
HAL Id: tel-04224035
https://theses.hal.science/tel-04224035v1

Submitted on 1 Oct 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Efficient Hardware-aware Neural Architecture Search for
Edge Computing

Hadjer Benmeziane

To cite this version:
Hadjer Benmeziane. Efficient Hardware-aware Neural Architecture Search for Edge Computing.
Machine Learning [cs.LG]. Université Polytechnique Hauts-de-France, 2023. English. �NNT :
2023UPHF0022�. �tel-04224035�

https://theses.hal.science/tel-04224035v1
https://hal.archives-ouvertes.fr

Thèse de doctorat

Pour obtenir le grade de Docteur de

l’UNIVERSITE POLYTECHNIQUE HAUTS-DE-FRANCE

et de l’INSA HAUTS-DE-FRANCE

Discipline, spécialité selon la liste des spécialités pour lesquelles l’Ecole Doctorale est
accréditée :

Intelligence Artificielle et Systèmes Embarqués

Présentée et soutenue par Hadjer Benmeziane

Le 30/08/2023, à Valenciennes

Ecole doctorale :

Ecole Doctorale Polytechnique Hauts-de-France (ED PHF n°635)

Unité de recherche :

Laboratoire d’Automatique, de Mécanique et d’Informatique Industrielles et Humaines
(UMR CNRS 8201)

Optimisation Automatique des Applications d’Apprentissage
Profond sur Plateformes Matérielles Edges

Président de jury

• Cucu-Grosjean, Liliana. Directrice de recherche. INRIA, Rocquencourt, France.

II

JURY

Rapporteurs

• Sassatelli, Gilles. Directeur de recherche. CNRS, LIRMM, Univ Montpellier.

• Shafique, Muhamed. Professeur. New-York University, Abu-Dhabi.

Examinateurs

• Cucu-Grosjean, Liliana. Directrice de recherche. INRIA, Rocquencourt, France.

Invités

• Meyer, Brett. Assistant Professeur. Department of Electrical and Computer
Engineering McGill University.

Thesis director

• Niar, Smail, Professeur, UPHF, CNRS, UMR 8201 - LAMIH, F-59313
Valenciennes, France.

Thesis co-director :

• El Maghraoui, Kaoutar. Principal Research Scientist. IBM T. J. Watson Research
Center, Yorktown Heights, NY 10598, USA.

Co-supervisor :

• Ouarnoughi, Hamza. Professeur. UPHF, CNRS, UMR 8201 - LAMIH, F-59313
Valenciennes, France.

Ce manuscript est mise à disposition selon les termes de la Licence Creative Commons
Attribution - Pas d’Utilisation Commerciale 4.0 International.

PhD Thesis

Submitted for the degree of Doctor of Philosophy from

UNIVERSITE POLYTECHNIQUE HAUTS-DE-FRANCE

and INSA HAUTS-DE-FRANCE

Subject :

Artificial Intelligence and Embedded Systems

Presented and defended by Hadjer Benmeziane.

On 30/08/2023, LAMIH

Doctoral school :

Doctoral School Polytechnique Hauts-de-France (ED PHF n°635)

Research unit :

Laboratory of Industrial and Human Automation control Mechanical engineering and
Computer science (LAMIH – UMR CNRS 8201)

Efficient Hardware-aware Neural Architecture Search for Edge
Computing

President of jury

• Cucu-Grosjean, Liliana. Research Director. INRIA, Rocquencourt, France.

I

JURY

Reviewers

• Sassatelli, Gilles. Research Director. CNRS, LIRMM, Univ Montpellier.

• Shafique, Muhamed. Professor. New-York University, Abu-Dhabi.

Examiners

• Cucu-Grosjean, Liliana. Research Director. INRIA, Rocquencourt, France.

Invitee

• Assistant Professor. Department of Electrical and Computer Engineering McGill
University.

Thesis director

• Niar, Smail, Professor, UPHF, CNRS, UMR 8201 - LAMIH, F-59313
Valenciennes, France.

Thesis co-director :

• El Maghraoui, Kaoutar. Principal Research Scientist. IBM T. J. Watson Research
Center, Yorktown Heights, NY 10598, USA.

Co-supervisor :

• Ouarnoughi, Hamza. Professor. UPHF, CNRS, UMR 8201 - LAMIH, F-59313
Valenciennes, France.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 Inter-
national License.

II

Abstract

It is widely anticipated that inference models based on Deep Neural Networks (DNN)
will be actively employed in many edge platforms due to several compelling reasons.
Firstly, DNNs have demonstrated exceptional performance in various fields such as
computer vision, natural language processing, and speech synthesis. Their ability to
extract meaningful features from large datasets enables them to achieve high levels of
accuracy and predictive power, making them indispensable for a wide range of tasks.
Secondly, deploying DNN-based inference models directly on edge platforms offers
several advantages. For instance, executing the inference process locally on edge de-
vices, reduces the reliance on cloud-based computing, thereby minimizing network
latency and ensuring real-time responsiveness. This is particularly crucial for time-
sensitive applications, such as autonomous vehicles, smart surveillance systems, and
Internet of Things (IoT) devices, where rapid decision-making is paramount. Fur-
thermore, employing DNN inference at the edge enhances privacy and security. By
keeping sensitive data within the edge device’s local environment instead of trans-
mitting it to external servers, the risk of data breaches and privacy violations is
significantly reduced. This is of utmost importance in scenarios involving personal
data, healthcare information, or confidential business data, where preserving privacy
and data sovereignty is imperative.

However, edge platforms often operate under resource-constrained environments,
characterized by limited computational power, energy constraints, and intermittent
connectivity. DNN models are increasingly larger, making them unfit for such plat-
forms. This has promoted research in automatically designing neural architectures
through search for such devices. This method is called Hardware-aware Neural Archi-
tecture Search (HW-NAS). Such optimization can lead to reduced energy consump-
tion, lower inference latency, and overall improved performance on edge platforms.
HW-NAS is the cornerstone of this thesis. HW-NAS can provide both efficient and
accurate, customized models for the target platform. This thesis aims at accelerating
and generalizing HW-NAS applicability to many platforms and multiple tasks.

This work introduces innovative solutions to rapidly estimate the efficiency of
DNNs for a target HW platform. Our proposed HW-NAS approach encompasses
multi-objective optimization techniques, significantly accelerating the search pro-
cess within sxccupernetwork-based and cell-based search spaces. Within the multi-
objective context of HW-NAS, conflicting objectives, such as task-specific perfor-
mance (e.g., accuracy) and hardware efficiency (e.g., latency and energy consump-
tion), need to be optimized simultaneously. To address this challenge, we define
a novel Pareto rank target, leveraging diverse surrogate models employed in HW-
NAS. By incorporating multiple objectives and Pareto optimization principles, our
approach enables the exploration of trade-offs between task-specific performance and
hardware efficiency, ultimately facilitating the identification of superior neural archi-
tectures.

We also investigate the human bias induced by current search spaces and propose
a non-restrictive search space to find novel operators tailored to a target hardware
platform. These methods were validated on image classification benchmarks. We
then show how to apply HW-NAS for novel hardware architectures, namely analog
in-memory computing hardware.

Finally, we construct a medical imaging NAS benchmark that includes architec-
tures for 11 tasks, including their performance, latency, and energy consumption on
several devices, and propose a new HW-NAS approach that, not only includes ac-
curacy and latency as objectives, but also looks for a generalizable architecture that
can be fine-tuned for unseen medical tasks.

Keywords Neural Architecture Search, Hardware constraints, Optimization,
Edge AI

II

Résumé

Les modèles d’inférence basés sur les réseaux neuronaux profonds (eng, Deep Neu-
ral Networks (DNN)) sont largement utilisés dans de nombreuses platesformes de
périphérie pour plusieurs raisons. Premièrement, les DNN ont démontré des per-
formances exceptionnelles dans divers domaines tels que la vision par ordinateur, le
traitement du langage naturel et la synthèse vocale. Leur capacité à extraire des
caractéristiques significatives à partir de grands ensembles de données leur permet
d’atteindre des niveaux jamais atteints de précision et de puissance prédictive, ce
qui les rend indispensables pour une large gamme d’applications. Deuxièmement,
le déploiement de ces modèles directement sur les plateformes de périphérie offre
plusieurs avantages. L’exécution du processus d’inférence localement sur les disposi-
tifs de périphérie réduit la dépendance à l’égard du calcul basé sur le cloud, réduisant
ainsi la latence du réseau et garantissant une réactivité en temps réel.

Cependant, les plateformes de périphérie fonctionnent souvent dans des environ-
nements contraints en ressources, caractérisés par une puissance de calcul limitée, des
contraintes énergétiques et une connectivité intermittente. Les modèles DNN ne sont
par défaut pas adaptés à de telles plateformes. Cela a encouragé la recherche sur la
conception automatique d’architectures neuronales adaptées à ces dispositifs. Cette
méthode est appelée recherche d’architecture neuronale à contraintes matérielles (eng,
Hardware-aware Neural Architecture Search, HW-NAS). HW-NAS est la pierre an-
gulaire de cette thèse. HW-NAS peut fournir des modèles à la fois efficaces et précis.
Cette thèse vise à accélérer et à généraliser l’applicabilité de HW-NAS à de nom-
breuses plateformes et à plusieurs tâches. Ce travail de thèse propose des solutions
novatrices pour estimer rapidement l’efficacité d’un DNN déployé sur une plateforme
matérielle cible. Notre approche HW-NAS englobe des techniques d’optimisation
multi-objectifs, ce qui accélère considérablement le processus de recherche à la fois
dans les espaces de recherche basés sur les supernetworks et sur les cellules. Dans
le contexte multi-objectif de HW-NAS, des objectifs conflictuels, tels que les per-
formances spécifiques à la tâche (par exemple, la précision) et l’efficacité matérielle
(par exemple, la latence et la consommation d’énergie), doivent être optimisés simul-
tanément. Pour relever ce défi, nous définissons un nouvel objectif de rang de Pareto.
En incorporant des objectifs multiples et des principes d’optimisation de Pareto, notre
approche permet l’exploration des compromis entre les performances spécifiques à la
tâche et l’efficacité matérielle. Nous examinons également le biais humain induit par
les espaces de recherche actuels et proposons un espace de recherche non restrictif
pour trouver de nouveaux opérateurs adaptés à une plate-forme matérielle cible. Ces
méthodes ont été validées sur des référentiels de classification d’images.

Dans la seconde partie de la thèse, nous montrons l’utilité de nos méthodes dans
des scénarios réels. Premièrement, comment appliquer HW-NAS à de nouvelles plate-
formes matérielles, notamment les matériels de calcul analogiques en mémoire (eng,
in-memory analog devices). Nous avons proposé un HW-NAS dédié à ces plateformes,
et nous déduisons les charactérstiques qui différent un réseaux de neuronnes déployé
sur ces plateformes, d’un autre déployé sur des plateformes classiques.

Enfin, nous construisons une référence de recherche d’architectures neuronales
pour l’imagerie médicale qui inclut des architectures pour 11 tâches, notamment
la detection de tumeurs, la segmentation du foie et l’estimation du volume de
l’hippocampe. En utilisant cette référence, nous proposons un nouveau HW-NAS
qui inclut non seulement l’exactitude et la latence en tant qu’objectifs, mais cherche
également une architecture généralisable qui peut être affinée pour de nouvelles tâches
médicales.

Mots clés apprentissage profond, optimisation, contraintes matérielles

III

IV

Acknowledgments

First and foremost, I would like to thank my thesis director Prof. Smail
Niar and my supervisor Prof. Hamza Ouarnoughi at Université Polytechnique
des Hauts-de-France. The unique research opportunity they provided has been
transformative for my academic journey. With their combined expertise, I navigated
the complexities of this thesis, and I deeply value the trust they placed in my abilities
and the guidance they offered.

I would also like to extend my profound gratitude to my thesis co-director, Dr.
Kaoutar El Maghraoui from IBM T.J Watson. Kaoutar has been more than just
a supervisor; she has been a mentor in the truest sense of the word. Her guidance,
patience, and dedication have been pivotal in shaping my research perspective. I am
especially thankful for the invaluable opportunity she provided by allowing me to
intern at IBM. The hours she invested in mentoring me, coupled with the hands-on
experience at IBM, have enriched my academic journey and provided me with insights
that I will carry with me throughout my career.

Heartfelt appreciation is extended to the esteemed jury members for their invaluable
time and dedication in accepting, meticulously reading, and offering constructive
feedback on this work.

I am grateful to the many researchers I met during my thesis work. I’ve collaborated
with academics from different backgrounds. At present, I’d like to highlight the fol-
lowing co-authors and/or scientists that reviewed my papers and helped me improve
them: Irem Boybat, Abu Sebastian, Manuel Le Gallo, Malte J. Rasch, Corey Lammie,
Hsinyu Tsai, Ramachandran Muralidhar, Halima Bouzidi, Lotfi Abdelkrim Mechar-
bat, Ozcan Ozturk, Amine Ziad Ounnoughene, Imane Hamzaoui, Younes Bouhadjar,
Abderaouf Gacem, Afaf Alloulal, Mufida Miratul, Rihab Balti and Meyssa Zouambi.

Last, but certainly not least, I would like to thank my family. Their unwavering
support, endless patience, and boundless love have been the pillars upon which I
leaned throughout this journey. To my parents, whose sacrifices and teachings have
shaped who I am today, I owe a debt of gratitude that words can hardly express.
They instilled in me the values and skills to live independently, always grounded
by unwavering principles and beliefs that they imparted. To my siblings, for their
constant encouragement and belief in my abilities, even more than me. While this
achievement is a significant milestone, I recognize it as just the beginning of my
research journey. Thank you all for being the foundation upon which I build my
future endeavors.

V

List of Publications Included in this Thesis

This thesis contains a number of original research articles which have been published
during my PhD candidature. These papers have been slightly modified to improve
readability and cohesion in the form of a thesis document. In this Section, a list of
publications included in this thesis is presented.

- A Comprehensive Survey on Hardware-aware Neural Archi-
tecture Search

[1] Hadjer Benmeziane, Kaoutar El Maghraoui, Hamza Ouarnoughi, Sma¨ıl Niar,
Martin Wistuba, and Naigang Wang. A comprehensive survey on hardware-aware
neural architecture search. CoRR, abs/2101.09336, 2021.
[2] Hadjer Benmeziane, Kaoutar El Maghraoui, Hamza Ouarnoughi, Smail Niar, Mar-
tin Wistuba, and Naigang Wang. Hardware-aware neural architecture search: Survey
and taxonomy. In Proceedings of the Thirtieth International Joint Conference on Ar-
tificial Intelligence, IJCAI-21, pages 4322–4329, 8 2021.
Location in thesis: Chapter 2

- Accelerating Neural Architecture Search with Rank-
Preserving Surrogate Models

[3] Hadjer Benmeziane, Hamza Ouarnoughi, Kaoutar El Maghraoui, and Smail Niar.
Accelerating neural architecture search with rank-preserving surrogate models. In
Manar Abu Talib, Laila Benhlima, and Kaoutar El Maghraoui, editors, ArabWIC
2021: The 7th Annual International Conference on Arab Women in Computing in
Conjunction with the 2nd Forum of Women in Research, Sharjah, ACM 2021.
Location in thesis: Chapter 3
Best Paper Award at ArabWIC 2021

- Multi-Objective Hardware-Aware Neural Architecture
Search with Pareto Rank- Preserving Surrogate Models

[4] Hadjer Benmeziane, Hamza Ouarnoughi, Kaoutar El Maghraoui, and Smail
Niar. Multi-objective hardware-aware neural architecture search with Pareto rank-
preserving surrogate models. 20(2), 2023. ACM Transactions on Architecture and
Code Optimization.
Location in thesis: Chapter 3

- Pareto rank surrogate model for hardware-aware neural ar-
chitecture search

[5] Hadjer Benmeziane, Smail Niar, Hamza Ouarnoughi, and Kaoutar El Maghraoui.
Pareto rank surrogate model for hardware-aware neural architecture search. In IEEE
International Symposium on Performance Analysis of Systems and Software (IS-
PASS), 2022.
Location in thesis: Chapter 3

- Pareto Rank-Preserving Supernetwork for HW-NAS

[6] Hadjer Benmeziane, Smail Niar, Hamza Ouarnoughi, and Kaoutar El Maghraoui.
Pareto rank-preserving supernetwork for hardware-aware neural architecture search.
European Conference on Artificial Intelligence ECAI 2023.
Location in thesis: Chapter 3
Best Poster Award at IBM/AICS 2022

VI

- Grassroots Operator Search for Model Edge Adaptation

[7] Hadjer Benmeziane, Smail Niar, Hamza Ouarnoughi, and Kaoutar El Maghraoui.
Grassroots operator search for model edge adaptation. Submitted to Elsevier Future
Generation Computer Systems.
Location in thesis: Chapter 4

- CaW-NAS: Compression-aware Neural Architecture Search

[8] Hadjer Benmeziane, Hamza Ouranoughi, Sma¨ıl Niar, and Kaoutar El Maghraoui.
Caw-nas: Compression aware neural architecture search. In 25th Euromicro Con-
ference on Digital System Design, DSD, pages 391–397. IEEE, 2022. Location in
thesis: Chapter 4

- AnalogNAS: A Neural Network Design Framework for Ac-
curate Inference with Analog In-Memory Computing

[9] Hadjer Benmeziane, Corey Lammie, Irem Boybat, Malte J. Rasch, Manuel Le
Gallo, Hsinyu Tsai, Ramachandran Muralidhar, Sma¨ıl Niar, Hamza Ouarnoughi,
Vijay Narayanan, Abu Sebastian, and Kaoutar El Maghraoui. Analognas: A neural
network design framework for accurate inference with analog in-memory computing.
2023. IEEE International Conference on Edge Computing & Communications.
Location in thesis: Chapter 5
Best Paper Award at IEEE Edge 2023

- MED-NAS-Bench: A Generalized Neural Architecture
Search for Medical Imaging Analysis

[10] Hadjer Benmeziane, Lotfi Abdelkrim Mecharbat, Smail Niar, Hamza Ouarnoughi,
and Kaoutar El Maghraoui. Med-nas-bench: A generalized neural architecture search
benchmark for medical imaging analysis. To be Submitted to Nature Methods, 2023.
Location in thesis: Chapter 6

VII

List of publications not included in this thesis

- Real-time style transfer with efficient vision transformers

[11] Hadjer Benmeziane, Hamza Ouarnoughi, Kaoutar El Maghraoui, and Sma¨ıl
Niar. Real-time style transfer with efficient vision transformers. In Aaron Yi Ding and
Volker Hilt, editors, EdgeSys@EuroSys 2022: Proceedings of the 5th International
Workshop on Edge Systems, Analytics and Networking, Rennes, France, April 5 - 8,
2022, pages 31–36. ACM, 2022

- HyT-NAS: Hybrid Transformers Neural Architecture Search
for Edge Devices

[12] Lotfi Abdelkrim Mecharbat, Hadjer Benmeziane, Hamza Ouranoughi, and Sma¨ıl
Niar. Hyt-nas: Hybrid transformers neural architecture search for edge devices.
CoRR, abs/2303.04440, 2023

- Treasure What You Have: Exploiting Similarity in Deep Neu-
ral Networks for Efficient Video Processing

[13] Hadjer Benmeziane, Halima Bouzidi, Hamza Ouarnoughi, Ozcan Ozturk, and
Smail Niar. Treasure what you have: Exploiting similarity in deep neural networks
for efficient video processing. CoRR, abs/2305.06492, 2023.

- Skip Connections in Spiking Neural Networks: An Analysis
of Their Effect on Network Training

[14] Hadjer Benmeziane, Amine Ziad Ounnoughene, Imane Hamzaoui, and Younes
Bouhadjar. Skip connections in spiking neural networks: An analysis of their effect
on network training. CoRR, abs/2303.13563, 2023.

Filed Patents

- CO-Design of a Model and Chip for Deep Learning Back-
ground (Filed)

Irem Boybat Kara, Hadjer Benmeziane, Manuel Le Gallo-Bourdeau, Kaoutar El
Maghraoui, Malte Johannes Rasch, and HsinYu Tsai

VIII

Contents

Abstract . I
Résumé . II
Acknowledgments . IV
List of Figures . XI
List of Tables . XV
Acronyms . XIX

1 Introduction 1
1.1 Context & Motivation . 2
1.2 Research Questions . 3
1.3 Summery of Contributions . 4
1.4 Open Source Projects . 5
1.5 Thesis Organization . 6

I Related Works 9

2 Hardware-aware Neural Architecture Search 11
2.1 Handcrafted models Vs. HW-NAS . 12
2.2 Conventional Neural Architecture Search 14
2.3 Methodologies for Efficient Deep Learning 15
2.4 Taxonomy of HW-NAS . 17
2.5 Search Spaces . 18

2.5.1 Architecture Search Space . 18
2.5.2 Hardware Search Space (HSS) 20
2.5.3 Current Hardware-NAS Trends 22

2.6 Optimization strategies . 23
2.6.1 Hardware-aware NAS Problem Formulation 23
2.6.2 Search Algorithms . 26

2.7 HW-NAS Estimation Strategies . 30
2.8 Other Considerations for Hardware-aware NAS 33

2.8.1 Automatic Mixed-Precision Quantization 33
2.8.2 Automatic Pruning . 34
2.8.3 Security and Reliability Considerations in NAS 34

2.9 In-memory Computing & HW-NAS . 34
2.10 Challenges and Limitations . 36

2.10.1 Benchmarking and Reproducibility 36
2.10.2 Transferability of the AI Models 39
2.10.3 Transferability of the HW-NAS Across Multiple Platforms . . . 40

2.11 Conclusion . 41

IX

X CONTENTS

II Efficient HW-NAS methods 43

3 Multi-objective Surrogate Model for HW-NAS 45
3.1 Context . 46
3.2 HW-PR-NAS . 46

3.2.1 Proposed Approach . 48
3.2.2 Evaluation Methodology . 53
3.2.3 End-to-End Results . 55
3.2.4 Final Pareto Front Analysis . 57
3.2.5 Generalization to More Objectives 58
3.2.6 Generalisation to other use cases: Keywords Spotting 59

3.3 PRP-NAS: Pareto Rank-preserving Supernetwork Training 59
3.3.1 Proposed Approach . 61
3.3.2 Evaluation Methodology . 65
3.3.3 Search Results . 66
3.3.4 Battery Usage Preservation . 70

3.4 Conclusion . 71

4 Enhancing HW-NAS Search Space 73
4.1 Context . 74
4.2 CaW-NAS . 74

4.2.1 Proposed Approach . 75
4.2.2 Quantization Analysis . 76
4.2.3 Search Strategy . 78
4.2.4 Evaluation Methodology . 78
4.2.5 Search Results . 79

4.3 Grassroots Operator Search for Model Edge Adaptation 81
4.3.1 Proposed Approach . 83
4.3.2 Search Algorithm . 87
4.3.3 Evaluation Methodology . 89
4.3.4 Optimizing an architecture for Edge Devices 90
4.3.5 Use Case: Pulse Rate Estimation 92

4.4 Conclusion . 96

III Applications of HW-NAS 97

5 Analog-NAS 99
5.1 Context . 101
5.2 Preliminaries . 102

5.2.1 Analog IMC Accelerator Mechanisms 102
5.2.2 Temporal Drift of Non-Volatile Memory Devices 103
5.2.3 HWA-training and analog hardware accuracy evaluation simu-

lation . 103
5.3 AnalogNAS: Proposed Approach . 104

5.3.1 Resnet-like Search Space . 104
5.3.2 Analog-accuracy Surrogate Model 105
5.3.3 Search Strategy . 107
5.3.4 Problem Formulation . 107
5.3.5 Search Algorithm . 108

5.4 Evaluation Methodology . 110
5.5 Experiment Results . 110

5.5.1 Comparison with Random Search 112
5.5.2 Search Time and AVM Threshold Trade-Off 113

5.6 Hardware Validation . 113
5.6.1 Experimental Hardware Validation 113

CONTENTS XI

5.6.2 Simulated Hardware Energy and Latency 113
5.7 Architectural Recommendation for Analog AI 114

5.7.1 Are Wider or Deeper Networks More Robust to PCM Device
Drift? . 115

5.7.2 Types Of Architectures . 116
5.8 Conclusion . 116

6 HW-NAS for Medical Imaging Analysis 117
6.1 Context . 118
6.2 MED-NAS-Bench . 119

6.2.1 Datasets . 119
6.2.2 Benchmark Design . 121
6.2.3 Evaluation methodology . 124
6.2.4 Performance Distribution . 125
6.2.5 Architecture Distribution . 128
6.2.6 Cross-datasets Correlations . 128
6.2.7 State-of-the-art Search Methodologies 129

6.3 MT-MIAS . 133
6.3.1 Search Methodology . 133
6.3.2 Experiments Methodology . 137
6.3.3 Search Results . 138

6.4 Conclusion . 141

7 Conclusion and Future Work 143
7.1 Conclusion . 143
7.2 Future Work . 145

XII CONTENTS

List of Figures

1.1 Number of papers published on NAS and HW-NAS as of May 2023. . 3
1.2 Structure of the manuscript. 7

2.1 Generic DL architecture. For each layer, an operator is chosen among a
pre-defined list or operations (convolution, dilated convolution, depth-
wise convolution, max-pooling, batch normalization, etc.). The se-
quence Convolution, Activation, Attention, etc. is repeated several
times in DL architectures. 13

2.2 Accuracy of various CNN models on ImageNet for Image Classification
task with the number of parameters. Inspired by [15] 13

2.3 Overview of conventional NAS components. 14
2.4 Overview of efficient deep learning strategies. 16
2.5 Overview of different hardware-aware NAS designs. 17
2.6 Architecture search spaces types. (a) Global search space, (b) Cell-

based search space, (c) Hierarchical search space, and (d) supernetwork
search space. In orange the operators considered during the search. . . 19

2.7 Statistics on targeted platforms and type of networks described by the
HW-NAS search spaces . 23

2.8 HW-NAS problem formulations. 24
2.9 Commonly used search algorithms . 27
2.10 Comparison of hardware cost measurement methods. LUT stands for

Look Up Table. The speedups are calculated w.r.t Real-world mea-
surements . 33

2.11 Results of different search algorithms on NAS-Bench-201. 38

3.1 Simplified illustration of the use of HW-PR-NAS in a NAS process.
HW Perf means the Hardware performance of the architecture such
as latency, power, etc. 47

3.2 This figure illustrates the limitation of state-of-the-art surrogate mod-
els alleviated by HW-PR-NAS. a) and b) illustrate how two indepen-
dently trained predictors exacerbate the dominance error and the re-
sults obtained using GATES [16] and BRP-NAS [17]. c) illustrates
how we solve this issue by building a single surrogate model. 48

3.3 General Overview of HW-PR-NAS . 49
3.4 Results of different encoding schemes for accuracy and latency pre-

dictions on NAS-Bench-201 and FBNet. AF refers to Architecture
Features. LSTM refers to Long Short-Term Memory neural network.
GCN refers to Graph Convolutional Networks. 51

3.5 Performance of the Pareto rank predictor using different batch size
values during training. 54

3.6 Pareto front approximations on CIFAR-10 on edge hardware platforms.
We show the true accuracies and latencies of the different architectures
and the normalized hypervolume on each target platform. 56

XIII

XIV LIST OF FIGURES

3.7 Final Hypervolume obtained by each method on the three datasets.
We show the means ± standard errors based on 5 independent runs. . 56

3.8 Search time of MOAE using different surrogate models on 250 gener-
ations with a max time budget of 24 hours. 57

3.9 Pareto front Approximations using three objectives: accuracy, latency
and energy consumption on CIFAR-10 on Edge GPU (left), FPGA
(right). Ih corresponds to the hypervolume. 58

3.10 Encoder fine-tuning: Cross-entropy loss over epochs. 60
3.11 Search result using HW-PR-NAS against True Pareto front. 60
3.12 Our Pareto Rank-Preserving Training methodology for Supernetwork.

The strongest shades illustrate the most important operations for each
layer at each iteration. αl

o corresponds to the parameter alpha associ-
ated with layer l and operation o. 60

3.13 Supernetwork definition when coupling task-specific weights W and
operation’s score parameters α. Conv 3x3 is the operation with the
highest selection score. 61

3.14 Training performance computed with the Kendall’s Tau Correlation
between the independently trained Pareto ranks and the estimated
Pareto ranks obtained by training the supernetwork. 64

3.15 Comparison of latency estimators on Jetson Nano. 65
3.16 Pareto front approximation comparison on CIFAR-10 and ImageNet. . 66
3.17 Comparison with state-of-the-art ImageNet results. 68
3.18 Kendall’s Tau-b correlation and hypervolume comparison using differ-

ent estimators on DARTS. 68
3.19 Hypervolume analysis with an increasing number of sampled sub-

networks for the final Pareto front throughout the search (higher is
better) on NAS-Bench-201. 69

3.20 Analysis of trained alpha values for layers 1 and 2 70
3.21 Battery life management. 71

4.1 Overview of CaW-NAS: Compression Aware Neural Architecture . . . 75
4.2 Clustering strategy to analyze the quantization sensitivity 76
4.3 Quantization effect on increasing depth and width in the architectures 77
4.4 Quantization effect on different convolution variants 77
4.5 Number of quantized architectures in the search space and population

over iterations. 80
4.6 Ranking correlation of accuracy proxies. acc-drop-x refers to the ac-

curacy proxy with x clusters. 80
4.7 Pareto front approximation results. Top figure: NAS-Bench-201 for

CIFAR-10, Bottom figure: Pretrained Models for ImageNet 81
4.8 Overview of the operator replacement methodology. 83
4.9 CIFAR-10 accuracy histograms of 1k architectures randomly generated

(a) and adapted from the original operator (b). 85
4.10 Detailed computation graph of the standard convolution 2D including

the possible mutations applied to it. 87
4.11 Illustration of the cross-over operation. 88
4.12 Tuning of the maximum number of instructions per operator while

searching for resnet18 GOS variant on Raspberry Pi. 93
4.13 Pulse Rate Estimation final Models. We do not display the weights

node for PPG NAS for the sake of clarity. 96

5.1 The effect of PCM conductance drift after one day on standard CNN
architectures and one architecture (AnalogNAS T500) obtained using
HW-NAS, evaluated using CIFAR-10. 101

5.2 Employed analog IMC tile and weight mapping scheme. 103
5.3 Resnet-like macro architecture. 104

LIST OF FIGURES XV

5.4 t-Distributed Stochastic Neighbor Embedding (t-SNE) visualization of
the sampled architectures for CIFAR-10. 106

5.5 Surrogate models comparison. 107
5.6 Overview of the AnalogNAS framework. 108
5.7 Simulated hardware comparison results on three benchmarks: (a,b)

CIFAR-10, (c) VWW, and (d) KWS. The size of the marker represents
the size (i.e., the number of parameters) of each model. The shaded
area corresponds to the standard deviation at that time. 111

5.8 Ablation study comparison against Random Search (RS). Mean and
standard deviation values are reported across five experiment instances
(trials). 112

5.9 Evolution of architecture characteristics in the population during the
search for CIFAR-10. Random individual networks are shown. 114

5.10 Architectural differences between AnalogNAS T500 and Resnet32. . . 115

6.1 Overview of the ten different tasks of the Medical Segmentation De-
cathlon (MSD) [18] . 120

6.2 Search Space of MED-NAS-Benchmark 121
6.3 Overview of MED-NAS-Bench. Inspired from MSD [18] 123
6.4 MED-NAS-Bench performance across datasets 126
6.5 MED-NAS-Bench hardware efficiency across datasets on Raspberry

Pi3 and Laptop. 127
6.6 Ranking correlation experiments across datasets. 128
6.7 Blocks operation frequency in top 1000 architectures for each dataset. 129
6.8 Cross-datasets ranking correlation . 130
6.9 Pareto front results of SOTA multi-objective optimizations on Rasp-

berry Pi3. 132
6.10 Pareto front results of SOTA multi-objective optimizations on Laptop. 132
6.11 Overview of MT-MIAS steps. 134
6.12 Comparative results of MT-MIAS on MED-NAS-Bench, both on Rasp-

berry PI3 (RPI3) and laptop. 139

7.1 Future Works on top of HW-NAS framework. 146

XVI LIST OF FIGURES

List of Tables

2.1 Classification of HW-NAS based on their targeted Hardware. 22
2.2 Summary of Hardware Cost Estimation Methods. 31
2.3 Comparison of NAS Benchmarks . 37
2.4 Comparison between different operators on Intel i7 CPU and NVIDIA

TX2 GPU. The convolution operators were used to create a CNN
model that was trained for Image Classification on ImageNet. The
RNN cells were trained on Text Classification on IMDB dataset [19].
Results were obtained using PyTorch with a number of samples of 1000. 41

3.1 Hyperparameters associated with GCN and LSTM encodings and the
decoder used to train them. 50

3.2 Results of different regressors on NAS-Bench-201. KT Corr stands for
Kendal Tau Correlation. 51

3.3 State-of-the-art surrogate models used for HW-NAS. AF stands for
architecture features such as the number of convolutions and depth. . 54

3.4 Illustrative comparison of edge hardware platforms targeted in this
work. 55

3.5 Comparison of Optimal Architectures obtained in the Pareto Front for
CIFAR-10. 57

3.6 Comparison of Optimal Architectures obtained in the Pareto Front for
ImageNet . 57

3.7 Accuracy and Latency Comparison for Keyword Spotting. 59
3.8 Training Hyperparameters . 66
3.9 Comparison on NAS-Bench-201 CIFAR-10 on Edge GPU (Jetson

Nano) and Mobile phone (Pixel 3). 67
3.10 Comparison to baselines on CIFAR-10 on FPGA ZCU-102 and Rasp-

berry Pi3 . 67
3.11 Ablation results of Pruning of Pareto ranking for CIFAR-10. 69

4.1 CaW-NAS hyperparameters . 79
4.2 Comparison with state-of-the-art efficient models on ImageNet. N is

the number of training for NAS on a new platform. 80
4.3 List of mathematical instructions defining the search space 86
4.4 Performance comparison of original models and adapted models on

Raspberry Pi 3 and Redmi Note 7S . 91
4.5 Efficient Operators Equations for Raspberry Pi and Redmi Note 7S . . 92
4.6 Notation Summary . 92
4.7 Results of Average Absolute Error for Pulse Rate estimation on

TROIKA Dataset [20] . 95

5.1 Searchable hyper-parameters and their respective ranges. 106
5.2 Final Architectures for CIFAR-10, VWW, and KWS. Other networks

for VWW and KWS are not listed, as they cannot easily be represented
using our macro-architecture. 111

XVII

XVIII LIST OF TABLES

5.3 AVM threshold variation results on CIFAR-10. 113
5.4 Experimental hardware accuracy validation and simulated power per-

formance on the IMC system in [21]. 114

6.1 Details of the blocks and operations searched in the benchmark. . . . 122
6.2 Datasets details and training hyperparameters. 124
6.3 MED-NAS-Bench Hardware specifications. 125
6.4 Number of Non Deployable architectures in edge platforms 127
6.5 Results of state-of-the-art search methodologies on MED-NAS-Bench.

Dice and Jc stand for the dice and Jaccard scores respectively. EA
and RS stand for evolutionary algorithm and random search, both are
classical search algorithms. C2FNAS O is the original architecture
proposed by C2FNAS. 131

6.6 Hypervolume values of multi-objective optimization considering per-
formance, latency, and energy consumption. 133

6.7 Hyperparameters for Training DARTS on CIFAR-10 and CIFAR-100 . 138
6.8 Comparison results of MT-MIAS against state-of-the-art methodolo-

gies in DARTS. Lat corresponds to the Raspberry PI3 Latency. 138
6.9 Results on unseen datasets of MED-NAS-Bench. (T) means that the

architecture was fine-tuned for the target task. 140
6.10 Results on CIFAR-100 (Unseen dataset for DARTS). (T) means that

the architecture was fine-tuned for the target task. 140

Acronyms XIX

Acronyms

AIHWKit IBM Analog Hardware Acceleration Kit.

AAE Average Absolute Error.

ADC Analog-to-Digital Converter.

AF Architecture Features.

AI Artificial Intelligence.

ASIC Application-specific Integrated Circuit.

AVM Accuracy Variation over one Month.

BO Bayesian Optimization.

BPM Beats Per Minute.

CE Cross-Entropy.

CNN Convolutional Neural Networks.

CPU Central Processing Unit.

DAC Digital-to-Analog Converter.

DL Deep Learning.

DNN Deep Neural Networks.

EA Evolutionary Algorithm.

ECG Electrocardiography.

EHR Electronic Health Records.

FLOPS Floating Point Ops per Second.

FPGA Field-programmable Gate Array.

FSP Flow of Solution Procedure.

GAN Generative Adversarial Networks.

GCN Graph Convolutional Neural Networks.

GPGPU General-purpose Graphics Processing Units.

GPU Graphics Processing Unit.

GRU Gated Recurrent Unit.

HSS Hardware Search Space.

HW-NAS Hardware-aware NAS.

HWA Hardware-aware.

IMC In-memory Computing.

XX Acronyms

IoT Internet of Things.

KL div Kullback–Leibler divergence.

KWS Keyword Spotting.

LHS Latin Hypercube Sampling.

LSTM Long Short-Term Memory Networks.

MAC Multiply-Accumulate.

MCU Microcontroller Unit.

ML Machine Learning.

MLP Multi-layer Perceptron.

MRAM Magnetic Random Access Memory.

MSE Mean Squared Error.

MVM Matrix-Vector Mutliplication.

NAS Neural Architecture Search.

NSGA Non-dominated Sorting Genetic Algorithm.

NVM Non Von Neuman.

PCM Phase Change Memory.

PPG Photoplethysmography.

PTB Physikalisch Technische Bundesanstalt.

RGB Red Green Blue.

RL Reinforcement Learning.

RMSE Root Mean Square Error.

RNN Recurrent Neural Networks.

RRAM Resistive Random Access Memory.

RS Random Search.

SGD Stochastic Gradient Descent.

SHGO Simplicial Homology Global Optimization.

SNN Spiking Neural Networks.

SoC System-on-Chips.

SOTA State-Of-The-Art.

STD Standard Deviation.

TinyML Tiny Machine Learning.

Acronyms XXI

ViT Vision Transformers.

VPU Vision Processing Unit.

VWW Visual Wake Words.

WL Word Line.

Chapter 1

Introduction

Contents
1.1 Context & Motivation . 2

1.2 Research Questions . 3

1.3 Summery of Contributions 4

1.4 Open Source Projects . 5

1.5 Thesis Organization . 6

1

2 CHAPTER 1. INTRODUCTION

1.1 Context & Motivation

Deep Neural Networks (DNNs) have emerged as the cornerstone of numerous con-
temporary Artificial Intelligence (AI) applications. Their groundbreaking application
in speech synthesis, computer vision, and language modeling has sparked exponential
growth in the adoption of DNNs across various domains. Notably, DNNs have sur-
passed human accuracy in several areas, highlighting their remarkable efficacy. This
superior performance stems from their aptitude for extracting intricate features from
raw sensory data through statistical learning and brain-inspired operations. DNN ar-
chitectures are pivotal in shaping the performance and capabilities of Deep Learning
(DL) models. Designers must carefully select the architecture, layer types, and con-
nectivity patterns that best capture the relationships and patterns within the data.
Furthermore, optimizing the DNN’s hyperparameters, such as learning rates, regu-
larization techniques, and activation functions, demands extensive experimentation
and fine-tuning. The sheer scale and depth of modern DNN architectures necessitate
substantial computational resources, as well as the expertise to train and validate
these models efficiently.

However, the remarkable accuracy achieved by DNNs comes with a trade-off in
the form of high computational complexity. Historically, general-purpose compute
engines, particularly graphics processing units (GPUs) [22], have been the primary
workhorses for DNN processing. In addition, deploying DNNs entails significant mem-
ory requirements, as state-of-the-art networks are getting larger each year. A notable
example of this evolution is observed in the domain of image classification and object
detection. While Convolutional Neural Networks (CNNs) have long been regarded
as state-of-the-art models in this field, their supremacy has recently been challenged
by the emergence of vision transformers, which use 30x more parameters [23]. Nev-
ertheless, a growing necessity has emerged to execute these DNNs directly on users’
edge devices, primarily driven by privacy concerns. This new challenge has given
rise to several research directions. Firstly, in the context of the waning days of
Moore’s Law, there is a realization that advancing compute performance and energy
efficiency necessitates specialized hardware tailored specifically for DNN workloads.
Secondly, optimization strategies that aim to reduce the computational requirements
of DNNs, such as quantization, pruning, and Hardware-aware Neural Architecture
Search (HW-NAS), have garnered considerable relevance.

Specifically, HW-NAS [1] has seen significant interest and progress in recent years,
as evidenced by the growing number of research papers and publications dedicated
to this topic, as shown in Figure 1.1. Neural Architecture Search (NAS) refers to a
set of methods that leverage computational algorithms to automatically design the
architecture of neural networks. This automated approach eliminates the need for
manual trial-and-error iterations, enabling the exploration of a vast search space of
potential architectures. HW-NAS takes the concept of NAS a step further by con-
sidering hardware-related factors such as memory capacity, computational efficiency,
and power consumption during the architecture search process. By doing so, HW-
NAS algorithms can intelligently discover architectures that are not only accurate
and high-performing but also optimized for deployment on specialized hardware ac-
celerators or resource-constrained devices.

Despite the progress made in HW-NAS, there are several current issues that need
to be addressed to further advance this field and ensure its practical applicability.
Firstly, current strategies are time-consuming requiring the performance evaluation
of each sampled architecture. This evaluation is usually performed using surrogate
models and estimation methods. Still, these estimation methods are time-consuming
to construct and they do not account for the multi-objectivity in HW-NAS [24]. Sec-
ondly, the search space design is crucial as it defines the ranges of performance, the
search can explore. However, designing a search space based on previously hand-
crafted architectures restrict HW-NAS to similar architectures without innovation

1.2. RESEARCH QUESTIONS 3

N
um

be
r o

f p
ap

er
s

0

200

400

600

800

2016 2017 2018 2019 2020 2021 2022 2023

NAS HW-NAS

Figure 1.1: Number of papers published on NAS and HW-NAS as of May 2023.

potential. Lastly, there is still a big gap in applying HW-NAS to other DL tasks than
image classification. In image classification, the standardization of common bench-
marks makes it easier to compare multiple methods. However, the lack of standard-
ized benchmarks and evaluation metrics on multiple DL tasks makes it challenging
to compare and validate different methodologies effectively.

In this context, the primary motivation driving this thesis is the need for an
efficient and practical HW-NAS approach tailored specifically for edge devices. As
edge devices become increasingly prevalent in various domains, building an efficient
HW-NAS is a key imperative to enable the deployment of powerful DL models on
such resource-constrained devices. The methods proposed in this thesis adapt to
multiple DL tasks and are validated on a varied set of hardware platforms.

Detailed motivations can be summarized as follows: (i) Accelerate the architecture
performance evaluation process used in HW-NAS. (ii) Reduce the overall search time
of HW-NAS, making the method practical in real-world applications. (iii) Improve
the design of search spaces, developing a non-restrictive space to discover novel ar-
chitectures. (iv) Investigate the use of HW-NAS for computer vision tasks including
image classification, object detection, and medical segmentation.

1.2 Research Questions

The research questions addressed in this thesis manuscript aim to improve the effi-
ciency and effectiveness of HW-NAS, including its real-world and practical applica-
tions. Specifically, the study aims to answer the following questions:

1. What are the key components of HW-NAS, and how can they be optimized to
improve performance?

2. How can multi-objective and Pareto-aware surrogate models be developed to
enhance the evaluation components of HW-NAS?

3. How can search spaces be enhanced with quantization awareness and free from
humanly designed operators to improve the search process?

4. Furthermore, how can HW-NAS be applied to novel hardware platforms, such
as analog in-memory computing?

5. How can it be used to optimize benchmarks in medical imaging analysis?

4 CHAPTER 1. INTRODUCTION

6. What are the key considerations and methodologies for developing a compre-
hensive benchmark specifically tailored for evaluating NAS methods in medical
imaging, and how can such a benchmark be designed to effectively capture the
complexities and challenges presented by medical imaging datasets?

7. How can a multi-task NAS methodology be developed to effectively account for
the diverse range of medical imaging types and tasks?

By addressing these research questions, this thesis aims to contribute to the field
of HW-NAS and advance the state-of-the-art in this important research area.

1.3 Summery of Contributions

This thesis comprises seven significant original research contributions:

1. In [1], a survey of state-of-the-art HW-NAS techniques is presented, providing
an overview of the current landscape in HW-NAS, the challenges that concern
each component of HW-NAS, and a comparison between the different estima-
tion methods used to evaluate the architecture’s performance. In addition,
insights were provided for future estimation and search space design strategies
and approaches.

2. In [4, 5], we propose a novel multi-objective surrogate model, HW-PR-NAS. To
train this model, we define a Pareto score for each architecture, given its accu-
racy, latency, and energy consumption. We then train the surrogate model to
learn the ranking of the architectures. Once, used in HW-NAS, HW-PR-NAS
achieved up to 2.5x speedup compared to state-of-the-art methods while achiev-
ing 98% near true Pareto front, on seven different edge hardware platforms from
various classes, including ASIC, FPGA, GPU, and multi-cores.

3. Using the same Pareto score definition, in [6], we adapt the training of a su-
pernetwork search space. Supernetworks are a novel way to design HW-NAS
search spaces. We propose a supernetwork training methodology that preserves
the Pareto ranking between its different subnetworks resulting in neural net-
works more efficient and accurate for a variety of hardware platforms. The
results show a 97% near Pareto front approximation in less than 2 GPU days of
search, which provides 2x speed up compared to state-of-the-art methods. We
validate our methodology on multiple NAS benchmarks.

4. In [8], we define a novel methodology to extend the search space during the
search, allowing the exploration of large search spaces containing in an efficient
manner. More specifically, CaW-NAS combines the search for the architecture
and its quantization policy. While former works search over a fully quantized
search space, we define our search space with quantized and non-quantized
architectures. Our search strategy finds the best trade-off between accuracy
and latency according to the target hardware. Experimental results on a mobile
platform show that our method allows us to obtain more efficient networks in
terms of accuracy, execution time, and energy consumption when compared to
the state-of-the-art.

5. In [7], we propose a Grassroots Operator Search (GOS). GOS adapts a given
model for edge devices by searching for an efficient operator replacement. We
express each operator as a set of mathematical instructions that capture its
behavior. The mathematical instructions are then used as the basis for search-
ing and selecting efficient replacement operators that maintain the accuracy of
the original model while reducing computational complexity. Our approach is
grassroots since it relied on the mathematical foundations to construct new and

1.4. OPEN SOURCE PROJECTS 5

efficient operators for DL architectures. We demonstrate on various DL mod-
els that our method consistently outperforms the original models on two edge
devices, namely Redmi Note 7S and Raspberry Pi3, with a minimum of 2.2x
speedup while maintaining high accuracy. Additionally, we showcase a use case
of our GOS approach in pulse rate estimation on wristband devices, where we
achieve state-of-the-art performance, with reduced computational complexity.

6. Analog In-Memory Computing (IMC) is a new approach for building efficient
inference accelerators. Current DNNs, however, are not designed for such hard-
ware either in terms of operators or hyperparameters. AnalogNAS [9] proposes
a framework for automated DNN design targeting deployment on IMC inference
accelerators. We conduct extensive hardware simulations to demonstrate the
performance of AnalogNAS on state-of-the-art models in terms of accuracy and
deployment efficiency on various tiny machine-learning tasks. We also present
experimental results that show AnalogNAS models achieving higher accuracy
than state-of-the-art models when implemented on a 64-core in-memory com-
puting chip based on Phase change memory.

7. Medical imaging tasks are an ideal domain for HW-NAS on edge computing due
to the increasing demand for efficient and accurate medical imaging systems,
the availability of edge devices in healthcare settings, and the need to optimize
DL models for such resource-constrained devices. In [10], we designed a NAS
benchmark for medical imaging analysis. The benchmark targets eleven tasks,
including brain, lung, liver, and pancreas tumor segmentation, hippocampus,
spleen, and prostate segmentation, and pneumonia detection. Included in the
benchmark are the performance metrics and the hardware efficiency of millions
of architectures trained using a supernetwork design. On top of this benchmark,
we developed a multi-task HW-NAS methodology that not only finds efficient
architectures but is also generalizable to multiple medical tasks.

1.4 Open Source Projects

One of the key contributions of this thesis is the development of two open-source
neural architecture search libraries: AnalogNAS and MED-NAS-Bench.

• AnalogNAS is a modular and flexible analog-aware NAS python library that
is designed to optimize neural network architectures for analog hardware ac-
celerators. This library includes various search algorithms and neural net-
work building blocks, enabling users to easily design and search for analog-
efficient neural network architectures. By leveraging AnalogNAS, researchers
and engineers can design efficient neural networks for edge devices, IoT devices,
and other applications that rely on analog accelerators. The Python pack-
age can be installed via PyPi. The code and implementation can be found:
https://github.com/IBM/analog-nas. This library was awarded the IEEE Open
Source for Science Award in 2023.

• The MED-NAS-Bench API represents a significant contribution to the field of
medical imaging research. By offering a comprehensive benchmark for NAS in
the context of medical imaging, the API serves as a valuable resource for both
researchers and practitioners. The Python package can be installed via PyPi.
The code and implementation can be found:
https://github.com/IHIaadj/med nas bench

https://github.com/IBM/analog-nas
https://github.com/IHIaadj/med_nas_bench

6 CHAPTER 1. INTRODUCTION

1.5 Thesis Organization

As illustrated in Figure 1.2, this manuscript is organized into 7 chapters to convey
all of the original research contributions in a coherent way.

The current Chapter, i.e., the introduction, highlighted in pink, delves into the
research background and motivation. In addition, research questions are formulated,
and the key original contributions of this thesis, and open-source projects are sum-
marized.

The latter of the manuscript is divided into three parts:

• Literature Review: provides a comprehensive overview of related
works and defines the essential components of hardware-aware neural archi-
tecture search. This section lays the foundation for the subsequent parts of the
manuscript and sets the context for the research presented in the paper. This
section is present in Chapter 2.

• Efficient HW-NAS methods: this part is dedicated to the contributions
made to accelerate HW-NAS. It is divided into two chapters. Chapter 3
focuses on the development of multi-objective and Pareto-aware surro-
gate models to enhance the evaluation components of HW-NAS. We describe
HW-PR-NAS and PRP-NAS, two estimation strategies targeting two types of
search spaces; cell-based and supernetwork.

Chapter 4 concentrates on the the design of an efficient search space. It
describes CaW-NAS, an optimized methodology to extend the search space with
compressed architectures. And a novel design and search strategy, in which the
search space is composed of fine-grained operators, allowing the discovery of
novel architectures.

• Applications of HW-NAS: In this part, we adapt and use our HW-NAS
knowledge on two real-world use cases. Chapter 5 explains how to use HW-NAS
in the context of analog in-memory computing, and showcases how architectures
differ from one platform to another. Chapter 6 highlights the development
of a NAS benchmark for medical imaging analysis and the design of a
multi-task hardware-aware NAS to enhance medical DL models.

Overall, the manuscript provides a comprehensive and in-depth analysis of
hardware-aware neural architecture search, including its essential components, im-
provements, and applications in conventional and novel hardware platforms. Finally,
new benchmarking and scenarios of applications for HW-NAS are also proposed.

Finally, the thesis is concluded in Chapter 7, conclusion and future work. In Fig-
ure 1.2, this Chapter is highlighted in the same color as the introduction to indicate
a strong link/connection. In the conclusion, the findings in other chapters are sum-
marized concerning the research questions formulated in the introduction, and future
research directions are discussed.

1.5. THESIS ORGANIZATION 7

Chapter 1
Introduction

Chapter 2
Hardware-aware Neural Architecture Search

 Part I: Literature Review

Research Questions

How to efficiently evaluate the
performance and hardware efficiency
of an architecture without fully training
it in a multi-objective search
strategy?

Research Question 1

How to build an efficient search
space that contains diverse and
high-performing compressed neural
architectures while minimizing the
computational cost of the search
process?

Research Question 2

Research Question 3

What are effective approaches for
constructing a search space that is
not influenced by previous human
experience, and can enable the
discovery of novel and innovative
neural architectures?

Research Question 4

How can HW-NAS methods be
adapted and extended to novel
hardware platforms, such as analog
in-memory computing?

Research Question 5
What are the key considerations
for developing a comprehensive
NAS benchmark for the domain
of medical imaging, and how can
such a benchmark be designed to
effectively capture the
complexities and challenges
presented by medical imaging
datasets?

Research Question 6
How can a multi-task HW-NAS
methodology be developed to
effectively account for medical
imaging tasks?

Key Contributions
Chapter 3:
● HW-PR-NAS:

Hardware-aware
Pareto-ranking
Surrogate Model for
NAS

● PRP-NAS: A Pareto
Rank-preserving
Supernetwork Training
Methodology

Chapter 4:
● CaW-NAS:

Compression-aware
neural architecture
search

● GOS:
Grassroots Operator
Search for Model
Edge Adaptation

Chapter 5:
● AnalogNAS:

A Neural Network
Design Framework for
Accurate Inference
with Analog
In-Memory Computing

Chapter 6:
● MED-NAS-Bench:

A Generalized Neural
Architecture Search
Benchmark for Medical
Imaging Analysis

● MT-MIAS
Multi-task
Hardware-aware
architecture search for
medical imaging
analysis

Chapter 7
Conclusion and Future Work

Part II: Efficient HW-NAS methods
Part III:

HW-NAS Applications

Figure 1.2: Structure of the manuscript.

8 CHAPTER 1. INTRODUCTION

Part I

Related Works

9

Chapter 2

Hardware-aware Neural
Architecture Search

Contents
2.1 Handcrafted models Vs. HW-NAS 12

2.2 Conventional Neural Architecture Search 14

2.3 Methodologies for Efficient Deep Learning 15

2.4 Taxonomy of HW-NAS . 17

2.5 Search Spaces . 18

2.5.1 Architecture Search Space 18

Fine-grained Search Space for NAS 20

2.5.2 Hardware Search Space (HSS) 20

2.5.3 Current Hardware-NAS Trends 22

2.6 Optimization strategies . 23

2.6.1 Hardware-aware NAS Problem Formulation 23

Single-Objective Optimization 24

Multi-Objective Optimization 25

2.6.2 Search Algorithms . 26

Reinforcement Learning (RL) 27

Evolutionary Algorithm (EA) 28

Gradient-Based Methods 28

Bayesian Optimization (BO) 29

Random Search (RS) . 30

2.7 HW-NAS Estimation Strategies 30

2.8 Other Considerations for Hardware-aware NAS 33

2.8.1 Automatic Mixed-Precision Quantization 33

2.8.2 Automatic Pruning . 34

2.8.3 Security and Reliability Considerations in NAS 34

2.9 In-memory Computing & HW-NAS 34

2.10 Challenges and Limitations 36

2.10.1 Benchmarking and Reproducibility 36

2.10.2 Transferability of the AI Models 39

2.10.3 Transferability of the HW-NAS Across Multiple Platforms 40

2.11 Conclusion . 41

11

12 CHAPTER 2. HARDWARE-AWARE NEURAL ARCHITECTURE SEARCH

The significant advances and breakthroughs of Deep Learning (DL), that have pro-
pelled from academic and industrial research labs’ circles, are now electrifying the
computing industry and transforming the world. DL is now being largely used to
solve real-world problems. As DL is computationally demanding, most of the deploy-
ments happen in the cloud or on-premises data centers. However, with the arrival
of powerful and low-energy consumption Internet of Things (IoT) devices and the
growing need to take action in real or near-real-time, DL computations are increas-
ingly moving to the edge. This pushes the development of small yet powerful DL
architectures.

In this chapter, we embark on a comprehensive exploration of handcrafted mod-
els, Neural Architecture Search (NAS) models, and Hardware-aware NAS (HW-NAS)
models, with a focus on their performance and parameter count. We highlight the
significance of efficient NAS and HW-NAS methodologies in addressing the increas-
ing demand for resource-efficient deep learning models. Subsequently, we provide
a general overview of the NAS framework, outlining its key components and high-
lighting the relevance of HW-NAS within this context. Furthermore, we present an
original taxonomy of HW-NAS approaches, categorizing them based on their specific
goals and objectives. Each component of HW-NAS is thoroughly examined, draw-
ing insights from the existing literature. Additionally, we delve into other critical
considerations in HW-NAS, such as automatic quantization, reliability, and novel
hardware platforms. To provide a comprehensive analysis, we also dedicate a section
to discussing the challenges and limitations associated with existing HW-NAS works,
shedding light on areas that require further exploration and improvement.

2.1 Handcrafted models Vs. HW-NAS

DL is revolutionizing technology around us across many domains such as computer
vision [25, 26, 27, 28], speech processing [29, 30, 31] and natural language processing
[32, 33, 34]. These breakthroughs would not have been possible without the avail-
ability of big data, the recent algorithmic advancements, the tremendous growth in
computational power, and advances in hardware acceleration techniques. However,
designing accurate neural networks is challenging due to:

• The variety of data types and tasks that require different neural architectural
designs and optimizations.

• The vast amount of hardware platforms makes it difficult to design one globally
efficient architecture.

For instance, certain problems require task-specific models, e.g. EfficientNet [35]
for image classification and ResNest [36] for semantic segmentation, instance seg-
mentation, and object detection. These networks differ in the proper configuration
of their architectures and their hyperparameters. The hyperparameters refer to the
pre-defined properties related to the architecture or the training algorithm.

In general, the neural network architecture can be formalized as a Directed Acyclic
Graph (DAG) where each node corresponds to an operator applied to the set of its
parent nodes [37]. Convolution, pooling, activation, and self-attention are example
operators. Linking these operators together gives rise to different architectures. A
key aspect of designing a well-performing deep neural network is deciding the type
and number of nodes and how to compose and link them. Additionally, the archi-
tectural hyperparameters, such as stride and channel number in a convolution, and
the training hyperparameters, such as learning rate, number of epochs, and momen-
tum, are also important contributors to the overall performance. Figure 2.1 shows an
illustration of some architectural choices for the type of convolutional neural network.

According to this representation, DL architectures can contain hundreds of layers
and millions or even billions of parameters. These architectures are either handcrafted

2.1. HANDCRAFTED MODELS VS. HW-NAS 13

Standard Conv
Depthwise Conv
Dilated Conv
...
Kernel Size
Stride
Padding

Convolution

ReLu
Leaky
ReLu
Softmax

Max, Avg
Stride
Padding

Pooling

Depth

● Possible operator per layer
● Architecture hyperparameters

Input Outputs

Activation

Number of layers
Number of units per
layer Type of activation

Fully-Connected NN
Self
Window
Heads
Patch size

Attention

Figure 2.1: Generic DL architecture. For each layer, an operator is chosen among a
pre-defined list or operations (convolution, dilated convolution, depthwise convolu-
tion, max-pooling, batch normalization, etc.). The sequence Convolution, Activation,
Attention, etc. is repeated several times in DL architectures.

by repetitive experimentation or modified from a handful of existing models. These
models have also been growing in size and complexity. This makes handcrafting deep
neural networks a complex task that is time-consuming, error-prone and requires deep
mathematical expertise. Thus, in recent years, it is not surprising that techniques
to automatically design efficient architectures, or Neural Architecture Search (NAS),
for a given dataset or task, have surged in popularity.

BiT-M

ViT-H/14

ViT-L/16

NoisyStudent

VGG-19

VGG-16

ResNet-50
ResNet-152

MobileNet V2
ShuffleNet

NASNET-A

NASNET-B

AmoebaNet-A

PNASNet-5

proxylessnas

OFA

MnasNet-A3

FBNet

MnasNet-A2

MnasNet-A1
MobileNet V3

Inception V3

Inception V2

ResNeXt-101 32x48d

FixResNeXt-101 32x48d

EfficientNet-B7

FixEfficientNet-L2

KDforAA

FixPNASNet-5

ECA-Net

AdvProp

DPN-131-L

DPN-131-M

ResNet-101 Densenet-264

Densenet-169

CoAtNet-7

Meta Pseudo Labels

MViT-H

BEiT-L

Mixer-H/14
CvT-W24

UniNet-B5

CoCa

SwinV2-G

A
cc

u
ra

cy
(%

)

70%

75%

80%

85%

90%

95%

05/2016 09/2017 02/2019 06/2020 10/2021 03/2023

Handcrafted Efficient Handcrafted NAS HW-NAS

Figure 2.2: Accuracy of various CNN models on ImageNet for Image Classification
task with the number of parameters. Inspired by [15]

In figure 2.2, we compare several DL models for the image classification task de-
pending on their Top-1 accuracy and their sizes. Each dot in the plot corresponds
to a given DL architecture that has been used for image classification. The dot size
correlates with the size of the corresponding model in terms of the number of pa-
rameters. The highest value is from CoAtNet-7 [38] which has 2440M parameters.
A quick look at the graph reveals the trend to design larger models to better Top-1
accuracy. However, a large size is not necessarily correlated with better accuracy.
There have been several efforts to conceive more efficient and smaller networks to
achieve comparable Top-1 accuracy performance. We compare four classes of archi-
tectural designs: Handcrafted, Efficient handcrafted, NAS, and HW-NAS. Generally,

14 CHAPTER 2. HARDWARE-AWARE NEURAL ARCHITECTURE SEARCH

throughout the years the handcrafted models rank high up in terms of accuracy but
are much more complex in terms of architecture’s depth and number of parameters.
For instance, CoCa [39], which is the state-of-the-art model as of April 2023, has over
2100 million parameters. In the top right quadrant of the figure 2.2 (around the same
region as most of the recently handcrafted models), we find some of the models that
are automatically created by different NAS techniques. These techniques focus only
on improving the model’s accuracy without paying attention to the efficiency of the
model in terms of its size and latency. Therefore, these NAS models are still large,
with the number of parameters ranging between 100M and 700M.

