N
N

N

Efficient Hardware-aware Neural Architecture Search for

HAL

open science

Edge Computing

Hadjer Benmeziane

» To cite this version:

Hadjer Benmeziane. Efficient Hardware-aware Neural Architecture Search for Edge Computing.
Machine Learning [cs.LG|. Université Polytechnique Hauts-de-France, 2023. English. =~ NNT:

2023UPHF0022 . tel-04224035

HAL Id: tel-04224035
https://theses.hal.science/tel-04224035
Submitted on 1 Oct 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://theses.hal.science/tel-04224035
https://hal.archives-ouvertes.fr

& T

wmmwn e Université

INSN ‘ AT — N\ POlg tEChnique |BM ResearCh
HAUTS-DE-FRANCE

Theése de doctorat

Pour obtenir le grade de Docteur de
'UNIVERSITE POLYTECHNIQUE HAUTS-DE-FRANCE

et de I'INSA HAUTS-DE-FRANCE

Discipline, spécialité selon la liste des spécialités pour lesquelles I'Ecole Doctorale est
accréditée :

Intelligence Artificielle et Systemes Embarqués

Présentée et soutenue par Hadjer Benmeziane

Le 30/08/2023, a Valenciennes

Ecole doctorale :
Ecole Doctorale Polytechnique Hauts-de-France (ED PHF n°635)

Unité de recherche :

Laboratoire d’Automatique, de Mécanique et d'Informatique Industrielles et Humaines
(UMR CNRS 8201)

Optimisation Automatique des Applications d’Apprentissage
Profond sur Plateformes Matérielles Edges

Président de jury

e Cucu-Grosjean, Liliana. Directrice de recherche. INRIA, Rocquencourt, France.

II

JURY

Rapporteurs

e Sassatelli, Gilles. Directeur de recherche. CNRS, LIRMM, Univ Montpellier.
e Shafique, Muhamed. Professeur. New-York University, Abu-Dhabi.

Examinateurs

e Cucu-Grosjean, Liliana. Directrice de recherche. INRIA, Rocquencourt, France.

Invités
e Meyer, Brett. Assistant Professeur. Department of Electrical and Computer

Engineering McGill University.

Thesis director

e Niar, Smail, Professeur, UPHF, CNRS, UMR 8201 - LAMIH, F-59313
Valenciennes, France.

Thesis co-director :

e El Maghraoui, Kaoutar. Principal Research Scientist. IBM T. J. Watson Research
Center, Yorktown Heights, NY 10598, USA.

Co-supervisor :

e Quarnoughi, Hamza. Professeur. UPHF, CNRS, UMR 8201 - LAMIH, F-59313
Valenciennes, France.

Ce manuscript est mise a disposition selon les termes de la Licence Creative Commons
Attribution - Pas d'Utilisation Commerciale 4.0 International.

& T

wmmwn e Université

INSN ‘ AT — N\ POlg tEChnique |BM ResearCh
HAUTS-DE-FRANCE

PhD Thesis

Submitted for the degree of Doctor of Philosophy from
UNIVERSITE POLYTECHNIQUE HAUTS-DE-FRANCE

and INSA HAUTS-DE-FRANCE
Subject :

Artificial Intelligence and Embedded Systems

Presented and defended by Hadjer Benmeziane.

On 30/08/2023, LAMIH

Doctoral school :
Doctoral School Polytechnique Hauts-de-France (ED PHF n°635)

Research unit :

Laboratory of Industrial and Human Automation control Mechanical engineering and
Computer science (LAMIH — UMR CNRS 8201)

Efficient Hardware-aware Neural Architecture Search for Edge
Computing

President of jury

e Cucu-Grosjean, Liliana. Research Director. INRIA, Rocquencourt, France.

JURY

Reviewers

e Sassatelli, Gilles. Research Director. CNRS, LIRMM, Univ Montpellier.
e Shafique, Muhamed. Professor. New-York University, Abu-Dhabi.

Examiners

e Cucu-Grosjean, Liliana. Research Director. INRIA, Rocquencourt, France.

Invitee

e Assistant Professor. Department of Electrical and Computer Engineering McGill
University.

Thesis director

e Niar, Smail, Professor, UPHF, CNRS, UMR 8201 - LAMIH, F-59313
Valenciennes, France.

Thesis co-director :

e El Maghraoui, Kaoutar. Principal Research Scientist. IBM T. J. Watson Research
Center, Yorktown Heights, NY 10598, USA.

Co-supervisor :

e Quarnoughi, Hamza. Professor. UPHF, CNRS, UMR 8201 - LAMIH, F-59313
Valenciennes, France.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 Inter-
national License.

II

Abstract

It is widely anticipated that inference models based on Deep Neural Networks (DNN)
will be actively employed in many edge platforms due to several compelling reasons.
Firstly, DNNs have demonstrated exceptional performance in various fields such as
computer vision, natural language processing, and speech synthesis. Their ability to
extract meaningful features from large datasets enables them to achieve high levels of
accuracy and predictive power, making them indispensable for a wide range of tasks.
Secondly, deploying DNN-based inference models directly on edge platforms offers
several advantages. For instance, executing the inference process locally on edge de-
vices, reduces the reliance on cloud-based computing, thereby minimizing network
latency and ensuring real-time responsiveness. This is particularly crucial for time-
sensitive applications, such as autonomous vehicles, smart surveillance systems, and
Internet of Things (IoT) devices, where rapid decision-making is paramount. Fur-
thermore, employing DNN inference at the edge enhances privacy and security. By
keeping sensitive data within the edge device’s local environment instead of trans-
mitting it to external servers, the risk of data breaches and privacy violations is
significantly reduced. This is of utmost importance in scenarios involving personal
data, healthcare information, or confidential business data, where preserving privacy
and data sovereignty is imperative.

However, edge platforms often operate under resource-constrained environments,
characterized by limited computational power, energy constraints, and intermittent
connectivity. DNN models are increasingly larger, making them unfit for such plat-
forms. This has promoted research in automatically designing neural architectures
through search for such devices. This method is called Hardware-aware Neural Archi-
tecture Search (HW-NAS). Such optimization can lead to reduced energy consump-
tion, lower inference latency, and overall improved performance on edge platforms.
HW-NAS is the cornerstone of this thesis. HW-NAS can provide both efficient and
accurate, customized models for the target platform. This thesis aims at accelerating
and generalizing HW-NAS applicability to many platforms and multiple tasks.

This work introduces innovative solutions to rapidly estimate the efficiency of
DNNs for a target HW platform. Our proposed HW-NAS approach encompasses
multi-objective optimization techniques, significantly accelerating the search pro-
cess within sxccupernetwork-based and cell-based search spaces. Within the multi-
objective context of HW-NAS, conflicting objectives, such as task-specific perfor-
mance (e.g., accuracy) and hardware efficiency (e.g., latency and energy consump-
tion), need to be optimized simultaneously. To address this challenge, we define
a novel Pareto rank target, leveraging diverse surrogate models employed in HW-
NAS. By incorporating multiple objectives and Pareto optimization principles, our
approach enables the exploration of trade-offs between task-specific performance and
hardware efficiency, ultimately facilitating the identification of superior neural archi-
tectures.

We also investigate the human bias induced by current search spaces and propose
a non-restrictive search space to find novel operators tailored to a target hardware
platform. These methods were validated on image classification benchmarks. We
then show how to apply HW-NAS for novel hardware architectures, namely analog
in-memory computing hardware.

Finally, we construct a medical imaging NAS benchmark that includes architec-
tures for 11 tasks, including their performance, latency, and energy consumption on
several devices, and propose a new HW-NAS approach that, not only includes ac-
curacy and latency as objectives, but also looks for a generalizable architecture that
can be fine-tuned for unseen medical tasks.

Keywords Neural Architecture Search, Hardware constraints, Optimization,
Edge Al

II

Résumé

Les modeles d’inférence basés sur les réseaux neuronaux profonds (eng, Deep Neu-
ral Networks (DNN)) sont largement utilisés dans de nombreuses platesformes de
périphérie pour plusieurs raisons. Premierement, les DNN ont démontré des per-
formances exceptionnelles dans divers domaines tels que la vision par ordinateur, le
traitement du langage naturel et la syntheése vocale. Leur capacité a extraire des
caractéristiques significatives & partir de grands ensembles de données leur permet
d’atteindre des niveaux jamais atteints de précision et de puissance prédictive, ce
qui les rend indispensables pour une large gamme d’applications. Deuxiémement,
le déploiement de ces modeles directement sur les plateformes de périphérie offre
plusieurs avantages. L’exécution du processus d’inférence localement sur les disposi-
tifs de périphérie réduit la dépendance a ’égard du calcul basé sur le cloud, réduisant
ainsi la latence du réseau et garantissant une réactivité en temps réel.

Cependant, les plateformes de périphérie fonctionnent souvent dans des environ-
nements contraints en ressources, caractérisés par une puissance de calcul limitée, des
contraintes énergétiques et une connectivité intermittente. Les modeéles DNN ne sont
par défaut pas adaptés a de telles plateformes. Cela a encouragé la recherche sur la
conception automatique d’architectures neuronales adaptées a ces dispositifs. Cette
méthode est appelée recherche d’architecture neuronale & contraintes matérielles (eng,
Hardware-aware Neural Architecture Search, HW-NAS). HW-NAS est la pierre an-
gulaire de cette these. HW-NAS peut fournir des modeles a la fois efficaces et précis.
Cette these vise a accélérer et a généraliser Iapplicabilité de HW-NAS & de nom-
breuses plateformes et & plusieurs taches. Ce travail de these propose des solutions
novatrices pour estimer rapidement ’efficacité d’'un DNN déployé sur une plateforme
matérielle cible. Notre approche HW-NAS englobe des techniques d’optimisation
multi-objectifs, ce qui accélere considérablement le processus de recherche a la fois
dans les espaces de recherche basés sur les supernetworks et sur les cellules. Dans
le contexte multi-objectif de HW-NAS, des objectifs conflictuels, tels que les per-
formances spécifiques a la tache (par exemple, la précision) et lefficacité matérielle
(par exemple, la latence et la consommation d’énergie), doivent étre optimisés simul-
tanément. Pour relever ce défi, nous définissons un nouvel objectif de rang de Pareto.
En incorporant des objectifs multiples et des principes d’optimisation de Pareto, notre
approche permet ’exploration des compromis entre les performances spécifiques a la
tache et efficacité matérielle. Nous examinons également le biais humain induit par
les espaces de recherche actuels et proposons un espace de recherche non restrictif
pour trouver de nouveaux opérateurs adaptés a une plate-forme matérielle cible. Ces
méthodes ont été validées sur des référentiels de classification d’images.

Dans la seconde partie de la these, nous montrons I'utilité de nos méthodes dans
des scénarios réels. Premierement, comment appliquer HW-NAS & de nouvelles plate-
formes matérielles, notamment les matériels de calcul analogiques en mémoire (eng,
in-memory analog devices). Nous avons proposé un HW-NAS dédié a ces plateformes,
et nous déduisons les charactérstiques qui différent un réseaux de neuronnes déployé
sur ces plateformes, d’un autre déployé sur des plateformes classiques.

Enfin, nous construisons une référence de recherche d’architectures neuronales
pour l'imagerie médicale qui inclut des architectures pour 11 taches, notamment
la detection de tumeurs, la segmentation du foie et l’estimation du volume de
I’hippocampe. En utilisant cette référence, nous proposons un nouveau HW-NAS
qui inclut non seulement I'exactitude et la latence en tant qu’objectifs, mais cherche
également une architecture généralisable qui peut étre affinée pour de nouvelles taches
médicales.

Mots clés apprentissage profond, optimisation, contraintes matérielles

III

v

Acknowledgments

First and foremost, I would like to thank my thesis director Prof. Smail
Niar and my supervisor Prof. Hamza Ouarnoughi at Université Polytechnique
des Hauts-de-France. The unique research opportunity they provided has been
transformative for my academic journey. With their combined expertise, I navigated
the complexities of this thesis, and I deeply value the trust they placed in my abilities
and the guidance they offered.

I would also like to extend my profound gratitude to my thesis co-director, Dr.
Kaoutar El Maghraoui from IBM T.J Watson. Kaoutar has been more than just
a supervisor; she has been a mentor in the truest sense of the word. Her guidance,
patience, and dedication have been pivotal in shaping my research perspective. I am
especially thankful for the invaluable opportunity she provided by allowing me to
intern at IBM. The hours she invested in mentoring me, coupled with the hands-on
experience at IBM, have enriched my academic journey and provided me with insights
that I will carry with me throughout my career.

Heartfelt appreciation is extended to the esteemed jury members for their invaluable
time and dedication in accepting, meticulously reading, and offering constructive
feedback on this work.

I am grateful to the many researchers I met during my thesis work. I've collaborated
with academics from different backgrounds. At present, I'd like to highlight the fol-
lowing co-authors and/or scientists that reviewed my papers and helped me improve
them: Irem Boybat, Abu Sebastian, Manuel Le Gallo, Malte J. Rasch, Corey Lammie,
Hsinyu Tsai, Ramachandran Muralidhar, Halima Bouzidi, Lotfi Abdelkrim Mechar-
bat, Ozcan Ozturk, Amine Ziad Ounnoughene, Imane Hamzaoui, Younes Bouhadjar,
Abderaouf Gacem, Afaf Alloulal, Mufida Miratul, Rihab Balti and Meyssa Zouambi.

Last, but certainly not least, I would like to thank my family. Their unwavering
support, endless patience, and boundless love have been the pillars upon which I
leaned throughout this journey. To my parents, whose sacrifices and teachings have
shaped who I am today, I owe a debt of gratitude that words can hardly express.
They instilled in me the values and skills to live independently, always grounded
by unwavering principles and beliefs that they imparted. To my siblings, for their
constant encouragement and belief in my abilities, even more than me. While this
achievement is a significant milestone, I recognize it as just the beginning of my
research journey. Thank you all for being the foundation upon which I build my
future endeavors.

List of Publications Included in this Thesis

This thesis contains a number of original research articles which have been published
during my PhD candidature. These papers have been slightly modified to improve
readability and cohesion in the form of a thesis document. In this Section, a list of
publications included in this thesis is presented.

- A Comprehensive Survey on Hardware-aware Neural Archi-
tecture Search

[1] Hadjer Benmeziane, Kaoutar El Maghraoui, Hamza Ouarnoughi, Sma”1l Niar,
Martin Wistuba, and Naigang Wang. A comprehensive survey on hardware-aware
neural architecture search. CoRR, abs/2101.09336, 2021.

[2] Hadjer Benmeziane, Kaoutar El Maghraoui, Hamza Ouarnoughi, Smail Niar, Mar-
tin Wistuba, and Naigang Wang. Hardware-aware neural architecture search: Survey
and taxonomy. In Proceedings of the Thirtieth International Joint Conference on Ar-
tificial Intelligence, IJCAI-21, pages 4322-4329, 8 2021.

Location in thesis: Chapter 2

- Accelerating Neural Architecture Search with Rank-
Preserving Surrogate Models

[3] Hadjer Benmeziane, Hamza Ouarnoughi, Kaoutar El Maghraoui, and Smail Niar.
Accelerating neural architecture search with rank-preserving surrogate models. In
Manar Abu Talib, Laila Benhlima, and Kaoutar El Maghraoui, editors, ArabWIC
2021: The 7th Annual International Conference on Arab Women in Computing in
Conjunction with the 2nd Forum of Women in Research, Sharjah, ACM 2021.
Location in thesis: Chapter 3

Best Paper Award at ArabWIC 2021

- Multi-Objective Hardware-Aware Neural Architecture
Search with Pareto Rank- Preserving Surrogate Models

[4] Hadjer Benmeziane, Hamza Ouarnoughi, Kaoutar El Maghraoui, and Smail
Niar. Multi-objective hardware-aware neural architecture search with Pareto rank-
preserving surrogate models. 20(2), 2023. ACM Transactions on Architecture and
Code Optimization.

Location in thesis: Chapter 3

- Pareto rank surrogate model for hardware-aware neural ar-
chitecture search

[5] Hadjer Benmeziane, Smail Niar, Hamza Ouarnoughi, and Kaoutar El Maghraoui.
Pareto rank surrogate model for hardware-aware neural architecture search. In IEEE
International Symposium on Performance Analysis of Systems and Software (IS-
PASS), 2022.

Location in thesis: Chapter 3

- Pareto Rank-Preserving Supernetwork for HW-NAS

[6] Hadjer Benmeziane, Smail Niar, Hamza Ouarnoughi, and Kaoutar El Maghraoui.
Pareto rank-preserving supernetwork for hardware-aware neural architecture search.
European Conference on Artificial Intelligence ECAI 2023.

Location in thesis: Chapter 3

Best Poster Award at IBM/AICS 2022

VI

- Grassroots Operator Search for Model Edge Adaptation

[7] Hadjer Benmeziane, Smail Niar, Hamza Ouarnoughi, and Kaoutar El Maghraoui.
Grassroots operator search for model edge adaptation. Submitted to Elsevier Future
Generation Computer Systems.
Location in thesis: Chapter 4

- CaW-NAS: Compression-aware Neural Architecture Search

[8] Hadjer Benmeziane, Hamza Ouranoughi, Sma™1l Niar, and Kaoutar El Maghraoui.
Caw-nas: Compression aware neural architecture search. In 25th Euromicro Con-
ference on Digital System Design, DSD, pages 391-397. IEEE, 2022. Location in
thesis: Chapter 4

- AnalogNAS: A Neural Network Design Framework for Ac-
curate Inference with Analog In-Memory Computing

[9] Hadjer Benmeziane, Corey Lammie, Irem Boybat, Malte J. Rasch, Manuel Le
Gallo, Hsinyu Tsai, Ramachandran Muralidhar, Sma™il Niar, Hamza Ouarnoughi,
Vijay Narayanan, Abu Sebastian, and Kaoutar El Maghraoui. Analognas: A neural
network design framework for accurate inference with analog in-memory computing.
2023. IEEE International Conference on Edge Computing & Communications.
Location in thesis: Chapter 5

Best Paper Award at IEEE Edge 2023

- MED-NAS-Bench: A Generalized Neural Architecture
Search for Medical Imaging Analysis

[10] Hadjer Benmeziane, Lotfi Abdelkrim Mecharbat, Smail Niar, Hamza Ouarnoughi,
and Kaoutar El Maghraoui. Med-nas-bench: A generalized neural architecture search
benchmark for medical imaging analysis. To be Submitted to Nature Methods, 2023.
Location in thesis: Chapter 6

VII

List of publications not included in this thesis

- Real-time style transfer with efficient vision transformers

[11] Hadjer Benmeziane, Hamza Ouarnoughi, Kaoutar El Maghraoui, and Sma™1l
Niar. Real-time style transfer with efficient vision transformers. In Aaron Yi Ding and
Volker Hilt, editors, EdgeSys@QEuroSys 2022: Proceedings of the 5th International
Workshop on Edge Systems, Analytics and Networking, Rennes, France, April 5 - 8,
2022, pages 31-36. ACM, 2022

- HyT-NAS: Hybrid Transformers Neural Architecture Search
for Edge Devices

[12] Lotfi Abdelkrim Mecharbat, Hadjer Benmeziane, Hamza Ouranoughi, and Sma 1l
Niar. Hyt-nas: Hybrid transformers neural architecture search for edge devices.
CoRR, abs/2303.04440, 2023

- Treasure What You Have: Exploiting Similarity in Deep Neu-
ral Networks for Efficient Video Processing

[13] Hadjer Benmeziane, Halima Bouzidi, Hamza Ouarnoughi, Ozcan Ozturk, and
Smail Niar. Treasure what you have: Exploiting similarity in deep neural networks
for efficient video processing. CoRR, abs/2305.06492, 2023.

- Skip Connections in Spiking Neural Networks: An Analysis
of Their Effect on Network Training

[14] Hadjer Benmeziane, Amine Ziad Ounnoughene, Imane Hamzaoui, and Younes
Bouhadjar. Skip connections in spiking neural networks: An analysis of their effect
on network training. CoRR, abs/2303.13563, 2023.

Filed Patents

- CO-Design of a Model and Chip for Deep Learning Back-
ground (Filed)

Irem Boybat Kara, Hadjer Benmeziane, Manuel Le Gallo-Bourdeau, Kaoutar El
Maghraoui, Malte Johannes Rasch, and HsinYu Tsai

VIII

Contents

Abstract
Résumé o
Acknowledgments oL
List of Figures e
List of Tables
Acronyms e

1 Introduction
1.1 Context & Motivation o
1.2 Research Questions o
1.3 Summery of Contributions oo
1.4 Open Source Projects
1.5 Thesis Organization

I Related Works

2 Hardware-aware Neural Architecture Search
2.1 Handcrafted models Vs. HW-NAS
2.2 Conventional Neural Architecture Search
2.3 Methodologies for Efficient Deep Learning
2.4 Taxonomy of HW-NAS
2.5 Search Spaces
2.5.1 Architecture Search Space 0L
2.5.2 Hardware Search Space (HSS)
2.5.3 Current Hardware-NAS Trends
2.6 Optimization strategies
2.6.1 Hardware-aware NAS Problem Formulation
2.6.2 Search Algorithms
2.7 HW-NAS Estimation Strategies
2.8 Other Considerations for Hardware-aware NAS
2.8.1 Automatic Mixed-Precision Quantization
2.8.2 Automatic Pruning oL
2.8.3 Security and Reliability Considerations in NAS
2.9 In-memory Computing & HW-NAS
2.10 Challenges and Limitations
2.10.1 Benchmarking and Reproducibility
2.10.2 Transferability of the ATl Models
2.10.3 Transferability of the HW-NAS Across Multiple Platforms . . .
2.11 Conclusion o

X

11
12
14
15
17
18
18
20
22
23
23
26
30
33
33
34
34
34
36
36
39
40

X

CONTENTS

IT Efficient HW-NAS methods

3

Multi-objective Surrogate Model for HW-NAS

3.1 Context

3.2 HW-PR-NAS e
3.2.1 Proposed Approach
3.2.2 Evaluation Methodology
3.2.3 End-to-End Results
3.2.4 Final Pareto Front Analysis
3.2.5 Generalization to More Objectives
3.2.6 Generalisation to other use cases: Keywords Spotting

3.3 PRP-NAS: Pareto Rank-preserving Supernetwork Training
3.3.1 Proposed Approach
3.3.2 Evaluation Methodology
3.33 Search Results
3.3.4 Battery Usage Preservation

3.4 Conclusion

Enhancing HW-NAS Search Space

4.1 Context o .

4.2 CaW-NAS e
4.2.1 Proposed Approach
4.2.2 Quantization Analysis o000
4.2.3 Search Strategy o
4.2.4 Evaluation Methodology
4.2.5 Search Results

4.3 Grassroots Operator Search for Model Edge Adaptation
4.3.1 Proposed Approach
4.3.2 Search Algorithm
4.3.3 Evaluation Methodology,
4.3.4 Optimizing an architecture for Edge Devices
4.3.5 Use Case: Pulse Rate Estimation

4.4 Conclusion

IIT Applications of HW-NAS

5

Analog-NAS
51 Context e e
5.2 Preliminaries e
5.2.1 Analog IMC Accelerator Mechanisms
5.2.2 Temporal Drift of Non-Volatile Memory Devices
5.2.3 HWA-training and analog hardware accuracy evaluation simu-
lation L L
5.3 AnalogNAS: Proposed Approach
5.3.1 Resnet-like Search Space
5.3.2 Analog-accuracy Surrogate Model
5.3.3 Search Strategy oL
5.3.4 Problem Formulation
5.3.5 Search Algorithm
5.4 Evaluation Methodology
5.5 Experiment Results. L.
5.5.1 Comparison with Random Search
5.5.2 Search Time and AVM Threshold Trade-Off
5.6 Hardware Validation L L.
5.6.1 Experimental Hardware Validation

43

45
46
46
48
53
55
57
98
99
59
61
65
66
70
71

73
74
74
(0]
76
78
78
79
81
83
87
89
90
92
96

CONTENTS XI

5.6.2 Simulated Hardware Energy and Latency 113
5.7 Architectural Recommendation for Analog AT 114
5.7.1 Are Wider or Deeper Networks More Robust to PCM Device
Drift? 115
5.7.2 Types Of Architectures 116
5.8 Conclusion L 116
6 HW-NAS for Medical Imaging Analysis 117
6.1 Context 118
6.2 MED-NAS-Bench 119
6.2.1 Datasets L 119
6.2.2 Benchmark Design L L. 121
6.2.3 Evaluation methodology 124
6.2.4 Performance Distribution 125
6.2.5 Architecture Distribution 128
6.2.6 Cross-datasets Correlations 128
6.2.7 State-of-the-art Search Methodologies 129
6.3 MT-MIAS e 133
6.3.1 Search Methodology 133
6.3.2 Experiments Methodology 137
6.3.3 Search Results 138
6.4 Conclusion L 141
7 Conclusion and Future Work 143
7.1 Conclusion 143

7.2 Future Work 145

XII CONTENTS

List of Figures

1.1
1.2

2.1

2.2
2.3
2.4
2.5
2.6
2.7
2.8

2.9
2.10

2.11

3.1

3.2

3.3
3.4

3.5

3.6

Number of papers published on NAS and HW-NAS as of May 2023.
Structure of the manuscript. Lo

Generic DL architecture. For each layer, an operator is chosen among a
pre-defined list or operations (convolution, dilated convolution, depth-
wise convolution, max-pooling, batch_normalization, etc.). The se-
quence Convolution, Activation, Attention, etc. is repeated several
times in DL architectures.o Lo
Accuracy of various CNN models on ImageNet for Image Classification
task with the number of parameters. Inspired by [15]
Overview of conventional NAS components.
Overview of efficient deep learning strategies.
Overview of different hardware-aware NAS designs.
Architecture search spaces types. (a) Global search space, (b) Cell-
based search space, (c¢) Hierarchical search space, and (d) supernetwork
search space. In orange the operators considered during the search. . .
Statistics on targeted platforms and type of networks described by the
HW-NAS search spaces
HW-NAS problem formulations.
Commonly used search algorithms
Comparison of hardware cost measurement methods. LUT stands for
Look Up Table. The speedups are calculated w.r.t Real-world mea-
SUremMentS o v oo e e e e e e e e e e e e e
Results of different search algorithms on NAS-Bench-201.

Simplified illustration of the use of HW-PR-NAS in a NAS process.
HW Perf means the Hardware performance of the architecture such
as latency, power, etc. e
This figure illustrates the limitation of state-of-the-art surrogate mod-
els alleviated by HW-PR-NAS. a) and b) illustrate how two indepen-
dently trained predictors exacerbate the dominance error and the re-
sults obtained using GATES [16] and BRP-NAS [17]. c¢) illustrates
how we solve this issue by building a single surrogate model.
General Overview of HW-PR-NAS
Results of different encoding schemes for accuracy and latency pre-
dictions on NAS-Bench-201 and FBNet. AF refers to Architecture
Features. LSTM refers to Long Short-Term Memory neural network.
GCN refers to Graph Convolutional Networks.
Performance of the Pareto rank predictor using different batch_size
values during training. Lo oL
Pareto front approximations on CIFAR-10 on edge hardware platforms.
We show the true accuracies and latencies of the different architectures
and the normalized hypervolume on each target platform.

XIIT

XIV

3.7 Final Hypervolume obtained by each method on the three datasets.
We show the means + standard errors based on 5 independent runs.
3.8 Search time of MOAE using different surrogate models on 250 gener-
ations with a max time budget of 24 hours.
3.9 Pareto front Approximations using three objectives: accuracy, latency
and energy consumption on CIFAR-10 on Edge GPU (left), FPGA
(right). Ih corresponds to the hypervolume.
3.10 Encoder fine-tuning: Cross-entropy loss over epochs.
3.11 Search result using HW-PR-NAS against True Pareto front.
3.12 Our Pareto Rank-Preserving Training methodology for Supernetwork.
The strongest shades illustrate the most important operations for each
layer at each iteration. o! corresponds to the parameter alpha associ-
ated with layer [and operationo.
3.13 Supernetwork definition when coupling task-specific weights W and
operation’s score parameters «. Conv 3x8 is the operation with the
highest selection score. L
3.14 Training performance computed with the Kendall’s Tau Correlation
between the independently trained Pareto ranks and the estimated
Pareto ranks obtained by training the supernetwork.
3.15 Comparison of latency estimators on Jetson Nano.
3.16 Pareto front approximation comparison on CIFAR-10 and ImageNet. .
3.17 Comparison with state-of-the-art ImageNet results.
3.18 Kendall’s Tau-b correlation and hypervolume comparison using differ-
ent estimators on DARTS.
3.19 Hypervolume analysis with an increasing number of sampled sub-
networks for the final Pareto front throughout the search (higher is
better) on NAS-Bench-201. L
3.20 Analysis of trained alpha values for layers 1Tand 2
3.21 Battery life management.o Lo

4.1 Overview of CaW-NAS: Compression Aware Neural Architecture . . .
4.2 Clustering strategy to analyze the quantization sensitivity
4.3 Quantization effect on increasing depth and width in the architectures
4.4 Quantization effect on different convolution variants
4.5 Number of quantized architectures in the search space and population
over iterations. L L Lo e
4.6 Ranking correlation of accuracy proxies. acc-drop-z refers to the ac-
curacy proxy with x clusters. L.
4.7 Pareto front approximation results. Top figure: NAS-Bench-201 for
CIFAR-10, Bottom figure: Pretrained Models for ImageNet
4.8 Overview of the operator replacement methodology.
4.9 CIFAR-10 accuracy histograms of 1k architectures randomly generated
(a) and adapted from the original operator (b).
4.10 Detailed computation graph of the standard convolution 2D including
the possible mutations applied toit.
4.11 Tlustration of the cross-over operation.
4.12 Tuning of the maximum number of instructions per operator while
searching for resnet18 GOS variant on Raspberry Pi.
4.13 Pulse Rate Estimation final Models. We do not display the weights
node for PPG_NAS for the sake of clarity.

5.1 The effect of PCM conductance drift after one day on standard CNN
architectures and one architecture (AnalogNAS_T500) obtained using
HW-NAS, evaluated using CIFAR-10.

