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Abstract

Recent research at the SATIE laboratory has developed a 2D visual SLAM system,

HOOFR-SLAM, which has competitive performance in computation time and localiza-

tion outcomes compared to the state-of-the-art. The method has been evaluated and vali-

dated using well-known publicly accessible datasets (KITTI, NewCollege, Malaga, MRT,

and St. Lucia).

In the realm of embedded vision systems, innovative 3D vision sensors with color and

depth images (stereovision, RGB-D cameras, and LiDAR camera systems) have recently

gained popularity. Robots and autonomous vehicles benefit from new 3D perception

methods thanks to these sensors. We have investigated the various processing stages of

the system, from the sensor to the embedded architecture, to make contributions at the

sensor-algorithm coupling and computing architecture levels.

Several RGB-D SLAM algorithms have been studied and evaluated using publicly avail-

able datasets without considering sensor specifications or image acquisition modalities

that could improve or degrade localization accuracy. This study began by conducting a

thorough experimental analysis of the impact of sensor acquisition modalities on local-

ization accuracy. We produced an online indoor Visual Simultaneous Localization And

Mapping (V-SLAM) dataset with multiple acquisition modalities to determine their im-

pact on the accuracy of the Visual SLAM algorithm. The dataset consists of sequences

recorded using various modalities, such as RGB, IR, and depth images in passive and

active stereo modes. For comparison, each sequence was coupled with a Structure from

Motion (SfM), and Multi-View Stereo (MVS) based reference trajectory. The datasets

have a lot of different areas, some of which have low brightness, change in brightness,

are wide, narrow, or have a different texture. Most known SLAM algorithms have been
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selected and evaluated on these datasets. The results showed that the sensor’s parame-

ters, especially those related to the field of view, depth threshold, and IR projector, must

be tightly coupled in an RGBD-based SLAM system design for accurate localization.

Although various algorithms are available for SLAM RGB-D, most are designed for in-

door applications and have not been assessed or adapted to outdoor vehicle applications.

The second stage in the design of our RGB-D SLAM system is based on the research of

sensor-algorithm coupling.

We introduced RGB-D HOOFR-SLAM: an RGB-D SLAM method for autonomous vehi-

cle localization based on the HOOFR-SLAM stereo algorithm. This version addresses the

most prevalent camera issues in outdoor contexts: environments with an image-dominant

overcast sky and the presence of dynamic objects. We used a depth-based filtering method

to identify outlier points based on their depth value. The method is robust against outliers

and also computationally inexpensive. Improvements have been made to the processor-

based SLAM kernel’s algorithms by replacing the RANSAC method used for essential

matrix estimation with PROSAC. We assessed the algorithm using a self-collected RGB-

D dataset gathered by the SATIE laboratory instrumented vehicle. We compared the mea-

surement results to those of the most advanced algorithms by assessing translational error

and average processing time. The results revealed a significant reduction in localization

errors and a significant gain in processing speed compared to the state-of-the-art stereo

and RGB-D algorithms.

Finally, to move the processing as near as possible to the sensor on an embedded device

and to fulfill the real-time constraints, we investigated the algorithmic complexity of the

front-end task of the HOOFR SLAM and the existing hardware architectures dedicated

to embedded systems. We used an approach based on examining the algorithm’s com-

plexity, workloads, and functional blocs partitioning. Each block’s processing time is

evaluated according to the architecture’s constraints. We proposed the implementation of

the HOOFR SLAM front-end on a CPU-FPGA architecture, including feature extraction

and matching functional blocks. A high-level synthesis (HLS) approach employing the

OpenCL paradigm has been used to design a new system architecture. The performance of

the FPGA-based architecture was compared to a high-performance CPU. This innovative
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architecture delivers superior performance and a trade-off between power consumption

and processing time compared to existing systems.
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Résumé

Les travaux de recherche récents du laboratoire SATIE ont permis de développer un sys-

tème SLAM visuel 2D, appelé HOOFR-SLAM, qui présente des performances compéti-

tives en termes de temps de calcul et de résultats de localisation par rapport à l’état de

l’art. La méthode a été évaluée et validée à l’aide de jeux de données publics bien connus

(KITTI, NewCollege, Malaga, MRT et St. Lucia).

Dans le domaine des systèmes de vision embarqués, les capteurs de vision 3D innovants,

qui fournissent des images en couleur et en profondeur (stéréovision, caméras RGB-D et

systèmes de caméras LiDAR), sont devenus de plus en plus répandus ces dernières an-

nées. Grâce à ces capteurs, les robots et les véhicules autonomes peuvent bénéficier de

nouvelles méthodes de perception 3D. Nous avons étudié les différentes étapes de traite-

ment du système, du capteur à l’architecture embarquée, afin d’apporter des contributions

au niveau du couplage capteur-algorithme et de l’architecture de calcul.

Plusieurs algorithmes SLAM RGB-D ont été étudiés et évalués à l’aide de jeux de données

disponibles au public sans tenir compte des spécifications du capteur ou des modalités

d’acquisition des images qui pourraient améliorer ou dégrader la précision de la localisa-

tion. Cette étude a commencé par une analyse expérimentale approfondie de l’impact des

modalités d’acquisition des capteurs sur la précision de la localisation. Nous avons réalisé

un jeu de données, qui est disponible en ligne, dédié à la localisation et à la cartographie

visuelles simultanées (V-SLAM) en indoor avec plusieurs modalités d’acquisition afin de

déterminer leur impact sur la précision de l’algorithme SLAM visuel. Le jeu de don-

nées se compose de séquences enregistrées à l’aide de diverses modalités, telles que des

images RGB, IR et de profondeur en modes stéréo passif et actif. À des fins de compara-

ison, chaque séquence a été couplée à une trajectoire de référence basée sur la méthode
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d’estimation de la structure à partir du mouvement ( Structure from Motion - SfM ) et la

stéréo multi-vues ( Multi-View Stereo - MVS ). Les ensembles de données comportent

de nombreuses zones différentes, dont certaines ont une faible luminosité, varient en lu-

minosité, sont larges, étroites ou présentent une texture variée. Les algorithmes SLAM

les plus connus ont été sélectionnés et évalués sur ces jeux de données. Les résultats ont

montré que les paramètres du capteur, en particulier ceux liés au champ de vision, au

seuil de profondeur et au projecteur IR, doivent être fortement couplés dans la conception

d’un système SLAM basé sur RGB-D pour une localisation précise. Bien que plusieurs

algorithmes soient disponibles pour le SLAM RGB-D, la plupart sont conçus pour des

applications en environnements internes (indoor) et n’ont pas été évalués ou adaptés aux

applications de véhicules (outdoor). La deuxième étape de la conception de notre système

SLAM RGB-D est basée sur cette étude de couplage capteur-algorithme.

Nous introduisons RGB-D HOOFR-SLAM : une méthode SLAM RGB-D pour la lo-

calisation de véhicules autonomes basée sur l’algorithme stéréo HOOFR-SLAM. Cette

version aborde les problèmes de caméra les plus courants dans les contextes extérieurs :

environnements avec un ciel couvert dominant l’image et présence d’objets dynamiques.

Nous avons utilisé une méthode de filtrage basée sur la profondeur pour identifier les

points aberrants en fonction de leur valeur de profondeur. Cette méthode est robuste

contre les points aberrants et peu coûteuse en termes de calcul. Des améliorations ont été

apportées à l’algorithme du calcul de la pose, en remplaçant la méthode RANSAC utilisée

pour l’estimation de la matrice essentielle par PROSAC. Nous avons évalué l’algorithme

en utilisant un ensemble de données RGB-D collectées par le véhicule instrumenté du

laboratoire SATIE. Nous avons comparé les résultats des mesures à ceux des algorithmes

les plus avancés en évaluant l’erreur de translation et le temps de traitement moyen. Les

résultats ont révélé une réduction significative des erreurs de localisation et un gain im-

portant de la vitesse de traitement par rapport aux algorithmes stéréo et RGB-D les plus

avancés.

Enfin, pour pousser le traitement au plus près du capteur sur un dispositif embarqué et afin

de respecter les contraintes de temps réel, nous avons étudié la complexité algorithmique

de la partie front-end du HOOFR-SLAM et les architectures matérielles existantes dédiées
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aux systèmes embarqués. Nous avons utilisé une approche basée sur l’examen de la com-

plexité de l’algorithme, des charges (Workloads) et du partitionnement des blocs fonc-

tionnels. Le temps de traitement de chaque bloc est évalué en fonction des contraintes de

l’architecture. Nous avons proposé une implémentation du front-end du HOOFR-SLAM

sur une architecture CPU-FPGA, y compris les blocs fonctionnels de l’extraction et la

mise en correspondance des primitives. Une approche de synthèse de haut niveau (HLS)

employant le paradigme OpenCL a été utilisée pour concevoir une nouvelle architecture.

Les performances de l’architecture basée sur FPGA ont été comparées à celles d’un CPU

de haute performance. Cette architecture innovante offre des performances supérieures et

un compromis entre la consommation d’énergie et le temps de traitement par rapport aux

systèmes existants.
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Introduction

Navigation is a fundamental functionality of autonomous robots. The autonomous nav-

igation of a robot answers two fundamental questions: Where am I, and what does the

surrounding environment look like? The answer to these two questions has been intro-

duced by a method known as SLAM (Simultaneous Localization And Mapping). It allows

a mobile robot to simultaneously identify its surrounding environment and localize itself.

Simultaneous localization and mapping (SLAM) have been considered a pillar of gen-

uinely autonomous robots and, in this regard, is an essential task of autonomous vehicles.

With the development of sensors, several SLAM algorithms have been developed to solve

the mapping and localization problems. The earliest SLAM algorithms were mainly

based on laser sensors capable of providing accurate information on the depth of ob-

jects in the scene [13, 14]. Then, the monocular vision was introduced to substitute laser

sensors [15, 16, 17]. Therefore, much research has been conducted to develop mathemat-

ical algorithms for Visual SLAM that provide the 3D reconstruction of the scene using

a simple camera. In the field of embedded vision systems, innovative 3D vision sen-

sors that provide color and depth images (Stereovision, RGB-D cameras, and LiDAR

camera systems) have recently gained popularity, paving the way for new 3D perception

methods [18, 19, 20] for robots and autonomous vehicles.

In earlier days, the use of RGB-D cameras was limited to gaming and entertainment [21].

As this type of sensor has evolved, RGB-D cameras are increasingly used in robotics and

autonomous vehicles. RGB-D cameras provide an RGB image and the associated depth

map, making it possible to solve the problem of scale drift with less complexity and to

create a dense 3D environment representation. However, the use of RGB-D sensors is still

limited to indoor environments due to some limitations (i.e., Infrared (IR) distortion with
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ambient IR interference). With the development of new advanced RGB-D cameras (Intel-

RealSense), the field of application has also been extended to outdoor environments [22].

In the state-of-the-art, we find that most SLAM algorithms are often evaluated on high-

performance computers due to their complexity to ensure real-time processing and to

guarantee the consistency of localization and mapping results. The widespread use of

SLAM algorithms on robots and autonomous vehicles requires our attention to consider

three axes of performance: processing time, consistency, and energy efficiency.

Nowadays, there are various embedded computers with specificities to be used efficiently

in the context of SLAM to achieve computational optimizations and efficient embedded

SLAM systems. These optimizations can be achieved using multicore processors and

massively parallel architectures such as graphical or programmable FPGA architectures.

Nevertheless, the implementation of these algorithms is strongly driven by the nature of

the algorithm and the target architecture. As a result, algorithmic and hardware constraints

must be considered to define adequate algorithm/architecture mapping.

The latest trend is pushing processing closer to the sensor. FPGAs constitute the perfect

architecture for designing smart sensors by providing low latency suitable for real-time

applications, such as video streaming, as they supply data directly into the FPGA without

needing the CPU. Several studies have been conducted to design smart sensors to perform

computer vision tasks [23, 24, 25].

Motivation

The field of autonomous vehicles is currently a trend in many research works. Several

approaches have been adopted to solve the SLAM problem for autonomous vehicles. The

Global Navigation Satellite System (GNSS) is a commonly used technology for localiza-

tion. Nevertheless, this system has been considered limited due to its signal degradation

in dense urban areas and scenarios with shadow effects. The Advanced Driver Assistance

System (ADAS) was an alternative method that was evaluated, which was intended to

assist vehicle localization. However, the availability of all road information, such as lane

markings and road edges, is not ensured on all roads, making this method ineffective. On
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the other hand, 4G/5G cellular systems, Ultra Wide Band (UWB), Wireless Local Area

Network (WLAN), Wireless Sensor Network (WSN), and Bluetooth remain limited in

terms of cost, accuracy, security, complexity, and scalability. As a result, vision-based

SLAM methodologies, called visual SLAM , have become the mainstream of current re-

search.

Visual SLAM algorithms need to be more robust to cope with the complex and dynamic

parameters of the urban environment. Unlike mobile robots on which most SLAM meth-

ods developed have been evaluated, autonomous vehicles have more challenging param-

eters to consider if autonomous driving is desired. These challenges include the environ-

ment’s size, loop closure, and data association, which are among the problematic parame-

ters that appear in more dynamic environments, such as those found in urban spaces [26].

For this purpose, the design process needs to consider several parameters starting from

the sensors to the embedded architecture. Moreover, the emergence of low-power hetero-

geneous embedded architectures provides a great opportunity to explore the potential of

pushing the processing closer to the sensor and ensuring on-the-fly processing.

Objectives and Contribution

This thesis aims to design an RGB-D SLAM system for autonomous vehicle applications.

In this context, several approaches have been proposed by the research community. We

build on the HOOFR-SLAM algorithm and extend its use to RGB-D sensors to improve

its performance in terms of localization accuracy and processing time. The choice of

HOOFR-SLAM is motivated by its accuracy evaluated on numerous datasets and by its

low complexity. As our system is devoted to autonomous vehicles, several factors are

considered in the design, including the sensor specifications, the environmental dynamics,

and the processing rate. This thesis presents four contributions:

• In the first contribution, we propose a methodology of sensor-algorithm coupling,

performed on one of the most well-known state-of-the-art algorithm ORB-SLAM2,

based on our indoor dataset. This methodology involves exploring and evaluating
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different acquisition modalities, identifying the parameters correlated to the sen-

sors, and applying an optimization protocol.

• The second contribution aims to extend the HOOFR-SLAM to RGB-D sensors in

outdoor environments. We address common problems cameras face in outdoor en-

vironments, such as scenes with a dominant sky and dynamic objects. We propose

a method of keypoint filtering based on the depth map and optimize the pose com-

puting algorithm.

• To meet the two objectives mentioned above, we have realized several datasets in

indoor and outdoor environments to evaluate the different SLAM methods and the

optimization protocol.

• The fourth contribution is an optimized partionning of the HOOFR-SLAM front-

end (including HOOFR extractor and features matching block) on a heteregeneous

architecture (CPU-FPGA), to achieve on-the-fly processing and meet real-time con-

straint.

Manuscript Organization

The manuscript is organized as follows:

• Chapter 1 : In this chapter, we give an overview of SLAM systems. We outline

the various sensors used in the SLAM. We discuss the importance of sensor char-

acterization to achieve an optimal SLAM design. Next, we introduce visual SLAM

systems in detail and the various architectures used to implement them.

• Chapter 2 : This chapter presents the methodology adopted in this thesis, begin-

ning with the choice of the sensor, then the selection of algorithms, the indoor and

outdoor data acquisition method, and finally, the choice of the architecture and the

High-Level Synthesis approach used for the hardware design.

• Chapter 3 : This chapter presents the sensor-algorithm coupling method applied to a

state-of-the-art algorithm. The algorithm is evaluated on our dataset. The impact of
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the different acquisition modalities on the quality of trajectory and the importance

of sensor-algorithm coupling are discussed.

• Chapter 4 : This chapter is dedicated to the extension of the HOOFR-SLAM to use

RGB-D sensors. We propose an approach based on the depth map to filter the key-

points detected on dynamic objects. For faster processing, we suggest optimization

of the pose estimation block. Finally, we evaluate the algorithm on our outdoor

dataset using a PC and an embedded architecture.

• Chapter 5 : This chapter presents an implementation based on the bucketing-based

HOOFR extractor on FPGA, with which we incorporate a matching block while

ensuring real-time processing at the rate of the sensor.

Finally, we summarize the work done in this thesis and give our research perspectives.
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Chapter 1

SLAM Systems

1.1 Introduction

Over the last few years, researchers have devoted their efforts to a concept used by au-

tonomous robots and vehicles called Simultaneous Localization And Mapping, or SLAM.

SLAM accomplishes its goal by generating a map and estimating the robot’s position in an

unknown environment. Regarding the design of SLAM systems, one of the most critical

and complex challenges is to make the most of the onboard sensors’ ability to accurately

interpret their surroundings while respecting real-time and hardware resource constraints.

Due to the sensor’s low cost, compact size, and ease of usage, the camera-based SLAM

algorithm is the most extensively utilized. State-of-the-art describes various techniques

and strategies for implementing visual-based SLAM systems. This chapter examines the

most widely employed sensors and the underlying ideas behind SLAM algorithms. Next,

we will dive into the most commonly used visual-based SLAM techniques (monocular,

stereo, RGB-D), providing an overview of the fundamental algorithms and highlighting

the significant methodology benefits and drawbacks. Furthermore, we talk about the dif-

ferent hardware architectures used, how the functional blocks of these algorithms could

be split up on these architectures, and how well they perform. Lastly, we discuss various

datasets used to evaluate the visual SLAM algorithm.
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1.2 SLAM Systems

A SLAM system aims at estimating the state of a robot equipped with onboard sensors

and reconstructing a map of an unknown environment simultaneously. In general, the

state of a robot is described by its pose (position and orientation). Other quantities, such

as speed, acceleration, calibration parameters, and sensor biases, can be included. On the

other hand, the map is a model of the robot’s operating environment describing interesting

aspects such as the positions of landmarks and obstacles. The map is used mainly for path

planning and localization. Furthermore, the map allows for correcting the localization

error when revisiting known places, also known as loop closure.

For many years, SLAM has been the topic of technical research. SLAM is employed

extensively for practical applications in many fields, thanks to significant advances

in computing speed and the availability of low-cost sensors. Unmanned aerial vehi-

cles (UAVs) [27, 28, 29], robots for indoor service, Virtual/Augmented reality systems

(VR/AR) [16, 30], and autonomous vehicles [31, 32, 20] are just a few of the applications

for this field of research that have gotten a lot of interest.

SLAM’s history started with filter-based solutions. This era is known as the classical age

(1986-2004). In this period, the SLAM problem was formulated in the 1980s [33, 34, 35],

and probabilistic formulations were introduced, including approaches based on Extended

Kalman Filters (EKF), and particle filters [36, 15]. Recently, modern SLAM systems

have adopted an optimization-oriented approach. This approach led to better localization

accuracy and lower memory utilization compared to filtering-based methods [37].

In the state-of-the-art, a SLAM system is generally decomposed into two blocks as shown

by Figure 1.1: the front-end block, which handles the sensors’ signals, and the back-end

block, which is sensor-agnostic and in charge of optimizing the pose and the map.
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Sensor data
Map & Localization

Sensor Processing

Front-end

Map & Pose 
Optimization

Back-end

Figure 1.1: General structure of the SLAM system.

With the emergence of autonomous vehicles, simultaneous localization and mapping have

garnered more attention. The rivalry for the most accurate system that fulfills real-time

constraints has risen, especially in light of the added complexities of high dynamics and

the large-scale outdoor environment. Several SLAM systems have been developed with

different approaches and different hardware. Hereafter state-of-the-art methodologies are

categorized following by sensor type, front-end processing type, and back-end processing

type as in [37, 38].

1.2.1 Sensors

Several sensor technologies are integrated in SLAM systems, alone or in a multi-sensor

configuration. Such sensors may contribute in two perception modalities: proprioceptive

and exteroceptive. Proprioceptive sensors measure the ego-vehicle’s state, while extero-

ceptive sensors gather information about the environment.

1.2.1.1 Proprioceptive Sensors

The most commonly used proprioceptive sensors in SLAM systems is the Inertial Mea-

surement Unit (IMU). The inertial measurement unit (IMU) integrates a gyroscope, an

accelerometer, and sometimes a magnetometer. It offers measurements of angular veloc-

ity (provided by a gyroscope) and acceleration (provided by an accelerometer) along the x,

y, and z axes, in addition to the magnetic field that surrounds the instrument (magnetome-

ter). Although IMU is more accurate in the short term and can provide continuous data

at a very high rate (at several hundred Hz), its major drawback is its performance degra-

dation over time. Such sensors’ data are often combined with other data sources such
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as cameras and Light Imaging Detection and Ranging (LiDAR). Several SLAM meth-

ods use the IMU to increase localization accuracy. For instance, Visual Inertial-SLAM

is one of those approaches. According to sensor fusion type, VI-SLAM may be loosely

or tightly coupled [39]. The loosely coupled approach process the IMU and camera data

separately and use both information to track the pose. Instead, the tightly coupled method

combines directly visual and inertial raw data [40]. As an illustration of loose coupling,

Weiss et al. [41] proposed an inertial-optical flow module for pose initialization and a fall-

back option when a keyframe-based VSLAM module’s tracking fails. In SOFT-SLAM,

Cvisic et al. [42] employ IMU to reduce computation complexity by eliminating outliers

and substituting 5-point RANSAC with 1-point RANSAC. The recent research is focused

on a tightly-coupled approach. VI-ORB-SLAM [43] uses a visual-inertial initialization

to estimate accurate states including sensor pose, velocity, and IMU biase before fix-

ing states by tracking and local Bundle Adjustment (BA). They estimate the gyroscope’s

bias, approximate the scale and the gravity without considering accelerometer bias, and

then estimate the accelerometer bias with scale and gravity direction refinement and, fi-

nally, the velocity vector. ORB-SLAM3 [44] improved on this method by offering a

quick and accurate IMU initialization mechanism and extended to monocular-inertial and

stereo-inertial SLAM using pinhole and fisheye cameras. Adding an IMU may improve

the environment’s information density and accuracy, increasing the algorithm’s complex-

ity, particularly during the initialization phase (15 seconds to converge within 1% scale

error [44]). In addition, VI-SLAM has exhibited significant performance in indoor en-

vironments. However, its performance in outdoor spaces and on long trajectories is still

minor compared to that of Visual-only SLAM [45].

1.2.1.2 Exteroceptive Sensors

In the exteroceptive category, the most commonly used detectors are Global Naviga-

tion Satellite System (GNSS), RADAR (short for Radio Detection and Ranging), LiDAR

(short for Light Imaging Detection and Ranging), and cameras. The Global Navigation

Satellite System (GNSS) is based on satellites that continually broadcast a radio signal

containing the current time and data about their position. Each GNSS receiver needs four
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satellites to figure out four unknowns: X , Y , Z, and the difference between the clock’s time

and the GNSS reference time. Coordinates are generally expressed using the ellipsoidal

World Geodetic System of 1984 (WGS84) model. The 3D coordinates can be expressed

either in global systems such as Earth-Centered Earth-Fixed (ECEF) and geodetic sys-

tems or in local systems such as East-North-Up (ENU), North-East-Down (NED), and

Azimuth-Elevation-Range (AER). Global systems describe the position of an object us-

ing a triplet of coordinates. In contrast, local systems require one triplet to describe the

origin’s location and the other triplet to describe the object’s location with respect to the

origin. The requirement for clear line-of-sight visibility to the satellites is a limitation of

GNSS in general. Buildings and dense trees block many satellite signals, limiting satellite

availability. Liu et al. [46] used an inaccurate Global Positioning System (GPS) with a

monocular SLAM to fix the temporal GPS drift problem by relating the vision-based cam-

era pose estimation from SLAM to the position information received through GPS in the

pose optimization step. Hening et al. [29] proposed an Adaptive Extended Kalman Filter

(AKF) for estimation of the velocity and position of a UAV by fusing LiDAR SLAM local

position updates, GPS corrections, and an Inertial Navigation System (INS).

Radar is a sensor that identifies the existence of a distant object, its size, velocity, and

direction by sending radio waves and detecting changes in the reflected wavelengths or

the frequency difference between the transmitted and received signals. RadarSLAM [47]

uses Frequency-Modulated Continuous-Wave (FMCW) technology, a type of radar whose

transmitter sends waveforms continuously, and the receiver waits for the echo reflected

from the targets. Although this technology is robust to weather conditions, it is more

susceptible to noise than LiDAR. This technology operates well in variable lighting and

weather conditions indoors and outdoors, providing excellent reliability and consistency,

it has lower resolution and updates measurements less often than LiDAR and cameras. Its

output frequently includes spurious detections (i.e., false detections) and other undesirable

artifacts [47].

LiDAR, like RADAR, is a ranging technology. It emits infrared light pulses instead of

radio waves and then measures the distance of the scanning points from its center by the

time-of-flight method. Every second, LiDAR gathers millions of accurate measurement

points, from which a 3D map of its surroundings can be created. LiDAR is unaffected
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by variations in ambient light and works well in all low-light situations. LiDAR may

also be utilized both indoors and outdoors. Unlike RADAR, LiDAR has limitations in

adverse weather conditions (snow, rain, fog). One of the most popular LiDAR-based

SLAM systems is LOAM [48], a low-drift and read-time odometry and mapping method

based on LiDAR data. In this algorithm, the authors extract features by determining the

roughness of a point in its local region. The main novelty in this approach is dividing the

problem into two parallel threads. The first one estimates the velocity with low accuracy

while running at a high frequency. The second one maps the environment with higher

fidelity but at lower frequency. Finally, both estimates are fused. An extension to this

method was proposed in LeGO-LOAM [49], where the authors presented a lightweight

and ground-optimized LOAM for the pose estimation of ground vehicles. This strategy

has three main advantages over LOAM. First, it segments ground points which helps

to remove unreliable features. Second, it uses a two-step Levenberg-Marquardt (LM)

method to speed up the optimization process. Finally, it integrates the ability to perform

loop closures to correct the motion estimation drift.

