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This thesis is mainly based on papers I have co-authored, published in peer-reviewed journals [START_REF] Bernard | Gravitational waves in scalar-tensor theory to one-and-a-half post-Newtonian order[END_REF][START_REF] Trestini | The quadrupole moment of compact binaries to the fourth post-Newtonian order: relating the harmonic and radiative metrics[END_REF][START_REF] Trestini | Gravitational-wave tails of memory[END_REF][START_REF] Blanchet | Gravitational-Wave Phasing of Quasicircular Compact Binary Systems to the Fourth-and-a-Half Post-Newtonian Order[END_REF][START_REF] Blanchet | Gravitational-wave flux and quadrupole modes from quasicircular nonspinning compact binaries to the fourth post-Newtonian order[END_REF] and conference proceedings [START_REF] Trestini | Gravitational waves in scalar-tensor theory to one-and-a-half post-Newtonian order[END_REF][START_REF] Trestini | Gravitational-wave tails of memory at 4PN order[END_REF][START_REF] Blanchet | Gravitational waves from compact binaries to the fourth post-Newtonian order[END_REF]. The following material was particularly useful when writing this thesis: [START_REF] Landau | The classical theory of fields[END_REF][START_REF] Misner | Gravitation[END_REF][START_REF] Maggiore | Theory and experiments[END_REF][START_REF] Poisson | Gravity: Newtonian, post-Newtonian, relativistic[END_REF][START_REF] Blanchet | Gravitational Radiation from Post-Newtonian Sources and Inspiralling Compact Binaries[END_REF]. Many results were obtained using Mathematica [15], and in particular the xAct library [START_REF] Martín-García | xAct: Efficient tensor computer algebra for Mathematica[END_REF].

Among all the forces of nature, gravity is the only one for which we have a natural physical intuition. Our inability to free ourselves from it led humanity to consider the inaccessible sky as the firmament of the gods. Thus, it is because of gravity that there has long been a dichotomy between our understanding of the laws that govern our familiar terrestrial world and the patterns we observe in the distant sky. Despite unquestionable progress which has been made throughout the centuries 1 in astronomy and on the free fall of bodies on Earth, we owe the first visionary breakthrough to Isaac Newton, who understood in his Philosophiae Naturalis Principia Mathematica [START_REF] Newton | Philosophiae Naturalis Principia Mathematica[END_REF] that these two seemingly unrelated systems were in fact governed by the same universal laws of gravitation, associated with a universal constant of gravitation G = 6.67 × 10 -11 m 3 kg -1 s -2 : I began to think of gravity extending to the Orb of the Moon, and having found out how to estimate the force with which a globe revolving within a sphere presses the surface of the sphere. From Kepler's Rule of the periodical times of the Planets, I deduced that the forces which keep the Planets in their Orbs must be reciprocally as the squares of their distances from the centres about which they revolve: and thereby compared the force requisite to keep the Moon in her Orb with the force of gravity at the surface of the Earth, and found them to answer pretty nearly.

-Isaac Newton Although Newton was somewhat unconvinced by the metaphysics of his theory 2 , it was immediately a major success. Despite the extreme simplicity of the formulation of 1 By René Descartes, Johannes Kepler, Tycho Brahe, Galileo Galilei, etc. etc. 2 Although he was fully satisfied with the accuracy of the predictions of his theory, Newton could not fathom the metaphysical cause of gravity's action at a distance, as he expresses in a letter to Richard Bentley:

That one body may act upon another at a distance through a vacuum without the mediation of anything else, by and through which their action and force may be conveyed from one ix x Introduction: A historical perspective this law, its effect was to yield extremely accurate predictions for the motion of solar system bodies, as worked out using perturbation theory by Pierre-Simon de Laplace in his Traité de mécanique céleste [START_REF] De Laplace | Traité de mécanique céleste[END_REF]. The epitome of this success was the prediction of the existence of a eighth planet by Urbain Le Verrier (and independently by John Couch Adams) in order to explain the small but systematic discrepancy between the orbit of Uranus and the predictions of Newton's laws of gravitation. The exact position of the putative planet was transmitted by Le Verrier to the German astronomer Johann Galle, who observed Neptune at the predicted location on September 23, 1846.

The simplicity of Newton's law of gravitation encouraged scientists to explain other, more elusive, phenomena with the help of similar methods. Indeed, static electricity had been observed by Thales of Miletus as early as 600 BC on amber rods 3 , but it was only much later, and after many preliminary works, that Charles-Augustin de Coulomb published the Mémoires sur l'Électricité et le Magnétisme [START_REF] De Coulomb | Mémoires sur l'Électricité et le Magnétisme[END_REF], which predicted that two (macroscopic) bodies with some charges should undergo a force that varies as the inverse square of the distance, in perfect analogy with Newton's law of gravitation. At the time, the electric force was seen as totally separate from magnetism, which was commonly used for navigation since the Middle Ages. Back then, the only known kind of magnetism was ferromagnetism, and one only studied the interaction of ferromagnets with each other and with the Earth's magnetic field, in devices such as compasses. However, when Hans Christian Ørsted accidentally discovered that a compass would twitch near an electric wire, it was understood that these two theories were linked. André-Marie Ampère, Carl Friedrich Gauß, Jean-Baptiste Biot and Félix Savart discovered how electric charges in motion, i.e. an electric current, gave rise to a magnetic field; conversely, Michael Faraday found how the variation of the magnetic field could induce an electric current in a wire. The major milestone in the field was the unification of all of these theories by James Clerk Maxwell in A dynamical theory of the electromagnetic field [START_REF] Maxwell | A dynamical theory of the electromagnetic field[END_REF]. The theory of electromagnetism does not only encompass the interactions between the electric and magnetic fields, but also explains the finite-speed propagation of light as an electromagnetic field in vacuum. It was indeed known from Ole Christensen Rømer's 1675 observation of the moons of Jupiter [START_REF] Rømer | Démonstration touchant le mouvement de la lumière trouvé par M[END_REF] (following the suggestion by Giovanni Domenico Cassini) and from Christiaan Huygens's theoretical computation [START_REF] Huygens | Traité de la Lumière[END_REF] that the speed of light should be finite, and was measured at the time to be approximately 220,000 km/s (instead of 299,792.458 km/s).

Although electromagnetism was extremely successful, the fact that the speed of light was a constant of the theory created a theoretical crisis: suppose light was propagating in a certain direction, then an inertial observer following the light in the same direction should see the light with vanishing propagation speed. This is clearly in contradiction with the universal speed of light predicted by Maxwell's theory. Moreover, it seemed incongruous for light waves to travel in vacuum, since all known waves travel in a medium, and the speed of sound is determined by the nature of this medium. To solve this inconsistency, it was suggested that a substance called luminiferous ether should permeate the Universe, so another, is to me so great an absurdity that, I believe, no man who has in philosophic matters a competent faculty of thinking could ever fall into it.

-Isaac Newton 3 The word electricity (and electron) comes from the Greek word ἤλεκτρον, which means amber. xi as to act as a medium for the propagation of light. Then, just like for material waves, an inertial observer would be able to "follow" the electromagnetic waves. In order to verify this statement, an experiment was devised by Albert Abraham Michelson and Edward Williams Morley (using the so-called Michelson interferometer) to compare the speed of light in the direction of the orbital motion of the Earth, and in the direction orthogonal to it. Should such an ether exist, then the two velocities would differ. However, the experiment found no difference, and this null result thus aggravated the crisis.

In order to reconcile mechanics and Maxwell's theory, one needed to come up with a summation law of velocities that was compatible with a universal speed of light. A first breakthrough was an improved model of ether by Lorentz [START_REF] Lorentz | Electromagnetic phenomena in a system moving with any velocity smaller than that of light[END_REF], which could explain the null result by a set of coordinate transformations, which were dubbed Lorentz transformations by Poincaré [START_REF] Poincaré | Sur la dynamique de l'électron[END_REF]. A new theory, called (special) relativity, was then proposed in 1905 by Albert Einstein in his renown paper "Zur Elektrodynamik bewegter Körper" [START_REF] Einstein | Zur Elektrodynamik bewegter Körper[END_REF] and by Henri Poincaré [START_REF] Poincaré | Sur la dynamique de l'électron[END_REF]. This theory did not require the existence of ether at all, but one needed to accept that the notion of time and space are not absolute, but depend on the reference frame. Indeed, consider the thought experiment of a ray of light emitted vertically from the floor of a train cabin, reflecting against a mirror on the roof, and reflecting back down onto the floor, where it came from. Denoting the speed of light c and the height of the cabin d, then the time needed for the light ray to go back and fourth is ∆t = 2d/c. Now consider a person standing on the platform of the train station who sees the train pass by with a speed v, and sees the motion of the light ray through the window. For the exterior observer, the path of the light ray is now triangular-shaped and longer that the path measured by an observer in the train. Under the assumption that the speed of light is independent of the reference frame, elementary geometry and algebra tells us that the time it takes to travel this longer path is now ∆t ′ = 2dγ/c, where γ = 1/ 1 -(v/c) 2 is called the Lorentz factor (for subluminal velocities v < c, we have γ > 1, so ∆t ′ > ∆t). However, we could also have performed the reverse experiment, with the light beam outside the train, and we would have found the same result. We thus conclude that in special relativity, the observer on the platform sees a clock inside the train tick slower than his own clock; and reciprocally, the person inside the train also sees the clock of the person of the platform tick faster that her own clock. This is dilation of time in special relativity; similarly, a ruler oriented in the direction of motion of the train would be seen shorter that expected by an observer on the platform, and vice versa, namely there is contraction of lengths 4 . The theory of special relativity is thus compatible with a universal speed of light, and the absence of a preferred (Galilean) frame.

However, special relativity has outstanding issues. First, we have seen that there is no preference between two frames that move with a constant velocity with respect to each other, but this ceases to be true if the frames are accelerated with respect to each other, in which case inertial forces appear 5 . For Newton's first law of motion to hold, one needs to postulate the existence of an inertial frame of reference, which is an unaccelerated frame, thus free of any inertial forces. This sounds unnatural if one wants physics to be fully independent of the choice of reference frame. Moreover, Newton's law of gravity is incompatible with special relativity, since it acts instantaneously, while special relativity requires that causal effects cannot happen faster than the speed of light. Interestingly, since Coulomb law of electrostatics was generalized by Maxwell into the dynamical theory of electromagnetism, with waves propagating at the speed of light, one could expect that Newton's law can be generalized to a dynamical theory, involving an "electric" and a "magnetic" component, with "gravitational waves" propagating at the speed of light as well.

In 1907, while working in a patent office in Bern, Albert Einstein had what he calls his "happiest thought": Suddenly a thought struck me: If a man falls freely, he would not feel his weight. [...] A falling man is accelerated. Then what he feels and judges is happening in the accelerated frame of reference. [...] A falling man does not feel his weight because in his reference frame there is a new gravitational field which cancels the gravitational field due to the Earth. In the accelerated frame of reference, we need a new gravitational field.

-Albert Einstein in How I created the theory of relativity [START_REF] Einstein | How I created the theory of relativity[END_REF] In this way, the two problems we have mentioned have the same answer, namely that gravity and inertia are essentially the same thing. Consider a very modern rocket smoothly blasting though space with a constant acceleration g = 9.8 m/s 2 . A person sitting in the rocket would not be able to tell whether he is in a rocket of in a room on Earth. From this idea, which is called the equivalence principle, Einstein was able to compute within the framework of special relativity how much faster a clock at the head of the rocket would tick with respect to one at the rear, and postulated that the same should hold in a gravitational field [START_REF] Einstein | Über das Relativitätsprinzip und die aus demselben gezogenen Folgerungen[END_REF][START_REF] Einstein | Über den Einfluß der Schwerkraft auf die Ausbreitung des Lichtes[END_REF]. With this primitive framework, Einstein was able to derive other predictions such as the deflection of light rays [START_REF] Einstein | Über den Einfluß der Schwerkraft auf die Ausbreitung des Lichtes[END_REF], but in order to go further, he needed a consistent mathematical toolbox to describe his new theory. The idea for such a framework came from yet another thought experiment: consider a rotating disk, and an observer walking on the disk (assuming his shoes have enough friction to avoid him being projected off by centrifugal forces). When the observer measures the radius R of the disk, his ruler is perpendicular to the direction of motion and is unaffected by special relativity. However, when measuring the circumference C, his ruler is always along the direction of motion, thus is contracted. Then, to his surprise, he finds C 2 /R < 4π. This situation is in fact very similar to that of geometry on the curved surface of a sphere, which had been studied by Carl Friedrich Gauß using surface coordinates, and for which, for example, the sum of the angles in a triangle is not 180°. This led Einstein, with the help of mathematicians Marcel Grossmann and Tullio Levi-Civita, to study the theory of differential geometry by Bernhard Riemann and Gregorio Ricci, namely the generalized theory of geometry on curved surfaces of arbitrary dimension. Based on these mathematical tools, Einstein formulated the theory of general relativity [START_REF] Einstein | Zur Allgemeinen Relativitätstheorie[END_REF] in its modern form, which is essentially a geometrical theory of gravity. The main dynamical variable of the theory is the metric tensor, which measures angles and distances locally in the case of the four-dimensional spacetime manifold. The presence of matter (or more generally, energy, recall E = mc 2 ) curves spacetime, creating a gravitational field, and conversely, the trajectory of particles follows geodesics, namely the straightest possible lines in curved space. This explains, for example, how light can be deflected despite it not having a mass and being unaffected by gravitational forces within the framework of Newton's gravitation theory. Moreover, xiii approximating general relativity for weak curvature led to the final explanation [START_REF] Einstein | Erklärung der Perihelbewegung des Merkur aus der allgemeinen Relativitätstheorie[END_REF] for the small deviation of Mercury's trajectory from the predictions of Newton's theory 6 .

This theory is beautiful to state, but very unwieldy to manipulate, and Einstein initially only worked with approximate solutions to his equations. Remarkably, an exact solution of the Einstein equations was found as early as 1915 in the trenches of the Great War by Karl Schwarzschild 7 for a spherically symmetric, nonrotating body [START_REF] Schwarzschild | Über das Gravitationsfeld eines Massenpunktes nach der Einsteinschen Theorie[END_REF][START_REF] Schwarzschild | Über das Gravitationsfeld einer Kugel aus inkompressibler Flüssigkeit nach der Einsteinschen Theorie[END_REF], then much later, in 1963, by Roy Kerr for a rotating body [START_REF] Kerr | Gravitational field of a spinning mass as an example of algebraically special metrics[END_REF]. Initially, these solutions were designed to account for the gravitational field outside stars, and in this case the full solution is completely regular. However, assuming that a star of mass m could be compressed enough to fit in a radius smaller than 2Gm/c 2 , it was remarked by Arthur Eddington that "the force of gravitation would be so great that light would be unable to escape from it, the rays falling back to the star like a stone to the earth". This was initially deemed unphysical: it was known that once stars had exhausted all the "fuel" driving the nuclear fusion reactions inside their core, it would eventually become a white dwarf, i.e. a star which resists gravitational collapse thanks to quantum interactions of electrons, called electron degeneracy pressure. However, Subrahmanyan Chandrasekhar proved in 1931 [START_REF] Chandrasekhar | The maximum mass of ideal white dwarfs[END_REF] that a white dwarf with a mass larger than 1.4 times the mass of the sun would also collapse into a so-called neutron star, which resists gravitational collapse thanks to neutron degeneracy pressure. These stars have a density of ∼ 10 17 kg/m 3 , which is roughly the density of an atom's nucleus, and is equivalent to compressing the Earth into a sphere of 305 m in diameter. Yet it was predicted in 1939 by Richard Tolman, Robert Oppenheimer and George Volkoff [START_REF] Tolman | Static solutions of Einstein's field equations for spheres of fluid[END_REF][START_REF] Oppenheimer | On massive neutron cores[END_REF] that neutron stars with a mass greater than 0.7 times the mass of the sun 8 could not be stable either, and would also undergo gravitational collapse. Debates about whether this collapse actually took place physically were sealed by Roger Penrose and Stephen Hawking, who proved that very massive stars generically collapsed to a single point [START_REF] Penrose | Gravitational collapse and space-time singularities[END_REF], and formed a singularity, a line in spacetime with infinite curvature. Such solutions are fully described by the Schwarzschild or Kerr vacuum solutions for the spacetime metric, exhibit the property that no light -and in fact no information or causal effect -can exit a zone of spacetime of finite radius, called the event horizon (R S = 2Gm/c 3 in the case of the Schwarzschild metric), hence the name of such objects, black holes. The singularity is therefore not visible to exterior observers, i.e not naked. Physically, general relativity predicts that an adventurer who took the resolution to fall into a black hole will not experience anything particular when crossing the event horizon, but his time will stop at the singularity (of course, since our adventurer is not a point, he will be ripped apart by tidal forces before experiencing this bizarre phenomenon). However, his somewhat more cautious friend, who decided to stay very far from the black hole, will see his adventurous comrade slow down as he approaches the black hole, and eventually freeze as he approaches the event horizon (we will also fade away due to gravitational Doppler redshift). xiv

Introduction: A historical perspective

The intriguing physics of black holes and neutron stars is not the only novel prediction of general relativity: recall that a desideratum to a generalization of Newton's gravity is the existence of gravitational waves. In the general-relativistic formulation, these are wave-like oscillations of the curvature of spacetime which propagate at the speed of light. We can now see that general relativity is compatible with causality, because if the Sun were to disappear, we would not feel it immediately, but it would generate a gravitational wave that would arrive 8 minutes and 20 seconds later. Gravitational waves were predicted in 1916 by Einstein himself [START_REF] Einstein | Näherungsweise Integration der Feldgleichungen der Gravitation[END_REF][START_REF] Einstein | Über Gravitationswellen[END_REF], and were found to be generated not by the charge dipole vector as in electromagnetism, but by the mass quadrupole tensor, due to conservation of mass, linear momentum and angular momentum in general relativity. Moreover, Einstein predicted the existence of three types of gravitational waves: longitudinal-longitudinal, transverse-longitudinal, and transverse-transverse. The two first types were shown not to be physical by Arthur Eddington in 1922 [START_REF] Eddington | The propagation of gravitational waves[END_REF], but instead mere artifacts of the choice of coordinates, and could be made to propagate at any speed by a clever choice of coordinates, leading him to dismiss them as "propagating at the speed of thought". The fact that most quantities appearing in general-relativistic computations depend on the choice of coordinates for the spacetime manifold is one of the major difficulties of the theory, and one needs to construct objects which are coordinate invariant. This difficulty is illustrated by the fact that in 1936, Einstein and Nathan Rosen initially sent a manuscript to the peer-reviewed journal Physical Review claiming that the transverse-transverse gravitational-wave mode was also a pure coordinate effect. The paper was dismissed as incorrect by the anonymous reviewer (later determined to be Howard Robertson). Einstein later published with Leopold Infeld a paper claiming the opposite, but in another journal, since he remained angry with Physical Review for the rest of his life. This confusion was definitively solved in 1956 by Felix Pirani [START_REF] Pirani | On the Physical significance of the Riemann tensor[END_REF], who rephrased gravitational waves in terms of the linearized Riemann curvature tensor, which is a gauge-invariant quantity. The next year, Richard Feynman provided at the first "General Relativity" conference a thought experiment proving that gravitational waves carry energy, known as the sticky bead argument: if one takes a rod with beads on it, the passage of a gravitational wave would make the beads move along the rod. Due to friction, this would generate heat, and thus the gravitational wave has produced work.

An ideal system to study the generation of gravitational waves is an isolated twobody system, which we consider to be on a circular orbit for simplicity. Indeed, if such a system emits gravitational waves, then the total energy of the binary will decrease in virtue of energy conservation. It is known that the internal energy of the bodies play a negligible role in this case, so it is the total kinetic and gravitational binding energy E = -Gµm/(2r 12 ) = -µv 2 12 /2 which must decrease 9 . One immediately deduces that decreasing E amounts to decreasing the orbital separation r 12 and increasing the relative velocity of the stars v 12 , so the dissipation of energy due to gravitational waves should in principle be easy to observe in a binary system. However, the rate at which, for example, the orbital separation decreases scales as dr 12 /dt ∝ µm 2 /r 3 12 , so this effect will be maximal for systems that are very close and very massive, and must therefore be very compact, like neutron stars or black holes. Plugging in the numbers for, say, the Sun-Jupiter system, xv we find that this effect is totally negligible, and this would also hold if the two bodies were brought very close together, so as to be on the verge of collision. Thus, the first indirect detection of gravitational waves was made on a system made of two neutron stars. The system was discovered by Russell Alan Hulse and Joseph Hooton Taylor Jr. in 1974, and is composed of a neutron star and of a pulsar, which is a highly magnetized neutron star that emits beams of electromagnetic radiation at its magnetic poles. Since the magnetic pole does not coincide with the geographic pole associated to the (very fast) rotation of the neutron star, the beam rotates around the star very quickly, and flashes extremely regularly, like a lighthouse, if it happens to be oriented towards Earth. In the case of the Hulse-Taylor binary pulsar, these flashes arrived alternatively a little sooner or a little later than expected, which was found to be compatible with the pulsar being in orbit with another neutron star. Measuring the variation of the orbital parameters led to the conclusion that the system was indeed shrinking due to the emission of gravitational waves, in perfect agreement with the predictions of general relativity [START_REF] Weisberg | Gravitational waves from an orbiting pulsar[END_REF][START_REF] Damour | General relativistic celestial mechanics of binary systems I. The post-Newtonian motion[END_REF][START_REF] Damour | General relativistic celestial mechanics of binary systems II. The post-Newtonian timing formula[END_REF].

There was great eagerness to have a direct detection of gravitational waves, which was claimed as early as 1968 by Joseph Weber; however, these claims were rapidly discredited, in particular by similar experiments which did not reproduce his results. It is only many years later, on September 14, 2015, that the first gravitational wave was detected [START_REF] Abbott | GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence[END_REF] by the Laser Interferometer Gravitational-Wave Observatory (LIGO). This observatory is based on the same physical concept as the Michelson interferometer, but with arms which are 4 km long, which can detect oscillations of its mirrors of magnitude smaller than the radius of a proton. Since then, and with the help of two other observatories (Virgo and KAGRA), around 90 gravitational wave events have been detected, which are all perfectly compatible with the predictions of general relativity. These observatories allow us to observe the Universe for the first time with another messenger than light, and give us precious information about its composition. Further understanding will require more sensitive detectors, some of which will be constructed on Earth (Einstein Telescope or Cosmic Explorer) and others will be satellites communicating in space (LISA). In order to interpret these results and test our physical models, it is imperative to extract, both from general relativity and from other possible theories of gravity, very accurate predictions for the gravitational waveforms we expect to observe. This is precisely the goal of this thesis. We will generically consider a pair of two compact objects, such as black holes or neutron stars, on a bound orbit. When these objects are well separated and have a small relative velocity v with respect to the speed of light, we are in the so-called inspiral regime and we can compute post-Newtonian (PN) corrections, in powers of the small parameter v/c, to the lowest order formulas found by Einstein 10 . The first part of this thesis is devoted to general relativity. In the case of quasicircular orbits, we obtain expressions for the waveform at 4PN order, the energy flux radiated by the system at 4.5PN, and the phase and the increase in frequency (called "chirp") at 4.5PN order. The second part of this thesis is devoted to a class of alternative theories of gravity, called scalar-tensor theories. We compute the waveform and flux for generic bound orbits up to 1.5PN with respect to the leading order of general relativity, and specialize these results to the case of quasicircular orbits. All of these results will be useful for accurately interpreting the data obtained in gravitational wave observatories.

Chapter I

General context

I.1 General description of weak gravitational waves

Before discussing gravitational waves (GWs), we briefly recall the theoretical framework in which this notion is defined. We introduce the theory of general relativity (GR), which is best expressed using the Einstein-Hilbert action along with a matter action:

S GR = c 4 16πG d 4 x √ -gR + S matter [m, g αβ ] , (I.1)
where g αβ is the spacetime metric tensor, g is the determinant of the metric, R is the Ricci scalar associated to the metric and m represents generically the matter fields that couple minimally to the metric. Varying the action with respect to the spacetime metric yields the Einstein field equation, which read

R µν - 1 2 g µν R = 8πG c 4 T µν [m, g αβ ] , (I.2)
where R µν is the Ricci tensor associated to the metric and the energy-momentum tensor is defined by T µν ≡ -2(-g) -1/2 δS m /δg µν . A generic definition of a GW is then a weak, oscillatory perturbation of spacetime. Implicitly, this means that the perturbation is measured with respect to some reference, background spacetime. This split between background and perturbation is not univocal, which is a common feature when studying waves in general. However, a general property is that the perturbation should be oscillatory, its wavelength should be very small comparable to the length scales of the background, and it should have a small amplitude compared to the other scales of the problem [START_REF] Maggiore | Theory and experiments[END_REF]. In the case of GWs in GR, one is interested in splitting the spacetime metric g µν into a background and perturbations. The choice of background depends greatly on the problem under study. For example, when studying the ringdown phase of a binary black-hole merger or an extreme mass-ratio inspiral, it is natural to study perturbations around the Schwarzschild or Kerr metrics, since the metric is expected to deviate little from these thoroughly-studied static or stationary solutions. However, the disadvantage of this choice is that it is technically very difficult to study perturbations around a curved spacetime background, at least analytically. In more generic problems, the most practical choice is to take the flat Minkowski metric as a background. The first and main reason is that we have a wealth of analytical tools to 1 study perturbations around flat spacetime. The second reason is that flat spacetime is a vacuum solution of the Einstein equations in the absence of a cosmological constant. If there is a matter content, the metric deviates only slightly from Minkowski spacetime far away from the matter source: this is asymptotic flatness. These observations allow us to describe generic GWs, as detected on Earth, as deviations to flat spacetime. However, it must be noted that near the source, in the case of compact objects, these deviations can be extreme, and it is difficult to see the metric as a small deviation to flat spacetime. Luckily, this is not a problem thanks to the effacement principle [START_REF] Damour | The general relativistic problem of motion and binary pulsars[END_REF], which states that the effects of internal structure of spherical compact bodies is very small. Thus, in this section, we will study the general properties of small deviations to the flat spacetime metric, only in vacuum regions of the spacetime manifold. We will not yet worry about how they were generated, as this will be the topic of the next section. Also, we will not yet worry about the response of the detectors to this perturbation. We split the metric as

g µν = η µν + γ µν , (I.3)
where η µν is the flat Minkowski metric, and γ µν is the GW perturbation, and we suppose |γ µν | ≪ 1, such that we can neglect terms in O(γ 2 ). This will typically be true very far from the GW source, since the magnitude of GWs decay as the inverse of the distance to the source. In the linearized approach, it is equivalent to raise indices using the full inverse metric g µν or with the flat background inverse metric η µν , and we thus define the trace γ ≡ γ ρ ρ . The linearized Riemann tensor then reads

R µνρσ = 1 2 (∂ νρ γ µσ + ∂ µσ γ νρ -∂ µρ γ νσ -∂ νσ γ µρ ) + O(γ 2 ) . (I.4)
In order to write the Einstein equations in a compact and practical way, it is common to introduce the trace-reversed metric, defined by

γ µν ≡ γ µν - 1 2 η µν γ . (I.5)
However, since this thesis will ultimately mostly deal with the nonlinearities of the Einstein equations, we find it more advantageous to define straight away the tensor

h µν ≡ √ -gg µν -η µν , (I.6)
where g µν is the inverse metric and g is the determinant of the metric g µν . In this way, we find that at linear level, these two quantities only differ by a sign,

h µν = -γ µν + O(γ 2 ) , (I.7)
but of course ultimately differ at nonlinear level1 . We define, even at nonlinear level, h µν ≡ η µρ η νσ h ρσ and h µ ν ≡ η νρ h µρ , and the trace is defined as h ≡ h ρ ρ . One then rewrites the vacuum Einstein equations as

□h µν -2∂ ρ ∂ (µ h ν)ρ + η µν ∂ ρ ∂ σ h ρσ = 0 , (I.8)
where the flat d'Alembert operator is defined as □ ≡ η ρσ ∂ ρ ∂ σ . The goal of this section will be to discuss the solutions to this equation. An important observation to make before looking for such solution is that there are many redundancies in GR due to coordinate-redefinition invariance. Indeed, consider a small coordinate redefinition x µ → x ′µ = x µ + φ µ (x), such that |∂ µ φ ν | ∼ |γ µν | ≪ 1. The full metric transforms as a tensor, namely

g µν (x) → g ′ µν (x ′ ) = ∂x ρ ∂x ′µ ∂x σ ∂x ′ν g ρσ (x) = g µν (x) -2g ρ(µ (x)∂ ν) φ ρ (x) + O(φ 2
) , (I.9) so at linearized level, the perturbation γ µν transforms as

γ µν (x) → γ ′ µν (x ′ ) = γ µν (x) -2∂ (µ φ ν) (x) + O(φ 2
) , (I.10) therefore it also behaves as a tensor2 . However, h µν behaves like a tensor density, since it transforms as

h µν (x) → h ′µν (x ′ ) = h µν (x) + 2∂ (µ φ ν) (x) -η µν ∂ ρ φ ρ (x) + O(φ 2 ) . (I.11)
This transformation law justifies the introduction of a shorthand notation that will be ubiquitous in this thesis, ∂φ µν ≡ 2∂ (µ φ ν) -η µν ∂ ρ φ ρ (I.12)

Note that this transformation law means that the divergence of h µν transformed simply as ∂ ν h µν → ∂ ′ ν h ′µν (x ′ ) = ∂ ν h µν -□φ µ (x) (I. [START_REF] Poisson | Gravity: Newtonian, post-Newtonian, relativistic[END_REF] This motivates us to define the coordinate transformation φ µ (x) such that □φ µ (x) = ∂ ν h µν , (I. [START_REF] Blanchet | Gravitational Radiation from Post-Newtonian Sources and Inspiralling Compact Binaries[END_REF] which exists and is unique under usual boundary conditions. Now consider the Einstein equations in a given coordinate system, and apply the coordinate transformation (I. [START_REF] Blanchet | Gravitational Radiation from Post-Newtonian Sources and Inspiralling Compact Binaries[END_REF]. This choice will remove any divergence terms in the vacuum Einstein equations, which then simply read □h µν = 0. This choice of coordinate system is called a harmonic gauge or De Donder gauge 3 , and is more commonly given, not by its explicit construction, but by the condition that the h µν tensor be divergenceless, namely ∂ ν h µν = 0. Note that, by definition, this condition carries out identically in the full nonlinear case. This choice is practical and can be written covariantly with respect to the background, but it does not entirely exhaust the gauge freedom. Indeed, any additional gauge transformation, parametrized by a gauge vector φ µ such that □φ µ = 0, will preserve the harmonic gauge condition. To fully fix the gauge freedom, one needs to introduce a 3+1 splitting of time and space. One can then impose the transverse-traceless (TT) gauge condition 4 , which is straightforwardly given by h = 0 and h 0i = 0. Using these relations and the harmonic coordinate condition, we find that ∂ 0 h 00 = 0. Therefore, h 00 is static, and is typically a Newtonian potential, encoding the time-independent gravitational attraction. Conversely, all the radiative degrees of freedom are encoded in the purely spatial part of the metric, which we now denote h ij TT . This typically represents GWs. Note that since this gauge is traceless, we have γ TT ij = γ TT ij = -h ij TT . Since the metric in the TT gauge is free of any residual gauge freedom, it is a purely observable quantity and is thus naturally related to the linearized Riemann tensor by

c 2 R lin 0i0j = 1 2 ḧTT ij = - 1 2 γTT ij .
(I. 15) In order to proceed further, we now assume that our metric can be decomposed by a sum of plane waves, characterized by a direction of propagation n. This sum formally reads TT ( n(Ω), t, x) , (I. [START_REF] Martín-García | xAct: Efficient tensor computer algebra for Mathematica[END_REF] where n = (cos θ sin φ, sin θ sin φ, cos φ). We integrate over solid angles d 2 Ω = sin θd θd φ, and h ij P,TT ( n, t, x) is a generic plane GW propagating along the direction n and evaluated at spacetime coordinate (t, x). Note that in linearized theory, a sum of plane waves in a TT gauge will be in a TT gauge (see p. 947 of [START_REF] Misner | Gravitation[END_REF]). Moreover, we do not need the decomposition into monochromatic waves here. Finally, most GWs we will encounter are actually spherical waves, which can be very well described by a single plane wave for an observer very far from the source.

h ij TT (t, x) = d 2 Ω h ij P,
We now focus on the case of a single plane wave, characterized by its direction of propagation n. We introduce the spatial orthonormal basis (e x , e y , n). If this plane wave is given in any harmonic gauge (not necessarily TT) by the tensor h µν P ( n), and discarding the nonradiative degrees of freedom, we can show that it can be algebraically projected onto the TT gauge by the operation h ij P,TT =⊥ TT ij,kl h kl P , (I.17

)
where we have introduced the TT projector

⊥ TT ij,ab ( n) =⊥ a(i ( n) ⊥ j)b ( n) - 1 2 ⊥ ij ( n) ⊥ ab ( n) , (I.18)
which is itself defined using the projector onto the transverse plane ⊥ ij ( n) = δ ij -ni nj .

In this TT gauge, the metric of the plane wave then necessarily reads

h ij P,TT ( n) =    h + ( n) h × ( n) 0 h × ( n) -h + ( n) 0 0 0 0    ij . (I.19)
We recover the two degrees of freedom of GR, which here come under the name of the "plus" mode h + and the "cross" mode h × . Applying the geodesic deviation equation for each of these modes onto a ring of freely falling particles, the effect of each mode are illustrated in green in Figure I.1. Of course, the plus and cross modes of the full GW are given by the sum of the plane wave contributions. Finally, we will find it extremely useful to merge the "plus" and cross" modes into a single complex number, which one will typically decompose into spherical harmonics. It reads

5 h = h + -ih × , (I.20)
and it is related (in the linearized case) to the fourth Newman-Penrose scalar [START_REF] Newman | An Approach to gravitational radiation by a method of spin coefficients[END_REF][START_REF] Thorne | Multipole Expansions of Gravitational Radiation[END_REF] by

Ψ 4 = d 2 h dt 2 . (I.21)
Note that these general-relativistic properties are not all valid in alternative theories of gravity. Importantly, in these theories, GWs typically carry more than two modes. Following Poisson and Will [START_REF] Poisson | Gravity: Newtonian, post-Newtonian, relativistic[END_REF], we will assume that we choose a theory such that the propagation velocity of the GWs and light are equal, which is motivated 6 experimentally by the simultaneous detection of a GW and an electromagnetic signal from a system of coalescing neutron stars [START_REF] Abbott | GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral[END_REF][START_REF] Creminelli | Dark Energy after GW170817 and GRB170817A[END_REF]. We consider again a plane wave propagating along n and express everything in the (e x , e y , n) basis. We work directly at the level of the linearized Riemann tensor, which reads in this basis

-2c 2 R lin 0i0j = d 2 dt 2    γ b + γ + γ × γ x γ × γ b -γ + γ y γ x γ y γ ℓ    ij . (I.22)
Note that we have expressed the modes in terms of γ µν , because the definition of h µν is theory-dependent. The tensor "plus" mode γ + and the "cross" mode γ × are identical to GR. However, we now also have • a scalar "breathing" mode γ b , which is transverse but not trace-free ;

• a scalar "longitudinal" mode γ ℓ ;

• two "vector" modes, γ x along the x-direction and γ y along the y-direction.

How these new modes affect a ring a freely falling test particles can be derived using the geodesic equation, and the conclusions are illustrated in Figure I.1.

I.2 Lowest-order GW generation

In this Section, we review the wave generation formalism in linearized gravity. We consider a matter source whose typical velocity v is very small with respect to the speed of light, such that it can be written in a so-called post-Newtonian (PN) expansion in the small parameter v/c. In this section, we will limit ourselves to the lowest-order term in the PN expansion, which we dub "Newtonian".

I.2.1 Waves for arbitrary PN sources

In Section I.1, we studied the linearized Einstein vacuum equations. Keeping the same notations, they now read in the presence of matter The full line shows the configuration of the ring of particles at some initial time t 0 , and the dashed line shows the configuration at time t 0 + π/ω GW , where ω GW is the angular frequency of the GW (i.e. twice the orbital frequency). From top to bottom then left to right, the plus (+) and cross (×) tensor modes (green); the vector-x (x) and vector-y (y) modes (red); breathing (b) and longitudinal (l) scalar modes (black). In all of these diagrams, the wave propagates in the z direction. Source: [START_REF] Isi | Probing gravitational wave polarizations with signals from compact binary coalescences[END_REF] where T µν is the stress-energy tensor which completely describes the matter content of the system. We now consider an extended matter source, which is isolated, i.e. bounded in space. We also assume that there is no incoming radiation, which can be imposed by requiring that the source was stationary in the far past. This can physically be interpreted by the observation that in the far past, the source was very diffuse and could have barely generated any GWs at all. These conditions lead to selecting the retarded Green's function for the flat-space d'Alembertian, which we use to solve the wave equation. The solution reads

□h µν (t, x) = 16πG c 4 T µν (t,
h µν (t, x) = - 4G c 4 d 3 x ′ |x -x ′ | T µν t - |x -x ′ | c , x ′ , (I.24)
where the field variable is expressed in polar coordinates as x = rn. At distances r large compared to the typical size of the source d, we can perform the expansion

|x -x ′ | = r -x ′ • n + O(d 2 /r
), so at leading order we have

h µν (t, x) = - 4G rc 4 d 3 x ′ T µν t - r c + x ′ • n c , x ′ . (I.25)
For an observer far enough such that the wave can be described as planar, we can project this metric onto the TT gauge with respect to n, which is also the direction of propagation of the wave. Following [START_REF] Maggiore | Theory and experiments[END_REF], we thus find

h ij TT (t, x) = - 4G rc 4 ⊥ ij,kl d 3 x ′ T kl t - r c + x ′ • n c , x ′ . (I.26)
We now assume that we have a PN source, i.e. that the typical velocities v s of the matter inside the source are small with respect to the speed of light, v s ≪ c. The frequencies associated to the orbital motion are then of order ω ∼ v s /d, and we find that ω ≪ c/d. Performing a Fourier analysis (see p. 103 of [START_REF] Maggiore | Theory and experiments[END_REF] for details), we can then show that it is possible, under this assumption, to Taylor-expand the source in the small parameter x ′ • n/c. Formally, this multipolar expansion reduces to an expansion when c → ∞, which is in practice equivalent to a PN expansion. At lowest order we simply find

h ij TT (t, x) = - 4G rc 4 ⊥ ij,kl d 3 x ′ T kl t - r c , x ′ . (I.27)
We now relate this to the symmetric trace-free (STF) quadrupole moment, which is defined at any time t in the usual fashion as

Q ij (t) ≡ 1 c 2 d 3 x x i x j - 1 3 r 2 δ ij T 00 (t, x) . (I.28)
Using the conservation 7 of the stress-energy tensor ∂ µ T µν = 0, integrating by parts twice, using Ostrogradsky's divergence theorem and noticing that the stress-energy tensor vanishes outside of the source, we find

Qij (t) = 2 d 3 x T ⟨ij⟩ (t, x) , (I.29)
where T ⟨ij⟩ ≡ T ij -1 3 T kk indicates STF projection. Thus the GW is related at lowest order to the quadrupole moment of the source by the formula

h ij TT (t, x) = - 2G rc 4 ⊥ ij,kl Qkl t - r c . (I.30)
Projecting onto the orthonormal basis (e x , e y , n) introduced in Section I.1 directly leads to reading off the plus and cross modes 8 , 4 Qxy . (I.31) 7 Here we assume that the source dynamics are nongravitational, as in Einstein's original paper [START_REF] Einstein | Über Gravitationswellen[END_REF], see [START_REF] Landau | The classical theory of fields[END_REF] for a proof that this result still holds for gravitational dynamics. 8 We recall that these differ by a global sign from the γ+ and γ× associated to the physical metric deviation γ TT ij , which are more commonly used.

h + = - G rc 4 ( Qxx -Qyy ) and h × = - 2G rc
In linear theory stricto sensu, GWs do not carry energy, since the stress-energy tensor associated to GWs scales as O(h 2 ). This means that linear theory by its own cannot account for radiation-reaction driving the inspiral. However, if we already assume results which we will derive in Section II.7, we can compute from linear theory the energy flux carried by GW across a sphere of infinite radius surrounding the source. Namely, according to (II.66), it reads

F = lim r→+∞ c 3 r 2 32πG d 2 Ω ḣij TT ḣij TT ,
where ḣij TT is evaluated at (r, n) and d 2 Ω indicates angular integration over n. Note that it is necessary to average this result over a typical period of the system, which we denote ⟨...⟩, in order to extract the secular effect and make the result gauge-invariant. Note that the r → +∞ limit is indeed finite thanks to the 1/r decay of the metric perturbation. This flux straightforwardly enters the energy-flux equation, which reads

dE dt = -F . (I.32)
At lowest Newtonian order, it was proved that E is indeed the conservative Newtonian binding energy. In our linearized lowest-order model, we can inject (I.30) into (II.66) and recover the famous quadrupole formula for the energy flux [START_REF] Einstein | Über Gravitationswellen[END_REF] 

F = G 5c 5 ⟨ ... Q ij ... Q ij ⟩ . (I.33)

I.2.2 Waves for compact binary systems

We now reduce our previous results to the case of a nonspinning compact binary system, represented by two point particles of masses m A , where A ∈ {1, 2}. In flat spacetime, as adequate in linearized theory, the associated energy-momentum tensor reads (see (33.5) of [START_REF] Landau | The classical theory of fields[END_REF])

T µν (t, x) = A m A v µ A v ν A 1 -v 2 A /c 2 δ (3) (x -y A (t)) , (I.34)
where we introduced the shorthand v µ A ≡ (c, v A ), see Notations for more details. To lowest order in the PN expansion, the only piece we need is

T 00 (t, x) = A m A c 2 δ (3) (x -y A (t)) , (I.35)
from which we deduce that our quadrupole moment reads

Q ij = m 1 y ⟨i 1 y j⟩ 1 + m 2 y ⟨i 2 y j⟩ 2 .
The position of center of mass reads y CM = (m 1 x 1 + m 2 x 2 )/(m 1 + m 2 ) and the center of mass frame is defined by y CM = 0. In this frame, the quadrupole moment of our system reads

Q ij = mνr 2 12 n ⟨i 12 n j⟩ 12 . (I.36)
We now further specialize our study to the case of an exactly circular orbit (dr 12 /dt = 0) with constant frequency ω. Since the particles are nonspinning, the orbital plane does not precess, and is orthogonal to a constant vector l. In a orthonormal basis (u x , u y , l) adjusted to the orbital plane, we have

n 12 = (ux,uy,l)    cos(ωt + φ 0 ) sin(ωt + φ 0 ) 0    , (I.37)
and the quadrupole then reads

Q ij = (ux,uy,l) mνr 2 12    cos 2 (ωt + φ 0 ) -1 3 sin(ωt + φ 0 ) cos(ωt + φ 0 ) 0 sin(ωt + φ 0 ) cos(ωt + φ 0 ) sin 2 (ωt + φ 0 ) -1 3 0 0 0 -1/3    ij .
(I.38) In order to read off the plus and cross modes, we not only need to take the second timederivative, but we also need to express this matrix in the (e x , e y , n) observer frame, which is equivalent to the propagation frame in the plane wave limit. We only need to perform a rotation that adjusts the inclination ι, because the azimuthal angle can be reabsorbed into the constant initial phase (we set it to zero at the end by an appropriate choice for the origin of time). We thus appropriately apply the rotation matrix R(ι), and we find in the observer frame, after performing two time derivatives,

Qij = (ex,ey,n) -2mνr 2 12 ω 2   cos(2ωt) cos(ι) sin(2ωt) sin(ι) sin(2ωt) cos(ι) sin(2ωt) -cos 2 (ι) cos(2ωt) -cos(ι) sin(ι) cos(2ωt) sin(ι) sin(2ωt) -cos(ι) sin(ι) cos(2ωt) -sin 2 (ι) cos(2φt)   ij .
(I.39) As we are now in the correct frame, we directly apply (I.31) and we obtain the plus and cross modes

h + (t) = 4mνy c 2 r 1 + cos 2 (ι) 2 cos(2ωt) , (I.40) h × (t) = 4mνy c 2 r cos(ι) sin(2ωt) , (I.41)
where we have used Kepler's law, Gm = ω 2 r 3 12 , and where we introduce the very useful frequency-related PN variable,

y ≡ Gmω c 3 2/3 ≪ 1 . (I.42)
A few observations are to be made here. First, we see that the frequency of the GW is twice the frequency of the orbit, as expected for a spin-two field. Second, if we see the binary face on (ι = 0), then the plus and cross modes are equal, and the wave is circularly polarized. Conversely, if we see the binary edge on (ι = π/2), then the cross mode vanishes and the wave is linearly polarized. It is interesting to compute the angular distribution of the radiated flux, which depends on the inclination ι and reads where the time-averaging was in fact not necessary (as is typical for circular orbits) and where we have defined the normalized angular power distribution

dF dΩ = lim r→+∞ r 2 c 3 16πG ⟨ ḣ2 + + ḣ2 × ⟩ = 32πc 2 my
g(ι) = 5 16π   1 + cos 2 (ι) 2 2 + cos 2 (ι)   , (I.44)
such that d 2 Ωg(ι) = 2π π 0 dι sin(ι)g(ι) = 1. This function is represented in the polar plot in Fig. I.2, and we can see that the radiated flux is maximum face on from the binary, but does not vanish edge on.

We then immediately obtain the total flux, given by the famous Einstein quadrupole formula [START_REF] Einstein | Über Gravitationswellen[END_REF] 

F = 32c 5 ν 2 5G Gmω c 3 10/3 , (I.45)
where we have restored the orbital frequency dependence ω.

Until now, we have only considered the case of exactly circular orbits. However, inserting the flux (I.45) into the energy balance equation tells us at what rate the GW is draining energy from the system. Since the energy of a Newtonian binary system in circular orbits reads

E = - Gm 1 m 2 2r 12 = - G 2/3 m 5/3 ν ω 2/3 4 , (I.46)
we immediately deduce that this draining of energy, due to radiation reaction, results both in the decay of the orbital separation and the increase of the orbital frequency. If this secular decay happens on timescales much larger that the orbital timescale, namely if ωs ≪ ω 2 , then we are in the adiabatic approximation for quasicircular orbits. Our initial description of the motion as a circular orbit is thus correct (up to some conservative PN corrections), but it will be corrected by small terms due to radiation reaction. Plugging our expressions of the energy (I.46) and the flux (I.45) into the energy-flux balance equation, and applying a chain law, we deduce that the chirp, i.e. the secular increase in frequency, reads ω = 96 5

GM c c 3 5/3 ω 11/3 , (I.47)
where we have introduced the chirp mass

M c ≡ mν 3/5 = (m 1 m 2 ) 3/5 (m 1 + m 2 ) 1/5 . (I.48)
This integrates to

ω(t) = 5 3/8 8 GM c c 3 -5/8 (t c -t) -3/8 (I.49)
where t c is an integration constant that can be interpreted as a coalescence time. Indeed, we can see that, as expected, ω(t) → 0 when t → -∞; but more spectacularly, we also observe that ω(t) → +∞ as t → t c . This finite time divergence of the frequency can be interpreted as the breaking down of the PN approximation near merger, since it assumes small orbital frequencies in the first place. Thanks to the relation (I.46) between r 12 and ω, we find that the orbital separation evolves as r 12 (t) ∝ (t c -t) 1/4 in this model, which is interpreted as a merger at time t c . This is incompatible with the assumption of large separations, and also indicates that the PN approximation is breaking down. This lowest order computation for binary systems has been extended by Peters and Mathews [START_REF] Peters | Gravitational Radiation from Point Masses in a Keplerian Orbit[END_REF] for elliptical Keplerian orbits, with semi-latus rectum a and eccentricity e. They then find that the flux reads9 where c 0 is a constant determined by the initial condition (a 0 , e 0 ). Now consider a typical binary star system, such as the Hulse-Taylor pulsar, which has a 0 ≃ 2 × 10 9 m and e ≃ 0.617. The two bodies will be close enough to emit GWs in the frequency band of current detectors when a ≃ 10 6 m. The result (I.52) tells us that the binary system will then have an eccentricity of e ≃ 6 × 10 -6 [START_REF] Maggiore | Theory and experiments[END_REF]. We therefore conclude that isolated binary systems will be essentially circular by the time they enter the detector's frequency band, and quasicircular orbit models are therefore clearly sufficient. However, there has been a renewed interest for eccentric systems [START_REF] Huerta | Complete waveform model for compact binaries on eccentric orbits[END_REF][START_REF] Brown | The Effect of Eccentricity on Searches for Gravitational-Waves from Coalescing Compact Binaries in Ground-based Detectors[END_REF][START_REF] Shaikh | Defining eccentricity for gravitational wave astronomy[END_REF], as these could be formed by astrophysical perturbations, for example via the Kozai-Lidov mechanism [START_REF] Lidov | The evolution of orbits of artificial satellites of planets under the action of gravitational perturbations of external bodies[END_REF][START_REF] Kozai | Secular perturbations of asteroids with high inclination and eccentricity[END_REF][START_REF] Blaes | The Kozai Mechanism and the Evolution of Binary Supermassive Black Holes[END_REF][START_REF] Naoz | Resonant Post-Newtonian Eccentricity Excitation in Hierarchical Three-body Systems[END_REF][START_REF] Will | Incorporating post-Newtonian effects in N -body dynamics[END_REF].

I.2.3 Wave generation in Brans-Dicke theory

We now temporarily bid farewell to GR, and consider the wave generation in one of the oldest alternative theories of gravity, massless Brans-Dicke (BD) theory [START_REF] Jordan | Schwerkraft und Weltall[END_REF][START_REF] Jordan | The present state of Dirac's cosmological hypothesis[END_REF][START_REF] Fierz | Über die physikalische Deutung der erweiterten Gravitationstheorie P. Jordans[END_REF][START_REF] Brans | Mach's principle and a relativistic theory of gravity[END_REF]. This theory include a metric g µν and a scalar field ϕ, and the action reads

S BD = c 3 16πG d 4 x √ -g ϕR[g] - ω BD ϕ g αβ ∂ α ϕ∂ β ϕ + S m (m, g αβ ) , (I.53)
where the matter action S m depends on the matter fields and the metric, but not on the scalar field, and ω BD is a constant (in the generalized BD theory under study in Part B, we promote this constant to a function of the scalar field ω(ϕ)). In linearized theory, one typically assumes that the scalar field has a constant value ϕ 0 asymptotically far from the source. To study this theory, one then defines a rescaled scalar field φ = ϕ/ϕ 0 and an auxiliary, conformal metric, gµν = φg µν . This procedure is referred to as going from the Jordan to the Einstein frame. The metric deviation reads γ µν = g µν -η µν , but the quantity analogous to the trace-reversed metric deviation in GR will instead be defined using gµν , namely h µν ≡ gg µν -η µν . One also introduces the scalar deviation ψ = φ-1.

One can then apply the least action principle to obtain the field equations in terms of our new quantities h µν and ψ. In linearized theory, we discard higher-order terms in h µν and φ, and thanks to our passage to the Einstein frame, the two equations will decouple, namely

□h µν = 16πG c 4 ϕ 0 T µν , (I.54a) □ψ = 8πG c 4 ϕ 0 (3 + 2ω BD ) T -2 ∂T ∂φ , (I.54b)
where T ≡ T µν η µν denotes the trace of the stress-energy tensor. Our first equation is identical to GR (up to a constant factor ϕ 0 ), and we can use all the GR results of Section I.2. However, the scalar equation is new, and the solution to the scalar wave equation is

ψ(t, x) = - 8G c 4 ϕ 0 (3 + ω BD ) d 3 x ′ |x -x ′ | T -2 ∂T ∂φ t - |x -x ′ | c , x ′ , (I.55)
where we indicate that T -2∂T /∂φ will not depend on φ at lowest PN order. Although it is unintuitive at this stage, we need to perform the next-to-leading order multipolar expansion, in order to get the leading order waveform. This is because the will show that the monopolar contribution will end up being smaller than the dipolar one. Defining

T s ≡ T -2 ∂T ∂φ , (I.56)
we find the multipolar expansion

ψ(t, x) = - 2G rc 4 ϕ 0 (3 + ω BD ) d 3 x ′ T s t - r c , x ′ + n i x ′i c ∂ t T s t - r c , x ′ . (I.57)
We naturally define the scalar monopole and dipole moments as

M s (t) = 1 c 2 ϕ 0 (3 + ω BD ) d 3 x T s (t, x) and D s i (t) = 1 c 2 ϕ 0 (3 + ω BD ) d 3 x x i T s (t, x) .
(I.58) The multipolar expansion of our scalar field then reads

ψ(t, x) = - 2G rc 2 M s t - r c + n i c Ḋs i t - r c . (I.59)
At this stage, we introduce the matter stress-energy tensor for point particles, but a subtlety arises. Indeed, the strong equivalence principle does not hold in BD theory, and the magnitude of the gravitational interaction is now controlled by G/ϕ, which varies in space and time. Following a discussion by Eardley [START_REF] Eardley | Observable effects of a scalar gravitational field in a binary pulsar[END_REF], we consider a star whose radius is determined by the equilibrium between gravitational forces, which tend to make the star shrink, and nongravitational forces, which tend to make the star swell. If we now locally and adiabatically modify the local value of the scalar field ϕ, we modify the gravitational force and thus the equilibrium. The star will then shrink or swell, and its total binding energy will be modified. Now, if we want to model the star as a point particle, we need to include into the effective mass not only the mass due the matter, but also the binding and kinetic energy of the star. The conclusion is that an effective way to account for this is to assign to each point particle a mass-function m A (ϕ), which depends on the local value of the scalar field. We define m A ≡ m A (ϕ 0 ), and we Taylor-expand around small deviations to ϕ 0 . In particular, we introduce the sensitivity

s A = ∂m A ∂ ln ϕ ϕ=ϕ 0 , (I.60) such that m A (ϕ) = m A 1 + s A ψ + O(ψ 2
) . In linearized theory, the energy-momentum tensor then reads

T µν (t, x) = A m A (ϕ)v µ A v ν A 1 -v 2 A /c 2 δ (3) (x -y A (t)) , (I.61)
and to leading order

T -2 ∂T ∂φ = A m A (1 -2s A )c 2 δ (3) (x -y A (t)) . (I.62)
We recognize in this expression the scalar charge,

α A = 1 -2s A √ 3 + 2ω 0 . (I.63)
We can then compute the monopole and dipole fields at lowest order, which read

M s ≡ m 1 (1 -2s 1 ) + m 2 (1 -2s 2 ) (I.64a) D s i ≡ m 1 (1 -2s 1 )y i 1 + m 2 (1 -2s 2 )y i 2 (I.64b)
We see that, at lowest order, dM s /dt = 0, so the monopole will not radiate. Actually, there will be higher order 1PN contributions, namely the monopole will radiate at the same order as the quadrupole. By contrast, the scalar dipole does radiate, and does not vanish in the center-of-mass frame due to the presence of the sensitivities in its expression. Therefore, we find that the monopole has a subleading contribution with respect to the dipole, and the leading order radiation is therefore purely dipolar. In the center-of-mass frame, the dipole reads

D s i = 2mν(s 2 -s 1 ) ϕ 0 (3 + 2ω BD ) r 12 n i 12 , (I.65)
and our waveform is given to lowest order by

ψ(t, x) = - 2G rc 2 n i c Ḋs i t - r c . (I.66)
Since the matter fields are minimally coupled to the physical metric g µν = φ -1 gµν , the GW detector will respond to the tidal field associated with the physical metric, i.e. the linearized Riemann tensor of the physical metric, which reads [START_REF] Sennett | Gravitational waveforms in scalar-tensor gravity at 2PN relative order[END_REF] 

2c 2 R lin 0i0j = ḧTT ij + 1 2 ⊥ ij ψ = (ex,ey,n) d 2 dt 2    ψ + h + h × 0 h × ψ -h + 0 0 0 0    ij . (I.67)
showing explicitly the decomposition of the detector's response into tensorial "plus" and "cross" modes and the scalar breathing mode, see (I.22). When restricting to the case of circular orbits, we can essentially apply the same steps as GR (see Section I.2.2). First, we introduce the parameter10 

ε BD ≡ (1 -2s 1 )(1 -2s 2 ) 3 + 2ω BD , (I.68)
which is useful to express the modified Kepler law in BD theory,

G(1 + ε BD )m ϕ 0 = ω 2 r 3 12 , (I.69)
and the appropriate PN variable,

ỹ ≡ G(1 + ε BD )m ϕ 0 c 3 2/3 . (I.70)
For a binary seen at an inclination angle ι, the waveform then reads at lowest order

ψ = 4Gmν(s 2 -s 1 ) rc 2 ϕ 0 (3 + 2ω BD ) ỹ1/2 sin(ι) cos(ωt) . (I.71)
We can see that contrary to gravitational radiation, the wave has a maximum magnitude when emitted in the orbital plane, and vanishing magnitude when emitted in the direction orthogonal to the orbital plane, see Fig. .

F s = c 3 r 2 ϕ 0 (3 + 2ω BD ) 16πG d 2 Ω⟨ ψ2 ⟩ = Gϕ 0 (3 + 2ω BD ) 3c 3 Ds i Ds i , (I.72)
which yields for compact binaries on circular orbits

F s = 4ϕ 0 c 5 (s 2 -s 1 ) 2 ν 2 ỹ4 3G(1 + ε BD ) 2 (3 + 2ω BD ) . (I.73)
At first glance, this flux is one PN order larger than the quadrupolar flux of GR (it enters in 1/c 3 instead of 1/c 5 for GR), and will induce very strong radiation reaction effects, and thus a strong frequency chirp. In principle, this can be very tightly constrained with the timing of binary pulsars. However, this emission is strongly suppressed if the sensitivities of the two objects are very similar, as can be the case for two equal mass neutron stars.

I.3 Gravitational-wave detectors

The idea of measuring GWs has been of interest for a very long time, but these could arise from a variety of sources, and span many orders of magnitude in frequency and amplitude. However, nearly all detectors rely on the geodesic deviation equation, which states that two nearby free-falling particles following their geodesics11 x µ (τ ) and

x µ (τ ) + ξ µ (τ ) will obey D 2 ξ µ Dτ 2 = -R µ νρσ ξ ρ dx ν dτ dx σ dτ + O(ξ 2 ) , (I.74)
where we have neglected small terms in ξ 2 and defined the covariant derivative along the geodesic x µ (τ ) by its effect of any vector V µ , namely In the small region of space encompassing our detector, we can construct a proper detector frame using Fermi normal coordinates. In this frame, at linearized order, we find the geodesic deviation equation

DV µ Dτ ≡ dV µ dτ + Γ µ νρ V ν
d 2 ξ i dt 2 = -c 2 R i0j0 ξ j (I. 76 
)
where t is the coordinate time in this frame. This is why the linearized Riemann tensor is the key quantity to compute.

I.3.1 Current ground-based interferometers

Currently, there are three large-scale GW detectors in operation, and are all based on the concept of an laser Michelson interferometer. The Laser Interferometer Gravitational-Wave Observatory (LIGO) [START_REF] Abbott | LIGO: The Laser interferometer gravitationalwave observatory[END_REF] operates on two sites in the United States, Hanford, WA and Livingston, LA (see Fig. I.4). Both interferometers have two 4 km long perpendicular arms. They started operating in 2002, and were then upgraded to Advanced LIGO, which started operating in 2015. The Virgo interferometer [START_REF] Marque | A gravitational wave detector: The Virgo interferometer[END_REF] is located near Pisa, Italy, and consists of a single interferometer, with two perpendicular 3 km arms (see Fig. I.4). It started operation in 2007, then was upgraded to Advanced Virgo, which started observing in 2017. The Kamioka Gravitational Wave Detector (KAGRA) [START_REF] Akutsu | KAGRA: 2.5 Generation Interferometric Gravitational Wave Detector[END_REF] is located near Hida, Japan, and started operating in 2020. It has the particularity of being build underground, and consists of two perpendicular 3 km arms.

The general design of these interferometers is illustrated in Fig. I.5. A laser beam is split in two by a semireflective mirror, and the resulting beams travel through the two arms of the interferometer, each of which is enhanced by a Fabry-Pérot resonant cavity with high finesse. Each beam then reflects against a massive, suspended mirror, which acts approximately as a free-falling test mass in the horizontal direction along the arm. The two laser beams travel back though the arms to the semi-reflective mirror, where they are combined to form an interference pattern, and measured on a photodetector. Both arms are exactly of the same length, and the interferometer is tuned such as to create destructive interference, i.e. no light is detected on the photodetector in the absence of perturbations. When a GW crosses the detector, depending on its polarization, it can make one mirror move and not the other: this creates a difference in the length of the two arms, and breaks the destructive interference, which results in a flicker of light. Thus, this detector is not sensitive to the individual motion of each mirror, but the difference in armlength. The first GW event occurred on September 15, 2014, hence its name GW150914 [START_REF] Abbott | Observation of Gravitational Waves from a Binary Black Hole Merger[END_REF]. It occurred during an engineering phase of LIGO (therefore not in O1), but was luckily detected by both LIGO interferometers anyway. Virgo was not yet operational at the time and KAGRA was still in progress. The event lasted 0.2 seconds, which corresponds to 8 cycles with a frequency that increased from 35 Hz to 250 Hz during the event. It occurred roughly at a distance 440 Mpc (error bars are of the order of 180 Mpc !), its direction could not be localized precisely and was produced by the merger of two black holes of 35 and 30 solar masses.

Another major detection is GW170817 [START_REF] Abbott | GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral[END_REF], which was due to the merger of two neutron stars of approximately 3 solar masses each at about 40 Mpc away. Its unique feature is that is was detected simultaneously as a gamma ray burst GRB170817A [START_REF] Abbott | Multi-messenger Observations of a Binary Neutron Star Merger[END_REF][START_REF] Goldstein | An Ordinary Short Gamma-Ray Burst with Extraordinary Implications: Fermi-GBM Detection of GRB 170817A[END_REF][START_REF] Savchenko | INTEGRAL Detection of the First Prompt Gamma-Ray Signal Coincident with the Gravitational-wave Event GW170817[END_REF][START_REF] Ajello | Fermi-LAT Observations of LIGO/Virgo Event GW170817[END_REF], which was associated with the electromagnetic counterpart due to the kilonova. 

