processing flow on a heterogeneous system:

Computation on the host, data transfer between the host and the accelerator, and computation on the accelerator [START_REF] Fahad Bin Muslim | Efficient fpga implementation of opencl high-performance computing applications via highlevel synthesis[END_REF].

There are two types of heterogeneous CPU-FPGA architectures: The SoC (System-on-Chip), where the CPU and FPGA are integrated on the same chip, this system is often used for low-power embedded applications, and the other system is composed of a CPU and FPGA connected by an external bus such as PCI-express (PCIe) used for highperformance computing. In this thesis we use an FPGA connected to the host via a PCIe bus, as a proof of concept of the performance that can be achieved by embedding front-end processing.

OpenCL approach

In high-level synthesis based on the C language, the designer must adapt the code to the tool used. The high-level abstraction requires tool and target architecture expertise to maximize performance. The idea of the OpenCL approach is to allow the user to design a heterogeneous architecture based on the OpenCL standard. This type of architecture has two parts: the host and the FPGA accelerator. The latter then plays the role of a coprocessor, similarly to a GPU.

Open Computing Language (OpenCL) is a C-based design environment for a heterogeneous computing platform that includes a host CPU and accelerators such as GPUs and FPGAs. Designers can use OpenCL to create end-to-end computations, including computation on the host, data transfer between the host and the device, and computation on the device. As a result, by evaluating OpenCL codes, the OpenCL design environment for FPGAs may generate FPGA circuits and interface circuits. The OpenCL paradigm has several advantages:

• Significantly reduce design time.

• Compatible and reusable on different FPGA boards by recompiling the code using the boards' BSP (Board Support Package).

• Debugging through functional code verification using the CPU emulator.

• Profiling allows collecting information about memory accesses during execution.

OpenCL Design Flow

The OpenCL-based design flow is divided into three stages: emulation, performance optimization, and execution. We test the code's behavior during the emulation phase by running it on a CPU. We use compilation reports and profile information to identify performance bottlenecks during the performance optimization process. Then, by removing bottlenecks, we boost performance. In the execution phase, we execute the OpenCL program on an FPGA-based computing system to evaluate its actual performance.

Emulation phase

In the first stage, we emulate the OpenCL kernel code on a CPU to test its behavior.

Compiling for emulation may be done quickly, usually taking between a few seconds to a few minutes. Although an FPGA board is not required for emulation, a BSP is necessary. The code is performed sequentially in emulation, just like in a normal C-like code. Emulation ignores parallel operations such as pipelines, loop-unrolling, and SIMD operations.

Performance tuning phase

The performance tuning phase analyzes compilation reports to identify performance bottlenecks. The compilation report includes:

• A loop analysis includes pipeline information, bottlenecks, initiation interval (II), unrolling loop information, etc.

• The estimated resource utilization information.

• System viewer shows a kernel as a combination of blocks and how multiple kernels are connected.

FPGA-Oriented Parallel Programming

In an OpenCL device, kernels are functions executed on an OpenCL device. One workitem represents a unit of the execution of a kernel. A group of these work-items is called a work-group, and the entire collection of work items is called an NDRange. In a heterogeneous computing system, we have different types of memories:

• The host memory: accessible only by the host.

• The global memory: accessible to both the host and the device.

• The constant memory: a read-only memory for the device.

• The local memory belongs to a particular work-group, and data are shared only by its work items.

• The private memory belongs to a work-item and is not accessible to the other workitems.

In OpenCL FPGA programming, there are two types of kernels: NDRange kernels and single-work-item kernels [START_REF]FPGA Intel. Intel fpga sdk for opencl[END_REF]. The NDRange kernel is executed by multiple work-items in parallel in a pipeline manner, as shown in Figure 2.11. In the first cycle, work-item one is launched and loads data from memory. In the next cycle, work-item two is launched, and while loading data, work-item one performs the addition. In the third cycle, workitem three loads data while work-item two performs addition, and work-item one stores the result [START_REF] Hasitha Muthumala Waidyasooriya | Design of FPGA-Based Computing Systems with OpenCL[END_REF]. The NDRange kernels are commonly used when no data dependencies exist or if we want to use the same kernel in both FPGAs and GPUs. On the other hand, the single-workitem is easy to implement and can provide better performance than the NDRange kernels if there are data dependencies [START_REF] Hasitha Muthumala Waidyasooriya | Design of FPGA-Based Computing Systems with OpenCL[END_REF].

Load

Conclusion

In this chapter, we have presented the methodology followed and the tools used to evaluate our contributions. In this thesis, we use our datasets since existing ones do not fulfill our study's needs. In order to be consistent with the evaluations made on state-of-the-art, we have evaluated several algorithms [START_REF] Mur | Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras[END_REF][START_REF] Labbe | Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation[END_REF][START_REF] Dai-Duong Nguyen | Hoofr slam system: An embedded vision slam algorithm and its hardware-software mapping-based intelligent vehicles applications[END_REF][START_REF] Schonberger | Structure-from-motion revisited[END_REF] on our dataset and relied on the same metrics used for evaluating algorithms on publicly available datasets [START_REF] Sturm | A benchmark for the evaluation of rgb-d slam systems[END_REF].

Our approach covers the whole processing chain from the sensor to the target architecture. For this, we start with a study on the coupling sensor algorithm and its impact on localization accuracy in chapter 3. Indoor datasets are used for this study. Then, based on the HOOFR-SLAM algorithm, we develop an RGB-D version of HOOFR-SLAM in chapter4, which is more robust and improved in terms of localization accuracy and performance in outdoor conditions. Finally, algorithm-architecture adequacy is applied to boost the performance of the algorithm in chapter 5. Algorithmic and hardware optimizations are used to achieve our goal of real-time processing on an embedded architecture.

Chapter 3

Sensor-Algorithm Parameters Coupling In this context, we highlight the impact of sensor acquisition modalities on localization accuracy and suggest a parametric optimization strategy to improve localization accuracy in a given environment. This protocol is used to improve a depth-related SLAM algorithm parameter. Our own publicly available indoor dataset served as the basis for this analysis.

Related Works

Several works have been carried out to improve the visual SLAM, given its multiple advantages. Visual SLAM began by exploiting the images from a single camera called a monocular system [START_REF] Mur-Artal | Orb-slam: A versatile and accurate monocular slam system[END_REF][START_REF] Engel | Lsd-slam: Large-scale direct monocular slam[END_REF][START_REF] Sheng | Dynamic-dso: Direct sparse odometry using objects semantic information for dynamic environments[END_REF] and evolved with stereo systems to solve the problem of scale drift [START_REF] Dai-Duong Nguyen | Hoofr slam system: An embedded vision slam algorithm and its hardware-software mapping-based intelligent vehicles applications[END_REF][START_REF] Gomez-Ojeda | Pl-slam: A stereo slam system through the combination of points and line segments[END_REF][START_REF] Mei | Rslam: A system for large-scale mapping in constant-time using stereo[END_REF]. Some of the stereo SLAM systems' contributions include R. Mur-Artal et al. [START_REF] Mur | Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras[END_REF]. They contributed with the stereo version of the ORB-SLAM that fixes the 68 CHAPTER 3. SENSOR-ALGORITHM PARAMETERS COUPLING problem of scale drift in their monocular version [START_REF] Mur-Artal | Orb-slam: A versatile and accurate monocular slam system[END_REF]. The stereo version applies the same approach of local bundle adjustment in a set of local keyframes so that the complexity is unaffected by the map's size, making it usable in large-scale environments. The algorithm was evaluated on KITTI [START_REF] Geiger | Vision meets robotics: The kitti dataset[END_REF], EuRoC [START_REF] Burri | The euroc micro aerial vehicle datasets[END_REF], and TUM [START_REF] Sturm | A benchmark for the evaluation of rgb-d slam systems[END_REF] datasets. HOOFR-SLAM [START_REF] Dai-Duong Nguyen | Hoofr slam system: An embedded vision slam algorithm and its hardware-software mapping-based intelligent vehicles applications[END_REF],

a recent algorithm with competitive performance, exploits the HOOFR extractor for feature detection and matching [START_REF] Dai-Duong Nguyen | Hoofr: An enhanced bio-inspired feature extractor[END_REF]. HOOFR-SLAM implements a processing structure that maximizes parallelism and avoids the need to optimize camera poses by applying bundle adjustments on keyframes or saving the history of map points by estimating the relative poses of the current input frame with a set of previous neighboring frames. The optimal pose is obtained by averaging the relative poses with weighted factors. Nguyen et al.

evaluated the algorithm on KITTI [START_REF] Geiger | Vision meets robotics: The kitti dataset[END_REF], Oxford RobotCar [START_REF] Maddern | 1 year, 1000 km: The oxford robotcar dataset[END_REF], Malaga [START_REF] Blanco-Claraco | The malaga urban dataset: High-rate stereo and lidar in a realistic urban scenario[END_REF], MRT [START_REF] Moosmann | Velodyne SLAM[END_REF], St Lucia [START_REF] Michael Warren | Unaided stereo vision based pose estimation[END_REF] and New College datasets [START_REF] Smith | The new college vision and laser data set[END_REF]. PL-SLAM, presented by R. Gomez-Ojeda et al. [START_REF] Gomez-Ojeda | Pl-slam: A stereo slam system through the combination of points and line segments[END_REF], provides a solution for low-textured environments, combining points and line segments to operate robustly in a wider variety of scenarios, especially in those where point characteristics are rare or poorly distributed in the image. They also introduce a new bag of words that relies on combining the descriptive potential of the two types of features. PL-SLAM was evaluated on KITTI [START_REF] Geiger | Vision meets robotics: The kitti dataset[END_REF] and EuRoC MAV [START_REF] Burri | The euroc micro aerial vehicle datasets[END_REF] datasets. Unlike previous work, Y. Liu [START_REF] Liu | Real-time robust stereo visual slam system based on bionic eyes[END_REF] et al. designed a complete SLAM system, including the sensor. Y. Liu et al. [START_REF] Liu | Real-time robust stereo visual slam system based on bionic eyes[END_REF] proposed a real-time stereo SLAM system based on the bionic eye inspired by the peripheral and central vision of the human eye. With the ability to mimic human eye movements, stereo cameras can improve the SLAM system's robustness in low-textured environments by actively searching for rich textured area. Most of the previous works are evaluated on large publicly available datasets. As a result, the evaluation of these algorithms lacks consideration of the sensor's characteristics (Field of view, shutter type, baseline, etc.) and their impact on the quality of the algorithm's output.

RGB-D SLAM

The emergence of RGB-D sensors allowed the evolution of 3D dense reconstruction.

Many algorithms have exploited the RGB-D images to optimize performance and allow real-time execution, in addition to the embedding capability of these algorithms as on mobiles [START_REF] Vincent Angladon | An evaluation of real-time rgb-d visual odometry algorithms on mobile devices[END_REF]. A well-known and open-source RGB-D system by Endres et al. [START_REF] Endres | 3-d mapping with an rgb-d camera[END_REF] includes the front-end part dedicated to compute frame-to-frame motion using feature matching and the Iterative Closest Point (ICP). The back-end part performs optimization of the pose-graph with loop closure constraints based on a heuristic search. R. Mur-Artal et al. [START_REF] Mur | Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras[END_REF] have upgraded the ORB-SLAM2 for a loosely coupled use of RGB-D input.

ORB-SLAM2 uses depth information to synthesize stereo coordinates for the elements extracted from the image. In this way, the system is adaptable whether the input is stereo or RGB-D. M. Labbé et al. [START_REF] Labbe | Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation[END_REF] have proposed an extension of the RTAB-Map library to implement SLAM with different sensor configurations and processing capabilities. Q.

Fu et al. [START_REF] Fu | A robust rgb-d slam system with points and lines for low texture indoor environments[END_REF] proposed an RGB-D SLAM system using points and lines as features, which improved trajectory performance in low textured scenes. Despite the improvement brought by the cited works, their algorithms were evaluated on online datasets, which neglects the impact of the sensor-algorithm coupling. For example, the BAD SLAM [START_REF] Schops | Bad slam : Bundle adjusted direct rgb-d slam[END_REF] algorithm has shown that direct RGB-D SLAM algorithms are highly sensitive to cameras with rolling shutters, RGB and depth sensor synchronization, and calibration errors. So they evaluated their algorithm on their dataset acquired with synchronized global shutter RGB and depth cameras. Therefore, the online datasets provide only a partial picture of SLAM performance. Designing algorithms considering the sensor's properties could significantly improve the localization accuracy by exploring various sensors and their settings and identifying the algorithm's parameters directly related to the sensor used and how it impacts the algorithm's accuracy.

RGB-D Sensors Assessment

Few works have explored the characterization of RGB-D sensors. Notable works include M. Carfagni et al. [START_REF] Carfagni | On the performance of the intel sr300 depth camera: Metrological and critical characterization[END_REF], who have characterized the Intel SR300 depth sensor using it as a 3D scanner. This sensor's performance was evaluated by applying the German standard VDI/VDE 2634 on a raw dataset and a dataset with optimized parameters (Filters available on the cross-platform camera capture for Intel® RealSense™). Decoupling sensor raw data analysis from the optimized one allows an understanding of the worst performances of the device when used as a 3D scanner.

CHAPTER 3. SENSOR-ALGORITHM PARAMETERS COUPLING

The VDI/VDE guideline presents a method of measuring a reference object (sphere, plane) used to define some essential characteristics of the analyzed optical system. Traceability of 3D measurements is warranted by acceptance test and re-verification test. The acceptance test involves the measurement of a calibrated artifact (sphere, a ball bar, and a plane). The acceptance test is accepted if the error lies inside the limits specified by the manufacturer, while the re-verification test is a repetition of the acceptance test over time.

Three characteristics are estimated in this evaluation. The first is the Probing Error, measured using a sphere and defined as the characteristic error of the system within a small part of the measurement volume. The second one is Sphere Spacing Error (SS). SS is the difference between the acquired distance and the "true" distance between the centers of the two spheres (estimated from the point cloud of data using a best-fit sphere-fitting), the artifact used is a bar connecting two spheres (ball-bar). This characteristic shows the capability of the system to perform length measurements. Finally, the last characteristic estimated is Flatness Measurement Error F, which is the range of the signed distances of the measured points from the best-fit plane. This characteristic is measured using a rectangular parallelepiped.

Another study, conducted by the same authors, was carried out on the Intel D415 sensor based on the same German standard for 3D scans [START_REF] Carfagni | Metrological and critical characterization of the intel d415 stereo depth camera[END_REF]. E. Lachat et al. [START_REF] Lachat | Assessment and calibration of a rgb-d camera (kinect v2 sensor) towards a potential use for close-range 3d modeling[END_REF] performed an evaluation and calibration of the Microsoft Kinect depth camera to reconstruct small 3D objects. To our knowledge, most of the work carried out for the characterization of depth sensors is related to 3D scanning and small 3D object reconstruction. This chapter proposes an approach to characterize the RGB-D sensor for SLAM applications. Our approach involves studying the different acquisition modalities and the impact of each modality's characteristics on the quality of the algorithm's output. A sensor-algorithm coupling is performed by identifying the algorithmic parameters directly correlated with the RGB-D sensors and by proceeding to analyze the system input and output quality.