Camera-based SLAM is the most attractive system due to its low cost, ease of configura-

tion, and compact size. We found standard, RGB-D, and event cameras in the family of

visual sensors. In monocular SLAM, a single camera moving through its environment is

used to estimate the pose by detecting and tracking salient spots using image processing

algorithms. The main drawback of monocular cameras is the drift of the scale factor when

calculating distances between points due to the lack of depth information.

Inspired from the human eyes, a stereoscopic camera uses two monocular cameras

mounted on a platform at a fixed distance (called baseline) with an overlapping view.

A stereo camera is used to compute scene depth information by matching and triangula-

tion. However, its range is influenced by the baseline. An increased baseline will increase

the depth range and the minimum distance to the camera.

The RGB-D cameras save us all expensive computing done in stereo approach and pro-

vide us directly with a depth image associated with an RGB image. Different technologies

are used in RGB-D cameras, such as stereo-vision, structure-light, or time-of-flight. How-

ever, this type of sensor suffers from limited range and sensitivity to sunlight. The new

21



CHAPTER 1. SLAM SYSTEMS

generation of RGB-D cameras is characterized by a wide range thanks to a broad baseline

and an auto-projector that improves the depth calculation in low textured environments,

allowing indoor and outdoor operation.

From an energy standpoint, an event camera is the best option. Unlike standard cameras,

which acquire entire pictures at a rate determined by an external clock, event-based cam-

eras asynchronously capture per pixel intensity variation and provide the output variable

data-rate sequence of digital events. Each event is encoded with information, including

the triggered time, pixel localization, and the sign of the intensity change. Event cameras

have substantial benefits such as high temporal resolution, low latency, low power, and

High Dynamic Range (HDR) [50, 51]. Nevertheless, they are still expensive [52]. Most

of the methods and concepts used in visual SLAM were developed for intensity images

(feature detection, matching, etc.) and do not apply to a sequence of asynchronous events.

Therefore, the challenge is to design new SLAM techniques that can take advantage of the

benefits of event-driven cameras. In the last decade, research works have been conducted

to design event-based SLAMs, and they are still in their early stages of research [37].

Hence, in visual SLAM, several approaches are proposed in the literature and classified

into three categories based on the sensor type: monocular, stereo, and RGB-D SLAM.

1.2.2 Sensor Characterization

Before using a sensor, the assessment of its capacities and limitations is crucial for an

accurate system design. For example, Schops et al. [53] proved that direct RGB-D SLAM

systems are highly sensitive to rolling shutter, RGB and depth sensor synchronization,

and calibration errors. Andreopoulos et al. [54] proposed an evaluation of the effects

of camera shutter speed and voltage gain under simultaneous changes in illumination

and demonstrated significant differences in the sensitivities of popular vision algorithms

under those variations. Wu & Tsotsos [55] showed the sensor bias of vision algorithms

that requires a finer control of camera parameters to make these algorithms functional

in real-world applications. In Chapter 3, we investigate the effect of sensor acquisition

modalities on localization accuracy and provide a parametric optimization technique to

enhance localization accuracy in a given environment.
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1.2.3 Visual-based SLAM Systems

Visual SLAM systems are the most common type in the literature. Visual SLAM has

undergone several improvements, starting with the keyframe-based parallel tracking and

mapping (PTAM) solution by Klein et al. in 2007 [16]. The Visual SLAM has become

more reliable by incorporating efficient loop closure, global optimization, and memory

management methods such as keyframe and culling, with real-time processing achieved

through multithreaded parallelization.

1.2.3.1 Visual SLAM system formalization

Typically, Visual SLAM systems consist of two blocks: the front-end and the back-end,

as represented by Figure 1.2. The front-end starts by processing the data from the sensor

by considering the entire raw image (the direct method) or by considering only points

of interest known as keypoints (feature-based approach). Next, matching data is per-

formed to compute the pose between two consecutive frames. Then, the initialization of

the trajectory is done by defining the global coordinate system and providing an initial es-

timation of the variables to be optimized through the back-end block. This latter employs

algorithms based on filtering or optimization to reduce the cumulative error and increase

estimation accuracy. The loop closure identifies the places previously visited to estimate

and correct the drift accumulated during the sensor movement between the pose of a pre-

viously visited place and the current pose. The process starts with place recognition. Most

of the place recognition method compares new keyframes with a database of previously

obtained views using a bag-of-words approach, as the DBoW2 method proposed by [56].

When a potential similarity has been identified, multiple verification stages are used to

decide whether or not it corresponds to a loop. The loop closure then corrects the map

and poses. Closing a loop can be computationally intensive. Therefore, it is typically

performed in a separate thread.
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Figure 1.2: Visual-based SLAM diagram

Front–end

The visual SLAM front-end consists of three steps: Image processing, data matching,

and map/trajectory Initialization. The image processing step consists of extracting the

valuable data contained in frames. This data will be used to infer the map structure and the

trajectory. There are two types of image processing: direct and feature-based (indirect).

• The direct approach exploits the raw image pixels’ intensities to minimize the pho-

tometric error. It can be categorized as dense or semi-dense. Semi-dense methods

employ only pixels with a brightness gradient above a defined threshold, whereas

dense methods use every pixel.

• The feature-based approach relies on detecting points of interest in the image, asso-

ciating a description to each point, and finding the match between different points

on successive frames. To ensure good tracking, the extractor must provide key-

points that verify repeatability and uniqueness [57]. Famous descriptors include

SURF [58], SIFT [59], ORB [60], and HOOFR [57]. Feature-based methods are

robust to geometric distortions due to rolling shutter, automatic exposure changes,

and lens vignetting [39]. Historically, the feature-based approach exhibited low

computational complexity, making it suitable for embedded systems [61, 62, 10].
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Image processing methods can be associated with different map representations. These

include sparse maps consisting of a cloud of sparse features, dense maps which use the

full image information, and semi-dense maps which use a dense representation in specific

zones of interest. The most common approaches are indirect/sparse and direct/dense or

semi-dense.

After the image processing step, features or dense raw information are fed to the data

association bloc to establish the correspondences used to compute the pose between two

successive frames. The matching step, in turn is classified as a direct and indirect method.

• The direct method is based on brightness consistency constraint, it aims to find the

true motion that minimize the overall photometric difference in the image, which is

a sum of pixel-wise photometric errors.

• Indirect methods can be applied by matching 2D features detected on successive

frames (2D-2D), by matching given a set of 3D points in the world with their cor-

responding 2D projections in the new frame (2.5D), or by matching 3D points in

the world frame with the reconstructed map (3D-3D). This latter is more prone

to uncertainties than 2.5D, while 2D-2D is the standard solution for pure Visual

Odometry (VO) methods [39].

Finally, the map and trajectory initialization determine the global coordinate system and

provide an initial set of map points by computing spatial transformation between succes-

sive frames. Map initialization is mandatory for monocular SLAM as the depth cannot

be recovered from a single image. For example, ORB-SLAM computes two geometric

models in parallel: a homography assuming a planar scene and a fundamental matrix

assuming a non-planar scene. The model is then selected using a heuristic based on sym-

metric transfer errors [63, 1]. Other SLAM algorithms, such as LSD-SLAM, use a ran-

dom initialization, the algorithm initializes the first keyframe with a random depth map

and large variance, and after a couple of keyframes, the algorithm converges to a correct

depth configuration [3].
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Back-end

This block represents the core of the SLAM. Modern SLAM uses optimization-based

methods that perform batch processing in contrast to filter-based approaches, which cor-

respond to iterative processes suited to online SLAM. Optimization-based SLAM can be

divided into two approaches: Bundle Adjustment (BA) and Graph SLAM.

Bundle Adjustment (BA) is a technique that simultaneously refines a 3D structure and

the camera pose, given a sequence of images presenting several 3D points from differ-

ent viewpoints. The concept used in SLAM consists of optimizing an objective func-

tion Equ.1.1, which minimizes the reprojection error, using the Levenberg-Marquardt

algorithm [64]. The bundle adjustment (BA) formulation is:

min
{X i},{(R j,t j)}

∑
i, j

∥∥ui, j− f (X i|R j, t j)
∥∥2

2 (1.1)

where ui, j is a set of observations, {Xi} is the 3D coordinates of the scene points, {(R j, t j)}

are the 6DOF poses of the images I j and f (X i|R j, t j) is the projection of Xi onto I j (as-

suming calibrated cameras) [65].

This optimization can reduces the reprojection error resulting in the best camera and land-

mark positions. However, the computation can be expensive due to the optimized vari-

ables dimension [66].

Graph SLAM models the SLAM problem using a graph. Nodes represent the trajectory

and the landmark map. The sensor measurements are associated with Gaussian noise and

give spatial constraints between the nodes. Edges model such spatial constraints. Among

them two types are distinguished:

• Motion edges connect two consecutive pose nodes;

• Observation edges connect landmarks to pose nodes if observed from it.

GraphSLAM consists of re-estimating, in addition to the current position, the whole tra-

jectory from the initial state by considering all the measurement history. Once the graph

is built, the system’s state can be estimated via a global optimization of the graph. The
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optimization consists in finding a configuration (trajectory and map) that best fits the con-

straints introduced by the edges. This optimization problem can be solved by finding the

minimum of a cost function that follows this form Equ.1.2.

F(x,m) = ∑
i j

ei j(x,m)T
Ωi jei j(x,m) (1.2)

where x is the vector of poses, m is the map, ei, j is the error function which computes

the distance between the expected observation and the real observation and Ωi j is the

associated information matrix between the node i and the node j. In practice, the mini-

mization of F(x,m) is typically solved by a local approximation using common methods

like Gauss-Newton or Levenberg-Marquardt [67, 66].

1.2.3.2 Sensor-based Visual SLAM classification

The V-SLAM may be categorized based on the visual sensor employed. Three varieties

of V-SLAM are considered: Monocular, Stereo, and RGB-D. Since our thesis focuses on

RGB-D SLAM systems, and most of existing algorithms are based on monocular imple-

mentations, it seems worthwhile to review the different works based on the monocular

approach and their evolution towards stereo and RGB-D-based systems. The algorithms

to be discussed are presented on the timeline in Figure 1.3.

RGB-D SLAM

KinectFusion
2011

DVO-SLAM
2013

ElasticFusion
2016

ORB-SLAM2
2017

BAD-SLAM
2019

PL-GM
GMSK-SLAM

2021

Stereo SLAM

Stereo LSD-SLAM
2015

S-PTAM
Stereo DSO
ORB-SLAM2

2017
HOOFR-SLAM

2019

Monocular SLAM

PTAM
MonoSLAM

2007
DTAM
2011

LSD-SLAM
SVO
2014

ORB-SLAM
2015

DSO
2016

Figure 1.3: Timeline representing well-known SLAM systems and their chronological
evolution. In blue, feature-based V-SLAM methods. In green, direct approaches.
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Monocular SLAM

The first SLAM proposed in this category was MonoSLAM (2007) [15]. This method

uses a feature-based approach on the front-end and an extended Kalman filter on the

back-end. The algorithm operates in real-time, and the literature has several embedded

implementations based on this algorithm [68, 69]. However, its complexity increases

proportionally to the size of the environment.

The key breakthrough in V-SLAM was the introduction of Parallel Tracking and Map-

ping (PTAM) (2007) [16], a feature-based algorithm. It is the first algorithm to separate

tracking and mapping into two threads running in parallel and the first to use the con-

cept of keyframes. Although, this algorithm uses the concept of keyframes to reduce

computational consumption. It is worth noticing that BA optimization entails a high com-

plexity and requires a high-performance computing system. That makes this approach

unsuitable for low-cost and low-power embedded systems due to its significant power

consumption [70].

Inspired by PTAM, ORB-SLAM (2015) [1] uses three parallel threads: tracking, local

mapping, and loop closing. Figure 1.4 represents the diagram block of ORB-SLAM. The

tracking thread keeps track of features by finding matches and minimizing the reprojec-

tion error by applying motion-only Bundle Adjustment. The local mapping manages and

optimizes the local map using a local BA. The thread loop closing detects loop closures

and corrects the accumulated drifts by performing the graph-pose optimization. Finally,

to ensure the consistency of the whole structure and the estimated motion, the algorithm

applies a full BA.
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Figure 1.4: Diagram representing the ORB-SLAM algorithm [1]

In the category of direct approaches, Dense Tracking and Mapping (DTAM) is the first

direct algorithm proposed by Newcombe et al. in 2011 [17]. The algorithm comprises two

main blocks: Dense Mapping and Dense Tracking. In a dense mapping block, a global

energy minimization framework estimates the inverse of the depth map. The energy func-

tion is composed of the sum of photometric errors and a robust spatial regularization.

The dense tracking block deals with the alignment of an image of the dense model pro-

jected into a virtual camera and the current image to estimate the motion parameters. This

method is computationally intensive and can only be implemented through extensive GPU

parallelization [2]. Also, the algorithm assumes brightness constancy in all reconstruction

stages, which makes the algorithm not robust to real-world global illumination changes.
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A precise and faster algorithm was proposed by Forster et al. [2]; Semi-Direct Visual

Odometry (SVO) (2014) uses a hybrid approach combining the feature-based and direct

methods. Like PTAM [16], it uses two parallel threads as shown in Figure 1.5, one for

estimating the camera motion and the other for mapping. In the mapping thread, for each

2D feature corresponding to the 3D point to be estimated, a probabilistic depth-filter is

initialized with a large depth uncertainty, and at each incoming frame, the estimated depth

is updated. Once the uncertainty is small enough, the new 3D point is inserted into the

map and used for the motion estimation. SVO can run at high rates since feature extraction

and matching are not required for motion estimation, making it possible to be embedded

on low-cost embedded systems. However, being a pure VO approach, it only performs

short-term data association, limiting its accuracy [44].

Sparse Model-based 
Image Alignment

Pose & Structure
Refinement

Feature Alignment

Keyframe
?

Converged
?

Frame Queue

Update 
Depth-Filters

Feature
Extraction

Initialize
Depth-Filters

No

Yes

Yes: 
Insert Point

Map

Last Frame

New Frame

Motion Estimation Thread Mapping Thread

Figure 1.5: Semi-Direct Visual Odometry (SVO) tracking and mapping pipeline [2]

Large-Scale Direct Monocular SLAM (LSD-SLAM) (2014) [3] is a direct algorithm

that tracks camera motion and builds a semi-dense map of a large-scale environment. The

Figure 1.6 shows the three main components of the algorithm: tracking, depth map es-

timation, and map optimization. The tracking estimates the pose of each image. In the

depth map estimation, the tracked frames are used to replace the current keyframe or to

refine the current keyframe’s depth by using several small-baseline stereo comparisons.

The final step is map optimization, which adds the new keyframe to the map and opti-

mizes the pose graph. Although, LSD-SLAM can build semi-dense maps of large-scale

environments, its accuracy is less than that of PTAM and ORB-SLAM [44].
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Figure 1.6: Diagram summarizing the LSD-SLAM algorithm [3].

LSD-SLAM has been expanded to Direct Sparse Odometry (DSO) (2016) [71], where

it applies a local photometric bundle adjustment on a sliding window of keyframes and

the inverse depth map. Xiang et al. [72] extended DSO to a monocular visual SLAM

system with loop closure detection and pose-graph optimization (LDSO).

Stereo SLAM

As we saw, visual SLAM can be done using only a monocular camera. Since depth

isn’t observable from one camera, the map’s and estimated trajectory’s scale are up to an

unknown global scale factor. The system bootstrapping requires multi-view or filtering

approaches to create an initial map, which cannot be triangulated from the first frame.

Also, monocular SLAM suffers from scale drift and may fail in rotations. Using a stereo

or RGB-D camera overcomes all these concerns and makes Visual SLAM more reliable.

Most of the stereo algorithms we will mention in this section are based on the above

monocular versions.

Based on its monocular version, Stereo LSD-SLAM (2015) [73] combines temporal and

static stereo allowing multiple baseline directions. The authors used a modified cost func-

tion similar to the normalized cross-correlation (NCC) invariant to affine lighting changes

to solve the violated brightness constancy assumption in the real world. Stereo DSO

(2017) [74], also based on its monocular version DSO, uses the combination of temporal
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and static stereo. S-PTAM (2017) [75] integrates stereo constraints in initialization, map-

ping, and tracking to improve accuracy and robustness. ORB-SLAM2 (2017) [76] has

extended its monocular version to support stereo and RGB-D cameras. The stereo version

extracts ORB features in the rectified stereo image pairs. Then, matched keypoints of the

image pairs are selected as stereo keypoints and classified into close or far depending on

whether their associated depth is less than a threshold related to the baseline distance.

Close keypoints can be triangulated to estimate depth, scale, translation, and rotation in-

formation, while far keypoints provide accurate rotation information. This way, camera

poses are estimated and optimized using motion-only BA. HOOFR-SLAM (2019) [8],

a recent feature-based algorithm with competitive performance, exploits the HOOFR ex-

tractor for feature detection and matching [57]. The HOOFR-SLAM uses stereo images

to compute the depth of the keypoints. The stereo images are assumed rectified, and the

disparity computation is performed using the five pixels-SSD method. The scale factor is

then obtained by applying a 1-point scheme to the different factors computed from the ra-

tio of static and temporal stereo. HOOFR-SLAM implements a processing structure that

maximizes parallelism and avoids the need to optimize camera poses by applying bundle

adjustments on keyframes or saving the history of map points by estimating the relative

poses of the current input frame with a set of previous neighboring frames. The optimal

pose is obtained by averaging the relative poses with weighted factors.

Traditional visual SLAM systems use a monocular or stereo camera as input, which in-

volves complex initialization of the map and computationally intensive triangulation steps

of the map points required for 3D map reconstruction. These problems were solved with

the advent of the RGB-D camera, which provides an RGB image and an associated depth

map.

RGB-D SLAM

RGB-D cameras can simultaneously provide colored and depth images for all regions in

the field of view with or without textures, making dense reconstruction straightforward

and removing the need for map initialization. Also, the RGB-D camera is an excellent

asset for embedded SLAM systems since computing the depth map of stereo images is
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computationally intensive [77, 78]. The emergence of RGB-D sensors has motivated

researchers to develop innovative SLAM systems.

The KinectFusion (2011) [4] was the first direct RGB-D camera method. The method

generates a dense vertex and normal map pyramid using the raw depth. Each frame’s

vertex map and normal map are used to build a global model represented by a volumetric,

truncated signed distance function (TSDF). The pose estimation is then performed using

Iterative Closest Point (ICP) alignment between the current surface and the predicted one.

An overview of the algorithm’s steps is shown in Figure 1.7. The algorithm is limited to

small workspaces and accumulates drift errors due to the lack of loop closing [79].

Input
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Compute Surface Vertex 
and 

Normal Maps

Pose Estimation

ICP of Predicted
and Measured Surface

Update 
Reconstruction

Integrate Surface
Measurement into

 Global TSDF

Surface
Prediction
Ray-cast TSDF
 to Compute 

Surface Prediction

Figure 1.7: KinectFusion diagram [4]

Dense Visual Odometry (DVO-SLAM) (2013) [80] is a dense direct SLAM that min-

imizes the photometric and depth error for pose calculation. The algorithm uses an

entropy-based method for keyframe selection and loop closure, significantly reducing the

drift. The map is represented by a pose graph optimized using the g2o framework [81].

Shifting away from the focus on pose graphs initially founded on sparse methods, Elastic-

Fusion (2016) [82] is a map-centric system reconstructing a surfel-based map. By incor-

porating many small local model-to-model loop closures in conjunction with larger-scale

global loop closures, the algorithm produces globally consistent reconstructions without

using pose graph optimization. Although the reconstruction is well detailed and the lo-

calization is pretty accurate, the algorithm is limited to room size maps as the complexity

increases with the number of surfels [76].

The environment scale issue has been solved for RGB-D systems by extending ORB-

SLAM to the use of RGB-D sensors. ORB-SLAM2 (2017) [76] uses depth information to
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synthesize a stereo coordinate, so the system is agnostic of the input being stereo or RGB-

D. They demonstrated that using RGB-D with bundle adjustment performs better than

direct methods or ICP, as well as being less computationally expensive and not requiring

GPU processing to run in real-time.

On the other hand, Sch et al. [83] showed that their direct approach, BAD SLAM (2019),

outperforms ORB-SLAM2 on their RGB-D SLAM benchmark with synchronized global

shutter cameras, consequently stating that existing datasets only give a partial picture of

the performance of SLAM algorithms. BAD SLAM uses surfels and keyframes to rep-

resent the map, reducing the amount of data for BA. The front-end part of this algorithm

tracks the RGB-D camera’s movement in real-time. The back-end refines the camera tra-

jectory and geometry using a direct adjustment bundle using geometric constraints based

on depth maps and photometric constraints.

Most indoor SLAM methods assume that the environment is static. A significant problem

visual SLAM algorithms face in real life is the dynamic environment. Therefore, many

variable factors are involved in the scene, such as lighting, dynamic targets, occlusion,

etc. GMSK-SLAM (2021) [5] is a method that combines Grid-based Motion Statistics

(GMS) feature points matching with the K-means clustering method to distinguish the

dynamic areas of the image and keep the static points in these areas. The algorithm is

based on ORB-SLAM2 [76] and runs the dynamic area detection thread in parallel with

the tracking thread as shown in Figure 1.8.

34



CHAPTER 1. SLAM SYSTEMS

Tracking

D
y
n

a
m

ic
 a

re
a

 d
e

te
c

t

Local mapping Loop closing

Keyframe
Insertion

Recent 
MapPoints

Culling

New 
Points

Creation

Local
BA

Local
Keyframes

Culling

Extract 
ORB

Moving 
consistency

check

Wait for 
dynamic

detect result

Remove
outliers

Track

New keyframe
decision

Candidates
detection

Compute 
Sim3

Keyframe

RGB-D Image

Loop
fusion

Optimize
essential

graph

GMS
Feature

Matching

K-means
Method Select
Dynamic area

Wait for the
new image

Keyframes Covisibility 
graph

Map points Spanning
Tree

Figure 1.8: The block diagram of GMSK-SLAM [5]

PL-GM (2021) is an indirect SLAM combining point and line feature extraction. The

3D points and lines are retrieved from the depth image and combined with the points

and lines features to build a geometric constrained model. Then, the model is extended

to a BA model. The algorithm was evaluated on two indoor datasets [84, 85] and a real

scenario in a corridor. The algorithm improved the accuracy and robustness, especially in

low-textured areas and blurred sequences. Table 1.1 summarizes the main characteristics

of the visual SLAM algorithms presented above.

In Chapter 4, we choose for our study the HOOFR-SLAM for two main reasons: Its

high accuracy evaluated on many outdoor datasets and its adequacy to be implemented

on embedded architectures. Our contribution is extending the HOOFR-SLAM towards

RGB-D sensors to increase the localization accuracy and performance.
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CHAPTER 1. SLAM SYSTEMS

1.3 Hardware architectures based SLAM applications

SLAM is intended for robotic and autonomous vehicle applications. These targets re-

quire an optimal embedded implementation that respects the real-time constraints, limited

memory and CPU resources, and energy consumption. SLAM algorithms are computa-

tionally intensive to run on embedded targets, and often the algorithms are deployed on

laptop-level devices, as shown in Table 1.1. With the growth of powerful embedded het-

erogeneous computing systems, such as NVIDIA Jetson AGX Xavier, and HERO hetero-

geneous platform, research work is increasingly interested in the algorithm-architecture

mapping of existing SLAM algorithms. Based on the formalization of the visual SLAM

discussed in 1.2.3.1, there are two groups of algorithmsembedding studies in the litera-

ture. The first focuses on embedding the front-end processing [8, 10, 62], and the second

is concerned with the back-end [28, 98]. To bring the processing as near as possible to

the sensor, we will focus on works performed on the SLAM front-end.

1.3.1 CPU-GPU based SLAM

The CPU-GPU architectures are widely used in robotics, especially in computer vision,

since a GPU can offer many cores for parallel Single Instruction, Multiple Data (SIMD)

processing. Based on DTAM [17], Ondruvska et al. [99] exploited the GPU of various

mobile phones to implement a pipeline that creates a connected 3D surface model directly

on the device in real-time. They assigned sequential tasks, including keyframe selection

and dense camera alignment, to the CPU, as the camera alignment requires an accumula-

tion of errors across the entire input image. Also, they used SIMD instructions which led

to a processing of 4 pixels at a time. On the other hand, GPU was run in parallel carrying

stereo depth computation, model update, and raycasting. Even though this architecture

allows volumetric surface reconstruction and dense 6DoF camera tracking in real-time,

the GPU hardware constraints limit the voxel resolution.

In the category of indirect approaches, Aldegheri et al. [6] modified ORB-SLAM2 to op-

erate on the Nvidia Jetson TX2 in real-time. Besides the current parallelization of the

algorithm on CPU (Parallel PThreads on shared-memory multi-core CPUs and automatic
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CHAPTER 1. SLAM SYSTEMS

parallel implementation (i.e., through OpenMP directives) of the bundle adjustment sub-

block), the authors have added two layers of parallelism. The first one consists of a paral-

lel implementation of the tracking sub-blocks on GPU. The second is the implementation

of an 8-stage pipeline of such sub-blocks. The acceleration targets the feature extraction

block as it is the bottleneck of the processing flow. For this purpose, they modeled the

extraction block with a directed acyclic graph (DAG), as shown in Figure 1.9, adopting

the OpenVX standard.

