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Gliomas account for approximately 25% of cancers arising from the brain and central nervous system 1 . The annual gliomas incidence is approximately six cases per 100,000 individuals worldwide 2 . Although it corresponds to less than 1% of all newly diagnosed cancers, adult diffuse gliomas have a high rate of mortality 3 . However, they constitute a heterogeneous group of cancers with disparate incidence and mortality influenced by age, sex, race, and geographical region. Based on the United States Central Brain Tumor Registry (CBTRUS) report, astrocytoma and oligodendroglioma are more prevalent in young adults with a median age of 46 and 43 years, respectively. Glioblastoma (GBM), the most common and lethal glioma, tends to peak in elderly people at age 65. Overall, the incidence rate of gliomas is higher in male patients than in females. The 5-year overall survival rates vary widely, ranging from approximately 95% for pilocytic astrocytoma to 7% for GBM 4 . The incidence of gliomas may also be influenced by ethnicity, with a rate two times higher in northern European populations than in the Asian and African populations 3 . Regarding risk factors, most gliomas develop from acquired somatic mutations, but 5% present inherited genetic variants 3 . The ongoing hypothesis for this latter group is an interplay between inherited and acquired mutation leading to gliomagenesis. Another accepted risk factor is ionizing radiation. It remains the only ascertained environmental risk factor associated with glioma. Other potential risk factors, such as virus infection and lifestyle, are still debated 4 .

B. Classification

The classification of central nervous system tumors has greatly evolved in the past decade.

In 2016, the World Organization of Health (WHO) updated the classification of 2007 based only on histology by integrating molecular genetics 5 . The revised classification proposed an integrated diagnosis to homogenize tumor entities in terms of prognosis and therapeutic response. The classification thus included for the first time two genetic alterations :

-Mutations in the isocitrate dehydrogenase 1 and 2 genes (IDH1 and IDH2) conferring a favorable prognosis 5 . The mutation of IDH1 at codon 132 (R132H) was initially found in secondary GBM recurrent from lower-grade gliomas 6 . The homologous mutation on amino acid 172 was identified in the IDH2 gene 7 . One mutation in at least one of the two genes was detected in most WHO grade II and III astrocytomas and oligodendrogliomas and in secondary GBM. IDH1 and 2 are very similar proteins that catalyze the reversible conversion of isocitrate to α-ketoglutarate. When mutated, these enzymes produce the oncometabolite D-2-hydroxyglutarate leading to an altered tumor metabolism 8 . The overproduction of this oncometabolite has broad effects, including altered metabolism, aberrant DNA and histone methylation, chromatin restructuring, and differentiation blocks 9 .

-The loss of the short arm of chromosome 1 (1p) and the loss of the long arm of chromosome 19 (19q), abbreviated 1p/19q co-deletion, is the molecular signature of oligodendrogliomas 10 . It is also associated with a favorable prognosis 11 .

The newest classification of brain tumors of 2021, built on the previous ones, proposes substantial changes to improve the role of molecular diagnostics 10 . Gliomas are now classified under the category "Gliomas, Glioneuronal Tumors, and Neuronal Tumors" and divided into six families (Fig. 1).

A considerable change was brought by separating pediatric-type gliomas from adult-type ones based on their significant molecular differences. The adult-type diffuse gliomas are now divided into 3 entities: IDH-mutant astrocytoma, IDH-mutant oligodendroglioma with 1p/19q co-deletion and IDH wildtype GBM (Fig. 2). The first step of diagnosis is the status of IDH1 or IDH2. IDH-mutant gliomas mainly correspond to the previous category of lower-grade gliomas with the difference that secondary GBMs, progressing from lower grade gliomas but carrying an IDH mutation, are reclassified in high-grade astrocytomas and not GBM. GBM are necessarily IDH wildtype and grade 4 tumors. They additionally carry at least one other characteristic : Telomerase Reverse Transcriptase (TERT) mutation, Epithelial Growth Factor Receptor (EGFR) amplification, gain of chromosome 7, loss of chromosome 10, necrosis or microvascular proliferation (MVP). GBM are further divided in 3 sub-categories: proneural, classical and mesenchymal mainly associated with mutations in Platelet Derived Growth Factor Receptor Alpha (PDGFRA), EGFR and Neurofibromin 1 (NF1), respectively 12,13 . 

C. Evolution of gliomas and characteristics

From a molecular point of view, gliomas constitute a highly heterogenous group of cancers 14 . IDH-mutant gliomas present three main mutations: TERT promoter mutation in oligodendrogliomas, and mutations in TP53 and ATRX in astrocytomas 15 . On the other side, GBM is often mutated in three main pathways, that are usually mutually exclusive: p53 signaling, Rb pathway and MAPK pathway 16 . The main mutation occurring in the p53 axis is TP53 itself but can also occur in MDM2 and MDM4. The main mutation in Rb tumorsuppressive pathway is CDKN2A and also occurs in CDK4, CDK6, CCND2, CDKN2B and RB1. Finally, the main mutation in the MAPK/PI3K pathway is EGFR amplification but PIK3CA, PIK3R1, PTEN, PDGFRA, and NF1 are also commonly mutated. Moreover, in the past years, a number of studies have contributed to helping untangle GBM characterization with the aim to identify therapeutic avenues. A first improvement in GBM knowledge came from the discovery that the disease arises from glioma stem cells (GSC). The cell of origin, able to fully create a tumor and encompassing the wide range of GBM heterogeneity has long been discussed. While the Verhaak classification 12 established 4 subtypes of GBM, further reduced to 3, namely proneural, classical and mesenchymal 13 , other studies have revised this paradigm. Wang et al., further refine the classification of GBM into only two subtypes, tumors being a mix of proneural and mesenchymal cells in various proportions 17 .

Another study showed that GBM malignant cells are found in four cellular states: astrocytelike (AC-like), mesenchymal-like (MES-like) corresponding to classic and mesenchymal subtypes, and oligodendrocyte progenitor cell-like (OPC-like) and neural progenitor cell-like (NPC-like) corresponding to proneural subtype 18 . Each of these states coexists in an individual GBM, in different proportions and with one state that dominates over the other three 14 .

Histologically, gliomas are malignant tumors with rapid and invasive growth that do not metastasize 19 . Depending of the aggressiveness, they are characterized by marked mitotic activity, necrosis and florid microvascular proliferation 20 . These determine the grade of glioma from 2 to 4, GBM being exclusively of grade 4. They are also characterized by a local angiogenesis. All these characteristics are more often detected in GBM then in other gliomas with a lower grade.

As stated in their full name, adult-type diffuse gliomas are infiltrative diseases that spread into the surrounding parenchyma 21 . This invasion, whether at the margins of the tumor or further in healthy tissue, hinders therapy and is in part responsible for the tumor recurrence.

Glioma cells infiltrate the surrounding tissue through four different invasion pathways: 1) collective invasion, 2) individual-cell migration through the extracellular matrix (diffuse invasion), 3) invasion along neuron axons and 4) perivascular migration, also named vessel co-option 22,23 . Tumor vessels are not only a route of invasion for glioma cells, but are also the results of an enhanced tumor angiogenesis. Angiogenesis is the formation of new blood vessels from pre-existing vessels. In glioma, tumor angiogenesis is stimulated in response to hypoxia and lack of nutrients to expand the vasculature and sustain the tumor progression 24 . Particularly in GBM, blood vessels display an aberrant morphology that reflects local disruption of the blood-brain barrier.

D. Diagnosis and first-line treatments

The first step of diagnosis for brain tumor is magnetic resonance imaging (MRI) 2 . It is perform with or without administration of a contrasting agent (gadolinium). In addition, positron emission tomography (PET) is used as a complementary imaging tool to assess metabolic activity of the tumor. Shortly after this initial diagnosis, patients undergo tumor resection (or pre-operative biopsy). Tumor resection at this stage has two purposes, diagnostic and therapeutic. It is the central procedure, with the best benefit for patient survival 25 . The following treatment then depends on the diagnosis and is described in Figure 3. Overall, for any type of glioma, the treatment varies from wait-and-see strategy to chemoand radiotherapy and depends on the presence of unfavorable factors such as grade, age and neurological deficit. For GBM, the Stupp protocol published in 2005 is still the gold standard treatment 26 . It consists in maximal resection of the tumor followed by radiotherapy with concomitant and adjuvant chemotherapy using Temozolomide. Despite this treatment, nearly all GBM tumors progress to recurrence. Moreover, patient lifespan is still around 15 months and no other therapies succeeded in significantly improving overall survival. E. Importance of the tumor microenvironment Glioma cells are not the unique cell types constituting the tumor mass. Indeed, gliomas arise inside a unique microenvironment composed of cellular and acellular components. The surrounding cells and the composition of the extracellular matrix have particularly gained insight in recent years 27 . The brain is composed of specific cells such as neurons, astrocytes, oligodendrocytes, microglia and monocyte-derived macrophages, blood vessels and other immune cells. Moreover, the brain is protected from circulating immune cells by the blood-brain barrier (BBB) and cerebrospinal fluid-brain barrier 27 . The brain represents a relatively immunosuppressive landscape that is distinct from other organs. The immune compartment is composed of a vast majority of microglia and to a lesser extent of macrophages and neutrophils (Fig. 4) 28 . All other immune cell types (monocytes, dendritic cells, T cells, NK cells) represent less than 2% of leukocytes in the brain. With the onset of tumor, the composition of the microenvironment changes. Both myeloid cells and lymphocytes become more abundant 29 , although the exact composition of the immune landscape varies among brain malignancies (Fig. 5) 30 . While the major components after tumor cells remain microglia and monocyte-derived macrophages, the proportion of the latter increases with tumor development 27,29 . Lymphocyte proportion also increases in glioma samples compare to non-tumor samples with a majority of CD4+ T cells 29 . Not only the composition of cells changes with glioma progression, but the crosstalk between tumor cells and normal brain cells adapts to tumor progression 27 . Tumor cells secrete chemokines such as CSF-1, GM-CSF, CCL2, HGF, SDF-1 and CX3CL1 in their surrounding microenvironment (Fig. 6). This attracts and regulates immune cells and notably macrophages and microglia. In turn, tumor-associated macrophages and microglia secrete other cytokines (IL6, TGFβ, IL1β) to regulate their own phenotype as well as those of the tumor cells. Other cell types also play a role in tumor progression. The function of astrocytes, which are specific to brain tissue, in glioma progression is still largely unknown. However, studies have highlighted their importance in BBB tightness, tumor proliferation and invasion 31 . They are also at the center of communication between tumor cells and normal cells.

Noteworthy, astrocytes exchange factors with tumor cells through gap junctions (Fig 6).

Limited data is available on the role of neutrophils in glioma. They have mainly been linked to tumor angiogenesis as their infiltration arises from blood circulation 27 . They have also been associated with GBM progression through the S100 proteins (Fig. 6). Lymphocytes classically exhibit anti-tumor responses. However, gliomas are a singular case in which lymphocyte functions are hindered by an immunosuppressive microenvironment and an exhaustion phenotype displayed by T cells 32 . This partly explains the failure of immunotherapies (discussed after) and the growing interest in innate immune modulation in gliomas. More recently, neuronal activity has gained interest in investigations of GBM progression 33 . Two significant studies reported that neuronal hyperexcitation stimulates glutamatergic synapses in glioma cells 34,35 . These reports suggest that neurons and tumor cells communicate through calcium signaling networks that orchestrate glioma progression, potentially through cytoskeletal remodeling and oncogenic pathway. All these cell types as well as the extracellular matrix influence glioma cells to regulate several aspects of tumor development including invasion, which is a major issue in glioma therapy.

F. Recurrence and second-line therapies

Almost all GBM recur while more than half of IDH-mutant gliomas experience tumor recurrence eventually 36,37 . Once gliomas progress, the management of recurrent disease remains challenging. Options for a second-line treatment are not standardized but include: second surgery (especially for IDH-mutant gliomas), re-irradiation, alkylating agents from the nitrosourea class (e.g. lomustine), temozolomide rechallenge and inclusion into a clinical trial 2 . In the past two decades, two other types of therapies emerged and appeared promising.

The first one relies on angiogenesis which is a major hallmark of GBM. Anti-angiogenic therapy was initially intended as a means to deprive the tumor of blood vessel supply thus inhibiting its progression and sensitizing it to other therapies 38 . However, instead of destroying blood vessels, anti-angiogenic therapies normalize them, thus re-establishing a normal flow of nutrient and oxygen supply 39 . As consequence, drug delivery is transiently more efficient. However, due to resistance mechanisms and redundancy of angiogenic pathways, tumors eventually escape anti-angiogenic inhibition 40 . In the case of GBM, the privileged drug was Bevacizumab, an anti-VEGF monoclonal antibody inhibiting the VEGF-VEGFR axis 40 . It has shown some benefits in patients outcomes including better progression-free survival, especially in recurrent GBM but did not improve overall survival.

The second strategy is cancer immunotherapy which contrasts the effects of the immunosuppressive TME by potentiating the activity of cytotoxic T cells in the eradication of tumor cells. This strategy showed great promise in many solid cancers, especially since the development of immune checkpoint inhibitors (ICIs) 41 . However, similar therapies were applied to GBM with disappointing results 42 . Indeed, GBM exhibited resistance mechanisms at all steps of the antitumor immune response 43 . For example, recurrent GBM treated with the ICI Nivolumab did not improve patient survival compared to Bevacizumab 44 . Other clinical trials using ICI also failed to meet the primary endpoint of 6 months of progressionfree survival 45 .

In this perspective, it is crucial to identify novel therapeutic targets, individually or in combination with existing treatments for both primary and recurrence gliomas. This quest passes through the use of fundamental pre-clinical research and studies in patient cohorts.

G. Perspectives for a cure: basic research versus cohort studies

From fundamental research to therapeutic target

Fundamental knowledge of cancer mechanisms emerged from decades of basic research seeking to dissect the regulation of all aspects of cell biology 46 . The understanding of cellular, molecular and metabolic mechanisms of cancer are fundamental to identifying new potential targets and for the development ofnew therapeutic strategies (Fig. 7 top) 47 .

For instance, a study showed that different pediatric brain tumors mirrored distinct transcriptomes of cells from temporally restricted lineages of the developing mouse cerebellum 48 . This comparison between cancer cells and developing fetal cells identified potential cells of origin for pediatric tumors and their associated pathways 49 . Those pathways became then novel potential therapeutic targets.

In the field of GBM, efforts have been made to deciphering the molecular biology and genetics underlying the development of the tumor 50 . For instance, all the works to uncover the genetic bases of glioma, such as the mutation of IDH has improved brain tumor classification and management of patients.

Ongoing and future pre-clinical mechanistic studies will further contribute to the understanding of glioma biology, thus paving ways to improve targeted therapies and patient care.

Cohort studies: validating therapies and uncovering novel targets

Another complementary way to improve cancer therapies is through the study of patient cohorts (Fig. 7 bottom). A cohort is "a group of people with defined characteristics who are followed up to determine the incidence of, or mortality from, some specific disease, all causes of death, or some other outcome" 51 . Studying a patient cohort takes several forms, including retrospective study (i.e., backward-looking), prospective study (forward-looking), and clinical trial 52 . Prospective studies are planned and carried out over a period of time to assess outcome incidence among exposure groups. In comparison, retrospective studies look at patient cohorts in which the follow-up has already started and attempt to identify risk factors for outcomes that have already occurred (e.g., tumor progression or death). Both retrospective and prospective studies are employed to identify the causes of the observed outcomes, and to help refine treatments. While retrospective studies are common due to the immediate availability of data, prospective studies provide stronger evidence for causation as they collect information purposefully and systematically 52 . On the other hand, clinical trials in oncology are mainly used to assess the safety of newly developed drugs before their final approval 53 . Nowadays, clinical trials in oncology in general and neuro-oncology, in particular, tend to incorporate personalized medicine by sub-dividing patient groups based on more restrictive molecular markers 54,55 . All the studies on patient cohorts rely on distinct strategies but share the same purpose of improving the prediction of patient outcomes, the stratification of patients, and the treatments proposed. , the protein becomes a potential target whose therapeutic application has then to be tested in the clinics after the design of a therapy (top). The reverse but complementary strategy consists in studying the outcomes of patients from the clinics and identifying a biomarker of a response that becomes the target (bottom). A hypothesis is made on the mechanism of this target and has then to be tested in the lab.

Both approaches, fundamental research, and cohort study, are complementary. Indeed, a marker identified by basic research becomes then the target for targeted therapy that is then studied in patient cohorts to validate its effect (Fig. 7). And conversely, newly detected biomarkers from a cohort study have then to be validated at the bench to understand their mechanisms and design appropriate drugs. In the end, these studies generated a considerable data, and their exhaustive analysis can benefit from artificial intelligence.

II. Contribution of machine learning in glioma management

Machine learning is a branch of artificial intelligence. It is used to identify patterns in big data, such as those generated in cancer research. The ultimate goal is to implement patient management in clinics.

Machine learning relies on the availability of the increasing amount of data linked to patients such as molecular data (e.g., genomics, transcriptomics, proteomics, metabolomics), imaging (e.g., radiologic images from MRI, PET scans) and clinical outcomes (e.g., survival, response to treatment) 56 . These "big data" must first be preprocessed to obtain appropriate input information to enter the algorithm (Fig. 8). The input data, ready to be added to the algorithm, are designated as features 57 . For instance, features extracted from omics are genes and protein; features extracted from imaging are size and shape of the tumor; features from clinical data of patients are age and time to progression. Machine learning techniques are composed of several algorithms. They are mainly divided into supervised and unsupervised algorithms. Unlike their unsupervised counterpart, the supervised algorithms are built on features labeled by clinicians and researchers. The most common supervised techniques are random forests, linear and logistic regression, and support vector machines (SVM). SVM and random forests are mainly used to classify objects into different categories 57 . Random forests construct and merge multiple decision trees to obtain an accurate regression (e.g. prediction of survival) and classification (e.g. dividing gliomas into IDH wildtype and IDH mutated). Throughout the process, the complexity of data is reduced (Fig. 8). Concomitantly, the data become more applicable in the clinics. For example, from a dataset of transcriptomics that includes 20,000 genes, the output can be a genetic signature composed of two clinically relevant genes. 

III. Protein tyrosine phosphatases: PRL2 in particular

A. History and classification Protein phosphorylation, especially on tyrosine residues, was long known to be involved in fundamental cellular processes such as proliferation, differentiation, adhesion and metabolic homeostasis 58 . In this process, the first enzyme related to tyrosine phosphorylation was the tyrosine kinase v-Src, identified in cells infected with the Rous sarcoma virus 59 . Following this breakthrough, 478 protein tyrosine kinases were identified in eukaryotic genomes.

Tyrosine kinase activity gained popularity with the discovery that receptors for growth factors (e.g. EGFR) had such an activity. Moreover, when the tyrosine kinase activity of those receptors was found associated with cancer progression, a considerable effort was put into finding and characterizing all tyrosine kinases and designing specific inhibitors 60 . In this context, tyrosine phosphatase activity appeared less appealing. Although phosphatases catalyze the reverse reaction of kinases, little interest was given to them. Indeed, they were long assumed as tumor suppressor genes because their counterpart kinases were mostly oncogenes.

Protein tyrosine phosphatases (PTP) are classified into four families numbered I to IV (Fig. 9) 58 

B. Mechanisms of action of the PRL phosphatases

The unique phosphatases PRL consist of a family of 3 members with PRL1, PRL2, and PRL3. They are encoded by the genes PTP4A1, PTP4A2 and PTP4A3, respectively. They are small proteins of approximately 20 kDa and have at least 75% of amino acid identity 61 .