Since 2015, we have noticed the rise of efficient handcrafted models. These models
rely on compression methods (see section 2.3) to decrease the model’s size while
trying to maintain the same accuracy. MobileNet-V2 [40] and Inception [41] are
good examples where the number of parameters is between 20M and 80M. Hardware-
aware NAS (HW-NAS) emerges as a technique to automatically design efficient DL
architectures. This class encompasses work that aims to tweak NAS algorithms and
adapt them to find efficient DL models optimized for a target hardware device. HW-
NAS began to appear in 2017 and since then achieved state-of-the-art (SOTA) results
in resource-constrained environments with Once-for-all (OFA) [42] for example.

Architecture Search
Space

Conv
Pooling
Activations
…

Search Algorithm
Reinforcement Learning
Evolutionary Algorithm
Gradient-based

Evaluation Methodology
Use proxy dataset
Early stopping
Surrogate Models
Hypernetwork

Best Model

Architecture A

Performance of A

1 2 3

Figure 2.3: Overview of conventional NAS components.

2.2 Conventional Neural Architecture Search

A conventional NAS process requires the definition of three main components: the
search space, the search strategy, and the evaluation methodology, as illustrated in
figure 2.3.

1. Search Space

The search space draws from a set of neural network architectures to define the
neural network operators and how they are connected to form a valid network.
It determines the way by which architectures are formed and those which are
allowed. For example, NASNet [43] introduced a fixed macro architecture
where the search consists of finding the appropriate operators to be used within
each block from a set of 12 specified operators (see Section 2.5).

2. Search Algorithm

The search algorithm (also known as search strategy) explores the search space
by sampling a population of network architectures’ candidates. It evaluates the
accuracy of the model using a specific evaluation methodology. The measured
accuracy will then guide the search strategy to converge towards promising
architectures in the search space (see Section 2.6).

2.3. METHODOLOGIES FOR EFFICIENT DEEP LEARNING 15

3. Evaluation Methodology

The evaluation component trains the architecture on the desired dataset,
which often takes considerable time. Many NAS algorithms have incorporated
several techniques to speed up the training process such as early stopping or
surrogate models (see Section 2.7).

NAS has proven its efficiency by proposing different models in object detection [44]
and image classification [45]. However, these models are often composed of millions
of parameters and require billions of floating-point operations (FLOPs). This causes
a large memory footprint and computation and consequently prevents their usage
in resource-constrained systems. Additionally, these models might require specific
hardware (GPUs, TPUs, etc.) to allow their deployment in a reasonable time or in
real-time applications.

Integrating hardware awareness in the search loop (i.e. HW-NAS) has attracted
several researchers and has opened up interesting new research directions over the
past few years. Some HW-NAS efforts have achieved SOTA results and have bal-
anced the trade-off between accuracy and hardware efficiency. For example, FBNet
[46] has achieved interesting results on ImageNet by using an objective function that
minimizes both the cross-entropy error, which leads to better accuracy, and the la-
tency, which penalizes inefficient networks.

This chapter provides a detailed overview of existing HW-NAS research efforts
and categorizes them according to their goals and problem formulation. With this
survey, we provide a concise review of the NAS variants that focus on precision and
hardware awareness.

2.3 Methodologies for Efficient Deep Learning

Current DL models are getting bigger and bigger; especially with the arrival of deep
foundation models. However, the compute capacity at the edge is significantly low,
which does not match this increasing complexity. This has motivated the research
community to find innovative ways to reduce the DL models’ size, their required
number of floating operations, and their inference latency. This section presents an
overview of the efficient DL techniques and where HW-NAS is situated among them.

Figure 2.4 illustrates the taxonomy of different techniques used to optimize DL
models. We put in red, blocks, and elements we focus on in this thesis.

Model Compression: Model compression aims to apply to standard DL models,
such as ResNet or AlexNet, optimizations that will decrease the model size and the
number of FLOPs. This model compression is applied while trying to maintain an
acceptable level of accuracy. Relevant surveys [15, 47] on model compression classify
the optimizations into these four classes:

• Compact Model: This technique modifies the standard operations used in
DNNs. In a CNN, the standard convolution is replaced by more flexible con-
volution arithmetics that expand the number of feature maps and decrease the
number of parameters such as dilated convolution [48] or separable depthwise
convolution [49]. In an Recurrent Neural Networks (RNN), cells like S-LSTM
[50], or JANET [51] simplify the gates and decrease the number of parameters
compared to a regular Long Short-Term Memory Networks (LSTM).

• Tensor Decomposition: a tensor is the fundamental data structure used in ma-
chine learning. It can represent vectors, matrices, and even n-dimensional ar-
rays. Therefore, shrinking the tensors allows for accelerating DNNs and reduc-
ing their size. Tensor decomposition is an extension of the matrix decomposition

16 CHAPTER 2. HARDWARE-AWARE NEURAL ARCHITECTURE SEARCH

Efficient Deep Learning Methods

Model Compression HW-NAS Code Transformations

Compact
Model

Tensor
Decomposition Quantization Sparsification

Goal: Maximize
Compression Ratio
Accuracy
Hardware Usability

Goal: Search for an architecture
that maximizes

Accuracy
Hardware Usability

Goal: Apply code optimizations to
maximize

Hardware Usability

Model Compression
DNN

Model Compressed
DNN Model

HW-NAS
Search Space

(A set of DNNs) Best DNN
Code

Transformations

DNN or
Block of

Operators

Optimized
Block

searches for

NN Block or
Entire

Architecture
Hyper-

parameters Loop Tiling Loop
Unrolling

Operator
Fusion

Hardware Agnostic Non Hardware Agnostic Hardware-dependent & Hardware-agnostic

Figure 2.4: Overview of efficient deep learning strategies.

techniques used in mathematical settings. Equation 2.1 formulates the matrix
decomposition system where the number of parameters of A and B combined
is smaller than the number of parameters of M.

M = AB with M ∈ Rm×n, A ∈ Rm×r, B ∈ Rr×n (2.1)

Note that tensor networks including hierarchical tensor representation (HT)
[52] and tensor train decomposition (TT) [53] achieve higher compression rates
in a fully-connected network since they usually contain more redundancy.

• Quantization: In DL, quantization [54] refers to converting data objects from a
32-floating point to lower precision or a fixed point integer or even binary. These
data objects can be the weights of the layer, the activations (the input data’s
internal representation), the error value, the gradient values, or the weight
update. Each method differs with the chosen bandwidth and the data objects
that are quantized.

• Network Sparsification or pruning [55, 56] attempts to compress the model by
pruning some weights (edges) or operations (nodes). Usually, the decision of
pruning is taken based on its importance, which is directly the weight values or
learned via an attention layer.

HW-NAS: Another efficient DL technique is HW-NAS. In HW-NAS, we search
for the architecture that maximizes the accuracy and hardware usability among a
set of architectures. Note that some HW-NAS can be considered under the model
compression techniques as they search for the best bit-width or the best way to prune.
We further detail the search for hyperparameters, NN Block, or full architectures in
Section 4.

Code Transformations: An alternative approach that is gaining more attraction
these recent years is to apply some code transformations that optimize the DNNs on
the operator level [57]. These transformations are hardware-specific and require a
compiler to apply the right transformation for the right hardware platform automati-
cally. A variety of DL compilers have been developed to apply these transformations,
among them: Tiramisu [58], TVM [59], and XLA [60].

2.4. TAXONOMY OF HW-NAS 17

Goals of Hardware-Aware Neural Architecture Search

Single Target Multiple Targets

Best Architecture Best Platform
Configuration

Multiple Platform ConfigurationsFixed Platform Configurations

Hardware-aware Search
Strategy

Hardware-aware Search
Space

Architecture Search
Space

Conv, Pooling, ...

Search Strategy

Hw Cost
(Energy,

latency)

Architecture Search
Space

Conv, Pooling, ...

Search
Strategy

Hw Cost
(Energy,

latency)

Architecture
Search Space

Conv, Pooling, ...

Search
Strategy

Hw Cost
(Energy,

latency)

Hardware Search
Space

Tiling parameters
Number of PE

Multi-Hardware
Architecture Search Space
Intersection of all
architectures that can be
deployed in all targets.

Select a Set of Hardware
Targets

Search
Strategy

Special
Metric

search strategy selects an architecture

request performance measure

remove inefficient architectures

Figure 2.5: Overview of different hardware-aware NAS designs.

2.4 Taxonomy of HW-NAS

Unlike conventional NAS, where the goal is to find the best architecture that maxi-
mizes model accuracy, HW-NAS has multiple goals and multiple views of the problem.
We can classify these goals into three categories (See figure 2.5 from left to right) :

• Single Target, Fixed Configuration: Most of existing HW-NAS fall under
this category. The goal is to find the best architecture in terms of accuracy
and hardware efficiency for one single target hardware. Consequently, if a new
hardware platform has to be used for the NAS, the whole process must be re-
executed with the new hardware details to calculate the new hardware’s cost.
These methods generally define the problem as a constrained or multi-objective
optimization problem [46, 61, 62]. Within this category, two approaches are
adopted:

– Hardware-aware search strategy where the search is defined as a multi-
objective optimization problem. While searching for the best architecture,
the search algorithm calls the traditional evaluator component to get the
accuracy of the generated architecture but also a special evaluator that
measures the hardware cost metric (e.g., latency, memory usage, energy
consumption). Both model accuracy and hardware cost guide the search
and enable the NAS to find the most efficient architecture.

– Hardware-aware Search Space where a restricted pool of architectures is
used. Before the search, either the operators’ performance on the target
platform is measured or a set of rules that will refine the search space
is defined. Refining the search space allows for to elimination of all the
architectures’ operators that do not perform well on the target hardware.
For example, HURRICANE [63] uses different operator choices for three
types of mobile processors: Hexagon DSP, ARM CPU, and Myriad Vision
Processing Unit (VPU). Accumulated domain knowledge from prior exper-
imentation on a given hardware platform helps narrow down the search
space. For instance, they do not use depthwise convolutions for CPU,

18 CHAPTER 2. HARDWARE-AWARE NEURAL ARCHITECTURE SEARCH

squeeze, and excitation mechanisms for VPU and they do not lower the
kernel sizes for a DSP. Such gathered empirical information helps to define
three different search spaces according to the targeted hardware platform.
Note that, after defining the search space with these constraints, the search
strategy is similar to the one used by conventional NAS, which means that
the search is solely based on the accuracy of the architecture, and no other
hardware metric is incorporated.

• Single Target, Multiple Configurations: the goal of this category is not
only to get the most optimal architecture that gets the best accuracy but also to
get an optimal architecture with latency guaranteed to meet the target hardware
specification. For example, the authors of FNAS [64] define a new hardware
search space containing the different FPGA specifications (e.g., tiling configura-
tions). They also use a performance abstraction model to measure the latency
of the searched neural architectures without doing any training. This allows
them to quickly prune architectures that do not meet the target hardware spec-
ifications. In [65], the authors use the same approach for ASICs and define a
hardware search space that contains various ASIC templates.

• Multiple Targets: In this third category, the goal is to find the best architec-
ture when given a set of hardware platforms to optimize for. In other words, we
try to find a single model that performs relatively well across different hardware
platforms. This approach is the most favorable choice, especially in mobile de-
velopment as it provides more portability. This problem was tackled by [66, 67]
by defining a multi-hardware search space. The search space contains the in-
tersection of all the architectures that can be deployed in the different targets.
Note that, targeting multiple hardware specifications at once is harder as the
best model for a GPU, can be very different from the best model for a CPU. For
example, in general, wider models are more appropriate for GPU while deeper
models are preferable on CPUs.

2.5 Search Spaces

Two different search spaces have been adopted in the literature: the Architecture
Search Space and the Hardware Search Space.

2.5.1 Architecture Search Space

Definition

The Architecture Search Space is a set of feasible architectures from which we
want to find an architecture with high performance. Generally, it defines a
set of basic network operators and the manner by which these operators can
be connected to construct the computation graph of the model.

We distinguish two approaches to designing an architecture search space:

1. Hyperparameter optimization for a fixed architecture: The objective is limited
to optimizing the architecture hyperparameters, such as the number of channels,
the stride, or the kernel size.

2. Operator search space: The search space allows the optimizer to choose connec-
tions between operations and the type of operation within each layer.

Both approaches have their advantages and disadvantages but it is worth men-
tioning that although the former approach reduces the search space size, it requires
considerable human expertise to select the macro-architecture and introduces a strong

2.5. SEARCH SPACES 19

Operator 1

Operator 2

Operator 3

 (a)

Input

Outputs

Cell

Cell

Cell

 (b)

Input

Outputs

...

Operator 1

Operator n

Cell 1

Cell 2

Cell 3

 (c)

Input

Outputs

...

Operator 1

Operator n

Input

Operator 1 Operator n...

Operator 1 Operator n...

Outputs

...
 (d)

Figure 2.6: Architecture search spaces types. (a) Global search space, (b) Cell-based
search space, (c) Hierarchical search space, and (d) supernetwork search space. In
orange the operators considered during the search.

bias. Whereas the latter approach decreases the human bias but considerably in-
creases the search space size and hence the search time.

Generally, in the latter approach, we distinguish three types (See figure 2.6):

• Layer-wise Seach Space, where the whole model is generated from a pool
of operators. FBNet Search Space [46], for example, consists of a layer-wise
search space with a fixed macro architecture that determines the number of
layers and dimensions of each layer where the first and last three layers have
fixed operators. The remaining layers need to be optimized.

• Cell-based Search Space, where the model is constructed from repeating
fixed architecture patterns called blocks or cells. A cell is often a small acyclic
graph that represents some feature transformation. The cell-based approach
relies on the observation that many effective handcrafted architectures are de-
signed by repeating a set of cells. These structures are typically stacked and
repeated a number of times to form larger and deeper architectures. This search
space focuses on discovering the architecture of specific cells that can be com-
bined to assemble the entire neural network. Although cell-based search spaces
are intuitively efficient to look for the best model in terms of accuracy, they
lack flexibility when it comes to hardware specialization [46, 62].

• Hierarchical Search Space, works in 3 steps: First, the cells are defined,
and then bigger blocks containing a defined number of cells are constructed.
Finally, the whole model is designed using the generated cells. MNASNet [62]
is a good example of this category of search spaces. The authors define a
factorized hierarchical search space that allows more flexibility compared to a
cell-based search space. This allows them to reduce the size of the total search
space compared to the global search space.

• Supernetwork Search Space, the idea behind supernetworks is to create a
large space of possible architectures that can be efficiently explored to find the
best-performing network for a given task. In a supernetwork, the weights of the
subnetworks are not fixed but are instead treated as hyperparameters that can
be learned during training. This allows for a more flexible search space that
can better adapt to the specific requirements of the task at hand.

In existing NAS research works the authors define a macro-architecture that generally
determines the type of networks considered in the search space. When considering
CNNs, the macro architecture is usually identical to the one shown in figure 2.1.
Therefore, many works [46, 61, 62, 66, 68] differ in the number of layers, the set of
operations and the values of the possible hyperparameters. Recently, the scope of net-
work type is changing. For instance, NASCaps [69] changes their macro-architecture

20 CHAPTER 2. HARDWARE-AWARE NEURAL ARCHITECTURE SEARCH

to allow the definition of capsules. Capsules network [70] are basically cell-based
CNNs where each cell (or capsule) can contain a different CNN architecture.

Other works like [71, 72] focus on transformers and define their macro-architecture
as a transformer model. The search consists of finding the number of attention heads
and their internal operations. When dealing with hyperparameters only, the macro
architecture can define a variety of network types. Authors in [73, 74] mix different
definitions, transformers + CNN and transformers + RNN respectively. They define
a set of hyperparameters that encompasses the pre-defined parameters for different
network types at the same time.

Lately, more work [61, 75] have been considering the use of over-parameterized
networks (i.e. supernetworks) to speed up the NAS algorithms. These networks
consist of adding architectural learnable weights that select the appropriate operator
at the right place. Note that these techniques have been applied to transformers as
well [76].

In some research efforts, the pool of operators/architectures is refined with only
the models that are efficient in the targeted hardware [66, 67]. The search space size
is considerably reduced by omitting all the architectures that cannot be deployed.

Fine-grained Search Space for NAS

In recent research endeavors, various approaches have been proposed to explore novel
architectures without human design bias. The term ”fine-grained search spaces” refers
to search spaces that consist of a set of mathematical and code-level functions. Few
works consider these search spaces for NAS. The reason is due to the large number of
possible operators created from this search space, it is highly impractical to explore
it.

AutoML Zero [77] is the only AutoML tool that defines a search space from basic
operators. Their goal is to search for the end-to-end learning pipeline, i.e., from archi-
tecture building to optimizing the loss function. This work is a seminal step towards
the holy grail of AutoML: automatically designing a network and training pipeline for
any given dataset. However, their methodology took a tremendous amount of time to
come up with already human-designed logistic regression. Recently, BANAT [78] pro-
poses an algebraic representation of the architecture to enable a more general search
space definition. This is a promising strategy for efficiently and effectively searching
over our huge search spaces.

Other works [78, 79, 80] consider modifying a single operator, namely batch nor-
malization. EvoNorms [79] evolves the normalization operator from basic mathemat-
ical functions. They discover novel implementations and functions for the normaliza-
tion and activation fusion which improved the overall average precision of multiple
standard models.

Due to their recent application and high time complexity, low-level search spaces
are only considered in NAS with a task-specific objective. In other terms, our work
is the first to search for adapting the model for resource-constrained devices using a
low-level search space.

To address the efficiency aspect of exploring such complex search spaces, GOS
adopts an operator replacement strategy. By iteratively replacing the least efficient
operator in the architecture, GOS streamlines the search process, enabling more
efficient exploration and discovery of high-performing architectures.

2.5.2 Hardware Search Space (HSS)

Some HW-NAS methods include an HSS component that generates different hardware
specifications and optimizations by applying different algorithmic transformations to
fit the hardware design. This operation is done before evaluating the model. This co-
exploration is effective but increases the search space-time complexity significantly. If
we take Field Programmable Gate Arrays (FPGA) as an example, their design space

2.5. SEARCH SPACES 21

may include IP instance categories, IP reuse strategies, quantization schemes, parallel
factors, data transfer behaviors, tiling parameters, and buffer sizes. It is arguably
impossible to consider all these options as part of the search space due to the added
search computation cost. Therefore, many existing strategies limit themselves to only
a few options.

Definition

The Hardware Search Space is a set of all hardware configurations and proper-
ties that can impact the mapping and execution of a neural network. Finding
the appropriate set of properties helps design efficient hardware platforms and
ensure high efficiency.

Hardware Search Space (HSS) can be further categorized as follows:

• Parameter-based: The search space is formalized by a set of different pa-
rameter configurations. Given a specific data set, FNAS [64] finds the best-
performing model, along with the optimization parameters needed for it to be
deployed in a typical FPGA chip for DL. Their HSS consists of four tiling pa-
rameters for the convolutions. FNASs [81] extends FNAS by adding more
optimization parameters such as loop unrolling. The authors in [82, 83] used
a multi-FPGA hardware search space. The search consists of dividing the ar-
chitecture into pipeline stages that can be assigned to an FPGA according to
its memory and DSP slices, in addition to applying an optimizer that adjusts
the tiling parameters. Another example is presented in [84], where the adopted
approach takes the global structure of an FPGA and adds all possible param-
eters to its hardware search space including the input buffer depth, memory
interface width, filter size, and the ratio of the convolution engine. [85] searches
the internal configuration of an FPGA by generating simultaneously the archi-
tecture hyperparameters, the number of processing elements, and the size of
the buffer. FPGA/DNN [86] proposes two components: Auto-DNN which
performs hardware-aware DNN model search and Auto-HLS which generates
a synthesizable C code of the FPGA accelerator for the explored DNNs. Ad-
ditional code optimizations such as buffer reallocation and loop fusion on the
resulting C-code are added to automate the hardware selection.

• Template-based: In this scenario, the search space is defined as a set of
pre-configured templates. For example, NASAIC [65] integrates NAS with
Application-Specific Integrated Circuits (ASIC). Their hardware search space
includes templates of several existing successful designs. The goal is to find
the best model with the different possible parallelizations among all templates.
In addition to the tiling parameters and bandwidth allocation, the authors in
[87] define a set of FPGA platforms and the search finds a coupling of the
architecture and FPGA platform that fits a set of pre-defined constraints (e.g.,
max latency 5ms)

In general, we can classify the targeted hardware platforms into 3 classes focusing
on their memory and computation capabilities:

• Server Processors: This type of hardware can be found in cloud data centers, on-
premise data centers, edge servers, or supercomputers. They provide abundant
computational resources and can vary from CPUs, GPUs, FPGAs, and ASICs.
When available, machine learning researchers focus on accuracy. This class is
beyond the scope of our survey. In this paper, we focus on HW-NAS on edge
devices where the necessity of efficient deep architectures is at its peak.

• Mobile Devices: With the rise of mobile devices, the focus has shifted to en-
abling fast and efficient DL on smartphones. As these devices are heavily con-

22 CHAPTER 2. HARDWARE-AWARE NEURAL ARCHITECTURE SEARCH

strained with respect to their memory and computational capabilities, the ob-
jective of ML researchers shifts to assessing the trade-off between accuracy and
efficiency. Many HW-NAS algorithms target smartphones including FBNet [46]
and ProxylessNAS [61] (table 2.1). Additionally, because smartphones usually
contain system-on-chips with different types of processors, some research ef-
forts [88] have started to explore ways to take advantage of these heterogeneous
systems.

• Tiny Devices: The strong growth in the use of microcontrollers and IoT ap-
plications gave rise to TinyML [89]. TinyML refers to all machine learning
algorithms dedicated to tiny devices, i.e, capable of on-device inference at ex-
tremely low power. One relevant HW-NAS method that targets tiny devices
is MCUNet [90], which includes an efficient neural architecture search called
TinyNAS. TinyNAS optimizes the search space and handles a variety of differ-
ent constraints (e.g., device, latency, energy, memory) under low search costs.
Thanks to the efficient search, MCUNet is the first to achieve >70% ImageNet
top-1 accuracy on an off-the-shelf commercial microcontroller. MCUNet also
includes an inference engine to identify the right set of code optimization for
the searched architecture.

Table 2.1: Classification of HW-NAS based on their targeted Hardware.

Targeted HW References

Central Processing Unit
(CPU)

[63, 84, 88, 91, 92, 93, 94, 95, 96,
97]

Graphics Processing Unit
(GPU)

[72, 73, 85, 92, 94, 97, 98, 99, 100,
101, 102, 103, 104, 105, 106, 107,
108, 109, 110, 111, 112, 113, 114,
115, 116, 117, 118, 119, 120, 121,
122, 123, 124, 125, 126, 127, 128]

Micro-Controller Unit
(MCU)

[46, 90, 129, 130, 131, 132]

Mobile Devices [42, 46, 61, 62, 71, 72, 95, 107,
133, 134, 135, 136, 137, 138, 139]

Application-Specific Inte-
grated Circuit (ASIC)

[63, 69, 82, 83, 140, 141, 142, 143,
144]

Edge Tensor Processing
Unit (TPU)

[72, 136, 145]

In-Memory-Computing
(IMC)

[146, 147]

2.5.3 Current Hardware-NAS Trends

Figure 2.7 shows the different types of platforms that have been targeted by HW-NAS
in the literature. In total, we have studied 395 original hardware-aware NAS papers.
By target, we mean the platform that the architecture is optimized for. Usually, the
search algorithm is executed in a powerful machine, but that is not the purpose of our
study. We focus here on the platform where the inference is executed. ”No Specific
Target” means that the HW-NAS incorporates hardware agnostic constraints into
the objective function such as the number of parameters or the number of FLOPs.
In the figure, the tag ”Multiple” means multiple types of processing elements have
been used in the HW platform. Table 2.1 gives the list of references per targeted
hardware.

In figure 2.7 (left), we note that the number of research papers targeting GPUs
and CPUs has more or less remained constant. However, we can clearly see that

2.6. OPTIMIZATION STRATEGIES 23

19 38 70 264 314 55

0%

25%

50%

75%

100%

2018 2019 2020 2021 2022 2023

IMC

Multiple

SoC

ASICs

FPGA

No Specific
Target

CPU

GPU

Targeted Hardware Platforms
19 38 70 314264 55

0%

25%

50%

75%

100%

2018 2019 2020 2021 2022 2023

CNN + attention

SNN

GAN

GNN

Transformers

RNN

Capsule + CNN

Extended CNN

Standard CNN

MLP

Types of Neural Networks

Figure 2.7: Statistics on targeted platforms and type of networks described by the
HW-NAS search spaces

FPGAs and ASICs are gaining popularity over the last 3 years. This is consistent
with the increasing number of DL edge applications. Another interesting target for
HW-NAS is In-memory Computing (IMC). This novel hardware platform optimizes
the Matrix-Vector Mutliplication (MVM) and becomes one of the most promising
hardware platforms for AI. We discuss searching for a suitable architecture for IMC
in section 2.9. Another recent work [66, 67] is to consider multiple platforms at once.
This was particularly suitable for mobile settings with different existing System-on-
Chips (SoC).

Figure 2.7 (right) illustrates the different DNN operations that compose the ar-
chitecture search space. We notice that most NAS target CNN architectures. We
divide this category into two groups, standard CNN which only utilizes a standard
convolution, and extended CNN which involves special convolution operations such as
the depthwise separable convolution or grouped convolutions. However, recent works
have started to explore more operators by incorporating RNN, capsule networks [69],
transformers [148],Generative Adversarial Networks (GAN) [149] and more recently
Graph Convolutional Neural Networks (GCN) [150].

2.6 Optimization strategies

In this section, we describe how the HW-NAS problem is formulated and solved using
an optimization strategy.

2.6.1 Hardware-aware NAS Problem Formulation

NAS is the task of finding a well-performing architecture for a given dataset. It is cast
as an optimization problem over a set of decisions that define different components
of deep neural networks (i.e., layers, hyperparameters). This optimization problem
can simply be seen as formulated in equation 2.2.

max
α∈A

f(α, δ) (2.2)

We denote the space of all feasible architectures as A (also called search space).
The optimization method is looking for the architecture α that maximizes the per-
formance metric denoted by f for a given dataset δ. In this context, f can simply be
the accuracy of the model.

Although it is important to find networks that provide high accuracy, these NAS
algorithms tend to give complex models that cannot be deployed on many hardware
devices. To overcome this problem, practitioners consider other objectives, such as
the number of model parameters, the number of floating-point operations, and device-
specific statistics like the latency or the energy consumption of the model. Different

24 CHAPTER 2. HARDWARE-AWARE NEURAL ARCHITECTURE SEARCH

formulations were used to incorporate the hardware-aware objectives within the op-
timization problem of neural architecture search. We classify these approaches into
two classes, single and multi-objective optimization. The single objective optimiza-
tion can be further classified as two-stage or constrained optimization. Similarly, the
multi-objective optimization approach can be further classified as single or multi-
objective optimizations. Please refer to figure 2.8 for a summary of these approaches.
These 2 classes are further detailed with examples from the literature in the following
sections.

Hardware-Aware NAS Methods

Single-Objective Optimization Multi-Objective Optimization

Two-Stage Methods
Search for the best in

terms of accuracy then
compress it

Constrained Optimization
Consider the hardware-cost

as a constraint to the
optimization problem

Scalarization Methods
One objective function with

multiple objective terms:
accuracy, memory, energy...

Pareto-aware Methods
Algorithm considering

multiple objectives
simultaneously

Figure 2.8: HW-NAS problem formulations.

Single-Objective Optimization

Definition

In this class, the search is realized considering only one objective to maximize,
i.e., accuracy. Most of the existing work in the literature [61, 62, 84, 87, 151],
that tackle the hardware-aware neural architecture search, try to formulate the
multi-objective optimization problem into a single objective to better apply
strategies like reinforcement learning or gradient-based methods.

We can divide this class into two different approaches: Two-stage optimization
and constrained optimization.

Two-Stage optimization: In this first category, we retain the original formulation
of the NAS problem and then specify the model for deployment. This approach is
sub-optimal, as the final architecture proposed by the NAS is not always the one that
gives the best performance on the hardware device. Two-stage optimization consists
of applying NAS methods to obtain the best-performing architecture and then in
a second stage, specializing this architecture for deployment on a target hardware
platform. This specialization performs a series of optimization to fit the hardware
requirements. In [116] the authors apply a reinforcement learning agent to find the
best quantization bit-width and pruning level after selecting the most accurate model.
In reference [42] the authors search over a pre-trained and selected architecture to
find the most efficient one in terms of latency and energy consumption.

Constrained optimization: In this approach, the hardware-aware characteriza-
tions are considered constraints in the original NAS formulation. The constraints
take the form of thresholds to be respected. In this approach, inference time, energy
consumption and memory occupation are examples of constraints. The conditions
are added as constraints to the optimization problem to enforce requirements like
fewer parameters or faster inference time. The threshold and the trade-off between

2.6. OPTIMIZATION STRATEGIES 25

different constraints can be adapted to practical requirements. For such cases, the
single-objective optimization problem defined in Equation 2.2 turns into a constrained
optimization problem defined by

max
α∈A

f(α, δ)

subject to gi(α) ≤ Ti ∀i ∈ I
(2.3)

Here, gi corresponds to the different constraints taken into account (e.g., latency,
memory, energy consumption) and Ti denotes the respective threshold. As most of
the optimization methods used by NAS (i.e. reinforcement learning and evolutionary
algorithms) were designed for unconstrained optimization problems, this formulation
is hard to be adopted directly. Therefore, many researchers turned to penalty methods
to transform the equation into a single objective function that contains the hardware
constraints as well as the accuracy measurement [46, 61, 62]. For example, MNASNet
[62], uses equation (2.4), where f is the accuracy measurement function, LAT is the
latency of the model and T is the threshold. They use a learnable parameter w to
control the effect of the hardware constraints on the global objective function.

max
α∈A

f((α) · [LAT (α)/T]w (2.4)

ProxylessNAS [61] uses a loss function that comprises of the cross-entropy (CE)
loss and hardware-aware constraints.

L = LCE + λ1||w||2 + λ2E[latency] (2.5)

Equation 2.5 illustrates the loss calculated by the reinforcement learning agent used
by ProxylessNAS. λ1 and λ2 are learnable parameters that adjust the effect of the
efficiency of the overall loss. Specifically, a policy is learned that decides whether to
add, remove or keep a layer as well as whether to alter its number of filters.

FLASH [146], a dedicated NAS for compute-in-memory devices, optimized an
objective function that consists of minimizing the quotient of the accuracy and HW
efficiency. They used three different metrics for HW efficiency: Latency, area, and
memory consumption.

Multi-Objective Optimization

Definition

To handle multiple fronts in the formalism of a multi-objective optimization
problem defined as:

max
α∈A

f1(α, δ), f2(α, δ), ..., fn(α, δ) (2.6)

In this scenario, there is often no single optimal solution that simultaneously
maximizes every objective function. Additionally, some objective functions
can be conflicting. For instance, trying to minimize the number of parameters
while aiming at maximizing the accuracy. In these situations, the task boils
down to finding Pareto-optimal solutions.

These techniques can:

1. Transform the problem to a single-objective optimization using the scalarization
method, also called the weighted sum method or,

2. Solve the multi-objective optimization problem using dedicated heuristics or
meta-heuristics such as genetic algorithms or tabu search [114]. In general, this
second approach provides not one optimal solution but a set of solutions that
form the optimal Pareto front of the multi-objective optimization problem.

26 CHAPTER 2. HARDWARE-AWARE NEURAL ARCHITECTURE SEARCH

Scalarization Methods: One way to solve the multi-objective optimization prob-
lem is to use a scalarization approach. Equation 2.7 formulates this method. We use
a parameterized aggregation function h to transform the multi-objective optimization
problem into a single-objective optimization problem.

max
α∈A

h(f1(α, δ), f2(α, δ), ..., fn(α, δ)) (2.7)

The function h can be a weighted sum, a weighted exponential sum, a weighted
min-max, or a weighted product. However, in most situations, not all Pareto optimal
solutions can be found in solving this problem with a fixed setting of the weights.
Therefore, the problem is solved for multiple values of the vector w which requires
multiple optimization runs. To mitigate the cost of having multiple runs, researchers
commonly use a set of fixed weights according to the desired trade-off between the
objectives and the practitioners’ preferences. Thanks to the scalarization, the prob-
lem becomes a single-objective optimization problem which can be solved by any
optimizing methods discussed in Section 2.6. For example, [99] proposes to use the
weighted sum as the objective function. The proposed formulation of this function is
described by equation 2.8. ACC refers to the accuracy metric, E refers to the energy
consumed by the architecture α, and w is a learned parameter to adjust the effect of
the energy on the reward function.

max
α∈A

w ·ACC(α, δ)− (1− w) · E(α) (2.8)

Pareto-aware Methods: Recently, there has been an emerging approach to tackle
the design of neural architectures as a pure multi-objective problem. This approach
considers the conflicting objectives of task-specific performance and hardware effi-
ciency, aiming to strike a balance between the two. The outcome is a set of archi-
tectures that lie on the Pareto front, representing the trade-off between performance
and efficiency. This Pareto front provides a valuable resource for selecting architec-
tures that best align with the requirements of a target device or deployment scenario.
The final set of architectures offers flexibility and adaptability, allowing practition-
ers to choose the most suitable architecture based on their specific needs, whether
it be optimizing for accuracy, latency, power consumption, or other desired criteria.
In addition, these architectures can be leveraged to adapt to the hardware battery
life, which is a crucial consideration for mobile and battery-powered devices. When
the battery is low, selecting an architecture from the Pareto front that prioritizes
energy efficiency, can extend the battery life of their devices without compromising
significantly on task-specific performance.

For example, the elitist evolutionary algorithm Non-dominated Sorting Genetic
Algorithm (NSGA) [152] is used. In this algorithm, the architectures are divided into
fronts based on their dominance. The architecture in the i-th front is only dominated
by all the architectures in the 1, . . . , i − 1 fronts. Within each front, the architec-
tures are prioritized by the crowding distance, which is computed by the sum of all
the neighborhood distances across all the objectives. HW-NAS works [104, 113, 153]
have been using the NSGA-II algorithm to ensure the exploration of diverse architec-
tures in the search space. Moreover, NSGANet [104] uses Bayesian Optimization to
profit from search history. MoreMNAS [153] uses a hybrid search strategy combining
NSGA-II with reinforcement learning to regulate arbitrary mutations.

2.6.2 Search Algorithms

In this section, we will explore several search algorithms that are commonly used
in HW-NAS. Figure 2.9 shows the popularity of the most used search algorithms.
These algorithms are borrowed from the operational research field and applied to the
HW-NAS problem.

2.6. OPTIMIZATION STRATEGIES 27

19 38 70 264 314 55

0%

25%

50%

75%

100%

2018 2019 2020 2021 2022 2023

Others

Bayesian
Optimization

Gradient-based

Reinforcement
Learning

Evolutionary-based

Random Search

Figure 2.9: Commonly used search algorithms

Reinforcement Learning (RL)

Most HW-NAS methods use reinforcement learning to search for the best architecture
[62, 65, 83, 84, 87, 151, 154, 155] because the NAS problem is easily modeled as a
Markov Decision Process. The RL controller samples an architecture from the search
space and is rewarded according to its accuracy and hardware cost. The controller
will then adjust its weights to generate better models. Different works differ on how
they represent the agent’s policy (set of actions) and how they optimize it.

Using reinforcement learning, MNASNet [62] tries to find the Pareto optimal
solution of the objective function described in equation 2.4. It uses a sample-eval-
update loop to train its RNN controller. To generate a block, the controller will first
choose two hidden states (i.e., outputs of previous blocks) as inputs. Then, it will
select an operation to apply to each one of them. Finally, it selects a combination
method (e.g., addition or concatenation) to obtain the final output of the block. This
implementation has been defined by NASNet [156] before. Once a model is sampled,
it is trained on the target task to get its accuracy and deployed on real phones to
get its latency. The system computes the reward value and adjusts the controller
parameters accordingly.

A similar approach was used by FPNet [151] but the RNN controller predicts
only the architectural hyperparameters (i.e., number of filters, filter height and width,
stride height and width. etc.) while keeping the macro architecture fixed.

Codesign-NAS [84] proposes to use reinforcement learning to explore both ar-
chitecture and hardware search spaces. The authors investigated three RL-based
search strategies and use the REINFORCE algorithm to improve the accuracy and
efficiency of image classification on FPGA. The first strategy consists of combining the
two search spaces and updating the CNN and accelerator options at the same time.
The second method uses two different controllers, one to learn the CNN architecture
and another one to select the best FPGA options. The last one is a conventional
NAS where they separately search for the best model in terms of accuracy then as a
completely separate step look for the most efficient model. An expected result is that
this latter strategy gives bad results when it comes to the constrained environment.
An interesting result is that the second method (i.e., phase search) seems to be the
most promising achieving higher rewards in most of their experiments.

28 CHAPTER 2. HARDWARE-AWARE NEURAL ARCHITECTURE SEARCH

Evolutionary Algorithm (EA)

Another popular strategy in conventional NAS is the use of evolutionary algorithms
[157, 158]. Generally, evolutionary search algorithm-based NAS evolves a population
of models, samples some models to generate offsprings by applying some mutations,
and finally evaluates the fitness of the offsprings and updates the new generation
by adding the best ones to the population. When it comes to integrating the hard-
ware constraints to the NAS algorithms, some research efforts have used evolutionary
algorithms [63, 69, 76, 90].

TinyNAS [90] uses a hardware-aware search space approach. It first optimizes
the search space to fit the tiny and diverse resource constraints and then performs
an evolution search algorithm within the optimized search space to find the most
accurate model. The evolution search is performed on a trained super network that
contains all the possible sub-networks. First, they sample 100 satisfying networks
that fit the resource constraints. Then, just like conventional NAS, they measure
the validation accuracy of each model, mutate the offspring and update the new
generation. This process is repeated for 30 iterations.

Once-for-all [42] proposes a special technique to train the supernetwork using
gradient-based methods called progressive shrinking. A supernetwork is another
name for an over-parameterized network. In their version, the supernetwork includes
the highest values for the width, depth and channel number in each convolution. The
process begins by training for larger width, depth, and channel numbers and then
fine-tune the network for the smaller sizes. Once the supernetwork is trained, they
specialize the network using an evolutionary algorithm for different hardware settings
with a combined cost of accuracy and latency.

HAT [76] is interesting because to our knowledge it is the only work that is
trying to search for efficient transformers, targeting NLP tasks. The authors perform
an evolutionary search with hardware latency constraints on a SuperTransformer.
This means the engine only adds SubTransformers with latency smaller than the
hardware constraint to the population.

NASCaps [69] proposes a NAS framework that generates Capsule Networks along
with CNN. The proposed framework uses a multi-objective Genetic Algorithm (based
on NSGA-II, see section 4.2) to pick the Pareto optimal solutions. The two key
operations are the crossover and mutation. In the crossover, they define the splitting
point by ensuring that the generated DNN is made up of at least on initial convolution
layer and a minimum of two capsules. No standard convolution is placed between
two capsule layers. The mutation is performed by randomly choosing one of the layer
descriptors from the candidate network and modifying one of the main parameters of
the selected layer.

Gradient-Based Methods

Arguably the most promising search strategy promising in terms of results, Gradient-
based methods are increasingly used by hardware-aware NAS [46, 61, 67, 75, 159] and
NAS generally. Running the search separated from the evaluation requires a lot of
time and computation. Therefore, a common idea is to have a supernetwork that can
emulate any child model in the search space. This means that different parts of the
graph share weights between their common edges. This idea of weight sharing has the
advantage of considerably reducing the search time. Gradient-based methods train
the supernetwork to simultaneously get the architecture parameters and weights.
This technique has been initiated by DARTS [160].

ProxylessNAS [61] is one of the papers pioneering this method. It defines a
supernetwork with binary architecture parameters (i.e., 1 implies that the operator
is selected in the layer and 0 otherwise). The loss function combines the cross-
entropy and the latency to better update the weights and architecture parameters.
An approach similar to BinaryConnect [161] is used to update the binary architecture

2.6. OPTIMIZATION STRATEGIES 29

parameters using an approximation of the gradient w.r.t architecture parameters.
FBNet [46] proposes to use differentiable neural architecture search to discover

hardware-aware efficient CNNs. They also use a combination of the cross-entropy
and latency to train their supernetwork using stochastic gradient descent. Rather
than using binary parameters, they relax the problem of finding the best architecture
to finding a distribution that yields to the best model.

SqueezeNAS [75] focuses on semantic segmentation and uses a method very
similar to FBNet [46]. HTAS [67] uses a gradient-based method to find the best
width and depth for their transformable CNNs.

XNAS [159] proposes to use the prediction with expert advice theory [162] for
the selection. It leverages the Exponentiated-Gradient algorithm (EG) [163] rather
than the classical gradient descent which prevents the decay of architecture weights
to promote the selection of arbitrary architectures.

Many recent works [164, 165] have provided evidence that weight sharing does not
respect the ranking of architecture. Which yield sub-optimal search results. They
both suggested using smaller search spaces to alleviate this issue. However, it is
meaningless to search in a narrow search space, as a small search space will lead to a
very narrow accuracy range.

One major challenge when applying gradient-based optimization is the loss func-
tion must be differentiable w.r.t the architectural parameters. Also, we need to check
that the incorporated hardware cost is differentiable. Several methods have been
used to make the gradient computation over discrete variables possible and extend
the original DARTS proposal [166].

• Gumbel Softmax [167] One way to relax the discrete variables is to use the
Gumbel Softmax function. It helps insert some random noise following the
Gumbel distribution so that the gradient computation is possible. This tech-
nique was used by FBNet [46, 168].

• Estimated Continuous Function ProxylessNAS [61] mimics the concept of
BinaryConnect [161]. They approximately estimate the gradient w.r.t the ar-
chitecture parameters using the gradient w.r.t the binary gates. To reduce the
computational cost, they compare the gates two-by-two by factorizing the task
of using one out of N paths into multiple binary selection tasks.

• REINFORCE algorithm An alternative approach to BinaryConnect is also
proposed by ProxylessNAS [61]. They utilized REINFORCE to train the bina-
rized weights. Furthermore, they combine the gradient-based update rule to the
REINFORCE updates to form a new general update rule for the architecture
parameters.

OFA [169] introduces a technique for searching optimal architectures adaptable
to various hardware and latency constraints. It involves training a supernetwork
with multiple sub-networks of different architectures and computational costs. Sub-
networks are randomly sampled and trained on different data batches, and their accu-
racy and computational cost are evaluated on a validation set. The best-performing
sub-networks are selected for deployment.

While OFA focuses on finding a single architecture for diverse platforms, our
methodology, PRP-NAS [6], aims to simultaneously optimize multiple objectives,
resulting in a set of Pareto-optimal solutions. We do not apply for any post-search
specialization.

Bayesian Optimization (BO)

Bayesian Optimization (BO) is a powerful technique that has been increasingly ap-
plied in HW-NAS to efficiently identify the best neural network architecture for a
given hardware platform. Generally, BO is used for hyperparameter optimization.

30 CHAPTER 2. HARDWARE-AWARE NEURAL ARCHITECTURE SEARCH

This approach leverages Bayesian statistical methods to optimize a surrogate func-
tion that models the performance of different neural architectures on the hardware
platform. The use of Bayesian optimization balances the exploration-exploitation
trade-off, using an acquisition function to guide the search toward promising regions
of the architecture space. This ultimately leads to more efficient and effective searches,
as the number of architectures that need to be evaluated on the hardware platform is
reduced. For instance, [170] propose a hardware-aware Bayesian optimization frame-
work for NAS, which they evaluate on several datasets and hardware platforms. The
results demonstrate that their approach effectively discovers architectures that out-
perform state-of-the-art networks while satisfying hardware constraints.

Random Search (RS)

The most convenient and easiest search strategy to implement is the random search
strategy. Most of the existing works that have adopted random search optimize the
architectural hyperparameters within a fixed macro architecture. They argue that
it is more important to design the architecture search space for the targeted hard-
ware platform than to complicate the search strategy and incorporate the hardware
constraints in the objective function. NASNet [43], for example, tried both methods
(i.e., reinforcement learning and random search). They found that with reinforcement
learning the results are slightly better (Top-1 accuracy on CIFAR-10, 0.912 - 0.925).

Li et al. [171] investigate the use of random search on two standard NAS bench-
marks (i.e., PTB and CIFAR-10). They use an approach that is similar to Proxyless-
NAS [61] which allows them to train a single network at a time and thus reduce the
memory footprint with weight sharing. As a result, they show that random search
with early-stopping is a competitive NAS baseline as it outperforms ENAS [172].
Furthermore, random search with weight-sharing outperforms random search with
early stopping, achieving State-Of-The-Art (SOTA) results on Physikalisch Technis-
che Bundesanstalt (PTB). A more recent investigation [107] showed that random
search cost time is not negligible and is comparable to NAS methods.
Besides, other HW-NAS uses novel optimization strategies that come from opera-
tional research. For example, FLASH [146] uses Simplicial Homology Global Opti-
mization (SHGO) [173] to search for the optimal architecture for an IMC accelerator.
SHGO proves to converge with fewer samples than RL.

2.7 HW-NAS Estimation Strategies

In HW-NAS, one needs to estimate task-specific performance and the model’s hard-
ware efficiency.

An important component in HW-NAS is the hardware cost measurements. First
of all, many metrics have been used in order to evaluate the hardware efficiency
of an architecture including the number of FLOPs, the number of parameters, the
execution time of the inference named also latency, the energy consumption, the
memory footprint, the area of the hardware platform, etc. In this section, the existing
approaches for hardware cost measurements are detailed:

• Floating Point Ops per Second (FLOPS) & Model Size: The first HW-NAS
approaches that were published in 2016 and 2017 [174, 175] use the number of
parameters and number of FLOPs as an objective function to minimize. These
techniques assume that the number of operations is positively correlated to the
execution time. However, recent works have proved that two models can have
the same number of FLOPs but different latencies [63, 76, 176]. For example,
NASNet-A and MobileNetV1 have roughly similar numbers of FLOPs, yet,
NASNet-A can have slower latency due to the hardware-unfriendly structure.
Therefore, using FLOPs as the hardware cost metric is not efficient and may
return suboptimal models. On the other hand, using the model size represented

2.7. HW-NAS ESTIMATION STRATEGIES 31

Table 2.2: Summary of Hardware Cost Estimation Methods.

Method Implementation HW Cost Metric References

Real-world
measurements

The sampled model is executed
on the hardware target

Latency MNASNet [62]
NetAdapt [177]
Z. Guo et al. [133]
MCUNet [90]

Energy NetAdapt [177]
MONAS [99]
C. Gong et al. [178]

Lookup Table Mod-
els

A lookup table is created before-
hand and filled with each opera-
tor latency on the targeted hard-
ware. Once the search starts, the
system will calculate the overall
cost from the lookup table

Latency FBNet [46] Hot-
NAS [87]

Analytical
Estimation

Compute a rough estimate using
the processing time, the stall
time, and the starting time

Latency FNAS [154]
NASCaps [69]
A. Anderson et al.
[180]
Q. Lu et al. [83]

Energy NASCaps [69]
Memory footprint NASCaps [69]
Area NASAIC [65]

Prediction Model
Build an ML model to predict
the cost using architecture and
dataset features

Latency proxylessNAS
[61] NASAIC [65]
NeuNets [105]
LEMONADE [99]

by the number of parameters allows for a reduction of the memory footprint and
tends to be considered an automatic method to search for compressed models
[140].

• Latency: Searching for low-latency architectures at inference time is crucial for
real-world applications such as autonomous driving and traffic control. More-
over, resource-limited devices have latency constraints. Thus, a lot of works
consider the latency in their objective function and search for the trade-off
between inference time and accuracy.

• Energy Consumption: Energy is usually profiled by the provided hardware
platform profilers such as nvprof by NVIDIA. The energy can be formalized
either as the peak power consumption or the average power, both metrics are
used by different HW-NAS works including [99, 177, 178].

• Area: Another metric that interests chip manufacturers is its area. The goal is
to get the smallest chip possible that could run the best model. Authors in [65]
use MAESTRO [179] to explore the area and power consumption and search
for the best model and best ASIC templates within a set of pre-defined ones.
The area of the circuit is also a good indicator of static power consumption.
These two values are correlated.

• Memory footprint: We can get the model size by calculating the number of
parameters it needs to learn but a more efficient way is to profile how much
memory it uses while running; this is the memory footprint. Having a low
memory footprint is important for edge devices. These devices are not able to
run models with high memory footprints. To reduce the memory footprint in
edge devices, techniques like those presented in Section 2.8 are applied.

Table 2.2 summarizes all the methods used to estimate the latency, and energy
consumption in different HW-NAS methods.

Real-world measurements provide high accuracy in measuring the hardware ef-
ficiency of an architecture. MnasNet [62] uses this method in the exploration. It

32 CHAPTER 2. HARDWARE-AWARE NEURAL ARCHITECTURE SEARCH

achieves 75.2% top-1 accuracy with 78ms latency on a Pixel phone platform, which
is 1.8x faster than MobileNetV2 with 0.5% higher accuracy. However, this method
considerably slows down the search algorithm by averaging hundreds of runs to get
precise measurements. Additionally, this strategy is not scalable and requires that
all the hardware platforms are available. This solution could be costly and needs
a lot of mobile devices and software engineering work. For this reason many works
tend to use prediction models [61, 63, 82, 83, 86, 154] or pre-collected lookup tables
[46, 84, 87] or analytical estimations [69, 154].

In ProxylessNAS [61] the authors have developed three latency prediction models
for three different platforms: mobile phone (Google Pixel 1), GPU (NVIDIA V100),
and CPU (Intel Xeon). To build their mobile latency predictors, they use the type of
operators, input and output feature map sizes, and other architectural hyperparame-
ters as features. The real values for Pixel 1 have been measured with Tensorflow-Lite
as software. On ImageNet, their model achieves 3.1% better top-1 accuracy than
MobileNetV2, while being 1.2x faster with measured GPU latency.

In NASCaps [69], the functional behavior of a given specialized CNN and Cap-
sNet hardware accelerator is modeled at a high level, to quickly estimate the memory
usage, energy consumption, and latency. The HW platform, the ASIC CapsAcc in
the paper, is described at the RTL level. Using a VLSI CAD tool and the RTL spec-
ifications, energy, memory, and latency costs of elementary operations are measured.
Elementary operations’ cost corresponds for example to the number of cycles and
energy required to execute a layer. These values are then multiplied by the number
of occurrences of each operation in the architecture and accumulated to obtain the
total cost for the latency and energy.

Although these techniques are efficient, they require hardware experts to build the
models. For the lookup table method, for example, the researcher needs to dedicate
a lot of time to optimizing the code of each operator/architecture in the targeted
hardware, which requires compilation knowledge. Similarly, to build the best model
predictor, the researcher needs expert knowledge to select the best features and verify
the results. Therefore, these methods impose a barrier to non-hardware experts.

In order to fairly compare the accuracy of each method, we conducted exper-
iments to compute the latency of each architecture in NAS-Bench-101 [181]. The
aim is to compare 4 methods: real-world measurements, lookup table, prediction
model, and analytical estimation. For the lookup table, we calculated the latency of
each operator used in the cell of the benchmark including Identity, Conv3x3BnRelu,
Conv1x1BnRelu, MaxPool3x3, BottleneckConv3x3, BottleneckConv5x5, and Max-
Pool3x3Conv1x1.

When a cell is generated, we sum the latency of the constructing operators and the
latency of the whole cell is obtained. For the prediction model, we used two different
models: a simple MLP and XGBoost, both trained on the real-world measurements
of a portion of the benchmark (training set). We choose these two methods because
they are both used by popular HW-NAS in [61] and [46] respectively. Lastly, for the
analytical estimation, we computed the number of MAC for the cell and multiply this
value by the latency of one multiply-add tensor instruction.

This experiment was run on a Tesla K80 GPU, the prediction model MLP had
to run for 50 epochs with early stopping. NAS-Bench-101 defines more than 400k
cells, we have done our test on 165,580 cells. The search algorithm used to calcu-
late the search time is an evolutionary algorithm based on the validation accuracy
given by the benchmark and the latency measured by the different methods. Figure
2.10 presents the results of the accuracy values of different methods. In this figure,
the performance of the estimation is represented by the Root Mean Square Error
(RMSE) which corresponds to the deviation relative to real-world measurements. As
expected, the analytical estimation does not produce good results compared to the
prediction models or the lookup table method. The prediction models even with a
simple XGBoost give the best results and accelerate the search more than 5 times

2.8. OTHER CONSIDERATIONS FOR HARDWARE-AWARE NAS 33

compared to the real-world measurements.

Real-time
measurements

LUT MLP XGBoost Analytical
simulation

Estimation Strategies

0

1

2

3

4

5

Se
ar

ch
 t

im
e

0

1

2

3

4

5

RM
SE

Figure 2.10: Comparison of hardware cost measurement methods. LUT stands for
Look Up Table. The speedups are calculated w.r.t Real-world measurements

2.8 Other Considerations for Hardware-aware NAS

Prior to and in parallel with the hardware-aware NAS efforts, researchers have been
working on reducing the memory footprint of DL models and execution time to fa-
cilitate the efficient deployment and design of hardware-friendly models. Two main
methods have been used, namely handcrafting new operators that are more effi-
cient such as separable convolutions [49], grouped convolutions [28] and applying DL
optimizations such as quantization [182] and pruning [183]. This latter method is
automated by several NAS works to compress the model and make it possible to exe-
cute on different hardware accelerators. Moreover, reducing the number of learnable
parameters makes the training faster. For instance, SAL [184] reduces the number
of parameters of ResNet-56 from 1.22M to 0.36M without significant degradation of
the model’s accuracy; 0.6% decrease.

In this section, we will define the two most used DL optimizations and review the
NAS works that focus on searching for the right optimization parameters.

2.8.1 Automatic Mixed-Precision Quantization

In the DL compression field, quantization is one of the most important methods.
Starting with BinaryConnect [161] in 2015 to binarize CNNs weights, it is now imple-
mented in many DL software such as PyTorch or TensorFlow. The idea is that the
weights of the DL model do not have to be represented in full 32-bit precision and
can be represented in 8-bits precision, or even binary values in some cases, without
significantly decreasing the model’s accuracy. This idea was extended to the activa-
tions and weights [185]. Recently, mixed-precision quantization that applies different
bit-width values for different layers in the same network has been proposed.

HAQ [186] implemented a dedicated reinforcement learning agent that learns to
assign the right bit-width to each layer. Their goal is to specialize the architecture
to a specific hardware platform by incorporating hardware constraints and accuracy
into the reward function. For each layer, the agent takes two decisions: one for the
weights and another one for the activations.

Single-Path [133] proposes an evolutionary algorithm that searches for the
mixed-precision quantization policy. However, the search costs a huge amount of

34 CHAPTER 2. HARDWARE-AWARE NEURAL ARCHITECTURE SEARCH

time and processing as the space for mixed-precision is enormous.
BP-NAS [187] cast the mixed-precision quantization problem as a constrained

optimization. In addition, it proposes a new constraint that encourages the model to
focus on valid architectures while imposing a large punishment for the quantization
outside the valid domain.

Although these works present interesting solutions to the mixed-precision problem,
the huge search space and computational cost of the learning process still represent
a real challenge. Furthermore, mixed-precision representation requires specific MAC
architectures with scalable precision. This places a cap on the power efficiency, ac-
cording to this study [188]. With this in mind, [189] proposes a uniform quantization
search algorithm called neural channel expansion (NCE). NCE expands the num-
ber of channels of a layer when it is more sensitive to the quantization error while
maintaining the same precision level.

2.8.2 Automatic Pruning

The second prominent compression method is pruning. Pruning methods eliminate
some neurons or connections according to a defined criterion to reduce the number of
parameters in the architecture. Generally, we evaluate the importance of the neurons,
we prune the least important ones, and finally, we fine-tune the network.

AMC [116] proposes an automatic model compression that looks for the optimal
sparsity for each layer during pruning. The authors trained a reinforcement learning
agent to predict the best sparsity for given hardware. The reward function includes
accuracy and FLOPs after pruning the architecture.

X. Dong and Y. Yang in [190] propose to prune the over-parameterized network
without performance damage. They directly search within their NAS process for a
network with flexible channel and layer sizes. ABCPruner [191] uses an artificial
bee colony algorithm to efficiently find the optimal pruned structure. Another worth
mentioning paper is Partial Order Pruning [192] which proposes a hardware-aware
NAS that prunes the search space with a partial order assumption to look for the
best speed and accuracy trade-off.

2.8.3 Security and Reliability Considerations in NAS

Other NAS methods try to address safety-critical issues by discovering architectures
that are robust against adversarial attacks [193, 194]. RAS [193] formulates robust-
ness as the sum of the accuracies on a bunch of adversarial samples. This robust
evaluation makes it easier for the evolutionary algorithm to select better architecture
in the population and apply different mutations (e.g., add a block, remove a block,
add a connection...). Along with [195], they reveal these observations: first, the more
dense the architecture is the more robust it is, second, under computational budget,
adding convolution operations to direct connection edge is effective, and finally, flow
of solution procedure (FSP) matrix is a good indicator of network robustness. Please
note here, that none of the NAS methods that consider security and reliability in the
search place is hardware-aware.

2.9 In-memory Computing & HW-NAS

One promising technology for edge hardware accelerators is analog-based in-memory
computing, which is herein referred to as analog in-memory computing (IMC).
IMC [196] can provide radical improvements in performance and power efficiency,
by leveraging the physical properties of memory devices to perform computation and
storage at the same physical location. Many types of memory devices, including
Flash memory, Phase Change Memory (PCM), and resistive random-access mem-
ory (RRAM), can be used for IMC [197]. Most notably, analog IMC can be used

2.9. IN-MEMORY COMPUTING & HW-NAS 35

to perform Matrix-vector multiplication operations in O(1) time complexity [198],
which is the most dominant operation used for DNN acceleration. Besides, tradi-
tional von Neumann architecture, where the processor and memory are separate,
leads to significant data movement, which is a bottleneck for AI applications. In-
memory computing devices, on the other hand, allow for computation and storage
to be integrated, reducing the need for data movement and enabling faster and more
energy-efficient computations. Additionally, in-memory computing devices can sup-
port analog computation, which is better suited for neural network computations than
the digital computation used in traditional processors. As AI applications continue
to grow in complexity and scale, the importance of in-memory computing devices for
accelerating AI computations will only continue to increase.

It is crucial to design DL architectures that are specifically optimized for such
hardware. While in-memory computing devices can significantly improve the speed
and efficiency of neural network computations, they have unique characteristics that
need to be taken into consideration when designing DL architectures. In-memory
Computing (IMC) devices have, for instance, limited precision and may not support
all operations that are typically used in DL models. Another important constraint
that needs to be considered when designing DL architectures for In-memory Com-
puting (IMC) devices is the presence of noise in the devices. In-memory Computing
(IMC) devices are susceptible to various types of noise, such as read noise and write
noise, which can affect the accuracy of computations. DL architectures need to be
resilient on top of being accurate and hardware efficient.

Many works [199, 200, 201, 202] target In-memory Computing (IMC) accelerators
using HW-NAS. FLASH [199] uses a small search space inspired by DenseNet [203]
and searches for the number of skip connections that efficiently satisfy the trade-off
between accuracy, latency, energy consumption, and chip area. Its surrogate model
uses linear regression and the number of skip connections to predict model accuracy.
NAS4RRAM [201] uses HW-NAS to find an efficient DNN for a specific Resistive Ran-
dom Access Memory (RRAM)-based accelerator. It uses an evolutionary algorithm,
trains each sampled architecture without hardware-aware training, and evaluates each
network on a specific hardware instance.

NACIM [200] uses co-exploration strategies to find the most efficient architecture
and the associated hardware platform. For each sampled architecture, networks are
trained considering noise variations. This approach is limited by using a small search
space due to the high time complexity of training. UAE [202] uses a Monte-Carlo
simulation-based experimental flow to measure the device uncertainty induced to a
handful of DNN. Similar to NACIM [200], evaluation is performed using hardware-
aware training with noise injection.

AnalogNet [204] extends the work of Micronet by converting their final models to
analog-friendly models, replacing depthwise convolutions with standard convolutions,
and tuning hyperparameters.

