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préparée à l’École Polytechnique
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Abstract

Climate change has stimulated the energy sector, which is the largest emitter of global
greenhouse gases (∼40% in 2019), to transition to low-carbon energies. Europe, being one of the
highest historical emitters of greenhouse gases, sits at the forefront of the energy transition. With
a growing share of variable renewable power systems in the electricity mix on the one hand, and
changing frequency and intensity of extreme events on the other, the weather-sensitive European
energy sector is continuously on the lookout for accurate forecasts of essential climate variables
on a continuum of timescales. The weather forecasts on short- to medium-range (i.e., from a few
minutes ahead to at most two weeks) are reliable and essentially deterministic, and hence their
operational use within the energy sector is well established. However, on timescales beyond
two weeks and up to two months, i.e. in the sub-seasonal range, the predictions are necessarily
probabilistic, and their reliability is far from that offered by short- and medium-range forecasts.
Consequently, the operational use of sub-seasonal predictions within the energy sector is still in
its infancy.

Having accurate information about the expected renewable energy production and electricity
consumption on sub-seasonal timescales can help the energy sector in determining required
reserve levels, scheduling maintenance, assessing and allocating risks attributed to extreme events,
and estimating grid transmission capacity. In this regard, the main objective of this thesis is to
provide more reliable information on sub-seasonal timescales, relative to climatology, to aid the
energy sector in operational decision-making. We focus this research on 100-m wind speed and
2-m temperature over Europe.

As an essential first step, we rigorously assess the skill of sub-seasonal dynamical predictions
of these two variables to quantify their predictability limits as they are delivered in a given
forecasting system (the extended-range predictions of the European Centre for Medium-Range
Weather Forecasts). We show that the weekly mean predictions of gridded temperature are
more reliable than climatology for up to six weeks, and those of wind speed for up to three
weeks. As a second step, we develop a statistical downscaling technique to reconstruct sub-
seasonal predictions of wind speed and temperature using predictions of large-scale atmospheric
circulation. We summarize the large-scale atmospheric state in a few indices by employing a
dimension reduction methodology conditioned on wind speed and temperature over Europe. In
other words, we use historical, observationally derived data to capture the relationship between
the large-scale atmospheric circulation and our variables of interest (100 m wind speed and 2
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m temperature). We then employ this relationship on sub-seasonal predictions of large-scale
circulation, which are more reliable than surface variables, to deduce information about our
variables of interest. This method allows us to produce, from a given ensemble of sub-seasonal
predictions of large-scale circulation, a new ensemble of sub-seasonal predictions of our variables
of interest. We demonstrate that the information thus extracted has value, as the hybrid ensemble
combining both the dynamical and the statistical predictions of our variables of interest are more
reliable than the dynamical predictions alone. As a final study, we investigate episodes of wind
drought over Europe, because of their importance to the energy sector. A case study of the July
2018 episode of weak winds and the associated predictions, with and without our statistical
downscaling methodology, illustrates the persistent difficulties of sub-seasonal predictions in
predicting extreme events, in this case, due to the long-lasting challenge of forecasting blocking
events.

Keywords: sub-seasonal predictions, wind speed, temperature, forecast verification, statistical
predictions, Europe
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Résumé

Le changement climatique a incité le secteur de l’énergie, qui est le principal émetteur
de gaz à effet de serre au niveau mondial (∼40% en 2019), à se transitionner vers des énergies
à faible teneur en carbone. Dans le cadre de la transition énergétique, la part des énergies
renouvelables dans le mix énergétique est de plus en plus importante, rendant le système
électrique plus sensible aux conditions météorologiques. En conséquence, le secteur de l’énergie
est continuellement à la recherche de prévisions les plus précises possibles des variables
climatiques sur un ensemble d’échelles de temps. Les prévisions météorologiques déterministes
à court et moyen terme (de quelques minutes à deux semaines maximum) sont fiables, et leur
utilisation opérationnelle dans le secteur de l’énergie est donc bien établie. Cependant, sur des
échelles de temps infra-saisonnières, c’est à dire au-delà de deux semaines et jusqu’à deux mois,
les prévisions sont nécessairement probabilistes, et leur fiabilité reste limitée. Par conséquent,
l’utilisation opérationnelle des prévisions infra-saisonnières dans le secteur de l’énergie en est
encore à ses débuts.

Disposer d’informations précises sur la production d’énergie renouvelable et la consommation
d’électricité attendues sur des échelles de temps infra-saisonnières peut apporter une vraie
valeur ajoutée au secteur de l’énergie. Les applications les plus importantes des prévisions
infra-saisonnières sont la détermination des niveaux de réserve requis, la programmation de
la maintenance, l’évaluation et la répartition des risques attribués aux événements extrêmes et
l’estimation de la capacité de transmission du réseau. De ce fait, l’objectif principal de cette
thèse est d’évaluer en premier temps et d’améliorer ensuite les prévisions infra saisonnières par
rapport à la climatologie, afin d’apporter des informations utiles et fiables au secteur de l’énergie.
Nous nous concentrons dans ce travail sur la vitesse du vent à 100 m et la température à 2 m sur
l’Europe.

Dans un premier temps, nous avons évalué les prévisions dynamiques infra-saisonnières en
termes de vent et de température afin de quantifier leurs performances telles qu’elles sont fournies
par le modèle de prévision. Nous avons montré que les prévisions de la température moyenne
hebdomadaire sont plus fiables que la climatologie jusqu’à six semaines, et que celles de la
vitesse du vent le sont jusqu’à trois semaines. Dans un deuxième temps, nous avons développé
une technique de descente d’échelle statistique pour reconstruire des prévisions infra-saisonnières
de la vitesse du vent et de la température en utilisant les prévisions de variables climatiques de
grande échelle. Pour ce faire, nous avons utilisé des données historiques observées pour estimer la
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relation entre la circulation atmosphérique à grande échelle et nos variables d’intérêt. Nous avons
appliqué par la suite cette relation sur les prévisions infra-saisonnières de la circulation à grande
échelle, qui sont plus fiables que celles des variables de surface, pour en déduire des prévisions
de nos variables d’intérêt. Cette méthode nous a permis de produire, à partir des prévisions
infra-saisonnières de la circulation à grande échelle, un nouvel ensemble de prévisions statistiques
de température et de vent. Nous avons démontré que l’ensemble dit « hybride » combinant à la
fois les nouvelles prévisions statistiques et les prévisions dynamiques de nos variables d’intérêt
est plus fiable que les prévisions dynamiques seules. Pour la dernière partie de la thèse, nous
avons développé une étude de cas sur les épisodes de faible vent en Europe, en raison de leur
importance pour le secteur de l’énergie. Nous nous sommes intéressés à l’épisode de vents faibles
de juillet 2018 et les prévisions associées. Pour cet événement, ni les prévisions dynamiques ni
les prévisions statistiques n’ont réussi à le prévoir et ce en raison de la difficulté que les modèles
de prévisions météorologiques ont à prévoir correctement les situations de blocage très souvent à
l’origine de ces faibles vents.

Mots clés : prévisions infra-saisonnières, vitesse du vent, température, vérification des prévisions,
prévisions statistiques, Europe
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1 Introduction
Modern Technology owes ecology an apology.
— Alan M. Eddison, "Worse Verse" (1969)

1.1 Climate change and the en-
ergy sector

Anthropogenic climate change is one of the
greatest threats modern humans have faced
(Edenhofer et al., 2014). In 2019, more than
40% of the world’s greenhouse gas emissions
were attributed to heating and electricity produc-
tion (IEA, 2021a). Nevertheless, to minimize
the severe consequences of climate change, a
collective global effort is in place to limit the
global temperature rise to within 1.5° C with
respect to pre-industrial levels. Europe, being
one of the largest electricity consumers and
greenhouse gas emitters in the world, sits at
the forefront of economic decarbonization and
energy transition (IEA, 2021b). The European
Union, through the European Green Deal, has
set a target to achieve climate neutrality (or
net zero emissions) by 2050 (IEA, 2020). To
achieve this goal, the European Commission
has set an interim target to meet 40% of its final
energy demand through renewable energy by
2030, which is almost double the share it met
in 2019 (IEA, 2021b).

The increasing share of weather-sensitive, vari-
able renewable power systems in the energy

mix raises concerns about the security of sup-
ply. With wind power becoming the largest
renewable source of electricity in the European
Union (IEA, 2020), several recent episodes of
prolonged periods of low winds have increased
concerns about the security of supply further
(NewScientist, 2018; TheGuardian, 2018). One
such case is the wind drought of July 2018, when
certain regions in Europe experienced one of the
lowest average wind speeds, relative to climatol-
ogy. Figure 1.1 shows the average and anomaly
of 100-m wind speed for the week between 16-
22 July 2018 over and around the North Sea.
This region has the highest density of installed
wind power in Europe at the time of writing this
manuscript (WindEurope, 2022) (Figure 1.2).
As can be observed from Figure 1.1.a, the wind
speed values are generally lower than the cut-in
speedI of a typical wind turbine. Figure 1.1.b
shows widespread, pronounced negative anoma-
lies (down to -50%), such that the average over
the domain shown is -26%. Since the power
produced from a wind turbine is proportional to
the cube of wind speed, a 26% decrease in wind
speed leads to about 60% reduction in wind
power, putting the energy sector which is reliant
on wind power at serious risk of undersupply.
Since fossil fuel-based power systems are called
upon to make up for the demand unfulfilled by

IThe wind speed at which a wind turbine starts to
generate power. The cut-in speed for a typical wind
turbine is between 3 and 4 m s−1 (Manwell et al., 2010;
Burton et al., 2011).

1



Chapter 1 Introduction

(a) (b)

Figure 1.1: (a) Average 100-m wind speed over the North Sea for the week between 16-22 July
2018. (b) 100-m wind speed anomaly for the same week as a percentage of the climatological
mean. The climatology corresponds to the mean wind speed in July between 1979 and 2021
leaving out 2018. The wind speed values are derived from ERA5 reanalysis.

Figure 1.2: Location of the major onshore and
offshore wind farms in Europe as of August
2022. The map is sourced from Wind Europe
(https://windeurope.org/).

renewable systems, the energy sector requires
accurate anticipation of the expected renewable
production to sustain and support the future
growth of renewables. Thus, the most impor-
tant question that arises from such extreme cases
is: How well in advance can the energy industry
foresee such events to plan alternative solutions?

1.2 Numerical Weather Predic-
tion for the energy sector

Meteorological predictions are indispensable
for the smooth operation of the energy sector.
As demand and supply are to be balanced at
every instant, the energy sector with a high share
of renewable systems requires accurate predic-
tions of essential climate variables (ECVs) such
as temperature, wind speed, solar radiation, and
precipitation on a range of time scales. Nu-
merical Weather Prediction (NWP), a method
to predict the weather at a future period in
time knowing the initial conditions and the laws
that govern the evolution of weather (Bauer
et al., 2015), is at the heart of renewable energy
production and electricity demand forecasting.
Although today’s NWP models are more so-
phisticated in terms of representation of various
components of the earth system and their cor-
responding interactions, and more advanced in
terms of accurately predicting the weather than
they used to be two decades ago, we still do
not completely understand the complex interac-
tions between various components of the Earth
system. In addition, the initial conditions for

2



Introduction Chapter 1

the NWP models, which are assimilated from
several ground-, upper air-, or space-based ob-
servations, are only approximations. Hence,
in practice, numerical weather predictions are
carried out from imperfect initial conditions, us-
ing imperfect numerical formulations (Lorenz,
1963, 1982; Buizza et al., 2015). The convolu-
tion of amplified errors from initial conditions
due to atmospheric instabilities with errors from
the use of imperfect numerical models is what
sets the forecasting skill horizonI (e.g., Robert-
son and Vitart, 2018).

The complexity of an NWP model depends on
the forecasting lead time. The predictions are
categorized based on the time horizon for which
they are made. They are:

1. Nowcasting refers to the detailed descrip-
tion of current weather, and forecasting up
to several hours ahead (e.g., WMO, 2017).
Nowcasting is an initial condition problem
that requires high-quality local observa-
tions and an NWP model to forecast the
evolution of weather;

2. Short-range forecasting refers to forecast-
ing weather from a few hours ahead and
up to a few days (e.g., Doswell, 1986);

3. Medium-range forecasting involves pre-
dicting weather from a few days ahead
and up to two weeks (e.g., Wagner, 1989).
Similar to nowcasting, short-range and
medium-range forecasting are also initial
condition problems where the predictabil-
ity is driven by atmospheric initial condi-
tions. A majority of the NWP models used
to produce nowcasts, short- and medium-
range forecasts generally include only a

IThe lead time after which the forecast error becomes
larger than that of a baseline (e.g., climatology or persis-
tence).

description of land and atmospheric pro-
cesses (e.g., Bougeault et al., 2010);

4. Seasonal predictions involve predicting
anomalies relative to climate normal on
timescales ranging from a month ahead
to several seasons. The predictability on
seasonal timescales mainly stems from the
variability of sea surface temperatures, es-
pecially the state of El-Nino Southern Os-
cillation (e.g., Kushnir et al., 2006; Doblas-
Reyes et al., 2013). In addition, sea ice
extent (e.g., Guemas et al., 2016) and land
conditions (e.g., Prodhomme et al., 2016)
also contribute to the predictability on sea-
sonal timescales. As a result, the NWP
models which produce seasonal predic-
tions generally use atmosphere/land/ocean
coupled models, with some of them using
an interactive sea-ice model in addition
(Robertson and Vitart, 2018).

5. Decadal predictions involve predictions on
multi-annual to decadal timescales. The
predictability on these timescales arises
mainly from multi-annual climatic vari-
ability such as the Atlantic Multidecadal
Oscillation (e.g., Dijkstra et al., 2006) and
the Pacific Decadal Oscillation (e.g., Man-
tua and Hare, 2002). Furthermore, the
predictability also originates from external
forcings such as anthropogenic greenhouse
gas emissions, aerosols, and volcanic emis-
sions (e.g., Van Oldenborgh et al., 2012).

From the description of the categories of pre-
dictions, it is evident that there is a gap between
medium-range forecasts (i.e., up to two weeks)
and seasonal predictions (i.e., month ahead to
several seasons). This timescale, i.e. from two
weeks ahead to two months ahead, is referred
to as the sub-seasonal timescale, and the pre-
dictability on this timescale comes from the

3



Chapter 1 Introduction

accurate description of both the atmospheric ini-
tial conditions and boundary forcings (Hoskins,
2012; Robertson and Vitart, 2018).

Sub-seasonal predictions for the energy
sector

Predictability on sub-seasonal timescales em-
anates predominantly from the Madden-Julian
Oscillation (e.g., Jones et al., 2004b,a; Zheng
et al., 2018), land conditions (e.g., Koster et al.,
2011; van den Hurk et al., 2012; Prodhomme
et al., 2016; Seo et al., 2019), ocean condi-
tions (e.g., Woolnough et al., 2007; Fu et al.,
2007; Subramanian et al., 2019), snow cover
(e.g., Sobolowski et al., 2010; Lin and Wu,
2011; Orsolini et al., 2013), and stratosphere-
troposphere interactions (e.g., Baldwin et al.,
2003; Domeisen et al., 2020; Schwartz and
Garfinkel, 2020). Because of the chaos inher-
ent in the atmosphere, predictability of fine-
scale spatio-temporal features is poor on sub-
seasonal timescales (e.g., Lorenz, 1965; Jifan,
1989; Zhang et al., 2019). However, the pre-
dictability of large-scale, low-frequency ocean,
land, and cryospheric features lasts well beyond
two weeks (Vitart et al., 2012; Buizza and Leut-
becher, 2015; Toth and Buizza, 2019). Hence,
predictions on subseasonal timescales are gen-
erally averaged over a large enough spatiotem-
poral scale (e.g., weekly mean temperature over
Belgium) to extract relevant and predictable
components of the signal (Lorenz, 1982; Zhu
et al., 2014; Buizza and Leutbecher, 2015).

Sub-seasonal timescale is instrumental for the
energy industry in determining required reserve
levels, scheduling maintenance, assessing risks
from extreme events and planning mitigation
strategies, estimating grid transmission capaci-
ties, and hedging against risks in the derivative
markets. Currently, the energy industry mainly

uses information based on climatology to make
decisions on sub-seasonal timescales. With in-
creasing renewable power in the electricity mix,
on the one hand, (IEA, 2020), and changing
frequency and intensity of extreme events on
the other (Seneviratne et al., 2012), there is a
growing demand for sub-seasonal predictions
of renewable production and electricity con-
sumption from the energy sector for operational
decision-making.

The energy sector relies on standard meteorolog-
ical variables to estimate renewable energy pro-
duction and electricity consumption. The key
variable used to estimate electricity consump-
tion is the surface temperature. Even though
there exist several peer-reviewed research on
the verification of sub-seasonal predictions of 2
m temperature, they are either limited to some
ground-based stations across Europe (e.g., Mon-
hart et al., 2018), or a specific geographic do-
main (e.g., Vigaud et al., 2019), or country-wide
averages (e.g., Dorrington et al., 2020). The fun-
damental variable used to estimate wind energy
production is wind speed. Until recently, the
energy sector was accustomed to wind speed at
10 m extrapolated vertically to the turbine hub
height to estimate wind energy production (Man-
well et al., 2010; Burton et al., 2011). Since the
vertical extrapolation of wind speed from 10 m
to the turbine hub height could lead to signif-
icant errors (e.g. Jourdier, 2015), the weather
centers around the world started archiving wind
speed at 100 m, based on the demand of the
energy sector, as it is close to the hub height
of a typical wind turbine (WindEurope, 2022).
Although several research works have looked at
sub-seasonal predictions of 10 m wind speed in
the past (e.g., Lynch et al., 2014; Büeler et al.,
2020; Lledó and Doblas-Reyes, 2020), the au-
thor, based on his research, found no published
peer-reviewed research on the verification of

4
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sub-seasonal predictions of 100 m wind speed
at the time of commencement of this Ph.D. (i.e.,
January 2020). Hence, to fill the gap in re-
search, this Ph.D. thesis will focus on gridded
sub-seasonal predictions of 2-m temperature
and 100-m wind speed over Europe.

1.3 Addressing uncertainties in
sub-seasonal predictions

Every prediction made using NWP models suf-
fers from two kinds of errors: initial condition
errors and model errors. As the earth-based ob-
servations are spatially discontinuous, weather
centers around the world assimilate data they
receive from several ground-, upper air-, or
space-based observations to a previously run
short-range forecast to create a 3-dimensional
spatially-homogeneous estimate of the atmo-
spheric state. This estimate of the atmospheric
state is known as analysis. All the NWP models
are initialized from the analysis. Since the at-
mosphere is chaotic, even small errors in initial
conditions could lead to significant errors in
forecasts.

The most important model related errors in nu-
merical weather prediction are due to missing
physical processes and parametrizations (e.g.,
Palmer et al., 2009; Julia and Tim, 2011; Palmer,
2012; Leutbecher et al., 2016; Robertson and
Vitart, 2018; McTaggart-Cowan et al., 2022).
An additional source of model related errors
is from the use of limited spatial resolution in
NWP models. The complex convolution of
errors from initial conditions with model er-
rors leads to uncertainties in predictions, which
amplify with increasing lead time.

The initial condition andmodel uncertainties are
taken into account in the NWP models by pro-
ducing an ensemble of numerical integrations

instead of just one best estimate of the future
state (Buizza, 2019). Then, the future state is
a range of possibilities with varying probabili-
ties. This shift from determinism to probabilism
has been one of the greatest breakthroughs in
numerical weather prediction (Palmer, 2012).
The uncertainties in initial conditions in NWP
models are addressed by perturbing the best
estimated initial state using ensemble and/or
variational methods (refer to Bannister (2017)
for a review of all the available methods). The
model uncertainty is taken into account through
the use of multi-model, perturbed parameter,
perturbed tendency, or stochastic backscatter ap-
proaches (e.g., Buizza, 2019;McTaggart-Cowan
et al., 2022). Comparison of different methods
that take into account uncertainties in initial con-
ditions and model formulations is important for
advancing model development. Nevertheless,
this is out of the scope of this thesis.

1.4 What constitutes a "good"
sub-seasonal prediction?

How can the energy sector know whether the
information obtained from sub-seasonal pre-
dictions is more reliable than what is already
available at their fingertips (i.e., climatology)?
As the information on sub-seasonal timescales is
available in the form of probabilities, the energy
sector, which is conventionally used to a deter-
ministic way of treating forecasts on short- to
medium-range timescales, finds it challenging
to extract pertinent information from an ensem-
ble prediction. Irrespective of the forecasting
time horizon, predictions are evaluated by as-
sessing different quality attributes (Jolliffe and
Stephenson, 2003; Coelho et al., 2019; Wilks,
2019). The most important prediction quality
attributes are:

5



Chapter 1 Introduction

• Accuracy: a measure of the average dis-
tance between forecasts and observations;

• Association: a measure of the strength
of the relationship between forecasts and
observations;

• Reliability: a measure of calibration of the
issued forecast probabilities;

• Resolution: a measure of changes in the
frequency of occurrence of an event as a
function of variation in the issued forecast
probabilities;

• Discrimination: a measure of the ability of
the forecasting system to produce forecasts
that discriminate between events and non-
events. It is closely related to resolution;

• Sharpness: a measure of the ability of
forecasts to produce concentrated predic-
tive distributions which are distinct from
climatological probabilities.

1.4.1 Metrics to assess the quality of
sub-seasonal predictions

Several scores have been proposed in the lit-
erature to measure the quality of sub-seasonal
ensemble predictions taking into account differ-
ent forecast attributes (Jolliffe and Stephenson,
2003; Coelho et al., 2019; Wilks, 2019). The
most widely used scores in forecast verifica-
tion are the Anomaly Correlation Coefficient
(Namias, 1952; Wilks, 2019), the Brier Score
(Brier, 1950; Murphy, 1973), the Ranked Prob-
ability Score (Murphy, 1970), and the Continu-
ous Ranked Probability Score (Matheson and
Winkler, 1976; Unger, 1985; Hersbach, 2000).
The anomaly Correlation Coefficient measures
the strength of the relationship (i.e., associa-
tion) between observed and forecast ensemble
mean anomalies by ignoring systematic biases.

While Brier Score measures the accuracy of
forecasts for a dichotomous event, the Ranked
Probability Score measures the accuracy for a
multi-event situation. The Continuous Ranked
Probability Score is an extension of the Ranked
Probability Score where it measures the accu-
racy of a forecast for an infinite-event situation
of infinitesimal width (Wilks, 2019). All three
accuracy metrics are proper scores which can be
further decomposed into components represent-
ing reliability and resolution (Murphy, 1970,
1973; Hersbach, 2000).

Apart from pure mathematical scores, a lot of
progress has been made toward the development
of graphical products to help visualize various
forecast attributes. Notable among these are Re-
liability diagram (Sanders, 1963; Wilks, 2019)
and Relative Operating Characteristic diagram
(Mason, 1982; Harvey et al., 1992). A reliabil-
ity diagram is used to visualize the reliability,
resolution, and sharpness attributes of forecasts
for dichotomous events (i.e., yes/no events). A
Relative Operating Characteristic diagram is
used to visualize the discrimination attribute
of the forecasting system. In this thesis, we
will use several metrics and graphical tools to
understand the behavior of different attributes
of sub-seasonal predictions to obtain a compre-
hensive overview of prediction quality.

1.4.2 The need for bias correction

Sub-seasonal predictions, even upon incorporat-
ing methods to account for initial condition and
model-related uncertainties in the NWP models
which produce them, suffer from random and
systematic errors. While random errors are un-
predictable, systematic errors can be anticipated
to a certain extent (Siegert and Stephenson,
2019).
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Systematic errors are generally in the form
of consistent over- or under-estimation of val-
ues, over- or under-dispersion of the distribu-
tion, or changes in the properties of other mo-
ments of the distribution relative to observations
(Siegert and Stephenson, 2019). Systematic er-
rors in sub-seasonal predictions can be corrected
through statistical post-processing techniques
such as mean and variance adjustment, quan-
tile mapping, or calibration (e.g., Jolliffe and
Stephenson, 2003; Gneiting et al., 2007; Siegert
and Stephenson, 2019; Manzanas et al., 2019).
Each method has its advantages and disadvan-
tages, and the choice of the method depends on
the end-user needs.

All the methods, however, require sufficiently
long, historical, paired prediction-observation
data to learn and correct the errors. The weather
centers around the world which produce oper-
ational sub-seasonal predictions also produce
a suite of historical sub-seasonal predictions,
generated using the same operational model for
a period in the past, known as retrospective fore-
casts (or re-forecasts) (Buizza, 2019). These
re-forecasts serve two purposes: one, to estimate
the climatology of the operational sub-seasonal
prediction model; two, to correct systematic
errors of operational predictions. Furthermore,
re-forecasts can be used to study the long-term
performance of the model. It is imperative to
correct systematic errors of sub-seasonal pre-
dictions before employing them for research or
other practical applications.