Studied RGB-D SLAM approaches 3.3.1 ORB-SLAM2

ORB-SLAM2 is a feature-based method that computes the camera trajectory and a sparse 3D reconstruction [START_REF] Mur | Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras[END_REF]. It includes the three perception variants of the approach: monocular, stereo and RGB-D. ORB-SLAM is recognized for its ability to reuse the map, to close the loop and to perform re-localization. It is structured in three processing threads:

The tracking thread, localizes the camera every frame, by finding feature matches in the local map and minimizes the re-projection errors by applying motion-only Bundle Adjustment (BA). The local mapping thread manages the local map and optimizes it by performing local BA. Moreover, the loop closing thread detects large loops and corrects the accumulated drifts by performing graph-pose optimization. A general overview of the system is shown in Figure 3.1. In this study, we focus on the pre-processing input module, In the tracking thread, the stereo and RGB-D inputs are pre-processed to provide the same input data used throughout the system regardless of the input sensor [START_REF] Mur | Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras[END_REF] The stereo ORB-SLAM is based on ORB extractor, which is a binary descriptor based on BRIEF [START_REF] Rublee | Orb: An efficient alternative to sift or surf[END_REF]. It generates the stereo keypoints with ORB coordinates on the left and the horizontal coordinate of the right match, which are defined as follows: (u l , v l , u r ) where (u l , v l ) are the coordinates in the left image, and u r is the horizontal coordinate in the right image.

While for an RGB-D input, the Tracking thread extracts the features from the RGB image and for each feature with the coordinates (u L , v L ), it transforms the depth value d into a virtual right coordinate u r , as shown by Equ. 3.1.

u r = u l -f x • b d (3.1)
In addition to the camera's intrinsic parameters, the ORB-SLAM2 has three parameters that must be adjusted before it is launched. These parameters are the keypoints number, the FAST threshold, and the close/far threshold.

The number of keypoints defines the maximum number of corners to be detected in the entire image. The FAST threshold is used to test each pixel, whether it is a keypoint or not, based on the intensity of the neighboring pixels. The ORB-SLAM uses an adaptive threshold, so the min threshold is used if no point is detected in the cell with the initial threshold. The algorithm gets required inputs that include the transformation that defines the sensors' position to the robot's base, camera inputs, and a chosen odometry from any source. After sensor synchronization, the shortterm memory (STM) creates a node memorizing the odometry pose and the sensor's data. These inputs are fed to the graph-SLAM, and we get the Map Data containing the latest added node with sensor data and the graph as output. The 3D and 2D occupancy grids are optional [START_REF] Labbe | Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation[END_REF].

Visual odometry was chosen as the input of the RTAB-Map which uses Stereo or RGB-D images as shown in Figure 3.5 from [START_REF] Labbe | Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation[END_REF]. The Frame-To-Frame (F2F) approach is adopted which registers each new frame against the last keyframe. For feature detection, GoodFeaturesToTrack (GFTT) + ORB are used. For Stereo images, stereo matching is performed using the optical flow based on Lucas-Kanade's iterative method. Feature matching, applies the optical flow directly on the features without computing the descriptors allowing a faster matching. Motion prediction is a model for predicting the location of features in the current frame, based on previous transformations. This limits the search window when matching. This is useful in dynamic environments or with repetitive textures. After the matches are computed, the transformation is calculated by the RANSAC Perspective-n-Point (PnP) method. The resulting transformation is refined by the local bundle adjustment on the features of the last keyframe. Finally, if the number of inliers calculated during the motion estimation is below a fixed threshold, the keyframe is replaced by the current frame. The process starts with applying GoodFeaturesToTrack (GFTT) and ORB on the captured frame to detect features, then Features are matched using optical flow without having to compute the descriptors. Motion prediction predicts where features will lie in the current frame based on the previous motion transformation. Next, Perspective-n-Point (PnP) RANSAC used the computed correspondences to find the transformation of the current frame. The local bundle adjustment is used to refine the transformation, and finally, the pose is updated [START_REF] Labbe | Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation[END_REF].

Study of the Sensor-Algorithm Parameters Coupling

Our parametric optimization protocol of sensor-algorithm coupling consists of evaluating the algorithm on different sequences with different acquisition modes. Then, the acquisition mode with the lowest error is used to globally tune the parameters of the algorithm.

We focus on the optimization of the ORB-SLAM2 algorithm. ORB-SLAM2 has three main parameters related to the algorithm input, they are: the number of features, the FAST detector threshold and the depth threshold. The number of features relies on the FAST detector, which depends on the exposure [START_REF] Florentz | Superfast: Model-based adaptive corner detection for scalable robotic vision[END_REF]. Both parameters are not tied to the depth camera. We have identified a physically correlated parameter to the sensor: the depth threshold [START_REF] Paz | Large-scale 6-dof slam with stereo-in-hand[END_REF]. This parameter allows the algorithm to classify near and far features. This parameter is tightly correlated to the error distribution of the RGB-D acquisition mode. We have evaluated the value of this parameter over a well-defined range.

The various tests were carried out on a computing station, equipped with a 24-core Intel Xeon W-2265 processor running at 3.5GHz, 64GB RAM and an NVIDIA Quadro RTX 6000 graphics card with 4608 CUDA cores. We calculated the Euclidean trajectory error and the number of tracked points on the map for each frame. This protocol classifies input (Number of points tracked in the map seen by the current frame) and output (Euclidean distance between a current pose and the one in the referenced trajectory) conditions of the algorithm in order to qualify its performance. Inspired from [START_REF] Milford | Seqslam: Visual route-based navigation for sunny summer days and stormy winter nights[END_REF][START_REF] Cummins | Appearance-only slam at large scale with fabmap 2.0[END_REF], we proposed a parametric optimization based on the following confusion matrix Equ. 3.2.

X =                    T P (E i ≤ s) ∧ (E i ≤ E i-1 ) ∧ (M i ≥ M i-1 ) FP (E i ≤ s) ∧ (E i > E i-1 ) ∧ (M i < M i-1 ) ∧ (M i < M) T N (E i > s) ∧ (E i > E i-1 ) ∧ (M i < M i-1 ) FN (E i > s) ∧ (E i ≤ E i-1 ) ∧ (M i ≥ M i-1 ) ∧ (M i > M) (3.2)
X denotes the decision on a pose in the confusion matrix. TP stands for True Positive, FP for False Positive, TN for True Negative and FN for False Negative. E i represents the Euclidean distance between a current pose and the one in the referenced trajectory. s is a given admissible positioning error. M i represents the number of points tracked in the map seen by the current frame, and M represents the average number of points tracked in the map over the whole trajectory. A position is considered TP if its error is less than an admissible error and does not diverge (i.e., the current error is less than or equal to the previous error) and the input quality, represented in the number of tracked points, is not degraded. The FP positions have a reduced error but diverge, and the quality of the input is reduced. TN positions have a significant error that diverges, and the quality of the input is degraded. Finally, the FNs are defined by a significant converging error, and the input quality is good.

CHAPTER 3. SENSOR-ALGORITHM PARAMETERS COUPLING

After calculating the position in the confusion matrix of each point, the Receiver Operating Curve (ROC) curve is plotted for all parameter values. The ROC is a plot used to diagnostic the performance of classification model using two parameters: True Positive Rate (TPR) and False Positive Rate (FPR) defined as follow:

T PR = T P T P+FN FPR = FP FP+T N (3.3)
The optimum parameter value is identified as the one with the highest True Positive Rate (TPR) and the lowest False Positive Rate (FPR).

Experimental results

This study was carried out using the Intel RealSense D435i camera. The ORB-SLAM2

and RTAB-Map are run on different datasets. Identification of the best-suited acquisition mode is first investigated. Next, a sensor-algorithm parameters coupling is carried out through a parametric optimization protocol. Then, the depth-based method is compared to stereo based method. The translation and rotation errors are evaluated for each dataset compared to the referenced trajectory. Finally, the effect of the projector on trajectory quality is investigated.

Comparison of Depth-based SLAM and Stereo-based SLAM algorithms

In this section, we compare Depth-based SLAM algorithms against their Stereo-based SLAM version. First, the depth-based SLAM using RGB images and IR images (with the projector off) is tested to find the optimal mode in each environment. According to the results of Table 3.3, it is worth noting that with the IR-D mode, for the ORB-SLAM2, the error is minimized by 1cm for a narrow environment and 12cm for a wide environment scene. Accuracy improvement is mainly due to the characteristics of the sensor used in each situation. The IR-D sensor provides a wider field of view, allowing visual landmarks to be tracked over more extended periods, which should increase the accuracy of pose estimation and increase robustness since the visual overlap between successive images is greater [START_REF] Zhang | Benefit of large field-of-view cameras for visual odometry[END_REF]. In addition, the IR camera has a global shutter, unlike the RGB camera, which is a rolling shutter type. A rolling shutter camera exposes the lines sequentially with a delay, which causes significant distortion for fast-moving objects or those exposed to sudden brightness changes. Ignoring the rolling shutter can lead to significant drift in the estimated trajectory and inaccurate 3D reconstruction [START_REF] Schubert | Direct sparse odometry with rolling shutter[END_REF]. Another factor contributing to this difference in performance is that RGB-D alignment can be inaccurate due to uncertainties caused by hardware synchronization and digitization imperfections, unlike IR images which represent the advantage of being perfectly aligned, calibrated, and overlapped with the depth maps and are perfectly time-synchronized [START_REF] Grunnet-Jepsen | Best-knownmethods for tuning intel® realsense d400 depth cameras for best performance[END_REF].

For the RTAB-Map, we can see no difference between the two modes in the basement parking environment, whereas the error is reduced by 3cm in laboratory corridors. As RTAB-Map has many parameters, it is not easy to find the proper parameters directly related to the sensor to visualize the impact of the sensor-algorithm coupling, unlike ORB-SLAM2, which has only a few parameters. Figure 3.9 shows the error as a function of the depth threshold coefficient in Digiteo_seq1 and Digiteo_seq3. The variation does not follow a specific pattern. Therefore, selecting an optimal value simply by tweaking the parameter directly is challenging. However, the suggested optimization method gives us an insight into the optimal value to select. The table shows that the values 115 and 128 allow a mean euclidean error (MEE) of 0.07m. As the mean of tracked points M is very high, we obtain many false positives for some parameter values. These points correspond to poses with an error lower than the admissible error but with a lower number of the mean tracked points M, which means that the motion estimation is correct but unreliable. This kind of situation can happen in static environments. FPs are not tightly correlated to the average error of the trajectory.

Indeed, FPs represent less reliable poses (better pose estimates with fewer tracked points) in contrast to TP (where the error is reduced and more points are tracked). Thus, we aim to get the optimal parameter value based on the maximum number of reliable poses. It should be noted that the depth threshold varies according to the environment. Also, the optimization has reduced the error by 68.75% in the Digiteo_seq3 dataset and 12.5% in the case of the Digiteo_seq1 dataset. This enhancement clearly shows how sensoralgorithm parameters coupling can significantly affect SLAM localization accuracy.

IR-D SLAM vs Stereo Vision SLAM

Based on the parameters found in Table 3.1,3. For the optimized ORB-SLAM2 IR-D, the error is reduced by 78.26% in the Digiteo_seq3 dataset and 50% in the Digiteo_seq1 dataset. For RTAB-Map, we have a similar result between IR-D and stereo for the Digiteo_seq3 sequence and a slight improvement in the Digiteo_seq1 sequence. These results confirm that the sensor's choice is not enough to improve the accuracy, but the algorithm parameters must also be optimized according to the perception system.

RGB-D SLAM: Active vs Passive

In this section, we compare the impact of the IR projector turned on and turned off on the trajectory for two sequences. The results were compared to the referenced trajectory, as shown in Figure 3.10. The ATE and RPE are calculated in the Table 3.7.
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x (m) x ( By analysing the errors, we can see that the trajectory's accuracy based on active depth is slightly better than that based on passive depth. This slight difference is due to the depth maps, which are denser in the active case allowing more features with a valid depth value. Also, we can see that RTAB-Map, in the case of Digiteo_seq3, requires a study of its parameters to take advantage of the projector.

Conclusion

In this chapter, we presented the evaluation of various trajectories based on the camera's different modes of acquisition. Passive IR-D SLAM vs. Passive RGB-D SLAM was compared, and it was deduced that the depth threshold parameter for ORB-SLAM2 does not follow a specific trend. A method based on the ROC curve was established to find an optimal depth threshold value for the IR sensor. Using an IR camera compared to the RGB camera decreased ATE error by 23.08% for RTAB-Map in Digiteo_seq1 and 82.14% for optimized ORB-SLAM2 in Digiteo_seq3. The use of the D435's IR camera offers a significant advantage as it has a larger field of view for tracking features in blind spots, and the fact that the depth maps are also aligned with the left IR camera means that no further alignment processing is required. Based on the parameters found in the IR-D vs. Passive RGB-D SLAM comparison, the IR-D SLAM algorithm was compared with Stereo Vision SLAM, and we found a decrease in the translational error of 78.26%

when using IR-D data for ORB-SLAM2 in Digiteo_seq3 and 28.57% for RTAB-Map in Digiteo_seq1. Finally, we compared the active and passive modes. We deduced that the active mode gives a more dense depth map; therefore, we get more accurate results since more features are used to calculate translation, rotation, and scaling. An RGBDbased SLAM system design must establish a strong coupling of the sensor's algorithm's parameters, especially those related to the field of view, depth threshold, and IR projector.

Considering sensor characterization can increase the localization accuracy for robotics applications in indoor environments. In the next chapter 4, we will extend the HOOFR-SLAM toward an RGB-D sensor. Based on the results of this chapter, we will apply the optimization protocol to find the appropriate configuration to ensure high localization accuracy. We will also use further algorithmic optimization to improve the performance.

Chapter 4

RGB-D HOOFR-SLAM 4.1 Introduction

Simultaneous RGB-D localization and mapping (SLAM) have gained popularity due to the low cost and advantages of the RGB-D camera. Several efforts have been made to develop RGB-D SLAM. Unfortunately, these works have not been evaluated and extended to outdoor vehicle applications. In this chapter, we present an extension of HOOFR-SLAM to an enhanced RGB-D modality applied to an autonomous vehicle in a dynamic outdoor environment. We propose a feature filtering method based on depth maps to improve the algorithm's performance in dynamic environments. Additionally, algorithmic optimizations have been made to improve performance. In the previous chapter, we have seen how sensor-algorithm coupling is essential in enhancing localization accuracy in indoor environments. In this chapter, we rely on this optimization protocol to improve HOOFR-SLAM in outdoor environments. Finally, we use a hardware-in-the-loop (HIL) approach to validate the algorithm on an embedded architecture and a dataset collected by an instrumented vehicle of the laboratory.

Related Works

There are two types of visual SLAM: feature-based and direct methods. Because of their low complexity, feature-based algorithms are the most commonly utilized for embedded real-time processing [START_REF] Dai-Duong Nguyen | Hoofr slam system: An embedded vision slam algorithm and its hardware-software mapping-based intelligent vehicles applications[END_REF][START_REF] Peng | Evaluating the power efficiency of visual slam on embedded gpu systems[END_REF]. However, this SLAM category is challenging in an outdoor environment with dynamic objects such as pedestrians, cars, and others. Dynamic objects are a significant annoyance while mapping and tracking. When the sky is cloudy, several outliers can be detected on the clouds, according to [START_REF] Kaneko | Mask-slam: Robust feature-based monocular slam by masking using semantic segmentation[END_REF]. Several works have been conducted to handle this issue using semantic segmentation based on Deep Neural Networks (DNNs) or Convolutional Neural Networks (CNNs) [START_REF] Kaneko | Mask-slam: Robust feature-based monocular slam by masking using semantic segmentation[END_REF][START_REF] Chang | A real-time dynamic object segmentation framework for slam system in dynamic scenes[END_REF][START_REF] Yu | Dsslam: A semantic visual slam towards dynamic environments[END_REF][START_REF] Brasch | Semantic monocular slam for highly dynamic environments[END_REF]. Filtering features improve localization accuracy. However, this pre-processing is an additional task that increases the computation time. Because of the processing time issue, embedding such systems in vehicles is not appropriate.

