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Résumé : Les fibroblastes sont les cellules les plus
abondantes du tissu conjonctif et sont des régulateurs
essentiels de divers processus physiologiques.
Cependant, sous 1’influence de stimuli spécifiques,
ils peuvent présenter des comportements agressifs et
contribuer a la physiopathologie de certaines
maladies. En particulier, la destruction du cartilage et
des os constatée dans la polyarthrite rhumatoide est
largement initiée et soutenue par les fibroblastes
synoviaux (RASFs). De méme, les fibroblastes
associés au cancer du sein (CAFs) jouent un role
important dans I’initiation et la progression du cancer
ainsi que dans la résistance aux traitements. A ce
jour, il n’existe pas de traitement curatif pour ces
maladies, mais plutdt des traitements
symptomatiques visant a réduire les dommages
ultérieurs et a améliorer la qualité de vie des patients.
Compte tenu de I’implication des fibroblastes dans
leur pathogeneése, une nouvelle piste pourrait résider
dans le développement de thérapies ciblant ces
derniers. A cet égard, nous cherchons a décrypter les
roles clés des RASFs et des CAFs, en nous
concentrant sur la caractéristique commune qui
semble étre a I’origine de leur activation et de leur
contribution aux symptdmes de la maladie associée,
leur reprogrammation métabolique. Pour élucider les
mécanismes pathogénes globaux et accélérer
I’identification de cibles thérapeutiques innovantes,
nous avons développé un cadre de modélisation
hybride innovant couvrant les multiples couches
biologiques de la signalisation, régulation génique et
métabolisme. Nous avons ensuite intégré ce pipeline
dans un outil python du nom de MetalLo. En
commengant par construire des bases de
connaissances statiques sous la forme de cartes

d’interactions moléculaires standardisées nous
inférons par la suite des modeles de régulation
Booléens cellule et maladie-spécifique pour les
RASFs et les CAFs. Une fois leur cohérence
biologique évaluée et validée, ces modeles sont
couplés a un réseau générique du métabolisme
central humain. En couvrant plusieurs strates
biologiques, notre framework permet d’évaluer
I’impact des systemes de régulation des
fibroblastes sur la distribution de leurs flux
métaboliques dans des conditions maladies-
spécifiques. En plus de reproduire la
reprogrammation métabolique des RASFs et des
CAFs  observée  expérimentalement,  nos
simulations in-silico soutiennent 1’hypothése
originale selon laquelle, & I’instar des CAFs, les
RASFs subissent un effet Warburg inversé. En
reprogrammant leurs voies métaboliques centrales
par le biais de ce dernier processus, les RASFs et
les CAFs s’adaptent a leur nouvel environnement,
maintiennent leurs phénotypes agressifs et
participent activement a [’amplification de la
pathogenese de la maladie associée. HIF1 a été
identifié comme le principal acteur moléculaire de
ce mécanisme dans les deux maladies. Compte
tenu des altérations métaboliques et des facteurs de
régulation similaires, nous suggérons 1’existence
d’'un  mécanisme commun régissant la
transformation phénotypique des fibroblastes par le
biais d’un effet Warburg inversé induit par HIF1
dans la polyarthrite thumatoide et le cancer. Par
conséquent, nous proposons de cibler HIF1 comme
une voie prometteuse dans le traitement de la
polyarthrite rhumatoide et du cancer en ciblant la
reprogrammation métabolique des RASFs et des
CAFs.
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Abstract : Fibroblasts are the most abundant cells in
connective tissue and are essential regulators of
various physiological processes. However, under the
influence of specific stimuli, they can exhibit
aggressive behaviors and contribute to disease
physiopathology. In particular, the cartilage and bone
destruction occurring in rheumatoid arthritis is
largely initiated and sustained by synovial fibroblasts
(RASFs). Similarly, breast cancer-associated
fibroblasts (CAFs) are greatly involved in cancer
initiation, progression, and resistance to therapy. To
date, there is no cure for these diseases but rather
symptomatic treatments aimed at reducing further
damage and improving the patients quality of life.
Yet, considering the involvement of fibroblasts in
their pathogenesis, a new lead may lie in the
development of fibroblast-directed therapies. In this
regard, we seek to decipher RASFs and breast CAFs
critical roles, focusing on the common feature that
seemingly drives their activation and contribution to
the associated diseases debilitating symptoms,
namely their metabolic reprogramming. To unravel
the comprehensive pathogenic mechanisms and
accelerate the identification of innovative therapeutic
targets, we developed a novel hybrid modeling
framework covering the multiple biological layers of
signaling, gene regulation, and metabolism. We
further packaged said pipeline in a python tool of the
name Metalo. Starting by constructing static
knowledge bases in the form of standardized
molecular interaction maps, we inferred cell- and

disease-specific Boolean regulatory models for
RASFs and breast CAFs. Once their biological
coherence is thoroughly evaluated and validated,
they are coupled with a generic reconstruction of
human central metabolism in a context-specific
manner. By spanning across multiple biological
strata, our framework allows the assessment of
fibroblasts regulatory impact upon their metabolic
flux distribution under disease-specific conditions.
Besides confirming the experimentally-observed
metabolic reprogramming of RASFs and breast
CAFs, simulations supported the original
hypothesis that, similarly to CAFs, RASFs undergo
a reverse Warburg effect. By reprogramming their
central carbon metabolic pathways through the
latter process, both RASFs and breast CAFs adapt
to their new environment, sustain their aggressive
phenotypes, and actively participate in the
amplification of the associated disease
pathogenesis. HIF1 was identified as the primary
molecular driver of this mechanism in both
situations. Given the shared metabolic alterations
and regulatory driver, we further suggested the
existence of a common mechanism directing the
phenotypic transformation of fibroblasts through a
HIF1-driven reverse Warburg effect in rheumatoid
arthritis and breast cancer. Therefore, we propose
the targeting of HIF1 as a promising path in the
treatment of rheumatoid arthritis and cancer by
addressing RASFs and breast CAFs metabolic
reprogramming.
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RESUME EN FRANCAIS

Défini en 2011 comme « I’interface entre les disciplines historiquement
distinctes de I’immunologie et du métabolisme » [1], le domaine de
I’immunométabolisme s’est imposé comme un champ de recherche majeur
en biologie cellulaire. Cette discipline présente de multiples facettes et
applications, notamment en apportant un regard unique sur les mécanismes

pathologiques complexes afin d’identifier de nouvelles cibles thérapeutiques.

Un sujet bien connu de I’'immunométabolisme est la reprogrammation
métabolique que subissent certains acteurs cellulaires, acquérant un
phénotype agressif associ¢ a des caractéristiques pathogénes dans des
maladies liées a I’immunité. Le décryptage de ces mécanismes complexes et
multiniveaux, a D’interface entre processus métaboliques et processus

immunitaires, pourrait élargir le paysage thérapeutique de maladies

actuellement incurables.

En effet, pour survivre au sein de leur environnement, les organismes
présentent deux caractéristiques fondamentales : 1’ensemble des réactions
nécessaires au maintien de la vie, appelé métabolisme, et la capacité¢ de
résister a un agent ou a un processus nocif ou pathogene, appelée immunité.
Leur implication conjointe dans les processus pathologiques n’est donc pas
surprenante. Pourtant, et jusque trés récemment, les sous-systémes
immunologiques et métaboliques étaient considérés comme totalement
indépendants et leurs interactions étaient largement négligées dans le
développement thérapeutique. Dans ce contexte, 1I’immunométabolisme
soutient que la capacité a résister a un agent ou a un processus nocif est liée a
une distribution efficace des nutriments au sein-méme des cellules et que les
processus métaboliques sont étroitement régis par des cascades de régulation

immunitaire.
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La fonction centrale du métabolisme consiste en la production d’énergie sous
forme d’adénosine triphosphate (ATP) pour construire des molécules
complexes et générer de la biomasse. Dans les cellules normales des tissus
sains, la maniere la plus courante d’y parvenir est I’oxydation du pyruvate
glycolytique a travers le cycle de 1’acide tricarboxylique (TCA)
mitochondrial, alimentant la phosphorylation oxydative (OXPHOS).
Globalement, 36 molécules d’ATP y sont produites par molécule de glucose
a travers le transfert d’¢lectrons en présence d’oxygene. Cependant, en 1927,
Otto Warburg, lauréat du prix Nobel, a identifié pour la premicre fois une
altération des voies métaboliques pour la production d’énergie dans les
cellules cancéreuses [23], aujourd’hui reconnue sous le nom d’ « effet
Warburg ». La glycolyse aérobie génére alors quatre molécules d’ATP par
molécule de glucose convertie en pyruvate et en lactate, contournant de
manicre significative les voies mitochondriales. Au-dela de la propriété
fondatrice de I’effet Warburg, a savoir une forte absorption de glucose
alimentant la glycolyse et entrainant une forte sécrétion de lactate, et ce méme
en présence d’oxygene [26], cette reprogrammation métabolique s’est ensuite
révélée couvrir d’autres changements bioénergétiques. Enfin, nous réalisons
aujourd’hui que cette reprogrammation métabolique ne se limite pas qu’aux
cellules cancéreuses. Elle peut affecter les cellules stromales du
microenvironnement tumoral qui peuvent subir leur propre effet Warburg,
généralement pour soutenir les cellules cancéreuses adjacentes. Cette relation
réciproque est connue sous le nom d’effet Warburg inversé [27]. Il a
¢galement été démontré récemment que diverses cellules non cancéreuses
peuvent subir une reprogrammation métabolique afin de s’adapter et survivre,
c’est le cas des macrophages, cellules T ou cellules dendritiques dans diverses

conditions pathologiques non cancéreuses [28].

La reprogrammation métabolique de ces acteurs en cellules présentant un

phénotype agressif permettrait non seulement de leur fournir 1’énergie
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nécessaire, mais également I’absorption et l’incorporation de nombreux
nutriments dans leur biomasse afin de soutenir une biosynthése a grande
échelle, prolifération rapide, survie, invasion et autres attributs associés a leur
phénotype agressif [32]. Ces cellules reprogrammées sur le plan métabolique
et dotées de phénotypes agressifs contribuant fréquemment aux processus
pathogénes, 1’¢lucidation de leurs altérations métabolique pourrait permettre

d’améliorer la prise en charge thérapeutique des maladies associées.

Deux cas de reprogrammation métabolique d’un acteur cellulaire dans une
maladie complexe ont ¢ét¢ abordés dans cette thése de doctorat : les
fibroblastes associés au cancer du sein (CAFs) ainsi que les fibroblastes

synoviaux de polyarthrite rhumatoide (RASFs).

En effet, les altérations métaboliques des fibroblastes semblent exercer un
role déterminant dans 1’acquisition d’un phénotype agressif et dans leur
activit¢ pathogeéne au sein de ces deux maladies. La transformation de
fibroblastes sains en RASFs, caractérisés par une prolifération accrue et une
résistance a 1’apoptose, contribue a la chronicité de la polyarthrite rhumatoide
(PR) et a ’inflammation des articulations. Il en va de méme pour les CAFs et
leurs interactions avec les cellules cancéreuses qui contribuent a la croissance
et a ’invasion des tumeurs ainsi qu’a la résistance au traitement. Le ciblage
immunométabolique suggére que la repolarisation de cellules lies a
I’immunité, telles que les RASFs et les CAFs, vers des phénotypes sains et
non agressifs par la manipulation de leur métabolisme pourrait représenter
une approche prometteuse pour diminuer leur activité pathogéniques. Or,
pour répondre aux besoins métaboliques des RASFs et des CAFs, il est
nécessaire de déméler leurs processus complexes et d’identifier leur(s)
moteur(s) ou régulateur(s) principal(aux). Les méthodes computationnelles
semblent adaptées a I’acquisition de nouvelles connaissances biologiques sur

des maladies complexes et encore incurables, en intégrant diverses couches
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d’informations biologiques et en exploitant leurs caractéristiques statiques et
dynamiques. Un formalisme de modélisation hybride, couvrant les diverses
caractéristiques biologiques de la régulation génique, de la signalisation
intracellulaire et du métabolisme pathologique, pourrait rendre compte de la
dynamique des interconnexions immuno-métaboliques des RASFs et des
CAFs. Dans cette thése, nous avons donc proposé 1’utilisation d’approches
computationnelles pour déchiffrer les mécanismes sous-tendant la
transformation des RASFs et des CAFs, acteurs clés de la pathogénése de la
maladie associée, par leur reprogrammation métabolique afin de proposer des

cibles thérapeutiques innovantes.
Cela a notamment été obenu a travers les différents sous-objectif suivants :

(1) L’exploitation  d’approches computationnelles statiques et
dynamiques dans les contextes cellulaires et pathologiques des
RASFs et des CAFs, couvrant signalisation cellulaire, régulation
génique et métabolisme, afin de décrypter le comportement émergent

des fibroblastes en intégrant de multiples mécanismes biologiques.

Bien que les RASFs et les CAFs partagent de nombreuses similitudes, nous
avons ¢té contraints de prendre en compte les différentes caractéristiques
pathologiques et les micro-environnements distincts de la PR et du cancer du
sein qui conduisent a leur reprogrammation métabolique. De plus, puisque les
fibroblastes sont des systémes complexes avec une variété de processus
biologiques impliqués, une attention supplémentaire a €té accordée a
I’intégration de multiples couches d’informations qui permettraient les
interconnexions entre les stimuli extracellulaires : les cascades de
signalisation intracellulaires, 1’activité des facteurs de transcription, la
régulation de I’expression génique et, enfin et surtout, les processus

métaboliques.
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Plus précisément, nous avons commencé par construire des cartes
d’interactions moléculaires de pointe pour la PR et les CAFs génériques, en
améliorant les travaux publiés précédemment, a savoir la RA-map [200] et la
CAF-map de I’ « Altas of Cancer Signaling Network » (ACSN) [204].
L’objectif premier étant de cartographier avec précision et de manicre
mécanistique les voies impliquées dans la pathogenése des deux maladies.
Nos nouvelles cartes, la RA-map V2 et la CAF-map V2, sont donc des
représentations graphiques standardisées, qui s’engagent pleinement a
respecter les principes FAIR [226] de la communauté pour la facilité de
recherche, ’accessibilité, 1’interopérabilité et la reproductibilité. En effet, les
deux cartes d’interactions moléculaires ont été rendues librement accessibles
via la plateforme de navigateur web MINERVA [234]. Leur contenu est
conforme aux normes SBGN PD [189], [227] pour la représentation, SBML
[229] pour le format, MIRIAM pour les annotations [233], PMIDs pour les
références et CALM pour la biocuration [231]. Toutes les entités sont
annotées a 1’aide des symboles HGNC [205] pour les composants de
signalisation et de régulation génique et BiGG [232] pour les composants
métaboliques. L’utilisation d’identifiants standard pour les entités présentes
dans nos cartes a permis d’assurer leur compatibilité avec d’autres outils et
de faciliter I’intégration de données omiques. Enfin, les annotations détaillées
et ’acces facilité au contenu permettent une réutilisation transparente et
facilitée des ressources. En outre, la construction manuelle de nos cartes
permet d’avoir une plus grande confiance dans les informations représentées
par rapport aux reconstructions automatiques, de fournir des informations
mécanistiques détaillées et de pallier au manque de données omiques
nécessaires a I’inférence automatique de réseaux dans certains contextes

biologiques comme ceux-ci.

La RA-map V2 et la CAF-map V2 représentent les premicres tentatives de

visualiser et de simplifier les informations complexes concernant les
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interconnexions métaboliques et régulatoires détaillées dans la PR et les
CAFs génériques. Il s’agit de bases de connaissances statiques permettant de
résumer les connaissances actuelles sur les voies biologiques moléculaires et
les entités impliquées significativement dans la pathogenése des maladies
associées. Ces cartes permettent en outre de visualiser des données
expérimentales, de mettre en évidence certains aspects des processus
biologique affecté et d’identifier les différences entre diverses conditions.
Leur analyse topologique nous a également permis d’étudier la distribution
du réseau et d’identifier les nceuds structurels ayant potentiellement un fort

pouvoir de régulation.

L’étude de cartes d’interaction moléculaires statiques nous limitant dans
I’analyse de la dynamique des RASFs et des CAFs, nous en avons inferré
automatiquement des modeles Booléens dynamiques et exécutables. Ces
derniers représentent de formidables ressources pour décrypter, de manicre
qualitative, les processus biologiques complexes sous-tendus par des
propriétés dynamiques. Ils sont trés adaptés a 1’étude des processus de
signalisation cellulaire et de régulation génique véhiculant des flux de
signaux. Les deux modeles de régulation ont par la suite été contextualisés
pour reproduire les conditions biologiques des RASFs et des CAFs. Cela a
été obtenu en combinant des approches de curation manuelle et basées sur des
données omiques afin de garantir une spécificité cellulaire élevée et la
confiance dans les interactions décrites et les conditions initiales utilisées. Les
modeles des RASFs et des CAFs sont conformes aux normes de biologie
systémique du format SBML-qual [244], sont enticrement annotés et sont
librement accessibles dans deux référentiels de modéeles biologiques, a savoir
Cell Collective [245] et BioModels [246], [247]. La cohérence biologique du
comportement des modeles de régulation a été évaluée par rapport a des
études expérimentales extraites de la littérature scientifique a trois niveaux

distincts (c’est-a-dire au niveau des voies génériques de régulation, de
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métabolisme ainsi que du comportement cellulaire global), reproduisant
principalement les observations expérimentales. L’un des avantages de ces
modeles réside dans leur capacité a contribuer a I’identification des
interactions réglementaires inconnues et d’effets directs ou indirects de
composants ou de voies spécifiques les uns sur les autres. Globalement, la
génération et le paramétrage d’un modele logique a partir de la construction
manuelle d’un réseau ainsi que I’analyse des données et la biocuration
permettent d’éviter les problémes associés aux méthodologies automatiques
tels que la reconstruction incorrecte des réactions ou la compartimentation
incorrecte conduisant a des représentations erronées. Dans le domaine de la
PR, il s’agit de la deuxiéme tentative pour saisir la dynamique de I’activité
pathogeéne des RASFs, mais de la premiere pour inclure le role clé du
métabolisme. Dans le domaine du cancer, notre modéle Booléen exécutable
représente la premiere tentative d’évaluation de 1’activité pathogéne
dynamique des CAFs, d’autant plus de maniére spécifique au cancer du sein
ou en incluant les processus métaboliques. De tels modéles de régulation
peuvent étre analysés tels quels, en tirant parti de leur construction liée aux
phénotypes cellulaires, pour identifier les nceuds ou les voies les plus
importants dans chaque comportement cellulaire dynamique afin de répondre

a des questions biologiques spécifiques de manicre strictement qualitative.

Cependant, 1’étude qualitative de I’impact des systémes de régulation génique
et de signalisation cellulaire sur les sous-processus métaboliques n’étant pas
suffisante pour aborder la steechiométrie des flux biochimiques, nous avons
couplé nos modéles de régulation a une reconstruction générique et
quantitative du métabolisme humain central, MitoCore [250]. Le choix du
modele métabolique a été basé sur deux facteurs : la fiabilité des réactions
représentées, qui ont été sélectionnées manuellement pour MitoCore, plutot
qu’une reconstruction métabolique automatique, et le fait que notre sous-

section métabolique d’intérét soit le métabolisme central du carbone plutot
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que I’ensemble du métabolisme. Cependant, en principe, notre framework est
adaptable a n’importe quel type de modele métabolique basé sur des
contraintes. Le framework proposé extrait des contraintes métaboliques
supplémentaires a partir de composants métaboliques dont le comportement
asymptotique « inactif » a été prouvé dans des conditions de régulation
spécifiques a la cellule et a la maladie. Il permet de traiter automatiquement
des modéles comportant des centaines de composants. Notre approche
s’inspire de la doctrine centrale de 1I’'immunométabolisme, a savoir les
interconnexions étroites entre les processus de régulation immunitaire et la
machinerie métabolique, et la nécessité¢ d’intégrer I’étude dynamique de ces
différentes couches biologiques pour comprendre la reprogrammation

métabolique des RASFs et des CAFs.

Apres avoir démontré I’adaptabilité de notre framework de modélisation
hybride aux contextes des RASFs et des CAFs, nous I’avons compilé dans un
outil python appelé MetalLo pour un plus large éventail d’applications. Cet
outil open-source peut étre utilisé par une grande variété d’utilisateurs ayant
une formation pluridisciplinaire, par le biais de la ligne de commande ou de
I’interface graphique. De plus, cet outil est interopérable avec d’autres outils
de biologie systémique grace au format standard des cartes d’interactions
moléculaires et des modéles Booléens et métaboliques. A partir d’une carte
d’interactions moléculaires standardisée et d’une reconstruction métabolique
générique basée sur des contraintes, MetalLo applique automatiquement
toutes les étapes de notre framework de couplage hybride (c’est-a-dire
I’inférence du modéle Booléen de régulation, I’initialisation de ce dernier en
fonction des conditions initiales définies par I’utilisateur, la computation des
trap-spaces en tant que comportement régulatoire asymptotique,
I’identification des composants métaboliques inactifs a long terme, la
traduction en contraintes métaboliques et ’analyse de la distribution

métabolique optimale). Dans I’ensemble, MetaLo a pour but d’aider a
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I’identification de corrélations immunométaboliques dans diverses maladies
complexes afin d’¢lucider les impacts régulatoires sur les processus

métaboliques.

(2) La proposition d'un mécanisme potentiel expliquant la
reprogrammation métabolique des fibroblastes dans des conditions
spécifiques a la maladie en étudiant les impacts dynamiques
régulatoires des RASFs et des CAFs sur leurs processus métaboliques,

tout en identifiant le(s) régulateur(s) clé(s).

Les simulations de notre modele hybride des RASFs dénote que les flux
optimaux pour une production maximale d’ATP cellulaire sont glycolytiques,
représentant 85% de la production d’ATP cellulaire. Elles illustrent
également une augmentation des flux glycolytiques ainsi qu’une
augmentation de 1’absorption du glucose et de la sécrétion de lactate dans les
RASFs, témoignant d’un métabolisme hautement glycolytique. Un
métabolisme oxydatif faible est démontré par une diminution des flux TCA
et OXPHOS et une diminution de la sécrétion des sous-produits
mitochondriaux tels que le COz2 et le H2O. Un environnement hypoxique est
illustrée par une diminution de I’absorption d’Oz et une augmentation de la
sécrétion de H™, associée a I’acidité de I’environnement. Au-dela des voies
métaboliques de production d’ATP, les résultats indiquent une
reprogrammation de plusieurs autres voies métaboliques dans les RASFs.
Une sécrétion accrue d’acides aminés et d’acides gras est mise en évidence,
agissant potentiellement dans la PR comme substrats pour la production
d’énergie, intermédiaires de biosynthese, composants des phospholipides
membranaires, ou support de 1’érosion osseuse et de la dégradation du
cartilage. Une augmentation de la carboxylation réductrice est également
identifiée, nouvelle voie du métabolisme de la glutamine favorisant la

croissance de cellules de type tumoral présentant des défauts mitochondriaux.
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D’autres voies, notamment les réactions de transport mitochondrial, la
synthese de la cardiolipine ou le clivage de la glycine, semblent étre affectées,
probablement de maniére indirecte, en raison de la réorientation des

métabolites par le biais des autres voies métaboliques altérées.

Dans des conditions de régulation spécifiques aux CAFs, les flux optimaux
pour la production d’ATP sont les flux glycolytiques, a 1’origine de 85,05%
de la production d’énergie cellulaire sous forme d’ATP. Un environnement
hypoxique et un métabolisme anaérobie sont révélés par une diminution de
I’absorption d’O2 et une augmentation de la sécrétion de H', associées a
I’acidité de I’environnement. Outre les voies métaboliques de production
d’énergie, les voies de construction des macromolécules sont altérées. En
particulier, I’absorption d’acides aminés par les CAFs est réduite, de méme
que leur dégradation et leur sécrétion. L’absorption des acides gras est
également réduite tandis que leur sécrétion est augmentée. La synthése de la
cardiolipine est diminuée, ce qui est cohérent avec les résultats précédents,
car ils sont connus pour réguler ’OXPHOS. D’autres voies, dont le folate
cytosolique, la carboxylation réductrice et le métabolisme du butanoate,
semblent étre affectées, ce qui résulte trés probablement indirectement de la
réorientation des métabolites par d’autres voies altérées ou par 1’application
de nos contraintes métaboliques supplémentaires. Enfin, les transporteurs
mitochondriaux sont affectés par la reprogrammation des voies

mitochondriales évoquée ci-dessus.

Ainsi, la reprogrammation métabolique des fibroblastes semble étre un
¢lément crucial dans la pathogenése de deux maladies complexes aussi
différentes que le cancer du sein et la PR. En raison de la similitude du
framework appliqué pour contextualiser le réseau métabolique générique
MitoCore dans les deux maladies, une comparaison des voies métaboliques

altérées peut étre effectuée. Sur les sept enzymes métaboliques ayant un
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comportement régulateur asymptotique égal a 0 et conduisant a contraindre
les réactions métaboliques associées dans le modele MitoCore dans les deux
contextes biologiques, cinq sont partagées. En outre, six métabolites
similaires dont le comportement réglementaire asymptotique est égal a 0
conduisent a contraindre des réactions métaboliques supplémentaires dans
MitoCore. Afin d’identifier si ces contraintes communes sont suffisantes pour
observer des altérations métaboliques similaires a celles des RASFs et des
CAFs, une analyse métabolique supplémentaire a ét€¢ entreprise incluant
uniquement les contraintes métaboliques extraites des enzymes et des
métabolites ayant un comportement asymptotique inactif dans les deux
modeles de régulation. Les résultats décrivent un métabolisme reprogrammé
avec un flux glycolytique élevé pour la production d’énergie, ainsi que des
flux oxydatifs faibles. La sécrétion de lactate et de nutriments riches en
énergie est ¢levée. La proportion de la production totale d’énergie sous forme
d’ATP provenant de la glycolyse est calculée a 85,05%. Ces résultats, bien
que légérement différents au niveau des valeurs de certains flux, reproduisent
assez fidelement les altérations métaboliques observées dans les RASFs et les
CAFs. Ceci nous amene déja a suspecter un processus similaire de
reprogrammation métabolique dans les RASFs et les CAFs. En outre, une
analyse approfondie des voies métaboliques modifiées a été entreprise. Dans
I’ensemble, les voies métaboliques directement liées a la production d’énergie
sont modifiées de la méme maniere (augmentation de la glycolyse,
diminution de ’OXPHOS et du TCA). Les sous-produits oxydatifs sont
¢galement altérés similairement dans les CAFs et les RASFs (augmentation
du lactate et de la sécrétion, diminution de la sécrétion de CO:2 et de H20).
L’environnement des fibroblastes, respectivement dans le
microenvironnement tumoral et dans I’articulation de la PR, semble étre
modifié de fagon similaire (diminution de 1’absorption d’O2 et augmentation

de la sécrétion d’H).
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Les voies métaboliques qui ne sont pas directement impliquées dans la
production d’ATP sont également affectées. Par exemple, les conditions de
régulation spécifiques aux deux maladies reprogramment de manicre
similaire les altérations des voies des acides aminés et des acides gras dans
les fibroblastes, probablement en raison de leur importance dans la
biosynthése des macromolécules. En effet, la sécrétion des ¢éléments
constitutifs est également augmentée dans les deux situations. Certaines voies
sont altérées de fagon similaire mais posent la question de leur intérét dans
des conditions environnementales différentes. Par exemple, la carboxylation
réductrice est augmentée de maniére similaire dans les CAFs et les RASFs.
Agissant comme une nouvelle voie de la glutamine, elle soutient la croissance
des cellules présentant des déficiences mitochondriales. Warburg avait
initialement émis 1’hypothese que les cellules cancéreuses présentaient un
défaut mitochondrial [395], mais des travaux ultérieurs ont réfuté cette
hypothese [25]. De telles études n’ont pas encore été menées dans ces deux
types de fibroblastes. D’autres investigations expérimentales sont donc
nécessaires pour déchiffrer leur statut mitochondrial et identifier un bénéfice
potentiel des réactions de carboxylation réductrice. Dans I’ensemble, les
transporteurs mitochondriaux et cytosoliques ainsi que les voies de transport
sont affectés, pas nécessairement de la méme manicre, mais probablement
toujours en raison de la reprogrammation des voies métaboliques en amont.
Enfin, le métabolisme du butanoate n’est pas affecté de la méme manicre dans
les CAFs et les RASFs. Cependant, il est typiquement impliqué dans des
processus associés a la fermentation intestinale, ses altérations ne semblent

donc pas significatives dans un contexte cancéreux ou auto-immun.

(3) La proposition de nouvelles cibles thérapeutiques pour les maladies a
médiation immunitaire comme la PR ou le cancer du sein a partir de
I’étude approfondie de la reprogrammation métabolique des RASFs

et des CAFs.
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Afin de déchiffrer le role des composés régulateurs dans les altérations
métaboliques des RASFs, des knock-ins et knock-outs individuels des
conditions initiales spécifiques aux RASFs ont d’abord été réalisés. Sur les
14 variantes de conditions initiales, seule la condition 3 a un impact
significatif sur les voies de production d’ATP. En effet, lors de I’inhibition de
HIF1 et du maintien des conditions initiales spécifiques a RASF pour les
autres composants, la glycolyse a été considérablement réduite et ’OXPHOS
a expliqué la majorité de la production d’ATP cellulaire. Cette situation, bien
quextréme dans ses proportions, probablement en raison des regles
d’extraction de contraintes de notre framework, est plus proche d’une
situation saine. Ce résultat suggere que le ciblage de HIF1 pourrait participer
a la restauration d’un profil métabolique sain chez les RASFs. De plus, il est
cohérent avec des études expérimentales récentes démontrant que le knock-
out de HIF1 réduit le métabolisme glycolytique dans les fibroblastes
synoviaux humains [363]. D’autres combinaisons de knock-ins et knock-outs
ont été générées et testées pour tenir compte de I’effet synergique potentiel
des composants régulateurs sur les processus métaboliques. 2! = 16 384
combinaisons ont été testées, représentant toutes les combinaisons possibles,
en ¢liminant naturellement les knock-outs non biologiquement significatifs.
Sur les 16 384 combinaisons, 1 984 ont été éliminées car elles généraient des
comportements asymptotiques aberrants au niveau phénotypes cellulaires,
par exemple une apoptose et une prolifération actives en méme temps,
prouvant les limites d’un modéle qui n’a pas été créé pour des inputs
combinées mais pour reproduire un environnement spécifique a une cellule et
a une maladie. 8 448 combinaisons ont été éliminées car le calcul des trap-
spaces dépassait la limite de temps de trois minutes, trés probablement en
raison de 1’impossibilité de réduire suffisamment la complexité du modele
avec l’algorithme de propagation des valeurs. Les 5 952 combinaisons
restantes ont fait 1’objet d’une analyse approfondie. Toutes les combinaisons

ont montré un profil métabolique pathogene reprogrammé avec 96% de la
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production d’ATP cellulaire assurée par les voies glycolytiques et 4% par
OXPHOS. Afin d’identifier d’éventuels schémas associés a ce profil
métabolique pathologique, une analyse de la valeur de chaque composant a
¢été obtenue. Toutes les combinaisons de knock-outs et knock-ins liées a un
profil métabolique pathologique incluent I’activation de HIFI1. Le role
régulateur clé de HIF1 avait déja été identifi¢ dans les knock-outs et knock-
ins individuels. Son état d’activation constant dans toutes les combinaisons
de conditions initiales spécifiques aux RASFs et associées a un profil
métabolique pathogene démontre I’effet individuel prépondérant de HIF1 sur
I’effet synergique de tout autre composant régulateur dans le mod¢le hybride

des RASFs.

Aprés avoir reproduit la reprogrammation métabolique observée
expérimentalement dans les CAFs, le défi consistait a en identifier les
principaux moteurs de régulation. Les knock-outs et knock-ins individuels
successifs des conditions initiales de régulation spécifiques aux CAFs ont
donné lieu a 147 nouvelles combinaisons. Seul I'une d’entre elles dénote un
profil métabolique sain pour la production d’énergie dans les CAFs, il s’agit
de la condition 57 (C57). En effet, en supprimant HIF1, les voies
métaboliques semblent retrouver une distribution saine, I’ ATP cellulaire étant
généré par des voies oxydatives plutdt que glycolytiques. Les aautres facteurs
de régulation ne semblent pas affecter directement la distribution des flux
métaboliques dans les CAFs. D’autres combinaisons de knock-ins et de
knock-outs ont été générées et testées pour tenir compte de 1’effet synergique
potentiel des composants régulateurs sur les processus métaboliques. Compte
tenu du nombre élevé de conditions initiales a tester et du nombre potentiel
de 2'Y7 = 1784059616E* combinaisons, une réduction du modéle a d’abord
été entreprise. Cette derniére a été obtenue en se concentrant sur les voies
moléculaires en amont des phénotypes cellulaires des CAFs impliqués dans

les caractéristiques du cancer (c’est-a-dire la production de ROS, I’hypoxie,
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la prolifération des fibroblastes, 1’angiogenése, la croissance tumorale, efc.).
Le modéle CAFs extrait comportait 58 inputs, 51 si I’on exclut le glucose et
tous les composants agissant en tant que « molécule simple ». Les 51 inputs
restants ont ensuite été regroupés selon leur similitudes biologiques en 21
inputs. Ainsi, 22! =2 097 152 combinaisons ont été générées pour la suite des
tests. Malheureusement, aprés prés de 11 jours de simulation, « seulement »
308 159 combinaisons ont été calculées, qui ont toutes été €éliminées de
I’analyse ultérieure en raison de 1’étape de calcul des trap-spaces qui a duré
plus de trois minutes par combinaison. A ce stade, il n’est pas donc possible
d’identifier un éventuel effet synergique des composés régulatoires sur les
processus métaboliques dans le modéle des CAFs. Des stratégies alternatives

pour atteindre cet objectif sont actuellement a 1’étude.

Au-dela des nombreuses voies métaboliques altérées communes, le régulateur
moléculaire clé a également été identifié comme étant HIF1 dans les RASFs
et les CAFs. Déja reconnu dans la PR comme un moteur de 1’inflammation,
de I’angiogeneése et de la destruction du cartilage [323], le ciblage de HIF1
n’a pas encore €té proposé dans le cadre d’une stratégie thérapeutique visant
a résoudre la reprogrammation métabolique dans les fibroblastes. Dans le
cancer du sein, les opportunités thérapeutiques ciblant HIF1 semblent limitées
a ses activités métastatiques ou a son role de moteur de la prolifération
tumorale. L’intérét croissant pour le ciblage métabolique afin de s’attaquer
aux caractéristiques pro-tumorales a donné lieu a quelques découvertes telles
que ’Honokiol en tant qu’inhibiteur de la glycolyse médiée par HIF1 pour
stopper la croissance des cellules du cancer du sein [396]. Cependant, son
intérét dans les CAFs n’a pas encore été étudi¢. Enfin, des études sur d’autres
types de fibroblastes humains ont reconnu un rdle clé pour HIF1, par exemple
dans I’antivieillissement et la régénération des fibroblastes dermiques [397]
ou I’atténuation de la fibrose et le retardement du remodelage vasculaire dans

les fibroblastes associés a la sclérose systémique [398], mais son ciblage dans
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la résolution de la reprogrammation métabolique des fibroblastes n’a pas

encore été étudié.

Ainsi d’apreés nos résultats et compte tenu des altérations métaboliques
communes, des avantages probables pour les cellules environnantes du
microenvironnement pathogéne et du moteur régulateur commun, nous
proposons dans cette thése I’existence d’un mécanisme commun dirigeant la
transformation phénotypique des fibroblastes dans la polyarthrite rhumatoide
et le cancer du sein par le biais d’une reprogrammation métabolique induite

par HIFI.
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INTRODUCTION

1.1

1.1.1

IMMUNOMETABOLISM, AN EMERGING FIELD IN CELLULAR

BIOLOGY

Introduced in 2011 as “the interface between the historically distinct
disciplines of immunology and metabolism” [1], the field of
immunometabolism has emerged as a major area of research in cellular
biology. It holds multiple facets and applications, notably in providing unique
insights into complex pathological mechanisms with the ultimate goal of
identifying novel therapeutic targets. A  well-known topic in
immunometabolism is the metabolic reprogramming of particular cellular
actors acquiring an aggressive phenotype with crucial pathogenic features in
immune-related diseases. Deciphering such complex and multilevel
mechanisms, intertwining metabolic and regulatory immune processes, may

broaden the therapeutic landscape of currently incurable diseases.

When immunity meets metabolism

To survive within their environment, organisms exhibit two fundamental
features: the set of life-sustaining reactions, referred to as metabolism, and
the ability to resist a harmful agent or process, known as immunity. Their dual
implication in pathological processes is consequently not surprising. Yet,
until very recently, immunological and metabolic subsystems were
considered as totally independent and their interplay was widely neglected in
treatment development. Immune disorders were, and remain for the greater
part, treated through immunosuppressive therapies [2], whereas treating

metabolic disorders was focused on tackling associated conditions (e.g. high
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blood pressure and blood sugar or unhealthy cholesterol levels) [3]. Despite
their great strides in recent years, such therapies are essentially symptomatic
and leave numerous diseases incurable. In this context, immunometabolism
first emerged through the study of metabolic disorders and the observation of
the associated immune disruptions. For instance, chronic metabolic
inflammation, referred to as metaflammation, is now well acknowledged to
be a significant hallmark of metabolic dysfunctions in insulin resistance and
obesity [4]. Same goes for adipose tissue inflammatory cytokines
involvement in metabolic disorders [S]. Unique metabolic alterations in key
immune cells were also investigated and distinct activation states of
macrophages were reported to be associated with distinct metabolic
conditions, suggesting metabolic adaptations as a mediator of their
phenotypic switch and cellular plasticity [6], [7]. Further key breakthroughs
paved the way of immunometabolism over the past two decades and are

highlighted in Figure 1.

In light of these findings, immunometabolism claimed that besides the
production of energy and biosynthetic precursors, cellular metabolic
processes may also tightly regulate both innate and adaptive immune systems
and exert a significant impact upon cellular phenotypes. Additionally,
historically non-immune pathologies may result from the mobilization of
immune regulatory pathways [5], [8]. Immunometabolism further tailored the
definitions of metabolism and immunity presented above. It suggested that
the ability to resist a harmful agent or process is related to an efficient
distribution of nutrients within cells and implies that metabolic processes

outcome is governed by immune regulatory cascades (Figure 2).
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Figure 1. Graphical summary of recent findings demonstrating the
mechanisms of immunometabolism and their impact on specific cells,
tissues, and disease states [5]. From top to bottom and left to right:
Huang et al. [9] highlighted the PI3K/Akt/mTORCI1 and mTORC2
pathways as a central mechanism in T cells to sense and integrate
nutrient availability and signaling. Jellusova [10] demonstrated the
metabolic requirements of antibody-producing B cells to support high
rates of protein synthesis and immune action. Bakker and Pearce [11]
provided a detailed review of immuno-metabolic reprogramming in
dendritic cells and macrophages after danger signal activation. West et
al. [12] identified alternative metabolic ways to regulate T cell
metabolism and physiology. Bahadoran ef al. [13] worked on influenza-
induced metabolic reprogramming of immune cells in the lung airway.
Turbitt et al. [14] focused on the effect of obesity on T cell metabolism
and function in the presence and absence of solid tumors through Leptin
signaling. Caslin et al. [15], Li et al. [16], and Wang et al. [17],
highlighted the need to assess metabolic and cellular interactions in
different tissues to identify macrophages or Treg cells polarization.
Finally the role of immunometabolism in disease initiation was greatly
highlighted with Sipe, Chaib et al. [18] tackling the role of host-
microbial interactions on immunometabolism in anti-tumor immunity
and other chronic diseases, Siska et al. [19] focusing on the Warburg
effect in cancer cells, Teng et al. [20] studying distinct immune cell
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populations metabolic programs in systemic lupus erythematosus, or
McGuire [21] highlighting influence on immunity of Mendelian genetic
metabolic disorders. mTORCI1/2: mammalian target of rapamycin
complex 1/2; LPS: lipopolysaccharides; IFN: interferon;, DC: dendritic
cell; M1: macrophage M1; M®: macrophages; NK.: natural killer cells;
ATM: adipose tissue macrophage; VAT: visceral adipose tissue; Treg:
regulatory T cells;, OXPHOS': oxidative phosphorylation; NKT: natural
killer T cells;, AMPK: adenosine monophosphate-activated protein
kinase.

Immunity

The outcome of metabolism

Metabolic products .
Metabolism

Metabolites

>

Metabolite sensing
Fueling metabolic processes

—  Flux of material, energy and information

Figure 2. The various cross-talks of immunometabolism [22]. (a)
Metabolic processes provide energy and materials to support immune
processes. (b) The composition and levels of intracellular and
extracellular metabolites may reflect and directly affect cellular
metabolic status. Simultaneous metabolomic analysis of large numbers
of metabolites can be useful for determining the metabolic status of
cells. (¢) Certain metabolites are closely related to immunity by their
key signaling functions. Additionally, the levels of other metabolites can
markedly affect the functions of immune cells.
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1.1.2

In this context, unraveling the various cross-talks between immunity and
metabolism in pathological contexts provides a promising avenue for drug
and therapy development by considering specific cells metabolic subsystems
as therapeutic targets. It is an even more important consideration in immune-
mediated diseases since, rather than the current immunosuppressive
approach, therapeutic targeting of immune cells metabolic processes may
specifically antagonize target cells without affecting surrounding immune
actors or pathways, potentially reducing adverse side effects associated with

patients state of immunodeficiency [8].

Metabolic reprogramming as an alternative pathway for cells with

aggressive phenotypes

A key function of cellular metabolism is to generate energy in the form of
adenosine triphosphate (ATP) to further build complex molecules (e.g.
proteins, carbohydrates, fats, lipids) and generate biomass. In normal cells
within healthy tissues, the most common way to generate energy for such
anabolic processes is through oxidation of glycolytic pyruvate in the
mitochondrial tricarboxylic acid cycle (TCA), further fueling mitochondrial
oxidative phosphorylation (OXPHOS) and secreting low levels of lactate.
Overall, 36 molecules of ATP are produced per molecule of glucose through
electron transfer in the presence of oxygen. However, in 1927, Nobel Prize
winner Otto Warburg reported for the very first time an alteration of
metabolic pathways for energy production within cancer cells [23], nowadays
recognized as the “Warburg effect”. This metabolic reprogramming involved
alterations in metabolic enzymes, metabolites, and metabolic pathways. The
major one was identified as aerobic glycolysis through the generation of four
molecules of ATP per molecule of glucose converted into pyruvate and

lactate, significantly by-passing mitochondrial pathways of energy

45



production (Figure 3). Warburg initially suggested that this metabolic
reprogramming promoted the adaptation of tumor cells to their cancerous
surroundings, maintained their aggressive phenotype (i.e. high proliferation,
continued growth, metastasis), and resulted from mitochondrial defects that
prevented them from oxidizing carbon from glucose to CO2. Although the
Warburg effect is now fully recognized in cancer cells, with metabolic
reprogramming considered as one of the 10 hallmarks of cancer [24], certain
features were later refuted. For instance, despite the initial hypothesis emitted
by Warburg, a significant portion of cancer cells do not exhibit mitochondrial
defects and are capable of undergoing oxidative energy production [25].
Indeed, mitochondrial metabolism is not shut down but greatly rewired to
synthesize essential TCA-cycle intermediates for anabolic processes (e.g.

amino acids, fatty acids, lipids).

Beyond the founding property of the Warburg effect, namely high glucose
uptake fueling glycolysis and resulting in high lactate secretion even in
presence of sufficient oxygen [26], this metabolic reprogramming was later
realized to cover additional bioenergetic changes. For instance, the pentose
phosphate pathway (PPP) is largely fueled by glycolytic intermediates, as are
amino acid synthesis pathways. The synthesis of lipids and glutaminolysis is
additionally altered, along with modifications in mitochondrial bioenergetics
as stated above. Finally, we now realize that such metabolic reprogramming
is not limited to cancer cells. It can affect surrounding stromal cells of the
tumor microenvironment (TME) which may undergo their own Warburg
effect, usually to support adjacent cancer cells. This reciprocal relationship is
known as the reverse Warburg effect [27]. It was also recently demonstrated
that various non-cancerous cells of aggressive phenotype may experience a
metabolic reprogramming to adapt and survive, such as macrophages, T cells

or dendritic cells in various non-cancerous pathogenic conditions [28].
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Figure 3. Understanding the Warburg effect [29]. In the presence of
oxygen, non proliferating tissues metabolize glucose to pyruvate through
glycolysis and completely oxidize most of it in the mitochondria to CO»
during oxidative phosphorylation. Since O, is required as the final
electron acceptor, this process must occur in an aerobic environment.
When oxygen is limiting, cells can redirect the pyruvate generated by
glycolysis away from mitochondrial oxidative phosphorylation by
generating lactate through anaerobic glycolysis. This allows glycolysis
to be pursued by cycling NADH back to NAD", but results in minimal
ATP production when compared with oxidative phosphorylation.
Warburg observed that proliferative tissues such as cancer cells tend to
convert most glucose to lactate regardless of whether oxygen is present
or not. Mitochondria remain functional and some oxidative
phosphorylation continues in both cancer cells and normal proliferating
cells.
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The intricate mechanisms underlying the Warburg or reverse Warburg effects
in cells with aggressive phenotype and their relevance to physiopathology are
the focus of several recent studies [29], [30]. Elucidating why oxygen-
accessible cells would deprive themselves of the majority of ATP produced
through mitochondrial oxidative pathways has been challenging. One
hypothesis is based on the production rate of ATP, essential for such
proliferative cells, which is higher through glycolysis than OXPHOS [31].
However, ATP production appears to be a concern only when resources are
scarce, which is generally not the case for proliferating cells that are exposed
to a continuous supply of glucose and nutrients via the bloodstream. Other
hypotheses rely on the key role of metabolic intermediates, necessary for the
biosynthetic needs of rapidly proliferating cells. For instance, this glycolytic
switch provides ribose-5-phosphate and glycine for nucleotide biosynthesis,
citrate for lipid synthesis, or TCA by-products to further produce fatty acids
and amino acids [32]. Additionally, dumping the excess carbon as lactate,
main by-product of glycolysis, may be effective to allow its quick
incorporation into biomass, facilitating rapid cell division [29] and
maintaining adequate levels of reduced forms of glutathione, enabling

resistance to therapeutic agents [8], [33].

In other words, aggressive cells metabolic reprogramming may not only
provide them with the necessary energy, but also the uptake and incorporation
of high-energy nutrients into their biomass to support large-scale
biosynthesis, rapid proliferation, survival, invasion, and other attributes
associated with their pathogenic phenotype [32]. These metabolically
reprogrammed cells with agressive phenotypes frequently contribute to
pathogenic processes and unraveling their metabolic alterations driver may

provide insights for better treatment.
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1.2

METABOLIC REPROGRAMMING AT THE HEART OF COMPLEX

DISEASES

Complex diseases are defined as diseases whose etiology and progression are
determined by a combination of genetic, epigenetic, and environmental
factors, challenging the development of proper curative treatments. It has
recently been proven that a number of these complex pathological conditions
may reshape metabolism and force particular cells to adapt through metabolic
reprogramming. For instance, recent studies suggest that kidney cells may
experience a glycolytic switch, contributing to disease progression [34].
Metabolic reprogramming of viruses allows them to increase their biomass to
fuel viral genome replication and produce new virions [35]. On a more up-to-
date topic, increasing insights into COVID-19-associated metabolic
reprogramming have led to exploring metabolites with immunomodulatory
properties as alternative therapeutic approaches to treat the associated
inflammation [36]. In fact, excessive inflammation is the trademark of many
complex diseases, notably cancer and rheumatoid arthritis (RA). Although
quite different in their nature and operating mechanisms, these cancerous and
autoimmune pathologies actually share many similarities. Beyond their
global state of inflammation, they are characterized by common key cellular
actors, namely fibroblasts, and their very similar metabolic reprogramming.
As this phenomenon was initially observed in the context of cancer, progress
in this field may be leveraged to further expand our understanding of RA.
From a drug development perspective, as we learn more about the importance
of rewiring metabolic processes to drive inflammation and disease
physiopathology, novel therapeutic opportunities are likely to emerge for the

treatment of such incurable disorders.
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1.2.1 The use-case of cancerous diseases

Cancer is considered as a large group of over 100 different diseases and is
characterized by the development of abnormal cells dividing uncontrollably
and leading to the formation of a swelling, commonly known as a tumor [37].
According to the International Agency for Research on Cancer, the global
incidence of cancer in 2020 was estimated at 18.6 million [38]. It is important
to note that the standard mortality rate decreased by 33% between 1991 and
2023 [39], probably due in part to earlier and earlier diagnosis and screening.
However, as cancer still remains a leading cause of death worldwide,
accounting for nearly 10 million deaths in 2020, or nearly one in six deaths
[38], it is considered a major public health issue [37] and numerous research
projects are devoted to its curative treatment. Yet, a vast majority of proposed
strategies are focused solely on cancer cells and greatly overlook surrounding
cells of the TME, although they are increasingly recognized to play a major
role in cancer initiation, development, and maintenance. Considering such
cells when seeking for innovative therapeutic targets may prove highly

beneficial in the treatment of still incurable cancers.

1.2.1.1 Physiopathology of cancer

Regardless of the type of cancer, there is a common physiopathological
process of development [40] (Figure 4). The latter is a multi-step process
occuring over four main stages involving mutation and selection for cells with
progressively increasing capacity of proliferation, survival, invasion, and
metastasis [24], [41]. The first stage involves the primary mutation and
initiation of the tumor. The initial genetic alteration leads to a mutation in a
single cell, resulting in its abnormal proliferation: it is the first tumor cell.
This is followed by cell proliferation and tumor progression as new mutations

occur. Mutated cells present a selective advantage over normal cells as they
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grow and divide rapidly. The offspring of a cell with such an additional
mutation will therefore become dominant in the tumor population. Tumor cell
proliferation progressively leads to the appearance of new tumor cell clones
with increased growth rates and aggressive properties (e.g. survival, invasion,
metastasis), a process called “clonal selection”. The latter continues
throughout tumor development. In addition, cancer cells invade blood and
lymph vessels, allowing them to metastasize throughout the body. At the new
sites, cells continue to multiply and eventually form new tumors. In this
context, the interactions between cancer cells and the ecosystem of the TME
(e.g. immune cells, stromal cells, extracellular matrix (ECM), vasculature)
are active promoters of cancer progression [42]. Indeed, specific cells within
the TME may release extracellular signals influencing metastasis, invasion,
angiogenesis, or tumor growth. Additionally, the TME may transform into a

niche for tumor cells to escape therapy.

+ Chemical carcinogens + Activation of oncogenes

* Genes affecting + Clonal expansion

+ Radiation ; * Inactivation of anti-oncogenes ¥ :
+ Viruses §hoptosis * Apoptosis regulating genes Tumour progression
DNA damage
DNA repair
successful
NORMAL CELL MUTATED CELL CANCER CELL MALIGNANT TUMOUR

Figure 4. Molecular pathogenesis of cancer [40]. Cancers are caused
by mutations whose damage failed to be successfully repaired. These
mutations proliferate and invade tissues, leading to progressive clonal
expansion of tumor cells.
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In early 2000, Hanahan and Weinberg postulated that the evolution of healthy
cells towards neoplastic tumors is accompanied by the acquisition of
distinctive abilities, namely the “hallmarks of cancer” [24], [41]. Hallmarks
are all underpinned by genome instability and mutation and were originally
six biological capabilities acquired during the multistep development of
human tumors. They have since been increased to eight capabilities and two

enabling capabilities (Figure 5).

Sustaining Evading
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signaling suppressors

Deregulating Avoiding

immune
%desﬂ'uctbn

Resisting Enabling
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Genome Tumor-
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Inducing Activating
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Figure 5. Graphical summary of the 10 hallmarks of cancer [24]. (1)
Sustaining proliferative signaling: cancer cells do not need stimulation
from external signals in the form of growth factors to multiply. This is
rather driven by three main signaling pathways: Akt, MAPK/ERK, and
mTOR. (2) Evading growth suppressors: to overcome growth inhibition
from homeostatic signals, cancer cells lack response to external growth-
inhibitory signals. (3) Avoiding immune destruction: despite cancer
cells causing increased inflammation and angiogenesis, they also appear
to be able to avoid interaction with the immune system through a loss of
interleukin-33. (4) Enabling replicative immortality: tumor cells may
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achieve unlimited replicative potential by synthesizing high telomerase
enzyme levels or through a recombination-based mechanism, preventing
telomere shortening, thus by-passing senescence and apoptosis. (5)
Tumor-promoting inflammation: recent discoveries highlighted the role
of local chronic inflammation in inducing cancer due to signaling within
the tumor microenvironment. (6) Activating invasion and metastasis: the
well-documented epithelial-to-mesenchymal transition is a key process
in these mechanisms, allowing uninhibited cell division and metabolic
adaptations enabling cell survival under nutrient-limiting and stress
conditions. (7) Inducing angiogenesis: vascular network growth is
important for metastasis as cancer cells require a sufficient supply of
nutrients and oxygen, along with a means of waste removal. (8) Genome
instability and mutation: cancer cells increased tendency for genomic
changes and mutations affects cell division and tumor suppressor genes
to further promote cancerous adaptations. (9) Resisting cell death:
cancer cells prevent apoptosis through intrinsic mechanisms rather than
a lack of response to external stimuli. (10) Deregulating cellular
energetics: due to their excessive growth, cancer cells require high
levels of energy and nutrients with the ability to survive in hypoxic
environments, as tumors can be poorly vascularized. To meet these
needs, many of the cellular metabolic pathways are altered in cancer.

1.2.1.2 FEtiology and treatment of cancer

Cancer is considered as a complex disease arising from multiple factors in
combination. However, each risk factor is more or less important in triggering
specific cancer types. In any case, cancer and tumor development is initiated
by a genetic mutation. The latter assumes two distinctive types: germline
mutations or acquired mutations. Germline mutations occur in a sperm or egg
cell and are passed from a parent to a child at the time of conception, the
mutation being copied into every cell. Even if germline mutations have been
associated with certain types of cancer, such as BRCA1 and BRCA2 for
breast cancer, less than 10% of all cancers are associated with inherited
genetic mutations [43], [44]. On the other hand, acquired mutations occur
from damage to genes in a particular cell during life and under the influence
of environmental factors [45]. They are the most common cause of cancer and

may be avoidable by reducing exposure to known factors. Particular agents,
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known as carcinogens, have been linked to specific types of cancer, the most
infamous being tobacco (accounting for 25-30% of cancer deaths) [46] along
with alcohol (around 4%) [47]. Additionally, physical agents can lead to
cancer through their physical, rather than chemical, effects on cells [48].
Usually, physical carcinogens must get inside the body and require years of
exposure to develop cancer. For instance, environmental exposures to
pesticides or fertilizers have been linked to childhood cancers [49]. Finally,
an estimated 15% of human cancers are attributable to virus infections
including human DNA or RNA viruses [50]. Together, diet and obesity are
linked to approximately 30-35% of cancer deaths [51], [S2]. Physical
inactivity is also thought to contribute to cancer risk, not only through its
effect on body weight, but also through its negative effects on the immune

and endocrine systems [51].

Given the broad range of cancer diseases, the treatment options may vary
depending on the type of cancer. In all cases, a multitude of treatment options
are available including surgical interventions, chemotherapies,
radiotherapies, immunotherapies, hormone therapies, targeted drug
treatments, etc. Regarding the latter, they are either small-molecule drugs or
monoclonal antibodies. Small-molecule drugs are low molecular weight
molecules targeting intracellular processes to kill cancer cells (e.g. epidermal
growth factor receptor (EGFR), vascular endothelial growth receptor
(VEGFR), reactive oxygen species (ROS), phosphoinositide 3-kinases
(PI3K) inhibitors) [53] while monoclonal antibodies are much larger
molecules usually binding at the surface of cancer cells and interacting with
specific targets [54]. Such treatments, while very successful in certain types
of cancer, essentially target specific genes and proteins involved in cancer
cells survival, growth or invasion, and do not consider cancer cells wide

interactions within the TME.
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1.2.1.3 Cancer-associated fibroblasts, key players of the tumor

microenvironment

Despite their great strides in recent decades, a significant proportion of drug-
based therapeutic approaches in cancer still fails, mainly due to drug
resistance [S5]. The latter represents the main challenge of researchers to date.
Resistance may occur when cancer cells present molecular alterations driving
insensitivity to drugs before treatment, called intrinsic resistance, or when
cancer cells adapt to a drug while its administration, known as extrinsic
resistance [56]. The latter 1s suspected to arise from changes in the TME, as
its interplay with cancer cells is often partially or totally overlooked in the
development of cancer therapy. Yet, the importance of the TME in cancer
initiation and progression has been widely recognized for years [S7]-[59].
While cancer develops through genetic and epigenetic alterations, tumor
growth, survival, and metastasis are regulated through complex interactions
with stromal cells of the TME [58], [60], [61]. Among them, multiple studies
in various cancers have demonstrated the key role of cancer-associated

fibroblasts (CAFs) [62]-[64].

Overall, the presence and high density of CAFs in the TME is indicative of a
poor prognosis for the patient, thus they are considered as pro-tumor agents
[65]. Indeed, CAFs present a tumor-like phenotype through engagement in
cancer cell proliferation and invasion by sending pro-tissue fibrosis signals
[62]. They are considered as primary drivers of angiogenesis in the TME as
they are known to secrete vascular endothelial growth factor (VEGF), stromal
cell-derived factor 1 (SDF-1), fibroblast growth factor (FGF), and platelet-
derived growth factor (PDGF) to drive the growth of new blood vessels [66].
CAFs secrete major inflammatory cytokines, maintaining an inflammatory
state around cancer cells through immune system modulation [62]-[64]. They

are further involved in ECM remodeling through the production of ECM-
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degrading proteases [67] (Figure 6). CAFs additionally support cancer cells
by modulating their epithelial-to-mesenchymal transition (EMT) and secrete
growth factors, cytokines, and chemokines [62]—-[64]. They have been found
to promote tumor metastasis by up-regulating genes involved in pro-
tumorigenic pathways and/or down-regulating tumor suppressor genes.
Finally, by creating a stromal niche for cancer stem cells, CAFs may enable

them to escape therapy [62]-[64].
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Figure 6. Key roles of cancer-associated fibroblasts (CAFs) in cancer
pathogenesis and progression. CAFs are involved in a wide range of
pathogenic mechanisms including recruitment and activation of pro-
angiogenic, pro-inflammatory factors, apoptosis resistance and reduced
contact inhibition, along with metastasis, proliferation, and drug
resistance, overall perpetuating cancer maintenance and progression.
TNF: tumor necrosis factor; IL: interleukin;, VEGF: vascular
endothelial growth factor; MMP: matrix metalloproteinase.
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The precise origin of CAFs is a debated subject. The obvious hypothesis lies
in an alteration of local precursors, i.e. healthy fibroblasts, following
excessive exposure to cancer cells [68], [69]. Nevertheless, the TME being
composed of both epithelial and endothelial cells, the latter are also
considered to be a potential source of CAFs [70], [71]. Several reports
additionally support the assumption that mesenchymal stem cells, apart from
aggravating tumor proliferation, invasion and metastasis [72], are a potential

origin for CAFs [73], [74].