1.4.3 Improving sub-seasonal predic-
tions of ECVs

Despite applying bias-correction techniques to
correct for systematic errors prevalent in sub-
seasonal predictions, the predictions of surface
fields (i.e., within the planetary boundary layer)

are hardly better than a baseline climatology
(e.g. Lynch et al., 2014; Monhart et al., 2018;
Vigaud et al., 2019). This, in addition to chaos
inherent in the atmosphere, is due to the com-
plex convolution of initial condition and model
errors with increasing lead time, which result in
the misrepresentation of physical relationships
between large-scale, low-frequency fields (e.g.,
upper-level geopotential height, sea surface tem-
perature, etc.) and surface fields (Palmer et al.,
2009; Leutbecher et al., 2016; Robertson and
Vitart, 2018; Lledó and Doblas-Reyes, 2020).
As the surface fields are more sensitive to model
parametrizations compared to large-scale fields,
the skill horizon of large-scale fields is longer
than that of surface fields (Buizza and Leut-
becher, 2015; Toth and Buizza, 2019). Given
the physical relationships between large-scale
and surface fields, and the longer skill horizon
of large-scale fields compared to surface fields,
we can apply statistical downscaling methods
on dynamical predictions of large-scale fields
to derive statistical sub-seasonal predictions
of surface fields (Alonzo et al., 2017; Alonzo,
2018; Manzanas et al., 2018; Grams et al., 2017;
Goutham et al., 2021; Ramon et al., 2021).
The work of Alonzo et al. (2017) on statistical
downscaling of seasonal predictions, carried
out previously at Laboratoire de Météorologie
Dynamique, has shown a promising potential.
However, their implementation did not allow
for a comparison with the dynamical seasonal
predictions (i.e., off-the-shelf predictions) of
surface fields. Hence, the work plan of this
thesis takes a different approach as described in
the section 1.6.

1.5 Objectives of the thesis
This thesis aims to provide reliable information
about the expected temperature and wind speed

7



Chapter 1 Introduction

on sub-seasonal timescales over Europe for the
energy sector. In this regard, the thesis is guided
by the following key questions:

1. Are the available (i.e., off-the-shelf) Eu-
ropean sub-seasonal predictions of 100-m
wind speed and 2-m temperature more re-
liable than baseline climatology?

2. How to improve the European sub-seasonal
predictions of the same two variables?

3. How well in advance can we anticipate
extreme events with significant impact on
the energy sector?

1.6 Organization of the thesis
manuscript

This thesis is presented as a compilation of three
articles. Chapter 2 tackles the first objective
where we carry out a comprehensive quality as-
sessment of off-the-shelf, gridded sub-seasonal
predictions of 100-m wind speed and 2-m tem-
perature over Europe using several forecast qual-
ity metrics. This work has been published in
the Monthly Weather Review in June 2022.

In chapter 3, we develop a novel statistical
downscaling methodology to improve the sub-
seasonal predictions of 100-m wind speed and
2-m temperature over Europe. This work has
been accepted for publication in the Monthly
Weather Review in October 2022.

Chapter 4 focuses on extreme events of signif-
icant importance to the energy sector such as
wind droughts to determine the time horizon
before which we could anticipate such events.
The manuscript of this chapter has been sub-
mitted to Monthly Weather Review in October
2022, and is currently under review. The main

conclusions and future perspectives of the thesis
are presented in chapter 5.
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2 Quantitative assessment of sub-
seasonal predictions

What gets measured gets improved.
— Peter Drucker

Objective
Themain objective of this chapter is to assess the
quality of European sub-seasonal predictions
of 100-m wind speed and 2-m temperature and
understand their predictability limits.

Data and Methods
We use sub-seasonal forecasts and hindcasts of
100-m wind speed and 2-m temperature over
Europe from the European Centre for Medium-
Range Weather Forecasts (ECMWF). We use
ERA5 reanalysis as observations. We first cor-
rect the systematic bias of both forecasts and
hindcasts using the Mean and Variance Adjust-
ment method. We then carry out a compre-
hensive assessment of sub-seasonal prediction
quality of both forecasts and hindcasts using
Continuous Ranked Probability Score (CRPS),
Anomaly Correlation Coefficient (ACC), and
Reliability Diagrams to learn about accuracy, as-
sociation, reliability, resolution, and sharpness
attributes.

Key conclusions
• Temperature is generally more predictable
than wind speed;

• The prediction skill is generally higher in
winter compared to other seasons for both
variables;

• Forecasts, due to their larger ensemble size,
are more skillful than hindcasts;

• The skill horizon of weekly mean values,
based on the Continuous Ranked Proba-
bility Skill Score, is about six weeks for
temperature predictions, and about three
weeks for wind speed predictions.

Publication
This chapter has been published in Monthly
Weather Review in June 2022 (©American Me-
teorological Society. Used with permission).
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ABSTRACT: Subseasonal forecasts of 100-m wind speed and surface temperature, if skillful, can be beneficial to the
energy sector as they can be used to plan asset availability and maintenance, assess risks of extreme events, and optimally
trade power on the markets. In this study, we evaluate the skill of the European Centre for Medium-Range Weather Fore-
casts’ subseasonal predictions of 100-m wind speed and 2-m temperature. To the authors’ knowledge, this assessment is the
first for the 100-m wind speed, which is an essential variable of practical importance to the energy sector. The assessment is
carried out on both forecasts and reforecasts over European domain gridpoint wise and also by considering several spa-
tially averaged domains, using several metrics to assess different attributes of forecast quality. We propose a novel way of
synthesizing the continuous ranked probability skill score. The results show that the skill of the forecasts and reforecasts
depends on the choice of the climate variable, the period of the year, and the geographical domain. Indeed, the predictions
of temperature are better than those of wind speed, with enhanced skill found for both variables in the winter relative to
other seasons. The results also indicate significant differences between the skill of forecasts and reforecasts, arising mainly
due to the differing ensemble sizes. Overall, depending on the choice of the geographical domain and the forecast attribute,
the results show skillful predictions beyond 2 weeks, and in certain cases, up to 6 weeks for both variables, thereby encour-
aging their implementation in operational decision-making.

KEYWORDS: Europe; Subseasonal variability; Forecast verification/skill; Temperature

1. Introduction

Subseasonal to seasonal (S2S) predictions (Vitart et al.
2017; Robertson and Vitart 2018), which refer to predictions
beyond 2 weeks and up to a season, are influenced by both
atmospheric initial conditions and boundary forcings
(Hoskins 2012). Issuing skillful predictions on S2S time scale
used to be considered difficult as it was thought that this time
scale was both too long for the memory in the initial condi-
tions to persist and too short for the changes in the boundary
conditions to have a significant impact (Molteni et al. 1986;
Robertson and Vitart 2018). However, recent studies (Hoskins
2012; Robertson and Vitart 2018) have shown otherwise by
identifying the key sources of predictability on S2S time scale,
which are the Madden–Julian oscillation (MJO) (e.g., Jones
et al. 2004a,b), soil moisture (e.g., Koster et al. 2011; van den
Hurk et al. 2012), snow cover (e.g., Sobolowski et al. 2010; Lin
and Wu 2011), stratosphere–troposphere interaction (e.g.,
Baldwin et al. 2003), and ocean conditions (e.g., Woolnough
et al. 2007; Fu et al. 2007). Although the predictability of small-
scale phenomena and intraday variations on S2S time scales

remains poor (Robertson and Vitart 2018), predictability may
persist for large scale phenomena. It is thus critical to aggre-
gate/average values on relevant spatiotemporal scales in order
to extract the predictable component of the signal by filtering
out motions that behave like noise (Zhu et al. 2014).

In practice, both weather and seasonal predictions are car-
ried out from imperfect initial conditions using imperfect
numerical models (Robertson and Vitart 2018). S2S predic-
tions fall beyond the theoretical limit of deterministic predict-
ability (i.e., 10 days) (Lorenz 1965; Jifan 1989; Zhang et al.
2019), and hence these forecasts are produced using ensem-
bles of numerical integrations: a future state of the atmo-
sphere is then a range of possibilities. This transition from
deterministic to probabilistic approach has been a major
breakthrough in extending the skill horizon of S2S forecasts
(Palmer 2012).

A continuously growing share of renewable power systems
in the energy mix (International Energy Agency 2020), and
changing frequency and intensity of extreme events in the
form of storms, heat waves, and cold spells (Seneviratne et al.
2012) make the energy sector one of the most prominent
potential end-users of S2S forecasts (White et al. 2017). The
energy industry can greatly benefit from skillful S2S forecasts
of geophysical variables as they can be used to plan asset
availability and maintenance, assess and allocate risks of
extreme events on production and consumption several weeks
in advance in the framework of the “Ready-Set-Go!” approach
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(White et al. 2017), improve grid efficiency, and optimally trade
power on the markets. In the recent years, several studies have
been conducted to assess the skill of S2S forecasts: Lynch et al.
(2014) evaluated the skill of the European Centre for Medium-
Range Weather Forecasts’ (ECMWF) extended-range fore-
casts of 10-m wind speed between 2008 and 2013 for the winter
months at the weekly time scale over Europe, and they found
statistically significant skill beyond 14 days. Lledó and
Doblas-Reyes (2020) assessed the impacts of strong MJO
events on 10-m wind speed over Europe and developed a
hybrid statistical–dynamical model to better predict 10-m wind
speed conditioned on the MJO status. Büeler et al. (2020) stud-
ied windows of opportunity to have enhanced skill for
ECMWF’s S2S predictions of country and month-ahead-
averaged quantities of 10-m wind speed, 2-m temperature, and
precipitation following anomalous stratospheric polar vortex
(SPV) events, and they found enhanced/reduced skill over cer-
tain regions in Europe following strong SPV events. Monhart
et al. (2018) assessed the skill of the ECMWF’s subseasonal
forecasts of surface temperature and precipitation against sev-
eral ground based-station data across Europe and found higher
skill for temperature forecasts as compared with precipitation
forecasts. They also demonstrated that the skill of temperature
across Europe shows a seasonal pattern with higher skill
observed in winter relative to other seasons, and a spatial pat-
tern with improved skill observed in northern Europe. Vigaud
et al. (2019) evaluated the skill of the surface temperature pre-
dictions from several forecasting systems over North America,
and found skillful predictions beyond 2 weeks. Diro and Lin
(2020) assessed the skill of the S2S forecasts of snow water
equivalent and surface temperature from several models within
the subseasonal experiment project. They also built a link
between the two variables concluding that the weak snow–
temperature coupling strength in the models is one of the con-
tributing factors for lower skill of temperature forecasts.
Dorrington et al. (2020) quantified the skill of S2S forecasts of
surface temperature averaged across France from an end-user
perspective, and emphasized basing the assessment of forecasts
keeping potential end-user applications in mind.

For the energy sector, the 100-m wind speed forecasts are
crucial to estimate the energy extracted from the wind (Jourdier
2015). Nevertheless, as per our knowledge, there is no pub-
lished peer-reviewed work on the assessment of S2S 100-m
wind speed forecast skill. Because the 100-m wind speed is both
closer to the turbine hub height and better represented in the
ECMWF model relative to the 10-m wind speed (Alonzo et al.
2018), and since the vertical extrapolation of wind speed from
10 m to the turbine hub height could lead to significant errors
(Jourdier 2015), it is important to assess the skill of S2S fore-
casts of 100-m wind speed and understand their predictability lim-
its. A vast majority of the published peer-reviewed research to
date on the assessment of S2S surface temperature forecast skill
are either limited to some ground based stations (e.g., Monhart
et al. 2018) or a specific geographic domain (e.g., Vigaud et al.
2019) or restricted by a single metric (e.g., Diro and Lin 2020). In
addition, the fast pace of change and improvement of S2S
prediction systems is such that it is necessary to regularly
revisit and update the assessment of their skill (Vitart 2014).

Although we agree with Dorrington et al. (2020) on the need
and value of assessing forecasts based on end-user applica-
tions, it is also useful and complementary to assess the skill of
the S2S forecasts of purely meteorological variables: this pro-
vides a baseline measure of the general skill of the forecasts,
indicative independently of specific applications. This serves
as a reference for further attempts to improve forecasts.

This study examines the skill of the S2S forecasts and refor-
ecasts [note that for brevity “(re)forecasts” will be used here-
inafter to indicate “forecasts and reforecasts” when referring
to both at once] of 100-m wind speed and 2-m temperature at
the weekly time scale in the recent versions of the ECMWF’s
S2S prediction system to understand the differences of skill
that may arise due to differing ensemble sizes between the
forecasts and the reforecasts. The assessment is carried out
systematically across the European domain gridpoint wise
and also by considering several spatially averaged country-
sized domains to identify geographical regions with enhanced/
reduced skill, using several metrics (Coelho et al. 2018) for
providing a comprehensive overview of the forecast quality.
The seasonal cycle of skill is also investigated in the study.
The article is organized as follows: section 2 outlines the data
used, section 3 describes in detail the method employed to
evaluate the skill of (re)forecasts, section 4 explains the
results obtained, and section 5 discusses the key findings and
provides concluding remarks.

2. Data

a. Forecasts and hindcasts

The operational S2S predictions (Vitart et al. 2017) from
the ECMWF model (Vitart et al. 2019) are produced by
extending the medium range forecasts (i.e., up to 2 weeks) to
46 days 2 times per week (at 0000 UTC on Mondays and
Thursdays). These are ensemble predictions resulting from
coupled ocean–atmosphere integrations. The ensemble is
composed of 51 members (50 perturbed 1 control) obtained
using singular vectors (Leutbecher 2005). Model uncertainty
is represented through the stochastically perturbed parame-
terization tendencies scheme (Buizza et al. 1999; Palmer et al.
2009). These predictions are originally produced at a horizon-
tal resolution of Tco639L91 (∼18 km) up to a lead time of
15 days, and Tco319L91 (∼36 km) thereafter (Robertson and
Vitart 2018).

As a result of the imperfect representation of the physical
processes and the inherent atmospheric unpredictability
(Zhang et al. 2019; Žagar and Szunyogh 2020) in the predic-
tion models, these models tend to drift significantly from the
reality after approximately 1 week (or at most 10 days) of
integrations. This drift needs to be corrected to obtain the
maximum value out of forecasts. To do this, ECMWF produ-
ces a set of 20 hindcasts (or reforecasts) with 11 (10 perturbed1

control) ensemble members each. These hindcasts are initial-
ized using ERA5 reanalysis, and are issued for each of the
past 20 years starting from the same date as the operational
forecast. To illustrate, if the operational ensemble forecast
with 51 members is initiated on 14 February 2019, the hindcast
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set consists of 11 ensemble members starting on 14 February
1999, 14 February 2000, … , 14 February 2018 (Fig. 1). This
hindcast set with 220 integrations (20 years 3 11 members)
allows us to evaluate the model climatology, and is used to cal-
ibrate the operational version.

For the purpose of this study, only the perturbed members
(refer data statement to learn about the missing control) of
forecasts and their corresponding hindcasts of temperature at
2 m, zonal and meridional components of 100-m wind are
retrieved between December 2015 and November 2019 at a
temporal resolution of 6 h (i.e., instantaneous values at 0000,
0600, 1200, and 1800 UTC) and a spatial resolution of 0.98
over Europe (348–748N, 138W–408E). The forecasts and hind-
casts data are retrieved from the ECMWF’s Meteorological
Archival and Retrieval System (MARS). The 100-m wind
speed is computed as the square root of the sum of the
squares of the zonal and meridional components. The forecast
model underwent several cycles of improvement during the
same period, and hence, the dataset consists of forecasts and
hindcasts from the versions CY41R1 (1 December 2015–7
March 2016), CY41R2 (8 March 2016–21 November 2016),
CY43R1 (22 November 2016–10 July 2017), CY43R3 (11 July
2017–5 June 2018), CY45R1 (6 June 2018–10 June 2019), and
CY46R1 (11 June 2019–30 November 2019). Only two of
them included important changes: CY41R2 benefited from an
increased atmospheric resolution, whereas CY43R1 included
an increase in the oceanic resolution and the addition of
dynamic sea ice. Nevertheless, the differences in statistics
between the different versions of the model are marginal (see
appendix A).

b. Reference

Ideally, it is preferred to verify the quality of forecasts
against observations. In the absence of a serially complete,
spatially coherent observed dataset, it is a common practice to
verify the forecasts against reanalysis (Kalnay 2003). ECMWF
produces its own fifth-generation high-resolution (1 h; 31 km)
reanalysis named ERA5 using 4D-Var data assimilation and
the CY41R2 cycle of the Integrated Forecast System (Hers-
bach et al. 2020). In this work, ERA5 data of temperature at
2 m and zonal and meridional components of wind at 100 m
are retrieved from January 1979 to 2020 over Europe
(348–748N, 138W–408E) at a spatial resolution of 0.258 and a
temporal resolution of 6 h (i.e., instantaneous values at 0000,
0600, 1200, and 1800 UTC) from the Copernicus Climate
Change Services’ Climate Data Store (Raoult et al. 2017).
The data are then regridded to 0.98 using bilinear interpola-
tion (Cionni et al. 2018, 14–21) to match the resolution of
the forecasts/hindcasts. The choice of the method is moti-
vated by the fact that ECMWF uses bilinear interpolation as
the default method for the interpolation of continuous vari-
ables of ERA5 data (https://tinyurl.com/v3d47mw8). The
100-m wind speed is computed from the wind components as
previously described. Despite the biases, ERA5 reanalysis rep-
resents the surface wind speed (e.g., Ramon et al. 2019; Jourdier
2020; Brune et al. 2021) and surface temperature (e.g., Simmons
et al. 2021) well, with small errors that are acceptable for

verification purposes. Consequently, the ERA5 reanalysis data
of 2-m temperature and 100-m wind speed act as reference/
truth in this study against which the forecasts and hindcasts are
verified.

3. Method

The forecasts data under consideration span and represent
only 4 years of climatic variability, i.e., from December 2015
to November 2019. Although the forecasts, initialized using
operational analysis with ensemble size 5 times as large as the
hindcasts, are expected to better represent uncertainty in ini-
tial conditions and predictions, conclusions obtained from the
verification of forecasts alone may be misleading because the
climate during this period of time may have been more (or
less) favorable for skillful predictions (Jung et al. 2011). In
contrast, hindcasts, spanning 23 years from December 1995
to November 2018, represent climate variability that is
6 times as long as that of the forecasts, and can be used to
perform a robust model skill assessment. However, refore-
casts are likely less reliable because the ensemble size is
smaller by a factor of 5 relative to forecasts and because of
the way they are initialized. Hence, both forecasts and refor-
ecasts are assessed in this study so as to understand the skill
differences.

In the absence of reliable forecasts, for end-users or for dif-
ferent applications, a common practice is to use observed cli-
matology, a long term average estimated from available
historical observed data for the area and time period of the
year concerned, as the expected weather. Therefore, it is often
encouraged to not just assess the quality of forecasts, but also
their relative value with respect to observed climatology. In
this work, the observed climatology for each of the evaluated
forecasts in any given time of the year is constructed from
ERA5 reanalysis by taking the values of each of the past
35 years for the same time period of the year under consider-
ation. To illustrate, for the forecasts issued on 14 February 2019,
the observed climatology consists of weekly averaged ERA5
data starting on 14 February 1984, 14 February 1985, … ,
14 February 2018. This also implies that the forecasts issued in
2015 and 2018 have different observed climatology (i.e., rolling
climatology) in order to take into account the climatic trend.
However, because of the limited availability of ERA5 (i.e., from
January 1979 onward at the time of commencement of this
study), each of the reforecasts within a given hindcast set has the

FIG. 1. Illustration of the hindcast set for the operational forecast
issued on 14 Feb 2019. The ensemble size is indicated below the
arrow.
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same observed climatology as the corresponding forecast (e.g.,
all the hindcasts demonstrated in Fig. 1 have the same observed
climatology as that of the forecast of 14 February 2019). The
choice of observed climatology for the reforecasts may have a
consequence on the skill of the reforecasts in a sense that the cli-
matology may be favored over reforecasts while computing the
skill score in the case of an extreme event because the informa-
tion about the event is already present in the observed climatol-
ogy. Nevertheless, the likelihood of witnessing such events is
very low. Anyhow, this problem could be averted by using the
back-extended ERA5 (i.e., from 1950 onward) and constructing
climatology for the reforecasts in the same way as that of the
forecasts.

a. Bias adjustment of (re)forecasts

Calibration is a joint property of forecasts and observations.
A probabilistic forecast is perfectly calibrated, if, when aver-
aged over several forecasts, the forecast probabilities match
the observed frequencies. In addition to the chaotic nature of
the atmosphere, the lack of reliable and calibrated forecasts
may arise due to either one or a combination of initialization
errors, model errors, model parameterizations, truncation
errors, and missing physical processes. The lack of forecast
calibration could be observed in the form of forecast mean
bias, dispersion error, lack of association with reality, lack of
reliability, or imperfect representations of trend and variabil-
ity, to quote a few. If the forecast is well calibrated, the aver-
age error in the ensemble mean should be indicative of the
ensemble spread, and the variance of the forecast model cli-
matology should be equivalent to that of the climatological
truth (Wilks 2019). There exist several methods with varying
levels of sophistication to calibrate forecasts (Manzanas et al.
2019). Manzanas et al. (2019) have shown that simple bias
adjustment methods such as mean and variance adjustment
(MVA) can perform as well as the sophisticated calibration
techniques such as nonhomogeneous Gaussian regression in
correcting model biases. Their study also highlighted that the
additional value gained by using sophisticated calibration
techniques over simple bias adjustment methods are only
marginal and are limited to certain geographical regions (e.g.,
tropics) and/or seasons. In this study, the bias adjustment of
the (re)forecasts is carried out using the MVA method as
described in Leung et al. (1999), Torralba et al. (2017), and
Manzanas et al. (2019). The bias adjusted ensemble member j
of any forecast at any given lead time is given by

x*j � xj 2 xe
( )sref

se
1 oref, (1)

where xj is the member whose bias needs to be adjusted; xe
and se are the mean and the standard deviation, respec-
tively, of all the members of all the hindcasts corresponding
to the forecast; and oref and sref are the mean and the stan-
dard deviation, respectively, of the truth (or observations)
corresponding to the hindcasts. For the bias adjustment of
any given reforecast within a hindcast set, the remaining
19 years of hindcasts are used to adjust the mean and the

spread through a leave-one-out approach to prevent
overfitting.

b. Measures of predictive skill

The predictive skill of a point forecast could be evaluated
by measuring the correspondence between the forecast and
the observation through simple scores such as the mean abso-
lute error, the mean squared error, or the root mean squared
error (Jolliffe and Stephenson 2003). To assess the skill of the
probabilistic forecasts, several scores have been proposed in
the literature, each one assessing a specific attribute of fore-
cast quality (Wilks 2019; Coelho et al. 2019). One of the
important and most widely used scores to evaluate the skill of
the full predictive distribution of the probabilistic forecasts of
continuous predictands is the continuous ranked probability
score (CRPS) (Matheson and Winkler 1976; Unger 1985;
Hersbach 2000). The CRPS is the area under the curve that is
formed by computing the squared difference between the
cumulative distribution functions (CDFs) of the forecast and
the observation. When the observation is a single number, as
is often the case, its CDF is a Heaviside step function centered
on that value. This implies that if the forecast is deterministic,
CRPS simplifies to the absolute error between the forecast
and the observation:

CRPS �
�‘

2‘
F y( ) 2 Fe y( )[ ]2 dy, (2)

where F(y) is the empirical CDF of forecasts/(re)forecasts
computed by taking weekly mean of each of the ensemble
members and

Fe y( ) �
0, if y , e

1, if y$ e

{
(3)

is the CDF of observation for the observed weekly mean e,
denoted as a step function that jumps from 0 to 1 at the point
where the forecast is equal to the observation.

The CRPS is negatively oriented (i.e., smallest values indi-
cate more accurate forecasts), and it rewards those forecasts
whose probabilities are concentrated around the observation.
As the lead time increases, the ability to predict finer-scale
features in time and space quickly diminishes. Consequently,
in this work, the CRPS is computed for weekly averaged
quantities by considering (re)forecasts and observations
depending on the lead time and start date [Eq. (2)]. Spatial
averaging, wherever applicable, is performed by taking the
mean of cosine-latitude weighted gridpoint values in order to
obtain a single scalar time series over the domain, for which
all the metrics are computed (Dorrington et al. 2020). The
CRPS has the same units as the physical quantity being
assessed. The CRPS can also be calculated for the observed
climatology: the CDF is then obtained from the weekly means
of the targeted time period of the year in each of the years
covered.