The first PRL described was PRL1 and was initially found upregulated in regenerating liver and in mitogen-stimulated cells 62,63 . A few years after, PRL2 and PRL3 were identified by homology of the first member 64 . The PRLs are the only PTPs to be prenylated at the Cterminal region (CAAX box; Fig. 10). A polybasic region is placed before the CAAX box, and together they allow the PRL to be localized to the plasma membrane and endosomes 61 . As PRLs belong DSP family, they theoretically dephosphorylate serine, threonine, and tyrosine residues within their substrates. The most important motif for the enzymatic activity is the C(X)5R containing the catalytic cysteine residue (C104 in PRL1; Fig. 10). This cysteine is sensitive to oxidation and can form an intramolecular disulfide bond with another cysteine (C49 in PRL1) which inhibits the phosphatase activity of the PRL. During the dephosphorylation step, a phosphocysteine intermediate is formed, but contrary to other DSP members, this intermediate has an extended half-life and is the rate-limiting step in the reaction (Fig. 11). Moreover, the presence of an alanine in the active site instead of the conserved serine/threonine residue present in most PTP delays the release of the phosphate from the enzyme and thus slows down the enzymatic activity. These particularities explain the low activity of PRL phosphatases in vitro. In contrast to their low enzymatic activity, PRLs are also designated as pseudophosphatases bearing non-catalytic activities 65,66 . PRL members have been shown to interact with cyclin M (CNNM) family members 67,68 . Four CNNM proteins in humans are known. They are highly conserved but have distinct functions and tissue distributions 69 . CNNM1, CNNM2, and CNNM4 have the highest levels in brain, kidney, and intestine, respectively, whereas CNNM3 shows a ubiquitous expression pattern 70 . CNNMs contain an N-terminal integral membrane domain followed by a cystathionine-b-synthase (CBS) pair domain and a Cterminal region of 250 residues or more unknown structure 70 . Independent studies showed that PRL/CNNM complex controls intracellular magnesium levels and promotes cancer progression and metastasis (Fig. 12) 67,68 . Crystal structures of this complex (PRL with a cytosolic domain of CNNM proteins) showed that the catalytic site of PRL binds a CNNM aspartic acid residue that mimics a substrate 69,[START_REF] Giménez-Mascarell | Structural basis of the oncogenic interaction of phosphatase PRL-1 with the magnesium transporter CNNM2[END_REF][START_REF] Zhang | PRL3 phosphatase active site is required for binding the putative magnesium transporter CNNM3[END_REF] . Mutations of the PRL catalytic cysteine to either alanine or serine block catalytic phosphatase activity and CNNM binding. Other potential partners of the PRLs are not excluded and remain to be discovered. For example, ADP-ribosylation factor-like GTPase 15 (ARL15), which is a regulator of intracellular vesicle trafficking, interacts with CNNM3, suggesting that it could have a role in the interaction between CNNM3 and PRL [START_REF] Zolotarov | ARL15 modulates magnesium homeostasis through N-glycosylation of CNNMs[END_REF] . TRPM7, a ubiquitously expressed divalent cation channel, is a major channel responsible for maintaining intracellular magnesium levels (Fig. 12). Its expression is inversely correlated with PRL2 level [START_REF] Hardy | Magnesium-sensitive upstream ORF controls PRL phosphatase expression to mediate energy metabolism[END_REF] . Moreover, CNNM proteins bind to TRPM7 to modulated its activity 75 . D. Functions of PRL in physiology PRL1 and PRL2 are ubiquitously expressed whereas PRL3 expression is much lower in all tissues except heart and skeletal muscles (Fig. 13). Although their expression pattern is known, they still remain understudied as reflected by their under-representation in literature.

In October 2022, queries on Pubmed showed that PRL3 and PRL1 are mentioned in 355 and 211 times, respectively. PRL2 was the least studied with only 92 reports. In contrast, PTEN, whose role has been for a longer time, is the subject of over 20,000 articles.

Nevertheless, the PRLs have been implicated in several physiological functions. Among them, PTP4A1 and PTP1A2 depletion abolished spermatogenesis as shown in knockout mouse models [START_REF] Resende | Evaluation of TgH(CX3CR1-EGFP) mice implanted with mCherry-GL261 cells as an in vivo model for morphometrical analysis of glioma-microglia interaction[END_REF][START_REF] Dong | Phosphatase of regenerating Liver 2 (PRL2) deficiency impairs kit Signaling and Spermatogenesis[END_REF] . The PTP4A2-KO mice also exhibited placental insufficiency resulting in lower body weight of newborn and adult PTP4A2-KO mice [START_REF] Dong | Phosphatase of regenerating liver 2 (PRL2) is essential for placental development by down-regulating PTEN (phosphatase and tensin homologue deleted on chromosome 10) and activating Akt protein[END_REF] . Additionally, these mice displayed a defect in hematopoietic stem/progenitor cell (HSPC) proliferation and renewal [START_REF] Kobayashi | Phosphatase of regenerating liver in hematopoietic stem cells and hematological malignancies[END_REF] and T cell development [START_REF] Kobayashi | Protein tyrosine phosphatase PRL2 mediates Notch and Kit signals in early T cell progenitors Michihiro[END_REF] . Mechanistically, these phenotypes were caused by decreased AKT activity. PRL2 has also been implicated in physiological angiogenesis by promoting the migration and proliferation of endothelial cells in vitro and endothelial sprouting and arterioveinous differentiation in a retina mouse model [START_REF] Poulet | PRL-2 phosphatase is required for vascular morphogenesis and angiogenic signaling[END_REF] . Interestingly, the double deletion of PTP4A1 and PTP4A2 is embryonic lethal, highlighting their importance in mouse development [START_REF] Bai | Role of phosphatase of regenerating liver 1 (PRL1) in spermatogenesis[END_REF] . 

E. Roles of PRL in cancer

Roles of PRLs in cancer

In addition to their functions in normal physiology, the PRL phosphatases play a role in a wide variety of cancers 61 (Fig. 14). A large majority of studies reported the overexpression of PRL3 in cancer including colorectal cancer, the first cancer model linked to this PRL [START_REF] Saha | A phosphatase associated with metastasis of colorectal cancer[END_REF] . A similar overexpression was then found in many other cancers, including ovarian [START_REF] Polato | PRL-3 phosphatase is implicated in ovarian cancer growth[END_REF][START_REF] Ren | Prognostic significance of phosphatase of regenerating liver-3 expression in ovarian cancer[END_REF] , bladder 86 , breast [START_REF] Wang | Overexpression of phosphatase of regenerating liver-3 in breast cancer: Association with a poor clinical outcome[END_REF][START_REF] Radke | Expression and prognostic impact of the protein tyrosine phosphatases PRL-1, PRL-2, and PRL-3 in breast cancer[END_REF] , lung [START_REF] Yamashita | Down-regulation of the human PRL-3 gene is associated with the metastasis of primary non-small cell lung cancer[END_REF] , nasopharyngeal cancers [START_REF] Zhou | Over-expression of phosphatase of regenerating liver-3 correlates with tumor progression and poor prognosis in nasopharyngeal carcinoma[END_REF] , melanomas [START_REF] Laurent | High PTP4A3 phosphatase expression correlates with metastatic risk in uveal melanoma patients[END_REF] and gliomas [START_REF] Kong | The value and correlation between PRL-3 expression and matrix metalloproteinase activity and expression in human gliomas[END_REF][START_REF] Lazo | Credentialing and pharmacologically targeting ptp4a3 phosphatase as a molecular target for ovarian cancer[END_REF] . PRL3 was also overexpressed in myeloid leukemia and multiple myeloma 94,95. Although PRL3 has been mainly associated with metastatic progression, other studies have established a relationship between PRL3 and tumor angiogenesis. For example, PRL3 increase in tumor cells recruited endothelial cells and activated tumor angiogenesis [START_REF] Guo | PRL-3 initiates tumor angiogenesis by recruiting endothelial cells in vitro and in vivo[END_REF] . Similarly, PRL1 is also overexpressed in several cancers such as adenocarcinoma [START_REF] Wang | Expression of the human phosphatases of regenerating liver (PRLs) in colonic adenocarcinoma and its correlation with lymph node metastasis[END_REF] , colon cancer [START_REF] Wang | Expression of the human phosphatases of regenerating liver (PRLs) in colonic adenocarcinoma and its correlation with lymph node metastasis[END_REF] and nasopharyngeal cancer [START_REF] Liu | Expression of phosphatase of regenerating liver 1 and 3 mRNA in esophageal squamous cell carcinoma[END_REF] . Moreover, PRL1 is involved in invasive properties in vitro [START_REF] Luo | PRL1 promotes cell migration and invasion by increasing MMP2 and MMP9 expression through Src and ERK1/2 pathways[END_REF]100 .

Mechanistically, the transcription factor p53 directly activated the transcription of PTP4A3 101 .

This study and others in the tumor identified PRL-3 as a cell cycle regulator. Indeed, in noncancerous models, PRL3 overexpression induced a cell cycle arrest in the G1 phase through the AKT pathway. Surprisingly, this cell cycle arrest in the G1 phase was also carried by PTP4A3 depletion suggesting a dose-dependent involvement of PRL3 in cell cycle promotion. PRL-1 and PRL-2 were also involved in cell cycle regulation by promoting S phase transition 102 . 

Roles of PRL2 in cancer

PRL2 has been implicated in fewer cancers. Its overexpression has been reported in lung, colon, nasopharyngeal, and breast cancers and leukemia 61 . PRL2 mainly promotes tumor progression and metastasis 103,104 . Different expression of PTP4A2 between primary and metastatic areas has been shown in colon and prostate cancer. Then, Hardy et al., reported the oncogenic properties of PRL-2 in breast cancer 104,105 . In this work,; PTP4A2 expression was significantly increased in primary breast tumors compared to surrounding tissue and in metastatic lymph nodes compared to primary tumors. Later it was shown that PRL2 oncogenic properties were also associated with the interaction with CNNM3 in breast cancer and disruption of the PRL2-CNNM3 complex decreased tumor progression 68 . PRL-2 is also high in leukemia [START_REF] Kobayashi | Phosphatase of regenerating liver in hematopoietic stem cells and hematological malignancies[END_REF]106,[START_REF] Chen | PRL2 Phosphatase Enhances Oncogenic FLT3 Signaling via Dephosphorylation of the E3 Ubiquitin Ligase CBL at Tyrosine 371[END_REF] Whether this mechanism applies to other cancer models remains to be determined.

Objectives of the thesis and strategy

This Ph.D. study was based on three separate axes that allowed to explore different approaches to research on brain cancer.

1) The first approach involved uncovering the role of a potential target, namely PRL2, in the progression of GBM. This work relied on previous studies reporting excellent oncogenic properties of PRL2 in cancer models, which led to the idea that this phosphatase could also be an excellent therapeutic target in GBM. detailPRL2 is described as an oncogenic phosphatase in hematological malignancies, breast ,cancer and other solid tumors 61 . This part of the thesis project was built as a biased approach with a clear hypothesis and involved fundamental cell and tumor biology.

2) In contrast, the second project was an unbiased approach aiming to characterize IDH-mutant gliomas better and better stratify patients. This work involved a retrospective analysis of a patient cohort. The observed outcome was the onset of tumor recurrence. The working hypotheses were broad, with an unknown result at the end. This work relied on the increasing amount of big data generated in IDHmutant gliomas and the concomitant evolution of omic technologies.

3) Finally, the third part reviews the current literature about mechanisms of invasion in GBM and the contribution of the microenvironment to this particular feature.

Part 1: The role of the protein tyrosine phosphatase PTP4A2 (PRL2) in glioblastoma progression

I. Introduction and objectives of this chapter

This chapter is based on an article in preparation for submission. Glioblastoma (GBM) is the most aggressive primary brain tumor. The average lifespan of GBM patients is only 15 months despite all efforts to improve therapies. In this context, identifying new therapeutic targets is fundamental to implementing current treatments.

PRL2 is a Protein Tyrosine Phosphatase with pro-oncogenic properties. However, no evidence of PTP4A2 involvement in GBM has been reported. This chapter aims to discover how PTP4A2 is involved in the tumor progression and microenvironment of GBM towards evaluating the potential of PRL2 inhibition as a new therapeutic strategy.

II. Article

Introduction

Glioblastoma (GBM) is the most common and clinically aggressive primary brain tumor (1).

This tumor is characterized by highly proliferative cells surrounding a necrotic core, rich vascularization and tumor cell invasion. The treatment established by Stupp et al. in 2005 consists of maximal surgical resection of the tumor followed by concomitant radiotherapy and chemotherapy and is still the standard care (2). No additional survival benefit has been brought by novel therapies since, resulting in a dismal median survival of approximately 15 months (3). Most importantly, GBM forms a heterogeneous group of cancers that differs between individuals but also displays intra-tumor heterogeneity (4,5). The multi-level heterogeneity of GBM is most likely responsible for therapeutic resistance leading to the inevitable tumor recurrence. In this context, it appears essential to develop new therapeutic strategies against GBM. A potential means for this purpose is to identify new targets that could be employed in monotherapy as well as in combination with existing therapies.

The phosphatase of regenerating liver 2 (PRL2), encoded by PTP4A2, is a protein tyrosine phosphatase (PTP) that belongs to the dual specificity phosphatases subfamily (6). As such, it dephosphorylates both tyrosine and serine/threonine residues within the substrate.

However in vitro activity of PRL-2 is low (7) and knowledge on exact substrates is still elusive. Consequently, no standard mechanism on the functions of PRL2 is described.

Nevertheless, PRLs are known to be overexpressed or to promote oncogenesis in several cancers including lung, breast, kidney, colorectal cancers, melanomas and gliomas (8-10).

However, the role of PRL2 in GBM progression has never been investigated.

Here we show that PRL2 is up-regulated in GBM and is associated with aggressiveness and poor patient survival. In a xenograft model, PRL2 modulates GBM growth and apoptosis. In addition, the deletion of PTP4A2 in GBM cells affects the tumor microenvironment (TME) by increasing pro-inflammatory signals. Finally, we provide evidence that pharmacological inhibition of the PRLs could constitute a novel strategy to target GBM.

Results

Upregulation of PRL2 in gliomas is associated with aggressiveness and poor prognosis

We first examined the expression level of PTP4A2 in gliomas and its correlation with patient survival using The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) data. We found that PTP4A2 is upregulated in both Isocitrate Dehydrogenase (IDH) mutant gliomas and GBM (IDH wildtype) compared to normal brain tissue (Fig. 1A) and is more specifically correlated with the mesenchymal subtype of GBM (Fig. 1B). PTP4A2 was also upregulated in some GBM cell lines including P3 cells, GSC 1123-Mes and 157-PN compared to normal human astrocytes (NHA-TS) (Supp. Fig. 1A). In addition, a high expression of PTP4A2 was associated with poor prognosis for both GBM and IDH-mutant gliomas (Fig. 1C and Supp. Fig. 1B). Finally, using transcriptomic profiles of patient samples of the IVY-GAP dataset, we showed that PTP4A2 gene expression is spatially heterogeneous in GBM. Most specifically, perinecrotic areas express higher levels of PTP4A2 than other regions of the tumor, the lowest level being around blood vessels (Fig. 1D). All these results suggested a key role of PRL2 in GBM development and aggressiveness. To orientate the study on the potential functions of PRL2 in GBM, we analyzed TCGA-GBM data to find PPT4A2-correlated genes by performing enrichment in Gene Ontology terms. This correlation analysis identified several pathways potentially involved in PRL2 regulation in GBM patients (Fig. 1E). Among them, positive regulation of cell adhesion, regulation of actin filament-based process, leukocyte proliferation and interleukin-6 production retained our attention. This suggests involvement of PRL2 in the GBM immune microenvironment. Enrichment in pathways involving PTP4A2-correlated genes in TCGA-GBM data.

PRL2 regulated tumor growth and apoptosis in vivo

We then investigated the phenotypical effects of the modulation of PTP4A2 expression in vivo. To find the best model to study GBM progression, we chose the P3 cells that recapitulate the human histopathology and display interactions between tumor cells and their microenvironment following intracranial xenograft (11). Hence, unlike the 1123-Mes model, P3 orthotopic xenografts displayed invasive margins (Supp. Fig. 2). We conducted orthotopic implantation of PTP4A2-knockout (PTP4A2-KO), control (Ctrl) and PTP4A2 overexpressing (PTP4A2-OE) P3 spheroids in which tumor development was monitored for 2-3 months. The level of PRL2 for each cell line is shown in Figure 2A. Tumor tissues were collected at the same time point for comparative studies, while each mouse was sacrificed at individual endpoint for survival experiments. Monitoring tumor growth by bioluminescence showed that PTP4A2-KO tumors grow slower than Ctrl tumors (Fig. 2B). Conversely, PTP4A2-OE tumors developed more rapidly. This was also confirmed at the histological level with PTP4A2-OE tumor area covering more than 50% of the brain section area at its maximal size (Fig. 2C).

Although mouse survival was not significantly affected by PTP4A2-KO, it was reduced in PTP4A2-OE tumor-bearing mice (Fig. 2D). As we suspected that proliferation or apoptosis rate would explain the differences in tumor growth, we performed histological staining of the proliferative marker KI67 in tumor tissues. This analysis showed that the modulation of PTP4A2 expression did not affect tumor cell proliferation (Supp. Fig. 3). We then performed TUNEL assay and found that PTP4A2-KO tumors were more apoptotic than Ctrl and PTP4A2-OE tumors (Fig. 2E). Overall, our results indicate that PTP4A2 expression regulated GBM growth and apoptosis in a xenograft model. 

In vitro, GBM cell invasive properties were regulated by PTP4A2 whereas proliferation was not affected

To gain insight into PRL2-dependent mechanisms in GBM growth, we performed in vitro assays using human GBM spheroids. P3 spheroid viability was measured by ATP content and growth rate was quantified by cell counting and in spheroid size measurement. Both spheroid viability and growth were not affected by PTP4A2 expression modulation (Fig. 3A-C). This result contrasted with the ones obtained in vivo, suggesting that the microenvironment pressure is essential for PRL2 oncogenic function. Next, as the correlation analysis indicated that PRL2 could be involved in cytoskeleton organization (Fig. 1E), we studied the phenotype of GBM cells in adhesion, 2D migration and 3D invasion assays.

PTP4A2 depletion improved adhesion on every tested coating (Fibronectin, collagen type I, Matrigel) and migratory capacities (Fig. 3D-E). To study tumor invasion, spheroids invasion assays were performed. Control and PTP4A2-KO spheroids were included into collagen type I gel and invasive areas were measured at 24h. P3 spheroid invasion was increased in absence of PTP4A2 and decreased when PRL2 was overexpressed (Fig. 3 F-G).

Surprisingly, knocking out PTP4A2 in two other models, GSC 1123-Mes and 157-PN, drastically decreased spheroid invasion (Supp. Fig. 4). Together, these in vitro results suggest that the effects of PRL2 that we observed on tumor growth most likely involve the TME present in our in vivo xenograft model. 

