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Chapter 1

Introduction

1.1 Nonlinear Schrödinger equation

We consider the one dimensional nonlinear Schrödinger equation

i∂tu+ ∂2
xu+ f(u) = 0, u(0, x) = u0(x), (1.1.1)

where u : Rt × Rx → C, the nonlinearity f : C → C is defined for any
z ∈ C by f(z) = g(|z|2)z with g ∈ C0([0,+∞),R)∩C1((0,+∞),R), g(0) = 0

and lims→0 sg
′(s) = 0. Moreover, we assume that there exist C > 0 and

1 < p <∞, such that |s2g′(s2)| 6 Csp−1 for s > 1. A typical example for f is
the sum of power type nonlinearities given by

f(u) =
m∑

j=1

aj|u|pj−1u, aj ∈ R, 1 < p1 < ... < pm <∞.

There are two types of solutions that we will investigate: standing waves with
a non-periodic spatial profile and standing waves with a spatially periodic
profile. In the first case we can represent the spatial domain as K = R and in
the second case as K = [0, T ], where T is the period of the profile function.

Equation (1.1.1) arises in various physical and biological contexts, for ex-
ample in nonlinear optics, for Bose-Einstein condensates, in the modeling of
the DNA structure, etc. For more details on the physical background see [24,
68].

The nonlinear Schrödinger equation (NLS) is invariant under the following
transformations:

— Translation: u(t, x) 7→ u(t, x+ x0), ∀x0 ∈ R.
— Phase shift: u(t, x) 7→ eiαu(t, x), ∀α ∈ R.

— Galilean invariance: u(t, x) 7→ e
−i
(
β
2
x+β2

4
t

)
u(t, x+ βt), ∀β ∈ R.

Moreover the one power type equation (i.e. m = 1) is invariant under
— Scaling: u(t, x) 7→ λ

2
p−1u(λ2t, λx), ∀λ > 0.

In the case of one power nonlinearity the equation (1.1.1) is called focusing
if a1 > 0 and defocusing if a1 < 0. In the case of double power nonlinearity
when a1 < 0, a2 > 0, we say that the nonlinearity is defocusing-focusing, with
analogous definitions for other possible signs combinations and powers.
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1.1.1 The local Cauchy problem

For standing waves and periodic waves, we have the following result con-
cerning the local well-posedness of the Cauchy problem for (1.1.1) (see, e.g.
[24] and the references therein).

Proposition 1.1.1. For any initial condition u0 ∈ H1(K), there exists Tmax > 0

such that the Cauchy problem of (1.1.1) admits a unique maximal solution
u ∈ C([0, Tmax), H1(K)∩C([0, Tmax), H−1(K)). Moreover we have the blow-up
alternative: either Tmax = +∞ or limt→Tmax ‖u(t)‖H1 = +∞.

Note that the local well-posedness of the Cauchy Problem is independent
of the nature (focusing or defocusing) of the nonlinearity .

For the physical properties of the model as well as for the mathematical
study of the equation, it is interesting to look for quantities conserved along
the time. Solutions u to (1.1.1) conserve the mass M , the momentum P and
the energy E :

M(u) =
1

2

∫

K
|u|2dx, P (u) =

1

2
Im
∫

K
uuxdx,

E(u) =
1

2

∫

K
|ux|2dx−

∫

K
F (u)dx, where F (u) =

∫ |u|

0

f(s)ds.

Formally, the conservation of the mass is obtained from multiplying (1.1.1)
with u, integrating over K and taking the imaginary part. The second con-
served quantity is the momentum obtained by multiplying (1.1.1) by ∂xu,
integrating over K and taking the real part. Finally multiplying (1.1.1) by
∂tu, integrating over K and taking the real part we obtain the conservation of
the energy.