I.3.2 Third generation ground-based detectors

Despite the major success of the LVK collaboration, the relatively small signal-tonoise ratio (SNR) and narrow sensitivity band limits the amount of science that can be done with these detectors. Therefore, two third-generation ground-based detector have been proposed: Cosmic Explorer (CE) in the United States and the Einstein Telescope (ET) in Europe, whose sensitivity is expected to be largely improved with respect to second-generation detectors, as illustrated by The triangular design will endow ET with a more isotropic antenna pattern than LVK. Since it is underground, seismic noise will be reduced, and gravity gradients are also mitigated. Moreover, it is planned to used cryogenic mirrors, whose temperature of The optical layout of ET is made or three nested detectors, labeled by green, red and blue. Each of these detectors is composed of a low-frequency (full line) and a high-frequency (dashed line) interferometer. Source: [START_REF]ET design report update[END_REF]. about a few tens of kelvins will significantly reduce thermal noise.

I.3.3 Space-borne interferometers

Another direction for improving GW detector sensitivity is to go into outer space, where there is virtually no environmental noise and where the free-falling test-mass experiment can be optimally realized. Moreover, this allows for much larger arms, thus probing a very different frequency band. These include the Laser Interferometer Space Antenna (LISA) [START_REF]The Gravitational Universe[END_REF], but also the Deci-hertz Interferometer Gravitational wave Observatory (DECIGO) [START_REF] Kawamura | The Japanese space gravitational wave antenna: DECIGO[END_REF] and the Taiji (太极) [START_REF] Hu | The Taiji Program in Space for gravitational wave physics and the nature of gravity[END_REF] and TianQin (天琴, "heavenly harp") [START_REF] Luo | TianQin: a space-borne gravitational wave detector[END_REF] projects. LISA will be composed of three satellites forming a constellation in the form of an equilateral triangle. The distance between two satellites will be 2.5 million kilometers, and the barycenter of this constellation will be located at one astronomical unit from the Sun, trailing the Earth's orbit by around 20°(see Fig. I.11a), which corresponds to a linear distance from Earth of about 50 million kilometers. Each satellite is endowed with a drag-free system and two test masses, each of which consists in of a 2 kg cube made of a gold-platinum alloy (shown in Fig. I.11b), which is freely floating within a vacuum chamber. The satellites are engineered to exactly follow the test mass, which plays the role of the mirror. Moreover, the satellites are also equipped with two lasers, two optical bench and two telescopes pointing at each of the other two satellites. Since the distance between each satellite is extremely large, one cannot realize a Michelson interferometer by directly sending back the light reflected by the test mass onto the distant satellite, so one must instead resort to numerical interferometry. Thanks to these elaborate techniques, one expects to measure the displacement between each of the three pairs of test masses up to a precision of 10 pm.

LISA will operate in the 100 µHz to 100 mHz frequency band at a sensitivity of around 10 -21 , which if much worse than the current ground-based detectors, see However, the magnitude of the GWs one expects to find at these frequencies is much higher than for ground-based detectors, so LISA will in fact detect many sources. First, LISA will detect a foreground of unresolved stellar-mass compact binaries in the Milky Way, whose signal will be nearly monochromatic since they are very far from merger. This includes black holes (BH) and neutron stars (NS), but also white dwarfs. LISA will also resolve individual mergers of supermassive black hole binaries in other galaxies, as well as extreme mass ratio inspirals and intermediate mass black hole binaries. Other sources, such as the stochastic GW background, the primordial GW background or exotic sources such as cosmic strings, could potentially be detected by LISA as well [START_REF] Arun | New horizons for fundamental physics with LISA[END_REF].

I.4 Gravitational-wave data analysis

As we have seen, GW detectors need to be extremely sensitive, and there are many noise sources that can spoil the signal. It is therefore important to develop proper data analysis techniques to correctly distinguish the signal from the noise.

Consider an output from a detector

d(t) = h(t) + n(t) (I.77)
where h(t) is a deterministic function of time and n(t) is a random variable with zero expected value, ⟨n(t)⟩ = 0, which we assume to be ergodic. In practice, we are in the ). In order to nonetheless extract physical information, we have to to have a very precise understanding of the signal (which is the goal of this thesis) and of the noise to fish out a small signal out of a large noise. We first assume that the noise is Gaussian and stationary, such that its different Fourier components are uncorrelated and

⟨ñ * (f )ñ(f ′ )⟩ = 1 2 δ(f -f ′ )S n (f ) , (I.78)
where S n (f ) is the amplitude spectral density of the noise, a tilde indicates the Fourier transform of a function of time, and the star indicates the complex conjugate. This means that the noise's variance reads ⟨n 2 (t)⟩ = +∞ 0 df S n (f ). We then introduce a filter function k(t), thanks to which we define the correlation function

c(t) ≡ +∞ -∞ dt ′ d(t ′ )k(t ′ + t) .
(I.79)

Since it includes the noise, c(t) is actually a random variable. One defines its signal-tonoise ration as

SNR(t) = ⟨c(t)⟩ [⟨c(t) 2 ⟩ -⟨c(t)⟩ 2 ] 1/2 . (I.80)
One can then prove that for any signal h, the quantity SNR(0) is maximized by the filter k opt (t ′ ), called the optimal or Wiener filter, which is defined by its Fourier transform

kopt (f ) = h(f ) S n (f ) . (I.81)
This means that the SNR plotted with respect to time will exhibit a strong peak if the filter is chosen as exactly equal to the signal, up to a global time shift t which is determined by the location of this peak. Now suppose that one has at hand a template τ (t; θ) which depends on a small set of parameters, e.g. θ = (m, ν), and which is known to be equal to the signal for some unknown value of θ. Said differently, suppose that there exists θ 0 and t such that τ (t ′ ; θ 0 ) = h(t ′ + t). In order to search for a signal, one is compelled to choose the filter to be k(f ) = τ (f ; θ)/S n (f ) and to plot SNR(t) with many different filters Second row: Signal-to-noise ratio (SNR) time series. Source: [START_REF] Abbott | GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence[END_REF] associated to different values of θ. One can then explore the parameter space associated to θ, and search for a peak in the SNR signal. This would indeed indicate, as we have seen, that the template must be almost equal to the signal. Since the SNR can be seen as a scalar product between the filter and the signal in a high-dimensional vector space, most filters will we orthogonal to the signal and will lead to near-vanishing SNR. Only filters very close to being parallel to the signal will lead to nonzero SNR, and thanks to the high-dimensionality of the vector space, this leads to a very sharp and distinctive peak (in practice, the usual criterion is SNR > 8), see second row of Fig. I.12.

Although we do not expect our template to be exactly equal to our signal, we can nonetheless optimize the match by choosing θ opt such as to maximize the SNR. A better way to find θ opt is for example to use a maximum likehood estimator, or to maximize the posterior probability. The corresponding optimal waveform τ (t; θ opt ) is plotted in black in the first row of Fig. I.12. One should also note that detecting a high SNR is not a fool-proof criterion to claim that a GW has indeed been detected. Indeed, the presence of non-Gaussian noise can create high SNR events, so a good mitigation is to monitor it: for example, if there is an earthquake leading to a high-SNR signal, the signal collected on seismographs in the vicinity of the detector will allow us to discard this event. Moreover, a large panel of statistical techniques can be employed to estimate the probability of an actual GW detection and establish false alarm probabilities. The likeliness of a false alarm is significantly reduced if the signal is detected in different, uncorrelated detectors.

Part A

General relativity

Chapter II

The wave generation formalism

II.1
The Landau-Lifschitz formulation of general relativity Following Landau and Lifschitz [START_REF] Landau | The classical theory of fields[END_REF], we wish to reexpress the Einstein field equations (I.2) of GR in the form of a wave equation. To this end, we introduce a tensor density which we call the gothic metric, which reads

g µν ≡ √ -gg µν . (II.1)
In view of studying GWs as deviations from flat Minkowski spacetime, we introduce our main variable, the graviational-field amplitude

h µν ≡ g µν -η µν = √ -gg µν -η µν . (II.2)
Although this identity is written in terms of the inverse metric g µν , we can also express the metric g µν itself in terms of h µν , at the price of introducing an infinite sum. Furthermore, the (opposite of the) determinant of the metric can be expressed exactly as

-g = 1 + h + 1 2 h 2 -h β α h α β + 1 6 h 3 -3hh β α h α β + 2h β α h σ β h α σ + 1 24 h 4 -6h 2 • h α β h β α + 3(h α β h β α ) 2 + 8h • h α β h β ρ h ρ α -6h α β h β ρ h ρ σ h σ α , (II.3)
where we recall from Section I.1 that h β α ≡ h ασ η σβ and h ≡ h σ σ . We will also introduce a notation for the divergence of h µν , namely

H µ ≡ ∂ ν h µν .
(II.4)

The Einstein field equations can then be entirely rephrased as a flat-space wave equation for the metric deviation h µν , sourced by the metric deviation itself. It reads

□h µν -∂H µν = 16πG c 4 τ µν , (II.5)
where τ µν is the stress-energy pseudotensor sourcing the GWs, where □ is still the flatspace d'Alembertian and where recall the shorthand (I.12). The stress-energy pseudotensor is defined by

τ µν = (-g)T µν [m, h αβ ] + c 4 16πG Λ µν [h αβ ] , (II.6)
where T µν is the stress-energy tensor expressed in terms of h αβ , and all the nonlinearities of the Einstein equation have been absorbed in the Λ µν pseudotensor, which reads [3]

Λ µν ≡ -h αβ ∂ αβ h µν + ∂ α h µβ ∂ β h να + 1 2 g µν g αβ ∂ λ h ατ ∂ τ h βλ -g µα g βτ ∂ λ h ντ ∂ α h βλ -g να g βτ ∂ λ h µτ ∂ α h βλ + g αβ g λτ ∂ λ h µα ∂ τ h νβ + 1 8 2g µα g νβ -g µν g αβ 2g λτ g ρσ -g τ ρ g λσ ∂ α h λσ ∂ β h τ ρ + 2h ρ(µ ∂ ρ H ν) -∂ ρ (h µν H ρ ) . (II.7)
Note that thanks to (II.2) and (II.3), we can indeed express Λ µν purely in terms of h µν , but at the price of having an infinite sum. We also know that Λ µν is at least quadratic in h, so it can be expressed in terms of a quadratic piece, a cubic piece, etc., namely

Λ µν = N µν [h, h] + M µν [h, h, h] + L µν [h, h, h, h] + ∞ n=5 Λ µν n [h] , (II.8)
where N µν [h, h ′ ] is given by

N µν [h, h ′ ] = -h αβ ∂ α ∂ β h ′µν + 1 2 ∂ µ h αβ ∂ ν h ′αβ - 1 4 ∂ µ h∂ ν h ′ -2∂ α h β(µ ∂ ν) h ′ αβ + ∂ β h µα ∂ β h ′ν α + ∂ α h ′νβ + η µν - 1 4 ∂ ρ h αβ ∂ ρ h ′αβ + 1 8 ∂ ρ h∂ ρ h ′ + 1 4 ∂ α h βρ ∂ β h ′αρ + 2h α(µ ∂ α ∂ β h ′ν)β -∂ α h µν ∂ β h ′βα (II.9)
and M µν [h, h, h] is given by (1.3) of [START_REF] Blanchet | Gravitational-wave tails of tails[END_REF].

In most applications, the harmonic gauge conditition H µ = 0 is imposed, which means that the last lines of (II.7) and (II.9) vanish, as in [START_REF] Poincaré | Sur la dynamique de l'électron[END_REF] of [START_REF] Blanchet | Gravitational Radiation from Post-Newtonian Sources and Inspiralling Compact Binaries[END_REF] and (1.2) of [START_REF] Blanchet | Gravitational-wave tails of tails[END_REF]. The Einstein equations in harmonic coordinates then read

□h µν = 16πG c 4 τ µν , (II.10)
where it is of course implicit that the harmonic gauge condition ∂ µ h µν = 0 must also be satisfied for h µν to be a solution of the Einstein equations This justifies in hindsight our choice to work with the variable h µν as defined by (II.2): in harmonic coordinates, the Einstein equations reduce to a wave equation on h µν sourced only by the matter and terms at least quadratic in h µν .

II.2 Solving the Einstein equations

Now that we have reformulated the Einstein equations in a convenient way, we will specify the physical problem we want to study. To start with, we consider the case of two stars orbiting each other. The stress-energy tensor is a smooth function of spacetime. The binary system is inspiraling because of GW emission, so we suppose that we are in a regime where the binary is well separated (i.e. the two objects are separated by a distance much greater than the typical size of each object) and where the relative velocity of the two stars is small compared to the speed of light. In order to solve our wave-generation problem, we will want to impose two additional conditions [START_REF] Blanchet | Radiative gravitational fields in general relativity. I. general structure of the field outside the source[END_REF] to the metric. First, we assume that the metric was stationary in the past, i.e. there exists a time -T such that ∀t ⩽ -T , ∂h µν ∂t (t, x) = 0 . (II.11a)

Second, we assume that the metric was asymptocially Minkowskian (in the weak sense) before the time -T , namely

∀t ⩽ -T , lim r→+∞ h µν (t, x) = 0 , (II.11b)
where the limit is taken for fixed t. This will also allow us to assume that our stress-energy tensor has compact support and that all the matter is contained within a world-tube of finite radius. This is physically motivating by the fact that in the far past, the stars had not yet formed, and were thus not generating GWs With this physical setting, it is then necessary to separate our problem into different zones. Near the source, i.e. for radii smaller than a typical gravitational wavelength, we are entitled to make the PN approximation: we assume that velocities are small, so we can expand our sources and fields in powers of v/c. Thanks to the virial theorem 1 , we can perform this expansion using the fact the (v/c) 2 ∼ (Gm)/(r 12 c 2 ), where r 12 is the orbital separation and m the total mass of the binary. In practice, the PN expansion will simply be an expansion when c → ∞. This also applies to the case of functions of retarded time, which can be expanded in powers of c as

f t - r c = f (t) - r c f (1) (t) + 1 2 r c 2 f (2) (t) + • • • .
It is immediate to see how this approximation only applies in the near zone, and breaks down far away from the source. Note that when solving the near-zone problem, we will obtain the result up to some arbitrary homogeneous functions, which will parametrize radiation reaction. Conversely, we can solve our problem in the exterior vacuum region of spacetime. In this case, no PN approximation is needed (since there is no source in the equations), and we can express the most general solution as a multipolar expansion, parametrized by some multipolar moments, which at this stage are arbitrary. This solution is well defined everywhere except at r = 0, where it diverges, but it only represents the physical solution outside the source.

There exists a buffer zone, the "near exterior zone", where both expansion are valid, see Fig. II.1. This zone allows us to match the two solutions, and specify the multipolar moments in terms of the source, and the radiation-reaction functions in terms of the exterior metric. In practice, this matching is done via matched asymptotic series: we 1 The virial theorem states that for a bound system, the kinetic energy T is related to the gravitational potential U by 2⟨T ⟩ + ⟨U ⟩ = 0, where ⟨...⟩ indicates time averaging. For a bound system of two point particles, T = µv 2 12 /2 and U = -Gµm/r12, where m = m1 + m2 is the total mass, µ = m1m2/m is the reduced mass, r12 is the orbital separation and v12 is the relative velocity of the two objects. Omitting time averages, we therefore obtain (v12/c) 2 = Gm/(r12c 2 ), and the total energy reads ⟨E⟩ = -Gµm/(2r12). This is not true in GR, but the order of magnitude holds.

will notice that the two solutions have the same asymptotic structure (respectively in the r → +∞ and r → 0 limits), and we will impose that the coefficients in this expansion be equal.

Fig. II.1

Representation of a source of size a emitting gravitational waves of wavelength λ GW . The matter is contained within the small dotted circle. The near zone is characterized by r ≪ λ GW . The buffer zone, between the two dotted circles, is the exterior near zone, where both PN and MPM expansions are valid. The wave zone is given by r ≫ λ GW , and is outside the represented region.

II.2.1 Multipolar post-Minkoswkian solution for the exterior vacuum

For the moment, we will solve the vacuum equation in the region exterior to the source using the harmonic gauge condition, namely ∂ µ h µν = 0. In Section II.7 and more thoroughly in Chapters IV and V, we will see that there are different coordinate choices that have some substantial advantages. Since we are now assuming that we are in the vacuum exterior to the source, the Einstein equations simplify to □h µν = Λ µν [h], where Λ µν [h] is given by (II.7). Assuming that h µν ≪ 1, we formally divide the metric into a linear part, a quadratic part, etc. This procedure is called the post-Minkowskian (PM) expansion (since we are expanding the metric around Minkowski spacetime), and we factor out of each term a specific power of Newton's constant G, which will act as a bookkeeping parameter. We will then replace the linearized metric by its multipolar expansion, and construct the nonlinearities using the nonlinear metric. Altogether, this procedure is called the multipolar post-Minkowskian (MPM) construction [START_REF] Blanchet | Radiative gravitational fields in general relativity. I. general structure of the field outside the source[END_REF], and is formally designated by M (which stands for "multipolar"), namely

M(h µν ) = ∞ n=1 G n h µν n .
(II.12)

Injecting the ansatz (II.12) in the vacuum Einstein equations in harmonic coordinates yields a hierarchy of wave equations which read

□h µν n = Λ µν n [h 1 , ..., h n-1 ] , (II.13)
where Λ µν n is obtained recursively. For our purposes, we will only be needing

Λ µν 2 [h 1 ] = N µν [h 1 , h 1 ] , (II.14a) Λ µν 3 [h 1 , h 2 ] = N µν [h 1 , h 2 ] + N µν [h 2 , h 1 ] + M µν [h 1 , h 1 , h 1 ] . (II.14b)
Note that the MPM metric given by (II.12) does not necessarily converge, but we treat it as a formal series that satisfies the Einstein equations order by order, in the sense of (II.13). The first step in the MPM construction is to solve for the linearized solution (n = 1). In this approximation, the Einstein equations take the particularly simple form □h µν 1 = 0 , (II.15a)

∂ µ h µν 1 = 0 . (II.15b)
The no-incoming radiation condition follows from the conditions of (II.11), which naturally select the retarded Green's function for these equations. Noting that there is a residual gauge freedom within the harmonic gauge, we can now write the general solution to (II.15) as

h µν 1 = k µν 1 + ∂φ µν 1 , (II.16)
where the canonical part k µν 1 of the solution is defined by means of two sets of STF multipole moments {I L , J L }, namely [START_REF] Sachs | Structure of Particles in Linearized Gravitational Theory[END_REF][START_REF] Pirani | Introduction to Gravitational Radiation Theory[END_REF][START_REF] Thorne | Multipole Expansions of Gravitational Radiation[END_REF][START_REF] Blanchet | Radiative gravitational fields in general relativity. I. general structure of the field outside the source[END_REF][START_REF] Blanchet | Gravitational Radiation from Post-Newtonian Sources and Inspiralling Compact Binaries[END_REF]]

k 00 1 = - 4 c 2 ∞ ℓ=0 (-) ℓ ℓ! ∂ L 1 r I L t - r c , (II.17a) k 0i 1 = 4 c 3 ∞ ℓ=1 (-) ℓ ℓ! ∂ L-1 1 r I (1) iL-1 t - r c + ℓ ℓ + 1 ∂ L 1 r J i|L t - r c , (II.17b) k ij 1 = - 4 c 4 ∞ ℓ=2 (-) ℓ ℓ! ∂ L-2 1 r I (2) ijL-2 t - r c + 2ℓ ℓ + 1 ∂ L-1 1 r J (1) (i|j)L-1 t - r c , (II.17c)
where we define2 J i|L ≡ ϵ ii ℓ k J kL-1 along with the univocal multi-index ordering

L = i 1 i 2 • • • i ℓ .
Similarly, we parametrize the gauge vector by four sets of STF gauge moments {W L , X L , Y L , Z L }, namely

φ 0 1 = 4 c 3 ∞ ℓ=0 (-1) ℓ ℓ! ∂ L 1 r W L t - r c , (II.18a) φ i 1 = - 4 c 4 ∞ ℓ=0 (-1) ℓ ℓ! ∂ L 1 r X L t - r c - 4 c 4 ∞ ℓ=1 (-1) ℓ ℓ! ∂ L-1 1 r Y iL-1 t - r c + ℓ ℓ + 1 ∂ L 1 r Z i|L t - r c , (II.18b)
where we define Z i|L ≡ ϵ ii ℓ k Z kL-1 .

The STF multipole moments {I L , J L , W L , X L , Y L , Z L } are arbitrary functions of the retarded time u = t -r/c of the harmonic coordinates, the only constraint being that the monopole and dipoles satisfy the usual conservation laws, i.e. that the mass monopole I, the time derivative of the mass dipole P i ≡ I

(1) i and the current dipole J i are all timeindependent constants. We will from now on denote them, respectively, M, P i ≡ M [START_REF]The Pyramid was constructed around 2330 BC, but the spells are probably at least a century older (Allen 2005), and are hence the oldest large corpus of religious writing known from ancient Egypt. A translation can be found on p. 45 of The Ancient Pyramid Texts (2005) by James P. Allen, while the transliteration and hieroglyphic transcription can be found, respectively, in Volume I and Volume III of A New Concordance of the Pyramid Texts (2013)[END_REF] i and S i , as they represent the conserved mass, linear momentum and angular momentum, composed of matter, gravitational binding energy and GW contributions. With these conservation laws, it is easy to verify that our parametrization (II.16) indeed satisfies the harmonic gauge condition (the vacuum wave equation is automatically satisfied thanks to the multipolar structure), and in our construction, we will henceforth restrict ourselves to a center-of-mass frame defined by M i = 0. Moreover, the conditions (II.11) impose that each of these moments is a constant for t ⩽ -T , and their time derivatives vanish. Note that although these moments are for the time being arbitrary functions that parametrize our metric, these will be given definite values once we match the exterior metric to the interior solution.

Once we have in hand the linearized metric, we proceed to constructing iteratively the nonlinear (n ⩾ 2) pieces of the MPM metric. For this, we first need to identify a particular solution of (II.12), under the usual conditions (II.11). Consider an equation of the type □ϕ = S, where S(x, t) is a smooth source that behaves as S(r, t -r) = O(r ℓ+5 ) when r → 0 and t -r is held fixed [START_REF] Trestini | Gravitational-wave tails of memory[END_REF][START_REF] Blanchet | Multipolar radiation reaction in general relativity[END_REF].

A natural solution is ϕ ≡ □ -1 ret [S]
, where the inverse retarded d'Alembert operator is defined as usual, namely

.□ -1 ret [S](x, t) ≡ - 1 4π d 3 x ′ |x -x ′ | S x ′ , t - |x -x ′ | c . (II.19) It is of course easy to verify that □ □ -1 ret [S] = □ -1 ret [□[S]] = S.
However, this solution is ill-defined as soon as the behavior of S is not regular enough. Note that convergence problems can only occur in the r → 0 limit, since the function S quite generally involves the derivatives of a multipolar moment, and the conditions (II.11) then impose that the integrand is identically zero in the r → +∞ limit (with t kept fixed). In order to cure the the ultraviolet (UV) divergences in the r → 0 limit, one introduces a complex parameter B ∈ C and an arbitrary regularization constant r 0 such that

□ -1 ret r r 0 B S (x, t) ≡ - 1 4π d 3 x ′ |x -x ′ | |x ′ | r 0 B S x ′ , t - |x -x ′ | c (II.20)
is convergent. Indeed, for a typical source, it suffices to choose Re(B) large enough to overcome the divergent behavior of the integrand. By analytic continuation in B, one can write the integral as a Laurent series in B, which reads 

□ -1 ret r r 0 B S (x, t) = ∞ k=-n B k α k [S](x,
B=0 □ -1 ret , □ [S] ≡ FP B=0 □ -1
ret □[S] -S, which vanish when acting on a convergent source.

We now have all the tools needed to construct a particular solution u µν n to (II.13), which reads

u µν n ≡ FP B=0 □ -1 ret r r 0 B Λ µν n [h 1 , ..., h n-1 ] . (II.22)
The constant length scale r 0 is arbitrary and has to disappear from any physical result in the end. This particular solution satisfies □u µν n = Λ µν n , but it does not satisfy the harmonic gauge condition, i.e. ∂ ν u µν n ̸ = 0. Since ∂ ν Λ µν n = 0, the divergence of the particular solution actually reads

w µ n ≡ ∂ ν u µν n = FP B=0 □ -1 ret B r r 0 B n i r Λ µi n . (II.23)
The factor B comes from the differentiation of the regulator (r/r 0 ) B . Because of it, the term (II.23) is nonzero only when the integral develops a pole ∝ 1/B when B → 0. Furthermore, this divergence is automatically a homogeneous retarded solution of the wave equation, □w µ n = 0. At this stage, we apply the MPM "harmonicity" algorithm [START_REF] Blanchet | Radiative gravitational fields in general relativity. I. general structure of the field outside the source[END_REF] to construct from w µ n another homogeneous retarded solution v µν n such that ∂ ν v µν n = -w µ n . First, we utilize the fact that w µ n is a homogeneous retarded solution of the vacuum wave equation to express it in terms of four sets of STF multipolar moment {N L , P L , Q L , R L } (see Appendix A.1 for a practical way to extract them). It reads

w 0 n = ∞ ℓ=0 ∂ L 1 r N L t - r c , (II.24a) w i n = ∞ ℓ=0 ∂ L 1 r P L t - r c + ∞ ℓ=1 ∂ L-1 1 r Q iL-1 t - r c + ℓ ℓ + 1 ∂ L 1 r R i|L t - r c , (II.24b)
where we define R i|L ≡ ϵ ii ℓ k R kL-1 and all moments N, P, Q and R implicitly depend on the order n. From these moments, we can construct v µν n as a multipolar expansion which satisfies the divergence condition. There is a residual gauge freedom in this construction, and we utilize it to minimize the v 00 n and v 0i n components. Note that any other gauge choice would also be valid, but would lead to a different matching, and in particular would modify the definition of the source moments. The choice we make for the expression of v µν n thus reads

v 00 n = - 1 r N -1 + ∂ a 1 r -N (-1) a + Q (-2) a -3P a (II.25a) v 0i n = 1 r -Q (-1) i + 3P (1) i -∂ a 1 r R (-1) i|a - ∞ ℓ=2 1 r N iL-1 (II.25b) v ij n = - δ ij r P + ∞ ℓ=2 2δ ij ∂ L-1 1 r P L-1 -6∂ L-2(i 1 r P j)L-2 (II.25c) + ∂ L-2 1 r N (1) ijL-2 + 3P (2) ijL-2 -Q ijL-2 -2∂ L-1 1 r R i|jL-1
where all moments N, P, Q and R are implicitly evaluated at t -r/c. This procedure is concisely denoted by v µν n = V µν [u n ]. Note the presence of antiderivatives, denoted by the presence of negative derivatives (see Notations).

Finally, the harmonic metric at order n, now satisfying the full Einstein vacuum equations in harmonic coordinates at the n th order, reads

h µν n = u µν n + v µν n .
(II.26)

The harmonic metric M(h µν ) as defined in (II.12) is a nonlinear functional of the moments {I L , J L , W L , X L , Y L , Z L } and represents the most general solution of the Einstein field equations in the vacuum region outside an isolated system [START_REF] Blanchet | Radiative gravitational fields in general relativity. I. general structure of the field outside the source[END_REF].

It can be shown that the metric constructed in this way has the following polylogarithmic structure when r → 0 (see [START_REF] Blanchet | Radiative gravitational fields in general relativity. I. general structure of the field outside the source[END_REF] for a proof):

M(h) (x, t) = r→0 ℓ∈N m∈Z p∈N nL r m ln p (r)F m,p L (t) (II.27)
where F m,p L (t) is a multilinear functional of all the source and gauge moments.

II.2.2 Near-zone PN metric

Given a physical quantity Q, we denote by Q its PN expansion, namely its formal series representation when c → ∞, up to some finite order 1/c 2k , which we call the k th PN order, denoted kPN (thus odd powers in v/c correspond to half-integer PN orders). This quantity will differ drastically from its physical counterpart far from the source, but it will be deemed a good approximation inside and in the vicinity of the source. Of particular interest will be the PN expansion of the metric, where the sum actually terminates at some finite order p max that depends on m. Similarly, we perform the PN expansion of the stress energy pseudotensor, where ϕ = 1 4 h 00 2 is the Newtonian gravitational potential and ρ = τ 00 -2 is the Newtonian matter density. It is then possible to prove that in the r → +∞ limit, the asymptotic structure of h reads

h µν (x, t, c) = ∞ m=2 1 c m h µν m (x
τ µν (x, t, c) = ∞ m=-2 1 c m τ µν m (x
h (x, t) = r→+∞ ℓ∈N m∈Z p∈N nL r m ln p (r)G m,p L (t) , (II.33)
which is identical to (II.27) . Finally, we will mention a practical way to implement the previously described algorithm, which consists in parametrizing the near-zone metric with well-chosen potentials. At 2PN, the metric reads

g 00 = -1 + 2 c 2 V - 2 c 4 V 2 + O 1 c 10 , (II.34a) g 0i = - 4 c 3 V i + O 1 c 9 , (II.34b) g ij = δ ij 1 + 2 c 2 V + O 1 c 8 , (II.34c)
where we have defined V = -4πG □ -1 ret (T 00 + T kk )/c 2 and

V i = -4πG □ -1
ret T 0i /c . The metric and potentials have been defined up to 4PN in [START_REF] Marchand | The mass quadrupole moment of compact binary systems at the fourth post-Newtonian order[END_REF].

II.2.3

The matching equation

Once we have constructed the exterior and near-zone metrics and obtained their asymptotic behaviors (see Fig. II.2), we will seek to relate the two metrics by matching their asymptotic series. Indeed, we have observed that the r → 0 asymptotic series of M(h), given by (II.27), is formally identical to the r → +∞ asymptotic series of h, given by (II.27), but the two series are parametrized a priori by different time-dependent coefficients, F m,p L (t) and G m,p L (t). The matching procedure consists in imposing that these two expansions be equal, namely

M(h) = ℓ∈N m∈Z p∈N nL r m ln p (r)F m,p L (t) ≡ ℓ∈N m∈Z p∈N nL r m ln p (r)G m,p L (t) = M(h) ,
(II.35) where, as usual, the overline symbolizes the PN (or near-zone) expansion, and the M symbolizes the multipolar (or far-zone) expansion [START_REF] Poujade | Post-Newtonian approximation for isolated systems calculated by matched asymptotic expansions[END_REF][START_REF] Blanchet | Structure of the post-Newtonian expansion in general relativity[END_REF][START_REF] Blanchet | Gravitational Radiation from Post-Newtonian Sources and Inspiralling Compact Binaries[END_REF]. This is equivalent to stating that the coefficients must be identical in the physical problem, namely that F m,p L (t) = G m,p L (t). Applying this matching procedure entirely determines the multipolar moments that parametrize the MPM solution in terms of the PN metric and matter source. The source The blob represents the source, of typical size a. The region where both curves overlap is the matching zone. and gauge moments are all given in [START_REF] Blanchet | Gravitational Radiation from Post-Newtonian Sources and Inspiralling Compact Binaries[END_REF], and we reproduce here only the expression for the mass multipole moment,

I L (u) = FP B=0 d 3 x r r 0 B 1 -1 dz δ ℓ (z)x L Σ - 4(2ℓ + 1) c 2 (ℓ + 1)(2ℓ + 3) δ ℓ+1 (z)x iL Σ (1) i + 2(2ℓ + 1) c 4 (ℓ + 1)(ℓ + 2)(2ℓ + 5) δ ℓ+2 (z)x ijL Σ (2) ij x, u + zr c , (II.36)
where we have define the (PN-expanded) source variables

Σ = τ 00 + τ aa c 2 Σ i = τ 0i c , Σ ij = τ ij , (II.37)
and where the weighting function δ ℓ (z) is defined by

δ ℓ (z) = (2ℓ + 1)!! 2 ℓ+1 ℓ! (1 -z 2 ) ℓ (II.38)
such as to satisfy

1 -1 dz δ ℓ (z) = 1 . (II.39)
The following expansion is essential for expanding these integrals to finite PN order:

1 -1 dz δ ℓ (z)S x, u + zr c = ∞ k=0 (2ℓ + 1)!! r 2k 2 k k!(2ℓ + 2k + 1)!! ∂ c ∂u 2k S (x, u) .
(II.40)

II.3 The case of point-particles

Until now, we have supposed that the matter content, represented by its stress-energy tensor T µν (x, t), is a smooth function of spacetime. This ensures in particular that the metric itself, represented by g µν or h µν , is also smooth, and has a well-defined value at each point of spacetime. We have moreover assumed that the metric perturbation is small, i.e. |h µν | ≪ 1.

We now want to specialize our study to the case of a compact binary system of neutron stars or black holes. Clearly, in the vicinity of these objects, the gravitational field is very strong, and one cannot a priori apply the PN-MPM formalism. However, although the field is strong near the source, one can show in GR that the contribution of the internal structure to the dynamics turns out to be extremely small, namely of 5PN order, i.e. that the dynamics depend (up to 5PN precision) only on the total masses of the two objects, and not on their structure. This effacement principle [START_REF] Damour | The general relativistic problem of motion and binary pulsars[END_REF] allows us to extent our formalism to the case where our compact binary is represented by two spinless and structureless point-particles, i.e. two well-separated bodies whose size is small compared to the other scales of the problem, and whose stress-energy content can thus be well represented as Dirac-distribution. The matter action for a system of point particles reads

S m = -c A m A -(g αβ ) A dy α A dy β A , (II.41)
thus the stress-energy tensor for a system of two point-particles is given by

T µν (x, t) = A∈{1,2} δ (3) (x -y A (t)) -(g) A m A v µ A (t)v ν A (t) -(g αβ ) A v α A (t)v β A (t) c 2 , (II.42)
where we recall the shorthand v µ A ≡ (c, v A (t)) (which is not the 4-velocity of the particle), and the reader is invited to consult the Notations for more details.

The PN iteration of this stress-energy tensor will of course yield at lowest order

T µν (x, t) = δ 1 m 1 v µ 1 (t)v ν 1 (t) + (1 ↔ 2) + O 1 c 2 . (II.43)
When solving the field equations with this source, we find that the metric g µν must have a divergent ∼ 1/|x-y A | behavior near particle A ∈ {1, 2}. But at the next iteration, we will need to evaluate g µν (x, t) at x = y A (t), which is clearly divergent. From a physical point of view, this is an artifact of our choice of working with point-particles. Indeed, in the case of a compact star, the matter distribution is smoothed out over some finite region of space, so the metric is also smooth and there is no divergence. In the case of a black hole, there is indeed a singularity but it is hidden behind the event horizon, which is a feature that is completely lost in the point-particle PN approach. From the computational point of view, however, this has been historically a major obstacle. In standard Newtonian dynamics, this is solved by saying that in a system of N point particles, any particle feels the gravitational attraction of all the other particles, but not of itself. This procedure essentially removes the self-field of a compact object [START_REF] Poisson | Gravity: Newtonian, post-Newtonian, relativistic[END_REF]. In the general relativistic case, is it not so easy to disentangle the self-field from the exterior fields, because they are nonlinearly mixed within the metric.

The historical procedure to remove the self-field in the PN problem is to assign a regularized value to the metric at the location of the point particle thanks to Hadamard regularization [START_REF] Blanchet | Hadamard regularization[END_REF]. Ignoring the time dependence and spacetime indices, which play no role here, we can always write the metric as a formal expansion around the location y 1 of the first particle, namely

g(x) = ∞ p=p min r p 1 g p 1 (n 1 ) , (II.44)
where p min ∈ Z, r 1 = |x -y 1 |, n 1 = (xy 1 )/r 1 and 1 g p are a family of functions of n 1 (crucially, they are independent of r 1 ). Essentially, in order to evaluate the metric at the location of the first particle while removing the self-field, we take the Hadamard partie finie at the location of the first particle, which reads

(g) 1 ≡ 1 4π d 2 Ω g 0 1 (n 1 ) , (II.45)
where we have only integrated 1 g 0 over the angles. This procedure is very successful at low order, but starting at 3PN, it suffers from ambiguities. This is because, for a pair of functions F and G, we have (F G) 1 ̸ = (F ) 1 (G) 1 in general, and these products appear naturally in the PN construction. Moreover, the Leibniz rule is lost in general. These problems can be related to the fact that in Schwartz distribution theory, the product is not well defined. In practice, this is not a problem up to 2.5PN order, as one finds that any prescription for the way in which to take the finite part of a product yields the same result. However, at 3PN, different prescriptions yield different results that were found to differ by only a few typical terms. This led to the introduction of ambiguity parameters that quantified this uncertainty, and which could only be determined by comparing to results from other formalisms, e.g. gravitational self-force. This was problematic, because it meant that the formalism was not complete. It was solved by changing regularization methods, and adopting dimensional regularization.

II.4 Dimensional regularization

In Section II.3, we have seen that Hadamard regularization led to ambiguities. Fortunately, it was found that dimensional regularization [START_REF] Blanchet | Dimensional regularization of the third post-Newtonian dynamics of point particles in harmonic coordinates[END_REF][START_REF] Blanchet | Gravitational radiation from inspiralling compact binaries completed at the third post-Newtonian order[END_REF][START_REF] Blanchet | Dimensional regularization of the third post-Newtonian gravitational wave generation of two point masses[END_REF] is the correct way to obtain the full, unambiguous equations of motion and waveform at 3PN order. Although this is not the topic of this thesis, its use in Chapter III requires that we sketch the main features of this regularization technique. The starting point is to extend GR to d spatial dimensions (instead of three), and one time dimension. This generalization initially only makes sense for d ∈ N \{0, 1, 2} (since gravity in these lower dimensions exhibit special features), but the results will then be extended by analytical continuation to any d in the complex plane.

Dimensional regularization plays a crucial role in solving the ambiguities mentioned in Section II.3. In d ≡ 3 + ε dimensions, the metric behaves as

g (d) (x) = ∞ p=p min qmax q=q min r p+qε 1 g 1 (d)
p,q (n 1 ) , (II. [START_REF] Damour | The general relativistic problem of motion and binary pulsars[END_REF] when x approaches y 1 , with (p min , q min , q max ) ∈ Z 3 . Note that to ensure continuity with three dimensions, we have the constraint

q 1 g (d)
p,q (n 1 ) = 1 g p (n 1 ) .

(II.47)

Provided that (p, q) / ∈ (-Z * ) × {0} (which is always satisfied in practice), each term in this sum will have a well-defined r 1 → 0 limit if ε is chosen such that Re(p + qε) > 0 (by virtue of analytical continuation, one can choose different values of ε for different terms in the sum). The metric (g) 1 at the location of the first particle is thus well defined by analytical continuation, which cures the divergence of the stress-energy tensor (II.42). Most importantly, this regularization procedure satisfies (F G)

1 = (F ) 1 (G) 1 .
To be consistent, the whole PN-MPM expansion then needs to be generalized to d dimensions, see Appendix A.6 for a compendium of formulas. One important aspect is that the regularization procedure of Section II.2.1 needs to be adapted, and now reads 3

FP B=0 □ -1 ret r r 0 B S ε ≡ FP B=0 - k 4π +∞ 1 dz γ 1-d 2 (z) d d x ′ r ′ r 0 B S ε (t -z|x -x ′ |, x ′ ) |x -x ′ | d-2 , (II.48)
where k ≡ Γ (-1 + d/2) π 1-d/2 and the function γ s (z) is defined in (A.42). The prescription is to first take the finite part in B, and only then to take the ε → 0 limit (we call it the "Bε" procedure).

Although dimensional regularization is very satisfactory from a theoretical point of view, it is very cumbersome in practical computations. Indeed, one loses in arbitrary d dimension the Huygens principal [START_REF] Hadamard | Le principe de Huygens[END_REF], therefore we must deal with many nonlocal integrals in the MPM iteration (like the z integral in (II.48)), which are instantaneous in the 3-dimensional case. Moreover, many crucial integrals which we knew how to perform in three dimensions are unknown analytically in arbitrary d dimensions. One useful way out is to compute the difference between Hadamard and dimensional regularization, which is dubbed "DDR". This technique consists in performing a purely three-dimensional computation using a Hadamard regularization, and then to compute the difference between the three-dimensional result and the d-dimensional one as an expansion in d → 3. For example, the difference between Hadamard and dimensional regularization for the integral of the metric (given, respectively, by (II.44) and (II.46)), over a ball of radius R that includes the two singularities, reads

pf s 1 ,s 2 B (3) (R) d 3 x g(x) - B (d) (R) d d x g (d) (x) = 1 ε qmax q=q min 1 q + 1 + ε ln(s 1 ) dΩ d-1 (n 1 ) g 1 (d) -3,q (n 1 ) + (1 ↔ 2) + O(ε) , (II.49)
where the Hadamard prescription for the volume integral is given by (5.6) of [START_REF] Blanchet | Dimensional regularization of the third post-Newtonian gravitational wave generation of two point masses[END_REF] and depends on two arbitrary constants s 1 and s 2 associated to regularizing volumes around the singularities, and outside of which the two regularizations coincide. Although one loses with this technique the full dependence in the dimensions, one recovers useful results in the ε → 0 limit, which we would be in general unable to obtain from a direct d-dimensional computation. One should also be careful that this procedure generically introduces poles in 1/ε in intermediate quantities. However, when computing observable, physical results (such as radiative moments), we will see that these poles cancel out: this is an important consistency check of our formalism.

II.5 The kinematics of quasicircular orbits

As we know from Chapter I, most binary systems will have radiated away virtually all of their eccentricity by the time they enter the frequency band of the detector. This motivates the study of binaries undergoing quasicircular orbits, i.e. inspiraling orbits which deviate from exact circularity only by small 2.5PN secular effects due to radiation reaction. We work in the center-of-mass frame and in harmonic coordinates, so each particle is on a quasicircular orbit around the origin, and the orbital separation, which we denote r 12 ≡ |y 1 -y 2 |, only decays secularly on radiation-reaction timescales. The particles being spinless, the orbit takes place within a fixed plane, which is orthogonal to the total angular momentum of the system. One can construct an orthonormal triad (n 0 , λ 0 , l 0 ) such that l 0 is orthogonal to the orbital plane and such that the orbit appears counterclockwise when l 0 is pointing toward the observer, as illustrated in Fig. II.3a. The relative motion can then be described in polar coordinates, where the polar radius is the secularly decreasing orbital separation r 12 (t), and where the polar angle defines the orbital phase ϕ(t), which is an increasing function of time thanks to our choice of orientation, see Fig. II.3b. The orbital frequency is then straightforwardly defined as ω(t) = dϕ/dt > 0. Note that the orbital parameters {r 12 (t), ϕ(t)} depend both on the choice of origin of time and on the orientation of the (n 0 , λ 0 ) axes, so there will be arbitrary constants associated to these choices in our final results. Finally, one can define the co-rotating triad (n 12 (t), λ 12 (t), l 0 ), which will be extremely useful for the computation of nonlocal integrals in Section VI.2.3.

II.6

The equations of motion

The PN approach consists in stating that a slowly-evolving binary system can be described with equations of motions that differ from Newton's laws by small (v/c) 2 corrections. The equations of motions for a system of two point-particles were first computed at 1PN order by Lorentz and Droste [START_REF] Lorentz | The motion of a system of bodies under the influence of their mutual attraction, according to Einstein's theory[END_REF] then by Einstein, Infeld and Hoffman [START_REF] Einstein | The Gravitational Equations and the Problem of Motion[END_REF]. After partial results at 2PN order [START_REF] Okamura | Perturbation calculation of gravitational potentials[END_REF][START_REF] Ohta | Higher-order gravitational potential for many-body system[END_REF][START_REF] Ohta | Coordinate Condition and Higher Order Gravitational Potential in Canocical Formalism[END_REF], it was then completed solved at 2.5PN order [START_REF] Blanchet | Gravitational field and equations of motion of compact binaries to 5/2 post-Newtonian order[END_REF][START_REF] Itoh | Equation of motion for relativistic compact binaries with the strong field point particle limit: The second and half post-Newtonian order[END_REF][START_REF] Pati | Post-Newtonian gravitational radiation and equations of motion via direct integration of the relaxed Einstein equations. II. Two-body equations of motion to second post-Newtonian order, and radiation-reaction to 3.5 post-Newtonian order[END_REF]. At 3PN order, it was computed both in the ADM formalism [START_REF] Damour | Dynamical invariants for general relativistic two-body systems at the third post-Newtonian approximation[END_REF][START_REF] Damour | Poincaré invariance in the ADM Hamiltonian approach to the general relativistic two-body problem[END_REF][START_REF] Damour | Equivalence between the ADM-Hamiltonian and the harmonic-coordinates approaches to the third post-Newtonian dynamics of compact binaries[END_REF] and in the PN formalism [START_REF] Blanchet | Equations of motion of point-particle binaries at the third post-Newtonian order[END_REF][START_REF] Blanchet | General relativistic dynamics of compact binaries at the third post-Newtonian order[END_REF][START_REF] Blanchet | Third post-Newtonian dynamics of compact binaries: Equations of motion in the center-of-mass frame[END_REF], both up to one ambiguity constant due to the use of Hadamard regularization. It was fixed in a self-consistent manner by computing the 3PN equations of motion using dimensional regularization instead [START_REF] Blanchet | Dimensional regularization of the third post-Newtonian dynamics of point particles in harmonic coordinates[END_REF]. It was later confirmed by effective field theory (EFT) methods [START_REF] Foffa | Effective field theory calculation of conservative binary dynamics at third post-Newtonian order[END_REF]. The 3.5PN terms were computed by [ [START_REF] Pati | Post-Newtonian gravitational radiation and equations of motion via direct integration of the relaxed Einstein equations. II. Two-body equations of motion to second post-Newtonian order, and radiation-reaction to 3.5 post-Newtonian order[END_REF][START_REF] Nissanke | Gravitational radiation reaction in the equations of motion of compact binaries to 3.5 post-Newtonian order[END_REF][START_REF] Itoh | Third-and-a-half order post-Newtonian equations of motion for relativistic compact binaries using the strong field point particle limit[END_REF]. The 4PN equations of motion were obtained by several groups using different methods: (i) the ADM Hamiltonian formalism [START_REF] Jaranowski | Towards the fourth post-Newtonian Hamiltonian for two-point-mass systems[END_REF][START_REF] Jaranowski | Dimensional regularization of local singularities in the 4th post-Newtonian two-point-mass Hamiltonian[END_REF][START_REF] Damour | Non-local-in-time action for the fourth post-Newtonian conservative dynamics of two-body systems[END_REF][START_REF] Damour | On the conservative dynamics of twobody systems at the fourth post-Newtonian approximation of general relativity[END_REF]] led to complete results except for one "ambiguity" parameter, which was fixed by resorting to a comparison with gravitational self-force results [START_REF] Bini | Analytical determination of the two-body gravitational interaction potential at the fourth post-Newtonian approximation[END_REF]; (ii) the Fokker Lagrangian formalism in harmonic coordinates [START_REF] Bernard | Fokker action of nonspinning compact binaries at the fourth post-Newtonian approximation[END_REF][START_REF] Bernard | Energy and periastron advance of compact binaries on circular orbits at the fourth post-Newtonian order[END_REF][START_REF] Bernard | Dimensional regularization of the IR divergences in the Fokker action of point-particle binaries at the fourth post-Newtonian order[END_REF][START_REF] Bernard | Center-of-Mass Equations of Motion and Conserved Integrals of Compact Binary Systems at the Fourth Post-Newtonian Order[END_REF] yielded for the first time a complete result without ambiguity parameter; and (iii) the EFT approach [START_REF] Foffa | The dynamics of the gravitational two-body problem in the post-Newtonian approximation at quadratic order in the Newton's constant[END_REF][START_REF] Foffa | Tail terms in gravitational radiation reaction via effective field theory[END_REF][START_REF] Galley | Tail effect in gravitational radiation reaction: Time nonlocality and renormalization group evolution[END_REF][START_REF] Foffa | Effective field theory approach to the gravitational two-body dynamics at fourth post-Newtonian order and quintic in the Newton constant[END_REF][START_REF] Porto | On the Apparent Ambiguities in the Post-Newtonian Expansion for Binary Systems[END_REF][START_REF] Foffa | Conservative dynamics of binary systems to fourth Post-Newtonian order in the EFT approach I: Regularized Lagrangian[END_REF][START_REF] Foffa | Conservative dynamics of binary systems to fourth Post-Newtonian order in the EFT approach II: Renormalized Lagrangian[END_REF][START_REF] Blümlein | Fourth post-Newtonian Hamiltonian dynamics of two-body systems from an effective field theory approach[END_REF] recovered the complete and unambiguous result. Partial results at higher PN orders have also been obtained [START_REF] Foffa | Static twobody potential at fifth post-Newtonian order[END_REF][START_REF] Foffa | Calculating the static gravitational two-body potential to fifth post-Newtonian order with Feynman diagrams[END_REF][START_REF] Bini | Sixth post-Newtonian nonlocal-in-time dynamics of binary systems[END_REF][START_REF] Bini | Sixth post-Newtonian local-in-time dynamics of binary systems[END_REF][START_REF] Bini | Binary dynamics at the fifth and fifth-anda-half post-Newtonian orders[END_REF][START_REF] Blümlein | The fifth-order post-Newtonian Hamiltonian dynamics of two-body systems from an effective field theory approach[END_REF][START_REF] Blümlein | Gravity in binary systems at the fifth and sixth post-Newtonian order[END_REF]. First, we divide our equations of motion into conservative and dissipative dynamics, namely a 12 = a cons 12 + a diss 12 .

n  0 λ  0 ℓ  0 n 12 (u) n  12 (u-τ) λ  12 (u) λ  12 (u-τ) ϕ(u) ϕ(u-τ) (a 
(II.50)

The conservative dynamics are computed by neglecting the radiation reaction that drives the inspiral, and they admit a Lagrangian or Hamiltonian formulation. At 4PN, and for circular orbits, they read

a cons 12 = -ω 2 y 12 , (II.51)
where ω is the orbital frequency and is given by a generalization of Kepler's law 4 ,

ω 2 = Gm r 3 12 1 + (-3 + ν)γ + 6 + 41 4 ν + ν 2 γ 2 + -10 + - 75707 840 + 41 64 π 2 + 22 ln r r ′ 0 ν + 19 2 ν 2 + ν 3 γ 3 4
As is [START_REF] Marchand | The mass quadrupole moment of compact binary systems at the fourth post-Newtonian order[END_REF], we have take the two constants r ′ 0 and r ′′ 0 of [START_REF] Bernard | Center-of-Mass Equations of Motion and Conserved Integrals of Compact Binary Systems at the Fourth Post-Newtonian Order[END_REF] to be equal. where we have defined the frequency-related PN parameter y in (I.42). Since this energy is seen as the conserved quantity is the absence of dissipation, we can state that the energy flux F E , i.e. the energy "lost" by the system per unit time due to the emission of GWs is given by the time derivative of the conserved energy under the full equations of motion, namely

dE dt a cons 12 +a diss 12 = -F E .
(II.56)

Moreover, for now, F E is solely defined from the energy and the dissipative equations of motion. The latter should be computed by matching the near-zone and far-zone metrics and determining radiation-reaction forces [START_REF] Burke | Gravitational Radiation Damping[END_REF][START_REF] Blanchet | Time asymmetric structure of gravitational radiation[END_REF]. It has however been assumed to be equal to the energy flux due to GWs measured at future null infinity. This has given rise to a controversy [START_REF] Ehlers | Comments on Gravitational Radiation Damping and Energy Loss in Binary Systems[END_REF], which was solved in part by proving that this was indeed true at 2PN order [START_REF] Blanchet | Gravitational radiation reaction and balance equations to post-Newtonian order[END_REF][START_REF] Blanchet | Flux-balance equations for linear momentum and centerof-mass position of self-gravitating post-Newtonian systems[END_REF][START_REF] Leibovich | Radiation reaction for nonspinning bodies at 4.5PN in the effective field theory approach[END_REF]. If this hypothesis is assumed to hold at any order, then one can determine thanks to (II.56) the dissipative acceleration up to much higher order than what is possible only with the matching procedure, see Fig. 

a diss 12 = - 32 5 G 3 m 2 ν c 5 r 4 12 1 + - 743 336 - 11 4 ν γ + 4πγ 3 2 v 12 , (II.57)
where v 12 is the relative velocity. Using the full equations of motion and the flux-balance equation, we also obtain the secular decrease of orbital quantities at 1.5PN order [START_REF] Blanchet | Gravitational-wave flux and quadrupole modes from quasicircular nonspinning compact binaries to the fourth post-Newtonian order[END_REF] dr 12 dt = -64 5

G 3 m 3 ν r 3 12 c 5 1 + - 1751 336 - 7 4 ν γ + 4πγ 3/2 + O γ 2 , (II.58a) dω dt = 96 5 Gmν r 3 12 γ 5/2 1 + - 2591 336 - 11 12 ν γ + 4πγ 3/2 + O γ 2 .
(II.58b)

II.7 Observables at infinity

At the end of the PN-MPM iteration, the end result is a MPM metric h = n⩾1 G n h n expressed only in terms of the kinematics of the source (i.e. the positions and velocities of the point particles). Unfortunately, it is a very complicated functional of these kinematics, and is not suited for practical use. In particular, its far-zone structure as r → +∞ is plagued by far-zone logarithms of r, namely

h (x, t) ∼ r→+∞ ℓ∈N m∈Z p∈N nL r m ln p (r)F m,p L (t -r/c) , (II.59)
where the expansion is performed for t -r/c kept fixed. This is troublesome because, far from the source 5 , the n th PM term becomes larger that the (n -1) th . Fortunately, this is simply a well-known feature of the harmonic coordinates [START_REF] Blanchet | Tail Transported Temporal Correlations in the Dynamics of a Gravitating System[END_REF][START_REF] Fock | Theory of space, time and gravitation[END_REF][START_REF] Isaacson | Harmonic and Null Descriptions of Gravitational Radiation[END_REF][START_REF] Madore | Gravitational radiation from a bounded source. I[END_REF][START_REF] Madore | Gravitational radiation from a bounded source. II[END_REF][START_REF] Anderson | Approximation methods in general relativity[END_REF], and there always exists a coordinate transformation X µ = φ µ (x ν ) that ensures (at the price of exiting harmonic coordinates) that in this new coordinate system (which we call "radiative", although we will discuss this nomenclature more in detail in Section IV.1), the metric behaves as

h (X, T ) ∼ R→+∞ ℓ∈N m∈Z NL R m F m L (T -R/c) . (II.60)
For iterated tails up to quartic order (i.e. M k × M ij interactions for k ∈ {1, 2, 3}), the standard choice is to take (T, X) = t -2GMc -3 ln (r/b 0 ) , x , where b 0 is an arbitrary length scale that is related to the choice of origin of time. This choice successfully removes all the logarithms, even at nonlinear order. However, as we will see, this coordinate redefinition it not sufficient to removes all logarithms at 4PN order, and an adequate coordinate redefinition is not easy to guess. We do however know of a different flavor of the MPM algorithm that automatically removes these logarithms [START_REF] Blanchet | Radiative gravitational fields in general relativity. II. Asymptotic behaviour at future null infinity[END_REF], and which will be implemented in Chapter IV. In order to be consistent with the rest of the formalism, we will need to provide a mapping from this result back to our original coordinate system: this will be the task of Chapter V. We now assume that the far-zone computation has been performed, and that all logarithms have been removed. We notice that, for an extremely distant observer like 5 Typically for r ≫ λ GW e λ GW Gm , where λ GW is the gravitational wavelength [START_REF] Blanchet | Tail Transported Temporal Correlations in the Dynamics of a Gravitating System[END_REF].

ourselves, the subleading terms ∼ 1/R 2 are by far negligible. This amounts to a relinearization of the full metric in the region very far from the source in the small parameter Gm/(c 2 R), where R is now the distance between the observer and the source (and not the orbital separation). We find that 6

□h µν = O 1 R 2 and ∂ µ h µν = O 1 R 2 , (II.61)
so in this linearized regime, h µν recovers a multipolar structure. We will want to completely fix the residual gauge freedom in order to simplify the expression at utmost. First, as for any linearized metric, one can always choose to express our result only in terms of a set of two multipolar moments, which we call radiative moments and denote {U L , V L }.

The gauge vector and gauge moments associated to the linearized metric are chosen to be zero. Moreover, one can choose to work in the transverse-traceless (TT) gauge. Indeed, as seen in Section I.1, it is always possible to perform a well chosen gauge transformation such that our metric reads in a general frame [START_REF] Misner | Gravitation[END_REF] h 00 TT = -

4MG Rc 2 - 4N a P a c 3 R + O 1 R 2 (II.62a) h 0i TT = - 4P i c 3 R + O 1 R 2 (II.62b) h ij TT = - 4G c 2 R ⊥ TT ij,ab ∞ ℓ=2 1 ℓ! N L-2 U abL-2 - 2ℓ c(ℓ + 1) N cL-2 ϵ cd(a V b)dL-2 + O 1 R 2 (II.62c)
where ⊥ TT ij,ab is the TT projection operator defined by (I.18). We have successfully transferred all the dynamical (or radiative) degrees of freedom into the purely spatial part of the metric, and only the static degrees of freedom, including the Newtonian potential, are contained in "00" and "0i" parts of the metric. Note that the effects due to the conserved total angular momentum S i of the spacetime decay as 1/R 2 , so do not directly enter the far-zone metric 7 , and that is is usual to work in the center-of-mass frame given by P i = 0. Since all the physical information describing a GW is contained in (II.62c), a fortiori the radiative moments also contain all the physical information. Moreover, all the radiative moments are related to the source moments at lowest order by

U L = I (ℓ) L + O(c -2 ) and V L = J (ℓ) L + O(c -2
). At higher PN order, they differ by nonlinear terms which can be nonlocal in time, such as tails, memory terms, tails-of-tails, etc. For illustrative purposes, let us give the expression of the radiative quadrupole moment at 3PN order:

U ij = I (2) ij + 2GM c 3 +∞ 0 dτ ln τ 2b 0 + 11 12 I (4) ij (U -τ ) + G c 5 - 2 7 +∞ 0 dτ I (3) a⟨i I (3) j⟩a (U -τ ) + 1 7 I (5) a⟨i I j⟩a - 5 7 I (4) a⟨i I (1) j⟩a - 2 7 I 
(3) a⟨i I

(2)

j⟩a + 1 3 I (4) a⟨i J j⟩|a + 4W (4) I ij + 4W (3) I (1) ij -4W (2) I (2) ij -4W (1) I (3) ij 6 We use O 1 R 2 as a shorthand for O Gm c 2 R 2 .
7 Of course, Si can enter the metric indirectly, via the radiative moments.

+ 2G 2 M 2 c 6 +∞ 0 dτ ln 2 τ 2b 0 + 11 6 ln τ 2b 0 - 107 105 ln τ 2r 0 + 124627 44100 I (5) ij (U -τ ) + O 1 c 7 . (II.63)
Notice the appearance of the arbitrary r 0 scale at 3PN order: this scale is linked to the finite-part regularization. Note as well that at 2.5PN, there is a cumbersome dependency on the gauge moments. These will be reabsorbed when we express the radiative moments in terms of the canonical moments {M L , S L }, see Chapter III for more details. Also notice that there are two types of nonlocal terms. The first line is a tail integral, which corresponds to the backscattering of GWs against the curvature of spacetime generated by the constant total mass-energy of the spacetime. The second line is the memory integral, which can be interpreted as the reradiation of GWs by GWs themselves. These two effects are compactly represented8 by the two following Feynman diagrams, where the double line represent the compact binary, the squiggly line a GW, and a single line the static interaction between the curvature and a GW. As we know from the sticky bead argument (discussed in the Introduction), GWs carry energy, and if one considers some sphere S(R) of radius R around our source, it is possible to compute the energy flux crossing that sphere. For this, we notice that it follows from the Bianchi identities that the energy-momentum pseudotensor (II.6) is conserved, namely ∂ µ τ µν = 0 (in any coordinate system). We define the total energy inside the ball B(R) as E R ≡ B(R) d 3 x τ 00 , which for now is of course a totally coordinate-dependent quantity, since the energy of GWs cannot be localized in a gauge-invariant way. It is thus convenient to choose a coordinate system which is TT in the vacuum region (of course, this is not always possible inside the matter). We can then define the energy flux exiting the ball of radius R by

F R ≡ - dE R dt = c B(R) d 3 x ∂ i τ 0i = c R 2 S(R) d 2 Ω n i τ 0i . (II.64)
For R large enough such that all the matter is strictly contained within B(R), we can perform the replacement τ 0i → c 4 /(16πG)Λ 0i within the angular integral. Now, recalling the structure of the metric given by (II.60) and the TT gauge condition, we find

c 2 n i Λ 0i = ∂ t h kl ∂ t h kl + O(1/R 3 ). The flux then reads F R = c 3 R 2 16πG S(R) d 2 Ω ḣij TT ḣij TT + O 1 R , (II.65)
where we have made explicit the fact that we are in a TT gauge. We then take the R → +∞ (T -R being fixed) limit, and we find that the flux (also called luminosity) at future null infinity reads [START_REF] Thorne | Multipole Expansions of Gravitational Radiation[END_REF] 

F = lim R→+∞ c 3 R 2 32πG d 2 Ω ḣij TT ḣij TT = ∞ ℓ=2 G c 2ℓ+1 (ℓ + 1)(ℓ + 2) (ℓ -1)ℓℓ!(2ℓ + 1)!! U (1) 
L U

(1)

L + 4ℓ(ℓ + 2) c 2 (ℓ -1)(ℓ + 1)!(2ℓ + 1)!! V (1) L V (1) L , (II.66)
where the last line was obtained using (II.62c). Note that the secular, gauge-invariant effects are obtained by time-averaging over a typical period of the system, which is denoted by ⟨...⟩. This turns out not to be necessary for quasicircular orbits, for which the nonsecular effects cancel out all by themselves. One will then make the hypothesis that we can identify F with F E as defined in (II.56), so as to obtain a balance equation between the conserved Noetherian energy and the flux of gravitational waves measured at future null infinity (see Section II.6).

We finish this chapter on a final comment. One striking feature of the PN-MPM formalism is that the radiation field and the dynamics are strongly interdependent. However, in our lowest-order linearized approach of Section I.2, this did not seem to be a problem. The reason is that the PN-MPM algorithm strongly relies on the fact that there is a hierarchy between radiation and the dynamics, which arises from the energy balance equation. This is nicely summarized by Table II.1, where an arrow from a cell A to a cell B indicates that computing A is required before one can compute B (this is not exhaustive, only the patterns are highlighted).