RGB-D SLAM

RGB-D sensors solved the problem of scale from which monocular SLAM suffers. They even outperformed the stereo sensors [START_REF] Bouazzaoui | Enhancing rgb-d slam performances considering sensor specifications for indoor localization[END_REF] by providing a dense depth map, allowing the 3D reconstruction of the environment with less complexity. The stereo computing is offloaded to the camera's built-in CPU, thus reducing the computation of the front-end part of the algorithm, which favors this type of sensor for embedded systems [START_REF] Vincent Angladon | An evaluation of real-time rgb-d visual odometry algorithms on mobile devices[END_REF]. In this context, several algorithms have been developed using the RGB-D sensor. A wellrecognized algorithm developed by R. Mur-Artal et al. is monocular ORB-SLAM [START_REF] Mur-Artal | Orb-slam: A versatile and accurate monocular slam system[END_REF],

which has been extended with an RGB-D input [START_REF] Mur | Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras[END_REF]. ORB-SLAM2 uses depth information to generate the stereo coordinates, thus making the algorithm agnostic to the input type. RGB-D ORB-SLAM2 has only been evaluated on indoor datasets [START_REF] Sturm | A benchmark for the evaluation of rgb-d slam systems[END_REF]. A geometric point and line constraint model (PL-GM) using an RGB-D camera has been proposed by C. Zhang [START_REF] Zhang | Pl-gm:rgb-d slam with a novel 2d and 3d geometric constraint model of point and line features[END_REF]. This model uses the ORB extractor [START_REF] Rublee | Orb: An efficient alternative to sift or surf[END_REF], Line segment detector (LSD) [START_REF] Grompone Von Gioi | Lsd: a line segment detector[END_REF], and the depth map to retrieve the 3D points and lines; these are combined with the 2D points and lines to construct a geometric constraint model. The algorithm was evaluated only on two indoor public datasets [START_REF] Sturm | A benchmark for the evaluation of rgb-d slam systems[END_REF][START_REF] Handa | A benchmark for rgb-d visual odometry, 3d reconstruction and slam[END_REF]. To sum up, the various RGB-D SLAM algorithms proposed in the literature have only been assessed on indoor datasets, which raises the question of how well they perform in an outdoor environment? using double K-means clustering and a static weight calculated using a static probability and the number of static observations to determine whether each feature is static or not.

They also proposed a modified version of RANSAC based on static weights to improve its robustness in dynamic environments. The algorithm has been evaluated only on an indoor dataset and faces some issues in environments with high dynamics or in the case of high or low illumination. Barsan et al. [START_REF] Ioan | Robust dense mapping for large-scale dynamic environments[END_REF] solved the problem of dynamic environments by simultaneously reconstructing the background, moving and potentially moving objects separately. They use an instance-aware semantic segmentation (Multi-task Network Cascades (MNC) [START_REF] Dai | Instance-aware semantic segmentation via multi-task network cascades[END_REF]) to recognize dynamic and potentially dynamic objects from a single frame. The system runs at 2.5 FPS when evaluated on a PC. They identified that the instance-aware semantic segmentation was the primary bottleneck, making the algorithm unsuitable for real-time positioning tasks. Table 4.1 presents a summary of the SLAM systems presented above.

As our thesis aims to design a SLAM system for autonomous vehicles, the throughput rate must be 20 to 30 FPS to respect real-time constraints. The challenge is to find a tradeoff between speed and localization accuracy in a dynamic environment. Therefore, we chose to implement a feature filtering based on depth consistency assumption, i.e., only the keypoints with a depth value consistent with the depth values of neighboring pixels are used. This approach demonstrated an accurate localization with real-time performance. with the Hessian score and the bio-inspired FREAK descriptor with enhanced overlap, has improved reliability and runtime during matching. HOOFR results showed competitive performance with SURF and SIFT with faster speed and low computational cost like ORB, but exceeding this latter in performance [START_REF] Dai-Duong Nguyen | Hoofr: An enhanced bio-inspired feature extractor[END_REF]. The Stereo HOOFR-SLAM consists of two main blocks, as shown in Figure 4.1. The first block is devoted to sensor data processing and ego-motion estimation, known as the front-end task. The second block represents the SLAM kernel and consists of the error graph optimization and loop closure tasks. The algorithm gets as an input stereo image. The left image is used to estimate the relative motion of the camera. The right image is used to compute the scale using stereo triangulation. For each frame, the HOOFR extractor is applied to detect and describe the features used for pose estimation and loop detection. The stereo matching provides the real scale by computing the ratio of the real distance of the landmarks and their triangulated distances. In the mapping thread, the features are matched with those of the previous left images. Each previous image with a successful transformation estimation is called the previous neighbor frame (PNF). The translation, rotation, and landmark positions are extracted from the essential matrix using triangulation. Due to its high processing cost, the bundle adjustment is substituted by windowed filtering to estimate the current camera position from a set of PNFs. Each predicted pose of the PNFs is associated with a confidence weight, so the optimal pose is the mean of all predictions by their respective weights [START_REF] Dai-Duong Nguyen | Hoofr slam system: An embedded vision slam algorithm and its hardware-software mapping-based intelligent vehicles applications[END_REF].

The loop closure thread is executed in parallel with the mapping thread. Each left frame is queried in the set of keyframes to find the max likelihood. The current image is considered a new keyframe in a low-match score case and added to the pose graph. Potential loop closure is detected only when the pose of the keyframe with a high matching score is far from the current frame in the pose graph. The loop closure is then validated by computing the relative transformation between the current frame and the matched keyframe [START_REF] Dai-Duong Nguyen | Hoofr slam system: An embedded vision slam algorithm and its hardware-software mapping-based intelligent vehicles applications[END_REF]. 

RGB-D HOOFR-SLAM

The RGB-D HOOFR-SLAM takes as input RGB images and the corresponding depth maps. The RGB images must be pre-aligned to the depth maps. This step involves establishing the correspondence between the RGB pixels and the depth value, since the RGB and depth images are sampled from two different spaced cameras. The alignment is done by projecting the depth value from the IR camera plane to the RGB camera plane. From the depth map, we estimate the corresponding 3-D coordinate (x IRworld , y IRworld , z IRworld ) from each pixel location (x IR , y IR ) as below:

x IRworld = z IRworld f IR • (x IR -x IRc ) y IRworld = z IRworld f IR • (y IR -y IRc ) (4.1) 
where (x IRc , y IRc ) is the principal point location and f IR is the focal length of the IR camera. Then, the 3D coordinates in the IR camera frame are transformed into the 3D coordinate system defined by the RGB camera using an affine transformation.

     x RGBworld y RGBworld Z RGBworld      = [R|T ]      x IRworld y IRworld Z IRworld      (4.2)
where R∈ R 3×3 is the rotation matrix and T ∈ R 3×1 is the translation vector. Finally, we can find the corresponding pixel in the RGB image by projecting the 3D coordinates defined in the RGB camera frame to the RGB image plane as

     x RGB y RGB 1      = f RGB Z RGBworld      x RGBworld y RGBworld Z RGBworld      (4.3)
with f RGB is the focal length of the RGB camera. RGB-D alignment can be inaccurate due to uncertainties caused by imperfections in hardware synchronization and digitization. Therefore, we use the IR camera images instead of the RGB camera. The IR images represent the advantage of being perfectly aligned, calibrated, and overlapped with the depth maps. They are perfectly time-synchronized. Ultimately, it saves us the additional computational overhead of aligning color-to-depth [START_REF] Grunnet-Jepsen | Best-knownmethods for tuning intel® realsense d400 depth cameras for best performance[END_REF].

In the Stereo HOOFR-SLAM, the workflow starts with features detection and description, followed by stereo matching. Then the mapping thread is launched. In RGB-D HOOFR-SLAM, we propose a modified HOOFR extractor based on feature filtering using depth maps provided by the RGB-D sensor. This approach improves localization accuracy by eliminating features with unreliable depth, including features detected on moving vehicles, clouds and those with invalid depth values (zero), as shown in Figure 4.2. This way, only the relevant keypoints are kept and the number of keypoints to be described and matched is less, which reduces the processing time. Algorithm 4.1 MAD applied to depth maps //Convert depth image to a vector Z For each pixel do if (z_pixel > 0 and z_pixel<65535) Z ← z_pixel; end if end for //Find the median of the depth vector by partial sorting elements //And then taking the middle value (odd case) //or the average of the middle two values (even case) z ← findMedian(Z); //Calculate the absolute difference for each observation from the median For each z_pixel in Z V ← abs( z_pixel -z); end for //Estimate the standard deviation using the median of V s ← 1.4826*findMedian(V); This approach identifies outlier points based on their depth value. The method is robust against outliers and also computationally inexpensive. In this method, we compute the median z of depth pixels (including non-zero and non-saturated values). Then, we calculate the absolute difference for each depth value from the median. V = |Z -z|. Finally, we estimate the standard deviation s = 1.4826 • median(V ), where the factor 1.4826 was CHAPTER 4. RGB-D HOOFR-SLAM chosen so that the expected value of s is equal to the standard deviation for normally distributed data [START_REF] Ronald K Pearson | Outliers in process modeling and identification[END_REF][START_REF] Posio | Outlier detection for 2d temperature data[END_REF]. A point is considered an outlier if : d > t • s, where d is the depth value, and t is the decision threshold [START_REF] Posio | Outlier detection for 2d temperature data[END_REF]. Experimentally, we found that the value t = 3 gives the best results.

We tested the algorithm with and without filter on a sequence of 100 images on a laptop equipped with an AMD Ryzen 9 4900HS processor and 24GB in memory. Table 4. 2 shows the comparison in terms of the absolute trajectory error (ATE) and the program's execution time. Filtering keypoints during the detection phase allowed a speedup of 1.45 and an error reduction of 80%, as only the relevant features are kept as illustrated in the 

Measurement Error Optimization

To optimize the measurement error (me), we applied the optimization protocol presented in 3. We ran an automated script on an interval from 0.05 to 1. For a tolerable error s we choose 2.5m and the average number of tracked points M over the trajectory at 1800. The ROC curve shows that the optimal value is 0.7 with a True Positive Rate of 89%. 

Experimental results

The proposed RGB-D HOOFR-SLAM algorithm is evaluated on our sequences (Sequence 1 and 2 refer to Sec. 2.4.2). The accuracy of the visual SLAM system is measured by absolute trajectory error in 2D, and we compared our method's accuracy and performance to that of Stereo HOOFR SLAM and other competitive algorithms. Finally, we used a HIL approach to evaluate the algorithm performance on an embedded architecture using our dataset and compared it with the performance on a PC.

RGB-D HOOFR SLAM vs Stereo algorithms

Comparing the RGB-D HOOFR SLAM to its Stereo version, as shown in Table 4.5, it can be seen that the Stereo HOOFR loses tracking at the beginning of the sequence; this is because of the strict conditions that have been set for the matching. If the positions of matches change slightly in images, the point is either too far from the camera or the camera is not moving much. These two cases do not provide a reasonable estimate, so these matches are rejected. In sequence 1, most points are detected on the clouds; therefore, the proportion of far points exceeds the near points leading to a rejection of the pose computation [START_REF] Dai-Duong Nguyen | Hoofr slam system: An embedded vision slam algorithm and its hardware-software mapping-based intelligent vehicles applications[END_REF]. RGB-D HOOFR SLAM takes advantage of the depth map to overcome this problem and adapt the depth threshold to reject outlier points detected on the dynamic objects and in the sky. The RGB-D HOOFR SLAM outperformed the ORB-SLAM2

Stereo in localization accuracy, especially in FPS, with an improvement of 146.51%. In the ORB-SLAM2 Stereo, the ORB extractor occupies 50%, and the stereo matching occupies 31% of the tracking processing time [START_REF] Mur | Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras[END_REF]. The same goes for the HOOFR Stereo. 30% of the tracking processing time is saved when using an RGB-D camera. On the other hand, the ORB-SLAM2 does not perform upstream filtering, thus processing all the points and correcting the errors in the mapping phase using local BA, resulting in a significant processing time. Unlike the RGB-D HOOFR SLAM, the keypoints are filtered directly after detection, thus reducing the number of points to be processed and thus the execution time and outliers. This section compares the RGB-D HOOFR SLAM algorithm with other state-of-theart RGB-D algorithms. For this comparison, we have selected two algorithms that are well-known for robustness and real-time operating and that have been evaluated in outdoor environments, namely ORB-SLAM2 [START_REF] Mur | Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras[END_REF] and RTAB-Map SLAM [START_REF] Labbe | Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation[END_REF]. We can see that switching from RANSAC to PROSAC in Table 4.3 allows greater speed up compared to GPU acceleration. In fact, in the RANSAC method, the number of iterations increases exponentially for small proportions of inliers. This problem has been solved with the PROSAC algorithm, which takes as input matches ordered by quality and gives them priority during sampling under the assumption that these matches have a high probability of being inliers, which leads to this significant speedup. As a result, by combining algorithmic optimizations and implementation on a heterogeneous architecture, we arrive at a trade-off between localization accuracy and real-time execution.

Conclusion

This chapter presented the RGB-D HOOFR SLAM algorithm, an enhanced algorithm of the Stereo HOOFR SLAM based on an RGB-D camera [START_REF] Dai-Duong Nguyen | Hoofr slam system: An embedded vision slam algorithm and its hardware-software mapping-based intelligent vehicles applications[END_REF]. Filtering based on the Chapter 5

Hardware-Software codesign: Toward an FPGA Architecture Based Front-End Processing

Introduction

Feature-based SLAM systems are becoming increasingly popular due to their performance and robustness. Several feature extractors are used in various SLAM systems such as ORB [START_REF] Rublee | Orb: An efficient alternative to sift or surf[END_REF], SIFT [START_REF] David | Distinctive image features from scale-invariant keypoints[END_REF], and SURF [START_REF] Bay | Surf: Speeded up robust features[END_REF]. Although these extractors yield good matching results, the computational complexity of feature extraction and matching is a significant hurdle when embedding such SLAM algorithms on low-power architectures.

Recently, Nguyen et al. [START_REF] Dai Duong Nguyen | Fpga implementation of hoofr bucketing extractor-based real-time embedded slam applications[END_REF] proposed an FPGA implementation of the HOOFR extractor while maintaining the same accuracy. However, the matching task remains the most time-consuming task in the processing flow. The design of an accelerated architecture for this functional block is mandatory to achieve on-the-fly processing on a system-on-chip.

Our challenge is to boost the algorithm's performance on low-power architectures to ensure on-the-fly processing. FPGAs are considered the best choice for stream processing.

Contrary to GPUs, which only provides parallelism for data processing and acceleration, FPGAs can provide data, task, and pipeline parallelism, which makes them more suitable for stream processing [START_REF] Wu | When fpga-accelerator meets stream data processing in the edge[END_REF][START_REF] Nakamura | An fpga-based low-latency network processing for spark streaming[END_REF] especially for embedded systems. ARCHITECTURE BASED FRONT-END PROCESSING We achieve our objective through an algorithm-architecture mapping applied to CPU-FPGA architectures. In practice, an algorithm is broken down into functional blocks, and each block is assigned to the appropriate processing unit, ensuring optimal performance.

In this chapter, we evaluate the performance of the matching block on different architectures since it is the bottleneck of performance, concluding with the proposition of an optimal CPU-FPGA mapping for the RGB-D HOOFR-SLAM front-end.

Related Works

Several works have recently focused on implementing visual SLAM algorithms on embedded architectures. In particular, indirect-based algorithms are gaining attention due to their low complexity and ease of parallelization. Much effort has been devoted to accelerating the most time-consuming part of the algorithm, including feature extraction and matching. Fang et al. [START_REF] Fang | Fpga-based orb feature extraction for real-time visual slam[END_REF] proposed a design of ORB feature extractor since it is the bottleneck of performance and energy consumption. They implemented the extractor on an Altera Stratix V FPGA and achieved 67 frames per second using VGA-resolution images.

