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Spell 257, Pyramid Texts [1]

Pyramid of Unas, ca. 2330 BC





Introduction

A historical perspective

This thesis is mainly based on papers I have co-authored, published
in peer-reviewed journals [2, 3, 4, 5, 6] and conference proceedings [7,
8, 9]. The following material was particularly useful when writing
this thesis: [10, 11, 12, 13, 14]. Many results were obtained using
Mathematica [15], and in particular the xAct library [16].

Among all the forces of nature, gravity is the only one for which we have a natural
physical intuition. Our inability to free ourselves from it led humanity to consider the
inaccessible sky as the firmament of the gods. Thus, it is because of gravity that there has
long been a dichotomy between our understanding of the laws that govern our familiar
terrestrial world and the patterns we observe in the distant sky. Despite unquestionable
progress which has been made throughout the centuries1 in astronomy and on the free
fall of bodies on Earth, we owe the first visionary breakthrough to Isaac Newton, who
understood in his Philosophiæ Naturalis Principia Mathematica [17] that these two seem-
ingly unrelated systems were in fact governed by the same universal laws of gravitation,
associated with a universal constant of gravitation G = 6.67 × 10−11 m3 kg−1 s−2:

I began to think of gravity extending to the Orb of the Moon, and having found out
how to estimate the force with which a globe revolving within a sphere presses the
surface of the sphere. From Kepler’s Rule of the periodical times of the Planets, I
deduced that the forces which keep the Planets in their Orbs must be reciprocally as
the squares of their distances from the centres about which they revolve: and thereby
compared the force requisite to keep the Moon in her Orb with the force of gravity
at the surface of the Earth, and found them to answer pretty nearly.

— Isaac Newton

Although Newton was somewhat unconvinced by the metaphysics of his theory2, it
was immediately a major success. Despite the extreme simplicity of the formulation of

1By René Descartes, Johannes Kepler, Tycho Brahe, Galileo Galilei, etc. etc.
2Although he was fully satisfied with the accuracy of the predictions of his theory, Newton could not

fathom the metaphysical cause of gravity’s action at a distance, as he expresses in a letter to Richard
Bentley:

That one body may act upon another at a distance through a vacuum without the mediation
of anything else, by and through which their action and force may be conveyed from one

ix



x Introduction: A historical perspective

this law, its effect was to yield extremely accurate predictions for the motion of solar
system bodies, as worked out using perturbation theory by Pierre-Simon de Laplace in
his Traité de mécanique céleste [18]. The epitome of this success was the prediction of
the existence of a eighth planet by Urbain Le Verrier (and independently by John Couch
Adams) in order to explain the small but systematic discrepancy between the orbit of
Uranus and the predictions of Newton’s laws of gravitation. The exact position of the
putative planet was transmitted by Le Verrier to the German astronomer Johann Galle,
who observed Neptune at the predicted location on September 23, 1846.

The simplicity of Newton’s law of gravitation encouraged scientists to explain other,
more elusive, phenomena with the help of similar methods. Indeed, static electricity
had been observed by Thales of Miletus as early as 600 BC on amber rods3, but it was
only much later, and after many preliminary works, that Charles-Augustin de Coulomb
published the Mémoires sur l’Électricité et le Magnétisme [19], which predicted that
two (macroscopic) bodies with some charges should undergo a force that varies as the
inverse square of the distance, in perfect analogy with Newton’s law of gravitation. At
the time, the electric force was seen as totally separate from magnetism, which was
commonly used for navigation since the Middle Ages. Back then, the only known kind of
magnetism was ferromagnetism, and one only studied the interaction of ferromagnets with
each other and with the Earth’s magnetic field, in devices such as compasses. However,
when Hans Christian Ørsted accidentally discovered that a compass would twitch near
an electric wire, it was understood that these two theories were linked. André-Marie
Ampère, Carl Friedrich Gauß, Jean-Baptiste Biot and Félix Savart discovered how electric
charges in motion, i.e. an electric current, gave rise to a magnetic field; conversely,
Michael Faraday found how the variation of the magnetic field could induce an electric
current in a wire. The major milestone in the field was the unification of all of these
theories by James Clerk Maxwell in A dynamical theory of the electromagnetic field [20].
The theory of electromagnetism does not only encompass the interactions between the
electric and magnetic fields, but also explains the finite-speed propagation of light as an
electromagnetic field in vacuum. It was indeed known from Ole Christensen Rømer’s 1675
observation of the moons of Jupiter [21] (following the suggestion by Giovanni Domenico
Cassini) and from Christiaan Huygens’s theoretical computation [22] that the speed of
light should be finite, and was measured at the time to be approximately 220,000 km/s
(instead of 299,792.458 km/s).

Although electromagnetism was extremely successful, the fact that the speed of light
was a constant of the theory created a theoretical crisis: suppose light was propagating in a
certain direction, then an inertial observer following the light in the same direction should
see the light with vanishing propagation speed. This is clearly in contradiction with the
universal speed of light predicted by Maxwell’s theory. Moreover, it seemed incongruous
for light waves to travel in vacuum, since all known waves travel in a medium, and the
speed of sound is determined by the nature of this medium. To solve this inconsistency, it
was suggested that a substance called luminiferous ether should permeate the Universe, so

another, is to me so great an absurdity that, I believe, no man who has in philosophic
matters a competent faculty of thinking could ever fall into it.

— Isaac Newton

3The word electricity (and electron) comes from the Greek word ἤλεκτρον, which means amber.
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as to act as a medium for the propagation of light. Then, just like for material waves, an
inertial observer would be able to “follow” the electromagnetic waves. In order to verify
this statement, an experiment was devised by Albert Abraham Michelson and Edward
Williams Morley (using the so-called Michelson interferometer) to compare the speed of
light in the direction of the orbital motion of the Earth, and in the direction orthogonal
to it. Should such an ether exist, then the two velocities would differ. However, the
experiment found no difference, and this null result thus aggravated the crisis.

In order to reconcile mechanics and Maxwell’s theory, one needed to come up with a
summation law of velocities that was compatible with a universal speed of light. A first
breakthrough was an improved model of ether by Lorentz [23], which could explain the null
result by a set of coordinate transformations, which were dubbed Lorentz transformations
by Poincaré [24]. A new theory, called (special) relativity, was then proposed in 1905 by
Albert Einstein in his renown paper “Zur Elektrodynamik bewegter Körper” [25] and
by Henri Poincaré [24]. This theory did not require the existence of ether at all, but
one needed to accept that the notion of time and space are not absolute, but depend on
the reference frame. Indeed, consider the thought experiment of a ray of light emitted
vertically from the floor of a train cabin, reflecting against a mirror on the roof, and
reflecting back down onto the floor, where it came from. Denoting the speed of light
c and the height of the cabin d, then the time needed for the light ray to go back and
fourth is ∆t = 2d/c. Now consider a person standing on the platform of the train station
who sees the train pass by with a speed v, and sees the motion of the light ray through
the window. For the exterior observer, the path of the light ray is now triangular-shaped
and longer that the path measured by an observer in the train. Under the assumption
that the speed of light is independent of the reference frame, elementary geometry and
algebra tells us that the time it takes to travel this longer path is now ∆t′ = 2dγ/c, where
γ = 1/

√
1 − (v/c)2 is called the Lorentz factor (for subluminal velocities v < c, we have

γ > 1, so ∆t′ > ∆t). However, we could also have performed the reverse experiment,
with the light beam outside the train, and we would have found the same result. We thus
conclude that in special relativity, the observer on the platform sees a clock inside the
train tick slower than his own clock; and reciprocally, the person inside the train also sees
the clock of the person of the platform tick faster that her own clock. This is dilation
of time in special relativity; similarly, a ruler oriented in the direction of motion of the
train would be seen shorter that expected by an observer on the platform, and vice versa,
namely there is contraction of lengths4. The theory of special relativity is thus compatible
with a universal speed of light, and the absence of a preferred (Galilean) frame.

However, special relativity has outstanding issues. First, we have seen that there is no
preference between two frames that move with a constant velocity with respect to each
other, but this ceases to be true if the frames are accelerated with respect to each other,
in which case inertial forces appear5. For Newton’s first law of motion to hold, one needs
to postulate the existence of an inertial frame of reference, which is an unaccelerated
frame, thus free of any inertial forces. This sounds unnatural if one wants physics to be
fully independent of the choice of reference frame. Moreover, Newton’s law of gravity is
incompatible with special relativity, since it acts instantaneously, while special relativity

4Note that this does not happen for a ruler perpendicular to the direction of motion.
5For example, the centrifugal force that extracts water from your favorite type of lettuce in a salad

spinner.
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requires that causal effects cannot happen faster than the speed of light. Interestingly,
since Coulomb law of electrostatics was generalized by Maxwell into the dynamical theory
of electromagnetism, with waves propagating at the speed of light, one could expect that
Newton’s law can be generalized to a dynamical theory, involving an “electric” and a
“magnetic” component, with “gravitational waves” propagating at the speed of light as
well.

In 1907, while working in a patent office in Bern, Albert Einstein had what he calls
his “happiest thought”:

Suddenly a thought struck me: If a man falls freely, he would not feel his weight. [...]
A falling man is accelerated. Then what he feels and judges is happening in the ac-
celerated frame of reference. [...] A falling man does not feel his weight because in his
reference frame there is a new gravitational field which cancels the gravitational field
due to the Earth. In the accelerated frame of reference, we need a new gravitational
field.

— Albert Einstein in How I created the theory of relativity [26]

In this way, the two problems we have mentioned have the same answer, namely that
gravity and inertia are essentially the same thing. Consider a very modern rocket smoothly
blasting though space with a constant acceleration g = 9.8 m/s2. A person sitting in the
rocket would not be able to tell whether he is in a rocket of in a room on Earth. From this
idea, which is called the equivalence principle, Einstein was able to compute within the
framework of special relativity how much faster a clock at the head of the rocket would tick
with respect to one at the rear, and postulated that the same should hold in a gravitational
field [27, 28]. With this primitive framework, Einstein was able to derive other predictions
such as the deflection of light rays [28], but in order to go further, he needed a consistent
mathematical toolbox to describe his new theory. The idea for such a framework came
from yet another thought experiment: consider a rotating disk, and an observer walking
on the disk (assuming his shoes have enough friction to avoid him being projected off
by centrifugal forces). When the observer measures the radius R of the disk, his ruler is
perpendicular to the direction of motion and is unaffected by special relativity. However,
when measuring the circumference C, his ruler is always along the direction of motion,
thus is contracted. Then, to his surprise, he finds C2/R < 4π. This situation is in fact
very similar to that of geometry on the curved surface of a sphere, which had been studied
by Carl Friedrich Gauß using surface coordinates, and for which, for example, the sum of
the angles in a triangle is not 180°. This led Einstein, with the help of mathematicians
Marcel Grossmann and Tullio Levi-Civita, to study the theory of differential geometry
by Bernhard Riemann and Gregorio Ricci, namely the generalized theory of geometry
on curved surfaces of arbitrary dimension. Based on these mathematical tools, Einstein
formulated the theory of general relativity [29] in its modern form, which is essentially a
geometrical theory of gravity. The main dynamical variable of the theory is the metric
tensor, which measures angles and distances locally in the case of the four-dimensional
spacetime manifold. The presence of matter (or more generally, energy, recall E = mc2)
curves spacetime, creating a gravitational field, and conversely, the trajectory of particles
follows geodesics, namely the straightest possible lines in curved space. This explains, for
example, how light can be deflected despite it not having a mass and being unaffected
by gravitational forces within the framework of Newton’s gravitation theory. Moreover,
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approximating general relativity for weak curvature led to the final explanation [30] for
the small deviation of Mercury’s trajectory from the predictions of Newton’s theory6.

This theory is beautiful to state, but very unwieldy to manipulate, and Einstein
initially only worked with approximate solutions to his equations. Remarkably, an exact
solution of the Einstein equations was found as early as 1915 in the trenches of the Great
War by Karl Schwarzschild7 for a spherically symmetric, nonrotating body [31, 32], then
much later, in 1963, by Roy Kerr for a rotating body [33]. Initially, these solutions
were designed to account for the gravitational field outside stars, and in this case the
full solution is completely regular. However, assuming that a star of mass m could be
compressed enough to fit in a radius smaller than 2Gm/c2, it was remarked by Arthur
Eddington that “the force of gravitation would be so great that light would be unable
to escape from it, the rays falling back to the star like a stone to the earth”. This was
initially deemed unphysical: it was known that once stars had exhausted all the “fuel”
driving the nuclear fusion reactions inside their core, it would eventually become a white
dwarf, i.e. a star which resists gravitational collapse thanks to quantum interactions of
electrons, called electron degeneracy pressure. However, Subrahmanyan Chandrasekhar
proved in 1931 [34] that a white dwarf with a mass larger than 1.4 times the mass of the
sun would also collapse into a so-called neutron star, which resists gravitational collapse
thanks to neutron degeneracy pressure. These stars have a density of ∼ 1017 kg/m3,
which is roughly the density of an atom’s nucleus, and is equivalent to compressing the
Earth into a sphere of 305 m in diameter. Yet it was predicted in 1939 by Richard Tolman,
Robert Oppenheimer and George Volkoff [35, 36] that neutron stars with a mass greater
than 0.7 times the mass of the sun8 could not be stable either, and would also undergo
gravitational collapse. Debates about whether this collapse actually took place physically
were sealed by Roger Penrose and Stephen Hawking, who proved that very massive stars
generically collapsed to a single point [37], and formed a singularity, a line in spacetime
with infinite curvature. Such solutions are fully described by the Schwarzschild or Kerr
vacuum solutions for the spacetime metric, exhibit the property that no light – and in
fact no information or causal effect – can exit a zone of spacetime of finite radius, called
the event horizon (RS = 2Gm/c3 in the case of the Schwarzschild metric), hence the
name of such objects, black holes. The singularity is therefore not visible to exterior
observers, i.e not naked. Physically, general relativity predicts that an adventurer who
took the resolution to fall into a black hole will not experience anything particular when
crossing the event horizon, but his time will stop at the singularity (of course, since our
adventurer is not a point, he will be ripped apart by tidal forces before experiencing this
bizarre phenomenon). However, his somewhat more cautious friend, who decided to stay
very far from the black hole, will see his adventurous comrade slow down as he approaches
the black hole, and eventually freeze as he approaches the event horizon (we will also fade
away due to gravitational Doppler redshift).

6Ten years after the discovery of Neptune, Le Verrier achieved another feat by discovering the excess
precession of the perihelion of Mercury. He attempted to explain it with an extra planet, Vulcan, even
closer to the Sun than Mercury. However, this planet was never observed.

7He sent to Einstein a letter from the Eastern front dated December 22, 1915, and died a few months
later from pemphigus.

8More recent estimates based on neutron-neutron repulsion mediated by the strong force and informed
by the merger of the binary neutron star merger GW170817 brought this estimate up to about around
2.7 solar masses.
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The intriguing physics of black holes and neutron stars is not the only novel predic-
tion of general relativity: recall that a desideratum to a generalization of Newton’s gravity
is the existence of gravitational waves. In the general-relativistic formulation, these are
wave-like oscillations of the curvature of spacetime which propagate at the speed of light.
We can now see that general relativity is compatible with causality, because if the Sun
were to disappear, we would not feel it immediately, but it would generate a gravita-
tional wave that would arrive 8 minutes and 20 seconds later. Gravitational waves were
predicted in 1916 by Einstein himself [38, 39], and were found to be generated not by
the charge dipole vector as in electromagnetism, but by the mass quadrupole tensor,
due to conservation of mass, linear momentum and angular momentum in general rela-
tivity. Moreover, Einstein predicted the existence of three types of gravitational waves:
longitudinal–longitudinal, transverse–longitudinal, and transverse–transverse. The two
first types were shown not to be physical by Arthur Eddington in 1922 [40], but instead
mere artifacts of the choice of coordinates, and could be made to propagate at any speed
by a clever choice of coordinates, leading him to dismiss them as “propagating at the
speed of thought”. The fact that most quantities appearing in general-relativistic com-
putations depend on the choice of coordinates for the spacetime manifold is one of the
major difficulties of the theory, and one needs to construct objects which are coordinate
invariant. This difficulty is illustrated by the fact that in 1936, Einstein and Nathan
Rosen initially sent a manuscript to the peer-reviewed journal Physical Review claiming
that the transverse–transverse gravitational-wave mode was also a pure coordinate effect.
The paper was dismissed as incorrect by the anonymous reviewer (later determined to
be Howard Robertson). Einstein later published with Leopold Infeld a paper claiming
the opposite, but in another journal, since he remained angry with Physical Review for
the rest of his life. This confusion was definitively solved in 1956 by Felix Pirani [41],
who rephrased gravitational waves in terms of the linearized Riemann curvature tensor,
which is a gauge-invariant quantity. The next year, Richard Feynman provided at the
first “General Relativity” conference a thought experiment proving that gravitational
waves carry energy, known as the sticky bead argument: if one takes a rod with beads on
it, the passage of a gravitational wave would make the beads move along the rod. Due to
friction, this would generate heat, and thus the gravitational wave has produced work.

An ideal system to study the generation of gravitational waves is an isolated two-
body system, which we consider to be on a circular orbit for simplicity. Indeed, if such
a system emits gravitational waves, then the total energy of the binary will decrease in
virtue of energy conservation. It is known that the internal energy of the bodies play
a negligible role in this case, so it is the total kinetic and gravitational binding energy
E = −Gµm/(2r12) = −µv2

12/2 which must decrease9. One immediately deduces that
decreasing E amounts to decreasing the orbital separation r12 and increasing the relative
velocity of the stars v12, so the dissipation of energy due to gravitational waves should in
principle be easy to observe in a binary system. However, the rate at which, for example,
the orbital separation decreases scales as dr12/dt ∝ µm2/r3

12, so this effect will be maximal
for systems that are very close and very massive, and must therefore be very compact, like
neutron stars or black holes. Plugging in the numbers for, say, the Sun-Jupiter system,

9We denote by m = m1 + m2 the total mass of the two stars, µ = m1m2/(m1 + m2) is the reduced
mass of the system, r12 is the distance between the stars and v12 is the relative velocity of one star with
respect to the other.
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we find that this effect is totally negligible, and this would also hold if the two bodies
were brought very close together, so as to be on the verge of collision. Thus, the first
indirect detection of gravitational waves was made on a system made of two neutron
stars. The system was discovered by Russell Alan Hulse and Joseph Hooton Taylor Jr.
in 1974, and is composed of a neutron star and of a pulsar, which is a highly magnetized
neutron star that emits beams of electromagnetic radiation at its magnetic poles. Since
the magnetic pole does not coincide with the geographic pole associated to the (very fast)
rotation of the neutron star, the beam rotates around the star very quickly, and flashes
extremely regularly, like a lighthouse, if it happens to be oriented towards Earth. In the
case of the Hulse-Taylor binary pulsar, these flashes arrived alternatively a little sooner
or a little later than expected, which was found to be compatible with the pulsar being in
orbit with another neutron star. Measuring the variation of the orbital parameters led to
the conclusion that the system was indeed shrinking due to the emission of gravitational
waves, in perfect agreement with the predictions of general relativity [42, 43, 44].

There was great eagerness to have a direct detection of gravitational waves, which was
claimed as early as 1968 by Joseph Weber; however, these claims were rapidly discredited,
in particular by similar experiments which did not reproduce his results. It is only many
years later, on September 14, 2015, that the first gravitational wave was detected [45]
by the Laser Interferometer Gravitational-Wave Observatory (LIGO). This observatory
is based on the same physical concept as the Michelson interferometer, but with arms
which are 4 km long, which can detect oscillations of its mirrors of magnitude smaller
than the radius of a proton. Since then, and with the help of two other observatories
(Virgo and KAGRA), around 90 gravitational wave events have been detected, which are
all perfectly compatible with the predictions of general relativity. These observatories
allow us to observe the Universe for the first time with another messenger than light, and
give us precious information about its composition. Further understanding will require
more sensitive detectors, some of which will be constructed on Earth (Einstein Telescope
or Cosmic Explorer) and others will be satellites communicating in space (LISA). In
order to interpret these results and test our physical models, it is imperative to extract,
both from general relativity and from other possible theories of gravity, very accurate
predictions for the gravitational waveforms we expect to observe.

This is precisely the goal of this thesis. We will generically consider a pair of two
compact objects, such as black holes or neutron stars, on a bound orbit. When these
objects are well separated and have a small relative velocity v with respect to the speed
of light, we are in the so-called inspiral regime and we can compute post-Newtonian (PN)
corrections, in powers of the small parameter v/c, to the lowest order formulas found by
Einstein10. The first part of this thesis is devoted to general relativity. In the case of
quasicircular orbits, we obtain expressions for the waveform at 4PN order, the energy
flux radiated by the system at 4.5PN, and the phase and the increase in frequency (called
“chirp”) at 4.5PN order. The second part of this thesis is devoted to a class of alternative
theories of gravity, called scalar-tensor theories. We compute the waveform and flux for
generic bound orbits up to 1.5PN with respect to the leading order of general relativity,
and specialize these results to the case of quasicircular orbits. All of these results will be
useful for accurately interpreting the data obtained in gravitational wave observatories.

10Corrections in (v/c)2n beyond the leading order are said to be of nPN order.
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Abbreviations

ADM: Arnowitt-Deser-Misner

BD: Brans-Dicke

BH: black hole

BBH: binary black hole

BNS: binary neutron star

CE: Cosmic Explorer

COM: center of mass

DDR: difference (between Hadamard and) dimensional regularization

DIRE: direct integration of the relaxed (field) equations

DR: dimensional regularization

EFT: effective field theory

ET: Einstein Telescope

EW: Epstein and Wagoner

GR: general relativity

GW: gravitational wave

HR: Hadamard regularization

IR: infrared

KAGRA: Kamioka Gravitational Wave Detector

LIGO: Laser Interferometer Gravitational-Wave Observatory

LISA: Laser Interferometer Space Antenna

LVK: LIGO-Virgo-KAGRA

MPM: multipolar post-Minkowskian

xvii



xviii Abbreviations

NS: neutron star

PA: post-adiabatic

PM: post-Minkowskian

PN: post-Newtonian

PPN: parametrized post-Newtonian

SNR: signal-to-noise ratio

SPA: stationary phase approximation

ST: scalar tensor

STF: symmetric tracefree

UV: ultraviolet



Notations

We denote by γE the Euler constant and q̄ = 4πeγE . The gamma function is denoted
by Γ(x), the Legendre polynomial by Pℓ(x) and the Legendre function of second type
with branch cut on ] − ∞, 1] by Qm(x). The sign of a nonzero real number x ∈ R∗ is
denoted sg(x) ∈ {−1, 1}.

We use the Bachmann–Landau notations O(...) and o(...).

We use Einstein summation, where Greek indices indicate spacetime, e.g. µ = 0, 1, 2, 3,
and Latin indices indicate space, e.g. i = 1, 2, 3. Three-dimensional Euclidean vectors
are denoted in bold font, e.g. V has components V i.

When dealing with field points, we denote coordinate time by t and the spatial coor-
dinate vector by x , where r = |x| is its norm and n = x/r its direction. We define
retarded time u = t− r/c and advanced time v = t+ r/c.

Ordinary partial derivatives with respect to the spacetime coordinate xµ are denoted
∂µ ≡ ∂/∂xµ. Ordinary spatial partial derivatives are denoted ∂i ≡ ∂/∂xi. Time
derivatives are denoted ∂t = c∂0 = ∂/∂t.

We denote L = i1 · · · iℓ a multi-index with ℓ spatial indices. Similarly, L−1 = i1 · · · iℓ−1
and even L− 2K = i2k+1 · · · iℓ, etc. Repetitions of such multi-indices denote contrac-
tions in the Einstein summation convention.

We use the shorthands ∂µ1...µn ≡ ∂µ1 ...∂µn , nL ≡ ni1 ...nin , xL ≡ xi1 ...xin , ∂L ≡ ∂i1 ...∂in
and ∂nt ≡ ∂n/∂tn.

The symmetric trace-free (STF) part of any tensor AL with respect to the indices L
is denoted in the following ways: STFL[AL] = ÂL = A⟨i1···iℓ⟩. This also holds for
partial derivatives, e.g. ∂̂L = ∂⟨i1...iℓ⟩. Underlined indices are excluded from the STF
projection, e.g. Ai⟨jkBlp⟩q = STFjlp [AabpBlpq].

The nth time derivative of a function F (t) is denoted F (n)(t) = dnF/dtn. If F (t)
was identically zero before some time −T in the past, then nth time antiderivative is
denoted F (−n)(t) =

∫ t
−∞ dt1

∫ t1
−∞ · · ·

∫ tn−1
−∞ dtn F (tn).

The flat spacetime Minkowski metric is denoted ηµν = diag(−1, 1, 1, 1)

The spatial Kronecker delta is denoted δij , and the totally antisymmetric spatial Levi-
Civita symbol is denoted ϵijk (with ϵ123 = +1). For any three-dimensional tensor AL,
we define Ai|L ≡ ϵiiℓk AkL−1.

xix



xx Notations

The 3-dimensional Dirac function is denoted δ(3)(x).

For a spacetime vector ϕµ, we introduce the shorthand ∂φµν ≡ 2∂(µφν) − ηµν∂ρφ
ρ.

We denote the finite part of a Laurent series in B ∈ C by FPB=0.

The number of spatial dimensions is denoted d = 3+ε, and we define k̃ ≡ Γ
(
d−2

2

)
π

2−d
2 .

We consider a system of two point-particles A ∈ {1, 2} in a harmonic coordinate
system {t,x}. We define

Positions: yA(t) = rA(t)nA(t), where nA(t) has unit norm;
Velocities: vA(t) ≡ dyA/dt;
Accelerations: aA(t) ≡ dvA/dt;
Separation vector: y12 = y1 − y2 = r12n12, where n12 has unit norm;
Relative velocity vector: v12 = v1 − v2;
Relative acceleration vector: a12 = a1 − a2;
Dirac function at the location of the particle: δA ≡ δ(3)(x − yA);
Masses of the particles: mA;
Total mass: m = m1 +m2;
Reduced mass: µ = m1m2/m;
Symmetric mass ratio: ν = µ/m ∈ ]0, 1/4];
Relative mass difference: δ = (m1 −m2)/m ∈ [0, 1[ , where δ2 = 1 − 4ν;
The standard post-Newtonian parameter: γ = Gm/(r12c

2);
The notation (1 ↔ 2) is a shorthand for the previous term in a sum, but where
the particle labels 1 and 2 have been exchanged.



Chapter I
General context

I.1 General description of weak gravitational waves

Before discussing gravitational waves (GWs), we briefly recall the theoretical frame-
work in which this notion is defined. We introduce the theory of general relativity (GR),
which is best expressed using the Einstein-Hilbert action along with a matter action:

SGR = c4

16πG

∫
d4x

√
−gR+ Smatter [m, gαβ] , (I.1)

where gαβ is the spacetime metric tensor, g is the determinant of the metric, R is the
Ricci scalar associated to the metric and m represents generically the matter fields that
couple minimally to the metric. Varying the action with respect to the spacetime metric
yields the Einstein field equation, which read

Rµν − 1
2gµνR = 8πG

c4 Tµν [m, gαβ] , (I.2)

where Rµν is the Ricci tensor associated to the metric and the energy-momentum tensor
is defined by Tµν ≡ −2(−g)−1/2 δSm/δg

µν .
A generic definition of a GW is then a weak, oscillatory perturbation of spacetime.

Implicitly, this means that the perturbation is measured with respect to some reference,
background spacetime. This split between background and perturbation is not univocal,
which is a common feature when studying waves in general. However, a general prop-
erty is that the perturbation should be oscillatory, its wavelength should be very small
comparable to the length scales of the background, and it should have a small amplitude
compared to the other scales of the problem [12]. In the case of GWs in GR, one is in-
terested in splitting the spacetime metric gµν into a background and perturbations. The
choice of background depends greatly on the problem under study. For example, when
studying the ringdown phase of a binary black-hole merger or an extreme mass-ratio in-
spiral, it is natural to study perturbations around the Schwarzschild or Kerr metrics, since
the metric is expected to deviate little from these thoroughly-studied static or stationary
solutions. However, the disadvantage of this choice is that it is technically very difficult
to study perturbations around a curved spacetime background, at least analytically. In
more generic problems, the most practical choice is to take the flat Minkowski metric as
a background. The first and main reason is that we have a wealth of analytical tools to

1



2 Chapter I. General context

study perturbations around flat spacetime. The second reason is that flat spacetime is a
vacuum solution of the Einstein equations in the absence of a cosmological constant. If
there is a matter content, the metric deviates only slightly from Minkowski spacetime far
away from the matter source: this is asymptotic flatness. These observations allow us to
describe generic GWs, as detected on Earth, as deviations to flat spacetime. However,
it must be noted that near the source, in the case of compact objects, these deviations
can be extreme, and it is difficult to see the metric as a small deviation to flat spacetime.
Luckily, this is not a problem thanks to the effacement principle [46], which states that
the effects of internal structure of spherical compact bodies is very small.

Thus, in this section, we will study the general properties of small deviations to the
flat spacetime metric, only in vacuum regions of the spacetime manifold. We will not yet
worry about how they were generated, as this will be the topic of the next section. Also,
we will not yet worry about the response of the detectors to this perturbation. We split
the metric as

gµν = ηµν + γµν , (I.3)

where ηµν is the flat Minkowski metric, and γµν is the GW perturbation, and we suppose
|γµν | ≪ 1, such that we can neglect terms in O(γ2). This will typically be true very far
from the GW source, since the magnitude of GWs decay as the inverse of the distance
to the source. In the linearized approach, it is equivalent to raise indices using the full
inverse metric gµν or with the flat background inverse metric ηµν , and we thus define the
trace γ ≡ γρρ . The linearized Riemann tensor then reads

Rµνρσ = 1
2 (∂νργµσ + ∂µσγνρ − ∂µργνσ − ∂νσγµρ) + O(γ2) . (I.4)

In order to write the Einstein equations in a compact and practical way, it is common to
introduce the trace-reversed metric, defined by

γµν ≡ γµν − 1
2ηµνγ . (I.5)

However, since this thesis will ultimately mostly deal with the nonlinearities of the Ein-
stein equations, we find it more advantageous to define straight away the tensor

hµν ≡
√

−ggµν − ηµν , (I.6)

where gµν is the inverse metric and g is the determinant of the metric gµν . In this way,
we find that at linear level, these two quantities only differ by a sign,

hµν = −γµν + O(γ2) , (I.7)

but of course ultimately differ at nonlinear level1. We define, even at nonlinear level,
hµν ≡ ηµρηνσh

ρσ and hµν ≡ ηνρh
µρ, and the trace is defined as h ≡ hρρ. One then rewrites

the vacuum Einstein equations as

□hµν − 2∂ρ∂(µhν)ρ + ηµν∂ρ∂σh
ρσ = 0 , (I.8)

1Note that in most textbooks, γµν is actually denoted hµν , which can be quite confusing.
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where the flat d’Alembert operator is defined as □ ≡ ηρσ∂ρ∂σ. The goal of this section
will be to discuss the solutions to this equation.

An important observation to make before looking for such solution is that there are
many redundancies in GR due to coordinate-redefinition invariance. Indeed, consider a
small coordinate redefinition xµ → x′µ = xµ + φµ(x), such that |∂µφν | ∼ |γµν | ≪ 1. The
full metric transforms as a tensor, namely

gµν(x) → g′
µν(x′) = ∂xρ

∂x′µ
∂xσ

∂x′ν gρσ(x) = gµν(x) − 2gρ(µ(x)∂ν)φ
ρ(x) + O(φ2) , (I.9)

so at linearized level, the perturbation γµν transforms as

γµν(x) → γ′
µν(x′) = γµν(x) − 2∂(µφν)(x) + O(φ2) , (I.10)

therefore it also behaves as a tensor2. However, hµν behaves like a tensor density, since
it transforms as

hµν(x) → h′µν(x′) = hµν(x) + 2∂(µφν)(x) − ηµν∂ρφ
ρ(x) + O(φ2) . (I.11)

This transformation law justifies the introduction of a shorthand notation that will be
ubiquitous in this thesis,

∂φµν ≡ 2∂(µφν) − ηµν∂ρφ
ρ (I.12)

Note that this transformation law means that the divergence of hµν transformed simply
as

∂νh
µν → ∂′

νh
′µν(x′) = ∂νh

µν − □φµ(x) (I.13)

This motivates us to define the coordinate transformation φµ(x) such that

□φµ(x) = ∂νh
µν , (I.14)

which exists and is unique under usual boundary conditions. Now consider the Einstein
equations in a given coordinate system, and apply the coordinate transformation (I.14).
This choice will remove any divergence terms in the vacuum Einstein equations, which
then simply read □hµν = 0. This choice of coordinate system is called a harmonic gauge
or De Donder gauge3, and is more commonly given, not by its explicit construction, but
by the condition that the hµν tensor be divergenceless, namely ∂νh

µν = 0. Note that,
by definition, this condition carries out identically in the full nonlinear case. This choice
is practical and can be written covariantly with respect to the background, but it does
not entirely exhaust the gauge freedom. Indeed, any additional gauge transformation,
parametrized by a gauge vector φµ such that □φµ = 0, will preserve the harmonic gauge
condition. To fully fix the gauge freedom, one needs to introduce a 3+1 splitting of time
and space. One can then impose the transverse-traceless (TT) gauge condition4, which
is straightforwardly given by h = 0 and h0i = 0. Using these relations and the harmonic
coordinate condition, we find that ∂0h

00 = 0. Therefore, h00 is static, and is typically a
Newtonian potential, encoding the time-independent gravitational attraction. Conversely,

2This statement of course breaks down beyond linearized level.
3It is analogous to the Lorenz gauge in electromagnetism, defined by ∂µA

µ = 0.
4It is analogous to the Coulomb gauge in electromagnetism, defined by ∂µA

µ = 0 and ∂iA
i = 0.
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all the radiative degrees of freedom are encoded in the purely spatial part of the metric,
which we now denote hijTT. This typically represents GWs. Note that since this gauge is
traceless, we have γTT

ij = γTT
ij = −hijTT. Since the metric in the TT gauge is free of any

residual gauge freedom, it is a purely observable quantity and is thus naturally related to
the linearized Riemann tensor by

c2Rlin
0i0j = 1

2 ḧ
TT
ij = −1

2 γ̈
TT
ij . (I.15)

In order to proceed further, we now assume that our metric can be decomposed by a sum
of plane waves, characterized by a direction of propagation n̂. This sum formally reads

hijTT(t,x) =
∫

d2Ω̂hijP,TT(n̂(Ω), t,x) , (I.16)

where n̂ = (cos θ̂ sin ϕ̂, sin θ̂ sin ϕ̂, cos ϕ̂). We integrate over solid angles d2Ω̂ = sin θ̂dθ̂dϕ̂,
and hijP,TT(n̂, t,x) is a generic plane GW propagating along the direction n̂ and evaluated
at spacetime coordinate (t,x). Note that in linearized theory, a sum of plane waves in
a TT gauge will be in a TT gauge (see p. 947 of [11]). Moreover, we do not need the
decomposition into monochromatic waves here. Finally, most GWs we will encounter are
actually spherical waves, which can be very well described by a single plane wave for an
observer very far from the source.

We now focus on the case of a single plane wave, characterized by its direction of
propagation n̂. We introduce the spatial orthonormal basis (ex, ey, n̂). If this plane wave
is given in any harmonic gauge (not necessarily TT) by the tensor hµνP (n̂), and discarding
the nonradiative degrees of freedom, we can show that it can be algebraically projected
onto the TT gauge by the operation

hijP,TT =⊥TT
ij,kl h

kl
P , (I.17)

where we have introduced the TT projector

⊥TT
ij,ab (n̂) =⊥a(i (n̂) ⊥j)b (n̂) − 1

2 ⊥ij (n̂) ⊥ab (n̂) , (I.18)

which is itself defined using the projector onto the transverse plane ⊥ij (n̂) = δij − n̂in̂j .
In this TT gauge, the metric of the plane wave then necessarily reads

hijP,TT(n̂) =

h+(n̂) h×(n̂) 0
h×(n̂) −h+(n̂) 0

0 0 0


ij

. (I.19)

We recover the two degrees of freedom of GR, which here come under the name of the
“plus” mode h+ and the “cross” mode h×. Applying the geodesic deviation equation for
each of these modes onto a ring of freely falling particles, the effect of each mode are
illustrated in green in Figure I.1. Of course, the plus and cross modes of the full GW
are given by the sum of the plane wave contributions. Finally, we will find it extremely
useful to merge the “plus” and cross” modes into a single complex number, which one
will typically decompose into spherical harmonics. It reads5

h = h+ − ih× , (I.20)
5Or equivalently, γ = −h = γ+ − iγ×.
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and it is related (in the linearized case) to the fourth Newman-Penrose scalar [47, 48] by

Ψ4 = d2h

dt2 . (I.21)

Note that these general-relativistic properties are not all valid in alternative theories
of gravity. Importantly, in these theories, GWs typically carry more than two modes.
Following Poisson and Will [13], we will assume that we choose a theory such that the
propagation velocity of the GWs and light are equal, which is motivated6 experimentally
by the simultaneous detection of a GW and an electromagnetic signal from a system of
coalescing neutron stars [49, 50]. We consider again a plane wave propagating along n̂ and
express everything in the (ex, ey, n̂) basis. We work directly at the level of the linearized
Riemann tensor, which reads in this basis

−2c2Rlin
0i0j = d2

dt2

γb + γ+ γ× γx
γ× γb − γ+ γy
γx γy γℓ


ij

. (I.22)

Note that we have expressed the modes in terms of γµν , because the definition of hµν
is theory-dependent. The tensor “plus” mode γ+ and the “cross” mode γ× are identical
to GR. However, we now also have

• a scalar “breathing” mode γb, which is transverse but not trace-free ;

• a scalar “longitudinal” mode γℓ ;

• two “vector” modes, γx along the x-direction and γy along the y-direction.

How these new modes affect a ring a freely falling test particles can be derived using the
geodesic equation, and the conclusions are illustrated in Figure I.1.

I.2 Lowest-order GW generation
In this Section, we review the wave generation formalism in linearized gravity. We

consider a matter source whose typical velocity v is very small with respect to the speed
of light, such that it can be written in a so-called post-Newtonian (PN) expansion in the
small parameter v/c. In this section, we will limit ourselves to the lowest-order term in
the PN expansion, which we dub “Newtonian”.

I.2.1 Waves for arbitrary PN sources

In Section I.1, we studied the linearized Einstein vacuum equations. Keeping the same
notations, they now read in the presence of matter

□hµν(t,x) = 16πG
c4 Tµν(t,x) , (I.23)

6It can be argued from an effective field theory point of view that this constraint actually only holds
for some energy scales.
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Fig. I.1 Effect of different GW polarizations on a ring of free-falling test parti-
cles. The full line shows the configuration of the ring of particles at some initial
time t0, and the dashed line shows the configuration at time t0 + π/ωGW, where
ωGW is the angular frequency of the GW (i.e. twice the orbital frequency). From
top to bottom then left to right, the plus (+) and cross (×) tensor modes (green);
the vector-x (x) and vector-y (y) modes (red); breathing (b) and longitudinal (l)
scalar modes (black). In all of these diagrams, the wave propagates in the z
direction. Source: [51]

where Tµν is the stress-energy tensor which completely describes the matter content of
the system. We now consider an extended matter source, which is isolated, i.e. bounded
in space. We also assume that there is no incoming radiation, which can be imposed by
requiring that the source was stationary in the far past. This can physically be interpreted
by the observation that in the far past, the source was very diffuse and could have barely
generated any GWs at all. These conditions lead to selecting the retarded Green’s function
for the flat-space d’Alembertian, which we use to solve the wave equation. The solution
reads

hµν(t,x) = −4G
c4

∫ d3x′

|x − x′|
Tµν

(
t− |x − x′|

c
,x′
)
, (I.24)

where the field variable is expressed in polar coordinates as x = rn. At distances r large
compared to the typical size of the source d, we can perform the expansion
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|x − x′| = r − x′ · n + O(d2/r), so at leading order we have

hµν(t,x) = −4G
rc4

∫
d3x′ Tµν

(
t− r

c
+ x′ · n

c
,x′
)
. (I.25)

For an observer far enough such that the wave can be described as planar, we can project
this metric onto the TT gauge with respect to n, which is also the direction of propagation
of the wave. Following [12], we thus find

hijTT(t,x) = −4G
rc4 ⊥ij,kl

∫
d3x′ T kl

(
t− r

c
+ x′ · n

c
,x′
)
. (I.26)

We now assume that we have a PN source, i.e. that the typical velocities vs of the
matter inside the source are small with respect to the speed of light, vs ≪ c. The
frequencies associated to the orbital motion are then of order ω ∼ vs/d, and we find
that ω ≪ c/d. Performing a Fourier analysis (see p. 103 of [12] for details), we can
then show that it is possible, under this assumption, to Taylor-expand the source in the
small parameter x′ · n/c. Formally, this multipolar expansion reduces to an expansion
when c → ∞, which is in practice equivalent to a PN expansion. At lowest order we
simply find

hijTT(t,x) = −4G
rc4 ⊥ij,kl

∫
d3x′ T kl

(
t− r

c
,x′
)
. (I.27)

We now relate this to the symmetric trace-free (STF) quadrupole moment, which is
defined at any time t in the usual fashion as

Qij(t) ≡ 1
c2

∫
d3x

(
xixj − 1

3r
2δij

)
T 00 (t,x) . (I.28)

Using the conservation7 of the stress-energy tensor ∂µTµν = 0, integrating by parts twice,
using Ostrogradsky’s divergence theorem and noticing that the stress-energy tensor van-
ishes outside of the source, we find

Q̈ij(t) = 2
∫

d3xT ⟨ij⟩(t,x) , (I.29)

where T ⟨ij⟩ ≡ T ij − 1
3T

kk indicates STF projection. Thus the GW is related at lowest
order to the quadrupole moment of the source by the formula

hijTT(t,x) = −2G
rc4 ⊥ij,kl Q̈kl

(
t− r

c

)
. (I.30)

Projecting onto the orthonormal basis (ex, ey,n) introduced in Section I.1 directly leads
to reading off the plus and cross modes8,

h+ = − G

rc4 (Q̈xx − Q̈yy) and h× = −2G
rc4 Q̈xy . (I.31)

7Here we assume that the source dynamics are nongravitational, as in Einstein’s original paper [39],
see [10] for a proof that this result still holds for gravitational dynamics.

8We recall that these differ by a global sign from the γ+ and γ× associated to the physical metric
deviation γTT

ij , which are more commonly used.
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In linear theory stricto sensu, GWs do not carry energy, since the stress-energy tensor
associated to GWs scales as O(h2). This means that linear theory by its own cannot
account for radiation-reaction driving the inspiral. However, if we already assume re-
sults which we will derive in Section II.7, we can compute from linear theory the energy
flux carried by GW across a sphere of infinite radius surrounding the source. Namely,
according to (II.66), it reads

F = lim
r→+∞

[
c3r2

32πG

∫
d2Ω ḣijTTḣ

ij
TT

]
,

where ḣijTT is evaluated at (r,n) and d2Ω indicates angular integration over n. Note
that it is necessary to average this result over a typical period of the system, which we
denote ⟨...⟩, in order to extract the secular effect and make the result gauge-invariant.
Note that the r → +∞ limit is indeed finite thanks to the 1/r decay of the metric
perturbation. This flux straightforwardly enters the energy-flux equation, which reads

dE
dt = −F . (I.32)

At lowest Newtonian order, it was proved that E is indeed the conservative Newtonian
binding energy. In our linearized lowest-order model, we can inject (I.30) into (II.66) and
recover the famous quadrupole formula for the energy flux [39]

F = G

5c5 ⟨
...
Q ij

...
Q ij⟩ . (I.33)

I.2.2 Waves for compact binary systems
We now reduce our previous results to the case of a nonspinning compact binary

system, represented by two point particles of masses mA, where A ∈ {1, 2}. In flat space-
time, as adequate in linearized theory, the associated energy-momentum tensor reads (see
(33.5) of [10])

Tµν(t,x) =
∑
A

mAv
µ
Av

ν
A√

1 − v2
A/c

2
δ(3)(x − yA(t)) , (I.34)

where we introduced the shorthand vµA ≡ (c,vA), see Notations for more details. To
lowest order in the PN expansion, the only piece we need is

T 00(t,x) =
∑
A

mAc
2δ(3)(x − yA(t)) , (I.35)

from which we deduce that our quadrupole moment reads Qij = m1y
⟨i
1 y

j⟩
1 +m2y

⟨i
2 y

j⟩
2 . The

position of center of mass reads yCM = (m1x1 +m2x2)/(m1 +m2) and the center of mass
frame is defined by yCM = 0. In this frame, the quadrupole moment of our system reads

Qij = mνr2
12n

⟨i
12n

j⟩
12 . (I.36)

We now further specialize our study to the case of an exactly circular orbit (dr12/dt = 0)
with constant frequency ω. Since the particles are nonspinning, the orbital plane does
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not precess, and is orthogonal to a constant vector l. In a orthonormal basis (ux,uy, l)
adjusted to the orbital plane, we have

n12 =
(ux,uy ,l)

cos(ωt+ φ0)
sin(ωt+ φ0)

0

 , (I.37)

and the quadrupole then reads

Qij =
(ux,uy ,l)

mνr2
12

 cos2(ωt+ φ0) − 1
3 sin(ωt+ φ0) cos(ωt+ φ0) 0

sin(ωt+ φ0) cos(ωt+ φ0) sin2(ωt+ φ0) − 1
3 0

0 0 −1/3


ij

.

(I.38)
In order to read off the plus and cross modes, we not only need to take the second time-
derivative, but we also need to express this matrix in the (ex, ey,n) observer frame, which
is equivalent to the propagation frame in the plane wave limit. We only need to perform
a rotation that adjusts the inclination ι, because the azimuthal angle can be reabsorbed
into the constant initial phase (we set it to zero at the end by an appropriate choice for
the origin of time). We thus appropriately apply the rotation matrix R(ι), and we find
in the observer frame, after performing two time derivatives,

Q̈ij =
(ex,ey ,n)

−2mνr2
12ω

2

 cos(2ωt) cos(ι) sin(2ωt) sin(ι) sin(2ωt)
cos(ι) sin(2ωt) − cos2(ι) cos(2ωt) − cos(ι) sin(ι) cos(2ωt)
sin(ι) sin(2ωt) − cos(ι) sin(ι) cos(2ωt) − sin2(ι) cos(2φt)


ij

.

(I.39)
As we are now in the correct frame, we directly apply (I.31) and we obtain the plus and
cross modes

h+(t) = 4mνy
c2r

1 + cos2(ι)
2 cos(2ωt) , (I.40)

h×(t) = 4mνy
c2r

cos(ι) sin(2ωt) , (I.41)

where we have used Kepler’s law, Gm = ω2r3
12, and where we introduce the very useful

frequency-related PN variable,

y ≡
(
Gmω

c3

)2/3
≪ 1 . (I.42)

A few observations are to be made here. First, we see that the frequency of the GW
is twice the frequency of the orbit, as expected for a spin-two field. Second, if we see
the binary face on (ι = 0), then the plus and cross modes are equal, and the wave is
circularly polarized. Conversely, if we see the binary edge on (ι = π/2), then the cross
mode vanishes and the wave is linearly polarized. It is interesting to compute the angular
distribution of the radiated flux, which depends on the inclination ι and reads

dF
dΩ = lim

r→+∞

r2c3

16πG⟨ḣ2
+ + ḣ2

×⟩ = 32πc2my
7
2 ν2

5 g(ι) , (I.43)
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Fig. I.2 Polar plot of g(ι), the normalized angular power distribution carried by
GWs. The orbital plane is represented by the dotted line. Points on the vertical
axis have ι = 0 [π] and points of the horizontal axis have ι = π/2 [π].

where the time-averaging was in fact not necessary (as is typical for circular orbits) and
where we have defined the normalized angular power distribution

g(ι) = 5
16π

(1 + cos2(ι)
2

)2

+ cos2(ι)

 , (I.44)

such that
∫

d2Ωg(ι) = 2π
∫ π

0 dι sin(ι)g(ι) = 1. This function is represented in the polar
plot in Fig. I.2, and we can see that the radiated flux is maximum face on from the binary,
but does not vanish edge on.

We then immediately obtain the total flux, given by the famous Einstein quadrupole
formula [39]

F = 32c5ν2

5G

(
Gmω

c3

)10/3
, (I.45)

where we have restored the orbital frequency dependence ω.
Until now, we have only considered the case of exactly circular orbits. However,

inserting the flux (I.45) into the energy balance equation tells us at what rate the GW
is draining energy from the system. Since the energy of a Newtonian binary system in
circular orbits reads

E = −Gm1m2
2r12

= −G2/3m5/3ν ω2/3

4 , (I.46)

we immediately deduce that this draining of energy, due to radiation reaction, results
both in the decay of the orbital separation and the increase of the orbital frequency. If
this secular decay happens on timescales much larger that the orbital timescale, namely if
ω̇s ≪ ω2, then we are in the adiabatic approximation for quasicircular orbits. Our initial
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description of the motion as a circular orbit is thus correct (up to some conservative PN
corrections), but it will be corrected by small terms due to radiation reaction. Plugging
our expressions of the energy (I.46) and the flux (I.45) into the energy-flux balance equa-
tion, and applying a chain law, we deduce that the chirp, i.e. the secular increase in
frequency, reads

ω̇ = 96
5

(
GMc

c3

)5/3
ω11/3 , (I.47)

where we have introduced the chirp mass

Mc ≡ mν3/5 = (m1m2)3/5

(m1 +m2)1/5 . (I.48)

This integrates to

ω(t) = 53/8

8

(
GMc

c3

)−5/8
(tc − t)−3/8 (I.49)

where tc is an integration constant that can be interpreted as a coalescence time. Indeed,
we can see that, as expected, ω(t) → 0 when t → −∞; but more spectacularly, we also
observe that ω(t) → +∞ as t → tc. This finite time divergence of the frequency can be
interpreted as the breaking down of the PN approximation near merger, since it assumes
small orbital frequencies in the first place. Thanks to the relation (I.46) between r12
and ω, we find that the orbital separation evolves as r12(t) ∝ (tc − t)1/4 in this model,
which is interpreted as a merger at time tc. This is incompatible with the assumption of
large separations, and also indicates that the PN approximation is breaking down.

This lowest order computation for binary systems has been extended by Peters and
Mathews [52] for elliptical Keplerian orbits, with semi-latus rectum a and eccentricity e.
They then find that the flux reads9

F = 32c5ν2y5

5G f(e) , (I.50)

which differs from its circular version only by the enhancement factor

f(e) = 1
(1 − e)7/2

(
1 + 73

24e
2 + 37

96e
4
)
. (I.51)

From the flux-balance equation for energy and angular moment, Peters showed [53] that
eccentricity and the semi-latus rectum where related by

a(e) = c0
e12/19

1 − e2

(
1 + 121

304e
2
)870/2299

(I.52)

where c0 is a constant determined by the initial condition (a0, e0). Now consider a typ-
ical binary star system, such as the Hulse-Taylor pulsar, which has a0 ≃ 2 × 109 m
and e ≃ 0.617. The two bodies will be close enough to emit GWs in the frequency band
of current detectors when a ≃ 106 m. The result (I.52) tells us that the binary system will
then have an eccentricity of e ≃ 6 × 10−6 [12]. We therefore conclude that isolated binary

9The PN variable defined in (I.42) has the same expression for elliptical orbits, where we define
ω = 2π/P at Newtonian order, with P the orbital period.
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systems will be essentially circular by the time they enter the detector’s frequency band,
and quasicircular orbit models are therefore clearly sufficient. However, there has been
a renewed interest for eccentric systems [54, 55, 56], as these could be formed by astro-
physical perturbations, for example via the Kozai–Lidov mechanism [57, 58, 59, 60, 61].

I.2.3 Wave generation in Brans-Dicke theory
We now temporarily bid farewell to GR, and consider the wave generation in one of the

oldest alternative theories of gravity, massless Brans-Dicke (BD) theory [62, 63, 64, 65].
This theory include a metric gµν and a scalar field ϕ, and the action reads

SBD = c3

16πG

∫
d4x

√
−g

[
ϕR[g] − ωBD

ϕ
gαβ∂αϕ∂βϕ

]
+ Sm (m, gαβ) , (I.53)

where the matter action Sm depends on the matter fields and the metric, but not on the
scalar field, and ωBD is a constant (in the generalized BD theory under study in Part B,
we promote this constant to a function of the scalar field ω(ϕ)). In linearized theory, one
typically assumes that the scalar field has a constant value ϕ0 asymptotically far from
the source. To study this theory, one then defines a rescaled scalar field φ = ϕ/ϕ0 and
an auxiliary, conformal metric, g̃µν = φgµν . This procedure is referred to as going from
the Jordan to the Einstein frame. The metric deviation reads γµν = gµν − ηµν , but the
quantity analogous to the trace-reversed metric deviation in GR will instead be defined
using g̃µν , namely hµν ≡

√
g̃g̃µν−ηµν . One also introduces the scalar deviation ψ = φ−1.

One can then apply the least action principle to obtain the field equations in terms of
our new quantities hµν and ψ. In linearized theory, we discard higher-order terms in hµν
and φ, and thanks to our passage to the Einstein frame, the two equations will decouple,
namely

□hµν = 16πG
c4ϕ0

Tµν , (I.54a)

□ψ = 8πG
c4ϕ0(3 + 2ωBD)

(
T − 2∂T

∂φ

)
, (I.54b)

where T ≡ Tµνηµν denotes the trace of the stress-energy tensor. Our first equation is
identical to GR (up to a constant factor ϕ0), and we can use all the GR results of Sec-
tion I.2. However, the scalar equation is new, and the solution to the scalar wave equation
is

ψ(t,x) = − 8G
c4ϕ0(3 + ωBD)

∫ d3x′

|x − x′|

[
T − 2∂T

∂φ

](
t− |x − x′|

c
,x′
)
, (I.55)

where we indicate that T − 2∂T/∂φ will not depend on φ at lowest PN order. Although
it is unintuitive at this stage, we need to perform the next-to-leading order multipolar
expansion, in order to get the leading order waveform. This is because the will show that
the monopolar contribution will end up being smaller than the dipolar one. Defining

T s ≡ T − 2∂T
∂φ

, (I.56)

we find the multipolar expansion

ψ(t,x) = − 2G
rc4ϕ0(3 + ωBD)

∫
d3x′

[
T s
(
t− r

c
,x′
)

+ nix′i

c
∂tT

s
(
t− r

c
,x′
)]

. (I.57)
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We naturally define the scalar monopole and dipole moments as

Ms(t) = 1
c2ϕ0(3 + ωBD)

∫
d3xT s (t,x) and Ds

i (t) = 1
c2ϕ0(3 + ωBD)

∫
d3xxi T s (t,x) .

(I.58)
The multipolar expansion of our scalar field then reads

ψ(t,x) = −2G
rc2

[
Ms

(
t− r

c

)
+ ni

c
Ḋs
i

(
t− r

c

)]
. (I.59)

At this stage, we introduce the matter stress-energy tensor for point particles, but a
subtlety arises. Indeed, the strong equivalence principle does not hold in BD theory, and
the magnitude of the gravitational interaction is now controlled by G/ϕ, which varies in
space and time. Following a discussion by Eardley [66], we consider a star whose radius is
determined by the equilibrium between gravitational forces, which tend to make the star
shrink, and nongravitational forces, which tend to make the star swell. If we now locally
and adiabatically modify the local value of the scalar field ϕ, we modify the gravitational
force and thus the equilibrium. The star will then shrink or swell, and its total binding
energy will be modified. Now, if we want to model the star as a point particle, we need
to include into the effective mass not only the mass due the matter, but also the binding
and kinetic energy of the star. The conclusion is that an effective way to account for this
is to assign to each point particle a mass-function mA(ϕ), which depends on the local
value of the scalar field. We define mA ≡ mA(ϕ0), and we Taylor-expand around small
deviations to ϕ0. In particular, we introduce the sensitivity

sA = ∂mA

∂ lnϕ

∣∣∣∣
ϕ=ϕ0

, (I.60)

such that mA(ϕ) = mA

(
1 + sAψ + O(ψ2)

)
. In linearized theory, the energy-momentum

tensor then reads
Tµν(t,x) =

∑
A

mA(ϕ)vµAvνA√
1 − v2

A/c
2
δ(3)(x − yA(t)) , (I.61)

and to leading order

T − 2∂T
∂φ

=
∑
A

mA(1 − 2sA)c2δ(3)(x − yA(t)) . (I.62)

We recognize in this expression the scalar charge,

αA = 1 − 2sA√
3 + 2ω0

. (I.63)

We can then compute the monopole and dipole fields at lowest order, which read

M s ≡ m1(1 − 2s1) +m2(1 − 2s2) (I.64a)
Ds
i ≡ m1(1 − 2s1)yi1 +m2(1 − 2s2)yi2 (I.64b)

We see that, at lowest order, dM s/dt = 0, so the monopole will not radiate. Actually,
there will be higher order 1PN contributions, namely the monopole will radiate at the
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same order as the quadrupole. By contrast, the scalar dipole does radiate, and does not
vanish in the center-of-mass frame due to the presence of the sensitivities in its expression.
Therefore, we find that the monopole has a subleading contribution with respect to the
dipole, and the leading order radiation is therefore purely dipolar. In the center-of-mass
frame, the dipole reads

Ds
i = 2mν(s2 − s1)

ϕ0(3 + 2ωBD)r12n
i
12 , (I.65)

and our waveform is given to lowest order by

ψ(t,x) = −2G
rc2

ni

c
Ḋs
i

(
t− r

c

)
. (I.66)

Since the matter fields are minimally coupled to the physical metric gµν = φ−1g̃µν , the
GW detector will respond to the tidal field associated with the physical metric, i.e. the
linearized Riemann tensor of the physical metric, which reads [67]

2c2Rlin
0i0j = ḧTT

ij + 1
2 ⊥ij ψ̈ =

(ex,ey ,n)

d2

dt2

ψ + h+ h× 0
h× ψ − h+ 0
0 0 0


ij

. (I.67)

showing explicitly the decomposition of the detector’s response into tensorial “plus” and
“cross” modes and the scalar breathing mode, see (I.22).

When restricting to the case of circular orbits, we can essentially apply the same steps
as GR (see Section I.2.2). First, we introduce the parameter10

εBD ≡ (1 − 2s1)(1 − 2s2)
3 + 2ωBD

, (I.68)

which is useful to express the modified Kepler law in BD theory,

G(1 + εBD)m
ϕ0

= ω2r3
12 , (I.69)

and the appropriate PN variable,

ỹ ≡
(
G(1 + εBD)m

ϕ0c3

)2/3
. (I.70)

For a binary seen at an inclination angle ι, the waveform then reads at lowest order

ψ = 4Gmν(s2 − s1)
rc2ϕ0(3 + 2ωBD) ỹ

1/2 sin(ι) cos(ωt) . (I.71)

We can see that contrary to gravitational radiation, the wave has a maximum magnitude
when emitted in the orbital plane, and vanishing magnitude when emitted in the direction
orthogonal to the orbital plane, see Fig. I.3. Moreover, when the sensitivities are equal,
the waveform entirely vanishes. The energy flux due to scalar radiation then reads at
leading order

10This ad hoc parameter is related to the ones used in Part B by (G/ϕ0)(1 + εBD) = G̃α.
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Fig. I.3 Polar plot of gs(ι) = 3 sin2(ι)/(8π), the normalized angular power dis-
tribution carried by dipolar scalar waves. The orbital plane is represented by the
dotted line. Points on the vertical axis have ι = 0 [π] and points of the horizontal
axis have ι = π/2 [π].

Fs = c3r2ϕ0(3 + 2ωBD)
16πG

∫
d2Ω⟨ψ̇2⟩ = Gϕ0(3 + 2ωBD)

3c3 D̈s
i D̈s

i , (I.72)

which yields for compact binaries on circular orbits

Fs = 4ϕ0c
5(s2 − s1)2ν2ỹ4

3G(1 + εBD)2(3 + 2ωBD) . (I.73)

At first glance, this flux is one PN order larger than the quadrupolar flux of GR (it enters
in 1/c3 instead of 1/c5 for GR), and will induce very strong radiation reaction effects, and
thus a strong frequency chirp. In principle, this can be very tightly constrained with the
timing of binary pulsars. However, this emission is strongly suppressed if the sensitivities
of the two objects are very similar, as can be the case for two equal mass neutron stars.

I.3 Gravitational-wave detectors

The idea of measuring GWs has been of interest for a very long time, but these
could arise from a variety of sources, and span many orders of magnitude in frequency
and amplitude. However, nearly all detectors rely on the geodesic deviation equation,
which states that two nearby free-falling particles following their geodesics11 xµ(τ) and
xµ(τ) + ξµ(τ) will obey

D2ξµ

Dτ2 = −Rµνρσξρ
dxν
dτ

dxσ
dτ + O(ξ2) , (I.74)

where we have neglected small terms in ξ2 and defined the covariant derivative along the
geodesic xµ(τ) by its effect of any vector V µ, namely

DV µ

Dτ ≡ dV µ

dτ + ΓµνρV ν dxρ
dτ . (I.75)

11Each geodesic is parametrized by its own proper time τ , and ξµ(τ) connects points with the same
value of τ on the two geodesics (see Footnote 7, Chapter 1 of [12]).
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Fig. I.4 Aerial view of the LIGO Hanford and Livingston interferometers, and
of the Virgo interferometer. Source: Wikimedia Commons.

In the small region of space encompassing our detector, we can construct a proper detector
frame using Fermi normal coordinates. In this frame, at linearized order, we find the
geodesic deviation equation

d2ξi

dt2 = −c2Ri0j0ξ
j (I.76)

where t is the coordinate time in this frame. This is why the linearized Riemann tensor
is the key quantity to compute.

I.3.1 Current ground-based interferometers
Currently, there are three large-scale GW detectors in operation, and are all based on

the concept of an laser Michelson interferometer. The Laser Interferometer Gravitational-
Wave Observatory (LIGO) [68] operates on two sites in the United States, Hanford, WA
and Livingston, LA (see Fig. I.4). Both interferometers have two 4 km long perpendicular
arms. They started operating in 2002, and were then upgraded to Advanced LIGO, which
started operating in 2015. The Virgo interferometer [69] is located near Pisa, Italy, and
consists of a single interferometer, with two perpendicular 3 km arms (see Fig. I.4). It
started operation in 2007, then was upgraded to Advanced Virgo, which started observing
in 2017. The Kamioka Gravitational Wave Detector (KAGRA) [70] is located near Hida,
Japan, and started operating in 2020. It has the particularity of being build underground,
and consists of two perpendicular 3 km arms.

The general design of these interferometers is illustrated in Fig. I.5. A laser beam is
split in two by a semireflective mirror, and the resulting beams travel through the two
arms of the interferometer, each of which is enhanced by a Fabry-Pérot resonant cavity
with high finesse. Each beam then reflects against a massive, suspended mirror, which
acts approximately as a free-falling test mass in the horizontal direction along the arm.
The two laser beams travel back though the arms to the semi-reflective mirror, where they
are combined to form an interference pattern, and measured on a photodetector. Both
arms are exactly of the same length, and the interferometer is tuned such as to create
destructive interference, i.e. no light is detected on the photodetector in the absence of
perturbations. When a GW crosses the detector, depending on its polarization, it can
make one mirror move and not the other: this creates a difference in the length of the two
arms, and breaks the destructive interference, which results in a flicker of light. Thus,
this detector is not sensitive to the individual motion of each mirror, but the difference
in armlength.
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Fig. I.5 Design of the Advanced LIGO detectors. Source: [71].

In this system, the main noise source at low frequency is seismic and thermal noise,
while at high frequency, quantum shot noise dominates, see Fig. I.6b. The maximum
sensitivity of these detectors lies between 10 Hz and 200 Hz, see Fig. I.6a. This makes
these detectors mostly sensitive to GWs generated by compact binaries up to a few tens
of solar masses, especially near merger.

All of these detectors are only actively searching for GWs during so-called “ observation
runs”, which are sandwiched by maintenance and upgrading operations. Advanced LIGO
has had three observing runs: O1, O2 and O3, with O3 being subdivided into O3a and O3b
due to the COVID-19 pandemic, while Advanced Virgo has had two runs, and KAGRA
only one (see Fig. I.7).

The first GW event occurred on September 15, 2014, hence its name GW150914 [75].
It occurred during an engineering phase of LIGO (therefore not in O1), but was luckily
detected by both LIGO interferometers anyway. Virgo was not yet operational at the
time and KAGRA was still in progress. The event lasted 0.2 seconds, which corresponds
to 8 cycles with a frequency that increased from 35 Hz to 250 Hz during the event. It
occurred roughly at a distance 440 Mpc (error bars are of the order of 180 Mpc !), its
direction could not be localized precisely and was produced by the merger of two black
holes of 35 and 30 solar masses.

Another major detection is GW170817 [49], which was due to the merger of two
neutron stars of approximately 3 solar masses each at about 40 Mpc away. Its unique
feature is that is was detected simultaneously as a gamma ray burst GRB170817A [76, 77,
78, 79], which was associated with the electromagnetic counterpart due to the kilonova.
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(a) (b)

Fig. I.6 (a) Representative amplitude spectral density of the three detectors’
strain sensitivity during the O3a run. Source: [72]. (b) Baseline aLIGO noise
budget. Source: [73].

Fig. I.7 Schedule for past and future observing runs for the LVK Collaboration.
Source: [74] .
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Fig. I.8 Cumulative number of GW event detections in the O1, O2, O3a and
O3b runs. Source: [80]

This simultaneous detection allowed for extremely precise sky localization, but especially
answered many open questions about the origin of such gamma ray burst. It also put
a constraint on the propagation speed of GWs cGW, which was found to be related to
the speed of light cEW by |cGW − cEW| ≲ 10−15, thus putting very strong constraints
on alternative theories of gravity. The collaboration also detected two NS-BH mergers,
GW200105 and GW200115.

The LIGO-Virgo-KAGRA (LVK) collaboration has confirmed the detection of over 90
GW events. This is mostly thanks to major improvements during O3, which allowed for
a much better sensitivity and hence an improved detection rate, see Fig. I.8.

I.3.2 Third generation ground-based detectors

Despite the major success of the LVK collaboration, the relatively small signal-to-
noise ratio (SNR) and narrow sensitivity band limits the amount of science that can be
done with these detectors. Therefore, two third-generation ground-based detector have
been proposed: Cosmic Explorer (CE) in the United States and the Einstein Telescope
(ET) in Europe, whose sensitivity is expected to be largely improved with respect to
second-generation detectors, as illustrated by Fig. I.10. The design of Cosmic Explorer
is essentially the same design as LIGO, but ten times bigger, i.e. with 40 km arms. The
Einstein Telescope (see Fig. I.9a) is expected to be an underground interferometer in the
form of an equilateral triangle with 10 km arms, located either in Italy or in the Nether-
lands. Its optical layout is composed of three nested detectors (Fig. I.9b), each of which
is subdivided into two interferometers, which are optimized for low frequencies (1 Hz
to 100 Hz) and high-frequencies (100 Hz to 10 kHz) respectively, in the so-called “xylo-
phone” configuration.

The triangular design will endow ET with a more isotropic antenna pattern than
LVK. Since it is underground, seismic noise will be reduced, and gravity gradients are
also mitigated. Moreover, it is planned to used cryogenic mirrors, whose temperature of
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(a)

(b)

Fig. I.9 (a) Artistic view of ET. Source: [81]. (b) The optical layout of ET is
made or three nested detectors, labeled by green, red and blue. Each of these
detectors is composed of a low-frequency (full line) and a high-frequency (dashed
line) interferometer. Source: [82].

about a few tens of kelvins will significantly reduce thermal noise.