As one can see from this table, the near-zone metric and the equations of motions can be computed without any need for the exterior radiation field up to 2PN order. We have highlighted the fact that there is no 0.5PN contribution, be it in the dynamics or in the waveform. At 2.5PN order in the dynamics, one needs to include radiation-reaction effects, which are due to the Newtonian waveform. The latter can be obtained simply with the Newtonian equations of motion. Since the first nonlocal effect in the radiation field arrives at 1.5PN order with the tails, we can see that the first nonlocal effect in the dynamics will arise at 4PN order [START_REF] Blanchet | Tail Transported Temporal Correlations in the Dynamics of a Gravitating System[END_REF]. These equations of motion are required in order to obtain the 4PN waveform. Note that the 4PN flux we have computed [START_REF] Blanchet | Gravitational-Wave Phasing of Quasicircular Compact Binary Systems to the Fourth-and-a-Half Post-Newtonian Order[END_REF][START_REF] Blanchet | Gravitational-wave flux and quadrupole modes from quasicircular nonspinning compact binaries to the fourth post-Newtonian order[END_REF] affects the dynamics at 6.5PN order, which is much higher than the current state of the art. Chapter III

Source and gauge moments to canonical moments

This chapter is mainly based on [START_REF] Blanchet | Gravitational-wave flux and quadrupole modes from quasicircular nonspinning compact binaries to the fourth post-Newtonian order[END_REF].

As we have seen in Chapter II, gauge moments play an essential role for the matching of the vacuum solution to the PN source. However, once the matching is done, it is useful to minimize the number of moments involved in the MPM iteration. This is done by choosing the linearized gauge vector such that φ µ 1 = 0. This amounts to a modification of the MPM algorithm of Section II.2.1, and the associated moments should then differ by nonlinear corrections. This section will deal with the methods used to go from a set of six types of source {I L , J L } and gauge {W L , X L , Y L , Z L } moments to only two canonical {M L , S L } moments. As we discovered, this procedure strongly depends on the regularization scheme.

The plan of this chapter is as follows. In Section III.1, we review the MPM construction in canonical coordinates. In Section III.2, we review the method of [START_REF] Blanchet | The quadrupole moment of compact binaries to the fourth post-Newtonian order: from source to canonical moment[END_REF] used to relate the canonical moments to the source and gauge moments in three dimensions. In Section III.2, we show how to adapt this method to a d-dimensional metric, in the context of dimensional regularization. Finally, in Section III.4, we apply this method to the quadrupole moment at 4PN order and present our result.

III.1 The canonical harmonic MPM algorithm

In this section, we describe the canonical construction of the metric, in harmonic coordinates. We will denote the metric thus constructed as h µν can (in line with [START_REF] Blanchet | The quadrupole moment of compact binaries to the fourth post-Newtonian order: from source to canonical moment[END_REF], but unlike [START_REF] Trestini | The quadrupole moment of compact binaries to the fourth post-Newtonian order: relating the harmonic and radiative metrics[END_REF], where it is instead denoted h µν harm ). In particular, we still impose ∂ µ h µν can = 0, but we utilize the residual gauge freedom of harmonic coordinates to set φ µ 1 = 0. As usual, the MPM expansion is defined up to any post-Minkowskian (PM) order by

h µν can = ∞ n=1 G n h µν can n . (III.1)
The first step to construct such a solution is naturally the linearized approximation n = 1, defined this time by means of only two sets of STF canonical multipole moments {M L , S L } as [START_REF] Sachs | Structure of Particles in Linearized Gravitational Theory[END_REF][START_REF] Pirani | Introduction to Gravitational Radiation Theory[END_REF][START_REF] Thorne | Multipole Expansions of Gravitational Radiation[END_REF][START_REF] Blanchet | Radiative gravitational fields in general relativity. I. general structure of the field outside the source[END_REF]]

h 00 can 1 = - 4 c 2 ℓ⩾0 (-) ℓ ℓ! ∂ L 1 r M L t - r c , (III.2a) h 0i can 1 = 4 c 3 ℓ⩾1 (-) ℓ ℓ! ∂ L-1 1 r M (1) iL-1 t - r c + ℓ ℓ + 1 ∂ L 1 r S i|L t - r c , (III.2b) h ij can 1 = - 4 c 4 ℓ⩾2 (-) ℓ ℓ! ∂ L-2 1 r M (2) ijL-2 t - r c + 2ℓ ℓ + 1 ∂ L-1 1 r S (1) 
(i|j)L-1 t - r c , (III.2c)
where as usual S i|L ≡ ϵ ii ℓ k S kL-1 . The STF multipole moments {M L , S L } are arbitrary functions of the retarded time t -r/c of the harmonic coordinates, the only constraint being that the monopole and dipoles satisfy the usual conservation laws, i.e., that the mass monopole M, the time derivative of the mass dipole M

(1) i and the current dipole S i are all time-independent constants. Thus M, M i and S i represent the conserved quantities, made of matter and GW contributions. Note therefore that they are identical to the ones stemming from the source-rooted construction described in Chapter II, namely M = I, M i = I i and S i = J i . In this chapter, we restrict ourselves to a center-of-mass frame defined by M i = 0.

The canonical harmonic algorithm is defined by the construction exposed in [START_REF] Blanchet | The quadrupole moment of compact binaries to the fourth post-Newtonian order: from source to canonical moment[END_REF]. Namely, suppose that we have constructed the n -1 first PM coefficients h µν m for any m ⩽ n -1, all satisfying the harmonic gauge condition ∂ ν h µν can m = 0. Then we construct the n th order coefficient as follows. It satisfies □h µν can n = Λ µν n together with ∂ ν h µν can n = 0, where the source term is constructed out of the previous iterations:

Λ µν n ≡ Λ µν [h can m ; m ⩽ n -1].
We then define u µν can n , w µν can n and v µν can n following exactly the same procedure as in Section II.2.1. The harmonic metric at order n, now satisfying the full Einstein vacuum equations in harmonic coordinates at the n th order, then reads

h µν can n = u µν can n + v µν can n . (III.3)
The canonical metric is a nonlinear functional of the moments {M L , S L } and represents, just like its counterpart in the general MPM construction, the most general solution of the Einstein field equations in the vacuum region outside an isolated system [START_REF] Blanchet | Radiative gravitational fields in general relativity. I. general structure of the field outside the source[END_REF].

III.2 Relating the canonical moments to the source and gauge moments in three dimensions

In Section II.2.1 and Secs. III.1, we have presented two different constructions of the MPM metric, which both parametrize the most general exterior metric. However, these parametrizations are different, and we want to find a one-to-one mapping from one construction to the other. For this, we follow closely the method developped in [START_REF] Blanchet | The quadrupole moment of compact binaries to the fourth post-Newtonian order: from source to canonical moment[END_REF]. Two physically equivalent metrics should only differ by a coordinate redefinition x µ → x ′µ , III.2 Relating the canonical moments to the source and gauge moments in three dimensions51 which leads to the relation

h µν gen (x ′ ) = 1 |J| ∂x ′µ ∂x ρ ∂x ′ν ∂x σ (h ρσ can (x) + η ρσ ) -η µν , (III.4)
where h µν gen (x ′ ) is the MPM metric in the general construction of Section II.2.1, parametrized by source moment {I L , J L } and gauge moment {W L , X L , Y L , Z L }; where h µν can (x) is the MPM metric in the canonical construction of Section III.1, parametrized by canonical moments {M L , S L }; and where J ≡ det(∂x ′ /∂x) is the Jacobian of the coordinate transformation. We introduce the coordinate transformation φ µ , which is a function such that the coordinate transformation reads x µ → x ′µ = x µ + φ µ (x). Since h µν gen and h µν can both admit a PM expansion, the gauge vector can be written as a PM expansion as well,

φ µ = ∞ n=1 G n φ µ n . (III.5)
Consistently, we can also write the respective moments of each construction as a PM expansion

A L = ∞ n=1 G n-1 A n,L , (III.6) where A L stands for either M L , S L , I L , J L , W L , X L , Y L or Z L .
At linear level, it is clear that the two constructions are related by

h µν gen 1 (x) = h µν can 1 (x) + ∂φ µν 1 , (III.7)
where φ µ 1 is given by (II.18) and the moments are related by M L = I L + O(G) and S L = J L + O(G). In our recurrence hypothesis, we assume that, for n ≥ 2, we have constructed this relation up to the (n -1)PM order, namely we have established1 

φ µ = n-1 m=1 G m Φ µ m [M K , S K , W K , X K , Y K , Z K ] + O(G n ) , (III.8a) I L = n-1 m=1 G m-1 I m,L [M K , S K ] + O(G n-1 ) , (III.8b) J L = n-1 m=1 G m-1 J m,L [M K , S K ] + O(G n-1 ) . (III.8c)
We then perform the expansion of (III.4) up to nPM order, where we Taylor-expand the radiative metric to finite PM order, i.e. using

h µν gen (x ′ ) = m⩾0 φ λ 1 (x)...φ λm (x) ∂ λ 1 ...∂ λm h µν gen (x) . (III.9)
At the nPM order, we find the relation

h µν gen n (x) = h µν can n (x) + ∂φ µν n + Ω µν n [h can m , φ m ; m ⩽ n -1] , (III.10)
where Ω µν n is an explicitly known 2 , nonlinear and at least quadratic, functional of the coordinate shift and the canonical metric at previous orders, but where φ µν n is yet to be determined. We then define ∆ µ n ≡ -∂ ν Ω µν n = □φ µ n , which naturally leads to defining the gauge vector

ϕ µ n = FP B=0 □ -1 ret r r 0 B ∆ µ n . (III.11)
Since a very similar construction will be detailed in Chapter V, we do not detail all the steps of the construction here, and refer the curious reader to [START_REF] Blanchet | The quadrupole moment of compact binaries to the fourth post-Newtonian order: from source to canonical moment[END_REF]. One can then show (see [START_REF] Blanchet | The quadrupole moment of compact binaries to the fourth post-Newtonian order: from source to canonical moment[END_REF] for the derivation) that

h µν gen n = h µν can n + ∂ϕ µν n + Ω µν n + H µν n , (III.12)
where we can introduced H µν n , which satisfies □H µν n = 0 and ∂ ν H µν n = 0, and which is explicitly defined as

H µν n = X µν n + Y µν n + Z µν n .
Here, we have introduced the quantities (see [START_REF] Blanchet | The quadrupole moment of compact binaries to the fourth post-Newtonian order: from source to canonical moment[END_REF] for how they arise from commutators)

X µν n = FP B=0 □ -1 ret B r r 0 B - B + 1 r 2 Ω µν n - 2 r ∂ r Ω µν n (III.13a) Y µν n = FP B=0 □ -1 ret B r r 0 B n k r -2δ k(µ ∆ ν) n + η µν ∆ k n (III.13b)
and we have defined

Z µν n = V µν [X n + Y n ],
where the V µν procedure is described in Section II.2.1.

Since H µν n is a divergenceless solution of the vacuum wave equation, it can be expanded just like in (II.17a) and (II.18). We will be parametrize it by moments {δ n M L , δ n S L } and a gauge vector

ζ µ as H µν n = k µν 1 [δ n M L , δ n S L ] + ∂ζ µν .
The extraction of these moments is made easier by the fact that we are dealing with a divergenceless solution of the vacuum wave equation, see [START_REF] Blanchet | The quadrupole moment of compact binaries to the fourth post-Newtonian order: from source to canonical moment[END_REF] for details on how to do this. Thus, we can recover the soughtfor (III.10) if and only in the gauge vector is defined as φ µ n = ϕ µ n + ζ µ and the moments are corrected by an nPM order correction, namely

I L → I L -G n-1 δ n M L [M K , S K , W K , X K , Y K , Z K ] (III.14a) J L → J L -G n-1 δ n S L [M K , S K , W K , X K , Y K , Z K ] (III.14b)
2 We recall from [START_REF] Blanchet | The quadrupole moment of compact binaries to the fourth post-Newtonian order: from source to canonical moment[END_REF] the expression of Ω µν up to cubic order (in both h ρσ and φ ρ ):

Ω µν [h, φ] = -∂ρ φ ρ h µν + ∂φ µν + 2h σ(µ ∂σφ ν) + ∂σφ µ ∂ σ φ ν + 2 ∂ρφ (µ h ν)ρ + ∂ ρ φ µ ∂ρφ ν + 1 2 ∂ρσ [φ ρ φ σ (h µν + ∂φ µν )] + h ρσ ∂ρφ µ ∂σφ ν + 1 2 η µν ∂ρφ σ ∂σφ ρ -(∂ρφ ρ ) 2 - 1 3 η µν ∂ρφ σ ∂σφ λ ∂ λ φ ρ -(∂ρφ ρ ) 3 - 1 2 η µν φ ρ ∂ρ ∂σφ λ ∂ λ φ σ -(∂σφ σ ) 2 + O(h 4-p φ p ) .
One obtains the various order Ω µν n by replacing h µν and φ µ in Ω µν [h, φ] by their PM expansion, and taking the coefficient of G n , for n ⩾ 2.

In this way, we can express I L and J L in terms of M L and S L and the gauge moments. This expression can be inverted for practical use, and we find that at 4PN order, we only need to compute this algorithm up to cubic (n = 3) order. The main result reads

M ij = I ij + 4G c 5 W (2) I ij -W (1) I (1) ij + 4G c 7 4 7 W (1) 
a⟨i I

(3)

j⟩a + 6 7 W a⟨i I (4)
j⟩a -
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1 3 Z (3) a|⟨i I j⟩a + Z a|⟨i I (3) j⟩a - 4 9 W (3) a J ⟨i|j⟩a + 4 9 Y (2) a J ⟨i|j⟩a - 8 9 Y (1) a J (1) ⟨i|j⟩a + G 2 M c 8 106 21 MW (3) ij + 1084 105 MY (2) ij + 17642 945 W (3) I ij - 7018 315 W (2) I (1) ij + 806 45 W (1) I (2) ij - 2098 135 W I (3) ij + 16 I ij +∞ 0 dτ ln cτ 2r 0 W (4) (t -τ ) -16 I (1) ij +∞ 0 dτ ln cτ 2r 0 W (3) (t -τ ) + O 1 c 9 . (III.15)
Lower-order relations involving other canonical moments needed for the 4PN waveform can be found in Section III B of [START_REF] Faye | Non-linear multipole interactions and gravitational-wave octupole modes for inspiralling compact binaries to third-and-ahalf post-Newtonian order[END_REF].

III.3 Adapting the formalism to d-dimensional regularization

In Section III.2, we have outlined the computation relating the canonical and source/gauge moments in standard three-dimensional gravity. This is perfectly correct in the context of three-dimensional Hadamard regularization, but this breaks down as soon as dimensional regularization is introduced. Indeed, since the source quadrupole moments are computed using the d-dimensional general MPM algorithm, it is crucial to compare to the d-dimensional canonical MPM algorithm. As will we see, the relation between source and canonical will differ from its three-dimensional counterpart. In this section, we give the different ingredients needed to obtain this d-dimensional relation.

Note that nonlocal terms cannot appear at 4.5PN, thus we only need the 4PN order of those relations to control the 4.5PN quasicircular flux. Indeed, in the three-dimensional case, nonlocal terms appear at cubic order, but fortunately, dimensional analysis shows that there cannot be any cubic or higher-order contribution entering at exactly 4.5PN order. As for quadratic interactions entering at 4.5PN order, an analysis of the structure of the integration formulas proves that these contributions are necessarily instantaneous, and thus play no role in the flux for quasicircular orbits at 4.5PN order.

III.3.1 Procedure in d dimensions

The solution of linearized, d dimensional, vacuum Einstein equations reads in harmonic gauge

h µν 1, gen = k µν 1 + ∂φ µν 1 , (III.16)
where the canonical metric is parametrized by three types of source moments as [START_REF] Henry | The current-type quadrupole moment and gravitational-wave mode (ℓ, m) = (2, 1) of compact binary systems at the third post-Newtonian order[END_REF] k 00 1 = -

4 c 2 ℓ≥0 (-) ℓ ℓ! ∂ L I L , (III.17a) k 0i 1 = 4 c 3 ℓ≥1 (-) ℓ ℓ! ∂ L-1 I (1) iL-1 + ℓ ℓ + 1 ∂ L J i|L , (III.17b) k ij 1 = - 4 c 4 ℓ≥2 (-) ℓ ℓ! ∂ L-2 I (2) ijL-2 + 2ℓ ℓ + 1 ∂ L-1 J (1) (i|j)L-1 + ℓ -1 ℓ + 1 ∂ L K ij|L , (III.17c)
and the gauge vector φ µ 1 , by four types of gauge moments

φ 0 1 = 4 c 3 ℓ≥0 (-) ℓ ℓ! ∂ L W L , (III.18a) φ i 1 = - 4 c 4 ℓ≥0 (-) ℓ ℓ! ∂ iL X L - 4 c 4 ℓ≥1 (-) ℓ ℓ! ∂ L-1 Y iL-1 + ℓ ℓ + 1 ∂ L Z i|L . (III.18b)
The "tilde" over the moments has the same meaning as in (A.48), namely for an arbitrary function F (t), we define

F (t, x) ≡ k r d-2 +∞ 1 dy γ 1-d 2 (y)F (d) t ′ - ry c ,
where the (d) superscript is simply a reminder that we are dealing with a d-dimensional moment, and this notations will often be suppressed for the sake of lightness. Note the appearance of a new type of moment, K

ij|L , which is a pure artifact of working in d ̸ = 3 dimensions, and will not enter our results. Beware that the conventions for the ordering of indices of J i|L , K ij|L and Z i|L are not are those of [START_REF] Henry | The current-type quadrupole moment and gravitational-wave mode (ℓ, m) = (2, 1) of compact binary systems at the third post-Newtonian order[END_REF], but rather an adaptation to d dimensions of the convention in [START_REF] Blanchet | The quadrupole moment of compact binaries to the fourth post-Newtonian order: from source to canonical moment[END_REF]. Indeed, the Levi-Civita symbol is not well defined in arbitrary d dimensions, but the symmetry properties of the indices can be described by Young tableaux. This is nicely elaborated in [START_REF] Henry | The current-type quadrupole moment and gravitational-wave mode (ℓ, m) = (2, 1) of compact binary systems at the third post-Newtonian order[END_REF], but an unfortunate convention was chosen for the ordering of the multi-index L, namely

L = i 1 ...i ℓ in I (d) L , but L = i ℓ ...i 1 in J (d) i|L and K (d)
ij|L . This has created some confusion in subsequent works [START_REF] Blanchet | The quadrupole moment of compact binaries to the fourth post-Newtonian order: from source to canonical moment[END_REF][START_REF] Trestini | The quadrupole moment of compact binaries to the fourth post-Newtonian order: relating the harmonic and radiative metrics[END_REF] (see Footnote 3 of [START_REF] Blanchet | Gravitational-wave flux and quadrupole modes from quasicircular nonspinning compact binaries to the fourth post-Newtonian order[END_REF] for a clarification), but here we impose the convention that in all cases, we have the usual multi-index ordering L = i 1 ...i ℓ . This is summarized by

I (d) L = I (d) i 1 ...i ℓ = i ℓ ... i 1 , J (d) i|L = J (d) i|i 1 ...i ℓ = i ℓ iℓ-1 ... i 1 i , K (d) ij|L = K (d) ij|i 1 ...i ℓ = i ℓ iℓ-1 iℓ-2 ... i 1 j i , (III.19)
where we recall that for any given Young tableau, one constructs a tensor with the correct symmetry properties by (i) considering a generic tensor with the same indices as the Young tableau; (ii) for each line of the Young tableau, symmetrizing the tensor over the indices in the line; and (iii) for each column of the Young tableau, antisymmetrizing the tensor over the indices in the column.

Starting from this d-dimensional metric, we can follow the lines of Section III.2, that are independent of the dimension. Notably, the expressions of the nonlinear interaction terms Ω µν n and ∆ µ n as functions of h µν n, can and φ µ n are identical to the three-dimensional case. The main, but very light, difference concerns the two key quantities X µν n and Y µν n . If the formal definition, (3.20) of [START_REF] Blanchet | The quadrupole moment of compact binaries to the fourth post-Newtonian order: from source to canonical moment[END_REF], does not depend of the dimension, their explicit expression in terms of Ω µν n and ∆ µ n is slightly changed. They read in d dimensions

X µν n = FP B=0 □ -1 ret B r r 0 B - B + d -2 r 2 Ω µν n - 2 r ∂ r Ω µν n , (III.20a) Y µν n = FP B=0 □ -1 ret B r r 0 B n k r -2δ k(µ ∆ ν) n + η µν ∆ k n . (III.20b)
The remaining of the procedure described in Section III.2, and notably the extraction of the correction to the canonical moments described in Section III of [START_REF] Blanchet | The quadrupole moment of compact binaries to the fourth post-Newtonian order: from source to canonical moment[END_REF], is left unchanged.

III.3.2 Integration techniques

Let us recall that the solution at an order n ⩾ 2 is composed of some corrections to the canonical moments, extracted from X µν n and Y µν n given by (III.20), as well as a gauge vector, denoted φ µ n . Thanks to the prefactor B in (III.20), and similarly to the threedimensional case, the computation of X µν n and Y µν n only requires the knowledge of the near-zone (r → 0) behavior of the functions Ω µν n and ∆ µ n . This is because the finite part used conjointly with the B prefactor selects the 1/B part of the source, which is purely due to the "multipolar" singular behavior of the source when r → 0. Using the near-zone expansion formulas in Section II.4 (see also Appendix A of [START_REF] Bernard | Dimensional regularization of the IR divergences in the Fokker action of point-particle binaries at the fourth post-Newtonian order[END_REF] for more details), the computation boils down to the evaluation of integrals of the form

J ≡ FP B=0 □ -1 ret r r 0 B B b nL r p+qε H (t) , (III.21)
where b = 1, 2 and H can bear simple poles ∝ 1/ε and can indifferently be a local or nonlocal function of time. In this section, we set r 0 = ℓ 0 = 1 for simplicity. The integrals (III.21) are nothing but the d-dimensional generalization of (4.13) of [START_REF] Blanchet | The quadrupole moment of compact binaries to the fourth post-Newtonian order: from source to canonical moment[END_REF], with a = 0, since the case which includes a ln r is irrelevant for the present generalization. Techniques to solve wavelike equations in d dimensions, with more general radial dependence than (III.21) but same multipolarity ℓ, have been developed in [START_REF] Larrouturou | The quadrupole moment of compact binaries to the fourth post-Newtonian order: II. Dimensional regularization and renormalization[END_REF], see Section II therein. Importantly, no particular assumption about the presence of a prefactor B b has been made in this work, as clear from its (2.6). We can therefore follow the lines of [START_REF] Larrouturou | The quadrupole moment of compact binaries to the fourth post-Newtonian order: II. Dimensional regularization and renormalization[END_REF] to compute the integral (III.21). The solution h is the sum of two contributions, h < and h > , involving integrals over the respective domains D = {|x ′ | < r} and R 3 -D, as displayed explicitly in (2.8) and (2.10) of [START_REF] Larrouturou | The quadrupole moment of compact binaries to the fourth post-Newtonian order: II. Dimensional regularization and renormalization[END_REF]. When a prefactor B b is present, with b = 1, 2, the finite part of h ≡ J vanishes unless the integration produces a pole, which may only occur when the integral diverges for B = 0. As the system is taken to be stationary in the past in the MPM algorithm, the integral yielding h > converges for B = 0 so that only h < can contribute to the finite part in (III.21). This finite part is evaluated explicitly and truncated at first order in ε, in order to cope with the case where

H(t) contains a pole, namely H = 1 ε H -1 + H 0 + O(ε).
After resummation, we obtain a retarded homogeneous solution of the wave equation [START_REF] Larrouturou | The quadrupole moment of compact binaries to the fourth post-Newtonian order: II. Dimensional regularization and renormalization[END_REF] 

J = ∂L G(t, r) ≡ ∂L k r d-2 +∞ 1 dz γ 1-d 2 (z) G(t -zr/c) . (III.22)
Explicitly, we find that G is nonvanishing only if b = 1, q = 1 and p -ℓ -3 = 2j, where j ∈ N. Under those very restrictive conditions, we have

G(t) = (-) ℓ+1 (2j)!! (2j + 2ℓ + 1)!!     1 + ε ln q -ε j+ℓ k=0 1 2k + 1   H (2j) (t) + O(ε)   , (III.23)
where we recall our notation q = 4πe γ E and the fact that H can bear a pole 1/ε. With the previous formula at hand, we are ready to compute the quantities X µν n and Y µν n and, therefore, obtain the correction to the canonical moments to the n th PM order. Since the result (III.23) is zero unless q = 1, we are able to eliminate many terms from the source for this computation solely based on the value of q.

As for the gauge vector φ µ n , it will be needed to compute the source term for the next PM order n + 1, following the algorithmic procedure of [START_REF] Blanchet | The quadrupole moment of compact binaries to the fourth post-Newtonian order: from source to canonical moment[END_REF]. It is decomposed as

φ µ n = ϕ µ n + ψ µ n ,
where ψ µ n is also extracted from X µν n and Y µν n , and ϕ µ n is obtained by the direct integration

ϕ µ n ≡ FP B=0 □ -1 ret r r 0 B ∆ µ n . (III.24)
In d dimensions, it is in general not possible to find a convenient, explicit expression for ϕ µ n (see, however, Section II in [START_REF] Larrouturou | The quadrupole moment of compact binaries to the fourth post-Newtonian order: II. Dimensional regularization and renormalization[END_REF]). Fortunately, we do not need here the full solution valid at any field point, but only the solution in the form of a near-zone expansion when r → 0. Indeed, following the procedure of [START_REF] Blanchet | The quadrupole moment of compact binaries to the fourth post-Newtonian order: from source to canonical moment[END_REF], it is the near-zone expansion of ϕ µ n , denoted φµ n , that needs to be inserted into the expressions of Ω µν n+1 and ∆ µ n+1 sourcing the next order quantities X µν n+1 and Y µν n+1 . The quantity φµ n can be obtained directly from the near-zone expansion of the source term, i.e. ∆µ n , plus a crucial homogeneous solution, itself in the form of a near-zone expansion, namely:

φµ n = φµ part n + φµ hom n . (III.25)
The particular solution is obtained by a formal iteration of inverse Laplace operators in d-dimensions, using the "Mathieu" formula, (B.26c) in [START_REF] Blanchet | Dimensional regularization of the third post-Newtonian dynamics of point particles in harmonic coordinates[END_REF]:

φµ part n = FP B=0 ∞ k=0 ∆ -1-k ∂ c ∂t 2k r r 0 B ∆µ n . (III.26)
The homogeneous solution φµ hom n is given by (3.20) of [START_REF] Bernard | Dimensional regularization of the IR divergences in the Fokker action of point-particle binaries at the fourth post-Newtonian order[END_REF], which in this case yields (with c = 1) 

φµ hom n = - ℓ⩾0 ∞ j=0 ∆ -j xL d + 2ℓ -2 FP B=0 +∞ 1 dz γ 1-d 2 -ℓ (z) +∞ 0 dr ′ r ′-ℓ+1+B n′ L ∆µ (2j) n,L (t -zr ′ ,
∆ -j xL = Γ d 2 + ℓ Γ d 2 + ℓ + j r 2j xL 2 2j j! . (III.29)
In the particular case where the source term has a structure given by

∆µ n (t, r) = ℓ,k,p,q nL r p+qε +∞ 1 dy y k γ -1-ε 2 (y) F ℓ,k,p,q (t -yr) , (III.30)
where the F ℓ,k,p,q (t)'s can be arbitrary functions of time, explicit formulas are known for performing the integrations: see (3.24) and (D1) of [START_REF] Bernard | Dimensional regularization of the IR divergences in the Fokker action of point-particle binaries at the fourth post-Newtonian order[END_REF] when q = 2, and the discussion in Section IV of [START_REF] Larrouturou | The quadrupole moment of compact binaries to the fourth post-Newtonian order: II. Dimensional regularization and renormalization[END_REF] for other values of q. However, we will encounter source terms that exhibit more complicated structures, and for which no analogous formula is available. This is notably the case for sources involving two nonstatic multipolar moments, such as ∆ µ W×I ij . Fortunately, we have shown that those more complicated homogeneous solutions do not contribute at 4PN order, see hereafter.

III.4 Relation at 4PN order using dimensional regularization

At the 4PN order, only quadratic and cubic interactions are allowed by dimensional analysis (and we recall that the 4.5PN sector vanishes in the quasicircular flux). Naturally, the moments allowed to enter those interactions do not depend on the space dimension. At quadratic order, the only integration formula needed was (III.23), and we find that quadratic contributions are actually identical in d and three dimensions, i.e. we recover the same "odd" corrections that enter at 2.5PN and 3.5PN order in the relation (III.15) between canonical and source/gauge moments.

More interestingly, the results for the cubic interactions arising at 4PN order greatly differ. Let us recall that three interactions enter the 4PN mass quadrupole moment at cubic order, namely M × M × W ij and M × M × Y ij (where only one moment is nonstatic), and most importantly M×W×I ij (where the two moments W and I ij are dynamical). For the first two interactions, it turns out that the source term entering the integral (III.21) bears q ⩾ 2. Indeed, it is composed of two interactions:

h M×M × φ K ij and h M × φ M×K ij ,
where K ij stands for either W ij or Y ij . As both h M×M and φ M×K ij bear q = 2, the cubic sources will have q ⩾ 2, and thus cannot satisfy the q = 1 necessary condition to have a nonvanishing function G(t) in (III.23). Therefore, the M × M × W ij and M × M × Y ij interactions do not contribute in d dimensions, as we have explicitly checked, using the method presented in the previous sections. This vanishing of the M × M × W ij and M × M × Y ij interactions in d dimensions contrasts with their explicit contributions in 3 dimensions; see (1.1) in [START_REF] Blanchet | The quadrupole moment of compact binaries to the fourth post-Newtonian order: from source to canonical moment[END_REF].

As for the last cubic interaction, M × W × I ij , it turns out that the source term does have a q = 1 component, arising from the interaction h I ij × φ M×W . More precisely, the term with q = 1 comes exclusively from the interaction between: (i) the homogeneous solution φhom 2 at quadratic order arising from the interaction M × W, i.e. φhom M×W , which bears q = 0; and (ii) the q = 1 piece of the linear metric h I ij ; see (II.17a). Note that, as it involves a quadratic interaction with only one dynamical moment, φ M×W can be calculated using (III.30). By contrast, the homogeneous solution for the interaction W × I ij , i.e. φhom W×I ij , does not fulfill the p -ℓ -3 ∈ 2N condition, and as such, does not contribute to the result. This is fortunate, since it does not follow the structure (III.30), and we are unable to compute this term explicitly, at least with currently-known formulas. Another interesting observation is that the explicit computation of the q = 1 terms (the only ones that contribute to the final result) leads to the appearance of a pole. The relation between canonical and source/gauge moments at 4PN is thus a pure M × W × I ij interaction, which reads

δM ij = - 16G 2 M c 8 +∞ 0 dτ L ε (τ ) + 1 2 I (1) ij (t) W (3) (t -τ ) -I ij (t) W (4) (t -τ ) + O 1 c 9 . (III.31)
where we have used the notation introduced in (2.2) of [START_REF] Larrouturou | The quadrupole moment of compact binaries to the fourth post-Newtonian order: I. Non-locality in time and infra-red divergencies[END_REF],

L ε (τ ) = - 1 2ε + ln c √ q 2ℓ 0 . (III.32)
This result is consistent with the corresponding one in three dimensions, where the interaction M × W × I ij gives rise to an ordinary tail integral at 4PN order: the coefficient of the pole in (III.31) matches the logarithmic structure of (1.1) in [START_REF] Blanchet | The quadrupole moment of compact binaries to the fourth post-Newtonian order: from source to canonical moment[END_REF]. Moreover, the result (III.31), as well as the vanishing of the interactions M × M × W ij and M × M × Y ij , have been checked by an independent method, using the techniques exposed in [START_REF] Larrouturou | The quadrupole moment of compact binaries to the fourth post-Newtonian order: II. Dimensional regularization and renormalization[END_REF], to compute the difference between the d-dimensional and Hadamard regularization schemes in the MPM algorithm, and adding it to the three-dimensional result of [START_REF] Blanchet | The quadrupole moment of compact binaries to the fourth post-Newtonian order: from source to canonical moment[END_REF].

Although surprising, we will see that this pole exactly cancels a pole arising in the source quadrupole (see Section VI.1.1), so we do not worry about it yet. Actually, we will see that the 1/c 8 contributions (the pole, the tail and the instantaneous terms) will all vanish in the end result. The relation between the source and canonical quadrupole moments, using full dimensional regularization, reads

M (d) ij = I (d) ij + 4G c 5 W (2) I ij -W (1) I (1) ij + 4G c 7 4 7 W (1) a⟨i I (3) j⟩a + 6 7 W a⟨i I (4) j⟩a - 1 7 Y (3) a⟨i I j⟩a -Y a⟨i I (3) j⟩a -2X I (3) ij - 5 21 W (4) a I ija + 1 63 W (3) a I (1) ija - 25 21 Y (3) a I ija - 22 63 Y (2) a I (1) ija + 5 63 Y (1) a I (2) ija + 2W (3) W ij + 2W (2) W (1) ij - 4 3 W ⟨i W (3) j⟩ + 2W (2) Y ij -4W ⟨i Y (2) j⟩ + ϵ ab⟨i 1 3 I j⟩a Z (3) b -I (3) j⟩a Z b + 4 9 J j⟩a W (3) b - 4 9 J j⟩a Y (2) b + 8 9 J (1) j⟩a Y (1) b - 16G 2 M c 8 +∞ 0 dτ L ε (τ ) + 1 2 I (1) ij (t) W (3) (t -τ ) -I ij (t) W (4) (t -τ ) + O 1 c 9 + O (ε) , (III.33)
where we omit the (d) superscript in the higher-order corrections since they are equal to their three-dimensional counterparts in the d → 3 limit at this order. For the other multipole moments (essentially the mass octupole and the current quadrupole), such relations are purely quadratic and consist of odd parity terms, and so are not affected by dimensional-regularization corrections. They can be found in (VI.15) (see also Section III.B of [START_REF] Faye | Non-linear multipole interactions and gravitational-wave octupole modes for inspiralling compact binaries to third-and-ahalf post-Newtonian order[END_REF]).

As we shall see in Chapter VI, the above procedure yields the correct perturbative limit for compact binaries on circular orbits, in agreement with first-order black hole perturbation theory. But notice that we can also retrieve the correct perturbative limit by using a simpler treatment of the IR (infrared) divergences of the source quadrupole moment, based on the Hadamard regularization in ordinary three dimensions, rather than in dimensional regularization. In this case, the correct relation between canonical and source moments is given by (III.15), instead of the d-dimensional result (III.33). We find that the cubic interactions M × M × W ij and M × M × Y ij present in three dimensions do contribute to the perturbative limit for circular orbits (note that W is zero in this case), but in such a way as to cancel the contribution due to the difference between the Hadamard and dimensional regularization schemes for the mass quadrupole source moment. It turns out then that we also recover the correct perturbative limit. However, in contrast to the dimensional regularization, we do not expect the Hadamard regularization in three dimensions to lead to a well-defined and fully unambiguous result beyond this limit.

Chapter IV The radiative mass quadrupole and the tails of memory

This chapter is mainly based on [START_REF] Trestini | Gravitational-wave tails of memory[END_REF].

In Chapter III, we have delved into the ways one can relate the source to the canonical moments. In this chapter, we will thus naturally be interested in the way we can relate the radiative moments to the canonical moments, up to 4PN order contributions in the waveform. This physically consists in studying the nonlinear effects in the propagation of GWs, which can be directly read off from the relation between the radiative quadrupole moments {U L , V L } and the canonical moments {M L , S L }. The lowest-order nonlinear propagation piece is the tail effect, which is a quadratic coupling between the total massenergy of spacetime and the mass quadrupole moment of the source, i.e. a M × M ij interaction, see Fig. II.4a. This effect appears at 1.5PN order in the waveform beyond the Einstein quadrupole formula [START_REF] Blanchet | Hereditary effects in gravitational radiation[END_REF][START_REF] Poisson | Gravitational radiation from a particle in circular orbit around a black hole. 1: Analytical results for the nonrotating case[END_REF][START_REF] Wiseman | Coalescing binary-systems of compact objects to (post) 5 /2-Newtonian order. IV. The gravitational-wave tail[END_REF], and has the interesting feature on being nonlocal, i.e. its expression depends not only on the state of the binary at retarded time t -r/c, but also on the entire history of the binary's evolution. At 3PN order enters the tail-of-tail effect, which is a nonlocal cubic coupling between two masses and the quadrupole [START_REF] Blanchet | Gravitational-wave tails of tails[END_REF][START_REF] Faye | Non-linear multipole interactions and gravitational-wave octupole modes for inspiralling compact binaries to third-and-ahalf post-Newtonian order[END_REF], namely a M 2 × M ij interaction. At quartic order there is the tail-oftail-of-tail which arises at 4.5PN order and involves three masses and a quadrupole [START_REF] Marchand | Gravitational-wave tail effects to quartic non-linear order[END_REF][START_REF] Messina | Parametrized-4.5PN TaylorF2 approximant(s) and tail effects to quartic nonlinear order from the effective one body formalism[END_REF]. Moreover, there are a wealth of local nonlinearities at 2.5PN and 3.5PN order, defined by the S i × M ij interaction.

The nonlinear memory effect, i.e. the permanent change in the wave amplitude after the passage of a GW burst, is due to the reradiation of quadrupole GWs by a linear quadrupole wave and corresponds to the coupling between two quadrupole moments [START_REF] Blanchet | Contribution à l'étude du rayonnement gravitationnel émis par un système isolé[END_REF][START_REF] Christodoulou | Nonlinear nature of gravitation and gravitational-wave experiments[END_REF][START_REF] Wiseman | Christodoulou's nonlinear gravitational wave memory: Evaluation in the quadrupole approximation[END_REF][START_REF] Thorne | Gravitational-wave bursts with memory: The Christodoulou effect[END_REF][START_REF] Blanchet | Hereditary effects in gravitational radiation[END_REF][START_REF] Blanchet | Quadrupole-quadrupole gravitational waves[END_REF], namely a M ij × M ij nonlocal interaction, see Fig. II.4b. The oscillatory part of this effect enters at 2.5PN order in the waveform, but the genuine, secular memory effect is actually a zero-frequency Newtonian effect, and has not yet been detected experimentally, although it could be observed in the coming years with ground-based GW detectors [START_REF] Favata | Nonlinear gravitational-wave memory from binary black hole mergers[END_REF][START_REF] Lasky | Detecting gravitational-wave memory with LIGO: implications of GW150914[END_REF][START_REF] Mcneill | Detecting Gravitational Wave Memory without Parent Signals[END_REF].

In this chapter, we investigate two novel cubic effects that enter at 4PN order in the waveform: the tail-of-memory, due to a M×M ij ×M ij interaction, and the spin-quadrupole 61 tail, which corresponds to a M×S i ×M ij interaction. We shall compute these effects using the MPM formalism [START_REF] Blanchet | Radiative gravitational fields in general relativity. I. general structure of the field outside the source[END_REF][START_REF] Blanchet | Radiative gravitational fields in general relativity. II. Asymptotic behaviour at future null infinity[END_REF] but with an important variant with respect to the version presented in Section III.1 and used in previous works such as [START_REF] Blanchet | Quadrupole-quadrupole gravitational waves[END_REF][START_REF] Blanchet | Gravitational-wave tails of tails[END_REF]: we shall construct the metric directly in radiative coordinates (see [START_REF] Papapetrou | Coordonnées radiatives « cartésiennes[END_REF][START_REF] Madore | Gravitational radiation from a bounded source. I[END_REF][START_REF] Madore | Gravitational radiation from a bounded source. II[END_REF] for a general definition), following the method proposed in [START_REF] Blanchet | Radiative gravitational fields in general relativity. II. Asymptotic behaviour at future null infinity[END_REF], instead of the usual construction in harmonic coordinates sketched in Section II.2.1 or III.1. The great advantage is that we shall avoid the appearance of the far-zone logarithms that plague harmonic coordinates. A minor disadvantage is that we shall have to apply a correction to account for the different expressions of the multipole moments in radiative and harmonic coordinates, but this correction is already known [START_REF] Trestini | The quadrupole moment of compact binaries to the fourth post-Newtonian order: relating the harmonic and radiative metrics[END_REF] and will be investigated in Chapter V.

In the present chapter, we shall thus actually study the M × M ij × M ij interaction, where we introduce a new kind of "radiative" canonical moments {M L , S L }. How these relate to the usual "harmonic" canonical moments {M L , S L } will be the topic of Chapter V. Physically, this 4PN effect can be viewed as a combination between the tails produced by the memory and the memory associated with the tail, which is the reason why we coin this effect "tails-of-memory". From an effective field theory perspective, the tails-ofmemory correspond to the three Feynman diagrams shown in Fig. IV.1, which we consider here only for illustrative purposes; see [START_REF] Goldberger | Effective field theory of gravity for extended objects[END_REF][START_REF] Foffa | Effective field theory methods to model compact binaries[END_REF][START_REF] Porto | The effective field theorist's approach to gravitational dynamics[END_REF][START_REF] Levi | Effective Field Theories of Post-Newtonian Gravity: A comprehensive review[END_REF] for their precise computational meaning within the EFT framework. The tails-of-memory are not the only cubic effect to arise at 4PN order in the waveform: in this chapter, we also compute the only other cubic contribution that arises at 4PN order, namely the "spin-quadrupole tail" interaction M × S i × M ij between the constant total mass-energy, the constant total angular momentum and a quadrupole moment. As a sanity check, we will also study the well-known tails-of-tails in terms of these new radiative canonical moments. They correspond to a M 2 × M ij interaction that enters at 3PN order in the waveform.

Despite the fact that we are mainly motivated by the case of quasicircular compact binaries, the results presented in this chapter are valid for a generic isolated source described in terms of its multipole moments; the source could be a general hydrodynamical fluid with compact support, and it needs not even be a PN source. Moreover, this is a purely three-dimensional computation. In Section V.4, we will see how these results can be extended to generic d dimensions.

The plan of this chapter is as follows. In Section IV.1, we review the radiative version of the MPM algorithm. In Section IV.2, we present our results for the radiative metric at quadratic order, and discuss the structure of the cubic source. In Sec IV.4, we present a novel integration technique for the cubic source, and apply it as a check to the known cases of tails-of-tails and tails. Then, in Section IV.5, we present our "raw" results in the form of complicated functionals of the multipole moments, along with a set of coefficients given by Table A.1. We then introduce a method of simplification, which drastically reduces the "raw" result, and allows for a test of our integration method. Finally, we present in Section IV.6 the final cubic radiative quadrupole moment (in its simplified form) in terms of the radiative canonical moments. Associated to this chapter, Appendix A.1 presents a practical method for extracting multipole moments, and Appendix A.7 presents a proof for the convergence of our final integrals.

IV.1 The radiative algorithm

We now describe a different MPM algorithm, proposed in [START_REF] Blanchet | Radiative gravitational fields in general relativity. II. Asymptotic behaviour at future null infinity[END_REF], which directly builds the metric in a radiative coordinate system,

h µν rad = ∞ n=1 G n h µν rad n . (IV.1)
By radiative coordinate system, we mean a coordinate system whose retarded time coordinate, say u ≡ t -r/c, is a null coordinate, i.e. satisfies g µν rad ∂ µ u∂ ν u = 0, or at least, becomes a null coordinate in the asymptotic limit r → +∞ with u held constant, i.e. in a neighbourhood of I + [START_REF] Papapetrou | Coordonnées radiatives « cartésiennes[END_REF][START_REF] Madore | Gravitational radiation from a bounded source. I[END_REF][START_REF] Madore | Gravitational radiation from a bounded source. II[END_REF]. In such class of coordinate systems, the metric admits a Bondi-like expansion at infinity, in simple powers of the inverse distance 1/r, without any logarithms of r as would occur in harmonic coordinates. 1Even at the linearized level, it is necessary to correct the harmonic coordinate metric in order to satisfy the requirement of asymptotically null retarded time. Consequently, the radiative MPM algorithm starts by performing a linear gauge transformation of the harmonic-coordinate metric defined by (III.2). A crucial point is that the multipole moments that parametrize the radiative algorithm will differ from their counterparts in the harmonic algorithm. In other words, they will have a different expression when expressed explicitly in terms of the source via a matched asymptotic expansion procedure. This observation leads us to define the radiative algorithm using different multipole moments, which we will note {M L , S L }. Thus, at linear order we pose

h µν rad 1 = h µν harm 1 M L , S L + ∂ξ µν 1 , (IV.2)
where h µν harm 1 M L , S L has exactly the same functional expression as in harmonic coordinates, given by (III.2), but is now computed with the set of moments {M L , S L }. The linear gauge transformation ∂ξ µν

1 ≡ ∂ µ ξ ν 1 + ∂ ν ξ µ 1 -η µν ∂ ρ ξ ρ
1 is defined by the gauge vector

ξ µ 1 = 2M c 2 η 0µ ln r b 0 , (IV.3)
where M is the mass monopole associated with the set of moments, b 0 denotes an arbitrary length scale, and we have η 0µ = (-1, 0) with our signature. Since the gauge vector will only appear in the derivative form ∂ξ µν 1 in the radiative algorithm, the unphysical scale b 0 will actually never enter the radiative metric. However we shall prove that b 0 is identical to the scale which is used in harmonic constructions of the metric when building the observable quantities at infinity, via the radiative multipole moments, see e.g. [START_REF] Faye | Non-linear multipole interactions and gravitational-wave octupole modes for inspiralling compact binaries to third-and-ahalf post-Newtonian order[END_REF].

Note that although the two sets of multipole moments {M L , S L } and {M L , S L } will differ in general (as we shall compute explicitly below), the conserved mass monopole as well as the mass and current dipoles are in fact identical in both the harmonic and radiative constructions. In particular, we have M = M for the constant mass monopole, hence the slight abuse of notation in (IV.3).

The effect of this linear gauge transformation is to correct for the well-known logarithmic deviation of the retarded time in harmonic coordinates, with respect to the true spacetime characteristic or light cone. After the change of gauge, the coordinate u = t -r/c coincides (asymptotically when r → +∞) with a null coordinate at the linearized level. The latter gauge transformation shifts the radiative metric away from harmonicity, since

∂ ν h µν rad 1 = □ξ µ 1 = 2M c 2 r 2 η 0µ . (IV.4)
Furthermore, one can easily show that, when r → +∞ with u = t -r/c held constant, the leading order 1/r in the metric is cancelled in the combination

k µ k ν h µν rad 1 = O 1 r 2 , (IV.5)
where k µ = η µν k ν = (1, n) denotes the outgoing Minkowskian null vector.

Once the linearized solution is defined, the nonlinear corrections are readily obtained by injecting the PM expansion into the field equations and solving these equations iteratively over the PM order. At any order n, the general equation to solve is

□h µν rad n -∂H µν rad n = Λ µν rad n , (IV.6) where Λ µν rad n ≡ Λ µν [h rad 1 , • • • , h rad n-1
] is built out from previous iterations. Given any n ⩾ 2, let us recursively assume that: (i) we have obtained all the previous radiative PM coefficients h µν rad m for any m ⩽ n -1; (ii) all of them admit an expansion as r → +∞ with u = t-r/c held constant in simple positive powers of 1/r (as opposed to a polylogarithmic behavior); and (iii) all the previous coefficients satisfy the condition

∀m ⩽ n -1 , k µ k ν h µν rad m = O 1 r 2 . (IV.7)
Note that the dominant piece when r → +∞ (with t-r/c = const) of the nonlinear source term at the n th order will be of order 1/r 2 and will only be made of quadratic products of h µν rad m (since each of the h µν rad m 's behaves like 1/r). Under our recursive assumptions, in particular the induction hypothesis (IV.7), and from the structure of the source term at quadratic order, see e.g. ( 24) in [START_REF] Blanchet | Gravitational Radiation from Post-Newtonian Sources and Inspiralling Compact Binaries[END_REF], one can prove that the n th PM source term Λ µν rad n ≡ Λ µν [h rad m ; m ⩽ n -1] at leading order when r → +∞ is of the form (see [START_REF] Blanchet | Radiative gravitational fields in general relativity. II. Asymptotic behaviour at future null infinity[END_REF] for details):

Λ µν rad n = k µ k ν r 2 σ n t -r/c, n + O 1 r 3 . (IV.8)
This is the form of the stress-energy tensor of massless particles, i.e., gravitons in our case, with σ n being proportional to the n th order contribution in the total power emitted by the massless waves.

From [START_REF] Blanchet | Radiative gravitational fields in general relativity. I. general structure of the field outside the source[END_REF][START_REF] Blanchet | Radiative gravitational fields in general relativity. II. Asymptotic behaviour at future null infinity[END_REF][START_REF] Blanchet | Hereditary effects in gravitational radiation[END_REF][START_REF] Blanchet | Quadrupole-quadrupole gravitational waves[END_REF] we know that logarithms in the asymptotic expansion when r → +∞ only arise due to the retarded integral of source terms that behave like 1/r 2 . Hence the dominant term written in (IV.8) is the only piece of Λ µν rad n that can yield logarithms at order n. But now, thanks to the particular structure of this term, which follows from our recursive assumptions, we can gauge it away, thus constructing a coordinate system valid at the n th PM order which avoids the appearance of logarithms. We find that an adequate gauge vector is

ξ µ n = FP B=0 □ -1 ret r r 0 B c k µ 2r 2 t-r/c -∞ dv σ n (v, n) . (IV.9)
With this choice of gauge vector, the logarithms that will be generated from the gauge transformation will cancel the logarithms coming from the retarded integral of the source term (IV.8), see [START_REF] Blanchet | Radiative gravitational fields in general relativity. II. Asymptotic behaviour at future null infinity[END_REF] for more details. Hence, similarly to the corresponding steps in Section II.2.1 and III.1, we successively construct to the n th order

u µν rad n = FP B=0 □ -1 ret r r 0 B Λ µν rad n , w µ rad n = ∂ ν u µν rad n = FP B=0 □ -1 ret B r r 0 B n i r Λ µi rad n , v µν rad n = V µν w rad n .
(IV.10)

Finally the n th PM metric is defined by correcting for the new logarithms using the gauge transformation defined above:

h µν rad n = u µν rad n + v µν rad n + ∂ξ µν n . (IV.11)
By construction, the radiative metric obeys the nonharmonic gauge condition

H µ rad n ≡ ∂ µ h µν rad n = □ξ µ n = c k µ 2r 2 t-r/c -∞ dv σ n (v, n) , (IV.12)
and the Einstein field equations, as given by (II.5), are trivially satisfied to order n. The far-zone expansion of the full nonlinear radiative metric constructed by virtue of this procedure is free of any logarithms, and the retarded time u = t -r/c in these coordinates tends asymptotically toward a null coordinate at future null infinity. The metric, as a general functional of the moments {M L , S L }, represents physically the most general solution to the vacuum field equations outside the isolated source. We now set c = G = 1 for simplicity. Moreover, in the rest of the chapter, drop the "rad" subscript in the metric for notational simplicity. We will thus, in this chapter only, be referring to the radiative construction of the MPM metric as

h µν = ∞ n=1 G n h µν n . (IV.13)

IV.2 Results at quadratic order

This chapter is devoted to computing from first principles the following three cubic nonlinear multipole interactions (i.e., n = 3 in the PM expansion):

M 2 × M ij , M × S i × M ij and M × M ij × M ij .
The first one is known as the quadrupole "tail-of-tail" [START_REF] Blanchet | Gravitational-wave tails of tails[END_REF], the second one can be called the "spin-quadrupole tail" while the third one is the quadrupole "tail-of-memory" interaction which is our main goal here. To reach these goals we evidently need to control the following quadratic interactions:

M × M , M × S i M × M ij , M ij × M ij and S i × M ij ,
which we shall compute at any distance r from the source, while the cubic interactions will just be computed asymptotically when r → +∞.

The linear interactions M, S i and M ij are read off directly from the linear metric (III.2), including the gauge transformation (IV.3):

h 00 M = - 4M r , h 0i M = - 2Mn i r , h ij M = 0 , (IV.14a) h 00 S i = 0 , h 0i S i = 2n a S i|a r 2 , h ij S i = 0 , (IV.14b) h 00 M ij = -2∂ ab M ij r , h 0i M ij = -2∂ a M (1) ia r , h ij M ij = - 2M (2) ij r , (IV.14c)
where we have as usual posed S i|j ≡ ϵ ija S a .

In the harmonic construction, the quadratic metrics that are known are M × M [START_REF] Blanchet | Gravitational-wave tails of tails[END_REF], M × M ij [START_REF] Blanchet | Hereditary effects in gravitational radiation[END_REF] and M ij × M ij [START_REF] Blanchet | Quadrupole-quadrupole gravitational waves[END_REF]. We also know the S i × M ij metric asymptotically, to leading order in 1/r [START_REF] Blanchet | Quadrupole-quadrupole gravitational waves[END_REF].

The radiative metrics for the static M × M and stationary M × S i interactions, that are respectively part of the Schwarzschild and Kerr metrics (in "radiative" coordinates), read

h 00 M×M = - 3M 2 r 2 , h 0i M×M = 0 , h ij M×M = - M 2 n i n j r 2 , (IV.15a) h 00 M×S i = 0 , h 0i M×S i = 2M r 3 n a S i|a , h ij M×S i = 0 . (IV.15b)
Note that although M = M as we said, the M × M radiative metric differs from the harmonic one, see (2.7) in [START_REF] Blanchet | Gravitational-wave tails of tails[END_REF]. In the radiative construction, the M × M ij interaction reads [3]

h 00 M×M ij = 8Mn ab +∞ 1 dx Q 2 (x, r) M (4) ab (t -rx) + Mn ab r 118 15 M (3) ab + 23 5 r -1 M (2) ab - 117 5 r -2 M (1)
ab -21r -3 M ab , (IV.16a)

h 0i M×M ij = 8Mn a +∞ 1 dx Q 1 (x, r) M (4) ai (t -rx) + Mn iab r M (3) ab + 3r -1 M (2) ab -r -2 M (1) ab + Mn a r 43 15 M (3) ai - 107 15 r -1 M (2) ai -5r -2 M (1)
ai , (IV.16b)

h ij M×M ij = 8M +∞ 1 dx Q 0 (x, r) M (4) ij (t -rx) + Mn ijab r - 1 2 M (3) ab -3r -1 M (2) ab - 15 2 r -2 M (1) ab - 15 2 r -3 M ab + Mδ ij n ab r - 1 2 M (3) ab -2r -1 M (2)
ab -

1 2 r -2 M (1)
ab -

1 2 r -3 M ab + Mn a(i r 4M (3) j)a + 6r -1 M (2) j)a + 6r -2 M (1) j)a + 6r -3 M j)a + M r - 107 15 M 
(3)

ij -4r -1 M (2) ij -r -2 M (1) ij -r -3 M ij . (IV.16c)
The tail terms in (IV. [START_REF] Martín-García | xAct: Efficient tensor computer algebra for Mathematica[END_REF]) involve the modified Legendre function

Q m (x, r) ≡ Q m (x) - 1 2 P m (x) ln r r 0 , (IV.17)
which is constructed using the usual Legendre polynomial P m (x) and the usual Legendre function of second kind (with branch cut on ] -∞, 1]), namely

Q m (x) ≡ 1 2 1 -1 dy P m (y) x -y = 1 2 P m (x) ln x + 1 x -1 - m j=0 1 m P m-j (x)P j-1 (x) . (IV.18)
It was shown in [START_REF] Trestini | The quadrupole moment of compact binaries to the fourth post-Newtonian order: relating the harmonic and radiative metrics[END_REF] that the combination (IV.17) does not produce any far-zone logarithms in the radiative metric, although the tail term is still nonlocal in time and depends on the constant scale r 0 . As shown in [START_REF] Trestini | The quadrupole moment of compact binaries to the fourth post-Newtonian order: relating the harmonic and radiative metrics[END_REF] the metric (IV.16) differs from its counterpart in harmonic coordinates (given in Appendix B in [START_REF] Blanchet | Hereditary effects in gravitational radiation[END_REF]) by a coordinate transformation and a redefinition of the quadrupole moment [START_REF] Trestini | The quadrupole moment of compact binaries to the fourth post-Newtonian order: relating the harmonic and radiative metrics[END_REF], see (V.41).

We first computed the radiative metric for the S i × M ij interaction in [START_REF] Trestini | Gravitational-wave tails of memory[END_REF]. It reads

h 00 S i ×M ij = n ad S a|b - 4 3 r -1 M (4) bd -4r -2 M (3) bd -6r -3 M (2) bd -6r -4 M (1) bd , (IV.19a) h 0i S i ×M ij = n acd S i|a - 5 6 r -1 M (4) cd -5r -2 M (3) cd - 23 2 r -3 M (2) cd - 3 2 r -4 M (1) cd - 3 2 r -5 M cd + n iad S a|b -3r -3 M (2) bd -9r -4 M (1) bd -9r -5 M bd + n a S a|b - 4 3 r -1 M (4) ib - 4 3 r -2 M (3) ib + r -3 M (2) ib + r -4 M (1) ib + r -5 M ib + n a S i|b 5 3 r -2 M (3) ab + 5r -3 M (2) ab + 4r -4 M (1) ab + 4r -5 M ab , (IV.19b) h ij S i ×M ij = n ijad S a|b 1 3 r -1 M (4) bd + 10 3 r -2 M (3) bd + 9r -3 M (2) bd + 9r -4 M (1) bd + n acd(i S j)|a 1 3 r -1 M (4) cd + 10 3 r -2 M (3) cd + 9r -3 M (2) cd + 9r -4 M (1) cd + δ ij n ad S a|b r -1 M (4) bd + 8 3 r -2 M (3) bd -r -3 M (2) bd -r -4 M (1) bd + n c(i S j)|a - 4 3 r -2 M (3) ac -4r -3 M (2) ac -4r -4 M (1) ac + n a(i S a|b - 8 3 r -1 M (4) j)b - 26 3 r -2 M (3) j)b -6r -3 M (2) j)b -6r -4 M (1) j)b + n ac S a|(i 2r -1 M (4) j)b + 20 3 r -2 M (3) j)b + 2r -3 M (2) j)b + 2r -4 M (1) j)b + S a|(i - 14 3 r -2 M (3) j)a -2r -3 M (2) j)a -2r -4 M (1) j)a . (IV.19c)
Note that contrary to the M × M ij interaction in (IV. [START_REF] Martín-García | xAct: Efficient tensor computer algebra for Mathematica[END_REF]), the S i × M ij interaction is purely "instantaneous" or local, as it does not contain tail integrals, hence its nickname, the "failed tail". Note also that in the particular case of the S i ×M ij interaction, the expressions for the radiative and harmonic metrics as functionals of their respective canonical moments are identical, and given by (IV. [START_REF] De Coulomb | Mémoires sur l'Électricité et le Magnétisme[END_REF]).

The radiative metric for the interaction M ij × M ij is too lengthy to be presented, but in can be found in the Supplementary Material of [START_REF] Trestini | Gravitational-wave tails of memory[END_REF]. It is constructed following (IV.11) as

h µν M ij ×M ij = u µν M ij ×M ij + v µν M ij ×M ij + ∂ξ µν M ij ×M ij .
(IV.20)

The gauge vector is defined by (IV.8)-(IV.9) and we have explicitly in this case [START_REF] Trestini | The quadrupole moment of compact binaries to the fourth post-Newtonian order: relating the harmonic and radiative metrics[END_REF] σ

M ij ×M ij = nijab M (3) ij M (3) ab - 24 7 nij M (3) ia M (3) ja + 4 5 M (3) ab M (3)
ab , (IV.21a) and therefore

ξ 0 M ij ×M ij = u -∞ dv +∞ 1 dx - 1 2 nijab Q 4 (x)M (3) ij M (3) ab + 12 7 nij Q 2 (x)M (3) ia M (3) ja - 2 5 Q 0 (x)M (3) ab M (3) ab , (IV.21b) ξ i M ij ×M ij = u -∞ dv +∞ 1 dx - 1 2 niabkl Q 5 (x)M (3) ab M (3) kl + 16 9 niab Q 3 (x)M (3) ak M (3) kb - 2 9 nabk Q 3 (x)M (3) ai M (3) bk - 22 35 ni Q 1 (x)M (3) ab M (3) ab + 24 35 na Q 1 (x)M (3) ik M (3) ka . (IV.21c)
Crucially, thanks to this gauge transformation the latter quadratic metric is free of any far-zone logarithms and so will be the cubic source built out of it. This allows us to take the dominant asymptotic behavior of the quadratic radiative metric as r → +∞, and extract after standard TT projection of the spatial metric the associated radiative quadrupole moments (where we reintroduce c and G):

U M×M ij ij = 2GM c 3 +∞ 0 dτ ln τ 2r 0 + 107 60 M (4) ij (u -τ ) , (IV.22a) U S i ×M ij ij = - G 3c 5 S a|⟨i M (4) j⟩a , (IV.22b) U M ij ×M ij ij = - 2G 7c 5 +∞ 0 dτ M (3) a⟨i M (3) j⟩a (u -τ ) + M (2) a⟨i M (3) j⟩a + 5 2 M (1) a⟨i M (4) j⟩a - 1 2 M a⟨i M (5) j⟩a . (IV.22c)
The expression for the tail differs from (but is physically equivalent [START_REF] Trestini | The quadrupole moment of compact binaries to the fourth post-Newtonian order: relating the harmonic and radiative metrics[END_REF] to) its counterpart in the harmonic construction [START_REF] Blanchet | Hereditary effects in gravitational radiation[END_REF]; the expressions for S i ×M ij and M ij ×M ij are the same in both radiative and harmonic constructions, see the Appendix B of [START_REF] Blanchet | Quadrupole-quadrupole gravitational waves[END_REF]. In particular the first term in (IV.22c) is the usual memory effect (which contains both AC and DC contributions) at the dominant 2.5PN order.

IV.3 Structure of the cubic source

The general equation we need to solve, (IV.6), reads at cubic order

□h µν 3 -∂H µν 3 = Λ µν 3 h 1 , h 2 = N µν h 1 , h 2 + N µν h 2 , h 1 + M µν h 1 , h 1 , h 1 , (IV.23)
where we recall the definition

H µ 3 ≡ ∂ ν h µν 3 . The quadratic functional N µν [h, h ′ ]
is given in (II.9) and the cubic functional M µν [h, h, h] is given by (1.4) of [START_REF] Blanchet | Gravitational-wave tails of tails[END_REF]. The source term for the cubic interaction M × M ij × M ij reads, with obvious notation, Λ µν

M×M ij ×M ij = N µν M ij ×(M×M ij ) + N µν M×(M ij ×M ij ) + M µν M×M ij ×M ij . (IV.24)
These three terms have the following structure: 

1. M ij × (M × M ij )
∼ nL r 5-p-q M M (p) ab (t -r) +∞ 1 dx Q m (x)M (4+q) cd (t -rx) , (IV.25)
where (p, q) ∈ [[0, 2]], and where the index structure and the possible presence of Kronecker deltas are disregarded. These terms are novel (with respect to ordinary tails), and their integration will be the focus of Section IV.4.2. For integration purposes, the modified Legendre function Q m (x) will be decomposed according to (IV.17): this will yield similar integrals over the standard Legendre function Q m (x), augmented by instantaneous terms involving ln (r/r 0 ). 