Understanding the heterogeneity of cells belonging to the TME is essential
for elucidating complex mechanisms and designing novel strategies for
precision medicine. CAFs constitute a heterogeneous population [75] and
concomitant analysis of multiple surface markers across several cancers and
species demonstrated the existence of at least four different well-recognized
CAFs sub-populations, namely CAFs-S1 to S4 [76]. Each CAFs subtype was
shown to correlate with characteristic functional processes, suggesting that
biomarker signatures of each subpopulation could be achievable. CAFs-S1
and CAFs-S4 are both myofibroblastic activated CAFs whose expressions are
strictly restricted to cancer whereas CAFs-S2 and CAFs-S3 are also detected
in healthy tissues and could be reminiscent of normal fibroblasts. However,
CAFs-S1 are mainly involved in tumor-like phenotypes (e.g
immunosuppression, tumor growth and proliferation, inflammation, ECM
remodeling), whereas CAFs-S4 are responsible for generic core signaling,

motility, and perivascular signatures [77].
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1.2.1.4 Metabolic reprogramming of cancer-associated fibroblasts in the

tumor microenvironment

As mentioned above, Otto Warburg initially depicted an altered metabolism
in cancer cells, epitomizing the first observation of metabolic reprogramming,
later recognized in other cells of the TME. It is notably the case of CAFs,
which undergo a reverse Warburg effect crosstalk with cancer cells. Indeed,
CAFs experience a metabolic switch from OXPHOS to glycolysis for energy
production [78], allegedly fueling biosynthetic pathways of cancer cells and
contributing to tumor development, invasion, metastasis, and resistance to
therapy [79]. This glycolytic shift seems driven by transcriptional alterations
of glycolytic genes (e.g. pyruvate kinase muscle isozyme M2 (PKM2), lactate
dehydrogenase (LDH) [79]) along with high expression of glycolytic-related
transporters (e.g. monocarboxylate transporters (MCTs), glucose transporters
(GLUTSs) [80]). Downregulation of isocitrate dehydrogenase 3o (IDH3a), a
rate-limiting enzyme of the TCA [81], is also a major driver of the bypass of
mitochondrial oxidative pathways. Lipid metabolism seems further correlated
with CAFs activation and pathological characteristics. For instance, fatty acid
synthase (FASN), a crucial enzyme in fatty acid synthesis, was found to be
significantly increased in CAFs, whereas their migration was blocked by
knockdown of FASN in colorectal cancer [82]. Amino acid metabolism [83],
and in particular glutamine metabolism [84], is altered in CAFs, and
associated with an increased autophagy of fibroblasts, a potential energy
source for promoting the activity of mitochondria in cancer cells. In light of
these metabolic alterations observations, various metabolic components have
been therapeutically targeted in cancer-associated fibroblasts and show

promising results (Table 1).
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Table 1. List of drugs and compounds targeting cancer-associated
fibroblasts metabolism. HK2: hexokinase 2; GLUT:glucose
transporter; MCT: monocarboxylate transporter;, LDH: lactate
dehydrogenase;, PGK: phosphoglycerate kinase; PK: pyruvate kinase;
PFK: phosphofructokinase;, GAPDH: glyceraldehyde-3-phosphate
dehydrogenase; SDH: succinate dehydrogenase

Metabolic target Drug or component

3-Bromopyruvate [85]
2-Deoxyglucose [86], [87]
Lonidamine [86], [88]
T-Lipo-3-BP [85]

WZB117 [89]
GLUT Fasentin [90]
Phloretin [86], [91]—-[93]

Metformin [86], [94]-][96]

Quercetin [97], [98]

MCT NAC [98]-[103]
a-Cyano-4-hydroxycinnamic [96], [104], [105]

Acetylcysteine combined with Topotecan [99], [106]

FX11 [86], [100], [107]

Oxamate [103], [108]
Quinoline 3-sulfonamides [109]

HK2

LDH
Gossypol [110]-[114]
Galloflavin [115], [116]
NHI [117]-[119]
PGK Adenovirus-shPGK1 [120]
Shikonin and analogs [121]
PK Alkannin [82]
PKM2-siRNA [122]9/25/2023 7:45:00 AM
PFK 3 PO [123]
GAPDH 3-Bromopyruvate [124], [125]
SDH 3-Bromopyruvate [124]
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CAFs further participate in cancer cells metabolic reprogramming through
the transfer of metabolites, proteins, and lipids, thereby contributing to sustain
their high proliferation rate (Figure 7) [99]. Several pathways and
mechanisms have been suggested to allow CAFs to sustain this high
glycolytic flux, including paracrine signals emitted by the cancer cell itself
within the TME, but further studies are needed to shed light on this topic.
Thus, the development of drug-based therapies for cancer should focus on

this reciprocal relationship between cancer cells and fibroblasts.

. enhanced OXPHOs + genetic/epigenetic

« metabolic shift alterations
* metabolic reprogramming
Cancer Cells

CAFs
(Stroma Cells)

- biogenetic remodeling
- cytokines & chemokine

signalings

Figure 7. The reverse Warburg effect [99]. Cancer cells may induce
oxidative stress in neighboring cancer-associated fibroblasts and secrete
reactive oxygen species (ROS), triggering aerobic glycolysis and
production of high energy metabolites which are transported to adjacent
cancer cells to sustain their anabolic need. In this process, many events
occur such as loss of Caveolin-1 in stroma cells, upregulation of mono-
carboxylate transporters (MCTs) in both.

60



1.2.2

As breast cancer (BC) has overtaken lung cancer as the most frequently
diagnosed cancer worldwide since 2020 [38], the study of CAFs in this
specific cancer has been initiated and some biological data are available.
Therefore, we will mainly focus on this type of cancer for the future of this

work.

The use-case of an autoimmune disease: rheumatoid arthritis

Rheumatoid arthritis (RA) is the most common type of autoimmune arthritis
in the world. It affects approximately 0.46% of the worldwide population
[126] with geographical disparities attributed to different risk factors
exposure, demographic variations, or under-reporting in some regions [127].
Resulting from a dysregulated immune system damaging articular structures,
RA causes pain, swelling, and stiffness in the joints, ultimately leading to a
partial or total loss of function of the affected limbs. Given the increasing
proportion of people affected, the over-mortality associated with the disease,
and its impact on the patients quality of life through functional, psychological,
social, and professional repercussions, RA is considered as a major public
health concern [128]-[130]. However, this auto-immune disease is still
incurable. Current treatments are only symptomatic and restricted to
dysregulated immune pathways, characterized by high levels of non-response
to treatment and highlighting the need for a broader understanding of RA

actors and pathogenesis to propose new therapeutic targets.
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1.2.2.1 Physiopathology of rheumatoid arthritis

We commonly identify three stages of disease progression in RA: preclinical
RA, early RA, and established RA [131] (Figure 8). In most patients, the
disease pathogenesis begins several years before the appearance of the first
symptoms via a non-specific inflammatory response to a (yet) unidentified
stimulus. The pre-clinical phase of RA 1is illustrated by a genetic
predisposition exacerbated by environmental factors responsible for amino
acids post-transcriptional conversion in a wide range of proteins. Such altered
peptides are recognized by antigen-presenting cells of the innate immune
system and further bind to their surface through the major histocompatibility
complex. This phenomenon leads to antigen presentation to T cells,
simulating B cells to synthesize a range of antibodies recognizing self-
proteins, including rheumatoid factors. Early RA is characterized by synovial
inflammation based on mononuclear cell infiltration, dominated by CD4" T
cells and macrophages, together with early stromal cell activation initiated in
the preclinical phase. At this point, synovial hyperplasia is the main hallmark
of RA and the key contributor to the invasive pannus formation. In a healthy
joint, the inner layer of the joint capsule, the synovial membrane (or
synovium), is a thin lining serving as a source of nutrients for cartilage and
synthesizing joint lubricants. It consists of two main sub-layers: the synovial
lining or intimal layer, primarily composed of rheumatoid arthritis synovial
fibroblasts (RASFs) and macrophages, and the subintimal area of the
synovium including mainly the vascular system of the joint. In RA, the
synovial lining is greatly hypertrophied, forming a hyperplastic pannus, and
the subintimal zone is heavily infiltrated with inflammatory cells (e.g. T cells,
B cells, lymphocytes, macrophages, mast cells, mononuclear cells), elevating
cytokines secretions and ultimately eroding surrounding cartilage and bone

[132].
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Figure 8. Physiopathology of rheumatoid arthritis (RA) [133]. (A)
Locations of mainly impacted articulations in RA. Unlike other arthritic
conditions, joints are affected symmetrically. (B) A healthy synovial
joint and the impact of RA: in a healthy joint (left), there is no swelling
in the synovial joint capsule, cartilage and bone are intact. Whereas in
RA (right), there is swelling, cartilage and bone erosion. (C) Mechanism
of RA within the joint capsule. TNF alpha impacts synoviocytes,
macrophages/monocytes and osteoclasts; initiating RA pathogenesis.
Synoviocytes line the capsule and T-cells infiltrate the synovial
membrane, initiating inflammation via TNF alpha. Joint degradation
occurs via recruitment of macrophages and secretion of inflammatory
cytokines. Bone erosion occurs by osteoclasts and inhibition of collagen
secretion by synoviocytes. IL-1: interleukin I,; IL-6. interleukin 6, TNF-
o: tumor necrosis factor alpha; MMPs: matrix metalloproteinases;
PGE2: prostaglandin E2.
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The effusion of synovial fluid in the joint due to the thinning of the synovial
capsule gradually leads to swelling and pain [131]. RASFs are recognized as
key coordinators of this phase as they recruit cytokines and proteases to
maintain the inflammatory state along with enzymes responsible for the
degradation of the ECM. Established RA refers to the result of sustained
immune infiltration in a chronic inflammation of the synovial membrane
leading to deformation and destruction of the joints. RASFs maintain this

phase by spreading to neighboring tissues, greatly propagating the disease.

1.2.2.2 Etiology and treatment of rheumatoid arthritis

Although the last decades were filled with remarkable progress on our
knowledge of RA and it is now widely recognized that the disease is triggered
by a dysfunction of the immune system, its precise etiology is not yet fully
established. Similarly to cancer, RA is considered to be a complex disease as
it is suspected to arise, develop, and be maintained through complex
interactions between multiple factors throughout the different stages of the
disease (Figure 9). First identified factors were susceptibility genes such as
the HLA-DRBI1 motif, encoding the P4 peptide-binding pocket, known as the
shared epitope [134], [135] laterly followed by non-HLA-associated relevant
genes [136]. Epigenomics studies further identified three main epigenetic
alterations factors associated with RA, namely aberrant DNA methylation,
abnormal histone modification, and unusual expression of small non-coding
RNAs (mainly microRNAs) [137]. Beyond coding and non-coding gene
alterations, the impact of environmental factors on the disease onset and
development is now widely recognized [138], including smoking [139], air
pollution and exposure to dust [140], or excessive body weight [141].
Additionally, RA female-to-male prevalence ratio having consistently been

established at 3:1 [142] along with modifications in disease activity during
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pregnancy [143], hormonal factors have been suspected to play a role [144].
Finally, two more controversial risk factors for RA are microbial infections
[145] or the psychological cause [146] such as a traumatic event as a trigger

for the disease.

Risk factors Post-translational

Genetic risk factors (60% of risk) modifications
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* Microbiota

© Female sex [Autoantibody formation j [Expansion of the j
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Figure 9. Development and progression of rheumatoid arthritis
according to its different risk factors [131]. Both genetic and non-
genetic risk factors contribute to the disease and multiple risk factors
are likely required before a threshold is reached above which RA is
triggered. ACPA: anti-citrullinated protein antibody; CRP: C-reactive
protein; RF: rheumatoid factor.

The etiological complexity and fragmented knowledge regarding the disease
physiopathology directly contribute to the lack of cure for RA. Although
various treatment options are available, they all aim to reduce symptoms (e.g.
inflammation, chronic pain) or slow down joint damage in order to improve
the overall patients quality of life. Disease-modifying antirheumatic drugs

(DMARDESs) can be used to promote remission by slowing or stopping disease
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progression [147]. They are immunosuppressive and immunomodulatory
agents each having a unique mechanism of action but overall interfering with
critical pathways of the inflammatory cascade. They are commonly classified
into  conventional DMARDs (e.g.  methotrexate, leflunomide,
hydroxychloroquine, and sulfasalazine), targeting the entire immune system,
and biological DMARDs (e.g. infliximab, etanercept, adalimumab, abatacept,
tofacitinib), targeting specific sub-processes. Nonsteroidal anti-inflammatory
drugs (NSAIDs) such as acetylsalicylate, naproxen, or ibuprofen are also
commonly administered to RA patients to relieve chronic pain and decrease
inflammation. Their mode of action is more comprehensive as they inhibit the
enzymatic activity of COX molecules and reduce inflammation by targeting
prostaglandin synthesis [148]. Finally, steroids, also called corticosteroids,
have powerful anti-inflammatory effects in RA as they quickly improve
chronic pain, stiffness, and decrease joint swelling by addressing leukocytes
functioning [149]. They are typically prescribed for short-term use to reduce
flare-ups and mainly include prednisone, prednisolone, hydrocortisone,

methylprednisolone acetate, and triamcinolone.

Beyond the inherent toxicity of each prescribed drug, the most concerning
adverse side effect of currently administered RA treatments is an increased
risk of common and serious infections, including bacterial, fungal, and viral
infections, generally due to the patients state of immunodeficiency [150].
Additionally, despite the various options presented above, 30-40% of RA
patients do not respond significantly to treatment and are in a state of
therapeutic distress [151], [152], emphasizing the need for alternative
therapeutic strategies. Such innovations require a better understanding of the
disease and its various cellular actors to broaden the therapeutic fields of

application beyond the sole immune system.
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1.2.2.3 Rheumatoid arthritis synovial fibroblasts, key players of the

rheumatic joint

RASFs are the primary constituents of the hyperplastic pannus and play a key
role in its formation and maintenance, and consequently, in RA pathogenesis
[153]. In healthy joints, fibroblasts create a one-or-two-cells thick layer,
punctuated by tissue-resident macrophages, and guarantee the structural
integrity of the intimal layer along with its nutrient supply. However, in RA,
they tend to exhibit very distinct characteristics in terms of phenotype,
morphology, and gene expression patterns as they become key drivers of the
disease [154] (Figure 10). Fassbender first described the distinct
morphological features of RASFs in the early 1980s, which were later
confirmed by morphofunctional analysis, namely abundant cytoplasm, dense
endoplasmic reticula, and large and pale nuclei with several prominent
nucleoli [155], [156]. Additionally, RASFs exhibit several tumor-like
behaviors, such as reduced contact inhibition and resistance to apoptosis,
demonstrating a continuous growth process [153]. Their increased ability to
migrate and invade periarticular tissues, including bone and -cartilage,
contributes to the destruction of the latter [154], [157]. Indeed, they express
highly altered levels of adhesion molecules, cytokines, chemokines, and
matrix-degrading enzymes, causing cartilage damage and mediating the
interaction with neighboring inflammatory and endothelial cells [158].
Finally, RASFs can be considered as primary drivers of inflammation and
angiogenesis [154]. Overall, they disturb the homeostatic balance between
leukocyte recruitment, proliferation, emigration, and death, leading to a
persistent leukocyte infiltration, maintaining synovial inflammation. In this
way, RASFs are no longer considered as passive bystanders, but as active
players in RA pathogenesis and sustained chronicity. However, currently

administered therapies in RA greatly overlook their crucial role.
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Figure 10. Key roles of rheumatoid arthritis synovial fibroblasts
(RASFs) in rheumatoid arthritis pathogenesis and progression.
RASFs are involved in a wide range of pathogenic mechanisms including
recruitment and activation of pro-angiogenic, pro-inflammatory factors,
bone erosive and cartilage destructive factors, apoptosis resistance and
reduced contact inhibition, along with tissue invasion and proliferation,
overall perpetuating inflammation and responsible for cartilage
destruction, exacerbating joint damage. TNF: tumor necrosis factor; IL:
interleukin, VEGF: vascular endothelial growth factor; MMP: matrix
metalloproteinase.

The origin of RASFs remains quite elusive and numerous hypotheses have
been considered. Despite early assumptions suggesting differentiation of
RASFs from CD34" bone marrow cells in RA patients [159], the main theory
to date relies on a global mesenchymal stem cell descent for RASFs [160].
RASFs are recognized to express certain common fibroblasts markers,
including expression of collagens (type IV and V), fibroblast activating
protein, vimentin, and CD90 along with unique RASF-specific surface

markers. The latter may vary between multiple RASF populations and predict
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different localization, function, and role in RA pathogenesis [161]. They are

further being investigated as potential therapeutic targets in RA [162].

1.2.2.4 Metabolic reprogramming of rheumatoid arthritis synovial

fibroblasts in the rheumatic joint

RA disease activity scores, inflammatory markers, and extra-articular
manifestations have repeatedly shown significant associations with metabolic
disorders [163], [164]. Moreover, fibroblasts activation within an RA-
affected immune system have been associated with metabolic disruptions
(Figure 11) [165]. Energy production pathways appear significantly altered
with an increase in glucose metabolism, hallmark of cells of aggressive
phenotype. Indeed, an increase in RA patients serum glucose along with
elevated glucose consumption are reported [165] while the very breakdown
of glucose is altered in RASFs. A significant decrease in mitochondrial
energy production is depicted [166] along with enhancement of glycolytic
genetic activity, notably its main effectors, hexokinase 2 (HK2), 6-
phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3), pyruvate
kinase isozyme M2 (PKM2), and glucose transporter 1 (GLUTI) [165].
RASFs increase in glycolytic activity may also be reflected by the increase of

lactate in patients serum, its main by-product [167].

Besides the glycolytic increase, RASFs metabolic profiling illustrates major
alterations in other classes of macromolecules with contributions to the
maintenance of their aggressive phenotype. Mitochondrial genes associated
with apoptosis, redox balance, and protein transport are disturbed [168]. A
high glutamine metabolism is depicted while the enzyme glutaminase 1
(GLS1) is involved in RASFs proliferation [169]. Free fatty acids (FFA) are

increased, which may directly contribute to articular inflammation and
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degradation in inflammatory joint diseases. Choline metabolism is highly
active [170], linked to malignancy, invasion, and metastasis in multiple
cancers [171], [172]. Impaired metabolic pathways reprogram energy
production but their by-products also benefit RASFs. For instance, lactate,
glutamine, and succinate are involved in the maintenance of inflammation

along with RASFs invasive phenotype [173].
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Figure 11. Rheumatoid arthritis synovial fibroblasts (RASFs)
glucose metabolism and chronic activation in rheumatoid arthritis
[165]. Chronic glucose metabolic changes induced by inflammatory
mediators in RASFs will activate many signaling pathways, including
HIF, MAPK, PI3K/Akt, and JAK/STAT pathways, which also increases
the expression of key glucose metabolism related genes such as GLUTI,
HK?2, or LDH. Intermediate glucose metabolites including pyruvate,
lactate, succinate, a-ketoglutarate, fumarate, and acetyl-coenzyme will
create a chronic and sustained RASFs activation, either by being
secreted extracellularly and triggering profound effects on the biology
of other cells, or by inducing a new epigenetic landscape that results in
a stable RASFs activation that is maintained even without continuous
stimulation. HK2: hexokinase 2; GG6PD: glucose 6 phosphate
dehydrogenase; PKM2: pyruvate kinase muscle isozyme M2.
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As these metabolic alterations are involved in various of RASFs aggressive
phenotypes, experimental studies investigated specific components inhibition

and reported promising findings (Table 2).

Table 2. List of drugs and compounds targeting rheumatoid arthritis
synovial fibroblasts metabolism. HK2: hexokinase 2; GLUT: glucose
transporter; MCT: monocarboxylate transporter; LDH: lactate
dehydrogenase;, PGK: phosphoglycerate kinase; PK: pyruvate kinase;
PFK: phosphofructokinase; GAPDH: glyceraldehyde-3-phosphate
dehydrogenase; SDH: succinate dehydrogenase.

Metabolic target Drug or component

3-Bromopyruvate [174]-[179]
2-Deoxyglucose [174]

HK2
Lonidamine [175]
Tofacitinib [180]
WZB117 [8]
GLUT Tumor Necrosis Factor-a inhibitor [181]9/25/2023
7:45:00 AM
MCT Metformin [174], !181], [182]
MCT4-siRNA [183]
LDH Tofacitinib [180]
PGK PGKI1-SiRNA [176]
PK TEPP-46 [8]
Tumor Necrosis Factor-o inhibitor [181]
3 PO [181]
PFK PFK15 [184], [185]
PFKFB3-SiRNA [183]
Heptelidic Acid [8]

APDH
G Tumor Necrosis Factor-o inhibitor [181]
SDH Saponin [92]

Dimethyl Malonate [186]
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1.3

In light of the various observations of immunometabolic crosstalks and
alterations, focused and targeted therapy against certain metabolic
components in one of RA key players, namely RASFs, represents a promising
lead in the treatment of this disease. However, few hypotheses still exist
regarding the activating signal of RASFs metabolic reprogramming. The
main one is obviously a response to a wide range of paracrine signals (e.g.
cytokines, chemokines, growth factors) emitted in the RA joint, but the exact
signaling cascade and emitting party are still under investigation. Indeed,
once RASFs metabolic alterations are identified, it is necessary to understand

their initiation and precise origin to successfully address them therapeutically.

CONTRIBUTIONS OF COMPUTATIONAL APPROACHES IN

UNRAVELING MULTILAYER BIOLOGICAL MECHANISMS

Biological processes rely on complex interactions between thousands of
molecules at different scales and with their environment, creating complex
interaction networks whose disruption can lead to pathologies. Although
increasingly studied and clearly demonstrating the joint involvement of
metabolism and immunity in pathological mechanisms, the applications of
immunometabolism in therapy development remain poorly exploited. In
particular due to the difficulty to unravel an integrated overview of the various
biological mechanisms involved, of which the principals are pathogenic gene
regulation, cellular signaling, and metabolism. To decipher the key
mechanisms and actors driving fibroblasts metabolic reprogramming in
diseases as complex as rheumatoid arthritis and breast cancer, an integrative
and comprehensive overview is necessary. Computational methods can help

address this issue and contribute to the progress of biological discoveries.
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1.3.1 Molecular interaction maps as static knowledge bases

The mapping and accurate mechanistic representation of implicated pathways
is an essential step to study the various mechanisms underlying disease
pathogenesis. In addition, the increased interest in biological interactions has
generated a large influx of biological data to process, highlighting the need
for visualization and simplification of complex information to obtain clear

insights on cellular functioning.

In this context, molecular interaction maps emerged as high-quality
representations of disease-associated processes acting as comprehensive
knowledge bases. First introduced in 1999 by Kurt W. Kohn [187], they are
organized, unambiguous, and curated representations of known biological
and biochemical interactions in a visual form spanning across various types
of reactions (e.g. formation of multi-subunit complexes, chemical
modification of proteins, movement in cellular compartments) and biological
processes (e.g. extra- and intra-cellular signaling, transcription, translation,
metabolism) while removing the noise that may arise from automatically
inferred interaction networks. Such standardized networks can be constructed
either employing top-down approaches, including reverse engineering using
machine learning algorithms and omics data or a bottom-up approach, starting
with text mining and literature curation [188]. Initially introduced with their
own notation (i.e. system of symbols and syntactic conventions), the
construction of molecular interaction maps was later formalized with the
Systems Biology Graphical Notation (SBGN) [189], an international effort to
standardize diagrams depicting biochemical and cellular processes studied in
systems biology. Molecular interaction maps have been massively developed
to study both biological mechanisms (e.g. P53 and MDM2 relationship [190],
mTOR signaling [191], gastrin and cholecystokinin receptors functioning

[192], MAPK network influence on cancer cell fate [193]) and diseases (e.g.
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COVID-19 [194], asthma [195], cystic fibrosis [196], Parkinson’s disease
[197]). The latter may serve as stand-alone knowledge bases, comprehensive
templates for visualization and analysis of omics datasets, or can be analyzed
in terms of the underlying network structure to identify distinct biological

clusters or highly connected nodes.

In 2010, a comprehensive RA-specific map was published [198] based on
high-throughput experiments, literature, publicly available datasets, and
KEGG pathway database [199]. A decade later, in 2020, a second effort to
formalize RA knowledge was published using the first map as a basis, the
RA-map [200] (Figure 12). It is a fully annotated, expert validated, state-of-
the-art molecular interaction map illustrating the major molecular and
signaling pathways involved in disease pathogenesis in an SBGN-compliant
format. The RA-map was manually curated for each component and reaction,
with defined cellular pathways and molecular signatures under thorough
expert validation. In addition to manual curation of the scientific literature,
other sources such as the Ingenuity Pathway Analysis (IPA) [201] or KEGG
pathway [199] databases were used to obtain RA molecular pathways and
phenotypic signatures information. While this RA-map offers a formalized
representation of the major pathways implicated in the disease, it does not
cover metabolic processes. Additionally, the map was built as a global map
using information from multiple human RA studies, focusing on small-scale
experiments in various cell and tissue types (e.g. fibroblasts, macrophages,
synovial tissue, peripheral blood mononuclear cells), and is not RASF-

specific.
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Figure 12. Snapshot of the RA-map [200]. The map is color-coded with
proteins in purple, genes in green, RNAs in red and phenotypes in
yellow. State transitions and catalysis reactions are displayed in black,
and the inhibitions are in red. Compartments are distinguished as
bounding boxes.

Regarding cancer-related mechanisms, several attempts to create graphical
representations have emerged, such as the Cancer Cell Map Initiative [202]
or the human tumor atlas network [203], regrouping several detailed
molecular and cellular maps. Although the latter molecular interaction maps
focus essentially on the TME, fibroblasts are poorly represented. The Atlas
of Cancer Signaling Networks (ACSN) [204], a web-based resource of
biological maps depicting molecular processes in cancer cells and TME, tried
to address this issue. It uses Google Maps™ engine to navigate through

different altered pathways, species, and disease mechanisms in diverse
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biological systems responsible for cancer progression (e.g. angiogenesis,
TME, adaptive immune response). The ACSN includes a SBGN-compliant
CAF-map (Figure 13), representing the molecular interactions between TME
and CAFs along with their role within carcinogenesis. All nodes and
interactions are derived from biomining of the literature and cross references
of species thanks to several databases such as HGNC [205], Uniprot [206], or
Genecards [207], [208]. However, the ACSN CAF-map poorly covers
metabolic processes and their impact upon CAFs aggressive behaviors.

Additionally, it is not cancer-specific but rather gathers information from

multiple types of cancer.

Figure 13. The CAF-map within the Atlas of Cancer Signaling
Network [204]. This CAF-specific comprehensive map, manually
curated from the literature, represents CAFs molecular interactions in
tumors. The map is color-coded with proteins in light green, genes in
yellow, RNAs in dark green, antisense RNAs in red, and phenotypes in
purple. State transitions and catalysis reactions are displayed in black,
and the inhibitions are in red.

76



Such molecular interaction maps represent great resources, however, they are
mainly focused on signaling processes and the corresponding metabolic
pathways are often absent or underrepresented. To the best of our knowledge,
efforts to reconstruct a generic human cell metabolic network have been
ongoing with the creation of the ReconMap [209] (Figure 14) based on the
human metabolic atlas [210]. Its access through the virtual metabolic human
(VMH) database allows easy navigation and search of information on human
and gut microbial metabolism along with links to hundreds of diseases and
nutritional data. However, these metabolic reconstructions are often greatly
focused on downstream events and completely lack upstream regulators

linking these networks to signaling cascades and gene regulation processes.
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Figure 14. The ReconMap interactive visualization of human
metabolism [209]. The ReconMap is a comprehensive visual
reconstruction of Recon 2, a genome-scale reconstruction of human
metabolism.
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1.3.2 Computational modeling to unravel dynamic properties

Molecular interaction maps have emerged as a meaningful way of
representing biological mechanisms in a comprehensive and systematic
manner. However, all living systems are by definition dynamic. Thus, static
graphical representations of molecular and cellular networks can provide
useful but limited information on the mechanisms underlying disease
pathogenesis, progression, severity, or even response to treatment. In this
context, dynamical studies and modeling can reveal critical information about
the global behavior of the system under various conditions by performing in-
silico simulations, perturbation experiments, hypotheses-testing, and
predictions. Various modeling formalisms exist, more or less adapted to

account for different biological processes.

Qualitative models based on logical relationships among components provide
an appropriate description for systems with unknown mechanistic
foundations or lacking precise quantitative data [211]. In this context, logical
models are the most powerful tools to decipher complex biological processes
in a qualitative way, especially Boolean models [212], [213]. Boolean models
(Figure 15) allow the parameter-free study of large-size biological pathways
underlying dynamic properties. In the Boolean formalism, nodes represent
regulatory components and arcs represent their interactions. Each node is
associated with a Boolean value (0 or 1), indicating its qualitative
concentration (i.e. absent or present) or activity level (i.e. inactive or active).
The state of each node depends on the combination of its upstream regulators
state and is described by a Boolean rule defined by the logical operators
“AND”, “OR”, and “NOT”. Boolean models can be updated in the
“synchronous” mode, where all nodes are updated simultaneously, or in the
“asynchronous” mode, where nodes are updated one by one. Such formalism

is particularly suited for influence networks depicting cellular signaling or
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gene regulation pathways carrying signal flow. Within our scope, it would
enable us to investigate the dynamic regulatory and genetic mechanisms
driving the pathogenesis of RASFs in the RA joint or breast CAFs in the
TME.
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Figure 15. Example of a Boolean toy model. (A) Boolean rules
associated with the (B) Boolean network where arcs (interactions)
between nodes (components) are subdivided in activations, in green, and
inhibitions, in red.
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Although quite powerful, qualitative computational modeling approaches
have not been widely applied to improve understanding of RA, with the
notable exception of a recently published large-scale Boolean model of
RASFs [214]. Covering the major phenotypes of apoptosis, cell proliferation,
matrix degradation, bone erosion, and inflammation, its main purpose was to
reproduce the effect of single or combined treatments and predict new
molecular targets and drug candidates. Including the major pathways of
signaling and gene regulation involved in RA pathogenesis, this model is
however limited by its lack of coverage of metabolic pathways.

In the cancer field, Boolean models have been widely used to study abnormal

79



tumor signaling pathways with patient-specific models of signaling networks
for personalized treatments [215] along with impact of EMT transition in
cancer-associated phenotypes [216]. However, the role of CAFs in the TME

have not been studied, let-alone in a cancer specific manner.

Despite being well-suited to account for the modeling of signaling and gene
regulation mechanisms, qualitative modeling is not appropriate to assess
quantitative metabolic properties. Where signaling and gene regulation carry
signal flow, metabolism generates mass flow, requiring a specific modeling
formalism. In this biological context, a widely used approach for analyzing
metabolic networks is a constraint-based method, namely Flux Balance
Analysis (FBA). The latter is a mathematical method used in large-scale
reconstructions of metabolic networks to analyze the flow of metabolites
[217]. Its main advantage lies in the need for little information regarding
enzymes kinetic parameters and metabolites concentrations as it calculates
the flow of metabolites by assuming steady state conditions (Figure 16).
Thus, FBAs are computationally inexpensive and very suitable for genome-

wide reconstructions of human metabolism.

Metabolic profiling has gained significant attention in the RA joint, however,
to our knowledge, there is no modeling effort to construct RA-specific
metabolic networks or assess metabolic dynamics in the RA joint, regardless
of the cell type of interest. Some attempts were carried out in the field of
cancer, to predict selective drug targets in cancer through metabolic network
analysis [218], to study cancer cells Warburg effect [219], or for drug
development purposes [220]. However, there is no metabolic reconstruction

covering the functioning of CAFs and their involvement in the TME.
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Figure 16. Graphical summary of the formulation of an FBA problem
[217]. (a) First, a metabolic network reconstruction is built, consisting
of a list of stoichiometrically balanced biochemical reactions. (b) Next,
this reconstruction is converted into a mathematical model by forming a
matrix (labeled S) in which each row represents a metabolite and each
column represents a reaction. (¢) At steady state, the flux through each
reaction is given by the equation Sv = 0. Since there are more reactions
than metabolites in large models, there is more than one possible
solution to this equation. (d) An objective function is defined as Z =
c¢Tv, where c is a vector of weights (indicating how much each reaction
contributes to the objective function). In practice, when only one
reaction is desired for maximization or minimization, ¢ is a vector of
zeros with a one at the position of the reaction of interest. When
simulating growth, the objective function will have a 1 at the position
of the biomass reaction. (e) Finally, linear programming can be used to
identify a particular flux distribution that maximizes or minimizes this
objective function while observing the constraints imposed by the mass
balance equations and reaction bounds.
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1.3.3 Hybrid modeling to decipher integrated processes

According to the central doctrine of immunometabolism, namely the tight
interconnections between immune regulatory processes and metabolic
machinery, leveraging qualitative and quantitative modeling formalisms
independently is not suitable to assess the dynamic impact of signaling and
genetic pathways upon metabolism, let alone in cell- and disease-specific
contexts. It is rather necessary to integrate the dynamic study of these various
biological layers to unravel RASFs and breast CAFs metabolic

reprogramming.

In this sense, a few tools and frameworks have been developed in the last
decade. The probabilistic integrative modeling of genome-scale metabolic
and regulatory networks (PROM) method [221] attempts to combine
transcriptional regulatory networks with the corresponding metabolic
network by integrating high-throughput data into constraint-based modeling.
This tool, ideal for constructing genome-scale regulatory-metabolic network
models for less-studied organisms, might suffer from the limitations of
automatic reconstructions, namely not-curated reconstruction of improper
gene-protein-reactions rules leading to incorrect compartmentalization of
reactions or directionality constraints along with incorrect metabolic rates.
The FlexFlux tool [222] further tries to bridge the gap between regulatory and
metabolic networks analysis through the combination of FBA and qualitative
simulations by seeking regulatory steady states through synchronous updates
of multi-state qualitative initial values to constrain FBA fluxes. Although
covering multiple types of regulatory and metabolic analysis, FlexFlux
requires initial values and qualitative states to user-defined continuous
intervals equivalences for every component of large-scale regulatory models,
a daunting task when trying to tackle large-scale and complex pathogenic

mechanisms. A more recent framework is the regulatory dynamic enzyme-
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cost flux balance analysis method (r-deFBA) [223], which combines dynamic
modeling of metabolism and transcriptional regulation to account for
regulatory events in a discrete-continuous setting. Again, this strategy is
limited by the need for pre-defined transcription factors to target gene
relationships for components of large-scale networks. Other approaches
combining regulation and metabolic analysis have been proposed but, to our
knowledge, none of them is able to successfully combine reliability on the
interactions depicted in large-scale networks, lack of omics data in poorly
addressed biological fields such as RASFs and breast CAFs, along with
powerful regulatory analysis, all necessary features for the proper analysis of
RASFs and breast CAFs metabolic reprogramming. This observation
highlights a need for an innovative computational framework allowing
simultaneous simulations of signal (i.e. cellular signaling and gene
regulation) along with mass (i.e. metabolic processes) flow to decipher

complex and multi-layer biological mechanisms.

Associated scientific communication, details here

The state-of-the-art in metabolic reprogramming of RASFs and CAFs
along with computational approaches of interest were published in a

review of literature:

Aghakhani, S; Zerrouk, N; Niarakis, A. Metabolic reprogramming of

fibroblasts as therapeutic target in rheumatoid arthritis and cancer:
deciphering key mechanisms using computational systems Biology

Approaches. Cancers 2021, 13, 35.
https://doi.org/10.3390/cancers13010035
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OBJECTIVES OF THE PHD THESIS

Metabolic alterations in fibroblasts appear to exert a determining role in the
acquisition of an aggressive phenotype and their pathogenic activity in RA
and BC. Transformations of healthy fibroblasts into RASFs, characterized by
increased proliferation and resistance to apoptosis, contribute to the
chronicity of RA and sustained joint inflammation. Same goes with breast
CAFs and their interaction with cancer cells contributing to tumor growth,

invasion, and resistance to therapy.

Immunometabolic targeting suggests that repolarization of immune-related
cells, such as RASFs and breast CAFs, to healthy and non-aggressive
phenotypes through manipulation of their metabolism might represent a
promising approach to decrease their key pathogenic activity. This
therapeutic opportunity might additionally allow for cellular selectivity in the
regulation of immune responses through the differential metabolic

requirements of these cells of aggressive phenotypes.

To address RASFs and breast CAFs metabolic requirements, it is necessary
to unravel their complex processes and identify their master regulatory
driver(s). In view of the similarity of cellular actors in these two complex
diseases and the metabolic alterations they seem to undergo, their joint study

seems beneficial to explore new opportunities.

Computational methods appear well suited to drive new biological knowledge
in complex and still uncured diseases by integrating various biological layers
and exploiting their static and dynamic features. A hybrid modeling
formalism, covering the various biological features of pathogenic gene
regulation, signaling, and metabolism may account for RASFs and breast

CAFs dynamic immuno-metabolic interconnections.
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In this context, the main objective of this PhD thesis is to leverage
computational approaches to decipher the mechanisms underlying the
transformation of RASFs and breast CAFs, key players in the associated
disease pathogenesis, through their metabolic reprogramming and further
propose innovative therapeutic targets (Figure 17). This objective will be
achieved by:

(1) Leveraging static and dynamic computational approaches in the cell-
and disease-specific contexts of RASFs and breast CAFs covering
cellular signaling, gene regulation, and metabolism to decipher
fibroblasts emerging behavior under disease-specific conditions

integrating multiple biological machineries.

(2) Proposing a potential mechanism (common or not) explaining
fibroblasts metabolic reprogramming in disease-specific conditions
by studying the dynamic impacts of RASFs and breast CAFs gene
regulation and signaling pathways upon their metabolic processes

along with identifying key regulator(s).
(3) Suggesting new therapeutic targets in drug development for RA and

BC immune-mediated diseases from insights into RASFs and CAFs

metabolic reprogramming.
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METHODS

3.1

CONSTRUCTION OF MOLECULAR INTERACTION MAPS

The first step of this work is to gather state-of-the-art mechanistic information
regarding the pathogenic processes related to fibroblasts in RA and BC in the
form of molecular interaction maps. The latter are conceptual representations
of biological mechanisms intended for knowledge-driven data interpretation
and modeling [224], [225]. They may encode molecular disease mechanisms
for intuitive exploration and comprehensive overview. As discussed above,
some efforts have already been made to assemble the available knowledge in
RA and cancer diseases within molecular interaction maps, respectively with
the RA-map [200] and the CAF-map from the ACSN [204]. Nevertheless,
such molecular interaction maps cannot be used as is due to a number of
limitations: the RA-map gathers information from multiple cell types and
tissues within the RA joint and is not RASF-specific. Moreover it completely
lacks metabolic representations. On the other-hand, the CAF-map poorly
represents metabolic pathways and is not specific to BC but is rather a generic
representation of CAFs involvement in the TME. Thus, both original RA- and
CAF-maps will be used as basis and further improved to meet our needs.
Molecular interaction map being organized, unambiguous, and curated
knowledge bases displaying biological and biochemical interactions in a
visual form, each step of our maps construction requires clear community-
driven standards to be followed to ensure findability, accessibility,
interoperability, and reproducibility, known as FAIR principles [226]. The
construction of these static representations shares common features and

standards as well as specificities that will be discussed below.
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3.1.1 Common strategy and standards for the construction of the RA-map V2
and CAF-map V2

3.1.1.1 Molecular interaction map layout

The Systems Biology Graphical Notation (SBGN) [189] was introduced in
2009 as a community effort to propose a standardized visual language for
representation of biochemical interactions networks. It further fosters
efficient and accurate representation, visualization, storage, exchange, and
reuse of information. SBGN is subdivided into three complementary

languages [227] covering different levels of information (Figure 18).

activity flows process descriptions entity relationships
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Figure 18. Systems Biology Graphical Notation (SBGN) and its
different languages [227]. Among activity flow, entity relationship, and
process description, the latter is the most exhaustive in its coverage of
various biological mechanisms.

The activity flow (AF) language represents interaction networks including
influence directions and modes of regulation (e.g. activation, inhibition). The
entity relationship (ER) language representation further includes mechanistic
details and the direction of influences but no sequential information. The

process description (PD) language, the most detailed one, includes specifics
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regarding the direction of influences, mechanism of action, and order of
events. We chose the SBGN PD langage for the creation of our molecular
interaction maps for its level of precision. Thus, all non-compliant reactions
and representations in the original RA-map and CAF-map were adapted to
SBGN PD standards and the latter language was used for all additions in the

molecular interaction maps.

As a modeling software that draws SBGN PD biochemical networks, we used
the CellDesigner software [228], a structured diagram editor, in version 4.4.
In CellDesigner, the various components of the molecular interaction maps
(e.g. compartment, phenotype, protein, gene, RNA, simple molecule, ion,
complex) and interactions (e.g. state transition, catalysis, inhibition,
transcription, translation, transport) are distinguished in the form of specific
glyphs and notations according to SBGN PD standards (Figure 19).
CellDesigner further encodes all molecular interaction maps in the Systems
Biology Markup Language (SBML) [229], a computer-readable format

facilitating exchange and reuse of biochemical networks representations.

To ensure a better visual understanding, molecular interaction maps were
biologically compartmentalized. Cellular compartments featured in each
molecular interaction map were designed to reflect the molecular architecture
of the biological entity of interest (e.g. extracellular space, plasma membrane,
cytoplasm, nucleus, mitochondrion, endoplasmic reticulum, phenotypes,

secreted compartment, and transmembrane domain).
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Figure 19. Current graphical notation of CellDesigner [228]. Each
round-cornered box represents a state of a molecular species. Species
are reacting entities independent of location. These include simple ions
(e.g. protons, calcium), simple molecules (e.g. glucose, ATP), large
molecules (e.g. RNA, polysaccharides, and proteins), and other
molecules in biochemical and gene regulatory networks. The closed
arrows (arrow head filled) represent changes in the state of modification
(or allostericity), rather than indicating activation. The graphical
notations avoid using symbols that directly point to the molecule to
indicate activation and inhibition. Instead, the diagram directly indicates
a transition from an inactive to an active state for activation, and a
transition from an active state to an inactive state for inhibition. When
these transitions are promoted or inhibited by other mediating
molecules, these reactions are represented by circle-headed lines for
activation and bar-headed lines for inhibition, respectively. An open
arrow (arrow head not filled) indicates the translocation of a molecule.

With the help of specialized literature and external pathway databases (e.g.
KEGG [199], PANTHER [230]), clear attribution of species to each
compartment was obtained for both molecular interaction maps. This
representation allows for a clear and precise illustration of signal flow from

the top of the molecular interacton map (displaying extracellular ligands
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complexation with plasmic receptors), through the cytoplasm (signaling and
metabolic machineries), nucleus (gene regulation processes), to the bottom
compartments (molecules secretion in the extracellular space and phenotype

activation).

3.1.1.2 Molecular interaction map curation

The original RA-map and CAF-map underwent a first step of manual curation
based on a broad study of literature and pathway databases (i.e. KEGG [199],
PANTHER [230]) to validate the depicted information and search for new
components and interactions involved in the associated disease pathogenesis.
Relevant keywords and phrases in each pathological context were used to
filter the literature on PubMed and Google Scholar (e.g. “RASFs signaling
pathways”, “CAFs in the TME”, “fibroblasts aggressive behaviors in
RA/cancer”). Only human-based studies were included in each molecular
interaction maps according to Curation and Annotation of Logical Models
(CALM) standards [231]. Including a component or a reaction in a map
followed precise curation criteria: first, we included all components
experimentally proven to be expressed fibroblast-specifically in the disease
pathogenesis. Then, we included all fibroblast-specific reactions and
interactions experimentally proven to occur in the disease pathogenesis.
General and non-disease specific interactions were further added to complete
representations where cell- and disease-specific information was unavailable
or incomplete. Such strict curation rules allowed us to increase the overall

confidence level of the molecular interaction maps and limit false positives.

All included components were named in accordance with HUGO Gene
Nomenclature Committee (HGNC) identifiers [205] for signaling and gene
regulatory pathways and BiGG IDs [232] for metabolic components.
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3.1.1.3 Molecular interaction map annotation

Annotations were added to provide reliable references for all species and
reactions present in the molecular interaction maps in accordance with
Minimal Information Requested In the Annotation of Models (MIRIAM)
[233] standards for annotating and curating computational networks.
According to the authors, MIRIAM standard aims to “enable users to (i) have
confidence that curated models are an accurate reflection of their associated
reference descriptions, (ii) search collections of curated models with
precision, (ii1) quickly identify the biological phenomena that a given curated
model or model constituent represents and (iv) facilitate model reuse and
composition into large subcellular models”. MIRIAM annotations were
added through the dedicated section of CellDesigner with the relation “bgbiol:
is describedby”, (Figure 20) which is used to link a component or a reaction
to the literature or data that describes it (e.g. PubMed references (PMIDs),
DOI, GEO, KEGG identifier).
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Figure 20. Snapshot of the MIRIAM section in CellDesigner.
Annotations used to curate the IL6 component in the original RA-map
are shown: they cover various types of information ranging from
PubMed IDs to HGNC symbol and Protein Data Bank data.

3.1.1.4 Molecular interaction map visualization and accessibility

The increasing structuring of molecular mechanisms calls for a need to ensure
their proper storage and accessibility. The Molecular Interaction NEtwoRks
VisuAlization (MINERVA) [234] repository of molecular interaction maps
was developed for the visual exploration, analysis, and management of
networks encoded in systems biology formats, including CellDesigner [228],
SBML [229], and SBGN [189]. The MINERVA platform is based on the
Google Maps™ API and provides automated content annotation and
verification along with mapping of drug targets through DrugBank [235] or
CHEMBL [236], and overlaying experimental data (Figure 21). Our
molecular interaction maps were all made publicly available as online

interactive maps on the standalone MINERV A web server.
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Figure 21. MINERVA interface and functionalities [234]. (a) Main
interface, displaying drug target search results for terms “levodopa” and
“carbidop”‘. Information fetched from DrugBank and ChEMBL are
displayed in the left panel, while targets of queried drugs are shown in
the display area as markers. (b) Export of the selected content. A portion
of the diagram is selected and exported as a model (CellDesigner or
SBGN formats). (c¢) Display of experimental data and content
commenting. Publicly available datasets (left panel, “General overlays™)
or user-provided datasets (left panel, “User-provided overlays”) can be
visualized on top of the displayed content. Users can pin comments to
elements or interactions of the displayed network directly from the
display area.

3.1.1.5 Molecular interaction maps evaluation

Standardized and annotated molecular interaction maps help assess both the
network specificity (i.e. cellular and/or disease-specificity) and confidence in
the depicted information. First, both maps cell- and/or disease-specific
signatures were assessed based on specific lists of components, referred to as

“overlays” in MINERVA. The latter were extracted from specialized
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literature and omics datasets. They allowed us to visualize specific pathways
within the molecular interaction maps in MINERVA and calculate the maps
precise coverage. Indeed, the percentage of the map components present in
the cell- and/or disease-specific overlay were obtained. The higher the
percentage, the higher the specificity of the molecular interaction map for that
cell type or disease. Secondly, an additional annotation score was generated
for all components of the molecular interaction maps based on the number of
bibliographic references (i.e. PMIDs) describing them within the
CellDesigner MIRIAM dedicated tab. The higher the literature-based
annotation score, the greater the experimental reliability and confidence in

the inclusion of the component within the molecular interaction map.

3.1.1.6 Molecular interaction maps topological analysis

Molecular interaction maps provide standalone knowledge bases but may also
be analyzed in terms of their underlying network structure. The latter may
reveal key features and enable a better understanding of the connectivity and
interactions between components. To do so, we used the Cytoscape open-
source software [237] in version 3.8.2 for network analysis and visualization.
Basic network topology analysis was undertaken with the built-in
NetworkAnalyzer tool on our molecular interaction maps in the XML format.
For every node of the network, NetworkAnalyzer computes its degree (in-
and out-degrees for directed networks), its clustering coefficient, the number
of self-loops, and a variety of other parameters. NetworkAnalyzer also
computes edge betweenness for each edge in the network. Note that this plug-
in may compute said parameters for both directed (i.e. containing only
directed interactions) and undirected networks (i.e. containing only
undirected interactions). If the respective options are enabled,

NetworkAnalyzer stores the computed values as attributes of the
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3.1.2

corresponding nodes and edges. This enables the users to apply different
visualizations or to filter nodes or edges based on the values of the computed
attributes. Such basic topological analysis enables us to identify highly-

connected clusters of nodes which may share similar biological features.

Construction of the RA-map V2

We used the original RA-map [200] as a basis for the construction of the state-
of-the-art RA-map V2. The original RA-map is a mechanistic representation
of existing knowledge related to the onset and progression of RA. It includes
506 components connected through 446 reactions, is based on the manual
curation of 353 peer-reviewed articles, and is compliant with SBGN PD
[189], [227] standards. While it offers a formalized representation of the
major signaling and gene regulation pathways implicated in the disease, it
does not cover metabolic pathways and is a global RA rather than a RASF-
specific molecular interaction map. The RA-map was downloaded from the

MINERVA platform (https://ramap.uni.lu/minerva/) in the standard XML

format for further modifications in CellDesigner [228].

Beyond the general upgrades presented above, the main addition of the RA-
map V2 concerned the inclusion of metabolic pathways which were not
represented at all. Metabolic pathways of interest in the context of RASFs
metabolic reprogramming were identified based on specialized literature with
queries including “RASF metabolic reprogramming” or “metabolic pathways
altered in RASFs”, extracted from the PANTHER pathway database [230],
adapted to SBGN PD [189], [227] standards when required, and included in
the original RA-map. In addition, considerable bibliographical work was
conducted to find evidence linking the newly added metabolic pathways to

the already present signaling and gene regulatory pathways, along with
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adding new ones. The latter may include inhibition/activation of an enzyme
activation/transcription by signaling or genetic pathways, metabolites acting
as transcription factors, or metabolites involved in signaling pathways or

activating a phenotype.

Already existing biological compartments (i.e. extracellular space, plasma
membrane, cytoplasm, mitochondrion, endoplasmic reticulum, golgi
apparatus, nucleus, secreted compartments, and phenotypes) were kept.
Biological processes taking place in the mitochondria and endoplasmic
reticulum were detailed (i.e. apoptotic pathway and the calcium pathway).
Already existing cellular phenotypes were kept and the hypoxic phenotype

was added due to its known importance in cellular metabolism.

The cell-specific coverage and confidence of the RA-map V2 was further
calculated. Regarding the specificity of the network, we leveraged the
“overlay” function of MINERVA [234] to assess it. Overlays are user-
provided lists of components, overlaid on the network, that may be specific
to a cell, disease, or any type of biological contexts and are extracted from
data or manual literature curation. We provided nine different sample-specific
overlays, namely fibroblasts, macrophages, synovial fluid, synovial tissue,
peripheral blood mononuclear cells (PBMC), blood, serum, chondrocytes,
and Thl to assess the coverage of the RA-map V2. First two are updated
versions of the overlays provided in the initial RA-map paper [200] and were
obtained by aggregating single-cell omics data and literature mining.
Remaining sample-type specific lists were obtained solely through literature
mining. Regarding RASFs, said omics data include differentially expressed
genes from GSE109449 [238], a RASF-specific single cell RNA-seq analysis
dataset. The serum overlay was created to account for a new source of
information used in the maps. The annotation score of the RASF-map V2 was

further calculated to evaluate the confidence in the depicted information.
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3.1.3 Construction of the CAF-map V2

Similarly, the CAF molecular interaction map was not built from scratch but
rather based on previous work from the ACSN online database of multi-scale
biological maps [204]. The CAF-map was downloaded from the ACSN 2.0
website (https://acsn.curie.fr) in the standard XML format and imported in

CellDesigner [228]. It represents the major molecular interactions depicting
the role of CAFs in the TME. However, the CAF-map displays generic CAF-
specific interactions and is not specific to a certain type of cancer. It includes
681 components connected through 581 reactions and is based on the manual
curation of 358 peer-reviewed articles. It is consistent with SBGN standards

[188] and thoroughly annotated with pertinent information and references.

The layout of the CAF-map was edited to shift from a round cell with
functional modules (e.g. “integrin signaling pathways”, “motility”, “growth
factors production”, “cytokines and chemokines production”, “core
signaling”) to a compartmentalized map with biological compartments (i.e.
extracellular space, cytosol, nucleus, mitochondria, endoplasmic reticulum,

secreted compartment, and phenotypes). It allowed us to depict a straight flow

of information within biologically-relevant compartments of the map.

Phenotypes were deleted either to allow for a detailed description of the
pathways of interest (i.e. “TCA”, “glycolysis”, and “ketone bodies
degradation” phenotypes), when they lacked added wvalue in CAFs
involvement in TME and cancer development (i.e. “microtubule
polymerization”, “actin polymerization”, and “septine polymerization”
phenotypes), or when their only interactions were to be activated by another

phenotype (i.e. “stress fibril formation” and “matrix effects” phenotypes).

Semantics were greatly updated to comply with SBGN PD standards [189],

[227] for graphical visualization when not fully respected. It included
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adorning macromolecules with their residue (e.g. “phosphorylated”,
“acetylated”) or state of modification (i.e. “active”, “inactive”). Incorrect
representation of biochemical reactions such as ligand binding its receptor,
were further corrected. Non-standardized reactions including the RNA
complex formation were corrected. Autocrine and paracrine signaling
described as an internal element that would activate its own receptor were
deleted and replaced in a more comprehensive pathway by transporting the

component in the secreted compartment and making it available to bind its

own receptors of proximal cell receptors.

Relevant annotations regarding components and reactions (e.g. PubMed IDs
(PMID), HUGO identifiers [205], pathways of interest) were previously
stored in the note section of CellDesigner. Consistent with MIRIAM
standards [233], such notes were automatically retrieved and inserted in the
dedicated MIRIAM section of CellDesigner [228] with the qualifier “bgbiol:
isDescribedBy”.

In the case of the CAF-map V2, it was not cellular specificity that had to be
assessed, since the ACSN CAF-map was built only with CAF-specific
information, and all additions to the CAF V2 map have been as well, but
rather the cancer-specificity of the network. Due to the difficulty of obtaining
healthy samples to compare with diseased samples to extract differential
signatures, only two datasets were available for cancer-specific analysis: the
public non-small cell lung cancer (NSCLC) GSE22874 dataset [239] from the
National Center for Biotechnology Information [240] and the private breast
cancer EGADO00001003808 dataset from the European Genome-phenome
Archive [241]. GSE22874 is a microarray analysis including, among other
stroma cell-types, 15 NSCLC CAFs samples and 15 healthy control
fibroblasts samples established from primary cultures. Its differential gene

expression was analyzed using the GEO2R interactive web tool
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Refining of the latter was performed with selection of adjusted p-value > 0.05
and absolute fold change (FC) > 1.5. Next, EGAD00001003808 was
analyzed. It is a RNA-Seq dataset of 47 CAF samples sorted from fresh BC
including 28 CAFs-S1 and 19 CAFs-S4 subtypes. Both CAFs-S1 and CAFs-
S4 subpopulations are myofibroblastic activated CAFs whose expressions are
strictly restricted to cancer and characterized by high levels of fibroblast
activating protein [77]. However, CAFs-S1 are mainly involved in tumor-like
phenotypes (e.g. immunosuppression, tumor growth and proliferation,
inflammation, ECM remodeling), whereas CAFs-S4 are responsible for
generic core signaling, motility, and perivascular signatures. Thus, CAFs-S4
represented the control group against the aggressive CAFs-S1 group of
interest. The tissue harvesting protocol, as well as the data mapping,
alignment, quality control, and normalization processes are detailed in [67].
Differential expression analysis (DEA) was performed afterwards using the
Limma package [242] in R version 4.2.2 to identify differentially expressed
genes (DEG) between breast CAFs-S1 and CAFs-S4. Standard significance
threshold of adjusted p-value > 0.05 and absolute FC > 1.5 were applied.

For each DEA, results were first plotted on the CAF-map V2 in the
MINERVA platform with a color-code corresponding to the over- or under-
expression of specific components of the map within the datasets. The
annotation score of the CAF-map V2 was further calculated to evaluate the

confidence in the depicted information.
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3.2

3.2.1

INFERENCE OF CELL- AND DISEASE-SPECIFIC REGULATORY

BOOLEAN MODELS

Beyond their static knowledge base function, both RA-map V2 and CAF-map
V2 were used to infer cell- and disease-specific Boolean regulatory models to
study RASFs and breast CAFs dynamic features in pathogenic environments.
However, these two molecular interaction maps, even greatly updated, still
have limitations in this objective. Despite its RASF-specific enrichment, the
RA-map V2 remains a global map, gathering information from several cell
types, tissues, fluids, and is not RASF-specific. Similarly, despite its updates
and corrections, the CAF-map V2 remains a global map, gathering
information from multiple types of cancer and is not specific to BC. A number

of measures, similar or not, were undertaken to tackle these challenges.

Common strategy for inference of the RASFs and breast CAFs

regulatory Boolean models
3.2.1.1 The CaSQ map-to-model framework

A molecular interaction map and a dynamic Boolean model are two distinct
entities which may serve different purposes and are generally created
independently. Nevertheless, both constructions share some common
features, namely the topology of the network or the mode of influence. In this
context, the CellDesigner as SBML-qual (CaSQ) tool [243] attempts to
bridge the gap between static representations in the form of molecular
interaction maps and dynamic Boolean models. CaSQ automatically infers
large-scale Boolean models in the standard SBML-qgual format [244] from
SBGN PD [189], [227] molecular interaction maps in the CellDesigner [228]
XML format. The logical rules of the regulatory model are based on the
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topology of the static network. Note that CaSQ allows to retain all references,
annotations, and layout of the molecular interaction map in the associated
model, facilitating interoperability. The tool is used through the command
line with specific positional and optional arguments, the parameters of
interest in our work are presented as follows : casq <infile> -c -s -u <specific

node(s)> -d <specific node(s)> where :

e - (--csv) stores species information into a separate CSV file;

e -s (--sif) stores the influence information into a separate SIF file;

e -u (--upstream) only infers a model from species upstream of this
specific node;

e -d (--downstream) only infers a model from species downstream of

this specific node.

3.2.1.2 Boolean regulatory model visualization and accessibility

Regulatory models were made available on the Cell Collective [245] and
BioModels [246], [247] repositories of biological models. Cell Collective is
a web-based platform enabling researchers to collaboratively build and share
qualitative large-scale models of various biological systems (e.g. gene
regulation, signal transduction, cell-cell interaction networks) without having
to enter or modify complex mathematical equations (Figure 22). Models may
be annotated with published references that support the depicted information.
The platform further allows to interactively simulate, perturb, and analyze
models by running system-wide in-silico experiments and visualize cellular
responses under different conditions. Cell collective hosts and provides
export features of biological models encoded in the standard SBML format
[229]. Additionally, BioModels gathers freely-available published

mathematical models of biological systems in diverse modeling formats.
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Figure 22. Overview of the Cell Collective simulation platform [245].
The left-hand panel first represents the simulation parameters: the
simulation speed corresponds to the plot rate of simulations and has no
impact on results; the sliding window is the number of steps over which
the fraction of activity/inactivity of each node is calculated and
displayed (e.g. if the sliding window is 100, and the node is active in 20
steps over the last 100 steps, the activity level displayed on the graph
will be 20%); the update can be synchronous or asynchronous depending
on the characteristics of the simulation. The external components are
those not regulated by any upstream components, unlike the internal
components which are. The value of external components can be
initialized, but being in a binary qualitative study, we will always set it
to 0% (inactive or absent component) or 100% (active or present
component). The internal components can be qualitatively on (active or
present) or off (active or absent) representing biological mutations to
simulate loss- or gain-of-function experiments. The evolution of activity
of internal and external components according to the initialization of the
model can be followed on the activity network on the middle panel
(green for active, red for inactive) or on the simulation graph on the right
panel with the activity level of each node according to the logical time
step.
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3.2.1.3 Regulatory behavior validation

The Boolean regulatory models dynamic behavior were thoroughly assessed

to confirm their biological relevance through three different approaches.

First, a generic validation approach was carried out to confirm the
involvement of individual components into RASFs or breast CAF-specific
signaling or gene regulatory pathways. In greater detail, a literature review
was undertaken and experimental evidence for RASF- and breast CAF-
specific activity were retrieved from in-vitro and in-vivo studies in both
humans and murine models of RA and BC (e.g. single or multiple knock-out
and knock-in experiments, genetic recombination experiments). The latter
studies experimental conditions were used to initialize the RASF- or breast
CAF model (e.g. a gene knock-out experiment was translated as an initial
value of 0 for said gene in the regulatory model and a gene knock-in was
translated as an initial value of 1). This mechanistic verification was
performed in a synthetic state of the model where remaining nodes were set
to 0 (i.e. absent or inactive). Specific components to test values were then
switched from 0 to 1 or 1 to 0 depending on the experimental scenario to
assess their particular contributions to the pathway. Simulations were
performed on the Cell Collective interactive platform [245] in the
asynchronous updating mode, with a simulation speed of one, and a sliding

window of 30.