Our work, AnalogNAS [9] offers a better adaptation to analog IMC hardware
compared to the aforementioned SOTA HW-NAS strategies. This is primarily due to
two reasons. Firstly, our search space, which features resnet-like connections, is much
larger and more representative. This expanded search space allows us to address
the crucial question of identifying architectural characteristics suitable for analog
IMC, which cannot be adequately explored with smaller search spaces. Secondly, in
addition to the noise injection during HWA training utilized by existing approaches,
we directly incorporate the inherent characteristics of analog IMC hardware into the
objectives and constraints of our search strategy. Details of the methodology are
given in Chapter 5.

36 CHAPTER 2. HARDWARE-AWARE NEURAL ARCHITECTURE SEARCH

2.10 Challenges and Limitations

In this section, we lay down the main challenges and barriers that prevent us to unfold
hardware-aware NAS’s full potential. Most of the challenges are also applicable to
general NAS methods.

2.10.1 Benchmarking and Reproducibility

An important challenge while working on NAS and HW-NAS is the reproducibility of
the methods, which allows comparisons and concrete improvements. Unfortunately,
due to the use of different search spaces, various training methods, and the required
significant computational resources, reproducibility is a difficult step. This difficulty
is even higher when it comes to HW-NAS considering the numerous possibilities of
targeted hardware devices. To address this issue, many works [148, 181, 205, 206]
have proposed different benchmarks and data sets that allow NAS researchers to:

• Eliminate the cost of generating a search space by querying directly a tabular
data set.

• Evaluate different search strategies on the same search space which allows a fair
comparison between them.

• Provide data sets to be used by accuracy predictor models and hardware cost
models.

• Open HW-NAS research to non-hardware experts by proposing datasets that
contain the hardware-related metrics. These metrics are usually obtained af-
ter optimization of the operators and software that require specific hardware
knowledge.

In this section, we will review each NAS benchmark and highlight its strengths and
weaknesses. Table 2.3 summarizes the properties of the different benchmarks.

2.10. CHALLENGES AND LIMITATIONS 37

Table 2.3: Comparison of NAS Benchmarks

NAS-
Bench-
101
[181]

NAS-
Bench-
201
[205]

NATS-
Bench
[207]

NAS-
Bench-
1shot1
[206]

NAS-
Bench-
NLP
[148]

NAS-
Bench-
301[208]
(DARTS)

HW-NAS-
Bench [209]

Arch Search Space Cell-
based
CNN

Cell-
based
CNN

Cell-
based
CNN

Super
Net-
work
CNN

Cell-
based
LSTM

Super
Network
CNN

Cell-based
CNN (NAS-
Bench-201 +
FBNet)

Size (number of architectures) 423k 15,625 15,625 363,648 14k 1018 46875 + 1021

Datasets
CIFAR-10 ✓ ✓ ✓ ✓ ✓ ✓
CIFAR-100 ✓ ✓ ✓ ✓ ✓
ImageNet ✓ ✓ ✓
PTB ✓
WikiText2 ✓

Metrics

Validation Ac-
curacy

✓ ✓ ✓ ✓ ✓ ✓ ✓

Training Time ✓ ✓ ✓ ✓ ✓ ✓ ✓
Trained Param-
eters

✓ ✓ ✓ ✓ ✓

FLOPs ✓ ✓ ✓
Test Accuracy ✓ ✓ ✓ ✓ ✓ ✓ ✓
Latency ✓ ✓ ✓ ✓ ✓
Energy ✓

Predictor Models ✓ ✓

Hw
Platforms

GPU GTX
1080Ti

GTX
1080Ti

Not
Men-
tioned

Not
men-
tioned

Tesla
V100-
SXM2

Not Men-
tioned

Edge GPU
Jetson TX2

Edge TPU Edge TPU
Dev Board

Smartphone Pixel 3
Raspberry Pi Raspi 4
FPGA Xilinx

ZC706
ASICs ASIC-

Eyeriss

NAS-Bench-101 [181]1 is a tabular dataset that maps 432k unique architec-
tures to their relative training accuracy, validation accuracy, testing accuracy as well
as training time and the number of trained parameters. Each architecture is trained
for various numbers of epochs 4, 12, 36, 108. The architectures follow a fixed macro
architecture, with searchable cells stacked (See the section 2.5.1). Each cell is con-
structed with up to 7 layers that can include 3 types of operations: 3x3 conv, 1x1
conv, and 3x3 max-pooling. NAS-Bench-101 allows flexibility by allowing different
layers to be used in the stacked cells. The search space is constrained by limiting
the number of edges to 9 and the number of nodes to 7 including the input and
output nodes for each cell. However, not including operations such as separable con-
volution or dilated convolutions; which significantly improved the model’s size and
speedup [40], makes the resulting models parameter-heavy, which is not hardware-
friendly in terms of memory footprint. Another downside of this benchmark is the
inability to use a one-shot optimizer NAS, this is due to the tabular format. To enable
the evaluation of weight-sharing NAS methods, two benchmarks have been released
NAS-Bench-201 [205]2 and NAS-Bench-1Shot1 [206]3.

NAS-Bench-201 represents 15,625 architectures using a fixed cell-based macro
architecture. Similar to NAS-Bench-101, it uses a predefined set of operations includ-
ing conv 3x3, conv 1x1, Avg pooling, skip connection and no operation label. Each
architecture is trained on three different datasets with different complexities namely,
CIFAR-10, CIFAR-100, and imagenet-16. The authors extended this benchmark and
presented it a year later NATS-Bench. NATS-Bench [207] increased the search

1Open sourced at https://github.com/google-research/nasbench
2Open sourced at https://github.com/D-X-Y/AutoDL-Projects
3Open sourced at https://github.com/automl/nasbench-1shot1

38 CHAPTER 2. HARDWARE-AWARE NEURAL ARCHITECTURE SEARCH

space size by varying the sizes of their architectures.
Similarly, NAS-Bench-1Shot1 presented a new reformulation to reuse the even

much more extensive computation of the NAS-Bench-101 dataset (120 TPU years)
to create three new one-shot search spaces with growing complexity containing 6240,
29160, and 363648 architectures. In order to use the expensive experimentation
done by NAS-Bench-101, the authors created a one-shot architecture that contains
all the discrete cell architectures defined by NAS-Bench-101. This allows the search
algorithm to only train the supernetwork and get the performance of each path from
the NAS-Bench-101. Therefore, their benchmark construction does not need any
additional cost.

Alternatively, NAS-Bench-NLP defines a tabular benchmark for NLP tasks.
Their cell-based search space is constructed based on an LSTM Macro-architecture
borrowed from AWD-LSTM [210]. Each cell can contain up to 24 nodes with 3
hidden states and 3 linear input vectors. With these constraints and a set of operators
composed of the most used activations in recurrent cells, they are able to build LSTM,
Gated Recurrent Unit (GRU) cells, and many more. The architectures are trained on
Penn Tree Bank (PTB) dataset [211] and a sub-sample of the best-performing ones
are also trained on WikiText-2 [212], which is a more realistic dataset for real-world
NLP problems.

A major disadvantage of these benchmarks is the size and diversity of their search
spaces. Indeed, as presented by the experimentation results we obtained in figure
2.11, on the small dataset NAS-Bench-201, a local search, which is the simplest
optimization strategy, achieves state-of-the-art results without a significant search
time compared to other search strategies, except NAS without training [213]. In this
experiment, we compare the different results obtained by different NAS approaches
on the NAS-Bench-201. Most of them use the metrics provided by the benchmark
along with fine-tuning the architecture to obtain a more accurate validation metric,
except NAS without training [213]. The NAS search without any further training
achieves decent results within 17sec of the search. By dividing the benchmarks into
N mini-batches, they increase their training efficacy. The higher this number is (N),
the higher the over-fitting probability on the benchmark. Therefore, using small
datasets with complex search algorithms does not yield any good results in terms of
the accuracy of the final architecture or efficiency of the search.

Figure 2.11: Results of different search algorithms on NAS-Bench-201.

NAS-Bench-301 is a much bigger benchmark that was designed to overcome the
over-fitting problem on the architectures. It is based on DARTS [160] search space.
Since the DARTS search space is far too large to be exhaustively evaluated by real-

2.10. CHALLENGES AND LIMITATIONS 39

world measurements, the authors built a surrogate model capable of predicting the
various performance metrics. This model is trained on a subsample of the benchmark,
60k architectures whose latencies have been measured on CPUs.

A more recent paper introduced the first hardware-aware NAS benchmark, HW-
NAS-Bench [209]. This work extends the number of hardware metrics and records
the latency and the energy consumed on 7 hardware devices including commercial:
NVIDIA Edge GPU Jetson TX2, NVIDIA Edge GPU Jetson Nano, Raspberry Pi 4,
Edge TPU Dev Board, Pixel 3, ASIC-Eyeriss, and Xilinx ZC706 board. Its search
space is a combination of FBNet [46] search space and NAS-Bench-201.

Although these datasets provide a good start to test different search strategies,
they lack a lot of important operators that can significantly change the resulting
architecture for hardware-aware NAS. In addition, we note a growing number of
different applications of NAS in various tasks such as image restoration [214, 215, 216,
217], semantic segmentation [68, 75], and medical segmentation [131, 218]. Therefore,
there is a growing need for proper benchmarks for each of the diverse tasks.

2.10.2 Transferability of the AI Models

Transferability in NAS is the ability to realize the search for the best architecture
on a proxy dataset; that is usually smaller and simpler. The obtained architecture is
then used on the targeted dataset. For example, we can use CIFAR-10 [156] during
the search and then train the final model on ImageNet [219], which is made of 14
million images and 20,000 classes.

To enhance transferability, previous NAS works used cell-based search spaces. To
transfer a model obtained from a cell-based search space, we just need to adjust the in-
put sizes of the cells and deepen the network by adding more cells. However, stacking
the same cell seems to be not efficient when incorporating hardware constraints. As
MNASNet [62] argued, restricting cell diversity is critical for achieving high accuracy
and low latency on mobile settings. Therefore, MNASNet uses a hierarchical search
space that diversifies the cells in the architecture as well as the operators within that
cell.

Many NAS works [159, 220] have included dedicated evaluations of the transfer-
ability of their final model. PNAS [220] proved that CIFAR-10 classification is highly
correlated to ImageNet classification, hence transferring a cell or an architecture from
CIFAR-10 to ImageNet would produce good results. XNAS [159] transferred their
final cell structure on 6 popular classification benchmarks surpassing other conven-
tional NAS methods while taking account of the hardware constraints.

Another interesting concept is presented by NAT [221]. They leverage NAS pro-
cess to directly find transferable weights (i.e., get rid of the fine-tuning stage). The
key idea behind NAT is that they start from a supernetwork and adaptively modify
it to obtain a task-specific supernetwork. This latter approach can then be used di-
rectly to search for architectures within one task without the additional training cost.
Under mobile scenarios, they demonstrated the efficacy of NAT on 11 benchmarks
including ImageNet.

Overall, taking the transferability of the model into account remains a difficult
challenge. Most solutions modify the search space to fit a certain dataset by leveraging
a specific macro-architecture. Hardware awareness adds another level to this challenge
as the architecture needs to be flexible to adapt to multiple platforms. Note that,
transfer learning generalizes the ability to use a model from one dataset to another. In
this section, we only talked about NAS that transfers their models from one dataset
to another within the same task. Unfortunately, as NAS tasks evolve around image
classification mainly, the whole search needs to be executed all over again if we want
an architecture for another task.

40 CHAPTER 2. HARDWARE-AWARE NEURAL ARCHITECTURE SEARCH

2.10.3 Transferability of the HW-NAS Across Multiple Plat-
forms

HW-NAS suffers from conditional optimality due to the variety of existing devices.
Ideally, we should design different architectures for different platforms. However in
real situations, given the prohibitive cost of the search and the cost of training on
multiple architectures, we often resort to designing one architecture and deploying
it anywhere. Transferring a model from one platform to another or being able to
produce hardware transferable models via the NAS process is an interesting challenge
for HW-NAS. The main difficulty lies in the variety and complexity of the existing
platforms. For example, different platforms might perform well on different types of
convolutions. In the following section, we discuss two approaches. The first transfers
a single-target HW-NAS to another target by modifying the measurement values.
The second takes the final architecture of the NAS process and transforms it to fit
another platform. Each approach has its pros and cons as discussed below.

Transfer the entire NAS process: In this approach the whole NAS process needs
to be re-executed to suit the new targeted hardware. In a single target HW-NAS,
transferring the entire process to another platform is a complex task. Without men-
tioning the huge computational cost of retraining the entire process, the collection
of the hardware constraints can be costly as well. When using real-world measure-
ments, [116] ran the NAS search for three hardware platforms: CPU (Xeon E5-2640
v4), GPU (Tesla V100) and mobile phone (Google Pixel-1). However, using real mea-
surements on the hardware platform considerably slows down the search algorithm
and requires the availability of the targeted hardware during the search time. On the
other hand, using an analytical estimation requires expert knowledge for the different
targeted platforms. When using other collection methods such as the lookup table or
the prediction model, we’ll need to collect data from the new platforms by running
again the entire set of operators. To this end, HW-NAS tries to create a general
measurement method. For example, Once-for-all [42] created a lookup table with
the reported inference latency on each tested hardware platform (i.e., Samsung S7
Edge, Note8, Note10, Google Pixel1, Pixel2, LG G8, NVIDIA 1080Ti, V100 GPUs,
Jetson TX2, Intel Xeon CPU, Xilinx ZU9EG, and ZU3EGFPGAs). According to the
used measurement method, transferring the NAS process to target another platform
is increasingly difficult and not scalable.

Transfer the final model: An alternative approach is to find the best model for
one hardware platform and then try to specialize it for another one. This solution
is proposed in [42, 61, 159]. Usually, the specialization is done by compressing the
model using quantization which enables the model to fit in tiny devices. However,
the specialization is challenging because of the following reasons:

• An operator may be efficient in one platform and less efficient in
another: In [66], the authors argued that separable convolutions give great
results when ran on GPUs but perform badly on CPUs. Additionally, it is
common that deeper networks perform well on CPUs while wider ones perform
well on GPUs because of the possible parallelization. Table 2.4 demonstrates
the comparison between the execution times of different operators on an Intel
i7 CPU and NVIDIA TX2 GPU. The results reinforce our assumption that
different operators’ efficiency varies from one platform to another. Therefore,
the best model is highly correlated to the platform we choose which makes
designing a HW-NAS that targets multiple platforms very challenging.

• Limits of the compression methods: We consider here the quantization and
pruning. For these two methods, we know that theoretically, the compression
ratio has a threshold that cannot be surpassed. For example, quantizing a

2.11. CONCLUSION 41

model implies encoding its activations and weights into the minimum possible
bit length. Theoretically, this length is 2, with 1 bit used to encode the values.
Even without considering the trade-off between accuracy and model size, these
methods have limits. This is why we need to start from a model that is already
optimized to be able to deploy the model on tiny devices. For this end, [116]
is composed of three components. The first component is a multi-objective
NAS that searches for the best model in terms of accuracy and latency. Given
the resultant model of the first component, the second component searches for
pruning possibilities that would preserve the accuracy and decrease the model
size. Finally, the last component takes care of quantizing the model with mixed
precision. In [222] the authors propose to start from standard architectures
such as VGG, ResNet, and GoogleNet and cast the quantization as a neural
architecture search problem. This work achieves a minimal loss of accuracy
with appreciable memory savings. In addition to the limit for the model size,
we also have a limit for the accuracy. The compressed model typically does not
have better accuracy than the pre-trained model we started from.

Table 2.4: Comparison between different operators on Intel i7 CPU and NVIDIA
TX2 GPU. The convolution operators were used to create a CNN model that was
trained for Image Classification on ImageNet. The RNN cells were trained on Text
Classification on IMDB dataset [19]. Results were obtained using PyTorch with a
number of samples of 1000.

Operator Avg Latency on
CPU (ms)

Avg Latency on
GPU (ms)

Accuracy

Conv2d 1.33 0.85 0.67
Separable
Depthwise
Convolution

2.05 0.54 0.64

Dilated con-
volution

1.36 0.835 0.56

Grouped
Convolution

2.27 1.94 0.62

LSTM cell 14.93 2.45 0.57
GRU cell 9.32 2.53 0.65

2.11 Conclusion

In this chapter, we have provided a comprehensive survey and systematic analysis of
state-of-the-art Hardware-aware Neural Architectural Search. We reviewed several
multi-objective strategies that aim to find the optimal architecture with the highest
accuracy while reducing energy, memory, and computational costs. We proposed a
HW-NAS taxonomy and categorize existing approaches along four key dimensions:
the search space, the search strategy, the acceleration technique, and the hardware
cost estimation strategy. We also discussed other considerations in Hardware-aware
NAS that include optimizations such as quantization and pruning. Finally, we pre-
sented a discussion on future directions that would benefit existing and future HW-
NAS researchers. The next chapters will highlight our contributions to over the
challenges found in HW-NAS.

42 CHAPTER 2. HARDWARE-AWARE NEURAL ARCHITECTURE SEARCH

Part II

Efficient HW-NAS methods

43

Chapter 3

Multi-objective Surrogate
Model for HW-NAS

Contents
3.1 Context . 46

3.2 HW-PR-NAS . 46

3.2.1 Proposed Approach . 48

3.2.2 Evaluation Methodology 53

3.2.3 End-to-End Results . 55

3.2.4 Final Pareto Front Analysis 57

3.2.5 Generalization to More Objectives 58

3.2.6 Generalisation to other use cases: Keywords Spotting . . 59

3.3 PRP-NAS: Pareto Rank-preserving Supernetwork
Training . 59

3.3.1 Proposed Approach . 61

3.3.2 Evaluation Methodology 65

3.3.3 Search Results . 66

Search on NAS-Bench-201 67

Search on ImageNet . 67

Ranking Quality . 68

Ablation Study . 69

Number of sampled sub-networks 69

Analysis of α parameter 70

3.3.4 Battery Usage Preservation 70

3.4 Conclusion . 71

45

46 CHAPTER 3. MULTI-OBJECTIVE SURROGATE MODEL FOR HW-NAS

3.1 Context

Hardware-aware NAS (HW-NAS) methods have recently exhibited remarkable suc-
cess in enhancing the efficiency and performance of neural networks across various
tasks. Nevertheless, the search process involved in HW-NAS can be excessively
resource-intensive, often spanning multiple days and consuming a substantial amount
of energy. This significant energy consumption results in a considerable carbon foot-
print, surpassing even the annual emissions of a car [223]. Consequently, while HW-
NAS presents promising outcomes, its resource-intensive nature raises significant en-
vironmental concerns.

One particular aspect that contributes to the inefficiency of HW-NAS is the eval-
uation methods employed. These methods, used to assess the performance and ef-
ficiency of candidate network architectures, often require extensive computational
resources and time-consuming training. Recognizing this bottleneck, there is a grow-
ing interest in the development of surrogate models within the research community.
Surrogate models offer an alternative approach by constructing approximations of the
evaluation methods, enabling faster and more efficient exploration of the architecture
space. However, using multiple surrogate models for each objective (e.g., accuracy
and latency) is suboptimal.

To address the challenge and research question 1, we propose a novel methodol-
ogy based on surrogate models specifically designed for multi-objective problems. By
leveraging our methods, ML engineers can effectively explore a wide range of archi-
tectures within a limited timeframe, thereby minimizing the environmental impact,
achieving heightened architectural efficiency, and ultimately reducing the time-to-
market.

In this chapter, we introduce two valuable contributions: Hardware-aware Pareto
Rank Neural Architecture Search (HW-PR-NAS) in section 3.2, and Pareto Rank
Preserving Supernetwork Training (PRP-NAS) in section 3.3. These contributions
are specifically designed to cater to different search space definitions, namely cell-
based and supernetwork architectures, respectively. They allow an average 3.1x
speedup on several benchmarks and a significant energy consumption drop of 30%.

Research Question 1

How to efficiently evaluate the performance and hardware efficiency of an
architecture without fully training it in a multi-objective search strategy?

3.2 HW-PR-NAS: Multi-Objective HW-NAS with
Pareto Rank-preserving Surrogate Models

HW-NAS techniques are comprised of three components: the search space, the
search algorithm, and the evaluation method (figure 3.1.A) HW-NAS is for-
mulated as a multi-objective optimization problem. Several HW-NAS approaches
aim to find the best architectures with two or more conflicting objectives: e.g., max-
imizing the accuracy of an architecture while minimizing its inference latency. In
multi-objective optimization, the results obtained from the search algorithm are of-
ten not a single solution but a set of solutions. These solutions are called dominant
solutions because they dominate all other solutions in terms of the trade-offs between
the targeted objectives. In the case of HW-NAS, the optimization result is a set of
architectures that have the best objectives’ trade-off (figure 3.1.B). Formally, the set
of best solutions is represented by a Pareto front.

NAS algorithms involve training multiple DL architectures to adjust the explo-
ration of a huge search space. This requires many hours/days of data center-scale
computational resources. This time complexity is exacerbated in the case of HW-NAS

3.2. HW-PR-NAS 47

Search Algorithm Accuracy Evaluation Best Architecture Search Space

3.Get accuracy of A

4.Accuracy of A

A) Neural Architecture Search without Hardware Considerations

2. Sampled Architecture A

1. Sample a new Architecture

Search Algorithm

Accuracy Evaluation

Best Architecture Search Space

3.Get accuracy of A

4.Accuracy of A

B) Hardware-aware Neural Architecture Search with Independent Evaluations

2. Sampled Architecture A

1. Sample a new Architecture

HW Metric Evaluation

3’.Get performance of A

4’.Performance of A

Search Algorithm Pareto Rank Predictor Best Architecture Search Space

3.Get accuracy/HW metrics tradeoff of A

4.Pareto score of A

C) HW-PR-NAS: Hardware-aware Neural Architecture Search with Pareto Rank Predictor

2. Sampled Architecture A

1. Sample a new Architecture

Figure 3.1: Simplified illustration of the use of HW-PR-NAS in a NAS process. HW
Perf means the Hardware performance of the architecture such as latency, power,
etc.

multi-objective assessments, as additional evaluations are needed for each objective
or hardware constraint on the target platform. To address this problem, researchers
have proposed surrogate-assisted evaluation methods [16, 17]. Surrogate models use
analytical or ML-based algorithms to quickly estimate the performance of a sampled
architecture without training it. Existing HW-NAS approaches [224] rely on the use
of different surrogate-assisted evaluations, whereby each objective is assigned an in-
dependently trained surrogate model (figure 3.1.B). However, this introduces false
dominant solutions as each surrogate model brings its share of approximation error
and could lead to search inefficiencies and falling into local optimum (figures 3.2.A
and 3.2.B).

Learning-to-rank theory [16, 225] has been used to improve the surrogate model
evaluation performance. This was motivated by the observation that throughout
the NAS process, it is more important to correctly rank a sampled architecture rel-
ative to other architectures than to compute its exact accuracy. Rank-preserving
surrogate models significantly reduce the time complexity of NAS while enhancing
the exploration path. However, in the multi-objective context, training each model
independently cannot preserve the Pareto rank of the architectures (see figure 3.2).

We propose HW-PR-NAS [5, 226], Hardware-aware Pareto-ranking NAS,
a new unified surrogate model trained to address multiple objectives in HW-NAS.

HW-PR-NAS contributions are summarized as follows:

1. We introduce a flexible and general architecture representation which
allows adapting the surrogate model to include new architecture objective types
without incurring additional training costs.

2. We introduce a novel training methodology for multi-objective HW-
NAS surrogate models. Our surrogate model is trained using a novel ranking
loss technique. The goal is to rank the architectures from dominant to non-

48 CHAPTER 3. MULTI-OBJECTIVE SURROGATE MODEL FOR HW-NAS

Real accuracy: 86.7%
Real latency: 3.6 ms

Real accuracy: 81.5%
Real latency: 3.6 ms

Architecture A

Architecture B

Accuracy Predictor

Latency Predictor

Predicted accuracy: 85%
Predicted latency: 3.4 ms

Predicted accuracy: 83%
Predicted latency: 3.4 ms

Architecture A

Architecture B

Real accuracy: 86.7%
Real latency: 3.6 ms

Real accuracy: 81.5%
Real latency: 3.6 ms

Architecture A

Architecture B

Score: 77
Architecture A

Architecture B

Pareto Rank
Predictor

Score: 80

Ground truth : B>>A
Using predictions: A>>B

Ground truth: B>>A
Using predictions: B>>A

Independently trained predictors Predictor trained with multi-objectives B >> A : B dominates A

(a) State-of-the-art HW-NAS

(c) HW-PR-NAS

A B

Figure 3.2: This figure illustrates the limitation of state-of-the-art surrogate models
alleviated by HW-PR-NAS. a) and b) illustrate how two independently trained pre-
dictors exacerbate the dominance error and the results obtained using GATES [16]
and BRP-NAS [17]. c) illustrates how we solve this issue by building a single surro-
gate model.

dominant ones by assigning high scores to the dominant ones. We call these
scores Pareto score.

Our approach has been evaluated on seven edge hardware platforms, including ASICs,
FPGAs, GPUs, and multi-cores. Experimental results demonstrate up to 2.5x speed
up while guaranteeing that the search ends near the true Pareto front. To compare
our approach with state-of-the-art, we use the normalized hypervolume metric. This
metric evaluates the coverage and diversity of a Pareto front against the true Pareto
front. Preliminary results show that using HW-PR-NAS is more efficient than using
several independent surrogate models to reduce the search time and improve the
quality of the Pareto approximation.

3.2.1 Proposed Approach

Figure 3.3 shows an overview of HW-PR-NAS, which is composed of two main com-
ponents: 1 Encoding Scheme and 2 Pareto Rank Predictor.

Each architecture is encoded into a unique vector and then passed to the Pareto
Rank Predictor in the Encoding Scheme. The Pareto Rank Predictor uses the
encoded architecture to predict its Pareto Score (see equation 3.6) and adjusts the
prediction based on the Pareto Ranking Loss. The Pareto Score, a value between
0and1, is the output of our predictor. We use a listwise Pareto ranking loss to force
the Pareto Score to be correlated with the Pareto ranks.

3.2. HW-PR-NAS 49

Architecture Target HW

Architecture Features Extraction GNN Encoding LSTM Encoding

Encoding Scheme

2

3
Pareto Ranking

Loss

Fully-connected NN (FCNN)

Pareto Rank Predictor

Pareto Score

Get the encoded architecture

Select the predictor
for the target HW

4 Get the Pareto score

5
Adjust the predictor

Architecture Dataset

1 Get an architecture

Figure 3.3: General Overview of HW-PR-NAS

Definitions

The following terms are used with their corresponding definitions:

• Representation: is the format in which the architecture is stored.

• Encoding: is the process of turning the architecture representation into
a numerical vector. The surrogate model can then use this vector to
predict its rank.

• Encoding scheme: is the methodology used to encode an architecture.

• Encoder: is a function that takes as input architecture and returns a
vector of numbers, i.e., applies the encoding process.

• Pareto Rank Predictor: is the last part of the model architecture spe-
cialized in predicting the final score of the sampled architecture (see
figure 3.3).

Encoding Scheme
To achieve a robust encoding capable of representing most of the key architectural
features, HW-PR-NAS combines several encoding schemes (see figure 3.3). Each
architecture is described using two different representations: a Graph Representation,
which uses Directed Acyclic Graphs (DAG), and a String Representation, which uses
discrete tokens that express the NN layers. For example, using ”conv 3x3” to express
a 3x3 convolution operation. We use two encoders to represent each architecture
accurately. Both representations allow the use of different encoding schemes. Each
encoder can be represented as a function E formulated as follows:

E : A −→ ξ (3.1)

A denotes the search space, and ξ denotes the set of encoding vectors. The encoder
E takes an architecture’s representation as input and maps it into a continuous space

50 CHAPTER 3. MULTI-OBJECTIVE SURROGATE MODEL FOR HW-NAS

Table 3.1: Hyperparameters associated with GCN and LSTM encodings and the
decoder used to train them.

Hyperparameter Value

GCN Encoding

Number of layers 2
hidden depth 128

hidden dimension 1
FC dimension 32

LSTM Encoding

Number of layers 2
Hidden units [32, 64]
FC dimension 32

recurrent dropout 0.2

Decoder
Number of layers 3

Hidden units [32,32]

ξ. The encoding result is the input of the predictor.
In our approach, three encoding schemes have been selected depending on their

representation capabilities and the literature review [16, 17] (see table 3.3):

1. Architecture Features Extraction. From each architecture, we extract sev-
eral Architecture Features (AF): number of FLOPs, number of parameters,
number of convolutions, input size, architecture’s depth, first and last channel
size, and number of down-sampling.

2. GCN Encoding. To efficiently encode the connections between the architec-
ture’s operations, we apply a GCN encoding. Each architecture is encoded into
its adjacency matrix and operation vector. It is then passed to a GCN [227]
to generate the encoding. The output is passed to a dense layer to reduce its
dimensionality.

3. LSTM Encoding. To represent the sequential behavior of the architecture,
we use an LSTM encoding scheme. We pass the architecture’s string represen-
tation through an embedding layer and an LSTM model. We then reduce the
dimensionality of the last vector by passing it to a dense layer.

The resulting encoding is a vector that concatenates the AFs to ensure that each
architecture in the search space has a unique and general representation that can
handle different tasks [228] and objectives. The hyperparameters describing the im-
plementation used for the GCN and LSTM encodings are listed in table 3.1.

Using a decoder module, the encoder is trained independently from the Pareto
rank predictor. The decoder takes the concatenated version of the three encoding
schemes and recreates the representation of the architecture. We set the decoder’s
architecture to be a 4-layer LSTM. In addition, we leverage the attention mechanism
to make decoding easier. The encoder-decoder model is trained with the cross en-
tropy loss. Equation 3.2 formulates the cross-entropy loss, denoted as LED, where
output size changes according to the string representation of the architecture, y and
ŷ correspond to the predicted operation and the true operation respectively. This
training methodology allows the architecture encoding to be hardware-agnostic.

LED = −
output size∑

i=1

yi ∗ log(ŷi) (3.2)

The preliminary analysis results in figure 3.4 validate the premise that different
encodings are suitable for different predictions in the case of NAS objectives. Figure
3.4 shows the results obtained after training the accuracy and latency predictors
with different encoding schemes. Each predictor is trained independently. Using
Kendal Tau [229], we measure the similarity of the architectures’ rankings between

3.2. HW-PR-NAS 51

the ground truth and the tested predictors. Accuracy predictors are sensible to the
types of operators and connections in a DL architecture. When using only the AF,
we observe a small correlation (0.61) between the selected features and the accuracy,
resulting in poor performance predictions. The best predictor is obtained using a
combination of GCN encodings, which encodes the connections, node operation, and
AF. For latency prediction, results show that the LSTM encoding is better suited.
An intuitive reason is that the sequential nature of the operations to compute the
latency is better represented in a sequence string format. The last two columns of the
figure show the results of the concatenation, which outperforms other representations
as it holds all the features required to predict the different objectives.

AF LSTM LSTM + AF GCN GCN + AF LSTM + GCN + AF
0.0

0.2

0.4

0.6

0.8

1.0

K
e
n
d
a
l T

a
u
 C

o
rr

e
la

ti
o
n

0.61

0.54

0.64

0.74
0.71

0.91
0.87

0.73

0.96

0.81

0.98 0.97accuracy prediction
latency prediction

Figure 3.4: Results of different encoding schemes for accuracy and latency predictions
on NAS-Bench-201 and FBNet. AF refers to Architecture Features. LSTM refers
to Long Short-Term Memory neural network. GCN refers to Graph Convolutional
Networks.

These results were obtained with a fixed Pareto Rank predictor architecture. We
used a fully-connected neural network (FCNN). Table 3.2 shows the results of mod-
ifying the final predictor on the latency and accuracy predictions. While we achieve
a slightly better correlation using XGBoost on the accuracy, we prefer to use a 3-
layer FCNN for both objectives to ease the generalization and flexibility to multiple
hardware platforms.

Table 3.2: Results of different regressors on NAS-Bench-201. KT Corr stands for
Kendal Tau Correlation.

Accuracy Latency
RMSE KT Corr RMSE KT Corr

3-layer FCNN 4.88 0.924 3.238 0.8817
XGBoost [230] 3.12 0.931 3.216 0.8742
LGBoost [231] 3.58 0.864 3.058 0.8247

Pareto Ranking Predictor

HW-PR-NAS is trained to predict the Pareto front ranks of architecture for mul-
tiple objectives simultaneously on different hardware platforms. The predictor uses
three fully-connected layers. Due to the hardware diversity illustrated in table 3.4,
the predictor is trained on each HW platform. Prior works [224] demonstrated that
the best architecture in one platform is not necessarily the best in another. Therefore,
the Pareto fronts differ from one HW platform to another.

HW-PR-NAS predictor architecture is the same across the different HW plat-
forms. The only difference is the weights used in the fully-connected layers. The
HW platform identifier (Target HW in figure 3.3) is used as an index to point to the
corresponding predictor’s weights.

52 CHAPTER 3. MULTI-OBJECTIVE SURROGATE MODEL FOR HW-NAS

To train this Pareto ranking predictor, we define a novel listwise loss function to
predict the Pareto ranks.

Pareto ranks definition In a multi-objective NAS problem, the solution is a set
of N architectures S = s1, s2, ..., sN . These architectures may be sorted by their
Pareto front rank K. The true Pareto front is denoted as F1 where the rank of each
architecture within this front is 1. An architecture is in the true Pareto front if and
only if it dominates all other architectures in the search space. According to this
definition, we can define the Pareto front ranked 2, F2, as the set of all architectures
that dominate all other architectures in the space except the ones in F1. Formally,
the rank K is the number of Pareto fronts we can have by successively solving the
problem for S −

⋃
si∈Fk∧k<K , i.e., the top dominant architectures are removed from

the search space each time.
Theoretically, the sorting is done by following these conditions:

∀si, sj ∈ Fk, si ⊁ sj ∧ sj ⊁ si (3.3)

∀si ∈ Fk+1 ∀sj ∈ Fk, si ⊁ sj (3.4)

∀si ∈ Fk+1 ∃sj ∈ Fk, sj ≻ si (3.5)

Equation 3.3 formulates that for all the architectures with the same Pareto rank,
no one dominates another. Equation 3.4 formulates that any architecture with a
Pareto rank k + 1 cannot dominate any architecture with a Pareto rank k. Equa-
tion 3.5 formulates that for each architecture with a Pareto rank k + 1, at least one
architecture with a Pareto rank k dominates it.

Pareto ranking loss definition Our predictor takes an architecture as input and
outputs a score. This score is adjusted according to the Pareto rank. The loss function
aims to keep the predictor’s outputs; scores f(a), where a is the input architecture,
correlated to the actual Pareto rank of the given architecture.

The scores are then passed to a softmax function to get the probability of ranking
architecture a. The final output is formulated as follows:

out(a) =
exp f(a)∑

a∈B exp f(a)
(3.6)

In this equation, B denotes the set of architectures within the batch, while |B|
denotes its size. We then design a listwise ranking loss by computing the sum of the
negative likelihood values of each batch’s output:

L(B) =

|B|∑
i=1

{−out(a(i),B) + log

|B|∑
j=i

exp(out(a(j),B)} (3.7)

a(i),B denotes i-th Pareto-ranked architecture in subset B. This loss function com-
putes the probability of a given permutation to be the best, i.e., if the batch contains
three architectures a1, a2, a3 ranked (1, 2, 3) respectively. The loss function encour-
ages the surrogate model to give higher values to architecture a1 then a2 and finally
a3. We compute the negative likelihood of each architecture in the batch being cor-
rectly ranked.

3.2. HW-PR-NAS 53

Training procedure To train the HW-PR-NAS predictor with two objectives, the
accuracy and latency of a model, we apply the following steps:

1. We build a ground truth dataset of architectures and their Pareto ranks. We
randomly extract architectures from NAS-Bench-201 and FBNet using Latin
Hypercube Sampling [232]. The batches are shuffled after each epoch. The two
benchmarks already give the accuracy and latency results. Thus the dataset
creation is not computationally expensive. However, if one uses a new search
space, the dataset creation will require at least the training time of 500 archi-
tectures.

2. We iteratively compute the ground truth of the different Pareto ranks between
the architectures within each batch using the actual accuracy and latency val-
ues. Two architectures with a close Pareto score means that both have the
same rank.

3. We calculate the loss between the predicted scores and the ground truth com-
puted ranks.

4. Using this loss function, the scores of the architectures within the same Pareto
front will be close to each other, which helps us extract the final Pareto approx-
imation.

Algorithm 1 Training methodology of the rank predictor component.

Input: benchmark: Benchmark (α: architecture, acc: accuracy, l: latency)
Output: Trained Surrogate Model
D ← Sample(benchmark, dataset size)
model← FCNN
initialize model
for epoch ¡ max epochs do

batches = generate random batches(D)
for B in batches do
R← Compute Pareto Ranks(B)
P ← model(B)
loss← NLL(R,P)
backpropagate loss and adjust the weights of the model

end for
end for

The most important hyperparameter of this training methodology that needs to
be tuned is the batch size. Figure 3.5 shows the empirical experiment done to select
the batch size. We set the batch size to 18 as it is, empirically, the best trade-off
between training time and accuracy of the surrogate model. The accuracy of the
surrogate model is represented by the Kendal tau correlation between the predicted
scores and the correct Pareto ranks. This value can vary from one dataset to another.
The hyperparameter tuning of the batch size takes ∼1h for a full sweep of 6 values
in this range: [8, 12, 16, 18, 20, 24].

3.2.2 Evaluation Methodology

We compare HW-PR-NAS to existing surrogate model approaches used within the
HW-NAS process. The searched final architectures are compared with state-of-the-
art baselines in the literature. We target two objectives: accuracy and latency. Our
goal is to evaluate: 1 the quality of the NAS results by using the normalized
hypervolume, and 2 the speed-up of HW-PR-NAS methodology by measuring the
search time of the end-to-end NAS process.

54 CHAPTER 3. MULTI-OBJECTIVE SURROGATE MODEL FOR HW-NAS

7.5 10.0 12.5 15.0 17.5 20.0 22.5

batch_size

0.80

0.85

0.90

0.95

K
e
n
d
a
l T

a
u
 c

o
rr

e
la

ti
o
n

se
le

ct
e
d

 b
a
tc

h
_s

iz
e

Training time (s)
Kendal Tau correlation

750

1000

1250

1500

1750

2000

T
ra

in
in

g
 t

im
e
 (

s)

Figure 3.5: Performance of the Pareto rank predictor using different batch size values
during training.

• Hypervolume This metric calculates the area from the Pareto front approx-
imation to a reference point. We use the furthest point from the Pareto front
as a reference point.

• Search time This metric corresponds to the time spent by the end-to-end NAS
process, including the time spent training the surrogate models.

• Search Spaces Our experiments are initially done on NAS-Bench-201 [233]
and FBNet [234] for CIFAR-10 and CIFAR-100. Imagenet-16-120 is only con-
sidered in NAS-Bench-201. To validate our results on ImageNet, we run our
experiments on ProxylessNAS Search Space [235]. The search space contains
619 architectures, each with up to 19 layers. This is to be on par with various
state-of-the-art methods.

• Search Algorithms The search algorithms call the surrogate models to get an
estimation of the objectives. In our comparison, we use Random Search (RS)
and Multi-Objective Evolutionary Algorithm (MOEA). In RS, the architectures
are selected randomly, while in MOEA, a tournament parent selection is used.
For MOEA, the population size, maximum generations and mutation rate have
been set to 150, 250, and 0.9, respectively. The stopping criteria are defined as
a maximum generation of 250 and a time budget of 24 hours.

Baselines We compare HW-PR-NAS to the state-of-the-art surrogate models pre-
sented in Table 3.3.

Table 3.3: State-of-the-art surrogate models used for HW-NAS. AF stands for archi-
tecture features such as the number of convolutions and depth.

Surrogate Model Objective Encoding Loss Dataset
Size

Ranking

GATES [16] Accuracy GCN Hinge
Pair-
wise

7318 yes

BRP-NAS [17]
Accuracy
Latency

GCN
GCN

MSE
KL Div

900 no

ProxylessNAS [235] Latency AF RMSE 5000 no

LRLC [236] Accuracy LSTM Logistic
Loss

1000 yes

3.2. HW-PR-NAS 55

Training Implementation HW-PR-NAS training dataset consists of 500 architec-
tures and their respective accuracy and hardware metrics on CIFAR-10, CIFAR-100
and ImageNet-16-120 [237]. These architectures are sampled from both NAS-Bench-
201 [233] and FBNet [234] using HW-NAS-Bench [238] to get the hardware metrics
on various devices. We used 100 models for validation. Training the surrogate model
took 1.5 GPU hours with 10-fold cross-validation. While this training methodology
may seem expensive compared to state-of-the-art surrogate models presented in ta-
ble 3.3, the encoding networks are much smaller, with only two layers for the GNN
and LSTM. The comprehensive training of HW-PR-NAS requires 43min on NVIDIA
RTX 6000 GPU, which is done only once before the search. Note that if we want
to consider a new hardware platform, only the predictor (i.e., three fully connected
layers) is trained, which takes up to less than 10min.

Experimental Setup Our surrogate models and HW-PR-NAS process have been
trained on NVIDIA RTX 6000 GPU with 24GB memory. To evaluate HW-PR-
NAS on edge platforms, we have used the platforms presented in table 3.4. Our
implementation is coded using PyMoo 1 for the multi-objective search algorithms
and PyTorch for DL architectures.

Table 3.4: Illustrative comparison of edge hardware platforms targeted in this work.

NVIDIA Edge GPU
Platform Computation Memory Power

Jetson TX2 256-core NVIDIA Pascal 4GB 30W
ASICs

Platform Computation Memory Power
TPU Board 2 TPU Cores 1GB 12W

Eyeriss - eDRAM <1W
FPGA

Platform Computation Memory Power
Xilinx Zynq-7000 ZC706 1GB 8-20W
Zynq UltraScale+ ZCU102 4GB 15-40W

Mobile Phones
Platform Computation Memory Power

Google Pixel 3 8 cores 4GB 8W
Single-board computer

Platform Computation Memory Power
Raspberry Pi 4-core Cortex-A72 ARM 3GB 12W

3.2.3 End-to-End Results

We compare the different Pareto front approximations to the existing methods to
gauge the efficiency and quality of HW-PR-NAS.

Figure 3.6 presents the different Pareto front approximations using HW-PR-NAS,
BRP-NAS [17], GATES [16], proxylessnas [235] and LCLR [236].

We averaged the results over five runs to ensure reproducibility and fair compar-
ison. The title of each subgraph is the normalized hypervolume. We notice that our
approach consistently obtains better Pareto front approximation on different plat-
forms and different datasets.

Figure 3.7 summarizes the obtained hypervolume of the final Pareto front approx-
imation for each method. The hypervolume indicator encodes the favourite Pareto
front approximation by measuring objective function values’ coverage. The larger
the hypervolume, the better the Pareto front approximation and, thus, the better the
corresponding architectures. The results vary significantly across runs when using

1Multi-objective optimization in Python. https://pymoo.org/

56 CHAPTER 3. MULTI-OBJECTIVE SURROGATE MODEL FOR HW-NAS

70 75 80 85 90 95
Accuracy (%)

2

4

6

8

10

12

la
te

nc
y

(m
s)

Edge GPU 99%
True Pareto front
HW-PR-NAS
BRP-NAS
GATES*
ProxylessNAS*
LCLR*

70 75 80 85 90 95
Accuracy (%)

0

20

40

60

80

100

la
te

nc
y

(m
s)

Raspberry Pi 4 99%
True Pareto front
HW-PR-NAS
BRP-NAS
GATES*
ProxylessNAS*
LCLR*

70 75 80 85 90 95
Accuracy (%)

1

2

3

4

5

la
te

nc
y

(m
s)

FPGA ZCU102 98%
True Pareto front
HW-PR-NAS
BRP-NAS
GATES*
ProxylessNAS*
LCLR*

70 75 80 85 90 95
Accuracy (%)

1

2

3

4

5

6

7

8

9

la
te

nc
y

(m
s)

FPGA ZC76 99%
True Pareto front
HW-PR-NAS
BRP-NAS
GATES*
ProxylessNAS*
LCLR*

70 75 80 85 90 95
Accuracy (%)

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

la
te

nc
y

(m
s)

Edge TPU 95%
True Pareto front
HW-PR-NAS
BRP-NAS
GATES*
ProxylessNAS*
LCLR*

70 75 80 85 90 95
Accuracy (%)

0

5

10

15

20

25

30

35

la
te

nc
y

(m
s)

Pixel 3 99%
True Pareto front
HW-PR-NAS
BRP-NAS
GATES*
ProxylessNAS*
LCLR*

70 75 80 85 90 95
Accuracy (%)

2

4

6

8

10

la
te

nc
y

(m
s)

Eyeriss 96%
True Pareto front
HW-PR-NAS
BRP-NAS
GATES*
ProxylessNAS*
LCLR*

Figure 3.6: Pareto front approximations on CIFAR-10 on edge hardware platforms.
We show the true accuracies and latencies of the different architectures and the nor-
malized hypervolume on each target platform.

two different surrogate models. However, using HW-PR-NAS, we can have a decent
standard error across runs.

In figure 3.8, we also compare the speed of the search algorithms. HW-PR-NAS
achieves a 2.5x speed-up in the search algorithm.

This is due to:

• Using one common surrogate model instead of invoking multiple ones.

• Decreasing the number of comparisons to find the dominant points.

• Requiring a smaller number of operations than GATES and BRP-NAS.

RS
Measured

Values

RS
BRP-NAS

RS
GATES

RS
HW-PR-NAS

MOAE
Measured

Values

MOAE
BRP-NAS

MOAE
GATES

MOAE
HW-PR-NAS

200

250

300

350

400

450

500

550

600

H
y
p

e
rv

o
lu

m
e

CIFAR-10
CIFAR-100
Imagenet-16-120

Figure 3.7: Final Hypervolume obtained by each method on the three datasets. We
show the means ± standard errors based on 5 independent runs.

3.2. HW-PR-NAS 57

Measured
Values

LCLR ProxylessNAS GATES BRP-NAS HW-PR-NAS
0

5

10

15

20

25

S
e
a
rc

h
 t

im
e
 (

h
rs

)
0

20

40

60

80

100

N
o

rm
a
li
ze

d
 h

y
p

e
rv

o
lu

m
e
 (

%
)

Figure 3.8: Search time of MOAE using different surrogate models on 250 generations
with a max time budget of 24 hours.

Table 3.5: Comparison of Optimal Architectures obtained in the Pareto Front for
CIFAR-10.

Architecture
Jetson TX2 TPU Board Google Pixel 3 FPGA ZCU102 Eyeriss HW

AwareAcc
(%)

Lat
(ms)

Acc
(%)

Lat
(ms)

Acc
(%)

Lat
(ms)

Acc
(%)

Lat
(ms)

Acc
(%)

Lat
(ms)

GATES [16] 92.83 6.3 91.82 1.37 90.21 23.6 90.73 3.8 93.49 9.27 Yes
BRP-NAS [17] 91.3 5.86 92.01 1.5 90.34 23.1 82.31 3.72 89.6 8.92 Yes
ProxylessNAS [235] 91.86 4.86 93.68 2.1 93.51 21.36 92.68 5.6 93.87 7.56 Yes
HAGCNN [239] 92.57 8.53 92.57 5.43 92.57 24.65 92.57 6.87 92.57 9.54 No
Shapley-NAS [240] 94.37 9.76 94.37 4.8 94.37 25.21 94.37 8.62 94.37 9.76 No
AG-Net [241] 94.37 9.76 94.37 4.8 94.37 25.21 94.37 8.62 94.37 9.76 No
β-DARTS [242] 91.55 6.42 91.55 3.53 91.55 25.3 91.55 7.51 91.55 8.46 No
HW-PR-NAS 95.75 4.37 94.15 1.12 94.43 20.5 95.2 4.0 94.72 7.91 Yes

3.2.4 Final Pareto Front Analysis

We analyze the proportion of each benchmark on the final Pareto front for different
edge hardware platforms. In Pixel3 (mobile phone), 80% of the architectures come
from FBNet. Indeed, this benchmark uses depthwise convolutions, accelerating DL
architectures on mobile settings. The depthwise convolution decreases the model’s
size and achieves faster and more accurate predictions. However, depthwise convo-
lutions do not benefit from the GPU, TPU, and FPGA acceleration compared to
standard convolutions used in NAS-Bench-201, which have a higher proportion in
the Pareto front of these platforms 54%, 61%, and 58% respectively.

Table 3.5 shows the difference between the final architectures obtained. The best
values (in bold) show that HW-PR-NAS outperforms HW-NAS approaches on almost
all edge platforms. The depthwise convolution (DW) available in FBNet is suitable
for architectures that run on mobile devices such as the Pixel 3. This operation
allows fast execution without an accuracy degradation. However, on edge gpu, as the
platform has more memory resources, 4GB for the Jetson TX2, bigger models from
NAS-Bench-201 with higher accuracy are obtained in the Pareto front.

When our methodology does not reach the best accuracy, see results on TPU
Board, our final architecture is 4.28x faster with only 0.22% accuracy drop. Ta-

Table 3.6: Comparison of Optimal Architectures obtained in the Pareto Front for
ImageNet

Architecture
Jetson TX2 TPU Board Google Pixel 3 FPGA ZCU102 HW

AwareAcc
(%)

Lat
(ms)

Acc
(%)

Lat
(ms)

Acc
(%)

Lat
(ms)

Acc
(%)

Lat
(ms)

GATES [16] 74.8 6.35 74.26 6.84 73.4 7.5 72.3 7.51 Yes
BRP-NAS [17] 75.2 5.8 74.39 6.9 74.8 7.4 75.6 6.82 Yes
ProxylessNAS [235] 75.1 5.1 75.2 4.5 74.6 6.8 74.5 5.48 Yes
GPUNet [243] 78.9 8.6 78.9 7.9 78.9 13.5 78.9 8.1 No
FBNetV3 [244] 77.6 5.4 78.6 5.9 76.8 7.6 78.5 5.3 Yes
HW-PR-NAS 77.68 4.67 76.75 3.25 77.24 6.2 77.84 4.6 Yes

58 CHAPTER 3. MULTI-OBJECTIVE SURROGATE MODEL FOR HW-NAS

accuracy (%)

30 40 50 60 70
80

90

lat
en

cy
 (m

s)

2
4

6
8

10
12

to
ta

l e
ne

rg
y

us
ed

 (
m

J)

10

20

30

40

50

HW-PR-NAS, Ih = 2351
BRP-NAS, Ih = 1638

accuracy (%)

30 40 50 60 70
80

90

lat
en

cy
 (m

s)

1
2

3
4

5
6

7
8

9

to
ta

l e
ne

rg
y

us
ed

 (
m

J)

10

20

30

40

50

60

HW-PR-NAS, Ih = 1830
BRP-NAS, Ih = 1674

Figure 3.9: Pareto front Approximations using three objectives: accuracy, latency and
energy consumption on CIFAR-10 on Edge GPU (left), FPGA (right). Ih corresponds
to the hypervolume.

ble 3.6 summarizes the comparison of our optimal model to the baselines on Ima-
geNet. GATES [16] and BRP-NAS [17] are re-run on the same proxylessNAS search
space, i.e., we trained the same number of architectures required by each surrogate
model, 7318 and 900, respectively. FBNetV3 [234] and ProxylessNAS [235] were re-
run for the targeted devices on their respective search spaces. GPUNet [243] targets
V100, A100 GPUs. For the comparison, we take their smallest network deployable in
the embedded devices listed. Results show that HW-PR-NAS outperforms all other
approaches regarding the trade-off between accuracy and latency. However, we do
not outperform GPUNet in accuracy but offer a 2x faster counterpart.

3.2.5 Generalization to More Objectives

In this paper, generalization refers to the ability to add any number or type of ex-
pensive objectives to HW-PR-NAS. This can simply be done by by fine-tuning the
Multi-Layer Perceptron (MLP) predictor. This is possible thanks to the following
characteristics: (1) The concatenated encodings have better coverage and represent
every critical architecture feature. The proposed encoding scheme can represent any
arbitrary architecture. This enables the model to be used with a variety of search
spaces. (2) The predictor is designed as one MLP that directly predicts the architec-
ture’s Pareto score without predicting the individual objectives.

Figure 3.9 illustrates the model’s results with three objectives: accuracy, latency
and energy consumption on CIFAR-10. We compare our results against BPR-NAS
for accuracy and latency and a lookup table for energy consumption. That means
that the exact values are used for energy consumption in the case of BRP-NAS.

The Pareto ranking predictor has been fine-tuned for only five epochs, less than
5min training times. The encoding component was frozen (not fine-tuned). The
Pareto front is of utmost significance in edge devices where the battery lifetime is
crucial. It allows the application to select the right architecture according to the
system’s hardware requirements.

3.3. PRP-NAS: PARETO RANK-PRESERVING SUPERNETWORKTRAINING59

Architecture
Jetson TX2

Acc (%) Lat (ms)
DS-CNN [245] 96.02 28
CENet-GCN-40 [246] 96.8 32.5
LeTR [247] 97.56 22.36
KWT [248] 97.28 18.5
HW-PR-NAS-KWS 97.89 13.68

Table 3.7: Accuracy and Latency Comparison for Keyword Spotting.

3.2.6 Generalisation to other use cases: Keywords Spotting

While the Pareto ranking predictor can easily be generalized to various objectives, the
encoding scheme is trained on ConvNets architectures. In this use case, we evaluate
the fine-tuning of our encoding scheme over different types of architectures, namely
recurrent neural networks (RNNs) on Keyword spotting. The goal is to assess how
generalizable is our approach. The task of keyword spotting (KWS) [249] provides
a critical user interface for many mobile and edge applications, including phones,
wearables, and cars. It detects a triggering word such as ”Ok, Google” or ”Siri”.
These applications are typically ”always-on”, trying to catch the triggering word,
making this task an appropriate target for HW-NAS. We use NAS-Bench-NLP for
this use case.

NAS-Bench-NLP [250] is a benchmark containing 14k RNNs with various cells
such as LSTMs and GRUs. While it is possible to achieve good accuracy using
ConvNets, we deliberately use RNNs for KWS to validate the generalization of our
encoding scheme.

Similarly to NAS-Bench-201, we extract a subset of 500 RNN architectures from
NAS-Bench-NLP. We measure the latency and energy consumption of the dataset
architectures on Edge GPU (Jetson Nano). We train our surrogate model. The
training is done in two steps described in section 3.2.2. We first fine-tune the encoder-
decoder to get a better representation of the architectures. Then using the surrogate
model, we search over the entire benchmark to approximate the Pareto front.

Figure 3.10 shows the training loss function. The full training of the encoding
scheme on NAS-Bench-201 and FBNet required 80 epochs to achieve a cross-entropy
loss of 1.3. Fine-tuning this encoder on RNN architectures requires only eight epochs
to obtain the same loss value. This test validates the generalization ability of our
encoder to different types of architectures and search spaces.

Figure 3.11 shows the Pareto front approximation result compared to the true
Pareto front. After a few minutes of fine-tuning, we can adapt our surrogate model
to a new search space and achieve a near Pareto front approximation with 97.3% nor-
malized hypervolume. We select the best network from the Pareto front and compare
it to state-of-the-art models from the literature. Table 3.7 shows the results. Our
model is 1.35x faster than KWT [248] with 0.33% accuracy increase than LeTR [247].

3.3 PRP-NAS: Pareto Rank-preserving Supernet-
work Training

Weight sharing is an estimation strategy used to avoid the training and hence speeds
up the search step. It mainly formulates the search space into a supernetwork. A
supernetwork is an over-parameterized architecture where each path can be sampled.
We call a sampled path a sub-network. These methods assume that the rank between
different sub-networks is preserved when using the supernetwork’s weights. Two
architectures with the same rank imply that they have the same accuracy. State-

60 CHAPTER 3. MULTI-OBJECTIVE SURROGATE MODEL FOR HW-NAS

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Epochs

0.2

0.3

0.4

0.5

0.6

0.7
Cr

os
s

En
tr

op
y

Lo
ss

Figure 3.10: Encoder fine-tuning:
Cross-entropy loss over epochs.

accuracy (%)
50 60 70 80 90 lat

en
cy

 (m
s)

2
46810

to
ta

l e
ne

rg
y

us
ed

 (
m

J)

5
10
15
20
25
30
35
40
45

True Pareto Front
HW-PR-NAS

Figure 3.11: Search result using HW-PR-
NAS against True Pareto front.

Input

Output

layer1

layeri

layerL

op1 op2 op3 op4

Step 1: Train with strict fairness
Each op is sampled the same
amount of time as the others

op1 op2 op3 op4

Step 2: Training
A parameter Alpha is trained and

defines which operation is sampled

op1 op2 op3 op4

The operations that are the furthest
from the Pareto front are pruned

Initialization Phase Pareto Rank-Preserving Phase

Step 3: Pruning

Figure 3.12: Our Pareto Rank-Preserving Training methodology for Supernetwork.
The strongest shades illustrate the most important operations for each layer at each
iteration. αl

o corresponds to the parameter alpha associated with layer l and operation
o.

of-the-art techniques [251, 252, 253] have highlighted the performance estimation
inefficiency used in both categories by computing the ranking correlation between
the architectures’ actual rankings and the estimated rankings. This issue is called
optimization gap [254]. Some solutions have been proposed to train the supernet-
work with strict constraints on fairness to preserve the ranking for accuracy, such
as FairNAS [164]. Others train a graph convolutional network in parallel to fit the
performance of sampled sub-networks [255].

However, current solutions have two main drawbacks:

1. In the multi-objective context of HW-NAS, different objectives such as accuracy
and latency have to be estimated. The result is a Pareto front; a set of archi-
tectures that better respects the trade-off between the conflicting objectives.
The ranking based on a single objective is no longer a good estimator. In this
setting, we need to take into account the dominance criterion in the ranking.

2. Many of the existing approaches search for efficient architectures through some
metrics that rank the architectures based on a single objective such as Kendall
tau’s correlation between the accuracies of the samples networks [235, 256].
Such metrics do not measure the performance of the Pareto front. Defining
a general metric to determine HW-NAS evaluation strategies is long overdue.
This metric should account for multiple objectives.

To overcome the aforementioned issues, we propose a new training methodology

3.3. PRP-NAS: PARETO RANK-PRESERVING SUPERNETWORKTRAINING61

Input

Conv 3x3 Conv 1x1 Avg Pool 3x3

Output
Operation

selection scores

Task-specific
weights

+ Layer
i

ѡi
1

⍺i
2 ⍺i

3⍺i
1

ѡi
2 ѡi

3

Figure 3.13: Supernetwork definition when coupling task-specific weights W and
operation’s score parameters α. Conv 3x3 is the operation with the highest selection
score.

for supernetwork to preserve the Pareto ranking of sub-networks in HW-NAS and
avoid additional ranking correction steps.

In this section, we present the following contributions:

• We define the Pareto ranking (PR) as a novel metric to compare multiple
HW-NAS evaluation techniques in the multi-objective context. Our study shows
that optimizing this metric while training the supernetwork allows the Vanilla
Weight-sharing NAS to achieve a 92% near optimal Pareto front.

• We introduce a novel Differentiable weight-sharing supernetwork train-
ing methodology. The training optimizes the task-specific loss function (e.g.
cross-entropy loss) and a Pareto ranking listwise loss function to accurately
select the adequate operation per layer.

• During training, we prune the operations that are the least likely to be
in the architecture of the optimal Pareto front. The pruning is done by
overlapping the worst Pareto-ranked sub-networks and removing the operations
that are only used in these sub-networks.

Our methodology has been evaluated on three state-of-the-art NAS benchmarks:
NAS-Bench-201 [233], DARTS ([166]) and ProxylessNAS [235]. The obtained results
show that our approach allows us to achieve a higher Pareto front approximation com-
pared to current state-of-the-art methods. For example, we obtained 97% Pareto front
approximation when One-Shot-NAS-GCN [255] depicts only 87% on NAS-Bench-201.

3.3.1 Proposed Approach

The core motivation for a novel training methodology is to achieve an efficient sub-
networks evaluation for HW-NAS. The proposed training methodology must preserve
the Pareto ranking between different sub-networks while reducing the overall training
time.

Pareto Ranking Similar to HW-PR-NAS, we define the Pareto ranking metric
used to train and evaluate the supernetwork.

Solving the multi-objective optimization problem on a set of sub-networks results
in a Pareto front, denoted as F1, i.e., all the architectures have a rank of 1. We achieve

62 CHAPTER 3. MULTI-OBJECTIVE SURROGATE MODEL FOR HW-NAS

the lower ranks by successfully solving the problem on the set of sub-networks pruned
from the previous solutions. The lowest rank is assigned to the sub-networks that do
not dominate any sub-network. We formally define the Pareto ranking in equation 3.8,
where S is the entire supernetwork, Fk′ is a set of sub-networks ranked k′, and ≻ is
the dominant operation.

Using this ranking scheme, multiple architectures may have the same rank. This
happens when none of them can dominate the others.

a is ranked k ⇐⇒ ∀â ∈ S −
⋃

si∈Fk′∧k′>k

, a ≻ â (3.8)

Pareto Ranking Correlation. We evaluate the quality of an estimator using
ranking correlations such as Kendall’s tau-b Correlation or Spearman Correlation.
Kendall’s tau-b determines whether there is a monotonic relationship between two
variables and is suitable when variables contain many tied ranks [224], which is our
case. We compute Kendall’s Tau-b correlation between the ground truth ranks (i.e.
the Pareto ranks obtained from independently training the sub-networks), and the
Pareto ranks obtained by evaluating each architecture with the supernetwork shared
weights.