1.1.2 The model case of the pure power nonlinearity

This section is focused on the investigation of the nonlinear Schrödinger
equation with a single power nonlinearity. Within this context, we will present
important results such as the global existence of solutions, the occurrence of
blow-up, and the possibility of scattering. To simplify the notation, we will
use p = p1.

1.1.2.1 Global well-posedness

For the defocusing case, using the conservation of the mass and the energy
we may prove that the H1-norm of u is uniformly bounded in time. This
implies that the solution exists globally in time. In the focusing case, the
situation is more complex. The proof relies on the Gagliardo-Nirenberg’s
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inequality (see [2]). If 1 < p < 5 or p = 5 and ‖u0‖L2 small enough then
the solution is global. We only expect the existence of blow up solutions for
p > 5. Thus in the focusing case, the case p = 5 is a threshold between global
existence and blow up. This result is applicable to both standing waves and
periodic solutions.

1.1.2.2 Blow-up of solution for the focusing case

Concerning the blow-up, we have the following result in the focusing case.
Proposition 1.1.2. Assume that p > 5 and let u0 ∈ H1(R) be such that

|x|u0 ∈ L2(R), E(u0) < 0.

Then the solution u of (1.1.1) corresponding to u0 blows up in finite time.
The proof of Proposition 1.1.2 relies on the Virial Theorem.

Proposition 1.1.3. (Virial Theorem) Let u0 ∈ H1(R) be such that |x|u0 ∈
L2(R) and let u be the solution of (1.1.1) corresponding to u0. Then |x|u(t) ∈
L2(R) for all t ∈ [0, T ) and the function t → ‖xu(t)‖2

L2(R) is of class C2 and
we have the following identities:

d

dt

∫

R
|x|2|u(t, x)|2dx = 4Im

∫

R
u(t)x.∇u(t)dx,

1

2

d

dt
Im
∫

R
u(t)x.∇u(t)dx =

∫

R
|∇u|2dx− a1

(
1

2
− 1

p+ 1

)∫

R
|u|p+1dx.

The Virial Theorem comes from the work of Glassey [42] in which the
identities above were formally derived.

1.1.2.3 Scattering of solution for the defocusing case

In this section we present the cases where the scattering occurs. Let Σ be
the weighted space defined by

Σ = {u ∈ H1(R) : |.|u(.) ∈ L2(R)}.

(1.1.1) has the following equivalent integral equation

u(t) = S(t)u0 + iap

∫ t

0

S(t− s)|u|p−1u(s)ds,

where S(t) is the Schrödinger group. We have the following result.
Proposition 1.1.4. Let u0 ∈ Σ and u ∈ C([0,+∞),Σ) the global solution of
(1.1.1) for the defocusing case. Therefore there exists u+∞ ∈ Σ such that

lim
t →+∞

‖u(t)− S(t)u+∞‖H1 = 0.



4 Chapter 1. Introduction

1.2 Standing waves

According to the theory of nonlinear Schrödinger equations, solutions can
display either dispersion, caused by the linear aspect of the equation, or con-
centration at specific points due to nonlinear effects. However, in exceptional
cases, these behaviors balance each other out, resulting in special solutions
known as standing waves that do not disperse or focus. Standing waves belong
to a broader category of solutions that arise in various nonlinear equations,
such as the Korteweg-de Vries or Klein-Gordon equations. Solitary waves
or solitons are another type of special solution that can be found in these
equations, where their profile remains unchanged over time. (see [24, 30, 33,
68]).

A standing wave of (1.1.1) is a solution of the form eiωtφ(x), in which the
frequency ω ∈ R and the profile φ ∈ H1(R) satisfies

− φ′′ + ωφ− f(φ) = 0. (1.2.1)

Notice that φ = 0 is always a trivial solution of (1.2.1), we are interested in
nontrivial solutions, that is φ 6= 0.

1.2.1 Existence of standing waves

We consider the following problem

u′′ = g(u) = ωu− f(u), ω > 0, lim
u→0

f(u)

u
= 0.