Pyramid level

FAST cornerGaussian blur

Scale keypoints
by level

Compute
ORB descriptor

Grid optimization

Octree distribution

Orientation

Source Image

Image

Blurried image

Keypoints

Keypoints

Keypoints

Pruned Keypoints

Scaled keypointsORB descriptor

CPU

GPU

Figure 1.9: Feature extraction block represented by a direct acyclic graph (DAG) and the
corresponding sub-block implementations [6]

Ma et al. [7] presented a front-end processing parallelization of the ORB-SLAM2 algo-

rithm on the Jetson TX2. As front-end processing consumes more than half of computing

resources and operates on images, so this part is well suitable for parallelization. The

parallelization involves the feature extractor and the local point selection. This latter is

used to reduce the input data of the matching block. The feature extraction paralleliza-

tion involves constructing the Gaussian pyramid of the image on the GPU, then feature

detection, orientation calculation, and description are performed on the GPU, as shown
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CHAPTER 1. SLAM SYSTEMS

in Figure 1.10. Because of the asynchronous operation of CPU and GPU, task and thread

allocation were adjusted to decrease the idle time of the GPU and to increase the usage of

the streaming multiprocessor (SM).

Building the 
Gaussian pyramid

Feature detection

Calculation of
feature description

Non-maximum
suppression

Calculation
results

Input images

CPU

GPU

Calculation of
feature orientation

Initialization of the
description matrix

Figure 1.10: Feature extraction parallelization [7]

Nguyen et al. [8] found that the features matching block has a high computational cost and

low data dependence, so they proposed to parallelize the HOOFR-SLAM feature match-

ing block on GPU. On the other hand, they employed OpenMP to implement HOOFR

feature extraction for two reasons: firstly, the extractor uses FAST detection, where a

pixel can be rejected after one or two pixel tests, leading to a difference in processing

cost for each pixel, so the GPU computation resources are not well used due to unbal-

anced complexity. Secondly, the Hessian filtering is much more rapid on CPU thanks to

the binary classification, which needs a dynamic memory allocation that is not supported

on GPU. Figure1.11 shows the CPU-GPU mapping of HOOFR-SLAM. The performance

obtained on the Jetson TX1 is real-time if we consider the KITTI[89] dataset’s acquisition

rate.
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Figure 1.11: HOOFR-SLAM mapping on a CPU-GPU architecture [8]

Although these GPU implementations provide real-time processing, the energy consump-

tion of such architecture is still a challenge for robotics and autonomous vehicle applica-

tions, where autonomy is a crucial asset.

1.3.2 CPU-FPGA based SLAM

Recently, CPU-FPGA architectures have gained considerable interest in the scientific

community thanks to the advantages of this type of architecture, which include lower

power consumption and data flow pipelining, which makes it more suitable for on-the-fly

processing applications [100]. Much research on this type of architecture is devoted to

the front-end part of the SLAM.

Liu et al. [9] proposed eSLAM, an implementation based on ORB-SLAM on a Zynq

platform. The front-end part, including feature extraction and matching, has been accel-

erated on FPGA and was compared to the ARM processor’s version. Figure 1.12 shows

the architecture of eSLAM. First, the ORB extractor was reformulated as a rotationally
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symmetric pattern for hardware-friendly implementation. To reduce the computation cost

of the rotation procedure, they pre-computed the rotated BRIEF patterns and built it as

a lookup table to obtain the descriptors when necessary. Moreover, to reduce the extra

resources needed to store the lookup table, they proposed a 32-fold rotationally symmet-

ric BRIEF pattern (RS-BRIEF) generated by rotating two sets of seeded locations. Then,

a parallelized pipeline mechanism is proposed. They adopted two cases pipeline, stan-

dard frame and keyframe case. For standard frame processing, the ORB Extractor and

BRIEF Matcher are launched to do feature extraction and feature matching for the next

frame, while the ARM processor performs pose estimation and optimization. In the case

of keyframe, The feature extraction is performed on FPGA in parallel with the ARM

processor, but the BRIEF Matcher is idle until map updating is finished. Despite the ac-

ceptable loss of accuracy, the proposed design achieved significant factors in speedup and

energy efficiency.

ORB 
Extractor

BRIEF
Matcher

ARM
Processor

Image
Resizing

SDRAM

Data

Instruction

Figure 1.12: eSLAM architecture [9]

Several Visual SLAM systems use semantic information to enhance the robustness of the

dynamic scene. Deep learning increases system complexity, making it hard to implement

real-time semantic SLAM on a low-power embedded platform. A semantic segmentation

module cannot be processed on the CPU in real-time. On the other hand, using a GPU for

computing acceleration limits the deployment of battery-powered mobile robots. Wu et

al. [101] proposed the acceleration of the inference of the semantic segmentation network,

SegNet[102], on an FPGA using the high-level synthesis tool OpenCL[103]. They started

by adopting a quantization strategy by combining convolution and batch normalization

into one operation and grouping convolution filters with different data distributions. The
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quantization operation is processed on the CPU and is used to reduce the needed storage

and computational complexity without significantly affecting the precision. The accelera-

tor architecture uses a multi-level memory access optimization scheme, including off-chip

DRAM and on-chip memory (channels, registers). The architecture includes the design

of convolution kernel, pooling kernel, and unpooling kernel implemented in a config-

urable pipeline, allowing flexibility and expansibility in implementing different network

frameworks. Although the accuracy of the DS-SLAM accelerator slightly decreased as a

result of model quantization, the accelerator achieves a significant frame rate and energy

efficiency improvement.

Following the work proposed in [8], Nguyen et al. [10] presented the implementation

of the HOOFR extractor on an Arria 10 SoC-FPGA using the OpenCL paradigm. They

design a feature extraction system incorporating a bucketing method to ensure the homo-

geneous distribution of keypoints. The HOOFR extractor has been divided into four func-

tional blocks (4 kernels), including FAST detection, Hessian score computing, filtering,

and description, as shown in the Figure 1.13. All four kernels are launched concurrently.

The bucketing detection is performed by dividing the image into a grid, and a specific

number of keypoints is extracted for each image cell. The image cells are thus processed

in a pipeline. When a kernel finishes processing an image cell, the following kernel starts

to process it immediately. The communication between the kernels is ensured using chan-

nels. During experiments, the authors found that the FAST and Hessian score computing

kernels were bottlenecks of the algorithm flow, so they decided to physically duplicate

those kernels as they do not consume many logic resources. When evaluating the ar-

chitecture on a publicly available dataset, the speedup factor was up to 9x compared to

the implementation on the embedded ARM processor while achieving the same detection

result on hardware as on software.
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Figure 1.13: HOOFR extractor mapping on CPU-FPGA architecture [10].

Sugiura et al. [104] proposed a universal FPGA-based accelerator, on a low-cost FPGA

SoC Pynq-Z2 board, compatible with various 2D LiDAR SLAM methods, including scan

matching-based, particle filter-based, and graph-based SLAM. Their implementation fo-

cused on the scan matching step, which is the main bottleneck. They optimize the Correl-

ative Scan Matching (CSM) proposed by Olson et al. [105] to exploit the inherent paral-

lelism and reduce resource utilization. The FPGA design includes two CSM cores, which

can be used for scan matching and loop detection simultaneously. The architecture was

evaluated with different SLAM methods, leading to a significant speed up with low energy

consumption.

In Chapter 5 and following the work done in [10], we propose a full implementation of the

HOOFR extractor and the matching block on FPGA while maintaining the quality of the

results on the CPU and assuring real-time processing at the rate of most modern cameras

(30 FPS), to ensure an on-the-fly processing.
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1.4 Visual SLAM Datasets

As research in SLAM systems progresses, the need for diverse datasets representing the

real world arises. Several datasets exist with various sensor types and data. As we are de-

veloping an RGB-D system, our scope in this section is limited to RGB-D datasets. The

TUM RGB-D [84] is the most popular dataset in the state-of-the-art. The dataset consists

of several sequences in indoor environments, recorded with a Microsoft Kinetic on two

platforms: robot and handheld. The dataset contains color images, depth maps, and as-

sociated ground-truth camera information acquired using a motion capture system. Also,

the authors propose two evaluation metrics that can be used to assess the performance

of visual odometry and visual SLAM system: Relative pose error and absolute trajectory

error. Another widely used reference dataset is the ICL-NUIM [92]. This dataset focuses

on RGB-D algorithms and provides data for evaluating 3D reconstruction across eight

synthetically generated indoor scenes. The ground truth includes a 3D surface model

and the estimated trajectory by a SLAM algorithm [106]. The Bonn RGB-D Dynamic

Dataset [107] is a dataset containing 24 dynamic indoor sequences. The authors provide

the ground truth pose of the sensor recorded with a motion capture system. The sequences

are in the same format as the TUM RGB-D Dataset, so the same evaluation tools can be

used. Unfortunately, to date, there are no outdoor RGB-D datasets due to the limited

capabilities of RGB-D cameras. However, the evolution of technology has led to the de-

velopment of more powerful RGB-D cameras like the Intel Realsense D455/435i/435. In

Chapter 2, we use these sensors to record our first indoor and outdoor dataset. Table 1.2

summarize the RGB-D datasets.

Dataset Year Env. Platform Ground-truth Availability
TUM RGB-D 2012 Indoor Robot/Handheld Motion capture [84]

ICL-NUIM 2014 Indoor Handheld
3D surface model

[106]
SLAM estimation

Bonn RGB-D 2019 Indoor Handheld Motion capture [107]

Table 1.2: Summary of the most known RGB-D dataset
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1.5 Conclusion

In this chapter, we presented the different SLAM systems’ sensors. We have noticed that

most of the works focus on evaluating the algorithm on the publicly available datasets

without considering the characteristics of the sensor. We also introduced the various

well-known visual SLAM algorithms. We have seen that most algorithms are tested in

indoor environments and evaluated on laptops. We explored how many works exploit the

advantage of heterogeneous architectures to accelerate processing and that CPU-FPGA

architectures are the trend in robotics and automotive due to their energy efficiency re-

quired to ensure long autonomy. Finally, we cited the various well-known datasets used

for evaluating RGB-D SLAM algorithms and how they were limited to indoor environ-

ments due to the restricted capabilities of such cameras. The following chapter 2 presents

the methodology for the design of a dedicated RGB-D SLAM system for autonomous ve-

hicle applications that respects localization accuracy and real-time constraints. Chapter 2

includes the characterization of a new RGB-D sensor for Indoor/Outdoor use, the acquisi-

tion of indoor and outdoor datasets, and the choice of platforms used for the evaluations.
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Chapter 2

System Design and Evaluation

Methodology

2.1 Introduction

This thesis aims to develop a SLAM system for automotive applications. Therefore, the

system must be equipped with sensors capable of providing much information about the

environment while also handling highly dynamic and large-scale environments. Accord-

ingly, an RGB-D camera is a good choice because of its low cost and properties well

suited for SLAM, including RGB images, their associated depth maps, and the pattern

projector. Earlier generations of RGB-D cameras had range limitations, restricting their

use in indoor environments. As RGB-D cameras have been developed to meet higher

range requirements, the use cases have also been extended to outdoor environments.

As we have seen, SLAM systems can be sensitive to the sensors’ parameters, so our

strategy involves characterizing the RGB-D sensor’s influence on localization accuracy,

then integrating the RGB-D sensor in the HOOFR-SLAM algorithm and improving its

accuracy in outdoor conditions. In order to ensure real-time processing on the fly on an

embedded architecture, algorithm-architecture mapping is performed. In this chapter, we

will present our choice of sensor and algorithms used for the evaluation, then the indoor

and outdoor datasets acquired for the assessment. Finally, we introduce the paradigm used
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for the implementation and the different architectures used for the performance evaluation

of the RGB-D HOOFR-SLAM algorithm.

2.2 Sensor Choice

RGB-D cameras are sensors providing RGB images and depth maps which are images

where each pixel has a value representing the distance to the camera. This information is

a significant asset for measuring the exact dimensions of a physical object, which remains

challenging even for machine learning algorithms.

Different technologies are used to get the depth map, including passive stereo, structured

light, Time-of-flight (ToF), and active stereo. Passive stereo uses two cameras to acquire

two images from different viewpoints. Given the calibration of the camera parameters,

depth is computed by matching pixels between the images from each camera and triangu-

lating the pixel depth using the baseline. The major limitation of stereo cameras is that the

scene should not be poorly textured to find the correspondence, which can only succeed

if both cameras see the same features. A wide operating range characterizes this technol-

ogy, making most of them suitable for acquisition at distances up to 15m. However, it

is not suitable for close-range use, as a wider baseline and focal length allow for better

accuracy at long range, but at the same time increase the minimum distance at which the

depth can be determined [108]. This fact makes this type of sensor highly recommended

for outdoor use.

Active systems incorporate an infrared (IR) projector with a single or stereo camera. They

use IR pattern projection to analyze the distortion of these patterns and extract depth,

such as structured light, or by directly measuring the depth by employing the time it takes

for IR light to be captured after being reflected from objects, such as the time of flight

(ToF). The main advantage of this type of approach is that it works very well in low-light

environments. However, this type of system performs poorly in outdoor environments

where objects are out of reach of the projector, or the projection is overloaded by ambient

light, thus explaining their poor performance in outdoor environments.
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Figure2.1 shows the cameras used for the evaluation. The first part involves evaluating an

RGB-D sensor in an indoor environment to identify the key factors impacting the quality

of the trajectory. For the indoor environment, we chose the Intel Realsense D435i camera.

This camera will allow us to compare the impact of the different acquisition modalities

thanks to its multiple sensors. The depth camera incorporates a Vision Processing Unit

(VPU), left and right imagers for stereo vision with a wide IR projector, an RGB color

sensor, and an Inertial Measurement Unit (IMU). Depth features, high resolution, long-

range capability (up to approximately 10 m), and global shutter technology enable fast

motion capture without blurring depth images. The depth map can be generated using

either active stereo technology by turning the projector on or passive stereo technology

by turning it off. The IR projector helps increase the texture in low-textured scenes by

projecting a static IR pattern. The vision processor generates the depth map by matching

each pixel in the right and left IR images, using the image on the left as a reference for

stereo matching. The sensor has an RGB camera with rolling shutter technology, a high

resolution, and a narrower field of view.

For the autonomous vehicle application, we chose the Intel Realsense D455 camera for

the outdoor environment, a version more suitable for outdoor environments. This camera

features a broader 95mm baseline, improving depth error to less than 2% at 4m. The cam-

era has an acquisition rate of 30 FPS, ensuring a good overlap for most vehicle movement

applications. Also, the camera has a sufficiently wide field of view, which is well suited

for large environments so that the SLAM is accurate and robust without worrying about

the distortion problems that must be managed in the case of fisheye and omnidirectional

cameras.

Intel® RealSense™ Depth Camera D435iIntel® RealSense™ Depth Camera D455

Figure 2.1: Intel® RealSense™ Depth Cameras
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2.3 Algorithm Choice

Visual SLAM Direct methods estimate camera movement by minimizing photometric er-

rors between consecutive images. Their strength lies in high accuracy, thanks to dense

image exploitation. The drawback is the sensitivity of these methods to brightness varia-

tions or illumination changes. In contrast, feature-based methods use an indirect represen-

tation of images, usually in the form of feature points, tracked and then used to estimate

the pose by minimizing projection errors. Although indirect methods provide relevant re-

sults in well-textured environments, they suffer from failure in poorly textured scenes or

motion blur, temporarily wiping out feature points. Direct methods are likely to be com-

putationally expensive, while indirect methods are less computationally expensive. This

study’s framework is part of the design of an embedded system using RGB-D SLAM for

autonomous vehicle applications. For this reason, the choice of an efficient algorithm

regarding accuracy and complexity is a critical asset.

For the first part of the algorithmic study, we have selected ORB-SLAM2, a baseline

algorithm providing satisfactory results and can be embedded [109], for its low complex-

ity compared to other algorithms. ORB-SLAM2 is for monocular, stereo, and RGB-D

cameras, allowing us to compare stereo and RGB-D (front-end part) without worrying

about the back-end. Therefore, the correlation between the sensor and the front-end can

be studied. To consolidate our research, we chose RTAB-Map [110], a library imple-

menting SLAM with different methods and supporting various sensors (including stereo

and RGB-D). RTAB-Map offers real-time processing thanks to its appearance-based loop

closure approach with memory management making it suitable for large-scale and for

long-term operation. The RTAB-Map is used as a baseline method for comparing the

acquisition modes’ effect without optimizing its parameters.

For the second part of the algorithmic study, our system is devoted to autonomous vehicle

applications, and the algorithm selection must satisfy the requirements of localization

accuracy, real-time processing, and limited embedded architecture resources. We choose

the HOOFR-SLAM for those purposes:
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• The HOOFR-SLAM incorporates the HOOFR bio-inspired extractor, which pro-

vides a better balance between speed and matching quality than other state-of-the-

art methods.

• The processing complexity of HOOFR-SLAM is decreased to accommodate em-

bedded systems while preserving a significant localization accuracy.

• The ability to integrate the front-end on an embedded CPU-FPGA SoC architecture.

2.4 Dataset Acquisition

2.4.1 Indoor dataset

Several datasets exist in state-of-the-art dedicated to the evaluation of SLAM algorithms.

However, these datasets do not consider assessing the impact of the sensor-algorithm

coupling on the trajectory quality since each dataset is recorded with only one modality.

In our research aiming at studying the sensor algorithm coupling and its impact on lo-

calization accuracy, we need a dataset representing the same environment recorded with

different modalities (Stereo, RGB-D, IR-D, with and without pattern projector). Since

state-of-the-art does not provide such a dataset, we have collected our dataset in the labo-

ratory’s corridors and the basement parking, as shown in Figure 2.2. We recorded using

an RGB-D camera with a laptop equipped with an Intel Celeron N4100 Quad-Core CPU,

8G RAM and 512GB SSD memory. The experiment was carried out using different ac-

quisition modes, including IR-Stereo, RGB-D Active Stereo (Active: IR Projector on),

RGB-D Passive Stereo (Passive: IR Projector off) and IR-D Passive Stereo (Passive: IR

Projector off). The IR-D could not be recorded in active stereo since IR patterns interfere

with the features extraction generating spurious detections. The images are recorded with

a resolution of 1280×720 pixels and a frame rate of 30 frames per second.

50



CHAPTER 2. SYSTEM DESIGN AND EVALUATION METHODOLOGY

(a)

(b)

Figure 2.2: : Images illustrating the environment (laboratory corridor and basement park-
ing) where the dataset was collected: (a) The scene on the right represents a narrow and
textureless environment, on the left, we have a narrow scene with more texture. (b) These
scenes represent textured and larger environments.

The recorded sequences are summarized in the Table 2.1.

Dataset Description Projector state Acquisition mode

Digiteo_seq1 [111] Lab corridors 1 Passive stereo
IR-D

RGB-D
Stereo

Digiteo_seq2 [112] Lab corridors 2
Passive stereo RGB-D
Active stereo RGB-D

Digiteo_seq3 Basement parking
Passive stereo

IR-D [113]
RGB-D [114]
Stereo [115]

Active stereo RGB-D [116]

Table 2.1: Recorded sequences using various acquisition modes

A reference trajectory for comparison was created, as shown in Figure 2.3, based on tem-

poral subsampled (subsampled by 1/5 for seq1 and seq2 and by 1/10 for seq3) monocular

images of the environment using the Structure from Motion (SfM) and Multi-View Stereo

(MVS) pipeline COLMAP [117, 118]. COLMAP’s sub-pixel reprojection error [117]
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provides a well-dense reconstruction of large-scale environments, making it a reliable

reference for comparison. The provided images are synchronized IR/RGB images with

the depth images. The images used for the reference reconstruction are non-synchronized

images that have been sub-sampled while keeping the timestamp of each image. Subsam-

pled images allow for faster processing while providing sufficient visual overlap. The first

step is to detect and extract features from all images and describe them using a numerical

descriptor. The feature extraction uses a pinhole camera model [63] with the camera’s

intrinsics and extrinsics parameters, as shown in the Tables 2.2 and 2.3. The extractor

used is SIFT and executed on GPU with a maximum number of primitives of 8192.

Digiteo seq1 (Passive-Stereo) Digiteo seq2 (Active-Stereo) Digiteo seq2 (Passive-Stereo)

Digiteo seq3 (Passive-Stereo)Digiteo seq3 (Active-Stereo)

Figure 2.3: Reference trajectory in red using COLMAP. COLMAP is a pipeline of SfM
and MVS providing a dense reconstruction of large-scale environments with sub-pixel
reprojection error make it a reliable reference for comparison.

IR (Left & Right) RGB
fx (pixel) 638.14 912.36
fy (pixel) 638.14 910.26
cx (pixel) 639.75 648.57
cy (pixel) 356.51 363.66

Table 2.2: Intrinsic parameters of RGB and IR cameras of the D435i camera used in our
dataset, including focal length ( fx, fy) and optical center (cx,cy).
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“Color” to “Depth” “IR1” to “Depth” “IR2” to “Depth”

Rot

 0.99 −0.0089 −0.044
0.0089 0.99 0.0009
0.0044 −0.0009 0.99

  1 0 0
0 1 0
0 0 1

  1 0 0
0 1 0
0 0 1


Transl (m)

 −0.0148
−0.0001
−0.0002

  0
0
0

  0.0502
0
0


Table 2.3: Extrinsics of the D435i camera

The intrinsic parameters are fed to the algorithm and shared between all images. Then,

the geometric matching and verification are performed using sequential matching, which

is best suited for consecutive frames with sufficient visual overlap. The overlap is set to 20

images, with quadratic overlap and loop detection enabled. The values of the remaining

parameters are kept as default. Tables 2.4 and 2.5 summarize all parameters values.

Camera model Pinhole
Shared for all images Yes

Custom parameters
RGB: 912.36 px, 910.26 px, 648.57 px, 363.66 px

IR: 638.14 px, 638.14 px, 639.75 px
Max_image_size 3200

Max_num_features 8192
First_octave -

Num_octaves 4
Octave_resolution 3

Peak_threshold 0.00667
Edge_threshold 10

Estimate_affine_shape No
Max_num_orientations 2

Upright No
Domain_size_pooling No

Dsp_min_scale 0.16667
Dsp_max_scale 3
Dsp_num_scales 10

Num_thread -1
Use_gpu Yes

GPU_index -1

Table 2.4: Feature extraction COLMAP parameters

Loop closure detection is used through a pre-trained vocabulary tree. The GPU acceler-

ates the matching process. Once the matching step is finished, the sparse reconstruction

is launched. Data is loaded from the database into memory during this process, and the
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Overlap 20
Quadratic_overlap Yes

Loop_detection Yes
Loop_detection_period 10

Loop_detection_num_images 50
Loop_detection_num_nearest_neighbors 1

Loop_detection_num_checks 256
Loop_detection_num_images_after_verification 0

Loop_detection_max_num_features -1

Vocab_tree_path
32K words (small-scale)

256K words (medium-scale )
Num_threads -1

Use_gpu Yes
GPU_index -1
Max_ratio 0.8

Max_distance 0.7
Cross_check Yes

Max_num_matches 32768
Max_error 4
Confidence 0.99

Max_num_trials 10000
Min_inlier_ratio 0.25
Min_num_inliers 15
Multiple_models No
Guided_matching No

Table 2.5: Feature matching COLMAP parameters

scene is expanded by incrementally registering the images from an initial image pair seed.

Finally, a model can be exported, containing the camera information, the images includ-

ing all the keypoints and the reconstructed pose of an image specified as the projection

of the world to the camera coordinate system of an image using a quaternion and a trans-

lation vector, and finally the 3D points in the dataset. After the model is acquired, the

reconstructed poses of the images are used to calculate the coordinates of the center of

the projection/camera using Eq. 2.1.

cc =−RT t (2.1)

where cc is the coordinates vector of the camera center, RT is the transpose of the rotation

matrix obtained from the quaternions, and t is the translation vector. For the scaling of the
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trajectory, we proceed to a dense reconstruction of the environment. This step consists of

importing the sparse 3D model and launching the MVS, which first involves undistorting

the images. The normal and depth maps are computed to be fused into a dense point

cloud. Finally, the dense surface is estimated using Poisson or Delaunay reconstruction.

This dense point cloud will allow us to recover the distances of some objects with known

dimensions. Scale is computed as the ratio between distances on the point cloud and

their corresponding measured with a rangefinder. This scale factor allowed us to scale our

reference trajectory. Figure 2.4 summarizes the process of trajectory reconstruction using

COLMAP.

Subsampled images

Feature detection and
extraction

Geometric matching
and verification 

(Sequential matching)
Loop closure

detection

Sparse reconstruction

cameras.txt images.txt points3D.txt

Reference trajectory

Scaling Dense reconstruction 
MVS

Rangefinder
measurement

Figure 2.4: Reference trajectory process using COLMAP. Reconstructing the reference
trajectory consists of sub-sampling the images (to reduce the processing time), detect-
ing features, and sequentially matching those features. Then the sparse reconstruction is
launched to generate a point cloud and to compute the camera poses. Finally, the dense
reconstruction is performed by the Poisson or Delaunay method. The camera trajectory
is scaled by calculating the scale factor between the point cloud and known distances
provided by a rangefinder.
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2.4.2 Outdoor dataset

As discussed in the previous chapter, most RGB-D datasets are created in indoor environ-

ments. To our knowledge, there is currently no RGB-D dataset for vehicle applications

like the one from KITTI [89] due to the limitations of RGB-D cameras. Recent genera-

tions of RGB-D cameras can operate in both indoor and outdoor environments. As part

of our thesis, we need to evaluate our algorithm on an RGB-D dataset recorded by a ve-

hicle. We conducted measurement experiments with the instrumented laboratory vehicle

Figure 2.5 to record the outdoor dataset and evaluate SLAM performance in outdoor use

conditions. The vehicle is equipped with a Realsense Intel D455 camera, a LiDAR, and

an RTK-GNSS receiver to record the ground truth. The D455 camera is characterized by

its long range of up to 20m provided by the projector, while the depth images provide

a more extensive range, making it suitable for outdoor applications. D455 is equipped

with two IR cameras, one RGB camera, and an IR projector for active stereo mode. The

intrinsic camera parameters resulting from the calibration are presented in the Table 2.6.