I.3.3 Space-borne interferometers

Another direction for improving GW detector sensitivity is to go into outer space,
where there is virtually no environmental noise and where the free-falling test-mass ex-
periment can be optimally realized. Moreover, this allows for much larger arms, thus
probing a very different frequency band. These include the Laser Interferometer Space
Antenna (LISA) [84], but also the Deci-hertz Interferometer Gravitational wave Observa-
tory (DECIGO) [85] and the Taiji (太极) [86] and TianQin (天琴, “heavenly harp”) [87]
projects. LISA will be composed of three satellites forming a constellation in the form of
an equilateral triangle. The distance between two satellites will be 2.5 million kilometers,
and the barycenter of this constellation will be located at one astronomical unit from the
Sun, trailing the Earth’s orbit by around 20° (see Fig. I.11a), which corresponds to a
linear distance from Earth of about 50 million kilometers. Each satellite is endowed with
a drag-free system and two test masses, each of which consists in of a 2 kg cube made
of a gold-platinum alloy (shown in Fig. I.11b), which is freely floating within a vacuum
chamber. The satellites are engineered to exactly follow the test mass, which plays the
role of the mirror. Moreover, the satellites are also equipped with two lasers, two optical
bench and two telescopes pointing at each of the other two satellites. Since the distance
between each satellite is extremely large, one cannot realize a Michelson interferometer by
directly sending back the light reflected by the test mass onto the distant satellite, so one
must instead resort to numerical interferometry. Thanks to these elaborate techniques,
one expects to measure the displacement between each of the three pairs of test masses
up to a precision of 10 pm.

LISA will operate in the 100 µHz to 100 mHz frequency band at a sensitivity of
around 10−21, which if much worse than the current ground-based detectors, see Fig. I.10.
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Fig. I.10 Amplitude spectrum of detector noise as a function of frequency for
Advanced LIGO, Advanced Virgo, Cosmic Explorer (CE), the Einstein Telescope
(ET) and LISA. Source: [83]

However, the magnitude of the GWs one expects to find at these frequencies is much higher
than for ground-based detectors, so LISA will in fact detect many sources. First, LISA
will detect a foreground of unresolved stellar-mass compact binaries in the Milky Way,
whose signal will be nearly monochromatic since they are very far from merger. This
includes black holes (BH) and neutron stars (NS), but also white dwarfs. LISA will also
resolve individual mergers of supermassive black hole binaries in other galaxies, as well
as extreme mass ratio inspirals and intermediate mass black hole binaries. Other sources,
such as the stochastic GW background, the primordial GW background or exotic sources
such as cosmic strings, could potentially be detected by LISA as well [88].

I.4 Gravitational-wave data analysis
As we have seen, GW detectors need to be extremely sensitive, and there are many

noise sources that can spoil the signal. It is therefore important to develop proper data
analysis techniques to correctly distinguish the signal from the noise.

Consider an output from a detector

d(t) = h(t) + n(t) (I.77)

where h(t) is a deterministic function of time and n(t) is a random variable with zero
expected value, ⟨n(t)⟩ = 0, which we assume to be ergodic. In practice, we are in the
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(a) (b)

Fig. I.11 (a) Planned orbit configuration for the three LISA satellites.
Source: [89]. (b) Gold-platinum test mass to be used in LISA. Source: [90]

unfortunate situation of having to find a needle in a haystack, since |h(t)| ≪ |n(t)| (see
first row of Fig. I.12). In order to nonetheless extract physical information, we have to to
have a very precise understanding of the signal (which is the goal of this thesis) and of
the noise to fish out a small signal out of a large noise. We first assume that the noise is
Gaussian and stationary, such that its different Fourier components are uncorrelated and

⟨ñ∗(f)ñ(f ′)⟩ = 1
2δ(f − f ′)Sn(f) , (I.78)

where Sn(f) is the amplitude spectral density of the noise, a tilde indicates the Fourier
transform of a function of time, and the star indicates the complex conjugate. This means
that the noise’s variance reads ⟨n2(t)⟩ =

∫+∞
0 df Sn(f).

We then introduce a filter function k(t), thanks to which we define the correlation
function

c(t) ≡
∫ +∞

−∞
dt′ d(t′)k(t′ + t) . (I.79)

Since it includes the noise, c(t) is actually a random variable. One defines its signal-to-
noise ration as

SNR(t) = ⟨c(t)⟩
[⟨c(t)2⟩ − ⟨c(t)⟩2]1/2 . (I.80)

One can then prove that for any signal h, the quantity SNR(0) is maximized by the filter
kopt(t′), called the optimal or Wiener filter, which is defined by its Fourier transform

k̃opt(f) = h̃(f)
Sn(f) . (I.81)

This means that the SNR plotted with respect to time will exhibit a strong peak if the
filter is chosen as exactly equal to the signal, up to a global time shift t which is determined
by the location of this peak. Now suppose that one has at hand a template τ(t; θ) which
depends on a small set of parameters, e.g. θ = (m, ν), and which is known to be equal
to the signal for some unknown value of θ. Said differently, suppose that there exists θ0
and t such that τ(t′; θ0) = h(t′ + t). In order to search for a signal, one is compelled to
choose the filter to be k̃(f) = τ̃(f ; θ)/Sn(f) and to plot SNR(t) with many different filters
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Fig. I.12 GW151226 observed by the LIGO Hanford (left column) and Liv-
ingston (right column) detectors. First row: Strain data from the two detectors.
Second row: Signal-to-noise ratio (SNR) time series. Source: [45]

associated to different values of θ. One can then explore the parameter space associated
to θ, and search for a peak in the SNR signal. This would indeed indicate, as we have
seen, that the template must be almost equal to the signal. Since the SNR can be seen
as a scalar product between the filter and the signal in a high-dimensional vector space,
most filters will we orthogonal to the signal and will lead to near-vanishing SNR. Only
filters very close to being parallel to the signal will lead to nonzero SNR, and thanks to
the high-dimensionality of the vector space, this leads to a very sharp and distinctive
peak (in practice, the usual criterion is SNR > 8), see second row of Fig. I.12.

Although we do not expect our template to be exactly equal to our signal, we can
nonetheless optimize the match by choosing θopt such as to maximize the SNR. A better
way to find θopt is for example to use a maximum likehood estimator, or to maximize the
posterior probability. The corresponding optimal waveform τ(t; θopt) is plotted in black
in the first row of Fig. I.12. One should also note that detecting a high SNR is not a
fool-proof criterion to claim that a GW has indeed been detected. Indeed, the presence of
non-Gaussian noise can create high SNR events, so a good mitigation is to monitor it: for
example, if there is an earthquake leading to a high-SNR signal, the signal collected on
seismographs in the vicinity of the detector will allow us to discard this event. Moreover,
a large panel of statistical techniques can be employed to estimate the probability of an
actual GW detection and establish false alarm probabilities. The likeliness of a false alarm
is significantly reduced if the signal is detected in different, uncorrelated detectors.
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Chapter II
The wave generation formalism

II.1 The Landau-Lifschitz formulation of general relativity

Following Landau and Lifschitz [10], we wish to reexpress the Einstein field equa-
tions (I.2) of GR in the form of a wave equation. To this end, we introduce a tensor
density which we call the gothic metric, which reads

gµν ≡
√

−ggµν . (II.1)

In view of studying GWs as deviations from flat Minkowski spacetime, we introduce our
main variable, the graviational-field amplitude

hµν ≡ gµν − ηµν =
√

−ggµν − ηµν . (II.2)

Although this identity is written in terms of the inverse metric gµν , we can also express the
metric gµν itself in terms of hµν , at the price of introducing an infinite sum. Furthermore,
the (opposite of the) determinant of the metric can be expressed exactly as

−g = 1 + h+ 1
2
(
h2 − hβαh

α
β

)
+ 1

6
(
h3 − 3hhβαhαβ + 2hβαhσβhασ

)
+ 1

24
(
h4 − 6h2 · hαβhβα + 3(hαβhβα)2 + 8h · hαβhβρhρα − 6hαβhβρhρσhσα

)
, (II.3)

where we recall from Section I.1 that hβα ≡ hασησβ and h ≡ hσσ. We will also introduce a
notation for the divergence of hµν , namely

Hµ ≡ ∂νh
µν . (II.4)

The Einstein field equations can then be entirely rephrased as a flat-space wave equation
for the metric deviation hµν , sourced by the metric deviation itself. It reads

□hµν − ∂Hµν = 16πG
c4 τµν , (II.5)

where τµν is the stress-energy pseudotensor sourcing the GWs, where □ is still the flat-
space d’Alembertian and where recall the shorthand (I.12). The stress-energy pseudoten-
sor is defined by

τµν = (−g)Tµν [m, hαβ] + c4

16πGΛµν [hαβ] , (II.6)

27
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where Tµν is the stress-energy tensor expressed in terms of hαβ, and all the nonlinearities
of the Einstein equation have been absorbed in the Λµν pseudotensor, which reads [3]

Λµν ≡ − hαβ∂αβh
µν + ∂αh

µβ∂βh
να + 1

2g
µνgαβ∂λh

ατ∂τh
βλ

− gµαgβτ∂λh
ντ∂αh

βλ − gναgβτ∂λh
µτ∂αh

βλ + gαβg
λτ∂λh

µα∂τh
νβ

+ 1
8
(
2gµαgνβ − gµνgαβ

)(
2gλτgρσ − gτρgλσ

)
∂αh

λσ∂βh
τρ

+ 2hρ(µ∂ρH
ν) − ∂ρ(hµνHρ) . (II.7)

Note that thanks to (II.2) and (II.3), we can indeed express Λµν purely in terms of hµν ,
but at the price of having an infinite sum. We also know that Λµν is at least quadratic
in h, so it can be expressed in terms of a quadratic piece, a cubic piece, etc., namely

Λµν = Nµν [h, h] +Mµν [h, h, h] + Lµν [h, h, h, h] +
∞∑
n=5

Λµνn [h] , (II.8)

where Nµν [h, h′] is given by

Nµν [h, h′] = − hαβ∂α∂βh
′µν + 1

2∂
µhαβ∂

νh′αβ − 1
4∂

µh∂νh′

− 2∂αhβ(µ∂ν)h′
αβ + ∂βh

µα
(
∂βh′ν

α + ∂αh
′νβ
)

+ ηµν
[
−1

4∂ρhαβ∂
ρh′αβ + 1

8∂ρh∂
ρh′ + 1

4∂αhβρ∂
βh′αρ

]
+ 2hα(µ∂α∂βh

′ν)β − ∂α
(
hµν∂βh

′βα
)

(II.9)

and Mµν [h, h, h] is given by (1.3) of [91].
In most applications, the harmonic gauge conditition Hµ = 0 is imposed, which

means that the last lines of (II.7) and (II.9) vanish, as in (24) of [14] and (1.2) of [91].
The Einstein equations in harmonic coordinates then read

□hµν = 16πG
c4 τµν , (II.10)

where it is of course implicit that the harmonic gauge condition ∂µh
µν = 0 must also

be satisfied for hµν to be a solution of the Einstein equations This justifies in hindsight
our choice to work with the variable hµν as defined by (II.2): in harmonic coordinates,
the Einstein equations reduce to a wave equation on hµν sourced only by the matter and
terms at least quadratic in hµν .

II.2 Solving the Einstein equations
Now that we have reformulated the Einstein equations in a convenient way, we will

specify the physical problem we want to study. To start with, we consider the case of
two stars orbiting each other. The stress-energy tensor is a smooth function of spacetime.
The binary system is inspiraling because of GW emission, so we suppose that we are in a
regime where the binary is well separated (i.e. the two objects are separated by a distance
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much greater than the typical size of each object) and where the relative velocity of the
two stars is small compared to the speed of light. In order to solve our wave-generation
problem, we will want to impose two additional conditions [92] to the metric. First, we
assume that the metric was stationary in the past, i.e. there exists a time −T such that

∀t ⩽ −T , ∂hµν

∂t
(t,x) = 0 . (II.11a)

Second, we assume that the metric was asymptocially Minkowskian (in the weak sense)
before the time −T , namely

∀t ⩽ −T , lim
r→+∞

hµν(t,x) = 0 , (II.11b)

where the limit is taken for fixed t. This will also allow us to assume that our stress-energy
tensor has compact support and that all the matter is contained within a world-tube of
finite radius. This is physically motivating by the fact that in the far past, the stars had
not yet formed, and were thus not generating GWs

With this physical setting, it is then necessary to separate our problem into different
zones. Near the source, i.e. for radii smaller than a typical gravitational wavelength, we
are entitled to make the PN approximation: we assume that velocities are small, so we
can expand our sources and fields in powers of v/c. Thanks to the virial theorem1, we can
perform this expansion using the fact the (v/c)2 ∼ (Gm)/(r12c

2), where r12 is the orbital
separation and m the total mass of the binary. In practice, the PN expansion will simply
be an expansion when c → ∞. This also applies to the case of functions of retarded time,
which can be expanded in powers of c as

f

(
t− r

c

)
= f(t) − r

c
f (1)(t) + 1

2

(
r

c

)2
f (2)(t) + · · · .

It is immediate to see how this approximation only applies in the near zone, and breaks
down far away from the source. Note that when solving the near-zone problem, we will
obtain the result up to some arbitrary homogeneous functions, which will parametrize
radiation reaction.

Conversely, we can solve our problem in the exterior vacuum region of spacetime. In
this case, no PN approximation is needed (since there is no source in the equations),
and we can express the most general solution as a multipolar expansion, parametrized by
some multipolar moments, which at this stage are arbitrary. This solution is well defined
everywhere except at r = 0, where it diverges, but it only represents the physical solution
outside the source.

There exists a buffer zone, the “near exterior zone”, where both expansion are valid,
see Fig. II.1. This zone allows us to match the two solutions, and specify the multipolar
moments in terms of the source, and the radiation-reaction functions in terms of the
exterior metric. In practice, this matching is done via matched asymptotic series: we

1The virial theorem states that for a bound system, the kinetic energy T is related to the gravitational
potential U by 2⟨T ⟩ + ⟨U⟩ = 0, where ⟨...⟩ indicates time averaging. For a bound system of two point
particles, T = µv2

12/2 and U = −Gµm/r12, where m = m1 + m2 is the total mass, µ = m1m2/m is the
reduced mass, r12 is the orbital separation and v12 is the relative velocity of the two objects. Omitting time
averages, we therefore obtain (v12/c)2 = Gm/(r12c

2), and the total energy reads ⟨E⟩ = −Gµm/(2r12).
This is not true in GR, but the order of magnitude holds.
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will notice that the two solutions have the same asymptotic structure (respectively in the
r → +∞ and r → 0 limits), and we will impose that the coefficients in this expansion be
equal.

Fig. II.1 Representation of a source of size a emitting gravitational waves of
wavelength λGW. The matter is contained within the small dotted circle. The
near zone is characterized by r ≪ λGW. The buffer zone, between the two dotted
circles, is the exterior near zone, where both PN and MPM expansions are valid.
The wave zone is given by r ≫ λGW, and is outside the represented region.

II.2.1 Multipolar post-Minkoswkian solution for the exterior vacuum
For the moment, we will solve the vacuum equation in the region exterior to the

source using the harmonic gauge condition, namely ∂µhµν = 0. In Section II.7 and more
thoroughly in Chapters IV and V, we will see that there are different coordinate choices
that have some substantial advantages. Since we are now assuming that we are in the
vacuum exterior to the source, the Einstein equations simplify to □hµν = Λµν [h], where
Λµν [h] is given by (II.7). Assuming that hµν ≪ 1, we formally divide the metric into a
linear part, a quadratic part, etc. This procedure is called the post-Minkowskian (PM)
expansion (since we are expanding the metric around Minkowski spacetime), and we
factor out of each term a specific power of Newton’s constant G, which will act as a
bookkeeping parameter. We will then replace the linearized metric by its multipolar
expansion, and construct the nonlinearities using the nonlinear metric. Altogether, this
procedure is called the multipolar post-Minkowskian (MPM) construction [92], and is
formally designated by M (which stands for “multipolar”), namely

M(hµν) =
∞∑
n=1

Gnhµνn . (II.12)

Injecting the ansatz (II.12) in the vacuum Einstein equations in harmonic coordinates
yields a hierarchy of wave equations which read

□hµνn = Λµνn [h1, ..., hn−1] , (II.13)

where Λµνn is obtained recursively. For our purposes, we will only be needing

Λµν2 [h1] = Nµν [h1, h1] , (II.14a)
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Λµν3 [h1, h2] = Nµν [h1, h2] +Nµν [h2, h1] +Mµν [h1, h1, h1] . (II.14b)

Note that the MPM metric given by (II.12) does not necessarily converge, but we treat
it as a formal series that satisfies the Einstein equations order by order, in the sense of
(II.13). The first step in the MPM construction is to solve for the linearized solution
(n = 1). In this approximation, the Einstein equations take the particularly simple form

□hµν1 = 0 , (II.15a)
∂µh

µν
1 = 0 . (II.15b)

The no-incoming radiation condition follows from the conditions of (II.11), which
naturally select the retarded Green’s function for these equations. Noting that there is a
residual gauge freedom within the harmonic gauge, we can now write the general solution
to (II.15) as

hµν1 = kµν1 + ∂φµν1 , (II.16)

where the canonical part kµν1 of the solution is defined by means of two sets of STF
multipole moments {IL, JL}, namely [93, 94, 48, 92, 14]

k00
1 = − 4

c2

∞∑
ℓ=0

(−)ℓ
ℓ! ∂L

[1
r

IL
(
t− r

c

)]
, (II.17a)

k0i
1 = 4

c3

∞∑
ℓ=1

(−)ℓ
ℓ!

{
∂L−1

[1
r

I(1)
iL−1

(
t− r

c

)]
+ ℓ

ℓ+ 1∂L
[1
r

Ji|L
(
t− r

c

)]}
, (II.17b)

kij1 = − 4
c4

∞∑
ℓ=2

(−)ℓ
ℓ!

{
∂L−2

[1
r

I(2)
ijL−2

(
t− r

c

)]
+ 2ℓ
ℓ+ 1∂L−1

[1
r

J(1)
(i|j)L−1

(
t− r

c

)]}
,

(II.17c)

where we define2 Ji|L ≡ ϵiiℓk JkL−1 along with the univocal multi-index
ordering L = i1i2 · · · iℓ. Similarly, we parametrize the gauge vector by four sets of STF
gauge moments {WL,XL,YL,ZL}, namely

φ0
1 = 4

c3

∞∑
ℓ=0

(−1)ℓ
ℓ! ∂L

[1
r

WL

(
t− r

c

)]
, (II.18a)

φi1 = − 4
c4

∞∑
ℓ=0

(−1)ℓ
ℓ! ∂L

[1
r

XL

(
t− r

c

)]

− 4
c4

∞∑
ℓ=1

(−1)ℓ
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{
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[1
r

YiL−1

(
t− r

c

)]
+ ℓ

ℓ+ 1∂L
[1
r

Zi|L
(
t− r

c

)]}
, (II.18b)

where we define Zi|L ≡ ϵiiℓk ZkL−1.
The STF multipole moments {IL, JL,WL,XL,YL,ZL} are arbitrary functions of the

retarded time u = t− r/c of the harmonic coordinates, the only constraint being that the
monopole and dipoles satisfy the usual conservation laws, i.e. that the mass monopole I,
the time derivative of the mass dipole Pi ≡ I(1)

i and the current dipole Ji are all time-
independent constants. We will from now on denote them, respectively, M, Pi ≡ M(1)

i and Si,
2This follows the conventions of [95, 3] and not those of [96], see Footnote 3 of [6] for a clarification.
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as they represent the conserved mass, linear momentum and angular momentum, com-
posed of matter, gravitational binding energy and GW contributions. With these con-
servation laws, it is easy to verify that our parametrization (II.16) indeed satisfies the
harmonic gauge condition (the vacuum wave equation is automatically satisfied thanks to
the multipolar structure), and in our construction, we will henceforth restrict ourselves to
a center-of-mass frame defined by Mi = 0. Moreover, the conditions (II.11) impose that
each of these moments is a constant for t ⩽ −T , and their time derivatives vanish. Note
that although these moments are for the time being arbitrary functions that parametrize
our metric, these will be given definite values once we match the exterior metric to the
interior solution.

Once we have in hand the linearized metric, we proceed to constructing iteratively
the nonlinear (n ⩾ 2) pieces of the MPM metric. For this, we first need to identify a
particular solution of (II.12), under the usual conditions (II.11). Consider an equation of
the type □ϕ = S, where S(x, t) is a smooth source that behaves as S(r, t− r) = O(rℓ+5)
when r → 0 and t − r is held fixed [4, 97]. A natural solution is ϕ ≡ □−1

ret [S], where the
inverse retarded d’Alembert operator is defined as usual, namely

.□−1
ret [S](x, t) ≡ − 1

4π

∫ d3x′

|x − x′|
S

(
x′, t− |x − x′|

c

)
. (II.19)

It is of course easy to verify that □
[
□−1

ret [S]
]

= □−1
ret [□[S]] = S. However, this solution

is ill-defined as soon as the behavior of S is not regular enough. Note that convergence
problems can only occur in the r → 0 limit, since the function S quite generally involves
the derivatives of a multipolar moment, and the conditions (II.11) then impose that the
integrand is identically zero in the r → +∞ limit (with t kept fixed). In order to cure the
the ultraviolet (UV) divergences in the r → 0 limit, one introduces a complex parameter
B ∈ C and an arbitrary regularization constant r0 such that

□−1
ret

[(
r

r0

)B
S

]
(x, t) ≡ − 1

4π

∫ d3x′

|x − x′|

( |x′|
r0

)B
S

(
x′, t− |x − x′|

c

)
(II.20)

is convergent. Indeed, for a typical source, it suffices to choose Re(B) large enough to
overcome the divergent behavior of the integrand. By analytic continuation in B, one can
write the integral as a Laurent series in B, which reads

□−1
ret

[(
r

r0

)B
S

]
(x, t) =

∞∑
k=−n

Bkαk[S](x, t) , (II.21)

where n ∈ Z. The original retarded d’Alembertian (II.19) is divergent if and only if this
Laurent series exhibits poles, namely if ∃k ⩽ −1 such that αk[S] ̸= 0. Be the original
integral convergent or divergent, we find that the general prescription for obtaining a
particular solution to the original equation is to take α0[S], i.e. the finite part as B → 0
(denoted FPB=0), see [92] for a proof. Since we have constructed a solution to our
equation, we of course have □

[
FPB=0 □

−1
ret [S]

]
= S, but note conversely that in general,

FPB=0 □
−1
ret [□[S]] ̸= 0. This will lead us to define commutators

[
FPB=0 □

−1
ret ,□

]
[S] ≡

FPB=0 □
−1
ret□[S] − S, which vanish when acting on a convergent source.
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We now have all the tools needed to construct a particular solution uµνn to (II.13),
which reads

uµνn ≡ FP
B=0

□−1
ret

[(
r

r0

)B
Λµνn [h1, ..., hn−1]

]
. (II.22)

The constant length scale r0 is arbitrary and has to disappear from any physical result
in the end. This particular solution satisfies □uµνn = Λµνn , but it does not satisfy the
harmonic gauge condition, i.e. ∂νu

µν
n ̸= 0. Since ∂νΛµνn = 0, the divergence of the

particular solution actually reads

wµn ≡ ∂νu
µν
n = FP

B=0
□−1

ret

[
B

(
r

r0

)B ni
r

Λµin
]
. (II.23)

The factor B comes from the differentiation of the regulator (r/r0)B. Because of it, the
term (II.23) is nonzero only when the integral develops a pole ∝ 1/B when B → 0.
Furthermore, this divergence is automatically a homogeneous retarded solution of the
wave equation, □wµn = 0. At this stage, we apply the MPM “harmonicity” algorithm [92]
to construct from wµn another homogeneous retarded solution vµνn such that ∂νvµνn = −wµn.
First, we utilize the fact that wµn is a homogeneous retarded solution of the vacuum wave
equation to express it in terms of four sets of STF multipolar moment {NL,PL,QL,RL}
(see Appendix A.1 for a practical way to extract them). It reads

w0
n =

∞∑
ℓ=0

∂L

[1
r

NL

(
t− r

c

)]
, (II.24a)

win =
∞∑
ℓ=0

∂L

[1
r

PL
(
t− r

c

)]
+

∞∑
ℓ=1

{
∂L−1

[1
r

QiL−1

(
t− r

c

)]
+ ℓ

ℓ+ 1∂L
[1
r

Ri|L

(
t− r

c

)]}
,

(II.24b)

where we define Ri|L ≡ ϵiiℓk RkL−1 and all moments N, P, Q and R implicitly depend on
the order n. From these moments, we can construct vµνn as a multipolar expansion which
satisfies the divergence condition. There is a residual gauge freedom in this construction,
and we utilize it to minimize the v00

n and v0i
n components. Note that any other gauge

choice would also be valid, but would lead to a different matching, and in particular would
modify the definition of the source moments. The choice we make for the expression of
vµνn thus reads

v00
n = −1

r
N−1 + ∂a

[1
r

(
−N(−1)

a + Q(−2)
a − 3Pa

)]
(II.25a)

v0i
n = 1

r

(
−Q(−1)

i + 3P(1)
i

)
− ∂a

[1
r
R

(−1)
i|a

]
−

∞∑
ℓ=2

[1
r

NiL−1

]
(II.25b)

vijn = −δij
r

P +
∞∑
ℓ=2

{
2δij∂L−1

[1
r

PL−1

]
− 6∂L−2(i

[1
r

Pj)L−2

]
(II.25c)

+ ∂L−2

[1
r

(
N(1)
ijL−2 + 3P(2)

ijL−2 − QijL−2
)]

− 2∂L−1

[1
r
Ri|jL−1

]}
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where all moments N, P, Q and R are implicitly evaluated at t− r/c. This procedure is
concisely denoted by vµνn = Vµν [un]. Note the presence of antiderivatives, denoted by the
presence of negative derivatives (see Notations).

Finally, the harmonic metric at order n, now satisfying the full Einstein vacuum
equations in harmonic coordinates at the nth order, reads

hµνn = uµνn + vµνn . (II.26)

The harmonic metric M(hµν) as defined in (II.12) is a nonlinear functional of the moments
{IL, JL,WL,XL,YL,ZL} and represents the most general solution of the Einstein field
equations in the vacuum region outside an isolated system [92].

It can be shown that the metric constructed in this way has the following polyloga-
rithmic structure when r → 0 (see [92] for a proof):

M(h) (x, t) =
r→0

∑
ℓ∈N

∑
m∈Z

∑
p∈N

n̂Lr
m lnp(r)Fm,pL (t) (II.27)

where Fm,pL (t) is a multilinear functional of all the source and gauge moments.

II.2.2 Near-zone PN metric

Given a physical quantity Q, we denote by Q its PN expansion, namely its formal
series representation when c → ∞, up to some finite order 1/c2k, which we call the kth

PN order, denoted kPN (thus odd powers in v/c correspond to half-integer PN orders).
This quantity will differ drastically from its physical counterpart far from the source,
but it will be deemed a good approximation inside and in the vicinity of the source. Of
particular interest will be the PN expansion of the metric,

h
µν(x, t, c) =

∞∑
m=2

1
cm
h
µν
m (x, t; ln(c)) , (II.28)

where the ln(c) dependancy means we can further expand the PN coefficients as

h
µν
m (x, t; ln(c)) =

∞∑
p=0

ln(c)p hµνm,p(x, t) , (II.29)

where the sum actually terminates at some finite order pmax that depends on m. Similarly,
we perform the PN expansion of the stress energy pseudotensor,

τµν(x, t, c) =
∞∑

m=−2

1
cm
τµνm (x, t; ln(c)) (II.30)

Of course, these infinite sums are simply formal series, and should be truncated to
the appropriate PN order. Inserting (II.28) and (II.30) into the harmonic-coordinate
Einstein equations (II.10), and recalling that the d’Alembert operator decomposes as
□ = ∆ − c−2∂2

t , leads to a hierarchy of equations acting on each term of the PN series,
namely

∆hµνm = 16πGτµνm−4 + ∂2
t h

µν
m−2 . (II.31)
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We observe that, as often in physics, we have transformed a wave equation into a Pois-
son’s equation, which is valid only in the regime where retardations due to radiation are
small. Indeed, at lowest m = 2 order, we recover Poisson’s equation for the Newtonian
gravitational potential,

∆ϕ = 4πGρ , (II.32)

where ϕ = 1
4h

00
2 is the Newtonian gravitational potential and ρ = τ00

−2 is the Newtonian
matter density. It is then possible to prove that in the r → +∞ limit, the asymptotic
structure of h reads

h (x, t) =
r→+∞

∑
ℓ∈N

∑
m∈Z

∑
p∈N

n̂Lr
m lnp(r)Gm,pL (t) , (II.33)

which is identical to (II.27) .
Finally, we will mention a practical way to implement the previously described algo-

rithm, which consists in parametrizing the near-zone metric with well-chosen potentials.
At 2PN, the metric reads

g00 = −1 + 2
c2V − 2

c4V
2 + O

( 1
c10

)
, (II.34a)

g0i = − 4
c3Vi + O

( 1
c9

)
, (II.34b)

gij = δij

(
1 + 2

c2V

)
+ O

( 1
c8

)
, (II.34c)

where we have defined V = −4πG□
−1
ret

[
(T 00 + T kk)/c2

]
and Vi = −4πG□

−1
ret
[
T 0i/c

]
.

The metric and potentials have been defined up to 4PN in [98].

II.2.3 The matching equation

Once we have constructed the exterior and near-zone metrics and obtained their
asymptotic behaviors (see Fig. II.2), we will seek to relate the two metrics by match-
ing their asymptotic series. Indeed, we have observed that the r → 0 asymptotic series
of M(h), given by (II.27), is formally identical to the r → +∞ asymptotic series of h,
given by (II.27), but the two series are parametrized a priori by different time-dependent
coefficients, Fm,pL (t) and Gm,pL (t). The matching procedure consists in imposing that these
two expansions be equal, namely

M(h) =
∑
ℓ∈N

∑
m∈Z

∑
p∈N

n̂Lr
m lnp(r)Fm,pL (t) ≡

∑
ℓ∈N

∑
m∈Z

∑
p∈N

n̂Lr
m lnp(r)Gm,pL (t) = M(h) ,

(II.35)
where, as usual, the overline symbolizes the PN (or near-zone) expansion, and the M sym-
bolizes the multipolar (or far-zone) expansion [99, 100, 14]. This is equivalent to stating
that the coefficients must be identical in the physical problem, namely that Fm,pL (t) =
Gm,pL (t).

Applying this matching procedure entirely determines the multipolar moments that
parametrize the MPM solution in terms of the PN metric and matter source. The source



36 Chapter II. The wave generation formalism

a

r

h

Fig. II.2 Sketch of the metric h in terms of the radial coordinate r, both for
the PN expansion h (full line) and the MPM expansion M(h) (dotted line).
The blob represents the source, of typical size a. The region where both curves
overlap is the matching zone.

and gauge moments are all given in [14], and we reproduce here only the expression for
the mass multipole moment,

IL(u) = FP
B=0

∫
d3x

(
r

r0

)B ∫ 1

−1
dz
{
δℓ(z)x̂LΣ − 4(2ℓ+ 1)

c2(ℓ+ 1)(2ℓ+ 3)δℓ+1(z)x̂iLΣ(1)
i

+ 2(2ℓ+ 1)
c4(ℓ+ 1)(ℓ+ 2)(2ℓ+ 5)δℓ+2(z)x̂ijLΣ(2)

ij

}(
x, u+ zr

c

)
,

(II.36)

where we have define the (PN-expanded) source variables

Σ = τ00 + τaa

c2 Σi = τ0i

c
, Σij = τ ij , (II.37)

and where the weighting function δℓ(z) is defined by

δℓ(z) = (2ℓ+ 1)!!
2ℓ+1ℓ! (1 − z2)ℓ (II.38)

such as to satisfy ∫ 1

−1
dz δℓ(z) = 1 . (II.39)

The following expansion is essential for expanding these integrals to finite PN order:∫ 1

−1
dz δℓ(z)S

(
x, u+ zr

c

)
=

∞∑
k=0

(2ℓ+ 1)!! r2k

2kk!(2ℓ+ 2k + 1)!!

(
∂

c ∂u

)2k [
S (x, u)

]
. (II.40)
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II.3 The case of point-particles
Until now, we have supposed that the matter content, represented by its stress-energy

tensor Tµν(x, t), is a smooth function of spacetime. This ensures in particular that the
metric itself, represented by gµν or hµν , is also smooth, and has a well-defined value at
each point of spacetime. We have moreover assumed that the metric perturbation is
small, i.e. |hµν | ≪ 1.

We now want to specialize our study to the case of a compact binary system of neutron
stars or black holes. Clearly, in the vicinity of these objects, the gravitational field is very
strong, and one cannot a priori apply the PN-MPM formalism. However, although the
field is strong near the source, one can show in GR that the contribution of the internal
structure to the dynamics turns out to be extremely small, namely of 5PN order, i.e.
that the dynamics depend (up to 5PN precision) only on the total masses of the two
objects, and not on their structure. This effacement principle [46] allows us to extent
our formalism to the case where our compact binary is represented by two spinless and
structureless point-particles, i.e. two well-separated bodies whose size is small compared
to the other scales of the problem, and whose stress-energy content can thus be well
represented as Dirac-distribution. The matter action for a system of point particles reads

Sm = −c
∑
A

∫
mA

√
− (gαβ)A dyαAdyβA , (II.41)

thus the stress-energy tensor for a system of two point-particles is given by

Tµν (x, t) =
∑

A∈{1,2}

δ(3)(x − yA(t))√
− (g)A

mAv
µ
A(t)vνA(t)√

− (gαβ)A
vα

A(t)vβ
A(t)

c2

, (II.42)

where we recall the shorthand vµA ≡ (c,vA(t)) (which is not the 4-velocity of the particle),
and the reader is invited to consult the Notations for more details.

The PN iteration of this stress-energy tensor will of course yield at lowest order

Tµν (x, t) = δ1m1v
µ
1 (t)vν1 (t) + (1 ↔ 2) + O

( 1
c2

)
. (II.43)

When solving the field equations with this source, we find that the metric gµν must have a
divergent ∼ 1/|x−yA| behavior near particle A ∈ {1, 2}. But at the next iteration, we will
need to evaluate gµν(x, t) at x = yA(t), which is clearly divergent. From a physical point
of view, this is an artifact of our choice of working with point-particles. Indeed, in the
case of a compact star, the matter distribution is smoothed out over some finite region of
space, so the metric is also smooth and there is no divergence. In the case of a black hole,
there is indeed a singularity but it is hidden behind the event horizon, which is a feature
that is completely lost in the point-particle PN approach. From the computational point
of view, however, this has been historically a major obstacle. In standard Newtonian
dynamics, this is solved by saying that in a system of N point particles, any particle feels
the gravitational attraction of all the other particles, but not of itself. This procedure
essentially removes the self-field of a compact object [13]. In the general relativistic case,
is it not so easy to disentangle the self-field from the exterior fields, because they are
nonlinearly mixed within the metric.
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The historical procedure to remove the self-field in the PN problem is to assign a
regularized value to the metric at the location of the point particle thanks to Hadamard
regularization [101]. Ignoring the time dependence and spacetime indices, which play no
role here, we can always write the metric as a formal expansion around the location y1
of the first particle, namely

g(x) =
∞∑

p=pmin

rp1gp
1

(n1) , (II.44)

where pmin ∈ Z, r1 = |x − y1|, n1 = (x − y1)/r1 and 1gp are a family of functions of n1
(crucially, they are independent of r1). Essentially, in order to evaluate the metric at the
location of the first particle while removing the self-field, we take the Hadamard partie
finie at the location of the first particle, which reads

(g)1 ≡ 1
4π

∫
d2Ω g0

1
(n1) , (II.45)

where we have only integrated 1g0 over the angles. This procedure is very successful at
low order, but starting at 3PN, it suffers from ambiguities. This is because, for a pair
of functions F and G, we have (FG)1 ̸= (F )1(G)1 in general, and these products appear
naturally in the PN construction. Moreover, the Leibniz rule is lost in general. These
problems can be related to the fact that in Schwartz distribution theory, the product is
not well defined. In practice, this is not a problem up to 2.5PN order, as one finds that
any prescription for the way in which to take the finite part of a product yields the same
result. However, at 3PN, different prescriptions yield different results that were found to
differ by only a few typical terms. This led to the introduction of ambiguity parameters
that quantified this uncertainty, and which could only be determined by comparing to
results from other formalisms, e.g. gravitational self-force. This was problematic, because
it meant that the formalism was not complete. It was solved by changing regularization
methods, and adopting dimensional regularization.

II.4 Dimensional regularization

In Section II.3, we have seen that Hadamard regularization led to ambiguities. Fortu-
nately, it was found that dimensional regularization [102, 103, 104] is the correct way to
obtain the full, unambiguous equations of motion and waveform at 3PN order. Although
this is not the topic of this thesis, its use in Chapter III requires that we sketch the main
features of this regularization technique. The starting point is to extend GR to d spatial
dimensions (instead of three), and one time dimension. This generalization initially only
makes sense for d ∈ N \{0, 1, 2} (since gravity in these lower dimensions exhibit special
features), but the results will then be extended by analytical continuation to any d in the
complex plane.

Dimensional regularization plays a crucial role in solving the ambiguities mentioned
in Section II.3. In d ≡ 3 + ε dimensions, the metric behaves as

g(d)(x) =
∞∑

p=pmin

qmax∑
q=qmin

rp+qε
1 g

1
(d)
p,q(n1) , (II.46)
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when x approaches y1, with (pmin, qmin, qmax) ∈ Z3. Note that to ensure continuity with
three dimensions, we have the constraint∑

q
1g

(d)
p,q(n1) = 1gp(n1) . (II.47)

Provided that (p, q) /∈ (−Z∗) × {0} (which is always satisfied in practice), each term in
this sum will have a well-defined r1 → 0 limit if ε is chosen such that Re(p+ qε) > 0 (by
virtue of analytical continuation, one can choose different values of ε for different terms
in the sum). The metric (g)1 at the location of the first particle is thus well defined by
analytical continuation, which cures the divergence of the stress-energy tensor (II.42).
Most importantly, this regularization procedure satisfies (FG)1 = (F )1(G)1.

To be consistent, the whole PN-MPM expansion then needs to be generalized to d
dimensions, see Appendix A.6 for a compendium of formulas. One important aspect is
that the regularization procedure of Section II.2.1 needs to be adapted, and now reads3

FP
B=0

□−1
ret

[(
r

r0

)B
Sε

]
≡ FP

B=0

[
− k̃

4π

∫ +∞

1
dz γ 1−d

2
(z)

∫
ddx′

(
r′

r0

)B Sε (t− z|x − x′|,x′)
|x − x′|d−2

]
,

(II.48)

where k̃ ≡ Γ (−1 + d/2)π1−d/2 and the function γs(z) is defined in (A.42). The prescrip-
tion is to first take the finite part in B, and only then to take the ε → 0 limit (we call it
the “Bε” procedure).

Although dimensional regularization is very satisfactory from a theoretical point of
view, it is very cumbersome in practical computations. Indeed, one loses in arbitrary d
dimension the Huygens principal [105], therefore we must deal with many nonlocal inte-
grals in the MPM iteration (like the z integral in (II.48)), which are instantaneous in the
3-dimensional case. Moreover, many crucial integrals which we knew how to perform in
three dimensions are unknown analytically in arbitrary d dimensions. One useful way out
is to compute the difference between Hadamard and dimensional regularization, which is
dubbed “DDR”. This technique consists in performing a purely three-dimensional com-
putation using a Hadamard regularization, and then to compute the difference between
the three-dimensional result and the d-dimensional one as an expansion in d → 3. For
example, the difference between Hadamard and dimensional regularization for the inte-
gral of the metric (given, respectively, by (II.44) and (II.46)), over a ball of radius R that
includes the two singularities, reads

pfs1,s2

∫
B(3)(R)

d3x g(x) −
∫
B(d)(R)

ddx g(d)(x)

= 1
ε

qmax∑
q=qmin

[ 1
q + 1 + ε ln(s1)

] ∫
dΩd−1(n1) g

1

(d)
−3,q(n1) + (1 ↔ 2) + O(ε) , (II.49)

3It turns out that, most of the time, the rε term in the d-dimensional volume element
ddx = r2+εdr dΩd−1 actually plays the same regularizing role as rB , so the FPB=0 operator is not needed.
We introduce it only to treat the special case where the source behaves as S ∼ rp+qε with q = −1, such
that the ε contribution in the source and the volume element exactly cancel out. Furthermore, in all
practical computations, it was noticed that the poles in 1/B all cancel out in end results, such that one
does not need to take a finite part, but only the limit B → 0.
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where the Hadamard prescription for the volume integral is given by (5.6) of [104] and
depends on two arbitrary constants s1 and s2 associated to regularizing volumes around
the singularities, and outside of which the two regularizations coincide. Although one loses
with this technique the full dependence in the dimensions, one recovers useful results in
the ε → 0 limit, which we would be in general unable to obtain from a direct d-dimensional
computation. One should also be careful that this procedure generically introduces poles
in 1/ε in intermediate quantities. However, when computing observable, physical results
(such as radiative moments), we will see that these poles cancel out: this is an important
consistency check of our formalism.

II.5 The kinematics of quasicircular orbits

As we know from Chapter I, most binary systems will have radiated away virtually all
of their eccentricity by the time they enter the frequency band of the detector. This mo-
tivates the study of binaries undergoing quasicircular orbits, i.e. inspiraling orbits which
deviate from exact circularity only by small 2.5PN secular effects due to radiation reac-
tion. We work in the center-of-mass frame and in harmonic coordinates, so each particle
is on a quasicircular orbit around the origin, and the orbital separation, which we denote
r12 ≡ |y1 − y2|, only decays secularly on radiation-reaction timescales. The particles
being spinless, the orbit takes place within a fixed plane, which is orthogonal to the total
angular momentum of the system. One can construct an orthonormal triad (n0,λ0, l0)
such that l0 is orthogonal to the orbital plane and such that the orbit appears counter-
clockwise when l0 is pointing toward the observer, as illustrated in Fig. II.3a. The relative
motion can then be described in polar coordinates, where the polar radius is the secu-
larly decreasing orbital separation r12(t), and where the polar angle defines the orbital
phase ϕ(t), which is an increasing function of time thanks to our choice of orientation, see
Fig. II.3b. The orbital frequency is then straightforwardly defined as ω(t) = dϕ/dt > 0.
Note that the orbital parameters {r12(t), ϕ(t)} depend both on the choice of origin of
time and on the orientation of the (n0,λ0) axes, so there will be arbitrary constants
associated to these choices in our final results. Finally, one can define the co-rotating
triad (n12(t),λ12(t), l0), which will be extremely useful for the computation of nonlocal
integrals in Section VI.2.3.

II.6 The equations of motion

The PN approach consists in stating that a slowly-evolving binary system can be de-
scribed with equations of motions that differ from Newton’s laws by small (v/c)2 correc-
tions. The equations of motions for a system of two point-particles were first computed at
1PN order by Lorentz and Droste [106] then by Einstein, Infeld and Hoffman [107]. After
partial results at 2PN order [108, 109, 110], it was then completed solved at 2.5PN order
[111, 112, 113]. At 3PN order, it was computed both in the ADM formalism [114, 115, 116]
and in the PN formalism [117, 118, 119], both up to one ambiguity constant due to the use
of Hadamard regularization. It was fixed in a self-consistent manner by computing the
3PN equations of motion using dimensional regularization instead [102]. It was later con-
firmed by effective field theory (EFT) methods [120]. The 3.5PN terms were computed by
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Fig. II.3 (a) Representation of the time-independent triad (n0,λ0, l0) and the
corotating triad (n(t),λ(t), l0) at times u and u − τ . (b) Corotating triad and
inspiral of a quasicircular orbit.

[113, 121, 122]. The 4PN equations of motion were obtained by several groups using dif-
ferent methods: (i) the ADM Hamiltonian formalism [123, 124, 125, 126] led to complete
results except for one “ambiguity” parameter, which was fixed by resorting to a compari-
son with gravitational self-force results [127]; (ii) the Fokker Lagrangian formalism in har-
monic coordinates [128, 129, 130, 131] yielded for the first time a complete result without
ambiguity parameter; and (iii) the EFT approach [132, 133, 134, 135, 136, 137, 138, 139]
recovered the complete and unambiguous result. Partial results at higher PN orders have
also been obtained [140, 141, 142, 143, 144, 145, 146]. First, we divide our equations of
motion into conservative and dissipative dynamics, namely

a12 = acons
12 + adiss

12 . (II.50)

The conservative dynamics are computed by neglecting the radiation reaction that drives
the inspiral, and they admit a Lagrangian or Hamiltonian formulation. At 4PN, and for
circular orbits, they read

acons
12 = −ω2 y12 , (II.51)

where ω is the orbital frequency and is given by a generalization of Kepler’s law4,

ω2 = Gm

r3
12

{
1 + (−3 + ν)γ +

(
6 + 41

4 ν + ν2
)
γ2

+
(

−10 +
[
−75707

840 + 41
64π

2 + 22 ln
(
r

r′
0

)]
ν + 19

2 ν
2 + ν3

)
γ3

4As is [98], we have take the two constants r′
0 and r′′

0 of [131] to be equal.
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+
(

15 + ν

[19644217
33600 + 163

1024π
2 + 256

5 γE + 128
5 ln(16γ) + 82 ln

(
r

r′
0

)]

+ ν2
[

44329
336 − 1907

64 π2 − 992
3 ln

(
r

r′
0

)]
+ 51

4 ν
3 + ν4

)
γ4
}
, (II.52)

where r′
0 is a gauge-related arbitrary constant and where

γ ≡ Gm

r12c2 (II.53)

is a small PN parameter. Under these conservative equations of motion, it is possible to
find a conserved Noetherian energy E, such that at desired PN order,

dE
dt

∣∣∣∣
acons

12

= 0 . (II.54)

Note that this energy is in general not equal to the on-shell value of the Hamiltonian due
to nonlocal terms in the dynamics [131, 147]. It only contains even terms in 1/c and reads
at 4PN

E = −µc2y
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where we have defined the frequency-related PN parameter y in (I.42).
Since this energy is seen as the conserved quantity is the absence of dissipation, we

can state that the energy flux FE , i.e. the energy “lost” by the system per unit time due
to the emission of GWs is given by the time derivative of the conserved energy under the
full equations of motion, namely

dE
dt

∣∣∣∣
acons

12 +adiss
12

= −FE . (II.56)

Moreover, for now, FE is solely defined from the energy and the dissipative equations
of motion. The latter should be computed by matching the near-zone and far-zone metrics
and determining radiation-reaction forces [148, 149]. It has however been assumed to be
equal to the energy flux due to GWs measured at future null infinity. This has given rise
to a controversy [150], which was solved in part by proving that this was indeed true at
2PN order [151, 152, 153]. If this hypothesis is assumed to hold at any order, then one
can determine thanks to (II.56) the dissipative acceleration up to much higher order than
what is possible only with the matching procedure, see Fig. II.1. It reads for quasicircular
orbits [131]
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adiss
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where v12 is the relative velocity. Using the full equations of motion and the flux-balance
equation, we also obtain the secular decrease of orbital quantities at 1.5PN order [6]
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(
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II.7 Observables at infinity
At the end of the PN-MPM iteration, the end result is a MPM metric h = ∑

n⩾1G
nhn

expressed only in terms of the kinematics of the source (i.e. the positions and velocities of
the point particles). Unfortunately, it is a very complicated functional of these kinematics,
and is not suited for practical use. In particular, its far-zone structure as r → +∞ is
plagued by far-zone logarithms of r, namely

h (x, t) ∼
r→+∞

∑
ℓ∈N

∑
m∈Z

∑
p∈N

n̂Lr
m lnp(r)Fm,pL (t− r/c) , (II.59)

where the expansion is performed for t− r/c kept fixed. This is troublesome because, far
from the source5, the nth PM term becomes larger that the (n − 1)th. Fortunately, this
is simply a well-known feature of the harmonic coordinates [154, 155, 156, 157, 158, 159],
and there always exists a coordinate transformation Xµ = φµ(xν) that ensures (at the
price of exiting harmonic coordinates) that in this new coordinate system (which we call
“radiative”, although we will discuss this nomenclature more in detail in Section IV.1),
the metric behaves as

h (X, T ) ∼
R→+∞

∑
ℓ∈N

∑
m∈Z

N̂LR
mFmL (T −R/c) . (II.60)

For iterated tails up to quartic order (i.e. Mk × Mij interactions for k ∈ {1, 2, 3}), the
standard choice is to take (T, X) =

(
t− 2GMc−3 ln (r/b0) , x

)
, where b0 is an arbitrary

length scale that is related to the choice of origin of time. This choice successfully removes
all the logarithms, even at nonlinear order. However, as we will see, this coordinate
redefinition it not sufficient to removes all logarithms at 4PN order, and an adequate
coordinate redefinition is not easy to guess. We do however know of a different flavor of
the MPM algorithm that automatically removes these logarithms [160], and which will be
implemented in Chapter IV. In order to be consistent with the rest of the formalism, we
will need to provide a mapping from this result back to our original coordinate system:
this will be the task of Chapter V.

We now assume that the far-zone computation has been performed, and that all
logarithms have been removed. We notice that, for an extremely distant observer like

5Typically for r ≫ λGWe
λGW
Gm , where λGW is the gravitational wavelength [154].
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ourselves, the subleading terms ∼ 1/R2 are by far negligible. This amounts to a relin-
earization of the full metric in the region very far from the source in the small parameter
Gm/(c2R), where R is now the distance between the observer and the source (and not
the orbital separation). We find that6

□hµν = O
( 1
R2

)
and ∂µh

µν = O
( 1
R2

)
, (II.61)

so in this linearized regime, hµν recovers a multipolar structure. We will want to com-
pletely fix the residual gauge freedom in order to simplify the expression at utmost. First,
as for any linearized metric, one can always choose to express our result only in terms of
a set of two multipolar moments, which we call radiative moments and denote {UL,VL}.
The gauge vector and gauge moments associated to the linearized metric are chosen to be
zero. Moreover, one can choose to work in the transverse-traceless (TT) gauge. Indeed,
as seen in Section I.1, it is always possible to perform a well chosen gauge transformation
such that our metric reads in a general frame [11]

h00
TT = −4MG

Rc2 − 4NaPa
c3R

+ O
( 1
R2

)
(II.62a)

h0i
TT = − 4Pi

c3R
+ O

( 1
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)
(II.62b)

hijTT = − 4G
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]
+ O

( 1
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)
(II.62c)

where ⊥TT
ij,ab is the TT projection operator defined by (I.18). We have successfully trans-

ferred all the dynamical (or radiative) degrees of freedom into the purely spatial part of
the metric, and only the static degrees of freedom, including the Newtonian potential, are
contained in “00” and “0i” parts of the metric. Note that the effects due to the conserved
total angular momentum Si of the spacetime decay as 1/R2, so do not directly enter the
far-zone metric7, and that is is usual to work in the center-of-mass frame given by Pi = 0.
Since all the physical information describing a GW is contained in (II.62c), a fortiori the
radiative moments also contain all the physical information. Moreover, all the radiative
moments are related to the source moments at lowest order by UL = I(ℓ)

L + O(c−2) and
VL = J(ℓ)

L + O(c−2). At higher PN order, they differ by nonlinear terms which can be
nonlocal in time, such as tails, memory terms, tails-of-tails, etc. For illustrative purposes,
let us give the expression of the radiative quadrupole moment at 3PN order:
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((
Gm
c2R

)2
)

.
7Of course, Si can enter the metric indirectly, via the radiative moments.
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(II.63)

Notice the appearance of the arbitrary r0 scale at 3PN order: this scale is linked to the
finite-part regularization. Note as well that at 2.5PN, there is a cumbersome dependency
on the gauge moments. These will be reabsorbed when we express the radiative moments
in terms of the canonical moments {ML, SL}, see Chapter III for more details. Also
notice that there are two types of nonlocal terms. The first line is a tail integral, which
corresponds to the backscattering of GWs against the curvature of spacetime generated by
the constant total mass-energy of the spacetime. The second line is the memory integral,
which can be interpreted as the reradiation of GWs by GWs themselves. These two effects
are compactly represented8 by the two following Feynman diagrams, where the double
line represent the compact binary, the squiggly line a GW, and a single line the static
interaction between the curvature and a GW.

(a) (b)

Fig. II.4 Feynmann diagrams for (a) the tail interaction M×Mij (or equivalently
at this order, M×Iij); and (b) the memory interaction Mij×Mij (or equivalently
at this order, Iij × Iij).

As we know from the sticky bead argument (discussed in the Introduction), GWs
carry energy, and if one considers some sphere S(R) of radius R around our source, it is
possible to compute the energy flux crossing that sphere. For this, we notice that it follows
from the Bianchi identities that the energy-momentum pseudotensor (II.6) is conserved,
namely ∂µτµν = 0 (in any coordinate system). We define the total energy inside the ball
B(R) as ER ≡

∫
B(R) d3x τ00, which for now is of course a totally coordinate-dependent

quantity, since the energy of GWs cannot be localized in a gauge-invariant way. It is thus
convenient to choose a coordinate system which is TT in the vacuum region (of course,
this is not always possible inside the matter). We can then define the energy flux exiting

8These have a well-defined computation meaning in the effective field theory framework; here we present
them for illustrative purposes only.
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the ball of radius R by

FR ≡ −dER
dt = c

∫
B(R)

d3x ∂iτ
0i = cR2

∫
S(R)

d2Ωniτ
0i . (II.64)

For R large enough such that all the matter is strictly contained within B(R), we can
perform the replacement τ0i → c4/(16πG)Λ0i within the angular integral. Now, recall-
ing the structure of the metric given by (II.60) and the TT gauge condition, we find
c2niΛ0i = ∂thkl ∂thkl + O(1/R3). The flux then reads

FR = c3R2

16πG

∫
S(R)

d2Ω ḣijTTḣ
ij
TT + O

( 1
R

)
, (II.65)

where we have made explicit the fact that we are in a TT gauge. We then take the
R → +∞ (T −R being fixed) limit, and we find that the flux (also called luminosity) at
future null infinity reads [48]
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where the last line was obtained using (II.62c). Note that the secular, gauge-invariant
effects are obtained by time-averaging over a typical period of the system, which is de-
noted by ⟨...⟩. This turns out not to be necessary for quasicircular orbits, for which the
nonsecular effects cancel out all by themselves. One will then make the hypothesis that we
can identify F with FE as defined in (II.56), so as to obtain a balance equation between
the conserved Noetherian energy and the flux of gravitational waves measured at future
null infinity (see Section II.6).

We finish this chapter on a final comment. One striking feature of the PN-MPM
formalism is that the radiation field and the dynamics are strongly interdependent. How-
ever, in our lowest-order linearized approach of Section I.2, this did not seem to be a
problem. The reason is that the PN-MPM algorithm strongly relies on the fact that
there is a hierarchy between radiation and the dynamics, which arises from the energy
balance equation. This is nicely summarized by Table II.1, where an arrow from a cell A
to a cell B indicates that computing A is required before one can compute B (this is not
exhaustive, only the patterns are highlighted).

As one can see from this table, the near-zone metric and the equations of motions
can be computed without any need for the exterior radiation field up to 2PN order. We
have highlighted the fact that there is no 0.5PN contribution, be it in the dynamics or in
the waveform. At 2.5PN order in the dynamics, one needs to include radiation-reaction
effects, which are due to the Newtonian waveform. The latter can be obtained simply
with the Newtonian equations of motion. Since the first nonlocal effect in the radiation
field arrives at 1.5PN order with the tails, we can see that the first nonlocal effect in the
dynamics will arise at 4PN order [154]. These equations of motion are required in order
to obtain the 4PN waveform. Note that the 4PN flux we have computed [5, 6] affects the
dynamics at 6.5PN order, which is much higher than the current state of the art.
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Dynamics Radiation

Near-zone PN Exterior MPM
metric metric

N

1PN

1.5PN

2PN

2.5PN N

3PN

3.5PN 1PN

4PN 1.5PN

4.5PN 2PN

5PN 2.5PN

5.5PN 3PN

6PN 3.5PN

6.5PN 4PN

7PN 4.5PN

Table II.1: Order in which one should hierarchically solve dynamics and radiation in the
PN-MPM formalism. An arrow from a cell A to a cell B indicates that computing A is
required before one can compute B (not all such arrows are shown).
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Chapter III
Source and gauge moments to canonical mo-
ments

This chapter is mainly based on [6].

As we have seen in Chapter II, gauge moments play an essential role for the matching
of the vacuum solution to the PN source. However, once the matching is done, it is useful
to minimize the number of moments involved in the MPM iteration. This is done by
choosing the linearized gauge vector such that φµ1 = 0. This amounts to a modification
of the MPM algorithm of Section II.2.1, and the associated moments should then differ
by nonlinear corrections. This section will deal with the methods used to go from a
set of six types of source {IL, JL} and gauge {WL,XL,YL,ZL} moments to only two
canonical {ML,SL} moments. As we discovered, this procedure strongly depends on the
regularization scheme.

The plan of this chapter is as follows. In Section III.1, we review the MPM construction
in canonical coordinates. In Section III.2, we review the method of [95] used to relate the
canonical moments to the source and gauge moments in three dimensions. In Section III.2,
we show how to adapt this method to a d-dimensional metric, in the context of dimensional
regularization. Finally, in Section III.4, we apply this method to the quadrupole moment
at 4PN order and present our result.

III.1 The canonical harmonic MPM algorithm

In this section, we describe the canonical construction of the metric, in harmonic
coordinates. We will denote the metric thus constructed as hµνcan (in line with [95], but
unlike [3], where it is instead denoted hµνharm). In particular, we still impose ∂µhµνcan = 0,
but we utilize the residual gauge freedom of harmonic coordinates to set φµ1 = 0. As
usual, the MPM expansion is defined up to any post-Minkowskian (PM) order by

hµνcan =
∞∑
n=1

Gnhµνcann . (III.1)

49
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The first step to construct such a solution is naturally the linearized approximation n = 1,
defined this time by means of only two sets of STF canonical multipole moments {ML,SL}
as [93, 94, 48, 92]

h00
can 1 = − 4
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(III.2c)

where as usual Si|L ≡ ϵiiℓk SkL−1. The STF multipole moments {ML,SL} are arbitrary
functions of the retarded time t − r/c of the harmonic coordinates, the only constraint
being that the monopole and dipoles satisfy the usual conservation laws, i.e., that the
mass monopole M, the time derivative of the mass dipole M(1)

i and the current dipole Si
are all time-independent constants. Thus M, Mi and Si represent the conserved quantities,
made of matter and GW contributions. Note therefore that they are identical to the ones
stemming from the source-rooted construction described in Chapter II, namely M = I,
Mi = Ii and Si = Ji. In this chapter, we restrict ourselves to a center-of-mass frame
defined by Mi = 0.

The canonical harmonic algorithm is defined by the construction exposed in [95].
Namely, suppose that we have constructed the n − 1 first PM coefficients hµνm for any
m ⩽ n− 1, all satisfying the harmonic gauge condition ∂νh

µν
canm = 0. Then we construct

the nth order coefficient as follows. It satisfies □hµνcann = Λµνn together with ∂νh
µν
cann = 0,

where the source term is constructed out of the previous iterations:
Λµνn ≡ Λµν [hcanm;m ⩽ n − 1]. We then define uµνcann, wµνcann and vµνcann following ex-
actly the same procedure as in Section II.2.1. The harmonic metric at order n, now
satisfying the full Einstein vacuum equations in harmonic coordinates at the nth order,
then reads

hµνcann = uµνcann + vµνcann . (III.3)

The canonical metric is a nonlinear functional of the moments {ML,SL} and represents,
just like its counterpart in the general MPM construction, the most general solution of
the Einstein field equations in the vacuum region outside an isolated system [92].

III.2 Relating the canonical moments to the source and gauge moments
in three dimensions

In Section II.2.1 and Secs. III.1, we have presented two different constructions of
the MPM metric, which both parametrize the most general exterior metric. However,
these parametrizations are different, and we want to find a one-to-one mapping from one
construction to the other. For this, we follow closely the method developped in [95]. Two
physically equivalent metrics should only differ by a coordinate redefinition xµ → x′µ,
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which leads to the relation

hµνgen(x′) = 1
|J |

∂x′µ

∂xρ
∂x′ν

∂xσ
(hρσcan(x) + ηρσ) − ηµν , (III.4)

where hµνgen(x′) is the MPM metric in the general construction of Section II.2.1, parametrized
by source moment {IL, JL} and gauge moment {WL,XL,YL,ZL}; where hµνcan(x) is the
MPM metric in the canonical construction of Section III.1, parametrized by canonical
moments {ML,SL}; and where J ≡ det(∂x′/∂x) is the Jacobian of the coordinate trans-
formation. We introduce the coordinate transformation φµ, which is a function such that
the coordinate transformation reads xµ → x′µ = xµ + φµ(x). Since hµνgen and hµνcan both
admit a PM expansion, the gauge vector can be written as a PM expansion as well,

φµ =
∞∑
n=1

Gnφµn . (III.5)

Consistently, we can also write the respective moments of each construction as a PM
expansion

AL =
∞∑
n=1

Gn−1An,L , (III.6)

where AL stands for either ML, SL, IL, JL, WL, XL, YL or ZL. At linear level, it is clear
that the two constructions are related by

hµνgen 1(x) = hµνcan 1(x) + ∂φµν1 , (III.7)

where φµ1 is given by (II.18) and the moments are related by ML = IL + O(G) and
SL = JL + O(G). In our recurrence hypothesis, we assume that, for n ≥ 2, we have
constructed this relation up to the (n− 1)PM order, namely we have established1

φµ =
n−1∑
m=1

GmΦµ
m[MK ,SK ,WK ,XK ,YK ,ZK ] + O(Gn) , (III.8a)

IL =
n−1∑
m=1

Gm−1Im,L[MK , SK ] + O(Gn−1) , (III.8b)

JL =
n−1∑
m=1

Gm−1Jm,L[MK , SK ] + O(Gn−1) . (III.8c)

We then perform the expansion of (III.4) up to nPM order, where we Taylor-expand the
radiative metric to finite PM order, i.e. using

hµνgen(x′) =
∑
m⩾0

φλ1(x)...φλm(x) ∂λ1 ...∂λmh
µν
gen(x) . (III.9)

1Note that here we express the source moments in terms of the canonical and gauge moments, while in
(3.6) of [95], it is the opposite. Indeed, the derivation in [95] is correct but swipes under the rug possible
corrections at cubic order, which fortunately do not contribute at 4PN. This was however important in [3],
so we follow the reasoning of this latter reference instead. The relation can straightforwardly be inverted
at the end of the derivation.
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At the nPM order, we find the relation

hµνgenn(x) = hµνcann(x) + ∂φµνn + Ωµν
n [hcanm, φm;m ⩽ n− 1] , (III.10)

where Ωµν
n is an explicitly known2, nonlinear and at least quadratic, functional of the

coordinate shift and the canonical metric at previous orders, but where φµνn is yet to be
determined. We then define ∆µ

n ≡ −∂νΩµν
n = □φµn, which naturally leads to defining the

gauge vector

ϕµn = FP
B=0

□−1
ret

[(
r

r0

)B
∆µ
n

]
. (III.11)

Since a very similar construction will be detailed in Chapter V, we do not detail all the
steps of the construction here, and refer the curious reader to [95]. One can then show
(see [95] for the derivation) that

hµνgenn = hµνcann + ∂ϕµνn + Ωµν
n + Hµν

n , (III.12)

where we can introduced Hµν
n , which satisfies □Hµν

n = 0 and ∂νHµν
n = 0, and which is

explicitly defined as Hµν
n = Xµν

n + Y µν
n + Zµνn . Here, we have introduced the quantities

(see [95] for how they arise from commutators)
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(III.13a)

Y µν
n = FP

B=0
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ret

[
B
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r

r0

)B nk
r

(
−2δk(µ∆ν)

n + ηµν∆k
n

)]
(III.13b)

and we have defined Zµνn = Vµν [Xn + Yn], where the Vµν procedure is described in
Section II.2.1.

Since Hµν
n is a divergenceless solution of the vacuum wave equation, it can be expanded

just like in (II.17a) and (II.18). We will be parametrize it by moments {δnML, δnSL} and
a gauge vector ζµ as Hµν

n = kµν1 [δnML, δnSL] + ∂ζµν . The extraction of these moments is
made easier by the fact that we are dealing with a divergenceless solution of the vacuum
wave equation, see [95] for details on how to do this. Thus, we can recover the sought-
for (III.10) if and only in the gauge vector is defined as φµn = ϕµn + ζµ and the moments
are corrected by an nPM order correction, namely

IL → IL −Gn−1 δnML[MK , SK ,WK ,XK ,YK ,ZK ] (III.14a)
JL → JL −Gn−1 δnSL[MK ,SK ,WK ,XK ,YK ,ZK ] (III.14b)

2 We recall from [95] the expression of Ωµν up to cubic order (in both hρσ and φρ):

Ωµν [h, φ] = − ∂ρ

[
φρ
(
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µ ∂σφν

)]
+ 2 ∂ρφ
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ν + 1

2 ∂ρσ [φρφσ (hµν + ∂φµν)] + hρσ ∂ρφ
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ρ − (∂ρφ
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3η
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2η

µνφρ∂ρ

(
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λ∂λφ
σ − (∂σφ

σ)2)+ O(h4−pφp) .

One obtains the various order Ωµν
n by replacing hµν and φµ in Ωµν [h, φ] by their PM expansion, and

taking the coefficient of Gn, for n ⩾ 2.
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In this way, we can express IL and JL in terms of ML and SL and the gauge moments.
This expression can be inverted for practical use, and we find that at 4PN order, we only
need to compute this algorithm up to cubic (n = 3) order. The main result reads

Mij = Iij + 4G
c5

[
W(2)Iij − W(1)I(1)

ij

]

+ 4G
c7

{
4
7W(1)

a⟨iI
(3)
j⟩a + 6

7Wa⟨iI
(4)
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7Y(3)
a⟨iIj⟩a − Ya⟨iI

(3)
j⟩a − 2X I(3)
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− 5
21W(4)

a Iija + 1
63W(3)

a I(1)
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21Y(3)
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63Y(2)
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ija + 5
63Y(1)

a I(2)
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3W⟨iW
(3)
j⟩ + 2W(2)Yij

− 4W⟨iY
(2)
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(3)
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9W(3)
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9Y(2)
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9Y(1)
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{
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ij
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+ 16 Iij
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(
cτ

2r0

)
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ij

∫ +∞

0
dτ ln

(
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)
W(3)(t− τ)

}

+ O
( 1
c9

)
. (III.15)

Lower-order relations involving other canonical moments needed for the 4PN waveform
can be found in Section III B of [161].

III.3 Adapting the formalism to d-dimensional regularization

In Section III.2, we have outlined the computation relating the canonical and source/gauge
moments in standard three-dimensional gravity. This is perfectly correct in the context
of three-dimensional Hadamard regularization, but this breaks down as soon as dimen-
sional regularization is introduced. Indeed, since the source quadrupole moments are
computed using the d-dimensional general MPM algorithm, it is crucial to compare to
the d-dimensional canonical MPM algorithm. As will we see, the relation between source
and canonical will differ from its three-dimensional counterpart. In this section, we give
the different ingredients needed to obtain this d-dimensional relation.