The relative value of the forecasts/(re)forecasts with respect
to climatology is measured using the continuous ranked prob-
ability skill score (CRPSS) as described in Eq. (4). It can be
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observed from Eq. (4) that skillful (re)forecasts should have a
CRPSS . 0. The CRPSS is bounded above by 1, but negative
values are unbounded;

CRPSS � 1 2
CRPS(re)forecasts
CRPSclimatology

: (4)

The standard practice in forecast verification is to compute
the average CRPS of several reforecasts at each of the lead
times considered and compare it with the average CRPS of
climatology to obtain an average CRPSS. The averaging is
done in order to assess the reliability component of forecasts
(Hersbach 2000), which can only be assessed with multiple
forecast instances. However, as we show in section 4a, averag-
ing ratios (i.e., CRPSS) overemphasizes negative instances,
and can therefore be misleading in evaluating forecast skill.
Besides, within the framework of the S2S forecasts, Coelho
et al. (2019) recommended to use novel verification metrics
that are meaningful to the end-users. Keeping in mind the
S2S end-users in the energy sector, we propose “proportion
of skillful (re)forecasts” as a novel way of synthesizing the
CRPSS to measure skillfulness of the (re)forecasts. As the
name suggests, the proportion of skillful (re)forecasts meas-
ures the proportion of (re)forecasts that have CRPS lower
than that of climatology. To compute the proportion of skill-
ful (re)forecasts [Eq. (5)], we first compute CRPSS of each of
the (re)forecasts separately at each of the specified lead times,
and then compute at each of the specified lead times the ratio
of the number of (re)forecasts with CRPSS greater than zero
to the total number of (re)forecasts. Accordingly, skillful
(re)forecasts should have values . 50%. In general, the pro-
portion of skillful (re)forecasts is consistent with the median
of the CRPSS of (re)forecasts. The proportion of skillful
(re)forecasts is flexible in the sense that the threshold of
“CRPSS greater than zero” can be adjusted (i.e., increased),
in particular in situations where it would be useful to have
CRPSS above a given threshold, not just above zero. The
95% confidence intervals for the proportion of skillful (re)for-
ecasts in this study are computed using the standard paramet-
ric approach by assuming a normal distribution for the
underlying data (Machin et al. 2013):

proportion of skillful (re)forecasts

� no: of (re)forecasts with CRPSS . 0
total no: of (re)forecasts 3 100: (5)

Assessing the skill of probabilistic forecasts generally
involves assessing several forecast attributes (Coelho et al.
2019). Another commonly used score is the anomaly correla-
tion coefficient (ACC), which measures the linear association
between the ensemble mean and the observations. ACC is a
deterministic score that is computed as the usual Pearson’s
correlation between forecast ensemble mean and observed
anomaly pairs of several independent forecasts (Namias
1952). The ACC for weekly averaged quantities of n indepen-
dent (re)forecasts at any given place or across any given
domain is given by

ACC � covariance y′,o′( )
sy′so′

, (6)

where y′ is the (re)forecast anomaly computed by removing
the weekly mean climatology from the bias adjusted (re)fore-
cast weekly ensemble mean, o′ is the observed anomaly com-
puted by removing the weekly mean climatology from the
observed weekly mean, and s is the standard deviation. The
95% confidence intervals for the ACC, wherever applicable,
are computed through a nonparametric bootstrap approach
carried out 1000 times. In general, for positioning of the syn-
optic scale features, the skillful forecasts should have ACC .

60%, below which the value in the forecasts becomes only
marginally useful (Robertson and Vitart 2018). Other impor-
tant attributes of forecast quality such as reliability (i.e., a
measure of calibration of the issued forecast probabilities),
resolution (i.e., a measure of how the frequency of occurrence
of the event varies as the issued forecast probability changes),
and sharpness (i.e., a measure of the ability of the forecasts to
produce concentrated predictive distributions that are differ-
ent from the climatological probabilities) are also assessed for
the weekly mean tercile, quartile, and decile forecasts through
the use of reliability diagrams (Sanders 1963; Jolliffe and Ste-
phenson 2003; Wilks 2019), which are discussed alongside the
results in section 4b.

4. Results

The first part of this section presents the general skill
assessment of 2-m temperature and 100-m wind speed refore-
casts averaged across the European domain (Fig. 2). Subse-
quently, the countrywide assessments of reforecast skill are
also carried out. Moreover, the reforecast skill assessment at
the gridpoint scale is investigated to explore geographical var-
iations of skill. In the second part of this section, we compare
the skill of reforecasts with the skill of forecasts to understand
the skill differences considering different ensemble sizes.

FIG. 2. Illustration of the five countrywide domains and the
European domain considered in this study.
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Last, we assess reliability, resolution, and sharpness of the
forecasts through the aid of reliability diagrams.

a. Reforecast skill assessments

1) GENERAL ASSESSMENT OVER EUROPE

Figure 3 compares the temporal evolution of 2-m tempera-
ture and 100-m wind speed reforecast skill for weekly mean
values averaged across the European domain (Fig. 2).
Figures 3a and 3b show that the mean values (i.e., gray
bars) of CRPSS drop below zero after 18 and 10 days,
respectively, for temperature and wind speed. On the other
hand, the median (i.e., colored bars) largely stays above
zero throughout all the leads, although more significantly
for temperature. By definition, the skill score is bounded by
1 above, but its negative values are unbounded such that
the average can be sensitive to rare, strong negative values.
Hence, instead of calculating the average of the CRPSS, we
compute the proportion of skillful (re)forecasts as a measure
of (re)forecast skill. Figure 3c shows the temporal evolution of
the proportion of skillful reforecasts with increasing lead time.

It is conspicuous that the model performs better in predict-
ing 2-m temperature than 100-m wind speed at all lead
times. While temperature reforecasts are skillful at all lead
times, wind speed reforecasts are skillful until approxi-
mately day 24. Figure 3d displaying the time evolution of
ACC for temperature and wind speed confirms that temper-
ature reforecasts are more skillful than wind speed refore-
casts. The ACC for temperature falls below 0.6 around
day 13, and below 0.25 around day 22, whereas the ACC for
wind speed falls below 0.6 around day 8, and below 0.25
around day 17. Seasonal variations of skill are discussed in
the following section.

2) SEASONAL VARIATIONS OF SKILL

Seasonal variations of temperature and wind speed refore-
cast skill averaged across the European domain are shown in
Fig. 4. It can be noticed that the proportion of skillful refore-
casts is larger in the Northern Hemisphere winter [December–
February (DJF)] and summer [June–August (JJA)] than in the
transition seasons for both temperature (Fig. 4a) and wind
speed (Fig. 4b). The ACC for temperature (Fig. 4c) is larger in

(a) (b)

(c) (d)

FIG. 3. Reforecast quality assessment averaged across the European domain (348–748N, 138W–408E), showing the
temporal evolution of CRPSS for (a) 2-m temperature T and (b) 100-m wind speed U), demonstrated as standard
boxplots with colored bars indicating the median, gray bars indicating the mean, the gray box indicating the first and
the third quartiles, whiskers indicating the end points, and outliers hidden. Values above 0 indicate skillfulness.
Lead time is indicated as central day of the week (as an illustration, day 10 corresponds to the week between days 7
and 13). (c) The temporal evolution of the proportion of skillful reforecasts for the same variables. Values above 50%
(black horizontal line) indicate skillfulness. (d) The temporal evolution of ACC for the same variables. Shaded
regions in (c) and (d) correspond to the 95% confidence intervals.
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the summer relative to other seasons after a lead time of
around 17 days. In contrast, the ACC for wind speed is larger
in the winter relative to other seasons between 18 and 31 days
(Fig. 4d). The improved skill in winter and/or summer may
arise from stronger boundary conditions (e.g., sea surface tem-
perature gradients), reinforced coupling (e.g., troposphere–
stratosphere), enhanced memory of the initial conditions (e.g.,
soil moisture) among others (Robertson and Vitart 2018).
However, addressing the reasons for enhanced skill in certain
seasons is beyond the scope of this study. The seasons of winter
and summer, in addition to demonstrating enhanced skill, also
have a significant impact on the energy sector in the form of
increased demand driven by heating and cooling, respectively.
Therefore, only the results corresponding to winter and sum-
mer will be shown in the following sections.

3) COUNTRYWIDE SKILL ASSESSMENT

The assessment of reforecast skill averaged across the
European domain may have limited application. In contrast,
countrywide average skill of wind speed and temperature
reforecasts may be closer to the scale on which end-users may
need forecasts for decision-making (e.g., transmission system
operators). This section investigates variations in skill over

domains typically a thousand kilometers across, e.g., over a
country like the United Kingdom. Table 1 and Fig. 2 present
the domains considered in this study. The choice of the
domains is not just motivated by their geography (inland ver-
sus coastal, location relative to the climatological storm
tracks) offering different sampling conditions, but also by
their considerable share of wind power in the energy mix
(International Energy Agency 2020). Figures 5 and 6 illustrate
the differences in the temporal evolution of the proportion of
skillful reforecasts for a selection of domains. For tempera-
ture (Fig. 5), in both DJF and JJA, predictions over Germany
(e.g., proportion. 60% up to about 27 days in DJF and about
15 days in JJA) are more skillful than predictions over France
(proportion . 60% up to about 20 days in DJF and about

(a) (b)

(c) (d)

FIG. 4. Seasonal variations of reforecast quality assessment averaged across the European domain (348–748N,
138W–408E), showing the temporal evolution of the proportion of skillful reforecasts for (a) 2-m temperature and
(b) 100-m wind speed. Values above 50% (black horizontal line) indicate skillfulness. Also shown are the temporal
evolution of ACC for (c) 2-m temperature and (d) 100-m wind speed. Shaded regions correspond to the 95% confi-
dence intervals.

TABLE 1. Description of the domains.

Domain region Lower-left bound Upper-right bound

France 43.08N, 5.58W 51.08N, 7.38E
Germany 47.38N, 6.48E 54.68N, 14.98E
Southern Scandinavia 57.68N, 4.58E 63.08N, 19.08E
Spain and Portugal 37.08N, 10.08W 43.58N, 3.78E
United Kingdom 49.08N, 10.08W 60.08N, 4.08E
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14 days in JJA). The reforecasts are more skillful in the winter
as compared with the summer across both domains. The ACC
for temperature also shows similar behavior to that of the pro-
portion of skillful reforecasts (not shown). The skill of winter
temperature reforecasts for Spain and Portugal and the
United Kingdom (not shown) domains are similar to that for
France, and the skill across southern Scandinavia (not shown)
is at least as good as, if not slightly better than Germany.
Overall, in DJF, the skill across the most skillful country-sized
domains (e.g., Germany) is almost as good as the skill across
the European domain (Fig. 4a). Whereas in JJA, the skill
across the European domain is better than the skill of the
most skillful country-sized domains.

The wind speed reforecasts (Fig. 6) across the United King-
dom (e.g., proportion . 60% up to about 17 days) are more
skillful than that of France (proportion .60% up to about
11 days) in DJF. However, in JJA, France demonstrates mar-
ginally larger skill than the United Kingdom after about
10 days. The ACC again displays a similar pattern to that of
the proportion of skillful reforecasts (not shown). In winter,

the skill across Germany and Spain and Portugal (not shown)
are comparable to that of France, and the skill across southern
Scandinavia (not shown) is at least as good as, if not marginally
better than the United Kingdom. In DJF the skill across the
United Kingdom is better than the skill across the European
domain (Fig. 4b), whereas in JJA the opposite is true.

4) GRIDPOINT SKILL ASSESSMENT

Although countrywide domains are useful in predicting
national averages of the variables, gridpoint assessment of
skill are more appropriate to explore the geographical varia-
tions of skill. The spatial resolution of the data used in this
study is about 90 km (i.e., 0.98). This resolution is coarse enough
for the S2S prediction models to still hold prediction skill on the
subseasonal time scales (Buizza and Leutbecher 2015), and fine
enough to be useful for a range of applications.

Figure 7 illustrates the maps of temporal evolution of the
proportion of skillful reforecasts and ACC for temperature
across the European domain. The maps for winter (top row of
Fig. 7a) show the presence of a zonal (i.e., east–west) pattern

(a) (b)

FIG. 5. Comparison of the temporal evolution of proportion of skillful 2-m temperature reforecasts between France
and Germany for (a) DJF and (b) JJA. Shaded region correspond to the 95% confidence intervals. Values above
50% (black horizontal line) indicate skillfulness.

(a) (b)

FIG. 6. Comparison of the temporal evolution of proportion of skillful 100-m wind speed reforecasts between
France and the United Kingdom for (a) DJF and (b) JJA. Shaded regions correspond to the 95% confidence inter-
vals. Values above 50% (black horizontal line) indicate skillfulness.
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between second and fourth weeks indicating that temperature
predictions are generally more skillful over central/eastern
Europe than western Europe. In central and eastern Europe,
the reforecasts are skillful even at a lead time of 6 weeks in

winter, encouraging their use in the decision-making value
chain across sectors. The reforecasts are less skillful in sum-
mer in general with proportion of skillful reforecasts converg-
ing toward climatology beyond 3 weeks. The ACC (Fig. 7b)

(a)

(b)

FIG. 7. Maps of (a) proportion of skillful reforecasts and (b) ACC for 2-m temperature over Europe. In (a) and (b), the top row is for
DJF and the bottom row is for JJA. Columns from left to right show lead times centered on days 3, 10, 17, 24, 31, and 38. Values above
50% in (a) indicate skillfulness.
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drops below 60% beyond 2 weeks showing no noticeable dif-
ferences between seasons.

The maps of the proportion of skillful reforecasts and ACC
for wind speed are shown in Fig. 8. Overall, the reforecasts
are more skillful in winter. In addition, there exists a meridio-
nal (i.e., north–south) pattern of skill in winter (top rows in
Figs. 8a,b) between second and fifth weeks indicating that

wind speed predictions are generally more skillful over north-
ern than southern Europe. Across Scandinavia, the propor-
tion of skillful reforecasts still exceeds 50% after 5 weeks.
However, in summer, the proportion of skillful reforecasts for
wind speed drops below 50% over a large part of the domain
beyond 3 weeks. The ACC drops to significantly lower levels
than that of temperature beyond a week in both winter and

(a)

(b)

FIG. 8. As in Fig. 7, but for 100-m wind speed.
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summer. The reasons for enhanced skill witnessed across cer-
tain regions in Figs. 7 and 8 may be related to the differences
in the regional climate (i.e., maritime vs continental), low-
frequency oscillations (Ardilouze et al. 2021), and to the role
of circulation features, in particular the storm tracks. How-
ever, investigating the reasons for the existence of spatial pat-
tern of skill is beyond the scope of this work.

b. Forecast skill assessments

The operational forecasts with 50 ensemble members each
are expected to better represent uncertainty in the initial con-
ditions and model parameterizations as compared with the
reforecasts with only 10 members (Robertson and Vitart
2018). Figure 9 compares the skill between the winter fore-
casts and reforecasts of temperature for weekly means aver-
aged across France (Table 1 and Fig. 2). Overall, the forecasts
are more skillful than the reforecasts. The proportion of skill-
ful forecasts (e.g., values. 60% up to about 25 days) is essen-
tially greater than the proportion of skillful reforecasts
(values . 60% up to about 19 days). However, the confidence
intervals for the forecasts are 2 times as wide as those of
the reforecasts due to a smaller sample size. The ACC of

forecasts (values . 0.5 up to about 16 days, and . 0.25 up to
about 26 days) has a longer skill horizon when compared with
that of the reforecasts (values . 0.5 up to about 13 days, and
. 0.25 up to about 17 days). A similar pattern can also be
observed with respect to other seasons and domains (not
shown). The differences between the skill of the forecasts and
the reforecasts of wind speed in winter are shown in Fig. 10
for the same domain. The behavior is overall comparable
to that of the temperature. The significant differences
between the skill of the forecasts and the reforecasts are
mainly due to the differing ensemble sizes between the two
(see appendix B). Even though the reforecasts (23 yr) repre-
sent a longer climatic variability than the forecasts (4 yr)
and hence a better estimation of the overall skill of the
model, given that they have an ensemble size that is smaller
by a factor of 5 relative to the forecasts, the skill of the
reforecasts should only be considered as a lower bound for
the skill of the operational forecasts.

The CRPS and its respective skill score give one measure
of the agreement between the forecasts and the observations.
However, a thorough appreciation of the quality of forecasts
requires the use of the full joint distribution of forecasts and

FIG. 9. Comparison of the temporal evolution of 2-m temperature forecast and reforecast skills averaged across
France for DJF, showing (a) proportion of skillful reforecasts (blue) and forecasts (orange) and (b) ACC. Values
above 50% (black horizontal line) indicate skillfulness. Shaded regions correspond to the 95% confidence intervals.

FIG. 10. As in Fig. 9, but for 100-m wind speed.
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observations. The reliability diagram (Sanders 1963; Jolliffe
and Stephenson 2003; Wilks 2019) is a graphical tool to com-
prehend the full joint distribution of forecasts and observa-
tions for probabilistic forecasts of a dichotomous predictand
(i.e., predictand with a binary outcome). Perfectly reliable
(i.e., calibrated) forecasts have observed frequencies essen-
tially equal to forecast probabilities. Since the forecasts con-
sidered in this study have a larger ensemble size and hence a
better representation of uncertainty relative to the refore-
casts, the reliability diagrams are produced only for the fore-
casts. Figure 11 demonstrates the reliability diagrams for
upper and lower terciles of weekly mean temperature and
wind speed forecasts for the week centered on day 17 (i.e.,
days 14–20) and day 31 (i.e., days 28–34) for the France
domain described in Table 1. In the figure, the lines connect-
ing the points show no persistent offset from the 1:1 diagonal
line (458) illustrating the absence of unconditional biases. In a
reliability diagram, the smaller the vertical distance between
the points and the diagonal line, and the larger the vertical
distance between the points and the climatological line (dot-
ted horizontal line in the figure), the higher are the forecast
reliability and resolution, respectively. Conversely, the larger

the vertical distance between the points and the diagonal line,
and the smaller the distance between the points and the hori-
zontal climatological line, the lower are the reliability and
resolution, respectively. The dashed line located midway
between the perfect reliability line and the horizontal climato-
logical line represents the no skill line. Accordingly, the points
located in the gray area contribute positively to the skill of
the forecasts. For the third week of temperature forecasts
(Fig. 11a), the upper-tercile forecasts are more reliable than
the lower counterparts. In contrast, the reliability of the
upper- and the lower-tercile wind speed forecasts are virtually
comparable for both weeks (Fig. 11b). The upper tercile
of temperature forecasts for the third week exhibit under-
forecasting biases associated with low probabilities, and
marginal over-forecasting biases associated with high proba-
bilities. Furthermore, the lower tercile of temperature fore-
casts generally show significant over-forecasting associated
with high probabilities, indicating poor resolution and over-
confidence. For temperature in the third week, the maximum
number of forecasts is located in the bins beside the climato-
logical probability (dotted vertical line) bin (i.e., 0.2–0.4), indi-
cating reasonable sharpness of these forecasts. In contrast, for

(a)

Days 14-20

(b)

Days 14-20

Days 28-34

Days 28-34

FIG. 11. Reliability diagrams for upper and lower terciles of weekly mean forecasts for the weeks centered on (left)
day 17 (i.e., days 14–20) and (right) day 31 (i.e., days 28–34) averaged across France for (a) 2-m temperature and
(b) 100-m wind speed. The forecasts are stratified into five bins of equal width. The size of the points is proportional
to the number of forecasts in the respective bins. The vertical bars refer to the 95% confidence intervals computed
through the standard parametric approach. The vertical and horizontal dotted lines indicate the climatological tercile
probabilities (theoretically, the value is 1=3) in the forecasts and observations, respectively. Perfectly reliable forecasts
fall on the dotted diagonal line connecting the points (0, 0) and (1, 1). The points located within the gray area contrib-
ute positively to the skill.
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wind speed for both weeks, the maximum number of forecasts
are concentrated in the climatological bin suggesting that the
forecasts have low sharpness. For the fifth week of tempera-
ture forecasts, both the upper- and the lower-tercile forecasts
are less reliable, and have a poorer resolution and sharpness
as compared with the third week. While for wind speed fore-
casts in the fifth week, the reliability, resolution, and sharp-
ness are comparable to that of the third week. The number of
events falling within the bins are typically concentrated near
low forecast probabilities. Therefore, the confidence intervals
are generally narrower for lower forecast probabilities as
compared with higher forecast probabilities for both upper
and lower terciles. The fact that the upper-tercile temperature
forecasts for the third week being more reliable and having a
higher resolution than the lower-tercile forecasts, and the
comparable reliability and resolution of the upper- and lower-
tercile wind speed forecasts holds true for the other domains
(not shown). The reliability diagrams for the upper and lower
quartiles and deciles of temperature (see appendix C) and
wind speed (not shown) forecasts are less reliable, and have
significantly lower resolution, especially for larger forecast
probabilities, relative to that of the terciles. Overall, the fore-
casts of temperature and wind speed carry valuable informa-
tion in predicting terciles even beyond 2 weeks, encouraging
their implementation in operational decision-making on this
time horizon.

5. Conclusions

In this study, the skill of the subseasonal forecasts and
reforecasts of 2-m temperature and 100-m wind speed was
evaluated against ERA5 reanalysis across the European
domain. The bias adjustment of the (re)forecasts was carried
out using mean and variance adjustment method. To account
for the different aspects of (re)forecast quality (i.e., accuracy,
association, reliability, resolution, and sharpness), several
metrics were applied, providing evidence that

1) the model generally performs better in predicting 2-m
temperature than 100-m wind speed,

2) the skill over Europe displays a seasonal pattern with win-
ter showing more skillful forecasts, which is followed by
summer for temperature and summer/fall for wind speed,

3) the skill also displays a spatial pattern for temperature
having more skill for eastern than for western Europe
and for wind speed having more skill in northern than
southern Europe,

4) the skill of the reforecasts should only be considered as a
lower bound, and the forecasts due to their larger ensem-
ble size represent uncertainty better and hence perform
better, and

5) depending on the geographical domain, climate vari-
able, and forecast attribute of choice, the weekly mean
forecasts can be skillful even up to 6 weeks, encourag-
ing their implementation in the decision-making value
chain.

This study evaluated the skill of the (re)forecasts of a model
originating from a single weather forecasting center (i.e.,

ECMWF). This choice was motivated by the fact that the
skill of the forecasts of temperature (at 2 m and at 850 hPa)
of the ECMWF model compares to or even outperforms
the skill of a multimodel combination (Hagedorn et al.
2012). Nevertheless, investigation of the skill of a multimo-
del ensemble is an important next step. The reference data
(i.e., ERA5 reanalysis) used in this study also originates
from the ECMWF, produced using one of the same models
(CY41R2) that is used to produce the (re)forecasts. How-
ever, verifying (re)forecasts against reanalysis produced
from the same model may contribute to enhancing the skill
of (re)forecasts. Hence, it is important to assess the skill of
the (re)forecasts against observations or other global/regional
reanalysis datasets produced using a different model. To aid in
the further development of the prediction model, it is essential
to understand the potential sources of predictability and the
origin of model biases. The authors did not assess the skill of
the (re)forecasts of other variables that are critical for the
renewable energy sector such as the solar radiation and the
precipitation. The authors propose to undertake these explo-
rations in a future study.
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APPENDIX A

Comparison of Skill between Different Cycles of the
ECMWF Model

Figure A1 shows the temporal evolution of CRPSS of refore-
casts of 2-m temperature averaged across Germany (Table 1)
between different cycles of the ECMWF model for four seasons
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[DJF, March–May (MAM), JJA, and September–November
(SON)]. The data used in Fig. A1a consist of reforecasts
mostly from the cycles CY41R1 and CY41R2, with only a few
reforecasts from the cycle CY43R1. Whereas, Fig. A1b is

produced from the reforecasts data involving cycles CY45R1
and CY46R1. Although the data consists of a combination of
several cycles, we can compare two versions (CY41R1 and
CY46R1) by isolating DJF (top row in Fig. A1). It is very

(a) (b)

FIG. B1. Comparison of the temporal evolution of 100-m wind speed forecast and reforecast skills averaged across
France for DJF between December 2015 and February 2018 (three winters), showing (a) proportion of skillful refore-
casts (blue) and forecasts (orange) and (b) ACC. Shaded regions correspond to the 95% confidence intervals. In (a),
values above 50% (black horizontal line) indicate skillfulness.

(a) (b)

FIG. A1. Comparison of CRPSS of reforecasts of 2-m temperature averaged across Germany between different cycles of the ECMWFmodel
for four seasons (DJF, MAM, JJA, and SON), demonstrated as standard boxplots with green bars indicating the median, blue bars indicating
the mean, the orange box indicating the first and the third quartiles, whiskers indicating the end points, and outliers hidden. Values above 0 indi-
cate skillfulness. Lead time is indicated as central day of the week (as an illustration, day 10 corresponds to the week between days 7 and 13).
The reforecasts correspond to the forecasts (a) between 1 Dec 2015 and 30 Nov 2016 and (b) between 1 Dec 2018 and 30 Nov 2019.
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difficult to say that the version CY46R1 is better than
CY41R1, or vice versa. Similar observations were made with
respect to other domains for both 2-m temperature and 100-m
wind speed.