The GNSS receiver is an Altus Positioning Systems (APS-3) using Real-Time Kine-

matic (RTK) correction signals to provide centimeter-level accuracy in positioning. This

ground-truth output was collected with a frequency of 25Hz. The environment in which

this dataset was recorded was cloudy and wooded. The positioning solution was post-

processed using RTKLIB and only the highly reliable positions with a quality flag equal

to 1 or 2 in our dataset were retained.

IR (Left & Right) RGB
fx (pixel) 644.49 632.02
fy (pixel) 644.49 631.28
cx (pixel) 642.78 641.33
cy (pixel) 347.77 372.88

Table 2.6: Intrinsic parameters of RGB and IR cameras of the D455 camera used in our
dataset, including focal length ( fx, fy) and optical center (cx,cy).
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RGB-D Camera

LiDAR

GPS RTK

Data logger

GPS

Figure 2.5: SATIE laboratory-instrumented vehicle embedding an Intel Realsense D455
RGB-D camera, a GNSS receiver (Altus Positioning Systems (APS-3) Real-Time Kine-
matic (RTK)), a Velodyne LiDAR PUCK with 16 channels (VLP-16) and a data logger.

In sequence 1, we recorded two IR images and the depth map with a frame rate of 30 FPS

and a resolution of 1280×720 pixels. The car speed is up to 40km/h. This scene is full of

dynamic cars and buses. Also, in several frames, most of the image is dominated by the

sky, as shown in Figure 2.6. The sequence consists of a loop in a dynamic environment

over 978.57m. In sequence 1, the left IR camera allows us to have images aligned with

the depth map since it is used as the reference for the stereo matching, which exempts

us from performing the alignment in post-processing. Sequence 2 represents a trajectory

along 189.81m in a straight path.

Figure 2.6: The outdoor dataset depicts dynamic scenes, sky-dominated scenes, and
shaded scenes.
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2.5 Evaluation Metrics

Evaluation metrics introduced by Sturm et al. [84] are used: The absolute trajectory error

(ATE) provides a measure of the translational error, from a comparison of the absolute

distances between the referenced trajectory and the estimated trajectory. The referenced

trajectory and the estimated one are aligned and time-synchronized. Given a sequence of

poses from the estimated trajectory P1, ...,Pn ∈ SE(3) and from the referenced trajectory

G1, ...,Gn ∈ SE(3), we can find the rigid-body transformation S using the Least-Squares

Rigid Motion method, then the trajectory are aligned, and the ATE at time step i is com-

puted as

AT Ei = G−1
i SPi (2.2)

The root mean squared error over all time indices of the translational components is com-

puted as

RMSE(AT E1:n) = (
1
n

n

∑
i=1
∥trans(AT Ei)∥2)1/2 (2.3)

The Relative Pose Error (RPE) is used to find the rotational error. These metrics allow an

assessment of the estimated trajectory quality compared to the referenced trajectory. RPE

metric is measured over a fixed time interval of ∆ = 1s (30 frames) which gives us the

drift per second on a sequence recorded at 30 Hz. RPE at time step i is defined as

RPE i = (G−1
i Gi+∆)

−1(P−1
i Pi+∆) (2.4)

The root mean squared error over all time indices of the translational components is com-

puted as

RMSE(RPE1:n,∆) = ( 1
m ∑

m
i=1 ∥trans(RPE i)∥2)1/2

m = n−∆

(2.5)
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2.6 Hardware architectures

By leveraging the latest hardware and software implementation technologies, the em-

bedded system design addressed the need to improve overall system performance and

reliability while minimizing design and production costs. As the performance is articu-

lated on three bases, timing, power consumption, and reliability, researchers have turned

their attention to multicore and reconfigurable designs. The transition to multicore ar-

chitectures results from the challenge of enhancing serial performance. For a single core

to execute instructions faster, more silicon area is needed, increasing power consumption

and thermal output. Also, due to memory access latencies, increasing the frequency of

single-core processors is no longer adequate, prompting the development of multicore and

reconfigurable designs [119].

Reconfigurable and multicore architectures are capable of processing a large number of

tasks in parallel to speed up the processing flow. In the quest for higher speed, computers

have come a long way, from the first central processing units (CPUs) to modern parallel

designs like graphics processing units (GPUs) and field programmable gate arrays (FP-

GAs). We distinguish two types of computing systems: homogeneous and heterogeneous

systems. A homogeneous system includes only one type of computational unit. On the

other hand, a heterogeneous system combines several computational units of different

types (Multicore CPUs, GPUs, DSPs, FPGAs...). Each type of calculator has its pros and

cons. Using a given computational unit may be more suitable for a given task than for

another. The Algorithm-Architecture Adequacy (AAA)[68, 69, 8, 120] approach simulta-

neously studies the algorithmic and architectural aspects by considering their interactions.

Algorithm-architecture adequacy allows for the distribution of the tasks of an algorithm

on the different available processing units to achieve optimal performance.

In recent years, significant progress has been made in the design of embedded architec-

tures. Nvidia Jetson AGX, for example, offers a high-performance CPU similar to that of

the desktop and a GPU with a maximum power consumption of 30W. This architecture is

widely used for AI and computer vision applications [121, 122, 123].

Regarding online processing, FPGAs are the best choice [124, 125, 126, 127]. FPGAs

have I/O blocks, which allow external devices to be connected to the FPGA using memory
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and interfaces. This architecture model reduces the communication path between the

FPGA accelerator and the peripherals. Also, FPGAs inherently offer low latency suitable

for real-time applications, such as video streaming, by ingesting the video directly into the

FPGA’s interfaced memories, bypassing the CPU, which remains mandatory for dataflow

control. The properties of FPGAs have encouraged several works to develop FPGA-based

sensors [127, 128]. In front-end processing, the processing should be the closest possible

to the sensor’s frequency to ensure on-the-fly processing. Different target architectures

are used for the algorithm evaluation:

• Laptop: The algorithm is first evaluated on a high-performance PC equipped with

an 8-core AMD Ryzen 9 CPU with a base frequency of 3 GHz, an L3 cache mem-

ory of 8 MB, an L2 of 4MB, and an L1 of 64KB. The RAM is 24GB DDR4. This

platform also integrates an NVIDIA GeForce RTX 2060 Max-Q graphics card with

1920 Shading units, 6 GB of global memory with a bandwidth of 264.0 GB/s. The

CPU consumption is 35W, while that of the GPU is 64W. These features will en-

able real-time processing for a well-optimized SLAM system. However, power

consumption remains a hurdle for battery-based applications.

• Nvidia Jetson AGX: For autonomous vehicles, the NVIDIA Jetson AGX Xavier

development kit is a platform that offers the performance of a GPU workstation

in a less than 30W embedded module. The platform includes a 512-core NVIDIA

Volta GPU with 64 Tensor Cores, as shown in Figure 2.7, with a maximum clock

frequency of 1.37GHz. The GPU contains eight Volta Streaming Multiprocessors

(SMs) with 64 CUDA cores and 8 Tensor Cores per Volta SM and a 128KB L1

cache. The SMs share a 512KB L2. The CPU is an 8-core NVIDIA Carmel

ARMv8.2 64-bit, as shown in Figure 2.8, with a maximum clock frequency of

2.26GHz. Each core includes 128KB instruction and 64KB data L1 caches plus

a 2MB L2 cache shared between the two cores. The CPU clusters share a 4MB L3

cache. The RAM is 16GB 256-bit LPDDR4x, which has 137GB/s memory band-

width. The platform is used in several SLAM works, including [129, 123, 130].
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Figure 2.7: Block diagram of Jetson Xavier VOLTA GPU [11]

Figure 2.8: Block diagram of Jetson Xavier CPU [11]

• Altera DE5a-Net DDR4: DE5a-Net DDR4 Arria 10 FPGA Development Kit rep-

resents a hardware solution for designs requiring more resources. The Arria® 10

GX FPGA features integrated transceivers that transfer at up to 12.5 Gbps, allowing

the DE5a-Net DDR4 to be fully PCI Express version 3.0 compliant. For designs
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requiring high capacity and speed for memory and storage, the DE5a-Net DDR4

offers two independent banks of 16GB DDR4 memory module, running at over 75

Gbps, up to 7.876 GB/s data transfer via PCIe Gen 3x8 edge between FPGA and

host PC. Arria 10 GX FPGA features 1150K logic elements, 67-Mbits embedded

memory, and 1518 Variable-precision DSP block. As our autonomous vehicle ap-

plication needs to perform on-the-fly processing, we opt for a front-end processing

architecture on FPGA, thus requiring a large amount of resources, making the Ar-

ria 10 a good choice for implementing such an architecture. Figure 2.9 shows the

heterogeneous architecture used for the evaluation. The DE5a-Net DDR4 board is

interfaced with a host CPU via PCIe Gen 3x8. The CPU is an Intel Xeon Silver

4108 processor with eight cores with a base frequency of 1.8GHz.

Arria 10
GX

DDR4

Intel Xeon Silver
4108

8 cores @1.8GHz  

DDR4
PCIe Gen 3x8

Figure 2.9: Heterogenous CPU-FPGA used architecture

2.7 FPGA HW/SW Codesign Approach

Reconfigurable architectures offer great flexibility in the design of systems based on logic

circuits. In this category, we find mainly PALs (Programmable Array Logic), CPLDs

(Complex Programmable Logic Device), and FPGAs (Field Programmable Gate Array).

FPGA is a two-dimensional array of programmable hardware that can be reconfigured. It

contains programmable logic blocks, interconnects, configurable memory modules, and

DSPs [131], as shown in Figure 2.10.
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Figure 2.10: Simplified internal structure of FPGA

The FPGA offers great flexibility in the design of embedded systems, with low power

consumption compared to programmable processors. Its spectrum of use is vast. It can be

found in almost every field [132, 133, 101, 134]. While FPGAs offer advantages in paral-

lelism and power consumption, the description of FPGA-based architectures is relatively

complex compared to programmable processors. Since FPGAs emerged in the 80s, design

approaches and tools have evolved considerably to facilitate hardware description [135].

FPGAs are typically programmed using hardware description languages (HDL), such as

Verilog or VHDL. To design a high-performance accelerator, the programmer needs ex-

pertise in hardware design. Moreover, HDL-based designs require cycle-level simulations

and debugging, making the design process time-consuming. As the complexity of algo-

rithms has grown, HDL has become inefficient since it becomes challenging for designers

to develop circuit details and control states for large and complex FPGAs. However, this

limitation has been addressed by a technique called high-level synthesis (HLS).This latter

facilitates the complete design of the entire processing flow on a heterogeneous system:

Computation on the host, data transfer between the host and the accelerator, and compu-

tation on the accelerator [136].

There are two types of heterogeneous CPU-FPGA architectures: The SoC (System-on-

Chip), where the CPU and FPGA are integrated on the same chip, this system is of-

ten used for low-power embedded applications, and the other system is composed of a
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CPU and FPGA connected by an external bus such as PCI-express (PCIe) used for high-

performance computing. In this thesis we use an FPGA connected to the host via a PCIe

bus, as a proof of concept of the performance that can be achieved by embedding front-end

processing.

2.7.1 OpenCL approach

In high-level synthesis based on the C language, the designer must adapt the code to the

tool used. The high-level abstraction requires tool and target architecture expertise to

maximize performance. The idea of the OpenCL approach is to allow the user to design

a heterogeneous architecture based on the OpenCL standard. This type of architecture

has two parts: the host and the FPGA accelerator. The latter then plays the role of a

coprocessor, similarly to a GPU.

Open Computing Language (OpenCL) is a C-based design environment for a heteroge-

neous computing platform that includes a host CPU and accelerators such as GPUs and

FPGAs. Designers can use OpenCL to create end-to-end computations, including com-

putation on the host, data transfer between the host and the device, and computation on

the device. As a result, by evaluating OpenCL codes, the OpenCL design environment for

FPGAs may generate FPGA circuits and interface circuits. The OpenCL paradigm has

several advantages:

• Significantly reduce design time.

• Compatible and reusable on different FPGA boards by recompiling the code using

the boards’ BSP (Board Support Package).

• Debugging through functional code verification using the CPU emulator.

• Profiling allows collecting information about memory accesses during execution.

2.7.2 OpenCL Design Flow

The OpenCL-based design flow is divided into three stages: emulation, performance op-

timization, and execution. We test the code’s behavior during the emulation phase by
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running it on a CPU. We use compilation reports and profile information to identify per-

formance bottlenecks during the performance optimization process. Then, by removing

bottlenecks, we boost performance. In the execution phase, we execute the OpenCL pro-

gram on an FPGA-based computing system to evaluate its actual performance.

2.7.2.1 Emulation phase

In the first stage, we emulate the OpenCL kernel code on a CPU to test its behavior.

Compiling for emulation may be done quickly, usually taking between a few seconds

to a few minutes. Although an FPGA board is not required for emulation, a BSP is

necessary. The code is performed sequentially in emulation, just like in a normal C-like

code. Emulation ignores parallel operations such as pipelines, loop-unrolling, and SIMD

operations.

2.7.2.2 Performance tuning phase

The performance tuning phase analyzes compilation reports to identify performance bot-

tlenecks. The compilation report includes:

• A loop analysis includes pipeline information, bottlenecks, initiation interval (II),

unrolling loop information, etc.

• The estimated resource utilization information.

• System viewer shows a kernel as a combination of blocks and how multiple kernels

are connected.

2.7.3 FPGA-Oriented Parallel Programming

In an OpenCL device, kernels are functions executed on an OpenCL device. One work-

item represents a unit of the execution of a kernel. A group of these work-items is called

a work-group, and the entire collection of work items is called an NDRange. In a hetero-

geneous computing system, we have different types of memories:
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• The host memory: accessible only by the host.

• The global memory: accessible to both the host and the device.

• The constant memory: a read-only memory for the device.

• The local memory belongs to a particular work-group, and data are shared only by

its work items.

• The private memory belongs to a work-item and is not accessible to the other work-

items.

In OpenCL FPGA programming, there are two types of kernels: NDRange kernels and

single-work-item kernels [137]. The NDRange kernel is executed by multiple work-items

in parallel in a pipeline manner, as shown in Figure 2.11. In the first cycle, work-item one

is launched and loads data from memory. In the next cycle, work-item two is launched,

and while loading data, work-item one performs the addition. In the third cycle, work-

item three loads data while work-item two performs addition, and work-item one stores

the result [12].

Load Add Store

Load Add Store

Load Add Store

work-item 1

work-item 2

work-item 3

Time

Figure 2.11: Time chart of NDRange kernel execution

In a single-work-item kernel that contains loops, loop-iterations are used as the unit of ex-

ecution of a kernel, and multiple loop-iterations are computed in different pipeline stages,

as shown in Figure2.12. Similar to the NDRange time chart, at each cycle, a loop-iteration

is launched, and at the third cycle, the three loop-iterations are executed in parallel at dif-

ferent pipeline stages [12].
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Load Add Store

Load Add Store

Load Add Store

Loop-iteration 1

Loop-iteration 2

Loop-iteration 3

Time

Figure 2.12: Time chart of single-work-item kernel execution [12]

The NDRange kernels are commonly used when no data dependencies exist or if we want

to use the same kernel in both FPGAs and GPUs. On the other hand, the single-work-

item is easy to implement and can provide better performance than the NDRange kernels

if there are data dependencies [12].

2.8 Conclusion

In this chapter, we have presented the methodology followed and the tools used to evaluate

our contributions. In this thesis, we use our datasets since existing ones do not fulfill our

study’s needs. In order to be consistent with the evaluations made on state-of-the-art, we

have evaluated several algorithms [76, 110, 8, 117] on our dataset and relied on the same

metrics used for evaluating algorithms on publicly available datasets [84].

Our approach covers the whole processing chain from the sensor to the target architec-

ture. For this, we start with a study on the coupling sensor algorithm and its impact on

localization accuracy in chapter 3. Indoor datasets are used for this study. Then, based

on the HOOFR-SLAM algorithm, we develop an RGB-D version of HOOFR-SLAM in

chapter4, which is more robust and improved in terms of localization accuracy and perfor-

mance in outdoor conditions. Finally, algorithm-architecture adequacy is applied to boost

the performance of the algorithm in chapter 5. Algorithmic and hardware optimizations

are used to achieve our goal of real-time processing on an embedded architecture.
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Chapter 3

Sensor-Algorithm Parameters Coupling

3.1 Introduction

SLAM is a crucial perception functionality in a variety of applications, including robots

and autonomous vehicles. RGB-D cameras are among the sensors typically employed

by recent SLAM systems. Numerous RGB-D SLAM algorithms have been explored and

assessed using publicly available datasets without taking into account sensor specifica-

tions or image capture modes that might increase or reduce localization accuracy. In this

chapter, we discuss indoor localization while taking sensor specifications into account.

In this context, we highlight the impact of sensor acquisition modalities on localization

accuracy and suggest a parametric optimization strategy to improve localization accuracy

in a given environment. This protocol is used to improve a depth-related SLAM algorithm

parameter. Our own publicly available indoor dataset served as the basis for this analysis.

3.2 Related Works

Several works have been carried out to improve the visual SLAM, given its multiple ad-

vantages. Visual SLAM began by exploiting the images from a single camera called

a monocular system [1, 3, 138] and evolved with stereo systems to solve the problem of

scale drift[8, 139, 140]. Some of the stereo SLAM systems’ contributions include R. Mur-

Artal et al. [76]. They contributed with the stereo version of the ORB-SLAM that fixes the
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problem of scale drift in their monocular version [1]. The stereo version applies the same

approach of local bundle adjustment in a set of local keyframes so that the complexity is

unaffected by the map’s size, making it usable in large-scale environments. The algorithm

was evaluated on KITTI [89], EuRoC [90], and TUM [84] datasets. HOOFR-SLAM [8],

a recent algorithm with competitive performance, exploits the HOOFR extractor for fea-

ture detection and matching [57]. HOOFR-SLAM implements a processing structure that

maximizes parallelism and avoids the need to optimize camera poses by applying bundle

adjustments on keyframes or saving the history of map points by estimating the relative

poses of the current input frame with a set of previous neighboring frames. The optimal

pose is obtained by averaging the relative poses with weighted factors. Nguyen et al.

evaluated the algorithm on KITTI [89], Oxford RobotCar [94], Malaga [95], MRT [96], St

Lucia [97] and New College datasets [88]. PL-SLAM, presented by R. Gomez-Ojeda et

al. [139], provides a solution for low-textured environments, combining points and line

segments to operate robustly in a wider variety of scenarios, especially in those where

point characteristics are rare or poorly distributed in the image. They also introduce a

new bag of words that relies on combining the descriptive potential of the two types of

features. PL-SLAM was evaluated on KITTI [89] and EuRoC MAV [90] datasets. Unlike

previous work, Y. Liu [141] et al. designed a complete SLAM system, including the sen-

sor. Y. Liu et al. [141] proposed a real-time stereo SLAM system based on the bionic eye

inspired by the peripheral and central vision of the human eye. With the ability to mimic

human eye movements, stereo cameras can improve the SLAM system’s robustness in

low-textured environments by actively searching for rich textured area. Most of the previ-

ous works are evaluated on large publicly available datasets. As a result, the evaluation of

these algorithms lacks consideration of the sensor’s characteristics (Field of view, shutter

type, baseline, etc.) and their impact on the quality of the algorithm’s output.

3.2.1 RGB-D SLAM

The emergence of RGB-D sensors allowed the evolution of 3D dense reconstruction.

Many algorithms have exploited the RGB-D images to optimize performance and al-

low real-time execution, in addition to the embedding capability of these algorithms as
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on mobiles [142]. A well-known and open-source RGB-D system by Endres et al.[143]

includes the front-end part dedicated to compute frame-to-frame motion using feature

matching and the Iterative Closest Point (ICP). The back-end part performs optimization

of the pose-graph with loop closure constraints based on a heuristic search. R. Mur-Artal

et al. [76] have upgraded the ORB-SLAM2 for a loosely coupled use of RGB-D input.

ORB-SLAM2 uses depth information to synthesize stereo coordinates for the elements

extracted from the image. In this way, the system is adaptable whether the input is stereo

or RGB-D. M. Labbé et al. [110] have proposed an extension of the RTAB-Map library

to implement SLAM with different sensor configurations and processing capabilities. Q.

Fu et al.[144] proposed an RGB-D SLAM system using points and lines as features,

which improved trajectory performance in low textured scenes. Despite the improvement

brought by the cited works, their algorithms were evaluated on online datasets, which

neglects the impact of the sensor-algorithm coupling. For example, the BAD SLAM [83]

algorithm has shown that direct RGB-D SLAM algorithms are highly sensitive to cameras

with rolling shutters, RGB and depth sensor synchronization, and calibration errors. So

they evaluated their algorithm on their dataset acquired with synchronized global shutter

RGB and depth cameras. Therefore, the online datasets provide only a partial picture

of SLAM performance. Designing algorithms considering the sensor’s properties could

significantly improve the localization accuracy by exploring various sensors and their set-

tings and identifying the algorithm’s parameters directly related to the sensor used and

how it impacts the algorithm’s accuracy.

3.2.2 RGB-D Sensors Assessment

Few works have explored the characterization of RGB-D sensors. Notable works include

M. Carfagni et al. [145], who have characterized the Intel SR300 depth sensor using it as

a 3D scanner. This sensor’s performance was evaluated by applying the German standard

VDI/VDE 2634 on a raw dataset and a dataset with optimized parameters (Filters avail-

able on the cross-platform camera capture for Intel® RealSense™). Decoupling sensor

raw data analysis from the optimized one allows an understanding of the worst perfor-

mances of the device when used as a 3D scanner.
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The VDI/VDE guideline presents a method of measuring a reference object (sphere,

plane) used to define some essential characteristics of the analyzed optical system. Trace-

ability of 3D measurements is warranted by acceptance test and re-verification test. The

acceptance test involves the measurement of a calibrated artifact (sphere, a ball bar, and a

plane). The acceptance test is accepted if the error lies inside the limits specified by the

manufacturer, while the re-verification test is a repetition of the acceptance test over time.

Three characteristics are estimated in this evaluation. The first is the Probing Error, mea-

sured using a sphere and defined as the characteristic error of the system within a small

part of the measurement volume. The second one is Sphere Spacing Error (SS). SS is

the difference between the acquired distance and the "true" distance between the centers

of the two spheres (estimated from the point cloud of data using a best-fit sphere-fitting),

the artifact used is a bar connecting two spheres (ball-bar). This characteristic shows the

capability of the system to perform length measurements. Finally, the last characteristic

estimated is Flatness Measurement Error F, which is the range of the signed distances

of the measured points from the best-fit plane. This characteristic is measured using a

rectangular parallelepiped.

Another study, conducted by the same authors, was carried out on the Intel D415 sensor

based on the same German standard for 3D scans [146]. E. Lachat et al. [147] performed

an evaluation and calibration of the Microsoft Kinect depth camera to reconstruct small

3D objects. To our knowledge, most of the work carried out for the characterization of

depth sensors is related to 3D scanning and small 3D object reconstruction. This chapter

proposes an approach to characterize the RGB-D sensor for SLAM applications. Our

approach involves studying the different acquisition modalities and the impact of each

modality’s characteristics on the quality of the algorithm’s output. A sensor-algorithm

coupling is performed by identifying the algorithmic parameters directly correlated with

the RGB-D sensors and by proceeding to analyze the system input and output quality.
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3.3 Studied RGB-D SLAM approaches

3.3.1 ORB-SLAM2

ORB-SLAM2 is a feature-based method that computes the camera trajectory and a sparse

3D reconstruction [76]. It includes the three perception variants of the approach: monoc-

ular, stereo and RGB-D. ORB-SLAM is recognized for its ability to reuse the map, to

close the loop and to perform re-localization. It is structured in three processing threads:

The tracking thread, localizes the camera every frame, by finding feature matches in the

local map and minimizes the re-projection errors by applying motion-only Bundle Ad-

justment (BA). The local mapping thread manages the local map and optimizes it by

performing local BA. Moreover, the loop closing thread detects large loops and corrects

the accumulated drifts by performing graph-pose optimization. A general overview of the

system is shown in Figure 3.1. In this study, we focus on the pre-processing input module,

Figure 3.2, in the Tracking thread.

Tracking

Local 
mapping

Loop
Closing

Full Bundle
Adjustment (BA)

Stereo/RGB-D frame
Keyframe

Keyframe

Figure 3.1: Overview of the ORB-SLAM2 thread system. We operate on the pre-
processing input module inside the Tracking thread.
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ORB extractor

Generate Stereo
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Stereo Keypoints /
Mono Keypoints

Rectified Stereo

ORB extractor

Generate Stereo
Coordinate

Left image Right image

Stereo Keypoints /
Mono Keypoints

ORB extractor

Figure 3.2: In the tracking thread, the stereo and RGB-D inputs are pre-processed to
provide the same input data used throughout the system regardless of the input sensor[76]

The stereo ORB-SLAM is based on ORB extractor, which is a binary descriptor based on

BRIEF [60]. It generates the stereo keypoints with ORB coordinates on the left and the

horizontal coordinate of the right match, which are defined as follows: (ul,vl,ur) where

(ul,vl) are the coordinates in the left image, and ur is the horizontal coordinate in the right

image.