The following is a general result.

Proposition 1.2.1. Let g ∈ C(R;R) be a locally Lipschitz continuous function
with g(0) = 0 and let G(t) =

∫ T
0
g(s)ds. A necessary and sufficient condition

for the existence of a solution φ of the problem

φ ∈ C2(R), lim
t→±∞

φ(t) = 0, φ(0) > 0,

φ′′ = g(φ),

is that

φ0 = inf{t > 0 : G(t) = 0} exists, φ(0) > 0, g(φ0) < 0.

More precisely we have the following results for the single and double power
case.
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1.2.1.1 Existence for the single power case

For the single power nonlinearity case, no standing waves exist for (1.1.1)
in the defocusing case. In the focusing case, standing waves only exist for
ω > 0. The statement that there are no standing wave solutions of (1.1.1) for
ω 6 0 can be derived from the identity of Pohozhaev in [65], which is given
by:

‖∇φ‖2
L2(R) − a1

(p− 1)

2(p+ 1)
‖φ‖p+1

Lp+1(R) = 0.

Therefore we only consider the focusing case where we assume that ω > 0. In
this case we know the explicit formula for the standing wave solution of

−φ′′ + ωφ− φp = 0,

it is given by

φ(x) =

(
(p+ 1)ω

2
sech2

(
(p− 1)

√
ω)

2
x

)) 1
p−1

.

1.2.1.2 Existence for the double power case

We define ω∗ by

ω∗ = sup{ω > 0 : ∃s > 0, such that
ω

2
s2 − F (s) < 0}.

It is well known (see [17]) that existence and uniqueness of non-trivial solutions
of (1.2.1) with lim|x|→∞ φ(x) = 0 hold if and only if

{
0 6 ω < ω∗ when a1 < 0, a2 > 0,

0 < ω < ω∗ otherwise .

The case ω = 0 corresponds to zero mass case in elliptic equations, and
associated problems are more delicate in many cases compared with the case
ω > 0.

For the case p2 = 2p1 − 1, we know the explicit formula of the standing
wave solution of

−φ′′ + ωφ− a1φ
p1 − a2φ

p2 = 0,

it is given by

φ(x) =

(
ω

A+
√
A2 +Bω cosh(β−1

√
ωx)

)β
,

where
A =

a1

2 + 1
β

, B =
a2

2 + 1
β

.
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1.2.2 Orbital stability

To analyze the dynamics of (1.1.1), it is essential to have a comprehensive
understanding of the dynamical properties of standing waves, particularly
their stability. Several stability concepts are available for standing waves.
The one most commonly used is orbital stability, which is defined as follows.
The standing wave eiωtφ(x) solution of (1.1.1) is said to be orbitally stable if
the following holds. For any ε > 0 there exists δ > 0 such that if u0 ∈ H1(R)

verifies
‖u0 − φ‖H1 < δ,

then the associated solution u of (1.1.1) exists globally and verifies

sup
t∈R

inf
y∈R,θ∈R

∥∥u(t)− eiθφ(· − y)
∥∥
H1 < ε.

The groundwork for studying the orbital stability of standing wave solu-
tions were established by Berestycki and Cazenave [15], Cazenave and Lions
[25], and Weinstein [72, 71]. There are two approaches to obtaining stability
or instability results: the variational approach of [15, 25] and the spectral
approach of [72, 71]. Grillakis, Shatah and Strauss [43, 44] later developed an
abstract theory that, under certain assumptions, reduces the stability analysis
of a branch of standing waves ω → φω to the study of the sign of the quantity
(usually called slope) ∂

∂ω
M(φω).

Using the above techniques, the orbital stability of positive standing waves
has been fully characterized for the single power case in any dimension N > 1

in [15, 25, 72, 71]. In dimension N = 1, we have the following results.

Theorem 1.2.2. Let φ be a ground state of (1.2.1). If 1 < p < 5 then the
standing wave eiωtφ(x) is orbitally stable.