Note that nonlocal terms cannot appear at 4.5PN, thus we only need the 4PN order of
those relations to control the 4.5PN quasicircular flux. Indeed, in the three-dimensional
case, nonlocal terms appear at cubic order, but fortunately, dimensional analysis shows
that there cannot be any cubic or higher-order contribution entering at exactly 4.5PN
order. As for quadratic interactions entering at 4.5PN order, an analysis of the structure
of the integration formulas proves that these contributions are necessarily instantaneous,
and thus play no role in the flux for quasicircular orbits at 4.5PN order.
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III.3.1 Procedure in d dimensions
The solution of linearized, d dimensional, vacuum Einstein equations reads in harmonic

gauge
hµν1, gen = kµν1 + ∂φµν1 , (III.16)

where the canonical metric is parametrized by three types of source moments as [96]

k00
1 = − 4

c2

∑
ℓ≥0

(−)ℓ
ℓ! ∂LĨL , (III.17a)

k0i
1 = 4

c3

∑
ℓ≥1

(−)ℓ
ℓ!

[
∂L−1Ĩ(1)

iL−1 + ℓ

ℓ+ 1∂LJ̃i|L
]
, (III.17b)

kij1 = − 4
c4

∑
ℓ≥2

(−)ℓ
ℓ!

[
∂L−2Ĩ(2)

ijL−2 + 2ℓ
ℓ+ 1∂L−1J̃(1)

(i|j)L−1 + ℓ− 1
ℓ+ 1∂LK̃ij|L

]
, (III.17c)

and the gauge vector φµ1 , by four types of gauge moments

φ0
1 = 4

c3

∑
ℓ≥0

(−)ℓ
ℓ! ∂LW̃L , (III.18a)

φi1 = − 4
c4

∑
ℓ≥0

(−)ℓ
ℓ! ∂iLX̃L − 4

c4

∑
ℓ≥1

(−)ℓ
ℓ!

[
∂L−1ỸiL−1 + ℓ

ℓ+ 1 ∂LZ̃i|L
]
. (III.18b)

The “tilde” over the moments has the same meaning as in (A.48), namely for an arbitrary
function F (t), we define

F̃ (t,x) ≡ k̃

rd−2

∫ +∞

1
dy γ 1−d

2
(y)F (d)

(
t′ − ry

c

)
,

where the (d) superscript is simply a reminder that we are dealing with a d-dimensional
moment, and this notations will often be suppressed for the sake of lightness. Note the
appearance of a new type of moment, K(d)

ij|L, which is a pure artifact of working in d ̸= 3
dimensions, and will not enter our results. Beware that the conventions for the ordering
of indices of J̃i|L, K̃ij|L and Z̃i|L are not are those of [96], but rather an adaptation to d
dimensions of the convention in [95]. Indeed, the Levi-Civita symbol is not well defined
in arbitrary d dimensions, but the symmetry properties of the indices can be described
by Young tableaux. This is nicely elaborated in [96], but an unfortunate convention was
chosen for the ordering of the multi-index L, namely L = i1...iℓ in I(d)

L , but L = iℓ...i1 in
J(d)
i|L and K(d)

ij|L. This has created some confusion in subsequent works [95, 3] (see Footnote
3 of [6] for a clarification), but here we impose the convention that in all cases, we have
the usual multi-index ordering L = i1...iℓ. This is summarized by

I(d)
L = I(d)

i1...iℓ
= iℓ ... i1 , J(d)

i|L = J(d)
i|i1...iℓ = iℓ iℓ−1 ... i1

i

,

K(d)
ij|L = K(d)

ij|i1...iℓ = iℓ iℓ−1 iℓ−2 ... i1

j i

, (III.19)
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where we recall that for any given Young tableau, one constructs a tensor with the correct
symmetry properties by (i) considering a generic tensor with the same indices as the Young
tableau; (ii) for each line of the Young tableau, symmetrizing the tensor over the indices
in the line; and (iii) for each column of the Young tableau, antisymmetrizing the tensor
over the indices in the column.

Starting from this d-dimensional metric, we can follow the lines of Section III.2, that
are independent of the dimension. Notably, the expressions of the nonlinear interaction
terms Ωµν

n and ∆µ
n as functions of hµνn, can and φµn are identical to the three-dimensional

case. The main, but very light, difference concerns the two key quantities Xµν
n and Y µν

n .
If the formal definition, (3.20) of [95], does not depend of the dimension, their explicit
expression in terms of Ωµν

n and ∆µ
n is slightly changed. They read in d dimensions

Xµν
n = FP

B=0
□−1

ret

[
B

(
r

r0

)B (
−B + d− 2

r2 Ωµν
n − 2

r
∂rΩµν

n

)]
, (III.20a)

Y µν
n = FP

B=0
□−1

ret

[
B

(
r

r0

)B nk
r

(
−2δk(µ∆ν)

n + ηµν∆k
n

)]
. (III.20b)

The remaining of the procedure described in Section III.2, and notably the extraction of
the correction to the canonical moments described in Section III of [95], is left unchanged.

III.3.2 Integration techniques
Let us recall that the solution at an order n ⩾ 2 is composed of some corrections to

the canonical moments, extracted from Xµν
n and Y µν

n given by (III.20), as well as a gauge
vector, denoted φµn. Thanks to the prefactor B in (III.20), and similarly to the three-
dimensional case, the computation of Xµν

n and Y µν
n only requires the knowledge of the

near-zone (r → 0) behavior of the functions Ωµν
n and ∆µ

n. This is because the finite part
used conjointly with the B prefactor selects the 1/B part of the source, which is purely
due to the “multipolar” singular behavior of the source when r → 0. Using the near-zone
expansion formulas in Section II.4 (see also Appendix A of [130] for more details), the
computation boils down to the evaluation of integrals of the form

J ≡ FP
B=0

□−1
ret

[(
r

r0

)B
Bb n̂L
rp+qε H (t)

]
, (III.21)

where b = 1, 2 and H can bear simple poles ∝ 1/ε and can indifferently be a local
or nonlocal function of time. In this section, we set r0 = ℓ0 = 1 for simplicity. The
integrals (III.21) are nothing but the d-dimensional generalization of (4.13) of [95], with
a = 0, since the case which includes a ln r is irrelevant for the present generalization.

Techniques to solve wavelike equations in d dimensions, with more general radial
dependence than (III.21) but same multipolarity ℓ, have been developed in [162], see
Section II therein. Importantly, no particular assumption about the presence of a prefactor
Bb has been made in this work, as clear from its (2.6). We can therefore follow the lines
of [162] to compute the integral (III.21). The solution h is the sum of two contributions,
h< and h>, involving integrals over the respective domains D = {|x′| < r} and R3 − D,
as displayed explicitly in (2.8) and (2.10) of [162]. When a prefactor Bb is present, with
b = 1, 2, the finite part of h ≡ J vanishes unless the integration produces a pole, which
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may only occur when the integral diverges for B = 0. As the system is taken to be
stationary in the past in the MPM algorithm, the integral yielding h> converges for
B = 0 so that only h< can contribute to the finite part in (III.21). This finite part is
evaluated explicitly and truncated at first order in ε, in order to cope with the case where
H(t) contains a pole, namely H = 1

εH−1 + H0 + O(ε). After resummation, we obtain a
retarded homogeneous solution of the wave equation [162]

J = ∂̂LG̃(t, r) ≡ ∂̂L

[
k̃

rd−2

∫ +∞

1
dz γ 1−d

2
(z)G(t− zr/c)

]
. (III.22)

Explicitly, we find that G is nonvanishing only if b = 1, q = 1 and p− ℓ− 3 = 2j, where
j ∈ N. Under those very restrictive conditions, we have

G(t) = (−)ℓ+1

(2j)!! (2j + 2ℓ+ 1)!!

1 + ε ln
√
q̄ − ε

j+ℓ∑
k=0

1
2k + 1

H(2j)(t) + O(ε)

 , (III.23)

where we recall our notation q̄ = 4πeγE and the fact that H can bear a pole 1/ε. With
the previous formula at hand, we are ready to compute the quantities Xµν

n and Y µν
n and,

therefore, obtain the correction to the canonical moments to the nth PM order. Since the
result (III.23) is zero unless q = 1, we are able to eliminate many terms from the source
for this computation solely based on the value of q.

As for the gauge vector φµn, it will be needed to compute the source term for the
next PM order n + 1, following the algorithmic procedure of [95]. It is decomposed as
φµn = ϕµn + ψµn, where ψµn is also extracted from Xµν

n and Y µν
n , and ϕµn is obtained by the

direct integration

ϕµn ≡ FP
B=0

□−1
ret

[(
r

r0

)B
∆µ
n

]
. (III.24)

In d dimensions, it is in general not possible to find a convenient, explicit expression for ϕµn
(see, however, Section II in [162]). Fortunately, we do not need here the full solution valid
at any field point, but only the solution in the form of a near-zone expansion when r → 0.
Indeed, following the procedure of [95], it is the near-zone expansion of ϕµn, denoted ϕ̄µn,
that needs to be inserted into the expressions of Ωµν

n+1 and ∆µ
n+1 sourcing the next order

quantities Xµν
n+1 and Y µν

n+1. The quantity ϕ̄µn can be obtained directly from the near-zone
expansion of the source term, i.e. ∆̄µ

n, plus a crucial homogeneous solution, itself in the
form of a near-zone expansion, namely:

ϕ̄µn = ϕ̄µpartn + ϕ̄µhomn . (III.25)
The particular solution is obtained by a formal iteration of inverse Laplace operators in
d-dimensions, using the “Mathieu” formula, (B.26c) in [102]:

ϕ̄µpartn = FP
B=0

∞∑
k=0

∆−1−k
(
∂

c ∂t

)2k [( r
r0

)B
∆̄µ
n

]
. (III.26)

The homogeneous solution ϕ̄µhomn is given by (3.20) of [130], which in this case yields
(with c = 1)

ϕ̄µhomn = −
∑
ℓ⩾0

∞∑
j=0

∆−j x̂L
d+ 2ℓ− 2 FP

B=0

∫ +∞

1
dz γ 1−d

2 −ℓ(z)
∫ +∞

0
dr′r′−ℓ+1+B n̂′

L ∆̄µ (2j)
n,L (t− zr′, r′) ,

(III.27)
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where we have decomposed the source in its multipolar components as

∆̄µ
n(t,x) =

∑
ℓ⩾0

n̂L ∆̄µ
n,L(t, r) , (III.28)

and shortened the iterated inverse Laplacians as [99, 100, 130]

∆−j x̂L =
Γ
(
d
2 + ℓ

)
Γ
(
d
2 + ℓ+ j

) r2j x̂L
22j j! . (III.29)

In the particular case where the source term has a structure given by

∆̄µ
n(t, r) =

∑
ℓ,k,p,q

n̂L
rp+qε

∫ +∞

1
dy ykγ−1− ε

2
(y)Fℓ,k,p,q(t− yr) , (III.30)

where the Fℓ,k,p,q(t)’s can be arbitrary functions of time, explicit formulas are known for
performing the integrations: see (3.24) and (D1) of [130] when q = 2, and the discussion
in Section IV of [162] for other values of q. However, we will encounter source terms that
exhibit more complicated structures, and for which no analogous formula is available.
This is notably the case for sources involving two nonstatic multipolar moments, such as
∆µ

W×Iij
. Fortunately, we have shown that those more complicated homogeneous solutions

do not contribute at 4PN order, see hereafter.

III.4 Relation at 4PN order using dimensional regularization
At the 4PN order, only quadratic and cubic interactions are allowed by dimensional

analysis (and we recall that the 4.5PN sector vanishes in the quasicircular flux). Naturally,
the moments allowed to enter those interactions do not depend on the space dimension.
At quadratic order, the only integration formula needed was (III.23), and we find that
quadratic contributions are actually identical in d and three dimensions, i.e. we recover
the same “odd” corrections that enter at 2.5PN and 3.5PN order in the relation (III.15)
between canonical and source/gauge moments.

More interestingly, the results for the cubic interactions arising at 4PN order greatly
differ. Let us recall that three interactions enter the 4PN mass quadrupole moment at
cubic order, namely M×M×Wij and M×M×Yij (where only one moment is nonstatic),
and most importantly M×W×Iij (where the two moments W and Iij are dynamical). For
the first two interactions, it turns out that the source term entering the integral (III.21)
bears q ⩾ 2. Indeed, it is composed of two interactions: hM×M × φKij and hM × φM×Kij ,
where Kij stands for either Wij or Yij . As both hM×M and φM×Kij bear q = 2, the cubic
sources will have q ⩾ 2, and thus cannot satisfy the q = 1 necessary condition to have a
nonvanishing function G(t) in (III.23). Therefore, the M × M × Wij and M × M × Yij

interactions do not contribute in d dimensions, as we have explicitly checked, using the
method presented in the previous sections. This vanishing of the M × M × Wij and
M × M × Yij interactions in d dimensions contrasts with their explicit contributions in 3
dimensions; see (1.1) in [95].

As for the last cubic interaction, M × W × Iij , it turns out that the source term does
have a q = 1 component, arising from the interaction hIij × φM×W. More precisely, the
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term with q = 1 comes exclusively from the interaction between: (i) the homogeneous
solution ϕ̄hom 2 at quadratic order arising from the interaction M × W, i.e. ϕ̄hom M×W,
which bears q = 0; and (ii) the q = 1 piece of the linear metric hIij ; see (II.17a). Note
that, as it involves a quadratic interaction with only one dynamical moment, φM×W can
be calculated using (III.30). By contrast, the homogeneous solution for the interaction
W× Iij , i.e. ϕ̄hom W×Iij , does not fulfill the p− ℓ−3 ∈ 2N condition, and as such, does not
contribute to the result. This is fortunate, since it does not follow the structure (III.30),
and we are unable to compute this term explicitly, at least with currently-known formulas.
Another interesting observation is that the explicit computation of the q = 1 terms (the
only ones that contribute to the final result) leads to the appearance of a pole. The
relation between canonical and source/gauge moments at 4PN is thus a pure M × W × Iij
interaction, which reads

δMij = −16G2M
c8

∫ +∞

0
dτ
[
Lε(τ)+ 1

2

](
I(1)
ij (t) W(3)(t− τ)− Iij(t) W(4)(t− τ)

)
+O

( 1
c9

)
.

(III.31)
where we have used the notation introduced in (2.2) of [163],

Lε(τ) = − 1
2ε + ln

(
c
√
q̄

2ℓ0

)
. (III.32)

This result is consistent with the corresponding one in three dimensions, where the in-
teraction M × W × Iij gives rise to an ordinary tail integral at 4PN order: the coefficient
of the pole in (III.31) matches the logarithmic structure of (1.1) in [95]. Moreover, the
result (III.31), as well as the vanishing of the interactions M × M × Wij and M × M × Yij ,
have been checked by an independent method, using the techniques exposed in [162], to
compute the difference between the d-dimensional and Hadamard regularization schemes
in the MPM algorithm, and adding it to the three-dimensional result of [95].

Although surprising, we will see that this pole exactly cancels a pole arising in the
source quadrupole (see Section VI.1.1), so we do not worry about it yet. Actually, we
will see that the 1/c8 contributions (the pole, the tail and the instantaneous terms) will
all vanish in the end result. The relation between the source and canonical quadrupole
moments, using full dimensional regularization, reads
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ij + 4G
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− 16G2M
c8

∫ +∞

0
dτ
[
Lε(τ) + 1

2

](
I(1)
ij (t) W(3)(t− τ) − Iij(t) W(4)(t− τ)

)
+ O

( 1
c9

)
+ O (ε) , (III.33)

where we omit the (d) superscript in the higher-order corrections since they are equal
to their three-dimensional counterparts in the d → 3 limit at this order. For the other
multipole moments (essentially the mass octupole and the current quadrupole), such re-
lations are purely quadratic and consist of odd parity terms, and so are not affected
by dimensional-regularization corrections. They can be found in (VI.15) (see also Sec-
tion III.B of [161]).

As we shall see in Chapter VI, the above procedure yields the correct perturbative
limit for compact binaries on circular orbits, in agreement with first-order black hole
perturbation theory. But notice that we can also retrieve the correct perturbative limit
by using a simpler treatment of the IR (infrared) divergences of the source quadrupole
moment, based on the Hadamard regularization in ordinary three dimensions, rather
than in dimensional regularization. In this case, the correct relation between canonical
and source moments is given by (III.15), instead of the d-dimensional result (III.33).
We find that the cubic interactions M × M × Wij and M × M × Yij present in three
dimensions do contribute to the perturbative limit for circular orbits (note that W is
zero in this case), but in such a way as to cancel the contribution due to the difference
between the Hadamard and dimensional regularization schemes for the mass quadrupole
source moment. It turns out then that we also recover the correct perturbative limit.
However, in contrast to the dimensional regularization, we do not expect the Hadamard
regularization in three dimensions to lead to a well-defined and fully unambiguous result
beyond this limit.
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Chapter IV
The radiative mass quadrupole and the tails
of memory

This chapter is mainly based on [4].

In Chapter III, we have delved into the ways one can relate the source to the canonical
moments. In this chapter, we will thus naturally be interested in the way we can relate
the radiative moments to the canonical moments, up to 4PN order contributions in the
waveform. This physically consists in studying the nonlinear effects in the propagation of
GWs, which can be directly read off from the relation between the radiative quadrupole
moments {UL,VL} and the canonical moments {ML, SL}. The lowest-order nonlinear
propagation piece is the tail effect, which is a quadratic coupling between the total mass-
energy of spacetime and the mass quadrupole moment of the source, i.e. a M × Mij

interaction, see Fig. II.4a. This effect appears at 1.5PN order in the waveform beyond
the Einstein quadrupole formula [164, 165, 166], and has the interesting feature on being
nonlocal, i.e. its expression depends not only on the state of the binary at retarded time
t − r/c, but also on the entire history of the binary’s evolution. At 3PN order enters
the tail-of-tail effect, which is a nonlocal cubic coupling between two masses and the
quadrupole [91, 161], namely a M2 ×Mij interaction. At quartic order there is the tail-of-
tail-of-tail which arises at 4.5PN order and involves three masses and a quadrupole [167,
168]. Moreover, there are a wealth of local nonlinearities at 2.5PN and 3.5PN order,
defined by the Si × Mij interaction.

The nonlinear memory effect, i.e. the permanent change in the wave amplitude after
the passage of a GW burst, is due to the reradiation of quadrupole GWs by a linear
quadrupole wave and corresponds to the coupling between two quadrupole moments [169,
170, 171, 172, 164, 173], namely a Mij × Mij nonlocal interaction, see Fig. II.4b. The
oscillatory part of this effect enters at 2.5PN order in the waveform, but the genuine,
secular memory effect is actually a zero-frequency Newtonian effect, and has not yet
been detected experimentally, although it could be observed in the coming years with
ground-based GW detectors [174, 175, 176].

In this chapter, we investigate two novel cubic effects that enter at 4PN order in the
waveform: the tail-of-memory, due to a M×Mij×Mij interaction, and the spin-quadrupole
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tail, which corresponds to a M×Si×Mij interaction. We shall compute these effects using
the MPM formalism [92, 160] but with an important variant with respect to the version
presented in Section III.1 and used in previous works such as [173, 91]: we shall construct
the metric directly in radiative coordinates (see [177, 157, 158] for a general definition),
following the method proposed in [160], instead of the usual construction in harmonic
coordinates sketched in Section II.2.1 or III.1. The great advantage is that we shall
avoid the appearance of the far-zone logarithms that plague harmonic coordinates. A
minor disadvantage is that we shall have to apply a correction to account for the different
expressions of the multipole moments in radiative and harmonic coordinates, but this
correction is already known [3] and will be investigated in Chapter V.

In the present chapter, we shall thus actually study the M × Mij × Mij interaction,
where we introduce a new kind of “radiative” canonical moments {ML,SL}. How these
relate to the usual “harmonic” canonical moments {ML,SL} will be the topic of Chapter V.
Physically, this 4PN effect can be viewed as a combination between the tails produced
by the memory and the memory associated with the tail, which is the reason why we
coin this effect “tails-of-memory”. From an effective field theory perspective, the tails-of-
memory correspond to the three Feynman diagrams shown in Fig. IV.1, which we consider
here only for illustrative purposes; see [178, 179, 180, 181] for their precise computational
meaning within the EFT framework.

(a) (b) (c)

Fig. IV.1 Feynman diagrams associated to the tails-of-memory.

The tails-of-memory are not the only cubic effect to arise at 4PN order in the waveform:
in this chapter, we also compute the only other cubic contribution that arises at 4PN
order, namely the “spin-quadrupole tail” interaction M × Si × Mij between the constant
total mass-energy, the constant total angular momentum and a quadrupole moment. As a
sanity check, we will also study the well-known tails-of-tails in terms of these new radiative
canonical moments. They correspond to a M2 × Mij interaction that enters at 3PN order
in the waveform.

Despite the fact that we are mainly motivated by the case of quasicircular compact
binaries, the results presented in this chapter are valid for a generic isolated source de-
scribed in terms of its multipole moments; the source could be a general hydrodynamical
fluid with compact support, and it needs not even be a PN source. Moreover, this is a
purely three-dimensional computation. In Section V.4, we will see how these results can
be extended to generic d dimensions.

The plan of this chapter is as follows. In Section IV.1, we review the radiative version
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of the MPM algorithm. In Section IV.2, we present our results for the radiative metric at
quadratic order, and discuss the structure of the cubic source. In Sec IV.4, we present a
novel integration technique for the cubic source, and apply it as a check to the known cases
of tails-of-tails and tails. Then, in Section IV.5, we present our “raw” results in the form
of complicated functionals of the multipole moments, along with a set of coefficients given
by Table A.1. We then introduce a method of simplification, which drastically reduces
the “raw” result, and allows for a test of our integration method. Finally, we present in
Section IV.6 the final cubic radiative quadrupole moment (in its simplified form) in terms
of the radiative canonical moments. Associated to this chapter, Appendix A.1 presents a
practical method for extracting multipole moments, and Appendix A.7 presents a proof
for the convergence of our final integrals.

IV.1 The radiative algorithm

We now describe a different MPM algorithm, proposed in [160], which directly builds
the metric in a radiative coordinate system,

hµνrad =
∞∑
n=1

Gnhµνradn . (IV.1)

By radiative coordinate system, we mean a coordinate system whose retarded time co-
ordinate, say u ≡ t − r/c, is a null coordinate, i.e. satisfies gµνrad∂µu∂νu = 0, or at least,
becomes a null coordinate in the asymptotic limit r → +∞ with u held constant, i.e. in
a neighbourhood of I+ [177, 157, 158]. In such class of coordinate systems, the metric
admits a Bondi-like expansion at infinity, in simple powers of the inverse distance 1/r,
without any logarithms of r as would occur in harmonic coordinates.1

Even at the linearized level, it is necessary to correct the harmonic coordinate metric
in order to satisfy the requirement of asymptotically null retarded time. Consequently,
the radiative MPM algorithm starts by performing a linear gauge transformation of the
harmonic-coordinate metric defined by (III.2). A crucial point is that the multipole
moments that parametrize the radiative algorithm will differ from their counterparts in the
harmonic algorithm. In other words, they will have a different expression when expressed
explicitly in terms of the source via a matched asymptotic expansion procedure. This
observation leads us to define the radiative algorithm using different multipole moments,
which we will note {ML,SL}. Thus, at linear order we pose

hµνrad 1 = hµνharm 1
[
ML,SL

]
+ ∂ξµν1 , (IV.2)

where hµνharm 1
[
ML, SL

]
has exactly the same functional expression as in harmonic coor-

dinates, given by (III.2), but is now computed with the set of moments {ML, SL}. The
linear gauge transformation ∂ξµν1 ≡ ∂µξν1 + ∂νξµ1 − ηµν∂ρξ

ρ
1 is defined by the gauge vector

ξµ1 = 2M
c2 η0µ ln

(
r

b0

)
, (IV.3)

1In this chapter, since we are iteratively constructing a coordinate system order by order, it is convenient
to consider the coordinates as dummy variables and denote them by (t, r). Even at the end, once we have
obtained the full radiative metric, we shall continue to denote the radiative coordinates by the generic
(t, r), although it might be more appropriate to denote them by (T,R), for instance.



64 Chapter IV. The radiative mass quadrupole and the tails of memory

where M is the mass monopole associated with the set of moments, b0 denotes an arbitrary
length scale, and we have η0µ = (−1,0) with our signature. Since the gauge vector will
only appear in the derivative form ∂ξµν1 in the radiative algorithm, the unphysical scale b0
will actually never enter the radiative metric. However we shall prove that b0 is identical
to the scale which is used in harmonic constructions of the metric when building the
observable quantities at infinity, via the radiative multipole moments, see e.g. [161].

Note that although the two sets of multipole moments {ML,SL} and {ML,SL} will
differ in general (as we shall compute explicitly below), the conserved mass monopole
as well as the mass and current dipoles are in fact identical in both the harmonic and
radiative constructions. In particular, we have M = M for the constant mass monopole,
hence the slight abuse of notation in (IV.3).

The effect of this linear gauge transformation is to correct for the well-known log-
arithmic deviation of the retarded time in harmonic coordinates, with respect to the
true spacetime characteristic or light cone. After the change of gauge, the coordinate
u = t − r/c coincides (asymptotically when r → +∞) with a null coordinate at the
linearized level. The latter gauge transformation shifts the radiative metric away from
harmonicity, since

∂νh
µν
rad 1 = □ξµ1 = 2M

c2r2 η
0µ . (IV.4)

Furthermore, one can easily show that, when r → +∞ with u = t − r/c held constant,
the leading order 1/r in the metric is cancelled in the combination

kµkν h
µν
rad 1 = O

( 1
r2

)
, (IV.5)

where kµ = ηµνkν = (1,n) denotes the outgoing Minkowskian null vector.
Once the linearized solution is defined, the nonlinear corrections are readily obtained

by injecting the PM expansion into the field equations and solving these equations itera-
tively over the PM order. At any order n, the general equation to solve is

□hµνradn − ∂Hµν
radn = Λµνradn , (IV.6)

where Λµνradn ≡ Λµν [hrad 1, · · · , hradn−1] is built out from previous iterations. Given any
n ⩾ 2, let us recursively assume that: (i) we have obtained all the previous radiative PM
coefficients hµνradm for any m ⩽ n−1; (ii) all of them admit an expansion as r → +∞ with
u = t−r/c held constant in simple positive powers of 1/r (as opposed to a polylogarithmic
behavior); and (iii) all the previous coefficients satisfy the condition

∀m ⩽ n− 1 , kµkν h
µν
radm = O

( 1
r2

)
. (IV.7)

Note that the dominant piece when r → +∞ (with t−r/c = const) of the nonlinear source
term at the nth order will be of order 1/r2 and will only be made of quadratic products
of hµνradm (since each of the hµνradm’s behaves like 1/r). Under our recursive assumptions,
in particular the induction hypothesis (IV.7), and from the structure of the source term
at quadratic order, see e.g. (24) in [14], one can prove that the nth PM source term
Λµνradn ≡ Λµν [hradm;m ⩽ n − 1] at leading order when r → +∞ is of the form (see [160]
for details):

Λµνradn = kµkν

r2 σn
(
t− r/c,n

)
+ O

( 1
r3

)
. (IV.8)
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This is the form of the stress-energy tensor of massless particles, i.e., gravitons in our
case, with σn being proportional to the nth order contribution in the total power emitted
by the massless waves.

From [92, 160, 164, 173] we know that logarithms in the asymptotic expansion when
r → +∞ only arise due to the retarded integral of source terms that behave like 1/r2.
Hence the dominant term written in (IV.8) is the only piece of Λµνradn that can yield loga-
rithms at order n. But now, thanks to the particular structure of this term, which follows
from our recursive assumptions, we can gauge it away, thus constructing a coordinate
system valid at the nth PM order which avoids the appearance of logarithms. We find
that an adequate gauge vector is

ξµn = FP
B=0

□−1
ret

[(
r

r0

)B c kµ

2r2

∫ t−r/c

−∞
dv σn(v,n)

]
. (IV.9)

With this choice of gauge vector, the logarithms that will be generated from the gauge
transformation will cancel the logarithms coming from the retarded integral of the source
term (IV.8), see [160] for more details. Hence, similarly to the corresponding steps in
Section II.2.1 and III.1, we successively construct to the nth order

uµνradn = FP
B=0

□−1
ret

[(
r

r0

)B
Λµνradn

]
,

wµradn = ∂νu
µν
radn = FP

B=0
□−1

ret

[
B

(
r

r0

)B ni
r

Λµiradn

]
,

vµνradn = Vµν
[
wradn

]
.

(IV.10)

Finally the nth PM metric is defined by correcting for the new logarithms using the gauge
transformation defined above:

hµνradn = uµνradn + vµνradn + ∂ξµνn . (IV.11)

By construction, the radiative metric obeys the nonharmonic gauge condition

Hµ
radn ≡ ∂µh

µν
radn = □ξµn = c kµ

2r2

∫ t−r/c

−∞
dv σn(v,n) , (IV.12)

and the Einstein field equations, as given by (II.5), are trivially satisfied to order n.
The far-zone expansion of the full nonlinear radiative metric constructed by virtue of
this procedure is free of any logarithms, and the retarded time u = t − r/c in these
coordinates tends asymptotically toward a null coordinate at future null infinity. The
metric, as a general functional of the moments {ML,SL}, represents physically the most
general solution to the vacuum field equations outside the isolated source.

We now set c = G = 1 for simplicity. Moreover, in the rest of the chapter, drop the
“rad” subscript in the metric for notational simplicity. We will thus, in this chapter only,
be referring to the radiative construction of the MPM metric as

hµν =
∞∑
n=1

Gnhµνn . (IV.13)
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IV.2 Results at quadratic order
This chapter is devoted to computing from first principles the following three cubic

nonlinear multipole interactions (i.e., n = 3 in the PM expansion):

M2 × Mij , M × Si × Mij and M × Mij × Mij .

The first one is known as the quadrupole “tail-of-tail” [91], the second one can be called the
“spin-quadrupole tail” while the third one is the quadrupole “tail-of-memory” interaction
which is our main goal here. To reach these goals we evidently need to control the following
quadratic interactions:

M × M , M × Si M × Mij , Mij × Mij and Si × Mij ,

which we shall compute at any distance r from the source, while the cubic interactions
will just be computed asymptotically when r → +∞.

The linear interactions M, Si and Mij are read off directly from the linear metric (III.2),
including the gauge transformation (IV.3):

h00
M = −4M

r
, h0i

M = −2Mni

r
, hijM = 0 , (IV.14a)

h00
Si

= 0 , h0i
Si

=
2naSi|a
r2 , hijSi

= 0 , (IV.14b)

h00
Mij

= −2∂ab
[Mij

r

]
, h0i

Mij
= −2∂a

[M(1)
ia

r

]
, hijMij

= −
2M(2)

ij

r
, (IV.14c)

where we have as usual posed Si|j ≡ ϵijaSa.
In the harmonic construction, the quadratic metrics that are known are M × M [91],

M × Mij [164] and Mij × Mij [173]. We also know the Si × Mij metric asymptotically, to
leading order in 1/r [173].

The radiative metrics for the static M × M and stationary M × Si interactions, that
are respectively part of the Schwarzschild and Kerr metrics (in “radiative” coordinates),
read

h00
M×M = −3M2

r2 , h0i
M×M = 0 , hijM×M = −M2ninj

r2 , (IV.15a)

h00
M×Si

= 0 , h0i
M×Si

= 2M
r3 naSi|a , hijM×Si

= 0 . (IV.15b)

Note that although M = M as we said, the M × M radiative metric differs from the
harmonic one, see (2.7) in [91]. In the radiative construction, the M × Mij interaction
reads [3]

h00
M×Mij

= 8Mnab

∫ +∞

1
dxQ2(x, r) M(4)

ab (t− rx)

+ Mnab
r

(118
15 M(3)

ab + 23
5 r

−1M(2)
ab − 117

5 r−2M(1)
ab − 21r−3Mab

)
, (IV.16a)

h0i
M×Mij

= 8Mna

∫ +∞

1
dxQ1(x, r) M(4)

ai (t− rx)
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+ Mniab
r

[
M(3)
ab + 3r−1M(2)

ab − r−2M(1)
ab

]
+ Mna

r

[43
15M(3)

ai − 107
15 r

−1M(2)
ai − 5r−2M(1)

ai

]
, (IV.16b)

hijM×Mij
= 8M

∫ +∞

1
dxQ0(x, r) M(4)

ij (t− rx)

+ Mnijab
r

[
− 1

2M(3)
ab − 3r−1M(2)

ab − 15
2 r

−2M(1)
ab − 15

2 r
−3Mab

]
+ Mδijnab

r

[
− 1

2M(3)
ab − 2r−1M(2)

ab − 1
2r

−2M(1)
ab − 1

2r
−3Mab

]
+

Mna(i
r

[
4M(3)

j)a + 6r−1M(2)
j)a + 6r−2M(1)

j)a + 6r−3Mj)a

]
+ M

r

[
− 107

15 M(3)
ij − 4r−1M(2)

ij − r−2M(1)
ij − r−3Mij

]
. (IV.16c)

The tail terms in (IV.16) involve the modified Legendre function

Qm(x, r) ≡ Qm(x) − 1
2Pm(x) ln

(
r

r0

)
, (IV.17)

which is constructed using the usual Legendre polynomial Pm(x) and the usual Legendre
function of second kind (with branch cut on ] − ∞, 1]), namely

Qm(x) ≡ 1
2

∫ 1

−1
dy Pm(y)

x− y
= 1

2Pm(x) ln
(
x+ 1
x− 1

)
−

m∑
j=0

1
m
Pm−j(x)Pj−1(x) . (IV.18)

It was shown in [3] that the combination (IV.17) does not produce any far-zone loga-
rithms in the radiative metric, although the tail term is still nonlocal in time and depends
on the constant scale r0. As shown in [3] the metric (IV.16) differs from its counterpart
in harmonic coordinates (given in Appendix B in [164]) by a coordinate transformation
and a redefinition of the quadrupole moment [3], see (V.41).

We first computed the radiative metric for the Si × Mij interaction in [4]. It reads

h00
Si×Mij

= nad Sa|b

(
−4

3r
−1M(4)

bd − 4r−2M(3)
bd − 6r−3M(2)

bd − 6r−4M(1)
bd

)
, (IV.19a)

h0i
Si×Mij

= nacd Si|a
(

−5
6r

−1M(4)
cd − 5r−2M(3)

cd − 23
2 r

−3M(2)
cd − 3

2r
−4M(1)

cd − 3
2r

−5Mcd

)
+ niad Sa|b

(
−3r−3M(2)

bd − 9r−4M(1)
bd − 9r−5Mbd

)
+ na Sa|b

(
−4

3r
−1M(4)

ib − 4
3r

−2M(3)
ib + r−3M(2)

ib + r−4M(1)
ib + r−5Mib

)
+ na Si|b

(5
3r

−2M(3)
ab + 5r−3M(2)

ab + 4r−4M(1)
ab + 4r−5Mab

)
, (IV.19b)

hijSi×Mij
= nijad Sa|b

(1
3r

−1M(4)
bd + 10

3 r
−2M(3)

bd + 9r−3M(2)
bd + 9r−4M(1)

bd

)
+ nacd(i Sj)|a

(1
3r

−1M(4)
cd + 10

3 r
−2M(3)

cd + 9r−3M(2)
cd + 9r−4M(1)

cd

)
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+ δijnad Sa|b

(
r−1M(4)

bd + 8
3r

−2M(3)
bd − r−3M(2)

bd − r−4M(1)
bd

)
+ nc(i Sj)|a

(
−4

3r
−2M(3)

ac − 4r−3M(2)
ac − 4r−4M(1)

ac

)
+ na(i Sa|b

(
−8

3r
−1M(4)

j)b − 26
3 r

−2M(3)
j)b − 6r−3M(2)

j)b − 6r−4M(1)
j)b

)
+ nac Sa|(i

(
2r−1M(4)

j)b + 20
3 r

−2M(3)
j)b + 2r−3M(2)

j)b + 2r−4M(1)
j)b

)
+ Sa|(i

(
−14

3 r
−2M(3)

j)a − 2r−3M(2)
j)a − 2r−4M(1)

j)a

)
. (IV.19c)

Note that contrary to the M × Mij interaction in (IV.16), the Si × Mij interaction is
purely “instantaneous” or local, as it does not contain tail integrals, hence its nickname,
the “failed tail”. Note also that in the particular case of the Si×Mij interaction, the expres-
sions for the radiative and harmonic metrics as functionals of their respective canonical
moments are identical, and given by (IV.19).

The radiative metric for the interaction Mij × Mij is too lengthy to be presented, but
in can be found in the Supplementary Material of [4]. It is constructed following (IV.11)
as

hµνMij×Mij
= uµνMij×Mij

+ vµνMij×Mij
+ ∂ξµνMij×Mij

. (IV.20)

The gauge vector is defined by (IV.8)–(IV.9) and we have explicitly in this case [3]

σMij×Mij
= n̂ijab M(3)

ij M(3)
ab − 24

7 n̂ij M(3)
ia M(3)

ja + 4
5M(3)

ab M(3)
ab , (IV.21a)

and therefore

ξ0
Mij×Mij

=
∫ u

−∞
dv
∫ +∞

1
dx
{

−1
2 n̂ijabQ4(x)M(3)

ij M(3)
ab + 12

7 n̂ij Q2(x)M(3)
ia M(3)

ja

− 2
5 Q0(x)M(3)

ab M(3)
ab

}
, (IV.21b)

ξiMij×Mij
=
∫ u

−∞
dv
∫ +∞

1
dx
{

−1
2 n̂iabklQ5(x)M(3)

ab M(3)
kl + 16

9 n̂iabQ3(x)M(3)
ak M(3)

kb

− 2
9 n̂abkQ3(x)M(3)

ai M(3)
bk − 22

35 n̂iQ1(x)M(3)
ab M(3)

ab

+ 24
35 n̂aQ1(x)M(3)

ik M(3)
ka

}
. (IV.21c)

Crucially, thanks to this gauge transformation the latter quadratic metric is free of any
far-zone logarithms and so will be the cubic source built out of it. This allows us to
take the dominant asymptotic behavior of the quadratic radiative metric as r → +∞,
and extract after standard TT projection of the spatial metric the associated radiative
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quadrupole moments (where we reintroduce c and G):

UM×Mij

ij = 2GM
c3

∫ +∞

0
dτ
[

ln
(
τ

2r0

)
+ 107

60

]
M(4)
ij (u− τ) , (IV.22a)

USi×Mij

ij = − G

3c5 Sa|⟨iM
(4)
j⟩a , (IV.22b)

UMij×Mij

ij = − 2G
7c5

[∫ +∞

0
dτ M(3)

a⟨iM
(3)
j⟩a(u− τ) + M(2)

a⟨iM
(3)
j⟩a + 5

2M(1)
a⟨iM

(4)
j⟩a − 1

2Ma⟨iM
(5)
j⟩a

]
.

(IV.22c)

The expression for the tail differs from (but is physically equivalent [3] to) its counterpart
in the harmonic construction [164]; the expressions for Si×Mij and Mij×Mij are the same
in both radiative and harmonic constructions, see the Appendix B of [173]. In particular
the first term in (IV.22c) is the usual memory effect (which contains both AC and DC
contributions) at the dominant 2.5PN order.

IV.3 Structure of the cubic source

The general equation we need to solve, (IV.6), reads at cubic order

□hµν3 − ∂Hµν
3 = Λµν3

[
h1, h2

]
= Nµν[h1, h2

]
+Nµν[h2, h1

]
+Mµν[h1, h1, h1

]
, (IV.23)

where we recall the definition Hµ
3 ≡ ∂νh

µν
3 . The quadratic functional Nµν [h, h′] is given

in (II.9) and the cubic functional Mµν [h, h, h] is given by (1.4) of [91]. The source term
for the cubic interaction M × Mij × Mij reads, with obvious notation,

ΛµνM×Mij×Mij
= Nµν

Mij×(M×Mij) +Nµν

M×(Mij×Mij) +Mµν

M×Mij×Mij
. (IV.24)

These three terms have the following structure:

1. Mij × (M × Mij) corresponds to a linearized quadrupolar wave interacting with a
quadratic tail, as illustrated by the first Feynman diagram in Fig. IV.1a. Apart
from simple instantaneous terms, this source contains terms whose structure reads

∼ n̂L
r5−p−q M M(p)

ab (t− r)
∫ +∞

1
dxQm(x)M(4+q)

cd (t− rx) , (IV.25)

where (p, q) ∈ [[0, 2]], and where the index structure and the possible presence of Kro-
necker deltas are disregarded. These terms are novel (with respect to ordinary tails),
and their integration will be the focus of Section IV.4.2. For integration purposes,
the modified Legendre functionQm(x) will be decomposed according to (IV.17): this
will yield similar integrals over the standard Legendre function Qm(x), augmented
by instantaneous terms involving ln (r/r0).

2. M × (Mij × Mij) corresponds to a quadrupole-quadrupole memory-like wave scat-
tering off the curvature generated by the total mass-energy, and is illustrated by
Fig. IV.1b. This source contains terms with the following structure:

∼ n̂L
r3−p−q M

∫ +∞

1
dxQm(x)

(
M(3+p)
ab M(3+q)

cd

)
(t− rx) , (IV.26a)
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where 0 ⩽ p + q ⩽ 2, which have the same structure as ordinary tails, as well as
memory-like terms

∼ n̂L
r4 M

∫ +∞

0
dτ
(
M(3)
ab M(3)

cd

)
(t− r − τ) . (IV.26b)

The modified Legendre function will again be decomposed according to (IV.17), and
all these terms will be the treated in Section IV.4.3.

3. M × Mij × Mij properly speaking, illustrated by Fig. IV.1c. This piece only leads
to instantaneous terms, which are easy to integrate.

A similar analysis can be done for the other two cubic interactions M × M × Mij and
M × Si × Mij , which only contain tail-like and instantaneous terms. Note that, thanks
to the radiative construction, we can see that the r → +∞ expansion of the cubic source
does not contain any logarithms of r. We have explicitly verified that the novel source
terms M × Mij × Mij and M × Si × Mij are divergenceless, i.e.

∂νΛµνM×Mij×Mij
= 0 and ∂νΛµνM×Si×Mij

= 0 , (IV.27)

which is a strong test, since it would generally fail if a single coefficient were incorrect.
However, because of its length, we cannot present the cubic source. Instead, we refer to
the Supplementary Material of [4].

IV.4 Solution of the wave equation at cubic order

IV.4.1 General multipolar solution
To solve the problem of tails-of-memory we need to develop new techniques for inte-

grating the wave equation when the source term is a complicated nonlocal functional of
the moments such as (IV.25). We first consider a general wave equation whose source
term admits a definite multipolarity ℓ in STF guise, which reads in general

□ΨL = n̂L S(r, t− r) , (IV.28)

where S(r, u) is an arbitrary function of r = |x| and u = t−r that verifies straightforward
smoothness properties, and tends sufficiently rapidly to zero when r → 0, namely

S(r, u) = O(rℓ+5) (when r → 0 with u or t held fixed) . (IV.29)

See Theorem 6.1 of [92] for more details on the required conditions we impose. Under
these conditions, we know how to solve the wave equation (IV.28). We first define

Rα(ρ, s) ≡ ρℓ
∫ ρ

α
dλ (ρ− λ)ℓ

ℓ!

( 2
λ

)ℓ−1
S(λ, s) , (IV.30)

where α is an arbitrary constant. Then the solution of (IV.28) can be written as

ΨL =
∫ t−r

−∞
ds ∂̂L

[
Rα

(
t−r−s

2 , s
)

−Rα
(
t+r−s

2 , s
)

r

]
, (IV.31)
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see (6.4) in [92]. This solution is the unique retarded solution of (IV.28), thus satisfying
the no-incoming radiation condition when r → +∞ with t + r = const. Furthermore it
is independent from the constant α. To see this we consider separately the two terms
in (IV.31), which we decompose as ΨL = Ψ[1]

L + Ψ[2]
L with

Ψ[1]
L ≡

∫ t−r

−∞
ds ∂̂L

[1
r
Rα

(
t− r − s

2 , s

)]
, (IV.32a)

Ψ[2]
L ≡ −

∫ t−r

−∞
ds ∂̂L

[1
r
Rα

(
t+ r − s

2 , s

)]
. (IV.32b)

We see that Ψ[1]
L is a retarded homogeneous solution of the wave equation, □Ψ[1]

L = 0, but
that Ψ[2]

L has a unwieldy dependency on the advanced time v = t + r, and represents a
particular retarded solution of the wave equation, i.e., □Ψ[2]

L = n̂L S(r, t − r). However
note that the latter two wave equations satisfied by Ψ[1]

L and Ψ[2]
L separately are valid only

in the sense of ordinary functions; only the wave equation (IV.28) for the full solution ΨL

is satisfied in the sense of distributions.2
Plugging (IV.30) into (IV.32) we obtain

Ψ[1]
L = 1

ℓ!

∫ t−r

−∞
ds ∂̂L

[
1
r

∫ t−r−s
2

α
dλ
(
t− r − s

2

)ℓ( t− r − s

2 − λ

)ℓ ( 2
λ

)ℓ−1
S(λ, s)

]
,

(IV.33a)

Ψ[2]
L = − 1

ℓ!

∫ t−r

−∞
ds ∂̂L

[
1
r

∫ t+r−s
2

α
dλ
(
t+ r − s

2

)ℓ( t+ r − s

2 − λ

)ℓ ( 2
λ

)ℓ−1
S(λ, s)

]
.

(IV.33b)

Next we remark that in both terms (IV.33), one can commute the partial differential
operator ∂̂L with the integral over λ, since the terms coming from the differentiation of
the bound of the integral, i.e. (t ± r − s)/2, have to be evaluated at s = t ± r and will
clearly vanish. Hence we can rewrite

Ψ[1]
L = 2ℓ−1

ℓ!

∫ t−r

−∞
ds
∫ t−r−s

2

α
dλλ−ℓ+1S(λ, s) ∂̂L

[
1
r

(
t− r − s

2

)ℓ ( t− r − s

2 − λ

)ℓ]
,

(IV.34a)

Ψ[2]
L = −2ℓ−1

ℓ!

∫ t−r

−∞
ds
∫ t+r−s

2

α
dλλ−ℓ+1S(λ, s) ∂̂L

[
1
r

(
t+ r − s

2

)ℓ( t+ r − s

2 − λ

)ℓ]
.

(IV.34b)

Then, using (A36) of [92] we know that

∂̂L

[
1
r

(
t− r − s

2

)ℓ ( t− r − s

2 − λ

)ℓ]
= ∂̂L

[
1
r

(
t+ r − s

2

)ℓ ( t+ r − s

2 − λ

)ℓ]
,

(IV.35)
2If f is a smooth function, then □

[
r−1f(t− r)

]
= −4πf(t)δ(3)(x) in the sense of distributions, but

□
[
r−1f(t− r)

]
= 0 in the sense of ordinary functions.
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so that actually the two contributions in (IV.34) can be merged together in the full
solution, and we arrive at the elegant alternative form

ΨL = −2ℓ−1

ℓ!

∫ t−r

−∞
ds
∫ t+r−s

2

t−r−s
2

dλλ−ℓ+1S(λ, s) ∂̂L
[

1
r

(
t− r − s

2

)ℓ ( t− r − s

2 − λ

)ℓ]
.

(IV.36)
This form is clearly independent of any choice for the constant α. It was also derived in a
different way, using a direct multipolar expansion of the Green function of the d’Alembert
operator, in Appendix D of [92].

By using (A35a) of [92] we can expand explicitly the last factor containing the mul-
tipolar derivative operator. Introducing the following coefficients, which will become
ubiquitous in our practical computations,

Cℓij ≡ (ℓ+ i)!(ℓ+ j)!
2i+ji!j!(ℓ− i)!(ℓ− j)!(i+ j)! (for 0 ⩽ i, j ⩽ ℓ) , (IV.37)

we conveniently write the general solution as

ΨL = − n̂L
2

ℓ∑
i=0

ℓ∑
j=0

(−)jCℓij
ri+1

∫ +∞

0
dρ ρi+j

∫ ρ
2 +r

ρ
2

dλλ−j+1 S(λ, u− ρ) . (IV.38)

Note that although the coefficient Cℓij has been defined to be symmetric in i and j, these
two indices play a different role. In particular the index i rules the behavior of the
solution at infinity, when r → +∞ with t− r = const, depending on the falloff properties
at infinity of the integrals in (IV.38). A useful fact is that for i = 0, the coefficient is
straightforwardly linked to the jth derivative of the usual Legendre polynomial evaluated
at 1, namely

Cℓ0j = 1
j!P

(j)
ℓ (1) . (IV.39)

In addition to the general formula (IV.38), we also have an independent result which
directly provides the leading behavior of the solution at infinity, when r → +∞ with
u = const, depending on the falloff properties of the source S(r, u). Namely, suppose that
S(r, u) has the following asymptotic behavior at infinity:

S(r, u) = O
( 1
r3

)
(when r → +∞ with u fixed) . (IV.40)

More precisely the rigorous falloff conditions of the source term are given in Lemma 7.2
of [92]. Then the corresponding solution will behave dominantly like 1/r at infinity, with
leading term explicitly given by

ΨL = (−)ℓ
2ℓ

n̂L
r

∫ t−r

−∞
dsR(ℓ)

∞

(
t− r − s

2 , s

)
+ O

( 1
r2

)
. (IV.41)

Here the function R∞(ρ, s) is defined by (IV.30) with the explicit choice α = +∞, and
the superscript (ℓ) means ℓ partial derivatives with respect to ρ. We shall use the latter
result as a consistency check of the derivation of the leading behavior of the solution at
infinity.
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IV.4.2 Application to tails-of-memory
We apply the general formalism of Section IV.4.1 to the cubic iteration and specifically

to the tails-of-memory. In this case the main problem we face is to find the solution of the
wave equation (IV.28) when the source term takes the form (IV.25). For ease of notation
we denote the two quadrupole moments by arbitrary time-varying functions F (u) and
G(u), and consider the source term (multiplying the STF harmonics n̂L):

SB
k,m

(r, t− r) ≡
(
r

r0

)B
r−kG(t− r)

∫ +∞

1
dxQm(x)F (t− rx) , (IV.42)

where k ⩾ 1 and m ⩾ 0 are integers, and the Legendre function of the second kind
Qm(x) is given by (IV.18), as was obtained from Qm(x) using the relation (IV.17). The
source (IV.42) is more complex than the one required for the computation of tails and
tails-of-tails. In the latter case, the function G(u) is actually constant (i.e. the constant
total mass-energy M), and we shall recover and extend the results found in [91, 167]. In
the case where G(u) and F (u) are not constant the results we shall derive are new.

In (IV.42) we have multiplied the source by the regularization factor (r/r0)B, where
B ∈ C and r0 is an arbitrary constant, see (IV.10). Very importantly, this permits to
ensure after analytic continuation in B ∈ C that the falloff condition (IV.40) is always
satisfied. Applying the finite part, the solution we are looking for is

ΨL
k,m

≡ FP ΨB
L

k,m
, where ΨB

L
k,m

≡ □−1
ret SBL

k,m
= □−1

ret
[
n̂L S

B

k,m

]
, (IV.43)

and will be obtained by applying the formulas of the previous section. During the com-
putation, we shall also encounter explicit logarithms and poles proportional to 1/B. This
will all boil down to computing

χL
k,m

≡ FP
[ 1
B

ΨB
L

k,m

]
= FP

[
d

dB ΨB
L

k,m

]
= FP

B=0
□−1

ret

[
ln
(
r

r0

)
SBL
k,m

]
, (IV.44)

where we have used the useful property of the regularization factor (r/r0)B, that an extra
logarithm is generated by differentiating with respect to B:

d
dB SBL

k,m
= ln

(
r

r0

)
SBL
k,m

. (IV.45)

Applying the formulas of Section IV.4.1, the solution for any B ∈ C reads

ΨB
L

k,m
= − n̂L

2

ℓ∑
i=0

ℓ∑
j=0

(−)jCℓij
ri+1 ϕ

k,m

B
ij , (IV.46a)

where

ϕ
k,m

B
ij ≡

∫ +∞

0
dρ ρi+jG(u− ρ)

∫ ρ
2 +r

ρ
2

dλ
(
λ

r0

)B
λ−k−j+1

∫ +∞

1
dxQm(x)F

[
u− ρ− λ(x− 1)

]
.

(IV.46b)

Note that this solution is “exact”, valid at any radial distance r except r = 0. But in
the following, we shall mostly be interested in the asymptotic limit when r → +∞ with
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u = const. Permuting the integrals, introducing the change of variable λ −→ τ = λ(x−1),
and factorizing out the expected leading behavior 1/r of the solution (in anticipation of
the limit r → +∞), we find that

ΨB
L

k,m
= − n̂L

2r

∫ +∞

0
dρG(u− ρ)

∫ +∞

0
dτ F (u− ρ− τ) KB

ℓ
k,m

(ρ, τ, r) , (IV.47a)

where we have introduced for convenience the kernel function (with x = y + 1)

KB
ℓ

k,m
(ρ, τ, r) =

(
τ

r0

)B ℓ∑
i=0

1
ri

ℓ∑
j=0

(−)jCℓij ρi+j τ−k−j+1
∫ 2τ

ρ

2τ
ρ+2r

dy yk+j−2−BQm(y + 1) ,

= τ1−k
∫ 2τ

ρ

2τ
ρ+2r

dy
(
τ

yr0

)B
yk−2Qm(y + 1) Πℓ

(
1 − ρy

τ
, 1 + ρ

r

)
. (IV.47b)

In the second line we have introduced the following symmetric bivariate polynomial

Πℓ(x, y) =
ℓ∑
i=0

ℓ∑
j=0

Cℓij(x− 1)i(y − 1)j , (IV.48)

which is related to the Legendre polynomial, recalling (IV.39), by

Pℓ(x) =
ℓ∑

j=0
Cℓ0j (x− 1)j = Πℓ(x, 1) = Πℓ(1, x) . (IV.49)

Similarly, the quantity k,mχ
B
L defined in (IV.44) reads

χBL
k,m

= − n̂L
2r

∫ +∞

0
dρG(u− ρ)

∫ +∞

0
dτ F (u− ρ− τ) LBℓ

k,m
(ρ, τ, r) , (IV.50a)

where the kernel is defined as

LBℓ
k,m

= d
dB

[
KB
ℓ

k,m
(ρ, τ, r)

]

=
ℓ∑
i=0

1
ri

ℓ∑
j=0

(−)jCℓi,j ρi+j τ−k−j+1
∫ 2τ

ρ

2τ
ρ+2r

dy
(
τ

yr0

)B
ln
(
τ

r0y

)
yk+j−2Qm(x) ,

= τ1−k
∫ 2τ

ρ

2τ
ρ+2r

dy
(
τ

yr0

)B
ln
(
τ

yr0

)
yk−2Qm(y + 1) Πℓ

(
1 − ρy

τ
, 1 + ρ

r

)
. (IV.50b)

When r → +∞ the above kernels are dominated by the contribution i = 0, and the
property (IV.49) allows us to relate the asymptotic limit to the Legendre polynomial as

KB
ℓ

k,m
= τ1−k

∫ 2τ
ρ

2τ
ρ+2r

dy
(
τ

yr0

)B
yk−2Qm(y + 1)Pℓ

(
1 − ρy

τ

)
+ o (1) , (IV.51a)

LBℓ
k,m

= τ1−k
∫ 2τ

ρ

2τ
ρ+2r

dy
(
τ

yr0

)B
ln
(
τ

yr0

)
yk−2Qm(y + 1)Pℓ

(
1 − ρy

τ

)
+ o (1) . (IV.51b)

We employ the Landau symbol o for remainders, hence o(1) means terms that behave as
∼ lnp r/r with uncontrolled powers of ln r as r → +∞.
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a) Cases where k = 1 and k = 2

We now assume that k ∈ {1, 2}. As proven in Appendix A.7, k,m ΨB
L and k,m χ

B
L have

a well-defined limit when B → 0, so we can drop the finite part prescription and simply
set B = 0 in (IV.47) and (IV.50). Therefore we obtain the expression for the kernels,
only valid for k ∈ {1, 2},

Kℓ
k,m

(ρ, τ, r) ≡ τ1−k
∫ 2τ

ρ

2τ
ρ+2r

dy yk−2Qm(y + 1) Πℓ

(
1 − ρy

τ
, 1 + ρ

r

)
, (IV.52a)

Lℓ
k,m

(ρ, τ, r) ≡ τ1−k
∫ 2τ

ρ

2τ
ρ+2r

dy ln
(
τ

yr0

)
yk−2Qm(y + 1) Πℓ

(
1 − ρy

τ
, 1 + ρ

r

)
. (IV.52b)

When restricting our interest to the asymptotic limit r → +∞, we must treat separately
the cases k = 1 and k = 2.

For k = 2, the integrands in the kernels (IV.52) are clearly integrable at the y → 0
bound, therefore the kernels converge in the r → +∞ limit, such that we are allowed to
define the “asymptotic” kernels:

Kℓ
2,m

(ρ, τ) ≡ lim
r→+∞

Kℓ
2,m

(ρ, τ, r) = τ−1
∫ 2τ

ρ

0
dy Qm(y + 1)Pℓ

(
1 − ρy

τ

)
, (IV.53a)

Lℓ
2,m

(ρ, τ) ≡ lim
r→+∞

Lℓ
2,m

(ρ, τ, r) = τ−1
∫ 2τ

ρ

0
dy ln

(
τ

yr0

)
Qm(y + 1)Pℓ

(
1 − ρy

τ

)
. (IV.53b)

We have verified the above asymptotic limit in the case where k = 2 using the general
statement in (IV.41), where the relevant function is defined by (IV.30) with α = +∞.

In the case k = 1, the situation is more complicated since the integrands of the kernels
are no longer integrable when y → 0, so it is not possible to simply take the limit r → +∞
like in (IV.53). Instead the kernels exhibit a logarithmic behavior as r → +∞. Since the
radiative construction will not exhibit any logarithmic behavior, the logarithms should
cancel out in the final metric, and it is crucial to verify this by controlling the logarithmic
limit of the kernel functions. We detail the case of the “K”-kernel

Kℓ
1,m

(ρ, τ, r) =
∫ 2τ

ρ

2τ
ρ+2r

dy
y
Qm(y + 1) Πℓ

(
1 − ρy

τ
, 1 + ρ

r

)
. (IV.54)

To extract the logarithmic behavior, we integrate by parts. First, we introduce the regular
part of the Legendre function of the second type when x → 1+, which is defined as

Rm(x) ≡ Qm(x) + 1
2Pm(x) ln

(
x− 1

2

)
. (IV.55)

A useful observation is that Rm(1) = −Hm, where Hm = ∑m
k=1 k

−1 is the harmonic
number. Substituting Qm by its expression in terms of Rm and integrating by parts, we
find

Kℓ
1,m

(ρ, τ, r) =
[

ln
(
y

2

)(
Rm(y + 1) − 1

4 ln
(
y

2

)
Pm(y + 1)

)
Πℓ

(
1 − ρy

τ
, 1 + ρ

r

)]y= 2τ
ρ

y= 2τ
ρ+2r
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−
∫ 2τ

ρ

2τ
ρ+2r

dy ln
(
y

2

) d
dy

[
Rm(y + 1) Πℓ

(
1 − ρy

τ
, 1 + ρ

r

)]

+ 1
4

∫ 2τ
ρ

2τ
ρ+2r

dy ln2
(
y

2

) d
dy

[
Pm(y + 1) Πℓ

(
1 − ρy

τ
, 1 + ρ

r

)]
, (IV.56)

where the all-integrated terms are shown in the first line. Since Pm(x), Rm(x) and Πℓ(x, y)
as well as all their derivatives are perfectly integrable as x → 1+, we can safely take the
r → +∞ expansion, and we obtain the explicit “polylogarithmic” structure

Kℓ
1,m

(ρ, τ, r) = 1
4 ln2

(
r

r0

)
− 1

2 ln
(
r

r0

)[
ln
(
τ

2r0

)
+ 2Hm

]
+ Kℓ

1,m
(ρ, τ) + o (1) , (IV.57a)

where 1,mKℓ(ρ, τ) does not exhibit any r-dependence. We obtain its explicit expression
as

Kℓ
1,m

(ρ, τ) = 1
4 ln2

(
τ

2r0

)
+Hm ln

(
τ

2r0

)
− (−)ℓ

4

[
ln2
(
τ

2r0

)
− 2 ln

(
τ

2r0

)
ln
(
ρ

2r0

)
+ ln2

(
ρ

2r0

)]
Pm

(
1 + 2τ

ρ

)
− (−)ℓ

[
ln
(
ρ

2r0

)
− ln

(
τ

2r0

)]
Rm

(
1 + 2τ

ρ

)
+ 1

4

∫ 2τ
ρ

0
dy ln2

(
y

2

) d
dy

[
Pm(y + 1)Pℓ

(
1 − ρy

τ

)]
−
∫ 2τ

ρ

0
dy ln

(
y

2

) d
dy

[
Rm(y + 1)Pℓ

(
1 − ρy

τ

)]
. (IV.57b)

The same reasoning applied to the “L”-kernel also gives a polylogarithmic structure but
in this case with powers of the logarithm up to three:

Lℓ
1,m

(ρ, τ, r) = 1
6 ln3

(
r

r0

)
− 1

4 ln2
(
r

r0

)[
ln
(
τ

2r0

)
+ 2Hm

]
+ Lℓ

1,m
(ρ, τ) + o (1) , (IV.58a)

and where 1,mLℓ(ρ, τ) is explicitly given by

Lℓ
1,m

(ρ, τ) = 1
12 ln3

(
τ

2r0

)
+ 1

2Hm ln2
(
τ

2r0

)
(IV.58b)

− (−)ℓ
12

[
ln3
(
τ

2r0

)
− 3 ln

(
τ

2r0

)
ln2
(
ρ

2r0

)
+ 2 ln3

(
ρ

2r0

)]
Pm

(
1 + 2τ

ρ

)
− (−)ℓ

2

[
ln2
(
ρ

2r0

)
− ln2

(
τ

2r0

)]
Rm

(
1 + 2τ

ρ

)
+
∫ 2τ

ρ

0
dy ln2

(
y

2

)[1
4 ln

(
τ

2r0

)
− 1

6 ln
(
y

2

)] d
dy

[
Pm(y + 1)Pℓ

(
1 − ρy

τ

)]
+
∫ 2τ

ρ

0
dy ln

(
y

2

)[
− ln

(
τ

2r0

)
+ 1

2 ln
(
y

2

)] d
dy

[
Rm(y + 1)Pℓ

(
1 − ρy

τ

)]
.
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Again, a beautiful check of the radiative construction of the metric in Section IV.1,
is that all these explicitly determined far-zone logarithms will be compensated by those
induced by the applied gauge transformations, notably the one described in (IV.21).

In practical computations, it is easier to compute the full kernels 1,mKℓ(ρ, τ, r) and
1,mLℓ(ρ, τ, r), and then to remove the logarithmic dependencies to obtain the reduced
asymptotic kernels 1,mKℓ(ρ, τ) and 1,mLℓ(ρ, τ). However, computing the two later quan-
tities directly from their explicit expressions (IV.57b) and (IV.58b) yields, of course, the
same result.

b) Cases where k ⩾ 3

We have just shown that we could integrate the source term (IV.42) when k ∈ {1, 2}.
A priori, the cases k ⩾ 3 are more difficult and (when G is not constant) analytic closed-
form expressions for the retarded integral seem nontrivial. Hence we proceed differently
and prove that we can retrieve the cases k ⩾ 3 from the known cases k ∈ {1, 2}. This will
show that analytic closed-form expressions also exist in the cases k ⩾ 3.

Given a source term with k ⩾ 3, endowed with the associated regularization factor rB
(posing here r0 = 1), we reduce it to a fully integrated part and new source terms with
decreased values of k by two steps at most: k − 1 and k − 2, by means of the identity:

n̂Lr
B−kG(t− r)

∫ +∞

1
dxQm(x)F (t− rx)

= □

[
n̂Lr

B−k+2

(k + ℓ− 2 −B)(k − ℓ− 3 −B)G(t− r)
∫ +∞

1
dxQm(x)F (t− rx)

]

− 2(k − 3 −B)n̂LrB−k+1

(k + ℓ− 2 −B)(k − ℓ− 3 −B)

((1)
G(t− r)

∫ +∞

1
dxQm(x)F (t− rx)

+ G(t− r)
∫ +∞

1
dxxQm(x)

(1)
F (t− rx)

)
− n̂Lr

B−k+2

(k + ℓ− 2 −B)(k − ℓ− 3 −B)

(
2

(1)
G(t− r)

∫ +∞

1
dx (x− 1)Qm(x)

(1)
F (t− rx)

+G(t− r)
∫ +∞

1
dx (x2 − 1)Qm(x)

(2)
F (t− rx)

)
.

(IV.59)

This formula, when applied iteratively, allows us to reduce any case k ⩾ 3 in terms of the
cases when k = 1 and 2, modulo a series of all-integrated terms (i.e., inside the d’Alembert
operator). Note that we introduced a new type of integral,

∫+∞
1 dxxnQm(x)H(t − rx)

where n ∈ N, but which can easily be recast in the previous form (i.e. n = 0) by recursively
applying Bonnet’s recursion formula for the Legendre function, namely

xQm(x) = m+ 1
2m+ 1Qm+1(x) + m

2m+ 1Qm−1(x) if m ⩾ 1 , (IV.60a)

xQ0(x) = Q1(x) + 1 if m = 0 . (IV.60b)

An important point is that we keep the Hadamard regulator rB “alive” in (IV.59).
Indeed, by applying the inverse d’Alembert operator on both sides of (IV.59), we see
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that the first term in the right side being the d’Alembertian of a source term containing
the regulator rB, will directly yield that source term proportional to rB without any
additional homogeneous solution (since no homogeneous solution can be proportional to
rB). Hence the iteration with rB can be done blindly, ignoring homogeneous solutions,
and only at the end do we apply the finite part when B → 0.

However a price we have to pay is that the B-dependent coefficients in (IV.59) can
generate a simple pole when B → 0 which will compete with the higher contribution ∝ B
in the retarded integral, and vice versa, a term ∝ B in the coefficient will be compensated
by a pole coming from the retarded integral. A useful fact to remember in this respect is
that the integrals are convergent for k ∈ {1, 2} and hence no poles ∝ 1/B can be generated
in these cases. Furthermore, the structure of the identity (IV.59) can only generate simple
poles ∝ 1/B, and no double poles ∝ 1/B2 or any poles of higher order. The presence of
these simple poles is the main reason why we introduced the k,mχL integral, as is clear
by its first definition in (IV.44).

Finally, although we now have all the needed formulas to integrate the tails-of-memory,
our recursion formula (IV.59) coupled to the m = 0 case of the Bonnet formula (IV.60b)
can generate instantaneous terms in the source, which must also be integrated. Although
the integration of such terms is well known using standard integration techniques [164,
173], its generalization to the case where simple poles ∝ 1/B can appear in the source
was unknown.

IV.4.3 Application to tails-of-tails

The previous observation motivates us to extend our formalism developed for com-
plicated tails-of-memory to the easier cases of tails-of-tails, tails and even instantaneous
terms, such that we can treat the entire problem consistently, using one single formalism.
When comparing with previous works [91, 167] this will provide important tests of the
results of Section IV.4.2. Thus, we specialize the formulas of the previous section to the
case where G ≡ 1, since in the case of the tails-of-tails two of the moments are just the
mass M.