Pareto Rank-Preserving Training
Our training methodology aims at preserving the Pareto ranking obtained by the
weight-sharing evaluation.

Figure 3.13 shows a representation of a layer in the supernetwork definition and
the different parameters we aim to learn. A sub-network is a path from the input
to the output. All extracted sub-networks are of the same depth. We train the
supernetwork with two goals: 1) enhance the task-specific loss function by adjusting
W , the task-specific weights of the original model associated with the neural network
operations such as the kernels in convolution, and 2) improve the Pareto ranking loss
between its different paths by adjusting α, the weights associated with the operation
selection. α measures which operation is critical and which one is selected.

Algorithm 2 and figure 3.12 summarize the training procedure.

• Step 1: Train with Strict Fairness We train our supernetwork using Fair-
NAS [164] strict fairness constraint. This step adjusts the weights of all the
sub-networks W and gives a good starting point for the Pareto ranking train-
ing. Additionally, the accuracy estimation on the task-specific loss at this point
is well estimated. We use these estimations to compute the true Pareto ranks
in case no accuracy was provided by the benchmark.

• Step 2: Pareto ranking training For each iteration, we apply:

- Training to solve the task: A mini-batch is sampled from the training
set, and a sub-network is chosen according to each operation’s highest α. The
operation’s weights are updated using the task-specific loss, e.g., cross-entropy
loss for image classification.

- Pareto rank training: In this phase, we purposefully bias the training to-
wards better Pareto-ranked architectures using the α parameters. α parameters
are trained using the loss function provided in equation 3.9. During the forward
pass, we Pareto rank the sampled sub-networks. We compute the number of
times an operation opi appears in layer lj on N top-ranked sub-networks, de-
noted as g(opi, lj). N is a hyperparameter defined before training. We denote
by ĝ(opi, lj), the ground truth. Equation 3.9 computes the hinge loss over all
layers in the sampled sub-networks and compares the number of times the op-
eration with the highest α appears in the predicted Pareto front and the ground
truth one. Here, m is a fixed margin that controls the amount of penalization
for violating the ranks, which is set to 0.1.

3.3. PRP-NAS: PARETO RANK-PRESERVING SUPERNETWORKTRAINING63

L =

L∑
j=1

∑
i,g(opi,lj)>ĝ(opi,lj),i̸=(α)

max[0,m− g((α), lj)− ĝ(opi, lj)] (3.9)

We adjust each operation’s α parameters and compute each sampled sub-
network’s latency using a lookup table. We define the predicted Pareto score
according to Ps =

∑
op∈a αop, i.e., the sum of selected operations’ alpha values.

Next, we compute the listwise ranking loss defined by the cross entropy between
the ranking scores and the Pareto ranks (ground truth).

To compute the ground truth, we iteratively calculate the loss and latencies
of the sub-networks to determine the optimal Pareto front using equation 3.8.
This takes only a few milliseconds, thanks to the small number of selected
sub-networks.

• Step 3: Pruning by Pareto Ranking Sub-networks We drop sub-networks
furthest from the optimal Pareto front to accelerate the training. First, we
select the sub-networks belonging to the two first Pareto ranks. Then, based
on the hypervolume improvement (HVI) [257], we select n sub-networks. The
operations never used by any sub-network in this selection are removed for each
layer. Equation 3.10 illustrates how the hypervolume improvement is computed
in this context. oij denotes operation i in layer j, and P refers to the current
set of sub-networks constituting the Pareto front approximation. HV denotes
the hypervolume function and {Soij} denotes the set of sampled sub-networks
using operation i in layer j, and P refers to the current set of sub-networks
constituting the Pareto front approximation. HV denotes the hypervolume
function and {Soij} denotes the set of sampled sub-networks using operation i
in layer j. When computing the hypervolume, a reference point is required. We
carefully selected the reference point by examining a range of pre-sampled sub-
networks with different accuracy and latency values. Similar to multi-objective
HW-NAS, we chose the sub-network that resulted in the highest HVI for the
initial round of sub-network ranking.

HV I(oij , P) = HV (P
⋃
{Soij})−HV (P − {Soij}) (3.10)

Finally, going over all the layers to select the operations with the highest α would
suffice to find the most efficient DNN within the search space.

Figure 3.14 shows the training results. We compare our methodology to Fair-
NAS [164] strict fairness training. During training, the Pareto ranking correlation
increases with the quality of the estimations. When using our training methodology
without considering the alpha parameters, the ranking correlation saturates at 0.7.
FairNAS achieves the same behavior with reduced variance among the different train-
ing runs. However, if we consider the alpha parameters, the selection is more efficient
and the architectures’ rankings are well represented with 0.94.

The FairNAS step is crucial in optimizing the classification loss and ensuring that
each operation is trained fairly. We conducted experiments to compare the perfor-
mance of our methodology with and without FairNAS. Using training from scratch
(without FairNAS), where the initial model’s weights were random, we found that
the model’s weights were poorly selected, resulting in a badly chosen set of opera-
tions that could negatively impact accuracy and convergence. The top-1 accurate
sub-networks only achieved 86.3%. We found that the Kendall-tau correlation of the
training without FairNAS was only 0.62 after 500 epochs, significantly lower than
the correlation obtained with FairNAS, see figure 3.2. These results will be added to
Figure 3 to highlight the necessity of the FairNAS step.

64 CHAPTER 3. MULTI-OBJECTIVE SURROGATE MODEL FOR HW-NAS

0 25 50 75 100 125 150 175 200
epoch

0.4

0.6

0.8
Ke

nd
al

l's
 T

au
-b

 c
or

re
la

ti
on

With alpha parameters
W/o alpha parameters
Fairnas only
W/o Fairnas

Figure 3.14: Training performance computed with the Kendall’s Tau Correlation
between the independently trained Pareto ranks and the estimated Pareto ranks
obtained by training the supernetwork.

Algorithm 2 Supernetwork Training Algorithm

Input: Search space S, number of epochs for fairness training Nf , number of
epochs for Pareto training Np, Supernetwork parameters (W,α), training dat-
aloader D, task-specific loss Loss, Pareto raking loss LossPR, number of sampled
sub-network n
Procedure: Train
Initialize W and α for each operation in Supernetwork
Strict fairness training for Nf epochs
for i=1 to Np do
for data, labels in D do

Build model with argmax(α) following step 2
Reset gradients to zero for all W parameters
Calculate gradients based on Loss, data, labels and update W by gradients

end for
end for
Sample n sub-networks, models
Compute: Pareto rank of models, LossPR between scores and Pareto rank.
Update α by gradients
Apply pruning following step 3
end for

end for

3.3. PRP-NAS: PARETO RANK-PRESERVING SUPERNETWORKTRAINING65

LUT XGBoost MLP
Estimation Methods

0.0

0.2

0.4

0.6

0.8
Ke

nd
al

l's
 T

au
 C

or
re

la
ti

on

(a) Results on 1000 sampled
networks from NAS-Bench-201

LUT XGBoost MLP
Estimation Methods

0.0

0.2

0.4

0.6

0.8

1.0

Ke
nd

al
l's

 T
au

 C
or

re
la

ti
on

(b) Results on 1000 sampled
networks from DARTS

Figure 3.15: Comparison of latency estimators on Jetson Nano.

Latency Estimation
To estimate the latency of each sub-network during training, we used a lookup table
approach that contains a mapping between each operation and its latency on each
hardware platform. To populate the look-up table, we first generated a large set of
candidate sub-networks using a random search. We then measured the latency of
each operation and averaged it across multiple sub-networks.

During training, we estimated the latency of each sub-network by summing up
the corresponding latencies in the look-up table.

In this section, we compare different latency estimators to validate the use of LUT
during the search. Figure 3.15 shows the results. We randomly extract 1000 archi-
tectures from NAS-Bench-201 and 1000 from DARTS. We measure the exact latency
on Jetson Nano for each architecture. We train two predictor-based models, namely
XGBoost and MLP with 3 layers. The training dataset contains 700 architectures
and 300 were used for testing. On NAS-Bench-201, the architectures have a sequen-
tial execution which made LUT the most accurate in terms of latency ranking the
architectures. On DARTS, XGBoost prediction was the most suitable method. But,
LUT was not far with 0.915 against 0.942. Computing the LUT in our algorithm is
simpler. Using a hook during the forward function on a PyTorch model is sufficient
and much more direct than calling a surrogate model. We thus use this strategy to
estimate the latency in our method.

3.3.2 Evaluation Methodology

Search Spaces: Several search spaces have been used to evaluate our method’s per-
formance. NAS-Bench-201 ([233]) is a tabular benchmark that contains 15k convo-
lutional neural networks. Each architecture is trained on CIFAR-10, CIFAR-100 and
ImageNet-16-120 [237]. We use the latency and energy consumption values obtained
from HW-NAS-Bench [256]. DARTS [166] is a supernetwork benchmark that con-
tains 1018 architectures. Each architecture is trained on CIFAR-10 and is transferable
to ImageNet. We also validate our methodology on ImageNet using ProxylessNAS
search space [235] whose size goes to 619. When the true latency is not available
in the benchmark, we use a lookup table to estimate it. Our preliminary analysis
showed that lookup table achieve 0.92 latency rank correlation on a 1000 sampled
architecture from DARTS and NAS-Bench-201; a +5% than XGBoost predictor.
Training Hyperparameters The training hyperparameters are listed in Table 3.8.
It takes 2, 3.8, 3.8 GPU-days for NAS-Bench-201, DARTS and ProxylessNAS search
space to train each supernetwork to fullness. Our training is 5x faster than previous

66 CHAPTER 3. MULTI-OBJECTIVE SURROGATE MODEL FOR HW-NAS

works due to the pruning strategy. To be consistent with previous works, we do not
employ data augmentation tricks such as cutout or mixup. We also do not employ
any special operations such as squeeze-and-excitation. All these methods can further
improve the scores on the test set.

Table 3.8: Training Hyperparameters

Benchmark Hyperparameter Value

NAS-Bench-201

Nf 20
Np 50
n 50
batch size 128
lr 0.01
optim SGD
momentum 0.9

DARTS

Nf 30
Np 150
n 100
batch size 256
lr 0.025
optim SGD
momentum 0.9

ProxylessNAS
Search Space

Nf 30
Np 150
n 100
batch size 256
lr 0.025
optim SGD
momentum 0.9

3.3.3 Search Results

In these experiments, we consider two objectives: accuracy and latency (inference
time). The latency is either given by HW-NAS-Bench [256] or computed using a
lookup table as explained in the Proposed Approach section.

30 40 50 60 70 80 90
CIFAR-10 Accuracy

2

4

6

8

10

12

Ed
ge

 G
PU

 L
at

en
cy

 (
m

s)

Other Architectures
True Pareto front
Ours
FairNAS
DARTS
One-Shot-NAS-GCN

0 5 10 15 20 25 30 35 40
ImageNet Accuracy

0

2

4

6

8

10

12

Ed
ge

 G
PU

 L
at

en
cy

 (m
s)

Other Architectures
True Pareto front
Ours
FairNAS
DARTS
One-Shot-NAS-GCN

Figure 3.16: Pareto front approximation comparison on CIFAR-10 and ImageNet.

Figure 3.16 shows the Pareto front approximations obtained using different meth-
ods on NAS-Bench-201 for CIFAR-10 and ProxylessNAS Search space for ImageNet.
We obtain a 10% hypervolume increase on NAS-Bench-201 and a 43% hypervolume
increase on ImageNet compared to the best baselines: One-Shot-NAS-GCN and Fair-
NAS, respectively.

3.3. PRP-NAS: PARETO RANK-PRESERVING SUPERNETWORKTRAINING67

Table 3.9: Comparison on NAS-Bench-201 CIFAR-10 on Edge GPU (Jetson Nano)
and Mobile phone (Pixel 3).

Architecture
Edge GPU Mobile Phone : Pixel 3 HW

Aware
GPU
DaysTop-1

Test Acc.
Params

(M)
Latency

(ms)
Top-1

Test Acc.
Params

(M)
Latency

(ms)
DARTS [166] 68.3 ± 0.08 3.4 5.36 68.3 ± 0.08 3.4 11.4 No 4
ENAS [258] 53.89 ± 0.16 4.6 6.32 53.89 ± 0.16 4.6 19.8 No 0.16
GDAS [259] 90.89 ± 0.08 3.4 5.21 90.89 ± 0.08 3.4 10.36 No 0.21
FairNAS [164] 93.23±0.18 3.2 4.68 92.4 ± 0.15 3.6 8.65 Yes 10
PRP-NAS-BL (Ours) 92.34 ± 0.05 3.0 2.3 89.54 ± 0.07 2.8 3.6 Yes 2
PRP-NAS-BA (Ours) 94.37 ± 0.02 4.5 4.35 94.2 ± 0.03 4.3 5.6 Yes 2
PRP-NAS-O (Ours) 93.65 ± 0.01 4.3 3.64 93.74 ± 0.00 3.4 4.61 Yes 2

Search on NAS-Bench-201

Table 3.9 shows the results of our methodology on NAS-Bench-201 compared to
state-of-the-art methods. PRP-NAS-BL, PRP-NAS-BA and PRP-NAS-O are three
sampled architectures from our final Pareto front. BL stands for ”Best Latency”. BA
stands for ”Best Accuracy”, and O stands for ”Optimal”. Notably, our architecture
obtains highly competitive results. The optimal architecture, PRP-NAS-O, outper-
forms current state-of-the-art methods in accuracy and latency. Including hardware
awareness during the search allows us to obtain flexible results according to the tar-
geted hardware platform. Besides, multiple training runs show the stability of our
method compared to other baselines. The acceleration in the search cost is mainly
due to applying the pruning while training. This cost can vary according to the used
GPU. We used GPU V100 to train the supernetwork. Results on other targeted plat-
forms are presented in table 3.10. Our methodology consistently finds better Pareto
extracted solutions regardless of the targeted hardware platform.

Table 3.10: Comparison to baselines on CIFAR-10 on FPGA ZCU-102 and Raspberry
Pi3

Architecture
FPGA ZCU102 Raspberry Pi 3 HW

Aware
GPU
DaysTop-1

Test Acc.
Params

(M)
Latency

(ms)
Top-1

Test Acc.
Params

(M)
Latency

(ms)
DARTS 68.3 ± 0.08 3.4 7.32 68.3 ± 0.08 3.4 45.36 No 4
ENAS 53.89 ± 0.16 4.6 8.91 53.89 ± 0.16 4.6 35.8 No 0.16
GDAS 90.89 ± 0.08 3.4 4.98 90.89 ± 0.08 3.4 41.8 No 0.21
FairNAS 92.9±0.23 3.4 5.12 92.51 ± 0.9 3.3 34.15 Yes 10
PRP-NAS-BL (Ours) 91.35 ± 0.04 3.2 3.6 88.7 ± 0.03 2.4 7.6 Yes 2
PRP-NAS-BA (Ours) 94.37 ± 0.005 4.9 6.8 93.68 ± 0.05 4.68 40.7 Yes 2
PRP-NAS-O (Ours) 93.55 ± 0.04 4.2 4.23 92.54 ± 0.02 3.6 18.5 Yes 2

Search on ImageNet

Similar conclusions can be extracted when searching on ImageNet. Figure 3.17 sum-
marizes the results. Our supernetwork is now based on proxylessNAS [235]. Our op-
timal model surpasses FairNAS-A (+1.9%) and One-Shot-NAS-GCN (+1.7%) while
running faster. Training on Imagenet is time-consuming due to the difference in im-
age resolution, which explains the increase in the search cost. We still surpass most of
the methods in terms of search time. We compare two ProxylessNAS architectures;
ProxylessNAS-R is specific to Mobile inference.

When using data augmentation and architecture tricks, namely Squeeze-and-
excitation and AutoAugment, in the optimal architecture, we achieve 78.6% accuracy
on Imagenet.

In addition, we compare our methodology to OFA [169]. Using the proxyless-
NAS supernetwork, we are able to find a 1.39x faster architecture with a drop of
0.56%. Using our training methodology on OFA’s supernetwork directly allows us
to find a +2.2% accurate and 1.5x faster architecture on Pixel 3 and a +1.4% accu-
rate and 2.3x faster architecture on Jetson Nano. These results can be attributed to

68 CHAPTER 3. MULTI-OBJECTIVE SURROGATE MODEL FOR HW-NAS

3.5

4.0

4.5

5.0
DARTS

ProxylessNAS

FairNAS-A
One-Shot-NAS-GCN

OFA

PRP-NAS-BL

PRP-NAS-O

PRP-NAS-BA

SOTA
PRP-NAS

Test Accuracy (%)

6

8

10L
a
te

n
cy

 (
m

s)

DARTS

ProxylessNAS
FairNAS-A

One-Shot-NAS-GCN

OFA

PRP-NAS-BL
PRP-NAS-O

PRP-NAS-BA

68 70 72 74 76 78 80

1.39x
latency
reduction

1.12x
latency

reduction

Figure 3.17: Comparison with state-of-the-art ImageNet results.

the fact that our methodology searches for architectures that are optimized for each
specific hardware platform, whereas OFA optimizes for a variety of hardware plat-
forms simultaneously. By focusing on specific hardware platforms, our methodology
is able to tailor the architecture to the specific computational resources, and latency
requirements of each platform, leading to superior results on those platforms.

Ranking Quality

Predictor-based HW-NAS Weight-sharing HW-NAS

Figure 3.18: Kendall’s Tau-b correlation and hypervolume comparison using different
estimators on DARTS.

We compare different estimators used in HW-NAS using Kendall’s Tau Correla-
tion between the predicted Pareto ranks and the Pareto ranks obtained from indepen-
dently training the architectures. These latter are extracted from NAS-Bench-201.
Figure 3.18 shows the correlation results. In general, it is more complex to train a
supernetwork to respect the Pareto ranks because of the impact of the sub-networks
on each other, i.e., the outputs of each layer are summed together. The increase in
Kendall’s tau correlation of the previous weight-sharing methodology is due to the
improvement in the accuracy estimation provided by the supernetwork.

Predictor-based evaluators use the learning-to-rank theory and train their predic-
tors only to predict the ranking. Methods such as GATES [260] or BRP-NAS [261]
train many independent predictors, one for each objective. HW-PR-NAS [226] trains

3.3. PRP-NAS: PARETO RANK-PRESERVING SUPERNETWORKTRAINING69

a single predictor to fit the Pareto ranks. However, their methodology is not flexible
for supernetwork training.

Ablation Study

We validate the results of our pruning algorithm by comparing the results of our
algorithm with and without it in table 3.11. Without pruning, the search time expo-
nentially increases from 3.8 GPU days to 15.1. However, the hypervolume improves
slightly. The final most accurate architecture is in both Pareto front obtained with
and without pruning. The optimal architecture using pruning is better in terms of
accuracy and latency. The latency is computed on Jetson Nano Edge GPU.

Model Test
Acc
(%)

Latency
(ms)

Search
Hyper-
volume

GPU
days

PRP-NAS-O 93.65 3.64 423.45 3.8
PRP-
NAS-O-
no pruning

92.1 3.26 433.09 15.1

Table 3.11: Ablation results of Pruning of Pareto ranking for CIFAR-10.

Number of sampled sub-networks

Figure 3.19 shows the effect of increasing the number of sampled sub-networks on
the search results. Generally, increasing the number of samples, increases the hy-
pervolume. The hypervolume is used to evaluate Pareto front approximations. It
computes the area contained by the Pareto front points found by the search and a
reference point. Our reference point is set as a pre-sampled architecture from the
supernetwork, with a low accuracy and high latency. When the number of sampled
sub-networks is too high, each layer’s output is the sum of multiple operations that
can or cannot be within the final Pareto front which induces a bias when adjusting
the alpha parameters.

20 40 60 80 100
Increasing number of sub-networks

250

300

350

400

450

H
yp

er
vo

lu
m

e

Figure 3.19: Hypervolume analysis with an increasing number of sampled sub-
networks for the final Pareto front throughout the search (higher is better) on NAS-
Bench-201.

70 CHAPTER 3. MULTI-OBJECTIVE SURROGATE MODEL FOR HW-NAS

Analysis of α parameter

Figure 3.20 illustrates the evolution of alpha parameters for each operation in layers
1 and 2 during the training. It clearly shows how alpha favors one operation over the
others during training. At the end of the training, we take the operations with the
highest alpha that represents the operations constructing architectures in the final
Pareto front. If one layer has a clear candidate such as layer 1, with conv3x3 that
exceeds 60%, this operation is then chosen. If a layer contains multiple operations
with similar alpha values, we construct all the path of that layer.

0 25 50 75 100
Epoch

0.1

0.2

0.3

0.4

0.5

0.6

al
ph

a
va

lu
es

Layer 1
conv3x3
pool
identity
conv1x1

0 25 50 75 100
Epoch

0.1

0.2

0.3

0.4

0.5

al
ph

a
va

lu
es

Layer 2
conv3x3
pool
identity
conv1x1

Figure 3.20: Analysis of trained alpha values for layers 1 and 2

3.3.4 Battery Usage Preservation

The amount of energy consumed by each model can be different. It is mainly at-
tributed to the number of multi-adds computed. We take supernetwork usage to
another level by adequately scheduling the run of different sub-networks according to
the system’s battery life. In this experiment, the training is done with two objectives:
accuracy and energy consumption. Once the training is done, only the Pareto front
solutions are kept in the supernetwork, thanks to the pruning. We further select,
from the final Pareto front, s architectures. In this experiment s = 5. The total size
of the supernetwork is then reduced to 20.5MB, comparable to MobileNet-V3 Large
with 21.11MB. We deploy the model on a smartphone application that is always on.
The application repeats the inference classification of one image. The application ini-
tially uses the sub-network with the highest accuracy. We switch to a lower-accurate
model every five hours for better energy preservation. Figure 3.21 shows the results
of the system’s battery life while running the application for 24 hours. We use three
scenarios:

3.4. CONCLUSION 71

0 5 10 15 20
Hour

0

20

40

60

80

100

Ba
tte

ry
 C

ap
ac

ity
 (%

)
34.19%

Worse Capacity Usage
Best Capacity Usage
Adequate Capacity Usage

Figure 3.21: Battery life management.

1. Worst Battery Usage: From the Pareto front, we select the most accurate
architecture: PRP-NAS-BA. This is the only architecture the application runs
and is the only one loaded in memory.

2. Best Battery Usage: Similar to the worst battery usage, we select the most
energy-efficient.

3. Adequate Battery Usage: We load the complete supernetwork and switch
the sub-network every 5 hours.

Using this strategy helps save up to 34% of the battery life while using highly
accurate models most of the time. The average accuracy of the five selected sub-
networks is 75.2%.

3.4 Conclusion

This chapter introduces HW-PR-NAS and PRP-NAS. Both contributions enhance
the evaluation component of HW-NAS.

HW-PR-NAS is a surrogate model-based HW-NAS methodology, to accelerate
HW-NAS while preserving the quality of the search results on cell-based and global
search spaces. HW-PR-NAS proposes a novel encoding methodology that offers sev-
eral advantages: (1) It generalizes well with small datasets, which decreases the time
required to run the complete NAS on new search spaces and tasks, (2) It is also
flexible to any hardware platforms and any number of objectives. This approach was
evaluated on seven hardware platforms such as Jetson Nano, Pixel 3, and FPGA
ZCU102. Experimental results show that HW-PR-NAS delivers a better Pareto front
approximation (98% normalized hypervolume of the true Pareto front) and a 2.5x
speedup in search time. We show that HW-PR-NAS outperforms state-of-the-art
HW-NAS approaches on seven edge platforms.

PRP-NAS analyzes Hardware-aware weight-sharing NAS where the multi-
objective context requires the estimator to preserve the Pareto rankings between
sub-networks accurately. Contrary to existing approaches that estimate each objec-
tive independently, we propose a supernetwork training methodology able to preserve
the Pareto rankings during the search. We achieve 97% near Pareto front approx-
imation on NAS-Bench-201, DARTS, and ProxylessNAS Search Spaces. We find a
77.2% accuracy model on ImageNet while only training the supernetwork for 3.8 days.
Using the supernetwork capabilities, we saved up to 34% of the battery capacity with
an average accuracy of 75.2% on ImageNet.

72 CHAPTER 3. MULTI-OBJECTIVE SURROGATE MODEL FOR HW-NAS

Chapter 4

Enhancing HW-NAS Search
Space

Contents
4.1 Context . 74

4.2 CaW-NAS . 74

4.2.1 Proposed Approach . 75

4.2.2 Quantization Analysis . 76

4.2.3 Search Strategy . 78

4.2.4 Evaluation Methodology 78

4.2.5 Search Results . 79

4.3 Grassroots Operator Search for Model Edge Adaptation 81

4.3.1 Proposed Approach . 83

Operator Search Space . 84

4.3.2 Search Algorithm . 87

4.3.3 Evaluation Methodology 89

4.3.4 Optimizing an architecture for Edge Devices 90

4.3.5 Use Case: Pulse Rate Estimation 92

Background on Pulse Rate Estimation 93

Experiments & Results 93

4.4 Conclusion . 96

73

74 CHAPTER 4. ENHANCING HW-NAS SEARCH SPACE

4.1 Context

Undoubtedly, the most critical component of HW-NAS is its search space. The
search space defines the types of architectures that are explored and the range of
performance that can be achieved. A large and well-designed search space allows
for a broader exploration of the design space and can lead to the discovery of more
efficient and effective architectures. However, an overly large search space can also
lead to increased computational costs and longer search times, making it impractical
for many real-world applications. Therefore, the design of an effective search space is a
critical challenge in HW-NAS research. In this chapter, we present two contributions
to the search space definition.

First, when exploring compression methods for neural networks, a critical chal-
lenge is how to efficiently define a search space. Compression techniques, such as
pruning and quantization, can significantly reduce the model size and computational
cost of neural networks, but the search space for finding an optimal compressed ar-
chitecture can be large and complex. Therefore, we present CaW-NAS, compression-
aware neural architecture search, to answer research question 2.

Research Question 2

What is an efficient and effective method for defining a search space that
contains diverse and high-performing compressed neural architectures while
minimizing the computational cost of the search process?

Second, current search spaces are typically designed using either a macro-
architecture that closely resembles a standard handcrafted architecture or a list of
pre-defined operations obtained from handcrafted architectures. While this design
approach allows for the identification of the top-performing combinations of pre-
existing operations, it falls short when it comes to discovering novel and innovative
architectures. As a result, the search process may be constrained by the pre-existing
assumptions and biases inherent in these design choices, limiting the potential for true
innovation in neural architecture design. Hence, propose GOS, Grassroots operation
search to answer research question 3.

Research Question 3

What are effective approaches for constructing a search space that is not
influenced by previous human experience, and can enable the discovery of
novel and innovative neural architectures?

4.2 CaW-NAS: Compression-aware Neural Archi-
tecture Search

Quantization, as a model compression technique, aims at decreasing the bit width
used to represent the model’s weights and activations in memory. This dramati-
cally reduces both the memory requirement and computational cost. However, the
quantization induces a drop in the model’s accuracy which varies according to the
architecture, the chosen bit width, and the dataset.

Including the quantization bit width in the search space will considerably increase
the computational complexity of HW-NAS and makes the search impractical. In tra-
ditional methods, a multi-stage search is used. A first search for the architecture
using HW-NAS is applied and then a second search for the quantization bit width is
realized. This second stage is called specialization. However, this specialization deliv-
ers a sub-optimal solution as the drop in accuracy induced by quantization depends
on the architecture obtained by the HW-NAS in the first stage.

4.2. CAW-NAS 75

To solve the large search space problem, APQ [140] proposes a supernetwork in
which each operator (e.g. conv, fully connected, etc.) is defined with its associated
bit width. APQ uses a surrogate model to predict the accuracy of the quantized
model. However, a supernetwork restricts the search space depending on the model’s
macro-architecture.

We present CaW-NAS, a solution that dynamically extends the search space with
the quantized versions during the search. Our approach obtains more efficient archi-
tectures by merging the two stages.

Figure 4.1: Overview of CaW-NAS: Compression Aware Neural Architecture

The contributions made by CaW-NAS are threefold:

• We propose a search strategy in the HW-NAS that considers the quantization
accuracy drop. We dynamically extend the search space with the quantized
version of the sampled architecture during the search if its accuracy drop is
acceptable.

• We apply a clustering strategy to identify architectures with small/null drops in
the quantization. We first use these insights to answer the following question:
What is the relation between quantization drop and architecture characteris-
tics such as depth, width, and operators? and How does the quantization drop
change when different bit widths are selected? These results guide the explo-
ration of the extended search space without impacting the delays.

• We validate our methodology on two benchmarks: NAS-Bench-201 [262] and
a customized search space consisting of state-of-the-art standard models. We
tested our method on a mobile phone platform, the Xiaomi Redmi Note 7.
When compared to state-of-the-art architectures, namely APQ-B [140], our
method obtained a neural architecture with a 36.5% reduction in inference time
and a 1.24% increase in accuracy.

4.2.1 Proposed Approach

Figure 4.1 shows an overview of our proposed approach CaW-NAS. Our system is
composed of three main parts described as follows.

1. Search Space: Our search space is initially defined by two subsets: 1) state-
of-the-art pre-trained standard models and 2) NAS-Bench-201 search space [262].
During the NAS process, the search space is extended by quantized models that give
an acceptable accuracy drop compared to their full-precision versions.

76 CHAPTER 4. ENHANCING HW-NAS SEARCH SPACE

Architecture
GIN

LSTM

Encoding Encoded Architecture
Vector1
Vector2

Clustering Algorithm
Clusters

C1 Cn
Compute AQD

Compute the Distance

AQD stands for Average Quantization Drop

Figure 4.2: Clustering strategy to analyze the quantization sensitivity

2. Quantization Effect Checking: To check the quantization effect on the model’s
accuracy, we need to determine to which cluster belongs the sampled architecture.
The cluster creation details are presented in subsection 4.2.2. Each cluster represents
the sensitivity to quantization measured with the drop in accuracy. Initially, the
search space only defines nonquantized architecture. Then, for each sampled archi-
tecture, and if the architecture isn’t sensitive, its 8-bit quantized version is added to
the search space. During the search, the search space gets bigger, and the population
considers quantized architectures and nonquantized ones at the same time. By doing
so, we avoid falling into a sub-optimal solution.

3. Search Strategy: It represents a standard multi-objectives hardware-aware NAS.
We use an evolutionary search algorithm to find the best architectures in terms of
accuracy and hardware efficiency trade-off. The search algorithm evaluates the accu-
racy and the hardware efficiency of each architecture using prediction models, named
surrogate models.

The most important parts in CaW-NAS are the quantization-related parts, namely
cluster creation (see figure 4.2) and Quantization Effect Checking (see figure 4.1). For
the sake of brevity, we regroup them under the term Quantization Analysis. The next
section describes how the quantization analysis is done using clustering.

4.2.2 Quantization Analysis

Figure 4.2 details the cluster creation part. We apply the clustering on a set of
pre-trained models, which allows us to generalize the results to a broad set of search
spaces. We first encode each architecture into two vectors using a Graph Isomorphism
Network (GIN) [263] and a two-layer LSTM. These two vectors enable us to compute
the distance between different architectures. We then use a k-means algorithm to
cluster similar architectures together. The number of clusters is a user-defined hy-
perparameter. It depends on the desired accuracy and the search time limit. Having
a large number of clusters increases the accuracy, provides better architectures, but
increases the search time. In the initial clustering step, we manually assign an ar-
chitecture to each cluster. For example, if the number of clusters is two we assign
Resnet18 and InceptionV3 to the clusters. If the number of clusters is three, VGG16
is assigned to the third cluster. These initial points have been chosen from empirical
tests. Then, we iterate over the set of models. For each architecture, we compute the
average of the distances between the graph encoding vectors and the LSTM encoding
vectors with the centroids of each cluster. In the last step, we check each cluster’s
Average Quantization Drop (AQD). We maximize the distance between the AQD
of different clusters by fine-tuning the encoding GIN and LSTM and repeating the
clustering.

Once we obtain the final clusters, we analyze the architectures in each cluster to
understand the sensitivity of the architecture to the quantization.

1. Effect of increasing depth and width on quantization accuracy. From
each architecture, we derive four variants with an increasing number of blocks but

4.2. CAW-NAS 77

the same output channels in each block for the depth analysis and five variants with
increasing output channels but the same depth as the original model. The depth
varies from 12 to 56, whereas the width varies from 16 to 256. We compute the
percentage of similar clusters with the original architecture.

Figure 4.3 (left) shows the impact of varying the architecture’s depth on the
quantization effect. The number of clusters and the bitwidth are fixed to 3 and 8
respectively. Increasing the depth of the architecture increases the drop in accuracy,
and the architectures are clustered differently. We can conclude that the deeper the
architecture, the higher will be the quantization effect.

Figure 4.3 (right) shows the results of the quantization on the increasing width
scenario. Increasing the width of the architecture doesn’t necessarily increase or
decrease the accuracy drop. We find that variants with different widths often stay
within the same cluster.

10 20 30 40 50
depth

82.5

85.0

87.5

90.0

92.5

95.0

97.5

100.0

Pe
rc

en
ta

ge
 o

f s
im

ila
r c

lu
st

er
s (

%
)

50 100 150 200 250
width

82

84

86

88

90

92

94

96

98

100

Pe
rc

en
ta

ge
 o

f s
im

ila
r c

lu
st

er
s (

%
)

Figure 4.3: Quantization effect on increasing depth and width in the architectures

2. Effect of quantization on different convolution variants
Among the standard models, we can find architectures using different convolution
variants: The standard convolution, the grouped convolution, and depthwise con-
volution. We compute the Average Quantization Drop (AQD) for each variant and
present the results in figure 4.4. The AQD is computed for each block with the same
output channel within architectures with the same depth. We can notice that the
depthwise convolution is the most sensitive to quantization. This operator is used
in architectures targeting mobile settings because it uses fewer parameters, which
makes the models smaller. However, the quantization on the depthwise convolution
results in a significant drop, which validates our initial assumption: The architecture
search space should include quantized and non-quantized architectures even for edge
devices.

standard
convolution

grouped
convolution

depthwise
convolution

0

1

2

3

4

5

6

7

8

Av
er

ag
e

Qu
an

tiz
at

io
n

Dr
op

Figure 4.4: Quantization effect on different convolution variants

78 CHAPTER 4. ENHANCING HW-NAS SEARCH SPACE

3. Effect of increasing bit width on the clusters
We also analyze the effect of decreasing the bit width from 8-bit to 4-bit and check if
we have the same clusters. The percentage of similar clusters obtained is 78% which
suggests that the clusters change from one quantization scheme to another.

The search space should then include the original non-quantized architectures,
the 8-bit quantized architectures, and the 4-bit quantized architectures.

4.2.3 Search Strategy

In this section, we describe the search algorithm used in CaW-NAS. We use an
adapted multi-objective evolutionary algorithm. The different steps are given in
Algorithm 3. The algorithm implements blocks 2 and 3 in Figure 4.1.

After the clustering, we calculate the centroids of the cluster and the AQD. The
AQD lets us know which cluster is sensitive to quantization. We check to which cluster
(step 7) each architecture belongs during the search and decide whether to add its
quantized version to the search space or ignore it (steps 8 and 9). Then, we compute
the accuracy and latency predictions (step 10). If the architecture is quantized,
the accuracy is calculated using the predicted accuracy of the non-quantized version
minus the AQD of the cluster it belongs to. Using these evaluations, we construct
the Pareto front, the set of non-dominated architectures in the space (step 11).

Algorithm 3 Search Algorithm

Input: search space S, centroids C, population size p, mutation probability
m prob, maximum iteration max iter, time budget time lim
Output: Pareto front non dominated
P = RandomPopulation(S, p)
non dominated = ∅
i = 0
while i ≤ max iter AND t ≤ time lim do
for Each architecture α in P do
if α is not quantized then

cluster = ComputeDistance(α, C)
if cluster is not sensitive then

Add Quantized(α) to S
end if

end if
end for
fitness = compute fitness(P)
non dominated = sorting(P, fitness, k)
mutate architecture of P with m prob
select n new architectures from S, add them to P

end while

4.2.4 Evaluation Methodology

All the models have been implemented using PyTorch. The global hyperparameters
are listed in table 4.1.

Quantization All the quantization results and accuracy computation are done as
follows. First, the fp32 models are pre-trained on ImageNet or CIFAR-10. Next, we
add 30 epochs of quantization-aware training. We used two quantization schemes: 8-
bit and 4-bit. We use the quantization schemes implemented in PyTorch-quantization

4.2. CAW-NAS 79

Clustering
k 3

max iter 250
tol 0,01

Search Algorithm
population size 100

m prob 0,8
max iter 100

time budget 1hr

Table 4.1: CaW-NAS hyperparameters

in the Nvidia toolkit1. Specifically, we quantize the weights and activations of the
model with the same bit width for all our tests.

Clustering We encode each architecture into two vectors. The first is obtained
with 2-layer LSTMs with 225 hidden units. The second with a 2-layer GIN with 300
hidden units. We use scikit-learn k-means implementation with the hyperparameters
shown in table 4.1 (top).

Evolutionary search algorithm We experiment on two different search spaces.
The first one is denoted pretrained models. It is constructed from 95 pre-trained
models trained on ImageNet with increasing architecture depth and width. The
width is increased by multiplying the output channels by a widening factor taken
from 1 to 4. The depth is increased by duplicating the blocks within the architecture.
Each block preserves the same number of output channels. We duplicate the block
by a depth factor that varies from 1 to 4. The total number of architectures in this
adapted search space is 3,112,960. The second search space is NAS-Bench-201 [262]
where the architectures are trained for CIFAR-10.

We select the top 25 architectures to produce the next generation during the
search. We mutate them and get 50 more architectures and we randomly sample
25 more from the search space. This random generation adds more exploration and
allows us to include quantized architectures in space. We don’t use any crossover.

Setup All obtained models are executed on a Redmi S7 mobile phone to gather
latency and energy consumption values.

4.2.5 Search Results

In this section, we describe the final search results obtained using CaW-NAS.

Exploration Analysis

First, we study how many quantized models are considered during the search.
This analysis gives information about whether we add quantized models to the search
space, whether these models are considered and selected, and how many quantized
models are considered over iteration search, which indicates that the search on a
mixed quantized and non-quantized search space is interesting.

Figure 4.5 shows the number of quantized models in the search space and the
population over search iteration. The number of quantized models keeps increasing
in the search space because we find more and more architecture in the right cluster,

1https://docs.nvidia.com/deeplearning/tensorrt/pytorch-quantization-
toolkit/docs/userguide.html

80 CHAPTER 4. ENHANCING HW-NAS SEARCH SPACE

i.e., not sensitive to the quantization. The increase slows down due to the popu-
lation’s increasing number of quantized models. The number of quantized models
keeps increasing and saturates at 61% of the population size. This result validates
that even after 250 iterations, we find non-quantized architectures close to quantized
architectures in terms of latency and accuracy.

0 50 100 150 200 250
Iterations

0

100

200

300

400

Nu
m

be
r o

f q
ua

nt
ize

d
m

od
el

s

search space
population

Figure 4.5: Number of quantized archi-
tectures in the search space and popula-
tion over iterations.

fp32_acc acc-drop-2 acc-drop-3
0

20

40

60

80

Co
rre

la
tio

n

spearman correlation
kendal tau correlation

Figure 4.6: Ranking correlation of ac-
curacy proxies. acc-drop-x refers to
the accuracy proxy with x clusters.

Accuracy estimation analysis
During our search algorithm, we evaluate the accuracy of the quantized models by
estimating the fp32 accuracy using a surrogate model [5] and subtracting the AQD
of the architecture’s cluster; we call this evaluation accuracy proxy. We analyze the
ranking correlation between the quantized accuracy and different proxies; namely, the
fp32 accuracy predicted by the surrogate model, the accuracy proxy obtained using
2 clusters, and the accuracy proxy obtained using 3 clusters. Figure 4.6 shows the
results of this test. Hence, the end-to-end results described below are executed using
three clusters.

Model top-1
Accu-
racy

Param-
eters
(M)

Latency
(ms)

Energy
(mJ)

Search
time
(GPU
hours)

MobileNetV2 72.00 3.40 51.20 74.24 -
MobileNetV3 - quantized 73.80 5.40 44.00 58.61 -
ProxylessNAS 72.60 5.70 18.52 25.89 200
APQ - B 74.20 4.50 8.75 12.92 2400+0.5N
APQ - C 75.2 4.25 8.16 13.29 2400+0.5N
CaW-Net-A(Ours) 61.90 3.60 1.50 4.68 0.8+2N
CaW-Net-B (Ours) 78.22 4.52 8.33 11.86 0.8+2N
CaW-Net-C (Ours) 75.22 4.18 6.30 10.43 0.8+2N

Table 4.2: Comparison with state-of-the-art efficient models on ImageNet. N is the
number of training for NAS on a new platform.

End-to-end Search The final Pareto front results are represented in figure 4.7. We
compare our Pareto front approximation to the result of two search strategies: random

4.3. GRASSROOTS OPERATOR SEARCH FORMODEL EDGE ADAPTATION81

search on the non-quantized search space only (RS-w/o quantized) and random search
on the larger mixed search space (RS-with quantized). In the pre-trained model search
space, we can not compute the optimal Pareto front using a brute force method
because the search space is too big. Nevertheless, figure 4.7 shows that we accurately
approximate the Pareto front. We select from the Pareto front the architecture that
best represents the trade-off between latency and accuracy.

Table 4.2 shows the comparison of our final architecture against state-of-the-art
architectures obtained using different search strategies.

CaW-Nets are the models obtained using CaW-NAS. A and B represent respec-
tively the models with minimum and maximum accuracy within the Pareto front.
We use the same notation as APQ [140], where N denotes the number of training
needed to perform the NAS strategy for a new platform. Note that N in our strat-
egy decreases over the search iteration due to the increasing number of quantized
architectures in the population.

From the Pareto front approximation, we manually extracted three architectures:
the architecture with the lowest latency CaW-Net-A, the architecture with the highest
accuracy CaW-Net-B, and CaW-Net-C an architecture with comparable accuracy to
APQ-C. We can observe that our approach can find architectures with a good trade-
off in terms of accuracy, latency, and energy consumption, with a considerably low
number of parameters.

60 65 70 75 80 85 90
accuracy (%)

0

5

10

15

20

25

30

35

la
te

nc
y

(m
s)

 final
 architecture
(91.53%,7.3ms)

NAS-Bench-201
Optimal Pareto front
CaW-NAS
RS - w/o quantized
RS - with quantized

Figure 4.7: Pareto front approximation results. Top figure: NAS-Bench-201 for
CIFAR-10, Bottom figure: Pretrained Models for ImageNet

4.3 Grassroots Operator Search for Model Edge
Adaptation

The definition of the search space is a critical step in NAS, as it determines the range of
possible architectures and can significantly impact their performance. The size of the
search space matters. A large search space hinders the exploration but diversifies the
results. In contrast, a small search space restricts architectural diversity. Currently,
there are three primary approaches to defining the search space in HW-NAS [1]:

1. Cell-based search space, which involves searching for a repeated cell, also called
block, within a pre-defined macro-architecture. The cell is defined by a list of
operators, such as convolution and batch normalization, and an adjacency ma-
trix that defines the connections between the operators. NAS-Bench-101 [264]
is a common NAS benchmark designed using this definition.

2. Hierarchical search space [265] that extends the cell-based approach by select-
ing the operators composing the cell, defining the cell-level connections, and
merging multiple cells.

3. Supernetwork search space [166], in which each architecture is represented as a
subgraph within a larger, more complex network called the supernetwork. the

82 CHAPTER 4. ENHANCING HW-NAS SEARCH SPACE

weights of the supernetwork are typically shared among all subgraphs, allowing
the subgraphs to share computation and enabling efficient exploration of the
search space. The supernetwork is then called an over-parameterized network.
The subgraphs can differ in terms of their connectivity, layer types, layer sizes,
and other architectural hyperparameters.

A prevalent limitation of such definitions is the bias introduced by the dependence
on human-designed architectures, which restricts the search algorithms from explor-
ing novel and innovative operations and architectures. This bias towards previously
handcrafted architectures hinders the discovery of more efficient and effective mod-
els for specific tasks. Consequently, there is a need to develop novel methodologies
that can help discover more optimized architectures and operations that can perform
well on various devices and scenarios without relying on pre-existing models. Such
methodologies would be the holy grail of NAS, as they would enable the creation of
truly novel architectures that can push the limits of deep learning performance even
further.

One solution would be to define a completely random search space where the
architecture and operations are generated from scratch and then evaluated based on
their performance. However, given the vast search space, such approaches require
a massive amount of computational resources and are often infeasible for practical
use. AutoML-Zero [77], for example, presents a strategy capable of defining the
architecture and the training procedure from standard mathematical operations using
reinforcement learning. This approach breaks the innovation barrier for NAS but at
a significant time complexity price. Due to this highly complex search, AutoML-
Zero only achieves linear regression on the MNIST dataset, which is impractical for
complex and real-world datasets.

Indeed, selecting the right set of operators for a specific task is crucial, but the
actual implementation of the operator can also greatly impact the hardware efficiency
of the DL model. In order to overcome this challenge, recent works have focused on
using DL compilers [58, 60] that can automatically select the most efficient imple-
mentation and optimization for a given hardware. These compilers use techniques
such as code generation and optimization, which allow for the automatic translation
of high-level DL operators to hardware-specific low-level code. By doing so, they can
greatly improve the efficiency of DL models on different hardware devices, including
edge devices. The use of deep learning compilers highlights the importance of not
only selecting the right operator but also optimizing its implementation to achieve
the best possible hardware performance. MCUNet [266] combines the use of NAS and
DL compiler, called TinyEngine, to efficiently look for the best architecture as well as
its best implementation in an iterative manner. However, their search space includes
a set of standard DL operators. Current operators’ implementations are designed for
resource-expensive hardware platforms and do not conform to edge constraints.

This section presents a search algorithm that adapts the architecture to edge
devices without previous human experience. To overcome the time complexity of
AutoML-Zero, we apply our search algorithm on a specific layer at each iteration.
Specifically, our method, in the first step, analyzes each layer’s latency and memory
occupancy distributions in a given model. In the second step, the most inefficient layer
is optimized. Costly operators in this layer are replaced by efficient operators. We
express an operator as a set of mathematical instructions that capture its behavior.
For example, standardization is expressed by subtracting the mean of the input over
a mini-batch and dividing it by the standard deviation of that input.

The mathematical instructions are then used as a basis for searching and select-
ing efficient replacement operators that maintain the accuracy of the original model
while reducing computational complexity. We consider a model as a set of layers
such as convolution. Each layer corresponds to a sequence of operators implemented
by a graph of mathematical instructions. Table 4.3 gives the list of mathematical
instructions considered in this work.

4.3. GRASSROOTS OPERATOR SEARCH FORMODEL EDGE ADAPTATION83

 Operator Adaptation

 Operator Complexity Analysis

standard
model

target edge
platform

1

conv16
conv15
conv19
conv17

…

Operator Ranking &
Selection

2

Le
as

t-e
ffi

ci
en

t
op

er
at

or

Model with
optimized
operator

Least-efficient
operator

Generate initial
computation graph

Generate search
population

Check Accuracy
drop after
fine-tuning

HW-efficiency
Evaluation

Mutation & Crossover

Stopping
criteria

Optimized
Model

N
o

Ye
s

Figure 4.8: Overview of the operator replacement methodology.

We repeat these two steps until we find an architecture suited for the targeted edge
device without an accuracy drop. Our technique aims at breaking the time-consuming
barrier of non-restrictive search spaces while searching for new and innovative archi-
tectural designs.

We summarize the contributions proposed by GOS as follows.

• We present a new adaptation methodology via operator replacement. We re-
place the most hardware-inefficient layer iteratively by building a new operator
from scratch with minimal human bias.

• We develop an optimized multi-objective evolutionary search algorithm that ef-
fectively selects the appropriate operator for deploying an efficient architecture
on the targeted device. By doing so, we enable the deployment of deep learn-
ing models on edge devices with improved efficiency and without sacrificing
accuracy.

Our methodology has been validated with different types of architectures: Con-
volutional neural networks (ConvNets) and Vision transformers (ViT). In particular,
we identified a novel convolution implementation suitable for Raspberry Pi, which is
a significant contribution to the field of edge computing. Additionally, we applied
our methodology for Pulse Rate estimation with PPG sensors and achieved a state-
of-the-art result. Overall, our approach consistently improves the model’s hardware
efficiency with an average of 2x speedup without any loss in the model’s accuracy.
These results demonstrate the effectiveness and versatility of our methodology for
optimizing deep learning models for different hardware platforms and applications.

4.3.1 Proposed Approach

Figure 4.8 shows the overall structure of our methodology. Given a model, denoted
as m, our goal is to adapt it to a targeted edge platform. In this methodology, we
define an operator as a set of operations applied in a layer. The operator can be a
single layer, as defined in common DL frameworks, such as a convolution, or a fused
layer such as ReLU-BN [267]. The process goes through two stages:

84 CHAPTER 4. ENHANCING HW-NAS SEARCH SPACE

1. Operator Complexity Analysis: First, the process extracts the least efficient op-
erator by running Ni inference on the edge device. The inefficiency is computed
with different objectives, such as latency and the number of parameters. The
number of parameters reflects the size of the operator. Additional criteria such
as energy consumption may be added. Among the list of operators in m, the
least efficient operator is selected based on algorithm 4. If the model is not de-
ployable on the target platform, i.e., the size of the network exceeds the memory
capacity, we select the operator with the highest number of parameters from
the table num param in algorithm 4. Otherwise, we rank the architectures
with latency and number of parameters in descending order and select the first
operator. Our strategy of ranking is as follows: if the architecture is deployable
on the target device, the number of parameters is a less important objective,
we rank the operators based on the latency and if two operators are of close
latencies then we consider the number of parameters. This behavior is checked
at each iteration. If more criteria are considered, then the ranking should be
multi-objective [268]. This operator corresponds to the slowest operator that
has the highest number of parameters possible. If an operator is selected, it
cannot be selected for another optimization iteration. In a CNN, it is common
knowledge that the least-efficient operator is the convolution. However, accord-
ing to its input and output shape, the convolution may be optimized differently.
To efficiently select the operator to be replaced, we define No as the maximum
number of similar operators and select the top operators each time. For exam-
ple, if the No least efficient operators are all convolutions, we will replace them
all with the same generated optimized operator.

2. Operator Adaptation: Then, we adapt the selected operator by searching for
a variation that can keep the same input and output shapes but optimizes
the computations. This phase is done with an evolutionary search on a set of
mathematical operations. Section 4.3.1 and section 4.3.2 describe the search
space and methodology respectively. During the search, only the parameters of
the adapted operator are fine-tuned.

The two steps are repeated until satisfactory hardware efficiency is reached or a
maximum number of layers have been replaced.

Operator Search Space

Unlike previous HW-NAS search spaces that are based on pre-defined operator sets,
our search space is defined with a set of mathematical operations. The operator is
represented with a computation graph. The computation graph is a directed acyclic
graph (DAG) with N nodes and E edges. The nodes correspond to the operations
such as matrix multiplication, square root, and element-wise addition. The edges
describe the inputs and outputs of each node. Figure 4.8 (step 2) shows an example
of such a graph.

Each node in the context can be classified into one of the following three types:

• Instruction: this node corresponds to any mathematical instruction in table 4.3.

• Input: this node corresponds to the input feature maps or weights that are
given as operands to the instruction node.

• Constant: this introduces hyperparameters fixed in the mathematical instruc-
tion equation. These constants can be tuned and mutated during the search.

We constrain the generated computation graphs with 1 < N <= 20 and 1 <
E <= 25. These values have been fixed by analyzing standard models’ operators.
During the generation, the input node is fixed, and its shape is defined by the output
of the previous operation in m. The output node’s shape is also known as it is

4.3. GRASSROOTS OPERATOR SEARCH FORMODEL EDGE ADAPTATION85

Algorithm 4 Least-efficient Operator Selection

Input: Model m, Number of inference Ni

is deployable← deploy(m)
if not is deployable then

for each o in m do
for each operator o get its number of parameters
num param[o]← number of params(o)

end for
return argmax(num param, No)
return the operator with highest value in num param and its number of oc-
currences No

end if
for each o in m do
latency[o]← average latency(o,Ni) # compute the mean latency of each oper-
ator o for Ni inferences
num param[o]← number of params(o)

end for
return Top No similar operators
return the operator with highest value in num param and its number of occur-
rences No

here we consider first the latency and then the number of parameters in the
ranking

0.2 0.4 0.6 0.8
0

20 original conv

0.2 0.4 0.6 0.8
0

20 original relu

0.2 0.4 0.6 0.8
0

20 original bn

Operator: Convolution2D

Operator: ReLU

Operator: BatchNorm

CIFAR-10 Validation Accuracy (%)

N
um

be
r

of
 s

am
pl

es

(a) Randomly generating replacement

0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95
0

50 original conv

0.65 0.70 0.75 0.80 0.85 0.90 0.95
0

100 original relu

0.5 0.6 0.7 0.8 0.9
0

200 original bn

Operator: Convolution2D

Operator: ReLU

Operator: BatchNorm

CIFAR-10 Validation Accuracy (%)

N
um

be
r

of
 s

am
pl

es

(b) Operator replacement with Adaptation

Figure 4.9: CIFAR-10 accuracy histograms of 1k architectures randomly generated
(a) and adapted from the original operator (b).

constrained by the input shape of the next operator in m. To ensure a valid network,
we optionally add a reshape operation at the end of the computation graph to keep
the same output shape as expected by the next operator in the given model. Nodes
that can’t be reached from the input or that do not have a path to the output are
considered unused and therefore pruned from the computation graph.

Table 4.3 shows the basic operations in the search space, including arithmetic,
linear algebra, probability, and aggregation operations. The aggregation operations
enable to merge between the output of multiple nodes. We include code optimizations
such as loop tiling and unrolling as special aggregation functions that are called to
optimize the generated operator’s code. Note that this is a general application of
these optimizations that can be hardware-specifically defined by a compiler.

Note that each operator has a list of hyperparameters dedicated to it. These
hyperparameters are illustrated in the equations as constants in table 4.3.

Example of Operator Computation Graph In this paragraph, we explain how
the convolution 2D is turned into a computation graph. In its simplest form, the
convolution 2D can be formulated as in equation 4.1, where N is the batch size, C

86 CHAPTER 4. ENHANCING HW-NAS SEARCH SPACE

Table 4.3: List of mathematical instructions defining the search space

Category Instruction Equation

Linear Algebra Matrix multiplication C = AB
Matrix addition and subtraction C = A + B or C = A−B
Vector multiplication c = Ab
Matrix inversion A−1

Dot product a⊤b
Determinant det(A)
Trace tr(A)
Eigenvalues and eigenvectors Av = λv
Singular value decomposition (SVD) A = UΣV⊤

QR decomposition A = QR
Cholesky decomposition A = LL⊤

Matrix pseudoinverse A†

Matrix rank rank(A)
Hadamard product C = A⊙B
Kronecker product C = A⊗B
Outer product C = ab⊤

Vector norm ∥x∥
Matrix norm ∥A∥
Frobenius norm ∥A∥F
Identity matrix I
Zero matrix 0

Calculus Gradients ∇θL(θ)

Partial derivatives ∂f
∂x

Chain rule ∂f
∂x = ∂f

∂g
∂g
∂x

Activation Functions Sigmoid σ(x) = 1
1+e−x

ReLU ReLU(x) = max(0, x)

Tanh tanh(x) = ex−e−x

ex+e−x

Softmax softmax(xi) = exi∑k
j=1 exj

Convolution cross-correlation (f ∗ g)(x, y) =
∑k

i=−k

∑k
j=−k f(x− i, y − j)g(i, j)

Pooling Max pooling maxpool(xi:i+s,j:j+s) = maxs
m=1 maxs

n=1 xi+m,j+n

Average pooling avgpool(xi:i+s,j:j+s) = 1
s2

∑s
m=1

∑s
n=1 xi+m,j+n

Probability and Statistics Probability distributions p(x)

Bayesian inference p(θ|x) = p(x|θ)p(θ)
p(x)

Aggregation Function Summation
∑n

i=1 xi
Mean 1

n

∑n
i=1 xi

Maximum max(x1, x2, ..., xn)
Minimum min(x1, x2, ..., xn)
Square Root

√
x

Concatenation
[
A B

]
Weighted Mean

∑n
i=1 wixi∑n
i=1 wi

denotes the number of channels, H is the height of input planes in pixels, and W is
the width in pixels. in and out refer to the input and output respectively. ∗ in the
equation denotes the cross-correlation operation.

conv2D(N,Cout) = bias(Cout) +

k=Cin−1∑
k=0

weight(Cout, k) ∗ input(N, k) (4.1)

The convolution first splits the input into weight-shaped chunks. We compute the
multiply-accumulate of each of these chunks with the weights (i.e., kernels), using
the cross-correlation instruction. We then sum up all the multiplied values over the
input channels Cin. Finally, we add the bias to each output channel Cout.

To create the computation graph, we divide the equation into instructions found in
table 4.3. Figure 4.10 shows the complete convolution 2D graph with a 2-dimensional
input and 2 kernels. To have a compact and simple graph, we include the constant
nodes inside the instruction node as a list of hyperparameters. In the rest of the
paper and for the sake of clarity, we use high-level operator names such as Linear for
the matrix multiplication between weight and input matrices.

In this search space, we perform small-scale experiments with random sampling
to understand its behaviors. The purpose is to measure the sparsity of the search
space and to determine the number of valid and accurate operations generated dur-

4.3. GRASSROOTS OPERATOR SEARCH FORMODEL EDGE ADAPTATION87

I_dim1

cross-correlation

Stride: S1
Padding: P1
Dilation: D1

cross-correlation

Stride: S1
Padding: P1
Dilation: D1

I_dim2

cross-correlation

Stride: S2
Padding: P2
Dilation: D2

cross-correlation

Stride: S2
Padding: P2
Dilation: D2

W_dim1

kernel_size: K1

W_dim2

kernel_size: K2

bias1

+

bias2

bias3

+ +

+ +

Concat

instruction Node

Mutations

Modify a hyperparameter

Modify an instruction

Remove an instruction

Add an instruction

input Node

Figure 4.10: Detailed computation graph of the standard convolution 2D including
the possible mutations applied to it.

ing the exploration. In this experiment, we replace all similar operators at once. For
example, we replace all convolutions in the model with a generated replacement. Fig-
ure 4.9 (a) shows the results of 1000 randomly generated operator replacements for
three operators: Conv2D, max-pooling, and batch normalization, in resnet-18 [269].
Random generation, inspired by EvoNorm [79], starts from the input node and se-
quentially selects an operation from the search space. In all the cases, the ImageNet
accuracy drops significantly for most of the replacements, which reflects the high
sparsity of our search space. In figure 4.9 (b), rather than randomly generating the
operator replacement, we start with the original operations but adapt one operation
in the computation graph. The adaptation is performed while being aware to keep the
same arity and type of arguments for each operation. With adaptation, the results
are much closer to the original accuracy of the model but the complexity is modified.

4.3.2 Search Algorithm

Given an operator computation graph, the search algorithm aims at finding a variant
that preserves the accuracy of the model with reducing complexity. We rely on
an evolutionary algorithm for this purpose. The evolutionary algorithm allows us to
handle the sparse search space by exploring a population of valid computation graphs.
The computation graph is considered valid if it maintains the shapes of the input and
output data and if there exists a path from every intermediate node, including the
input node, to the output node. Besides, mutation and crossover provide an efficient
way to generate complex adaptations. We use tournament selection which ensures
that the best individuals have a higher chance of being selected, while still allowing
for some diversity in the population. This helps to prevent premature convergence
and promotes the discovery of novel solutions in our large search space.

Mutations The mutation operations involve modifying the computation graph.
Figure 4.10 summarizes the possible mutations applied on the conv2D computation
graph. Each instruction node in the computation graph is typed with the correspond-
ing type in table 4.3. The most important mutation is modifying any intermediate
node with a possible operation. For each operation, we associate a list of possible
replacements. The replacement satisfies two constraints: (1) having the same argu-
ment’s type and arity, (2) the output shape is equal or can be converted to the original
output shape by adding a reshape operation. The replacement operation from the list
is selected uniformly at random. We also allow for a modification of the aggregation
function, and an addition or deletion of a node. When adding or removing a node,

88 CHAPTER 4. ENHANCING HW-NAS SEARCH SPACE

Input

Pad conv.weight

MultAcc

conv.bias

Stack

Sqrt

Max pooling

constant1=2

Output

Input

Pad conv.weight

MultAcc

conv.bias constant1=2

Stack

Output

Candidate 1

Split point
I nputs

Candidate 2 Crossover Results
Input

Pad conv.weight

MultAcc

conv.bias constant1=2

Stack

Sqrt

Max pooling

constant2=2

Output

Instructions

Constants

Figure 4.11: Illustration of the cross-over operation.

we make sure that a path from the input to the output is still possible and that no
unused node appears in the graph.