APPENDIX B

Comparison of Skill between Forecasts and Reforecasts

Figures 9 and 10 indicated that the forecasts are more
skillful than the reforecasts. The improved skill of the fore-
casts may be a result of one or a combination of the way
forecasts and reforecasts are initialized (forecasts are initial-
ized using operational analysis, whereas reforecasts are ini-
tialized using ERA5 reanalysis), the difference in ensemble
size (50 for forecasts and 10 for reforecasts), or the period
of the sample considered (December 2015–November 2019
for forecasts and December 1995–November 2018 for refor-
ecasts). Through this section, we try to understand the rea-
sons for improved skill by isolating one or several factors.
Figure B1 compares the temporal evolution of skill between
100-m wind speed forecasts and reforecasts similar to
Figs. 9 and 10, but for the same period (i.e., DJF 2015/16,
2016/17, and 2017/18). Overall, the behavior is comparable
to that of Fig. 10, with forecasts being more skillful than
the reforecasts. In addition, the behavior of the ACC
(Fig. B1b) of the reforecasts is similar to that of the fore-
casts but with lower values, indicating the importance of
the role of ensemble size and the way the (re)forecasts are
initialized on the skill of the (re)forecasts. In this study,
since ERA5 reanalysis is used as reference against which
the (re)forecasts are verified, the (re)forecast skill may not
necessarily be dependent on the way (re)forecasts are ini-
tialized, thereby leaving greater weight on the ensemble
size.

APPENDIX C

Reliability Diagrams for Quartiles and Deciles of Weekly
Mean Temperature Forecasts

Figure C1 shows that the reliability diagrams for the
upper and lower quartiles and deciles of temperature fore-
casts are less reliable and have significantly lower resolu-
tion, especially for larger forecast probabilities, relative to
that of the terciles.
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3 Improving sub-seasonal predictions
Continuous improvement is better than

delayed perfection.
— Mark Twain

Objective
The main objective of this chapter is to improve
sub-seasonal predictions of 100-m wind speed
and 2-m temperature over Europe by statisti-
cally downscaling information from large-scale,
upper-level fields.

Data and Methods
In addition to the data employed in the previous
chapter, we use geopotential height at 500 hPa
(Z500) over Euro-Atlantic from the European
Centre for Medium-Range Weather Forecasts
(ECMWF). We first employ Redundancy Anal-
ysis to obtain spatial patterns of variability of
Z500 conditioned on the surface fields. We then
apply the relationship between Z500 patterns
and the surface fields on sub-seasonal predic-
tions of Z500 to obtain statistical predictions
of surface fields. Subsequently, we combine
statistical predictions of surface fields with their
dynamical counterparts to obtain hybrid predic-
tions.

Key conclusions
• The large-scale patterns obtained using
Redundancy Analysis have a higher ex-
planatory power than those obtained using
Principal Component Analysis for predict-
ing surface fields over Europe;

• The combination of dynamical and statisti-
cal predictions significantly improves the
skill horizon of sub-seasonal surface field
predictions over a large part of Europe;

Publication
This chapter, which was submitted to Monthly
Weather Review in June 2022, has been ac-
cepted for publication in October 2022 with an
assigned DOI (https://doi.org/10.1175/MWR-
D-22-0170.1) (©American Meteorological So-
ciety).
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ABSTRACT: Owing to the increasing share of variable renewable energies in the electricity mix, the European energy sector is increasingly
becoming weather sensitive. In this regard, skillful sub-seasonal predictions of essential climate variables can provide considerable socio-
economic benefits to the energy sector. The aim of this study is therefore to improve the European sub-seasonal predictions of 100 m wind
speed and 2 m temperature, which we achieve through statistical downscaling. We employ Redundancy Analysis (RDA) to estimate spatial
patterns of variability from large-scale fields that allow for the best prediction of surface fields. We compare explanatory powers between
the patterns obtained using RDA against those derived using Principal Component Analysis (PCA), when used as predictors in multi-linear
regression models to predict surface fields, and show that the explanatory power of the former is superior to that of the latter. Subsequently,
we employ the estimated relationship between RDA patterns and surface fields to produce statistical probabilistic predictions of gridded
surface fields using dynamical ensemble predictions of RDA patterns. We finally demonstrate how a simple combination of dynamical and
statistical predictions of surface fields significantly improves the accuracy of sub-seasonal predictions of both variables over a large part of
Europe. We attribute the improved accuracy of these combined predictions to improvements in reliability and resolution.

1. Introduction
Sub-seasonal predictions refer to predictions beyond

two weeks and up to two months (Robertson and Vitart
2018). These predictions are influenced by both atmo-
spheric initial conditions and boundary forcings (Hoskins
2012). Predictability on sub-seasonal timescales is lim-
ited by the use of imperfect initial conditions and imper-
fect numerical formulations in prediction models (Lorenz
1963, 1982; Palmer et al. 2009; Leutbecher et al. 2016).
Predictability of fine-scale atmospheric features on sub-
seasonal timescales remains poor for fundamental reasons,
because of the chaos inherent in the atmosphere (Lorenz
1965; Jifan 1989; Zhang et al. 2019a). However, the pre-
dictability of large-scale, low-frequency features in the
ocean, over land, and in the cryosphere lasts well be-
yond two weeks (Vitart et al. 2012; Buizza and Leutbecher
2015; Toth and Buizza 2019). The key sources of sub-
seasonal predictability areMadden-JulianOscillation (e.g.,
Jones et al. 2004a,b; Zheng et al. 2018), snow cover (e.g.,
Sobolowski et al. 2010; Lin and Wu 2011; Orsolini et al.
2013), stratosphere-troposphere interaction (e.g., Baldwin
et al. 2003; Domeisen et al. 2020; Schwartz and Garfinkel
2020), land conditions (e.g., Koster et al. 2011; van den
Hurk et al. 2012; Prodhomme et al. 2016; Seo et al. 2019),
and ocean conditions (e.g., Woolnough et al. 2007; Fu
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et al. 2007; Subramanian et al. 2019). Predictions on sub-
seasonal timescales however need to be averaged on large
enough spatiotemporal scales to extract relevant and pre-
dictable components of the signal (Lorenz 1982; Zhu et al.
2014; Buizza and Leutbecher 2015). Since sub-seasonal
predictions are beyond deterministic limits of predictabil-
ity (i.e., about ten days), these predictions are produced
as ensembles of numerical integrations, describing a range
of possibilities instead of a unique best estimate of the fu-
ture state. This shift from determinism to probabilism has
been a major breakthrough in extending the predictability
horizon of sub-seasonal predictions (Palmer 2012).
With a transition towards low carbon energy systems,

the energy industry is going to be one of the most im-
portant end-users of sub-seasonal predictions (White et al.
2017). Skillful sub-seasonal predictions of essential cli-
mate variables such as wind speed, solar radiation, and sur-
face temperature can inform the energy industry about ex-
pected renewable energy production and energy consump-
tion, and further prepare the sector for any possible risks
which may arise due to anomalies. A non-exhaustive list
of applications in the energy sector for which sub-seasonal
predictions can be instrumental includes determining re-
quired reserve levels, maintenance scheduling, assessment
of extreme risks, determining grid transmission capacity,
and trading electricity in power markets.
Europe, being one of the world’s largest energy consum-

ing and greenhouse gas emitting regions, sits at the fore-

1
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front of energy transition (Liobikienė and Butkus 2017;
Jonek-Kowalska 2022). In the European Union, wind
power is becoming the largest renewable source of electric-
ity (IEA 2020). Hence, we focus this study on sub-seasonal
predictions of 100 m wind speed and 2 m temperature
over Europe. Several studies have assessed the quality of
sub-seasonal predictions of wind speed and surface tem-
perature over Europe, and have found skillful predictions
relative to climatology for weekly mean quantities beyond
two weeks (e.g., Lynch et al. 2014; Monhart et al. 2018;
Diro and Lin 2020; Dorrington et al. 2020; Goutham et al.
2022). Although the fundamental sources of sub-seasonal
predictability have been identified (Vitart et al. 2012), the
physical relationships between large-scale, low-frequency
fields and surface fields (i.e., within the planetary boundary
layer) are not well represented in sub-seasonal prediction
models due to parametrizations (Palmer et al. 2009; Leut-
becher et al. 2016; Robertson and Vitart 2018; Lledó and
Doblas-Reyes 2020). In addition, the forecast errors of
surface fields grow relatively faster than that of large-scale
fields due to increased sensitivity of the former to model
parametrizations (e.g., Buizza and Leutbecher 2015; Toth
and Buizza 2019). Given the longer skill horizon of large-
scale fields compared to surface fields (Buizza et al. 2015;
Toth and Buizza 2019; Büeler et al. 2021), there is an
opportunity to improve sub-seasonal surface-field predic-
tions by accounting for the misrepresentations in physical
relationships between large-scale and surface-fields using
historical data. In other words, the information contained
in the prediction of large-scale fields is more reliable than
that in surface fields, and statistical downscaling techniques
can be implemented to correctly transfer this information
from large-scale fields to surface fields (e.g., Manzanas
et al. 2018; Goutham et al. 2021).
The most popular statistical downscaling techniques are

the linear methods due to their transparency and ease of
interpretation (Benestad et al. 2008; Wilks 2019). Gener-
ally, linear statistical downscaling is done in three stages;
one, choosing predictors which have physical relationships
with the predictand; two, obtaining the linear relation-
ship between predictors and the predictand; and finally,
using future dynamical predictions of predictors to recon-
struct the predictand. In a majority of studies focusing
on statistical downscaling of surface variables over Eu-
rope, weather regimes obtained from dimension reduction
or clustering of geopotential height at 500 hPa (Z500) are
used as predictors, which are then regressed on surface
variables (e.g. Grams et al. 2017; Alonzo et al. 2017;
Ramon et al. 2021). The obtained coefficients are then
employed on future predictions of weather regimes to re-
construct surface fields. Z500 has long been the variable
of choice to determine weather regimes as it represents
the mid-troposphere, making it easier to capture large-
scale flow (Wallace and Gutzler 1981; Cheng and Wallace
1993; Wilby and Wigley 1997; Plaut and Simonnet 2001;

Alonzo et al. 2017). Alonzo et al. (2017) have developed
a methodology to estimate the distribution of surface wind
speed over France based on the knowledge (or forecast) of
the large-scale atmospheric state, the latter being summa-
rized by the first few patterns obtained through Principal
Component Analysis (PCA). It was verified that these pat-
terns or Empirical Orthogonal Functions (EOFs) represent
classical Euro-Atlantic weather regimes. Although each
weather regime is associated with a set of surface meteoro-
logical conditions (van der Wiel et al. 2019), the main lim-
itations of the use of classical weather regimes for predict-
ing surface fields are that these weather regimes represent
large-scale atmospheric variability independently of the
predictand and that each surface climate variable responds
differently to the same weather regime (Bloomfield et al.
2019). This calls for the development of new approaches
to obtain large-scale spatial patterns of variability that take
into account variability of the predictand itself (Bloomfield
et al. 2019). One such approach is presented in Bloom-
field et al. (2019) where they use k-means clustering to find
"targeted circulation types" conditioned on the European
power system. It is important to understand large-scale
flow patterns that have the highest impact on surface vari-
ables as these patterns can be used to enhance the skill
horizon of specific surface variables. The objectives of
this research are therefore to identify spatial patterns of
variability of Z500 conditioned on 100 m wind speed and
2 m temperature over Europe, and to use ensemble predic-
tions of these patterns to improve sub-seasonal ensemble
predictions of 100 m wind speed and 2 m temperature.
In this study, we employ a multivariate statistical tech-

nique called Redundancy Analysis (RDA) between the
Z500 field and the surface fields to obtain patterns of Z500
that maximize explained variance of the surface variables
(von Storch et al. 1999; Tippett et al. 2008; Wilks 2014,
2019). We then apply the estimated linear regression coef-
ficients on ensemble dynamical predictions of a restricted
number of RDA patterns of Z500 to obtain statistical prob-
abilistic predictions of surface variables. Several dimen-
sion reduction methods exist to summarise coupled vari-
ations of large-scale fields and surface fields using a few
patterns and their corresponding coefficients (von Storch
et al. 1999; Tippett et al. 2008; Wilks 2019). Among
these methods, Redundancy Analysis distinguishes itself
from classical multivariate techniques such as Canonical
Correlation Analysis or Maximum Covariance Analysis
by being asymmetric in the treatment of predictor and pre-
dictand (i.e., it distinguishes dependent and independent
variables), as is the case with multi-linear regression (von
Storch et al. 1999; Wang and Zwiers 2001; Tippett et al.
2008; Wilks 2014). As far as the authors are aware, this
is the first study to compare explanatory power between
the patterns obtained using RDA of Euro-Atlantic Z500
against those derived using PCA, when used as predictors
in a multi-linear regression model to predict 100 m wind
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speed and 2 m temperature over Europe, and also the first
to reveal the RDA patterns of Z500 conditioned on the
same two surface climate variables. In addition, contrary
to several studies which have discarded dynamical predic-
tions of surface variables completely in favor of statistical
predictions (e.g., Alonzo et al. 2017; Ramon et al. 2021),
we demonstrate how a simple combination of dynamical
predictions of surface variables with statistical predictions
derived from redundancy analysis can enhance prediction
skill. Although the idea of combining dynamical and sta-
tistical predictions has already been illustrated in some
recent studies on seasonal timescales (e.g., Schepen et al.
2012, 2014, 2016; Strazzo et al. 2019), in this study, we
demonstrate the value gained through a combination on
sub-seasonal timescales. We also explore forecast qual-
ity attributes of different ensemble predictions to identify
those that lead to differences in predictive quality between
dynamical and combined (i.e., dynamical + statistical) pre-
dictions.
The article is organised as follows: Section 2 outlines

the data used; Section 3 describes Redundancy Analysis,
the combination of dynamical and statistical predictions,
and the metrics used to evaluate quality of predictions;
Section 4 presents the results in three parts: (a) compares
and contrasts patterns obtained using RDA against those of
PCA, (b) compares the quality of different ensemble pre-
dictions, and (c) takes a closer look at forecast attributes
that contribute to differences in prediction quality between
different ensemble predictions; Sections 5 and 6 are re-
served for discussions and conclusions, respectively.

2. Data
a. Forecasts and Re-forecasts

The forecasts and retrospective forecasts (re-forecasts)
data used in this study originate from extended-range
predictions (Vitart et al. 2017) of the European Centre
for Medium-Range Weather Forecasts (ECMWF). The
medium-range (i.e., up to two weeks) ocean-atmosphere
coupled ensemble forecasts are extended to 46 days twice
a week at 00 UTC on Mondays and Thursdays to produce
extended-range ensemble predictions (Vitart et al. 2019).
The operational ensemble predictions consist of 51 mem-
bers (50 perturbed + control). The perturbed members are
obtained using singular vectors (Leutbecher 2005; Leut-
becher and Palmer 2008) and ensemble data assimilation
(Buizza et al. 2008; Isaksen et al. 2010). Stochastically Per-
turbed Parametrisation Tendencies (SPPT) scheme is used
to represent model uncertainty (Buizza et al. 1999; Palmer
et al. 2009; Leutbecher et al. 2016). These predictions are
originally issued at a spatial resolution of Tco639L91 (∼18
km) up to a lead time of 15 days, and at Tco319L91 (∼36
km) after (Vitart et al. 2017, 2019).

The operational prediction model begins to drift signifi-
cantly from reality after about ten days of coupled integra-
tions. This drift can be attributed to inherent atmospheric
unpredictability (Zhang et al. 2019b; Žagar and Szunyogh
2020), and the use of imperfect initial conditions and im-
perfect representation of physical processes in the numer-
ical model (Palmer et al. 2009; Leutbecher et al. 2016).
It is imperative to remove the drift before employing the
model. The ECMWFproduces re-forecasts to estimate and
remove the operational model drift (Vitart et al. 2008). A
re-forecast set consists of ensemble forecasts of 11 mem-
bers (10 perturbed + control) issued for the same calendar
day of the year as the operational forecast over each of the
past 20 years. ERA5 reanalysis provides the initial con-
ditions for the re-forecasts. This re-forecast set with 220
integrations (20 years × 11 members) allows for evaluation
of the model climatology of operational forecasts.
We retrieve forecasts and the corresponding re-forecasts

of 2 m temperature (T2m), zonal and meridional compo-
nents of 100 m wind speed, and geopotential at 500 hPa
issued during boreal winter (DJF) on a global grid be-
tween December 2016 and February 2020. The retrieved
spatial resolution is 0.9° and the temporal resolution is
6 h (instantaneous values at 00, 06, 12, and 18 UTC).
The data are retrieved from the Meteorological Archival
and Retrieval System (MARS) of the ECMWF. The 100
m wind speed (U100) is computed as the square root of
the sum of squares of zonal and meridional components.
The geopotential height (Z500) is computed by dividing
the geopotential by the Earth’s gravitational acceleration,
g (= 9.806 m s−2). As the prediction model is undergo-
ing periodic improvements, the dataset used in this study
consists of forecasts and re-forecasts from several versions
(CY43R1, CY43R3, CY45R1, and CY46R1) (Vitart et al.
2019). Nevertheless, the differences in model formula-
tion and hence the statistics between different versions are
marginal (refer to Appendix A in Goutham et al. (2022)).
We focus on boreal winter in this study as this season
experiences high variability in wind energy production in
addition to increased energy demandmainly for space heat-
ing. Furthermore, predictions are more skillful in winter
compared with other seasons due to stronger boundary
conditions (e.g., sea surface temperature gradients), rein-
forced coupling (e.g., stratosphere-troposphere), and en-
hanced memory of initial conditions such as soil moisture
among others (Robertson and Vitart 2018). In this study,
only the perturbed members of forecasts and re-forecasts
are used. The reader is referred to the data availability
statement to learn about the missing control member. All
the results shown in this study involving operational pre-
dictions rely on re-forecasts for calibration as explained in
Appendix a.
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b. Reference

Generally, the forecast quality is assessed by compar-
ing against observations (Coelho et al. 2019; Wilks 2019).
However, in the absence of a serially complete and spa-
tially coherent observed data set, reanalysis is used as a
reference in forecast verification (Kalnay 2003). In this
study, we use ERA5 reanalysis (Hersbach et al. 2020) as
reference. ERA5 reanalysis is a fifth generation high res-
olution (hourly output, 31 km horizontal grid spacing) re-
analysis produced using 4D-Var data assimilation and the
CY41R2 version of the Integrated Forecast System of the
ECMWF (Hersbach et al. 2020). We retrieve ERA5 re-
analysis of T2m, zonal and meridional components of 100
mwind speed, and geopotential at 500 hPa on a global grid
between January 1979 and January 2021 at the same spa-
tial and temporal resolution as the forecasts. The data are
retrieved from the Climate Data Store of the Copernicus
Climate Change Services (Raoult et al. 2017). The 100 m
wind speed and geopotential height are computed as pre-
viously described. Although ERA5 reanalysis shows cold
biases in representing surface temperature over the Iberian
peninsula and the Mediterranean (Johannsen et al. 2019),
it represents the means and extremes well over most of Eu-
rope (e.g., Simmons et al. 2021; Velikou et al. 2022). Al-
though ERA5 reanalysis severely underestimates the mean
winds over complex terrain, it represents the variability of
wind speed more realistically compared with other reanal-
ysis datasets over Europe (e.g., Ramon et al. 2019; Jourdier
2020; Dörenkämper et al. 2020; Brune et al. 2021; Molina
et al. 2021; Murcia et al. 2022). In spite of the biases,
the representation errors of ERA5 reanalysis are small,
and hence acceptable for verification (Ramon et al. 2019;
Velikou et al. 2022) and statistical modeling (Tarek et al.
2019). Accordingly, ERA5 reanalysis is used as a refer-
ence in forecast verification and as well as for training the
statistical model in this study.

3. Methodology
a. Redundancy Analysis

Redundancy Analysis (RDA) is a multivariate statisti-
cal technique that attempts to find lower-dimensional pat-
terns of linear dependence between two multivariate data
sets (i.e., between predictor and predictand) maximizing
the coefficient of determination of linear regression (von
Storch et al. 1999; Wang and Zwiers 2001; Tippett et al.
2008; Wilks 2014). There exist several other methods
to find linearly coupled patterns between two multivariate
datasets, notably Canonical Correlation Analysis (CCA)
and Maximum Covariance Analysis (MCA). RDA, unlike
CCA or MCA, is asymmetric in the treatment of two data
sets as it identifies one as the predictor and the other as
the predictand. This way, the patterns derived from RDA

are specifically tailored for use in multi-linear regression
models.

P =
©«

𝑝1,1 𝑝1,2 ... 𝑝1,𝑡
𝑝2,1 . ... 𝑝2,𝑡
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Let P be the predictor anomaly matrix with each column
representing an observation at each of the m grid points.
Let Q be the predictand anomaly matrix with each column
representing an observation at each of the n grid points.
For illustration purpose, P can be thought of as Z500, and
Q as U100. The elements of both P and Q are weighted by
square root of cosine of latitude to equalize variance (von
Storch et al. 1999; Wilks 2014, 2019). We use gridded
Z500 weekly mean anomalies over Euro-Atlantic (20° N
- 80° N, 120° W - 40° E) as the predictor and gridded
T2m/U100 weekly mean anomalies over Europe (34° N -
74° N, 13° W - 40° E) as predictand in this study. The
choice of the predictor domain and its sensitivity to the
predictand domain is discussed in section 5a. Regarding
the calculation of anomalies, we tested lagging 15-year as
well as 20-year mean climatology for computing anoma-
lies. We observed that using lagging 15-year climatology
(i.e., the most recent 15-year period as climatology) per-
forms better relative to using lagging 20-year climatology
(i.e., the most recent 20-year period) in alleviating cold
biases in temperature forecasts that are derived from the
ongoing climate warming (not shown). This observation
is consistent with the ones previously seen in the litera-
ture (e.g., Wilks 2013; Wilks and Livezey 2013; Wilks
2014). Therefore, we compute Z500, T2m, and U100
anomalies by removing lagging 15-year mean climatology
from the observed weekly mean. The climatological data
used to compute anomalies correspond to the same week
and month of the year as the observation. Although U100
shows no particular trend, we retain the 15-year period
for computing U100 anomalies to make the inter-variable
comparison consistent. We have more explanatory vari-
ables (i.e., grid points) than the number of observations in
matrices P and Q. Hence, to prevent over-determination
and to lessen the computational burden, we perform Prin-
cipal Component Analysis (PCA) of matrices P and Q to
obtain their corresponding principal components (PC) re-
taining 99% of the variance in the original data (von Storch
et al. 1999; Wilks 2019). As the predictor and the predic-
tand vectors are measured in different units, we normalize
them by subtracting the grid-point mean and dividing by
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the grid-point standard deviation (Wilks 2019). The pre-
dictor and predictand PCs of the normalized variables P′
and Q′ are computed as X = ET

PP′ and Y = ET
QQ′, respec-

tively. Here, the matrices ET
P and ET

Q hold the predictor and
predictand patterns, respectively. The superscript T de-
notes vector or matrix transpose. Using centered variables
in place of normalized variables marginally degrades the
results (not shown). The joint sample variance-covariance
matrix of the leading predictor and predictand PCs is given
by

S = (x1;x2; ...;xi;y1;y2; ...yj) (x1;x2; ...;xi;y1;y2; ...;yj)T

=

(
SXX SXY
SYX SYY

)
.