Secondly, the global behavior of the model was assessed. This comprehensive
analysis, conducted at the level of RASFs or breast CAFs regulatory cellular
phenotypes allowed us to compare the overall behavior of the model to
biologically known RASFs or breast CAFs cellular dynamics. This time, the
long-term behavior of the model was evaluated through analysis of its trap-
spaces under RASFs or breast CAF-specific initial conditions. Trap-spaces

are regions of the state-space from which the system cannot escape [248],
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[249] (Figure 23). By definition, each trap-space contains at least one
attractor of the model. However, trap-spaces may overlap with each other.
Thus, minimal trap-spaces (later referred to as “trap-spaces”), i.e. trap-spaces
which do not include smaller trap-spaces, offer a good approximation of
Boolean models attractors by faithfully capturing its asymptotic behavior.
Trap-spaces were computed using BioLQM [250] and the biolgm.trapspace
function, using binary decision diagrams or an ASP-based solver. Their
computation relies on the identification of positive and negative prime
implicants for each components function without performing simulation but
rather through a symbolic approach implementing a constraint-solving
method. In this context, each trap-space reflects a different subspace of
RASFs or breast CAFs cellular phenotypes. The latter were compared with
known RASFs or breast CAF overall cellular behavior extracted from

specialized literature to confirm the asymptotic behavior of the model.
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Figure 23. Attractors in Boolean models. Stable states are where the
system reaches a stable configuration that does not change over time.
Complex attractors are where the system oscillates between multiple
states in a periodic manner. Trap-spaces are where the system gets
trapped in a subset of states from which it cannot escape.
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3.2.2

Finally, the global impact of regulatory pathways (e.g. signaling and gene
regulation) upon metabolic subprocesses was evaluated to confirm its proper
reproduction in a pathological cellular context. It was done by projecting the
trap-spaces of the regulatory model on metabolic components and comparing

the latter asymptotic behavior with specialized literature.

Inference of the regulatory Boolean RASF model

CaSQ (version 1.1.0) [243] was used to infer a Boolean model from the RA-
map V2 in the standard SBML-qual [244] format. Its latest functionality
enables extraction and translation into a model, not of an entire molecular
map, but only a subpart of interest. This feature allowed us to overcome the
lack of cellular-specificity of the RA-map V2 by only extracting pathways
associated with RASF-specific inputs. Inputs, in the sense of components that
are not regulated by any other upstream components, are supposed to exert an
important role on the behavior of the model due to the linearity of the map
and the associated-inferred model. Given our molecular interaction map
construction, in the vast majority of cases, the inputs of our model are
extracellular ligands or microRNAs. To identify RASF-specific inputs, a
comprehensive list of all regulatory inputs was obtained and their fibroblastic
specificity was confirmed or refuted one by one based on a thorough

assessment of specialized literature.

Initial conditions for all regulatory model inputs were retrieved from
specialized literature. They allowed us to simulate the regulatory model in a
RASF-specific environment and validate its behavior. In greater detail, we
sought to assign a Boolean value to each input based on its state (i.e. level of
expression or presence) in RASFs. This was achieved in two ways based on

the in-vitro or in-vivo origin of the study. In an in-vivo setting, this qualitative
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3.2.3

observation must necessarily be obtained relatively to the same observation
in a fibroblast in another biological state. Ideally, it should be compared to a
healthy fibroblast. However, expression data rarely exist in healthy
fibroblasts as healthy patients are not usually willing to provide synovial
samples due to the invasiveness of the procedure (few samples after accidents
and joint replacement may be available). Samples are more easily recovered
from patients suffering from other joint diseases. Therefore, in the context of
data analysis, the control for RA is commonly osteoarthritis (OA) because of
the similarity of the affected areas but fairly different features (i.e. OA is a
degenerative, non-autoimmune, and non-inflammatory disease). Thus,
expression data comparison in fibroblasts between RA and OA were retrieved
from specialized literature and if a specific component was over-regulated in
RA compared to OA, a value of 1 was assigned to the component. A value of
0 was assigned if it was under-regulated in RA compared to OA. In an in-
vitro context, synovial fibroblasts are cultured according to particular settings
and the state of specific components is compared before and after RASFs
differentiation to assign it a Boolean value (i.e. 1 if over-expressed in cultured

RASFs compared to normal fibroblasts and 0 if under-expressed).

Inference of the regulatory Boolean breast CAF model

We used the CaSQ tool (version 1.1.0) [243] and its default parameters to
generate a Boolean model from the global CAF-map V2 in the standard
SBML-qual format [244].

A data-driven breast cancer-specific contextualization of the CAF model V2
was conducted to overcome the lack of cancer-specificity. To this purpose,
the already-analyzed dataset EGADO00001003808 from the European

Genome-phenome Archive [241] was leveraged. In addition to the previous
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analyses, most significant DEG were depicted with an absolute FC > 1.
Biological processes related to the most significant DEG were assessed by
enrichment analysis on the GO Resource powered by PANTHER [251]. If
pathways related to biological processes driven by highly significant DEG
were not represented in the CAF-map V2, an additional step of literature
search was conducted to include them and cover most of breast CAF-related
pathways. Identified DEGs were discretized to fix the initial conditions of the
CAF model in accordance with BC-specific biology. Up-regulated DEG
present in the regulatory model were set to an initial value of 1. Similarly,
down-regulated DEG present in the regulatory model were set to an initial
value of 0. Finally, the inputs of a logical model being the nodes which do
not present any upstream regulators, they are suspected to exert a significant
control on the dynamics of the model due to the linearity of signal
transduction. Thus, fixing their initial values is crucial to reproduce breast
CAF-specific conditions. For inputs that would not have been fixed by the
DEA, initial conditions may be extracted from BC-specific peer-reviewed
literature similarly to RASFs. Overall, this effort to combine data-driven and
manually curated breast CAF-specific information to initialize the regulatory
CAF model allows to confidently contextualize it to reproduce, as closely as

possible, breast CAF-specific conditions for further behavior validation.

COUPLING OF CELL- AND DISEASE-SPECIFIC REGULATORY

MODELS WITH A GENERIC HUMAN METABOLIC NETWORK

Construction of cell- and/or disease-specific metabolic networks or existing
computational frameworks to parametrize metabolic networks in disease-
specific context are greatly limited by the lack of data in poorly studied

biological fields such as RASFs and breast CAFs and issues associated with
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improper automatic network reconstructions. According to one of the
principles of immunometabolism, namely the distribution of metabolic fluxes
arising from the upstream immune-related signaling network, we aim to
contextualize a generic metabolic model from the asymptotic dynamic
behavior of its regulatory system represented by the associated Boolean
regulatory model. By doing so, we aim to obtain hybrid models of RASFs and
breast CAFs covering multiple biological layers and allowing an integrated

overview of immunometabolic dynamics.

Metabolic network of choice

The metabolic network used in this work is the MitoCore model [252], a
manually curated constraint-based model of human central metabolism. It
includes two compartments (i.e. cytosol and mitochondria), 74 metabolites,
324 metabolic reactions, and 83 transport reactions and covers all parts of
central metabolism directly or indirectly involved with energy production.
This core model, although smaller in size compared to recently published
huge human genome-scale metabolic models, allows to avoid many large
models associated issues (e.g. unrealistic ATP production rates, automatic
and not-curated reconstruction of improper gene-protein-reactions rules
leading to incorrect compartmentalization of reactions or directionality
constraints). Additionally, considering its manual curation, users can have
great confidence in each depicted reaction and have a better insight on the
behavior of the system, allowing for an easier evaluation of the results. The
default parameters of MitoCore simulate normal cardiomyocyte metabolism.
However, the default simulation settings can be applied to various biological
contexts without necessarily implying cell-specific features. Indeed,
cardiomyocytes can metabolize a wide range of substrates, have reactions

common to many other cell types, and represent the metabolism of the human
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heart, an organ of utmost importance in human health, disease, and
toxicology. Moreover, MitoCore includes processes that are inactive in
cardiomyocytes but that can be activated to represent other cell-types
metabolic features (e.g. gluconeogenesis, ketogenesis, P-alanine synthesis
and folate degradation). As a proof of concept regarding the generalization of
their model, MitoCore modelers were able to successfully simulate the
fumarase deficiency, a nervous system condition, using the default

cardiomyocyte parameters.

Framework for hybrid modeling

The objective of our hybrid modeling framework is to contextualize the
MitoCore generic reconstruction of human metabolism through the signaling
and gene regulation impact of cell- and disease-specific networks. Thus, we
will constrain the metabolic fluxes of MitoCore based on the cell- and
disease-specific regulatory trap-spaces. The latter contextualized metabolic
model will further be analyzed to evaluate the impact of regulatory

subsystems upon metabolic processes in these particular contexts.

The general architecture of the framework for hybrid modeling is provided in

Figure 25 and its various steps are discussed below:

(1) Value propagation [253], [254], a method implemented in the
CoLoMoTo notebook [255], is applied to the cell- and disease-
specific Boolean regulatory model to facilitate its analysis. Indeed,
when given a set of logical rules (i.e. the regulatory model Boolean
rules) and a cellular context (i.e. the regulatory model cell- and
disease-specific initial conditions), this iterative algorithm allows the
computation of specific components dynamical consequences on the

overall behavior of the model. It reveals the influence specific
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components may exert on the dynamics of the network and reduce its
complexity. Note that this method does not impact the asymptotic
behavior of the model: all dynamical consequences calculated in this
manner would occur regardless. In greater details, the cellular context
is first formalized by assigning the cell- and disease-specific initial
conditions. Next, a model reduction technique is applied where for
each constant node, the corresponding value is inserted into the logical
rule associated with each of its target nodes. Each logical rule is then
simplified using Boolean algebra. If the rule simplifies to a constant,
this fixed value is further propagated into the logical rules of its own
downstream nodes. This process is iterated until no further

propagation can be applied (Figure 24).

(2) Evaluating the influence of cell- and disease-specific components
upon the global regulatory behavior of the model through the value
propagation algorithm allows to decrease its complexity to identify
trap-spaces. Trap-spaces are considered as approximations of
attractors and faithfully capture the asymptotic behavior of Boolean
models. To identify the regulatory trap-spaces, the outputs of value
propagation (i.e. value of all nodes of the model after complete
propagation of initial conditions) are considered as a new set of initial
conditions of the regulatory model and the already presented
biolgm.trapspace function is applied. Indeed, without decreasing the
complexity of the regulatory Boolean models, computation of traps-
spaces with BioLQM is hardly achievable for large-scale networks
due to computational reasons as they are commonly computed based
on prime implicants which can be of a great number when increasing

model size.
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Figure 24. The principle of logical value propagation analysis [252].
A simple example involving two core nodes: D and E, and four input
nodes: A, B, C, and F. The value 1 is initially assigned to the node C
and further propagated through the model. The assignment C:1 implies
the evaluation of D to 1. Consequently, the function assigned to node E
becomes “not F.” In other words, assigning the value 1 to node C
activates node D independently from the value of its other inputs A and
B, while node E becomes completely dependent on the value of node F.

(3) Once the asymptotic behavior of the Boolean regulatory model is
obtained, i.e. its trap-spaces, our interest lies in the impact of the
asymptotic behavior of regulatory subsystems upon the metabolic
subsystem, i.e. trap-spaces projected on metabolic components.
However, it is worth noticing that the Boolean regulatory model rules
do not allow to differentiate a protein with a signaling function from
a metabolic enzyme or any simple molecule from a metabolite. To
overcome this limitation, all components of the regulatory model are

extracted as a list, as well as enzymes and metabolites from MitoCore,
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which are identifiable. Both regulatory and MitoCore metabolic
components being consistently named with BiGG IDs [232], the
regulatory components are compared to MitoCore metabolites and a
list of the regulatory metabolites is extracted. This matching is limited
by excluding a list of manually predefined compounds considered by
MitoCore as metabolites but actually are common metabolic
intermediates (Table 3). Similarly, a list of the regulatory enzymes is
extracted. Said lists are used to project previously identified
regulatory trap-spaces on the metabolic enzymes and metabolites. The
latter reflect the cell- and disease-specific signaling and gene
regulation processess impact upon cellular metabolism, i.e. cellular

phenotype.

(4) Metabolic components state within regulatory trap-spaces may
oscillate depending on the simulation conditions. In order to interpret
these trap-spaces and constrain associated metabolic fluxes in
MitoCore, we will restrict ourselves to the maximum values of trap-
spaces for metabolic components. A metabolic enzyme-associated
maximal trap-space value strictly superior to 0 means this metabolic
enzyme might be activated or present according to the outcome of the
regulatory model. An enzyme being qualitatively activated or present
does not give any information regarding the feasibility nor the kinetics
of the metabolic reactions it is supposed to catalyze. Similarly, a
metabolite-relative maximal trap-space value strictly superior to 0
shows the metabolite is produced in some of these regulatory
conditions. However, it does not give any information regarding its
producing reactions high or low flux. Thus, it is impossible, without
any further user-provided information, to influence the reaction flux
of metabolic components associated with maximal trap-spaces values

strictly superior to 0. On the other hand, a metabolic enzyme with a
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projected maximal trap-space value equal to O (i.e. trap-spaces always
equal to 0) expresses the inactivation or absence of the said enzyme
by signaling or gene regulation pathways. The catalyzed metabolic
reactions will not happen. A metabolite-associated maximal trap-
space value of 0 denotes the non-production of the said metabolite. Its
producing reactions did not occur. Hence, for every metabolic enzyme
or metabolite with projected maximal regulatory trap-spaces values
equal to 0, we constrain the flux of its associated MitoCore metabolic

reaction (i.e. catalyzed reactions or producing reactions) to 0.

(5) Once the generic MitoCore metabolic model is cell- and disease-
specifically contextualized by the outcomes of the regulatory model,
Flux Balance Analysis (FBA) is performed using CobraPy [256] to
evaluate the metabolic flux distribution. Actually, two FBAs are
conducted to highlight a potential change in metabolic fluxes
distribution under cell- and disease-specific conditions. The first FBA
is conducted without any additional constraints, reflecting the generic
and healthy control state. The second FBA is conducted with the
additional metabolic flux constraints extracted from regulatory trap-
spaces, reflecting the cell- and disease-specific condition. The
objective function is set to maximum cellular ATP production to
reflect the primary energy production role of central metabolism. It is
manually defined as the sum of the three cellular ATP-producing
reactions (i.e. the seventh and tenth reactions of glycolysis, and the

complex V of OXPHOS or ATP synthase).

116



Table 3. Common metabolic intermediates considered as metabolites

in the MitoCore model.

Identifier Detailed name
M atp c Cytosolic Adenosine Triphosphate
M adp c Mitochondrial Adenosine Diphosphate
M adn ¢ Cytosolic Adenosine
M_adp m Cytosolic Adenosine Diphosphate
M amp ¢ Cytosolic Adenosine Monophosphate
M_amp m Mitochondrial Adenosine Monophosphate
M atp m Mitochondrial Adenosine Triphosphate
M cdp m Mitochondrial Cytidine Diphosphate
M cmp ¢ Cytosolic Cytidine Monophosphate
M co ¢ Cytosolic Carbon Monoxide

M co_e Extracellular Carbon Monoxide

M co2 ¢ Cytosolic Carbon Dioxide
M co2 e Extracellular Carbon Dioxide
M co2 m Mitochondrial Carbon Dioxide
M coa ¢ Cytosolic Coenzyme A
M coa m Mitochondrial Coenzyme A
M ctp c Cytosolic Cytidine Triphosphate
M fe2 ¢ Cytosolic Ferrous Ion
M fe2 e Extracellular Ferrous lon
M fe2 m Mitochondrial Ferrous lon
M ficytC ¢ Cytosolic Ferricytochrome c
M_ficytC e Extracellular Ferricytochrome c
M ficytC m Mitochondrial Ferricytochrome ¢
M gdp ¢ Cytosolic Guanosine Diphosphate
M gdp m Mitochondrial Guanosine Diphosphate
M gtp ¢ Cytosolic Guanosine Triphosphate
M _gtp m Mitochondrial Guanosine Triphosphate
M h ¢ Cytosolic Hydrogen lon

M h e Extracellular Hydrogen lon

M h m Mitochondrial Hydrogen Ion

M h20 ¢ Cytosolic water
M h20 m Mitochondrial water
M h202 ¢ Cytosolic Hydrogen Peroxide
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M h202 m
M hco3 ¢
M hco3 e

M_hco3 m

M nad ¢
M nad e
M nad m
M nadh ¢
M nadh_e

M nadh m
M nadp ¢

M _nadp m

M nadph ¢

M nadph m
M no ¢

M no e

M o2 ¢

M o2 e

M 02 m

M o02s m
M _pheme ¢
M pheme m
M pic

M pi e

M pi m

M ql0 m

M ql0h2 m

Mitochondrial Hydrogen Peroxide

Cytosolic Bicarbonate

Extracellular Bicarbonate

Mitochondrial Bicarbonate

Cytosolic Nicotinamide Adenine Dinucleotide
Extracellular Nicotinamide Adenine Dinucleotide
Mitochondrial Nicotinamide Adenine Dinucleotide
Cytosolic Nicotinamide Adenine Dinucleotide
Extracellular Nicotinamide Adenine Dinucleotide
Mitochondrial Nicotinamide Adenine Dinucleotide
Cytosolic Nicotinamide Adenine Dinucleotide Phosphate
Mitochondrial Nicotinamide Adenine Dinucleotide Phosphate
Cytosolic Nicotinamide Adenine Dinucleotide Phosphate
Mitochondrial Nicotinamide Adenine Dinucleotide Phosphate
Cytosolic Nitric Oxide

Extracellular Nitric Oxide

Cytosolic Oxygen

Extracellular Oxygen

Mitochondrial Oxygen

Mitochondrial Superoxide Anion

Cytosolic Heme

Mitochondrial Heme

Cytosolic Orthophosphate

Extracellular Orthophosphate

Mitochondrial Orthophosphate

Mitochondrial Ubiquinone

Mitochondrial Ubiquinol
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The MitoCore metabolic model lacking cellular and tissular specificity, a
numerical interpretation of metabolic flux values was not possible. FBA
results were only interpreted in terms of flux distribution. For instance, the
ratios of ATP production from glycolytic or OXPHOS reactions relative to
total ATP production (represented by the objective function) were calculated.
Analysis of uptake and secretion of carbon fluxes (C-flux) was also carried
out to account for the turnover of carbonated molecules. The C-flux of an
uptake reaction represents the total cellular carbon influx from this specific
uptake reaction. Similarly, the C-flux of a secretion reaction represents the
proportion of total cellular carbon efflux coming from this specific secretion
reaction. Finally, a comparison of both FBAs internal fluxes was conducted
and a difference in metabolic fluxes was identified from a greater than 2-fold

variation in both contexts.

1 SBML
Model inference

1 SBML-qual
Cell- and/or disease-specific initial conditions

1
Translation

Optimal metabolic flux
Metabolic flux Flux Balance distribution under cell-
constraints Analysis and/or disease-
specific conditions

Generic
metabolic

model

Figure 25. General architecture of the hybrid modeling framework.
The generic metabolic model is contextualized by the asymptotic
behavior of the cell- and disease-specific regulatory model and the
impact of signaling and gene regulation systems upon metabolism,
resulting in additional metabolic constraints.
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3.3.3 Identification of regulatory driver(s)

To identify regulatory components potentially responsible for metabolic
alterations in RASFs and breast CAFs, a knock-out/knock-in strategy of the
regulatory initial conditions was conducted on both models. All initial
regulatory conditions set to 1 in the RASF or breast CAF-specific
configuration were successively set to 0 while the other remained at RASF or
breast CAF-specific values. Similarly, all regulatory components initial
conditions set to 0 in the RASF or breast CAF-specific configuration were
successively set to 1 while the other remained at RASF or breast CAF-specific
values. Subsequent value propagation, metabolic compounds-projected
regulatory trap-spaces identification and extraction of metabolic constraints
were conducted to perform FBA and evaluate metabolic fluxes distribution in
these new conditions. To depict the key metabolic function of energy
production, the proportion of total cellular ATP production from glycolysis
and OXPHOS were compared in the various FBAs.

However, this type of combination only allows us to study the effect of single
components knock-out or knock-in at a time as they are tested individually,
and therefore eliminates any synergistic effects of regulatory components
upon metabolic processes. To overcome this limitation, we additionally
adopted a second, more comprehensive strategy of combined knock-outs and
knock-ins. This time, all possible combinations of regulatory initial
conditions were automatically generated and further tested, ie 2"
combinations (n being the number of initial conditions). A few exceptions
were implemented to cope with the exponential increase in the number of
combinations to be tested as a function of the number of initial conditions and
for computational power reasons arising therefrom. First, after reaching the
trap-space computation step of our framework, all initial conditions

combinations exhibiting aberrant trap-spaces projected onto cellular

120



ontological phenotypes (e.g. both apoptosis and proliferation or negative and
positive regulators being active at the same time) were eliminated. Secondly,
a number of initial conditions knock-out or knock-in were not included in the
combinations for biological significance reasons. For instance, glucose
knock-out was eliminated as its absence prevents all our metabolic reactions
of interest from taking place. The effect of “simple molecules™ as referred to
in CellDesigner (e.g. Ca®’, phosphatidylinositol 4,5-bisphosphate,
lysophosphatidic acid) was additionally eliminated as they are signaling
intermediates shared by many regulatory pathways and do not directly play a
key role. Finally, a time out function was implemented on the search for trap-
space step of our pipeline. Indeed, depending on the initial condition
combination tested, the latter may not reduce the complexity of the regulatory
model enough through value propagation to obtain its trap-spaces in an
acceptable timeframe. The trap-space search was limited to three minutes per
combination to avoid wasting precious computing time. Three additional
measures were implemented specifically for the CAF model due to the very
high number of components fixed in the initial conditions. First, only an
extraction of the CAF-map V2 and not the whole map was inferred in Boolean
regulatory model, by focusing on all molecular pathways upstream of CAFs
cellular phenotypes involved in the hallmarks of cancer. This was intended to
reduce the complexity of the model as a function of the number of nodes,
while maintaining biological consistency. Secondly, only inputs
combinations were tested. Indeed, as highlighted before, the regulatory
models inputs (i.e. nodes not regulated upstream) are suspected to exert a
critical role over the global behavior of the model and may represent potential
therapeutic targets. Remaining internal components were excluded from the
combinations and remained at their fixed breast CAF-specific initial
condition value. Even when focusing solely on the effect of input
combinations, the number of the latter may still be too high. Thus, a final step

of grouping inputs based on their type or biological role was undertaken to
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3.3.4

reduce their number. Finally, in both biological contexts and for all remaining
combinations, the framework was applied as displayed previously and ATP
production rates from glycolytic and oxidative pathways were assessed.
Combinations were associated with a healthy metabolic profile if cellular
ATP production originated over 60% from OXPHOS and with a pathogenic
profile if cellular ATP production originated over 60% from glycolysis. In
each category, identification of specific patterns of components was
undertaken. To optimize calculations, the framework code was adapted as
displayed above and parallelized to run on 64 cores simultaneously on a

virtual machine from the french bioinformatics institute (IFB) cloud service.

By doing so, all individual and combined effects of regulatory components
upon metabolic sub-processes and, above all, upon the preferential metabolic
pathway for energy production in the form of ATP, were fully assessed within

the limits of biological coherence.

Python packaging of the hybrid modeling framework

For a broader application to a wide range of dynamic study of the cellular
impact of gene regulation and signaling upon metabolic processes, and
particularly upon its central function of energy production, we provided the
packaging of our hybrid modeling framework within a pip-installable Python
tool of the name Metal.o for Metabolic analysis of Logical models extracted
from maps. A multiplatform graphical user interface (GUI) was implemented

using the wxPython toolkit [257] and the Gooey parser [258].

The Metalo package automatically applies the previously presented hybrid
modeling framework and further covers the Boolean network inference from
a standardized molecular interaction map. A few adjustments were

implemented as compared to the hybrid modeling framework, notably for
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packaging and distribution (i.e. bioLQM is not Python-compliant) along with
performance reasons (i.e. computation of trap-spaces may be achieved faster
and without decreasing the complexity of the network). Such revisions
exclusively concern the search for regulatory trap-spaces. Indeed, our
framework previously required a preliminary step of application of the value
propagation algorithm [254] from CoLoMoTo [255] to reduce the complexity
of the regulatory model before identifying its trap-spaces through the Java
bioLQM toolkit [250]. The latter is no longer necessary as the search for trap-
spaces is now handled by Trappist [259], an open-source Python tool for
computing minimal trap-spaces of Boolean models. Trappist replaces the
need for prime-implicants with the enumeration of maximal siphons in the
Petri net encoding the Boolean regulatory model. Beyond that slight
difference replacing steps (1) and (2), and the addition of the step model
inference by CaSQ [243], the various steps pursued by MetalLo to couple a
regulatory Boolean model inferred from a molecular interaction map with a
generic constraint-based metabolic reconstruction are exactly identical to
those presented above. Thus, Metalo relies on four external packages (i.e.
CaSQ [243], CobraPy [256], Pandas, and Trappist [259]). Note that it allows
to cover all specificities of the integrated tools and packages (e.g. leverage
the ability of CaSQ to infer only a subpart of a molecular interaction map, the

ability of CobraPy to run FVAs instead of FBAs).

To confirm the correct packaging of our framework and demonstrate how the
few adjustments displayed above had no impact upon the coupling process of
regulatory and metabolic models, the results of RASFs and breast CAFs
FVAs by MetalLo were compared to the results of the hybrid framework. Note
that results of FVAs were compared, not FBAs, since the latter only returns
one of the possible solutions, whereas FVAs cover the range of optimized
fluxes. Evaluating if the framework FBA results lies within MetaLo FVAs

ranges of fluxes confirms the homogeneity of the results.
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RESULTS

4.1

4.1.1

STATE-OF-THE-ART KNOWLEDGE BASES IN THE FORM OF

MOLECULAR INTERACTION MAPS

The RA-map V2, a comprehensive graphical representation of RA

pathogenesis

After major updates and corrections, the RA-map V2 is a state-of-the-art
graphical representation illustrating the major signaling, gene regulation, and
metabolic pathways, along with molecular mechanisms and phenotypes
involved in RA pathogenesis (Figure 26). It is available as a standalone
molecular interaction map on the MINERVA platform [234] at

https://ramap.uni.lu/minerva/.

The RA-map V2 is fully compliant with SBGN PD standards for graphical
representation [189], [227], MIRIAM for annotation [233], CALM for
biocuration [231], SMBL for format interoperability [229], and overall FAIR
principles [226]. It is compartmentalized with biologically relevant
compartments for cellular representation (i.e. extracellular space, plasma
membrane, mitochondrion, endoplasmic reticulum, nucleus, secreted
compartments, extracellular space). It includes 720 species (i.e. 329 proteins,
135 genes, 136 RNAs, 54 simple molecules, 1 ion and 65 molecular
complexes, 9 phenotypes) and 602 reactions (i.e. transport, translation,
transcription, heterodimer association, dissociation, state activation, reduced
physical stimulation). Phenotypes depicted in the RA-map V2 are specific
nodes describing different biological states and behavior. They can describe
specific cellular actors outcome or reproduce signals emitted by various
cellular actors into the RA joint. All of the RA-map V2 phenotypes are clearly
defined in Table 4.
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Figure 26. Upgrade of the original RA-map into the RA-map V2.
CellDesigner visualization of (A) the original RA-map and (B) the RA-
map V2. The RA-map V2 depicts a standard-compliant formal
representation with addition of metabolic pathways, hypoxia phenotype,
and expansion of mitochondria and endoplasmic reticulum
compartments. The map is color-coded with proteins in purple, genes in
green, RNAs in red and phenotypes in yellow. State transitions and
catalysis reactions are displayed in black, and the inhibitions are in red.
Compartments are distinguished as bounding boxes.
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Table 4. RA-map V2 coverage in biological phenotypes and

definition.

Phenotype

Specificity

Definition

Angiogenesis

Apoptosis

Bone erosion

Cell chemotaxis,
recruitment,
infiltration

Cell growth,
survival,
proliferation

Hypoxia

Signal in the
environment

Cellular
outcome

Signal in the
environment

Cellular
outcome

Cellular
outcome

Signal in the
environment

Angiogenesis refers to the formation of new blood
vessels. By carrying aggressive cells to the site of
inflammation and supplying nutrition and O to
proliferating inflamed tissue, new blood vessels help
maintain the RA chronic inflammatory state [260].
Apoptosis is the process of controlled self-destruction.
In RA, apoptosis may be dysregulated, leading to an
accumulation of immune cells and the release of pro-
inflammatory factors, contributing to the perpetuation
of inflammation. Synovial cell apoptotic changes have
been linked to RA etiology as a crucial mechanism
controlling tissue composition and homeostasis [261].
Bone erosion refers to the loss or destruction of bone
tissue. In RA, chronic inflammation and activation of
immune cells (e.g. osteoclasts) from the hypertrophied
synovial membrane lead to the erosion and cartilage
destruction of bone in affected joints [262].

Cell chemotaxis is the directed movement of cells in
response to chemical signals. In RA, various immune
cells (e.g. monocytes, neutrophils, lymphocytes) are
recruited and infiltrate the synovial tissue, perpetuating
the inflammatory response. For instance, leukocyte
infiltration of the synovial compartment is due to
increased production of adhesion molecules and
chemokines in the endothelium [263].

Cell growth, survival, and proliferation refer to the
processes by which cells increase in number and
maintain their viability. In RA, abnormal cell signaling
and dysregulation of growth factors can contribute to
the expansion and survival of immune cells involved in
the inflammatory response [264].

Hypoxia refers to a condition characterized by
inadequate oxygen supply to tissues. In RA, chronic
inflammation can cause hypoxia in the synovial tissue,
leading to the production of pro-inflammatory factors
and contributing to disease progression through
disordered apoptosis and metabolism, cartilage
degradation, and oxidative damage [265].
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Inflammation

Matrix
degradation

Osteoclastogenesis

Signal in the
environment

Cellular
outcome

Cellular
outcome

Inflammation is the immune response to injury,
infection, or tissue damage. In RA, inflammation occurs
in the synovial tissue of joints, leading to swelling, pain,
and stiffness. Chronic inflammation can cause joint
damage and deformity over time [266].

Matrix degradation refers to the breakdown of the
extracellular matrix, which provides structural support
to tissues. In RA, enzymes released by immune cells,
such as matrix metalloproteinases, contribute to the
degradation of the synovial tissue and cartilage, leading
to joint damage [267].

Osteoclastogenesis is the process of differentiation and
activation of osteoclasts, specialized cells responsible
for bone resorption. In RA, abnormal activation of
osteoclasts contributes to bone erosion and destruction
of the affected joints [268].

This new version of the RA-map represents an upgrade regarding the number
of components through the addition of 214 species, primarily involved in
metabolic pathways along with apoptotic and endoplasmic reticulum
compartment, 156 reactions, primary interconnecting metabolic pathways
with signaling and gene regulation pathways, and the hypoxic phenotype. We
included 222 additional bibliographical references (i.e. experimental studies
and literature reviews) both validating components and interactions already
present in the original RA-map along with illustrating RA-map V2 additions,
for a total of 575 PMIDs.

Statistical analysis conducted for -cellular-specificity and confidence
evaluation are publicly available on a GitLab repository at

https://gitlab.com/genhotel/rasf-hybrid-model. = The high number of

references enhances confidence in the depicted mechanisms as 87% of the
components included in the RA-map V2 are supported with more than one

experimental evidence and 65% with more than two (Figure 27).
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Figure 27. Annotation score of the RA-map V2. (A) Overlay on
MINERVA of the annotation scores upon the RA-map V2. Each
component of the molecular interaction map is colored according to its
annotation score. (B) Pie-chart of the annotation scores distribution
among the RA-map V2 components.

However, one should note that, as shown in Figure 27, 13% of the RA-map
V2 components are not supported by any bibliographic reference. This may
be due to a variety of reasons. For instance, many “simple molecules”, as
referred to in CellDesigner, (e.g. ATP, ADP, NADH, NADPH, H20, O,

CoA, FADH) act as products or reactants of well-known biological reactions.
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Thus, their expressions are rarely highlighted in disease-specific experimental
studies as it is rather inherently recognized. Also, molecules that act as
intermediates in specific metabolic pathways may not present bibliographical
references. In this case, we have evidence that the metabolic pathway is
expressed in a cell- and/or disease-specific manner, but not all intermediates
have been studied experimentally and confirmed one by one. For instance,
specific metabolic pathways such as the PPP are found to be expressed in
RASFs, however, experimental evidence may not be available for each and
every PPP metabolic component. Similarly, certain intermediates are required
for an efficient signal transduction in gene regulation or intracellular signaling

which may not yet have been widely documented yet.

Beyond the considerable effort of the initial RA-map to include the main
disease hallmarks (e.g. cytokines, chemokines, growth factors, toll-like
receptors) and molecular pathways (e.g. JAK-STAT pathway, NF-KB
pathway, MAPK pathway, interleukin pathways), we aimed to expand the
coverage in disease-specific metabolic dysregulated pathways. In particular,
we focused on adding glycolysis, TCA, PPP, and OXPHOS pathways as their
interplay with inflammation and immunity mechanisms, among others, have
been proven in RA [269], [270]. In addition, non-metabolic functions of
metabolites and metabolic enzymes were illustrated, such as their
transcription regulation function (e.g. Hexokinase 2 or Phosphoglycerate
Kinase 1 [271]) or their involvement in disease-specific signaling pathways
or phenotypes (e.g. Lactate [272], Glucose-6-Phosphate Isomerase [273] or
Pyruvate [274]).

The RA-map V2 integrates information from several sources and cellular
actors within the RA joint. The user can take advantage of its extensive
annotation and assess the coverage of the molecular interaction map by opting

for the specific representation of a particular cell type in MINERVA. As
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shown in Figure 28, the RA-map V2 is mainly composed of fibroblast
specific information (73%) but other cell types, tissues, and fluids involved
in RA pathogenesis [275] are also represented, including synovial tissue,
synovial fluid, blood components, serum components, PBMC, chondrocytes
and macrophages. However, when interpreting those results, one must
consider that a specific component can be common to several cell types and

not always specific to only one.

Topological analysis of the RA-map V2 network was further conducted on
Cytoscape [237] to explore the topology of the associated network and reveal
hidden properties. The network was first visualized in the default style with
the edge-weighted spring-embedded layout. The latter represents the
connections between the nodes as metal springs attached to the pair of nodes.
Such springs repel or attract their ends according to a force function. The
layout algorithm defines node positions so as to minimize the sum of forces
in the network. As shown in Figure 29, the RA-map V2 network is shown as
a large connected core with a few unconnected subsystems. The connected
core corresponds to the connected subgraphs (i.e. parts of the network in
which any node can be reached from any other node). Its large size may be
interpreted as the inherent interconnectedness of signaling, gene regulation,
and metabolic pathways involved in RA pathogenesis. On the other hand, 26
unconnected subgraphs of one to eight components are depicted. These
unconnected subparts of the network may represent nodes that have been
described as involved in RA, explaining their inclusion in the RA-map V2,
but that have not been yet replaced in the complexity of its pathogenesis and
may reflect the still highly fragmented knowledge about the disease. Indeed,
a number of unconnected subparts correspond to microRNAs experimentally
proven to be altered in RA (e.g. MIR34A, MIR221, MIR203A, MIR124
[276]) whose mode of action may remain undeciphered. A more striking

example is the HLA-DRB1 component, the first genetic factor identified in
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RA pathogenesis [134], [135], whose precise mode of action is still unknown.

Another explanation for the non-connectivity of such subgraphs could rely on

the strictness of our

curation criteria which may have eliminated a few

components and interactions in the RA-map V2.
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Figure 28. Cell-specificity of the RA-map V2 components. (A)

Visualization of the

fibroblast-specific overlay on the RA-map V2. (B)

Distribution of the RA-map V2 cellular specificity.
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Figure 29. Visualization of the RA-map V2 in Cytoscape. The default
style is applied along with the edge-weighted spring-embedded layout.
We distinguish a large highly-connected core network, characterizing
the variety of intertwined regulatory and metabolic pathways in RA
pathogenesis, as well as 26 unconnected subsystems, reflecting the still
fragmented knowledge in the disease pathogenesis.

Proper topological analyses were further performed on the RA-map V2
network in the undirect setting to provide insights into the connectivity or

interaction patterns within the network (Table S).
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Table 5. Results of the default topological analysis performed by
Cytoscape NetworkAnalyzer plugin on the RA-map V2. Number of
nodes: number of different entities; number of edges: number of
different interactions between nodes; average number of neighbors:
average connectivity of a node in the network; network diameter:
maximum length of shortest paths between two nodes; network radius:
minimum among the non-zero eccentricity of the nodes in the network;
characteristic path length: expected distance between two connected
nodes; clustering coefficient: average of the clustering coefficients for
all nodes in the network. The clustering coefficient is a ratio N/M, where
N is the number of edges between the neighbors of n, and M is the
maximum number of edges that could possibly exist between the
neighbors of n (between 0 and 1); network density: shows how densely
the network is populated with edges (between 0 and 1); Network
heterogeneity: diversity or variation in properties or characteristics of
nodes or edges within a network; Network centralization: quantifies the
degree to which network connectivity or control is concentrated in a
subset of nodes within a network; Connected components: connected
components are subsets of nodes within a network where each node is
directly or indirectly connected to every other node within the same
subset.

Statistic Value

Number of nodes 1673
Number of edges 1989
Average number of neighbors 2.4
Network diameter 26
Network radius 14
Characteristic path length 9.785
Clustering coefficient 0
Network density 0.002
Network heterogeneity 0.832
Network centralization 0.018
Connected components 27
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In the RA-map V2 network, each node has an average of 2.4 neighbours. This
value provides information about the overall span or reachability of the
network and is not very high. It suggests a rather sparse and spread-out or
decentralized network, where nodes are relatively distant from each other. A
network diameter of 26 refers to the longest shortest path length between any
two nodes in the network. The network radius of 14 represents the minimum
number of edges required to reach the farthest node from a specific node in
the network, again suggesting that the network has a wide spread. A
characteristic path length of 9.8 is a measure of how efficiently information
or signals can travel within the network suggests a dispersed network, where
it may take more steps to transmit information across the network. Network
heterogeneity refers to the degree of diversity or variation in properties or
characteristics of nodes or edges within a network. A value of 0.832 indicates
a relatively high level of heterogeneity and diversity in the network. This
means that the network contains nodes or edges that differ significantly in
their attributes, resulting in a non-uniform distribution of these properties
across the network. The network density refers to the proportion of actual
connections or edges in a network compared to the total number of possible
connections. A value of 0.002 means that only 0.2% of the possible
connections between nodes in the network actually exist. This value indicates
a sparse or low-density network, where only a small fraction of potential
connections are present. The clustering coefficient for the RA network being
equal to zero suggests that there are no particular links between the
neighbours of a node, giving space to more star-like shapes (i.e. node with
several edges connected to it) than cliques (i.e. node that its neighbours have
also edges in common) in the network. Networks whose topologies resemble
a star have a centralization close to 1, whereas decentralized networks are
characterized by having a centralization close to 0. Here, we have a network
centralization value of 0.018, confirming the latter observations. Overall, the

RA-map V2 network seems fairly sparse, decentralized and heterogeneous.
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Beyond default topological analyses, Cytoscape allowed us to identify the
most important hubs in our large-scale RA-map V2 network by sorting them
according to their degree. Note that highly connected nodes depicting cellular
phenotypes were removed from this classification as they represent an
outcome of the various biological pathways. Hubs are nodes with higher
degree of connectivity and may represent distinct biological clusters highly
involved in RA pathogenesis whose therapeutic targeting may be promising
in altering the pathogenic phenotype. As shown in Table 6, HIF1 is the most
connected component within the RA-map V2 network. It seems to interact
with a variety of regulatory and metabolic components, thus exerting a
probable central role in RA pathogenesis, as suggested before [181]. In
addition to HIF1, other components appear to play a hub role within the RA-
map V2 network: they are all key regulators in RA pathogenesis with a precise
mode of action attributed (e.g. NFKB is a transcription factor involved in
regulating the expression of numerous genes involved in inflammation and
immune responses in RA [277]; TP53 is a tumor suppressor gene that
regulates cell cycle progression, DNA repair, apoptosis, and contribute to the
abnormal proliferation of synovial fibroblasts [278]; AKT2 is a
serine/threonine protein kinase involved in cell survival, growth, and
metabolism leading to increased survival and proliferation of synovial
fibroblasts and immune cells [279]). Their central role is hardly surprising.
However, two of the remaining hub nodes are metabolic components (i.e.
M _g3p c, M _f6p c), clearly highlighting the immuno-metabolic pathways
interconnections and crosstalks within the RA-map V2 with a central role of

metabolism for regulation of RA pathogenic signaling and gene regulation.
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Table 6. Top 10 hubs of the RA-map V2 network. Hubs are highly
connected nodes of the network which may exert a key role in the
associated pathogenesis.

Node Type Degree
HIF1 Protein 30
NFKB/N Complex 29
TP53 Protein 18
AKT2 Protein 14
MAPK1 Protein 14
JUN Protein 13
RAC1,2 Protein 11
M g3p c Metabolite 10

FOS Protein

M fébp c Metabolite

4.1.2 The CAF-map V2, a comprehensive graphical representation of CAFs

involvement in the TME

After major updates and corrections, the CAF-map V2 is an extensive
knowledge base illustrating the major cellular signaling, gene regulation, and
metabolic pathways, as well as molecular mechanisms and phenotypes
involving CAFs in cancer initiation and progression. It is available as a
standalone molecular interaction map on the MINERVA platform [234] at

https://pathwaylab.elixir-luxembourg.org/CAF-map_V2. Visualizations of

both the original CAF-map and CAF-map V2 are provided in Figure 29.

137


https://pathwaylab.elixir-luxembourg.org/CAF-map_V2

Figure 30. CellDesigner visualization of the (A) original CAF-map
from ACSN and (B) CAF-map V2 with associated zoom-ins on
glucose-related pathways. The CAF-map V2 depicts a standard-
compliant formal representation and layout revision with a clear signal
flow. Components are precisely attributed to newly created biologically-
relevant compartments. Glucose pathways are compartmentalized and
are no longer represented only as phenotypes but properly detailed. Up-
to-date mechanistic information was further added.

The CAF-map V2 is fully compliant with SBGN PD standards for
visualization [189], [227], MIRIAM for annotation [233], CALM for
biocuration [231], SMBL for format interoperability [229], and overall FAIR
principles [226]. It includes 649 species (i.e. 308 proteins, 95 genes, 114
RNAs, 43 simple molecules, and 89 molecular complexes, 19 phenotypes)
and 544 reactions (i.e. transport, translation, transcription, dissociation,
heterodimer association, state activation, reduced physical stimulation,

negative and positive influence). Phenotypes of the CAF-map V2 are specific
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nodes describing different biological states and behavior. They can describe
fibroblasts outcome or reproduce cellular signals emitted by the latter within
the TME. All of the CAF-map V2 phenotypes are clearly defined in Table 7.
Biological compartments depicting extracellular space, cytosol, nucleus,
mitochondrion, endoplasmic reticulum, secreted compartments were further
added in the map to account for biological compartmentalization and cell
transport. Beyond the considerable effort of the initial CAF-map to include
major cancer functional modules (e.g. “growth factors production”,

2 ¢c 2 ¢¢

“cytokines”, “chemokines production”, “matrix regulation”) and molecular
pathways (e.g. “growth factors signaling pathways”, “inflammatory signaling
pathways”, “integrin signaling pathways”), coverage in disease-specific
mechanisms was expanded in the CAF-map V2. For instance, metabolic
pathways initially only considered as phenotypes were fully detailed, along

with addition of the calcium ion signaling pathway in the new endoplasmic

reticulum compartment.

Table 7. CAF-map V2 coverage in biological phenotypes and

definition.

Phenotype Specificity Definition
Actomyosin contractility refers to the ability of cells to
generate force and contract through the interaction of actin

Actomyosin Cellular filaments and myosin motor proteins. In CAFs, increased
contractility outcome actomyosin contractility can contribute to the remodeling
of the extracellular matrix and promote tumor cell invasion
and migration [280].
Angiogenesis refers to the formation of new blood vessels.
. ) In the TME, CAFs play a role in angiogenesis by secretin
. . Signal in the . play . £108 y £
Angiogenesis T™ME various growth factors, cytokines, and proteases that
promote the formation of new blood vessels to supply
nutrients and oxygen to the growing tumor [66].
CAFs are known to produce a variety of cytokines,
Cytokine Cellular . ® Y . Y .
] regulating immune responses and cell behavior promoting
production outcome

tumor cell survival, proliferation, and invasion [281].
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Cellular
outcome

CAFs are involved in synthesis, remodeling, and
degradation of the extracellular matrix. CAFs can deposit
excessive amounts of ECM components, leading to fibrosis
and tissue stiffening in the TME or produce enzymes
degrading the ECM, facilitating tumor invasion and
metastasis [282].

Fibroblast markers are proteins or molecules expressed by
fibroblast cells used to identify and distinguish CAFs from
other cell types within the TME [283].

Fibroblast proliferation refers to the process by which
fibroblast cells divide and increase in number. In cancer,
CAFs can exhibit increased proliferation compared to
normal fibroblasts, leading to their accumulation within the
TME [284].

Fibrosis refers to the excessive deposition of collagen and
other components of the ECM, resulting in the formation of
fibrous tissue. In the TME, CAFs can contribute to fibrosis,
leading to increased tissue stiffness and the formation of a
reactive stroma supporting tumor growth and invasion
[285].

The basement membrane is a specialized ECM structure
that separates epithelial or endothelial cells from
underlying connective tissue. CAFs can participate in the
formation or remodeling of the basement membrane in the
TME, affecting cell adhesion, migration, and invasion
[286].

CAFs can produce various growth factors promoting tumor
cell growth, survival, angiogenesis, and metastasis [287].
Hypoxia refers to a condition of low oxygen levels. In the
TME, regions of hypoxia can induce the activation and
recruitment of CAFs which may exhibit altered behavior
and secrete specific factors contributing to tumor
progression and angiogenesis [288].

CAFs can influence the immune system in the TME by
suppressing immune cell function or promoting the
recruitment of immunosuppressive cells, thereby
contributing to tumor immune evasion [289].

Markers of fibroblast activation are proteins or molecules
that are expressed by activated fibroblasts, including CAFs.
Their expression indicates the transition of fibroblasts into
an activated state with enhanced functions and altered
phenotypes [283].
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Matrix degradation refers to the breakdown or remodeling
of the extracellular matrix components by various enzymes,
such as matrix metalloproteinases. CAFs can secrete
MMPs and other proteases that contribute to the
degradation of the ECM, allowing tumor cells to invade and
metastasize [290].

CAFs can migrate from surrounding normal tissues into the
tumor stroma. This migration is often driven by signals
from tumor cells and the TME. Once in the tumor, CAFs
may contribute to tumor growth and progression through
various mechanisms [291].

Negative regulators of CAFs are factors or signaling
pathways that can inhibit or suppress the activation and
functions of CAFs, playing a role in maintaining tissue
homeostasis and limiting excessive fibroblast activation
and ECM remodeling [283].

CAFs can produce increased levels of ROS, which can have
diverse effects on tumor cells and the TME by influencing
signaling pathways, promoting DNA damage, and
contributing to the pro-inflammatory and pro-tumorigenic
effects [97].

Reactive stroma refers to the altered and activated state of
the stromal tissue in the TME. CAFs are a major
component of the reactive stroma, characterized by
increased ECM deposition, fibrosis, and altered signaling
[57].

CAFs play a significant role in promoting tumor growth by
providing growth factors, remodeling the ECM, facilitating
angiogenesis, and creating a supportive tumor
microenvironment [292].

CAFs contribute to tumor invasion by facilitating tumor
cell migration, ECM remodeling, and promoting EMT.
CAFs can create tracks and provide guidance cues for
tumor cells, promoting their invasion into surrounding
tissues and facilitating metastasis [293].
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A dozen additional peer-reviewed articles (i.e. experimental studies and
literature reviews) enabled us to correct and extend the mechanical processes
depicted in the map for a total of 368 PMIDs. Statistical analysis conducted
for  specificity and confidence are publicly available at

https://gitlab.com/genhotel/breast-cafs-reverse-warburg-effect. High number

of references enhances confidence in presented mechanisms as 76% of the
components are supported with more than one experimental evidence and

70% more than 2 (Figure 30).

N° of PMID:
24,2 0
1
2-5
6-10
11-15
16 -20
>20

6,0

285

Figure 31. Annotation score of the CAF-map V2. (A) Overlay on
MINERVA of the annotation scores upon the CAF-map V2. (B) Pie-chart
of the annotation scores distribution among the CAF-map V2
components.
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Similarly to the RA-map V2, a number of components depicted in the CAF-
map V2 are not supported by any bibliographic reference, due to the same
variety of reasons: expression of simple molecules acting as products or
reactants of well-known biological reactions are often not highlighted in
experimental studies, metabolic or signaling intermediates necessary for

proper signal transduction may additionally not be described.

The CAF-map V2 network is totally specific to CAFs as all included
components were extracted from data manually curated from CAF-specific
studies. Thus, it is the cancer-specificity that was further assessed through

DEA. Results of NSCLC and BC-specific DEAs are presented in Figure 31.

i
b
1

41

Figure 29. Visualization of cancer-specific differential expression
analysis as overlays on the CAF-map V2 in MINERVA. (A) Results
of cultured non-small cell lung cancer-associated fibroblasts vs. healthy
fibroblasts analysis. (B) Results of breast cancer CAFs-S1 vs. CAFs-S4.
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Topological analysis of the CAF-map V2 network was further conducted on
Cytoscape [237] to explore the topology of the associated network and reveal
hidden properties. The network was first visualized in the default style and
the edge-weighted spring-embedded layout. The latter represents the
connections between the nodes as metal springs attached to the pair of nodes.
Such springs repel or attract their ends according to a force function. The
layout algorithm defines node positions so as to minimize the sum of forces
in the network. As shown in Figure 32, the CAF-map V2 network is shown
as a single large connected core (i.e. parts of the network in which any node
can be reached from any other node through a specific path). Its large size
may be interpreted as the inherent interconnectedness of components and
signaling, gene regulation, and metabolic pathways involving CAFs within

the TME and further in cancer pathogenesis.

Proper topological analyses were further performed on the CAF-map V2
network in the undirect setting to provide insights into the connectivity or
interaction patterns within the network (Table 8). In the CAF-map V2
network, each node has an average of 2.6 neighbours. This value is not very
high, suggesting a rather sparse and fragmented network. A network diameter
of 20 refers to the longest shortest path length between any two nodes in the
network. This value provides information about the overall span or
reachability of the network and suggests a spread-out network where nodes
are relatively distant from each other. The network radius of 11 represents the
minimum number of edges required to reach the farthest node from a specific
node in the network, again suggesting that the network has a wide spread,

with nodes relatively distant from each other.
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Figure 30. Visualization of the CAF-map V2 on Cytoscape. The
default style is applied along with the edge-weighted spring-embedded
layout. We can distinguish a large highly-connected core network,
characterizing all intertwined regulatory and metabolic pathways in
CAFs involvement in cancer pathogenesis.
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Table 8. Results of the default topological analysis performed by
Cytoscape NetworkAnalyzer plugin on the CAF-map V2. Number of
nodes: number of different entities; number of edges: number of
different interactions between nodes; average number of neighbors:
average connectivity of a node in the network; network diameter:
maximum length of shortest paths between two nodes; network radius:
minimum among the non-zero eccentricity of the nodes in the network;
characteristic path length: expected distance between two connected
nodes; clustering coefficient: average of the clustering coefficients for
all nodes in the network. The clustering coefficient is a ratio N/M, where
N is the number of edges between the neighbors of n, and M is the
maximum number of edges that could possibly exist between the
neighbors of n (between 0 and 1); network density: shows how densely
the network is populated with edges (between 0 and 1); Network
heterogeneity: diversity or variation in properties or characteristics of
nodes or edges within a network; Network centralization: quantifies the
degree to which network connectivity or control is concentrated in a
subset of nodes within a network; Connected components: connected
components are subsets of nodes within a network where each node is
directly or indirectly connected to every other node within the same
subset.

Statistic Value

Number of nodes 1218
Number of edges 1554
Average number of neighbors 2.6
Network diameter 20
Network radius 11
Characteristic path length 8.198
Clustering coefficient 0
Network density 0.002
Network heterogeneity 0.771
Network centralization 0.029
Connected components 1
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A characteristic path length of 8.2 is a measure of how efficiently information
or signals can travel within the network suggests a dispersed network, where
it may take more steps to transmit information across the network. Network
heterogeneity refers to the degree of diversity or variation in properties or
characteristics of nodes or edges within a network. A value of 0.771 indicates
arelatively high level of heterogeneity or diversity in the network. This means
that the network contains nodes or edges that differ significantly in their
attributes, resulting in a non-uniform distribution of these properties across
the network. The network density refers to the proportion of actual
connections or edges in a network compared to the total number of possible
connections. A value of 0.002 means that only 0.2% of the possible
connections between nodes in the network actually exist. This value indicates
a sparse or low-density network, where only a small fraction of potential
connections are present. The clustering coefficient for the CAF network being
equal to zero suggests that there are no particular links between the
neighbours of a node, giving space to more star-like shapes (i.e. node with
several edges connected to it) than cliques (i.e. node that its neighbours have
also edges in common) in the network. Networks whose topologies resemble
a star have a centralization close to 1, whereas decentralized networks are
characterized by having a centralization close to 0. Here, we have a network
centralization value of 0.029, confirming the latter observations. Overall, the

CAF-map V2 network seems fairly sparse, decentralized and heterogeneous.

Beyond default topological analyses, Cytoscape allowed us to identify the
most important hubs in our large-scale CAF-map V2 network by sorting them
according to their degree. Note that highly connected nodes depicting cellular
phenotypes were removed from this classification as they represent an
outcome of the various biological pathways. Hubs are nodes with higher
degree of connectivity and may represent distinct biological clusters highly

involved in RA pathogenesis whose therapeutic targeting may be promising
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in altering the pathogenic phenotype. As shown in Table 9, TGFB, the
SMAD complex, and HIF1A are the most connected component within the
CAF-map V2 network. They seem to interact with a variety of regulatory and
metabolic components, thus exerting a probable central role in CAFs
involvement in the TME and cancer pathogenesis. In addition, other
components appear to play a hub role within the CAF-map V2 network: they
are all key regulators in CAFs pathogenesis with a precise mode of action
attributed (e.g. CAVI1, involved in promoting the activation and
differentiation of CAFs [294]; IL1A, promoting the activation of fibroblasts
into CAFs [295]; NFKB, inducing the production of cytokines, chemokines,
and growth factors by CAFs, thereby promoting tumor cell proliferation,
survival, angiogenesis, and immune evasion [296]). Their central role is

hardly surprising.

Table 9. Top 10 hubs of the CAF-map V2 network. Hubs are highly
connected nodes of the network which may exert a key role in the
associated pathogenesis.

Node Type Degree

TGFB Protein 37
SMAD3/SMAD4 Complex 17
HIF1A Protein 14

CAV1 Protein 10

IL1A Protein 10

NFkB Protein 10

LPA Simple molecule 8

SMAD7 Protein 8

OSM Protein 7
PDGF/PDGFRA Complex 7
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The work presented in this section enabled us to tackle part of the first
objective of the thesis, namely creating standalone static knowledge bases for
RA and CAFs covering cellular signaling, gene regulation, and metabolism.
The RA-map V2 and CAF-map V2 manually curated and validated graphical
knowledge bases in the form of molecular interaction maps, totally
standardized in their construction, layout, annotation, and format represent
the first efforts to reconstruct disease-specific static molecular networks
covering interactions between regulatory and metabolic processes. With a
high level of confidence in the depicted mechanistic information, the RA-map
V2 and CAF-map V2 were used as online up-to-date knowledge bases
gathering curated mechanistic information, templates for overlaying multiple
omics datasets and highlight cellular- or disease-specificity, and were
analyzed in terms of topology to highlight potential hubs with considerable

regulatory influence.
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Associated scientific communication, details here

The construction of the RA-map V2 was published in an original research

article and presented at two international scientific conferences:

Zerrouk, N*; Aghakhani, S*; Singh, V; Augé, F; Niarakis, A. A
mechanistic cellular atlas of the rheumatic joint. Frontiers in Systems

Biology 2022 2:925791. https://doi.org/10.3389/fsysb.2022.925791

Zerrouk, N*; Aghakhani, S*; Singh, V; Augé, F; Niarakis, A. A
multicellular atlas of the rheumatic joint. European Conference on

Computational Biology; September 18-21, 2022; Sitges — Spain (poster)

The construction of the CAF-map V2 was published in an original research

paper and presented at an international scientific conference:

Aghakhani, S; E Silva Saffar, S; Soliman, S; Niarakis, A. Hybrid
computational modeling highlights reverse Warburg effect in breast
cancer-associated  fibroblasts.  Computational — and  Structural

Biotechnology Journal 2023. https://doi.org/10.1016/].csbj.2023.08.015

Aghakhani, S; E Silva Saffar, S; Soliman, S; Niarakis, A. A large-scale
hybrid model to study metabolic reprogramming in cancer-
associated fibroblasts. ONCOLille Days; November 2-4, 2022, Lille —

France (poster)
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4.2

4.2.1

LARGE-SCALE BOOLEAN REGULATORY MODELS FOR DYNAMIC

ANALYSIS

The RASF model, an executable model of RASFs pathogenic activity in
the RA joint

Inference of the RASF model was conducted by CaSQ based on the RA-map
V2 by focusing solely on RASF-specific molecular pathways (Figure 33).
The latter are determined as pathways associated with the RA-map V2 RASF-
specific inputs as determined from peer-reviewed specialized literature

(Table 10).

Table 10. Characteristics of the RA-map V2 export for inferring the
RASF Boolean model with CaSQ. Export direction and bibliographical

reference for each component are provided.

Export Component Class  Reference
Upstream HIF1 Protein [297]
Downstream IL6 Extracellular ligand [298]
Downstream IL18 Extracellular ligand [299]
Downstream FGF1 Extracellular ligand [300]
Downstream PDGFA Extracellular ligand [301]
Downstream TGFB1 Extracellular ligand [302]
Downstream WNTS5A Extracellular ligand [303]
Downstream SFRP5 Extracellular ligand [304]
Downstream RANKL Extracellular ligand [305]
Downstream IL17A Extracellular ligand [306]
Downstream FASLG Extracellular ligand [307]
Downstream  IKBA NFKB1 RELA Extracellular ligand [308]
Downstream TNF Extracellular ligand [309]
Downstream GLC Extracellular metabolite [177]
Downstream MIR192 microRNA [310]



casqg RA map-V2.xml -d FGF1 PDGFA TGFB1 WNT5A RANKL IL6 Ex-
tracellular space Space IL18 FASLG IL17A Extracellu-
lar space Space TNF Extracellular space Space
M glc D e simple molecule Hypoxia phenotype
IKBA/NFKB1/RELA complex MIR192 rna SFRP5 -u Hypoxia pheno-
type

Figure 34. CaSQ command line to infer the RASF model from the
RA-map V2by focusing on RASF-specific pathways. The optional
arguments -d (--downstream) only export species downstream of this
specific node and -u (--upstream) only export species upstream of this
specific node.

The obtained RASF model is a dynamic Boolean model of 359 nodes,
including 14 inputs, and 642 interactions. The RASF model is accessible
online within BioModels repositories of biological models [246], [247] with
the identifier MODEL2212220001 and the Cell Collective platform [245] at

https://research.cellcollective.org/human-rheumatoid-arthritis-synovial-

fibroblast. Statistical analysis conducted are publicly available on a GitLab

repository at https://gitlab.com/genhotel/rasf-hybrid-model.

The latter RASF-specific model inference step enabled us to increase the
cellular specificity of our dynamic model. Indeed, although the RA-map V2
is a collection of information from several cell types, tissues, and fluids, the
inferred model is mostly RASF-specific (82%) (Figure 34A). When
interpreting those results, one must consider that a specific component can be
common to several cell types. If only exclusive components are considered,
the model is 91% RASF-specific (Figure 34B). This high level of cellular
specificity, achieved through RASF-specific pathway inference, along with
the phenotypes and extracellular ligands specificity, allows referring to this
regulatory Boolean model as the RASF model. In addition, the annotation
score of the model enables high confidence in the depicted information.
Indeed, 97% of components present more than one manually curated

experimental evidence and 74% present more than 2 (Figure 34C).
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Figure 35. Statistical analysis of the RASF model. (A) Distribution of
the cellular specificity of the RASF model. (B) Distribution of the RASF
the cellular specificity of the RASF model when only exclusive
components are considered. (C) Annotation scores distribution among
the components of the RASF model.