The design runs at 203MHz frequency, reducing the energy consumption. Liu et al. [START_REF] Liu | Eslam: An energyefficient accelerator for real-time orb-slam on fpga platform[END_REF] presented eSLAM, an implementation end-to-end ORB-based SLAM system on a SoC. 

Algorithm-Architecture mapping

Starting from the Bucketing-based HOOFR extractor [START_REF] Dai Duong Nguyen | Fpga implementation of hoofr bucketing extractor-based real-time embedded slam applications[END_REF], we aim to embed the front end of the HOOFR SLAM on FPGA in the context of pushing the processing as close as possible to the sensor. For this purpose, we implemented the matching algorithm on ARCHITECTURE BASED FRONT-END PROCESSING the FPGA since it is the second most computationally heavy task. The implementation of matching on GPU [START_REF] Dai-Duong Nguyen | Hoofr slam system: An embedded vision slam algorithm and its hardware-software mapping-based intelligent vehicles applications[END_REF] has shown outstanding performance. However, considering the power consumption, GPUs are highly power-consuming, making thermal management more challenging in embedded systems, especially for applications where energy autonomy is a crucial asset. Although GPUs (i.e., Jetson AGX Xavier™) begin getting close to FPGAs in performance-per-watt, that does not mean they are the best solution for all applications. FPGAs represent an essential feature, which is any-to-any I/O connection, allowing connection to any device, network, or storage without needing a host CPU. The FPGA is well suited for front-end processing in general-purpose processing since it can be directly connected to high-speed sensors and offer very high bandwidth.

In our study, we first evaluated the GPU implementation of matching block on FPGA since the algorithm was implemented in OpenCL [START_REF] Dai-Duong Nguyen | Hoofr slam system: An embedded vision slam algorithm and its hardware-software mapping-based intelligent vehicles applications[END_REF] and thus can be run on both GPU and FPGA. When we ran the algorithm using NDRange on two images of a resolution of 1280 × 720 with 2000 keypoints, we got a very large runtime of 813.01 ms. This execution time is explained by the data dependency represented in waiting for the results of the workitems to select the match with the minimum distance. The impact of synchronization is not seen on GPU, as the processing frequency is high and the work-items on GPU are launched simultaneously, unlike in FPGA, where the work-items are launched in parallel in a pipelined way. Also, FPGAs are flexible in terms of programming architecture and are able to provide performance for operations that contain conditionals and/or branches. These architectural differences have a significant impact on performance. For this reason, we used a single-work-item implementation, also called task kernel.

In Table 5.2, we see that with a single task kernel, we obtain a speedup factor of ×96 compared to the NDRange kernel. To reach similar performances as on GPU, we create four matching kernels since they don't take a lot of hardware resources. With four matching kernels, we get a speedup of ×254. 

Matching

Experimental Results

We implement the HOOFR-SLAM front-end on a DE5a-Net DDR4 Arria 10 FPGA PCIe board connected to a desktop via PCIe Gen 3x8. Its CPU is an Intel Xeon Silver 4108 processor with eight cores with a base frequency of 1.8GHz. The PC used for comparison is a high-performance laptop equipped with an 8-core AMD Ryzen 9 CPU with a base frequency of 3 GHz. The frames used for the evaluation are outdoor sequences recorded with the Intel RealSense D455 camera with a frame rate of 30 FPS and a resolution of 1280x720. The images are resized with the resize function of OpenCV.

Resource usage

Our accelerator is implemented on a DE5a-Net DDR4 Arria 10 FPGA Development Kit (operating at 50 MHz) with 1150K LEs. The resource utilization of the proposed architecture is shown in Table 5.3. We followed some performance-improvement rules proposed by Intel® FPGA SDK for OpenCL™ Pro Edition Best Practices Guide to save resources.

By reducing the number of unrolled loops and the compute units, we decreased the resource usage and required memory bandwidth. Unrolling the outer loops of a nested-loop structure also increases resource utilization significantly. Therefore, we unrolled only the inner loops. By saving resources, we could incorporate the matching block into our architecture. Between parenthesis, the usage percentage of the total available.

Kernel

Matching block timings analysis

The matching block performance has been evaluated on high-performance PC CPU (8core AMD Ryzen 9 CPU @ 3 GHz) and FPGA architectures for a different number of features. To quantify the performance of each architecture, regardless of the frequency, we have computed the number of cycles per match (CPM) using the following equation: 

CPM = t • f N ( 5 

Overall Performance Evaluation

In this section, we evaluate the performance of the entire algorithm on different resolu- 

Conclusion

This chapter presents a design of FPGA-based near-sensor processing (matching incorporated with the Bucketing-based HOOFR extractor). A matching algorithm has been adapted to FPGA programming paradigms to achieve real-time processing tailored to the Intel RealSense camera frame rate. Also, we have shown that the algorithm's complexity has been preserved to guarantee the same quality of results in software as in hardware. Our 

Conclusion and Future Works Conclusion

In this thesis, we adopted a methodology considering the processing chain of a SLAM system (from the sensor to the embedded architecture). The focus of our study was on the front-end part of SLAM algorithms. We have started by investigating the characteristics of an RGB-D sensor and its impact on localization accuracy. In this context, we proposed a sensor-algorithm coupling methodology, which consists of identifying the parameters correlated to the sensors or significantly impacting the localization (i.e. camera pose).

Then, the optimization protocol is applied to these parameters to determine their optimal values.

After the characterization of the RGB-D sensor, we proceeded to the extension of the HOOFR-SLAM towards using RGB-D sensors for autonomous vehicle applications. To ensure the consistency and robustness of the algorithm in dynamic environments, we have implemented a keypoint filtering mechanism based on depth maps. This filter allows us to efficiently enhance the localization's accuracy by keeping only reliable keypoints.

Afterward, algorithmic optimizations were introduced to the algorithm. When analyzing the data flow, we noticed that the amount of input data highly drives processing time.

As more keypoints are processed, the complexity grows in several functional blocks (e.g. description, matching, pose estimation). Unlike other works [START_REF] Xie | Moving object segmentation and detection for robust rgbd-slam in dynamic environments[END_REF][START_REF] Kaneko | Mask-slam: Robust feature-based monocular slam by masking using semantic segmentation[END_REF][START_REF] Ioan | Robust dense mapping for large-scale dynamic environments[END_REF], which use keypoint filtering only to improve the algorithm's accuracy in dynamic environments, our implementation serves two goals. First, improving the accuracy, and second, reducing the amount of data fed to functional blocks, thus reducing the processing time. For this Conclusion and Future Works purpose, the keypoint filtering was performed directly after features detection, reducing the number of points to be described, matched, and used for the pose estimation.

On the other hand, in pose estimation, the RANSAC algorithm processes all matches in the same way and draws random samples uniformly from the complete set. At low proportions of inliers, the number of iterations increases exponentially. This problem was addressed using the PROSAC algorithm, which takes quality-ordered matches in input, prioritizing these matches when sampling under the assumption that these matches have a high probability of being inliers, which leads to faster convergence. When comparing the performance between RANSAC and PROSAC, our algorithm achieves x5 of speedup while maintaining the same accuracy. Our SLAM system can run at 27 FPS on a 3 GHz 8-core CPU and 19 FPS on a 2.26GHz 8-core embedded processor without accelerating processing on their associated GPUs. This processing rate generally allows a good localization accuracy with an approximate error bound of 1m in an urban environment for a vehicle speed of up to 40Km/h. However, for on-the-fly processing, the algorithm must be able to run at the same rate as the sensor or even more (from 30 FPS onwards).

For this purpose, we boost the performance of our algorithm and take advantage of FPGAbased architectures known for their low power consumption. A study was conducted on optimizing the partitioning of the different functional blocks on the computing units. This partitioning considers the data flow, the functional blocks' dependency, and workloads.

An FPGA architecture based on an OpenCL implementation for HOOFR feature matching has been designed. The complexity of the matching algorithm has been respected to guarantee the same matching performance in software as in hardware implementations.

This matching system has been incorporated with the bucketing-based HOOFR extractor to embed 88% of the front-end on FPGA. The FPGA implementation shows that the 

Future works

The work presented in this thesis presents multiple contributions toward embedded SLAM for autonomous vehicles. Several leads are considered to extend this work on different levels (sensor, algorithm, and architecture). At the sensor level, we intend to extend our RGB-D dataset with more challenging scenarios under a wide range of conditions (including weather and illumination changes) for a more in-depth study. The datasets studied were acquired at moderate speeds (20Km/h to 40Km/h), allowing a good performance at 30FPS. Scenarios at higher speeds on highways are planned to complete sensor characterization to maintain or improve accuracy. In addition, datasets with various elevations are intended. As for now, the algorithm can operate on flat ground. The integration of inertial measurement units (IMU) will be an asset to ensure the algorithm's consistency in an environment with altitude variations. From an architecture point of view, pose computing will be a subject of study for a fully embedded front-end system on FPGA. Finally, the FPGA and camera interfacing should be studied thoroughly to realize the on-the-fly processing, designing hence a smart visual SLAM sensor. This latter provides a highperformance processor for back-end processing and an FPGA handling the processing and interpretation of data from the visual sensors, an architecture model can be proposed as shown in Figure 5.9. This architecture consists of interfacing the camera to the FPGA memory. This allows the image pixels to directly flow to the FPGA. The on-chip architecture handles the pre-processing operations offloaded from the CPU, thus improving the overall system throughput, and resolves the bottleneck between the camera and the CPU. Co-conception matériel-logiciel : Vers un traitement front-end basé sur une architecture FPGA Les systèmes SLAM basés sur les primitives deviennent de plus en plus populaires en raison de leurs performances et de leur robustesse. Plusieurs extracteurs de caractéristiques sont utilisés dans divers systèmes SLAM tels que ORB [START_REF] Rublee | Orb: An efficient alternative to sift or surf[END_REF], SIFT [START_REF] David | Distinctive image features from scale-invariant keypoints[END_REF], et SURF [START_REF] Bay | Surf: Speeded up robust features[END_REF].

Bien que ces extracteurs offrent de bons résultats de correspondance, la complexité de calcul de l'extraction et de la mise en correspondance des primitives représente un défi important lors de l'intégration de tels algorithmes SLAM dans des architectures embarqués.

Récemment, Nguyen et al. 

Conclusion et perspectives
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 11 Figure 1.1: General structure of the SLAM system.

(

  short for Light Imaging Detection and Ranging), and cameras. The Global Navigation Satellite System (GNSS) is based on satellites that continually broadcast a radio signal containing the current time and data about their position. Each GNSS receiver needs four satellites to figure out four unknowns: X, Y , Z, and the difference between the clock's time and the GNSS reference time. Coordinates are generally expressed using the ellipsoidal World Geodetic System of 1984 (WGS84) model. The 3D coordinates can be expressed either in global systems such as Earth-Centered Earth-Fixed (ECEF) and geodetic systems or in local systems such as East-North-Up (ENU), North-East-Down (NED), and Azimuth-Elevation-Range (AER). Global systems describe the position of an object using a triplet of coordinates. In contrast, local systems require one triplet to describe the origin's location and the other triplet to describe the object's location with respect to the origin. The requirement for clear line-of-sight visibility to the satellites is a limitation of GNSS in general. Buildings and dense trees block many satellite signals, limiting satellite availability. Liu et al. [46] used an inaccurate Global Positioning System (GPS) with a monocular SLAM to fix the temporal GPS drift problem by relating the vision-based camera pose estimation from SLAM to the position information received through GPS in the pose optimization step. Hening et al. [29] proposed an Adaptive Extended Kalman Filter (AKF) for estimation of the velocity and position of a UAV by fusing LiDAR SLAM local position updates, GPS corrections, and an Inertial Navigation System (INS).
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 12 Figure 1.2: Visual-based SLAM diagram
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 3213 Figure 1.3: Timeline representing well-known SLAM systems and their chronological evolution. In blue, feature-based V-SLAM methods. In green, direct approaches.

Figure 1 .

 1 4 represents the diagram block of ORB-SLAM. The tracking thread keeps track of features by finding matches and minimizing the reprojection error by applying motion-only Bundle Adjustment. The local mapping manages and optimizes the local map using a local BA. The thread loop closing detects loop closures and corrects the accumulated drifts by performing the graph-pose optimization. Finally, to ensure the consistency of the whole structure and the estimated motion, the algorithm applies a full BA.
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 14 Figure 1.4: Diagram representing the ORB-SLAM algorithm [1]
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 15 Figure1.5: Semi-Direct Visual Odometry (SVO) tracking and mapping pipeline[START_REF] Forster | Svo: Fast semi-direct monocular visual odometry[END_REF] 
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 16 Figure 1.6: Diagram summarizing the LSD-SLAM algorithm [3].
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 17 Figure 1.7: KinectFusion diagram [4]
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 18 Figure 1.8:The block diagram of GMSK-SLAM[START_REF] Wei | Gmsk-slam: a new rgb-d slam method with dynamic areas detection towards dynamic environments[END_REF] 
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 619110 Figure1.9: Feature extraction block represented by a direct acyclic graph (DAG) and the corresponding sub-block implementations[START_REF] Aldegheri | Data flow orb-slam for real-time performance on embedded gpu boards[END_REF] 
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 1 Figure1.11: HOOFR-SLAM mapping on a CPU-GPU architecture[START_REF] Dai-Duong Nguyen | Hoofr slam system: An embedded vision slam algorithm and its hardware-software mapping-based intelligent vehicles applications[END_REF] 
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 1 Figure1.12: eSLAM architecture[START_REF] Liu | Eslam: An energyefficient accelerator for real-time orb-slam on fpga platform[END_REF] 
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 113 Figure 1.13: HOOFR extractor mapping on CPU-FPGA architecture [10].

  advantage of heterogeneous architectures to accelerate processing and that CPU-FPGA architectures are the trend in robotics and automotive due to their energy efficiency required to ensure long autonomy. Finally, we cited the various well-known datasets used for evaluating RGB-D SLAM algorithms and how they were limited to indoor environments due to the restricted capabilities of such cameras. The following chapter 2 presents the methodology for the design of a dedicated RGB-D SLAM system for autonomous vehicle applications that respects localization accuracy and real-time constraints. Chapter 2 includes the characterization of a new RGB-D sensor for Indoor/Outdoor use, the acquisition of indoor and outdoor datasets, and the choice of platforms used for the evaluations.

Figure 2 .

 2 Figure 2.1 shows the cameras used for the evaluation. The first part involves evaluating an RGB-D sensor in an indoor environment to identify the key factors impacting the quality of the trajectory. For the indoor environment, we chose the Intel Realsense D435i camera. This camera will allow us to compare the impact of the different acquisition modalities thanks to its multiple sensors. The depth camera incorporates a Vision Processing Unit (VPU), left and right imagers for stereo vision with a wide IR projector, an RGB color sensor, and an Inertial Measurement Unit (IMU). Depth features, high resolution, longrange capability (up to approximately 10 m), and global shutter technology enable fast motion capture without blurring depth images. The depth map can be generated using either active stereo technology by turning the projector on or passive stereo technology by turning it off. The IR projector helps increase the texture in low-textured scenes by projecting a static IR pattern. The vision processor generates the depth map by matching each pixel in the right and left IR images, using the image on the left as a reference for stereo matching. The sensor has an RGB camera with rolling shutter technology, a high resolution, and a narrower field of view.
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 21 Figure 2.1: Intel® RealSense™ Depth Cameras

1 :Figure 2 . 3 :

 123 Figure 2.2: : Images illustrating the environment (laboratory corridor and basement parking) where the dataset was collected: (a) The scene on the right represents a narrow and textureless environment, on the left, we have a narrow scene with more texture. (b) These scenes represent textured and larger environments.

