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Deep learning-aided analysis of 3D cell culture microscopic images to enhance

the precision of the drug screening process: A use case for cervical cancer

by Tarek MAYLAA

With the lack of efficient medicine to treat cancer, there is a need to improve the

drug discovery process. To this extent, the use of cell culture methods has been priv-

ileged for drug testing. 2D cell cultures were widely favored for their low cost and

low complexity however several limits forced the scientific community to provide

3D cell culture methods. However, the microscopic images acquired from the 3D

cell culture becomes more challenging because of their complexity. In this thesis, we

develop automatic methods for processing microscopic images from these 3D cell

cultures. We first tackle the nuclei segmentation problem that is a crucial part in the

analysis of these images. Our study consists of preparing a benchmark for the eval-

uation of machine learning methods. We have thus compared the performances of

several classifiers that were trained for the segmentation of nuclei. This allowed us

to conclude that these methods still struggle in separating effectively the nuclei in-

side a z-stack images. To respond to this problematic, we developed a deep learning

workflow that first detect the spheroids inside the images and then segment the nu-

clei inside each spheroid. Deep learning architectures provided good performances

which contributed to the 3D reconstruction of the nuclei. This work provides an

additional help for the biologists in their analysis.
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Résumé

Faculté des Sciences et Technologies

Groupe BioMEMS

Analyse d’images microscopiques de culture cellulaire 3D assistée par

apprentissage en profondeur pour améliorer la précision du processus de

dépistage des médicaments : un cas d’utilisation pour le cancer du col de l’utérus

de Tarek MAYLAA

Avec le manque de moyens efficaces pour lutter contre le cancer, il est nécessaire

d’améliorer le processus de découverte de médicaments. Dans cette mesure, l’utilisation

de méthodes de culture cellulaire a été privilégiée. Les cultures cellulaires 2D ont été

largement utilisées pour leur abordabilité et leur faible complexité, mais plusieurs

limites ont obligé la communauté scientifique à fournir des méthodes de culture cel-

lulaire 3D plus proches du caractère humain. Cependant, les images microscopiques

acquises à partir de la culture cellulaire 3D deviennent plus difficiles à interpréter à

cause de leur complexité. Dans cette thèse, nous développons des méthodes au-

tomatiques de traitement d’images microscopiques issues de ces cultures cellulaires

3D. Dans un premier temps, nous abordons le problème de la segmentation des noy-

aux qui est un élément crucial dans l’analyse de ces images. Pour se faire, notre étude

consiste à préparer un benchmark pour l’évaluation de méthodes d’apprentissage

automatique. Nous avons ainsi comparé les performances de plusieurs classifieurs

entraînés pour la segmentation des noyaux. Ceci nous a permis de conclure que ces

techniques n’arrivent pas à séparer efficacement les noyaux dans un z-stack. Pour

répondre à cette problématique, nous avons également développé une chaîne de

traitements basée sur l’apprentissage profond qui détecte d’abord les sphéroïdes à

l’intérieur des images, puis segmente les noyaux à l’intérieur de chaque sphéroïde.

Ces architectures d’apprentissage profond ont fourni de bonnes performances qui

ont contribué à la reconstruction 3D des noyaux. Ce travail est considéré comme

une aide supplémentaire aux biologistes pour mener leurs analyses.
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Chapter 1

Introduction

1.1 Context

Our society faces one of the most important challenges in our history in terms of

public health: cancer. It is a disease defined by an abnormal growth of cells that

can spread through the entire body. After heart disease, cancer is the second leading

cause of death worldwide that killed approximately 9,6 million people until 2018.

According to the Centers for Disease Control and Prevention (CDC), 1 752 735 new

cancer cases emerged in the United States leading to 599589 deaths in 2019 [17].

Cancer is considered one of the main causes of death among women worldwide.

Women represents 49.5% of the population and form a much larger percentage of

the population over 60 years. Cancer is considered the second leading of death of

women in America and Europe. There is an estimation of 6,7 million new cancer

cases and 3.5million deaths among females in 2012 [73]. Figure 1.1 represents the

incidence and mortality rates of all cancer among women worldwide.

Cervical cancer is the fourth most common cause of cancer in women after breast,

colorectal, and lung cancer worldwide [4]. In 2018, around 570 000 women were

diagnosed with the disease, eventually leading to 311 000 deaths from the disease

worldwide. American cancer society have an estimation of 14 100 cases of invasive

cervical cancer with a death toll reaching approximatively 4 800 among women in

the United States for 2022 [18]. Here comes the need to develop and discover more

drugs and medicinal procedures for cancer treatments. Nowadays several treat-

ments such as immunotherapy and cytotoxic chemotherapy are available to stop the

spread of the disease. However, these treatments often have side effects that can be
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FIGURE 1.1: World map of cancer incidence and mortality rates
among women
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either acute or permanent. Common acute reactions from cytotoxic chemotherapy

include skin reactions, alopecia, anemia, as well as renal, cardiovascular, and neu-

rological impairment. Severe reactions may include paralysis, spasms, and coma.

Also, infertility is a common chronic side effect [66]. Figure 1.2 [21] represents the

cervix organ and the localisation of the cervical cancer. This highlights the need to

develop more effective and less toxic pharmacological treatments for cervical cancer.

However, drug development is expensive. The cost for the development of a single

drug can range from 161 million to 1,8 billion United States dollars. According to

the Food and Drug Association (FDA) of the United States, the drug development

process typically involves five stages: early drug discovery, pre-clinical research,

clinical research, pre-commercialization drug FDA review, and post-market drug

safety monitoring by the FDA [24]. As a result, the drug development process is

expensive and can take up to 12 years [56], highlighting the need to develop tech-

niques to speed up the process without compromising on safety. About two-thirds

of potential beneficial drugs are rejected at the clinical research stage due to high

toxicity levels (20%) or lack of efficiency (30%). The high failure rate at this stage

further prolongs the drug development process. A key factor leading to a high fail-

ure rate at the preclinical stage is the difficulty to reproduce physiological conditions

in-vitro, making it difficult to predict the efficacy and toxicity of the drug in-vivo.

In cellular in-vitro assays, two-dimensional (2D) monolayers of cells are gener-

ally used. Over the past decades, 2D cell cultures were used because they are easy to

manipulate and cost-effective. This arrangement is completely different from the

organization of cells in-vivo in the human body. It is now well established that

three-dimensional (3D) cell cultures better mimic the structure and the behavior of

human tissues [62] because they can take into account the interconnections between

cells, the 3D structure of the tissues, and the extracellular matrix (ECM) surround-

ing the human cells (Figure 1.3). It should also be noted that 3D cellular models

based on different cell culture systems without physical cell support (e.g., ultra-

low attachment plate) or with different forms of cell supports (e.g., solids scaffold

and hydrogels of different origins) are becoming more widely available. We can

cite BIOMIMESYS® Hydroscaffold, a 3D cell culture technique developed by the

compagny HCS Pharma based in France (Loos) and provides a physiological 3D



4 Chapter 1. Introduction

FIGURE 1.2: Cervical Cancer
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FIGURE 1.3: 2D vs 3D cell culture[1]

cell culture system. High content screening (HCS), also known as high throughput

imaging, is essential for the development of new drugs [59]. This technique is based

on fluorescence microscopy that is used to observe the cell structure on the micro-

scopic images. It is a powerful tool as it allows to conduct a quantitative observation

on the acquired images to analyse the occured changes. Fluorescence microscopy is

based on fluorescence properties that molecules have. This means that they absorb

the light at one wavelength and then reemit it at another wavelength. Therefore, flu-

orescent molecules (called fluorophores or fluorochromes) are able to interact with

specific biological molecules of interest and are therefore often used to facilitate the

visualization of cellular substructures.

Hoechst is a commonly used fluorochrome. This fluorescent molecule can pene-

trate the cell membrane and bind strongly to adenine–thymine-rich regions in DNA

[49] and it can therefore be used to study the nuclei of cells. Molecular devices is an

american supplier of bioanalytical systems that help in the drug discovery process.
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FIGURE 1.4: MetaXpress prototype for High Content Screen-
ingsource

They developped ImageXpress, an automated system for high content imaging ac-

quisition [20]. Their system, shown in Figure 1.4, was used for microscopic images

acquisition in our study.

However, the large number of images acquired during automated fluorescent

microscopy makes the manual segmentation and analysis of subcellular components

time-consuming for biologists. Furthermore, complex computational tools are re-

quired to evaluate the effects of treatment on cells from the images. Therefore ac-

curate algorithms are required to facilitate the segmentation and analysis of cellular

substructures on thousands of microscopic images [2]. Various machine learning

algorithms using different architectures have been developed for this purpose. For

example, The Waikato environment for knowledge analysis (WEKA) [38] provides

a range of machine learning algorithms, image manipulation tools, and evaluation

metrics for the segmentation of cell structures on microscopic images. Another com-

monly used tool is the Fiji (ImageJ) software [14], which provides a range of image
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segmentation and imaging processing tools. These packages facilitate the develop-

ment of segmentation tools for biologists with limited expertise in artificial intelli-

gence.

1.2 Motivation and Contributions

Automatic tools are widely requested when it comes to microscopic images analy-

sis. These demands are mainly focused on two reasons: first, the quantity of data

images that we can acquire from the microscopy of cell culture. Indeed, we can ob-

tain thousands of images taken from one plate of cell culture. This huge amount

of data requires plenty of time to be treated manually while it can take minutes or

even seconds using automatic tools. Second, the complexity of data can often be

hard to be dealt manually. Working with dense cell environments or opaque medi-

ums can often lead to several artifacts (blurred and overlapped spheroids and nuclei

in Figure 1.5) in the images such as overlapping or blurred objects. This can affect

the manual analysis as it can cause doubts and uncertainty among biologists and it

can be hard to find and detect the main components inside the microscopic images.

Working with cell culture and automatic tools to analyse the acquired microscopy

images could lead to first accelerate the process of drug discovery since it is an au-

tomated process that can analyse thousands of images and giving lots of results in

a short time. It also reduces animal testing as we are working in 3D cell culture

environment that mimics the cellular components and behavior inside the human

body.

As stated above, various tools are available to perfom automatic analysis. These

tools are powerful enough to assist biologists and non-specialists in artificial intel-

ligence. As our images are acquired from 3D cell culture, they are represented in

z-stacks of 2D images so that each stack can form the 3D representation of the envi-

ronment after reconstruction (Figure 1.5). Thus we are faced with major questions in

the air of image analysis: to what extent the automatic tools could still provide an ef-

ficient and robust analysis regarding microscopic images from 2D vs 3D cell cultures

? Would these methods perform well on our z-stack images ? And most importantly,
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FIGURE 1.5: z-stack images from 3D cell culture microscopy

could deeper automatic techniques contribute in the progress of microscopic analy-

sis thus assisting the scientific community to accelerate the process of drug screening

? To this extent we proposed two different contributions. The first one is a quanti-

tative and qualitative evaluation of several built-in segmentation methods through

the Fiji and WEKA softwares to evaluate the efficiency of these tools on our com-

posed dataset. The second one is a workflow process based on deep learning and

machine learning algorithms that first detect the spheroids and segment the nuclei

inside each spheroid thus helping us achieve a 3D reconstruction of the nuclei.