Various situations can be considered regarding the 3% of components for
which no bibliographic reference is given. Many are simple molecules acting
as products or reactants of well-known biological reactions whose

expressions are rarely highlighted in disease-specific experimental studies
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(e.g. ATP, ADP, NADH, NADPH, H20O, O2, FADH, Ca®"). A further
distinction is made regarding pathway intermediates. For instance, a specific
pathway might be experimentally proven to be expressed in a disease-specific
manner, but not all intermediates are necessarily studied. It is the case for
several metabolic pathways that are found to be expressed in RASFs but

experimental evidence is not available for every component.

To validate the behavior of the RASF model, generic in-silico simulations
conducted on the Cell Collective platform were first compared with
experimental scenarios extracted from the specialized literature. For instance,
we identified an experimental scenario whereby MicroRNA-192 expressed in
RASFs is involved in the activation of apoptosis by down-regulating
Caveolin-1 [310, p. 1]. We translated such experimental qualitative
observation in terms of an in-silico experiment by subsequently activating
and inactivating the expression of MicroRNA-192 and visualizing the state
of the apoptotic phenotype along with Caveolin-1 (Figure 35). The
simulation displays the activation of apoptosis through the down regulation
of Caveolin-1 and vice-versa, thus validating the experimental scenario.
Remaining scenarios were tested and validated in the same manner.
Regarding this evaluation, 23 experimental scenarios were confirmed out of
30 (Table 11). Scenarios that were not reproducible were due to multiple
reasons. First, mechanistic information regarding certain interactions may be
lacking in the literature, leading to a missing or incomplete representation in
the RA-map V2 and the associated RASF model. Additionally, the validation
of some scenarios involved stoichiometric information that was not possible
to reproduce with a strictly Boolean formalism. Finally, some generic
scenarios were not validated since other pathways already activated or

inactivated said phenotype under the same initial conditions.
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Figure 36. Assessment of the reproduction of an experimental
scenario by the RASF model through an in-silico simulation on the
Cell Collective interactive modeling platform. Simulation parameters
are displayed on the left panel with a simulation speed of one, a sliding
window of 30 and an asynchronous updating mode. The experimental
observation that MicroRNA-192 induces apoptosis in RASFs via down-
regulation of Caveolin-1 [310, p. 1] is reproduced on the RASF model
with (A) inactivation and (B) activation of “MIR192 rna” (within the
external components tab) along with visualization of
“apoptosis_phenotype” and “CAVI1 rna” (within the internal
components tab). Signal tracking is displayed on the middle panel to
monitor the regulatory signal flux under both simulation conditions.
Simulation graphical results are shown on the right panel and confirm
experimental observation: MicroRNA-192 is necessary to induce RASFs
apoptosis through down-regulation of Caveolin-1.
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Table 11. Biological scenarios identified from literature used for
generic validation of the behavior of the RASF model in the Cell
Collective platform. Experimental conditions were used as the input of
the model and its outputs were compared to the biological outcome to
confirm or refute the validation of a scenario.

Experimental obser-

Input of the

Output of the

Phenotype vation Reference RASF model RASF model Coherence
PAI-1/SERPINE-1 SERPINE-1 Angiogenesis
strongly supports angi- ON ON
ogenic  activity in | [311] YES
RASFs SERPINE-1 Angiogenesis
OFF oscillating
Hypoxia upregulates Hypoxia ON é;giogenesis
angiogenesis in [312] YES
RASFs Hypoxia OFF Angiogenesis
oscillating
Glucose-6-Phosphate GPI ON Angiogenesis
Isomerase  mediates oscillating
Angiogenesis hypoxig-ipduced angi- | [313] ' ' NO
ogenesis in RASFs GPI OFF Angiogenesis
oscillating
SDF-1 acts as a pro- SDF-1 ON é;giogenesis
angiogenic factor in [314] YES
RASFs . .
Angiogenesis
SDF-1 OFF oscillating
IL-8/CXCL8 is con- CXCL8 ON S;gioge“em
s1dqred as a pro-angio- [315] YES
genic factor in RASFs Angiogenesis
CXCL8 OFF oscillating
MicroRNA-192  in- Apoptosis ON,
duces apoptosis in MIR192 ON CAV1 OFF
RASFs through down- | [310, p. 1] YES
regulation of Caveolin Apoptosis OFF,
) MIR 192 OFF CAV1 ON
Apoptosis
TNF can induce apop- 11:111\31[128 OFFON, Apoptosis OFF
tosis in RASFs only,
. [316] NO
when NFKB was in- TNF ON
hibited NFKB ON > | Apoptosis OFF

156



AP-1, consisting of c- JUN ON, FOS | Bone erosion
Fos and c-Jun, is key in ON ON
signaling pathways ul- | [317] YES
timately leading to JUN OFF, FOS | Bone erosion
Bone  erosion, | bone degradation OFF OFF
osteoclastogen-
esis Bone erosion
RASFs RANKL ex- RANKLON 1 oN
pression is responsible | [318] NO
for bone erosion RANKL OFF Bone erosion
ON
Cell chemo-
l?trullnlla‘uon of | fi- FN1 ON taxis, recrmt—
Cell chemo- ronectin alters ment, infiltra-
taxis.  recruit- RASFs ability to ad- tion ON
m nt’ infiltr here and invade the | [319] YES
ti:n ’ | RA joint and travel Cell  chemo-
through the blood- taxis, recruit-
FN1 OFF .
stream ment, infiltra-
tion OFF
Local fibroblast prolif-
eration but not cellular
Cell  growth, | . . . .y Cell  growth,
. .~ | influx is responsible No initial con- . .
survival, prolif- . [320] o survival, prolif- YES
eration for synovial hyper- ditions eration ON
plasia in collagen anti-
body-induced arthritis
HIF1A ON IL33 ON
YES
HIF1A OFF IL33 OFF
HIF1A ON SDF1 ON
YES
HIF1A OFF SDF1 OFF
Hypoxia, through
HIFla, promotes the HIFIA ON MMP3 ON
. £ 1133 [321] YES
Hypoxia ‘S”]‘DF’EGTSIKEM‘I’) 3 e HIF1A OFF MMP3 OFF
and VEGF HIFIAON | VEGFON
YES
HIF1A OFF VEGF OFF
HIF1A ON IL-6 OFF
NO
HIF1A OFF IL-6 OFF
[322] PHD2 ON HIF1A_a OFF NO

157



Knockdown of PHD-2
in RASFs dramatically

augmented HIFla, ex- PHD2 OFF HIF1A_a OFF
pression and hypoxia
HIF1A ON Inflammation
HIFla promotes in- [323] ON YES
flammation in RASFs Inflammation
HIF1A OFF OFF
Silencing PGK1 in PGK1 ON IL-1B OFF
RASFs reduces the se- | [176] NO
cretion of IL-1P PGK1 OFF IL-1B OFF
. . Inflammation
Synovial  inflamma- TNF ON ON
tory cells were signifi- [324] YES
cantly decreased after Inflammation
the anti-TNF treatment TNF OFF
OFF
Activated NF-kB key IKBA NFKBI1 | Inflammation
. RELA ON ON
components in RASFs
tribute to persistent [308] . S
.Cofrll ’ IKBA NFKBI | Inflammation
fniammation RELA OFF OFF
Inflammation .
Treatment with a neu- IL17A ON IOnIl:lIammatlon
t.rallzmg ant1—IL—17 an- [325] YES
tibody suppressed joint Inflammation
inflammation IL17A OFF
OFF
Inflammation
IL6 signaling induces IL6 ON ON
an inflammatory re- | [326] YES
sponse in RASFs Inflammation
IL6 OFF OFF
Suppression of JAK2, STATS3 | Inflammation
JAK2/STAT3 signal- ON ON
ing is involved in the | [327] YES
anti-inflammatory ef- JAK2, STAT3 | Inflammation
fect OFF OFF
IL17A induces pro- IL17A ON IL6 OFF
duction of IL6 from | [328] NO
RASFs IL17A OFF IL6 OFF
[277] NFKB ON MMP13 ON YES
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Matrix degrada-
tion

NF-kB activation was
found necessary for the
induction of MMP-13

L NFKB OFF MMP13 OFF

expression, implicated
in the degradation of
extracellular matrix

Matrix degrada-
HK2 ablation de- HEXTON tion ON
creased RASFs bone | [178] YES
and cartilage damage HEX1 OFF Matrix degrada-

tion OFF
The expression of Hypoxia ON MMP3 ON
Mi’lm e mﬁe&y 329 YES
enanced S Hypoxia OFF | MMP3 OFF
cultured under hypoxia
CCLS5 induces colla- CCL5 ON MMP-1, MMP-
gen degradation by ac- 13
tivating MMP-1 and | [330] NO
MMP-13 expression in MMP-1, MMP-
RASFs CCLS OFF 13
MMP-9 stimulates Matrix deerada-
RASF-mediated deg- | [331] MMP-9 ON tion ON g YES

radation of cartilage

Subsequent global regulatory behavior evaluation under RASF-specific

initial conditions (Table 12), i.e. identification of its complete asymptotic

behavior, depicted eight different trap-spaces.
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Table 12. RASF-specific initial conditions extracted from literature.
Inputs of the regulatory model are marked with an asterisk.

Component RASF-behavior Source Value
FASLG* Activated [307] 1
IL6* Activated [298] 1

IL18* Activated [299] 1
RANKL* Activated [305] 1
MIR192* Down-regulated [310] 0
TNF* Activated [309] 1
FGF1* Activated [300] 1
PDGFA* Activated [301] 1
WNTS5A* Activated [303] 1
IL17A%* Activated [306] 1
TGFB1* Activated [302] 1
IKBA NFKBI1 RELA* Activated [308] 1
SFRP5* Down-regulated [304] 0
GLC* Present [178] 1

HIF1 Activated [297] 1

Each trap-space reflects a different subspace of RASFs cellular phenotypes.
Most components values are stable within all trap-spaces (always fixed at 0
or 1) but others vary within trap-spaces. The projection of trap-spaces
restricted to the ontological phenotypes (i.e. distinct cellular outcome) are
displayed in Table 13. The phenotypes of angiogenesis, bone erosion, cell
chemotaxis, cell growth, inflammation, matrix degradation, and
osteoclastogenesis exhibit an asymptotic stable active state when the model
is simulated under RASF-specific conditions. These results are consistent
with known RASFs biological aggressive behavior as described in specialized

scientific literature [332].
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Table 13. Projection of the trap-spaces of the RASF model restricted
to its ontological phenotypes.

. Trap-space
Ontological phenotype o 1 2 3 4 5 6 7
Angiogenesis 1 I 1 1 1 1 1 1
Apoptosis 0 O O O O O 0 O
Bone Erosion 1 1 1 1 1 1 1 1
Cell Chemotaxis, Recruitment, Infiltration 1 1 1 1 1 1 1 1
Cell Growth, Survival, Proliferation 1 1 1 1 1 1 1 1
Hypoxia 1 0 1 0 O 0 1 1
Inflammation 1 1 1 1 1 1 1 1
Matrix Degradation 1 I 1 1 1 1 1 1
Osteoclastogenesis 1 1 1 1 1 1 1 1

The asymptotic state of ontological phenotypes is the result of the combined
regulation exerted by their upstream regulators, as described in the logical
formulas. Thus, the behavior of biomarker groups associated with each
ontological phenotypes can be identified in the different trap-spaces and be
used for comparison against experimental evidence. For instance, all
interleukins (e.g. IL121, IL18, IL1B, IL33, IL6) being active under RASF-
specific conditions accounts for the asymptotic active state of the ontological
inflammatory phenotype and confirms their experimentally observed function
of inflammation drivers [333]. Likewise for matrix metalloproteinases (e.g.
MMP3, MMP9, MMP13) leading to matrix degradation [334] or cytokines
(e.g. TNF, IL17) activating bone erosion and osteoclastogenesis [335]. A
pattern of growth factors (e.g. PDGFA, FGF1, VEGFA) activation is
observed within the eight different trap-spaces and is associated with
activation of the cell growth and proliferation phenotype. These findings are

consistent with experimental evidence [336]. This proliferative behavior is
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confirmed in parallel by an asymptotic inactive state of the apoptotic
phenotype, reproducing fibroblasts resistance to programmed cell death in
RA [261]. Accordingly with biological knowledge, it is due to the active state
of anti-apoptotic components (e.g. CAV1) and the inactivity of pro-apoptotic
ones (e.g. Bak, Bax) in all eight trap-spaces under RASF-specific conditions.
Finally, the hypoxic phenotype varies within trap-spaces, reflecting a
biologically relevant feed-back loop. Trap-spaces where hypoxia is active are
associated with active HIF1 and inactive PHD2. On the contrary, trap-spaces
where hypoxia is inactivated are associated with inactive HIF1 and active
PHD2. It reflects the well-known regulation of the cellular response to
hypoxia by PHD2 through HIF1 [337]. The variations of fixed values within
the eight trap-spaces can also be interpreted at the level of the RASF
regulatory pathways. For instance, in trap-spaces 0, 1, 5, and 7, MAPKI is
active in parallel with BCL2. The latter are inactive in trap-spaces 2, 3, 4, and

6. It confirms the regulation of BCL2 through the MAPKSs pathway [338].

Subsequent metabolic process evaluation under RASF-specific initial
conditions (Table 12), i.e. projection of its trap-spaces restricted to the
metabolic components are displayed in Table 14. These observations allow
us to assess the adequacy of the regulatory impact on metabolic systems under
cell- and disease-specific conditions, by comparing them with specialized
literature. Asymptotic behavior of the four metabolic processes of interest in
RASFs (i.e. glycolysis, OXPHOS, TCA and PPP) under cell- and disease-
specific regulatory initial conditions is stable within all trap-spaces. It reflects
the consistency of RASFs regulatory impact upon metabolic subprocesses.
Without going into the details of each metabolic component, we observe an
overall activity of all metabolic components involved in glycolytic processes,
inactivity of all OXPHOS and TCA components, along with both oscillations
in activity of PPP components. The latter in-silico observations reproduce

experimental findings of RASFs significant decrease in mitochondrial energy
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production through OXPHOS fueled by TCA, enhancement of glycolytic
activity, along with the glucose shunt to specific subparts of the PPP [165],
[173], [177], [274]. The same applies to the trap-space activity of glucose and
lactate transporters (i.e. GLCtlr, LACt2r) which are also very active in
response to high glycolytic activity [274].

Table 14. Projection of the trap-spaces of the RASF model restricted
to its metabolic components.

Component Type Trap-space Pathway

AKGDm Enzyme 0 TCA

ALDO_rna RNA 1 Glycolysis
CI_MitoCore Enzyme 0 OXPHOS

CI ma RNA 0 OXPHOS

CIIL MitoCore Enzyme 0 OXPHOS

CIl_rna RNA 0 OXPHOS

CIIIMitoCore Enzyme 0 OXPHOS

CII_rna RNA 0 OXPHOS

CIV_MitoCore Enzyme 0 OXPHOS

CIV_rna RNA 0 OXPHOS
ENO_Cytoplasm Enzyme 1 Glycolysis
ENO_Cytoplasm_active Enzyme 1 Glycolysis
ENO rna RNA 1 Glycolysis

F26BP_simple molecule Metabolite 1 Glycolysis
FBA Cytoplasm Enzyme 1 Glycolysis

FBA_ Cytoplasm_active Enzyme 1 Glycolysis
G6PDH2r_Cytoplasm Enzyme 1 PPP
G6PDH2r Cytoplasm_active Enzyme 0 PPP
G6PDH2r _rna RNA 1 PPP
GAPD_Cytoplasm Enzyme 1 Glycolysis
GAPD Cytoplasm_active Enzyme 1 Glycolysis
GAPD_rna RNA 1 Glycolysis
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GLCtlr Transporter

GLCtlr rna RNA

HEX1 Cytoplasm Enzyme

HEX1 Cytoplasm active Enzyme
HEX1 rna RNA

ICDHxm Enzyme

L LACt2r Transporter

L LACt2r rna RNA
LDH L Enzyme
LDH L ra RNA

M 13dpg ¢ simple molecule Metabolite
M 2pg c simple molecule Metabolite

M 3pg c simple molecule Metabolite

M 6pgc ¢ simple molecule Metabolite
M 6pgl ¢ simple molecule Metabolite
M accoa m_simple molecule Metabolite
M adp c simple molecule Metabolite

M akg m simple molecule Metabolite
M_atp c_simple _molecule Metabolite

M cit m_simple molecule Metabolite

M co2 m simple molecule Metabolite
M coa m simple molecule Metabolite
M dhap c simple molecule Metabolite
M edp c simple molecule Metabolite

M _f6p c simple molecule Metabolite
M_fdp c simple molecule Metabolite

M _fum m simple molecule Metabolite
M g3p c simple molecule Metabolite

M gbp c_simple molecule Metabolite

M glc D c simple molecule Metabolite
M glc D e simple molecule Metabolite
M gtp m simple molecule Metabolite
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M _h20_c_simple molecule
M_h20 m_simple molecule

M icit m simple molecule

M lac L ¢ simple molecule
M Lac L e simple molecule
M _mal L m_simple_molecule
M nadh ¢ simple molecule
M nadh m simple molecule
M _nadph _c_simple molecule
M oaa m_simple molecule
M pep c simple molecule
M_pyr_c_simple _molecule

M 15p_c_simple molecule

M ru5p D c simple molecule
M s7p_c simple molecule

M succ_m_simple molecule
M succoa m_simple molecule
M xu5p_D c simple molecule
PDHm

PDK rna

PDK1 Mitochondrion inner mb
PDKI1_ Mitochondrion_inner mb_active
PFKFB3 Cytoplasm

PFKFB3 Cytoplasm_active
PFKFB3 rna

PGI_Cytoplasm
PGI_Cytoplasm_active
PGI_ma

PGK Cytoplasm

PGK Cytoplasm_active

PGK rna

PGM_Cytoplasm
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PGM_Cytoplasm_active Enzyme 1 Glycolysis
PGM rna RNA 1 Glycolysis

PYK Cytoplasm Enzyme 1 Glycolysis

PYK Cytoplasm active Enzyme 1 Glycolysis
PYK rna RNA 1 Glycolysis
TKT1_Cytoplasm Enzyme 1 PPP

TKT1 Cytoplasm_ active Enzyme 1 PPP
TKTI rna RNA 1 PPP

4.2.2 The breast CAF model, an executable model of CAF's pathogenic activity

in the breast TME

Translation of the CAF-map V2 using CaSQ default parameters generated a
dynamic Boolean model of 463 nodes, including 62 inputs, and 793
interactions. The latter is publicly available on the Cell Collective platform
[245] at https://research.cellcollective.org/human-breast-cancer-associated-

fibroblasts and BioModels repository [246], [247]: MODEL2307090001.

However, components and interactions depicted in the model are not cancer-
specific but generic to CAFs in the TME. The DEA conducted to
contextualize the model in a BC-specific manner is publicly available at
https://gitlab.com/genhotel/breast-cafs-reverse-warburg-effect. It identified
3678 DEG in CAFs-S1 vs. CAFs-S4 among the 18252 mapped genes (Figure
36). 1866 DEG were significantly up-regulated in CAFs-S1 vs. CAFs-S4,

leading to fixing an initial condition of 1 for 71 nodes of the CAF model.
Most significantly up-regulated DEG in CAFs-S1 are mainly involved in
chemotaxis, ECM organization, locomotion, response to growth factors, cell

adhesion, migration, motility, differentiation, and proliferation (Figure 37A).
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Figure 31. Results of the differential expression analysis performed
on the EGAD00001003808 dataset from the European Genome-
phenome Archive. (A) Visualization of the differentially expressed
genes between CAFs-S1 vs. CAFs-S4 with standard significance
threshold of adjusted p-value > 0.05 and absolute fold change > 1.5. (B)
Visualization of the most-significantly differentially expressed genes
between CAFs-S1 vs. CAFs-S4 with standard significance threshold of
adjusted p-value > 0.05 and an absolute FC > 1.
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Figure 38. Visualization of biological processes related to the most
significantly differentially expressed genes in CAFs-S1 vs. CAFs-S4
after enrichment analysis classified by Fold Enrichment. (A)
Biological processes associated with the most significant up-regulated
differentially expressed genes. (B) Biological processes associated with
the most significant down-regualted differentially expressed genes.
Fold enrichment is calculated by comparing the proportion of genes in
our differentially expressed genes subset that belong to a specific
category with the expected proportion of genes in the latter category in

the reference set.

168



Such observations support the classification of CAFs-S1 as the subpopulation
of CAFs carrying key aggressive functions. 1812 DEG were significantly
down-regulated in CAFs-S1 vs. CAFs-S4, leading to fix an initial condition
of 0 for 34 nodes of the CAF model. Most significantly down-regulated DEG

in CAFs-S1 are involved in ion transport and signaling, specifically calcium

ions (Figure 37B).

Finally, 41 inputs of the CAF model remained unfixed, leading to assign their
values through manual curation of peer-reviewed breast CAF-specific
literature. The complete list of breast CAF-specific initial conditions along

with their source of attribution is outlined in Table 15.

Table 15. Breast CAFs-specific initial conditions generated from
data-driven differential expression.

Component Function Initial value Source

ACTA1 Internal node 0 DEA

ACTA1 rna Internal node 0 DEA

ACTG2 Internal node 0 DEA

ACTG2 rna Internal node 0 DEA

AKT1S1 phosphorylated  Internal node 1 DEA
AREG _Cytosol  Internal node 0 DEA

AREG extracellular Input node 0 DEA
AREG rma  Internal node 0 DEA

AREG Secreted compartment Internal node 0 DEA
ARHGEF7 Internal node 1 DEA

BMP4 Internal node 1 DEA

BMP4 rna Internal node 1 DEA

CALML3 Internal node 0 DEA

CASQ2 Input node 0 DEA

CAV3 Internal node 0 DEA

CAV3 rna Internal node 0 DEA

CCL11 Internal node 1 DEA
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CCL11 rna

CCLS8

CCL8 rna

CFL1
Collagens_extracellular
CTGF _extracellular
CXCL1

CXCL1 _ma
CXCL12_extracellular
CXCL12 ra

CXCLI12 Secreted compartment
CXCL12CXCR4 complex
CXCL2

CXCL2 rna

EGF _extracellular
EGFR

EGFR_complex

EGFR ra

EMILIN1

FAP

FAP rna

FGF1
FGF2_extracellular
FGF3

FGF4

FGF7

FGF7 rna
FGFRFGF1_complex
FGFRFGF2_ complex
FGFRFGF3 complex
FGFRFGF4 complex
FN_extracellular
GAST
GASTCCKBR_complex
GLI2

GLI2 rna

Internal node
Internal node
Internal node
Input node
Input node
Input node
Internal node
Internal node
Input node
Internal node
Internal node
Internal node
Internal node
Internal node
Input node
Internal node
Internal node
Internal node
Internal node
Internal node
Internal node
Input node
Input node
Input node
Input node
Internal node
Internal node
Internal node
Internal node
Internal node
Internal node
Input node
Input node
Internal node
Internal node

Internal node
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DEA
DEA
DEA
22954256
31521169
34108441
DEA
DEA
DEA
DEA
DEA
DEA
DEA
DEA
35267539
DEA
DEA
DEA
DEA
DEA
DEA
33568624
32557854
35267539
33081025
DEA
DEA
DEA
DEA
DEA
DEA
35481621
28560291
DEA
DEA
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GLNS

M glc D e simple molecule
HGF _extracellular

HIF1A

HRC

IFNG

IGF1_extracellular

IGF1 _ma
IGF1_Secreted_compartment
IGF2_extracellular

IGF2 ra

IGF2_Secreted compartment
IGFBP3

IGFBP4

IHH

IL12

IL18

IL1A

IL1B_extracellular

IL1R complex_Cytosol

IL1IR complex Cytosol 2
IL6_extracellular

IRS2 phosphorylated
ITGA11

ITGAI11 rma

ITGA11ITGB1 complex Cytosol

ITGA11ITGB1 complex Cytosol
active

ITGAIITGB1 complex Cytosol

ITGAIITGB1 complex Cytosol a
ctive

ITGAVITGB6 complex Cytosol

ITGAVITGB6 complex Cytosol
active

Large Latent Complex extracellul
ar

Large Latent Complex

Input node
Input node
Input node
Internal node
Input node
Input node
Input node
Internal node
Internal node
Input node
Internal node
Internal node
Input node
Input node
Input node
Input node
Input node
Input node
Input node
Internal node
Internal node
Input node
Internal node
Internal node
Internal node

Internal node
Internal node
Internal node
Internal node
Internal node

Internal node

Input node

Internal node
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1
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0
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27829138
DEA
22282252
DEA
DEA
33005420
DEA
DEA
DEA
DEA
DEA
DEA
DEA
19536088
35224148
DEA
31231372
31231372
31231372
DEA
DEA
35267539
DEA
DEA
DEA
DEA

DEA

DEA

DEA

DEA

DEA

DEA

DEA



_Secreted compartment
LGALSI1

LIF extracellular
LIMK1 phosphorylated
LOX

LOX rna
LPA_simple_molecule
MAP3K7TAB_complex
MIF

MIR101 antisense rna
MIR141 antisense rna
MIR155_ antisense_rna
MIR200B_antisense rna
MIR205 antisense rna
MIR211 antisense _rna
MIR214 antisense rna
MIR221 antisense_rna
MIR31 antisense rna
MMP13

MMP13 rna

MMP14

MMP14 rna

MMP2

MYLK phosphorylated
NDUFA4L2

NOX4

NOX4 rna

OSM

PDGF _extracellular
PDGFPDGFRA _complex
PDGFRA

PDGFRA rna
PGE2_simple _molecule
phospholipid simple molecule
PI45P2 simple molecule
PLAU

Input node
Input node
Internal node
Internal node
Internal node
Input node
Internal node
Input node
Input node
Input node
Input node
Input node
Input node
Input node
Input node
Input node
Internal node
Internal node
Internal node
Internal node
Internal node
Internal node
Internal node
Internal node
Internal node
Internal node
Input node
Input node
Internal node
Internal node
Internal node
Input node
Input node
Input node

Internal node
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24229053
34947829
DEA
DEA
DEA
DEA
DEA
24939415
28289080
28289080
23171795
28289080
28289080
31702390
23171795
28289080
28289080
DEA
DEA
DEA
DEA
DEA
DEA
DEA
DEA
DEA
35192545
34272173
DEA
DEA
DEA
33271839

34108441
DEA



PLAU ma  Internal node 1 DEA

PLG Input node 1 33921488

POSTN _extracellular Input node 1 35267539
PPBP Internal node 0 DEA

PPBP ma  Internal node 0 DEA

proPLAU extracellular Input node 1 24229053
PTCH2 ma  Internal node 1 DEA

PTGS2 Internal node 1 DEA

PTGS2 rna Internal node 1 DEA

PTPN6 Input node 0 DEA
RYR2TRDNASPH complex Input node 0 DEA
RYR2TRDNASPHHRCCASQ2 Internal node 0 DEA
SEPTINE4 Internal node 0 DEA

SERPINE1 Internal node 1 DEA

SERPINEl ma  Internal node 1 DEA

SHH Input node 1 28496132

SMOPTCH_ complex Internal node 1 DEA
SMOX Internal node 1 DEA
TGFB3_Cytosol Internal node 1 DEA
TGFB3 extracellular  Internal node 1 DEA
TGFB3 rna Internal node 1 DEA

TNF Input node 0 DEA

VTN Input node 1 33211735

WAS phosphorylated Internal node 0 DEA
WNT7 Input node 1 34108441

WWTRI1 Input 1 DEA

To validate the behavior of the model, generic model simulations were first
compared to breast CAF-specific experimental scenarios extracted from the
literature. For instance, we identified an experimental scenario whereby
MicroRNA-155 promotes proliferation of human breast CAFs [339]. We

translated such experimentally observed scenario in terms of an in-silico
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experiment by subsequently activating and inactivating the expression of
MicroRNA-155 and visualizing the fibroblast proliferative phenotype
(Figure 38). The simulation displays the activation of fibroblast proliferation
depending on the activation of MicroRNA-155, thus validating the
experimental scenario. Remaining scenarios were tested and validated in the
same manner: details of each experimental scenario, associated CAF model
initialization, and dynamic results are presented in Table 16. Overall,
regarding this generic evaluation, 29 experimental scenarios were confirmed
by the CAF model out of 41 biological scenarios. Ten scenarios were not
reproducible mostly due to a lack of mechanistic detail regarding specific
interactions in the literature, leading to a missing or incomplete representation
in the CAF-map V2 and the associated breast CAF model. Finally, two
generic scenarios were not validated as other pathways were needed

concomitantly.

Subsequent global behavior evaluation of the model under breast CAF-
specific initial conditions, i.e. identification of its complete asymptotic
behavior, depicted 128 trap-spaces. Each trap-space reflects a different
subspace of breast CAFs cellular phenotypes. Most components values are
stable within all trap-spaces (always fixed at O or 1) but others vary within
trap-spaces. The projection of trap-spaces restricted to ontological
phenotypes (i.e. distinct cellular outcome) identifies a single trap-space
(Table 17). It illustrates activity of aggressive phenotypes in breast CAFs,
e.g. angiogenesis, fibroblast proliferation, hypoxia, matrix degradation, tumor
growth and invasion, while negative regulators are inactive. These findings
are consistent with the behavior of breast CAFs as described in scientific

literature [340].

174



Figure 39. Assessment of the reproduction of an experimental
scenario by the breast CAF model through an in-silico simulation on
the Cell Collective interactive modeling platform. Simulation
parameters are displayed on the left panel with a simulation speed of
one, a sliding window of 30 and an asynchronous updating mode. The
experimental observation that MicroRNA-155 induces breast CAFs
proliferation [339] is reproduced on the RASF model with (A)
inactivation and (B) activation of “MIR155” (within the external
components tab) along with visualization of
“fibroblast proliferation phenotype” (within the internal components
tab). Signal tracking is displayed on the middle panel to track the
regulatory signal flux under both simulation conditions. Simulation
graphical results are shown on the right panel and confirm experimental
observation: MicroRNA-155 is necessary to induce breast CAFs
proliferation.
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Table 16. Biological scenarios identified from literature used for
generic validation of the behavior of the breast CAF model in the
Cell Collective platform. Experimental conditions were used as the
input of the model and its outputs were compared to the biological
outcome to confirm or refute the validation of a scenario.

Experimental observation

Reference

Input of the

Output of the Coherence

CAF model CAF model
A loss of Caveolin induces the meta-
bolic reprogramming of breast CAFs CAV-3 Cl, Clv YES
by increasing mitochondrial dysfunc- OFF/ON OFF/ON
tion.
B s by e
pregt 4 OFF/ON etal OFF/ON
blast markers B-actin.
D Carsonbmly e o foavim |
. OFF/ON ON/OFF
sion. [341]
Tumors derived from TGF-B ligand COLLAGENS
overexpressing breast CAFs display in- OFF/OFF NO
creased extracellular matrix deposition TGFB3
and increased secretion of: ON/OFF
a. Collagens, TNC OFF/OFF NO
b. Tenascin C.
Breast CAFS promote tumor growth, in TGFB3 Tumor growth
an angiogenesis-independent manner YES
. OFF/ON OFF/ON
when overexpressing TGF-f33.
Upregulation of miR-221 in breast Tumor erowth
CAFs affects growth and migration by | [342] miR-221 ON & NO
. . OFF/OFF
CTGF signaling pathway.
Downregulation of miR-320 in breast [343] miR-320 Angiogenesis YES
CAFs promotes tumor angiogenesis. OFF/ON OFF/ON
miR-155 promotes proliferation of hu- miR-15 Elbroblast pro-
man breast CAFs 3391 OFF/ON liferation LA
’ OFF/ON
Blockage of MAPK/p38 pathway di- [344] MAPK, p38|Tumor growth YES
minished IL-32-induced tumor growth. OFF/ON OFF/ON
coreed WL o b [T [t ol g
. OFF/ON tumor OFF/ON
gration of breast cancer cells.
In breast CAFs, IL-1p promotes cell in- [346] IL-1B OFF Tumor invasion NO

vasion through IL-1R.

OFF/OFF
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CAFs PDGF signaling has an active

Tumor growth,

role in breast tumor progression [347] PDGF OFF/ON | migration P
prog ' OFF/ON

In breast CAFs, CXCL12 promotes cell [348] CXCL12 Tumor invasion YES
invasion through TGF-f pathway. OFF/ON OFF/ON

Tumor growth,
h; briﬁs:niAl;S’ IEGFiZ 111) romotes cancer [349] FGF2 OFF/ON |growth factors YES
grow progression. OFF/ON

Cytokine pro-
CXCL1 is considered as a pro-inflam- 350] CXCLI ?Illlucrtlleon’ S stlélrlr_l YES
matory gene signature of breast CAFs. OFF/ON Sy

modulation

OFF/ON
Breast CAFs promote tumor growth Tumor growth
through secretion of HGF. 3511 HGF OFF/ON OFF/ON R
miR-21 and miR-200B target TGF-B miR-21 OFF NO
signaling and impact tumor progression | [352]
and promotion in breast CAFs. miR-200B OFF NO
Myeloid-derived OSM reprograms
breast CAFs to' a more tumorl'gemc VEGF OFF/ON YES
phenotype by eliciting the secretion of
VEGF.
OSM promoted tumor growth through Tumor growth YES
breast CAFs. OFF/ON
OSM induced the expression of classi- [ [353] OSM OFF/ON |FAP, POSTN,
cal CAF markers such as FAP, POSTN, VEGF, IL6 YES
VEGF, and IL6 in breast CAFs. OFF/ON
OSM induced signatures related to fi-
b.robla.st activation and :IAI.QSTATB STAAT3
signaling, in agreement with increased OFF/OFF NO
STAT3 phosphorylation by OSM in
breast CAFs.
Plasmin expression affects tumor cell Plasmin Matrlx degrada-
invasion [354] OFF/ON tion, matrix ef- YES

vasion. fects OFF/ON

Plasmin expression is required for acti- [355] Plasmin Matrix  effect NO
vation of EMT in breast cancer. ON/OFF OFF/OFF
TGF-B promotes CXCL5 secretion in 356] TGF-B CXCLS5 YES
breast CAFs. ON/OFF ON/OFF
Lactate production in breast CAFs pro- [357] Lactate Tumor growth YES
motes breast cancer tumor growth. OFF/ON OFF/ON
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TFAM-deficient breast CAFs showed TFAM Cl, (0)% YES
evidence of mitochondrial dysfunction. OFF/ON OFF/ON

HIF1A

NO

SIRT3 in breast CAFs was found to: OFF/OFF
a. Suppress HIF1a and its target Tumor growth,
genes; tumor fibroblast
b. Suppress tumor growth and [358], [359] | SIRT3 OFF/ON proliferation s
proliferation; OFF/ON
c. Suppress ROS production. ROS production VES

OFF/ON
Breast CAFs promote tumor growth CXCL12 Tumor growth,
and angiogenesis through elevated|[360] OFF/ON Angiogenesis YES
CXCL12 secretion. OFF/ON
LOX family members are considered as ECM regulation _—
ECM-modifying enzymes in breast phenotype and
CAFs by remodeling the extracellular [361] LOX OFF/ON matrix  effects
matrix. OFF/ON
Downregulation of MiR-205 in breast
CAFs promotes VEGF-independent .
angiogenesis through activation of IL- [362] MiR-205 OFF NO
11/IL-15 signaling by YAPI.
In breast cancer, HIF1a transcription- HIF1A Glycolytic en-
ally upregulates glycolytic enzymes |[363] OFF/ON zymes, lactate YES
and lactate production. OFF/ON
Lactate generated by hypoxic breast 364] Lactate Tumor invasion YES
CAFs promotes cell invasion. OFF/ON OFF/ON
Inhibiting NF-xB signaling in fibro- Cytokine pro-
blasts was shown to reduce inflamma- | [365] NFkB OFF/ON |duction pheno- YES
tory cytokine secretion. type OFF/ON
Ets2 inactivation through depletion of
Pten in breast CAFs was sufficient to
decrease tumor growth and progres- [366] PTEN OFF N
sion.
SERPINEI1 promotes cellular invasion 367] SERPINEI Tumor invasion YES
in breast CAFs. OFF/ON OFF/ON
CASQ?2 overexpression accelerated tu-
morigenesis, induced collagen struc- 368] CASQ2 Collagens NO
ture remodeling, and increased distant OFF/ON OFF/OFF
metastasis.
Hypoxic breast CAFs led to sustained [79] Hypoxia HIF1A YES
elevation of HIF1a. OFF/ON OFF/ON
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The asymptotic state of ontological phenotypes is the result of their regulators
combined effect exerted through their Boolean rules. Thus, the behavior of
groups of biomarkers associated with each ontological phenotype can be
identified to further validate the behavior of the breast CAF model. For
instance, the constant activation of matrix metalloproteinases (e.g. MMP?2,
MMP9), known to lead to matrix degradation [369], within all trap-spaces,
accounts for the asymptotic activation of the associated phenotype. Their role
in the coordination of ECM is also well established [370], which supports the
consistency of their trap-space with the “ECM regulation” phenotype.
Likewise, most interleukins (e.g. IL1A, IL1B, IL11 IL6) being active under
breast CAF-specific conditions confirms their experimentally observed
function of immune system modulation and cytokine production drivers
[371]. The asymptotic activated state of the hypoxic phenotype is explained
by the sustained activation of its main molecular driver, Hypoxia-Inducible
Factor 1 (HIF1) [372]. The latter is further involved with ROS production
[372], confirmed in the trap-spaces analysis. Likewise with the angiogenic
and reactive stroma phenotypes and their key player, VEGF [373]. Migration,
tumor growth, and invasion appear to be driven by growth factors and Wnt

signaling pathway, consistent with literature [374].
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Table 17. Projection of the trap-spaces of the breast CAF model
restricted to its ontological phenotypes.

Ontological phenotype Trap-space

Actomyosin contractility
Angiogenesis

Cytokine production

ECM regulation

Fibroblast markers

Fibroblast proliferation
Fibrosis

Formation of basement membrane
Growth factors production
Hypoxia

Immune system modulation
Markers of fibroblast activation
Matrix degradation

Migration into the tumor
Negative regulators of CAFs
Reactive stroma

ROS production

Tumor growth

> N VGO VA GGG GG GGG G Y

Tumor invasion

Furthermore, activation of key fibroblastic markers (e.g. FAP, PDGF) in
parallel with inactivation of known negative regulators of breast CAFs (e.g.
miR101, miR141, CAV3, SIRT3) under initial disease-specific conditions
explain the state of both related phenotypes. Finally, fibroblast proliferation
requires EGF and TGFB signaling pathways [375]. Fibrosis and basement
membrane formation seems governed by collagens [376]. Actin, myosin, and
TNC drive actomyosin contractility [377], all confirming experimental

observations in breast CAFs.
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Subsequent metabolic process evaluation under breast CAF-specific initial
conditions (Table 15), i.e. projection of its trap-spaces restricted to the
metabolic components are displayed in Table 18. These observations allow
us to globally assess the adequacy of the regulatory impact on metabolic
systems under cell- and disease-specific conditions, by comparing them with

the specialized literature.

Table 18. Projection of the trap-spaces of the breast CAF model
restricted to its metabolic components.

Component Trap-space Type Metabolic pathway
L LACt2r 1 Transporter Lactate
lac L e 1 Metabolite /
lac L ¢ 1 Metabolite Glycolysis
GLCtlr 1 Transporter Glucose
glc D e 1 Metabolite Glucose
gle D ¢ 1 Metabolite Glucose
LDH L 1 Enzyme Glycolysis
PYK 1 Enzyme Glycolysis
ICDHxm 0 Enzyme TCA
GLCtlr 1 Transporter Glucose
HEX1 1 Enzyme Glycolysis
HEX1 rna 1 RNA Glycolysis
glu L m 0 Metabolite TCA
r0081 1 Enzyme Glutamine
HMGCOASim 0 Enzyme Ketogenesis
gin L m 0 Metabolite Glutamine
gln L ¢ 0 Metabolite Glutamine
GLUNm 0 Enzyme Glutamine
gobp ¢ 1 Metabolite Glycolysis

fop _c 1 Metabolite Glycolysis

fdp ¢ 1 Metabolite Glycolysis

dhap ¢ 1 Metabolite Glycolysis
g3p ¢ 1 Metabolite Glycolysis

3pg ¢ 1 Metabolite Glycolysis

2pg ¢ 1 Metabolite Glycolysis
pyr_c 1 Metabolite Glycolysis
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pep_c
13dpg_ ¢
pyr_m
cit m
icit_ m
akg m
succoa_m
succ_m
fum_m
mal L m
accoa_m
CI_MitoCore
akg m
PYK
LDH L
0aa_m

PGI

FBA

TPI

GAPD
PGK

PGM

ENO
hmgcoa m
acac_m
bhb_m
PFK

PFK rna
PGI rna
FBA ma
TPI ra
PGK rna
GAPD rna
ENO _ra
GLNS
PDHm
CIV_MitoCore
PDK1
PDK1 rna
CIII_MitoCore

[ R = T s R R S S S U e B s B e B i e e e e = T U e B e B e B e B e B s B < M e BN e S e BRI = S S S
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Enzyme
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Enzyme
Metabolite
Enzyme
Enzyme
Enzyme
Enzyme
Enzyme
Enzyme
Enzyme
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Metabolite
Metabolite
Enzyme
RNA
RNA
RNA
RNA
RNA
RNA
RNA
Enzyme
Enzyme
Enzyme
Enzyme
RNA
Enzyme

Glycolysis
Glycolysis
Glycolysis
TCA

TCA

TCA

TCA

TCA

TCA

TCA

TCA
OXPHOS
TCA
Glycolysis
Glycolysis
TCA
Glycolysis
Glycolysis
Glycolysis
Glycolysis
Glycolysis
Glycolysis
Glycolysis
Ketogenesis
Ketogenesis
Ketogenesis
Glycolysis
Glycolysis
Glycolysis
Glycolysis
Glycolysis
Glycolysis
Glycolysis
Glycolysis
Glutamine
TCA
OXPHOS
Glucose
Glucose
OXPHOS



Asymptotic behavior of the five metabolic processes of interest in breast
CAFs (i.e. glycolysis, OXPHOS, TCA, ketogenesis and glutamine
metabolism) under cell- and disease-specific regulatory initial conditions is
stable within all trap-spaces. It reflects the consistency of breast CAFs
regulatory impact upon metabolic subprocesses. Without going into the
details of each metabolic component, we observe an overall activity of all
metabolic components involved in glycolytic processes, inactivity of all
OXPHOS, TCA, and ketogenesis components, along with both activity and
inactivity of glutamine pathway components. These in-silico observations
reproduce experimental reverse Warburg effect findings in CAFs, namely
significant decrease in mitochondrial energy production through OXPHOS
fueled by TCA [97] along with glutamine shunt and enhancement of
glycolytic activity [378]. The same applies to the trap-space activity of
glucose and lactate transporters (i.e. GLCtlr, LACt2r) which are also very
active in response to high glycolytic activity [379]. As regards the metabolic
pathways involved in ketogenesis, the process of generating ketone bodies
primarily occurs in the liver during periods of prolonged fasting or low
carbohydrate availability. As the main focus of ketogenesis is in hepatocytes,
few studies have studied ketogenesis in CAFs and the understanding of

ketogenesis in CAFs is not as well-established as in liver cells.
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This second part addresses our efforts to infer cell- and disease-specific
executable Boolean regulatory models for RASFs and breast CAFs covering
dynamic regulatory processes from the previously constructed up-to-date
molecular interaction maps. Regulatory models were automatically inferred
and further parameterized leveraging both data-driven and manual curation
processes to ensure high confidence in the depicted information. After
thorough behavior validation according to multiple criteria, we obtained the
first two large-scale cell- and disease-specific regulatory Boolean models for
RASFs and breast CAFs. The latter are completely standardized in their
construction, annotation, and format and publicly available on multiple
biological model repositories. They enable us to decipher the dynamic

emergent behaviors of fibroblasts under disease-specific conditions.
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Associated scientific communication, details here

The construction of the RASF model was published in an original research

article and presented at an international scientific conference:

Aghakhani, S; Soliman, S; Niarakis, A. Metabolic reprogramming in
rheumatoid arthritis synovial fibroblasts: a hybrid modeling approach.
PLOS  Computational ~ Biology — 2022 18(12):  e1010408.
https://doi.org/10.1371/journal.pcbi. 1010408

Aghakhani, S; Soliman, S; Niarakis, A. Metabolic Reprogramming in
Rheumatoid Arthritis Synovial Fibroblasts (RASFs): a Hybrid Modeling
Approach. European Conference on Computational Biology; September

18-21, 2022; Sitges — Spain (poster)

The construction of the breast CAF was published in an original research

article and presented at an international scientific conference:

Aghakhani, S; E Silva Saffar, S; Soliman, S; Niarakis, A. Hybrid
computational modeling highlights reverse Warburg effect in breast
cancer-associated  fibroblasts.  Computational — and  Structural

Biotechnology Journal 2023. https://doi.org/10.1016/].csbj.2023.08.015

Aghakhani, S; E Silva Saffar, S; Soliman, S; Niarakis, A. A large-scale

hybrid model to study metabolic reprogramming in cancer-associated
fibroblasts. ONCOLille Days; November 2-4, 2022, Lille — France
(poster)
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4.3

4.3.1

CELL- AND DISEASE-SPECIFIC HYBRID MODELS TO COVER AN

ADDITIONAL BIOLOGICAL LAYER

The RASF hybrid model, an integrated dynamic overview of cell-specific

pathogenic signaling, gene regulation and metabolism in the RA joint

Application of the complete framework to obtain the model RASF is shown
within the Jupyter notebook in Figure S1. All necessary scripts and files to
generate results depicted below are available on a GitLab repository at
https://gitlab.com/genhotel/rasf-hybrid-model and in a Zenodo permanent
archive at https://doi.org/10.5281/zenodo.7181588.

In greater details, the value propagation method was applied to the regulatory
Boolean model under RASF-specific initial conditions identified earlier
(Table 12) to decrease its complexity. Out of the 359 components, 313 were
fixed by the value propagation algorithm (i.e. 100 were fixed at 0 and 213 at
1) (Figure 39). Evidently, the RASF-specific initial conditions, including 14
inputs and 2 intermediary nodes, exert an important control over the whole

network.

Using the results of value propagation as a new set of initial conditions
enabled us to decrease the complexity of the RASF model to obtain its trap-
spaces, including the complete asymptotic behavior of the system. As
described within the hybrid modeling framework, only metabolic components
with proven inactive states are considered to extract additional metabolic
constraints. Using RASF-specific regulatory conditions, the maximal trap-
spaces associated with seven metabolic enzymes and 12 metabolites were
equal to 0. According to the hybrid modeling framework, this led to constraint

52 metabolic reaction of MitoCore to 0 (Table 19 and Table 20). For

instance, the maximal trap-space value relative to the metabolic enzyme

AKGDm (2-Oxoglutarate Dehydrogenase) was equal to 0. Thus, the
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metabolic flux of the reaction it catalyzes (i.e. R AKGDm) was constrained
to 0 in MitoCore. Similarly, the maximal trap-space value associated with the
metabolite fum m (mitochondrial fumarate) was equal to 0. Such dually
extracted constraints reflect the consistency of RASFs signaling and gene

regulation processes impact upon their metabolic pathways.

Figure 40. Visualization of the value propagation algorithm upon the
RASF model network under RASF-specific initial conditions. This
iterative algorithm allows the computation of specific components
dynamical consequences on the overall behavior of the model. Under
RASF-specific initial conditions, 313 components of the RASF model
were fixed by value propagation, including 100 fixed at 0 (in white) and
213 at 1 (in blue). The remaining 46 components values were not fixed,
they are displayed in red.

187



Table 19. Metabolic enzymes with projected maximal regulatory
trap-space equal to 0 under RASF-specific initial conditions and
their associated catalyzed reaction constrained to 0 in MitoCore.

Metabolic Catalyzed

Enzyme  Complete Name subsystem reaction

AKGDm 2-Oxoglutarate ~ Tricarboxylic acid R AKGDm
Dehydrogenase cycle =

CI_MitoCore NADH Electron transpo'rt R_CI MitoCore
- Dehydrogenase chain -

CII MitoCore Succinate  Electron transport  p ¢y igocore
- Dehydrogenase chain - =

CIIl MitoCore ~ CYtoshrome € Electron transport o "y rigocore
- Reductase chain - =

CIV_MitoCore Cytochrome € Elsiion tranqurt R _CIV_MitoCore
- Oxidase chain - =

ICDHxm Isocitrate ~ Tricarboxylic acid R ICDHxm
Dehydrogenase cycle -

PDHm Pyruvate  Tricarboxylic acid R PDHm

Dehydrogenase cycle -

Table 20. Metabolites with projected maximal regulatory trap-space

equal to 0 wunder

RASF-specific

initial

conditions

and their

associated producing reactions constrained to 0 in MitoCore.

Metabolite Complete name Metabolic subsystem Producing reaction
o 6-Phospho-D-gluco- Pentose phosphate R PGL
- nate pathway -

D-Glucono-1,5-lac- Pentose phosphate
6pgl_c tone 6-phosphate pathway R_G6PDH2r
Isoleucine degrafla- R ACACT10m

tion -

FA and ketone body
metabolism, ketogen- R ACACTIrm

esis
accoa_m Acetyl-CoA S R_ACITLm_Mito-
periphery Core
Alcohol metabolism R _ACSm
Ketogenesis / Leucine R_HMGLm

degradation
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Beta-alanine degrada-
tion
Beta-alanine degrada-
tion

Fatty acid metabolism

Glycolysis, gluco-
neogenesis

Lysine degradation

Tryptophan Metabo-
lism
Malate aspartate

akg m 2-Oxoglutarate shuttle

Glutamate degrada-
tion/synthesis

Tricarboxylic acid
cycle

Mitochondrial trans-

. porters
Citrate

cit m
Tricarboxylic acid
cycle

Electron transport

chain
fum m Fumarate

Mitochondrial trans-
porters

Tricarboxylic acid

Isocitrate
cycle

icit m
Malate aspartate

L-Malate shuttle

mal L m
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R_MMSAD3m

R MMSAD3m2 Mi-
toCore

R MTPC14 Mito-
Core

R _MTPC16_ Mito-
Core

R 10287
R 10634
R 10724
R 10732

R_PDHm

R 2AMAD-
PTmC_MitoCore

R 20XOAD-
PTmC MitoCore
R_ASPTAm

R_GLUDxm
R_GLUDym

R _ICDHxm

R _ICDHyrm

R _CITtamB
R_CITtbm

R 10917

R r0917b MitoCore

R_CSm

R _CII_MitoCore

R_FUMtmB_Mito-
core

R_ACONTm

R_AKGMALtm

R_MALSO3tm



Mitochondrial trans- R_MALSO4tm
porters R_MALTSULtm

R r0913
Tricarboxylic acid R FUMm
cycle -
R_ACITLm_Mito-
0aa_m Oxaloacetate Tricarboxyli.c o core
- cycle periphery R _MDHm
R PCm
rusp D ¢ D-Ribulose S-gllllzz Pentose pl;c;iﬁlvlva;}e, R_GND
Ketone bodies - de- R OCOATIm
gradation -
R_SUCCt2m
R _SUCCt3m_Mito-
Mitochondrial trans- Core
succ_m Succinate IPETEEE R_r0829
R 0830
R r0830B_MitoCore
Tricarboxylic acid R_SUCOASIm
cycle R_SUCOASm
GABA shunt R r0178
Tr1carboxy11ccz}1/<(::11;1 R_AKGDm
succoa_m Succinyl-CoA Propanoate metabo-
R _MMMm

lism

A first FBA was carried out to enable the assessment of metabolic fluxes
distribution in a control situation. In addition, it allowed comparison with the
second FBA, including metabolic constraints extracted from the RASF
regulatory model. Results of both FBAs can be visualized in Figure 40.
Details of all uptake and secretion C-fluxes results for both FBAs can be

found in Table 21 and Table 22. Complete metabolic flux distribution in

control and RASF-specific conditions is displayed in Table S1 and Table S2.
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A Glucose Ketone Bodies Fatty Acids
Ketone Bodies Fatty Acids
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ATP
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Figure 41. Summary of the major active pathways of central
metabolism according to Flux Balance Analysis in (A) control (B)
and RASF-specific conditions. The objective function was set at
maximum cellular ATP production. The ratio of cellular ATP production
from glycolysis to total cellular ATP production from glycolysis and
oxidative phosphorylation is calculated at 96% in healthy cells and 85%

in rheumatoid arthritis synovial fibroblasts.
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Table 21. Main uptake and secretion reactions according to the
objective function of maximum ATP production in a control
(healthy) cellular situation.

Uptake
Metabolite Reaction Flux  C-number C-flux
acac e EX acac e 0.114 4 2.49%
ala L e EX ala L e 0.01 3 0.16%
arg L e EX arg L e 0.007 6 0.23%
asn L e EX asn L e 0.01 4 0.22%
asp L e EX asp L e 0.154 4 3.36%
bhb_e EX bhb e 0.048 4 1.05%
but e EX but e 0.006 4 0.13%
cyan_e EX cyan e 0.001 1 0.01%
cys L e EX cys L e 0.001 3 0.02%
glc D e EX glc D e 0.9 6 29.48%
gly e EX gly e 0.009 2 0.10%
glyc e EX glyc e 0.01 3 0.16%
h e EX h e 3.458 0 0.00%
hco3 e EX hco3 e 1.71 1 9.34%
hdca e EX hdca e 0.4684 16 40.92%
his L e EX his L e 0.01 6 0.33%
lie L e EX lie L e 0.004 6 0.13%
lac L e EX lac L e 0.575 3 9.42%
leu L e EX leu L e 0.016 6 0.52%
lys L e EX lys L e 0.03 6 0.98%
02 e EX 02 e 19.8 0 0.00%
pro L e EX pro L e 0.004 5 0.11%
ser L e EX ser L e 0.017 3 0.28%
thr L e EX thr L e 0.012 4 0.26%
val L e EX val L e 0.011 5 0.30%
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Secretion

Metabolite Reaction Flux  C-number C-flux
co2 e EX co2 e -18.31 1 99.96%

h20 e EX h20 e -16.7 0 0.00%

nh4 e EX nh4 e -0.362 0 0.00%
teynt e EX tcynt e -0.001 1 0.01%
urea e EX urea e -0.007 1 0.04%

Table 22. Main uptake and secretion reactions according to the
objective function of maximum ATP production in a rheumatoid
arthritis synovial fibroblast-specific situation.

Uptake
Metabolite Reaction Flux  C-number C-flux
asn L e EX asn L e 0.01 4 0.65%
asp L e EX asp L e 0.154 4 10.01%
glc D e EX glc D e 0.9 6 87.72%
gly e EX gly e 0.005 2 0.16%
glyc e EX glyc e 0.01 3 0.49%
h2o e EX h20 e 0.055 0 0.00%
his L e EX his L e 0.01 6 0.97%
Secretion
Metabolite Reaction Flux C-number C-flux
ac e EX ac e -0.01 2 0.32%
ala L e EX ala L e -0.164 3 7.99%
co2 e EX co2 e -0.169 1 2.75%
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h e EX h e -1.636 0 0.00%

lac L e EX lac L e -1.82 3 88.69%
nh4 e EX nh4 e -0.04 0 0.00%
ser L e EX ser L e -0.005 3 0.24%

As biologically expected, the optimal fluxes for maximum cellular ATP
production in a control situation are TCA and OXPHOS fluxes. They are
responsible for 96% of total ATP production. In a control situation, the main
uptaken carbonated molecules are hexadecanoate (40.92% of total C-flux),
glucose (29.48%), lactate (9.42%), and HCOs (9.34%), primary energy
sources for most cells. The main secreted carbonated molecule is CO2
(99.96%) as it is the principal product of oxidative metabolism along with
H>0O. In RASF-specific regulatory conditions, the optimal fluxes for
maximum cellular ATP production are glycolytic, accounting for 85% of
cellular ATP production. Metabolic uptake and secretion fluxes are also
affected. The main uptaken carbonated molecules are glucose (85.69% of
total C-flux) and aspartate (9.77%). The main secreted carbonated molecules

are lactate (86.12%) and alanine (8.33%).

In addition, a comparison of internal metabolic fluxes (Table S1 and Table

S2) in both situations illustrates increased glycolytic fluxes along with
increased glucose uptake and lactate secretion in RASFs, accounting for a
highly glycolytic metabolism. Low oxidative metabolism is demonstrated
through decreased (almost null) TCA and OXPHOS fluxes and decreased
secretion of OXPHOS by-products such as CO2 and H20. A hypoxic
environment is displayed with decreased O: uptake and increased H'
secretion associated with environment acidity. Beyond metabolic pathways

of ATP production, results denote reprogramming of several other metabolic
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pathways in RASFs. An increased amino acids and fatty acids secretion is
shown, potentially acting in RA as substrates for energy production,
biosynthesis intermediates, components of membrane phospholipids, or
support for bone erosion and cartilage degradation. Increased reductive
carboxylation is also identified, a novel glutamine metabolism pathway
supporting the growth of tumor-like cells with mitochondrial defects. Further
pathways including mitochondrial transport reactions, cardiolipin synthesis,
or glycine cleavage, appear to be impacted, most likely indirectly as a result

of metabolites redirection through up-regulated metabolic pathways.

To decipher the role of regulatory components in RASFs metabolic
alterations, individual knock-ins and knock-outs of RASF-specific initial
conditions were first performed. In greater details, 14 FBAs were conducted
following different sets of initial regulatory conditions. As shown in Table
23, out of the 14 RASF-specific initial conditions variants, only condition 3
(C3) significantly impacted ATP production pathways. Indeed, when
inhibiting Hypoxia-Inducible Factor 1 (HIF1) and keeping RASF-specific
initial conditions for the remaining components, glycolysis was dramatically
decreased and OXPHOS explained the cellular ATP production. This
situation, although extreme in its proportions due to the constraint extraction
rules of the framework, is closer to a control situation. This finding suggests
that targeting HIF1 could participate in restoring a healthy metabolic profile
in RASFs. Moreover, it is coherent with recent experimental studies
demonstrating that HIF1 knockdown reduces glycolytic metabolism in

human synovial fibroblasts [363].
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Table 23. Regulatory knock-out/knock-in simulations set of initial
conditions along with their FBA results in terms of total cellular ATP
production from glycolysis and OXPHOS. All components value
initially set to 1/0 in RASF-specific conditions were alternatively set to
0/1 while the others remained at RASF-specific values.