When k ⩾ 3, we can again reduce the source to the cases k = 1 and k = 2 using (IV.59),
with now G(1)(u) = 0. Then, after lengthy computations where we perform two of the
three integrations of the tails-of-memory (one on the y variable in the kernel and one on
the time variable τ), we find drastically simpler expressions when k ∈ {1, 2}, which read

Ψℓ
2,m

∣∣∣∣
G=1

= 2 αℓ
2,m

(−1)
F (u) , (IV.61a)

χℓ
2,m

∣∣∣∣
G=1

= 2
∫ +∞

0
dτ
[
βℓ
2,m

ln
(
τ

2r0

)
+ γℓ

2,m

]
F (u− τ) , (IV.61b)

Ψℓ
1,m

∣∣∣∣
G=1

= 1
4

∫ +∞

0
dτ

(−1)
F (u− τ)

[
ln2
(
τ

2r0

)
+ 4Hm ln

(
τ

2r0

)
− 8 δℓ

1,m

]
, (IV.61c)

χℓ
1,m

∣∣∣∣
G=1

= 1
12

∫ +∞

0
dτ

(−1)
F (u− τ)

[
ln3
(
τ

2r0

)
+ 6Hm ln2

(
τ

2r0

)
− 24 δℓ

1,m
ln
(
τ

2r0

)
+ 12 εℓ

1,m

]
.

(IV.61d)
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where k,mΨL ≡ − n̂L
2r k,mΨℓ and k,mχL ≡ − n̂L

2r k,mχℓ. The numerical constants 2,mαℓ,
2,mβℓ and 2,mγℓ are defined by the integrals

αℓ
2,m

≡ βℓ
2,m

≡
∫ +∞

1
dxQm(x)Qℓ(x) , (IV.62a)

γℓ
2,m

≡ 1
2ℓ+1

∫ +∞

1
dxQm(x)

∫ 1

−1
dz (1 − z2)ℓ

(x− y)ℓ+1

(
− ln

(
x− y

2

)
+Hℓ

)
. (IV.62b)

Note that 2,mαℓ is a special case of k,mαℓ defined for 2 ⩽ k ⩽ ℓ + 2 in (A16) of [91],
whereas 2,mβℓ and 2,mγℓ are an extension of (A20) of [91], in which these constants were
defined only for k ⩾ ℓ+ 3. In the case k = 2, we find it natural to define 2,mαℓ and 2,mβℓ
to be equal.

Similarly one can define 1,mδℓ and 1,mεℓ using formal integrals but at the price of
introducing a Hadamard partie finie (pf) to cure the bound of the integrals at x = 1:

δℓ
1,m

≡ pf
∫ +∞

1
dxQm(x)dQℓ

dx , (IV.63a)

εℓ
1,m

≡ pf
∫ +∞

1
dxQm(x)d2Sℓ

d2x
. (IV.63b)

The Hadamard partie finie is defined in the usual way by removing the divergent part of
the integral (and using for our purpose here a Hadamard scale equal to 1):

pf
∫ +∞

1
dxQm(x)dQℓ

dx ≡ lim
η→0

{∫ +∞

1+η
dxQm(x)dQℓ

dx + 1
8 ln2

(
η

2

)
+ 1

2Hm ln
(
η

2

)}
,

(IV.64a)

pf
∫ +∞

1
dxQm(x)d2Sℓ

d2x
≡ lim
η→0

{∫ +∞

1+η
dxQm(x)d2Sℓ

d2x
+ 1

6 ln3
(
η

2

)
+ 1

2Hm ln2
(
η

2

)}
.

(IV.64b)

In the definition of 1,mεℓ the function Sℓ is defined like for the Neumann formula for the
Legendre function [see (IV.18)],

Sℓ(x) ≡ 1
2

∫ 1

−1
dy Pℓ(y) ln2

(
x− y

2

)

=
ℓ∑

j=0

j∑
i=0

(−)i+1P
(j)
ℓ (1)

2(i+ 1)!(j − i)!

{
(x− 1)j+1

[
ln2
(
x− 1

2

)
− 2
i+ 1 ln

(
x− 1

2

)
+ 2

(i+ 1)2

]

+ (−)j+ℓ+1(x+ 1)j+1
[
ln2
(
x+ 1

2

)
− 2
i+ 1 ln

(
x+ 1

2

)
+ 2

(i+ 1)2

]}
.

(IV.65)

The constant 1,mδℓ was used in (A7-A9) of [91] in the special case where m = ℓ, but was
not given a name. The constants defined in [91] were later shown in [167] to be sometimes
ill-defined, e.g. for k = 0, ℓ = 0 and m = 0, and this problem was circumvented on a
case-by-case basis. Since we restrict our attention to k ∈ {1, 2}, we are assured that our
constants are always well defined.
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All the coefficients we shall need can be computed analytically. The 2,mαℓ constant
(and, hence, 2,mβℓ) has a closed form expression given by (A18) of [91], which reads

αℓ
2,m

= βℓ
2,m

=


Hm −Hℓ

(m− ℓ)(m+ ℓ+ 1) if m ̸= ℓ ,

1
2m+ 1

π2

6 −
m∑
j=1

1
j2

 if m = ℓ .

(IV.66)

The 1,mδℓ constant has a simple expression when m = ℓ, as pointed out in (A7–A9) of [91],
which reads 1,ℓδℓ = −1

2H
2
ℓ . When m ̸= ℓ, by integrating by parts the integral expression

of the 1,mδℓ constant, we find the simple property

δℓ
1,m

+ δm
1,ℓ

= −HmHℓ . (IV.67a)

We can then obtain the full expression of 1,mδℓ by using recursively the differential equa-
tion Q′

n+1 − Q′
n−1 = (2n + 1)Qn. In the case where ℓ and m have the same parity, i.e.

ℓ−m ∈ 2Z, the differential equation allows us to express the constant only in terms of the
case 1,ℓδℓ, along with many 2,mαℓ terms, which are easy to compute. Thanks to (IV.67a),
we can further restrict attention to the case where ℓ ⩾ m, and the relevant formula then
reads

δℓ
1,m

=
ℓ−m

2∑
j=1

(
2m+ 4j − 1

)
αm+2j−1

2,m
− 1

2H
2
m , (IV.67b)

if ℓ−m ∈ 2N. In the reverse case where ℓ and m have opposite parity, i.e. ℓ−m ∈ 2Z+1,
we can again use (IV.67a) to restrict attention to the case where ℓ is odd and m is even.
In this case, we can again use the differential equation as well as integration by parts to
express our constant solely in terms of the explicitly known case, 1,0δ1 = π2

12 , modulo some
2,mαℓ terms. We thus find the relevant formula,

δℓ
1,m

= −Hm + π2

12 +
ℓ−1

2∑
j=1

(
2ℓ− 4j + 3

)
α

2,mℓ−2j+1 −
m
2∑
j=1

(
2m− 4j + 3

)
α

2,1m−2j+1 , (IV.67c)

if ℓ ∈ 2N + 1 and m ∈ 2N. Finally the 2,mγℓ and 1,mεℓ constants were only needed for the
following values of m and ℓ, which we calculated using Mathematica:

γ1
2,0

= 5
4 , γ1

2,2
= 13

32 , γ1
2,4

= 95
432 ,

ε0
1,0

= ζ(3)
2 , ε0

1,2
= 9

2 + ζ(3)
2 , ε0

1,4
= 3995

432 + ζ(3)
2 ,

ε1
1,1

= 1
2 + ζ(3)

2 , ε1
1,3

= 299
48 + ζ(3)

2 , ε1
1,5

= 887
80 + ζ(3)

2 ,

ε2
1,0

= −15
2 + ζ(3)

2 , ε2
1,2

= 33
16 + ζ(3)

2 , ε2
1,4

= 3425
432 + ζ(3)

2 , (IV.68)

where ζ is the Riemann function and ζ(3) is the Apéry constant. In our computation,
the contributions proportional to this constant actually cancel out.
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We end this section with a word concerning the integration of B-regularized source
terms that are actually instantaneous, i.e. just of the simple type
kS

B(r, t− r) ≡ ( rr0
)B r−kF (t− r) (multiplied by the multipolarity factor n̂L). These

source terms yield for instance the tails at quadratic order. In line with our general
formalism, if k ⩾ 3, we bring ourselves to the case k = 2 using the recursion formula:

n̂Lr
B−kF (t− r) = □

[
n̂Lr

B−k+2

(k + ℓ− 2 −B)(k − ℓ− 3 −B)F (t− r)
]

− 2(k − 3 −B)n̂LrB−k+1

(k + ℓ− 2 −B)(k − ℓ− 3 −B)
(1)
F (t− r) . (IV.69)

The case k = 2 is well known [164, 173, 91], and for the asymptotic limit reads

FP
B=0

□−1
ret

[(
r

r0

)B n̂L
r2 F (t−r)

]
= n̂L

2r

∫ +∞

0
dτ F (u−τ)

[
ln
(
τ

2r

)
+2Hℓ

]
+o

(1
r

)
, (IV.70)

where we could have dropped the finite part prescription and set B = 0, because in this
case the inverse d’Alembertian integral is convergent. However, because of the potential
appearance of single poles due to our recursion formula (IV.69), we will also need the
corresponding formula with an extra factor B−1 multiplying the source term. The relevant
formula reads

FP
B=0

□−1
ret

[ 1
B

(
r

r0

)B n̂L
r2 F (t− r)

]
(IV.71)

= n̂L
4r

∫ +∞

0
dτ F (u− τ)

[
ln2
(
τ

2r0

)
+ 4Hℓ ln

(
τ

2r0

)
+ 4H2

ℓ − ln2
(
r

r0

)]
+ o

(1
r

)
,

which can be obtained from (A2) of [173] by taking straightforwardly the finite part (since
the integral converges) and expanding when r → +∞.

IV.5 Implementing the calculation of tails-of-memory

IV.5.1 Explicit integration of the asymptotic kernels
Up to this point, the kernels in the asymptotic limit r → +∞ were defined only in an

integral form, given by (IV.53) in the relatively easy case where k = 2, and by the more
complex forms (IV.57b) and (IV.58b) when k = 1. These integrals are too complicated
to seek a general explicit formula valid for arbitrary m and ℓ. However, we can easily
compute all these integrals on a case-by-case basis. For this it suffices to insert into them
the explicit expressions of the Legendre polynomial Pm(x) and the Legendre function of
the second kind Qm(x), which are simply polynomials multiplied by some logarithms,
see (IV.18).

In this way we find that the general structure of the kernels k,mKℓ(ρ, τ, r) and k,mLℓ(ρ, τ, r)
for k = 1 and 2, up to o(1) precision, is of the type

Kℓ
k,m

(ρ, τ, r)

Lℓ
k,m

(ρ, τ, r)

 =
∑
s,p,q


X
k,m

s,p,q

Y
k,m

s,p,q


∫ 2τ

ρ

2τ
ρ+2r

dy ys lnp
(
y

2

)
lnq
(

1 + y

2

)
, (IV.72)
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where k,mXs,p,q and k,mYs,p,q denote some numerical coefficients, with s an integer such
that s ⩾ k − 2, and where we can restrict our attention only to the values p = 0, 1, 2, 3
and q = 0, 1. When s ⩾ 0, the lower bound of the integral can be set to 0 in the r → +∞
limit, but not when s = −1 which can happen when k = 1. In the latter case, the integral
will develop the logarithmic behavior when r → +∞ which has already been obtained
in (IV.57a) and (IV.58a), and we now only consider the finite part.

When q = 0, these integrals are of course well known (see e.g. (2.721-722) in [182]),
so we now restrict our discussion to the case q = 1. Let us first examine the case q = 1
and s ⩾ 0; we thus set the lower bound to zero, in the limit r → +∞. We perform an
integration by parts using (2.722) in [182],

∫ 2τ
ρ

0
dy ys lnp

(
y

2

)
ln
(

1 + y

2

)
(IV.73)

=
p∑
i=0

(−)ip!
(p− i)!(s+ 1)i+1

{(2τ
ρ

)s+1
lnp−i

(
τ

ρ

)
ln
(

1 + τ

ρ

)
−
∫ 2τ

ρ

0
dy y

s+1

y + 2 lnp−i
(
y

2

)}
.

The rational fraction ys+1(y+ 2)−1 in the remaining integral can be expanded as a poly-
nomial, plus a function proportional to (y + 2)−1. From this result we see that the only
nontrivial integrals left are of the type

∫ z
0 dy (y + 2)−1 lnj (y/2), and these are simply

related to the polylogarithm functions, for instance3

∫ 2τ
ρ

0

dy
y + 2 ln2

(
y

2

)
= −2Li3

(
−τ

ρ

)
+ 2Li2

(
−τ

ρ

)
ln
(
τ

ρ

)
− Li1

(
−τ

ρ

)
ln2
(
τ

ρ

)
.

(IV.74)

Now, the only remaining cases are when q = 1 and s = −1, but in these cases too the
integrals are related to polylogarithms, for instance

∫ 2τ
ρ

0

dy
y

ln
(
y

2

)
ln
(

1 + y

2

)
= Li3

(
−τ

ρ

)
− Li2

(
−τ

ρ

)
ln
(
τ

ρ

)
. (IV.75)

To summarize we have obtained the following general structure of the kernel functions
in the asymptotic limit r → +∞, discarding the leading logarithmic behavior in the k = 1
case — recall (IV.57a) and (IV.58a) —, as

Kℓ
k,m

(ρ, τ)

Lℓ
k,m

(ρ, τ)

 = τ1−k ∑
j ∈ Z

p, q, n ∈ N


κ

k,m
j,p,q,n

λ
k,m

j,p,q,n

(τρ
)j

lnp
(
τ

2r0

)
lnq
(
ρ

2r0

)
Lin

(
−τ

ρ

)
,

(IV.76)
3The polylogarithm, or Jonquière’s function, is defined for any n ∈ N and z > 0 as

Lin(z) ≡ (−)n−1

(n− 2)!

∫ z

0

ds
s

lnn−2
(
s

z

)
ln(1 − s) .

In particular, the dilogarithm, or Spence’s function, is defined as Li2(z) = −
∫ z

0
ds
s

ln(1 − s). We also find
that Li1(z) = − ln(1 − z).
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with some numerical coefficients k,mκj,p,q,n and k,mλj,p,q,n that depend on the relative inte-
ger j ∈ Z and natural integers p, q, n ∈ N, and where we have defined for notational conve-
nience Li0(z) ≡ 1 and Lin(z) ≡ Lin(z) for n ⩾ 1. We also recall that Li1(z) = − ln(1 − z).

The coefficients k,mκj,p,q,n and k,mλj,p,q,n represent six-dimensional matrices of numer-
ical coefficients and cannot be presented. Instead, explicit expressions of all the kernels
needed for the computation of the tails-of-memory are provided in the Supplementary
Material of [4]. For the purpose of clarity, we give two explicit examples of such kernels,
where we choose to look at K for m = 2, ℓ = 4 and k = 1, 2:

K4
1,2

(ρ, τ) = − 1
2 Li2

(
−τ

ρ

)
+ 7

12 Li1
(

−τ

ρ

)
− 1

4 ln2
(
ρ

2r0

)
+ 1

2 ln
(
ρ

2r0

)
ln
(
τ

2r0

)
− 7

12 ln
(
ρ

2r0

)
+ 25

12 ln
(
τ

2r0

)
+ 9

4 − 7
12

ρ

τ
+ 35

24

(
ρ

τ

)2

+
(
ρ

τ

)3 [7
3 Li1

(
−τ

ρ

)
+ 7

4

]
+ 7

4

(
ρ

τ

)4
Li1

(
−τ

ρ

)
, (IV.77a)

K4
2,2

(ρ, τ) = 1
τ

{
1
6 − 5

6
ρ

τ
+
(
ρ

τ

)2 [
−3 Li1

(
−τ

ρ

)
− 5

]

+
(
ρ

τ

)3 [
−7 Li1

(
−τ

ρ

)
− 4

]
− 4

(
ρ

τ

)4
Li1

(
−τ

ρ

)}
. (IV.77b)

Notice that despite the structure in ρ/τ of these kernels, one can check explicitly that
they are indeed integrable in a vicinity of (ρ, τ) = (0, 0).

IV.5.2 Raw expression of the radiative quadrupole in the radiative construction
We have applied the MPM construction of the metric in radiative gauge as described

in Section IV.1, together with the previous integration techniques, to the computation of
the three cubic interactions M2 × Mij , M × Si × Mij and M × Mij × Mij .

The first interaction, M2 × Mij , is the tail-of-tail which enters at 3PN order and was
already known in the harmonic construction [91]. We have, on the one hand, computed
the asymptotic waveform for this interaction in the radiative construction using the in-
tegration machinery developed in Section IV.4, and, on the other hand, used standard
integration techniques [173, 91, 161, 167] applied to the radiative algorithm, and checked
that both methods yielded identical results. We then verified that these results, performed
in the radiative construction, could be independently retrieved from the known result in
the harmonic construction [91] solely using a moment redefinition, as explained in [3]. In
the radiative gauge, we find

UM2×Mij

ij = 2G2M2

c6

∫ +∞

0
dτ
[
ln2
(
τ

2r0

)
+ 107

42 ln
(
τ

2r0

)
+ 40037

8810

]
M(5)
ij (u− τ) . (IV.78)

For the M × Si × Mij interaction, which only enters at 4PN, the fact that the current
dipole moment Si (or total angular momentum) is constant greatly simplifies the com-
putation, and a priori allows for the use of standard techniques [173, 91, 167]. However,
in some cases, those techniques break down, since some of the numerical constants intro-
duced are ill-defined, as has been mentioned in [167]. Therefore, we have computed for
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the first time the full M × Si × Mij waveform using our new integration method, which
reads in radiative gauge,

UM×Si×Mij

ij = −2G2M
c8 Sa|⟨i

∫ +∞

0
dτ
[
ln
(
τ

2r0

)
+ 5381

5670

]
M(6)
j⟩a(u− τ) . (IV.79)

Finally, the M × Mij × Mij interaction is the genuine tail-of-memory entering at 4PN;
the double time-dependence within the two associated quadrupole moments strongly com-
plicates the situation. We have performed this calculation only in the asymptotic limit
r → +∞. Since we are using the radiative construction [160] the waveform is automati-
cally free of far-zone logarithms, and can straightforwardly be projected in a TT gauge,
where the radiative quadrupole moment Uij is extracted in a standard way. Here we
first present the “raw” result, obtained in a direct manner from our integration formulas,
in terms of the radiative canonical moments. In Section IV.5.3 we describe a very effi-
cient simplification method, and the resulting radiative quadrupole will be presented in
Section IV.6 in terms of the radiative canonical moments. The “raw” result is however
important and worthy to be presented, as it is the direct result of our integration scheme.

In order to present the raw result, we define the following functionals of two time-
derivatives of quadrupole moments F and G for the cases k = 1, 2:

Ψℓ
k,m

[F,G] ≡
∫ +∞

0
dρG(u− ρ)

∫ +∞

0
dτ F (u− ρ− τ) Kℓ

k,m
(ρ, τ) , (IV.80a)

χℓ
k,m

[F,G] ≡
∫ +∞

0
dρG(u− ρ)

∫ +∞

0
dτ F (u− ρ− τ) Lℓ

k,m
(ρ, τ) , (IV.80b)

where the kernels are given by (IV.53) in the case k = 2 and by (IV.57b) and (IV.58b) in
the case k = 1. As explained in Section b) we do not need the cases k ⩾ 3.

With these definitions in hand, we decompose the cubic interaction M × Mij × Mij as
follows: we separate terms which are purely instantaneous (i.e. local-in-time), from terms
whose nonlocality is rather simple and looks like that for the ordinary tails or tails-of-tail,
and finally from the genuine and much more intricate tail-of-memory (ToM) integrals.
We thus write our raw result, expressed in terms of the radiative canonical moments, as

UM×Mij×Mij

ij = UM×Mij×Mij

ij

∣∣∣∣
inst

+ UM×Mij×Mij

ij

∣∣∣∣
tail

+ UM×Mij×Mij

ij

∣∣∣∣
ToM

. (IV.81)

1. The instantaneous terms (depending only on the current time u) are given by

UM×Mij×Mij

ij

∣∣∣∣
inst

= G2M
c8

[3362032
165375 M(3)

a⟨iM
(3)
j⟩a + 2014871

165375 M(2)
a⟨iM

(4)
j⟩a

− 5766241
165375 M(1)

a⟨iM
(5)
j⟩a − 114454

23625 Ma⟨iM
(6)
j⟩a

]
. (IV.82a)

2. The nonlocal tail like terms involve some logarithmic kernels, and naturally the
quadrupole moment of the usual tail terms is here replaced by a combination ∝
M(n)
a⟨i M(p)

j⟩a evaluated at any time u− τ in the past. We have

UM×Mij×Mij

ij

∣∣∣∣
tail

= − 48
175

G2M
c8

∫ +∞

0
dτ
[
ln2
(
τ

2r0

)
+ 5111

840 ln
(
τ

2r0

)]
(Ma⟨i M

(7)
j⟩a)(u− τ)
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− 192
175

G2M
c8

∫ +∞

0
dτ
[
ln2
(
τ

2r0

)
+ 475861

30240 ln
(
τ

2r0

)]
(M(1)

a⟨i M(6)
j⟩a)(u− τ)

− 3154
315

G2M
c8

∫ +∞

0
dτ ln

(
τ

2r0

)
(M(2)

a⟨i M(5)
j⟩a)(u− τ)

+ 478
35

G2M
c8

∫ +∞

0
dτ ln

(
τ

2r0

)
(M(3)

a⟨i M(4)
j⟩a)(u− τ) . (IV.82b)

3. The genuine tail-of-memory part is fully specified by the bilinear functionals of the
two quadrupole moments defined by (IV.80). Thus we can write

UM×Mij×Mij

ij

∣∣∣∣
ToM

= G2M
c8

∑
m,ℓ,n

{
An
m,ℓ Ψℓ

1,m

[
M(n)
a⟨i ,M

(8−n)
j⟩a

]
+ Bnm,ℓ Ψℓ

2,m

[
M(n)
a⟨i ,M

(7−n)
j⟩a

]
+ Cnn,ℓ χℓ

1,m

[
M(n)
a⟨i ,M

(8−n)
j⟩a

]
+ Dn

m,ℓ χℓ
2,m

[
M(n)
a⟨i ,M

(7−n)
j⟩a

]}
,

(IV.82c)

where the purely numerical coefficients An
m,ℓ, Bnm,ℓ, Cnm,ℓ and Dn

m,ℓ in front of each of
these integrals are provided in the Tables A.1, and the functionals k,mΨℓ and k,mχℓ
are defined in terms of the kernels in (IV.80). Thus our complete results follow from
these Tables together with the explicit expressions of the kernel functions provided
in the Supplementary Material of [4].

IV.5.3 Simplification method

In this Section, we implement a method for simplifying the expression of the pure tail-
of-memory part of the radiative quadrupole, given by (IV.82c). The idea is to rexpress
everything as only one double integral over the two quadrupoles and a single kernel,
modulo some easy surface terms. We thus alternatively integrate by parts the ρ and τ
variables of (IV.80), so as to transfer all the time derivatives on the quadrupole moment
represented by F (u− ρ− τ), i.e. the left slot in the functionals (IV.80).

First we observe in (IV.82c) that when k = 1, the two quadrupoles have respectively
n and 8 − n time derivatives, while in the case k = 2, they instead have n and 7 − n
derivatives. We first uniformize this by transforming the case k = 2 with the formula∫ +∞

0
dρM(n)

a⟨i (u− ρ)
∫ +∞

0
dτ M(7−n)

j⟩a (u− ρ− τ) f(ρ, τ)

=
∫ +∞

0
dρM(n)

a⟨i (u− ρ)
∫ +∞

0
dτ M(8−n)

j⟩a (u− ρ− τ)
(
∂−1
τ f

)
(ρ, τ) , (IV.83)

where we have introduced the τ -antiderivative which vanishes at τ = 0, defined for any
function f(ρ, τ) with adequate regularity properties as

(
∂−1
τ f

)
(ρ, τ) ≡

∫ τ

0
dλ f(ρ, λ) . (IV.84)

After performing this operation, we are left with integrals of the moments that only
have n and 8 − n time derivatives, and the only possible cases are n ∈ [[0, 4]]. Next
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we integrate by parts so as to be left with integrals with only 0 and 8 time derivatives.
However this operation yields some integrals over ρ that are separately divergent at the
lower bound ρ = 0. To cure this, we introduce a regulator and replace the 0 at the lower
bound by some small ϵ, and restrict attention to the ϵ → 0 expansion. In the end, we
will verify that the final result has a finite ϵ → 0 limit. With this caveat in mind, we will
simplify all our integrals with the formula (valid for n ∈ [[0, 4]])∫ +∞

ϵ
dρM(n)

a⟨i (u− ρ)
∫ +∞

0
dτ M(8−n)

j⟩a (u− ρ− τ) f(ρ, τ)

=
∫ +∞

ϵ
dρMa⟨i(u− ρ)

∫ +∞

0
dτ M(8)

j⟩a(u− ρ− τ)O n
ρ,τ

[
f(ρ, τ)

]
+
n−1∑
k=0

M(k)
a⟨i(u− ϵ)

∫ +∞

0
dτ M(7−k)

j⟩a (u− τ − ϵ)
[
O n−1−k
ρ,τ

[
f(ρ, τ)

]]
ρ=ϵ

, (IV.85)

where moments involving ϵ should be Taylor-expanded when ϵ → 0, the second term is
evaluated at ρ = ϵ, and we have introduced the differential operator Oρ,τ defined by

Oρ,τ
[
f(τ, ρ)

]
≡ ∂−1

τ ∂ρ
[
f(τ, ρ)

]
− f(τ, ρ) , (IV.86)

together with its iterations O n
ρ,τ ≡ Oρ,τ · · ·Oρ,τ . Applying the formula (IV.85) to all

the terms composing the tails-of-memory (IV.82c), we arrive at a unique master double
integral:

UM×Mij×Mij

ij

∣∣∣∣
ToM

= M
∫ +∞

ϵ
dρMa⟨i(u− ρ)

∫ +∞

0
dτ M(8)

j⟩a(u− ρ− τ) Ω(ρ, τ) + Sϵ ,

(IV.87)

where Ω(ρ, τ) denotes some new kernel function and Sϵ are all the surface terms coming
from the second line of (IV.85), which carry at most one integral and that simplify
drastically in the ϵ → 0 expansion. Since the expression is long we do not show here the
result for Sϵ.

At this stage, we would a priori expect Ω(ρ, τ) to have a very complicated structure
akin to (IV.76), and in particular to involve many polylogarithms. But instead, we find
the following simple expression without any polylogarithms:

Ω(ρ, τ) = 7613764
165375 − 1024076

18375
τ

ρ
− 2074

63

(
τ

ρ

)2
− 104

15

(
τ

ρ

)3

+ 634076
55125 ln

(
ρ

2r0

)
+ 384

175
τ

ρ
ln
(
ρ

2r0

)
− 144

175 ln
(
ρ

2r0

)2
+ 8

7 ln
(
τ

2r0

)
. (IV.88)

Note that if we changed even a single coefficient in Table A.1, the cancellation of polylog-
arithms would not occur in general, and we would be left with a much more complicated
expression for Ω(ρ, τ). When inserting Ω(ρ, τ) into the first term in (IV.87), we can inte-
grate by parts so as to remove all the powers of τ/ρ. This introduces poles in ϵ, and powers
of the logarithms of ϵ, but we have checked that these poles and divergences exactly cancel
when adding the surface terms Sϵ, namely the second term in (IV.87). Putting all of this
together and taking the ϵ → 0 limit, we find that

UM×Mij×Mij

ij

∣∣∣∣
ToM

= 8
7 M

∫ +∞

0
dρM(4)

a⟨i(u− ρ)
∫ +∞

0
dτ ln

(
τ

2r0

)
M(4)
j⟩a(u− ρ− τ)
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+ 48
175 M

∫ +∞

0
dτ Ma⟨iM

(7)
j⟩a(u− τ)

[
ln2
(
τ

2r0

)
+ 1243

420 ln
(
τ

2r0

)]
+ 192

175 M
∫ +∞

0
dτ M(1)

a⟨iM
(6)
j⟩a(u− τ)

[
ln2
(
τ

2r0

)
+ 186743

15120 ln
(
τ

2r0

)]
+ 1084

315 M
∫ +∞

0
dτ ln

(
τ

2r0

)
M(2)
a⟨iM

(5)
j⟩a(u− τ)

− 104
5 M

∫ +∞

0
dτ ln

(
τ

2r0

)
M(3)
a⟨iM

(4)
j⟩a(u− τ)

+ 4
7 M Ma⟨i

∫ +∞

0
dτ M(7)

j⟩a(u− τ)
[
ln
(
τ

2r0

)
+ 15667

10500

]
− 20

7 M M(1)
a⟨i

∫ +∞

0
dτ M(6)

j⟩a(u− τ)
[
ln
(
τ

2r0

)
− 3590791

472500

]
− 16

7 M M(2)
a⟨i

∫ +∞

0
dτ M(5)

j⟩a(u− τ)
[
ln
(
τ

2r0

)
+ 981149

94500

]
− 3901382

165375 M M(3)
a⟨iM

(3)
j⟩a . (IV.89)

There is only one doubly-integrated term left, cf. the first line of (IV.89), which can be
seen as the tails-of-memory contribution properly speaking, whereas the structure of the
other singly-integrated terms are more akin to simpler tails-of-tails.

The terms proportional to ln2( τ
2r0

) are exactly compensated by those arising in the

tail part of UM×Mij×Mij

ij given by (IV.82b). Notice that not all possible terms allowed by
a dimensionality argument are present in (IV.89): for instance there is no term

∝ M M(4)
a⟨i(u)

∫ +∞

0
dτ ln

(
τ

2r0

)
M(3)
j⟩a(u− τ) , (IV.90)

which can be understood from the structure of the cubic source term (IV.25) correspond-
ing to the diagram of Fig. IV.1a.

IV.5.4 Testing the integration method
The simplication method in Sec IV.5.3 is also very useful to test our integration

method. Indeed, let us consider the integration of a typical tail-of-memory source term,
but which we multiply by the factor B. For simplicity, we choose k = 3, m = 0 and ℓ = 0:

I ≡ FP
B=0

□−1
ret

[
B

(
r

r0

)B G(t− r)
r3

∫ +∞

1
dxQ0(x)F (t− rx)

]
. (IV.91)

This can be computed asymptotically when r → +∞ using the arsenal of techniques
developed in Section IV.4, and we find

I = 1
r

[
∆ − 1

2

∫ +∞

0
dτ ln

(
τ

2r0

)
G(u− τ)F (1)(u− τ)

]
+ o

(1
r

)
, (IV.92a)

with the rather cumbersome combination of the functionals (IV.80a):

∆ ≡ −1
3 Ψ0

1,2
[F (2), G] + 1

3 Ψ0
1,0

[F (2), G] + Ψ0
1,1

[F (1), G(1)] − Ψ0
1,0

[F (1), G(1)] . (IV.92b)
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But, on the other hand, the presence of the factor B has the effect of only selecting the
pole in the B-expansion of the integrated source. This allows us to perform first the near-
zone expansion r → 0 of the source, and then to integrate term by term this expansion
using the formulas in [95, 3]. Performing the integration in this manner, we find instead

I = −G(u)
r

[
F (u) +

∫ +∞

0
dτ ln

(
τ

2r0

)
F (1)(u− τ)

]
+ o

(1
r

)
. (IV.93)

The two expressions (IV.92) and (IV.93) must be identical, therefore we have found a
nontrivial relationship between the functionals k,mΨℓ[F,G] which must absolutely be sat-
isfied if our integration method is correct. Applying the simplification method described
in Sec IV.5.3, we can prove that these two expressions are indeed identical. This consti-
tutes a strong test confirming simultaneously the soundness of our integration method and
of our simplification method. We have repeated this test with many other such sources;
all were successful.

IV.6 Expression in terms of radiative moments

Replacing UM×Mij×Mij

ij

∣∣
ToM in (IV.81) by its expression (IV.89), we obtain the three

cubic contributions to the radiative quadrupole that enter at 4PN order, in terms of the
radiative-type canonical moments. Restoring G and c, they read

UM2×Mij

ij = 2G2M2

c6

∫ +∞

0
dτ M(5)

ij (u− τ)
[
ln2
(
τ

2r0

)
+ 107

42 ln
(
τ

2r0

)
+ 40037

8820

]
,

(IV.94a)

UM×Si×Mij

ij = 2G2M
c8 Sa|⟨i

∫ +∞

0
dτ M(6)

j⟩a(u− τ)
[
ln
(
τ

2r0

)
+ 5381

5670

]
, (IV.94b)

UM×Mij×Mij

ij = 2G2M
7c8

{
4
∫ +∞

0
dρM(4)

a⟨i(u− ρ)
∫ +∞

0
dτ M(4)

j⟩a(u− ρ− τ)
[
ln
(
τ

2r0

)
− 1541

270

]

− 50
2

∫ +∞

0
dτ ln

(
τ

2r0

)
(M(3)

a⟨iM
(4)
j⟩a)(u− τ)

− 23
∫ +∞

0
dτ ln

(
τ

2r0

)
(M(2)

a⟨iM
(5)
j⟩a)(u− τ)

− 13
∫ +∞

0
dτ ln

(
τ

2r0

)
(M(1)

a⟨iM
(6)
j⟩a)(u− τ)

− 3
∫ +∞

0
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(
τ

2r0

)
(Ma⟨iM

(7)
j⟩a)(u− τ)

− 8M(2)
a⟨i
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0
dτ M(5)

j⟩a(u− τ)
[
ln
(
τ

2r0

)
+ 25463

5040

]
− 10 M(1)

a⟨i

∫ +∞

0
dτ M(6)

j⟩a(u− τ)
[
ln
(
τ

2r0

)
+ 14503

3150

]

+ 2 Ma⟨i

∫ +∞

0
dτ M(7)

j⟩a(u− τ)
[
ln
(
τ

2r0

)
− 26407

3780

] }
. (IV.94c)
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The double integral in the first line of (IV.94c) is the genuine tail-of-memory. However,
when computing the flux, we must actually compute the time-derivative of the radiative
quadrupole. We then find that the tail-of-memory term becomes a simple tail term
in the flux, in the same manner as the quadrupole-quadrupole memory term becomes
instantaneous in the flux [173].

Of course, in this expression, the radiative quadrupole Uij is expressed in terms of the
canonical moments of the radiative construction {ML,SL}, which we are yet unable to re-
late to the source and gauge moments {IL, JL,WL,XL,YL,ZL}. However, in the previous
chapter, we had successfully established the relation (III.33) between the source moments
and canonical moments of the harmonic construction {ML, SL}. The topic of the next
chapter will thus naturally be to establish the relation between the canonical moments
in the harmonic and radiative constructions, which in our case reduces to the relation
between Mij and Mij . The end result of this study will be the expression of the radiative
quadrupole Uij in terms of the canonical moments of the harmonic construction {ML,SL}.
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Chapter V
The canonical and harmonic constructions
of the MPM waveform

This chapter is mainly based on [3, 4, 6].

In Chapter II, we have seen that the PN-MPM construction could relate the observable
radiative moments {UL,VL} to the source {IL, JL} and gauge {WL,YL,XL,ZL} moments.
Then, we saw in Chapter III that it was useful to introduce intermediate canonical mo-
ments {ML, SL}, which allow us to express the most general linearized metric in terms
of only two moments, instead of six. However, this is done at the price of deriving the
expression of the canonical moments in terms of the source and gauge moments, including
all the subtleties that can arise from dimensional regularization. Conversely, we saw in
Chapter IV that to construct the radiative moments of more complicated interactions
such as the tails-of-memory, we needed to resort to a novel radiative algorithm in nonhar-
monic coordinates. In this new algorithm, we express our seed linearized metric in terms
of two radiative-type canonical moments, {ML,SL}. As illustrated in Fig. V.1, the only
piece missing is the relation between these radiative-type canonical moments {ML,SL}
and the usual harmonic-type canonical moments {ML,SL}. This will be the topic of this
chapter

We recall that in Section II.7, we have seen that the usual MPM expansion in harmonic
coordinates leads to powers of the logarithm of the radial distance when r → +∞ (with
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t−r/c held constant), and extracting the quantities of interest in such a coordinate system
for highly nonlinear effects such as the tail-of-memory becomes quite difficult, due to the
polylogarithmic behavior of the metric at I+. On the other hand, it is known that GWs
generated by isolated systems can be also described using “radiative” type coordinates,
in which the metric admits an expansion at I+ without the polylogarithmic behavior
of harmonic coordinates. In such coordinates the field equations may be formally inte-
grated order by order when r → +∞. The paragon of radiative coordinates is the Bondi
coordinate system [183, 184] or its variant the Newman-Unti coordinate system [185].1
However the class of radiative coordinate systems (either spherical or Cartesian) is very
large [177, 157, 158].

In previous works, this was dealt with in practice by performing an ad hoc coordinate
transformation at the end of the MPM process, which lead to a new set of coordinates,
which we will now refer to as modified harmonic coordinates. However, we have seen in
Chapter IV that the tedious computation of the tail-of-memory and spin-quadrupole tail
effects cannot be performed using this trick, as it would have been extremely difficult to
guess the right coordinate transformation that can remove the far-zone logarithms from
these complicated interactions.

Fortunately, an explicit construction of radiative coordinates using the MPM expan-
sion was proposed in [160], which we have introduced in Section IV.1. This construction
is restricted to a metric which is stationary in the remote past, before some given in-
stant −T . Under this hypothesis it was proven, up to any order in a perturbative post-
Minkowskian sense, that the metric admits a Bondi-type expansion at I+ to all orders
in 1/r, and that it obeys standard definitions for asymptotic flatness/simplicity at future
null infinity [187, 188, 189]. However, the radiative MPM construction of [160] had not
been used for practical computations, until it was recently found to be extremely useful
to implement the difficult computation of the tails-of-memory and spin-quadrupole tails
at 4PN order [4], see also Chapter IV.

Nevertheless, since previous computations of tails, memory, tails-of-tails and even
tails-of-tails-of-tails in the GW flux were done using the harmonic coordinate MPM algo-
rithm [164, 173, 91, 167], the radiative construction cannot be used without understanding
how it relates to the standard harmonic construction. The aim of the present chapter
is thus to analyze and relate the different MPM constructions of the metric in harmonic
and radiative coordinates. Using a method inspired from [95], we prove that the rela-
tion between both descriptions boils down to a coordinate transformation and a simple
redefinition of the moments parametrizing the two metrics.

As a result, we find that, in the center-of-mass frame, the mass-type “canonical”
quadrupole moment in the radiative gauge, denoted below Mij , is linked to the corre-
sponding one in the harmonic gauge, say Mij , by the 4PN-accurate relation presented
in (V.41) and (V.42) below, which constitute the main result of this chapter.

Note that this is a purely three-dimensional computation, but one could suspect that it
should actually be performed in generic d dimensions. However, this is fortunately not the
case. Indeed, what is needed is the d dimensional expression of the radiative quadrupole
moment in terms of the standard canonical moments in the harmonic MPM construction.
This is obtained in two steps: first, one computes this relation in three-dimensions, then

1A detailed construction of Bondi-Newman-Unti coordinates starting from harmonic coordinates can
be found in [186].
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one performs a DDR to find the corrections to be added due to dimensional regularization.
It is the three-dimensional computation which is complicated to perform in practice in
the harmonic construction, so we will perform it in the radiative construction, then trans-
late it back to its expression in the harmonic construction thanks to the results of this
chapter. As we will see in Section VI.1.1, these subtleties are absorbed in the definition
of renormalized source moments.

The plan of the chapter is as follows. In Section V.1, we present the general formalism
to link the harmonic construction of Section III.1 to the radiative construction of Sec-
tion IV.1, by essentially adapting the results of [95]. We review the consistency of our
method in Section V.2 by applying it at the quadratic order to the case of the tail inter-
action, and then to cubic order for the tail-of-tail interaction. Finally, the full result at
cubic order (comprising the tail-of-memory and spin-quadrupole tail interactions) is given
in Section V.3. Useful integration formulas complementing those in [95] are presented in
Appendix A.3.

V.1 Relating the radiative and harmonic constructions

In Section IV.1 and III.1, we constructed two different metrics which both represent
the most general solution of the vacuum field equations outside the matter source. We
now want to relate them by imposing that they are physically equivalent, i.e. differ only
by a coordinate transformation and a multipole moment redefinition. We will then be
able to explicitly express the canonical moments of the radiative algorithm {ML,SL} as
functionals of the canonical moments of the harmonic algorithm {ML,SL}. This is the
goal of this work, motivated by the fact that the computation of the tails-of-memory
and spin-quadrupole-tails [4] has been performed using the radiative algorithm, while all
previous results, i.e. tails and tails-of-tails, and the rest of the computation of the 4PN
flux, were achieved in harmonic coordinates.

To determine the relation between {ML,SL} and {ML, SL}, we adapt the method
of [95] to the case where one of the two metrics does not satisfy the harmonic gauge con-
dition. For the purpose of this chapter, we denote the metric in the harmonic canonical
construction of Sec III.1 by hharm and the radiative canonical construction of Section IV.1
by hrad. Recalling the transformation law of the gothic metric under a coordinate trans-
formation xµ → x′µ:

hµνrad(x′) = 1
|J |

∂x′µ

∂xρ
∂x′ν

∂xσ
(
hρσharm(x) + ηρσ

)
− ηµν , (V.1)

where J ≡ det [∂x′µ/∂xν ], we look for a coordinate shift φµ such that x′µ = xµ + φµ(x),
then we have ∂x′µ/∂xρ = δµρ + ∂ρφ

µ(x) and J = det
[
δµρ + ∂ρφ

µ(x)
]
.

By construction, both hµνharm and hµνrad admit a PM expansion as given respectively
by (III.2) and (IV.1), which implies that the coordinate shift also admits the PM expansion

φµ =
∞∑
n=1

Gnφµn . (V.2)

Consistently, we assume that the respective canonical moments of the radiative and har-
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monic PM metrics also admit PM expansions,

ML =
∞∑
n=1

Gn−1Mn,L , ML =
∞∑
n=1

Gn−1Mn,L ,

SL =
∞∑
n=1

Gn−1Sn,L , SL =
∞∑
n=1

Gn−1Sn,L .
(V.3)

As it is clear from the definition (IV.2), the linear level is given by

hµνrad 1 = hµνharm 1 + ∂φµν1 , (V.4)

where the coordinate shift is simply given by the gauge vector associated to the radiative
construction, see (IV.3):

φµ1 = ξµ1 = 2M
c2 η

0µ ln
(
r

b0

)
, (V.5)

and where the moments are related by ML = ML + O(G) and SL = SL + O(G).
We then follow the reasoning of [95]. We assume by induction that we have determined

(for n ⩾ 2) the expressions of φµ, ML and SL as functionals of ML and SL up to (n−1)PM
precision, where 1PM corresponds to the linear case treated above, i.e., that we have
established the relations

φµ =
n−1∑
m=1

GmΦµ
m [MK , SK ] + O(Gn) , (V.6a)

ML ≡
n−1∑
m=1

Gm−1Mm,L [MK , SK ] + O(Gn−1) , (V.6b)

SL ≡
n−1∑
m=1

Gm−1Sm,L [MK ,SK ] + O(Gn−1) , (V.6c)

where Φm, Mm,L and Sm,L are determined m-linear functionals of ML and SL for
m ⩽ n − 1. In principle, such functionals will be nonlocal in time at higher order, i.e.
involve some hereditary-like integrals.

We then perform the expansion of (V.1) up to order nPM, where we Taylor-expand
the radiative metric to finite PM order, i.e. using

hµνrad(x′) = hµνrad
[
x+ φ(x)

]
=
∑
m⩾0

1
m! φ

λ1(x) · · ·φλm(x)∂λ1 · · · ∂λmh
µν
rad(x) . (V.7)

At the nPM order we find the relation

hµνradn(x) = hµνharmn(x) + ∂φµνn + Ωµν
n

[
hharmm, φm;m ⩽ n− 1

]
, (V.8)

where Ωµν
n is an explicitly known, nonlinear and at least quadratic, functional of the

coordinate shift and the harmonic metric at previous orders (see Footnote 2 in Chapter III
for an explicit expression).
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Thus, using the induction hypothesis, the only unknown term in (V.8) is the gauge
shift φµn, which we now determine. For this purpose, we define the quantity

∆µ
n ≡ −∂νΩµν

n . (V.9)

Taking the divergence of (V.8), and using the fact that ∂ν∂θµν = □θµ for any θµ (recall
our shorthand ∂θµν ≡ ∂µθν + ∂νθµ − ηµν∂ρθ

ρ), we find

∆µ
n = □

(
φµn − ξµn

)
. (V.10)

A difference with the treatment in [95] is to be noted here. The analogue of the
quantity ∆µ

n was defined in [95] as (∆µ
n)BFL ≡ □φµn, but because of the harmonic gauge

condition satisfied by the two metrics being related, this yielded (∆µ
n)BFL = −∂νΩµν

n ,
i.e. the same as our present definition (V.9). When the harmonic gauge condition is
relaxed it is important to proceed differently, starting from the definition (V.9) and then
deriving the result (V.10), where the gauge vector ξµn given by (IV.9) is responsible for
the nonharmonicity of the radiative metric, see (IV.12).

Next we apply the d’Alembert operator on (V.8) to obtain

Λµνradn = Λµνharmn + ∂∆µν
n + □Ωµν

n , (V.11)

where we have used the fact that □hµνrad = Λµνradn + ∂□ξµνn . To stick with the definition of
the two algorithms we must now apply the inverse d’Alembert operator with finite part
prescription on (V.11), and arrive at

uµνradn = uµνharmn + FP
B=0

□−1
ret

[(
r

r0

)B
∂∆µν

n

]
+ FP
B=0

□−1
ret

[(
r

r0

)B
□Ωµν

n

]
, (V.12)

where the uµνharmn is defined in Section III.1, while uµνradn is the equivalent quantity in the
radiative algorithm given in (IV.10). Notice that in (V.12) we assumed that the Hadamard
regularization scale r0 is the same for the harmonic and radiative constructions.

Had the □ and ∂ operators commuted with the FP□−1
ret operator, the previous equation

would obviously simplify, but because of the presence of the regularization factor (r/r0)B,
this is not the case, and we must introduce the a priori nonzero “commutators” of these
operators. So we can rewrite the previous equation as

uµνradn = uµνharmn + ∂ϕµνn + Ωµν
n +Xµν

n + Y µν
n , (V.13)

where we have introduced the two commutators

Xµν
n ≡

[
FP□−1

ret , □
]

Ωµν
n , Y µν

n ≡
[
FP□−1

ret , ∂
]

∆µν
n , (V.14)

which can also be expressed in more details as [95]

Xµν
n = FP

B=0
□−1

ret

[
B

(
r

r0

)B (
−B + 1

r2 Ωµν
n − 2

r
∂rΩµν

n

)]
, (V.15a)

Y µν
n = FP

B=0
□−1

ret

[
B

(
r

r0

)B ni

r

(
−δiµ∆ν

n − δiν∆µ
n + ηµν∆i

n

)]
. (V.15b)
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Note the very important presence of the explicit B factor is the expressions of Xµν
n

and Y µν
n , which will select the pole of the Laurent series when B → 0. In addition to

simplifying considerably the computations, this implies that we have □Xµν
n = □Y µν

n = 0.
We also define

ϕµn ≡ FP
B=0

□−1
ret

[(
r

r0

)B
∆µ
n

]
. (V.16)

Beware that this object is not the complete gauge transformation vector φµn, as other
contribution will show up later.

To apply the harmonicity algorithm we compute the divergence of (V.13):

wµradn = wµharmn + ∂ν
(
Xµν
n + Y µν

n

)
, (V.17)

where we have used ∂ν [∂ϕµνn ] = □ϕµn = ∆µ
n. We can check that □wµradn = 0, which is

a necessary requirement to proceed with the MPM algorithm. Next we define Zµνn ≡
Vµν [Wn], where Vµν is the harmonicity algorithm applied to Wµ

n ≡ ∂ν(Xµν
n +Y µν

n ), hence
Zµνn is a solution to the vacuum equation whose divergence is exactly opposite to Wµ

n ,
and we obtain

vµνradn = vµνharmn + Zµνn . (V.18)

Piecing it all together, we find that

hµνradn = hµνharmn + ∂ϕµνn + ∂ξµνn + Ωµν
n + Hµν

n , (V.19)

where Hµν
n ≡ Xµν

n + Y µν
n + Zµνn is a divergenceless retarded homogeneous solution of the

linearized Einstein vacuum equations, i.e., satisfying at once □Hµν
n = 0 and ∂νHµν

n = 0.
In this respect, it can be uniquely parametrized [92] by two multipole “source-type”
moments δnML and δnSL, which are functionals of {ML,SL}, along with a gauge vector
ζµn parametrized by four “gauge-type” moments, as in (37) of [14].

Up to this step, we have assumed that we had related ML and SL to ML and SL to
(n − 1)PM precision. We can now redefine ML → ML − Gn−1δnML and SL → SL −
Gn−1δnSL so as to obtain this relationship up to nPM precision. This will not affect
the result found in the recursion hypothesis since the correction is at nPM precision, but
it will absorb the δnML and δnSL moments into the linear approximation hµνrad 1 of the
radiative metric. Since we are correcting {ML,SL} which parametrize the radiative metric
in the left-hand-side of (V.19), and not {ML,SL} in the right-hand-side, the expression
for Ωµν , which only depends on {ML, SL}, does not need to be corrected.2 Finally, after
this moment redefinition, we find that the two metrics are related by

hµνradn = hµνharmn + ∂φµνn + Ωµν
n , (V.20)

in which we have finally explicitly determined the looked-for gauge vector as

φµn ≡ ϕµn + ξµn + ζµn . (V.21)
2A different yet totally equivalent method consists instead in redefining the linearized harmonic met-

ric hµν
harm 1 in the right-hand side, namely by applying the redefinitions ML → ML + Gn−1δnML and

SL → SL +Gn−1δnSL, but in that case we must include corrections due to the “renormalization” of Ωµν .
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By construction, this vector is a functional of ML and SL, so we can write

φµ =
n∑

m=1
GmΦµ

m [MK , SK ] + O(Gn+1) . (V.22a)

Simarly, the corrections δnML ≡ Gn−1Mn,L[MK , SK ] and δnSL ≡ Gn−1Sn,L[MK ,SK ] are
also functionals of ML and SL, and we find

ML ≡
n∑

m=1
Gm−1Mm,L [MK ,SK ] + O(Gn) , (V.22b)

SL ≡
n∑

m=1
Gm−1Sm,L [MK , SK ] + O(Gn) . (V.22c)

This completes the recursion procedure, and we have thus proven that we can explicitly
construct φµ, ML and SL as functionals of ML and SL to any finite PM order.

V.2 Application to nonlinear tail interactions

V.2.1 Quadratic tails

We employ the method exposed in Section V.1 to explicitly construct the relation
between the radiative and harmonic metrics at quadratic order, to all relevant orders in
1/r. To do so, we will focus on the tail effect, which arises due to the interaction between
the static mass M and the various dynamical mass and current multipole moments, thus
generating features in the waveform that are nonlocal in time. As it is the goal of our work,
we focus on the corrections to the mass quadrupole moment Mij , but the computations
presented hereafter are easily generalized to the tails of other moments.

Recall that at 4PN order, other quadratic interactions enter the relation between the
quadrupole moment Mij and the observable at infinity (dubbed “radiative moment”),
such as the memory type interaction Mij × Mij that enters the metric at 2.5PN order.
Nevertheless, here we are looking for the relation between the two quadrupole moments
Mij and Mij in the two algorithms, and this relation at quadratic order must involve
the mass M which parametrizes the linearized gauge vector (IV.3). It follows that the
only quadratic multipole interaction which can contribute to the relation between the two
moments is M × Mij , and we shall find that this relation is purely instantaneous in this
case.

In order to obtain the relation between the harmonic and radiative metrics, and thus
the associated correction to the quadrupole moments, we will in fact use two independent
methods: (i) the one exposed in Section V.1, which does not require knowing the full
expressions of the quadratic metrics; and (ii) the explicit computation and comparison
of the full harmonic and radiative metrics. We will find exactly the same result, thus
confirming the soundness of the method exposed in Section V.1.

Let us first derive the complete metrics for the tail interaction in the two harmonic and
radiative algorithms, and read off the quadrupole moments from these two metric in both
coordinates. We shall check that the difference between those two quadrupole moments
perfectly match the prediction following from the general procedure in Section V.1. The
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tail sector of the metric in the harmonic algorithm is given in Appendix B of [164], and
reads3

h00
harm M×Mij

= 8Mnab

∫ ∞

1
dxQ2(x)M(4)

ab (t− rx)

+ Mnab
r

(
10M(3)

ab + 7r−1M(2)
ab − 21r−2M(1)

ab − 21r−3Mab

)
, (V.23a)

h0i
harm M×Mij

= 8Mna

∫ ∞

1
dxQ1(x)M(4)

ai (t− rx)

+ Mniab
r

[
− 1

3M(3)
ab − r−1M(2)

ab − r−2M(1)
ab

]
+ Mna

r

[19
3 M(3)

ai − 5r−1M(2)
i − 5r−2M(1)

ai

]
, (V.23b)

hijharm M×Mij
= 8M

∫ ∞

1
dxQ0(x)M(4)

ij (t− rx)

+ Mnijab
r

[
− 1

2M(3)
ab − 3r−1M(2)

ab − 15
2 r

−2M(1)
ab − 15

2 r
−3Mab

]
+ Mδijnab

r

[
− 11

6 M(3)
ab − 2r−1M(2)

ab − 1
2r

−2M(1)
ab − 1

2r
−3Mab

]
+

Mna(i
r

[
4M(3)

j)a + 6r−1M(2)
j)a + 6r−2M(1)

j)a + 6r−3Mj)a

]
+ M

r

[
− 11

3 M(3)
ij − 4r−1M(2)

ij − r−2M(1)
ij − r−3Mij

]
, (V.23c)

where Qm(x) denotes the Legendre function of the second kind as defined in (IV.18).
On the other hand, we have applied in Section IV.2 the radiative construction of [160]

for this same particular tail interaction, thus following the radiative algorithm described in
Section IV.1. The moments involved in the construction of the tail sector of the radiative
metric are M and Mij in this construction (recall that M = M). Following our convention
to denote the coordinates by dummy variables (t, r,n), which correspond here to the
radiative coordinate system which defines the radiative metric, the tail metric in the
radiative algorithm is explicitly given by (IV.16). The main difference between the two
expressions (V.23) and (IV.16) of the metric is that the tail terms are given by integrals
over the Legendre function Qm(x) in the harmonic case while the tails in the radiative
case are given by integrals over the particular combination Qm, defined in (IV.17).

It is easy to see why the tail terms in the harmonic metric involving Qm(x) generate
logarithms in the far-zone expansion r → +∞, while the particular combination Qm(x, r)
defined by (IV.17) does not produce any logarithms of r in the radiative metric, although
the tail terms are still given by a “hereditary” integral, of course. Posing τ = r(x − 1)
and u = t− r the tail integral reads∫ +∞

1
dxQm(x)F (t− rx) = 1

r

∫ +∞

0
dτ Qm

(
1 + τ

r

)
F (u− τ) , (V.24)

where the function F (t) is a time derivative of the multipole moment and we recall that
it vanishes identically for t < −T (stationarity in the past). Hence, as shown in [164, 91]

3For the sake of lightness, we set c = 1 throughout Section V.2.
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the far-zone limit r → +∞ (with u ≡ t − r held constant) of the tail integral can be
obtained by inserting the expansion of the Legendre function when x → 1+. Using the
expression (IV.18) for the Legendre functions and expanding around x → 1+, we obtain
the following formal expansion series when r → +∞,

Qm
(
1 + τ

r

)
= −1

2Pm
(
1 + τ

r

)
ln
(
τ

2r

)
+

∞∑
k=0

λmk

(
τ

r

)k
, (V.25a)

where λmk = −
min(m, k−1)∑

i=0

(−)k−i(m+ i)!
2k+1(k − i)(m− i)!(i!)2

−
m∑

j=k+1

k∑
i=0

(m+ 2i− j)!(k + j − 2i− 1)!
2k(j − i)(m− j)!(j − k − 1)!(i!)2[(k − i)!]2 , (V.25b)

and where the dependencies in ln r are contained in the first term of (V.25a). We can see
that the first term in the expression of λmk vanishes for k = 0 (yielding λm0 = −Hm where
Hm is the usual harmonic number) and the second term vanishes for k ⩾ m.

Conversely, the tail terms in radiative coordinates written in terms of the combination
Qm(x, r) do not produce any logarithms in the far-zone expansion. Indeed we have∫ +∞

1
dxQm(x, r)F (t− rx) = 1

r

∫ +∞

0
dτ
[
Rm

(
1 + τ

r

)
− 1

2Pm
(
1 + τ

r

)
ln
( τ

2r0

)]
F (u− τ) ,

(V.26)
where u ≡ t − r is the retarded time of the radiative coordinates, and where we have
defined

Rm(x) ≡ Qm(x) + 1
2Pm(x) ln

(
x− 1

2

)
, (V.27)

which is regular when x → 1+. Since the integrand of (V.26) is regular as r → +∞, this
integral’s expansion for large r is free of any logarithmic terms. Furthermore, we find
that the first term in (V.26) admits the following asymptotic expansion in simple powers
of 1/r, ∫ +∞

0
dτ Rm

(
1 + τ

r

)
F (u− τ) =

∞∑
k=0

k!λmk
F (−k−1)(u)

rk
. (V.28)

All of this is illustrated by the expression of the leading far-zone limit of (V.23)
and (IV.16). In harmonic coordinates we have

h00
harm M×Mij

= − 4Mnab
r

∫ +∞

0
dτ
[

ln
(
τ

2r

)
+ 1

2

]
M(4)
ab (u− τ) + O

( ln r
r2

)
, (V.29a)

h0i
harm M×Mij

= − 4Mna
r

∫ +∞

0
dτ
[

ln
(
τ

2r

)
+ 5

12

]
M(4)
ia (u− τ)

− M
3rniabM

(3)
ab + O

( ln r
r2

)
, (V.29b)

hijharm M×Mij
= − 4M

r

∫ +∞

0
dτ
[

ln
(
τ

2r

)
+ 11

12

]
M(4)
ij (u− τ)

+ M
r

[
−1

2nijabM
(3)
ab + 4na(iM

(3)
j)a − 11

6 δijnabM
(3)
ab

]
+ O

( ln r
r2

)
, (V.29c)
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which clearly exhibits the usual far-zone logarithms associated with harmonic coordinates.
By contrast the leading far-zone behavior of the radiative metric reads

h00
rad M×Mij

= − 4Mnab
r

∫ +∞

0
dτ
[

ln
(
τ

2r0

)
+ 31

30

]
M(4)
ab (u− τ) + O

( 1
r2

)
, (V.30a)

h0i
rad M×Mij

= − 4Mna
r

∫ +∞

0
dτ
[

ln
(
τ

2r0

)
+ 77

60

]
M(4)
ia (u− τ)

+ M
r
niabM

(3)
ab + O

( 1
r2

)
, (V.30b)

hijrad M×Mij
= − 4M

r

∫ +∞

0
dτ
[

ln
(
τ

2r0

)
+ 107

60

]
M(4)
ij (u− τ)

+ M
r

[
−1

2nijabM
(3)
ab + 4na(iM

(3)
j)a − 1

2δijnabM
(3)
ab

]
+ O

( 1
r2

)
, (V.30c)

hence the expansion of the tail term is now free of logarithms, although it now depends
on the Hadamard regularization scale r0.

Now that we have both explicit metrics including tail terms (V.23) and (IV.16) at our
disposal, we can check that they are indeed physically equivalent to this order. This means
that the two metrics should differ by a nonlinear coordinate transformation together with
the redefinition of the quadrupole moment Mij −→ Mij , i.e. that

hµνrad Mij
+Ghµνrad M×Mij

= hµνharm Mij
+G

[
hµνharm M×Mij

+ ∂φµνM×Mij
+ Ωµν

M×Mij

]
+ O(G2) ,

(V.31)
where the radiative metric in the left-hand side is defined with Mij and the right-hand side
is defined with Mij , and with a linear gauge transformation vector φµM×Mij

and Ωµν
M×Mij

the nonlinear part of the coordinate transformation. Moreover, recall that at the linear
level, there is only a mass monopole contribution to the gauge vector, φµM ≡ ξµM as given
by (IV.3), and in particular φµMij

is vanishing.
Applying the general procedure of Section V.1, we find that the relevant gauge vector

corresponding to the tail interaction, given explicitly by (V.21), reads

φ0
M×Mij

= −4M
3r nabM

(2)
ab , φiM×Mij

= 0 , (V.32a)

whereas the nonlinear correction term, defined by Footnote 2, reads

Ω00
M×Mij

= −4M∂ab

[
r−1 ln

(
r

b0

)
M(1)
ab

]
− 8M

r3 nabM
(1)
ab , (V.32b)

Ω0i
M×Mij

= 4M∂a

[
r−1 ln

(
r

b0

)
M(2)
ai

]
, (V.32c)

Ωij
M×Mij

= −4M
r

ln
(
r

b0

)
M(3)
ij . (V.32d)

Most importantly, after computing the explicit expression of Hµν
n using the general method

described in Section V.1, we determine that this coordinate transformation must be as-
sociated with the following redefinition of the mass quadrupole moment:

Mij = Mij +GM
[
−26

15 + 2 ln
(
r0
b0

)]
M(1)
ij + O(G2) . (V.33)
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It is straightforward to show that the relation (V.31) is satisfied, to all orders in 1/r and
for φµM×Mij

and Ωµν
M×Mij

defined by (V.32), if and only if the moment redefinition given
by (V.33) holds, hence confirming the soundness of the method of Section V.1.

We can also discuss this equivalence, in a simpler way, directly at the level of the
radiative quadrupole moment Uij defined at future null infinity I+ in both constructions.
Note that in previous works on tails and iterated tails in harmonic coordinates [164, 91,
161, 167], it was shown that the leading logarithms present in the asymptotic waveform
(following the algorithm of Section III.1), can be removed by just the linear coordinate
transformation x′µ = xµ+Gξµ1 , where ξµ1 is given by (IV.3). In the case of quadratic tails,
this ad hoc procedure, followed by a transverse-traceless (TT) projection of the spatial
metric, yields the radiative moment:

Uij(u) = M(2)
ij (u) + 2GM

∫ +∞

0
dτ
[

ln
(
τ

2b0

)
+ 11

12

]
M(4)
ij (u− τ) + O(G2) . (V.34)

Here Mij is the canonical moment associated to the harmonic-coordinate construction,
and again we use the dummy notation u = t − r for the retarded time in radiative
coordinates. Notice that the effect of this coordinate transformation is to replace the
logarithm ln r in harmonic coordinates by the constant ln b0.

On the other hand, when following the procedure for the radiative construction
(namely the algorithm of Section IV.1), the associated radiative moment is given by
(IV.22a), which we reproduce here:

Uij(u) = M(2)
ij (u) + 2GM

∫ +∞

0
dτ
[

ln
(
τ

2r0

)
+ 107

60

]
M(4)
ij (u− τ) + O(G2) .

Of course this object is the same as in (V.34), however it is expressed in terms of the
canonical moment Mij associated to the radiative algorithm. As one can immediately
check, the relation (V.33) we have found between the two canonical moments exactly rec-
onciles the results (V.34) and (IV.22a), which again confirms our method in Section V.1.

V.2.2 Cubic tails-of-tails
We have pushed these calculations to cubic order to include the tail-of-tail effect, due

to the nonlinear interaction M×M×Mij , extending (V.34) and (IV.22a) to the next order
in G. In the harmonic algorithm, after the suitable coordinate transformation to get rid
of the logarithms, we find [91, 161]

Uij = M(2)
ij + 2GM

∫ +∞

0
dτ
[

ln
(
τ

2b0

)
+ 11

12

]
M(4)
ij (u− τ)

+ 2G2M2
∫ +∞

0
dτ
[

ln2
(
τ

2b0

)
+ 11

6 ln
(
τ

2b0

)
− 107

105 ln
(
τ

2r0

)
+ 124627

44100

]
M(5)
ij (u− τ)

+ O(G3) . (V.35)

Note that this result involves two arbitrary scales, which are important to distinguish: the
scale b0 which enters the asymptotic coordinate transformation u −→ u− 2GM ln(r/b0),
and, at cubic order, the Hadamard regularization scale r0. It is known [190, 191] that
r0 can be interpreted as a renormalization scale and its running obeys a renormalization
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group equation. Indeed, we recognize the coefficient in front of the ln(r0) in (V.35):
it is exactly the beta-function coefficient associated to the renormalization of the mass
quadrupole moment, given to be β2 = −214

105 in (45) of [190].
On the other hand, we know from Chapter IV that the tails-of-tails have a different

expression when using the radiative algorithm described in Section IV.1. Adding the
linear and quadratic contributions to (IV.94a), we obtain

Uij = M(2)
ij + 2GM

∫ +∞

0
dτ
[

ln
(
τ

2r0

)
+ 107

60

]
M(4)
ij (u− τ)

+ 2G2M2
∫ +∞

0
dτ
[

ln2
(
τ

2r0

)
+ 107

42 ln
(
τ

2r0

)
+ 40 037

8820

]
M(5)
ij (u− τ) + O(G3) .

(V.36)

Finally by employing the method of Section V.1 up to cubic order for tails and tails-of-
tails we have obtained the relationship between the quadrupoles in the two constructions
as

Mij = Mij +GM
[
−26

15 + 2 ln
(
r0
b0

)]
M(1)
ij

+G2 M2
[124

45 − 52
15 ln

(
r0
b0

)
+ 2 ln2

(
r0
b0

)]
M(2)
ij + O(G3) .

(V.37)

This result is indeed the unique relationship between the moments that reconciles the
two results (V.35) and (V.36). Notice that the constant scale b0 in (V.37) was introduced
“automatically” in the linear gauge transformation between the harmonic and radiative
linear metrics, see (IV.2)–(IV.3). This scale is identical to the one introduced “by hand”
in harmonic coordinates, see (3.1) in [161] or (4.2) in [167].

As discussed in the introduction, the previous ad hoc method for removing the loga-
rithms in the harmonic metric was satisfactory for tails and iterated tail interactions since
the coordinate transformation could easily be guessed. However, when considering more
complicated nonlinear interactions such as the tails-of-memory occurring at 4PN order,
the coordinate transformation is more difficult to implement, and it is more convenient
to switch to the radiative algorithm since it directly constructs the metric in radiative
coordinates and automatically removes the logarithms. The price we have to pay is that,
in the end, we must apply the correction {ML,SL} −→ {ML, SL} in order to match
with previous results derived in harmonic coordinates, and most importantly the explicit
expressions of {ML, SL} as functions of the source at 4PN order [95].