The deletion of PTP4A2 up-regulated pro-inflammatory signals in the immune microenvironment of a GBM xenograft model

Based on the correlation analysis highlighting immune functions and the differences between the in vitro and in vivo phenotypes, we hypothesized that the TME plays a crucial role in PRL2 oncogenic functions. We thus quantified gene expression and protein level of different immune-related markers in PTP4A2-KO, Ctrl and OE tumors. Expression analysis by qPCR, using human-specific primers, showed a significant increase in expression of some chemoattractant factors (CCL2, CSF1, IL-6 and its receptors IL6R and IL6ST), of the cell cycle inhibitor P21 in the tumor cells of PTP4A2-KO xenografts (Fig. 4A, Supp. Fig. 5A,C). These changes were not observed when spheroids were cultured in vitro (Supp. Fig. 6). On the other hand, qPCR analysis, using mouse-specific primers, showed increased levels of pro-inflammatory cytokines and markers in the microenvironment of KO tumors (Fig. 4B, Supp. Fig. 5B). These markers are associated to anti-tumor M1-like phenotype in macrophages and microglia. Markers for total macrophages/microglia such as Adgre (F4/80), Aif1 (IBA1) were not differentially expressed suggesting that PRL2 expression did not affect macrophages accumulation inside the tumor. Pro-tumor M2-like markers such as Cd163 and Mrc1 (CD206) were also not changed. Overall, at the transcriptional level, proinflammatory signals were increased in PTP4A2 KO TME compared to Ctrl. xenografts histological sections. As expected, the main immune cell population was macrophages/microglia, positive for CD45 and IBA1, and accounting for 60-67% of immune cells (Fig. 5A-B). Neutrophils were less abundant and not statistically different in all tumors (Supp. Fig. 7). In both PTP4A2-KO and OE xenografts, the number of macrophages/microglia was similar to the controls (Fig. 5B). The tumor core was preferentially infiltrated by tumor-associated macrophages (i.e. IBA1+ P2RY12-) which accounted for 59-65% of CD45+ cells, while microglia represented less than 2%. In contrast, the parenchyma of the contralateral brain was preferentially infiltrated by microglia (Fig. 5B).

The morphology of macrophages and microglia was amoeboid-like in the tumor core and more ramified in the contralateral brain (Fig. 5A). This is in line with previous reports showing that the ramified phenotype is typical for a 'resting' microglia and the amoeboid phenotype is seen in both microglia and macrophages and is associated with a more active state (12).

Then, we assessed macrophages/microglia ratio by histological analysis for CD45+ IBA1+ P2RY12-(macrophages) and CD45+ IBA1+ P2RY12+ (microglia) and we found no differences between KO, Ctrl and OE tumors. However, when we examined the polarization status of macrophages/microglia in the tumors, we observed an increase in COX2 positive macrophages in KO tumors compared to control and OE (Fig. 5C). Together, these results and the qPCR data described above indicate that PTP4A2-KO tumors present a more proinflammatory microenvironment. 

Pharmacological inhibition of all three PRLs inhibited GBM cell viability and spheroid growth

We next assess if PRL2 could be a potential target for drug therapy in GBM. As PRL2 is part of the PRL family composed of three members potentially compensating the functions of each other, we hypothesized that targeting this entire sub-family would be more relevant for cancer therapy. We thus decided to use the chemical inhibitor JMS-053, which inhibits all 3 PRLs with a reported IC50 ranging from 1 to 25 µM in in vitro assays on ovarian cancer cell lines (13). P3 cells were treated with various concentrations of JMS-053 or the control compound JMS-038 for 48 h. PRLs inhibition reduced cell viability with an IC50 around 10 µM (Supp. Fig. 8). The inhibitory effect was also observed on 3D spheroid growth monitored for 5 days as well as viability quantified by ATP level (Fig. 5A-C). The negative control compound JMS-038 did not inhibit the growth and viability at concentrations as high as 40 µM. Similarly, PRLs inhibition reduced spheroid growth in the 157 and 1123 GBM models at concentrations of JMS-053 above 5 µM (Fig. 5D,E). 

Discussion

PRL2 has been implicated in different types of cancers for its oncogenic properties (8). Here we report for the first time the functions of PRL2 in GBM progression. Using a xenograft model that recapitulate patient disease, we show that PRL2 is involved in GBM growth and apoptosis especially under microenvironmental pressure. Indeed, the KO of PTP4A2 reduced tumor growth and increased apoptosis in vivo. In contrast, PTP4A2 expression in P3 spheroid did not modulate proliferation but was inversely correlated to invasion in vitro.

The dichotomy of PRL2 functions between in vitro and in vivo revealed the crucial role of the TME in PRL2 functions.

While previous studies have already demonstrated the oncogenic role of PRL2 in mouse models including breast cancer xenograft (9,14) and T-cell leukemia (15), their results were homogeneous with their in vitro observations. In our study, PTP4A2 depletion or OE had mild to no effect on cell proliferation and viability but it regulated tumor growth or apoptosis in vivo. To our knowledge, this is the first report on the differential functions of PRL2 in response to tumor microenvironmental pressure. However, Funato et al., showed that PRL3 expression enhanced proliferation of non-cancerous cells in acidic condition, a parameter of microenvironment pressure (16). If this mechanism applied to cancer cells, this could provide them with a survival advantage inside the TME.

A major finding of our study showed that in addition to increased apoptosis, KO tumor cells, in vivo, also displayed up-regulation of pro-inflammatory markers including IL6, CSF1 and CCL2 at the transcriptional or protein levels. As part of a crosstalk, the microenvironment of KO tumors appeared more pro-inflammatory with for example the up-regulation of COX2 positive macrophages. In line with the literature (17), macrophages were the most abundant myeloid cells in our xenograft model which suggests that this pro-inflammatory signaling could be attributed to macrophages. Tumor associated macrophages (TAMs) are mainly immunosuppressive in GBM and participate to tumor progression (18-20). Therefore TAMs are key players in the development of resistance to anti-cancer therapies (21). They are also plastic cells with the capacity to adopt different phenotype in response to diverse stimulus (20,22). Hence, the re-education of TAM towards a more pro-inflammatory and immunosupportive phenotype appears to be a promising therapeutic strategy, particularly in GBM (23). Whether the shift of macrophage phenotype is a cause or a consequence of the tumor apoptosis, PRL2 targeting is at the origin and could participate to re-education TAM in immunosupportive macrophages. However, in our study, we did not infer to causeconsequence relationship between the observed apoptosis and increased pro-inflammatory signals and this should be addressed in future studies.

In addition to the key role of the TME in PRL2 effects, the heterogeneity most probably influences the regulation of PRL2 differentially in distinct areas of the tumor. These areas are described as the perinecrotic core, the perivascular niche, and the invasive niche (24). We can expect that in each of them, PRL2 expression is differentially modulated in response to nutrient availability, cellular neighborhood and physical forces and thus plays different roles. Indeed, PRL2 is mainly up-regulated in the perinecrotic zone and in pseudopalisading cells around that zone as seen in the IVY-GAP data.

Additionally, PTP4A2-OE tumors had an accelerated growth compared to control ones and this phenotype was inversely correlated to mouse survival. However, these effects did not seem to involve apoptosis, proliferation or TME adaptation, suggesting that other mechanisms participate to the role of PRL2 in GBM and remain to be uncovered. For example, the PRLs interact with the cyclin M (CNNM) magnesium regulators (7,25). The PRL/CNNM complex is linked to tumor progression through accumulation of intracellular magnesium (14,26,27). Indeed, numerous magnesium-dependent enzymes play crucial roles in metabolic processes and signaling pathways that sustain cancer progression (28).

Of note, Li and colleagues have recently reported that high PTP4A2 expression downregulated PTEN level by dephosphorylation suggesting that PRL2 support oncogenic propensity of PTEN deletion in cancer (29). However, our main cellular model for this study, P3 cells, is PTEN-deficient. Nevertheless, this mechanism could explain discrepancy observed in between cell lines as GSC 157-PN and 1123-Mes do not carry PTEN deletion (Supp. Fig. 9).

While the mouse model used in this study allows to investigate patient-derived cells interacting with a rich TME composed of myeloid and other stromal cells, it lacks an important component deriving from lymphoid lineage. Therefore, future studies will have to validate our observed phenotypes using an immunocompetent mouse model.

We observed phenotypical differences between Ctrl, KO and OE tumors that were statistically significant but these did not translate to mouse survival. However, we only studied the role of PRL2 in the primary GBM without treatment. The effects of PRL2 could be further improved in a context of chemo and radiotherapy such as the Stupp protocol.

Finally, to propose a translational application to our findings, we investigated the inhibition of all three PRLs in GBM cells. This allowed overcoming the potential functional redundancy among the PRL family members. We performed experiments using a specific PRLs inhibitor that efficiently compromised GBM cells proliferation in a similar range previously reported (13). So far, the capacity of the JMS-053 compound to cross the blood-brain barrier has not yet been investigated. Nevertheless, our results suggest a potential therapeutical interest of PRLs inhibition against GBM development. Interestingly, this compound was previously used in mouse models and did not exhibit any toxicity (13,30).

Methods

Clinical databases

TCGA and GTEx data were downloaded via Xena browser (https://xenabrowser.net/). For survival analysis, TCGA LGG and GBM data of overall survival and gene expression were used to perform survival analysis in R studio (31) with the packages survminer (32), survival (33) and ggplot2 (32). Data were split into two groups based on high and low gene expression levels with optimal cut point. P values correspond to log rank p values. Then, TCGA GBM and LGG and GTEx Brain gene expression data were used to perform comparative analysis of gene expression in tumor versus normal tissue. RNAseq from laser micro-dissected GBM specimens data generated by the Ivy Glioblastoma Atlas Project were downloaded via https://glioblastoma.alleninstitute.org/static/download.html. Analysis was performed in R studio with the packages RVAideMemoire (34), FSA, ( 35) pheatmap (36) and ggplot2.

Patient-derived GBM cells

P3, NCH644, NCH601 and NCH421k cells were kindly provided by Prof. Rolf Bjerkvig and cultured as non-adherent cells in Neurobasal™ medium (NBM, Gibco) supplemented with B-27 ® (Gibco), 10 ng/µL FGF-2 (Proteintech) and 5,000 U/µL Heparin (Sigma). GBM stem-like cells (GSC) 83-Mes, 157-PN and 1123-Mes were kindly provived by Dr. Janusz Rak and cultured as suspension cells in DMEM/F12 (Gibco) supplemented with B-27 ® (Gibco), GlutaMAX (Gibco), 20 ng/µL FGF-2 (Proteintech), 20 ng/µL EFG (Proteintech) and 10,000 U/µL Heparin (Sigma).

Proliferation assays

For viability assay, CellTiter-Glo® 3D Cell Viability Assay (Promega) was used according to the manufacturer's instructions. For 3D spheroids growth rate assay, P3 cells were seeded at 10 5 cells in 200 μL of complete NBM containing 0.4% methylcellulose in a 96-well round-bottom plate. Spheroids growth was followed for two weeks by taking pictures at videomicroscope and areas were measured using Fiji (37). For 3D spheroid growth rate assay in 1123-Mes and 157-PN cells, 1,000 cells were seeded 200 μL of complete DMEM/F12 containing 0.4% methylcellulose in a 96-well round-bottom plate. Spheroids growth was followed for one week in an automated imaging system (Incucyte) and analyzed with the Incucyte S3 2019A software.

Migration assay

P3 cells were seeded on Matrigel coating (Corning, CLS356252) at confluency in an ImageLock 96-well plate (Sartorius). Cells were starved overnight in NBM supplemented with B27 only. A scratch was created using a WoundMaker (Sartorius). Cells were washed with PBS to remove debris and incubated in complete NBM in the Incucyte where a picture was taken every 2 h for 48 h. Migration rate is expressed as wound closure over time calculated as follows : wound closure = (wound(T0) -wound(t)) × 100 wound(T0) ⁄ .

Spheroid invasion assay

Spheroids of 10 5 (for P3) or 1,000 (for 1123-Mes and 157-PN) cells were included into 100µL of collagen type I gel at 1 mg/mL in 96 well plate. After 40 min of polymerization at 37°C, 100 µL of medium was added on the gel. Images were taken with a videomicroscope after 24 h of invasion, quantified using Fiji and invasion was calculated as follows:

invasion rate = (invasive area(T24h) core area(T24h) ⁄ and expressed as zscores.

PRLs inhibitor

The PRLs inhibitor JMS-053 and its control counterpart JMS-038 were kindly provided by Dr.

John S. Lazo. For cell viability assay, cells were seeded in 96-well plate in complete medium supplemented with 0.1 to 40 µM of JMS-053 or JMS-038 in DMSO. The plates were incubated 48 h and an ATP luminescent cell viability assay (CellTiter-Glo® 3D Cell Viability Assay, Promega) was used according to the manufacturer's instructions. Alternatively, cells were grown as spheroids of 1,000 cells in U-bottom plate and incubated after spheroid formation with the compounds using same concentrations as above. Spheroid 3D growth was recorded as describe above.

Quantitative real-time PCR

Total RNAs were extracted using an acid guanidinium thiocyanate-phenol-chloroform extraction method, (TRI Reagent® MRC, TR 118) and reverse transcribed into cDNA using the High-Capacity cDNA Reverse Transcription Kit (Applied Biosystems™). Quantitative real-time PCR (qPCR) reactions were performed using EurobioGreen (Eurobio, GAEMMX02H), according to the supplier. The relative expression of the genes was calculated using the 2 -ΔΔCT method and with reference genes indicated in legend of the figures. Primer sequences are listed in Supplementary Table S.

In vivo experiments

Female and male Rag2 -/-γc 

Histology

Mouse brains were processed for formalin fixed paraffin embedding (FFPE). In details, brains were fixed in formalin 4% for 24 to 48h at 4°C progressively dehydrated in ethanol, incubated in toluene and embedded in paraffin. Five-micrometer sections were stained with H&E or used for immunostaining. For immunostaining, sections were deparaffinized in toluene and rehydrated gradually in ethanol. Sections were incubated with antigen retrieval buffer (10 mM citrate buffer pH6), heated with microwave for 10 min, cooled down to room temperature and then rinsed in dH2O. Slides were saturated 1 hour in 3% BSA in PBS.

Primary antibodies (See supplementary table) were dissolved in 1% BSA in PBS and incubated overnight at 4°C. After washes, slices were incubated with secondary antibodies for 1 hour at RT. DAPI was diluted in PBS and incubated 10 min. Slices were mounted in an antifading medium (ProLong, ThermoFisher) and dried at RT before imaging.

Alternatively, flash frozen mouse brains were cut in 10 µm sections with a cryostat. Sections were then stained with hematoxylin and eosin (H&E) or used for immunostaining. For At present, additional imaging features can be extracted as quantifiable data by radiomics which converts radiologic images into computable data in a high throughput fashion 6 . These data describe different aspects of the image such as texture, volume, shape and intensity, with a quantitative resolution which is not identifiable by human eye and currently used in the routine clinical work. Moreover, imaging depicts inter-individual heterogeneity such as different metabolic activities and tumor volumes which may provide insight into patient prognosis 7 . After a radiologic image is acquired, it is reconstructed and processed, then a volume of interest (VOI) is delineated, several features are quantified and can be used as prognostic factors in a similar way as genetic biomarkers. As a fundamental part of the diagnosis, specimens from patient tumors are collected to detect validated biomarkers (e.g.

IDH mutation, 1p/19q codeletion), and used to stratify patients for treatment and prognosis.

Additional gene and protein biomarkers may be further identified to better stratify IDH-mutant glioma patients. However, none of the available imaging or genetic data may now fully describe differences in tumor behavior and surely predict IDH-mutant glioma outcomes at individual patient level.

Both imaging features and molecular biomarkers can be quantified by radiomics, transcriptomics and proteomics. The complexity of -omic data represents a challenge which requires the use of sophisticated tools such as machine learning approaches. Machine learning is a branch of artificial intelligence that aims at establishing complex relationships or patterns from empirical data 8 . The predictive ability of such models can then be evaluated, and the most relevant features can be identified and used to stratify patients for the risk of recurrence. For this reason, we collected transcriptomic, proteomic, radiomic and clinical data from a new cohort of patients with IDH-mutant gliomas and took advantage of machine learning to evaluate their predictive values in recurrence.

We here provide a comprehensive multi-layered analysis including: 1) the biological characterization of different subtypes of IDH-mutant gliomas categorized by PET scan and/or histology, 2) the integration of PET metrics in the classification of IDH-mutant gliomas, 3) a patient stratification comprising novel signatures of the risk of recurrence based on gene or protein expression, and/or imaging. Altogether, this multi-level analysis provides readouts for monitoring the evolution of IDH-mutant gliomas and for improving the integrated diagnosis and thus therapeutic decision.

Results

Overview of the study

This study included 154 patients with newly diagnosed IDH-mutant gliomas with an average age of 43 years. Demographic profile, clinical features, treatment modalities and follow-up data are displayed in Table 1. Overall, the average follow-up was 4.2 years and 45% of the patients had recurrence this time period. Clinical, imaging and genetic data were acquired throughout the patient follow-up as shown in Figure 1A. These data were then processed and analyzed by machine learning. 

III. Distinct biological characteristics of PET status and histology

We first aimed to establish a transcriptomic and proteomic profiling of IDH-mutant glioma patients based on their 11 data as well as proteomic data did not show any clustering of the two groups (Supp. Fig. 1A and B). However, 756 genes and 13 proteins were differentially expressed in the two groups (Fig. 2A andB, Supp. Fig. 1C andD). Among them, 754 differentially expressed genes (DEG) and 13 differentially expressed proteins (DEP) were considered good predictors of the groups as their Brier score were below 0.25 (Supp. Fig. 1 E andF). To obtain more insight into the differentially regulated processes, we performed an enrichment analysis on the DEG (Fig. 2C). The DEG belong to several categories including immune related functions (positive regulation of myeloid leukocyte mediated immunity, leukocyte proliferation, microglia pathogen phagocytosis pathway, interleukins), cell-cell adhesion, ERK1 and ERK2 cascade, positive regulation of superoxide anion generation, angiogenesis, synapse pruning and calcium-mediated signaling. Out of the 13 DEP between PET neg and PET pos , 9 were up-regulated in PET neg tumors and 4 up-regulated in PET pos tumors. These are mainly extracellular proteins, involved in heparan sulfate metabolism and cell adhesion (Fig. 2D). The functions associated to the difference in gene and protein expression between PET neg and PET pos patients, are commonly found dysregulated in gliomas. Recurrence-free survival analysis showed a non-significant trend to a better survival in the PET neg group (Fig. 2E).

As for the previous section, transcriptome, proteome and survival data of patients clustered by their histomolecular diagnosis were explored. Principal component analysis of transcriptomic and proteomic data did not show any clustering of Astrocytoma and Oligodendroglioma groups (Supp. 3A and B). However, 92 DEG but no proteins were identified (Fig. 2F, Table S4). Expression patterns of these genes were visualized on a heatmap (Supp. Fig. 3C). All these genes were good predictors as reflected by the Brier score below 0.25 (Supp. Fig. 3D.) and participate in molecular functions such as antioxidant activity and ATPase-coupled transmembrane transporter activity (Fig. 2G). No enrichment in other categories was found. Moreover, survival probability was not significantly different between the two groups although the tendency showed a slight improvement of Astrocytoma recurrence-free survival compared to the Oligodendroglioma group (Fig. 2H). Altogether, Astrocytomas and Oligodendrogliomas as well as PET neg and PET pos IDH-mutant gliomas express different transcriptomes and proteomes, suggesting distinct biological functions, but difference of recurrence-free survival was not significant. However, these differences in texture and correlations with DEG were not sufficient to predict the PET status from the MRI by machine learning analysis (AUC = 0.63+/-0.11, Brier Score = 0.26 +/-0.05). Also, no gain in prediction performance was observed from imaging features compared to DEG (AUC = 0.97 +/-0.05 for genes alone, AUC = 0.95 +/-0.08 for genes and imaging features together).