∼ nL r 3-p-q M +∞ 1 dx Q m (x) M (3+p) ab M (3+q) cd (t -rx) , (IV.26a)
where 0 ⩽ p + q ⩽ 2, which have the same structure as ordinary tails, as well as memory-like terms

∼ nL r 4 M +∞ 0 dτ M (3) ab M (3) cd (t -r -τ ) . (IV.26b)
The modified Legendre function will again be decomposed according to (IV.17), and all these terms will be the treated in Section IV.4.3. A similar analysis can be done for the other two cubic interactions M × M × M ij and M × S i × M ij , which only contain tail-like and instantaneous terms. Note that, thanks to the radiative construction, we can see that the r → +∞ expansion of the cubic source does not contain any logarithms of r. We have explicitly verified that the novel source terms M × M ij × M ij and M × S i × M ij are divergenceless, i.e.

M × M

∂ ν Λ µν M×M ij ×M ij = 0 and ∂ ν Λ µν M×S i ×M ij = 0 , (IV.27)
which is a strong test, since it would generally fail if a single coefficient were incorrect. However, because of its length, we cannot present the cubic source. Instead, we refer to the Supplementary Material of [START_REF] Trestini | Gravitational-wave tails of memory[END_REF].

IV.4 Solution of the wave equation at cubic order

IV.4.1 General multipolar solution

To solve the problem of tails-of-memory we need to develop new techniques for integrating the wave equation when the source term is a complicated nonlocal functional of the moments such as (IV.25). We first consider a general wave equation whose source term admits a definite multipolarity ℓ in STF guise, which reads in general

□Ψ L = nL S(r, t -r) , (IV.28)
where S(r, u) is an arbitrary function of r = |x| and u = t -r that verifies straightforward smoothness properties, and tends sufficiently rapidly to zero when r → 0, namely S(r, u) = O(r ℓ+5 ) (when r → 0 with u or t held fixed) .

(IV.29) See Theorem 6.1 of [START_REF] Blanchet | Radiative gravitational fields in general relativity. I. general structure of the field outside the source[END_REF] for more details on the required conditions we impose. Under these conditions, we know how to solve the wave equation (IV.28). We first define

R α (ρ, s) ≡ ρ ℓ ρ α dλ (ρ -λ) ℓ ℓ! 2 λ ℓ-1 S(λ, s) , (IV.30)
where α is an arbitrary constant. Then the solution of (IV.28) can be written as

Ψ L = t-r -∞ ds ∂L R α t-r-s 2 , s -R α t+r-s 2 , s r , (IV.31)
see (6.4) in [START_REF] Blanchet | Radiative gravitational fields in general relativity. I. general structure of the field outside the source[END_REF]. This solution is the unique retarded solution of (IV.28), thus satisfying the no-incoming radiation condition when r → +∞ with t + r = const. Furthermore it is independent from the constant α. To see this we consider separately the two terms in (IV.31), which we decompose as

Ψ L = Ψ [1] L + Ψ [2] L with Ψ [1] L ≡ t-r -∞ ds ∂L 1 r R α t -r -s 2 , s , (IV.32a) Ψ [2] L ≡ - t-r -∞ ds ∂L 1 r R α t + r -s 2 , s . (IV.32b)
We see that Ψ L is a retarded homogeneous solution of the wave equation, □Ψ

[1] L = 0, but that Ψ [2]
L has a unwieldy dependency on the advanced time v = t + r, and represents a particular retarded solution of the wave equation, i.e., □Ψ [START_REF] Bernard | Gravitational waves in scalar-tensor theory to one-and-a-half post-Newtonian order[END_REF] L = nL S(r, t -r). However note that the latter two wave equations satisfied by Ψ [START_REF]The Pyramid was constructed around 2330 BC, but the spells are probably at least a century older (Allen 2005), and are hence the oldest large corpus of religious writing known from ancient Egypt. A translation can be found on p. 45 of The Ancient Pyramid Texts (2005) by James P. Allen, while the transliteration and hieroglyphic transcription can be found, respectively, in Volume I and Volume III of A New Concordance of the Pyramid Texts (2013)[END_REF] L and Ψ [START_REF] Bernard | Gravitational waves in scalar-tensor theory to one-and-a-half post-Newtonian order[END_REF] L separately are valid only in the sense of ordinary functions; only the wave equation (IV.28) for the full solution Ψ L is satisfied in the sense of distributions. 2Plugging (IV.30) into (IV.32) we obtain

Ψ [1] L = 1 ℓ! t-r -∞ ds ∂L 1 r t-r-s 2 α dλ t -r -s 2 ℓ t -r -s 2 -λ ℓ 2 λ ℓ-1 S(λ, s) , (IV.33a) Ψ [2] L = - 1 ℓ! t-r -∞ ds ∂L 1 r t+r-s 2 α dλ t + r -s 2 ℓ t + r -s 2 -λ ℓ 2 λ ℓ-1

S(λ, s) .

(IV.33b)

Next we remark that in both terms (IV.33), one can commute the partial differential operator ∂L with the integral over λ, since the terms coming from the differentiation of the bound of the integral, i.e. (t ± r -s)/2, have to be evaluated at s = t ± r and will clearly vanish. Hence we can rewrite

Ψ [1] L = 2 ℓ-1 ℓ! t-r -∞ ds t-r-s 2 α dλ λ -ℓ+1 S(λ, s) ∂L 1 r t -r -s 2 ℓ t -r -s 2 -λ ℓ , (IV.34a) Ψ [2] L = - 2 ℓ-1 ℓ! t-r -∞ ds t+r-s 2 α dλ λ -ℓ+1 S(λ, s) ∂L 1 r t + r -s 2 ℓ t + r -s 2 -λ ℓ .
(IV.34b)

Then, using (A36) of [START_REF] Blanchet | Radiative gravitational fields in general relativity. I. general structure of the field outside the source[END_REF] we know that

∂L 1 r t -r -s 2 ℓ t -r -s 2 -λ ℓ = ∂L 1 r t + r -s 2 ℓ t + r -s 2 -λ ℓ , (IV.35)
so that actually the two contributions in (IV.34) can be merged together in the full solution, and we arrive at the elegant alternative form

Ψ L = - 2 ℓ-1 ℓ! t-r -∞ ds t+r-s 2 t-r-s 2 dλ λ -ℓ+1 S(λ, s) ∂L 1 r t -r -s 2 ℓ t -r -s 2 -λ ℓ .
(IV.36) This form is clearly independent of any choice for the constant α. It was also derived in a different way, using a direct multipolar expansion of the Green function of the d'Alembert operator, in Appendix D of [START_REF] Blanchet | Radiative gravitational fields in general relativity. I. general structure of the field outside the source[END_REF].

By using (A35a) of [START_REF] Blanchet | Radiative gravitational fields in general relativity. I. general structure of the field outside the source[END_REF] we can expand explicitly the last factor containing the multipolar derivative operator. Introducing the following coefficients, which will become ubiquitous in our practical computations,

C ℓ ij ≡ (ℓ + i)!(ℓ + j)! 2 i+j i!j!(ℓ -i)!(ℓ -j)!(i + j)! (for 0 ⩽ i, j ⩽ ℓ) , (IV.37)
we conveniently write the general solution as

Ψ L = - nL 2 ℓ i=0 ℓ j=0 (-) j C ℓ ij r i+1 +∞ 0 dρ ρ i+j ρ 2 +r ρ 2 dλ λ -j+1 S(λ, u -ρ) . (IV.38)
Note that although the coefficient C ℓ ij has been defined to be symmetric in i and j, these two indices play a different role. In particular the index i rules the behavior of the solution at infinity, when r → +∞ with t -r = const, depending on the falloff properties at infinity of the integrals in (IV.38). A useful fact is that for i = 0, the coefficient is straightforwardly linked to the j th derivative of the usual Legendre polynomial evaluated at 1, namely

C ℓ 0j = 1 j! P (j)
ℓ [START_REF]The Pyramid was constructed around 2330 BC, but the spells are probably at least a century older (Allen 2005), and are hence the oldest large corpus of religious writing known from ancient Egypt. A translation can be found on p. 45 of The Ancient Pyramid Texts (2005) by James P. Allen, while the transliteration and hieroglyphic transcription can be found, respectively, in Volume I and Volume III of A New Concordance of the Pyramid Texts (2013)[END_REF] .

(IV.39)

In addition to the general formula (IV.38), we also have an independent result which directly provides the leading behavior of the solution at infinity, when r → +∞ with u = const, depending on the falloff properties of the source S(r, u). Namely, suppose that S(r, u) has the following asymptotic behavior at infinity:

S(r, u) = O 1 r 3 (when r → +∞ with u fixed) . (IV.40)
More precisely the rigorous falloff conditions of the source term are given in Lemma 7.2 of [START_REF] Blanchet | Radiative gravitational fields in general relativity. I. general structure of the field outside the source[END_REF]. Then the corresponding solution will behave dominantly like 1/r at infinity, with leading term explicitly given by

Ψ L = (-) ℓ 2 ℓ nL r t-r -∞ ds R (ℓ) ∞ t -r -s 2 , s + O 1 r 2 . (IV.41)
Here the function R ∞ (ρ, s) is defined by (IV.30) with the explicit choice α = +∞, and the superscript (ℓ) means ℓ partial derivatives with respect to ρ. We shall use the latter result as a consistency check of the derivation of the leading behavior of the solution at infinity.

IV.4.2 Application to tails-of-memory

We apply the general formalism of Section IV.4.1 to the cubic iteration and specifically to the tails-of-memory. In this case the main problem we face is to find the solution of the wave equation (IV.28) when the source term takes the form (IV.25). For ease of notation we denote the two quadrupole moments by arbitrary time-varying functions F (u) and G(u), and consider the source term (multiplying the STF harmonics nL ):

S B k,m (r, t -r) ≡ r r 0 B r -k G(t -r) +∞ 1 dx Q m (x)F (t -rx) , (IV.42)
where k ⩾ 1 and m ⩾ 0 are integers, and the Legendre function of the second kind Q m (x) is given by (IV.18), as was obtained from Q m (x) using the relation (IV.17). The source (IV.42) is more complex than the one required for the computation of tails and tails-of-tails. In the latter case, the function G(u) is actually constant (i.e. the constant total mass-energy M), and we shall recover and extend the results found in [START_REF] Blanchet | Gravitational-wave tails of tails[END_REF][START_REF] Marchand | Gravitational-wave tail effects to quartic non-linear order[END_REF]. In the case where G(u) and F (u) are not constant the results we shall derive are new. In (IV.42) we have multiplied the source by the regularization factor (r/r 0 ) B , where B ∈ C and r 0 is an arbitrary constant, see (IV.10). Very importantly, this permits to ensure after analytic continuation in B ∈ C that the falloff condition (IV.40) is always satisfied. Applying the finite part, the solution we are looking for is

Ψ L k,m ≡ FP Ψ B L k,m , where Ψ B L k,m ≡ □ -1 ret S B L k,m = □ -1 ret nL S B k,m , (IV.43)
and will be obtained by applying the formulas of the previous section. During the computation, we shall also encounter explicit logarithms and poles proportional to 1/B. This will all boil down to computing

χ L k,m ≡ FP 1 B Ψ B L k,m = FP d dB Ψ B L k,m = FP B=0 □ -1 ret ln r r 0 S B L k,m , (IV.44)
where we have used the useful property of the regularization factor (r/r 0 ) B , that an extra logarithm is generated by differentiating with respect to B:

d dB S B L k,m = ln r r 0 S B L k,m . (IV.45)
Applying the formulas of Section IV.4.1, the solution for any B ∈ C reads

Ψ B L k,m = - nL 2 ℓ i=0 ℓ j=0 (-) j C ℓ ij r i+1 ϕ k,m B ij , (IV.46a)
where

ϕ k,m B ij ≡ +∞ 0 dρ ρ i+j G(u -ρ) ρ 2 +r ρ 2 dλ λ r 0 B λ -k-j+1 +∞ 1 dx Q m (x)F u -ρ -λ(x -1) . (IV.46b)
Note that this solution is "exact", valid at any radial distance r except r = 0. But in the following, we shall mostly be interested in the asymptotic limit when r → +∞ with u = const. Permuting the integrals, introducing the change of variable λ -→ τ = λ(x-1), and factorizing out the expected leading behavior 1/r of the solution (in anticipation of the limit r → +∞), we find that

Ψ B L k,m = - nL 2r +∞ 0 dρ G(u -ρ) +∞ 0 dτ F (u -ρ -τ ) K B ℓ k,m (ρ, τ, r) , (IV.47a)
where we have introduced for convenience the kernel function (with x = y + 1)

K B ℓ k,m (ρ, τ, r) = τ r 0 B ℓ i=0 1 r i ℓ j=0 (-) j C ℓ ij ρ i+j τ -k-j+1 2τ ρ 2τ ρ+2r dy y k+j-2-B Q m (y + 1) , = τ 1-k 2τ ρ 2τ ρ+2r dy τ yr 0 B y k-2 Q m (y + 1) Π ℓ 1 - ρy τ , 1 + ρ r . (IV.47b)
In the second line we have introduced the following symmetric bivariate polynomial

Π ℓ (x, y) = ℓ i=0 ℓ j=0 C ℓ ij (x -1) i (y -1) j , (IV.48)
which is related to the Legendre polynomial, recalling (IV.39), by

P ℓ (x) = ℓ j=0 C ℓ 0j (x -1) j = Π ℓ (x, 1) = Π ℓ (1, x) . (IV.49)
Similarly, the quantity k,m χ B L defined in (IV.44) reads

χ B L k,m = - nL 2r +∞ 0 dρ G(u -ρ) +∞ 0 dτ F (u -ρ -τ ) L B ℓ k,m (ρ, τ, r) , (IV.50a)
where the kernel is defined as

L B ℓ k,m = d dB K B ℓ k,m (ρ, τ, r) = ℓ i=0 1 r i ℓ j=0 (-) j C ℓ i,j ρ i+j τ -k-j+1 2τ ρ 2τ ρ+2r dy τ yr 0 B ln τ r 0 y y k+j-2 Q m (x) , = τ 1-k 2τ ρ 2τ ρ+2r dy τ yr 0 B ln τ yr 0 y k-2 Q m (y + 1) Π ℓ 1 - ρy τ , 1 + ρ r . (IV.50b)
When r → +∞ the above kernels are dominated by the contribution i = 0, and the property (IV.49) allows us to relate the asymptotic limit to the Legendre polynomial as

K B ℓ k,m = τ 1-k 2τ ρ 2τ ρ+2r dy τ yr 0 B y k-2 Q m (y + 1) P ℓ 1 - ρy τ + o (1) , (IV.51a) L B ℓ k,m = τ 1-k 2τ ρ 2τ ρ+2r dy τ yr 0 B ln τ yr 0 y k-2 Q m (y + 1) P ℓ 1 - ρy τ + o (1) . (IV.51b)
We employ the Landau symbol o for remainders, hence o(1) means terms that behave as ∼ ln p r/r with uncontrolled powers of ln r as r → +∞. We now assume that k ∈ {1, 2}. As proven in Appendix A.7, k,m Ψ B L and k,m χ B L have a well-defined limit when B → 0, so we can drop the finite part prescription and simply set B = 0 in (IV.47) and (IV.50). Therefore we obtain the expression for the kernels, only valid for k ∈ {1, 2},

K ℓ k,m (ρ, τ, r) ≡ τ 1-k 2τ ρ 2τ ρ+2r dy y k-2 Q m (y + 1) Π ℓ 1 - ρy τ , 1 + ρ r , (IV.52a) L ℓ k,m (ρ, τ, r) ≡ τ 1-k 2τ ρ 2τ ρ+2r dy ln τ yr 0 y k-2 Q m (y + 1) Π ℓ 1 - ρy τ , 1 + ρ r . (IV.52b)
When restricting our interest to the asymptotic limit r → +∞, we must treat separately the cases k = 1 and k = 2.

For k = 2, the integrands in the kernels (IV.52) are clearly integrable at the y → 0 bound, therefore the kernels converge in the r → +∞ limit, such that we are allowed to define the "asymptotic" kernels:

K ℓ 2,m (ρ, τ ) ≡ lim r→+∞ K ℓ 2,m (ρ, τ, r) = τ -1 2τ ρ 0 dy Q m (y + 1)P ℓ 1 - ρy τ , (IV.53a) L ℓ 2,m (ρ, τ ) ≡ lim r→+∞ L ℓ 2,m (ρ, τ, r) = τ -1 2τ ρ 0 dy ln τ yr 0 Q m (y + 1)P ℓ 1 - ρy τ . (IV.53b)
We have verified the above asymptotic limit in the case where k = 2 using the general statement in (IV. [START_REF] Pirani | On the Physical significance of the Riemann tensor[END_REF], where the relevant function is defined by (IV.30) with α = +∞.

In the case k = 1, the situation is more complicated since the integrands of the kernels are no longer integrable when y → 0, so it is not possible to simply take the limit r → +∞ like in (IV.53). Instead the kernels exhibit a logarithmic behavior as r → +∞. Since the radiative construction will not exhibit any logarithmic behavior, the logarithms should cancel out in the final metric, and it is crucial to verify this by controlling the logarithmic limit of the kernel functions. We detail the case of the "K"-kernel

K ℓ 1,m (ρ, τ, r) = 2τ ρ 2τ ρ+2r dy y Q m (y + 1) Π ℓ 1 - ρy τ , 1 + ρ r . (IV.54)
To extract the logarithmic behavior, we integrate by parts. First, we introduce the regular part of the Legendre function of the second type when x → 1 + , which is defined as

R m (x) ≡ Q m (x) + 1 2 P m (x) ln x -1 2 . (IV.55) A useful observation is that R m (1) = -H m , where H m = m k=1 k -1
is the harmonic number. Substituting Q m by its expression in terms of R m and integrating by parts, we find where the all-integrated terms are shown in the first line. Since P m (x), R m (x) and Π ℓ (x, y) as well as all their derivatives are perfectly integrable as x → 1 + , we can safely take the r → +∞ expansion, and we obtain the explicit "polylogarithmic" structure

K ℓ 1,m (ρ, τ, r) = ln y 2 R m (y + 1) - 1 
K ℓ 1,m (ρ, τ, r) = 1 4 ln 2 r r 0 - 1 2 ln r r 0 ln τ 2r 0 + 2H m + K ℓ 1,m (ρ, τ ) + o (1) , (IV.57a)
where 1,m K ℓ (ρ, τ ) does not exhibit any r-dependence. We obtain its explicit expression as The same reasoning applied to the "L"-kernel also gives a polylogarithmic structure but in this case with powers of the logarithm up to three:

K ℓ 1,m (ρ, τ ) = 1 4 ln 2 τ 2r 0 + H m ln τ 2r 0 - (-) ℓ 4 ln 2 τ 2r 0 -2 ln τ 2r 0 ln ρ 2r 0 + ln 2 ρ 2r 0 P m 1 + 2τ ρ -(-) ℓ ln ρ 2r 0 -ln τ 2r 0 R m 1 + 2τ ρ + 1 4
L ℓ 1,m (ρ, τ, r) = 1 6 ln 3 r r 0 - 1 4 ln 2 r r 0 ln τ 2r 0 + 2H m + L ℓ 1,m (ρ, τ ) + o (1) , (IV.58a)
and where 1,m L ℓ (ρ, τ ) is explicitly given by Again, a beautiful check of the radiative construction of the metric in Section IV.1, is that all these explicitly determined far-zone logarithms will be compensated by those induced by the applied gauge transformations, notably the one described in (IV.21).

L ℓ 1,m (ρ, τ ) = 1 12 ln 3 τ 2r 0 + 1 2 H m ln 2 τ 2r 0 (IV.58b) - (-) ℓ 12 ln 3 τ 2r 0 -3 ln τ 2r 0 ln 2 ρ 2r 0 + 2 ln 3 ρ 2r 0 P m 1 + 2τ ρ - (-) ℓ 2 ln 2 ρ 2r 0 -ln 2 τ 2r 0 R m 1 + 2τ ρ + 2τ ρ 0 dy ln 2 y 2 1 4 ln τ 2r 0 - 1 
In practical computations, it is easier to compute the full kernels 1,m K ℓ (ρ, τ, r) and 1,m L ℓ (ρ, τ, r), and then to remove the logarithmic dependencies to obtain the reduced asymptotic kernels 1,m K ℓ (ρ, τ ) and 1,m L ℓ (ρ, τ ). However, computing the two later quantities directly from their explicit expressions (IV.57b) and (IV.58b) yields, of course, the same result.

b) Cases where k ⩾ 3

We have just shown that we could integrate the source term (IV.42) when k ∈ {1, 2}. A priori, the cases k ⩾ 3 are more difficult and (when G is not constant) analytic closedform expressions for the retarded integral seem nontrivial. Hence we proceed differently and prove that we can retrieve the cases k ⩾ 3 from the known cases k ∈ {1, 2}. This will show that analytic closed-form expressions also exist in the cases k ⩾ 3.

Given a source term with k ⩾ 3, endowed with the associated regularization factor r B (posing here r 0 = 1), we reduce it to a fully integrated part and new source terms with decreased values of k by two steps at most: k -1 and k -2, by means of the identity:

nL r B-k G(t -r) +∞ 1 dxQ m (x)F (t -rx) = □ nL r B-k+2 (k + ℓ -2 -B)(k -ℓ -3 -B) G(t -r) +∞ 1 dx Q m (x)F (t -rx) - 2(k -3 -B)n L r B-k+1 (k + ℓ -2 -B)(k -ℓ -3 -B) (1) G (t -r) +∞ 1 dx Q m (x)F (t -rx) + G(t -r) +∞ 1 dx x Q m (x) (1) F (t -rx) - nL r B-k+2 (k + ℓ -2 -B)(k -ℓ -3 -B) 2 (1) 
G (t -r) +∞ 1 dx (x -1)Q m (x) (1) 
F (t -rx) + G(t -r) +∞ 1 dx (x 2 -1) Q m (x) (2) 
F (t -rx) .

(IV.59)

This formula, when applied iteratively, allows us to reduce any case k ⩾ 3 in terms of the cases when k = 1 and 2, modulo a series of all-integrated terms (i.e., inside the d'Alembert operator). Note that we introduced a new type of integral,

+∞ 1 dx x n Q m (x)H(t -rx)
where n ∈ N, but which can easily be recast in the previous form (i.e. n = 0) by recursively applying Bonnet's recursion formula for the Legendre function, namely

x Q m (x) = m + 1 2m + 1 Q m+1 (x) + m 2m + 1 Q m-1 (x) if m ⩾ 1 , (IV.60a) x Q 0 (x) = Q 1 (x) + 1 if m = 0 . (IV.60b)
An important point is that we keep the Hadamard regulator r B "alive" in (IV.59). Indeed, by applying the inverse d'Alembert operator on both sides of (IV. [START_REF] Blaes | The Kozai Mechanism and the Evolution of Binary Supermassive Black Holes[END_REF], we see that the first term in the right side being the d'Alembertian of a source term containing the regulator r B , will directly yield that source term proportional to r B without any additional homogeneous solution (since no homogeneous solution can be proportional to r B ). Hence the iteration with r B can be done blindly, ignoring homogeneous solutions, and only at the end do we apply the finite part when B → 0.

However a price we have to pay is that the B-dependent coefficients in (IV.59) can generate a simple pole when B → 0 which will compete with the higher contribution ∝ B in the retarded integral, and vice versa, a term ∝ B in the coefficient will be compensated by a pole coming from the retarded integral. A useful fact to remember in this respect is that the integrals are convergent for k ∈ {1, 2} and hence no poles ∝ 1/B can be generated in these cases. Furthermore, the structure of the identity (IV.59) can only generate simple poles ∝ 1/B, and no double poles ∝ 1/B 2 or any poles of higher order. The presence of these simple poles is the main reason why we introduced the k,m χ L integral, as is clear by its first definition in (IV. [START_REF] Damour | General relativistic celestial mechanics of binary systems II. The post-Newtonian timing formula[END_REF].

Finally, although we now have all the needed formulas to integrate the tails-of-memory, our recursion formula (IV.59) coupled to the m = 0 case of the Bonnet formula (IV.60b) can generate instantaneous terms in the source, which must also be integrated. Although the integration of such terms is well known using standard integration techniques [START_REF] Blanchet | Hereditary effects in gravitational radiation[END_REF][START_REF] Blanchet | Quadrupole-quadrupole gravitational waves[END_REF], its generalization to the case where simple poles ∝ 1/B can appear in the source was unknown.

IV.4.3 Application to tails-of-tails

The previous observation motivates us to extend our formalism developed for complicated tails-of-memory to the easier cases of tails-of-tails, tails and even instantaneous terms, such that we can treat the entire problem consistently, using one single formalism. When comparing with previous works [START_REF] Blanchet | Gravitational-wave tails of tails[END_REF][START_REF] Marchand | Gravitational-wave tail effects to quartic non-linear order[END_REF] this will provide important tests of the results of Section IV.4.2. Thus, we specialize the formulas of the previous section to the case where G ≡ 1, since in the case of the tails-of-tails two of the moments are just the mass M.

When k ⩾ 3, we can again reduce the source to the cases k = 1 and k = 2 using (IV.59), with now G (1) (u) = 0. Then, after lengthy computations where we perform two of the three integrations of the tails-of-memory (one on the y variable in the kernel and one on the time variable τ ), we find drastically simpler expressions when k ∈ {1, 2}, which read

Ψ ℓ 2,m G=1 = 2 α ℓ 2,m (-1) F (u) , (IV.61a) χ ℓ 2,m G=1 = 2 +∞ 0 dτ β ℓ 2,m ln τ 2r 0 + γ ℓ 2,m F (u -τ ) , (IV.61b) Ψ ℓ 1,m G=1 = 1 4 +∞ 0 dτ (-1) F (u -τ ) ln 2 τ 2r 0 + 4H m ln τ 2r 0 -8 δ ℓ 1,m , (IV.61c) χ ℓ 1,m G=1 = 1 12 +∞ 0 dτ (-1) F (u -τ ) ln 3 τ 2r 0 + 6H m ln 2 τ 2r 0 -24 δ ℓ 1,m ln τ 2r 0 + 12 ε ℓ 1,m . (IV.61d)
where k,m Ψ L ≡ -nL 2r k,m Ψ ℓ and k,m χ L ≡ -nL 2r k,m χ ℓ . The numerical constants 2,m α ℓ , 2,m β ℓ and 2,m γ ℓ are defined by the integrals

α ℓ 2,m ≡ β ℓ 2,m ≡ +∞ 1 dx Q m (x)Q ℓ (x) , (IV.62a) γ ℓ 2,m ≡ 1 2 ℓ+1 +∞ 1 dx Q m (x) 1 -1 dz (1 -z 2 ) ℓ (x -y) ℓ+1 -ln x -y 2 + H ℓ . (IV.62b) Note that 2,m α ℓ is a special case of k,m α ℓ defined for 2 ⩽ k ⩽ ℓ + 2 in (A16) of [91],
whereas 2,m β ℓ and 2,m γ ℓ are an extension of (A20) of [START_REF] Blanchet | Gravitational-wave tails of tails[END_REF], in which these constants were defined only for k ⩾ ℓ + 3. In the case k = 2, we find it natural to define 2,m α ℓ and 2,m β ℓ to be equal.

Similarly one can define 1,m δ ℓ and 1,m ε ℓ using formal integrals but at the price of introducing a Hadamard partie finie (pf) to cure the bound of the integrals at x = 1:

δ ℓ 1,m ≡ pf +∞ 1 dx Q m (x) dQ ℓ dx , (IV.63a) ε ℓ 1,m ≡ pf +∞ 1 dx Q m (x) d 2 S ℓ d 2 x . (IV.63b)
The Hadamard partie finie is defined in the usual way by removing the divergent part of the integral (and using for our purpose here a Hadamard scale equal to 1):

pf +∞ 1 dx Q m (x) dQ ℓ dx ≡ lim η→0 +∞ 1+η dx Q m (x) dQ ℓ dx + 1 8 ln 2 η 2 + 1 2 H m ln η 2 , (IV.64a) pf +∞ 1 dx Q m (x) d 2 S ℓ d 2 x ≡ lim η→0 +∞ 1+η dx Q m (x) d 2 S ℓ d 2 x + 1 6 ln 3 η 2 + 1 2 H m ln 2 η 2 .
(IV.64b)

In the definition of 1,m ε ℓ the function S ℓ is defined like for the Neumann formula for the Legendre function [see (IV.18)],

S ℓ (x) ≡ 1 2 1 -1 dy P ℓ (y) ln 2 x -y 2 = ℓ j=0 j i=0 (-) i+1 P (j) ℓ (1) 2(i + 1)!(j -i)! (x -1) j+1 ln 2 x -1 2 - 2 i + 1 ln x -1 2 + 2 (i + 1) 2 + (-) j+ℓ+1 (x + 1) j+1 ln 2 x + 1 2 - 2 i + 1 ln x + 1 2 + 2 (i + 1) 2 .
(IV.65)

The constant 1,m δ ℓ was used in (A7-A9) of [START_REF] Blanchet | Gravitational-wave tails of tails[END_REF] in the special case where m = ℓ, but was not given a name. The constants defined in [START_REF] Blanchet | Gravitational-wave tails of tails[END_REF] were later shown in [START_REF] Marchand | Gravitational-wave tail effects to quartic non-linear order[END_REF] to be sometimes ill-defined, e.g. for k = 0, ℓ = 0 and m = 0, and this problem was circumvented on a case-by-case basis. Since we restrict our attention to k ∈ {1, 2}, we are assured that our constants are always well defined.

All the coefficients we shall need can be computed analytically. The 2,m α ℓ constant (and, hence, 2,m β ℓ ) has a closed form expression given by (A18) of [START_REF] Blanchet | Gravitational-wave tails of tails[END_REF], which reads

α ℓ 2,m = β ℓ 2,m =            H m -H ℓ (m -ℓ)(m + ℓ + 1) if m ̸ = ℓ , 1 2m + 1   π 2 6 - m j=1 1 j 2   if m = ℓ .
(IV.66)

The 1,m δ ℓ constant has a simple expression when m = ℓ, as pointed out in (A7-A9) of [START_REF] Blanchet | Gravitational-wave tails of tails[END_REF], which reads 1,ℓ δ ℓ = -1 2 H 2 ℓ . When m ̸ = ℓ, by integrating by parts the integral expression of the 1,m δ ℓ constant, we find the simple property

δ ℓ 1,m + δ m 1,ℓ = -H m H ℓ .
(IV.67a)

We can then obtain the full expression of 1,m δ ℓ by using recursively the differential equation

Q ′ n+1 -Q ′ n-1 = (2n + 1)Q n .
In the case where ℓ and m have the same parity, i.e. ℓ -m ∈ 2Z, the differential equation allows us to express the constant only in terms of the case 1,ℓ δ ℓ , along with many 2,m α ℓ terms, which are easy to compute. Thanks to (IV.67a), we can further restrict attention to the case where ℓ ⩾ m, and the relevant formula then reads

δ ℓ 1,m = ℓ-m 2 j=1 2m + 4j -1 α m+2j-1 2,m - 1 2 H 2 m , (IV.67b) if ℓ -m ∈ 2N.
In the reverse case where ℓ and m have opposite parity, i.e. ℓ -m ∈ 2Z + 1, we can again use (IV.67a) to restrict attention to the case where ℓ is odd and m is even.

In this case, we can again use the differential equation as well as integration by parts to express our constant solely in terms of the explicitly known case, 1,0 δ 1 = π 2 12 , modulo some 2,m α ℓ terms. We thus find the relevant formula,

δ ℓ 1,m = -H m + π 2 12 + ℓ-1 2 j=1 2ℓ -4j + 3 α 2,m ℓ-2j+1 - m 2 j=1 2m -4j + 3 α 2,1 m-2j+1 , (IV.67c) if ℓ ∈ 2N + 1 and m ∈ 2N.
Finally the 2,m γ ℓ and 1,m ε ℓ constants were only needed for the following values of m and ℓ, which we calculated using Mathematica:

γ 1 2,0 = 5 4 , γ 1 2,2 = 13 32 , γ 1 2,4 = 95 432 , ε 0 1,0 = ζ(3) 2 , ε 0 1,2 = 9 2 + ζ(3) 2 , ε 0 1,4 = 3995 432 + ζ(3) 2 , ε 1 1,1 = 1 2 + ζ(3) 2 , ε 1 1,3 = 299 48 + ζ(3) 2 , ε 1 1,5 = 887 80 + ζ(3) 2 , ε 2 1,0 = - 15 2 + ζ(3) 2 , ε 2 1,2 = 33 16 + ζ(3) 2 , ε 2 1,4 = 3425 432 + ζ(3) 2 , (IV.68)
where ζ is the Riemann function and ζ(3) is the Apéry constant. In our computation, the contributions proportional to this constant actually cancel out.

We end this section with a word concerning the integration of B-regularized source terms that are actually instantaneous, i.e. just of the simple type k S B (r, t -r) ≡ ( r r 0 ) B r -k F (t -r) (multiplied by the multipolarity factor nL ). These source terms yield for instance the tails at quadratic order. In line with our general formalism, if k ⩾ 3, we bring ourselves to the case k = 2 using the recursion formula:

nL r B-k F (t -r) = □ nL r B-k+2 (k + ℓ -2 -B)(k -ℓ -3 -B) F (t -r) - 2(k -3 -B)n L r B-k+1 (k + ℓ -2 -B)(k -ℓ -3 -B) (1)
F (t -r) .
(IV.69)

The case k = 2 is well known [START_REF] Blanchet | Hereditary effects in gravitational radiation[END_REF][START_REF] Blanchet | Quadrupole-quadrupole gravitational waves[END_REF][START_REF] Blanchet | Gravitational-wave tails of tails[END_REF], and for the asymptotic limit reads

FP B=0 □ -1 ret r r 0 B nL r 2 F (t -r) = nL 2r +∞ 0 dτ F (u -τ ) ln τ 2r + 2H ℓ + o 1 r , (IV.70)
where we could have dropped the finite part prescription and set B = 0, because in this case the inverse d'Alembertian integral is convergent. However, because of the potential appearance of single poles due to our recursion formula (IV.69), we will also need the corresponding formula with an extra factor B -1 multiplying the source term. The relevant formula reads

FP B=0 □ -1 ret 1 B r r 0 B nL r 2 F (t -r) (IV.71) = nL 4r +∞ 0 dτ F (u -τ ) ln 2 τ 2r 0 + 4H ℓ ln τ 2r 0 + 4H 2 ℓ -ln 2 r r 0 + o 1 r ,
which can be obtained from (A2) of [START_REF] Blanchet | Quadrupole-quadrupole gravitational waves[END_REF] by taking straightforwardly the finite part (since the integral converges) and expanding when r → +∞.

IV.5 Implementing the calculation of tails-of-memory IV.5.1 Explicit integration of the asymptotic kernels

Up to this point, the kernels in the asymptotic limit r → +∞ were defined only in an integral form, given by (IV.53) in the relatively easy case where k = 2, and by the more complex forms (IV.57b) and (IV.58b) when k = 1. These integrals are too complicated to seek a general explicit formula valid for arbitrary m and ℓ. However, we can easily compute all these integrals on a case-by-case basis. For this it suffices to insert into them the explicit expressions of the Legendre polynomial P m (x) and the Legendre function of the second kind Q m (x), which are simply polynomials multiplied by some logarithms, see (IV. [START_REF] De Laplace | Traité de mécanique céleste[END_REF].

In this way we find that the general structure of the kernels k,m K ℓ (ρ, τ, r) and k,m L ℓ (ρ, τ, r) for k = 1 and 2, up to o(1) precision, is of the type

     K ℓ k,m (ρ, τ, r) L ℓ k,m (ρ, τ, r)      = s,p,q      X k,m s,p,q Y k,m s,p,q      2τ ρ 2τ ρ+2r dy y s ln p y 2 ln q 1 + y 2 , (IV.72)
where k,m X s,p,q and k,m Y s,p,q denote some numerical coefficients, with s an integer such that s ⩾ k -2, and where we can restrict our attention only to the values p = 0, 1, 2, 3 and q = 0, 1. When s ⩾ 0, the lower bound of the integral can be set to 0 in the r → +∞ limit, but not when s = -1 which can happen when k = 1. In the latter case, the integral will develop the logarithmic behavior when r → +∞ which has already been obtained in (IV.57a) and (IV.58a), and we now only consider the finite part. When q = 0, these integrals are of course well known (see e.g. (2.721-722) in [START_REF] Gradshteyn | Table of Integrals[END_REF]), so we now restrict our discussion to the case q = 1. Let us first examine the case q = 1 and s ⩾ 0; we thus set the lower bound to zero, in the limit r → +∞. We perform an integration by parts using (2.722) in [START_REF] Gradshteyn | Table of Integrals[END_REF],

2τ ρ 0 dy y s ln p y 2 ln 1 + y 2 (IV.73) = p i=0 (-) i p! (p -i)!(s + 1) i+1 2τ ρ s+1 ln p-i τ ρ ln 1 + τ ρ - 2τ ρ 0 dy y s+1 y + 2 ln p-i y 2 .
The rational fraction y s+1 (y + 2) -1 in the remaining integral can be expanded as a polynomial, plus a function proportional to (y + 2) -1 . From this result we see that the only nontrivial integrals left are of the type z 0 dy (y + 2) -1 ln j (y/2), and these are simply related to the polylogarithm functions, for instance 3

2τ ρ 0 dy y + 2 ln 2 y 2 = -2Li 3 - τ ρ + 2Li 2 - τ ρ ln τ ρ -Li 1 - τ ρ ln 2 τ ρ .
(IV.74)

Now, the only remaining cases are when q = 1 and s = -1, but in these cases too the integrals are related to polylogarithms, for instance

2τ ρ 0 dy y ln y 2 ln 1 + y 2 = Li 3 - τ ρ -Li 2 - τ ρ ln τ ρ . (IV.75)
To summarize we have obtained the following general structure of the kernel functions in the asymptotic limit r → +∞, discarding the leading logarithmic behavior in the k = 1 case -recall (IV.57a) and (IV.58a) -, as

     K ℓ k,m (ρ, τ ) L ℓ k,m (ρ, τ )      = τ 1-k j ∈ Z p, q, n ∈ N     κ k,m j,p,q,n λ k,m j,p,q,n     τ ρ j ln p τ 2r 0 ln q ρ 2r 0 Li n - τ ρ ,
(IV.76) 3 The polylogarithm, or Jonquière's function, is defined for any n ∈ N and z > 0 as

Lin(z) ≡ (-) n-1 (n -2)! z 0 ds s ln n-2 s z ln(1 -s) .
In particular, the dilogarithm, or Spence's function, is defined as Li2(z) = -z 0 ds s ln(1 -s). We also find that Li1(z) = -ln(1 -z).

with some numerical coefficients k,m κ j,p,q,n and k,m λ j,p,q,n that depend on the relative integer j ∈ Z and natural integers p, q, n ∈ N, and where we have defined for notational convenience Li 0 (z) ≡ 1 and Li n (z) ≡ Li n (z) for n ⩾ 1. We also recall that Li 1 (z) = -ln(1 -z).

The coefficients k,m κ j,p,q,n and k,m λ j,p,q,n represent six-dimensional matrices of numerical coefficients and cannot be presented. Instead, explicit expressions of all the kernels needed for the computation of the tails-of-memory are provided in the Supplementary Material of [START_REF] Trestini | Gravitational-wave tails of memory[END_REF]. For the purpose of clarity, we give two explicit examples of such kernels, where we choose to look at K for m = 2, ℓ = 4 and k = 1, 2: 

K 4 1,2 (ρ, τ ) = - 1 2 Li 2 - τ ρ + 7 12 Li 1 - τ ρ - 1 
K 4 2,2 (ρ, τ ) = 1 τ 1 6 - 5 6 ρ τ + ρ τ 2 -3 Li 1 - τ ρ -5 + ρ τ 3 -7 Li 1 - τ ρ -4 -4 ρ τ 4 Li 1 - τ ρ . (IV.77b)
Notice that despite the structure in ρ/τ of these kernels, one can check explicitly that they are indeed integrable in a vicinity of (ρ, τ ) = (0, 0).

IV.5.2 Raw expression of the radiative quadrupole in the radiative construction

We have applied the MPM construction of the metric in radiative gauge as described in Section IV.1, together with the previous integration techniques, to the computation of the three cubic interactions

M 2 × M ij , M × S i × M ij and M × M ij × M ij .
The first interaction, M 2 × M ij , is the tail-of-tail which enters at 3PN order and was already known in the harmonic construction [START_REF] Blanchet | Gravitational-wave tails of tails[END_REF]. We have, on the one hand, computed the asymptotic waveform for this interaction in the radiative construction using the integration machinery developed in Section IV.4, and, on the other hand, used standard integration techniques [START_REF] Blanchet | Quadrupole-quadrupole gravitational waves[END_REF][START_REF] Blanchet | Gravitational-wave tails of tails[END_REF][START_REF] Faye | Non-linear multipole interactions and gravitational-wave octupole modes for inspiralling compact binaries to third-and-ahalf post-Newtonian order[END_REF][START_REF] Marchand | Gravitational-wave tail effects to quartic non-linear order[END_REF] applied to the radiative algorithm, and checked that both methods yielded identical results. We then verified that these results, performed in the radiative construction, could be independently retrieved from the known result in the harmonic construction [START_REF] Blanchet | Gravitational-wave tails of tails[END_REF] solely using a moment redefinition, as explained in [START_REF] Trestini | The quadrupole moment of compact binaries to the fourth post-Newtonian order: relating the harmonic and radiative metrics[END_REF]. In the radiative gauge, we find

U M 2 ×M ij ij = 2G 2 M 2 c 6 +∞ 0 dτ ln 2 τ 2r 0 + 107 42 ln τ 2r 0 + 40037 8810 M (5) ij (u -τ ) . (IV.78)
For the M × S i × M ij interaction, which only enters at 4PN, the fact that the current dipole moment S i (or total angular momentum) is constant greatly simplifies the computation, and a priori allows for the use of standard techniques [START_REF] Blanchet | Quadrupole-quadrupole gravitational waves[END_REF][START_REF] Blanchet | Gravitational-wave tails of tails[END_REF][START_REF] Marchand | Gravitational-wave tail effects to quartic non-linear order[END_REF]. However, in some cases, those techniques break down, since some of the numerical constants introduced are ill-defined, as has been mentioned in [START_REF] Marchand | Gravitational-wave tail effects to quartic non-linear order[END_REF]. Therefore, we have computed for the first time the full M × S i × M ij waveform using our new integration method, which reads in radiative gauge,

U M×S i ×M ij ij = - 2G 2 M c 8 S a|⟨i +∞ 0 dτ ln τ 2r 0 + 5381 5670 M (6) j⟩a (u -τ ) . (IV.79)
Finally, the M × M ij × M ij interaction is the genuine tail-of-memory entering at 4PN; the double time-dependence within the two associated quadrupole moments strongly complicates the situation. We have performed this calculation only in the asymptotic limit r → +∞. Since we are using the radiative construction [START_REF] Blanchet | Radiative gravitational fields in general relativity. II. Asymptotic behaviour at future null infinity[END_REF] the waveform is automatically free of far-zone logarithms, and can straightforwardly be projected in a TT gauge, where the radiative quadrupole moment U ij is extracted in a standard way. Here we first present the "raw" result, obtained in a direct manner from our integration formulas, in terms of the radiative canonical moments. In Section IV.5.3 we describe a very efficient simplification method, and the resulting radiative quadrupole will be presented in Section IV.6 in terms of the radiative canonical moments. The "raw" result is however important and worthy to be presented, as it is the direct result of our integration scheme.

In order to present the raw result, we define the following functionals of two timederivatives of quadrupole moments F and G for the cases k = 1, 2:

Ψ ℓ k,m [F, G] ≡ +∞ 0 dρ G(u -ρ) +∞ 0 dτ F (u -ρ -τ ) K ℓ k,m (ρ, τ ) , (IV.80a) χ ℓ k,m [F, G] ≡ +∞ 0 dρ G(u -ρ) +∞ 0 dτ F (u -ρ -τ ) L ℓ k,m (ρ, τ ) , (IV.80b)
where the kernels are given by (IV.53) in the case k = 2 and by (IV.57b) and (IV.58b) in the case k = 1. As explained in Section b) we do not need the cases k ⩾ 3. With these definitions in hand, we decompose the cubic interaction M × M ij × M ij as follows: we separate terms which are purely instantaneous (i.e. local-in-time), from terms whose nonlocality is rather simple and looks like that for the ordinary tails or tails-of-tail, and finally from the genuine and much more intricate tail-of-memory (ToM) integrals. We thus write our raw result, expressed in terms of the radiative canonical moments, as

U M×M ij ×M ij ij = U M×M ij ×M ij ij inst + U M×M ij ×M ij ij tail + U M×M ij ×M ij ij ToM . (IV.81)
1. The instantaneous terms (depending only on the current time u) are given by

U M×M ij ×M ij ij inst = G 2 M c 8 3362032 165375 M (3) a⟨i M (3) j⟩a + 2014871 165375 M (2) a⟨i M (4) j⟩a - 5766241 165375 M (1) a⟨i M (5) j⟩a - 114454 23625 M a⟨i M (6) 
j⟩a .

(IV.82a)

2. The nonlocal tail like terms involve some logarithmic kernels, and naturally the quadrupole moment of the usual tail terms is here replaced by a combination ∝ M

(n) a⟨i M (p)
j⟩a evaluated at any time u -τ in the past. We have

U M×M ij ×M ij ij tail = - 48 175 
G 2 M c 8 +∞ 0 dτ ln 2 τ 2r 0 + 5111 840 ln τ 2r 0 (M a⟨i M (7) j⟩a )(u -τ ) - 192 175 
G 2 M c 8 +∞ 0 dτ ln 2 τ 2r 0 + 475861 30240 ln τ 2r 0 (M (1) a⟨i M (6) j⟩a )(u -τ ) - 3154 315 
G 2 M c 8 +∞ 0 dτ ln τ 2r 0 (M (2) a⟨i M (5) j⟩a )(u -τ ) + 478 35 
G 2 M c 8 +∞ 0 dτ ln τ 2r 0 (M (3) a⟨i M (4) j⟩a )(u -τ ) . (IV.82b)
3. The genuine tail-of-memory part is fully specified by the bilinear functionals of the two quadrupole moments defined by (IV.80). Thus we can write

U M×M ij ×M ij ij ToM = G 2 M c 8 m,ℓ,n A n m,ℓ Ψ ℓ 1,m M (n) a⟨i , M (8-n) j⟩a + B n m,ℓ Ψ ℓ 2,m M (n) a⟨i , M (7-n) j⟩a + C n n,ℓ χ ℓ 1,m M (n) a⟨i , M (8-n) j⟩a + D n m,ℓ χ ℓ 2,m M (n) a⟨i , M (7-n) j⟩a , (IV.82c)
where the purely numerical coefficients A n m,ℓ , B n m,ℓ , C n m,ℓ and D n m,ℓ in front of each of these integrals are provided in the Tables A.1, and the functionals k,m Ψ ℓ and k,m χ ℓ are defined in terms of the kernels in (IV.80). Thus our complete results follow from these Tables together with the explicit expressions of the kernel functions provided in the Supplementary Material of [START_REF] Trestini | Gravitational-wave tails of memory[END_REF].

IV.5.3 Simplification method

In this Section, we implement a method for simplifying the expression of the pure tailof-memory part of the radiative quadrupole, given by (IV.82c). The idea is to rexpress everything as only one double integral over the two quadrupoles and a single kernel, modulo some easy surface terms. We thus alternatively integrate by parts the ρ and τ variables of (IV.80), so as to transfer all the time derivatives on the quadrupole moment represented by F (u -ρ -τ ), i.e. the left slot in the functionals (IV.80).

First we observe in (IV.82c) that when k = 1, the two quadrupoles have respectively n and 8 -n time derivatives, while in the case k = 2, they instead have n and 7 -n derivatives. We first uniformize this by transforming the case k = 2 with the formula

+∞ 0 dρ M (n) a⟨i (u -ρ) +∞ 0 dτ M (7-n) j⟩a (u -ρ -τ ) f (ρ, τ ) = +∞ 0 dρ M (n) a⟨i (u -ρ) +∞ 0 dτ M (8-n) j⟩a (u -ρ -τ ) ∂ -1 τ f (ρ, τ ) , (IV.83)
where we have introduced the τ -antiderivative which vanishes at τ = 0, defined for any function f (ρ, τ ) with adequate regularity properties as

∂ -1 τ f (ρ, τ ) ≡ τ 0 dλ f (ρ, λ) . (IV.84)
After performing this operation, we are left with integrals of the moments that only have n and 8 -n time derivatives, and the only possible cases are n ∈ [ [0,[START_REF] Trestini | Gravitational-wave tails of memory[END_REF]]. Next we integrate by parts so as to be left with integrals with only 0 and 8 time derivatives. However this operation yields some integrals over ρ that are separately divergent at the lower bound ρ = 0. To cure this, we introduce a regulator and replace the 0 at the lower bound by some small ϵ, and restrict attention to the ϵ → 0 expansion. In the end, we will verify that the final result has a finite ϵ → 0 limit. With this caveat in mind, we will simplify all our integrals with the formula (valid for n ∈ [[0, 4]])

+∞ ϵ dρ M (n) a⟨i (u -ρ) +∞ 0 dτ M (8-n) j⟩a (u -ρ -τ ) f (ρ, τ ) = +∞ ϵ dρ M a⟨i (u -ρ) +∞ 0 dτ M (8) j⟩a (u -ρ -τ ) O n ρ,τ f (ρ, τ ) + n-1 k=0 M (k) a⟨i (u -ϵ) +∞ 0 dτ M (7-k) j⟩a (u -τ -ϵ) O n-1-k ρ,τ f (ρ, τ ) ρ=ϵ , (IV.85)
where moments involving ϵ should be Taylor-expanded when ϵ → 0, the second term is evaluated at ρ = ϵ, and we have introduced the differential operator O ρ,τ defined by

O ρ,τ f (τ, ρ) ≡ ∂ -1 τ ∂ ρ f (τ, ρ) -f (τ, ρ) , (IV.86) together with its iterations O n ρ,τ ≡ O ρ,τ • • • O ρ,τ .
Applying the formula (IV.85) to all the terms composing the tails-of-memory (IV.82c), we arrive at a unique master double integral:

U M×M ij ×M ij ij ToM = M +∞ ϵ dρ M a⟨i (u -ρ) +∞ 0 dτ M (8) j⟩a (u -ρ -τ ) Ω(ρ, τ ) + S ϵ , (IV.87)
where Ω(ρ, τ ) denotes some new kernel function and S ϵ are all the surface terms coming from the second line of (IV.85), which carry at most one integral and that simplify drastically in the ϵ → 0 expansion. Since the expression is long we do not show here the result for S ϵ . At this stage, we would a priori expect Ω(ρ, τ ) to have a very complicated structure akin to (IV.76), and in particular to involve many polylogarithms. But instead, we find the following simple expression without any polylogarithms: Note that if we changed even a single coefficient in Table A.1, the cancellation of polylogarithms would not occur in general, and we would be left with a much more complicated expression for Ω(ρ, τ ). When inserting Ω(ρ, τ ) into the first term in (IV.87), we can integrate by parts so as to remove all the powers of τ /ρ. This introduces poles in ϵ, and powers of the logarithms of ϵ, but we have checked that these poles and divergences exactly cancel when adding the surface terms S ϵ , namely the second term in (IV.87). Putting all of this together and taking the ϵ → 0 limit, we find that 

Ω(ρ, τ ) =
U M×M ij ×M ij ij ToM = 8 7 M +∞ 0 dρ M (4 
j⟩a .

(IV.89)

There is only one doubly-integrated term left, cf. the first line of (IV.89), which can be seen as the tails-of-memory contribution properly speaking, whereas the structure of the other singly-integrated terms are more akin to simpler tails-of-tails. The terms proportional to ln 2 ( τ 2r 0 ) are exactly compensated by those arising in the tail part of U

M×M ij ×M ij ij
given by (IV.82b). Notice that not all possible terms allowed by a dimensionality argument are present in (IV.89): for instance there is no term ∝ M M 

IV.5.4 Testing the integration method

The simplication method in Sec IV.5.3 is also very useful to test our integration method. Indeed, let us consider the integration of a typical tail-of-memory source term, but which we multiply by the factor B. For simplicity, we choose k = 3, m = 0 and ℓ = 0:

I ≡ FP B=0 □ -1 ret B r r 0 B G(t -r) r 3 +∞ 1 dx Q 0 (x)F (t -rx) . (IV.91)
This can be computed asymptotically when r → +∞ using the arsenal of techniques developed in Section IV.4, and we find

I = 1 r ∆ - 1 2 +∞ 0 dτ ln τ 2r 0 G(u -τ )F (1) (u -τ ) + o 1 r , (IV.92a)
with the rather cumbersome combination of the functionals (IV.80a):

∆ ≡ - 1 3 Ψ 0 1,2 [F (2) , G] + 1 3 Ψ 0 1,0
[F (2) , G] + Ψ 0 1,1

[F (1) , G (1) ] -Ψ 0 1,0

[F (1) , G (1) ] .

(IV.92b) But, on the other hand, the presence of the factor B has the effect of only selecting the pole in the B-expansion of the integrated source. This allows us to perform first the nearzone expansion r → 0 of the source, and then to integrate term by term this expansion using the formulas in [START_REF] Blanchet | The quadrupole moment of compact binaries to the fourth post-Newtonian order: from source to canonical moment[END_REF][START_REF] Trestini | The quadrupole moment of compact binaries to the fourth post-Newtonian order: relating the harmonic and radiative metrics[END_REF]. Performing the integration in this manner, we find instead

I = - G(u) r F (u) + +∞ 0 dτ ln τ 2r 0 F (1) (u -τ ) + o 1 r . (IV.93)
The two expressions (IV.92) and (IV.93) must be identical, therefore we have found a nontrivial relationship between the functionals k,m Ψ ℓ [F, G] which must absolutely be satisfied if our integration method is correct. Applying the simplification method described in Sec IV.5.3, we can prove that these two expressions are indeed identical. This constitutes a strong test confirming simultaneously the soundness of our integration method and of our simplification method. We have repeated this test with many other such sources; all were successful.

IV.6 Expression in terms of radiative moments

Replacing U M×M ij ×M ij ij
ToM in (IV.81) by its expression (IV.89), we obtain the three cubic contributions to the radiative quadrupole that enter at 4PN order, in terms of the radiative-type canonical moments. Restoring G and c, they read The double integral in the first line of (IV.94c) is the genuine tail-of-memory. However, when computing the flux, we must actually compute the time-derivative of the radiative quadrupole. We then find that the tail-of-memory term becomes a simple tail term in the flux, in the same manner as the quadrupole-quadrupole memory term becomes instantaneous in the flux [START_REF] Blanchet | Quadrupole-quadrupole gravitational waves[END_REF].

U M 2 ×M ij ij = 2G 2 M 2 c 6 +∞ 0 dτ M (5) ij (u -τ )
U M×M ij ×M ij ij = 2G 2 M 7c 8 4 +∞ 0 dρ M (4) a⟨i (u -ρ) +∞ 0 dτ M (4) j⟩a (u -ρ -τ ) ln τ 2r 0 - 1541 270 
- 50 2 +∞ 0 dτ ln τ 2r 0 (M (3) a⟨i M (4) j⟩a )(u -τ ) -23 +∞ 0 dτ ln τ 2r 0 (M (2) a⟨i M (5) j⟩a )(u -τ ) -13 +∞ 0 dτ ln τ 2r 0 (M (1) a⟨i M (6) j⟩a )(u -τ ) -3 +∞ 0 dτ ln τ 2r 0 (M a⟨i M (7) j⟩a )(u -τ ) -8M ( 
Of course, in this expression, the radiative quadrupole U ij is expressed in terms of the canonical moments of the radiative construction {M L , S L }, which we are yet unable to relate to the source and gauge moments {I L , J L , W L , X L , Y L , Z L }. However, in the previous chapter, we had successfully established the relation (III.33) between the source moments and canonical moments of the harmonic construction {M L , S L }. The topic of the next chapter will thus naturally be to establish the relation between the canonical moments in the harmonic and radiative constructions, which in our case reduces to the relation between M ij and M ij . The end result of this study will be the expression of the radiative quadrupole U ij in terms of the canonical moments of the harmonic construction {M L , S L }.

Chapter V The canonical and harmonic constructions of the MPM waveform

This chapter is mainly based on [START_REF] Trestini | The quadrupole moment of compact binaries to the fourth post-Newtonian order: relating the harmonic and radiative metrics[END_REF][START_REF] Trestini | Gravitational-wave tails of memory[END_REF][START_REF] Blanchet | Gravitational-wave flux and quadrupole modes from quasicircular nonspinning compact binaries to the fourth post-Newtonian order[END_REF].

In Chapter II, we have seen that the PN-MPM construction could relate the observable radiative moments {U L , V L } to the source {I L , J L } and gauge {W L , Y L , X L , Z L } moments. Then, we saw in Chapter III that it was useful to introduce intermediate canonical moments {M L , S L }, which allow us to express the most general linearized metric in terms of only two moments, instead of six. However, this is done at the price of deriving the expression of the canonical moments in terms of the source and gauge moments, including all the subtleties that can arise from dimensional regularization. Conversely, we saw in Chapter IV that to construct the radiative moments of more complicated interactions such as the tails-of-memory, we needed to resort to a novel radiative algorithm in nonharmonic coordinates. In this new algorithm, we express our seed linearized metric in terms of two radiative-type canonical moments, {M L , S L }. As illustrated in Fig. V.1, the only piece missing is the relation between these radiative-type canonical moments {M L , S L } and the usual harmonic-type canonical moments {M L , S L }. This will be the topic of this chapter

We recall that in Section II.7, we have seen that the usual MPM expansion in harmonic coordinates leads to powers of the logarithm of the radial distance when r → +∞ (with
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t-r/c held constant), and extracting the quantities of interest in such a coordinate system for highly nonlinear effects such as the tail-of-memory becomes quite difficult, due to the polylogarithmic behavior of the metric at I + . On the other hand, it is known that GWs generated by isolated systems can be also described using "radiative" type coordinates, in which the metric admits an expansion at I + without the polylogarithmic behavior of harmonic coordinates. In such coordinates the field equations may be formally integrated order by order when r → +∞. The paragon of radiative coordinates is the Bondi coordinate system [START_REF] Bondi | Gravitational waves in general relativity VII. Waves from axi-symmetric isolated systems[END_REF][START_REF] Sachs | Gravitational waves in general relativity. VIII. Waves in asymptotically flat space-time[END_REF] or its variant the Newman-Unti coordinate system [START_REF] Newman | A Class of Null Flat-Space Coordinate Systems[END_REF]. 1However the class of radiative coordinate systems (either spherical or Cartesian) is very large [START_REF] Papapetrou | Coordonnées radiatives « cartésiennes[END_REF][START_REF] Madore | Gravitational radiation from a bounded source. I[END_REF][START_REF] Madore | Gravitational radiation from a bounded source. II[END_REF].

In previous works, this was dealt with in practice by performing an ad hoc coordinate transformation at the end of the MPM process, which lead to a new set of coordinates, which we will now refer to as modified harmonic coordinates. However, we have seen in Chapter IV that the tedious computation of the tail-of-memory and spin-quadrupole tail effects cannot be performed using this trick, as it would have been extremely difficult to guess the right coordinate transformation that can remove the far-zone logarithms from these complicated interactions.

Fortunately, an explicit construction of radiative coordinates using the MPM expansion was proposed in [START_REF] Blanchet | Radiative gravitational fields in general relativity. II. Asymptotic behaviour at future null infinity[END_REF], which we have introduced in Section IV.1. This construction is restricted to a metric which is stationary in the remote past, before some given instant -T . Under this hypothesis it was proven, up to any order in a perturbative post-Minkowskian sense, that the metric admits a Bondi-type expansion at I + to all orders in 1/r, and that it obeys standard definitions for asymptotic flatness/simplicity at future null infinity [START_REF] Penrose | Asymptotic properties of fields and space-times[END_REF][START_REF] Penrose | Zero rest mass fields including gravitation: Asymptotic behavior[END_REF][START_REF] Geroch | Asymptotically simple does not imply asymptotically Minkowskian[END_REF]. However, the radiative MPM construction of [START_REF] Blanchet | Radiative gravitational fields in general relativity. II. Asymptotic behaviour at future null infinity[END_REF] had not been used for practical computations, until it was recently found to be extremely useful to implement the difficult computation of the tails-of-memory and spin-quadrupole tails at 4PN order [START_REF] Trestini | Gravitational-wave tails of memory[END_REF], see also Chapter IV.

Nevertheless, since previous computations of tails, memory, tails-of-tails and even tails-of-tails-of-tails in the GW flux were done using the harmonic coordinate MPM algorithm [START_REF] Blanchet | Hereditary effects in gravitational radiation[END_REF][START_REF] Blanchet | Quadrupole-quadrupole gravitational waves[END_REF][START_REF] Blanchet | Gravitational-wave tails of tails[END_REF][START_REF] Marchand | Gravitational-wave tail effects to quartic non-linear order[END_REF], the radiative construction cannot be used without understanding how it relates to the standard harmonic construction. The aim of the present chapter is thus to analyze and relate the different MPM constructions of the metric in harmonic and radiative coordinates. Using a method inspired from [START_REF] Blanchet | The quadrupole moment of compact binaries to the fourth post-Newtonian order: from source to canonical moment[END_REF], we prove that the relation between both descriptions boils down to a coordinate transformation and a simple redefinition of the moments parametrizing the two metrics.

As a result, we find that, in the center-of-mass frame, the mass-type "canonical" quadrupole moment in the radiative gauge, denoted below M ij , is linked to the corresponding one in the harmonic gauge, say M ij , by the 4PN-accurate relation presented in (V.41) and (V.42) below, which constitute the main result of this chapter.