A benchmark for the evaluation of segmentation methods– Our first contribution

is the proposition of a benchmark for the evaluation of nuclei segmentation. De-

tecting the nuclei in the microscopic images is an essential task for biologists since

they get multiple morphological and physiological information from a nucleus after

a drug interaction. Our benchmark is composed of a dataset of microscopic images,

a set of ground truth and two different similarity metrics. The microscopic images

acquired at HCS Pharma from 3D cell culture of HeLa cells (cervical cancer cells)

[39] were manually annotated by three different biologists and experts. We based

the evaluation on different machine learning built-in classifiers, in image processing

and data analysis tools (Fiji and WEKA) that are widely used by biologists, for the

purpose to segment the nuclei in the microscopic images and find the best method

that can help the experts in their work. We used also some image processing and

manipulation techniques to enhance the obtained results. To assess the quantitative
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evaluation, the metrics measured the comparison between the obtained segmenta-

tion result with the manually segmented one thus giving us a similarity rate. We

propose a detailed study on exisiting built-in classifiers and try to improve the per-

formance by applying image processing methods such as majority voting methods

that combines the results obtained from different models. Then we evaluate these

performances with the similarity metrics and assess the robustness of such meth-

ods by testing them first on different 2D images in the same z-stack and second

on other microscopic images acquired from different datasets. We show that while

these methods are efficient for certain tasks they still have limits with images that

contains artefcats such as blurriness and overlapping objects. This work contributed

in a paper entitled "An Evaluation of Computational Learning-based Methods for

the Segmen-tation of Nuclei in Cervical Cancer Cells from Microscopic Images" and

was published in the Current Computer Aided Drug Design journal from Bentham

Science Publisher.

A workflow based on deep learning and machine learning methods to achieve

the 3D reconstruction of the nuclei– As we deducted in the first contribution, there

is a need to develop robust and efficient automatic tools to study, evaluate and help

in the analysis and interpretation of microscopic images acquired from 3D cell cul-

ture. Indeed, the complexity of these type of images prevent the biologists to be able

to perform manual and visual interpretation as the complexity is present in form of

the amount of the data that need to be analysed and the translucent environment

that affects the images with some artifacts. This is why biologists need automatic

tools that can help in the analysis by first detecting the important components in

the images and then perform the 3D reconstruction and thus allowing the biologists

to conduct a robust analysis on the cellular components ( nuclei, cells, etc.). To an-

swer to this problematic, we proposed a workflow based on learning processes to

first detect the spheroids inside the microscopic stack images, then to segment the

nuclei inside each spheroid thus being able to reconstruct the segmented nuclei in

the stack and obtain the 3D reconstruction. The spheroid detection analysis and the

segmentation analysis were based on deep learning methods. They succeeded in

first detecting the spheroids inside each image in the stack and the segmentation
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process actually outperformed the manual segmentation that was conducted by hu-

man observers. As for the 3D reconstruction, we performed a qualitative evaluation

of two machine learning clustering methods to track each segmented nucleus in all

the stack and thus apply a mesh reconstruction to have the 3D representation. The

outcome of this work was a paper entitled "A hierarchical deep learning framework

for nuclei 3D reconstruction from microscopic stack-images of 3D cancer cell cul-

ture" and was presented in the 6th World Conference on Smart Trends in Systems,

Security, and Sustainability and published in Springer LNNS.

1.3 Thesis Organization

As this manuscript describes and recounts the 3 years that were dedicated on this

project, it is devided into four more chapters:

Chapter 2 talks about the biological aspect of this project. As cell culture and

microscopy are two major assets in this work, it was important to understand some

scientific information and functionalities in the biopharmaceutical field. Indeed this

chapter will start by introducing the importance of cell culture in drug discovery

and how it will help in finding treatments to benign and malignant tumors. Further-

more, the history of drug discovery and drug screening and the different discovered

treatments for cancer are also developed. Likewise, in this chapter, we defined the

cell culture process linking it to the culture of cancerous cells while giving the differ-

ence between 2D and 3D cell culture. We also highlight the importance of cell culture

regarding drug discovery and will give a reminder of the drug screening process. In

addition, this chapter will focus on the microscopy process and the different param-

eters that affects the generated images. It will also introduce high content screening

and its importance in such work.

Chapter 3 presents our benchmark for the evaluation of the segmentation results

obtained through different built-in classifiers. This chapter starts by indicating the

motivation behind this work while presenting the different scientific studies that

dealt with nuclei segmentation. It then introduces the generated dataset and the

methods used for the experimentation. Subsequently, it details the experimentation
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process by describing each step from the training process to the quantitative and

qualitative evaluations.

Chapter 4 presents the learning based workflow for the 3D reconstruction of the

nuclei. The chapter starts with an introduction that motivates such work by display-

ing the fact that existing methods suffer to perform well with complex images that

contains several artefcats. It then goes by describing the workflow process and all

the steps needed to achieve the 3D reconstruction goal. It continues by thouroughly

explaining all the experimentations and results obtained to conclude with the final

3D reconstructed result.

Chapter 5 concludes the 3 years of work by summarizing the work that has

been done and highlighting the contributions that we provided. Furthermore, it will

end by giving some perspectives and ideas that can be subjects for future research

projects to be added to this study.
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Chapter 2

Cell culture and Microscopy for the

Drug Screening Analysis

2.1 Introduction

Drug discovery is a significant process in medicine. It allows the development of

new treatments for different conditions, diseases and even tumors. Drug discovery

became a crucial task in the pharmaceutical industry and its progress is very bene-

ficial to treat and maybe eradicate deadly tumors such as cancer. Cancer is consid-

ered a benign or malignant tumor that is defined by an abnormal and uncontrollable

growth of body cells in any part in the body.

To be able to detect, follow the proliferation and progress of the cancer, in vitro

cell culture is found to be efficient. In vitro cell culture is defined by the extraction of

cells from a human, animal or plant body and the observation of the growth of these

cells in an artificial environment [42]. Cell culture also proved to be an asset for drug

discovery, where several drugs are tested in the cell culture environment and biolo-

gists are able to observe the changes and transformations that follow through optical

microscopy. One type of optical microscopy is fluorescence microscopy, a technique

that is important in biomedical science. Fluorescence microscopy is the principle of

irradiation of UV light to certain structures inside the cell that in turn emits light and

thus appearing on the image. To be able to show specific components from the cell

environment, there is a variety of fluorescent stains that can be used [28]. For exam-

ple the DAPI stain [25] is a fluorescent stain that is used for nuclei staining. Confocal

fluorescence microscopy technique generated images with higher resolution using a
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confocal microscope. It is generally used to provide three-dimensional microscopic

images [28].

Over the years, scientists developed different microscopy methods to help them

achieve their analysis. From these methods we can cite, High-content screening

(HCS) [40], a method that combines automatic imaging with quantitative data anal-

ysis and thus being able to evaluate directly and automatically the images that are

acquired. HCS uses automated fluorescence microscopy to acquire images of the

internal cell structures. These images are then used to quantify the cellular changes

among a single or population of cells while undergoing pharmaceutical treatments.

These changes are then analyzed [50] to evaluate the treatment’s efficacy and/or

toxicity.

As high content screening are widely used, the need to develop efficient auto-

matic method became also highly demanded. Indeed, as these methods can pro-

duce a significant amount of microscopic images in a short amount of time, biolo-

gists alone are not able to analyse them manually. Moreover, automatic methods

that serve different tasks such as localizing cancerous cells or nuclei, segmenting the

different cell structures in the image, giving measurements or indication of occurred

changes can meaningfully assist in the progress of drug discovery process.

2.2 Drug discovery and cancer treatments

2.2.1 Drug discovery

Drug discovery is the process of developing drugs and treatments to help eradicate

or stop the spreading of benign or malignant diseases and tumors. It is an impor-

tant process in the pharmaceutical industry and has lead to new opportunities and

scientific progress in medicine. However, drug discovery is time consuming and ex-

pensive. Indeed, it can take up to 12 years and between $314 million to $2.8 billion

to develop a certain drug [81]. According to the U.S. Food and Drug Administration

(FDA), the drug discovery process is divided into 5 stages (Figure 2.1) [24]:

Discovery and Development– This is the first stage of drug discovery. It consists

of identifying and understanding a certain disease and start testing thousands of
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chemical compounds to find suitable candidates. It is crucial afterwards to gather

information from the few candidates left to determine several criterias such as the

benefits of the drug, its best dosage, its side effects and its reaction with other treat-

ments.

Preclinical Research– The second stage of drug discovery consists of measuring the

toxicity of the drug candidate. it indicates the level of harmness that the drug may

cause. This stage can generally take up to 6 years to give detailed analysis on dosing

and toxicity pourcentage.

Clinical Research– The clinical research or clinical trials stage consists of under-

standing the effect of the candidate drugs on the human body. To this extent, the

drug candidate is tested on a group of people that are selected based on several cri-

terias. This stage is divided into 4 phases. In each phase the number of participants

increases to be able to gather as much data on the efficacity of the drug. Each phase

can take up to 7 to 12 months with the last phase going up to 4 years.

FDA Drug Review– This fourth stage is basically the thorough examination of the

FDA professional team on the submitted drug. They check all the submitted data

and facts to decide if the drug is safe for marketing.

FDA Post-Market Safety Monitoring– To confirm the safety of the drug over several

years of market usage, the FDA monitors and reports the cases to put some limita-

tions or regulate the dosage if needed.

2.2.2 Cancer treatments and side effects

As we can deduce, drug discovery is indeed time consuming. This is problematic

when dealing with malignant tumors as people are in danger and the ratio of the

number of death to the number of cases is particularly high.Taking cancerous tumors
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FIGURE 2.1: The drug development process implemented by the FDA
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FIGURE 2.2: Side effects of chemotherapy [54]

as our reference, there were around 10 million deaths worldwide in 2020 [32] . Dif-

ferent treatments for cancer such as chemotherapy, radiation therapy, immunother-

apy,etc. are widely used to help stop the spreading of the disease. However, the side

effects of such treatments are likely to be serious. The world health organization

classed these side effects into grades going form 0 to 4 [66]. Grade 1 is considered

mild as grade 2 represents moderate reactions. Grade 3 and 4 are considered severe

and life threatening. The reactions of these treatments can be seen on different part

of the body such as skin, hair and blood. In addition, body organs can also be af-

fected such as the heart, lungs, kidneys and brain. When dealing with grade 3 and 4

effects, it may cause neurotoxicity that can develop paralysis and even lead to coma

(Figure 2.2).

2.2.3 Cervical cancer

Cervical cancer is a deadly tumor among women. In 2012, 266 000 women died

among 528 000 recorded cases worldwide [77]. This increased in 2018 as 311 000

deaths occured [4]. The lead cause of cervical cancer development is human papillo-

mavirus (HPV). HPV is the most common transmittable sexual disease worldwide.

If HPV infection persists and is not treated, it can lead to a cancerous tumor around

10 years later thus resulting in cervical cancer among women [6].



18 Chapter 2. Cell culture and Microscopy for the Drug Screening Analysis

FIGURE 2.3: The different stages of cervical cancer [22]

Once a cervical cancer diagnosis is given, a stage is attributed to the patient. It

is determined by the size of the tumor and its spreading of it around the cervix [78].

Stages varies from 1 to 4 based on the seriousness of the tumor. Stage 1 signifies that

the tumor is located in the cervix region and did not spread. Stage 2 and 3 are identi-

fied when the tumor goes beyond the cervix and into the pelvis but is still contained.