We also investigated whether MRI FLAIR and PET imaging could be predictive of the histomolecular status. PCA and UMAP did not show any cluster related to the histological status. No relevant feature was detected by univariate analysis, and the machine learning analysis was not successful (AUC = 0.59 +/-0.10, Brier score = 0.25 +/-0.04 for PET+MRI radiomic features). The images did not improve the predictive performance of the DEG (AUC = 0.93 +/-0.06 for genes alone, AUC = 0.87 +/-0.10 for genes and imaging features together). Finally, we found that the SUVmax had a 0.5 (respectively -0.5) Spearman correlation with DEG AC008751.2 (resp. SUSD3), with both p-value being equal to 0.0002 (confidence interval = [0.26, 0.68]).

Integration of PET metrics into histomolecular diagnosis

To determine the prediction efficiency of combining PET and histological subtypes, patients were divided into 4 groups based on their PET status and histomolecular diagnosis. The frequency of each group is shown in Fig. 3A. 11 C-METH uptake was more frequent among Oligodendrogliomas (63 patients out of 87) than Astrocytomas (29 out of 67). PET neg Oligodendroglioma patients had a better prognosis than PET pos Astrocytoma patients (Fig. 3B). This classification of patients resulted in a significant stratification model for IDH-mutant gliomas not achieved by PET or histology alone and not influenced by tumor grade (Supp.

Fig. 4). We then explored the transcriptomes and proteomes of PET neg Oligodendroglioma and PET pos Astrocytoma. We found 59 DEG in which 51 were upregulated and 8 downregulated in PET neg Oligodendroglioma samples (Fig. 3C). No proteins were differentially expressed. The expression pattern of the DEG was visualized in a heatmap (Fig. 3D). The investigation of molecular functions and biological pathways showed an enrichment in pathways in cancer, Ras signaling, MAPK signaling, regulation of actin cytoskeleton, embryonic stem cell pluripotency and type 1 fibroblast growth factor receptor binding (Fig. 3E). These pathways revealed distinct clinically relevant biological functions of PET neg Oligodendroglioma and PET pos Astrocytoma. 

Gene-based and protein-based signatures of recurrence risk

In order to establish gene-and protein-based signatures associated with IDH-mutant glioma recurrence, we used machine learning random forest (RF). We found 312 genes and 157 proteins linked to the recurrence with a variable importance threshold above 0.003. Among them, 15 genes (Fig. 4A., Table S5) and 15 proteins (Fig. 4B., Table S6) were found in all RF iterations. Their expression pattern is visualized in the heatmap (Fig. 4C andD).

Correlation of expression is shown in Supplemental Figure 6A andB. The enrichment analysis revealed that genes linked to recurrence were involved in protein phosphatase inhibitory activity, GABA-ergic synapse and integral component of plasma membrane (Fig.

4C.

). Comparatively, proteins associated to recurrence were involved in organelle organization, neurogenesis, regulation of cell death, cell adhesion, cell migration, fatty acid oxidation, translation (Fig. 4D). These pathways are commonly found altered in gliomas 1,9,10 . 

Imaging-based signatures of recurrence risk

To establish imaging-based signatures of recurrence risk, we considered either MR FLAIR images alone or with PET images. Imaging features were selected for their scores in univariate Cox model and/or LASSO (see Material & methods for details). In both types of images, the time-dependent Brier score showed a good prediction score in a 2 years interval (Brier score < 0.2, Supp. Fig. 7A andB). Since for larger timescales, the number of patients was decreased, the overall prediction metrics were lower (MRI: C-index = 0.56+/-0.07, IBS = 0.21+/-0.04; MRI + PET: C-index = 0.55+/-0.08, IBS = 0.22+/-0.04).

For MR FLAIR images, several signatures were identified for their ability to discriminate groups of patients by their recurrence risk (Log-Rank test). They are described in Tables S7 andS8. The univariate Cox analysis identified 11 significant features. The subsequent MRIbased RadiomicScoreCOX (after 0.9-level correlation filtration) included 4 features related to shape and texture of the MRI images: SurfaceAreaMRI,MORPH that accounts for the 3D VOI area, MeshVolumeMRI,MORPH that accounts for the 3D VOI volume, Maximum2DDiameterRowMRI,MORPH that is the maximum of 2D diameter computed over all 2D sagittal slices, and GrayLevelNonUniformityMRI,GLSZM that measures the variability of graylevel intensity values in the image (Supp. Fig. 7C). The combination of these 4 features represents a signature for poor prognosis (p-value = 0.008; Supp. Fig. 8A). High scores of the signature reflect larger tumors with more complex shapes, and more heterogeneity in MRI intensities. For the signatures obtained by LASSO within the cross-validation procedure, a Log-Rank test was performed on each test set (composed of approximately 50 patients).

The mean p-value was equal to 0.50+/-0.30. Nevertheless, when the whole cohort was tested, we found 11 significant signatures (Table S8). The most significant (p-value = 0.004) included 3 features characterizing both intensity histogram and texture: KurtosisMRI,FIRSTORDER, ClusterShadeMRI,GLCM, and ShortRunLowGrayLevelEmphasisMRI,GLRLM. KurtosisMRI,FIRSTORDER quantifies how much the intensity distribution is concentrated towards the tails rather than the mean; ClusterShadeMRI,GLCM quantifies the asymmetry of the distribution of co-occurring intensity values at a given offset and ShortRunLowGrayLevelEmphasisMRI,GLRLM measures the joint distribution of shorter run lengths with lower gray-level values (Supp. Fig. 7D). This MRI-based RadiomicScoreLASSO is a signature for good prognosis (Supp. Fig. 8A). A larger score reflects a tumor image with an intensity distribution that is more homogeneous, and more gathered higher intensity voxels. Lastly, after 0.9-level correlation filtration (Supp. The radiomic signatures obtained from combining MR FLAIR and PET images are described in Tables S9 andS10. The signature driven only by univariate Cox analysis was not significant (p-value = 0.063). The mean internal test p-value of the signatures built by LASSO on the training sets was equal to 0.491+/-0.292, similarly to the MRI configuration.

Nevertheless, 6 signatures were significant when applied to the whole dataset (Table S10).

The most significant one, PET+MRI-based RadiomicScoreLASSO,1, involves 2 PET features and 3 MRI features: TotalEnergyPET,FIRSTORDER quantifies the magnitude of voxel values in an image, SizeZoneNonUniformityNormalizedPET,GLSZM measures the variability of size zone volumes throughout the image, MeshVolumeMRI,MORPH quantifies the tumor volume, LongRunHighGrayLevelEmphasisMRI,GLRLM measures the joint distribution of long run lengths with higher gray-level values, and RunVarianceMRI,GLRLM measures the variance in runs for the run lengths (Supp. Fig. 7G). This signature is a factor for bad prognosis (p-value = 0.019; Fig. 6C). Lastly, the PET+MRI-based RadiomicScoreLASSO,COX obtained after a 0.9-level correlation filtration (Supp. Fig. 7H) was composed of three features that reflect size, shape, and metabolism: SUVmax, Maximum2DDiameterRowMRI,MORPH and MeshVolumeMRI,MORPH (Supp. Fig. 7I). This signature was indicative of bad prognosis (p-value of 0.005, Fig. 6C).

Besides these signatures, we found that 6 DEG for recurrence risk showed relevant correlations with PET features such as the SUVmean, first-order and GLCM/GLDM texture features (see Table S11).

Table S13), and 24 associated with the biological signature (see Table S14), all of them being markers of good prognosis. The best gene-based cross-signatures were obtained from the MRI feature 10PercentileMRI,FIRSTORDER (p-value = 3.82*10 -4 ) and the PET feature ZoneEntropyPET,GLSZM (p-value = 9.33*10 -5 ) (Fig. 7B). We found two most significant proteinbased cross-signatures obtained from either an MRI feature measuring the magnitude of intensity values (RootMeanSquaredMRI,FIRSTORDER, p-value = 0.0253) and a PET texture feature measuring the joint distribution between large homogeneous zones and large intensity values (LargeDependenceHighGrayLevelEmphasisPET,GLDM, p-value = 0.0261) (Fig. 7C).

Finally, note that one PET texture feature, namely

LargeDependenceHighGrayLevelEmphasisPET,GLDM was involved in the two types of crosssignatures. In the MRI dataset of patients, slightly larger, the gene signature alone yielded a Log-Rank p-value of 0.0004, while the protein signature was not significant (p-value = 0.4238), and the biological signature yielded a p-value of 0.0420. We obtained qualitatively similar crosssignatures involving PET texture features and MRI first-order and texture features. We found 5 cross-signatures associated with the genes (Table S14) and 4 associated with the proteins (Table S15).

Discussion

This study provides knowledge in IDH-mutant glioma patient progression and in risk of recurrence by using an unbiased approach combining imaging and molecular data as well as artificial intelligence.

Transcriptomic and proteomic analyses revealed molecular differences between PET neg and PET pos groups and as well as Astrocytoma and Oligodendroglioma subtypes, with PET status providing the most differences. In our data, there was a tendency for a better recurrence-free survival in PET neg group compare to PET pos and in Oligodendroglioma patients compare to Astrocytoma patients. This is in line with previous studies establishing the PET status as a prognosis factor of progression-free survival by itself [11][12][13] and Oligodendrogliomas as better recurrence-free and overall survival [14][15][16][17] . The difference of these data with our current study may reside in the variability of the inclusion criteria as well as the number of patients. Additionally, by combining histological subtypes and PET data, we strongly improved the discrimination of patient risk of recurrence. As a result, patients with a PET neg Oligodendroglioma had a better recurrence-free survival than patients with PET pos Astrocytoma.

Although not yet part of standard practice, PET is commonly used to assess the tumor texture at diagnosis and during therapy 18 . Here, we reinforce the contention that PET combined with histomolecular diagnosis is useful for predicting the evolution of IDH-mutant gliomas.

We also identified genes and proteins associated with tumor recurrence in IDH-mutant glioma patients. In particular, these genes and proteins were involved in cell adhesion, metabolism, regulation of cell death, neurogenesis and synaptic transmission. Our findings are in accordance with recent studies also reporting these processes as linked to recurrence 19-24 . In addition to these pathways, we established a three-gene signature and a four-protein signature with higher scores associated with a longer recurrence-free survival. KRT19, RUNX3 and SCRT2 constituted the transcriptional signature and ATXN10, EIF4H, ITGAV and NCAM1 the protein-based signature. These genes and proteins have been described to be involved in central nervous system development, tumor progression and tumor suppression. Some of them are involved in neuronal development such as SCRT2 25 , ATXN10 and NCAM1 26 , but their role in cancer is little to not known. SCRTC2 is a transcription factor of the Snail superfamily mainly involved in neural development and potentially acting through an EMT-related mechanism 27 . Ataxin-10 is the protein responsible for Spinocerebellar ataxia type 10 where a depletion leads to apoptosis and cytokinesis failure 28,29 and is a biomarker for cachexia in cancer patients 30 . The role of KRT19 encoding the cytokeratin 19 has been reported in several types of cancer 31,32 and regulates proliferation, invasion, reprograming of cancer stem cell and chemo-resistance 33,34 .

Moreover, KRT19 has prognostic value in glioblastoma 35 . Our study reveals for the first time that KRT19 expression is associated to the risk of recurrence of IDH-mutant gliomas. Other markers have already been described in cancer but with a prognostic value opposite to the one shown here, highlighting the importance for a careful stratification of patients. For instance, RUNX3 (Runt-related transcription factor 3), although long considered as tumor suppressor, plays a context-dependent dual role in tumorigenesis. It has oncogenic functions in many cancers 36 but also, an onco-suppressive role in some other cancers including gliomas 37,38 . RUNX3 is negatively correlated to patient overall survival in glioblastomas 37 which is different from our data focusing specifically on IDH-mutant gliomas. EIF4H acts as an enhancer of translation initiation via binding with EIF4A 39 . Although previously described as a poor prognosis factor in glioblastoma patients 40 , here EIF4H is part of signature of good prognosis for IDH-mutant glioma recurrence. This is in line with a previous report where a tendency of good prognosis was reported for low grade gliomas which are generally IDH-mutated 40 . Integrin αV forms a heterodimer with β integrins and binds to extracellular matrix components. Although integrin αV is overexpressed in various cancers, including gliomas where it has been described as a negative prognostic factor 41 , we identified Integrin αV as a good prognostic factor in IDH-mutant gliomas. Overall, the genes and proteins identified here may not only have significance as biomarkers in IDH-mutant gliomas, but may also have a functional role in tumor progression. They may constitute promising novel therapeutic targets which will be further explored.

Although imaging features were not predictive of the PET status or the histological subtype, radiomic signatures were predictive for tumor recurrence, the most significant being a morphological score obtained from the association of the maximum 2D diameter in the images and the VOI of the tumor. The radiomic features did not correlate with the minimal gene and protein signatures of recurrence we identified. Nevertheless, radiomic features can be associated with complementary biological processes. In addition, we show that molecular signatures were further improved by integrating radiomic features. In particular, texture and intensity features were the most abundant in the cross-signatures. For instance, PET texture features were preferentially found over MRI features. In particular, ZoneEntropyPET,GLSZM, quantifying the heterogeneity in textural patterns in the PET image when combined with the genetic signature, provided the best prediction of recurrence risk. In contrast, morphological features, that are the most predictive when used alone, rarely improved the molecular stratification. While radiomic features hardly predicted the tumor transcriptomic and proteomic profile, they still carry complementary information and help refining the molecular stratification. We believe that our analysis has shed light on promising imaging-based characteristics, in particular morphological features which may be sufficient for a better stratification of the recurrence risk in IDH-mutant glioma patients. This is of interest for the clinic since it can be quantified from MRI images. This should be validated in independent and larger datasets in the future.

Few radiomic studies focus on IDH-mutant gliomas for recurrence risk prediction. T2weighted MRI images of 85 LGG patients were used to build a radiomic score that relied on texture features 42 . While the signature, close to our RadiomicScoreCOX, was predictive independently of the IDH status, it was derived from a cohort of both wildtype and IDHmutant gliomas, and not specifically IDH-mutant gliomas alone as we did in our study. The incremental value of MRI features with respect to clinical and IDH status features was assessed for LGG 43,44 . However, IDH-mutant glioma patients were not specifically investigated in these studies and no minimal radiomic signature was established. A study has reported an IDH-mutant specific T2-MRI signature for LGG and a signature for recurrence risk (with shape and filtered first-order features) in IDH-mutant glioma patients 45 .

Their signature was based on univariate Cox analysis, similar to our RadiomicScoreCOX, but was only computed on a single training set, and risk stratification was based on an optimized threshold. In our approach, we built minimal radiomic signatures based on MR-Flair and MET-PET images. In particular, we used cross-validation importance scores to minimize the dependency on the datasets, and correlation-based filtration to deal with the redundancy of information carried by radiomics features. We believe that this improves the generalization power of the signatures we established. Radiomic approaches are based on many steps carrying variability and uncertainties, such as image acquisition, preprocessing, features computation, and analysis pipeline. There is an ongoing effort to untangle these aspects to improve robustness and reproducibility of the results 46,47 .

In summary, we conducted a multi-parametric analysis of IDH-mutant gliomas which includes genomic, proteomic and radiomic data and which is of translational significance.

Separately, genomics, proteomics or radiomics provide independent signatures. Moreover, when radiomic features are associated with molecular data, the prognostic significance is further improved compared to the genomic, proteomic and radiomic signatures alone.

Besides biomarkers, this study also provides potential novel therapeutic targets for IDHmutant gliomas. This should be functionally validated in further studies. 

Identification of differentially expressed genes and proteins

A Principal component analysis (PCA) was done in order to visually explore the difference in term of gene and proteins expression between the different groups. The differentially expressed genes and proteins (DEG and DEP respectively) between the compared groups were identified using dearseq 51 , and the corresponding log2 Fold changes were computed.

A Brier score 52 was also computed on each of the identified genes and proteins, quantifying the predictive ability of the gene or protein to discriminate between the groups. The closer it is to 0, the better the prediction. DEG and DEP with both |log2 (fold change)| > 0.58 and dearseq p-value<0.05 (after adjustement for multiple comparison using Benjamini-Hochberg procedure) were retained in further analyses. Volcano plots and heatmaps visualizing DEG and DEP used ggplot2 53 and pheatmap 54 packages in R.

Identification of genes and proteins linked with risk of recurrence by random forest

For the identification of the genes and proteins linked with patient risk of recurrence, we performed survival random forests (RF) using randomForestSRC package in R 55 . As the results can vary due to the random nature of the method, we repeated the analysis ten times to identify genes and proteins linked with the risk of recurrence. Genes and proteins with an importance value above 0.003 were considered linked to recurrence. This threshold was determined by a visual check of the distribution of the variable importances. Volcano plot and heatmap were generated as described in previous section. Encyclopedia of Genes and Genomes (KEGG) 57 , WikiPathways (WP) 58 , Reactome 59 and CORUM 60 . Results were represented as network plots using GO:BP and/or Manhattan plots.

Enrichment analysis

Identification of genes and proteins linked with risk of recurrence by random forest

For the identification of the genes and proteins linked with patient risk of recurrence, we performed survival random forests (RF) using randomForestSRC package in R 55 . As the results can vary due to the random nature of the method, we repeated the analysis ten times to identify genes and proteins linked with the risk of recurrence. Genes and proteins with an importance value above 0.003 were considered linked to recurrence. This threshold was determined by a visual check of the distribution of the variable importances. Volcano plot and heatmap were generated as described in previous section. Encyclopedia of Genes and Genomes (KEGG) 57 , WikiPathways (WP) 58 , Reactome 59 and CORUM 60 . Results were represented as network plots using GO:BP and/or Manhattan plots.

Enrichment analysis

Aggregation of relevant genes and proteins as signatures

To build the gene and protein signature for recurrence, only protein-coding genes and proteins identified by RF were kept. A marker was kept in the signature if its contribution improved the significance of the signature. To measure the clinical relevance of the resulting signatures, we used the SigCheck R package 62 . To separate samples into groups, we computed a score for each sample which corresponded to the mean value over all the expression values in the signature (scoreMethod = "High" in the sigCheck function). Patients were then ranked by their scores and split in 2 groups (high, low) to perform a Log-Rank test. After reduction of the signature to a minimal list of genes or proteins contributing to improve the p-value, its performance was compared to 1000 signatures composed of the same number of randomly-selected genes. And the significance of the signatures was tested with a multivariate Cox regression analysis after adjustment for clinical variables (age, sex, grade).

Images preprocessing and features computation

Tumor segmentation was performed on the MRI FLAIR images. Three-dimensional volumes of interest (VOIs) were obtained from a semi-automated method implemented in an in-house software. They were then manually corrected by the clinicians using ITK-Snap software.

When both FLAIR and Pet images were available, the VOI was propagated to PET using a non-rigid multi-modal image registration procedure 63 . Next, images preprocessing and imaging features computation were made using Python libraries (SimpleITK, Numpy, Pandas). For each MRI FLAIR image, the signal intensity within the VOI was standardized and corrected for global bias (N4 correction). Images resampling set all voxel sizes to 0.5 3 mm 3 (respectively B-Spline and NearestNeighbors interpolation methods for images and VOI masks), and intensity values were discretized (bin width = 2) to obtain uniform settings. The bin width is chosen so that each image has a reasonable number of bins, following Pyradiomics recommendations. MRIs were characterized by 107 radiomic features computed using the PyRadiomics library (3.0.1) 64 . They quantify the VOIs' morphology (e.g. volume, surface, sphericity), intensity distribution (e.g. min, max, skewness, kurtosis, energy, entropy), and texture (spatial intensity distribution). More precisely, textural features are computed from matrices (GLCM, GLRLM, GLSZM, GLDZM, NGTDM, NGLDM) specifying the spatial relationships under study. In the following, we will use the IBSI's standardized feature nomenclature 65 .