Component Set of Initial Conditions

Cl C2 C3 C4 C5 C6 C7T C8 (9 C10 C11 C12 C13 C14

FASLG 0 I 1 1 1 1 1 1 1 1 1 1 1 1
FGF1 1 0 1 1 1 1 1 1 1 1 1 1 1 1
HIF1 1 1 0 1 1 1 1 1 1 1 1 1 1 1
IKBA/NFKB1/RELA 1 1 1 0 1 1 1 1 1 1 1 1 1 1
IL17A 1 I 1 1 0 1 1 1 1 1 1 1 1 1
IL18 1 1 1 1 1 0 1 1 1 1 1 1 1 1
IL6 1 1 1 1 1 1 0 1 1 1 1 1 1 1
MIR192 0 0 O 0 0 0 0 1 0 0 0 0 0 0
PDGFA 1 I 1 1 1 1 1 1 0 1 1 1 1 1
RANKL 1 1 1 1 1 1 1 1 1 0 1 1 1 1
SFRP5 0 0 0 0 0 0 0 0 0 0 1 0 0 0
TGFB1 1 I 1 1 1 1 1 1 1 1 1 0 1 1

TNF 1 I 1 1 1 1 1 1 1 1 1 1 0 1

WNTS5A 1 1 1 1 1 1 1 1 1 1 1 1 1 0
GLC 1 I 1 1 1 1 1 1 1 1 1 1 1 1

Glycolysis 85.1 85.1 0 85.1 85.1 85.1 85.1 85.1 85.1 85.1 85.1 85.1 85.1 85.1
OXPHOS 14.9 149 100 149 149 149 149 149 149 149 149 149 149 149
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Further combinations of knock-ins and knock-outs were generated and tested
to account for the potential synergistic effect of regulatory components upon
metabolic processes. 2'* = 16384 combinations were tested, representing all
possible combinations of knock-ins and knock-outs of the RASF-specific
initial conditions (Table 12), naturally eliminating glucose knockouts that are
not biologically meaningful. Out of the 16384 knock-ins and knock-outs
combinations of RASF-specific initial conditions, 1984 were eliminated as
they generated aberrant asymptotic behaviors of ontological phenotypes (i.e.
apoptosis and proliferation active at the same time), proving the limits of a
model that was not created for combined inputs but to reproduce a cell- and
disease-specific environment. 8448 combinations were eliminated as the
computation of trap-spaces exceeded the time limit of three minutes, most
likely due to the impossibility of reducing the complexity of the model
enough with the wvalue propagation algorithm. The remaining 5952
combinations were thoroughly analyzed. All combinations demonstrated a
reprogrammed pathogenic metabolic profile with 96% of cellular ATP
production provided by glycolytic pathways and 4% from OXPHOS. To
identify eventual patterns associated with such diseased metabolic profile, the
average value of each component was obtained. As shown in Table 24, all
combinations of RASF-specific knock-outs and knock-ins related to a
diseased metabolic profile included the activation of HIF1. As for the other
components, the averages do not allow us to identify a distinctive signature.
The key regulatory role of HIF1 had already been identified within individual
knock-outs and knock-ins. Its constant activated state in all combinations of
RASF-specific initial conditions associated with a pathogenic metabolic
profile demonstrates the overriding individual effect of HIF1 over the
synergistic effect of any other regulatory components in the RASF hybrid

model.
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Table 24. Average value of each regulatory component within all
combinations of RASF-specific knock-outs and knock-ins associated
with a diseased metabolic profile.

Regulatory component Averaged value within all

combinations

FASLG 0.33333333
FGF1 0.51612903
HIF1 1
IKBA/NFKB1/RELA 0.5
IL17 0.5
IL18 0.51612903
IL6 0.5
MIR192 0.33333333
PDGFA 0.48387097
RANKL 0.5
SFRP5 0.48387097
TGFB1 0.5
TNF 0.5
WNTS5A 0.51612903
GLC 1

4.3.2 The breast CAF hybrid model, an integrated dynamic overview of cell-
specific pathogenic signaling, gene regulation and metabolism in the

TME

All necessary scripts and files to generate results depicted below are available

on a GitLab repository at https://gitlab.com/genhotel/breast-cafs-reverse-

warburg-effect and in  a  Zenodo permanent archive at
https://doi.org/10.5281/zenodo.7874614.

The value propagation method was applied to the regulatory Boolean model
under breast CAF-specific initial conditions identified earlier (Table 15). Out
of the 463 components present in the breast CAF model, 434 were fixed by
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value propagation (127 were fixed at 0 and 307 at 1) (Figure 41). Evidently,
the breast CAF-specific initial conditions, including 56 inputs and 91

intermediary nodes, exert an important control over the whole network.

Figure 42. Visualization of the value propagation algorithm upon the
breast CAF model network under breast CAF-specific initial
conditions. This iterative algorithm allows the computation of specific
components dynamical consequences on the overall behavior of the
model. Under breast CAF-specific initial conditions, 434 components of
the CAF model were fixed by value propagation, including 127 fixed at
0 (in white) and 307 at 1 (in blue). 29 components values were not fixed,
they are displayed in red.

Using the results of value propagation as a new set of initial conditions
enabled us to decrease the complexity of the breast CAF model to obtain its
trap-spaces, including the complete asymptotic behavior of the system. A
single trap-space is identified. It is a stable state, which indicates that, under
influences from breast CAF-specific cellular signaling and gene regulation
networks, the asymptotic behavior of all metabolic components is fully stable.
As described in the hybrid modeling framework, additional metabolic
constraints were extracted from metabolic compounds with a proven inactive

asymptotic behavior. This concerns 7 metabolic enzymes and 15 metabolites
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leading to constrain the flux of 66 unique metabolic reactions to 0 (Table 25
and Table 26). The high number of constrained reactions is explained by
enzymes commonly catalyzing a single metabolic reaction whereas
metabolites were produced by numerous reactions. Additionally, certain
metabolic reactions (e.g. R PDHm, R ICDHxm, R GLUNm) were
constrained both through their catalyzing enzymes and their produced
metabolites. It reflects the consistency of breast CAF-specific cellular
signaling and gene regulation machinery upon its metabolic processes. This
approach allows to contextualize MitoCore, a generic core metabolic

network, in the cell- and disease-specific context of breast CAFs.

Table 25. Metabolic enzymes with projected maximal regulatory
trap-space equal to 0 under breast CAF-specific initial conditions
and their associated catalyzed reaction constrained to 0 in MitoCore.

Metabolic Catalyzed reac-

Enzyme Complete Name subsystem tion
GLUNm Mltochoqdrlal Glutam.lne R GLUNm
Glutaminase degradation -

Electron transport

CI_MitoCore NADH Dehydrogenase .
N chain

R _CI MitoCore

R_HMGCOA-
Sim

Hydroxymethylglutaryl

Ketogenesis

Cytochrome C  Electron transport

CIII_MitoCore Reductase chain

R_CIII_MitoCore

Electron transport

CIV_MitoCore Cytochrome C Oxidase .
- chain

R_CIV_MitoCore

Isocitrate  Tricarboxylic acid

ICDHxm Dehydrogenase cycle

R_ICDHxm

Pyruvate Tricarboxylic acid

PDHm Dehydrogenase cycle

R _PDHm
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Table 26. Metabolic enzymes with projected maximal regulatory
trap-space equal to 0 under breast CAF-specific initial conditions
and their associated catalyzed reaction constrained to 0 in MitoCore.

Metabolite Complete name Metabolic Produqng

subsystem reaction

- L-Glutamine Glutamine synthesis R_GLNS
nL ¢ :

S [cytoplasmic] L-Glutamine transport R 12525

3-Hydroxy-3- Leucine degradation R _MGCHrm

hmgcoa m  methylglutaryl-CoA . R HMGCOA-

[mitochondrial] Ketogenesis - Sim

Isoleucine degradation R _ACACT10m

FA and ketone body me- o A CACTIrm

tabolism, ketogenesis =

. R_ACITLm_Mi-

TCA periphery toCore

Alcohol metabolism R ACSm

Ketogenesis / Leucine _de- R HMGLm

gradation -

Beta-alanine degradation = R _MMSAD3m

Acetyl-CoA Beta-alanine degradation R—MMSAD3m2—

accoa_m . . MitoCore

- [mitochondrial] .

R_MTPCI14 Mi-

toCore

R_MTPCI16_Mi-

toCore

Fatty acid metabolism R 10287

R r0634

R 10724

R 10732

Glycolysis, gluconeog@- R PDHm

nesis -

. . R 2AMAD-

Lysine degradation PTmC_MitoCore

. R _20XOAD-

Tryptophan Metabolism el

. 2-Oxoglutarate PTmC_ MitoCore

axg_m [mitochondrial] ~ Malate aspartate shuttle R _ASPTAm

Glutamate degradation R_GLUDxm

and synthesis R _GLUDym

Tricarboxylic acid cycle R _ICDHxm
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cit m Citrate [mitochondrial]

fum m

icit m

mal L m

0aa_m

gln L m

succ_m

succoa_m

Fumarate
[mitochondrial]

Isocitrate
[mitochondrial]

L-Malate
[mitochondrial]

Oxaloacetate
[mitochondrial]

L-Glutamine
[mitochondrial]

Succinate
[mitochondrial]

Succinyl-CoA
[mitochondrial]

Mitochondrial transpor-
ters

Tricarboxylic acid cycle
Electron transport chain

Mitochondrial transpor-
ters

Tricarboxylic acid cycle

Malate aspartate shuttle

Mitochondrial transpor-
ters

Tricarboxylic acid cycle

Tricarboxylic acid cycle
periphery

Mitochondrial transpor-
ters

Ketone bodies degrada-
tion

Mitochondrial transpor-
ters

Tricarboxylic acid cycle

GABA shunt
Tricarboxylic acid cycle

Propanoate metabolism
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R_ICDHyrm
R CITtamB
R CITtbm

R 10917

R r0917b_Mito-
Core

R CSm
R _CII MitoCore

R_FUMtmB_Mi-

tocore
R ACONTm

R_AKGMALtm
R_MALSO3tm
R_MALSO4tm

R_MALTSULtm

R 10913
R_FUMm

R ACITLm Mi-
toCore

R_MDHm
R _PCm

R_GLNtm

R_OCOATIm

R_SUCCE2m

R _SUCCH3m Mi-

toCore
R 10829
R r0830

R r0830B_Mito-
Core

R _SUCOASIm
R_SUCOASm
R 10178

R _AKGDm
R_MMMm



Mitochondrial transpor- R _ACACt2mB

ters MitoCore
acac m Ace.toacetlc apld Ketone bodies degrada— R BDHm
- [mitochondrial] tion -
Ketogenesis, leucine fle— R HMGLm
gradation -
GABA shunt R_ABTArm
Beta-alanine degradation R _APAT2rm
Malate asparte shuttle ASPGLUmMB_Mi-
toCore
Malate aspartate shuttle R_ASPTAm
Cysteine degradation R CYSTAm
Mitochondrial transpor- R_GLUt2mB_Mi
ters toCore
L L-Glutamate Isoleucine degradation R ILETAm
ul m . :
S [mitochondrial] Leucine degradation R_LEUTAm
Ornithine degradation R _ORNTArm
Valine degradation R VALTAm
Proline, ornithine degra— R 10074
dation -
Tricarboxylic ac@ cycle R 0081
periphery -
Lysine degradation R r0450
Lysine degradation R 10525
bhb m 3-Hydroxybutyric acid  Mitochondrial transpor- R _BHBtmB Mi-
- [mitochondrial] ters toCore

Visualization of both control and breast CAF-specific FBA results are
provided in Figure 42. Details of all uptake and secretion C-fluxes results for
both FBAs can be found in Table 27 and Table 28. Complete metabolic flux

distribution in control and RASF-specific conditions is displayed in Table S1
and Table S3.
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A Glucose Ketone Bodies Fatty Acids

Ketone Bodies

Fatty Acids

Oxidation

Degradation

Pyruvate =——————— Acetyl-CoA — Fatty Acyl-CoA

Urea T N M s Fumarate  Oxoglutarate <@ Glutamate
TCA Cycle , Amino Acids Degradation

Succinyl-CoA

Amino Acids

H,0 CO,

B Glucose

Glycolysis p” # Pentose Phosphate Pathway Amino Acids Synthesis Amino Acids
Fatty Acids Synthesis Fatty Acids
H+ Pyruvate
V —> Acetyl-CoA
Lactate Lactate
Urea <—m— Fumarate Oxoglutarate
TCA Cycle , Amino Acids Degradation
O 0> Succinyl-CoA Amino Acids

CO,

Figure 43. Summary of the major active pathways of central
metabolism according to Flux Balance Analysis in (A) control (B)
and breast CAF-specific conditions. The objective function was set at
maximum cellular ATP production. The ratio of cellular ATP production
from glycolysis to total cellular ATP production from glycolysis and
oxidative phosphorylation is calculated at 96% in healthy cells and 85%
in rtheumatoid arthritis synovial fibroblasts.
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Optimal fluxes for ATP production in a healthy fibroblast are OXPHOS
fluxes, accounting for 96% of cellular ATP production. Main uptaken
carbonated molecules are hexadecanoate (40.92% of total C-flux), glucose
(29.48%), lactate (9.42%), and HCO3 (9.34%), primary energy sources for
most cells. Main secreted carbonated molecule is CO2 (99.96%). Under breast
CAF-specific regulatory conditions, optimal fluxes for ATP production are
glycolytic fluxes, as they now explain 85.05% of cellular energy production
in the form of ATP. Main uptaken carbonated molecules are glucose (87.72%
of total C-flux) and aspartate (10.01%). Main secreted carbonated molecules
are lactate (88.69%) and alanine (7.99%). Comparison of internal metabolic
fluxes revealed reprogramming of major metabolic pathways for ATP
production. Globally increased glycolytic fluxes along with increased lactate
secretion in breast CAFs reflect a highly glycolytic metabolism. Low
oxidative metabolism is demonstrated by decreased OXPHOS and TCA-
associated fluxes along with decreased secretion of oxidative by-products

(e.g. CO2 and H20).
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Table 27. Main uptake and secretion reactions according to the
objective function of maximum ATP production in a control
(healthy) cellular situation.

Uptake
Metabolite Reaction Flux  C-number C-flux
acac e EX acac e 0.114 4 2.49%
ala L e EX ala L e 0.01 3 0.16%
arg L e EX arg L e 0.007 6 0.23%
asn L e EX asn L e 0.01 4 0.22%
asp L e EX asp L e 0.154 4 3.36%
bhb_e EX bhb e 0.048 4 1.05%
but e EX but e 0.006 4 0.13%
cyan_e EX cyan e 0.001 1 0.01%
cys L e EX cys L e 0.001 3 0.02%
glc D e EX glc D e 0.9 6 29.48%
gly e EX gly e 0.009 2 0.10%
glyc e EX glyc e 0.01 3 0.16%
h e EX h e 3.458 0 0.00%
hco3 e EX hco3 e 1.71 1 9.34%
hdca e EX hdca e 0.4684 16 40.92%
his L e EX his L e 0.01 6 0.33%
lie L e EX lie L e 0.004 6 0.13%
lac L e EX lac L e 0.575 3 9.42%
leu L e EX leu L e 0.016 6 0.52%
lys L e EX lys L e 0.03 6 0.98%
02 e EX 02 e 19.8 0 0.00%
pro L e EX pro L e 0.004 5 0.11%
ser L e EX ser L e 0.017 3 0.28%
thr L e EX thr L e 0.012 4 0.26%
val L e EX val L e 0.011 5 0.30%
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Secretion

Metabolite Reaction Flux  C-number C-flux
co2 e EX co2 e -18.31 1 99.96%

h20 e EX h20 e -16.7 0 0.00%

nh4 e EX nh4 e -0.362 0 0.00%
teynt e EX tcynt e -0.001 1 0.01%
urea e EX urea e -0.007 1 0.04%

Table 28. Main uptake and secretion reactions according to the
objective function of maximum ATP production in a breast cancer-
associated fibroblast-specific situation.

Uptake
Metabolite Reaction Flux  C-number C-flux
asn L e EX asn L e 0.01 4 0.65%
asp L e EX asp L e 0.154 4 10.01%
gle D e EX glc D e 0.9 6 87.72%
gly e EX gly e 0.005 2 0.16%
glyc e EX glyc e 0.01 3 0.49%
h20 e EX h20 e 0.055 0 0.00%
his L e EX his L e 0.01 6 0.97%
Secretion
Metabolite Reaction Flux  C-number C-flux
ac e EX ac e -0.01 2 0.32%
ala L e EX ala L e -0.164 3 7.99%
co2 e EX co2 e -0.169 1 2.75%
h e EX h e -1.636 0 0.00%
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lac L e EX lac L e -1.82 3 88.69%
nh4 e EX nh4 e -0.04 0 0.00%
ser L e EX ser L e -0.005 3 0.24%

A hypoxic environment along with anaerobic metabolism is revealed through
decreased O: uptake and increased H+ secretion, associated with
environmental acidity. Besides metabolic pathways for energy production,
macromolecular building blocks pathways are altered in breast CAFs.
Particularly, amino acids uptake by breast CAFs is decreased (e.g. proline,
glycine), along with their decreased degradation (e.g. proline), and increased
secretion (e.g. serine, lysine). Fatty acids uptake is further decreased (e.g.
butanoic acid) while their secretion is increased (e.g. palmitic acid).
Cardiolipin synthesis is decreased in breast CAFs, coherently with former
findings as they are known to regulate OXPHOS. Further pathways including
folate cytosolic, reductive carboxylation, and butanoate metabolism, appear
to be impacted, most likely resulting indirectly from metabolites redirection
through other altered pathways or through the application of our additional
metabolic constraints. Finally, mitochondrial transporters are affected due to

the reprogramming of mitochondrial pathways discussed above.

After computationally reproducing the experimentally observed metabolic
reprogramming in breast CAFs, the challenge consists in identifying its main
regulatory drivers. Successive individual knock-outs and knock-ins of breast-
CAF specific regulatory initial conditions resulted in 147 new sets, and
therefore 147 new FBAs. A complete list of FBA results per set of initial
conditions by ratio of total cellular ATP produced through glycolytic or
oxidative pathways is provided in Table 29. Among the performed FBA, only

one set of regulatory initial conditions reproduces a healthy metabolic profile
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for energy production in breast CAFs, it is condition 57 (C57). Indeed, by
knocking-out HIF1, metabolic pathways seem to recover a healthy-like
distribution with cellular ATP being generated from oxidative rather than
glycolytic pathways. Other regulatory inputs do not seem to directly affect

metabolic fluxes distribution in breast CAFs.

Further combinations of knock-ins and knock-outs were generated and tested
to account for the potential synergistic effect of regulatory components upon
metabolic processes. In view the high number of initial conditions to be tested
and potentially resulting in 2'*” = 1784059616E** combinations, a reduction
of the model was first undertaken. The latter was obtained by focusing on the
molecular pathways upstream of CAFs cellular phenotypes involved in
hallmarks of cancer (i.e. ROS production, hypoxia, fibroblast proliferation,
angiogenesis, tumor growth, tumor invasion, matrix degradation, migration

into the tumor, ECM regulation, reactive stroma, immune system modulation)

(Figure 43).

casqg CAF map-V2.xml -u ROS production phenotype Hy-
poxia phenotype Fibroblast proliferation phenotype Angio-
genesis phenotype Tumor growth phenotype Tumor inva-
sion phenotype Matrix degradation phenotype Migra-
tion into the tumor phenotype ECM regulation phenotype Re-
active stroma phenotype Immune system modulation phenotype

Figure 44. CaSQ command line to infer the extracted CAF model
from the CAF-map V2 by focusing on hallmarks of cancer-specific
pathways. The optional arguments -u (--upstream) only export species
upstream of this specific node.
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Table 29. Regulatory knock-out/knock-in FBA simulation results in
terms of percentage of total cellular ATP production from glycolytic
and oxidative pathways. Each components value initially set to 1/0 in
breast CAF-specific conditions was alternatively set to 0/1 while the
others remained unchanged (the details of each set of initial conditions
is provided in the GitLab). Condition C57 corresponds to the knock-out
of HIF1 (other regulatory inputs do not seem to directly affect metabolic
fluxes distribution in breast CAFs).

GLYC OXPHOS

Cl

C2

C3

C4

(O))

C6

C7

C8

C9

C10
Cl1
C12
C13
Cl4
CI15
Cl6
C17
CI18
C19
C20
C21
C22
C23
C24
C25
C26
C27
C28
C29
C30
C31
C32
C33

85.05
85.05
85.05
85.05
85.05
85.05
85.05
85.05
85.05
85.05
85.05
85.05
85.05
85.05
85.05
85.05
85.05
85.05
85.05
85.05
85.05
85.05
85.05
85.05
85.05
85.05
85.05
85.05
85.05
85.05
85.05
85.05
85.05

14.95
14.95
14.95
14.95
14.95
14.95
14.95
14.95
14.95
14.95
14.95
14.95
14.95
14.95
14.95
14.95
14.95
14.95
14.95
14.95
14.95
14.95
14.95
14.95
14.95
14.95
14.95
14.95
14.95
14.95
14.95
14.95
14.95

C34
C35
C36
C37
C38
C39
C40
C41
C42
C43
C44
C45
C46
C47
C48
C49
Cs50
Cs1
C52
C53
C54
C55
C56
Cs7
C58
C59
C60
Co1
C62
C63
Co64
C65
C66
C67

85.05
85.05
85.05
85.05
85.05
85.05
85.05
85.05
85.05
85.05
85.05
85.05
85.05
85.05
85.05
85.05
85.05
85.05
85.05
85.05
85.05
100.0
85.05
0.00

85.05
85.05
85.05
85.05
85.05
85.05
85.05
85.05
85.05
85.05
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14.95
14.95
14.95
14.95
14.95
14.95
14.95
14.95
14.95
14.95
14.95
14.95
14.95
14.95
14.95
14.95
14.95
14.95
14.95
14.95
14.95
0
14.95
100
14.95
14.95
14.95
14.95
14.95
14.95
14.95
14.95
14.95
14.95

C68
C69
C70
C71
C72
C73
C74
C75
C76
C77
C78
C79
C80
C81
C82
C83
C84
C85
C86
C87
C88
C89
C90
CI1
C92
C93
Co4
C95
C96
C97
Co8
C99
C100
C101

85.05
85.05
85.05
85.05
85.05
85.05
85.05
85.05
85.05
85.05
85.05
85.05
85.05
85.05
85.05
85.05
85.05
85.05
85.05
85.05
85.05
85.05
85.05
85.05
85.05
85.05
85.05
85.05
85.05
85.05
85.05
85.05
85.05
85.05

14.95
14.95
14.95
14.95
14.95
14.95
14.95
14.95
14.95
14.95
14.95
14.95
14.95
14.95
14.95
14.95
14.95
14.95
14.95
14.95
14.95
14.95
14.95
14.95
14.95
14.95
14.95
14.95
14.95
14.95
14.95
14.95
14.95
14.95



C102 85.05 14.95 Cl118 85.05 14.95 C134 85.05 14.95

C103 85.05 14.95 C119 85.05 14.95 C135 85.05 14.95
C104 85.05 14.95 C120 85.05 14.95 C136 85.05 14.95
C105 85.05 14.95 Cl121 85.05 14.95 C137 85.05 14.95
C106 85.05 14.95 C122 85.05 14.95 C138 85.05 14.95
C107 85.05 14.95 Cl123 85.05 14.95 CI139 85.05 14.95
C108 85.05 14.95 C124 85.05 14.95 C140 85.05 14.95
C109 85.05 14.95 C125 85.05 14.95 Cl41 85.05 14.95
C110 85.05 14.95 Cl126 85.05 14.95 Cl142 85.05 14.95
C111 85.05 14.95 C127 85.05 14.95 C143 85.05 14.95
Cl12 85.05 14.95 C128 85.05 14.95 Cl144 85.05 14.95
Cl113 85.05 14.95 C129 85.05 14.95 Cl145 85.05 14.95
Cl114 85.05 14.95 C130 85.05 14.95 Cl46 85.05 14.95
Cl15 85.05 14.95 CI131 85.05 14.95 C147 85.05 14.95
Cl16 85.05 14.95 C132 85.05 14.95

C117 85.05 14.95 C133 85.05 14.95

The extracted CAF model featured 58 inputs, 51 if excluding glucose and all
components acting as “simple molecule” as referred to in CellDesigner. The
51 remaining inputs were subsequently grouped into 21 inputs as shown in

Table 30.
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Table 30. Grouping nodes acting as inputs in the extracted breast

CAF model.

Initial inputs of the
extracted CAF model

Group of inputs of
the updated extracted
CAF model

Reason for grouping

AREG
EGF

CTGF

HGF

PDGF

CASQ2

HRC
RYR2/TRDN/ASPH
IL12

IL18

miR101
miR141
miR200B
miR205
miR214
FGF1
FGF2
FGF3
FGF4
IGF1
IGF2
IGFBP3
IGFBP4
IHH
SHH
IL1A
IL1B
IL6

HIF1
miR155
miR211
miR221
proPLAU
PLG
WNT7
WWRTI

Growth factor

Ca2+ binding_proteins

1IL12/18

MIRs 0

FGFs

IGFs

Hedgehog_proteins

IL6/1A/1B
HIF1

MIRs 1

Proteases

WNT proteins
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Components of the growth
factor family

Involved in the calcium
binding to the endoplasmic
reticulum

Proinflammatory cytokines
of the interleukin family
responsible for cell-mediated
inflammation

Negative regulators of CAFs

Components of the fibroblast
growth factor family

Components of the insulin
growth factor family

Components of the cellular
signaling Hedgehog pathway

Proinflammatory cytokines
of the interleukin L1 family

/
Up-regulated micro-RNAs

Proteases signaling
components

Components of the WNT
signaling pathway



MIF

H;I;IIZ Cytokines Up-regulated cytokines
OSM
TNF TNF /
VTN
Collagens T,
POSTN - roteins involved in the
OSFN ECM_proteins regulation of the ECM
Large Latent Complex
GAST GAST /
LGALSI LGALSI /
CFL1 CFL1 y
GLNS GLNS /
CXCLI12 CXCL12 /

Thus, 22! = 2 097 152 combinations were generated for further testing,
accounting for all possible combinations of knock-ins and knock-outs of the
extracted breast CAF-specific inputs (Table 30). Unfortunately, after nearly
11 days of simulation, “only” 308 159 combinations were calculated, all of
which were eliminated of further analysis due to the trap-space computation
step lasting more than three minutes per combination. At this point, the
identification of a possible synergetic effect of regulatory inputs upon
metabolic processes in the hybrid breast CAF model is not possible.

Alternative strategies to meet this objective are currently being considered.
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4.3.3 MetaLo, a Python package for metabolic analysis of logical models

infered from molecular interaction maps

Written in Python, MetaLo is a pip-installable package for coupling cell-
and/or disease-specific regulatory Boolean models inferred from standardized
molecular interaction maps with generic metabolic networks

(https://pypi.org/project/metalo/). It is an open-source tool published under

the GNU General Public License version 3.0. MetalLo allows assessment of
the impact of gene regulation and cellular signaling pathways upon metabolic
processes under cell- and/or disease-specific conditions, and more
specifically upon its central function of energy production through the
calculation of the ratio of ATP produced through glycolysis and, by
extension, OXPHOS.

Metalo is interoperable with a wide range of systems biology tools as its
inputs and outputs are in standard formats. Indeed, two input files are
required: a cell-specific molecular interaction map in CellDesigner [228]
XML format and a generic metabolic network in the SBML format [229].
Note that molecular interaction maps must be compliant with SBGN PD
standards [189], [227] for representation and that metabolic components must
be named consistently in both the molecular interaction map and the
metabolic network. Users do not need to be proficient in the Python
programming language as MetalLo can be operated in two forms, namely

through the command line or via its graphical interface (Figure 44).

Metalo results displays both control and cell- and/or disease-specific FBA
results along with ratio of ATP produced through glycolytic or oxidative

pathways and further generates several output files:

- A CaSQ-generated CSV file including all regulatory components

names, logic formulae and aliases from CellDesigner;
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- A CaSQ-generated SBML file encoding the regulatory logical model
in the standard SBML-qual format;

- A CaSQ-generated BNET file encoding the regulatory logical model
for further use by Trappist;

- A Trappist-generated CSV file covering all computed trap-spaces of
the regulatory model;

- A Metalo-generated CSV file displaying control FBA results;

- A Metalo-generated CSV file displaying cell- and/or disease-specific
FBA results.

Additional options are further available in MetalLo to i) not infer a Boolean
model from the global molecular interaction map but only from specific sub-
parts downstream and/or upstream of specific components, ii) provide an
additional CSV file including initial conditions to forcefully initialize the
regulatory model and reproduce cell- and/or disease-specific environments,
and iii) display flux variability (FVA) results instead of FBA results. The goal
of FVA is to compute the maximal and minimal values, i.e. intervals of
reaction fluxes, when the objective function is optimized rather than unique

flux values.
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A $ metalo --help

usage: metalo [-h] [-v] [-D] [-f] [-i INIT] [-c CASQ] MAP METABOLISM

Metabolic analysis of Logical models extracted from maps. Copyright (C) 2023 Sahar.Aghakhani@i

GPLv3

positional arguments:

MAP CellDesigner file containing the mechanistic map
METABOLISM MitoCore style metabolic model

options:

-h, --help show this help message and exit

-v, --version show program's version number and exit

-D, --debug display some debug information

S hva run FVA to get interval of values

-i INIT, --init INIT CSV file with forced initial values for the Logic model
-c CASQ, --casq CASQ Additional arguments for CasSQ like -u, -d or -r

B [ LN J metalo

metalo
Metabolic analysis of Logical models extracted from maps. Copyright (C) 2023 Sahar.

Required Arguments

MAP METABOLISM
CellDesigner file containing the MitoCore style metabolic model
mechanistic map

Browse Browse

options

version debug
show program's version number and exit display some debug information

init casq
CSYV file with forced initial values for the Additional arguments for CaSQ like -u, -d
Logic model or -r

Browse

Cancel Start

Figure 45. Usage of MetaLo through (A) the command line or (B) the
graphical interface. Minimal inputs required are a cell- and/or disease-
specific molecular interaction map in the CellDesigner XML file format
and a generic constraint-based metabolic network in the SBML format.
Additional arguments may be specified including initial conditions for
the simulation of the regulatory model, specification for model inference
through CaSQ or conduction of flux variability analysis instead of flux
balance analysis.

216



We compared the results of MetaLo (version 0.5.2) RASFs (Figure 45) and
breast CAFs (Figure 46) FV As to the initial hybrid coupling framework FBA
results. In both cases, MetalLo FVA results in terms of all metabolic reactions
flux intervals cover the reaction flux value indicated by the FBA results of
the initial framework. Moreover, the objective functions and ratios of ATP
production through glycolysis are totally similar between both analyses. The
packaging of MetalLo was successful and the few modifications implemented
did not impact the cell-and disease-specific regulatory and metabolic network

coupling nor the subsequent metabolic analysis.
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-c "-d FGF1 PDGFA TGFB1 WNT5A RA

$ metalo RA_map_V2.xml mitocore_v1.01.x
NKL IL6_Extracellular_space_Space IL18

FASLG IL17A_Extracellular_space_Space TNF_Extracellular_space_Space M_glc_D_e_simple_mole

cule Hypoxia_phenotype IKBANFKB1RELA_complex MIR192_rna SFRP5 -u Hypoxia_phenotype" -f

Objective

Metabolite
asn_L_e
asp_L_e
glc_D_e

Metabolite
2hb_e
HC00250_e
ac_e
ala_L_e
arg_L_e
citr L e
co2_e
cyan_e
cys_L_e
gly_e
h2o_e
lac_L_e
mercplac_e
nh4_e
no_e

02_e
phe_L_e
ser L e
so3_e
tcynt_e
tsul_e
tyr L e

Reaction Flux
EX_asn_L_e 0.01
EX_asp_L_e 0.154
EX_glc_D_e 0.9

EX_glyc_e 0.01

EX_h_e 0.074
EX_hco3_e 1.71
EX_his_L_e 0.01
EX_thr_L_e 0.01

Reaction

(e

[-1

Flux

EX_2hb_e -0.01

EX_HC00250_e
EX ac_ e -
EX_ala_L_e -0
EX_arg_L_e
EX citr L e
EX_co2_e -1
EX_cyan_e
EX cys L e
EX_gly_e
EX_h2o_e -
EX_lac_L_e -
EX_mercplac_e
EX_nh4_e -
EX_no_e
EX_o2_e
EX_phe_L_e
EX ser L e
EX_so3_e
EX_tcynt_e
EX_tsul_e
EX_tyr_L_e

0
0.01
.174
0
0
.884
0
0
0
1.66
1.81
0
0.04
0

Range

[0.01; 0.01]
.154; 0.154]
[0.9; 0.9]
[0.01; 6.01]
.652; 0.075]
[0; 1.71]
[0.01; 0.01]
[0; 0.01]

Range

[-0.01
[-0.001
[-0.01; -0
[-0.175; ©
[6; o.
[-0.007
[-1.896;
[e;
[e;
[-0.012;
[-1.677;
[-2.005;
[,

[-0.005; O.

[-0.001;
[-0.001
[-0.001

1.0 PGK + 1.0 PYK + 1.0 CV_MitoCore = 4.460666666666667

C-Number C-Flux

; 0]
; 0]
.01]
.01]
007]
; 0]

.169]
.001]
.001]
.005]
.236]

017

; 0]
; 0]

4 .51%
.80%
.39%
.38%

0.00%
.66%
0.76%
.51%

C-Number C-Flux

4

VCOHOQDWUVOOOOWWONWERHEHOOIOODWNOD

The proportion of global ATP production through glycolysis in
is [0.8505, 0.8505]

0000000 OCOCOCDDMOOCOODTWOOOODO O

.51%
.00%
.25%
.61%
.00%
.00%

86%
00%

.00%

00%

.00%
JT7%
.00%

00%

.00%
.00%

00%

.00%
.00%
.00%
.00%
.00%

the trap-spaces conditions

Figure 46. Metalo analysis of RASF regulatory impact upon
metabolic processes. (A) Specification of analysis parameters with the
generic RA-map V2, CaSQ arguments for inference of the RASF model,
RASF-specific initial conditions, and running flux variability analysis
instead of flux balance analysis. (B) Flux variability analysis results for
main uptake and secretion metabolic reaction fluxes and in terms of
overall ratio of ATP produced through glycolytic pathways.
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The proportion of global ATP production through glycolysis in the trap-spaces conditions
is [0.8505, 0.8505].

Figure 47. Metal.o analysis of breast CAFs regulatory impact upon
metabolic processes. (A) Specification of analysis parameters with: the
generic CAF-map V2, breast CAF-specific initial conditions, and
running flux variability analysis instead of flux balance analysis. (B)
Flux variability analysis results for main uptake and secretion metabolic
reaction fluxes and in terms of overall ratio of ATP produced through
glycolytic pathways.
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This final section tackles our efforts to integrate the dynamic behavior of
multiple biological machinery (e.g. cellular signaling, gene regulation and
metabolism) by studying the dynamic impacts of RASFs and breast CAFs
regulatory pathways upon their metabolic subprocesses and identifying key
regulator(s). We addressed this challenge by developing an innovative hybrid
modeling framework further packaged in an open-source Python tool of the
name Metalo. The latter was applied to our cell- and disease-specific
contexts and enabled us to generate the two first large-scale hybrid models of
RASFs and breast CAFs leveraging both data-driven and manual approaches.
MetalLo combines the previous RASFs and breast CAFs regulatory Boolean
models automatically inferred from up-to-date molecular interaction maps
with the MitoCore generic reconstruction of human metabolism. They
allowed us to propose a potential commong mechanism of fibroblasts
metabolic reprogramming in RA and BC, driven by HIF1, initiating their

aggressive behavior.
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Associated scientific communication, details here

The construction of the RASF hybrid model was published in an original

research article and presented at an international scientific conference:

Aghakhani, S; Soliman, S; Niarakis, A. Metabolic reprogramming in
rheumatoid arthritis synovial fibroblasts: a hybrid modeling approach.

PLOS Computational Biology 2022 18(12): e1010408.
https://doi.org/10.1371/journal.pcbi. 1010408

Aghakhani, S; Soliman, S; Niarakis, A. Metabolic Reprogramming in
Rheumatoid Arthritis Synovial Fibroblasts (RASFs): a Hybrid Modeling
Approach. European Conference on Computational Biology; September

18-21, 2022; Sitges — Spain (poster)

The construction of the breast CAF hybrid ws published in an original research

article and presented at an international scientific conference:

Aghakhani, S; E Silva Saffar, S; Soliman, S; Niarakis, A. Hybrid

computational modeling highlights reverse Warburg effect in breast

cancer-associated  fibroblasts. = Computational  and  Structural

Biotechnology Journal 2023. https://doi.org/10.1016/j.csbj.2023.08.015

Aghakhani, S; E Silva Saffar, S; Soliman, S; Niarakis, A. A large-scale
hybrid model to study metabolic reprogramming in cancer-
associated fibroblasts. ONCOLille Days; November 2-4, 2022, Lille —

France (poster)

The packaging of the hybrid coupling framework within the Metal.o tool will
be submitted for publication very shortly in an applications note and was

presented at an international scientific conference:
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https://doi.org/10.1371/journal.pcbi.1010408
https://doi.org/10.1016/j.csbj.2023.08.015

Aghakhani, S; Soliman, S; Niarakis, A. Metabolic analysis of logical

models infered from molecular interaction maps. Building Immune

Digital Twins; May 15" to June 2", 2023; Orsay — France (oral

presentation)
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DISCUSSION

Immunometabolism refers to the tight interconnections between the
historically distinct disciplines of immunology and metabolism [1]. It covers
the regulation of immune responses by metabolic processes and nutrient
distribution along with immune systems regulatory impact upon metabolism.
The relevance of immunometabolism in physiopathology is increasingly
recognized, particularly as one of its key features is the metabolic response to
pathogenic immune dysregulation. Immune-related cells may adapt, rewire,
and adopt specific metabolic subprograms, driving disease initiation or
maintenance by determining specific cellular behavior, namely metabolic
reprogramming [5], [380]. The latter refers to the alterations in cellular
bioenergetics occuring in response to changes in environmental conditions or
cellular requirements, both of which are very likely to occur in disease
conditions. These adaptations are regulated by various processes along with
gene regulation, response to the cellular signals, and energetic demands.
Understanding metabolic reprogramming is crucial in the quest for novel
therapeutic targets for incurable diseases where the impact of metabolism has
historically been overlooked. In addition to opening up new avenues for drug
development, immunometabolic targeting can reduce the adverse side effects
of a number of therapies by enabling cellular specificity rather than shutting
down all or part of the immune system and resulting in a potentially hazardous

state of immunosuppression for patients.

Leveraging immunometabolic processes seems particularly relevant to us in
the context of complex diseases whose etiologies are not yet fully understood,
resulting in an absence of curative therapies. It is the case of RA or BC where
the majority of current treatments are mainly intended to alleviate symptoms.

These two diseases, although quite different in nature (i.e. autoimmune and
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cancerous), share a great number of similarities, starting with the
immunometabolic reprogramming of one of the key actors in their respective
pathogenesis: the synovial fibroblasts of the RA joint [165] and the fibroblasts
of the TME [379]. Such metabolic reprogramming is largely associated with
the transformation of both types of fibroblasts, initially involved in the
structural integrity of tissues or efficient nutrient distribution, in cells of
aggressive phenotype with specific behaviors and characteristics. In
particular, the cartilage and bone destruction occurring in RA is largely
initiated and sustained by RASFs [332] while CAFs are greatly involved in
cancer initiation, progression, and resistance to therapy [68]. It should be
noted that CAFs metabolic reprogramming within the TME (i.e. their reverse
Warburg effect) has long been studied experimentally, whereas observations
of metabolic alterations in fibroblasts of the RA joint are relatively recent.
Therefore, we undertook in this PhD thesis a joint study of the role of
metabolic reprogramming in these two pathologies. Our aim was to capitalize
on progress made in one context (i.e. cancer) in order to move forward in the
other (i.e. RA). It enabled us to gain a better understanding of the integrated
mechanisms of pathological immunometabolism and identify probable

therapeutic targets.

While RASFs and CAFs share many similarities, we were compelled to
consider the different pathological characteristics and the distinct
micoenvironments that drive their metabolic reprogramming. Moreover, as
fibroblasts are complex systems with a variety of biological processes
intertwined, an additional focus was given on integrating multiple layers of
information that would allow the interconnections between extracellular
stimuli, intracellular signaling cascades, transcription factor activity, gene
expression regulation and, last but not least, metabolic processes. This is not
a trivial task [381] and has largely limited the applications of

immunometabolism in therapy development due to the absence of an
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integrated overview. Numerous factors may be responsible, arising from the
need to integrate numerous heterogeneous data to cover multiple biological
layers (e.g. inherent complexity of interactions and feedback loops between
the different biological layers, traditional experimental techniques focusing
on individual components or pathways, making it difficult to obtain a holistic
overview) or the dynamic nature of biological systems (e.g. diverse outcomes
depending on the cellular context and environment). Hence, by considering
the variety of cellular actors and biological processes involved in RASFs and
breast CAFs metabolic reprogramming, along with their interactions, we
aimed at leveraging computational approaches. Indeed, we tackled the latter
challenges by developing an integrated framework for the study of
immunometabolism through advances in high-throughput technologies,
computational biology and systems biology approaches. Our main objective
was to decipher the intracellular cascades responsible for RASFs and breast

CAFs metabolic alterations and their regulation.

Our innovative hybrid modeling framework covers the various biological
layers of signaling, gene regulation, and metabolism. It allows us to couple a
generic core metabolic network with a cell- and disease-specific regulatory
Boolean model automatically inferred from a molecular interaction map in
both RASFs and breast CAFs-specific contexts. The coupling is ensured
through the translation of Boolean regulatory trap-spaces into metabolic
constraints. Thus, we obtain contextualized metabolic networks allowing us
to assess the impact of fibroblasts regulatory behavior upon their metabolic
flux distribution in disease-specific contexts. It further allows us to capture
potential metabolites exchanges within their microenvironment and link them
to downstream metabolic pathways. This functional coupling opens new
avenues on targeting and modulating the immune system to reverse metabolic
reprogramming. Our framework builds on advantages of both data-driven and

manually curated construction of molecular interaction maps, regulatory
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Boolean models, and metabolic network rather than automatic
reconstructions and their associated issues. It is able to combine reliability on
the interactions depicted in large-scale static and dynamic networks, along
with dealing with a lack of omics data in less addressed biological fields such

as RASFs and breast CAFs.

In greater detail, we started by developing state-of-the-art molecular
interaction maps for RA and generic CAFs, improving on previously
published work, namely the RA-map [200] and the CAF-map from the ASCN
resource [204] as a means to accurately map mechanistic representation of
implicated pathways underlying disease pathogenesis. The RA-map V2 and
CAF-map V2 are standardized graphical representations, fully committed to
implement community-driven FAIR principles [226] for findability,
accessibility, interoperability and reproducibility. Indeed, both molecular
interaction maps were made freely accessible via the web browser platform
MINERVA [234]. Their content is compliant with SBGN PD standards [189],
[227] for representation, SBML [229] for format, MIRIAM for annotations
[233], PMIDs and stable identifiers for references and CALM for biocuration
[231]. All entities are annotated using HGNC symbols [205] for signaling and
gene regulation components and BiGG IDs [232] for metabolic components.
The use of standard identifiers for entities present within our molecular
interaction maps ensured their compatibility with other tools along with
facilitating data integration. Lastly, extensive annotations and easy access to
content allow for transparent and facilitated reuse of resources. In addition,
the manual construction of the RA-map V2 and CAF-map V2, allows one to
have greater confidence in the depicted information rather than automatic
network reconstructions, provide detailed curated mechanistic information,
and further address a lack of omics data needed for automatic network
inference. It is the case for RASFs and breast CAFs, mainly because of sample

availability reasons due to the invasiveness of procedures needed to acquire
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fibroblasts samples, the heterogeneity of the disease that may limit sample
collection, and the research focus where the priority is not placed on
fibroblasts. Indeed, in RA, omics-based research has primarily focused on
different cell types (e.g. macrophages [382], [383] or chondrocytes [384],
[385]). Similarly in cancer, involvement of the TME in pathogenic processes
is a field of study based on more recent omics data generation [58], [61]. As
a result, RASFs and breast CAFs lack public omics data to use. The RA-map
V2 and CAF-map V2 represent the first attempt to visualize and simplify
complex information to obtain clear insights on detailed metabolic and
regulatory interconnections in RA and generic CAFs. They are state-of-the
static knowledge bases allowing to summarize current knowledge about
molecular biological pathways and entities significant in the associated
disease pathogenesis. They further allow visualization of experimental data,
possibly highlighting aspects of the affected biological process and
identifying differences between various conditions. Their topological
analysis also enabled us to study the distribution of the network and identify
structural hubs (e.g. HIF1, NFKB, TP53 for RA and TGFB, SMAD, HIF1A
for generic CAFs) with potentially strong regulatory power.

The static study of the RA-map V2 and CAF-map V2 limiting us in the study
of the dynamics of RASFs and breast CAFs, we further automatically inferred
executable large-scale Boolean models from these molecular interaction
maps. Building large-scale dynamic models can be a daunting and time-
consuming task requiring not only the construction of the regulatory network
but also the definition of interaction rules. With the CaSQ tool [243], we took
advantage of the similarities shared between molecular interaction maps and
dynamic logical models. The latter represent great resources to decipher
complex biological processes in a qualitative way underlying dynamic
properties. They are very adapted to the study of cellular signaling and gene

regulation processes carrying signal flow. Both regulatory models were
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further contextualized to reproduce cell- and disease-specific RASFs and
breast CAFs conditions. It was achieved by combining both data-driven and
manual curation approaches to ensure high cellular specificity and confidence
in the depicted interactions and initial conditions. The RASF- and breast CAF
models are compliant with systems biology standards of SBML-qual [244]
for the format, are fully annotated, and are publicly available in two
repositories of biological models, namely Cell Collective [245] and
BioModels [246], [247]. Qualitative biological coherence of the regulatory
models behavior was assessed against experimental evidence extracted from
the scientific literature at three distinct levels (i.e. generic regulatory and
metabolic pathways along with global cellular behavior), mainly reproducing
experimental observations. One advantage of such models lies in their ability
to help identify unknown regulatory cross-talks and direct or indirect effects
of specific components or pathways on each other. Overall, generating and
parameterizing a logical model from manual network construction along with
data analysis and biocuration allows to avoid issues associated with automatic
and non-curated methodologies (e.g. improper reconstruction of reactions or
incorrect compartmentalization leading to incorrect representation). In the
field of RA, it is the second attempt to grasp the dynamic of RASFs
pathogenic activity but the first attempt to include the key role of metabolism.
In the cancer field, our executable Boolean model represents the first attempt
to assess CAFs dynamic pathogenic activity, let alone in a cancer-specific
manner or by including metabolic processes. Such regulatory models can be
analyzed as they are, taking advantage of their construction linked to cellular
phenotypes to identify the most important hubs or pathways in each dynamic
cellular behavior and answer specific biological questions in a qualitative
manner. This study can be envisaged in a modular way to study each cellular
phenotype separately, or in a global way to confirm existing knowledge or

identify new crosstalks.
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The qualitative study of the impact of gene regulatory and cell signaling
systems upon metabolic subprocesses not being sufficient to address
stoichiometry of biochemical fluxes, we coupled both regulatory models with
MitoCore generic reconstruction of central human metabolism [250]. The
choice of the metabolic model was based on two factors: the reliability of the
depicted reactions, manually curated for MitoCore, rather than automatic
metabolic reconstruction, and because of our metabolic sub-section of
interest, central carbon metabolism rather than whole metabolism. However,
in principle the framework is adaptable to any type of constraint-based
metabolic model. The proposed framework only extracts additional metabolic
constraints to apply on the metabolic network from metabolic components
with a proven “inactive” asymptotic behavior under cell- and disease-specific
regulatory conditions. It allows the pipeline to automatically handle models
with hundreds of components. A main strength of this approach lies in the
reliability of both regulatory and metabolic manually curated models rather
than data-driven networks. Our approach is inspired by the central doctrine
of immunometabolism, namely the tight interconnections between immune
regulatory processes and metabolic machinery and the necessity to integrate
the dynamic study of these various biological layers to unravel RASFs and
CAFs metabolic reprogramming. It further improves on previous attempts to
couple Boolean models with metabolism, such as FlexFlux [222]. In FlexFlux
the discrete qualitative states of the Boolean regulatory network are translated
into several user-defined continuous intervals, while in this framework only
metabolic reaction fluxes whose regulatory components have maximal trap-
spaces values equal to 0 are constrained. This choice is motivated by the
difficulty of manually defining initial values and qualitative states to
continuous intervals equivalence for every component of large regulatory
models. In addition, this framework adopts the asynchronous update as less
deterministic than synchronous and the identification of trap-spaces, using

value propagation, to provide more comprehensive analysis of the regulatory
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model and find states closer to the biological reality. This approach can
facilitate the analysis of models with a higher number of inputs. Finally, the
need for user-defined transcription factors to target gene relationships, as in
the PROM method [221] or r-deFBA [223], a daunting task in very large scale
regulatory models such as ours, is not required in our framework. This
facilitates integrated dynamic analysis of large biological systems such as
RASFs and breast CAFs immunometabolic crosstalks and impact in the

associated pathogenesis.

After proving the adaptability of our hybrid modeling framework to both
RASFs and breast CAFs regulatory contexts, we further packaged it as a
python tool named Metalo for a broader range of applications. This open-
source package can be used by a wide variety of users with multidisciplinary
backgrounds through the command line or the graphical interface. Moreover,
this package is interoperable with other systems biology tools due to the
standard format of the molecular interaction maps and both regulatory and
metabolic networks. Starting from a standardized molecular interaction map
and a constraint-based metabolic reconstruction, MetaLo automatically
applies all steps of our hybrid coupling framework (i.e. inference of the
regulatory Boolean model, initialisation of the latter according to user-defined
initial conditions, computation of regulatory trap-spaces as asymptotic
regulatory behavior, identification of long-term inactive metabolic
components, translation into additional metabolic constraints, optimal
metabolic distribution analysis). Overall, MetaLlo is intended to help leverage
immunometabolic crosstalks in other complex diseases to advance

knowledge by elucidating regulatory impacts upon metabolic processes.

Application of our innovative hybrid coupling framework represents the first
computational attempt to study immuno-metabolic crosstalks in RASFs.

Simulation of the hybrid RASF model revealed a highly glycolytic
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metabolism, along with a decreased oxidative metabolism for ATP
production and confirmed a hypoxic environment around RASFs.
Comparison with the control FBA results clearly demonstrate a metabolic
reprogramming of RASFs. These results are consistent with recent
experimental studies highlighting a glycolytic switch in RASFs [165], [173].
RASFs metabolic alterations are generally attributed only to their stressful
microenvironment but may also be considered from the perspective of
metabolite exchange between RASFs and other cells of the RA joint. Indeed,
FBA results demonstrated several additional altered metabolic pathways in
RASFs, including fatty acids, amino acids, and reductive carboxylation. The
latter observations have not yet been experimentally studied in RASFs but are
similar to the ones made in cells going through a reverse Warburg effect to
turn into “metabolic slaves”, generating energy-rich fuels and nutrients to
feed neighboring cells and help sustain their aggressive activity [27]. Thus,
our hybrid model is valuable for providing suggestions which can be further
experimentally validated, contributing to a better-informed experimental
design. Similarly, RASFs reside close to bio-energetically demanding cells
(e.g. immune cells, endothelial cells, chondrocytes), experience a glycolytic
switch and, according to these simulations, secrete high levels of energy-rich
fuels and nutrients. Said nutrients are known to be involved in disease-
associated behaviors [386] and some experimental evidence suggests
intracellular metabolic exchanges between RASFs and neighboring cells
[171]. Thus, based on the latter experimental observations and our in-silico
simulations, we propose the innovative hypothese according to which a
reverse Warburg effect occurs between RASFs and other RA joint cells to
influence the inflammatory and destructive processes associated with the
pathogenesis of RA. In greater detail, RASFs would undergo a metabolic
switch and reprogram their metabolism to (i) adapt and survive within their
new hypoxic environment, (ii) maintain their aggressive phenotypes (e.g.

extensive proliferation and tissue invasion, reduced contact inhibition,
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resistance to apoptosis, driver of angiogenesis), and (iii) provide crucial
metabolic intermediates to neighboring cells of the rheumatic joint to help
sustain their pathogenic activity. Indeed, a shift in glycolysis is a hallmark of
inflammatory cells in RA (e.g. macrophages, monocytes, B cells, T cells,
dendritic cells) [387] and RASFs metabolic reprogramming could support
such cells anabolic processes by meeting their high energy demand. For
instance, by secreting high-levels of energy-rich nutrients (e.g. fatty acids,
amino acids, lactate), RASFs may benefit immune cells by providing a critical
energy source and metabolic intermediates to support their functions of
cytokine production and immune response regulation and overall their
activation and survival within the inflamed joint. It has been shown that B
cells upregulate amino acid transporters and increase the utilization of
specific amino acids, such as glutamine and serine [388], probably for
nucleotide synthesis and antibody production. The high presence of the latter
amino acids in the RA joint could be due to the metabolic reprogramming of
RASFs. Macrophages also require energy to perform their functions,
including phagocytosis, cytokine production, and antigen presentation [382].
Their metabolic state is further recognized to influence their cytokine
production profiles [389]. Thus, nutrient availability in the RA joint may
directly impact the production of pro-inflammatory cytokines by
macrophages. RASFs may modulate the cytokine profile of macrophages,
potentially influencing the immune response and inflammation in the
rheumatic joint. Additionally, adequate nutrient availability can affect
cytokine production of T cells [390]. Secretion of such nutrients by RASFs
may contribute to the modulation of T cell cytokine profiles and their
immune-regulatory functions. Finally, endothelial cells forming the lining of
blood vessels or osteoclasts in the synovium are critical for angiogenesis and
bone resorption activities. The high secretion of energy-rich nutrients by
RASFs may promote these cells function by providing them essential

nutrients. However, their metabolic needs have not yet been studied.
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Simulations of individual and combined knock-outs and knock-ins of the
RASF-specific regulatory initial conditions revealed HIF1 as the critical
regulator of RASFs metabolic reprogramming. HIF1 is a master
transcriptional factor involved in cellular and developmental response to
hypoxia. Already identified in RA as a key effector of inflammation,
angiogenesis, and cartilage destruction [323], [391], HIF1 appears to be
further involved in RASFs metabolic alterations. Its precise mode of action
cannot be fully deduced from our in-silico simulations, but HIFI may
promote a glycolytic energy production switch by upregulating the expression
of glucose transporters (i.e. GLUT1 and GLUT3), and/or transcription of
enzymes responsible for intracellular glucose breakdown through glycolysis
(e.g. hexokinase, phosphofructokinase-1, aldolase). In parallel, HIF1 might
decrease ATP production through mitochondrial oxidative pathways by
transactivating genes responsible for O2 demand and mitochondrial activity
such as pyruvate dehydrogenase kinase 1 or max interactor 1. Considered
together, these various properties enable HIF1 to enhance glycolysis rates as
a crucial step of metabolic response to hypoxia [392], particularly in the

rheumatic joint.

Similarly, simulations of our hybrid breast CAF-specific network constitute,
to our knowledge, the first hybrid modeling attempt to address breast CAFs
regulatory impact upon their metabolism. Our findings depicted a hypoxic
and acidic TME along with a highly glycolytic metabolism and almost null
oxidative fluxes for energy production in breast CAFs. Increased production
and secretion of energy-rich fuels (e.g. pyruvate, lactate, amino acids, fatty
acids) along with decreased secretion of oxidative by-products (e.g. CO2,
H20) were reported, fully reproducing the experimentally observed reverse
Warburg effect in CAFs [393]. Fibroblasts would undergo metabolic
reprogramming and turn into “metabolic servants”, generating high levels of

energy-rich fuels through pentose phosphate pathway or amino acids
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synthesis. These nutrients would feed cancer cells in macromolecular
building blocks and sustain their aggressive phenotype. Such metabolic
alterations are suspected to be driven directly by signals from cancer cells,

illustrating an extensive crosstalk within the TME.

Systematic individual knock-outs and knock-ins of breast CAF-specific
initial conditions simulations identified HIF1 as the regulatory activating
stimuli of breast CAFs metabolic reprogramming. HIF1 is known as a master
transcriptional factor involved in homeostasis and cellular response to
hypoxia. The latter is a major hallmark of solid tumors as they quickly
outgrow their blood supply to support their continuous growth and
proliferation leaving parts of the tumor with almost null concentration of
oxygen. Angiogenesis, metastasis, and drug resistance benefit from this
hypoxic state [394]. To sustain such aggressive behaviors in this challenging
environment, cancer cells need additional fueling. As a result, this chronic
hypoxic and acidic environment, generated by cancer cells to maintain their
tumorigenic phenotype, was recently suspected to induce breast CAFs reverse
Warburg effect and promote BC progression [394]. Our findings fully support
this hypothesis and further identify HIF1 as a main molecular regulator. In
response to cancer cells hypoxic paracrine signals, breast CAFs would
activate transcription of glycolytic genes along with glucose transporters,
suppress oxygen consumption, by-pass oxidative pathways, and induce a
reverse Warburg effect. Thus, we hypothesize that targeting the metabolic
reprogramming of fibroblasts through HIF1 pro-glycolytic and anti-oxidative
transcriptional activity within a therapeutic strategy including the TME could

benefit the treatment of BC.

Metabolic reprogramming of fibroblasts appears to be a crucial element in the
pathogenesis of two complex diseases as different as BC and RA. Due to the

similarity of the framework applied to contextualize the generic MitoCore

236



network in both diseases, a comparison of altered metabolic pathways can be

performed (Table S2 and Table S3). Out of the seven metabolic enzymes

with an asymptotic regulatory behavior equal to 0 and leading to constrain
associated metabolic reactions in the MitoCore model in both biological
contexts, five are shared (i.e. CI MitoCore, CIII MitoCore and
CIV_MitoCore in OXPHOS, ICDHxm and PDHm for TCA). Additionally,
six similar metabolites with asymptotic regulatory behavior equal to 0 lead to
constrain additional metabolic reactions in MitoCore in both RASFs and
breast CAFs regulatory models (i.e. accoa m, akg m, cit m, fum m, icit m,
mal L m for TCA). In order to identify whether such common constraints
are sufficient to observe metabolic alterations similar to those of RASFs and
breast CAFs, an additional FBA was undertaken on MitoCore. Objective
function was set as maximal ATP production and metabolic constraints were
extracted from enzymes and metabolites with an asymptotic regulatory
behavior equal to 0 in both regulatory models. Results (Table S4) depict a
reprogrammed metabolism with high glycolytic flux for energy production,
along with low oxidative fluxes. High secretion of lactate and energy-rich
nutrients (e.g. amino acids and fatty acids) is shown. The proportion of total
energy production in the form of ATP from glycolysis is calculated at
85.05%. These results, although slightly different at the flux value level,
reproduce quite faithfully the metabolic alterations observed in RASFs and
breast CAFs. This already leads us to suspect a similar process of metabolic
reprogramming in RASFs and breast CAFs. In addition, a thorough analysis
of the altered metabolic pathways was undertaken. Overall, metabolic
pathways directly related to energy production are altered in the same manner
(i.e. increased glycolysis, decreased OXPHOS and TCA). Oxidative by-
products are accordingly altered in both breast CAFs and RASFs (e.g.
increased lactate and secretion, decreased CO2 and H2O secretion). The
fibroblasts environment, respectively BC TME and RA joint, appears to be

similarly modified (e.g. decreased O2 uptake and increased H' secretion).
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Metabolic pathways not directly involved in ATP production are additionally
affected. For instance, disease-specific regulatory conditions similarly
reprogram amino acids and fatty acids pathways in RA and BC-associated
fibroblasts probably due to their importance in the biosynthesis of
macromolecules for cells of aggressive phenotype. Indeed, secretion of
building blocks is additionally increased in both situations. Certain pathways
are similarly altered but raise the question of their interest under different
environmental conditions. For instance, reductive carboxylation is similarly
increased in breast CAFs and RASFs. Acting as a novel glutamine pathway,
it supports the growth of cells depicting mitochondrial deficiencies. Warburg
originally hypothesized that cancer-like cells presented a mitochondrial
defect [395] but later work refuted it [25]. Such studies have not yet been
conducted in both types of fibroblasts. Further experimental investigations
are needed to decipher their mitochondrial status and identify a potential
benefit from reductive carboxylation reactions. Altogether, mitochondrial and
cytosolic transporters and shuttle pathways are affected, not necessarily in the
same way, but all due to the reprogramming of upstream metabolic pathways
producing their metabolite of interest. Finally, butanoate metabolism is not
affected similarly in breast CAFs and RASFs. However, it is typically
involved in processes associated with intestinal fermentation, its alterations

do not seem to be significant in a cancerous or autoimmune context.

Beyond the many shared altered metabolic pathways, the key molecular
regulator was also identified as HIF1 in both RASFs and breast CAFs reverse
Warburg effect. Already recognized in RA as a driver of inflammation,
angiogenesis, and cartilage destruction [323], targeting HIF1 has not yet been
proposed within a therapeutic strategy aiming at the resolution of metabolic
reprogramming in fibroblasts. In BC, therapeutic opportunities targeting
HIF1 appeared until very recently to be limited to its metastatic or driver of

tumor-proliferation activities. Growing interest in metabolic targeting to
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address pro-tumor characteristics resulted in a few insights such as Honokiol
as an inhibitor of HIF1-mediated glycolysis to halt BC cells growth [396].
However, its interest in breast CAFs has not yet been investigated. Finally,
studies in other types of human fibroblasts have recognized a key role for
HIF1 (e.g. in anti-aging and regeneration in dermal fibroblasts [397],
attenuating fibrosis and delaying vascular remodeling in systemic sclerosis-
associated fibroblasts [398]) but its targeting in the resolution of fibroblasts

metabolic reprogramming has not yet been studied.