CHAPTER 2 .Figure 2 . 4 :

 224 Figure2.4: Reference trajectory process using COLMAP. Reconstructing the reference trajectory consists of sub-sampling the images (to reduce the processing time), detecting features, and sequentially matching those features. Then the sparse reconstruction is launched to generate a point cloud and to compute the camera poses. Finally, the dense reconstruction is performed by the Poisson or Delaunay method. The camera trajectory is scaled by calculating the scale factor between the point cloud and known distances provided by a rangefinder.
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 25 Figure 2.5: SATIE laboratory-instrumented vehicle embedding an Intel Realsense D455 RGB-D camera, a GNSS receiver (Altus Positioning Systems (APS-3) Real-Time Kinematic (RTK)), a Velodyne LiDAR PUCK with 16 channels (VLP-16) and a data logger.
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 26572 Figure 2.6: The outdoor dataset depicts dynamic scenes, sky-dominated scenes, and shaded scenes.

  .7, with a maximum clock frequency of 1.37GHz. The GPU contains eight Volta Streaming Multiprocessors (SMs) with 64 CUDA cores and 8 Tensor Cores per Volta SM and a 128KB L1 cache. The SMs share a 512KB L2. The CPU is an 8-core NVIDIA Carmel ARMv8.2 64-bit, as shown in Figure 2.8, with a maximum clock frequency of 2.26GHz. Each core includes 128KB instruction and 64KB data L1 caches plus a 2MB L2 cache shared between the two cores. The CPU clusters share a 4MB L3cache. The RAM is 16GB 256-bit LPDDR4x, which has 137GB/s memory bandwidth. The platform is used in several SLAM works, including[START_REF] Bujanca | Robust slam systems: Are we there yet[END_REF][START_REF] Cowley | Upslam: Union of panoramas slam[END_REF][START_REF] Cai | Hard-lite slam: A hybrid detector based real-time slam system[END_REF].
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 27 Figure 2.7: Block diagram of Jetson Xavier VOLTA GPU[START_REF]NVIDIA Technical Blog[END_REF] 
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 28 Figure 2.8: Block diagram of Jetson Xavier CPU[START_REF]NVIDIA Technical Blog[END_REF] 
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 210 Figure 2.10: Simplified internal structure of FPGA
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 211123212 Figure 2.11: Time chart of NDRange kernel execution

3. 1

 1 IntroductionSLAM is a crucial perception functionality in a variety of applications, including robots and autonomous vehicles. RGB-D cameras are among the sensors typically employed by recent SLAM systems. Numerous RGB-D SLAM algorithms have been explored and assessed using publicly available datasets without taking into account sensor specifications or image capture modes that might increase or reduce localization accuracy. In this chapter, we discuss indoor localization while taking sensor specifications into account.
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 32 Figure 3.2, in the Tracking thread.
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 32 Figure 3.2: In the tracking thread, the stereo and RGB-D inputs are pre-processed to provide the same input data used throughout the system regardless of the input sensor[START_REF] Mur | Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras[END_REF] 
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 373333 Figure 3.3: Impact of the number of keypoints on the execution time and on the Absolute Trajectory Error (ATE) measured on the three sequences: Digiteo_seq1 (in IR-D mode), Digiteo_seq2 (in RGB-D active-stereo mode), and Digiteo_seq3 (in IR-D mode), with the FAST and DepthThreshold parameters set at their default values.

Finally, theFigure 3 . 4 :

 34 Figure 3.4: Block diagram of RTAB-Map:The algorithm gets required inputs that include the transformation that defines the sensors' position to the robot's base, camera inputs, and a chosen odometry from any source. After sensor synchronization, the shortterm memory (STM) creates a node memorizing the odometry pose and the sensor's data. These inputs are fed to the graph-SLAM, and we get the Map Data containing the latest added node with sensor data and the graph as output. The 3D and 2D occupancy grids are optional[START_REF] Labbe | Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation[END_REF].
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 35 Figure 3.5: RTAB-Map's Visual Odometry block diagram of Frame-To-Frame (F2F) approach:The process starts with applying GoodFeaturesToTrack (GFTT) and ORB on the captured frame to detect features, then Features are matched using optical flow without having to compute the descriptors. Motion prediction predicts where features will lie in the current frame based on the previous motion transformation. Next, Perspective-n-Point (PnP) RANSAC used the computed correspondences to find the transformation of the current frame. The local bundle adjustment is used to refine the transformation, and finally, the pose is updated[START_REF] Labbe | Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation[END_REF].
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 5113132 Passive IR-D SLAM vs Passive RGB-D SLAM The D435i camera is equipped with an RGB camera and two IR cameras. The RGB camera is a rolling shutter type and has a Field of View (FOV) of 69.4°× 42.5°, while CHAPTER 3. SENSOR-ALGORITHM PARAMETERS COUPLING the IR camera is a global shutter type and has a Field of View (FOV) of 86°× 57°. We examine the distinction between the RGB and IR images regarding the quality of the trajectory. Settings required to ensure proper operation of the algorithm on the dataset are shown in the Table 3.1 and 3.2. The number of features has been set to 1000 for a narrow environment (Digiteo_seq1 & Digiteo_seq2) and 2000 for a wide environment Passive RGB-D SLAM and Passive IR-D SLAM front-end parameters for ORBPassive RGB-D SLAM and Passive IR-D SLAM front-end parameters for RTAB-Map Passive RGB-D ORB-SLAM2 and Passive IR-D ORB-SLAM2 trajectories are plotted on the same Figure 3.6. Same for the RTAB-Map in the Figure 3.7. The translational error and the rotational error for Passive RGB-D SLAM and Passive IR-D SLAM are computed with respect to the referenced trajectory.
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 3637 Figure 3.6: Passive RGB-D ORB-SLAM2 vs. Passive IR-D ORB-SLAM2 in Digi-teo_seq1, the baseline is plotted in blue, RGB-D ORB-SLAM2 in magenta and IR-D ORB-SLAM2 in green. We can see in the zoom on the right that the IR-D follows the baseline perfectly, while the RGB-D drifts during a rotation.
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 512 Depth threshold optimizationSince the IR-D mode gave better results in localization of at least 11%, it was retained for an in-depth study according to the depth threshold of the ORB-SLAM2. To this end, we performed an automated test of the different values from 5 to 250, corresponding by multiplying by the baseline (0.05m) at an interval of 0.5m to 15m. We have empirically chosen a tolerable error s of 7cm and the average number of tracked points M over the trajectory at 500 since several scenes in the sequence lack textures. For each sequence, a ROC curve was established, as shown in Figure3.8. The curves have been limited to a reduced scope containing the global minimum.

Figure 3 . 8 :

 38 Figure 3.8: The ROC curve for different depth threshold coefficients. On the left, the ROC curve of the Digiteo_seq1, and on the right, the ROC curve of the Digiteo_seq3. The curves have been restricted to the interval containing the global minimum values.

2 ,

 2 we compare IR-D ORB-SLAM2 and IR-D RTAB-Map to their stereo versions. The goal is to determine the rate of improvement in terms of accuracy of an RGB-D based algorithm versus a stereo based algorithm. The IR-D SLAM and IR-Stereo Vision SLAM algorithms are compared with the referenced trajectory, where the translational and rotational errors are computed in

Figure 3 .

 3 Figure 3.10: RGB-D ORB-SLAM2 (First row) and RGB-D RTAB-Map SLAM (Second row): Active vs Passive mode in Digiteo_seq2The right and left images represent the zoom in the trajectories. They show how the active stereo approach (represented in green) sticks well to the reference (represented in blue) in the turns, unlike the passive stereo (represented in magenta), which drifts in and after the turns.

1 :

 1 Summary of relevant properties of presented dynamic SLAM algorithms 4.3 RGB-D HOOFR-SLAM algorithm 4.3.1 Stereo HOOFR-SLAM algorithm overview HOOFR-SLAM is a visual SLAM algorithm based on the Hessian ORB -Overlapped FREAK (HOOFR) bio-inspired extractor. This extractor, composed of the ORB detector

Figure 4 . 1 :

 41 Figure 4.1: Functional blocks of the algorithm Stereo HOOFR-SLAM. The algorithm takes stereo images as input.The HOOFR extractor is applied on the left image to detect and describe keypoints. Two threads are launched in parallel: The mapping thread used for odometry and the loop detection thread used for loop closure. Finally, the pose graph is optimized in the map processing block[START_REF] Dai-Duong Nguyen | Hoofr slam system: An embedded vision slam algorithm and its hardware-software mapping-based intelligent vehicles applications[END_REF].
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 42 Figure 4.2: Many of features are detected on the clouds, which implies that most points are too far away to compute translation; we can also notice points detected on the bus, which confuses the tracking and mapping process.

Figure 4 . 3 ,

 43 Figure 4.3, thus reducing the number of points processed by the further stages.

Figure 4 . 3 :

 43 Figure 4.3: Keypoints distribution on the outdoor scene, before and after applying the filter.In the two images on the left, we see that most of the features are detected in the sky and on the bus. On the two images on the right, the keypoints are filtered.
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 44 Figure 4.4: The ROC curve for different me. The ROC curve shows the distribution of several measurement error values as a function of TPR and FPR. The optimal value of the measurement error is 0.7, with a TPR of 89% and an FPR of 60%.
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 4 Figure 4.5 shows the evolution of the mean error against the measurement error, and

Figure 4 . 6 shows 2 Figure 4 . 6 :

 46246 Figure 4.6: Sequence 1 and Sequence 2 trajectories plots: Trajectory plots of the three algorithms RGB-D HOOFR SLAM (in green), RGB-D ORB-SLAM2 (in red), and RGB-D RTAB-Map SLAM (in magenta) against the ground truth (in blue) over the two sequences
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 5254 Figure 5.2: Image split into a grid. Image cells are processed in the pipeline. When a kernel finishes processing a cell, the following kernel takes over.

Figure 5 . 6 :

 56 Figure 5.6: Matching kernels duplication diagram. The indexes of the cells and the descriptors of the previous neighboring images are divided into four chunks and distributed over the four kernels. Each kernel finds the match in the current and neighboring cell from the descriptor matrix of the current image. Finally, each kernel stores the found matches into a vector.
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 57 Figure 5.7: Matching two successive images from outdoor sequence 1 on FPGA.

  design was implemented on DE5a-Net DDR4 Arria 10 FPGA architecture. The FPGA implementation shows that the OpenCL design is 9x to 14x faster than the C++ implementation running on a high-performance CPU. The achieved throughput is 30 FPS at 1280×720 pixels resolution and 38 FPS at 640 × 480 pixels resolution, which is sufficient to perform on-the-fly processing. The proposed architecture, as shown in the Figure5.8, involves acquiring the images from the sensor on the CPU, launching the keypoint extraction and matching on FPGA, and finally launching the pose estimation on the CPU. The loop closure detection is launched on a parallel thread on the CPU.

  OpenCL design is up to 14x faster than the CPU-based implementation. The achieved throughput is 30 FPS at 1280×720 pixels resolution and 38 FPS at 640×480 pixels resolution. The results demonstrated the capacity of FPGA architecture intending to handle an on-the-fly processing of the HOOFR SLAM front-end. However, for implementation on a System on Chip (SoC), we are limited by the amount of data to process. For the description of the features, we need 500 MB to store the description of 2000 keypoints, which limits us to using off-chip memories, making part of the performance dependent on Conclusion and Future Works the memory bandwidth. The obtained results and the defined architecture model demonstrated the possibility of performing complex algorithms such as SLAM on heterogeneous CPU-FPGA architectures-based embedded systems. The technological evolution allows the design of CPU-FPGA architectures. These architectures will also make it possible to bring the data processing as close as possible to the sensor and thus design intelligent Visual SLAM systems.

  ment d'alignement supplémentaire n'est nécessaire. Sur la base des paramètres trouvés dans la comparaison du SLAM IR-D et du SLAM RGB-D passif, l'algorithme SLAM IR-D a été comparé au SLAM Stereo Vision, et nous avons trouvé une diminution de l'erreur de translation de 78,26% en utilisant les données IR-D pour ORB-SLAM2 dans Digiteo_seq3 et de 28,57% pour RTAB-Map dans Digiteo_seq1. Enfin, nous avons comparé les modes actif et passif. Nous avons déduit que le mode actif donne une carte de profondeur plus dense ; par conséquent, nous obtenons des résultats plus précis puisque davantage de primitives sont utilisées pour calculer la translation, la rotation et la mise à l'échelle. La conception d'un système SLAM basé sur RGB-D doit prévoir un couplage fort des paramètres de l'algorithme du capteur, en particulier ceux liés au champ de vision, au seuil de profondeur et au projecteur IR. La prise en compte de la caractérisation du capteur peut augmenter la précision de la localisation pour les applications robotiques dans les environnements intérieurs. RGB-D HOOFR-SLAM La localisation et la cartographie simultanées RGB-D (SLAM) sont devenues de plus en plus populaires en raison de leur faible coût et des avantages de la caméra RGB-D. Plusieurs efforts ont été déployés pour développer le SLAM RGB-D. Malheureusement, ces travaux n'ont pas été évalués et étendus aux applications de véhicules extérieurs. Dans ce chapitre, nous présentons une extension de HOOFR-SLAM à une modalité RGB-D améliorée appliquée à un véhicule autonome dans un environnement extérieur dynamique. Nous proposons une méthode de filtrage des primitives basée sur les cartes de profondeur pour améliorer les performances de l'algorithme dans les environnements dynamiques. De plus, des optimisations algorithmiques ont été effectuées pour améliorer les performances. Dans le chapitre précédent, nous avons vu comment le couplage capteuralgorithme est essentiel pour améliorer la précision de la localisation dans les environnements intérieurs. Dans ce chapitre, nous nous appuyons sur ce protocole d'optimisation pour améliorer HOOFR-SLAM dans les environnements extérieurs. Enfin, nous utilisons une approche hardware-in-the-loop (HIL) pour valider l'algorithme sur une architecture embarquée et un jeu de données collecté par un véhicule instrumenté du laboratoire. HOOFR-SLAM est un algorithme de SLAM visuel basé sur l'extracteur bio-inspiré Hessian ORB -Overlapped FREAK (HOOFR). Cet extracteur, composé du détecteur ORB avec le score hessien et du descripteur FREAK bio-inspiré avec un chevauchement amélioré, présente une fiabilité et un temps d'exécution améliorés pendant la mise en correspondance. Les résultats de l'HOOFR ont montré une performance compétitive avec SURF et SIFT avec une vitesse plus rapide et un faible coût de calcul comme ORB, mais dépassant ce dernier en performance [57]. Le Stereo HOOFR-SLAM se compose de deux blocs principaux. Le premier bloc est consacré au traitement des données du capteur et à Conclusion and Future Works l'estimation de l'ego-motion, appelé front-end. Le second bloc représente le noyau SLAM et se compose de l'optimisation du graphe de pose et des tâches de fermeture de boucle. L'algorithme reçoit en entrée une image stéréo. L'image de gauche est utilisée pour estimer le mouvement relatif de la caméra. L'image de droite est utilisée pour calculer l'échelle en utilisant la triangulation stéréo. Pour chaque image, l'extracteur HOOFR est appliqué pour détecter et décrire les primitives utilisées pour l'estimation de la pose et la détection des boucles. La mise en correspondance stéréo fournit l'échelle réelle en calculant le rapport entre la distance réelle des points de repère et leurs distances triangulées. Dans le processus de mise en correspondance, les primitives sont mises en correspondance avec celles des images précédentes de gauche. Chaque image précédente avec une estimation de transformation réussie est appelée image voisine précédente (PNF). La translation, la rotation et les positions des points de repère sont extraites de la matrice essentielle en utilisant la triangulation. En raison de son coût de traitement élevé, l'ajustement du faisceau est remplacé par un filtrage fenêtré pour estimer la position actuelle de la caméra à partir d'un ensemble de PNF. Chaque pose prédite des PNF est associée à un poids de confiance, ainsi la pose optimale est la moyenne de toutes les prédictions par leurs poids respectifs [8]. Le thread de fermeture de boucle est exécuté en parallèle avec le thread de mapping. Chaque image gauche est interrogée dans l'ensemble des images clés pour trouver la vraisemblance maximale. L'image actuelle est considérée comme une nouvelle image clé dans le cas d'un score de correspondance faible et est ajoutée au graphe de pose. Une fermeture de boucle potentielle n'est détectée que lorsque la pose de l'image clé ayant un score de correspondance élevé est éloignée de l'image actuelle dans le graphe de pose. La fermeture de la boucle est alors validée par le calcul de la transformation relative entre l'image courante et l'image clé correspondante [8]. Dans le HOOFR-SLAM stéréo, le processus commence par la détection et la description des primitives, suivies de la mise en correspondance stéréo. Ensuite, le processus de mise en correspondance temporelle est lancé. Dans la méthode RGB-D HOOFR-SLAM, nous proposons un extracteur HOOFR modifié basé sur le filtrage des primitives à l'aide des cartes de profondeur fournies par le capteur RGB-D. Cette approche améliore la précision de la localisation en éliminant les primitives dont la profondeur n'est pas fiable, notamment les primitives détectées sur Conclusion and Future Works des véhicules en mouvement, les nuages et celles dont les valeurs de profondeur sont invalides (zéro). De cette façon, seuls les points clés pertinents sont conservés et le nombre de points clés à décrire et à faire correspondre est réduit, ce qui diminue le temps de traitement. Après le filtrage, la description et la mise en correspondance, vient l'étape du calcul de la pose. Dans la version Stereo HOOFR SLAM, la matrice essentielle a été estimée en appliquant le schéma RANSAC avec une erreur de mesure (me) inférieure au pixel afin d'obtenir un modèle optimisé sans avoir recours à des méthodes d'optimisation comme le BA. Nguyen et al. ont trouvé, au cours d'expériences, qu'une erreur de mesure de l'inlier dans le schéma RANSAC inférieure à 0.4 permet une précision de localisation élevée. Cependant, lorsqu'on applique un me=0.4, le temps d'exécution augmente considérablement. Pour résoudre ce problème, Nguyen et al. ont proposé une solution consistant à estimer la matrice essentielle deux fois, la première fois avec me=1 et la seconde fois en utilisant les inliers trouvés précédemment avec un me=0,4. Dans l'algorithme RGB-D HOOFR SLAM, puisque le nombre de points d'intérêt est réduit dans l'étape de détection, nous estimons la matrice essentielle une seule fois pour une petite valeur de me. Dans le pire des cas, avec peu de bons points, RANSAC prendra beaucoup de temps pour trouver la solution. Par conséquent, nous avons changé la méthode RANSAC en PROSAC (PROgressive Sample Consensus). Cette méthode est basée sur un échantillonnage progressif des points en commençant par ceux qui sont les mieux classés en fonction de leur facteur de qualité, ce qui permet d'économiser considérablement le temps de calcul. Dans [172], les auteurs ont démontré que PROSAC était plus de cent fois plus rapide que RANSAC, et dans le pire des cas, ils ont un comportement identique. Nous avons utilisé le test du ratio de Lowe [173] pour trier les correspondances. Nous avons comparé le SLAM RGB-D HOOFR à sa version stéréo. En outre, le RGB-D HOOFR SLAM a été comparé à d'autres algorithmes de pointe en ce qui concerne ses performances et s'est avéré être un bon compromis entre le temps d'exécution et la précision de localisation. Notre algorithme peut fonctionner en temps réel à 27 FPS sur un CPU de PC et à 19 FPS sur un processeur embarqué sans accélérer le traitement sur le GPU.