5.2 Employed analog IMC tile and weight mapping scheme.

5.3 Resnet-like macro architecture. 0oL

LIST OF FIGURES

96

60
60

96

LIST OF FIGURES XV

5.4

5.5
5.6
5.7

5.8

5.9

5.10

6.1

6.2
6.3
6.4
6.5

6.6
6.7
6.8
6.9

6.10

6.11
6.12

7.1

t-Distributed Stochastic Neighbor Embedding (t-SNE) visualization of

the sampled architectures for CIFAR-10. 106
Surrogate models comparison.o 107
Overview of the AnalogNAS framework. 108

Simulated hardware comparison results on three benchmarks: (a,b)
CIFAR-10, (¢) VWW, and (d) KWS. The size of the marker represents
the size (i.e., the number of parameters) of each model. The shaded
area corresponds to the standard deviation at that time. 111
Ablation study comparison against Random Search (RS). Mean and
standard deviation values are reported across five experiment instances

(trials). . . . o 112
Evolution of architecture characteristics in the population during the

search for CIFAR-10. Random individual networks are shown. 114
Architectural differences between AnalogNAS_T500 and Resnet32. . . 115
Overview of the ten different tasks of the Medical Segmentation De-

cathlon (MSD) [18] o i 120
Search Space of MED-NAS-Benchmark 121
Overview of MED-NAS-Bench. Inspired from MSD [18] 123
MED-NAS-Bench performance across datasets 126
MED-NAS-Bench hardware efficiency across datasets on Raspberry

Pi3 and Laptop.o 127
Ranking correlation experiments across datasets. 128
Blocks operation frequency in top 1000 architectures for each dataset. 129
Cross-datasets ranking correlation 130
Pareto front results of SOTA multi-objective optimizations on Rasp-

berry Pi3. o 132
Pareto front results of SOTA multi-objective optimizations on Laptop. 132
Overview of MT-MIAS steps. 134
Comparative results of MT-MIAS on MED-NAS-Bench, both on Rasp-

berry PI3 (RPI3) and laptop. 139

Future Works on top of HW-NAS framework. 146

XVI LIST OF FIGURES

List of Tables

2.1
2.2
2.3
2.4

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

3.10

3.11

4.1
4.2

4.3
4.4

4.5
4.6
4.7

5.1
5.2

Classification of HW-NAS based on their targeted Hardware. 22
Summary of Hardware Cost Estimation Methods. 31
Comparison of NAS Benchmarks 37
Comparison between different operators on Intel i7 CPU and NVIDIA

TX2 GPU. The convolution operators were used to create a CNN
model that was trained for Image Classification on ImageNet. The
RNN cells were trained on Text Classification on IMDB dataset [19].
Results were obtained using PyTorch with a number of samples of 1000. 41

Hyperparameters associated with GCN and LSTM encodings and the

decoder used to train them. Lo 50
Results of different regressors on NAS-Bench-201. KT Corr stands for
Kendal Tau Correlation. 51
State-of-the-art surrogate models used for HW-NAS. AF stands for
architecture features such as the number of convolutions and depth. . 54
Mustrative comparison of edge hardware platforms targeted in this
work. .o 55
Comparison of Optimal Architectures obtained in the Pareto Front for
CIFAR-10. oo 57
Comparison of Optimal Architectures obtained in the Pareto Front for
ImageNet 57
Accuracy and Latency Comparison for Keyword Spotting. 59
Training Hyperparameters 66
Comparison on NAS-Bench-201 CIFAR-10 on Edge GPU (Jetson
Nano) and Mobile phone (Pixel 3). 67
Comparison to baselines on CIFAR-10 on FPGA ZCU-102 and Rasp-
berry Pi3o 67
Ablation results of Pruning of Pareto ranking for CIFAR-10. 69
CaW-NAS hyperparameters 79
Comparison with state-of-the-art efficient models on ImageNet. N is
the number of training for NAS on a new platform. 80
List of mathematical instructions defining the search space 86
Performance comparison of original models and adapted models on
Raspberry Pi 3 and Redmi Note 7S 91
Efficient Operators Equations for Raspberry Pi and Redmi Note 7S. . 92
Notation Summary L e 92
Results of Average Absolute Error for Pulse Rate estimation on
TROIKA Dataset [20] o oo i et 95
Searchable hyper-parameters and their respective ranges. 106

Final Architectures for CIFAR-10, VWW, and KWS. Other networks
for VWW and KWS are not listed, as they cannot easily be represented
using our macro-architecture.o Lo 111

XVIII

5.3
5.4

6.1
6.2
6.3
6.4
6.5

6.6

6.7
6.8

6.9

6.10

LIST OF TABLES

AVM threshold variation results on CIFAR-10. 113
Experimental hardware accuracy validation and simulated power per-

formance on the IMC system in [21]. 114
Details of the blocks and operations searched in the benchmark. . . . 122
Datasets details and training hyperparameters. 124
MED-NAS-Bench Hardware specifications. 125
Number of Non Deployable architectures in edge platforms 127

Results of state-of-the-art search methodologies on MED-NAS-Bench.
Dice and Jc stand for the dice and Jaccard scores respectively. EA
and RS stand for evolutionary algorithm and random search, both are
classical search algorithms. C2FNAS_O is the original architecture

proposed by C2FNAS. 131
Hypervolume values of multi-objective optimization considering per-
formance, latency, and energy consumption. 133

Hyperparameters for Training DARTS on CIFAR-10 and CIFAR-100 . 138
Comparison results of MT-MIAS against state-of-the-art methodolo-

gies in DARTS. Lat corresponds to the Raspberry PI3 Latency. 138
Results on unseen datasets of MED-NAS-Bench. (T) means that the
architecture was fine-tuned for the target task. 140

Results on CIFAR-100 (Unseen dataset for DARTS). (T) means that
the architecture was fine-tuned for the target task. 140

Acronyms

Acronyms

ATHWKit IBM Analog Hardware Acceleration Kit.

AAE Average Absolute Error.

ADC Analog-to-Digital Converter.

AF Architecture Features.

AT Artificial Intelligence.

ASIC Application-specific Integrated Circuit.

AVM Accuracy Variation over one Month.

BO Bayesian Optimization.
BPM Beats Per Minute.

CE Cross-Entropy.
CNN Convolutional Neural Networks.

CPU Central Processing Unit.

DAC Digital-to-Analog Converter.
DL Deep Learning.
DNN Deep Neural Networks.

EA Evolutionary Algorithm.
ECG Electrocardiography.
EHR Electronic Health Records.

FLOPS Floating Point Ops per Second.
FPGA Field-programmable Gate Array.
FSP Flow of Solution Procedure.

GAN Generative Adversarial Networks.

GCN Graph Convolutional Neural Networks.

GPGPU General-purpose Graphics Processing Units.

GPU Graphics Processing Unit.
GRU Gated Recurrent Unit.

HSS Hardware Search Space.
HW-NAS Hardware-aware NAS.
HWA Hardware-aware.

IMC In-memory Computing.

XIX

XX Acronyms

IoT Internet of Things.

KL div Kullback—Leibler divergence.
KWS Keyword Spotting.

LHS Latin Hypercube Sampling.
LSTM Long Short-Term Memory Networks.

MAC Multiply-Accumulate.

MCU Microcontroller Unit.

ML Machine Learning.

MLP Multi-layer Perceptron.

MRAM Magnetic Random Access Memory.
MSE Mean Squared Error.

MVM Matrix-Vector Mutliplication.

NAS Neural Architecture Search.
NSGA Non-dominated Sorting Genetic Algorithm.
NVM Non Von Neuman.

PCM Phase Change Memory.
PPG Photoplethysmography.
PTB Physikalisch Technische Bundesanstalt.

RGB Red Green Blue.

RL Reinforcement Learning.

RMSE Root Mean Square Error.

RNN Recurrent Neural Networks.
RRAM Resistive Random Access Memory.
RS Random Search.

SGD Stochastic Gradient Descent.

SHGO Simplicial Homology Global Optimization.
SNN Spiking Neural Networks.

SoC System-on-Chips.

SOTA State-Of-The-Art.

STD Standard Deviation.

TinyML Tiny Machine Learning.

Acronyms

ViT Vision Transformers.

VPU Vision Processing Unit.

VWW Visual Wake Words.

WL Word Line.

XXI

Chapter 1

Introduction

Contents
1.1 Context & Motivation,
1.2 Research Questions
1.3 Summery of Contributions
1.4 Open Source Projects
1.5 Thesis Organization

2 CHAPTER 1. INTRODUCTION

1.1 Context & Motivation

Deep Neural Networks (DNNs) have emerged as the cornerstone of numerous con-
temporary Artificial Intelligence (AI) applications. Their groundbreaking application
in speech synthesis, computer vision, and language modeling has sparked exponential
growth in the adoption of DNNs across various domains. Notably, DNNs have sur-
passed human accuracy in several areas, highlighting their remarkable efficacy. This
superior performance stems from their aptitude for extracting intricate features from
raw sensory data through statistical learning and brain-inspired operations. DNN ar-
chitectures are pivotal in shaping the performance and capabilities of Deep Learning
(DL) models. Designers must carefully select the architecture, layer types, and con-
nectivity patterns that best capture the relationships and patterns within the data.
Furthermore, optimizing the DNN’s hyperparameters, such as learning rates, regu-
larization techniques, and activation functions, demands extensive experimentation
and fine-tuning. The sheer scale and depth of modern DNN architectures necessitate
substantial computational resources, as well as the expertise to train and validate
these models efficiently.

However, the remarkable accuracy achieved by DNNs comes with a trade-off in
the form of high computational complexity. Historically, general-purpose compute
engines, particularly graphics processing units (GPUs) [22], have been the primary
workhorses for DNN processing. In addition, deploying DNNs entails significant mem-
ory requirements, as state-of-the-art networks are getting larger each year. A notable
example of this evolution is observed in the domain of image classification and object
detection. While Convolutional Neural Networks (CNNs) have long been regarded
as state-of-the-art models in this field, their supremacy has recently been challenged
by the emergence of vision transformers, which use 30x more parameters [23]. Nev-
ertheless, a growing necessity has emerged to execute these DNNs directly on users’
edge devices, primarily driven by privacy concerns. This new challenge has given
rise to several research directions. Firstly, in the context of the waning days of
Moore’s Law, there is a realization that advancing compute performance and energy
efficiency necessitates specialized hardware tailored specifically for DNN workloads.
Secondly, optimization strategies that aim to reduce the computational requirements
of DNNSs, such as quantization, pruning, and Hardware-aware Neural Architecture
Search (HW-NAS), have garnered considerable relevance.

Specifically, HW-NAS [1] has seen significant interest and progress in recent years,
as evidenced by the growing number of research papers and publications dedicated
to this topic, as shown in Figure 1.1. Neural Architecture Search (NAS) refers to a
set of methods that leverage computational algorithms to automatically design the
architecture of neural networks. This automated approach eliminates the need for
manual trial-and-error iterations, enabling the exploration of a vast search space of
potential architectures. HW-NAS takes the concept of NAS a step further by con-
sidering hardware-related factors such as memory capacity, computational efficiency,
and power consumption during the architecture search process. By doing so, HW-
NAS algorithms can intelligently discover architectures that are not only accurate
and high-performing but also optimized for deployment on specialized hardware ac-
celerators or resource-constrained devices.

Despite the progress made in HW-NAS, there are several current issues that need
to be addressed to further advance this field and ensure its practical applicability.
Firstly, current strategies are time-consuming requiring the performance evaluation
of each sampled architecture. This evaluation is usually performed using surrogate
models and estimation methods. Still, these estimation methods are time-consuming
to construct and they do not account for the multi-objectivity in HW-NAS [24]. Sec-
ondly, the search space design is crucial as it defines the ranges of performance, the
search can explore. However, designing a search space based on previously hand-
crafted architectures restrict HW-NAS to similar architectures without innovation

1.2. RESEARCH QUESTIONS 3

B NAS B HW-NAS
800

[=2]
[=4
o

Y
(=
o

Number of papers
N
o
o

2016 2017 2018 2019 2020 2021 2022 2023

Figure 1.1: Number of papers published on NAS and HW-NAS as of May 2023.

potential. Lastly, there is still a big gap in applying HW-NAS to other DL tasks than
image classification. In image classification, the standardization of common bench-
marks makes it easier to compare multiple methods. However, the lack of standard-
ized benchmarks and evaluation metrics on multiple DL tasks makes it challenging
to compare and validate different methodologies effectively.

In this context, the primary motivation driving this thesis is the need for an
efficient and practical HW-NAS approach tailored specifically for edge devices. As
edge devices become increasingly prevalent in various domains, building an efficient
HW-NAS is a key imperative to enable the deployment of powerful DL models on
such resource-constrained devices. The methods proposed in this thesis adapt to
multiple DL tasks and are validated on a varied set of hardware platforms.

Detailed motivations can be summarized as follows: (i) Accelerate the architecture
performance evaluation process used in HW-NAS. (ii) Reduce the overall search time
of HW-NAS, making the method practical in real-world applications. (iii) Improve
the design of search spaces, developing a non-restrictive space to discover novel ar-
chitectures. (iv) Investigate the use of HW-NAS for computer vision tasks including
image classification, object detection, and medical segmentation.

1.2 Research Questions

The research questions addressed in this thesis manuscript aim to improve the effi-
ciency and effectiveness of HW-NAS, including its real-world and practical applica-
tions. Specifically, the study aims to answer the following questions:

1. What are the key components of HW-NAS, and how can they be optimized to
improve performance?

2. How can multi-objective and Pareto-aware surrogate models be developed to
enhance the evaluation components of HW-NAS?

3. How can search spaces be enhanced with quantization awareness and free from
humanly designed operators to improve the search process?

4. Furthermore, how can HW-NAS be applied to novel hardware platforms, such
as analog in-memory computing?

5. How can it be used to optimize benchmarks in medical imaging analysis?

CHAPTER 1. INTRODUCTION

6. What are the key considerations and methodologies for developing a compre-

hensive benchmark specifically tailored for evaluating NAS methods in medical
imaging, and how can such a benchmark be designed to effectively capture the
complexities and challenges presented by medical imaging datasets?

How can a multi-task NAS methodology be developed to effectively account for
the diverse range of medical imaging types and tasks?

By addressing these research questions, this thesis aims to contribute to the field
of HW-NAS and advance the state-of-the-art in this important research area.

1.3 Summery of Contributions

This thesis comprises seven significant original research contributions:

1.

In [1], a survey of state-of-the-art HW-NAS techniques is presented, providing
an overview of the current landscape in HW-NAS, the challenges that concern
each component of HW-NAS, and a comparison between the different estima-
tion methods used to evaluate the architecture’s performance. In addition,
insights were provided for future estimation and search space design strategies
and approaches.

In [4, 5], we propose a novel multi-objective surrogate model, HW-PR-NAS. To
train this model, we define a Pareto score for each architecture, given its accu-
racy, latency, and energy consumption. We then train the surrogate model to
learn the ranking of the architectures. Once, used in HW-NAS, HW-PR-NAS
achieved up to 2.5x speedup compared to state-of-the-art methods while achiev-
ing 98% near true Pareto front, on seven different edge hardware platforms from
various classes, including ASIC, FPGA, GPU, and multi-cores.

Using the same Pareto score definition, in [6], we adapt the training of a su-
pernetwork search space. Supernetworks are a novel way to design HW-NAS
search spaces. We propose a supernetwork training methodology that preserves
the Pareto ranking between its different subnetworks resulting in neural net-
works more efficient and accurate for a variety of hardware platforms. The
results show a 97% near Pareto front approximation in less than 2 GPU days of
search, which provides 2x speed up compared to state-of-the-art methods. We
validate our methodology on multiple NAS benchmarks.

In [8], we define a novel methodology to extend the search space during the
search, allowing the exploration of large search spaces containing in an efficient
manner. More specifically, CaW-NAS combines the search for the architecture
and its quantization policy. While former works search over a fully quantized
search space, we define our search space with quantized and non-quantized
architectures. Our search strategy finds the best trade-off between accuracy
and latency according to the target hardware. Experimental results on a mobile
platform show that our method allows us to obtain more efficient networks in
terms of accuracy, execution time, and energy consumption when compared to
the state-of-the-art.

In [7], we propose a Grassroots Operator Search (GOS). GOS adapts a given
model for edge devices by searching for an efficient operator replacement. We
express each operator as a set of mathematical instructions that capture its
behavior. The mathematical instructions are then used as the basis for search-
ing and selecting efficient replacement operators that maintain the accuracy of
the original model while reducing computational complexity. Our approach is
grassroots since it relied on the mathematical foundations to construct new and

1.4. OPEN SOURCE PROJECTS 5

efficient operators for DL architectures. We demonstrate on various DL mod-
els that our method consistently outperforms the original models on two edge
devices, namely Redmi Note 7S and Raspberry Pi3, with a minimum of 2.2x
speedup while maintaining high accuracy. Additionally, we showcase a use case
of our GOS approach in pulse rate estimation on wristband devices, where we
achieve state-of-the-art performance, with reduced computational complexity.

6. Analog In-Memory Computing (IMC) is a new approach for building efficient
inference accelerators. Current DNNs, however, are not designed for such hard-
ware either in terms of operators or hyperparameters. AnalogNAS [9] proposes
a framework for automated DNN design targeting deployment on IMC inference
accelerators. We conduct extensive hardware simulations to demonstrate the
performance of AnalogNAS on state-of-the-art models in terms of accuracy and
deployment efficiency on various tiny machine-learning tasks. We also present
experimental results that show AnalogNAS models achieving higher accuracy
than state-of-the-art models when implemented on a 64-core in-memory com-
puting chip based on Phase change memory.

7. Medical imaging tasks are an ideal domain for HW-NAS on edge computing due
to the increasing demand for efficient and accurate medical imaging systems,
the availability of edge devices in healthcare settings, and the need to optimize
DL models for such resource-constrained devices. In [10], we designed a NAS
benchmark for medical imaging analysis. The benchmark targets eleven tasks,
including brain, lung, liver, and pancreas tumor segmentation, hippocampus,
spleen, and prostate segmentation, and pneumonia detection. Included in the
benchmark are the performance metrics and the hardware efficiency of millions
of architectures trained using a supernetwork design. On top of this benchmark,
we developed a multi-task HW-NAS methodology that not only finds efficient
architectures but is also generalizable to multiple medical tasks.

1.4 Open Source Projects

One of the key contributions of this thesis is the development of two open-source
neural architecture search libraries: AnalogNAS and MED-NAS-Bench.

e AnalogNAS is a modular and flexible analog-aware NAS python library that
is designed to optimize neural network architectures for analog hardware ac-
celerators. This library includes various search algorithms and neural net-
work building blocks, enabling users to easily design and search for analog-
efficient neural network architectures. By leveraging AnalogNAS, researchers
and engineers can design efficient neural networks for edge devices, IoT devices,
and other applications that rely on analog accelerators. The Python pack-
age can be installed via PyPi. The code and implementation can be found:

. This library was awarded the IEEE Open
Source for Science Award in 2023.

e The MED-NAS-Bench API represents a significant contribution to the field of
medical imaging research. By offering a comprehensive benchmark for NAS in
the context of medical imaging, the API serves as a valuable resource for both
researchers and practitioners. The Python package can be installed via PyPi.
The code and implementation can be found:

https://github.com/IBM/analog-nas
https://github.com/IHIaadj/med_nas_bench

6 CHAPTER 1. INTRODUCTION

1.5 Thesis Organization

As illustrated in Figure 1.2, this manuscript is organized into 7 chapters to convey
all of the original research contributions in a coherent way.

The current Chapter, i.e., the introduction, highlighted in pink, delves into the
research background and motivation. In addition, research questions are formulated,
and the key original contributions of this thesis, and open-source projects are sum-
marized.

The latter of the manuscript is divided into three parts:

e Literature Review: provides a comprehensive overview of related
works and defines the essential components of hardware-aware neural archi-
tecture search. This section lays the foundation for the subsequent parts of the
manuscript and sets the context for the research presented in the paper. This
section is present in Chapter 2.

e Efficient HW-NAS methods: this part is dedicated to the contributions
made to accelerate HW-NAS. It is divided into two chapters. Chapter 3
focuses on the development of multi-objective and Pareto-aware surro-
gate models to enhance the evaluation components of HW-NAS. We describe
HW-PR-NAS and PRP-NAS, two estimation strategies targeting two types of
search spaces; cell-based and supernetwork.

Chapter 4 concentrates on the the design of an efficient search space. It
describes CaW-NAS, an optimized methodology to extend the search space with
compressed architectures. And a novel design and search strategy, in which the
search space is composed of fine-grained operators, allowing the discovery of
novel architectures.

e Applications of HW-NAS: In this part, we adapt and use our HW-NAS
knowledge on two real-world use cases. Chapter 5 explains how to use HW-NAS
in the context of analog in-memory computing, and showcases how architectures
differ from one platform to another. Chapter 6 highlights the development
of a NAS benchmark for medical imaging analysis and the design of a
multi-task hardware-aware NAS to enhance medical DL models.

Overall, the manuscript provides a comprehensive and in-depth analysis of
hardware-aware neural architecture search, including its essential components, im-
provements, and applications in conventional and novel hardware platforms. Finally,
new benchmarking and scenarios of applications for HW-NAS are also proposed.

Finally, the thesis is concluded in Chapter 7, conclusion and future work. In Fig-
ure 1.2, this Chapter is highlighted in the same color as the introduction to indicate
a strong link/connection. In the conclusion, the findings in other chapters are sum-
marized concerning the research questions formulated in the introduction, and future
research directions are discussed.

1.5. THESIS ORGANIZATION

Chapter 1
Introduction

Part I: Literature Review

Hardware-aware Neural Architecture Search

Research Questions

How to
performance and hardware efficiency
of an architecture without fully training

Research Question 1

efficiently

evaluate

Research Question 2 Research Question 4

How can HW-NAS methods
adapted and extended

How to build an efficient search
space that
high-performing compressed neural

contains diverse and

be

to novel
hardware platforms, such as analog

Research Question 5

What are the key considerations
for developing a comprehensive
NAS benchmark for the domain
of medical imaging, and how can

it in a multi-objective search archi while the 'y computing? "
strategy? computational cost of the search such a benchmark be designed to
process? effectively capture the
complexities and challenges
Research Question 3 presented by medical imaging
What are effective approaches for datasets?
constructing a search space that is Research Question 6
not influenced by previous human .
. How can a multi-task HW-NAS
experience, and can enable the
. . . methodology be developed to
discovery of novel and innovative o .
effectively account for medical
neural architectures? . .
imaging tasks?
Key Contributions
I(T’hapter 3: apter 4: RN // éhapter 5: Chapter 6: N
1 © HW-PR-NAS: e CaW-NAS: \l 1 AnalogNAS: e MED-NAS-Bench: ‘l
1 Hardware-aware Compression-aware 1 : A Neural Network A Generalized Neural 1
: Pareto-ranking neural architecture : \ Design Framework for Architecture Search :
1 Surrogate Model for search | 1 Accurate Inference Benchmark for Medical |
I NAS * GOS: 1 ' with Analog Imaging Analysis 1
: e PRP-NAS: A Pareto Grassroots Operator : I In-Memory Computing o MT-MIAS :
1 Rank-preserving Search for Model 1 ! Multi-task 1
: Supernetwork Training Edge Adaptation ! : Hardware-aware !
1 .
\ Methodology | 1 Part III: architecture search for :
\ i ‘\ ar : medical imaging ¢
* -7 ~HW-NASApplications | analysis _____

Chapter 7
Conclusion and Future Work

Figure 1.2: Structure of the manuscript.

CHAPTER 1. INTRODUCTION

Part 1

Related Works

Chapter 2

Hardware-aware Neural
Architecture Search

Contents

2.1 Handcrafted models Vs. HW-NAS 12
2.2 Conventional Neural Architecture Search 14
2.3 Methodologies for Efficient Deep Learning 15
2.4 Taxonomy of HW-NAS 17
2.5 Search Spaces.t 18
2.5.1 Architecture Search Space 18
Fine-grained Search Space for NAS 20

2.5.2 Hardware Search Space (HSS) 20
2.5.3 Current Hardware-NAS Trends 22

2.6 Optimization strategies 23
2.6.1 Hardware-aware NAS Problem Formulation 23
Single-Objective Optimization 24
Multi-Objective Optimization 25

2.6.2 Search Algorithms 26
Reinforcement Learning (RL) 27
Evolutionary Algorithm (EA) 28
Gradient-Based Methods 28

Bayesian Optimization (BO) 29

Random Search (RS) 30

2.7 HW-NAS Estimation Strategies. 30
2.8 Other Considerations for Hardware-aware NAS 33
2.8.1 Automatic Mixed-Precision Quantization 33
2.8.2 Automatic Pruning 34
2.8.3 Security and Reliability Considerations in NAS 34

2.9 In-memory Computing & HW-NAS 34
2.10 Challenges and Limitations 36
2.10.1 Benchmarking and Reproducibility 36
2.10.2 Transferability of the Al Models 39
2.10.3 Transferability of the HW-NAS Across Multiple Platforms 40
2.11 Conclusion o ittt e e e e 41

11

12 CHAPTER 2. HARDWARE-AWARE NEURAL ARCHITECTURE SEARCH

The significant advances and breakthroughs of Deep Learning (DL), that have pro-
pelled from academic and industrial research labs’ circles, are now electrifying the
computing industry and transforming the world. DL is now being largely used to
solve real-world problems. As DL is computationally demanding, most of the deploy-
ments happen in the cloud or on-premises data centers. However, with the arrival
of powerful and low-energy consumption Internet of Things (IoT) devices and the
growing need to take action in real or near-real-time, DL computations are increas-
ingly moving to the edge. This pushes the development of small yet powerful DL
architectures.

In this chapter, we embark on a comprehensive exploration of handcrafted mod-
els, Neural Architecture Search (NAS) models, and Hardware-aware NAS (HW-NAS)
models, with a focus on their performance and parameter count. We highlight the
significance of efficient NAS and HW-NAS methodologies in addressing the increas-
ing demand for resource-efficient deep learning models. Subsequently, we provide
a general overview of the NAS framework, outlining its key components and high-
lighting the relevance of HW-NAS within this context. Furthermore, we present an
original taxonomy of HW-NAS approaches, categorizing them based on their specific
goals and objectives. FEach component of HW-NAS is thoroughly examined, draw-
ing insights from the existing literature. Additionally, we delve into other critical
considerations in HW-NAS, such as automatic quantization, reliability, and novel
hardware platforms. To provide a comprehensive analysis, we also dedicate a section
to discussing the challenges and limitations associated with existing HW-NAS works,
shedding light on areas that require further exploration and improvement.

2.1 Handcrafted models Vs. HW-NAS

DL is revolutionizing technology around us across many domains such as computer
vision [25, 26, 27, 28], speech processing [29, 30, 31] and natural language processing
[32, 33, 34]. These breakthroughs would not have been possible without the avail-
ability of big data, the recent algorithmic advancements, the tremendous growth in
computational power, and advances in hardware acceleration techniques. However,
designing accurate neural networks is challenging due to:

e The variety of data types and tasks that require different neural architectural
designs and optimizations.

e The vast amount of hardware platforms makes it difficult to design one globally
efficient architecture.

For instance, certain problems require task-specific models, e.g. EfficientNet [35]
for image classification and ResNest [36] for semantic segmentation, instance seg-
mentation, and object detection. These networks differ in the proper configuration
of their architectures and their hyperparameters. The hyperparameters refer to the
pre-defined properties related to the architecture or the training algorithm.

In general, the neural network architecture can be formalized as a Directed Acyclic
Graph (DAG) where each node corresponds to an operator applied to the set of its
parent nodes [37]. Convolution, pooling, activation, and self-attention are example
operators. Linking these operators together gives rise to different architectures. A
key aspect of designing a well-performing deep neural network is deciding the type
and number of nodes and how to compose and link them. Additionally, the archi-
tectural hyperparameters, such as stride and channel number in a convolution, and
the training hyperparameters, such as learning rate, number of epochs, and momen-
tum, are also important contributors to the overall performance. Figure 2.1 shows an
illustration of some architectural choices for the type of convolutional neural network.

According to this representation, DL architectures can contain hundreds of layers
and millions or even billions of parameters. These architectures are either handcrafted

2.1. HANDCRAFTED MODELS VS. HW-NAS 13

Depth

Convolution
e Activation Pooling Attention Fully-Connected NN
Depthwise Conv Relu Self

N N | IMax,Avg | |- | | Number of layers _-

Dilated Conv Leaky Stride Window NI @Dl Eas m

Relu Paddin Heads | T f activati
Kernel Size Softmax 9 Patch size EPARLDCERILIEL]
Stride
Padding

e Possible operator per layer
e Architecture hyperparameters

Figure 2.1: Generic DL architecture. For each layer, an operator is chosen among a
pre-defined list or operations (convolution, dilated convolution, depthwise convolu-
tion, max-pooling, batch_normalization, etc.). The sequence Convolution, Activation,
Attention, etc. is repeated several times in DL architectures.

by repetitive experimentation or modified from a handful of existing models. These
models have also been growing in size and complexity. This makes handcrafting deep
neural networks a complex task that is time-consuming, error-prone and requires deep
mathematical expertise. Thus, in recent years, it is not surprising that techniques
to automatically design efficient architectures, or Neural Architecture Search (NAS),
for a given dataset or task, have surged in popularity.

® Handcrafted @ Efficient Handcrafted ® NAS ® HW-NAS

95% ‘
90%
flefflClnt 13 CvT-W24
FixResNeXt-101 32x48d | ’ Mixer-HI14
KDforAA™ ;T | L6 ‘
—_ o, ResNeXt:101f32x48d ‘, o
X 85% ici BTAdVP
< L}moﬁetﬁ Effi |en-tNe B 1rrer
a NA'SlET_;PNAglat-S FikPNASNet-5
g DPNGST-L
0, 4 i FA
8 80 A’ Inception V3 Df N:‘EH :
ECA-Ne
I » -~ =
< R sNet-% Densénet-264
ResNet-50@ = | ™7 P MnasNet-A3 _proxy
VGG Dense‘:‘et-169 NASNET‘%MnasNet-AZ
X il 3
75% Inception V: A v
[} 1 FBNet
VGG-16. [] ileNet V2
ShuffleNet
70%
05/2016 09/2017 02/2019 06/2020 10/2021 03/2023

Figure 2.2: Accuracy of various CNN models on ImageNet for Image Classification
task with the number of parameters. Inspired by [15]

In figure 2.2, we compare several DL models for the image classification task de-
pending on their Top-1 accuracy and their sizes. Each dot in the plot corresponds
to a given DL architecture that has been used for image classification. The dot size
correlates with the size of the corresponding model in terms of the number of pa-
rameters. The highest value is from CoAtNet-7 [38] which has 2440M parameters.
A quick look at the graph reveals the trend to design larger models to better Top-1
accuracy. However, a large size is not necessarily correlated with better accuracy.
There have been several efforts to conceive more efficient and smaller networks to
achieve comparable Top-1 accuracy performance. We compare four classes of archi-
tectural designs: Handcrafted, Efficient handcrafted, NAS, and HW-NAS. Generally,

14 CHAPTER 2. HARDWARE-AWARE NEURAL ARCHITECTURE SEARCH

throughout the years the handcrafted models rank high up in terms of accuracy but
are much more complex in terms of architecture’s depth and number of parameters.
For instance, CoCa [39], which is the state-of-the-art model as of April 2023, has over
2100 million parameters. In the top right quadrant of the figure 2.2 (around the same
region as most of the recently handcrafted models), we find some of the models that
are automatically created by different NAS techniques. These techniques focus only
on improving the model’s accuracy without paying attention to the efficiency of the
model in terms of its size and latency. Therefore, these NAS models are still large,
with the number of parameters ranging between 100M and 700M.