Note that this is a purely three-dimensional computation, but one could suspect that it should actually be performed in generic d dimensions. However, this is fortunately not the case. Indeed, what is needed is the d dimensional expression of the radiative quadrupole moment in terms of the standard canonical moments in the harmonic MPM construction. This is obtained in two steps: first, one computes this relation in three-dimensions, then one performs a DDR to find the corrections to be added due to dimensional regularization. It is the three-dimensional computation which is complicated to perform in practice in the harmonic construction, so we will perform it in the radiative construction, then translate it back to its expression in the harmonic construction thanks to the results of this chapter. As we will see in Section VI.1.1, these subtleties are absorbed in the definition of renormalized source moments.

The plan of the chapter is as follows. In Section V.1, we present the general formalism to link the harmonic construction of Section III.1 to the radiative construction of Section IV.1, by essentially adapting the results of [START_REF] Blanchet | The quadrupole moment of compact binaries to the fourth post-Newtonian order: from source to canonical moment[END_REF]. We review the consistency of our method in Section V.2 by applying it at the quadratic order to the case of the tail interaction, and then to cubic order for the tail-of-tail interaction. Finally, the full result at cubic order (comprising the tail-of-memory and spin-quadrupole tail interactions) is given in Section V.3. Useful integration formulas complementing those in [START_REF] Blanchet | The quadrupole moment of compact binaries to the fourth post-Newtonian order: from source to canonical moment[END_REF] are presented in Appendix A.3.

V.1

Relating the radiative and harmonic constructions

In Section IV.1 and III.1, we constructed two different metrics which both represent the most general solution of the vacuum field equations outside the matter source. We now want to relate them by imposing that they are physically equivalent, i.e. differ only by a coordinate transformation and a multipole moment redefinition. We will then be able to explicitly express the canonical moments of the radiative algorithm {M L , S L } as functionals of the canonical moments of the harmonic algorithm {M L , S L }. This is the goal of this work, motivated by the fact that the computation of the tails-of-memory and spin-quadrupole-tails [START_REF] Trestini | Gravitational-wave tails of memory[END_REF] has been performed using the radiative algorithm, while all previous results, i.e. tails and tails-of-tails, and the rest of the computation of the 4PN flux, were achieved in harmonic coordinates.

To determine the relation between {M L , S L } and {M L , S L }, we adapt the method of [START_REF] Blanchet | The quadrupole moment of compact binaries to the fourth post-Newtonian order: from source to canonical moment[END_REF] to the case where one of the two metrics does not satisfy the harmonic gauge condition. For the purpose of this chapter, we denote the metric in the harmonic canonical construction of Sec III.1 by h harm and the radiative canonical construction of Section IV.1 by h rad . Recalling the transformation law of the gothic metric under a coordinate transformation x µ → x ′µ :

h µν rad (x ′ ) = 1 |J| ∂x ′µ ∂x ρ ∂x ′ν ∂x σ h ρσ harm (x) + η ρσ -η µν , (V.1)
where J ≡ det [∂x ′µ /∂x ν ], we look for a coordinate shift φ µ such that x ′µ = x µ + φ µ (x), then we have ∂x ′µ /∂x ρ = δ µ ρ + ∂ ρ φ µ (x) and J = det δ µ ρ + ∂ ρ φ µ (x) . By construction, both h µν harm and h µν rad admit a PM expansion as given respectively by (III.2) and (IV.1), which implies that the coordinate shift also admits the PM expansion

φ µ = ∞ n=1 G n φ µ n . (V.2)
Consistently, we assume that the respective canonical moments of the radiative and har-monic PM metrics also admit PM expansions,

M L = ∞ n=1 G n-1 M n,L , M L = ∞ n=1 G n-1 M n,L , S L = ∞ n=1 G n-1 S n,L , S L = ∞ n=1 G n-1 S n,L . (V.3)
As it is clear from the definition (IV.2), the linear level is given by

h µν rad 1 = h µν harm 1 + ∂φ µν 1 , (V.4)
where the coordinate shift is simply given by the gauge vector associated to the radiative construction, see (IV.3):

φ µ 1 = ξ µ 1 = 2M c 2 η 0µ ln r b 0 , (V.5)
and where the moments are related by M L = M L + O(G) and S L = S L + O(G).

We then follow the reasoning of [START_REF] Blanchet | The quadrupole moment of compact binaries to the fourth post-Newtonian order: from source to canonical moment[END_REF]. We assume by induction that we have determined (for n ⩾ 2) the expressions of φ µ , M L and S L as functionals of M L and S L up to (n-1)PM precision, where 1PM corresponds to the linear case treated above, i.e., that we have established the relations

φ µ = n-1 m=1 G m Φ µ m [M K , S K ] + O(G n ) , (V.6a) M L ≡ n-1 m=1 G m-1 M m,L [M K , S K ] + O(G n-1 ) , (V.6b) S L ≡ n-1 m=1 G m-1 S m,L [M K , S K ] + O(G n-1 ) , (V.6c)
where Φ m , M m,L and S m,L are determined m-linear functionals of M L and S L for m ⩽ n -1. In principle, such functionals will be nonlocal in time at higher order, i.e. involve some hereditary-like integrals.

We then perform the expansion of (V.1) up to order nPM, where we Taylor-expand the radiative metric to finite PM order, i.e. using

h µν rad (x ′ ) = h µν rad x + φ(x) = m⩾0 1 m! φ λ 1 (x) • • • φ λm (x)∂ λ 1 • • • ∂ λm h µν rad (x) . (V.7)
At the nPM order we find the relation

h µν rad n (x) = h µν harm n (x) + ∂φ µν n + Ω µν n h harm m , φ m ; m ⩽ n -1 , (V.8)
where Ω µν n is an explicitly known, nonlinear and at least quadratic, functional of the coordinate shift and the harmonic metric at previous orders (see Footnote 2 in Chapter III for an explicit expression). Thus, using the induction hypothesis, the only unknown term in (V.8) is the gauge shift φ µ n , which we now determine. For this purpose, we define the quantity

∆ µ n ≡ -∂ ν Ω µν n . (V.9)
Taking the divergence of (V.8), and using the fact that ∂ ν ∂θ µν = □θ µ for any θ µ (recall our shorthand

∂θ µν ≡ ∂ µ θ ν + ∂ ν θ µ -η µν ∂ ρ θ ρ ), we find ∆ µ n = □ φ µ n -ξ µ n . (V.10)
A difference with the treatment in [START_REF] Blanchet | The quadrupole moment of compact binaries to the fourth post-Newtonian order: from source to canonical moment[END_REF] is to be noted here. The analogue of the quantity ∆ µ n was defined in [START_REF] Blanchet | The quadrupole moment of compact binaries to the fourth post-Newtonian order: from source to canonical moment[END_REF] as (∆ µ n ) BFL ≡ □φ µ n , but because of the harmonic gauge condition satisfied by the two metrics being related, this yielded (∆ µ n ) BFL = -∂ ν Ω µν n , i.e. the same as our present definition (V.9). When the harmonic gauge condition is relaxed it is important to proceed differently, starting from the definition (V.9) and then deriving the result (V.10), where the gauge vector ξ µ n given by (IV.9) is responsible for the nonharmonicity of the radiative metric, see (IV.12).

Next we apply the d'Alembert operator on (V.8) to obtain

Λ µν rad n = Λ µν harm n + ∂∆ µν n + □Ω µν n , (V.11)
where we have used the fact that □h µν rad = Λ µν rad n + ∂□ξ µν n . To stick with the definition of the two algorithms we must now apply the inverse d'Alembert operator with finite part prescription on (V.11), and arrive at

u µν rad n = u µν harm n + FP B=0 □ -1 ret r r 0 B ∂∆ µν n + FP B=0 □ -1 ret r r 0 B □Ω µν n , (V.12)
where the u µν harm n is defined in Section III.1, while u µν rad n is the equivalent quantity in the radiative algorithm given in (IV.10). Notice that in (V.12) we assumed that the Hadamard regularization scale r 0 is the same for the harmonic and radiative constructions.

Had the □ and ∂ operators commuted with the FP□ -1 ret operator, the previous equation would obviously simplify, but because of the presence of the regularization factor (r/r 0 ) B , this is not the case, and we must introduce the a priori nonzero "commutators" of these operators. So we can rewrite the previous equation as

u µν rad n = u µν harm n + ∂ϕ µν n + Ω µν n + X µν n + Y µν n , (V.13)
where we have introduced the two commutators

X µν n ≡ FP □ -1 ret , □ Ω µν n , Y µν n ≡ FP □ -1 ret , ∂ ∆ µν n , (V.14)
which can also be expressed in more details as [95]

X µν n = FP B=0 □ -1 ret B r r 0 B - B + 1 r 2 Ω µν n - 2 r ∂ r Ω µν n , (V.15a) Y µν n = FP B=0 □ -1 ret B r r 0 B n i r -δ iµ ∆ ν n -δ iν ∆ µ n + η µν ∆ i n . (V.15b)
Note the very important presence of the explicit B factor is the expressions of X µν n and Y µν n , which will select the pole of the Laurent series when B → 0. In addition to simplifying considerably the computations, this implies that we have □X µν n = □Y µν n = 0. We also define

ϕ µ n ≡ FP B=0 □ -1 ret r r 0 B ∆ µ n . (V.16)
Beware that this object is not the complete gauge transformation vector φ µ n , as other contribution will show up later.

To apply the harmonicity algorithm we compute the divergence of (V.13):

w µ rad n = w µ harm n + ∂ ν X µν n + Y µν n , (V.17)
where we have used ∂ ν [∂ϕ µν n ] = □ϕ µ n = ∆ µ n . We can check that □w µ rad n = 0, which is a necessary requirement to proceed with the MPM algorithm. Next we define Z µν n ≡ V µν [W n ], where V µν is the harmonicity algorithm applied to

W µ n ≡ ∂ ν (X µν n + Y µν n ), hence Z µν
n is a solution to the vacuum equation whose divergence is exactly opposite to W µ n , and we obtain

v µν rad n = v µν harm n + Z µν n . (V.18)
Piecing it all together, we find that

h µν rad n = h µν harm n + ∂ϕ µν n + ∂ξ µν n + Ω µν n + H µν n , (V.19)
where H µν n ≡ X µν n + Y µν n + Z µν n is a divergenceless retarded homogeneous solution of the linearized Einstein vacuum equations, i.e., satisfying at once □H µν n = 0 and ∂ ν H µν n = 0. In this respect, it can be uniquely parametrized [START_REF] Blanchet | Radiative gravitational fields in general relativity. I. general structure of the field outside the source[END_REF] by two multipole "source-type" moments δ n M L and δ n S L , which are functionals of {M L , S L }, along with a gauge vector ζ µ n parametrized by four "gauge-type" moments, as in (37) of [START_REF] Blanchet | Gravitational Radiation from Post-Newtonian Sources and Inspiralling Compact Binaries[END_REF].

Up to this step, we have assumed that we had related M L and S L to M L and S L to (n -1)PM precision. We can now redefine M L → M L -G n-1 δ n M L and S L → S L -G n-1 δ n S L so as to obtain this relationship up to nPM precision. This will not affect the result found in the recursion hypothesis since the correction is at nPM precision, but it will absorb the δ n M L and δ n S L moments into the linear approximation h µν rad 1 of the radiative metric. Since we are correcting {M L , S L } which parametrize the radiative metric in the left-hand-side of (V. [START_REF] De Coulomb | Mémoires sur l'Électricité et le Magnétisme[END_REF], and not {M L , S L } in the right-hand-side, the expression for Ω µν , which only depends on {M L , S L }, does not need to be corrected. 2 Finally, after this moment redefinition, we find that the two metrics are related by

h µν rad n = h µν harm n + ∂φ µν n + Ω µν n , (V.20)
in which we have finally explicitly determined the looked-for gauge vector as

φ µ n ≡ ϕ µ n + ξ µ n + ζ µ n . (V.21)
By construction, this vector is a functional of M L and S L , so we can write

φ µ = n m=1 G m Φ µ m [M K , S K ] + O(G n+1 ) . (V.22a)
Simarly, the corrections

δ n M L ≡ G n-1 M n,L [M K , S K ] and δ n S L ≡ G n-1 S n,L [M K , S K
] are also functionals of M L and S L , and we find

M L ≡ n m=1 G m-1 M m,L [M K , S K ] + O(G n ) , (V.22b) S L ≡ n m=1 G m-1 S m,L [M K , S K ] + O(G n ) . (V.22c)
This completes the recursion procedure, and we have thus proven that we can explicitly construct φ µ , M L and S L as functionals of M L and S L to any finite PM order.

V.2 Application to nonlinear tail interactions V.2.1 Quadratic tails

We employ the method exposed in Section V.1 to explicitly construct the relation between the radiative and harmonic metrics at quadratic order, to all relevant orders in 1/r. To do so, we will focus on the tail effect, which arises due to the interaction between the static mass M and the various dynamical mass and current multipole moments, thus generating features in the waveform that are nonlocal in time. As it is the goal of our work, we focus on the corrections to the mass quadrupole moment M ij , but the computations presented hereafter are easily generalized to the tails of other moments.

Recall that at 4PN order, other quadratic interactions enter the relation between the quadrupole moment M ij and the observable at infinity (dubbed "radiative moment"), such as the memory type interaction M ij × M ij that enters the metric at 2.5PN order. Nevertheless, here we are looking for the relation between the two quadrupole moments M ij and M ij in the two algorithms, and this relation at quadratic order must involve the mass M which parametrizes the linearized gauge vector (IV.3). It follows that the only quadratic multipole interaction which can contribute to the relation between the two moments is M × M ij , and we shall find that this relation is purely instantaneous in this case.

In order to obtain the relation between the harmonic and radiative metrics, and thus the associated correction to the quadrupole moments, we will in fact use two independent methods: (i) the one exposed in Section V.1, which does not require knowing the full expressions of the quadratic metrics; and (ii) the explicit computation and comparison of the full harmonic and radiative metrics. We will find exactly the same result, thus confirming the soundness of the method exposed in Section V.1.

Let us first derive the complete metrics for the tail interaction in the two harmonic and radiative algorithms, and read off the quadrupole moments from these two metric in both coordinates. We shall check that the difference between those two quadrupole moments perfectly match the prediction following from the general procedure in Section V.1. The tail sector of the metric in the harmonic algorithm is given in Appendix B of [START_REF] Blanchet | Hereditary effects in gravitational radiation[END_REF], and reads3 
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ab (t -rx) + Mn ab r 10M

(3)

ab + 7r -1 M (2) ab -21r -2 M (1)
ab -21r -3 M ab , (V.23a)
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where Q m (x) denotes the Legendre function of the second kind as defined in (IV.18). On the other hand, we have applied in Section IV.2 the radiative construction of [START_REF] Blanchet | Radiative gravitational fields in general relativity. II. Asymptotic behaviour at future null infinity[END_REF] for this same particular tail interaction, thus following the radiative algorithm described in Section IV.1. The moments involved in the construction of the tail sector of the radiative metric are M and M ij in this construction (recall that M = M). Following our convention to denote the coordinates by dummy variables (t, r, n), which correspond here to the radiative coordinate system which defines the radiative metric, the tail metric in the radiative algorithm is explicitly given by (IV. [START_REF] Martín-García | xAct: Efficient tensor computer algebra for Mathematica[END_REF]). The main difference between the two expressions (V.23) and (IV.16) of the metric is that the tail terms are given by integrals over the Legendre function Q m (x) in the harmonic case while the tails in the radiative case are given by integrals over the particular combination Q m , defined in (IV.17).

It is easy to see why the tail terms in the harmonic metric involving Q m (x) generate logarithms in the far-zone expansion r → +∞, while the particular combination Q m (x, r) defined by (IV.17) does not produce any logarithms of r in the radiative metric, although the tail terms are still given by a "hereditary" integral, of course. Posing τ = r(x -1) and u = t -r the tail integral reads

+∞ 1 dx Q m (x)F (t -rx) = 1 r +∞ 0 dτ Q m 1 + τ r F (u -τ ) , (V.24)
where the function F (t) is a time derivative of the multipole moment and we recall that it vanishes identically for t < -T (stationarity in the past). Hence, as shown in [START_REF] Blanchet | Hereditary effects in gravitational radiation[END_REF][START_REF] Blanchet | Gravitational-wave tails of tails[END_REF] the far-zone limit r → +∞ (with u ≡ t -r held constant) of the tail integral can be obtained by inserting the expansion of the Legendre function when x → 1 + . Using the expression (IV.18) for the Legendre functions and expanding around x → 1 + , we obtain the following formal expansion series when r → +∞,

Q m 1 + τ r = - 1 2 P m 1 + τ r ln τ 2r + ∞ k=0 λ m k τ r k , (V.25a)
where

λ m k = - min(m, k-1) i=0 (-) k-i (m + i)! 2 k+1 (k -i)(m -i)!(i!) 2 - m j=k+1 k i=0 (m + 2i -j)!(k + j -2i -1)! 2 k (j -i)(m -j)!(j -k -1)!(i!) 2 [(k -i)!] 2 , (V.25b)
and where the dependencies in ln r are contained in the first term of (V.25a). We can see that the first term in the expression of λ m k vanishes for k = 0 (yielding λ m 0 = -H m where H m is the usual harmonic number) and the second term vanishes for k ⩾ m.

Conversely, the tail terms in radiative coordinates written in terms of the combination Q m (x, r) do not produce any logarithms in the far-zone expansion. Indeed we have

+∞ 1 dx Q m (x, r) F (t -rx) = 1 r +∞ 0 dτ R m 1 + τ r - 1 2 P m 1 + τ r ln τ 2r 0 F (u -τ ) ,
(V.26) where u ≡ t -r is the retarded time of the radiative coordinates, and where we have defined

R m (x) ≡ Q m (x) + 1 2 P m (x) ln x -1 2 , (V.27)
which is regular when x → 1 + . Since the integrand of (V.26) is regular as r → +∞, this integral's expansion for large r is free of any logarithmic terms. Furthermore, we find that the first term in (V.26) admits the following asymptotic expansion in simple powers of 1/r,

+∞ 0 dτ R m 1 + τ r F (u -τ ) = ∞ k=0 k! λ m k F (-k-1) (u) r k . (V.28)
All of this is illustrated by the expression of the leading far-zone limit of (V.23) and (IV.16). In harmonic coordinates we have

h 00 harm M×M ij = - 4Mn ab r +∞ 0 dτ ln τ 2r + 1 2 M (4) ab (u -τ ) + O ln r r 2 , (V.29a) h 0i harm M×M ij = - 4Mn a r +∞ 0 dτ ln τ 2r + 5 12 M (4) ia (u -τ ) - M 3r n iab M (3) ab + O ln r r 2 , (V.29b) h ij harm M×M ij = - 4M r +∞ 0 dτ ln τ 2r + 11 12 M (4) ij (u -τ ) + M r - 1 2 n ijab M (3) ab + 4n a(i M (3) j)a - 11 6 δ ij n ab M (3) ab + O ln r r 2 , (V.29c)
which clearly exhibits the usual far-zone logarithms associated with harmonic coordinates. By contrast the leading far-zone behavior of the radiative metric reads

h 00 rad M×M ij = - 4Mn ab r +∞ 0 dτ ln τ 2r 0 + 31 30 M (4) ab (u -τ ) + O 1 r 2 , (V.30a) h 0i rad M×M ij = - 4Mn a r +∞ 0 dτ ln τ 2r 0 + 77 60 M (4) ia (u -τ ) + M r n iab M (3) ab + O 1 r 2 , (V.30b) h ij rad M×M ij = - 4M r +∞ 0 dτ ln τ 2r 0 + 107 60 M (4) ij (u -τ ) + M r - 1 2 n ijab M (3) ab + 4n a(i M (3) j)a - 1 2 δ ij n ab M (3) ab + O 1 r 2 , (V.30c)
hence the expansion of the tail term is now free of logarithms, although it now depends on the Hadamard regularization scale r 0 . Now that we have both explicit metrics including tail terms (V.23) and (IV.16) at our disposal, we can check that they are indeed physically equivalent to this order. This means that the two metrics should differ by a nonlinear coordinate transformation together with the redefinition of the quadrupole moment M ij -→ M ij , i.e. that

h µν rad M ij + G h µν rad M×M ij = h µν harm M ij + G h µν harm M×M ij + ∂φ µν M×M ij + Ω µν M×M ij + O(G 2
) , (V.31) where the radiative metric in the left-hand side is defined with M ij and the right-hand side is defined with M ij , and with a linear gauge transformation vector φ µ M×M ij and Ω µν M×M ij the nonlinear part of the coordinate transformation. Moreover, recall that at the linear level, there is only a mass monopole contribution to the gauge vector, φ µ M ≡ ξ µ M as given by (IV.3), and in particular φ µ M ij is vanishing. Applying the general procedure of Section V.1, we find that the relevant gauge vector corresponding to the tail interaction, given explicitly by (V.21), reads

φ 0 M×M ij = - 4M 3r n ab M (2) ab , φ i M×M ij = 0 , (V.32a)
whereas the nonlinear correction term, defined by Footnote 2, reads

Ω 00 M×M ij = -4M∂ ab r -1 ln r b 0 M (1) ab - 8M r 3 n ab M (1)
ab , (V.32b)

Ω 0i M×M ij = 4M∂ a r -1 ln r b 0 M (2) ai , (V.32c) Ω ij M×M ij = - 4M r ln r b 0 M (3) ij . (V.32d)
Most importantly, after computing the explicit expression of H µν n using the general method described in Section V.1, we determine that this coordinate transformation must be associated with the following redefinition of the mass quadrupole moment:

M ij = M ij + G M - 26 15 + 2 ln r 0 b 0 M (1) ij + O(G 2 ) . (V.33)
It is straightforward to show that the relation (V.31) is satisfied, to all orders in 1/r and for φ µ M×M ij and Ω µν M×M ij defined by (V.32), if and only if the moment redefinition given by (V.33) holds, hence confirming the soundness of the method of Section V.1.

We can also discuss this equivalence, in a simpler way, directly at the level of the radiative quadrupole moment U ij defined at future null infinity I + in both constructions. Note that in previous works on tails and iterated tails in harmonic coordinates [START_REF] Blanchet | Hereditary effects in gravitational radiation[END_REF][START_REF] Blanchet | Gravitational-wave tails of tails[END_REF][START_REF] Faye | Non-linear multipole interactions and gravitational-wave octupole modes for inspiralling compact binaries to third-and-ahalf post-Newtonian order[END_REF][START_REF] Marchand | Gravitational-wave tail effects to quartic non-linear order[END_REF], it was shown that the leading logarithms present in the asymptotic waveform (following the algorithm of Section III.1), can be removed by just the linear coordinate transformation x ′µ = x µ +G ξ µ 1 , where ξ µ 1 is given by (IV.3). In the case of quadratic tails, this ad hoc procedure, followed by a transverse-traceless (TT) projection of the spatial metric, yields the radiative moment:

U ij (u) = M (2) ij (u) + 2GM +∞ 0 dτ ln τ 2b 0 + 11 12 M (4) ij (u -τ ) + O(G 2 ) . (V.34)
Here M ij is the canonical moment associated to the harmonic-coordinate construction, and again we use the dummy notation u = t -r for the retarded time in radiative coordinates. Notice that the effect of this coordinate transformation is to replace the logarithm ln r in harmonic coordinates by the constant ln b 0 . On the other hand, when following the procedure for the radiative construction (namely the algorithm of Section IV.1), the associated radiative moment is given by (IV.22a), which we reproduce here:

U ij (u) = M (2) ij (u) + 2GM +∞ 0 dτ ln τ 2r 0 + 107 60 M (4) ij (u -τ ) + O(G 2 ) .
Of course this object is the same as in (V.34), however it is expressed in terms of the canonical moment M ij associated to the radiative algorithm. As one can immediately check, the relation (V.33) we have found between the two canonical moments exactly reconciles the results (V.34) and (IV.22a), which again confirms our method in Section V.1.

V.2.2 Cubic tails-of-tails

We have pushed these calculations to cubic order to include the tail-of-tail effect, due to the nonlinear interaction M×M×M ij , extending (V.34) and (IV.22a) to the next order in G. In the harmonic algorithm, after the suitable coordinate transformation to get rid of the logarithms, we find [START_REF] Blanchet | Gravitational-wave tails of tails[END_REF][START_REF] Faye | Non-linear multipole interactions and gravitational-wave octupole modes for inspiralling compact binaries to third-and-ahalf post-Newtonian order[END_REF] 

U ij = M (2) ij + 2GM +∞ 0 dτ ln τ 2b 0 + 11 12 M (4) ij (u -τ ) + 2G 2 M 2 +∞ 0 dτ ln 2 τ 2b 0 + 11 6 ln τ 2b 0 - 107 105 ln τ 2r 0 + 124627 44100 M (5) ij (u -τ ) + O(G 3 ) . (V.35)
Note that this result involves two arbitrary scales, which are important to distinguish: the scale b 0 which enters the asymptotic coordinate transformation u -→ u -2GM ln(r/b 0 ), and, at cubic order, the Hadamard regularization scale r 0 . It is known [START_REF] Goldberger | Gravitational radiative corrections from effective field theory[END_REF][START_REF] Goldberger | Black hole mass dynamics and renormalization group evolution[END_REF] that r 0 can be interpreted as a renormalization scale and its running obeys a renormalization group equation. Indeed, we recognize the coefficient in front of the ln(r 0 ) in (V.35): it is exactly the beta-function coefficient associated to the renormalization of the mass quadrupole moment, given to be β 2 = -214 105 in (45) of [START_REF] Goldberger | Gravitational radiative corrections from effective field theory[END_REF]. On the other hand, we know from Chapter IV that the tails-of-tails have a different expression when using the radiative algorithm described in Section IV.1. Adding the linear and quadratic contributions to (IV.94a), we obtain

U ij = M (2) ij + 2GM +∞ 0 dτ ln τ 2r 0 + 107 60 M (4) ij (u -τ ) + 2G 2 M 2 +∞ 0 dτ ln 2 τ 2r 0 + 107 42 ln τ 2r 0 + 40 037 8820 M (5) ij (u -τ ) + O(G 3 ) . (V.36)
Finally by employing the method of Section V.1 up to cubic order for tails and tails-oftails we have obtained the relationship between the quadrupoles in the two constructions as

M ij = M ij + G M - 26 15 + 2 ln r 0 b 0 M (1) ij + G 2 M 2 124 45 - 52 15 ln r 0 b 0 + 2 ln 2 r 0 b 0 M (2) ij + O(G 3 ) . (V.37)
This result is indeed the unique relationship between the moments that reconciles the two results (V. [START_REF] Tolman | Static solutions of Einstein's field equations for spheres of fluid[END_REF]) and (V.36). Notice that the constant scale b 0 in (V.37) was introduced "automatically" in the linear gauge transformation between the harmonic and radiative linear metrics, see (IV.2)-(IV.3). This scale is identical to the one introduced "by hand" in harmonic coordinates, see (3.1) in [START_REF] Faye | Non-linear multipole interactions and gravitational-wave octupole modes for inspiralling compact binaries to third-and-ahalf post-Newtonian order[END_REF] or (4.2) in [START_REF] Marchand | Gravitational-wave tail effects to quartic non-linear order[END_REF].

As discussed in the introduction, the previous ad hoc method for removing the logarithms in the harmonic metric was satisfactory for tails and iterated tail interactions since the coordinate transformation could easily be guessed. However, when considering more complicated nonlinear interactions such as the tails-of-memory occurring at 4PN order, the coordinate transformation is more difficult to implement, and it is more convenient to switch to the radiative algorithm since it directly constructs the metric in radiative coordinates and automatically removes the logarithms. The price we have to pay is that, in the end, we must apply the correction {M L , S L } -→ {M L , S L } in order to match with previous results derived in harmonic coordinates, and most importantly the explicit expressions of {M L , S L } as functions of the source at 4PN order [START_REF] Blanchet | The quadrupole moment of compact binaries to the fourth post-Newtonian order: from source to canonical moment[END_REF].

V.3 Cubic tail-of-memory interactions at 4PN order

We now apply our method to the cubic "tails-of-memory" interaction M × M ij × M ij , as well as the cubic M × M ij × S i interaction that also enters at 4PN order. The new feature in the radiative algorithm is that, from the quadratic order onward, we must apply the gauge transformation defined by (IV.9). This gauge transformation is zero for the interactions M × M and M × M ij , hence to control the tails-of-memory we only need the gauge vector for the quadrupole-quadrupole interaction M ij × M ij . We find [START_REF] Blanchet | Quadrupole-quadrupole gravitational waves[END_REF] that the source term reads

σ M ij ×M ij = nijab M (3) ij M (3) ab - 24 7 nij M (3) ia M (3) ja + 4 5 M (3) ab M (3) ab , (V.38)
Note that the correction terms we find in (V.41)-(V.42) are purely local (no hereditary integrals at this order). Recall that they depend on the two constant scales: r 0 the Hadamard regularization scale (or renormalization scale [START_REF] Goldberger | Gravitational radiative corrections from effective field theory[END_REF][START_REF] Goldberger | Black hole mass dynamics and renormalization group evolution[END_REF]) entering into both harmonic and radiative constructions of the metric (and supposed to be identical in the two constructions), and b 0 the scale used in the harmonic construction when defining observable quantities at infinity, and equivalently entering the gauge transformation between the harmonic and radiative linear metrics, see (IV.2)-(IV.3). With the result (V.41) in hand, we are now able to reexpress in terms of M ij our results for the tails-of-memory (IV.94c) and spin-quadrupole tails (IV.94b), which were performed following the radiative algorithm in terms of the moment M ij . The moment redefinition (V.41) should be inserted into the linear and quadratic contributions to the radiative quadrupole written in terms of the radiative metric (IV.22), so as to yield a correction at cubic order. This correction should be understood in the following sense: let U cubic,rad ij [M L , S L ] be the functional expression for the cubic part of the radiative quadrupole in terms of the radiative moments, as worked out in (IV.94). Then its counterpart in terms of the harmonic moments, simply denoted

U cubic ij [M L , S L ], is given by U cubic ij [M L , S L ] = U cubic,rad ij [M L , S L ] + δU cubic,rad ij [M L , S L ] , (V.43)
where U cubic,rad ij [M L , S L ] means that we simply substituted the radiative moments with the harmonic moments in the radiative functional, and where δU cubic,rad ij [M L , S L ] represents the correction to be applied due to the moment redefinition (V.41). We find

δU cubic,rad ij = G 2 M 2 c 6 - 52 15 + 4 ln r 0 b 0 +∞ 0 dτ ln τ 2r 0 M (5) ij (u -τ ) + - 257 75 + 11 3 ln r 0 b 0 + 2 ln 2 r 0 b 0 M (4) ij + G 2 M c 8 - 16 105 - 8 7 ln r 0 b 0 M (3) a⟨i M (3) j⟩a + - 14 15 -2 ln r 0 b 0 M (2) a⟨i M (4) j⟩a + - 32 35 - 8 7 ln r 0 b 0 M (1)
a⟨i M

(5) j⟩a + -

22 35 + 2 7 ln r 0 b 0 M a⟨i M (6) j⟩a + G 2 M c 8 S a|⟨i 22 15 - 2 3 ln r 0 b 0 M (5) j⟩a . (V.44)
In this manner, we readily obtain the expressions for the three cubic contributions to the radiative quadrupole, namely the tail-of-tail, the spin-quadrupole tail and the tail-ofmemory, expressed in terms of the usual, harmonic, canonical moments {M L , S L }. They read 

U M 2 ×M ij ij = 2G 2 M 2 c 6 +∞ 0 dτ M (5) ij (u -τ )
U M×S i ×M ij ij = - 2G 2 M 3c 8 S a|⟨i +∞ 0 dτ M (6) j⟩a (u -τ ) ln τ 2b 0 + 2 ln τ 2r 0 + 1223 1890 , (V.45b) U M×M ij ×M ij ij = 2G 2 M 7c 8 4 +∞ 0 dρ M (4) a⟨i (u -ρ) +∞ 0 dτ M (4) j⟩a (u -ρ -τ ) ln τ 2r 0 - 1613 270 
+ +∞ 0 dτ (M (3) a⟨i M (4) j⟩a )(u -τ ) -15 ln τ 2b 0 -10 ln τ 2r 0 + +∞ 0 dτ (M (2) a⟨i M (5) j⟩a )(u -τ ) -11 ln τ 2b 0 -12 ln τ 2r 0 + +∞ 0 dτ (M (1) a⟨i M (6) j⟩a )(u -τ ) -3 ln τ 2b 0 -10 ln τ 2r 0 + +∞ 0 dτ (M a⟨i M (7) j⟩a )(u -τ ) ln τ 2b 0 -4 ln τ 2r 0 -8M (2) a⟨i +∞ 0 dτ M (5) j⟩a (u -τ ) ln τ 2r 0 + 27521 5040 -10 M (1) a⟨i +∞ 0 dτ M (6) j⟩a (u -τ ) ln τ 2r 0 + 15511 3150 + 2 M a⟨i +∞ 0 dτ M (7) j⟩a (u -τ ) ln τ 2r 0 - 6113 756 . (V.45c)
We can see that the b 0 constant, which is associated to a choice for the origin of time, can be eliminated at the level of the full radiative quadrupole at 4PN order by the shift in the time coordinate

u ′ = u + 2GM c 3 ln(b 0 )
, along with a Taylor expansion of the canonical quadrupole moment,

M ij (u ′ ) = M ij (u) + 2GM c 3 ln(b 0 )M (1) ij (u) + 2G 2 M 2 c 6 ln 2 (b 0 )M (2) ij (u) + O 1 c 9
. This is a nice sanity check, as this arbitrary constant must disappear from final observable results. The fate of the r 0 constant will be treated in Section V. [START_REF] Trestini | Gravitational-wave tails of memory[END_REF].

Moreover, we now recall that the leading-order quadratic memory term, see e.g. (5.10) in [START_REF] Blanchet | Quadrupole-quadrupole gravitational waves[END_REF], reads

U mem ij = - 2G 7c 5 +∞ 0 dρ M (3) a⟨i (u -ρ)M (3) j⟩a (u -ρ) + O(G 2 ) . (V.46)
We find here that the genuine tail-of-memory given by the first term of (V.45c) can be obtained simply by replacing in (V.46) the canonical quadrupole moment M ij by the radiative quadrupole moment itself, including the dominant tail effect, i.e.

M (2) ij -→ U ij = M (2) ij + 2GM c 3 +∞ 0 dτ M (4) ij ln cτ 2b 0 + 11 12 + O 1 c 5 , (V.47)
along with a reexpansion at cubic order and an integration by parts (the constant 11/12 is irrelevant here). With our result (V.45c), we thus explicitly retrieve at this order the expression of memory effects computed using the radiative moments defined at future null infinity, see e.g. [START_REF] Favata | Post-Newtonian corrections to the gravitational-wave memory for quasi-circular, inspiralling compact binaries[END_REF][START_REF] Favata | The Gravitational-wave memory from eccentric binaries[END_REF].

V.4 Corrections due to the dimensional regularization of radiative moments

The results presented in the previous section are correct in the ordinary three-dimensional MPM algorithm. Nevertheless, the treatment of the dynamics of pointmasses imposes to use a d-dimensional regularization scheme (see Section II.4), starting at the 3PN order [START_REF] Damour | Dimensional regularization of the gravitational interaction of point masses[END_REF][START_REF] Blanchet | Dimensional regularization of the third post-Newtonian dynamics of point particles in harmonic coordinates[END_REF]. For consistency purposes, it is thus required to perform the MPM algorithm in d dimensions too, with the help of DDR techniques like those mentioned in Section II.4. As proved in [START_REF] Larrouturou | The quadrupole moment of compact binaries to the fourth post-Newtonian order: II. Dimensional regularization and renormalization[END_REF], the expression of the radiative multipole moments in terms of the d-dimensional canonical ones differs from the expression in terms of the three-dimensional canonical moments, and even exhibit divergences in the form of simple poles that scale as 1/ε ≡ 1/(d -3). These poles will cancel against other poles arising in the d-dimensional source moments, as it has been established in [START_REF] Larrouturou | The quadrupole moment of compact binaries to the fourth post-Newtonian order: I. Non-locality in time and infra-red divergencies[END_REF][START_REF] Larrouturou | The quadrupole moment of compact binaries to the fourth post-Newtonian order: II. Dimensional regularization and renormalization[END_REF], which is a crucial check of the method.

Let us summarize how the expression of the radiative moments required for the 4PN flux in terms of the d-dimensional canonical moments differs from the three-dimensional expression. Since the divergences hits at 3PN order, only the mass quadrupole and octupole, as well as the current quadrupole, are affected. In the center-of-mass frame, we denote by

U (3) L [M K , S K ] and V (3) L [M K , S K ]
the expression of radiative moments seen as functionals of the three-dimensional canonical moments, as given for example in (V.45). One can then formally replace the three-dimensional moments by d-dimensional moments, which we denote by

U (3) L [M (d) K , S (d) K ] and V (3) L [M (d) K , S (d) 
K ], but note that these quantities are not equal to the physical radiative moments. Instead, the radiative moments expressed in terms of the d-dimensional canonical moments read (see (6.1) in [START_REF] Larrouturou | The quadrupole moment of compact binaries to the fourth post-Newtonian order: II. Dimensional regularization and renormalization[END_REF])

U ij = U (3) ij [M (d) K , S (d) K ] - 214 105 G 2 M 2 c 6 Π ε + 246299 44940 M (4) ij + G 2 M c 8 - 4 7 Π ε - 1447 216 M a⟨i M (6) j⟩a - 32 7 Π ε - 17783 10080 M (1) a⟨i M (5) j⟩a -4 Π ε - 27649 17640 M (2) a⟨i M (4) j⟩a + 1921 945 M (3) a⟨i M (3) j⟩a + 4 3 Π ε + 11243 7560 M (5)
a⟨i S j⟩|a , (V.48a)

U ijk = U (3) ijk [M (d) K , S (d) K ] - 21 26 
G 2 M 2 c 6 Π ε + 9281 2730 M (5)
ijk , (V.48b)

V i|jk = V (3) i|jk [M (d) K , S (d) K ] - 214 105 
G 2 M 2 c 6 Π ε + 4989 44940 S (4) i|jk , (V.48c)
where we drop the (d) superscript in the higher-order corrections (they do not differ from their three-dimensional counterparts at this order), where we employ the notations of Section III.3.1 for current moments, and where we have introduced the quantity

Π ε = - 1 2ε + ln r 0 √ q ℓ 0 , (V.49)
with q ≡ 4πe γ E . The constant ℓ 0 is the length-scale associated with dimensional regularization, such that G = ℓ ε 0 G N relates to the Newton constant G N (see Section II.4). As expected, the numerical constants associated with the poles at 3PN are the β-coefficients of the renormalization group flows for these multipole moments [START_REF] Goldberger | Gravitational radiative corrections from effective field theory[END_REF][START_REF] Goldberger | Black hole mass dynamics and renormalization group evolution[END_REF][START_REF] Almeida | Gravitational multipole renormalization[END_REF] (see [START_REF] Blanchet | Logarithmic tail contributions to the energy function of circular compact binaries[END_REF] for the computation using the renormalization group flow of high-order logarithmic effects in the conservative energy function).

An important point to make, is that, as a consequence of those dimensional-regularization corrections, the r 0 disappears from the expression (V.45) of the radiative quadrupole in d dimensions (for any mode m > 0), and is replaced by ℓ 0 . Indeed, as pointed out in [START_REF] Trestini | Gravitational-wave tails of memory[END_REF], when isolating the contribution of ln(r 0 ) to the radiative quadrupole for the three cubic interactions given by (V.45), we find

U cubic ij = ln(r 0 ) 214 105 
G 2 M 2 c 6 M (4) ij + G 2 M c 8 4M (2) a⟨i M (4) j⟩a + 32 7 M (1)
a⟨i M

(5)

j⟩a + 4 7 M a⟨i M (6) j⟩a + 4G 2 M 3c 8 S a|⟨i M (5)
j⟩a + terms independent of ln(r 0 ) + O

1 c 9 . (V.50)
This expression exactly cancels the ln(r 0 ) terms arising in the second time derivative of the dimensional-regularization contributions given in (V.48), which accounts for the contribution of the dimensional regularization of the cubic interactions to the renormalized canonical quadrupole moment for compact binaries. This nontrivial effect translates the fact that we have properly converted from Hadamard to dimensional regularization, and is a strong technical test of our expression for the radiative quadrupole moment. Last, but not least, we announce that the unphysical scale ℓ 0 will also disappear from any observable result, as we will see in Chapter VI.

As we shall see in Section VI.1.1, the poles present in (V.48) will actually be canceled by poles coming from the d-dimensional expression of the source multipole moments. Thus the correction terms (V.48) will play the role of "counter-terms" (roughly speaking) for the cancellation of the divergences in the computation of the source moments. In particular this will lead in Section VI.1 to a notion of "renormalized" source quadrupole moment at the 4PN order, which is useful in some intermediate steps of our calculation.

Chapter VI The 4PN waveform for quasicircular orbits

This chapter is mainly based on [START_REF] Blanchet | Gravitational-Wave Phasing of Quasicircular Compact Binary Systems to the Fourth-and-a-Half Post-Newtonian Order[END_REF][START_REF] Blanchet | Gravitational-wave flux and quadrupole modes from quasicircular nonspinning compact binaries to the fourth post-Newtonian order[END_REF].

This chapter is devoted to collecting all the different pieces needed to finally compute the flux at 4.5PN order and the (2, 2) mode at 4PN order. In Section VI.1, we recall the definition and expressions of the renormalized source moments that are needed for the 4.5PN flux and 4PN waveform, as well as the relevant relations between canonical and source moments. We also discuss some extra contributions that we need to add to the mass-type source quadrupole moment. In Section VI.2, we review the expressions of all the required radiative moments in terms of the canonical moments, which completes our results from Chapters IV and V. In Section VI.3, we develop some new techniques needed to reduce our results to the case of quasicircular orbits. In particular, we discuss the post-adiabatic contribution to the tails and the formulas needed to compute the tails of memory. Finally, we present the 4PN modes in Section VI.4 and the 4.5PN flux in Section VI.5. Thanks to the 4PN conservative energy of (II.55), we are then able to compute the frequency chirp in Section VI.6 and the phase of the GW in Section VI.7.

VI.1 The renormalized source moments VI.1.1 Corrections to the renormalized source quadrupole moment

In dimensional regularization, the expression of the source moments in terms of the source differs from the three-dimensional case. Indeed, we recall [START_REF] Marchand | The mass quadrupole moment of compact binary systems at the fourth post-Newtonian order[END_REF][START_REF] Larrouturou | The quadrupole moment of compact binaries to the fourth post-Newtonian order: I. Non-locality in time and infra-red divergencies[END_REF][START_REF] Larrouturou | The quadrupole moment of compact binaries to the fourth post-Newtonian order: II. Dimensional regularization and renormalization[END_REF] that the source mass-type multipolar moment is given in terms of the source as

I (d) ij = d -1 2(d -2) FP B=0 d d x ℓ d-3 0 r r 0 B xij Σ [2] - 4(d + 2) c 2 d(d + 4) xija Σ (1) a[3] + 2(d + 2) c 4 d(d + 1)(d + 6) xijab Σ (2)
ab [START_REF] Trestini | Gravitational-wave tails of memory[END_REF] -

4B(d -3)(d + 2) c 2 (d -1)d(d + 4) xija x b r 2 Σ ab[3] , (VI.1) 109 
where we have the notation

S [ℓ] = ∞ k=0 1 2 2k k! Γ ℓ + d 2 Γ ℓ + d 2 + k r c ∂ ∂t 2k S(t, x) , (VI.2)
where S stands for Σ

(n) , Σ (n) a or Σ (n)
ab . Generically, such a definition leads to the appearance of poles in ε, such that the d → 3 limit of I (d) L is not well defined, and thus one does not retrieve the three dimensional definition I L . This feature is not a problem as long as DR is correctly implemented in the full PN-MPM construction. In particular, we find that the poles vanish in the observable radiative moments, and that we smoothly recover the 3D limit for all observable quantities.

In [START_REF] Larrouturou | The quadrupole moment of compact binaries to the fourth post-Newtonian order: I. Non-locality in time and infra-red divergencies[END_REF][START_REF] Larrouturou | The quadrupole moment of compact binaries to the fourth post-Newtonian order: II. Dimensional regularization and renormalization[END_REF] , the source mass quadrupole moment was computing using dimensional regularization. However, since the publication of this result, it was discovered that two extra contributions should be added. First it was found that some terms need to be added in the near-zone PN iteration, which are due to the fact that the d'Alembert operator □ and the near-zone regularized inverse d'Alembertian FP B=0 □ -1 ret (see [START_REF] Poujade | Post-Newtonian approximation for isolated systems calculated by matched asymptotic expansions[END_REF][START_REF] Blanchet | Structure of the post-Newtonian expansion in general relativity[END_REF] for a definition) do not commute in general. This leads to some extra terms that need to be added to the source quadrupole, which first appear at 4PN, which are related to the contributions of "d'Alembertian commutators" of the type FP B=0 □ -1 ret , □ . For binary systems on general orbits and in a center-of-mass frame, it was shown in [START_REF] Blanchet | Gravitational-wave flux and quadrupole modes from quasicircular nonspinning compact binaries to the fourth post-Newtonian order[END_REF] that these extra terms read

δI ij = - 4G 3 m 4 ν 2 r 12 c 8 v 2 12 -3 ṙ12 - Gm r 12 nij 12 + O 1 c 9 . (VI.3)
Luckily, it was found that this contribution vanishes in the case of quasicircular orbits (at least at 4PN order), so it will not affect our results and we refer the interested reader to the discussion in Section III of [START_REF] Blanchet | Gravitational-wave flux and quadrupole modes from quasicircular nonspinning compact binaries to the fourth post-Newtonian order[END_REF].

The second contribution plays a more important role. Indeed, it was initially found in [START_REF] Larrouturou | The quadrupole moment of compact binaries to the fourth post-Newtonian order: II. Dimensional regularization and renormalization[END_REF] that the pole that appeared in the computation of (VI.1) was exactly compensated by another pole arising in the relation between canonical moments and radiative moments, see (V.48). This observation led to the notion of a renormalized canonical moment. However, in this computation, one actually needs to add an extra contribution to the source quadrupole in d dimensions I (d) L , which leads to the appearance of yet another pole, which exactly cancels the pole arising in the d-dimensional relation between canonical and source moments, see (III.33). This cancellation was required by the formalism, but is highly nontrivial and thus consists in a very important technical check of our computation. The origin of this second contribution is as follows: when computing the equations of motions at 4PN order, the tail effect, which enters as a radiation mode in the conservative dynamics described by the Fokker action, has been implemented with the canonical quadrupole moment M ij [START_REF] Bernard | Dimensional regularization of the IR divergences in the Fokker action of point-particle binaries at the fourth post-Newtonian order[END_REF]. Indeed, no tail contribution involving the gauge moments (in particular the interaction M × W) has been considered in this calculation. This is correct for the equations of motion since the gauge moments result in a physically irrelevant shift of the equations of motion. Moreover, as described in [START_REF] Larrouturou | The quadrupole moment of compact binaries to the fourth post-Newtonian order: I. Non-locality in time and infra-red divergencies[END_REF], this tail effect in the acceleration is taken into account in the computation of the source mass quadrupole moment. However, we found that there is a mismatch between the coordinate systems used in these two computations: the tail effect in the acceleration is computed in a canonical coordinate system, whilst the source quadrupole is defined in a generic one, following the terminology of Section III.2 (or [START_REF] Blanchet | The quadrupole moment of compact binaries to the fourth post-Newtonian order: from source to canonical moment[END_REF]). We thus need to adjust for this, and compute the expression of the source quadrupole moment in the canonical coordinate system. This is done by performing a simple coordinate change x µ gen = x µ can + ζ µ , where the relation between the coordinate systems is described in Section III.2. A simple dimensional analysis shows that only the M × W interaction can enter this coordinate change at 4PN order. Using the methods and notations exposed in Section III.4 to calculate the contribution of a given interaction to the gauge vector, we find that the only possible contribution comes from φ µ hom M×W , and the coordinate change is then explicitly given by

ζ 0 = - 16G 2 M c 7 j⩾0 1 2 2j j! c 2j Γ d 2ℓ 0 Γ d 2 + j +∞ 0 dτ L ε (τ ) + 1 2 W (3+2j) (t -τ ) , (VI.4a
)

ζ i = 0 , (VI.4b)
where L ε (τ ) contains a pole and was defined in (III.32). Note that only the first term in the sum (i.e j = 0) is relevant at 4PN. Implementing the procedure exposed in Section II of [START_REF] Larrouturou | The quadrupole moment of compact binaries to the fourth post-Newtonian order: I. Non-locality in time and infra-red divergencies[END_REF] with the "pure gauge" metric h µν = -∂ξ µν , we arrive at

δ ζ I ij = 16 G 2 M c 8 +∞ 0 dτ L ε (τ ) + 1 2 I (1) ij (t) W (3) (t -τ ) -I ij (t) W (4) (t -τ ) + O 1 c 10 .
(VI.5) From now on, we suppose that this adjustment has been made, and that I (d) ij has been computed from its definition (VI.1) in the correct coordinate system. We now define, at 4PN accuracy, a renormalized source quadrupole as

I renorm ij ≡ I (d) ij + δ ε I ij (VI.6)
where δ ε I ij is defined so as to account for the pole parts arising in (III.33) and (V.48). It reads where we have used

δ ε I ij ≡ - 16 G 2 M c 8 +∞ 0 dτ L ε (τ ) + 1 2 I (1) ij (t) W (3) (t -τ ) -I ij (t) W (4) (t -τ ) - 214 105 
G 2 M 2 c 6 Π ε + 246299 44940 I (4) ij + G 2 M c 8 - 4 
M ij = I ij + O(c -5 ) and I ij = J ij + O(c -5
), and where we remind the reader of the notations

Π ε = - 1 2ε + ln r 0 √ q ℓ 0 and L ε (τ ) = - 1 2ε + ln cτ √ q 2ℓ 0 .
We find that I renorm ij defined in this way does not exhibit any poles. Although this is expected from the point of view of the general formalism, we should point out that it is not trivial computationally that the pole arising from the source/canonical and canonical/radiative moments relations should indeed cancel the poles in the source quadrupole, as these are radically different computations. When reduced for compact binary systems on circular orbits, its expression is still given by (6.11) of [START_REF] Larrouturou | The quadrupole moment of compact binaries to the fourth post-Newtonian order: II. Dimensional regularization and renormalization[END_REF], despite the two extra contributions we have noted. We find that this renormalized source quadrupole I renorm ij can be related to the three-dimensional canonical moment M ij (i.e. that enters the three-dimensional expressions of the radiative quadrupole U ij ) by the expression

M ij = I renorm ij + 4G c 5 W (2) I ij -W (1) I (1) ij + 4G c 7 4 7 W (1)
a⟨i I

(3)

j⟩a + 6 7 W a⟨i I (4)
j⟩a -

1 7 Y (3) a⟨i I j⟩a -Y a⟨i I (3) j⟩a -2X I (3) ij - 5 21 W (4) a I ija + 1 63 W (3) a I (1) ija - 25 21 Y (3) a I ija - 22 63 Y (2) a I (1) ija + 5 63 Y (1) a I (2) ija + 2W (3) W ij + 2W (2) W (1) ij - 4 3 W ⟨i W (3) j⟩ + 2W (2) Y ij -4W ⟨i Y (2) j⟩ + ϵ ab⟨i 1 3 I j⟩a Z (3) b -I (3) j⟩a Z b + 4 9 J j⟩a W (3) b - 4 9 J j⟩a Y (2) b + 8 9 J (1) j⟩a Y (1) b , (VI.8)
where, in the nonlinear corrections, we do not distinguish I renorm ij from I ij , since they do not differ at 2.5PN order. We have thus now successfully eliminated the poles from all the steps of the computation, which is very useful in practical computations. For notational simplicity, we will in the rest of this thesis most often refer to the renormalized source moment simply as I ij .

VI.1.2 Expression of the renormalized source quadrupole moment

We now reproduce the explicit expression of the renormalized source quadrupole for quasicircular compact binary systems, which is correctly accounted for by (6.11) of [START_REF] Larrouturou | The quadrupole moment of compact binaries to the fourth post-Newtonian order: II. Dimensional regularization and renormalization[END_REF]. Recalling that we now simply write I ij for the renormalized source moment, and denoting by r the orbital separation and by v the relative velocity of the two particles, we have

I ij = mν A x ⟨i x j⟩ + B r 2 c 2 v ⟨i v j⟩ + G 2 m 2 ν c 5 r C x ⟨i v j⟩ + O 1 c 9 , (VI.9)
where γ ≡ Gm/(rc 2 ) is useful to express the coefficients, which are given by The coefficients A and B represent the conservative part of the quadrupole, while C is due to the radiation reaction dissipative effects. Note that, in addition to the scale r 0 , the expression of the quadrupole involves a scale r ′ 0 , which appeared in the equations of motion in Section II.6, associated with the UV regularization (see the Footnote 10 of [START_REF] Marchand | The mass quadrupole moment of compact binary systems at the fourth post-Newtonian order[END_REF] for more details).

A = 1 + γ - 1 
As discussed in [START_REF] Larrouturou | The quadrupole moment of compact binaries to the fourth post-Newtonian order: I. Non-locality in time and infra-red divergencies[END_REF], the source quadrupole moment is not a local quantity at the 4PN order anymore, as it contains a nonlocal tail integral, given by (6.5) in [START_REF] Larrouturou | The quadrupole moment of compact binaries to the fourth post-Newtonian order: II. Dimensional regularization and renormalization[END_REF]. The 4PN logarithms ln 16γe 2γ E in A and B are due to the conservative part of this nonlocal tail term in the mass quadrupole, and the coefficient - 32 7 πγ 3/2 in C, to the corresponding dissipative part of the tail term.

Finally, as reported in Appendix A.4, the general expression of the source mass quadrupole moment for generic orbits has been conclusively tested in the so-called boosted Schwarzschild limit.

VI.1.3 The other source moments and their relation to the canonical moments

In order to obtain the 4PN waveform, we need the mass source octupole and the current source quadrupole at 3PN order. In the context of dimensional regularization, these exhibit poles, which are exactly compensated by the poles in the relation between the associated radiative moments and canonical moments, see (V.48b) and (V.48c). This calls for a natural definition of a renormalized source moment. In both cases, these renormalized source moments exactly coincide at 3PN order with the ones computed with Hadamard regularization in the IR, see [START_REF] Larrouturou | The quadrupole moment of compact binaries to the fourth post-Newtonian order: II. Dimensional regularization and renormalization[END_REF] for discussion.

We now reproduce the expression of the renormalized mass source octupole and the current source quadrupole for circular orbits. The mass source octupole moment reads

I ijk = -ν m δ D x ⟨i x j x k⟩ + E r c v ⟨i x j x k⟩ + F r 2 c 2 v ⟨i v j x k⟩ + G r 3 c 3 v ⟨i v j v k⟩ + O 1 c 7 ,
(VI.11) where δ ≡ (m 1 -m 2 )/m, and the coefficients are As for the renormalized current quadrupole J ij , it also coincides at 3PN order with the one computed with Hadamard regularization in the IR [START_REF] Larrouturou | The quadrupole moment of compact binaries to the fourth post-Newtonian order: II. Dimensional regularization and renormalization[END_REF]. It comes [START_REF] Henry | The current-type quadrupole moment and gravitational-wave mode (ℓ, m) = (2, 1) of compact binary systems at the third post-Newtonian order[END_REF] J

D = 1 -γν + γ 2 -
ij = -νmδ H L ⟨i x j⟩ + K Gm c 3 L ⟨i v j⟩ + O 1 c 7 , (VI .13) 
where we denote L i ≡ ϵ ijk x j v k , and where The remaining required source moments (mass hexadecapole at 2PN, current octupole at 2PN, etc.) are easy to compute as no regularization subtleties arise at this order. Their expressions on quasicircular orbits are displayed e.g. in Section 9.1 of [START_REF] Blanchet | Gravitational Radiation from Post-Newtonian Sources and Inspiralling Compact Binaries[END_REF]. Note that, as the first nonlocal feature cannot appear at a lower order than 4PN, all those higher-order source moments are instantaneous up to 3.5PN order. Therefore, they cannot contribute to the 4.5PN term of the quasicircular flux. We now reproduce the relations between source and canonical moments that will be relevant for our computation. We have [START_REF] Faye | Non-linear multipole interactions and gravitational-wave octupole modes for inspiralling compact binaries to third-and-ahalf post-Newtonian order[END_REF] 

H = 1 +
M ijk = I ijk + 4G c 5 W (2) I ijk -W (1) I (1) ijk + 3Y (1) 
⟨i

I jk⟩ + O 1 c 7 , (VI.15a) M ijkl = I ijkl + 4G c 5 W (2) I ijkl -W (1) I (1) ijkl + 4Y (1) 
⟨i

I jkl⟩ + O 1 c 6 , (VI.15b) S ij = J ij + 4G c 5 -W (1) J (1) ij + 3 2 Y (1) ⟨i J j⟩ + ϵ ab⟨i 1 2 I (3) j⟩a W b + I j⟩a Y (2) 
b -

1 2 I (1) j⟩a Y (1) b + O 1 c 7 , (VI.15c) S ijk = J ijk + 4G c 5 -W (1) J (1) ijk + 8 3 Y 
(1)

⟨i J jk⟩ + ϵ ab⟨i I (3) ja W k⟩b + I jk⟩a Y (2) 
b -

1 3 I (1) jk⟩a Y (1) b + O 1 c 6 . (VI.15d)

VI.2 The radiative moments in terms of the canonical moments

As we have seen in Section VI.1, the notion of renormalized canonical and source moments allows us to use the three-dimensional relations between canonical and radiative moments. In this section, we review which radiative moments are needed and at what order for the different pieces of the computation, and reproduce the relevant expressions.

VI.2.1 Radiative moments entering the flux at 4PN order

In order to derive the energy flux (II.66) at 4PN order beyond leading quadrupolar order, the obvious first input is the radiative quadrupole moment itself U ij to 4PN order. Recalling that, at leading order, the radiative moments U L and V L reduce to the ℓ th time derivatives (with respect to the retarded time u of the radiative coordinates) of the canonical moments M L and S L , we straightforwardly write

U ij = M (2) ij + U 1.5PN ij + U 2.5PN ij + U 3PN ij + U 3.5PN ij + U 4PN ij + O 1 c 9 , (VI.16)
with small PN corrections up to 4PN, as indicated.

The leading correction at 1.5PN is due to the GW tail, i.e. the quadratic interaction between the static mass M and the mass quadrupole moment M ij , denoted M × M ij , see (V.34) and Fig.

II.4a. It reads explicitly [164] U 1.5PN ij = 2GM c 3 +∞ 0 dτ M (4) ij (u -τ ) ln cτ 2b 0 + 11 12 .
(VI.17)

As usual, the length scale b 0 is an arbitrary constant linked with the choice of the origin of time of the asymptotic radiative coordinates, with respect to the harmonic coordinates covering the source's near zone. At the next 2.5PN order there is the nonlocal interaction involving two quadrupole moments M ij ×M kl called the (displacement) "memory" (see Fig. II.4b), together with associated instantaneous quadrupole-quadrupole terms, and including also an instantaneous 
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U 3PN ijk = 2G 2 M 2 c 6 +∞ 0 dτ M (6) 
ijk (u -τ ) ln where the underlined indices within angled brackets are excluded from the STF operation, and

V 1.5PN ij = 2GM c 3 +∞ 0 dτ S (4) ij (u -τ ) ln cτ 2b 0 + 7 6 , (VI.22d) V 2.5PN ij = G c 5 - 3 7 M a⟨i S (5) j⟩a - 3 7 M 
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(VI.22e) V 3PN ij = 2G 2 M 2 c 6 +∞ 0 dτ S (5) ij (u -τ ) ln 2 cτ 2b 0 + 7 3 ln cτ 2b 0 - 107 105 ln cτ 2r 0 - 13127 11025 . 
(VI.22f)

Higher order multipole moments have no cubic contributions at the required PN order. At 2PN order, we need the mass hexadecapole U ijkl as well as the current octupole V ijk , and U ijklm as well as V ijkl , which read

U ijkl = M (4) ijkl + U 1.5PN ijkl + O 1 c 5 , (VI.23a) V ijk = S (3) ijk + V 1.5PN ijk + O 1 c 5 , (VI.23b)
where [161]

U 1.5PN ijkl = G c 3 2M +∞ 0 dτ M (6) ijkl (u -τ ) ln cτ 2b 0 + 59 30 + 2 5 +∞ 0 dτ M (3) ⟨ij M 
(3)

kl⟩ (u -τ ) - 21 5 M ⟨ij M (5) kl⟩ - 63 5 M (1) ⟨ij M (4) kl⟩ - 102 5 M 
(2)

⟨ij M (3) kl⟩ , (VI.24a) V 1.5PN ijk = G c 3 2M +∞ 0 dτ S (5) 
ijk (u -τ ) ln

cτ 2b 0 + 5 3 -2M (4) 
⟨ij S k⟩ -

1 10 ϵ ab⟨i M ja M (5) k⟩b + 1 2 ϵ ab⟨i M (1) ja M (4) 
k⟩b .

(VI.24b)

Note the appearance of a memory integral at 1.5PN order in U ijkl , in addition to the usual tail one. Finally, we need the moments U ijklm and V ijkl at 1PN, as well as U ijklmn and V ijklm at Newtonian order, which are trivially given by

U ijklm = M (5) ijklm + O 1 c 3 , V ijkl = S (4) ijkl + O 1 c 3 , U ijklmn = M (6) ijklmn + O 1 c 3 , V ijklm = S (5) ijklm + O 1 c 3 . (VI.25)

VI.2.2 Radiative moments entering the quasicircular flux at the 4.5PN order

For quasicircular orbits, the 4.5PN term in the flux was obtained in [START_REF] Marchand | Gravitational-wave tail effects to quartic non-linear order[END_REF]. One could naively think that such a computation would require the complete knowledge of the relations between radiative and canonical moments, as presented above, but pushed one half PN order further. This was actually not the case, since for circular orbits, only a limited control of the relation between the radiative and canonical mass quadrupole moments was necessary. This is discussed in [START_REF] Marchand | Gravitational-wave tail effects to quartic non-linear order[END_REF], and we only remind the key points. First, it is well known that the contributions of instantaneous interactions entering the flux at half-integer PN order (e.g. 4.5PN order) vanish for quasicircular orbits. So only nonlocal contributions such as tails can potentially contribute. Second, the quadratic nonlocal memory interaction that enters the radiative moments, see (VI.18) and (VI. [START_REF] De Coulomb | Mémoires sur l'Électricité et le Magnétisme[END_REF]), become instantaneous in the flux by virtue of time differentiation, so these will not contribute. Last, the tails-of-memory and spin-quadrupole tails, which both enter at 4PN, will next contribute at 5PN but not at 4.5PN. This allows to use dimensional arguments to determine the interactions that can contribute to the 4.5PN quasicircular flux. For the mass quadrupole, only the quartic M 3 × M ij , naturally dubbed "tails-of-tails-of-tails", can play a role. It has been computed in [START_REF] Marchand | Gravitational-wave tail effects to quartic non-linear order[END_REF], and reads (VI.26)

U 4.5PN ij ToToT = G 3 M 3 c 9 +∞ 0 dτ M (6) ij (u -τ ) 4 
The full U 4.5PN ij also contains quadratic memory interactions, like those entering at 2.5PN and 3.5PN, see (VI.18) and (VI. [START_REF] De Coulomb | Mémoires sur l'Électricité et le Magnétisme[END_REF]). If, as explained above, those are not needed to compute the flux (and phase) for quasicircular orbits, they will enter the expression of the (2, 2) mode. As they are yet undetermined, they restrict the accuracy we can reach when deriving the (2, 2) mode, which is why it is presented in Section VI.4 at 4PN and not up to 4.5PN order. In addition, radiation reaction effects at 4.5PN in the mass quadrupole should contribute and are also not under control.