We give a precise definition of instability by blow-up. Suppose that φ is
a solution of (1.2.1). We say that the standing wave eiωtφ(x) is unstable by
blow-up in finite time if for any given ε > 0, there exists uε,0 ∈ H1(R) such
that

‖uε,0 − φ‖H1(R) < ε,

but the corresponding maximal solution uε of (1.1.1) in the interval [0, Tε)

satisfies Tε < +∞, which means that

lim
t→Tε
‖uε(t)‖H1(R) = +∞.

We then have the following theorem.

Theorem 1.2.3. If 5 6 p <∞ then the standing wave eiωtφ(x) is unstable by
blow-up in finite time.
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Note that the scaling properties in the single power case play an important
role in the proof of stability and instability results. These properties ensure
in particular that stability and instability are independent of the value of the
frequency parameter ω.

The absence of scaling invariance for double power nonlinearities makes
the study of stability more challenging. Consequently, in higher dimensions,
only limited results are currently available. However, in dimension 1, the
ODE structure of the profile equation (1.2.1) can be exploited, which leads to
some favorable outcomes in the analysis. In this regard, Iliev and Kirchev [49]
conducted preliminary investigations for the stability of standing waves in di-
mension 1 for a generic nonlinearity, deriving a formula for the slope condition.
Ohta [61] was the first to devote work to the stability of standing waves for
the double power nonlinearity in dimension 1, using the integral expression for
the slope condition from [49] to establish the stability/instability of standing
waves in various cases. Maeda [59] later refined Ohta’s approach, extending
the stability/instability results to most of the situations not covered in [61].
Fukaya and Hayashi [36] improved Ohta’s results on instability for small ω
with a condition on the powers, but the stability picture is still not complete.
We also mention the work of Colin and Ohta [27], on the stability of solitary
waves for derivative nonlinear Schrödinger equation which is related to the
double power nonlinearity.

Although stability and instability studies have been widely conducted, to
the best of our knowledge, the contributions of Liu, Tsai, and Zwiers [58] and
Tin [69] are the only known research works that specifically focuses on the
stability and instability of the triple power nonlinearity.

1.3 Periodic waves

In this section we are interested in the standing waves e−iatφ(x) where the
profile function φ(x) is spatially periodic and satisfies the ordinary differential
equation (1.2.1) with a = −ω.

We define the spatially periodic setting

PT = {f ∈ L2
loc(R) : f(x+ T ) = f(x),∀x ∈ R},

and the spatially anti-periodic setting

AT = {f ∈ L2
loc(R) : f(x+ T ) = −f(x),∀x ∈ R}.

As previously mentioned, the Cauchy problem for (1.1.1) is locally well-posed
in H1

loc ∩ PT . Moreover in the cubic case the Cauchy problem is globally well
posed in H1

loc ∩ PT .
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In this section, we will focus on presenting the results obtained from in-
vestigating the properties of periodic waves for the one dimensional nonlinear
Schrödinger equation with cubic nonlinearity f(u) = b|u|2u.

For this type of equation, non-constant, real-valued, periodic solutions of
(1.2.1) are well known to be given by the Jacobi elliptic functions: dnoidal
(dn), cnoidal (cn) (for b > 0), and snoidal (sn)(for b < 0). The Jacobi elliptic
functions are standard forms of elliptic functions. The three basic functions
are denoted cn(x, k), dn(x, k), and sn(x, k), where k ∈ (0, 1) is known as the
elliptic modulus. The incomplete elliptic integral of the first kind is defined
by

x = F(τ, k) :=

∫ τ

0

dθ√
1− k2 sin2(θ)

,

where τ is called the Jacobi amplitude, and the Jacobi elliptic functions are
defined through the inverse of F (., k):

sn(x, k) := sin(τ), cn(x, k) := cos(τ), dn(x, k) :=
√

1− k2 sin2(τ).