While for an RGB-D input, the Tracking thread extracts the features from the RGB image

and for each feature with the coordinates (uL,vL), it transforms the depth value d into a

virtual right coordinate ur, as shown by Equ. 3.1.

ur = ul− fx ·
b
d

(3.1)

In addition to the camera’s intrinsic parameters, the ORB-SLAM2 has three parameters

that must be adjusted before it is launched. These parameters are the keypoints number,

the FAST threshold, and the close/far threshold.

The number of keypoints defines the maximum number of corners to be detected in the

entire image. Figure3.3 shows how increasing the keypoints number leads to a significant

rise in execution time. Furthermore, a higher number of keypoints can result in a larger

error.
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Figure 3.3: Impact of the number of keypoints on the execution time and on the Absolute
Trajectory Error (ATE) measured on the three sequences: Digiteo_seq1 (in IR-D mode),
Digiteo_seq2 (in RGB-D active-stereo mode), and Digiteo_seq3 (in IR-D mode), with the
FAST and DepthThreshold parameters set at their default values.

The FAST threshold is used to test each pixel, whether it is a keypoint or not, based on

the intensity of the neighboring pixels. The ORB-SLAM uses an adaptive threshold, so

the min threshold is used if no point is detected in the cell with the initial threshold.

Finally, the close/far threshold is a coefficient which is multiplied by the baseline to es-

tablish a threshold distance over which classification of far and near keypoints is per-

formed. This parameter is tied to the sensor since it depends first on the sensor baseline

and secondly on the depth value of the keypoints. Paz et al. [148] proposed a simulated

experiment to study the effect of the linearization in 3D and Inverse depth representation

when a point is initialized using the stereo information. They consider a point between

the two cameras at different distances and they plotted the uncertainty region of the 3-D

representation. They found that for shorter distances (5m) the uncertainty covers the real

distributions quite accurately and for longer distances uncertainty in closer region to the

camera is overestimated and overconfident for far distances. Thus, based on [148] Mur-

Artal et al. [76] classified keypoints as near if their associated depths are 40 times less than

the stereo/RGB-D baseline. Otherwise, they are considered far. Near keypoints are de-

voted to compute scale, translation and rotation since their depth is accurately estimated.

On the other hand, far points provide accurate information on rotation, but uncertain infor-

mation on scale and translation. Far points are triangulated when multiple views support

them.
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Finally, the monocular keypoints are defined by two coordinates xm =(uL,vL) in the image

on the left. These are the points for which a stereo match could not be found or which

have an invalid depth value in the RGB-D case. These points are only triangulated from

multiple views and used only to contribute to the estimation of rotation and translation

[76].

3.3.2 RTAB-Map

RTAB-Map is a graph-based algorithm, fed with RGB-D or stereo input, odometry and

extrinsics defining the position of the sensor in relation to the base of the robot. The inputs

are then synchronized, and the Short-Term Memory (STM) creates a node that stores the

odometry pose, raw sensor data. RTAB-Map has a memory management approach that

limits the size of the graph in order to operate in large scale environments. RTAB-Map’s

memory consists of Working Memory (WM) and Long-Term Memory (LTM). When a

node is transferred to LTM, it is no longer available for modules in WM. When RTAB-

Map’s update time exceeds the fixed time threshold, some nodes in WM are transferred to

LTM to limit the size of WM and reduce the update time. The nodes that remain in WM

are determined by a weighting mechanism to identify which locations are more reliable

than the others. The outputs provided are Map Data which includes the latest added nodes

with sensor data and graph, Map Graph, Corrected Odometry, 3D occupancy grid, Dense

Point Cloud and 2D occupancy Grid. Figure 3.4 summarizes the main blocks of RTAB-

Map [110].
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New
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New link(s)

Transferred Nodes Retrieved Nodes

Figure 3.4: Block diagram of RTAB-Map: The algorithm gets required inputs that in-
clude the transformation that defines the sensors’ position to the robot’s base, camera
inputs, and a chosen odometry from any source. After sensor synchronization, the short-
term memory (STM) creates a node memorizing the odometry pose and the sensor’s data.
These inputs are fed to the graph-SLAM, and we get the Map Data containing the latest
added node with sensor data and the graph as output. The 3D and 2D occupancy grids are
optional [110].

Visual odometry was chosen as the input of the RTAB-Map which uses Stereo or RGB-

D images as shown in Figure 3.5 from [110]. The Frame-To-Frame (F2F) approach is

adopted which registers each new frame against the last keyframe. For feature detec-

tion, GoodFeaturesToTrack (GFTT) + ORB are used. For Stereo images, stereo matching

is performed using the optical flow based on Lucas-Kanade’s iterative method. Feature

matching, applies the optical flow directly on the features without computing the descrip-

tors allowing a faster matching. Motion prediction is a model for predicting the location

of features in the current frame, based on previous transformations. This limits the search

window when matching. This is useful in dynamic environments or with repetitive tex-

tures. After the matches are computed, the transformation is calculated by the RANSAC

Perspective-n-Point (PnP) method. The resulting transformation is refined by the local

bundle adjustment on the features of the last keyframe. Finally, if the number of inliers

calculated during the motion estimation is below a fixed threshold, the keyframe is re-

placed by the current frame.
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Figure 3.5: RTAB-Map’s Visual Odometry block diagram of Frame-To-Frame (F2F) ap-
proach: The process starts with applying GoodFeaturesToTrack (GFTT) and ORB on the
captured frame to detect features, then Features are matched using optical flow without
having to compute the descriptors. Motion prediction predicts where features will lie in
the current frame based on the previous motion transformation. Next, Perspective-n-Point
(PnP) RANSAC used the computed correspondences to find the transformation of the cur-
rent frame. The local bundle adjustment is used to refine the transformation, and finally,
the pose is updated [110].

3.4 Study of the Sensor-Algorithm Parameters Coupling

Our parametric optimization protocol of sensor-algorithm coupling consists of evaluating

the algorithm on different sequences with different acquisition modes. Then, the acquisi-

tion mode with the lowest error is used to globally tune the parameters of the algorithm.

We focus on the optimization of the ORB-SLAM2 algorithm. ORB-SLAM2 has three

main parameters related to the algorithm input, they are: the number of features, the

FAST detector threshold and the depth threshold. The number of features relies on the

FAST detector, which depends on the exposure [149]. Both parameters are not tied to

the depth camera. We have identified a physically correlated parameter to the sensor:
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the depth threshold [148]. This parameter allows the algorithm to classify near and far

features. This parameter is tightly correlated to the error distribution of the RGB-D ac-

quisition mode. We have evaluated the value of this parameter over a well-defined range.

The various tests were carried out on a computing station, equipped with a 24-core Intel

Xeon W-2265 processor running at 3.5GHz, 64GB RAM and an NVIDIA Quadro RTX

6000 graphics card with 4608 CUDA cores. We calculated the Euclidean trajectory error

and the number of tracked points on the map for each frame. This protocol classifies input

(Number of points tracked in the map seen by the current frame) and output (Euclidean

distance between a current pose and the one in the referenced trajectory) conditions of the

algorithm in order to qualify its performance. Inspired from [150, 151], we proposed a

parametric optimization based on the following confusion matrix Equ. 3.2.

X =



T P (Ei ≤ s)∧ (Ei ≤ Ei−1)∧ (Mi ≥Mi−1)

FP (Ei ≤ s)∧ (Ei > Ei−1)∧ (Mi < Mi−1)∧ (Mi < M̄)

T N (Ei > s)∧ (Ei > Ei−1)∧ (Mi < Mi−1)

FN (Ei > s)∧ (Ei ≤ Ei−1)∧ (Mi ≥Mi−1)∧ (Mi > M̄)

(3.2)

X denotes the decision on a pose in the confusion matrix. TP stands for True Positive,

FP for False Positive, TN for True Negative and FN for False Negative. Ei represents the

Euclidean distance between a current pose and the one in the referenced trajectory. s is

a given admissible positioning error. Mi represents the number of points tracked in the

map seen by the current frame, and M̄ represents the average number of points tracked

in the map over the whole trajectory. A position is considered TP if its error is less than

an admissible error and does not diverge (i.e., the current error is less than or equal to the

previous error) and the input quality, represented in the number of tracked points, is not

degraded. The FP positions have a reduced error but diverge, and the quality of the input

is reduced. TN positions have a significant error that diverges, and the quality of the input

is degraded. Finally, the FNs are defined by a significant converging error, and the input

quality is good.
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After calculating the position in the confusion matrix of each point, the Receiver Oper-

ating Curve (ROC) curve is plotted for all parameter values. The ROC is a plot used to

diagnostic the performance of classification model using two parameters: True Positive

Rate (TPR) and False Positive Rate (FPR) defined as follow:

T PR = T P
T P+FN

FPR = FP
FP+T N

(3.3)

The optimum parameter value is identified as the one with the highest True Positive Rate

(TPR) and the lowest False Positive Rate (FPR).

3.5 Experimental results

This study was carried out using the Intel RealSense D435i camera. The ORB-SLAM2

and RTAB-Map are run on different datasets. Identification of the best-suited acquisition

mode is first investigated. Next, a sensor-algorithm parameters coupling is carried out

through a parametric optimization protocol. Then, the depth-based method is compared

to stereo based method. The translation and rotation errors are evaluated for each dataset

compared to the referenced trajectory. Finally, the effect of the projector on trajectory

quality is investigated.

3.5.1 Comparison of Depth-based SLAM and Stereo-based SLAM

algorithms

In this section, we compare Depth-based SLAM algorithms against their Stereo-based

SLAM version. First, the depth-based SLAM using RGB images and IR images (with the

projector off) is tested to find the optimal mode in each environment.

3.5.1.1 Passive IR-D SLAM vs Passive RGB-D SLAM

The D435i camera is equipped with an RGB camera and two IR cameras. The RGB

camera is a rolling shutter type and has a Field of View (FOV) of 69.4° × 42.5°, while
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the IR camera is a global shutter type and has a Field of View (FOV) of 86° × 57°. We

examine the distinction between the RGB and IR images regarding the quality of the

trajectory. Settings required to ensure proper operation of the algorithm on the dataset

are shown in the Table 3.1 and 3.2. The number of features has been set to 1000 for

a narrow environment (Digiteo_seq1 & Digiteo_seq2) and 2000 for a wide environment

(Digiteo_seq3).

Parameter RGB-D IR-D
Number of features 1000/2000 1000/2000

Depth threshold coefficient 20 50
FAST initial threshold 20 20
FAST min threshold 7 7

Table 3.1: Passive RGB-D SLAM and Passive IR-D SLAM front-end parameters for
ORB-SLAM2

Parameter RGB-D & IR-D
Odometry strategy Frame to Frame (F2F)
Feature detector GFTT + ORB

Motion Prediction 0
Motion Estimation 20

Table 3.2: Passive RGB-D SLAM and Passive IR-D SLAM front-end parameters for
RTAB-Map

Passive RGB-D ORB-SLAM2 and Passive IR-D ORB-SLAM2 trajectories are plotted on

the same Figure 3.6. Same for the RTAB-Map in the Figure 3.7. The translational error

and the rotational error for Passive RGB-D SLAM and Passive IR-D SLAM are computed

with respect to the referenced trajectory. Table 3.3 summarizes the results.
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Figure 3.6: Passive RGB-D ORB-SLAM2 vs. Passive IR-D ORB-SLAM2 in Digi-
teo_seq1, the baseline is plotted in blue, RGB-D ORB-SLAM2 in magenta and IR-D
ORB-SLAM2 in green. We can see in the zoom on the right that the IR-D follows the
baseline perfectly, while the RGB-D drifts during a rotation.
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Figure 3.7: Passive RGB-D RTAB-Map SLAM vs. Passive IR-D RTAB-Map SLAM in
Digiteo_seq1, the baseline is plotted in blue, RGB-D RTAB-Map in magenta, and IR-D
RTAB-Map in green. The zoom in the right shows again that the IR-D follows the baseline
perfectly, while the RGB-D is slightly offset.
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Passive RGB-D Passive IR-D
RTAB error % ORB error %

RTAB ORB RTAB ORB

Digiteo_seq1
Tr (m) 0.13 0.09 0.1 0.08

23.08 _ 11.11 _
Rot (°) 29.6 15.31 27.98 11.1

Digiteo_seq3
Tr (m) 0.21 0.28 0.21 0.16

0 42.86 _
Rot (°) 19.46 9.48 19.91 9.39

Table 3.3: Translational and Rotational Error of ORB-SLAM2 and RTAB-Map SLAM
with Passive IR-D and Passive RGB-D

According to the results of Table 3.3, it is worth noting that with the IR-D mode, for the

ORB-SLAM2, the error is minimized by 1cm for a narrow environment and 12cm for a

wide environment scene. Accuracy improvement is mainly due to the characteristics of

the sensor used in each situation. The IR-D sensor provides a wider field of view, allow-

ing visual landmarks to be tracked over more extended periods, which should increase the

accuracy of pose estimation and increase robustness since the visual overlap between suc-

cessive images is greater [152]. In addition, the IR camera has a global shutter, unlike the

RGB camera, which is a rolling shutter type. A rolling shutter camera exposes the lines

sequentially with a delay, which causes significant distortion for fast-moving objects or

those exposed to sudden brightness changes. Ignoring the rolling shutter can lead to sig-

nificant drift in the estimated trajectory and inaccurate 3D reconstruction [153]. Another

factor contributing to this difference in performance is that RGB-D alignment can be in-

accurate due to uncertainties caused by hardware synchronization and digitization imper-

fections, unlike IR images which represent the advantage of being perfectly aligned, cal-

ibrated, and overlapped with the depth maps and are perfectly time-synchronized [154].

For the RTAB-Map, we can see no difference between the two modes in the basement

parking environment, whereas the error is reduced by 3cm in laboratory corridors. As

RTAB-Map has many parameters, it is not easy to find the proper parameters directly re-

lated to the sensor to visualize the impact of the sensor-algorithm coupling, unlike ORB-

SLAM2, which has only a few parameters.

3.5.1.2 Depth threshold optimization

Since the IR-D mode gave better results in localization of at least 11%, it was retained

for an in-depth study according to the depth threshold of the ORB-SLAM2. To this end,
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we performed an automated test of the different values from 5 to 250, corresponding by

multiplying by the baseline (0.05m) at an interval of 0.5m to 15m. We have empirically

chosen a tolerable error s of 7cm and the average number of tracked points M̄ over the

trajectory at 500 since several scenes in the sequence lack textures. For each sequence, a

ROC curve was established, as shown in Figure 3.8. The curves have been limited to a

reduced scope containing the global minimum.
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Figure 3.8: The ROC curve for different depth threshold coefficients. On the left, the
ROC curve of the Digiteo_seq1, and on the right, the ROC curve of the Digiteo_seq3.
The curves have been restricted to the interval containing the global minimum values.

Figure3.9 shows the error as a function of the depth threshold coefficient in Digiteo_seq1

and Digiteo_seq3. The variation does not follow a specific pattern. Therefore, selecting

an optimal value simply by tweaking the parameter directly is challenging. However, the

suggested optimization method gives us an insight into the optimal value to select.
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Figure 3.9: Variation of the MEE as a function of the depth threshold coefficient on the
two sequences Digiteo_seq1 (right) and Digiteo_seq3 (left). The curve does not follow a
specific trend, making it difficult to choose an optimal value.

Table 3.4 shows TPR, FPR, and the MEE values for different depth threshold values.

The table shows that the values 115 and 128 allow a mean euclidean error (MEE) of

0.07m. As the mean of tracked points M̄ is very high, we obtain many false positives for

some parameter values. These points correspond to poses with an error lower than the

admissible error but with a lower number of the mean tracked points M̄, which means

that the motion estimation is correct but unreliable. This kind of situation can happen in

static environments. FPs are not tightly correlated to the average error of the trajectory.

Indeed, FPs represent less reliable poses (better pose estimates with fewer tracked points)

in contrast to TP (where the error is reduced and more points are tracked). Thus, we aim

to get the optimal parameter value based on the maximum number of reliable poses.
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Depth threshold coefficient TPR FPR MEE(m)
114 0.35 0.14 0.1
115 0.41 0.16 0.07
118 0.22 0.9 0.09
126 0.38 0.3 0.08
128 0.49 0.43 0.07

(a) Digiteo_seq1

Depth threshold coefficient TPR FPR MEE(m)
50 0.14 0.02 0.16
54 0.48 0.28 0.08
60 0.06 0.02 0.2
61 0.54 0.12 0.08
65 0.91 0.72 0.05

(b) Digiteo_seq3

Table 3.4: The values of TPR, FPR, and the MEE for different depth threshold values.
The error variation as a function of the depth threshold does not follow a clear trend.
However, we note that the coefficients with high TPR provide a reduced error.

The results of absolute trajectory error and relative pose error are shown in Table 3.5 for

the selected optimal values.

Optim. param. value ORB IR-D (Tr/Rot) ORB IR-D optim (Tr/Rot) Error %
Digiteo_seq1 128 0.08m / 11.10° 0.07m / 11.11° 12.5 _
Digiteo_seq3 65 0.16m / 9.39° 0.05m / 9.4° 68.75 _

Table 3.5: IR-D errors in the ORB-SLAM2 after optimization

It should be noted that the depth threshold varies according to the environment. Also,

the optimization has reduced the error by 68.75% in the Digiteo_seq3 dataset and 12.5%

in the case of the Digiteo_seq1 dataset. This enhancement clearly shows how sensor-

algorithm parameters coupling can significantly affect SLAM localization accuracy.

3.5.1.3 IR-D SLAM vs Stereo Vision SLAM

Based on the parameters found in Table 3.1,3.2, we compare IR-D ORB-SLAM2 and IR-

D RTAB-Map to their stereo versions. The goal is to determine the rate of improvement

in terms of accuracy of an RGB-D based algorithm versus a stereo based algorithm. The
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IR-D SLAM and IR-Stereo Vision SLAM algorithms are compared with the referenced

trajectory, where the translational and rotational errors are computed in Table 3.6.

IR-Stereo Passive IR-D
RTAB error % ORB error %

RTAB ORB RTAB ORB(Optim)

Digiteo_seq1
Tr (m) 0.14 0.14 0.1 0.07

28.57 _ 50 _
Rot (°) 29.11 11.08 27.98 11.11

Digiteo_seq3
Tr (m) 0.21 0.23 0.21 0.05

0 78.26 _
Rot (°) 20.23 9.39 19.91 9.4

Table 3.6: Translational and Rotational Error of ORB-SLAM2 and RTAB-Map SLAM
with Passive IR-D and Stereo

For the optimized ORB-SLAM2 IR-D, the error is reduced by 78.26% in the Digiteo_seq3

dataset and 50% in the Digiteo_seq1 dataset. For RTAB-Map, we have a similar result

between IR-D and stereo for the Digiteo_seq3 sequence and a slight improvement in the

Digiteo_seq1 sequence. These results confirm that the sensor’s choice is not enough to

improve the accuracy, but the algorithm parameters must also be optimized according to

the perception system.

3.5.2 RGB-D SLAM: Active vs Passive

In this section, we compare the impact of the IR projector turned on and turned off on the

trajectory for two sequences. The results were compared to the referenced trajectory, as

shown in Figure 3.10. The ATE and RPE are calculated in the Table 3.7.
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Figure 3.10: RGB-D ORB-SLAM2 (First row) and RGB-D RTAB-Map SLAM (Second
row): Active vs Passive mode in Digiteo_seq2 The right and left images represent the
zoom in the trajectories. They show how the active stereo approach (represented in green)
sticks well to the reference (represented in blue) in the turns, unlike the passive stereo
(represented in magenta), which drifts in and after the turns.

Passive RGB-D Active RGB-D
RTAB error % ORB error %

RTAB ORB RTAB ORB (Optim)

Digiteo_seq2
Tr (m) 0.11 0.06 0.07 0.04

36.36 _ 33.33 _
Rot (°) 37.76 13.32 36.87 15.49

Digiteo_seq3
Tr (m) 0.21 0.28 0.43 0.25

104.76 ^ 10.71 _
Rot (°) 19.46 9.48 33.81 8.46

Table 3.7: Translational and Rotational Error of ORB-SLAM2 and RTAB-Map SLAM
with Passive and Active RGB-D

By analysing the errors, we can see that the trajectory’s accuracy based on active depth

is slightly better than that based on passive depth. This slight difference is due to the

depth maps, which are denser in the active case allowing more features with a valid depth

value. Also, we can see that RTAB-Map, in the case of Digiteo_seq3, requires a study of

its parameters to take advantage of the projector.
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3.6 Conclusion

In this chapter, we presented the evaluation of various trajectories based on the camera’s

different modes of acquisition. Passive IR-D SLAM vs. Passive RGB-D SLAM was

compared, and it was deduced that the depth threshold parameter for ORB-SLAM2 does

not follow a specific trend. A method based on the ROC curve was established to find

an optimal depth threshold value for the IR sensor. Using an IR camera compared to

the RGB camera decreased ATE error by 23.08% for RTAB-Map in Digiteo_seq1 and

82.14% for optimized ORB-SLAM2 in Digiteo_seq3. The use of the D435’s IR camera

offers a significant advantage as it has a larger field of view for tracking features in blind

spots, and the fact that the depth maps are also aligned with the left IR camera means

that no further alignment processing is required. Based on the parameters found in the

IR-D vs. Passive RGB-D SLAM comparison, the IR-D SLAM algorithm was compared

with Stereo Vision SLAM, and we found a decrease in the translational error of 78.26%

when using IR-D data for ORB-SLAM2 in Digiteo_seq3 and 28.57% for RTAB-Map

in Digiteo_seq1. Finally, we compared the active and passive modes. We deduced that

the active mode gives a more dense depth map; therefore, we get more accurate results

since more features are used to calculate translation, rotation, and scaling. An RGBD-

based SLAM system design must establish a strong coupling of the sensor’s algorithm’s

parameters, especially those related to the field of view, depth threshold, and IR projector.

Considering sensor characterization can increase the localization accuracy for robotics

applications in indoor environments. In the next chapter 4, we will extend the HOOFR-

SLAM toward an RGB-D sensor. Based on the results of this chapter, we will apply

the optimization protocol to find the appropriate configuration to ensure high localization

accuracy. We will also use further algorithmic optimization to improve the performance.
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Chapter 4

RGB-D HOOFR-SLAM

4.1 Introduction

Simultaneous RGB-D localization and mapping (SLAM) have gained popularity due to

the low cost and advantages of the RGB-D camera. Several efforts have been made to

develop RGB-D SLAM. Unfortunately, these works have not been evaluated and extended

to outdoor vehicle applications. In this chapter, we present an extension of HOOFR-

SLAM to an enhanced RGB-D modality applied to an autonomous vehicle in a dynamic

outdoor environment. We propose a feature filtering method based on depth maps to

improve the algorithm’s performance in dynamic environments. Additionally, algorithmic

optimizations have been made to improve performance. In the previous chapter, we have

seen how sensor-algorithm coupling is essential in enhancing localization accuracy in

indoor environments. In this chapter, we rely on this optimization protocol to improve

HOOFR-SLAM in outdoor environments. Finally, we use a hardware-in-the-loop (HIL)

approach to validate the algorithm on an embedded architecture and a dataset collected

by an instrumented vehicle of the laboratory.

4.2 Related Works

There are two types of visual SLAM: feature-based and direct methods. Because of their

low complexity, feature-based algorithms are the most commonly utilized for embedded
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real-time processing [8, 109]. However, this SLAM category is challenging in an outdoor

environment with dynamic objects such as pedestrians, cars, and others. Dynamic objects

are a significant annoyance while mapping and tracking. When the sky is cloudy, several

outliers can be detected on the clouds, according to [155]. Several works have been con-

ducted to handle this issue using semantic segmentation based on Deep Neural Networks

(DNNs) or Convolutional Neural Networks (CNNs) [155, 156, 157, 158]. Filtering fea-

tures improve localization accuracy. However, this pre-processing is an additional task

that increases the computation time. Because of the processing time issue, embedding

such systems in vehicles is not appropriate.

4.2.1 RGB-D SLAM

RGB-D sensors solved the problem of scale from which monocular SLAM suffers. They

even outperformed the stereo sensors [159] by providing a dense depth map, allowing

the 3D reconstruction of the environment with less complexity. The stereo computing is

offloaded to the camera’s built-in CPU, thus reducing the computation of the front-end

part of the algorithm, which favors this type of sensor for embedded systems [142]. In

this context, several algorithms have been developed using the RGB-D sensor. A well-

recognized algorithm developed by R. Mur-Artal et al. is monocular ORB-SLAM [1],

which has been extended with an RGB-D input [76]. ORB-SLAM2 uses depth informa-

tion to generate the stereo coordinates, thus making the algorithm agnostic to the input

type. RGB-D ORB-SLAM2 has only been evaluated on indoor datasets [84]. A geomet-

ric point and line constraint model (PL-GM) using an RGB-D camera has been proposed

by C. Zhang [160]. This model uses the ORB extractor [161], Line segment detector

(LSD) [162], and the depth map to retrieve the 3D points and lines; these are combined

with the 2D points and lines to construct a geometric constraint model. The algorithm

was evaluated only on two indoor public datasets [84, 92]. To sum up, the various RGB-

D SLAM algorithms proposed in the literature have only been assessed on indoor datasets,

which raises the question of how well they perform in an outdoor environment?
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4.2.2 Feature filtering

To achieve more precise localization, several researchers are concentrating on develop-

ing solutions to the problems presented by visual SLAM in dynamic environments. M.