According to our findings and given the shared metabolic alterations,
probable benefits for surrounding cells of the pathogenic microenvironment,
and regulatory molecular driver, we assume the existence of a common
mechanism directing the phenotypic transformation of fibroblasts through a
HIF1-driven metabolic reprogramming in BC and RA. In both situations,
regulation of reverse Warburg effect, already recognized for breast CAFs and
suggested here for RASFs, enables them to (i) adapt and survive within a new
hypoxic and acidic environment, (i1) maintain their aggressive phenotype, and
(111) actively participate in the amplification of the associated diseases
debilitating symptoms by establishing metabolic crosstalks with neighboring
cells of the rheumatic joint or the breast TME.
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PERSPECTIVES

Our modeling framework, further packaged in the open-source Metal.o
Python package captures the complexity of signaling and gene regulation
processes upon RASFs and breast CAFs metabolism. However, for the
moment, it provides a one-way view of biological events. According to the
central doctrine of immunometabolism, there is a bidirectional crosstalk
between regulatory and metabolic processes. Thus, considering the update of
the regulatory network from metabolic analysis outputs may provide an even
more comprehensive understanding of events associated with both reverse
Warburg effect in RASFs and breast CAFs and cover an additional layer of

integrated dynamic study.

Identification of regulatory molecular drivers for RASFs and breast CAFs
metabolic reprogramming relies heavily on the setting of regulatory initial
conditions. It is worth mentioning that finding meaningful initial conditions
for key molecules, and especially for models inputs, constitutes a real
challenge that becomes more evident when working with less-studied
diseases or entities. Additionally, although we covered a variety of regulatory
input combinations and while inputs are suspected to exert the most
significant role upon our networks, we did not systematically assess the
impact of internal components. An extensive, if not exhaustive (for
computational reasons), analysis of the combinations involving internal
components could shed light on the precise mechanism of action of HIF1 in

both biological contexts.

From the previous point stems an additional perspective on this work.
Identification of regulatory molecular drivers was not only restricted to
regulatory inputs in the breast CAF hybrid model because they are suspected

to exert the most significant role upon our networks but also because it is very
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computationally expensive to test the effect of inputs and internal nodes
systematically. Indeed, from a purely computational point of view and as
demonstrated in the computation of all input combinations for the breast CAF
model, the trap-space search step of our framework is a very time-consuming
step. After successfully replacing the package handling this step, namely
BioLQM [250], by Trappist [259] in the packaging of Metalo, it might be
worthwhile adapting this step in the framework too. This would probably
allow us to obtain expanded results for RASFs combined knock-outs and
knock-ins simulations and to obtain results for breast CAFs. Thus, we could
broaden the range of combinations tested and maybe further include

additional ones.

Finally, the various results and hypotheses proposed in this thesis being based
solely on computational simulations, they obviously deserve thorough
experimental validation. This work can serve as a solid basis for in-vitro

validation suggestions, facilitating contacts with experimental partners.
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CONCLUSION

Deciphering the interplay between regulatory immune processes and
metabolism provides great insights to unravel the key metabolic
reprogramming of rheumatoid arthritis synovial fibroblasts (RASFs) and
breast cancer-associated fibroblasts (CAFs). In this context, hybrid
computational approaches are highly relevant and contribute to the
development of innovative strategies considering multiple layers of
intertwined biological processes and entities. In this PhD thesis, I present the
construction of the two first large-scale hybrid models for RASFs and breast
CAFs covering major pathogenic signaling, gene regulation, and metabolic
processes. Both hybrid models combine throroughly validated asynchronous
cell- and disease-specific regulatory Boolean models, which are
automatically inferred from up-to-date molecular interaction maps, with a
generic reconstruction of human central metabolism. Generation of these
hybrid models was carried out through our innovative modeling framework,
further successfully packaged in the MetalLo Python package, and the
translation of regulatory asymptotic behavior impact upon metabolic
subprocesses. In this regard, we leveraged both data-driven and manual
curation approaches to ensure high cellular specificity and confidence in the
depicted interactions and metabolic network contextualization. Metal.o can
be applied to other biological mechanisms, starting with standardized
molecular interaction maps and generic metabolic networks, as long as there
is a biological interface linking them. Our in-silico simulations reproduced
the experimentally observed glycolytic switch in RASFs and reverse Warburg
effect in breast CAFs. They further enabled us to suggest three innovative
hypotheses according to which (i) a reverse Warburg effect occurs between
RASFs and neighboring cells of the RA joint, (ii)) RASFs and breast CAFs

undergo a similar metabolic reprogramming, and (iii) its primary regulatory

245



driver is HIF 1. In greater details, we suggest that, following paracrine hypoxic
signals emitted in the RA joint and the breast TME, RASFs and breast CAFs,
would reprogram their energy production pathways to (i) adapt and survive
within their pathogenic environment, (i) maintain their aggressive
phenotype, and (ii1) produce high-levels of energy-rich fuels and nutrients for
surrounding cells. We propose HIF1 as a potential therapeutic target to be
validated experimentally and as a promising avenue for RA and breast cancer

treatment by targeting RASFs and breast CAFs reverse Warburg effect.
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APPENDICES

Supplementary figure 1. Jupyter notebook describing the application
of the complete framework to obtain the hybrid RASF model.

[ Hybrid_Modeling_Framework.ipynb 1.03 MiB

In [1]:
t import ginsim

import biolgm
from colomoto_jupyter import tabulate
import pandas as pd
import numpy as np
import seaborn as sns
from matplotlib import pyplot as plt
try:
import cobra
except ImportError:
import sys
I{sys.executable} -m pip install cobra
import cobra

cmp = sns.diverging_palette(®, 255, as_cmap=True)

out [1]: This notebook has been executed using the docker image colomoto/colomoto-docker:2021-10-01

1. Loading the two models of interest

¢ The CaSQ-generated RASF-specific boolean model;
¢ MitoCore constraint-based model of human metabolism.

1.1. Load the RASF-model

In [2]:
RASF_model = biolgm.load("RASF-model.sbml")
The sanitize function is used to generate human-friendly node IDs and rescale the layout to improve the model's readability.
Note: this cell may take a few minutes to run.
In [3]:

RASF_model = biolgm.sanitize(RASF_model)

layout = RASF_model.getLayout()
layout.scale(0.4)

1rg = biolgm.to_ginsim(RASF_model)

ginsim.show(lrg, save="RASF-model.svg")

Out [3]: Saved as RASF-model.svg
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In [4]:

In [5]:

Out [5]:

In [6]:

1.2. Load MitoCore

import logging
cobra.io.shml.LOGGER.setLevel(logging.ERROR)

MitoCore = cobra.io.read_sbml_model('mitocore_v1.01.xml')

2. Value propagation

We show that the input conditions (here, based on literature) strongly control the whole network.

inits = pd.read_csv("RASF-specific_input_conditions.tsv", sep="\t", index_col=0)
dic_inits = inits.to_dict()

inits

Type to search

c1
FASLG 1
FGF1 1
HIF1 1
IKBANFKB1RELA_complex 1

IL17A_Extracellular_space_Space 1

IL18 1
IL6_Extracellular_space_Space 1
M_atp_c_simple_molecule 1
M_glc_D_e_simple_molecule 1
MIR192_rna 0
PDGFA 1
RANKL 1
SFRP5 0
TGFB1 1
TNF_Extracellular_space_Space 1
WNTS5A 1

Definition of some helper functions and color mapping rules to perform value propagation and visualize the result.

# Transforms a dictionary into a dash-like pattern used for space restrictions.
# If a model has 4 components A, B, C, D in this order,
# {A:0, D:1} => "0--1"

def dash_pattern(model, dict_vals):
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specific_comps = dict_vals.keys()
str_pattern = ""
for comp in model.getComponents():
if comp.toString() in specific_comps:
str_pattern += str(dict_vals.get(comp.toString()))
else :
str_pattern += "-"
return(str_pattern)

def restrict_model(model, **dict_vals):
pattern = dash_pattern(model, dict_vals)

return biolgm.restrict(model, pattern)

de’

-

fill_fixed(data, names, functions, mddman):
all_valves = [f for f in functions]
for comp, func in zip(names, functions):
if mddman.isleaf(func): datalcomp] = func
else: data[comp] = -1

def get_fixed_pattern(all_names, model, as_dict=False):
# Build a container for the results
pattern = {key: 100 for key in all_names}

# Model manager and core components

mddman = model.getMDDManager()

core_components = [node.getNodeID() for node in model.getComponents()]
extra_components = [node.getNodeID() for node in model.getExtraComponents()]

# 1/ Non-extra values: if the model was not reduced, core components may also contain fixed values
fill_fixed(pattern, core_components, model.getLogicalFunctions(), mddman)

# Special value for input components
for node in model.getComponents():
if node.isInput():
pattern[node.getNodeID()] = -2

# 2/ Extra values : only available after reduction/percolation
# Functions of each component
fill_fixed(pattern, extra_components, model.getExtralogicalFunctions(), mddman)

if as_dict: return pattern
return pd.Series(pattern, dtype=np.byte)

def get_fixed(gs_model, restricted_model, as_dict=False):
name_components = [ n.getId() for n in gs_model.getNodeOrder() ]

return get_fixed_pattern(name_components, restricted_model, as_dict)

de:

-

show_fixed(gs_model, styler, fixed_pattern, save=None):
styler.setState(fixed_pattern.values.tobytes())
return ginsim.show(gs_model, style=styler, save=save)

# Define color mapping rules

styler_fixed = ginsim.lrg_style(lrg)
styler_fixed.mapState2Color(8, 255, 255, 255)
styler_fixed.mapState2Color(1, 100, 1080, 255)
styler_fixed.mapState2Color(-1, 255, 100, 100)

I data = []

for init_name, values in dic_inits.items():
lgm_model_restricted = restrict_model(RASF_model, **values)

data.append( get_fixed(lrg, lgm_model_restricted) )

df = pd.concat(data, axis=1, keys=[name for name in dic_inits])
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In [8)]:

Out [8]:

The result of value propagation can be visualized in the following heatmap where each line represents a component of the
system and the column represent the input condition.

* A white cell denotes that the corresponding component is fixed at 0 by value propagation in this input condition;
* A blue cell denotes that the corresponding component is fixed at 1 by value propagation in this input condition;

+ Ared cells denote components which are not fixed by value propagation in this input condition.
plt.figure(figsize=(8,80))

sns.heatmap(df, center=0, cmap=cmp, cbar=False)

<AxesSubplot:>
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Propagated inputs for a specific input condition can also be mapped on the regulatory graph using the same color code.
In [9]:

fixed = data[0)]

show_fixed(lrg, styler_fixed, fixed, save="RASF-model_value_propagation.svg")
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Qut [9]:

In [10]:
In [11]:
In [12]:
Qut [12]:

Saved as RASF-model value propagation.sve

- = - - - -
- - - - -
- -
— Sher - - -
- S
- ket
o . - . .

3. Identification of RASF-model's trap-spaces

3.1. Using the output of value propagation as a new set of initial conditions

The biolgm.perturbation function enables the construction of a variant of the model, where the logical function of one or
several components has been modified. A textual parameter describes the modification:

component%0 defines a knockout of a component
component%l defines an ectopic expression

To perturbate the model, the output dataframe of value propagation is transformed as a list of perturbations in the form
K P 1%value p 1t2%value ... componentN%value'.

df = df[df.Cl >= 0]

df["modifs"]= df.index.map(str) + "%" + df["C1"].map(str)
modifications = pd.DataFrame(df["modifs"]).copy()
modifications = modifications.reset_index(drop=True)

pert = modifications["modifs"].tolist()

perturbations = * *.join(pert)

RASF_model_perturbated = biolagm.perturbation(RASF_model, perturbations)

3.2. Identification of RASF-model's regulatory trap-spaces

A trap-space, also called stable motif or called symbolic steady state, is a partially assigned state such that all possible
successors of all states which belong to the motif also belong to the motif. Like stable states, these stable motifs can be
identified efficiently using constraint-solving methods.,

trapspaces = hiolgm.trapspace(RASF_model_perturbated)
trapspaces_df = pd.DataFrame(trapspaces)

trapspaces_df.columns = (trapspaces_df.columns.str.replace("_complex",
.str.replace(' _Secreted_space_Molecules','')
.str.replace(' _phosphorylated','"')
.str.replace("_Cytoplasm”,"")
.str.replace( ' _simple_molecule', '
.str.replace('_active', '
.str.replace('M_", '")
.str.replace('_rna’,"'")
.str.replace(’' _Nucleus','')
.str.replace(’ _empty','*)
.str.replace(' _Extracellular_space_Space','"')
.str.replace(' _Secreted_space_Molecules', '')
.str.replace('_space','')
.str.replace(' _Mitochondrion_outter_mb','"')
.str.replace(' _Mitochondrion_inner_mb*,''))

)

trapspaces_df

Type to search
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4. Projection of regulatory trap-spaces on metabolic
compounds

4. Extraction of metabolic compounds

To extract common enzymes and metabolites between MitoCore and the RASF-model we generate:

¢ The list of enzymes in MitoCore;
« The list of metabolites in MitoCore;
» The list of compounds (both enzymes and metabolites) in the RASF-model.

These list are used to compare both models and automatically extract commaon components (with their class: "metabolic
enzyme" or "metabolite"). We exclude common metabolic intermediates.

In [13]:
RASF_model_components = trapspaces_df.columns.values
WitoCore_Enzymes = [r.id for r in MitoCore.reactions]
MitoCore_Metabolites = [m.id for m in MitoCore.metabolites]
4.1.1. Extracting common metabolic enzymes
In [14]: . : N N
common_enzymes = list((set(RASF_model_components).intersection(MitoCore_Enzymes)))
4.1.2. Extracting common metabolites
We limit the metabolite matching by excluding a list of predefined compounds which are considered by MitoCore as
metabolites but are common metabolic intermediates.
In [15]: . .
intermediates = ["atp_c", "adp_c", "adn_c", "adp_m", "amp_c", "amp_m", "atp_m", "cdp_m", "cmp_c", "co_c", "co_
e,
“co2_e", "co2_e", "co2_m", “coa_c", "coa_m", "ctp_c", "fe2_c", "fe2_e", "fel_m", "fleytC_c",
"ficytC_e", "ficytC_m", "gdp_c", "gdp_m", "gtp_c", "gtp_m", "h_c", "h_e", "h_m", "h2o_c", "hZo
_m",
"h202_c"," h2o2_m", "hco3_c", "hco3_e", "hco3_m", "nad_c", "nad_e", "nad_m", “"nadh_c", "nadh_
e,
“nadh_n", "nadp_c”, "nadp_m", "nadph_c”, "nadph_m", "no_c", "no_e", "e2_c", "e2_e", "o2_m", "o
2s_m",
“pheme_c", “pheme_m", “pi_c", “pi_e", "pi_m", "qlO_m", “glGh2_m"]
In [16]:

common_metabolites = list(set(RASF_model_components).intersection(MitoCore_Metabolites)-set(intermediates))
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In [17]:

In [18]):

In [19]:

In [20]:

In [21):

out [21]:

4.2. Projecting metabolic components' regulatory trap-spaces

4.2.1. Projecting metabolic enzymes' regulatory trap-spaces
trapspaces_metabolic_enzymes = trapspaces_df[common_enzymes]
4.2.2. Projecting metabolites' regulatory trap-spaces

trapspaces_metabolites = trapspaces_df[common_metabolites]

5. Flux Balance Analysis (FBA)

Definition of an ATP_total objective function representing maximum cellular ATP production through glycolysis and oxidative
phosphorylation:

MitoCore.objective = ["PYK", "PGK", "CV_MitoCore"]
5.1. FBA n°1: Control

ATP_total_CTL = MitoCore.optimize().objective_value

MitoCore.summary()

Type to search

Metabolite Reaction Flux C-Number C-Flux
acac_e EX_acac_e om4a 4 2.49%
ala_L_e EX_ ala_L_e 0.01 3 0.16%
arg_L_e EX_arg_L e 0.007 6 0.23%
asn_L_e EX_asn_L_e 0.01 4 0.22%
asp_L_e EX_asp_L_e 0154 4 3.36%
bhb_e EX_bhb_e 0.048 4 1.05%
but_e EX_but_e 0.006 4 0.13%
cyan_e EX_cyan_e 0.001 1 0.01%
cys_L_e EX_cys_L_e 0.001 3 0.02%
glc_D_e EX_glc_D_e 09 6 29.48%
gly_e EX_gly_e 0.009 2 0.10%
glyc_e EX_glyc_e 0.01 3 0.16%
h_e EX_h_e 3.458 0 0.00%
hco3_e EX_hco3_e 171 1 9.34%
hdca_e EX_hdca_e 0.4684 18 40.92%
his_L_e EX_his_L_e 0.01 6 0.33%
ile_L_e EX_ile_L_e 0.004 6 0.13%
lac_L_e EX_lac_L_e 0.575 3 9.42%
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Metabolite Reaction Flux C-Number C-Flux

leu_L_e EX_leu_L_e 0.016 6 0.52%
lys_L_e EX_lys_L_e 0.03 6 0.98%
o2_e EX_02_e 19.8 0 0.00%
pro_L_e EX_pro_L_e 0.004 5 oM%
ser_L_e EX_ser_L_e 0.017 3 0.28%
thr_L_e EX_thr_L_e 0.012 4 0.26%
val_L_e EX_val_L_e 0.0mn 5 0.30%
coZ_e EX_co2_e -18.31 1 99.96%
h2o_e EX_h2o_e -16.7 a 0.00%
nhd_e EX_nh4d_e -0.362 a 0.00%
tcynt_e EX_tcynt_e -0.001 1 0.01%
urea_e EX_urea_e -0.007 1 0.04%

In [22]:
solution = MitoCore.optimize()
ATP_glycolysis_CTL = (solution.fluxes['PYK'] + solution.fluxes['PGK'])/(solution.objective_value)
print("The proportion of global ATP production through glycolysis in control conditions is", round(ATP_glycolys
is_CTL, 4), ".")
Qut [22]: ) ) L. L. .
The proportion of global ATP production through glycolysis in control conditions is 0.0485 .
5.2. FBA n°2: RASF-specific
5.2.1. Constraining metabolic fluxes with regulatory trap-spaces
5.2.1.1. Constraining metabolic fluxes with maximum metabolic enzymes' regulatory trap-spaces equal
to0
In [23]: R R R
trapspaces_metabolic_enzymes_zero = trapspaces_metabolic_enzymes.loc(:, (trapspaces_metabolic_enzymes.max(axis=
8)) == 0l
enzymes_to_zero = trapspaces_metabolic_enzymes_zero.columns.values.tolist()
enzymes_to_zero
Out [23]:
(231 [ 'PDHm',
'CI_MitoCore',
'CIV_MitoCore',
'ICOHxm',
'CII_MitoCore',
'G6PDH2r',
'CIII_MitoCore',
'AKGOm* ]
Setting the constraints:
In [24]:

for i in enzymes_to_zero:
MitoCore.reactions.get_by_id(i).lower_bound = B
MitoCore.reactions.get_by_id(i).upper_bound =

o
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5.2.1.2. Constraining metabolic fluxes with maximal metabolites' regulatory trap-spaces eual to 0

In [25]:

1231 trapspaces_metabolites_zero = trapspaces_metabolites.loc[:,(trapspaces_metabolites.max(axis=8)) == 0]
metabolites_to_zero = trapspaces_metabolites_zero.columns.values.tolist()
metabolites_to_zero

Out [25]:
(251 ['succoa_m*,
"Fum_m",
'épgl_c',
'suec_m',
‘accoa_m',
‘cit_m',
'ieit_m',
‘ruSp_D_c',
‘mal_L_m',
'épgc_c’,
'akg_m',
'oaa_m']
In [26]:
1261 producing_reactions_metabolite_to_zero = []
for i in metabolites_to_zero:
producing_reactions_metabolite_to_zerol = WitoCore.metabolites.get_by_id(i).summary().producing_flux.index.
values. tolist()
producing_reactions_metabolite_to_zero = producing_reactions_metabolite_to_zero + producing_reactions_meta
bolite_to_zerol
Setting the constraints:
In [27]:

! ! for i in producing_reactions_metabolite_to_zero:
MitoCore.reactions.get_by_id(i).lower_bound = @
MitoCore.reactions.get_by_id(i).upper_bound = 0

In [28]:
128 ATP_total_RASF = MitoCore.optimize().objective_value
In [29]:
1291 MitoCore.summary()
out [29]:  Type to search
Metabolite Reaction Flux C-Number C-Flux
asn_L_e EX_asn_L_e 0.01 4 0.65%
asp_L_e EX_asp_L_e 0.154 4 10.01%
glc_D_e EX_glc_D_e 0.9 6 87.72%
gly_e EX_gly_e 0.005 2 016%
glyc_e EX_glyc_e 0.07 3 0.49%
h2o_e EX_h2o_e 0.055 0 0.00%
his_L_e EX_his_L_e 0.01 6 0.97%
ac_e EX_ac_e -0.01 2 0.32%
ala_L_e EX_ala_L_e -0.164 3 7.99%
coZ_e EX_co2 e -0.169 1 2.75%
h_e EX_h_e -1.636 0 0.00%
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Metabolite Reaction Flux C-Number C-Flux

lac_L_e EX_lac_L_e -1.82 3 88.69%
nhé_e EX_nh4_e -0.04 0 0.00%
ser_L_e EX_ser_L_e -0.005 3 0.24%

In [30]: . . -
solution = MitoCore.optimize()
ATP_glycolysis_RASF = (solution.fluxes['PYK'] + solution.fluxes['PGK'])/(solution.objective_value)
print(“The proportion of global ATP production through glycolysis in RASF-specific conditions is", round(ATP_gl
ycolysis_RASF, 4), ".")
out [30]:

The proportion of global ATP production through glycolysis in RASF-specific conditions is 0.8585 .
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Supplementary table 1.

control conditions with

Complete metabolic flux distribution in
maximal ATP production as objective

function.

Reaction Flux
EX 2hb e 0,000
EX ac e 0,000
EX acac e -0,114
EX akg e 0,000
EX ala B e 0,000
EX ala L e -0,010
EX arg L e -0,007
EX argsuc e 0,000
EX asn L e -0,010
EX asp L e -0,154
EX bhb e -0,048
EX bilirub e 0,000
EX biomass e 0,000
EX but e -0,006
EX chol e 0,000
EX cit e 0,000
EX citr L e 0,000
EX co e 0,000
EX co2 e 18,307
EX creat e 0,000
EX cyan e -0,001
EX cys L e -0,001
EX etoh e 0,000
EX fe2 e 0,000
EX for e 0,000
EX fum e 0,000
EX glc D e -0,900
EX gin L e 0,000
EX glu L e 0,000
EX gly e -0,009
EX glyc e -0,010
EX h e -3,458
EX h20 e 16,700
EX HC00250 e 0,000
EX hco3 e -1,710
EX hdca e -0,468
EX his L e -0,010
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EX icit e

EX ile L e
EX lac L e
EX leu L e
EX lys L e
EX mal L e
EX mercplac e
EX met L e
EX nad e

EX nadh e
EX nh4 e

EX no e
EX 02 e

EX oaa e

EX pchol hs e
EX pcreat e
EX pe hs e
EX phe L e
EX pi e

EX ppa e

EX pro L e
EX ps hs e
EX ser L e
EX so3 e

EX succ e

EX tcynt e
EX thr L e
EX trp L e
EX tsul e

EX tyr L e
EX urea e

EX val L e
EX fol e

OF ATP MitoCore
OF HEME MitoCore

OF_LIPID MitoCore

OF PROTEIN_Mito-
Core
HEX1

0,000
-0,004
-0,575
-0,016
-0,030

0,000

0,000

0,000

0,000

0,000

0,362

0,000

-19,800

0,000

0,000

0,000

0,000

0,000

0,000

0,000
-0,004

0,000
-0,017

0,000

0,000

0,001
-0,012

0,000

0,000

0,000

0,007
-0,011

0,000

0,000

0,000

0,000

0,000
0,900



G6PPer

PGI

PFK

FBP

FBA

TPI

GAPD

PGK

PGM

ENO

PYK

r0122
PEPCK
LDH L
G6PDH2r
PGL

GND

RPI

RPE

TKT1

TALA

TKT2

PDHm

CSm
ACONTm
ICDHxm
ICDHyrm
AKGDm
SUCOASIm
SUCOASm
FUMm
MDHm
CI_MitoCore
CIL MitoCore
CIII_MitoCore
CIV_MitoCore
CV_MitoCore
PEPCKm
PCm

ME2m
MEIm

r0081

0,000
0,900
0,900
0,000
0,900
0,909
1,810
1,810
1,809
1,809
3,688
0,000
1,779

-0,575
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
2,607
6,802
6,802
6,873
0,029
6,639

-6,488
0,000
6,850
9,246

29,371
6,850

39,541

19,771

130,120
0,200
1,667
0,000
0,000
0,000
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ACITLm_MitoCore
NDPKI1m
NNT_MitoCore
ADKI1m

ME2

ALATA L

NDPKI1

FUM

ADK1

ICDHy

ACONT

ACITL

ASPTA

MDH

AKGMALtm
ASPGLUmB MitoCore
ASPTAm

G3PD1

r0205

FACOAL160i
C160CPT1

PPA

2435

C160CPT2

PPAm
ACOQOT2_MitoCore
ACADLCI16_MitoCore
MECR16C_MitoCore
MTPC16_MitoCore
ACADLCI14 MitoCore
MECR14C_MitoCore
MTPC14 MitoCore
r1447

r0638

10660

10722

10724

r1451

r0735

10728

10726

r0634

0,000
-6,388
0,000
67,884
0,000
0,010
1,779
0,000
0,468
-0,100
-0,100
0,000
4,174
-2,396
4285
4,011
4,011
0,010
0,000
0,468
0,468
0,468
0,468
0,468
67,884
0,000
0,468
0,000
0,468
0,468
0,000
0,468
0,468
0,000
0,468
0,468
0,468
0,468
0,000
-0,468
0,468
-0,468



r1448
r0633
r0731
r0730
r0732
r1450
r0791
r0734
r0733
r0287
rl1446
ECOAHIm
HACDIm
ACACTIrm
ACCOAC
MCOATA
ACOATA
r0678
r0691
r0681
r0682
r0760
r0761
r0762
r0763
r0764
r0694
r0695
r0765
r0766
r0692
r0693
0767
r0768
r0769
r0770
r0712
r0713
r0701
r0702
r0771
0772

0,468
0,000
0,468
0,468
0,468
0,468
0,000
0,468
0,468
0,468
0,474
-0,504
-0,504
-0,682
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000

r0696

r0697

r0773
FA160ACPH
FACOAL40im
BDHm
OCOATIm
HMGCOASiIm
HMGLm
LEUTAm
OIVDIm
10655
MCCCrm
MGCHmm
ILETAm
OIVD3m
r0603
ECOAH9m
HACD9m
ACACT10m
VALTAm
OIVD2m
r0560
ECOAHI12m
3HBCOAHLm
HIBDm
ACCOALmM
MMSADIm
PPCOACm
MMEm
MMMm
MMCDm
RE2649M
THRD L
r1155

r1154

2HBO
METAT
METAT2 MitoCore
AHC
ADNKI1
CYSTS
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0,000
0,000
0,000
0,000
0,006
0,048
0,178
0,000
0,016
0,016
0,016
0,016
0,016
0,016
0,004
0,004
0,004
0,004
0,004
0,004
0,011
0,011
0,011
0,011
0,011
0,011

67,879
0,011
0,027

-0,027
0,027
0,000

67,879
0,012
0,012
0,012
0,000
0,000
0,000
0,000
0,000
0,000



CYSTGL

CYSO

3SALATAI
3SPYRSP
CYSTA

CYSTAm

MCPST
MCPSTm_MitoCore
r0595m_MitoCore
r0595B MitoCore
MCLOR

r0193

TRPO2

FKYNH
KYN30X
HKYNH

3HAO

PCLAD

r0645

AMCOXO

AMCOXO2 MitoCore

20XOADPTmB_Mito-
Core
20XOADPTmC_Mito-
Core

20XOADOXm

r0541

SACCD3m

r0525

AASAD3m
R03103_MitoCore
10450

LYSOXc MitoCore
PPD2CSPc_MitoCore

IPPDCRc_MitoCore

1PPDCRc_ NADPH_Mi-
toCore

LPCOXc MitoCore
RE1254C

r0594

2AMADPTmB_Mito-
Core
2AMADPTmC_Mito-
Core

0,000
0,000
0,000
0,000
0,001
0,000
0,001
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000

0,000

0,000

0,030
0,030
0,030
0,030
0,000
0,030
0,030
0,000
0,000
0,000

0,000

0,000
0,000
0,000

0,000

0,000
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PROD2mB_MitoCore
G5SADrm

10074

GLUSKm
G5SDym

P5CRm

PSCRxm
ORNTArm
ORNDC
PTRCOX1
r0464c_MitoCore
ABUTD
ARGDCm
AGMTm
PTRCATIm_ MitoCore
APRTO2m_MitoCore
NABTNOm
4aabutn MitoCore
GLUDC
4ABUTtm
ABTArm

r0178

GLUDxm
GLUDym
GLUDxi

GLUDy

GLNS

GLUNm
GLUN_MitoCore
PGCD

PSERT

PSP L

GHMT2r

FOLR2

DHFR

MTHFD

MTHFC

FTCD

FTHFL

FTHFDH

10060

GHMT2rm

0,004
-0,004
0,011
0,000
0,000
0,000
0,000
0,007
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,184
0,184
0,184
0,184
0,293
0,000
0,000
0,000
0,000
0,000
0,000
0,001
0,001
0,001
0,045
0,000
0,000
0,045
0,055
0,010
0,000
0,055
0,000
-0,027



GCCam

GCCbim

GCCcm

r0514

10226

MTHFDm
MTHFD2m
MTHFCm

FTHFLm
FTHFDHm_MitoCore
GLYATm
AOBUTDsm
AACTOORm_ MitoCore
LGTHLm_MitoCore
GLYOXm

LDH Dm_ MitoCore
CBPSam

OCBTm

NOSI1

NOS2

r0129
AMPTASECG
GLUCYS

GTHS

r0399

DHPR

TYRTA
TYRTB_MitoCore
34HPPOR
HGNTOR

MACACI

FUMAC

ASNSI1

r0127

HISD

URCN

IZPN

GluForTx

APAT2rm
MMSAD3m
MMSAD3m2_ MitoCore
ASP1DC

0,027
0,027
0,027
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,010
0,010
0,010
0,010
0,010
0,000
0,000
0,000
0,000
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CKc

CK
ACOAHi
ALCD2yf
ALCD2if
ACALDtm
ALDD2xm
ALDD2x
ACSm
ACS
ADSL1
ADSS
AMPD1
ARGN
ARGSL
ARGSS
ARGNm
ALASm
5SAOPtm
PPBNGS
HMBS
UPP3S
UPPDC1
CPPPGO
PPPGOmB_MitoCore
FCLTm
PHEMEtm
HOXG
BILIRED
BILIRED2 MitoCore
PCHOLPm_hs
GLYK

GLYC3Ptm
GPAMm_hsB Mito-
Core

AGPATI1B MitoCore

CDSm

PGPPTm

PGPP_hsm MitoCore
CLS hsm_MitoCore
CLPN_MitoCore
CYTKIm

0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,007
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,010
0,000

0,000

0,000
0,000
0,000
0,000
0,000
0,000
0,000



NDPK3m

SPODMm

GTHP

GTHPm

GTHO

GTHOm

CITtamB

r0913

CITtbm

10917
r0917b_MitoCore
PIt2mB_MitoCore
ATPtmB_MitoCore
HtmB MitoCore
MALtm

MALSO3tm
MALTSULtm
MALSO4tm
SUCCt2m

r0830
r0830B_MitoCore
10829
SUCCt3m_MitoCore
COAtmB_MitoCore
COAtmC MitoCore
GLUt2mB_MitoCore
ORNt4mB_ MitoCore
r2398B_MitoCore
r2402B_MitoCore
LYStmB_ MitoCore
ORNt3mB_ MitoCore
ARGtmB_MitoCore
r1427

PYR2m
ACACt2mB_MitoCore
FE2tm

ASNtm

r1437

GLNtm

PROtm

r1078

r1436

0,000
0,029
0,000
0,029
0,000
0,029
0,000
0,000
-0,100
0,000
0,000
2,761
0,972
0,000
-1,889
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,030
-0,007
0,000
0,000
4274
0,114
0,000
0,000
0,000
0,000
0,004
0,000
0,000
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r1455
TRPtm_MitoCore
GLYtm

ILEt5Sm

LEUt5Sm

VALtSm

r1434

r1435

r1440

BALAtmr

UREAtm
FUMtmB_MitoCore
BHBtmB_MitoCore
PPAtmB_ MitoCore
BUTt2mB_MitoCore
FORt2mB_MitoCore
r0962B MitoCore
CHLtmB_MitoCore
CO2tm

H20tm

O2tm

GLYCtm

CYANtm
TCYNTtmB MitoCore

CREATtmdiffir

PCREATtmdiffirB_Mi-
toCore

10941
r0838B_MitoCore
Biomasst MitoCore
PCFLOPm
PSFLIPm
PEFLIPm
Biomass_MitoCore
02t

CO2t

HCO3t MitoCore
GLCtlr

HDCAtr
HDCAtm_MitoCore
L LACt2r

BHBt

0,000
0,000
0,054
0,004
0,016
0,011
0,000
-0,027
0,000
0,000
0,000
0,000
0,048
0,000
0,006
0,000
0,000
0,000
-16,389
-15,462
19,800
0,000
0,000
0,000
0,000

0,000

1,710
-0,320
0,000
0,000
0,000
0,000
0,000
19,800
-18,307
1,710
0,900
0,468
0,000
0,575
0,048



ACACt2
ETOHt

BUTt2r

GLYCt

r0942

r0942b MitoCore
HIStiDF

ILEtec

LEUtec
LYStiDF
METtec

PHEtec

12534

TRPt

VALtec
ARGtiDF

ASPte

CYStec

GLUt MitoCore
12525

GLYt2r

PROt2r

12526

TYRt

12532

ALAtr

FUMt MitoCore
SUMt_MitoCore
r0817

NH4t3r

ACt2r

PPAt

2HBt2

0,114
0,000
0,006
-0,010
0,000
0,000
0,010
0,004
0,016
0,030
0,000
0,000
0,012
0,000
0,011
0,007
-0,154
0,001
0,000
0,000
0,009
0,004
0,017
0,000
0,010
0,010
0,000
0,000
0,000
0,362
0,000
0,000
0,000

CHOLtu

r1088

ICITt MitoCore
UREAt

r1512

ARGSUCt MitoCore
MAL Lte
OAAt_MitoCore
AKGt MitoCore
MERCPLACt MitoCore
r0899

FE2t

H20t

Hct MitoCore
Hmt MitoCore
SO3t MitoCore
TSULt MitoCore
10940

CYANt

TCYNTt

r1423

FORt MitoCore
FOLt MitoCore
NADHt MitoCore
NADt MitoCore
NADHtm_ MitoCore
NADtm_MitoCore
COt

NOt
PCHOLHSTDe
PSt3

PEt

0,000
0,000
0,000

-0,007
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000

-16,699

6,124

-3,794
0,000
0,000
0,000
0,001
0,001
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000



Supplementary table 2. Complete metabolic flux distribution in

RASF-specific conditions with maximal ATP production as objective

function.
Reaction Flux
EX 2hb e 0,000
EX ac e 0,010
EX acac e 0,000
EX akg e 0,000
EX ala B e 0,000
EX ala L e 0,164
EX arg L e 0,000
EX argsuc e 0,000
EX asn L e -0,010
EX asp L e -0,154
EX bhb e 0,000
EX bilirub e 0,000
EX biomass e 0,000
EX but e 0,000
EX chol e 0,000
EX cit e 0,000
EX citr L e 0,000
EX co e 0,000
EX co2 e 0,224
EX creat e 0,000
EX cyan e 0,000
EX cys L e 0,000
EX etoh e 0,000
EX fe2 e 0,000
EX for e 0,000
EX fum e 0,000
EX glc D e -0,900
EX gin L e 0,000
EX glu L e 0,000
EX gly e -0,005
EX glyc e -0,010
EX h e 1,581
EX h20 e 0,000
EX HC00250 e 0,000
EX hco3 e -0,055
EX hdca e 0,000
EX his L e -0,010
EX icit e 0,000
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EX ile L e
EX lac L e
EX leu L e
EX lys L e
EX mal L e
EX mercplac e
EX met L e
EX nad e

EX nadh e
EX nh4 e

EX no e

EX 02 e

EX oaa e

EX pchol hs e
EX pcreat e
EX pe hs e
EX phe L e
EX pi e

EX ppa e

EX pro L e
EX ps hs e
EX ser L e
EX so3 e

EX succ e

EX tcynt e
EX thr L e
EX trp L e
EX tsul e

EX tyr L e
EX urea e

EX val L e
EX fol e

OF ATP_ MitoCore
OF HEME MitoCore
OF LIPID MitoCore

OF PROTEIN_Mito-
Core

HEX1
G6PPer

0,000
1,820
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,040
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,005
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000

0,000

0,900
0,000



PGI

PFK

FBP

FBA

TPI

GAPD

PGK

PGM

ENO

PYK

r0122

PEPCK
LDH L
G6PDH2r
PGL

GND

RPI

RPE

TKT1

TALA

TKT2

PDHm

CSm
ACONTm
ICDHxm
ICDHyrm
AKGDm
SUCOASIm
SUCOASm
FUMm
MDHm
CI_MitoCore
CIL MitoCore
CIII_MitoCore
CIV_MitoCore
CV_MitoCore
PEPCKm
PCm

ME2m
ME1m

r0081
ACITLm_MitoCore

0,900
0,900
0,000
0,900
0,910
1,810
1,810
1,810
1,810
1,984
0,000
0,174
1,820
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,667
0,000
0,000
0,000
0,000
0,000
0,000
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NDPK1m

NNT_ MitoCore
ADKIm

ME2

ALATA L

NDPK1

FUM

ADK1

ICDHy

ACONT

ACITL

ASPTA

MDH

AKGMALtm
ASPGLUmB_ MitoCore
ASPTAm

G3PD1

r0205

FACOAL160i
C160CPT1

PPA

12435

C160CPT2

PPAm

ACOT2_ MitoCore
ACADLCI16 MitoCore
MECR16C_MitoCore
MTPC16 MitoCore
ACADLCI14 MitoCore
MECR14C_ MitoCore
MTPC14 MitoCore
r1447

10638

10660

10722

10724

r1451

10735

10728

10726

10634

r1448

0,000
0,000
1,206
0,000
-0,164
0,174
0,000
0,000
-0,010
-0,010
0,010
0,164
0,000
0,000
0,000
0,000
0,010
0,000
0,000
0,000
0,000
0,000
0,000
1,206
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000



r0633
r0731
r0730
r0732
r1450
r0791
r0734
r0733
r0287
r1446
ECOAHIm
HACDIm
ACACTIrm
ACCOAC
MCOATA
ACOATA
r0678
r0691
r0681
r0682
r0760
r0761
r0762
r0763
r0764
r0694
r0695
r0765
r0766
r0692
r0693
r0767
r0768
r0769
r0770
r0712
r0713
r0701
r0702
0771
r0772
r0696

0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000

10697

10773
FA160ACPH
FACOAL40im
BDHm
OCOATIm
HMGCOASIm
HMGLm
LEUTAm
OIVDIm
r0655
MCCCrm
MGCHrm
ILETAm
OIVD3m
10603
ECOAH9m
HACD9m
ACACTI10m
VALTAm
OIVD2m
10560
ECOAHI12m
3HBCOAHLm
HIBDm
ACCOALmM
MMSADI1m
PPCOACm
MMEm
MMMm
MMCDm
RE2649M
THRD L
r1155

r1154

2HBO
METAT
METAT2 MitoCore
AHC
ADNKI1
CYSTS
CYSTGL
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0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
1,206
0,000
0,055
0,000
0,000
0,055
1,206
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000



CYSO
3SALATAI
3SPYRSP

CYSTA
CYSTAm
MCPST
MCPSTm_MitoCore
r0595m_MitoCore
r0595B MitoCore
MCLOR

r0193

TRPO2

FKYNH
KYN30X
HKYNH

3HAO

PCLAD

r0645

AMCOXO

AMCOXO2_ MitoCore

20XOADPTmB_Mito-
Core
20XOADPTmC_Mito-
Core

20XOADOXm

10541

SACCD3m

10525

AASAD3m

R03103 MitoCore
r0450

LYSOXc MitoCore
PPD2CSPc_MitoCore

1PPDCRc_MitoCore
1PPDCRec NADPH Mi-
toCore

LPCOXc MitoCore
RE1254C
10594

2AMADPTmB_Mito-
Core
2AMADPTmC_Mito-
Core

PROD2mB_MitoCore

0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000

0,000

0,000

0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000

0,000

0,000
0,000
0,000

0,000

0,000
0,000
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G5SADrm

r0074

GLUSKm
G5SDym

P5CRm

PSCRxm
ORNTArm
ORNDC
PTRCOX1
r0464c_MitoCore
ABUTD
ARGDCm
AGMTm
PTRCATIm_MitoCore
APRTO2m_MitoCore
NABTNOm
4aabutn_MitoCore
GLUDC
4ABUTtm
ABTArm

10178

GLUDxm
GLUDym
GLUDxi

GLUDy

GLNS

GLUNm
GLUN_MitoCore
PGCD

PSERT

PSP L

GHMT2r

FOLR2

DHFR

MTHFD

MTHFC

FTCD

FTHFL

FTHFDH

r0060

GHMT2rm
GCCam

0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,010
0,000
0,000
0,000
0,000
0,000
0,000

-0,005
0,000
0,000

-0,005
0,005
0,010
0,000
0,005
0,000
0,000
0,000



GCCbim

GCCcm

10514

10226

MTHFDm
MTHFD2m
MTHFCm

FTHFLm
FTHFDHm_ MitoCore
GLYATm
AOBUTDsm
AACTOORm_MitoCore
LGTHLm MitoCore
GLYOXm

LDH Dm_MitoCore
CBPSam

OCBTm

NOSI1

NOS2

10129
AMPTASECG
GLUCYS

GTHS

10399

DHPR

TYRTA
TYRTB_MitoCore
34HPPOR
HGNTOR

MACACI

FUMAC

ASNSI

r0127

HISD

URCN

[ZPN

GluForTx

APAT2rm
MMSAD3m
MMSAD3m2 MitoCore
ASP1DC

CKc

0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,010
0,010
0,010
0,010
0,010
0,000
0,000
0,000
0,000
0,000
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CK
ACOAH;i
ALCD2yf
ALCD2if
ACALDtm
ALDD2xm
ALDD2x
ACSm
ACS
ADSLI1
ADSS
AMPD1
ARGN
ARGSL
ARGSS
ARGNm
ALASm
SAOPtm
PPBNGS
HMBS
UPP3S
UPPDC1
CPPPGO
PPPGOmB_MitoCore
FCLTm
PHEMEtm
HOXG
BILIRED
BILIRED2 MitoCore
PCHOLPm_hs
GLYK
GLYC3Ptm

GPAMm_hsB Mito-
Core
AGPATI1B MitoCore

CDSm

PGPPTm

PGPP_hsm MitoCore
CLS _hsm_ MitoCore
CLPN_MitoCore
CYTKIm

NDPK3m

0,000
0,010
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,010
0,000

0,000

0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000



SPODMm

GTHP

GTHPm

GTHO

GTHOm

CITtamB

r0913

CITtbm

r0917
r0917b_MitoCore
PIt2mB_MitoCore
ATPtmB_MitoCore
HtmB MitoCore
MALtm

MALSO3tm
MALTSULtm
MALSO4tm
SUCCt2m

10830
r0830B_MitoCore
r0829
SUCCt3m_MitoCore
COAtmB_MitoCore
COAtmC_MitoCore
GLUt2mB_MitoCore
ORNt4mB_MitoCore
r2398B_MitoCore
r2402B_MitoCore
LYStmB_MitoCore
ORNt3mB_MitoCore
ARGtmB_MitoCore
r1427

PYR2m
ACACt2mB_MitoCore
FE2tm

ASNtm

r1437

GLNtm

PROtm

r1078

r1436

r1455

0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000

-1,800

-1,800
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
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TRPtm_MitoCore
GLYtm

ILEtSm

LEUt5Sm

VALtSm

r1434

r1435

r1440

BALAtmr

UREAtm
FUMtmB_MitoCore
BHBtmB_ MitoCore
PPAtmB MitoCore
BUTt2mB_MitoCore
FORt2mB_MitoCore
r0962B MitoCore
CHLtmB_MitoCore
CO2tm

H20tm

O2tm

GLYCtm

CYANtm
TCYNTtmB_MitoCore

CREATtmdiffir

PCREATtmdiffirB_Mi-
toCore

10941
r0838B_MitoCore
Biomasst MitoCore
PCFLOPm
PSFLIPm
PEFLIPm

Biomass MitoCore
02t

CO2t

HCO3t MitoCore
GLCtlr

HDCAtr
HDCAtm_MitoCore
L LACt2r

BHBt

ACACt2

0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000

-0,055
1,745
0,000
0,000
0,000
0,000
0,000

0,000

0,055
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,224
0,055
0,900
0,000
0,000
-1,820
0,000
0,000



ETOHt

BUTt2r

GLYCt

r0942
r0942b_MitoCore
HIStiDF

ILEtec

LEUtec
LYStiDF
METtec

PHEtec

12534

TRPt

VAlLtec
ARGtiDF
ASPte

CYStec

GLUt MitoCore
12525

GLYt2r

PROt2r

12526

TYRt

12532

ALAt2r

FUMt MitoCore
SUMt_MitoCore
r0817

NH4t3r

ACt2r

PPAt

2HBt2

0,000
0,000
-0,010
0,000
0,000
0,010
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
-0,154
0,000
0,000
0,000
0,005
0,000
-0,005
0,000
0,010
-0,164
0,000
0,000
0,000
0,040
0,010
0,000
0,000

CHOLtu

r1088

ICITt MitoCore
UREAt

r1512

ARGSUCt MitoCore
MAL Lte
OAAt_MitoCore
AKGt MitoCore
MERCPLACt MitoCore
r0899

FE2t

H20t

Hct MitoCore
Hmt MitoCore
SO3t MitoCore
TSULt MitoCore
10940

CYANt

TCYNTt

r1423

FORt MitoCore
FOLt MitoCore
NADHt MitoCore
NADt MitoCore
NADHtm_ MitoCore
NADtm_MitoCore
COt

NOt
PCHOLHSTDe
PSt3

PEt

0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,313
0,055
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000



Supplementary table 3. Complete metabolic flux distribution in

breast CAF-specific conditions with maximal ATP production as

objective function.

Reaction Flux
EX 2hb e 0,010
EX ac e 0,010
EX acac e 0,000
EX akg e 0,000
EX ala B e 0,000
EX ala L e -0,010
EX arg L e 0,000
EX argsuc e 0,000
EX asn L e -0,010
EX asp L e -0,154
EX bhb e 0,000
EX bilirub e 0,000
EX biomass_e 0,000
EX but e 0,000
EX chol e 0,000
EX cit e 0,000
EX citr L e 0,000
EX co e 0,000
EX co2 e 0,410
EX creat e 0,000
EX cyan e 0,000
EX cys L e -0,001
EX etoh e 0,000
EX fe2 e 0,000
EX for e 0,000
EX fum e 0,000
EX glc D e -0,900
EX gln L e 0,000
EX glu L e 0,000
EX gly e 0,000
EX glyc e -0,010
EX h e 1,402
EX h20 e 0,000
EX HC00250 e 0,000
EX hco3 e -0,236
EX hdca e 0,000
EX his L e -0,010
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EX icit e

EX ile L e

EX lac L e

EX leu L e

EX lys L e

EX mal L e

EX mercplac e
EX met L e

EX nad e

EX nadh e

EX nh4 e

EX no e
EX 02 e

EX oaa e

EX pchol hs e
EX pcreat e

EX pe hs e

EX phe L e

EX pi e

EX ppa e

EX pro L e

EX ps hs e

EX ser L e

EX so3 e

EX succ e

EX tcynt e

EX thr L e

EX trp L e

EX tsul e

EX tyr L e

EX urea e

EX val L e

EX fol e

OF ATP MitoCore
OF HEME MitoCore
OF LIPID MitoCore
OF _PROTEIN_MitoCore
HEX1

G6PPer

0,000
0,000
1,995
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,225
0,000
-0,001
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,001
0,000
0,000
-0,010
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,900
0,000



PGI

PFK

FBP

FBA

TPI

GAPD

PGK

PGM

ENO

PYK

10122

PEPCK
LDH L
G6PDH2r
PGL

GND

RPI

RPE

TKT1

TALA

TKT2

PDHm

CSm
ACONTm
ICDHxm
ICDHyrm
AKGDm
SUCOASIm
SUCOASm
FUMm
MDHm

CI MitoCore
CII MitoCore
CIII_MitoCore
CIV_MitoCore
CV_MitoCore
PEPCKm
PCm

ME2m
ME1m

0081
ACITLm_MitoCore

0,900
0,900
0,000
0,900
0,910
1,810
1,810
1,810
1,810
1,984
0,000
0,174
1,995
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,667
0,000
0,000
0,000
0,000
0,000
0,000
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NDPK1m
NNT_MitoCore
ADKI1m

ME2

ALATA L

NDPK1

FUM

ADK1

ICDHy

ACONT

ACITL

ASPTA

MDH

AKGMALtm
ASPGLUmB_ MitoCore
ASPTAm

G3PD1

10205

FACOAL160i
C160CPT1

PPA

12435

C160CPT2

PPAm
ACOT2_MitoCore
ACADLCI16 MitoCore
MECR16C MitoCore
MTPC16_ MitoCore
ACADLC14 MitoCore
MECR14C_MitoCore
MTPC14 MitoCore
r1447

10638

10660

10722

10724

r1451

r0735

10728

10726

10634

r1448

0,000
0,000
1,115
0,000
0,010
0,174
0,000
0,000
-0,010
-0,010
0,010
0,164
0,000
0,000
0,000
0,000
0,010
0,000
0,000
0,000
0,000
0,000
0,000
1,115
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000



r0633
r0731
r0730
r0732
r1450
r0791
r0734
r0733
r0287
r1446
ECOAHIm
HACDIm
ACACTIrm
ACCOAC
MCOATA
ACOATA
r0678
r0691
r0681
r0682
r0760
r0761
r0762
r0763
r0764
r0694
r0695
r0765
r0766
r0692
r0693
r0767
r0768
r0769
r0770
r0712
r0713
r0701
r0702
r0771
r0772
r0696

0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000

10697

10773
FA160ACPH
FACOAL40im
BDHm
OCOATIm
HMGCOASIm
HMGLm
LEUTAm
OIVDIm
10655
MCCCrm
MGCHrm
ILETAm
OIVD3m
10603
ECOAH9m
HACD9m
ACACTI10m
VALTAm
OIVD2m
10560
ECOAHI12m
3HBCOAHLm
HIBDm
ACCOALmM
MMSADIm
PPCOACm
MMEm
MMMm
MMCDm
RE2649M
THRD L
r1155

r1154

2HBO
METAT
METAT2 MitoCore
AHC
ADNKI1
CYSTS
CYSTGL
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0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
1,115
0,000
0,236
0,000
0,000
0,236
1,115
0,010
0,000
0,000
0,010
0,000
0,000
0,000
0,000
0,000
0,000



CYSO

3SALATAI

3SPYRSP

CYSTA

CYSTAm

MCPST
MCPSTm_MitoCore
r0595m_MitoCore
r0595B MitoCore
MCLOR

r0193

TRPO2

FKYNH

KYN30X

HKYNH

3HAO

PCLAD

10645

AMCOXO
AMCOXO02 MitoCore
20XOADPTmB_MitoCore
20XOADPTmMC_MitoCore
20XOADOXm

10541

SACCD3m

r0525

AASAD3m
R03103_MitoCore
10450

LYSOXc MitoCore
PPD2CSPc_MitoCore

IPPDCRc_MitoCore

1PPDCRc_NADPH_Mito-
Core

LPCOXc MitoCore
RE1254C

10594
2AMADPTmB_MitoCore
2AMADPTmMC MitoCore
PROD2mB_MitoCore
G5SADrm

10074

0,001
0,001
0,001
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000

0,000

0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
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GLUSKm
G5SDym

P5CRm

P5CRxm
ORNTArm
ORNDC
PTRCOX1
r0464c_MitoCore
ABUTD
ARGDCm
AGMTm
PTRCATIm MitoCore
APRTO2m_MitoCore
NABTNOm
4aabutn_MitoCore
GLUDC
4ABUTtm
ABTArm

r0178

GLUDxm
GLUDym
GLUDxi

GLUDy

GLNS

GLUNm
GLUN_MitoCore
PGCD

PSERT

PSP L

GHMT2r

FOLR2

DHFR

MTHFD

MTHFC

FTCD

FTHFL

FTHFDH

10060

GHMT2rm
GCCam

GCCbim

GCCem

0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,185
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,010
0,010
0,000
0,010
0,000
0,000
0,000
0,000
0,000



10514

10226

MTHFDm
MTHFD2m
MTHFCm

FTHFLm
FTHFDHm MitoCore
GLYATm
AOBUTDsm
AACTOORm_MitoCore
LGTHLm_ MitoCore
GLYOXm

LDH Dm MitoCore
CBPSam

OCBTm

NOS1

NOS2

r0129
AMPTASECG
GLUCYS

GTHS

10399

DHPR

TYRTA
TYRTB_MitoCore
34HPPOR
HGNTOR

MACACI

FUMAC

ASNSI1

0127

HISD

URCN

IZPN

GluForTx

APAT2rm
MMSAD3m
MMSAD3m2 MitoCore
ASP1DC

CKc

CK

ACOAH;i

0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,010
0,010
0,010
0,010
0,010
0,000
0,000
0,000
0,000
0,000
0,000
0,010
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ALCD2yf

ALCD2it

ACALDtm
ALDD2xm

ALDD2x

ACSm

ACS

ADSL1

ADSS

AMPDI1

ARGN

ARGSL

ARGSS

ARGNm

ALASmM

SAOPtm

PPBNGS

HMBS

UPP3S

UPPDCI1

CPPPGO
PPPGOmB_MitoCore
FCLTm

PHEMEtm

HOXG

BILIRED

BILIRED2 MitoCore
PCHOLPm_hs
GLYK

GLYC3Ptm
GPAMm_hsB MitoCore
AGPATIB_MitoCore
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Supplementary table 4. Main uptake and secretion reactions
according to the objective function of maximum ATP production
when only common metabolites and enzymes with asymptotic
regulatory behavior equal to 0 in both RASFs and breast CAFs
Boolean models are constrained.

Uptake

Metabolite Reaction Flux C-number C-flux
arg L e EX arg L e 0.007 6 0.66%
asn L e EX asn L e 0.01 4 0.63%
asp L e EX asp L e 0.154 4 9.64%
gle D e EX glc D e 0.9 6 84.52%
gly e EX gly e 0.009 2 0.28%
glyc e EX glyc e 0.01 3 0.47%
hco3 e EX hco3 e 0.084 1 1.31%
his L e EX his L e 0.01 6 0.94%
02 e EX 02 e 0.096 0 0.00%
ser L e EX ser L e 0.017 3 0.80%
thr L e EX thr L e 0.012 4 0.75%

Secretion
Metabolite Reaction Flux  C-number C-flux
ala L e EX ala L e -0.092 3 4.32%
co2 e EX co2 e -0.344 1 5.38%
h20 e EX h20 e -0.018 0 0.00%
h e EX h e -1.545 0 0.00%
lac L e EX lac L e -1.882 3 88.37%
nh4 e EX nh4 e -0.164 0 0.00%
succ e EX succ e -0.029 4 1.82%
urea_e EX urea e -0.007 1 0.11%



284



BIBLIOGRAPHY

[1] D. Mathis and S. E. Shoelson, ‘Immunometabolism: an emerging frontier’, Nat. Rev.
Immunol., vol. 11, no. 2, Art. no. 2, Feb. 2011, doi: 10.1038/nri2922.
[2] S. Chandrashekara, ‘The treatment strategies of autoimmune disease may need a

different approach from conventional protocol: A review’, Indian J. Pharmacol., vol. 44, no.
6, pp. 665-671, 2012, doi: 10.4103/0253-7613.103235.

[3] ‘Metabolic Syndrome - Treatment | NHLBI, NIH’, May 27, 2022.
https://www.nhlbi.nih.gov/health/metabolic-syndrome/treatment (accessed Jun. 29, 2023).
[4] Y. S. Lee and J. Olefsky, ‘Chronic tissue inflammation and metabolic disease’,

Genes Dev., vol. 35, no. 5-6, pp. 307-328, Jan. 2021, doi: 10.1101/gad.346312.120.

[5] L. Makowski, M. Chaib, and J. C. Rathmell, ‘Immunometabolism: From basic
mechanisms to translation’, I/mmunol. Rev., vol. 295, no. 1, pp. 5-14, 2020, doi:
10.1111/imr.12858.

[6] S. Daemen and J. D. Schilling, ‘The Interplay Between Tissue Niche and
Macrophage Cellular Metabolism in Obesity’, Front. Immunol., vol. 10, p. 3133, 2019, doi:
10.3389/fimmu.2019.03133.

[7] D. G. Ryan and L. A. J. O’Neill, ‘Krebs Cycle Reborn in Macrophage
Immunometabolism’, Annu. Rev. Immunol., vol. 38, pp. 289-313, Apr. 2020, doi:
10.1146/annurev-immunol-081619-104850.

[8] E. M. Palsson-McDermott and L. A. J. O’Neill, ‘Targeting immunometabolism as
an anti-inflammatory strategy’, Cell Res., vol. 30, no. 4, Art. no. 4, Apr. 2020, doi:
10.1038/s41422-020-0291-z.

[9] H. Huang, L. Long, P. Zhou, N. M. Chapman, and H. Chi, ‘mTOR signaling at the
crossroads of environmental signals and T-cell fate decisions’, Immunol. Rev., vol. 295, no.
1, pp. 15-38, May 2020, doi: 10.1111/imr.12845.

[10] J. Jellusova, ‘The role of metabolic checkpoint regulators in B cell survival and
transformation’, Immunol. Rev., vol. 295, no. 1, pp. 39-53, May 2020, doi:
10.1111/imr.12855.

[11] N. van Teijlingen Bakker and E. J. Pearce, ‘Cell-intrinsic metabolic regulation of
mononuclear phagocyte activation: Findings from the tip of the iceberg’, Immunol. Rev., vol.
295, no. 1, pp. 54-67, May 2020, doi: 10.1111/imr.12848.

[12] E. E. West, N. Kunz, and C. Kemper, ‘Complement and human T cell metabolism:
Location, location, location’, Immunol. Rev., vol. 295, no. 1, pp. 68-81, May 2020, doi:
10.1111/imr.12852.

[13] A. Bahadoran, L. Bezavada, and H. S. Smallwood, ‘Fueling influenza and the
immune response: Implications for metabolic reprogramming during influenza infection and
immunometabolism’, Immunol. Rev., vol. 295, no. 1, pp. 140-166, May 2020, doi:
10.1111/imr.12851.

[14] W. J. Turbitt, C. Buchta Rosean, K. S. Weber, and L. A. Norian, ‘Obesity and CD8
T cell metabolism: Implications for anti-tumor immunity and cancer immunotherapy
outcomes’, Immunol. Rev., vol. 295, no. 1, pp. 203-219, May 2020, doi: 10.1111/imr.12849.
[15] H. L. Caslin, M. Bhanot, W. R. Bolus, and A. H. Hasty, ‘Adipose tissue
macrophages: Unique polarization and bioenergetics in obesity’, Immunol. Rev., vol. 295, no.
1, pp. 101-113, May 2020, doi: 10.1111/imr.12853.

[16] C. Li, R. G. Spallanzani, and D. Mathis, ‘Visceral adipose tissue Tregs and the cells
that nurture them’, Immunol. Rev., vol. 295, no. 1, pp. 114-125, May 2020, doi:
10.1111/imr.12850.