The period of the elliptic functions can be expressed in terms of the complete
elliptic integral of the first kind

K(k) := F
(π

2
, k
)
, K(k)→

{
π
2
, k → 0

∞, k → 1.

This will be further developed in the subsequent sections.

1.3.1 Variational characterization

A global variational characterization for each of the periodic waves de-
scribed by Jacobi elliptic functions, constant solutions, and plane wave solu-
tions has been provided by Gustafson, Le Coz and Tsai [46]. This approach
offers alternative proofs of their stability. Specifically, the following results
have been obtained.

Theorem 1.3.1. Let b > 0.
— For all 0 < m 6 π2

bT
, the unique (up to translation and phase multi-

plication) minimizer of the energy, under the constraint of fixed mass
alone (without momentum) or fixed mass with fixed momentum equal
to 0, among periodic functions is the constant function umin =

√
2m
T
.

— For all π2

bT
< m <∞, the unique (up to translation and phase multipli-

cation) minimizer of the energy, at fixed mass alone (without momen-
tum) or fixed mass with fixed momentum equal to 0, among periodic
functions is a (appropriately rescaled) dnoidal function.
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— The unique (up to translation and phase multiplication) global mini-
mizer of the energy, with fixed mass (without momentum) or fixed mass
with fixed momentum equal to 0, among half-anti-periodic functions is
a (appropriately rescaled) cnoidal function.

Theorem 1.3.2. Let b < 0.
— The unique (up to translation and phase multiplication) minimizer of

the energy, with fixed mass, (and fixed momentum equal to 0) among
periodic functions is the constant function umin =

√
2m
T
.

— The unique (up to translation and phase multiplication) minimizer of
the energy, with fixed mass, among half-anti-periodic functions is the
plane wave umin =

√
2m
T
e
iπx
T .

— The unique (up to phase shift) minimizer of the energy, with fixed mass,
among odd half-anti-periodic functions is a (appropriately rescaled)
snoidal function.

Moreover we have the following conjecture.

Conjecture 1.3.3. Assume b < 0. The unique (up to translation and phase
multiplication) minimizer of the energy at fixed mass and fixed momentum
equal to 0, among half-anti-periodic functions is a (appropriately rescaled)
snoidal function.

1.3.2 Orbital stability

By Grillakis, Shatah and Strauss [43, 44] type methods, orbital stabil-
ity against energy H1

loc-norm perturbations for the same period is known for
dnoidal waves [7], and for snoidal waves [38] under the additional constraint
that perturbations are anti-symmetric with respect to the half-period.

In the work of Gallay and Haragus [38], they proved that periodic and
quasi-periodic solutions are orbitally stable with respect to disturbances hav-
ing the same period. They also showed that the cnoidal wave solution are
stable with respect to perturbations of twice their period. We also mention
the work of Antonelli and Shakarov [11], who proved the stability of cnoidal
waves for the damped nonlinear Schrödinger equation.

The following results were obtained in the work of Gustafson, Le Coz and
Tsai [46].

Theorem 1.3.4. The standing wave e−iatφ(x) is a solution of (1.1.1), and is
orbitally stable in X in the following cases. For Jacobi elliptic functions, for
any k ∈ (0, 1):

a = 1 + k2, b = −2k2, φ = sn(., k), X = H1
loc ∩ A−2K ;



10 Chapter 1. Introduction

a = 1− 2k2, b = 2k2, φ = cn(., k), X = H1
loc ∩ A2K ;

a = −(2− k2), b = 2, φ = dn(., k), X = H1
loc ∩ P2K .

For constants and plane wave: (b 6= 0)

a = −2bm

T
, −∞ < b 6

π2

Tm
, u =

√
2m

T
, X = H1

loc ∩ PT ;

a =
4π2

T 2
− 2bm

T
, b < 0, u = e±

iπx
T

√
2m

T
, X = H1

loc ∩ AT/2.