Since 2015, we have noticed the rise of efficient handcrafted models. These models
rely on compression methods (see section 2.3) to decrease the model’s size while
trying to maintain the same accuracy. MobileNet-V2 [40] and Inception [41] are
good examples where the number of parameters is between 20M and 80M. Hardware-
aware NAS (HW-NAS) emerges as a technique to automatically design efficient DL
architectures. This class encompasses work that aims to tweak NAS algorithms and
adapt them to find efficient DL models optimized for a target hardware device. HW-
NAS began to appear in 2017 and since then achieved state-of-the-art (SOTA) results
in resource-constrained environments with Once-for-all (OFA) [42] for example.

Architecture A

! 1

1 1

1 1

Architecture Search ! o 1

Space : Search Algorithm Evaluation Methodology |

Conv i |Reinforcement Learning Use proxy dataset '
Pooling | Evolutionary Algorithm Early stopping r—>] BestModel

Activations i | Gradient-based Surrogate Models |

! Hypernetwork 1

1) 3)!

! 1

1 1

__

Figure 2.3: Overview of conventional NAS components.

2.2 Conventional Neural Architecture Search

A conventional NAS process requires the definition of three main components: the
search space, the search strategy, and the evaluation methodology, as illustrated in
figure 2.3.

1. Search Space

The search space draws from a set of neural network architectures to define the
neural network operators and how they are connected to form a valid network.
It determines the way by which architectures are formed and those which are
allowed. For example, NASNet [43] introduced a fixed macro architecture
where the search consists of finding the appropriate operators to be used within
each block from a set of 12 specified operators (see Section 2.5).

2. Search Algorithm

The search algorithm (also known as search strategy) explores the search space
by sampling a population of network architectures’ candidates. It evaluates the
accuracy of the model using a specific evaluation methodology. The measured
accuracy will then guide the search strategy to converge towards promising
architectures in the search space (see Section 2.6).

2.3. METHODOLOGIES FOR EFFICIENT DEEP LEARNING 15

3. Evaluation Methodology

The evaluation component trains the architecture on the desired dataset,
which often takes considerable time. Many NAS algorithms have incorporated
several techniques to speed up the training process such as early stopping or
surrogate models (see Section 2.7).

NAS has proven its efficiency by proposing different models in object detection [44]
and image classification [45]. However, these models are often composed of millions
of parameters and require billions of floating-point operations (FLOPs). This causes
a large memory footprint and computation and consequently prevents their usage
in resource-constrained systems. Additionally, these models might require specific
hardware (GPUs, TPUs, etc.) to allow their deployment in a reasonable time or in
real-time applications.

Integrating hardware awareness in the search loop (i.e. HW-NAS) has attracted
several researchers and has opened up interesting new research directions over the
past few years. Some HW-NAS efforts have achieved SOTA results and have bal-
anced the trade-off between accuracy and hardware efficiency. For example, FBNet
[46] has achieved interesting results on ImageNet by using an objective function that
minimizes both the cross-entropy error, which leads to better accuracy, and the la-
tency, which penalizes inefficient networks.

This chapter provides a detailed overview of existing HW-NAS research efforts
and categorizes them according to their goals and problem formulation. With this
survey, we provide a concise review of the NAS variants that focus on precision and
hardware awareness.

2.3 Methodologies for Efficient Deep Learning

Current DL models are getting bigger and bigger; especially with the arrival of deep
foundation models. However, the compute capacity at the edge is significantly low,
which does not match this increasing complexity. This has motivated the research
community to find innovative ways to reduce the DL models’ size, their required
number of floating operations, and their inference latency. This section presents an
overview of the efficient DL techniques and where HW-NAS is situated among them.

Figure 2.4 illustrates the taxonomy of different techniques used to optimize DL
models. We put in red, blocks, and elements we focus on in this thesis.

Model Compression: Model compression aims to apply to standard DL models,
such as ResNet or AlexNet, optimizations that will decrease the model size and the
number of FLOPs. This model compression is applied while trying to maintain an
acceptable level of accuracy. Relevant surveys [15, 47] on model compression classify
the optimizations into these four classes:

e Compact Model: This technique modifies the standard operations used in
DNNs. In a CNN, the standard convolution is replaced by more flexible con-
volution arithmetics that expand the number of feature maps and decrease the
number of parameters such as dilated convolution [48] or separable depthwise
convolution [49]. In an Recurrent Neural Networks (RNN), cells like S-LSTM
[50], or JANET [51] simplify the gates and decrease the number of parameters
compared to a regular Long Short-Term Memory Networks (LSTM).

e Tensor Decomposition: a tensor is the fundamental data structure used in ma-
chine learning. It can represent vectors, matrices, and even n-dimensional ar-
rays. Therefore, shrinking the tensors allows for accelerating DNNs and reduc-
ing their size. Tensor decomposition is an extension of the matrix decomposition

16 CHAPTER 2. HARDWARE-AWARE NEURAL ARCHITECTURE SEARCH

| Efficient Deep Learning Methods |

l l

| Model Compression | | HW-NAS | | Code Transformations |
| searches for
1 1 ! -l 1 K NN Block or i 1 l
1 \
C:gz:lct Dec:?nns:sri tion I | Quantization | | Sparsification | } Entire at'aygzr;:ers Loop Tiling UnL::TI[iDn 0:': ;iit: r
P! '\ ’ Architecture P 9
~ > 4
L e " L Rt " [et T
: Goal: Maximize : : Goal: Search for an architecture : : Goal: Apply code optimizations to :
1 Compression Ratio ! 1 that maximizes ! 1 maximize !
i Accuracy H i Accuracy H ! Hardware Usability \
: Hardware Usability : : Hardware Usability : : :
DNN or P
DNN Search Space Code Optimized
— . » Compressed > - » Best DNN = Block of ——»f .
Model Model Compression DNN Model (A set of DNNs) HW-NAS Operators Transformations Block
Hardware Agnostic Hardware-dependent & Hardware-agnostic Non Hardware Agnostic

Figure 2.4: Overview of efficient deep learning strategies.

techniques used in mathematical settings. Equation 2.1 formulates the matrix
decomposition system where the number of parameters of A and B combined
is smaller than the number of parameters of M.

M = AB with M € R™*" A € R™*" B € R™" (2.1)

Note that tensor networks including hierarchical tensor representation (HT)
[52] and tensor train decomposition (TT) [53] achieve higher compression rates
in a fully-connected network since they usually contain more redundancy.

e Quantization: In DL, quantization [54] refers to converting data objects from a
32-floating point to lower precision or a fixed point integer or even binary. These
data objects can be the weights of the layer, the activations (the input data’s
internal representation), the error value, the gradient values, or the weight
update. Each method differs with the chosen bandwidth and the data objects
that are quantized.

e Network Sparsification or pruning [55, 56] attempts to compress the model by
pruning some weights (edges) or operations (nodes). Usually, the decision of
pruning is taken based on its importance, which is directly the weight values or
learned via an attention layer.

HW-NAS: Another efficient DL technique is HW-NAS. In HW-NAS, we search
for the architecture that maximizes the accuracy and hardware usability among a
set of architectures. Note that some HW-NAS can be considered under the model
compression techniques as they search for the best bit-width or the best way to prune.
We further detail the search for hyperparameters, NN Block, or full architectures in
Section 4.

Code Transformations: An alternative approach that is gaining more attraction
these recent years is to apply some code transformations that optimize the DNNs on
the operator level [57]. These transformations are hardware-specific and require a
compiler to apply the right transformation for the right hardware platform automati-
cally. A variety of DL compilers have been developed to apply these transformations,
among them: Tiramisu [58], TVM [59], and XLA [60].

2.4. TAXONOMY OF HW-NAS 17

| Goals of Hardware-Aware Neural Architecture Search |
I

Single Target Multiple Targets

] 14

P ey pppmpp——
| Fixed Platform Configurations | | Multiple Platform Configurations |: Select a Set of Hardware :
» . 4 ! Targets H
Hardware-aware Search Hardware-aware Search : ‘ 1
Strategy Space ! '
} \ Multi-Hardware 1
——————————————— | FPm=—==—=-=--Jd----------==—------- ——————————~: Architecture Search Space :
: Architecture Search | ! : Architecture Search ': Architecture Hardware Search :| Intersection of all :
! Space] Space Search Space Space l: architectures that can be \
: Conv, Pooling, ... 1 : Conv, Pooling, Conv, Pooling, ... || Tiling parameters :. deployed in all targets. !
1 b H Number of PE " H

1 | |
1 I 1
i Search Strategy ' H i: H
! 1

| [1l
| [1l !
! Hiw Cost v :: Search Special H
! 1 Strategy Metric !
| oy i !

h 2

! Vi i) — ,

D search strategy selects an architecture ':l Best Architecture Best Platform
D request performance measure :I Configuration

remove inefficient architectures :l

Figure 2.5: Overview of different hardware-aware NAS designs.

2.4 Taxonomy of HW-NAS

Unlike conventional NAS, where the goal is to find the best architecture that maxi-
mizes model accuracy, HW-NAS has multiple goals and multiple views of the problem.
We can classify these goals into three categories (See figure 2.5 from left to right) :

e Single Target, Fixed Configuration: Most of existing HW-NAS fall under
this category. The goal is to find the best architecture in terms of accuracy
and hardware efficiency for one single target hardware. Consequently, if a new
hardware platform has to be used for the NAS, the whole process must be re-
executed with the new hardware details to calculate the new hardware’s cost.
These methods generally define the problem as a constrained or multi-objective
optimization problem [46, 61, 62]. Within this category, two approaches are
adopted:

— Hardware-aware search strategy where the search is defined as a multi-
objective optimization problem. While searching for the best architecture,
the search algorithm calls the traditional evaluator component to get the
accuracy of the generated architecture but also a special evaluator that
measures the hardware cost metric (e.g., latency, memory usage, energy
consumption). Both model accuracy and hardware cost guide the search
and enable the NAS to find the most efficient architecture.

— Hardware-aware Search Space where a restricted pool of architectures is
used. Before the search, either the operators’ performance on the target
platform is measured or a set of rules that will refine the search space
is defined. Refining the search space allows for to elimination of all the
architectures’ operators that do not perform well on the target hardware.
For example, HURRICANE [63] uses different operator choices for three
types of mobile processors: Hexagon DSP, ARM CPU, and Myriad Vision
Processing Unit (VPU). Accumulated domain knowledge from prior exper-
imentation on a given hardware platform helps narrow down the search
space. For instance, they do not use depthwise convolutions for CPU,

18 CHAPTER 2. HARDWARE-AWARE NEURAL ARCHITECTURE SEARCH

squeeze, and excitation mechanisms for VPU and they do not lower the
kernel sizes for a DSP. Such gathered empirical information helps to define
three different search spaces according to the targeted hardware platform.
Note that, after defining the search space with these constraints, the search
strategy is similar to the one used by conventional NAS, which means that
the search is solely based on the accuracy of the architecture, and no other
hardware metric is incorporated.

e Single Target, Multiple Configurations: the goal of this category is not
only to get the most optimal architecture that gets the best accuracy but also to
get an optimal architecture with latency guaranteed to meet the target hardware
specification. For example, the authors of FNAS [64] define a new hardware
search space containing the different FPGA specifications (e.g., tiling configura-
tions). They also use a performance abstraction model to measure the latency
of the searched neural architectures without doing any training. This allows
them to quickly prune architectures that do not meet the target hardware spec-
ifications. In [65], the authors use the same approach for ASICs and define a
hardware search space that contains various ASIC templates.

e Multiple Targets: In this third category, the goal is to find the best architec-
ture when given a set of hardware platforms to optimize for. In other words, we
try to find a single model that performs relatively well across different hardware
platforms. This approach is the most favorable choice, especially in mobile de-
velopment as it provides more portability. This problem was tackled by [66, 67]
by defining a multi-hardware search space. The search space contains the in-
tersection of all the architectures that can be deployed in the different targets.
Note that, targeting multiple hardware specifications at once is harder as the
best model for a GPU, can be very different from the best model for a CPU. For
example, in general, wider models are more appropriate for GPU while deeper
models are preferable on CPUs.

2.5 Search Spaces

Two different search spaces have been adopted in the literature: the Architecture
Search Space and the Hardware Search Space.

2.5.1 Architecture Search Space
Definition

The Architecture Search Space is a set of feasible architectures from which we
want to find an architecture with high performance. Generally, it defines a
set of basic network operators and the manner by which these operators can
be connected to construct the computation graph of the model.

We distinguish two approaches to designing an architecture search space:

1. Hyperparameter optimization for a fized architecture: The objective is limited
to optimizing the architecture hyperparameters, such as the number of channels,
the stride, or the kernel size.

2. Operator search space: The search space allows the optimizer to choose connec-
tions between operations and the type of operation within each layer.

Both approaches have their advantages and disadvantages but it is worth men-
tioning that although the former approach reduces the search space size, it requires
considerable human expertise to select the macro-architecture and introduces a strong

2.5. SEARCH SPACES 19

| Input | | Input |

| Operator 1 | | Cell | : I ;);e;azo; 1_ 1 : : r E);e;a:o; 1_-_
! VAR P

| Operator 2 | | Cell : E : : E
! ERY | |

| Operator 3 | | Cell | TN i TN

| Outputs | | Outputs |

(a) (b) (©) (d)

Figure 2.6: Architecture search spaces types. (a) Global search space, (b) Cell-based
search space, (c) Hierarchical search space, and (d) supernetwork search space. In
orange the operators considered during the search.

bias. Whereas the latter approach decreases the human bias but considerably in-
creases the search space size and hence the search time.
Generally, in the latter approach, we distinguish three types (See figure 2.6):

e Layer-wise Seach Space, where the whole model is generated from a pool
of operators. FBNet Search Space [46], for example, consists of a layer-wise
search space with a fixed macro architecture that determines the number of
layers and dimensions of each layer where the first and last three layers have
fixed operators. The remaining layers need to be optimized.

e Cell-based Search Space, where the model is constructed from repeating
fixed architecture patterns called blocks or cells. A cell is often a small acyclic
graph that represents some feature transformation. The cell-based approach
relies on the observation that many effective handcrafted architectures are de-
signed by repeating a set of cells. These structures are typically stacked and
repeated a number of times to form larger and deeper architectures. This search
space focuses on discovering the architecture of specific cells that can be com-
bined to assemble the entire neural network. Although cell-based search spaces
are intuitively efficient to look for the best model in terms of accuracy, they
lack flexibility when it comes to hardware specialization [46, 62].

e Hierarchical Search Space, works in 3 steps: First, the cells are defined,
and then bigger blocks containing a defined number of cells are constructed.
Finally, the whole model is designed using the generated cells. MNASNet [62]
is a good example of this category of search spaces. The authors define a
factorized hierarchical search space that allows more flexibility compared to a
cell-based search space. This allows them to reduce the size of the total search
space compared to the global search space.

e Supernetwork Search Space, the idea behind supernetworks is to create a
large space of possible architectures that can be efficiently explored to find the
best-performing network for a given task. In a supernetwork, the weights of the
subnetworks are not fixed but are instead treated as hyperparameters that can
be learned during training. This allows for a more flexible search space that
can better adapt to the specific requirements of the task at hand.

In existing NAS research works the authors define a macro-architecture that generally
determines the type of networks considered in the search space. When considering
CNNs, the macro architecture is usually identical to the one shown in figure 2.1.
Therefore, many works [46, 61, 62, 66, 68] differ in the number of layers, the set of
operations and the values of the possible hyperparameters. Recently, the scope of net-
work type is changing. For instance, NASCaps [69] changes their macro-architecture

20 CHAPTER 2. HARDWARE-AWARE NEURAL ARCHITECTURE SEARCH

to allow the definition of capsules. Capsules network [70] are basically cell-based
CNNs where each cell (or capsule) can contain a different CNN architecture.

Other works like [71, 72] focus on transformers and define their macro-architecture
as a transformer model. The search consists of finding the number of attention heads
and their internal operations. When dealing with hyperparameters only, the macro
architecture can define a variety of network types. Authors in [73, 74] mix different
definitions, transformers + CNN and transformers + RNN respectively. They define
a set of hyperparameters that encompasses the pre-defined parameters for different
network types at the same time.

Lately, more work [61, 75] have been considering the use of over-parameterized
networks (i.e. supernetworks) to speed up the NAS algorithms. These networks
consist of adding architectural learnable weights that select the appropriate operator
at the right place. Note that these techniques have been applied to transformers as
well [76].

In some research efforts, the pool of operators/architectures is refined with only
the models that are efficient in the targeted hardware [66, 67]. The search space size
is considerably reduced by omitting all the architectures that cannot be deployed.

Fine-grained Search Space for NAS

In recent research endeavors, various approaches have been proposed to explore novel
architectures without human design bias. The term ” fine-grained search spaces” refers
to search spaces that consist of a set of mathematical and code-level functions. Few
works consider these search spaces for NAS. The reason is due to the large number of
possible operators created from this search space, it is highly impractical to explore
it.

AutoML Zero [77] is the only AutoML tool that defines a search space from basic
operators. Their goal is to search for the end-to-end learning pipeline, i.e., from archi-
tecture building to optimizing the loss function. This work is a seminal step towards
the holy grail of AutoML: automatically designing a network and training pipeline for
any given dataset. However, their methodology took a tremendous amount of time to
come up with already human-designed logistic regression. Recently, BANAT [78] pro-
poses an algebraic representation of the architecture to enable a more general search
space definition. This is a promising strategy for efficiently and effectively searching
over our huge search spaces.

Other works [78, 79, 80] consider modifying a single operator, namely batch nor-
malization. EvoNorms [79] evolves the normalization operator from basic mathemat-
ical functions. They discover novel implementations and functions for the normaliza-
tion and activation fusion which improved the overall average precision of multiple
standard models.

Due to their recent application and high time complexity, low-level search spaces
are only considered in NAS with a task-specific objective. In other terms, our work
is the first to search for adapting the model for resource-constrained devices using a
low-level search space.

To address the efficiency aspect of exploring such complex search spaces, GOS
adopts an operator replacement strategy. By iteratively replacing the least efficient
operator in the architecture, GOS streamlines the search process, enabling more
efficient exploration and discovery of high-performing architectures.

2.5.2 Hardware Search Space (HSS)

Some HW-NAS methods include an HSS component that generates different hardware
specifications and optimizations by applying different algorithmic transformations to
fit the hardware design. This operation is done before evaluating the model. This co-
exploration is effective but increases the search space-time complexity significantly. If
we take Field Programmable Gate Arrays (FPGA) as an example, their design space

2.5. SEARCH SPACES 21

may include IP instance categories, IP reuse strategies, quantization schemes, parallel
factors, data transfer behaviors, tiling parameters, and buffer sizes. It is arguably
impossible to consider all these options as part of the search space due to the added
search computation cost. Therefore, many existing strategies limit themselves to only
a few options.

Definition

The Hardware Search Space is a set of all hardware configurations and proper-
ties that can impact the mapping and execution of a neural network. Finding
the appropriate set of properties helps design efficient hardware platforms and
ensure high efficiency.

Hardware Search Space (HSS) can be further categorized as follows:

e Parameter-based: The search space is formalized by a set of different pa-
rameter configurations. Given a specific data set, FNAS [64] finds the best-
performing model, along with the optimization parameters needed for it to be
deployed in a typical FPGA chip for DL. Their HSS consists of four tiling pa-
rameters for the convolutions. FINASs [81] extends FNAS by adding more
optimization parameters such as loop unrolling. The authors in [82, 83] used
a multi-FPGA hardware search space. The search consists of dividing the ar-
chitecture into pipeline stages that can be assigned to an FPGA according to
its memory and DSP slices, in addition to applying an optimizer that adjusts
the tiling parameters. Another example is presented in [84], where the adopted
approach takes the global structure of an FPGA and adds all possible param-
eters to its hardware search space including the input buffer depth, memory
interface width, filter size, and the ratio of the convolution engine. [85] searches
the internal configuration of an FPGA by generating simultaneously the archi-
tecture hyperparameters, the number of processing elements, and the size of
the buffer. FPGA/DNN [86] proposes two components: Auto-DNN which
performs hardware-aware DNN model search and Auto-HLS which generates
a synthesizable C code of the FPGA accelerator for the explored DNNs. Ad-
ditional code optimizations such as buffer reallocation and loop fusion on the
resulting C-code are added to automate the hardware selection.

e Template-based: In this scenario, the search space is defined as a set of
pre-configured templates. For example, NASAIC [65] integrates NAS with
Application-Specific Integrated Circuits (ASIC). Their hardware search space
includes templates of several existing successful designs. The goal is to find
the best model with the different possible parallelizations among all templates.
In addition to the tiling parameters and bandwidth allocation, the authors in
[87] define a set of FPGA platforms and the search finds a coupling of the
architecture and FPGA platform that fits a set of pre-defined constraints (e.g.,
max latency 5ms)

In general, we can classify the targeted hardware platforms into 3 classes focusing
on their memory and computation capabilities:

e Server Processors: This type of hardware can be found in cloud data centers, on-
premise data centers, edge servers, or supercomputers. They provide abundant
computational resources and can vary from CPUs, GPUs, FPGAs, and ASICs.
When available, machine learning researchers focus on accuracy. This class is
beyond the scope of our survey. In this paper, we focus on HW-NAS on edge
devices where the necessity of efficient deep architectures is at its peak.

e Mobile Devices: With the rise of mobile devices, the focus has shifted to en-
abling fast and efficient DL on smartphones. As these devices are heavily con-

22 CHAPTER 2. HARDWARE-AWARE NEURAL ARCHITECTURE SEARCH

strained with respect to their memory and computational capabilities, the ob-
jective of ML researchers shifts to assessing the trade-off between accuracy and
efficiency. Many HW-NAS algorithms target smartphones including FBNet [46]
and ProxylessNAS [61] (table 2.1). Additionally, because smartphones usually
contain system-on-chips with different types of processors, some research ef-
forts [88] have started to explore ways to take advantage of these heterogeneous
systems.

e Tiny Devices: The strong growth in the use of microcontrollers and IoT ap-
plications gave rise to TinyML [89]. TinyML refers to all machine learning
algorithms dedicated to tiny devices, i.e, capable of on-device inference at ex-
tremely low power. One relevant HW-NAS method that targets tiny devices
is MCUNet [90], which includes an efficient neural architecture search called
TinyNAS. TinyNAS optimizes the search space and handles a variety of differ-
ent constraints (e.g., device, latency, energy, memory) under low search costs.
Thanks to the efficient search, MCUNet is the first to achieve >70% ImageNet
top-1 accuracy on an off-the-shelf commercial microcontroller. MCUNet also
includes an inference engine to identify the right set of code optimization for
the searched architecture.

Table 2.1: Classification of HW-NAS based on their targeted Hardware.

Targeted HW ‘ References

Central Processing Unit | [63, 84, 83, 91, 92, 93, 94, 95, 96,
(CPU) 97]

Graphics Processing Unit | [72, 73, 85, 92, 94, 97, 98, 99, 100,
(GPU) 101, 102, 103, 104, 105, 106, 107,
108, 109, 110, 111, 112, 113, 114,
115, 116, 117, 118, 119, 120, 121,
122, 123, 124, 125, 126, 127, 128]
[46, 90, 129, 130, 131, 132]

Micro-Controller Unit
(MCU)

Mobile Devices

[42, 46, 61, 62, 71, 72, 95, 107,
133, 134, 135, 136, 137, 138, 139
[63, 69, 82, 83, 140, 141, 142, 143,

Application-Specific Inte-

grated Circuit (ASIC) 144]

Edge Tensor Processing | [72, 136, 145]
Unit (TPU)

In-Memory-Computing [146, 147]
(IMC)

2.5.3 Current Hardware-NAS Trends

Figure 2.7 shows the different types of platforms that have been targeted by HW-NAS
in the literature. In total, we have studied 395 original hardware-aware NAS papers.
By target, we mean the platform that the architecture is optimized for. Usually, the
search algorithm is executed in a powerful machine, but that is not the purpose of our
study. We focus here on the platform where the inference is executed. ” No Specific
Target” means that the HW-NAS incorporates hardware agnostic constraints into
the objective function such as the number of parameters or the number of FLOPs.
In the figure, the tag ” Multiple” means multiple types of processing elements have
been used in the HW platform. Table 2.1 gives the list of references per targeted
hardware.

In figure 2.7 (left), we note that the number of research papers targeting GPUs
and CPUs has more or less remained constant. However, we can clearly see that

2.6. OPTIMIZATION STRATEGIES 23

100% 100%

B CNN + attention

= IMC - SNN
75% B Multiple 75% B GAN
SoC GNN
ASICs B Transformers
50% B FPGA 50% RNN
B No Specific Capsule + CNN
Target B Extended CNN
25% B CPU 25% M Standard CNN

B GPU MLP

0%
2018 2019 2020 2021 2022 2023 2018 2019 2020 2021 2022 2023

0%

Figure 2.7: Statistics on targeted platforms and type of networks described by the
HW-NAS search spaces

FPGAs and ASICs are gaining popularity over the last 3 years. This is consistent
with the increasing number of DL edge applications. Another interesting target for
HW-NAS is In-memory Computing (IMC). This novel hardware platform optimizes
the Matrix-Vector Mutliplication (MVM) and becomes one of the most promising
hardware platforms for Al. We discuss searching for a suitable architecture for IMC
in section 2.9. Another recent work [66, 67] is to consider multiple platforms at once.
This was particularly suitable for mobile settings with different existing System-on-
Chips (SoC).

Figure 2.7 (right) illustrates the different DNN operations that compose the ar-
chitecture search space. We notice that most NAS target CNN architectures. We
divide this category into two groups, standard CNN which only utilizes a standard
convolution, and extended CNN which involves special convolution operations such as
the depthwise separable convolution or grouped convolutions. However, recent works
have started to explore more operators by incorporating RNN, capsule networks [69],
transformers [148],Generative Adversarial Networks (GAN) [149] and more recently
Graph Convolutional Neural Networks (GCN) [150].

2.6 Optimization strategies

In this section, we describe how the HW-NAS problem is formulated and solved using
an optimization strategy.

2.6.1 Hardware-aware NAS Problem Formulation

NAS is the task of finding a well-performing architecture for a given dataset. It is cast
as an optimization problem over a set of decisions that define different components
of deep neural networks (i.e., layers, hyperparameters). This optimization problem
can simply be seen as formulated in equation 2.2.

max f(a, 6) (2.2)

We denote the space of all feasible architectures as A (also called search space).
The optimization method is looking for the architecture « that maximizes the per-
formance metric denoted by f for a given dataset ¢. In this context, f can simply be
the accuracy of the model.

Although it is important to find networks that provide high accuracy, these NAS
algorithms tend to give complex models that cannot be deployed on many hardware
devices. To overcome this problem, practitioners consider other objectives, such as
the number of model parameters, the number of floating-point operations, and device-
specific statistics like the latency or the energy consumption of the model. Different

24 CHAPTER 2. HARDWARE-AWARE NEURAL ARCHITECTURE SEARCH

formulations were used to incorporate the hardware-aware objectives within the op-
timization problem of neural architecture search. We classify these approaches into
two classes, single and multi-objective optimization. The single objective optimiza-
tion can be further classified as two-stage or constrained optimization. Similarly, the
multi-objective optimization approach can be further classified as single or multi-
objective optimizations. Please refer to figure 2.8 for a summary of these approaches.
These 2 classes are further detailed with examples from the literature in the following
sections.

| Hardware-Aware NAS Methods |

|
' !

| Single-Objective Optimization | |

Multi-Objective Optimization |

'

!

!

!

Two-Stage Methods
Search for the best in
terms of accuracy then
compress it

Constrained Optimization
Consider the hardware-cost
as a constraint to the
optimization problem

Scalarization Methods
One objective function with
multiple objective terms:
accuracy, memory, energy...

Pareto-aware Methods
Algorithm considering
multiple objectives
simultaneously

max f(w,d)
acA

J
e f(ed)

max h(f1(a,), ... fn(c,6))

max f1(0,), v fu(,0)

subject to g;(o) < T}Vi € T

Figure 2.8: HW-NAS problem formulations.

Single-Objective Optimization
Definition

In this class, the search is realized considering only one objective to maximize,
i.e., accuracy. Most of the existing work in the literature [61, 62, 84, 87, 151],
that tackle the hardware-aware neural architecture search, try to formulate the
multi-objective optimization problem into a single objective to better apply
strategies like reinforcement learning or gradient-based methods.

We can divide this class into two different approaches: Two-stage optimization
and constrained optimization.

Two-Stage optimization: In this first category, we retain the original formulation
of the NAS problem and then specify the model for deployment. This approach is
sub-optimal, as the final architecture proposed by the NAS is not always the one that
gives the best performance on the hardware device. Two-stage optimization consists
of applying NAS methods to obtain the best-performing architecture and then in
a second stage, specializing this architecture for deployment on a target hardware
platform. This specialization performs a series of optimization to fit the hardware
requirements. In [116] the authors apply a reinforcement learning agent to find the
best quantization bit-width and pruning level after selecting the most accurate model.
In reference [42] the authors search over a pre-trained and selected architecture to
find the most efficient one in terms of latency and energy consumption.

Constrained optimization: In this approach, the hardware-aware characteriza-
tions are considered constraints in the original NAS formulation. The constraints
take the form of thresholds to be respected. In this approach, inference time, energy
consumption and memory occupation are examples of constraints. The conditions
are added as constraints to the optimization problem to enforce requirements like
fewer parameters or faster inference time. The threshold and the trade-off between

2.6. OPTIMIZATION STRATEGIES 25

different constraints can be adapted to practical requirements. For such cases, the
single-objective optimization problem defined in Equation 2.2 turns into a constrained
optimization problem defined by

max f(a, 0)
acA (23)
subject to g;(a) < T; Vi e I

Here, g; corresponds to the different constraints taken into account (e.g., latency,
memory, energy consumption) and 7T; denotes the respective threshold. As most of
the optimization methods used by NAS (i.e. reinforcement learning and evolutionary
algorithms) were designed for unconstrained optimization problems, this formulation
is hard to be adopted directly. Therefore, many researchers turned to penalty methods
to transform the equation into a single objective function that contains the hardware
constraints as well as the accuracy measurement [46, 61, 62]. For example, MNASNet
[62], uses equation (2.4), where f is the accuracy measurement function, LAT is the
latency of the model and T is the threshold. They use a learnable parameter w to
control the effect of the hardware constraints on the global objective function.

max f((«) - [LAT(a)/T]" (2.4)

acA
ProxylessNAS [61] uses a loss function that comprises of the cross-entropy (CE)
loss and hardware-aware constraints.

L = Lcg + M||w|* + A2 E[latency] (2.5)

Equation 2.5 illustrates the loss calculated by the reinforcement learning agent used
by ProxylessNAS. A\; and A9 are learnable parameters that adjust the effect of the
efficiency of the overall loss. Specifically, a policy is learned that decides whether to
add, remove or keep a layer as well as whether to alter its number of filters.