The mutations also include modifying the hyperparameter of the operator. The
hyperparameters are properties associated with a vertex in the computation graph.
For each instruction, a list of possible hyperparameters; i.e., constants, is available.
For each hyperparameter, we constrain the ranges with specified values obtained from
the literature. For example, the output channel size of a convolution may change.
This mutation may reduce the accuracy of the model. If this is the case, the operator
is invalidated and is not considered in the novel population.

Crossover In general, the crossover is not applied to NAS algorithms. When we
consider high-level operators, it is rarely the case to find a splitting point where the
shapes fit. However, in our case, the crossover is beneficial and allows more flexibility.
Algorithm 5 and figure 4.11 detail the crossover procedure. We perform a crossover
between two computation graphs in our population. Because all the variants start
from the same point, we have more chances to find a split point. We perform a
pre-order traversal of the two computation graphs and store all the possible split
points. We randomly select a split point between each pair of computation graphs
and generate offspring.

Multi-objective Fitness Function The evaluation is specific to the given model
and task. We do not generalize the resulting operation to multiple standard models
because our goal is to adapt the network for a given hardware platform in a practical
time. This allows a more flexible and multi-objective fitness function.

The fitness function evaluates the performance of the adapted operator, formu-
lated in equation 4.2. In our methodology, we consider hardware efficiency with
multiple objectives. Our definition considers latency and the number of parameters.
But one can add other objectives such as energy consumption or memory occupancy.
We rely on the crowding distance [270] to minimize multiple objectives under an ac-
curacy constraint. The crowding distance is calculated for each solution in a Pareto
front and is based on the distances between neighboring solutions in the objective
space. The solutions with larger crowding distances are preferred in the selection
process, as they represent areas of the objective space with lower solution density,
and hence are more diverse and representative of the Pareto front.

During the search, we want to maximize the hardware efficiency of the adapted
operator while keeping the difference between the loss of the original model m and
the model with the adapted operator, denoted as madapted, minimal. We add a small
value, ϵ, to ensure exploration. We fine-tune the network after adapting the operator
for a few epochs. This fine-tuning is done with all the other operator’s weights frozen.

4.3. GRASSROOTS OPERATOR SEARCH FORMODEL EDGE ADAPTATION89

Algorithm 5 Crossover procedure

Input: Two computation graphs of two operators (o1 and o2)
split points = []
Stack s = Stack()
Push (o1, o2) to s
pre-order traversal of both computation graphs
while s not empty do

Pop a node pair (o1, o2) from the top of the stack
while o1 not empty and o2 not empty do

Pop a node pair (o1, o2) from the top of the stack
end while
if shape(o1.output) == shape(o2.input) then

Add (o1, o2) to split points # add to possible split point
end if
for child of o1 do

Add (child, o2) to stack
end for
for child of o2 do

Add (o1, child) to stack
end for
Uniformly select (o1, o2) from split points # randomly select a split points
between all the possibilities
Perform a merge illustrated in Figure 4.11

end while

The operator’s latency is computed with the difference between the original
model’s latency and the latency of the adapted model. The number of parameters
can be reduced or increased by adding weight input to the computation graph.

Mino(LAT (o), PARAM(o))

subject to ACC(madapted) > ACC(m)− ϵ
(4.2)

4.3.3 Evaluation Methodology

We first conducted our experiments on two edge devices: Raspberry Pi 3 Model B
and Redmi Note 7S mobile phone. The Raspberry Pi 3 Model B is equipped with
a Broadcom BCM2837 SoC with a 1.2 GHz quad-core ARM Cortex-A53 CPU, and
1GB RAM, and runs the Raspbian operating system. The Redmi Note 7S mobile
phone is equipped with a Qualcomm Snapdragon 845 SoC with an octa-core CPU
and 8GB RAM, running the Android 10 operating system.

To evaluate the performance of our proposed method, we used three popular deep
learning models: ResNet18 [269], InceptionV3 [271], and MobileNetV2 [272]. We
implemented our approach using Python 3.7 and the PyTorch 1.8.1 deep learning
framework. All three architectures were initially trained for Imagenet. The experi-
ment goal is to adapt them for edge devices by changing the most inefficient oper-
ators. We measured the accuracy of each model on the validation set and recorded
each model’s latency and energy consumption during inference. We averaged these
numbers for 100 inferences to correctly estimate hardware efficiency. The latency and
energy consumption are measured with an inference batch size of 1. For fine-tuning,
we use SGD with a mini-batch size of 128. The learning rate is set to 0.003. We use
a weight decay of 0.0001 and a momentum of 0.9.

The search is set to do 50 iterations per operator replacement. The stopping
criterion is the modification of at least 10 layers in the model. The probability of
mutation is set to 0.8 and the cross-over probability to 0.6. We use an epsilon of 1%,

90 CHAPTER 4. ENHANCING HW-NAS SEARCH SPACE

i.e., assume that a 1% drop in accuracy is acceptable. The epsilon should be tailored
to the dataset and task at hand. Empirical tuning was done to select these values.

Due to the on-search fine-tuning and hardware efficiency computation on-device,
our search takes about 1h04min. This time is highly practical as this adaptation is
only done once.

Search Setup The search is achieved on a much more compute-intensive setup.
Our search was conducted using an NVIDIA GPU 3070, a high-performance graphics
processing unit known for its advanced parallel computing capabilities. The GPU
was connected to a powerful workstation equipped with an Intel Core i9 processor
and 32 gigabytes of RAM, ensuring sufficient computational resources for the search
process.

4.3.4 Optimizing an architecture for Edge Devices

Table 4.4 presents the overall hardware efficiency improvement achieved by apply-
ing GOS to the evaluated models on both edge devices. Our operator replacement
method consistently outperformed the original models with an average speedup of
3.17. Notably, our search was able to find a variant that improved the accuracy of
ResNet models by 6.13% and 5.34% for Raspberry Pi and Redmi Note 7S, respec-
tively.

Interestingly, InceptionV3 was found to be unsuitable for deployment on Rasp-
berry Pi due to its large network size. To tackle this issue, our search began optimiz-
ing by selecting operators that use the largest amount of parameters, which led to
a reduction in the number of parameters and enabled the discovery of a deployable
variant.

Although our search space does not directly optimize energy consumption, we
observed that our models presented lower energy consumption due to the reduction
in the number of parameters and operations.

Furthermore, GOS was able to find a variant of MobileNetV3 that is 2.2x faster
with only a minor accuracy drop of 0.4%, even though the original model was al-
ready optimized for mobile devices. Overall, our search consistently outperformed
the original models, indicating the effectiveness of GOS in achieving hardware effi-
ciency improvements.

In comparing our strategy to other HW-NAS approaches, namely Once-for-
All [169] and FBNetV3 [244], we found that our operator replacement method yielded
superior results. Our approach consistently outperformed Once-for-All and FBNetV3,
showcasing an average speedup of 1.26. This performance advantage highlights the ef-
fectiveness of our method in optimizing neural architectures specifically for hardware
constraints and further solidifies the value of GOS in achieving superior hardware
efficiency improvements. Note that our method can also be used as a specialization
phase after the use of these high-level NAS.

Analysis of Resulting operations In this paragraph, we discuss the novel opera-
tors that were generated through our operator search method and the improvements
they bring to the models. Table 4.5 presents the novel equations for the most effi-
cient operators that replaced the standard convolution 2D, batch normalization, and
activation functions. Table 4.6 summarizes the notations. Our discussion is focused
on each device separately.

In general, the last convolution 2D operators of the models are the most ineffi-
cient ones. Therefore, in all the models, we automatically optimized these operators
using GOS. For the Raspberry Pi device, we modified these operators by adding a
dilation rate to the convolutions, similar to dilated convolutions [273]. However, in
our operator, the dilation rate is applied within the filter matrix itself, by adding 1, 2,
or 3 zeroed columns between different columns of the filter matrix. This modification

4.3. GRASSROOTS OPERATOR SEARCH FORMODEL EDGE ADAPTATION91

Table 4.4: Performance comparison of original models and adapted models on Rasp-
berry Pi 3 and Redmi Note 7S

Edge
Device

Model Variant #
Pa-
ram-
eters

Top-1
Accu-
racy
(%)

Laten-
cy
(ms)

Energy
(J)

Speedup

R
a
sp

b
e
rr
y
P
i

Resnet18
Original 11M 69.3 382.54 1320

5.76
GOS 9.3M 75.43 66.32 220

Inceptionv3
Original 25M 78.2 - -

-
GOS 7.2M 79.47 101.3 438.3

MobileNetV3
Original 2.9M 75.2 94.32 348

2.82
GOS 2.9M 74.32 33.44 253

FBNetV3 [244]
Original 5.3M 79.1 25.4 238

1.52
GOS 5.1M 83.4 16.7 187

OFA [169]
Original 4.9M 74.2 22.3 211

1.16
GOS 3.2M 79.3 19.2 204

R
e
d
m
i
N
o
te

7
S

Resnet18
Original 11M 69.3 93.43 119.4

4.51
GOS 11.5M 74.64 20.7 78.8

Inceptionv3
Original 25M 78.2 83.5 132.6

3.72
GOS 23.4M 77.9 22.4 104.5

MobileNetV3
Original 2.9M 75.2 76.3 76.54

2.23
GOS 2.6M 74.8 34.2 78.43

FBNetV3 [244]
Original 5.3M 79.1 21.6 67.9

1.18
GOS 4.8M 81.4 18.3 87.3

OFA [169]
Original 4.6M 76.5 34.6 56.42

1.21
GOS 3.7M 83.4 28.5 58.3

enables the operator to have a larger receptive field without increasing its size, which
can be helpful in capturing features at different scales in an image. This operator is
particularly efficient in Raspberry Pi, which has limited computational resources, as
it reduces the number of operations needed to process the input.

On the other hand, for the Redmi Note 7S, the model’s last convolution 2D
operators were modified to a depthwise convolution [274]. Similarly to Raspberry
Pi, the dilated rate is applied here as well. The use of dilated filters and depthwise
convolution allowed for an increase in hardware efficiency. It is worth noting that
we did not start with a depthwise separable convolution, except for MobileNetV3.
Instead, our operator search method converges to similar operations. In addition, for
resnet18, the search applied a pooling layer at the end of the convolutions. This is
done to further reduce the feature map size and enhance the latency. Interestingly,
this did not impact negatively the accuracy. However a similar operator was tested
on InceptionV3 and MobileNetV3 and a 5%, 6.7% drop in accuracy was seen.

The first convolutions are particularly different from the last ones because of the
input shape. In the first convolutions, the channel size is smaller, while the height and
width of the feature maps are large. The opposite happens at the end of the model.
The first convolutions, even in MobileNetV3, were turned into standard convolutions.
The search only changed the hyperparameters of these operators, using 5x5 kernels
for some and adding different padding.

The generated batch normalization operation uses a polynomial regression to
regress the batch normalization values after the standardization. By incorporat-
ing the polynomial regression into the batch normalization equation, this method
can improve the accuracy of the normalization while maintaining a fast computation
time.

The search algorithm almost never changes the activation functions, as they are
usually fast and already efficient. However, we forced the model to change the activa-
tion and look for a more efficient version. The resulting equation is shown in table 4.5.
The equation is a leaky version of ReLU. When removing the activation functions

92 CHAPTER 4. ENHANCING HW-NAS SEARCH SPACE

from the list of instructions, the search failed to find a differentiable equation.

Table 4.5: Efficient Operators Equations for Raspberry Pi and Redmi Note 7S

Device Convolution2D Batch Normalization Activation

Raspberry Pi y =
∑

i,j wi, jxi+ di,j , j + di,j
x−µ
σ+ϵ × α(x− µ)3 + β(x− µ) + γ max(0.01x, x)

Redmi Note 7S
∑Cin

j=1

∑Hk

r=1

∑Wk

c=1Wi,j,r,c · Ii+(r−1)drj,j+(c−1)dcj,k
x−µ
σ+ϵ × α(x− µ)3 + β(x− µ) + γ max(0.03x, x)

Table 4.6: Notation Summary

Symbol Description
Cin Number of input channels
Cout Number of output channels
Hk Height of the kernel
Wk Width of the kernel
Kw Number of weights in the kernel
dj Dilation rate for input channel j
drj Dilation rate for input channel j in the row direction
dcj Dilation rate for input channel j in the column direction
I Input tensor
W Weight tensor
γ Scaling parameter in batch normalization
β Bias parameter in batch normalization

a0, a1, a2 Polynomial coefficients in fast batch normalization
x Input to fast batch normalization
σ Standard deviation in batch normalization
ϵ Small constant for numerical stability

Effect of number of instructions In the previous experiments, we fixed the
maximum number of instructions per operator to 20. Here, we justify this value and
analyze the effect of changing the number of instructions on operator generation,
using the same search space and fitness evaluation as described in Section 4.3.3.

We varied the number of instructions used to define each operator ranging from 5
to 40 instructions with a step of 5 and compared the resulting architectures’ perfor-
mance. Specifically, we evaluated the accuracy and inference time of the architectures
on the Imagenet dataset using the same hardware setup as in the previous experi-
ments. Figure 4.12 shows the results.

The results showed that increasing the number of instructions used to define each
operator generally leads to an improvement in the architectures’ performance. This
improvement stabilizes after 20 in which we obtain the results shown in table 4.4.
Below 20, the operators become badly implemented and the accuracy drops. Above
25, the instruction set is too large and the operators apply redundant instructions
which increases the latency. In addition, the search time highlighted in green increases
with the increase of the maximum number of instructions per operator. This is due to
the increased latency and fine-tuning time induced by more complex and redundant
operators.

4.3.5 Use Case: Pulse Rate Estimation

The ability to estimate pulse rate continuously is a critical feature in heart attack
detection. Estimating pulse rate is essential for measuring workout intensity during
exercise and resting heart rate, which is often used to determine cardiovascular fitness.
Using mobile wearable devices provides valuable insights into a wearer’s health. Due
to the limited hardware resources, the model needs to be small and fast to provide

4.3. GRASSROOTS OPERATOR SEARCH FORMODEL EDGE ADAPTATION93

Proportional Search Time

Figure 4.12: Tuning of the maximum number of instructions per operator while
searching for resnet18 GOS variant on Raspberry Pi.

real-time results. This task also requires efficient processing of sensor data, which is
a critical aspect of hardware-aware NAS.

Background on Pulse Rate Estimation

Pulse rate estimation [275] has been the subject of extensive research in the field of
physiological monitoring. Various approaches utilize photoplethysmography (PPG)
signals captured from wearable devices, such as wrist-worn sensors or fingertip sen-
sors, to estimate the pulse rate. Among the state-opf-the-art pulse rate estimation
models, we find: DeepHeart [276], CNN-LSTM [277], and NAS-PPG [278].

DeepHeart uses an ensemble of denoising convolutional neural networks (DCNNs)
to denoise contaminated PPG signals that are then passed through spectrum-analysis-
based calibration to estimate the final pulse rate.

CNN-LSTM uses a hybrid convolutional and LSTM neural network. The proposed
model comprised two convolutional layers, two LSTM layers, one concatenation layer,
and three fully connected layers including a softmax.

NAS-PPG is the first NAS applied to pulse rate estimation. Their search space is
defined with a convolutional macro-architecture comprising time-distributed convo-
lutions and two final LSTM layers. Thanks to their automatic search, they provide
the best performance on Troika dataset [20].

This task serves as an excellent validation use case for our methodology, specifi-
cally tailored to edge devices, where the presence of limited computational resources
and power constraints presents unique challenges. By effectively optimizing pulse rate
estimation models for edge devices, we showcase the practicality and robustness of
our approach in overcoming these constraints and meeting the specific requirements
of edge environments.

Experiments & Results

In this use case, we focus on estimating the Beats Per Minute (BPM) based on PPG
and accelerometer raw data. The same previously used search hyperparameters are
applied.

Dataset For this task, we are using the Troika dataset [20]. Troika is a publicly
available dataset and contains measurements from three sensors to estimate the heart
rate of the wearer: an Electrocardiography (ECG) sensor, a PPG sensor, and an

94 CHAPTER 4. ENHANCING HW-NAS SEARCH SPACE

accelerometer sensor. The dataset was collected in a study where participants were
asked to perform a set of activities while wearing the sensors, including running,
cycling, and sitting. The dataset contains 12 recordings from 8 participants, aged 18
to 35, with each recording lasting 5 minutes. The ground truth heart rate for each
recording was obtained from the ECG sensor, which is considered the most accurate
method for measuring heart rate.

Wrist-band device Our latency results were extracted from a Xiaomi Mi Smart
Band 6. The wristband is composed of a built-in PPG biosensor and a 3-axis ac-
celerometer sensor which extracts the input to our algorithm. The operating system
installed is Android 6.0. And the battery of the system was at maximum when
extracting the latencies.

Preprocessing In models designed for pulse rate estimation, preprocessing of the
raw data plays a critical role. Preprocessing is used to clean and enhance raw PPG
signals before the actual analysis. The dataset was divided into subjects, and each
subject included the PPG and accelerometer as time-series data. The PPG and in-
dividual accelerometer signals undergo bandpass filtering with a range of 40BPM to
240BPM (0.66Hz and 40Hz respectively) to eliminate irrelevant signals. In the next
step, characteristic frequencies are calculated for each signal within 8-second windows,
with a 6-second overlap between adjacent windows. The characteristic frequencies
for the PPG data are then compared against the dominant characteristic frequencies
for each accelerometer axis per time window. It is possible that a dominant PPG
frequency may be similar to accelerometer frequencies. To ensure an accurate estima-
tion of pulse rate, we compare up to 10 PPG frequencies that potentially represent
the pulse rate to find one that is not similar to accelerometer frequencies. In cases
where no alternate frequency is found, we select the PPG frequency with the largest
magnitude as the pulse rate.

Models We optimize two models using our methodology:

• RF Model : We first optimize a simple machine-learning model consisting of two
blocks. The first block consists of a bandpass filter and a Fourier transform.
The PPG signal contains information about the blood flow in the capillaries.
This signal is a combination of various frequencies, including the pulse rate. By
applying a bandpass filter to the PPG signal, frequencies outside the range of
interest are eliminated. The Fourier transform is then applied to the filtered
signal to extract the characteristic frequencies that correspond to the pulse rate.
This process helps to remove noise and artifacts from the signal and facilitates
accurate estimation of the pulse rate. The second block consists of a random
forest regressor [279]. While this first model is fast, it is not optimal in terms
of performance.

• PPG NAS Model : PPG NAS [278] is a dedicated NAS for PPG signal analysis
and pulse rate estimation. The authors generated an optimized model for pulse
rate estimation. The model consists of a 1D convolution layer followed by 2
LSTM layers and a final fully-connected layer. The architecture is designed to
minimize the number of parameters and maximize the accuracy of pulse rate
estimation. This is a state-of-the-art model in terms of the accuracy of the
regression and hardware efficiency on wristband devices.

Results Table 4.7 shows the overall Average Absolute Error (AAE) results on mul-
tiple subjects and under different actions: running (T1), cycling (T2), and sitting
(T3), as well as their latency and number of parameters. We additionally compare our
results to other state-of-the-art models, namely NAS-PPG [278], CNN-LSTM [277],
and DeepHeart [276].

4.3. GRASSROOTS OPERATOR SEARCH FORMODEL EDGE ADAPTATION95

Table 4.7: Results of Average Absolute Error for Pulse Rate estimation on TROIKA
Dataset [20]

Action Subject
RF
Optimized
(Ours)

PPG NAS
Optimized
(Ours)

RF Model
PPG NAS
[278]

CNN-LSTM
[277]

DeepHeart
[276]

T1 1 1.43 0.8 5.9 0.95 0.47 1.47
T1 2 2.08 1.33 1.57 1.22 3.88 2.94
T1 3 3.76 0.06 4.24 0.43 1.52 0.47
T1 4 2.08 0.69 8.68 0.69 2.31 1.02
T1 5 1.05 0.83 2.74 0.72 1.72 2.66
T1 6 4.24 0.72 4.49 0.49 1.47 0.75
T1 7 1.51 0.71 4.8 0.99 2.85 3.45
T1 8 2.57 1.3 10.81 0.87 2.18 2.48
T1 9 3.87 1.44 7.41 1.06 4.9 0.54
T1 10 4.49 0.98 11.18 0.64 0.34 0.72
T1 11 3.7 0.87 20.16 1.01 4.46 1.06
T1 12 2.63 0.77 5.37 0.67 1.79 0.73
T2 13 5.24 1.96 5.56 1.62 3.01 4.8
T2 14 4.2 1.84 23.32 1.95 7.6 2.94
T2 15 9.89 1.24 9.92 0.59 1.58 0.11
T3 16 5.22 0.57 5.49 0.61 0.9 1.63
T3 17 1.32 1.14 1.58 1.32 6.1 1.84
T3 18 1.59 0.48 5.98 0.55 0.31 1.64
T3 19 0.2 0.54 0.61 0.47 0.12 0.18
T2 20 4.76 1.92 12.05 1.99 4.37 4.02
T3 21 2.52 1.18 4.65 0.39 0.38 0.06
T3 22 0.83 0.93 4.23 0.83 1.26 2.25
T2 23 2.88 1.54 8.17 1.38 4.26 0.94
All 3.13 1.03 7.34 0.93 2.51 1.68
Latency (ms) 2.38 2.68 1.64 5.6 11.8 13.54
Number of
parameters (M)

0.08 0.564 0.02 1.1 3.3 4.4

Over all subjects and actions, our models outperform their state-of-the-art coun-
terparts with a lesser number of parameters and faster execution.

Figure 4.13 shows the final architectures proposed by our Grassroots operator
search. The optimized final models of RF Model optimized and PPG NAS optimized
were obtained by modifying their respective base models. RF Model optimized un-
derwent two stages of modifications. First, the fast Fourier transform was altered
to extract 30 points instead of the 10 peaks in the original model. Additionally, a
linear layer was added to act as a smoother filter that selects the 10 most significant
peaks. In the second stage, the random forest regressor was replaced with a multi-
layer perceptron (MLP) using a hyperbolic tangent (tanh) activation function. While
the RandomForestRegressor is highly efficient, it reduces the model’s accuracy, so the
search favored MLP. As for PPG NAS optimized, the LSTM layers in the original
model were replaced with gated recurrent units (GRUs), which use fewer parameters
and do not affect the performance. The convolution layer was also modified to use
a dilated-like convolution (as shown in the table), and the final linear function was
adjusted to have no activation at the end. These optimizations resulted in more
accurate and efficient models for pulse rate estimation.

96 CHAPTER 4. ENHANCING HW-NAS SEARCH SPACE

PPG Signal

Bandpass filter
(0.66Hz, 40Hz)

Accelerometer

FFT (30)

FFT(10)

Linear (30, 10)

R
a
n
d
o
m
F
o
r
e
s
t
R
e
g
r
e
s
s
o
r W1/b1

tanh

Linear (10, 1)

W2/b2

PPG Signal

Bandpass filter
(0.66Hz, 40Hz)

Accelerometer

Conv (1x3, c=16, s=5)

Batch Normalization

Tanh
LeakyReLU

Conv (1x3, c=32, s=1)

Conv (1x3, c=32, s=3)

Batch Normalization

Relu

Conv (1x3, c=32, s=1)

Batch Normalization

flatten

GRU

GRU

Linear (128,1)

LSTM

LSTM

Linear (128,256)
Linear (256,256)

Softmax

PPG_NAS_OptimizedRF_Model_Optimized

Original Operator

Optimized Operator
Input
Weights

Figure 4.13: Pulse Rate Estimation final Models. We do not display the weights node
for PPG NAS for the sake of clarity.

4.4 Conclusion

In conclusion, this chapter has presented our contribution to the search space of
HW-NAS.

We have presented CaW-NAS, a dedicated Hardware-aware Neural Architecture
Search (HW-NAS) that takes into account the quantization effect during the NAS
process. Our method extends the search space with the quantized architectures that
minimize the quantization impact on the accuracy. Using our extended search space,
we implemented a hardware-aware search strategy and we obtained the Pareto front
approximation on a custom search space made of pre-trained models and NAS-Bench-
201. On NAS-Bench-201, our approach was able to produce a Pareto front that
contains most of the optimal quantized and non-quantized architectures. Our final
model improves the state-of-the-art with 1.33 acceleration and an accuracy of 75.22%.

Our Grassroots Operator Search (GOS) is a novel approach for optimizing neu-
ral network architectures for resource-constrained devices. GOS leverages the use
of mathematical equations to replace common operations such as convolution, batch
normalization, and activation functions with more efficient ones, resulting in models
that are optimized for low-power devices such as Raspberry Pi and mobile phones.
We demonstrated the effectiveness of our approach through experiments on popular
architectures, including ResNet18, InceptionV3, and MobileNetV3, achieving signifi-
cant improvements in inference time and energy consumption compared to the original
models. Additionally, we applied GOS to a real-world healthcare problem, namely
pulse rate estimation, in which we present a 2x faster network with a 0.12 average
error drop. Overall, our results highlight the potential of our approach for creating
efficient neural networks for resource-constrained devices.

Part III

Applications of HW-NAS

97

Chapter 5

AnalogNAS: A Neural
Network Design Framework
for Accurate Inference with
Analog In-Memory
Computing

Contents
5.1 Context . 101

5.2 Preliminaries . 102

5.2.1 Analog IMC Accelerator Mechanisms 102

5.2.2 Temporal Drift of Non-Volatile Memory Devices 103

5.2.3 HWA-training and analog hardware accuracy evaluation
simulation . 103

5.3 AnalogNAS: Proposed Approach 104

5.3.1 Resnet-like Search Space 104

5.3.2 Analog-accuracy Surrogate Model 105

Evaluation Criteria . 105

Dataset Creation . 105

Model training . 106

5.3.3 Search Strategy . 107

5.3.4 Problem Formulation . 107

5.3.5 Search Algorithm . 108

Population Initialization 108

Fitness Evaluation . 108

Selection and Mutation 109

5.4 Evaluation Methodology 110

5.5 Experiment Results . 110

5.5.1 Comparison with Random Search 112

5.5.2 Search Time and AVM Threshold Trade-Off 113

5.6 Hardware Validation . 113

5.6.1 Experimental Hardware Validation 113

5.6.2 Simulated Hardware Energy and Latency 113

5.7 Architectural Recommendation for Analog AI 114

99

100 CHAPTER 5. ANALOG-NAS

5.7.1 Are Wider or Deeper Networks More Robust to PCM De-
vice Drift? . 115

5.7.2 Types Of Architectures 116

5.8 Conclusion . 116

5.1. CONTEXT 101

5.1 Context

Research Question 4

How can hardware-aware NAS methods be adapted and extended to novel
hardware platforms, such as analog in-memory computing, and how can these
methods be optimized for these platforms?

With the growing demands of real-time DL workloads, today’s conventional cloud-
based AI deployment approaches do not meet the ever-increasing bandwidth, real-
time, and low-latency requirements. Edge computing brings storage and local com-
putations closer to the data sources produced by the sheer amount of IoT objects,
without overloading network and cloud resources. As DNN are becoming more mem-
ory and compute-intensive, edge AI deployments on resource-constrained devices pose
significant challenges. These challenges have driven the need for specialized hardware
accelerators for on-device ML and a plethora of tools and solutions targeting the de-
velopment and deployment of power-efficient edge AI solutions. One such promising
technology for edge hardware accelerators is analog-based In-memory Computing
(IMC), which is herein referred to as analog IMC.

Analog IMC [196] can provide radical improvements in performance and power
efficiency, by leveraging the physical properties of memory devices to perform com-
putation and storage at the same physical location. Many types of memory devices,
including Flash memory, PCM, and RRAM, can be used for IMC [197]. Most notably,
analog IMC can be used to perform MVM operations in O(1) time complexity [198],
which is the most dominant operation used for DNN acceleration. In this novel ap-
proach, the weights of linear, convolutional, and recurrent DNN layers are mapped
to crossbar arrays (tiles) of NVM elements. By exploiting basic Kirchhoff’s circuit
laws, MVM can be performed by encoding inputs as WL voltages and weights as
device conductances. For most computations, this removes the need to pass data
back and forth between CPU and memory. This back-and-forth data movement is
inherent in traditional digital computing architectures and is often referred to as the
von Neumann bottleneck. Because there is greatly reduced movement of data, tasks
can be performed in a fraction of the time, and with much less energy.

Figure 5.1: The effect of PCM conductance drift after one day on standard CNN
architectures and one architecture (AnalogNAS T500) obtained using HW-NAS, eval-
uated using CIFAR-10.

NVM crossbar arrays and analog circuits, however, have inherent non-idealities,
such as noise, temporal conductance drift, and non-linear errors, which can lead to
imprecision and noisy computation [280]. These effects need to be properly quantified
and mitigated to ensure the high accuracy of DNN models. In addition to the hard-
ware constraints that are prevalent in edge devices, there is the added complexity of

102 CHAPTER 5. ANALOG-NAS

designing DNN architectures which are optimized for the edge on a variety of hard-
ware platforms. This requires hardware-software co-design approaches to tackle this
complexity, as manually-designed architectures are often tailored for specific hardware
platforms. For instance, MobileNet [281] uses a depth-wise separable convolution that
enhances CPU performance but is inefficient for GPU parallelization [282]. These are
bespoke solutions that are often hard to implement and generalize to other platforms.

HW-NAS [283] is a promising approach that seeks to automatically identify effi-
cient DNN architectures for a target hardware platform. In contrast to traditional
NAS approaches that focus on searching for the most accurate architectures, HW-
NAS searches for highly accurate models while optimizing hardware-related metrics.
Existing HW-NAS strategies cannot be readily used with analog IMC processors
without significant modification for three reasons: (i) their search space contains op-
erations and blocks that are not suitable for analog IMC, (ii) lack of a benchmark
of hardware-aware trained architectures, and (iii) their search strategy does not in-
clude noise injection and temporal drift on weights. To address these challenges and
answer research question 4, we propose AnalogNAS, a novel HW-NAS strategy to
design dedicated DNN architectures for efficient deployment on edge-based analog
IMC inference accelerators. This approach considers the inherent characteristics of
analog IMC hardware in the search space and search strategy.

Fig. 5.1 depicts the necessity of our approach. As can be seen, when traditional
DNN architectures are deployed on analog IMC hardware, non-idealities, such as
conductance drift, drastically reduce network performance. Networks designed by
AnalogNAS are extremely robust to these non-idealities and have much fewer param-
eters compared to equivalently-robust traditional networks. Consequently, they have
reduced resource utilization.

Our specific contributions can be summarized as follows:

• We design and construct a search space for analog IMC, which contains ResNet-
like architectures, including ResNext [284] and Wide-ResNet [285], with blocks
of varying widths and depths;

• We train a collection of networks using HWA training for image classification,
Visual Wake Words (VWW), and Keyword Spotting (KWS) tasks. Using these
networks, we build a surrogate model to rank the architectures during the search
and predict robustness to conductance drift;

• We propose a global search strategy that uses evolutionary search to explore
the search space and efficiently finds the right architecture under different con-
straints, including the number of network parameters and analog tiles;

• We conduct comprehensive experiments to empirically demonstrate that
AnalogNAS can be efficiently utilized to carry out architecture searches for var-
ious edge tiny applications and investigate what attributes of networks make
them ideal for implementation using analog AI;

• We validate a subset of networks on hardware using a 64-core IMC chip based
on Phase Change Memory (PCM).

5.2 Preliminaries

5.2.1 Analog IMC Accelerator Mechanisms

Analog IMC accelerators are capable of performing MVM operations YT = XTW
using the laws of physics, where W is an M×N matrix, X is a M×1 vector, and Y is
a N×1 vector. When arranged in a crossbar configuration, M×N , NVM devices can
be used to compute MVM operations. This is done by encoding elements of X as WL

5.2. PRELIMINARIES 103

voltages, denoted using V, and elements of W as conductances of the unit cells, de-
noted using G. Negative conductance states cannot be directly encoded/represented
using NVM devices. Consequently, differential weight mapping schemes are com-
monly employed, where either positive weights, i.e., W+ = max(W, 0), and negative
weights, i.e., W− = −min(W, 0), are encoded within unit cells, using alternate
columns, or on different tiles [198].

The analog computation, i.e., I = VG is performed, where the current flow to the
end of the N -th column is IN =

∑M
i=0Gi,NVi. Typically, DAC are required to encode

WL voltages and ADC are required to read the output currents of each column. The
employed analog IMC tile, its weight mapping scheme, and computation mechanism
are depicted in Fig. 5.2.

5.2.2 Temporal Drift of Non-Volatile Memory Devices

Many types of NVM devices, most prominently, PCM, exhibit temporal evolution of
the conductance values referred to as the conductance drift. This poses challenges
for maintaining synaptic weights reliably [197]. Conductance drift is most commonly
modelled using Eq. (5.1), as follows:

G(t) = G(t0)(t/t0)−ν , (5.1)

where G(t0) is the conductance at time t0 and ν is the drift exponent. In practice,
conductance drift is highly stochastic because ν depends on the programmed con-
ductance state and varies across devices. Consequently, when reporting the network
accuracy at a given time instance (after device programming), it is computed across
multiple experiment instances (trials) to properly capture the number of accuracy
variations.

5.2.3 HWA-training and analog hardware accuracy evaluation
simulation

To simulate training and inference on analog IMC accelerators, the AIHWKit [286]
is used. The AIHWKit is an open-source Python toolkit for exploring and using the
capabilities of in-memory computing devices in the context of artificial intelligence
and has been used for HWA training of standard DNN with hardware-calibrated
device noise and drift models [287].

Figure 5.2: Employed analog IMC tile and weight mapping scheme.

104 CHAPTER 5. ANALOG-NAS

Architecture Representation

Conv out_channel0, kernel_size0

#R

Residual Block

Conv 1x1

Conv 3x3

Conv 1x1

Conv 3x3

Conv 3x3

Conv 1x1

Conv 3x3

Conv 1x1

+ #M

Avg Pooling

FC

Main Block

 #NB

OC0 KS0 M R R R NB NB NB CT CT CT WF WF WF

out_channel0

kernel_size0

widening
factor

conv typenumber of
branches

residual
blocksmain

blocks

WF

A B

Figure 5.3: Resnet-like macro architecture.

5.3 AnalogNAS: Proposed Approach

The objective of AnalogNAS is to find an efficient network architecture under differ-
ent analog IMC hardware constraints. AnalogNAS comprises three main components:
(i) a resnet-like search space, (ii) an analog-accuracy surrogate model, and (iii) an
evolutionary-based search strategy. We detail each component in the following sub-
sections.

5.3.1 Resnet-like Search Space

Resnet-like architectures have inspired many manually designed SOTA DL architec-
tures, including Wide ResNet [285] and EfficientNet [288]. Their block-wise archi-
tecture offers a flexible and searchable macro-architecture for NAS [43]. Resnet-like
architectures can be implemented efficiently using IMC processors, as they are com-
prised of a large number of MVM and element-wise operations. Additionally, due to
the highly parallel nature of IMC, Resnet architectures can get free processing of addi-
tional input/output channels. This makes Resnet-like architectures highly amenable
to analog implementation.

Fig. 5.3 depicts the macro-architecture used to construct all architectures in our
search space. The architecture consists of a series of M distinct main blocks. Each
main block contains R residual blocks. The residual blocks use skip connections with
or without downsampling. Downsampling is performed using 1x1 convolution layers
when required, i.e., when the input size does not match the output size. The residual

5.3. ANALOGNAS: PROPOSED APPROACH 105

block can have B branches. Each branch uses a convolution block. We used different
types of convolution blocks to allow the search space to contain all standard archi-
tectures such as Resnets [269], ResNext [284], and Wide Resnets [285]. The standard
convolution blocks used in Resnets, commonly referred to as BottleNeckBlock and
BasicBlock, are denoted as A and B respectively. We include variants of A and B in
which we inverse the order of the ReLU and Batch normalization operations. The
resulting blocks are denoted as C and D. Table 5.1 summarizes the searchable hyper-
parameters and their respective ranges. The widening factor scales the width of the
residual block. We sample architectures with different depths by changing the num-
ber of main and residual blocks. The total size of the search space is approximately
73B architectures. The larger architecture would contain 240 convolutions and start
from an output channel of 128 multiplying that by 4 for every 16 blocks.

5.3.2 Analog-accuracy Surrogate Model

Evaluation Criteria

To efficiently explore the search space, a search strategy requires evaluating the objec-
tives of each sampled architecture. Training the sampled architectures is very time-
consuming; especially when HWA retraining is performed, as noise injection and I/O
quantization modeling greatly increases the computational complexity. Consequently,
we build a surrogate model capable of estimating the objectives of each sampled ar-
chitecture in IMC devices. To find architectures that maximize accuracy, stability,
and robustness against IMC noise and drift characteristics, we have identified three
objectives: the 1-day accuracy, AVM, and the 1-day accuracy’s standard deviation.

The 1-day accuracy is the primary objective that most NAS algorithms aim to
maximize. It measures the performance of an architecture on a given dataset. When
weights are encoded using IMC devices, the accuracy of the architecture can drop
over time due to conductance drift. Therefore, we have selected the 1-day accuracy
as a metric to measure the architecture’s performance.

The Accuracy Variation over one Month (AVM) is the difference between
the 1-month and 1-sec accuracy. This objective is essential to measure the robust-
ness over a fixed time duration. A 30-day period allows for a reasonable trade-off
between capturing meaningful accuracy changes and avoiding short-term noise and
fluctuations that may not reflect long-term trends.

The 1-day accuracy standard deviation measures the variation of the architec-
ture’s performance across experiments, as discussed in Section 5.2.2. A lower standard
deviation indicates that the architecture produces consistent results on hardware de-
ployments, which is essential for real-world applications.
To build the surrogate model, we follow two steps: Dataset creation and Model
training:

Dataset Creation

The surrogate model will predict the rank based on the 1-day accuracy and estimates
the AVM and 1-day accuracy standard deviation using the MSE. Since the search
space is large, care has to be taken when sampling the dataset of architectures that
will be used to train the surrogate model.

The architectures of the search space are sampled using two methods: (i)
LHS [232] and (ii) NAS with full training. A more detailed description of the Analog-
NAS algorithm is presented in Section 5.3.3. We use LHS to sample architectures
distributed evenly over the search space. This ensures good overall coverage of differ-
ent architectures and their accuracies. NAS with full training is performed using an

106 CHAPTER 5. ANALOG-NAS

Table 5.1: Searchable hyper-parameters and their respective ranges.

Hyper-parameter Range

out channel0 Discrete Uniform Distribution [8,128]
kernel size0 Discrete Uniform Distribution [3,7]
M Discrete Uniform Distribution [1, 5]
R* Discrete Uniform Distribution [1, 16]
B* Discrete Uniform Distribution [1, 12]
ConvBlock* Uniform Choice [A; B; C; D]
Widening Factor* Uniform Distribution [1,4]

*The hyper-parameter is repeated for each main block. ConvBlock refers to dif-
ferent Conv-Relu-BN blocks.

evolutionary algorithm to collect high-performance architectures. This ensures good
exploitation when reaching well-performing regions.

In Fig. 5.4, we present a visualization of the search space coverage, which does
not show any clustering of similarly performing architectures at the edge of the main
cloud of points. Thus, it is not evident that architectures with similar performance are
located close to each other in the search space. This suggests that traditional search
methods that rely on local optimization may not be effective in finding the best-
performing architectures. Instead, population-based search strategies, which explore
a diverse set of architectures, could be more effective in finding better-performing
architectures. Our search strategy extracted 400 test points, and we found that
architectures were distributed throughout the main cloud, indicating that our dataset
covers a diverse portion of the search space, despite the limited size of only 1,000.

Each sampled architecture is trained using different levels of weight noise and
HWA training hyper-parameters using the AIHWKit [286]. Specifically, we modify
the standard deviation of the added weight noise between [0.1, 5.0] in increments of
0.1. The tile size was assumed to be symmetric and varied in [256, 512], representing
256-by-256 and 512-by-512 arrays respectively. Training with different configurations
allowed us to generalize the use of the surrogate model across a range of IMC hardware
configurations, and to increase the size of the constructed dataset.

Model training

To train the surrogate model, we used a hinge pair-wise ranking loss [16] with margin
m = 0.1. The hinge loss, defined in Eq. (5.2), allows the model to learn the relative

Figure 5.4: t-Distributed Stochastic Neighbor Embedding (t-SNE) visualization of
the sampled architectures for CIFAR-10.

5.3. ANALOGNAS: PROPOSED APPROACH 107

Figure 5.5: Surrogate models comparison.

ranking order of architectures rather than the absolute accuracy values [16, 289].

L({aj , yj}j=1,...,N) =

N∑
j=1

∑
{i,j|yi>yj}

max[0,m− P (ai)− P (aj)] (5.2)

aj refers to architectures indexed j, and yj to its corresponding 1-day accuracy.
P (a) is the predicted score of architecture a. P (a) during training, the output score
is trained to be correlated with the actual ranks of the architectures. Several algo-
rithms were tested. After an empirical comparison, we adopted Kendall’s Tau ranking
correlation [290] as the direct criterion for evaluating ranking surrogate model per-
formance. Fig. 5.5 shows the comparison using different ML algorithms to predict
the rankings and AVM. Our dataset is tabular. It contains each architecture and
its corresponding features. XGBoost outperforms the different surrogate models in
predicting the architectures’ ranking order, the AVM of each architecture, and the
1-day standard deviation.

5.3.3 Search Strategy

Fig. 5.6 depicts the overall search framework. Given a dataset and a hardware con-
figuration readable by AIHWKit, the framework starts by building the surrogate
model presented in Section 5.3.2. Then, we use an optimized evolutionary search
to efficiently explore the search space using the surrogate model. Similar to tra-
ditional evolutionary algorithms, we use real number encoding. Each architecture
is encoded into a vector, and each element of the vector contains the value of the
hyper-parameter, as listed in Table 5.1.

5.3.4 Problem Formulation

Given the search space S, our goal is to find an architecture α, that maximizes the
ratio of 1-day accuracy to 1-day standard deviation, subject to constraints on the
number of parameters and the AVM. The number of parameters is an important
metric in IMC, because it directly impacts the amount of on-chip memory required
to store the weights of a DNN. Eq. (5.3) formally describes the optimization problem
as follows:

max
α∈S

ACC(α)

σ(α)

s.t ψ(α) < Tp

AVM(α) < TAVM.

(5.3)

ACC refers to the 1-day accuracy objective, σ denotes the 1-day accuracy’s stan-
dard deviation, and ψ is the number of parameters. Tp and TAVM are user-defined

108 CHAPTER 5. ANALOG-NAS

Figure 5.6: Overview of the AnalogNAS framework.

thresholds that correspond to the maximum number of parameters and AVM, respec-
tively.

5.3.5 Search Algorithm

Our evolutionary search algorithm, i.e., AnalogNAS, is formally defined using Algo-
rithm 6. AnalogNAS is an algorithm to find the most accurate and robust neural
network architecture for a given analog IMC configuration and task. The algorithm
begins by generating a dataset of neural network architectures, which are trained on
the task and evaluated using AIHWKit. A surrogate model is then created to pre-
dict the efficiency of new architectures. The algorithm then generates a population
of architectures using an LHS technique and selects the top-performing architectures
to be mutated and generate a new population. The process is repeated until a stop-
ping criterion is met, such as a maximum number of iterations or a time budget.
Finally, the most robust architecture is returned. In the following, we detail how the
population initialization, fitness evaluation, and mutations are achieved.

Population Initialization

The search starts by generating an initial population. Using the LHS algorithm,
we sample the population uniformly from the search space. LHS ensures that the
initial population contains architectures with different architectural features. LHS is
made faster with parallelization by dividing the sampling into multiple independent
subsets, which can be generated in parallel using multiple threads.

Fitness Evaluation

We evaluate the population using the aforementioned analog-accuracy surrogate
model. In addition to the rankings, the surrogate model predicts the AVM of each

5.3. ANALOGNAS: PROPOSED APPROACH 109

Algorithm 6 AnalogNAS algorithm.

Input: Search space: S, RPU Configuration: rpu config, target task: task, pop-
ulation size: population size, AVM threshold: TAVM, parameter threshold: Tp,
number of iterations: N , time budget
Output: Most efficient architecture for rpu config in S
Begin
D = sample(S, dataset size)
HW Train(D, task)
AVM = compute AVM(D)
surrogate model = XGBoost
train(surrogate model, D, AVM)
repeat

population = LHS(population size, Tp)
AVM, ranks = surrogate model(population)

until AVM > TAVM

while i < N or time < time budget do
top 50 = select(population, ranks)
mutated = mutation(top 50, Tp)
population = top 50

⋃
mutated

AVM, ranks = surrogate model(population)
end while
return top1(population, ranks)

architecture. As previously described, the AVM is used to gauge the robustness of a
given network. If the AVM is below a defined threshold, TAVM, the architecture is
replaced by a randomly sampled architecture. The new architecture is constrained
to be sampled from the same hypercube dimension as the previous one. This ensures
efficient exploration.

Selection and Mutation

We select the top 50% architectures from the population using the predicted rankings.
These architectures are mutated. The mutation functions are classified as follows:

Depth-related mutations modify the depth of the architectures. Mutations in-
clude adding a main block, by increasing or decreasing M or a residual block R, or
modifying the type of convolution block, i.e., {A,B,C,D}, for each main block.

Width-related mutations modify the width of the architectures. Mutations in-
clude modifying the widening factor W of a main block or adding or removing a
branch B, or modifying the initial output channel size of the first convolution, OC.

Other mutations modify the kernel size of the first convolution, KS, and/or add
skip connections, denoted using ST .
Depth- and width-related mutations are applied with the same probability of 80%.
The other mutations are applied with a 50% probability. In each class, the same
probability is given to each mutation. The top 50% architectures in addition to the
mutated architectures constitute the new population. For the remaining iterations,
we verify the ranking correlation of the surrogate model. If the surrogate model’s
ranking correlation is degraded, we fine-tune the surrogate model with the popula-
tion’s architectures. The degradation is computed every 100 iterations. The surrogate
model is tested on the population architectures after training them. It is fine-tuned
if Kendall’s tau correlation drops below 0.9.

110 CHAPTER 5. ANALOG-NAS

5.4 Evaluation Methodology

We detail the hyper-parameters used to train the surrogate model and different ar-
chitectures on CIFAR-10, VWW, and KWS tasks.

Surrogate model training We trained a surrogate model and dataset of HWA
trained DNN architctures for each task. The sizes of the datasets were 1,200, 600, and
1,500, respectively. An additional 500 architectures were collected during the search
trials for validation. All architectures were first trained without noise injection (i.e.,
using vanilla training routines), and then converted to AIHWKit models for HWA
retraining. The surrogate model architecture used was XGBoost. For VWW and
KWS, the surrogate model was fine-tuned from the image classification XGBoost
model.

Image classification training We first trained the network architectures using
the CIFAR-10 dataset [291], which contains 50,000 training and 10,000 test samples,
evenly distributed across 10 classes. We augmented the training images with random
crops and cutouts only. For training, we used SGD with a learning rate of 0.05 and a
momentum of 0.9 with a weight decay of 5e-4. The learning rate was adjusted using a
cosine annealing learning rate scheduler with a starting value of 0.05 and a maximum
number of 400 iterations.

VWW training We first trained the network architectures using the VWW
dataset [292], which contains 82,783 train and 40,504 test images. Images are la-
beled 1 when a person is detected, and 0 when no person is present. The image pre-
processing pipeline included horizontal and vertical flipping, scale augmentation [293],
and random RGB color shift. To train the architectures, we used the RMSProp op-
timizer [294] with a momentum of 0.9, a learning rate of 0.01, a batch normalization
momentum of 0.99, and a l2 weight decay of 1e-5.

KWS training We first trained the network architectures using the KWS
dataset [295], which contains 1-second long incoming audio clips. These are classi-
fied into one of twelve keyword classes, including ”silence” and ”unknown” keywords.
The dataset contains 85,511 training, 10,102 validation, and 4,890 test samples. The
input was transformed to 49 × 10 × 1 features from the Mel-frequency cepstral coeffi-
cients [296]. The data pre-processing pipeline included applying background noise and
random timing jitter. To train the architectures, we used the Adam optimizer [297]
with a decay of 0.9, a learning rate of 3e-05, and a linear learning rate scheduler with
a warm-up ratio of 0.1.

Search Algorithm
The search algorithm was run five times to compute the variance. The evolutionary
search was executed with a population size of 200. If not explicitly mentioned, the
AVM threshold was set to 10%. The width and depth mutation probability was set to
0.8. The other mutations’ probability was set to 0.5. The total number of iterations
was 200. After the search, the obtained architecture for each task was compared to
SOTA baselines for comparison.

5.5 Experiment Results

The final architecture compositions for the three tasks are listed in Table 5.2. In ad-
dition, figure 5.10 highlights the architectural differences between AnalogNAS T500
and resnet32. We modified Tp to find smaller architectures. To determine the optimal
architecture for different parameter thresholds, we use TX, where X represents the

5.5. EXPERIMENT RESULTS 111

Figure 5.7: Simulated hardware comparison results on three benchmarks: (a,b)
CIFAR-10, (c) VWW, and (d) KWS. The size of the marker represents the size
(i.e., the number of parameters) of each model. The shaded area corresponds to the
standard deviation at that time.

Table 5.2: Final Architectures for CIFAR-10, VWW, and KWS. Other networks for
VWW and KWS are not listed, as they cannot easily be represented using our macro-
architecture.

Network
Macro-Architecture Parameter

OC0 KS0 M R* B* CT* WF*

CIFAR-10

Resnet32 64 7 3 (5, 5, 5) (1, 1, 1) (B, B, B) (1, 1, 1)
AnalogNAS T100 32 3 1 (2,) (1,) (C,) (2,)
AnalogNAS T300 32 3 1 (3, 3) (1, 1) (A, B) (2, 1)
AnalogNAS T500 64 5 1 (3,) (3,) (A,) (2,)
AnalogNAS T1M 32 5 2 (3, 3) (2, 2) (A, A) (3, 3)

VWW

AnalogNAS T200 24 3 3 (2, 2, 2) (1, 2, 1) (B, A, A) (2, 2, 2)
AnalogNAS T400 68 3 2 (3, 5) (2, 1) (C, C) (3, 2)

KWS

AnalogNAS T200 80 1 1 (1,) (2,) (C,) (4,)
AnalogNAS T400 68 1 2 (2, 1) (1, 2) (B, B) (3, 3)

*As depicted in Fig. 5.3, thse macro-architecture parameters comprise
multiple instances.

threshold Tp in K units (e.g., T100 refers to the architecture with a threshold of 100K
parameters). When searching for T200 and T100, the probability of increasing the
widening factor or depth to their highest values, was lessened to 0.2.

In Fig. 5.7, the simulated hardware comparison of the three tasks is depicted. Our
models outperform SOTA architectures with respect to both accuracy and resilience
to drift. On CIFAR-10, after training the surrogate model, the search took 17 min-
utes to run. The final architecture, T500, is smaller than Resnet32, and achieved
+1.86% better accuracy and a drop of 1.8% after a month of inference, compared
to 5.04%. This model is ∼ 86× smaller than Wide Resnet [285], which has 36.5M
parameters. Our smallest model, T100, was 1.23× bigger than Resnet-V1, the SOTA
model bench-marked by MLPerf [298]. Despite not containing any depth-wise convo-
lutions, Resnet V1 is extremely small, with only 70k parameters. Our model offers
a +7.98% accuracy increase with a 5.14% drop after a month of drift compared to
10.1% drop for Resnet V1. Besides, our largest model, AnalogNAS 1M, outperforms
Wide Resnet with +0.86% in the 1-day accuracy with a drop of only 1.16% compared
to 6.33%. In addition, the found models exhibit greater consistency across experi-
ment trials, with an average standard deviation of 0.43 over multiple drift times as

112 CHAPTER 5. ANALOG-NAS

opposed to 0.97 for SOTA models.
Similar conclusions can be made about VWW and KWS. In VWW, current base-

lines use a depth-wise separable convolution that incurs a high accuracy drop on
analog devices. Compared to AnalogNet-VWW and Micronets-VWW, the current
SOTA networks for VWW in analog and edge devices, our T200 model has a similar
number of parameters (x1.23 smaller) with a +2.44% and +5.1% 1-day accuracy in-
crease respectively. AnalogNAS was able to find more robust and consistent networks
with an average AVM of 2.63% and a standard deviation of 0.24. MCUNet [266] and
MobileNet-V1 present the highest AVM. This is due to the sole use of depth-wise
separable convolutions.

On KWS, the baseline architectures, including DSCNN [245], use hybrid networks
containing recurrent cells and convolutions. The recurrent part of the model ensures
high robustness to noise. While current models are already robust with an average
accuracy drop of 4.72%, our model outperforms tiny SOTA models with 96.8% and
an accuracy drop of 2.3% after a month of drift. Critically, our AnalogNAS mod-
els exhibit greater consistency across experiment trails, with an average standard
deviation of 0.17.

5.5.1 Comparison with Random Search

In accordance with commonly accepted NAS methodologies, we conducted a com-
parative analysis of our search approach with Random Search. Results, presented in
Fig. 5.8, were obtained across five experiment instances. Our findings indicate that
Random Search was unable to match the 1-day accuracy levels of our final models,
even after conducting experiments for a duration of four hours and using the same
surrogate model. We further conducted an ablation study to evaluate the effective-
ness of our approach by analyzing the impact of the LHS algorithm and surrogate
model. The use of a random sampling strategy and exclusion of the surrogate model
resulted in a significant increase in search time. The LHS algorithm helped in start-
ing from a diverse initial population and improving exploration efficiency, while the
surrogate model played a crucial role in ensuring practical search times.

Figure 5.8: Ablation study comparison against Random Search (RS). Mean and
standard deviation values are reported across five experiment instances (trials).

5.6. HARDWARE VALIDATION 113

5.5.2 Search Time and AVM Threshold Trade-Off

During the search, we culled architectures using their predicted AVM, i.e., any ar-
chitecture with a higher AVM than the AVM threshold was disregarded. As listed
in Table 5.3, we varied this threshold to investigate the trade-off between TAVM and
the search time. As can be seen, as TAVM is decreased, the delta between AVM and
TAVM significantly decreases. The correlation between the search time and TAVM is
observed to be non-linear.

Table 5.3: AVM threshold variation results on CIFAR-10.

TAVM (%) 1.0 3.0 5.0*

1-day Accuracy 88.7% 93.71% 93.71%
AVM 0.85% 1.8% 1.8%
Search Time (min) 34.65 28.12 17.65

*Overall results computed with TAVM (%) =
5.0.

5.6 Experimental Hardware Validation & Architec-
ture Performance Simulations

5.6.1 Experimental Hardware Validation

An experimental hardware accuracy validation study was performed using a 64-core
IMC chip based on PCM [299]. Each core comprises a crossbar array of 256x256 PCM-
based unit-cells along with a local digital processing unit [300]. This validation study
was performed to verify whether the simulated network accuracy values and rankings
are representatives of those when the networks are deployed on real physical hardware.
We deployed two networks for the CIFAR-10 image classification task on hardware:
AnalogNAS T500 and the baseline ResNet32 [269] networks from Fig. 5.7(a).

To implement the aforementioned models on hardware, after HWA training was
performed, a number of steps were carried out. First, from the AIHWKit, unit
weights of linear (dense) and unrolled convolutional layers, were exported to a state
dictionary file. This was used to map network parameters to corresponding net-
work layers. Additionally, the computational inference graph of each network was
exported. These files were used to generate proprietary data-flows to be executed
in-memory. As only hardware accuracy validation was being performed, all other
operations aside from MVM were performed on a host machine connected to the
chip through an FPGA. The measured hardware accuracy was 92.05% for T500 and
89.87% for Resnet32, as reported in Table 5.4. Hence, the T500 network performs
significantly better than Resnet32 also when implemented on real hardware. This
further validates that our proposed AnalogNAS approach is able to find networks
with a similar number of parameters that are more accurate and robust on analog
IMC hardware.

5.6.2 Simulated Hardware Energy and Latency

We conducted power performance simulations for AnalogNAS T500 and ResNet32
models using a 2D-mesh-based heterogeneous analog IMC system with the simulation
tool presented in [21]. The simulated IMC system consists of one analog fabric with
48 analog tiles of 512x512 size, on-chip digital processing units, and digital memory
for activation orchestration between CNN layers. Unlike the accuracy validation
experiments on the 64-core IMC chip, the simulated power performance assumes all

114 CHAPTER 5. ANALOG-NAS

Table 5.4: Experimental hardware accuracy validation and simulated power perfor-
mance on the IMC system in [21].

Architecture ResNet32 AnalogNAS T500

Hardware Experiments

Accuracy* 89.87% 92.05%

Simulated Hardware Power Performance

Total weights 464,432 416,960
Total tiles 43 27
Network Depth 32 17
Execution Time (msec) 0.434 0.108
Inferences/s/W 43,956.7 54,502

*The mean accuracy is reported across three
experiment repetitions.

intermediate operations to be mapped and executed on-chip. Our results, provided
in Table 5.4, show that AnalogNAS T500 outperformed ResNet32 in terms of both
execution time and energy efficiency.

We believe that this power performance benefit is realized because, in analog IMC
hardware, wider layers can be computed in parallel, leveraging the O(1) latency from
analog tiles, and are therefore preferred over deeper layers. It is noted that both
networks exhibit poor tile utilization and that the tile utilization and efficiency of
these networks could be further improved by incorporating these metrics as explicit
constraints. This is left to future work and is beyond the scope of AnalogNAS.

5.7 Architectural Recommendation for Analog AI

Figure 5.9: Evolution of architecture characteristics in the population during the
search for CIFAR-10. Random individual networks are shown.

5.7. ARCHITECTURAL RECOMMENDATION FOR ANALOG AI 115

AnalogNAS T500
Architecture

ResNet32
Architecture

Shallower and smaller network

Wider convolutionsMore branches
BottleneckBlock vs. BasicBlock

Figure 5.10: Architectural differences between AnalogNAS T500 and Resnet32.

During the search, we analyzed the architecture characteristics and studied which
types of architectures perform the best on IMC inference processors. The favored
architectures combine robustness to noise and accuracy performance. Fig. 5.9 shows
the evolution of the average depth, the average widening factor, the average number
of branches, and the average first convolution’s output channel size of the search
population for every 20 iterations. The depth represents the number of convolutions.
A sampled architecture has a widening factor per block. To compute the average
widening factor, we first computed the average widening factor per architecture by
dividing the sum of the widening factors by the number of blocks contained in the
architecture. Then, we calculated the average widening factor across all architectures.
Similar computations were performed for the average number of branches.

For each plot, the search was run 5 times and the mean is represented in each point.
The plotted error corresponds to one standard deviation from that mean. Starting
from a random population obtained using LHS, the population evolves through dif-
ferent width and depth-related mutations. During this analysis, we want to answer
the following questions: (i) Does the search favor wide or deep networks? And sub-
sequently, are wider architectures more noise resilient? (ii) what architectures are
exploited by the search for different tasks when constraining the number of parame-
ters?

5.7.1 Are Wider or Deeper Networks More Robust to PCM
Device Drift?

From Fig. 5.9, it can be observed that the depth of all networks decreases during
the search. This trend is especially seen when we constrain the model’s size to
100K and 500K parameters. During the search, the widening factor also increases,
allowing the blocks to have wider convolutions. The number of branches is highly
dependent on Tp. This number is, on average, between 1 and 2. The branches are the
number of parallel convolutions in a block disregarding the skip connection. In the
literature, architectures such as ResNext, that support a higher number of branches,
have a number of parameters around 30M. It is still interesting to get blocks with two
branches, which also reflects an increase in the width of the network by increasing the
number of features extracted within the same block. The average output channel size
of the first convolution decreases during the search. Its final value is around the same
number of output channels as standard architectures, i.e., between 16 and 32. This
follows the general trend of having wider convolutions in deeper network positions.

116 CHAPTER 5. ANALOG-NAS

5.7.2 Types Of Architectures

The final architectures for each task and the number of parameters constraint are
different. They all, however, show an increasing expansion ratio in the convolution
block. This increase allows the blocks’ convolutions to utilize more of the tile and thus
reduce the noise effect from the non-utilized cells in the crossbar. For CIFAR-10, ar-
chitectures behave like Wide Resnet [285] while respecting the number of parameters
constraint. For the VWW task, the architectures are deeper. The input resolution
is 224 × 224, which requires more feature extraction blocks. However, they are still
smaller than SOTA architectures, with a maximum depth of 22. As depth is essential
to obtain high accuracy for the VWW task, no additional branches are added. For the
KWS task, the architectures are the widest possible, maximizing the tile utilization
for each convolutional layer.

5.8 Conclusion

In this chapter, we propose an efficient NAS methodology dedicated to analog in-
memory computing for TinyML tasks entitled AnalogNAS. The obtained models are
accurate, noise and drift-resilient, and small enough to run on resource-constrained
devices. Experimental results demonstrate that our method outperforms SOTA mod-
els on analog hardware for three tasks of the MLPerf benchmark: image classification
on CIFAR-10, VWW, and KWS. Our AnalogNAS T500 model implemented on phys-
ical hardware demonstrates > 2% higher accuracy experimentally on the CIFAR-10
benchmark than ResNet32. Calculated speed and energy efficiency estimates reveal
a > 4× reduction in execution time, in addition to > 1.2× higher energy efficiency
for AnalogNAS T500 compared with ResNet32 when evaluated using a system-level
simulator.