  [START_REF] Dai Duong Nguyen | Fpga implementation of hoofr bucketing extractor-based real-time embedded slam applications[END_REF] ont proposé une implémentation FPGA de l'extracteur HOOFR tout en conservant la même précision. Cependant, la tâche d'appariement reste la plus longue dans le flux de traitement. La conception d'une architecture accélérée pour ce bloc fonctionnel est obligatoire pour réaliser un traitement à la volée sur un système sur puce. Notre défi consiste à améliorer les performances de l'algorithme sur des architectures à faible consommation afin de garantir le traitement à la volée. Les FPGA sont considérés comme le meilleur choix pour le traitement de flux. Contrairement aux GPU, qui ne fournissent un parallélisme que pour le traitement et l'accélération des données, les FPGA peuvent fournir un parallélisme des données, des tâches et des pipelines, ce qui les rend plus adaptés au traitement par flux:[START_REF] Wu | When fpga-accelerator meets stream data processing in the edge[END_REF][START_REF] Nakamura | An fpga-based low-latency network processing for spark streaming[END_REF] notamment pour les systèmes embarqués. Nous atteignons notre objectif grâce à une adéquation algorithme-architecture appliquée aux architectures CPU-FPGA. En pratique, un algorithme est décomposé en blocs fonctionnels, et chaque bloc est affecté à l'unité de traitement appropriée, ce qui garantit des performances optimales. Dans ce chapitre, nous évaluons les performances du bloc de correspondance sur différentes architectures, puisqu'il s'agit du goulot d'étranglement des performances. Nous concluons en proposant une répartition optimale CPU-FPGA pour le front-end RGB-D HOOFR-SLAM. En partant de l'extracteur HOOFR basé sur le Bucketing:[START_REF] Dai Duong Nguyen | Fpga implementation of hoofr bucketing extractor-based real-time embedded slam applications[END_REF], nous visons à embarquer le front-end du HOOFR SLAM sur FPGA dans le contexte de pousser le traitement aussi près que possible du capteur. À cette fin, nous avons implémenté l'algorithme d'appariement sur le FPGA car il s'agit de la deuxième tâche la plus lourde en termes de calcul. L'implémentation de l'appariement sur GPU :[START_REF] Dai-Duong Nguyen | Hoofr slam system: An embedded vision slam algorithm and its hardware-software mapping-based intelligent vehicles applications[END_REF] a montré des performances remarquables. Cependant, si l'on considère la consommation Conclusion and Future Works d'énergie, les GPU sont très gourmands en énergie, ce qui rend la gestion thermique plus difficile dans les systèmes embarqués, en particulier pour les applications où l'autonomie énergétique est un atout crucial. Bien que les GPU (c'est-à-dire les Jetson AGX Xavier™) commencent à se rapprocher des FPGA en termes de performance par watt, cela ne signifie pas qu'ils constituent la meilleure solution pour toutes les applications. Les FPGA représentent une caractéristique essentielle, qui est la connexion d'E/S any-to-any, permettant la connexion à n'importe quel dispositif, réseau ou stockage sans avoir besoin d'un CPU hôte. Le FPGA est bien adapté au traitement frontal dans le traitement polyvalent, car il peut être directement connecté à des capteurs à haute vitesse et offrir une bande passante très élevée. Dans notre étude, nous avons d'abord évalué l'implémentation GPU du bloc de correspondance sur FPGA puisque l'algorithme a été implémenté en OpenCL: [8] et peut donc être exécuté à la fois sur GPU et FPGA. Lorsque nous avons exécuté l'algorithme en utilisant NDRange sur deux images d'une résolution de 1280 × 720 avec 2000 points clés, nous avons obtenu un temps d'exécution très important de 813.01ms. Ce temps d'exécution s'explique par la dépendance des données représentée par l'attente des résultats des work-items pour sélectionner la correspondance avec la distance minimale. L'impact de la synchronisation n'est pas visible sur GPU, car la fréquence de traitement est élevée et les work-items sur GPU sont lancés simultanément, contrairement à FPGA, où les work-items sont lancés en parallèle de manière pipelinée. De plus, les FPGA sont flexibles en termes d'architecture de programmation et sont capables de fournir des performances pour les opérations qui contiennent des opérations conditionnelles et/ou des branches. Ces différences architecturales ont un impact significatif sur les performances. Pour cette raison, nous avons utilisé une implémentation à élément de travail unique, également appelée noyau de tâche. Dans l'évaluation on a trouvé qu'avec un noyau à tâche unique, nous obtenons un facteur d'accélération de ×96 par rapport au noyau NDRange. Pour atteindre des performances similaires à celles du GPU, nous créons quatre noyaux correspondants car ils ne nécessitent pas beaucoup de ressources matérielles. Avec quatre noyaux correspondants, nous obtenons un gain de vitesse de ×254. L'algorithme de mise en correspondance a été adapté aux paradigmes de programmation des FPGA afin de réaliser un traitement en temps réel adapté à la fréquence d'images de la caméra Intel RealSense. Nous avons Conclusion and Future Works également montré que la complexité de l'algorithme a été préservée pour garantir la même qualité de résultats en logiciel qu'en matériel. Notre conception a été implémentée sur l'architecture FPGA DE5a-Net DDR4 Arria 10. L'implémentation FPGA montre que la conception OpenCL est ×9 à ×14 plus rapide que l'implémentation C++ fonctionnant sur un CPU haute performance. Le débit obtenu est de 30 FPS à une résolution de 1280×720 pixels et de 38 FPS à une résolution de 640×480 pixels, ce qui est suffisant pour effectuer un traitement à la volée. L'architecture proposée, implique l'acquisition des images du capteur sur le CPU, le lancement de l'extraction et de la mise en correspondance des points clés sur le FPGA, et enfin le lancement de l'estimation de la pose sur le CPU. La détection de fermeture de boucle est lancée sur un thread parallèle sur le CPU.

  Dans cette thèse, nous avons adopté une méthodologie considérant la chaîne de traitement d'un système SLAM (du capteur à l'architecture embarquée). Notre étude s'est concentrée sur la partie frontale des algorithmes SLAM. Nous avons commencé par étudier les caractéristiques d'un capteur RGB-D et son impact sur la précision de la localisation.Dans ce contexte, nous avons proposé une méthodologie de couplage capteur-algorithme, qui consiste à identifier les paramètres corrélés aux capteurs ou ayant un impact significatif sur la localisation (i.e. la pose de la caméra). Ensuite, le protocole d'optimisation est appliqué à ces paramètres pour déterminer leurs valeurs optimales. Après la caractérisation du capteur RGB-D, nous avons procédé à l'extension du HOOFR-SLAM vers l'utilisation de capteurs RGB-D pour des applications de véhicules autonomes. Pour assurer la cohérence et la robustesse de l'algorithme dans des environnements dynamiques, nous avons implémenté un mécanisme de filtrage des points clés basé sur des cartes de profondeur. Ce filtre nous permet d'améliorer efficacement la précision de la localisation en ne conservant que les points clés fiables. Ensuite, des optimisations algorithmiques ont été introduites dans l'algorithme. En analysant le flux de données, nous avons remarqué que la quantité de données d'entrée influence fortement le temps de traitement. Plus le nombre de points clés traités est important, plus la complexité augmente dans plusieurs blocs fonctionnels (par exemple, la description, la correspondance, l'estimation Conclusion and Future Works de la pose). Contrairement à d'autres travaux : [165, 155, 167], qui utilisent le filtrage des points clés uniquement pour améliorer la précision de l'algorithme dans des environnements dynamiques, notre implémentation sert deux objectifs. Premièrement, améliorer la précision, et deuxièmement, réduire la quantité de données fournies aux blocs fonctionnels, réduisant ainsi le temps de traitement. Dans ce but, le filtrage des points clés a été effectué directement après la détection des caractéristiques, réduisant ainsi le nombre de points à décrire, à faire correspondre et à utiliser pour l'estimation de la pose. D'autre part, dans l'estimation de la pose, l'algorithme RANSAC traite toutes les correspondances de la même manière et tire des échantillons aléatoires uniformément de l'ensemble complet. Lorsque la proportion d'observations aberrantes est faible, le nombre d'itérations augmente de manière exponentielle. Ce problème a été résolu à l'aide de l'algorithme PROSAC, qui prend en entrée des correspondances ordonnées par qualité et leur donne la priorité lors de l'échantillonnage, en partant du principe que ces correspondances ont une probabilité élevée d'être des valeurs aberrantes, ce qui conduit à une convergence plus rapide. En comparant les performances de RANSAC et de PROSAC, notre algorithme atteint une accélération de ×5 tout en conservant la même précision. Notre système SLAM peut fonctionner à 27 FPS sur un CPU 8-core à 3 GHz et à 19 FPS sur un processeur embarqué 8-core à 2.26GHz sans accélérer le traitement sur leurs GPUs associés. Cependant, pour un traitement à la volée, l'algorithme doit pouvoir fonctionner à la même vitesse que le capteur, voire plus (à partir de 30 FPS). Pour cela, nous avons amélioré les performances de notre algorithme en profitant des architectures à base de FPGA connues pour leur faible consommation énergetique. Une étude a été menée sur l'optimisation du partitionnement des différents blocs fonctionnels sur les unités de calcul. Ce partitionnement prend en compte le flux de données, la dépendance des blocs fonctionnels et les charges de travail. Une architecture FPGA basée sur une implémentation OpenCL pour la mise en correspondance des primitives HOOFR a été conçue. La complexité de l'algorithme d'appariement a été respectée pour garantir les mêmes performances d'appariement dans le logiciel que dans les implémentations matérielles. Ce système de mise en correspondance a été incorporé à l'extracteur HOOFR basé sur le "bucketing" afin d'intégrer 88% du frontal sur FPGA. L'implémentation FPGA montre que la conception OpenCL est jusqu'à 14 fois plus rapide que l'implémentation basée sur le CPU. Le débit obtenu est

  

Table 1 .

 1 1: Relevant properties of the visual SLAM algorithms1.3 Hardware architectures based SLAM applicationsSLAM is intended for robotic and autonomous vehicle applications. These targets require an optimal embedded implementation that respects the real-time constraints, limited memory and CPU resources, and energy consumption. SLAM algorithms are computationally intensive to run on embedded targets, and often the algorithms are deployed on laptop-level devices, as shown in Table1.1. With the growth of powerful embedded heterogeneous computing systems, such as NVIDIA Jetson AGX Xavier, and HERO heterogeneous platform, research work is increasingly interested in the algorithm-architecture

mapping of existing SLAM algorithms. Based on the formalization of the visual SLAM discussed in 1.2.3.1, there are two groups of algorithmsembedding studies in the litera-
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 2 2: Intrinsic parameters of RGB and IR cameras of the D435i camera used in our dataset, including focal length ( f x , f y ) and optical center (c x , c y ).

		IR (Left & Right) RGB
	f x (pixel)	638.14	912.36
	f y (pixel)	638.14	910.26
	c x (pixel)	639.75	648.57
	c y (pixel)	356.51	363.66

Table 2 .

 2 3: Extrinsics of the D435i cameraThe intrinsic parameters are fed to the algorithm and shared between all images. Then, the geometric matching and verification are performed using sequential matching, which is best suited for consecutive frames with sufficient visual overlap. The overlap is set to 20 images, with quadratic overlap and loop detection enabled. The values of the remaining parameters are kept as default. Tables 2.4 and 2.5 summarize all parameters values.