(1)

Here, the (i + j) by t matrix (x1x2...xiy1y2...yj)T is
formed through concatenation of the leading i predictor
PCs xi and the leading j predictand PCs yj. Since we use
standardized variables, S is in fact a correlation matrix
(von Storch et al. 1999; Wilks 2019). Nonetheless, we
use "covariance matrix" as a general terminology to de-
scribe the method. The covariance matrix of predictand
PCs conditioned on predictor PCs is given by

SŶŶ = SYXS−1
XXSXY. (2)

The eigen-decomposition of the square symmetric ma-
trix in equation 2 yields orthonormal eigenvectors B and
diagonal matrix Λ of positive eigenvalues 𝜆, both sorted in
descending order based on the values of 𝜆. The columns
of B consist in the patterns that account for the variance of
predictand PCs when conditioned on predictor PCs. We
can deduce the predictor patterns A through the equation

A =
1√
Λ

S−1
XXSXYB. (3)

We can conveniently compute the predictor and predic-
tand redundancy PCs using V = ATX andW = BTY, respec-
tively. The regression coefficients of the linear relationship
between V and W are given by R =

√
Λ. The redundancy

PCs V and W are linked through W = RV. For a given
number of retained patterns, redundancy analysis guaran-
tees that the coefficient of determination of the linear re-
gression is maximized. In this study, we use 7-day rolling
averages of ERA5 reanalysis of Z500, T2m, and U100 in
a Perfect Prognosis framework for fitting the model (e.g.,
Hewitson andCrane 1996; Zorita and von Storch 1999; Ra-
mon et al. 2021). We compute regression coefficients by
fitting a separate model for each predictand. We choose the
training period to be the boreal winter between December
1999 and February 2016 (i.e., 17 years).

b. Statistical and Hybrid Predictions

We can use redundancy regression coefficients (R), pre-
dictor patterns (A), predictand patterns (B), and the rela-
tionship between predictor and predictand redundancy PCs
to predict the predictand given a new set of predictors. Let
Xo be a new set of predictor PCs computed from a new set
of predictor anomaly matrix Po (i.e., Xo = ET

PP′
o with ET

P
unchanged from the initial analysis). We can compute the
predictand redundancy PCs as Ŵ = RTVo = RTATXo. We
can then obtain the standardized predictand vector anoma-
lies using the equation

Q̂o
′
= EQ(BT)−1Ŵ = EQ(BT)−1RTATXo. (4)

We consider an ensemble of weekly mean anoma-
lies of Z500 operational extended-range predictions from
ECMWF at any given lead time as Po. The operational
predictions are bias-corrected using the Mean and vari-
ance Adjustment method (Torralba et al. 2017; Manzanas
et al. 2019; Goutham et al. 2022) as described in Appendix
a. The prediction anomalies are computed in a similar way
to the observed anomalies, but using a lagging 15-year cli-
matology derived from the re-forecasts. We apply equation
4 on a restricted number of PCs (Xo) of Po to obtain an
ensemble of predicted weekly mean anomalies of T2m or
U100. The truncation of predictor PCs is a necessary step
to optimize the accuracy of ensemble predictions, and it
will be discussed further in the following sections. The
predicted T2m or U100 anomalies are converted to ab-
solute values by adding the lagging 15-year climatology
of the respective variable derived from re-forecasts. Al-
though we use dynamical predictions of Z500 to predict
surface fields, we refer to the predicted vectors as statisti-
cal (ST) predictions, emphasizing the role of the statistical
relationship between the predictor and the predictand. We
then obtain a 100-member ensemble hybrid (HY) predic-
tion by concatenating a 50-member statistical surface field
prediction with a 50-member dynamical (DY) surface field
prediction. All the ensemble members of the hybrid pre-
diction receive equal weights.

c. Measures of prediction skill

Evaluation of probabilistic prediction skill involvesmea-
suring different aspects of prediction quality (Jolliffe and
Stephenson 2003; Wilks 2019; Coelho et al. 2019). The
most important attributes of a forecast/prediction quality
are:

• Accuracy: it measures the average distance between
forecasts and observations;

• Association: it measures the strength of the relation-
ship between forecasts and observations;

• Reliability: it measures calibration of the issued fore-
cast probabilities;
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• Resolution: it measures how the frequency of occur-
rence of an event varies as the issued forecast proba-
bility changes; and

• Sharpness: it measures the ability of forecasts to pro-
duce concentrated predictive distributions that are dis-
tinct from climatological probabilities.

Several scores have been proposed in the literature to as-
sess probabilistic prediction skill taking into account these
different forecast attributes (e.g., Jolliffe and Stephenson
2003). In this study, we employ the following metrics and
diagnostic plots:

1. Continuous Ranked Probability Skill Score (CRPSS):

The Continuous Ranked Probability Score (CRPS)
measures the distance between the Cumulative Dis-
tribution Functions (CDF) of a probabilistic predic-
tion and an observation (Matheson andWinkler 1976;
Unger 1985; Hersbach 2000). The CRPS is a nega-
tively oriented score in that the smallest values in-
dicate more accurate predictions. It is also a proper
score as it rewards those predictions whose probabili-
ties are concentrated around the observation (Gneiting
and Raftery 2007). The CRPS has the same units as
the physical quantity being verified. The CRPS can
be decomposed into components consisting of relia-
bility, resolution, and uncertainty (Hersbach 2000).
The CRPSS compares the prediction skill of a given
prediction systemwith that of a benchmark. In the ab-
sence of reliable forecasts for end-user applications, a
common practice in the energy industry is to use ob-
served climatology, a long-term average of observed
weather (typically 35 years), as the expected weather.
In this study, we use a 35-year lagging observed cli-
matology, derived from ERA5 reanalysis, as a 35-
member ensemble benchmark prediction (CL). This
climatological data corresponds to the sameweek and
month of the year as the dynamical prediction but
taken over the last 35 years. The choice of a 15-
year lagging climatology for computing anomalies,
as described in section3a, is solely to alleviate cold
bias in statistical T2m predictions. Since the predic-
tion systems compared in this study (i.e., dynamical,
statistical, hybrid, and climatological) are composed
of different ensemble sizes, we compute Fair-CRPS
(FCRPS) and Fair-CRPSS (FCRPSS) to have an unbi-
ased estimate of the scores (Ferro 2014). Skillful pre-
dictions should have FCRPSS greater than zero. The
standard practice in forecast verification is to com-
pute scores for re-forecasts, and use these scores as
an indication of the skill of the operational forecasts
(Jolliffe and Stephenson 2003). However, Goutham
et al. (2022) have shown that the skill of operational
predictions on S2S timescales over Europe is higher

than that of re-forecasts. The improved skill of oper-
ational predictions is mainly attributed to their larger
ensemble size relative to the re-forecasts. Therefore,
we compute all the scores and diagnostic plots for op-
erational dynamical predictions and the correspond-
ing statistical and hybrid predictions in this study. In
particular, we first calculate the FCRPS of weekly av-
eraged dynamical, statistical, hybrid, and climatolog-
ical predictions for each of the forecast issue dates and
at each of the considered lead times. We then compute
FCRPSS and its mean over all the forecast issue dates
using climatological predictions as the benchmark.
We applyWilcoxon signed-rank test (Wilcoxon 1945;
Conover 1971; Wilks 2019) (Appendix b) to investi-
gate the statistical significance of the differences of
FCRPSS between hybrid and dynamical predictions.

2. Proportion of Skillful Forecasts (PSF):
As the mean of a distribution is sensitive to the exis-
tence of outliers, the mean-FCRPSS overemphasizes
negative instances, and can therefore lead to underes-
timation of the prediction skill (Goutham et al. 2022).
Therefore, we compute Fair-Proportion of Skillful
Forecasts (FPSF) in addition to mean-FCRPSS. As
the name suggests, the FPSF is a proportion of the
number of predictions that have FCRPSS greater than
zero to the total number of predictions considered.

3. Anomaly Correlation Coefficient (ACC):
The ACC is a deterministic score that measures the
linear association as Pearson’s correlation coefficient
between the anomalies of the ensemble mean predic-
tions and observations (Namias 1952; Wilks 2019).
ACC is complementary to CRPS as it is insensitive
to forecast errors in accuracy. Accordingly, a forecast
can be skillful (based on ACC) if it has some temporal
association with the observations, irrespective of the
magnitude of its accuracy.

4. Reliability diagram:
A reliability diagram is a diagnostic plot to understand
the full joint distribution of predictions and observa-
tions for probabilistic predictions of a binary predic-
tand (Sanders 1963; Jolliffe and Stephenson 2003;
Wilks 2019). It can be used to measure reliability,
resolution, and sharpness. In this study, we plot relia-
bility diagrams for upper and lower terciles of weekly
mean predictions averaged over a geographical do-
main. Geographical domain averaging, wherever ap-
plicable, is computed as the mean of cosine-latitude
weighted grid-point values.

In this study, we compute all the scores and diagnostic
plots for weekly averaged quantities at four sub-seasonal
lead times. More specifically, lead week-3 corresponds
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to the weekly average between days 14-20, week-4 be-
tween days 21-27, week-5 between days 28-34, and week-
6 between days 35-41. We employ leave-one-out cross-
validation to estimate the optimum number of predictor
patterns (i.e., truncation) in statistical predictions. The
truncation is carried out with the criterion to optimize the
median of FCRPSS of target predictions (i.e., statistical or
hybrid) over the domain. This means that the number of
predictor patterns retained in the best statistical predictions
and in statistical predictions which form a component of
hybrid predictions is different. Since hybrid predictions
retain a large part of the information from dynamical pre-
dictions, the statistical predictionswhich forma component
of hybrid predictions require deep truncation, i.e. only a
small number of predictor patterns are sufficient. On the
other hand, a large number of predictor patterns are re-
quired to obtain optimum statistical-only predictions. We
prefer, as a truncation criterion, the median of FCRPSS
to the mean as the mean is sensitive to extreme values.
The number of predictor principal components required
to obtain optimum U100 and T2m predictions, and the
sensitivity of these predictions to the number of retained
principal components will be discussed in the following
section.

4. Results
As a first step, we test the efficiency of patterns obtained

using PCA on one hand, to those obtained using RDA on
the other, to provide information on surface fields when
used as predictors in a multi-linear regression model. Sub-
sequently, we analyze the differences in prediction quality
between dynamical, statistical, hybrid, and climatological
predictions as well as between U100 and T2m. Finally, we
explore and compare several forecast quality attributes be-
tween hybrid and dynamical predictions to understand the
reasons for the differences in accuracy between the two.

a. How do the patterns derived using Redundancy Analysis
differ from those obtained using Principal Component
Analysis?

We compare the differences between Empirical Orthog-
onal Functions (EOFs) of Z500 anomalies over Euro-
Atlantic derived using Principal Component Analysis
(PCA), against those derived using Redundancy Analy-
sis (RDA) conditioned on U100 and T2m over Europe in
Figure 1. The EOFs of the Z500 field in PCA are chosen
independently of the predictand to represent the maximum
possible variability contained in the predictor itself. In
contrast, the EOFs of the Z500 field in RDA are chosen to
maximize the explained variance of the predictand. Alonzo
et al. (2017) have verified that the principal components
obtained through PCA of Z500 over the Euro-Atlantic rep-
resent the classical Euro-Atlantic weather regimes.

The first three patterns shown in Figure 1a resemble
classical weather regimes of North Atlantic Oscillation,
Scandinavian regime, and Atlantic regime, respectively
(Alonzo et al. 2017; Bloomfield et al. 2019; van der Wiel
et al. 2019; Garrido-Perez et al. 2020). Please note that the
patterns in Figure 1 are sign indefinite, and that the color
bars have no units as the units are carried by the PCs. The
imprints of weather regimes on 10 m wind speed and T2m
can be obtained from Bloomfield et al. (2019), van der
Wiel et al. (2019), and Garrido-Perez et al. (2020). The
first observation that can be made from Z500 patterns in
Figure 1 is that the centers of action of RDA (top rows
in (b) and (c)) are shifted towards or onto the European
domain. This is logical as RDA patterns are conditioned
on U100 and T2m over the European domain. Besides,
we can notice variations in the strengths of troughs and
ridges between PCA and RDA Z500 patterns. The Z500
patterns obtained using RDA further display inter-variable
differences which may be attributed to the behavior of the
conditioned variable itself. Some of the Z500 patterns
obtained using RDA may be seen as perturbations of those
obtained using PCA, but with major changes in the relative
importance of patterns for surface field prediction.
The imprints of classical weather regimes on 10 m wind

speed and T2m are illustrated in Figure 2 in Bloomfield
et al. (2019). Although RDA surface field patterns in Fig-
ure 1 in this work and the surface responses of weather
regimes in Figure 2 in Bloomfield et al. (2019) are not
measured in the same units, they can still be compared
assuming an equivalent multiplication factor to U100 and
T2m imprints in Figure 1. Overall, it is conspicuous that
the surface imprints of RDA patterns are stronger and
more concentrated over Europe compared with the sur-
face responses of classical weather regimes. The imprints
of RDA patterns on U100 in Figure 1 show anomalous
meridional and zonal dipoles which are originally absent
in the surface responses of classical weather regimes on
10 m wind speed (Figure 2 in Bloomfield et al. (2019)).
Although there are similarities in the first two imprints of
weather regimes and RDA patterns on T2m, the center of
the anomaly of the imprint corresponding to the first RDA
pattern is shifted towards the southwest, while the imprint
corresponding to the second RDA pattern shows a stronger
dipole with a stretched northern anomaly center relative to
the responses of weather regimes on T2m. The imprint
of the third RDA pattern on T2m is significantly different
from that of the Atlantic regime in Figure 2 of Bloom-
field et al. (2019) and shows pronounced variations along
with a tripole. The subsequent patterns are not shown in
this work, but they present similar characteristics. Overall,
the patterns in Figure 1 indicate stronger surface imprints
of RDA patterns compared with weather regimes on both
U100 and T2m.
Having understood the differences in surface imprints

between weather regimes and RDA patterns, we now com-
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Pattern - 1 Pattern - 2 Pattern - 3

Z500

U100

T2m

Z500

Z500

(a)

(b)

(c)

Fig. 1. (a) The first three patterns or Empirical Orthogonal Functions of Z500 anomalies over Euro-Atlantic computed through Principal
Component Analysis. (b) The first three paired patterns of Redundancy Analysis of Z500 anomalies conditioned on U100 anomalies. (c) The first
three paired patterns of Redundancy Analysis of Z500 anomalies conditioned on T2m anomalies. Top rows in (b) and (c) represent Z500 RDA
patterns, and the corresponding bottom rows represent imprints of U100 and T2m, respectively. Please note that the color bars have no units, and
that the signs are arbitrary. The patterns shown are unrotated.

pare the statistical explanatory power between PCA and
RDA Z500 patterns, when used as predictors in a multi-
linear regression model, to accurately reconstruct surface
fields. In Figure 2, we compare the performance of re-
gression between Principal Component Regression (PCR)
and RDA models. Particularly, we use coefficient of de-
termination (R2) and root mean squared error (r.m.s.e.)
of the linear fit between the predictor and the predictand
as evaluation metrics. The R2 measures the proportion

of variation of the predictand that is accounted for by re-
gression. Accordingly, the higher the R2, the more is the
predictand explained by the predictor. Kindly note that
the R2 presented in Figure 2 shows the explained variance
of individual grid points, while redundancy analysis max-
imizes the R2 averaged over the domain. In PCR, we first
compute the PCs of the Euro-Atlantic Z500 anomaly field
through Principal Component Analysis, and then use these
PCs as predictors to predict U100 and T2m over Europe

Improving sub-seasonal predictions Chapter 3

43



9

via standard linear regression (Wilks 2019). In Figure 2,
we retain the same number of PCs (i.e., all) for both PCR
and RDA methods to facilitate comparison. From Figure
2, it is conspicuous that the R2 of RDA, with domain aver-
ages for U100 and T2m being 0.83 and 0.94, respectively,
is substantially higher than that of PCR (domain averages
of U100 and T2m being 0.46 and 0.56, respectively) for
both the variables. Consequently, the r.m.s.e. of the linear
fit between the predictor and the predictand of RDA, with
domain averages for U100 and T2m being 0.53 and 0.46,
respectively, is lower than that of PCR (domain averages
of U100 and T2m being 0.96 and 1.27, respectively). The
spatial variations of r.m.s.e. of U100 and T2m resemble
that of the inter-annual variability of the respective vari-
ables (Appendix c). The R2 of RDA for T2m is relatively
high compared with U100. Despite RDA models having
higher R2, the R2 for U100 drops to values below 0.5 over
mountainous and other regions where the local effects are
considerable. In general, using RDA Z500 patterns condi-
tioned on the targeted predictand is advantageous over the
use of Z500 patterns derived using PCA.

b. How do the different types of ensemble predictions com-
pare?

In this section, we compare the skill of dynamical, statis-
tical, hybrid, and climatological predictions in predicting
U100 and T2m over Europe. To begin, we consider one
case for illustrative purposes: the temporal evolution of en-
semble Probability Density Functions (PDFs) of dynami-
cal, statistical, hybrid, and climatological U100 predictions
over southern Scandinavia initialized on 6 February 2017
is illustrated in Figure c), and the PDFs are computed for
weekly means. The domain averaging is computed as the
mean of the cosine of latitude weighted grid point values.
Besides having a longer skill horizon of sub-seasonal U100
predictions compared to other European regions (Goutham
et al. 2022), southern Scandinavia is one of the most im-
portant regions for the wind energy industry in Europe
(WindEurope 2022). Hence, we consider southern Scan-
dinavia for illustration purposes. This specific forecast
(initiated on 6 February 2017) was chosen as it is qualita-
tively representative of the overall results. In Figure 3, the
climatological predictions correspond to the same week
and month of the year as the dynamical predictions but
taken over each of the previous 35 years.
In week-3 in Figure 3, the PDF of the dynamical pre-

diction (𝜇 = 7.03 m s−1 and 𝜎 = 1.08 m s−1) is closer to
the observation (= 7.22 m s−1), and therefore it appears to
be more accurate than statistical prediction (𝜇 = 5.88 m
s−1 and 𝜎 = 0.76 m s−1). However, dynamical predictions
begin to converge towards their model climatology start-
ing week-4. The statistical predictions are usually sharper
compared with dynamical predictions at short lead times.
This is attributed to slower evolution of large-scale fields

compared to surface fields (e.g., Buizza and Leutbecher
2015; Robertson and Vitart 2018). Beyond week-4, statis-
tical predictions typically carry more valuable information
relative to their dynamical counterparts and thus contribute
greatly to hybrid prediction accuracy. To illustrate, the
week-6 statistical prediction (𝜇 = 6.45 m s−1 and 𝜎 = 0.82
m s−1) is closer to observation (= 6.73 m s−1) compared
with dynamical prediction (𝜇 = 5.79 m s−1 and 𝜎 = 0.99
m s−1). The statistical predictions are not always perfect,
and they are indeed only as good as the skill of large-scale
fields in dynamical predictions. They fail when dynamical
predictions fail, for instance when dynamical predictions
are initialized during days closer to sudden stratospheric
warming events (e.g., Gerber et al. 2009; Tripathi et al.
2015). For curious readers, some additional examples of
comparison of different predictions are illustrated in the
supplementary material. Overall, the PDFs in Figure 3
suggest that the hybrid predictions may be more accu-
rate than either dynamical or statistical predictions beyond
week-3.
We understood the behavior of different ensemble pre-

dictions for one particular forecast in Figure 3. In this
section, we look at an overall assessment of U100 fore-
casts initiated in the boreal winter between December 2016
and February 2020 over southern Scandinavia. The com-
parison of the temporal evolution of Fair-CRPSS between
dynamical, statistical, and hybrid U100 predictions over
southern Scandinavia is shown in Figure 4. These vio-
lin plots are produced by aggregating the domain-averaged
Fair-CRPSS of all the forecasts initiated in boreal winter
between December 2016 and February 2020. In week-
3, the ocean-atmosphere coupled dynamical predictions
still carry important information about U100 over south-
ern Scandinavia. The dynamical predictions, with a mean
of FCRPSS of -0.0008 and a median of FCRPSS of 0.06,
perform better than statistical predictions (mean = -0.10
and median = -0.04). The PDF of statistical predictions
is heavily skewed towards negative values. The hybrid
predictions, with a mean of 0.02 and a median of 0.07, per-
form better than either dynamical or statistical predictions.
In week-3, dynamical predictions have a major contribu-
tion (compared with statistical predictions) to the improved
skill of hybrid predictions. Contrary to dynamical predic-
tions, the statistical predictions become more skillful with
increasing lead time. Hence, statistical predictions con-
tribute considerably to the improved skill of hybrid predic-
tions at longer leads compared to shorter leads. The inter-
quartile range (IQR) of hybrid predictions decreases with
increasing lead time. This can be attributed to the decreas-
ing IQR of statistical predictions with lead time. Beyond
week-3, the improvements of hybrid predictions relative
to their dynamical counterparts are statistically significant
with p-values ≤ 0.005 based onWilcoxon signed-rank test.
Overall, the means and medians of FCRPSS of hybrid pre-
dictions, taking advantage of the strengths of the compo-
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PCR RDA

(a)  U100

PCR RDA

(b)  T2m

Fig. 2. Comparison of regression performance between Principal Component Regression (PCR) and Redundancy Analysis (RDA) models.
Performance is measured using coefficient of determination (R2) of the linear fit between the predictor and the predictand, and root mean squared
error (r.m.s.e.) between the predicted values and ERA5 reanalysis. The models are fit for weekly averages for the boreal winter between December
1999 and February 2016. (a) U100. (b) T2m.

Week-3 Week-4 Week-5 Week-6

Fig. 3. Illustration of the temporal evolution of ensemble Probability Density Functions (PDFs) of dynamical (DY), statistical (ST), hybrid
(HY), and climatological (CL) U100 predictions. The PDFs are computed as kernel-density estimates (Gaussian kernel) using ensemble members
of weekly mean values averaged over southern Scandinavia (52.0° - 61.0° N, 4.4° - 19.0° E). The grid point values are weighted by the cosine of
their respective latitude before computing domain average. This illustration corresponds to dynamical predictions initialised on 6 February 2017.
The red vertical line in each of the panels indicates the observed weekly mean (OB).

nent prediction systems, are both positive and higher than
either dynamical or statistical predictions at all lead times.
For a more general assessment and to understand spatial

variations of skill, we now compare the skill of dynami-
cal and hybrid predictions at the scale of grid points over
Europe. Figure 5 shows the comparison of the weekly evo-

lution of mean-FCRPSS and FPSF between dynamical and
hybrid U100 predictions across Europe. Although the hy-
brid prediction skill in week-3 is marginally poorer relative
to that of dynamical predictions over southern Europe, the
former has a relatively more positive mean-FCRPSS over
northern Europe. Generally, the dynamical predictions,
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 DY    ST    HY

Week-4 Week-5 Week-6Week-3

Fig. 4. Illustration of the temporal evolution of Fair-CRPSS of dynamical (DY), statistical (ST), and hybrid (HY) U100 predictions averaged
over southern Scandinavia. In these standard violin plots, horizontal white dash indicate median, white circles indicate mean, black boxes indicate
first and third quartiles, and black curves symmetric about the vertical (enclosing the red region) indicate the probability density of the Fair-CRPSS.
The left-hand, central, and right-hand violin plots in each of the panels correspond to dynamical, statistical, and hybrid predictions, respectively.
Values above zero indicate skillfulness of the respective predictions relative to climatology.

with an exception over and around theNorth Sea, are hardly
skillful beyondweek-3. The added value of the information
from the slowly evolving large-scale fields through statis-
tical predictions can be clearly noticed starting week-5. In
week-6, the average of FPSF over Europe for dynamical
and hybrid predictions are 49.6% and 54.1%, respectively.
This indicates that the hybrid predictions outperform both
the dynamical and statistical predictions (not shown) over
a large part of Europe. Similar to the results presented
in Ramon et al. (2021), the improvements brought in by
the hybrid predictions are more pronounced over northern
Europe than southern Europe. The number of patterns re-
tained in statistical predictions that form a component of
optimum U100 hybrid predictions increases slightly with
lead time. The optimum U100 hybrid prediction skill is
achieved when statistical predictions are produced using
eight to eleven patterns on average, representing between
88% and 92% of the explained variance, depending on
the lead time. As hybrid predictions are constructed by
concatenating the ensemble members of dynamical and

statistical predictions, the poor hybrid prediction skill over
southern Europe may be attributed to the poor skill of dy-
namical U100 predictions as well as low R2 of the linear
fit between Z500 and U100 (Figure 2). Overall, hybrid
predictions are more skillful than dynamical predictions at
all lead times over a large part of Europe. Since a major
proportion of the European wind farms are concentrated
in and around the North Sea (WindEurope 2022), the wind
energy industry could greatly benefit from improved hybrid
predictions over this region.
Analogous to U100, Figure 6 compares the temporal

evolution of mean-FCRPSS and FPSF between dynamical
and hybrid T2m predictions over Europe. While hybrid
predictions are typically more skillful than their dynamical
counterparts over central, northern, and eastern Europe at
all lead times, their skill is marginally degraded over south-
western Europe. Since we use a statistical model trained
on the predictor and predictand anomalies, we notice the
presence of cold biases in statistical T2m predictions at-
tributed to the ongoing climate warming. This observation
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Fig. 5. Comparison of the temporal evolution of skill between dynamical (DY) and hybrid (HY) U100 predictions across Europe. (a) Mean-
FCRPSS. (b) Fair-Proportion of Skillful Forecasts (FPSF). In (a) and (b), top rows correspond to dynamical predictions (DY) and bottom rows
correspond to hybrid predictions (HY). Values above zero in (a) and above 50% in (b) indicate skillful predictions relative to climatology. Violet
dots in hybrid predictions in (b) correspond to regions with statistically significant improvements at a significance level of p ≤ 0.05 based on
Wilcoxon signed-rank test (Appendix b).

is consistent with the literature (e.g., Wilks 2013; Wilks
and Livezey 2013; Wilks 2014). The presence of cold
biases in statistical predictions translates to biased hybrid
T2m predictions, and the poor hybrid prediction skill over
certain regions in Figure 6 can be attributed to these bi-
ases. Additional post-processing of hybrid predictionsmay
be required for them to be useful for practical applications,
and this will be discussed in section 4c of the manuscript.
Contrary to U100, the optimum T2m hybrid prediction
skill is achieved when statistical predictions are produced
using three patterns on average, representing about 75% of
the explained variance. The number of patterns retained in
statistical predictions that form a component of optimum
T2m hybrid predictions is virtually insensitive to lead time.
The differences in the number of retained patterns between
U100 and T2m can be attributed to the complexity of the
fields themselves. Overall, hybrid predictions benefit from
both the skillful dynamical predictions of surface fields at
shorter leads, and the longer skill horizon of large-scale
fields and their statistical relationship with surface fields

at longer leads, and hence are usually more skillful than
either dynamical or statistical predictions.

c. Which forecast quality attribute(s) improves the hybrid
prediction accuracy?