[17] H. Wang, C.-H. Lu, and P.-C. Ho, ‘Metabolic adaptation orchestrates tissue context-
dependent behavior in regulatory T cells’, Immunol. Rev., vol. 295, no. 1, pp. 126139, May

285



2020, doi: 10.1111/imr.12844.

[18] ‘Microbiome, bile acids, and obesity: How microbially modified metabolites shape
anti-tumor immunity - Sipe - 2020 - Immunological Reviews - Wiley Online Library’, vol.
295, no. 1, pp. 220-239, doi: 10.1111/imr.12856.

[19] P. J. Siska, K. Singer, K. Evert, K. Renner, and M. Kreutz, ‘The immunological
Warburg effect: Can a metabolic-tumor-stroma score (MeTS) guide cancer
immunotherapy?’, Immunol. Rev., vol. 295, no. 1, pp. 187-202, May 2020, doi:
10.1111/imr.12846.

[20] X. Teng, J. Brown, S.-C. Choi, W. Li, and L. Morel, ‘Metabolic determinants of
lupus pathogenesis’, Immunol. Rev., vol. 295, no. 1, pp. 167-186, May 2020, doi:
10.1111/imr.12847.

[21] P. J. McGuire, ‘Chemical individuality in T cells: A Garrodian view of
immunometabolism’, Immunol. Rev., vol. 295, no. 1, pp. 82-100, May 2020, doi:
10.1111/imr.12854.

[22] Y. Gong, J. Yang, Y. Wang, L. Xue, and J. Wang, ‘Metabolic factors contribute to
T-cell inhibition in the ovarian cancer ascites’, Int. J. Cancer, vol. 147, no. 7, pp. 1768-1777,
2020, doi: 10.1002/ijc.32990.

[23] O. Warburg, F. Wind, and E. Negelein, ‘THE METABOLISM OF TUMORS IN
THE BODY’, J. Gen. Physiol., vol. 8, no. 6, pp. 519-530, Mar. 1927, doi:
10.1085/jgp.8.6.519.

[24] D. Hanahan and R. A. Weinberg, ‘Hallmarks of cancer: the next generation’, Cell,
vol. 144, no. 5, pp. 646—674, Mar. 2011, doi: 10.1016/j.cell.2011.02.013.

[25] S. Weinhouse, ‘The Warburg hypothesis fifty years later’, Z. Fiir Krebsforsch. Klin.
Onkol., vol. 87, no. 2, pp. 115-126, Jan. 1976, doi: 10.1007/BF00284370.

[26] R. J. DeBerardinis and N. S. Chandel, ‘We need to talk about the Warburg effect’,
Nat. Metab., vol. 2, no. 2, Art. no. 2, Feb. 2020, doi: 10.1038/s42255-020-0172-2.

[27] S. Pavlides et al, ‘The reverse Warburg effect: aerobic glycolysis in cancer
associated fibroblasts and the tumor stroma’, Cell Cycle Georget. Tex, vol. 8, no. 23, pp.
3984-4001, Dec. 2009, doi: 10.4161/cc.8.23.10238.

[28] C.Hu, Y. Xuan, X. Zhang, Y. Liu, S. Yang, and K. Yang, ‘Immune cell metabolism
and metabolic reprogramming’, Mol. Biol. Rep., vol. 49, no. 10, pp. 9783-9795, Oct. 2022,
doi: 10.1007/s11033-022-07474-2.

[29] M. G. Vander Heiden, L. C. Cantley, and C. B. Thompson, ‘Understanding the
Warburg Effect: The Metabolic Requirements of Cell Proliferation’, Science, vol. 324, no.
5930, pp. 1029-1033, May 2009, doi: 10.1126/science.1160809.

[30] M. V. Liberti and J. W. Locasale, ‘The Warburg Effect: How Does it Benefit Cancer
Cells?’, Trends Biochem. Sci., vol. 41, no. 3, pp. 211-218, Mar. 2016, doi:
10.1016/j.tibs.2015.12.001.

[31] J. W. Locasale and L. C. Cantley, ‘Altered metabolism in cancer’, BMC Biol., vol.
8, p. 88, Jun. 2010, doi: 10.1186/1741-7007-8-88.

[32] F. M. Marelli-Berg, H. Fu, and C. Mauro, ‘Molecular mechanisms of metabolic
reprogramming in proliferating cells: implications for T-cell-mediated immunity’,
Immunology, vol. 136, no. 4, pp. 363-369, 2012, doi: 10.1111/1.1365-2567.2012.03583 .x.
[33] R.J. DeBerardinis, J. J. Lum, G. Hatzivassiliou, and C. B. Thompson, ‘The biology
of cancer: metabolic reprogramming fuels cell growth and proliferation’, Cell Metab., vol. 7,
no. 1, pp. 11-20, Jan. 2008, doi: 10.1016/j.cmet.2007.10.002.

[34] Y. Li, Z. Sha, and H. Peng, ‘Metabolic Reprogramming in Kidney Diseases:
Evidence and Therapeutic Opportunities’, Int. J. Nephrol., vol. 2021, p. 5497346, Oct. 2021,
doi: 10.1155/2021/5497346.

[35] C. N. S. Allen, S. P. Arjona, M. Santerre, and B. E. Sawaya, ‘Hallmarks of
Metabolic Reprogramming and Their Role in Viral Pathogenesis’, Viruses, vol. 14, no. 3, p.
602, Mar. 2022, doi: 10.3390/v14030602.

[36] M. Rudiansyah et al., ‘Coronavirus disease 2019 (COVID-19) update: From

286



metabolic reprogramming to immunometabolism’, J. Med. Virol., vol. 94, no. 10, pp. 4611—
4627, Oct. 2022, doi: 10.1002/jmv.27929.

[37] ‘Cancer [World Health Organization]’. https:/www.who.int/news-room/fact-
sheets/detail/cancer (accessed Jun. 29, 2023).

[38] H. Sung et al., ‘Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence
and Mortality Worldwide for 36 Cancers in 185 Countries’, CA. Cancer J. Clin., vol. 71, no.
3, pp. 209-249, 2021, doi: 10.3322/caac.21660.

[39] R. L. Siegel, K. D. Miller, N. S. Wagel, and A. Jemal, ‘Cancer statistics, 2023’,
Cancer J. Clin., vol. 73, no. 1, pp. 1748, Jan. 2023, doi: 10.3322/caac.21763.

[40] ‘Pathogenesis of cancer’. https://www.slideshare.net/jaineeljd007/pathogenesis-of-
cancer (accessed Jun. 30, 2023).

[41] D. Hanahan and R. A. Weinberg, ‘The Hallmarks of Cancer’, Cell, vol. 100, no. 1,
pp- 57-70, Jan. 2000, doi: 10.1016/S0092-8674(00)81683-9.

[42] R. Baghban et al., ‘Tumor microenvironment complexity and therapeutic
implications at a glance’, Cell Commun. Signal., vol. 18, no. 1, p. 59, Apr. 2020, doi:
10.1186/s12964-020-0530-4.

[43] ‘Genes and Cancer’, Cancer.Net, Mar. 26, 2012.
https://www.cancer.net/navigating-cancer-care/cancer-basics/genetics/genes-and-cancer
(accessed Jun. 30, 2023).

[44] ‘The Genetics of Cancer [NCI]’, Apr. 22, 2015. https://www.cancer.gov/about-
cancer/causes-prevention/genetics (accessed Jun. 30, 2023).

[45] ‘Environmental Mutagens and Gene Expression | Learn Science at Scitable’.
http://www.nature.com/scitable/topicpage/environmental-mutagens-cell-signalling-and-
dna-repair-1090 (accessed Jun. 30, 2023).

[46] ‘World Cancer Day [World Health Organization]’.
https://www.who.int/europe/news/item/03-02-202 1-world-cancer-day-know-the-facts-
tobacco-and-alcohol-both-cause-cancer (accessed Jun. 30, 2023).

[47] P. Boffetta, M. Hashibe, C. La Vecchia, W. Zatonski, and J. Rehm, ‘The burden of
cancer attributable to alcohol drinking’, Int. J. Cancer, vol. 119, no. 4, pp. 884-887, Aug.
2006, doi: 10.1002/ijc.21903.

[48] C. Maltoni, F. Minardi, and J. F. Holland, ‘Physical Carcinogens’, in Holland-Frei
Cancer Medicine. 5th edition, BC Decker, 2000. Accessed: Jun. 30, 2023. [Online].
Available: https://www.ncbi.nlm.nih.gov/books/NBK20770/

[49] M. Nasterlack, ‘Pesticides and childhood cancer: An update’, Int. J. Hyg. Environ.
Health, vol. 210, no. 5, pp. 645-657, Oct. 2007, doi: 10.1016/}.ijheh.2007.03.001.

[50] J. B. Liao, ‘Viruses and human cancer’, Yale J. Biol. Med., vol. 79, no. 3—4, pp. 115—
122, Dec. 2006.

[51] P. Anand et al., ‘Cancer is a preventable disease that requires major lifestyle
changes’, Pharm. Res., vol. 25, no. 9, pp. 2097-2116, Sep. 2008, doi: 10.1007/s11095-008-
9661-9.

[52] L. H. Kushi ef al., ‘American Cancer Society Guidelines on Nutrition and Physical
Activity for cancer prevention: reducing the risk of cancer with healthy food choices and
physical activity’, CA. Cancer J. Clin., vol. 56, no. 5, pp. 254-281; quiz 313-314, 2006, doi:
10.3322/canjclin.56.5.254.

[53] L. Zhong et al., ‘Small molecules in targeted cancer therapy: advances, challenges,
and future perspectives’, Signal Transduct. Target. Ther., vol. 6, no. 1, Art. no. 1, May 2021,
doi: 10.1038/s41392-021-00572-w.

[54] D. Zahavi and L. Weiner, ‘Monoclonal Antibodies in Cancer Therapy’, Antibodies,
vol. 9, no. 3, p. 34, Jul. 2020, doi: 10.3390/antib9030034.

[55] G. Housman et al., ‘Drug Resistance in Cancer: An Overview’, Cancers, vol. 6, no.
3, pp. 1769-1792, Sep. 2014, doi: 10.3390/cancers6031769.

[56] ‘Why Do Cancer Treatments Stop Working? [NCI]’, Dec. 21, 2016.
https://www.cancer.gov/about-cancer/treatment/research/drug-combo-resistance (accessed

287



Jun. 30, 2023).

[57] O. De Wever and M. Mareel, ‘Role of tissue stroma in cancer cell invasion’, J.
Pathol., vol. 200, no. 4, pp. 429447, 2003, doi: 10.1002/path.1398.

[58] N. A. Giraldo et al., ‘The clinical role of the TME in solid cancer’, Br. J. Cancer,
vol. 120, no. 1, Art. no. 1, Jan. 2019, doi: 10.1038/s41416-018-0327-z.

[59] C. M. Neophytou, M. Panagi, T. Stylianopoulos, and P. Papageorgis, ‘The Role of
Tumor Microenvironment in Cancer Metastasis: Molecular Mechanisms and Therapeutic
Opportunities’, Cancers, vol. 13, no. 9, Art. no. 9, Jan. 2021, doi: 10.3390/cancers13092053.
[60] S. Guo and C.-X. Deng, ‘Effect of Stromal Cells in Tumor Microenvironment on
Metastasis Initiation’, Int. J. Biol. Sci., vol. 14, no. 14, pp. 2083-2093, Nov. 2018, doi:
10.7150/ijbs.25720.

[61] N. M. Anderson and M. C. Simon, ‘Tumor Microenvironment’, Curr. Biol. CB, vol.
30, no. 16, pp. R921-R925, Aug. 2020, doi: 10.1016/j.cub.2020.06.081.

[62] Q. Ping et al., ‘Cancer-associated fibroblasts: overview, progress, challenges, and
directions’, Cancer Gene Ther., vol. 28, no. 9, Art. no. 9, Sep. 2021, doi: 10.1038/s41417-
021-00318-4.

[63] P. J. Asif, C. Longobardi, M. Hahne, and J. P. Medema, ‘The Role of Cancer-
Associated Fibroblasts in Cancer Invasion and Metastasis’, Cancers, vol. 13, no. 18, p. 4720,
Sep. 2021, doi: 10.3390/cancers13184720.

[64] R. S. Joshi, S. S. Kanugula, S. Sudhir, M. P. Pereira, S. Jain, and M. K. Aghi, ‘The
Role of Cancer-Associated Fibroblasts in Tumor Progression’, Cancers, vol. 13, no. 6, Art.
no. 6, Jan. 2021, doi: 10.3390/cancers13061399.

[65] T. Simon and B. Salhia, ‘Cancer-Associated Fibroblast Subpopulations With
Diverse and Dynamic Roles in the Tumor Microenvironment’, Mol. Cancer Res. MCR, vol.
20, no. 2, pp. 183-192, Feb. 2022, doi: 10.1158/1541-7786.MCR-21-0282.

[66] F.-T. Wang, W. Sun, J.-T. Zhang, and Y.-Z. Fan, ‘Cancer-associated fibroblast
regulation of tumor neo-angiogenesis as a therapeutic target in cancer’, Oncol. Lett., vol. 17,
no. 3, pp. 3055-3065, Mar. 2019, doi: 10.3892/01.2019.9973.

[67] A. Costa et al., ‘Fibroblast Heterogeneity and Immunosuppressive Environment in
Human Breast Cancer’, Cancer Cell, vol. 33, no. 3, pp. 463-479.¢10, Mar. 2018, doi:
10.1016/j.ccell.2018.01.011.

[68] S. Madar, 1. Goldstein, and V. Rotter, ‘‘Cancer associated fibroblasts’--more than
meets the eye’, Trends Mol. Med., vol. 19, no. 8, pp. 447-453, Aug. 2013, doi:
10.1016/j.molmed.2013.05.004.

[69] A. Arina et al., ‘Tumor-associated fibroblasts predominantly come from local and
not circulating precursors’, Proc. Natl. Acad. Sci., vol. 113, no. 27, pp. 7551-7556, Jul. 2016,
doi: 10.1073/pnas.1600363113.

[70] O. W. Petersen et al., ‘Epithelial to Mesenchymal Transition in Human Breast
Cancer Can Provide a Nonmalignant Stroma’, Am. J. Pathol., vol. 162, no. 2, pp. 391-402,
Feb. 2003, doi: 10.1016/S0002-9440(10)63834-5.

[71] E. M. Zeisberg, S. Potenta, L. Xie, M. Zeisberg, and R. Kalluri, ‘Discovery of
Endothelial to Mesenchymal Transition as a Source for Carcinoma-Associated Fibroblasts’,
Cancer Res., vol. 67, no. 21, pp. 10123-10128, Nov. 2007, doi: 10.1158/0008-5472.CAN-
07-3127.

[72] B. G. Cuiffo and A. E. Karnoub, ‘Mesenchymal stem cells in tumor development’,
Cell Adhes. Migr., vol. 6, no. 3, pp. 220-230, May 2012, doi: 10.4161/cam.20875.

[73] N. C. Direkze et al, ‘Bone Marrow Contribution to Tumor-Associated
Myofibroblasts and Fibroblasts’, Cancer Res., vol. 64, no. 23, pp. 8492-8495, Dec. 2004,
doi: 10.1158/0008-5472.CAN-04-1708.

[74] M. Quante et al., ‘Bone Marrow-Derived Myofibroblasts Contribute to the
Mesenchymal Stem Cell Niche and Promote Tumor Growth’, Cancer Cell, vol. 19, no. 2, pp.
257-272, Feb. 2011, doi: 10.1016/j.ccr.2011.01.020.

[75] R. Kanzaki and K. Pietras, ‘Heterogeneity of cancer-associated fibroblasts:

288



Opportunities for precision medicine’, Cancer Sci., vol. 111, no. 8, pp. 2708-2717, Aug.
2020, doi: 10.1111/cas.14537.

[76] Y. Chen, K. M. McAndrews, and R. Kalluri, ‘Clinical and therapeutic relevance of
cancer-associated fibroblasts’, Nat. Rev. Clin. Oncol., vol. 18, no. 12, pp. 792-804, Dec.
2021, doi: 10.1038/s41571-021-00546-5.

[77] C. Bonneau et al., ‘A subset of activated fibroblasts is associated with distant relapse
in early luminal breast cancer’, Breast Cancer Res., vol. 22, no. 1, p. 76, Jul. 2020, doi:
10.1186/s13058-020-01311-9.

[78] L. Yu, X. Chen, X. Sun, L. Wang, and S. Chen, ‘The Glycolytic Switch in Tumors:
How Many Players Are Involved?’, J. Cancer, vol. 8, no. 17, pp. 3430-3440, Sep. 2017, doi:
10.7150/jca.21125.

[79] L. M. Becker et al., ‘Epigenetic Reprogramming of Cancer-Associated Fibroblasts
Deregulates Glucose Metabolism and Facilitates Progression of Breast Cancer’, Cell Rep.,
vol. 31, no. 9, p. 107701, Jun. 2020, doi: 10.1016/j.celrep.2020.107701.

[80] T. Fiaschi et al., ‘Reciprocal Metabolic Reprogramming through Lactate Shuttle
Coordinately Influences Tumor-Stroma Interplay’, Cancer Res., vol. 72, no. 19, pp. 5130-
5140, Sep. 2012, doi: 10.1158/0008-5472.CAN-12-1949.

[81] D. Zhang et al., ‘Metabolic Reprogramming of Cancer-Associated Fibroblasts by
IDH3a Downregulation’, Cell Rep., vol. 10, no. 8, pp. 1335-1348, Mar. 2015, doi:
10.1016/j.celrep.2015.02.006.

[82] P. Porporato, R. Dadhich, S. Dhup, T. Copetti, and P. Sonveaux, ‘Anticancer Targets
in the Glycolytic Metabolism of Tumors: A Comprehensive Review’, Front. Pharmacol.,
vol. 2, 2011, Accessed: Jul. 03, 2023. [Online]. Auvailable:
https://www .frontiersin.org/articles/10.3389/fphar.2011.00049

[83] T. Bertero et al., ‘Tumor-stroma mechanics coordinate amino acid availability to
sustain tumor growth and malignancy’, Cell Metab., vol. 29, no. 1, pp. 124-140.¢10, Jan.
2019, doi: 10.1016/j.cmet.2018.09.012.

[84] R. D. Leone ef al., ‘Glutamine blockade induces divergent metabolic programs to
overcome tumor immune evasion’, Science, vol. 366, no. 6468, pp. 1013—-1021, Nov. 2019,
doi: 10.1126/science.aav2588.

[85] Y. Zhang et al., ‘Suppression of Tumor Energy Supply by Liposomal Nanoparticle-
Mediated Inhibition of Aerobic Glycolysis’, ACS Appl. Mater. Interfaces, vol. 10, no. 3, pp.
2347-2353, Jan. 2018, doi: 10.1021/acsami.7b16685.

[86] L. M. Phan, S.-C. J. Yeung, and M.-H. Lee, ‘Cancer metabolic reprogramming:
importance, main features, and potentials for precise targeted anti-cancer therapies’, Cancer
Biol. Med., vol. 11, no. 1, pp. 1-19, Mar. 2014, doi: 10.7497/j.issn.2095-3941.2014.01.001.
[87] B. Dwarakanath and V. Jain, ‘Targeting glucose metabolism with 2-deoxy-D-
glucose for improving cancer therapy’, Future Oncol. Lond. Engl., vol. 5, no. 5, pp. 581—
585, Jun. 2009, doi: 10.2217/fon.09.44.

[88] G. S. Price, R. L. Page, J. E. Riviere, J. M. Cline, and D. E. Thrall,
‘Pharmacokinetics and toxicity of oral and intravenous lonidamine in dogs’, Cancer
Chemother. Pharmacol., vol. 38, no. 2, pp. 129-135, 1996, doi: 10.1007/s002800050460.
[89] Y. Liu et al., ‘A Small-Molecule Inhibitor of Glucose Transporter 1 Downregulates
Glycolysis, Induces Cell-Cycle Arrest, and Inhibits Cancer Cell Growth In Vitro and In
Vivo’, Mol. Cancer Ther., vol. 11, no. 8, pp. 1672-1682, Aug. 2012, doi: 10.1158/1535-
7163.MCT-12-0131.

[90] T. E. Wood et al., ‘A novel inhibitor of glucose uptake sensitizes cells to FAS-
induced cell death’, Mol. Cancer Ther., vol. 7, no. 11, pp. 3546-3555, Nov. 2008, doi:
10.1158/1535-7163.MCT-08-0569.

[91] K.-H. Wu et al.,, ‘The apple polyphenol phloretin inhibits breast cancer cell
migration and proliferation via inhibition of signals by type 2 glucose transporter’, J. Food
Drug Anal., vol. 26, no. 1, pp. 221-231, Jan. 2018, doi: 10.1016/j.jfda.2017.03.009.

[92] Y. Li et al.,, ‘Succinate/NLRP3 Inflammasome Induces Synovial Fibroblast

289



Activation: Therapeutical Effects of Clematichinenoside AR on Arthritis’, Front. Immunol.,
vol. 7, 2016, Accessed: Jul. 03, 2023. [Online]. Available:
https://www.frontiersin.org/articles/10.3389/fimmu.2016.00532

[93] C.-H. Wu et al., ‘In vitro and in vivo study of phloretin-induced apoptosis in human
liver cancer cells involving inhibition of type II glucose transporter’, /nt. J. Cancer, vol. 124,
no. 9, pp. 2210-2219, May 2009, doi: 10.1002/ijc.24189.

[94] W. W. Wheaton et al., ‘Metformin inhibits mitochondrial complex I of cancer cells
to reduce tumorigenesis’, eLife, vol. 3, p. €02242, May 2014, doi: 10.7554/eLife.02242.
[95] X. Liu, I. L. Romero, L. M. Litchfield, E. Lengyel, and J. W. Locasale, ‘Metformin
Targets Central Carbon Metabolism and Reveals Mitochondrial Requirements in Human
Cancers’, Cell Metab., vol. 24, no. 5, pp. 728-739, Nov. 2016, doi:
10.1016/j.cmet.2016.09.005.

[96] S. Gurrapu et al., ‘Monocarboxylate Transporter 1 Inhibitors as Potential Anticancer
Agents’, ACS Med. Chem. Lett., vol. 6, no. 5, pp. 558-561, May 2015, doi:
10.1021/acsmedchemlett.5b00049.

[97] U. E. Martinez-Outschoorn et al., ‘Oxidative stress in cancer associated fibroblasts
drives tumor-stroma co-evolution’, Cell Cycle, vol. 9, no. 16, pp. 3276-3296, Aug. 2010,
doi: 10.4161/cc.9.16.12553.

[98] S. Crawford, ‘Anti-inflammatory/antioxidant use in long-term maintenance cancer
therapy: a new therapeutic approach to disease progression and recurrence’, Ther. Adv. Med.
Oncol., vol. 6, no. 2, pp. 52—68, Mar. 2014, doi: 10.1177/1758834014521111.

[99] Y. Fu et al., ‘The reverse Warburg effect is likely to be an Achilles’ heel of cancer
that can be exploited for cancer therapy’, Oncotarget, vol. 8, no. 34, pp. 57813-57825, Aug.
2017, doi: 10.18632/oncotarget.18175.

[100] A. Le et al., ‘Inhibition of lactate dehydrogenase A induces oxidative stress and
inhibits tumor progression’, Proc. Natl. Acad. Sci., vol. 107, no. 5, pp. 2037-2042, Feb. 2010,
doi: 10.1073/pnas.0914433107.

[101] L. Wilde et al., ‘Metabolic coupling and the Reverse Warburg Effect in cancer:
Implications for novel biomarker and anticancer agent development’, Semin. Oncol., vol. 44,
no. 3, pp. 198-203, Jun. 2017, doi: 10.1053/j.seminoncol.2017.10.004.

[102] D. Monti et al., ‘Pilot study demonstrating metabolic and anti-proliferative effects
of in vivo anti-oxidant supplementation with N-Acetylcysteine in Breast Cancer’, Semin.
Oncol., vol. 44, no. 3, pp. 226-232, Jun. 2017, doi: 10.1053/j.seminoncol.2017.10.001.
[103] Z. Zhao, F. Han, S. Yang, J. Wu, and W. Zhan, ‘Oxamate-mediated inhibition of
lactate dehydrogenase induces protective autophagy in gastric cancer cells: Involvement of
the Akt-mTOR signaling pathway’, Cancer Lett., vol. 358, no. 1, pp. 17-26, Mar. 2015, doi:
10.1016/j.canlet.2014.11.046.

[104] C.B.Colenetal., ‘Metabolic targeting of lactate efflux by malignant glioma inhibits
invasiveness and induces necrosis: an in vivo study’, Neoplasia N. Y. N, vol. 13, no. 7, pp.
620-632, Jul. 2011, doi: 10.1593/neo0.11134.

[105] S.P. Mathupala, C. B. Colen, P. Parajuli, and A. E. Sloan, ‘Lactate and malignant
tumors: A therapeutic target at the end stage of glycolysis’, J. Bioenerg. Biomembr., vol. 39,
no. 1, pp. 73-77, Feb. 2007, doi: 10.1007/s10863-006-9062-x.

[106]  P. Cirri and P. Chiarugi, ‘Cancer-associated-fibroblasts and tumour cells: a diabolic
liaison driving cancer progression’, Cancer Metastasis Rev., vol. 31, no. 1, pp. 195-208, Jun.
2012, doi: 10.1007/s10555-011-9340-x.

[107] A. Kohlmann et al., ‘Fragment Growing and Linking Lead to Novel Nanomolar
Lactate Dehydrogenase Inhibitors’, J. Med. Chem., vol. 56, no. 3, pp. 1023-1040, Feb. 2013,
doi: 10.1021/jm3014844.

[108] J. Papaconstantinou and S. P. Colowick, ‘The Role of Glycolysis in the Growth of
Tumor Cells: II. THE EFFECT OF OXAMIC ACID ON THE GROWTH OF HELA CELLS
IN TISSUE CULTURE’, J. Biol. Chem., vol. 236, no. 2, pp. 285-288, Feb. 1961, doi:
10.1016/S0021-9258(18)64353-4.

290



[109] . Billiard et al., ‘Quinoline 3-sulfonamides inhibit lactate dehydrogenase A and
reverse aerobic glycolysis in cancer cells’, Cancer Metab., vol. 1, no. 1, p. 19, Sep. 2013,
doi: 10.1186/2049-3002-1-19.

[110] R.Raniand V. Kumar, ‘Recent Update on Human Lactate Dehydrogenase Enzyme
5 (hLDHS) Inhibitors: A Promising Approach for Cancer Chemotherapy’, J. Med. Chem.,
vol. 59, no. 2, pp. 487-496, Jan. 2016, doi: 10.1021/acs.jmedchem.5b00168.

[111] M. D. Shelley et al., ‘Stereo-specific cytotoxic effects of gossypol enantiomers and
gossypolone in tumour cell lines’, Cancer Lett., vol. 135, no. 2, pp. 171-180, Jan. 1999, doi:
10.1016/S0304-3835(98)00302-4.

[112] M. R. Flack et al., ‘Oral gossypol in the treatment of metastatic adrenal cancer’, J.
Clin.  Endocrinol. Metab., vol. 76, no. 4, pp. 1019-1024, Apr. 1993, doi:
10.1210/jcem.76.4.8473376.

[113] C. Van Poznak et al., ‘Oral gossypol in the treatment of patients with refractory
metastatic breast cancer: a phase I/II clinical trial’, Breast Cancer Res. Treat., vol. 66, no. 3,
pp- 239-248, Apr. 2001, doi: 10.1023/a:1010686204736.

[114] C. Granchi, I. Paterni, R. Rani, and F. Minutolo, ‘Small-molecule inhibitors of
human LDHS’, Future Med. Chem., vol. 5, no. 16, pp. 1967-1991, Oct. 2013, doi:
10.4155/fmc.13.151.

[115] M. Manerba et al., ‘Galloflavin (CAS 568-80-9): a novel inhibitor of lactate
dehydrogenase’, ChemMedChem, vol. 7, no. 2, pp. 311-317, Feb. 2012, doi:
10.1002/cmdc.201100471.

[116] F. Farabegoli, M. Vettraino, M. Manerba, L. Fiume, M. Roberti, and G. Di Stefano,
‘Galloflavin, a new lactate dehydrogenase inhibitor, induces the death of human breast cancer
cells with different glycolytic attitude by affecting distinct signaling pathways’, Eur. J.
Pharm. Sci., vol. 47, no. 4, pp. 729-738, Nov. 2012, doi: 10.1016/j.¢jps.2012.08.012.

[117] C. Granchi et al., ‘Discovery of N-Hydroxyindole-Based Inhibitors of Human
Lactate Dehydrogenase Isoform A (LDH-A) as Starvation Agents against Cancer Cells’, J.
Med. Chem., vol. 54, no. 6, pp. 1599-1612, Mar. 2011, doi: 10.1021/jm101007q.

[118] L. Fiume, M. Manerba, M. Vettraino, and G. Di Stefano, ‘Inhibition of lactate
dehydrogenase activity as an approach to cancer therapy’, Future Med. Chem., vol. 6, no. 4,
pp. 429-445, Mar. 2014, doi: 10.4155/fmc.13.206.

[119] M. Maftouh et al., ‘Synergistic interaction of novel lactate dehydrogenase inhibitors
with gemcitabine against pancreatic cancer cells in hypoxia’, Br. J. Cancer, vol. 110, no. 1,
Art. no. 1, Jan. 2014, doi: 10.1038/bjc.2013.681.

[120] C. C. Schneider et al., ‘Metabolic alteration — Overcoming therapy resistance in
gastric cancer via PGK-1 inhibition in a combined therapy with standard chemotherapeutics’,
Int. J. Surg., vol. 22, pp. 92-98, Oct. 2015, doi: 10.1016/}.ijsu.2015.08.020.

[121]  J. Chen, J. Xie, Z. Jiang, B. Wang, Y. Wang, and X. Hu, ‘Shikonin and its analogs
inhibit cancer cell glycolysis by targeting tumor pyruvate kinase-M2’, Oncogene, vol. 30, no.
42, Art. no. 42, Oct. 2011, doi: 10.1038/onc.2011.137.

[122] M. S. Goldberg and P. A. Sharp, ‘Pyruvate kinase M2-specific siRNA induces
apoptosis and tumor regression’, J. Exp. Med., vol. 209, no. 2, pp. 217-224, Jan. 2012, doi:
10.1084/jem.20111487.

[123] B. Clem et al., ‘Small-molecule inhibition of 6-phosphofructo-2-kinase activity
suppresses glycolytic flux and tumor growth’, Mol. Cancer Ther., vol. 7, no. 1, pp. 110-120,
Jan. 2008, doi: 10.1158/1535-7163.MCT-07-0482.

[124] S. Cardaci, E. Desideri, and M. R. Ciriolo, ‘Targeting aerobic glycolysis: 3-
bromopyruvate as a promising anticancer drug’, J. Bioenerg. Biomembr., vol. 44, no. 1, pp.
17-29, Feb. 2012, doi: 10.1007/s10863-012-9422-7.

[125] S. Ganapathy-Kanniappan and J.-F. H. Geschwind, ‘Tumor glycolysis as a target
for cancer therapy: progress and prospects’, Mol. Cancer, vol. 12, p. 152, Dec. 2013, doi:
10.1186/1476-4598-12-152.

[126] K. Almutairi, J. Nossent, D. Preen, H. Keen, and C. Inderjeeth, ‘The global

291



prevalence of rheumatoid arthritis: a meta-analysis based on a systematic review’,
Rheumatol. Int., vol. 41, no. 5, pp. 863—877, May 2021, doi: 10.1007/s00296-020-04731-0.

[127] K. H. Costenbader, S.-C. Chang, F. Laden, R. Puett, and E. W. Karlson, ‘Geographic
Variation in Rheumatoid Arthritis Incidence among Women in the United States’, Arch.
Intern. Med., vol. 168, no. 15, pp. 1664—1670, Aug. 2008, doi: 10.1001/archinte.168.15.1664.
[128] Y. Alamanos and A. A. Drosos, ‘Epidemiology of adult rheumatoid arthritis’,
Autoimmun. Rev., vol. 4, no. 3, pp. 130-136, Mar. 2005, doi: 10.1016/j.autrev.2004.09.002.

[129] L. Pina Vegas, J. Drouin, R. Dray-Spira, and A. Weill, ‘Prevalence, mortality, and
treatment of patients with rheumatoid arthritis: A cohort study of the French National Health
Data System, 2010-2019°, Joint Bone Spine, vol. 90, no. 1, p. 105460, Jan. 2023, doi:
10.1016/j.jbspin.2022.105460.

[130]  ‘Brief Report: Rheumatoid Arthritis as the Underlying Cause of Death in Thirty-
One Countries, 1987-2011: Trend Analysis of World Health Organization Mortality
Database’, doi: 10.1002/art.40091.

[131] J.S. Smolen et al., ‘Rheumatoid arthritis’, Nat. Rev. Dis. Primer, vol. 4, no. 1, Art.
no. 1, Feb. 2018, doi: 10.1038/nrdp.2018.1.

[132] J. Morovi¢-Vergles, ‘[Pathophysiology of rheumatoid arthritis]’, Reumatizam, vol.
50, no. 2, pp. 15-17, 2003.

[133] M. S. Akram et al., ‘Challenges for biosimilars: focus on rheumatoid arthritis’, Crit.
Rev.  Biotechnol., vol. 41, mno. 1, pp. 121-153, Jan. 2021, doi:
10.1080/07388551.2020.1830746.

[134] J.S.Smolen, D. Aletaha, M. Koeller, M. H. Weisman, and P. Emery, ‘New therapies
for treatment of rheumatoid arthritis’, Lancet Lond. Engl., vol. 370, no. 9602, pp. 1861-1874,
Dec. 2007, doi: 10.1016/S0140-6736(07)60784-3.

[135] J. L. Newton, S. M. J. Harney, B. P. Wordsworth, and M. A. Brown, ‘A review of
the MHC genetics of rheumatoid arthritis’, Genes Immun., vol. 5, no. 3, pp. 151-157, May
2004, doi: 10.1038/sj.gene.6364045.

[136] L. B. MclInnes and G. Schett, ‘The pathogenesis of rheumatoid arthritis’, N. Engl. J.
Med., vol. 365, no. 23, pp. 2205-2219, Dec. 2011, doi: 10.1056/NEJMral004965.

[137] N. Bottini and G. S. Firestein, ‘Epigenetics in rheumatoid arthritis: a primer for
rheumatologists’, Curr. Rheumatol. Rep., vol. 15, no. 11, p. 372, Nov. 2013, doi:
10.1007/s11926-013-0372-9.

[138] K. P.Liao, L. Alfredsson, and E. W. Karlson, ‘Environmental influences on risk for
rheumatoid arthritis’, Curr. Opin. Rheumatol., vol. 21, no. 3, pp. 279-283, May 2009, doi:
10.1097/BOR.0b013e32832a2¢16.

[139] L. Klareskog, P. K. Gregersen, and T. W. J. Huizinga, ‘Prevention of autoimmune
rheumatic disease: state of the art and future perspectives’, Ann. Rheum. Dis., vol. 69, no. 12,
pp. 2062-2066, Dec. 2010, doi: 10.1136/ard.2010.142109.

[140] A. Alsaber et al., ‘Influence of Ambient Air Pollution on Rheumatoid Arthritis
Disease Activity Score Index’, Int. J. Environ. Res. Public. Health, vol. 17, no. 2, Art. no. 2,
Jan. 2020, doi: 10.3390/ijerph17020416.

[141] S.-C.Bae and Y. H. Lee, ‘Causal association between body mass index and risk of
rheumatoid arthritis: A Mendelian randomization study’, Eur. J. Clin. Invest., vol. 49, no. 4,
p. €13076, 2019, doi: 10.1111/eci.13076.

[142] J.S. Lawrence, ‘Heberden Oration, 1969. Rheumatoid arthritis--nature or nurture?’,
Ann. Rheum. Dis., vol. 29, no. 4, pp. 357-379, Jul. 1970, doi: 10.1136/ard.29.4.357.

[143] ‘Rheumatoid Arthritis and Pregnancy: Effects of Pregnancy on Rheumatoid
Arthritis, Preconception Counseling, Peripartum Concerns’, Oct. 2022, Accessed: Jul. 03,
2023. [Online]. Available: https://emedicine.medscape.com/article/335186-overview

[144] D. Alpizar-Rodriguez, N. Pluchino, G. Canny, C. Gabay, and A. Finckh, ‘The role
of female hormonal factors in the development of rheumatoid arthritis’, Rheumatology, vol.
56, no. 8, pp. 1254-1263, Aug. 2017, doi: 10.1093/rheumatology/kew318.

[145] S.Li, Y. Yu, Y. Yue, Z. Zhang, and K. Su, ‘Microbial Infection and Rheumatoid

292



Arthritis’, J. Clin. Cell. Immunol., vol. 4, no. 6, p. 174, Dec. 2013, doi: 10.4172/2155-
9899.1000174.

[146] V. Yilmaz, E. Umay, I. Giindogdu, Z. O. Karaahmet, and A. E. Oztiirk, ‘Rheumatoid
Arthritis: Are psychological factors effective in disease flare?’, Eur. J. Rheumatol., vol. 4,
no. 2, pp. 127-132, Jun. 2017, doi: 10.5152/eurjrheum.2017.16100.

[147] O.Benjamin, A. Goyal, and S. L. Lappin, ‘Disease-Modifying Antirheumatic Drugs
(DMARDY)’, in StatPearls, Treasure Island (FL): StatPearls Publishing, 2023. Accessed: Jul.
03, 2023. [Online]. Available: http://www.ncbi.nlm.nih.gov/books/NBK 507863/

[148] J.R. Vane and R. M. Botting, ‘The mechanism of action of aspirin’, Thromb. Res.,
vol. 110, no. 5-6, pp. 255-258, Jun. 2003, doi: 10.1016/s0049-3848(03)00379-7.

[149] E. M. Dennison and C. Cooper, ‘Corticosteroids in rheumatoid arthritis’, BM.J, vol.
316, no. 7134, pp. 789-790, Mar. 1998.

[150] J. Swierkot et al, ‘Rheumatoid arthritis in a patient with common variable
immunodeficiency: difficulty in diagnosis and therapy’, Clin. Rheumatol., vol. 25, no. 1, pp.
92-94, Feb. 2006, doi: 10.1007/s10067-005-1141-6.

[151] M. Bécede et al., ‘Risk profiling for a refractory course of rheumatoid arthritis’,
Semin. Arthritis  Rheum., vol. 49, no. 2, pp. 211-217, Oct. 2019, doi:
10.1016/j.semarthrit.2019.02.004.

[152] E. H. Choy, A. F. Kavanaugh, and S. A. Jones, ‘The problem of choice: current
biologic agents and future prospects in RA’, Nat. Rev. Rheumatol., vol. 9, no. 3, pp. 154—
163, Mar. 2013, doi: 10.1038/nrrheum.2013.8.

[153] U. Miiller-Ladner, C. Ospelt, S. Gay, O. Distler, and T. Pap, ‘Cells of the synovium
in rheumatoid arthritis. Synovial fibroblasts’, Arthritis Res. Ther., vol. 9, no. 6, p. 223, Dec.
2007, doi: 10.1186/ar2337.

[154] N. Bottini and G. S. Firestein, ‘Duality of fibroblast-like synoviocytes in RA:
passive responders and imprinted aggressors’, Nat. Rev. Rheumatol., vol. 9, no. 1, pp. 24-33,
Jan. 2013, doi: 10.1038/nrrheum.2012.190.

[155] H. G. Fassbender and M. Simmling-Annefeld, ‘The potential aggressiveness of
synovial tissue in rheumatoid arthritis’, J. Pathol., vol. 139, no. 3, pp. 399—406, 1983, doi:
10.1002/path.1711390314.

[156] C.R.L.Machado et al., ‘Morphofunctional analysis of fibroblast-like synoviocytes
in human rheumatoid arthritis and mouse collagen-induced arthritis’, Adv. Rheumatol., vol.
63,no. 1, p. 1, Jan. 2023, doi: 10.1186/s42358-022-00281-0.

[157] J.D. Turner and A. Filer, ‘The role of the synovial fibroblast in rheumatoid arthritis
pathogenesis’, Curr. Opin. Rheumatol., vol. 27, no. 2, pp. 175-182, Mar. 2015, doi:
10.1097/BOR.0000000000000148.

[158] M. Juarez, A. Filer, and C. D. Buckley, ‘Fibroblasts as therapeutic targets in
rheumatoid arthritis and cancer’, Swiss Med. Wkly., vol. 142, p. w13529, 2012, doi:
10.4414/smw.2012.13529.

[159] S. Hirohata et al., ‘Induction of fibroblast-like cells from CD34(+) progenitor cells
of the bone marrow in rheumatoid arthritis’, J. Leukoc. Biol., vol. 70, no. 3, pp. 413-421,
Sep. 2001.

[160] J. Ohata et al., ‘Fibroblast-like synoviocytes of mesenchymal origin express
functional B cell-activating factor of the TNF family in response to proinflammatory
cytokines’, J. Immunol. Baltim. Md 1950, vol. 174, no. 2, pp. 864—870, Jan. 2005, doi:
10.4049/jimmunol.174.2.864.

[161] Z.Wu et al., ‘Fibroblast-like synoviocytes in rheumatoid arthritis: Surface markers
and phenotypes’, Int. Immunopharmacol., vol. 93, p. 107392, Apr. 2021, doi:
10.1016/j.intimp.2021.107392.

[162] D.N. Dorst et al., ‘Targeting of fibroblast activation protein in rheumatoid arthritis
patients: imaging and ex vivo photodynamic therapy’, Rheumatol. Oxf. Engl., vol. 61, no. 7,
pp. 2999-3009, Aug. 2021, doi: 10.1093/rheumatology/keab664.

[163] S. E. Gabriel and C. S. Crowson, ‘Risk factors for cardiovascular disease in

293



rheumatoid arthritis’, Curr. Opin. Rheumatol., vol. 24, no. 2, pp. 171-176, Mar. 2012, doi:
10.1097/BOR.0b013¢32834ff21d.

[164] E. Gremese and G. Ferraccioli, ‘The metabolic syndrome: the crossroads between
rheumatoid arthritis and cardiovascular risk’, Autoimmun. Rev., vol. 10, no. 10, pp. 582-589,
Aug. 2011, doi: 10.1016/j.autrev.2011.04.018.

[165] P. G. de Oliveira, M. Farinon, E. Sanchez-Lopez, S. Miyamoto, and M. Guma,
‘Fibroblast-Like Synoviocytes Glucose Metabolism as a Therapeutic Target in Rheumatoid
Arthritis’, Front. Immunol., vol. 10, p. 1743, Aug. 2019, doi: 10.3389/fimmu.2019.01743.
[166] S. A. Clayton, L. MacDonald, M. Kurowska-Stolarska, and A. R. Clark,
‘Mitochondria as Key Players in the Pathogenesis and Treatment of Rheumatoid Arthritis’,
Front. Immunol., vol. 12, 2021, Accessed: Jul. 03, 2023. [Online]. Available:
https://www.frontiersin.org/articles/10.3389/fimmu.2021.673916

[167] S.P.Young et al., ‘The impact of inflammation on metabolomic profiles in patients
with arthritis’, Arthritis Rheum., vol. 65, no. 8, pp. 2015-2023, Aug. 2013, doi:
10.1002/art.38021.

[168] C.Ma,]J. Wang, F. Hong, and S. Yang, ‘Mitochondrial Dysfunction in Rheumatoid
Arthritis’, Biomolecules, vol. 12, no. 9, p. 1216, Sep. 2022, doi: 10.3390/biom12091216.
[169] S. Takahashi et al., ‘Glutaminase 1 plays a key role in the cell growth of fibroblast-
like synoviocytes in rheumatoid arthritis’, Arthritis Res. Ther., vol. 19, no. 1, p. 76, Apr.
2017, doi: 10.1186/s13075-017-1283-3.

[170] M. Guma et al., ‘Choline kinase inhibition in rheumatoid arthritis’, Ann. Rheum.
Dis., vol. 74, no. 7, pp. 1399-1407, Jul. 2015, doi: 10.1136/annrheumdis-2014-205696.
[171] A. Ramirez de Molina et al., ‘Choline kinase as a link connecting phospholipid
metabolism and cell cycle regulation: Implications in cancer therapy’, Int. J. Biochem. Cell
Biol., vol. 40, no. 9, pp. 1753-1763, Jan. 2008, doi: 10.1016/j.biocel.2008.01.013.

[172] K. Glunde, Z. M. Bhujwalla, and S. M. Ronen, ‘Choline metabolism in malignant
transformation’, Nat. Rev. Cancer, vol. 11, no. 12, pp. 835-848, Nov. 2011, doi:
10.1038/nrc3162.

[173] U. Fearon, M. M. Hanlon, S. M. Wade, and J. M. Fletcher, ‘Altered metabolic
pathways regulate synovial inflammation in rheumatoid arthritis’, Clin. Exp. Immunol., vol.
197, no. 2, pp. 170-180, Aug. 2019, doi: 10.1111/cei.13228.

[174] G. Abboud, S.-C. Choi, N. Kanda, L. Zeumer-Spataro, D. C. Roopenian, and L.
Morel, ‘Inhibition of Glycolysis Reduces Disease Severity in an Autoimmune Model of
Rheumatoid  Arthritis’,  Front.  Immunol., vol. 9, p. 1973, 2018, doi:
10.3389/fimmu.2018.01973.

[175] G. Song et al., ‘Inhibition of hexokinases holds potential as treatment strategy for
rheumatoid arthritis’, Arthritis Res. Ther., vol. 21, no. 1, p. 87, Apr. 2019, doi:
10.1186/s13075-019-1865-3.

[176] Y. Zhao, X. Yan, X. Li, Y. Zheng, S. Li, and X. Chang, ‘PGKI, a glucose
metabolism enzyme, may play an important role in theumatoid arthritis’, Inflamm. Res., vol.
65, no. 10, pp. 815-825, Oct. 2016, doi: 10.1007/s00011-016-0965-7.

[177] R. Garcia-Carbonell et al., ‘Critical Role of Glucose Metabolism in Rheumatoid
Arthritis Fibroblast-like Synoviocytes’, Arthritis Rheumatol., vol. 68, no. 7, pp. 1614—-1626,
2016, doi: 10.1002/art.39608.

[178] M. F. Bustamante et al., ‘Hexokinase 2 as a novel selective metabolic target for
rheumatoid arthritis’, Ann. Rheum. Dis., vol. 77, no. 11, pp. 1636-1643, Nov. 2018, doi:
10.1136/annrheumdis-2018-213103.

[179] T. Okano et al., ‘3-bromopyruvate ameliorate autoimmune arthritis by modulating
Th17/Treg cell differentiation and suppressing dendritic cell activation’, Sci. Rep., vol. 7, no.
1, Art. no. 1, Feb. 2017, doi: 10.1038/srep42412.

[180] T. McGarry et al, ‘JAK/STAT Blockade Alters Synovial Bioenergetics,
Mitochondrial Function, and Proinflammatory Mediators in Rheumatoid Arthritis’, Arthritis
Rheumatol., vol. 70, no. 12, pp. 1959-1970, 2018, doi: 10.1002/art.40569.

294



[181] M. Biniecka et al., ‘Dysregulated bioenergetics: a key regulator of joint
inflammation’, Ann. Rheum. Dis., vol. 75, no. 12, pp. 2192-2200, Dec. 2016, doi:
10.1136/annrheumdis-2015-208476.

[182] H.-J. Son et al., ‘Metformin attenuates experimental autoimmune arthritis through
reciprocal regulation of Th17/Treg balance and osteoclastogenesis’, Mediators Inflamm., vol.
2014, p. 973986, 2014, doi: 10.1155/2014/973986.

[183]  W. Fujii ef al., ‘Monocarboxylate transporter 4, associated with the acidification of
synovial fluid, is a novel therapeutic target for inflammatory arthritis’, Arthritis Rheumatol.
Hoboken NJ, vol. 67, no. 11, pp. 2888-2896, Nov. 2015, doi: 10.1002/art.39270.

[184] Y. Zou et al., ‘Inhibition of 6-phosphofructo-2-kinase suppresses fibroblast-like
synoviocytes-mediated synovial inflammation and joint destruction in rheumatoid arthritis’,
Br. J. Pharmacol., vol. 174, no. 9, pp. 893-908, May 2017, doi: 10.1111/bph.13762.

[185] S. Trefely et al., ‘Kinome Screen Identifies PFKFB3 and Glucose Metabolism as
Important Regulators of the Insulin/Insulin-like Growth Factor (IGF)-1 Signaling Pathway’,
J. Biol. Chem., vol. 290, no. 43, pp. 25834-25846, Oct. 2015, doi:
10.1074/jbc.M115.658815.

[186] Y. Li et al, ‘Succinate induces synovial angiogenesis in rheumatoid arthritis
through metabolic remodeling and HIF-10/VEGF axis’, Free Radic. Biol. Med., vol. 126, pp.
1-14, Oct. 2018, doi: 10.1016/j.freeradbiomed.2018.07.009.

[187] K. W. Kohn, ‘Molecular Interaction Map of the Mammalian Cell Cycle Control and
DNA Repair Systems’, Mol. Biol. Cell, vol. 10, no. 8, pp. 2703-2734, Aug. 1999, doi:
10.1091/mbc.10.8.2703.

[188] K. Shahzad and J. J. Loor, ‘Application of Top-Down and Bottom-up Systems
Approaches in Ruminant Physiology and Metabolism’, Curr. Genomics, vol. 13, no. 5, pp.
379-394, Aug. 2012, doi: 10.2174/138920212801619269.

[189] N. L. Novére et al., ‘The Systems Biology Graphical Notation’, Nat. Biotechnol.,
vol. 27, no. 8, Art. no. 8, Aug. 2009, doi: 10.1038/nbt.1558.

[190] K. W. Kohn and Y. Pommier, ‘Molecular interaction map of the p53 and Mdm?2
logic elements, which control the Off-On switch of p53 in response to DNA damage’,
Biochem. Biophys. Res. Commun., vol. 331, no. 3, pp. 816-827, Jun. 2005, doi:
10.1016/j.bbrc.2005.03.186.

[191] E.Caronet al., ‘A comprehensive map of the mTOR signaling network’, Mol. Syst.
Biol., vol. 6, no. 1, p. 453, Jan. 2010, doi: 10.1038/msb.2010.108.

[192] S. Tripathi et al., ‘The gastrin and cholecystokinin receptors mediated signaling
network: a scaffold for data analysis and new hypotheses on regulatory mechanisms’, BMC
Syst. Biol., vol. 9, no. 1, p. 40, Jul. 2015, doi: 10.1186/s12918-015-0181-z.

[193] L. Grieco, L. Calzone, 1. Bernard-Pierrot, F. Radvanyi, B. Kahn-Perlés, and D.
Thieffry, ‘Integrative Modelling of the Influence of MAPK Network on Cancer Cell Fate
Decision’, PLOS Comput. Biol., vol. 9, no. 10, p. ¢1003286, Oct. 2013, doi:
10.1371/journal.pcbi.1003286.

[194] M. Ostaszewski et al., ‘COVID19 Disease Map, a computational knowledge
repository of virus—host interaction mechanisms’, Mol. Syst. Biol., vol. 17, no. 10, p. e10387,
Oct. 2021, doi: 10.15252/msb.202110387.

[195] ‘AsthmaMap: An interactive knowledge repository for mechanisms of asthma’, J.
Allergy  Clin.  Immunol., vol. 147, no. 3, pp. 853-856, Mar. 2021, doi:
10.1016/j.jaci.2020.11.032.

[196] C. Pereira et al., ‘CyFi-MAP: an interactive pathway-based resource for cystic
fibrosis’, Sci. Rep., vol. 11, no. 1, Art. no. 1, Nov. 2021, doi: 10.1038/s41598-021-01618-3.
[197] K. A. Fujita et al., ‘Integrating Pathways of Parkinson’s Disease in a Molecular
Interaction Map’, Mol. Neurobiol., vol. 49, no. 1, pp. 88-102, Feb. 2014, doi:
10.1007/s12035-013-8489-4.

[198] G.Wu, L. Zhu, J. E. Dent, and C. Nardini, ‘A comprehensive molecular interaction
map for rheumatoid arthritis’, PloS One, vol. 5, no. 4, p. el0137, Apr. 2010, doi:

295



10.1371/journal.pone.0010137.

[199] H. Ogata, S. Goto, K. Sato, W. Fujibuchi, H. Bono, and M. Kanehisa, ‘KEGG:
Kyoto Encyclopedia of Genes and Genomes’, Nucleic Acids Res., vol. 27, no. 1, pp. 29-34,
Jan. 1999, doi: 10.1093/nar/27.1.29.

[200] V. Singh et al., ‘RA-map: building a state-of-the-art interactive knowledge base for
rheumatoid arthritis’, Database J. Biol. Databases Curation, vol. 2020, p. baaa0l17, Apr.
2020, doi: 10.1093/database/baaa017.

[201]  A.Krémer, J. Green, J. Pollard, and S. Tugendreich, ‘Causal analysis approaches in
Ingenuity Pathway Analysis’, Bioinforma. Oxf. Engl., vol. 30, no. 4, pp. 523-530, Feb. 2014,
doi: 10.1093/bioinformatics/btt703.

[202] N. J. Krogan, S. Lippman, D. A. Agard, A. Ashworth, and T. Ideker, ‘The cancer
cell map initiative: defining the hallmark networks of cancer’, Mol. Cell, vol. 58, no. 4, pp.
690-698, May 2015, doi: 10.1016/j.molcel.2015.05.008.

[203] O. Rozenblatt-Rosen ef al., ‘The Human Tumor Atlas Network: Charting Tumor
Transitions across Space and Time at Single-Cell Resolution’, Cell, vol. 181, no. 2, pp. 236—
249, Apr. 2020, doi: 10.1016/j.cell.2020.03.053.

[204] L. Kuperstein et al., ‘Atlas of Cancer Signalling Network: a systems biology resource
for integrative analysis of cancer data with Google Maps’, Oncogenesis, vol. 4, no. 7, p. €160,
Jul. 2015, doi: 10.1038/oncsis.2015.19.

[205] E. A. Bruford et al, ‘HUGO Gene Nomenclature Committee (HGNC)
recommendations for the designation of gene fusions’, Leukemia, vol. 35, no. 11, Art. no. 11,
Nov. 2021, doi: 10.1038/s41375-021-01436-6.

[206] UniProt Consortium, ‘UniProt: the Universal Protein Knowledgebase in 2023’,
Nucleic Acids Res., vol. 51, no. D1, pp. D523-D531, Jan. 2023, doi: 10.1093/nar/gkac1052.
[207]  G. Stelzer et al., ‘The GeneCards Suite: From Gene Data Mining to Disease Genome
Sequence Analyses’, Curr. Protoc. Bioinforma., vol. 54, no. 1, p. 1.30.1-1.30.33, 2016, doi:
10.1002/cpbi.5.

[208] M. Safran et al., ‘The GeneCards Suite’, in Practical Guide to Life Science
Databases, 1. Abugessaisa and T. Kasukawa, Eds., Singapore: Springer Nature, 2021, pp.
27-56. doi: 10.1007/978-981-16-5812-9 2.

[209] A. Noronha et al., ‘ReconMap: an interactive visualization of human metabolism’,
Bioinforma. Oxf. Engl, vol. 33, no. 4, pp. 605-607, Feb. 2017, doi:
10.1093/bioinformatics/btw667.

[210] J.L.Robinson et al., ‘An atlas of human metabolism’, Sci. Signal., vol. 13, no. 624,
p. eaaz1482, Mar. 2020, doi: 10.1126/scisignal.aaz1482.

[211]  A. Saadatpour and R. Albert, ‘A comparative study of qualitative and quantitative
dynamic models of biological regulatory networks’, EP.J Nonlinear Biomed. Phys., vol. 4,
no. 1, Art. no. 1, Dec. 2016, doi: 10.1140/epjnbp/s40366-016-0031-y.

[212]  S. A.Kauffman, ‘Metabolic stability and epigenesis in randomly constructed genetic
nets’, J. Theor. Biol., vol. 22, no. 3, pp. 437-467, Mar. 1969, doi: 10.1016/0022-
5193(69)90015-0.

[213] R. Thomas, ‘Boolean formalization of genetic control circuits’, J. Theor. Biol., vol.
42, no. 3, pp. 563-585, Dec. 1973, doi: 10.1016/0022-5193(73)90247-6.

[214] V. Singh, A. Naldi, S. Soliman, and A. Niarakis, ‘A large-scale Boolean model of
the Rheumatoid Arthritis Fibroblast-Like Synoviocytes predicts drug synergies in the
arthritic ~ joint’.  bioRxiv, p. 2023.01.16.524300, Jan. 19, 2023. doi:
10.1101/2023.01.16.524300.

[215] A. Montagud et al., ‘Patient-specific Boolean models of signalling networks guide
personalised treatments’, eLife, vol. 11, p. €72626, Feb. 2022, doi: 10.7554/¢eLife.72626.
[216] G. Selvaggio et al., ‘Hybrid Epithelial-Mesenchymal Phenotypes Are Controlled
by Microenvironmental Factors’, Cancer Res., vol. 80, no. 11, pp. 2407-2420, Jun. 2020,
doi: 10.1158/0008-5472.CAN-19-3147.

[217] J. D. Orth, I. Thiele, and B. @. Palsson, ‘What is flux balance analysis?’, Nat.

296



Biotechnol., vol. 28, no. 3, Art. no. 3, Mar. 2010, doi: 10.1038/nbt.1614.

[218] O. Folger, L. Jerby, C. Frezza, E. Gottlieb, E. Ruppin, and T. Shlomi, ‘Predicting
selective drug targets in cancer through metabolic networks’, Mol. Syst. Biol., vol. 7, p. 501,
Jun. 2011, doi: 10.1038/msb.2011.35.

[219] T. Shlomi, T. Benyamini, E. Gottlieb, R. Sharan, and E. Ruppin, ‘Genome-Scale
Metabolic Modeling Elucidates the Role of Proliferative Adaptation in Causing the Warburg
Effect’, PLoS Comput. Biol., vol. 7, no. 3, p. ¢1002018, Mar. 2011, doi:
10.1371/journal.pcbi.1002018.

[220] 1. Larsson, M. Uhlén, C. Zhang, and A. Mardinoglu, ‘Genome-Scale Metabolic
Modeling of Glioblastoma Reveals Promising Targets for Drug Development’, Front.
Genet., vol. 11, 2020, Accessed: Jul. 03, 2023. [Online]. Available:
https://www.frontiersin.org/articles/10.3389/fgene.2020.00381

[221]  S. Chandrasekaran and N. D. Price, ‘Probabilistic integrative modeling of genome-
scale metabolic and regulatory networks in Escherichia coli and Mycobacterium
tuberculosis’, Proc. Natl. Acad. Sci. U. S. A., vol. 107, no. 41, pp. 17845—-17850, Oct. 2010,
doi: 10.1073/pnas.1005139107.

[222] L. Marmiesse, R. Peyraud, and L. Cottret, ‘FlexFlux: combining metabolic flux and
regulatory network analyses’, BMC Syst. Biol., vol. 9, p. 93, Dec. 2015, doi: 10.1186/s12918-
015-0238-z.

[223] L. Liu and A. Bockmayr, ‘Regulatory dynamic enzyme-cost flux balance analysis:
A unifying framework for constraint-based modeling’, J. Theor. Biol., vol. 501, p. 110317,
Sep. 2020, doi: 10.1016/j.jtbi.2020.110317.

[224] A. Mazein et al, ‘Systems medicine disease maps: community-driven
comprehensive representation of disease mechanisms’, NP.J Syst. Biol. Appl., vol. 4, p. 21,
2018, doi: 10.1038/s41540-018-0059-y.

[225] M. Ostaszewski et al., ‘Community-driven roadmap for integrated disease maps’,
Brief. Bioinform., vol. 20, no. 2, pp. 659—670, Mar. 2019, doi: 10.1093/bib/bby024.

[226] M. D. Wilkinson et al, ‘The FAIR Guiding Principles for scientific data
management and stewardship’, Sci. Data, vol. 3, no. 1, Art. no. 1, Mar. 2016, doi:
10.1038/sdata.2016.18.