Regarding other moments, the 3.5PN terms of the mass octupole U ijk and current quadrupole V ij , as well as the 2.5PN terms of the mass hexadecapole U ijkl and current octupole V ijk , are composed of quadratic memory integrals, but which cannot contribute in the 4.5PN quasicircular flux. The only other moments that can contribute to the 4.5PN piece of the flux are thus [START_REF] Faye | Non-linear multipole interactions and gravitational-wave octupole modes for inspiralling compact binaries to third-and-ahalf post-Newtonian order[END_REF][START_REF] Marchand | Gravitational-wave tail effects to quartic non-linear order[END_REF]]
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VI.2.3 Radiative moments entering the full 4PN waveform

With the radiative mass quadrupole U ij at hand, we are able to compute the (ℓ, m) = (2, 2) mode in the 4PN waveform. However, the full 4PN waveform is still out of reach, because the other moments are not known at required order. In order to completely control the 4PN waveform, we would need U L at 8-ℓ 2 PN order and V L at 7-ℓ 2 PN order, for ℓ ⩾ 2. As of now, apart from U ij which is known at 4PN, the waveform and the associated moments are only known to 3.5PN order [START_REF] Faye | Non-linear multipole interactions and gravitational-wave octupole modes for inspiralling compact binaries to third-and-ahalf post-Newtonian order[END_REF][START_REF] Henry | The current-type quadrupole moment and gravitational-wave mode (ℓ, m) = (2, 1) of compact binary systems at the third post-Newtonian order[END_REF][START_REF] Henry | Complete gravitational-waveform amplitude modes for quasicircular compact binaries to the 3.5PN order[END_REF], i.e. we control U L at 7-ℓ 2 PN order and V L at 6-ℓ 2 PN order. Computing these higher-order multipolar moments at required order will be crucial to obtain a full 4PN waveform, and a subject of interest for future work.

Note also that the arguments put forward in Section VI.2.2, which led to the computation of the 4.5PN flux, are not transposable to the 4.5PN piece of the (2, 2) mode. Indeed, the latter computation would require the recently-computed 4.5PN piece of the equations of motion [START_REF] Leibovich | Radiation reaction for nonspinning bodies at 4.5PN in the effective field theory approach[END_REF], the control of the 4.5PN source quadrupole moment, the full control of the 4.5PN relation between the source and canonical quadrupole, and the full control of the 4.5PN relation between the radiative and canonical moments, include all the local and memory terms which where ignored in the computation of the 4.5PN flux.

VI.3 Novelties in the reduction to quasicircular orbits

In Section II.5, we discussed how to describe the two body problem in the case of quasicircular orbits. Reducing the contributions of instantaneous terms in the radiative moments (i.e. terms that do not involve any integrals over the past) is computationally heavy, but a relatively trivial process. In Section VI.1, we have presented results for the source moments reduced for quasicircular orbits: these need only to be time-differentiated with 4PN accuracy using the equations of motion for circular orbits (II.58), and contracted with each other. Nonlocal terms, such as the memory and tail terms, are less trivial to compute, but there is a vast literature of integration techniques to perform this [START_REF] Blanchet | Gravitational wave tails and binary star systems[END_REF][START_REF] Arun | The 2.5PN gravitational wave polarisations from inspiralling compact binaries in circular orbits[END_REF][START_REF] Favata | Post-Newtonian corrections to the gravitational-wave memory for quasi-circular, inspiralling compact binaries[END_REF][START_REF] Favata | The Gravitational-wave memory from eccentric binaries[END_REF]. Nonetheless, at 4PN order, some extra difficulties arise in the computation of these nonlocal effects. In this section, we focus on the post-adiabatic computation of the tail effect, as well as the computation of memory terms, including the novel tail-ofmemory. These are crucial for the computation of the (2, 2) mode at 4PN (Section VI.4) and the gravitational flux at 4.5PN (Section VI.5).

VI.3.1 Post-adiabatic integration of the tail effect

In order to compute the tail integrals, for instance (VI.17), we need to specify the behavior of the compact binary system's orbit in the remote past, as the effect is not localized in time, but integrates over the whole past history of the source. In the case of quasicircular orbits, and up to 3.5PN precision in the multipoles, an adiabatic approximation (considering the orbital elements r 12 and ω to be constant in time, see Fig. II.3b) is sufficient, and one can follow the lines of [START_REF] Arun | The 2.5PN gravitational wave polarisations from inspiralling compact binaries in circular orbits[END_REF], together with the integrals presented in the Appendix B of [START_REF] Blanchet | Gravitational wave tails and binary star systems[END_REF]. However, (II.58) show that this adiabatic approximation is no longer valid at a relative 2.5PN precision. As the tail enters at 1.5PN order in the moments, the first "post-adiabatic" (PA) correction will affect the moments at the 4PN order, thus we need to properly evaluate it in order to consistently derive the 4PN flux and (2, 2) mode. An alternative and more general derivation is proposed in [START_REF] Blanchet | Gravitational-wave flux and quadrupole modes from quasicircular nonspinning compact binaries to the fourth post-Newtonian order[END_REF], but here we propose a more historical derivation, which closely follows the adiabatic computation of [START_REF] Arun | The 2.5PN gravitational wave polarisations from inspiralling compact binaries in circular orbits[END_REF].

As shown in [START_REF] Arun | The 2.5PN gravitational wave polarisations from inspiralling compact binaries in circular orbits[END_REF], the tail integrals on quasicircular orbits reduce, after projection on the appropriate basis (see Fig. 

I α,n = +∞ 0 dτ ln τ τ 0 [y(u -τ )] α e -inϕ(u-τ ) , (VI.28)
where n ∈ N ⋆ [the case n = 0 does not appear at 4PN], α > 4 is usually a rational fraction, and in our case, τ 0 = 2b 0 /c. In this section, we will obtain an expression for I α,n up to post-adiabatic (PA) precision, as required at 4PN for the leading-order tail integral. To this end, we introduce the adiabatic parameter as defined in [START_REF] Arun | The 2.5PN gravitational wave polarisations from inspiralling compact binaries in circular orbits[END_REF] (this differs from (5.6) of [START_REF] Blanchet | Gravitational-wave flux and quadrupole modes from quasicircular nonspinning compact binaries to the fourth post-Newtonian order[END_REF] by a factor 8/3)

ξ(u) ≡ 1 (u c -u)ω(u) = 8 3 ω(u) ω 2 (u) + O(2) , (VI.29)
where u c is the retarded time "at coalescence"1 . Up to a constant factor of order unity, this adiabatic parameter measures the ratio between the orbital timescale (associated to the orbital frequency ω) and the timescale of radiation reaction (associated to the chirp ω). In the inspiral regime, this parameter is very small, and can actually be related to the PN parameter y by

ξ = 256 5 y 5 2 (1 + O (y)) . (VI.30)
This definition encourages us to define an auxiliary variable z ≡ τ ξ(u)ω(u) , (VI.31) from which we express the leading order time evolution of various orbital quantities,

r(u -τ ) = r(u)(1 + z) 1 4 (1 + O(2)) , (VI.32a) ω(u -τ ) = ω(u)(1 + z) -3 8 (1 + O(2)) , (VI.32b) y(u -τ ) = y(u)(1 + z) -1 4 (1 + O(2)) , (VI.32c) ϕ(u -τ ) = ϕ c -ϕ(u)(1 + z) 5 8 (1 + O(2)) , (VI.32d)
where ϕ c is a constant phase "at coalescence". One could add the 1PN corrections to these expressions, but these turn out to be negligible at this order, see [START_REF] Arun | Inspiralling compact binaries in quasi-elliptical orbits: The Complete 3PN energy flux[END_REF] for a discussion. With the help of the post-adiabatic parameter, evaluated at retarded time u, we can relate the phase in the past to the phase at retarded time (see Fig. II.3a), via the relation

ϕ(u -τ ) = ϕ(u) - 8 5ξ(u) (1 + z) 5 8 -1 (1 + O(2)) . (VI.33)
With all of these ingredients in hand, we can rewrite our integral as 

I α,n = e -inϕ(u) y α (u) ξ(u)ω(u) +∞ 0 dz (1 + z) -α 4 ln z τ 0 ξ(u)ω(u) e 8ni 5ξ(u) (1+z) 
I α,n = e -inϕ(u) y α (u) ξ(u)ω(u) +∞ 0 ds e ins ξ(u) 1 + 5 8 s 2α-3 5 ln     1 + 5 8 s 8 5 -1 τ 0 ξ(u)ω(u)     .
(VI.35)

We then divide this integral in two, namely I α,n = I

(1)

α,n + I (2)
α,n where

I (1) α,n = - e -inϕ(u) y α (u) ξ(u)ω(u) ln τ 0 ξ(u)ω(u) +∞ 0 ds e ins ξ(u) 1 + 5 8 s 2α-3 5 
, (VI.36a)

I (2) α,n = e -inϕ(u) y α (u) ξ(u)ω(u) +∞ 0 ds e ins ξ(u) 1 + 5 8 s 2α-3 5 ln 1 + 5 8 s 8 5 -1 . (VI.36b)
Using the formulas established in Appendix A.5 for β = (2α -3)/5, we find that

I (1) α,n = - e -inϕ y α ξω ln τ 0 ξω iξ n + 5ξ 2 8n 2 • 2α -3 5 + o(ξ 2
) , (VI.37a)

I (2) α,n = e -inϕ y α ξω - iξ n + 5ξ 2 8n 2 • 2α -3 5 ln ξ |n| -γ E - iπ 2 sg(n) + 5 8 • 2α -3 5 - 3 16 
ξ 2 n 2 + o(ξ 2 ) . (VI.37b)
where all dependencies on u are now implicit. This finally yields the final formula (note that it differs from (5.16) of [START_REF] Blanchet | Gravitational-wave flux and quadrupole modes from quasicircular nonspinning compact binaries to the fourth post-Newtonian order[END_REF] because of the different definition of ξ)

I α,n = Gm c 3 e -inϕ y α-3/2 in 1 + 2α -3 8 ξ in ln (2|n|bω) + γ E -sg(n) iπ 2 - 4α -9 16 
ξ in + o(ξ) . (VI.38)
Recall that all quantities are evaluated at current time u and that the adiabatic parameter ξ = 8 ω/(3ω 2 ) is easily computed with (II.58). With this result at hand, we are able to derive the tail integral (VI.17) with 2.5PN relative precision, which impacts the computation and final results at the 4PN order. Note as well that this is the first order for which the tail effect is sensitive to the decay rate of the orbit, encoded in α (see Fig. II.3b for a visual representation.)

VI.3.2 Quasicircular-orbit reduction of the memory effects and the tails of memory

Memory terms, such as the first term of (VI.18), are hereditary integrals of the form

+∞ 0 dτ F (u -τ )G(u -τ )
, where F and G represent dynamical multipole moments. Note that they enter only in mass-type moments, as clear from Section VI.2. In the case of quasicircular orbits, after projection on the appropriate basis (see Fig. II.3a), they reduce to a sum of terms of the form

J α,n (u) = +∞ 0 dτ y(u -τ ) α e -inϕ(u-τ ) . (VI.39)
Besides the absence of logarithm, the main difference with the tail integral is the possibility of having n = 0, i.e. persistent or "DC" (direct current) terms.

Let us first focus on oscillatory ("AC" or alternate current) memory terms, having n ̸ = 0. As they only involve a simple, logarithmic-free, integration, memory terms will enter in the flux as instantaneous contributions, and can be computed as such. In particular, since they arise at the odd PN approximations 2.5PN and 3.5PN, they do not contribute to the flux for quasicircular orbits. The evaluation of the integrals of type (VI.39) is thus only required for the derivation of the modes. Concerning the quadrupole moment, since the memory effect enters at 2.5PN order, as clear from (VI.18), it is required at a relative 1.5PN precision for the mode (2, 2) and thus, one can safely compute the integral in the adiabatic approximation. As discussed in [START_REF] Arun | The 2.5PN gravitational wave polarisations from inspiralling compact binaries in circular orbits[END_REF], for circular orbits this is equivalent to taking the frequency y constant together with a linear phase (appropriate for the exact circular orbit), and keeping only the contribution of the integral due to the bound τ = 0. One finds

J α,n = y α e -inϕ 0 dτ e inωτ + O (ξ) = - y α e -inϕ inω + O (ξ) , (VI.40)
where for a function f (τ ) whose antiderivative is denoted F (τ ), we define

0 dτ f (τ ) ≡ -F (0).
The persistent DC terms do not contribute to the flux, and they only contribute to the modes which have m = 0, for example, the (ℓ, m) = (2, 0) mode for the mass quadrupole. As is clear in the following, the absence of the fast oscillating exponential in J α,0 generates an inverse power of the adiabatic parameter ξ, thus degrading the precision (in terms of PN orders) at which we control the mode by the radiation-reaction scale 2.5PN. This is the well-known memory effect: as it starts at 2.5PN order in the waveform, it finally enters the (2, 0) mode at Newtonian order. Several methods are possible to evaluate J a,0 , see e.g. [START_REF] Arun | The 2.5PN gravitational wave polarisations from inspiralling compact binaries in circular orbits[END_REF]. In the following, we rely on a change of integration variables from τ to y ′ = y(u -τ ):

J α,0 = +∞ 0 dτ y(u -τ ) α = y(u) 0 dy ′ y ′α ẏ[y ′ ] , (VI.41)
reading ẏ[y ′ ] as a function of y ′ from (II.58), and supposing that α > 4. To 1.5PN relative order we have

J α,0 = 5Gm 64c 3 ν y α-4 α -4 1 + α -4 α -3 743 336 + 11 4 ν y -8π α -4 2α -5 y 3/2 . (VI.42)
We can see the this memory term is highly sensitive to the rate at which the orbit is decaying (via α). It is also interesting to observe that the tail effect in the flux directly influences the DC memory in (VI.42).

Last, but not least, we need to look at the interesting case of the tails-of-memory terms (VI.20). These terms can be treated as standard tail terms (with relative Newtonian accuracy), except for the "genuine" tail-of-memory given by the first line of (VI.20), namely

K ij = 8G 2 M 7c 8 +∞ 0 dρ M (4) a⟨i (u -ρ) +∞ 0 dτ M (4) j⟩a (u -ρ -τ ) ln τ τ 0 , (VI.43)
where c τ 0 = 2r 0 e 1613 270 . We remind that this expression agrees with the tail-of-memory directly computed from the radiative quadrupole moment at infinity [START_REF] Favata | Post-Newtonian corrections to the gravitational-wave memory for quasi-circular, inspiralling compact binaries[END_REF][START_REF] Favata | The Gravitational-wave memory from eccentric binaries[END_REF]. We first perform the tail-like integral over τ . As we need to evaluate it at relative Newtonian order only, we can safely use the adiabatic approximation. Next we perform the integral over τ , which is found to be a simple DC memory integral of the type (VI.41) with α = 13/2. Hence we find

K ij = 128π 7 ν 2 c 5 G l ⟨i l j⟩ +∞ 0 dρ y(u -ρ) 13/2 = 4π 7 mν c 2 y 5/2 l ⟨i l j⟩ , (VI.44)
where l is the constant vector orthogonal to the orbital plane, see Fig. II.3a. Interestingly, this tail-of-memory result will give a contribution in the (2, 0) mode that exactly cancels the one coming from the 1.5PN corrections to the ordinary memory effect, and obtained in (VI.42).

VI.4 The 4PN modes

Projecting the asymptotic metric (II.62c) onto the basis of polarizations {+, ×} (see Section I.1) and the usual basis of spin-weighted spherical harmonics, Y ℓm -2 (following the conventions of [START_REF] Blanchet | The third post-Newtonian gravitational wave polarisations and associated spherical harmonic modes for inspiralling compact binaries in quasi-circular orbits[END_REF][START_REF] Faye | The third and a half post-Newtonian gravitational wave quadrupole mode for quasi-circular inspiralling compact binaries[END_REF]), one can define the observable gravitational modes h ℓm as

h + -ih × = ℓ⩾2 ℓ m=-ℓ h ℓm Y ℓm -2 . (VI.45)
Following [START_REF] Kidder | Using full information when computing modes of post-Newtonian waveforms from inspiralling compact binaries in circular orbit[END_REF][START_REF] Faye | The third and a half post-Newtonian gravitational wave quadrupole mode for quasi-circular inspiralling compact binaries[END_REF], we can express any moments directly using the radiative moments with the formula

h ℓm = - G √ 2Rc ℓ+2 U ℓm - i c V ℓm , (VI.46)
where we have defined

U ℓm = 4 ℓ! (ℓ + 1)(ℓ + 2) 2ℓ(ℓ + 1) α ℓm L U L , (VI.47a) V ℓm = - 8 ℓ! ℓ(ℓ + 2) 2(ℓ -1)(ℓ + 1) α ℓm L V L . (VI.47b)
The conversion from radiative STF tensor to spherical (ℓ, m) modes is performed using the object

α ℓm L = √ 4π (-1) m 2 m 2 ℓ! (2ℓ + 1)(ℓ + m)!(ℓ -m)! m * ⟨M l L-M ⟩ , (VI .48) 
where m = (n + iλ)/ √ 2 is evaluated at the retarded time u, and m * is its complex conjugate. Note that if m is even, then V ℓm = 0, and conversely, if m is odd, then U ℓm . This observation significantly simplifies the computations: each of these modes is defined in terms of only one radiative moment, of which we know the expression in terms of the source moments (Section VI.2). Replacing the source moments by their expressions for quasicircular orbits (Section VII.4), taking their derivatives with the equations of motion (Section II.6) and evaluating nonlocal integrals (Section VI.3), we are able to compute these modes in the case of quasicircular orbits.

The computation being performed, it is always possible to factor out the dependence in the orbital GW phase ϕ which we used to parametrize our quasicircular motion. The modes can then be rescaled by the dominant contribution, which leads to defining Ĥℓm as

h ℓm = 8Gmνy c 2 R π 5 Ĥℓm e -imϕ , (VI.49)
where we recall y = Gmω/c 3 with ω = dϕ/dt. Note that the amplitude is a complex number which satisfies Ĥℓ,-m = (-) ℓ Ĥ * ℓm , where the star denotes the complex conjugate. Specializing our study to the (ℓ, m) = (2, 2) mode, we compute with 4PN accuracy

Ĥ22 = - e 2iϕ 2c 2 mνy m * i m * j U ij . (VI.50)
When computing our expression (VI.50) for the (2,2) mode, the arbitrary constants r 0 and r ′ 0 nicely cancel out. However, a dependency in the b 0 constant remains, already at 1.5PN order. This was of course known since the computation of the 1.5PN tail effect. At the time, the rationale to eliminate the b 0 dependency was to reabsorb the complex piece of Ĥ22 into an a redefined, auxiliary phase [START_REF] Wiseman | Coalescing binary-systems of compact objects to (post) 5 /2-Newtonian order. IV. The gravitational-wave tail[END_REF][START_REF] Blanchet | Gravitational wave tails and binary star systems[END_REF], which reads

ψ = ϕ - 2GM ω c 3 ln ω ω 0 , (VI.51)
where M denotes the constant total mass-energy of the spacetime and ω 0 ≡ c e 11/12-γ E /(4b 0 ). Remarkably, as the literature progressed [START_REF] Blanchet | Gravitational wave forms from inspiralling compact binaries to second postNewtonian order[END_REF][START_REF] Kidder | Using full information when computing modes of post-Newtonian waveforms from inspiralling compact binaries in circular orbit[END_REF][START_REF] Blanchet | The third post-Newtonian gravitational wave polarisations and associated spherical harmonic modes for inspiralling compact binaries in quasi-circular orbits[END_REF][START_REF] Fujita | Spherical harmonic modes of 5.5 post-Newtonian gravitational wave polarisations and associated factorised resummed waveforms for a particle in circular orbit around a Schwarzschild black hole[END_REF][START_REF] Faye | The third and a half post-Newtonian gravitational wave quadrupole mode for quasi-circular inspiralling compact binaries[END_REF][START_REF] Henry | The current-type quadrupole moment and gravitational-wave mode (ℓ, m) = (2, 1) of compact binary systems at the third post-Newtonian order[END_REF][START_REF] Faye | Non-linear multipole interactions and gravitational-wave octupole modes for inspiralling compact binaries to third-and-ahalf post-Newtonian order[END_REF][START_REF] Henry | Complete gravitational-waveform amplitude modes for quasicircular compact binaries to the 3.5PN order[END_REF][START_REF] Henry | Spin contributions to the gravitationalwaveform modes for spin-aligned binaries at the 3.5PN order[END_REF], it was found that using the same definition (VI.51) to decompose h ℓm successfully removed all the b 0 dependencies in all the modes up to currently known orders. Indeed, one can always decompose h ℓm as

h ℓm = 8Gmνx c 2 R π 5
H ℓm e -imψ , (VI.52)

where we emphasize the fact H ℓm (without a hat) is a complex amplitude that differs from Ĥℓm (with a hat). We then find that up to 3.5PN order, H ℓm is independent of b 0 . This is remarkable, since the definition was only tailored for 1.5PN, and it crucially relies on defining (VI.51) with the conserved total mass-energy M (using the total mass m associated only to matter would fail at removing the b 0 's). The common choice for ω 0 for all modes was motivated in [START_REF] Blanchet | Gravitational wave forms from inspiralling compact binaries to second postNewtonian order[END_REF] by the fact that it amounts to a redefinition of the time t c , and simplicity. In this work [START_REF] Blanchet | Gravitational-Wave Phasing of Quasicircular Compact Binary Systems to the Fourth-and-a-Half Post-Newtonian Order[END_REF][START_REF] Blanchet | Gravitational-wave flux and quadrupole modes from quasicircular nonspinning compact binaries to the fourth post-Newtonian order[END_REF], we found that this procedure also successfully removed b 0 at 4PN order, but an important subtlety arises. Indeed, if we simply reabsorb the relevant terms of the amplitude in ψ, we find that the (2,2) mode reads This remaining b 0 dependency is troublesome, but can be explained as follows. Up to now, we have assumed that Ĥℓm and H ℓm are expressed in terms of y, which is related to the derivatives of ϕ. However, to be consistent, we should now express H ℓm in terms of the variable

H 22 =
x ≡ GmΩ c 3 2/3 , (VI.54)
where we have defined the associated frequency Ω ≡ dψ/dt which is related to the orbital frequency ω by

Ω = ω - 2GM ω c 3 ln ω ω 0 + 1 . (VI.55)
Using (II.58) for the frequency chirp at the dominant order, it explicitly comes, replacing M by m at that order,

Ω = ω 1 - 192 5 ν Gmω c 3 8/3 ln ω ω 0 +1 + O 1 c 10 , (VI.56)
where we recall that ν = m 1 m 2 /m 2 is the symmetric mass ratio. Recalling also the definition (I.42) and posing y 0 = (Gmω 0 /c 3 ) 2/3 we thus have

x = y 1 - 192 5 ν y 4 ln y y 0 + 2 3 + O y 5 , (VI.57)
showing that the frequency Ω differs from the orbital frequency ω at the 4PN order only (as argued in [START_REF] Blanchet | Gravitational wave forms from inspiralling compact binaries to second postNewtonian order[END_REF][START_REF] Arun | The 2.5PN gravitational wave polarisations from inspiralling compact binaries in circular orbits[END_REF]). This explains why this subtlety was not considered in previous computations. Thus, we obtain [START_REF] Blanchet | Gravitational-Wave Phasing of Quasicircular Compact Binary Systems to the Fourth-and-a-Half Post-Newtonian Order[END_REF] H which is indeed explicitly free of any arbitrary constant. Note the frequency redefinition (VI.57) is a 4PN effect, therefore it never needed to be accounted for in previous computations, e.g. [START_REF] Blanchet | Gravitational wave forms from inspiralling compact binaries to second postNewtonian order[END_REF][START_REF] Arun | The 2.5PN gravitational wave polarisations from inspiralling compact binaries in circular orbits[END_REF]. In this 4PN result, however, accounting for it was crucial, and omitting it would have led to a residual b 0 dependency, as in (VI.53). This new result is also in agreement with the prediction of linear black-hole perturbation theory [START_REF] Fujita | Spherical harmonic modes of 5.5 post-Newtonian gravitational wave polarisations and associated factorised resummed waveforms for a particle in circular orbit around a Schwarzschild black hole[END_REF], although this subtlety would correspond to a second-order self-force effect.

We have also computed the nonoscillatory (ℓ, m) = (2, 0) mode. Since this modes do not have a phase, there is no freedom to transfer parts of the waveform from the amplitude into the phase. As discussed in Section VI.3.2, nonoscillatory modes arise from integration of the nonlinear zero-frequency memory terms over the past history of the system, assuming a model for the quasicircular evolution of the orbit in the past. Since the integration increases the effect by the inverse of the 2.5PN order, with the present 4PN formalism we are able to control the (2, 0) mode only with relative 1.5PN precision. We thus find

H 20 = - 5 14 √ 6 1 + - 4075 4032 + 67 48 ν x + O x 2 . (VI.59)
where all the arbitrary constants have properly vanished. Notice that the 1.5PN term of this mode vanishes. This is due to the fact that the 1.5PN correction in the model of evolution of the quasicircular orbit in the past, which results in the 1.5PN term in (VI.42), exactly cancels the 1.5PN direct contribution of the "tail-of-memory" at 4PN order, and given by (VI.44). That is,

H ToM 20 = -H mem,1.5PN 20 = - 2 √ 2 7 √ 3 π x 3/2 . (VI.60)
The result (VI.59) is in full agreement with (4.3a) of [START_REF] Favata | Post-Newtonian corrections to the gravitational-wave memory for quasi-circular, inspiralling compact binaries[END_REF], obtained from the general expression of nonlinear memory terms in terms of radiative moments. Indeed, recall that the tail-of-memory integral (VI.43) at 4PN order can be simply obtained from the leading memory integral (VI.18) at 2.5PN order by replacing the canonical moment M

(3) ij by the (derivative of the) radiative moment including the tail effect (VI.17) at relative 1.5PN order. This confirms that the tail-of-memory is adequately taken into account in the computation of the memory using radiative moments defined at future null infinity [START_REF] Favata | Post-Newtonian corrections to the gravitational-wave memory for quasi-circular, inspiralling compact binaries[END_REF][START_REF] Favata | The Gravitational-wave memory from eccentric binaries[END_REF].

VI.5 The 4.5PN flux

The energy flux carried by GWs at infinity can be computed solely based on that radiative moments using (II.66), which we reproduce here:

F = ∞ ℓ=2 G c 2ℓ+1 (ℓ + 1)(ℓ + 2) (ℓ -1)ℓℓ!(2ℓ + 1)!! U (1) 
L U

(1)

L + 4ℓ(ℓ + 2) c 2 (ℓ -1)(ℓ + 1)!(2ℓ + 1)!! V (1) 
L V

(1) L

We can compute these radiative moments in the case of circular orbits using the same steps as in Section VI.4, but now extended to 4.5PN order, as discussed in Section VI.2.2. Applying these methods, we find that the flux expressed in terms of y parameter, which we recall is related to the orbital frequency ω, still contains the unphysical constant b 0 , though the other arbitrary scales r 0 and r ′ 0 have properly disappeared. It reads Although the appearance of b 0 in the modes starts at 1.5PN, this is the first time that it appears explicitly in the flux. Indeed, just like we have done in Section VI.4, we must express the flux not in terms of the orbital frequency ω, but in terms of the frequency Ω associated to the GW. We remind the reader that x = (Gmω/c 3 ) is related to y by (VI.57), which reads

F = 32c 5 5G ν 2 y 5 1
x = y 1 - 192 5 ν y 4 ln y y 0 + 2 3 + O y 5 ,
and we find that that all the arbitrary constants now disappear in the flux expressed in terms of x. This redefinition only affects the flux starting at 4PN, which explains why it was never needed previously (see for example [START_REF] Wiseman | Coalescing binary-systems of compact objects to (post) 5 /2-Newtonian order. IV. The gravitational-wave tail[END_REF], where it is dismissed as a negligible effect). Finally, the expression for the flux, at 4.5PN order, reads A strong check is to observe that the test-mass limit ν → 0 perfectly agrees with the result of linear black-hole perturbation theory [START_REF] Sasaki | Post-Newtonian Expansion of the Ingoing-Wave Regge-Wheeler Function[END_REF][START_REF] Tagoshi | Post-Newtonian expansion of gravitational-waves from a particle in circular orbit around a Schwarzschild black-hole[END_REF][START_REF] Tanaka | Gravitational Waves by a Particle in Circular Orbit around a Schwarzschild Black Hole: 5.5 Post-Newtonian Formula[END_REF][START_REF] Fujita | Gravitational radiation for extreme mass ratio inspirals to the 14th post-Newtonian order[END_REF][START_REF] Fujita | Gravitational Waves from a Particle in Circular Orbits around a Schwarzschild Black Hole to the 22nd Post-Newtonian Order[END_REF]. As usual, the contributions due to the absorption by the black hole horizons should be added separately from the PN result computed here, see [START_REF] Poisson | Gravitational radiation from a particle in circular orbit around a black hole. V. Black-hole absorption and tail corrections[END_REF][START_REF] Tagoshi | Post-Newtonian Expansion of Gravitational Waves from a Particle in Circular Orbits around a Rotating Black Hole[END_REF][START_REF] Alvi | Energy and angular momentum flow into a black hole in a binary[END_REF][START_REF] Porto | Absorption effects due to spin in the worldline approach to black hole dynamics[END_REF][START_REF] Chatziioannou | Tidal heating and torquing of a Kerr black hole to next-to-leading order in the tidal coupling[END_REF][START_REF] Saketh | Modeling horizon absorption in spinning binary black holes using effective worldline theory[END_REF]. Finally, we have explicitly verified that at the 4PN order, (VI.62) can be recovered from the gravitational modes given in Section VI.4 below and in [START_REF] Henry | Complete gravitational-waveform amplitude modes for quasicircular compact binaries to the 3.5PN order[END_REF], using

F = 32c 5 5G ν 2 x 5 1 + - 1247 336 - 35 12 ν x + 4πx
F = c 3 16πG ∞ ℓ=0 ℓ m=-ℓ ḣℓm 2 .
(VI.63)

The new terms we computed vanish for ν = 0, and are maximal for ν = 1/4. As presented in Fig. VI.1, the 4.5PN flux significantly improves the comparison with numerical relativity and second-order self-force near merger for similar mass binaries. This does not seem to be the case for very unequal mass binaries, but for these, the Post-Newtonian expansion of self-force results are known to very high order [START_REF] Sasaki | Post-Newtonian Expansion of the Ingoing-Wave Regge-Wheeler Function[END_REF][START_REF] Tagoshi | Post-Newtonian expansion of gravitational-waves from a particle in circular orbit around a Schwarzschild black-hole[END_REF][START_REF] Tanaka | Gravitational Waves by a Particle in Circular Orbit around a Schwarzschild Black Hole: 5.5 Post-Newtonian Formula[END_REF][START_REF] Fujita | Gravitational radiation for extreme mass ratio inspirals to the 14th post-Newtonian order[END_REF][START_REF] Fujita | Gravitational Waves from a Particle in Circular Orbits around a Schwarzschild Black Hole to the 22nd Post-Newtonian Order[END_REF].

VI.6 The 4.5PN chirp

In this Section and in the next (Section VI.7), we will need to postulate the validity of the energy balance equations dE/dt = -F between the conservative energy E (II.55) and the flux F carried by GWs at future null infinity (VI.62). At 4PN order, we found it necessary to use the expression of the conservative energy (II.55), but where the variable y associated to the orbital frequency is simply replaced by the frequency x associated to the GW. The fact that the left-hand side of the energy equation, which concerns the motion, should be expressed in terms of the same observed GW frequency x as the right-hand side, which concerns the radiation, and not, for instance, in terms of the "orbital" frequency y, is worth an explanation: suppose that the compact binary system is actually a binary pulsar system. Hence, in addition to the GWs generated by the orbital motion, the pulsar emits electromagnetic (radio) waves, also received by the far away observer. Now the observer at infinity can measure the orbital frequency of the system from the instants of arrival of the radio pulses -this is the standard analysis of binary pulsars. Such frequency should be the one to be inserted in the left side of the energy balance equation. However, far from the system, the spacetime curvature R -1 ∼ M/r 3 tends to zero, and therefore the geometric optics or Wentzel-Kramers-Brillouin (WKB) approximation applies for both electromagnetic and gravitational waves. Thus the electromagnetic and gravitational waves follow the same geodesic, independently of their frequency, and in particular are subject to the same tail-induced phase modulation (VI.51). We conclude that the distant observer measures the same frequency x from the electromagnetic radio pulses and from the GW, and this is that frequency that he inserts into both sides of the flux-balance law. 2Using the energy balance equation, we thus obtain the differential equation

dτ dx = νc 3 5Gm dE/dx F(x) (VI.64)
where we have defined the rescaled time variable

τ ≡ νc 3 5Gm t 0 -t . (VI.65)
The t 0 constant of this time variable can be adjusted to account for the integration constant arising from the differential equation. We can then Taylor-expand the right hand side of (VI.64) in small x, and integrate term by term. Keeping for now the integration constant τ 0 arbitrary, we have3 τ = τ 0 + 1 256x 4 In view of inverting this series expansion of τ in terms of x, it will be extremely practical to choose t 0 such that the dimensionless quantity τ -1 is of 4PN order. Indeed, if we limit ourself to the 3.5PN expansion of τ in terms of x, we find that τ admits a finite limit in the x → +∞ limit, namely τ 0 . This uniquely defines a finite time t c = t 0 -5Gmτ 0 /(νc 3 ) at which the frequency formally becomes infinite, and this can thus be interpreted as the coalescence time in the PN sense. Such a constant t c is a valid choice for t 0 , and leads to τ 0 = 0. However, if we include the 4PN terms and higher, the expansion of τ in terms of x now has an infinite limit when x → +∞. Therefore, there still exists a constant such that τ -1 = O(8), but it is not unique anymore, and essentially looses its interpretation of a coalescence time. Therefore, one can always conveniently choose t 0 (or equivalently, τ 0 ) such as to reabsorb the nonlogarithmic 4PN contribution, thus simplifying the result as much as possible: We then Taylor-expand the right-hand side and integrate term by term. We find that at 4PN, the explicit expression of the GW phase reads where the integration constant ψ 0 is determined by initial conditions, e.g., when the wave frequency enters the detector's band.

x = τ -1/
ψ = ψ 0 - x -5/
In order to get intuition on the relative contribution of each PN order to the signal, we provide in Table VI.1 rough numerical estimates for the number of accumulated GW cycles in the frequency band of current and future detectors. Our naive estimation does not take the various detector noises into account, and a more realistic estimation should be performed [START_REF] Arun | Parameter estimation of inspiralling compact binaries using 3.5 post-Newtonian gravitational wave phasing: The Non-spinning case[END_REF]. Nevertheless, it can be useful to gain insight on the behavior of the PN expansion, which seems to converge well, as we see from Table VI.1. For all the typical compact binaries in Table VI.1, we find that the 4PN and 4.5PN orders amount to about a tenth of a cycle (less than 1 radian). This suggests that systematic errors due to the PN modeling may be dominated by statistical errors and negligible for LISA. However, this should be confirmed by detailed investigations along the lines of [START_REF] Owen | Waveform accuracy and systematic uncertainties in current gravitational wave observations[END_REF] Hz and 10 -4 Hz, 10 -1 Hz . When the merger occurs within the frequency band of the detector, the exit frequency is taken to be the Schwarzschild innermost stable circular orbit (ISCO), f ISCO = c 3 /(6 3/2 πGm).

The results hereabove (VI.67) gives the prediction of GR for the GW phase of nonspinning compact binaries up to 4.5PN precision. On the other hand, most of the frameworks for data analysis rely on the phase expressed in Fourier domain (see Section I.4). This can be computed using the stationary phase approximation (SPA) [START_REF] Tichy | Can the postNewtonian gravitational wave form of an inspiraling binary be improved by solving the energy balance equation numerically?[END_REF][START_REF] Buonanno | Comparison of post-Newtonian templates for compact binary inspiral signals in gravitational-wave detectors[END_REF], for which the phase of the dominant quadrupole mode reads where v ≡ πGmF /c 3 1/3 with F being the Fourier frequency, and where T 0 and Ψ 0 are two integration constants. Again we have adjusted T 0 in order to simplify the result (and we have absorbed the usualπ 4 into Ψ 0 ). The coefficients up to 3.5PN, as well as the 4.5PN piece, are already in use; see e.g. Appendix A of [START_REF] Pratten | Setting the cornerstone for a family of models for gravitational waves from compact binaries: The dominant harmonic for nonprecessing quasicircular black holes[END_REF].

ψ SPA = 2πF T 0 + Ψ 0 + 3 v -5 128ν 

Part B

Scalar-tensor theories [START_REF] Foffa | Conservative dynamics of binary systems to fourth Post-Newtonian order in the EFT approach I: Regularized Lagrangian[END_REF] Chapter VII

Gravitational waves in scalar-tensor theories

This chapter is mainly based on [START_REF] Bernard | Gravitational waves in scalar-tensor theory to one-and-a-half post-Newtonian order[END_REF].

The multiple detections of GW events from inspiraling compact binary systems by the LIGO-Virgo observatory has allowed for a new era of GW precision astronomy [START_REF] Abbott | GWTC-2: Compact Binary Coalescences Observed by LIGO and Virgo During the First Half of the Third Observing Run[END_REF]. They have already led to significant progress in a wide range of fields such as relativistic astrophysics, cosmology and fundamental physics. In the future, the space-based LISA observatory coupled to the next generation of ground-based detectors, such as the Einstein Telescope, will help further improve our understanding of the Universe and the fundamental forces that govern it. However, our ability to challenge the current gravitational paradigm, based on GR, strongly relies on the construction of very precise and reliable banks of waveform templates for compact binary systems in various alternative theories.

In order to perform precise tests of GR with compact binary systems, one can either design some theory-dependent tests or remain agnostic on the choice and existence of a preferred theory of gravity. The former option consists in developing complete (inspiralmerger-ringdown) waveforms in a specific theory of gravity, that would complement the bank of GR templates currently being used [START_REF] Khan | Frequency-domain gravitational waves from nonprecessing black-hole binaries. II. A phenomenological model for the advanced detector era[END_REF][START_REF] Bohé | Improved effective-one-body model of spinning, nonprecessing binary black holes for the era of gravitational-wave astrophysics with advanced detectors[END_REF]. Conversely, the latter path uses general formalisms such as the PPN formalism [START_REF] Will | Theory and Experiment in Gravitational Physics[END_REF], the post-Einsteinian formalism [START_REF] Yunes | Fundamental Theoretical Bias in Gravitational Wave Astrophysics and the Parameterized Post-Einsteinian Framework[END_REF][START_REF] Mirshekari | Constraining Generic Lorentz Violation and the Speed of the Graviton with Gravitational Waves[END_REF] and blind tests of PN parameters [START_REF] Blanchet | Signal analysis of gravitational wave tails[END_REF][START_REF] Mishra | Parametrized tests of post-Newtonian theory using Advanced LIGO and Einstein Telescope[END_REF].

In this chapter, we will opt for the first approach and construct gravitational waveforms within the class of scalar-tensor (ST) theories of gravity. These theories were introduced by Jordan [START_REF] Jordan | Schwerkraft und Weltall[END_REF], Fierz [START_REF] Fierz | Über die physikalische Deutung der erweiterten Gravitationstheorie P. Jordans[END_REF], Brans and Dicke [START_REF] Brans | Scalar-tensor theories of gravity: Some personal history, Gravitation and cosmology[END_REF], and later generalized in [START_REF] Nordtvedt | Post-Newtonian metric for a general class of scalar tensor gravitational theories and observational consequences[END_REF][START_REF] Wagoner | Scalar tensor theory and gravitational waves[END_REF]. Since then, they have been extensively studied, both from the theoretical and observational points of view. In particular, binary pulsar observations have already put strong constraints on the parameters entering the models, see [START_REF] Damour | Tensor multiscalar theories of gravitation[END_REF][START_REF] Fujii | The Scalar-Tensor Theory of Gravitation[END_REF][START_REF] De Felice | f(R) theories[END_REF] for reviews. Due to the no-hair theorem in ST theory, valid for stationary isolated black holes [START_REF] Hawking | Black holes in the Brans-Dicke theory of gravitation[END_REF][START_REF] Sotiriou | Black holes in scalar-tensor gravity[END_REF], one expects that the motion and radiation of binary black holes are indistinguishable from those of the GR solution. To some extent, this expectation has been confirmed by numerical relativity calculations [START_REF] Healy | Late Inspiral and Merger of Binary Black Holes in Scalar-Tensor Theories of Gravity[END_REF]. Consequently, relevant theory-dependent tests for ST theory involve binary neutron stars (or more exotic extended compact objects) as well as asymmetrical black hole and neutron star (BH-NS) binaries, such as the ones recently discovered by LIGO-Virgo [START_REF] Abbott | Observation of Gravitational Waves from Two Neutron Star-Black Hole Coalescences[END_REF].

We will focus on the inspiral phase of coalescing binary systems, for which the PN formalism, i.e. an approximation for weak gravitational fields and small orbital velocities, can be applied. Previous results on the PN expansion in ST theories were derived using the effective field theory [START_REF] Damour | Tensor multiscalar theories of gravitation[END_REF][START_REF] Damour | Testing gravity to second post-Newtonian order: A Field theory approach[END_REF] and the Direct Integration of the Relaxed field Equations (DIRE) method [START_REF] Wiseman | Coalescing binary systems of compact objects to (post)5/2 Newtonian order. 2. Higher order wave forms and radiation recoil[END_REF][START_REF] Will | Gravitational radiation from compact binary systems: Gravitational waveforms and energy loss to second post-Newtonian order[END_REF]. The implementation for the matched filtering analysis in the LISA detector was studied in [START_REF] Scharre | Testing scalar tensor gravity using space gravitational wave interferometers[END_REF]. Important previous results include the derivation of the dynamics of compact binaries at 2.5PN beyond Newtonian, i.e. ∼ (v/c) 5 order [START_REF] Mirshekari | Compact binary systems in scalar-tensor gravity: Equations of motion to 2.5 post-Newtonian order[END_REF], as well as the computation of the waveform at 2PN order for the tensor modes [START_REF] Lang | Compact binary systems in scalar-tensor gravity. II. Tensor gravitational waves to second post-Newtonian order[END_REF] and 1.5PN order for the scalar modes [START_REF] Lang | Compact binary systems in scalar-tensor gravity. III. Scalar waves and energy flux[END_REF] (where PN orders with respect to waveforms and fluxes are counted relatively to the quadrupolar emission, which is leading order in GR).

More recently, the equations of motion of compact binaries were computed to 3PN order beyond Newtonian gravity [START_REF] Bernard | Dynamics of compact binary systems in scalar-tensor theories: Equations of motion to the third post-Newtonian order[END_REF][START_REF] Bernard | Dynamics of compact binary systems in scalar-tensor theories: II. Center-of-mass and conserved quantities to 3PN order[END_REF] using the MPM-PN [START_REF] Blanchet | Gravitational Radiation from Post-Newtonian Sources and Inspiralling Compact Binaries[END_REF] coupled to a Fokker Lagrangian approach [START_REF] Bernard | Fokker action of nonspinning compact binaries at the fourth post-Newtonian approximation[END_REF]. Note that at 3PN order in ST theory, the level of difficulty is similar to 4PN order in GR. The result comes with the presence of a new dipolar nonlocal tail term at 3PN order and the need to use a dimensional regularisation scheme to treat both the ultraviolet and infrared divergences. Finally, the 3PN results were complemented by the derivation of the scalar tidal effects to leading order in ST theories, which also arise at 3PN order due to the presence of the scalar dipole [START_REF] Bernard | Dipolar tidal effects in scalar-tensor theories[END_REF].

In the present work, we extend previous results by computing the energy flux to 1.5PN order beyond the quadrupolar radiation in GR (previously, the flux was only known to 1PN order) and we compute for the first time the scalar modes to 1.5PN order. In particular, we include the nonlinear memory effect entering at 1.5PN order associated with the dipole radiation. Recent investigations of the memory effect in ST theory can also be found in [START_REF] Koyama | Testing Brans-Dicke Gravity with Screening by Scalar Gravitational Wave Memory[END_REF][START_REF] Hou | Gravitational memory effects and Bondi-Metzner-Sachs symmetries in scalar-tensor theories[END_REF][START_REF] Seraj | Gravitational breathing memory and dual symmetries[END_REF]. We also treat the dipolar and quadrupolar tail effects which enter respectively at 0.5PN and 1.5PN order. Contrary to the work of Lang [START_REF] Lang | Compact binary systems in scalar-tensor gravity. II. Tensor gravitational waves to second post-Newtonian order[END_REF][START_REF] Lang | Compact binary systems in scalar-tensor gravity. III. Scalar waves and energy flux[END_REF], who uses moments named after Epstein and Wagoner (EW) [START_REF] Epstein | Post-Newtonian generation of gravitational waves[END_REF], we adopt STF definitions for the multipole moments [START_REF] Thorne | Multipole Expansions of Gravitational Radiation[END_REF]. Furthermore, the formalism used in the works [START_REF] Lang | Compact binary systems in scalar-tensor gravity. II. Tensor gravitational waves to second post-Newtonian order[END_REF][START_REF] Lang | Compact binary systems in scalar-tensor gravity. III. Scalar waves and energy flux[END_REF] to tackle nonlinear effects is the DIRE formalism of Will and Wiseman [START_REF] Will | Post-Newtonian gravitational radiation and equations of motion via direct integration of the relaxed Einstein equations. III. Radiation reaction for binary systems with spinning bodies[END_REF], which, although different, was shown to be equivalent to the present MPM-PN formalism [START_REF] Blanchet | Gravitational Radiation from Post-Newtonian Sources and Inspiralling Compact Binaries[END_REF]. Thus, the present chapter provides a necessary alternative derivation of the results found by Lang [START_REF] Lang | Compact binary systems in scalar-tensor gravity. II. Tensor gravitational waves to second post-Newtonian order[END_REF][START_REF] Lang | Compact binary systems in scalar-tensor gravity. III. Scalar waves and energy flux[END_REF], in addition to extending the flux by a half PN order.

The chapter is organized as follows. In Sec VII.1, we define the class of massless scalar-tensor theories we are interested in and derive the corresponding field equations. In Section VII.2, we adapt the MPM formalism to the case of ST theories, focusing in particular on the memory and tail effects. Then, in Section VII.3, we apply this formalism to the specific case of compact binaries, obtain the explicit expressions of the source moments and energy fluxes, and compare them with the literature. In Section VII.4, we reduce our results to the case of quasicircular orbits, giving the fluxes and the orbital phase evolution for dipolar-driven systems. Finally, in Section VII.5, we compute for the first time the scalar modes, together with the previously known gravitational modes. Comparisons with recent numerical results [START_REF] Ma | Numerical simulations of black hole-neutron star mergers in scalar-tensor gravity[END_REF] are presented in Section VII.6. Explicit expressions for dissipative terms in the equations of motion are also given for the first time in Appendix B.1; long results concerning the multipole moments are displayed in Appendix B.2 (including transformation formulas between EW and STF moments); and the very long expression of the instantaneous scalar flux is relegated to Appendix B. [START_REF] Trestini | The quadrupole moment of compact binaries to the fourth post-Newtonian order: relating the harmonic and radiative metrics[END_REF].

In order to later present our results, following [START_REF] Bernard | Dynamics of compact binary systems in scalar-tensor theories: Equations of motion to the third post-Newtonian order[END_REF], we introduce a number of ST and PN parameters. The ST parameters are defined based on the value ϕ 0 of the scalar field ϕ at spatial infinity, on the Brans-Dicke-like scalar function ω(ϕ) and on the mass-functions m A (ϕ). We pose φ ≡ ϕ/ϕ 0 . The PN parameters naturally extend and generalize the usual PPN parameters to the case of a general ST theory [START_REF] Will | Conservation laws and preferred frames in relativistic gravity. I. Preferred-frame theories and an extended PPN formalism[END_REF][START_REF] Will | Theory and Experiment in Gravitational Physics[END_REF]. All these parameters are given and summarized in the following Table VII.1.

ST parameters

general ω 0 = ω(ϕ 0 ), ω ′ 0 = dω dϕ ϕ=ϕ0 , ω ′′ 0 = d 2 ω dϕ 2 ϕ=ϕ0 , φ = ϕ ϕ0 , gµν = φ g µν , G = G(4+2ω0) ϕ0(3+2ω0) , ζ = 1 4+2ω0 , λ 1 = ζ 2 (1-ζ) dω dφ φ=1 , λ 2 = ζ 3 (1-ζ) d 2 ω dφ 2 φ=1 , λ 3 = ζ 4 (1-ζ) d 3 ω dφ 3 φ=1
.

1 ↔ 2 switches the particle's labels (note the index on the λ i 's in not a particle label)

sensitivities s A = d ln m A (ϕ) d ln ϕ ϕ=ϕ0
, s

(k) A = d k+1 ln m A (ϕ) d(ln ϕ) k+1 ϕ=ϕ0 , (A = 1, 2) s ′ A = s (1) A , s ′′ A = s (2) A , s ′′′ A = s (3) A , S + = 1-s1-s2 √ α , S -= s2-s1 √ α . Order PN parameters N α = 1 -ζ + ζ (1 -2s 1 ) (1 -2s 2 ) 1PN γ = -2ζ α (1 -2s 1 ) (1 -2s 2 ) , Degeneracy β 1 = ζ α 2 (1 -2s 2 ) 2 (λ 1 (1 -2s 1 ) + 2ζs ′ 1 ) , α(2 + γ) = 2(1 -ζ) β 2 = ζ α 2 (1 -2s 1 ) 2 (λ 1 (1 -2s 2 ) + 2ζs ′ 2 ) , β + = β 1 +β 2 2 , β -= β 1 -β 2 2 . 2PN δ 1 = ζ(1-ζ) α 2 (1 -2s 1 ) 2 , δ 2 = ζ(1-ζ) α 2 (1 -2s 2 ) 2 , Degeneracy δ + = δ1+δ2 2 , δ -= δ1-δ2 2 , 16δ 1 δ 2 = γ 2 (2 + γ) 2 χ 1 = ζ α 3 (1 -2s 2 ) 3 λ 2 -4λ 2 1 + ζλ 1 (1 -2s 1 ) -6ζλ 1 s ′ 1 + 2ζ 2 s ′′ 1 , χ 2 = ζ α 3 (1 -2s 1 ) 3 λ 2 -4λ 2 1 + ζλ 1 (1 -2s 2 ) -6ζλ 1 s ′ 2 + 2ζ 2 s ′′ 2 , χ + = χ 1 +χ 2 2 , χ -= χ 1 -χ 2 2 .
Table VII.1: Summary of parameters for the general ST theory and our notation for PN parameters.

VII.1 Massless scalar-tensor theories

We consider a generic class of scalar-tensor theories in which a single massless scalar field ϕ minimally couples to the metric g µν . It is described by the action

S ST = c 3 16πG d 4 x √ -g ϕR - ω(ϕ) ϕ g αβ ∂ α ϕ∂ β ϕ + S m (m, g αβ ) , (VII.1)
where R and g are respectively the Ricci scalar and the determinant of the metric, ω is a function of the scalar field and m stands generically for the matter fields. The action for the matter S m is a function only of the matter fields and the metric. A major difference in scalar-tensor theories compared to GR is that, as a consequence of the breaking of the strong equivalence principle, we have to take into account the internal gravity of each body. Indeed, the scalar field determines the effective gravitational constant, which in turn affects the competition between gravitational and nongravitational forces within the body (see the discussion in Section I.2.3). Thus, the value of the scalar field has an indirect influence on the size of the compact body and on its internal gravity. Here, we follow the approach pioneered by Eardley [START_REF] Eardley | Observable effects of a scalar gravitational field in a binary pulsar[END_REF] (see also [START_REF] Nordtvedt | Ġ/G and a cosmological acceleration of gravitationally compact bodies[END_REF]) and we take for S m the effective action for N nonspinning point-particles with the masses m A (ϕ) depending in an unspecified manner on the value of the scalar field at the location of the particles, i.e.

S m = -c A m A (ϕ) -(g αβ ) A dy α A dy β A , (VII.2)
where y α A denote the spacetime positions of the particles, and (g αβ ) A is the metric evaluated at the position of particle A. Thus, the matter action depends indirectly on the scalar field, and we define the sensitivities of the particles to variations in the scalar field by

s A ≡ d ln m A (ϕ) d ln ϕ ϕ=ϕ 0 , s (k) A ≡ d k+1 ln m A (ϕ) d(ln ϕ) k+1 ϕ=ϕ 0 for k ⩾ 2 , (VII.3)
where ϕ 0 is the value of the scalar field at spatial infinity that is assumed to be constant in time, i.e. we neglect the cosmological evolution. Since we expand systematically around the asymptotic value of the scalar field, we can account both for nonscalarized stars and scalarized stars with constant scalar charge [START_REF] Damour | Nonperturbative strong field effects in tensorscalar theories of gravitation[END_REF][START_REF] Palenzuela | Dynamical scalarization of neutron stars in scalar-tensor gravity theories[END_REF]. The sensitivity of neutron stars depends on the mass and internal equation of state. In the weak-field limit, s A is proportional to the gravitational energy per unit mass of the body and is of order 0.2. For stationary black holes, since all information regarding the matter which formed the black hole has disappeared behind the horizon, the mass can depend only on the Planck scale,

m A ∝ M Planck ∝ G -1/2 ∝ ϕ 1/2 hence s BH A = 1 2 .
In this work, we will assume that s BH A = 1 2 for each of the black holes in a binary system and check that all our PN results will be indistinguishable from GR in the case of binary black holes (BBHs).

The action (VII.1) is usually called the "metric" or "Jordan"-frame action, as the matter only couples to the Jordan or "physical" metric g αβ . Then, we define the rescaled scalar field and the conformally related metric as

φ ≡ ϕ ϕ 0 , gαβ ≡ φ g αβ , (VII.4)
so that the physical and conformal metrics have the same asymptotic behavior at spatial infinity. In terms of these new variables, the action (VII.1) can be rewritten as

S GF ST = c 3 ϕ 0 16πG d 4 x -g R - 1 2 gµν Γµ Γν - 3 + 2ω(ϕ) 2φ 2 gαβ ∂ α φ∂ β φ + S m (m, g αβ ) ,
(VII.5) where we have inserted the harmonic gauge-fixing (GF) term - 1 2 gµν Γµ Γν associated with the conformal metric, with Γµ ≡ gρσ Γµ ρσ and Γµ ρσ the Christoffel symbols of that metric, and R the associated Ricci scalar. As the scalar field is now minimally coupled to the conformal or "Einstein" metric, the action (VII.5) is called the "Einstein"-frame action. We will perform most of our computations in this frame and go back to the physical metric only in the end when computing observable quantities.

Next, we define the scalar and metric perturbation variables ψ ≡ φ -1 and h µν ≡ gµν -η µν where η µν ≡ diag(-1, 1, 1, 1) is the Minkowski metric and gµν ≡ √ -gg µν is the conformal gothic metric. Then, the field equations derived from the harmonic gauge-fixed action (VII.5) read

□ η h µν = 16πG c 4 τ µν , (VII.6a) □ η ψ = - 8πG c 4 τ s , (VII.6b)
where □ η denotes the ordinary flat spacetime d'Alembert operator, and where the source terms read

τ µν = φ ϕ 0 |g|T µν + c 4 16πG
Λ µν , (VII.7a)

τ s = - φ ϕ 0 (3 + 2ω) √ -g T -2φ ∂T ∂φ - c 4 8πG Λ s . (VII.7b)
Here T µν = 2(-g) -1/2 δS m /δg µν is the matter stress-energy tensor, T ≡ g µν T µν and ∂T /∂φ is defined as the partial derivative of T (g µν , φ) holding g µν constant. The nonlinearities in the scalar source read

Λ s = -h αβ ∂ α ∂ β ψ -∂ α ψ∂ β h αβ + 1 φ - ϕ 0 ω ′ (ϕ) 3 + 2ω(ϕ) gαβ ∂ α ψ∂ β ψ . (VII.8)
We write the tensor source as Λ µν = Λ µν LL + Λ µν H + Λ µν GF + Λ µν ϕ , where Λ µν LL is the Landau-Lifshitz pseudo-energy tensor [START_REF] Landau | The classical theory of fields[END_REF], Λ µν H comes from our use of the flat version of the d'Alembert operator in (VII.6), Λ µν GF is due to the gauge-fixing term in the action and Λ µν ϕ is sourced by the scalar field. Note that Λ µν GR = Λ µν LL + Λ µν H + Λ µν GF will take the same form as in GR. The expressions of these source terms are given by

Λ αβ LL = 1 2 gαβ gµν ∂ λ h µγ ∂ γ h νλ -gαµ gνγ ∂ λ h βγ ∂ µ h νλ -gβµ gνγ ∂ λ h αγ ∂ µ h νλ + gµν gλγ ∂ λ h αµ ∂ γ h βν + 1 8 2g αµ gβν -gαβ gµν (2g λγ gτπ -gγτ gλπ ) ∂ µ h λπ ∂ ν h γτ , (VII.9a) Λ αβ H = -h µν ∂ µ ∂ ν h αβ + ∂ µ h αν ∂ ν h βµ , (VII.9b) Λ αβ GF = -∂ λ h λα ∂ σ h σβ -∂ λ h λρ ∂ ρ h αβ - 1 2 gαβ gρσ ∂ λ h λρ ∂ γ h γσ + 2g ρσ gλ(α ∂ λ h β)ρ ∂ γ h γσ , (VII.9c) Λ µν ϕ = 3 + 2ω(ϕ) φ 2 gµα gνβ - 1 2 gµν gαβ ∂ α ψ∂ β ψ . (VII.9d)
Note that the gauge-fixing term (VII.9c) contains the harmonicities ∂ ν h µν which are not zero off-shell, i.e. when the accelerations are not replaced by the equations of motion. However, this term will ensure that, on-shell, our results are in harmonic coordinates.

VII.2

The Multipolar PM formalism in scalar-tensor theories VII.2.1 The scalar-tensor multipole moments

In this section, we solve the ST vacuum field equations, □h µν = Λ µν and □ψ = Λ s , in the exterior region of the isolated matter system by means of a multipolar decomposition (indicated by M) conjointly with a nonlinear PM expansion [START_REF] Blanchet | Radiative gravitational fields in general relativity. I. general structure of the field outside the source[END_REF]. Thus, the solution is written as

h µν ext ≡ M(h µν ) = Gh µν 1 + G 2 h µν 2 + O(G 3
) , (VII.10a)

ψ ext ≡ M(ψ) = Gψ 1 + G 2 ψ 2 + O(G 3 ) . (VII.10b)
The multipolar expansion is entirely specified by the most general expressions for the multipolar decomposition of the linear coefficients h µν 1 and ψ 1 . Starting with the tensor coefficient h µν 1 which satisfies the vacuum equations, □h µν 1 = ∂ ν h µν 1 = 0, we adopt the same definition of multipole moments as in GR, i.e. we follow Section II.2.1 and we write the most general solution in harmonic coordinates as

h µν 1 = k µν 1 + ∂ µ φ µν 1 , (VII.11)
where the gauge vector φ µ 1 obeys □φ µ 1 = 0, and where k µν 1 takes a "canonical" form [START_REF] Thorne | Multipole Expansions of Gravitational Radiation[END_REF] in terms of two sets of source multipole moments I L (u) (mass type) and J L (u) (current type), with u ≡ t -r/c. The moments I L and J L are STF with respect to the ℓ indices composing L. We pose

k 00 1 = - 4 c 2 ∞ ℓ=0 (-) ℓ ℓ! ∂ L I L (u) r , (VII.12a) k 0i 1 = 4 c 3 ∞ ℓ=1 (-) ℓ ℓ! ∂ L-1 1 r I (1) iL-1 (u) + ℓ ℓ + 1 ∂ aL-1 1 r ϵ iab J bL-1 (u) , (VII.12b) k ij 1 = - 4 c 4 ∞ ℓ=2 (-) ℓ ℓ! ∂ L-2 1 r I (2) ijL-2 (u) + 2ℓ ℓ + 1 ∂ aL-2 1 r ϵ ab(i J (1) j)bL-2 (u) . (VII.12c)
The moments are defined in such a way that they reduce to the familiar expressions of the Newtonian moments at leading order [START_REF] Thorne | Multipole Expansions of Gravitational Radiation[END_REF]. The lowest monopolar and dipolar moments satisfy the usual conservation laws dI/dt = 0, d 2 I i /dt 2 = 0 and dJ i /dt = 0, which are consequences of the harmonic gauge condition ∂ ν k µν 1 = 0. In particular, the monopole I is directly related to the total conserved mass M of the system, defined in the usual way at spatial infinity (for either the physical or Einstein metric) by I = M/ϕ 0 . 1 The linear gauge vector φ µ in (VII.11) similarly admits a decomposition in terms of four gauge moments, W L , X L , Y L and Z L , adopting the same definition as in GR, as given by (II.18).