Stage 4 is critical since it indicates that the tumor goes way beyond the cervix and

started affecting other organs. Survival rate of stage 4 cervical cancer is considered

low (Figure 2.3). According to the American cancer society, the 5 year survival rate

drops from 92% for stage 1 patients to only 18% for patients with stage 4 cervical

cancer [23]. Usually patients with stage 4 cervical cancer undergo treatments such

as radiation therapy and chemotherapy, however and as stated before, these treat-

ments have significant side effects that may be harmful. There is a scientific urge

to develop effective methods that help accelerate the drug discovery and drug test-

ing procedures to first, be able to raise the survival rate for patients with malignant

cancer and second, treat patients with at least harmless side effects on their physical

and mental states.
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2.3 2D vs 3D Cell Culture

Cell culture is an in vitro process of growing cells in an artificial environment. Cell

culture became a crucial part of the drug discovery process as animal testing is being

condemned internationally. The three Rs principle was introduced in the 1960s. It

refers to the Replacement, Reduction and Refinement for the welfare of the animals

[35]. Replacement means to establish alternative methods to animal testing. These

methods can be both abosulte replacements as having computational models and

using cell culture or relative methods as invertebrates that have lower pain sensi-

tivity. Reduction stands for finding strategies to reduce the amount of animals that

are exploited. Last but not least, Refinement indicates to develop new procedures

that are not harmful to species. 2D cell culture is widely used due to its simplicity

and low cost to maintain [45]. However, this method does not fully represent the

tumoral cells behavior. Indeed, it does not fully mimic the cell-to-cell and cell-to-

extracelular interactions that are responsible for the cell differentiation, proliferation

as well as other functions [62] [7]. Moreover, morphological changes are noticed

when the cells are transferred to the in-vitro culture. These alterations can affect

the cell structure and secretion [27]. In addition, tumorous cells in-vitro have access

to unlimited ressources such as oxygen and nutrients which is not the case in-vivo

where the availability of such ressources depends on the size of the tumor [62].

To this extent, scientists became progressively more attracted to the develop-

ment of 3D cell cultures since they believe it could give a better precision and thus

contribute in a significant progress in drug discovery. In a 3D cell culture, all the

mentionned limits such as the cell morphological and physiological changes, the

cell-to-cell and the cell-to-extracelular interactions as well as the amount of oxygen

and nutrients are resolved as it mimics the in-vivo conditions [48]. BIOMIMESYS®

Hydroscaffold is an application of 3D cell culture provided by HCS Pharma located

in Loos, France. BIOMIMESYS ensures a physiological 3D cell culture system based

on a native ECM (hyaluronic acid, collagens, adhesion proteins, or peptides). This

method combines the behavior of the solid scaffold with that of the hydrogel, even-

tually creating a relevant microenvironment for the 3D cell culture [9] in which the

cancer cells usually grow as spheroids [12]. Figure 2.4 represents two microscopic
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FIGURE 2.4: Microscopic images from 2D vs 3D cell culture

images of nuclei. The first one taken from a stack of microscopic images (image on

the left) acquired from 3D cell culture and the second one is a microscopic image

acquired from 2D cell culture. It is noticeable that it is easier to detect the nuclei

inside the image acquired from 2D cell culture then the one acquired from the 3D

cell culture. This is due to several artifacts inside the images as a consequence to the

translucent environment where the 3D cell culture is developed. It raises the need

to develop automated systems that can aid the biologists in their manual analysis.

2.4 Conclusion

Cerivcal cancer is a tumoral disease that affects women worldwide. This type of

cancer may be benign if detected at an early stage and have a survival rate of 92%.

However, it could be terminal if detected at a later stage and cancerous cells spread

beyond the cervix area. The chance of survival drops to 18%. Different cancer treat-

ments are available to help contain the tumor and try saving the patient, however the

side effects of such treatments may be harmful. This urge the scientific community

to develop new treatments that are safer and give a higher survival rate for termi-

nally ill patients. To achieve such advancements, the dug discovery process must
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be improved since it takes a significant amount of time and money to create a single

drug. Working with 3D cell cultures is very beneficial to study the effect of a cer-

tain drug on the cells since this in-vitro process mimics the in-vivo environment and

preserves the cells morphology and functions. However, the complexity that comes

with working in a 3D cell culture affects the manual observation of the biologists.

Indeed, the artifacts that are seen in the huge amount of the acquired images pre-

vent the experts from conducting their study. There is a need to develop automatic

methods based on learning processes that can help experts evaluate drugs efficiently

in a 3D culture of cancer cells. Having robust methods that can detect and segment

the cell components inside microscopic images can be a first crucial step followed by

a 3D reconstruction since we are working in a 3D cell culture. Detecting, segmenting

and reconstructing the cell components can help conduct a morphological analysis

on the changes that occur during a drug testing on cancer cells. The next chapter

will elaborate in details the available automatic methods that can achieve such tasks

and the contributions that we made to help improve the results.
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Chapter 3

Machine learning based

comparative analysis of nuclei

segmentation from 3D cell culture

microscopic images

3.1 Introduction

One of the pathological challenges through history is Cancer, a disease defined by

an abnormal growth of cells that can spread through the entire body. Cancer is the

second leading cause of death worldwide that killed approximately 10 million peo-

ple in 2020. With 300 000 new cases among children yearly, the estimation of the

annual economic cost spent on cancer in 2010 goes up to US$ 1,16 trillion [16].The

cancer drug society [18] estimated 1,9 million new diagnosed cases and 609 360 new

deaths in the United States alone. Although treatments, such as Endocrine Therapy

and Cytotoxic Chemotherapy, are available to eradicate or stop the spread of cel-

lular cancer, patients can still suffer from side effects. According to a 2019 review

on concepts to reduce the side effects of systemic cancer treatment, symptoms are

divided into grades from 1 to 4. With grade 1 signifying mild intensity and grade

4 as life threatening. These effects can have direct health impact on the skin, hair,

blood, kidneys as well as the heart, the lungs and brain. Grade 3 and 4 also suggest

paralysis, spasms and coma. Some chronic chemotherapy effects are also pointed

out such as drug resistance and infertility [66]. This highlights the need to develop
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more effective and less toxic pharmacological treatments for cervical cancer. How-

ever, drug development is expensive. The cost for the development of a single drug

can range from 161 million to 1,8 billion United States dollars [56]. According to the

Food and Drug Association (FDA) of the United States, the drug development pro-

cess typically involves five stages: early drug discovery, preclinical research, clinical

research, pre-marketing drug FDA review, and post-market drug safety monitoring

by the FDA [24]. It takes around 12 years in the United States between the start of the

preclinical tests and the drug’s market release, taking into consideration the FDA’s

drug safety approval [75]. Therefore, this is a massive amount of time and money for

an uncertain release of a medication and the consumption of these resources should

be reduced. It highlights the need to develop techniques to speed up the process

without compromising on the safety.

One reason why the process is so difficult comes from the high failure rate at the

clinical research step. Almost 2/3 of drug candidates are rejected at this step due to

toxicity in humans (20%) or lack of efficiency (30%). As described in the review of

A. Langhans et al. [48], the gap between preclinical research and clinical research

can be explained by the non-physiological conditions of in vitro tests in preclinical

research steps (early stage drug discovery). Indeed, cellular assays are usually per-

formed with 2 dimensional monolayers of cells, which is completely different from

the organization of cells in vivo, in the human body. It is now well established that

three-dimensional (3D) cell cultures better mimic the structure and the behavior of

human tissues [62] because they take into account (i) the interconnections between

cells, (ii) the 3D structure of tissues and (iii) the extracellular matrix (ECM) surround-

ing the cells.

Over the past decades, 2D cell cultures were used because of their low cost and

technical ease of use. More and more 3D cellular models are made available, based

on different cell culture systems without physical support for cells (e.g., ultra-low

attachment plate) or with support in different forms (solids scaffold and hydrogels

of different origins). In this study, we focused on BIOMIMESYS® Hydroscaffold

(HCS Pharma, Loos, France), a physiological 3D cell culture system based on native

extracellular matrix components (hyaluronic acid, collagens, adhesion proteins or

peptides). Associating the behavior of a solid scaffold and of a hydrogel, it provides
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a relevant microenvironment for 3D cell culture ([9]) in which cancer cells usually

grow as spheroids[12].

A powerful, cellular-based, drug discovery method lies in High Content Screen-

ing (HCS) [59]. HCS, also known as High Throughput Imaging, works at the cel-

lular level by quantifying the characteristics of the cellular changes among a single

cell or population of cells while going through chemical treatments, by using mi-

croscopy. These modifications are converted into data and used for analysis [50],

allowing to conclude on the effect of any treatment on the cells in terms of toxicity

and/or efficiency. These data can be extracted from pictures acquired using au-

tomated fluorescence microscopy. Fluorescence microscopy is based on a physical

phenomenon called fluorescence, i.e. the emission of light just after absorption of a

photon from an “excitation light”. Rare biological tissues have this property. There-

fore, to visualize cellular or subcellular structures, the use of fluorescent molecules

(called fluorophores or fluorochromes) which are able to interact with specific bio-

logical molecules of interest is needed. In this study, we used Hoechst fluorochrome,

adapted to observe cell nuclei, since it can go through the cell membrane and binds

strongly to adenine–thymine-rich regions in DNA [49]. However, the large num-

ber of pictures arising from automated fluorescent microscopy is time-consuming

and complex to analyze by biologists, and the interpretation can be complicated

for concluding about the effect of a treatment, which requires the aid of advanced

computational tools. The first required step is the segmentation of pictures. It aims

at locating and contouring the needed elements. Automatic Analysis proved a big

advancement in the cellular field with accurate quantification of cells features and

information [2]. Cellular Segmentation is a significant step in the cellular analy-

sis. Having a good automatic segmentation procedure, can result in a time reduc-

tive analysis system for thousands of microscopic images, thus having a better drug

analysis efficiency. Machine Learning methods showed important results in segmen-

tation with the use of different architectures but can be improved to get an accurate

representation of the studied element. Focusing on computational learning meth-

ods for drug screening on cancer cell microscopy, this comparative study for nuclei

segmentation will be based on different machine learning architectures through the

Waikato Environment for Knowledge Analysis, followed by image manipulations
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and metrics evaluations on nuclei microscopic images. These images come from a

3D cell cultures of cervical cancer cells (HeLa cell line, ATCC® CCL-2™) grown in

BIOMIMESYS® Oncology. This will demonstrate and clearly show the application,

competence and limits of machine learning methods on fluorescence microscopic

segmentation and the need to go into more complexed architectures.

3.2 State of the Art

Several studies have evaluated the performance of different machine learning tools

for the segmentation of nuclei in cervical cancer cells.

In this section, we are going to look at recent studies on cellular segmentation

analysis in microscopic images. First, we will tackle some experimentations related

to segmentation on cervical cancer microscopy to have an idea about the work done

on this specific tumor. Then, we will cite different studies based on pixel’s clas-

sification segmentation while mentioning the Fiji software and the Trainable Weka

Segmentation plugin. These industrial tools are reliable to biologists who are not

experts in artificial intelligence. Different articles also proposed comparative studies

based on machine learning and deep learning techniques. In the end, we will intro-

duce some applications of pure deep learning techniques for cellular segmentation

that will be a road path to our future work.