For PET images, the intensity levels were first converted into Standardized Uptake Values (SUV) units using a Body Mass normalization. Next, 6 native features were computed within the VOI: SUVmax, SUVmean, SUVnorm, SUVratio, Metabolic Tumor Volume for a 50% threshold (MTV), and Total Lesion Glycolysis (TLG = SUVmean*MTV). Resampling set all voxel sizes to 2 3 mm 3 (same interpolation methods as for MRI) and SUV values were discretized (bin width = 0.03). The same 107 radiomics features were then computed using PyRadiomics. We also proposed another set of features to quantify the spatial heterogeneity in signal from hotspots on the PET scan. These hotspots are defined by setting a threshold on the signal, and keeping all the voxels whose intensities are above this threshold. The number of connected components can then be counted, while varying the threshold over all the intensity ranges. The minimal size to detect a connected component was arbitrarily set to 9 voxels, to account for the noise on the image. For each patient, it gives a curve of the evolution of the number of spots, with respect to the intensity-threshold. The integration of this curve yielded the so-called HetIndex: the larger it is, the more different spots are in the tumor, and the more heterogeneous is the glioma. Other markers of heterogeneity were computed from this curve, such as the Skewness and Kurtosis.

For both MRI and PET images, all VOIs were large enough to extract meaningful radiomic features. Moreover, we checked that modifying the spatial resampling did not change qualitatively the analysis.

There were 56 patients in the cross-analysis with MRI and RNASeq data (21 PET pos , 35

PET neg ; 22 astrocytoma, 34 oligodendroglioma). There were 50 patients in the crossanalysis with PET and RNASeq data (18 PET pos , 32 PET neg ; 18 astrocytoma, 32 oligodendroglioma), and the same numbers when crossing all-imaging and RNASeq data.

Imaging analysis

The imaging analysis used the Scikit-learn Python library 66 which was used for predicting the PET or the histological status and also for predicting recurrence-free survival. In all cases, visual exploration was performed using an unsupervised dimension reduction procedure (PCA, UMAP).

For classification tasks, a univariate analysis (Mann-Whitney test) identified features having different distributions among groups. We used a Bonferroni correction to mediate the familywise error rate: obtained p-values were multiplied by the number of features before applying the significance threshold of 0.05. The Spearman correlations between imaging features and Differentially Expressed Genes were also computed, a relevant correlation being defined by an absolute value above 0.5 and a p-value below 0.05. Multivariate machine learning analysis was done by comparing several pipelines composed of 4 steps. Features filtering consisted in removing one element per couple of features with pairwise Spearman correlation above 0.95. Features scaling consisted in normalizing values using either mean and variance, or median and interquartile range (range between the 25th and the 75th quantiles), the latter being more robust to outliers. Features selection was based on either univariate analysis (Mann-Whitney test, Logistic Regression), Random Forests feature importance score, or Sparse Group LASSO (achieving balance in selection between individual and grouped features) 67 . Classical classification algorithms were used with balanced class weights (penalized Logistic Regression, Random Forests, Support Vector Machines). Moreover, several hyperparameters were considered. The resulting pipelines were compared and selected in a 5-times repeated nested cross-validation procedure, each composed of 5 external folds and 5 internal folds. For each external fold, an internal crossvalidation procedure allowed selecting the best pipeline from the balanced accuracy score.

Then, the winning pipeline was fitted on the whole internal fold and tested on the external test set. As a consequence, the resulting performance metrics are not associated to a given pipeline, but rather to the whole procedure including model selection. This procedure also ensured the stability of the results with respect to the algorithms. Finally, the incremental value of imaging features to the already identified DEG was assessed by comparing classification performances when using DEG alone or in combination with imaging features.

For survival analysis, we used the scikit-survival 68 and pysurvival 69 with weights defined by the log of the mean cross-validation hazard ratios. The second type, denoted RadiomicScoreLASSO,i, corresponded to the linear combination of features obtained from LASSO within a cross-validation fold. The last one, denoted RadiomicScoreLASSO,COX, was defined as RadiomicScoreCOX, but only with the features that were also selected at least once in LASSO. Finally, we also computed variations of these signatures obtained by an iterative Spearman correlation-based filtration for various thresholds. The filtration procedure ensured we obtained minimal signatures: we first kept the features having only lowerthreshold correlations; then we kept in priority those having above-threshold correlation with the largest number of remaining features. Finally, we assessed their relevance by splitting the cohort with respect to the median value and applying a Log-Rank test (p-value<0.05). If several variations of signatures were found relevant, we kept the sparsest one and drew the resulting Kaplan Meier curves 70 .

Cross-analysis of gene, proteomics and imaging signatures

In the cross analysis between biological and imaging analysis, 56 patients (respectively 89)

had both MRI and a gene-signature (respectively a proteomic signature) and 50 patients (respectively 80) had MRI, PET and a gene-signature (respectively a proteomic signature).

Moreover, 44 patients had an MRI and both a gene and proteomic signature, while 40 had also a PET image.

For each biological signature, we assessed their Spearman correlations with all imaging features and signatures. Finally, we built cross-signatures by adding each radiomic feature or score with each standardized biological score. After splitting the cohort with respect to the median value, we applied a Log-Rank test. The cross-signature was considered significant whenever its Log-Rank p-value was both smaller than 0.05 and smaller than both the individual Log-Rank p-values. For the best of these cross-signatures, we drew the corresponding Kaplan-Meier curves. Where and how do GBM cells invade?

Supplemental

The routes of GBM invasion have been known for a long time and have been named

Scherer structures according to the German pathologist who described them [3]. So far, we know that GBM cells infiltrate along existing brain structures such as brain parenchyma, blood vessels, white matter tracts, and subpial spaces [4] (Fig. 1A). Despite a preference for the white matter invasive margins and diffuse infiltration (Fig. 1C). GBM invasion was described as a mix of velocity, speed and persistence of direction. As a result, although the tumor well defined border is a dynamic area, this did not contribute to invasion as cell movement was undirected. On the contrary, invasive and diffuse margins contributed to overall invasion as they showed persistency in movement or high speed migration respectively.

These studies indicate that not every parameter of GBM invasion is fully understood and models of study must cover the complexity of this process.

Emerging methods

A main challenge in the field is the development of models that accurately replicate the invasive process as it occurs in vivo. We discuss below four methods where recent advances have been made: microfluidic devices, organotypic brain slices, brain organoids and intravital microscopy.

Microfluidic devices -Microfluidic devices are composed of optically clear material, that contain microchannels containing either cells and/or matrix to recreate tissue or organ structures and functions in vitro [12]. In its simplest form, the device is composed of one cell type in a channel but complexity is commonly increased using more cell types such as cancer cells, endothelial cells and gels (Fig. 2A). With this system, viability of the cells is extended by flow-through of culture medium. Different types of microfluidic devices exist and are constantly improved to fulfill the need to better recapitulate GBM invasive properties.

Two axes of improvement have been published in the past year and aimed to model and colleagues designed a different microfluidic device to study GBM migration in confined spaces through micro channels comparable to the structure of GBM microenvironment [16].

Migration velocity was similar to GBM expansion observed in clinics. Taken together, these microfluidic-derived models provide some improvement above existing models but have still some limitations.

Organotypic brain slice -The main advantage of using organotypic brain slices resides in their ability to mimic the tumor microenvironment. Over the past years, mainly brain slices of young mice were used. This technique was improved to better fit with the adult on a murine environment that differs from the human one, thus, not fully phenocopies human pathology.

Key cellular and matrix components

Glioblastoma microenvironment is composed of GBM cells and non-cancerous cells including glioma-associated macrophages and microglia (GAMs), astrocytes, neurons, vascular cells and extracellular matrix (ECM). Each of them plays a role in different aspects of GBM cell invasion. Table 1 summarizes Glioma-associated macrophages/microglia. GAMs represent the major immune cell component within the GBM microenvironment and have been associated with GBM invasion and cell migration [32, 33] (Fig. 3A). A number of chemokines, cytokines as well as proteases have been described to be involved in the GBM-GAM interaction. GAMs are recruited and activated at the tumor site by GBM cells releasing chemoattractants such as colony-stimulating factor 1 (CSF-1) and fractalkine (CX3CL1) [34]. In turn, GAMs secrete pro-invasive factors such as TGFβ, MMPs, epidermal growth factor (EGF) and interleukin 1β (IL-1β) which are also able to promote tumor invasion [34]. More recently, the panel of molecules participating in the GBM-GAM crosstalk has been enriched. Zhang and colleagues found that GAMs released chemokine (C-C motif) ligand 8 (CCL8) which promotes GBM invasion in vivo [35*]. CCL8 binds to CCR1 and CCR5 leading to ERK1/2 activation and invasion of GBM cells. Wei and colleagues showed that osteopontin, which binds to macrophages expressing integrin αvβ5, is secreted by GBM cells and has chemoattractive activity for GAMs [36]. Extracellular vesicles carrying miRNAs are also mediators of the GBM cells-GAMS interaction since miR-21 transferred from GBM cells to microglia modify the transcriptome and the phenotype of microglial cells [37*]. Interestingly, targeting GAMs was proposed as a therapeutic strategy in GBM. For example, Guo and colleagues proposed that the immunosuppressant drug FTY720 mediates chemokine receptor CXCR4 internalization in microglial cells, which subsequently leads to the inhibition of interleukin 6 (IL-6) secretion, thus preventing its action on GBM to promote invasion [38].

To overcome the lack of reliable experimental approaches for GBM cells and GAMs interaction, a bioprinted brain-shaped model was developed. In this system, GBM cells recruited macrophages and influenced their polarization [39*].

Astrocytes. Astrocytes account for approximately half of the cells in the human brain and play important physiological roles such as blood-brain barrier maintenance and synaptic activity [40]. Upon injury caused by GBM development, astrocytes become reactive and can be identified by a distinct transcriptomic signature compare to normal astrocytes (Fig. 3B).

For instance, tumor-associated astrocytes (TAAs Finally, the protein tyrosine phosphatase PTPRZ1 was involved in this process and promoted invasion in this cell type.

Vascular cells. Vessels are major routes of GBM cell spreading. Endothelial cells and pericytes are involved in a crosstalk with GBM cells influencing invasion (Fig. 3D). As example, a microvascular network formed in a microfluidic device enhanced GBM cells migration [13*]. Disrupting the CXCL12-CXCR4 signaling pathway reduced invasion of tumor cells mediated by endothelial cells suggesting that CXCL12-CXCR4 is involved in this crosstalk. Moreover, CXCL12-CXCR4 axis conferred temozolomide resistance [49]. In a different study, endothelial cells increased GBM spheroids invasion in collagen gel [50].

Blockade of IL-8 inhibited this effect and in vivo experiments confirmed that endothelial cells and IL-8 stimulated tumor growth and invasion.

Conclusion

We have summarized in this review the latest updates on the invasion routes in GBM, the technical advances and the key cell and molecular players involved. GBM invasion is one of the main causes of treatment resistance, and many cellular and molecular players have been described to participate in this process. Important players are the extracellular matrix, the microglia and macrophages, astrocytes, neurons and the vasculature. Many new insights Figure 2: Recent methods to study GBM invasion. A) Microfluidic devices allow to study interaction of GBM cells (blue) with other cell types, endothelial cells (red) in the example (Top) or to study effect of matrix (orange) stiffness on GBM cells (Bottom). Setup used in Ref. [13,15] B) Brain slices. Tumor spheroids can be implanted in normal murine brain slice after slicing (Top) or in mouse brain before slicing (Bottom). C) GBM organoids can be obtained from GBM specimen after brain surgery (Top). Alternatively, brain organoids can be fused to tumor spheroid to generate a GBM invasion model (Bottom). D) Intravital microscopy through cranial window after GBM xenograft in mouse brain. This figure was drawn using Servier Medical Art, licensed under a Creative Common Attribution 3.0 Generic License. http://smart.servier.com/.
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Figure 3: Recent findings in cell interactions within brain microenvironment controlling GBM cell invasion. A) GAM and GBM cell crosstalk based on Ref. [33-38]. GBM cells attract GAMs via multiple factors and GAMs release pro-invasive factors. GAMs also activate astrocytes. B) Astrocyte and GBM cell crosstalk based on Ref. [39-45]. GBM cells attract TAAs via multiple factors and TAAs release pro-invasive factors. C) Neuronglioma synapse based on Ref. [46,47].Glutamate, secreted by neuronal hyperexcitation, activates Calcium (Ca2+) flux inside GBM cell via glutamate receptor. This flux is transmitted to other GBM cells of the network via gap junctions and tumor microtubes. D) Endothelial cell and GBM cell crosstalk based on Ref. [48,49]. Endothelial cells secrete IL-8 and CXCL12 that act as pro-invasive factors on GBM cells. This figure was drawn using Servier Medical Art, licensed under a Creative Common Attribution 3.0 Generic License. http://smart.servier.com/. [48,49]. Endothelial cells secrete IL-8 and CXCL12 that act as proinvasive factors on GBM cells. This figure was drawn using Servier Medical Art, licensed under a Creative Common Attribution 3.0 Generic License. http://smart.servier.com/ Previous targeted therapies, including anti-angiogenic agents and immunotherapies, failed, at clinical trial stage, to bring a survival benefit for glioma patients. The future for glioma, particularly GBM therapies, is being built now and will continue to develop in the following years. Indeed, GBM, the most common and aggressive gliomas, still exhibit poor overall survival due to their chemotherapy resistance and invasive nature. Despite the failure of all targeted therapies to be efficiently translated to the clinics, mechanistic studies to uncover new targets or understand new pathways are still worth conducting.

In this context, PRL2 appeared as a potentially good candidate for targeted therapy in GBM.

The phosphatase PRL2 exhibit oncogenic properties, which have already been reported in several cancers, including leukemia [START_REF] Kobayashi | Phosphatase of regenerating liver in hematopoietic stem cells and hematological malignancies[END_REF]106 and solid tumors 103,111 , notably breast cancer 104,112 . To our knowledge, it is the first time that PRL2 functions were investigated in GBM progression. We found that PRL2 expression is more elevated in both IDH-mutant gliomas and IDH-wildtype GBM, with a more pronounced association with the mesenchymal phenotype. Although the genetic modulation of PTP4A2 failed to show any impact on P3 spheroid proliferation, it influenced tumor growth and apoptosis in P3 xenografts. The deletion of PTP4A2 decreased tumor growth and increased apoptosis. Consistently, PTP4A2 OE drastically enhanced tumor growth and reduced mouse survival. More interestingly, the pharmacological targeting of all three PRL members with the JMS-053 inhibitor drastically reduced GBM spheroid viability and growth. However, we saw some discrepancies in the results. First, using a second cell line, namely 1123-Mes, the deletion of PTP4A2 significantly reduced spheroid growth in vitro.

Additionally, when we tested the invasive properties of PTP4A2-KO cells, we observed opposite effects on P3 cells and 1123-Mes cells. We thus hypothesized that the two cell lines could display distinct behaviors or express differential markers that can modify PRL2 functions. For example, we found that unlike the 1123-Mes, P3 cells are deficient for PTEN.

Of interest PTEN is thought to be a putative substrate of PRL2. In a PTEN heterozygous mouse model, PRL2 dephosphorylated PTEN, thus down-regulated Akt signaling and decreased tumor growth 108 . Other factors could explain the inconsistencies between cell lines and should be further investigated. Another discrepancy among the results was observed. While the deletion of PTP4A2 increased tumor apoptosis, potentially explaining a reduction in tumor growth and an infiltration of pro-inflammatory macrophages, the OE of PTP4A2 enhanced tumor growth without modulating KI67 expression, apoptosis, or TME factors. This suggests that another mechanism is responsible for the effect of PTP4A2-OE in GBM growth. Some mechanisms should be explored, including the interaction with the CNNM complex. Indeed, the interaction between PRL2 and CNNM3 has already been shown to promote tumor progression in breast cancer 105 . TRPM7 is another PRL/CNNM complex partner that has a role in cancer. In GBM, TRPM7 is overexpressed and promotes cell proliferation, stem cell renewal, and differentiation via STAT3/Notch signaling 113 . It was also reported to increase GBM cell invasion 113 .

Besides its importance in the cancer cells, targeting PRL2 deriving from stroma cells could extend the impact of a therapy against this PRL. In particular, GBM are highly angiogenic tumors, and PRL2 is involved in physiological angiogenesis. Recently, Poulet et al. showed that PTP4A2 deficiency decreased migration and sprouting of endothelial cells in vitro and in mouse retina [START_REF] Poulet | PRL-2 phosphatase is required for vascular morphogenesis and angiogenic signaling[END_REF] . Hence, targeting PRL2 in both tumor and tumor-associated blood vessels could lead to a synergistic effect combining reduced tumor growth and impaired angiogenesis.

Furthermore, PTP4A2 expression in lower-grade gliomas has been recently associated with poor prognostic value when integrated into a signature of radiosensitivity-related genes 114 . This signature was predictive of overall and progression-free survival with the best results obtained in patients with a low score (including common expression of PTP4A2) associated with low risk. This finding is of interest as not all glioma patients respond positively to radiotherapy, and targeting PRL2 may be effective only for radiosensitive tumors. However, Du et al. showed that a high level of PRL2 was associated with ROS-induced cell death 115 .

In another study, Funato et al. showed that overexpressing PRL3 augmented the level of intracellular magnesium and a concomitant increase of reactive oxygen species (ROS) 116 . In cancer therapy, ROS production is important as it is responsible for cancer radiation-induced cell death by DNA damage 117 . Taken together, these studies indicate that the role of PRL2 in tumor progression or in cell death is unclear and may be tissue-dependent. Further studies will be needed to reconcile the function of PRL2 in response to radiotherapy and oxidation, especially in cancer.

In addition to targeted therapies, have emerged immunotherapies based on macrophages, cancer treatment vaccines, oncolytic viruses, and engineered CAR-T cells and CAR-NKcells. Promising immunotherapies are thought to reside in the re-education of myeloidderived cells, which are mainly macrophages and microglia in the case of brain tumors 45 .

For instance, the macrophages blocking approach has been tested in animal models and in small clinical studies. For example, although monotherapies using CSF1-R inhibitors have demonstrated little benefits for glioma patients, their combination with other therapies is thought to bring effective responses and should be further explored 118 . New evidence have suggested that rather than suppressing macrophages from TME, it was beneficial to reeducate them toward a more pro-inflammatory and less immunosuppressive phenotype 119,120 . Considering their abundance in brain TME and their plastic phenotype, macrophages and microglia have appeared as interesting targets for glioma treatment 121 . A significant finding of our study on the role of PRL2 in GBM showed that in addition to increased apoptosis, PTP4A2-KO tumors were more pro-inflammatory than their control counterparts.

It was notably the case with a shift in polarization of macrophages towards an up-regulation of pro-inflammatory markers, including COX2. Whether the shift in macrophage phenotype is a cause or a consequence of the tumor apoptosis, PRL2 targeting is at the origin and could participate to the re-education of TAM toward an immune supportive phenotype. However, our study did not infer causation between the observed apoptosis and increased proinflammatory signals, and this should be addressed in future studies.