To obtain the expressions of the moments I L , J L (and also W L , X L , Y L and Z L ) as functions of the source, the procedure is essentially the same as in GR. The multipole 1 Indeed, from □ h µν = 16πG c 4 τ µν we infer that h 00 = -4GI c 2 + • • • where I = c -2 d 3 x τ 00 . For a system of point masses which are initially in free motion (when t → -∞), the total mass is given by M = A mA, while from (VII.7a) we see that at spatial infinity τ 00 = T 00 /ϕ0 = c 2 A mAδA/ϕ0, hence we have I = M/ϕ0. expansion of h µν (noted M(h µν ), as in Section II.2.1) is obtained by matching it to the PN expansion in the near zone of the source along the lines of Section II. 2.3 and [261]:

M(h µν ) = FP B=0 □ -1 ret rB M(Λ µν ) - 4G c 4 ∞ ℓ=0 (-) ℓ ℓ! ∂ L F µν L (u) r . (VII.13a)
The first term is a particular solution of the wave equation, defined using a retarded d'Alembertian and a finite part regularization procedure as in Section II.2.1. The second term in (VII.13a) represents a homogeneous retarded solution parametrized by the multipole moment function (STF in its indices L)

F µν L (u) = FP B=0 d 3 x rB xL 1 -1 dz δ ℓ (z) τ µν (x, u + zr/c) , (VII.13b)
where δ ℓ (z) is defined in (II.38). Following the notation of [START_REF] Blanchet | Gravitational Radiation from Post-Newtonian Sources and Inspiralling Compact Binaries[END_REF], the function F µν L (u) is expressed in full generality in terms of the PN expansion τ µν of the pseudo-tensor τ µν defined in (VII.7a). From the result (VII.13a), we can identify the linearized piece Gh µν 1 in (VII.10a) as being essentially given by the second term in (VII.13a). However, the situation is more complicated because one also has to take into account the harmonic gauge condition which is not satisfied separately by the second term in (VII.13a). In the end, the source moments follow from the irreducible decomposition of the spacetime components F µν L (u). Defining Σ ≡ (τ 00 + τ ii )/c 2 , Σ i ≡ τ 0i /c and Σ ij ≡ τ ij , we get

I L (u) = FP B=0 d 3 x rB 1 -1 dz δ ℓ (z)x L Σ - 4(2ℓ + 1) c 2 (ℓ + 1)(2ℓ + 3) δ ℓ+1 (z)x iL Σ (1) i + 2(2ℓ + 1) c 4 (ℓ + 1)(ℓ + 2)(2ℓ + 5) δ ℓ+2 (z)x ijL Σ (2) ij (x, u + zr/c) , (VII.14a) J L (u) = FP B=0 d 3 x rB 1 -1 dz ϵ ab⟨i ℓ δ ℓ (z)x L-1⟩a Σ b - 2ℓ + 1 c 2 (ℓ + 2)(2ℓ + 3) δ ℓ+1 (z)x L-1⟩ac Σ (1) 
bc (x, u + zr/c) .

(VII.14b)

These expressions are formally identical as those in GR, but of course in ST theory the source terms Σ, Σ i and Σ ij depend on the scalar field through (VII.9). Similarly, the gauge moments' expressions are formally identical to the GR case and are given by ( 125) of [START_REF] Blanchet | Gravitational Radiation from Post-Newtonian Sources and Inspiralling Compact Binaries[END_REF].

Next, in ST theory, the scalar field brings, in addition to I L (u) and J L (u), a new set of multipole moments which we call I s L (u), also chosen to be STF. Finding their expression is simpler than in GR (we do not need a correction due to the gauge condition) and the linear piece Gψ 1 can be directly identified from the multipole expansion of ψ. We find

M(ψ) = FP B=0 □ -1 ret rB M(Λ s ) + Gψ 1 , (VII.15a) with ψ 1 = - 2 c 2 ∞ ℓ=0 (-) ℓ ℓ! ∂ L I s L (u) r . (VII.15b)
Similarly to the GR case, the scalar moments are obtained in closed form and we have, defining Σ s ≡ -τ s /c 2 ,

I s L (u) = FP B=0 d 3 x rB 1 -1 dz δ ℓ (z) xL Σ s (x, u + zr/c) . (VII.16)
Note that in contrast to the tensor monopole I, the scalar monopole I s is not constant but its time-variation will be a PN effect, i.e. dI s /dt = O(c -2 ). Later, we will define

I s (u) = ϕ -1 0 [m s + 1 c 2 E s (u)]
where m s is constant and E s (u) is the time-varying PN correction, see (VII.39).

VII.2.2 Memory and tail effects in ST theory

Once the vacuum linearized solutions (VII.12) and (VII.15b) are obtained, with explicit expressions for the multipole moments as integrals over the PN expansions of τ µν and τ s , the nonlinear contributions can be computed by adapting to ST theories the MPM algorithm of [START_REF] Blanchet | Radiative gravitational fields in general relativity. I. general structure of the field outside the source[END_REF]. In the following, we will focus our discussion on the new effects specific to ST theories but at the end, we will give the complete nonlinear contributions needed to control the waveform to 1.5PN order beyond the quadrupole radiation of GR.

We saw that in GR, the nonlinear memory [START_REF] Christodoulou | Nonlinear nature of gravitation and gravitational-wave experiments[END_REF][START_REF] Thorne | Gravitational-wave bursts with memory: The Christodoulou effect[END_REF][START_REF] Blanchet | Hereditary effects in gravitational radiation[END_REF][START_REF] Wiseman | Christodoulou's nonlinear gravitational wave memory: Evaluation in the quadrupole approximation[END_REF] is a nonlocal effect due to the radiation of linear waves by the stress-energy tensor, dominantly associated with the mass quadrupole moment, which appears at 2.5PN in the waveform (VI.18). In ST theory, there is a new type of memory effect associated with the scalar dipole radiation that comes from the quadratic interaction between two scalar dipole moments, say I s i × I s j . As we shall see, such an effect arises at 1.5PN order in the waveform. For the dipole radiation, the linear approximation to the scalar field given by (VII.15b) reads (with c = G = 1)

ψ 1 I s i = -2∂ i I s i (u) r = 2n i r -1 (1) 
I s i (u) + r -2 I s i (u) .

(VII.17)

The equation we need to adapt the MPM algorithm of Section II.2.1 and solve for the quadratic interaction I s i × I s j , including the nonlinear memory effect, is 2

□h µν 2 I s i ×I s j = Λ µν 2 I s i ×I s j , (VII.18a) with Λ µν 2 I s i ×I s j ≡ (3 + 2ω 0 ) η µρ η νσ - 1 2 η µν η ρσ ∂ ρ ψ 1 ∂ σ ψ 1 I s i ×I s j , (VII.18b)
where the source term has been obtained from (VII.9d). Following the MPM algorithm, we shall obtain the solution of this equation, together with the harmonic coordinate condition, by the usual construction described in Section II.2.1, which here reads

h µν 2 I s i ×I s j = u µν 2 + v µν 2 I s i ×I s j , (VII.19a
) 2 The memory effect arises only in the tensor part h µν 2 and not in the scalar part ψ2, though there will be a local (i.e. not hereditary) contribution in the scalar field due to the interaction I s i × I s j , see (VII.38a) below.

where we define a usual w µ 2 = ∂ ν u µν 2 and

u µν 2 I s i ×I s j = FP B=0 □ -1 ret rB Λ µν 2 I s i ×I s j , (VII.19b) v µν 2 I s i ×I s j = V µν w 2 I s i ×I s j . (VII.19c)
We recall that the divergence of the particular solution u µν 2 comes only from the differentiation of the regularization factor rB (since the source term obeys ∂ ν Λ µν 2 = 0), hence

w µ 2 I s i ×I s j = FP B=0 □ -1 ret B rB n i r Λ µi 2 I s i ×I s j . (VII.19d)
Due to the presence of the explicit factor B, we only have to look at the pole ∝ 1/B coming from the integration. It turns out that, even without having controlled the full u µν 2 before, the result (VII.19d) is very simple to compute. Inserting the source term (VII.18b) computed with (VII.17), and integrating by means of (A18) of [START_REF] Blanchet | Quadrupole-quadrupole gravitational waves[END_REF], we get, to the leading 1/r order when r → +∞,

w 0 2 I s i ×I s j = 3 + 2ω 0 r - 4 3 (2) 
I s i (2) 
I s i + d du 4 3 (1) 
I s i (2) I s i - 8 9 I s i (3) 
I s i + O 1 r 2 , (VII.20) w i 2 I s i ×I s j = 3 + 2ω 0 r d du 4 9 n i I s j (3) 
I s j + 8 9 n j I s j (3) 
I s i - 4 9 n j I s i (3) I s j + O 1 r 2 . (VII.21)
Applying the MPM harmonicity algorithm, or rather, its version at leading order 1/r explained in Appendix B of [START_REF] Blanchet | Quadrupole-quadrupole gravitational waves[END_REF], and keeping only the nonlocal (hereditary) terms (we shall add all instantaneous terms in the end results below), we get

v 00 2 I s i ×I s j = 3 + 2ω 0 r 4 3 +∞ 0 dτ (2) 
I s i (2) I s i (u -τ ) + "inst." + O 1 r 2 , (VII.22)
while v 0i 2 and v ij 2 are purely instantaneous. The term (VII.22) has the form of a mass correction, and taking into account k 00 1 = -4I/r + • • • together with the link I = M/ϕ 0 , where M is the constant total mass-energy, we obtain the Bondi-type mass taking into account radiation loss as

M B (u) = M - (3 + 2ω 0 ) ϕ 0 3 +∞ 0 dτ (2) 
I s i (2) I s i (u -τ ) , (VII.23)
which implies the standard dipolar mass law in ST theory, as given for instance by [START_REF] Blanchet | Gravitational waves from compact binaries to the fourth post-Newtonian order[END_REF] in [START_REF] Bernard | Dipolar tidal effects in scalar-tensor theories[END_REF].

Let us now consider the piece u µν 2 defined by (VII.19b), and look for nonlocal effects therein. For any wave equation whose source term is made of quadratic products of linear waves, like (VII.17), we know that the nonlocal terms arise only from the coefficient 1/r 2 in the source, see the proof in [START_REF] Blanchet | Quadrupole-quadrupole gravitational waves[END_REF]. For the dipolar waves, this takes the form of the stress-energy tensor of massless radiation, namely

Λ µν 2 = k µ k ν r 2 σ(u, n) + O 1 r 3 , (VII.24)
where k µ = (1, n i ) is the Minkowski null vector and the energy density in the dipolar wave is given by σ(u, n)

I s i ×I s j = 4 (3 + 2ω 0 ) n i n j (2) 
I s i (u) (2) 
I s j (u) .

(VII.25)

Thus, the energy distribution in the dipolar waves is

dE wave dΩ = ϕ 0 16π +∞ 0 dτ σ(u -τ, n) , (VII.26)
with the total energy in the waves given by ∆E wave ≡ dΩ dE wave dΩ = M -M B . As we have already mentioned, the only hereditary contributions in u µν 2 comes from the piece (VII.24). At this stage, it is convenient to perform a gauge transformation with gauge vector [START_REF] Blanchet | Radiative gravitational fields in general relativity. II. Asymptotic behaviour at future null infinity[END_REF] 

ζ µ 2 ≡ FP B=0 □ -1 ret rB k µ 2r 2 +∞ 0 dτ σ(u -τ, n) . (VII.27) Posing u ′ µν 2 = u µν 2 +∂ µ ζ ν 2 +∂ ν ζ µ 2 -η µν ∂ ρ ζ ρ
h ′ µν 2 = 1 r +∞ 0 dτ H µν 2 (u -τ, n) + "inst." + O 1 r 2 , (VII.28)
where the nonlocal contributions read

H 00 2 I s i ×I s j = 2 (3 + 2ω 0 ) 3 (2) 
I s i (2)
I s i , (VII.29a)

H 0i 2 I s i ×I s j = 2 (3 + 2ω 0 ) 3 n ijk (2) I s j (2) I s k + n i (2) I s j (2) I s j -n j (2) 
I s i (2)
I s j , (VII.29b)

H ij 2 I s i ×I s j = (3 + 2ω 0 ) n ijkl (2) I s k (2) I s l + 1 3 n ij (2) I s k (2) I s k - 1 3 δ ij n kl (2) I s k (2) I s l - 2 3 
(2)

I s i (2) I s j + 1 3 δ ij (2) I s k (2) I s k . (VII.29c)
It is then straightforward to see that this amounts to a correction in the observable radiative quadrupole moment (defined in (VII.34) below) due to the dipolar memory effect as given by

δU memory ij I s i ×I s j = 3 + 2ω 0 3 +∞ 0 dτ (2) 
I s ⟨i (2) 
I s j⟩ (u -τ ) .

(VII.30)

Focusing now on the dipolar tail effect, it arises from the quadratic interaction between the conserved gravitational monopole I = M/ϕ 0 and the scalar dipole moment I s i (u). At second order, we have to solve, for this particular interaction I × I s j , using (VII.8) and (VII.17),

□ψ 2 I×I s j = 8I r 2 n i (3) I s i (u) + O 1 r 3 . (VII.31)
Using (A8b) in [START_REF] Blanchet | Quadrupole-quadrupole gravitational waves[END_REF], we obtain

ψ tail 2 I×I s j = 4I r n i +∞ 0 dτ (3) 
I s i (u -τ ) ln cτ 2r + "inst." + O 1 r 2 . (VII.32)
Finally, we present the complete results for the observable radiative moments including memory and tail contributions up to the 1.5PN order, as well as all instantaneous terms. We introduce a radiative-type coordinate system (T, R), with U ≡ T -R/c being an asymptotically null coordinate such that

U = u - 2GI c 3 ln r b 0 + O 1 r , (VII.33)
where I is the mass monopole moment and b 0 is as usual an arbitrary constant length scale. Then, we denote U L , V L and U s L the radiative moments and parametrize the asymptotic TT tensorial waveform and the scalar waveform in the radiative coordinate system at leading order 1/R in the distance. We have3 

h TT ij = - 4G c 2 R ⊥ TT ijab ∞ ℓ=2 1 c ℓ ℓ! N L-2 U abL-2 (U ) - 2ℓ c(ℓ + 1) N cL-2 ϵ cd(a V b)dL-2 (U ) + O 1 R 2 , (VII.34a) ψ = - 2G c 2 R ∞ ℓ=0 1 c ℓ ℓ! N L U s L (U ) + O 1 R 2 , (VII.34b)
where ⊥ TT ijab is defined in (I.18). Since the matter fields are minimally coupled to the physical metric g µν = φ -1 gµν , the GW detector will respond to the tidal field associated with the physical metric, i.e. the linearized Riemann tensor of the physical metric. Thus, the separation vector between the entry and end mirrors of one arm of a laserinterferometric detector will obey the standard GR law at linear order, ξ = c 2 R lin 0i0j ξ j , but with the Riemann tensor being in ST theory related to both the tensorial and scalar waveforms (VII.34). We have, see [START_REF] De Laplace | Traité de mécanique céleste[END_REF] of [START_REF] Sennett | Gravitational waveforms in scalar-tensor gravity at 2PN relative order[END_REF],

c 2 R lin 0i0j = 1 2 ḧTT ij + 1 2 ⊥ ij ψ , (VII.35)
showing explicitly the decomposition of the detector's response into tensorial and scalar modes, see (I.22). We now present the results for the radiative type moments. The tensorial and scalar fluxes F and F s are deduced in terms of them directly from the waveforms (VII.34) as

F = c 3 R 2 ϕ 0 32πG dΩ ∂h TT ij ∂U 2 (VII.36a) = ∞ ℓ=2 Gϕ 0 c 2ℓ+1 (ℓ + 1)(ℓ + 2) (ℓ -1)ℓℓ!(2ℓ + 1)!! (1) U L (1) U L + 4ℓ(ℓ + 2) c 2 (ℓ -1)(ℓ + 1)!(2ℓ + 1)!! (1) V L (1) V L , F s = c 3 R 2 ϕ 0 (3 + 2ω 0 ) 16πG dΩ ∂Ψ ∂U 2 = ∞ ℓ=0 Gϕ 0 (3 + 2ω 0 ) c 2ℓ+1 ℓ!(2ℓ + 1)!! (1) U s L (1) U s L . (VII.36b)
To 1.5PN order, only the mass quadrupole radiative moment differs from its twicedifferentiated source counterpart,

U ij = (2) 
I ij + 2GM ϕ 0 c 3 +∞ 0 dτ (4) 
I ij (U -τ ) ln cτ 2b 0 + 11 12 
+ G (3 + 2ω 0 ) 3c 3 +∞ 0 dτ (2) 
I s ⟨i (2) 
I s j⟩ (U -τ ) -I s ⟨i (3) 
I s j⟩ -

I s ⟨i (1) 
I s j⟩ -

1 2 I s (3) I s ij + O 1 c 5 . (VII.37)
The difference from [START_REF] Bernard | Gravitational waves in scalar-tensor theory to one-and-a-half post-Newtonian order[END_REF] I ij is made of two contributions, both of them being at 1.5PN order:

(i) the usual mass quadrupole tail correction in GR, see (VI.17), with the usual instantaneous term with coefficient 11/12, except that the mass monopole I therein is related to the constant total mass-energy by I = M/ϕ 0 ;

(ii) the dipolar memory effect found in (VII. [START_REF] Einstein | Erklärung der Perihelbewegung des Merkur aus der allgemeinen Relativitätstheorie[END_REF], to which we have added the corresponding instantaneous contributions obtained by a detailed calculation.

In addition, we find that for the ST waveform at 1.5PN order, the radiative type scalar monopole, dipole and quadrupole moments acquire some important tail contributions, namely

U s = I s + 2GM ϕ 2 0 c 5 +∞ 0 dτ (2) E s (U -τ ) ln cτ 2b 0 + G c 5 1 - ϕ 0 ω ′ 0 3 + 2ω 0 2 9 I s k (3) I s k -2I s (1) E s ϕ 0 + O 1 c 7 , (VII.38a) U s i = (1) 
I s i + 2GM ϕ 0 c 3 +∞ 0 dτ (3) 
I s i (U -τ ) ln cτ 2b 0 + 1 + G c 5 - 1 5 
(1)

I s k (3) I ik - 1 5 
(2)

I s k (2) I ik + 3 5 (3) 
I s k (1)

I ik + 3 5 (4) 
I s k I ik -ϵ iab J a (3) I s b -4 (1) 
W

I s i -4 (2) 
W

I s i + 4I s (2) Y i + 1 - ϕ 0 ω ′ 0 3 + 2ω 0 -2 (1) 
E s ϕ 0

I s i -2 (1) 
E s ϕ 0 I s i + (2) 
(3)

I s k (1) I s ik + 2 5 (4) 
I s k I s ik + O 1 c 7 , (VII.38b) U s ij = (2) 
I s ij + 2GM ϕ 0 c 3 +∞ 0 dτ (4) 
I s ij (U -τ ) ln cτ 2b 0 + 3 2 - G c 3 I s (3) I ij + O 1 c 5 . (VII.38c)
In these expressions we have conveniently posed, recalling the definition of the sensitivity parameters (VII.3),

I s (u) = 1 ϕ 0 m s + E s (u) c 2 , (VII.39a) with m s = - 1 3 + 2ω 0 A m A 1 -2s A . (VII.39b)
The Newtonian value m s in the limit c → ∞ is constant and represents the total "scalar charge" of the system; m s is zero for binary black holes. We can already make a few observations on (VII.38). First, these expressions are valid in the frame of the center-of-mass (CM) of the system defined by I i = 0. Then, we notice the coupling between the tensorial moments and the scalar ones through some instantaneous terms in U s i and U s ij . Finally, in U s i , the gauge moments W and Y i coming from the tensorial sector, see (VII.11), appear and are coupled to the scalar mass monopole and dipole. In GR the gauge moments do not contribute to the waveform before the 2.5PN order while in ST theory they already contribute to the flux at 1.5PN order and to the scalar waveform at 2PN order. Besides (VII.38), all other radiative moments are linearly related to the source moments via the usual formulas, e.g. U s L = d ℓ I s L /dU ℓ .

VII.3 The scalar-tensor multipole moments and flux of compact binaries

Now that the general formalism has been laid out, we apply it to the case of a nonspinning compact binary system to compute the source multipole moments, and subsequently, the radiative ones. Consistently with the general formulas presented in the previous section, we focus on the ST fluxes at 1.5PN order beyond general relativistic quadrupole formula (i.e. 2.5PN beyond the leading dipolar order of ST theories). For two pointparticles of masses m A (ϕ), the stress-energy tensor deriving from (VII.2) reads

T µν (t, x) = A=1,2 m A (ϕ) v µ A v ν A -(g αβ ) A v α A v β A c 2 δ A √ -g . (VII.40)
From the explicit dependence of the stress-energy tensor on the scalar field through the masses we obtain

T -2φ ∂T ∂φ = -c A=1,2 m A 1 -2s A -(g αβ ) A v α A v β A δ A √ -g . (VII.41)
Next, we define the following compact support source densities

4 σ = 1 ϕ 0 φ 3 T 00 + T ii c 2 , σ i = 1 ϕ 0 φ 3 T 0i c , σ ij = 1 ϕ 0 φ 3 T ij , (VII.42a) σ s = - 1 c 2 ϕ 0 √ -g (3 + 2ω 0 ) (3 + 2ω) T -2φ ∂T ∂φ . (VII.42b)
At 1.5PN order, we parametrize the metric and scalar perturbation fields as

h 00 = - 4 c 2 V - 2 c 4 Ŵ + 4V 2 + O 1 c 6 , (VII.43a) h 0i = - 4 c 3 V i + O 1 c 5 , (VII.43b) h ij = - 4 c 4 Ŵij - 1 2 δ ij Ŵ + O 1 c 6 , (VII.43c) ψ = - 2 c 2 ψ (0) + 2 c 4 1 - ω ′ 0 ϕ 0 3 + 2ω 0 ψ 2 (0) + O 1 c 6 , (VII.43d)
where we have introduced (extending the usual practice in GR, see Section II.2.2) the elementary potentials obeying the following wave equations □V = -4πG σ , (VII.44a)

□V i = -4πG σ i , (VII.44b) □ Ŵij = -4πG σ ij -δ ij σ kk -∂ i V ∂ j V -(3 + 2ω 0 ) ∂ i ψ (0) ∂ j ψ (0) , (VII.44c) □ψ (0) = 4πG σ s . (VII.44d)
Finally, inserting these decompositions into the tensor and scalar multipole moments as given by (VII.14) and (VII.16), we can compute the multipole moments using a series of known techniques; see [START_REF] Marchand | The mass quadrupole moment of compact binary systems at the fourth post-Newtonian order[END_REF] for a recent review. Fortunately, at the 1.5PN order, this is relatively easy as we do not need to worry about the subtleties associated with the different regularizations schemes (be they ultraviolet or infrared). The main difficulty is the long calculation of the scalar monopole and dipole moments I s and I s i which are required at 2.5PN order.

With the ST parameters defined in Table VII.1, we obtain the source ST multipole moments for compact binaries that are relevant for the final 1.5PN waveform and flux. For example, the tensor quadrupole moment I ij is accurate to order 1.5PN and we find, after reduction to the CM frame,5 

I ij = mνr 2 ϕ 0 n ⟨i n j⟩ + 1 42c 2 n ⟨i n j⟩ Gαm r (-30 + 48ν) (VII.45) + n ⟨i n j⟩ v 2 (29 -87ν) + n ⟨i v j⟩ (nv)(-24 + 72ν) + v ⟨i v j⟩ (22 -66ν) + O 1 c 4 .
The other relevant tensor moments (including the two gauge moments W and Y i ) are given in (B.4) of Appendix B.2.

As for the scalar moments, the full expressions at the highest necessary PN order are also given in Appendix B.2. Hereafter, we only give the source moments at a high enough PN order to compute the hereditary terms. Indeed, the radiative moment U ij given by (VII.37) corrects the source moment by the relevant 1.5PN quadrupole tail effect which is the same as in GR, and by the nonlinear memory effect associated with the dipole moment. We will include these effects, applied to binaries, into the final waveform. The necessary source moments to compute hereditary terms are then

I s i = α 1/2 ζmνr (1 -ζ)ϕ 0 -2S -n i + n i 5c 2 Gαm r 9S --20 β+ γ-1 S --20 β- γ-1 S + -13S -ν + δ 20 β- γ-1 S --4S + + 20 β+ γ-1 S + + v 2 -S -+ 7S -ν -4S + δ + v i (nv) 5c 2 -2S -+ 4S -ν + 2S + δ + O 1 c 3 , (VII.46a) E s = α 1/2 ζmν 6(1 -ζ) Gαm r -48 β- γ-1 S -+ 14S + -48 β+ γ-1 S + -2S -δ + v 2 S + -S -δ + O 1 c , (VII.46b) I s ij = α 1/2 ζmr 2 νn i n j (1 -ζ)ϕ 0 -S + + S -δ + O 1 c , (VII.46c)
together with the Newtonian limit of (VII.45) and the Newtonian energy

E = mνv 2 /2 -Gαm 2 ν/r + O(c -1
). So far, only the ST equations of motion to 1.5PN order were required. However, in order to compute the ST fluxes, we have to differentiate the moments with respect to time, which then uses the ST equations of motion to 2.5PN order. All the conservative (PN-even) terms of the acceleration are available in [START_REF] Bernard | Dynamics of compact binary systems in scalar-tensor theories: Equations of motion to the third post-Newtonian order[END_REF], in which the ST equations of motion were obtained up to 3PN order. Concerning the dissipative (PN-odd) terms at 1.5PN and 2.5PN orders, they are given in [START_REF] Mirshekari | Compact binary systems in scalar-tensor gravity: Equations of motion to 2.5 post-Newtonian order[END_REF] as functions of the EW multipole moments in harmonic coordinates [START_REF] Epstein | Post-Newtonian generation of gravitational waves[END_REF]. In Appendix B.1, we present for the first time the explicit expressions for these PN-odd terms in the equations of motion to 2.5PN order.

Finally, we have checked that all our results concerning the moments (in this section and in Appendix B.2) are in agreement with the results of [START_REF] Lang | Compact binary systems in scalar-tensor gravity. II. Tensor gravitational waves to second post-Newtonian order[END_REF][START_REF] Lang | Compact binary systems in scalar-tensor gravity. III. Scalar waves and energy flux[END_REF]. For the comparison, we have to carefully take into account the link between the STF moments and the Epstein-Wagoner (EW) moments [START_REF] Epstein | Post-Newtonian generation of gravitational waves[END_REF] used in [START_REF] Lang | Compact binary systems in scalar-tensor gravity. II. Tensor gravitational waves to second post-Newtonian order[END_REF][START_REF] Lang | Compact binary systems in scalar-tensor gravity. III. Scalar waves and energy flux[END_REF]. The Section B.2.2 in Appendix B.2 gives the required relations between these moments.

The scalar and tensorial energy fluxes, respectively denoted F s and F, are given in terms of the STF radiative multipole moments U L , V L and U s L according to (VII.36). We further split them into instantaneous and tail contributions, following the contributions of the tail integrals in (VII.37)-(VII.38),

F = F inst + F tail , (VII.47a) F s = F s inst + F s tail . (VII.47b)
Note that the dipolar memory contribution, given by the last integral in (VII.37), becomes instantaneous in the flux and as a consequence, its contribution is included into the instantaneous part. On the other hand, it is convenient to keep some instantaneous terms, such as the one related to the constant 11/12, into the definition of the tail terms.

With this caveat in mind, we define

F tail = 4G 2 M 5c 8 
(3)

I ij +∞ 0 dτ (5) 
I ij (U -τ ) ln cτ 2b 0 + 11 12 , (VII.48a) F s tail = 4G 2 M (3 + 2ω 0 ) c 6 1 3 (2) 
I s i +∞ 0 dτ (4) 
I s i (U -τ ) ln cτ 2b 0 + 1 + (1) E s c 2 ϕ 2 0 +∞ 0 dτ (3) E s (U -τ ) ln cτ 2b 0 + 1 30c 2 (3) I s ij +∞ 0 dτ (5) I s ij (U -τ ) ln cτ 2b 0 + 3 2 . (VII.48b)
The complete expression of the instantaneous tensorial flux, valid for general orbits in the CM frame, reads 4 (VII.49)

F inst = 4 (2 + γ) 15c 5 Gαm r 3 mν 2 r -11(nv) 2 + 12v 2 + 1 28c 2 16 -64ν Gαm r 2 + 2061 + 840γ -1860ν (nv)
+ 2936 + 1344 β+ + 1120γ -1344 β-δ -120ν Gαm r (nv) 2 + -2720 -1344 β+ -1008γ + 1344 β-δ + 160ν Gαm r v 2 + -2974 -1232γ + 2784ν (nv) 2 v 2 + 785 + 336γ -852ν v 4 + 1 12c 3 -2γ + 48ζS 2 -ν Gαm r 2 (nv) + 66γ Gαm r (nv) 3 -70γ Gαm r (nv)v 2 . (VII.50)
The tensorial energy flux F inst is in complete agreement with the result of [START_REF] Lang | Compact binary systems in scalar-tensor gravity. II. Tensor gravitational waves to second post-Newtonian order[END_REF][START_REF] Lang | Compact binary systems in scalar-tensor gravity. III. Scalar waves and energy flux[END_REF]. We also compute the instantaneous scalar flux F s inst to 1.5PN order, complementing by a half PN order the previous result by Lang [START_REF] Lang | Compact binary systems in scalar-tensor gravity. III. Scalar waves and energy flux[END_REF]. As its full expression in the center of mass is very long, we have preferred to relegate it to Appendix B.3.

However, when comparing our scalar flux with the one obtained by [START_REF] Lang | Compact binary systems in scalar-tensor gravity. III. Scalar waves and energy flux[END_REF], we have found a discrepancy at 1PN order that could not be resolved, despite the fact that we agree on all the ST multipole moments separately, notably the 2PN monopole and dipole scalar moments. In order to investigate this disagreement, we have computed the 1.5PN scalar waveform and have found that it is in perfect agreement with the scalar waveform presented in (5.2) of [START_REF] Lang | Compact binary systems in scalar-tensor gravity. III. Scalar waves and energy flux[END_REF]. We have then computed the flux: (i) by integrating the scalar waveform following (6.6) of [START_REF] Lang | Compact binary systems in scalar-tensor gravity. III. Scalar waves and energy flux[END_REF]; (ii) with the direct formula given by (B.9) of Appendix B.2, where the EW moments were replaced by their center-of-mass expressions as given by (3.50) of [START_REF] Lang | Compact binary systems in scalar-tensor gravity. III. Scalar waves and energy flux[END_REF] and (5.10) of [START_REF] Lang | Compact binary systems in scalar-tensor gravity. II. Tensor gravitational waves to second post-Newtonian order[END_REF]. In both cases, we recover the scalar flux as given in Appendix B.3, and not the scalar flux of [START_REF] Lang | Compact binary systems in scalar-tensor gravity. III. Scalar waves and energy flux[END_REF]. The explicit difference between our scalar flux and the scalar flux of [START_REF] Lang | Compact binary systems in scalar-tensor gravity. III. Scalar waves and energy flux[END_REF] is given explicitly in (B.11) of Appendix B.3, along with the full expression for the scalar flux.

VII.4 Reduction to quasicircular orbits

For quasicircular orbits, the expressions of the fluxes simplify considerably and one can work out explicitly the tail terms (VII.48) from standard methods. The usual frequency dependent PN variable which permits to obtain gauge invariant results in GR is easily generalized to ST theories as6 

x ≡ Gαmω where ω = 2π/P is the orbital frequency of the quasicircular orbit, with P the period. It is related to the orbital separation r and to the gauge dependent PN variable γ ≡ Gαm c 2 r , by the sum of (5.2)-(5.3) of [START_REF] Bernard | Dynamics of compact binary systems in scalar-tensor theories: II. Center-of-mass and conserved quantities to 3PN order[END_REF] which includes all contributions up to relative 3PN order, including the dipolar tail term at 3PN order. For the present work, we only need this relation to relative 2PN order, which we reproduce here for convenience,

ω 2 = α Gm r 3 1 + γ -3 -2 β+ + ν -γ + 2 β-δ + γ 2 6 + 8 β+ -2 χ+ + δ+ + 5 + 2 β+ γ + 5 4 γ 2 + δ 2 χ-+ δ--2 β-4 + γ + ν 41 4 + β+ + 4 χ+ -2 δ+ + 24 β2 -γ -1 -24 β2 + γ -1 + 5γ - 1 2 γ 2 + 5 β-νδ + ν 2 . (VII.52)
The expression of γ in terms of x at 2PN order is deduced by inversion of this expression, and is also given to 3PN order in [START_REF] Bernard | Dynamics of compact binary systems in scalar-tensor theories: II. Center-of-mass and conserved quantities to 3PN order[END_REF]. Our final results for the tensorial and scalar fluxes at relative 2PN order expressed in terms of the gauge invariant variable (VII.51) read

Fcirc = 32c 5 x 5 ν 2 (1 + γ/2) 5 Gα 1 + x 336 -1247 -896 β+ -448γ + 896 β-δ -980ν + 4π 1 + γ 2 x 3/2 , (VII.53a) F s circ = c 5 x 5 ν 2 ζ 3 Gα 4S 2 -x -1 + 1 15 -24ζ -1 γ -120S 2 --80 β+S 2 --40γS 2 -+ 240 β+γ -1 S 2 -+ 240 β-γ -1 S-S+ + δ 80 β-S 2 --240 β-γ -1 S 2 --240 β+γ -1 S-S+ -80S 2 -ν + 4π(2 + γ)S 2 -x 1/2 + x 420 -2688 β+ζ -1 + 2910ζ -1 γ + 1792 β+ζ -1 γ + 896ζ -1 γ2 -3360 β2 -ζ -1 γ-1 -3360 β2 + ζ -1 γ-1 -7560S 2 --2240 β2 -S 2 --3360 β+S 2 --2240 β2 + S 2 --1680γS 2 -+ 560γ 2 S 2 --4480 β2 - γ-1 S 2 - -6720 β+γ -1 S 2 --4480 β2 + γ-1 S 2 -+ 13440 β2 - γ-2 S 2 -+ 13440 β2 + γ-2 S 2 --2240 χ+S 2 - + 6720γ -1 χ+S 2 -+ 2240ζS 4 -+ 1120ζ γS 4 --2240 β-S-S+ -6720 β-γ -1 S-S+ -8960 β-β+γ -1 S-S+ + 26880 β-β+γ -2 S-S+ + 6720γ -1 χ-S-S+ + δ 2688 β-ζ -1 -1792 β-ζ -1 γ + 6720 β-β+ζ -1 γ-1 + 3360 β-S 2 -+ 4480 β-β+S 2 - + 6720 β-γ -1 S 2 -+ 8960 β-β+γ -1 S 2 --26880 β-β+γ -2 S 2 -+ 2240 χ-S 2 - -6720γ -1 χ-S 2 -+ 9240S-S+ + 2240 β+S-S+ + 5040γS-S+ + 4480 β2 - γ-1 S-S+ + 6720 β+γ -1 S-S+ + 4480 β2 + γ-1 S-S+ -13440 β2 - γ-2 S-S+ -13440 β2 + γ-2 S-S+ -6720γ -1 χ+S-S+ + 2240ζS 3 -S+ + 1120ζ γS 3 -S+ + ν 1960ζ -1 γ + 13440 β2 + ζ -1 γ-1 + 11480S 2 -+ 8960 β2 -S 2 -+ 22400 β+S 2 --1120γS 2 - + 44800 β2 - γ-1 S 2 --31360 β+γ -1 S 2 --26880 β2 + γ-1 S 2 --80640 β2 - γ-2 S 2 - + 26880 β2 + γ-2 S 2 -+ 4480 χ+S 2 --13440γ -1 χ+S 2 --4480ζS 4 --2240ζ γS 4 - -31360 β-γ -1 S-S+ + 17920 β-β+γ -1 S-S+ -53760 β-β+γ -2 S-S+ -13440γ -1 χ-S-S+ + δν -8960 β-S 2 -+ 11200 β-γ -1 S 2 -+ 11200 β+γ -1 S-S+ + 1120S 2 -ν 2 + πx 3/2 30(1 -ζ) 192γ -192ζ -1 γ + 96γ 2 -96ζ -1 γ2 -96S 2 -+ 160 β+S 2 -+ 96ζS 2 --160 β+ζS 2 --208γS 2 - -160 β+γS 2 -+ 208ζ γS 2 -+ 160 β+ζ γS 2 --80γ 2 S 2 -+ 80ζ γ2 S 2 -+ 960 β+γ -1 S 2 - -960 β+ζ γ-1 S 2 -+ 480 β-S-S+ -480 β-ζS-S+ + 960 β-γ -1 S-S+ -960 β-ζ γ-1 S-S+ + δ -160 β-S 2 -+ 160 β-ζS 2 -+ 160 β-γS 2 --160 β-ζ γS 2 --960 β-γ -1 S 2 - + 960 β-ζ γ-1 S 2 --384S-S+ -480 β+S-S+ + 384ζS-S+ + 480 β+ζS-S+ -192γS-S+ + 192ζ γS-S+ -960 β+γ -1 S-S+ + 960 β+ζ γ-1 S-S+ + ν -1208S 2 -+ 1208ζS 2 --604γS 2 -+ 604ζ γS 2 - . (VII.53b)
Next, we apply the usual flux-balance argument for the total scalar-tensor energy flux,

dE circ dt = -F total circ , F total circ ≡ F circ + F s circ , (VII.54)
where E circ denotes the conservative energy of the system deduced from the conservative equations of motion and is given at 2PN order by [START_REF] Bernard | Dynamics of compact binary systems in scalar-tensor theories: II. Center-of-mass and conserved quantities to 3PN order[END_REF] The orbital phase is defined as a function of time by ϕ circ = t t 0 ω(t ′ ) dt ′ . Using the energy balance equation, we perform a change of variables to express the phase as a function of x,

E circ = - 1 2 mνc 2 x 1 + x 12 -9 + 8 β+ -8γ -ν -8 β-δ + x 2 24 
ϕ circ = - c 3 Gαm x x 0 x ′3/2 F circ (x ′ ) dE circ dx ′ dx ′ . (VII.56)
Performing the PN expansion inside the integral and integrating term by term (following the simplest PN approximant [START_REF] Boyle | High-accuracy numerical simulation of black-hole binaries: Computation of the gravitational-wave energy flux and comparisons with post-Newtonian approximants[END_REF]), we find that, up to a constant, the phase is given by This expression for the phase is computed using the natural assumption that the dipolar mode is the leading order, i.e. using a formal expansion when x → 0. However, Sennett et al. [START_REF] Sennett | Gravitational waveforms in scalar-tensor gravity at 2PN relative order[END_REF] pointed out that under certain conditions on the scalar-tensor parameters and on the orbital frequency (or frequency band of a given detector), the quadrupolar mode may be actually dominant over the dipolar mode. This happens when

ϕcirc = - 1 4ζS 2 -νx 1/2 x -1 + 3 2 + 8 β+ -2γ -12 β+γ -1 - 72 5 ζ -1 S -2 --6ζ -1 γS -2 --12 β-γ -1 S -1 -S+ + δ -8 β-+ 12 β-γ -1 + 12 β+γ -1 S -1 -S+ + 7 2 + 3πx
+ γ-1 -72 β2 - γ-2 -72 β2 + γ-2 -16 χ+ + 12γ -1 χ+ -2ζS 2 --ζ γS 2 -- 1221 70 ζ -1 S -2 -- 168 
5 β+ζ -1 S -2 - - 1029 40 ζ -1 γS -2 -+ 8 β+ζ -1 γS -2 --8ζ -1 γ2 S -2 -+ 18 β2 -ζ -1 γ-1 S -2 -- 576 5 β+ζ -1 γ-1 S -2 - + 18 β2 + ζ -1 γ-1 S -2 -- 1728 25 ζ -2 S -4 -- 288 5 ζ -2 γS -4 --12ζ -2 γ2 S -4 --4 β-S -1 -S+ + 18 β-γ -1 S -1 -S+ + 80 β-β+γ -1 S -1 -S+ -144 β-β+γ -2 S -1 -S+ + 12γ -1 χ-S -1 -S+ -48 β-ζ -1 S -3 -S+ - 576 5 β-ζ -1 γ-1 S -3 -S+ + δ 33 β-+ 160 3 β-β+ + 44 3 β-γ -18 β-γ -1 -80 β-β+γ -1 + 144 β-β+γ -2 + 16 χ--12γ -1 χ- + 168 5 β-ζ -1 S -2 --8 β-ζ -1 γS -2 -+ 576 5 β-ζ -1 γ-1 S -2 --36 β-β+ζ -1 γ-1 S -2 --2ζS-S+ -ζ γS-S+ + 33 2 S -1 -S+ + 4 β+S -1 -S+ + 9γS -1 -S+ -40 β2 - γ-1 S -1 -S+ -18 β+γ -1 S -1 -S+ -40 β2 + γ-1 S -1 -S+ + 72 β2 - γ-2 S -1 -S+ + 72 β2 + γ-2 S -1 -S+ -12γ -1 χ+S -1 -S+ + 48 β+ζ -1 S -3 -S+ + 576 5 β+ζ -1 γ-1 S -3 -S+ + δν - 11 3 β--10 β-γ -1 -10 β+γ -1 S -1 -S+ - 55 24 ν 2 + ν - 79 8 + 320 3 β2 -+ 245 3 β+ - 86 3 γ + 32 β2 - γ-1 -26 β+γ -1 -192 β2 + γ-1 + 48 β2 - γ-2 + 240 β2 + γ-2 + 32 χ+ -24γ -1 χ+ -32ζS 2 --16ζ γS 2 --6ζ -1 S -2 -- 5 2 ζ -1 γS -2 - -72 β2 + ζ -1 γ-1 S -2 --26 β-γ -1 S -1 -S+ -160 β-β+γ -1 S -1 -S+ + 288 β-β+γ -2 S -1 -S+ -24γ -1 χ-S -1 -S+ + πx 3/
+ 12 β+ζ γ-1 -6 β-S -1 -S+ + 6 β-ζS -1 -S+ -12 β-γ -1 S -1 -S+ + 12 β-ζ γ-1 S -1 -S+ + δ -2 β-+ 2 β-ζ -4 β-γ + 4 β-ζ γ + 12 β-γ -1 -12 β-ζ γ-1 - 24 5 S -1 -S+ + 6 β+S -1 -S+ + 24 5 ζS -1 -S+ -6 β+ζS -1 -S+ - 12 5 γS -1 -S+ + 12 5 ζ γS -1 -S+ + 12 β+γ -1 S -1 -S+ -12 β+ζ γ-1 S -1 -S+ + ν - 38 
1 ≲ 24 5ζS 2 - Gαmω 2 2/3 , (VII.58)
in which case it is more natural, when computing the phase, to perform the expansion around the quadrupolar term rather that the dipolar term: this is what is called the quadrupole-driven (QD) regime, as opposed to the dipolar-driven (DD) regime which we assumed in (VII.57) (the quadrupolar case can easily be performed if needed). This result for the phase is in perfect agreement with the result found by [START_REF] Sennett | Gravitational waveforms in scalar-tensor gravity at 2PN relative order[END_REF] up to 1PN order in the dipolar-driven case.

VII.5 Waveform and GW modes

We now proceed to compute the spherical harmonic modes in circular orbits, that are useful for numerical relativity. We will perform the standard computation for the tensor modes h ℓm and extend the formalism to the scalar modes ψ ℓm .

For a planar orbit of two particles, the polarization orthonormal triad (N , P , Q) is defined following the conventions of [START_REF] Faye | The third and a half post-Newtonian gravitational wave quadrupole mode for quasi-circular inspiralling compact binaries[END_REF]. The TT tensor h TT ij represents the gothic conformal metric and is a spin-2 object: it can be, just as in GR, decomposed into two independent modes along the polarization vectors,

h + ≡ 1 2 (P i P j -Q i Q j )h T T ij , (VII.59a) h × ≡ 1 2 (P i Q j + Q i P j )h T T ij , (VII.59b)
which can be recast into a complex field, h = h + -ih × , which can itself be decomposed on the basis on spin-weighted spherical harmonics of weight -2,

h = h + -ih -= ∞ ℓ=2 ℓ m=-ℓ h ℓm -2 Y ℓm . (VII.60a)
Similarly, the pure spin-0 scalar field can be decomposed on standard (spin-0) spherical harmonics,

ψ = ∞ ℓ=0 ℓ m=-ℓ ψ ℓm Y ℓm . (VII.60b)
In an alternative presentation of the waveform (VII.34a), we can define the "electric"and "magnetic"pure-spin tensor harmonics based on the spin-weighted spherical harmonics [START_REF] Kidder | Using full information when computing modes of post-Newtonian waveforms from inspiralling compact binaries in circular orbit[END_REF],

T E2,ℓm ij = 1 √ 2 -2 Y ℓm m i m j + 2 Y ℓm m * i m * j , (VII.61a) T B2,ℓm ij = -i √ 2 -2 Y ℓm m i m j -2 Y ℓm m * i m * j , (VII.61b)
where m ≡ (n + iλ)/ √ 2 and m * denotes its complex conjugate. Owing to the fact that h TT ij and ψ are only needed at leading order in the inverse distance of the detector to the source 1/R, we define the spherical harmonic radiative moments U ℓm , V ℓm and U ℓm s as the components of the decomposition

h TT ij = ∞ ℓ=2 ℓ m=-ℓ 1 R U ℓm T E3,ℓm ij + V ℓm T B3,ℓm ij + O 1 R 2 , (VII.62a) ψ = ∞ ℓ=0 ℓ m=-ℓ 1 R U ℓm s Y ℓm + O 1 R 2 , (VII.62b)
which can directly be related to the spin-2 and spin-0 modes via

h ℓm = - G √ 2Rc ℓ+2 U ℓm - i c V ℓm , (VII.63a) ψ ℓm = G Rc ℓ+2 U ℓm s . (VII.63b)
Based on symmetry considerations [START_REF] Kidder | Using full information when computing modes of post-Newtonian waveforms from inspiralling compact binaries in circular orbit[END_REF][START_REF] Faye | The third and a half post-Newtonian gravitational wave quadrupole mode for quasi-circular inspiralling compact binaries[END_REF], we can further simplify (VII.63a) in the case when the orbit of the binary system is planar (either no spins or aligned/anti-aligned spins) by noticing that V ℓm is zero when ℓ + m is even and U ℓm is zero when ℓ + m is odd. These spherical harmonic moments are related to the STF multipole moments by

U ℓm = 4 ℓ! (ℓ + 1)(ℓ + 2) 2ℓ(ℓ -1) α ℓm L U L , (VII.64a) V ℓm = - 8 ℓ! ℓ(ℓ + 2) 2(ℓ + 1)(ℓ -1) α ℓm L V L , (VII.64b) U ℓm s = - 2 ℓ! α ℓm L U s L , (VII.64c)
where we have defined α ℓm L as [START_REF] Henry | The current-type quadrupole moment and gravitational-wave mode (ℓ, m) = (2, 1) of compact binary systems at the third post-Newtonian order[END_REF] 7

α ℓm L ≡ dΩ NL Y ℓm * = √ 4π(- √ 2) m ℓ! (2ℓ + 1)(ℓ + m)!(ℓ -m)! m * 0 ⟨M l L-M ⟩ , (VII.65) 7 
The link with the alternative definition given in [START_REF] Thorne | Multipole Expansions of Gravitational Radiation[END_REF] is given by

Y ℓm L = (2ℓ+1)!! 4πℓ! α ℓm L * .
with l the unit normal to the orbit, and m * 0 the complex conjugate of the vector m taken at some initial time t 0 at which n is aligned with P [START_REF] Faye | The third and a half post-Newtonian gravitational wave quadrupole mode for quasi-circular inspiralling compact binaries[END_REF]. Finally, it can be shown that the redefinition of the phase variable [START_REF] Sennett | Gravitational waveforms in scalar-tensor gravity at 2PN relative order[END_REF] 

ψ circ ≡ ϕ circ - 2(1 -ζ) α x 3/2 log(4ωτ 0 ) + γ E - 11 12 , (VII.66)
succeeds in removing most logarithms from the expressions of h ℓm and ψ ℓm once the complex exponential is PN-expanded. These modes can then be recast into dimensionless amplitude modes h ℓm and ψ ℓm which are given by 8

h ℓm = 2 G(1 -ζ)mνx Rc 2 16π 
5 Ĥℓm e -imψ , (VII.67a)

ψ ℓm = 2i Gζ √ αS -mν √ x Rc 2 8π 3
Ψℓm e -imψ . (VII.67b) with normalized modes defined such that Ĥ22 = 1 + O(x) and Ψ11 = 1 + O(x).

The Ĥℓm were previously computed up to 2PN order by Sennet et al. [START_REF] Sennett | Gravitational waveforms in scalar-tensor gravity at 2PN relative order[END_REF], based on the tensorial waveform of [START_REF] Lang | Compact binary systems in scalar-tensor gravity. II. Tensor gravitational waves to second post-Newtonian order[END_REF]. In this work, we only need these modes to 1.5PN order. We are in complete agreement with their result [START_REF] Sennett | Gravitational waveforms in scalar-tensor gravity at 2PN relative order[END_REF] up to 1.5PN order. In particular the comparison of the mode Ĥ22 at 1.5PN order enables us to check that our formalism for generating the nonlinear multipole interactions in (VII.37) is consistent with the DIRE formalism used by Lang [START_REF] Lang | Compact binary systems in scalar-tensor gravity. II. Tensor gravitational waves to second post-Newtonian order[END_REF].

On the other hand, to our knowledge, the scalar modes Ψℓm are new to this chapter. The expressions for all modes (with nonnegative m) that are nonzero at 1.5PN order are given by

Ψ00 = - i √ 3 √ 2S- S+ + S-δ νx 1/2 + x 1/2 8 β-γ -1 S-- 5 2 S+ + 8 β+γ -1 S+ + 1 2 S-δ + x 3/2 7 3 β-S--4 β-γ -1 S-+ 16 3 β-β+γ -1 S-+ 4γ -1 χ-S-- 21 8 S+ + 5 β+S+ - 7 3 γS+ -4 β+γ -1 S+ + 16 3 β2 + γ-1 S+ -16 β2 - γ-2 S+ + 16 β2 + γ-2 S+ + 4γ -1 χ+S+ + ν - 8 3 β-S-+ 4 3 β-γ -1 S-- 7 24 S+ + 4 3 β+γ -1 S+ + 5 24 S-νδ + δ - 3 8 S-+ 1 3 β+S-- 1 3 γS-- 16 3 β2 - γ-1 S--16 β2 - γ-2 S-+ 16 β2 + γ-2 S- -4γ -1 χ+S-- 7 3 β-S+ - 16 3 β-β+γ -1 S+ -4γ -1 χ-S+ , (VII.68a) Ψ11 = 1 + x - 9 5 - 2 3 β+ - 1 3 γ + 2 β+γ -1 + 2 β-γ -1 S+ S- + δ 2 3 β--2 β-γ -1 + 4S+ 5S- - 2 β+γ -1 S+ S- + 14 15 ν (VII.68b) + x 3/2 (2 + γ)π 2 -i (2 + γ) (1 + 12 ln(2)) 12 + 1 3 ζ S 2 + + S 2 -+ 4 3 ζS 2 -ν + 2 3 ζS-S+δ , 8 Recall that h ℓ,-m = (-) ℓ h ℓm * and ψ ℓ,-m = (-) ℓ ψ ℓm * . Ψ22 = - i √ 5S- x 1/2 -S+ + S-δ + x 3/2 4 β-S- 3 -4 β-γ -1 S-+ 53S+ 14 + 4 β+S+ 3 + 2γS+ 3 -4 β+γ -1 S+ (VII.68c) + ν - 16 β-S- 3 + 8 β-γ -1 S-- 211S+ 42 + 8 β+γ -1 S+ + 61S-νδ 42 + δ - 53S- 14 - 4 β+S- 3 - 2γS- 3 + 4 β+γ -1 S-- 4 β-S+ 3 + 4 β-γ -1 S+ , Ψ33 = 9 √ 3 -S-+ S+δ + 2S-ν x 4 √ 70S- , (VII.68d) Ψ31 = - -S-+ S+δ + 2S-ν x 20 √ 14S- , (VII.68e) Ψ44 = - 16i S+ -S-δ -3S+ν + S-νδ x 3/2 3 √ 105S- , (VII.68f) Ψ42 = 2i S+ -S-δ -3S+ν + S-νδ x 3/2 21 √ 15S- . (VII.68g)
Note that formally, the dominant scalar mode seems to be ψ 00 . This is misleading because the Newtonian part of ψ 00 is actually an x-independent constant: when taking its derivative to compute the flux, such a term vanishes. The dominant mode is thus indeed ψ 11 , hence our choice of normalization.

VII.6 Comparison with numerical relativity

A recent numerical simulation by Ma et al. [START_REF] Ma | Numerical simulations of black hole-neutron star mergers in scalar-tensor gravity[END_REF] was plotted against our PN results. In this simulation, the authors strived to maximize the effect of spontaneous scalarization [START_REF] Damour | Nonperturbative strong field effects in tensorscalar theories of gravitation[END_REF] by a choice of ω(ϕ). For this, they express their theory in the Damour and Esposito-Farèse framework [START_REF] Damour | Tensor multiscalar theories of gravitation[END_REF], where they choose α 0 = -3.5 × 10 -3 and β 0 = -4.5 .

(VII.69)

Inverting ( 17) of [START_REF] Ma | Numerical simulations of black hole-neutron star mergers in scalar-tensor gravity[END_REF] leads to

ψ -ψ 0 = - 1 4 √ πα 0 ln ϕ ϕ 0 + β 0 4α 2 0 ln 2 ϕ ϕ 0 , (VII.70)
where the authors chose to work with ϕ 0 = 1 and ψ 0 = 0. Moreover, (5) of [START_REF] Ma | Numerical simulations of black hole-neutron star mergers in scalar-tensor gravity[END_REF] can be rephrased as

ω(ϕ) = 8π d(ψ -ψ 0 ) d ln(ϕ/ϕ 0 ) 2 - 3 2 , (VII.71)
so finally we have

ω(ϕ) = 1 2α 2 0 1 + β 0 2α 2 0 ln ϕ ϕ 0 2 - 3 2 (VII.72)
The scalar-tensor parameters are then related to those of DE gravity by [START_REF] Ma | Numerical simulations of black hole-neutron star mergers in scalar-tensor gravity[END_REF] 

ω 0 = 1 -3α 2 0 2α 2 0 , G = 1 + α 2 0 ϕ 0 , ζ = α 0 1 + α 2 0 .
(VII.73)

They then consider a NS-BH binary system. The BH has mass m BH = 5.7 M ⊙ , and of course a scalar charge α BH = 0, i.e. a sensitivity of s BH = 1/2. The NS has a mass of m NS = 1.5 M ⊙ , a scalar charge of α NS = 0.18, and therefore a sensitivity of s NS = 26, such that α NS = α 0 (1 -2s BH ). They define the total mass m = m NS + m BH , and present simulation results for a time of around 65 ms before merger, which corresponds to about 12 orbital cycles. Note that the black hole has a spin given by χ BH = 0.19, the system has initial eccentriciy of e ∼ 1.6 × 10 -4 , and tidal effects do contribute in this simulation, but all of these effects are not accounted for by the PN template. With this choice of parameters, they find 24 5ζS therefore they worked with the 1PN quadrupole-driven phasing given by [START_REF] Sennett | Gravitational waveforms in scalar-tensor gravity at 2PN relative order[END_REF], the 2PN Ĥℓm amplitudes given by [START_REF] Sennett | Gravitational waveforms in scalar-tensor gravity at 2PN relative order[END_REF] as well, and with the 1.5PN Ψℓm scalar amplitudes given by (VII.68). Figure VII.1 presents the numerical simulation plotted against each mode. Apart from the Ψ22 mode that exhibits a small discrepancy, the numerical simulations are in very good agreement with the PN template, including the nonoscillatory (0, 0) mode. Moreover, this agreement can certainly be improved by including tidal effects and going to higher PN order. 5PN scalar modes computed in [START_REF] Bernard | Gravitational waves in scalar-tensor theory to one-and-a-half post-Newtonian order[END_REF] (in mauve) and numerical results of [START_REF] Ma | Numerical simulations of black hole-neutron star mergers in scalar-tensor gravity[END_REF] (in green). The h 22 mode computed at 2PN in [START_REF] Sennett | Gravitational waveforms in scalar-tensor gravity at 2PN relative order[END_REF] is also compared to the numerical results. Time is given is units of GM/c 3 , where M = 7.2 M ⊙ . Source: [START_REF] Ma | Numerical simulations of black hole-neutron star mergers in scalar-tensor gravity[END_REF].
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Conclusion and prospects

This thesis was dedicated to computing gravitational wave templates for general relativity and a class of scalar-tensor theories in the post-Newtonian approximation. In the case of circular orbits, we have obtained the most accurate predictions to date. We summarize the progress made in general relativity in Table VII In the case of the 4PN and 4.5PN results in general relativity, preliminary comparisons with numerical relativity and second-order self-force [START_REF] Blanchet | Gravitational waves from compact binaries to the fourth post-Newtonian order[END_REF] indicate good agreement, but ultimately, it would be highly desirable to have an independent verification of this computation, for example using effective field theory methods. Many difficulties have arisen at this order, in particular due to dimensional regularization, and we hope that the techniques presented in this thesis can be helpful to rederive these results independently. In scalar-tensor theory, we have found a small discrepancy with [START_REF] Lang | Compact binary systems in scalar-tensor gravity. III. Scalar waves and energy flux[END_REF], which does not affect usual results for circular orbits. We have also provided a check for the results obtained in [START_REF] Lang | Compact binary systems in scalar-tensor gravity. III. Scalar waves and energy flux[END_REF][START_REF] Sennett | Gravitational waveforms in scalar-tensor gravity at 2PN relative order[END_REF], and we find relatively good agreement with recent numerical relativity results [START_REF] Ma | Numerical simulations of black hole-neutron star mergers in scalar-tensor gravity[END_REF].

As one can see from Table VII.2, it would be interesting to compute the (2, 2) modes at 4.5PN. One step towards this goal has been achieved by the computation of the 4.5PN radiation-reaction terms in the equations of motions in the center-of-mass frame [START_REF] Gopakumar | Second post-Newtonian gravitational radiation reaction for two-body systems: Nonspinning bodies[END_REF][START_REF] Leibovich | Radiation reaction for nonspinning bodies at 4.5PN in the effective field theory approach[END_REF]. Even at 4PN, we only control the (2, 2) mode, and one yet needs to compute the other (ℓ, m) modes to control the full waveform. Furthermore, with the prospect of the full completion of the 5PN equations of motion [START_REF] Foffa | Calculating the static gravitational two-body potential to fifth post-Newtonian order with Feynman diagrams[END_REF][START_REF] Blümlein | The fifth-order post-Newtonian Hamiltonian dynamics of two-body systems from an effective field theory approach[END_REF], it is natural to contemplate the Part D Appendix A.2

Coefficients for the raw tails of memory It is also very useful to dispose of the similar formula but with a source term which is "exact", i.e., not Taylor-expanded in the near zone. In this case, generalizing (4.11) of [START_REF] Blanchet | The quadrupole moment of compact binaries to the fourth post-Newtonian order: from source to canonical moment[END_REF]: while the values of α a,b remain the same as in (A.8). One can naturally recover the "exact" result (A.9) from the near-zone result (A.8) by performing a Taylor expansion at the level of the source and a subsequent formal resummation.

A.4 Test of the boosted Schwarzchild solution

Among all tests that can be performed to check the expression of the mass quadrupole moment, one of the simplest is the boosted Schwarzschild limit. Despite its apparent simplicity, it is quite efficient and was crucially used to fix a remaining ambiguity constant in an early computation of the flux at 3PN order [START_REF] Blanchet | Surface-integral expressions for the multipole moments of post-Newtonian sources and the boosted Schwarzschild solution[END_REF]. The principle is quite transparent: if we remove one of the two black holes, then our system reduces to a single Schwarzchild black hole of mass m 1 , boosted at a (constant) speed v 1 . The multipole moments of a boosted Schwarzschild solution (BSS) are straightforward to derive, and have been previously determined at 3PN order in [START_REF] Blanchet | Surface-integral expressions for the multipole moments of post-Newtonian sources and the boosted Schwarzschild solution[END_REF]. Extending this work at 4PN order, we find that the quadrupole moment of a BBS of mass M, boosted with a velocity V , reads where the last integral is convergent as can henceforth be treated as a constant of order unity. We thus immediately obtain our first result, We replace the complicated logartihmic term by this auxiliary function and integrate B ancient by parts in a similar way as we did with A, namely 

I BSS ij = M t 2 V ⟨i V
G 2 M 3 c 6 V ⟨i V j⟩ + 10 21 
G 2 M 3 c 8 V 2 V ⟨i V j⟩ + O
A = iξ n +
β ξ in f (1) + ξ 2 n 2 f ′ (1) - 5β 13 
ξ 2 n 2 f (1) - 3 16 
ξ 2 n 2 (A.24)
where we have used f (0) = 0, f ′ (0) = 3/16, g β (0) = 0, g β (1) = (8/ We then gladly see that adding B recent with B ancient cancels out all the oscillatory terms, which diverge as ξ → 0. This means that these oscillatory terms were, as expected, pure artifacts of our integral splitting, and we thus recover our claim (A.15).

A.6 Compendium of useful formulas in d dimensions

In this section, we will skim over some formulas that are useful when adapting the three-dimensional PN-MPM construction to d dimensions. These can all be found in [START_REF] Blanchet | Dimensional regularization of the third post-Newtonian dynamics of point particles in harmonic coordinates[END_REF][START_REF] Blanchet | Dimensional regularization of the third post-Newtonian gravitational wave generation of two point masses[END_REF][START_REF] Bernard | Dimensional regularization of the IR divergences in the Fokker action of point-particle binaries at the fourth post-Newtonian order[END_REF][START_REF] Bernard | Dimensional regularization of the IR divergences in the Fokker action of point-particle binaries at the fourth post-Newtonian order[END_REF][START_REF] Larrouturou | The quadrupole moment of compact binaries to the fourth post-Newtonian order: II. Dimensional regularization and renormalization[END_REF][START_REF] Damour | Dimensional regularization of the gravitational interaction of point masses[END_REF][START_REF] Jaranowski | Dimensional regularization of local singularities in the 4th post-Newtonian two-point-mass Hamiltonian[END_REF][START_REF] Jaranowski | Dimensional regularization of local singularities in the 4th post-Newtonian two-point-mass Hamiltonian[END_REF], and we encourage the interested reader to refer to these references.

We then set τ = µ(x -1) with dτ = (x -1)dµ, invert the integrals, and find ) which is well defined, since -k + i + 1 -p ⩾ i + j ⩾ 0 ensures that the integral in ρ converges at 0, and the behavior of Q m (x)/(x -1) p+1 ∼ x -m-p-2 when x → +∞ ensures that the integral in x converges at infinity.