The previous section has shown how the dynamical and
statistical predictions complement each other to make the
hybrid ensemble predictions more accurate than their com-
ponents. In this section, we explore the differences in other
forecast quality attributes such as association, reliability,
resolution, and sharpness between dynamical and hybrid
predictions, to understand the reasons for differences in
accuracy between the two.
To understand the differences in association, we compare

the temporal evolution of ACC between dynamical and hy-
brid predictions of U100 and T2m over Europe in Figure
7. The ACC of dynamical predictions of T2m is typically
higher than that ofU100 at all lead times. ForU100 dynam-
ical predictions, the ACC values drop below 0.4 starting
week-4, whereas, for T2m, the ACC values drop below 0.4
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Fig. 6. As in Figure 5, but for T2m.

starting week-5. Overall, the differences in ACC between
dynamical and hybrid predictions are marginal. The ACC
of week-3 hybrid U100 predictions, relative to dynamical
predictions, is lower over southern Europe and stronger
over northern Europe. However, the differences in ACC
between week-4 hybrid and dynamical U100 predictions
are marginal over the European domain. There are only
marginal differences in ACC between hybrid and dynam-
ical T2m predictions over continental Europe in week-3
and week-4. Similar to Figures 5 and 6, the improvements
in ACC brought in by hybrid predictions are noticeable
starting week-5. Although the ACC remains poor (i.e.,
≤ 0.4) for U100 predictions starting week-5, the hybrid
predictions marginally improve ACC over a large part of
the domain. The ACC of T2m hybrid predictions is also
marginally improved over more than two-thirds of conti-
nental Europe starting week-5.
We now compare the differences in reliability, resolu-

tion, and sharpness between dynamical and hybrid predic-
tions with the help of reliability diagrams. We recall that
reliability is a measure of calibration of the issued fore-
cast probabilities. In a reliability diagram, the reliability
component can be measured as the weighted average of

the squared difference between the points and the diagonal
line. The number of forecasts in each bin is used asweights.
The smaller the vertical distance between the points and
the diagonal line, the more reliable are the predictions.
In other words, perfectly reliable predictions have forecast
probabilities essentially equal to observed frequencies, and
hence all the points fall on the 45° diagonal line. The cli-
matological line is the vertical or horizontal line drawn at
the theoretical climatological probability of occurrence of
the event considered (e.g., the climatological probability
for a tercile is 1/3). Resolution measures the variations in
the frequency of occurrence of an event as a function of
the issued forecast probability. The resolution component
can be measured as the weighted average of the squared
difference between the points and the horizontal climato-
logical line. The larger the vertical distance between the
points and the horizontal climatological line, the higher
the resolution. If the line connecting the points shows per-
sistent offset from the 45° diagonal line, it indicates the
presence of unconditional biases. Sharpness is a measure
of the ability of forecasts to produce concentrated pre-
dictive distributions that are distinct from climatological
probabilities. In a reliability diagram, the larger the hori-
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Fig. 7. (Top) Temporal evolution of Anomaly Correlation Coefficient (ACC) of dynamical predictions of U100 and T2m over Europe. (Bottom)
Temporal evolution of the difference of ACC between hybrid and dynamical predictions (i.e., ACCHY - ACCDY) over Europe.

zontal distance between the climatological probability bin
and the bin containing the maximum number of forecast
instances, the sharper the predictions. The no skill line
is the line located midway between the perfect reliability
line and the horizontal climatological line. Accordingly,

the points located within the grey region bounded by the
vertical climatological line and the no skill line contribute
positively to skill. For a detailed description of reliability
diagrams with examples, the reader is directed to Wilks
(2019).
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Figure 8 compares reliability diagrams between dynam-
ical and hybrid models for upper and lower terciles of
weekly mean U100 predictions for week-4 averaged across
southern Scandinavia. We choose this particular domain
and week for illustration purposes as the mean-FCRPSS
of hybrid predictions is higher than that of dynamical pre-
dictions over this domain and during this week (Figure 5).
For the upper tercile, hybrid predictions with a reliability
component of 0.009 are more reliable than dynamical pre-
dictions (reliability = 0.016). Both the dynamical and hy-
brid predictions for upper tercile have a similar resolution
(∼0.007). However, for the lower tercile, both the relia-
bility and resolution components of hybrid predictions are
better than that of dynamical predictions. The difference
in sharpness between dynamical and hybrid predictions is
marginal. Reliability diagrams for the other lead times
yield similar conclusions to the one obtained here: hybrid
predictions are more reliable and have a better resolution
than dynamical predictions (Figure A2 in Appendix d).
Figure 9 compares the reliability diagrams for upper and

lower terciles of weekly mean T2m predictions for week-4
averaged across Germany (47.3° - 55° N, 6.3° - 15.4° E)
(Figure A1 in Appendix c) between dynamical and hybrid
predictions. For the upper tercile, the reliability compo-
nent of hybrid predictions (0.019) is higher than that of
dynamical predictions (0.010), with both predictions hav-
ing a similar resolution (∼0.02). Although the reliability
of upper tercile hybrid predictions looks similar to that of
dynamical predictions at first sight, the hybrid predictions
are in fact degraded due to the introduction of cold bias
through the statistical model as a result of the warming cli-
mate. On the other hand for the lower tercile, the reliability
component of hybrid predictions (0.013) is lower than that
of dynamical predictions (0.018), with both predictions
having a similar resolution (∼0.025). The sharpness of
the upper tercile hybrid predictions is marginally degraded
relative to that of dynamical predictions.
We treat the cold bias of hybrid predictions by adjusting

the warming trend through a simple procedure. Firstly, we
compute the observed climatology for any given week and
year under consideration by aggregating T2m of the same
week and the two adjacent weeks over each of the previ-
ous 15 years from ERA5 reanalysis. Then, we assume the
trend to be linear and fit a trend line to this climatological
data. As we have chosen a 15-year period for climatol-
ogy, the linearity assumption for the warming trend stays
approximately valid (e.g., Wilks 2013; Wilks and Livezey
2013). Finally, we extrapolate the trend to the year un-
der consideration and add it to statistical predictions. We
then obtain trend-adjusted hybrid predictions (HYTrAd) by
concatenating dynamical predictions to trend-adjusted sta-
tistical predictions. Adjusting for the trend in this way im-
proves the reliability component of HYTrAd for the upper
(0.004) tercile without degrading the resolution. Since ad-
justing for the trend in this way shifts the entire distribution

to the right, it may degrade both reliability and resolution
for the lower tercile. Nevertheless, trend-adjusted hybrid
predictions show improved sharpness for both the terciles.
The reliability diagrams for the remaining lead times is
presented in Figure A3 (Appendix d). The intensity of the
cold bias in the statistical model is different in different
regions within Europe. There are other more sophisticated
ways to deal with trend in a non-stationary climate, some
of which are described inWilks (2013), Wilks and Livezey
(2013), and Wilks (2014). An alternative way to deal with
the trend is to train on detrended T2m anomalies in the
statistical model. Nevertheless, exploring the efficiencies
of different trend adjustment methods will depend on the
targeted application, and is hence beyond the scope of this
research. Overall, the presented reliability diagrams show
that the improved accuracy of hybrid predictions of surface
fields relative to the corresponding dynamical predictions
(Figures 4, 5 and 6) stems from improved reliability and
resolution.

5. Discussion
a. How sensitive are the statistical predictions to the choice

of predictor domain?

The assessment of the previous section shows promis-
ing potential for extracting more skillful information from
sub-seasonal predictions for surface variables using the
methodology described in section 3. In this section, we
discuss some of the choices and perspectives regarding
this methodology.
We tested several predictor domains by varying size and

geographical location to investigate the sensitivity of sta-
tistical prediction quality to the choice of domain. The
predictor domain is tailored to describe the large-scale cir-
culation, andmore precisely features of this circulation that
impact surface fields over Europe. Hence, it is logical to
choose a predictor domain that is larger than the predictand
domain. Given the mid-latitude circulation and dynam-
ics (westerly flow, eastward traveling perturbations), it is
expected that a domain shifted westward (i.e., upstream)
should be best (Alonzo 2018). We recall that the predictor
domain retained in this study is Euro-Atlantic (20° - 80°N,
120°W- 40° E). Displacing the predictor domain eastward
(i.e., between 90° W - 70° E) without changing the size
yields similar results to the retained Euro-Atlantic domain.
However, choosing the predictor domain to be the same as
that of the predictand domain (i.e., 34° - 74° N, 13° W -
40° E) considerably degrades statistical prediction quality.
Shifting the predictand domain-sized predictor domain to
the west between 67°W and 14°Wmarginally (but identi-
fiably) degrades statistical prediction quality with respect
to the case when the predictand domain-sized predictor do-
main is centered over the predictand domain. This confirms
our hypothesis that the statisticalmodel captures prominent
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DY HY

Fig. 8. Reliability diagrams for upper and lower terciles of weekly mean U100 predictions for week-4 averaged across southern Scandinavia
(52.0° - 61.0° N, 4.4° - 19.0° E) (Figure A1 in Appendix c). The forecasts are stratified into five bins of equal width. The size of the points
is proportional to the number of forecasts in the respective bins. The vertical bars refer to the 95% confidence intervals computed through the
standard parametric approach by assuming a normal distribution for the underlying data (Machin et al. 2013). The vertical and horizontal dotted
lines indicate the climatological tercile probabilities (theoretically, the value is 1/3) in the forecasts and observations, respectively. Perfectly reliable
predictions fall on the dotted diagonal line (45°) connecting the points (0,0) and (1,1). The points located within the grey area contribute positively
to skill. (DY) Dynamical predictions. (HY) Hybrid predictions.

DY HY HYTrAd

Fig. 9. Reliability diagrams for upper and lower terciles of weekly mean T2m predictions for week-4 averaged across Germany (47.3° - 55°
N, 6.3° - 15.4° E) (Appendix c). The forecasts are stratified into five bins of equal width. The size of the points is proportional to the number
of forecasts in the respective bins. The vertical bars refer to the 95% confidence intervals computed through the standard parametric approach by
assuming a normal distribution for the underlying data (Machin et al. 2013). The vertical and horizontal dotted lines indicate the climatological
tercile probabilities (theoretically, the value is 1/3) in the forecasts and observations, respectively. Perfectly reliable predictions fall on the dotted
diagonal line (45°) connecting the points (0,0) and (1,1). The points located within the grey area contribute positively to skill. (DY) Dynamical
predictions. (HY) Hybrid predictions. (HYTrAd) Trend-adjusted hybrid predictions.

information from the large-scale, mid-tropospheric west-
erly flow.

b. How to further improve the hybrid prediction quality?

In this study, we used a single predictor, i.e. Z500
over Euro-Atlantic, to improve the quality of surface field
predictions. Other fields, tapping into other sources of
sub-seasonal predictability (e.g., ocean, soil moisture,
cryosphere), could be used in complement to Z500 to fur-
ther improve the quality of surface field predictions (e.g.,
Seo et al. 2019; Domeisen et al. 2020). The redundancy
analysis model can also be used as a tool to investigate
physical as well as time-lag relationships between different

predictors and predictands, such as in the case of assessing
impacts of MJO on extra-tropical weather (Zheng et al.
2018).
An additional way to improve hybrid predictions in-

volves a more clever combination of ensembles from dy-
namical and statistical predictions. We recall that in this
study, we concatenate dynamical and statistical predic-
tions with each having an ensemble size of 50 to obtain
a 100-member equally-weighted ensemble hybrid predic-
tion. Nonetheless, combining ensembles through concate-
nation induces redundancy as some of the information that
statistical prediction brings inmay already be present in dy-
namical prediction. With the addition of other predictors,
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the redundancy of ensemblemembers of hybrid predictions
increases substantially.
As a first attempt to put proper weights on statistical

and dynamical ensemble members of hybrid predictions,
we classified statistical predictions into skillful or other-
wise based on the values of observed redundancy PCs
with respect to their climatological distribution when the
dynamical predictions are initiated. In other words, we
examined whether the observed redundancy PC values be-
ing in the lower or upper extreme quantiles with respect to
their climatology at the time when dynamical predictions
are initialized leads to the improved or degraded skill of
statistical predictions. However, the results showed no de-
tectable relationship between the two, and hence this path
was not pursued further. A promising way forward here
is through a Linear Inverse Model approach as realized
in Albers and Newman (2021), and the authors plan to
implement this in a future study.
There exist several alternative techniques to reasonably

select ensemble members by minimizing redundancy. The
most popular method for combining ensembles is Bayesian
Model Averaging (BMA) (e.g., Schepen et al. 2012, 2014,
2016; Strazzo et al. 2019). BMA combines different mod-
els by giving different weights to the ensemble members
from each model based on their performance. Another
method for combining models that is gaining attention is
the optimal transport distance orWasserstein distance (e.g.,
Peyré and Cuturi 2019; Cumings-Menon and Shin 2020).
The authors plan to investigate and compare these two
methods in a future study.

6. Conclusions
With increasing decarbonization of the energy sector

(IEA 2021), the energy industry requires accurate predic-
tions of essential climate variables such as surface tem-
perature and 100 m wind speed across a continuum of
timescales. Having accurate predictions of essential cli-
mate variables on sub-seasonal timescales enables the en-
ergy industry to anticipate and prepare contingency plans
in the face of anomalies in wind energy production and
consumption (White et al. 2017). This calls for ways to
improve the skill horizon of predictions of essential climate
variables.
Surface variables such as wind speed and temperature

are essential for many applications, yet in the forecast mod-
els, surface variables are not the most realistic. They are
indeed strongly affected by small-scale, local features, and
are heavily sensitive to parametrizations, which always in-
troduce strong uncertainties. The skill horizon of predic-
tions of surface variables is thus limited by errors in the rep-
resentation of initial conditions, model formulations, and
the use of restricted spatial resolution in sub-seasonal pre-
diction models. Large-scale, low-frequency fields have the
advantage of being more skillful than surface fields, and in

addition, they drive a large part of the variability of surface
fields. In this study, we have proposed a novelmethodology
to improve predictions of surface variables by tapping into
the large-scale, more reliable variables (e.g., Z500), and
relating these to a surface variable of interest by training
on the observationally derived historical data (i.e., ERA5
reanalysis). Generally, across Europe, weather regimes
have been commonly used to provide a compact summary
of the large-scale configuration of the atmosphere. For in-
stance, Alonzo (2018) used weather regimes to summarize
the large-scale atmospheric state and infer the likely sur-
face wind speed distribution from these regimes using non-
linear regression. Although weather regimes are powerful
tools to anticipate surface conditions, the main limitations
of the use of classical weather regimes for deducing surface
fields are that these weather regimes represent large-scale
atmospheric variability independently of the surface fields,
and that each surface climate variable responds differently
to the same weather regime. This calls for the development
of new approaches to obtain large-scale spatial patterns of
variability which take into account the variability of the
targeted surface variable.
In this study, we have employed redundancy analysis

to carry out a dimension reduction of the large-scale field
(i.e., Z500). Redundancy analysis provides large-scale pat-
terns specifically designed to capture the variability of a
surface field of interest. We have compared the coeffi-
cients of determination between patterns obtained using
Principal Component Analysis against those derived using
Redundancy Analysis when used as predictors in a multi-
linear regression model to reconstruct surface fields. We
have then employed the relationship between patterns ob-
tained using Redundancy Analysis and surface fields on
the sub-seasonal dynamical predictions of patterns to ob-
tain statistical probabilistic predictions of surface fields.
Subsequently, we have combined statistical and dynamical
predictions of surface fields through a simple concatena-
tion of the respective ensemble members. From the results
presented, the following conclusions can be drawn:

1. The large-scale patterns obtained using Redundancy
Analysis better capture surface fields over Europe
compared to patterns derived using Principal Com-
ponent Analysis.

2. The added value of statistical predictions increases
with lead time, and so does their contribution to the
improved skill of hybrid predictions.

3. Combining dynamical and statistical predictions
through a simple concatenation improves the skill of
surface field predictions significantly over a large part
of Europe at all lead times.

4. The improved accuracy of hybrid predictions rela-
tive to dynamical predictions stems from improved
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reliability and resolution. No significant changes are
observed in association and sharpness between dy-
namical and hybrid predictions.

5. The combination of dynamical and statistical predic-
tions can certainly be improved. Depending on the
initial state and/or the forecast evolution, one may
have an a priori estimate of predictability, which could
inform amore efficient combination of dynamical and
statistical predictions.

The redundancy analysis model employed in this study
can be used to identify spatial patterns of variability that
impact surface conditions at a particular location of in-
terest such as a wind farm. Wind farms, in addition to
wind speed, require information about wind direction for
operational purposes, e.g. to take into account the effect
of wakes. In this regard, the redundancy analysis model
can be employed for wind components separately. As a
perspective, the redundancy analysis model could be de-
ployed to identify spatial patterns of variability for other
climate variables such as solar radiation and precipitation,
and as well as for energy variables such as renewable en-
ergy production and consumption. The skill of statistical
predictions realized in this study can be decomposed into
two components: one, the skill of relevant large-scale Z500
patterns in the dynamical predictions, and two, the skill of
regression. Since the patterns derived using Redundancy
Analysis differ from those obtained using Principal Com-
ponent Analysis, in terms of both spatial structure and
explanatory power, it would be interesting to understand
the differences in skill horizon between these patterns in
dynamical predictions. As hybrid predictions developed in
this study remain skillful even at a lead time of sixweeks for
both variables, it would be interesting to see their added
value on seasonal timescales. These research questions
along with the addition of other sources of predictability,
and employment of more efficient ensemble selection are
objectives for future studies.
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APPENDIX

a. Forecast bias adjustment

The bias-adjusted ensemble member x∗k for any forecast
at a given lead time is

x∗k = (xk − x̄cli)𝜎ref
𝜎cli

+ ōref , (A1)

where xk is the raw member, x̄cli and 𝜎cli are the mean
and standard deviation, respectively, of all the members of
the re-forecast set corresponding to the forecast, ōref and
𝜎ref are the mean and standard deviation, respectively, of
ERA5 reanalysis corresponding to the re-forecasts.

b. Wilcoxon signed-rank test for statistical significance

Wilcoxon signed-rank test is a non-parametric hypoth-
esis test that is used to investigate whether the consid-
ered data samples are derived from the same population or
generating process (Wilcoxon 1945; Conover 1971; Wilks
2019). The test assesses for possible differences in location
(i.e., rank) between members of a paired dataset. Here, the
test statistic is based on ranks rather than numerical values
of the data.
In this study, we consider a total of 103 forecasts ini-

tialized in the boreal winter between December 2016 and
February 2020. We define the null hypothesis as "there
is no difference in fair-CRPSS between dynamical and hy-
brid predictions", and the alternate hypothesis as "hybrid
predictions have higher fair-CRPSS than dynamical pre-
dictions". We treat ties in the paired data using the method
described in Pratt (1959).

c. Inter-annual variability of U100 and T2m over Europe

The inter-annual variability of U100 and T2m over Eu-
rope is shown in Figure A1.
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U100 T2m

Fig. A1. Illustration of the inter-annual variability of boreal winter ERA5 reanalysis of 100 m wind speed (U100) and 2 m temperature (T2m)
over Europe. The inter-annual variability is computed as the standard deviation of boreal winter weekly means between December 1999 and
February 2016. The red colored rectangles in U100 and T2m correspond to southern Scandinavia (52.0°N - 61.0°N, 4.4° E - 19.0° E) and Germany
(47.3° N - 55° N, 6.3°E - 15.4° E), respectively.

d. Additional reliability diagrams

The reliability diagrams for upper and lower terciles
of weekly mean U100 and T2m predictions are shown in
Figures A2 and A3, respectively.
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Figure S1: Illustration of the temporal evolution of ensemble Probability Density Functions (PDFs) of dynamical 
(DY), statistical (ST), hybrid (HY), and climatological (CL) 100 m wind speed predictions. The PDFs are computed 
as kernel-density estimates (Gaussian kernel) using ensemble members of weekly mean values averaged over 
Germany (47.3° - 55° N, 6.3° - 15.4° E). The grid point values are weighted by the cosine of their respective 
latitude before computing domain average. This illustration corresponds to dynamical predictions initiated on 5 
February 2018. The red vertical line in each of the panels indicates the observed weekly mean (OB).

Supplemental material

Figure S2: As in Figure S1, but over the United Kingdom (49° - 60° N, 10° W° - 4° E) corresponding to dynamical 
predictions initiated on 5 January 2017. 
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Figure S3: As in Figure S1, but over France (43° - 51.4° N, 5.5° W° - 7.3° E) corresponding to dynamical 
predictions initiated on 3 January 2019. 
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Figure S4: As in Figure S1, but over Spain (36° - 43.3° N, 7.2° W° - 0.1° E) corresponding to dynamical 
predictions initiated on 23 December 2019.
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4 Case study: How well in advance can
we anticipate wind droughts?
Under pressure, we do not rise to the occasion,

but default to our level of training.
— Anonymous

Objective
The key objective of this chapter is to understand
the limits of operational predictability of the
European wind droughts through the case of the
July 2018 wind drought.

Data and Methods
As forecasts, we use the sub-seasonal pre-
dictions of 100-m wind speed over Europe
and geopotential height at 500 hPa over Euro-
Atlantic from the European Centre for Medium-
Range Weather Forecasts for boreal summer
between 2016 and 2021. As a reference, we use
ERA5 reanalysis of the same two variables over
the same domain for boreal summer between
1979 and 2021. We obtain hybrid predictions
using the statistical downscaling methodology
developed in the previous chapter. We then
investigate the predictability limits of both dy-
namical and hybrid predictions in anticipating
the wind drought of July 2018.

Key conclusion
Both the dynamical and hybrid predictions fail
to anticipate the wind drought beyond a lead
time of one week. This is attributed to persis-
tent difficulties of numerical weather prediction
models with atmospheric blocking.

Publication
The manuscript of this chapter has been sub-
mitted to Monthly Weather Review in October
2022, and is currently under review.
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On the sub-seasonal predictability of the European wind droughts: a case of July 2018
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ABSTRACT: The European energy sector is increasingly becoming weather-sensitive due to the growing share of variable renewables in
the electricity mix. With Europe aiming to derive 40% of its demand from renewables by 2030, several recent episodes of wind droughts
have raised concerns about the security of supply. Hence, the energy sector needs to anticipate such extreme cases to plan for alternatives.
With this motivation, we study the sub-seasonal predictability of the July 2018 wind drought over Europe when 100-m wind speeds
weaker than 30% of the climatological mean were observed for more than a week over the North Sea. These weak winds result from
blocked circulation over eastern Scandinavia and the Atlantic Ocean. Assessment of sub-seasonal predictions from the European Centre for
Medium-Range Weather Forecasts (ECMWF) indicates high uncertainty in predicting both the upper-level as well as surface fields a week
before the event. Additionally, this study allowed us to test the application of a recently developed statistical downscaling methodology in
improving the sub-seasonal wind speed predictions. No significant improvements are obtained relative to dynamical predictions, consistent
with the difficulty in predicting large-scale atmospheric evolution. Our analysis attributes the failure of predicting this wind drought to the
persistent difficulties of numerical weather prediction models with atmospheric blocking. Finally, we investigate the skill of the ECMWF
model in predicting extreme winds by comparing the Brier Skill Score between upper- and lower-decile predictions. The results suggest a
bias of the ECMWF model in more skillfully predicting one extreme compared with the other.

1. Introduction
The European Green Deal, approved in 2021, will make

Europe the world’s first climate-neutral continent by 2050
if implemented correctly (IEA 2020). This deal comes
in the backdrop of the successful implementation of the
earlier 20/20/20 strategy of the European Union (Förster
et al. 2021). To achieve climate neutrality by 2050, the
European Commission has set an ambitious interim target
of deriving 40% of its final energy demand from renewable
sources by 2030 (IEA 2021). This target of 40% is almost
double the share met by renewable sources in 2019.