FLASH [146], a dedicated NAS for compute-in-memory devices, optimized an
objective function that consists of minimizing the quotient of the accuracy and HW
efficiency. They used three different metrics for HW efficiency: Latency, area, and
memory consumption.

Multi-Objective Optimization
Definition

To handle multiple fronts in the formalism of a multi-objective optimization
problem defined as:

max fi(ay 8), fa(a,8), ...y fru(a, d) (2.6)

In this scenario, there is often no single optimal solution that simultaneously
maximizes every objective function. Additionally, some objective functions
can be conflicting. For instance, trying to minimize the number of parameters
while aiming at maximizing the accuracy. In these situations, the task boils
down to finding Pareto-optimal solutions.

These techniques can:

1. Transform the problem to a single-objective optimization using the scalarization
method, also called the weighted sum method or,

2. Solve the multi-objective optimization problem using dedicated heuristics or
meta-heuristics such as genetic algorithms or tabu search [114]. In general, this
second approach provides not one optimal solution but a set of solutions that
form the optimal Pareto front of the multi-objective optimization problem.

26 CHAPTER 2. HARDWARE-AWARE NEURAL ARCHITECTURE SEARCH

Scalarization Methods: One way to solve the multi-objective optimization prob-
lem is to use a scalarization approach. Equation 2.7 formulates this method. We use
a parameterized aggregation function h to transform the multi-objective optimization
problem into a single-objective optimization problem.

gleai(h(fl(a75)af2(a35)amafn(aa(;)) (27)

The function h can be a weighted sum, a weighted exponential sum, a weighted
min-max, or a weighted product. However, in most situations, not all Pareto optimal
solutions can be found in solving this problem with a fixed setting of the weights.
Therefore, the problem is solved for multiple values of the vector w which requires
multiple optimization runs. To mitigate the cost of having multiple runs, researchers
commonly use a set of fixed weights according to the desired trade-off between the
objectives and the practitioners’ preferences. Thanks to the scalarization, the prob-
lem becomes a single-objective optimization problem which can be solved by any
optimizing methods discussed in Section 2.6. For example, [99] proposes to use the
weighted sum as the objective function. The proposed formulation of this function is
described by equation 2.8. ACC refers to the accuracy metric, £ refers to the energy
consumed by the architecture «, and w is a learned parameter to adjust the effect of
the energy on the reward function.

max w- ACC(w,0) — (1 —w) - E() (2.8)

acA

Pareto-aware Methods: Recently, there has been an emerging approach to tackle
the design of neural architectures as a pure multi-objective problem. This approach
considers the conflicting objectives of task-specific performance and hardware effi-
ciency, aiming to strike a balance between the two. The outcome is a set of archi-
tectures that lie on the Pareto front, representing the trade-off between performance
and efficiency. This Pareto front provides a valuable resource for selecting architec-
tures that best align with the requirements of a target device or deployment scenario.
The final set of architectures offers flexibility and adaptability, allowing practition-
ers to choose the most suitable architecture based on their specific needs, whether
it be optimizing for accuracy, latency, power consumption, or other desired criteria.
In addition, these architectures can be leveraged to adapt to the hardware battery
life, which is a crucial consideration for mobile and battery-powered devices. When
the battery is low, selecting an architecture from the Pareto front that prioritizes
energy efficiency, can extend the battery life of their devices without compromising
significantly on task-specific performance.

For example, the elitist evolutionary algorithm Non-dominated Sorting Genetic
Algorithm (NSGA) [152] is used. In this algorithm, the architectures are divided into
fronts based on their dominance. The architecture in the i-th front is only dominated
by all the architectures in the 1,...,7 — 1 fronts. Within each front, the architec-
tures are prioritized by the crowding distance, which is computed by the sum of all
the neighborhood distances across all the objectives. HW-NAS works [104, 113, 153]
have been using the NSGA-II algorithm to ensure the exploration of diverse architec-
tures in the search space. Moreover, NSGANet [104] uses Bayesian Optimization to
profit from search history. MoreMNAS [153] uses a hybrid search strategy combining
NSGA-II with reinforcement learning to regulate arbitrary mutations.

2.6.2 Search Algorithms

In this section, we will explore several search algorithms that are commonly used
in HW-NAS. Figure 2.9 shows the popularity of the most used search algorithms.
These algorithms are borrowed from the operational research field and applied to the
HW-NAS problem.

2.6. OPTIMIZATION STRATEGIES 27

19 38 70 264 314 55

100%
75% B Others
B Bayesian
Optimization
50% B Gradient-based
Reinforcement
Learning

25% B Evolutionary-based

B Random Search

0%

2018 2019 2020 2021 2022 2023

Figure 2.9: Commonly used search algorithms

Reinforcement Learning (RL)

Most HW-NAS methods use reinforcement learning to search for the best architecture
[62, 65, 83, 84, 87, 151, 154, 155] because the NAS problem is easily modeled as a
Markov Decision Process. The RL controller samples an architecture from the search
space and is rewarded according to its accuracy and hardware cost. The controller
will then adjust its weights to generate better models. Different works differ on how
they represent the agent’s policy (set of actions) and how they optimize it.

Using reinforcement learning, MNASNet [62] tries to find the Pareto optimal
solution of the objective function described in equation 2.4. It uses a sample-eval-
update loop to train its RNN controller. To generate a block, the controller will first
choose two hidden states (i.e., outputs of previous blocks) as inputs. Then, it will
select an operation to apply to each one of them. Finally, it selects a combination
method (e.g., addition or concatenation) to obtain the final output of the block. This
implementation has been defined by NASNet [156] before. Once a model is sampled,
it is trained on the target task to get its accuracy and deployed on real phones to
get its latency. The system computes the reward value and adjusts the controller
parameters accordingly.

A similar approach was used by FPNet [151] but the RNN controller predicts
only the architectural hyperparameters (i.e., number of filters, filter height and width,
stride height and width. etc.) while keeping the macro architecture fixed.

Codesign-NAS [84] proposes to use reinforcement learning to explore both ar-
chitecture and hardware search spaces. The authors investigated three RIL-based
search strategies and use the REINFORCE algorithm to improve the accuracy and
efficiency of image classification on FPGA. The first strategy consists of combining the
two search spaces and updating the CNN and accelerator options at the same time.
The second method uses two different controllers, one to learn the CNN architecture
and another one to select the best FPGA options. The last one is a conventional
NAS where they separately search for the best model in terms of accuracy then as a
completely separate step look for the most efficient model. An expected result is that
this latter strategy gives bad results when it comes to the constrained environment.
An interesting result is that the second method (i.e., phase search) seems to be the
most promising achieving higher rewards in most of their experiments.

28 CHAPTER 2. HARDWARE-AWARE NEURAL ARCHITECTURE SEARCH

Evolutionary Algorithm (EA)

Another popular strategy in conventional NAS is the use of evolutionary algorithms
[157, 158]. Generally, evolutionary search algorithm-based NAS evolves a population
of models, samples some models to generate offsprings by applying some mutations,
and finally evaluates the fitness of the offsprings and updates the new generation
by adding the best ones to the population. When it comes to integrating the hard-
ware constraints to the NAS algorithms, some research efforts have used evolutionary
algorithms [63, 69, 76, 90].

TinyNAS [90] uses a hardware-aware search space approach. It first optimizes
the search space to fit the tiny and diverse resource constraints and then performs
an evolution search algorithm within the optimized search space to find the most
accurate model. The evolution search is performed on a trained super network that
contains all the possible sub-networks. First, they sample 100 satisfying networks
that fit the resource constraints. Then, just like conventional NAS, they measure
the validation accuracy of each model, mutate the offspring and update the new
generation. This process is repeated for 30 iterations.

Once-for-all [42] proposes a special technique to train the supernetwork using
gradient-based methods called progressive shrinking. A supernetwork is another
name for an over-parameterized network. In their version, the supernetwork includes
the highest values for the width, depth and channel number in each convolution. The
process begins by training for larger width, depth, and channel numbers and then
fine-tune the network for the smaller sizes. Once the supernetwork is trained, they
specialize the network using an evolutionary algorithm for different hardware settings
with a combined cost of accuracy and latency.

HAT [76] is interesting because to our knowledge it is the only work that is
trying to search for efficient transformers, targeting NLP tasks. The authors perform
an evolutionary search with hardware latency constraints on a SuperTransformer.
This means the engine only adds SubTransformers with latency smaller than the
hardware constraint to the population.

NASCaps [69] proposes a NAS framework that generates Capsule Networks along
with CNN. The proposed framework uses a multi-objective Genetic Algorithm (based
on NSGA-II, see section 4.2) to pick the Pareto optimal solutions. The two key
operations are the crossover and mutation. In the crossover, they define the splitting
point by ensuring that the generated DNN is made up of at least on initial convolution
layer and a minimum of two capsules. No standard convolution is placed between
two capsule layers. The mutation is performed by randomly choosing one of the layer
descriptors from the candidate network and modifying one of the main parameters of
the selected layer.

Gradient-Based Methods

Arguably the most promising search strategy promising in terms of results, Gradient-
based methods are increasingly used by hardware-aware NAS [46, 61, 67, 75, 159] and
NAS generally. Running the search separated from the evaluation requires a lot of
time and computation. Therefore, a common idea is to have a supernetwork that can
emulate any child model in the search space. This means that different parts of the
graph share weights between their common edges. This idea of weight sharing has the
advantage of considerably reducing the search time. Gradient-based methods train
the supernetwork to simultaneously get the architecture parameters and weights.
This technique has been initiated by DARTS [160].

ProxylessNAS [61] is one of the papers pioneering this method. It defines a
supernetwork with binary architecture parameters (i.e., 1 implies that the operator
is selected in the layer and 0 otherwise). The loss function combines the cross-
entropy and the latency to better update the weights and architecture parameters.
An approach similar to BinaryConnect [161] is used to update the binary architecture

2.6. OPTIMIZATION STRATEGIES 29

parameters using an approximation of the gradient w.r.t architecture parameters.

FBNet [46] proposes to use differentiable neural architecture search to discover
hardware-aware efficient CNNs. They also use a combination of the cross-entropy
and latency to train their supernetwork using stochastic gradient descent. Rather
than using binary parameters, they relax the problem of finding the best architecture
to finding a distribution that yields to the best model.

SqueezeNAS [75] focuses on semantic segmentation and uses a method very
similar to FBNet [46]. HTAS [67] uses a gradient-based method to find the best
width and depth for their transformable CNNs.

XNAS [159] proposes to use the prediction with expert advice theory [162] for
the selection. It leverages the Exponentiated-Gradient algorithm (EG) [163] rather
than the classical gradient descent which prevents the decay of architecture weights
to promote the selection of arbitrary architectures.

Many recent works [164, 165] have provided evidence that weight sharing does not
respect the ranking of architecture. Which yield sub-optimal search results. They
both suggested using smaller search spaces to alleviate this issue. However, it is
meaningless to search in a narrow search space, as a small search space will lead to a
Very narrow accuracy range.

One major challenge when applying gradient-based optimization is the loss func-
tion must be differentiable w.r.t the architectural parameters. Also, we need to check
that the incorporated hardware cost is differentiable. Several methods have been
used to make the gradient computation over discrete variables possible and extend
the original DARTS proposal [166].

e Gumbel Softmax [167] One way to relax the discrete variables is to use the
Gumbel Softmax function. It helps insert some random noise following the
Gumbel distribution so that the gradient computation is possible. This tech-
nique was used by FBNet [46, 168].

e Estimated Continuous Function ProxylessNAS [61] mimics the concept of
BinaryConnect [161]. They approximately estimate the gradient w.r.t the ar-
chitecture parameters using the gradient w.r.t the binary gates. To reduce the
computational cost, they compare the gates two-by-two by factorizing the task
of using one out of N paths into multiple binary selection tasks.

e REINFORCE algorithm An alternative approach to BinaryConnect is also
proposed by ProxylessNAS [61]. They utilized REINFORCE to train the bina-
rized weights. Furthermore, they combine the gradient-based update rule to the
REINFORCE updates to form a new general update rule for the architecture
parameters.

OFA [169] introduces a technique for searching optimal architectures adaptable
to various hardware and latency constraints. It involves training a supernetwork
with multiple sub-networks of different architectures and computational costs. Sub-
networks are randomly sampled and trained on different data batches, and their accu-
racy and computational cost are evaluated on a validation set. The best-performing
sub-networks are selected for deployment.

While OFA focuses on finding a single architecture for diverse platforms, our
methodology, PRP-NAS [6], aims to simultaneously optimize multiple objectives,
resulting in a set of Pareto-optimal solutions. We do not apply for any post-search
specialization.

Bayesian Optimization (BO)

Bayesian Optimization (BO) is a powerful technique that has been increasingly ap-
plied in HW-NAS to efficiently identify the best neural network architecture for a
given hardware platform. Generally, BO is used for hyperparameter optimization.

30 CHAPTER 2. HARDWARE-AWARE NEURAL ARCHITECTURE SEARCH

This approach leverages Bayesian statistical methods to optimize a surrogate func-
tion that models the performance of different neural architectures on the hardware
platform. The use of Bayesian optimization balances the exploration-exploitation
trade-off, using an acquisition function to guide the search toward promising regions
of the architecture space. This ultimately leads to more efficient and effective searches,
as the number of architectures that need to be evaluated on the hardware platform is
reduced. For instance, [170] propose a hardware-aware Bayesian optimization frame-
work for NAS, which they evaluate on several datasets and hardware platforms. The
results demonstrate that their approach effectively discovers architectures that out-
perform state-of-the-art networks while satisfying hardware constraints.

Random Search (RS)

The most convenient and easiest search strategy to implement is the random search
strategy. Most of the existing works that have adopted random search optimize the
architectural hyperparameters within a fixed macro architecture. They argue that
it is more important to design the architecture search space for the targeted hard-
ware platform than to complicate the search strategy and incorporate the hardware
constraints in the objective function. NASNet [43], for example, tried both methods
(i.e., reinforcement learning and random search). They found that with reinforcement
learning the results are slightly better (Top-1 accuracy on CIFAR-10, 0.912 - 0.925).
Li et al. [171] investigate the use of random search on two standard NAS bench-
marks (i.e., PTB and CIFAR-10). They use an approach that is similar to Proxyless-
NAS [61] which allows them to train a single network at a time and thus reduce the
memory footprint with weight sharing. As a result, they show that random search
with early-stopping is a competitive NAS baseline as it outperforms ENAS [172].
Furthermore, random search with weight-sharing outperforms random search with
early stopping, achieving State-Of-The-Art (SOTA) results on Physikalisch Technis-
che Bundesanstalt (PTB). A more recent investigation [107] showed that random
search cost time is not negligible and is comparable to NAS methods.
Besides, other HW-NAS uses novel optimization strategies that come from opera-
tional research. For example, FLASH [146] uses Simplicial Homology Global Opti-
mization (SHGO) [173] to search for the optimal architecture for an IMC accelerator.
SHGO proves to converge with fewer samples than RL.

2.7 HW-NAS Estimation Strategies

In HW-NAS, one needs to estimate task-specific performance and the model’s hard-
ware efficiency.

An important component in HW-NAS is the hardware cost measurements. First
of all, many metrics have been used in order to evaluate the hardware efficiency
of an architecture including the number of FLOPs, the number of parameters, the
execution time of the inference named also latency, the energy consumption, the
memory footprint, the area of the hardware platform, etc. In this section, the existing
approaches for hardware cost measurements are detailed:

e Floating Point Ops per Second (FLOPS) & Model Size: The first HW-NAS
approaches that were published in 2016 and 2017 [174, 175] use the number of
parameters and number of FLOPs as an objective function to minimize. These
techniques assume that the number of operations is positively correlated to the
execution time. However, recent works have proved that two models can have
the same number of FLOPs but different latencies [63, 76, 176]. For example,
NASNet-A and MobileNetV1 have roughly similar numbers of FLOPs, yet,
NASNet-A can have slower latency due to the hardware-unfriendly structure.
Therefore, using FLOPs as the hardware cost metric is not efficient and may
return suboptimal models. On the other hand, using the model size represented

2.7. HW-NAS ESTIMATION STRATEGIES

31

Table 2.2: Summary of Hardware Cost Estimation Methods.

Method ‘ Implementation ‘ HW Cost Metric ‘ References
Real-world The sampled model is executed | Latency MNASNet [62]
measurements on the hardware target NetAdapt [177]
Z. Guo et al. [133]
MCUNet [90]
Energy NetAdapt [177]
MONAS [99]
C. Gong et al. [178]
Lookup Table Mod- | A lookup table is created before- | Latency FBNet [46] Hot-
hand and filled with each opera- NAS [87]
tor latency on the targeted hard-
ware. Once the search starts, the
system will calculate the overall
cost from the lookup table
Analytical Compute a}’ougb estimate using Latency ?Xéga[;:l[]b‘)]
Estimation the processing tlme., the. stall A. Anderson et al.
time, and the starting time [180]
Q. Lu et al. [83]
Energy NASCaps [69
Memory footprint NASCaps [69
Area NASAIC [65]
Build an ML model to predict Latency proxylessNAS
Prediction Model the cost using architecture and [61] NASAIC [65]
dataset features NeuNets [105]
LEMONADE [99]

by the number of parameters allows for a reduction of the memory footprint and
tends to be considered an automatic method to search for compressed models
[140].

Latency: Searching for low-latency architectures at inference time is crucial for
real-world applications such as autonomous driving and traffic control. More-
over, resource-limited devices have latency constraints. Thus, a lot of works
consider the latency in their objective function and search for the trade-off
between inference time and accuracy.

Energy Consumption: Energy is usually profiled by the provided hardware
platform profilers such as nvprof by NVIDIA. The energy can be formalized
either as the peak power consumption or the average power, both metrics are
used by different HW-NAS works including [99, 177, 178].

Area: Another metric that interests chip manufacturers is its area. The goal is
to get the smallest chip possible that could run the best model. Authors in [65]
use MAESTRO [179] to explore the area and power consumption and search
for the best model and best ASIC templates within a set of pre-defined ones.
The area of the circuit is also a good indicator of static power consumption.
These two values are correlated.

Memory footprint: We can get the model size by calculating the number of
parameters it needs to learn but a more efficient way is to profile how much
memory it uses while running; this is the memory footprint. Having a low
memory footprint is important for edge devices. These devices are not able to
run models with high memory footprints. To reduce the memory footprint in
edge devices, techniques like those presented in Section 2.8 are applied.

Table 2.2 summarizes all the methods used to estimate the latency, and energy
consumption in different HW-NAS methods.
Real-world measurements provide high accuracy in measuring the hardware ef-
ficiency of an architecture. MnasNet [62] uses this method in the exploration. It

32 CHAPTER 2. HARDWARE-AWARE NEURAL ARCHITECTURE SEARCH

achieves 75.2% top-1 accuracy with 78ms latency on a Pixel phone platform, which
is 1.8x faster than MobileNetV2 with 0.5% higher accuracy. However, this method
considerably slows down the search algorithm by averaging hundreds of runs to get
precise measurements. Additionally, this strategy is not scalable and requires that
all the hardware platforms are available. This solution could be costly and needs
a lot of mobile devices and software engineering work. For this reason many works
tend to use prediction models [61, 63, 82, 83, 86, 154] or pre-collected lookup tables
[46, 84, 87] or analytical estimations [69, 154].

In ProxylessNAS [61] the authors have developed three latency prediction models
for three different platforms: mobile phone (Google Pixel 1), GPU (NVIDIA V100),
and CPU (Intel Xeon). To build their mobile latency predictors, they use the type of
operators, input and output feature map sizes, and other architectural hyperparame-
ters as features. The real values for Pixel 1 have been measured with Tensorflow-Lite
as software. On ImageNet, their model achieves 3.1% better top-1 accuracy than
MobileNetV2, while being 1.2x faster with measured GPU latency.

In NASCaps [69], the functional behavior of a given specialized CNN and Cap-
sNet hardware accelerator is modeled at a high level, to quickly estimate the memory
usage, energy consumption, and latency. The HW platform, the ASIC CapsAcc in
the paper, is described at the RTL level. Using a VLSI CAD tool and the RTL spec-
ifications, energy, memory, and latency costs of elementary operations are measured.
Elementary operations’ cost corresponds for example to the number of cycles and
energy required to execute a layer. These values are then multiplied by the number
of occurrences of each operation in the architecture and accumulated to obtain the
total cost for the latency and energy.

Although these techniques are efficient, they require hardware experts to build the
models. For the lookup table method, for example, the researcher needs to dedicate
a lot of time to optimizing the code of each operator/architecture in the targeted
hardware, which requires compilation knowledge. Similarly, to build the best model
predictor, the researcher needs expert knowledge to select the best features and verify
the results. Therefore, these methods impose a barrier to non-hardware experts.

In order to fairly compare the accuracy of each method, we conducted exper-
iments to compute the latency of each architecture in NAS-Bench-101 [181]. The
alm is to compare 4 methods: real-world measurements, lookup table, prediction
model, and analytical estimation. For the lookup table, we calculated the latency of
each operator used in the cell of the benchmark including Identity, Conv3x3BnRelu,
Convlx1BnRelu, MaxPool3x3, BottleneckConv3x3, BottleneckConv5x5, and Max-
Pool3x3Convixl.

When a cell is generated, we sum the latency of the constructing operators and the
latency of the whole cell is obtained. For the prediction model, we used two different
models: a simple MLP and XGBoost, both trained on the real-world measurements
of a portion of the benchmark (training set). We choose these two methods because
they are both used by popular HW-NAS in [61] and [46] respectively. Lastly, for the
analytical estimation, we computed the number of MAC for the cell and multiply this
value by the latency of one multiply-add tensor instruction.

This experiment was run on a Tesla K80 GPU, the prediction model MLP had
to run for 50 epochs with early stopping. NAS-Bench-101 defines more than 400k
cells, we have done our test on 165,580 cells. The search algorithm used to calcu-
late the search time is an evolutionary algorithm based on the validation accuracy
given by the benchmark and the latency measured by the different methods. Figure
2.10 presents the results of the accuracy values of different methods. In this figure,
the performance of the estimation is represented by the Root Mean Square Error
(RMSE) which corresponds to the deviation relative to real-world measurements. As
expected, the analytical estimation does not produce good results compared to the
prediction models or the lookup table method. The prediction models even with a
simple XGBoost give the best results and accelerate the search more than 5 times

2.8. OTHER CONSIDERATIONS FOR HARDWARE-AWARE NAS 33

compared to the real-world measurements.

-5
5 4
-4
N
= '3 #
g3 z
o F2
n 2
r1
1 4
0. -0
Real-time LUT MLP XGBoost Analytical
measurements simulation

Estimation Strategies

Figure 2.10: Comparison of hardware cost measurement methods. LUT stands for
Look Up Table. The speedups are calculated w.r.t Real-world measurements

2.8 Other Considerations for Hardware-aware NAS

Prior to and in parallel with the hardware-aware NAS efforts, researchers have been
working on reducing the memory footprint of DL models and execution time to fa-
cilitate the efficient deployment and design of hardware-friendly models. Two main
methods have been used, namely handcrafting new operators that are more effi-
cient such as separable convolutions [49], grouped convolutions [28] and applying DL
optimizations such as quantization [182] and pruning [183]. This latter method is
automated by several NAS works to compress the model and make it possible to exe-
cute on different hardware accelerators. Moreover, reducing the number of learnable
parameters makes the training faster. For instance, SAL [184] reduces the number
of parameters of ResNet-56 from 1.22M to 0.36 M without significant degradation of
the model’s accuracy; 0.6% decrease.

In this section, we will define the two most used DL optimizations and review the
NAS works that focus on searching for the right optimization parameters.

2.8.1 Automatic Mixed-Precision Quantization

In the DL compression field, quantization is one of the most important methods.
Starting with BinaryConnect [161] in 2015 to binarize CNNs weights, it is now imple-
mented in many DL software such as PyTorch or TensorFlow. The idea is that the
weights of the DL model do not have to be represented in full 32-bit precision and
can be represented in 8-bits precision, or even binary values in some cases, without
significantly decreasing the model’s accuracy. This idea was extended to the activa-
tions and weights [185]. Recently, mixed-precision quantization that applies different
bit-width values for different layers in the same network has been proposed.

HAQ [186] implemented a dedicated reinforcement learning agent that learns to
assign the right bit-width to each layer. Their goal is to specialize the architecture
to a specific hardware platform by incorporating hardware constraints and accuracy
into the reward function. For each layer, the agent takes two decisions: one for the
weights and another one for the activations.

Single-Path [133] proposes an evolutionary algorithm that searches for the
mixed-precision quantization policy. However, the search costs a huge amount of

34 CHAPTER 2. HARDWARE-AWARE NEURAL ARCHITECTURE SEARCH

time and processing as the space for mixed-precision is enormous.

BP-NAS [187] cast the mixed-precision quantization problem as a constrained
optimization. In addition, it proposes a new constraint that encourages the model to
focus on valid architectures while imposing a large punishment for the quantization
outside the valid domain.

Although these works present interesting solutions to the mixed-precision problem,
the huge search space and computational cost of the learning process still represent
a real challenge. Furthermore, mixed-precision representation requires specific MAC
architectures with scalable precision. This places a cap on the power efficiency, ac-
cording to this study [188]. With this in mind, [189] proposes a uniform quantization
search algorithm called neural channel expansion (NCE). NCE expands the num-
ber of channels of a layer when it is more sensitive to the quantization error while
maintaining the same precision level.

2.8.2 Automatic Pruning

The second prominent compression method is pruning. Pruning methods eliminate
some neurons or connections according to a defined criterion to reduce the number of
parameters in the architecture. Generally, we evaluate the importance of the neurons,
we prune the least important ones, and finally, we fine-tune the network.

AMC [116] proposes an automatic model compression that looks for the optimal
sparsity for each layer during pruning. The authors trained a reinforcement learning
agent to predict the best sparsity for given hardware. The reward function includes
accuracy and FLOPs after pruning the architecture.

X. Dong and Y. Yang in [190] propose to prune the over-parameterized network
without performance damage. They directly search within their NAS process for a
network with flexible channel and layer sizes. ABCPruner [191] uses an artificial
bee colony algorithm to efficiently find the optimal pruned structure. Another worth
mentioning paper is Partial Order Pruning [192] which proposes a hardware-aware
NAS that prunes the search space with a partial order assumption to look for the
best speed and accuracy trade-off.

2.8.3 Security and Reliability Considerations in NAS

Other NAS methods try to address safety-critical issues by discovering architectures
that are robust against adversarial attacks [193, 194]. RAS [193] formulates robust-
ness as the sum of the accuracies on a bunch of adversarial samples. This robust
evaluation makes it easier for the evolutionary algorithm to select better architecture
in the population and apply different mutations (e.g., add a block, remove a block,
add a connection...). Along with [195], they reveal these observations: first, the more
dense the architecture is the more robust it is, second, under computational budget,
adding convolution operations to direct connection edge is effective, and finally, flow
of solution procedure (FSP) matrix is a good indicator of network robustness. Please
note here, that none of the NAS methods that consider security and reliability in the
search place is hardware-aware.

2.9 In-memory Computing & HW-NAS

One promising technology for edge hardware accelerators is analog-based in-memory
computing, which is herein referred to as analog in-memory computing (IMC).
IMC [196] can provide radical improvements in performance and power efficiency,
by leveraging the physical properties of memory devices to perform computation and
storage at the same physical location. Many types of memory devices, including
Flash memory, Phase Change Memory (PCM), and resistive random-access mem-
ory (RRAM), can be used for IMC [197]. Most notably, analog IMC can be used

2.9. IN-MEMORY COMPUTING & HW-NAS 35

to perform Matrix-vector multiplication operations in O(1) time complexity [198],
which is the most dominant operation used for DNN acceleration. Besides, tradi-
tional von Neumann architecture, where the processor and memory are separate,
leads to significant data movement, which is a bottleneck for AI applications. In-
memory computing devices, on the other hand, allow for computation and storage
to be integrated, reducing the need for data movement and enabling faster and more
energy-efficient computations. Additionally, in-memory computing devices can sup-
port analog computation, which is better suited for neural network computations than
the digital computation used in traditional processors. As Al applications continue
to grow in complexity and scale, the importance of in-memory computing devices for
accelerating Al computations will only continue to increase.

It is crucial to design DL architectures that are specifically optimized for such
hardware. While in-memory computing devices can significantly improve the speed
and efficiency of neural network computations, they have unique characteristics that
need to be taken into consideration when designing DL architectures. In-memory
Computing (IMC) devices have, for instance, limited precision and may not support
all operations that are typically used in DL models. Another important constraint
that needs to be considered when designing DL architectures for In-memory Com-
puting (IMC) devices is the presence of noise in the devices. In-memory Computing
(IMC) devices are susceptible to various types of noise, such as read noise and write
noise, which can affect the accuracy of computations. DL architectures need to be
resilient on top of being accurate and hardware efficient.

Many works [199, 200, 201, 202] target In-memory Computing (IMC) accelerators
using HW-NAS. FLASH [199] uses a small search space inspired by DenseNet [203]
and searches for the number of skip connections that efficiently satisfy the trade-off
between accuracy, latency, energy consumption, and chip area. Its surrogate model
uses linear regression and the number of skip connections to predict model accuracy.
NAS4RRAM [201] uses HW-NAS to find an efficient DNN for a specific Resistive Ran-
dom Access Memory (RRAM)-based accelerator. It uses an evolutionary algorithm,
trains each sampled architecture without hardware-aware training, and evaluates each
network on a specific hardware instance.

NACIM [200] uses co-exploration strategies to find the most efficient architecture
and the associated hardware platform. For each sampled architecture, networks are
trained considering noise variations. This approach is limited by using a small search
space due to the high time complexity of training. UAE [202] uses a Monte-Carlo
simulation-based experimental flow to measure the device uncertainty induced to a
handful of DNN. Similar to NACIM [200], evaluation is performed using hardware-
aware training with noise injection.

AnalogNet [204] extends the work of Micronet by converting their final models to
analog-friendly models, replacing depthwise convolutions with standard convolutions,
and tuning hyperparameters.

Our work, AnalogNAS [9] offers a better adaptation to analog IMC hardware
compared to the aforementioned SOTA HW-NAS strategies. This is primarily due to
two reasons. Firstly, our search space, which features resnet-like connections, is much
larger and more representative. This expanded search space allows us to address
the crucial question of identifying architectural characteristics suitable for analog
IMC, which cannot be adequately explored with smaller search spaces. Secondly, in
addition to the noise injection during HWA training utilized by existing approaches,
we directly incorporate the inherent characteristics of analog IMC hardware into the
objectives and constraints of our search strategy. Details of the methodology are
given in Chapter 5.

36 CHAPTER 2. HARDWARE-AWARE NEURAL ARCHITECTURE SEARCH

2.10 Challenges and Limitations

In this section, we lay down the main challenges and barriers that prevent us to unfold
hardware-aware NAS’s full potential. Most of the challenges are also applicable to
general NAS methods.