The proof follows the standard approach introduced by Cazenave and Li-
ons [25].

Remark 1.3.5. In [38], the orbital stability of cn with respect to half-anti-
periodic perturbations was obtained only for small amplitude cn and the or-
bital stability for sn in H1

loc ∩ AT/2 was proved using the Grillakis-Shatah-
Strauss approach.

Remark 1.3.6. Using the complete integrability of (1.1.1), Bottman and De-
coninck and Nivala [21] and Gallay and Pelinovsky [40] thus showed that sn
is in fact a minimizer of a higher-order functional in H2

loc ∩PnT for any n ∈ N
and thus showed it is orbitally stable in these spaces.

1.3.3 Spectral stability

Spectral stability with respect to long-wave disturbances has been exam-
ined first by Rowlands [66], who found that periodic waves with real-valued
profile are unstable in the focusing case. More recently we mention the work of
Gallay and Haragus [39], Gallay and Pelinovsky [40] and Ivey and Lafortune
[50]. We also mention the work of Boussaïd and Comech [22] on the spectral
stability of solitary waves. To examine the spectral stability of a standing
wave u(t, x) = e−iatφ(x) solution of (1.1.1), we consider the linearization of
(1.1.1) around this solution: if u(t, x) = e−iat(φ(x) + h), then h verifies

i∂th− Lh+N(h) = 0,

where L denotes the linear part and N the nonlinear part. Assuming u is
real-valued, we separate h into real and imaginary parts to get the equation

(
hR
hI

)

t

= JL

(
hR
hI

)
+N(h),

where

L =

(
L+ 0

0 L−

)
, J =

(
0 1

−1 0

)
,
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L+ = −∂xx − a− 3bφ2, L− = −∂xx − a− bφ2.

We call

JL =

(
0 L−
L+ 0

)

the linearized operator of (1.1.1) around the standing wave e−iatφ(x). The
spectral stability is concluded by examining whether the entire spectrum of
JL is located on the imaginary axis. If this is the case, we consider the wave
to be spectrally stable. We have the following results concerning the spectral
stability (for more details see [46]).

Theorem 1.3.7. Spectral stability in PT , T = 4K(k), holds for:
— φ = sn, k ∈ (0, 1),
— φ = cn and k ∈ (0, kc), where kc is the unique k ∈ (0, 1) so that

K(k) = 2E(k), kc ≈ 0.908.

Moreover we have the following theorems.

Theorem 1.3.8. For k ∈ (0, 1), K = K(k), dn is spectrally stable in P2K , while
cn and sn are spectrally stable in A2K .

Theorem 1.3.9. Cnoidal waves are unstable against perturbations whose pe-
riod is a sufficiently large multiple of its own, i.e the spectrum of JLcn as an
operator on P4nK contains an eigenvalue with positive real part.

Remark 1.3.10. The orbital stability implies the spectral stability.

1.4 Main results

1.4.1 Double power nonlinearity

The results presented in this section have been published in "Comptes
rendus mathématique" in collaboration with Stefan Le Coz and Tai-Peng Tsai
[52].

As already mentioned the stability picture in the double power case was
still not complete. Let p1 = p, p2 = q, a1 = ap and a2 = aq. The following
case was left partially open:

ap < 0, aq > 0, 1 < p < q < 5, p+ q 6 6 or p 6
7

3
.

The above is the defocusing-focusing case where the stability of standing waves
for large ω and their instability for small ω were established by Ohta [61]. The
condition p+ q > 6 was shown to be sufficient for instability by Ohta [61] and
later improved by Fukaya and Hayashi [36] to (p+3)(q+3) > 32. However, the
stability behavior in the intermediate range of ω where (p+3)(q+3) > 32 and
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p+q 6 6 or p 6 7
3
, as well as the stability for small ω when (p+3)(q+3) 6 32,

were not fully understood in [36, 59, 61]. The only exception is the case of
p = 2 and q = 3 where explicit calculations were possible, revealing the
stability of the wave for any ω > 0.