Vaccines for the treatment of glioma rely on the identification of tumor-specific antigens that cancer cells exclusively or preferentially expressed 122 . The adaptive immune system recognizes those antigens, which subsequently enhances the anti-tumor activity. They can be presented by two main principles: via a peptide alone or via dendritic cells (DC). In the first case, peptides are injected into the patients. For glioma treatment, two peptides were particularly interesting due to their exclusive mutations in tumor cells: EGFRvIII and IDHR13 2H. Given their pattern of expression, they are considered safe with respect to autoimmunity reactions. A peptide based on EGFRvIII reached phase III clinical trial but failed to improve the overall survival of newly diagnosed GBM patients carrying the mutation 123 . However, this strategy can be re-used in a combinatorial therapy to increase efficacy. The specificity of targeting by these peptides restrains their use in categories of gliomas: EGFRvIII mutation is present in up to 30% of GBM only, and IDHR132H is present in a majority of IDH-mutant gliomas, which let aside a vast proportion of GBM patients.

Other vaccines can be constructed on overexpressed antigens with the risk of off-targets in the stroma. In parallel to the progress made on the therapeutic targets themselves, additional work is carried out on adjuvants to further facilitate the transport of peptides to the delivery site. Notably, melanin has been shown to increase the efficacy of peptide delivery and T-cell response in preclinical models 124 . Peptides can also be presented by dendritic cells (DC). For example, a phase III trial applying DC vaccine (DCVax-L) in combination with TMZ has shown an improvement of progression-free survival and overall survival in GBM patients 125 . Oncolytic viruses constitute another approach in the treatment of glioma. They carry a lytic activity killing cancer cells and a stimulating action on innate immunity 122 .

Several clinical trials have shown the safety of the use of oncolytic viruses as well as beneficial outcomes for glioma patients 126 . Finally, chimeric antigen receptor (CAR) immunotherapies are another ongoing strategy. For example, CAR-T cells are already approved for B cell lymphoma and leukemia 42 . These engineered CAR-T cells genetically carry a modified receptor that can recognize tumor cells and maintain T cell activation to elicit an anti-tumor immune response. The CAR-T cell therapy has shown some promising results on few recurrent GBM but faces the barriers of GBM heterogeneity, poor tumor infiltration, and immunosuppressive TME 45 . In glioma, immunotherapies still did not show a meaningful impact on patient outcomes. With a better characterization of tumor heterogeneity and improved preclinical models, we can open doors for more personalized treatments.

Furthermore, with the increasing precision of the tools available and the growing understanding of glioma heterogeneity, therapies have tended to become a personalized medicine that will be able to cure specifically each patient based on the unique molecular profile, histopathology and radiologic characteristics of their tumor 57 . To help with this, artificial intelligence developed numerous pipelines 56 .

Algorithms of artificial intelligence are helpful for clinical management of the disease. For example, in clinical practice, the assessment of tumor progression and treatment response by MRI is not yet automated. However, the Response Assessment in Neuro-Oncology (RANO) criteria and requirements for a uniform protocol recommends a standardized protocol for MRI scans in both research and clinical practice 127 . To this purpose, artificial neural networks (ANNs), which are particular artificial intelligence algorithms, have been employed to overcome the inherent limitations of manual assessment of tumor burden 128 . Artificial intelligence was proven more reproducible than manual measurement, particularly in patients with lower-grade gliomas 129 . In addition to tumor progression, artificial intelligence is helpful for classifying patients with gliomas. Notably, it has been used for the stratification of patients based mutations that have the most important influence on patient survival, such as IDH status 37,130,131 , methylation of the O6-methylguanine methyltransferase (MGMT) gene status 132,133 and 1p/19q codeletion 134 . Applied to the clinic routine, artificial intelligence would help to establish a diagnosis at an earlier time point, before the surgery, only with imaging data. Other studies focused on predicting survival rate, grading, and molecular genetics from imaging and clinical data 57 . All these proves of concept have shown good performance, but their application in daily clinical practice and their effect on patient outcomes necessitate further development.

Besides its application for clinical management, artificial intelligence is a valuable tool for research. In our article "Multi-parametric integration of transcriptomics, proteomics and radiomics for prediction of recurrence in patients with IDH-mutant Glioma" we used machine learning, a branch of artificial intelligence to analyze multi-omic data. This work was born in an era of high-throughput technologies producing omic data that have to be examined by bioinformatics and artificial intelligence 56 . Through machine learning and classical bioinformatics, we established a list of 3 genes and a list of 4 proteins that predict the risk of recurrence in patients with IDH-mutant glioma. We also identified radiologic features that predict the risk of recurrence, assembled in signatures of radiologic features only or combination with molecular signatures. We also emphasized the usefulness of integrating PET status into the histomolecular diagnosis of IDH-mutant gliomas. Altogether, bioinformatic analysis and machine learning identified markers that better stratify IDH-mutant gliomas for the risk of recurrence compared to pre-existing classifications such as histological subtypes (astrocytomas versus oligodendrogliomas) or PET status (positive or negative for the uptake as assessed by clinicians). Moreover, these markers can be used not only as biomarkers but also as therapeutic targets for the treatment of specific subcategories of IDH-mutant gliomas. However, one limitation of our study is the lack of validating cohort to ascertain our findings in an independent cohort. Indeed, integrating datasets from multiple centers achieves more robust outcomes and potentially new results, especially when individual datasets are noisy, incomplete or biased 56 . In our study, uncertainties and artefacts can arise from the limited number of patients, the extraction methods for molecular data (proteins and RNA), the manual interpretation of PET scans and MRI, etc. To overcome those limitations and biases, conducting an independent cohort study, either by retrospective analysis of a larger cohort or a prospective analysis with more controlled variables measured would be interesting.

Conclusion

Gliomas and particularly GBM, remain challenging tumors to treat. These challenges arise from resistance to therapies and redundant pathways leading to tumor escape. All these characteristics are linked to tumor cell and TME heterogeneity. A better understanding of their dynamics will lead to improved targeting of the disease. One privileged way to achieve this goal is through personalized medicine that will specifically take into account interindividual heterogeneity. To this end, artificial intelligence will help standardize the procedures in clinics (diagnosis and tumor progression assessment) and uncover usable biomarkers.
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  . The class I contains most of the PTPs and is split into classical PTPs, which are selective for tyrosine, and Dual specificity phosphatases (DSP), which can dephosphorylate both tyrosine and serine/threonine residues. The classical PTPs are further divided into receptors (PTPR) and non-receptors (PTPN) with 21 and 17 members, respectively. The DSP family is divided into seven groups: PTEN phosphatases, phosphatases of regenerating liver (PRL), slingshot phosphatases (SSH), myotubularin-related phosphatases (MTMR), cell division cycle 14 phosphatases (CDC14), MAPK phosphatases (MKP) and atypical DSP. Class II has only one member, the low molecular weight PTP (LMW-PTP). Class III comprises three members encoding CDC25. Finally, class IV has four members of the eyes absent homolog (EYA) genes.
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Figure 10 :

 10 Figure 10 : Amino acid sequence alignment of the human PRL family. The catalytic domain is responsible for enzymatic activity, requiring the C(X)5R active site residues and the WPD loop residues for phosphate transfer. A polybasic domain and a prenylation motif (CAAX) are essential for determining the intracellular localization of PRL proteins. Cysteine 49 is important for redox regulation. Critical residues or domains are indicated in colors and adapted from Hardy et al., 2018, FEBS Journal.

Figure 11 :

 11 Figure 11 : Representation of the enzymatic reaction catalyzed by PRL. Figure from Gulerez et al., 2016, EMBO reports

Figure 12 :

 12 Figure 12 : Working model for PRL/CNNM complex regulating magnesium influx to promote tumor progression. Figure adapted from Hardy et al., 2018, FEBS.

Figure 13 :
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 2 Figure 2 : In vivo phenotype associated with PTP4A2 modulation in P3 xenografts. A) WB analysis Ctrl, PTP4A2-KO and PTP4A2-OE of P3 cells. B) Tumor volume assessed by
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 3 Figure 3 : In vitro phenotype of P3 cells and spheroid. A) Viability of Ctrl and KO P3 cells
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 6 Figure 6 : A) Representative pictures of spheroid growth over 5 days of P3 cells treated with
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 2 Multi-parametric analysis of the evolution and progression of IDHmutant glioma I. Introduction and objectives of this chapter This chapter is based on an article submitted to Nature Cancer in November 2022. It describes the use of machine learning, a branch of artificial intelligence, together with imaging, transcriptomic and proteomic profiling to 1) describe biological differences in IDHmutant glioma subtypes, 2) establish a novel classification of these tumors to improve the prediction of prognosis and 3) define gene-, protein-and imaging-based signatures of recurrence. Our integrative analysis of imaging, transcriptional, proteomic data provided a better understanding of the clinical evolution of IDH-mutant gliomas as well as a better classification of patient risk of recurrence. This work has been conducted in collaboration with clinicians, bioinformaticians and biostatisticians from the university of Bordeaux, Humanitas hospital in Milan and other collaborators in Norway, Luxemburg and Italy. II. Article Introduction Adult diffuse gliomas are the most common primary brain tumors. Although the incidence rate is less than 1% of newly diagnosed cancers, gliomas are associated with high recurrence frequency and low survival rate 1 . According the World Health Organization (WHO) classification of 2021, adult diffuse gliomas are divided into 2 categories based on Isocitrate Dehydrogenase (IDH) gene status: IDH-wildtype and IDH-mutant gliomas 2 . IDHwildtype gliomas including Glioblastomas share aggressive biological behavior and have poor prognosis. In contrast, IDH-mutant gliomas include Astrocytoma (IDH-mutated) and Oligodendroglioma (IDH-mutated and 1p/19q-codeleted), have a less aggressive biological behavior, and their prognosis is less influenced by tumor grade. Isocitrate Dehydrogenasemutant gliomas usually occur in a younger population and are typically associated with seizures which impair ability of patients to maintain a social and working life 3 . Many therapeutic advances have been achieved through the use of maximal surgical resection and upfront chemo/radiotherapy with the aim to postpone the onset of recurrence 4 . Moreover, the integration of molecular profiling into histological diagnosis constituted a major improvement in tumor classification (WHO classification of 2016) 2 . However, IDH-mutant gliomas invariably progress toward a more malignant phenotype, with various onsets of recurrence among patients. The inter-individual heterogeneity in disease progression complicates prediction of early recurrence 5 . Identifying patients at risk of early recurrence remains an unmet need. Therefore, an improved risk stratification of IDH-mutant glioma patients can help neuro-oncologists in the clinical routine for diagnosis, treatment and followup. Imaging data including Magnetic Resonance Imaging (MRI) and Positron Emission Tomography (PET) are routinely acquired during patient care and conventional and advanced imaging features are used for tumor characterization and presumptive diagnosis.

Figure 1 :

 1 Figure 1: Patients included in the study. A) Overview of the study describing procedures (MRI, PET and surgery) with data and samples collection throughout patient follow-up (left panel), analyses performed (middle panel) and outcomes (right panel). VOI: volume of interest; FFPE: formalin fixed paraffin embedded; LC-MS: liquid chromatography-mass spectrometry. B) Representative 11 C-METH PET scan from PET pos and PET neg patients (left to right: FLAIR (fluid attenuated inversion recovery), T1 post gadolinium and 11 C-METH PET).

  C-methionine PET ( 11 C-METH PET) status and histomolecular classification. We also performed survival analysis to assess prognostic values. Based on 11 C-METH PET uptake, the tumors were classified into PET neg (Fig 1B, bottom panel) and PET pos (Fig 1B, top panel) groups. The principal component analysis (PCA) of transcriptomic
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 2 Figure 2: PET neg and PET pos gliomas as well as Astrocytoma and Oligodendroglioma have
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 3 Figure 3 : Integration of PET into the classification of IDH-mutant glioma patients. A)
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 4 Figure 4 : Processes associated to tumor recurrence. A) Heatmap of genes linked to recurrence (found in all iterations of RF, p-value<0.05). B) Heatmap of protein linked to
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 5 Figure 5: Prognostic significance of the genes and proteins linked to recurrence. A, E)

  Fig. 7E), the detected MRI-based RadiomicScoreLASSO,COX was composed of 2 shape features: Maximum2DDiameterRowMRI,MORPH and VoxelVolumeMRI,MORPH (p-value = 0.002; Fig. 6A, B, Supp. Fig. 7F), VoxelVolumeMRI,MORPH being another approximation of the VOI volume. Note that the features involved did not have a high selection rate in LASSO. This is because features with the highest LASSO selection rate had mean Cox p-values above 0.05. These ones were however considered in the LASSO signatures. Among these MR features, Maximum2DDiameterRowMRI,MORPH showed a 0.44-correlation with the DEG IGKV2D-28 (pvalue = 0.0007, confidence interval: [0.20,0.63]).

Figure 7 :

 7 Figure 7: Cross signatures of recurrence risk. A) Workflow showing that gene and protein

FFPE slices were transferred

  from glass slides to plastic tubes with a scalpel. The paraffin was extracted with three bathes of xylene and then the slices were gradually rehydrated with successive baths of ethanol in water (i.e.95, 80, 70, 50, 0% ethanol). Proteins were solubilized with 25µl of Rapigest (Waters) detergent at 0.5% and 75µl of 10mM dithiotreitol (DTT) in tris Hcl 100mM (pH8). Samples were incubated 1H at 99°C under agitation, sonicated 5 times for 5s with a sonicator probe (Branson) and incubated again for 60min at 99°C. Free cysteine thiol groups were alkylated with 10µL of iodoacetamide (IAM) 225mMfor 40 min at room temperature. Samples were diluted with 75µl of 10 mM DTT in Tris HCl to quench the residual IAM. After the protein concentration was measured, proteolysis was performed overnight at 37°C with a trypsin/LysC commercial mixture (Promega). After digestion, the samples were acidified and desalted by solid phase extraction (Sep-Pak tC18 96-well µElution, Waters) according to the manufacturer protocol. The samples were vacuum dried and suspended in 0.05% trifluoroacetic acid, 1% acetonitrile in water.Data independent acquisition analysisThe chromatography setup consisted of a Dionex Ultimate 3000 RSLC chromatography system operated in column switching mode. The mobile phase A consisted of 0.1% formic acid in water, the phase B in 0.1% formic acid in acetonitrile and the loading phase in 0.05% trifluoroacetic acid and 1% acetonitrile in water. Samples were injected onto a trap column (75 μm × 2 cm, C18 pepmap 100, 3 μm) with the loading phase and eluted onto an analytical column (75 μm × 25 cm, C18 pepmap 100, 2 μm) at 300 nl/min by a linear gradient ranging from 2 to 35% B in 120min. Data were acquired with a QExactive HF (Thermo Scientific).DIA acquisition method was setup with 50 quadrupole isolation windows with width ranging from 8 to 151 m/z and with an overlap of 1 m/z (the total covered m/z range was 374.5-1249.5). Isolation windows size and distribution across the m/z range was set according to the observed peptide-ion density and distribution of a reference sample. For the MS/MS spectra, the collision energy was set to 25, the resolution of the orbitrap to 30,000 resolution at 200m/z, a maximum of 1e6 charge can be accumulated in the collision cell with a maximum fill set to maximize the MS duty cycle. Data processing DIA data were processed with Spectronaut 15.1.210713.50606 using the directDIA workflow with Uniprot protein sequence database restricted to Homo sapiens (2021-03-04; 75795 entries). We used the default parameters at the exceptions of the exclusion of proteins only identified by a single peptide in the sample set and the absence of imputation for the missing values.

  DEG and DEP identified by dearseq with |log2 (fold change)| > 0.58 and B-H adjusted p-value<0.05 and genes identified in at least 50% of the ten survival RF repetitions were kept for enrichment analysis. The packages gProfileR and clusterProfiler were used to perform functional enrichment. Annotations used for the analysis included: Gene Ontology 56 (GO) terms (Biological Pathways, Molecular Functions, Cellular Components; BP, MF, CC), Kyoto

  DEG and DEP identified by dearseq with |log2 (fold change)| > 0.58 and B-H adjusted p-value<0.05 and genes identified in at least 50% of the ten survival RF repetitions were kept for enrichment analysis. The packages gProfileR and clusterProfiler were used to perform functional enrichment. Annotations used for the analysis included: Gene Ontology 61 (GO) terms (Biological Pathways, Molecular Functions, Cellular Components; BP, MF, CC), Kyoto

  libraries. We performed a 100-times repeated nested cross-validation procedure composed of 5 external folds and internal folds chosen from a Halving Grid Search procedure. The higher number of repetitions was motivated by the need to analyze features importance in the construction of robust signatures. In each external fold, the individual significance of features was quantified on the train set from the Cox Proportional Hazard model. For the multivariate recurrence analysis, we used a pipeline composed of features standardization followed by regression using a Cox model with LASSO penalization. The penalization coefficient was optimized within the internal cross validation (HalvingGridSearchCV) with respect to the C-index (measuring the ability to rank the recurrence-free durations). The model performance was measured on the external test set from the Brier Score (and Integrated Brier Score or IBS when integrating over all times) and the C-index. A random model would yield a Brier score of 0.25 and a C-index of 0.5, while the perfect model would yield a Brier score of 0 and a Cindex of 1. We looked for radiomic signatures of recurrence-free survival, and defined three types of signatures. The first type, denoted RadiomicScoreCOX, was obtained as the linear combination of features individually significant (mean cross-validation Cox p-value <0.05),
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 7 Analysis of radiomic signatures of recurrence risk based on MRI alone (left) or MRI and PET combined (right). A-B) Brier scores of survival models based on MRI features and MRI+PET features respectively. C) Kaplan-Meier curves of the 4 MRI features included in the MRI-based RadiomicScoreCOX. D) Kaplan-Meier curves of the 3 MRI features included in the MRI-based RadiomicScoreLASSO. E) Correlation heatmap of MRI features selected by LASSO and Cox. Two features with a correlation above 0.9 were considered redundant and only one of them was kept. F) Kaplan-Meier curves of the 2 MRI features included in the MRI-based RadiomicScoreLASSO,COX. G) Kaplan-Meier curves of the 5 MRI and PET features included in the MRI+PET-based RadiomicScoreLASSO. H) Correlation heatmap of MRI and PET features selected by LASSO and Cox. Two features with a correlation above 0.9 were considered redundant and only one of them was kept. I) Kaplan-Meier curves of the 3 MRI and PET features included in the MRI+PET -based RadiomicScoreLASSO,COX.
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 3 Mechanisms of invasion in glioblastoma I. Introduction and objectives of this chapterThis chapter is based on a review published in November 2020 in Current Opinion in Oncology. The article's objective was to review the current knowledge on the mechanisms of invasion in GBM from the perspective of the microenvironment. It details the routes of metastatic invasion, the molecular and cellular interactions controlling invasion, and current tools to study the phenotype.II. ArticleIntroduction GBM is the most aggressive brain tumor and is characterized by high proliferation rate, core necrosis, microvascular proliferation and tumor infiltration. GBM treatment consists in tumor resection by surgery and radiotherapy plus concomitant chemotherapy with temozolomide[1, 2]. However, GBM still remains incurable, due to resistance to treatment mainly caused by the presence of tumor cells that escape tumor resection and spread into the healthy brain parenchyma. Recent developments in immunotherapy did not succeed in overcoming this challenge. Unfortunately, the mechanisms underlying GBM invasion are still not fully understood. This issue can be partly explained by the lack of experimental approaches allowing good reproducibility and correlation between pre-clinical and clinical data. Therefore, better models for mechanistical studies and for targeting tumor invasion are needed. In this review, we focus on recent updates describing how invasive cells progress in the surrounding tissue along brain structures. Then, we present recent technical advances to model GBM invasion. Finally, we provide information about our current knowledge about cellular and molecular mechanisms of tumor cell invasion and the interactions with the microenvironment.