2.10.1 Benchmarking and Reproducibility

An important challenge while working on NAS and HW-NAS is the reproducibility of
the methods, which allows comparisons and concrete improvements. Unfortunately,
due to the use of different search spaces, various training methods, and the required
significant computational resources, reproducibility is a difficult step. This difficulty
is even higher when it comes to HW-NAS considering the numerous possibilities of
targeted hardware devices. To address this issue, many works [148, 181, 205, 206]
have proposed different benchmarks and data sets that allow NAS researchers to:

e Eliminate the cost of generating a search space by querying directly a tabular
data set.

e Evaluate different search strategies on the same search space which allows a fair
comparison between them.

e Provide data sets to be used by accuracy predictor models and hardware cost
models.

e Open HW-NAS research to non-hardware experts by proposing datasets that
contain the hardware-related metrics. These metrics are usually obtained af-
ter optimization of the operators and software that require specific hardware
knowledge.

In this section, we will review each NAS benchmark and highlight its strengths and
weaknesses. Table 2.3 summarizes the properties of the different benchmarks.

2.10. CHALLENGES AND LIMITATIONS 37

Table 2.3: Comparison of NAS Benchmarks

NAS- | NAS- | NATS- | NAS- | NAS- | NAS- HW-NAS-
Bench- | Bench- | Bench | Bench- | Bench- | Bench- Bench [209]
101 201 [207] 1shotl | NLP 301[208]
[181] [205] [206] [148] (DARTS)
Arch Search Space Cell- Cell- Cell- Super | Cell- Super Cell-based
based | based | based | Net- based | Network | CNN (NAS-
CNN CNN CNN work LSTM | CNN Bench-201 +
CNN FBNet)
Size (number of architectures) | 423k | 15,625 | 15,625 | 363,648| 14k 101 46875 + 1071
Datasets CIFAR-10 v v v v v v
CIFAR-100 v v v v v
ImageNet v v v
PTB v
WikiText2 v
Validation Ac- v v v v v v v
curacy
Motrics Training Time v v v v v v v
Trained Param- v v v v v
eters
FLOPs v v v
Test Accuracy v v v v v v v
Latency v v v v v
Energy v
Predictor Models v v
GPU GTX GTX Not Not Tesla Not Men- | Edge GPU
Hw 1080Ti | 1080Ti | Men- men- V100- | tioned Jetson TX2
Platforms tioned | tioned | SXM2
Edge TPU Edge TPU
Dev Board
Smartphone Pixel 3
Raspberry Pi Raspi 4
FPGA Xilinx
ZC706
ASICs ASIC-
Eyeriss

NAS-Bench-101 [181]! is a tabular dataset that maps 432k unique architec-
tures to their relative training accuracy, validation accuracy, testing accuracy as well
as training time and the number of trained parameters. Each architecture is trained
for various numbers of epochs 4, 12, 36, 108. The architectures follow a fixed macro
architecture, with searchable cells stacked (See the section 2.5.1). Each cell is con-
structed with up to 7 layers that can include 3 types of operations: 3x3 conv, 1x1
conv, and 3x3 max-pooling. NAS-Bench-101 allows flexibility by allowing different
layers to be used in the stacked cells. The search space is constrained by limiting
the number of edges to 9 and the number of nodes to 7 including the input and
output nodes for each cell. However, not including operations such as separable con-
volution or dilated convolutions; which significantly improved the model’s size and
speedup [40], makes the resulting models parameter-heavy, which is not hardware-
friendly in terms of memory footprint. Another downside of this benchmark is the
inability to use a one-shot optimizer NAS, this is due to the tabular format. To enable
the evaluation of weight-sharing NAS methods, two benchmarks have been released
NAS-Bench-201 [205]% and NAS-Bench-1Shot1 [206]3.

NAS-Bench-201 represents 15,625 architectures using a fixed cell-based macro
architecture. Similar to NAS-Bench-101, it uses a predefined set of operations includ-
ing conv 3x3, conv 1x1, Avg pooling, skip connection and no operation label. Each
architecture is trained on three different datasets with different complexities namely,
CIFAR-10, CIFAR-100, and imagenet-16. The authors extended this benchmark and
presented it a year later NATS-Bench. NATS-Bench [207] increased the search

1Open sourced at https://github.com/google-research /nasbench
20pen sourced at https://github.com/D-X-Y/AutoDL-Projects
30pen sourced at https://github.com/automl/nasbench-1shot1

38 CHAPTER 2. HARDWARE-AWARE NEURAL ARCHITECTURE SEARCH

space size by varying the sizes of their architectures.

Similarly, NAS-Bench-1Shot1 presented a new reformulation to reuse the even
much more extensive computation of the NAS-Bench-101 dataset (120 TPU years)
to create three new one-shot search spaces with growing complexity containing 6240,
29160, and 363648 architectures. In order to use the expensive experimentation
done by NAS-Bench-101, the authors created a one-shot architecture that contains
all the discrete cell architectures defined by NAS-Bench-101. This allows the search
algorithm to only train the supernetwork and get the performance of each path from
the NAS-Bench-101. Therefore, their benchmark construction does not need any
additional cost.

Alternatively, NAS-Bench-NLP defines a tabular benchmark for NLP tasks.
Their cell-based search space is constructed based on an LSTM Macro-architecture
borrowed from AWD-LSTM [210]. Each cell can contain up to 24 nodes with 3
hidden states and 3 linear input vectors. With these constraints and a set of operators
composed of the most used activations in recurrent cells, they are able to build LSTM,
Gated Recurrent Unit (GRU) cells, and many more. The architectures are trained on
Penn Tree Bank (PTB) dataset [211] and a sub-sample of the best-performing ones
are also trained on WikiText-2 [212], which is a more realistic dataset for real-world
NLP problems.

A major disadvantage of these benchmarks is the size and diversity of their search
spaces. Indeed, as presented by the experimentation results we obtained in figure
2.11, on the small dataset NAS-Bench-201, a local search, which is the simplest
optimization strategy, achieves state-of-the-art results without a significant search
time compared to other search strategies, except NAS without training [213]. In this
experiment, we compare the different results obtained by different NAS approaches
on the NAS-Bench-201. Most of them use the metrics provided by the benchmark
along with fine-tuning the architecture to obtain a more accurate validation metric,
except NAS without training [213]. The NAS search without any further training
achieves decent results within 17sec of the search. By dividing the benchmarks into
N mini-batches, they increase their training efficacy. The higher this number is (IV),
the higher the over-fitting probability on the benchmark. Therefore, using small
datasets with complex search algorithms does not yield any good results in terms of
the accuracy of the final architecture or efficiency of the search.

W Accuracy M Search Time (s)

50% 100000
40% 10000 £
]
=
g 30% 1000 =
g S
3 2
< 20% 100 0
10% 10
0% 1
0O 92 0 H & L o & 9 &8
& T E P LS E @4}‘@? & &
E O S & S
Q Q & ‘gsp Na &
t\

Figure 2.11: Results of different search algorithms on NAS-Bench-201.

NAS-Bench-301 is a much bigger benchmark that was designed to overcome the
over-fitting problem on the architectures. It is based on DARTS [160] search space.
Since the DARTS search space is far too large to be exhaustively evaluated by real-

2.10. CHALLENGES AND LIMITATIONS 39

world measurements, the authors built a surrogate model capable of predicting the
various performance metrics. This model is trained on a subsample of the benchmark,
60k architectures whose latencies have been measured on CPUs.

A more recent paper introduced the first hardware-aware NAS benchmark, HW-
NAS-Bench [209]. This work extends the number of hardware metrics and records
the latency and the energy consumed on 7 hardware devices including commercial:
NVIDIA Edge GPU Jetson TX2, NVIDIA Edge GPU Jetson Nano, Raspberry Pi 4,
Edge TPU Dev Board, Pixel 3, ASIC-Eyeriss, and Xilinx ZC706 board. Its search
space is a combination of FBNet [46] search space and NAS-Bench-201.

Although these datasets provide a good start to test different search strategies,
they lack a lot of important operators that can significantly change the resulting
architecture for hardware-aware NAS. In addition, we note a growing number of
different applications of NAS in various tasks such as image restoration [214, 215, 216,
217], semantic segmentation [68, 75], and medical segmentation [131, 218]. Therefore,
there is a growing need for proper benchmarks for each of the diverse tasks.

2.10.2 Transferability of the AI Models

Transferability in NAS is the ability to realize the search for the best architecture
on a proxy dataset; that is usually smaller and simpler. The obtained architecture is
then used on the targeted dataset. For example, we can use CIFAR-10 [156] during
the search and then train the final model on ImageNet [219], which is made of 14
million images and 20,000 classes.

To enhance transferability, previous NAS works used cell-based search spaces. To
transfer a model obtained from a cell-based search space, we just need to adjust the in-
put sizes of the cells and deepen the network by adding more cells. However, stacking
the same cell seems to be not efficient when incorporating hardware constraints. As
MNASNet [62] argued, restricting cell diversity is critical for achieving high accuracy
and low latency on mobile settings. Therefore, MNASNet uses a hierarchical search
space that diversifies the cells in the architecture as well as the operators within that
cell.

Many NAS works [159, 220] have included dedicated evaluations of the transfer-
ability of their final model. PNAS [220] proved that CIFAR-10 classification is highly
correlated to ImageNet classification, hence transferring a cell or an architecture from
CIFAR-10 to ImageNet would produce good results. XNAS [159] transferred their
final cell structure on 6 popular classification benchmarks surpassing other conven-
tional NAS methods while taking account of the hardware constraints.

Another interesting concept is presented by NAT [221]. They leverage NAS pro-
cess to directly find transferable weights (i.e., get rid of the fine-tuning stage). The
key idea behind NAT is that they start from a supernetwork and adaptively modify
it to obtain a task-specific supernetwork. This latter approach can then be used di-
rectly to search for architectures within one task without the additional training cost.
Under mobile scenarios, they demonstrated the efficacy of NAT on 11 benchmarks
including ImageNet.

Overall, taking the transferability of the model into account remains a difficult
challenge. Most solutions modify the search space to fit a certain dataset by leveraging
a specific macro-architecture. Hardware awareness adds another level to this challenge
as the architecture needs to be flexible to adapt to multiple platforms. Note that,
transfer learning generalizes the ability to use a model from one dataset to another. In
this section, we only talked about NAS that transfers their models from one dataset
to another within the same task. Unfortunately, as NAS tasks evolve around image
classification mainly, the whole search needs to be executed all over again if we want
an architecture for another task.

40 CHAPTER 2. HARDWARE-AWARE NEURAL ARCHITECTURE SEARCH

2.10.3 Transferability of the HW-NAS Across Multiple Plat-
forms

HW-NAS suffers from conditional optimality due to the variety of existing devices.
Ideally, we should design different architectures for different platforms. However in
real situations, given the prohibitive cost of the search and the cost of training on
multiple architectures, we often resort to designing one architecture and deploying
it anywhere. Transferring a model from one platform to another or being able to
produce hardware transferable models via the NAS process is an interesting challenge
for HW-NAS. The main difficulty lies in the variety and complexity of the existing
platforms. For example, different platforms might perform well on different types of
convolutions. In the following section, we discuss two approaches. The first transfers
a single-target HW-NAS to another target by modifying the measurement values.
The second takes the final architecture of the NAS process and transforms it to fit
another platform. Each approach has its pros and cons as discussed below.

Transfer the entire NAS process: In this approach the whole NAS process needs
to be re-executed to suit the new targeted hardware. In a single target HW-NAS,
transferring the entire process to another platform is a complex task. Without men-
tioning the huge computational cost of retraining the entire process, the collection
of the hardware constraints can be costly as well. When using real-world measure-
ments, [116] ran the NAS search for three hardware platforms: CPU (Xeon E5-2640
v4), GPU (Tesla V100) and mobile phone (Google Pixel-1). However, using real mea-
surements on the hardware platform considerably slows down the search algorithm
and requires the availability of the targeted hardware during the search time. On the
other hand, using an analytical estimation requires expert knowledge for the different
targeted platforms. When using other collection methods such as the lookup table or
the prediction model, we’ll need to collect data from the new platforms by running
again the entire set of operators. To this end, HW-NAS tries to create a general
measurement method. For example, Once-for-all [42] created a lookup table with
the reported inference latency on each tested hardware platform (i.e., Samsung S7
Edge, Note8, Notel0, Google Pixell, Pixel2, LG G8, NVIDIA 1080Ti, V100 GPUs,
Jetson TX2, Intel Xeon CPU, Xilinx ZUIEG, and ZUSEGFPGAs). According to the
used measurement method, transferring the NAS process to target another platform
is increasingly difficult and not scalable.

Transfer the final model: An alternative approach is to find the best model for
one hardware platform and then try to specialize it for another one. This solution
is proposed in [42, 61, 159]. Usually, the specialization is done by compressing the
model using quantization which enables the model to fit in tiny devices. However,
the specialization is challenging because of the following reasons:

e An operator may be efficient in one platform and less efficient in
another: In [66], the authors argued that separable convolutions give great
results when ran on GPUs but perform badly on CPUs. Additionally, it is
common that deeper networks perform well on CPUs while wider ones perform
well on GPUs because of the possible parallelization. Table 2.4 demonstrates
the comparison between the execution times of different operators on an Intel
i7 CPU and NVIDIA TX2 GPU. The results reinforce our assumption that
different operators’ efficiency varies from one platform to another. Therefore,
the best model is highly correlated to the platform we choose which makes
designing a HW-NAS that targets multiple platforms very challenging.

e Limits of the compression methods: We consider here the quantization and
pruning. For these two methods, we know that theoretically, the compression
ratio has a threshold that cannot be surpassed. For example, quantizing a

2.11. CONCLUSION 41

model implies encoding its activations and weights into the minimum possible
bit length. Theoretically, this length is 2, with 1 bit used to encode the values.
Even without considering the trade-off between accuracy and model size, these
methods have limits. This is why we need to start from a model that is already
optimized to be able to deploy the model on tiny devices. For this end, [116]
is composed of three components. The first component is a multi-objective
NAS that searches for the best model in terms of accuracy and latency. Given
the resultant model of the first component, the second component searches for
pruning possibilities that would preserve the accuracy and decrease the model
size. Finally, the last component takes care of quantizing the model with mixed
precision. In [222] the authors propose to start from standard architectures
such as VGG, ResNet, and GoogleNet and cast the quantization as a neural
architecture search problem. This work achieves a minimal loss of accuracy
with appreciable memory savings. In addition to the limit for the model size,
we also have a limit for the accuracy. The compressed model typically does not
have better accuracy than the pre-trained model we started from.

Table 2.4: Comparison between different operators on Intel i7 CPU and NVIDIA
TX2 GPU. The convolution operators were used to create a CNN model that was
trained for Image Classification on ImageNet. The RNN cells were trained on Text
Classification on IMDB dataset [19]. Results were obtained using PyTorch with a
number of samples of 1000.

Operator Avg Latency on | Avg Latency on | Accuracy
CPU (ms) GPU (ms)

Conv2d 1.33 0.85 0.67

Separable 2.05 0.54 0.64

Depthwise

Convolution

Dilated con- || 1.36 0.835 0.56

volution

Grouped 2.27 1.94 0.62

Convolution

LSTM cell 14.93 2.45 0.57

GRU cell 9.32 2.53 0.65
2.11 Conclusion

In this chapter, we have provided a comprehensive survey and systematic analysis of
state-of-the-art Hardware-aware Neural Architectural Search. We reviewed several
multi-objective strategies that aim to find the optimal architecture with the highest
accuracy while reducing energy, memory, and computational costs. We proposed a
HW-NAS taxonomy and categorize existing approaches along four key dimensions:
the search space, the search strategy, the acceleration technique, and the hardware
cost estimation strategy. We also discussed other considerations in Hardware-aware
NAS that include optimizations such as quantization and pruning. Finally, we pre-
sented a discussion on future directions that would benefit existing and future HW-
NAS researchers. The next chapters will highlight our contributions to over the
challenges found in HW-NAS.

42 CHAPTER 2. HARDWARE-AWARE NEURAL ARCHITECTURE SEARCH

Part 11

Efficient HW-NAS methods

43

Chapter 3

Multi-objective Surrogate
Model for HW-NAS

Contents

3.1 Context i i ittt e e e e e e e e e 46
3.2 HW-PR-NAS ittt it e e 46
3.2.1 Proposed Approach L. 48
3.2.2 Evaluation Methodology 53
3.2.3 End-to-End Results, 55
3.2.4 Final Pareto Front Analysis 57
3.2.5 Generalization to More Objectives 58
3.2.6 Generalisation to other use cases: Keywords Spotting . . 59

3.3 PRP-NAS: Pareto Rank-preserving Supernetwork
Training« o 0 o L e e e e e e e e e e e 59
3.3.1 Proposed Approach 61
3.3.2 Evaluation Methodology 65
3.3.3 Search Results 66
Search on NAS-Bench-201 67
Search on ImageNet 67
Ranking Quality L. 68
Ablation Study oo 69
Number of sampled sub-networks 69
Analysis of a parameter L. 70
3.3.4 Battery Usage Preservation 70
3.4 Conclusiono 71

45

46 ~CHAPTER 3. MULTI-OBJECTIVE SURROGATE MODEL FOR HW-NAS

3.1 Context

Hardware-aware NAS (HW-NAS) methods have recently exhibited remarkable suc-
cess in enhancing the efficiency and performance of neural networks across various
tasks. Nevertheless, the search process involved in HW-NAS can be excessively
resource-intensive, often spanning multiple days and consuming a substantial amount
of energy. This significant energy consumption results in a considerable carbon foot-
print, surpassing even the annual emissions of a car [223]. Consequently, while HW-
NAS presents promising outcomes, its resource-intensive nature raises significant en-
vironmental concerns.

One particular aspect that contributes to the inefficiency of HW-NAS is the eval-
uation methods employed. These methods, used to assess the performance and ef-
ficiency of candidate network architectures, often require extensive computational
resources and time-consuming training. Recognizing this bottleneck, there is a grow-
ing interest in the development of surrogate models within the research community.
Surrogate models offer an alternative approach by constructing approximations of the
evaluation methods, enabling faster and more efficient exploration of the architecture
space. However, using multiple surrogate models for each objective (e.g., accuracy
and latency) is suboptimal.

To address the challenge and research question 1, we propose a novel methodol-
ogy based on surrogate models specifically designed for multi-objective problems. By
leveraging our methods, ML engineers can effectively explore a wide range of archi-
tectures within a limited timeframe, thereby minimizing the environmental impact,
achieving heightened architectural efficiency, and ultimately reducing the time-to-
market.

In this chapter, we introduce two valuable contributions: Hardware-aware Pareto
Rank Neural Architecture Search (HW-PR-NAS) in section 3.2, and Pareto Rank
Preserving Supernetwork Training (PRP-NAS) in section 3.3. These contributions
are specifically designed to cater to different search space definitions, namely cell-
based and supernetwork architectures, respectively. They allow an average 3.1x
speedup on several benchmarks and a significant energy consumption drop of 30%.

N

Research Question 1

How to efficiently evaluate the performance and hardware efficiency of an
architecture without fully training it in a multi-objective search strategy?

3.2 HW-PR-NAS: Multi-Objective HW-NAS with
Pareto Rank-preserving Surrogate Models

HW-NAS techniques are comprised of three components: the search space, the
search algorithm, and the evaluation method (figure 3.1.A) HW-NAS is for-
mulated as a multi-objective optimization problem. Several HW-NAS approaches
aim to find the best architectures with two or more conflicting objectives: e.g., max-
imizing the accuracy of an architecture while minimizing its inference latency. In
multi-objective optimization, the results obtained from the search algorithm are of-
ten not a single solution but a set of solutions. These solutions are called dominant
solutions because they dominate all other solutions in terms of the trade-offs between
the targeted objectives. In the case of HW-NAS, the optimization result is a set of
architectures that have the best objectives’ trade-off (figure 3.1.B). Formally, the set
of best solutions is represented by a Pareto front.

NAS algorithms involve training multiple DL architectures to adjust the explo-
ration of a huge search space. This requires many hours/days of data center-scale
computational resources. This time complexity is exacerbated in the case of HW-NAS

3.2. HW-PR-NAS 47

2. Sampled Architecture A 3.Get accuracy of A

1. Sample a new

Search AIorithml |Accuracy Evaluationl —»I Best Architecture

rchitecture 4.Accuracy of A

A) Neural Architecture Search without Hardware Considerations

3.Get fA
2. Sampled Architecture A etacacve

| Accuracy Evaluation |

- .Accuracy of A
[Search Algorithm 4’.Performance of A Best Architecture

| HW Metric Evaluation |
1. Sample a new Architecture 3/ Get performance of A

|[Search Space]

B) Hardware-aware Neural Architecture Search with Independent Evaluations

2. Sampled Architecture A 3.Get accuracy/HW metrics tradeoff of A

| Pareto Rank Predictor | _>| Best Architecture

| Search Algorithm |

1. Sample a new Architecture 4.Pareto score of A

C) HW-PR-NAS: Hardware-aware Neural Architecture Search with Pareto Rank Predictor

Figure 3.1: Simplified illustration of the use of HW-PR-NAS in a NAS process. HW
Perf means the Hardware performance of the architecture such as latency, power,
etc.

multi-objective assessments, as additional evaluations are needed for each objective
or hardware constraint on the target platform. To address this problem, researchers
have proposed surrogate-assisted evaluation methods [16, 17]. Surrogate models use
analytical or ML-based algorithms to quickly estimate the performance of a sampled
architecture without training it. Existing HW-NAS approaches [224] rely on the use
of different surrogate-assisted evaluations, whereby each objective is assigned an in-
dependently trained surrogate model (figure 3.1.B). However, this introduces false
dominant solutions as each surrogate model brings its share of approximation error
and could lead to search inefficiencies and falling into local optimum (figures 3.2.A
and 3.2.B).

Learning-to-rank theory [16, 225] has been used to improve the surrogate model
evaluation performance. This was motivated by the observation that throughout
the NAS process, it is more important to correctly rank a sampled architecture rel-
ative to other architectures than to compute its exact accuracy. Rank-preserving
surrogate models significantly reduce the time complexity of NAS while enhancing
the exploration path. However, in the multi-objective context, training each model
independently cannot preserve the Pareto rank of the architectures (see figure 3.2).

We propose HW-PR-NAS [5, 226], Hardware-aware Pareto-ranking NAS,
a new unified surrogate model trained to address multiple objectives in HW-NAS.

HW-PR-NAS contributions are summarized as follows:

1. We introduce a flexible and general architecture representation which
allows adapting the surrogate model to include new architecture objective types
without incurring additional training costs.

2. We introduce a novel training methodology for multi-objective HW-
NAS surrogate models. Our surrogate model is trained using a novel ranking
loss technique. The goal is to rank the architectures from dominant to non-

48 CHAPTER 3. MULTI-OBJECTIVE SURROGATE MODEL FOR HW-NAS

(a) State-of-the-art HW-NAS (b) Pareto Fronts using SOTA models
12
—e— True Pareto front
Arcitecture A _ " Architecture A 10 BRP-NAS
__>IAccura:y Predictor Pred!cted accuracy: 85% + GATES
e o e - - — Predicted latency: 3.4 ms 2 g
£
Real accuracy: 81.5% =
Real latency: 3.6 ms Ground truth: B>>A z
. e c 6
Using predictions: A>>B 3
" 8
Architegture B Architecture B 4
—————— 2 i - 839
->I Latency Predictor Pred!cted accuracy: 83%
> - Predicted latency: 3.4 ms 2 3

Real accuracy: 86.7%
Real latency: 3.6 ms 75.0 77.5 80.0 825 85.0 87.5 90.0 925

accuracy (%)

(c) HW-PR-NAS
Architecture A

Real accuracy: 81.5%
Real latency: 3.6 ms

Architecture A

Pareto Rank {Ground truth: B>>A }

Predictor Using predictions: B>>A
Architecture B
@ Architecture B
Real accuracy: 86.7%
Real latency: 3.6 ms
: _,1 : _1, Independently trained predictors : Predictor trained with multi-objectives B >>A: B dominates A

Figure 3.2: This figure illustrates the limitation of state-of-the-art surrogate models
alleviated by HW-PR-NAS. a) and b) illustrate how two independently trained pre-
dictors exacerbate the dominance error and the results obtained using GATES [16]
and BRP-NAS [17]. ¢) illustrates how we solve this issue by building a single surro-
gate model.

dominant ones by assigning high scores to the dominant ones. We call these
scores Pareto score.

Our approach has been evaluated on seven edge hardware platforms, including ASICs,
FPGAs, GPUs, and multi-cores. Experimental results demonstrate up to 2.5x speed
up while guaranteeing that the search ends near the true Pareto front. To compare
our approach with state-of-the-art, we use the normalized hypervolume metric. This
metric evaluates the coverage and diversity of a Pareto front against the true Pareto
front. Preliminary results show that using HW-PR-NAS is more efficient than using
several independent surrogate models to reduce the search time and improve the
quality of the Pareto approximation.

3.2.1 Proposed Approach

Figure 3.3 shows an overview of HW-PR-NAS, which is composed of two main com-
ponents: @ Encoding Scheme and @ Pareto Rank Predictor.

Each architecture is encoded into a unique vector and then passed to the Pareto
Rank Predictor in the Encoding Scheme. The Pareto Rank Predictor uses the
encoded architecture to predict its Pareto Score (see equation 3.6) and adjusts the
prediction based on the Pareto Ranking Loss. The Pareto Score, a value between
Oandl, is the output of our predictor. We use a listwise Pareto ranking loss to force
the Pareto Score to be correlated with the Pareto ranks.

3.2. HW-PR-NAS 49

28 553558

@Get an architecture l

Architecture

R

&

|—]
=)
4
=

‘ ‘ LSTM Encoding

‘ i Features E

Encoding Scheme

@Get the encoded architecturel

I 2
¥
Fully-connected NN (FCNN)

Adjust the predictor

Pareto Ranking
Loss

Select the predictor
for the target HW

Pareto Rank Predictor -

@ Get the Pareto score

4' Pareto Score |

Figure 3.3: General Overview of HW-PR-NAS

Definitions

The following terms are used with their corresponding definitions:
e Representation: is the format in which the architecture is stored.

e Fncoding: is the process of turning the architecture representation into
a numerical vector. The surrogate model can then use this vector to
predict its rank.

e Fncoding scheme: is the methodology used to encode an architecture.

e Encoder: is a function that takes as input architecture and returns a
vector of numbers, i.e., applies the encoding process.

e Pareto Rank Predictor: is the last part of the model architecture spe-
cialized in predicting the final score of the sampled architecture (see
figure 3.3).

Encoding Scheme

To achieve a robust encoding capable of representing most of the key architectural
features, HW-PR-NAS combines several encoding schemes (see figure 3.3). Each
architecture is described using two different representations: a Graph Representation,
which uses Directed Acyclic Graphs (DAG), and a String Representation, which uses
discrete tokens that express the NN layers. For example, using ”conv_3x3” to express
a 3x3 convolution operation. We use two encoders to represent each architecture
accurately. Both representations allow the use of different encoding schemes. Each
encoder can be represented as a function E formulated as follows:

E:A—¢ (3.1)

A denotes the search space, and £ denotes the set of encoding vectors. The encoder
FE takes an architecture’s representation as input and maps it into a continuous space

50 CHAPTER 3. MULTI-OBJECTIVE SURROGATE MODEL FOR HW-NAS

Table 3.1: Hyperparameters associated with GCN and LSTM encodings and the
decoder used to train them.

Hyperparameter | Value
Number of layers 2
. hidden depth 128
GCN Encoding hidden dimension 1
FC dimension 32
Number of layers 2
. Hidden units [32, 64]
LSTM Encoding FC dimension 32
recurrent dropout 0.2
Number of layers 3
Decoder Hidden units [32,32]

&. The encoding result is the input of the predictor.
In our approach, three encoding schemes have been selected depending on their
representation capabilities and the literature review [16, 17] (see table 3.3):

1. Architecture Features Extraction. From each architecture, we extract sev-
eral Architecture Features (AF): number of FLOPs, number of parameters,
number of convolutions, input size, architecture’s depth, first and last channel
size, and number of down-sampling.

2. GCN Encoding. To efficiently encode the connections between the architec-
ture’s operations, we apply a GCN encoding. Each architecture is encoded into
its adjacency matrix and operation vector. It is then passed to a GCN [227]
to generate the encoding. The output is passed to a dense layer to reduce its
dimensionality.

3. LSTM Encoding. To represent the sequential behavior of the architecture,
we use an LSTM encoding scheme. We pass the architecture’s string represen-
tation through an embedding layer and an LSTM model. We then reduce the
dimensionality of the last vector by passing it to a dense layer.

The resulting encoding is a vector that concatenates the AFs to ensure that each
architecture in the search space has a unique and general representation that can
handle different tasks [228] and objectives. The hyperparameters describing the im-
plementation used for the GCN and LSTM encodings are listed in table 3.1.

Using a decoder module, the encoder is trained independently from the Pareto
rank predictor. The decoder takes the concatenated version of the three encoding
schemes and recreates the representation of the architecture. We set the decoder’s
architecture to be a 4-layer LSTM. In addition, we leverage the attention mechanism
to make decoding easier. The encoder-decoder model is trained with the cross en-
tropy loss. Equation 3.2 formulates the cross-entropy loss, denoted as Lpp, where
output_size changes according to the string representation of the architecture, y and
3 correspond to the predicted operation and the true operation respectively. This
training methodology allows the architecture encoding to be hardware-agnostic.

output_size
Lep=— Y yi*log(i) (3.2)
i=1

The preliminary analysis results in figure 3.4 validate the premise that different
encodings are suitable for different predictions in the case of NAS objectives. Figure
3.4 shows the results obtained after training the accuracy and latency predictors
with different encoding schemes. Each predictor is trained independently. Using
Kendal Tau [229], we measure the similarity of the architectures’ rankings between

3.2. HW-PR-NAS 51

the ground truth and the tested predictors. Accuracy predictors are sensible to the
types of operators and connections in a DL architecture. When using only the AF,
we observe a small correlation (0.61) between the selected features and the accuracy,
resulting in poor performance predictions. The best predictor is obtained using a
combination of GCN encodings, which encodes the connections, node operation, and
AF. For latency prediction, results show that the LSTM encoding is better suited.
An intuitive reason is that the sequential nature of the operations to compute the
latency is better represented in a sequence string format. The last two columns of the
figure show the results of the concatenation, which outperforms other representations
as it holds all the features required to predict the different objectives.

1.0

EEm accuracy prediction
B latency prediction

14 4 4
> o @

Kendal Tau Correlation

4
N

0.0
LSTM + AF GCN + AF LSTM + GCN + AF

Figure 3.4: Results of different encoding schemes for accuracy and latency predictions
on NAS-Bench-201 and FBNet. AF refers to Architecture Features. LSTM refers
to Long Short-Term Memory neural network. GCN refers to Graph Convolutional
Networks.