V.3 Cubic tail-of-memory interactions at 4PN order
We now apply our method to the cubic “tails-of-memory” interaction M × Mij × Mij ,

as well as the cubic M × Mij × Si interaction that also enters at 4PN order. The new
feature in the radiative algorithm is that, from the quadratic order onward, we must apply
the gauge transformation defined by (IV.9). This gauge transformation is zero for the
interactions M × M and M × Mij , hence to control the tails-of-memory we only need the
gauge vector for the quadrupole-quadrupole interaction Mij ×Mij . We find [173] that the
source term reads

σMij×Mij = n̂ijab M(3)
ij M(3)

ab − 24
7 n̂ij M(3)

ia M(3)
ja + 4

5M(3)
ab M(3)

ab , (V.38)
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hence the gauge vector (IV.9) upon integration explicitly reads

ξ0
Mij×Mij

=
∫ u

−∞
dv
∫ +∞

1
dx
{

−1
2 n̂ijabQ4(x)M(3)

ij M(3)
ab + 12

7 n̂ij Q2(x)M(3)
ia M(3)

ja

− 2
5 Q0(x)M(3)

ab M(3)
ab

}(
v − r(x− 1),n

)
, (V.39a)

ξiMij×Mij
=
∫ u

−∞
dv
∫ +∞

1
dx
{

−1
2 n̂iabpq Q5(x)M(3)

ab M(3)
pq + 16

9 n̂iabQ3(x)M(3)
ak M(3)

kb

− 2
9 n̂abkQ3(x)M(3)

ai M(3)
bk − 22

35 n̂iQ1(x)M(3)
ab M(3)

ab

+ 24
35 n̂aQ1(x)M(3)

ik M(3)
ka

}(
v − r(x− 1),n

)
. (V.39b)

For this interaction, the nonlinear correction term vanishes, i.e. Ωµν
Mij×Mij

= 0, and
it automatically follows that ∆µ

Mij×Mij
= 0, ϕµMij×Mij

= 0, and Hµν
Mij×Mij

= 0. This
means that there are no corrections to the moments due to this interaction, and since
ζµMij×Mij

= 0, the total shift vector reduces to

φµMij×Mij
= ξµMij×Mij

. (V.40)

When computing the cubic metric, we need also the quadratic M×M interaction, and this
one is trivially computed: the gauge vector vanishes, φµM×M = 0, while the only nonzero
component of the correction term is Ω00

M×M = 4M2/r2.
A straightforward dimensional analysis shows that the only cubic interactions which

can enter the relation between the canonical moments Mij and Mij up to the 4PN order
in the frame of center-of-mass (for which Mi = Mi = 0), are precisely the tail-of-tail
interaction M×M×Mij already computed in the previous section, which is at 3PN order,
and the cubic interactions M × Mij × Mij and M × Mij × Si. Hence we limit ourselves
to 4PN order. Implementing the calculation using the technical formulas displayed in
Appendix A.3, we then find that the complete relation up to 4PN order between the
moments is (restoring at this point the factors 1/c)

Mij = Mij +
[
−26

15 + 2 ln
(
r0
b0

)]
GM
c3 M(1)

ij

+
[124

45 − 52
15 ln

(
r0
b0

)
+ 2 ln2

(
r0
b0

)]
G2M2

c6 M(2)
ij

+ G2M
c8

[
− 8

21 Ma⟨iM
(4)
j⟩a − 8

7 M(1)
a⟨iM

(3)
j⟩a − 8

9 M(3)
a⟨iSj⟩|a

]
+ O

( 1
c9

)
,

(V.41)

where have posed Si|j ≡ ϵijkSk for the angular momentum, and angular brackets denote
the STF projection. We can easily invert the previous relation: using the fact that for
the conserved quantities M = M and Si = Si, we find

Mij = Mij +
[26

15 − 2 ln
(
r0
b0

)]
GM
c3 M(1)

ij

+
[ 56

225 − 52
15 ln

(
r0
b0

)
+ 2 ln2

(
r0
b0

)]
G2M2

c6 M(2)
ij

+ G2M
c8

[ 8
21 Ma⟨iM

(4)
j⟩a + 8

7 M(1)
a⟨iM

(3)
j⟩a + 8

9 M(3)
a⟨iSj⟩|a

]
+ O

( 1
c9

)
.

(V.42)
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Note that the correction terms we find in (V.41)–(V.42) are purely local (no hereditary
integrals at this order). Recall that they depend on the two constant scales: r0 the
Hadamard regularization scale (or renormalization scale [190, 191]) entering into both
harmonic and radiative constructions of the metric (and supposed to be identical in the
two constructions), and b0 the scale used in the harmonic construction when defining ob-
servable quantities at infinity, and equivalently entering the gauge transformation between
the harmonic and radiative linear metrics, see (IV.2)–(IV.3).

With the result (V.41) in hand, we are now able to reexpress in terms of Mij our re-
sults for the tails-of-memory (IV.94c) and spin-quadrupole tails (IV.94b), which were
performed following the radiative algorithm in terms of the moment Mij . The mo-
ment redefinition (V.41) should be inserted into the linear and quadratic contributions
to the radiative quadrupole written in terms of the radiative metric (IV.22), so as to
yield a correction at cubic order. This correction should be understood in the following
sense: let Ucubic,rad

ij [ML,SL] be the functional expression for the cubic part of the radia-
tive quadrupole in terms of the radiative moments, as worked out in (IV.94). Then its
counterpart in terms of the harmonic moments, simply denoted Ucubic

ij [ML, SL], is given
by

Ucubic
ij [ML,SL] = Ucubic,rad

ij [ML, SL] + δUcubic,rad
ij [ML, SL] , (V.43)

where Ucubic,rad
ij [ML, SL] means that we simply substituted the radiative moments with the

harmonic moments in the radiative functional, and where δUcubic,rad
ij [ML,SL] represents

the correction to be applied due to the moment redefinition (V.41). We find

δUcubic,rad
ij = G2M2

c6

{[
−52

15 + 4 ln
(
r0
b0

)] ∫ +∞

0
dτ ln

(
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M(5)
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+
[
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75 + 11
3 ln

(
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)
+ 2 ln2
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)]
M(4)
ij

}

+ G2M
c8
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[
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+
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(
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c8 Sa|⟨i

[22
15 − 2

3 ln
(
r0
b0

)]
M(5)
j⟩a . (V.44)

In this manner, we readily obtain the expressions for the three cubic contributions to
the radiative quadrupole, namely the tail-of-tail, the spin-quadrupole tail and the tail-of-
memory, expressed in terms of the usual, harmonic, canonical moments {ML, SL}. They
read

UM2×Mij

ij = 2G2M2

c6

∫ +∞

0
dτ M(5)

ij (u− τ)
[

ln2
(
τ

2b0

)
+ 11

6 ln
(
τ

2b0

)
− 107

105 ln
(
τ

2r0

)
+ 124627

44100

]
, (V.45a)
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UM×Si×Mij

ij = −2G2M
3c8 Sa|⟨i

∫ +∞
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(V.45b)

UM×Mij×Mij

ij = 2G2M
7c8
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4
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. (V.45c)

We can see that the b0 constant, which is associated to a choice for the origin of time,
can be eliminated at the level of the full radiative quadrupole at 4PN order by the shift
in the time coordinate

u′ = u+ 2GM
c3 ln(b0) ,

along with a Taylor expansion of the canonical quadrupole moment,

Mij(u′) = Mij(u) + 2GM
c3 ln(b0)M(1)

ij (u) + 2G2M2

c6 ln2(b0)M(2)
ij (u) + O

( 1
c9

)
.

This is a nice sanity check, as this arbitrary constant must disappear from final observable
results. The fate of the r0 constant will be treated in Section V.4.

Moreover, we now recall that the leading-order quadratic memory term, see e.g. (5.10)
in [173], reads

Umem
ij = − 2G

7c5

∫ +∞

0
dρM(3)

a⟨i(u− ρ)M(3)
j⟩a(u− ρ) + O(G2) . (V.46)

We find here that the genuine tail-of-memory given by the first term of (V.45c) can be
obtained simply by replacing in (V.46) the canonical quadrupole moment Mij by the
radiative quadrupole moment itself, including the dominant tail effect, i.e.

M(2)
ij −→ Uij = M(2)

ij + 2GM
c3

∫ +∞

0
dτM(4)

ij

[
ln
(
cτ

2b0

)
+ 11

12

]
+ O

( 1
c5

)
, (V.47)

along with a reexpansion at cubic order and an integration by parts (the constant 11/12
is irrelevant here). With our result (V.45c), we thus explicitly retrieve at this order the
expression of memory effects computed using the radiative moments defined at future null
infinity, see e.g. [192, 193].
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V.4 Corrections due to the dimensional regularization of radiative mo-
ments

The results presented in the previous section are correct in the ordinary
three-dimensional MPM algorithm. Nevertheless, the treatment of the dynamics of point-
masses imposes to use a d-dimensional regularization scheme (see Section II.4), starting
at the 3PN order [194, 102]. For consistency purposes, it is thus required to perform
the MPM algorithm in d dimensions too, with the help of DDR techniques like those
mentioned in Section II.4. As proved in [162], the expression of the radiative multipole
moments in terms of the d-dimensional canonical ones differs from the expression in terms
of the three-dimensional canonical moments, and even exhibit divergences in the form of
simple poles that scale as 1/ε ≡ 1/(d − 3). These poles will cancel against other poles
arising in the d-dimensional source moments, as it has been established in [163, 162],
which is a crucial check of the method.

Let us summarize how the expression of the radiative moments required for the 4PN
flux in terms of the d-dimensional canonical moments differs from the three-dimensional
expression. Since the divergences hits at 3PN order, only the mass quadrupole and
octupole, as well as the current quadrupole, are affected. In the center-of-mass frame, we
denote by U (3)

L [MK ,SK ] and V(3)
L [MK ,SK ] the expression of radiative moments seen as

functionals of the three-dimensional canonical moments, as given for example in (V.45).
One can then formally replace the three-dimensional moments by d-dimensional moments,
which we denote by U (3)

L [M(d)
K , S(d)

K ] and V(3)
L [M(d)

K ,S(d)
K ], but note that these quantities are

not equal to the physical radiative moments. Instead, the radiative moments expressed
in terms of the d-dimensional canonical moments read (see (6.1) in [162])

Uij = U (3)
ij [M(d)
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K ] − 214
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a⟨iSj⟩|a

]
, (V.48a)

Uijk = U (3)
ijk [M(d)

K ,S(d)
K ] − 21

26
G2M2

c6

(
Πε + 9281

2730

)
M(5)
ijk , (V.48b)

Vi|jk = V(3)
i|jk[M

(d)
K ,S(d)

K ] − 214
105

G2M2

c6

(
Πε + 4989

44940

)
S(4)
i|jk , (V.48c)

where we drop the (d) superscript in the higher-order corrections (they do not differ from
their three-dimensional counterparts at this order), where we employ the notations of
Section III.3.1 for current moments, and where we have introduced the quantity

Πε = − 1
2ε + ln

(
r0

√
q̄

ℓ0

)
, (V.49)

with q̄ ≡ 4πeγE . The constant ℓ0 is the length-scale associated with dimensional regular-
ization, such that G = ℓε0GN relates to the Newton constant GN (see Section II.4). As
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expected, the numerical constants associated with the poles at 3PN are the β-coefficients
of the renormalization group flows for these multipole moments [190, 191, 195] (see [196]
for the computation using the renormalization group flow of high-order logarithmic effects
in the conservative energy function).

An important point to make, is that, as a consequence of those dimensional-regularization
corrections, the r0 disappears from the expression (V.45) of the radiative quadrupole in
d dimensions (for any mode m > 0), and is replaced by ℓ0. Indeed, as pointed out in [4],
when isolating the contribution of ln(r0) to the radiative quadrupole for the three cubic
interactions given by (V.45), we find

Ucubic
ij = ln(r0)

[214
105

G2M2

c6 M(4)
ij + G2M

c8

(
4M(2)

a⟨iM
(4)
j⟩a + 32

7 M(1)
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j⟩a + 4

7Ma⟨iM
(6)
j⟩a

)
+ 4G2M

3c8 Sa|⟨iM
(5)
j⟩a

]
+
(
terms independent of ln(r0)

)
+ O

( 1
c9

)
. (V.50)

This expression exactly cancels the ln(r0) terms arising in the second time derivative
of the dimensional-regularization contributions given in (V.48), which accounts for the
contribution of the dimensional regularization of the cubic interactions to the renormalized
canonical quadrupole moment for compact binaries. This nontrivial effect translates the
fact that we have properly converted from Hadamard to dimensional regularization, and
is a strong technical test of our expression for the radiative quadrupole moment. Last,
but not least, we announce that the unphysical scale ℓ0 will also disappear from any
observable result, as we will see in Chapter VI.

As we shall see in Section VI.1.1, the poles present in (V.48) will actually be canceled
by poles coming from the d-dimensional expression of the source multipole moments.
Thus the correction terms (V.48) will play the role of “counter-terms” (roughly speaking)
for the cancellation of the divergences in the computation of the source moments. In
particular this will lead in Section VI.1 to a notion of “renormalized” source quadrupole
moment at the 4PN order, which is useful in some intermediate steps of our calculation.



108 Chapter V. The canonical and harmonic constructions of the MPM waveform



Chapter VI
The 4PN waveform for quasicircular orbits

This chapter is mainly based on [5, 6].

This chapter is devoted to collecting all the different pieces needed to finally compute
the flux at 4.5PN order and the (2, 2) mode at 4PN order. In Section VI.1, we recall
the definition and expressions of the renormalized source moments that are needed for
the 4.5PN flux and 4PN waveform, as well as the relevant relations between canonical
and source moments. We also discuss some extra contributions that we need to add to
the mass-type source quadrupole moment. In Section VI.2, we review the expressions of
all the required radiative moments in terms of the canonical moments, which completes
our results from Chapters IV and V. In Section VI.3, we develop some new techniques
needed to reduce our results to the case of quasicircular orbits. In particular, we discuss
the post-adiabatic contribution to the tails and the formulas needed to compute the tails
of memory. Finally, we present the 4PN modes in Section VI.4 and the 4.5PN flux in
Section VI.5. Thanks to the 4PN conservative energy of (II.55), we are then able to
compute the frequency chirp in Section VI.6 and the phase of the GW in Section VI.7.

VI.1 The renormalized source moments

VI.1.1 Corrections to the renormalized source quadrupole moment

In dimensional regularization, the expression of the source moments in terms of the
source differs from the three-dimensional case. Indeed, we recall [98, 163, 162] that the
source mass-type multipolar moment is given in terms of the source as

I(d)
ij = d− 1

2(d− 2) FP
B=0

∫ ddx
ℓd−3

0

(
r

r0

)B {
x̂ijΣ[2] − 4(d+ 2)

c2d(d+ 4) x̂ijaΣ
(1)
a[3]

+ 2(d+ 2)
c4d(d+ 1)(d+ 6) x̂ijabΣ

(2)
ab[4] − 4B(d− 3)(d+ 2)

c2(d− 1)d(d+ 4) x̂ija
xb
r2 Σab[3]

}
,

(VI.1)
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where we have the notation

S[ℓ] =
∞∑
k=0

1
22kk!

Γ
(
ℓ+ d

2

)
Γ
(
ℓ+ d

2 + k
) (r

c

∂

∂t

)2k
S(t,x) , (VI.2)

where S stands for Σ(n), Σ(n)
a or Σ(n)

ab . Generically, such a definition leads to the appear-
ance of poles in ε, such that the d → 3 limit of I(d)

L is not well defined, and thus one does
not retrieve the three dimensional definition IL. This feature is not a problem as long
as DR is correctly implemented in the full PN-MPM construction. In particular, we find
that the poles vanish in the observable radiative moments, and that we smoothly recover
the 3D limit for all observable quantities.

In [163, 162] , the source mass quadrupole moment was computing using dimensional
regularization. However, since the publication of this result, it was discovered that two
extra contributions should be added. First it was found that some terms need to be
added in the near-zone PN iteration, which are due to the fact that the d’Alembert
operator □ and the near-zone regularized inverse d’Alembertian FPB=0 □

−1
ret (see [99, 100]

for a definition) do not commute in general. This leads to some extra terms that need to
be added to the source quadrupole, which first appear at 4PN, which are related to the
contributions of “d’Alembertian commutators” of the type

[
FPB=0 □

−1
ret ,□

]
. For binary

systems on general orbits and in a center-of-mass frame, it was shown in [6] that these
extra terms read

δIij = −4G3m4ν2

r12c8

(
v2

12 − 3ṙ12 − Gm

r12

)
n̂ij12 + O

( 1
c9

)
. (VI.3)

Luckily, it was found that this contribution vanishes in the case of quasicircular orbits (at
least at 4PN order), so it will not affect our results and we refer the interested reader to
the discussion in Section III of [6].

The second contribution plays a more important role. Indeed, it was initially found
in [162] that the pole that appeared in the computation of (VI.1) was exactly compen-
sated by another pole arising in the relation between canonical moments and radiative
moments, see (V.48). This observation led to the notion of a renormalized canonical
moment. However, in this computation, one actually needs to add an extra contribution
to the source quadrupole in d dimensions I(d)

L , which leads to the appearance of yet an-
other pole, which exactly cancels the pole arising in the d-dimensional relation between
canonical and source moments, see (III.33). This cancellation was required by the for-
malism, but is highly nontrivial and thus consists in a very important technical check of
our computation. The origin of this second contribution is as follows: when computing
the equations of motions at 4PN order, the tail effect, which enters as a radiation mode
in the conservative dynamics described by the Fokker action, has been implemented with
the canonical quadrupole moment Mij [130]. Indeed, no tail contribution involving the
gauge moments (in particular the interaction M × W) has been considered in this calcu-
lation. This is correct for the equations of motion since the gauge moments result in a
physically irrelevant shift of the equations of motion. Moreover, as described in [163], this
tail effect in the acceleration is taken into account in the computation of the source mass
quadrupole moment. However, we found that there is a mismatch between the coordinate
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systems used in these two computations: the tail effect in the acceleration is computed
in a canonical coordinate system, whilst the source quadrupole is defined in a generic
one, following the terminology of Section III.2 (or [95]). We thus need to adjust for this,
and compute the expression of the source quadrupole moment in the canonical coordinate
system. This is done by performing a simple coordinate change xµgen = xµcan + ζµ, where
the relation between the coordinate systems is described in Section III.2. A simple dimen-
sional analysis shows that only the M × W interaction can enter this coordinate change
at 4PN order. Using the methods and notations exposed in Section III.4 to calculate the
contribution of a given interaction to the gauge vector, we find that the only possible
contribution comes from φµhom M×W, and the coordinate change is then explicitly given by

ζ0 = −16G2M
c7

∑
j⩾0

1
22j j! c2j

Γ
(
d

2ℓ0

)
Γ
(
d
2 + j

) ∫ +∞

0
dτ
[
Lε(τ) + 1

2

]
W(3+2j)(t− τ) , (VI.4a)

ζi = 0 , (VI.4b)

where Lε(τ) contains a pole and was defined in (III.32).
Note that only the first term in the sum (i.e j = 0) is relevant at 4PN. Implementing

the procedure exposed in Section II of [163] with the “pure gauge” metric hµν = −∂ξµν ,
we arrive at

δζIij = 16G2M
c8

∫ +∞

0
dτ
[
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2

](
I(1)
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+ O

( 1
c10

)
.

(VI.5)
From now on, we suppose that this adjustment has been made, and that I(d)

ij has been
computed from its definition (VI.1) in the correct coordinate system. We now define, at
4PN accuracy, a renormalized source quadrupole as

Irenorm
ij ≡ I(d)

ij + δεIij (VI.6)

where δεIij is defined so as to account for the pole parts arising in (III.33) and (V.48). It
reads

δεIij ≡ − 16G2M
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ij (t) W(3)(t− τ) − Iij(t) W(4)(t− τ)

)
− 214

105
G2M2

c6

(
Πε + 246299

44940

)
I(4)
ij

+ G2M
c8

[
− 4

7

(
Πε − 1447

216

)
Ia⟨iI

(6)
j⟩a − 32

7

(
Πε − 17783

10080

)
I(1)
a⟨iI

(5)
j⟩a

− 4
(

Πε − 27649
17640

)
I(2)
a⟨iM

(4)
j⟩a + 1921

945 I(3)
a⟨iI

(3)
j⟩a + 4

3

(
Πε + 11243

7560

)
I(5)
a⟨iJj⟩|a

]
(VI.7)

where we have used Mij = Iij +O(c−5) and Iij = Jij +O(c−5), and where we remind the
reader of the notations

Πε = − 1
2ε + ln

(
r0

√
q̄

ℓ0

)
and Lε(τ) = − 1

2ε + ln
(
cτ

√
q̄

2ℓ0

)
.
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We find that Irenorm
ij defined in this way does not exhibit any poles. Although this is

expected from the point of view of the general formalism, we should point out that it is
not trivial computationally that the pole arising from the source/canonical and canoni-
cal/radiative moments relations should indeed cancel the poles in the source quadrupole,
as these are radically different computations. When reduced for compact binary sys-
tems on circular orbits, its expression is still given by (6.11) of [162], despite the two
extra contributions we have noted. We find that this renormalized source quadrupole
Irenorm
ij can be related to the three-dimensional canonical moment Mij (i.e. that enters

the three-dimensional expressions of the radiative quadrupole Uij) by the expression

Mij = Irenorm
ij + 4G
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, (VI.8)

where, in the nonlinear corrections, we do not distinguish Irenorm
ij from Iij , since they do

not differ at 2.5PN order. We have thus now successfully eliminated the poles from all the
steps of the computation, which is very useful in practical computations. For notational
simplicity, we will in the rest of this thesis most often refer to the renormalized source
moment simply as Iij .

VI.1.2 Expression of the renormalized source quadrupole moment
We now reproduce the explicit expression of the renormalized source quadrupole for

quasicircular compact binary systems, which is correctly accounted for by (6.11) of [162].
Recalling that we now simply write Iij for the renormalized source moment, and denoting
by r the orbital separation and by v the relative velocity of the two particles, we have

Iij = mν

(
Ax⟨ixj⟩ +B

r2

c2 v⟨ivj⟩ + G2m2ν

c5r
C x⟨ivj⟩

)
+ O

( 1
c9

)
, (VI.9)

where γ ≡ Gm/(rc2) is useful to express the coefficients, which are given by

A = 1 + γ

(
− 1

42 − 13
14ν

)
+ γ2

(
− 461

1512 − 18395
1512 ν − 241

1512ν
2
)

+ γ3
{

395899
13200 − 428

105 ln
(
r

r0

)
+
[3304319

166320 − 44
3 ln

(
r

r′
0

)]
ν + 162539

16632 ν
2 + 2351

33264ν
3
}

+ γ4
{

− 1067041075909
12713500800 + 31886

2205 ln
(
r

r0

)
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+
[
−85244498897

470870400 − 2783
1792π

2 − 64
7 ln

(
16γe2γE

)
− 10886

735 ln
(
r

r0

)
+ 8495

63 ln
(
r

r′
0

)]
ν

+
[171906563

4484480 + 44909
2688 π

2 − 4897
21 ln

(
r

r′
0

)]
ν2 − 22063949

5189184 ν
3 + 71131

314496ν
4
}
,

(VI.10a)

B = 11
21 − 11

7 ν + γ

(1607
378 − 1681

378 ν + 229
378ν

2
)

+ γ2
(

−357761
19800 + 428

105 ln
(
r

r0

)
− 92339

5544 ν + 35759
924 ν2 + 457

5544ν
3
)

+ γ3
(23006898527

1589187600 − 4922
2205 ln

(
r

r0

)
+
[8431514969

529729200 + 143
192π

2 − 32
7 ln

(
16γe2γE

)
− 1266

49 ln
(
r

r0

)
− 968

63 ln
(
r

r′
0

)]
ν

+
[351838141

5045040 − 41
24π

2 + 968
21 ln

(
r

r′
0

)]
ν2 − 1774615

81081 ν3 − 3053
432432ν

4
)
,

(VI.10b)

C = 48
7 + γ

(
−4096

315 − 24512
945 ν

)
− 32

7 π γ
3/2 . (VI.10c)

The coefficients A and B represent the conservative part of the quadrupole, while C is
due to the radiation reaction dissipative effects. Note that, in addition to the scale r0,
the expression of the quadrupole involves a scale r′

0, which appeared in the equations of
motion in Section II.6, associated with the UV regularization (see the Footnote 10 of [98]
for more details).

As discussed in [163], the source quadrupole moment is not a local quantity at the
4PN order anymore, as it contains a nonlocal tail integral, given by (6.5) in [162]. The
4PN logarithms ln

(
16γe2γE

)
in A and B are due to the conservative part of this nonlocal

tail term in the mass quadrupole, and the coefficient −32
7 πγ

3/2 in C, to the corresponding
dissipative part of the tail term.

Finally, as reported in Appendix A.4, the general expression of the source mass
quadrupole moment for generic orbits has been conclusively tested in the so-called boosted
Schwarzschild limit.

VI.1.3 The other source moments and their relation to the canonical moments

In order to obtain the 4PN waveform, we need the mass source octupole and the
current source quadrupole at 3PN order. In the context of dimensional regularization,
these exhibit poles, which are exactly compensated by the poles in the relation between
the associated radiative moments and canonical moments, see (V.48b) and (V.48c). This
calls for a natural definition of a renormalized source moment. In both cases, these
renormalized source moments exactly coincide at 3PN order with the ones computed
with Hadamard regularization in the IR, see [162] for discussion.

We now reproduce the expression of the renormalized mass source octupole and the
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current source quadrupole for circular orbits. The mass source octupole moment reads

Iijk = −ν mδ

{
Dx⟨ixjxk⟩ + E

r

c
v⟨ixjxk⟩ + F

r2

c2 v⟨ivjxk⟩ +G
r3

c3 v⟨ivjvk⟩

}
+ O

( 1
c7

)
,

(VI.11)
where δ ≡ (m1 −m2)/m, and the coefficients are

D = 1 − γν + γ2
(

−139
330 − 11923

660 ν − 29
110ν

2
)

(VI.12a)

+ γ3
{

1229440
63063 + 610499

20020 ν + 319823
17160 ν

2 − 101
2340ν

3 − 26
7 ln

(
r

r0

)
− 22ν ln

(
r

r′
0

)}
,

E = 196
15 γ

2ν , (VI.12b)

F = 1 − 2ν + γ

(1066
165 − 1433

330 ν + 21
55ν

2
)

(VI.12c)

+ γ2
{

− 1130201
48510 − 989

33 ν + 20359
330 ν2 − 37

198ν
3 + 52

7 ln
(
r

r0

)}
,

G = 0 . (VI.12d)

As for the renormalized current quadrupole Jij , it also coincides at 3PN order with the
one computed with Hadamard regularization in the IR [162]. It comes [96]

Jij = −νmδ
[
H L⟨ixj⟩ +K

Gm

c3 L⟨ivj⟩
]

+ O
( 1
c7

)
, (VI.13)

where we denote Li ≡ ϵijkx
jvk, and where

H = 1 + γ

(67
28 − 2

7ν
)

+ γ2
(

13
9 − 4651

252 ν − ν2

168

)

+ γ3
{

2301023
415800 − 214

105 ln
(
r

r0

)
+
[
−243853

9240 + 123
128π

2 − 22 ln
(
r

r′
0

)]
ν

+ 44995
5544 ν

2 + 599
16632ν

3
}
, (VI.14a)

K = 188
35 ν γ . (VI.14b)

The remaining required source moments (mass hexadecapole at 2PN, current octupole at
2PN, etc.) are easy to compute as no regularization subtleties arise at this order. Their
expressions on quasicircular orbits are displayed e.g. in Section 9.1 of [14]. Note that, as
the first nonlocal feature cannot appear at a lower order than 4PN, all those higher-order
source moments are instantaneous up to 3.5PN order. Therefore, they cannot contribute
to the 4.5PN term of the quasicircular flux.

We now reproduce the relations between source and canonical moments that will be
relevant for our computation. We have [161]

Mijk = Iijk + 4G
c5

[
W(2)Iijk − W(1)I(1)

ijk + 3Y(1)
⟨i Ijk⟩

]
+ O

( 1
c7

)
, (VI.15a)
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Mijkl = Iijkl + 4G
c5

[
W(2)Iijkl − W(1)I(1)

ijkl + 4Y(1)
⟨i Ijkl⟩

]
+ O

( 1
c6

)
, (VI.15b)

Sij = Jij + 4G
c5

[
− W(1)J(1)

ij + 3
2Y(1)

⟨i Jj⟩

+ ϵab⟨i

(1
2I(3)
j⟩aWb + Ij⟩aY

(2)
b − 1

2I(1)
j⟩aY

(1)
b

)]
+ O

( 1
c7

)
, (VI.15c)

Sijk = Jijk + 4G
c5

[
− W(1)J(1)

ijk + 8
3Y(1)

⟨i Jjk⟩

+ ϵab⟨i

(
I(3)
ja Wk⟩b + Ijk⟩aY

(2)
b − 1

3I(1)
jk⟩aY

(1)
b

)]
+ O

( 1
c6

)
. (VI.15d)

VI.2 The radiative moments in terms of the canonical moments

As we have seen in Section VI.1, the notion of renormalized canonical and source
moments allows us to use the three-dimensional relations between canonical and radiative
moments. In this section, we review which radiative moments are needed and at what
order for the different pieces of the computation, and reproduce the relevant expressions.

VI.2.1 Radiative moments entering the flux at 4PN order

In order to derive the energy flux (II.66) at 4PN order beyond leading quadrupolar
order, the obvious first input is the radiative quadrupole moment itself Uij to 4PN order.
Recalling that, at leading order, the radiative moments UL and VL reduce to the ℓth

time derivatives (with respect to the retarded time u of the radiative coordinates) of the
canonical moments ML and SL, we straightforwardly write

Uij = M(2)
ij + U1.5PN

ij + U2.5PN
ij + U3PN

ij + U3.5PN
ij + U4PN

ij + O
( 1
c9

)
, (VI.16)

with small PN corrections up to 4PN, as indicated.
The leading correction at 1.5PN is due to the GW tail, i.e. the quadratic interaction

between the static mass M and the mass quadrupole moment Mij , denoted M × Mij , see
(V.34) and Fig. II.4a. It reads explicitly [164]

U1.5PN
ij = 2GM

c3

∫ +∞

0
dτ M(4)

ij (u− τ)
[

ln
(
cτ

2b0

)
+ 11

12

]
. (VI.17)

As usual, the length scale b0 is an arbitrary constant linked with the choice of the origin
of time of the asymptotic radiative coordinates, with respect to the harmonic coordinates
covering the source’s near zone.

At the next 2.5PN order there is the nonlocal interaction involving two quadrupole
moments Mij×Mkl called the (displacement) “memory” (see Fig. II.4b), together with as-
sociated instantaneous quadrupole-quadrupole terms, and including also an instantaneous
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interaction Mij × Sk:

U2.5PN
ij = G

c5

{
− 2

7

∫ +∞

0
dτ
[
M(3)
a⟨iM

(3)
j⟩a

]
(u− τ) + 1

7 M(5)
a⟨iMj⟩a − 5

7 M(4)
a⟨iM

(1)
j⟩a − 2

7 M(3)
a⟨iM

(2)
j⟩a

+ 1
3ϵab⟨iM

(4)
j⟩aSb

}
. (VI.18)

At the 3PN order appears the first cubic interaction, namely the “tail-of-tail”, con-
sisting of the interplay between two masses and the quadrupole moment, i.e., M2 × Mij .
We thus have U3PN

ij = UM2×Mij

ij , where UM2×Mij

ij is given by (V.45a), see also [91, 161].
Note the appearance here of the constant length scale r0, and which should be distin-
guished from the previously introduced scale b0. The coefficient in front of the ln r0 term
in (V.45a) is exactly the β-function coefficient associated to the renormalization of the
mass quadrupole moment, say β2 = −214

105 . In the present formalism, this scale arises from
the Hadamard regularization scheme .

The next-order 3.5PN term has a structure similar to the 2.5PN one, i.e. with some
memory type integrals and instantaneous terms. The interactions between moments are
however more complicated but still of quadratic nature:

U3.5PN
ij = G

c7

{∫ +∞

0
dτ
[
− 5

756M(4)
ab M(4)

ijab − 32
63S(3)

a⟨iS
(3)
j⟩a

]
(u− τ)

− 1
432MabM(7)

ijab + 1
432M(1)

ab M(6)
ijab − 5

756M(2)
ab M(5)

ijab + 19
648M(3)

ab M(4)
ijab

+ 1957
3024M(4)

ab M(3)
ijab + 1685

1008M(5)
ab M(2)

ijab + 41
28M(6)

ab M(1)
ijab + 91

216M(7)
ab Mijab

− 5
252Mab⟨iM

(7)
j⟩ab + 5

189M(1)
ab⟨iM

(6)
j⟩ab + 5

126M(2)
ab⟨iM

(5)
j⟩ab + 5

2268M(3)
ab⟨iM

(4)
j⟩ab

+ 5
42SaS(5)

ija + 80
63Sa⟨iS

(5)
j⟩a + 16

63S(1)
a⟨iS

(4)
j⟩a − 64

63S(2)
a⟨iS

(3)
j⟩a

+ ϵac⟨i

(∫ +∞

0
dτ
[ 5

42S(4)
j⟩bcM

(3)
ab − 20

189M(4)
j⟩bcS

(3)
ab

]
(u− τ)

+ 1
168S(6)

j⟩bcMab + 1
24S(5)

j⟩bcM
(1)
ab + 1

28S(4)
j⟩bcM

(2)
ab − 1

6S(3)
j⟩bcM

(3)
ab

+ 3
56S(2)

j⟩bcM
(4)
ab + 187

168S(1)
j⟩bcM

(5)
ab + 65

84Sj⟩bcM
(6)
ab

+ 1
189M(6)

j⟩bcSab − 1
189M(5)

j⟩bcS
(1)
ab + 10

189M(4)
j⟩bcS

(2)
ab + 32

189M(3)
j⟩bcS

(3)
ab

+ 65
189M(2)

j⟩bcS
(4)
ab − 5

189M(1)
j⟩bcS

(5)
ab − 10

63Mj⟩bcS
(6)
ab

)}
. (VI.19)

At the 4PN order appear the “tail-of-memory” and “spin-quadrupole tail”, which are,
respectively, due to the M × Mij × Mkl and M × Si × Mjk interactions, that we have
extensively studied in Chapters IV and V. Thus, we have

U4PN
ij = UM×Si×Mij

ij + UM×Mij×Mij

ij , (VI.20)
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where UM×Si×Mij

ij is given by (V.45b) and UM×Mij×Mij

ij by (V.45c), see also [4, 3].
Besides the mass quadrupole moment, the expression of the flux (II.66) at the 4PN

order requires the knowledge of moments of higher multipolarity, but evaluated at lower
PN orders. Indeed, the computation of the flux involves the squares of the radiative
moments, therefore in order to obtain the 4PN flux, we need UL at (4 − ℓ)PN order and
VL at (3 − ℓ)PN order, where ℓ ⩾ 2. Thus at the next multipolar order, we need the mass
octupole Uijk and current quadrupole Vij moments with a 3PN precision:

Uijk = M(3)
ijk + U1.5PN

ijk + U2.5PN
ijk + U3PN

ijk + O
( 1
c7

)
, (VI.21a)

Vij = S(2)
ij + V1.5PN

ij + V2.5PN
ij + V3PN

ij + O
( 1
c7

)
. (VI.21b)

Reporting the results of [161], they read

U1.5PN
ijk =2GM

c3

∫ +∞

0
dτ M(5)

ijk(u− τ)
[

ln
(
cτ

2b0

)
+ 97

60

]
, (VI.22a)

U2.5PN
ijk = G

c5

{∫ +∞

0
dτ
[
−1

3M(3)
a⟨iM

(4)
jk⟩a − 4

5ϵab⟨iM
(3)
ja S(3)

k⟩b

]
(u− τ)

+ 1
4Ma⟨iM

(6)
jk⟩a + 1

4M(1)
a⟨iM

(5)
jk⟩a + 1

4M(2)
a⟨iM

(4)
jk⟩a − 4

3M(3)
a⟨iM

(3)
jk⟩a

− 9
4M(4)

a⟨iM
(2)
jk⟩a − 3

4M(5)
a⟨iM

(1)
jk⟩a + 1

12M(6)
a⟨iMjk⟩a + 12

5 S⟨iS
(4)
jk⟩

+ ϵab⟨i

[9
5MjaS

(5)
k⟩b + 27

5 M(1)
ja S(4)

k⟩b + 8
5M(2)

ja S(3)
k⟩b + 12

5 M(3)
ja S(2)

k⟩b

+ 3
5M(4)

ja S(1)
k⟩b + 1

5M(5)
ja Sk⟩b + 9

20M(5)
jk⟩aSb

]}
, (VI.22b)

U3PN
ijk = 2G2M2

c6

∫ +∞

0
dτ M(6)

ijk(u− τ)
[
ln2
(
cτ

2b0

)
+ 97

30 ln
(
cτ

2b0

)
− 13

21 ln
(
cτ

2r0

)
+ 13283

8820

]
,

(VI.22c)

where the underlined indices within angled brackets are excluded from the STF operation,
and

V1.5PN
ij = 2GM

c3

∫ +∞

0
dτ S(4)

ij (u− τ)
[

ln
(
cτ

2b0

)
+ 7

6

]
, (VI.22d)

V2.5PN
ij = G

c5

{
− 3

7Ma⟨iS
(5)
j⟩a − 3

7M(1)
a⟨iS

(4)
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7M(2)
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(3)
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7M(3)
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(2)
j⟩a

+ 17
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(1)
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7M(5)
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28M(5)
ijaSa
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56Mj⟩acM
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j⟩acM

(5)
bc − 353

336M(2)
j⟩acM

(4)
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14M(3)
j⟩acM

(3)
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168M(4)
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(2)
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112M(5)
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j⟩acMbc + S(4)

j⟩aSb
]}

,

(VI.22e)
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V3PN
ij = 2G2M2

c6

∫ +∞

0
dτ S(5)

ij (u− τ)
[
ln2
(
cτ

2b0

)
+ 7

3 ln
(
cτ

2b0

)
− 107

105 ln
(
cτ

2r0

)
− 13127

11025

]
.

(VI.22f)

Higher order multipole moments have no cubic contributions at the required PN order.
At 2PN order, we need the mass hexadecapole Uijkl as well as the current octupole Vijk,
and Uijklm as well as Vijkl, which read

Uijkl = M(4)
ijkl + U1.5PN

ijkl + O
( 1
c5

)
, (VI.23a)

Vijk = S(3)
ijk + V1.5PN

ijk + O
( 1
c5

)
, (VI.23b)

where [161]

U1.5PN
ijkl = G

c3

{
2M

∫ +∞

0
dτ M(6)

ijkl(u− τ)
[

ln
(
cτ

2b0

)
+ 59

30

]
+2

5

∫ +∞

0
dτ
[
M(3)

⟨ijM
(3)
kl⟩

]
(u− τ)

− 21
5 M⟨ijM

(5)
kl⟩ − 63

5 M(1)
⟨ijM

(4)
kl⟩ − 102

5 M(2)
⟨ijM

(3)
kl⟩

}
, (VI.24a)

V1.5PN
ijk = G

c3

{
2M

∫ +∞

0
dτ S(5)

ijk(u− τ)
[

ln
(
cτ

2b0

)
+ 5

3

]

− 2M(4)
⟨ijSk⟩ − 1

10ϵab⟨iMjaM
(5)
k⟩b + 1

2ϵab⟨iM
(1)
ja M(4)

k⟩b

}
. (VI.24b)

Note the appearance of a memory integral at 1.5PN order in Uijkl, in addition to the
usual tail one. Finally, we need the moments Uijklm and Vijkl at 1PN, as well as Uijklmn
and Vijklm at Newtonian order, which are trivially given by

Uijklm = M(5)
ijklm + O

( 1
c3

)
, Vijkl = S(4)

ijkl + O
( 1
c3

)
,

Uijklmn = M(6)
ijklmn + O

( 1
c3

)
, Vijklm = S(5)

ijklm + O
( 1
c3

)
. (VI.25)

VI.2.2 Radiative moments entering the quasicircular flux at the 4.5PN order
For quasicircular orbits, the 4.5PN term in the flux was obtained in [167]. One could

naively think that such a computation would require the complete knowledge of the rela-
tions between radiative and canonical moments, as presented above, but pushed one half
PN order further. This was actually not the case, since for circular orbits, only a limited
control of the relation between the radiative and canonical mass quadrupole moments
was necessary. This is discussed in [167], and we only remind the key points. First, it
is well known that the contributions of instantaneous interactions entering the flux at
half-integer PN order (e.g. 4.5PN order) vanish for quasicircular orbits. So only nonlocal
contributions such as tails can potentially contribute. Second, the quadratic nonlocal
memory interaction that enters the radiative moments, see (VI.18) and (VI.19), become
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instantaneous in the flux by virtue of time differentiation, so these will not contribute.
Last, the tails-of-memory and spin-quadrupole tails, which both enter at 4PN, will next
contribute at 5PN but not at 4.5PN. This allows to use dimensional arguments to deter-
mine the interactions that can contribute to the 4.5PN quasicircular flux. For the mass
quadrupole, only the quartic M3 × Mij , naturally dubbed “tails-of-tails-of-tails”, can play
a role. It has been computed in [167], and reads

U4.5PN
ij

∣∣∣∣
ToToT

= G3M3

c9

∫ +∞

0
dτ M(6)

ij (u− τ)
[

4
3 ln3

(
cτ

2b0

)
+ 11

3 ln2
(
cτ

2b0

)

− 428
105 ln

(
cτ

2b0

)
ln
(
cτ

2r0

)
+ 124627

11025 ln
(
cτ

2b0

)

− 1177
315 ln

(
cτ

2r0

)
+ 129268

33075 + 428
315π

2
]
.

(VI.26)

The full U4.5PN
ij also contains quadratic memory interactions, like those entering at 2.5PN

and 3.5PN, see (VI.18) and (VI.19). If, as explained above, those are not needed to
compute the flux (and phase) for quasicircular orbits, they will enter the expression of
the (2, 2) mode. As they are yet undetermined, they restrict the accuracy we can reach
when deriving the (2, 2) mode, which is why it is presented in Section VI.4 at 4PN and not
up to 4.5PN order. In addition, radiation reaction effects at 4.5PN in the mass quadrupole
should contribute and are also not under control.

Regarding other moments, the 3.5PN terms of the mass octupole Uijk and current
quadrupole Vij , as well as the 2.5PN terms of the mass hexadecapole Uijkl and current
octupole Vijk, are composed of quadratic memory integrals, but which cannot contribute
in the 4.5PN quasicircular flux. The only other moments that can contribute to the 4.5PN
piece of the flux are thus [161, 167]

U1.5PN
ijklm = G

c3

{
2M
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⟨ijM
(4)
klm⟩

]
(u− τ)
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7 M⟨ijM

(6)
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⟨ijM

(5)
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7 M(2)
⟨ijM

(4)
klm⟩ − 710

21 M(3)
⟨ijM

(3)
klm⟩

− 265
7 M(4)

⟨ijM
(2)
klm⟩ − 155

7 M(5)
⟨ijM

(1)
klm⟩ − 34

7 M(6)
⟨ijMklm⟩

}
, (VI.27a)

V1.5PN
ijkl = G
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2M

∫ +∞
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60
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VI.2.3 Radiative moments entering the full 4PN waveform

With the radiative mass quadrupole Uij at hand, we are able to compute the (ℓ,m) = (2, 2)
mode in the 4PN waveform. However, the full 4PN waveform is still out of reach, because
the other moments are not known at required order. In order to completely control the
4PN waveform, we would need UL at 8−ℓ

2 PN order and VL at 7−ℓ
2 PN order, for ℓ ⩾ 2. As

of now, apart from Uij which is known at 4PN, the waveform and the associated moments
are only known to 3.5PN order [161, 96, 197], i.e. we control UL at 7−ℓ

2 PN order and
VL at 6−ℓ

2 PN order. Computing these higher-order multipolar moments at required order
will be crucial to obtain a full 4PN waveform, and a subject of interest for future work.

Note also that the arguments put forward in Section VI.2.2, which led to the com-
putation of the 4.5PN flux, are not transposable to the 4.5PN piece of the (2, 2) mode.
Indeed, the latter computation would require the recently-computed 4.5PN piece of the
equations of motion [153], the control of the 4.5PN source quadrupole moment, the full
control of the 4.5PN relation between the source and canonical quadrupole, and the full
control of the 4.5PN relation between the radiative and canonical moments, include all
the local and memory terms which where ignored in the computation of the 4.5PN flux.

VI.3 Novelties in the reduction to quasicircular orbits

In Section II.5, we discussed how to describe the two body problem in the case of
quasicircular orbits. Reducing the contributions of instantaneous terms in the radiative
moments (i.e. terms that do not involve any integrals over the past) is computationally
heavy, but a relatively trivial process. In Section VI.1, we have presented results for the
source moments reduced for quasicircular orbits: these need only to be time-differentiated
with 4PN accuracy using the equations of motion for circular orbits (II.58), and contracted
with each other. Nonlocal terms, such as the memory and tail terms, are less trivial to
compute, but there is a vast literature of integration techniques to perform this [198, 199,
192, 193]. Nonetheless, at 4PN order, some extra difficulties arise in the computation
of these nonlocal effects. In this section, we focus on the post-adiabatic computation of
the tail effect, as well as the computation of memory terms, including the novel tail-of-
memory. These are crucial for the computation of the (2, 2) mode at 4PN (Section VI.4)
and the gravitational flux at 4.5PN (Section VI.5).

VI.3.1 Post-adiabatic integration of the tail effect

In order to compute the tail integrals, for instance (VI.17), we need to specify the
behavior of the compact binary system’s orbit in the remote past, as the effect is not
localized in time, but integrates over the whole past history of the source. In the case of
quasicircular orbits, and up to 3.5PN precision in the multipoles, an adiabatic approxi-
mation (considering the orbital elements r12 and ω to be constant in time, see Fig. II.3b)
is sufficient, and one can follow the lines of [199], together with the integrals presented
in the Appendix B of [198]. However, (II.58) show that this adiabatic approximation is
no longer valid at a relative 2.5PN precision. As the tail enters at 1.5PN order in the
moments, the first “post-adiabatic” (PA) correction will affect the moments at the 4PN
order, thus we need to properly evaluate it in order to consistently derive the 4PN flux
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and (2, 2) mode. An alternative and more general derivation is proposed in [6], but here
we propose a more historical derivation, which closely follows the adiabatic computation
of [199].

As shown in [199], the tail integrals on quasicircular orbits reduce, after projection on
the appropriate basis (see Fig. II.3a), to elementary integrals of the type

Iα,n =
∫ +∞

0
dτ ln

(
τ

τ0

)
[y(u− τ)]α e−inϕ(u−τ) , (VI.28)

where n ∈ N⋆ [the case n = 0 does not appear at 4PN], α > 4 is usually a rational
fraction, and in our case, τ0 = 2b0/c. In this section, we will obtain an expression for
Iα,n up to post-adiabatic (PA) precision, as required at 4PN for the leading-order tail
integral. To this end, we introduce the adiabatic parameter as defined in [199] (this differs
from (5.6) of [6] by a factor 8/3)

ξ(u) ≡ 1
(uc − u)ω(u) = 8

3
ω̇(u)
ω2(u) + O(2) , (VI.29)

where uc is the retarded time “at coalescence”1. Up to a constant factor of order unity,
this adiabatic parameter measures the ratio between the orbital timescale (associated to
the orbital frequency ω) and the timescale of radiation reaction (associated to the chirp
ω̇). In the inspiral regime, this parameter is very small, and can actually be related to
the PN parameter y by

ξ = 256
5 y

5
2 (1 + O (y)) . (VI.30)

This definition encourages us to define an auxiliary variable

z ≡ τξ(u)ω(u) , (VI.31)

from which we express the leading order time evolution of various orbital quantities,

r(u− τ) = r(u)(1 + z)
1
4 (1 + O(2)) , (VI.32a)

ω(u− τ) = ω(u)(1 + z)− 3
8 (1 + O(2)) , (VI.32b)

y(u− τ) = y(u)(1 + z)− 1
4 (1 + O(2)) , (VI.32c)

ϕ(u− τ) = ϕc − ϕ(u)(1 + z)
5
8 (1 + O(2)) , (VI.32d)

where ϕc is a constant phase “at coalescence”. One could add the 1PN corrections to these
expressions, but these turn out to be negligible at this order, see [200] for a discussion.
With the help of the post-adiabatic parameter, evaluated at retarded time u, we can
relate the phase in the past to the phase at retarded time (see Fig. II.3a), via the relation

ϕ(u− τ) = ϕ(u) − 8
5ξ(u)

[
(1 + z)

5
8 − 1

]
(1 + O(2)) . (VI.33)

1Note that in [199], the auxiliary variable and the post-adiabatic parameter were defined in terms of
the instant of coalescence uc. We will see in Section VI.6 that this coalescence time is uniquely defined
only up to 3.5PN order, but starting at 4PN order, this definition does not uniquely specify uc anymore.
This does not affect our computation at this order, so we stick with the definition in terms of uc for
historical purposes.
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With all of these ingredients in hand, we can rewrite our integral as

Iα,n = e−inϕ(u)yα(u)
ξ(u)ω(u)

∫ +∞

0
dz (1 + z)− α

4 ln
(

z

τ0ξ(u)ω(u)

)
e

8ni
5ξ(u)

[
(1+z)

5
8 −1

]
. (VI.34)

Performing the change of variables s = 8
5

[
(1 + z)

5
8 − 1

]
yields

Iα,n = e−inϕ(u)yα(u)
ξ(u)ω(u)

∫ +∞

0
ds e

ins
ξ(u)(

1 + 5
8s
) 2α−3

5
ln


(
1 + 5

8s
) 8

5 − 1
τ0ξ(u)ω(u)

 . (VI.35)

We then divide this integral in two, namely Iα,n = I(1)
α,n + I(2)

α,n where

I(1)
α,n = −e−inϕ(u)yα(u)

ξ(u)ω(u) ln
(
τ0ξ(u)ω(u)

) ∫ +∞

0
ds e

ins
ξ(u)(

1 + 5
8s
) 2α−3

5
, (VI.36a)

I(2)
α,n = e−inϕ(u)yα(u)

ξ(u)ω(u)

∫ +∞

0
ds e

ins
ξ(u)(

1 + 5
8s
) 2α−3

5
ln
((

1 + 5
8s
) 8

5
− 1

)
. (VI.36b)

Using the formulas established in Appendix A.5 for β = (2α− 3)/5, we find that

I(1)
α,n = −e−inϕyα

ξω
ln
(
τ0ξω

) [ iξ
n

+ 5ξ2

8n2 · 2α− 3
5 + o(ξ2)

]
, (VI.37a)

I(2)
α,n = e−inϕyα

ξω

[(
− iξ

n
+ 5ξ2

8n2 · 2α− 3
5

)(
ln
(
ξ

|n|

)
− γE − iπ

2 sg(n)
)

+
(5

8 · 2α− 3
5 − 3

16

)
ξ2

n2 + o(ξ2)
]
. (VI.37b)

where all dependencies on u are now implicit. This finally yields the final formula (note
that it differs from (5.16) of [6] because of the different definition of ξ)

Iα,n = Gm

c3
e−inϕyα−3/2

in

[(
1 + 2α− 3

8
ξ

in

)(
ln (2|n|bω) + γE − sg(n) iπ2

)

− 4α− 9
16

ξ

in + o(ξ)
]
. (VI.38)

Recall that all quantities are evaluated at current time u and that the adiabatic parameter
ξ = 8ω̇/(3ω2) is easily computed with (II.58). With this result at hand, we are able to
derive the tail integral (VI.17) with 2.5PN relative precision, which impacts the computa-
tion and final results at the 4PN order. Note as well that this is the first order for which
the tail effect is sensitive to the decay rate of the orbit, encoded in α (see Fig. II.3b for a
visual representation.)
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VI.3.2 Quasicircular-orbit reduction of the memory effects and the tails of memory

Memory terms, such as the first term of (VI.18), are hereditary integrals of the form∫+∞
0 dτF (u− τ)G(u− τ), where F and G represent dynamical multipole moments. Note

that they enter only in mass-type moments, as clear from Section VI.2. In the case of
quasicircular orbits, after projection on the appropriate basis (see Fig. II.3a), they reduce
to a sum of terms of the form

Jα,n(u) =
∫ +∞

0
dτ
[
y(u− τ)

]α e−inϕ(u−τ) . (VI.39)

Besides the absence of logarithm, the main difference with the tail integral is the possibility
of having n = 0, i.e. persistent or “DC” (direct current) terms.

Let us first focus on oscillatory (“AC” or alternate current) memory terms, having
n ̸= 0. As they only involve a simple, logarithmic-free, integration, memory terms will en-
ter in the flux as instantaneous contributions, and can be computed as such. In particular,
since they arise at the odd PN approximations 2.5PN and 3.5PN, they do not contribute
to the flux for quasicircular orbits. The evaluation of the integrals of type (VI.39) is thus
only required for the derivation of the modes. Concerning the quadrupole moment, since
the memory effect enters at 2.5PN order, as clear from (VI.18), it is required at a relative
1.5PN precision for the mode (2, 2) and thus, one can safely compute the integral in the
adiabatic approximation. As discussed in [199], for circular orbits this is equivalent to
taking the frequency y constant together with a linear phase (appropriate for the exact
circular orbit), and keeping only the contribution of the integral due to the bound τ = 0.
One finds

Jα,n = yα e−inϕ
∫

0
dτ einωτ + O (ξ) = −yαe−inϕ

inω + O (ξ) , (VI.40)

where for a function f(τ) whose antiderivative is denoted F (τ), we define∫
0 dτ f(τ) ≡ −F (0).

The persistent DC terms do not contribute to the flux, and they only contribute to the
modes which have m = 0, for example, the (ℓ,m) = (2, 0) mode for the mass quadrupole.
As is clear in the following, the absence of the fast oscillating exponential in Jα,0 generates
an inverse power of the adiabatic parameter ξ, thus degrading the precision (in terms of
PN orders) at which we control the mode by the radiation-reaction scale 2.5PN. This
is the well-known memory effect: as it starts at 2.5PN order in the waveform, it finally
enters the (2, 0) mode at Newtonian order. Several methods are possible to evaluate Ja,0,
see e.g. [199]. In the following, we rely on a change of integration variables from τ to
y′ = y(u− τ):

Jα,0 =
∫ +∞

0
dτ
[
y(u− τ)

]α =
∫ y(u)

0
dy′ y

′α

ẏ[y′] , (VI.41)

reading ẏ[y′] as a function of y′ from (II.58), and supposing that α > 4. To 1.5PN relative
order we have

Jα,0 = 5Gm
64c3ν

yα−4

α− 4

[
1 + α− 4

α− 3

(743
336 + 11

4 ν
)
y − 8π α− 4

2α− 5y
3/2
]
. (VI.42)
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We can see the this memory term is highly sensitive to the rate at which the orbit is
decaying (via α). It is also interesting to observe that the tail effect in the flux directly
influences the DC memory in (VI.42).

Last, but not least, we need to look at the interesting case of the tails-of-memory
terms (VI.20). These terms can be treated as standard tail terms (with relative Newtonian
accuracy), except for the “genuine” tail-of-memory given by the first line of (VI.20),
namely

Kij = 8G2M
7c8

∫ +∞

0
dρM(4)

a⟨i(u− ρ)
∫ +∞

0
dτ M(4)

j⟩a(u− ρ− τ) ln
(
τ

τ0

)
, (VI.43)

where c τ0 = 2r0 e 1613
270 . We remind that this expression agrees with the tail-of-memory

directly computed from the radiative quadrupole moment at infinity [192, 193]. We first
perform the tail-like integral over τ . As we need to evaluate it at relative Newtonian order
only, we can safely use the adiabatic approximation. Next we perform the integral over
τ , which is found to be a simple DC memory integral of the type (VI.41) with α = 13/2.
Hence we find

Kij = 128π
7

ν2c5

G
l⟨ilj⟩

∫ +∞

0
dρ
[
y(u− ρ)

]13/2 = 4π
7 mν c2 y5/2 l⟨ilj⟩ , (VI.44)

where l is the constant vector orthogonal to the orbital plane, see Fig. II.3a. Interestingly,
this tail-of-memory result will give a contribution in the (2, 0) mode that exactly cancels
the one coming from the 1.5PN corrections to the ordinary memory effect, and obtained
in (VI.42).

VI.4 The 4PN modes

Projecting the asymptotic metric (II.62c) onto the basis of polarizations {+,×} (see
Section I.1) and the usual basis of spin-weighted spherical harmonics, Y ℓm

−2 (following the
conventions of [201, 202]), one can define the observable gravitational modes hℓm as

h+ − ih× =
∑
ℓ⩾2

ℓ∑
m=−ℓ

hℓm Y
ℓm

−2 . (VI.45)

Following [203, 202], we can express any moments directly using the radiative moments
with the formula

hℓm = − G√
2Rcℓ+2

[
Uℓm − i

c
Vℓm

]
, (VI.46)

where we have defined

Uℓm = 4
ℓ!

√
(ℓ+ 1)(ℓ+ 2)

2ℓ(ℓ+ 1) αℓmL UL , (VI.47a)

Vℓm = − 8
ℓ!

√
ℓ(ℓ+ 2)

2(ℓ− 1)(ℓ+ 1)α
ℓm
L VL . (VI.47b)
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The conversion from radiative STF tensor to spherical (ℓ,m) modes is performed using
the object

αℓmL =
√

4π (−1)m2 m
2 ℓ!√

(2ℓ+ 1)(ℓ+ m)!(ℓ− m)!
m∗

⟨M lL−M⟩ , (VI.48)

where m = (n + iλ)/
√

2 is evaluated at the retarded time u, and m∗ is its complex
conjugate. Note that if m is even, then Vℓm = 0, and conversely, if m is odd, then Uℓm.
This observation significantly simplifies the computations: each of these modes is defined
in terms of only one radiative moment, of which we know the expression in terms of the
source moments (Section VI.2). Replacing the source moments by their expressions for
quasicircular orbits (Section VII.4), taking their derivatives with the equations of motion
(Section II.6) and evaluating nonlocal integrals (Section VI.3), we are able to compute
these modes in the case of quasicircular orbits.

The computation being performed, it is always possible to factor out the dependence
in the orbital GW phase ϕ which we used to parametrize our quasicircular motion. The
modes can then be rescaled by the dominant contribution, which leads to defining Ĥℓm
as

hℓm = 8Gmνy
c2R

√
π

5 Ĥℓm e−imϕ , (VI.49)

where we recall y = Gmω/c3 with ω = dϕ/dt. Note that the amplitude is a complex
number which satisfies Ĥℓ,−m = (−)ℓ Ĥ∗

ℓm, where the star denotes the complex conjugate.
Specializing our study to the (ℓ,m) = (2, 2) mode, we compute with 4PN accuracy

Ĥ22 = − e2iϕ

2c2mνy
m∗
im

∗
j Uij . (VI.50)

When computing our expression (VI.50) for the (2,2) mode, the arbitrary constants r0
and r′

0 nicely cancel out. However, a dependency in the b0 constant remains, already at
1.5PN order. This was of course known since the computation of the 1.5PN tail effect.
At the time, the rationale to eliminate the b0 dependency was to reabsorb the complex
piece of Ĥ22 into an a redefined, auxiliary phase [166, 198], which reads

ψ = ϕ− 2GMω

c3 ln
(
ω

ω0

)
, (VI.51)

where M denotes the constant total mass-energy of the spacetime and ω0 ≡ c e11/12−γE/(4b0).
Remarkably, as the literature progressed [204, 203, 201, 205, 202, 96, 161, 197, 206], it
was found that using the same definition (VI.51) to decompose hℓm successfully removed
all the b0 dependencies in all the modes up to currently known orders. Indeed, one can
always decompose hℓm as

hℓm = 8Gmνx
c2R

√
π

5Hℓm e−imψ , (VI.52)

where we emphasize the fact Hℓm (without a hat) is a complex amplitude that differs
from Ĥℓm (with a hat). We then find that up to 3.5PN order, Hℓm is independent of
b0. This is remarkable, since the definition was only tailored for 1.5PN, and it crucially
relies on defining (VI.51) with the conserved total mass-energy M (using the total mass
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m associated only to matter would fail at removing the b0’s). The common choice for ω0
for all modes was motivated in [204] by the fact that it amounts to a redefinition of the
time tc, and simplicity.

In this work [5, 6], we found that this procedure also successfully removed b0 at 4PN
order, but an important subtlety arises. Indeed, if we simply reabsorb the relevant terms
of the amplitude in ψ, we find that the (2,2) mode reads

H22 = 1 +
(

−107
42 + 55

42ν
)
y + 2πy3/2 +

(
−2173
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1512ν
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)
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[

27027409
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(
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96

)
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2772 ν
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+ 114635
99792 ν
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105 ln(16y)

]
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+
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−2173π

756 +
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378 + 14333 i
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(40π
27 − 4066 i

945

)
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+
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−846557506853

12713500800 + 45796
2205 γE − 22898
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63 π

2 + 22898
2205 ln(16y)

+
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−345046539157
4237833600 + 19972

2205 γE − 219314
2205 iπν

− 9755
32256π

2 − 46462
2205 ln(16y) + 128

5 ln
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(256450291
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1008π
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ν2 − 81579187

15567552ν
3 + 26251249

31135104ν
4
]
y4 + O

(
y9/2) .
(VI.53)

This remaining b0 dependency is troublesome, but can be explained as follows. Up to
now, we have assumed that Ĥℓm and Hℓm are expressed in terms of y, which is related to
the derivatives of ϕ. However, to be consistent, we should now express Hℓm in terms of
the variable

x ≡
(
GmΩ
c3

)2/3
, (VI.54)

where we have defined the associated frequency Ω ≡ dψ/dt which is related to the orbital
frequency ω by

Ω = ω − 2GM ω̇

c3

[
ln
(
ω

ω0

)
+ 1

]
. (VI.55)

Using (II.58) for the frequency chirp at the dominant order, it explicitly comes, replacing
M by m at that order,

Ω = ω

{
1 − 192

5 ν

(
Gmω

c3

)8/3 [
ln
(
ω

ω0

)
+1
]

+ O
( 1
c10

)}
, (VI.56)
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where we recall that ν = m1m2/m
2 is the symmetric mass ratio. Recalling also the

definition (I.42) and posing y0 = (Gmω0/c
3)2/3 we thus have

x = y

{
1 − 192

5 ν y4
[

ln
(
y

y0

)
+ 2

3

]
+ O

(
y5)} , (VI.57)

showing that the frequency Ω differs from the orbital frequency ω at the 4PN order only
(as argued in [204, 199]). This explains why this subtlety was not considered in previous
computations. Thus, we obtain [5]
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−336005827477
4237833600 + 15284

441 γE − 219314
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32256π
2 + 7642

441 ln(16x)
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ν
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7413120 − 1025
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2
)
ν2 − 81579187

15567552ν
3 + 26251249

31135104ν
4
]
x4 + O

(
x9/2) ,
(VI.58)

which is indeed explicitly free of any arbitrary constant. Note the frequency redefinition
(VI.57) is a 4PN effect, therefore it never needed to be accounted for in previous com-
putations, e.g. [204, 199]. In this 4PN result, however, accounting for it was crucial, and
omitting it would have led to a residual b0 dependency, as in (VI.53). This new result
is also in agreement with the prediction of linear black-hole perturbation theory [205],
although this subtlety would correspond to a second-order self-force effect.

We have also computed the nonoscillatory (ℓ,m) = (2, 0) mode. Since this modes
do not have a phase, there is no freedom to transfer parts of the waveform from the
amplitude into the phase. As discussed in Section VI.3.2, nonoscillatory modes arise from
integration of the nonlinear zero-frequency memory terms over the past history of the
system, assuming a model for the quasicircular evolution of the orbit in the past. Since
the integration increases the effect by the inverse of the 2.5PN order, with the present
4PN formalism we are able to control the (2, 0) mode only with relative 1.5PN precision.
We thus find

H20 = − 5
14

√
6

[
1 +

(
−4075

4032 + 67
48ν

)
x+ O

(
x2)] . (VI.59)
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where all the arbitrary constants have properly vanished. Notice that the 1.5PN term of
this mode vanishes. This is due to the fact that the 1.5PN correction in the model of
evolution of the quasicircular orbit in the past, which results in the 1.5PN term in (VI.42),
exactly cancels the 1.5PN direct contribution of the “tail-of-memory” at 4PN order, and
given by (VI.44). That is,

HToM
20 = −Hmem,1.5PN

20 = −2
√

2
7
√

3
π x3/2 . (VI.60)

The result (VI.59) is in full agreement with (4.3a) of [192], obtained from the general
expression of nonlinear memory terms in terms of radiative moments. Indeed, recall that
the tail-of-memory integral (VI.43) at 4PN order can be simply obtained from the leading
memory integral (VI.18) at 2.5PN order by replacing the canonical moment M(3)

ij by the
(derivative of the) radiative moment including the tail effect (VI.17) at relative 1.5PN
order. This confirms that the tail-of-memory is adequately taken into account in the
computation of the memory using radiative moments defined at future null infinity [192,
193].

VI.5 The 4.5PN flux
The energy flux carried by GWs at infinity can be computed solely based on that

radiative moments using (II.66), which we reproduce here:

F =
∞∑
ℓ=2

G

c2ℓ+1

[ (ℓ+ 1)(ℓ+ 2)
(ℓ− 1)ℓℓ!(2ℓ+ 1)!!U

(1)
L U (1)

L + 4ℓ(ℓ+ 2)
c2(ℓ− 1)(ℓ+ 1)!(2ℓ+ 1)!!V

(1)
L V(1)

L

]

We can compute these radiative moments in the case of circular orbits using the same
steps as in Section VI.4, but now extended to 4.5PN order, as discussed in Section VI.2.2.
Applying these methods, we find that the flux expressed in terms of y parameter, which
we recall is related to the orbital frequency ω, still contains the unphysical constant b0,
though the other arbitrary scales r0 and r′

0 have properly disappeared. It reads

F = 32c5

5G ν2y5
{

1 +
(
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336 − 35

12ν
)
y + 4πy3/2 +

(
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+
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+
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324ν
3
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+
(
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1728 ν + 193385
3024 ν2

)
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+
[
−323105549467
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4410 γE − 1369

126 π
2
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+ 39931
294 ln 2 − 47385

1568 ln 3 + 232597
8820 ln y

+
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x5)} . (VI.61)

Although the appearance of b0 in the modes starts at 1.5PN, this is the first time that
it appears explicitly in the flux. Indeed, just like we have done in Section VI.4, we must
express the flux not in terms of the orbital frequency ω, but in terms of the frequency Ω
associated to the GW. We remind the reader that x = (Gmω/c3) is related to y by
(VI.57), which reads

x = y

{
1 − 192

5 ν y4
[

ln
(
y

y0

)
+ 2

3

]
+ O

(
y5)} ,

and we find that that all the arbitrary constants now disappear in the flux expressed in
terms of x. This redefinition only affects the flux starting at 4PN, which explains why it
was never needed previously (see for example [166], where it is dismissed as a negligible
effect).

Finally, the expression for the flux, at 4.5PN order, reads

F = 32c5
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(
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+
(
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A strong check is to observe that the test-mass limit ν → 0 perfectly agrees with the
result of linear black-hole perturbation theory [207, 208, 209, 210, 211]. As usual, the
contributions due to the absorption by the black hole horizons should be added separately
from the PN result computed here, see [212, 213, 214, 215, 216, 217].

Finally, we have explicitly verified that at the 4PN order, (VI.62) can be recovered
from the gravitational modes given in Section VI.4 below and in [197], using

F = c3

16πG

∞∑
ℓ=0

ℓ∑
m=−ℓ

∣∣ḣℓm∣∣2 . (VI.63)

The new terms we computed vanish for ν = 0, and are maximal for ν = 1/4. As pre-
sented in Fig. VI.1, the 4.5PN flux significantly improves the comparison with numerical
relativity and second-order self-force near merger for similar mass binaries. This does not
seem to be the case for very unequal mass binaries, but for these, the Post-Newtonian
expansion of self-force results are known to very high order [207, 208, 209, 210, 211].