Different applications, aiming for cervical cancer screening, are available. Here

are two selected studies related to microscopic segmentation. The first one, is an ex-

perimentation on nucleus detection and segmentation presented with the means of

a superpixel and CNN architectures [85]. After a coarse segmentation using Otsu’s

thresholding method, Song et al. exploited the superpixel segmentation (based on

a group of pixels that shares the same characteristics). The superpixel segmentation

is well known for low contrast segmentation thus helping in reducing the bad illu-

mination and uneven staining. They also used a CNN to extract features that can

represent a cervical cancer cells (superpixel, shape, color, size, etc.). The experimen-

tation was tested on 200 women subjects. The total CNN training set was formed

from 1200 cells and 200 cells for testing represented in images of 1024x1360. It leads
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to an accuracy of 0,94 for the nucleus detection and a precision of 0,91 for the seg-

mentation. Another study presented an unsupervised approach for a segmentation

and classification of cervical cells [34]. The process was based on a thresholding

method to differentiate between the cells and the background. Then a multi-scale

hierarchical segmentation was presented to separate the region of interests in terms

of homogeneity and circularity. A binary classifier was later added to separate the

nuclei from the cytoplasm. They achieved an accuracy of 96,71%. They concluded

that, a multi-level segmentation could improve the performance of the classifiers

that work best using a KNN combined with other techniques such as SVM or a pixel

level classification. Some experimentations were performed through imaging soft-

ware analysis. A published paper by D. Sikpa et al. [69] shows automated methods

for detecting breast cancer brain metastases in an animal model. The experimen-

tation consists of 100 H&E stained microscopy images of brain sections showing

various level of brain metastases. The microscopy was done with a 40-x magnifica-

tion. The Trainable Weka Segmentation plugin in Fiji was used for the segmentation

process through a pixel’s classification. They added six segmentation classes: Nor-

mal Brain, Metastases, Ventricles, Artefact, Void, and Frame. For the training pro-

cess, the default random forest architecture was selected. A manual segmentation

was performed on the images to have a ground truth for evaluation. They discov-

ered that a coefficient greater than 0,8 was detected with the person’s correlation

coefficient while comparing the segmentation result and the ground truth. Another

article [8] published by D. Baltissen et al., compares different segmentation methods

for glioblastoma cells. The experimentation was established on 50 fluorescence mi-

croscopy images through a confocal microscope with 63-x objective lens. Nine differ-

ent segmentation methods were implemented. The best results were obtained with

two different models: the first one trained on the random forest using the WEKA

software, it gave a Dice Index of 0,914. And the second one, a deep learning method,

with the U-Net architecture that gave a Dice Index of 0,925.

Some segmentation procedures, such as the Trainable Weka Segmentation men-

tioned earlier, are based on pixel classification. A research stated a new architecture

for pixel classification. The study carried out by De Xie et al. [26] talks about nuclei
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segmentation in microscopic images using deep machine learning. This segmen-

tation method is a multi-pixel classification with a CNN architecture (that showed

interesting results in classification problems). The experimentation was conducted

on, 2000x2000, 141 images with 141 binary masks. They compared the Alex Net and

the VGGNet. with their own Multi Pixel Classification architecture. Their method

is based on enlarging the area that is being evaluated on a group of four pixels and

sum the labels of these pixels group to have a value between 0 and 4. They used

the F-score metric that gave a similarity coefficient of 0,9 for the VGG and Alex Net

and a 0,8 for the Multi-pixel classification. A similar article based on active learning

published by Wen et al. [79] shows a comparative study of different classification

architectures for nuclei segmentation. Active learning is a semi-supervised learning

where the user can provide new labels through the learning process. They worked

with the SVM, Random Forest and CNN architectures through an active learning

procedure. This experimentation was evaluated on whole slide image breast can-

cer tissues and pancreatic cancer tissue. They concluded that the CNN has shown a

better performance with higher accuracy but took more time to train. They proved

that more they added patches into the training system better was the accuracy. They

reached more than 90% with the addition of 400 patches. It is noticeable that several

researches nowadays use deep learning architectures to achieve segmentation. From

the most relevant work, an article on deep learning implementation for nuclei seg-

mentation, published by Naylor et al. [57]. They presented the results of different

deep architectures like the PangNet, the ConvNet and the FCN in nuclei segmen-

tation. Their study was based on 33 512x512 annoted HE stained histopathological

images with 2754 annoted cells. They tested the three architectures on these images.

They came up with a conclusion that, deeper networks such as the FCN and De-

convNet learned better then the Pang Net. The results proved that these kind of

architectures worked great into recognizing nuclei but still far from dealing with the

overlap issue. They used several similarity metrics for the evaluation and got an

average of 0,8 similarity coefficient with the F1 score and the Jaccard Index. Another

study realized by Fishman et al. [33] is about nuclei segmentation using of neural

networks. They evaluated the performances of three architectures: U-Net, Mask R-

CNN and Deep Cell. Their dataset was formed of 16 images with 288x288 pixels
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each from a brightfield microscopy of seven different cell lines. The study showed

that the U-Net architecture gave the best performance on the different cell lines with

an accuracy of 89 to 97% and the F1 score, evaluation metric, of 0,76 to 0,86. The

mentioned works offered different examples of learning methods and architectures

that proved an advancement in automatic segmentation techniques. The work pre-

sented in this study will be a comparative study between three machine learning

architectures, the Random Forest based on predictive trees, the Adaboost based on

Boosting method and the MLP based on Artificial Neural Network. This study will

evaluate and compare the performances of these different kind of methods through

the aid of Fiji and WEKA tools suggested by the company HCS Pharma.

3.3 Dataset, Methods and tools

Through this comparative study, different softwares have been used for this exper-

imentation. Fiji, an image analysis software and WEKA a learning tool aided in

the data collection and learning process. Different machine learning architectures

were exploited in this work to achieve an auto-segmentation. The Random Forest,

Adaboost and MLP were used to have a comparative segmentation analysis. This

comparison was evaluated later by two evaluation metrics: The Dice Coefficient and

the Jaccard Index[74]. These techniques compare two images and give a coefficient

between 0 and 1 to evaluate the similarity between them. For these experi menta-

tions, an Intel(R) Core (TM) i7-6700HQ CPU @ 2.60GHz was employed.

3.3.1 Dataset

The initial dataset is composed of nine microscopy images with 20-x magnification

divided into six images as a training set and the remaining three images as a testing

set. Three biological Experts from HCS Pharma manually segmented these images

based on their expertise to form a set of groundtruth. The six training images and

the ground truth for each were used to create our training data. We created a data

file For each training image and one of its corresponding ground truth. Each data file

is composed of pixels information and the corresponding class for each pixel (Class

1: Nuclei, class2: other).
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3.3.2 Evaluation Metrics

The Dice coefficient and Jaccard indices were used to assess the quality of the seg-

mentation in relation to the ground truth. The Dice Coefficient, also known as the

mean overlap (MO), was calculated using the following formula [74]:

MO = 2 ∑r |Sr
⋂

Tr|
∑r |Sr|+ |Tr|

(3.1)

The Jaccard index, also known as the union overlap (UO), was calculated as follows:

UO = 2∑r |Sr
⋂

Tr|
∑r |Sr

⋃
Tr|

(3.2)

For both equations, S represents the segmentation set, T is the ground truth set,

and r represents the entire region. A value of 1 indicates a perfect overlap, while 0

indicates no overlap.

3.3.3 Software

Fiji– Fiji is an open-source image analysis software based on imageJ [14]. A set of

plugins are available through this platform to achieve different tasks for image ma-

nipulations. One of these plugins is the Trainable Weka Segmentation (TWS). This

plugin is often used to train and test machine learning algorithms and to perform

image segmentation with pixel classification methods [5]. This plugin, developed

by Waikato allows a manual segmentation, the creation of data files from images by

saving pixel’s information with a labeling, the application of features for data aug-

mentation and manipulation, the training process through different WEKA based

architectures and the application of models on testing images. In this work, the

Trainable Weka Segmentation plugin was exploited to create data files, apply fea-

tures and for the testing process later on. For the training The Waikato tool, WEKA

was used.

WEKA– Waikato Environment for Knowledge Analysis known as WEKA is a ma-

chine learning tool specialized in data visualization and training [38]. Several built-

in machine learning algorithms are available for the training process. For this work,
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three architectures were used from the proposed list, The Random Forest, the Ad-

aboost and the Multi-layer Perceptron. The WEKA tool was more favorable for the

training process. It provides as outcome the training model with all the needed in-

formation about the training accuracy, the confusion matrix, time needed to train,

etc.

3.3.4 Segmentation Methods

Random Forest– The Random Forest (RF) is a machine learning architecture based

on a combination of predictive trees and considered as an efficient classification tech-

nique that works over a large dataset [11][61]. Random Forest are considered more

robust in terms of noise reduction. It is stated in the article [11] that according to

the law of large numbers, meaning the numbers of training iterations, it is unlikely

for a random forest to overfit. Random forest gives a competitive result with boost-

ing and adaptive bagging methods while conserving the training set through all the

training progress.

AdaBoost– Adaboost is a machine learning architecture based on a boosting ap-

proach that allows achieving a higher accuracy rate by combining inaccurate and

weak rules. The adaboost remains the most effective boosting algorithm that is still

used and studied nowadays [65]. Adaboost algorithm, developed by Freund and

Schapire in 1994, is based on classification techniques and operates by selecting the

best features [70]. In this work, the default adaboostM1 in the WEKA application

was used to train the dataset and create models to apply for segmentation.

MLP– The Multi-Layer Perceptron or MLP is an example of artificial neural network

(ANN). ANN attempts to develop an artificial model of the human brain. An MLP

is defined by a simple perceptron composed of input neurons and output neurons

with an addition of multiple weight layers known as hidden layers. The distinc-

tive point in an MLP is the backward propagation that, after calculating the error

by subtracting the actual output from the desired output, it projects the obtained

value backwards thus modifying the weights and improving the training perfor-

mance [60]. In this experimentation, these three algorithms were exploited through
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the WEKA training tool to study their performances for a pixel classification prob-

lem thus resulting in the creation of different segmentation models.

Majority Voting– In this research, majority voting was executed on the segmen-

tation results obtained from three models (RF, AdaBoost and MLP). To this end, a

global segmentation is generated based on the dominant label for each pixel, pre-

dicted by the three considered methods.

StarDist– StarDist [67] is a segmentation method for microscopic images based on

artificial neural networks. This method is available as a plugin on the Fiji software.

The method aims to detect cells based on their star-convex shapes. The model used

in this study was trained on a subset of the DSB 2018 nuclei segmentation challenge

dataset [15].

3.3.5 Features

While creating the data files through the Trainable Weka Segmentation plugin, sev-

eral features were selected. These features served as data augmentation for the train-

ing set thus creating different values for one pixel in the data file. These features or

manipulations are built-in the Trainable Weka Segmentation plugin in Fiji where the

user can select several ones from a list. These features are divided in categories [5]:

Edge Detectors– From the edge detectors filters we can cite the Laplacian and Sobel

filters, difference of Gaussians, Hessian matrix eigenvalues and Gabor filters. These

filters aim into detecting boundaries.

Texture Filters– These filters aim into extracting texture characteristics. The mini-

mum, maximum, median, variance and entropy are built-in available filters in the

plugin.

Noise Reduction Filters– We can cite Gaussian blur, bilateral filter, anisotropic dif-

fusion, Kuwahara and Lipschitz as noise reduction filters. These helps in localizing

the membrane.
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(A) Original Image (B) Manual labellisation

FIGURE 3.1: A manual labellisation performed for data collection that
will be used for the training process. The regions labeled in red rep-
resents the class 1 (nuclei) and the regions labeled in green represent

the class 2 (background, debris, etc.)

3.4 Experimentations

The experimentation consists of nine microscopy images with 20-x magnification di-

vided into six images as a training set and the remaining three images as a testing set.

Three biological Experts from HCS Pharma manually segmented these images based

on their expertise to form a set of groundtruth. The tool, Fiji helped in the process

of data collection and classes division and balance (Figure 3.1). This was achieved

through the Trainable Weka Segmentation that assisted in the data division into two

classes, through a manual segmentation, with the first class representing the nuclei

segmented by the expert and the second class representing regions from the remains

(background, noise, debris, etc.). As the second class has a larger representation in

the image, a program based on the Macro language insured the data balance be-

tween the two classes. The experimentation can be summarized through these steps

and is visualized through a diagram in Figure 3.2.