These results were obtained with a fixed Pareto Rank predictor architecture. We
used a fully-connected neural network (FCNN). Table 3.2 shows the results of mod-
ifying the final predictor on the latency and accuracy predictions. While we achieve
a slightly better correlation using XGBoost on the accuracy, we prefer to use a 3-
layer FCNN for both objectives to ease the generalization and flexibility to multiple
hardware platforms.

Table 3.2: Results of different regressors on NAS-Bench-201. KT Corr stands for
Kendal Tau Correlation.

Accuracy Latency

RMSE | KT Corr | RMSE | KT Corr
3-layer FCNN 4.88 0.924 3.238 0.8817
XGBoost [230] 3.12 0.931 3.216 0.8742
LGBoost [231] 3.58 0.864 3.058 0.8247

Pareto Ranking Predictor

HW-PR-NAS is trained to predict the Pareto front ranks of architecture for mul-
tiple objectives simultaneously on different hardware platforms. The predictor uses
three fully-connected layers. Due to the hardware diversity illustrated in table 3.4,
the predictor is trained on each HW platform. Prior works [224] demonstrated that
the best architecture in one platform is not necessarily the best in another. Therefore,
the Pareto fronts differ from one HW platform to another.

HW-PR-NAS predictor architecture is the same across the different HW plat-
forms. The only difference is the weights used in the fully-connected layers. The
HW platform identifier (Target HW in figure 3.3) is used as an index to point to the
corresponding predictor’s weights.

52 CHAPTER 3. MULTI-OBJECTIVE SURROGATE MODEL FOR HW-NAS

To train this Pareto ranking predictor, we define a novel listwise loss function to
predict the Pareto ranks.

Pareto ranks definition In a multi-objective NAS problem, the solution is a set
of N architectures S = s1,82,...,Sy. These architectures may be sorted by their
Pareto front rank K. The true Pareto front is denoted as F; where the rank of each
architecture within this front is 1. An architecture is in the true Pareto front if and
only if it dominates all other architectures in the search space. According to this
definition, we can define the Pareto front ranked 2, F5, as the set of all architectures
that dominate all other architectures in the space except the ones in Fj. Formally,
the rank K is the number of Pareto fronts we can have by successively solving the
problem for S — Usi eF k<K 1€, the top dominant architectures are removed from
the search space each time.
Theoretically, the sorting is done by following these conditions:

VSi,Sj € Fy, s; %Sj/\ Sj S (33)
Vs; € Fk+1 VS]' € Fy, s; % S; (34)
Vs; € Fk+1 E|Sj € Fy, S5 > 84 (35)

Equation 3.3 formulates that for all the architectures with the same Pareto rank,
no one dominates another. Equation 3.4 formulates that any architecture with a
Pareto rank k + 1 cannot dominate any architecture with a Pareto rank k. Equa-
tion 3.5 formulates that for each architecture with a Pareto rank k + 1, at least one
architecture with a Pareto rank k£ dominates it.

Pareto ranking loss definition Our predictor takes an architecture as input and
outputs a score. This score is adjusted according to the Pareto rank. The loss function
aims to keep the predictor’s outputs; scores f(a), where a is the input architecture,
correlated to the actual Pareto rank of the given architecture.

The scores are then passed to a softmax function to get the probability of ranking
architecture a. The final output is formulated as follows:

exp f(a)
ZaEB exp f(a)

In this equation, B denotes the set of architectures within the batch, while |B|
denotes its size. We then design a listwise ranking loss by computing the sum of the
negative likelihood values of each batch’s output:

out(a) = (3.6)

| B |B|
L(B) = Z{—out(a(i)’B) +1og»_ explout(a))} (3.7)

j=i

a™ B denotes i-th Pareto-ranked architecture in subset B. This loss function com-
putes the probability of a given permutation to be the best, i.e., if the batch contains
three architectures ai, as, a3 ranked (1, 2, 3) respectively. The loss function encour-
ages the surrogate model to give higher values to architecture a; then as and finally
az. We compute the negative likelihood of each architecture in the batch being cor-
rectly ranked.

3.2. HW-PR-NAS 93

Training procedure To train the HW-PR-NAS predictor with two objectives, the
accuracy and latency of a model, we apply the following steps:

1. We build a ground truth dataset of architectures and their Pareto ranks. We
randomly extract architectures from NAS-Bench-201 and FBNet using Latin
Hypercube Sampling [232]. The batches are shuffled after each epoch. The two
benchmarks already give the accuracy and latency results. Thus the dataset
creation is not computationally expensive. However, if one uses a new search
space, the dataset creation will require at least the training time of 500 archi-
tectures.

2. We iteratively compute the ground truth of the different Pareto ranks between
the architectures within each batch using the actual accuracy and latency val-
ues. Two architectures with a close Pareto score means that both have the
same rank.

3. We calculate the loss between the predicted scores and the ground truth com-
puted ranks.

4. Using this loss function, the scores of the architectures within the same Pareto
front will be close to each other, which helps us extract the final Pareto approx-
imation.

Algorithm 1 Training methodology of the rank predictor component.

Input: benchmark: Benchmark («: architecture, acc: accuracy, l: latency)
Output: Trained Surrogate Model
D « Sample(benchmark, dataset_size)
model < FCNN
initialize model
for epoch | max_epochs do
batches = generate_random_batches(D)
for B in batches do
R + Compute_Pareto_Ranks(B)
P < model(B)
loss <~ NLL(R, P)
backpropagate loss and adjust the weights of the model
end for
end for

The most important hyperparameter of this training methodology that needs to
be tuned is the batch_size. Figure 3.5 shows the empirical experiment done to select
the batch_size. We set the batch size to 18 as it is, empirically, the best trade-off
between training time and accuracy of the surrogate model. The accuracy of the
surrogate model is represented by the Kendal tau correlation between the predicted
scores and the correct Pareto ranks. This value can vary from one dataset to another.
The hyperparameter tuning of the batch_size takes ~1h for a full sweep of 6 values
in this range: [8, 12, 16, 18, 20, 24].

3.2.2 Evaluation Methodology

We compare HW-PR-NAS to existing surrogate model approaches used within the
HW-NAS process. The searched final architectures are compared with state-of-the-
art baselines in the literature. We target two objectives: accuracy and latency. Our
goal is to evaluate: @ the quality of the NAS results by using the normalized
hypervolume, and @ the speed-up of HW-PR-NAS methodology by measuring the
search time of the end-to-end NAS process.

54 CHAPTER 3. MULTI-OBJECTIVE SURROGATE MODEL FOR HW-NAS

—e— Training time (s)
—e— Kendal Tau correlation

— 1 2000
0.95
c N
s @ 1750
% 0.90 f) \3
£ = 1500 2
o _Q =1
3 ke [()}
E 0.85 / 1] 1250 E
© [$] ©
z % 1000 -
X 0.80 / [}

g 750

75 100 125 15.0 175 20.0
batch_size

N
N
0

Figure 3.5: Performance of the Pareto rank predictor using different batch_size values
during training.

e Hypervolume This metric calculates the area from the Pareto front approx-
imation to a reference point. We use the furthest point from the Pareto front
as a reference point.

e Search time This metric corresponds to the time spent by the end-to-end NAS
process, including the time spent training the surrogate models.

e Search Spaces Our experiments are initially done on NAS-Bench-201 [233]
and FBNet [234] for CIFAR-10 and CIFAR-100. Imagenet-16-120 is only con-
sidered in NAS-Bench-201. To validate our results on ImageNet, we run our
experiments on ProxylessNAS Search Space [235]. The search space contains
619 architectures, each with up to 19 layers. This is to be on par with various
state-of-the-art methods.

e Search Algorithms The search algorithms call the surrogate models to get an
estimation of the objectives. In our comparison, we use Random Search (RS)
and Multi-Objective Evolutionary Algorithm (MOEA). In RS, the architectures
are selected randomly, while in MOEA, a tournament parent selection is used.
For MOEA, the population size, maximum generations and mutation rate have
been set to 150, 250, and 0.9, respectively. The stopping criteria are defined as
a maximum generation of 250 and a time budget of 24 hours.

Baselines We compare HW-PR-NAS to the state-of-the-art surrogate models pre-
sented in Table 3.3.

Table 3.3: State-of-the-art surrogate models used for HW-NAS. AF stands for archi-
tecture features such as the number of convolutions and depth.

Surrogate Model | Objective | Encoding | Loss Dataset | Ranking
Size

GATES [16] Accuracy GCN Hinge | 7318 yes
Pair-
wise
Accurac N MSE

BRP-NAS {17] Latencyy ggN KLS Div 900 no

| ProxylessNAS [235] | Latency | AF | RMSE [5000 \ no

LRLC [236] Accuracy LSTM Logistic| 1000 yes
Loss

3.2. HW-PR-NAS 95

Training Implementation HW-PR-NAS training dataset consists of 500 architec-
tures and their respective accuracy and hardware metrics on CIFAR-~10, CIFAR-100
and ImageNet-16-120 [237]. These architectures are sampled from both NAS-Bench-
201 [233] and FBNet [234] using HW-NAS-Bench [238] to get the hardware metrics
on various devices. We used 100 models for validation. Training the surrogate model
took 1.5 GPU hours with 10-fold cross-validation. While this training methodology
may seem expensive compared to state-of-the-art surrogate models presented in ta-
ble 3.3, the encoding networks are much smaller, with only two layers for the GNN
and LSTM. The comprehensive training of HW-PR-NAS requires 43min on NVIDIA
RTX 6000 GPU, which is done only once before the search. Note that if we want
to consider a new hardware platform, only the predictor (i.e., three fully connected
layers) is trained, which takes up to less than 10min.

Experimental Setup Our surrogate models and HW-PR-NAS process have been
trained on NVIDIA RTX 6000 GPU with 24GB memory. To evaluate HW-PR-
NAS on edge platforms, we have used the platforms presented in table 3.4. Our
implementation is coded using PyMoo ! for the multi-objective search algorithms
and PyTorch for DL architectures.

Table 3.4: Tllustrative comparison of edge hardware platforms targeted in this work.

NVIDIA Edge GPU
Platform Computation Memory | Power
Jetson TX2 256-core NVIDIA Pascal 4GB 30W
ASICs
Platform Computation Memory | Power
TPU Board 2 TPU Cores 1GB 12W
Eyeriss - eDRAM <1W
FPGA
Platform Computation Memory | Power
Xilinx Zyng-7000 ZC706 1GB 8-20W
Zynq UltraScale+ ZCU102 4GB 15-40W
Mobile Phones
Platform Computation Memory | Power
Google Pixel 3 8 cores 4GB 8W
Single-board computer
Platform Computation Memory | Power
Raspberry Pi 4-core Cortex-A72 ARM 3GB 12W

3.2.3 End-to-End Results

We compare the different Pareto front approximations to the existing methods to
gauge the efficiency and quality of HW-PR-NAS.

Figure 3.6 presents the different Pareto front approximations using HW-PR-NAS,
BRP-NAS [17], GATES [16], proxylessnas [235] and LCLR [236].

We averaged the results over five runs to ensure reproducibility and fair compar-
ison. The title of each subgraph is the normalized hypervolume. We notice that our
approach consistently obtains better Pareto front approximation on different plat-
forms and different datasets.

Figure 3.7 summarizes the obtained hypervolume of the final Pareto front approx-
imation for each method. The hypervolume indicator encodes the favourite Pareto
front approximation by measuring objective function values’ coverage. The larger
the hypervolume, the better the Pareto front approximation and, thus, the better the
corresponding architectures. The results vary significantly across runs when using

IMulti-objective optimization in Python. https://pymoo.org/

56

CHAPTER 3.

Edge GPU 99%

Raspberry Pi 4 99%

FPGA ZCU102 98%

FPGA ZC76 99%

MULTI-OBJECTIVE SURROGATE MODEL FOR HW-NAS

—e— True Pareto front
“~ HW-PR-NAS
—e— BRP-NAS

10{ —o— GATES*

~o— ProxylessNAS*

latency (ms)

—e— GATES*

latency (ms)

—e— ProxylessNAS*

1001 —e— True Pareto front
©~ HW-PR-NAS
—e— BRP-NAS

w

latency (ms)

—e— True Pareto front

+~ HW-PR-NAS

—e— BRP-NAS 8

—e— GATES*

4] —o— ProxylessNAS* '
LCLR*

—e— GATES*

latency (ms)

—e— True Pareto front
#~ HW-PR-NAS
—e— BRP-NAS

—e— ProxylessNAS*

latency (ms)

95

Edge TPU 95%
T

95 70

Accuracy (%)

Pixel 3 99%
T

85 90 95

Eyeriss 96%

85 9‘0
Accuracy (%)

T
—e— True Pareto front
+~ HW-PR-NAS
«—e— BRP-NAS

—e— GATES*

~e— ProxylessNAS*

latency (ms)

T
—e— True Pareto front,

—o— GATES*
~o ProxylessNAS*

T T
@@ (—e— True Pareto front

latency (ms)

Accuracy (%)

Accuracy (%)

75 80 85
Accuracy (%)

Figure 3.6: Pareto front approximations on CIFAR-10 on edge hardware platforms.
We show the true accuracies and latencies of the different architectures and the nor-
malized hypervolume on each target platform.

two different surrogate models. However, using HW-PR-NAS, we can have a decent
standard error across runs.
In figure 3.8, we also compare the speed of the search algorithms. HW-PR-NAS
achieves a 2.5x speed-up in the search algorithm.
This is due to:

e Using one common surrogate model instead of invoking multiple ones.

e Decreasing the number of comparisons to find the dominant points.

e Requiring a smaller number of operations than GATES and BRP-NAS.

600

550
500

«
o

Hypervolume
w b B
w1 o
o o

300
250

T
mmm CIFAR-10
mmm CIFAR-100
mm Imagenet-16-120

RS RS
Measured BRP-NAS
Values

MOAE

Values

RS RS MOAE
GATES HW-PR-NASMeasured BRP-NAS

MOAE MOAE
GATES HW-PR-NAS

Figure 3.7: Final Hypervolume obtained by each method on the three datasets. We
show the means + standard errors based on 5 independent runs.

3.2. HW-PR-NAS 57

100

80

60

40

I I 20
|| B m

Measured LCLR ProxylessNAS GATES BRP-NAS HW-PR-NAS
Values

N
v

Search time (hrs)
— - N
o vl o

(O]

o

Figure 3.8: Search time of MOAE using different surrogate models on 250 generations
with a max time budget of 24 hours.

Table 3.5: Comparison of Optimal Architectures obtained in the Pareto Front for
CIFAR-10.

Architecture Jetson TX2 TPU Board Google Pixel 3 | FPGA ZCU102 | Eyeriss HW
’ Acc Lat Acc Lat Acc Lat Acc Lat Acc Lat | Aware
(%) | (ms) | (%) | (ms) | (%) | (ms) | (%) | (ms) (%) | (ms)
GATES [16] 92.83 | 6.3 | 91.82 | 1.37 | 90.21 23.6 | 90.73 3.8 93.49 | 9.27 Yes
BRP-NAS [17] 91.3 5.86 | 92.01 1.5 90.34 23.1 82.31 3.72 89.6 8.92 Yes
ProxylessNAS [235] | 91.86 | 4.86 | 93.68 2.1 93.51 21.36 | 92.68 5.6 93.87 | 7.56 Yes
HAGCNN [239] 92.57 | 853 | 92.57 | 5.43 | 92.57 | 24.65 | 92.57 6.87 92.57 | 9.54 No
Shapley-NAS [240] 94.37 | 9.76 | 94.37 | 4.8 | 94.37 | 25.21 | 94.37 8.62 94.37 | 9.76 No
AG-Net [241] 94.37 | 9.76 | 94.37 4.8 94.37 | 25.21 | 94.37 8.62 94.37 | 9.76 No
B-DARTS [242] 91.55 | 6.42 | 91.55 | 3.53 | 91.55 | 25.3 | 91.55 7.51 91.55 | 8.46 No
HW-PR-NAS 95.75 | 4.37 | 94.15 | 1.12 | 94.43 | 20.5 95.2 4.0 94.72 | 7.91 Yes

3.2.4 Final Pareto Front Analysis

We analyze the proportion of each benchmark on the final Pareto front for different
edge hardware platforms. In Pixel3 (mobile phone), 80% of the architectures come
from FBNet. Indeed, this benchmark uses depthwise convolutions, accelerating DL
architectures on mobile settings. The depthwise convolution decreases the model’s
size and achieves faster and more accurate predictions. However, depthwise convo-
lutions do not benefit from the GPU, TPU, and FPGA acceleration compared to
standard convolutions used in NAS-Bench-201, which have a higher proportion in
the Pareto front of these platforms 54%, 61%, and 58% respectively.

Table 3.5 shows the difference between the final architectures obtained. The best
values (in bold) show that HW-PR-NAS outperforms HW-NAS approaches on almost
all edge platforms. The depthwise convolution (DW) available in FBNet is suitable
for architectures that run on mobile devices such as the Pixel 3. This operation
allows fast execution without an accuracy degradation. However, on edge gpu, as the
platform has more memory resources, 4GB for the Jetson TX2, bigger models from
NAS-Bench-201 with higher accuracy are obtained in the Pareto front.

When our methodology does not reach the best accuracy, see results on TPU
Board, our final architecture is 4.28x faster with only 0.22% accuracy drop. Ta-

Table 3.6: Comparison of Optimal Architectures obtained in the Pareto Front for
ImageNet

Architecture Jetson TX2 TPU Board Google Pixel 3 | FPGA ZCU102 | HW
Acc Lat Acc Lat Acc Lat Acc Lat Aware
(%) | (ms) | (%) |(ms) | (%) | (ms) | (%) | (ms)
GATES [16] 74.8 | 6.35 | 74.26 | 6.84 73.4 7.5 72.3 7.51 Yes
BRP-NAS [17] 75.2 5.8 74.39 | 6.9 74.8 7.4 75.6 6.82 Yes
ProxylessNAS [235] | 75.1 5.1 75.2 4.5 74.6 6.8 74.5 5.48 Yes
GPUNet [243] 78.9 8.6 78.9 7.9 78.9 13.5 78.9 8.1 No
FBNetV3 [244] 77.6 5.4 78.6 5.9 76.8 7.6 78.5 5.3 Yes
HW-PR-NAS 77.68 | 4.67 | 76.75 | 3.25 | 77.24 | 6.2 77.84 4.6 Yes

58 CHAPTER 3. MULTI-OBJECTIVE SURROGATE MODEL FOR HW-NAS

e HW-PR-NAS, |h = 2351 e HW-PR-NAS, Ih = 1830
e BRP-NAS, Ih = 1638 e BRP-NAS, Ih = 1674

w
°
ed (m))
@
°©
mj)

B

o
a
=)

w

=l
N
=)

N
°
total energy us
w
°

N
°
total energy used (

"
=
o
=)

Figure 3.9: Pareto front Approximations using three objectives: accuracy, latency and
energy consumption on CIFAR-10 on Edge GPU (left), FPGA (right). Th corresponds

to the hypervolume.

ble 3.6 summarizes the comparison of our optimal model to the baselines on Ima-
geNet. GATES [16] and BRP-NAS [17] are re-run on the same proxylessNAS search
space, i.e., we trained the same number of architectures required by each surrogate
model, 7318 and 900, respectively. FBNetV3 [234] and ProxylessNAS [235] were re-
run for the targeted devices on their respective search spaces. GPUNet [243] targets
V100, A100 GPUs. For the comparison, we take their smallest network deployable in
the embedded devices listed. Results show that HW-PR-NAS outperforms all other
approaches regarding the trade-off between accuracy and latency. However, we do
not outperform GPUNet in accuracy but offer a 2x faster counterpart.

3.2.5 Generalization to More Objectives

In this paper, generalization refers to the ability to add any number or type of ex-
pensive objectives to HW-PR-NAS. This can simply be done by by fine-tuning the
Multi-Layer Perceptron (MLP) predictor. This is possible thanks to the following
characteristics: (1) The concatenated encodings have better coverage and represent
every critical architecture feature. The proposed encoding scheme can represent any
arbitrary architecture. This enables the model to be used with a variety of search
spaces. (2) The predictor is designed as one MLP that directly predicts the architec-
ture’s Pareto score without predicting the individual objectives.

Figure 3.9 illustrates the model’s results with three objectives: accuracy, latency
and energy consumption on CIFAR-10. We compare our results against BPR-NAS
for accuracy and latency and a lookup table for energy consumption. That means
that the exact values are used for energy consumption in the case of BRP-NAS.

The Pareto ranking predictor has been fine-tuned for only five epochs, less than
Smin training times. The encoding component was frozen (not fine-tuned). The
Pareto front is of utmost significance in edge devices where the battery lifetime is
crucial. It allows the application to select the right architecture according to the
system’s hardware requirements.

3.3. PRP-NAS: PARETO RANK-PRESERVING SUPERNETWORK TRAINING59

. Jetson TX2
Architecture Ace (%) | Tat (ms)
DS-CNN [245] 96.02 28
CENet-GCN-40 [246] 96.8 32.5
LeTR [247] 97.56 22.36
KWT [248] 97.28 18.5
HW-PR-NAS-KWS 97.89 13.68

Table 3.7: Accuracy and Latency Comparison for Keyword Spotting.

3.2.6 Generalisation to other use cases: Keywords Spotting

While the Pareto ranking predictor can easily be generalized to various objectives, the
encoding scheme is trained on ConvNets architectures. In this use case, we evaluate
the fine-tuning of our encoding scheme over different types of architectures, namely
recurrent neural networks (RNNs) on Keyword spotting. The goal is to assess how
generalizable is our approach. The task of keyword spotting (KWS) [249] provides
a critical user interface for many mobile and edge applications, including phones,
wearables, and cars. It detects a triggering word such as ”Ok, Google” or ”Siri”.
These applications are typically ”always-on”, trying to catch the triggering word,
making this task an appropriate target for HW-NAS. We use NAS-Bench-NLP for
this use case.

NAS-Bench-NLP [250] is a benchmark containing 14k RNNs with various cells
such as LSTMs and GRUs. While it is possible to achieve good accuracy using
ConvNets, we deliberately use RNNs for KWS to validate the generalization of our
encoding scheme.

Similarly to NAS-Bench-201, we extract a subset of 500 RNN architectures from
NAS-Bench-NLP. We measure the latency and energy consumption of the dataset
architectures on Edge GPU (Jetson Nano). We train our surrogate model. The
training is done in two steps described in section 3.2.2. We first fine-tune the encoder-
decoder to get a better representation of the architectures. Then using the surrogate
model, we search over the entire benchmark to approximate the Pareto front.

Figure 3.10 shows the training loss function. The full training of the encoding
scheme on NAS-Bench-201 and FBNet required 80 epochs to achieve a cross-entropy
loss of 1.3. Fine-tuning this encoder on RNN architectures requires only eight epochs
to obtain the same loss value. This test validates the generalization ability of our
encoder to different types of architectures and search spaces.

Figure 3.11 shows the Pareto front approximation result compared to the true
Pareto front. After a few minutes of fine-tuning, we can adapt our surrogate model
to a new search space and achieve a near Pareto front approximation with 97.3% nor-
malized hypervolume. We select the best network from the Pareto front and compare
it to state-of-the-art models from the literature. Table 3.7 shows the results. Our
model is 1.35x faster than KW'T [248] with 0.33% accuracy increase than LeTR [247].

3.3 PRP-NAS: Pareto Rank-preserving Supernet-
work Training

Weight sharing is an estimation strategy used to avoid the training and hence speeds
up the search step. It mainly formulates the search space into a supernetwork. A
supernetwork is an over-parameterized architecture where each path can be sampled.
We call a sampled path a sub-network. These methods assume that the rank between
different sub-networks is preserved when using the supernetwork’s weights. Two
architectures with the same rank imply that they have the same accuracy. State-

60 CHAPTER 3. MULTI-OBJECTIVE SURROGATE MODEL FOR HW-NAS

e True Pareto Front
e HW-PR-NAS

Cross Entropy Loss
e © © o o
w » w) ~N

o
N

0.0 25 50 7.5 10.0 125 15.0 17.5 50 60 70 2.8
Epochs accuracy ("2? 20 &

Figure 3.10: Encoder fine-tuning: Figure 3.11: Search result using HW-PR-

Cross-entropy loss over epochs. NAS against True Pareto front.
I
0 1
1
| op1 op2 op3 op4 op1 op2 op3 op4 op1 op2 op3 op4
L
_layer, 1
] .
——r——— vl
! layer, 1 : —>
I_ |
_——ba—y
[layer 1 @
I : Initialization Phase Pareto Rank-Preserving Phase
i Step 1: Train with strict faimess Step 2: Training Step 3: Pruning
! Each op is sampled the same A parameter Alpha is trained and The operations that are the furthest
! amount of time as the others defines which operation is sampled ~ from the Pareto front are pruned

Figure 3.12: Our Pareto Rank-Preserving Training methodology for Supernetwork.
The strongest shades illustrate the most important operations for each layer at each
iteration. al corresponds to the parameter alpha associated with layer [and operation

0.

of-the-art techniques [251, 252, 253] have highlighted the performance estimation
inefficiency used in both categories by computing the ranking correlation between
the architectures’ actual rankings and the estimated rankings. This issue is called
optimization gap [254]. Some solutions have been proposed to train the supernet-
work with strict constraints on fairness to preserve the ranking for accuracy, such
as FairNAS [164]. Others train a graph convolutional network in parallel to fit the
performance of sampled sub-networks [255].
However, current solutions have two main drawbacks:

1. In the multi-objective context of HW-NAS, different objectives such as accuracy
and latency have to be estimated. The result is a Pareto front; a set of archi-
tectures that better respects the trade-off between the conflicting objectives.
The ranking based on a single objective is no longer a good estimator. In this
setting, we need to take into account the dominance criterion in the ranking.

2. Many of the existing approaches search for efficient architectures through some
metrics that rank the architectures based on a single objective such as Kendall
tau’s correlation between the accuracies of the samples networks [235, 256].
Such metrics do not measure the performance of the Pareto front. Defining
a general metric to determine HW-NAS evaluation strategies is long overdue.
This metric should account for multiple objectives.

To overcome the aforementioned issues, we propose a new training methodology

3.3. PRP-NAS: PARETO RANK-PRESERVING SUPERNETWORK TRAINING61

Task-specific
weights

Conv 3x3 Conv 1x1 Avg Pool 3x3

ail aIZ | al3

Operation
selection scores

Figure 3.13: Supernetwork definition when coupling task-specific weights W and
operation’s score parameters «. Conv 3z3 is the operation with the highest selection
score.

for supernetwork to preserve the Pareto ranking of sub-networks in HW-NAS and
avoid additional ranking correction steps.
In this section, we present the following contributions:

e We define the Pareto ranking (PR) as a novel metric to compare multiple
HW-NAS evaluation techniques in the multi-objective context. Our study shows
that optimizing this metric while training the supernetwork allows the Vanilla
Weight-sharing NAS to achieve a 92% near optimal Pareto front.

e We introduce a novel Differentiable weight-sharing supernetwork train-
ing methodology. The training optimizes the task-specific loss function (e.g.
cross-entropy loss) and a Pareto ranking listwise loss function to accurately
select the adequate operation per layer.

e During training, we prune the operations that are the least likely to be
in the architecture of the optimal Pareto front. The pruning is done by
overlapping the worst Pareto-ranked sub-networks and removing the operations
that are only used in these sub-networks.

Our methodology has been evaluated on three state-of-the-art NAS benchmarks:
NAS-Bench-201 [233], DARTS ([166]) and ProxylessNAS [235]. The obtained results
show that our approach allows us to achieve a higher Pareto front approximation com-
pared to current state-of-the-art methods. For example, we obtained 97% Pareto front
approximation when One-Shot-NAS-GCN [255] depicts only 87% on NAS-Bench-201.

3.3.1 Proposed Approach

The core motivation for a novel training methodology is to achieve an efficient sub-
networks evaluation for HW-NAS. The proposed training methodology must preserve
the Pareto ranking between different sub-networks while reducing the overall training
time.

Pareto Ranking Similar to HW-PR-NAS, we define the Pareto ranking metric
used to train and evaluate the supernetwork.

Solving the multi-objective optimization problem on a set of sub-networks results
in a Pareto front, denoted as F, i.e., all the architectures have a rank of 1. We achieve

62 CHAPTER 3. MULTI-OBJECTIVE SURROGATE MODEL FOR HW-NAS

the lower ranks by successfully solving the problem on the set of sub-networks pruned
from the previous solutions. The lowest rank is assigned to the sub-networks that do
not dominate any sub-network. We formally define the Pareto ranking in equation 3.8,
where S is the entire supernetwork, F} is a set of sub-networks ranked k', and > is
the dominant operation.

Using this ranking scheme, multiple architectures may have the same rank. This
happens when none of them can dominate the others.

a is ranked k <= Vae€ S — U ,a>-a (3.8)
5i€Fi/ AkI>k

Pareto Ranking Correlation. We evaluate the quality of an estimator using
ranking correlations such as Kendall’s tau-b Correlation or Spearman Correlation.
Kendall’s tau-b determines whether there is a monotonic relationship between two
variables and is suitable when variables contain many tied ranks [224], which is our
case. We compute Kendall’s Tau-b correlation between the ground truth ranks (i.e.
the Pareto ranks obtained from independently training the sub-networks), and the
Pareto ranks obtained by evaluating each architecture with the supernetwork shared
weights.

Pareto Rank-Preserving Training
Our training methodology aims at preserving the Pareto ranking obtained by the
weight-sharing evaluation.

Figure 3.13 shows a representation of a layer in the supernetwork definition and
the different parameters we aim to learn. A sub-network is a path from the input
to the output. All extracted sub-networks are of the same depth. We train the
supernetwork with two goals: 1) enhance the task-specific loss function by adjusting
W, the task-specific weights of the original model associated with the neural network
operations such as the kernels in convolution, and 2) improve the Pareto ranking loss
between its different paths by adjusting «, the weights associated with the operation
selection. « measures which operation is critical and which one is selected.

Algorithm 2 and figure 3.12 summarize the training procedure.

e Step 1: Train with Strict Fairness We train our supernetwork using Fair-
NAS [164] strict fairness constraint. This step adjusts the weights of all the
sub-networks W and gives a good starting point for the Pareto ranking train-
ing. Additionally, the accuracy estimation on the task-specific loss at this point
is well estimated. We use these estimations to compute the true Pareto ranks
in case no accuracy was provided by the benchmark.

e Step 2: Pareto ranking training For each iteration, we apply:

- Training to solve the task: A mini-batch is sampled from the training
set, and a sub-network is chosen according to each operation’s highest a. The
operation’s weights are updated using the task-specific loss, e.g., cross-entropy
loss for image classification.