Kaneko et al. [155] proposed a method that is based on deep learning semantic segmen-

tation (DeepLab v2 [40]) to generate masks that filter out the detected features on mobile

objects and the sky. This method solves the problem that when dynamic objects occupy

a large part of the image, the ratio of outliers is dominant with respect to the features

belonging to the carrier motion, which makes the RANSAC method inefficient. How-

ever, semantic segmentation is time-consuming and prevents the system from operating

in real-time. J. Lee et al. [163] incorporated ORB-SLAM2 with semantic segmentation

based on deep learning. Segmentation is applied to downsampled keyframes in parallel

with the mapping thread to overcome the real-time execution problem. Another RGB-D

SLAM algorithm by H.Wei et al. [5] uses the GMS (Grid-based Motion Statistics) fea-

ture point matching method with the K-means clustering algorithm to identify dynamic

areas in the images and preserve the static information of dynamic environments. So the

algorithm increases the number of reliable feature points while keeping the environment

features. The algorithm was evaluated on the public indoor dataset [84] and showed im-

proved performance compared to ORB-SLAM2. The DS-SLAM algorithm introduced

by C. Yu et al. [157] represents an implementation of semantic segmentation using Seg-

Net [164] combined with a motion consistency checking method to reject the features

on moving objects. The algorithm showed significant improvement when compared to

ORB-SLAM2 on the TUM RGB-D dataset [84]. Also, the segmentation thread is exe-

cuted with a frame rate of 26 FPS, and the whole algorithm is 16 FPS. W. Xie et al. [165]

used MaskRCNN to segment active moving objects (humans) and the mask inpainting

method to repair the incomplete mask. They used motion detection based on Lucas–

Kanade optical flow method for passive moving objects such as human-pushed chairs.

This method includes motion and stillness recognition modules, making motion detection

under a moving camera more reliable. The algorithm was evaluated in an indoor envi-

ronment, and the process of semantic segmentation and mask inpainting is a cumbersome

task for real-time embedded systems. Y. Liu et al. [166] used dynamic feature detection
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using double K-means clustering and a static weight calculated using a static probability

and the number of static observations to determine whether each feature is static or not.

They also proposed a modified version of RANSAC based on static weights to improve

its robustness in dynamic environments. The algorithm has been evaluated only on an in-

door dataset and faces some issues in environments with high dynamics or in the case of

high or low illumination. Barsan et al. [167] solved the problem of dynamic environments

by simultaneously reconstructing the background, moving and potentially moving objects

separately. They use an instance-aware semantic segmentation (Multi-task Network Cas-

cades (MNC) [168]) to recognize dynamic and potentially dynamic objects from a single

frame. The system runs at 2.5 FPS when evaluated on a PC. They identified that the

instance-aware semantic segmentation was the primary bottleneck, making the algorithm

unsuitable for real-time positioning tasks. Table 4.1 presents a summary of the SLAM

systems presented above.

As our thesis aims to design a SLAM system for autonomous vehicles, the throughput rate

must be 20 to 30 FPS to respect real-time constraints. The challenge is to find a trade-

off between speed and localization accuracy in a dynamic environment. Therefore, we

chose to implement a feature filtering based on depth consistency assumption, i.e., only

the keypoints with a depth value consistent with the depth values of neighboring pixels are

used. This approach demonstrated an accurate localization with real-time performance.
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4.3 RGB-D HOOFR-SLAM algorithm

4.3.1 Stereo HOOFR-SLAM algorithm overview

HOOFR-SLAM is a visual SLAM algorithm based on the Hessian ORB - Overlapped

FREAK (HOOFR) bio-inspired extractor. This extractor, composed of the ORB detector

with the Hessian score and the bio-inspired FREAK descriptor with enhanced overlap,

has improved reliability and runtime during matching. HOOFR results showed competi-

tive performance with SURF and SIFT with faster speed and low computational cost like

ORB, but exceeding this latter in performance [57]. The Stereo HOOFR-SLAM consists

of two main blocks, as shown in Figure 4.1. The first block is devoted to sensor data

processing and ego-motion estimation, known as the front-end task. The second block

represents the SLAM kernel and consists of the error graph optimization and loop closure

tasks. The algorithm gets as an input stereo image. The left image is used to estimate the

relative motion of the camera. The right image is used to compute the scale using stereo

triangulation. For each frame, the HOOFR extractor is applied to detect and describe the

features used for pose estimation and loop detection. The stereo matching provides the

real scale by computing the ratio of the real distance of the landmarks and their triangu-

lated distances. In the mapping thread, the features are matched with those of the previous

left images. Each previous image with a successful transformation estimation is called the

previous neighbor frame (PNF). The translation, rotation, and landmark positions are ex-

tracted from the essential matrix using triangulation. Due to its high processing cost, the

bundle adjustment is substituted by windowed filtering to estimate the current camera po-

sition from a set of PNFs. Each predicted pose of the PNFs is associated with a confidence

weight, so the optimal pose is the mean of all predictions by their respective weights [8].

The loop closure thread is executed in parallel with the mapping thread. Each left frame is

queried in the set of keyframes to find the max likelihood. The current image is considered

a new keyframe in a low-match score case and added to the pose graph. Potential loop

closure is detected only when the pose of the keyframe with a high matching score is far

from the current frame in the pose graph. The loop closure is then validated by computing

the relative transformation between the current frame and the matched keyframe [8].
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Figure 4.1: Functional blocks of the algorithm Stereo HOOFR-SLAM. The algorithm
takes stereo images as input. The HOOFR extractor is applied on the left image to detect
and describe keypoints. Two threads are launched in parallel: The mapping thread used
for odometry and the loop detection thread used for loop closure. Finally, the pose graph
is optimized in the map processing block [8].

4.3.2 RGB-D HOOFR-SLAM

The RGB-D HOOFR-SLAM takes as input RGB images and the corresponding depth

maps. The RGB images must be pre-aligned to the depth maps. This step involves estab-

lishing the correspondence between the RGB pixels and the depth value, since the RGB

and depth images are sampled from two different spaced cameras. The alignment is done

by projecting the depth value from the IR camera plane to the RGB camera plane. From

the depth map, we estimate the corresponding 3-D coordinate (xIRworld,yIRworld,zIRworld)

from each pixel location (xIR,yIR) as below:

xIRworld = zIRworld
fIR
· (xIR− xIRc)

yIRworld = zIRworld
fIR
· (yIR− yIRc)

(4.1)
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where (xIRc,yIRc) is the principal point location and fIR is the focal length of the IR

camera. Then, the 3D coordinates in the IR camera frame are transformed into the 3D

coordinate system defined by the RGB camera using an affine transformation.


xRGBworld

yRGBworld

ZRGBworld

= [R|T ]


xIRworld

yIRworld

ZIRworld

 (4.2)

where R∈ R3×3 is the rotation matrix and T∈ R3×1 is the translation vector. Finally,

we can find the corresponding pixel in the RGB image by projecting the 3D coordinates

defined in the RGB camera frame to the RGB image plane as


xRGB

yRGB

1

=
fRGB

ZRGBworld


xRGBworld

yRGBworld

ZRGBworld

 (4.3)

with fRGBis the focal length of the RGB camera. RGB-D alignment can be inaccurate due

to uncertainties caused by imperfections in hardware synchronization and digitization.

Therefore, we use the IR camera images instead of the RGB camera. The IR images

represent the advantage of being perfectly aligned, calibrated, and overlapped with the

depth maps. They are perfectly time-synchronized. Ultimately, it saves us the additional

computational overhead of aligning color-to-depth [154].

In the Stereo HOOFR-SLAM, the workflow starts with features detection and description,

followed by stereo matching. Then the mapping thread is launched. In RGB-D HOOFR-

SLAM, we propose a modified HOOFR extractor based on feature filtering using depth

maps provided by the RGB-D sensor. This approach improves localization accuracy by

eliminating features with unreliable depth, including features detected on moving vehi-

cles, clouds and those with invalid depth values (zero), as shown in Figure 4.2. This way,

only the relevant keypoints are kept and the number of keypoints to be described and

matched is less, which reduces the processing time.
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Figure 4.2: Many of features are detected on the clouds, which implies that most points
are too far away to compute translation; we can also notice points detected on the bus,
which confuses the tracking and mapping process.

The depth-based filtering method uses the Median Absolute Deviation (MAD) from the

median applied on depth maps, as detailed on the Algorithm 4.1.

Algorithm 4.1 MAD applied to depth maps
//Convert depth image to a vector Z
For each pixel do

if (z_pixel > 0 and z_pixel<65535)
Z← z_pixel;

end if
end for
//Find the median of the depth vector by partial sorting elements
//And then taking the middle value (odd case)
//or the average of the middle two values (even case)
z̄← findMedian(Z);
//Calculate the absolute difference for each observation from the median
For each z_pixel in Z

V← abs( z_pixel - z̄);
end for
//Estimate the standard deviation using the median of V
s← 1.4826*findMedian(V);

This approach identifies outlier points based on their depth value. The method is robust

against outliers and also computationally inexpensive. In this method, we compute the

median z̄ of depth pixels (including non-zero and non-saturated values). Then, we calcu-

late the absolute difference for each depth value from the median. V = |Z− z̄|. Finally,

we estimate the standard deviation s = 1.4826 ·median(V ), where the factor 1.4826 was
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chosen so that the expected value of s is equal to the standard deviation for normally dis-

tributed data [170, 171]. A point is considered an outlier if : d > t · s, where d is the depth

value, and t is the decision threshold [171]. Experimentally, we found that the value t = 3

gives the best results.

We tested the algorithm with and without filter on a sequence of 100 images on a laptop

equipped with an AMD Ryzen 9 4900HS processor and 24GB in memory. Table 4.2

shows the comparison in terms of the absolute trajectory error (ATE) and the program’s

execution time. Filtering keypoints during the detection phase allowed a speedup of 1.45

and an error reduction of 80%, as only the relevant features are kept as illustrated in the

Figure 4.3, thus reducing the number of points processed by the further stages.

Without MAD Filter With MAD Filter
Speedup ATE Evolution

Exec. time (ms) ATE (m) Exec. time (ms) ATE (m)
64.47 0.7955 44.22 0.1592 1.45 -80%

Table 4.2: A comparison of the RGB-D HOOFR SLAM algorithm with and without the
MAD filter on a sequence of 100 images.

Figure 4.3: Keypoints distribution on the outdoor scene, before and after applying the
filter.In the two images on the left, we see that most of the features are detected in the sky
and on the bus. On the two images on the right, the keypoints are filtered.
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4.3.3 PROSAC

After the filtering, description, and matching, comes the stage of the pose calculation. In

the Stereo HOOFR SLAM version, the essential matrix was estimated by applying the

RANSAC scheme with a sub-pixel measurement error (me) to have an optimized model

without relying on optimization methods like the BA. Nguyen et al. found through exper-

iments that a measurement error of inlier in the RANSAC scheme less than 0.4 allows a

high localization accuracy. However, when applying a me= 0.4, the execution time dra-

matically increases. To solve this problem, Nguyen et al. proposed a solution to estimate

the essential matrix twice, the first time with me= 1 and the second time using the inliers

found previously with a me= 0.4. In the RGB-D HOOFR SLAM algorithm, since the

number of interest points is reduced in the detection step, we estimate the essential matrix

only once for a small value of me. In the worst cases, with few good points, RANSAC

will take a long time to find the solution. Therefore, we have changed the RANSAC

method to PROgressive Sample Consensus (PROSAC) as shown in the Algorithm 4.2.

This method is based on a progressive sampling of the points starting with the top-ranked

ones based on their quality factor, significantly saving computational time. In [172], the

authors demonstrated that PROSAC was more than a hundred times faster than RANSAC,

and in the worst case, they have identical behavior. We used Lowe’s ratio test [173] to

sort the matches. Lowe’s ratio is computed from two distances, the best match distance,

and the second best match distance. The best match is the one with the smallest distance,

while the second best match is considered random noise. On this basis, if the good match

cannot be distinguished from the noise at that moment, this good match must be rejected.

So, the matches are ranked on this criterion. The closer the ratio is to 1, the lower the

quality of this match.

Algorithm 4.2 Essential matrix estimation from matching set using PROSAC

1. Sort matches in ascending order based on Lowe’s ratio r = dbestmatch
dsecondbestmatch

2. Apply 5-points algorithm inside PROSAC scheme to the initial matching set with the
measurement error equal to 0.4
3. Test the final optimal model on the whole initial matching set to select the inliers
4. Compute the mean of measurement errors returned by inliers from step 3. The inverse
of this value represents the score of the estimated model.
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Table 4.3 compares the essential matrix estimation (EME) execution time and the absolute

trajectory error (ATE) of the two approaches, RANSAC and PROSAC, on a sequence of

100 images. By changing from RANSAC to PROSAC, we can see that the speedup is

increased five times without losing too much accuracy.

RANSAC PROSAC
Speedup

EME (ms) ATE (m) EME (ms) ATE (m)
13.61 0.1575 2.54 0.1595 ×5.35

Table 4.3: A comparison of the two methods RANSAC and PROSAC on a sequence of
100 images.

4.3.4 Measurement Error Optimization

To optimize the measurement error (me), we applied the optimization protocol presented

in 3. We ran an automated script on an interval from 0.05 to 1. For a tolerable error s we

choose 2.5m and the average number of tracked points M̄ over the trajectory at 1800. The

ROC curve shows that the optimal value is 0.7 with a True Positive Rate of 89%.

Figure 4.4: The ROC curve for different me. The ROC curve shows the distribution of
several measurement error values as a function of TPR and FPR. The optimal value of the
measurement error is 0.7, with a TPR of 89% and an FPR of 60%.

Figure 4.5 shows the evolution of the mean error against the measurement error, and

Table 4.4 represents some measurement error values with their TPR, FPR, and associ-

ated error. We can see that the global minimum corresponds perfectly to the optimal

value selected in the ROC curve, with the highest TPR. The me values with a zero TPR
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and FPR indicate the parameter values that failed to meet the quality requirements set by

the chosen thresholds.
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Figure 4.5: Evolution of the mean error against the measurement error computed on Se-
quence 1

Measurement errors TPR FPR Error(m)
0.05 0 0 17.24
0.2 0 0 6.31
0.25 0.35 0.16 2.95
0.45 0.46 0.13 3.49
0.6 0.76 0.42 1.8
0.7 0.89 0.6 1.64
0.95 0.08 0 4.94

Table 4.4: The values of TPR, FPR, and the absolute error of the trajectory for different
measurement error values. The optimal value is 0.7 with a True Positive Rate of 89% and
a False Positive Rate of 60% .

4.4 Experimental results

The proposed RGB-D HOOFR-SLAM algorithm is evaluated on our sequences (Se-

quence 1 and 2 refer to Sec. 2.4.2). The accuracy of the visual SLAM system is measured
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by absolute trajectory error in 2D, and we compared our method’s accuracy and perfor-

mance to that of Stereo HOOFR SLAM and other competitive algorithms. Finally, we

used a HIL approach to evaluate the algorithm performance on an embedded architecture

using our dataset and compared it with the performance on a PC.

4.4.1 RGB-D HOOFR SLAM vs Stereo algorithms

Comparing the RGB-D HOOFR SLAM to its Stereo version, as shown in Table 4.5, it

can be seen that the Stereo HOOFR loses tracking at the beginning of the sequence; this

is because of the strict conditions that have been set for the matching. If the positions of

matches change slightly in images, the point is either too far from the camera or the cam-

era is not moving much. These two cases do not provide a reasonable estimate, so these

matches are rejected. In sequence 1, most points are detected on the clouds; therefore, the

proportion of far points exceeds the near points leading to a rejection of the pose compu-

tation [8]. RGB-D HOOFR SLAM takes advantage of the depth map to overcome this

problem and adapt the depth threshold to reject outlier points detected on the dynamic

objects and in the sky. The RGB-D HOOFR SLAM outperformed the ORB-SLAM2

Stereo in localization accuracy, especially in FPS, with an improvement of 146.51%. In

the ORB-SLAM2 Stereo, the ORB extractor occupies 50%, and the stereo matching oc-

cupies 31% of the tracking processing time [76]. The same goes for the HOOFR Stereo.

30% of the tracking processing time is saved when using an RGB-D camera. On the other

hand, the ORB-SLAM2 does not perform upstream filtering, thus processing all the points

and correcting the errors in the mapping phase using local BA, resulting in a significant

processing time. Unlike the RGB-D HOOFR SLAM, the keypoints are filtered directly

after detection, thus reducing the number of points to be processed and thus the execution

time and outliers.

RGB-D HOOFR Stereo HOOFR Stereo ORB Evolution compared to "Stereo ORB"
RMSE (m) FPS RMSE (m) FPS RMSE (m) FPS RMSE (%) FPS (%)

Seq1 (L: 978.57m) 1.47 27.54 Tracking lost - 2.59 11.62 -43.24 +137.01
Seq2 (L: 189.81m) 0.93 28.57 12.31 10.05 0.71 11.59 +30.99 +146.51

Table 4.5: The Root Mean Square Error (RMSE) in meter and Frame rate Per Second
(FPS) of the RGB-D HOOFR SLAM compared to Stereo SLAM algorithms
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4.4.2 RGB-D HOOFR SLAM vs state-of-the-art RGB-D algorithms

This section compares the RGB-D HOOFR SLAM algorithm with other state-of-the-

art RGB-D algorithms. For this comparison, we have selected two algorithms that are

well-known for robustness and real-time operating and that have been evaluated in out-

door environments, namely ORB-SLAM2 [76] and RTAB-Map SLAM [110]. Figure 4.6

shows the trajectories of the three algorithms on the two sequences, the trajectories follow

closely the ground truth and the RGB-D HOOFR SLAM represents a slight improvement

in localization accuracy as shown in the Table 4.6 . The RGB-D HOOFR SLAM shows

competitive results in localization accuracy and performance over the ORB-SLAM2 and

RTAB-Map algorithms, mostly for sequence 1.
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Figure 4.6: Sequence 1 and Sequence 2 trajectories plots: Trajectory plots of the three al-
gorithms RGB-D HOOFR SLAM (in green), RGB-D ORB-SLAM2 (in red), and RGB-D
RTAB-Map SLAM (in magenta) against the ground truth (in blue) over the two sequences

RGB-D HOOFR RGB-D ORB Error evolution RGB-D RTAB-Map Error evolution
RMSE (m) FPS RMSE (m) FPS RMSE (%) FPS (%) RMSE (m) FPS RMSE (%) FPS (%)

Seq1 (L: 978.57m) 1.47 27.54 2.27 17.11 -35.24 +60.96 4.39 13.77 -66.51 +100
Seq2 (L: 189.81m) 0.93 28.57 1.18 18.02 -21.19 +58.55 3.18 16.41 -70.75 +74.1

Table 4.6: The Root Mean Square Error (RMSE) in meter and Frame rate Per Second
(FPS) of the RGB-D HOOFR SLAM compared to state-of-the-art SLAM algorithms
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4.4.3 Evaluation of RGB-D HOOFR-SLAM on an Embedded Archi-

tecture

Following the improvement of the localization accuracy, an evaluation is performed with

the matching block implemented on GPU [8] on PC and the Nvidia AGX Xavier em-

bedded card. Results presented in Table 4.7 show the mean execution time decreased

by shifting from CPU to CPU-GPU for the PC and the embedded board by about 1.28

speedup factor on the PC and 1.19 speedup factor on the embedded card.

PC CPU (ms) PC CPU-GPU (ms) PC SpeedUp AGX CPU (ms) AGX CPU-GPU (ms) AGX SpeedUp
Seq1 (L: 978.57m) 36.31 27.17 1.33 50.82 41.85 1.21
Seq2 (L: 189.81m) 35.08 28.10 1.24 52.53 44.73 1.17

Table 4.7: Average execution time of the algorithm in milliseconds on the two sequences
on PC and the Nvidia AGX Xavier embedded board.

Table 4.8 represents the speedup of the block matching from CPU to GPU.

PC CPU (ms) PC GPU (ms) PC SpeedUp AGX CPU (ms) AGX GPU (ms) AGX SpeedUp
Seq1 (L: 978.57m) 9.79 2.73 3.58 7.71 3.01 2.56
Seq2 (L: 189.81m) 8.48 2.77 3.06 6.17 3.21 1.92

Table 4.8: Mean execution time of the matching block in milliseconds on the two se-
quences on PC and the Nvidia AGX Xavier embedded card.

We can see that switching from RANSAC to PROSAC in Table 4.3 allows greater speed

up compared to GPU acceleration. In fact, in the RANSAC method, the number of it-

erations increases exponentially for small proportions of inliers. This problem has been

solved with the PROSAC algorithm, which takes as input matches ordered by quality and

gives them priority during sampling under the assumption that these matches have a high

probability of being inliers, which leads to this significant speedup. As a result, by com-

bining algorithmic optimizations and implementation on a heterogeneous architecture, we

arrive at a trade-off between localization accuracy and real-time execution.

4.5 Conclusion

This chapter presented the RGB-D HOOFR SLAM algorithm, an enhanced algorithm

of the Stereo HOOFR SLAM based on an RGB-D camera [8]. Filtering based on the
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MAD has been envisaged in the outdoor environment. Afterward, algorithmic optimiza-

tions were performed on the pose estimation block by changing RANSAC to PROSAC.

Next, the measurement error parameter was optimized using the protocol proposed in

the chapter 3. The algorithm was evaluated on two sequences recorded with an instru-

mented laboratory vehicle. These datasets are the first RGB-D outdoor vehicle application

datasets to our knowledge.

We compared the RGB-D HOOFR SLAM to its stereo version. Besides, the RGB-D

HOOFR SLAM has been compared to other state-of-the-art algorithms regarding its per-

formance and proved to be a good trade-off of execution time and localization accuracy.

Our algorithm can operate in real-time at 27 FPS on a PC CPU and 19 FPS on an embed-

ded processor without accelerating the processing on the GPU. The next chapter 5 will

involve architecture-algorithm adequacy that will allow real-time processing on-the-fly of

the RGB-D HOOFR SLAM algorithm on an embedded architecture.
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Chapter 5

Hardware-Software codesign: Toward

an FPGA Architecture Based

Front-End Processing

5.1 Introduction

Feature-based SLAM systems are becoming increasingly popular due to their perfor-

mance and robustness. Several feature extractors are used in various SLAM systems

such as ORB [60], SIFT [173], and SURF [58]. Although these extractors yield good

matching results, the computational complexity of feature extraction and matching is a

significant hurdle when embedding such SLAM algorithms on low-power architectures.

Recently, Nguyen et al. [10] proposed an FPGA implementation of the HOOFR extrac-

tor while maintaining the same accuracy. However, the matching task remains the most

time-consuming task in the processing flow. The design of an accelerated architecture for

this functional block is mandatory to achieve on-the-fly processing on a system-on-chip.

Our challenge is to boost the algorithm’s performance on low-power architectures to en-

sure on-the-fly processing. FPGAs are considered the best choice for stream processing.

Contrary to GPUs, which only provides parallelism for data processing and acceleration,

FPGAs can provide data, task, and pipeline parallelism, which makes them more suitable

for stream processing [174, 175] especially for embedded systems.
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We achieve our objective through an algorithm-architecture mapping applied to CPU-

FPGA architectures. In practice, an algorithm is broken down into functional blocks, and

each block is assigned to the appropriate processing unit, ensuring optimal performance.

In this chapter, we evaluate the performance of the matching block on different archi-

tectures since it is the bottleneck of performance, concluding with the proposition of an

optimal CPU-FPGA mapping for the RGB-D HOOFR-SLAM front-end.

5.2 Related Works

Several works have recently focused on implementing visual SLAM algorithms on em-

bedded architectures. In particular, indirect-based algorithms are gaining attention due to

their low complexity and ease of parallelization. Much effort has been devoted to accel-

erating the most time-consuming part of the algorithm, including feature extraction and

matching. Fang et al. [176] proposed a design of ORB feature extractor since it is the bot-

tleneck of performance and energy consumption. They implemented the extractor on an

Altera Stratix V FPGA and achieved 67 frames per second using VGA-resolution images.

The design runs at 203MHz frequency, reducing the energy consumption. Liu et al. [9]

presented eSLAM, an implementation end-to-end ORB-based SLAM system on a SoC.

The authors accelerated the extraction part and extended the hardware implementation to

the matching block. First, the descriptor was reformulated into a rotationally symmetric

pattern to simplify the hardware implementation. Then, the extractor and the matching

blocks were implemented as a pipeline operating in two modes. The extractor and match-

ing are launched in parallel with the pose estimation and optimization in normal frames

mode. In the keyframes mode, feature extraction runs in parallel with pose estimation and

optimization. The implementation has been conducted on a Xilinx Zynq XCZ7045 SoC

architecture. The algorithm was evaluated on the TUM dataset [84], achieving a frame

rate of 55 FPS for normal frames and 31 FPS for keyframes with a power consumption

of 1.936W. Vemulapati et al. [177] proposed a SoC-based ORB-SLAM by accelerating

the feature extraction and matching on FPGA since they consume 60-70% of the runtime

of the algorithm. The rest of the algorithm is run on the ARM cores. In order to reduce

resource utilization, they reduce the bit-depth of each pixel at different stage of the ORB
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pipeline and quantize the pixels to 6 bits per pixel with a 25% reduction of Flip-Flop

resources and a drop of 3.9% in accuracy. Compared to eSLAM, the loss of accuracy is

much lower. The algorithm was implemented on a Xilinx ZU3EG FPGA-SoC on-board

with a quad-core ARM and evaluated on the TUM dataset[84]. The algorithm achieved 62

FPS with an energy consumption of 4.6W. Nguyen et al. [10] proposed a HOOFR feature

extraction architecture with a maintained complexity of the HOOFR algorithm to ensure

a similar detection result on hardware as on software. The algorithm uses bucketing to

ensure the homogeneous distribution of keypoints intended for SLAM applications. The

algorithm was implemented on Arria 10 SoC-FPGA and achieved a frame rate of 26 FPS

at 1280 × 720 pixels.