  [5*], GBM cells also migrate along blood vessel to sustain tumor spreading and resistance to antiangiogenic treatments[6, 7*]. However, little is known about the dynamics of invasion processes such as speed, direction, location and mode of invasion (i.e. collective or single cell). Tamura and colleagues described different invasive sites, enriching knowledge about spatial distribution of GBM cells inside the brain [8**]. In particular they showed that GBM cells, implanted into the striatum of a mouse brain, migrated following a helical movement around axons bundles (Fig.1B). Moreover, cells spread inside the corpus callosum only in one direction, whereas they tended not to invade in the cortex. They showed also axon-independent migration, for example towards the inferior horn of the lateral ventricle. Notch1/Sox2 signaling was identified as a positive feedback loop controlling GBM cell invasion along white matter tracts expressing the Notch ligand Jagged1 [9*]. Another study suggested that GBM cells preferentially migrate along vasculature rather than white matter tracts [10*] (Fig.1B). Even inside the white matter, migration along vessels was faster than along white matter tracts.Alternatively, GBM invasion can be summarized according to the invasive patterns. Alieva and colleagues described distinct GBM invasive patterns in vivo, similar to those observed in patients [11**]. Three distinct morphologies of tumor borders underlying different invasive growth patterns contributed to tumor expansive growth. They included: well-defined borders,

  vascularization and mechanical constraints. A 3D organotypic microfluidic platform mimicking the perivascular niche has been developed to study the influence of endothelial cells on GBM cells invasion [13*]. Interestingly, Truong and colleagues demonstrated that their model recapitulated in vivo invasive cell morphology. The HUVEC-based vessels were, however, located away from the tumor cells so they did not measure direct invasion of the vessels but, in fact, angiocrine gradients from HUVECs that facilitate invasion are acting in this case. For the same purpose, a 3D bioprinted tumor vascular model has been designed for long-term monitoring of tumor invasion and drug treatment[14*]. However, this latter model does also not provide a real vasculature to the tumor and drug treatments are operating by distant diffusion to reach the spheroid. Dou and colleagues developed a microfluidic device allowing to test the effect of stiffness of the hydrogel on GBM cell migration[15]. They showed that stiffness modulated cell morphology and migration. Prahl

  recently discovered secreted factors involved in tumor-microenvironment crosstalk. Glioblastoma-glioblastoma interactions. Contacts are made between moving glioma cells which are constituted by adaptive epithelial-like or filamentous junctions stabilized by Ncadherin, β-catenin and p120-catenin [26*]. These cell-cell interactions are important since downregulation of p120-catenin compromised cell-cell interaction and disrupted collective invasive networks.Extracellular matrix. ECM is composed of different molecules that display crucial roles in GBM invasion[27]. These molecules comprise Tenascin C, fibronectin, integrins, proteases such as metalloproteinases (MMPs), urokinase (uPA), cathepsin B and ADAMs. Recently, Koh and colleagues studied the impact of matrix composition on GBM invasion comparing brain decellularized matrix derived from patients to collagen [28*]. Notably, in matrix derived from patients, GBM cells were less elongated, exhibited less persistence of movement and were in the end more invasive. New insights on the role of matrix component have been added in the past year. For instance, we showed that Thrombospondin 1 (THBS1), a matrix protein regulated by transforming growth factor beta 1 (TGFβ1) via SMAD3-binding sites, was involved in GBM invasion and, by network analysis, demonstrated THBS1 as the gene with the highest connectivity in the invasive area[29*]. Another group evaluated the potential of the cell surface protein integrin α10β1 as a new therapeutic target[30]. In a microfluidic device based study, GBM cells preferentially invaded matrices composed of over-sulfated chondroitin sulfate glycosaminoglycans[31].

  ) have been shown to exhibit an increase in the interferon-γ (IFNγ) response and JAK/STAT pathway activation [41**]. Moreover, their activation was driven by tumor cells and microglia. Recently, Herrera-Perez and colleagues confirmed the interaction of GBM cells and TAAs and showed an increased migration of patient-derived GBM cells in a 3D co-culture model [42*]. Several mechanisms wereproposed to participate in the crosstalk. For example, it is known that TAAs secrete proteases and cytokines (uPA, IL-6) to increase MMPs release by GBM cells, leading to remodeling of the EMC and favoring invasion[40]. More recently, Chen and colleagues uncovered a reciprocal activation loop between GBM cells and TAAs leading to enhanced migration and invasion of GBM cells.[43]. This loop was found to be initiated by the constitutive activity of STAT3, and the downstream expression of IL-6 in GBM cell which, in turn, activated STAT3 and upregulated IL-6 expression in the TAAs. The communication of GBM cells with TAAs is also mediated by extracellular vesicles and, to a lesser extent, cell fusion to deliver proteins and mRNAs[44*]. Extracellular vesicles, containing for example the glycoprotein CD147, were shown to be internalized by astrocytes which led to the release of
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Figure 2 :

 2 Figure 2: Recent methods to study GBM invasion. A) Microfluidic devices allow to study interaction of GBM cells (blue) with other cell types, endothelial cells (red) in the example (Top) or to study effect of matrix (orange) stiffness on GBM cells (Bottom). Setup used in

  

  

  

  

  

  

  

  

  

  

  

  

  

  . More recently, Li et al. proposed a potential substrate of PRL2 108 . They used a PTEN heterozygous mouse model to study tumor development and found that PRL2 dephosphorylates PTEN, thus decreasing Akt signaling and tumor growth.

Table 1 :

 1 Patient characteristics of the full cohort and the 3 subset datasets used in this

	study: transcriptomics, proteomics and imaging		
		All	Transcriptomics	Proteomics	MRI
		n = 154	n = 59	n = 93	n = 144
		n (%)	n (%)	n (%)	n (%)
	Age, median (range)	41.5 (21-81)	41 (23-77)	42 (23-81)	42 (21-81)
	Sex				
	Female	73 (47%)	30 (51%)	56 (60%)	68 (47%)
	Male	81 (53%)	29 (49%)	37 (40%)	76 (53%)
	Recurrence	70 (45%)	24 (41%)	44 (47%)	65 (45%)

Table S2 :

 S2 All 13 DEP between PET neg and PET pos

	Q00796	SORD	sorbitol dehydrogenase	0.044078	29 0.000353	-0.70133
	Q9UBI6	GNG12	G protein subunit gamma	0.044078	29 0.000343	-0.58098
			12			
	P54802	NAGLU	N-acetyl-alpha-	0.035069	23 0.000216	0.66881
			glucosaminidase			
	P04275	VWF	von Willebrand factor	0.006009	4 8.03E-06 0.699068
	Q6UVK1	CSPG4	chondroitin sulfate	0.023168	14 8.97E-05 0.786835
			proteoglycan 4			
	P00738	HP	haptoglobin	0.019153	11.5 6.11E-05 1.005053
	Protein ID Gene name	Full name	p-value	rank	raw p-	log2(Fold
					p-	value	Change)
					value	
	Q6UXB8	PI16	peptidase inhibitor 16	0.00285	2 1.52E-06	-3.97709
	Q6ZRI8	ARHGAP36	Rho GTPase activating	0.030617	18 0.000154	-3.87477
			protein 36			
	H0YBJ4	MATN2	matrilin 2	0.04733	32.5 0.000429	-2.11067
	P24821	TNC	tenascin C	0.007861	7 1.68E-05	-0.97966
	P40145	ADCY8		9.15E-05	1 2.45E-08	-0.91194
	P13611	VCAN	versican	0.012616	10 3.37E-05	-0.89793
	Q9H313	TTYH1	tweety family member 1	0.006009	4 6.48E-06	-0.81383

Table S3 :

 S3 Top DEG between Astrocytoma and Oligodendroglioma and their dearseq p-value

	Gene name	p-value	rank_p-value	raw_p-value	log2FoldChange
	TRIM67	10-6	4.5	10-7	-2.95271
	BLK	10-6	4.5	10-7	-1.60817
	SF3A2	10-6	4.5	10-7	-0.97569
	SSU72	10-6	4.5	10-7	0.240533
	ZCCHC17	10-6	4.5	10-7	0.269445
	EBNA1BP2	10-6	4.5	10-7	0.270521
	UROD	10-6	4.5	10-7	0.38386
	AC099842.1	10-6	4.5	10-7	0.727463
	MRPS15	0.015132 9	4.32E-06	0.289168
	IGKV1D.8	0.01859	10.5	6.13E-06	-1.95073
	PEF1	0.01859	10.5	6.49E-06	0.235373
	AMZ1	0.019681 17.5	8.03E-06	-1.39318
	LPO	0.019681 17.5	9.04E-06	-1.19386
	APC2	0.019681 17.5	1.01E-05	-0.92529
	MFN2	0.019681 17.5	1.18E-05	0.244131
	AC012314.11	0.019681 17.5	1.42E-05	0.810084
	AC012314.12	0.019681 17.5	1.43E-05	0.810002
	AC012314.5	0.019681 17.5	1.43E-05	0.810099
	AC012314.13	0.019681 17.5	1.43E-05	0.809892

Table S4 :

 S4 MRI-based features having an absolute Spearman correlation above 0.5 with a DEG for PET status (Significance threshold: 0.05).

	FlatnessMRI,MORPH	STRIP1	-0.5	0.0001
	MeanMRI,FIRSTORDER	PHGDH	0.5	0.0001
	Maximum2DDiameterRowMRI,MORPH	SNX18P12	0.51	0.0001
	SurfaceAreaMRI,MORPH	BX004987.1	0.53	< 0.0001
	Maximum2DDiameterRowMRI,MORPH	BX004987.1	0.61	< 0.0001
	Feature names	Genes	Correlation	p-values
	LargeAreaLowGrayLevelEmphasisMRI,GLSZM	AMOT	-0.52	< 0.0001
	LargeAreaLowGrayLevelEmphasisMRI,GLSZM	PITHD1	-0.51	0.0001

Table S5 :

 S5 Genes always found by RF to be associated to recurrence risk

	Gene	RF
		importance
	SLC17A8	0.003688
	AP002373.2	0.002266
	RPS2P36	0.002099
	PCDH20	0.002008
	RUNX3	0.001918
	AC245690.3	0.001663
	AC000095.1	0.001516
	SCRT2	0.001435
	RPS23P1	0.001243
	CDRT15P9	0.001095
	TKFC	0.00098
	CABIN1	0.00088
	SLC22A11	0.000818
	ANKRD20A1 0.000742
	KRT19	0.000733

Table S6 :

 S6 Proteins always found by RF to be associated to recurrence risk

	Q13424	SNTA1	syntrophin alpha 1		0.000727
	P06756	ITGAV	integrin subunit alpha V		0.00069
	Q15119	PDK2	pyruvate dehydrogenase kinase 2		0.000675
	Q9UJJ9	GNPTG	N-acetylglucosamine-1-phosphate	transferase	0.000645
			subunit gamma		
	Q15056	EIF4H	eukaryotic translation initiation factor 4H		0.000641
	P00167	CYB5A	cytochrome b5 type A		0.000624
	Protein	Gene	Full name		RF
		name			importance
	Q96CM8	ACSF2	acyl-CoA synthetase family member 2		0.003694
	P51148	RAB5C	RAB5C, member RAS oncogene family		0.001728
	P45381	ASPA	aspartoacylase		0.001654
	Q9UBB4	ATXN10	ataxin 10		0.001623
	P17405	SMPD1	sphingomyelin phosphodiesterase 1		0.001504
	P26006	ITGA3	integrin subunit alpha 3		0.001074
	A0A0D9SF30 NCAM1	neural cell adhesion molecule 1		0.000971
	Q99733	NAP1L4	nucleosome assembly protein 1 like 4		0.000753
	P45954	ACADSB	acyl-CoA dehydrogenase short/branched chain	0.000738

Table S7 :

 S7 MRI-based features selected by Cox as predictors of recurrence risk, and features also selected by LASSO. The final compositions of RadiomicScoreCOX and RadiomicScoreLASSO,COX are also indicated.

	Features selected by Cox	Cox p-	Cox	In	Also	In
		value	hazard	RadiomicScoreCOX	selected	RadiomicScoreLASSO,COX
			ratio		by	
					LASSO	
	LeastAxisLengthMRI,MORPH	0.005+/-	1.605+/-	no	yes	no
		0.010	0.111			
	SurfaceAreaMRI,MORPH	0.014+/-	1.413+/-	yes	no	no
		0.023	0.081			
	MeshVolumeMRI,MORPH	0.026+/-	1.327+/-	yes	no	no
		0.044	0.057			
	VoxelVolumeMRI,MORPH	0.028+/-	1.344+/-	no	yes	yes
		0.038	0.058			
	Maximum2DDiameterRowMRI,MORPH 0.031+/-	1.379+/-	yes	yes	yes
		0.052	0.080			
	EnergyMRI,FIRSTORDER	0.031+/-	1.379+/-	no	yes	no
		0.052	0.080			
	TotalEnergyMRI,FIRSTORDER	0.034+/-	1.294+/-	no	yes	no
		0.059	0.053			
	GrayLevelNonUniformityMRI,GLDM	0.034+/-	1.355+/-	no	yes	no
		0.046	0.084			
	GrayLevelNonUniformityMRI,GLRLM	0.036+/-	1.377+/-	no	yes	no
		0.058	0.097			
	SizeZoneNonUniformityMRI,GLSZM	0.046+/-	1.329+/-	no	no	no
		0.058	0.071			
	GrayLevelNonUniformityMRI,GLSZM	0.046+/-	1.329+/-	yes	no	no
		0.058	0.071			

Table S8 :

 S8 Composition of MRI-based signatures identified by LASSO as predictors of recurrence risk.

	values		weights
	RadiomicScoreLASSO,1	KurtosisMRI,FIRSTORDER	-0.037
	p-value = 0.004	ClusterShadeMRI,GLCM	0.007
		ShortRunLowGrayLevelEmphasisMRI,GLRLM	0.099
	RadiomicScoreLASSO,2	Maximum2DDiameterRowMRI,MORPH	-0.015
	p-value = 0.005		
	RadiomicScoreLASSO,3	Maximum2DDiameterRowMRI,MORPH	-0.023
	p-value = 0.014	ShortRunLowGrayLevelEmphasisMRI,GLRLM	0.110
		ZoneVarianceMRI,GLSZM	-0.002
	RadiomicScoreLASSO,4	SphericityMRI,MORPH	0.003
	p-value = 0.018	EnergyMRI,FIRSTORDER	0.050
		ClusterShadeMRI,GLCM	0.110
		LargeAreaLowGrayLevelEmphasisMRI,GLSZM	0.027
	RadiomicScoreLASSO,5	InterquartileRangeMRI,FIRSTORDER	0.024
	p-value = 0.020	ShortRunLowGrayLevelEmphasisMRI,GLRLM	0.062
	RadiomicScoreLASSO,6	ClusterProminenceMRI,GLCM	0.006
	p-value = 0.022	ClusterShadeMRI,GLCM	0.018
		ShortRunLowGrayLevelEmphasisMRI,GLRLM	0.180
	RadiomicScoreLASSO,7	Maximum2DDiameterRowMRI,MORPH	-0.010
	p-value = 0.023	ShortRunLowGrayLevelEmphasisMRI,GLRLM	0.086
	RadiomicScoreLASSO,8	LeastAxisLengthMRI,MORPH	0.041
	p-value = 0.030	JointAverageMRI,GLCM	0.058
		ShortRunLowGrayLevelEmphasisMRI,GLRLM	0.012
	RadiomicScoreLASSO,9	EnergyMRI,FIRSTORDER	0.078
	p-value = 0.032	ClusterShadeMRI,GLCM	0.093
	RadiomicScoreLASSO,10	LeastAxisLengthMRI,MORPH	0.151
	p-value = 0.049	SphericityMRI,MORPH	0.051
		ClusterProminenceMRI,GLCM	0.070
		InverseVarianceMRI,GLCM HighGrayLevelEmphasisMRI,GLDM	0.033
		ShortRunLowGrayLevelEmphasisMRI,GLRLM	0.001
			0.037
	RadiomicScoreLASSO,11	InterquartileRangeMRI,FIRSTORDER	0.031
	p-value = 0.0498	ClusterShadeMRI,GLCM	0.031
		JointAverageMRI,GLCM	0.067
		ShortRunLowGrayLevelEmphasisMRI,GLRLM	0.142
		SmallAreaLowGrayLevelEmphasisMRI,GLSZM	0.010
	Signature names and p-	Features	LASSO

Table S9 :

 S9 MRI+PET-based features selected by LASSO and Cox, and composition of the final RadiomicScoreLASSO,COX after 0.9-correlation filtration. This signature is associated with a Log-Rank p-value of 0.005.

	Features selected by LASSO and Cox	Cox p-value	Cox	In
			hazard	RadiomicScoreCOX
			ratio	
	SUVmax	0.038+/-0.040 1.324+/-	yes
			0.059	
	MeshVolumeMRI,MORPH	0.045+/-0.056 1.345+/-	yes
			0.082	
	LeastAxisLengthMRI,MORPH	0.007+/-0.012 1.62+/-	no
			0.126	
	WeightedHetIndex	0.026+/-0.025 1.283+/-	no
			0.041	

Table S10 :

 S10 Composition of MRI+PET-based signatures identified by LASSO as predictors of recurrence risk.

	RadiomicScoreLASSO,6	SUVmax	0.056
	p-value = 0.048	LongRunHighGrayLevelEmphasisMRI,GLRLM	0.003
	Signature names and	Features	LASSO
	p-values		weights
	RadiomicScoreLASSO,1	TotalEnergyPET,FIRSTORDER	0.053
	p-value = 0.019	SizeZoneNonUniformityNormalizedPET,GLSZM	0.005
		MeshVolumeMRI,MORPH	0.057
		LongRunHighGrayLevelEmphasisMRI,GLRLM	0.054
		RunVarianceMRI,GLRLM	0.016
	RadiomicScoreLASSO,2	TotalEnergyPET,FIRSTORDER DependenceVarianceMRI,GLDM	0.053
	p-value = 0.031	CorrelationMRI,GLCM	0.016
		LongRunHighGrayLevelEmphasisMRI,GLRLM	0.126
			0.012
	RadiomicScoreLASSO,3	TotalEnergyPET,FIRSTORDER	0.077
	p-value = 0.035	SizeZoneNonUniformityNormalizedPET,GLSZM	0.021
		FlatnessMRI,MORPH	0.0004
		SmallDependenceEmphasisMRI,GLDM RunVarianceMRI,GLRLM	0.060
			0.050
	RadiomicScoreLASSO,4	SumEntropyPET,GLCM	-0.025
	p-value = 0.036	ShortRunEmphasisPET,GLRLM	-0.036
		VarianceMRI,FIRSTORDER	0.030
		CorrelationMRI,GLCM SmallDependenceEmphasisMRI,GLDM	0.218
		LongRunHighGrayLevelEmphasisMRI,GLRLM	0.063
			0.006
	RadiomicScoreLASSO,5	EntropyMRI,FIRSTORDER	0.034
	p-value = 0.037	Imc1MRI,GLCM LongRunHighGrayLevelEmphasisMRI,GLRLM	-0.014
		LongRunEmphasisMRI,GLRLM	0.038
		RunVarianceMRI,GLRLM	-0.072
			0.069

Table S11 :

 S11 PET-based features having an absolute Spearman correlation above 0.5 with a DEG for recurrence risk (Significance threshold: 0.05).