- Pareto rank training: In this phase, we purposefully bias the training to-
wards better Pareto-ranked architectures using the a parameters. o parameters
are trained using the loss function provided in equation 3.9. During the forward
pass, we Pareto rank the sampled sub-networks. We compute the number of
times an operation op; appears in layer I; on N top-ranked sub-networks, de-
noted as g(op;,1;). N is a hyperparameter defined before training. We denote
by g(opi,1;), the ground truth. Equation 3.9 computes the hinge loss over all
layers in the sampled sub-networks and compares the number of times the op-
eration with the highest o appears in the predicted Pareto front and the ground
truth one. Here, m is a fixed margin that controls the amount of penalization
for violating the ranks, which is set to 0.1.

3.3. PRP-NAS: PARETO RANK-PRESERVING SUPERNETWORK TRAINING63

maz[0,m — g((a),l;) — glops, 1;)] (3.9)

We adjust each operation’s a parameters and compute each sampled sub-
network’s latency using a lookup table. We define the predicted Pareto score
according to Ps = ZOPEQ Oop, i.€., the sum of selected operations’ alpha values.
Next, we compute the listwise ranking loss defined by the cross entropy between
the ranking scores and the Pareto ranks (ground truth).

To compute the ground truth, we iteratively calculate the loss and latencies
of the sub-networks to determine the optimal Pareto front using equation 3.8.
This takes only a few milliseconds, thanks to the small number of selected
sub-networks.

e Step 3: Pruning by Pareto Ranking Sub-networks We drop sub-networks
furthest from the optimal Pareto front to accelerate the training. First, we
select the sub-networks belonging to the two first Pareto ranks. Then, based
on the hypervolume improvement (HVI) [257], we select n sub-networks. The
operations never used by any sub-network in this selection are removed for each
layer. Equation 3.10 illustrates how the hypervolume improvement is computed
in this context. o0;; denotes operation ¢ in layer j, and P refers to the current
set of sub-networks constituting the Pareto front approximation. HV denotes
the hypervolume function and {S,,,} denotes the set of sampled sub-networks
using operation ¢ in layer j, and P refers to the current set of sub-networks
constituting the Pareto front approximation. HYV denotes the hypervolume
function and {S,,;} denotes the set of sampled sub-networks using operation 4
in layer j. When computing the hypervolume, a reference point is required. We
carefully selected the reference point by examining a range of pre-sampled sub-
networks with different accuracy and latency values. Similar to multi-objective
HW-NAS, we chose the sub-network that resulted in the highest HVI for the
initial round of sub-network ranking.

HVI(Oij’ P) = HV(P U{SOU}) - HV(P - {Sou}) (3'10)

Finally, going over all the layers to select the operations with the highest o would
suffice to find the most efficient DNN within the search space.

Figure 3.14 shows the training results. We compare our methodology to Fair-
NAS [164] strict fairness training. During training, the Pareto ranking correlation
increases with the quality of the estimations. When using our training methodology
without considering the alpha parameters, the ranking correlation saturates at 0.7.
FairNAS achieves the same behavior with reduced variance among the different train-
ing runs. However, if we consider the alpha parameters, the selection is more efficient
and the architectures’ rankings are well represented with 0.94.

The FairNAS step is crucial in optimizing the classification loss and ensuring that
each operation is trained fairly. We conducted experiments to compare the perfor-
mance of our methodology with and without FairNAS. Using training from scratch
(without FairNAS), where the initial model’s weights were random, we found that
the model’s weights were poorly selected, resulting in a badly chosen set of opera-
tions that could negatively impact accuracy and convergence. The top-1 accurate
sub-networks only achieved 86.3%. We found that the Kendall-tau correlation of the
training without FairNAS was only 0.62 after 500 epochs, significantly lower than
the correlation obtained with FairNAS, see figure 3.2. These results will be added to
Figure 3 to highlight the necessity of the FairNAS step.

64 CHAPTER 3. MULTI-OBJECTIVE SURROGATE MODEL FOR HW-NAS

With alpha parameters
—e— W/o alpha parameters
—e— Fairnas only

W/o Fairnas

Kendall's Tau-b correlation
o
)]

0 25 50 75 100 125 150 175 200
epoch

Figure 3.14: Training performance computed with the Kendall’s Tau Correlation
between the independently trained Pareto ranks and the estimated Pareto ranks
obtained by training the supernetwork.

Algorithm 2 Supernetwork Training Algorithm

Input: Search space S, number of epochs for fairness training Ny, number of
epochs for Pareto training N,, Supernetwork parameters (W,«), training dat-
aloader D, task-specific loss Loss, Pareto raking loss Losspgr, number of sampled
sub-network n
Procedure: Train
Initialize W and « for each operation in Supernetwork
Strict fairness training for N¢ epochs
for i=1 to N, do
for data, labels in D do
Build model with argmax(a) following step 2
Reset gradients to zero for all W parameters
Calculate gradients based on Loss, data, labels and update W by gradients
end for
end for
Sample n sub-networks, models
Compute: Pareto rank of models, Losspr between scores and Pareto rank.
Update a by gradients
Apply pruning following step 3
end for
end for

3.3. PRP-NAS: PARETO RANK-PRESERVING SUPERNETWORK TRAINING65

(a) Results on 1000 sampled (b) Results on 1000 sampled

networks from NAS-Bench-201 networks from DARTS
1.01

g ;
% 0.8 % 0.8
° ©
8 0.6 8 0.6
=] =]
e e
" 0.4 n 0.41
3 5
5 0.2 5 0.2
¥ ¥

0.0- 0.0-

LUT XGBoost LUT XGBoost
Estimation Methods Estimation Methods

Figure 3.15: Comparison of latency estimators on Jetson Nano.

Latency Estimation

To estimate the latency of each sub-network during training, we used a lookup table
approach that contains a mapping between each operation and its latency on each
hardware platform. To populate the look-up table, we first generated a large set of
candidate sub-networks using a random search. We then measured the latency of
each operation and averaged it across multiple sub-networks.

During training, we estimated the latency of each sub-network by summing up
the corresponding latencies in the look-up table.

In this section, we compare different latency estimators to validate the use of LUT
during the search. Figure 3.15 shows the results. We randomly extract 1000 archi-
tectures from NAS-Bench-201 and 1000 from DARTS. We measure the exact latency
on Jetson Nano for each architecture. We train two predictor-based models, namely
XGBoost and MLP with 3 layers. The training dataset contains 700 architectures
and 300 were used for testing. On NAS-Bench-201, the architectures have a sequen-
tial execution which made LUT the most accurate in terms of latency ranking the
architectures. On DARTS, XGBoost prediction was the most suitable method. But,
LUT was not far with 0.915 against 0.942. Computing the LUT in our algorithm is
simpler. Using a hook during the forward function on a PyTorch model is sufficient
and much more direct than calling a surrogate model. We thus use this strategy to
estimate the latency in our method.

3.3.2 Evaluation Methodology

Search Spaces: Several search spaces have been used to evaluate our method’s per-
formance. NAS-Bench-201 ([233]) is a tabular benchmark that contains 15k convo-
lutional neural networks. Each architecture is trained on CIFAR-10, CIFAR-100 and
ImageNet-16-120 [237]. We use the latency and energy consumption values obtained
from HW-NAS-Bench [256]. DARTS [166] is a supernetwork benchmark that con-
tains 10'® architectures. Each architecture is trained on CIFAR-10 and is transferable
to ImageNet. We also validate our methodology on ImageNet using ProxylessNAS
search space [235] whose size goes to 6!%. When the true latency is not available
in the benchmark, we use a lookup table to estimate it. Our preliminary analysis
showed that lookup table achieve 0.92 latency rank correlation on a 1000 sampled
architecture from DARTS and NAS-Bench-201; a +5% than XGBoost predictor.

Training Hyperparameters The training hyperparameters are listed in Table 3.8.
It takes 2, 3.8, 3.8 GPU-days for NAS-Bench-201, DARTS and ProxylessNAS search
space to train each supernetwork to fullness. Our training is 5x faster than previous

66 CHAPTER 3. MULTI-OBJECTIVE SURROGATE MODEL FOR HW-NAS

works due to the pruning strategy. To be consistent with previous works, we do not
employ data augmentation tricks such as cutout or mixup. We also do not employ
any special operations such as squeeze-and-excitation. All these methods can further
improve the scores on the test set.

Table 3.8: Training Hyperparameters

Benchmark Hyperparameter \ Value
Nf 20

Np 50

n 50

NAS-Bench-201 | batch_size 128
Ir 0.01

optim SGD

momentum 0.9

Nf 30

Np 150

n 100

DARTS batch_size 256
Ir 0.025

optim SGD

momentum 0.9

Nf 30

Np 150

n 100

gzc;};Z:lesésiﬁS batch_size 256
Ir 0.025
optim SGD

momentum 0.9

3.3.3 Search Results

In these experiments, we consider two objectives: accuracy and latency (inference
time). The latency is either given by HW-NAS-Bench [256] or computed using a
lookup table as explained in the Proposed Approach section.

* Other Architectures . ° oo, « Other Architectures
True Pareto front 10 * True Pareto front
+ Ours
+ FairNAS
DARTS
One-Shot-NAS-GCN
o

+ Ours

8 + FairNAS
DARTS
One-Shot-NAS-GCN

30 40 50 60 70 80 920 1] 10 15 20 25 30
CIFAR-10 Accuracy ImageNet Accuracy

Edge GPU Latency (ms)
& o

Edge GPU Latency (ms)
o

Figure 3.16: Pareto front approximation comparison on CIFAR-10 and ImageNet.

Figure 3.16 shows the Pareto front approximations obtained using different meth-
ods on NAS-Bench-201 for CIFAR-10 and ProxylessNAS Search space for ImageNet.
We obtain a 10% hypervolume increase on NAS-Bench-201 and a 43% hypervolume
increase on ImageNet compared to the best baselines: One-Shot-NAS-GCN and Fair-
NAS, respectively.

3.3. PRP-NAS: PARETO RANK-PRESERVING SUPERNETWORK TRAINING67

Table 3.9: Comparison on NAS-Bench-201 CIFAR-10 on Edge GPU (Jetson Nano)
and Mobile phone (Pixel 3).

Architecture Edge GPU Mobile Phone : Pixel 3 HW GPU
Top-1 Params Latency Top-1 Params Latency Aware Days
Test Acc. (M) (ms) Test Acc. (M) (ms)
DARTS [166] 68.3 + 0.08 3.4 5.36 68.3 + 0.08 3.4 11.4 No 4
ENAS [258] 53.89 £ 0.16 4.6 6.32 53.89 £ 0.16 4.6 19.8 No 0.16
GDAS [259] 90.89 + 0.08 3.4 5.21 90.89 + 0.08 3.4 10.36 No 0.21
FairNAS [164] 93.23+0.18 3.2 4.68 92.4 £ 0.15 3.6 8.65 Yes 10
PRP-NAS-BL (Ours) 92.34 £ 0.05 3.0 2.3 89.54 £ 0.07 2.8 3.6 Yes 2
PRP-NAS-BA (Ours) 94.37 + 0.02 4.5 4.35 94.2 + 0.03 4.3 5.6 Yes 2
PRP-NAS-O (Ours) 93.65 + 0.01 4.3 3.64 93.74 £ 0.00 3.4 4.61 Yes 2

Search on NAS-Bench-201

Table 3.9 shows the results of our methodology on NAS-Bench-201 compared to
state-of-the-art methods. PRP-NAS-BL, PRP-NAS-BA and PRP-NAS-O are three
sampled architectures from our final Pareto front. BL stands for ”Best Latency”. BA
stands for ”"Best Accuracy”, and O stands for ”Optimal”. Notably, our architecture
obtains highly competitive results. The optimal architecture, PRP-NAS-O, outper-
forms current state-of-the-art methods in accuracy and latency. Including hardware
awareness during the search allows us to obtain flexible results according to the tar-
geted hardware platform. Besides, multiple training runs show the stability of our
method compared to other baselines. The acceleration in the search cost is mainly
due to applying the pruning while training. This cost can vary according to the used
GPU. We used GPU V100 to train the supernetwork. Results on other targeted plat-
forms are presented in table 3.10. Our methodology consistently finds better Pareto
extracted solutions regardless of the targeted hardware platform.

Table 3.10: Comparison to baselines on CIFAR-10 on FPGA ZCU-102 and Raspberry
Pi3

Architecture FPGA ZCU102 Raspberry Pi 3 HW GPU
Top-1 Params Latency Top-1 Params Latency Aware Days
Test Acc. (M) (ms) Test Acc. (M) (ms)
DARTS 68.3 + 0.08 3.4 7.32 68.3 £ 0.08 3.4 45.36 No 4
ENAS 53.89 + 0.16 4.6 8.91 53.89 £ 0.16 4.6 35.8 No 0.16
GDAS 90.89 + 0.08 3.4 4.98 90.89 £ 0.08 3.4 41.8 No 0.21
FairNAS 92.940.23 3.4 5.12 92.51 + 0.9 3.3 34.15 Yes 10
PRP-NAS-BL (Ours) 91.35 + 0.04 3.2 3.6 88.7 £ 0.03 2.4 7.6 Yes 2
PRP-NAS-BA (Ours) 94.37 + 0.005 4.9 6.8 93.68 £ 0.05 4.68 40.7 Yes 2
PRP-NAS-O (Ours) 93.55 + 0.04 4.2 4.23 92.54 £ 0.02 3.6 18.5 Yes 2

Search on ImageNet

Similar conclusions can be extracted when searching on ImageNet. Figure 3.17 sum-
marizes the results. Our supernetwork is now based on proxylessNAS [235]. Our op-
timal model surpasses FairNAS-A (4+1.9%) and One-Shot-NAS-GCN (+1.7%) while
running faster. Training on Imagenet is time-consuming due to the difference in im-
age resolution, which explains the increase in the search cost. We still surpass most of
the methods in terms of search time. We compare two ProxylessNAS architectures;
ProxylessNAS-R is specific to Mobile inference.

When using data augmentation and architecture tricks, namely Squeeze-and-
excitation and AutoAugment, in the optimal architecture, we achieve 78.6% accuracy
on Imagenet.

In addition, we compare our methodology to OFA [169]. Using the proxyless-
NAS supernetwork, we are able to find a 1.39x faster architecture with a drop of
0.56%. Using our training methodology on OFA’s supernetwork directly allows us
to find a +2.2% accurate and 1.5x faster architecture on Pixel 3 and a +1.4% accu-
rate and 2.3x faster architecture on Jetson Nano. These results can be attributed to

68 CHAPTER 3. MULTI-OBJECTIVE SURROGATE MODEL FOR HW-NAS

° & 3ITNAS-A
® SOTA DARTS ®One-Shot-NAS-GCN
507" _e— PRP-NAS ProxylessNAS OFA
PRP-NAS-BA S
4.5 1.12x
latency
reduction
4.0
PRP-NAS-O
=30 PRP-NAS-BL
>
o
£]
g DARTS
= 101 One-Shot-NAS-GCN
. OFA
8-
FairNAS-A tanc
ProxylessNAS m B reducfion
6 - PRP-NAS-O
PRP-NAS-BL PRP-NAS-BA
68 70 72 74 76 78 80

Test Accuracy (%)

Figure 3.17: Comparison with state-of-the-art ImageNet results.

the fact that our methodology searches for architectures that are optimized for each
specific hardware platform, whereas OFA optimizes for a variety of hardware plat-
forms simultaneously. By focusing on specific hardware platforms, our methodology
is able to tailor the architecture to the specific computational resources, and latency
requirements of each platform, leading to superior results on those platforms.

Ranking Quality

Ly
°

N
(=3
o
Hypervolume

°
N
=
[
3
-3
2
g
<
fa)
°
3
=
o
[l
=3
o
S

B Hypervolume

GATES BRP-NAS HELP HW-PR-NAS DARTS ProxylessNAS FairNAS One-Shot- SharpSep Ours
NAS-GCN ConvDARTS

Predictor-based HW-NAS Weight-sharing HW-NAS

°
°

Kendall's Tau Correlation
¢ e o ¢
» o -]
o
~N
00
g
‘

Figure 3.18: Kendall’s Tau-b correlation and hypervolume comparison using different
estimators on DARTS.

We compare different estimators used in HW-NAS using Kendall’s Tau Correla-
tion between the predicted Pareto ranks and the Pareto ranks obtained from indepen-
dently training the architectures. These latter are extracted from NAS-Bench-201.
Figure 3.18 shows the correlation results. In general, it is more complex to train a
supernetwork to respect the Pareto ranks because of the impact of the sub-networks
on each other, i.e., the outputs of each layer are summed together. The increase in
Kendall’s tau correlation of the previous weight-sharing methodology is due to the
improvement in the accuracy estimation provided by the supernetwork.

Predictor-based evaluators use the learning-to-rank theory and train their predic-
tors only to predict the ranking. Methods such as GATES [260] or BRP-NAS [261]
train many independent predictors, one for each objective. HW-PR-NAS [226] trains

3.3. PRP-NAS: PARETO RANK-PRESERVING SUPERNETWORK TRAINING69

a single predictor to fit the Pareto ranks. However, their methodology is not flexible
for supernetwork training.

Ablation Study

We validate the results of our pruning algorithm by comparing the results of our
algorithm with and without it in table 3.11. Without pruning, the search time expo-
nentially increases from 3.8 GPU days to 15.1. However, the hypervolume improves
slightly. The final most accurate architecture is in both Pareto front obtained with
and without pruning. The optimal architecture using pruning is better in terms of
accuracy and latency. The latency is computed on Jetson Nano Edge GPU.

Model Test Latency Search GPU
Acc (ms) Hyper- days
(%) volume

PRP-NAS-O 93.65 3.64 423.45 3.8

PRP- 92.1 3.26 433.09 15.1

NAS-O-

no_pruning

Table 3.11: Ablation results of Pruning of Pareto ranking for CIFAR-10.

Number of sampled sub-networks

Figure 3.19 shows the effect of increasing the number of sampled sub-networks on
the search results. Generally, increasing the number of samples, increases the hy-
pervolume. The hypervolume is used to evaluate Pareto front approximations. It
computes the area contained by the Pareto front points found by the search and a
reference point. Our reference point is set as a pre-sampled architecture from the
supernetwork, with a low accuracy and high latency. When the number of sampled
sub-networks is too high, each layer’s output is the sum of multiple operations that
can or cannot be within the final Pareto front which induces a bias when adjusting
the alpha parameters.

450

Hypervolume
w B
ol =)
=) =]

w
[=]
o

N
u
o

20 40 60 80 100
Increasing number of sub-networks
Figure 3.19: Hypervolume analysis with an increasing number of sampled sub-

networks for the final Pareto front throughout the search (higher is better) on NAS-
Bench-201.

70 CHAPTER 3. MULTI-OBJECTIVE SURROGATE MODEL FOR HW-NAS

Analysis of a parameter

Figure 3.20 illustrates the evolution of alpha parameters for each operation in layers
1 and 2 during the training. It clearly shows how alpha favors one operation over the
others during training. At the end of the training, we take the operations with the
highest alpha that represents the operations constructing architectures in the final
Pareto front. If one layer has a clear candidate such as layer 1, with conv3x3 that
exceeds 60%, this operation is then chosen. If a layer contains multiple operations
with similar alpha values, we construct all the path of that layer.

Layer 1 Layer 2
0.5-
0.6 - —@— conv3x3 ./.\. —&— conv3x3
—V— pool —V— pool
9 0.5 - identity $0.41 —m identity
2 —*— convlxl 2 —*— convlxl
> 0.4 > 0.3
2 2
03 5
(] © 0.
0.2 0.2
0.1- 0.1
0 25 50 75 100 0 25 50 75 100
Epoch Epoch

Figure 3.20: Analysis of trained alpha values for layers 1 and 2

3.3.4 Battery Usage Preservation

The amount of energy consumed by each model can be different. It is mainly at-
tributed to the number of multi-adds computed. We take supernetwork usage to
another level by adequately scheduling the run of different sub-networks according to
the system’s battery life. In this experiment, the training is done with two objectives:
accuracy and energy consumption. Once the training is done, only the Pareto front
solutions are kept in the supernetwork, thanks to the pruning. We further select,
from the final Pareto front, s architectures. In this experiment s = 5. The total size
of the supernetwork is then reduced to 20.5MB, comparable to MobileNet-V3 Large
with 21.11MB. We deploy the model on a smartphone application that is always on.
The application repeats the inference classification of one image. The application ini-
tially uses the sub-network with the highest accuracy. We switch to a lower-accurate
model every five hours for better energy preservation. Figure 3.21 shows the results
of the system’s battery life while running the application for 24 hours. We use three
scenarios:

3.4. CONCLUSION 71

100

80

60

40 34.19%

Battery Capacity (%)

—e— Worse Capacity Usage
—e— Best Capacity Usage
—e— Adequate Capacity Usage

20

0

V] 5 10 15 20
Hour

Figure 3.21: Battery life management.

1. Worst Battery Usage: From the Pareto front, we select the most accurate
architecture: PRP-NAS-BA. This is the only architecture the application runs
and is the only one loaded in memory.

2. Best Battery Usage: Similar to the worst battery usage, we select the most
energy-efficient.

3. Adequate Battery Usage: We load the complete supernetwork and switch
the sub-network every 5 hours.

Using this strategy helps save up to 34% of the battery life while using highly
accurate models most of the time. The average accuracy of the five selected sub-
networks is 75.2%.

3.4 Conclusion

This chapter introduces HW-PR-NAS and PRP-NAS. Both contributions enhance
the evaluation component of HW-NAS.

HW-PR-NAS is a surrogate model-based HW-NAS methodology, to accelerate
HW-NAS while preserving the quality of the search results on cell-based and global
search spaces. HW-PR-NAS proposes a novel encoding methodology that offers sev-
eral advantages: (1) It generalizes well with small datasets, which decreases the time
required to run the complete NAS on new search spaces and tasks, (2) It is also
flexible to any hardware platforms and any number of objectives. This approach was
evaluated on seven hardware platforms such as Jetson Nano, Pixel 3, and FPGA
ZCU102. Experimental results show that HW-PR-NAS delivers a better Pareto front
approximation (98% normalized hypervolume of the true Pareto front) and a 2.5x
speedup in search time. We show that HW-PR-NAS outperforms state-of-the-art
HW-NAS approaches on seven edge platforms.

PRP-NAS analyzes Hardware-aware weight-sharing NAS where the multi-
objective context requires the estimator to preserve the Pareto rankings between
sub-networks accurately. Contrary to existing approaches that estimate each objec-
tive independently, we propose a supernetwork training methodology able to preserve
the Pareto rankings during the search. We achieve 97% near Pareto front approx-
imation on NAS-Bench-201, DARTS, and ProxylessNAS Search Spaces. We find a
77.2% accuracy model on ImageNet while only training the supernetwork for 3.8 days.
Using the supernetwork capabilities, we saved up to 34% of the battery capacity with
an average accuracy of 75.2% on ImageNet.

72 CHAPTER 3. MULTI-OBJECTIVE SURROGATE MODEL FOR HW-NAS

Chapter 4

Enhancing HW-NAS Search
Space

Contents

4.1 Context o i i ittt e e e e e e e e e e e e e e e 74
4.2 CaW-NAS e e e e 74
4.2.1 Proposed Approach 75
4.2.2 Quantization Analysis L. 76
4.2.3 Search Strategy 78
4.2.4 Evaluation Methodology 78
425 Search Results 79

4.3 Grassroots Operator Search for Model Edge Adaptation 81
4.3.1 Proposed Approach 83
Operator Search Space 84

4.3.2 Search Algorithm 87
4.3.3 Evaluation Methodology 89
4.3.4 Optimizing an architecture for Edge Devices 90
4.3.5 Use Case: Pulse Rate Estimation 92
Background on Pulse Rate Estimation 93
Experiments & Results, 93

44 Conclusion 96

73

74 CHAPTER 4. ENHANCING HW-NAS SEARCH SPACE

4.1 Context

Undoubtedly, the most critical component of HW-NAS is its search space. The
search space defines the types of architectures that are explored and the range of
performance that can be achieved. A large and well-designed search space allows
for a broader exploration of the design space and can lead to the discovery of more
efficient and effective architectures. However, an overly large search space can also
lead to increased computational costs and longer search times, making it impractical
for many real-world applications. Therefore, the design of an effective search space is a
critical challenge in HW-NAS research. In this chapter, we present two contributions
to the search space definition.

First, when exploring compression methods for neural networks, a critical chal-
lenge is how to efficiently define a search space. Compression techniques, such as
pruning and quantization, can significantly reduce the model size and computational
cost of neural networks, but the search space for finding an optimal compressed ar-
chitecture can be large and complex. Therefore, we present Ca W-NAS, compression-
aware neural architecture search, to answer research question 2.

Research Question 2

What is an efficient and effective method for defining a search space that
contains diverse and high-performing compressed neural architectures while
minimizing the computational cost of the search process?

J

Second, current search spaces are typically designed using either a macro-
architecture that closely resembles a standard handcrafted architecture or a list of
pre-defined operations obtained from handcrafted architectures. While this design
approach allows for the identification of the top-performing combinations of pre-
existing operations, it falls short when it comes to discovering novel and innovative
architectures. As a result, the search process may be constrained by the pre-existing
assumptions and biases inherent in these design choices, limiting the potential for true
innovation in neural architecture design. Hence, propose GOS, Grassroots operation
search to answer research question 3.

Research Question 3

What are effective approaches for constructing a search space that is not
influenced by previous human experience, and can enable the discovery of
novel and innovative neural architectures?

4.2 CaW-NAS: Compression-aware Neural Archi-
tecture Search

Quantization, as a model compression technique, aims at decreasing the bit width
used to represent the model’s weights and activations in memory. This dramati-
cally reduces both the memory requirement and computational cost. However, the
quantization induces a drop in the model’s accuracy which varies according to the
architecture, the chosen bit width, and the dataset.

Including the quantization bit width in the search space will considerably increase
the computational complexity of HW-NAS and makes the search impractical. In tra-
ditional methods, a multi-stage search is used. A first search for the architecture
using HW-NAS is applied and then a second search for the quantization bit width is
realized. This second stage is called specialization. However, this specialization deliv-
ers a sub-optimal solution as the drop in accuracy induced by quantization depends
on the architecture obtained by the HW-NAS in the first stage.

4.2. CAW-NAS (0]

To solve the large search space problem, APQ [140] proposes a supernetwork in
which each operator (e.g. conv, fully connected, etc.) is defined with its associated
bit width. APQ uses a surrogate model to predict the accuracy of the quantized
model. However, a supernetwork restricts the search space depending on the model’s
macro-architecture.

We present CaW-NAS, a solution that dynamically extends the search space with
the quantized versions during the search. Our approach obtains more efficient archi-
tectures by merging the two stages.

Add Quantized Model to the Search Space

@ Pretrained Models E@
§383388%¢ :

Distance to centroids Cluster with

Evolutionary search

1
1
1
1
| : acceptable Reject Model
e computation drop?
! § ! Quantization Effect Checking .
|2
-
<L
T e e e e
% |
]
g A l
Augmented Search Space n ccuracy l
measurements |
1

$28 338 8

Search Space

258 308 336 |

Hardware feedback .
o O i

1

1

Figure 4.1: Overview of CaW-NAS: Compression Aware Neural Architecture

The contributions made by CaW-NAS are threefold:

o We propose a search strategy in the HW-NAS that considers the quantization
accuracy drop. We dynamically extend the search space with the quantized
version of the sampled architecture during the search if its accuracy drop is
acceptable.

e We apply a clustering strategy to identify architectures with small/null drops in
the quantization. We first use these insights to answer the following question:
What is the relation between quantization drop and architecture characteris-
tics such as depth, width, and operators? and How does the quantization drop
change when different bit widths are selected? These results guide the explo-
ration of the extended search space without impacting the delays.

e We validate our methodology on two benchmarks: NAS-Bench-201 [262] and
a customized search space consisting of state-of-the-art standard models. We
tested our method on a mobile phone platform, the Xiaomi Redmi Note 7.
When compared to state-of-the-art architectures, namely APQ-B [140], our
method obtained a neural architecture with a 36.5% reduction in inference time
and a 1.24% increase in accuracy.

4.2.1 Proposed Approach

Figure 4.1 shows an overview of our proposed approach CaW-NAS. Our system is
composed of three main parts described as follows.

1. Search Space: Our search space is initially defined by two subsets: 1) state-
of-the-art pre-trained standard models and 2) NAS-Bench-201 search space [262].
During the NAS process, the search space is extended by quantized models that give
an acceptable accuracy drop compared to their full-precision versions.

76 CHAPTER 4. ENHANCING HW-NAS SEARCH SPACE

Compute the Distance

A
Encoding Encoded Architecture

GIN »__Vector.
Architecture
->| LSTM »_Vector.

Clustering Algorithm

Clusters
@ coo @ —D| Compute AQD

AQD stands for Average Quantization Drop

Figure 4.2: Clustering strategy to analyze the quantization sensitivity

2. Quantization Effect Checking: To check the quantization effect on the model’s
accuracy, we need to determine to which cluster belongs the sampled architecture.
The cluster creation details are presented in subsection 4.2.2. Each cluster represents
the sensitivity to quantization measured with the drop in accuracy. Initially, the
search space only defines nonquantized architecture. Then, for each sampled archi-
tecture, and if the architecture isn’t sensitive, its 8-bit quantized version is added to
the search space. During the search, the search space gets bigger, and the population
considers quantized architectures and nonquantized ones at the same time. By doing
so, we avoid falling into a sub-optimal solution.

3. Search Strategy: It represents a standard multi-objectives hardware-aware NAS.
We use an evolutionary search algorithm to find the best architectures in terms of
accuracy and hardware efficiency trade-off. The search algorithm evaluates the accu-
racy and the hardware efficiency of each architecture using prediction models, named
surrogate models.

The most important parts in CaW-NAS are the quantization-related parts, namely
cluster creation (see figure 4.2) and Quantization Effect Checking (see figure 4.1). For
the sake of brevity, we regroup them under the term Quantization Analysis. The next
section describes how the quantization analysis is done using clustering.

4.2.2 Quantization Analysis

Figure 4.2 details the cluster creation part. We apply the clustering on a set of
pre-trained models, which allows us to generalize the results to a broad set of search
spaces. We first encode each architecture into two vectors using a Graph Isomorphism
Network (GIN) [263] and a two-layer LSTM. These two vectors enable us to compute
the distance between different architectures. We then use a k-means algorithm to
cluster similar architectures together. The number of clusters is a user-defined hy-
perparameter. It depends on the desired accuracy and the search time limit. Having
a large number of clusters increases the accuracy, provides better architectures, but
increases the search time. In the initial clustering step, we manually assign an ar-
chitecture to each cluster. For example, if the number of clusters is two we assign
Resnet18 and InceptionV3 to the clusters. If the number of clusters is three, VGG16
is assigned to the third cluster. These initial points have been chosen from empirical
tests. Then, we iterate over the set of models. For each architecture, we compute the
average of the distances between the graph encoding vectors and the LSTM encoding
vectors with the centroids of each cluster. In the last step, we check each cluster’s
Average Quantization Drop (AQD). We maximize the distance between the AQD
of different clusters by fine-tuning the encoding GIN and LSTM and repeating the
clustering.