	Camera model	Pinhole
	Shared for all images	Yes
	Custom parameters	RGB: 912.36 px, 910.26 px, 648.57 px, 363.66 px IR: 638.14 px, 638.14 px, 639.75 px
	Max_image_size	3200
	Max_num_features	8192
	First_octave	-
	Num_octaves	4
	Octave_resolution	3
	Peak_threshold	0.00667
	Edge_threshold	10
	Estimate_affine_shape	No
	Max_num_orientations	2
	Upright	No
	Domain_size_pooling	No
	Dsp_min_scale	0.16667
	Dsp_max_scale	3
	Dsp_num_scales	10
	Num_thread	-1
	Use_gpu	Yes
	GPU_index	-1

Table 2 . 4
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	Overlap	20
	Quadratic_overlap	Yes
	Loop_detection	Yes
	Loop_detection_period	10
	Loop_detection_num_images	50
	Loop_detection_num_nearest_neighbors	1
	Loop_detection_num_checks	256
	Loop_detection_num_images_after_verification	0
	Loop_detection_max_num_features	-1
	Vocab_tree_path	32K words (small-scale) 256K words (medium-scale )
	Num_threads	-1
	Use_gpu	Yes
	GPU_index	-1
	Max_ratio	0.8
	Max_distance	0.7
	Cross_check	Yes
	Max_num_matches	32768
	Max_error	4
	Confidence	0.99
	Max_num_trials	10000
	Min_inlier_ratio	0.25
	Min_num_inliers	15
	Multiple_models	No
	Guided_matching	No

: Feature extraction COLMAP parameters Loop closure detection is used through a pre-trained vocabulary tree. The GPU accelerates the matching process. Once the matching step is finished, the sparse reconstruction is launched. Data is loaded from the database into memory during this process, and the

Table 2 . 5
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: Feature matching COLMAP parameters scene is expanded by incrementally registering the images from an initial image pair seed.

Table 2 .

 2 due to the limitations of RGB-D cameras. Recent generations of RGB-D cameras can operate in both indoor and outdoor environments. As part of our thesis, we need to evaluate our algorithm on an RGB-D dataset recorded by a vehicle. We conducted measurement experiments with the instrumented laboratory vehicleFigure 2.5 to record the outdoor dataset and evaluate SLAM performance in outdoor use conditions. The vehicle is equipped with a Realsense Intel D455 camera, a LiDAR, andan RTK-GNSS receiver to record the ground truth. The D455 camera is characterized by its long range of up to 20m provided by the projector, while the depth images provide a more extensive range, making it suitable for outdoor applications. D455 is equipped with two IR cameras, one RGB camera, and an IR projector for active stereo mode. The intrinsic camera parameters resulting from the calibration are presented in the Table 2.6. 6: Intrinsic parameters of RGB and IR cameras of the D455 camera used in our dataset, including focal length ( f x , f y ) and optical center (c x ,c y ).

		IR (Left & Right) RGB
	f x (pixel)	644.49	632.02
	f y (pixel)	644.49	631.28
	c x (pixel)	642.78	641.33
	c y (pixel)	347.77	372.88

The GNSS receiver is an Altus Positioning Systems (APS-3) using Real-Time Kinematic (RTK) correction signals to provide centimeter-level accuracy in positioning. This ground-truth output was collected with a frequency of 25Hz. The environment in which this dataset was recorded was cloudy and wooded. The positioning solution was postprocessed using RTKLIB and only the highly reliable positions with a quality flag equal to 1 or 2 in our dataset were retained.

  Reconfigurable architectures offer great flexibility in the design of systems based on logic circuits. In this category, we find mainly PALs (Programmable Array Logic), CPLDs (Complex Programmable Logic Device), and FPGAs (Field Programmable Gate Array).FPGA is a two-dimensional array of programmable hardware that can be reconfigured. It contains programmable logic blocks, interconnects, configurable memory modules, and DSPs[START_REF] Assi | Design and implementation of fpga-based systems-a review[END_REF], as shown in Figure2.10.

	Logic	Logic	DSP	Memory	Logic	Logic
	Logic	Logic	DSP	Memory	Logic	Logic
	Logic	Logic	DSP	Memory	Logic	Logic
	Logic	Logic	DSP	Memory	Logic	Logic
	Programmable interconnects				
				DDR4		
		8 cores @1.8GHz	PCIe Gen 3x8		
	Figure 2.9: Heterogenous CPU-FPGA used architecture
	2.7 FPGA HW/SW Codesign Approach	
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 3 3 summarizes the results.
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 3 Variation of the MEE as a function of the depth threshold coefficient on the two sequences Digiteo_seq1 (right) and Digiteo_seq3 (left). The curve does not follow a specific trend, making it difficult to choose an optimal value. 4 shows TPR, FPR, and the MEE values for different depth threshold values.
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Table 3 .

 3 4:The values of TPR, FPR, and the MEE for different depth threshold values. The error variation as a function of the depth threshold does not follow a clear trend. However, we note that the coefficients with high TPR provide a reduced error.The results of absolute trajectory error and relative pose error are shown in Table3.5 for the selected optimal values.

		Optim. param. value ORB IR-D (Tr/Rot) ORB IR-D optim (Tr/Rot) Error %
	Digiteo_seq1	128	0.08m / 11.10°0.07m / 11.11°12.5 _
	Digiteo_seq3	65	0.16m / 9.39°0.05m / 9.4°68.75 _

Table 3 . 5
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: IR-D errors in the ORB-SLAM2 after optimization

Table 3

 3 .6.

		IR-Stereo RTAB ORB RTAB ORB(Optim) Passive IR-D	RTAB error % ORB error %
	Digiteo_seq1	Tr (m) 0.14 Rot (°) 29.11 11.08 27.98 0.14 0.1	0.07 11.11	28.57 _	50 _
	Digiteo_seq3	Tr (m) 0.21 Rot (°) 20.23 9.39 19.91 0.23 0.21	0.05 9.4	0	78.26 _

Table 3 .

 3 6: Translational and Rotational Error of ORB-SLAM2 and RTAB-Map SLAM with Passive IR-D and Stereo

Table 3 . 7

 37 

: Translational and Rotational Error of ORB-SLAM2 and RTAB-Map SLAM with Passive and Active RGB-D

Table 4 .

 4 3 compares the essential matrix estimation (EME) execution time and the absolute trajectory error (ATE) of the two approaches, RANSAC and PROSAC, on a sequence of 100 images. By changing from RANSAC to PROSAC, we can see that the speedup is increased five times without losing too much accuracy.

	RANSAC EME (ms) ATE (m) EME (ms) ATE (m) PROSAC	Speedup
	13.61	0.1575	2.54	0.1595	×5.35
	Table 4.3: A comparison of the two methods RANSAC and PROSAC on a sequence of
	100 images.				

Table 4 .

 4 [START_REF] Newcombe | Kinectfusion: Real-time dense surface mapping and tracking[END_REF] represents some measurement error values with their TPR, FPR, and associated error. We can see that the global minimum corresponds perfectly to the optimal value selected in the ROC curve, with the highest TPR. The me values with a zero TPR and FPR indicate the parameter values that failed to meet the quality requirements set by the chosen thresholds.
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Table 4 .

 4 4:The values of TPR, FPR, and the absolute error of the trajectory for different measurement error values. The optimal value is 0.7 with a True Positive Rate of 89% and a False Positive Rate of 60% .
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 4 5: The Root Mean Square Error (RMSE) in meter and Frame rate Per Second (FPS) of the RGB-D HOOFR SLAM compared to Stereo SLAM algorithms 4.4.2 RGB-D HOOFR SLAM vs state-of-the-art RGB-D algorithms

		RGB-D HOOFR	Stereo HOOFR	Stereo ORB	Evolution compared to "Stereo ORB"
		RMSE (m) FPS	RMSE (m)	FPS RMSE (m) FPS RMSE (%)	FPS (%)
	Seq1 (L: 978.57m)	1.47	27.54 Tracking lost	-	2.59	11.62	-43.24	+137.01
	Seq2 (L: 189.81m)	0.93	28.57	12.31	10.05	0.71	11.59	+30.99	+146.51

  Results presented in Table4.7 show the mean execution time decreased by shifting from CPU to CPU-GPU for the PC and the embedded board by about 1.28 speedup factor on the PC and 1.19 speedup factor on the embedded card.

	4.4.3 Evaluation of RGB-D HOOFR-SLAM on an Embedded Archi-
	tecture									
	Following the improvement of the localization accuracy, an evaluation is performed with
	the matching block implemented on GPU [8] on PC and the Nvidia AGX Xavier em-
	bedded card. PC CPU (ms) PC CPU-GPU (ms) PC SpeedUp AGX CPU (ms) AGX CPU-GPU (ms) AGX SpeedUp
	Seq1 (L: 978.57m)	36.31		27.17		1.33	50.82		41.85		1.21
	Seq2 (L: 189.81m)	35.08		28.10		1.24	52.53		44.73		1.17
		RGB-D HOOFR	RGB-D ORB	Error evolution	RGB-D RTAB-Map	Error evolution
		RMSE (m) FPS RMSE (m) FPS RMSE (%) FPS (%) RMSE (m) FPS	RMSE (%) FPS (%)
	Seq1 (L: 978.57m)	1.47	27.54	2.27	17.11	-35.24	+60.96	4.39	13.77	-66.51	+100
	Seq2 (L: 189.81m)	0.93	28.57	1.18	18.02	-21.19	+58.55	3.18	16.41	-70.75	+74.1
	Table 4.6: The Root Mean Square Error (RMSE) in meter and Frame rate Per Second
	(FPS) of the RGB-D HOOFR SLAM compared to state-of-the-art SLAM algorithms

Table 4 .

 4 7: Average execution time of the algorithm in milliseconds on the two sequences on PC and the Nvidia AGX Xavier embedded board.

Table 4 .

 4 8 represents the speedup of the block matching from CPU to GPU.

		PC CPU (ms) PC GPU (ms) PC SpeedUp AGX CPU (ms) AGX GPU (ms) AGX SpeedUp
	Seq1 (L: 978.57m)	9.79	2.73	3.58	7.71	3.01	2.56
	Seq2 (L: 189.81m)	8.48	2.77	3.06	6.17	3.21	1.92

Table 4 .

 4 8: Mean execution time of the matching block in milliseconds on the two sequences on PC and the Nvidia AGX Xavier embedded card.

Table 5 .

 5 2: Comparison of NDRange and single-work-item execution time in milliseconds with different numbers of kernel task duplication.

	NDRange kernel runtime (ms)		813.01	
	Matching task kernel duplication	1	2	3	4
	Matching task runtime (ms)	8.39 5.02 3.99 3.19

  ARCHITECTURE BASED FRONT-END PROCESSING Algorithm 5.1 OpenCL Matching Kernel 1/4 on FPGA //OpenCL Matching Kernel on FPGA declare global arrays: Pn f Dess , Pn f Cels ,Curr Distributions ,Correspondence, Curr desc ; function Kernel: Matching //Iteration on one quarter of the Pnf keypoints For i from 0 to num_ktps/4 do //Get the cell coordinates in the grid (NX,NY) to which the Pnf keypoint belongs.

	NX ←Pn f Cels [i].x;	
	NY ←Pn f Cels [i].y;	
	point_pnf_des ←Get_Keypoint_Descriptor(Pn f Dess [32 * i]);
	//Iteration over the neighbor cells	
	//NUM_SEARCH_X, NUM_SEARCH_Y represent the horizontal and vertical search radius re-
	spectively.	
	For kx from 0 to 2 * NUM_SEARCH_X+1
	For ky from 0 to 2 * NUM_SEARCH_Y+1
	//Compute the neighbor cell coordinates (nx,ny)
	nx ←NX + kx -NUM_SEARCH_X;
	ny ←NY + ky -NUM_SEARCH_Y;
	If (nx,ny) not exceeding Grid boundaries
	//Get the keypoints indexes belonging to the current cell (nx,ny) from Curr Distributions
	(idx_start,idx_end) = Get_from_Img_Distrib(Curr Distributions , nx, ny);
	For j from idx_star to idx_end
	point_curr_des ←Get_Keypoint_Descriptor(Curr desc [32 * j]); //current keypoint de-
	scriptor	
	Correspondence[i]	←Find_the_best_and_the_second_matches(point_pnf_des,
	point_curr_des);	

Table 5 .

 5 3: FPGA resource utilization. ALUTSs Adaptive Look-Up Tables, FFs Flip Flops, RAMs Random Access Memory blocks, DSPs Digital Signal Processing blocks.

		ALUTs	FFs	RAMs	DSPs
	FAST Detection kernel 1	13,155 (2%)	19,048 (1%)	166.2 (6%)	0 (0%)
	FAST Detection kernel 2	13,155 (2%)	19,048 (1%)	166.2 (6%)	0 (0%)
	Hessian Score kernel 1	7,320 (1%)	12,121 (1%)	62 (2%)	6 (0%)
	Hessian Score kernel 2	7,321 (1%)	12,256 (1%)	62 (2%)	6 (0%)
	Filtering kernel	5,901 (1%)	11,557 (1%)	75 (3%)	0 (0%)
	Description kernel	24,397 (3%)	35,413 (2%)	236 (9%)	8.5 (1%)
	Matching kernel 1	13,903 (2%)	19,962 (1%)	190 (7%)	3.5 (0%)
	Matching kernel 2	14,282 (2%)	24,427 (1%)	206 (8%)	3.5 (0%)
	Matching kernel 3	14,312 (2%)	24,419 (1%)	206 (8%)	3.5 (0%)
	Matching kernel 4	14,290 (2%)	24,358 (1%)	206 (8%)	3.5 (0%)
	Kernel Subtotal	128,036 (15%) 202,609 (12%) 1,575 (59%) 34.5 (3%)
	Pipe and channel resources	55 (0%)	558 (0%)	5 (0%)	0 (0%)
	Available	854,400	1,708,800	2,713	1,518

Table 5 . 6 :

 56 Comparison of the matching recall-precision between PC and FPGA
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  tions supported by the Intel RealSense D455 camera. The image is divided into a grid. NX and NY represent the number of horizontal and vertical cells. Each cell return a maximum number of keypoints (with the highest Hessian score) limited to POINTS_PER_CELL. As shown in Table5.7, our design reaches a frequency of 30 FPS at a resolution of 1280×720 pixels, generating and matching 2009 keypoints which is well suited to achieve good localization accuracy, as we have seen in the previous chapter. At 640 × 480 pixels resolu-

		ARCHITECTURE BASED FRONT-END PROCESSING
	Resolution (px) Number of Keypoints NX×NY Runtime (ms) FPS
	480×270	2228	24×14	24.46	40.88
	640×480	2158	24×14	26.21	38.15
	848×480	2111	24×14	27.09	36.91
	1280×720	2009	24×14	33	30.3
	Table 5.7: Timing performance on different resolutions (FAST_threshold = 7,
	POINTS_PER_CELL = 15)				
	tion , our design reaches 38 FPS, which is sufficient to perform on-the-fly processing. The
	HD resolution can be helpful if an object detection task is needed since object detection
	at more considerable distances becomes feasible [124].		