	Feature names	Genes	Correlation	p-values
	EnergyPET,FIRSTORDER	OR11H7	-0.5	0.0001
	EntropyPET,FIRSTORDER	DNAJB13	0.52	0.0001
	RootMeanSquaredPET,FIRSTORDER	OR11H7	-0.5	0.0001
	SkewnessPET,FIRSTORDER	NSG1	0.5	0.0001
	TotalEnergyPET,FIRSTORDER	OR11H7	-0.5	0.0001
	UniformityPET,FIRSTORDER	DNAJB13	-0.54	0.0
	UniformityPET,FIRSTORDER	GUSBP13	-0.54	0.0
	UniformityPET,FIRSTORDER	PPP1R27	-0.52	0.0001
	JointEntropyPET,GLCM	DNAJB13	0.53	0.0001
	SumEntropyPET,GLCM	DNAJB13	0.52	0.0001
	GrayLevelNonUniformityPET,GLDM	DNAJB13	-0.54	0.0
	GrayLevelNonUniformityPET,GLDM	GUSBP13	-0.54	0.0
	GrayLevelNonUniformityPET,GLDM	PPP1R27	-0.52	0.0001
	SUVmean	FBXL8	0.56	0.0

Table S12 :

 S12 Radiomic features and signatures involved in relevant cross-signatures when combined with the transcriptomic signature. On the same dataset, the transcriptomic signature is associated with a Log-Rank p-value of 0.0029.

	LargeDependenceHighGrayLevelEmphasisPET,GLDM	0.8355	3.82*10 -4
	MCCPET,GLCM	0.0391	7.74*10 -4
	LargeDependenceLowGrayLevelEmphasisMRI,GLDM	0.4529	7.86*10 -4
	HighGrayLevelRunEmphasisPET,GLRLM	0.4213	9.03*10 -4
	LongRunEmphasisPET,GLRLM	0.2056	9.28*10 -4
	LargeDependenceEmphasisPET,GLDM	0.2960	9.28*10 -4
	CorrelationPET,GLCM	0.0740	9.28*10 -4
	Pet+MRI-based RadiomicScoreLASSO,2	0.6452	0.0010
	LongRunHighGrayLevelEmphasisPET,GLRLM	0.89362	0.0013
	SizeZoneNonUniformityNormalizedMRI,GLSZM	0.1867	0.0027
	SmallDependenceLowGrayLevelEmphasisPET,GLDM	0.6711	0.0028
	SmallAreaHighGrayLevelEmphasisMRI,GLSZM	0.6706	0.0029
	Feature and Signature names	Individual p-	Cross-signatures p-
		values	values
	ZoneEntropyPET,GLSZM	0.0181	9.34*10 -5
	DependenceEntropyPET,GLSZM	0.1172	1.95*10 -4
	HighGrayLevelZoneEmphasisPET,GLSZM	0.5477	2.44*10 -4
	Imc2PET,GLCM	0.0459	2.59*10 -4
	10PercentileMRI,FIRSTORDER	0.1834	3.82*10 -4

Table S13 :

 S13 Radiomic features and signatures involved in relevant cross-signatures when combined with the proteomic signature. On the same dataset, the proteomic signature is associated with a Log-Rank p-value of 0.5956.

	Feature and Signature names	Individual p-	Cross-signatures p-
		values	values
	RootMeanSquaredMRI,FIRSTORDER	0.7248	0.0253
	LargeDependenceHighGrayLevelEmphasisPET,GLDM	0.0462	0.0261
	Pet+MRI-based RadiomicScoreLASSO,5	0.1644	0.0423

Table S14 :

 S14 MRI-based features and signatures involved in relevant cross-signatures when combined with the Transcriptomic signature. On the same dataset, the transcriptomic signature alone is associated with a Log-Rank p-value of 0.0004.

	Feature and Signature names	Individual p-	Cross-signatures p-
		values	values
	BusynessMRI,NGTDM	0.1962	0.0001
	LargeAreaLowGrayLevelEmphasisMRI,GLSZM	0.5882	0.0001
	CoarsenessMRI,NGTDM	0.8853	0.0002
	MRI-based RadiomicScoreLASSO,6	0.2572	0.0002
	ShortRunLowGrayLevelEmphasisMRI,GLRLM	0.1521	0.0002

Table 1 :

 1 Summary of secreted factors involved in intercellular crosstalk leading to GBM

	invasion			
	Cell types involved	Secreted	Supposed mechanisms	References
		factors		
	GAM → GBM	CCL8	Binding of tumoral CCR1 and 5 to	[35*]
			activate ERK1/2	
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immunostaining, sections were fixed in PFA 4% 10 min and saturated 1 hour in 3% BSA in PBS. Incubations with primary and secondary antibodies were as for FFPE sections.

To label dead tumor cells, terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) fluorescence staining was performed on frozen sections and FFPE sections following manufacturer's protocol (abcam, ab66110).

Images were acquired with a slide scanner (Hamamatsu NANOZOOMER 2.0HT) at 20X or upright microscope (DM4 B, Leica) equipped with a camera (DFC7000T, Leica) and 3-6 fields per tumor of 5-8 mice per condition were analyzed in Fiji.

Statistical analysis

All data represented herein were performed in biological replicates of three or more and are presented as the mean ± SEM, unless otherwise indicated and analyzed by R studio version 4.2 (31). For every figure, statistical tests were justified as appropriate and the following pvalues were displayed: *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001, ns > 0.05. In details, Kruskal-Wallis test followed by Dunn's test was used to asses statistically significant differences between groups. Immuno-staining and Western-blot figures show a representative experiment, but all quantitative graphs show the results from the pooling of a minimum of 5 biologically-independent samples. Statistical analyses of all sample groups were performed and corrected by Welch and Bonferroni post-tests if appropriate.
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Supplemental figure 1 : A 

Abstract

Isocitrate dehydrogenase mutant gliomas remain lethal brain cancers which impair quality of life in young adults. These tumors are molecularly and cellularly heterogeneous and have a wide range of survival prognoses. As a consequence, the identification of patients at risk of early recurrence remains an unmet need. Here, we analyzed imaging, transcriptomic and proteomic profiling using machine learning to 1) describe biological characterization of different subtypes of IDH-mutant gliomas categorized by PET and histology, 2) reinforce the integration of PET metrics in the classification of IDH-mutant gliomas, 3) improve the patient stratification with novel signatures of patient risk of recurrence based gene expression, protein level and/or imaging. Our integrative analysis provides a better stratification of IDHmutant gliomas patients and their risk of recurrence, which will lead to a better monitoring of the clinical evolution of the disease.

Keywords:

IDH-mutant glioma, machine learning, prediction, radiomics, recurrence, signature patients; Genes/proteins in green were more expressed in PET pos patients. 

Prediction of PET status and histomolecular diagnosis by imaging features

We then investigated whether MRI FLAIR features could be used to predict the PET status.

Principal Component Analysis and UMAP did not show any cluster related to the PET status (Supp. Fig. 2A). The univariate analysis identified 4 MRI FLAIR texture features: BusynessMR, NGTDM measures the magnitude of change from a voxel to its neighbors (p-value = 0.015); GrayLevelNonUniformityMR, GLRLM measures the dissimilarity in gray-level intensity values (p-value=0.036); StrengthMR, NGTDM quantifies the definition of regions within the image (p-value = 0.037), SmallAreaLowGrayLevelEmphasisMR, GLSZM measures the proportion of small zones with low gray-level values in the image (p-value = 0.047). Their Pearson correlations are shown in Supp. Fig. 2B. Taken together with their boxplots (Supp. Fig. 2C), this suggests that PET neg gliomas show MRI with a spatial distribution of intensity values that is smoother and has greater similarity. The structures in the image are better defined, and there is a larger proportion of small zones in the image with lower gray-level intensities. In contrast, MRIs of PET pos gliomas show less uniformity in intensity-levels, a smaller zones definition and a smaller proportion of small zones with low gray-level values. We also found significant correlations between some imaging features and DEG (see Supp Table S4).

Next, to determine the list of clinically relevant genes, we investigated the predictive value of the 15 genes involved in recurrence. Individually, the genes were mostly not predictive (Supp. Fig. 6A). We then investigated whether these genes formed a signature able to predict the risk of recurrence. The general strategy is described in Fig. 5.A. The genes KRT19, RUNX3 and SCRT2 formed the minimal gene signature predicting IDH-mutant glioma patient recurrence (Fig. 5B). Our signature based on KRT19, RUNX3 and SCRT2 expressions was more predictive than 1000 random signatures of equivalent size (Fig. 5C).

Finally, as depicted by their survival curves, only SCRT2 was classified as favorable prognosis factor, while KRT19 and RUNX3 were associated with a tendency of favorable and unfavorable prognosis respectively (Fig. 5D). Similarly, a protein-based signature was established (Fig. 5E). The minimal signature predicting IDH-mutant glioma patient recurrence, composed of Ataxin-10 (ATXN10), Eukaryotic translation initiation factor 4H (EIF4H), Integrin alpha-V (ITGAV) and Neural cell adhesion molecule 1 (NCAM1) (Fig. 5F, Supp. Fig. 6B), was more predictive than random signatures (Fig. 5G). Finally, as depicted by its survival curve, only ITGAV was associated with good prognosis alone (Fig. 5H). After adjusting for clinical variables (age, sex and grade), the signatures displayed significant hazard ratios and remained independent prognostic factors in the prediction of recurrence risk. Altogether, the gene-based signature and the protein-based signature efficiently stratify IDH-mutant glioma patients by their risk of recurrence. 

Multimodal signatures of recurrence risk integrating genetic, proteomic and imaging characteristics

Having established independent signatures based on transcriptomic, proteomic and imaging data, we next crossed these data to obtain improved signatures (Fig. 7A). First, we found no correlations between radiomic features and molecular signatures.

In the dataset of patients having both PET and MR images, the gene signature was associated with a Log-Rank p-value of 0.0029, while the protein and biological signatures were no longer significant (p-value = 0.5956 and 0.2741 respectively). We found 17 crosssignatures associated with the gene (see Table S12), 3 associated with the proteomics (see

Material and methods

Clinical data and patients

This study was conducted on 154 patients with diagnosed glioma who underwent surgery at the Neurosurgical Oncology Unit of the University of Milan from May 2012 to June 2018.

Patient inclusion criteria were: 1) glioma confirmed by histo-molecular analysis and 2) mutation in IDH gene, 3) radiological diagnosis of presumptive lower-grade glioma and 4) availability of full MR and MET-PET images(Fig. 1A). Exclusion criteria included patients without full clinical, imaging or pathologic information at admission and at follow-up. The samples were further restricted for the analysis based on the quality of RNA and proteins extracted. This study received the approval of the local ethic committee. All patients gave written informed consent to the surgical procedure, covered by Ethical-Committee IRB-1299 Humanitas Research Hospital.

Prior to surgery, all patients underwent 11 C-METH PET in accordance with standard procedures as previously described 12 . Briefly, 11 C-METH PET scans were quantified based on maximum standardized uptake value (SUVmax) and SUVratio. SUVratio was obtained by the ratio between the count rate in a region of interest drawn on the area of the tumor with the highest SUVmax and the count rate in a corresponding region on the contra-lateral side.

Patient tumors were then classified by clinicians into PET negative (PET neg ) tumor in absence of 11 C-METH uptake and PET positive (PET pos ) tumor in case of uptake (Fig. 1B).

Generally, in the PET pos tumors, one or more areas of 11 C-METH uptake was visible within the MRI fluid attenuated inversion recovery (FLAIR) abnormalities.

Magnetic Resonance Imaging

Pre-operative MRI protocol (Siemens-Magnetom-Verio-3.0) included: axial-threedimensional-(3D)-FLAIR; post-Gadolinium-three-dimensional-T1-weighted; Diffusionweighted imaging Apparent diffusion coefficient (DWI-ADC). Patients underwent both within 48h and 2-month post-operative-MRI (volumetric-FLAIR and post-GdT1-weighted) to estimate EOR 48 . Immediate post-operative-DWI was performed to evaluate ischemia.

Survival analysis in biological analysis

Recurrence-free survival was estimated through Kaplan-Meier estimator using both survminer 49 and survival 50 packages in R. Log-Rank test was used to compare the survival between high-risk and low-risk groups (p-value<0.05 was considered statistically significant).

RNA-sequencing

Patient samples were collected during tumor resection and snap-frozen. RNAs were isolated using RNeasy kit (Qiagen, 74134) and DNA was removed using RNase-free DNase (Qiagen, 79254) following manufacturer's protocol. Overall, 500 ng was used as input material for a Low Input Ribozero treatment using the Epicentre Ribo-Zero Gold Kit-Low Input (HMR). The integrity of the RNA was checked by capillary electrophoresis using the Bioanalyzer 2100 (Agilent Technologies), and quantity was estimated using a Nanodrop 1000 (Thermo Scientific). The depleted RNA was used as input material for the ScriptSeq v2 RNA-Seq Library Preparation protocol. Following 14 cycles of amplification, the libraries were purified using Ampure XP beads. Each library was quantified using Qubit, and the size distribution assessed using the Bioanalyzer. These final libraries were pooled in equimolar amounts using the Qubit and Bioanalyzer data. The quantity and quality of each pool was assessed by the Bioanalyzer and subsequently by qPCR using the Illumina Library Quantification Kit from Kapa on a Roche Light Cycler LC480II according to manufacturer's instructions. The template DNA was denatured according to the protocol described in the Illumina User guide and loaded at 12.5 pM or 13 pM concentration. The sequencing was carried out on two lanes of an Illumina HiSeq2500 at 2 × 125 bp paired-end sequencing with v4 chemistry. 
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Abstract Purpose of review

This review provides an overview of recent updates in understanding the mechanisms by which glioblastoma cells interact with their cellular and molecular partners within the microenvironment.

Recent findings

We have now a better knowledge of the cell populations involved in GBM invasion. Recent works discovered the role of new molecular players in GBM invasion, and, most importantly, better models are emerging which better recapitulate GBM invasion.

Summary

Invasive properties of glioblastoma make complete surgical resection impossible and highly invasive cells are responsible for tumor recurrence. In this review, we focus on recent updates describing how invasive cells progress in the surrounding tissue along brain structures. We also provide an overview of the current knowledge on key cells and molecular players within the microenvironment that contribute to the invasive process. Intravital microscopy -Intravital microscopy is a tool to study biological processes in live animals. In brain tumor research, it consists in implanting GBM cells in mouse brains and observing tumor growth through a permanent cranial window. Stanchi and colleagues described the method in three steps: preparation of GBM cells, surgery for tumor implantation and set up of the cranial window, and multi-photon microscopy [25] (Fig. 2D).

This technique allowed Alieva and colleagues to record GBM cell dynamics inside mouse brain microenvironment, thus defining reliable invasive patterns comparable to those observed in patients [11]. Unlike the other techniques described, intravital microscopy relies have been gained by using new omics approaches, notably single cell or single nuclei sequencing as well as new in vitro methods and models such as microfluidic techniques and organoids coupled with imaging and molecular analyses. A combination of the different approaches will more accurately allow unraveling the molecular mechanisms involved, and provide more reliable therapeutic targets. Together, advancing more rapidly towards a better understanding of this cancer will improve disease management.

organoids and single-cell transcriptomics. Neuro Oncol. Epub ahead of print 16 April 2020. DOI: 10.1093/neuonc/noaa091.

GBM cells form a network inside the brain orgnaois model. Single-cell RNA-sequencing of GBM organoids demonstrates the transcriptional heterogeneity of the tumorsas seen in patients and in vivo. This study compares four GBM models by transcritomic analysis and confirms that the GLICO model recapitulates patient tumor features such as heterogeineity of subpopulations of GBM cells exhibiting diverse markers. It also shows the importance of cells of the microenvironment to maintain cellular states. In this study, the authors generated GBM organoids that recapitulate patients phenotypic and genotypic heterogeneity. This characteristic along with rapidity of establishement make the model compatible with biobanking and clinically relevant timing.

Here, the authors used a combined strategy including brain slice culture, secretome profiling and RNA sequencing to identify the particular transcriptional program of tumor-associated astrocytes leading to immunosuppressive microenvironment in GBM. The authors developed a 3D model to mimic brain microenvironment including parameters of stiffness, composition, and presence of stromal cells.
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Discussion

Gliomas represent one of the greatest challenges in oncology due to the burden of patient care, the systematic recurrence of the disease, and the poor survival. Both IDH-wildtype GBM and IDH-mutant gliomas require further investigations to propose improvement in available and future therapies.

One major issue that both GBM and IDH-mutant gliomas share is tumor invasion. Indeed, glioma cells display diffuse invasion into the surrounding brain at the margins of the tumor and deeper into the parenchyma 109 . They employ existing brain structures such as axons and blood vessels to reach these areas. In terms of pattern of invasion, glioma cells display either collective invasion or single-cell migration 22 . It appears then that invasive properties are more complex than thought and might rely on distinct mechanisms. However, it is not only an intrinsic feature of cancer cells themselves. Tumor invasion is also influenced by the microenvironment and knowledge on that specific aspect of GBM is currently expanding. In the review 'Mechanisms of invasion in glioblastoma' 110 , we discussed the current knowledge on invasion mechanisms in GBM and the contribution of the TME to this GBM hallmark. The TME is an ensemble of cell and matrix components restrained in areas under specific physicochemical pressure. As such, it is important to integrate as many as these parameters into models to study tumor invasion. This was another aspect discussed in the review. 
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Abstract

Although gliomas are considered rare in terms of incidence, they represent one of the most significant challenges in the oncology field due to the burden of the high level of care required by patients and poor survival. Both IDH-wildtype glioblastomas and IDH-mutant gliomas require further investigations to propose improvement in current therapies.

Glioblastomas are the most common and the most aggressive forms of brain tumors with a poor prognosis due to their chemotherapy resistance and invasive nature. In addition to their intrinsic cellular and molecular processes, glioblastomas are also ruled by the microenvironment. For example, tumor invasion of glioblastoma cells, which is one of the most difficult properties to target, is influenced by the composition of the extracellular matrix, the surrounding cells and the physicochemical properties of the brain. The microenvironment may also play a role in modulating protein functions in glioblastoma. This is the case with the phosphatase PRL2, whose genetic modulation showed little effect in vitro but has a significant impact on tumor progression in a glioblastoma xenograft model. In vivo, PRL2 promotes glioblastoma growth in response to microenvironmental pressure and worsens mouse outcomes. Targeting PRLs and particularly PRL2 opens an avenue for therapeutic strategy in glioblastoma treatment.

Conversely, IDH-mutant gliomas have a more favorable survival prognosis, although tumor recurrence is invariably observed after treatment. Patient follow-up would greatly benefit from improved diagnosis and stratification of patients by homogeneous group in terms of prognosis. Indeed, for the moment, IDH-mutant gliomas show a wide disparity in the occurrence of recurrence and therefore in patient survival. To improve patient stratification, artificial intelligence methods to combine transcriptomics, proteomics, imaging, and clinical data were used. We employed machine learning approaches to determine gene, protein, and imaging signatures, allowing better stratification of patients with IDH-mutant gliomas. These signatures are not only a proof of concept of the benefit of integrating multi-modal features in the diagnosis of gliomas but also a source of new potential therapeutic targets for these gliomas. This study on a cohort of 150 patients will need to be validated on larger cohorts and in other centers.

To summarize, a combination of basic research and translational research approaches has enabled to deepen our knowledge on the progression of glioblastomas and IDH-mutant gliomas.
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