VI.6 The 4.5PN chirp

In this Section and in the next (Section VI.7), we will need to postulate the validity
of the energy balance equations dE/dt = −F between the conservative energy E (II.55)
and the flux F carried by GWs at future null infinity (VI.62). At 4PN order, we found it
necessary to use the expression of the conservative energy (II.55), but where the variable y
associated to the orbital frequency is simply replaced by the frequency x associated to the
GW. The fact that the left-hand side of the energy equation, which concerns the motion,
should be expressed in terms of the same observed GW frequency x as the right-hand side,
which concerns the radiation, and not, for instance, in terms of the “orbital” frequency
y, is worth an explanation: suppose that the compact binary system is actually a binary
pulsar system. Hence, in addition to the GWs generated by the orbital motion, the pulsar
emits electromagnetic (radio) waves, also received by the far away observer. Now the
observer at infinity can measure the orbital frequency of the system from the instants
of arrival of the radio pulses — this is the standard analysis of binary pulsars. Such
frequency should be the one to be inserted in the left side of the energy balance equation.
However, far from the system, the spacetime curvature R−1 ∼

√
M/r3 tends to zero,
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Fig. VI.1 Normalized flux F/FN emitted by an equal-mass binary (ν = 1/4)
plotted as a function of x ≡ (GmΩ/c3)2/3, as defined in (VI.54). The flux is
normalized with respect to the Newtonian flux FN , given by the lowest order term
of (VI.62). The normalized flux from numerical relativity (NR) is plotted in blue,
along with the total 3PN, 3.5PN, 4PN and 4.5PN fluxes, as given by (VI.62).
Courtesy of Héctor Estellés Estrella.

and therefore the geometric optics or Wentzel–Kramers–Brillouin (WKB) approximation
applies for both electromagnetic and gravitational waves. Thus the electromagnetic and
gravitational waves follow the same geodesic, independently of their frequency, and in
particular are subject to the same tail-induced phase modulation (VI.51). We conclude
that the distant observer measures the same frequency x from the electromagnetic radio
pulses and from the GW, and this is that frequency that he inserts into both sides of the
flux-balance law.2

Using the energy balance equation, we thus obtain the differential equation

dτ
dx = νc3

5Gm
dE/dx
F(x) (VI.64)

where we have defined the rescaled time variable

τ ≡ νc3

5Gm
(
t0 − t

)
. (VI.65)

The t0 constant of this time variable can be adjusted to account for the integration
constant arising from the differential equation. We can then Taylor-expand the right hand

2See [218] for a similar argument in the context of self-forces, using an observer sitting on the particle
and equipped with a flashlight.
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side of (VI.64) in small x, and integrate term by term. Keeping for now the integration
constant τ0 arbitrary, we have3
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}
(VI.66)

In view of inverting this series expansion of τ in terms of x, it will be extremely
practical to choose t0 such that the dimensionless quantity τ−1 is of 4PN order. Indeed,
if we limit ourself to the 3.5PN expansion of τ in terms of x, we find that τ admits
a finite limit in the x → +∞ limit, namely τ0. This uniquely defines a finite time
tc = t0 − 5Gmτ0/(νc3) at which the frequency formally becomes infinite, and this can
thus be interpreted as the coalescence time in the PN sense. Such a constant tc is a valid
choice for t0, and leads to τ0 = 0. However, if we include the 4PN terms and higher, the
expansion of τ in terms of x now has an infinite limit when x → +∞. Therefore, there
still exists a constant such that τ−1 = O(8), but it is not unique anymore, and essentially
looses its interpretation of a coalescence time. Therefore, one can always conveniently

3Notice that the 4PN contribution is either multiplied by ln(x) or reabsorbed into the arbitrary constant
τ0.
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choose t0 (or equivalently, τ0) such as to reabsorb the nonlogarithmic 4PN contribution,
thus simplifying the result as much as possible:

x = τ−1/4

4
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(VI.67)

VI.7 The 4.5PN phase
From the energy balance equation and using the chain law, we find

dE
dt = dE

dx
dx
dψ

dψ
dt = −F . (VI.68)

Then, using dψ/dt = Ω = c3x
3
2 /(Gm), we immediately obtain the differential equation

dψ
dx = −c3x

3
2

Gm

dE/dx
F(x) (VI.69)
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We then Taylor-expand the right-hand side and integrate term by term. We find that at
4PN, the explicit expression of the GW phase reads

ψ =ψ0 − x−5/2
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(VI.70)

where the integration constant ψ0 is determined by initial conditions, e.g., when the wave
frequency enters the detector’s band.

In order to get intuition on the relative contribution of each PN order to the signal,
we provide in Table VI.1 rough numerical estimates for the number of accumulated GW
cycles in the frequency band of current and future detectors. Our naive estimation does
not take the various detector noises into account, and a more realistic estimation should
be performed [219]. Nevertheless, it can be useful to gain insight on the behavior of the
PN expansion, which seems to converge well, as we see from Table VI.1. For all the typical
compact binaries in Table VI.1, we find that the 4PN and 4.5PN orders amount to about
a tenth of a cycle (less than 1 radian). This suggests that systematic errors due to the
PN modeling may be dominated by statistical errors and negligible for LISA. However,
this should be confirmed by detailed investigations along the lines of [220].
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Detector LIGO/Virgo ET LISA
Masses (M⊙) 1.4 × 1.4 10 × 10 1.4 × 1.4 500 × 500 105 × 105 107 × 107

PN order cumulative number of cycles
Newtonian 2 562.599 95.502 744 401.36 37.90 28 095.39 9.534
1PN 143.453 17.879 4 433.85 9.60 618.31 3.386
1.5PN −94.817 −20.797 −1 005.78 −12.63 −265.70 −5.181
2PN 5.811 2.124 23.94 1.44 11.35 0.677
2.5PN −8.105 −4.604 −17.01 −3.42 −12.47 −1.821
3PN 1.858 1.731 2.69 1.43 2.59 0.876
3.5PN −0.627 −0.689 −0.93 −0.59 −0.91 −0.383
4PN −0.107 −0.064 −0.12 −0.04 −0.12 −0.013
4.5PN 0.098 0.118 0.14 0.10 0.14 0.065

Table VI.1: Contribution of each PN order to the total number of accumulated cycles
inside the detector’s frequency band, for typical (but nonspinning) quasicircular compact
binaries observed by current and future detectors. We have approximated the frequency
bands of LIGO/Virgo, Einstein Telescope (ET) and LISA with step functions, respec-
tively between

[
30 Hz, 103 Hz

]
,
[
1 Hz, 104 Hz

]
and

[
10−4 Hz, 10−1 Hz

]
. When the merger

occurs within the frequency band of the detector, the exit frequency is taken to be the
Schwarzschild innermost stable circular orbit (ISCO), fISCO = c3/(63/2πGm).

The results hereabove (VI.67) gives the prediction of GR for the GW phase of nonspin-
ning compact binaries up to 4.5PN precision. On the other hand, most of the frameworks
for data analysis rely on the phase expressed in Fourier domain (see Section I.4). This
can be computed using the stationary phase approximation (SPA) [221, 222], for which
the phase of the dominant quadrupole mode reads

ψSPA = 2πF T0 + Ψ0
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(VI.71)

where v ≡
(
πGmF/c3)1/3 with F being the Fourier frequency, and where T0 and Ψ0 are

two integration constants. Again we have adjusted T0 in order to simplify the result (and
we have absorbed the usual −π

4 into Ψ0). The coefficients up to 3.5PN, as well as the
4.5PN piece, are already in use; see e.g. Appendix A of [223].
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Chapter VII
Gravitational waves in scalar-tensor theories

This chapter is mainly based on [2].

The multiple detections of GW events from inspiraling compact binary systems by
the LIGO-Virgo observatory has allowed for a new era of GW precision astronomy [72].
They have already led to significant progress in a wide range of fields such as relativistic
astrophysics, cosmology and fundamental physics. In the future, the space-based LISA
observatory coupled to the next generation of ground-based detectors, such as the Einstein
Telescope, will help further improve our understanding of the Universe and the funda-
mental forces that govern it. However, our ability to challenge the current gravitational
paradigm, based on GR, strongly relies on the construction of very precise and reliable
banks of waveform templates for compact binary systems in various alternative theories.

In order to perform precise tests of GR with compact binary systems, one can either
design some theory-dependent tests or remain agnostic on the choice and existence of a
preferred theory of gravity. The former option consists in developing complete (inspiral-
merger-ringdown) waveforms in a specific theory of gravity, that would complement the
bank of GR templates currently being used [224, 225]. Conversely, the latter path uses
general formalisms such as the PPN formalism [226], the post-Einsteinian formalism [227,
228] and blind tests of PN parameters [229, 230].

In this chapter, we will opt for the first approach and construct gravitational wave-
forms within the class of scalar-tensor (ST) theories of gravity. These theories were intro-
duced by Jordan [62], Fierz [64], Brans and Dicke [231], and later generalized in [232, 233].
Since then, they have been extensively studied, both from the theoretical and observa-
tional points of view. In particular, binary pulsar observations have already put strong
constraints on the parameters entering the models, see [234, 235, 236] for reviews. Due
to the no-hair theorem in ST theory, valid for stationary isolated black holes [237, 238],
one expects that the motion and radiation of binary black holes are indistinguishable
from those of the GR solution. To some extent, this expectation has been confirmed by
numerical relativity calculations [239]. Consequently, relevant theory-dependent tests for
ST theory involve binary neutron stars (or more exotic extended compact objects) as well
as asymmetrical black hole and neutron star (BH-NS) binaries, such as the ones recently
discovered by LIGO-Virgo [240].

139
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We will focus on the inspiral phase of coalescing binary systems, for which the PN
formalism, i.e. an approximation for weak gravitational fields and small orbital velocities,
can be applied. Previous results on the PN expansion in ST theories were derived using the
effective field theory [234, 241] and the Direct Integration of the Relaxed field Equations
(DIRE) method [242, 243]. The implementation for the matched filtering analysis in the
LISA detector was studied in [244]. Important previous results include the derivation of
the dynamics of compact binaries at 2.5PN beyond Newtonian, i.e. ∼ (v/c)5 order [245],
as well as the computation of the waveform at 2PN order for the tensor modes [246] and
1.5PN order for the scalar modes [247] (where PN orders with respect to waveforms and
fluxes are counted relatively to the quadrupolar emission, which is leading order in GR).

More recently, the equations of motion of compact binaries were computed to 3PN
order beyond Newtonian gravity [248, 249] using the MPM-PN [14] coupled to a Fokker
Lagrangian approach [128]. Note that at 3PN order in ST theory, the level of difficulty is
similar to 4PN order in GR. The result comes with the presence of a new dipolar nonlocal
tail term at 3PN order and the need to use a dimensional regularisation scheme to treat
both the ultraviolet and infrared divergences. Finally, the 3PN results were complemented
by the derivation of the scalar tidal effects to leading order in ST theories, which also
arise at 3PN order due to the presence of the scalar dipole [250].

In the present work, we extend previous results by computing the energy flux to 1.5PN
order beyond the quadrupolar radiation in GR (previously, the flux was only known to
1PN order) and we compute for the first time the scalar modes to 1.5PN order. In
particular, we include the nonlinear memory effect entering at 1.5PN order associated with
the dipole radiation. Recent investigations of the memory effect in ST theory can also be
found in [251, 252, 253]. We also treat the dipolar and quadrupolar tail effects which enter
respectively at 0.5PN and 1.5PN order. Contrary to the work of Lang [246, 247], who
uses moments named after Epstein and Wagoner (EW) [254], we adopt STF definitions
for the multipole moments [48]. Furthermore, the formalism used in the works [246, 247]
to tackle nonlinear effects is the DIRE formalism of Will and Wiseman [255], which,
although different, was shown to be equivalent to the present MPM-PN formalism [14].
Thus, the present chapter provides a necessary alternative derivation of the results found
by Lang [246, 247], in addition to extending the flux by a half PN order.

The chapter is organized as follows. In Sec VII.1, we define the class of massless
scalar-tensor theories we are interested in and derive the corresponding field equations.
In Section VII.2, we adapt the MPM formalism to the case of ST theories, focusing in
particular on the memory and tail effects. Then, in Section VII.3, we apply this formalism
to the specific case of compact binaries, obtain the explicit expressions of the source
moments and energy fluxes, and compare them with the literature. In Section VII.4, we
reduce our results to the case of quasicircular orbits, giving the fluxes and the orbital
phase evolution for dipolar-driven systems. Finally, in Section VII.5, we compute for
the first time the scalar modes, together with the previously known gravitational modes.
Comparisons with recent numerical results [256] are presented in Section VII.6. Explicit
expressions for dissipative terms in the equations of motion are also given for the first
time in Appendix B.1; long results concerning the multipole moments are displayed in
Appendix B.2 (including transformation formulas between EW and STF moments); and
the very long expression of the instantaneous scalar flux is relegated to Appendix B.3.

In order to later present our results, following [248], we introduce a number of ST and
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PN parameters. The ST parameters are defined based on the value ϕ0 of the scalar field ϕ
at spatial infinity, on the Brans-Dicke-like scalar function ω(ϕ) and on the mass-functions
mA(ϕ). We pose φ ≡ ϕ/ϕ0. The PN parameters naturally extend and generalize the
usual PPN parameters to the case of a general ST theory [257, 226]. All these parameters
are given and summarized in the following Table VII.1.

ST parameters

general ω0 = ω(ϕ0), ω′
0 = dω

dϕ

∣∣∣
ϕ=ϕ0

, ω′′
0 = d2ω

dϕ2

∣∣∣
ϕ=ϕ0

, φ = ϕ
ϕ0
, g̃µν = φgµν ,

G̃ = G(4+2ω0)
ϕ0(3+2ω0) , ζ = 1

4+2ω0
,

λ1 = ζ2

(1−ζ)
dω
dφ

∣∣∣
φ=1

, λ2 = ζ3

(1−ζ)
d2ω
dφ2

∣∣∣
φ=1

, λ3 = ζ4

(1−ζ)
d3ω
dφ3

∣∣∣
φ=1

.

1 ↔ 2 switches the particle’s labels (note the index on the λi’s in not a particle label)

sensitivities sA = d lnmA(ϕ)
d lnϕ

∣∣∣
ϕ=ϕ0

, s
(k)
A = dk+1 lnmA(ϕ)

d(lnϕ)k+1

∣∣∣∣
ϕ=ϕ0

, (A = 1, 2)

s′
A = s

(1)
A , s′′

A = s
(2)
A , s′′′

A = s
(3)
A ,

S+ = 1−s1−s2√
α

, S− = s2−s1√
α
.

Order PN parameters

N α = 1 − ζ + ζ (1 − 2s1) (1 − 2s2)

1PN γ = −2ζ
α (1 − 2s1) (1 − 2s2) , Degeneracy

β1 = ζ
α2 (1 − 2s2)2 (λ1 (1 − 2s1) + 2ζs′

1) , α(2 + γ) = 2(1 − ζ)

β2 = ζ
α2 (1 − 2s1)2 (λ1 (1 − 2s2) + 2ζs′

2) ,

β+ = β1+β2
2 , β− = β1−β2

2 .

2PN δ1 = ζ(1−ζ)
α2 (1 − 2s1)2 , δ2 = ζ(1−ζ)

α2 (1 − 2s2)2 , Degeneracy

δ+ = δ1+δ2
2 , δ− = δ1−δ2

2 , 16δ1δ2 = γ2(2 + γ)2

χ1 = ζ
α3 (1 − 2s2)3 [(λ2 − 4λ2

1 + ζλ1
)

(1 − 2s1) − 6ζλ1s
′
1 + 2ζ2s′′

1
]
,

χ2 = ζ
α3 (1 − 2s1)3 [(λ2 − 4λ2

1 + ζλ1
)

(1 − 2s2) − 6ζλ1s
′
2 + 2ζ2s′′

2
]
,

χ+ = χ1+χ2
2 , χ− = χ1−χ2

2 .

Table VII.1: Summary of parameters for the general ST theory and our notation for PN
parameters.

VII.1 Massless scalar-tensor theories
We consider a generic class of scalar-tensor theories in which a single massless scalar

field ϕ minimally couples to the metric gµν . It is described by the action

SST = c3

16πG

∫
d4x

√
−g

[
ϕR− ω(ϕ)

ϕ
gαβ∂αϕ∂βϕ

]
+ Sm (m, gαβ) , (VII.1)

where R and g are respectively the Ricci scalar and the determinant of the metric, ω is a
function of the scalar field and m stands generically for the matter fields. The action for
the matter Sm is a function only of the matter fields and the metric. A major difference



142 Chapter VII. Gravitational waves in scalar-tensor theories

in scalar-tensor theories compared to GR is that, as a consequence of the breaking of the
strong equivalence principle, we have to take into account the internal gravity of each
body. Indeed, the scalar field determines the effective gravitational constant, which in
turn affects the competition between gravitational and nongravitational forces within the
body (see the discussion in Section I.2.3). Thus, the value of the scalar field has an
indirect influence on the size of the compact body and on its internal gravity. Here, we
follow the approach pioneered by Eardley [66] (see also [258]) and we take for Sm the
effective action for N nonspinning point-particles with the masses mA(ϕ) depending in
an unspecified manner on the value of the scalar field at the location of the particles, i.e.

Sm = −c
∑
A

∫
mA(ϕ)

√
− (gαβ)A dyαA dyβA , (VII.2)

where yαA denote the spacetime positions of the particles, and (gαβ)A is the metric eval-
uated at the position of particle A. Thus, the matter action depends indirectly on the
scalar field, and we define the sensitivities of the particles to variations in the scalar field
by

sA ≡ d lnmA(ϕ)
d lnϕ

∣∣∣∣
ϕ=ϕ0

, s
(k)
A ≡ dk+1 lnmA(ϕ)

d(lnϕ)k+1

∣∣∣∣∣
ϕ=ϕ0

for k ⩾ 2 , (VII.3)

where ϕ0 is the value of the scalar field at spatial infinity that is assumed to be constant in
time, i.e. we neglect the cosmological evolution. Since we expand systematically around
the asymptotic value of the scalar field, we can account both for nonscalarized stars
and scalarized stars with constant scalar charge [259, 260]. The sensitivity of neutron
stars depends on the mass and internal equation of state. In the weak-field limit, sA is
proportional to the gravitational energy per unit mass of the body and is of order 0.2.
For stationary black holes, since all information regarding the matter which formed the
black hole has disappeared behind the horizon, the mass can depend only on the Planck
scale, mA ∝ MPlanck ∝ G−1/2 ∝ ϕ1/2 hence sBH

A = 1
2 . In this work, we will assume that

sBH
A = 1

2 for each of the black holes in a binary system and check that all our PN results
will be indistinguishable from GR in the case of binary black holes (BBHs).

The action (VII.1) is usually called the “metric” or “Jordan”-frame action, as the
matter only couples to the Jordan or “physical” metric gαβ. Then, we define the rescaled
scalar field and the conformally related metric as

φ ≡ ϕ

ϕ0
, g̃αβ ≡ φgαβ , (VII.4)

so that the physical and conformal metrics have the same asymptotic behavior at spatial
infinity. In terms of these new variables, the action (VII.1) can be rewritten as

SGF
ST = c3ϕ0

16πG

∫
d4x

√
−g̃

[
R̃− 1

2 g̃µνΓ̃
µΓ̃ν − 3 + 2ω(ϕ)

2φ2 g̃αβ∂αφ∂βφ

]
+ Sm (m, gαβ) ,

(VII.5)
where we have inserted the harmonic gauge-fixing (GF) term −1

2 g̃µνΓ̃µΓ̃ν associated with
the conformal metric, with Γ̃µ ≡ g̃ρσΓ̃µρσ and Γ̃µρσ the Christoffel symbols of that metric,
and R̃ the associated Ricci scalar. As the scalar field is now minimally coupled to the
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conformal or “Einstein” metric, the action (VII.5) is called the “Einstein”-frame action.
We will perform most of our computations in this frame and go back to the physical
metric only in the end when computing observable quantities.

Next, we define the scalar and metric perturbation variables ψ ≡ φ − 1 and hµν ≡
g̃µν−ηµν where ηµν ≡ diag(−1, 1, 1, 1) is the Minkowski metric and g̃µν ≡

√
−g̃g̃µν is the

conformal gothic metric. Then, the field equations derived from the harmonic gauge-fixed
action (VII.5) read

□η h
µν = 16πG

c4 τµν , (VII.6a)

□η ψ = −8πG
c4 τs , (VII.6b)

where □η denotes the ordinary flat spacetime d’Alembert operator, and where the source
terms read

τµν = φ

ϕ0
|g|Tµν + c4

16πGΛµν , (VII.7a)

τs = − φ

ϕ0(3 + 2ω)
√

−g
(
T − 2φ∂T

∂φ

)
− c4

8πGΛs . (VII.7b)

Here Tµν = 2(−g)−1/2δSm/δgµν is the matter stress-energy tensor, T ≡ gµνT
µν and

∂T/∂φ is defined as the partial derivative of T (gµν , φ) holding gµν constant. The nonlin-
earities in the scalar source read

Λs = −hαβ∂α∂βψ − ∂αψ∂βh
αβ +

( 1
φ

− ϕ0ω
′(ϕ)

3 + 2ω(ϕ)

)
g̃αβ∂αψ∂βψ . (VII.8)

We write the tensor source as Λµν = ΛµνLL + ΛµνH + ΛµνGF + Λµνϕ , where ΛµνLL is the Landau-
Lifshitz pseudo-energy tensor [10], ΛµνH comes from our use of the flat version of the
d’Alembert operator in (VII.6), ΛµνGF is due to the gauge-fixing term in the action and
Λµνϕ is sourced by the scalar field. Note that ΛµνGR = ΛµνLL + ΛµνH + ΛµνGF will take the same
form as in GR. The expressions of these source terms are given by

ΛαβLL = 1
2 g̃

αβ g̃µν∂λh
µγ∂γh

νλ − g̃αµg̃νγ∂λh
βγ∂µh

νλ − g̃βµg̃νγ∂λh
αγ∂µh

νλ

+ g̃µν g̃
λγ∂λh

αµ∂γh
βν + 1

8
(
2g̃αµg̃βν − g̃αβ g̃µν

)
(2g̃λγ g̃τπ − g̃γτ g̃λπ) ∂µhλπ∂νhγτ ,

(VII.9a)
ΛαβH = −hµν∂µ∂νhαβ + ∂µh

αν∂νh
βµ , (VII.9b)

ΛαβGF = −∂λhλα∂σhσβ − ∂λh
λρ∂ρh

αβ − 1
2 g̃

αβ g̃ρσ∂λh
λρ∂γh

γσ + 2g̃ρσg̃λ(α∂λh
β)ρ∂γh

γσ ,

(VII.9c)

Λµνϕ = 3 + 2ω(ϕ)
φ2

(
g̃µαg̃νβ − 1

2 g̃
µν g̃αβ

)
∂αψ∂βψ . (VII.9d)

Note that the gauge-fixing term (VII.9c) contains the harmonicities ∂νhµν which are not
zero off-shell, i.e. when the accelerations are not replaced by the equations of motion.
However, this term will ensure that, on-shell, our results are in harmonic coordinates.



144 Chapter VII. Gravitational waves in scalar-tensor theories

VII.2 The Multipolar PM formalism in scalar-tensor theories

VII.2.1 The scalar-tensor multipole moments

In this section, we solve the ST vacuum field equations, □hµν = Λµν and □ψ = Λs, in
the exterior region of the isolated matter system by means of a multipolar decomposition
(indicated by M) conjointly with a nonlinear PM expansion [92]. Thus, the solution is
written as

hµνext ≡ M(hµν) = Ghµν1 +G2hµν2 + O(G3) , (VII.10a)
ψext ≡ M(ψ) = Gψ1 +G2ψ2 + O(G3) . (VII.10b)

The multipolar expansion is entirely specified by the most general expressions for the
multipolar decomposition of the linear coefficients hµν1 and ψ1. Starting with the tensor
coefficient hµν1 which satisfies the vacuum equations, □hµν1 = ∂νh

µν
1 = 0, we adopt the

same definition of multipole moments as in GR, i.e. we follow Section II.2.1 and we write
the most general solution in harmonic coordinates as

hµν1 = kµν1 + ∂µφµν1 , (VII.11)

where the gauge vector φµ1 obeys □φµ1 = 0, and where kµν1 takes a “canonical” form [48]
in terms of two sets of source multipole moments IL(u) (mass type) and JL(u) (current
type), with u ≡ t − r/c. The moments IL and JL are STF with respect to the ℓ indices
composing L. We pose

k00
1 = − 4

c2

∞∑
ℓ=0

(−)ℓ
ℓ! ∂L

[ IL(u)
r

]
, (VII.12a)

k0i
1 = 4

c3

∞∑
ℓ=1

(−)ℓ
ℓ!

(
∂L−1

[1
r

I(1)
iL−1(u)

]
+ ℓ

ℓ+ 1∂aL−1

[1
r
ϵiabJbL−1(u)

])
, (VII.12b)

kij1 = − 4
c4

∞∑
ℓ=2

(−)ℓ
ℓ!

(
∂L−2

[1
r

I(2)
ijL−2(u)

]
+ 2ℓ
ℓ+ 1∂aL−2

[1
r
ϵab(iJ

(1)
j)bL−2(u)

])
. (VII.12c)

The moments are defined in such a way that they reduce to the familiar expressions of the
Newtonian moments at leading order [48]. The lowest monopolar and dipolar moments
satisfy the usual conservation laws dI/dt = 0, d2Ii/dt2 = 0 and dJi/dt = 0, which are
consequences of the harmonic gauge condition ∂νkµν1 = 0. In particular, the monopole I is
directly related to the total conserved mass M of the system, defined in the usual way at
spatial infinity (for either the physical or Einstein metric) by I = M/ϕ0.1 The linear gauge
vector φµ in (VII.11) similarly admits a decomposition in terms of four gauge moments,
WL, XL, YL and ZL, adopting the same definition as in GR, as given by (II.18).

To obtain the expressions of the moments IL, JL (and also WL, XL, YL and ZL) as
functions of the source, the procedure is essentially the same as in GR. The multipole

1Indeed, from □hµν = 16πG
c4 τµν we infer that h00 = − 4GI

c2 + · · · where I = c−2 ∫ d3x τ00. For a
system of point masses which are initially in free motion (when t → −∞), the total mass is given by
M =

∑
A
mA, while from (VII.7a) we see that at spatial infinity τ00 = T 00/ϕ0 = c2∑

A
mAδA/ϕ0, hence

we have I = M/ϕ0.
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expansion of hµν (noted M(hµν), as in Section II.2.1) is obtained by matching it to the
PN expansion in the near zone of the source along the lines of Section II.2.3 and [261]:

M(hµν) = FP
B=0

□−1
ret

[
r̃BM(Λµν)

]
− 4G

c4

∞∑
ℓ=0

(−)ℓ
ℓ! ∂L

[
Fµν
L (u)
r

]
. (VII.13a)

The first term is a particular solution of the wave equation, defined using a retarded
d’Alembertian and a finite part regularization procedure as in Section II.2.1. The sec-
ond term in (VII.13a) represents a homogeneous retarded solution parametrized by the
multipole moment function (STF in its indices L)

Fµν
L (u) = FP

B=0

∫
d3x r̃B x̂L

∫ 1

−1
dz δℓ(z) τµν(x, u+ zr/c) , (VII.13b)

where δℓ(z) is defined in (II.38). Following the notation of [14], the function Fµν
L (u) is

expressed in full generality in terms of the PN expansion τµν of the pseudo-tensor τµν
defined in (VII.7a). From the result (VII.13a), we can identify the linearized piece Ghµν1
in (VII.10a) as being essentially given by the second term in (VII.13a). However, the
situation is more complicated because one also has to take into account the harmonic
gauge condition which is not satisfied separately by the second term in (VII.13a). In
the end, the source moments follow from the irreducible decomposition of the spacetime
components Fµν

L (u). Defining Σ ≡ (τ̄00 + τ̄ ii)/c2, Σi ≡ τ̄0i/c and Σij ≡ τ̄ ij , we get

IL(u) = FP
B=0

∫
d3x r̃B

∫ 1

−1
dz
[
δℓ(z)x̂LΣ − 4(2ℓ+ 1)

c2(ℓ+ 1)(2ℓ+ 3)δℓ+1(z)x̂iLΣ(1)
i

+ 2(2ℓ+ 1)
c4(ℓ+ 1)(ℓ+ 2)(2ℓ+ 5)δℓ+2(z)x̂ijLΣ(2)

ij

]
(x, u+ zr/c) ,

(VII.14a)

JL(u) = FP
B=0

∫
d3x r̃B

∫ 1

−1
dz ϵab⟨iℓ

[
δℓ(z)x̂L−1⟩aΣb

− 2ℓ+ 1
c2(ℓ+ 2)(2ℓ+ 3)δℓ+1(z)x̂L−1⟩acΣ

(1)
bc

]
(x, u+ zr/c) .

(VII.14b)

These expressions are formally identical as those in GR, but of course in ST theory the
source terms Σ, Σi and Σij depend on the scalar field through (VII.9). Similarly, the gauge
moments’ expressions are formally identical to the GR case and are given by (125) of [14].

Next, in ST theory, the scalar field brings, in addition to IL(u) and JL(u), a new set of
multipole moments which we call IsL(u), also chosen to be STF. Finding their expression
is simpler than in GR (we do not need a correction due to the gauge condition) and the
linear piece Gψ1 can be directly identified from the multipole expansion of ψ. We find

M(ψ) = FP
B=0

□−1
ret

[
r̃BM(Λs)

]
+Gψ1 , (VII.15a)

with ψ1 = − 2
c2

∞∑
ℓ=0

(−)ℓ
ℓ! ∂L

[ IsL(u)
r

]
. (VII.15b)
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Similarly to the GR case, the scalar moments are obtained in closed form and we have,
defining Σs ≡ −τ̄s/c2,

IsL(u) = FP
B=0

∫
d3x r̃B

∫ 1

−1
dz δℓ(z) x̂LΣs(x, u+ zr/c) . (VII.16)

Note that in contrast to the tensor monopole I, the scalar monopole Is is not constant
but its time-variation will be a PN effect, i.e. dIs/dt = O(c−2). Later, we will define
Is(u) = ϕ−1

0 [ms + 1
c2E

s(u)] where ms is constant and Es(u) is the time-varying PN
correction, see (VII.39).

VII.2.2 Memory and tail effects in ST theory
Once the vacuum linearized solutions (VII.12) and (VII.15b) are obtained, with ex-

plicit expressions for the multipole moments as integrals over the PN expansions of τµν
and τs, the nonlinear contributions can be computed by adapting to ST theories the MPM
algorithm of [92]. In the following, we will focus our discussion on the new effects specific
to ST theories but at the end, we will give the complete nonlinear contributions needed
to control the waveform to 1.5PN order beyond the quadrupole radiation of GR.

We saw that in GR, the nonlinear memory [170, 172, 164, 262] is a nonlocal effect
due to the radiation of linear waves by the stress-energy tensor, dominantly associated
with the mass quadrupole moment, which appears at 2.5PN in the waveform (VI.18).
In ST theory, there is a new type of memory effect associated with the scalar dipole
radiation that comes from the quadratic interaction between two scalar dipole moments,
say Isi × Isj . As we shall see, such an effect arises at 1.5PN order in the waveform. For
the dipole radiation, the linear approximation to the scalar field given by (VII.15b) reads
(with c = G = 1)

ψ1
∣∣∣
Is
i

= −2∂i
[ Isi (u)

r

]
= 2ni

[
r−1

(1)
Isi (u) + r−2Isi (u)

]
. (VII.17)

The equation we need to adapt the MPM algorithm of Section II.2.1 and solve for the
quadratic interaction Isi × Isj , including the nonlinear memory effect, is2

□hµν2

∣∣∣
Is
i ×Is

j

= Λµν2

∣∣∣
Is
i ×Is

j

, (VII.18a)

with Λµν2

∣∣∣
Is
i ×Is

j

≡ (3 + 2ω0)
(
ηµρηνσ − 1

2η
µνηρσ

)
∂ρψ1∂σψ1

∣∣∣
Is
i ×Is

j

, (VII.18b)

where the source term has been obtained from (VII.9d). Following the MPM algorithm,
we shall obtain the solution of this equation, together with the harmonic coordinate
condition, by the usual construction described in Section II.2.1, which here reads

hµν2

∣∣∣
Is
i ×Is

j

= uµν2 + vµν2

∣∣∣
Is
i ×Is

j

, (VII.19a)

2The memory effect arises only in the tensor part hµν
2 and not in the scalar part ψ2, though there will

be a local (i.e. not hereditary) contribution in the scalar field due to the interaction Is
i × Is

j , see (VII.38a)
below.
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where we define a usual wµ2 = ∂νu
µν
2 and

uµν2

∣∣∣
Is
i ×Is

j

= FP
B=0

□−1
ret

[
r̃BΛµν2

]∣∣∣
Is
i ×Is

j

, (VII.19b)

vµν2

∣∣∣
Is
i ×Is

j

= Vµν
[
w2
]∣∣∣

Is
i ×Is

j

. (VII.19c)

We recall that the divergence of the particular solution uµν2 comes only from the differen-
tiation of the regularization factor r̃B (since the source term obeys ∂νΛµν2 = 0), hence

wµ2

∣∣∣
Is
i ×Is

j

= FP
B=0

□−1
ret

[
B r̃B

ni

r
Λµi2

]∣∣∣
Is
i ×Is

j

. (VII.19d)

Due to the presence of the explicit factor B, we only have to look at the pole ∝ 1/B
coming from the integration. It turns out that, even without having controlled the full uµν2
before, the result (VII.19d) is very simple to compute. Inserting the source term (VII.18b)
computed with (VII.17), and integrating by means of (A18) of [173], we get, to the leading
1/r order when r → +∞,

w0
2

∣∣∣
Is
i ×Is

j

= 3 + 2ω0
r

[
−4

3
(2)
Isi

(2)
Isi + d

du

(
4
3

(1)
Isi

(2)
Isi − 8

9Isi
(3)
Isi

)]
+ O

( 1
r2

)
, (VII.20)

wi2

∣∣∣
Is
i ×Is

j

= 3 + 2ω0
r

d
du

(
4
9n

iIsj
(3)
Isj + 8

9n
jIsj

(3)
Isi − 4

9n
jIsi

(3)
Isj

)
+ O

( 1
r2

)
. (VII.21)

Applying the MPM harmonicity algorithm, or rather, its version at leading order 1/r
explained in Appendix B of [173], and keeping only the nonlocal (hereditary) terms (we
shall add all instantaneous terms in the end results below), we get

v00
2

∣∣∣
Is
i ×Is

j

= 3 + 2ω0
r

[
4
3

∫ +∞

0
dτ
[(2)
Isi

(2)
Isi
]
(u− τ) + “inst.”

]
+ O

( 1
r2

)
, (VII.22)

while v0i
2 and vij2 are purely instantaneous. The term (VII.22) has the form of a mass

correction, and taking into account k00
1 = −4I/r + · · · together with the link I = M/ϕ0,

where M is the constant total mass-energy, we obtain the Bondi-type mass taking into
account radiation loss as

MB(u) = M − (3 + 2ω0)ϕ0
3

∫ +∞

0
dτ
[(2)
Isi

(2)
Isi
]
(u− τ) , (VII.23)

which implies the standard dipolar mass law in ST theory, as given for instance by (9)
in [250].

Let us now consider the piece uµν2 defined by (VII.19b), and look for nonlocal effects
therein. For any wave equation whose source term is made of quadratic products of linear
waves, like (VII.17), we know that the nonlocal terms arise only from the coefficient 1/r2

in the source, see the proof in [173]. For the dipolar waves, this takes the form of the
stress-energy tensor of massless radiation, namely

Λµν2 = kµkν

r2 σ(u,n) + O
( 1
r3

)
, (VII.24)
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where kµ = (1, ni) is the Minkowski null vector and the energy density in the dipolar
wave is given by

σ(u,n)
∣∣∣
Is
i ×Is

j

= 4 (3 + 2ω0)ninj
(2)
Isi (u)

(2)
Isj (u) . (VII.25)

Thus, the energy distribution in the dipolar waves is

dEwave

dΩ = ϕ0
16π

∫ +∞

0
dτ σ(u− τ,n) , (VII.26)

with the total energy in the waves given by ∆Ewave ≡
∫

dΩ dEwave

dΩ = M−MB. As we have
already mentioned, the only hereditary contributions in uµν2 comes from the piece (VII.24).
At this stage, it is convenient to perform a gauge transformation with gauge vector [160]

ζµ2 ≡ FP
B=0

□−1
ret

[
r̃B

kµ

2r2

∫ +∞

0
dτ σ(u− τ,n)

]
. (VII.27)

Posing u′µν
2 = uµν2 +∂µζν2 +∂νζµ2 −ηµν∂ρζρ2 and adding (VII.22), we then obtain the metric

in the new gauge, i.e. h′µν
2 ≡ u′µν

2 + vµν2 , in the form

h′µν
2 = 1

r

[∫ +∞

0
dτ Hµν

2 (u− τ,n) + “inst.”
]

+ O
( 1
r2

)
, (VII.28)

where the nonlocal contributions read

H00
2

∣∣∣
Is
i ×Is

j

= 2 (3 + 2ω0)
3

(2)
Isi

(2)
Isi , (VII.29a)

H0i
2

∣∣∣
Is
i ×Is

j

= 2 (3 + 2ω0)
3

[
nijk

(2)
Isj

(2)
Isk + ni

(2)
Isj

(2)
Isj − nj

(2)
Isi

(2)
Isj

]
, (VII.29b)

Hij
2

∣∣∣
Is
i ×Is

j

= (3 + 2ω0)
[
nijkl

(2)
Isk

(2)
Isl + 1

3n
ij

(2)
Isk

(2)
Isk − 1

3δ
ijnkl

(2)
Isk

(2)
Isl − 2

3
(2)
Isi

(2)
Isj + 1

3δ
ij

(2)
Isk

(2)
Isk

]
.

(VII.29c)

It is then straightforward to see that this amounts to a correction in the observable
radiative quadrupole moment (defined in (VII.34) below) due to the dipolar memory
effect as given by

δUmemory
ij

∣∣∣
Is
i ×Is

j

= 3 + 2ω0
3

∫ +∞

0
dτ
[(2)
Is⟨i

(2)
Isj⟩
]
(u− τ) . (VII.30)

Focusing now on the dipolar tail effect, it arises from the quadratic interaction between
the conserved gravitational monopole I = M/ϕ0 and the scalar dipole moment Isi (u).
At second order, we have to solve, for this particular interaction I × Isj , using (VII.8)
and (VII.17),

□ψ2
∣∣∣
I×Is

j

= 8I
r2 n

i
(3)
Isi (u) + O

( 1
r3

)
. (VII.31)
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Using (A8b) in [173], we obtain

ψtail
2

∣∣∣
I×Is

j

= 4I
r

[
ni
∫ +∞

0
dτ

(3)
Isi (u− τ) ln

(
cτ

2r

)
+ “inst.”

]
+ O

( 1
r2

)
. (VII.32)

Finally, we present the complete results for the observable radiative moments including
memory and tail contributions up to the 1.5PN order, as well as all instantaneous terms.
We introduce a radiative-type coordinate system (T,R), with U ≡ T − R/c being an
asymptotically null coordinate such that

U = u− 2GI
c3 ln

(
r

b0

)
+ O

(1
r

)
, (VII.33)

where I is the mass monopole moment and b0 is as usual an arbitrary constant length scale.
Then, we denote UL, VL and UsL the radiative moments and parametrize the asymptotic
TT tensorial waveform and the scalar waveform in the radiative coordinate system at
leading order 1/R in the distance. We have3

hTT
ij = − 4G

c2R
⊥TT
ijab

∞∑
ℓ=2

1
cℓℓ!

(
NL−2 UabL−2(U) − 2ℓ

c(ℓ+ 1)NcL−2ϵcd(aVb)dL−2(U)
)

+ O
( 1
R2

)
,

(VII.34a)

ψ = − 2G
c2R

∞∑
ℓ=0

1
cℓℓ!NLUsL(U) + O

( 1
R2

)
, (VII.34b)

where ⊥TT
ijab is defined in (I.18). Since the matter fields are minimally coupled to the

physical metric gµν = φ−1g̃µν , the GW detector will respond to the tidal field associ-
ated with the physical metric, i.e. the linearized Riemann tensor of the physical metric.
Thus, the separation vector between the entry and end mirrors of one arm of a laser-
interferometric detector will obey the standard GR law at linear order, ξ̈ = c2Rlin

0i0j ξ
j ,

but with the Riemann tensor being in ST theory related to both the tensorial and scalar
waveforms (VII.34). We have, see (18) of [67],

c2Rlin
0i0j = 1

2 ḧ
TT
ij + 1

2 ⊥ij ψ̈ , (VII.35)

showing explicitly the decomposition of the detector’s response into tensorial and scalar
modes, see (I.22).

We now present the results for the radiative type moments. The tensorial and scalar
fluxes F and Fs are deduced in terms of them directly from the waveforms (VII.34) as

F = c3R2ϕ0
32πG

∫
dΩ
(
∂hTT

ij

∂U

)2

(VII.36a)

=
∞∑
ℓ=2

Gϕ0
c2ℓ+1

(
(ℓ+ 1)(ℓ+ 2)

(ℓ− 1)ℓℓ!(2ℓ+ 1)!!
(1)
U L

(1)
U L + 4ℓ(ℓ+ 2)

c2(ℓ− 1)(ℓ+ 1)!(2ℓ+ 1)!!
(1)
V L

(1)
V L

)
,

Fs = c3R2ϕ0 (3 + 2ω0)
16πG

∫
dΩ
(
∂Ψ
∂U

)2
=

∞∑
ℓ=0

Gϕ0 (3 + 2ω0)
c2ℓ+1ℓ!(2ℓ+ 1)!!

(1)
UsL

(1)
UsL . (VII.36b)

3We restore the factors G and c. In (VII.34a) we denote by hTT
ij the TT projection of the gothic spatial

metric deviation, which differs by a sign from the ordinary (covariant) spatial metric deviation.
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To 1.5PN order, only the mass quadrupole radiative moment differs from its twice-
differentiated source counterpart,

Uij =
(2)
Iij + 2GM

ϕ0c3

∫ +∞

0
dτ

(4)
Iij(U − τ)

[
ln
(
cτ

2b0

)
+ 11

12

]

+ G (3 + 2ω0)
3c3

(∫ +∞

0
dτ
[(2)
Is⟨i

(2)
Isj⟩
]
(U − τ) − Is⟨i

(3)
Isj⟩ −

(1)
Is⟨i

(2)
Isj⟩ − 1

2Is
(3)
Isij

)
+ O

( 1
c5

)
.

(VII.37)

The difference from
(2)
Iij is made of two contributions, both of them being at 1.5PN order:

(i) the usual mass quadrupole tail correction in GR, see (VI.17), with the usual in-
stantaneous term with coefficient 11/12, except that the mass monopole I therein
is related to the constant total mass-energy by I = M/ϕ0;

(ii) the dipolar memory effect found in (VII.30), to which we have added the corre-
sponding instantaneous contributions obtained by a detailed calculation.

In addition, we find that for the ST waveform at 1.5PN order, the radiative type scalar
monopole, dipole and quadrupole moments acquire some important tail contributions,
namely

Us = Is + 2GM
ϕ2

0c
5

∫ +∞

0
dτ

(2)
Es(U − τ) ln

(
cτ

2b0

)

+ G

c5

(
1 − ϕ0ω

′
0

3 + 2ω0

)[2
9Isk

(3)
Isk − 2Is

(1)
Es

ϕ0

]
+ O

( 1
c7

)
, (VII.38a)

Usi =
(1)
Isi + 2GM

ϕ0c3

∫ +∞

0
dτ

(3)
Isi (U − τ)

[
ln
(
cτ

2b0

)
+ 1

]

+ G

c5

[
− 1

5
(1)
Isk

(3)
Iik − 1

5
(2)
Isk

(2)
Iik + 3

5
(3)
Isk

(1)
Iik + 3

5
(4)
Isk Iik − ϵiabJa

(3)
Isb − 4

(1)
W

(2)
Isi − 4

(2)
W

(1)
Isi + 4Is

(2)
Yi

+
(
1 − ϕ0ω

′
0

3 + 2ω0

)(
− 2

(1)
Es
ϕ0

(1)
Isi − 2

(2)
Es
ϕ0

Isi + 2
5

(3)
Isk

(1)
Isik + 2

5
(4)
Isk Isik

)]
+ O

( 1
c7

)
,

(VII.38b)

Usij =
(2)
Isij + 2GM

ϕ0c3

∫ +∞

0
dτ

(4)
Isij(U − τ)

[
ln
(
cτ

2b0

)
+ 3

2

]
− G

c3 Is
(3)
Iij + O

( 1
c5

)
. (VII.38c)

In these expressions we have conveniently posed, recalling the definition of the sensitivity
parameters (VII.3),

Is(u) = 1
ϕ0

[
ms + Es(u)

c2

]
, (VII.39a)

with ms = − 1
3 + 2ω0

∑
A

mA

(
1 − 2sA

)
. (VII.39b)
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The Newtonian value ms in the limit c → ∞ is constant and represents the total “scalar
charge” of the system; ms is zero for binary black holes.

We can already make a few observations on (VII.38). First, these expressions are
valid in the frame of the center-of-mass (CM) of the system defined by Ii = 0. Then,
we notice the coupling between the tensorial moments and the scalar ones through some
instantaneous terms in Usi and Usij . Finally, in Usi , the gauge moments W and Yi coming
from the tensorial sector, see (VII.11), appear and are coupled to the scalar mass monopole
and dipole. In GR the gauge moments do not contribute to the waveform before the 2.5PN
order while in ST theory they already contribute to the flux at 1.5PN order and to the
scalar waveform at 2PN order. Besides (VII.38), all other radiative moments are linearly
related to the source moments via the usual formulas, e.g. UsL = dℓIsL/dU ℓ.

VII.3 The scalar-tensor multipole moments and flux of compact binaries
Now that the general formalism has been laid out, we apply it to the case of a nonspin-

ning compact binary system to compute the source multipole moments, and subsequently,
the radiative ones. Consistently with the general formulas presented in the previous sec-
tion, we focus on the ST fluxes at 1.5PN order beyond general relativistic quadrupole
formula (i.e. 2.5PN beyond the leading dipolar order of ST theories). For two point-
particles of masses mA(ϕ), the stress-energy tensor deriving from (VII.2) reads

Tµν(t,x) =
∑
A=1,2

mA(ϕ) vµAvνA√
−(gαβ)A

vα
Av

β
A

c2

δA√
−g

. (VII.40)

From the explicit dependence of the stress-energy tensor on the scalar field through the
masses we obtain

T − 2φ∂T
∂φ

= −c
∑
A=1,2

mA

(
1 − 2sA

)√
−(gαβ)A vαAv

β
A

δA√
−g

. (VII.41)

Next, we define the following compact support source densities4

σ = 1
ϕ0φ3

T 00 + T ii

c2 , σi = 1
ϕ0φ3

T 0i

c
, σij = 1

ϕ0φ3T
ij , (VII.42a)

σs = − 1
c2ϕ0

√
−g√

(3 + 2ω0) (3 + 2ω)

(
T − 2φ∂T

∂φ

)
. (VII.42b)

At 1.5PN order, we parametrize the metric and scalar perturbation fields as

h00 = − 4
c2V − 2

c4

(
Ŵ + 4V 2

)
+ O

( 1
c6

)
, (VII.43a)

h0i = − 4
c3Vi + O

( 1
c5

)
, (VII.43b)

4Note a change of definition for σs: in [248], the definition given in (4.16) should not be used. In-
deed, this definition was never used during the computation in [248]; instead, only the 1PN expansion
given in (B4) was used, and is correct. Our definition (VII.42b) for σs yields (B4) in [248] at the 1PN
approximation.
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hij = − 4
c4

(
Ŵij − 1

2δijŴ
)

+ O
( 1
c6

)
, (VII.43c)

ψ = − 2
c2ψ(0) + 2

c4

(
1 − ω′

0ϕ0
3 + 2ω0

)
ψ2

(0) + O
( 1
c6

)
, (VII.43d)

where we have introduced (extending the usual practice in GR, see Section II.2.2) the
elementary potentials obeying the following wave equations

□V = −4πGσ , (VII.44a)
□Vi = −4πGσi , (VII.44b)

□Ŵij = −4πG
(
σij − δijσkk

)
− ∂iV ∂jV − (3 + 2ω0) ∂iψ(0)∂jψ(0) , (VII.44c)

□ψ(0) = 4πGσs . (VII.44d)

Finally, inserting these decompositions into the tensor and scalar multipole moments as
given by (VII.14) and (VII.16), we can compute the multipole moments using a series
of known techniques; see [98] for a recent review. Fortunately, at the 1.5PN order, this
is relatively easy as we do not need to worry about the subtleties associated with the
different regularizations schemes (be they ultraviolet or infrared). The main difficulty
is the long calculation of the scalar monopole and dipole moments Is and Isi which are
required at 2.5PN order.

With the ST parameters defined in Table VII.1, we obtain the source ST multipole
moments for compact binaries that are relevant for the final 1.5PN waveform and flux.
For example, the tensor quadrupole moment Iij is accurate to order 1.5PN and we find,
after reduction to the CM frame,5

Iij = mνr2

ϕ0

[
n⟨inj⟩ + 1

42c2

{
n⟨inj⟩

(
G̃αm

r

)
(−30 + 48ν) (VII.45)

+ n⟨inj⟩v2(29 − 87ν) + n⟨ivj⟩(nv)(−24 + 72ν) + v⟨ivj⟩(22 − 66ν)
}]

+ O
( 1
c4

)
.

The other relevant tensor moments (including the two gauge moments W and Yi) are
given in (B.4) of Appendix B.2.

As for the scalar moments, the full expressions at the highest necessary PN order
are also given in Appendix B.2. Hereafter, we only give the source moments at a high
enough PN order to compute the hereditary terms. Indeed, the radiative moment Uij
given by (VII.37) corrects the source moment by the relevant 1.5PN quadrupole tail effect
which is the same as in GR, and by the nonlinear memory effect associated with the dipole
moment. We will include these effects, applied to binaries, into the final waveform. The

5For convenience, when working in the CM frame, we denote r ≡ r12 and ni ≡ ni
12 the distance and

separation vector between the two bodies (r should not be confused with the harmonic-coordinate distance
to the source used in Section VII.2).
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necessary source moments to compute hereditary terms are then

Isi = α1/2ζmνr

(1 − ζ)ϕ0

[
− 2S−n

i + ni

5c2

{(
G̃αm

r

)(
9S− − 20β̄+γ̄

−1S− − 20β̄−γ̄
−1S+ − 13S−ν

+ δ
[
20β̄−γ̄

−1S− − 4S+ + 20β̄+γ̄
−1S+

])
+ v2(−S− + 7S−ν − 4S+δ

)}

+ vi(nv)
5c2

{
− 2S− + 4S−ν + 2S+δ

}]
+ O

( 1
c3

)
, (VII.46a)

Es =α1/2ζmν

6(1 − ζ)

[(
G̃αm

r

)(
− 48β̄−γ̄

−1S− + 14S+ − 48β̄+γ̄
−1S+ − 2S−δ

)

+ v2
(
S+ − S−δ

)]
+ O

(1
c

)
, (VII.46b)

Isij = α1/2ζmr2νninj

(1 − ζ)ϕ0

(
− S+ + S−δ

)
+ O

(1
c

)
, (VII.46c)

together with the Newtonian limit of (VII.45) and the Newtonian energy
E = mνv2/2 − G̃αm2ν/r + O(c−1).

So far, only the ST equations of motion to 1.5PN order were required. However, in
order to compute the ST fluxes, we have to differentiate the moments with respect to
time, which then uses the ST equations of motion to 2.5PN order. All the conservative
(PN-even) terms of the acceleration are available in [248], in which the ST equations
of motion were obtained up to 3PN order. Concerning the dissipative (PN-odd) terms
at 1.5PN and 2.5PN orders, they are given in [245] as functions of the EW multipole
moments in harmonic coordinates [254]. In Appendix B.1, we present for the first time
the explicit expressions for these PN-odd terms in the equations of motion to 2.5PN order.

Finally, we have checked that all our results concerning the moments (in this section
and in Appendix B.2) are in agreement with the results of [246, 247]. For the comparison,
we have to carefully take into account the link between the STF moments and the Epstein-
Wagoner (EW) moments [254] used in [246, 247]. The Section B.2.2 in Appendix B.2 gives
the required relations between these moments.

The scalar and tensorial energy fluxes, respectively denoted Fs and F , are given in
terms of the STF radiative multipole moments UL, VL and UsL according to (VII.36). We
further split them into instantaneous and tail contributions, following the contributions
of the tail integrals in (VII.37)–(VII.38),

F = Finst + Ftail , (VII.47a)
Fs = Fs

inst + Fs
tail . (VII.47b)

Note that the dipolar memory contribution, given by the last integral in (VII.37), becomes
instantaneous in the flux and as a consequence, its contribution is included into the
instantaneous part. On the other hand, it is convenient to keep some instantaneous
terms, such as the one related to the constant 11/12, into the definition of the tail terms.
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With this caveat in mind, we define

Ftail = 4G2M
5c8

(3)
Iij
∫ +∞

0
dτ

(5)
Iij(U − τ)

[
ln
(
cτ

2b0

)
+ 11

12

]
, (VII.48a)

Fs
tail = 4G2M (3 + 2ω0)

c6

{
1
3

(2)
Isi
∫ +∞

0
dτ

(4)
Isi (U − τ)

[
ln
(
cτ

2b0

)
+ 1

]

+
(1)
Es

c2ϕ2
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∫ +∞

0
dτ

(3)
Es(U − τ) ln

(
cτ

2b0

)

+ 1
30c2

(3)
Isij
∫ +∞

0
dτ

(5)
Isij(U − τ)

[
ln
(
cτ

2b0

)
+ 3

2

]}
. (VII.48b)

The complete expression of the instantaneous tensorial flux, valid for general orbits in the
CM frame, reads

Finst = 4 (2 + γ̄)
15c5

(
G̃αm

r

)3
mν2

r

{
− 11(nv)2 + 12v2

+ 1
28c2

[(
16 − 64ν

)(G̃αm
r

)2

+
(
2061 + 840γ̄ − 1860ν

)
(nv)4 (VII.49)

+
(

2936 + 1344β̄+ + 1120γ̄ − 1344β̄−δ − 120ν
)(

G̃αm

r

)
(nv)2

+
(

−2720 − 1344β̄+ − 1008γ̄ + 1344β̄−δ + 160ν
)(

G̃αm

r

)
v2

+
(
−2974 − 1232γ̄ + 2784ν

)
(nv)2v2 +

(
785 + 336γ̄ − 852ν

)
v4
]

+ 1
12c3

[(
− 2γ̄ + 48ζS2

−ν
)(G̃αm

r

)2

(nv) + 66γ̄
(
G̃αm

r

)
(nv)3

− 70γ̄
(
G̃αm

r

)
(nv)v2

]}
. (VII.50)

The tensorial energy flux Finst is in complete agreement with the result of [246, 247].
We also compute the instantaneous scalar flux Fs

inst to 1.5PN order, complementing
by a half PN order the previous result by Lang [247]. As its full expression in the center
of mass is very long, we have preferred to relegate it to Appendix B.3.

However, when comparing our scalar flux with the one obtained by [247], we have
found a discrepancy at 1PN order that could not be resolved, despite the fact that we
agree on all the ST multipole moments separately, notably the 2PN monopole and dipole
scalar moments. In order to investigate this disagreement, we have computed the 1.5PN
scalar waveform and have found that it is in perfect agreement with the scalar waveform
presented in (5.2) of [247]. We have then computed the flux: (i) by integrating the
scalar waveform following (6.6) of [247]; (ii) with the direct formula given by (B.9) of
Appendix B.2, where the EW moments were replaced by their center-of-mass expressions
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as given by (3.50) of [247] and (5.10) of [246]. In both cases, we recover the scalar flux as
given in Appendix B.3, and not the scalar flux of [247]. The explicit difference between
our scalar flux and the scalar flux of [247] is given explicitly in (B.11) of Appendix B.3,
along with the full expression for the scalar flux.

VII.4 Reduction to quasicircular orbits
For quasicircular orbits, the expressions of the fluxes simplify considerably and one can

work out explicitly the tail terms (VII.48) from standard methods. The usual frequency
dependent PN variable which permits to obtain gauge invariant results in GR is easily
generalized to ST theories as6

x ≡
(
G̃αmω

c3

)2/3

, (VII.51)

where ω = 2π/P is the orbital frequency of the quasicircular orbit, with P the period. It
is related to the orbital separation r and to the gauge dependent PN variable γ ≡ G̃αm

c2r ,
by the sum of (5.2)–(5.3) of [249] which includes all contributions up to relative 3PN
order, including the dipolar tail term at 3PN order. For the present work, we only need
this relation to relative 2PN order, which we reproduce here for convenience,

ω2 = αG̃m

r3

(
1 + γ

{
− 3 − 2β̄+ + ν − γ + 2β̄−δ

}

+ γ2
{

6 + 8β̄+ − 2χ̄+ + δ̄+ +
(
5 + 2β̄+

)
γ + 5

4γ
2 + δ

[
2χ̄− + δ̄− − 2β̄−

(
4 + γ

)]
+ ν

[41
4 + β̄+ + 4χ̄+ − 2δ̄+ + 24β̄2

−γ
−1 − 24β̄2

+γ
−1 + 5γ − 1

2γ
2
]

+ 5β̄−νδ + ν2
})

. (VII.52)

The expression of γ in terms of x at 2PN order is deduced by inversion of this expression,
and is also given to 3PN order in [249]. Our final results for the tensorial and scalar fluxes
at relative 2PN order expressed in terms of the gauge invariant variable (VII.51) read

Fcirc = 32c5x5ν2(1 + γ̄/2)
5G̃α

(
1 + x

336

{
− 1247 − 896β̄+ − 448γ̄ + 896β̄−δ − 980ν

}
+ 4π

(
1 + γ̄

2

)
x3/2

)
,

(VII.53a)

Fs
circ = c5x5ν2ζ

3G̃α

(
4S2

−x
−1

+ 1
15

{
− 24ζ−1γ̄ − 120S2

− − 80β̄+S2
− − 40γ̄S2

− + 240β̄+γ̄
−1S2

− + 240β̄−γ̄
−1S−S+

+ δ
[
80β̄−S2

− − 240β̄−γ̄
−1S2

− − 240β̄+γ̄
−1S−S+

]
− 80S2

−ν

}
6At this order in scalar-tensor theory, it is not necessary to distinguish the y and x variables introduced

in Part A.



156 Chapter VII. Gravitational waves in scalar-tensor theories

+ 4π(2 + γ̄)S2
−x

1/2

+ x

420

{
− 2688β̄+ζ

−1 + 2910ζ−1γ̄ + 1792β̄+ζ
−1γ̄ + 896ζ−1γ̄2 − 3360β̄2

−ζ
−1γ̄−1 − 3360β̄2

+ζ
−1γ̄−1

− 7560S2
− − 2240β̄2

−S2
− − 3360β̄+S2

− − 2240β̄2
+S2

− − 1680γ̄S2
− + 560γ̄2S2

− − 4480β̄2
−γ̄

−1S2
−

− 6720β̄+γ̄
−1S2

− − 4480β̄2
+γ̄

−1S2
− + 13440β̄2

−γ̄
−2S2

− + 13440β̄2
+γ̄

−2S2
− − 2240χ̄+S2

−

+ 6720γ̄−1χ̄+S2
− + 2240ζS4

− + 1120ζγ̄S4
− − 2240β̄−S−S+ − 6720β̄−γ̄

−1S−S+

− 8960β̄−β̄+γ̄
−1S−S+ + 26880β̄−β̄+γ̄

−2S−S+ + 6720γ̄−1χ̄−S−S+

+ δ
[
2688β̄−ζ

−1 − 1792β̄−ζ
−1γ̄ + 6720β̄−β̄+ζ

−1γ̄−1 + 3360β̄−S2
− + 4480β̄−β̄+S2

−

+ 6720β̄−γ̄
−1S2

− + 8960β̄−β̄+γ̄
−1S2

− − 26880β̄−β̄+γ̄
−2S2

− + 2240χ̄−S2
−

− 6720γ̄−1χ̄−S2
− + 9240S−S+ + 2240β̄+S−S+ + 5040γ̄S−S+ + 4480β̄2

−γ̄
−1S−S+

+ 6720β̄+γ̄
−1S−S+ + 4480β̄2

+γ̄
−1S−S+ − 13440β̄2

−γ̄
−2S−S+ − 13440β̄2

+γ̄
−2S−S+

− 6720γ̄−1χ̄+S−S+ + 2240ζS3
−S+ + 1120ζγ̄S3

−S+

]
+ ν
[
1960ζ−1γ̄ + 13440β̄2

+ζ
−1γ̄−1 + 11480S2

− + 8960β̄2
−S2

− + 22400β̄+S2
− − 1120γ̄S2

−

+ 44800β̄2
−γ̄

−1S2
− − 31360β̄+γ̄

−1S2
− − 26880β̄2

+γ̄
−1S2

− − 80640β̄2
−γ̄

−2S2
−

+ 26880β̄2
+γ̄

−2S2
− + 4480χ̄+S2

− − 13440γ̄−1χ̄+S2
− − 4480ζS4

− − 2240ζγ̄S4
−

− 31360β̄−γ̄
−1S−S+ + 17920β̄−β̄+γ̄

−1S−S+

− 53760β̄−β̄+γ̄
−2S−S+ − 13440γ̄−1χ̄−S−S+

]
+ δν

[
− 8960β̄−S2

− + 11200β̄−γ̄
−1S2

− + 11200β̄+γ̄
−1S−S+

]
+ 1120S2

−ν
2

}

+ πx3/2

30(1 − ζ)

{
192γ̄ − 192ζ−1γ̄ + 96γ̄2 − 96ζ−1γ̄2 − 96S2

− + 160β̄+S2
− + 96ζS2

− − 160β̄+ζS2
− − 208γ̄S2

−

− 160β̄+γ̄S2
− + 208ζγ̄S2

− + 160β̄+ζγ̄S2
− − 80γ̄2S2

− + 80ζγ̄2S2
− + 960β̄+γ̄

−1S2
−

− 960β̄+ζγ̄
−1S2

− + 480β̄−S−S+ − 480β̄−ζS−S+ + 960β̄−γ̄
−1S−S+ − 960β̄−ζγ̄

−1S−S+

+ δ
[

− 160β̄−S2
− + 160β̄−ζS2

− + 160β̄−γ̄S2
− − 160β̄−ζγ̄S2

− − 960β̄−γ̄
−1S2

−

+ 960β̄−ζγ̄
−1S2

− − 384S−S+ − 480β̄+S−S+ + 384ζS−S+ + 480β̄+ζS−S+

− 192γ̄S−S+ + 192ζγ̄S−S+ − 960β̄+γ̄
−1S−S+ + 960β̄+ζγ̄

−1S−S+

]
+ ν
[

− 1208S2
− + 1208ζS2

− − 604γ̄S2
− + 604ζγ̄S2

−

]})
. (VII.53b)

Next, we apply the usual flux-balance argument for the total scalar-tensor energy flux,

dEcirc
dt = −F total

circ , F total
circ ≡ Fcirc + Fs

circ , (VII.54)
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where Ecirc denotes the conservative energy of the system deduced from the conservative
equations of motion and is given at 2PN order by [249]

Ecirc = −1
2mνc

2x

(
1 + x

12

{(
−9 + 8β̄+ − 8γ

)
− ν − 8β̄−δ

}

+ x2

24

{
−81 + 32β̄2

+ + 32χ̄+ + 8δ̄+ − 112γ − 38γ2 + 24β̄+ + 32γβ̄+

+ 32β̄2
−δ

2 − ν2 + 8β̄−νδ

+ ν
[
57 − 384γ−1β̄2

− + 384γ−1β̄2
+ − 152β̄+ − 64χ̄+ + 32δ̄+ + 88γ + 8γ2

]
+ δ

[
− 24β̄− − 32χ̄− + 8δ̄− − 64β̄+β̄− − 32β̄−γ

]})
. (VII.55)

The orbital phase is defined as a function of time by ϕcirc =
∫ t
t0
ω(t′) dt′. Using the

energy balance equation, we perform a change of variables to express the phase as a
function of x,

ϕcirc = − c3

G̃αm

∫ x

x0

x′3/2

Fcirc(x′)
dEcirc

dx′ dx′ . (VII.56)

Performing the PN expansion inside the integral and integrating term by term (following
the simplest PN approximant [263]), we find that, up to a constant, the phase is given by

ϕcirc = − 1
4ζS2

−νx
1/2

[
x−1 + 3

2 + 8β̄+ − 2γ̄ − 12β̄+γ̄
−1 − 72

5 ζ
−1S−2

− − 6ζ−1γ̄S−2
− − 12β̄−γ̄

−1S−1
− S+

+ δ
[

− 8β̄− + 12β̄−γ̄
−1 + 12β̄+γ̄

−1S−1
− S+

]
+ 7

2 + 3πx1/2 log(x)
(

1 + γ̄

2

)
+ x

{
111
8 − 80

3 β̄
2
− − 33β̄+ − 80

3 β̄
2
+ + 87

2 γ̄ − 44
3 β̄+γ̄ + 52

3 γ̄
2 + 40β̄2

−γ̄
−1 + 18β̄+γ̄

−1 + 40β̄2
+γ̄

−1

− 72β̄2
−γ̄

−2 − 72β̄2
+γ̄

−2 − 16χ̄+ + 12γ̄−1χ̄+ − 2ζS2
− − ζγ̄S2

− − 1221
70 ζ−1S−2

− − 168
5 β̄+ζ

−1S−2
−

− 1029
40 ζ−1γ̄S−2

− + 8β̄+ζ
−1γ̄S−2

− − 8ζ−1γ̄2S−2
− + 18β̄2

−ζ
−1γ̄−1S−2

− − 576
5 β̄+ζ

−1γ̄−1S−2
−

+ 18β̄2
+ζ

−1γ̄−1S−2
− − 1728

25 ζ−2S−4
− − 288

5 ζ−2γ̄S−4
− − 12ζ−2γ̄2S−4

− − 4β̄−S−1
− S+

+ 18β̄−γ̄
−1S−1

− S+ + 80β̄−β̄+γ̄
−1S−1

− S+ − 144β̄−β̄+γ̄
−2S−1

− S+ + 12γ̄−1χ̄−S−1
− S+

− 48β̄−ζ
−1S−3

− S+ − 576
5 β̄−ζ

−1γ̄−1S−3
− S+

+ δ
[
33β̄− + 160

3 β̄−β̄+ + 44
3 β̄−γ̄ − 18β̄−γ̄

−1 − 80β̄−β̄+γ̄
−1 + 144β̄−β̄+γ̄

−2 + 16χ̄− − 12γ̄−1χ̄−

+ 168
5 β̄−ζ

−1S−2
− − 8β̄−ζ

−1γ̄S−2
− + 576

5 β̄−ζ
−1γ̄−1S−2

− − 36β̄−β̄+ζ
−1γ̄−1S−2

− − 2ζS−S+

− ζγ̄S−S+ + 33
2 S−1

− S+ + 4β̄+S−1
− S+ + 9γ̄S−1

− S+ − 40β̄2
−γ̄

−1S−1
− S+ − 18β̄+γ̄

−1S−1
− S+

− 40β̄2
+γ̄

−1S−1
− S+ + 72β̄2

−γ̄
−2S−1

− S+ + 72β̄2
+γ̄

−2S−1
− S+ − 12γ̄−1χ̄+S−1

− S+

+ 48β̄+ζ
−1S−3

− S+ + 576
5 β̄+ζ

−1γ̄−1S−3
− S+

]
+ δν

[
− 11

3 β̄− − 10β̄−γ̄
−1 − 10β̄+γ̄

−1S−1
− S+

]
− 55

24ν
2 + ν

[
− 79

8 + 320
3 β̄2

− + 245
3 β̄+ − 86

3 γ̄ + 32β̄2
−γ̄

−1 − 26β̄+γ̄
−1 − 192β̄2

+γ̄
−1 + 48β̄2

−γ̄
−2

+ 240β̄2
+γ̄

−2 + 32χ̄+ − 24γ̄−1χ̄+ − 32ζS2
− − 16ζγ̄S2

− − 6ζ−1S−2
− − 5

2ζ
−1γ̄S−2

−



158 Chapter VII. Gravitational waves in scalar-tensor theories

− 72β̄2
+ζ

−1γ̄−1S−2
− − 26β̄−γ̄

−1S−1
− S+ − 160β̄−β̄+γ̄

−1S−1
− S+

+ 288β̄−β̄+γ̄
−2S−1

− S+ − 24γ̄−1χ̄−S−1
− S+

]}

+ πx3/2

1 − ζ

{
63
10 + 2β̄+ − 63

10ζ − 2β̄+ζ + 23
20 γ̄ + 4β̄+γ̄ − 23

20ζγ̄ − 4β̄+ζγ̄ − γ̄2 + ζγ̄2 − 12β̄+γ̄
−1

+ 12β̄+ζγ̄
−1 − 6β̄−S−1

− S+ + 6β̄−ζS−1
− S+ − 12β̄−γ̄

−1S−1
− S+ + 12β̄−ζγ̄

−1S−1
− S+

+ δ
[

− 2β̄− + 2β̄−ζ − 4β̄−γ̄ + 4β̄−ζγ̄ + 12β̄−γ̄
−1 − 12β̄−ζγ̄

−1 − 24
5 S−1

− S+ + 6β̄+S−1
− S+

+ 24
5 ζS

−1
− S+ − 6β̄+ζS−1

− S+ − 12
5 γ̄S

−1
− S+ + 12

5 ζγ̄S
−1
− S+ + 12β̄+γ̄

−1S−1
− S+ − 12β̄+ζγ̄

−1S−1
− S+

]
+ ν
[

− 38
5 + 38

5 ζ − 19
5 γ̄ + 19

5 ζγ̄
]}]

. (VII.57)

This expression for the phase is computed using the natural assumption that the dipolar
mode is the leading order, i.e. using a formal expansion when x → 0. However, Sennett
et al. [67] pointed out that under certain conditions on the scalar-tensor parameters and
on the orbital frequency (or frequency band of a given detector), the quadrupolar mode
may be actually dominant over the dipolar mode. This happens when

1 ≲

(
24

5ζS2
−

)(
G̃αmω

2

)2/3

, (VII.58)

in which case it is more natural, when computing the phase, to perform the expansion
around the quadrupolar term rather that the dipolar term: this is what is called the
quadrupole-driven (QD) regime, as opposed to the dipolar-driven (DD) regime which we
assumed in (VII.57) (the quadrupolar case can easily be performed if needed). This result
for the phase is in perfect agreement with the result found by [67] up to 1PN order in the
dipolar-driven case.