Following Nguyen et al.’s work [10], we propose an architecture combining the HOOFR

extractor and the matching blocks since the high computational intensity of feature extrac-

tion and matching makes running the algorithm on low-power embedded platforms very

challenging. The HOOFR-SLAM algorithm has been decomposed into blocks and evalu-

ated on different architectures to achieve an optimized partitionning (to assign each block

to the appropriate processing unit), considering data transfer constraints between process-

ing units. Our ultimate goal is to ensure processing at a adequate rate for autonomous

vehicle applications (30 FPS) at a high-definition resolution.

5.3 HOOFR-SLAM Front-end Overview

The HOOFR-SLAM algorithm is composed of two threads running in parallel: Mapping

thread and Loop detection thread. The front-end includes HOOFR extraction and the

mapping thread as shown in Figure 5.1. By measuring the processing time of each func-

tional block on the CPU, as shown in Table 5.1, we notice that the most computationally

expensive blocks are detection (50% of front-end execution time) and matching (33% of

front-end execution time).
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HOOFR
Extraction

Mapping thread

Features
 Matching

Relative 
Pose 

Computation

Relative 
Pose 

Computation

Relative 
Pose 

Computation

Front-end

Figure 5.1: HOOFR-SLAM Front-end diagram, tasks that run on the front-end are the
HOOFR extraction (including detection, Hessian score computing, filtering, and descrip-
tion), Features Matching, and Relative Pose Computation. In red, the most computation-
ally expensive blocks are detection (50% of front-end execution time) and matching (33%
of front-end execution time).

Functional block Runtime on CPU (ms)

HOOFR Extraction
Feature detection (FAST/Hessian/Filtering) 14.29

Description 1.68

Mapping thread
Matching 9.69

Pose estimation 3.5

Back-end
Loop detection 5.22
Map processing 0.126

Table 5.1: Processing time of each functional block on CPU.

5.3.1 Bucketing-based HOOFR extractor

Nguyen et al. [10] proposed the implementation of a bucketing-based HOOFR extractor

on FPGA. The bucketing technique divides the image into a grid, as shown in Figure 5.2.

The number of cells in the grid depends on the image’s resolution. For each cell, key-

points are detected by the FAST detector. Then, the Hessian score is calculated for each

point, keeping only the points with the highest score. After filtering the points, the des-

cription of each point is computed. The bucketing technique has the benefit of ensuring a

homogeneous distribution of keypoints over the entire image, which improves the local-

ization accuracy of the SLAM [76, 64] and allows a pipeline operation at the cell level, as

111



CHAPTER 5. HARDWARE-SOFTWARE CODESIGN: TOWARD AN FPGA
ARCHITECTURE BASED FRONT-END PROCESSING

illustrated in Figure 5.2, meaning that when a kernel finishes its task on the cell, the next

kernel starts processing immediately on this cell.

FAST kernel

Filtering kernel

Description kernel

Hessian Score 
kernel

Pipeline kernel processing

Figure 5.2: Image split into a grid. Image cells are processed in the pipeline. When a
kernel finishes processing a cell, the following kernel takes over.

The architecture of the HOOFR extractor on FPGA is illustrated in Figure5.3. The system

includes four functional blocks (FAST, Hessian score, Filtering, and Description). These

kernels are launched in parallel. At each image acquisition, the CPU copies the image

in the global memory. Then, it consecutively launches the kernels for detection (FAST,

Hessian score, and Filtering). The description block is launched once the integral of the

image is computed and ready in the global memory. Finally, synchronization is performed

when all the kernels are active, and the CPU waits to get the results. The FAST kernel

and the Hessian score calculation have been duplicated because they are the bottlenecks

of the algorithm flow. Testing the pixels of the whole image in high resolutions (for

example, 921,600 pixels in the case of HD resolution) makes the FAST kernel very cost-

intensive. Moreover, the latter returns several keypoints, which makes computing the

Hessian score very costly. The communication between these different kernels is done

using the Intel channel extension. Intel channels provide a mechanism for direct data

transfer and synchronization between kernels via FIFO buffers without interaction with

the host processor.
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Figure 5.3: HOOFR extractor architecture comprises duplicated FAST kernel, duplicated
Hessian score computing kernel, a filtering kernel, and the description kernel. Kernels
communicate using the Intel channel extension without interacting with the host proces-
sor.

5.3.2 Features Matching

In [8], the matching block was implemented to run on GPU. The algorithm matches the

PNF (Previous Neighbor Frame) ’s keypoints to the current frame. In the PNF, the cell

index and 256-bit description are required for each keypoint. Four matrices are transferred

to GPU global memory: Pn fDess, Pn fCels, CurDess and CurrDistributions.

The Pn fDess is the description of keypoints in previous neighbor frames, and is organized

as an unsigned char matrix with a dimension of (pn fnp×32), where pn fnp is the total

number of keypoints in PNFs. The Pn fCels is a (pn fnp×1) matrix, where each row rep-

resents the cell number where each keypoint is located. For the current frame, CurDess

is a current description matrix which is created same as Pn fDess with a dimension of
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(curnp×32), where the curnp is the total number of keypoints in the current frame. The

keypoints of the current frame are organized by the order of image cell. To keep track of

the current keypoints located in each cell, a structure denoted Points_Distribution is used.

This structure is composed of two elements: the first element re f is the position where the

first keypoint of the cell is located in the whole set, the second element nb is the number

of keypoints of the cell. CurrDistributions is a matrix with the dimension of (NCELLS× 2)

for the N cells built using Points_Distribution structure.

For each keypoint in the PNFs, the correspondence is searched in the current frame at the

same cell and neighbor cells, as shown in Figure 5.4. This process is so fast since each

cell contains a small number of keypoints suitable for handling by one work item. The

GPU uses 9 work items in a work group to find the matches in 9 neighbor cells of the

current frame. The 9 results are stored in the local memory and are synchronized by the

barrier function. After synchronizing, the final matching is extracted by one of the nine

work items. Then, the match is validated by computing the Lowe’s ratio [173].

Previous neighbor frame Current frame Keypoints set of Current frame

Keypoint (cel3,5 , des3,5)

Keypoint (cel , des) : The cell to which the keypoint belongs
and its description

Keypoint (cel2,2 , des2,2)

Kp1(des1)

Kp2(des2)

Kpt(dest)

Kpt(dest) : t
th  keypoint of current frame and its description

(ref0 , nb0)

(refi , nbi)

(refi , nbi) reference position and number of keypoints belonging
to the cell CEi in keypoints set

CE0

CE0

CEi

CEi

Figure 5.4: Features Matching strategy. The concept consists in searching for the corre-
sponding keypoint of the previous neighbor images in the same cell and the neighboring
cells in the current image.

5.4 Algorithm-Architecture mapping

Starting from the Bucketing-based HOOFR extractor [10], we aim to embed the front

end of the HOOFR SLAM on FPGA in the context of pushing the processing as close

as possible to the sensor. For this purpose, we implemented the matching algorithm on
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the FPGA since it is the second most computationally heavy task. The implementation

of matching on GPU [8] has shown outstanding performance. However, considering the

power consumption, GPUs are highly power-consuming, making thermal management

more challenging in embedded systems, especially for applications where energy auton-

omy is a crucial asset. Although GPUs (i.e., Jetson AGX Xavier™) begin getting close

to FPGAs in performance-per-watt, that does not mean they are the best solution for all

applications. FPGAs represent an essential feature, which is any-to-any I/O connection,

allowing connection to any device, network, or storage without needing a host CPU. The

FPGA is well suited for front-end processing in general-purpose processing since it can

be directly connected to high-speed sensors and offer very high bandwidth.

In our study, we first evaluated the GPU implementation of matching block on FPGA

since the algorithm was implemented in OpenCL[8] and thus can be run on both GPU and

FPGA. When we ran the algorithm using NDRange on two images of a resolution of 1280

× 720 with 2000 keypoints, we got a very large runtime of 813.01ms. This execution time

is explained by the data dependency represented in waiting for the results of the work-

items to select the match with the minimum distance. The impact of synchronization is

not seen on GPU, as the processing frequency is high and the work-items on GPU are

launched simultaneously, unlike in FPGA, where the work-items are launched in parallel

in a pipelined way. Also, FPGAs are flexible in terms of programming architecture and

are able to provide performance for operations that contain conditionals and/or branches.

These architectural differences have a significant impact on performance. For this reason,

we used a single-work-item implementation, also called task kernel.

In Table5.2, we see that with a single task kernel, we obtain a speedup factor of×96 com-

pared to the NDRange kernel. To reach similar performances as on GPU, we create four

matching kernels since they don’t take a lot of hardware resources. With four matching

kernels, we get a speedup of ×254.

Matching NDRange kernel runtime (ms) 813.01
Matching task kernel duplication 1 2 3 4

Matching task runtime (ms) 8.39 5.02 3.99 3.19

Table 5.2: Comparison of NDRange and single-work-item execution time in milliseconds
with different numbers of kernel task duplication.
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Figure 5.5 represents the CPU-FPGA mapping for the HOOFR extractor and the matching

block. Once the description is done, the results are stored in the global memory, and the

four matching blocks are launched concurrently. The description and cell matrices of

PNFs are partitioned and distributed over the four kernels, the description of the current

frame keypoint and their distributions on cells are accessed by the four kernels as shown

in Figure 5.6.

FPGA

CPU

FAST
kernels

Hessian
Score 
kernels

Filtering
kernel

Description
kernel

Matching
kernels

Host 
Program

Main 
Memory 

(RAM)

Global Memory (DDR4)

Image
Buffer

Detection
Constants

Description
Constants

Current
Description

Buffer

Previous 
Description

Buffer

Current Matrix
of Image 

Distribution

Matching
Results
Buffer

Previous 
Cell 

Matrix

Keypoints
Buffer

Integral Image
Buffer

FAST ready Channel HS ready Channel Filter ready Channel

Writing access
Reading access
Memory data transfer

Figure 5.5: CPU-FPGA mapping of the HOOFR extractor and the matching block, the
matching block is duplicated four times. The keypoints of the previous neighbor images
are distributed on the four kernels.
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Figure 5.6: Matching kernels duplication diagram. The indexes of the cells and the de-
scriptors of the previous neighboring images are divided into four chunks and distributed
over the four kernels. Each kernel finds the match in the current and neighboring cell from
the descriptor matrix of the current image. Finally, each kernel stores the found matches
into a vector.

Algorithm 5.1 represents one of the four duplicated kernels on FPGA.
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Algorithm 5.1 OpenCL Matching Kernel 1/4 on FPGA
//OpenCL Matching Kernel on FPGA
declare global arrays: Pn fDess,Pn fCels,CurrDistributions,Correspondence, Currdesc;
function Kernel: Matching

//Iteration on one quarter of the Pnf keypoints
For i from 0 to num_ktps/4 do

//Get the cell coordinates in the grid (NX,NY) to which the Pnf keypoint belongs.
NX←Pn fCels[i].x;
NY←Pn fCels[i].y;
point_pnf_des←Get_Keypoint_Descriptor(Pn fDess[32∗i]);

//Iteration over the neighbor cells
//NUM_SEARCH_X, NUM_SEARCH_Y represent the horizontal and vertical search radius re-

spectively.
For kx from 0 to 2∗NUM_SEARCH_X+1

For ky from 0 to 2∗NUM_SEARCH_Y+1
//Compute the neighbor cell coordinates (nx,ny)
nx←NX + kx - NUM_SEARCH_X;
ny←NY + ky - NUM_SEARCH_Y;
If (nx,ny) not exceeding Grid boundaries

//Get the keypoints indexes belonging to the current cell (nx,ny) from CurrDistributions
(idx_start,idx_end) = Get_from_Img_Distrib(CurrDistributions, nx, ny);
For j from idx_star to idx_end

point_curr_des ←Get_Keypoint_Descriptor(Currdesc[32∗j]); //current keypoint de-
scriptor

Correspondence[i] ←Find_the_best_and_the_second_matches(point_pnf_des,
point_curr_des);

5.5 Experimental Results

We implement the HOOFR-SLAM front-end on a DE5a-Net DDR4 Arria 10 FPGA PCIe

board connected to a desktop via PCIe Gen 3x8. Its CPU is an Intel Xeon Silver 4108

processor with eight cores with a base frequency of 1.8GHz. The PC used for comparison

is a high-performance laptop equipped with an 8-core AMD Ryzen 9 CPU with a base

frequency of 3 GHz. The frames used for the evaluation are outdoor sequences recorded

with the Intel RealSense D455 camera with a frame rate of 30 FPS and a resolution of

1280x720. The images are resized with the resize function of OpenCV.

118



CHAPTER 5. HARDWARE-SOFTWARE CODESIGN: TOWARD AN FPGA
ARCHITECTURE BASED FRONT-END PROCESSING

5.5.1 Resource usage

Our accelerator is implemented on a DE5a-Net DDR4 Arria 10 FPGA Development Kit

(operating at 50 MHz) with 1150K LEs. The resource utilization of the proposed architec-

ture is shown in Table 5.3. We followed some performance-improvement rules proposed

by Intel® FPGA SDK for OpenCL™ Pro Edition Best Practices Guide to save resources.

By reducing the number of unrolled loops and the compute units, we decreased the re-

source usage and required memory bandwidth. Unrolling the outer loops of a nested-loop

structure also increases resource utilization significantly. Therefore, we unrolled only

the inner loops. By saving resources, we could incorporate the matching block into our

architecture.

Kernel ALUTs FFs RAMs DSPs
FAST Detection kernel 1 13,155 (2%) 19,048 (1%) 166.2 (6%) 0 (0%)
FAST Detection kernel 2 13,155 (2%) 19,048 (1%) 166.2 (6%) 0 (0%)
Hessian Score kernel 1 7,320 (1%) 12,121 (1%) 62 (2%) 6 (0%)
Hessian Score kernel 2 7,321 (1%) 12,256 (1%) 62 (2%) 6 (0%)

Filtering kernel 5,901 (1%) 11,557 (1%) 75 (3%) 0 (0%)
Description kernel 24,397 (3%) 35,413 (2%) 236 (9%) 8.5 (1%)
Matching kernel 1 13,903 (2%) 19,962 (1%) 190 (7%) 3.5 (0%)
Matching kernel 2 14,282 (2%) 24,427 (1%) 206 (8%) 3.5 (0%)
Matching kernel 3 14,312 (2%) 24,419 (1%) 206 (8%) 3.5 (0%)
Matching kernel 4 14,290 (2%) 24,358 (1%) 206 (8%) 3.5 (0%)
Kernel Subtotal 128,036 (15%) 202,609 (12%) 1,575 (59%) 34.5 (3%)

Pipe and channel resources 55 (0%) 558 (0%) 5 (0%) 0 (0%)
Available 854,400 1,708,800 2,713 1,518

Table 5.3: FPGA resource utilization. ALUTSs Adaptive Look-Up Tables, FFs Flip
Flops, RAMs Random Access Memory blocks, DSPs Digital Signal Processing blocks.
Between parenthesis, the usage percentage of the total available.

5.5.2 Matching block timings analysis

The matching block performance has been evaluated on high-performance PC CPU (8-

core AMD Ryzen 9 CPU @ 3 GHz) and FPGA architectures for a different number of

features. To quantify the performance of each architecture, regardless of the frequency,

we have computed the number of cycles per match (CPM) using the following equation:

CPM =
t · f
N

(5.1)
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Where t is execution time, f is the frequency of the architecture and N is the number of

features. We ran the matching block on the PC CPU, and on the DE5a-Net DDR4 Arria

10 FPGA. Our system is evaluated on images taken by an Intel RealSense D455 camera

at a resolution of 1280 × 720. Table 5.4 shows that the FPGA outperforms the PC CPU

in CPM and in execution time. This hardware implementation allows a speedup of up to

×15.

Keypoints PC CPU (CPM) FPGA (CPM)
1000 49953 88
1500 72813 78
2000 88925 108
2500 110675 127

Table 5.4: The number of cycles per match (CPM) of the matching block on PC CPU vs
FPGA.

Keypoints PC CPU (ms) FPGA (ms) Speedup
1000 16.65 1.76 9.46
1500 36.40 2.33 15.62
2000 59.28 4.32 13.72
2500 92.22 6.37 14.47

Table 5.5: The runtime of the matching block on PC CPU vs FPGA.

5.5.3 Matching block accuracy analysis

In order to ensure that the accuracy of matching is maintained, we fix the FAST detec-

tion threshold at 7 and the hamming distance threshold at 20 and we compute the recall

(number of correct matches/number of correspondences) and the 1-precision (number of

false matches/number of matches) [57, 178, 179]. Both quantities are compared in soft-

ware and hardware implementation. The results are summarized in the Table5.6 while the

Figure 5.7 shows the matching result on FPGA with images in a resolution of 640×480

pixels. These results show that the matching result on hardware is slightly similar to that

on software.
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PC (CPU) FPGA
Recall (%) 1-precision (%) Recall (%) 1-precision (%)

480×270 64 36 64.94 35.05
640 × 480 58.4 41.6 57 42.98
848×480 56.8 43.2 56.65 43.34

1280×720 57.35 42.65 56.94 43.05

Table 5.6: Comparison of the matching recall-precision between PC and FPGA

Figure 5.7: Matching two successive images from outdoor sequence 1 on FPGA.

5.5.4 Overall Performance Evaluation

In this section, we evaluate the performance of the entire algorithm on different resolu-

tions supported by the Intel RealSense D455 camera. The image is divided into a grid. NX

and NY represent the number of horizontal and vertical cells. Each cell return a maximum

number of keypoints (with the highest Hessian score) limited to POINTS_PER_CELL. As

shown in Table5.7, our design reaches a frequency of 30 FPS at a resolution of 1280×720

pixels, generating and matching 2009 keypoints which is well suited to achieve good lo-

calization accuracy, as we have seen in the previous chapter. At 640 × 480 pixels resolu-

tion , our design reaches 38 FPS, which is sufficient to perform on-the-fly processing. The

HD resolution can be helpful if an object detection task is needed since object detection

at more considerable distances becomes feasible [124].
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Resolution (px) Number of Keypoints NX×NY Runtime (ms) FPS
480×270 2228 24×14 24.46 40.88
640×480 2158 24×14 26.21 38.15
848×480 2111 24×14 27.09 36.91
1280×720 2009 24×14 33 30.3

Table 5.7: Timing performance on different resolutions (FAST_threshold = 7,
POINTS_PER_CELL = 15)

5.6 Conclusion

This chapter presents a design of FPGA-based near-sensor processing (matching incor-

porated with the Bucketing-based HOOFR extractor). A matching algorithm has been

adapted to FPGA programming paradigms to achieve real-time processing tailored to the

Intel RealSense camera frame rate. Also, we have shown that the algorithm’s complexity

has been preserved to guarantee the same quality of results in software as in hardware. Our

design was implemented on DE5a-Net DDR4 Arria 10 FPGA architecture. The FPGA

implementation shows that the OpenCL design is 9x to 14x faster than the C++ imple-

mentation running on a high-performance CPU. The achieved throughput is 30 FPS at

1280×720 pixels resolution and 38 FPS at 640×480 pixels resolution, which is sufficient

to perform on-the-fly processing. The proposed architecture, as shown in the Figure 5.8,

involves acquiring the images from the sensor on the CPU, launching the keypoint extrac-

tion and matching on FPGA, and finally launching the pose estimation on the CPU. The

loop closure detection is launched on a parallel thread on the CPU.
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Conclusion

In this thesis, we adopted a methodology considering the processing chain of a SLAM

system (from the sensor to the embedded architecture). The focus of our study was on the

front-end part of SLAM algorithms. We have started by investigating the characteristics

of an RGB-D sensor and its impact on localization accuracy. In this context, we proposed

a sensor-algorithm coupling methodology, which consists of identifying the parameters

correlated to the sensors or significantly impacting the localization (i.e. camera pose).

Then, the optimization protocol is applied to these parameters to determine their optimal

values.

After the characterization of the RGB-D sensor, we proceeded to the extension of the

HOOFR-SLAM towards using RGB-D sensors for autonomous vehicle applications. To

ensure the consistency and robustness of the algorithm in dynamic environments, we have

implemented a keypoint filtering mechanism based on depth maps. This filter allows us

to efficiently enhance the localization’s accuracy by keeping only reliable keypoints.

Afterward, algorithmic optimizations were introduced to the algorithm. When analyzing

the data flow, we noticed that the amount of input data highly drives processing time.

As more keypoints are processed, the complexity grows in several functional blocks (e.g.

description, matching, pose estimation). Unlike other works [165, 155, 167], which use

keypoint filtering only to improve the algorithm’s accuracy in dynamic environments, our

implementation serves two goals. First, improving the accuracy, and second, reducing

the amount of data fed to functional blocks, thus reducing the processing time. For this
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purpose, the keypoint filtering was performed directly after features detection, reducing

the number of points to be described, matched, and used for the pose estimation.

On the other hand, in pose estimation, the RANSAC algorithm processes all matches in

the same way and draws random samples uniformly from the complete set. At low pro-

portions of inliers, the number of iterations increases exponentially. This problem was

addressed using the PROSAC algorithm, which takes quality-ordered matches in input,

prioritizing these matches when sampling under the assumption that these matches have

a high probability of being inliers, which leads to faster convergence. When comparing

the performance between RANSAC and PROSAC, our algorithm achieves x5 of speedup

while maintaining the same accuracy. Our SLAM system can run at 27 FPS on a 3 GHz

8-core CPU and 19 FPS on a 2.26GHz 8-core embedded processor without accelerating

processing on their associated GPUs. This processing rate generally allows a good local-

ization accuracy with an approximate error bound of 1m in an urban environment for a

vehicle speed of up to 40Km/h. However, for on-the-fly processing, the algorithm must

be able to run at the same rate as the sensor or even more (from 30 FPS onwards).

For this purpose, we boost the performance of our algorithm and take advantage of FPGA-

based architectures known for their low power consumption. A study was conducted on

optimizing the partitioning of the different functional blocks on the computing units. This

partitioning considers the data flow, the functional blocks’ dependency, and workloads.

An FPGA architecture based on an OpenCL implementation for HOOFR feature match-

ing has been designed. The complexity of the matching algorithm has been respected to

guarantee the same matching performance in software as in hardware implementations.

This matching system has been incorporated with the bucketing-based HOOFR extrac-

tor to embed 88% of the front-end on FPGA. The FPGA implementation shows that the

OpenCL design is up to 14x faster than the CPU-based implementation. The achieved

throughput is 30 FPS at 1280×720 pixels resolution and 38 FPS at 640×480 pixels res-

olution. The results demonstrated the capacity of FPGA architecture intending to handle

an on-the-fly processing of the HOOFR SLAM front-end. However, for implementation

on a System on Chip (SoC), we are limited by the amount of data to process. For the

description of the features, we need 500 MB to store the description of 2000 keypoints,

which limits us to using off-chip memories, making part of the performance dependent on
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the memory bandwidth. The obtained results and the defined architecture model demon-

strated the possibility of performing complex algorithms such as SLAM on heterogeneous

CPU-FPGA architectures-based embedded systems. The technological evolution allows

the design of CPU-FPGA architectures. These architectures will also make it possible

to bring the data processing as close as possible to the sensor and thus design intelligent

Visual SLAM systems.

Future works

The work presented in this thesis presents multiple contributions toward embedded SLAM

for autonomous vehicles. Several leads are considered to extend this work on different

levels (sensor, algorithm, and architecture). At the sensor level, we intend to extend our

RGB-D dataset with more challenging scenarios under a wide range of conditions (in-

cluding weather and illumination changes) for a more in-depth study. The datasets studied

were acquired at moderate speeds (20Km/h to 40Km/h), allowing a good performance at

30FPS. Scenarios at higher speeds on highways are planned to complete sensor charac-

terization to maintain or improve accuracy. In addition, datasets with various elevations

are intended. As for now, the algorithm can operate on flat ground. The integration of

inertial measurement units (IMU) will be an asset to ensure the algorithm’s consistency

in an environment with altitude variations. From an architecture point of view, pose com-

puting will be a subject of study for a fully embedded front-end system on FPGA. Finally,

the FPGA and camera interfacing should be studied thoroughly to realize the on-the-fly

processing, designing hence a smart visual SLAM sensor. This latter provides a high-

performance processor for back-end processing and an FPGA handling the processing

and interpretation of data from the visual sensors, an architecture model can be proposed

as shown in Figure 5.9. This architecture consists of interfacing the camera to the FPGA

memory. This allows the image pixels to directly flow to the FPGA. The on-chip architec-

ture handles the pre-processing operations offloaded from the CPU, thus improving the

overall system throughput, and resolves the bottleneck between the camera and the CPU.
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Appendix

Résumé de la thèse

Introduction

Le domaine des véhicules autonomes est actuellement une tendance dans de nombreux

travaux de recherche. Plusieurs approches ont été adoptées pour résoudre le problème

du SLAM pour les véhicules autonomes. Le système mondial de navigation par satel-

lite (GNSS) est une technologie couramment utilisée pour la localisation. Néanmoins,

ce système a été considéré comme limité en raison de la dégradation du signal dans les

zones urbaines denses et des scénarios avec effets d’ombre. Le système avancé d’aide à

la conduite (ADAS) est une méthode alternative qui a été évaluée et qui avait pour but

d’aider à la localisation du véhicule. Cependant, la disponibilité de toutes les informa-

tions routières, telles que le marquage des voies et les bords de route, n’est pas assurée

sur toutes les routes, ce qui rend cette méthode inefficace. D’autre part, les systèmes cel-

lulaires 4G/5G, la bande ultra large (UWB), le réseau local sans fil (WLAN), le réseau

de capteurs sans fil (WSN) et Bluetooth restent limités en termes de coût, de précision,

de sécurité, de complexité et d’évolutivité. Par conséquent, les méthodologies SLAM

basées sur la vision, appelées SLAM visuel, sont devenues le courant principal de la

recherche actuelle. Les algorithmes de SLAM visuel doivent être plus robustes pour faire

face aux paramètres complexes et dynamiques de l’environnement urbain. Contrairement

aux robots mobiles sur lesquels la plupart des méthodes SLAM développées ont été éval-

uées, les véhicules autonomes ont des paramètres plus difficiles à prendre en compte si

la conduite autonome est souhaitée. Ces défis incluent la taille de l’environnement, la
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fermeture de la boucle et l’association de données, qui font partie des paramètres problé-

matiques qui apparaissent dans des environnements plus dynamiques, tels que ceux que

l’on trouve dans les espaces urbains [26]. À cet effet, le processus de conception doit

prendre en compte plusieurs paramètres en partant des capteurs jusqu’à l’architecture

embarquée. De plus, l’émergence d’architectures embarquées hétérogènes de faible puis-

sance offre une grande opportunité d’explorer le potentiel de pousser le traitement plus

près du capteur et d’assurer un traitement à la volée.