[227] N. Le Novere, ‘Quantitative and logic modelling of molecular and gene networks’,
Nat. Rev. Genet., vol. 16, no. 3, Art. no. 3, Mar. 2015, doi: 10.1038/nrg3885.

[228]  A. Funahashi, M. Morohashi, H. Kitano, and N. Tanimura, ‘CellDesigner: a process
diagram editor for gene-regulatory and biochemical networks’, BIOSILICO, vol. 1, no. 5, pp.
159-162, Nov. 2003, doi: 10.1016/S1478-5382(03)02370-9.

[229] M. Hucka et al., ‘The Systems Biology Markup Language (SBML): Language
Specification for Level 3 Version 2 Core’, J. Integr. Bioinforma., vol. 15, no. 1, p. 20170081,
Mar. 2018, doi: 10.1515/jib-2017-0081.

[230] H. Mi and P. Thomas, ‘PANTHER pathway: an ontology-based pathway database
coupled with data analysis tools’, Methods Mol. Biol. Clifton NJ, vol. 563, pp. 123-140,
2009, doi: 10.1007/978-1-60761-175-2 7.

[231]  A. Niarakis et al., ‘Setting the basis of best practices and standards for curation and
annotation of logical models in biology-highlights of the [BC]2 2019 CoLoMoTo/SysMod
Workshop’, Brief. Bioinform., vol. 22, no. 2, pp. 1848-1859, Mar. 2021, doi:
10.1093/bib/bbaa046.

[232] Z. A. King et al., ‘BiGG Models: A platform for integrating, standardizing and
sharing genome-scale models’, Nucleic Acids Res., vol. 44, no. Database issue, pp. D515—
D522, Jan. 2016, doi: 10.1093/nar/gkv1049.

[233] N. Le Novére et al., ‘Minimum information requested in the annotation of
biochemical models (MIRIAM)’, Nat. Biotechnol., vol. 23, no. 12, pp. 1509-1515, Dec.
2005, doi: 10.1038/nbt1156.

[234] P. Gawron et al., ‘MINERVA—a platform for visualization and curation of
molecular interaction networks’, NPJ Syst. Biol. Appl., vol. 2, p. 16020, Sep. 2016, doi:

297



10.1038/npjsba.2016.20.

[235] D. S. Wishart et al., ‘DrugBank: a comprehensive resource for in silico drug
discovery and exploration’, Nucleic Acids Res., vol. 34, no. Database issue, pp. D668-672,
Jan. 2006, doi: 10.1093/nar/gkj067.

[236] D. Mendez et al., ‘ChEMBL: towards direct deposition of bioassay data’, Nucleic
Acids Res., vol. 47, no. D1, pp. D930-D940, Jan. 2019, doi: 10.1093/nar/gky1075.

[237] P. Shannon et al., ‘Cytoscape: a software environment for integrated models of
biomolecular interaction networks’, Genome Res., vol. 13, no. 11, pp. 2498-2504, Nov. 2003,
doi: 10.1101/gr.1239303.

[238] F. Mizoguchi ef al., ‘Functionally distinct disease-associated fibroblast subsets in
rheumatoid arthritis’, Nat. Commun., vol. 9, no. 1, p. 789, Feb. 2018, doi: 10.1038/s41467-
018-02892-y.

[239] R. Navab et al., ‘Prognostic gene-expression signature of carcinoma-associated
fibroblasts in non-small cell lung cancer’, Proc. Natl. Acad. Sci. U. S. A., vol. 108, no. 17,
pp. 7160-7165, Apr. 2011, doi: 10.1073/pnas.1014506108.

[240] E. W. Sayers et al., ‘Database resources of the National Center for Biotechnology
Information’, Nucleic Acids Res., vol. 50, no. DI, pp. D20-D26, Dec. 2021, doi:
10.1093/nar/gkab1112.

[241] M. A. Freeberg ef al., ‘The European Genome-phenome Archive in 2021°, Nucleic
Acids Res., vol. 50, no. D1, pp. D980-D987, Jan. 2022, doi: 10.1093/nar/gkab1059.

[242] M. E. Ritchie et al., ‘limma powers differential expression analyses for RNA-
sequencing and microarray studies’, Nucleic Acids Res., vol. 43, no. 7, p. e47, Apr. 2015,
doi: 10.1093/nar/gkv007.

[243] S. S. Aghamiri, V. Singh, A. Naldi, T. Helikar, S. Soliman, and A. Niarakis,
‘Automated inference of Boolean models from molecular interaction maps using CaSQ’,
Bioinformatics, vol. 36, mno. 16, pp. 4473-4482, May 2020, doi:
10.1093/bioinformatics/btaa484.

[244] C. Chaouiya et al., ‘SBML qualitative models: a model representation format and
infrastructure to foster interactions between qualitative modelling formalisms and tools’,
BMC Syst. Biol., vol. 7, no. 1, p. 135, Dec. 2013, doi: 10.1186/1752-0509-7-135.

[245] T. Helikar ef al., ‘The Cell Collective: Toward an open and collaborative approach
to systems biology’, BMC Syst. Biol., vol. 6, no. 1, p. 96, Aug. 2012, doi: 10.1186/1752-
0509-6-96.

[246] M. Glont et al., ‘BioModels: expanding horizons to include more modelling
approaches and formats’, Nucleic Acids Res., vol. 46, no. D1, pp. D1248-D1253, Jan. 2018,
doi: 10.1093/nar/gkx1023.

[247] R. S. Malik-Sheriff et al., ‘BioModels—15 years of sharing computational models
in life science’, Nucleic Acids Res., vol. 48, no. D1, pp. D407-D415, Jan. 2020, doi:
10.1093/nar/gkz1055.

[248] J. G.T. Zaiiudo and R. Albert, ‘An effective network reduction approach to find the
dynamical repertoire of discrete dynamic networks’, Chaos Woodbury N, vol. 23, no. 2, p.
025111, Jun. 2013, doi: 10.1063/1.4809777.

[249] H. Klarner, A. Bockmayr, and H. Siebert, ‘Computing Symbolic Steady States of
Boolean Networks’, in Cellular Automata, J. Was, G. Ch. Sirakoulis, and S. Bandini, Eds.,
in Lecture Notes in Computer Science. Cham: Springer International Publishing, 2014, pp.
561-570. doi: 10.1007/978-3-319-11520-7_59.

[250] A.Naldi, ‘BioLQM: A Java Toolkit for the Manipulation and Conversion of Logical
Qualitative Models of Biological Networks’, Front. Physiol., vol. 9, p. 1605, 2018, doi:
10.3389/fphys.2018.01605.

[251] P. D. Thomas, D. Ebert, A. Muruganujan, T. Mushayahama, L.-P. Albou, and H.
Mi, ‘PANTHER: Making genome-scale phylogenetics accessible to all’, Protein Sci., vol.
31, no. 1, pp. 8-22, 2022, doi: 10.1002/pro.4218.

[252] A. C. Smith, F. Eyassu, J.-P. Mazat, and A. J. Robinson, ‘MitoCore: a curated

298



constraint-based model for simulating human central metabolism’, BMC Syst. Biol., vol. 11,
no. 1, p. 114, Nov. 2017, doi: 10.1186/s12918-017-0500-7.

[253] A. Saadatpour, Ré. Albert, and T. C. Reluga, ‘A REDUCTION METHOD FOR
BOOLEAN NETWORK MODELS PROVEN TO CONSERVE ATTRACTORS’, SIAM J.
Appl. Dyn. Syst., vol. 12, no. 4, pp. 19972011, 2013, doi: 10.1137/13090537X.

[254] C. Hernandez, M. Thomas-Chollier, A. Naldi, and D. Thieffry, ‘Computational
Verification of Large Logical Models-Application to the Prediction of T Cell Response to
Checkpoint  Inhibitors’, Fromt.  Physiol., vol. 11, p. 558606, 2020, doi:
10.3389/fphys.2020.558606.

[255] A. Naldi et al, ‘The CoLoMoTo Interactive Notebook: Accessible and
Reproducible Computational Analyses for Qualitative Biological Networks’, Front. Physiol.,
vol. 9, p. 680, 2018, doi: 10.3389/fphys.2018.00680.

[256] A. Ebrahim, J. A. Lerman, B. O. Palsson, and D. R. Hyduke, ‘COBRApy:
COnstraints-Based Reconstruction and Analysis for Python’, BMC Syst. Biol., vol. 7, p. 74,
Aug. 2013, doi: 10.1186/1752-0509-7-74.

[257] J. Hunt, ‘The wxPython GUI Library’, in Advanced Guide to Python 3
Programming, J. Hunt, Ed., in Undergraduate Topics in Computer Science. Cham: Springer
International Publishing, 2019, pp. 73—-86. doi: 10.1007/978-3-030-25943-3 8.

[258] L. Nelson, E. F. Churchill, L. Denoue, J. Helfman, and P. Murphy, ‘Gooey
interfaces: an approach for rapidly repurposing digital content’, in CHI ‘04 Extended
Abstracts on Human Factors in Computing Systems, in CHI EA ‘04. New York, NY, USA:
Association for Computing Machinery, Apr. 2004, pp. 1293-1296. doi:
10.1145/985921.986047.

[259] V.-G. Trinh, B. Benhamou, K. Hiraishi, and S. Soliman, ‘Minimal Trap Spaces
of Logical Models are Maximal Siphons of Their Petri Net Encoding’, in Computational
Methods in Systems Biology, 1. Petre and A. Paun, Eds., in Lecture Notes in Computer
Science. Cham: Springer International Publishing, 2022, pp. 158—176. doi: 10.1007/978-3-
031-15034-0_8.

[260]  A. Marrelli et al., ‘Angiogenesis in rheumatoid arthritis: a disease specific process
or a common response to chronic inflammation?’, Autoimmun. Rev., vol. 10, no. 10, pp. 595—
598, Aug. 2011, doi: 10.1016/j.autrev.2011.04.020.

[261]  A.Baier, I. Meineckel, S. Gay, and T. Pap, ‘Apoptosis in rheumatoid arthritis’, Curr.
Opin. Rheumatol., vol. 15, no. 3, pp. 274-279, May 2003, doi: 10.1097/00002281-
200305000-00015.

[262] P. K. Panagopoulos and G. I. Lambrou, ‘Bone erosions in rheumatoid arthritis:
recent developments in pathogenesis and therapeutic implications’, J. Musculoskelet.
Neuronal Interact., vol. 18, no. 3, pp. 304-319, Sep. 2018.

[263] S. Zhou, H. Lu, and M. Xiong, ‘Identifying Immune Cell Infiltration and Effective
Diagnostic Biomarkers in Rheumatoid Arthritis by Bioinformatics Analysis’, Front.
Immunol., vol. 12, p. 726747, 2021, doi: 10.3389/fimmu.2021.726747.

[264] D. Aletaha and J. S. Smolen, ‘Diagnosis and Management of Rheumatoid Arthritis:
A Review’, JAMA, vol. 320, no. 13, pp. 1360-1372, Oct. 2018, doi:
10.1001/jama.2018.13103.

[265] C. M. Quiiionez-Flores, S. A. Gonzalez-Chavez, and C. Pacheco-Tena, ‘Hypoxia
and its implications in rheumatoid arthritis’, J. Biomed. Sci., vol. 23, no. 1, p. 62, Aug. 2016,
doi: 10.1186/s12929-016-0281-0.

[266] S. E. Sweeney and G. S. Firestein, ‘Rheumatoid arthritis: regulation of synovial
inflammation’, Int. J. Biochem. Cell Biol., vol. 36, no. 3, pp. 372-378, Mar. 2004, doi:
10.1016/s1357-2725(03)00259-0.

[267] S. M. Krane, W. Conca, M. L. Stephenson, E. P. Amento, and M. B. Goldring,
‘Mechanisms of matrix degradation in rheumatoid arthritis’, Ann. N. Y. Acad. Sci., vol. 580,
pp- 340-354, 1990, doi: 10.1111/j.1749-6632.1990.tb17943 x.

[268] U. Steffen, G. Schett, and A. Bozec, ‘How Autoantibodies Regulate Osteoclast

299



Induced Bone Loss in Rheumatoid Arthritis’, Front. Immunol., vol. 10, p. 1483, 2019, doi:
10.3389/fimmu.2019.01483.

[269] C. M. Weyand and J. J. Goronzy, ‘Immunometabolism in early and late stages of
rheumatoid arthritis’, Nat. Rev. Rheumatol., vol. 13, no. 5, pp. 291-301, May 2017, doi:
10.1038/nrrheum.2017.49.

[270] V. Pucino et al., ‘Metabolic Checkpoints in Rheumatoid Arthritis’, Front. Physiol.,
vol. 11, p. 347, 2020, doi: 10.3389/fphys.2020.00347.

[271] J.-W. Kim and C. V. Dang, ‘Multifaceted roles of glycolytic enzymes’, Trends
Biochem. Sci., vol. 30, no. 3, pp. 142-150, Mar. 2005, doi: 10.1016/j.tibs.2005.01.005.
[272] O. Yi et al., ‘Lactate metabolism in rtheumatoid arthritis: Pathogenic mechanisms
and therapeutic intervention with natural compounds’, Phytomedicine Int. J. Phytother.
Phytopharm., vol. 100, p. 154048, Jun. 2022, doi: 10.1016/j.phymed.2022.154048.

[273] M. Zong et al., ‘Glucose-6-phosphate isomerase promotes the proliferation and
inhibits the apoptosis in fibroblast-like synoviocytes in rheumatoid arthritis’, Arthritis Res.
Ther., vol. 17, no. 1, p. 100, Apr. 2015, doi: 10.1186/s13075-015-0619-0.

[274] X.Changand C. Wei, ‘Glycolysis and rheumatoid arthritis’, /nt. J. Rheum. Dis., vol.
14, no. 3, pp. 217-222, Aug. 2011, doi: 10.1111/j.1756-185X.2011.01598.x.

[275] Q. Fang, C. Zhou, and K. S. Nandakumar, ‘Molecular and Cellular Pathways
Contributing to Joint Damage in Rheumatoid Arthritis’, Mediators Inflamm., vol. 2020, p.
3830212, 2020, doi: 10.1155/2020/3830212.

[276] T. Kmiotek and A. Paradowska-Gorycka, ‘miRNAs as Biomarkers and Possible
Therapeutic Strategies in Rheumatoid Arthritis’, Cells, vol. 11, no. 3, p. 452, Jan. 2022, doi:
10.3390/cells11030452.

[277] S. S. Makarov, ‘NF-kappaB in rheumatoid arthritis: a pivotal regulator of
inflammation, hyperplasia, and tissue destruction’, Arthritis Res., vol. 3, no. 4, pp. 200-206,
2001, doi: 10.1186/ar300.

[278] M. Taghadosi, M. Adib, A. Jamshidi, M. Mahmoudi, and E. Farhadi, ‘The p53 status
in rtheumatoid arthritis with focus on fibroblast-like synoviocytes’, Immunol. Res., vol. 69,
no. 3, pp. 225-238, Jun. 2021, doi: 10.1007/s12026-021-09202-7.

[279] F.-Y. Yu et al,, ‘MiR-92a inhibits fibroblast-like synoviocyte proliferation and
migration in theumatoid arthritis by targeting AKT2’, J. Biosci., vol. 43, no. 5, pp. 911-919,
Dec. 2018.

[280] R.Kalluri and M. Zeisberg, ‘Fibroblasts in cancer’, Nat. Rev. Cancer, vol. 6, no. 5,
pp- 392401, May 2006, doi: 10.1038/nrc1877.

[281] L. Monteran and N. Erez, ‘The Dark Side of Fibroblasts: Cancer-Associated
Fibroblasts as Mediators of Immunosuppression in the Tumor Microenvironment’, Front.
Immunol., vol. 10, p. 1835, Aug. 2019, doi: 10.3389/fimmu.2019.01835.

[282] P. Lu, V. M. Weaver, and Z. Werb, ‘The extracellular matrix: a dynamic niche in
cancer progression’, J. Cell Biol., vol. 196, no. 4, pp. 395406, Feb. 2012, doi:
10.1083/jcb.201102147.

[283] C.Han,T.Liu, and R. Yin, ‘Biomarkers for cancer-associated fibroblasts’, Biomark.
Res., vol. 8, no. 1, p. 64, Nov. 2020, doi: 10.1186/s40364-020-00245-w.

[284] X. Chen and E. Song, ‘Turning foes to friends: targeting cancer-associated
fibroblasts’, Nat. Rev. Drug Discov., vol. 18, no. 2, pp. 99-115, Feb. 2019, doi:
10.1038/s41573-018-0004-1.

[285] B. C. Ozdemir et al., ‘Depletion of carcinoma-associated fibroblasts and fibrosis
induces immunosuppression and accelerates pancreas cancer with reduced survival’, Cancer
Cell, vol. 25, no. 6, pp. 719-734, Jun. 2014, doi: 10.1016/j.ccr.2014.04.005.

[286] T.Liu,L.Zhou, D.Li, T. Andl, and Y. Zhang, ‘Cancer-Associated Fibroblasts Build
and Secure the Tumor Microenvironment’, Front. Cell Dev. Biol., vol. 7, 2019, Accessed:
Jul. 0o, 2023. [Online]. Available:
https://www.frontiersin.org/articles/10.3389/fcell.2019.00060

[287] B. Erdogan and D. J. Webb, ‘Cancer-associated fibroblasts modulate growth factor

300



signaling and extracellular matrix remodeling to regulate tumor metastasis’, Biochem. Soc.
Trans., vol. 45, no. 1, pp. 229-236, Feb. 2017, doi: 10.1042/BST20160387.

[288] I. Kim, S. Choi, S. Yoo, M. Lee, and 1.-S. Kim, ‘Cancer-Associated Fibroblasts in
the Hypoxic Tumor Microenvironment’, Cancers, vol. 14, no. 14, p. 3321, Jul. 2022, doi:
10.3390/cancers14143321.

[289] J. Thiery, ‘Modulation of the antitumor immune response by cancer-associated
fibroblasts: mechanisms and targeting strategies to hamper their immunosuppressive
functions’, Explor. Target. Anti-Tumor Ther., vol. 3, no. 5, pp. 598-629, 2022, doi:
10.37349/etat.2022.00103.

[290] I Belhabib, S. Zaghdoudi, C. Lac, C. Bousquet, and C. Jean, ‘Extracellular Matrices
and Cancer-Associated Fibroblasts: Targets for Cancer Diagnosis and Therapy?’, Cancers,
vol. 13, no. 14, p. 3466, Jul. 2021, doi: 10.3390/cancers13143466.

[291] X. Guo et al., ‘Cancer-Associated Fibroblasts Promote Migration and Invasion of
Non-Small Cell Lung Cancer Cells via miR-101-3p Mediated VEGFA Secretion and
AKT/eNOS Pathway’, Front. Cell Dev. Biol., vol. 9, p. 764151, Dec. 2021, doi:
10.3389/fcell.2021.764151.

[292] R.-P. Czekay, D.-J. Cheon, R. Samarakoon, S. M. Kutz, and P. J. Higgins, ‘Cancer-
Associated Fibroblasts: Mechanisms of Tumor Progression and Novel Therapeutic Targets’,
Cancers, vol. 14, no. 5, p. 1231, Feb. 2022, doi: 10.3390/cancers14051231.

[293] Y. Attieh et al., ‘Cancer-associated fibroblasts lead tumor invasion through integrin-
B3—dependent fibronectin assembly’, J. Cell Biol., vol. 216, no. 11, pp. 3509-3520, Nov.
2017, doi: 10.1083/jcb.201702033.

[294] X.-J.Shen et al., ‘Caveolin-1 is a Modulator of Fibroblast Activation and a Potential
Biomarker for Gastric Cancer’, Int. J. Biol. Sci., vol. 11, no. 4, pp. 370-379, Feb. 2015, doi:
10.7150/ijbs.10666.

[295] E. Sahai et al., ‘A framework for advancing our understanding of cancer-associated
fibroblasts’, Nat. Rev. Cancer, vol. 20, no. 3, Art. no. 3, Mar. 2020, doi: 10.1038/s41568-
019-0238-1.

[296] N. Erez, M. Truitt, P. Olson, and D. Hanahan, ‘Cancer-Associated Fibroblasts Are
Activated in Incipient Neoplasia to Orchestrate Tumor-Promoting Inflammation in an NF-
kB-Dependent Manner’, Cancer Cell, vol. 17, no. 2, pp. 135-147, Feb. 2010, doi:
10.1016/j.ccr.2009.12.041.

[297] E.Brouwer et al., ‘Hypoxia inducible factor-1-alpha (HIF-1alpha) is related to both
angiogenesis and inflammation in rheumatoid arthritis’, Clin. Exp. Rheumatol., vol. 27, no.
6, pp- 945-951, 2009.

[298] P. A. Guerne, B. L. Zuraw, J. H. Vaughan, D. A. Carson, and M. Lotz, ‘Synovium
as a source of interleukin 6 in vitro. Contribution to local and systemic manifestations of
arthritis’, J. Clin. Invest., vol. 83, no. 2, pp. 585-592, Feb. 1989, doi: 10.1172/JCI1113921.
[299] 1. A. Gracie et al., ‘A proinflammatory role for IL-18 in rheumatoid arthritis’, J.
Clin. Invest., vol. 104, no. 10, pp. 1393-1401, Nov. 1999, doi: 10.1172/JCI17317.

[300] V. Byrd, X. M. Zhao, W. L. McKeehan, G. G. Miller, and J. W. Thomas,
‘Expression and functional expansion of fibroblast growth factor receptor T cells in
rheumatoid synovium and peripheral blood of patients with rheumatoid arthritis’, Arthritis
Rheum., vol. 39, no. 6, pp. 914-922, Jun. 1996, doi: 10.1002/art.1780390607.

[301T S. Rosengren, M. Corr, and D. L. Boyle, ‘Platelet-derived growth factor and
transforming growth factor beta synergistically potentiate inflammatory mediator synthesis
by fibroblast-like synoviocytes’, Arthritis Res. Ther., vol. 12, no. 2, p. R65, 2010, doi:
10.1186/ar2981.

[302] H. Cheon, S.-J. Yu, D. H. Yoo, 1. J. Chae, G. G. Song, and J. Sohn, ‘Increased
expression of pro-inflammatory cytokines and metalloproteinase-1 by TGF-betal in synovial
fibroblasts from rheumatoid arthritis and normal individuals’, Clin. Exp. Immunol., vol. 127,
no. 3, pp. 547-552, Mar. 2002, doi: 10.1046/j.1365-2249.2002.01785.x.

[303] M. Sen, M. Chamorro, J. Reifert, M. Corr, and D. A. Carson, ‘Blockade of Wnt-

301



5A/frizzled 5 signaling inhibits rheumatoid synoviocyte activation’, Arthritis Rheum., vol.
44, no. 4, pp. 772-781, Apr. 2001, doi: 10.1002/1529-0131(200104)44:4<772::AID-
ANR133>3.0.CO;2-L.

[304] Y.-J. Kwon, S.-W. Lee, Y.-B. Park, S.-K. Lee, and M.-C. Park, ‘Secreted frizzled-
related protein 5 suppresses inflammatory response in rheumatoid arthritis fibroblast-like
synoviocytes through down-regulation of c-Jun N-terminal kinase’, Rheumatol. Oxf. Engl.,
vol. 53, n0. 9, pp. 1704—1711, Sep. 2014, doi: 10.1093/rheumatology/keul 67.

[305] H. Takayanagi et al., ‘Involvement of receptor activator of nuclear factor kB
ligand/osteoclast differentiation factor in osteoclastogenesis from synoviocytes in
rheumatoid arthritis’, Arthritis Rheum., vol. 43, no. 2, pp. 259-269, 2000, doi: 10.1002/1529-
0131(200002)43:2<259::AID-ANR4>3.0.CO;2-W.

[306] S. Kotake ef al., ‘IL-17 in synovial fluids from patients with rheumatoid arthritis is
a potent stimulator of osteoclastogenesis’, J. Clin. Invest., vol. 103, no. 9, pp. 1345-1352,
May 1999, doi: 10.1172/JCI5703.

[307] K. Fukuda, Y. Miura, T. Maeda, S. Hayashi, T. Matsumoto, and R. Kuroda,
‘Expression profiling of genes in rheumatoid fibroblast-like synoviocytes regulated by Fas
ligand via cDNA microarray analysis’, Exp. Ther. Med., vol. 22, no. 3, p. 1000, Sep. 2021,
doi: 10.3892/etm.2021.10432.

[308] L. Nejatbakhsh Samimi, E. Farhadi, M. N. Tahmasebi, A. Jamshidi, A. Sharafat
Vaziri, and M. Mahmoudi, ‘NF-kB signaling in rheumatoid arthritis with focus on fibroblast-
like synoviocytes’, Autoimmun. Highlights, vol. 11, no. 1, p. 11, Aug. 2020, doi:
10.1186/s13317-020-00135-z.

[309] A. Lee et al., ‘“Tumor necrosis factor a induces sustained signaling and a prolonged
and unremitting inflammatory response in theumatoid arthritis synovial fibroblasts’, Arthritis
Rheum., vol. 65, no. 4, pp. 928-938, Apr. 2013, doi: 10.1002/art.37853.

[310] S.Li, Z. Jin, and X. Lu, ‘MicroRNA-192 suppresses cell proliferation and induces
apoptosis in human rheumatoid arthritis fibroblast-like synoviocytes by downregulating
caveolin 1’, Mol. Cell. Biochem., vol. 432, no. 1-2, pp. 123-130, Aug. 2017, doi:
10.1007/s11010-017-3003-3.

[311] M. M. Cerinic et al., ‘Synoviocytes from osteoarthritis and rheumatoid arthritis
produce plasminogen activators and plasminogen activator inhibitor-1 and display u-PA
receptors on their surface’, Life Sci., vol. 63, no. 6, pp. 441-453, 1998, doi: 10.1016/s0024-
3205(98)00293-8.

[312] M. A. Akhavani, L. Madden, 1. Buysschaert, B. Sivakumar, N. Kang, and E. M.
Paleolog, ‘Hypoxia upregulates angiogenesis and synovial cell migration in rheumatoid
arthritis’, Arthritis Res. Ther., vol. 11, no. 3, p. R64, 2009, doi: 10.1186/ar2689.

[313] Y. Lu et al., ‘Glucose-6-Phosphate Isomerase (G6PI) Mediates Hypoxia-Induced
Angiogenesis in Rheumatoid Arthritis’, Sci. Rep., vol. 7, no. 1, Art. no. 1, Jan. 2017, doi:
10.1038/srep40274.

[314] J. D. Caifiete et al., ‘Antiangiogenic effects of anti-tumor necrosis factor alpha
therapy with infliximab in psoriatic arthritis’, Arthritis Rheum., vol. 50, no. 5, pp. 16361641,
May 2004, doi: 10.1002/art.20181.

[315] G. Azizi, R. Boghozian, and A. Mirshafiey, ‘The potential role of angiogenic factors
in rheumatoid arthritis’, Int. J. Rheum. Dis., vol. 17, no. 4, pp. 369-383, May 2014, doi:
10.1111/1756-185X.12280.

[316] H.G. Zhang et al., ‘Gene therapy that inhibits nuclear translocation of nuclear factor
kappaB results in tumor necrosis factor alpha-induced apoptosis of human synovial
fibroblasts’, Arthritis Rheum., vol. 43, no. 5, pp. 1094—1105, May 2000, doi: 10.1002/1529-
0131(200005)43:5<1094::AID-ANR20>3.0.CO;2-V.

[317] T. Pap, U. Miiller-Ladner, R. E. Gay, and S. Gay, ‘Fibroblast biology: Role of
synovial fibroblasts in the pathogenesis of rheumatoid arthritis’, Arthritis Res., vol. 2, no. 5,
pp. 361-367, 2000, doi: 10.1186/ar113.

[318] L. Danks et al., ‘RANKL expressed on synovial fibroblasts is primarily responsible

302



for bone erosions during joint inflammation’, Ann. Rheum. Dis., vol. 75, no. 6, pp. 1187—
1195, Jun. 2016, doi: 10.1136/annrheumdis-2014-207137.

[319] M. A. Shelef, D. A. Bennin, D. F. Mosher, and A. Huttenlocher, ‘Citrullination of
fibronectin modulates synovial fibroblast behavior’, Arthritis Res. Ther., vol. 14, no. 6, p.
R240, 2012, doi: 10.1186/ar4083.

[320] Y. Matsuo et al., ‘Local fibroblast proliferation but not influx is responsible for
synovial hyperplasia in a murine model of rheumatoid arthritis’, Biochem. Biophys. Res.
Commun., vol. 470, no. 3, pp. 504-509, Feb. 2016, doi: 10.1016/j.bbrc.2016.01.121.

[321] F. Hu et al., ‘Hypoxia-inducible factor-lo. perpetuates synovial fibroblast
interactions with T cells and B cells in theumatoid arthritis’, Eur. J. Immunol., vol. 46, no. 3,
pp- 742751, Mar. 2016, doi: 10.1002/¢ji.201545784.

[322] B. Muz, H. Larsen, L. Madden, S. Kiriakidis, and E. M. Paleolog, ‘Prolyl
hydroxylase domain enzyme 2 is the major player in regulating hypoxic responses in
rheumatoid arthritis’, Arthritis Rheum., vol. 64, no. 9, pp. 2856-2867, Sep. 2012, doi:
10.1002/art.34479.

[323] S. Hua and T. H. Dias, ‘Hypoxia-Inducible Factor (HIF) as a Target for Novel
Therapies in Rheumatoid Arthritis’, Front. Pharmacol., vol. 7, p. 184, Jun. 2016, doi:
10.3389/fphar.2016.00184.

[324] H. Matsuno et al., ‘The role of TNF-alpha in the pathogenesis of inflammation and
joint destruction in rheumatoid arthritis (RA): a study using a human RA/SCID mouse
chimera’, Rheumatol. Oxf. Engl, vol. 41, no. 3, pp. 329-337, Mar. 2002, doi:
10.1093/rheumatology/41.3.329.

[325] S. Nakae, S. Saijo, R. Horai, K. Sudo, S. Mori, and Y. Iwakura, ‘IL-17 production
from activated T cells is required for the spontaneous development of destructive arthritis in
mice deficient in IL-1 receptor antagonist’, Proc. Natl. Acad. Sci. U. S. A., vol. 100, no. 10,
pp- 5986-5990, May 2003, doi: 10.1073/pnas.1035999100.

[326] A. Valin et al., ‘IL6/sIL6R regulates TNFa-inflammatory response in synovial
fibroblasts through modulation of transcriptional and post-transcriptional mechanisms’,
BMC Mol. Cell Biol., vol. 21, p. 74, Oct. 2020, doi: 10.1186/s12860-020-00317-7.

[327] J.-Y. Wu et al., ‘Chrysoeriol suppresses hyperproliferation of rheumatoid arthritis
fibroblast-like synoviocytes and inhibits JAK2/STAT3 signaling’, BMC Complement. Med.
Ther., vol. 22, p. 73, Mar. 2022, doi: 10.1186/s12906-022-03553-w.

[328] S.-Y. Hwang et al., ‘IL-17 induces production of IL-6 and IL-8 in rheumatoid
arthritis synovial fibroblasts via NF-kB- and PI3-kinase/Akt-dependent pathways’, Arthritis
Res. Ther., vol. 6, no. 2, pp. R120-R128, 2004, doi: 10.1186/ar1038.

[329] 1. K. Ahn et al, ‘Role of hypoxia-inducible factor-lalpha in hypoxia-induced
expressions of IL-8, MMP-1 and MMP-3 in rheumatoid fibroblast-like synoviocytes’,
Rheumatol. Oxf. Engl., vol. 47, no. 6, pp. 834-839, Jun. 2008, doi:
10.1093/rheumatology/ken086.

[330] S. A. Agere, N. Akhtar, J. M. Watson, and S. Ahmed, ‘RANTES/CCL5 Induces
Collagen Degradation by Activating MMP-1 and MMP-13 Expression in Human
Rheumatoid Arthritis Synovial Fibroblasts’, Front. Immunol., vol. 8, p. 1341, 2017, doi:
10.3389/fimmu.2017.01341.

[331] M. Xue et al., ‘Endogenous MMP-9 and not MMP-2 promotes rheumatoid synovial
fibroblast survival, inflammation and cartilage degradation’, Rheumatol. Oxf. Engl., vol. 53,
no. 12, pp. 2270-2279, Dec. 2014, doi: 10.1093/rheumatology/keu254.

[332] B. Bartok and G. S. Firestein, ‘Fibroblast-like synoviocytes: key effector cells in
rheumatoid arthritis’, Immunol. Rev., vol. 233, no. 1, pp. 233-255, Jan. 2010, doi:
10.1111/.0105-2896.2009.00859.x.

[333] L. Magyari et al., ‘Interleukins and interleukin receptors in rheumatoid arthritis:
Research, diagnostics and clinical implications’, World J. Orthop., vol. 5, no. 4, pp. 516—
536, Sep. 2014, doi: 10.5312/wjo.v5.i14.516.

[334] P. S. Burrage, K. S. Mix, and C. E. Brinckerhoff, ‘Matrix metalloproteinases: role

303



in arthritis’, Front. Biosci. J. Virtual Libr., vol. 11, pp. 529-543, Jan. 2006, doi:
10.2741/1817.

[335] S. M. Jung, K. W. Kim, C.-W. Yang, S.-H. Park, and J. H. Ju, ‘Cytokine-mediated
bone destruction in rtheumatoid arthritis’, J. Immunol. Res., vol. 2014, p. 263625, 2014, doi:
10.1155/2014/263625.

[336] M. Harada et al., ‘Vascular endothelial growth factor in patients with rheumatoid
arthritis’, Scand. J.  Rheumatol., vol. 27, mno. 5, pp. 377-380, 1998, doi:
10.1080/03009749850154429.

[337] E. Berra, E. Benizri, A. Ginouves, V. Volmat, D. Roux, and J. Pouysségur, ‘HIF
prolyl-hydroxylase 2 is the key oxygen sensor setting low steady-state levels of HIF-1a in
normoxia’, EMBO J., vol. 22, no. 16, pp. 40824090, Aug. 2003, doi:
10.1093/emboj/cdg392.

[338] D. Trisciuoglio, A. Iervolino, G. Zupi, and D. Del Bufalo, ‘Involvement of PI3K
and MAPK signaling in bcl-2-induced vascular endothelial growth factor expression in
melanoma cells’, Mol. Biol. Cell, vol. 16, no. 9, pp. 4153—4162, Sep. 2005, doi:
10.1091/mbc.e04-12-1087.

[339] C.-M. Zhang, J. Zhao, and H.-Y. Deng, ‘MiR-155 promotes proliferation of human
breast cancer MCF-7 cells through targeting tumor protein 53-induced nuclear protein 1°, J.
Biomed. Sci., vol. 20, no. 1, p. 79, Oct. 2013, doi: 10.1186/1423-0127-20-79.

[340] “Cancers | Free Full-Text | Cancer-Associated Fibroblasts in Breast Cancer
Treatment Response and Metastasis’. https://www.mdpi.com/2072-6694/13/13/3146
(accessed Jul. 06, 2023).

[341] C. Guido et al., “Metabolic reprogramming of cancer-associated fibroblasts by TGF-
B drives tumor growth’, Cell Cycle, vol. 11, no. 16, pp. 3019-3035, Aug. 2012, doi:
10.4161/cc.21384.

[342] M. F. Santolla et al., ‘miR-221 stimulates breast cancer cells and cancer-associated
fibroblasts (CAFs) through selective interference with the A20/c-Rel/CTGF signaling’, J.
Exp. Clin. Cancer Res. CR, vol. 37, no. 1, p. 94, May 2018, doi: 10.1186/s13046-018-0767-
6.

[343] A. Bronisz ef al., ‘Reprogramming of the tumour microenvironment by stromal
PTEN-regulated miR-320’, Nat. Cell Biol., vol. 14, no. 2, pp. 159-167, Dec. 2011, doi:
10.1038/ncb2396.

[344] S. Wen et al., ‘Cancer-associated fibroblast (CAF)-derived IL32 promotes breast
cancer cell invasion and metastasis via integrin f3-p38 MAPK signalling’, Cancer Lett., vol.
442, pp. 320-332, Feb. 2019, doi: 10.1016/j.canlet.2018.10.015.

[345] L. Xiang, Z. Song, and G. Rong, ‘Taxotere-induced WNT16 Expression in
Carcinoma-Associated Fibroblasts Might Associate with Progression and Chemoresistance
of Breast Cancer’, Ann. Clin. Lab. Sci., vol. 50, no. 2, pp. 205-212, Mar. 2020.

[346] P. De Marco et al., ‘GPER signalling in both cancer-associated fibroblasts and
breast cancer cells mediates a feedforward IL1B/IL1R1 response’, Sci. Rep., vol. 6, p. 24354,
Apr. 2016, doi: 10.1038/srep24354.

[347] S. Jansson et al., ‘The PDGF pathway in breast cancer is linked to tumour
aggressiveness, triple-negative subtype and early recurrence’, Breast Cancer Res. Treat., vol.
169, no. 2, pp. 231-241, Jun. 2018, doi: 10.1007/s10549-018-4664-7.

[348] F. Pelon et al., ‘Cancer-associated fibroblast heterogeneity in axillary lymph nodes
drives metastases in breast cancer through complementary mechanisms’, Nat. Commun., vol.
11, no. 1, p. 404, Jan. 2020, doi: 10.1038/s41467-019-14134-w.

[349] J.Suh, D.-H. Kim, Y.-H. Lee, J.-H. Jang, and Y.-J. Surh, ‘Fibroblast growth factor-
2, derived from cancer-associated fibroblasts, stimulates growth and progression of human
breast cancer cells via FGFR1 signaling’, Mol. Carcinog., vol. 59, n0. 9, pp. 1028-1040, Sep.
2020, doi: 10.1002/mc.23233.

[350] N.Erez, S. Glanz, Y. Raz, C. Avivi, and 1. Barshack, ‘Cancer associated fibroblasts
express pro-inflammatory factors in human breast and ovarian tumors’, Biochem. Biophys.

304



Res. Commun., vol. 437, no. 3, pp. 397-402, Aug. 2013, doi: 10.1016/j.bbrc.2013.06.089.
[351] P. Chen, Q. Mo, B. Wang, D. Weng, P. Wu, and G. Chen, ‘Breast cancer associated
fibroblasts promote MCF-7 invasion in vitro by secretion of HGF’, J. Huazhong Univ. Sci.
Technol. Med. Sci. Hua Zhong Ke Ji Xue Xue Bao Yi Xue Ying Wen Ban Huazhong Keji
Daxue Xuebao Yixue Yingdewen Ban, vol. 32, no. 1, pp. 92-96, Feb. 2012, doi:
10.1007/s11596-012-0016-8.

[352] W. Chen et al., ‘Crosstalk between TGF-p signaling and miRNAs in breast cancer
metastasis’, Tumor Biol., vol. 37, no. §, pp. 10011-10019, Aug. 2016, doi: 10.1007/s13277-
016-5060-8.

[353] A. M. Araujo ef al, ‘Stromal oncostatin M cytokine promotes breast cancer
progression by reprogramming the tumor microenvironment’, J. Clin. Invest., vol. 132, no.
7, p- 148667, Apr. 2022, doi: 10.1172/JC1148667.

[354] G. Murphy et al., ‘Mechanisms for pro matrix metalloproteinase activation’, APMIS
Acta Pathol. Microbiol. Immunol. Scand., vol. 107, no. 1, pp. 3844, Jan. 1999, doi:
10.1111/.1699-0463.1999.tb01524 x.

[355] M. Jo, R. D. Lester, V. Montel, B. Eastman, S. Takimoto, and S. L. Gonias,
‘Reversibility of epithelial-mesenchymal transition (EMT) induced in breast cancer cells by
activation of urokinase receptor-dependent cell signaling’, J. Biol. Chem., vol. 284, no. 34,
pp. 22825-22833, Aug. 2009, doi: 10.1074/jbc.M109.023960.

[356] W. Zhang et al., ‘CXCL5/CXCR2 axis in tumor microenvironment as potential
diagnostic biomarker and therapeutic target’, Cancer Commun. Lond. Engl., vol. 40, no. 2—
3, pp- 69-80, Mar. 2020, doi: 10.1002/cac2.12010.

[357] R. M. Balliet et al., ‘Mitochondrial oxidative stress in cancer-associated fibroblasts
drives lactate production, promoting breast cancer tumor growth: understanding the aging
and cancer connection’, Cell Cycle Georget. Tex, vol. 10, no. 23, pp. 4065—4073, Dec. 2011,
doi: 10.4161/cc.10.23.18254.

[358] L. W.S. Finley and M. C. Haigis, ‘Metabolic regulation by SIRT3: implications for
tumorigenesis’, Trends Mol. Med., vol. 18, no. 9, pp. 516-523, Sep. 2012, doi:
10.1016/j.molmed.2012.05.004.

[359] M. C. Haigis, C.-X. Deng, L. W. S. Finley, H.-S. Kim, and D. Gius, ‘SIRT3 is a
mitochondrial tumor suppressor: a scientific tale that connects aberrant cellular ROS, the
Warburg effect, and carcinogenesis’, Cancer Res., vol. 72, no. 10, pp. 2468-2472, May 2012,
doi: 10.1158/0008-5472.CAN-11-3633.

[360] A. Orimo et al., ‘Stromal fibroblasts present in invasive human breast carcinomas
promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion’, Cell,
vol. 121, no. 3, pp. 335-348, May 2005, doi: 10.1016/j.cell.2005.02.034.

[361] J. Winkler, A. Abisoye-Ogunniyan, K. J. Metcalf, and Z. Werb, ‘Concepts of
extracellular matrix remodelling in tumour progression and metastasis’, Nat. Commun., vol.
11, no. 1, p. 5120, Oct. 2020, doi: 10.1038/s41467-020-18794-x.

[362] Y.-E.Duetal., ‘MiR-205/YAP1 in Activated Fibroblasts of Breast Tumor Promotes
VEGF-independent Angiogenesis through STAT3 Signaling’, Theranostics, vol. 7, no. 16,
pp- 3972-3988, 2017, doi: 10.7150/thno.18990.

[363] M. J. Del Rey et al., ‘Hif-1a Knockdown Reduces Glycolytic Metabolism and
Induces Cell Death of Human Synovial Fibroblasts Under Normoxic Conditions’, Sci. Rep.,
vol. 7, no. 1, p. 3644, Jun. 2017, doi: 10.1038/s41598-017-03921-4.

[364] K. Sun et al., ‘Oxidized ATM-mediated glycolysis enhancement in breast cancer-
associated fibroblasts contributes to tumor invasion through lactate as metabolic coupling’,
EBioMedicine, vol. 41, pp. 370-383, Mar. 2019, doi: 10.1016/j.ebiom.2019.02.025.

[365] K.M. Perrott, C. D. Wiley, P.-Y. Desprez, and J. Campisi, ‘Apigenin suppresses the
senescence-associated secretory phenotype and paracrine effects on breast cancer cells’,
GeroScience, vol. 39, no. 2, pp. 161-173, Apr. 2017, doi: 10.1007/s11357-017-9970-1.
[366] A.J. Trimboli et al., ‘Pten in stromal fibroblasts suppresses mammary epithelial
tumours’, Nature, vol. 461, no. 7267, pp. 1084—1091, Oct. 2009, doi: 10.1038/naturc08486.

305



[367] Q. Zhang, L. Lei, and D. Jing, ‘Knockdown of SERPINEI1 reverses resistance of
triple-negative breast cancer to paclitaxel via suppression of VEGFA’, Oncol. Rep., vol. 44,
no. 5, pp. 1875-1884, Nov. 2020, doi: 10.3892/0r.2020.7770.

[368] J. H. Kim et al, ‘Calsequestrin 2 overexpression in breast cancer increases
tumorigenesis and metastasis by modulating the tumor microenvironment’, Mol. Oncol., vol.
16, no. 2, pp. 466484, Jan. 2022, doi: 10.1002/1878-0261.13136.

[369] C. F. Singer et al., ‘MMP-2 and MMP-9 Expression in Breast Cancer-Derived
Human Fibroblasts is Differentially Regulated by Stromal-Epithelial Interactions’, Breast
Cancer Res. Treat., vol. 72, no. 1, pp. 69-77, Mar. 2002, doi: 10.1023/A:10149185125609.
[370] P. Fernandez-Nogueira, G. Fuster, A. Gutierrez-Uzquiza, P. Gascon, N. Carbo, and
P. Bragado, ‘Cancer-Associated Fibroblasts in Breast Cancer Treatment Response and
Metastasis’, Cancers, vol. 13, no. 13, Art. no. 13, Jan. 2021, doi: 10.3390/cancers13133146.
[371] Z. Fasoulakis, G. Kolios, V. Papamanolis, and E. N. Kontomanolis, ‘Interleukins
Associated with Breast Cancer’, Cureus, vol. 10, no. 11, p. €3549, Nov. 2018, doi:
10.7759/cureus.3549.

[372] B. Chiavarina et al., ‘HIF 1-alpha functions as a tumor promoter in cancer associated
fibroblasts, and as a tumor suppressor in breast cancer cells: Autophagy drives compartment-
specific oncogenesis’, Cell Cycle Georget. Tex, vol. 9, no. 17, pp. 3534-3551, Sep. 2010,
doi: 10.4161/cc.9.17.12908.

[373] D. Fukumura et al., ‘Tumor induction of VEGF promoter activity in stromal cells’,
Cell, vol. 94, no. 6, pp. 715-725, Sep. 1998, doi: 10.1016/s0092-8674(00)81731-6.

[374] Y. Ruan, H. Ogana, E. Gang, H. N. Kim, and Y.-M. Kim, ‘Wnt Signaling in the
Tumor Microenvironment’, Adv. Exp. Med. Biol., vol. 1270, pp. 107-121, 2021, doi:
10.1007/978-3-030-47189-7 7.

[375] L.1J. Hofland, B. van der Burg, C. H. J. van Eijck, D. M. Sprij, P. M. van Koetsveld,
and S. W. J. Lamberts, ‘Role of tumor-derived fibroblasts in the growth of primary cultures
of human breast-cancer cells: Effects of epidermal growth factor and the somatostatin
analogue octreotide’, Int. J. Cancer, vol. 60, no. 1, pp. 93-99, 1995, doi:
10.1002/ijc.2910600114.

[376] N. Willumsen et al., ‘Fibrotic activity quantified in serum by measurements of type
IIT collagen pro-peptides can be used for prognosis across different solid tumor types’, Cell.
Mol. Life Sci., vol. 79, no. 4, p. 204, Mar. 2022, doi: 10.1007/s00018-022-04226-0.

[377] D. Katoh, Y. Kozuka, A. Noro, T. Ogawa, K. Imanaka-Yoshida, and T. Yoshida,
‘Tenascin-C Induces Phenotypic Changes in Fibroblasts to Myofibroblasts with High
Contractility through the Integrin avpl/Transforming Growth Factor f/SMAD Signaling
Axis in Human Breast Cancer’, Am. J. Pathol., vol. 190, no. 10, pp. 2123-2135, Oct. 2020,
doi: 10.1016/j.ajpath.2020.06.008.

[378] J.Yang et al., ‘Glycolysis reprogramming in cancer-associated fibroblasts promotes
the growth of oral cancer through the IncRNA HI19/miR-675-5p/PFKFB3 signaling
pathway’, Int. J. Oral Sci., vol. 13, no. 1, p. 12, Mar. 2021, doi: 10.1038/s41368-021-00115-
7.

[379] Z. Li, C. Sun, and Z. Qin, ‘Metabolic reprogramming of cancer-associated
fibroblasts and its effect on cancer cell reprogramming’, Theranostics, vol. 11, no. 17, pp.
8322-8336, Jul. 2021, doi: 10.7150/thno.62378.

[380] E.J.Pearceand E. L. Pearce, ‘Driving immunity: all roads lead to metabolism’, Nat.
Rev. Immunol., vol. 18, no. 2, Art. no. 2, Feb. 2018, doi: 10.1038/nri.2017.139.

[381] A.-L. Barabasi and Z. N. Oltvai, ‘Network biology: understanding the cell’s
functional organization’, Nat. Rev. Genet., vol. 5, no. 2, pp. 101-113, Feb. 2004, doi:
10.1038/nrg1272.

[382] R. W. Kinne, R. Briuer, B. Stuhlmiiller, E. Palombo-Kinne, and G.-R. Burmester,
‘Macrophages in rheumatoid arthritis’, Arthritis Res., vol. 2, no. 3, pp. 189-202, 2000, doi:
10.1186/ar86.

[383] X. Yang, Y. Chang, and W. Wei, ‘Emerging role of targeting macrophages in

306



rheumatoid arthritis: Focus on polarization, metabolism and apoptosis’, Cell Prolif., vol. 53,
no. 7, p. €12854, Jun. 2020, doi: 10.1111/cpr.12854.

[384] M. Otero and M. B. Goldring, ‘Cells of the synovium in rheumatoid arthritis.
Chondrocytes’, Arthritis Res. Ther., vol. 9, no. 5, p. 220, Oct. 2007, doi: 10.1186/ar2292.
[385] C.-C. Tseng et al., ‘Dual Role of Chondrocytes in Rheumatoid Arthritis: The
Chicken and the Egg’, Int. J. Mol Sci., vol. 21, no. 3, p. 1071, Feb. 2020, doi:
10.3390/ijms21031071.

[386] G.-X. Ruan and A. Kazlauskas, ‘Lactate engages receptor tyrosine kinases Axl,
Tie2, and vascular endothelial growth factor receptor 2 to activate phosphoinositide 3-
kinase/Akt and promote angiogenesis’, J. Biol. Chem., vol. 288, no. 29, pp. 21161-21172,
Jul. 2013, doi: 10.1074/jbc.M113.474619.

[387] U. Fearon, M. M. Hanlon, A. Floudas, and D. J. Veale, ‘Cellular metabolic
adaptations in rheumatoid arthritis and their therapeutic implications’, Nat. Rev. Rheumatol.,
vol. 18, no. 7, pp. 398414, Jul. 2022, doi: 10.1038/s41584-022-00771-x.

[388] L. Xu et al., ‘Metabolomics in rtheumatoid arthritis: Advances and review’, Front.
Immunol., vol. 13, p. 961708, Aug. 2022, doi: 10.3389/fimmu.2022.961708.

[389] O. Kolliniati, E. Ieronymaki, E. Vergadi, and C. Tsatsanis, ‘Metabolic Regulation
of Macrophage Activation’, J. Innate Immun., vol. 14, no. 1, pp. 51-68, Jul. 2021, doi:
10.1159/000516780.

[390] S. Cohen, K. Danzaki, and N. J. Maclver, ‘Nutritional effects on T-cell
immunometabolism’, Eur. J. Immunol., vol. 47, no. 2, pp. 225-235, Feb. 2017, doi:
10.1002/ji.201646423.

[391] T. Gaber, R. Dziurla, R. Tripmacher, G. R. Burmester, and F. Buttgereit, ‘Hypoxia
inducible factor (HIF) in rheumatology: low O2! See what HIF can do!’, Ann. Rheum. Dis.,
vol. 64, no. 7, pp. 971-980, Jul. 2005, doi: 10.1136/ard.2004.031641.

[392] N. C. Denko, ‘Hypoxia, HIF1 and glucose metabolism in the solid tumour’, Nat.
Rev. Cancer, vol. 8, no. 9, pp. 705-713, Sep. 2008, doi: 10.1038/nrc2468.

[393] L. Liang et al.,, “Reverse Warburg effect” of cancer-associated fibroblasts
(Review)’, Int. J. Oncol., vol. 60, no. 6, p. 67, Jun. 2022, doi: 10.3892/ij0.2022.5357.

[394] B. Mugz, P. de la Puente, F. Azab, and A. K. Azab, ‘The role of hypoxia in cancer
progression, angiogenesis, metastasis, and resistance to therapy’, Hypoxia, vol. 3, pp. 83-92,
Dec. 2015, doi: 10.2147/HP.S93413.

[395] O. Warburg, ‘On the Origin of Cancer Cells’, Science, vol. 123, no. 3191, pp. 309—
314, Feb. 1956, doi: 10.1126/science.123.3191.309.

[396] X. Yi, M. Qi, M. Huang, S. Zhou, and J. Xiong, ‘Honokiol Inhibits HIF-1a-
Mediated Glycolysis to Halt Breast Cancer Growth’, Front. Pharmacol., vol. 13, 2022,
Accessed: Jul. 08, 2023. [Online]. Available:
https://www.frontiersin.org/articles/10.3389/fphar.2022.796763

[397] A. Pagani et al., ‘Deferiprone Stimulates Aged Dermal Fibroblasts via HIF-1a
Modulation’, Aesthet. Surg. J., vol. 41, no. 4, pp. 514-524, Apr. 2021, doi:
10.1093/asj/sjaal4?2.

[398] A.XiongandY. Liu, ‘Targeting Hypoxia Inducible Factors-1a As a Novel Therapy
in Fibrosis’, Front. Pharmacol., vol. 8, 2017, Accessed: Jul. 08, 2023. [Online]. Available:
https://www.frontiersin.org/articles/10.3389/fphar.2017.00326

307



308



SCIENTIFIC COMMUNICATIONS

PUBLICATIONS

Aghakhani, S; Zerrouk, N; Niarakis, A. Metabolic reprogramming of

fibroblasts as therapeutic target in rheumatoid arthritis and cancer:
deciphering key mechanisms using computational systems biology

approaches. Cancers 2021, 13, 35. https://doi.org/10.3390/cancers13010035.

Zerrouk, N*; Aghakhani, S*; Singh, V; Augé, F; Niarakis, A. A mechanistic

cellular atlas of the rheumatic joint. Frontiers in Systems Biology

2022, 2:925791. https://10.3389/fsysb.2022.925791.

Aghakhani, S; E Silva Saffar, Sacha; Soliman, S; Niarakis, A. Metabolic

reprogramming in rheumatoid arthritis synovial fibroblasts: a hybrid
modeling approach. PLoS Computational Biology 2022, 18(12): e1010408.
https://doi.org/10.1371/journal.pcbi.1010408.

Aghakhani, S; E Silva Saffar, Sacha; Soliman, S; Niarakis, A. Hybrid

computational modeling highlights reverse Warburg effect in breast cancer-

associated fibroblasts. Computational and Structural Biotechnology Journal.

2023. https://doi.org/10.1016/j.csbj.2023.08.015.

Aghakhani, S; Niarakis, A; Soliman, S. MetalLo: Metabolic analysis of

Logical models extracted from molecular interaction maps. Under

preparation.

POSTERS

Aghakhani, S; Soliman, S; Niarakis, A. Fibroblasts as therapeutic targets:

computational modeling of metabolic reprogramming in rheumatoid arthritis

309


https://doi.org/10.3390/cancers13010035
https://10.0.13.61/fsysb.2022.925791
https://doi.org/10.1371/journal.pcbi.1010408
https://doi.org/10.1016/j.csbj.2023.08.015

synovial fibroblasts and cancer-associated fibroblasts. Computational

Systems Biology of Cancer 2020, online.

Aghakhani, S; Soliman, S; Niarakis, A. Computational modeling of the

metabolic reprogramming in rheumatoid arthritis synovial fibroblasts and
cancer-associated fibroblasts. 5" Disease Map Community Meeting 2020,

online. https://doi.org/10.5281/zenodo.4267832

Aghakhani, S; Soliman, S; Niarakis, A. Computational modeling of the

metabolic reprogramming in rheumatoid arthritis synovial fibroblasts. 6"

Disease Map Community Meeting 2021, online.

Aghakhani, S; Soliman, S; Niarakis, A. Metabolic reprogramming in

rheumatoid arthritis synovial fibroblasts: a hybrid modeling approach.

European Conference on Computational Biology 2022, Sitges (Spain).

Zerrouk, N*; Aghakhani, S*; Singh, V; Augé, F; Niarakis, A. A multicellular

atlas of the rheumatic joint. European Conference on Computational Biology

2022, Sitges (Spain).

Aghakhani, S; E Silva Saffar, S; Soliman, S; Niarakis, A. A large-scale

hybrid model to study metabolic reprogramming in cancer-associated

fibroblasts. ONCOLille Days 2022, Lille (France).

ORAL COMMUNICATION

Aghakhani, S; Niarakis, A; Soliman, S. Metabolic analysis of logical models
infered from molecular interaction maps. Building Immune Digital Twins,

2023, Orsay (France).

310


https://doi.org/10.5281/zenodo.4267832

311



	Acknowledgements
	Résumé en français
	Table of contents
	List of figures
	List of tables
	1 Introduction
	1.1 Immunometabolism, an emerging field in cellular biology
	1.1.1 When immunity meets metabolism
	1.1.2 Metabolic reprogramming as an alternative pathway for cells with aggressive phenotypes

	1.2 Metabolic reprogramming at the heart of complex diseases
	1.2.1 The use-case of cancerous diseases
	1.2.1.1 Physiopathology of cancer
	1.2.1.2 Etiology and treatment of cancer
	1.2.1.3 Cancer-associated fibroblasts, key players of the tumor microenvironment
	1.2.1.4 Metabolic reprogramming of cancer-associated fibroblasts in the tumor microenvironment

	1.2.2 The use-case of an autoimmune disease: rheumatoid arthritis
	1.2.2.1 Physiopathology of rheumatoid arthritis
	1.2.2.2 Etiology and treatment of rheumatoid arthritis
	1.2.2.3 Rheumatoid arthritis synovial fibroblasts, key players of the rheumatic joint
	1.2.2.4 Metabolic reprogramming of rheumatoid arthritis synovial fibroblasts in the rheumatic joint


	1.3 Contributions of computational approaches in unraveling multilayer biological mechanisms
	1.3.1 Molecular interaction maps as static knowledge bases
	1.3.2 Computational modeling to unravel dynamic properties
	1.3.3 Hybrid modeling to decipher integrated processes


	2 Objectives of the PhD thesis
	3 Methods
	3.1 Construction of molecular interaction maps
	3.1.1 Common strategy and standards for the construction of the RA-map V2 and CAF-map V2
	3.1.1.1 Molecular interaction map layout
	3.1.1.2 Molecular interaction map curation
	3.1.1.3 Molecular interaction map annotation
	3.1.1.4 Molecular interaction map visualization and accessibility
	3.1.1.5 Molecular interaction maps evaluation
	3.1.1.6 Molecular interaction maps topological analysis

	3.1.2 Construction of the RA-map V2
	3.1.3 Construction of the CAF-map V2

	3.2 Inference of cell- and disease-specific regulatory Boolean models
	3.2.1 Common strategy for inference of the RASFs and breast CAFs regulatory Boolean models
	3.2.1.1 The CaSQ map-to-model framework
	3.2.1.2 Boolean regulatory model visualization and accessibility
	3.2.1.3 Regulatory behavior validation

	3.2.2 Inference of the regulatory Boolean RASF model
	3.2.3 Inference of the regulatory Boolean breast CAF model

	3.3 Coupling of cell- and disease-specific regulatory models with a generic human metabolic network
	3.3.1 Metabolic network of choice
	3.3.2 Framework for hybrid modeling
	3.3.3 Identification of regulatory driver(s)
	3.3.4 Python packaging of the hybrid modeling framework


	4 Results
	4.1 State-of-the-art knowledge bases in the form of molecular interaction maps
	4.1.1 The RA-map V2, a comprehensive graphical representation of RA pathogenesis
	4.1.2 The CAF-map V2, a comprehensive graphical representation of CAFs involvement in the TME

	4.2 Large-scale Boolean regulatory models for dynamic analysis
	4.2.1 The RASF model, an executable model of RASFs pathogenic activity in the RA joint
	4.2.2 The breast CAF model, an executable model of CAFs pathogenic activity in the breast TME

	4.3 Cell- and disease-specific hybrid models to cover an additional biological layer
	4.3.1 The RASF hybrid model, an integrated dynamic overview of cell-specific pathogenic signaling, gene regulation and metabolism in the RA joint
	4.3.2 The breast CAF hybrid model, an integrated dynamic overview of cell-specific pathogenic signaling, gene regulation and metabolism in the TME
	4.3.3 MetaLo, a Python package for metabolic analysis of logical models infered from molecular interaction maps


	5 Discussion
	6 Perspectives
	7 Conclusion
	Appendices
	Bibliography
	Scientific communications
	Publications
	Posters
	Oral communication