VII.5 Waveform and GW modes
We now proceed to compute the spherical harmonic modes in circular orbits, that are

useful for numerical relativity. We will perform the standard computation for the tensor
modes hℓm and extend the formalism to the scalar modes ψℓm.

For a planar orbit of two particles, the polarization orthonormal triad (N ,P ,Q) is
defined following the conventions of [202]. The TT tensor hTT

ij represents the gothic
conformal metric and is a spin-2 object: it can be, just as in GR, decomposed into two
independent modes along the polarization vectors,

h+ ≡ 1
2(PiPj −QiQj)hTTij , (VII.59a)

h× ≡ 1
2(PiQj +QiPj)hTTij , (VII.59b)

which can be recast into a complex field, h = h+ − ih×, which can itself be decomposed
on the basis on spin-weighted spherical harmonics of weight −2,

h = h+ − ih− =
∞∑
ℓ=2

ℓ∑
m=−ℓ

hℓm −2Y
ℓm . (VII.60a)
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Similarly, the pure spin-0 scalar field can be decomposed on standard (spin-0) spherical
harmonics,

ψ =
∞∑
ℓ=0

ℓ∑
m=−ℓ

ψℓm Y ℓm . (VII.60b)

In an alternative presentation of the waveform (VII.34a), we can define the “electric”and
“magnetic”pure-spin tensor harmonics based on the spin-weighted spherical harmon-
ics [203],

TE2,ℓm
ij = 1√

2

(
−2Y

ℓmmimj + 2Y
ℓmm∗

im
∗
j

)
, (VII.61a)

TB2,ℓm
ij = −i√

2

(
−2Y

ℓmmimj − 2Y
ℓmm∗

im
∗
j

)
, (VII.61b)

where m ≡ (n + iλ)/
√

2 and m∗ denotes its complex conjugate. Owing to the fact that
hTT
ij and ψ are only needed at leading order in the inverse distance of the detector to the

source 1/R, we define the spherical harmonic radiative moments U ℓm, Vℓm and U ℓms as
the components of the decomposition

hTT
ij =

∞∑
ℓ=2

ℓ∑
m=−ℓ

1
R

(
U ℓmTE3,ℓm

ij + VℓmTB3,ℓm
ij

)
+ O

( 1
R2

)
, (VII.62a)

ψ =
∞∑
ℓ=0

ℓ∑
m=−ℓ

1
R
U ℓms Y ℓm + O

( 1
R2

)
, (VII.62b)

which can directly be related to the spin-2 and spin-0 modes via

hℓm = − G√
2Rcℓ+2

[
U ℓm − i

c
Vℓm

]
, (VII.63a)

ψℓm = G

Rcℓ+2U
ℓm
s . (VII.63b)

Based on symmetry considerations [203, 202], we can further simplify (VII.63a) in the
case when the orbit of the binary system is planar (either no spins or aligned/anti-aligned
spins) by noticing that Vℓm is zero when ℓ+m is even and U ℓm is zero when ℓ+m is odd.
These spherical harmonic moments are related to the STF multipole moments by

U ℓm = 4
ℓ!

√
(ℓ+ 1)(ℓ+ 2)

2ℓ(ℓ− 1) αℓmL UL , (VII.64a)

Vℓm = − 8
ℓ!

√
ℓ(ℓ+ 2)

2(ℓ+ 1)(ℓ− 1)α
ℓm
L VL , (VII.64b)

U ℓms = − 2
ℓ!α

ℓm
L UsL , (VII.64c)

where we have defined αℓmL as [96]7

αℓmL ≡
∫

dΩ N̂L

(
Y ℓm

)∗
=

√
4π(−

√
2)mℓ!√

(2ℓ+ 1)(ℓ+m)!(ℓ−m)!
m∗

0
⟨M lL−M⟩ , (VII.65)

7The link with the alternative definition given in [48] is given by Yℓm
L = (2ℓ+1)!!

4πℓ!

(
αℓm

L

)∗.
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with l the unit normal to the orbit, and m∗
0 the complex conjugate of the vector m taken

at some initial time t0 at which n is aligned with P [202]. Finally, it can be shown that
the redefinition of the phase variable [67]

ψcirc ≡ ϕcirc − 2(1 − ζ)
α

x3/2
(

log(4ωτ0) + γE − 11
12

)
, (VII.66)

succeeds in removing most logarithms from the expressions of hℓm and ψℓm once the
complex exponential is PN-expanded. These modes can then be recast into dimensionless
amplitude modes hℓm and ψℓm which are given by8

hℓm = 2G̃(1 − ζ)mνx
Rc2

√
16π
5 Ĥℓme−imψ , (VII.67a)

ψℓm = 2iG̃ζ
√
αS−mν

√
x

Rc2

√
8π
3 Ψ̂ℓme−imψ . (VII.67b)

with normalized modes defined such that Ĥ22 = 1 + O(x) and Ψ̂11 = 1 + O(x).
The Ĥℓm were previously computed up to 2PN order by Sennet et al. [67], based on

the tensorial waveform of [246]. In this work, we only need these modes to 1.5PN order.
We are in complete agreement with their result [67] up to 1.5PN order. In particular the
comparison of the mode Ĥ22 at 1.5PN order enables us to check that our formalism for
generating the nonlinear multipole interactions in (VII.37) is consistent with the DIRE
formalism used by Lang [246].

On the other hand, to our knowledge, the scalar modes Ψ̂ℓm are new to this chapter.
The expressions for all modes (with nonnegative m) that are nonzero at 1.5PN order are
given by

Ψ̂00 = − i
√

3√
2S−

(
S+ + S−δ

νx1/2 + x1/2

{
8β̄−γ̄

−1S− − 5
2S+ + 8β̄+γ̄

−1S+ + 1
2S−δ

}

+ x3/2

{
7
3 β̄−S− − 4β̄−γ̄

−1S− + 16
3 β̄−β̄+γ̄

−1S− + 4γ̄−1χ̄−S− − 21
8 S+ + 5β̄+S+ − 7

3 γ̄S+

− 4β̄+γ̄
−1S+ + 16

3 β̄
2
+γ̄

−1S+ − 16β̄2
−γ̄

−2S+ + 16β̄2
+γ̄

−2S+ + 4γ̄−1χ̄+S+

+ ν
[

− 8
3 β̄−S− + 4

3 β̄−γ̄
−1S− − 7

24S+ + 4
3 β̄+γ̄

−1S+

]
+ 5

24S−νδ

+ δ
[

− 3
8S− + 1

3 β̄+S− − 1
3 γ̄S− − 16

3 β̄
2
−γ̄

−1S− − 16β̄2
−γ̄

−2S− + 16β̄2
+γ̄

−2S−

− 4γ̄−1χ̄+S− − 7
3 β̄−S+ − 16

3 β̄−β̄+γ̄
−1S+ − 4γ̄−1χ̄−S+

]})
, (VII.68a)

Ψ̂11 = 1 + x

{
− 9

5 − 2
3 β̄+ − 1

3 γ̄ + 2β̄+γ̄
−1 + 2β̄−γ̄

−1S+

S−

+ δ
[2

3 β̄− − 2β̄−γ̄
−1 + 4S+

5S−
− 2β̄+γ̄

−1S+

S−

]
+ 14

15ν

}
(VII.68b)

+ x3/2

{
(2 + γ̄)π

2 − i

(
(2 + γ̄) (1 + 12 ln(2))

12 + 1
3ζ
(
S2

+ + S2
−
)

+ 4
3ζS

2
−ν + 2

3ζS−S+δ

)}
,

8Recall that hℓ,−m = (−)ℓ
(
hℓm
)∗ and ψℓ,−m = (−)ℓ

(
ψℓm

)∗.
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Ψ̂22 = − i√
5S−

(
x1/2

{
− S+ + S−δ

}

+ x3/2

{
4β̄−S−

3 − 4β̄−γ̄
−1S− + 53S+

14 + 4β̄+S+

3 + 2γ̄S+

3 − 4β̄+γ̄
−1S+ (VII.68c)

+ ν
[

− 16β̄−S−

3 + 8β̄−γ̄
−1S− − 211S+

42 + 8β̄+γ̄
−1S+

]
+ 61S−νδ

42

+ δ
[

− 53S−

14 − 4β̄+S−

3 − 2γ̄S−

3 + 4β̄+γ̄
−1S− − 4β̄−S+

3 + 4β̄−γ̄
−1S+

]})
,

Ψ̂33 =
9
√

3
(

− S− + S+δ + 2S−ν
)
x

4
√

70S−
, (VII.68d)

Ψ̂31 = −

(
− S− + S+δ + 2S−ν

)
x

20
√

14S−
, (VII.68e)

Ψ̂44 = −
16i
(
S+ − S−δ − 3S+ν + S−νδ

)
x3/2

3
√

105S−
, (VII.68f)

Ψ̂42 =
2i
(
S+ − S−δ − 3S+ν + S−νδ

)
x3/2

21
√

15S−
. (VII.68g)

Note that formally, the dominant scalar mode seems to be ψ00. This is misleading be-
cause the Newtonian part of ψ00 is actually an x-independent constant: when taking its
derivative to compute the flux, such a term vanishes. The dominant mode is thus indeed
ψ11, hence our choice of normalization.

VII.6 Comparison with numerical relativity

A recent numerical simulation by Ma et al. [256] was plotted against our PN results.
In this simulation, the authors strived to maximize the effect of spontaneous scalariza-
tion [259] by a choice of ω(ϕ). For this, they express their theory in the Damour and
Esposito-Farèse framework [234], where they choose

α0 = −3.5 × 10−3 and β0 = −4.5 . (VII.69)

Inverting (17) of [256] leads to

ψ − ψ0 = − 1
4
√
πα0

[
ln
(
ϕ

ϕ0

)
+ β0

4α2
0

ln2
(
ϕ

ϕ0

)]
, (VII.70)

where the authors chose to work with ϕ0 = 1 and ψ0 = 0. Moreover, (5) of [256] can be
rephrased as

ω(ϕ) = 8π
( d(ψ − ψ0)

d ln(ϕ/ϕ0)

)2
− 3

2 , (VII.71)

so finally we have

ω(ϕ) = 1
2α2

0

[
1 + β0

2α2
0

ln
(
ϕ

ϕ0

)]2
− 3

2 (VII.72)
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The scalar-tensor parameters are then related to those of DE gravity by [256]

ω0 = 1 − 3α2
0

2α2
0

, G̃ = 1 + α2
0

ϕ0
, ζ = α0

1 + α2
0
. (VII.73)

They then consider a NS-BH binary system. The BH has mass mBH = 5.7 M⊙, and
of course a scalar charge αBH = 0, i.e. a sensitivity of sBH = 1/2. The NS has a mass
of mNS = 1.5 M⊙, a scalar charge of αNS = 0.18, and therefore a sensitivity of sNS = 26,
such that αNS = α0(1 − 2sBH). They define the total mass m = mNS +mBH, and present
simulation results for a time of around 65 ms before merger, which corresponds to about
12 orbital cycles. Note that the black hole has a spin given by χBH = 0.19, the system
has initial eccentriciy of e ∼ 1.6 × 10−4, and tidal effects do contribute in this simulation,
but all of these effects are not accounted for by the PN template. With this choice of
parameters, they find (

24
5ζS2

−

)(
G̃αmω

2

)2/3

⩾ 25 , (VII.74)

therefore they worked with the 1PN quadrupole-driven phasing given by [67], the 2PN
Ĥℓm amplitudes given by [67] as well, and with the 1.5PN Ψ̂ℓm scalar amplitudes given
by (VII.68). Figure VII.1 presents the numerical simulation plotted against each mode.
Apart from the Ψ̂22 mode that exhibits a small discrepancy, the numerical simulations are
in very good agreement with the PN template, including the nonoscillatory (0, 0) mode.
Moreover, this agreement can certainly be improved by including tidal effects and going
to higher PN order.
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Fig. VII.1 Comparison of 1.5PN scalar modes computed in [2] (in mauve) and
numerical results of [256] (in green). The h22 mode computed at 2PN in [67] is
also compared to the numerical results. Time is given is units of GM/c3, where
M = 7.2 M⊙. Source: [256].
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Conclusion and prospects

This thesis was dedicated to computing gravitational wave templates for general rel-
ativity and a class of scalar-tensor theories in the post-Newtonian approximation. In the
case of circular orbits, we have obtained the most accurate predictions to date. We sum-
marize the progress made in general relativity in Table VII.2 and in scalar-tensor theories
in Table VII.3.

General relativity
Order EOM (2, 2) mode Flux GW phase
3PN [114, 117, 104, 120]

3.5PN [264, 265, 121] [202] [266, 104] [266, 104]
4PN [127, 131, 138, 139] This work This work This work

4.5PN [267, 153]9 Unkown [167] This work

Table VII.2: Progress made in this thesis in general relativity, in the case of two struc-
tureless point-particles.

In the case of the 4PN and 4.5PN results in general relativity, preliminary compar-
isons with numerical relativity and second-order self-force [9] indicate good agreement,
but ultimately, it would be highly desirable to have an independent verification of this
computation, for example using effective field theory methods. Many difficulties have
arisen at this order, in particular due to dimensional regularization, and we hope that the
techniques presented in this thesis can be helpful to rederive these results independently.
In scalar-tensor theory, we have found a small discrepancy with [247], which does not
affect usual results for circular orbits. We have also provided a check for the results ob-
tained in [247, 67], and we find relatively good agreement with recent numerical relativity
results [256].

As one can see from Table VII.2, it would be interesting to compute the (2, 2) modes
at 4.5PN. One step towards this goal has been achieved by the computation of the 4.5PN
radiation-reaction terms in the equations of motions in the center-of-mass frame [267, 153].
Even at 4PN, we only control the (2, 2) mode, and one yet needs to compute the other
(ℓ,m) modes to control the full waveform. Furthermore, with the prospect of the full
completion of the 5PN equations of motion [141, 145], it is natural to contemplate the

9In the center-of-mass frame only.
10We found a discrepancy with [247] which vanishes for circular orbits [67].
11The waveform was computed at 1.5PN by [246] but was not reduced to spherical harmonic modes for

circular orbits.
12For dipolar-driven systems only.
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Scalar-tensor theories

Order EOM Order Tensor modes
and flux

Scalar
modes

Scalar
flux

Orbital
phase

2PN [245] 1PN [246, 67] [247, 67] [247, 67]10 [247, 67]
2.5PN [245] 1.5PN [246, 67] This work11 This work This work12

3PN [248, 131] 2PN [246, 67] Unkown Unkown Unkown

Table VII.3: Progress made in this thesis in scalar-tensor theories, in the case of two
structureless point-particles.

possibility of computing the flux, phase and waveform at 5PN as well. Many difficulties
will arise in this computation, one of which is the appearance of many terms akin to
the tails-of-memory we computed in Chapter IV. The novel integration techniques we
have introduced, along with the drastic simplification method, seem to indicate a path
to compute the nonlinearities in the post-Minkowskian iteration very generally, to any
order and for any interaction. However, the difficulty of this computation contrasts with
the rather simple end result, and one is compelled to ask if there is not an easier way
to compute these nonlinear interactions. Moreover, computing the source quadrupole
moment at 5PN order, using full dimensional regularization, should be expected to be
very difficult as well.

Finally, despite the theoretical interest of these computations, one may also reassess
the experimental need for going to even higher order, as it could be more useful for
astrophysical purposes to broaden our problem to include, for example, eccentricity and
nonaligned spins to high post-Newtonian order. This would require detailed studies (such
as [220]) about the impact of truncating the post-Newtonian series to some given order,
both in the case of current and future detectors. Another interesting direction concerns
alternative theories of gravity. Table VII.3 indicates that the knowledge of the 3PN
equations of motion [248, 131] in scalar-tensor theories allow us to compute the waveform
at 2PN order, which is the object of future work. Moreover, in order to dispose of a large
bank of alternative waveform templates, it now seems crucial to study waveforms to high
order in a wider class of alternative theories of gravity, such as theories with a potential, or
even exhibiting a screening mechanism. Before this, and in light of the plethora of existing
alternative theories and recent experimental constraints, one should first precisely identify
which theories could indeed be tested by gravitational-wave observations, but still escape
weak-field solar system constraints.
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Appendix A
General relativity

A.1 Extracting NL, PL, QL and RL

We describe the practical method we use to extract four sets of STF moments NL, PL,
QL and RL parametrizing a vector quantity satisfying □wµ = 0. Here wµ ≡ wµn represents
the divergence wµn = ∂νu

µν
n of the quantity (II.22) following the MPM algorithm. Having

extracted these moments we can then construct the tensor vµνn ≡ Vµν [NL,PL,QL,RL]
using the formulas (48) in [14], which satisfies at once □vµνn = 0 and ∂νv

µν
n = −wµn. By

definition, see (47) in [14],

w0 =
∞∑
ℓ=0

∂L
[
r−1NL(t− r)

]
, (A.1a)

wi =
∞∑
ℓ=0

∂iL
[
r−1PL(t− r)

]
+

∞∑
ℓ=1

∂L−1
[
r−1QiL(t− r)

]
+

∞∑
ℓ=1

ϵiab∂aL−1
[
r−1RbL−1(t− r)

]
. (A.1b)

Next, we define the auxiliary quantities

w̃i ≡ wi −
∞∑
ℓ=0

∂iL
[
r−1PL(t− r)

]
=

∞∑
ℓ=1

∂L−1
[
r−1QiL(t− r)

]
+

∞∑
ℓ=1

ϵiab∂aL−1
[
r−1RbL−1(t− r)

]
, (A.2a)

≈
wi ≡ w̃i −

∞∑
ℓ=1

∂L−1
[
r−1QiL(t− r)

]
=

∞∑
ℓ=1

ϵiab∂aL−1
[
r−1RbL−1(t− r)

]
. (A.2b)

Using formulas from Appendix A in [92], we express the angular integrals∫ dΩ
4π n̂Lw

0 = ℓ!
(2ℓ+ 1)!! r

ℓ
(1
r

∂

∂r

)ℓ [
r−1NL(t− r)

]
, (A.3a)∫ dΩ

4π n̂iLw
i = (ℓ+ 1)ℓ!

(2ℓ+ 1)(2ℓ+ 1)!! r
ℓ+1

(1
r

∂

∂r

)ℓ+1 [
r−1PL(t− r)

]
, (A.3b)
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∫ dΩ
4π nin̂Lw̃

i = ℓ!
(2ℓ+ 1)!! r

ℓ−1
(1
r

∂

∂r

)ℓ−1 [
r−1QL(t− r)

]
, (A.3c)

ϵab⟨i

∫ dΩ
4π nL−1⟩nb

≈
wa = (ℓ+ 1)(ℓ− 1)!

(2ℓ+ 1)!! rℓ
(1
r

∂

∂r

)ℓ [
r−1RiL−1(t− r)

]
. (A.3d)

If wµ is known exactly to all order in r, we find that the multipole moments can be
computed using the near zone limit r → 0 (with t− r = const) as

NL(t− r) = (−)ℓ(2ℓ+ 1)
ℓ! lim

r→0

[
rℓ+1

∫ dΩ
4π n̂Lw

0
]
, (A.4a)

PL(t− r) = (−)ℓ+1(2ℓ+ 1)
(ℓ+ 1)! lim

r→0

[
rℓ+2

∫ dΩ
4π n̂iLw

i
]
, (A.4b)

QL(t− r) = (−)ℓ−1(2ℓ+ 1)(2ℓ− 1)
ℓ! lim

r→0

[
rℓ
∫ dΩ

4π nin̂Lw̃
i
]
, (A.4c)

RiL−1(t− r) = (−)ℓ(2ℓ+ 1)
(ℓ+ 1)(ℓ− 1)! lim

r→0

[
rℓ+1

∫ dΩ
4π ϵab⟨inL−1⟩nb

≈
wa
]
. (A.4d)

If we only know the leading order of the asymptotic expansion of wµ as r → +∞, the
previous expressions cannot be used. In that case, we get equivalent expressions for the
time derivatives of the multipole moments:

(ℓ)
NL(t− r) = (−)ℓ(2ℓ+ 1)!!

ℓ! lim
r→+∞

[
r

∫ dΩ
4π n̂Lw

0
]
, (A.5a)

(ℓ+1)
PL (t− r) = (−)ℓ(2ℓ+ 1)(2ℓ+ 1)!!

(ℓ+ 1)! lim
r→+∞

[
r

∫ dΩ
4π n̂iLw

i
]
, (A.5b)

(ℓ−1)
QL (t− r) = (−)ℓ−1(2ℓ+ 1)!!

ℓ! lim
r→+∞

[
r

∫ dΩ
4π nin̂Lw̃

i
]
, (A.5c)

(ℓ)
R iL−1(t− r) = (−)ℓ(2ℓ+ 1)!!

(ℓ+ 1)(ℓ− 1)! lim
r→+∞

[
r

∫ dΩ
4π ϵab⟨inL−1⟩nb

≈
wa
]
. (A.5d)
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A.2 Coefficients for the raw tails of memory

Table A.1: Coefficients An
m,ℓ, Bnm,ℓ, Cnm,ℓ, Dn

m,ℓ entering the radiative quadrupole

(a) Coefficients An
m,ℓ associated to 1,mΨℓ[M

(n)
a⟨i ,M

(8−n)
j⟩a ]

ℓ 2 3 4

m

n
0 1 2 3 4 0 1 2 3 4 0 1 2 3

0 −136
735 −13808

2625 −34576
2625

120
7

16
7 0 832

535
29432
1575

88
9 -32

7 − 928
25725 −1168

3675
664
525

64
21

1 0 −3344
6125

6184
875 −16456

875 −32
7

1216
1225

3464
525 −11584

525 −17032
525

64
7 0 −9256

8575 −6256
1225

3776
1225

2 8
75

18328
3675

22448
3675

2528
175

16
7 0 −3776

735
36272
2205

304
45 −32

7 − 16
343 −2896

5145
1024
735

4696
735

3 0 −568
875 −1224

875
816
875 0 −128

175
536
525 −5176

525 −288
25 0 0 7064

3675
4616
1225

1464
1225

4 96
275

13152
6125

8544
6125 0 0 0 −4608

1225 −3936
1125 0 0 10336

94325
4192
8575 −1616

1225 0
5 0 − 832

1225 0 0 0 − 64
245 − 32

105 0 0 0 0 − 464
1029 0 0

6 − 3648
13475 0 0 0 0 0 0 0 0 0 − 304

11319 0 0 0

(b) Coefficients Bn
m,ℓ associated to 2,mΨℓ[M

(n)
a⟨i ,M

(7−n)
j⟩a ]

ℓ 2 3 4

m

n
0 1 2 3 0 1 2 3 0 1 2 3

0 0 696
875

312
7

48
7

608
175

10768
525 −304

21 −192
7 0 272

147
160
21 0

1 −15336
6125 −5632

875 −18728
875

64
7 0 −5952

175 −5744
175

176
7 −2432

1715 −1616
245

1040
49

48
7

2 0 −2928
1225

1584
175

48
35 −32

49
15376
735 −3424

105 −240
7 0 3952

1029
2672
147

48
7

3 −216
125

552
875 −2592

875 0 0 −1728
175 −288

25 0 3904
2205

656
245 −288

49 0
4 0 −41472

6125 0 0 −3456
1225 −2592

1225 0 0 0 −608
343 0 0

5 −1536
1225 0 0 0 0 0 0 0 −1088

3087 0 0 0

(c) Coefficients Cn
m,ℓ associated to

1,mχℓ[M
(n)
a⟨i ,M

(8−n)
j⟩a ]

ℓ 2

m

n
0 1 2 3

0 − 64
245 −256

175
64
25 0

1 0 1536
1225 −1536

175
384
175

2 64
245 − 64

245
64
5 −192

35
3 0 192

175 −2304
175

576
175

4 −1152
2695 −4608

1225
1152
175 0

5 0 768
245 0 0

6 1152
2695 0 0 0

(d) Coefficients Dn
m,ℓ associated to

2,mχℓ[M
(n)
a⟨i ,M

(7−n)
j⟩a ]

ℓ 2

m

n
0 1 2

0 0 576
175 0

1 − 576
1225 −1152

175
1152
175

2 0 1152
245 −576

35
3 −192

175 −1728
175

1728
175

4 0 10368
1225 0

5 384
245 0 0
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A.3 Formulas for the retarded integrals
During the application of the procedure described in Section V.1, we have to compute

some retarded integrals given by (V.15). We quickly recall the method we follow, see
Section IV.B in [95]. Because of the explicit factors B and B2 in their source terms,
the retarded integrals (V.15) will be nonzero only when they develop a pole (or a double
pole) when B → 0. In turn this means that they depend only on the behavior of the
corresponding source in the “near-zone”, i.e., when r → 0.

Thus the first task is to expand the source term when r → 0. This is straightforward
except when the source contains a hereditary tail integral, say

Fm(r, t) =
∫ +∞

1
dxQm(x)F (t− rx/c) , (A.6)

where F (t) denotes a component of the mass quadrupole moment. The formula needed to
handle this case has been developed in the Appendix A of [95]: the near-zone expansion
of (A.6), valid to any order when r → 0, reads

Fm =
∞∑
i=0

βmi
(−)i
i!

(
r

c

)i
F (i)(t) (A.7a)

+
∞∑
j=0

(−)m cmj
(m+ 2j)!

(
r

c

)m+2j ∫ ∞

0
dτ
[
ln
(
cτ

2r

)
−Hm+j + 2H2m+2j+1

]
F (m+2j+1) (t− τ) ,

where Hq is the harmonic number, and the coefficients are

βmi =
m−1∑
k=0

(
i

k

)
2k(k!)2 (m− k − 1)!

(m+ k + 1)! +
i∑

k=m

(
i

k

)
2k(k!)2(−)m+k Hk−m −Hk+m+1

(k −m)!(k +m+ 1)! ,

(A.7b)

cmj = 2m
j!

(m+ 2j)!(m+ j)!
(2m+ 2j + 1)! (A.7c)

with the binomial symbol
( i
k

)
= 0 whenever i < k.

Once the near-zone expansion of the source is achieved, it remains to apply the fol-
lowing formulas, most of them being already exposed in the Section IV.B of [95], but
which we had to generalize in order to include higher powers in the logarithms. Thus the
generalization of (4.17) in [95] is

FP
B=0

□−1
ret

[(
r

r0

)B
Bb lnar n̂L

rp
G (t)

]
= eℓp αa,b ∂̂L

[
G(p−ℓ−3)(t− r/c

)
r cp−ℓ−3

]
, (A.8a)

where eℓp = 0 when p− ℓ− 3 is not an even natural integer, and otherwise:

eℓp = (−)p
(p− ℓ− 3)!! (p+ ℓ− 2)!! (when p = ℓ+ 3 + 2j with j ∈ N) , (A.8b)

and where, for the values we need in this chapter: α0,1 = 1, α0,2 = 0, α1,1 = ln r0,
α1,2 = −1, α2,1 = (ln r0)2 and α2,2 = −2 ln r0.
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It is also very useful to dispose of the similar formula but with a source term which
is “exact”, i.e., not Taylor-expanded in the near zone. In this case, generalizing (4.11)
of [95]:

FP
B=0

□−1
ret

[(
r

r0

)B
Bb lnar n̂L

rp
G (t− r/c)

]
= f ℓp αa,b ∂̂L

[
G(p−ℓ−3)(t− r/c

)
r cp−ℓ−3

]
, (A.9a)

where f ℓp = 0 if p− ℓ− 3 < 0 and otherwise:

f ℓp = (−)p 2p−3 (p− 3)!
(p− ℓ− 3)! (p+ ℓ− 2)! (when p ⩾ ℓ+ 3) , (A.9b)

while the values of αa,b remain the same as in (A.8). One can naturally recover the
“exact” result (A.9) from the near-zone result (A.8) by performing a Taylor expansion at
the level of the source and a subsequent formal resummation.

A.4 Test of the boosted Schwarzchild solution

Among all tests that can be performed to check the expression of the mass quadrupole
moment, one of the simplest is the boosted Schwarzschild limit. Despite its apparent
simplicity, it is quite efficient and was crucially used to fix a remaining ambiguity constant
in an early computation of the flux at 3PN order [268]. The principle is quite transparent:
if we remove one of the two black holes, then our system reduces to a single Schwarzchild
black hole of mass m1, boosted at a (constant) speed v1. The multipole moments of
a boosted Schwarzschild solution (BSS) are straightforward to derive, and have been
previously determined at 3PN order in [268]. Extending this work at 4PN order, we find
that the quadrupole moment of a BBS of mass M, boosted with a velocity V , reads

IBSS
ij = M t2 V ⟨iV j⟩

[
1 + 9

14
V 2

c2 + 83
168

V 4

c4 + 507
1232

V 6

c6 + 45923
128128

V 8

c8

]

+ 4
7
G2 M3

c6 V ⟨iV j⟩ + 10
21

G2 M3

c8 V 2 V ⟨iV j⟩ + O
( 1
c10

)
. (A.10)

On the other hand, taking the BSS limit (m2,v2) → (0,0) of the renormalized mass
quadrupole moment defined in [162] (on generic orbits, out of the CoM frame), it comes

lim
BSS

Iij =m1 t
2 v

⟨i
1 v

j⟩
1

[
1 + 9

14
v2

1
c2 + 83

168
v4

1
c4 + 507

1232
v6

1
c6 + 45923

128128
v8

1
c8

]

+ 4
7
G2m3

1
c6 v

⟨i
1 v

j⟩
1 + 10

21
G2m3

1
c8 v2

1 v
⟨i
1 v

j⟩
1 + O

( 1
c10

)
. (A.11)

Both expressions coincide under the identification (m1,v1) = (M,V ), therefore this test
is conclusive.
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A.5 Post-adiabatic integral formulas
For any β > 1, we define the integrals

A ≡
∫ +∞

0
ds e

ins
ξ(

1 + 5
8s
)β (A.12a)

B ≡
∫ +∞

0
ds e

ins
ξ(

1 + 5
8s
)β ln

[(
1 + 5

8s
) 8

5
− 1

]
(A.12b)

By integrating by parts iteratively, we immediately find that

A =
[(

ξ

in

)
e

ins
ξ

(
1 + 5

8s
)−β

]+∞

s=0
−
[(

ξ

in

)2
e

ins
ξ

(
−5β

8

)(
1 + 5

8s
)−β−1

]+∞

s=0

+
(
ξ

in

)2 (
−5β

8

)(
−5(β + 1)

8

)∫ +∞

0
ds e

ins
ξ

(
1 + 5

8s
)−β−2

(A.13)

where the last integral is convergent as can henceforth be treated as a constant of
order unity. We thus immediately obtain our first result,

A = iξ
n

+ 5β
8n2 ξ

2 + o(ξ2) (A.14)

We now claim that

B =
( iξ
n

+ 5β
8n2 ξ

2
)(

ln
(
ξ

|n|

)
− γE + sg(n) iπ2

)
+
(5β

8 − 3
16

)
ξ2

n2 + o(ξ2) (A.15)

To prove this, we divide our integral in a “recent” and “ancient” part, namely
B = Brecent + Bancient where

Brecent ≡
∫ 1

0
ds e

ins
ξ(

1 + 5
8s
)β ln

[(
1 + 5

8s
) 8

5
− 1

]
(A.16a)

Bancient ≡
∫ +∞

1
ds e

ins
ξ(

1 + 5
8s
)β ln

[(
1 + 5

8s
) 8

5
− 1

]
(A.16b)

We first treat the “ancient” integral by introducing an auxiliary function

f(s) ≡ ln
[(

1 + 5
8s
) 8

5
− 1

]
− ln(s) (A.17)

which can be extended to be a C∞ function of R+ whose series expansion in a neigh-
borhood of 0 reads

f(s) = 3
16s− 17

512s
2 + 35

4096s
3 + Os→0(s4) (A.18)
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We replace the complicated logartihmic term by this auxiliary function and integrate
Bancient by parts in a similar way as we did with A, namely

Bancient =

 ξine ins
ξ

ln(s) + f(s)(
1 + 5

8s
)β


+∞

s=1

−

( ξin
)2
e

ins
ξ

d
ds

 ln(s) + f(s)(
1 + 5

8s
)β




+∞

s=1

+
(
ξ

in

)2 ∫ +∞

1
ds e

ins
ξ

d2

ds2

 ln(s) + f(s)(
1 + 5

8s
)β

 (A.19)

By performing the derivatives explicitly and studying the behavior of f , we find that

d2

ds2

 ln(s) + f(s)(
1 + 5

8s
)β

 = O
s→+∞

( ln s
sβ+2

)
, (A.20)

which is indeed integrable as soon as β > −1. Treating this integral as a constant of
order unity, we find

Bancient = −e
in
ξ

( 8
13

)β [ ξ
inf(1) +

(
ξ

n

)2 (
1 − 5β

13 f(1) + f ′(1)
)]

(A.21)

We now tackle the recent past integral by defining another auxiliary function, which is
essentially

(
1 + 5

8s
)−β

to which one subtracts the first terms of its series expansion when
s → 0, namely

gβ(s) ≡
(

1 + 5
8s
)−β

−
(

1 − 5β
8 y

)
(A.22)

We then reexpress our integral

Brecent ≡
∫ 1

0
dse

ins
ξ

(
ln s+ f(s)

) (
gβ(s) + 1 − 5β

8 s

)
(A.23)

We decompose this into several pieces, namely Brecent = ∑3
k=1 B

(k)
recent. First, by integrating

by parts in the usual manner, we find that

B(1)
recent ≡

∫ 1

0
dse

ins
ξ f(s)

(
gβ(s) + 1 − 5β

8 s

)

= e
in
ξ

( 8
13

)β [ ξ
inf(1) + ξ2

n2 f
′(1) − 5β

13
ξ2

n2 f(1)
]

− 3
16
ξ2

n2 (A.24)

where we have used f(0) = 0, f ′(0) = 3/16, gβ(0) = 0, gβ(1) = (8/13)β − 1 + 5β/8 and
g′
β(1) = −(5β/13) (8/13)β+5β/8. We can now deal with the terms involving a logarithm.

Thanks to the very regular structure of gβ in a neighborhood of 0, we can integrate by
parts twice to find

B(2)
recent ≡

∫ 1

0
dse

ins
ξ gβ(s) ln s = e

in
ξ
ξ2

n2

[( 8
13

)β
− 1 + 5β

8

]
(A.25)
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where we have again used the value of gβ(1). Finally, for the last piece, integrating by
parts yields

B(3)
recent ≡

∫ 1

0
dse

ins
ξ ln s

(
1 − 5β

8 s

)
= −5β

8
ξ2

n2

(
e

in
ξ − 1

)
+
(

1 + 5β
8
ξ

in

)∫ 1

0
ds e

ins
ξ ln s . (A.26)

At his stage, only a classic integral is yet to determine. We combine (4.331.1-2) of [182]
to find ∫ 1

0
dse−µs ln s = − 1

µ
[lnµ+ γE − Ei(−µ)] (A.27)

The branch cut of the complex logarithm being on the real negative half-axis, its
principal value for µ = −in/ξ is well-defined and reads

ln
(

− in
ξ

)
= ln

( |n|
ξ

)
− iπ

2 sg(n) (A.28)

Moreover, (8.215) of [182] gives us the relevant asymptotic expansion of the integral
exponential function, which reads in our case and at desired order

Ei
( in
ξ

)
= einξ ξ

in (1 + O(ξ)) (A.29)

Our last piece can thus be expressed as

B(3)
recent =

(
1 + 5β

8
ξ

in

)(
− ln

(
ξ

|n|

)
− iπ

2 sg(n) + γE

)
+ 5β

8
ξ2

n2 + e
in
ξ

(
1 − 5β

8

)
ξ2

n2

(A.30)

Adding all of these elements together, we find that Brecent = ∑3
k=1 B

(k)
recent yields

Brecent =
( iξ
n

+ 5β
8n2 ξ

2
)(

ln
(
ξ

|n|

)
− γE + sg(n) iπ

2

)
+
(5β

8 − 3
16

)
ξ2

n2

+ e
in
ξ

( 8
13

)β [ ξ
inf(1) +

(
ξ

n

)2 (
1 − 5β

13 f(1) + f ′(1)
)]

(A.31)

We then gladly see that adding Brecent with Bancient cancels out all the oscillatory terms,
which diverge as ξ → 0. This means that these oscillatory terms were, as expected, pure
artifacts of our integral splitting, and we thus recover our claim (A.15).

A.6 Compendium of useful formulas in d dimensions
In this section, we will skim over some formulas that are useful when adapting the

three-dimensional PN-MPM construction to d dimensions. These can all be found in
[102, 104, 269, 130, 162, 194, 270, 124], and we encourage the interested reader to refer
to these references.
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To start with, the Einstein equations in d + 1 dimensions [102] are identical to their
three-dimensional form, but with a coupling constant G = GN ℓ

d−3
0 , where GN is the

standard 3-dimensional Newton’s constant and ℓ0 is an arbitrary length scale associated
to dimensional regularization. This arbitrary scale must not appear in final results in the
3D limit. We then recover the Landau-Lifschitz formulation (II.5), but where the source
term is now given by

Λµν ≡ − hαβ∂αβh
µν + ∂αh

µβ∂βh
να + 1

2g
µνgαβ∂λh

ατ∂τh
βλ

− gµαgβτ∂λh
ντ∂αh

βλ − gναgβτ∂λh
µτ∂αh

βλ + gαβg
λτ∂λh

µα∂τh
νβ

+ 1
4
(
2gµαgνβ − gµνgαβ

)(
gλτgρσ − 1

d− 1gτρgλσ
)
∂αh

λσ∂βh
τρ

+ 2hρ(µ∂ρH
ν) − ∂ρ(hµνHρ) . (A.32)

Many technical details of PN-MPM computations are subtly modified in d dimensions,
as presented nicely in [102]. Some highlights are that the volume of a unit sphere with a
d− 1 dimensional surface is

Ωd−1 = 2πd/2

Γ(d/2) (A.33)

where Γ(z) =
∫+∞

0 dt tz−1e−t is the usual gamma function, and the infinitesimal volume
element in spherical coordinates (r, θ1, ..., θd−1) reads

ddx = rd−1dr dΩd−1 = rd−1(sin θ1)(sin θ2)2...(sin θd−1)d−2 dr dθ1...dθd−1 (A.34)

Any operation involving a trace is also affected, e.g. the expression of the STF quantity
n̂L is given, for L = i1...iℓ, by

n̂L =
[ℓ/2]∑
k=0

(−1)kℓ!(2k − 1)!! Γ
(
d
2 + ℓ− l − 1

)
2k(2k)!(ℓ− 2k)! Γ

(
d
2 + ℓ− 1

) δ(i1i2δi2k−1i2k
ni2k+1...iℓ) (A.35)

The formulas describing how derivative operators apply on functions of the coordinates
are also modified, e.g.

∆
[
n̂Lr

λ
]

= (λ− ℓ)(λ+ ℓ+ d− 2)n̂Lrλ−2 (A.36)

Defining the d-dimensional Dirac distribution δ(d)(x) à la Schwartz, we find that the
Green’s function u(x) of the d-dimensional Laplace operator, defined by

∆u(x) = −4πδ(d)(x) , (A.37)

reads
u(x) = k̃r2−d , (A.38)

where we define

k̃ ≡
Γ
(
d−2

2

)
π

d−2
2

= 4π
(d− 2)Ωd−1

(A.39)
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such that lim
d→3

k̃ = 1. The retarded Green’s function Gret of the d-dimensional d’Alembert
operator is less straightforward. It satisfies

□Gret(t,x) = δ(t)δ(d)(x) (A.40)

and is given by

Gret(t,x) = − k̃

4π
θ(t− r/c)
rd−1 γ 1−d

2

(
ct

r

)
, (A.41)

where θ is the Heaviside function and where we define, for any s ∈ C and |z| ⩾ 1,

γs(z) ≡ 2π
Γ (s+ 1) Γ

(
−s− 1

2

) (z2 − 1
)s
. (A.42)

For s ∈ −N∗, this latter function should actually be seen as a distribution, in which
case we for example find γ−1(z) = δ(z − 1). Thanks to this retarded Green’s function,
and assuming for now that the source S(t,x) has good integrability properties, we can
generally solve the wave equation

□ϕ(t,x) = S(t,x) (A.43)

and find a particular retarded solution

ϕpart(t,x) =
∫ +∞

−∞
dt′
∫

ddx′Gret(t− t′,x − x′)S(t′,x′′)

= − k̃

4π

∫ +∞

1
dz γ 1−d

2
(z)

∫
ddx′ S (t− z|x − x′|,x′)

|x − x′|d−2 (A.44)

which reduces to the three-dimensional solution when d → 0, thanks to the distributional
character of γs. Although dimensional dimensional cures many convergence problems that
can occur in three dimensions, a few difficulties remain. Therefore, the previous solution
is more generally given by the regularized expression

ϕpart(t,x) = FP
B=0

[
− k̃

4π

∫ +∞

1
dz γ 1−d

2
(z)

∫
ddx′

(
r′

r0

)B S (t− z|x − x′|,x′)
|x − x′|d−2

]
(A.45)

where FPB=0 is defined just like in three dimensions. On top of finding a particular
solution to the sourced wave equation, it is also necessary to study the homogeneous part
of the wave equation in d dimensions, namely the solution of

□ϕhom(t,x) = 0 . (A.46)

The most general homogeneous “multipolar” retarded solution, under the usual no-incoming
radiation and asymptotic flatness assumptions, reads [130]

ϕhom =
∞∑
ℓ=0

∂̂LF̃L (A.47)
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where the multipolar moment F̃L is related to the arbitrary function of time FL(t) via
the definition

F̃L(t,x) = −4π
∫ +∞

−∞
dt′Gret(t− t′,x)FL(t′)

= k̃

rd−2

∫ +∞

1
dy γ 1−d

2
(y)FL

(
t′ − ry

c

)
(A.48)

Note that lim
d→3

F̃L(t,x) = FL(t − r/c), so we retrieve the three-dimensional multipolar
expansion in the three-dimensional limit. Although this expression is exact, it is often
unwieldy, and it will be very useful to express its near-zone expansion when r → 0, which
reads [130]

F̃ =
r→0

F̃even + F̃odd , (A.49a)

where

F̃even = r−1−ε

π
1+ε

2

∞∑
j=0

(−1)j
22jj! Γ

(1 + ε

2 − j

)(
r

c

)2j
F (2j)(t) , (A.49b)

F̃odd = − 1
2π ε

2 c1+ε

Γ
(

1+ε
2

)
Γ
(
1 − ε

2
) ∞∑
j=0

1
22jj!Γ

(
j + 3+ε

2

) (r
c

)2j ∫ +∞

0
dτ τ−εF (2j+2)(t− τ) .

(A.49c)

A.7 Proof of convergence when k = 1 and k = 2

In this Appendix, we assume that k ∈ {1, 2}. In order to analyze the convergence
of the general solution (IV.46) for arbitrary smooth functions F and G ∈ C∞(R) which
vanish identically in the remote past, for t ⩽ −T , we must first do some manipulation
so as to transfer the boundary conditions of F and G into the bounds of the integrals.
Thanks to the regularization factor λB, we can always manipulate these integrals safely,
since they are defined by analytic continuation for any B ∈ C except at some integer
values including the value of interest B = 0, at which we apply the finite part in the end.

a) Case k + j ⩽ 1

In this case, we can perform the change of variable λ = µ + ρ/2 on (IV.46b) and
expand using the binomial formula:

ϕBij(u, r) =
−k−j+1∑
p=0

(
−k − j + 1

p

)∫ +∞

0
dρ ρi+j

(
ρ

2

)−k−j+1−p
G(u− ρ)

∫ +∞

1
dxQm(x)

×
∫ r

0
dµ

(
µ+ ρ/2
r0

)B
µp F

(
u− ρ(x+ 1)

2 − µ(x− 1)
)
. (A.50)
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We then set τ = µ(x− 1) with dτ = (x− 1)dµ, invert the integrals, and find

ϕBij(u, r) =
−k−j+1∑
p=0

2−k+j−1+p
(

−k − j + 1
p

)∫ +∞

0
dτ τp

∫ +∞

1+τ/r
dx Qm(x)

(x− 1)p+1

(
τ
x−1 + ρ/2

r0

)B

×
∫ +∞

0
dρ ρ−k+i+1−pG(u− ρ)F

(
u− ρ(x+ 1)

2 − τ

)
. (A.51)

Next we introduce

Υk,i,j,p(τ) ≡ τp
∫ +∞

1+τ/r
dx Qm(x)

(x− 1)p+1

∫ +∞

0
dρ ρ−k+i+1−pG(u− ρ)F

(
u− ρ(x+ 1)

2 − τ

)
,

(A.52)
which is well defined, since −k + i + 1 − p ⩾ i + j ⩾ 0 ensures that the integral in ρ
converges at 0, and the behavior of Qm(x)/(x− 1)p+1 ∼ x−m−p−2 when x → +∞ ensures
that the integral in x converges at infinity.

Since F vanishes identically in the remote past, so does Υk,i,j,p(τ), thus it is clearly
integrable at τ → +∞. We then bound this quantity with

|Υk,i,j,p(τ)| ⩽ τp
∫ +∞

1+τ/r
dx Qm(x)

(x− 1)p+1 = Oτ→0
(
ln2 τ

)
, (A.53)

which proves integrability at the bound τ → 0.

b) Case k + j ⩾ 2

We first shuffle the order of the integrals in (IV.46b) and obtain

ϕBij =
∫ +∞

1
dxQm(x)

∫ +∞

0
dλ

(
λ

r0

)B
λ−k−j+1

∫ 2λ

0
dρ ρi+jG(u− ρ)F

[
u− ρ− λ(x− 1)

]
−
∫ +∞

1
dxQm(x)

∫ +∞

r
dλ

(
λ

r0

)B
λ−k−j+1

∫ 2(λ−r)

0
dρ ρi+jG(u− ρ)F

[
u− ρ− λ(x− 1)

]
.

(A.54)

Taking advantage of the conditions on F and G, we can now restrict the bounds of the
integrals to λ ⩽ u+T

x−1 . This yields

ϕBij =
∫ +∞

1
dxQm(x)

∫ u+T
x−1

0
dλ

(
λ

r0

)B
λ−k−j+1

∫ min(u+T , 2λ)

0
dρ ρi+jG(u− ρ)F

[
u− ρ− λ(x− 1)

]
−
∫ u+T

r

1
dxQm(x)

∫ u+T
x−1

r
dλ

(
λ

r0

)B
λ−k−j+1

∫ min(u+T , 2(λ−r))

0
dρ ρi+jG(u− ρ)F

[
u− ρ− λ(x− 1)

]
.

(A.55)

We introduce

Ξk,i,j(x) ≡
∫ u+T

x−1

0
dλλ−k−j+1

∫ min(u+T , 2λ)

0
dρ ρi+jG(u− ρ)F

[
u− ρ− λ(x− 1)

]
. (A.56)
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Let us bound this quantity for any x ∈ ]1,+∞]:

∣∣Ξk,i,j(x)
∣∣ ⩽ ∫ u+T

x−1

0
dλλ−k−j+1

∫ min(u+T , 2λ)

0
dρ ρi+j

∣∣∣G(u− ρ)F (u− ρ− λ(x− 1))
∣∣∣
(A.57)

⩽ K
∫ u+T

x−1

0
dλλ−k−j+1

∫ min(u+T , 2λ)

0
dρ ρi+j

= K
i+ j + 1

∫ u+T
x−1

0
dλλ−k−j+1

[
min(u+ T , 2λ)

]i+j+1

= K
i+ j + 1

{∫ u+T
2

0
dλλ−k−j+1(2λ)i+j+1 + θ(3 − x)

∫ u+T
x−1

u+T
2

dλλ−k−j+1(u+ T )i+j+1
}

= K
i+ j + 1

{
2j+k−2

i+ (3 − k)(u+ T )i+(3−k) + θ(3 − x)(u+ T )i+j+1
∫ u+T

x−1

u+T
2

dλλ−k−j+1
}
,

where
K ≡ sup

(τ,τ ′)∈[−T ,u]2

[
F (τ)G(τ ′)

]
. (A.58)

We now distinguish the case j = 2 − k, which yields

∣∣Ξ2,i,0(x)
∣∣ ⩽ K

i+ 1

{
1

i+ 1(u+ T )i+1 + θ(3 − x)(u+ T )i+1 ln
( 2
x− 1

)}
, (A.59)

and the more general case k + j ⩾ 2, in which we find

∣∣Ξk,i,j(x)
∣∣ ⩽ K(u+ T )i+(3−k)

i+ j + 1

{
2j+k−2

i+ (3 − k) + θ(3 − x)
j + (k − 2)

(
2j+(k−2) − (x− 1)k+j−2

)}
.

(A.60)
Since Qm(x) = Ox→1+ (ln (x− 1)) and Qm(x) = Ox→+∞

(
x−m−1), we can now look

at the asymptotic behavior of our integrand. In the case (k, j) = (2, 0), we find

Qm(x) Ξ2,i,0(x) =


Ox→1+

(
ln(x− 1)2

)
,

Ox→+∞
(
x−m−1

)
.

(A.61)

In the general case k + j ⩾ 2, we instead have

Qm(x) Ξk,i,j(x) =


Ox→1+

(
ln(x− 1)(x− 1)j+(k−2)

)
,

Ox→+∞
(
x−m−1

)
.

(A.62)

It is now clear that Qm(x) Ξk,i,j(x) is integrable at both bounds x → 1+ and x →
+∞ as soon as k ∈ {1, 2}. After doing a similar (and much easier) analysis on the
second member of (A.55), we find that (A.55)–(A.54), and consequently (IV.46b), have a
convergent limit as B → 0, i.e., they do not develop poles in 1/B. Repeating the analysis
of this section with an extra factor ln(r/r0) in the integrand shows that we can also safely
compute the 1/B coefficient in the Laurent series.
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Appendix B

Scalar-tensor theories

B.1 Dissipative PN-odd terms in the equations of motion

The conservative equations of motion of compact binaries in ST theory have been
obtained up to 3PN order in [248, 249]. The PN-even terms aN

A, a1PN
A , a2PN

A and a3PN
A in

the acceleration for arbitrary orbits in a general frame are given by (5.10)–(5-12) of [248].
The dissipative PN-odd terms a1.5PN

A and a2.5PN
A can be computed based on their expres-

sions in terms of the EW moments as given by [245]. We find
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a1.5PN
1 = 2ζS−

3c3r12

(
S+ + S−

)(G̃αm1
r12

)(
G̃αm2
r12

)[
3 (n12v12) n12 − v12

]
, (B.1a)

a2.5PN
1 = 1

60c5r12

(
G̃αm1
r12

)(
G̃αm2
r12

)
×(

n12

{(
G̃αm1
r12

)
(n12v1)(−288 + 80β̄− − 80β̄+ − 80γ̄ − 800ζS2

− + 320β̄−ζS2
− − 320β̄+ζS2

− − 320ζγ̄S2
−

− 800ζS−S+ + 320β̄−ζS−S+ − 320β̄+ζS−S+ − 320ζγ̄S−S+)

+
(
G̃αm2
r12

)
(n12v1)(832 + 80β̄− − 1440β̄+ + 640γ̄ + 1920β̄2

+γ̄
−1 − 1900ζS2

− − 320β̄−ζS2
− − 320β̄+ζS2

−

− 800ζγ̄S2
− + 960β̄−ζγ̄

−1S2
− + 2880β̄+ζγ̄

−1S2
− − 3840β̄2

−ζγ̄
−2S2

− − 3840β̄2
+ζγ̄

−2S2
−

− 740ζS−S+ − 320β̄−ζS−S+ − 320β̄+ζS−S+ − 320ζγ̄S−S+ + 2880β̄−ζγ̄
−1S−S+

+ 960β̄+ζγ̄
−1S−S+ − 7680β̄−β̄+ζγ̄

−2S−S+)
+ (n12v1)3(600β̄− − 600β̄+ + 300γ̄)
+ (n12v1)v2

1(144 − 360β̄− + 360β̄+ − 120γ̄ + 180ζS2
− + 120ζγ̄S2

− + 180ζS−S+ + 120ζγ̄S−S+)

+
(
G̃αm1
r12

)
(n12v2)(288 − 80β̄− + 80β̄+ + 80γ̄ + 880ζS2

− − 320β̄−ζS2
− + 320β̄+ζS2

− + 320ζγ̄S2
−

+ 880ζS−S+ − 320β̄−ζS−S+ + 320β̄+ζS−S+ + 320ζγ̄S−S+)

+
(
G̃αm2
r12

)
(n12v2)(−832 − 80β̄− + 1440β̄+ − 640γ̄ − 1920β̄2

+γ̄
−1 + 1900ζS2

− + 320β̄−ζS2
− + 320β̄+ζS2

−

+ 800ζγ̄S2
− − 960β̄−ζγ̄

−1S2
− − 2880β̄+ζγ̄

−1S2
− + 3840β̄2

−ζγ̄
−2S2

− + 3840β̄2
+ζγ̄

−2S2
−

+ 740ζS−S+ + 320β̄−ζS−S+ + 320β̄+ζS−S+ + 320ζγ̄S−S+ − 2880β̄−ζγ̄
−1S−S+

− 960β̄+ζγ̄
−1S−S+ + 7680β̄−β̄+ζγ̄

−2S−S+)
+ (n12v1)2(n12v2)(−1800β̄− + 1800β̄+ − 900γ̄)
+ v2

1(n12v2)(−144 + 360β̄− − 360β̄+ + 120γ̄ − 180ζS2
− − 120ζγ̄S2

− − 180ζS−S+ − 120ζγ̄S−S+)
+ (n12v1)(n12v2)2(1800β̄− − 1800β̄+ + 900γ̄ − 300ζS2

− − 300ζS−S+)
+ (n12v2)3(−600β̄− + 600β̄+ − 300γ̄ + 300ζS2

− + 300ζS−S+)
+ (n12v1)(v1v2)(−288 + 720β̄− − 720β̄+ + 240γ̄ − 480ζS2

− − 240ζγ̄S2
− − 480ζS−S+ − 240ζγ̄S−S+)

+ (n12v2)(v1v2)(288 − 720β̄− + 720β̄+ − 240γ̄ + 600ζS2
− + 240ζγ̄S2

− + 600ζS−S+ + 240ζγ̄S−S+)
+ (n12v1)v2

2(144 − 360β̄− + 360β̄+ − 120γ̄ + 240ζS2
− + 120ζγ̄S2

− + 240ζS−S+ + 120ζγ̄S−S+)

+ (n12v2)v2
2(−144 + 360β̄− − 360β̄+ + 120γ̄ − 360ζS2

− − 120ζγ̄S2
− − 360ζS−S+ − 120ζγ̄S−S+)

}

+ v12

{(
G̃αm1
r12

)
(96 − 80β̄− + 80β̄+ + 80ζS2

− − 80β̄−ζS2
−

+ 80β̄+ζS2
− + 80ζS−S+ − 80β̄−ζS−S+ + 80β̄+ζS−S+)

+
(
G̃αm2
r12

)
(−384 − 80β̄− + 160β̄+ − 240γ̄ + 340ζS2

− + 80β̄−ζS2
− + 80β̄+ζS2

− + 160ζγ̄S2
−

− 320β̄−ζγ̄
−1S2

− − 320β̄+ζγ̄
−1S2

− + 60ζS−S+ + 80β̄−ζS−S+ + 80β̄+ζS−S+

− 320β̄−ζγ̄
−1S−S+ − 320β̄+ζγ̄

−1S−S+)
+ (n12v1)2(−360β̄− + 360β̄+ − 180γ̄ − 480ζS2

− − 240ζγ̄S2
− − 480ζS−S+ − 240ζγ̄S−S+)

+ v2
1(−48 + 120β̄− − 120β̄+ + 40γ̄ + 100ζS2

− + 40ζγ̄S2
− + 100ζS−S+ + 40ζγ̄S−S+)

+ (n12v1)(n12v2)(720β̄− − 720β̄+ + 360γ̄ + 840ζS2
− + 480ζγ̄S2

− + 840ζS−S+ + 480ζγ̄S−S+)
+ (n12v2)2(−360β̄− + 360β̄+ − 180γ̄ − 300ζS2

− − 240ζγ̄S2
− − 300ζS−S+ − 240ζγ̄S−S+)

+ (v1v2)(96 − 240β̄− + 240β̄+ − 80γ̄ − 120ζS2
− − 80ζγ̄S2

− − 120ζS−S+ − 80ζγ̄S−S+)

+ v2
2(−48 + 120β̄− − 120β̄+ + 40γ̄ + 40ζS2

− + 40ζγ̄S2
− + 40ζS−S+ + 40ζγ̄S−S+)

})

whereas a1.5PN
2 and a2.5PN

2 are given by 1 ↔ 2. For the relative acceleration in the CM
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frame, the even terms of the equations of motion were computed in [248], and the odd
terms are given explicitly in [245].

The expressions of the individual positions yA and velocities vA in the CM frame
(i.e. as functions of the CM frame quantities n and v) are only required to 2PN order to
compute the flux. The even Newtonian, 1PN and 2PN terms are given in [249]; the only
required odd terms are of order 1.5PN: v1.5PN

A is given in [245], but y1.5PN
A is not. We find

y1.5PN
1 = −4(−1 + ζ)ζG̃mS−(S+ + S−δ)ν

3c3(2 + γ̄) v , (B.2a)

v1.5PN
1 = −8(−1 + ζ)2ζG̃2m2S−(S+ + S−δ)ν

3c3(2 + γ̄)2r2 n . (B.2b)

B.2 Expressions for the scalar and tensor source moments

B.2.1 The STF moments

For the flux and waveform computations, the STF moments were first expressed in a
general frame, then computed in the center of mass frame where their expression are much
simpler. However, there is a notable exception for Isi , which could not be resolved in the
center of mass frame up to 2.5PN order. Indeed, this would require an expression for y1
as a function of center-of-mass binary system vectors n and v up to 2.5PN order. Such an
expression would require computing the flux FP of linear momentum P and the flux FG
corresponding to the center-of-mass position G, due to the coupling between the dipole
and quadrupole moments. However, for the flux, only the second time derivative of Isi was
required, whose Newtonian part is proportional to the relative acceleration a ≡ a12, which
is already expressed in the center of mass frame; the 1PN and higher order terms then
only require knowing the expression for y1 to 1.5PN order, so the second time derivative
of Isi can be fully expressed in the center of mass frame (without the knowledge of P or
G) using the expression given in [249]. As for the waveform, the first time derivative of
Isi is only required to 2PN order, so there is no problem.

Owing to these remarks, we chose not to present the full 2.5PN expression of Isi in a
general frame, though we have computed its lengthy expression explicitly. The relevant
scalar moments in the center-of-mass frame are
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Is = − α1/2ζmν

(1 − ζ)ϕ0

[
S+ + S−δ

ν
+ 1

6c2

{(
G̃αm

r

)(
48β̄−γ̄

−1S− − 14S+ + 48β̄+γ̄
−1S+ + 2S−δ

)
+ v2

(
− S+ + S−δ

)}

+ 1
120c4

{(
G̃αm

r

)2 (
− 40β̄−S− − 1280β̄−γ̄

−1S− + 480γ̄−1χ̄−S− − 52S+ + 440β̄+S+ − 160γ̄S+

− 1280β̄+γ̄
−1S+ − 1920β̄2

−γ̄
−2S+ + 1920β̄2

+γ̄
−2S+ + 480γ̄−1χ̄+S+

+ ν
[

− 320β̄−S− + 160β̄−γ̄
−1S− + 16S+ + 160β̄+γ̄

−1S+
]

+ 48S−νδ

+ δ
[

− 68S− + 40β̄+S− − 80γ̄S− − 160β̄+γ̄
−1S− − 1920β̄2

−γ̄
−2S− + 1920β̄2

+γ̄
−2S−

− 480γ̄−1χ̄+S− − 440β̄−S+ − 160β̄−γ̄
−1S+ − 480γ̄−1χ̄−S+

])
+
(
G̃αm

r

)
(nv)2

(
− 320β̄−γ̄

−1S− − 240S+ − 160γ̄S+ − 320β̄+γ̄
−1S+

+ ν
[
640β̄−γ̄

−1S− − 180S+ + 640β̄+γ̄
−1S+

]
+ 100S−νδ

+ δ
[

− 120S− − 80γ̄S− − 160β̄+γ̄
−1S− − 160β̄−γ̄

−1S+
])

+
(
G̃αm

r

)
v2
(

− 160β̄−γ̄
−1S− − 12S+ − 40γ̄S+ − 160β̄+γ̄

−1S+

+ δ
[
12S− + 40γ̄S− + 160β̄+γ̄

−1S− + 160β̄−γ̄
−1S+

]
+ ν

[
320β̄−γ̄

−1S− − 164S+ + 320β̄+γ̄
−1S+ + 28S−δ

])

+ v4
(

− 11S+ + 11S−δ + 33S+ν − 51S−νδ

)}

+ 1
18c5(1 − ζ)

(
G̃αm

r

)2

(nv)
{

72β̄−S− − 72β̄−ζS− − 336β̄−γ̄
−1S− + 336β̄−ζγ̄

−1S− + 1728β̄−β̄+γ̄
−2S−

− 1728β̄−β̄+ζγ̄
−2S− − 288β̄−ζγ̄

−1S3
− + 288β̄−ζ

2γ̄−1S3
− + 576β̄−ζγ̄

−2S3
− − 576β̄−ζ

2γ̄−2S3
−

− 4608β̄−β̄+ζγ̄
−3S3

− + 4608β̄−β̄+ζ
2γ̄−3S3

− + 72β̄+S+ − 72β̄+ζS+ − 24γ̄S+ + 24ζγ̄S+

− 192β̄+γ̄
−1S+ + 192β̄+ζγ̄

−1S+ + 576β̄2
+γ̄

−2S+ − 576β̄2
+ζγ̄

−2S+ + 72ζS2
−S+ − 72ζ2S2

−S+

− 288β̄+ζγ̄
−1S2

−S+ + 288β̄+ζ
2γ̄−1S2

−S+ + 576β̄+ζγ̄
−2S2

−S+ − 576β̄+ζ
2γ̄−2S2

−S+

− 2304β̄2
−ζγ̄

−3S2
−S+ − 2304β̄2

+ζγ̄
−3S2

−S+ + 2304β̄2
−ζ

2γ̄−3S2
−S+ + 2304β̄2

+ζ
2γ̄−3S2

−S+

+ δ
[
144β̄+S− − 144β̄+ζS− − 42γ̄S− + 42ζγ̄S− − 336β̄+γ̄

−1S− + 336β̄+ζγ̄
−1S− + 576β̄2

−γ̄
−2S−

+ 1152β̄2
+γ̄

−2S− − 576β̄2
−ζγ̄

−2S− − 1152β̄2
+ζγ̄

−2S− + 72ζS3
− − 72ζ2S3

− − 288β̄+ζγ̄
−1S3

−

+ 288β̄+ζ
2γ̄−1S3

− + 576β̄+ζγ̄
−2S3

− − 576β̄+ζ
2γ̄−2S3

− − 2304β̄2
−ζγ̄

−3S3
− − 2304β̄2

+ζγ̄
−3S3

−

+ 2304β̄2
−ζ

2γ̄−3S3
− + 2304β̄2

+ζ
2γ̄−3S3

− − 192β̄−γ̄
−1S+ + 192β̄−ζγ̄

−1S+ + 576β̄−β̄+γ̄
−2S+

− 576β̄−β̄+ζγ̄
−2S+ − 288β̄−ζγ̄

−1S2
−S+ + 288β̄−ζ

2γ̄−1S2
−S+ + 576β̄−ζγ̄

−2S2
−S+

− 576β̄−ζ
2γ̄−2S2

−S+ − 4608β̄−β̄+ζγ̄
−3S2

−S+ + 4608β̄−β̄+ζ
2γ̄−3S2

−S+
]

+ ν
[
32ζS2

−S+ − 32ζ2S2
−S+

]
+ α1/2

(
− 144β̄+ + 48γ̄ − 72β̄+γ̄ + 24γ̄2 − 72ζS2

− + 144β̄+ζS2
− − 36ζγ̄S2

− + 288β̄+ζγ̄
−1S2

−

+ 144β̄−ζS−S+ + 288β̄−ζγ̄
−1S−S+ + ν

[
− 64ζS2

− − 32ζγ̄S2
−

]
+ δ

[
144β̄−ζS2

− + 288β̄−ζγ̄
−1S2

− − 72ζS−S+ + 144β̄+ζS−S+

− 36ζγ̄S−S+ + 288β̄+ζγ̄
−1S−S+

])

+ α1/2λ1

(
144β̄+ζ

−1 − 48ζ−1γ̄ + 72β̄+ζ
−1γ̄ − 24ζ−1γ̄2 + 72S2

− − 144β̄+S2
− + 36γ̄S2

−

− 288β̄+γ̄
−1S2

− − 144β̄−S−S+ − 288β̄−γ̄
−1S−S+ + ν

[
64S2

− + 32γ̄S2
−

]
+ δ

[
− 144β̄−S2

− − 288β̄−γ̄
−1S2

− + 72S−S+ − 144β̄+S−S+

+ 36γ̄S−S+ − 288β̄+γ̄
−1S−S+

])}]
+ O

( 1
c6

)
,

(B.3a)
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Isi = −α1/2ζmνr

(1 − ζ)ϕ0

[
2S−n

i

+ 1
5c2

{
ni
(
G̃αm

r

)(
− 9S− + 20β̄+γ̄

−1S− + 20β̄−γ̄
−1S+

+ δ
[

− 20β̄−γ̄
−1S− + 4S+ − 20β̄+γ̄

−1S+
]

+ 13S−ν

)

+ niv2
(
S− + 4S+δ − 7S−ν

)
+ vi(nv)

(
2S− − 2S+δ − 4S−ν

)}

+ 1
3c3 v

i

(
G̃αm

r

)(
− γ̄S− + 4ζS3

− + 4ζS2
−S+δ − 8ζS3

−ν

)

+ 1
140c4

{
ni
(
G̃αm

r

)2(
− 38S− + 224β̄+S− − 56γ̄S− − 672β̄+γ̄

−1S− + 560γ̄−1χ̄+S− + 224β̄−S+

− 672β̄−γ̄
−1S+ + 560γ̄−1χ̄−S+

+ δ
[

− 224β̄−S− + 672β̄−γ̄
−1S− − 560γ̄−1χ̄−S− − 32S+ − 224β̄+S+ + 56γ̄S+

+ 672β̄+γ̄
−1S+ − 560γ̄−1χ̄+S+

]
+ ν

[
− 1234S− + 112β̄+S− − 728γ̄S− − 224β̄+γ̄

−1S− − 4480β̄2
−γ̄

−2S−

+ 4480β̄2
+γ̄

−2S− − 1120γ̄−1χ̄+S− − 896β̄−S+ − 224β̄−γ̄
−1S+ − 1120γ̄−1χ̄−S+

]
+ δν

[
448β̄−S− − 672β̄−γ̄

−1S− + 120S+ − 672β̄+γ̄
−1S+

]
+ 470S−ν

2
)

+ ni
(
G̃αm

r

)
(nv)2

(
105S− + 56γ̄S− − 56β̄+γ̄

−1S− − 56β̄−γ̄
−1S+

+
[
56β̄−γ̄

−1S− + 140S+ + 84γ̄S+ + 56β̄+γ̄
−1S+

]
δ

+ ν
[

− 49S− − 112γ̄S− − 112β̄+γ̄
−1S− − 112β̄−γ̄

−1S+
]

+ δν
[

− 336β̄−γ̄
−1S− + 224S+ − 336β̄+γ̄

−1S+
]

− 245S−ν
2
)

+ ni
(
G̃αm

r

)
v2
(

65S− + 28γ̄S− − 224β̄+γ̄
−1S− − 224β̄−γ̄

−1S+

+ δ
[
224β̄−γ̄

−1S− + 320S+ + 252γ̄S+ + 224β̄+γ̄
−1S+

]
+ ν

[
− 1303S− − 756γ̄S− + 672β̄+γ̄

−1S− + 672β̄−γ̄
−1S+

]
+ δν

[
336β̄−γ̄

−1S− + 228S+ + 336β̄+γ̄
−1S+

]
− 675S−ν

2
)

+ niv4
(

33S− + 72S+δ +
[

− 279S− − 312S+δ
]
ν + 549S−ν

2
)

+ vi
(
G̃αm

r

)
(nv)

(
310S− + 168γ̄S− + 112β̄+γ̄

−1S− + 112β̄−γ̄
−1S+

+ δ
[

− 112β̄−γ̄
−1S− − 240S+ − 168γ̄S+ − 112β̄+γ̄

−1S+
]

+ ν
[
1182S− + 504γ̄S− − 336β̄+γ̄

−1S− − 336β̄−γ̄
−1S+

]
+ δν

[
112β̄−γ̄

−1S− − 192S+ + 112β̄+γ̄
−1S+

]
− 514S−ν

2
)

+ vi(nv)v2
(

20S− − 20S+δ +
[

− 164S− + 124S+δ
]
ν + 376S−ν

2
)}]

+ O
( 1
c5

)
,

(B.3b)
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Isij = −α1/2ζmνr2

(1 − ζ)ϕ0

[
(S+ − S−δ)n⟨inj⟩

+ 1
14c2

{
n⟨inj⟩

(
G̃αm

r

)(
56β̄−γ̄

−1S− − 18S+ + 56β̄+γ̄
−1S+ + δ

[
18S− − 56β̄+γ̄

−1S− − 56β̄−γ̄
−1S+

]
+ ν

[
− 112β̄−γ̄

−1S− + 40S+ − 112β̄+γ̄
−1S+

]
− 32S−νδ

)
+ n⟨inj⟩v2

(
− 5S+ + 5S−δ + 23S−νδ + 15S+ν

)
+ n⟨ivj⟩(nv)

(
8S+ − 8S−δ − 24S+ν + 8S−νδ

)

+ v⟨ivj⟩
(

2S+ − 2S−δ − 6S+ν + 2S−νδ

)}

+ 1
3c3n

⟨ivj⟩
(
G̃αm

r

)(
8ζS2

−S+ν + 8ζS3
−δν

)]
+ O

( 1
c4

)
, (B.3c)

Isijk = −α1/2ζmνr3

(1 − ζ)ϕ0

[
(S− − S+δ − 2S−ν)ninjnk

+ 1
18c2

{
n⟨injnk⟩

(
G̃αm

r

)(
− 23S− + 72β̄+γ̄

−1S− + 72β̄−γ̄
−1S+ + δ

[
− 72β̄−γ̄

−1S− + 23S+ − 72β̄+γ̄
−1S+

]

+ ν
[
101S− − 216β̄+γ̄

−1S− − 216β̄−γ̄
−1S+

]
+ νδ

[
72β̄−γ̄

−1S− − 55S+ + 72β̄+γ̄
−1S+

]
− 118S−ν

2
)

+ n⟨injnk⟩v2
(

− 7S− + 7S+δ + S−ν + 13S+νδ + 94S−ν
2
)

+ n⟨injvk⟩(nv)
(

12S− − 12S+δ − 48S−ν + 24S+νδ + 24S−ν
2
)

+ n⟨ivjvk⟩
(

6S− − 6S+δ − 24S−ν + 12S+νδ + 12S−ν
2
)}]

+ O
( 1
c3

)
, (B.3d)

Isijkl = −α1/2ζmνr4

(1 − ζ)ϕ0
n⟨injnknl⟩

(
S+ − S−δ − 3S+ν + S−νδ

)
+ O

( 1
c2

)
, (B.3e)

Isijklm = −α1/2ζmνr5

(1 − ζ)ϕ0
n⟨injnknlnm⟩(S− − S+δ − 4S−ν + 2S+νδ + 2S−ν

2)+ O
( 1
c

)
.