In 2019, wind power became the largest renewable
source of electricity in the European Union (IEA 2020).
With a growing share of variable renewable power sys-
tems in the energy mix, the European energy sector is in-
creasingly becoming weather-sensitive and thus concerned
about the security of supply. Several recent episodes of
wind droughts (i.e., prolonged periods with weak winds)
and their associated impacts on the energy sector are a
testimony to this (e.g., TheGuardian 2018; NewScientist
2018). One such episode occurred in July 2018 when
wind speeds weaker than 30% of the climatological nor-
mal were observed for more than a week in and around the
North Sea. Figure 1 illustrates the 100-m wind speed for
the week between 16 and 22 July 2018. As can be noticed
from the observed weekly mean wind speed (left panel in
Figure 1), the wind speed in and around the North sea is
typically lower or closer to the cut-in speed (i.e., between

Corresponding author: Naveen Goutham,
naveen.goutham@edf.fr/naveen.goutham@polytechnique.edu

3 and 4 m s−1 (Manwell et al. 2010; Burton et al. 2011))
of a wind turbine. The right panel in Figure 1 shows pro-
nounced negative anomalies (down to -50%) in and around
the North Sea, with the average being -26% in the region
bounded by the magenta-colored rectangle. A 26% lower
wind speed translates to about 60% reduction in wind en-
ergy production relative to climatology. The North Sea,
with the highest density of installed wind power capacity
in Europe at the time of writing this manuscript (Figure
2) (WindEurope 2022), is a crucial contributor to the Eu-
ropean energy mix. Despite the electricity demand being
lower and the solar photovoltaic production being higher in
summer compared with other seasons (e.g., Šúri et al. 2007;
Gallo Cassarino et al. 2018), such low wind situations may
put the energy sector at serious risk of undersupply. In
this regard, a few studies have investigated the episodes of
wind droughts in the past: Jiménez et al. (2011) studied
the effect of heat waves and drought on surface wind con-
ditions during the summer of 2003 over the northeastern
Iberian Peninsula and found that the wind drought was due
to synoptic conditions blocking the climatological north-
westerly flow. Additionally, they linked the wind drought
to the modulation of mesoscale conditions influenced by
the availability of soil moisture. Lledó et al. (2018) ex-
amined the effect of Pacific sea surface temperature on the
wind drought which affected the United States in the first
quarter of 2015. They found high sea surface temperatures
over the western tropical Pacific linked to a strongly pos-
itive phase of the Northern Pacific Mode to be the main
driver of the wind drought. Ohlendorf and Schill (2020)
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investigated the frequency and duration of low-wind events
for onshore wind power in Germany using 40 years of re-
analysis data. They found that the frequency of low-wind
events is higher in summer than in winter. Li et al. (2021)
studied the climatology of coupled low wind and solar
power events (a.k.a. Dunkelflaute events) in 11 countries
surrounding the North and the Baltic seas. They found an
increased likelihood of the occurrence of the Dunkelflaute
events in late fall and early winter compared with the other
months of the year. Nevertheless, based on the knowledge
of the authors, there is no published peer-reviewed research
on the operational predictability of wind droughts.

In recent times, there is a growing interest within the
energy sector about sub-seasonal predictions, i.e. predic-
tions beyond two weeks and up to two months (Robert-
son and Vitart 2018). The predictability on sub-seasonal
timescales is primarily provided by the Madden-Julian os-
cillation (e.g., Jones et al. 2004a,b; Zheng et al. 2018),
snow cover (e.g., Sobolowski et al. 2010; Lin and Wu 2011;
Orsolini et al. 2013), stratosphere-troposphere interactions
(e.g., Baldwin et al. 2003; Domeisen et al. 2020; Schwartz
and Garfinkel 2020), land (e.g., Koster et al. 2011; van den
Hurk et al. 2012; Prodhomme et al. 2016; Seo et al. 2019),
and ocean conditions (e.g., Woolnough et al. 2007; Fu
et al. 2007; Subramanian et al. 2019). Having prior infor-
mation about the anticipated renewable energy production
and electricity consumption on sub-seasonal timescales
can guide the energy industry in planning the required re-
serve levels, scheduling asset maintenance, determining
grid transmission capacity, and trading energy in markets
(White et al. 2017; Soret et al. 2019). To support the future
growth of wind power in Europe, it is important to under-
stand the operational predictability and the limits thereof
of wind droughts. Hence, we focus this study on the sub-
seasonal predictability of the July 2018 wind drought over
Europe. The manuscript is organized as follows: section
2 describes the data and methodology employed, section 3
analyzes the predictability of the July 2018 wind drought in
detail, and section 4 provides discussion and conclusions.

2. Data and Methodology
a. Data

In this study, we use extended-range forecasts and ret-
rospective forecasts (re-forecasts) originating from the
European Centre for Medium-Range Weather Forecasts
(ECMWF) (Vitart et al. 2019). The extended-range fore-
casts are produced by extending the ocean-atmosphere
coupled medium-range ensemble forecasts (i.e., up to two
weeks) to 46 days twice a week at 00 UTC on Mondays and
Thursdays. These forecasts are run at a spatial resolution
of ∼18 km (Tco639L91) up to a lead time of 15 days, and
at ∼36 km (Tco319L91) beyond (Vitart et al. 2017, 2019).
The operational ensemble forecasts consist of 51 members
(50 perturbed + control), of which the perturbed members

are obtained by perturbing both the initial conditions and
the model physics. The perturbations in the initial condi-
tions are obtained using singular vectors (Leutbecher 2005;
Leutbecher and Palmer 2008) and ensemble data assimila-
tion (Buizza et al. 2008; Isaksen et al. 2010). The model
perturbations are carried out using the Stochastically Per-
turbed Parametrisation Tendencies (SPPT) scheme (Buizza
et al. 1999; Palmer et al. 2009; Leutbecher et al. 2016). The
perturbed members thus obtained serve to account for un-
certainties in initial conditions and model parametrizations
(Buizza 2019).

Despite accounting for uncertainties in initial conditions
and model parametrizations, the forecasts suffer from sys-
tematic errors (Siegert and Stephenson 2019). The system-
atic errors are generally in the form of persistent over- or
under-estimation of values and over- or under-dispersion
of the distribution. It is necessary to remove systematic er-
rors before employing the model. The ECMWF produces
re-forecasts which serve to estimate and remove system-
atic errors inherent in the operational version (Vitart et al.
2008). For each issued operational forecast, the ECMWF
produces a set of 20 re-forecasts of 11 members (10 per-
turbed + control), issued for the same calendar day of the
year as the operational forecast over each of the past 20
years. These re-forecasts are initialized using initial con-
ditions obtained from ERA5 reanalysis. All the forecasts
employed in this study are bias corrected using the Mean
and Variance Adjustment method (Torralba et al. 2017;
Manzanas et al. 2019; Goutham et al. 2022).

We retrieve forecasts and the corresponding re-forecasts
of zonal and meridional components of 100-m wind speed
and geopotential at 500 hPa on a global grid from the Mete-
orological Archival and Retrieval System of the ECMWF.
The retrieved spatial resolution is 0.9° and the temporal
resolution is 6 h (instantaneous values at 00, 06, 12, and
18 UTC). The data are retrieved for the boreal summer
(i.e., June-July-August) between 2016 and 2021. We ob-
tain 100 m wind speed by computing the square root of the
sum of squares of the zonal and meridional components.
The geopotential height (Z500) is computed by dividing
the geopotential by the Earth’s gravitational acceleration,
g (= 9.806 m s−2). We use only the perturbed members
of forecasts and re-forecasts in this study. The control of
the ensemble should be treated as another indistinguish-
able ensemble member. However, due to the unavailability
of the control member in the internal database of ESPRI
(Ensemble de services pour la recherche à l’Institut Pierre-
Simon Laplace) as a result of an unintentional man-made
error, we had to use only the perturbed members. Nev-
ertheless, we expect the impact of the missing control on
the properties of the ensemble distribution on sub-seasonal
timescales to be insignificant.

Although the forecast quality is generally verified against
observations (Coelho et al. 2019; Wilks 2019), we use
ERA5 reanalysis (Hersbach et al. 2020) as the ground

Case study: How well in advance can we anticipate wind droughts? Chapter 4

65



3

Observation Climatology Observed anomaly

Fig. 1. Maps of the 100-m weekly mean wind speed for the week between 16 and 22 July 2018, the mean climatology for July (1979-2021 without
2018), and the corresponding anomaly over Europe. The figures are produced using data from ERA5 reanalysis (refer to section 2a)

Fig. 2. Location of the major onshore and offshore wind farms in
Europe as of August 2022. The map is sourced from Wind Europe
(https://windeurope.org/).

truth due to the limited- or non-availability of serially
complete and spatially coherent observed dataset (Kalnay
2003; Coelho et al. 2019). We retrieve the same variables
as stated earlier from the Climate Data Store of the Coper-
nicus Climate Change Services (Raoult et al. 2017) at the
same temporal and spatial resolution as the forecasts. The
data are retrieved for the period between 1979 and 2021.
The choice of using ERA5 reanalysis as the ground truth
is influenced by the fact that the wind speed is represented
more realistically in ERA5 reanalysis when compared with
other reanalysis datasets over Europe (e.g., Olauson 2018;
Ramon et al. 2019; Jourdier 2020; Dörenkämper et al.

2020; Brune et al. 2021; Molina et al. 2021; Murcia et al.
2022).

b. Methodology

Despite identifying the fundamental sources of pre-
dictability on sub-seasonal timescales (Vitart et al. 2012),
the skill horizon of sub-seasonal predictions of 100-m wind
speed is between two to three weeks over Europe, de-
pending on the season and geographic region (Goutham
et al. 2022). In addition to the increased sensitivity of
surface variables to model parametrizations (Buizza and
Leutbecher 2015; Toth and Buizza 2019), the difficulties
of numerical weather prediction models in accurately fore-
casting surface variables beyond two weeks are linked to
our improper understanding of the complex interactions
between various components of the Earth system (Palmer
et al. 2009; Leutbecher et al. 2016; Robertson and Vitart
2018; Lledó and Doblas-Reyes 2020). Nevertheless, taking
into consideration the longer skill horizon of large-scale,
upper-level fields compared with surface fields, and the
physical relationship between them, we can employ sta-
tistical downscaling techniques to infer surface variables
using the more reliable information contained in the pre-
diction of large-scale fields (e.g. Alonzo et al. 2017; Alonzo
2018; Manzanas et al. 2018; Lledó and Doblas-Reyes 2020;
Goutham et al. 2021).

In this study, we implement a statistical downscaling
methodology which we have developed in Goutham et al.
(Forthcoming). Figure 3 summarizes the methodology
implemented in this study. Overall, the statistical down-
scaling is carried out in two steps:

1. Capturing the relationship between the large-scale
atmospheric circulation and 100-m wind speed:
Here, we employ redundancy analysis (von Storch
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Step-1: Training using ERA5 reanalysis

Step-2: Inferring 100-m wind speed using dynamical predictions of Z500

Z500 over 
Euro-Atlantic

100-m wind speed 
over Europe

Spatial patterns 
of variability of 

Z500

Obtain 
statistical

relationship

Dynamical 
ensemble 

predictions of 
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Z500

Statistical
ensemble 

predictions of 
100-m wind

speed 

Apply
statistical

relationship
Dynamical
ensemble 

predictions of 
100-m wind

speed 

Hybrid ensemble predictions

Fig. 3. Illustration of the statistical downscaling methodology employed in this study.

et al. 1999; Tippett et al. 2008; Wilks 2014, 2019)
between geopotential height at 500 hPa over the Euro-
Atlantic and 100-m wind speed over Europe to obtain
spatial patterns of variability of Z500 that maximize
the explained variance of 100-m wind speed. The
training in this study is carried out using ERA5 re-
analysis for boreal summer between 1999 and 2015.

2. Application on sub-seasonal predictions of the
large-scale atmospheric circulation: We apply the
linear relationship obtained in the previous step on
the sub-seasonal ensemble predictions of a restricted
number of spatial patterns of variability of Z500 to
infer 100-m wind speed over Europe. We call the
reconstructed ensemble predictions of 100-m wind
speed statistical predictions. We then combine these
predictions with dynamical ensemble predictions of
100-m wind speed to obtain hybrid predictions having
twice the size as dynamical predictions. In this study,
the redundancy analysis model is employed on sub-
seasonal predictions initialized during boreal summer
between 2016 and 2021.

We refer the reader to Goutham et al. (Forthcoming) for a
detailed description and the mathematical formulation of
the methodology.

3. Analysis of the case

a. The cause

The surface weather over Europe is mainly driven by the
large-scale atmospheric circulation over the Euro-Atlantic
(Grams et al. 2017; Zubiate et al. 2017; van der Wiel et al.
2019; Bloomfield et al. 2019; Cortesi et al. 2019; Garrido-
Perez et al. 2020; Cortesi et al. 2021). Figure 4 illustrates
the geopotential height at 500 hPa (Z500), the climatol-
ogy, and the anomaly observed for the week between 16
and 22 July 2018. The anomaly figure (right panel) shows
two positive anomalies around Europe: one over eastern
Scandinavia, and the other over the Atlantic Ocean. The
geopotential height over eastern Scandinavia is about 180
m above the climatological normal, and that over the At-
lantic Ocean is about 140 m above the climatological nor-
mal. Such blocking patterns displace the polar jet more
northward, thereby blocking the typical westerly flow from
entering Europe (e.g., Rex 1950; Reinhold 1987; Vautard
1990; Michelangeli et al. 1995). This results in weak winds
in and around the North Sea (e.g., Grams et al. 2017; Zu-
biate et al. 2017; van der Wiel et al. 2019; Bloomfield
et al. 2019; Cortesi et al. 2019; Garrido-Perez et al. 2020;
Cortesi et al. 2021).
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Observation Climatology Observed anomaly

Fig. 4. As in Figure 1, but for Z500. The dashed lines in the right panel indicate isobars and are plotted at an interval of 30 m.

b. How well was the wind drought forecast?

Figure 5 shows the weekly mean 100-m wind speed
anomalies for the week between 16 and 22 July 2018 from
the forecasts initialized on 16 July (lead-W0) and 9 July
(lead-W1). In lead-W0, almost all the members of the
ensemble indicate negative anomalies over the North Sea
and positive anomalies over western Russia, demonstrat-
ing a similar intensity and spatial pattern to that of the
observed anomaly (right panel in Figure 1). However, in
lead-W1, the ensemble displays a large spread, with mem-
bers showing contrasting anomalies. Although five out of
fifty members predict both the spatial pattern and the in-
tensity closer to the observed anomaly (not shown), the
ensemble mean neither predicts the intensity nor the spa-
tial pattern right. To illustrate this last point, the ensemble
mean over-predicts wind speed over the United Kingdom
on average by about 15%, and under-predicts over western
Russia by about 50%.

To understand the information contained in the ensem-
ble, we illustrate in Figure 6 the weekly evolution of ac-
curacy of the dynamical (DY) and hybrid (HY) ensemble
predictions, as a function of lead time, in forecasting weak
winds for the week between 16 and 22 July 2018. For
this purpose, we consider forecasts initialized on several
dates: 16 July (Monday), 9 July (Monday), and 11 June
2018 (Monday). The accuracy is measured as the proba-
bility of observing wind speed within 1 m s−1 around the
observation. Accordingly, the higher the probability, the
higher the accuracy. An allowance of 1 m s−1 of the obser-
vation, although arbitrary, is chosen to accommodate for
the model errors.

In lead-W0 in Figure 6, we can observe high accuracy of
the ensemble dynamical forecast over a large part of Europe
(average probability of 80% over the European domain),
higher than that of climatology (European domain average
of 47%). Kindly note that the hybrid prediction is not pro-
duced for lead-W0 as the forecast of Z500 is deterministic
in this lead. For more information, we refer the reader
to Goutham et al. (Forthcoming). In lead-W1, the over-

all accuracy of dynamical prediction drops significantly
to about 51% (European domain average). The hybrid
prediction, with a European domain-averaged probability
of 55% in lead-W1, is more accurate than the dynamical
prediction. The European domain-averaged probability of
statistical prediction alone in lead-W1 (59%, not shown) is
higher than that of both dynamical and hybrid predictions.
Since the probability of obtaining wind speed within 1 m
s−1 around the observation in all the three predictions sat-
urates starting lead-W1, we skip lead-W2, lead-W3, and
lead-W4 in the figure. In lead-W5, the European domain-
averaged probabilities of dynamical and hybrid predictions
are 47% and 51%, respectively. In lead-W1 and prior,
both dynamical and hybrid predictions completely miss
both regions of strong anomalies: the weak winds over
the North Sea and the strong winds over western Russia
(probabilities less than 20%). Nevertheless, hybrid pre-
dictions generally demonstrate higher accuracy compared
with dynamical predictions in predicting normal winds,
i.e. winds close to their climatological value. This can be
appreciated by comparing the spatial structure and the cor-
responding intensity of blue regions in hybrid predictions
with the normal winds in the observed anomaly map (i.e.,
white regions). Overall, none of the forecasts are able to
anticipate weak and strong winds beyond a week with an
acceptable level of certainty.

c. How well was the synoptic state forecast?

In Goutham et al. (Forthcoming), we illustrated that the
accuracy of 100-m wind speed hybrid predictions is gener-
ally higher than that of dynamical predictions over a large
part of Europe. In addition, we also demonstrated the
longer skill horizon of hybrid predictions compared with
dynamical counterparts. Despite this, the 100-m wind
speed hybrid predictions failed to foresee weak winds be-
yond a week in the case of the July 2018 wind drought.
The failure of the redundancy analysis model, in this case,
may be attributed to one or both of the following:

1. The breaking of the key hypothesis
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Fig. 5. Illustration of 100-m wind speed anomaly fields, showing extreme members of the ensemble and the ensemble mean for the week between
16 and 22 July 2018. Lead-W0 corresponds to the forecasts initialized on 16 July, and Lead-W1 corresponds to those initialized on 9 July.

To recall, the key hypothesis of the redundancy analy-
sis model is that the predictions of large-scale, upper-
level fields are generally more reliable than those of
surface fields (section 2b). Does this hypothesis hold
during extreme events such as wind droughts?

2. Insufficient learning by the model due to the rarity of
the event
The large-scale atmospheric state which led to this
wind drought may be rare and specific, and hence
the model may not have learned to treat such a case
during the training phase.

We first address the question of the key hypothesis of
the model. To understand the reliability of the prediction
of the large-scale atmospheric state, we illustrate in Figure
7 the state of weekly mean Z500 for the week between
16 and 22 July 2018 as it was forecast in the dynamical
predictions initialized on 16 July (lead-W0) and 9 July 2018
(lead-W1). Similar to Figure 5, almost all the ensemble
members predict blocking over eastern Scandinavia and

the Atlantic Ocean in lead-W0. However, in lead-W1,
the ensemble displays a large spread. A large proportion
of the ensemble members either miss the blocking over
eastern Scandinavia and the Atlantic Ocean completely or
underestimate the intensity starting lead-W1. In addition
to wrongly predicting a depression over the Atlantic Ocean
in lead-W1, the ensemble mean underestimates the eastern
Scandinavian blocking in excess of 100 m.

To further understand the ability of the ECMWF model
in forecasting atmospheric blocking over Europe that led to
the wind drought in and around the North Sea, we summa-
rize blocking by computing the indices of GHGN (Geopo-
tential Height gradients North) and GHGS (Geopotential
Height gradients South) over Europe (LejenÄs and Økland
1983; Tibaldi and Molteni 1990) (Appendix a). Figure 8
illustrates the daily evolution of blocking indices. Overall,
from Figure 8, it is conspicuous that the model finds it
difficult to predict blocking or anticipate its temporal evo-
lution precisely (when initialized after the blocking onset)
after about a week. This can be illustrated by tracking the
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Climatology
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X

Observed anomaly

HY

DY

Lead - W5
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Fig. 6. Illustration of the weekly evolution of accuracy of the different ensemble forecasts, as a function of lead time, for the week between 16
and 22 July 2018, showing the probability of obtaining the 100-m wind speed within 1 m s−1 around the observation. The observed anomaly for
the week is shown in the top right panel. The climatological probabilities are shown in the bottom right panel. The first three columns from left to
right correspond to forecasts initialized on 11 June, 9 July, and 16 July, respectively. DY = Dynamical predictions and HY = Hybrid predictions.

temporal evolution of the blue and orange curves from the
forecasts initialized on 9 July 2018. Despite all three fore-
casts being initialized with a blocked state with GHGN <
-10 m °lat−1, the forecasts find it difficult to follow the tem-
poral evolution of blocking after about six days. Although
the GHGS from the forecast initialized on 9 July 2018 is
well correlated in time with that of the observation, the
forecast grossly underestimates the observed GHGS after
about a week. As already pointed out in the literature,
this case highlights the persistent difficulties of numeri-
cal weather prediction models in forecasting the onset and
decay of atmospheric blocking events (e.g., Tibaldi and
Molteni 1990; Ferranti et al. 2015; Matsueda and Palmer
2018; Büeler et al. 2021; Lupo 2021; Davini et al. 2021;
Kleiner et al. 2021; Cortesi et al. 2021).

We now address the other possible reason for the fail-
ure of hybrid prediction in anticipating the July 2018 wind
drought. We particularly try to understand whether the
statistical downscaling model employed in this study has
learned sufficiently to reconstruct 100-m wind speed over
Europe using Z500 over Euro-Atlantic as the predictor.
For this purpose, we test the statistical downscaling model
using the observed weekly mean anomaly of Z500 for the
week between 16 and 22 July 2018 as the predictor (right

panel in Figure 4). Figure 9 shows the corresponding
predicted 100-m wind speed anomaly over Europe (to be
compared to the right panel of Figure 1). Overall, de-
spite the ability of the statistical downscaling model in
predicting weak winds over the United Kingdom, Ger-
many, and the region around the North Sea, the model fails
to reproduce the intensity right (-15% over the North Sea
instead of -30%). Furthermore, the reconstructed wind
speed anomaly does not reproduce the spatial pattern, es-
pecially over northern Europe. The positive wind anomaly
in western Russia is also absent. This suggests that the
model is insufficiently trained on extreme cases such as
the one presented here. This can be elucidated in Figure
10 which shows the climatology of blocking indices for
the boreal summer between 1999 and 2015, i.e. the pe-
riod used for training the statistical downscaling model.
The weekly mean indices of GHGN and GHGS for the
week between 16 and 22 July 2018 are illustrated in the
figure as black solid lines. With GHGN being closer to the
10th percentile and GHGS being greater than the 95th per-
centile, it is conspicuous that the atmospheric blocking of
16-22 July 2018 is a rare event. In addition to insufficient
learning by the statistical downscaling model, the substan-
dard performance of the model in reconstructing surface
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Lead - W0 Lead - W1

Fig. 7. As in Figure 5, but for Z500 anomalies. The members illustrated here correspond to those shown in Figure 5.

winds may be attributed to the inadequate statistical pre-
dictive power of a sole predictor (Z500). The way forward
to improving the predictive capability of the redundancy
analysis model is by retraining the model using data cover-
ing a longer period than what is currently being used, for
instance, using the back-extended ERA5 reanalysis (Bell
et al. 2021). Furthermore, additional predictors such as
sea surface temperature, geopotential height at the level of
the stratosphere, and land conditions can be used to better
predict atmospheric blocking (e.g., Jiménez et al. 2011;
Miller and Wang 2019), thereby improving the prediction
of 100-m wind speed.

4. Discussion and Conclusions
The previous section has highlighted the difficulties of

the dynamical and hybrid predictions in anticipating ex-
tremely weak winds over Europe for the July 2018 case.
This raises a broader question on the skill of dynamical and
hybrid prediction models to forecast extreme winds, weak

or strong, in general. To investigate this, we compute the
Brier Skill Score (BSS) (Brier 1950; Jolliffe and Stephen-
son 2003; Coelho et al. 2019; Wilks 2019) for the upper and
lower decile of 100-m wind speed, in dynamical and hybrid
predictions over Europe. The Brier Skill Score measures
the relative accuracy of a probabilistic forecasting system
with respect to another in forecasting a dichotomous event
(i.e., yes or no event). The Brier Skill Score is based on the
Brier Score, which is essentially the mean squared error
between forecast probabilities and the corresponding bi-
nary observations. The Brier Score is negatively oriented.
Accordingly, a perfect forecasting system should have a
Brier Score of zero. The reader is referred to Appendix
b to understand the computation of the Brier Skill Score.
Overall, the skill horizon of both dynamical and hybrid
predictions in foreseeing both the first and last deciles of
wind speed is about two weeks. In week-2, the upper decile
forecasts appear to be generally more skillful than the lower
counterparts over southern Europe. In contrast, the lower
decile forecasts appear to be more skillful than upper decile
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(a) (b)

Fig. 8. Illustration of the daily evolution of atmospheric blocking indices over Europe. (a) GHGN and (b) GHGS. The reader is referred to
Appendix a to learn about the computation of indices. The forecast indices shown in blue and orange lines indicate the ensemble mean of the
indices. The solid, dashed, and dash-dotted lines correspond to the forecasts initialized on 9 July, 12 July, and 16 July, respectively (also shown in
circles). The black curves correspond to the observed indices computed using ERA5 reanalysis. The grey-shaded region in (a) and (b) corresponds
to the week between 16 and 22 July 2018. The values below the horizontal dotted line in (a) and above the horizontal dotted line in (b) indicate
blocking.