Chapter 6

HW-NAS for Medical
Imaging Analysis

Contents
6.1 Context . 118

6.2 MED-NAS-Bench . 119

6.2.1 Datasets . 119

6.2.2 Benchmark Design . 121

High-level overview . 121

Operator Selection . 122

6.2.3 Evaluation methodology 124

6.2.4 Performance Distribution 125

Overall Performance . 125

Ranking Evaluation . 126

6.2.5 Architecture Distribution 128

6.2.6 Cross-datasets Correlations 128

6.2.7 State-of-the-art Search Methodologies 129

Task-specific performance optimization 129

Multi-objective Optimization 131

6.3 MT-MIAS . 133

6.3.1 Search Methodology . 133

Overview . 134

Objective function . 134

Block Importance Score (BIS) 135

Backward Selection Algorithm 136

6.3.2 Experiments Methodology 137

6.3.3 Search Results . 138

DARTS Search Results 138

MED-NAS-Bench Results 139

Unseen datasets and Generalization 140

6.4 Conclusion . 141

117

118 CHAPTER 6. HW-NAS FOR MEDICAL IMAGING ANALYSIS

Edge devices, such as smartphones and wearable devices, are increasingly being
utilized for real-time medical image analysis, enabling rapid diagnosis and treatment
decisions at the point of care. By incorporating HW-NAS techniques, we can ef-
fectively optimize DL architectures for edge medical tasks. However, the lack of
standardized NAS benchmarks tailored for medical imaging on edge devices poses a
significant challenge in developing efficient and practical approaches. In this chapter,
we propose a dedicated NAS benchmark for medical imaging analysis, MED-NAS-
Bench, which encompasses a large number of architectures per task. Additionally, we
design a multi-task architecture search, called MT-MIAS, that leverages this bench-
mark to optimize multiple medical imaging tasks concurrently. In what follows, we
present challenges faced in medical imaging tasks and the methodologies we have
adopted to address some of these challenges.

6.1 Context

With the transition to electronic health records (EHR) over the last decade, the
healthcare industry has witnessed an exponential increase in the amount of available
EHR data. This surge in data presents a remarkable opportunity to harness the power
of artificial intelligence (AI) and unlock its potential to revolutionize the healthcare
system. In recent years, deep learning (DL) practitioners have played a significant
role in leveraging AI to address critical challenges in medical imaging. They have
developed a range of sophisticated models [301, 302, 303] specifically designed to
tackle the segmentation of complex structures such as brain tumors, liver tumors, and
lung tumors. By employing DL techniques, these models have shown great promise
in accurately delineating these structures from medical imaging data. By providing
accurate segmentation, these models supply clinicians with detailed insights into the
organ’s structure and aid in determining the extent of diseases.

Given the state-of-the-art results of NAS, researchers have delved into explor-
ing its potential applications in medical imaging and DL-based segmentation tasks.
By employing NAS techniques, DL practitioners can optimize the architecture and
parameters of segmentation models, leading to improved accuracy. While current
medical NAS methods [304, 305, 306] achieve state-of-the-art results in many tasks,
they also face several challenges that researchers are actively working to overcome.
Among these challenges: (1) the lack of a common benchmark to compare different
NAS methods against. Currently, there is a lack of standardized benchmarks specifi-
cally tailored for evaluating the performance of NAS models in medical imaging tasks.
(2) Given the lack of benchmarks, researchers face difficulties building performance
surrogate and estimation models. This exacerbates the computational complexity
and resource requirements of these methods.

In addition, the sensitive nature of healthcare data necessitates the need for edge
inference, where computations are performed locally on devices rather than relying
on cloud-based processing. This enables faster and more secure analysis of healthcare
data while preserving patient privacy. To achieve efficient and effective edge inference
in healthcare, the search for optimized deep learning architectures is crucial. While
HW-NAS has shown success in visual tasks such as image classification and object
detection, its application to medical imaging and healthcare-specific tasks is an area
of active research. The unique requirements of medical image analysis, such as high
resolution, multi-modal inputs, and complex structures, necessitate the development
of HW-NAS techniques specifically adapted to the healthcare domain.

In this chapter, we first attempt to address the following research question:

6.2. MED-NAS-BENCH 119

Research Question 5

What are the key considerations and methodologies for developing a compre-
hensive benchmark specifically tailored for evaluating NAS methods in the
domain of medical imaging, and how can such a benchmark be designed to ef-
fectively capture the complexities and challenges presented by medical imaging
datasets?

We present MED-NAS-Bench, a generalized neural architecture search benchmark
for medical imaging analysis. This benchmark not only includes task-specific met-
rics such as dice score, Jaccard score, and f1-score, but also the hardware efficiency
measured with the latency and energy consumption on Raspberry Pi and Laptop
AMD Ryzen 7 6800H 1. These devices are cost-effective and readily available for hos-
pitals and clinicians, ensuring practicality and affordability in real-world healthcare
settings. By employing MED-NAS-Bench, researchers and practitioners can evaluate
the performance and efficiency of NAS models in medical imaging analysis, enabling
informed decision-making and facilitating the adoption of optimized architectures for
various medical imaging tasks.

Medical imaging data is inherently complex and heterogeneous, with variations in
imaging modalities, anatomical structures, and disease presentations. By incorporat-
ing multi-task learning into HW-NAS, the architecture search process can leverage
the relationships and dependencies between different segmentation tasks. This allows
for the discovery of architectures that can effectively capture the intricacies of mul-
tiple anatomical structures or diseases simultaneously. This allows the deployment
of a single architecture that can perform well on a range of different tasks. We then
formulate our research question 6, as follows:

Research Question 6

How can a multi-task HW-NAS methodology be developed to effectively ac-
count for the diverse range of medical imaging types and tasks?

To address this challenge, we present MT-MIAS, a multi-task architecture search
for medical imaging analysis that significantly increases the efficiency and productiv-
ity of medical imaging models on edge devices.

6.2 MED-NAS-Bench

In this section, we present the methodology employed to construct MED-NAS-Bench.
The construction of MED-NAS-Bench involved several key steps to ensure its effec-
tiveness and suitability for evaluating NAS methods in the context of medical imaging
tasks.

6.2.1 Datasets

MED-NAS-Bench targets 11 medical tasks, ten of which are obtained from the medi-
cal segmentation decathlon (MSD) [18], plus a pulmonary diseases detection dataset.

Medical Segmentation Decathlon (MSD) [18] is a widely recognized bench-
mark dataset and challenge specifically focused on medical image segmentation tasks.
The MSD was created to address the need for standardized evaluation and comparison
of segmentation methods across a range of anatomical structures and diverse imag-
ing modalities, including computed tomography (CT), magnetic resonance imaging

1Our benchmark is under active development, we are in the process of collecting measurement
on Jetson Nano, Jetson NX, and other hardware platforms.

120 CHAPTER 6. HW-NAS FOR MEDICAL IMAGING ANALYSIS

Figure 6.1: Overview of the ten different tasks of the Medical Segmentation Decathlon
(MSD) [18]

(MRI), and positron emission tomography (PET). The dataset consists of 10 differ-
ent medical imaging segmentation tasks, including brain, lung, liver, colon, pancreas
tumors, left atrium, prostate peripheral and transition zones, hepatic vessels, hip-
pocampus, and spleen segmentation. Each task comprises a large number of volu-
metric images along with the corresponding ground truth segmentations, providing a
comprehensive and diverse collection of medical imaging data.

Image Segmentation

Image segmentation is the process of dividing an image into distinct and mean-
ingful regions or segments, with the goal of extracting and isolating objects or
areas of interest within the image.

Referring to Figure 6.1, MSD was thoughtfully designed to promote generaliz-
ability across various medical tasks. The decathlon framework was structured in a
two-step process to facilitate comprehensive evaluation and encourage the develop-
ment of robust segmentation models. In the initial phase, participants were provided
with 7 tasks highlighted in blue, focusing on well-defined segmentation challenges.
This allowed participants to explore and develop their best-performing models for
these specific tasks. Subsequently, a f ine-tuning step was introduced, where par-
ticipants were presented with mystery tasks (i.e;, gray tasks). By fine-tuning their
models on these mystery tasks, participants had the opportunity to test the general-
ization capability of their proposed solutions across different medical tasks. A similar
process will be followed in our multi-task HW-NAS methodology in section 6.3.

The NIH Chest X-Ray Dataset [307] is a widely used dataset in the field of med-
ical imaging, specifically focused on chest X-ray analysis. This dataset was compiled
by the National Institutes of Health (NIH) and consists of 112,120 X-ray images with
disease labels from 30,805 unique patients along with associated radiologist-labeled
annotations. It encompasses a diverse range of chest conditions, including abnormal-
ities such as pneumonia, lung nodules, and pleural effusion, as well as normal chest

6.2. MED-NAS-BENCH 121

(a) original U-Net Architecture (b) Recursive U-Net Benchmark

block1

block2

block3

block4

Detection Head

Segmentation
Head

Num
ber of blocks

Figure 6.2: Search Space of MED-NAS-Benchmark

X-rays for comparison.

6.2.2 Benchmark Design

To build a search space, one needs to define the set of architectures and ranges of
hyperparameters that will be explored during the NAS process. In this study, our
search space construction draws inspiration from DARTS, as proposed in the ref-
erenced work [166]. DARTS introduces the concept of a supernetwork, which is an
over-parameterized network where each layer can compute different operations simul-
taneously. These operations are typically organized into blocks, allowing for flexible
and efficient exploration of architectural configurations. To build a supernetwork, we
need to define the general macro-architecture that is followed, including the depth
of the network, and specify the candidate operations that can be performed at each
layer.

High-level overview

Our search space resembles a U-Net-like architecture. U-Net [301] is a DL architecture
that has shown remarkable performance in medical image segmentation tasks. It
consists of an encoder-decoder structure with skip connections, enabling effective
feature extraction and precise localization of structures within the image. The encoder
portion captures high-level features while the decoder recovers spatial information,
and the skip connections help in preserving fine-grained details. By incorporating
U-Net-like characteristics into our search space, we aim to leverage the strengths of
this architecture in addressing the complexities and challenges presented by medical
imaging datasets.

Figure 6.2 presents a visual representation of the search space definition, high-
lighting the key differences between the proposed search space and the conventional
U-Net architecture. The search space is designed to accommodate different medical
imaging tasks, allowing for both detection and segmentation.

In scenarios where the task involves detection, such as pulmonary disease classifi-
cation, the model is constructed using a sequence of blocks. The model terminates at
the detection head, which is a fully connected layer with a number of output classes
specific to the task. This design enables the model to focus solely on the detection
aspect, efficiently capturing the necessary features for classification.

For segmentation tasks, the U-Net architecture is employed recursively, following
the characteristic U-shape structure. Each down block is paired with an associated
up-sampling block on the opposite side of the U, enabling precise localization and
segmentation of structures within the images. This recursive implementation en-
sures the model can effectively leverage both local and global contextual information,

122 CHAPTER 6. HW-NAS FOR MEDICAL IMAGING ANALYSIS

Table 6.1: Details of the blocks and operations searched in the benchmark.

Block Operations Respective Up-
sampling block

Zero - -
Identity IdentityLayer IdentityLayer
A LinearLayer(in, out) LinearLayer(out,

in)
B 2DConv(in, out, k=3, use bn=false, act=relu) T2DConv(out, in,

k=2, s=2)
C 2DConv(in, out, k=3, use bn=true, act=relu) T2DConv(out, in,

k=2, s=2)
D 2DConv(in, out, k=3, use bn=false, act=leakyrelu) T2DConv(out, in,

k=2, s=2)
E 2DConv(in, out, k=3, use bn=true, act=leakyrelu) T2DConv(out, in,

k=2, s=2)
F [B, C] T2DConv(out, in,

k=2, s=2)
G [D, E] T2DConv(out, in,

k=2, s=2)
H 3DConv(in, out, k=3, use bn=false, act=relu) T3DConv(out, in,

k=2, s=2)
I

3DConv(in, out, k=3, use bn=true, act=relu) T3DConv(out, in, k=2, s=2)
J 3DConv(in, out, k=3, use bn=false, act=leakyrelu) T3DConv(out, in,

k=2, s=2)
K 3DConv(in, out, k=3, use bn=true, act=leakyrelu) T3DConv(out, in,

k=2, s=2)
L [H, I] T3DConv(out, in,

k=2, s=2)
M [J, K] T3DConv(out, in,

k=2, s=2)

enhancing the accuracy and completeness of the segmentation results.
The number of down blocks is tuned and searched for each task. We define the

maximum depth of the network to be 10 blocks. We define the same supernetwork
for all tasks. This allows us to assess the generalization ability of the architectures.

Operator Selection

For the operations, we include commonly used operations in medical image segmen-
tation tasks. These operations comprise 2D and 3D convolutions to capture spatial
features at different scales, max pooling and average pooling to downsample feature
maps and skip connections to enable effective information flow between the encoder
and decoder sections.

To organize these operations, we group them into blocks, which serve as archi-
tectural choices at each layer of the supernetwork. Each block consists of multiple
candidate operations, allowing the supernetwork to select and combine them during
the architectural search process. By incorporating these blocks, the supernetwork
gains the flexibility to adapt its architecture based on the specific requirements of
the medical imaging task. It is important to note that we have not included kernel
size tuning in our study. This decision is based on existing literature, which has
demonstrated that the same receptive fields achieved with kernel sizes of 5 or 7 can
be effectively obtained by combining multiple convolutions with a kernel size of 3.
Table 6.1 details the list of blocks used the high-level architecture.

By using variants of the convolution, the search space offers flexibility based on
the type of input data it can handle, allowing for the search and utilization of either
a 3D U-Net or a 2D U-Net. When dealing with medical imaging, the input data can
vary in dimensionality. For instance, 3D U-Net is designed to process volumetric data,
such as CT scans or MRI volumes, where each pixel or voxel contains three spatial
dimensions: width, height, and depth. On the other hand, 2D U-Net is suitable for
analyzing single slices or images that possess only two dimensions: width and height.
Figure 6.3 provides an overview of the architecture size and types incorporated into
the search space. To ensure comprehensive coverage of different tasks, we define task-
specific supernetworks within the search space. Each supernetwork is trained using

6.2. MED-NAS-BENCH 123

mp-MRI

1B architectures
Dice & Jaccard scores &
F1-score

Brain Tumor Segmentation
Brain Tumor Detection

Brain MRI

1B architectures

Dice & Jaccard scores

Hippocampus Segmentation
Hippocampus Volume Estimation

Hippocampus

MRI

1B architectures

Dice & Jaccard scores

Left Arterial Segmentation

Heart

CT & X-Ray

262k architectures

Dice & Jaccard scores

Lung tumor segmentation
Pneumonia Detection

Lung

CT

262k architectures

Dice & Jaccard scores

Liver Segmentation
Liver Tumor Segmentation

Liver

CT

262k architectures

Dice & Jaccard scores

Tumor Segmentation

Pancreas

mp-MRI

1B architectures

Dice & Jaccard scores

Prostate Peripheral and
transition segmentation

Prostate

CT

1M architectures

Dice & Jaccard scores

Spleen Segmentation

Spleen

CT

1M architectures

Dice & Jaccard scores

Liver vessels and tumor
segmentation

Hepatic Vessels

CT

1M architectures

Dice & Jaccard scores

Colon Cancer Segmentation

Colon

Figure 6.3: Overview of MED-NAS-Bench. Inspired from MSD [18]

124 CHAPTER 6. HW-NAS FOR MEDICAL IMAGING ANALYSIS

a predefined loss function that aligns with the objectives of the respective task.
The search space for MRI data consists of 1,073,741,824 architectures, considering

15 different blocks. For CT scans involving lung, liver, and pancreas tasks, there are
262,144 architectures with 9 blocks. For CT scans of the mystery tasks with smaller
datasets, the search space expands to 4,194,304 architectures, allowing for the use
of the 3D convolution blocks. These diverse search spaces enable researchers to find
optimal architectural configurations tailored to specific medical imaging tasks.

6.2.3 Evaluation methodology

For each dataset, a training hyperparameter tuning is achieved on 20 randomly sam-
pled architectures from the supernetwork. The resulting must-used values are then
used to train the general supernetwork for that task. Table 6.2 summarizes the
hyperparameters for each task. Notice that jointly enumerating architectures and
hyper-parameters will result in billions of architecture hyper-parameter pairs and is
infeasible in practice. Therefore, we first optimize the hyper-parameters to a proper
value which can accommodate different sub-networks in the same supernetwork.

Table 6.2: Datasets details and training hyperparameters.

Hyper-
parame-
ter

Brain Hippo-
cam-
pus

Lung Liver Prost-
ate

Heart Panc-
reas

Colon Hepa-
tic
Ves-
sels

Spleen Chest

Learning
Rate

0.001 0.0005 0.001 0.001 0.0001 0.001 0.001 0.001 0.0005 0.001 0.001

Learning
Rate De-
cay

0.9 0.95 0.95 0.9 0.95 0.9 0.95 0.9 0.95 0.9 0.95

Weight
Decay

0.0001 0.0005 0.0005 0.0001 0.0005 0.0001 0.0005 0.0001 0.0005 0.0001 0.0005

Batch
Size

16 8 32 16 16 32 16 32 8 16 32

Optimizer Adam RMS-
prop

Adam Adam Adam RMS-
prop

Adam Adam RMS-
prop

Adam Adam

Loss
Function

Dice
Loss

BCE
Loss

Dice
Loss

Dice
Loss

Dice
Loss

Dice
Loss

Dice
Loss

Dice
Loss

Dice
Loss

Dice
Loss

Cross-
Entropy
Loss

Evaluation
Metric

Dice
Coeff

Dice
Coeff

Dice
Coeff

Dice
Coeff

Dice
Coeff

Dice
Coeff

Dice
Coeff

Dice
Coeff

Dice
Coeff

Dice
Coeff

f1-
score

Dropout
Rate

0.2 0.3 0.1 0.2 0.3 0.2 0.1 0.2 0.3 0.1 0.2

Number
sampled
subnet-
works

100 250 150 150 150 100 150 150 150 150 250

Metrics During training each architecture, we record the following metric covering
both model effectiveness and efficiency: train/validation/test loss value and evalua-
tion metric at each epoch, the model latency, energy consumption, and the number
of parameters. The targeted hardware with their respective specifications for the
experiments is provided in table 6.3. For each task, the evaluation metrics are listed
in figure 6.3. In all segmentation tasks (i.e., all tasks except chest x-ray disease
detection), we use the dice and Jaccard scores.

6.2. MED-NAS-BENCH 125

Table 6.3: MED-NAS-Bench Hardware specifications.

Hardware Processor RAM Storage Operating Sys-
tem

Raspberry Pi 3 quad-core ARM Cortex-
A53 CPU

1GB 32G Raspbian

Laptop AMD Ryzen 7 6800H 16GB 1T Microsoft Win-
dows 11

Dice Score

The Dice coefficient, also known as the Dice similarity coefficient or Dice index,
measures the agreement between the predicted segmentation and the ground
truth segmentation. It is computed as twice the intersection of the predicted
and ground truth regions divided by the sum of their individual volumes. The
Dice coefficient ranges from 0 to 1, where a value of 1 indicates a perfect
overlap between the segmentations.

Jaccard Score

The Jaccard score, also referred to as the Jaccard index or Intersection over
Union (IoU), is another measure of overlap between two sets. It is calculated as
the intersection of the predicted and ground truth regions divided by the union
of the two regions. Like the Dice coefficient, the Jaccard score ranges from 0
to 1, with a value of 1 indicating a perfect match between the segmentations.

Training hardware This project was granted access to the computing resources of
the Institut du développement et des ressources en informatique scientifique (IDRIS)
of the Centre national de la recherche scientifique (CNRS) 2 in France, which meant
that model training was carried out on the Jean Zay computer cluster of IDRIS. Addi-
tionally, more training was done on DataCrunch 3. The training of all supernetworks
was achieved on NVIDIA A100 GPUs.

6.2.4 Performance Distribution

In this section, we carry out empirical analyses to gain insights for our proposed
benchmark. All the following analyses are based on the average performances of
three random seeds.

Overall Performance

Figure 6.4 presents a visualization of the performance distribution of 100k sampled
architectures in each dataset. The performance metric depends on the task and is
reflected in table 6.2. In general, a considerable number of architectures achieve
satisfactory results across different datasets, but those with exceptionally strong per-
formance are scarce. This strengthens the need for an efficient architecture search
methodology for this benchmark. This result also indicates the possibility to gener-
alize across medical tasks as the macro-architecture remains the same. Notably, the
brain, pancreas, chest, and hepatic vessel tasks are considered more complex due to
the intricate nature of the anatomical structures involved. Consequently, achieving
optimal performance for these tasks poses a greater challenge. The boxplots for these

2http://www.idris.fr/
3https://cloud.datacrunch.io/

126 CHAPTER 6. HW-NAS FOR MEDICAL IMAGING ANALYSIS

datasets may show wider interquartile ranges and outliers, indicating the presence of
architectures with varying degrees of effectiveness.

In contrast, the hippocampus, heart, and spleen datasets are comparatively
smaller in size, which can result in architectures that generalize well to the test
data. Consequently, we observe narrower interquartile ranges and fewer outliers in
their respective boxplots, indicating a higher consistency and performance of the
architectures for these tasks.

Conversely, there is significant variation in the latency and energy consumption
among the architectures, as depicted in Figure 6.5. To further investigate this aspect,
we generated additional boxplots representing the latency and energy consumption
specifically on Raspberry Pi3 and laptop hardware platforms.

Interestingly, while the performance of the architectures exhibits a wide range, the
hardware efficiency, represented by latency and energy consumption, appears to be
more constrained. This observation suggests that achieving high hardware efficiency
can be a more challenging task when compared to achieving varied performance levels.

Upon analyzing the boxplots for different datasets, we observe that the heart,
hippocampus, and brain tasks tend to have lower hardware efficiency with higher
latency and energy consumption on both Raspberry Pi3 and laptop hardware. This
can be attributed to several factors, including the larger image sizes and the use of
MRI modality in these tasks, which often require more computational resources and
result in increased hardware demands.

0.3 0.4 0.5 0.6 0.7 0.8 0.9
Performance Metric

brain

hippocampus

lung

liver

prostate

heart

pancreas

colon

vessels

spleen

chest

Figure 6.4: MED-NAS-Bench performance across datasets

Besides, Table 6.4 provides insights into the number of architectures that are
deemed non-deployable across various hardware platforms. To determine this count
on the laptop, we simulate a realistic scenario by considering the presence of pre-
loaded tools such as 3D Slicer 4 and OHIF 5 in the memory. The large input sizes
the brain, hippocampus, and heart datasets, induce a large number of non-deplyable
architectures in both hardware platfroms. Besides, due to the small memory size of
the Raspberry Pi3, a large number of the architectures is not deployable.

Ranking Evaluation

In this section, we conduct a comparison between our weight-sharing strategy, used
to compute the performance of all sub-networks in the benchmark and an alternative
approach of building a surrogate model. The objective is to assess the effectiveness of
our weight-sharing strategy in preserving the ranking of architectures, as compared
to independently trained architectures.

To evaluate the ranking correlation, we employ Kendall’s tau correlation coeffi-
cient. This metric enables us to measure the extent to which the ranking of archi-

43D Slicer image computing platform: https://www.slicer.org/
5OHIF tool: https://ohif.org/

https://www.slicer.org/
https://ohif.org/

6.2. MED-NAS-BENCH 127

0 50 100 150
Latency (ms)

brain
hippocampus

lung
liver

prostate
heart

pancreas
colon

hepatic vessels
spleen
chest

10 20 30 40 50 60
Energy consumption (mJ)

brain
hippocampus

lung
liver

prostate
heart

pancreas
colon

hepatic vessels
spleen
chest

(a) Analysis on Raspberry Pi3

20 40 60
Latency (ms)

brain
hippocampus

lung
liver

prostate
heart

pancreas
colon

hepatic vessels
spleen
chest

60 80 100 120 140
Energy consumption (mJ)

brain
hippocampus

lung
liver

prostate
heart

pancreas
colon

hepatic vessels
spleen
chest

(b) Analysis on Laptop

Figure 6.5: MED-NAS-Bench hardware efficiency across datasets on Raspberry Pi3
and Laptop.

Table 6.4: Number of Non Deployable architectures in edge platforms

datasets
Number of Non deployable
architectures
Raspberry Pi 3 Laptop

brain 11204 2154
hippocampus 11204 2154
lung 5438 0
liver 5438 0
prostate 5438 0
heart 10342 1853
pancreas 5438 0
colon 5438 0
Hepatic Vessels 5438 0
Spleen 0 0
Chest 0 0

128 CHAPTER 6. HW-NAS FOR MEDICAL IMAGING ANALYSIS

brain hippo-
campus

lung liver prostate heart pancreas colon hepatic
vessels

spleen chest

datasets

0.0

0.2

0.4

0.6

0.8

1.0

Ke
nd

al
l's

 t
au

 C
or

re
la

ti
on

Weight-sharing
Surrogate Model

Figure 6.6: Ranking correlation experiments across datasets.

tectures obtained from our weight-sharing strategy aligns with the rankings of in-
dependently trained architectures. To obtain a robust evaluation, we independently
trained 10,000 architectures for each dataset in the benchmark.

For the surrogate model approach, we employ the Gates architecture [16] as our
surrogate model. The Gates architecture, based on Graph Convolutional Neural
Networks (GCN), is a state-of-the-art surrogate model for single objective estimation.
We trained the surrogate model using 3,000 architectures from the benchmark.

Upon analyzing the results, see Figure 6.6, we observed that our weight-sharing
strategy consistently outperformed the surrogate model across all datasets. The rank-
ings obtained from our weight-sharing strategy showed stronger preservation com-
pared to the surrogate model. This outcome underscores the effectiveness and su-
periority of our weight-sharing strategy in capturing the architectural performance
variations and preserving the ranking of architectures in the NAS benchmark.

6.2.5 Architecture Distribution

As described in Section 6.2.2, our benchmark design includes a macro architecture
and a list of potential blocks for each layer. In order to gain insights into how
different choices of operations contribute to the effectiveness of the models, we select
the top 1000 architectures from each dataset and examine the frequency of block
choices. These architectures are selected from a pool of 10,000 independently trained
architectures to ensure meaningful insights.

The results are depicted in Figure 6.7. From the analysis, we observe the following
trends.

First, in datasets where 3D convolution was listed as one of the available options,
there is a low occurrence of these blocks in the top-performing architectures. For
instance, in brain tumor segmentation, blocks (J), (K), (L), and (M) do not appear
at all. This suggests that utilizing 2D convolutions on individual slices of the input
volume is a more efficient approach for the given segmentation task. However, this
may induce additional execution time and energy consumption for loading the slices
and processing them sequentially, which is done in edge devices with low memory.

Second, similar to NAS for image classification tasks, the Identity block plays
a significant role in enhancing the model’s performance. This indicates that the
presence of direct connections, such as skip connections, can contribute to improved
feature representation and information flow within the network, leading to better
segmentation results.

6.2.6 Cross-datasets Correlations

Figure 6.8 presents a heatmap illustrating the ranking correlation between different
datasets within the search space. The ranking correlation measures how consistently

6.2. MED-NAS-BENCH 129

zero

identity A B C D E F G H I J K L M

brain
hippocampus

lung
liver

prostate
heart

pancreas
colon

hepatic vessels
spleen
chest

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Fre
q
u
e
n
cy

Figure 6.7: Blocks operation frequency in top 1000 architectures for each dataset.

the performance rankings of architectures across different datasets align with each
other.

The observed pattern in the heatmap indicates that architectures tend to have
similar rankings across datasets with the same modality. This means that architec-
tures that perform well on MRI datasets are also likely to perform well on other MRI
datasets, and likewise for CT datasets.

This finding highlights the importance of considering modality-specific character-
istics when designing and optimizing architectures for medical image segmentation.
It suggests that certain architectural configurations may be better suited for handling
the unique imaging properties and challenges associated with a specific modality, such
as MRI or CT.

6.2.7 State-of-the-art Search Methodologies

We present the outcomes of employing state-of-the-art search methodologies on our
benchmark, which provide valuable baselines for the performance and effectiveness
of the top-found architectures. We perform two experiments: (1) single-objective
optimization, in which we consider only the task-specific performance, and (2) multi-
objective optimization, where we simultaneously optimize task-specific performance,
latency, and energy consumption.

Task-specific performance optimization

Recently, several works propose NAS methodologies for medical image segmentation.
Specifically, MixSearch [304], C2FNAS [305], and BiX-NAS [306] stood out as state-
of-the-art search methodologies.

MixSearch [304] is a method for searching for domain-generalized medical image
segmentation architectures. It involves searching for generalizable U-shape architec-
tures on a composited dataset that mixes medical images from different domains.

130 CHAPTER 6. HW-NAS FOR MEDICAL IMAGING ANALYSIS

brain

hippocampus lung liver
prostate

heart
pancreas

colon

hepatic vessels
spleen

chest

brain

hippocampus

lung

liver

prostate

heart

pancreas

colon

hepatic vessels

spleen

chest

1.0 0.8 0.6 0.4 0.8 0.7 0.5 0.4 0.6 0.6 0.4

0.8 1.0 0.6 0.5 0.7 0.7 0.3 0.6 0.6 0.5 0.4

0.6 0.6 1.0 0.9 0.5 0.9 0.9 0.4 0.8 0.8 0.7

0.4 0.5 0.9 1.0 0.6 0.8 0.9 0.5 0.7 0.8 0.8

0.8 0.7 0.5 0.6 1.0 0.5 0.9 0.4 0.7 0.7 0.6

0.7 0.7 0.9 0.8 0.5 1.0 0.7 0.8 0.6 0.6 0.8

0.5 0.3 0.9 0.9 0.9 0.7 1.0 0.5 0.8 0.5 0.9

0.4 0.6 0.4 0.5 0.4 0.8 0.5 1.0 0.8 0.6 0.6

0.6 0.6 0.8 0.7 0.7 0.6 0.8 0.8 1.0 0.5 0.4

0.6 0.5 0.8 0.8 0.7 0.6 0.5 0.6 0.5 1.0 0.5

0.4 0.4 0.7 0.8 0.6 0.8 0.9 0.6 0.4 0.5 1.0
0.4

0.5

0.6

0.7

0.8

0.9

1.0
Kendall's tau Correlation

Figure 6.8: Cross-datasets ranking correlation

Their search space resembles the benchmark definition but contains fewer operations.
C2FNAS [305] is a coarse-to-fine NAS method for 3D medical image segmenta-

tion. The method involves searching for a coarse architecture first, followed by a fine
architecture that refines the coarse architecture.

Similarly, BiX-NAS [306] involves a two-stage NAS methodology to reduce the
network computational cost by sifting out ineffective multi-scale features at different
levels and iterations.

Table 6.5 shows the results of state-of-the-art networks and search methodologies,
described above on our benchmark. The metrics are defined in section 6.2.3. From
the results obtained, several key observations can be made regarding single-objective
optimization using state-of-the-art methods:

• The design of our benchmark, based on the U-Net macro-architecture commonly
used in state-of-the-art search spaces, enables easy adaptation of various search
methodologies to our benchmark, allowing for exploration of a larger number
of architectures.

• Classical search algorithms, such as random search (RS) and evolutionary algo-
rithms (EA), were found to be inefficient on our benchmark due to the extensive
number of architectures. In our experiments, RS was executed with 1000 iter-
ations per dataset, while EA utilized 1000 iterations, a population size of 100,
and a mutation probability of 0.8. No crossover was applied, and the mutation
operation involved switching one layer’s block to another.

• The search process on our benchmark yielded improved architectures compared
to the original architectures found and presented in previous papers. For in-
stance, the C2FNAS architecture achieved superior performance on all tasks
within our benchmark when compared to the original results reported in their
respective paper. Other search methods, such as MixSearch and BiX-NAS do
not provide architectures for these specific tasks considered in our benchmark.

6.2. MED-NAS-BENCH 131

Table 6.5: Results of state-of-the-art search methodologies on MED-NAS-Bench.
Dice and Jc stand for the dice and Jaccard scores respectively. EA and RS stand
for evolutionary algorithm and random search, both are classical search algorithms.
C2FNAS O is the original architecture proposed by C2FNAS.

Method
Brain Hippocampus Lung Liver Prostate

Dice
(%)

Jc (%) Dice
(%)

Jc (%) Dice
(%)

Jc (%) Dice
(%)

Jc (%) Dice
(%)

Jc (%)

U-Net [301] 57.54 51.32 80.4 74.15 54.7 47.77 75.87 69.43 77.5 72.05
U-Net++ [302] 58.98 53.67 82.63 75.65 61.3 55.4 78.38 72.4 78.97 71.17
Att. U-Net [303] 62.4 57.4 83.24 76.14 65.7 59.54 74.6 70.28 77.78 70.74
nnU-Net [308] 61.20 54.68 89.66 85.23 69.2 62.36 84.48 78.89 82.7 78.4
C2FNAS O [305] 61.98 55.76 88.67 82.24 70.44 63.73 83.94 79.3 81.82 74.9

EA 61.56 53.54 85.6 80.21 70.8 64.38 80.9 74.53 74.56 69.87
RS 53.5 47.4 62.45 54.85 56.7 51.21 67.88 61.1 68.4 61.94

MixSearch [304] 65.78 59.65 88.67 83.31 81.3 76.08 87.43 82.23 86.79 79.79
C2FNAS [305] 64.88 54.6 90.54 83.19 79.4 73.12 86.44 80.32 83.56 79.01
BiX-NAS [306] 63.87 56.4 89.68 84.07 75.6 68.47 87.12 82.11 81.5 75.61

Method
Heart Pancreas Colon Hepatic Vessels Spleen Chest

Dice
(%)

Jc (%) Dice
(%)

Jc (%) Dice
(%)

Jc (%) Dice
(%)

Jc (%) Dice
(%)

Jc (%) F1-score

U-Net 85.6 79.92 64.56 59.93 54.32 49.53 38.5 30.98 89.54 84.11 95.32
U-Net++ 84.32 77.89 63.87 57.03 59.82 53.64 48.93 44.49 88.95 84.6 95.38
Att. U-Net 85.78 78.95 64.76 58.41 45.7 37.91 56.73 49.69 90.56 83.66 95.78
nnU-Net 92.77 88.39 65.9 58.47 56 51.55 66.08 59.54 96 91.34 96.8
C2FNAS O 92.49 88.1 67.59 60.68 58.9 53.7 67.65 63.54 96.28 89.49 96.34

EA 85.76 79.84 65.3 59.64 50.8 43.23 55.78 51.07 89.76 84.29 95.78
RS 75.3 69.19 54.21 46.27 46.7 41.22 39.76 35.41 80.56 73.83 89.56

MixSearch 89.53 84.73 68.43 63.2 57.8 52.1 71.65 65.12 96.75 92.27 97.54
C2FNAS 94.56 89.24 67.82 60.18 60.67 53.85 65.42 57.46 97.34 93.16 98.68
BiX-NAS 94.32 86.98 69.84 63.66 57.59 50.23 66.78 61.47 96.76 90.07 96.83

• It is worth noting that no single search methodology consistently outperformed
the others across all tasks within our benchmark. The performance of different
search methodologies varied depending on the specific dataset and task at hand.

Multi-objective Optimization

The current medical NAS methodologies primarily focus on single-objective optimiza-
tion, neglecting the consideration of multiple objectives during the search process.
This limitation prompted us to explore and establish baselines for multi-objective
optimization using classical optimization algorithms. In this section, we employ three
well-known algorithms: NSGA-II [309], EEEA [310], and BANANAS [170]. These
algorithms are described in detail in section 2.6.1.

To evaluate the performance of these algorithms, we present the obtained Pareto
fronts in Figure 6.9 and Figure 6.10. The Pareto front represents a set of architectures
that achieve a trade-off between different objectives. Each point on the Pareto front
represents an architecture that is non-dominated by any other architecture, indicating
the best achievable performance for the given objectives. The Pareto fronts provide
valuable insights into the trade-offs between task-specific performance, latency, and
energy consumption in the MED-NAS-Bench.

The obtained Pareto fronts demonstrate the effectiveness of the employed multi-
objective optimization algorithms on the MED-NAS-Bench for various datasets.
While the exact Pareto front is difficult to compute due to the large size of the
benchmark, we observe that the methods consistently achieve near Pareto front opti-
mality. This indicates that the algorithms successfully explore the trade-offs between
task-specific performance, latency, and energy consumption, providing a diverse set of
architectures with different trade-off profiles for each dataset. These results highlight
the efficacy of searching for efficient medical analysis architectures.

Table 6.6 presents the hypervolume values obtained from the multi-objective op-

132 CHAPTER 6. HW-NAS FOR MEDICAL IMAGING ANALYSIS

Figure 6.9: Pareto front results of SOTA multi-objective optimizations on Raspberry
Pi3.

Figure 6.10: Pareto front results of SOTA multi-objective optimizations on Laptop.

6.3. MT-MIAS 133

timization of task-specific performance, latency, and energy consumption simultane-
ously. The hypervolume is a measure that quantifies the extent to which the obtained
Pareto front dominates the reference point, which is defined as the maximum values of
latency and energy consumption, and the minimum values of the dice score or f1-score.
The maximum and minimum values are computed using the sampled architectures.
We gain insights into the overall quality and coverage of the Pareto front achieved
by the optimization algorithms. A higher hypervolume value indicates a larger re-
gion of the objective space covered by the Pareto front, indicating better trade-off
solutions between the conflicting objectives. Among the tested methods, BANANAS
consistently demonstrated competitive results across the evaluated datasets. In par-
ticular, BANANAS outperformed the other methods, especially when considering the
Raspberry Pi3 hardware platform.

Table 6.6: Hypervolume values of multi-objective optimization considering perfor-
mance, latency, and energy consumption.

Method
Raspberry Pi3 Laptop

NSGA-II EEEA BANANAS NSGA-II EEEA BANANAS

Brain 628.719 601.26 716.22 2086.93 2031.8 2133.58
Hippocampus 643.16 499.2 762.53 2674.93 2304.21 2512.42
Lung 719.43 764.56 869.48 5011.25 4875.3 4971.15
Liver 526.8 437.46 640.46 4639.42 4346.75 3958.43
Prostate 808.72 869.85 908.37 4649.85 4692.54 4752.32
Heart 706.79 688.89 766.02 3068.7 3575.2 3463.25
Pancreas 885.23 849.54 1001.78 3710.92 3156.6 3185.71
Colon 866.44 815.41 883.45 2278.75 2563.67 2716.87
Hepatic Vessels 761.44 789.46 817.18 2786.02 3567.43 3695.33
Spleen 633.04 612.39 802.5 2103.35 2034.67 1942.85
Chest 479.85 441.02 651.13 1863.17 2314.66 2648.43

6.3 MT-MIAS

In this section, we introduce a novel approach for multi-task medical NAS. Unlike tra-
ditional approaches that focus on single-task optimization, our methodology aims to
simultaneously optimize multiple medical tasks within a unified framework, consider-
ing hardware efficiency at the same time. By leveraging the inherent relationships and
the shared information among different tasks, our approach offers improved efficiency
and effectiveness in the architecture search for medical applications. We describe
the key components and strategies employed in our multi-task NAS methodology
and present experimental results showcasing its performance on DARTS [166] and
MED-NAS-Bench.

6.3.1 Search Methodology

In the context of weight-sharing NAS, two categories of methods have emerged:
gradient-based optimization and evolutionary-based approaches. In gradient-based
optimization, the training of the supernetwork and the search for an optimal ar-
chitecture are performed simultaneously. However, it is not without its limitations.
Firstly, this approach often incurs a high computational cost due to the simultane-
ous optimization of weights and architecture parameters. The iterative nature of
the optimization process can be time-consuming, especially for complex datasets and
large-scale architectures. In addition, these methods suffer from gradient instabil-
ity which has been discussed in section 3.3. On the other hand, evolutionary-based
approaches utilize evolutionary algorithms to iteratively explore and optimize the
supernetwork by leveraging shared weights to estimate performance.

134 CHAPTER 6. HW-NAS FOR MEDICAL IMAGING ANALYSIS

Step 1: Supernetwork Training

 b1 b2 b3 b4

Train each supernetwork for
independent task

 b1 b2 b3 b4

 b1 b2 b3 b4

 b1 b2 b3 b4

 b1 b2 b3 b4

Step 2: Block pruning
Automatically prune the blocks ending with

a single sub-network

highest BIS

Compute BIS

Target HW

Figure 6.11: Overview of MT-MIAS steps.

Our methodology simplifies this latter approach, specifically focusing on optimiz-
ing the second stage, which is the search methodology. By doing so, we streamline
the search process and eliminate the need for modifications to the search algorithm
methodology when utilizing any supernetwork search space. This makes our method-
ology adaptable and applicable to various deep-learning tasks. In this section, we
validate our methodology using DARTS [166] for image classification and MED-NAS-
Bench for medical image segmentation. However, the same methodology can be easily
extended to other tasks by incorporating suitable task-specific datasets and evalua-
tion metrics.

Overview

Figure 6.11 provides an illustration of the overall search mechanism employed by
MT-MIAS. Rather than relying on traditional optimization strategies, our approach
draws inspiration from pruning methodologies found in the literature. Specifically, we
leverage the concept of neuron importance introduced in NISP [311]. This approach
assigns an importance score to each neuron in a layer and prunes those that do not
significantly impact accuracy.

In MT-MIAS, we extend this idea by introducing the concept of block importance
score (BIS). For each block within a layer in a supernetwork, a BIS is computed. The
BIS serves as a measure to evaluate the importance of a block in achieving the final
performance. By iterating through the supernetwork in a backward manner, we can
identify and retain only the most crucial block for each layer based on their respective
BIS.

To incorporate hardware efficiency into the search process, we consider the la-
tency of the blocks, ensuring that the selected sub-network remains efficient in terms
of computational requirements. Additionally, we introduce a generalization factor
that allows us to select a common block when iterating over multiple supernetworks,
promoting a more generalized architecture suitable for multi-task learning.

By combining the block importance scores, hardware efficiency considerations,
and generalization factor, we can identify the most efficient and effective sub-network
within the supernetwork.

Objective function

Our goal in the MT-MIAS methodology is to determine which block in layer l of the
supernetwork is the most influencing the performance of the network. This determi-
nation is made after the supernetwork has been fully trained.

6.3. MT-MIAS 135

We define the block importance score as a non-negative value w.r.t. a block and
use sl to represent the vector of block importance scores in the l-th layer. We define
the final layer indicator of the l-th layer as a binary vector s∗l , computed based on
block importance scores sl such that s∗l,b = 1 if and only if sl,b is the top value in sl.
b represents the block index. To increase efficiency, we select from each layer a block,
following the objective function below:

s∗l,b =

{
1, argmaxsl sl,b ∗Avg(α(ab∈a))/LAT (b).

0, else.
(6.1)

Here, sl,b is the importance score of block b in layer l, α is a function that computed
the validation performance of an architecture, ab∈a is the set of sub-networks that
contains block b in their paths, LAT computes the latency of a block. In this function,
we set the index of the block b to 1, if the block maximizes the importance score and
minimizes its latency. The solution to Equation 6.1 indicates which block should be
selected in an arbitrary layer.

The problem of defining s∗l can be formulated as a binary integer program, finding
the optimal block to select in Equation 6.1. However, it is hard to obtain efficient
analytical solutions by directly optimizing Equation 6.1. NISP [311] derived an upper
bound on this objective, and show that a sub-optimal solution can be obtained by
minimizing the upper bound on a simple fully connected network to achieve pruning.
Interestingly, their formulation is still valid in the case of supernetwork block pruning
as we intend to achieve. The theoretical validity of NISP’s methodology in the case
of supernetwork block pruning lies in the consistent underlying principles and the
extension of importance scoring to blocks. Considering that a block is a sequence of
layers, we can adapt NISP’s methodology by focusing on the last convolutional layer
of each block. By doing so, we effectively consider the impact of the entire block on
the overall network performance.

To enhance generalization across tasks, we define st,l,b as the importance score of
the b in layer l of the supernetwork trained for task t. We then add to Equation 6.1,
a regularization term that includes the generalization ability of block b, denoted as
gT,l,b, where T is the set of tasks we are targeting. Equation 6.2 formulates the
generation score.

gT,l,b =
∑
t∈T

st,l,b (6.2)

This term sums the block importance score over multiple subnetworks. We can
then identify the most generalizable block by maximizing this term. In our optimiza-
tion function, we directly include this objective in the maximization of Equation 6.1.

Block Importance Score (BIS)

To quantify the importance of each block within layer l, we introduce the block
importance score (BIS), denoted as sl,b. The BIS is calculated as Equation 6.3:

sl,b = |W (l+1)|T sl+1,b (6.3)

Here, W (l+1) represents the weights of the last convolutional layer in block b of
layer l + 1. The transpose operation, denoted by T , is applied to the vectorized
weights to align the dimensions for computation. The vector sl+1 represents the
importance scores of blocks in layer l + 1 obtained during the previous stage of the
search mechanism.

The BIS computation involves the magnitude of the weights W (l+1) and the im-
portance scores sl+1 from the subsequent layer. This approach takes into account
the influence of each block’s weight in the subsequent layer and the importance of

136 CHAPTER 6. HW-NAS FOR MEDICAL IMAGING ANALYSIS

the blocks themselves. It captures the contribution of a block in layer l towards the
overall performance of the supernetwork.

We compute sn, i.e., the final layer’s blocks importance score, considering the
importance of each weight based on their contribution to the overall loss. Mathe-
matically, the computation of the initial block importance score can be expressed as
follows:

sn,b = |W (n,b)| ·
∣∣∣∣∣∣∣∣ ∂L

∂W (n,b)

∣∣∣∣∣∣∣∣
F

(6.4)

Here, L represents the loss function, and wi denotes each weight in the last blocks
of the supernetwork. The partial derivative ∂L

∂wi
represents the gradient of the loss

with respect to the individual weights. F denotes the L2 norm.

Backward Selection Algorithm

We describe the Backward Selection Algorithm used in MT-MIAS to select the most
influential blocks within the supernetwork. The algorithm iteratively evaluates the
block importance scores (sl,b) and selects the most important block in each layer,
facilitating the construction of a generalized architecture.

Algorithm 7 Backward Selection Algorithm

Input: Supernetworks for multiple tasks with trained weights
for l in reverse order of layers do

Initialize empty set sl
for each task supernetwork do

Compute block importance scores sl,b using Equation 6.3
Add sl,b to sl

end for
Compute latencies of all blocks
Compute validation performance α
Optimize objective function using Equation 6.1
Select block across all tasks as the most important block in layer l

end for
Return Selected blocks for each layer

The Backward Selection Algorithm now considers multiple supernetworks, each
corresponding to a different task. It starts by initializing the block importance scores
(sl,b) for all blocks in each layer l. These scores serve as an initial estimation of the
importance of each block.

Next, the algorithm iterates through the layers in reverse order. For each layer,
it initializes an empty set S to store the block importance scores computed across all
task supernetworks. It then iterates over each task supernetwork and computes the
block importance scores using Equation 6.3. The resulting scores are added to set S.

During each iteration, the algorithm identifies and selects the block with the
highest block importance score (sl,b) across all tasks as the most influential block
in that layer. By considering the scores from multiple supernetworks, the algorithm
captures the importance and relevance of each block across different tasks.

Finally, the algorithm returns the selected blocks for each layer, providing a pruned
architecture that retains the most important and influential blocks within the super-
network, considering the requirements of multiple tasks.

To optimize the computation of validation accuracy used in the objective func-
tion of each layer for multiple sub-networks while avoiding duplicates, we employ
an efficient strategy that significantly reduces computational redundancy. Instead
of individually evaluating the accuracy of each sub-network, we leverage a caching

6.3. MT-MIAS 137

mechanism to store and reuse intermediate results. At the beginning of the opti-
mization process, we initialize an empty cache. As we traverse through different
sub-networks, we check if a particular configuration has been encountered before by
querying the cache. If the configuration exists in the cache, we retrieve the pre-
computed accuracy without the need for redundant computations. This approach
eliminates the repetitive evaluation of identical or similar sub-networks, leading to
substantial computational savings.

6.3.2 Experiments Methodology

To evaluate the performance and effectiveness of MT-MIAS, we conducted experi-
ments using multiple scenarios: MIAS, MT-MIAS, and MT-MIAS-C. Each scenario
explores different aspects of the methodology and aims to achieve specific objectives.

• MIAS Scenario: In this scenario, the objective does not include the gener-
alization term and the optimization is performed on each task’s supernetwork
independently. The purpose of this scenario is to compare the performance of
MT-MIAS with the traditional single-task architecture search approaches.

• MT-MIAS Scenario: This scenario includes the generalization term in the
objective function and aims to discover a generic architecture that can perform
well across multiple tasks. The objective is to find blocks that are influential
and contribute to improved performance across various tasks. The general-
ization term helps to guide the search toward a more versatile and adaptable
architecture.

• MT-MIAS-C Scenario: In this scenario, we relax the objective definition to
allow the selection of multiple blocks per layer. The goal is to construct a super-
network that is completely deployable, ensuring a balance between performance
and model complexity. To achieve this, we introduce a constraint that checks,
at each iteration, whether the number of parameters of the selected blocks in
each layer exceeds a certain threshold. This threshold is defined based on the
number of parameters of the U-Net layers.

For the tasks, we selected the DARTS [166] and MED-NAS-Bench benchmarks.
Both benchmark defines a supernetwork model. In the DARTS benchmark, we aimed
to find a general architecture that performs well for ImageNet and CIFAR-10 clas-
sification tasks. Once the general architecture is discovered, we aim to further gen-
eralize it for CIFAR-100 classification. This allows us to evaluate the transferability
and scalability of the architectures discovered by MT-MIAS. In the MED-NAS-Bench
benchmark, following the approach of MSD [18], we retained the same unseen tasks
proposed by MSD, along with the pneumonia detection task. To enable the search
for a general architecture, we pruned the non-common paths in the network. This
ensures that the search focuses on identifying blocks that are relevant across multiple
medical imaging tasks.

Training Hyperparameters The hyperparameters used to train the supernetwork
in MED-NAS-Bench are listed in Section 6.2.3. For DARTS, Table 6.7 summarizes the
training hyperparameters. For ImageNet, DARTS supernetwork was already trained.

Hardware Setup We conduct the experiments on Raspberry Pi3. The same one
was used to construct MED-NAS-Bench. The search, however, is achieved on a much
more compute-intensive setup. Our search was conducted using an NVIDIA GPU
3070, a high-performance graphics processing unit known for its advanced parallel
computing capabilities. The GPU was connected to a powerful workstation equipped
with an Intel Core i9 processor and 32 gigabytes of RAM, ensuring sufficient compu-
tational resources for the search process.

138 CHAPTER 6. HW-NAS FOR MEDICAL IMAGING ANALYSIS

Table 6.7: Hyperparameters for Training DARTS on CIFAR-10 and CIFAR-100

Hyperparameter CIFAR-10 CIFAR-100

Learning Rate 0.1 0.05
Batch Size 128 64
Number of Training Epochs 200 200
Weight Decay 3e-4 3e-4
Optimizer SGD SGD
Momentum 0.9 0.9
Learning Rate Schedule Step-wise decay Cosine Annealing
Learning Rate Decay 0.1 at epochs 100 -

6.3.3 Search Results

The search results provide an evaluation of the MT-MIAS methodology on different
datasets and tasks. In this section, we present the search results for DARTS, MED-
NAS-Bench, and the generalization performance to unseen datasets.

DARTS Search Results

Table 6.8 presents a comprehensive summary of the search results obtained for Ima-
geNet and CIFAR-10 using various methodologies. Our approach, MT-MIAS, demon-
strates superior performance compared to current state-of-the-art methodologies in
the DARTS search space. Notably, employing the MIAS methodology, which gener-
ates independent architectures for each dataset, we were able to identify architectures
that strike a favorable balance between accuracy and latency. However, these archi-
tectures did not surpass the latency performance achieved by our PRP-NAS method-
ology. Interestingly, we found that the architecture discovered by MIAS aligns with
the Pareto front identified by PRP-NAS, where PRP-NAS utilizes a Pareto score to
optimize the search for optimal trade-offs. To delve into further details on PRP-NAS,
we encourage readers to explore Section 3.3.

In comparison, MT-MIAS provides a shared architecture for both CIFAR-10 and
ImageNet, with a minimal accuracy drop of 2.56% and 0.1% for ImageNet and CIFAR-
10, respectively. Nonetheless, MT-MIAS successfully identifies state-of-the-art archi-
tectures, outperforming existing approaches. Notably, the most performing architec-
ture is discovered by MT-MIAS-C, where we relax the problem definition to allow the
selection of a block per task per layer under the constraint of the number of parame-
ters. This relaxation enables us to construct a deployable supernetwork on Raspberry
Pi3. The resulting supernetwork consists of two paths, one for CIFAR-10 and another
for ImageNet, which can be intertwined by utilizing a single block for both datasets.
This variant exhibits superior accuracy compared to existing methodologies and other
variants.

Table 6.8: Comparison results of MT-MIAS against state-of-the-art methodologies in
DARTS. Lat corresponds to the Raspberry PI3 Latency.

ImageNet CIFAR-10
Methods

Acc (%) Lat (ms) GPU days Acc (%) Lat (ms) GPU days
Hardware

aware

DARTS [166] 73.3 ± 0.03 78.34 4 68.3 ± 0.08 45.36 4 No
ProxylessNAS (GPU) [235] 75.1 ± 0.00 74.64 8.3 92.89 ± 0.16 35.8 0.16 Yes
PC-DARTS [312] 75.5 ± 0.1 83.55 10 90.89 ± 0.08 41.8 0.21 No
P-DARTS [313] 72.22 ± 0.16 83.4 4 92.51 ± 0.9 34.15 10 No
PRP-NAS 77.5 ± 0.02 75.3 3.8 93.68 ± 0.05 40.7 2 Yes
MIAS 81.43 ± 0.01 75.75 2 93.97 ± 0.06 42.53 0.87 Yes
MT-MIAS 78.87 ± 0.07 82.35 2 93.87 ± 0.04 35.27 0.87 Yes
MT-MIAS-C 82.4 ± 0.08 84.32 2 94.43 ± 0.12 40.83 0.93 Yes

6.3. MT-MIAS 139

brain hippocampus lung liver prostate heart pancreas
60

70

80

90

100

D
ic

e
 S

co
re

 (
%

)

brain hippocampus lung liver prostate heart pancreas
datasets

0

50

100

150

R
P

I3
 L

a
te

n
cy

 (
m

s)

MIAS
MT-MIAS

MT-MIAS-CMixSearch
C2FNAS bixnas

brain hippocampus lung liver prostate heart pancreas
50

60

70

80

90

100

D
ic

e
 S

co
re

 (
%

)

brain hippocampus lung liver prostate heart pancreas
datasets

0

10

20

30

40

50

60

L
a
p

to
p

 L
a
te

n
cy

 (
m

s)

MIAS
MT-MIAS

MT-MIAS-CMixSearch
C2FNAS bixnas

Figure 6.12: Comparative results of MT-MIAS on MED-NAS-Bench, both on Rasp-
berry PI3 (RPI3) and laptop.

MED-NAS-Bench Results

Our experimental results on MED-NAS-Bench showcase the superiority of our
methodology compared to state-of-the-art search algorithms, particularly when tar-
geting segmentation tasks on Raspberry Pi3 and laptop hardware platforms. Similarly
to DARTS results, we can conclude that our MIAS variant shows a nice trade-off be-
tween dice score and latency on both hardware platforms. Moreover, our MT-MIAS
methodology yields a single architecture that surpasses existing works in terms of
segmentation performance and holds potential for deployment on edge devices.

Additionally, our MT-MIAS-C variant presents a remarkable breakthrough by
delivering a state-of-the-art supernetwork designed to tackle a wide range of segmen-
tation tasks. The performance of this variant surpasses all other variants in terms
of the dice score, demonstrating its ability to achieve highly accurate segmentation
results across diverse medical imaging datasets.

140 CHAPTER 6. HW-NAS FOR MEDICAL IMAGING ANALYSIS

Table 6.9: Results on unseen datasets of MED-NAS-Bench. (T) means that the
architecture was fine-tuned for the target task.

Method
Colon Hepatic Vessels Spleen Chest Hardware

awareDice (%) Dice (%) Dice (%) F1-score
U-Net [301] 54.32 38.5 89.54 95.32 -
U-Net++ [302] 59.82 48.93 88.95 95.38 -
Att. U-Net [303] 45.7 56.73 90.56 95.78 -
nnU-Net [308] 56 66.08 96 96.8 -
C2FNAS [305] 58.9 67.65 96.28 96.34 No
EA 50.8 55.78 89.76 95.78 No
RS 46.7 39.76 80.56 89.56 No
MixSearch [304] 57.8 71.65 96.75 97.54 No
C2FNAS [305] 60.67 65.42 97.34 98.68 No
BiX-NAS [306] 57.59 66.78 96.76 96.83 No
MT-MIAS 55.46 60.98 88.56 87.45 Yes
MT-MIAS-C 56.35 60.45 93.61 86.77 Yes
MT-MIAS (T) 63.45 70.54 95.66 93.45 Yes
MT-MIAS-C (T) 64.5 68.7 97.65 98.65 Yes

Table 6.10: Results on CIFAR-100 (Unseen dataset for DARTS). (T) means that the
architecture was fine-tuned for the target task.

Methods
CIFAR-100

Acc (%)
DARTS 68.3
ProxylessNAS (GPU) 69.54
PC-DARTS 67.35
P-DARTS 70.46
PRP-NAS 87.65
MT-MIAS 68.43
MT-MIAS-C 68.95
MT-MIAS (T) 89.34
MT-MIAS-C (T) 86.87

Unseen datasets and Generalization

To thoroughly assess the generalization capabilities of our methodology, we conducted
comprehensive experiments on a set of previously unseen datasets, including CIFAR-
100, Colon, Hepatic Vessels, Spleen, and Chest X-Ray. The architectures discovered
by both the MT-MIAS and MT-MIAS-C variants were specifically trained and eval-
uated on these datasets to determine their performance in novel settings.

To present the outcomes of our evaluation, we provide the results for the CIFAR-
100 and MED-NAS-Bench unseen tasks in Table 6.10 and Table 6.9, respectively. We
examined two variants of the architectures. Firstly, we tested the found architectures
without any additional fine-tuning, apart from modifying the last layer to accom-
modate the specific number of classes in each dataset. Secondly, the architectures
denoted with (T) underwent fine-tuning on the respective tasks, leading to improved
accuracy.

Remarkably, our fine-tuned models surpassed existing search methodologies across
all unseen datasets. Even without fine-tuning, the architectures demonstrated com-
mendable performance, emphasizing their inherent ability to generalize well to novel
datasets and tasks.

6.4. CONCLUSION 141

6.4 Conclusion

In this chapter, we introduced MED-NAS-Bench, a NAS benchmark that serves as
a fundamental tool for evaluating and comparing different architecture search algo-
rithms. MED-NAS-Bench provides a comprehensive set of diverse medical imaging
tasks, allowing researchers to test the performance and generalization capabilities of
their methodologies in the medical domain. This benchmark is a significant contri-
bution to the field, as it fills the gap in evaluating NAS algorithms specifically for
medical applications.

Furthermore, we presented our novel methodology, MT-MIAS, which leverages
the power of MED-NAS-Bench for multi-task architecture search. By utilizing the
rich dataset of medical imaging tasks, MT-MIAS aims to discover architectures that
exhibit high performance, efficiency, and generalization across multiple medical imag-
ing tasks. We described the key components and techniques employed in MT-MIAS,
including the block importance score computation, backward selection algorithm, and
regularization for generalization.

Through extensive experiments and evaluations on MED-NAS-Bench, we demon-
strated the effectiveness and superiority of MT-MIAS compared to existing method-
ologies. Our approach achieved state-of-the-art results in terms of accuracy and la-
tency, showcasing its potential to advance the field of multi-task architecture search
in the medical domain.

The availability of MED-NAS-Bench and the success of MT-MIAS contribute to
the broader research community by providing a benchmark dataset and a powerful
methodology baseline for exploring and optimizing architectures in the medical imag-
ing domain. These contributions open up new possibilities for developing efficient and
effective models that can have a significant impact on medical diagnosis, treatment,
and patient care.

142 CHAPTER 6. HW-NAS FOR MEDICAL IMAGING ANALYSIS

Chapter 7

Conclusion and Future Work

Contents
7.1 Conclusion . 143

7.2 Future Work . 145

7.1 Conclusion

In this thesis, an innovative approach for designing and developing Hardware-aware
Neural Architecture Search (HW-NAS) for edge computing is presented. The objec-
tive was to optimize HW-NAS specifically tailored for edge devices, considering the
hardware constraints and limitations associated with such computing environments.
This thesis work gave answers to the following research questions:

1. What are the key components of hardware-aware neural architecture search,
and how can they be optimized to improve performance?

2. How can multi-objective and Pareto-aware surrogate models be developed to
enhance the evaluation components of HW-NAS?