  Conclusion and Future Works fermeture de la boucle et l'association de données, qui font partie des paramètres problématiques qui apparaissent dans des environnements plus dynamiques, tels que ceux que l'on trouve dans les espaces urbains[START_REF] Takleh | A brief survey on slam methods in autonomous vehicle[END_REF]. À cet effet, le processus de conception doit Ce paramètre permet à l'algorithme de classer les primitives proches et lointaines. Ce paramètre est étroitement corrélé à la distribution d'erreur du mode d'acquisition RGB-D. Nous avons évalué la valeur de ce paramètre en fonction de la distribution d'erreur. Nous avons évalué la valeur de ce paramètre sur une plage bien définie. Les différents tests ont été réalisés sur une station de calcul, équipée d'un processeur Intel Xeon W-2265 de 24 coeurs tournant à 3,5 GHz, de 64 Go de RAM et d'une carte graphique NVIDIA Quadro RTX 6000 avec 4608 coeurs CUDA. Nous avons calculé l'erreur de trajectoire euclidienne et le nombre de points suivis sur la carte pour chaque image. Ce protocole permet de classer les conditions d'entrée (nombre de points suivis sur la carte vus par l'image courante) et de sortie (distance euclidienne entre une pose courante et celle de la trajectoire référencée) de l'algorithme afin de qualifier ses perfor-

	prendre en compte plusieurs paramètres en partant des capteurs jusqu'à l'architecture
	embarquée. De plus, l'émergence d'architectures embarquées hétérogènes de faible puis-
	sance offre une grande opportunité d'explorer le potentiel de pousser le traitement plus
	près du capteur et d'assurer un traitement à la volée.
	Couplage des paramètres capteur-algorithme
	yse. Notre protocole d'optimisation paramétrique du couplage capteur-algorithme con-
	siste à évaluer l'algorithme sur différentes séquences avec différents modes d'acquisition.
	Ensuite, le mode d'acquisition présentant l'erreur la plus faible est utilisé pour ajuster
	globalement les paramètres de l'algorithme. Nous nous concentrons sur l'optimisation
	de l'algorithme ORB-SLAM2. ORB-SLAM2 possède trois paramètres principaux liés à
	l'entrée de l'algorithme, à savoir : le nombre des primitives, le seuil du détecteur FAST
	et le seuil de profondeur. Le nombre des primitives repose sur le détecteur FAST, qui

Le SLAM est une fonctionnalité de perception cruciale dans une variété d'applications, notamment les robots et les véhicules autonomes. Les caméras RGB-D font partie des capteurs généralement utilisés par les systèmes SLAM récents. De nombreux algorithmes SLAM RGB-D ont été explorés et évalués à l'aide d'ensembles de données accessibles au public sans tenir compte des spécifications du capteur ou des modes de capture d'image qui pourraient augmenter ou réduire la précision de la localisation. Dans ce chapitre, nous abordons la localisation en intérieur en tenant compte des spécifications des capteurs. Dans ce contexte, nous soulignons l'impact des modalités d'acquisition des capteurs sur la précision de la localisation et nous proposons une stratégie d'optimisation paramétrique pour améliorer la précision de la localisation dans un environnement donné. Ce protocole est utilisé pour améliorer un paramètre de l'algorithme SLAM lié à la profondeur. Notre propre jeu de données d'intérieur disponible publiquement a servi de base à cette analdépend de l'exposition [149]. Ces deux paramètres ne sont pas liés à la caméra de profondeur. Nous avons identifié un paramètre physiquement corrélé au capteur : le seuil de Conclusion and Future Works profondeur [148]. mances. Inspiré de [150, 151], nous avons proposé une optimisation paramétrique basée sur la matrice de confusion suivante. Nous avons évalué les algorithmes sur diverses trajectoires basées sur les différents modes d'acquisition de la caméra. La comparaison entre le SLAM IR-D passif et le SLAM RGB-D passif a permis de déduire que le paramètre de seuil de profondeur pour ORB-SLAM2 ne suit pas une tendance spécifique. Une méthode basée sur la courbe ROC a été établie pour trouver une valeur de seuil de profondeur optimale pour le capteur IR. L'utilisation d'une caméra IR par rapport à la caméra RGB a permis de réduire l'erreur ATE de 23,08% pour RTAB-Map dans Digi-teo_seq1 et de 82,14% pour ORB-SLAM2 optimisé dans Digiteo_seq3. L'utilisation de la caméra IR du D435 offre un avantage significatif car elle possède un champ de vision plus large pour le suivi des primitives dans les angles morts, et le fait que les cartes de profondeur soient également alignées avec la caméra IR gauche signifie qu'aucun traite-
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AAA CHAPTER 3. SENSOR-ALGORITHM PARAMETERS COUPLING Finally, the monocular keypoints are defined by two coordinates x m = (u L , v L ) in the image on the left. These are the points for which a stereo match could not be found or which have an invalid depth value in the RGB-D case. These points are only triangulated from multiple views and used only to contribute to the estimation of rotation and translation [START_REF] Mur | Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras[END_REF].

RTAB-Map

RTAB-Map is a graph-based algorithm, fed with RGB-D or stereo input, odometry and extrinsics defining the position of the sensor in relation to the base of the robot. The inputs are then synchronized, and the Short-Term Memory (STM) creates a node that stores the odometry pose, raw sensor data. RTAB-Map has a memory management approach that limits the size of the graph in order to operate in large scale environments. RTAB-Map's memory consists of Working Memory (WM) and Long-Term Memory (LTM). When a node is transferred to LTM, it is no longer available for modules in WM. When RTAB-Map's update time exceeds the fixed time threshold, some nodes in WM are transferred to LTM to limit the size of WM and reduce the update time. The nodes that remain in WM are determined by a weighting mechanism to identify which locations are more reliable than the others. The outputs provided are Map Data which includes the latest added nodes with sensor data and graph, Map Graph, Corrected Odometry, 3D occupancy grid, Dense Point Cloud and 2D occupancy Grid. Figure 3.4 summarizes the main blocks of RTAB-Map [START_REF] Labbe | Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation[END_REF].

Feature filtering

To achieve more precise localization, several researchers are concentrating on developing solutions to the problems presented by visual SLAM in dynamic environments. M. Kaneko et al. [155] proposed a method that is based on deep learning semantic segmentation (DeepLab v2 [START_REF] Chen | Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs[END_REF]) to generate masks that filter out the detected features on mobile objects and the sky. This method solves the problem that when dynamic objects occupy a large part of the image, the ratio of outliers is dominant with respect to the features belonging to the carrier motion, which makes the RANSAC method inefficient. However, semantic segmentation is time-consuming and prevents the system from operating in real-time. J. Lee et al. [START_REF] Lee | Improved realtime monocular slam using semantic segmentation on selective frames[END_REF] incorporated ORB-SLAM2 with semantic segmentation based on deep learning. Segmentation is applied to downsampled keyframes in parallel with the mapping thread to overcome the real-time execution problem. Another RGB-D SLAM algorithm by H.Wei et al. [START_REF] Wei | Gmsk-slam: a new rgb-d slam method with dynamic areas detection towards dynamic environments[END_REF] uses the GMS (Grid-based Motion Statistics) feature point matching method with the K-means clustering algorithm to identify dynamic areas in the images and preserve the static information of dynamic environments. So the algorithm increases the number of reliable feature points while keeping the environment features. The algorithm was evaluated on the public indoor dataset [START_REF] Sturm | A benchmark for the evaluation of rgb-d slam systems[END_REF] and showed improved performance compared to ORB-SLAM2. The DS-SLAM algorithm introduced by C. Yu et al. [START_REF] Yu | Dsslam: A semantic visual slam towards dynamic environments[END_REF] represents an implementation of semantic segmentation using Seg-Net [START_REF] Badrinarayanan | Segnet: A deep convolutional encoder-decoder architecture for image segmentation[END_REF] combined with a motion consistency checking method to reject the features on moving objects. The algorithm showed significant improvement when compared to ORB-SLAM2 on the TUM RGB-D dataset [START_REF] Sturm | A benchmark for the evaluation of rgb-d slam systems[END_REF]. Also, the segmentation thread is executed with a frame rate of 26 FPS, and the whole algorithm is 16 FPS. W. Xie et al. [START_REF] Xie | Moving object segmentation and detection for robust rgbd-slam in dynamic environments[END_REF] used MaskRCNN to segment active moving objects (humans) and the mask inpainting method to repair the incomplete mask. They used motion detection based on Lucas-Kanade optical flow method for passive moving objects such as human-pushed chairs. This method includes motion and stillness recognition modules, making motion detection under a moving camera more reliable. The algorithm was evaluated in an indoor environment, and the process of semantic segmentation and mask inpainting is a cumbersome task for real-time embedded systems. Y. Liu et al. [START_REF] Liu | Dynamic rgb-d slam based on static probability and observation number[END_REF] used dynamic feature detection

PROSAC

After the filtering, description, and matching, comes the stage of the pose calculation. In the Stereo HOOFR SLAM version, the essential matrix was estimated by applying the RANSAC scheme with a sub-pixel measurement error (me) to have an optimized model without relying on optimization methods like the BA. Nguyen et al. found through experiments that a measurement error of inlier in the RANSAC scheme less than 0.4 allows a high localization accuracy. However, when applying a me= 0.4, the execution time dramatically increases. To solve this problem, Nguyen et al. proposed a solution to estimate the essential matrix twice, the first time with me= 1 and the second time using the inliers found previously with a me= 0.4. In the RGB-D HOOFR SLAM algorithm, since the number of interest points is reduced in the detection step, we estimate the essential matrix only once for a small value of me. In the worst cases, with few good points, RANSAC will take a long time to find the solution. Therefore, we have changed the RANSAC method to PROgressive Sample Consensus (PROSAC) as shown in the Algorithm 4.2.

This method is based on a progressive sampling of the points starting with the top-ranked ones based on their quality factor, significantly saving computational time. In [START_REF] Chum | Matching with prosac -progressive sample consensus[END_REF], the authors demonstrated that PROSAC was more than a hundred times faster than RANSAC, and in the worst case, they have identical behavior. We used Lowe's ratio test [START_REF] David | Distinctive image features from scale-invariant keypoints[END_REF] to sort the matches. Lowe's ratio is computed from two distances, the best match distance, and the second best match distance. The best match is the one with the smallest distance, while the second best match is considered random noise. On this basis, if the good match cannot be distinguished from the noise at that moment, this good match must be rejected.

So, the matches are ranked on this criterion. The closer the ratio is to 1, the lower the quality of this match. Next, the measurement error parameter was optimized using the protocol proposed in the chapter 3. The algorithm was evaluated on two sequences recorded with an instrumented laboratory vehicle. These datasets are the first RGB-D outdoor vehicle application datasets to our knowledge.

We compared the RGB-D HOOFR SLAM to its stereo version. Besides, the RGB-D HOOFR SLAM has been compared to other state-of-the-art algorithms regarding its performance and proved to be a good trade-off of execution time and localization accuracy.

Our algorithm can operate in real-time at 27 FPS on a PC CPU and 19 FPS on an embedded processor without accelerating the processing on the GPU. The next chapter 5 will involve architecture-algorithm adequacy that will allow real-time processing on-the-fly of the RGB-D HOOFR SLAM algorithm on an embedded architecture. ARCHITECTURE BASED FRONT-END PROCESSING pipeline and quantize the pixels to 6 bits per pixel with a 25% reduction of Flip-Flop resources and a drop of 3.9% in accuracy. Compared to eSLAM, the loss of accuracy is much lower. The algorithm was implemented on a Xilinx ZU3EG FPGA-SoC on-board with a quad-core ARM and evaluated on the TUM dataset [START_REF] Sturm | A benchmark for the evaluation of rgb-d slam systems[END_REF]. The algorithm achieved 62 FPS with an energy consumption of 4.6W. Nguyen et al. [START_REF] Dai Duong Nguyen | Fpga implementation of hoofr bucketing extractor-based real-time embedded slam applications[END_REF] proposed a HOOFR feature extraction architecture with a maintained complexity of the HOOFR algorithm to ensure a similar detection result on hardware as on software. The algorithm uses bucketing to ensure the homogeneous distribution of keypoints intended for SLAM applications. The algorithm was implemented on Arria 10 SoC-FPGA and achieved a frame rate of 26 FPS at 1280 × 720 pixels.

Following Nguyen et al.'s work [START_REF] Dai Duong Nguyen | Fpga implementation of hoofr bucketing extractor-based real-time embedded slam applications[END_REF], we propose an architecture combining the HOOFR extractor and the matching blocks since the high computational intensity of feature extraction and matching makes running the algorithm on low-power embedded platforms very challenging. The HOOFR-SLAM algorithm has been decomposed into blocks and evaluated on different architectures to achieve an optimized partitionning (to assign each block to the appropriate processing unit), considering data transfer constraints between processing units. Our ultimate goal is to ensure processing at a adequate rate for autonomous vehicle applications (30 FPS) at a high-definition resolution.

HOOFR-SLAM Front-end Overview

The HOOFR-SLAM algorithm is composed of two threads running in parallel: Mapping 

Bucketing-based HOOFR extractor

Nguyen et al. [START_REF] Dai Duong Nguyen | Fpga implementation of hoofr bucketing extractor-based real-time embedded slam applications[END_REF] proposed the implementation of a bucketing-based HOOFR extractor on FPGA. The bucketing technique divides the image into a grid, as shown in Figure 5.2.

The number of cells in the grid depends on the image's resolution. For each cell, keypoints are detected by the FAST detector. Then, the Hessian score is calculated for each point, keeping only the points with the highest score. After filtering the points, the description of each point is computed. The bucketing technique has the benefit of ensuring a homogeneous distribution of keypoints over the entire image, which improves the localization accuracy of the SLAM [START_REF] Mur | Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras[END_REF][START_REF] Pire | Stereo parallel tracking and mapping for robot localization[END_REF] 

Features Matching

In [START_REF] Dai-Duong Nguyen | Hoofr slam system: An embedded vision slam algorithm and its hardware-software mapping-based intelligent vehicles applications[END_REF], the matching block was implemented to run on GPU. The algorithm matches the PNF (Previous Neighbor Frame) 's keypoints to the current frame. In the PNF, the cell index and 256-bit description are required for each keypoint. Four matrices are transferred to GPU global memory: Pn f Dess , Pn f Cels , Cur Dess and Curr Distributions .

The Pn f Dess is the description of keypoints in previous neighbor frames, and is organized as an unsigned char matrix with a dimension of (pn f np ×32), where pn f np is the total number of keypoints in PNFs. The Pn f Cels is a (pn f np ×1) matrix, where each row represents the cell number where each keypoint is located. For the current frame, Cur Dess is a current description matrix which is created same as Pn f Dess with a dimension of ARCHITECTURE BASED FRONT-END PROCESSING (cur np ×32), where the cur np is the total number of keypoints in the current frame. The keypoints of the current frame are organized by the order of image cell. To keep track of the current keypoints located in each cell, a structure denoted Points_Distribution is used.

This structure is composed of two elements: the first element re f is the position where the first keypoint of the cell is located in the whole set, the second element nb is the number of keypoints of the cell. Curr Distributions is a matrix with the dimension of (N CELLS × 2)

for the N cells built using Points_Distribution structure.

For each keypoint in the PNFs, the correspondence is searched in the current frame at the same cell and neighbor cells, as shown in Figure 5.4. This process is so fast since each cell contains a small number of keypoints suitable for handling by one work item. The GPU uses 9 work items in a work group to find the matches in 9 neighbor cells of the current frame. The 9 results are stored in the local memory and are synchronized by the barrier function. After synchronizing, the final matching is extracted by one of the nine work items. Then, the match is validated by computing the Lowe's ratio [START_REF] David | Distinctive image features from scale-invariant keypoints[END_REF]. ARCHITECTURE BASED FRONT-END PROCESSING 
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(cel 1,1 , des 1 ) cel 1,1 (ref (cel q,r , des 3N/4 ) ARCHITECTURE BASED FRONT-END PROCESSING Where t is execution time, f is the frequency of the architecture and N is the number of features. We ran the matching block on the PC CPU, and on the DE5a-Net DDR4 Arria 10 FPGA. Our system is evaluated on images taken by an Intel RealSense D455 camera at a resolution of 1280 × 720. 

Matching block accuracy analysis

In order to ensure that the accuracy of matching is maintained, we fix the FAST detection threshold at 7 and the hamming distance threshold at 20 and we compute the recall (number of correct matches/number of correspondences) and the 1-precision (number of false matches/number of matches) [START_REF] Dai-Duong Nguyen | Hoofr: An enhanced bio-inspired feature extractor[END_REF][START_REF] Alahi | Freak: Fast retina keypoint[END_REF][START_REF] Mikolajczyk | A performance evaluation of local descriptors[END_REF]. Both quantities are compared in software and hardware implementation. The results are summarized in the Table 5.6 while the Figure 5.7 shows the matching result on FPGA with images in a resolution of 640×480 pixels. These results show that the matching result on hardware is slightly similar to that on software.