3.4.1 Cellular Culture and Microscopy

HeLa cells were first cultured with DMEM (Eurobio, France) supplemented with

10% (v/v) of fetal calf serum (Corning, France), 1% of non-essential amino acids

100X, 2mM L-glutamine, and 100µg/mL of penicillin or streptomycin. The cul-

tures were seeded at 25000 cells per well in the BIOMIMESYS oncology medium
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FIGURE 3.2: Diagram that represents all the experimentation process

(HCS Pharma, France). The medium was changed every two or three days. After

seven days, the cells were stained with 10µg/mL of Hoechst 33342 (Fisher Scien-

tific, France) and 2µM calcein-AM (Sigma-Aldrich, France) for 45 minutes at 37°C,

in 5% carbon dioxide (CO2). The microscopy images were acquired using an au-

tomated ImageXpress Micro Confocal microscope (Molecular Devices) in confocal

mode, with a 20-x “plan apo lambda” objective (Figure 3.3). In this study, we only

used images made from DAPI fluorochrome. The path of the light to illuminate the

samples was produced with a 377nm excitation light filter (with a width of about

50nm) and a 477nm emission light filter (with a width of about 60nm). A 409nm

dichroic mirror was used to separate the beams. The spinning disk configuration

was a “60µm pinhole” for the confocal mode. Each image had a 2048x2048 pixel

format with an x/y resolution of 0,4µm and an axial resolution of about 6,3µm. For

each site, we considered 75 pictures from z=0 (which is the bottom of the well) to

z=75µm, with a 1µm increment. Most of the training of the models was performed

at z=20µm as the images in this position had the best contrast resolution and there-

fore exhibited more objects compared to images in the other positions. However, we

then tested the models on other z planes to quantify their robustness.
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FIGURE 3.3: The principle of the operation for an ImageXpress Micro
XLS microscope

Combined Files
Algorithm/Expert Expert 1 Expert 2 Expert 3
Number of instances in each file (Training Data) 355 097 385 864 508 205
Random Forest Accuracy 99,635 99,6755 99,7954
AdaBoost accuracy 92,3663 92,6111 93,0849
MLP accuracy 91,4114 93,2598 94,3613

TABLE 3.1: The number of instances and accuracy of the models
trained on the combined files for each expert.
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3.4.2 Feature Extraction

Using the TWS, and based on the 6 training images, six files in the form of ”.arff”

(attribute-relation files format) were created for each manual segmentation done by

the three experts. Then, a combination process joined the six files into one, thus

creating a seventh data file per expert. All the files contained the pixel values from

the manually segmented regions with the matching label and the selected training

features. In total, 21 files were formed, with an average of 300000 instances and

400MB per file. The number of instances in each combined file is indicated in Ta-

ble 3.1. While creating the data files through the TWS plugin, several features were

selected. These features served as pixel’s transformation for the training dataset,

thus creating different values for one pixel in the data file. These features or manip-

ulations are built within the Fiji TWS plugins and can be easily selected from a list

and divided into three categories, edge detectors, texture filters, and noise reduc-

tion. Edge detectors are designed to detect boundaries and include Laplacian and

Sobel filters and the difference of Gaussians, Hessian matrix eigenvalues, and Ga-

bor filters. Texture filters are used to extract texture characteristics. The minimum,

maximum, median, variance, and entropy are built-in texture filters that can be ex-

tracted through the TWS plugin. Noise reduction filters, including Gaussian blur,

bilateral filter, anisotropic diffusion, Kuwahara, and Lipschitz help to localize the

nucleic membrane.

3.4.3 Training data

Through the WEKA environment, the data obtained earlier were exploited for mod-

els’ training. Each data file was trained by means of three classifiers. The classifiers

were trained to learn based on the K-folds cross validation: a method used to divide

the data into training and validation sets. K cross-validation folds mean that the

data is divided into K groups of training and validation, and each group is trained

individually. The RF (Random Forest) and Adaboost were trained using a 10 cross-

validation folds and the MLP was trained using 3. These values were considered

based on the default parameters in WEKA. The number of instances in each file and

the performance of each model are shown in Table 3.1.
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Combined Files
Algorithm/Expert Global Expert
Number of instances 393 728
Random Forest accuracy 99,653
Random forest training time 1348,7 seconds
AdaBoost accuracy 92,131
AdaBoost training time 542,74 seconds
MLP accuracy 92,575
MLP training time 1897,4 seconds

TABLE 3.2: Performances of the 3 classifiers on the global expert com-
bined data file.

3.4.4 Testing data

The models were tested on the image located at z = 20 from the 3 stacks allocated

for the test phase, thus creating a probability map for each. The binarization process

was then applied to the probability maps. This simplified the manipulation and

interpretation of the images later on. It was visually clear that the combined training

data RF classifier provided a better segmentation result for the three experts.

3.4.5 Image Processing

Image Binarization– Image binarization is used to transform a colored image into a

black and white image. More specifically, each pixel is assigned a value of 0 or 255

based on a threshold value of 127.

Global Ground Truth– The combination of the ground truth images developed by

the three experts was used to create global ground truth for each of the nine orig-

inal images. The same data acquisition process was then applied using these new

images to create a new combined data file containing 393728 sets to train on. Then,

the same data training process was performed on this newly created combined data

file (Sections Feature extraction, Training data) (Table 3.2). Eventually, three new

models were created through the learning of the defined architectures. Then, the

same process of testing was applied using these new models. Figure 3.4 shows the

original image, the global ground truth, and the probability maps for each classifier.
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(A) Original Image

(B) Ground-Truth (C) RF Segmentation

(D) Adaboost Segmentation (E) MLP Segmentation

FIGURE 3.4: Segmentation results with three different classifiers
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3.4.6 Multiple Z-Stack Testing

Each acquired image from the HCS Pharma is a stack of 2D images that can be re-

constructed as a 3D image. Each stack is composed of 75 images. Each picture was

acquired at a difference of 1µm above the bottom of the well from the plate contain-

ing 96 wells. The training and testing phases were done on the twentieth slice (at

20µm above the bottom of the well). The image at this position is not blurry, and

numerous nuclei are present, hence facilitating the training of the algorithm. The

models created by the learning performed on the combined files formed with the

global ground truth were also tested on the 5th, 30th, and 60th slice positions. The

30th slice closely resembled the 20th slice, while the 5th and the 60th slices were blur-

rier and had fewer nuclei. The segmentations were visually analyzed to evaluate the

performances at different levels

3.4.7 External Validation

The described process was tested on two different datasets of four images, each ob-

tained from the HCS Pharma. The first one (referred to as Dataset A) was taken from

another well of the same cellular culture plate. This dataset had the same biologi-

cal and microscopic conditions as the original dataset. The second one (referred to

as Dataset B) was taken from the same well as the original with the same biologi-

cal conditions but with a microscopic magnification of 10-x, and hence, a different

depth level. For this analysis, the second slice with dimensions of 1024x1024 was

taken. The models trained with the combined data file on the global ground truth

with majority voting of the models’ results were used to segment the cases.

3.5 Results

3.5.1 Training Performance Accuracy

The training process showed an excellent learning accuracy higher than 90% for

the three models. The RF-based classifier exhibited the best performance with an

average accuracy higher than 99%, followed by the MLP with 93% and AdaBoost

with 92,68%. However, the AdaBoost algorithm had the shortest training time with
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(A) Majority Voting result (B) StarDist test result

FIGURE 3.5: Segmentations results with two different methods

an average of 613,5 seconds/fold, followed by the RF with an average of 1308 sec-

onds/fold and the MLP with an average of 1611.6 seconds/ fold. The training per-

formed on the combined file created with the global ground truth exhibited similar

accuracies for the three models, i.e., 99%, 92,5%, and 92% for the RF, MLP, and Ad-

aBoost algorithms, respectively. However, the test experiments were more interest-

ing in terms of results.

3.5.2 Performance of the Three Algorithms in Relation to the Global Ground

Truth

The similarity rates obtained from five different methods (RF, AdaBoost, MLP, Ma-

jority Voting and StarDist) are summarized in Table 3.3. The models used to achieve

these similarity rates are the ones trained on the global ground truth. MLP exhib-

ited the highest Dice coefficient (0,805), followed by AdaBoost (0,782) and RF (0,771).

Similarly, MLP had the highest Jaccard index (0,675), followed by AdaBoost (0,642)

and RF (0,627). After applying the majority voting technique, the combined models

trained on the global ground truth achieved the highest performance with a Dice

coefficient of 0,807 and a Jaccard index of 0,676. The evaluation metrics applied on

the StarDist resulting image and the global ground truth provided a Dice coefficient

of 0,615 and a Jaccard Index of 0,444 (Figure 3.5). A true positive, false positive,

and false negative rates representation is illustrated for each segmentation result in

Figure 3.6.
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Methods RF Adaboost MLP Majority Voting StarDist
Dice Coefficient 0,771 0,782 0,805 0,807 0,615
Jaccard Index 0,627 0,642 0,675 0,676 0,444

TABLE 3.3: Segmentation performance in terms of similarity metrics
obtained by the five ML methods.

(A) RF

(B) Adaboost (C) MLP

(D) Majority Voting (E) StarDist

FIGURE 3.6: Visual representation of the positive and negative rates
on the segmentation results. The TP (True Positive), FP (False Posi-
tive) and FN (False Negative) are labeled in red, green and blue, re-

spectively.
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3.5.3 Z-stack Evaluation

For the Z-stack evaluation, the auto-segmentation based on the majority voting of

the three classifiers was applied as it provided the best performance. A visual anal-

ysis of the Z-stack evaluation in Figure 3.7 shows a good segmentation on the 30th

slice and an inaccurate segmentation on the 5th and the 60th slices.

3.5.4 Multi-Datasets Testing

The results regarding the multi-datasets majority voting in relation to the ground

truth provided by an HCS Pharma expert are illustrated in Figure 3.8. The image

segmentation on dataset A provided a Dice coefficient of 0,7059 and a Jaccard index

of 0,5455, while the image segmentation on dataset B provided a Dice coefficient of

0,4781 and a Jaccard index of 0,3141.

3.5.5 Morphological Analysis

Morphological analysis was performed using the particle analyzer plugin in Fiji. We

set the parameter that took into consideration the number of pixels needed to form

a certain nucleus. This parameter was empirically set to 100 pixels to detect all the

possible nuclei.