3. How can search spaces be enhanced with quantization awareness and free from
humanly designed operators to improve the search process?

4. Furthermore, how can hardware-aware neural architecture search be applied to
novel hardware platforms, such as analog in-memory computing?

5. How can it be used to optimize benchmarks in medical imaging analysis?

6. What are the key considerations and methodologies for developing a comprehen-
sive benchmark specifically tailored for evaluating Neural Architecture Search
(NAS) methods in medical imaging, and how can such a benchmark be de-
signed to effectively capture the complexities and challenges presented by med-
ical imaging datasets?

7. How can a multi-task Neural Architecture Search (NAS) methodology be de-
veloped to effectively account for the diverse range of medical imaging types
and tasks?

In Chapter 2, an extensive survey is conducted to propose a novel taxonomy for
HW-NAS techniques, providing a comprehensive analysis of its different components,
comparing evaluation techniques, and highlighting its limitations and challenges.

Upon this review, we pinpointed the following areas of research that need improve-
ments: (1) the estimation methods that were used target only a single objective, and

143

144 CHAPTER 7. CONCLUSION AND FUTURE WORK

yet in the context of HW-NAS multiple objectives have to be considered, such as
accuracy, latency, and energy consumption. (2) the restrictive search space used by
existing methods was holding back HW-NAS from finding innovative architectures.
(3) Existing HW-NAS focus on theoretical DL tasks such as image classification. The
lack of a standardized benchmark is the main reason behind it. To enable HW-NAS
on real-world problems and different tasks, one needs to develop such benchmarks.

Chapter 3 addresses the first research question by proposing a novel multi-
objective surrogate model, called HW-PR-NAS. Through the proposed Pareto score
definition, our model was able to predict a ranking in terms of trade-offs between the
different targeted objectives. It has been determined that when used with a classi-
cal evolutionary algorithm, our model outperforms existing work, finding 98% near
Pareto front solutions on multiple cell-based search spaces.

As HW-PR-NAS has not been intially designed for Supernetwork search spaces,
it requires additional computational complexity. We then proposed a Pareto rank
preserving supernetwork training methodology, named PRP-NAS, to fill this gap.
PRP-NAS leverage the Pareto score definition directly during the training of the
supernetwork. PRP-NAS shows a 97% near Pareto front approximation in less than
2 GPU days of search, which provides 2x speed up compared to state-of-the-art
methods. We validate our methodology on NAS-Bench-201, DARTS, and ImageNet.

In Chapter 4, the second and third research questions regarding HW-NAS search
space were addressed. In edge device deployment, DL models undergo a series of
optimizations to shrink their model size. The main used optimization is quantization.
However, we need first to answer the following questions: which layer to quantize?
and to which degree it should be tuned?. To this end, combining the search for
a quantization scheme and architecture is extremely challenging. By doing so, the
search space size becomes impractical. We thus presented Compression-aware Neural
Architecture Search (CaW-NAS). CaW-NAS extends the search space during the
search with architectures that are worth quantizing, i.e., that does not induce a large
accuracy drop. CaW-NAS model improves state-of-the-art with 1.33 acceleration and
an accuracy of 75.22% on ImageNet.

NAS search spaces are still humanly biased, which can lead to use over-
parameterized components. To eliminate human design bias in the search space, we
presented Grassroots Operator Search (GOS). GOS leverages the use of mathematical
equations to replace common operations such as convolution, batch normalization,
and activation functions with more efficient ones, resulting in models that are opti-
mized for low-power edge devices. We demonstrated the effectiveness of our approach
through experiments on popular architectures, including ResNet18, InceptionV3, and
MobileNetV3, achieving significant improvements in inference time and energy con-
sumption compared to the original models. Additionally, GOS has been validated on
a real-world healthcare problem, namely pulse rate estimation, in which we present
a 2x speedup with a 0.12 Mean Average Error (MAE) drop.

Chapter 5 addresses research question 5, where we presented HW-NAS approach
targeting Analog In-Memory Computing (IMC). IMC is a novel computing paradigm
that has the potential to revolutionize edge computing by enabling highly efficient
and resilient computations directly within memory cells, thereby significantly improv-
ing the performance and energy efficiency of edge devices. We proposed an efficient
HW-NAS methodology dedicated to analog in-memory computing for TinyML tasks
entitled AnalogNAS. The obtained models are accurate, noise and drift-resilient, and
small enough to run on resource-constrained devices. Experimental results demon-
strate that our method outperforms state-of-the-art models on analog hardware for
three tasks of the MLPerf benchmark: image classification on CIFAR-10, Visual Wake
Words, and Keyword Spotting.

In Chapter 6, research questions 6 and 7 were addressed. The context of medi-
cal imaging analysis presents an attractive target for HW-NAS for edge computing.
Due to the sensitivity of data and the critical timing of some diagnoses, developing

7.2. FUTURE WORK 145

efficient DL models would highly benefit research and society. To advance HW-NAS
research in such a domain, we developed MED-NAS-Bench, the first NAS Benchmark
for medical tasks. MED-NAS-Bench includes performance metrics for millions of ar-
chitectures, associated with their latency, and energy consumption on multiple edge
hardware platforms. We then presented a multi-task medical imaging architecture
search, MT-MIAS. Using MT-MIAS, we could find a generalized architecture able to
solve multiple medical tasks and provide state-of-the-art performance. This architec-
ture is highly practical as deploying a single architecture benefits edge devices giving
faster response and preserving energy.

Overall, this thesis has investigated many limitations of HW-NAS and provided
concrete and practical solutions. Contributions have been made to several areas
including accelerating HW-NAS process with efficient surrogate models, improving
the search space design, and consolidating our knowledge of HW-NAS on practical
applications. We applied HW-NAS to discover tailored DL models for analog in-
memory computing and enhance their energy efficiency. Finally, we extended the
application of HW-NAS to medical tasks, where we built a specialized benchmark
and implemented a dedicated multi-task search methodology.

7.2 Future Work

As stated in the Introduction (Chapter 1), the primary motivation of this thesis
was to design fast, efficient, and practical HW-NAS strategies. Using multi-objective
surrogate models and flexible search spaces, we found efficient DL models for a variety
of tasks by proposing a fast and practical framework, under edge constraints.

In this thesis, two types of estimation strategies, namely Predictive Models and
Weight-sharing Supernetworks, were thoroughly investigated. We highlighted the
advantages and drawbacks of both strategies and pinpoint the applications in which
each one of them is best.

Additionally, several other methods, including zero-shot estimation [213] and
learning-curve extrapolation [236], have emerged. However, these methods still face
certain limitations in terms of multi-objectivity, scalability, and accuracy, leaving
room for further exploration and refinement in future research endeavors. Also, while
we provided a thorough analysis of HW-NAS estimation strategies, a comprehensive
comparison between top architectures using metrics such as Centered Kernel Align-
ment (CKA) [314] or Similarity analysis to evaluate the generalization ability and
robustness of these models across different datasets and tasks is missing from the
literature, this could potentially be an additional key focus of MED-NAS-Bench.

Figure 7.1 summarizes the directions of the future work for each component of
HW-NAS.

While these are ongoing research areas with potential for near-future achieve-
ments, the following specific future directions can be pursued to further enhance
HW-NAS:

1. Pushing the Boundaries of Predefined Search Spaces. Further explo-
ration can be done to expand predefined search spaces, enabling the discovery of
novel and unconventional architectures that may exhibit superior performance
on edge devices. Existing works [77, 79, 80], including our work GOS [7], have
already demonstrated promising advancements in this direction, defining their
search space with mathematical instructions. However, these are still time-
consuming and these methods can be further improved. This improvement can
involve incorporating unconventional operations or unconventional connectiv-
ity patterns within the search space, allowing for more diverse and innovative
architectures to be discovered.

2. Search Algorithms and Large Search Spaces: It is crucial to develop ef-
ficient and scalable search algorithms that can effectively explore large search

146 CHAPTER 7. CONCLUSION AND FUTURE WORK

Architecture
Search Space

Search
Algorithm

 Performance
evaluation

 HW Cost
 Measurements

1. Pushing the
Boundaries of Predefined
Search Spaces.

2. Search Algorithms and
Large Search Spaces,
exploring
quantum-inspired search
algorithms.

3. End-to-end HW-NAS
with Compiler
Integration.

4. Multi-task Evaluation

Figure 7.1: Future Works on top of HW-NAS framework.

spaces within practical time constraints. Further advancements in optimization
algorithms and meta-learning techniques can facilitate the search process and
enable the exploration of larger and more complex search spaces. This would
allow for the discovery of highly optimized architectures that align with the
hardware constraints of edge devices, while still meeting performance require-
ments. Exploring quantum-inspired search algorithms [315] holds promise in
tackling the challenges of searching large spaces more efficiently. Leveraging
quantum computing principles such as superposition and entanglement, these
algorithms have the potential to enhance the search process and expedite the
discovery of optimal architectures for edge computing.

3. End-to-end HW-NAS with Compiler Integration. Future research can
focus on developing end-to-end HW-NAS methodologies that not only encom-
pass architecture search and optimization but also incorporate the compiler in
the loop. This integration would enable seamless collaboration between the
hardware-aware neural architecture search process and the compiler, resulting
in optimized neural architectures that are directly compatible and efficiently
executable on edge devices. By considering the compiler as an integral com-
ponent in the HW-NAS pipeline, the overall system can effectively leverage
hardware-specific optimizations, code generation techniques, and resource al-
location strategies, leading to highly efficient and performance-optimized so-
lutions for edge computing scenarios. An example of such integration can be
seen in MCUNet [266], which dedicated a compiler specifically for a particular
type of microcontroller. Generalizing this approach to incorporate various deep
learning compilers, including Tiramisu [58], and XLA [60], would be a valuable
direction to explore.

4. Multi-task investigation Multi-task deep learning models are crucial to re-
ducing the memory occupancy and execution time in edge devices. Investigating
how sharing knowledge and architectural components across multiple related
tasks can lead to more efficient and effective neural architectures for edge de-
vices could be an interesting avenue to explore. This approach could leverage
the synergistic relationships between different tasks and exploit shared repre-
sentations to enhance model performance and reduce resource requirements.
For instance, in the context of an autonomous driving car, instead of employ-
ing a scheduler to switch between different models for object detection, lane

7.2. FUTURE WORK 147

detection, and semantic segmentation, a multi-task learning approach could be
explored. By jointly training a single neural architecture on these tasks, the
model can benefit from the shared information and potentially achieve better
overall performance, reduced memory footprint, and improved inference effi-
ciency.

We envision future research in Hardware-aware Neural Architecture Search (HW-
NAS) for edge computing to overcome current limitations, paving the way for auto-
mated and seamless integration of architecture search into existing AutoML systems.
This advancement holds the potential to democratize deep learning, allowing prac-
titioners to harness its power for a wide range of use-cases in the context of edge
computing. Moreover, we strongly believe that HW-NAS has the capacity to drive
advancements in the field of deep learning as a whole by incorporating desirable
properties, such as explainability and proper uncertainty calibration, into the search
process, thereby enhancing the overall performance and reliability of machine learning
systems in edge computing scenarios.

148 CHAPTER 7. CONCLUSION AND FUTURE WORK

Bibliography

[1] Hadjer Benmeziane, Kaoutar El Maghraoui, Hamza Ouarnoughi, Smäıl Niar,
Martin Wistuba, and Naigang Wang. A comprehensive survey on hardware-
aware neural architecture search. CoRR, abs/2101.09336, 2021. URL https:

//arxiv.org/abs/2101.09336. V, 2, 4, 81

[2] Hadjer Benmeziane, Kaoutar El Maghraoui, Hamza Ouarnoughi, Smail Niar,
Martin Wistuba, and Naigang Wang. Hardware-aware neural architecture
search: Survey and taxonomy. In Proceedings of the Thirtieth International
Joint Conference on Artificial Intelligence, IJCAI-21, pages 4322–4329, 8 2021.
V

[3] Hadjer Benmeziane, Hamza Ouarnoughi, Kaoutar El Maghraoui, and Smäıl
Niar. Accelerating neural architecture search with rank-preserving surrogate
models. In Manar Abu Talib, Laila Benhlima, and Kaoutar El Maghraoui,
editors, ArabWIC 2021: The 7th Annual International Conference on Arab
Women in Computing in Conjunction with the 2nd Forum of Women in Re-
search, Sharjah, United Arab Emirates, August 25 - 26, 2021, pages 21:1–21:6.
ACM, 2021. V

[4] Hadjer Benmeziane, Hamza Ouarnoughi, Kaoutar El Maghraoui, and Smail
Niar. Multi-objective hardware-aware neural architecture search with pareto
rank-preserving surrogate models. 20(2), 2023. ISSN 1544-3566. V, 4

[5] Hadjer Benmeziane, Smail Niar, Hamza Ouarnoughi, and Kaoutar El
Maghraoui. Pareto rank surrogate model for hardware-aware neural architec-
ture search. In IEEE International Symposium on Performance Analysis of
Systems and Software (ISPASS), 2022. V, 4, 47, 80

[6] Hadjer Benmeziane, Smail Niar, Hamza Ouarnoughi, and Kaoutar El
Maghraoui. Pareto rank-preserving supernetwork for hardware-aware neural
architecture search. In Submitted to European Conference on Artificial Intelli-
gence ECAI 2023, 2023. V, 4, 29

[7] Hadjer Benmeziane, Smail Niar, Hamza Ouarnoughi, and Kaoutar El
Maghraoui. Grassroots operator search for model edge adaptation. In Sub-
mitted to EMBEDDED SYSTEMS WEEK Conference, 2023. VI, 4, 145

[8] Hadjer Benmeziane, Hamza Ouranoughi, Smäıl Niar, and Kaoutar El
Maghraoui. Caw-nas: Compression aware neural architecture search. In 25th
Euromicro Conference on Digital System Design, DSD, pages 391–397. IEEE,
2022. VI, 4

[9] Hadjer Benmeziane, Corey Lammie, Irem Boybat, Malte J. Rasch, Manuel Le
Gallo, Hsinyu Tsai, Ramachandran Muralidhar, Smäıl Niar, Hamza
Ouarnoughi, Vijay Narayanan, Abu Sebastian, and Kaoutar El Maghraoui.
Analognas: A neural network design framework for accurate inference with
analog in-memory computing. 2023. VI, 5, 35

149

https://arxiv.org/abs/2101.09336
https://arxiv.org/abs/2101.09336

150 BIBLIOGRAPHY

[10] Hadjer Benmeziane, Smail Niar, Hamza Ouarnoughi, and Kaoutar El
Maghraoui. Med-nas-bench: A generalized neural architecture search bench-
mark for medical imaging analysis. In Submitted to Nature Methods, 2023. VI,
5

[11] Hadjer Benmeziane, Hamza Ouarnoughi, Kaoutar El Maghraoui, and Smäıl
Niar. Real-time style transfer with efficient vision transformers. In Aaron Yi
Ding and Volker Hilt, editors, EdgeSys EuroSys 2022: Proceedings of the 5th
International Workshop on Edge Systems, Analytics and Networking, Rennes,
France, April 5 - 8, 2022, pages 31–36. ACM, 2022. VII

[12] Lotfi Abdelkrim Mecharbat, Hadjer Benmeziane, Hamza Ouranoughi, and
Smäıl Niar. Hyt-nas: Hybrid transformers neural architecture search for edge
devices. CoRR, abs/2303.04440, 2023. VII

[13] Hadjer Benmeziane, Halima Bouzidi, Hamza Ouarnoughi, Ozcan Ozturk, and
Smäıl Niar. Treasure what you have: Exploiting similarity in deep neural
networks for efficient video processing. CoRR, abs/2305.06492, 2023. VII

[14] Hadjer Benmeziane, Amine Ziad Ounnoughene, Imane Hamzaoui, and Younes
Bouhadjar. Skip connections in spiking neural networks: An analysis of their
effect on network training. CoRR, abs/2303.13563, 2023. VII

[15] L. Deng, G. Li, S. Han, L. Shi, and Y. Xie. Model compression and hardware
acceleration for neural networks: A comprehensive survey. Proceedings of the
IEEE, 108(4):485–532, 2020. XIII, 13, 15

[16] Xuefei Ning, Yin Zheng, Tianchen Zhao, Yu Wang, and Huazhong Yang. A
generic graph-based neural architecture encoding scheme for predictor-based
NAS. In Andrea Vedaldi, Horst Bischof, Thomas Brox, and Jan-Michael Frahm,
editors, Computer Vision - ECCV 2020 - 16th European Conference, Glasgow,
UK, August 23-28, 2020, Proceedings, Part XIII, volume 12358 of Lecture Notes
in Computer Science, pages 189–204. Springer, 2020. XIII, 47, 48, 50, 54, 55,
57, 58, 106, 107, 128

[17] Lukasz Dudziak, Thomas C. P. Chau, Mohamed S. Abdelfattah, Royson Lee,
Hyeji Kim, and Nicholas D. Lane. BRP-NAS: prediction-based NAS using gcns.
In Advances in Neural Information Processing Systems 33: Annual Conference
on Neural Information Processing Systems, 2020. XIII, 47, 48, 50, 54, 55, 57,
58

[18] Michela Antonelli, Annika Reinke, Spyridon Bakas, Keyvan Farahani, Annette
Kopp-Schneider, Bennett A Landman, Geert Litjens, Bjoern Menze, Olaf Ron-
neberger, Ronald M Summers, et al. The medical segmentation decathlon.
Nature communications, 13(1):4128, 2022. XV, 119, 120, 123, 137

[19] Andrew L. Maas, Raymond E. Daly, Peter T. Pham, Dan Huang, Andrew Y.
Ng, and Christopher Potts. Learning word vectors for sentiment analysis. In
Proceedings of the 49th Annual Meeting of the Association for Computational
Linguistics: Human Language Technologies, pages 142–150, 2011. URL http:

//www.aclweb.org/anthology/P11-1015. XVII, 41

[20] Zhilin Zhang, Zhouyue Pi, and Benyuan Liu. TROIKA: A general framework for
heart rate monitoring using wrist-type photoplethysmographic signals during
intensive physical exercise. IEEE Trans. Biomed. Eng., 62(2):522–531, 2015.
XVII, 93, 95

[21] Shubham Jain, Hsinyu Tsai, Ching-Tzu Chen, Ramachandran Muralidhar,
Irem Boybat, Martin M. Frank, Stanis law Woźniak, Milos Stanisavljevic, Pra-
neet Adusumilli, Pritish Narayanan, Kohji Hosokawa, Masatoshi Ishii, Arvind

http://www.aclweb.org/anthology/P11-1015
http://www.aclweb.org/anthology/P11-1015

BIBLIOGRAPHY 151

Kumar, Vijay Narayanan, and Geoffrey W. Burr. A heterogeneous and pro-
grammable compute-in-memory accelerator architecture for analog-ai using
dense 2-d mesh. IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, 31(1):114–127, 2023. doi: 10.1109/TVLSI.2022.3221390. XVIII, 113,
114

[22] Sparsh Mittal and Shraiysh Vaishay. A survey of techniques for optimizing
deep learning on gpus. Journal of Systems Architecture, 99:101635, 2019. ISSN
1383-7621. doi: https://doi.org/10.1016/j.sysarc.2019.101635. 2

[23] Maithra Raghu, Thomas Unterthiner, Simon Kornblith, Chiyuan Zhang, and
Alexey Dosovitskiy. Do vision transformers see like convolutional neural net-
works? In Marc’Aurelio Ranzato, Alina Beygelzimer, Yann N. Dauphin, Percy
Liang, and Jennifer Wortman Vaughan, editors, Advances in Neural Informa-
tion Processing Systems 34: Annual Conference on Neural Information Process-
ing Systems 2021, NeurIPS 2021, December 6-14, 2021, virtual, pages 12116–
12128, 2021. 2

[24] Colin White, Arber Zela, Robin Ru, Yang Liu, and Frank Hutter. How powerful
are performance predictors in neural architecture search? In Marc’Aurelio Ran-
zato, Alina Beygelzimer, Yann N. Dauphin, Percy Liang, and Jennifer Wort-
man Vaughan, editors, Advances in Neural Information Processing Systems 34:
Annual Conference on Neural Information Processing Systems 2021, NeurIPS
2021, December 6-14, 2021, virtual, pages 28454–28469, 2021. 2

[25] Pierre Sermanet, David Eigen, Xiang Zhang, Michaël Mathieu, Rob Fergus,
and Yann LeCun. Overfeat: Integrated recognition, localization and detection
using convolutional networks. arXiv preprint arXiv:1312.6229, 2013. 12

[26] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for
large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014. 12

[27] Matthew D Zeiler and Rob Fergus. Visualizing and understanding convolutional
networks. In European conference on computer vision, pages 818–833. Springer,
2014. 12

[28] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification
with deep convolutional neural networks. In Advances in neural information
processing systems, pages 1097–1105, 2012. 12, 33

[29] Daniel S. Park, Yu Zhang, Ye Jia, Wei Han, Chung-Cheng Chiu, Bo Li, Yonghui
Wu, and Quoc V. Le. Improved noisy student training for automatic speech
recognition. Interspeech 2020, Oct 2020. 12

[30] W. Xiong, J. Droppo, X. Huang, F. Seide, M. Seltzer, A. Stolcke, D. Yu,
and G. Zweig. The microsoft 2016 conversational speech recognition system.
In IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pages 5255–5259, 2017. 12

[31] Geoffrey Hinton, Li Deng, Dong Yu, George E Dahl, Abdel-rahman Mohamed,
Navdeep Jaitly, Andrew Senior, Vincent Vanhoucke, Patrick Nguyen, Tara N
Sainath, et al. Deep neural networks for acoustic modeling in speech recognition:
The shared views of four research groups. IEEE Signal processing magazine, 29
(6):82–97, 2012. 12

[32] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT:
pre-training of deep bidirectional transformers for language understanding. In
Jill Burstein, Christy Doran, and Thamar Solorio, editors, Proceedings of the

152 BIBLIOGRAPHY

Conference of the North American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies, NAACL-HLT, pages 4171–
4186, 2019. 12

[33] Ronan Collobert, Jason Weston, Léon Bottou, Michael Karlen, Koray
Kavukcuoglu, and Pavel Kuksa. Natural language processing (almost) from
scratch. Journal of machine learning research, 12:2493–2537, 2011. 12

[34] Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V Le, Mohammad Norouzi,
Wolfgang Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, et al.
Google’s neural machine translation system: Bridging the gap between human
and machine translation. arXiv preprint arXiv:1609.08144, 2016. 12

[35] Mingxing Tan and Quoc Le. EfficientNet: Rethinking model scaling for convo-
lutional neural networks. In Proceedings of the 36th International Conference
on Machine Learning, pages 6105–6114, 2019. 12

[36] Hang Zhang, Chongruo Wu, Zhongyue Zhang, Yi Zhu, Zhi Zhang, Haibin Lin,
Yue Sun, Tong He, Jonas Mueller, R Manmatha, et al. Resnest: Split-attention
networks. arXiv preprint arXiv:2004.08955, 2020. 12

[37] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT
Press, 2016. http://www.deeplearningbook.org. 12

[38] Zihang Dai, Hanxiao Liu, Quoc V. Le, and Mingxing Tan. Coatnet: Marrying
convolution and attention for all data sizes. In Marc’Aurelio Ranzato, Alina
Beygelzimer, Yann N. Dauphin, Percy Liang, and Jennifer Wortman Vaughan,
editors, Advances in Neural Information Processing Systems 34: Annual Con-
ference on Neural Information Processing Systems 2021, NeurIPS 2021, De-
cember 6-14, 2021, virtual, pages 3965–3977, 2021. 13

[39] Jiahui Yu, Zirui Wang, Vijay Vasudevan, Legg Yeung, Mojtaba Seyedhosseini,
and Yonghui Wu. Coca: Contrastive captioners are image-text foundation
models. CoRR, abs/2205.01917, 2022. doi: 10.48550/arXiv.2205.01917. URL
https://doi.org/10.48550/arXiv.2205.01917. 14

[40] Mark Sandler, Andrew G. Howard, Menglong Zhu, Andrey Zhmoginov, and
Liang-Chieh Chen. Inverted residuals and linear bottlenecks: Mobile networks
for classification, detection and segmentation. CoRR, abs/1801.04381, 2018.
URL http://arxiv.org/abs/1801.04381. 14, 37

[41] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jonathon Shlens, and Zbig-
niew Wojna. Rethinking the inception architecture for computer vision. In
2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR
2016, Las Vegas, NV, USA, June 27-30, 2016, pages 2818–2826, 2016. doi:
10.1109/CVPR.2016.308. URL https://doi.org/10.1109/CVPR.2016.308.
14

[42] Han Cai, Chuang Gan, Tianzhe Wang, Zhekai Zhang, and Song Han. Once-
for-all: Train one network and specialize it for efficient deployment. In 8th In-
ternational Conference on Learning Representations, ICLR. OpenReview.net,
2020. URL https://openreview.net/forum?id=HylxE1HKwS. 14, 22, 24, 28,
40

[43] B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le. Learning transferable
architectures for scalable image recognition. In IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 8697–8710, 2018. doi:
10.1109/CVPR.2018.00907. 14, 30, 104

http://www.deeplearningbook.org
https://doi.org/10.48550/arXiv.2205.01917
http://arxiv.org/abs/1801.04381
https://doi.org/10.1109/CVPR.2016.308
https://openreview.net/forum?id=HylxE1HKwS

BIBLIOGRAPHY 153

[44] Golnaz Ghiasi, Tsung-Yi Lin, Ruoming Pang, and Quoc V. Le. NAS-FPN:
learning scalable feature pyramid architecture for object detection. CoRR,
abs/1904.07392, 2019. URL http://arxiv.org/abs/1904.07392. 15

[45] A. Howard, M. Sandler, B. Chen, W. Wang, L. Chen, M. Tan, G. Chu, V. Va-
sudevan, Y. Zhu, R. Pang, H. Adam, and Q. Le. Searching for mobilenetv3.
In IEEE/CVF International Conference on Computer Vision (ICCV), pages
1314–1324, 2019. 15

[46] Bichen Wu, Xiaoliang Dai, Peizhao Zhang, Yanghan Wang, Fei Sun, Yiming
Wu, Yuandong Tian, Peter Vajda, Yangqing Jia, and Kurt Keutzer. Fbnet:
Hardware-aware efficient convnet design via differentiable neural architecture
search. In Conference on Computer Vision and Pattern Recognition, CVPR,
pages 10734–10742. Computer Vision Foundation / IEEE, 2019. 15, 17, 19, 22,
25, 28, 29, 31, 32, 39

[47] Yu Cheng, Duo Wang, Pan Zhou, and Tao Zhang. A survey of model compres-
sion and acceleration for deep neural networks. CoRR, abs/1710.09282, 2017.
URL http://arxiv.org/abs/1710.09282. 15

[48] Fisher Yu and Vladlen Koltun. Multi-scale context aggregation by dilated
convolutions. In Yoshua Bengio and Yann LeCun, editors, 4th International
Conference on Learning Representations, ICLR 2016, San Juan, Puerto Rico,
May 2-4, 2016, Conference Track Proceedings, 2016. URL http://arxiv.or

g/abs/1511.07122. 15

[49] Francois Chollet. Xception: Deep learning with depthwise separable convolu-
tions. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), July 2017. 15, 33

[50] Xiaodan Zhu, Parinaz Sobhani, and Hongyu Guo. Long short-term memory
over tree structures. CoRR, abs/1503.04881, 2015. URL http://arxiv.org/

abs/1503.04881. 15

[51] Jos van der Westhuizen and Joan Lasenby. The unreasonable effectiveness of
the forget gate. CoRR, abs/1804.04849, 2018. URL http://arxiv.org/abs/

1804.04849. 15

[52] Le Song, Mariya Ishteva, Ankur P. Parikh, Eric P. Xing, and Haesun Park. Hi-
erarchical tensor decomposition of latent tree graphical models. In Proceedings
of the 30th International Conference on Machine Learning,ICML, volume 28,
pages 334–342, 2013. URL http://proceedings.mlr.press/v28/song13.h

tml. 16

[53] Yassine Zniyed, Rémy Boyer, André L. F. de Almeida, and Gérard Favier. A
tt-based hierarchical framework for decomposing high-order tensors. SIAM J.
Sci. Comput., 42(2):A822–A848, 2020. 16

[54] Suyog Gupta, Ankur Agrawal, Kailash Gopalakrishnan, and Pritish Narayanan.
Deep learning with limited numerical precision. In Proceedings of the 32nd
International Conference on Machine Learning, volume 37, pages 1737–1746,
2015. 16

[55] Song Han, Huizi Mao, and William J. Dally. Deep compression: Compressing
deep neural network with pruning, trained quantization and huffman coding. In
4th International Conference on Learning Representations, ICLR, 2016. URL
http://arxiv.org/abs/1510.00149. 16

http://arxiv.org/abs/1904.07392
http://arxiv.org/abs/1710.09282
http://arxiv.org/abs/1511.07122
http://arxiv.org/abs/1511.07122
http://arxiv.org/abs/1503.04881
http://arxiv.org/abs/1503.04881
http://arxiv.org/abs/1804.04849
http://arxiv.org/abs/1804.04849
http://proceedings.mlr.press/v28/song13.html
http://proceedings.mlr.press/v28/song13.html
http://arxiv.org/abs/1510.00149

154 BIBLIOGRAPHY

[56] Michael Zhu and Suyog Gupta. To prune, or not to prune: exploring the efficacy
of pruning for model compression. CoRR, abs/1710.01878, 2017. URL http://

dblp.uni-trier.de/db/journals/corr/corr1710.html#abs-1710-01878.
16

[57] M. Li, Y. Liu, X. Liu, Q. Sun, X. You, H. Yang, Z. Luan, L. Gan, G. Yang,
and D. Qian. The deep learning compiler: A comprehensive survey. IEEE
Transactions on Parallel and Distributed Systems, 32(3):708–727, 2021. doi:
10.1109/TPDS.2020.3030548. 16

[58] Riyadh Baghdadi, Jessica Ray, Malek Ben Romdhane, Emanuele Del Sozzo,
Abdurrahman Akkas, Yunming Zhang, Patricia Suriana, Shoaib Kamil, and
Saman P. Amarasinghe. Tiramisu: A polyhedral compiler for expressing fast
and portable code. In Mahmut Taylan Kandemir, Alexandra Jimborean, and
Tipp Moseley, editors, International Symposium on Code Generation and Op-
timization, CGO, pages 193–205, 2019. 16, 82, 146

[59] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Q. Yan,
Haichen Shen, Meghan Cowan, Leyuan Wang, Yuwei Hu, Luis Ceze, Carlos
Guestrin, and Arvind Krishnamurthy. TVM: an automated end-to-end opti-
mizing compiler for deep learning. In Andrea C. Arpaci-Dusseau and Geoff
Voelker, editors, 13th USENIX Symposium on Operating Systems Design and
Implementation, OSDI 2018, Carlsbad, CA, USA, October 8-10, 2018, pages
578–594. USENIX Association, 2018. URL https://www.usenix.org/confe

rence/osdi18/presentation/chen. 16

[60] Amit Sabne. Xla : Compiling machine learning for peak performance, 2020.
16, 82, 146

[61] Han Cai, Ligeng Zhu, and Song Han. Proxylessnas: Direct neural architecture
search on target task and hardware. CoRR, abs/1812.00332, 2018. URL http:

//arxiv.org/abs/1812.00332. 17, 19, 20, 22, 24, 25, 28, 29, 30, 31, 32, 40

[62] Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan, and Quoc V.
Le. Mnasnet: Platform-aware neural architecture search for mobile. CoRR,
abs/1807.11626, 2018. URL http://arxiv.org/abs/1807.11626. 17, 19, 22,
24, 25, 27, 31, 39

[63] L. Zhang, Y. Yang, Y. Jiang, W. Zhu, and Y. Liu. Fast hardware-aware neural
architecture search. In IEEE/CVF Conference on Computer Vision and Pattern
Recognition Workshops (CVPRW), pages 2959–2967, 2020. 17, 22, 28, 30, 32

[64] Weiwen Jiang, X. Zhang, E. Sha, L. Yang, Q. Zhuge, Y. Shi, and J. Hu. Accu-
racy vs. efficiency: Achieving both through fpga-implementation aware neural
architecture search. 56th ACM/IEEE Design Automation Conference (DAC),
pages 1–6, 2019. 18, 21

[65] Lei Yang, Zheyu Yan, Meng Li, Hyoukjun Kwon, Weiwen Jiang, Liangzhen
Lai, Yiyu Shi, Tushar Krishna, and Vikas Chandra. Co-Exploration of Neural
Architectures and Heterogeneous ASIC Accelerator Designs Targeting Multiple
Tasks. 2020. ISBN 9781450367257. 18, 21, 27, 31

[66] Grace Chu, Okan Arikan, Gabriel Bender, Weijun Wang, Achille Brighton,
Pieter-Jan Kindermans, Hanxiao Liu, Berkin Akin, Suyog Gupta, and Andrew
Howard. Discovering multi-hardware mobile models via architecture search.
CoRR, abs/2008.08178, 2020. URL https://arxiv.org/abs/2008.08178. 18,
19, 20, 23, 40

http://dblp.uni-trier.de/db/journals/corr/corr1710.html##abs-1710-01878
http://dblp.uni-trier.de/db/journals/corr/corr1710.html##abs-1710-01878
https://www.usenix.org/conference/osdi18/presentation/chen
https://www.usenix.org/conference/osdi18/presentation/chen
http://arxiv.org/abs/1812.00332
http://arxiv.org/abs/1812.00332
http://arxiv.org/abs/1807.11626
https://arxiv.org/abs/2008.08178

BIBLIOGRAPHY 155

[67] Y. Jiang, X. Wang, and W. Zhu. Hardware-aware transformable architecture
search with efficient search space. In IEEE International Conference on Multi-
media and Expo (ICME), pages 1–6, 2020. doi: 10.1109/ICME46284.2020.910
2721. 18, 20, 23, 28, 29

[68] Chenxi Liu, Liang-Chieh Chen, Florian Schroff, Hartwig Adam, Wei Hua,
Alan L. Yuille, and Fei-Fei Li. Auto-deeplab: Hierarchical neural architecture
search for semantic image segmentation. In Conference on Computer Vision
and Pattern Recognition, CVPR, pages 82–92, 2019. 19, 39

[69] Alberto Marchisio, Andrea Massa, Vojtech Mrazek, Beatrice Bussolino, Mau-
rizio Martina, and Muhammad Shafique. Nascaps: A framework for neural
architecture search to optimize the accuracy and hardware efficiency of convo-
lutional capsule networks. In ICCAD, 2020. 19, 22, 23, 28, 31, 32

[70] Sara Sabour, Nicholas Frosst, and Geoffrey E. Hinton. Dynamic routing be-
tween capsules. In Isabelle Guyon, Ulrike von Luxburg, Samy Bengio, Hanna M.
Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman Garnett, editors, Ad-
vances in Neural Information Processing Systems 30, pages 3856–3866, 2017.
URL http://papers.nips.cc/paper/6975-dynamic-routing-between-cap

sules. 20

[71] Yong Guo, Yin Zheng, Mingkui Tan, Qi Chen, Jian Chen, Peilin Zhao, and
Junzhou Huang. NAT: neural architecture transformer for accurate and com-
pact architectures. In Hanna M. Wallach, Hugo Larochelle, Alina Beygelz-
imer, Florence d’Alché-Buc, Emily B. Fox, and Roman Garnett, editors, Ad-
vances in Neural Information Processing Systems 32, pages 735–747, 2019. URL
http://papers.nips.cc/paper/8362-nat-neural-architecture-transfo

rmer-for-accurate-and-compact-architectures. 20, 22

[72] Henry Tsai, Jayden Ooi, Chun-Sung Ferng, Hyung Won Chung, and Ja-
son Riesa. Finding fast transformers: One-shot neural architecture search
by component composition. CoRR, abs/2008.06808, 2020. URL https:

//arxiv.org/abs/2008.06808. 20, 22

[73] Md Shahriar Iqbal, Jianhai Su, Lars Kotthoff, and Pooyan Jamshidi. Flexibo:
Cost-aware multi-objective optimization of deep neural networks. 2020. 20, 22

[74] Wei Niu, Zhenglun Kong, Geng Yuan, Weiwen Jiang, Jiexiong Guan, Caiwen
Ding, Pu Zhao, Sijia Liu, Bin Ren, and Yanzhi Wang. Real-time execution of
large-scale language models on mobile, 2020. 20

[75] Albert Shaw, Daniel Hunter, Forrest Iandola, and Sammy Sidhu. Squeezenas:
Fast neural architecture search for faster semantic segmentation, 2019. 20, 28,
29, 39

[76] Hanrui Wang, Zhanghao Wu, Zhijian Liu, Han Cai, Ligeng Zhu, Chuang Gan,
and Song Han. HAT: Hardware-aware transformers for efficient natural lan-
guage processing. In Proceedings of the 58th Annual Meeting of the Association
for Computational Linguistics, pages 7675–7688, 2020. 20, 28, 30

[77] Esteban Real, Chen Liang, David R. So, and Quoc V. Le. Automl-zero: Evolv-
ing machine learning algorithms from scratch. In Proceedings of the 37th In-
ternational Conference on Machine Learning, ICML, volume 119, pages 8007–
8019, 2020. 20, 82, 145

[78] Simon Schrodi, Danny Stoll, Binxin Ru, Rhea Sukthanker, Thomas Brox, and
Frank Hutter. Towards discovering neural architectures from scratch. CoRR,
abs/2211.01842, 2022. doi: 10.48550/arXiv.2211.01842. 20

http://papers.nips.cc/paper/6975-dynamic-routing-between-capsules
http://papers.nips.cc/paper/6975-dynamic-routing-between-capsules
http://papers.nips.cc/paper/8362-nat-neural-architecture-transformer-for-accurate-and-compact-architectures
http://papers.nips.cc/paper/8362-nat-neural-architecture-transformer-for-accurate-and-compact-architectures
https://arxiv.org/abs/2008.06808
https://arxiv.org/abs/2008.06808

156 BIBLIOGRAPHY

[79] Hanxiao Liu, Andy Brock, Karen Simonyan, and Quoc Le. Evolving
normalization-activation layers. In Hugo Larochelle, Marc’Aurelio Ranzato,
Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin, editors, Advances
in Neural Information Processing Systems 33: Annual Conference on Neural
Information Processing Systems, NeurIPS, 2020. 20, 87, 145

[80] Angelica Chen, David M. Dohan, and David R. So. Evoprompting: Language
models for code-level neural architecture search. CoRR, abs/2302.14838, 2023.
doi: 10.48550/arXiv.2302.14838. 20, 145

[81] Ye Yu, Yingmin Li, Shuai Che, Niraj K. Jha, and Weifeng Zhang. Software-
defined design space exploration for an efficient AI accelerator architecture.
CoRR, abs/1903.07676, 2019. URL http://arxiv.org/abs/1903.07676. 21

[82] Weiwen Jiang, Lei Yang, Edwin Hsing-Mean Sha, Qingfeng Zhuge, Shouzhen
Gu, Yiyu Shi, and Jingtong Hu. Hardware/software co-exploration of neural
architectures. CoRR, abs/1907.04650, 2019. URL http://arxiv.org/abs/19

07.04650. 21, 22, 32

[83] Qing Lu, Weiwen Jiang, Xiaowei Xu, Yiyu Shi, and Jingtong Hu. On neu-
ral architecture search for resource-constrained hardware platforms. CoRR,
abs/1911.00105, 2019. URL http://arxiv.org/abs/1911.00105. 21, 22, 27,
31, 32

[84] Mohamed S. Abdelfattah, undefinedukasz Dudziak, Thomas Chau, Royson Lee,
Hyeji Kim, and Nicholas D. Lane. Best of both worlds: Automl codesign of a
cnn and its hardware accelerator. In Proceedings of the 57th ACM/EDAC/IEEE
Design Automation Conference, 2020. ISBN 9781450367257. 21, 22, 24, 27, 32

[85] Weiwei Chen, Ying Wang, Shuang Yang, Chen Liu, and Lei Zhang. You only
search once: A fast automation framework for single-stage dnn/accelerator co-
design. In Design, Automation & Test in Europe Conference & Exhibition,
DATE, pages 1283–1286, 2020. doi: 10.23919/DATE48585.2020.9116474. URL
https://doi.org/10.23919/DATE48585.2020.9116474. 21, 22

[86] Cong Hao, Xiaofan Zhang, Yuhong Li, Sitao Huang, Jinjun Xiong, Kyle Rup-
now, Wen-mei Hwu, and Deming Chen. Fpga/dnn co-design: An efficient design
methodology for iot intelligence on the edge. In Proceedings of the 56th Annual
Design Automation Conference, 2019. ISBN 9781450367257. 21, 32

[87] Weiwen Jiang, Lei Yang, Sakyasingha Dasgupta, Jingtong Hu, and Yiyu Shi.
Standing on the shoulders of giants: Hardware and neural architecture co-search
with hot start, 2020. 21, 24, 27, 31, 32

[88] B. Lu, J. Yang, L. Y. Chen, and S. Ren. Automating deep neural network
model selection for edge inference. In IEEE First International Conference on
Cognitive Machine Intelligence (CogMI), pages 184–193, 2019. 22

[89] Why tinyml is a giant opportunity. https://venturebeat.com/2020/01/11

/why-tinyml-is-a-giant-opportunity/. 22

[90] Ji Lin, Wei-Ming Chen, Yujun Lin, John Cohn, Chuang Gan, and Song Han.
Mcunet: Tiny deep learning on iot devices. In Advances in Neural Information
Processing Systems (NeurIPS’20), 2020. 22, 28, 31

[91] Xiaoliang Dai, Peizhao Zhang, Bichen Wu, Hongxu Yin, Fei Sun, Yanghan
Wang, Marat Dukhan, Yunqing Hu, Yiming Wu, Yangqing Jia, Peter Vajda,
Matt Uyttendaele, and Niraj K. Jha. Chamnet: Towards efficient network
design through platform-aware model adaptation. In Conference on Computer
Vision and Pattern Recognition, CVPR, pages 11398–11407, 2019. 22

http://arxiv.org/abs/1903.07676
http://arxiv.org/abs/1907.04650
http://arxiv.org/abs/1907.04650
http://arxiv.org/abs/1911.00105
https://doi.org/10.23919/DATE48585.2020.9116474
https://venturebeat.com/2020/01/11/why-tinyml-is-a-giant-opportunity/
https://venturebeat.com/2020/01/11/why-tinyml-is-a-giant-opportunity/

BIBLIOGRAPHY 157

[92] Yuhui Xu, Lingxi Xie, Xiaopeng Zhang, Xin Chen, Bowen Shi, Qi Tian, and
Hongkai Xiong. Latency-aware differentiable neural architecture search. 2020.
22

[93] Song Bian, Weiwen Jiang, Qing Lu, Yiyu Shi, and Takashi Sato. NASS: op-
timizing secure inference via neural architecture search. In Giuseppe De Gia-
como, Alejandro Catalá, Bistra Dilkina, Michela Milano, Senén Barro, Alberto
Bugaŕın, and Jérôme Lang, editors, ECAI - 24th European Conference on Ar-
tificial Intelligence, volume 325, pages 1746–1753, 2020. 22

[94] AJ Piergiovanni, Anelia Angelova, and Michael S. Ryoo. Tiny video networks,
2019. 22

[95] Javier Fernandez-Marques, Paul N. Whatmough, Andrew Mundy, and Matthew
Mattina. Searching for winograd-aware quantized networks. 2020. 22

[96] C. Fu, H. Chen, Z. Yang, F. Koushanfar, Y. Tian, and J. Zhao. Enhancing
model parallelism in neural architecture search for multidevice system. IEEE
Micro, 40(5):46–55, 2020. doi: 10.1109/MM.2020.3004538. 22

[97] Mohammad Loni, Sima Sinaei, Ali Zoljodi, Masoud Daneshtalab, and Mikael
Sjödin. Deepmaker: A multi-objective optimization framework for deep neural
networks in embedded systems. Microprocessors and Microsystems, 73:102989,
2020. 22

[98] Jin-Dong Dong, An-Chieh Cheng, Da-Cheng Juan, Wei Wei, and Min Sun. Ppp-
net: Platform-aware progressive search for pareto-optimal neural architectures,
2018. URL https://openreview.net/forum?id=B1NT3TAIM. 22

[99] Chi-Hung Hsu, Shu-Huan Chang, Da-Cheng Juan, Jia-Yu Pan, Yu-Ting Chen,
Wei Wei, and Shih-Chieh Chang. MONAS: multi-objective neural architecture
search using reinforcement learning. CoRR, abs/1806.10332, 2018. URL http:

//arxiv.org/abs/1806.10332. 22, 26, 31

[100] An-Chieh Cheng, Chieh Hubert Lin, Da-Cheng Juan, Wei Wei, and Min Sun.
Instanas: Instance-aware neural architecture search. In The Thirty-Fourth
AAAI Conference on Artificial Intelligence, pages 3577–3584, 2020. URL
https://aaai.org/ojs/index.php/AAAI/article/view/5764. 22

[101] Lile Cai, Anne-Maelle Barneche, Arthur Herbout, Chuan Sheng Foo, Jie Lin,
Vijay Ramaseshan Chandrasekhar, and Mohamed M. Sabry Aly. TEA-DNN:
the quest for time-energy-accuracy co-optimized deep neural networks. In
IEEE/ACM International Symposium on Low Power Electronics and Design,
pages 1–6, 2019. doi: 10.1109/ISLPED.2019.8824934. URL https:

//doi.org/10.1109/ISLPED.2019.8824934. 22

[102] N. Mitschke, M. Heizmann, K. Noffz, and R. Wittmann. Gradient based evolu-
tion to optimize the structure of convolutional neural networks. In 25th IEEE
International Conference on Image Processing (ICIP), pages 3438–3442, 2018.
doi: 10.1109/ICIP.2018.8451394. 22

[103] Vladimir Nekrasov, Hao Chen, Chunhua Shen, and Ian D. Reid. Fast neural
architecture search of compact semantic segmentation models via auxiliary cells.
In IEEE Conference on Computer Vision and Pattern Recognition, CVPR,
pages 9126–9135, 2019. 22

[104] Zhichao Lu, Ian Whalen, Vishnu Boddeti, Yashesh Dhebar, Kalyanmoy Deb,
Erik Goodman, and Wolfgang Banzhaf. Nsga-net: Neural architecture search
using multi-objective genetic algorithm. In Proceedings of the Genetic and
Evolutionary Computation Conference, 2019. doi: 10.1145/3321707.3321729.
URL https://doi.org/10.1145/3321707.3321729. 22, 26

https://openreview.net/forum?id=B1NT3TAIM
http://arxiv.org/abs/1806.10332
http://arxiv.org/abs/1806.10332
https://aaai.org/ojs/index.php/AAAI/article/view/5764
https://doi.org/10.1109/ISLPED.2019.8824934
https://doi.org/10.1109/ISLPED.2019.8824934
https://doi.org/10.1145/3321707.3321729

158 BIBLIOGRAPHY

[105] Atin Sood, Benjamin Elder, Benjamin Herta, Chao Xue, Costas Bekas, A. Cris-
tiano I. Malossi, Debashish Saha, Florian Scheidegger, Ganesh Venkataraman,
Gegi Thomas, Giovanni Mariani, Hendrik Strobelt, Horst Samulowitz, Mar-
tin Wistuba, Matteo Manica, Mihir R. Choudhury, Rong Yan, Roxana Is-
trate, Ruchir Puri, and Tejaswini Pedapati. Neunets: An automated syn-
thesis engine for neural network design. CoRR, abs/1901.06261, 2019. URL
http://arxiv.org/abs/1901.06261. 22, 31

[106] Xin Li, Yiming Zhou, Zheng Pan, and Jiashi Feng. Partial order pruning: For
best speed/accuracy trade-off in neural architecture search. In Conference on
Computer Vision and Pattern Recognition, CVPR, pages 9145–9153. Computer
Vision Foundation / IEEE, 2019. 22

[107] Dimitrios Stamoulis, Ruizhou Ding, Di Wang, Dimitrios Lymberopoulos, Bodhi
Priyantha, Jie Liu, and Diana Marculescu. Single-path nas: Designing
hardware-efficient convnets in less than 4 hours. In Joint European Conference
on Machine Learning and Knowledge Discovery in Databases, pages 481–497,
2019. 22, 30

[108] Jiahui Yu and Thomas S. Huang. Network slimming by slimmable net-
works: Towards one-shot architecture search for channel numbers. CoRR,
abs/1903.11728, 2019. URL http://arxiv.org/abs/1903.11728. 22

[109] S. Hong, D. Kim, and M. Choi. Memory-efficient models for scene text recogni-
tion via neural architecture search. In IEEE Winter Applications of Computer
Vision Workshops (WACVW), pages 183–191, 2020. 22

[110] Dilin Wang, Meng Li, Lemeng Wu, Vikas Chandra, and Qiang Liu. Energy-
aware neural architecture optimization with fast splitting steepest descent.
CoRR, abs/1910.03103, 2019. URL http://arxiv.org/abs/1910.03103.
22

[111] Sian-Yao Huang and Wei-Ta Chu. Ponas: Progressive one-shot neural archi-
tecture search for very efficient deployment. arXiv preprint arXiv:2003.05112,
2020. 22

[112] E. Lee and C. Lee. Neuralscale: Efficient scaling of neurons for resource-
constrained deep neural networks. In IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pages 1475–1484, 2020. 22

[113] Ye-Hoon Kim, B. Reddy, Sojung Yun, and Chanwon Seo. Nemo : Neuro-
evolution with multiobjective optimization of deep neural network for speed
and accuracy. 2017. 22, 26

[114] K. Hu, S. Tian, S. Guo, N. Li, L. Luo, and L. Wang. Recurrent neural archi-
tecture search based on randomness-enhanced tabu algorithm. In International
Joint Conference on Neural Networks (IJCNN), 2020. 22, 25

[115] Maria Baldeon-Calisto and Susana K. Lai-Yuen. Adaresu-net: Multiobjective
adaptive convolutional neural network for medical image segmentation. Neuro-
computing, 392:325 – 340, 2020. ISSN 0925-2312. 22

[116] Song Han, Han Cai, Ligeng Zhu, Ji Lin, Kuan Wang, Zhijian Liu, and Yujun
Lin. Design Automation for Efficient Deep Learning Computing. arXiv e-prints,
art. arXiv:1904.10616, April 2019. 22, 24, 34, 40, 41

[117] Woong Bae, Seungho Lee, Yeha Lee, Beomhee Park, Minki Chung, and Kyu-
Hwan Jung. Resource optimized neural architecture search for 3d medical image
segmentation. In Dinggang Shen, Tianming Liu, Terry M. Peters, Lawrence H.
Staib, Caroline Essert, Sean Zhou, Pew-Thian Yap, and Ali R. Khan, editors,

http://arxiv.org/abs/1901.06261
http://arxiv.org/abs/1903.11728
http://arxiv.org/abs/1910.03103

BIBLIOGRAPHY 159

Medical Image Computing and Computer Assisted Intervention - MICCAI, vol-
ume 11765, pages 228–236, 2019. 22

[118] Christoph Schorn, Thomas Elsken, Sebastian Vogel, Armin Runge, Andre Gun-
toro, and Gerd Ascheid. Automated design of error-resilient and hardware-
efficient deep neural networks. CoRR, abs/1909.13844, 2019. URL http:

//arxiv.org/abs/1909.13844. 22

[119] Thomas Cassimon, Simon Vanneste, Stig Bosmans, Siegfried Mercelis, and Pe-
ter Hellinckx. Using neural architecture search to optimize neural networks
for embedded devices. In Leonard Barolli, Peter Hellinckx, and Juggapong
Natwichai, editors, Advances on P2P, Parallel, Grid, Cloud and Internet Com-
puting, 2020. 22

[120] Bin Wang, Yanan Sun, Bing Xue, and Mengjie Zhang. Evolving deep neural net-
works by multi-objective particle swarm optimization for image classification.
CoRR, abs/1904.09035, 2019. URL http://arxiv.org/abs/1904.09035. 22

[121] Martin Ferianc, Hongxiang Fan, and Miguel Rodrigues. Vinnas: Variational
inference-based neural network architecture search, 2020. 22

[122] Zhichao Lu, Kalyanmoy Deb, Erik Goodman, Wolfgang Banzhaf, and
Vishnu Naresh Boddeti. Nsganetv2: Evolutionary multi-objective surrogate-
assisted neural architecture search. In Andrea Vedaldi, Horst Bischof, Thomas
Brox, and Jan-Michael Frahm, editors, Computer Vision – ECCV 2020, pages
35–51, 2020. 22

[123] Yibo Hu, Xiang Wu, and Ran He. Tf-nas: Rethinking three search freedoms of
latency-constrained differentiable neural architecture search, 2020. 22

[124] Guohao Li, Mengmeng Xu, Silvio Giancola, Ali K. Thabet, and Bernard
Ghanem. LC-NAS: latency constrained neural architecture search for point
cloud networks. CoRR, abs/2008.10309, 2020. URL https://arxiv.org/ab

s/2008.10309. 22

[125] Zhihang Yuan, Xin Liu, Bingzhe Wu, and Guangyu Sun. Enas4d: Ef-
ficient multi-stage cnn architecture search for dynamic inference. ArXiv,
abs/2009.09182, 2020. 22

[126] P. Achararit, M. A. Hanif, R. V. W. Putra, M. Shafique, and Y. Hara-Azumi.
Apnas: Accuracy-and-performance-aware neural architecture search for neural
hardware accelerators. IEEE Access, 8:165319–165334, 2020. doi: 10.1109/AC
CESS.2020.3022327. 22

[127] Z. Lu, I. Whalen, Y. Dhebar, K. Deb, E. Goodman, W. Banzhaf, and V. N.
Boddeti. Multi-objective evolutionary design of deep convolutional neural net-
works for image classification. IEEE Transactions on Evolutionary Computa-
tion, pages 1–1, 2020. doi: 10.1109/TEVC.2020.3024708. 22

[128] Yao Yang, Andrew Nam, Mohamad M. Nasr-Azadani, and Teresa Tung.
Resource-aware pareto-optimal automated machine learning platform. CoRR,
abs/2011.00073, 2020. URL https://arxiv.org/abs/2011.00073. 22

[129] Igor Fedorov, Ryan P. Adams, Matthew Mattina, and Paul N. Whatmough.
Sparse: Sparse architecture search for cnns on resource-constrained microcon-
trollers. CoRR, abs/1905.12107, 2019. URL http://arxiv.org/abs/1905.1

2107. 22

http://arxiv.org/abs/1909.13844
http://arxiv.org/abs/1909.13844
http://arxiv.org/abs/1904.09035
https://arxiv.org/abs/2008.10309
https://arxiv.org/abs/2008.10309
https://arxiv.org/abs/2011.00073
http://arxiv.org/abs/1905.12107
http://arxiv.org/abs/1905.12107

160 BIBLIOGRAPHY

[130] Colby Banbury, Chuteng Zhou, Igor Fedorov, Ramon Matas Navarro, Urmish
Thakker, Dibakar Gope, Vijay Janapa Reddi, Matthew Mattina, and Paul N.
Whatmough. Micronets: Neural network architectures for deploying tinyml
applications on commodity microcontrollers, 2020. 22

[131] Yu Weng, Tianbao Zhou, Yujie Li, and Xiaoyu Qiu. Nas-unet: Neural archi-
tecture search for medical image segmentation. IEEE Access, 7:44247–44257,
2019. 22, 39

[132] Thomas Cassimon, Simon Vanneste, Stig Bosmans, Siegfried Mercelis, and Pe-
ter Hellinckx. Designing resource-constrained neural networks using neural ar-
chitecture search targeting embedded devices. Internet of Things, page 100234,
2020. ISSN 2542-6605. 22

[133] Zichao Guo, Xiangyu Zhang, Haoyuan Mu, Wen Heng, Zechun Liu, Yichen Wei,
and Jian Sun. Single path one-shot neural architecture search with uniform
sampling. arXiv preprint arXiv:1904.00420, 2019. 22, 31, 33

[134] Yunyang Xiong, Ronak Mehta, and Vikas Singh. Resource constrained neu-
ral network architecture search: Will a submodularity assumption help? In
International Conference on Computer Vision, ICCV, pages 1901–1910, 2019.
22

[135] Xin Xia and Wenrui Ding. Hnas: Hierarchical neural architecture search on
mobile devices. 2020. 22

[136] Yunyang Xiong, Hanxiao Liu, Suyog Gupta, Berkin Akin, Gabriel Bender,
Pieter-Jan Kindermans, Mingxing Tan, Vikas Singh, and Bo Chen. MobileDets:
Searching for Object Detection Architectures for Mobile Accelerators. arXiv e-
prints, 2020. 22

[137] Z. Yu, Y. Qin, X. Xu, C. Zhao, Z. Wang, Z. Lei, and G. Zhao. Auto-fas:
Searching lightweight networks for face anti-spoofing. In ICASSP 2020 - 2020
IEEE International Conference on Acoustics, Speech and Signal Processing,
pages 996–1000, 2020. 22

[138] Javier Garćıa López, Antonio Agudo, and Francesc Moreno-Noguer. E-dnas:
Differentiable neural architecture search for embedded systems. 22

[139] Y. Li, X. Jin, J. Mei, X. Lian, L. Yang, C. Xie, Q. Yu, Y. Zhou, S. Bai, and
A. L. Yuille. Neural architecture search for lightweight non-local networks. In
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
pages 10294–10303, 2020. 22

[140] T. Wang, K. Wang, H. Cai, J. Lin, Z. Liu, H. Wang, Y. Lin, and S. Han. Apq:
Joint search for network architecture, pruning and quantization policy. In 2020
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
pages 2075–2084, 2020. doi: 10.1109/CVPR42600.2020.00215. 22, 31, 75, 81

[141] Jaeseong Lee, Duseok Kang, and Soonhoi Ha. S3NAS: fast npu-aware neural
architecture search methodology. CoRR, abs/2009.02009, 2020. URL https:

//arxiv.org/abs/2009.02009. 22

[142] Ching-Chen Wang, Ching-Te Chiu, and Jheng-Yi Chang. Efficientnet-elite:
Extremely lightweight and efficient cnn models for edge devices by network
candidate search. 2020. 22

[143] Yongan Zhang, Yonggan Fu, Weiwen Jiang, Chaojian Li, Haoran You, Meng
Li, Vikas Chandra, and Yingyan Lin. Dna: Differentiable network-accelerator
co-search. arXiv preprint arXiv:2010.14778, 2020. 22

https://arxiv.org/abs/2009.02009
https://arxiv.org/abs/2009.02009

BIBLIOGRAPHY 161

[144] Kanghyun Choi, Deokki Hong, Hojae Yoon, Joonsang Yu, Youngsok Kim, and
Jinho Lee. Dance: Differentiable accelerator/network co-exploration. arXiv
preprint arXiv:2009.06237, 2020. 22

[145] Suyog Gupta and Berkin Akin. Accelerator-aware neural network design using
automl. 2020. 22

[146] Guihong Li, Sumit K. Mandal, Umit Y. Ogras, and Radu Marculescu. Flash:fast
neural architecture s earch with hardware optimization. ACM Trans. Embed.
Comput. Syst., 20(5s), sep 2021. ISSN 1539-9087. doi: 10.1145/3476994. URL
https://doi.org/10.1145/3476994. 22, 25, 30

[147] Weiwen Jiang, Qiuwen Lou, Zheyu Yan, Lei Yang, Jingtong Hu, Xiaobo Sharon
Hu, and Yiyu Shi. Device-circuit-architecture co-exploration for computing-in-
memory neural accelerators. IEEE Trans. Computers, 70(4):595–605, 2021. doi:
10.1109/TC.2020.2991575. URL https://doi.org/10.1109/TC.2020.2991

575. 22

[148] Nikita Klyuchnikov, Ilya Trofimov, Ekaterina Artemova, Mikhail Salnikov,
Maxim Fedorov, and Evgeny Burnaev. Nas-bench-nlp: Neural architecture
search benchmark for natural language processing, 2020. 23, 36, 37

[149] Royson Lee, Lukasz Dudziak, Mohamed Abdelfattah, Stylianos I. Venieris,
Hyeji Kim, Hongkai Wen, and Nicholas D. Lane. Journey towards tiny per-
ceptual super-resolution. In Andrea Vedaldi, Horst Bischof, Thomas Brox, and
Jan-Michael Frahm, editors, Computer Vision – ECCV 2020, pages 85–102,
2020. 23

[150] Yang Gao, Hong Yang, Peng Zhang, Chuan Zhou, and Yue Hu. Graph neural
architecture search. In Christian Bessiere, editor, Proceedings of the Twenty-
Ninth International Joint Conference on Artificial Intelligence, IJCAI-20, pages
1403–1409. International Joint Conferences on Artificial Intelligence Organiza-
tion, 7 2020. doi: 10.24963/ijcai.2020/195. URL https://doi.org/10.24963

/ijcai.2020/195. Main track. 23

[151] Y. Yang, C. Wang, L. Gong, and X. Zhou. Fpnet: Customized convolu-
tional neural network for fpga platforms. In International Conference on Field-
Programmable Technology (ICFPT), pages 399–402, 2019. 24, 27