Couplage des paramètres capteur-algorithme

Le SLAM est une fonctionnalité de perception cruciale dans une variété d’applications,

notamment les robots et les véhicules autonomes. Les caméras RGB-D font partie des

capteurs généralement utilisés par les systèmes SLAM récents. De nombreux algorithmes

SLAM RGB-D ont été explorés et évalués à l’aide d’ensembles de données accessibles au

public sans tenir compte des spécifications du capteur ou des modes de capture d’image

qui pourraient augmenter ou réduire la précision de la localisation. Dans ce chapitre, nous

abordons la localisation en intérieur en tenant compte des spécifications des capteurs.

Dans ce contexte, nous soulignons l’impact des modalités d’acquisition des capteurs sur

la précision de la localisation et nous proposons une stratégie d’optimisation paramétrique

pour améliorer la précision de la localisation dans un environnement donné. Ce protocole

est utilisé pour améliorer un paramètre de l’algorithme SLAM lié à la profondeur. Notre

propre jeu de données d’intérieur disponible publiquement a servi de base à cette anal-

yse. Notre protocole d’optimisation paramétrique du couplage capteur-algorithme con-

siste à évaluer l’algorithme sur différentes séquences avec différents modes d’acquisition.

Ensuite, le mode d’acquisition présentant l’erreur la plus faible est utilisé pour ajuster

globalement les paramètres de l’algorithme. Nous nous concentrons sur l’optimisation

de l’algorithme ORB-SLAM2. ORB-SLAM2 possède trois paramètres principaux liés à

l’entrée de l’algorithme, à savoir : le nombre des primitives, le seuil du détecteur FAST

et le seuil de profondeur. Le nombre des primitives repose sur le détecteur FAST, qui

dépend de l’exposition [149]. Ces deux paramètres ne sont pas liés à la caméra de pro-

fondeur. Nous avons identifié un paramètre physiquement corrélé au capteur : le seuil de

129



Conclusion and Future Works

profondeur [148]. Ce paramètre permet à l’algorithme de classer les primitives proches

et lointaines. Ce paramètre est étroitement corrélé à la distribution d’erreur du mode

d’acquisition RGB-D. Nous avons évalué la valeur de ce paramètre en fonction de la

distribution d’erreur. Nous avons évalué la valeur de ce paramètre sur une plage bien

définie. Les différents tests ont été réalisés sur une station de calcul, équipée d’un pro-

cesseur Intel Xeon W-2265 de 24 cœurs tournant à 3,5 GHz, de 64 Go de RAM et d’une

carte graphique NVIDIA Quadro RTX 6000 avec 4608 cœurs CUDA. Nous avons calculé

l’erreur de trajectoire euclidienne et le nombre de points suivis sur la carte pour chaque

image. Ce protocole permet de classer les conditions d’entrée (nombre de points suivis

sur la carte vus par l’image courante) et de sortie (distance euclidienne entre une pose

courante et celle de la trajectoire référencée) de l’algorithme afin de qualifier ses perfor-

mances. Inspiré de [150, 151], nous avons proposé une optimisation paramétrique basée

sur la matrice de confusion suivante. Nous avons évalué les algorithmes sur diverses

trajectoires basées sur les différents modes d’acquisition de la caméra. La comparai-

son entre le SLAM IR-D passif et le SLAM RGB-D passif a permis de déduire que le

paramètre de seuil de profondeur pour ORB-SLAM2 ne suit pas une tendance spécifique.

Une méthode basée sur la courbe ROC a été établie pour trouver une valeur de seuil de

profondeur optimale pour le capteur IR. L’utilisation d’une caméra IR par rapport à la

caméra RGB a permis de réduire l’erreur ATE de 23,08% pour RTAB-Map dans Digi-

teo_seq1 et de 82,14% pour ORB-SLAM2 optimisé dans Digiteo_seq3. L’utilisation de

la caméra IR du D435 offre un avantage significatif car elle possède un champ de vision

plus large pour le suivi des primitives dans les angles morts, et le fait que les cartes de

profondeur soient également alignées avec la caméra IR gauche signifie qu’aucun traite-

ment d’alignement supplémentaire n’est nécessaire. Sur la base des paramètres trouvés

dans la comparaison du SLAM IR-D et du SLAM RGB-D passif, l’algorithme SLAM

IR-D a été comparé au SLAM Stereo Vision, et nous avons trouvé une diminution de

l’erreur de translation de 78,26% en utilisant les données IR-D pour ORB-SLAM2 dans

Digiteo_seq3 et de 28,57% pour RTAB-Map dans Digiteo_seq1. Enfin, nous avons com-

paré les modes actif et passif. Nous avons déduit que le mode actif donne une carte de

profondeur plus dense ; par conséquent, nous obtenons des résultats plus précis puisque

davantage de primitives sont utilisées pour calculer la translation, la rotation et la mise à
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l’échelle. La conception d’un système SLAM basé sur RGB-D doit prévoir un couplage

fort des paramètres de l’algorithme du capteur, en particulier ceux liés au champ de vi-

sion, au seuil de profondeur et au projecteur IR. La prise en compte de la caractérisation

du capteur peut augmenter la précision de la localisation pour les applications robotiques

dans les environnements intérieurs.

RGB-D HOOFR-SLAM

La localisation et la cartographie simultanées RGB-D (SLAM) sont devenues de plus

en plus populaires en raison de leur faible coût et des avantages de la caméra RGB-D.

Plusieurs efforts ont été déployés pour développer le SLAM RGB-D. Malheureusement,

ces travaux n’ont pas été évalués et étendus aux applications de véhicules extérieurs.

Dans ce chapitre, nous présentons une extension de HOOFR-SLAM à une modalité

RGB-D améliorée appliquée à un véhicule autonome dans un environnement extérieur

dynamique. Nous proposons une méthode de filtrage des primitives basée sur les cartes de

profondeur pour améliorer les performances de l’algorithme dans les environnements dy-

namiques. De plus, des optimisations algorithmiques ont été effectuées pour améliorer les

performances. Dans le chapitre précédent, nous avons vu comment le couplage capteur-

algorithme est essentiel pour améliorer la précision de la localisation dans les environ-

nements intérieurs. Dans ce chapitre, nous nous appuyons sur ce protocole d’optimisation

pour améliorer HOOFR-SLAM dans les environnements extérieurs. Enfin, nous util-

isons une approche hardware-in-the-loop (HIL) pour valider l’algorithme sur une archi-

tecture embarquée et un jeu de données collecté par un véhicule instrumenté du labora-

toire. HOOFR-SLAM est un algorithme de SLAM visuel basé sur l’extracteur bio-inspiré

Hessian ORB - Overlapped FREAK (HOOFR). Cet extracteur, composé du détecteur

ORB avec le score hessien et du descripteur FREAK bio-inspiré avec un chevauchement

amélioré, présente une fiabilité et un temps d’exécution améliorés pendant la mise en cor-

respondance. Les résultats de l’HOOFR ont montré une performance compétitive avec

SURF et SIFT avec une vitesse plus rapide et un faible coût de calcul comme ORB, mais

dépassant ce dernier en performance [57]. Le Stereo HOOFR-SLAM se compose de deux

blocs principaux. Le premier bloc est consacré au traitement des données du capteur et à
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l’estimation de l’ego-motion, appelé front-end. Le second bloc représente le noyau SLAM

et se compose de l’optimisation du graphe de pose et des tâches de fermeture de boucle.

L’algorithme reçoit en entrée une image stéréo. L’image de gauche est utilisée pour es-

timer le mouvement relatif de la caméra. L’image de droite est utilisée pour calculer

l’échelle en utilisant la triangulation stéréo. Pour chaque image, l’extracteur HOOFR est

appliqué pour détecter et décrire les primitives utilisées pour l’estimation de la pose et la

détection des boucles. La mise en correspondance stéréo fournit l’échelle réelle en calcu-

lant le rapport entre la distance réelle des points de repère et leurs distances triangulées.

Dans le processus de mise en correspondance, les primitives sont mises en correspondance

avec celles des images précédentes de gauche. Chaque image précédente avec une estima-

tion de transformation réussie est appelée image voisine précédente (PNF). La translation,

la rotation et les positions des points de repère sont extraites de la matrice essentielle en

utilisant la triangulation. En raison de son coût de traitement élevé, l’ajustement du fais-

ceau est remplacé par un filtrage fenêtré pour estimer la position actuelle de la caméra à

partir d’un ensemble de PNF. Chaque pose prédite des PNF est associée à un poids de

confiance, ainsi la pose optimale est la moyenne de toutes les prédictions par leurs poids

respectifs [8]. Le thread de fermeture de boucle est exécuté en parallèle avec le thread

de mapping. Chaque image gauche est interrogée dans l’ensemble des images clés pour

trouver la vraisemblance maximale. L’image actuelle est considérée comme une nouvelle

image clé dans le cas d’un score de correspondance faible et est ajoutée au graphe de pose.

Une fermeture de boucle potentielle n’est détectée que lorsque la pose de l’image clé ayant

un score de correspondance élevé est éloignée de l’image actuelle dans le graphe de pose.

La fermeture de la boucle est alors validée par le calcul de la transformation relative entre

l’image courante et l’image clé correspondante [8]. Dans le HOOFR-SLAM stéréo, le

processus commence par la détection et la description des primitives, suivies de la mise

en correspondance stéréo. Ensuite, le processus de mise en correspondance temporelle est

lancé. Dans la méthode RGB-D HOOFR-SLAM, nous proposons un extracteur HOOFR

modifié basé sur le filtrage des primitives à l’aide des cartes de profondeur fournies par

le capteur RGB-D. Cette approche améliore la précision de la localisation en éliminant

les primitives dont la profondeur n’est pas fiable, notamment les primitives détectées sur

132



Conclusion and Future Works

des véhicules en mouvement, les nuages et celles dont les valeurs de profondeur sont in-

valides (zéro). De cette façon, seuls les points clés pertinents sont conservés et le nombre

de points clés à décrire et à faire correspondre est réduit, ce qui diminue le temps de traite-

ment. Après le filtrage, la description et la mise en correspondance, vient l’étape du calcul

de la pose. Dans la version Stereo HOOFR SLAM, la matrice essentielle a été estimée en

appliquant le schéma RANSAC avec une erreur de mesure (me) inférieure au pixel afin

d’obtenir un modèle optimisé sans avoir recours à des méthodes d’optimisation comme le

BA. Nguyen et al. ont trouvé, au cours d’expériences, qu’une erreur de mesure de l’inlier

dans le schéma RANSAC inférieure à 0.4 permet une précision de localisation élevée.

Cependant, lorsqu’on applique un me=0.4, le temps d’exécution augmente considérable-

ment. Pour résoudre ce problème, Nguyen et al. ont proposé une solution consistant à

estimer la matrice essentielle deux fois, la première fois avec me=1 et la seconde fois

en utilisant les inliers trouvés précédemment avec un me=0,4. Dans l’algorithme RGB-D

HOOFR SLAM, puisque le nombre de points d’intérêt est réduit dans l’étape de détection,

nous estimons la matrice essentielle une seule fois pour une petite valeur de me. Dans le

pire des cas, avec peu de bons points, RANSAC prendra beaucoup de temps pour trouver

la solution. Par conséquent, nous avons changé la méthode RANSAC en PROSAC (PRO-

gressive Sample Consensus). Cette méthode est basée sur un échantillonnage progressif

des points en commençant par ceux qui sont les mieux classés en fonction de leur facteur

de qualité, ce qui permet d’économiser considérablement le temps de calcul. Dans [172],

les auteurs ont démontré que PROSAC était plus de cent fois plus rapide que RANSAC,

et dans le pire des cas, ils ont un comportement identique. Nous avons utilisé le test

du ratio de Lowe [173] pour trier les correspondances. Nous avons comparé le SLAM

RGB-D HOOFR à sa version stéréo. En outre, le RGB-D HOOFR SLAM a été comparé

à d’autres algorithmes de pointe en ce qui concerne ses performances et s’est avéré être

un bon compromis entre le temps d’exécution et la précision de localisation. Notre al-

gorithme peut fonctionner en temps réel à 27 FPS sur un CPU de PC et à 19 FPS sur un

processeur embarqué sans accélérer le traitement sur le GPU.
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Co-conception matériel-logiciel : Vers un traitement front-end basé

sur une architecture FPGA

Les systèmes SLAM basés sur les primitives deviennent de plus en plus populaires en rai-

son de leurs performances et de leur robustesse. Plusieurs extracteurs de caractéristiques

sont utilisés dans divers systèmes SLAM tels que ORB [60], SIFT [173], et SURF [58].

Bien que ces extracteurs offrent de bons résultats de correspondance, la complexité de cal-

cul de l’extraction et de la mise en correspondance des primitives représente un défi im-

portant lors de l’intégration de tels algorithmes SLAM dans des architectures embarqués.

Récemment, Nguyen et al. [10] ont proposé une implémentation FPGA de l’extracteur

HOOFR tout en conservant la même précision. Cependant, la tâche d’appariement reste

la plus longue dans le flux de traitement. La conception d’une architecture accélérée pour

ce bloc fonctionnel est obligatoire pour réaliser un traitement à la volée sur un système

sur puce. Notre défi consiste à améliorer les performances de l’algorithme sur des archi-

tectures à faible consommation afin de garantir le traitement à la volée. Les FPGA sont

considérés comme le meilleur choix pour le traitement de flux. Contrairement aux GPU,

qui ne fournissent un parallélisme que pour le traitement et l’accélération des données, les

FPGA peuvent fournir un parallélisme des données, des tâches et des pipelines, ce qui les

rend plus adaptés au traitement par flux: [174, 175] notamment pour les systèmes embar-

qués. Nous atteignons notre objectif grâce à une adéquation algorithme-architecture ap-

pliquée aux architectures CPU-FPGA. En pratique, un algorithme est décomposé en blocs

fonctionnels, et chaque bloc est affecté à l’unité de traitement appropriée, ce qui garantit

des performances optimales. Dans ce chapitre, nous évaluons les performances du bloc

de correspondance sur différentes architectures, puisqu’il s’agit du goulot d’étranglement

des performances. Nous concluons en proposant une répartition optimale CPU-FPGA

pour le front-end RGB-D HOOFR-SLAM. En partant de l’extracteur HOOFR basé sur le

Bucketing: [10], nous visons à embarquer le front-end du HOOFR SLAM sur FPGA dans

le contexte de pousser le traitement aussi près que possible du capteur. À cette fin, nous

avons implémenté l’algorithme d’appariement sur le FPGA car il s’agit de la deuxième

tâche la plus lourde en termes de calcul. L’implémentation de l’appariement sur GPU : [8]

a montré des performances remarquables. Cependant, si l’on considère la consommation
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d’énergie, les GPU sont très gourmands en énergie, ce qui rend la gestion thermique plus

difficile dans les systèmes embarqués, en particulier pour les applications où l’autonomie

énergétique est un atout crucial. Bien que les GPU (c’est-à-dire les Jetson AGX Xavier™)

commencent à se rapprocher des FPGA en termes de performance par watt, cela ne sig-

nifie pas qu’ils constituent la meilleure solution pour toutes les applications. Les FPGA

représentent une caractéristique essentielle, qui est la connexion d’E/S any-to-any, perme-

ttant la connexion à n’importe quel dispositif, réseau ou stockage sans avoir besoin d’un

CPU hôte. Le FPGA est bien adapté au traitement frontal dans le traitement polyvalent,

car il peut être directement connecté à des capteurs à haute vitesse et offrir une bande

passante très élevée. Dans notre étude, nous avons d’abord évalué l’implémentation GPU

du bloc de correspondance sur FPGA puisque l’algorithme a été implémenté en OpenCL:

[8] et peut donc être exécuté à la fois sur GPU et FPGA. Lorsque nous avons exécuté

l’algorithme en utilisant NDRange sur deux images d’une résolution de 1280 × 720 avec

2000 points clés, nous avons obtenu un temps d’exécution très important de 813.01ms. Ce

temps d’exécution s’explique par la dépendance des données représentée par l’attente des

résultats des work-items pour sélectionner la correspondance avec la distance minimale.

L’impact de la synchronisation n’est pas visible sur GPU, car la fréquence de traitement

est élevée et les work-items sur GPU sont lancés simultanément, contrairement à FPGA,

où les work-items sont lancés en parallèle de manière pipelinée. De plus, les FPGA sont

flexibles en termes d’architecture de programmation et sont capables de fournir des per-

formances pour les opérations qui contiennent des opérations conditionnelles et/ou des

branches. Ces différences architecturales ont un impact significatif sur les performances.

Pour cette raison, nous avons utilisé une implémentation à élément de travail unique,

également appelée noyau de tâche.

Dans l’évaluation on a trouvé qu’avec un noyau à tâche unique, nous obtenons un fac-

teur d’accélération de ×96 par rapport au noyau NDRange. Pour atteindre des perfor-

mances similaires à celles du GPU, nous créons quatre noyaux correspondants car ils ne

nécessitent pas beaucoup de ressources matérielles. Avec quatre noyaux correspondants,

nous obtenons un gain de vitesse de ×254. L’algorithme de mise en correspondance a

été adapté aux paradigmes de programmation des FPGA afin de réaliser un traitement

en temps réel adapté à la fréquence d’images de la caméra Intel RealSense. Nous avons
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également montré que la complexité de l’algorithme a été préservée pour garantir la même

qualité de résultats en logiciel qu’en matériel. Notre conception a été implémentée sur

l’architecture FPGA DE5a-Net DDR4 Arria 10. L’implémentation FPGA montre que la

conception OpenCL est×9 à×14 plus rapide que l’implémentation C++ fonctionnant sur

un CPU haute performance. Le débit obtenu est de 30 FPS à une résolution de 1280×720

pixels et de 38 FPS à une résolution de 640×480 pixels, ce qui est suffisant pour effectuer

un traitement à la volée. L’architecture proposée, implique l’acquisition des images du

capteur sur le CPU, le lancement de l’extraction et de la mise en correspondance des

points clés sur le FPGA, et enfin le lancement de l’estimation de la pose sur le CPU. La

détection de fermeture de boucle est lancée sur un thread parallèle sur le CPU.

Conclusion et perspectives

Dans cette thèse, nous avons adopté une méthodologie considérant la chaîne de traitement

d’un système SLAM (du capteur à l’architecture embarquée). Notre étude s’est concen-

trée sur la partie frontale des algorithmes SLAM. Nous avons commencé par étudier les

caractéristiques d’un capteur RGB-D et son impact sur la précision de la localisation.

Dans ce contexte, nous avons proposé une méthodologie de couplage capteur-algorithme,

qui consiste à identifier les paramètres corrélés aux capteurs ou ayant un impact signifi-

catif sur la localisation (i.e. la pose de la caméra). Ensuite, le protocole d’optimisation

est appliqué à ces paramètres pour déterminer leurs valeurs optimales. Après la carac-

térisation du capteur RGB-D, nous avons procédé à l’extension du HOOFR-SLAM vers

l’utilisation de capteurs RGB-D pour des applications de véhicules autonomes. Pour as-

surer la cohérence et la robustesse de l’algorithme dans des environnements dynamiques,

nous avons implémenté un mécanisme de filtrage des points clés basé sur des cartes de

profondeur. Ce filtre nous permet d’améliorer efficacement la précision de la localisation

en ne conservant que les points clés fiables. Ensuite, des optimisations algorithmiques

ont été introduites dans l’algorithme. En analysant le flux de données, nous avons re-

marqué que la quantité de données d’entrée influence fortement le temps de traitement.

Plus le nombre de points clés traités est important, plus la complexité augmente dans

plusieurs blocs fonctionnels (par exemple, la description, la correspondance, l’estimation
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de la pose). Contrairement à d’autres travaux : [165, 155, 167], qui utilisent le filtrage

des points clés uniquement pour améliorer la précision de l’algorithme dans des environ-

nements dynamiques, notre implémentation sert deux objectifs. Premièrement, améliorer

la précision, et deuxièmement, réduire la quantité de données fournies aux blocs fonc-

tionnels, réduisant ainsi le temps de traitement. Dans ce but, le filtrage des points clés a

été effectué directement après la détection des caractéristiques, réduisant ainsi le nombre

de points à décrire, à faire correspondre et à utiliser pour l’estimation de la pose. D’autre

part, dans l’estimation de la pose, l’algorithme RANSAC traite toutes les correspondances

de la même manière et tire des échantillons aléatoires uniformément de l’ensemble com-

plet. Lorsque la proportion d’observations aberrantes est faible, le nombre d’itérations

augmente de manière exponentielle. Ce problème a été résolu à l’aide de l’algorithme

PROSAC, qui prend en entrée des correspondances ordonnées par qualité et leur donne la

priorité lors de l’échantillonnage, en partant du principe que ces correspondances ont une

probabilité élevée d’être des valeurs aberrantes, ce qui conduit à une convergence plus

rapide. En comparant les performances de RANSAC et de PROSAC, notre algorithme at-

teint une accélération de ×5 tout en conservant la même précision. Notre système SLAM

peut fonctionner à 27 FPS sur un CPU 8-core à 3 GHz et à 19 FPS sur un processeur em-

barqué 8-core à 2.26GHz sans accélérer le traitement sur leurs GPUs associés. Cependant,

pour un traitement à la volée, l’algorithme doit pouvoir fonctionner à la même vitesse que

le capteur, voire plus (à partir de 30 FPS). Pour cela, nous avons amélioré les perfor-

mances de notre algorithme en profitant des architectures à base de FPGA connues pour

leur faible consommation énergetique. Une étude a été menée sur l’optimisation du parti-

tionnement des différents blocs fonctionnels sur les unités de calcul. Ce partitionnement

prend en compte le flux de données, la dépendance des blocs fonctionnels et les charges

de travail. Une architecture FPGA basée sur une implémentation OpenCL pour la mise

en correspondance des primitives HOOFR a été conçue. La complexité de l’algorithme

d’appariement a été respectée pour garantir les mêmes performances d’appariement dans

le logiciel que dans les implémentations matérielles. Ce système de mise en correspon-

dance a été incorporé à l’extracteur HOOFR basé sur le "bucketing" afin d’intégrer 88%

du frontal sur FPGA. L’implémentation FPGA montre que la conception OpenCL est

jusqu’à 14 fois plus rapide que l’implémentation basée sur le CPU. Le débit obtenu est
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de 30 FPS à une résolution de 1280 pixels et de 38 FPS à une résolution de 640 pix-

els. Les résultats ont démontré la capacité de l’architecture FPGA à gérer un traitement

à la volée de l’interface SLAM HOOFR. Le travail présenté dans cette thèse présente de

multiples contributions vers le SLAM embarqué pour les véhicules autonomes. Plusieurs

pistes sont envisagées pour étendre ce travail à différents niveaux (capteur, algorithme, et

architecture). Au niveau du capteur, nous avons l’intention d’étendre notre jeu de don-

nées RGB-D avec des scénarios plus difficiles dans une large gamme de conditions (y

compris les changements de météo et d’illumination) pour une étude plus approfondie.

Les jeux de données étudiés ont été acquis à des vitesses modérées (20Km/h à 40Km/h),

permettant une bonne performance à 30FPS. Des scénarios à des vitesses plus élevées

sur des autoroutes sont prévus pour compléter la caractérisation du capteur afin de main-

tenir ou d’améliorer la précision. De plus, des ensembles de données avec différentes

élévations sont prévus. Pour l’instant, l’algorithme peut fonctionner sur un terrain plat.

L’intégration d’unités de mesure inertielle (IMU) sera un atout pour assurer la cohérence

de l’algorithme dans un environnement présentant des variations d’altitude. Du point

de vue de l’architecture, le calcul de pose sera un sujet d’étude pour un système frontal

entièrement embarqué sur FPGA. Enfin, l’interface FPGA et caméra devra être étudiée

de manière approfondie pour réaliser le traitement à la volée, concevant ainsi un capteur

SLAM visuel intelligent.
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