For the sake of simplicity, we will use the following convention. A standing
wave is called type S if it is stable for any ω ∈ (0, ω∗). If there exists ω1 ∈
(0, ω∗) such that the standing wave is unstable for ω ∈ (0, ω1) and stable
for ω ∈ (ω1, ω

∗), we say it is type US. We define other types in a similar
way. Note that the endpoint ω1 may also fall within the range of instability,
subject to regularity assumptions on the nonlinearity. This is possible due to
the criterion established by Comech and Pelinovsky [29].

We aim to address the incomplete aspects of the earlier studies [36, 59,
61] and provide a complete stability picture for the standing waves of the
Schrödinger equation with double power nonlinearity using the slope criterion
of Grillakis, Shatah and Strauss.

Our main result is the following.

Theorem 1.4.1. Let (φω)ω∈(0,ω∗) be the family of standing waves of (1.1.1).
The following gives the stability type of the family of standing waves.

1. Assume that ap > 0 and aq > 0.
(a) If q 6 5, then it is of type S.
(b) If p > 5, then it is of type U .
(c) If p < 5 < q, then it is of type SU .

2. Assume that ap > 0 and aq < 0.
(a) If p 6 5, then it is of type S.
(b) If p > 5, then it is of type US.

3. Assume that ap < 0 and aq > 0.
(a) If q 6 7− 2p, then it is of type S.
(b) If 7− 2p < q < 5, then it is of type US.
(c) If q > 5, then it is of type U .

This theorem implies in particular that stability change occurs at most
once, which is conjectured in [59, p. 265], and is in contrast to NLS with
triple power nonlinearity considered in [58].

The cases (1), (2), and (3)(c) of Theorem 1.4.1 were previously addressed
in [59, 61]. However, for the sake of completeness, we also include their proofs
in our work. Cases (3)(a) and (b), they were only partially solved in previous
works. We provide a definitive result for these cases.

Note that our results do not extend to the case of zero frequency, ω = 0.
However, it is conjectured that the stability or instability of the corresponding
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algebraic standing waves, if they exist, should be the same as for small ω > 0,
which is consistent with the results of Fukaya and Hayashi [36].

Moreover, it should be noted that our statement does not include the
critical frequency at which the stability change occurs. This frequency was
shown by Comech and Pelinovsky to lead to instability under higher regularity
assumptions on the nonlinearity. Alternative proofs with improved regularity
assumptions are given in [60, 62], but they are still not sufficient to cover the
entire range of double-power nonlinearities. Strategies have been developed
to handle the critical frequency without relying on regularity assumptions for
other types of equations, as seen in [45, 73]. However, in our work, we only
verify the validity of the stability criterion and do not attempt to cover the
critical frequency.

Finally, for the defocusing-focusing case where ap < 0, aq > 0, and 1 <

p < q < 5, we supplement our theoretical findings with numerical experiments.
Initially, we first represent the critical surface, denoted by ωc(p, q), at which
the stability transition occurs and examine the various shapes of the surface
based on the ap

aq
ratio. We then simulate the dynamics of (1.1.1) around

a standing wave with the Crank-Nicolson scheme with relaxation of Besse
[19]. We observe three distinct types of behaviors based on the initial data:
stability, growth followed by oscillations, and scattering. This problem will
be clearly detailed in Chapter 2.