Fig. 9. Redundancy statistical prediction of 100-m wind speed
anomaly for the week between 16 and 22 July 2018 over Europe us-
ing the observed Z500 anomaly over Euro-Atlantic for the same week
(right panel in Figure 4) as the predictor.

forecasts over western Russia and to the northwest of the
United Kingdom. This bias may either be attributed to the
fact that the synoptic conditions which lead to strong winds
over Europe are generally better predicted than those that

lead to weak winds (e.g., Grams et al. 2017; Zubiate et al.
2017; van der Wiel et al. 2019; Bloomfield et al. 2019;
Cortesi et al. 2019; Garrido-Perez et al. 2020; Büeler et al.
2021; Cortesi et al. 2021) or that the period considered
in here (i.e., boreal summer between 2016 and 2021) may
have been more favorable for the prediction of one extreme
with respect to the other due to favorable large-scale condi-
tions (e.g. Jung et al. 2011). This possible bias noticeable
in week-2 needs to be investigated further by computing
the Brier Skill Score using the data spread over a longer
period (for instance, using the re-forecasts). Beyond two
weeks, there is virtually no difference in BSS between up-
per and lower decile dynamical predictions. Nonetheless,
the upper decile hybrid predictions beyond two weeks show
positive BSS over Germany. This may be due to the ability
of the spatial patterns of variability of the statistical down-
scaling method to better reconstruct strong winds over this
continental region. This sensitivity would need to be veri-
fied by repeating this exercise using the re-forecasts and by
testing different predictor domains for reconstructing the
100-m wind speed. These questions will be explored in a
future study.

To conclude, wind droughts are important weather phe-
nomena having a significant impact on the energy sector.
In this study, we investigated the wind drought which took
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(a) (b)

Fig. 10. Illustration of the probability density functions (PDFs) of atmospheric blocking indices over Europe for the boreal summer between
1999 and 2015 (i.e., training period used for statistical downscaling). (a) GHGN and (b) GHGS. The indices are computed for weekly mean values
of Z500. The reader is referred to Appendix a to learn about the computation of indices. The PDFs are computed as kernel-density estimates
(Gaussian kernel). The blue and orange dash-dotted vertical lines correspond to specific quantiles as indicated in the figure. The values to the left
of the threshold (i.e., grey dotted line) in (a) and to the right of the threshold in (b) indicate blocking. The black solid lines in (a) and (b) indicate
the values for the week between 16 and 22 July 2018.

place during the week between 16 and 22 July 2018 when
wind speeds lower than 30% of the climatological normal
were observed in and around the North Sea - the region
with the highest density of wind farms in Europe. An at-
mospheric blocking event over eastern Scandinavia and the
Atlantic Ocean was identified as causing the wind drought.
Due to persistent difficulties of numerical weather predic-
tion models in forecasting the onset and decay of atmo-
spheric blocking events (e.g., Tibaldi and Molteni 1990;
Ferranti et al. 2015; Matsueda and Palmer 2018; Büeler
et al. 2021; Lupo 2021; Davini et al. 2021; Kleiner et al.
2021; Cortesi et al. 2021), the dynamical predictions show
high uncertainty in anticipating wind droughts beyond a
week. Similar to dynamical predictions, the hybrid pre-
dictions of 100-m wind speed obtained using redundancy
analysis, although more skillful than the dynamical coun-
terparts, equally fail to forecast the wind drought. Further
analysis of the case helped us to understand the limitations
of the statistical downscaling method in its current formula-
tion in forecasting extreme events. Finally, the comparison
of the Brier Skill Score between dynamical predictions of
upper and lower decile wind speed over Europe suggests
a possible bias of the ECMWF model in more skillfully
predicting one extreme over the other.
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APPENDIX

a. The atmospheric blocking indices over Europe

The geopotential height gradients in the north (GHGN)
and the south (GHGS) at any given longitude are computed
using a slightly modified version of the indices proposed
by LejenÄs and Økland (1983) and Tibaldi and Molteni
(1990). They are given below:

GHGN =
Z500(𝜙n) −Z500(𝜙o)

(𝜙n −𝜙o) (A1)
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Fig. 11. Forecast quality assessment across the European domain, showing the weekly evolution of the Brier Skill Score (BSS) for dynamical
(DY) and hybrid (HY) predictions. The BSS is computed for weekly mean 100-m wind speed forecasts of the upper (a) and lower deciles (b). The
forecasts considered here are for the boreal summer (i.e. June, July, and August) between 2016 and 2021. Lead week-1 corresponds to the weekly
average between days 0-6, week-1 between days 7-13, and so on. Positive BSS indicates that the forecasts are skillful relative to climatology.

and

GHGS =
Z500(𝜙o) −Z500(𝜙s)

(𝜙o −𝜙s) . (A2)

Here, 𝜙 denotes latitude where 𝜙n = 80° N, 𝜙o = 65° N,
and 𝜙s = 45° N. We first compute GHGN and GHGS for
daily mean values of Z500 at each of the longitudes over
the domain between 4.5° E and 40° E. We then compute
the zonal mean of GHGN and GHGS, and consider that
the domain is blocked if either GHGS is > 0 m °lat−1

or GHGN < -10 m °lat−1. We compute these indices for
both the ensemble forecasts of Z500 and the corresponding
observations (i.e., ERA5 reanalysis).

b. The Brier Skill Score

Although several scores exist to measure the accuracy of
probabilistic forecasts of dichotomous events (i.e., yes/no
events) (e.g., Jolliffe and Stephenson 2003; Wilks 2019),
the most popular of them is the Brier Score (Brier 1950;
Murphy 1986). The Brier Score (BS) is given by

BS =
1
n

n∑︁
k=1

(yk −ok)2, (A3)

where n is the number of forecast-observation pairs, yk
is the forecast probability, ok is the observed probabil-
ity (ok is equal to 1 if the event occurs, or 0 otherwise).
The relative value of forecasts with respect to climatol-
ogy is quantified using the Brier Skill Score (BSS), given
by BSS = 1− (BSforecast/BSclimatology). The forecast can
be either dynamical or hybrid. Skillful forecasts must
have positive BSS. The BSS in this work is computed for
weekly mean 100-m wind speed forecasts of upper and
lower deciles. The forecasts considered here are for the
boreal summer between 2016 and 2021.
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5 Conclusions and Perspectives
Prediction is very difficult, especially if it is

about the future.
— Niels Bohr

5.1 Conclusions
With a growing share of variable renewable
power systems in the energy mix, the European
energy sector is increasingly becoming weather
sensitive. With Europe looking forward to a cli-
mate neutral future, the energy sector requires
accurate predictions of essential climate vari-
ables beyond the deterministic range (i.e., two
weeks) to facilitate smooth operation. In this
regard, this Ph.D. served to provide information
to the energy sector on sub-seasonal timescales,
more informative than climatology, to aid in op-
erational decision-making. This Ph.D. focused
on two variables meaningful to the energy sec-
tor: the temperature at 2 m and wind speed
at 100 m. The thesis was organized into three
parts.

As an essential first step (Chapter 2), we quanti-
fied the skill of European sub-seasonal predic-
tions of 100-m wind speed and 2-m temperature
from the ECMWF using several quality metrics.
Overall, depending on the geographical loca-
tion and season, we observed temperature (skill
horizon of about five weeks) to be generally
more predictable than wind speed (skill horizon
of about three weeks). This study provided a

baselinemeasure of the skill of sub-seasonal pre-
dictions from the ECMWF. Through this study,
we hope to have strengthened the arguments in
favor of the utility of sub-seasonal predictions
in place of climatology for lead times of 2-5
weeks for energy-related applications.

As a second and significant step of the Ph.D.
(Chapter 3), we developed a statistical downscal-
ing methodology to infer surface temperature
and wind speed using sub-seasonal predictions
of the large-scale atmospheric circulation. We
employed dimension reduction using historical
data to capture the relationship between the
large-scale atmospheric circulation and energy-
relevant surface variables (i.e., temperature and
wind speed) over Europe. We later exploited
this relationship on sub-seasonal predictions of
the large-scale atmospheric circulation, which
are more reliable than surface variables, to infer
temperature and wind speed predictions. Com-
bining the dynamical (or direct) and the statisti-
cal (or indirect) predictions of surface variables,
we obtain an ensemble twice as large, which we
call hybrid predictions. Their skill was system-
atically assessed, demonstrating a significant
improvement in the skill of sub-seasonal pre-
dictions of both temperature and wind speed.
We attributed the improved accuracy of hybrid
predictions to improved reliability and reso-
lution. The implementation of this statistical
downscaling methodology in the operational
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decision-making value chain may bring addi-
tional value to the energy sector.

As a final part of the Ph.D., we studied episodes
of wind drought over Europe due to their im-
portance to the energy sector (Chapter 4). We
specifically investigated the July 2018 wind
drought due to its severity (weekly mean wind
speed ∼26% below climatology over the North
Sea). We analyzed the associated forecasts to
determine the predictability horizon of the event.
The wind drought of July 2018 was due to at-
mospheric blocking over eastern Scandinavia
and the Atlantic Ocean. This case illustrated the
difficulties in predicting wind droughts due to
persistent challenges in forecasting the onset and
decay of atmospheric blocking events. Finally,
we highlighted the need for innovative meth-
ods to improve the prediction of atmospheric
blocking.

5.2 Perspectives
Through this thesis, we demonstrated the value
of dynamical and hybrid sub-seasonal predic-
tions of 100-m wind speed and 2-m tempera-
ture over Europe for the energy sector. The
energy mix of the European Union includes
other sources of weather-sensitive renewable
power such as hydropower (installed capacity of
∼250 GW in 2021 (TheEuropeanCommission,
2022a)) and solar photovoltaics (installed capac-
ity of ∼160 GW in 2021 (TheEuropeanCommis-
sion, 2022b)). In this respect, themethodologies
developed in this thesis are equally applicable
to other energy-relevant climate variables such
as solar radiation, precipitation, and streamflow.
The methodologies may also be transferable
to energy variables such as renewable energy
production and electricity consumption.

In this thesis, we worked with predictions origi-

nating from a single model (i.e., ECMWF). Nev-
ertheless, given the availability of sub-seasonal
predictions from other models with different
ways of accounting for errors in initial conditions
and errors attributed to the imperfect knowledge
of the atmosphere, the energy sector could make
gains by working with multi-model predictions
(e.g., Siegert and Stephenson, 2019). There
exist several methods to combine multimodel
ensembles (e.g. Stephenson et al., 2005; Coelho
et al., 2006; Schepen et al., 2012; Wanders and
Wood, 2016; Strazzo et al., 2019; Hemri et al.,
2020; Brayshaw et al., 2020). The Postdoctoral
research of Camille Le Coz, started in January
2022, contributes to this topic through the use
of optimal transport distance (Peyré and Cuturi,
2019; Cumings-Menon and Shin, 2020). Her
research is co-supervised by Rémy Flamary and
Alexis Tantet at Laboratoire de Météorologie
Dynamique (LMD), and I contribute to discus-
sions on the choice of sub-seasonal forecasting
systems and quality assessment methods. We
have planned for collaborations to optimize the
combination of dynamical and statistical predic-
tions as discussed in Chapter 3.

The statistical downscaling methodology devel-
oped in Goutham et al. (Forthcoming) is based
on a linear method. Although linear methods
represent the relationship between the large-
scale atmospheric circulation and the surface
variables to a good approximation, they cannot
fully explain the complex interactions between
various components of the Earth system, and
in particular non-linearities. The employment
of non-linear methods such as neural networks
in downscaling may further improve the skill
horizon of sub-seasonal predictions. As an ex-
ploratory step in this direction, we started explor-
ing the efficiency of convolutional neural net-
works, through the internship of Ganglin Tian
at LMD which I co-supervised, in reconstruct-
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ing sub-seasonal predictions of 100-m wind
speed using predictions of the large-scale at-
mospheric circulation. The preliminary results
from the internship are promising, and Ganglin
will continue exploring non-linear methods to
improve sub-seasonal predictions in his Ph.D.
commencing late 2022 (co-supervised by Riwal
Plougonven, Alexis Tantet, Anastase Charanto-
nis, and Camille Le Coz).

5.2.1 Preliminary application

The sub-seasonal predictions from the ECMWF
employed in this study forecast weather up to
46 days ahead. As the hybrid predictions devel-
oped in Goutham et al. (Forthcoming) remained
skillful even at a lead time of six weeks for
both wind speed and temperature, the statisti-
cal downscaling methodology can be equally
extended to seasonal timescales. Having prior
information about the expected renewable en-
ergy production and electricity consumption on
seasonal timescales is increasingly becoming
important for the energy sector. Additionally,
we highlighted the possibility of tapping into
other sources of information such as soil mois-
ture, stratosphere, and sea surface temperature
to further enhance the skill of sub-seasonal
predictions (section 5b in Goutham et al. (Forth-
coming)). In this regard, we carried out an
exploratory study, through the internship of
Omar Himych at EDF which I co-supervised
along with Hiba Omrani, to forecast the cold
spell of February 2018 on seasonal timescales.
The French national electricity demand is highly
thermo-sensitive. For example, with each de-
gree Celsius drop in temperature below the
threshold in winter, France requires about three
additional nuclear reactors (∼2.4 GW) to make
up for the energy demand driven by space heat-
ing (RTE, 2019). This highlights the need for
early detection of cold spells for smooth op-

erations of the energy sector. Since the cold
spell of February 2018 was a result of Sudden
Stratospheric Warming (e.g., Karpechko et al.,
2018; Domeisen et al., 2020a,b; Kautz et al.,
2020), we used geopotential height at 50 hPa
(Z50) as the predictor.

To forecast the cold spell, instead of using
monthly mean temperature, we used heating
degree month (HDM) as the target variable. In
addition to minimizing the loss of information,
the choice of HDM as the target variable is
driven by our intent to bridge the gap between
meteorology and energy modeling communi-
ties. Although HDM is a very simplified way
of representing the thermo-sensitivity of energy
consumption, it is an interesting indicator as
a first approximation. We computed HDM as
the hourly difference between the threshold (in
this case, threshold = 15°C) and the observed
temperature, aggregated over the month. Ac-
cordingly, the higher the HDM, the colder is the
month. Mathematically, the hourly temperature
difference is calculated as

ΔTh =
{
𝑇𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 −𝑇ℎ, if 𝑇ℎ < 𝑇𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(5.1)

Then, HDM is conveniently computed as

HDM =
∑︁

Th∈month
ΔTh. (5.2)

Furthermore, we retrained the redundancy anal-
ysis model between monthly anomalies of Z50
over the Euro-Atlantic and HDM over France us-
ing the ERA5 reanalysis. HDM, similar to tem-
perature, shows a trend attributed to the warm-
ing climate. This trend was removed during
pre-processing assuming a linear approximation
(section 4c in Goutham et al. (Forthcoming)).
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The training period considered was between
1979 and 2004. Upon training, we obtained
new, paired spatial patterns of variability and
the corresponding regression coefficients. Sub-
sequently, we applied the regression coefficients
on seasonal predictions of Z50 over the Euro-
Atlantic from SEAS5 (Stockdale et al., 2018) of
ECMWF to obtain seasonal statistical predic-
tions of HDM over France. We added back the
extrapolated trend to the statistical predictions
of HDM. Figure 5.1 illustrates the observed
and predicted HDM averaged over France for
February 2018. The dynamical and statistical
predictions in the figure correspond to those ini-
tialized on December 1, 2017. From the figure,
it is conspicuous that the statistical predictions
significantly outperform the dynamical counter-
parts in predicting the cold spell of February
2018, two months in advance.

Although seasonal prediction of the national av-
erage of HDM gives an estimate of the expected
electricity demand, the energy sector requires
gridded predictions of demand for operational
purposes, e.g. to manage regional grids. Figure
5.2 compares the error in ensemble mean HDM
between dynamical and statistical predictions.
Overall, except for statistical predictions over the
Alps, both the dynamical and statistical predic-
tions under-estimate HDM. Nevertheless, it is
conspicuous that the statistical predictions, with
a mean error of -563°C-month over the domain,
significantly outperform dynamical predictions
(mean error = -2146°C-month) in detecting the
cold spell of February 2018. Although there re-
main several unanswered questions, the results
from the internship of Omar are encouraging.
This motivates further research into the employ-
ment of additional sources of predictability on
sub-seasonal to seasonal timescales to detect ex-
treme events such as cold spells and heat waves
in advance to aid in the better management of
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Figure 5.1: Illustration of the prediction of
the cold spell of February 2018 averaged over
France, showing the PDFs of dynamical (DY),
statistical (ST), and climatological (CL) predic-
tions. The dynamical predictions are initialized
on 1 December 2017. The statistical predictions
are produced using the monthly mean geopoten-
tial height at 50 hPa for February 2018 from the
ensemble predictions initialized on 1 Decem-
ber 2017 as the predictor. The climatological
prediction corresponds to the HDM of Febru-
ary from 1979 to 2017 computed using ERA5
reanalysis. The PDFs of ensemble members
and climatology years are computed as kernel-
density estimates assuming a Gaussian kernel.
The dashed vertical line corresponds to the ob-
served HDM (ERA5 reanalysis) in February
2018.

the future European power system.
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Titre : Prévisions météorologiques infra-saisonnières pour le secteur de l’énergie en Europe : évaluation quantitative, amélioration et
application

Mots clés : prévisions infra-saisonnières, vitesse du vent, température, vérification des prévisions, prévisions statistiques, Europe

Résumé : Dans le cadre de la transition énergétique, la part des
énergies renouvelables dans le mix énergétique est de plus en plus
importante, rendant le système électrique plus sensible aux condi-
tions météorologiques. En conséquence, le secteur de l’énergie
est continuellement à la recherche de prévisions les plus précises
possibles des variables climatiques sur un ensemble d’échelles de
temps. Les prévisions météorologiques déterministes à court et
moyen terme (de quelques minutes à deux semaines maximum)
sont fiables, et leur utilisation opérationnelle dans le secteur de
l’énergie est donc bien établie. Cependant, sur des échelles de
temps infra-saisonnières, c’est à dire au-delà de deux semaines
et jusqu’à deux mois, les prévisions sont nécessairement proba-
bilistes, et leur fiabilité reste limitée. Par conséquent, l’utilisation
opérationnelle des prévisions infra-saisonnières dans le secteur de
l’énergie en est encore à ses débuts.
Disposer d’informations précises sur la production d’énergie renou-
velable et la consommation d’électricité attendues sur des échelles
de temps infra-saisonnières peut apporter une vraie valeur ajoutée
au secteur de l’énergie. De ce fait, l’objectif principal de cette thèse
est d’évaluer en premier temps et d’améliorer ensuite les prévisions
infra saisonnières par rapport à la climatologie, afin d’apporter des
informations utiles et fiables au secteur de l’énergie. Nous nous
concentrons dans ce travail sur la vitesse du vent à 100 m et la
température à 2 m sur l’Europe.
Dans un premier temps, nous avons évalué les prévisions dyna-
miques infra-saisonnières en termes de vent et de température afin
de quantifier leurs performances telles qu’elles sont fournies par le
modèle de prévision. Nous avons montré que les prévisions de la

température moyenne hebdomadaire sont plus fiables que la clima-
tologie jusqu’à six semaines, et que celles de la vitesse du vent le
sont jusqu’à trois semaines. Dans un deuxième temps, nous avons
développé une technique de descente d’échelle statistique pour re-
construire des prévisions infra-saisonnières de la vitesse du vent
et de la température en utilisant les prévisions de variables cli-
matiques de grande échelle. Pour ce faire, nous avons utilisé des
données historiques observées pour estimer la relation entre la cir-
culation atmosphérique à grande échelle et nos variables d’intérêt.
Nous avons appliqué par la suite cette relation sur les prévisions
infra-saisonnières de la circulation à grande échelle, qui sont plus
fiables que celles des variables de surface, pour en déduire des
prévisions de nos variables d’intérêt. Cette méthode nous a permis
de produire, à partir des prévisions infra-saisonnières de la circu-
lation à grande échelle, un nouvel ensemble de prévisions statis-
tiques de température et de vent. Nous avons démontré que l’en-
semble dit ≪ hybride ≫ combinant à la fois les nouvelles prévisions
statistiques et les prévisions dynamiques de nos variables d’intérêt
est plus fiable que les prévisions dynamiques seules. Pour la
dernière partie de la thèse, nous avons développé une étude de cas
sur les épisodes de faible vent en Europe, en raison de leur impor-
tance pour le secteur de l’énergie. Nous nous sommes intéressés à
l’épisode de vents faibles de juillet 2018 et les prévisions associées.
Pour cet événement, ni les prévisions dynamiques ni les prévisions
statistiques n’ont réussi à le prévoir et ce en raison de la difficulté
que les modèles de prévisions météorologiques ont à prévoir cor-
rectement les situations de blocage très souvent à l’origine de ces
faibles vents.

Title : Sub-seasonal meteorological predictions for the European energy sector: quantitative assessment, improvement, and application

Keywords : sub-seasonal predictions, wind speed, temperature, forecast verification, statistical predictions, Europe

Abstract : Climate change has stimulated the energy sector, which
is the largest emitter of global greenhouse gases (∼40% in 2019),
to transition to low-carbon energies. Europe, being one of the hi-
ghest historical emitters of greenhouse gases, sits at the forefront
of the energy transition. With a growing share of variable renewable
power systems in the electricity mix on the one hand, and changing
frequency and intensity of extreme events on the other, the weather-
sensitive European energy sector is continuously on the lookout for
accurate forecasts of essential climate variables on a continuum of
timescales. The weather forecasts on short- to medium-range (i.e.,
from a few minutes ahead to at most two weeks) are reliable and
essentially deterministic, and hence their operational use within the
energy sector is well established. However, on timescales beyond
two weeks and up to two months, i.e. in the sub-seasonal range,
the predictions are necessarily probabilistic, and their reliability is
far from that offered by short- and medium-range forecasts. Conse-
quently, the operational use of sub-seasonal predictions within the
energy sector is still in its infancy.
Having accurate information about the expected renewable energy
production and electricity consumption on sub-seasonal timescales
can help the energy sector in determining required reserve levels,
scheduling maintenance, assessing and allocating risks attributed
to extreme events, and estimating grid transmission capacity. In this
regard, the main objective of this thesis is to provide more reliable
information on sub-seasonal timescales, relative to climatology, to
aid the energy sector in operational decision-making. We focus this
research on 100-m wind speed and 2-m temperature over Europe.
As an essential first step, we rigorously assess the skill of sub-
seasonal dynamical predictions of these two variables to quantify
their predictability limits as they are delivered in a given forecasting

system (the extended-range predictions of the European Centre
for Medium-Range Weather Forecasts). We show that the weekly
mean predictions of gridded temperature are more reliable than cli-
matology for up to six weeks, and those of wind speed for up to
three weeks. As a second step, we develop a statistical downscaling
technique to reconstruct sub-seasonal predictions of wind speed
and temperature using predictions of large-scale atmospheric cir-
culation. We summarize the large-scale atmospheric state in a few
indices by employing a dimension reduction methodology conditio-
ned on wind speed and temperature over Europe. In other words,
we use historical, observationally derived data to capture the re-
lationship between the large-scale atmospheric circulation and our
variables of interest (100 m wind speed and 2 m temperature). We
then employ this relationship on sub-seasonal predictions of large-
scale circulation, which are more reliable than surface variables,
to deduce information about our variables of interest. This method
allows us to produce, from a given ensemble of sub-seasonal pre-
dictions of large-scale circulation, a new ensemble of sub-seasonal
predictions of our variables of interest. We demonstrate that the
information thus extracted has value, as the hybrid ensemble com-
bining both the dynamical and the statistical predictions of our va-
riables of interest are more reliable than the dynamical predictions
alone. As a final study, we investigate episodes of wind drought
over Europe, because of their importance to the energy sector. A
case study of the July 2018 episode of weak winds and the as-
sociated predictions, with and without our statistical downscaling
methodology, illustrates the persistent difficulties of sub-seasonal
predictions in predicting extreme events, in this case, due to the
long-lasting challenge of forecasting blocking events.
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