3.6 Discussion and challenges

As shown in Table 3.1, the random forest classifier achieved the best accuracy per-

formance with a precision higher than 99%. However, in the testing phase the MLP

gave the best similarity evaluation with the global ground truth process with a Dice

Coefficient of 0,8062 and a Jaccard Index of 0,6753. Through a visual analysis in Fig-

ure 4, it is clear that the models succeeded in removing almost all noise and debris

from the image but still need improvement for detecting and separating overlapped

area. With the Majority voting technique for the ground-truth and the three seg-

mentation outputs, the best result gave a slightly better similarity value than the

MLP with a Dice Coefficient of 0,8065 and a Jaccard Index of 0,6758. Visually in Fig-

ure 3.5a , some nuclei can be distinguished on the image; this indicates the decrease
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(A) 5th slice of the stack (B) Segmentation result

(C) 30th slice of the stack (D) Segmentation result

(E) 60th slice of the stack (F) Segmentation result

FIGURE 3.7: images from the same z-stack at different positions with
their corresponding majority voting segmentation results.
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(A) Dataset A: Ground-truth (B) Dataset A: Segmentation result

(C) Dataset B: Ground-truth (D) Dataset B: Segmentation result

FIGURE 3.8: Majority voting segmentation results with the cor-
responding ground truth of two images taken from two different
datasets: Dataset A that provides the same condition as the origi-
nal dataset and Dataset B that represents the same set as the original

dataset with microscopic magnification of 10x
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of overlapping. Using StarDirst plugin, a different auto-segmentation resulted in

a Dice Coefficient of 0,6149 and a Jaccard Index of 0,4439 but it is clear visually in

Figure 3.5b, that this segmentation method succeeded in handling the overlap is-

sue but did not remove the noise and debris that are present in the image. It is

important to understand and to measure the difference between positive and neg-

ative rates in our segmentation results. False Negative means that the nucleus is

labelled by experts but not recognized by algorithm. It is very problematic because,

the nucleus truly exists. False Positive means that the algorithm finds a nucleus,

but experts didn’t see it. As expert’s annotation is subjective, this type of error is

less important in our case. Figure 3.6 represents these rates on the obtained segmen-

tation results. On the Z-Stack testing, the visual interpretation clearly favored the

segmentation performed on the 30th slice while the segmentation performance was

poorly represented on the other two slices. This is due to the big resemblance of the

30th and 20th slices in terms of nuclei and blurriness representation. It is difficult to

estimate the sensibility of this method to the blurriness of object. This blurriness is

linked to the depth of field of used objective which is around 5µm in confocal mode

(given by the manufacturer) and to the optical absorption and diffusion capacity of

the translucent medium (unknow). Visually the similarity between the 20th and 30th

slices indicates that the second cause of blurriness is much less important than the

first. Thus, it is logical that the segmentation on the 30th slice gave a better result

than on the 5th and 60th slices. To obtain a better interpretation of the process, the

system was applied on different other datasets. The results obtained on the Dataset

A were better than the ones obtained on the Dataset B. This is due to the fact of the

huge presence of nuclei in the images in Dataset B, which was difficult to the trained

models to predict. With a dice coefficient of 0,7059 and a Jaccard Index of 0,5455,

the auto-segmentation performed on the Dataset A was better, since it presents the

same conditions as the trained-on images. Although, this experimentation provided

relevant and robust results in auto-segmentation, some improvements can be ap-

plied to attain a better performance thus achieving a better segmentation result. In

Table 3.4, the conversion results from pixels to “nucleus” are presented for several

images using the methods described above. We considered the number of pixels

from the Global Ground Truth as the “reference” as it combines all nuclei labeled by
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Image Number of Nuclei found
Global Ground Truth 131
Majority Voting 120
MLP-Global Expert 115
STARDIST 226

TABLE 3.4: The morphological study table representing the number
of nuclei in each of the following segmentation output.

experts. The global expert majority voting based on the three classifiers and “MLP-

Global Expert” achieved results similar to the reference gold standard but failed to

identify some of the nuclei, leading to a high false-negative rate. On the other hand,

the StarDist (with or without watershed) identified more nuclei than the reference

gold standard as this method tends to overestimate the number of small and bright

objects (debris), leading to a higher false-positive rate. However, it is important to

note that the labeling of nuclei by experts can be subjective. This could potentially

influence the accuracy of the ground truth and potentially limit the results of our

research findings.

3.7 Conclusion

In this experimentation, a comparison between three different machine-learning ar-

chitectures was proposed, to evaluate the segmentation performance on microscopic

images. The study confirmed the advancement and the relevance of the presented

architectures that became more valiant with the application of a post processing

technique that combines different images. These architectures proved a decent result

in terms of noise reduction and classes’ classification (low ratio of false negative ob-

jects without a critical augmentation of false positive) but still needs improvement to

handle the overlapping issue between the nuclei. The result obtained with StarDist

shows that this deep learning plugin succeeded in the overlapping issue but failed

to remove all debris and non-nuclei organisms (very high rate of false positive). A

different problem was also presented in this study, which is the Z-Stack segmenta-

tion. Results proved that similar or close slices could achieve the same performance

in terms of segmentation. However, as it goes up or down into the different 2D
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layers, the performance starts to lower in terms of segmentation. The same inter-

pretation goes to the multi-dataset testing, with a decent segmentation performance

on similar datasets that have the same conditions. However, this performance re-

duces in efficiency with different conditions as microscopic condition in this case. In

a HCS 3D screening with thousands of 3D images, this limitation implies to increase

the number of labelled images by experts (at several Z height and for several close

conditions of acquisition). The time for annotation also increases and, as we have to

train models on much more instances, the training time dramatically grows. It sug-

gests that this method fits very well with homogeneous 3D screening with a small

depth of work compared to the blurriness capacity of the medium. In a future work,

an investigation will be conducted on these problems. First, regarding the improve-

ment of nuclei separation, some combination processes can group the two results

obtained thus maybe creating a better segmentation that can solve both issues. On

a second hand, a deep learning architecture can be a path to overcome the Z-stack

problem and the multi-dataset problem by creating a robust architecture that takes

into consideration the different layers properties.
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Chapter 4

A deep learning-based framework

for the 3D reconstruction of nuclei

4.1 Introduction

As discussed in the previous chapters, cell culture is a fundamental process in drug

discovery that allows the experimentation of new drugs and the analysis of the ef-

fect of chemical substances on the cellular structure. 2D cell culture is widely known

and used in scientific breakthroughs due to its simplicity and low-cost [44]. How-

ever, this technique does not fully represent the physiological characteristics of the

cells leading to a limited biological interpretation of the effectiveness of a candidate

drug [37]. This sparked the urge to introduce 3D cell cultures [13]. Indeed, this

technique has shown its ability to ensure cell to cell communication and interaction

which permit to better mimic the tissue structure as well as function [37]. With the

biological progress in 3D cell culture, computer vision for 3D microscopy analysis

became an essential task to meet the needs of biologists. Neverthless, the translucent

environment of this type of culture results in the acquisition of microscopic images

with a heavy blurriness amount leading to a high complexity level. The acquired mi-

croscopic images are affected by several artefacts impacting the visual appearance

of the cell environment objects. Figure 4.1 illustrates the degraded visual quality of

such type of images (bright-field images) while emphasizing blurred objects namely

spheroids (see on the left the first slice of the z-stack images). The figure shows also

the complexity of distinguishing the nuclei due to their confusing contours (see on

the right, the nuclei of one spheroid). In addition, the 3D information generated by
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FIGURE 4.1: A z-stack images of 3D culture HeLa cells showing
blurred spheroids on the left and a focus on the nuclei of one spheroid

with confusing contours on the right.

the depth propagation along the z-axis of the confocal microscopy remains insuf-

cient to guarantee a faithful representation of the whole environment notably with

regards to occluded objects (spheroids hidden by other spheroids located at the same

2D position with different zdepth). All these observations make the automatic anal-

ysis of these images a great challenge and leads to the inability of visually detecting

the nuclei inside these images, thus making it difficult to do a manual segmentation.

Here comes the need to develop an approach to help overcome these challenges.

As discussed before, there is a need to develop automatic segmentation tools

as nuclei segmentation is a fundemental step for the 3D reconstruction [41]. Deep

learning architectures such as U-Net could be exploited to address the segmentation

task [15] [52]. Indeed, These algorithms are well known in the field of medical imag-

ing segmentation and have demonstrated a high efficiency [63]. However, this type

of approach is well adapted for analyzing: 1) data caracterized by a single level of

semantic information (for instance a population of cells or a population of nuclei)

which is not the case of our 3D culture-based images. More precisely, the images

contain two levels of semantic information, namely a population of spheroids, each

of which representing a population of nuclei. 2) a population of separated objects

with regular shapes which is also not the case of our 3D culture-based images as
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highlighted in Figure 4.1. This also raises the problem of preparing a training dataset

with manual segmentations of all the nuclei.

To overcome these limits, we introduce a hierarchical deep learning framework

for the nuclei 3D reconstruction from a stack of microscopic images. The framework

goes through three successive stages namely: at the slice level of the stack i) the

spheroid detection and ii) their nuclei segmentation then at the stack level iii) nuclei

3D reconstruction. In fact, our observation on the multi-level semantic information

that characterize our data has motivated our strategy of hierarchical analysis where

spheroids are first detected and then their nuclei are segmented from each slice in

the stack. We precise that we chose to detect spheroids instead of segmenting them

because they represent an agregation of small objects (nuclei) without a continuous

contour. To deal with the confusing contours of the nuclei, we propose to segment

only the most visible nuclei having explicit contours. Indeed, we make the assump-

tion that the fact to detect all the spheroids, to partially segment their nuclei from

each slice in the stack and then apply a 3D reconstruction on the segmented nu-

clei should permit a relevant quantitative data analysis. More specifically, having

an assisting tool for quantifying the number of spheroids and measuring their sizes

offers to the biologists a first level of interpreting the effectiveness of a drug. Further-

more, the identification of some nuclei inside each spheroid will offer a second level

of analysis with respect to their morphology. To demonstrate the efficiency of our

framework, we prepared a dataset of bright-field microscopic images acquired from

in-vitro 3D culture of HeLa cells (cervical cancer cells cultured in our laboratory).

The images have been manually labeled by experts for both tasks namely spheroids

detection and nuclei segmentation. It is worth mentioning that the partial manual

segmentation of nuclei still allowed to train a segmentation model on a weakly-

labeled dataset. The conducted experiments on our dataset shows the promising

results of our framework notably outperforming direct nuclei segmentation meth-

ods. Our dataset and source code will be made available upon request.
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4.2 State of the Art

Over the years, various studies aimed to reach spectacular performances in 2D and

3D nuclei segmentation with the means of handcrafted or deep learning methods

[41]. Nevethless, working with 2D nuclear microscopy images is widely common

due to the simplicity and availability of the data. So as as raised in [41], countless

approaches were proposed to answer to this problematic. In this context, the pa-

per of J. C. Caicedo et al. is based on a 2018 competition known as the 2018 Data

Science Bowl contest [15]. The objective was to build a segmentation method that

can be applied to any 2D light microscopy image of stained nuclei. It revealed the

high interest shown by the scientific community on this task. Indeed, as indicated in

[15], the contest has attracted 3,891 teams worldwide challenged on a dataset of 841

2D images containing 37,333 nuclei manually annotated. The evaluation protocol

established in the frame of this contest has shown that the best performing solution

was based on a variant of the U-Net deep learning architecture developped by A.

Buslaev et al. This latter result has motivated the community to pursue the efforts

on the development of new variants of U-Net architecture such as Cellpose [72] and

StarDist [67]. For example, cellpose is a generalized algorithm for cell segmentation

where the training dataset consisted of fluorescent-labelled proteins images, bright-

field cells microscopy images, images of membrane labeled cells, images from other

types of microscopy and non-microscopic images such as fruit, rocks and jellyfish.

The training architecture was based on the U-net model. However, these methods

are not adapted to perform an efficient nuclei segmentation from 3D culture-based

images in reason of their strong hypothesis with regard to the analyzed patterns.

More specifically, they are designed and trained to segment a population of patterns

sharing all the same shape (a repetetive shape) and having explicit contours.

With that being said, some studies were adapted to 3D stack images acquired

from 3D cell culture. Błażej et al. [64] have proposed a 3D reconstruction method of

the nuclei surface from a z-stack images. To this end, they adopted a 2D image anal-

ysis approach that aims to delimit the contours of the nuclei from one image slice

and to track their continuity over the stack to reconstruct the final surface. For the

contour delimitation (nuclei segmentation) they exploited hand crafted geometric
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features that permit to generate a set of boundary points. As raised by the authors,

the proposed method performs well for nuclei with convex shapes and with the as-

sumption that for each reconstructed 3D nucleus object there exist at least one 2D

slice where the considered object is well separated. Wu et al. [82] proposed a deep

learning method to detect and quantify the 3D nuclei centers from 3D fluorescence

microscopic images. They based their calculations on the estimation of 2D centroids

of these objects from 2D slices. The authors raised that the performance of their

detection method is affected by irregular forms such as nuclei with non ellipsoidal

shapes or when it is exploited in an image with a high-density distribution of nuclei.