The tensor source moments (in addition to the mass type quadrupole tensor moment al-
ready given by (VII.45)) are

Iijk = −mνδr3

ϕ0

[
n⟨injnk⟩ + 1

6c2

{
n⟨injnk⟩

(
G̃αm

r

)
(−5 + 13ν) + n⟨injnk⟩v2(5 − 19ν)

+ n⟨injvk⟩(nv)(−6 + 12ν) + n⟨ivjvk⟩(6 − 12ν)
}]

+ O
( 1
c3

)
,

(B.4a)

Iijkl = mνr4

ϕ0
n⟨injnknl⟩(1 − 3ν) + O

( 1
c2

)
, (B.4b)

Iijklm = −mνδr5

ϕ0
n⟨injnknlnm⟩(1 − 2ν) + O

( 1
c

)
, (B.4c)

Jij = −mνδr2

ϕ0

[
ϵab⟨inj⟩navb + 1

28c2

{
ϵab⟨inj⟩navb

(
G̃αm

r

)(
54 + 42γ̄ + 60ν

)
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+ ϵab⟨inj⟩navbv2(13 − 68ν) + ϵab⟨ivj⟩navb(nv)(5 − 10ν)
}]

+ O
( 1
c3

)
,

(B.4d)

Jijk = mνr3

ϕ0
ϵab⟨inj⟩nknavb(1 − 3ν) + O

( 1
c2

)
, (B.4e)

Jijkl = −mνδr4

ϕ0
ϵab⟨inj⟩nknanlvb(1 − 2ν) + O

( 1
c

)
. (B.4f)

The conserved quantities, i.e. the monopole I, the conserved total mass-energy M, the
conserved energy E and the angular moment Ji are given to the relevant PN orders by

I = M
ϕ0

= m

ϕ0

(
1 + E

c2

)
with E = 1

2mνv
2 −mν

(
G̃αm

r

)
+ O

( 1
c

)
, (B.5a)

Ji = mνr

ϕ0
ϵiabnavb + O

( 1
c

)
. (B.5b)

Finally the two gauge moments needed in our calculation read

W = mνr(nv)
3ϕ0

+ O
( 1
c

)
, (B.6a)

Yi = mδνr

10ϕ0

[
ni
(
G̃αm

r

)
+ niv2 − 3vi(nv)

]
+ O

( 1
c

)
. (B.6b)

B.2.2 Link between STF and EW moments

The works [246, 247] use the so-called Epstein-Wagoner multipole moments while
we are using the STF moments. In the gravitational sector the definitions of the EW
moments are the same as in GR. Their relations to the STF moments can be found in
Appendix E of [243]. In particular the instantaneous part of the tensorial flux to 1.5PN
order (discarding the tails) in terms of the EW source moments reads

Finst = ϕ0
c5G

{
1
5

(3)
IEW
ab

(3)
IEW
ab − 1

15

(3)
IEW
aa

(3)
IEW
bb

+ 1
c2

[
11
105

(3)
IEW
abc

(3)
IEW
abc − 2

35

(3)
IEW
abc

(3)
IEW
acb + 8

105

(3)
IEW
aab

(3)
IEW
bcc − 2

35

(3)
IEW
aba

(3)
IEW
bcc − 1

21

(3)
IEW
aac

(3)
IEW
bbc

+ 22
105

(3)
IEW
ab

(3)
IEW
abcc − 8

35

(3)
IEW
ab

(3)
IEW
acbc − 2

21

(3)
IEW
aa

(3)
IEW
bbcc + 8

105

(3)
IEW
aa

(3)
IEW
bcbc + 8

105

(3)
IEW
ab

(3)
IEW
ccab

]

+ O
( 1
c4

)}
. (B.7)

Injecting the expressions of the EW moments [246] into (B.7), we obtain an expression
for the tensorial flux that is in perfect agreement with (VII.49).
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Concerning the scalar sector, the moments used in [246, 247] are just non-STF mo-
ments Is,EW

L such that the linearized scalar waveform is given by (2.17b) of [246]. Com-
paring with our definition of the STF moments IsL ≡ Is,STF

L entering the scalar waveform
in (VII.15b), we obtain the following relation, valid up to any PN order:

IsL(u) = −
∞∑
k=0

(2ℓ+ 1)!!
2kk!(2ℓ+ 2k + 1)!!

( d
cdu

)2k
Is,EW
2K⟨L⟩(u) . (B.8)

With our computations, and taking into account the link between EW and STF moments
as well as the result (B.8), we are in total agreement with the expressions of the source
moments found in [246, 247], i.e.

• IEW
ij , IEW

ijk , IEW
ijkl , IEW

ijklm, and IEW
ijklmn in (5.10) of [246] ,

• Is,EW, Is,EW
i , Is,EW

ij , Is,EW
ijk , Is,EW

ijkl and Is,EW
ijklm in the CM frame in (3.50) of [247] .

However, despite the perfect correspondence and agreement between the results for STF
and EW moments, the scalar flux we obtain in the (B.12)–(B.13) in Appendix B.3 dis-
agrees at 1PN order with the one published in [247]. This disagreement remains even when
we compute the instantaneous 1PN scalar flux directly from the EW moments using the
expression (not given in [247])

Fs
inst = ϕ0(3 + 2ω0)

c3G

{
1
3

(2)
Is,EWa

(2)
Is,EWa

+ 1
c2

[( (1)
mEW
s1

ϕ0(3 + 2ω0)

)2
+ 1

60

(3)
Is,EWaa

(3)

Is,EWbb + 1
30

(3)

Is,EWab

(3)

Is,EWab

+ 1
15

(2)
Is,EWa

(4)

Is,EWabb + 1
3

(3)
Is,EWaa

(1)
mEW
s1

ϕ0(3 + 2ω0)

]

+ 1
c4

[
1

630

(4)

Is,EWabc

(4)

Is,EWabc + 1
420

(4)
Is,EWaac

(4)

Is,EWbbc + 1
60

(5)

Is,EWaabb

(1)
mEW
s1

ϕ0(3 + 2ω0)

+ 1
420

(2)
Is,EWa

(6)

Is,EWabbcc + 1
840

(3)
Is,EWaa

(5)

Is,EWbbcc + 1
210

(3)

Is,EWab

(5)

Is,EWabcc

]}
+ O

( 1
c8

)
,

(B.9)

where we pose, following [247] (note that the convention is slightly different from that
in (VII.39)):

Is,EW = 1
ϕ0(3 + 2ω0)

[
mEW
s + mEW

s1
c2

]
, (B.10a)

with ms,EW ≡
∑
A

mA(1 − 2sA) . (B.10b)

We have also computed the scalar waveform from the EW moments [246, 247] using
the formulas given in [247], and we retrieve the explicit expression for the 1.5PN scalar
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waveform given by [247]. Then, when integrating this waveform using (6.6) of [247], we
retrieve the 1PN part of the scalar flux as given by (B.12)-(B.13) of Appendix B.3, but
not the 1PN scalar flux as given by [247].

B.3 The scalar 1.5PN flux

As mentioned throughout the article, the scalar flux that we find disagrees at 1PN
order with the scalar flux given by Lang in [247]. The expression for the difference between
the two fluxes at 1PN order is

Fs
inst − Fs,Lang

inst = mν2

c7r

(
G̃αm

r

)3{
− 32

3 β̄+ζS−S+δv
4

+
(
G̃αm

r

)2 ( 16
105 γ̄ + ν

[
− 64

105 γ̄ + 64β̄2
−ζγ̄

−1S2
− − 64β̄2

+ζγ̄
−1S2

−

− 64β̄2
−ζγ̄

−2S2
− + 64β̄2

+ζγ̄
−2S2

−

])}
. (B.11)

Since the instantaneous part of the scalar flux to 1.5PN order for general orbits in the
center-of-mass frame is very long it is convenient to write it in the following form:

Fs
inst = 1

3c3
mν2

r

(
G̃αm

r

)3

×
{
A-1PN + 2

5c2

(
BN

1
G̃αm

r
+BN

2 (nv)2 +BN
3 v

2
)

+ 4
15c3C

0.5PN G̃αm

r
(nv)

+ 1
140c4

(
D1PN

1

(
G̃αm

r

)2

+D1PN
2

G̃αm

r
(nv)2 +D1PN

3
G̃αm

r
v2

+D1PN
4 (nv)4 +D1PN

5 (nv)2v2 +D1PN
6 v4

)

+ 1
90c5

E1.5PN
1

(
G̃αm

r

)2

(nv) + E1.5PN
2

G̃αm

r
(nv)3 + E1.5PN

3
G̃αm

r
(nv)v2

} ,
(B.12)

where the coefficient A-1PN, following our convention, corresponds to the leading dipolar
radiation at −1PN order, and the coefficients BN

n , C0.5PN, D1PN
n and E1.5PN

n respectively
parametrize the Newtonian, 0.5PN, 1PN and 1.5PN terms. We have obtained
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A-1PN = 4ζS2
− , (B.13a)

BN
1 = −92ζS2

− − 40β̄+ζS2
− − 40ζγ̄S2

− +
[
40β̄−ζS2

− − 8ζS−S+
]
δ + 4ζS2

−ν , (B.13b)

BN
2 = 160β̄+ − 23γ̄ − 240β̄2

+γ̄
−1 − 28ζS2

− − 40ζγ̄S2
− − 360β̄+ζγ̄

−1S2
− + 480β̄2

−ζγ̄
−2S2

− + 480β̄2
+ζγ̄

−2S2
−

− 360β̄−ζγ̄
−1S−S+ + 960β̄−β̄+ζγ̄

−2S−S+ +
[
120β̄−ζγ̄

−1S2
− − 32ζS−S+ + 120β̄+ζγ̄

−1S−S+
]
δ + 36ζS2

−ν ,

(B.13c)
BN

3 = −4γ̄ + 32ζS2
− + 20ζγ̄S2

− + 40β̄+ζγ̄
−1S2

− + 40β̄−ζγ̄
−1S−S+

+ δ
[

− 40β̄−ζγ̄
−1S2

− + 8ζS−S+ − 40β̄+ζγ̄
−1S−S+

]
− 4ζS2

−ν , (B.13d)

C0.5PN = 10ζγ̄S2
− − 40ζ2S4

− − 40ζ2S3
−S+δ , (B.13e)

D1PN
1 = −64γ̄ − 70γ̄2 − 35γ̄3 + 23784ζS2

− + 2240β̄2
−ζS2

− + 21056β̄+ζS2
− + 2240β̄2

+ζS2
− + 21000ζγ̄S2

− + 8960β̄+ζγ̄S2
−

+ 4620ζγ̄2S2
− + 4032β̄+ζγ̄

−1S2
− − 2240ζχ̄+S2

− − 2240ζγ̄−1χ̄+S2
− + 1960ζ2S4

− + 980ζ2γ̄S4
− − 3584β̄−ζS−S+

+ 4032β̄−ζγ̄
−1S−S+ − 2240ζγ̄−1χ̄−S−S+ + 280ζ2S4

+ + 140ζ2γ̄S4
+

+ δ
[

− 21056β̄−ζS2
− − 4480β̄−β̄+ζS2

− − 8960β̄−ζγ̄S2
− − 4032β̄−ζγ̄

−1S2
− + 2240ζχ̄−S2

− + 2240ζγ̄−1χ̄−S2
−

+ 3936ζS−S+ + 3584β̄+ζS−S+ + 1680ζγ̄S−S+ + 280ζγ̄2S−S+ − 4032β̄+ζγ̄
−1S−S+

+ 2240ζγ̄−1χ̄+S−S+ + 1120ζ2S3
−S+ + 560ζ2γ̄S3

−S+ + 1120ζ2S−S3
+ + 560ζ2γ̄S−S3

+

]
+ ν

[
256γ̄ + 140γ̄2 + 70γ̄3 + 11936ζS2

− − 8960β̄2
−ζS2

− + 6048β̄+ζS2
− + 5040ζγ̄S2

− − 280ζγ̄2S2
−

+ 26880β̄2
−ζγ̄

−1S2
− − 896β̄+ζγ̄

−1S2
− − 26880β̄2

+ζγ̄
−1S2

− + 17920β̄2
−ζγ̄

−2S2
− − 17920β̄2

+ζγ̄
−2S2

−

+ 4480ζχ̄+S2
− + 4480ζγ̄−1χ̄+S2

− − 3920ζ2S4
− − 1960ζ2γ̄S4

− + 14336β̄−ζS−S+ − 896β̄−ζγ̄
−1S−S+

+ 4480ζγ̄−1χ̄−S−S+ − 560ζ2S4
+ − 280ζ2γ̄S4

+

]
+ δν

[
672β̄−ζS2

− + 1792β̄−ζγ̄
−1S2

− − 704ζS−S+ + 1792β̄+ζγ̄
−1S−S+

]
− 88ζS2

−ν
2 ,

(B.13f)
D1PN

2 = −19264β̄+ − 26880β̄2
+ − 6256γ̄ + 25984β̄+γ̄ − 6720γ̄2 − 35840β̄2

−γ̄
−1 + 134400β̄2

+γ̄
−1 + 107520β̄2

−β̄+γ̄
−2

− 107520β̄3
+γ̄

−2 + 8960χ̄+ − 26880β̄+γ̄
−1χ̄+ + 31240ζS2

− − 39200β̄+ζS2
− + 31808ζγ̄S2

− + 4480β̄+ζγ̄S2
−

+ 4480ζγ̄2S2
− + 4480β̄2

−ζγ̄
−1S2

− + 61376β̄+ζγ̄
−1S2

− + 58240β̄2
+ζγ̄

−1S2
− − 143360β̄2

−ζγ̄
−2S2

−

− 250880β̄2
+ζγ̄

−2S2
− − 215040β̄2

−β̄+ζγ̄
−3S2

− + 215040β̄3
+ζγ̄

−3S2
− + 53760β̄−ζγ̄

−2χ̄−S2
− − 31360ζγ̄−1χ̄+S2

−

+ 53760β̄+ζγ̄
−2χ̄+S2

− − 40320β̄−ζS−S+ + 61376β̄−ζγ̄
−1S−S+ + 62720β̄−β̄+ζγ̄

−1S−S+

− 394240β̄−β̄+ζγ̄
−2S−S+ − 215040β̄3

−ζγ̄
−3S−S+ + 215040β̄−β̄

2
+ζγ̄

−3S−S+ − 31360ζγ̄−1χ̄−S−S+

+ 53760β̄+ζγ̄
−2χ̄−S−S+ + 53760β̄−ζγ̄

−2χ̄+S−S+

+ δ
[

− 4032β̄− + 26880β̄−β̄+ − 8064β̄−γ̄ + 8960β̄−β̄+γ̄
−1 − 8960χ̄− + 26880β̄+γ̄

−1χ̄− − 14560β̄−ζS2
−

− 4480β̄−ζγ̄S2
− − 61376β̄−ζγ̄

−1S2
− − 62720β̄−β̄+ζγ̄

−1S2
− − 35840β̄−β̄+ζγ̄

−2S2
− − 215040β̄3

−ζγ̄
−3S2

−

+ 215040β̄−β̄
2
+ζγ̄

−3S2
− + 31360ζγ̄−1χ̄−S2

− − 53760β̄+ζγ̄
−2χ̄−S2

− − 53760β̄−ζγ̄
−2χ̄+S2

− + 6560ζS−S+

− 13440β̄+ζS−S+ + 672ζγ̄S−S+ − 58240β̄2
−ζγ̄

−1S−S+ − 61376β̄+ζγ̄
−1S−S+ − 4480β̄2

+ζγ̄
−1S−S+

+ 35840β̄2
−ζγ̄

−2S−S+ − 71680β̄2
+ζγ̄

−2S−S+ − 215040β̄2
−β̄+ζγ̄

−3S−S+ + 215040β̄3
+ζγ̄

−3S−S+

− 53760β̄−ζγ̄
−2χ̄−S−S+ + 31360ζγ̄−1χ̄+S−S+ − 53760β̄+ζγ̄

−2χ̄+S−S+
]

+ ν
[
34048β̄+ − 4784γ̄ − 62720β̄2

+γ̄
−1 − 16040ζS2

− − 15680β̄+ζS2
− − 6496ζγ̄S2

− − 71680β̄2
−ζγ̄

−1S2
−

− 58688β̄+ζγ̄
−1S2

− + 268800β̄2
−ζγ̄

−2S2
− − 17920β̄2

+ζγ̄
−2S2

− + 35840ζγ̄−1χ̄+S2
− + 53760β̄−ζS−S+

− 58688β̄−ζγ̄
−1S−S+ − 71680β̄−β̄+ζγ̄

−1S−S+ + 250880β̄−β̄+ζγ̄
−2S−S+ + 35840ζγ̄−1χ̄−S−S+

]
+ δν

[
6720β̄−ζS2

− + 34496β̄−ζγ̄
−1S2

− − 12000ζS−S+ + 34496β̄+ζγ̄
−1S−S+

]
+ 6200ζS2

−ν
2 ,

(B.13g)
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D1PN
3 = −896β̄+ + 1920γ̄ + 896β̄+γ̄ + 672γ̄2 − 11160ζS2

− − 7392β̄+ζS2
− − 10080ζγ̄S2

− − 2240β̄+ζγ̄S2
− − 2240ζγ̄2S2

−

− 4480β̄2
−ζγ̄

−1S2
− − 14784β̄+ζγ̄

−1S2
− − 4480β̄2

+ζγ̄
−1S2

− + 4480ζγ̄−1χ̄+S2
− − 1792β̄−ζS−S+

− 14784β̄−ζγ̄
−1S−S+ − 8960β̄−β̄+ζγ̄

−1S−S+ + 4480ζγ̄−1χ̄−S−S+

+ δ
[
896β̄− − 896β̄−γ̄ + 7392β̄−ζS2

− + 2240β̄−ζγ̄S2
− + 14784β̄−ζγ̄

−1S2
− + 8960β̄−β̄+ζγ̄

−1S2
−

− 4480ζγ̄−1χ̄−S2
− + 800ζS−S+ + 1792β̄+ζS−S+ + 1120ζγ̄S−S+ + 4480β̄2

−ζγ̄
−1S−S+

+ 14784β̄+ζγ̄
−1S−S+ + 4480β̄2

+ζγ̄
−1S−S+ − 4480ζγ̄−1χ̄+S−S+

]
+ ν

[
2688β̄+ − 640γ̄ + 1464ζS2

− + 2464β̄+ζS2
− − 1120ζγ̄S2

− + 17920β̄2
−ζγ̄

−1S2
− − 9408β̄+ζγ̄

−1S2
−

− 35840β̄2
−ζγ̄

−2S2
− + 35840β̄2

+ζγ̄
−2S2

− − 8960ζγ̄−1χ̄+S2
− − 10752β̄−ζS−S+ − 9408β̄−ζγ̄

−1S−S+

+ 17920β̄−β̄+ζγ̄
−1S−S+ − 8960ζγ̄−1χ̄−S−S+

]
+ δν

[
− 224β̄−ζS2

− − 5824β̄−ζγ̄
−1S2

− + 1536ζS−S+ − 5824β̄+ζγ̄
−1S−S+

]
+ 360ζS2

−ν
2 ,

(B.13h)
D1PN

4 = 6048β̄+ − 6774γ̄ + 13440β̄+γ̄ − 5040γ̄2 + 3360β̄2
−γ̄

−1 + 30240β̄2
+γ̄

−1 + 3912ζS2
− − 13440β̄+ζS2

− + 5376ζγ̄S2
−

+ 20160β̄+ζγ̄
−1S2

− − 67200β̄2
−ζγ̄

−2S2
− − 67200β̄2

+ζγ̄
−2S2

− − 13440β̄−ζS−S+ + 20160β̄−ζγ̄
−1S−S+

− 134400β̄−β̄+ζγ̄
−2S−S+

+ δ
[
672β̄− + 6720β̄−β̄+γ̄

−1 − 26880β̄−ζS2
− − 60480β̄−ζγ̄

−1S2
− − 26880β̄−β̄+ζγ̄

−2S2
− + 7848ζS−S+

− 26880β̄+ζS−S+ + 3024ζγ̄S−S+ − 60480β̄+ζγ̄
−1S−S+ − 13440β̄2

−ζγ̄
−2S−S+ − 13440β̄2

+ζγ̄
−2S−S+

]
+ ν

[
48384β̄+ − 7848γ̄ − 67200β̄2

+γ̄
−1 + 4848ζS2

− − 4032ζγ̄S2
− − 100800β̄+ζγ̄

−1S2
−

+ 134400β̄2
−ζγ̄

−2S2
− + 134400β̄2

+ζγ̄
−2S2

− − 100800β̄−ζγ̄
−1S−S+ + 268800β̄−β̄+ζγ̄

−2S−S+
]

+ δν
[
47040β̄−ζγ̄

−1S2
− − 12672ζS−S+ + 47040β̄+ζγ̄

−1S−S+
]

+ 1104ζS2
−ν

2 ,

(B.13i)
D1PN

5 = −5600β̄+ + 5652γ̄ − 8960β̄+γ̄ + 3808γ̄2 − 2240β̄2
−γ̄

−1 − 15680β̄2
+γ̄

−1 + 16ζS2
− + 2240β̄+ζS2

− − 2016ζγ̄S2
−

− 25088β̄+ζγ̄
−1S2

− + 35840β̄2
−ζγ̄

−2S2
− + 35840β̄2

+ζγ̄
−2S2

− + 2240β̄−ζS−S+ − 25088β̄−ζγ̄
−1S−S+

+ 71680β̄−β̄+ζγ̄
−2S−S+

+ δ
[

− 672β̄− − 8960β̄−β̄+γ̄
−1 + 24640β̄−ζS2

− + 51968β̄−ζγ̄
−1S2

− + 35840β̄−β̄+ζγ̄
−2S2

− − 5616ζS−S+

+ 24640β̄+ζS−S+ − 2464ζγ̄S−S+ + 51968β̄+ζγ̄
−1S−S+ + 17920β̄2

−ζγ̄
−2S−S+ + 17920β̄2

+ζγ̄
−2S−S+

]
+ ν

[
− 26880β̄+ + 3648γ̄ + 35840β̄2

+γ̄
−1 + 2512ζS2

− + 4032ζγ̄S2
− + 61824β̄+ζγ̄

−1S2
− − 71680β̄2

−ζγ̄
−2S2

−

− 71680β̄2
+ζγ̄

−2S2
− + 61824β̄−ζγ̄

−1S−S+ − 143360β̄−β̄+ζγ̄
−2S−S+

]
+ δν

[
− 45248β̄−ζγ̄

−1S2
− + 11456ζS−S+ − 45248β̄+ζγ̄

−1S−S+
]

− 2880ζS2
−ν

2 ,

(B.13j)
D1PN

6 = −438γ̄ − 224γ̄2 − 1120β̄2
−γ̄

−1 − 1120β̄2
+γ̄

−1 + 1432ζS2
− + 2240β̄+ζS2

− + 1792ζγ̄S2
− + 560ζγ̄2S2

−

+ 4032β̄+ζγ̄
−1S2

− + 4480β̄2
−ζγ̄

−2S2
− + 4480β̄2

+ζγ̄
−2S2

− + 2240β̄−ζS−S+ + 4032β̄−ζγ̄
−1S−S+

+ 8960β̄−β̄+ζγ̄
−2S−S+

+ δ
[
2240β̄−β̄+γ̄

−1 − 2240β̄−ζS2
− − 4032β̄−ζγ̄

−1S2
− − 8960β̄−β̄+ζγ̄

−2S2
− − 312ζS−S+ − 2240β̄+ζS−S+

− 112ζγ̄S−S+ − 4032β̄+ζγ̄
−1S−S+ − 4480β̄2

−ζγ̄
−2S−S+ − 4480β̄2

+ζγ̄
−2S−S+

]
+ ν

[
− 2688β̄+ + 888γ̄ + 4480β̄2

+γ̄
−1 − 3264ζS2

− − 1344ζγ̄S2
− + 1344β̄+ζγ̄

−1S2
− − 8960β̄2

−ζγ̄
−2S2

−

− 8960β̄2
+ζγ̄

−2S2
− + 1344β̄−ζγ̄

−1S−S+ − 17920β̄−β̄+ζγ̄
−2S−S+

]
+ δν

[
6272β̄−ζγ̄

−1S2
− − 1280ζS−S+ + 6272β̄+ζγ̄

−1S−S+
]

− 48ζS2
−ν

2 , (B.13k)
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E1.5PN
1 = −7680β̄+ − 8640β̄2

+ − 24γ̄ + 5760β̄+γ̄ − 972γ̄2 + 46080β̄2
+γ̄

−1 − 69120β̄3
+γ̄

−2 − 28800β̄+ζS2
− + 168ζγ̄S2

−

− 1200β̄+ζγ̄S2
− − 1440ζγ̄2S2

− + 17280β̄2
−ζγ̄

−1S2
− + 31680β̄+ζγ̄

−1S2
− + 51840β̄2

+ζγ̄
−1S2

− − 161280β̄2
−ζγ̄

−2S2
−

− 230400β̄2
+ζγ̄

−2S2
− + 691200β̄2

−β̄+ζγ̄
−3S2

− + 414720β̄3
+ζγ̄

−3S2
− + 10080ζ2S4

− + 4800β̄+ζ
2S4

− + 5760ζ2γ̄S4
−

+ 34560β̄+ζ
2γ̄−1S4

− − 69120β̄2
−ζ

2γ̄−2S4
− − 34560β̄+ζ

2γ̄−2S4
− − 69120β̄2

+ζ
2γ̄−2S4

− + 276480β̄2
−ζ

2γ̄−3S4
−

+ 276480β̄2
+ζ

2γ̄−3S4
− − 1658880β̄2

−β̄+ζ
2γ̄−4S4

− − 552960β̄3
+ζ

2γ̄−4S4
− − 11520β̄−ζS−S+ + 23040β̄−ζγ̄

−1S−S+

+ 34560β̄−β̄+ζγ̄
−1S−S+ − 253440β̄−β̄+ζγ̄

−2S−S+ + 552960β̄−β̄
2
+ζγ̄

−3S−S+ − 4800β̄−ζ
2S3

−S+

+ 34560β̄−ζ
2γ̄−1S3

−S+ − 34560β̄−ζ
2γ̄−2S3

−S+ − 138240β̄−β̄+ζ
2γ̄−2S3

−S+ + 552960β̄−β̄+ζ
2γ̄−3S3

−S+

− 552960β̄3
−ζ

2γ̄−4S3
−S+ − 1658880β̄−β̄

2
+ζ

2γ̄−4S3
−S+

+ δ
[

− 7680β̄− + 46080β̄−β̄+γ̄
−1 − 69120β̄−β̄

2
+γ̄

−2 − 20160β̄−ζS2
− + 1200β̄−ζγ̄S2

− + 31680β̄−ζγ̄
−1S2

−

+ 69120β̄−β̄+ζγ̄
−1S2

− − 391680β̄−β̄+ζγ̄
−2S2

− + 138240β̄3
−ζγ̄

−3S2
− + 967680β̄−β̄

2
+ζγ̄

−3S2
− − 4800β̄−ζ

2S4
−

+ 34560β̄−ζ
2γ̄−1S4

− − 34560β̄−ζ
2γ̄−2S4

− − 138240β̄−β̄+ζ
2γ̄−2S4

− + 552960β̄−β̄+ζ
2γ̄−3S4

−

− 552960β̄3
−ζ

2γ̄−4S4
− − 1658880β̄−β̄

2
+ζ

2γ̄−4S4
− − 20160β̄+ζS−S+ + 2688ζγ̄S−S+ + 23040β̄+ζγ̄

−1S−S+

+ 34560β̄2
+ζγ̄

−1S−S+ − 92160β̄2
−ζγ̄

−2S−S+ − 161280β̄2
+ζγ̄

−2S−S+ + 276480β̄2
−β̄+ζγ̄

−3S−S+

+ 276480β̄3
+ζγ̄

−3S−S+ + 10080ζ2S3
−S+ + 4800β̄+ζ

2S3
−S+ + 5760ζ2γ̄S3

−S+ + 34560β̄+ζ
2γ̄−1S3

−S+

− 69120β̄2
−ζ

2γ̄−2S3
−S+ − 34560β̄+ζ

2γ̄−2S3
−S+ − 69120β̄2

+ζ
2γ̄−2S3

−S+ + 276480β̄2
−ζ

2γ̄−3S3
−S+

+ 276480β̄2
+ζ

2γ̄−3S3
−S+ − 1658880β̄2

−β̄+ζ
2γ̄−4S3

−S+ − 552960β̄3
+ζ

2γ̄−4S3
−S+

]
+ ν

[
− 8448ζS2

− − 20160β̄+ζS2
− + 7272ζγ̄S2

− + 94080β̄+ζγ̄
−1S2

− − 23040β̄2
+ζγ̄

−1S2
− − 161280β̄2

−ζγ̄
−2S2

−

− 322560β̄2
+ζγ̄

−2S2
− − 16896ζ2S4

− + 3840ζ2γ̄S4
− + 40320β̄+ζ

2γ̄−1S4
− + 46080β̄2

−ζ
2γ̄−2S4

−

− 161280β̄+ζ
2γ̄−2S4

− + 46080β̄2
+ζ

2γ̄−2S4
− + 645120β̄2

−ζ
2γ̄−3S4

− + 645120β̄2
+ζ

2γ̄−3S4
− + 53760β̄−ζγ̄

−1S−S+

− 161280β̄−β̄+ζγ̄
−2S−S+ + 19200β̄−ζ

2S3
−S+ + 40320β̄−ζ

2γ̄−1S3
−S+ − 161280β̄−ζ

2γ̄−2S3
−S+

+ 92160β̄−β̄+ζ
2γ̄−2S3

−S+ + 1290240β̄−β̄+ζ
2γ̄−3S3

−S+
]

+ δν
[

− 9600β̄−ζ
2γ̄−1S4

− + 1536ζ2S3
−S+ − 9600β̄+ζ

2γ̄−1S3
−S+

]
+ 6144ζ2S4

−ν
2 ,
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2 = −23040β̄+ − 25920β̄2
+ + 792γ̄ + 17280β̄+γ̄ − 2484γ̄2 + 138240β̄2

+γ̄
−1 − 207360β̄3

+γ̄
−2 − 84960β̄+ζS2

−

+ 7920ζγ̄S2
− − 1440ζγ̄2S2

− + 51840β̄2
−ζγ̄

−1S2
− + 95040β̄+ζγ̄

−1S2
− + 155520β̄2

+ζγ̄
−1S2

− − 483840β̄2
−ζγ̄

−2S2
−

− 691200β̄2
+ζγ̄

−2S2
− + 2073600β̄2

−β̄+ζγ̄
−3S2

− + 1244160β̄3
+ζγ̄

−3S2
− + 5760ζ2γ̄S4

− + 103680β̄+ζ
2γ̄−1S4

−

− 207360β̄2
−ζ

2γ̄−2S4
− − 103680β̄+ζ

2γ̄−2S4
− − 207360β̄2

+ζ
2γ̄−2S4

− + 829440β̄2
−ζ

2γ̄−3S4
− + 829440β̄2

+ζ
2γ̄−3S4

−

− 4976640β̄2
−β̄+ζ

2γ̄−4S4
− − 1658880β̄3

+ζ
2γ̄−4S4

− − 36000β̄−ζS−S+ + 69120β̄−ζγ̄
−1S−S+

+ 103680β̄−β̄+ζγ̄
−1S−S+ − 760320β̄−β̄+ζγ̄

−2S−S+ + 1658880β̄−β̄
2
+ζγ̄

−3S−S+ + 103680β̄−ζ
2γ̄−1S3

−S+

− 103680β̄−ζ
2γ̄−2S3

−S+ − 414720β̄−β̄+ζ
2γ̄−2S3

−S+ + 1658880β̄−β̄+ζ
2γ̄−3S3

−S+ − 1658880β̄3
−ζ

2γ̄−4S3
−S+

− 4976640β̄−β̄
2
+ζ

2γ̄−4S3
−S+

+ δ
[

− 23040β̄− + 138240β̄−β̄+γ̄
−1 − 207360β̄−β̄

2
+γ̄

−2 − 61920β̄−ζS2
− + 95040β̄−ζγ̄

−1S2
−

+ 207360β̄−β̄+ζγ̄
−1S2

− − 1175040β̄−β̄+ζγ̄
−2S2

− + 414720β̄3
−ζγ̄

−3S2
− + 2903040β̄−β̄

2
+ζγ̄

−3S2
−

+ 103680β̄−ζ
2γ̄−1S4

− − 103680β̄−ζ
2γ̄−2S4

− − 414720β̄−β̄+ζ
2γ̄−2S4

− + 1658880β̄−β̄+ζ
2γ̄−3S4

−

− 1658880β̄3
−ζ

2γ̄−4S4
− − 4976640β̄−β̄

2
+ζ

2γ̄−4S4
− − 59040β̄+ζS−S+ + 7920ζγ̄S−S+ + 69120β̄+ζγ̄

−1S−S+

+ 103680β̄2
+ζγ̄

−1S−S+ − 276480β̄2
−ζγ̄

−2S−S+ − 483840β̄2
+ζγ̄

−2S−S+ + 829440β̄2
−β̄+ζγ̄

−3S−S+

+ 829440β̄3
+ζγ̄

−3S−S+ + 5760ζ2γ̄S3
−S+ + 103680β̄+ζ

2γ̄−1S3
−S+ − 207360β̄2

−ζ
2γ̄−2S3

−S+

− 103680β̄+ζ
2γ̄−2S3

−S+ − 207360β̄2
+ζ

2γ̄−2S3
−S+ + 829440β̄2

−ζ
2γ̄−3S3

−S+ + 829440β̄2
+ζ

2γ̄−3S3
−S+

− 4976640β̄2
−β̄+ζ

2γ̄−4S3
−S+ − 1658880β̄3

+ζ
2γ̄−4S3

−S+
]

+ ν
[
2304ζS2

− − 97920β̄+ζS2
− + 30528ζγ̄S2

− + 201600β̄+ζγ̄
−1S2

− − 345600β̄2
−ζγ̄

−2S2
− − 691200β̄2

+ζγ̄
−2S2

−

− 58752ζ2S4
− + 195840β̄+ζ

2γ̄−1S4
− − 345600β̄+ζ

2γ̄−2S4
− + 1382400β̄2

−ζ
2γ̄−3S4

− + 1382400β̄2
+ζ

2γ̄−3S4
−

+ 115200β̄−ζγ̄
−1S−S+ − 345600β̄−β̄+ζγ̄

−2S−S+ + 195840β̄−ζ
2γ̄−1S3

−S+ − 345600β̄−ζ
2γ̄−2S3

−S+

+ 2764800β̄−β̄+ζ
2γ̄−3S3

−S+
]

+ δν
[

− 11520β̄−ζ
2γ̄−1S4

− + 1152ζ2S3
−S+ − 11520β̄+ζ

2γ̄−1S3
−S+

]
+ 6912ζ2S4

−ν
2 ,
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E1.5PN
3 = 7680β̄+ + 8640β̄2

+ − 840γ̄ − 5760β̄+γ̄ + 540γ̄2 − 46080β̄2
+γ̄

−1 + 69120β̄3
+γ̄

−2 + 27360β̄+ζS2
− − 1104ζγ̄S2

−

+ 960ζγ̄2S2
− − 17280β̄2

−ζγ̄
−1S2

− − 31680β̄+ζγ̄
−1S2

− − 51840β̄2
+ζγ̄

−1S2
− + 161280β̄2

−ζγ̄
−2S2

− + 230400β̄2
+ζγ̄

−2S2
−

− 691200β̄2
−β̄+ζγ̄

−3S2
− − 414720β̄3

+ζγ̄
−3S2

− − 3840ζ2S4
− − 3840ζ2γ̄S4

− − 34560β̄+ζ
2γ̄−1S4

− + 69120β̄2
−ζ

2γ̄−2S4
−

+ 34560β̄+ζ
2γ̄−2S4

− + 69120β̄2
+ζ

2γ̄−2S4
− − 276480β̄2

−ζ
2γ̄−3S4

− − 276480β̄2
+ζ

2γ̄−3S4
− + 1658880β̄2

−β̄+ζ
2γ̄−4S4

−

+ 552960β̄3
+ζ

2γ̄−4S4
− + 12960β̄−ζS−S+ − 23040β̄−ζγ̄

−1S−S+ − 34560β̄−β̄+ζγ̄
−1S−S+

+ 253440β̄−β̄+ζγ̄
−2S−S+ − 552960β̄−β̄

2
+ζγ̄

−3S−S+ − 34560β̄−ζ
2γ̄−1S3

−S+ + 34560β̄−ζ
2γ̄−2S3

−S+

+ 138240β̄−β̄+ζ
2γ̄−2S3

−S+ − 552960β̄−β̄+ζ
2γ̄−3S3

−S+ + 552960β̄3
−ζ

2γ̄−4S3
−S+ + 1658880β̄−β̄

2
+ζ

2γ̄−4S3
−S+

+ δ
[
7680β̄− − 46080β̄−β̄+γ̄

−1 + 69120β̄−β̄
2
+γ̄

−2 + 21600β̄−ζS2
− − 31680β̄−ζγ̄

−1S2
− − 69120β̄−β̄+ζγ̄

−1S2
−

+ 391680β̄−β̄+ζγ̄
−2S2

− − 138240β̄3
−ζγ̄

−3S2
− − 967680β̄−β̄

2
+ζγ̄

−3S2
− − 34560β̄−ζ

2γ̄−1S4
−

+ 34560β̄−ζ
2γ̄−2S4

− + 138240β̄−β̄+ζ
2γ̄−2S4

− − 552960β̄−β̄+ζ
2γ̄−3S4

− + 552960β̄3
−ζ

2γ̄−4S4
−

+ 1658880β̄−β̄
2
+ζ

2γ̄−4S4
− + 18720β̄+ζS−S+ − 2064ζγ̄S−S+ − 23040β̄+ζγ̄

−1S−S+ − 34560β̄2
+ζγ̄

−1S−S+

+ 92160β̄2
−ζγ̄

−2S−S+ + 161280β̄2
+ζγ̄

−2S−S+ − 276480β̄2
−β̄+ζγ̄

−3S−S+ − 276480β̄3
+ζγ̄

−3S−S+

− 3840ζ2S3
−S+ − 3840ζ2γ̄S3

−S+ − 34560β̄+ζ
2γ̄−1S3

−S+ + 69120β̄2
−ζ

2γ̄−2S3
−S+ + 34560β̄+ζ

2γ̄−2S3
−S+

+ 69120β̄2
+ζ

2γ̄−2S3
−S+ − 276480β̄2

−ζ
2γ̄−3S3

−S+ − 276480β̄2
+ζ

2γ̄−3S3
−S+ + 1658880β̄2

−β̄+ζ
2γ̄−4S3

−S+

+ 552960β̄3
+ζ

2γ̄−4S3
−S+

]
+ ν

[
− 2304ζS2

− + 55680β̄+ζS2
− − 16968ζγ̄S2

− − 120960β̄+ζγ̄
−1S2

− + 207360β̄2
−ζγ̄

−2S2
− + 414720β̄2

+ζγ̄
−2S2

−

+ 31776ζ2S4
− − 111360β̄+ζ

2γ̄−1S4
− + 207360β̄+ζ

2γ̄−2S4
− − 829440β̄2

−ζ
2γ̄−3S4

− − 829440β̄2
+ζ

2γ̄−3S4
−

− 69120β̄−ζγ̄
−1S−S+ + 207360β̄−β̄+ζγ̄

−2S−S+ − 111360β̄−ζ
2γ̄−1S3

−S+ + 207360β̄−ζ
2γ̄−2S3

−S+

− 1658880β̄−β̄+ζ
2γ̄−3S3

−S+
]

+ δν
[
3840β̄−ζ

2γ̄−1S4
− − 1056ζ2S3

−S+ + 3840β̄+ζ
2γ̄−1S3

−S+
]

− 5376ζ2S4
−ν

2 .
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Résumé en français

L’une des prédictions de la relativité générale est l’existence d’ondes gravitationnelles,
qui sont des déformations oscillatoires de l’espace-temps. Cependant, le calcul de la
forme de ces ondes ne peut pas se faire analytiquement de manière exacte, et les tech-
niques numériques sont très difficiles et se heurtent au problème du temps de calcul. C’est
pourquoi il est nécessaire de faire usage de techniques d’approximations pour fournir une
prédiction analytique pour ces formes d’onde. L’une des techniques les plus répandues
est l’approximation post-newtonienne, qui s’applique bien à une source d’onde gravita-
tionnelle composée de deux étoiles séparées d’une distance très grande devant leur taille
typique, et donc orbitant avec une vitesse v très petite devant celle de la lumière c. Il est
alors naturel de décrire la source comme un développement en le petit paramètre v/c, que
l’on appelle développement post-newtonien (PN). Ces techniques ont permis d’établir les
premières expressions pour la forme d’onde, jusqu’au premier ordre PN (1PN), c’est-à-
dire avec les corrections d’ordre (v/c)2. Toutefois, ces techniques se sont heurtées à des
problèmes de divergences, qui ont été résolus notamment grâce à l’introduction d’un autre
développement, dit post-minkowskien (PM), valable dans le vide extérieur à la source, et
qui consiste à développer la métrique en petites perturbations autour de la métrique plate
de Minkowski. Grâce à la séparation d’échelle entre la taille de la source et la longueur
de l’onde gravitationnelle, il existe une zone tampon où les deux développements sont
valables, ce qui permet de les apparier, à la manière d’une condition aux bords. Ces
techniques, ainsi que de nombreuses améliorations apportées au fil des années, ont permis
de calculer la forme d’onde jusqu’à 3.5PN (c’est-à-dire en (v/c)7), ce qui est extrêmement
utile pour l’analyse des données issues des détecteurs d’ondes gravitationnelles. De plus,
les équations du mouvement régissant la dynamique relativiste du système à deux corps
ont été résolues à 4PN. Se basant sur des premiers résultats (notamment le quadrupôle
source à 4PN), cette thèse a permis de compléter le calcul complet de la forme d’onde
gravitationnelle pour des orbites quasi-circulaires à 4PN, ainsi que le flux d’énergie émis
par les ondes gravitationnelles jusqu’à l’ordre 4.5PN. L’une des étape majeures était le
calcul d’un effet non-linéaire, au troisième ordre post-minkowskien, nommé « sillage de
mémoire », qui peut être interprété comme une ondes gravitationnelle linéaire qui est
diffusée par la courbure de l’espace-temps générée par le système binaire; laquelle onde
diffusée réémet elle-même de nouvelles ondes gravitationnelles, à la manière de l’effet
de mémoire. Une autre contribution de cette thèse concerne une classe de théories al-
ternative de la gravité, les théories tenseur-scalaire sans potentiels. Dans ces théories,
nous calculons la forme d’onde ainsi que le flux à l’ordre 1.5PN au-delà du rayonnement
quadrupolaire de la relativité générale, ce qui correspond à une ordre relatif de 2.5PN
au-delà du rayonnement dipolaire de la théorie, et donnons les résultats réduits pour les
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orbites circulaires. Pour les orbites non circulaires, nous corrigeons au passage une erreur
dans la littérature pour l’expression du flux à l’ordre 1PN.

Dans le Chapitre I, nous rappelons un certain nombre de concepts élémentaires liés
aux ondes gravitationnelles. Nous rappelons comment les équations de champ de la rela-
tivité générale, que l’on appelle équations d’Einstein, peuvent être linéarisées dans le vide
lorsqu’elles sont vues comme de petites déviations à la métrique d’espace-temps plate
de Minkowski, et nous introduisons la notion de déviation à la métrique « gothique ».
Nous distinguons ensuite les effets des effets de pure jauge, liées uniquement au choix de
système de coordonnées. En particulier, dans le cas d’une onde plane, nous relions le
tenseur de Riemann linéarisé à la métrique dans une jauge transverse et sans trace. Nous
définissons ensuite les polarisations « plus » et « croix », que l’on relie dans le cas linéarisé
au scalaire de Newman-Penrose. On définit également, dans le cadre des théories alterna-
tives de la gravité, la polarisation dite de respiration, la polarisation longitudinale et les
deux polarisations vectorielles. Nous nous intéressons ensuite aux équations d’Einstein
linéarisées sourcées par la matière, représentée par son tenseur d’énergie-impulsion. Nous
résolvons l’équation d’onde à l’ordre post-newtonien le plus bas, ce qui nous amène à
introduire la notion de quadrupôle. Nous calculons le flux d’énergie transporté par les
ondes gravitationnelles à travers une sphère de rayon infini, et retrouvons la formule du
quadrupôle d’Einstein. Nous spécialisons alors notre étude préliminaire au cas de deux
particules ponctuelles sur une orbite quasi-circulaire, et nous pouvons alors exprimer la
forme d’onde en fonction de la fréquence orbitale et de l’angle d’inclinaison du plan or-
bital du système binaire par rapport à l’observateur. Par des arguments de conservation
de l’énergie, nous trouvons alors un augmentation séculaire de la fréquence orbitale, le
« gazouillement », ainsi qu’une diminution séculaire de la distance entre les deux corps
en orbite. Nous rappelons les résultats de Peters et Matthews dans le cas des orbites
d’excentricité non nulle, et retrouvons la propension d’une orbite excentrique à se cir-
culariser sous l’effet de l’émission d’ondes gravitationnelles. Enfin, nous répétons notre
étude préliminaire dans le cas d’une théorie alternative, la théorie de Brans et Dicke
sans potentiel, et retrouvons que l’émission dominante d’onde gravitationnelles est due
au dipôle, et qu’elle engendre un mode de respiration. Nous nous intéressons ensuite aux
détecteurs, où nous rappelons l’équation de déviation géodésique décrivant le fonction-
nement des détecteurs d’ondes gravitationelles, et passons en revue les détecteurs actuels
(LIGO, Virgo et KAGRA) ainsi que les détecteurs futurs, construits sur Terre (Cosmic
Explorer, Einstein Telescope) ou dans l’Espace (LISA, ...). Nous rappelons alors les
rudiments de techniques d’analyse des données permettant d’extraire un signal du bruit
inhérents aux détecteurs. En particulier, nous étudions les techniques de filtrage adapté,
qui permet de détecter un faible signal malgré un fort bruit, mais qui requiert pour cela
une connaissance très fine de la forme fonctionnelle que doit avoir le signal.

Nous entamons alors la Partie A, qui traite de nos résultats obtenus en relativité
générale. Dans le Chapitre II, nous passons en revue le formalisme post-newtonien et
post-minkowskien multipolaire (PN-MPM) qui sera utilisé tout au long de la thèse pour
traiter le problème de la génération d’onde à des ordres très élevés. Nous rappelons
d’abord la formulation de Landau et Lifschitz de la relativité générale sous forme d’une
équation d’onde. Nous montrons ensuite comment ces équations peuvent être résolues
dans des coordonnées harmoniques dans le cas d’une source compacte. Pour cela, nous
séparons le problème en deux: d’un côté, nous exprimons la solution la plus générale de
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la métrique extérieure dans le vide, paramétrisée par des moments multipolaires (dits de
source et de jauge); et de l’autre, nous trouvons la solution près de la source de matière
dans l’approximation des petites vitesses caractéristiques. Ces deux solutions peuvent
alors être reliées par une condition au bord sous la forme d’un appariement des développe-
ments asymptotiques des deux métriques. Nous spécialisons alors notre étude au cas de
deux particules ponctuelles, ce qui est bien adapté à l’étude de systèmes binaires de trous
noirs ou d’étoiles à neutrons dans la phase spiralante. Or, nous voyons dans ce cas que le
traitement de la métrique à la position des particules requiert des techniques de régular-
isation. Pour des ordres élevés, on doit recourir à une régularisation dite dimensionelle,
qui consiste à résoudre les équations d’Einstein en d dimensions (ce qui est toujours bien
défini par continuation analytique en d), et de prendre la limite tridimensionelle à la fin
du calcul, pour des quantités physiques observables. Nous introduisons quelques outils
utiles pour l’étude des orbites quasi-circulaires, puis nous rappelons des résultats récents
concernant les équations du mouvement à 4PN. Enfin, nous expliquons comment extraire
de la métrique extérieure des quantités observables par un observateur asymptotique, que
l’on exprime grâce à l’introduction de moments multipolaires dits radiatifs, desquels on
peut directement obtenir la forme d’onde et le flux.

Le Chapitre III est dédié à l’étude d’une forme de la métrique extérieure dite canon-
ique. En effet, pour l’appariement entre la métrique extérieure et la métrique dans la zone
proche, il est nécessaire de choisir pour la métrique extérieure une forme paramétrisée par
deux moments sources, mais aussi quatre moments dits de jauge. Grâce la liberté de jauge
résiduelle de la jauge harmonique, on peut paramétriser la métrique extérieure de manière
équivalente à l’aide de seulement deux moments, dits canoniques. Pour cela, il faut pren-
dre en compte le fait que les moments canoniques et de source diffèrent par des termes
non-linéaires impliquant les moments de jauge. Toutefois, dans le cadre de la régulari-
sation dimensionnelle, cette relation diffère de la relation tridimensionnelle usuelle. Les
techniques pour l’obtenir sont traitées, et la relation finale entre moments de source et
moments canoniques en d dimensions est présentée.

Le Chapitre IV est dédié au calcul d’interactions non-linéaires qui rentrent dans la
relation entre les moments canonique et les moments radiatifs, lesquels sont observables
par l’observateur à l’infini. Une nuance, toutefois, est que l’on introduit une autre version
de l’algorithme canonique qui évite de manière systématique l’apparition de logarithmes
en la distance radiale dans la limite où la distance radiale s’approche de l’infini. Cette
nouvelle métrique, dite métrique canonique en coordonnées radiatives (par opposition à
la métrique canonique en coordonnées harmoniques du Chapitre III), permet également
d’exprimer des résultats connus à l’ordre quadratique dans l’itération post-minkowskienne.
On donne alors les termes qui sourcent l’équation d’onde à l’ordre cubique, puis on décrit
les techniques de calcul utilisées pour intégrer cette équation d’onde. Ceci est implémenté
pour les interactions qui rentrent à l’ordre 4PN, et l’on décrit également une méthode
de simplification de la métrique ainsi obtenue. Finalement, nous présentons les moments
radiatifs associés aux trois interactions non-linéaires suivantes: les sillages de sillages,
qui rentrent à 3PN et sont connus en termes des moments canoniques en coordonnées
harmonique; les sillages de mémoire, qui rentrent à 4PN et sont associés à une interaction
entre la masse-énergie totale du système et deux quadrupôles; et enfin des termes 4PN
associés à l’interaction entre la masse-énergie, le moment angulaire et le quadrupôle.

La Chapitre V traite des méthodes pour relier les résultats obtenus dans le Chapitre IV,
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en terme des moments canoniques en coordonnées radiatives, aux résultats connus en ter-
mes de moments canoniques en coordonnées harmoniques. Nous développons d’abord le
formalisme général pour relier ces deux types de moments, puis vérifions que pour les
interactions de type sillage et sillage de sillage, les résultats sont bien cohérents dans
ces deux formalismes. Nous exprimons enfin nos résultats cubiques du Chapitre IV en
terme des moments canoniques en coordonnées harmoniques. Nous vérifions la cohérence
de notre résultat final, notamment les termes non-oscillants qui sont cohérents avec la
littérature, ainsi que les constantes arbitraires, associées à la régularisation d’Hadamard
en trois dimensions; qui se compensent parfaitement avec les contributions provenant de
la régularisation dimensionnelle.

Enfin, dans le Chapitre VI, nous rassemblons tous les résultats nécessaires pour cal-
culer les observables à 4PN. D’abord, nous faisons un point sur l’expression du quadrupôle
source renormalisé, à qui il a fallu rajouter quelques contributions supplémentaires. Nous
rappelons ensuite des résultats connus pour l’expression des moments radiatifs en termes
des moments canoniques, complémentaires de ceux obtenus dans les Chapitres IV et V.
Nous développons quelques résultats nouveaux, utiles pour réduire nos expressions dans
le cas des orbites quasi-circulaires, notamment des contributions dites post-adiabatiques
et le calcul spécifique aux sillages de mémoire. Enfin, nous présentons les modes pour des
harmoniques sphériques à 4PN, ainsi que le flux, le gazouillement et la phase à 4.5PN.
Nous présentons enfin des estimations numériques et une comparaison à la relativité
numérique.

Nous entamons ensuite la Partie B dédiée aux théories tenseur-scalaire (TS), composée
uniquement du Chapitre VII. Nous définissons la théorie, introduisons les paramètres
utiles et décrivons certaines spécificités, comme l’apparition de sensitivité dû à la violation
du principe d’équivalence fort. Nous adaptons alors le formalisme de la Partie A au cas des
théories TS, et trouvons en particulier des nouveaux effets de sillage et de mémoire. Nous
présentons alors pour des orbites générales les moments sources ainsi que le flux à 1.5PN
au delà du rayonnement quadrupolaire, ce qui correspond à un ordre 2.5PN au-delà du
rayonnement dipolaire dominant spécifique aux théories TS. Nous trouvons en particulier
une différence sur l’expression du flux pour des orbites générales à 1PN avec un résultat de
la littérature. Nous réduisons ensuite notre résultat pour des orbites circulaires, et nous
calculons les modes tensoriels et scalaires à 1.5PN. Nous montrons enfin des résultats
numériques récents et leur comparaison avec nos prédictions analytiques.
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Rayonnement gravitationnel des systèmes binaires compacts en relativité
générale et dans les théories tenseur-scalaire

Résumé : Nous améliorons les prédictions théoriques analytiques concernant les ondes gravi-
tationnelles (OG) émises par des systèmes binaires compacts d’étoiles à neutrons ou de trous
noirs pendant la phase spiralante précédant la coalescence, à la fois en relativité générale (RG)
et dans une classe de théories tenseur-scalaire (TS). Nous utilisons un formalisme qui combine le
développement multipolaire post-minkowskien (MPM) de la métrique dans le vide extérieur à un
système de matière isolé, avec le développement post-newtonien (PN) pour des petites vitesses
orbitales (v ≪ c) et des champs gravitationnels faibles. En RG, nous calculons les modes (ℓ,m)
de la forme d’OG à l’ordre 4PN, en (v/c)8 au-delà de l’ordre dominant, ainsi que la phase et le flux
d’énergie à 4.5PN. Pour cela, nous étudions de nouveaux termes non-linéaires dans la propagation
des OG. Le principal effet est le « sillage de mémoire » , qui est dû aux effets combinés (i) des
sillages d’OG, c’est-à-dire de la diffusion des OG sur la courbure de l’espace-temps générée par la
masse totale de la binaire; et (ii) de l’effet de mémoire, dû au rayonnement gravitationnel engen-
dré par les OG elles-mêmes. Ce calcul a nécessité l’implémentation d’une construction MPM dite
« radiative » de la métrique du vide extérieur, qui élimine de la zone lointaine les logarithmes en
la coordonnée radiale qui apparaissent dans la construction en coordonnées harmoniques stan-
dard. Dans les théories TS, nous adaptons le cadre PN-MPM à l’ordre 1.5PN (c’est-à-dire 2.5PN
au-delà du rayonnement dipolaire dominant dans les théories TS). Nous obtenons ainsi le flux,
la phase et les modes (ℓ,m) des champs scalaires et tensoriels à l’ordre 1.5PN pour des orbites
circulaires, et corrigeons une erreur dans la littérature pour les orbites générales.

Mots clés : théories tenseur-scalaire, relativité générale, onde gravitationelle, sillage de mémoire,
propagation non-linéaire, développement post-newtonien

Gravitational radiation of compact binary systems in general relativity and in
scalar-tensor theories

Abstract: We improve analytical theoretical predictions for gravitational waves (GWs) emitted by
compact binary systems of neutron stars and black holes during the inspiraling phase preceding
merger, both in general relativity (GR) and in a class of scalar-tensor (ST) theories. We resort
to a formalism that combines the multipolar post-Minkowskian (MPM) expansion of the vacuum
metric exterior to an isolated matter system and the post-Newtonian (PN) expansion in small
orbital velocities (v ≪ c) and weak gravitational fields. In GR, we compute the (ℓ,m) modes
of the GW up to 4PN order, i.e. (v/c)8 beyond leading order, as well as the phase and energy
flux up to 4.5PN order. For this, we study novel nonlinear terms in the propagation of GWs.
The main effect is the “tail of memory”, which is due to the combined effects of (i) GW tails,
i.e. the backscattering of GWs against the spacetime curvature generated by the total mass of
the binary; and (ii) the memory effect, due to the reradiation of GWs by GWs themselves. This
computation required implementing the so-called “radiative” MPM construction of the exterior
vacuum metric, which removes the far-zone logarithms in the radial coordinate that appear in
the standard construction in harmonic coordinates. In ST theories, we adapt the PN-MPM
framework at 1.5PN order (i.e. 2.5PN beyond the leading dipolar radiation of ST theories). We
thus obtain the flux, phase and (ℓ,m) modes of the scalar and tensor fields at 1.5PN order for
circular orbits, and correct a mistake in the literature for general orbits.

Keywords : scalar-tensor theories, general relativity, gravitational wave, tail of memory, nonlinear
propagation, post-Newtonian expansion


	Acknowledgments
	Introduction: A historical perspective
	Abbreviations
	Notations
	I General context
	I.1 General description of weak gravitational waves
	I.2 Lowest-order GW generation
	I.2.1 Waves for arbitrary PN sources
	I.2.2 Waves for compact binary systems
	I.2.3 Wave generation in Brans-Dicke theory

	I.3 Gravitational-wave detectors
	I.3.1 Current ground-based interferometers
	I.3.2 Third generation ground-based detectors
	I.3.3 Space-borne interferometers

	I.4 Gravitational-wave data analysis

	A General relativity
	II The wave generation formalism
	II.1 The Landau-Lifschitz formulation of general relativity
	II.2 Solving the Einstein equations
	II.2.1 Multipolar post-Minkoswkian solution for the exterior vacuum
	II.2.2 Near-zone PN metric
	II.2.3 The matching equation

	II.3 The case of point-particles
	II.4 Dimensional regularization
	II.5 The kinematics of quasicircular orbits
	II.6 The equations of motion
	II.7 Observables at infinity

	III Source and gauge moments to canonical moments
	III.1 The canonical harmonic MPM algorithm
	III.2 Relating the canonical moments to the source and gauge moments in three dimensions
	III.3 Adapting the formalism to d-dimensional regularization
	III.3.1 Procedure in d dimensions
	III.3.2 Integration techniques

	III.4 Relation at 4PN order using dimensional regularization

	IV The radiative mass quadrupole and the tails of memory
	IV.1 The radiative algorithm
	IV.2 Results at quadratic order 
	IV.3 Structure of the cubic source
	IV.4 Solution of the wave equation at cubic order
	IV.4.1 General multipolar solution
	IV.4.2 Application to tails-of-memory
	a) Cases where k=1 and k=2
	b) Cases where k3

	IV.4.3 Application to tails-of-tails

	IV.5 Implementing the calculation of tails-of-memory
	IV.5.1 Explicit integration of the asymptotic kernels
	IV.5.2 Raw expression of the radiative quadrupole in the radiative construction
	IV.5.3 Simplification method
	IV.5.4 Testing the integration method

	IV.6 Expression in terms of radiative moments

	V The canonical and harmonic constructions of the MPM waveform
	V.1 Relating the radiative and harmonic constructions
	V.2 Application to nonlinear tail interactions
	V.2.1 Quadratic tails
	V.2.2 Cubic tails-of-tails

	V.3 Cubic tail-of-memory interactions at 4PN order
	V.4 Corrections due to the dimensional regularization of radiative moments

	VI The 4PN waveform for quasicircular orbits
	VI.1 The renormalized source moments
	VI.1.1 Corrections to the renormalized source quadrupole moment
	VI.1.2 Expression of the renormalized source quadrupole moment
	VI.1.3 The other source moments and their relation to the canonical moments

	VI.2 The radiative moments in terms of the canonical moments
	VI.2.1 Radiative moments entering the flux at 4PN order
	VI.2.2 Radiative moments entering the quasicircular flux at the 4.5PN order
	VI.2.3 Radiative moments entering the full 4PN waveform

	VI.3 Novelties in the reduction to quasicircular orbits
	VI.3.1 Post-adiabatic integration of the tail effect
	VI.3.2 Quasicircular-orbit reduction of the memory effects and the tails of memory

	VI.4 The 4PN modes
	VI.5 The 4.5PN flux
	VI.6 The 4.5PN chirp
	VI.7 The 4.5PN phase


	B Scalar-tensor theories
	VII Gravitational waves in scalar-tensor theories
	VII.1 Massless scalar-tensor theories
	VII.2 The Multipolar PM formalism in scalar-tensor theories
	VII.2.1 The scalar-tensor multipole moments
	VII.2.2 Memory and tail effects in ST theory

	VII.3 The scalar-tensor multipole moments and flux of compact binaries
	VII.4 Reduction to quasicircular orbits
	VII.5 Waveform and GW modes
	VII.6 Comparison with numerical relativity


	C Conclusion and prospects
	D Appendix
	A General relativity
	A.1 Extracting NL, PL, QL and RL
	A.2 Coefficients for the raw tails of memory
	A.3 Formulas for the retarded integrals
	A.4 Test of the boosted Schwarzchild solution
	A.5 Post-adiabatic integral formulas
	A.6 Compendium of useful formulas in d dimensions
	A.7 Proof of convergence when k=1 and k=2
	a) Case k+j 1
	b) Case k+j 2



	B Scalar-tensor theories
	B.1 Dissipative PN-odd terms in the equations of motion
	B.2 Expressions for the scalar and tensor source moments
	B.2.1 The STF moments
	B.2.2 Link between STF and EW moments

	B.3 The scalar 1.5PN flux

	Résumé en français
	Bibliography