Once we obtain the final clusters, we analyze the architectures in each cluster to
understand the sensitivity of the architecture to the quantization.

1. Effect of increasing depth and width on quantization accuracy. From
each architecture, we derive four variants with an increasing number of blocks but

4.2. CAW-NAS 7

the same output channels in each block for the depth analysis and five variants with
increasing output channels but the same depth as the original model. The depth
varies from 12 to 56, whereas the width varies from 16 to 256. We compute the
percentage of similar clusters with the original architecture.

Figure 4.3 (left) shows the impact of varying the architecture’s depth on the
quantization effect. The number of clusters and the bitwidth are fixed to 3 and 8
respectively. Increasing the depth of the architecture increases the drop in accuracy,
and the architectures are clustered differently. We can conclude that the deeper the
architecture, the higher will be the quantization effect.

Figure 4.3 (right) shows the results of the quantization on the increasing width
scenario. Increasing the width of the architecture doesn’t necessarily increase or
decrease the accuracy drop. We find that variants with different widths often stay
within the same cluster.

100

100.0

98

96

94

92

90

88

86

Percentage of similar clusters (%)
Percentage of similar clusters (%)

84

82
10 20 30 40 50 50 100 150 200 250

depth width

Figure 4.3: Quantization effect on increasing depth and width in the architectures

2. Effect of quantization on different convolution variants

Among the standard models, we can find architectures using different convolution
variants: The standard convolution, the grouped convolution, and depthwise con-
volution. We compute the Average Quantization Drop (AQD) for each variant and
present the results in figure 4.4. The AQD is computed for each block with the same
output channel within architectures with the same depth. We can notice that the
depthwise convolution is the most sensitive to quantization. This operator is used
in architectures targeting mobile settings because it uses fewer parameters, which
makes the models smaller. However, the quantization on the depthwise convolution
results in a significant drop, which validates our initial assumption: The architecture
search space should include quantized and non-quantized architectures even for edge
devices.

o N ®

w

w

Average Quantization Drop
N &

-

standan:d groupe_d depthwi_se

Figure 4.4: Quantization effect on different convolution variants

78 CHAPTER 4. ENHANCING HW-NAS SEARCH SPACE

3. Effect of increasing bit width on the clusters

We also analyze the effect of decreasing the bit width from 8-bit to 4-bit and check if
we have the same clusters. The percentage of similar clusters obtained is 78% which
suggests that the clusters change from one quantization scheme to another.

The search space should then include the original non-quantized architectures,
the 8-bit quantized architectures, and the 4-bit quantized architectures.

4.2.3 Search Strategy

In this section, we describe the search algorithm used in CaW-NAS. We use an
adapted multi-objective evolutionary algorithm. The different steps are given in
Algorithm 3. The algorithm implements blocks 2 and 3 in Figure 4.1.

After the clustering, we calculate the centroids of the cluster and the AQD. The
AQD lets us know which cluster is sensitive to quantization. We check to which cluster
(step 7) each architecture belongs during the search and decide whether to add its
quantized version to the search space or ignore it (steps 8 and 9). Then, we compute
the accuracy and latency predictions (step 10). If the architecture is quantized,
the accuracy is calculated using the predicted accuracy of the non-quantized version
minus the AQD of the cluster it belongs to. Using these evaluations, we construct
the Pareto front, the set of non-dominated architectures in the space (step 11).

Algorithm 3 Search Algorithm

Input: search space S, centroids C, population size p, mutation probability
m_prob, maximum iteration maz_iter, time budget time_lim
Output: Pareto front non_dominated
P = RandomPopulation(S, p)
non_dominated = ()
i=0
while ¢ < max_iter AND t < time_lim do
for Each architecture a in P do
if « is not quantized then
cluster = ComputeDistance(a, C)
if cluster is not sensitive then
Add Quantized(a) to S
end if
end if
end for
fitness = compute_fitness(P)
non_dominated = sorting(P, fitness, k)
mutate architecture of P with m_prob
select n new architectures from S, add them to P
end while

4.2.4 Evaluation Methodology

All the models have been implemented using PyTorch. The global hyperparameters
are listed in table 4.1.

Quantization All the quantization results and accuracy computation are done as
follows. First, the fp32 models are pre-trained on ImageNet or CIFAR-10. Next, we
add 30 epochs of quantization-aware training. We used two quantization schemes: 8-
bit and 4-bit. We use the quantization schemes implemented in PyTorch-quantization

4.2. CAW-NAS 79

Clustering
k 3
max_iter 250
tol 0,01

Search Algorithm
population size | 100
m_prob 0,8
max_iter 100
time_budget 1hr

Table 4.1: CaW-NAS hyperparameters

in the Nvidia toolkit'. Specifically, we quantize the weights and activations of the
model with the same bit width for all our tests.

Clustering We encode each architecture into two vectors. The first is obtained
with 2-layer LSTMs with 225 hidden units. The second with a 2-layer GIN with 300
hidden units. We use scikit-learn k-means implementation with the hyperparameters
shown in table 4.1 (top).

Evolutionary search algorithm We experiment on two different search spaces.
The first one is denoted pretrained models. It is constructed from 95 pre-trained
models trained on ImageNet with increasing architecture depth and width. The
width is increased by multiplying the output channels by a widening factor taken
from 1 to 4. The depth is increased by duplicating the blocks within the architecture.
Each block preserves the same number of output channels. We duplicate the block
by a depth factor that varies from 1 to 4. The total number of architectures in this
adapted search space is 3,112,960. The second search space is NAS-Bench-201 [262]
where the architectures are trained for CIFAR-10.

We select the top 25 architectures to produce the next generation during the
search. We mutate them and get 50 more architectures and we randomly sample
25 more from the search space. This random generation adds more exploration and
allows us to include quantized architectures in space. We don’t use any crossover.

Setup All obtained models are executed on a Redmi S7 mobile phone to gather
latency and energy consumption values.

4.2.5 Search Results

In this section, we describe the final search results obtained using CaW-NAS.

Exploration Analysis

First, we study how many quantized models are considered during the search.
This analysis gives information about whether we add quantized models to the search
space, whether these models are considered and selected, and how many quantized
models are considered over iteration search, which indicates that the search on a
mixed quantized and non-quantized search space is interesting.

Figure 4.5 shows the number of quantized models in the search space and the
population over search iteration. The number of quantized models keeps increasing
in the search space because we find more and more architecture in the right cluster,

Thttps://docs.nvidia.com/deeplearning/tensorrt /pytorch-quantization-
toolkit/docs/userguide.html

80 CHAPTER 4. ENHANCING HW-NAS SEARCH SPACE

i.e., not sensitive to the quantization. The increase slows down due to the popu-
lation’s increasing number of quantized models. The number of quantized models
keeps increasing and saturates at 61% of the population size. This result validates
that even after 250 iterations, we find non-quantized architectures close to quantized
architectures in terms of latency and accuracy.

HEE spearman correlation
—— search space N
— population I kendal tau correlation
G 400 80 1
©
o
1S
°
300 -
3 5
S ©
> o
T 200 A s
5 8 a0
i
(]
g 100
=] 4
> 20
ol
6 Sb 160 1%0 260 2%0 0-
Iterations fp32_acc acc-drop-2 acc-drop-3
Figure 4.5: Number of quantized archi- Figure 4.6: Ranking correlation of ac-
tectures in the search space and popula- curacy proxies. acc-drop-x refers to
tion over iterations. the accuracy proxy with x clusters.

Accuracy estimation analysis

During our search algorithm, we evaluate the accuracy of the quantized models by
estimating the fp32 accuracy using a surrogate model [5] and subtracting the AQD
of the architecture’s cluster; we call this evaluation accuracy proxy. We analyze the
ranking correlation between the quantized accuracy and different proxies; namely, the
fp32 accuracy predicted by the surrogate model, the accuracy proxy obtained using
2 clusters, and the accuracy proxy obtained using 3 clusters. Figure 4.6 shows the
results of this test. Hence, the end-to-end results described below are executed using
three clusters.

Model top-1 Param- | Latency| Energy | Search
Accu- eters (ms) (mJ) time
racy (M) (GPU
hours)
MobileNetV2 72.00 3.40 51.20 74.24 -
MobileNetV3 - quantized | 73.80 5.40 44.00 58.61 -
ProxylessNAS 72.60 5.70 18.52 25.89 200
APQ-B 74.20 4.50 8.75 12.92 2400+0.5N
APQ - C 75.2 4.25 8.16 13.29 2400+0.5N
CaW-Net-A (Ours) 61.90 3.60 1.50 4.68 0.8+2N
CaW-Net-B (Ours) 78.22 4.52 8.33 11.86 0.8+2N
CaW-Net-C (Ours) 75.22 4.18 6.30 10.43 0.84+2N

Table 4.2: Comparison with state-of-the-art efficient models on ImageNet. N is the
number of training for NAS on a new platform.

End-to-end Search The final Pareto front results are represented in figure 4.7. We
compare our Pareto front approximation to the result of two search strategies: random

4.3. GRASSROOTS OPERATOR SEARCH FOR MODEL EDGE ADAPTATIONS1

search on the non-quantized search space only (RS-w/o quantized) and random search
on the larger mixed search space (RS-with quantized). In the pre-trained model search
space, we can not compute the optimal Pareto front using a brute force method
because the search space is too big. Nevertheless, figure 4.7 shows that we accurately
approximate the Pareto front. We select from the Pareto front the architecture that
best represents the trade-off between latency and accuracy.

Table 4.2 shows the comparison of our final architecture against state-of-the-art
architectures obtained using different search strategies.

CaW-Nets are the models obtained using CaW-NAS. A and B represent respec-
tively the models with minimum and maximum accuracy within the Pareto front.
We use the same notation as APQ [140], where N denotes the number of training
needed to perform the NAS strategy for a new platform. Note that N in our strat-
egy decreases over the search iteration due to the increasing number of quantized
architectures in the population.

From the Pareto front approximation, we manually extracted three architectures:
the architecture with the lowest latency CaW-Net-A, the architecture with the highest
accuracy CaW-Net-B, and CaW-Net-C an architecture with comparable accuracy to
APQ-C. We can observe that our approach can find architectures with a good trade-
off in terms of accuracy, latency, and energy consumption, with a considerably low
number of parameters.

Pretrained Madels

17.5] —# Caw-nas ..

~e— RS - wio quantized o
~e— RS - with quantized .
15.0] -

NAS-Bench-201

—e— Optimal Pareto front . . 3
357 —- caw-NAS "L o3
~e- RS - w/o quantized ol
30 o RS - with quantized o 2 St
8 R T3
.

latency (ms)
3
latency {ms)

architecture
175.2%,6.3ms)

60 65 70 80 85 90

s o 60.0 625 650 675 0.0 7.5 750 7.5
accuracy (%)

accuracy (%)
Figure 4.7: Pareto front approximation results. Top figure: NAS-Bench-201 for
CIFAR-10, Bottom figure: Pretrained Models for ImageNet

4.3 Grassroots Operator Search for Model Edge
Adaptation

The definition of the search space is a critical step in NAS, as it determines the range of
possible architectures and can significantly impact their performance. The size of the
search space matters. A large search space hinders the exploration but diversifies the
results. In contrast, a small search space restricts architectural diversity. Currently,
there are three primary approaches to defining the search space in HW-NAS [1]:

1. Cell-based search space, which involves searching for a repeated cell, also called
block, within a pre-defined macro-architecture. The cell is defined by a list of
operators, such as convolution and batch normalization, and an adjacency ma-
trix that defines the connections between the operators. NAS-Bench-101 [264]
is a common NAS benchmark designed using this definition.

2. Hierarchical search space [265] that extends the cell-based approach by select-
ing the operators composing the cell, defining the cell-level connections, and
merging multiple cells.

3. Supernetwork search space [166], in which each architecture is represented as a
subgraph within a larger, more complex network called the supernetwork. the

82 CHAPTER 4. ENHANCING HW-NAS SEARCH SPACE

weights of the supernetwork are typically shared among all subgraphs, allowing
the subgraphs to share computation and enabling efficient exploration of the
search space. The supernetwork is then called an over-parameterized network.
The subgraphs can differ in terms of their connectivity, layer types, layer sizes,
and other architectural hyperparameters.

A prevalent limitation of such definitions is the bias introduced by the dependence
on human-designed architectures, which restricts the search algorithms from explor-
ing novel and innovative operations and architectures. This bias towards previously
handcrafted architectures hinders the discovery of more efficient and effective mod-
els for specific tasks. Consequently, there is a need to develop novel methodologies
that can help discover more optimized architectures and operations that can perform
well on various devices and scenarios without relying on pre-existing models. Such
methodologies would be the holy grail of NAS, as they would enable the creation of
truly novel architectures that can push the limits of deep learning performance even
further.

One solution would be to define a completely random search space where the
architecture and operations are generated from scratch and then evaluated based on
their performance. However, given the vast search space, such approaches require
a massive amount of computational resources and are often infeasible for practical
use. AutoML-Zero [77], for example, presents a strategy capable of defining the
architecture and the training procedure from standard mathematical operations using
reinforcement learning. This approach breaks the innovation barrier for NAS but at
a significant time complexity price. Due to this highly complex search, AutoML-
Zero only achieves linear regression on the MNIST dataset, which is impractical for
complex and real-world datasets.

Indeed, selecting the right set of operators for a specific task is crucial, but the
actual implementation of the operator can also greatly impact the hardware efficiency
of the DL model. In order to overcome this challenge, recent works have focused on
using DL compilers [58, 60] that can automatically select the most efficient imple-
mentation and optimization for a given hardware. These compilers use techniques
such as code generation and optimization, which allow for the automatic translation
of high-level DL operators to hardware-specific low-level code. By doing so, they can
greatly improve the efficiency of DL models on different hardware devices, including
edge devices. The use of deep learning compilers highlights the importance of not
only selecting the right operator but also optimizing its implementation to achieve
the best possible hardware performance. MCUNet [266] combines the use of NAS and
DL compiler, called TinyEngine, to efficiently look for the best architecture as well as
its best implementation in an iterative manner. However, their search space includes
a set of standard DL operators. Current operators’ implementations are designed for
resource-expensive hardware platforms and do not conform to edge constraints.

This section presents a search algorithm that adapts the architecture to edge
devices without previous human experience. To overcome the time complexity of
AutoML-Zero, we apply our search algorithm on a specific layer at each iteration.
Specifically, our method, in the first step, analyzes each layer’s latency and memory
occupancy distributions in a given model. In the second step, the most inefficient layer
is optimized. Costly operators in this layer are replaced by efficient operators. We
express an operator as a set of mathematical instructions that capture its behavior.
For example, standardization is expressed by subtracting the mean of the input over
a mini-batch and dividing it by the standard deviation of that input.

The mathematical instructions are then used as a basis for searching and select-
ing efficient replacement operators that maintain the accuracy of the original model
while reducing computational complexity. We consider a model as a set of layers
such as convolution. Each layer corresponds to a sequence of operators implemented
by a graph of mathematical instructions. Table 4.3 gives the list of mathematical
instructions considered in this work.

4.3. GRASSROOTS OPERATOR SEARCH FOR MODEL EDGE ADAPTATIONS3

Operator Complexity Analysis 1

"
g . 1
standard E " " B 999 Latency (ms) = Operator Ranking & .
model g3 4 2 mm Number of parameters | %75 £ Selection .
£a0k| M X E 3 R 0.50 5 \
s % 8 3 X & § > convi6
g 1‘51'; E X E E E § 0.257% conv15 |Least-efficient
E ol B oy CEEN RN o B | a.ca conv19 | operator
= A8l nNn 8280228885 ’
target edge EEf3iESEEfiEE3zEgal convi7
platform S %23 2s %23 2s %Qg.=
®
Last 20 Operators in Resnet18
Operator Adaptation :
-
H Generate search :
© population }
Ey 1
2 s Check Accuracy I 2
25 drop after 1
sg fine-tuning 1
Generate initial ./ stopping
computation graph l 1 - criteria
— 1| Model with
HW-efficiency 1| optimized »
\/ Evaluation 1| operator N
& 1
Mutation & Crossover [¢——————1 1
1 Optimized
1 Model
1

Figure 4.8: Overview of the operator replacement methodology.

We repeat these two steps until we find an architecture suited for the targeted edge
device without an accuracy drop. Our technique aims at breaking the time-consuming
barrier of non-restrictive search spaces while searching for new and innovative archi-
tectural designs.

We summarize the contributions proposed by GOS as follows.

e We present a new adaptation methodology via operator replacement. We re-
place the most hardware-inefficient layer iteratively by building a new operator
from scratch with minimal human bias.

e We develop an optimized multi-objective evolutionary search algorithm that ef-
fectively selects the appropriate operator for deploying an efficient architecture
on the targeted device. By doing so, we enable the deployment of deep learn-
ing models on edge devices with improved efficiency and without sacrificing
accuracy.

Our methodology has been validated with different types of architectures: Con-
volutional neural networks (ConvNets) and Vision transformers (ViT). In particular,
we identified a novel convolution implementation suitable for Raspberry Pi, which is
a significant contribution to the field of edge computing. Additionally, we applied
our methodology for Pulse Rate estimation with PPG sensors and achieved a state-
of-the-art result. Overall, our approach consistently improves the model’s hardware
efficiency with an average of 2x speedup without any loss in the model’s accuracy.
These results demonstrate the effectiveness and versatility of our methodology for
optimizing deep learning models for different hardware platforms and applications.

4.3.1 Proposed Approach

Figure 4.8 shows the overall structure of our methodology. Given a model, denoted
as m, our goal is to adapt it to a targeted edge platform. In this methodology, we
define an operator as a set of operations applied in a layer. The operator can be a
single layer, as defined in common DL frameworks, such as a convolution, or a fused
layer such as ReLU-BN [267]. The process goes through two stages:

84 CHAPTER 4. ENHANCING HW-NAS SEARCH SPACE

1. Operator Complexity Analysis: First, the process extracts the least efficient op-
erator by running N; inference on the edge device. The inefliciency is computed
with different objectives, such as latency and the number of parameters. The
number of parameters reflects the size of the operator. Additional criteria such
as energy consumption may be added. Among the list of operators in m, the
least efficient operator is selected based on algorithm 4. If the model is not de-
ployable on the target platform, i.e., the size of the network exceeds the memory
capacity, we select the operator with the highest number of parameters from
the table num_param in algorithm 4. Otherwise, we rank the architectures
with latency and number of parameters in descending order and select the first
operator. Our strategy of ranking is as follows: if the architecture is deployable
on the target device, the number of parameters is a less important objective,
we rank the operators based on the latency and if two operators are of close
latencies then we consider the number of parameters. This behavior is checked
at each iteration. If more criteria are considered, then the ranking should be
multi-objective [268]. This operator corresponds to the slowest operator that
has the highest number of parameters possible. If an operator is selected, it
cannot be selected for another optimization iteration. In a CNN; it is common
knowledge that the least-efficient operator is the convolution. However, accord-
ing to its input and output shape, the convolution may be optimized differently.
To efficiently select the operator to be replaced, we define N, as the maximum
number of similar operators and select the top operators each time. For exam-
ple, if the N, least efficient operators are all convolutions, we will replace them
all with the same generated optimized operator.

2. Operator Adaptation: Then, we adapt the selected operator by searching for
a variation that can keep the same input and output shapes but optimizes
the computations. This phase is done with an evolutionary search on a set of
mathematical operations. Section 4.3.1 and section 4.3.2 describe the search
space and methodology respectively. During the search, only the parameters of
the adapted operator are fine-tuned.

The two steps are repeated until satisfactory hardware efficiency is reached or a
maximum number of layers have been replaced.

Operator Search Space

Unlike previous HW-NAS search spaces that are based on pre-defined operator sets,
our search space is defined with a set of mathematical operations. The operator is
represented with a computation graph. The computation graph is a directed acyclic
graph (DAG) with N nodes and E edges. The nodes correspond to the operations
such as matrix multiplication, square root, and element-wise addition. The edges
describe the inputs and outputs of each node. Figure 4.8 (step 2) shows an example
of such a graph.
Each node in the context can be classified into one of the following three types:

e Instruction: this node corresponds to any mathematical instruction in table 4.3.

e Input: this node corresponds to the input feature maps or weights that are
given as operands to the instruction node.

e Constant: this introduces hyperparameters fixed in the mathematical instruc-
tion equation. These constants can be tuned and mutated during the search.

We constrain the generated computation graphs with 1 < N <= 20 and 1 <
E <= 25. These values have been fixed by analyzing standard models’ operators.
During the generation, the input node is fixed, and its shape is defined by the output
of the previous operation in m. The output node’s shape is also known as it is

4.3. GRASSROOTS OPERATOR SEARCH FOR MODEL EDGE ADAPTATIONS5

Algorithm 4 Least-efficient Operator Selection

Input: Model m, Number of inference N;
is_deployable < deploy(m)
if not is_deployable then
for each o in m do
for each operator o get its number of parameters
num_paramlo] < number_of_params(o)
end for
return argmax(num_param, N,)
return the operator with highest value in num_param and its number of oc-
currences IV,
end if
for each o in m do
latency[o] <+ average_latency(o, N;) # compute the mean latency of each oper-
ator o for N; inferences
num_param|o] < number_of_params(o)
end for
return Top N, similar operators
return the operator with highest value in num_param and its number of occur-
rences IV,
here we consider first the latency and then the number of parameters in the
ranking

(a) Randomly generating replacement (b) Operator replacement with Adaptation
Operator: Convolution2D Operator: Convolution2D
20 -- original conv 50/ ~~~- original conv
i
w un
g 0 o 0
= 0.2 0.4 0.6 0.8 = 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95
£ Operator: RelLU £ Operator: RelLU
m x s
0 ----- original relu » 100 -- original relu
%520 ; s
i
i . Il iy
2 oL ks satnns | 2
S 0.2 0.4 0.6 0.8 5 0.65 0.70 0.75 0.80 0.85 0.90 0.95
H Operator: BatchNorm H Operator: BatchNorm
20 -- original bn 2007 ---- original bn
i
0]
0.2 0.4 0.6 0.8 0.5 0.6 0.7 0.8 0.9
CIFAR-10 Validation Accuracv (%) CIFAR-10 Validation Accuracv (%)

Figure 4.9: CIFAR-10 accuracy histograms of 1k architectures randomly generated
(a) and adapted from the original operator (b).

constrained by the input shape of the next operator in m. To ensure a valid network,
we optionally add a reshape operation at the end of the computation graph to keep
the same output shape as expected by the next operator in the given model. Nodes
that can’t be reached from the input or that do not have a path to the output are
considered unused and therefore pruned from the computation graph.

Table 4.3 shows the basic operations in the search space, including arithmetic,
linear algebra, probability, and aggregation operations. The aggregation operations
enable to merge between the output of multiple nodes. We include code optimizations
such as loop tiling and unrolling as special aggregation functions that are called to
optimize the generated operator’s code. Note that this is a general application of
these optimizations that can be hardware-specifically defined by a compiler.

Note that each operator has a list of hyperparameters dedicated to it. These
hyperparameters are illustrated in the equations as constants in table 4.3.

Example of Operator Computation Graph In this paragraph, we explain how
the convolution 2D is turned into a computation graph. In its simplest form, the
convolution 2D can be formulated as in equation 4.1, where NN is the batch size, C

86 CHAPTER 4. ENHANCING HW-NAS SEARCH SPACE

Table 4.3: List of mathematical instructions defining the search space

Category [Instruction [Equation
Linear Algebra Matrix multiplication C=AB
Matrix addition and subtraction C=A+BorC=A-B
Vector multiplication c=Ab
Matrix inversion A!
Dot product a'b
Determinant det(A)
Trace tr(A)
Eigenvalues and eigenvectors Av =)v
Singular value decomposition (SVD) A=UzV'
QR decomposition A =QR
Cholesky decomposition A=LLT
Matrix pseudoinverse At
Matrix rank rank(A)
Hadamard product C=A0B
Kronecker product C=A®B
Outer product C=ab’
Vector norm 1%
Matrix norm [|A]]
Frobenius norm |A|lF
Identity matrix
Zero matrix 0
Calculus Gradients VoL(0)
Partial derivatives 3—5
Chain rule % = %%
Activation Functions Sigmoid o(x) = H%
ReLU ReLU(z) = max(0,z)
Tanh c e

Softmax

cross-correlation

Convolution

| (Fr9)@y) =0 o> i fl@—iy—j)glij)

Pooling ‘ Max pooling mMaxpool(Lisits,jij4+s) = MAXy,_1 MAXS_ Titm,jtn
Average pooling avgPOOl(Tisits jijts) = o Dowmet Somei Titmjtn
Probability and Statistics | Probability distributions p(x)
Bayesian inference p(0|z) = W
Aggregation Function Summation DU
Mean LS
Maximum max (1, T2, ..., Tn)
Minimum min(z1, T2, ..., Tp)
Square Root

Concatenation
‘Weighted Mean

denotes the number of channels, H is the height of input planes in pixels, and W is
the width in pixels. in and out refer to the input and output respectively. * in the
equation denotes the cross-correlation operation.

k=C;in—1
conv2D (N, Cout) = bias(Cout) + Z weight(Coyt, k) * input(N, k) (4.1)
k=0

The convolution first splits the input into weight-shaped chunks. We compute the
multiply-accumulate of each of these chunks with the weights (i.e., kernels), using
the cross-correlation instruction. We then sum up all the multiplied values over the
input channels Cj,. Finally, we add the bias to each output channel C,;.

To create the computation graph, we divide the equation into instructions found in
table 4.3. Figure 4.10 shows the complete convolution 2D graph with a 2-dimensional
input and 2 kernels. To have a compact and simple graph, we include the constant
nodes inside the instruction node as a list of hyperparameters. In the rest of the
paper and for the sake of clarity, we use high-level operator names such as Linear for
the matrix multiplication between weight and input matrices.

In this search space, we perform small-scale experiments with random sampling
to understand its behaviors. The purpose is to measure the sparsity of the search
space and to determine the number of valid and accurate operations generated dur-

4.3. GRASSROOTS OPERATOR SEARCH FOR MODEL EDGE ADAPTATIONS7

W_diml
I_diml

Crernel_size: K1)

cross-correlation cross-correlation cross-correlation cross-correlation

Stride: S1 tride: SI Stride: S2 Stride: S2

Padding: P1 Padding: P1 Padding: P2 Padding: P2
Dilation: D1 Dilation: DL Dilation: D2 Dilation: D2

[(btasi] | [[(biasz]

Mutations
St € Modify a hyperparameter
<> Modify an instruction

[] instruction Node
|:| input Node

> Remove an instruction

- Add an instruction

Figure 4.10: Detailed computation graph of the standard convolution 2D including
the possible mutations applied to it.

ing the exploration. In this experiment, we replace all similar operators at once. For
example, we replace all convolutions in the model with a generated replacement. Fig-
ure 4.9 (a) shows the results of 1000 randomly generated operator replacements for
three operators: Conv2D, max-pooling, and batch normalization, in resnet-18 [269].
Random generation, inspired by EvoNorm [79], starts from the input node and se-
quentially selects an operation from the search space. In all the cases, the ImageNet
accuracy drops significantly for most of the replacements, which reflects the high
sparsity of our search space. In figure 4.9 (b), rather than randomly generating the
operator replacement, we start with the original operations but adapt one operation
in the computation graph. The adaptation is performed while being aware to keep the
same arity and type of arguments for each operation. With adaptation, the results
are much closer to the original accuracy of the model but the complexity is modified.

4.3.2 Search Algorithm

Given an operator computation graph, the search algorithm aims at finding a variant
that preserves the accuracy of the model with reducing complexity. We rely on
an evolutionary algorithm for this purpose. The evolutionary algorithm allows us to
handle the sparse search space by exploring a population of valid computation graphs.
The computation graph is considered valid if it maintains the shapes of the input and
output data and if there exists a path from every intermediate node, including the
input node, to the output node. Besides, mutation and crossover provide an efficient
way to generate complex adaptations. We use tournament selection which ensures
that the best individuals have a higher chance of being selected, while still allowing
for some diversity in the population. This helps to prevent premature convergence
and promotes the discovery of novel solutions in our large search space.

Mutations The mutation operations involve modifying the computation graph.
Figure 4.10 summarizes the possible mutations applied on the conv2D computation
graph. Each instruction node in the computation graph is typed with the correspond-
ing type in table 4.3. The most important mutation is modifying any intermediate
node with a possible operation. For each operation, we associate a list of possible
replacements. The replacement satisfies two constraints: (1) having the same argu-
ment’s type and arity, (2) the output shape is equal or can be converted to the original
output shape by adding a reshape operation. The replacement operation from the list
is selected uniformly at random. We also allow for a modification of the aggregation
function, and an addition or deletion of a node. When adding or removing a node,

88 CHAPTER 4. ENHANCING HW-NAS SEARCH SPACE

Candidate 1 Candidate 2 Crossover Results
Input
- - [pad] [conv.weight | [conv.bias| [constant1=2] || [Pad] [conv.weignt] [conv.bias] [constanti=z
conv.weight | |conv.bias

>< Split point
[Jinputs
[Jinstructions
[IConstants

Figure 4.11: Illustration of the cross-over operation.

we make sure that a path from the input to the output is still possible and that no
unused node appears in the graph.

The mutations also include modifying the hyperparameter of the operator. The
hyperparameters are properties associated with a vertex in the computation graph.
For each instruction, a list of possible hyperparameters; i.e., constants, is available.
For each hyperparameter, we constrain the ranges with specified values obtained from
the literature. For example, the output channel size of a convolution may change.
This mutation may reduce the accuracy of the model. If this is the case, the operator
is invalidated and is not considered in the novel population.

Crossover In general, the crossover is not applied to NAS algorithms. When we
consider high-level operators, it is rarely the case to find a splitting point where the
shapes fit. However, in our case, the crossover is beneficial and allows more flexibility.
Algorithm 5 and figure 4.11 detail the crossover procedure. We perform a crossover
between two computation graphs in our population. Because all the variants start
from the same point, we have more chances to find a split point. We perform a
pre-order traversal of the two computation graphs and store all the possible split
points. We randomly select a split point between each pair of computation graphs
and generate offspring.

Multi-objective Fitness Function The evaluation is specific to the given model
and task. We do not generalize the resulting operation to multiple standard models
because our goal is to adapt the network for a given hardware platform in a practical
time. This allows a more flexible and multi-objective fitness function.

The fitness function evaluates the performance of the adapted operator, formu-
lated in equation 4.2. In our methodology, we consider hardware efficiency with
multiple objectives. Our definition considers latency and the number of parameters.
But one can add other objectives such as energy consumption or memory occupancy.
We rely on the crowding distance [270] to minimize multiple objectives under an ac-
curacy constraint. The crowding distance is calculated for each solution in a Pareto
front and is based on the distances between neighboring solutions in the objective
space. The solutions with larger crowding distances are preferred in the selection
process, as they represent areas of the objective space with lower solution density,