Maylaa et al. [55], proposed a comparative study of several hand crafted machine

learning methods for the segmentation of nuclei from a z-stack image acquired from

3D cell culture of cervical cancer cells. For this purpose, they trained several classi-

fiers that allow to identify nuclei objects pixels from one slice image and reconstruct

final objects. As raised by the authors, although the trained classifiers succeeded

to detect the nuclei pixels they failed to delimit the nuclei contours resulting in a

blob-like objects. The obtained results in the afformentioned works on 3D culture

cells show that nuclei segmentation and reconstruction tasks are still challenging

and require the development of new efficient methods. This observation has been

also confirmed in the recent survey [41]. Moreover, the survey highlighted also the

lack of public datasets as well as manual annotations.

Regarding spheroids detection from 3D cell culture images, recently Grexa et

al. [36] proposed rather to segment the spheroids by exploiting several techniques

namely classical ones (Otsu threshold and watershed techniques) and deep learning

ones (U-Net and R-CNN models). Neverthless as raised by the authors the delimi-

tation of the spheroids contours remains challenging specifically in the case of close

or adjacent spheroids. To the best of our knowledge, no work has been proposed in

the frame of 3D cell culture on the detection of spheroids issued from the growth of

cancer cells [13]. However, in the field of computer vision, object detection is a well

established axis. Indeed, several deep learning based architectures have been pro-

posed to address this task such as the YOLOv series [58] and detection transformers

[19].
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FIGURE 4.2: Our microscopic image acquisition system.

4.3 Materials and Methods

4.3.1 Dataset

Image generation – To generate the image dataset, we first prepared in our labora-

tory 3D cultures of HeLa cells (cervical cancer cells) following a standard cell prolif-

eration protocol based on BIOMIMESYS technology [76]. Indeed, cervical cancer is

currently ranked at the top 4 worldwide cancers within women [80]. For the micro-

scopic image acquisition, we used the ImageXpress system from molecular device

company illustrated in Figure 4.2. For this purpose, the microscope confocal magni-

fication has been set to 20-x. In total, 600 z-stack (z=0 to z=50µm) bright-field images

with a resolution of 2048 x 2048 pixels have been acquired from a 24-well plate.

Dataset organization – Due to the high amount of generated images (30 000 im-

ages), the manual labelling process required to build our training and validation

sets for both spheroids detection and nuclei segmentation rapidly became a tedious

task for the experts. For this reason, we considered only a subset of z-stack images
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namely 50 stacks for the detection and among them 29 stacks for the segmentation.

The remaining stacks have been kept for qualitative tests. To ensure a good general-

ization during the training process of our models, the selected stacks for the labelling

have been randomly picked from several wells. Furthermore, from each stack, the

experts have labeled one slice image that they have selected along the z-depth ac-

cording to their own visual perception. More specifically, they have been requested

to select the most informative slice in term of spheroid objects for the detection and

the nuclei for the segmentation. Following these steps, we created two datasets:

1) a spheroid dataset composed of 50 labeled images with 854 bounding boxes of

spheroids. The set has been split into 40 images for training and 10 images for val-

idation. 2) a nuclei dataset composed of 326 spheroid patches (issued from the 29

images) with 1996 delineated nuclei. In this latter case, the set has been split into

249 patches for training and 77 patches for validation. We precise that we made sure

that the training patches and validation patches do not come from the same slices.

Additionnaly, only separated nuclei with explicit contours have been delineated by

the experts.

4.3.2 Methods

Workflow process – As illustrated in Figure 4.3, our framework takes in input a stack

of images (Figure 4.3(A)) for which a set of spheroids are detected at the slice level

(see traced bounding boxes in Figure 4.3(B)) based on a deep learning model. Each

detected spheroid is then cropped and placed into the center of a black background

square patch of 512 x 512 pixels (see Figure 4.3(C)). The choice of this latter resolu-

tion has been established empirically based on the largest width and height of the

spheroids of our dataset. Each spheroid patch is then passed into our deep learning

segmentation model which generates a binary mask of identified nuclei (see Fig-

ure 4.3(D)). Each binary mask is denoised by removing tiny surfaces according to an

empirical threshold. A global binary mask (see Figure 4.3(E)) of the original input

image is then generated based on the set of previous masks as well as the spheroid

bounding boxes. The resulting spheroid bounding boxes and their nuclei delimited

by contours are visualized in Figure 4.3(F). The 3D surface of each segmented nuclei

over the stack is then reconstructed as shown in Figure 4.3(G).
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FIGURE 4.3: Workflow process of our hierarchical deep learning
framework for nuclei 3D reconstruction.

Deep learning based spheroids detection model – To train our detection model we

considered two types of deep architectures namely YOLOv5x [43] [86] and DETR-

Resnet50. [19]. Indeed both of these recent architectures have demonstrated a high

efficiency over several datasets such as COCO [51] and Pascal [31]. We used the

Adam optimizer [46] for both architectures which is the recommended one in the

referenced articles. We also used the recommended loss functions namely IOU [74]

and hungarian [71] for YOLOv5x and DETR-Resnet50 respectively. The two archi-

tectures have been trained following a transfer learning strategy. More specifically,

they have been pretrained on the COCO dataset and then trained and validated on

our spheroid image dataset producing two detection models.

Deep learning based nuclei segmentation model – To train our segmentation model

we considered the U-Net deep architecture [63]. Indeed, this architecture is widely

exploited in the field of medical image segmentation [68]. In our case, we cus-

tomized the architecture by replacing its orginal CNN backbone by a VGG19 [83]

[53] one which offers a good tradeoff between the architecture depth and its learn-

ing capacity. The model has been trained and validated on our nuclei dataset using

Adam optimizer [46] and Jaccard index loss function which is the complement of

IOU metric [29].
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FIGURE 4.4: 3D stack reconstruction pipeline

Unsupervised learning based nuclei 3D reconstruction model – Our built model goes

through three main steps (See Figure 4.4) . First, it takes in input the stack of binary

masks representing all segmented nuclei and convert it into a 3D point cloud rep-

resentation. Then, a density-based spatial clustering technique (DBSCAN) [30] is

applied in order to identify clusters of 3D points that represent separated nuclei. Fi-

nally, the resulting clusters are then used to reconstruct the underlying surfaces of

the nuclei using the Delaunay triangulation technique [10].

Evaluation metrics – To evaluate the performance of our detection and segmen-

tation models we adopted standard metrics namely the Precision (Prec), Recall (Rec)

and Average Precision (AP) defined as follow:

Prec =
TP

TP + FP
(4.1)

Rec =
TP

TP + FN
(4.2)

AP =
TP

TP + FP + FN
(4.3)

where TP, FP and FN correspond to True Positive, False Positive and False Negative

objects. In the case of spheroid objects TP/FP/FN rates are calculated based on an

IOU (intersection over union) metric between ground-truth spheroids (i.e. manual

annotations of bounding boxes made by the experts) and predicted ones according

to several thersholds set in the range [0,5 to 0,9]. The same calculation methodology

is applied for estimating the TP/FP/FN rates of nuclei objects. In this latter case, the

ground-truth segmentation of nuclei corresponds to binary masks of these objects



58 Chapter 4. A deep learning-based framework for the 3D reconstruction of nuclei

issued from the manual delineation of their contours by the experts. For the 3D

reconstruction quality evaluation, we limit our experiments in this study on a visual

analysis of the shape and the volume of the generated nuclei.

4.4 Experimental study

To evaluate the performance of our framework, we organized our experimental

study into 4 sections: the first section is dedicated to the results obtained by our

detection models, the second concerns the segmentation model, the third is related

to a performance comparison with the direct nuclei segmentation methods from the

state of the art and the last section presents some qualitative results.

4.4.1 Spheroids detection performance

Figure 4.5 shows the AP (Average Precision) curves of the two detection models

namely YOLOv5x and DETR-Resnet50 obtained on the validation image set (10 im-

ages). One can notice that the YOLOv5x has reached the highest performance with

notably an AP of 0,848 at an IOU thresholod of 0,5. Nevethless, the DETR model

reached also competitive performance. To further improve the performance of the

best model namely YOLO we trained it on augmented dataset. More specifically,

based on the original training set (40 images) we generated 3 augmented sets: 1)

spatial-based augmented set (240 images), 2) texture-based augmented set (200 im-

ages) and 3) combined augmented set (400 images). For the spatial augmentation,

we applied 3 rotations (90, 180 and 270 degrees) and 2 flips (horizontal and verti-

cal). For the texture augmentation, we applied 2 levels of contrast and brightness

variations. The combined augmentation corresponds to the merge of all the affor-

mentioned augmentations. Figure 4.6 shows the obtained AP curves on the valida-

tion set for each augmentation scenario together with the original train set (without

augmentation). The figure shows that the combined augmentation has permitted to

gain 4,4% more in term of AP reaching a score of 0,892 at IOU threshold equal to 0,5.

Table 4.1 sumarizes for this latter scenario the TP/FP/FN rates as well as Prec and

Rec metrics calculated on the basis of an IOU threshold set to 0,5. The table shows

the high performance of the trained detection model.
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FIGURE 4.5: Performance of the spheroids detection models obtained
on the validation set.

FIGURE 4.6: Performance of four YOLOv5x-based spheroid detection
models obtained on the validation set. The models are trained follow-

ing four scenarios of data augmentation.

TP FP FN Prec Rec
157 012 007 0,929 0,957

TABLE 4.1: Performance of the YOLOv5x-based spheroids detection
model obtained on the validation set with IOU@0,5. Model trained on

the combined augmented set (400 images).
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Augmentation Prec Rec AP
None 0,535 0,616 0,401
Texture 0,649 0,369 0,307
Spatial 0,594 0,723 0,484
Combined 0,620 0,608 0,443

TABLE 4.2: Performance of nuclei segmentation models obtained on
the validation set of spheroid patches with IOU@0,5.

4.4.2 Nuclei segmentation performance

Similarly to the detection model, we have trained our segmentation model on 4

training sets including the original training set (249 patches) and 3 augmented sets

following the same strategies indicated in the previous section, i.e. spatial (1494

patches), texture (1245 patches) and combined (2490 patches) augmentations. Ta-

ble 4.2 summarizes the obtained performance by our models on the validation set

(77 patches) for each training scenario and with an IOU threshold set to 0,5. The

table shows that the highest performance are obtained by the model trained on the

spatial-based augmentation set. The model has reached a Rec score of 0,723 indicat-

ing that a weak number of ground-truth nuclei have been missed by it. However,

the Prec score of the model is low indicating the high number of detected FP nuclei.

In fact, after visually analyzing these FP by the experts it was found that several ob-

jects among them are corresponding to true nuclei. Figure 4.7 highlights this obser-

vation through a compartive example between a ground-truth nuclei segmentation

vs. predicted one on the same spheroid patch. Hence, the nuclei ground-truth of the

validation set has been updated by adding correctly predicted nuclei by our model.

Following this update, the number of ground-truth nuclei has increased from 301 to

519. In addition, the Prec and the AP have increased to 0,911 and 0,760 respectively.

4.4.3 Segmentation performance comparison: our framework vs. state of

the art direct segmentation methods

We considered two methods from the state of the art: Cellpose [72] and StarDist [67].