Since F vanishes identically in the remote past, so does Υ k,i,j,p (τ ), thus it is clearly integrable at τ → +∞. We then bound this quantity with (A.54)

Taking advantage of the conditions on F and G, we can now restrict the bounds of the integrals to λ ⩽ u+T x-1 . This yields We now distinguish the case j = 2 -k, which yields Ξ 2,i,0 (x) ⩽ K i + 1

ϕ B ij = +∞ 1 dx Q m (x)
1 i + 1 (u + T ) i+1 + θ(3 -x)(u + T ) i+1 ln 2 x -1 , (A.59)
and the more general case k + j ⩾ 2, in which we find Ξ k,i,j (x) ⩽ K(u + T ) i+ (3-k) i + j + 1

2 j+k-2 i + (3 -k) + θ(3 -x) j + (k -2)
2 j+(k-2) -(x -1) k+j-2 .

(A.60) Since Q m (x) = O x→1 + (ln (x -1)) and Q m (x) = O x→+∞ x -m-1 , we can now look at the asymptotic behavior of our integrand. In the case (k, j) = (2, 0), we find

Q m (x) Ξ 2,i,0 (x) =      O x→1 + ln(x -1) 2 , O x→+∞ x -m-1 .
(A. [START_REF] Will | Incorporating post-Newtonian effects in N -body dynamics[END_REF] In the general case k + j ⩾ 2, we instead have

Q m (x) Ξ k,i,j (x) =      O x→1 + ln(x -1)(x -1) j+(k-2) , O x→+∞ x -m-1 . (A.62)
It is now clear that Q m (x) Ξ k,i,j (x) is integrable at both bounds x → 1 + and x → +∞ as soon as k ∈ {1, 2}. After doing a similar (and much easier) analysis on the second member of (A.55), we find that (A.55)-(A.54), and consequently (IV.46b), have a convergent limit as B → 0, i.e., they do not develop poles in 1/B. Repeating the analysis of this section with an extra factor ln(r/r 0 ) in the integrand shows that we can also safely compute the 1/B coefficient in the Laurent series. The conserved quantities, i.e. the monopole I, the conserved total mass-energy M, the conserved energy E and the angular moment J i are given to the relevant PN orders by 

I = M ϕ 0 = m ϕ 0 1 + E c 2 with E =

B.2.2 Link between STF and EW moments

The works [START_REF] Lang | Compact binary systems in scalar-tensor gravity. II. Tensor gravitational waves to second post-Newtonian order[END_REF][START_REF] Lang | Compact binary systems in scalar-tensor gravity. III. Scalar waves and energy flux[END_REF] use the so-called Epstein-Wagoner multipole moments while we are using the STF moments. In the gravitational sector the definitions of the EW moments are the same as in GR. Their relations to the STF moments can be found in Appendix E of [START_REF] Will | Gravitational radiation from compact binary systems: Gravitational waveforms and energy loss to second post-Newtonian order[END_REF]. In particular the instantaneous part of the tensorial flux to 1.5PN order (discarding the tails) in terms of the EW source moments reads

F inst = ϕ 0 c 5 G 1 5 (3) 
I EW ab (3)

I EW ab - 1 15 (3) 
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I EW ab ( 3 
)
I EW abcc - 8 35 
(3) Injecting the expressions of the EW moments [START_REF] Lang | Compact binary systems in scalar-tensor gravity. II. Tensor gravitational waves to second post-Newtonian order[END_REF] into (B.7), we obtain an expression for the tensorial flux that is in perfect agreement with (VII.49).

I EW ab ( 3 
)
I EW acbc - 2 21 
Concerning the scalar sector, the moments used in [START_REF] Lang | Compact binary systems in scalar-tensor gravity. II. Tensor gravitational waves to second post-Newtonian order[END_REF][START_REF] Lang | Compact binary systems in scalar-tensor gravity. III. Scalar waves and energy flux[END_REF] are just non-STF moments I s,EW L such that the linearized scalar waveform is given by (2.17b) of [START_REF] Lang | Compact binary systems in scalar-tensor gravity. II. Tensor gravitational waves to second post-Newtonian order[END_REF]. Comparing with our definition of the STF moments I s L ≡ I s,STF L entering the scalar waveform in (VII.15b), we obtain the following relation, valid up to any PN order: With our computations, and taking into account the link between EW and STF moments as well as the result (B.8), we are in total agreement with the expressions of the source moments found in [START_REF] Lang | Compact binary systems in scalar-tensor gravity. II. Tensor gravitational waves to second post-Newtonian order[END_REF][START_REF] Lang | Compact binary systems in scalar-tensor gravity. III. Scalar waves and energy flux[END_REF], i.e.

I s L (u) = -
• I EW ij , I EW ijk , I EW ijkl , I EW ijklm , and I EW ijklmn in (5.10) of [START_REF] Lang | Compact binary systems in scalar-tensor gravity. II. Tensor gravitational waves to second post-Newtonian order[END_REF] ,

• I s,EW , I s,EW i , I s,EW ij , I s,EW ijk , I s,EW ijkl and I s,EW ijklm in the CM frame in (3.50) of [START_REF] Lang | Compact binary systems in scalar-tensor gravity. III. Scalar waves and energy flux[END_REF] . However, despite the perfect correspondence and agreement between the results for STF and EW moments, the scalar flux we obtain in the (B.12)-(B.13) in Appendix B.3 disagrees at 1PN order with the one published in [START_REF] Lang | Compact binary systems in scalar-tensor gravity. III. Scalar waves and energy flux[END_REF]. This disagreement remains even when we compute the instantaneous 1PN scalar flux directly from the EW moments using the expression (not given in [START_REF] Lang | Compact binary systems in scalar-tensor gravity. III. Scalar waves and energy flux[END_REF]) where we pose, following [START_REF] Lang | Compact binary systems in scalar-tensor gravity. III. Scalar waves and energy flux[END_REF] (note that the convention is slightly different from that in (VII.39)): We have also computed the scalar waveform from the EW moments [START_REF] Lang | Compact binary systems in scalar-tensor gravity. II. Tensor gravitational waves to second post-Newtonian order[END_REF][START_REF] Lang | Compact binary systems in scalar-tensor gravity. III. Scalar waves and energy flux[END_REF] using the formulas given in [START_REF] Lang | Compact binary systems in scalar-tensor gravity. III. Scalar waves and energy flux[END_REF], and we retrieve the explicit expression for the 1.5PN scalar waveform given by [START_REF] Lang | Compact binary systems in scalar-tensor gravity. III. Scalar waves and energy flux[END_REF]. Then, when integrating this waveform using (6.6) of [START_REF] Lang | Compact binary systems in scalar-tensor gravity. III. Scalar waves and energy flux[END_REF], we retrieve the 1PN part of the scalar flux as given by (B.12)-(B.13) of Appendix B.3, but not the 1PN scalar flux as given by [START_REF] Lang | Compact binary systems in scalar-tensor gravity. III. Scalar waves and energy flux[END_REF].

F s inst = ϕ 0 (3 + 2ω 0 ) c 3 G 1 3 (2) 

B.3

The scalar 1.5PN flux

As mentioned throughout the article, the scalar flux that we find disagrees at 1PN order with the scalar flux given by Lang in [START_REF] Lang | Compact binary systems in scalar-tensor gravity. III. Scalar waves and energy flux[END_REF]. The expression for the difference between the two fluxes at 1PN order is Since the instantaneous part of the scalar flux to 1.5PN order for general orbits in the center-of-mass frame is very long it is convenient to write it in the following form: n respectively parametrize the Newtonian, 0.5PN, 1PN and 1.5PN terms. We have obtained

F s inst -F s,

Résumé en français

L'une des prédictions de la relativité générale est l'existence d'ondes gravitationnelles, qui sont des déformations oscillatoires de l'espace-temps. Cependant, le calcul de la forme de ces ondes ne peut pas se faire analytiquement de manière exacte, et les techniques numériques sont très difficiles et se heurtent au problème du temps de calcul. C'est pourquoi il est nécessaire de faire usage de techniques d'approximations pour fournir une prédiction analytique pour ces formes d'onde. L'une des techniques les plus répandues est l'approximation post-newtonienne, qui s'applique bien à une source d'onde gravitationnelle composée de deux étoiles séparées d'une distance très grande devant leur taille typique, et donc orbitant avec une vitesse v très petite devant celle de la lumière c. Il est alors naturel de décrire la source comme un développement en le petit paramètre v/c, que l'on appelle développement post-newtonien (PN). Ces techniques ont permis d'établir les premières expressions pour la forme d'onde, jusqu'au premier ordre PN (1PN), c'est-àdire avec les corrections d'ordre (v/c) 2 . Toutefois, ces techniques se sont heurtées à des problèmes de divergences, qui ont été résolus notamment grâce à l'introduction d'un autre développement, dit post-minkowskien (PM), valable dans le vide extérieur à la source, et qui consiste à développer la métrique en petites perturbations autour de la métrique plate de Minkowski. Grâce à la séparation d'échelle entre la taille de la source et la longueur de l'onde gravitationnelle, il existe une zone tampon où les deux développements sont valables, ce qui permet de les apparier, à la manière d'une condition aux bords. Ces techniques, ainsi que de nombreuses améliorations apportées au fil des années, ont permis de calculer la forme d'onde jusqu'à 3.5PN (c'est-à-dire en (v/c) 7 ), ce qui est extrêmement utile pour l'analyse des données issues des détecteurs d'ondes gravitationnelles. De plus, les équations du mouvement régissant la dynamique relativiste du système à deux corps ont été résolues à 4PN. Se basant sur des premiers résultats (notamment le quadrupôle source à 4PN), cette thèse a permis de compléter le calcul complet de la forme d'onde gravitationnelle pour des orbites quasi-circulaires à 4PN, ainsi que le flux d'énergie émis par les ondes gravitationnelles jusqu'à l'ordre 4.5PN. L'une des étape majeures était le calcul d'un effet non-linéaire, au troisième ordre post-minkowskien, nommé « sillage de mémoire », qui peut être interprété comme une ondes gravitationnelle linéaire qui est diffusée par la courbure de l'espace-temps générée par le système binaire; laquelle onde diffusée réémet elle-même de nouvelles ondes gravitationnelles, à la manière de l'effet de mémoire. Une autre contribution de cette thèse concerne une classe de théories alternative de la gravité, les théories tenseur-scalaire sans potentiels. Dans ces théories, nous calculons la forme d'onde ainsi que le flux à l'ordre 1.5PN au-delà du rayonnement quadrupolaire de la relativité générale, ce qui correspond à une ordre relatif de 2.5PN au-delà du rayonnement dipolaire de la théorie, et donnons les résultats réduits pour les 201 orbites circulaires. Pour les orbites non circulaires, nous corrigeons au passage une erreur dans la littérature pour l'expression du flux à l'ordre 1PN.

Dans le Chapitre I, nous rappelons un certain nombre de concepts élémentaires liés aux ondes gravitationnelles. Nous rappelons comment les équations de champ de la relativité générale, que l'on appelle équations d'Einstein, peuvent être linéarisées dans le vide lorsqu'elles sont vues comme de petites déviations à la métrique d'espace-temps plate de Minkowski, et nous introduisons la notion de déviation à la métrique « gothique ». Nous distinguons ensuite les effets des effets de pure jauge, liées uniquement au choix de système de coordonnées. En particulier, dans le cas d'une onde plane, nous relions le tenseur de Riemann linéarisé à la métrique dans une jauge transverse et sans trace. Nous définissons ensuite les polarisations « plus » et « croix », que l'on relie dans le cas linéarisé au scalaire de Newman-Penrose. On définit également, dans le cadre des théories alternatives de la gravité, la polarisation dite de respiration, la polarisation longitudinale et les deux polarisations vectorielles. Nous nous intéressons ensuite aux équations d'Einstein linéarisées sourcées par la matière, représentée par son tenseur d'énergie-impulsion. Nous résolvons l'équation d'onde à l'ordre post-newtonien le plus bas, ce qui nous amène à introduire la notion de quadrupôle. Nous calculons le flux d'énergie transporté par les ondes gravitationnelles à travers une sphère de rayon infini, et retrouvons la formule du quadrupôle d'Einstein. Nous spécialisons alors notre étude préliminaire au cas de deux particules ponctuelles sur une orbite quasi-circulaire, et nous pouvons alors exprimer la forme d'onde en fonction de la fréquence orbitale et de l'angle d'inclinaison du plan orbital du système binaire par rapport à l'observateur. Par des arguments de conservation de l'énergie, nous trouvons alors un augmentation séculaire de la fréquence orbitale, le « gazouillement », ainsi qu'une diminution séculaire de la distance entre les deux corps en orbite. Nous rappelons les résultats de Peters et Matthews dans le cas des orbites d'excentricité non nulle, et retrouvons la propension d'une orbite excentrique à se circulariser sous l'effet de l'émission d'ondes gravitationnelles. Enfin, nous répétons notre étude préliminaire dans le cas d'une théorie alternative, la théorie de Brans et Dicke sans potentiel, et retrouvons que l'émission dominante d'onde gravitationnelles est due au dipôle, et qu'elle engendre un mode de respiration. Nous nous intéressons ensuite aux détecteurs, où nous rappelons l'équation de déviation géodésique décrivant le fonctionnement des détecteurs d'ondes gravitationelles, et passons en revue les détecteurs actuels (LIGO, Virgo et KAGRA) ainsi que les détecteurs futurs, construits sur Terre (Cosmic Explorer, Einstein Telescope) ou dans l'Espace (LISA, ...). Nous rappelons alors les rudiments de techniques d'analyse des données permettant d'extraire un signal du bruit inhérents aux détecteurs. En particulier, nous étudions les techniques de filtrage adapté, qui permet de détecter un faible signal malgré un fort bruit, mais qui requiert pour cela une connaissance très fine de la forme fonctionnelle que doit avoir le signal.

Nous entamons alors la Partie A, qui traite de nos résultats obtenus en relativité générale. Dans le Chapitre II, nous passons en revue le formalisme post-newtonien et post-minkowskien multipolaire (PN-MPM) qui sera utilisé tout au long de la thèse pour traiter le problème de la génération d'onde à des ordres très élevés. Nous rappelons d'abord la formulation de Landau et Lifschitz de la relativité générale sous forme d'une équation d'onde. Nous montrons ensuite comment ces équations peuvent être résolues dans des coordonnées harmoniques dans le cas d'une source compacte. Pour cela, nous séparons le problème en deux: d'un côté, nous exprimons la solution la plus générale de la métrique extérieure dans le vide, paramétrisée par des moments multipolaires (dits de source et de jauge); et de l'autre, nous trouvons la solution près de la source de matière dans l'approximation des petites vitesses caractéristiques. Ces deux solutions peuvent alors être reliées par une condition au bord sous la forme d'un appariement des développements asymptotiques des deux métriques. Nous spécialisons alors notre étude au cas de deux particules ponctuelles, ce qui est bien adapté à l'étude de systèmes binaires de trous noirs ou d'étoiles à neutrons dans la phase spiralante. Or, nous voyons dans ce cas que le traitement de la métrique à la position des particules requiert des techniques de régularisation. Pour des ordres élevés, on doit recourir à une régularisation dite dimensionelle, qui consiste à résoudre les équations d'Einstein en d dimensions (ce qui est toujours bien défini par continuation analytique en d), et de prendre la limite tridimensionelle à la fin du calcul, pour des quantités physiques observables. Nous introduisons quelques outils utiles pour l'étude des orbites quasi-circulaires, puis nous rappelons des résultats récents concernant les équations du mouvement à 4PN. Enfin, nous expliquons comment extraire de la métrique extérieure des quantités observables par un observateur asymptotique, que l'on exprime grâce à l'introduction de moments multipolaires dits radiatifs, desquels on peut directement obtenir la forme d'onde et le flux.

Le Chapitre III est dédié à l'étude d'une forme de la métrique extérieure dite canonique. En effet, pour l'appariement entre la métrique extérieure et la métrique dans la zone proche, il est nécessaire de choisir pour la métrique extérieure une forme paramétrisée par deux moments sources, mais aussi quatre moments dits de jauge. Grâce la liberté de jauge résiduelle de la jauge harmonique, on peut paramétriser la métrique extérieure de manière équivalente à l'aide de seulement deux moments, dits canoniques. Pour cela, il faut prendre en compte le fait que les moments canoniques et de source diffèrent par des termes non-linéaires impliquant les moments de jauge. Toutefois, dans le cadre de la régularisation dimensionnelle, cette relation diffère de la relation tridimensionnelle usuelle. Les techniques pour l'obtenir sont traitées, et la relation finale entre moments de source et moments canoniques en d dimensions est présentée.

Le Chapitre IV est dédié au calcul d'interactions non-linéaires qui rentrent dans la relation entre les moments canonique et les moments radiatifs, lesquels sont observables par l'observateur à l'infini. Une nuance, toutefois, est que l'on introduit une autre version de l'algorithme canonique qui évite de manière systématique l'apparition de logarithmes en la distance radiale dans la limite où la distance radiale s'approche de l'infini. Cette nouvelle métrique, dite métrique canonique en coordonnées radiatives (par opposition à la métrique canonique en coordonnées harmoniques du Chapitre III), permet également d'exprimer des résultats connus à l'ordre quadratique dans l'itération post-minkowskienne. On donne alors les termes qui sourcent l'équation d'onde à l'ordre cubique, puis on décrit les techniques de calcul utilisées pour intégrer cette équation d'onde. Ceci est implémenté pour les interactions qui rentrent à l'ordre 4PN, et l'on décrit également une méthode de simplification de la métrique ainsi obtenue. Finalement, nous présentons les moments radiatifs associés aux trois interactions non-linéaires suivantes: les sillages de sillages, qui rentrent à 3PN et sont connus en termes des moments canoniques en coordonnées harmonique; les sillages de mémoire, qui rentrent à 4PN et sont associés à une interaction entre la masse-énergie totale du système et deux quadrupôles; et enfin des termes 4PN associés à l'interaction entre la masse-énergie, le moment angulaire et le quadrupôle.

La Chapitre V traite des méthodes pour relier les résultats obtenus dans le Chapitre IV, en terme des moments canoniques en coordonnées radiatives, aux résultats connus en termes de moments canoniques en coordonnées harmoniques. Nous développons d'abord le formalisme général pour relier ces deux types de moments, puis vérifions que pour les interactions de type sillage et sillage de sillage, les résultats sont bien cohérents dans ces deux formalismes. Nous exprimons enfin nos résultats cubiques du Chapitre IV en terme des moments canoniques en coordonnées harmoniques. Nous vérifions la cohérence de notre résultat final, notamment les termes non-oscillants qui sont cohérents avec la littérature, ainsi que les constantes arbitraires, associées à la régularisation d'Hadamard en trois dimensions; qui se compensent parfaitement avec les contributions provenant de la régularisation dimensionnelle. Enfin, dans le Chapitre VI, nous rassemblons tous les résultats nécessaires pour calculer les observables à 4PN. D'abord, nous faisons un point sur l'expression du quadrupôle source renormalisé, à qui il a fallu rajouter quelques contributions supplémentaires. Nous rappelons ensuite des résultats connus pour l'expression des moments radiatifs en termes des moments canoniques, complémentaires de ceux obtenus dans les Chapitres IV et V. Nous développons quelques résultats nouveaux, utiles pour réduire nos expressions dans le cas des orbites quasi-circulaires, notamment des contributions dites post-adiabatiques et le calcul spécifique aux sillages de mémoire. Enfin, nous présentons les modes pour des harmoniques sphériques à 4PN, ainsi que le flux, le gazouillement et la phase à 4.5PN. Nous présentons enfin des estimations numériques et une comparaison à la relativité numérique.

Nous entamons ensuite la Partie B dédiée aux théories tenseur-scalaire (TS), composée uniquement du Chapitre VII. Nous définissons la théorie, introduisons les paramètres utiles et décrivons certaines spécificités, comme l'apparition de sensitivité dû à la violation du principe d'équivalence fort. Nous adaptons alors le formalisme de la Partie A au cas des théories TS, et trouvons en particulier des nouveaux effets de sillage et de mémoire. Nous présentons alors pour des orbites générales les moments sources ainsi que le flux à 1.5PN au delà du rayonnement quadrupolaire, ce qui correspond à un ordre 2.5PN au-delà du rayonnement dipolaire dominant spécifique aux théories TS. Nous trouvons en particulier une différence sur l'expression du flux pour des orbites générales à 1PN avec un résultat de la littérature. Nous réduisons ensuite notre résultat pour des orbites circulaires, et nous calculons les modes tensoriels et scalaires à 1.5PN. Nous montrons enfin des résultats numériques récents et leur comparaison avec nos prédictions analytiques.
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Fig. I. 1

 1 Fig. I.1 Effect of different GW polarizations on a ring of free-falling test particles.The full line shows the configuration of the ring of particles at some initial time t 0 , and the dashed line shows the configuration at time t 0 + π/ω GW , where ω GW is the angular frequency of the GW (i.e. twice the orbital frequency). From top to bottom then left to right, the plus (+) and cross (×) tensor modes (green); the vector-x (x) and vector-y (y) modes (red); breathing (b) and longitudinal (l) scalar modes (black). In all of these diagrams, the wave propagates in the z direction. Source:[START_REF] Isi | Probing gravitational wave polarizations with signals from compact binary coalescences[END_REF] 

Fig. I. 2

 2 Fig. I.2 Polar plot of g(ι), the normalized angular power distribution carried by GWs. The orbital plane is represented by the dotted line. Points on the vertical axis have ι = 0 [π] and points of the horizontal axis have ι = π/2 [π].
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 5 5G f (e) , (I.50) which differs from its circular version only by the enhancement factor f (e) = 1 (1 -e)

I. 3 .Fig. I. 3

 33 Fig. I.3 Polar plot of g s (ι) = 3 sin 2 (ι)/(8π), the normalized angular power distribution carried by dipolar scalar waves. The orbital plane is represented by the dotted line. Points on the vertical axis have ι = 0 [π] and points of the horizontal axis have ι = π/2 [π].

Fig. I. 4

 4 Fig. I.4 Aerial view of the LIGO Hanford and Livingston interferometers, and of the Virgo interferometer. Source: Wikimedia Commons.

Fig. I. 5

 5 Fig. I.5 Design of the Advanced LIGO detectors. Source: [71].

  Fig. I.6 (a) Representative amplitude spectral density of the three detectors' strain sensitivity during the O3a run. Source: [72]. (b) Baseline aLIGO noise budget. Source: [73].

Fig. I. 7

 7 Fig. I.7 Schedule for past and future observing runs for the LVK Collaboration. Source: [74] .

  Fig. I.10. The design of Cosmic Explorer is essentially the same design as LIGO, but ten times bigger, i.e. with 40 km arms. The Einstein Telescope (see Fig. I.9a) is expected to be an underground interferometer in the form of an equilateral triangle with 10 km arms, located either in Italy or in the Netherlands. Its optical layout is composed of three nested detectors (Fig. I.9b), each of which is subdivided into two interferometers, which are optimized for low frequencies (1 Hz to 100 Hz) and high-frequencies (100 Hz to 10 kHz) respectively, in the so-called "xylophone" configuration.

  Fig. I.9 (a) Artistic view of ET. Source: [81]. (b) The optical layout of ET is made or three nested detectors, labeled by green, red and blue. Each of these detectors is composed of a low-frequency (full line) and a high-frequency (dashed line) interferometer. Source: [82].

  Fig. I.10.

Fig. I. 10

 10 Fig. I.10 Amplitude spectrum of detector noise as a function of frequency for Advanced LIGO, Advanced Virgo, Cosmic Explorer (CE), the Einstein Telescope (ET) and LISA. Source:[START_REF] Ezquiaga | Dark Energy in light of Multi-Messenger Gravitational-Wave astronomy[END_REF] 

  Fig. I.11 (a) Planned orbit configuration for the three LISA satellites. Source: [89]. (b) Gold-platinum test mass to be used in LISA. Source: [90]

Fig. I. 12

 12 Fig. I.12 GW151226 observed by the LIGO Hanford (left column) and Livingston (right column) detectors. First row: Strain data from the two detectors.Second row: Signal-to-noise ratio (SNR) time series. Source:[START_REF] Abbott | GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence[END_REF] 

  Fig. II.2 Sketch of the metric h in terms of the radial coordinate r, both for the PN expansion h (full line) and the MPM expansion M(h) (dotted line).The blob represents the source, of typical size a. The region where both curves overlap is the matching zone.

  Fig. II.3 (a) Representation of the time-independent triad (n 0 , λ 0 , l 0 ) and the corotating triad (n(t), λ(t), l 0 ) at times u and u -τ . (b) Corotating triad and inspiral of a quasicircular orbit.

  II.1. It reads for quasicircular orbits[START_REF] Bernard | Center-of-Mass Equations of Motion and Conserved Integrals of Compact Binary Systems at the Fourth Post-Newtonian Order[END_REF] 

Fig. II. 4

 4 Fig. II.4 Feynmann diagrams for (a) the tail interaction M×M ij (or equivalently at this order, M×I ij ); and (b) the memory interaction M ij ×M ij (or equivalently at this order, I ij × I ij ).

  Fig. IV.1 Feynman diagrams associated to the tails-of-memory.

  corresponds to a linearized quadrupolar wave interacting with a quadratic tail, as illustrated by the first Feynman diagram in Fig. IV.1a. Apart from simple instantaneous terms, this source contains terms whose structure reads

2 .

 2 M × (M ij × M ij ) corresponds to a quadrupole-quadrupole memory-like wave scattering off the curvature generated by the total mass-energy, and is illustrated by Fig. IV.1b. This source contains terms with the following structure:

  ij × M ij properly speaking, illustrated by Fig. IV.1c. This piece only leads to instantaneous terms, which are easy to integrate.

a)

  Cases where k = 1 and k = 2

  j⟩a (u -τ ) , (IV.90) which can be understood from the structure of the cubic source term (IV.25) corresponding to the diagram of Fig. IV.1a.

  II.3a), to elementary integrals of the type

Fig. VI. 1

 1 Fig. VI.1 Normalized flux F/F N emitted by an equal-mass binary (ν = 1/4) plotted as a function of x ≡ (GmΩ/c 3 ) 2/3 , as defined in (VI.54). The flux is normalized with respect to the Newtonian flux F N , given by the lowest order term of (VI.62). The normalized flux from numerical relativity (NR) is plotted in blue, along with the total 3PN, 3.5PN, 4PN and 4.5PN fluxes, as given by (VI.62). Courtesy of Héctor Estellés Estrella.

From the energy balance equation and using the chain 3 2- c 3 x 3 2

 32 dψ/dt = Ω = c 3 x /(Gm), we immediately obtain the differential equation dψ dx = Gm dE/dx F(x) (VI.69)

Fig. VII. 1

 1 Fig. VII.1 Comparison of 1.5PN scalar modes computed in[START_REF] Bernard | Gravitational waves in scalar-tensor theory to one-and-a-half post-Newtonian order[END_REF] (in mauve) and numerical results of[START_REF] Ma | Numerical simulations of black hole-neutron star mergers in scalar-tensor gravity[END_REF] (in green). The h 22 mode computed at 2PN in[START_REF] Sennett | Gravitational waveforms in scalar-tensor gravity at 2PN relative order[END_REF] is also compared to the numerical results. Time is given is units of GM/c 3 , where M = 7.2 M ⊙ . Source:[START_REF] Ma | Numerical simulations of black hole-neutron star mergers in scalar-tensor gravity[END_REF].

  (a) Coefficients A n m,ℓ associated to 1,m Ψ ℓ [M Coefficients B n m,ℓ associated to 2,m Ψ ℓ [M

BB

  b ln a r nL r p G (t -r/c) = f ℓ p α a,b ∂L G (p-ℓ-3) t -r/c r c p-ℓ-3 , (A.9a)where f ℓ p = 0 if p -ℓ -3 < 0 and otherwise:f ℓ p = (-) p 2 p-3 (p -3)! (p -ℓ -3)! (p + ℓ -2)!(when p ⩾ ℓ + 3) , (A.9b)

1 c 10 . (A. 10 )I ij =m 1 t 2 v ⟨i 1 11 )

 1010111 On the other hand, taking the BSS limit (m 2 , v 2 ) → (0, 0) of the renormalized mass quadrupole moment defined in[START_REF] Larrouturou | The quadrupole moment of compact binaries to the fourth post-Newtonian order: II. Dimensional regularization and renormalization[END_REF] (on generic orbits, out of the CoM frame), it comes lim BSS Both expressions coincide under the identification (m 1 , v 1 ) = (M, V ), therefore this test is conclusive.

21 )

 21 derivatives explicitly and studying the behavior of f , we find that d is indeed integrable as soon as β > -1. Treating this integral as a constant of order unity, we findB ancient = -eWe now tackle the recent past integral by defining another auxiliary function, which isessentially 1 + 5 8 s -βto which one subtracts the first terms of its series expansion when s → 0, namelyg β (s) s + f (s) g β (s) + 1 -5β 8 s (A.23)We decompose this into several pieces, namelyB recent = 3 k=1 B (k)recent . First, by integrating by parts in the usual manner, we find that B

  i,j,p (τ ) ≡ τ p +∞ 1+τ /r dx Q m (x) (x -1) p+1 +∞ 0 dρ ρ -k+i+1-p G(u -ρ)F u -

  |Υ k,i,j,p (τ )| ⩽ τ p +∞ 1+τ /r dx Q m (x) (x -1) p+1 = O τ →0 ln 2 τ , (A.53)which proves integrability at the bound τ → 0.b) Case k + j ⩾ 2We first shuffle the order of the integrals in (IV.46b) and obtain ρ i+j G(u -ρ)F u -ρ -λ(x -1) ρ i+j G(u -ρ)F u -ρ -λ(x -1) .

1 0- 1 00 2 0 2 2 F

 11222 i+j G(u -ρ)F u -ρ -λ(x -1) i+j G(u -ρ)F u -ρ -λ(x -1) . (A.55) We introduce Ξ k,i,j (x) ≡ u+T xdλ λ -k-j+1 min(u+T , 2λ) 0 dρ ρ i+j G(u -ρ)F u -ρ -λ(x -1) . (A.56)Let us bound this quantity for any x ∈ ]1, +∞]:Ξ k,i,j (x) ⩽ u+T xdλ λ -k-j+1 min(u+T , 2λ) 0 dρ ρ i+j G(u -ρ)F (u -ρ -λ(xdλ λ -k-j+1 min(u + T , 2λ) dλ λ -k-j+1 (2λ) i+j+1 + θ(3 -x) dλ λ -k-j+1 (u + T ) i+j+1 = K i + j + 1 2 j+k-2 i + (3 -k) (u + T ) i+(3-k) + θ(3 -x)(u + T ) i+j+1 u+T x-1 u+T 2 dλ λ -k-j+1 , where K ≡ sup (τ,τ ′ )∈[-T ,u] (τ )G(τ ′ ) . (A.58) 

+

  ϵ ab⟨i n j⟩ n a v b v 2 (13 -68ν) + ϵ ab⟨i v j⟩ n a v b (nv)(5 -10ν) + O 1 c 3 , (B.4d) J ijk = mνr 3 ϕ 0 ϵ ab⟨i n j⟩ n k n a v b (1 -3ν) + O 1 c 2 , (B.4e) J ijkl = -mνδr 4 ϕ 0 ϵ ab⟨i n j⟩ n k n a n l v b (1 -2ν) + O 1 c . (B.4f)

  abb + 1 3(3)I s,EW aa

( 1 -

 1 2s A ) . (B.10b)

  A -1PN , following our convention, corresponds to the leading dipolar radiation at -1PN order, and the coefficients B N n , C 0.5PN , D 1PN n and E1.5PN 

  

  

Table II

 II 

	Dynamics	Radiation
	Near-zone PN	Exterior MPM
	metric	metric
	N	
	1PN	
	1.5PN	
	2PN	
	2.5PN	N
	3PN	
	3.5PN	1PN
	4PN	1.5PN
	4.5PN	2PN
	5PN	2.5PN
	5.5PN	3PN
	6PN	3.5PN
	6.5PN	4PN
	7PN	4.5PN

.1: Order in which one should hierarchically solve dynamics and radiation in the PN-MPM formalism. An arrow from a cell A to a cell B indicates that computing A is required before one can compute B (not all such arrows are shown).

Table VI .

 VI . ⊙ ) 1.4 × 1.4 10 × 10 1.4 × 1.4 500 × 500 10 5 × 10 5 10 7 × 10 7 1: Contribution of each PN order to the total number of accumulated cycles inside the detector's frequency band, for typical (but nonspinning) quasicircular compact binaries observed by current and future detectors. We have approximated the frequency bands of LIGO/Virgo, Einstein Telescope (ET) and LISA with step functions, respectively between 30 Hz, 10 3 Hz , 1 Hz, 10 4

	Detector	LIGO/Virgo	ET		LISA
	Masses (M PN order			cumulative number of cycles	
	Newtonian	2 562.599	95.502	744 401.36	37.90	28 095.39	9.534
	1PN	143.453	17.879	4 433.85	9.60	618.31	3.386
	1.5PN	-94.817 -20.797 -1 005.78	-12.63	-265.70	-5.181
	2PN	5.811	2.124	23.94	1.44	11.35	0.677
	2.5PN	-8.105	-4.604	-17.01	-3.42	-12.47	-1.821
	3PN	1.858	1.731	2.69	1.43	2.59	0.876
	3.5PN	-0.627	-0.689	-0.93	-0.59	-0.91	-0.383
	4PN	-0.107	-0.064	-0.12	-0.04	-0.12	-0.013
	4.5PN	0.098	0.118	0.14	0.10	0.14	0.065

  2 and adding (VII.22), we then obtain the metric in the new gauge, i.e. h ′ µν 2 ≡ u ′ µν 2 + v µν 2 , in the form

Table VII .

 VII .2 and in scalar-tensor theories in Table VII.3. 2: Progress made in this thesis in general relativity, in the case of two structureless point-particles.

		General relativity		
	Order	EOM	(2, 2) mode	Flux	GW phase
	3PN	[114, 117, 104, 120]			
	3.5PN	[264, 265, 121]	[202]	[266, 104] [266, 104]
	4PN	[127, 131, 138, 139] This work This work This work
	4.5PN	[267, 153] 9	Unkown	[167]	This work

  To prove this, we divide our integral in a "recent" and "ancient" part, namely B = B recent + B ancient where

													5β 8n 2 ξ 2 + o(ξ 2 )	(A.14)
	We now claim that										
	B =	iξ n	+	5β 8n 2 ξ 2	ln	ξ |n|	-γ E + sg(n)	iπ 2	+	5β 8	-	3 16	ξ 2 n 2 + o(ξ 2 )	(A.15)
				B recent ≡		0	1	ds	e 1 + 5 ins ξ 8 s	β ln 1 +	5 8	s	8 5	-1	(A.16a)
				B ancient ≡		1	+∞	ds	e 1 + 5 ins ξ 8 s	β ln 1 +	5 8	s	8 5	-1	(A.16b)
	We first treat the "ancient" integral by introducing an auxiliary function
					f (s) ≡ ln 1 +	5 8	s	8 5	-1 -ln(s)	(A.17)
	which can be extended to be a C ∞ function of R + whose series expansion in a neigh-
	borhood of 0 reads										
					f (s) =	3 16	s -	17 512	s 2 +	35 4096	s 3 + O s→0 (s 4 )	(A.18)

  13) β -1 + 5β/8 and g ′ β (1) = -(5β/13) (8/13) β + 5β/8. We can now deal with the terms involving a logarithm. Thanks to the very regular structure of g β in a neighborhood of 0, we can integrate by parts twice to find

		ξ in		-ln	ξ |n|	-	iπ 2	sg(n) + γ E +	5β 8	ξ 2 n 2 + e	in ξ	1 -	5β 8	ξ 2 n 2
														(A.30)
	Adding all of these elements together, we find that B recent = 3 k=1 B recent yields (k)
	B recent =	iξ n	+	5β 8n 2 ξ 2		ln	ξ |n|	-γ E + sg(n)	iπ 2	+	5β 8	-	3 16	ξ 2 n 2
	+ e	in ξ	8 13	β ξ in	f (1) +	ξ n	2	1 -	5β 13	f (1) + f ′ (1)	(A.31)
	B recent ≡ (2)	0	1	dse				in ξ ξ 2 n 2	8 13	β	-1 +	5β 8	(A.25)

ins ξ g β (s) ln s = e

Note that this does not happen for a ruler perpendicular to the direction of motion.

For example, the centrifugal force that extracts water from your favorite type of lettuce in a salad spinner.

Ten years after the discovery of Neptune, Le Verrier achieved another feat by discovering the excess precession of the perihelion of Mercury. He attempted to explain it with an extra planet, Vulcan, even closer to the Sun than Mercury. However, this planet was never observed.

He sent to Einstein a letter from the Eastern front dated December 22, 1915, and died a few months later from pemphigus.

More recent estimates based on neutron-neutron repulsion mediated by the strong force and informed by the merger of the binary neutron star merger GW170817 brought this estimate up to about around 2.7 solar masses.

We denote by m = m1 + m2 the total mass of the two stars, µ = m1m2/(m1 + m2) is the reduced mass of the system, r12 is the distance between the stars and v12 is the relative velocity of one star with respect to the other.

Corrections in (v/c) 2n beyond the leading order are said to be of nPN order.

Note that in most textbooks, γµν is actually denoted hµν , which can be quite confusing.

This statement of course breaks down beyond linearized level.

It is analogous to the Lorenz gauge in electromagnetism, defined by ∂µA µ = 0.

It is analogous to the Coulomb gauge in electromagnetism, defined by ∂µA µ = 0 and ∂iA i = 0.

Or equivalently, γ = -h = γ+ -iγ×.

It can be argued from an effective field theory point of view that this constraint actually only holds for some energy scales.

The PN variable defined in (I.42) has the same expression for elliptical orbits, where we define ω = 2π/P at Newtonian order, with P the orbital period.

This ad hoc parameter is related to the ones used in Part B by (G/ϕ0)(1 + ε BD ) = Gα.

Each geodesic is parametrized by its own proper time τ , and ξ µ (τ ) connects points with the same value of τ on the two geodesics (see Footnote 7, Chapter 1 of[START_REF] Maggiore | Theory and experiments[END_REF]).

This follows the conventions of[95, 

3] and not those of[START_REF] Henry | The current-type quadrupole moment and gravitational-wave mode (ℓ, m) = (2, 1) of compact binary systems at the third post-Newtonian order[END_REF], see Footnote 3 of[START_REF] Blanchet | Gravitational-wave flux and quadrupole modes from quasicircular nonspinning compact binaries to the fourth post-Newtonian order[END_REF] for a clarification.

It turns out that, most of the time, the r ε term in the d-dimensional volume element d d x = r 2+ε dr dΩ d-1 actually plays the same regularizing role as r B , so the FPB=0 operator is not needed. We introduce it only to treat the special case where the source behaves as S ∼ r p+qε with q = -1, such that the ε contribution in the source and the volume element exactly cancel out. Furthermore, in all practical computations, it was noticed that the poles in 1/B all cancel out in end results, such that one does not need to take a finite part, but only the limit B → 0.

These have a well-defined computation meaning in the effective field theory framework; here we present them for illustrative purposes only.

Note that here we express the source moments in terms of the canonical and gauge moments, while in (3.6) of[START_REF] Blanchet | The quadrupole moment of compact binaries to the fourth post-Newtonian order: from source to canonical moment[END_REF], it is the opposite. Indeed, the derivation in[START_REF] Blanchet | The quadrupole moment of compact binaries to the fourth post-Newtonian order: from source to canonical moment[END_REF] is correct but swipes under the rug possible corrections at cubic order, which fortunately do not contribute at 4PN. This was however important in[START_REF] Trestini | The quadrupole moment of compact binaries to the fourth post-Newtonian order: relating the harmonic and radiative metrics[END_REF], so we follow the reasoning of this latter reference instead. The relation can straightforwardly be inverted at the end of the derivation.

In this chapter, since we are iteratively constructing a coordinate system order by order, it is convenient to consider the coordinates as dummy variables and denote them by (t, r). Even at the end, once we have obtained the full radiative metric, we shall continue to denote the radiative coordinates by the generic (t, r), although it might be more appropriate to denote them by (T, R), for instance.

If f is a smooth function, then □ r -1 f (t -r) = -4πf (t)δ (3) (x) in the sense of distributions, but □ r -1 f (t -r) =0 in the sense of ordinary functions.

A detailed construction of Bondi-Newman-Unti coordinates starting from harmonic coordinates can be found in[START_REF] Blanchet | Multipole expansion of gravitational waves: from harmonic to Bondi coordinates[END_REF].

A different yet totally equivalent method consists instead in redefining the linearized harmonic metric h µν harm 1 in the right-hand side, namely by applying the redefinitions ML → ML + G n-1 δnML and SL → SL + G n-1 δnSL, but in that case we must include corrections due to the "renormalization" of Ω µν .

For the sake of lightness, we set c = 1 throughout Section V.2.

Note that in[START_REF] Arun | The 2.5PN gravitational wave polarisations from inspiralling compact binaries in circular orbits[END_REF], the auxiliary variable and the post-adiabatic parameter were defined in terms of the instant of coalescence uc. We will see in Section VI.6 that this coalescence time is uniquely defined only up to 3.5PN order, but starting at 4PN order, this definition does not uniquely specify uc anymore. This does not affect our computation at this order, so we stick with the definition in terms of uc for historical purposes.

See[START_REF] Detweiler | Perspective on gravitational self-force analyses[END_REF] for a similar argument in the context of self-forces, using an observer sitting on the particle and equipped with a flashlight.

Notice that the

4PN contribution is either multiplied by ln(x) or reabsorbed into the arbitrary constant τ0.

We restore the factors G and c. In (VII.34a) we denote by h TT ij the TT projection of the gothic spatial metric deviation, which differs by a sign from the ordinary (covariant) spatial metric deviation.

Note a change of definition for σs: in[START_REF] Bernard | Dynamics of compact binary systems in scalar-tensor theories: Equations of motion to the third post-Newtonian order[END_REF], the definition given in(4.16) should not be used. Indeed, this definition was never used during the computation in[START_REF] Bernard | Dynamics of compact binary systems in scalar-tensor theories: Equations of motion to the third post-Newtonian order[END_REF]; instead, only the 1PN expansion given in (B4) was used, and is correct. Our definition (VII.42b) for σs yields (B4) in[START_REF] Bernard | Dynamics of compact binary systems in scalar-tensor theories: Equations of motion to the third post-Newtonian order[END_REF] at the 1PN approximation.

For convenience, when working in the CM frame, we denote r ≡ r12 and n i ≡ n i 12 the distance and separation vector between the two bodies (r should not be confused with the harmonic-coordinate distance to the source used in Section VII.2).

At this order in scalar-tensor theory, it is not necessary to distinguish the y and x variables introduced in Part A.

In the center-of-mass frame only.

We found a discrepancy with[START_REF] Lang | Compact binary systems in scalar-tensor gravity. III. Scalar waves and energy flux[END_REF] which vanishes for circular orbits[START_REF] Sennett | Gravitational waveforms in scalar-tensor gravity at 2PN relative order[END_REF].

The waveform was computed at 1.5PN by[START_REF] Lang | Compact binary systems in scalar-tensor gravity. II. Tensor gravitational waves to second post-Newtonian order[END_REF] but was not reduced to spherical harmonic modes for circular orbits.

For dipolar-driven systems only.[START_REF] Blanchet | Contribution à l'étude du rayonnement gravitationnel émis par un système isolé[END_REF] 
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ADM: Arnowitt-Deser-Misner BD: Brans-Dicke hence the gauge vector (IV.9) upon integration explicitly reads

ab M

(3) ab v -r(x -1), n , (V.39a)

ab M (3) pq + 16 9 niab Q 3 (x)M

(3) ak M

(3) kb

ai M

(3) bk -

ab M

(3) ab

ik M

(3) ka v -r(x -1), n . (V.39b)

For this interaction, the nonlinear correction term vanishes, i.e. Ω µν M ij ×M ij = 0, and it automatically follows that ∆ µ M ij ×M ij = 0, ϕ µ M ij ×M ij = 0, and H µν M ij ×M ij = 0. This means that there are no corrections to the moments due to this interaction, and since ζ µ M ij ×M ij = 0, the total shift vector reduces to

When computing the cubic metric, we need also the quadratic M×M interaction, and this one is trivially computed: the gauge vector vanishes, φ µ M×M = 0, while the only nonzero component of the correction term is Ω 00 M×M = 4M 2 /r 2 . A straightforward dimensional analysis shows that the only cubic interactions which can enter the relation between the canonical moments M ij and M ij up to the 4PN order in the frame of center-of-mass (for which M i = M i = 0), are precisely the tail-of-tail interaction M × M × M ij already computed in the previous section, which is at 3PN order, and the cubic interactions M × M ij × M ij and M × M ij × S i . Hence we limit ourselves to 4PN order. Implementing the calculation using the technical formulas displayed in Appendix A.3, we then find that the complete relation up to 4PN order between the moments is (restoring at this point the factors 1/c)

(1) a⟨i M

(3)

(3)

where have posed S i|j ≡ ϵ ijk S k for the angular momentum, and angular brackets denote the STF projection. We can easily invert the previous relation: using the fact that for the conserved quantities M = M and S i = S i , we find (V. [START_REF] Weisberg | Gravitational waves from an orbiting pulsar[END_REF] interaction M ij × S k : At the 3PN order appears the first cubic interaction, namely the "tail-of-tail", consisting of the interplay between two masses and the quadrupole moment, i.e., M 2 × M ij .

We thus have

, where U M 2 ×M ij ij is given by (V.45a), see also [START_REF] Blanchet | Gravitational-wave tails of tails[END_REF][START_REF] Faye | Non-linear multipole interactions and gravitational-wave octupole modes for inspiralling compact binaries to third-and-ahalf post-Newtonian order[END_REF]. Note the appearance here of the constant length scale r 0 , and which should be distinguished from the previously introduced scale b 0 . The coefficient in front of the ln r 0 term in (V.45a) is exactly the β-function coefficient associated to the renormalization of the mass quadrupole moment, say β 2 = - 214 105 . In the present formalism, this scale arises from the Hadamard regularization scheme .

The next-order 3.5PN term has a structure similar to the 2.5PN one, i.e. with some memory type integrals and instantaneous terms. The interactions between moments are however more complicated but still of quadratic nature:

(3) a⟨i S

(3) At the 4PN order appear the "tail-of-memory" and "spin-quadrupole tail", which are, respectively, due to the M × M ij × M kl and M × S i × M jk interactions, that we have extensively studied in Chapters IV and V. Thus, we have

where

is given by (V.45b) and U

by (V.45c), see also [START_REF] Trestini | Gravitational-wave tails of memory[END_REF][START_REF] Trestini | The quadrupole moment of compact binaries to the fourth post-Newtonian order: relating the harmonic and radiative metrics[END_REF]. Besides the mass quadrupole moment, the expression of the flux (II.66) at the 4PN order requires the knowledge of moments of higher multipolarity, but evaluated at lower PN orders. Indeed, the computation of the flux involves the squares of the radiative moments, therefore in order to obtain the 4PN flux, we need U L at (4 -ℓ)PN order and V L at (3 -ℓ)PN order, where ℓ ⩾ 2. Thus at the next multipolar order, we need the mass octupole U ijk and current quadrupole V ij moments with a 3PN precision:

Reporting the results of [START_REF] Faye | Non-linear multipole interactions and gravitational-wave octupole modes for inspiralling compact binaries to third-and-ahalf post-Newtonian order[END_REF], they read

(5)

(3) jk⟩a

(2) jk⟩a - possibility of computing the flux, phase and waveform at 5PN as well. Many difficulties will arise in this computation, one of which is the appearance of many terms akin to the tails-of-memory we computed in Chapter IV. The novel integration techniques we have introduced, along with the drastic simplification method, seem to indicate a path to compute the nonlinearities in the post-Minkowskian iteration very generally, to any order and for any interaction. However, the difficulty of this computation contrasts with the rather simple end result, and one is compelled to ask if there is not an easier way to compute these nonlinear interactions. Moreover, computing the source quadrupole moment at 5PN order, using full dimensional regularization, should be expected to be very difficult as well.

Finally, despite the theoretical interest of these computations, one may also reassess the experimental need for going to even higher order, as it could be more useful for astrophysical purposes to broaden our problem to include, for example, eccentricity and nonaligned spins to high post-Newtonian order. This would require detailed studies (such as [START_REF] Owen | Waveform accuracy and systematic uncertainties in current gravitational wave observations[END_REF]) about the impact of truncating the post-Newtonian series to some given order, both in the case of current and future detectors. Another interesting direction concerns alternative theories of gravity. Table VII.3 indicates that the knowledge of the 3PN equations of motion [START_REF] Bernard | Dynamics of compact binary systems in scalar-tensor theories: Equations of motion to the third post-Newtonian order[END_REF][START_REF] Bernard | Center-of-Mass Equations of Motion and Conserved Integrals of Compact Binary Systems at the Fourth Post-Newtonian Order[END_REF] in scalar-tensor theories allow us to compute the waveform at 2PN order, which is the object of future work. Moreover, in order to dispose of a large bank of alternative waveform templates, it now seems crucial to study waveforms to high order in a wider class of alternative theories of gravity, such as theories with a potential, or even exhibiting a screening mechanism. Before this, and in light of the plethora of existing alternative theories and recent experimental constraints, one should first precisely identify which theories could indeed be tested by gravitational-wave observations, but still escape weak-field solar system constraints.

Appendix A

General relativity

A.1

Extracting N L , P L , Q L and R L

We describe the practical method we use to extract four sets of STF moments N L , P L , Q L and R L parametrizing a vector quantity satisfying □w µ = 0. Here w µ ≡ w µ n represents the divergence w µ n = ∂ ν u µν n of the quantity (II.22) following the MPM algorithm. Having extracted these moments we can then construct the tensor v µν n ≡ V µν [N L , P L , Q L , R L ] using the formulas (48) in [START_REF] Blanchet | Gravitational Radiation from Post-Newtonian Sources and Inspiralling Compact Binaries[END_REF], which satisfies at once □v µν n = 0 and ∂ ν v µν n = -w µ n . By definition, see [START_REF] Newman | An Approach to gravitational radiation by a method of spin coefficients[END_REF] in [START_REF] Blanchet | Gravitational Radiation from Post-Newtonian Sources and Inspiralling Compact Binaries[END_REF],

(A.1a)

Next, we define the auxiliary quantities

Using formulas from Appendix A in [START_REF] Blanchet | Radiative gravitational fields in general relativity. I. general structure of the field outside the source[END_REF], we express the angular integrals

If w µ is known exactly to all order in r, we find that the multipole moments can be computed using the near zone limit r → 0 (with t -r = const) as

If we only know the leading order of the asymptotic expansion of w µ as r → +∞, the previous expressions cannot be used. In that case, we get equivalent expressions for the time derivatives of the multipole moments:

A.3 Formulas for the retarded integrals

During the application of the procedure described in Section V.1, we have to compute some retarded integrals given by (V.15). We quickly recall the method we follow, see Section IV.B in [START_REF] Blanchet | The quadrupole moment of compact binaries to the fourth post-Newtonian order: from source to canonical moment[END_REF]. Because of the explicit factors B and B 2 in their source terms, the retarded integrals (V.15) will be nonzero only when they develop a pole (or a double pole) when B → 0. In turn this means that they depend only on the behavior of the corresponding source in the "near-zone", i.e., when r → 0.

Thus the first task is to expand the source term when r → 0. This is straightforward except when the source contains a hereditary tail integral, say

where F (t) denotes a component of the mass quadrupole moment. The formula needed to handle this case has been developed in the Appendix A of [START_REF] Blanchet | The quadrupole moment of compact binaries to the fourth post-Newtonian order: from source to canonical moment[END_REF]: the near-zone expansion of (A.6), valid to any order when r → 0, reads

where H q is the harmonic number, and the coefficients are

with the binomial symbol i k = 0 whenever i < k. Once the near-zone expansion of the source is achieved, it remains to apply the following formulas, most of them being already exposed in the Section IV.B of [START_REF] Blanchet | The quadrupole moment of compact binaries to the fourth post-Newtonian order: from source to canonical moment[END_REF], but which we had to generalize in order to include higher powers in the logarithms. Thus the generalization of (4.17) in [START_REF] Blanchet | The quadrupole moment of compact binaries to the fourth post-Newtonian order: from source to canonical moment[END_REF] is

where e ℓ p = 0 when p -ℓ -3 is not an even natural integer, and otherwise:

and where, for the values we need in this chapter:

where we have again used the value of g β [START_REF]The Pyramid was constructed around 2330 BC, but the spells are probably at least a century older (Allen 2005), and are hence the oldest large corpus of religious writing known from ancient Egypt. A translation can be found on p. 45 of The Ancient Pyramid Texts (2005) by James P. Allen, while the transliteration and hieroglyphic transcription can be found, respectively, in Volume I and Volume III of A New Concordance of the Pyramid Texts (2013)[END_REF]. Finally, for the last piece, integrating by parts yields

At his stage, only a classic integral is yet to determine. We combine (4.331.1-2) of [START_REF] Gradshteyn | Table of Integrals[END_REF] to find

The branch cut of the complex logarithm being on the real negative half-axis, its principal value for µ = -in/ξ is well-defined and reads ln -

Moreover, (8.215) of [START_REF] Gradshteyn | Table of Integrals[END_REF] gives us the relevant asymptotic expansion of the integral exponential function, which reads in our case and at desired order

Our last piece can thus be expressed as

To start with, the Einstein equations in d + 1 dimensions [START_REF] Blanchet | Dimensional regularization of the third post-Newtonian dynamics of point particles in harmonic coordinates[END_REF] are identical to their three-dimensional form, but with a coupling constant G = G N ℓ d-3 0 , where G N is the standard 3-dimensional Newton's constant and ℓ 0 is an arbitrary length scale associated to dimensional regularization. This arbitrary scale must not appear in final results in the 3D limit. We then recover the Landau-Lifschitz formulation (II.5), but where the source term is now given by

Many technical details of PN-MPM computations are subtly modified in d dimensions, as presented nicely in [START_REF] Blanchet | Dimensional regularization of the third post-Newtonian dynamics of point particles in harmonic coordinates[END_REF]. Some highlights are that the volume of a unit sphere with a d -1 dimensional surface is

where Γ(z) = +∞ 0 dt t z-1 e -t is the usual gamma function, and the infinitesimal volume element in spherical coordinates (r, θ 1 , ..., θ d-1 ) reads

Any operation involving a trace is also affected, e.g. the expression of the STF quantity nL is given, for

The formulas describing how derivative operators apply on functions of the coordinates are also modified, e.g.

Defining the d-dimensional Dirac distribution δ (d) (x) à la Schwartz, we find that the Green's function u(x) of the d-dimensional Laplace operator, defined by

where we define

operator is less straightforward. It satisfies

and is given by

where θ is the Heaviside function and where we define, for any s ∈ C and |z| ⩾ 1,

For s ∈ -N * , this latter function should actually be seen as a distribution, in which case we for example find γ -1 (z) = δ(z -1). Thanks to this retarded Green's function, and assuming for now that the source S(t, x) has good integrability properties, we can generally solve the wave equation

and find a particular retarded solution

which reduces to the three-dimensional solution when d → 0, thanks to the distributional character of γ s . Although dimensional dimensional cures many convergence problems that can occur in three dimensions, a few difficulties remain. Therefore, the previous solution is more generally given by the regularized expression

where FP B=0 is defined just like in three dimensions. On top of finding a particular solution to the sourced wave equation, it is also necessary to study the homogeneous part of the wave equation in d dimensions, namely the solution of

The most general homogeneous "multipolar" retarded solution, under the usual no-incoming radiation and asymptotic flatness assumptions, reads [START_REF] Bernard | Dimensional regularization of the IR divergences in the Fokker action of point-particle binaries at the fourth post-Newtonian order[END_REF] 

where the multipolar moment F L is related to the arbitrary function of time F L (t) via the definition

), so we retrieve the three-dimensional multipolar expansion in the three-dimensional limit. Although this expression is exact, it is often unwieldy, and it will be very useful to express its near-zone expansion when r → 0, which reads [START_REF] Bernard | Dimensional regularization of the IR divergences in the Fokker action of point-particle binaries at the fourth post-Newtonian order[END_REF] 

where

)

Proof of convergence when k = 1 and k = 2

In this Appendix, we assume that k ∈ {1, 2}. In order to analyze the convergence of the general solution (IV.46) for arbitrary smooth functions F and G ∈ C ∞ (R) which vanish identically in the remote past, for t ⩽ -T , we must first do some manipulation so as to transfer the boundary conditions of F and G into the bounds of the integrals. Thanks to the regularization factor λ B , we can always manipulate these integrals safely, since they are defined by analytic continuation for any B ∈ C except at some integer values including the value of interest B = 0, at which we apply the finite part in the end.

In this case, we can perform the change of variable λ = µ + ρ/2 on (IV.46b) and expand using the binomial formula:

Appendix B Scalar-tensor theories

B.1 Dissipative PN-odd terms in the equations of motion

The conservative equations of motion of compact binaries in ST theory have been obtained up to 3PN order in [START_REF] Bernard | Dynamics of compact binary systems in scalar-tensor theories: Equations of motion to the third post-Newtonian order[END_REF][START_REF] Bernard | Dynamics of compact binary systems in scalar-tensor theories: II. Center-of-mass and conserved quantities to 3PN order[END_REF]. The PN-even terms a N A , a 1PN A , a 2PN

A and a 3PN

A in the acceleration for arbitrary orbits in a general frame are given by (5.10)- [START_REF] Blanchet | Gravitational-Wave Phasing of Quasicircular Compact Binary Systems to the Fourth-and-a-Half Post-Newtonian Order[END_REF][START_REF] Blanchet | Gravitational-wave flux and quadrupole modes from quasicircular nonspinning compact binaries to the fourth post-Newtonian order[END_REF][START_REF] Trestini | Gravitational waves in scalar-tensor theory to one-and-a-half post-Newtonian order[END_REF][START_REF] Trestini | Gravitational-wave tails of memory at 4PN order[END_REF][START_REF] Blanchet | Gravitational waves from compact binaries to the fourth post-Newtonian order[END_REF][START_REF] Landau | The classical theory of fields[END_REF][START_REF] Misner | Gravitation[END_REF][START_REF] Maggiore | Theory and experiments[END_REF] of [START_REF] Bernard | Dynamics of compact binary systems in scalar-tensor theories: Equations of motion to the third post-Newtonian order[END_REF]. The dissipative PN-odd terms a 1.5PN A and a 2.5PN A can be computed based on their expressions in terms of the EW moments as given by [START_REF] Mirshekari | Compact binary systems in scalar-tensor gravity: Equations of motion to 2.5 post-Newtonian order[END_REF]. We find

whereas a 1.5PN and a 2.5PN 2 are given by 1 ↔ 2. For the relative acceleration in the CM frame, the even terms of the equations of motion were computed in [START_REF] Bernard | Dynamics of compact binary systems in scalar-tensor theories: Equations of motion to the third post-Newtonian order[END_REF], and the odd terms are given explicitly in [START_REF] Mirshekari | Compact binary systems in scalar-tensor gravity: Equations of motion to 2.5 post-Newtonian order[END_REF].

The expressions of the individual positions y A and velocities v A in the CM frame (i.e. as functions of the CM frame quantities n and v) are only required to 2PN order to compute the flux. The even Newtonian, 1PN and 2PN terms are given in [START_REF] Bernard | Dynamics of compact binary systems in scalar-tensor theories: II. Center-of-mass and conserved quantities to 3PN order[END_REF]; the only required odd terms are of order 1.5PN: v 1.5PN A is given in [START_REF] Mirshekari | Compact binary systems in scalar-tensor gravity: Equations of motion to 2.5 post-Newtonian order[END_REF], but y 1.5PN A is not. We find

Expressions for the scalar and tensor source moments

B.2.1 The STF moments

For the flux and waveform computations, the STF moments were first expressed in a general frame, then computed in the center of mass frame where their expression are much simpler. However, there is a notable exception for I s i , which could not be resolved in the center of mass frame up to 2.5PN order. Indeed, this would require an expression for y 1 as a function of center-of-mass binary system vectors n and v up to 2.5PN order. Such an expression would require computing the flux F P of linear momentum P and the flux F G corresponding to the center-of-mass position G, due to the coupling between the dipole and quadrupole moments. However, for the flux, only the second time derivative of I s i was required, whose Newtonian part is proportional to the relative acceleration a ≡ a 12 , which is already expressed in the center of mass frame; the 1PN and higher order terms then only require knowing the expression for y 1 to 1.5PN order, so the second time derivative of I s i can be fully expressed in the center of mass frame (without the knowledge of P or G) using the expression given in [START_REF] Bernard | Dynamics of compact binary systems in scalar-tensor theories: II. Center-of-mass and conserved quantities to 3PN order[END_REF]. As for the waveform, the first time derivative of I s i is only required to 2PN order, so there is no problem.

Owing to these remarks, we chose not to present the full 2.5PN expression of I s i in a general frame, though we have computed its lengthy expression explicitly. The relevant scalar moments in the center-of-mass frame are 

The tensor source moments (in addition to the mass type quadrupole tensor moment already given by (VII.45)) are Gravitational radiation of compact binary systems in general relativity and in scalar-tensor theories Abstract: We improve analytical theoretical predictions for gravitational waves (GWs) emitted by compact binary systems of neutron stars and black holes during the inspiraling phase preceding merger, both in general relativity (GR) and in a class of scalar-tensor (ST) theories. We resort to a formalism that combines the multipolar post-Minkowskian (MPM) expansion of the vacuum metric exterior to an isolated matter system and the post-Newtonian (PN) expansion in small orbital velocities (v ≪ c) and weak gravitational fields. In GR, we compute the (ℓ, m) modes of the GW up to 4PN order, i.e. (v/c) 8 beyond leading order, as well as the phase and energy flux up to 4.5PN order. For this, we study novel nonlinear terms in the propagation of GWs. The main effect is the "tail of memory", which is due to the combined effects of (i) GW tails, i.e. the backscattering of GWs against the spacetime curvature generated by the total mass of the binary; and (ii) the memory effect, due to the reradiation of GWs by GWs themselves. This computation required implementing the so-called "radiative" MPM construction of the exterior vacuum metric, which removes the far-zone logarithms in the radial coordinate that appear in the standard construction in harmonic coordinates. In ST theories, we adapt the PN-MPM framework at 1.5PN order (i.e. 2.5PN beyond the leading dipolar radiation of ST theories). We thus obtain the flux, phase and (ℓ, m) modes of the scalar and tensor fields at 1.5PN order for circular orbits, and correct a mistake in the literature for general orbits.
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