[152] Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and TAMT Meyarivan. A
fast and elitist multiobjective genetic algorithm: Nsga-ii. IEEE transactions on
evolutionary computation, 6(2):182–197, 2002. 26

[153] Xiangxiang Chu, Bo Zhang, Ruijun Xu, and Hailong Ma. Multi-objective rein-
forced evolution in mobile neural architecture search. CoRR, abs/1901.01074,
2019. URL http://arxiv.org/abs/1901.01074. 26

[154] X. Zhang, W. Jiang, Y. Shi, and J. Hu. When neural architecture search meets
hardware implementation: from hardware awareness to co-design. In IEEE
Computer Society Annual Symposium on VLSI (ISVLSI), pages 25–30, 2019.
27, 31, 32

[155] G. Bender, H. Liu, B. Chen, G. Chu, S. Cheng, P. J. Kindermans, and Q. V.
Le. Can weight sharing outperform random architecture search? an investiga-
tion with tunas. In IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 14311–14320, 2020. doi: 10.1109/CVPR42600.20
20.01433. 27

[156] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V. Le. Learning
transferable architectures for scalable image recognition, 2018. 27, 39

https://doi.org/10.1145/3476994
https://doi.org/10.1109/TC.2020.2991575
https://doi.org/10.1109/TC.2020.2991575
https://doi.org/10.24963/ijcai.2020/195
https://doi.org/10.24963/ijcai.2020/195
http://arxiv.org/abs/1901.01074

162 BIBLIOGRAPHY

[157] Barret Zoph and Quoc V. Le. Neural architecture search with reinforcement
learning, 2016. URL http://arxiv.org/abs/1611.01578. 28

[158] Esteban Real, Sherry Moore, Andrew Selle, Saurabh Saxena, Yutaka Leon Sue-
matsu, Jie Tan, Quoc V. Le, and Alexey Kurakin. Large-scale evolution of
image classifiers. In Proceedings of the 34th International Conference on Ma-
chine Learning - Volume 70, page 2902–2911, 2017. 28

[159] Niv Nayman, Asaf Noy, Tal Ridnik, Itamar Friedman, Rong Jin, and Lihi
Zelnik-Manor. XNAS: neural architecture search with expert advice. In Ad-
vances in Neural Information Processing System 32 (NeurIPS), pages 1975–
1985, 2019. URL http://papers.nips.cc/paper/8472-xnas-neural-archi

tecture-search-with-expert-advice. 28, 29, 39, 40

[160] Hanxiao Liu, Karen Simonyan, and Yiming Yang. DARTS: differentiable archi-
tecture search. In 7th International Conference on Learning Representations,
ICLR, 2019. 28, 38

[161] Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. Binaryconnect:
Training deep neural networks with binary weights during propagations. In Pro-
ceedings of the 28th International Conference on Neural Information Processing
Systems - Volume 2, page 3123–3131, 2015. 28, 29, 33

[162] Nicolo Cesa-Bianchi and Gabor Lugosi. Prediction, Learning, and Games. Cam-
bridge University Press, 2006. ISBN 0521841089. 29

[163] Jyrki Kivinen and Manfred K Warmuth. Exponentiated gradient versus gra-
dient descent for linear predictors. information and computation, 132(1):1–63,
1997. 29

[164] Xiangxiang Chu, Bo Zhang, and Ruijun Xu. Fairnas: Rethinking evaluation
fairness of weight sharing neural architecture search. In 2021 IEEE/CVF Inter-
national Conference on Computer Vision, ICCV 2021, Montreal, QC, Canada,
October 10-17, 2021, pages 12219–12228. IEEE, 2021. doi: 10.1109/ICCV4892
2.2021.01202. 29, 60, 62, 63, 67

[165] Xiang Li, Chen Lin, Chuming Li, Ming Sun, Wei Wu, Junjie Yan, and Wanli
Ouyang. Improving one-shot NAS by suppressing the posterior fading. In 2020
IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR
2020, Seattle, WA, USA, June 13-19, 2020, pages 13833–13842. Computer Vi-
sion Foundation / IEEE, 2020. doi: 10.1109/CVPR42600.2020.01385. 29

[166] Hanxiao Liu, Karen Simonyan, and Yiming Yang. DARTS: differentiable ar-
chitecture search. CoRR, abs/1806.09055, 2018. URL http://arxiv.org/ab

s/1806.09055. 29, 61, 65, 67, 81, 121, 133, 134, 137, 138

[167] Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with
gumbel-softmax. In 5th International Conference on Learning Representations,
ICLR, 2017. URL https://openreview.net/forum?id=rkE3y85ee. 29

[168] Bichen Wu, Yanghan Wang, Peizhao Zhang, Yuandong Tian, Peter Vajda, and
Kurt Keutzer. Mixed precision quantization of convnets via differentiable neural
architecture search. CoRR, abs/1812.00090, 2018. URL http://arxiv.org/

abs/1812.00090. 29

[169] Han Cai, Chuang Gan, Tianzhe Wang, Zhekai Zhang, and Song Han. Once-
for-all: Train one network and specialize it for efficient deployment. In
8th International Conference on Learning Representations, ICLR 2020, Ad-
dis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net, 2020. URL https:

//openreview.net/forum?id=HylxE1HKwS. 29, 67, 90, 91

http://arxiv.org/abs/1611.01578
http://papers.nips.cc/paper/8472-xnas-neural-architecture-search-with-expert-advice
http://papers.nips.cc/paper/8472-xnas-neural-architecture-search-with-expert-advice
http://arxiv.org/abs/1806.09055
http://arxiv.org/abs/1806.09055
https://openreview.net/forum?id=rkE3y85ee
http://arxiv.org/abs/1812.00090
http://arxiv.org/abs/1812.00090
https://openreview.net/forum?id=HylxE1HKwS
https://openreview.net/forum?id=HylxE1HKwS

BIBLIOGRAPHY 163

[170] Colin White, Willie Neiswanger, and Yash Savani. BANANAS: bayesian op-
timization with neural architectures for neural architecture search. In Thirty-
Fifth AAAI Conference on Artificial Intelligence, AAAI, pages 10293–10301.
AAAI Press, 2021. 30, 131

[171] Liam Li and Ameet Talwalkar. Random search and reproducibility for neural
architecture search. In Uncertainty in Artificial Intelligence, pages 367–377.
PMLR, 2020. 30

[172] Hieu Pham, Melody Y. Guan, Barret Zoph, Quoc V. Le, and Jeff Dean. Efficient
neural architecture search via parameter sharing. In Proceedings of the 35th
International Conference on Machine Learning, ICML, pages 4092–4101, 2018.
URL http://proceedings.mlr.press/v80/pham18a.html. 30

[173] Stefan C. Endres, Carl Sandrock, and Walter W. Focke. A simplicial homology
algorithm for lipschitz optimisation. J. Glob. Optim., 72(2):181–217, 2018. doi:
10.1007/s10898-018-0645-y. 30

[174] Sean C. Smithson, Guang Yang, Warren J. Gross, and Brett H. Meyer. Neu-
ral networks designing neural networks: Multi-objective hyper-parameter opti-
mization. CoRR, abs/1611.02120, 2016. URL http://arxiv.org/abs/1611.0

2120. 30

[175] Ariel Gordon, Elad Eban, Ofir Nachum, Bo Chen, Tien-Ju Yang, and Edward
Choi. Morphnet: Fast & simple resource-constrained structure learning of deep
networks. CoRR, abs/1711.06798, 2017. URL http://arxiv.org/abs/1711

.06798. 30

[176] Halima Bouzidi, Hamza Ouarnoughi, Smail Niar, and Abdessamad Ait El Cadi.
Performance prediction for convolutional neural networks in edge devices, 2020.
30

[177] Tien-Ju Yang, Andrew G. Howard, Bo Chen, Xiao Zhang, Alec Go, Mark
Sandler, Vivienne Sze, and Hartwig Adam. Netadapt: Platform-aware neural
network adaptation for mobile applications. In Vittorio Ferrari, Martial Hebert,
Cristian Sminchisescu, and Yair Weiss, editors, ECCV 15th European Confer-
ence Computer Vision, volume 11214, pages 289–304, 2018. doi: 10.1007/978-3
-030-01249-6\ 18. URL https://doi.org/10.1007/978-3-030-01249-6_18.
31

[178] Chengyue Gong, Zixuan Jiang, Dilin Wang, Yibo Lin, Qiang Liu, and David Z
Pan. Mixed precision neural architecture search for energy efficient deep learn-
ing. In ICCAD, pages 1–7, 2019. 31

[179] Hyoukjun Kwon, Prasanth Chatarasi, Michael Pellauer, Angshuman Parashar,
Vivek Sarkar, and Tushar Krishna. Understanding reuse, performance, and
hardware cost of dnn dataflow: A data-centric approach. In Proceedings of the
52nd Annual IEEE/ACM International Symposium on Microarchitecture, page
754–768, 2019. ISBN 9781450369381. 31

[180] A. Anderson, J. Su, R. Dahyot, and D. Gregg. Performance-oriented neural
architecture search. In International Conference on High Performance Com-
puting Simulation (HPCS), pages 177–184, 2019. doi: 10.1109/HPCS48598.20
19.9188213. 31

[181] Chris Ying, Aaron Klein, Eric Christiansen, Esteban Real, Kevin Murphy, and
Frank Hutter. Nas-bench-101: Towards reproducible neural architecture search.
In Kamalika Chaudhuri and Ruslan Salakhutdinov, editors, Proceedings of the

http://proceedings.mlr.press/v80/pham18a.html
http://arxiv.org/abs/1611.02120
http://arxiv.org/abs/1611.02120
http://arxiv.org/abs/1711.06798
http://arxiv.org/abs/1711.06798
https://doi.org/10.1007/978-3-030-01249-6_18

164 BIBLIOGRAPHY

36th International Conference on Machine Learning, ICML, volume 97 of Pro-
ceedings of Machine Learning Research, pages 7105–7114. PMLR, 2019. 32, 36,
37

[182] Xishan Zhang, Shaoli Liu, Rui Zhang, Chang Liu, Di Huang, Shiyi Zhou, Ji-
aming Guo, Yu Kang, Qi Guo, Zidong Du, et al. Adaptive precision training:
Quantify back propagation in neural networks with fixed-point numbers. arXiv
preprint arXiv:1911.00361, 2019. 33

[183] Umar Asif, Jianbin Tang, and Stefan Harrer. Ensemble knowledge distil-
lation for learning improved and efficient networks. In Giuseppe De Gia-
como, Alejandro Catalá, Bistra Dilkina, Michela Milano, Senén Barro, Al-
berto Bugaŕın, and Jérôme Lang, editors, ECAI - 24th European Confer-
ence on Artificial Intelligence, 2020. doi: 10.3233/FAIA200188. URL
https://doi.org/10.3233/FAIA200188. 33

[184] Ghouthi Boukli Hacene. Processing and learning deep neural networks on chip.
Theses, Ecole nationale supérieure Mines-Télécom Atlantique, October 2019.
URL https://tel.archives-ouvertes.fr/tel-02438921. 33

[185] Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and Yoshua
Bengio. Binarized neural networks. In Daniel D. Lee, Masashi Sugiyama,
Ulrike von Luxburg, Isabelle Guyon, and Roman Garnett, editors, Advances
in Neural Information Processing Systems 29, pages 4107–4115, 2016. URL
http://papers.nips.cc/paper/6573-binarized-neural-networks. 33

[186] Kuan Wang, Zhijian Liu, Yujun Lin, Ji Lin, and Song Han. HAQ: hardware-
aware automated quantization. CoRR, abs/1811.08886, 2018. URL http:

//arxiv.org/abs/1811.08886. 33

[187] Haibao Yu, Qi Han, Jianbo Li, Jianping Shi, Guangliang Cheng, and Bin
Fan. Search what you want: Barrier panelty NAS for mixed precision quan-
tization. In Andrea Vedaldi, Horst Bischof, Thomas Brox, and Jan-Michael
Frahm, editors, ECCV - 16th European Conference Computer Vision, vol-
ume 12354, pages 1–16, 2020. doi: 10.1007/978-3-030-58545-7\ 1. URL
https://doi.org/10.1007/978-3-030-58545-7_1. 34

[188] V. Camus, L. Mei, C. Enz, and M. Verhelst. Review and benchmarking of
precision-scalable multiply-accumulate unit architectures for embedded neural-
network processing. IEEE Journal on Emerging and Selected Topics in Circuits
and Systems, 9(4):697–711, 2019. doi: 10.1109/JETCAS.2019.2950386. 34

[189] Seongmin Park, Beomseok Kwon, Kyuyoung Sim, Jieun Lim, Tae-Ho Kim,
and Jungwook Choi. Uniform-precision neural network quantization via neural
channel expansion, 2021. URL https://openreview.net/forum?id=oGq4d9

TbyIA. 34

[190] Xuanyi Dong and Yi Yang. Network pruning via transformable architecture
search. In Advances in Neural Information Processing Systems, pages 760–771,
2019. 34

[191] Mingbao Lin, Rongrong Ji, Yuxin Zhang, Baochang Zhang, Yongjian Wu, and
Yonghong Tian. Channel pruning via automatic structure search. In Chris-
tian Bessiere, editor, Proceedings of the Twenty-Ninth International Joint Con-
ference on Artificial Intelligence, IJCAI, pages 673–679. ijcai.org, 2020. doi:
10.24963/ijcai.2020/94. URL https://doi.org/10.24963/ijcai.2020/94.
34

https://doi.org/10.3233/FAIA200188
https://tel.archives-ouvertes.fr/tel-02438921
http://papers.nips.cc/paper/6573-binarized-neural-networks
http://arxiv.org/abs/1811.08886
http://arxiv.org/abs/1811.08886
https://doi.org/10.1007/978-3-030-58545-7_1
https://openreview.net/forum?id=oGq4d9TbyIA
https://openreview.net/forum?id=oGq4d9TbyIA
https://doi.org/10.24963/ijcai.2020/94

BIBLIOGRAPHY 165

[192] Xin Li, Yiming Zhou, Zheng Pan, and Jiashi Feng. Partial order pruning:
For best speed/accuracy trade-off in neural architecture search. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), June 2019. 34

[193] Danilo Vasconcellos Vargas and Shashank Kotyan. Evolving robust neural ar-
chitectures to defend from adversarial attacks. CoRR, abs/1906.11667, 2019.
URL http://arxiv.org/abs/1906.11667. 34

[194] Ekin Dogus Cubuk, Barret Zoph, Samuel S. Schoenholz, and Quoc V. Le. In-
triguing properties of adversarial examples. In 6th International Conference on
Learning Representations, ICLR. OpenReview.net, 2018. 34

[195] Minghao Guo, Yuzhe Yang, Rui Xu, Ziwei Liu, and Dahua Lin. When NAS
meets robustness: In search of robust architectures against adversarial at-
tacks. In IEEE/CVF Conference on Computer Vision and Pattern Recognition,
CVPR, pages 628–637. IEEE, 2020. doi: 10.1109/CVPR42600.2020.00071.
URL https://doi.org/10.1109/CVPR42600.2020.00071. 34

[196] Abu Sebastian, Manuel Le Gallo, Riduan Khaddam-Aljameh, and Evangelos
Eleftheriou. Memory devices and applications for in-memory computing. Nature
Nanotechnology, 15(7):529–544, Jul 2020. 34, 101

[197] Vinay Joshi, Manuel Le Gallo, Irem Boybat, Simon Haefeli, Christophe
Piveteau, Martino Dazzi, Bipin Rajendran, Abu Sebastian, and Evangelos
Eleftheriou. Accurate deep neural network inference using computational phase-
change memory. CoRR, abs/1906.03138, 2019. 34, 101, 103

[198] Corey Lammie, Wei Xiang, Bernabé Linares-Barranco, and Mostafa Rahimi
Azghadi. Memtorch: An open-source simulation framework for memristive
deep learning systems. Neurocomputing, 485:124–133, 2022. ISSN 0925-2312.
doi: https://doi.org/10.1016/j.neucom.2022.02.043. 35, 101, 103

[199] Guihong Li, Sumit K. Mandal, Ümit Y. Ogras, and Radu Marculescu. FLASH:
fast neural architecture search with hardware optimization. ACM Trans. Em-
bed. Comput. Syst., 20(5s):63:1–63:26, 2021. 35

[200] Weiwen Jiang, Qiuwen Lou, Zheyu Yan, Lei Yang, Jingtong Hu, Xiaobo Sharon
Hu, and Yiyu Shi. Device-circuit-architecture co-exploration for computing-in-
memory neural accelerators. IEEE Trans. Computers, 70(4):595–605, 2021. 35

[201] Zhihang Yuan, Jingze Liu, Xingchen Li, Longhao Yan, Haoxiang Chen, Bingzhe
Wu, Yuchao Yang, and Guangyu Sun. NAS4RRAM: neural network architec-
ture search for inference on rram-based accelerators. Sci. China Inf. Sci., 64
(6), 2021. 35

[202] Zheyu Yan, Da-Cheng Juan, Xiaobo Sharon Hu, and Yiyu Shi. Uncertainty
modeling of emerging device based computing-in-memory neural accelerators
with application to neural architecture search. In 2021 26th Asia and South
Pacific Design Automation Conference (ASP-DAC), pages 859–864, 2021. 35

[203] Guoqing Li, Meng Zhang, Jiaojie Li, Feng Lv, and Guodong Tong. Effi-
cient densely connected convolutional neural networks. Pattern Recognit., 109:
107610, 2021. 35

[204] C. Zhou, F. Redondo, J. Buchel, I. Boybat, X. Comas, S. R. Nandakumar,
S. Das, A. Sebastian, M. Le Gallo, and P. N. Whatmough. Ml-hw co-design
of noise-robust tinyml models and always-on analog compute-in-memory edge
accelerator. IEEE Micro, 42(06):76–87, 2022. ISSN 1937-4143. doi: 10.1109/
MM.2022.3198321. 35

http://arxiv.org/abs/1906.11667
https://doi.org/10.1109/CVPR42600.2020.00071

166 BIBLIOGRAPHY

[205] Xuanyi Dong and Yi Yang. Nas-bench-201: Extending the scope of reproducible
neural architecture search. In International Conference on Learning Represen-
tations, 2020. URL https://openreview.net/forum?id=HJxyZkBKDr. 36,
37

[206] Arber Zela, Julien Siems, and Frank Hutter. Nas-bench-1shot1: Benchmark-
ing and dissecting one-shot neural architecture search. In 8th International
Conference on Learning Representations, ICLR. OpenReview.net, 2020. URL
https://openreview.net/forum?id=SJx9ngStPH. 36, 37

[207] Xuanyi Dong, Lu Liu, Katarzyna Musial, and Bogdan Gabrys. Nats-bench:
Benchmarking NAS algorithms for architecture topology and size. CoRR,
abs/2009.00437, 2020. URL https://arxiv.org/abs/2009.00437. 37

[208] Julien Niklas Siems, Lucas Zimmer, Arber Zela, Jovita Lukasik, Margret Ke-
uper, and Frank Hutter. {NAS}-bench-301 and the case for surrogate bench-
marks for neural architecture search, 2021. URL https://openreview.net/f

orum?id=1flmvXGGJaa. 37

[209] Chaojian Li, Zhongzhi Yu, Yonggan Fu, Yongan Zhang, Yang Zhao, Haoran
You, Qixuan Yu, Yue Wang, Cong Hao, and Yingyan Lin. {HW}-{nas}-bench:
Hardware-aware neural architecture search benchmark. In International Con-
ference on Learning Representations, 2021. URL https://openreview.net/f

orum?id=_0kaDkv3dVf. 37, 39

[210] Stephen Merity, Nitish Shirish Keskar, and Richard Socher. Regularizing and
optimizing LSTM language models. In 6th International Conference on Learn-
ing Representations, ICLR, 2018. URL https://openreview.net/forum?id=

SyyGPP0TZ. 38

[211] Mitchell P. Marcus, Beatrice Santorini, and Mary Ann Marcinkiewicz. Building
a large annotated corpus of english: The penn treebank. Comput. Linguistics,
19(2):313–330, 1993. 38

[212] Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer
sentinel mixture models. In 5th International Conference on Learning Repre-
sentations, ICLR. OpenReview.net, 2017. URL https://openreview.net/f

orum?id=Byj72udxe. 38

[213] Joseph Mellor, Jack Turner, Amos J. Storkey, and Elliot J. Crowley. Neural
architecture search without training. CoRR, abs/2006.04647, 2020. URL http

s://arxiv.org/abs/2006.04647. 38, 145

[214] G. J. van Wyk and A. S. Bosman. Evolutionary neural architecture search
for image restoration. In International Joint Conference on Neural Networks
(IJCNN), pages 1–8, 2019. 39

[215] Haokui Zhang, Ying Li, Hao Chen, and Chunhua Shen. IR-NAS: neural ar-
chitecture search for image restoration. CoRR, abs/1909.08228, 2019. URL
http://arxiv.org/abs/1909.08228. 39

[216] Xinyu Gong, Shiyu Chang, Yifan Jiang, and Zhangyang Wang. Autogan: Neu-
ral architecture search for generative adversarial networks. In Proceedings of the
IEEE International Conference on Computer Vision, pages 3224–3234, 2019.
39

[217] Kary Ho, Andrew Gilbert, Hailin Jin, and John P. Collomosse. Neural ar-
chitecture search for deep image prior. CoRR, abs/2001.04776, 2020. URL
https://arxiv.org/abs/2001.04776. 39

https://openreview.net/forum?id=HJxyZkBKDr
https://openreview.net/forum?id=SJx9ngStPH
https://arxiv.org/abs/2009.00437
https://openreview.net/forum?id=1flmvXGGJaa
https://openreview.net/forum?id=1flmvXGGJaa
https://openreview.net/forum?id=_0kaDkv3dVf
https://openreview.net/forum?id=_0kaDkv3dVf
https://openreview.net/forum?id=SyyGPP0TZ
https://openreview.net/forum?id=SyyGPP0TZ
https://openreview.net/forum?id=Byj72udxe
https://openreview.net/forum?id=Byj72udxe
https://arxiv.org/abs/2006.04647
https://arxiv.org/abs/2006.04647
http://arxiv.org/abs/1909.08228
https://arxiv.org/abs/2001.04776

BIBLIOGRAPHY 167

[218] Zhuotun Zhu, Chenxi Liu, Dong Yang, Alan Yuille, and Daguang Xu. V-nas:
Neural architecture search for volumetric medical image segmentation. In 2019
International Conference on 3D Vision (3DV), pages 240–248. IEEE, 2019. 39

[219] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean
Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al.
Imagenet large scale visual recognition challenge. International journal of com-
puter vision, 115(3):211–252, 2015. 39

[220] Chenxi Liu, Barret Zoph, Maxim Neumann, Jonathon Shlens, Wei Hua, Li-Jia
Li, Li Fei-Fei, Alan Yuille, Jonathan Huang, and Kevin Murphy. Progressive
neural architecture search. In Proceedings of the European Conference on Com-
puter Vision (ECCV), pages 19–34, 2018. 39

[221] Zhichao Lu, Gautam Sreekumar, Erik D. Goodman, Wolfgang Banzhaf,
Kalyanmoy Deb, and Vishnu Naresh Boddeti. Neural architecture transfer.
CoRR, abs/2005.05859, 2020. URL https://arxiv.org/abs/2005.05859. 39

[222] Marcelo Gennari Do Nascimento, Theo W. Costain, and Victor Adrian
Prisacariu. Finding non-uniform quantization schemes using multi-task gaus-
sian processes. In Andrea Vedaldi, Horst Bischof, Thomas Brox, and Jan-
Michael Frahm, editors, ECCV - 16th European Conference Computer Vision,
volume 12362, pages 383–398, 2020. 41

[223] Han Cai, Ji Lin, Yujun Lin, Zhijian Liu, Haotian Tang, Hanrui Wang, Ligeng
Zhu, and Song Han. Enable deep learning on mobile devices: Methods, systems,
and applications. ACM Trans. Des. Autom. Electron. Syst., 27(3), 2022. ISSN
1084-4309. doi: 10.1145/3486618. 46

[224] Hadjer Benmeziane, Kaoutar El Maghraoui, Hamza Ouarnoughi, Smäıl Niar,
Martin Wistuba, and Naigang Wang. A comprehensive survey on hardware-
aware neural architecture search. CoRR, abs/2101.09336, 2021. 47, 51, 62

[225] Hadjer Benmeziane, Hamza Ouarnoughi, Kaoutar El Maghraoui, and Smäıl
Niar. Accelerating neural architecture search with rank-preserving surrogate
models. In The 7th Annual International Conference on Arab Women, pages
21:1–21:6. ACM, 2021. 47

[226] Hadjer Benmeziane, Smäıl Niar, Hamza Ouarnoughi, and Kaoutar El
Maghraoui. Pareto rank surrogate model for hardware-aware neural archi-
tecture search. In International IEEE Symposium on Performance Analysis
of Systems and Software, ISPASS 2022, Singapore, May 22-24, 2022, pages
267–276. IEEE, 2022. doi: 10.1109/ISPASS55109.2022.00040. URL
https://doi.org/10.1109/ISPASS55109.2022.00040. 47, 68

[227] Thomas N. Kipf and Max Welling. Semi-supervised classification with graph
convolutional networks. In 5th International Conference on Learning Repre-
sentations, ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track
Proceedings. OpenReview.net, 2017. URL https://openreview.net/forum?i

d=SJU4ayYgl. 50

[228] Vincenzo Di Massa, Gabriele Monfardini, Lorenzo Sarti, Franco Scarselli, Marco
Maggini, and Marco Gori. A comparison between recursive neural networks and
graph neural networks. In International Joint Conference on Neural Networks,
pages 778–785. IEEE, 2006. 50

[229] Llukan Puka. Kendall’s tau. In Miodrag Lovric, editor, International Encyclo-
pedia of Statistical Science, pages 713–715. Springer, 2011. 50

https://arxiv.org/abs/2005.05859
https://doi.org/10.1109/ISPASS55109.2022.00040
https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=SJU4ayYgl

168 BIBLIOGRAPHY

[230] Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In
Balaji Krishnapuram, Mohak Shah, Alexander J. Smola, Charu C. Aggarwal,
Dou Shen, and Rajeev Rastogi, editors, Proceedings of the 22nd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, San Fran-
cisco, CA, USA, August 13-17, 2016, pages 785–794. ACM, 2016. doi: 10.114
5/2939672.2939785. URL https://doi.org/10.1145/2939672.2939785. 51

[231] Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma,
Qiwei Ye, and Tie-Yan Liu. Lightgbm: A highly efficient gradient boosting
decision tree. In Isabelle Guyon, Ulrike von Luxburg, Samy Bengio, Hanna M.
Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman Garnett, editors,
Advances in Neural Information Processing Systems 30: Annual Conference on
Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach,
CA, USA, pages 3146–3154, 2017. URL https://proceedings.neurips.cc

/paper/2017/hash/6449f44a102fde848669bdd9eb6b76fa-Abstract.html.
51

[232] Michael D. McKay. Latin hypercube sampling as a tool in uncertainty analysis
of computer models. In Robert C. Crain, editor, Proceedings of the 24th Winter
Simulation Conference, Arlington, VA, USA, December 13-16, 1992, pages 557–
564. ACM Press, 1992. 53, 105

[233] Xuanyi Dong and Yi Yang. Nas-bench-201: Extending the scope of repro-
ducible neural architecture search. In 8th International Conference on Learn-
ing Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020.
OpenReview.net, 2020. 54, 55, 61, 65

[234] Xiaoliang Dai, Alvin Wan, Peizhao Zhang, Bichen Wu, Zijian He, Zhen Wei,
Kan Chen, Yuandong Tian, Matthew Yu, Peter Vajda, and Joseph E. Gonzalez.
Fbnetv3: Joint architecture-recipe search using predictor pretraining. In IEEE
Conference on Computer Vision and Pattern Recognition, CVPR, pages 16276–
16285. Computer Vision Foundation / IEEE, 2021. 54, 55, 58

[235] Han Cai, Ligeng Zhu, and Song Han. Proxylessnas: Direct neural architecture
search on target task and hardware. In 7th International Conference on Learn-
ing Representations, ICLR. OpenReview.net, 2019. 54, 55, 57, 58, 60, 61, 65,
67, 138

[236] Martin Wistuba and Tejaswini Pedapati. Learning to rank learning curves. In
Proceedings of the 37th International Conference on Machine Learning, pages
10303–10312. PMLR, 2020. 54, 55, 145

[237] Patryk Chrabaszcz, Ilya Loshchilov, and Frank Hutter. A downsampled variant
of imagenet as an alternative to the CIFAR datasets. CoRR, abs/1707.08819,
2017. URL http://arxiv.org/abs/1707.08819. 55, 65

[238] Chaojian Li, Zhongzhi Yu, Yonggan Fu, Yongan Zhang, Yang Zhao, Haoran
You, Qixuan Yu, Yue Wang, Cong Hao, and Yingyan Lin. Hw-nas-bench:
Hardware-aware neural architecture search benchmark. In 9th International
Conference on Learning Representations, ICLR 2021, 2021. 55

[239] Ting-Ting Wang, Shu-Chuan Chu, Chia-Cheng Hu, Han-Dong Jia, and Jeng-
Shyang Pan. Efficient network architecture search using hybrid optimizer. En-
tropy, 24(5):656, 2022. doi: 10.3390/e24050656. URL https://doi.org/10.3

390/e24050656. 57

[240] Han Xiao, Ziwei Wang, Jiwen Lu, and Jie Zhou. Shapley-NAS: Discovering
operation contribution for neural architecture search, 2022. URL https://op

enreview.net/forum?id=F7nD--1JIC. 57

https://doi.org/10.1145/2939672.2939785
https://proceedings.neurips.cc/paper/2017/hash/6449f44a102fde848669bdd9eb6b76fa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/6449f44a102fde848669bdd9eb6b76fa-Abstract.html
http://arxiv.org/abs/1707.08819
https://doi.org/10.3390/e24050656
https://doi.org/10.3390/e24050656
https://openreview.net/forum?id=F7nD--1JIC
https://openreview.net/forum?id=F7nD--1JIC

BIBLIOGRAPHY 169

[241] Jovita Lukasik, Steffen Jung, and Margret Keuper. Learning where to look
- generative NAS is surprisingly efficient. CoRR, abs/2203.08734, 2022. doi:
10.48550/arXiv.2203.08734. URL https://doi.org/10.48550/arXiv.2203.

08734. 57

[242] Peng Ye, Baopu Li, Yikang Li, Tao Chen, Jiayuan Fan, and Wanli Ouyang. β-
darts: Beta-decay regularization for differentiable architecture search. CoRR,
abs/2203.01665, 2022. doi: 10.48550/arXiv.2203.01665. URL https://doi.or

g/10.48550/arXiv.2203.01665. 57

[243] Linnan Wang, Chenhan Yu, Satish Salian, Slawomir Kierat, Szymon Migacz,
and Alex Fit-Florea. Gpunet: Searching the deployable convolution neural
networks for gpus. CoRR, abs/2205.00841, 2022. doi: 10.48550/arXiv.2205.00
841. URL https://doi.org/10.48550/arXiv.2205.00841. 57, 58

[244] Xiaoliang Dai, Alvin Wan, Peizhao Zhang, Bichen Wu, Zijian He, Zhen Wei,
Kan Chen, Yuandong Tian, Matthew Yu, Peter Vajda, and Joseph E. Gonzalez.
Fbnetv3: Joint architecture-recipe search using predictor pretraining. In IEEE
Conference on Computer Vision and Pattern Recognition, CVPR 2021, virtual,
June 19-25, 2021, pages 16276–16285. Computer Vision Foundation / IEEE,
2021. 57, 90, 91

[245] Peter Mølgaard Sørensen, Bastian Epp, and Tobias May. A depthwise separable
convolutional neural network for keyword spotting on an embedded system.
EURASIP J. Audio Speech Music. Process., 2020(1):10, 2020. 59, 112

[246] Xi Chen, Shouyi Yin, Dandan Song, Peng Ouyang, Leibo Liu, and Shao-
jun Wei. Small-footprint keyword spotting with graph convolutional network.
In IEEE Automatic Speech Recognition and Understanding Workshop, ASRU
2019, Singapore, December 14-18, 2019, pages 539–546. IEEE, 2019. doi:
10.1109/ASRU46091.2019.9004005. URL https://doi.org/10.1109/AS

RU46091.2019.9004005. 59

[247] Kevin Ding, Martin Zong, Jiakui Li, and Baoxiang Li. LETR: A lightweight and
efficient transformer for keyword spotting. In IEEE International Conference on
Acoustics, Speech and Signal Processing, ICASSP 2022, Virtual and Singapore,
23-27 May 2022, pages 7987–7991. IEEE, 2022. doi: 10.1109/ICASSP43922.20
22.9747295. URL https://doi.org/10.1109/ICASSP43922.2022.9747295.
59

[248] Axel Berg, Mark O’Connor, and Miguel Tairum Cruz. Keyword transformer:
A self-attention model for keyword spotting. In Hynek Hermansky, Honza
Cernocký, Lukás Burget, Lori Lamel, Odette Scharenborg, and Petr Motĺıcek,
editors, Interspeech 2021, 22nd Annual Conference of the International Speech
Communication Association, Brno, Czechia, 30 August - 3 September 2021,
pages 4249–4253. ISCA, 2021. doi: 10.21437/Interspeech.2021-1286. URL
https://doi.org/10.21437/Interspeech.2021-1286. 59

[249] Assaf Hurwitz Michaely, Xuedong Zhang, Gabor Simko, Carolina Parada, and
Petar Aleksic. Keyword spotting for google assistant using contextual speech
recognition. In 2017 IEEE Automatic Speech Recognition and Understanding
Workshop (ASRU), pages 272–278, 2017. doi: 10.1109/ASRU.2017.8268946.
59

[250] Nikita Klyuchnikov, Ilya Trofimov, Ekaterina Artemova, Mikhail Salnikov,
Maxim V. Fedorov, Alexander Filippov, and Evgeny Burnaev. Nas-bench-nlp:
Neural architecture search benchmark for natural language processing. IEEE
Access, 10:45736–45747, 2022. doi: 10.1109/ACCESS.2022.3169897. URL
https://doi.org/10.1109/ACCESS.2022.3169897. 59

https://doi.org/10.48550/arXiv.2203.08734
https://doi.org/10.48550/arXiv.2203.08734
https://doi.org/10.48550/arXiv.2203.01665
https://doi.org/10.48550/arXiv.2203.01665
https://doi.org/10.48550/arXiv.2205.00841
https://doi.org/10.1109/ASRU46091.2019.9004005
https://doi.org/10.1109/ASRU46091.2019.9004005
https://doi.org/10.1109/ICASSP43922.2022.9747295
https://doi.org/10.21437/Interspeech.2021-1286
https://doi.org/10.1109/ACCESS.2022.3169897

170 BIBLIOGRAPHY

[251] Yuge Zhang, Zejun Lin, Junyang Jiang, Quanlu Zhang, Yujing Wang, Hui Xue,
Chen Zhang, and Yaming Yang. Deeper insights into weight sharing in neural
architecture search. CoRR, abs/2001.01431, 2020. 60

[252] Jiefeng Peng, Jiqi Zhang, Changlin Li, Guangrun Wang, Xiaodan Liang, and
Liang Lin. Pi-nas: Improving neural architecture search by reducing supernet
training consistency shift. In 2021 IEEE/CVF International Conference on
Computer Vision, ICCV 2021, Montreal, QC, Canada, October 10-17, 2021,
pages 12334–12344. IEEE, 2021. doi: 10.1109/ICCV48922.2021.01213. URL
https://doi.org/10.1109/ICCV48922.2021.01213. 60

[253] Yiyang Zhao, Linnan Wang, Yuandong Tian, Rodrigo Fonseca, and Tian Guo.
Few-shot neural architecture search. In Marina Meila and Tong Zhang, editors,
Proceedings of the 38th International Conference on Machine Learning, ICML
2021, 18-24 July 2021, Virtual Event, volume 139 of Proceedings of Machine
Learning Research, pages 12707–12718. PMLR, 2021. URL http://proceedi

ngs.mlr.press/v139/zhao21d.html. 60

[254] Lingxi Xie, Xin Chen, Kaifeng Bi, Longhui Wei, Yuhui Xu, Lanfei Wang,
Zhengsu Chen, An Xiao, Jianlong Chang, Xiaopeng Zhang, and Qi Tian.
Weight-sharing neural architecture search: A battle to shrink the optimization
gap. ACM Comput. Surv., 54(9):183:1–183:37, 2022. doi: 10.1145/3473330.
URL https://doi.org/10.1145/3473330. 60

[255] Xin Chen, Lingxi Xie, Jun Wu, Longhui Wei, Yuhui Xu, and Qi Tian. Fitting
the search space of weight-sharing NAS with graph convolutional networks.
In Thirty-Fifth AAAI Conference on Artificial Intelligence, 2021, pages 7064–
7072. AAAI Press, 2021. 60, 61

[256] Chaojian Li, Zhongzhi Yu, Yonggan Fu, Yongan Zhang, Yang Zhao, Haoran
You, Qixuan Yu, Yue Wang, Cong Hao, and Yingyan Lin. Hw-nas-bench:
Hardware-aware neural architecture search benchmark. In 9th International
Conference on Learning Representations, ICLR 2021, Virtual Event, Austria,
May 3-7, 2021. OpenReview.net, 2021. URL https://openreview.net/for

um?id=_0kaDkv3dVf. 60, 65, 66

[257] Michael T. M. Emmerich, André H. Deutz, and Jan Willem Klinkenberg.
Hypervolume-based expected improvement: Monotonicity properties and exact
computation. In Proceedings of the IEEE Congress on Evolutionary Compu-
tation, CEC 2011, New Orleans, LA, USA, 5-8 June, 2011, pages 2147–2154.
IEEE, 2011. doi: 10.1109/CEC.2011.5949880. URL https://doi.org/10.1

109/CEC.2011.5949880. 63

[258] Hieu Pham, Melody Y. Guan, Barret Zoph, Quoc V. Le, and Jeff Dean. Efficient
neural architecture search via parameter sharing. In Jennifer G. Dy and Andreas
Krause, editors, Proceedings of the 35th International Conference on Machine
Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-15,
2018, volume 80 of Proceedings of Machine Learning Research, pages 4092–4101.
PMLR, 2018. URL http://proceedings.mlr.press/v80/pham18a.html. 67

[259] Xuanyi Dong and Yi Yang. Searching for a robust neural architecture in four
GPU hours. In IEEE Conference on Computer Vision and Pattern Recogni-
tion, CVPR 2019, Long Beach, CA, USA, June 16-20, 2019, pages 1761–1770.
Computer Vision Foundation / IEEE, 2019. doi: 10.1109/CVPR.2019.00186.
URL http://openaccess.thecvf.com/content_CVPR_2019/html/Dong_Se

arching_for_a_Robust_Neural_Architecture_in_Four_GPU_Hours_CVPR_

2019_paper.html. 67

https://doi.org/10.1109/ICCV48922.2021.01213
http://proceedings.mlr.press/v139/zhao21d.html
http://proceedings.mlr.press/v139/zhao21d.html
https://doi.org/10.1145/3473330
https://openreview.net/forum?id=_0kaDkv3dVf
https://openreview.net/forum?id=_0kaDkv3dVf
https://doi.org/10.1109/CEC.2011.5949880
https://doi.org/10.1109/CEC.2011.5949880
http://proceedings.mlr.press/v80/pham18a.html
http://openaccess.thecvf.com/content_CVPR_2019/html/Dong_Searching_for_a_Robust_Neural_Architecture_in_Four_GPU_Hours_CVPR_2019_paper.html
http://openaccess.thecvf.com/content_CVPR_2019/html/Dong_Searching_for_a_Robust_Neural_Architecture_in_Four_GPU_Hours_CVPR_2019_paper.html
http://openaccess.thecvf.com/content_CVPR_2019/html/Dong_Searching_for_a_Robust_Neural_Architecture_in_Four_GPU_Hours_CVPR_2019_paper.html

BIBLIOGRAPHY 171

[260] Xuefei Ning, Yin Zheng, Tianchen Zhao, Yu Wang, and Huazhong Yang. A
generic graph-based neural architecture encoding scheme for predictor-based
NAS. In Andrea Vedaldi, Horst Bischof, Thomas Brox, and Jan-Michael Frahm,
editors, Computer Vision - ECCV 2020 - 16th European Conference, Glasgow,
UK, August 23-28, 2020, Proceedings, Part XIII, volume 12358 of Lecture Notes
in Computer Science, pages 189–204. Springer, 2020. doi: 10.1007/978-3-030
-58601-0\ 12. URL https://doi.org/10.1007/978-3-030-58601-0_12. 68

[261] Lukasz Dudziak, Thomas Chau, Mohamed S. Abdelfattah, Royson Lee, Hyeji
Kim, and Nicholas D. Lane. BRP-NAS: prediction-based NAS using gcns. In
Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan,
and Hsuan-Tien Lin, editors, Advances in Neural Information Processing Sys-
tems 33: Annual Conference on Neural Information Processing Systems 2020,
NeurIPS 2020, December 6-12, 2020, virtual, 2020. 68

[262] Xuanyi Dong and Yi Yang. Nas-bench-201: Extending the scope of repro-
ducible neural architecture search. In 8th International Conference on Learn-
ing Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020.
OpenReview.net, 2020. 75, 79

[263] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are
graph neural networks? In 7th International Conference on Learning Represen-
tations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019. OpenReview.net,
2019. URL https://openreview.net/forum?id=ryGs6iA5Km. 76

[264] Chris Ying, Aaron Klein, Eric Christiansen, Esteban Real, Kevin Murphy, and
Frank Hutter. Nas-bench-101: Towards reproducible neural architecture search.
In 36th International Conference on Machine Learning, volume 97, pages 7105–
7114. PMLR, 2019. 81

[265] Hanxiao Liu, Karen Simonyan, Oriol Vinyals, Chrisantha Fernando, and Koray
Kavukcuoglu. Hierarchical representations for efficient architecture search. In
6th International Conference on Learning Representations, ICLR, 2018. 81

[266] Ji Lin, Wei-Ming Chen, Yujun Lin, John Cohn, Chuang Gan, and Song Han.
Mcunet: Tiny deep learning on iot devices. In Hugo Larochelle, Marc’Aurelio
Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin, editors,
Advances in Neural Information Processing Systems 33: Annual Conference on
Neural Information Processing Systems, 2020. 82, 112, 146

[267] Wei Niu, Jiexiong Guan, Yanzhi Wang, Gagan Agrawal, and Bin Ren. Dnnfu-
sion: accelerating deep neural networks execution with advanced operator fu-
sion. In Stephen N. Freund and Eran Yahav, editors, 42nd ACMInternational
Conference on Programming Language Design and Implementation PLDI, pages
883–898, 2021. 83

[268] Hadjer Benmeziane, Smäıl Niar, Hamza Ouarnoughi, and Kaoutar El
Maghraoui. Pareto rank surrogate model for hardware-aware neural architec-
ture search. In International IEEE Symposium on Performance Analysis of
Systems and Software, ISPASS, pages 267–276, 2022. 84

[269] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual
learning for image recognition. In IEEE Conference on Computer Vision and
Pattern Recognition, CVPR, pages 770–778. IEEE Computer Society, 2016. 87,
89, 105, 113

[270] Xiangxiang Chu and Xinjie Yu. Improved crowding distance for NSGA-II.
CoRR, abs/1811.12667, 2018. 88

https://doi.org/10.1007/978-3-030-58601-0_12
https://openreview.net/forum?id=ryGs6iA5Km

172 BIBLIOGRAPHY

[271] G. Jignesh Chowdary, Narinder Singh Punn, Sanjay Kumar Sonbhadra, and
Sonali Agarwal. Face mask detection using transfer learning of inceptionv3.
In Ladjel Bellatreche, Vikram Goyal, Hamido Fujita, Anirban Mondal, and
P. Krishna Reddy, editors, Big Data Analytics - 8th International Conference,
BDA, volume 12581, pages 81–90, 2020. 89

[272] Mark Sandler, Andrew G. Howard, Menglong Zhu, Andrey Zhmoginov, and
Liang-Chieh Chen. Mobilenetv2: Inverted residuals and linear bottlenecks. In
Conference on Computer Vision and Pattern Recognition, CVPR, pages 4510–
4520, 2018. 89

[273] Fisher Yu and Vladlen Koltun. Multi-scale context aggregation by dilated
convolutions. In Yoshua Bengio and Yann LeCun, editors, 4th International
Conference on Learning Representations, ICLR, 2016. 90

[274] François Chollet. Xception: Deep learning with depthwise separable convolu-
tions. In 2017 IEEE Conference on Computer Vision and Pattern Recognition,
CVPR 2017, Honolulu, HI, USA, July 21-26, 2017, pages 1800–1807. IEEE
Computer Society, 2017. 91

[275] Pankaj, Ashish Kumar, Rama Komaragiri, and Manjeet Kumar. A review on
computation methods used in photoplethysmography signal analysis for heart
rate estimation. Archives of Computational Methods in Engineering, 29(2):
921–940, 2022. 93

[276] Xiangmao Chang, Gangkai Li, Guoliang Xing, Kun Zhu, and Linlin Tu. Deep-
heart: A deep learning approach for accurate heart rate estimation from PPG
signals. ACM Trans. Sens. Networks, 17(2):14:1–14:18, 2021. 93, 94, 95

[277] Heewon Chung, Hoon Ko, Hooseok Lee, and Jinseok Lee. Deep learning for
heart rate estimation from reflectance photoplethysmography with acceleration
power spectrum and acceleration intensity. IEEE Access, 8:63390–63402, 2020.
93, 94, 95

[278] Seok Bin Song, Jung Woo Nam, and Jin Heon Kim. Nas-ppg: Ppg-based heart
rate estimation using neural architecture search. IEEE Sensors Journal, 21
(13):14941–14949, 2021. doi: 10.1109/JSEN.2021.3073047. 93, 94, 95

[279] Mouna Benchekroun, Baptiste Chevallier, Hamza Beaouiss, Dan Istrate, Vin-
cent Zalc, Mohamad Khalil, and Dominique Lenne. Comparison of stress detec-
tion through ECG and PPG signals using a random forest-based algorithm. In
44th Annual International Conference of the IEEE Engineering in Medicine &
Biology Society, EMBC 2022, Glasgow, Scotland, United Kingdom, July 11-15,
2022, pages 3150–3153. IEEE, 2022. 94

[280] I. Boybat, B. Kersting, S. Ghazi Sarwat, X. Timoneda, R. L. Bruce, M. Bright-
Sky, M. Le Gallo, and A. Sebastian. Temperature sensitivity of analog
in-memory computing using phase-change memory. In 2021 IEEE Inter-
national Electron Devices Meeting (IEDM), pages 28.3.1–28.3.4, 2021. doi:
10.1109/IEDM19574.2021.9720519. 101

[281] Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun
Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam. Mobilenets:
Efficient convolutional neural networks for mobile vision applications. CoRR,
abs/1704.04861, 2017. 102

[282] Gangzhao Lu, Weizhe Zhang, and Zheng Wang. Optimizing depthwise sep-
arable convolution operations on gpus. IEEE Transactions on Parallel and
Distributed Systems, 33(1):70–87, 2022. doi: 10.1109/TPDS.2021.3084813. 102

BIBLIOGRAPHY 173

[283] Hadjer Benmeziane, Kaoutar El Maghraoui, Hamza Ouarnoughi, Smäıl Niar,
Martin Wistuba, and Naigang Wang. A comprehensive survey on hardware-
aware neural architecture search. CoRR, abs/2101.09336, 2021. 102

[284] Saining Xie, Ross B. Girshick, Piotr Dollár, Zhuowen Tu, and Kaiming He.
Aggregated residual transformations for deep neural networks. In IEEE Con-
ference on Computer Vision and Pattern Recognition, CVPR, pages 5987–5995.
IEEE Computer Society, 2017. 102, 105

[285] Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. In Richard C.
Wilson, Edwin R. Hancock, and William A. P. Smith, editors, Proceedings of
the British Machine Vision Conference, BMVC. BMVA Press, 2016. 102, 104,
105, 111, 116

[286] Malte J. Rasch, Diego Moreda, Tayfun Gokmen, Manuel Le Gallo, Fabio Carta,
Cindy Goldberg, Kaoutar El Maghraoui, Abu Sebastian, and Vijay Narayanan.
A flexible and fast pytorch toolkit for simulating training and inference on
analog crossbar arrays. In 3rd IEEE International Conference on Artificial
Intelligence Circuits and Systems, pages 1–4. IEEE, 2021. 103, 106

[287] Malte J. Rasch, Charles Mackin, Manuel Le Gallo, An Chen, Andrea Fasoli,
Frederic Odermatt, Ning Li, S. R. Nandakumar, Pritish Narayanan, Hsinyu
Tsai, Geoffrey W. Burr, Abu Sebastian, and Vijay Narayanan. Hardware-aware
training for large-scale and diverse deep learning inference workloads using in-
memory computing-based accelerators, 2023. URL https://arxiv.org/abs/

2302.08469. 103

[288] Mingxing Tan and Quoc V. Le. Efficientnetv2: Smaller models and faster
training. In Marina Meila and Tong Zhang, editors, Proceedings of the 38th In-
ternational Conference on Machine Learning, ICML, volume 139 of Proceedings
of Machine Learning Research, pages 10096–10106. PMLR, 2021. 104

[289] Hadjer Benmeziane, Smäıl Niar, Hamza Ouarnoughi, and Kaoutar El
Maghraoui. Pareto rank surrogate model for hardware-aware neural architec-
ture search. In International IEEE Symposium on Performance Analysis of
Systems and Software, ISPASS, pages 267–276. IEEE, 2022. 107

[290] Hervé Abdi. The kendall rank correlation coefficient. Encyclopedia of Measure-
ment and Statistics. Sage, Thousand Oaks, CA, pages 508–510, 2007. 107

[291] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features
from tiny images. 2009. 110

[292] Aakanksha Chowdhery, Pete Warden, Jonathon Shlens, Andrew Howard, and
Rocky Rhodes. Visual wake words dataset. CoRR, abs/1906.05721, 2019. 110

[293] Hang Zhang, Chongruo Wu, Zhongyue Zhang, Yi Zhu, Haibin Lin, Zhi Zhang,
Yue Sun, Tong He, Jonas Mueller, R. Manmatha, Mu Li, and Alexander J.
Smola. Resnest: Split-attention networks. In IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition Workshops, CVPR, pages 2735–2745.
IEEE, 2022. 110

[294] Mahesh Chandra Mukkamala and Matthias Hein. Variants of rmsprop and
adagrad with logarithmic regret bounds. In Doina Precup and Yee Whye Teh,
editors, Proceedings of the 34th International Conference on Machine Learning,
ICML, volume 70 of Proceedings of Machine Learning Research, pages 2545–
2553. PMLR, 2017. 110

[295] P. Warden. Speech Commands: A Dataset for Limited-Vocabulary Speech
Recognition. ArXiv e-prints, April 2018. URL https://arxiv.org/abs/1804

.03209. 110

https://arxiv.org/abs/2302.08469
https://arxiv.org/abs/2302.08469
https://arxiv.org/abs/1804.03209
https://arxiv.org/abs/1804.03209

174 BIBLIOGRAPHY

[296] Jorge Mart́ınez, Héctor Pérez-Meana, Enrique Escamilla Hernández, and
Masahisa Mabo Suzuki. Speaker recognition using mel frequency cepstral coef-
ficients (MFCC) and vector quantization (VQ) techniques. In Pedro Bañuelos
Sánchez, Roberto Rosas-Romero, and Mauricio Javier Osorio Galindo, editors,
22nd International Conference on Electrical Communications and Computers,
CONIELECOMP, pages 248–251. IEEE, 2012. 110

[297] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimiza-
tion. In Yoshua Bengio and Yann LeCun, editors, 3rd International Conference
on Learning Representations, 2015. 110

[298] Colby R. Banbury, Vijay Janapa Reddi, Peter Torelli, Nat Jeffries, Csaba
Király, Jeremy Holleman, Pietro Montino, David Kanter, Pete Warden, Danilo
Pau, Urmish Thakker, Antonio Torrini, Jay Cordaro, Giuseppe Di Guglielmo,
Javier M. Duarte, Honson Tran, Nhan Tran, Wenxu Niu, and Xuesong Xu.
Mlperf tiny benchmark. In Joaquin Vanschoren and Sai-Kit Yeung, editors,
Proceedings of the Neural Information Processing Systems Track on Datasets
and Benchmarks 1, NeurIPS Datasets and Benchmarks 2021, December 2021,
virtual, 2021. 111

[299] Manuel Le Gallo, Riduan Khaddam-Aljameh, Milos Stanisavljevic, Athana-
sios Vasilopoulos, Benedikt Kersting, Martino Dazzi, Geethan Karunaratne,
Matthias Braendli, Abhairaj Singh, Silvia M. Mueller, Julian Buechel, Xavier
Timoneda, Vinay Joshi, Urs Egger, Angelo Garofalo, Anastasios Petropoulos,
Theodore Antonakopoulos, Kevin Brew, Samuel Choi, Injo Ok, Timothy Philip,
Victor Chan, Claire Silvestre, Ishtiaq Ahsan, Nicole Saulnier, Vijay Narayanan,
Pier Andrea Francese, Evangelos Eleftheriou, and Abu Sebastian. A 64-core
mixed-signal in-memory compute chip based on phase-change memory for deep
neural network inference, 2022. URL https://arxiv.org/abs/2212.02872.
113

[300] R. Khaddam-Aljameh, M. Stanisavljevic, J. Fornt Mas, G. Karunaratne,
M. Braendli, F. Liu, A. Singh, S. M. Müller, U. Egger, A. Petropoulos, T. An-
tonakopoulos, K. Brew, S. Choi, I. Ok, F. L. Lie, N. Saulnier, V. Chan, I. Ahsan,
V. Narayanan, S. R. Nandakumar, M. Le Gallo, P. A. Francese, A. Sebastian,
and E. Eleftheriou. Hermes core – a 14nm cmos and pcm-based in-memory
compute core using an array of 300ps/lsb linearized cco-based adcs and local
digital processing. In 2021 Symposium on VLSI Technology, pages 1–2, 2021.
113

[301] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional
networks for biomedical image segmentation. In Nassir Navab, Joachim Horneg-
ger, William M. Wells III, and Alejandro F. Frangi, editors, Medical Image
Computing and Computer-Assisted Intervention - MICCAI, volume 9351 of
Lecture Notes in Computer Science, pages 234–241. Springer, 2015. 118, 121,
131, 140

[302] Zongwei Zhou, Md Mahfuzur Rahman Siddiquee, Nima Tajbakhsh, and Jian-
ming Liang. Unet++: A nested u-net architecture for medical image seg-
mentation. In Danail Stoyanov, Zeike Taylor, Gustavo Carneiro, Tanveer F.
Syeda-Mahmood, Anne L. Martel, Lena Maier-Hein, João Manuel R. S. Tavares,
Andrew P. Bradley, João Paulo Papa, Vasileios Belagiannis, Jacinto C. Nasci-
mento, Zhi Lu, Sailesh Conjeti, Mehdi Moradi, Hayit Greenspan, and Anant
Madabhushi, editors, Deep Learning in Medical Image Analysis - and - Mul-
timodal Learning for Clinical Decision Support - 4th International Workshop,
DLMIA , and 8th International Workshop, ML-CDS 2018, Held in Conjunc-
tion with MICCAI, volume 11045 of Lecture Notes in Computer Science, pages
3–11. Springer, 2018. 118, 131, 140

https://arxiv.org/abs/2212.02872

BIBLIOGRAPHY 175

[303] Ozan Oktay, Jo Schlemper, Löıc Le Folgoc, Matthew C. H. Lee, Mattias P.
Heinrich, Kazunari Misawa, Kensaku Mori, Steven G. McDonagh, Nils Y. Ham-
merla, Bernhard Kainz, Ben Glocker, and Daniel Rueckert. Attention u-net:
Learning where to look for the pancreas. CoRR, abs/1804.03999, 2018. 118,
131, 140

[304] Luyan Liu, Zhiwei Wen, Songwei Liu, Hong-Yu Zhou, Hongwei Zhu, Weicheng
Xie, Linlin Shen, Kai Ma, and Yefeng Zheng. Mixsearch: Searching for domain
generalized medical image segmentation architectures. CoRR, abs/2102.13280,
2021. 118, 129, 131, 140

[305] Qihang Yu, Dong Yang, Holger Roth, Yutong Bai, Yixiao Zhang, Alan L. Yuille,
and Daguang Xu. C2FNAS: coarse-to-fine neural architecture search for 3d
medical image segmentation. In IEEE/CVF Conference on Computer Vision
and Pattern Recognition, CVPR, pages 4125–4134. Computer Vision Founda-
tion / IEEE, 2020. 118, 129, 130, 131, 140

[306] Xinyi Wang, Tiange Xiang, Chaoyi Zhang, Yang Song, Dongnan Liu, Heng
Huang, and Weidong Cai. Bix-nas: Searching efficient bi-directional architec-
ture for medical image segmentation. In Marleen de Bruijne, Philippe C. Cattin,
Stéphane Cotin, Nicolas Padoy, Stefanie Speidel, Yefeng Zheng, and Caroline
Essert, editors, Medical Image Computing and Computer Assisted Intervention
- MICCAI, volume 12901 of Lecture Notes in Computer Science, pages 229–238.
Springer, 2021. 118, 129, 130, 131, 140

[307] Xiaosong Wang, Yifan Peng, Le Lu, Zhiyong Lu, Mohammadhadi Bagheri, and
Ronald Summers. Chestx-ray8: Hospital-scale chest x-ray database and bench-
marks on weakly-supervised classification and localization of common thorax
diseases. In 2017 IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), pages 3462–3471, 2017. 120

[308] Fabian Isensee, Paul F Jaeger, Simon AA Kohl, Jens Petersen, and Klaus H
Maier-Hein. nnu-net: a self-configuring method for deep learning-based biomed-
ical image segmentation. Nature methods, 18(2):203–211, 2021. 131, 140

[309] Zhichao Lu, Kalyanmoy Deb, Erik D. Goodman, Wolfgang Banzhaf, and
Vishnu Naresh Boddeti. Nsganetv2: Evolutionary multi-objective surrogate-
assisted neural architecture search. In Andrea Vedaldi, Horst Bischof, Thomas
Brox, and Jan-Michael Frahm, editors, Computer Vision - ECCV 2020 - 16th
European Conference, Glasgow, UK, August 23-28, 2020, Proceedings, Part I,
volume 12346 of Lecture Notes in Computer Science, pages 35–51. Springer,
2020. doi: 10.1007/978-3-030-58452-8\ 3. URL https://doi.org/10.1007/

978-3-030-58452-8_3. 131

[310] Chakkrit Termritthikun, Yeshi Jamtsho, Jirarat Ieamsaard, Paisarn Munee-
sawang, and Ivan Lee. Eeea-net: An early exit evolutionary neural architecture
search. Eng. Appl. Artif. Intell., 104:104397, 2021. 131

[311] Ruichi Yu, Ang Li, Chun-Fu Chen, Jui-Hsin Lai, Vlad I. Morariu, Xintong Han,
Mingfei Gao, Ching-Yung Lin, and Larry S. Davis. NISP: pruning networks
using neuron importance score propagation. In IEEE Conference on Computer
Vision and Pattern Recognition, CVPR, pages 9194–9203. Computer Vision
Foundation / IEEE Computer Society, 2018. 134, 135

[312] Yuhui Xu, Lingxi Xie, Xiaopeng Zhang, Xin Chen, Guo-Jun Qi, Qi Tian, and
Hongkai Xiong. PC-DARTS: partial channel connections for memory-efficient
architecture search. In 8th International Conference on Learning Representa-
tions, ICLR. OpenReview.net, 2020. 138

https://doi.org/10.1007/978-3-030-58452-8_3
https://doi.org/10.1007/978-3-030-58452-8_3

176 BIBLIOGRAPHY

[313] Xin Chen, Lingxi Xie, Jun Wu, and Qi Tian. Progressive differentiable ar-
chitecture search: Bridging the depth gap between search and evaluation. In
IEEE/CVF International Conference on Computer Vision, ICCV, pages 1294–
1303. IEEE, 2019. 138

[314] Simon Kornblith, Mohammad Norouzi, Honglak Lee, and Geoffrey E. Hinton.
Similarity of neural network representations revisited. In Kamalika Chaud-
huri and Ruslan Salakhutdinov, editors, Proceedings of the 36th International
Conference on Machine Learning, ICML 2019, 9-15 June 2019, Long Beach,
California, USA, volume 97 of Proceedings of Machine Learning Research, pages
3519–3529. PMLR, 2019. URL http://proceedings.mlr.press/v97/kornbl

ith19a.html. 145

[315] Daniela Szwarcman, Daniel Civitarese, and Marley Vellasco. Quantum-inspired
neural architecture search. In 2019 International Joint Conference on Neural
Networks (IJCNN), pages 1–8, 2019. doi: 10.1109/IJCNN.2019.8852453. 146

http://proceedings.mlr.press/v97/kornblith19a.html
http://proceedings.mlr.press/v97/kornblith19a.html

BIBLIOGRAPHY 177