The Cellpose is a generalized segmentation method that is designed and trained

to efficiently segment a population of objects with repetitive shapes whatever their

natures (cells, neurons, etc.) and their geometric forms. The StarDist is a nuclei

segmentation method that aims to delimit contours of objects (nuclei cells) having
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(A) (B)

FIGURE 4.7: Manually labeled nuclei (a) vs Predicted nuclei (b).

FIGURE 4.8: Segmentation performance comparison between our
framework and state of the art methods obtained on the validation

set.

a convex shape. Both of the methods are built on a U-Net architecture. To evaluate

these two methods on our dataset: i) The StarDist model pretrained on the Bowl 2018

nuclei dataset has been fine-tuned on the slice images of our training set. To this end,

ground-truth global masks have been generated from shperoid patches. ii) The Cell-

pose method has not been trained since it offers a generalized nuclei segmentation

model trained on several combined microscopy datasets including the Bowl 2018

nuclei dataset. However, the model has been parametrized by setting up its nuclei

diameter option according to our dataset nuclei. The two models have been tested

on our updated nuclei validation set (519 nuclei). In addition, we trained a U-Net
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(A) Original image (B) Ground-truth

(C) Our framework (D) U-Net-VGG19

(E) StarDist (F) Cellpose

FIGURE 4.9: Qualitative results of segmentation obtained by our
framework and state of the art methods.

with a VGG19 backbone directly on the slice images and validated it on the same set

(519 nuclei). Figure 4.8 shows the AP curves of the 3 models compared to the AP

curve of our framework. One may observe that our framework outperformed the

three methods. More specifically, it has reached an AP of 0,76 at an IOU set to 0,5.

We can observe also that the StarDist model has the lowest AP (0,174) although it has

been trained (fine-tuned) on our nuclei training set. This result was expected due to

the unadapted criterion to our data on which the architecture was designed namely

the convexity of the nuclei shape. The Cellpose reached a better AP (0,295) than

StarDist although it has been tested directly on the validation set without training.

However its score remains low in comparison with our framework showing again

the diffculty of segmenting the nuclei of our data by exploiting a direct segmenta-

tion approach. Finally, this latter observation is confirmed with the U-Net-VGG19

model that has been trained on the slice images and reached an AP of 0,509. These

results demonstrate the contribution of our analysis strategy which first detect the

spheroids and then segment their nuclei. Moreover, as illustrated in Figure 4.9 our

strategy permits to cover all the spheroids and thus detect nuclei in each of them

which is not guaranteed with the direct segmentation methods.



4.4. Experimental study 63

(A) z=2 (B) z=12

(C) z=26 (D) z=48

FIGURE 4.10: Qualitative result obtained by our framework on a
blind stack (not exploited in the training and validation sets) along

several z-depth.

4.4.4 Qualitative results

Generalization of detection and segmentation models – To analyze the generaliza-

tion potential of our framework as well as its z-depth sensitivity, we have tested it on

several blind z-stacks (stacks that haven’t been exploited in the training/validation

sets). Figure 4.10 illustrates some qualitative results obtained on one z-stack with z=

3, 12, 26 and 48. One can observe that our framework has succeeded to detect almost

all the spheroids and segment some of their nuclei whatever the slice depth. We also

observe that the framework offers a good robustness against noise present in the

slices. Indeed, all the identified objects either from the detection model or from the

segmentation model are relevant objects.

3D Reconstruction – In Figure 4.11(A) we show the result of our reconstruction

model on a blind stack (not used in the training and validation process). In order
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FIGURE 4.11: Comparison between two 3D reconstruction mesh re-
sults formed with two different clustering methods (DBSCAN and

MSC) with the Delaunay triangulation

to analyse the impact of the clustering technique on the resulting reconstruction, we

have replaced DBSCAN by the Mean Shift Clustering (MSC) [84]. The reconstruction

results obtained on the same blind stack is shown in Figure 4.11(B). One can notice

that from a global point of view the reconstruction model is able to generate surfaces

of several objects whatever is the exploited clustering technique. Nevertheless, as

illustrated in the Figure, a special focus on a small area of the 3D view permits to

highlight the efficiency of the DBSCAN compared to the MSC. More specifically, we

can observe that the 3D nuclei surfaces generated from MSC are not well separated,

are cracked, and include noise. To understand the reasons of this result, we have

investigated the correlation between the identified clusters and the binary masks

of the segmented nuclei. Figure 4.12 illustrates an example of this correlation on a

small patch extracted from one slice image. One may observe that, contrary to the

MSC, the DBSCAN is able to correctly identify the nuclei objects since each one of

them is represented by one separated cluster.
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(A) MSC (B) DBSCAN

FIGURE 4.12: MSC vs DBSCAN clustering results

4.5 Conclusion

In this study, we have presented a hierarchical deep learning framework for the

nuclei 3D reconstruction. For this purpose we prepared a dataset of bright-field

microscopic images composed of 854 manually anotated spheroids and 1996 delin-

eated nuclei by the experts. The two trained CNN models namely yolov5x for the

detection and Unet-VGG19 for the segmentation have shown high performance on

our validation set by reaching an AP (Average Precision) scores of 0,892 and 0,76

respectively. Several findings have been revealed in our study: 1) combined aug-

mentations based on spatial and texture transformations have permitted to improve

the precision of the detection model while only spatial transformations permitted to

improve the precision of the segmentation model. 2) segmentation model trained on

weakly labeled data succeeded to segment nuclei that have not been annotated by

the experts. 3) hierarchical analysis (spheroids detection then nuclei segmentation)

permitted to improve the segmentation quality compared to direct segmentation

methods from the state of the art. 4) training the models on the most informative

slices (only one slice picked from each stack) permitted to ensure a good generaliza-

tion potential of these models, a result that has been confirmed qualitatively on sev-

eral stacks along the z-depth. 5) The Delaunay triangulation applied on segmented

nuclei achieved a better 3D visual representation when using DBSCAN clustering.
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Chapter 5

Conclusion and Perspectives

5.1 Summary

During these 3 years of research we dedicated our work into finding answers and

possibilities to achieve a 3D reconstruction of nuclei from 2D microscopic images ac-

quired from 3D cell culture. Coming from an engineering background, it was a chal-

lenge to work in a biological field and be introduced to cell culture and microscopy.

It’s very interesting to discover the cell structure and understand the importance of

working in the cell environment to biologists.

Indeed, working with cell culture can help experts in different tasks. As an ex-

ample and one of the most important and crucial study in the scientific community

is drug discovery. As the process of drug discovery is evolving, cell culture and mi-

croscopy techniques are also evolving. Usually biologists are more familiar with 2D

cell culture since it is low cost and more flexible and easy to manipulate and work

with. The acquired microscopic images are easy to read and analyse. However 2D

cell culture does not represent the human cells and does not mimic their functions.

To this extent, 3D cell culture was introduced, a more realistic procedure to human

cell environment however more complex. Indeed, 3D cell culture are known to be

developed in a translucent culture which introduce several artifacts in the generated

microscopic images such as blurred objects, overlapping objects,etc..

We needed to develop automatic methods to help biologists conduct their analy-

sis and to save them a considerable amount of time as automatic systems can analyse

thousands of data images in a short amount of time.

To start understanding our contribution to such an interesting and important
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scientific study, we wanted to discover and test the available softwares that are used

to perform automatic analysis. We put in place an evaluation of several machine

learning classifiers using different combinations to test the efficiency and robustness

of these methods for the segmentation task (nuclei). We came up with the conclusion

that even though these methods can help in segmenting specific areas, they fail in

separating the overlapped nuclei inside the z-stack of 2D images acquired from 3D

cell culture.

To overcome this limit, we developped a workflow based on several machine

learning processes and more advanced architectures based on deep learning. The

idea is to start detecting all the spheroids in the microscopic image. After detecting

all the spheroids, we segmented the most visible, ellipsoidal shaped nuclei inside

each spheroid. And, as we are working with 3D cell culture meaning in a stack of 2D

microscopic images, we reconstructed the segmented nuclei inside the stack to have

the 3d representation of the full environment. The deep learning methods, Yolov5

and Unet+Vgg19 succeeded respectively in first detecting most of the spheroids in

the microscopic images and outperformed the manual segmentation of the nuclei in

each spheroid.

In the end, we had the 3D reconstruction of the nuclei from the segmented mi-

croscopic images. This is a huge advancement as it can help biologists study the

morphological and physiological changes with the drug injected in the cell culture.

5.2 Future Work

Although our obtained 3D reconstruction result is promising and a great step in the

analysis of 3D cell culture, it opens new door for further improvements. Indeed

different applications may be added to the system to either improve the learning

performances or help further in the analysis.

Models improvements– Deep learning algorithms are data driven. Indeed, as we

can see in Figure 5.1, the performance is affected as we input more data to the system

and in our case more images for the detection and segmentation problems. However,

the lack of manual segmentation makes it difficult to train our systems on hundreds
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FIGURE 5.1: The correlation between the algorithms performance and
the amount of data [3]

of images. The community is in need of labeled data and it will be a great first

step to prepare a valuable amount of data that can benifit the scientific comunity

and may help in developing in the near future some automatic labeling tools. To

this extent, an intiative could be made to create an online plateform for biologists to

gather labeled data images and thus creating an open source dataset for scientists

and researchers. An annotation tool can be developed that automatically drops the

manually annoted image in an online cloud.

Automatic Morphological Analysis– The 3D reconstruction is very important to

biologists, however, it is also crucial for them to have morphological measurements

related to the nuclei. Developing an automatic method could help to determine sev-

eral information on each nucleus in the 3D image such as its area or volume and
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FIGURE 5.2: Comparison between a normal and cancerous cell struc-
ture

dimensions such as diameter radius, circumference and height. Figure 5.2 repre-

sents the biological and morphological aspects between normal and cancerous cells

and nuclei [47]. Such methods may also indicate the number of nuclei inside the

3D image. A deep learning algorithm could also improve the analysis by trying to

compare the measurements between the different periods of proliferation and the

drug effect on the nuclei over time. A further step can also be added that consists

of automatically locating the nuclei that are still intact and the ones that died over

time. This application would be an efficient tool to evaluate the changes that occur

during a drug test process.

Generalised Algorithm– The study could also be expanded to different components

such as cells, membrane, neurones,etc. A generalised algorithm could be developed

that includes several types of analysis on different components and types of mi-

croscopy. This future work could be a great help for biologists to analyse any type

of data and thus being able to conduct their interpretation faster through a single

system (Figure 5.3). A software could be developed that allows the user to choose
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(A) Microscopic image of nuclei (B) Microscopic image of neurons

FIGURE 5.3: Different types of microscopic images

the type of images and cell structure that he wants to analyse. Then the system will

automatically select the best model that works well on the type of images provided

by the user.

Quantitative 3D Analysis– A quantitative 3D analysis could be also a great evalua-

tion for the 3D reconstruction. A 3D reconstruction benchmark could be established

by first reconstructing manually the nuclei and specifying evaluation metrics that

can compare the manual and the automated reconstruction.

Another application may be added to the 3D reconstruction application by gen-

erating microscopic images from different angles. This experimentation allows to

generate the complete 3D reconstruction of the spherical-like shaped nuclei and thus

tracking the changes that occurs during a drug testing process on all the sides of the

nuclei.

To conclude, this work was very rewarding as I personally evolved by widening

my knowledge and opening myself to a new horizon which is the biological field.

It helped me understand the importance of the studies conducted in this domain.

And I’m glad we achieved a progress that can help the community advance in their

research. I also discovered the importance of artificial intelligence in the communi-

ties as it can be a helpful tool in the technological advancement in all fields and as

Jeff Bezos said: "We’re at the beginning of a golden age of AI. Recent advancements

have already led to invention that previously lived in the realm of science fiction —
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and we’ve only scratched the surface of what’s possible".
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