1.4.2 Quasi-periodic case

In chapter 3 we focus on the one-dimensional cubic nonlinear Schrödinger
equation, given by

iψt + ψxx + b|ψ|2ψ = 0,

where ψ is a complex-valued function defined on Rt×Rx, and b is a nonzero real
constant. We investigate the simplest non-trivial solutions of the equation,
which are the standing waves of the form

ψ(t, x) = e−iatu(x), a ∈ R,

where the profile function u satisfies the ordinary differential equation

uxx + au+ b|u|2u = 0. (1.4.1)

We are particularly interested here in those standing waves whose profile u is
quasi-periodic and defined on the space

Hθ
T = {f ∈ H1

loc(R) : f(x+ T ) = eiθf(x), ∀x ∈ R},
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where θ is real and so-called Floquet multiplier.
In addition to the conserved quantities of the NLS, namely mass M , mo-

mentum P and energy E , we also consider the conserved quantities of the
ordinary differential equation, namely momentum J and energy E, given by

J = Im(uxu), E =
1

2
|ux|2 +

a

2
|u|2 +

b

4
|u|4.

The object of our interest is the minimization problem given by

min{E(u) : u ∈ Hθ
T ,M(u) = m,P (u) = p}, (1.4.2)

where m > 0 and p ∈ R.
The aim of this chapter is to establish a connection between the solutions of

the minimization problem (1.4.2) and the solutions of the ordinary differential
equation (1.4.1).

Starting from the ordinary differential equation, our objective is to estab-
lish a connection with the minimization problem. Specifically, we seek to find
a correspondence between the solutions of the ordinary differential equation
and the minimizers of the energy functional subject to fixed values of mass
and momentum. Thus, we establish a diffeomorphic correspondence between
them. We also study these conserved quantities and provide monotonicity
results for some of them.

Next, we proceed in the opposite direction by starting from the mini-
mization problem and establishing a link with the solutions of the ordinary
differential equation. Our main result is the following.

Observation 1.4.2. For each defocusing and focusing case, for fixed (J,E), let
uode be the associated solution of the ordinary differential equation. Then (up
to phase shift and translation) the minimizer of the problem

min{E(u) : u ∈ Hθ
T , M(u) = M(uode), P (u) = P (uode), u ∈ Hθ

T},

is given by uode.

Our results were obtained through numerical computations. We first com-
puted the ordinary differential equation (1.4.1) numerically and compared the
resulting solution to the exact solution when available. We then utilized the
gradient flow with discrete normalization method to find the minimizer of the
energy E subject to fixed mass m > 0 and fixed momentum p. This method,
also known as the "imaginary time method" in physics literature, has been
applied to various equations, including nonlinear Schrödinger equations. We
compared the minimizer obtained from the normalized gradient flow with the
numerical solution of the ODE and made our conjecture based on the results.
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1.4.3 General nonlinearity

In this section we present our work on the nonlinear Schrödinger equation
with general nonlinearity:

iψt + ψxx + bf(ψ) = 0, (1.4.3)

where ψ : Rt × Rx → C, the nonlinearity f : C→ C is defined for any z ∈ C
by f(z) = g(|z|2)z with g ∈ C0([0,+∞),R)∩C2((0,+∞),R) and b ∈ R\{0}.
Similarly to the other case, the simplest non-trivial solutions of (1.4.3) are the
standing waves given by

ψ(t, x) = e−iatu(x), a ∈ R.

The profile function u satisfies the ordinary differential equation

uxx + au+ bf(u) = 0. (1.4.4)

We are particularly interested in the spatially periodic solutions ψ(t, .) ∈ H1
loc∩

PT , and anti-periodic solutions ψ(t, .) ∈ H1
loc ∩ AT .

Our goal is to extend previous work on the cubic case to the case of a gen-
eral nonlinearity. Specifically, we will consider the real and complex-valued
solutions of the profile equation and represent their phase portraits for various
parameter regimes. We will study the minimization problems for the energy
functional with fixed mass and momentum constraints for the periodic and
anti-periodic cases, extending the previous results to this more general set-
ting. Consequently, we investigate the properties of minimizers in each case,
including their existence and uniqueness. We have the following results for
the periodic case.

Proposition 1.4.3. In the focusing case, for all m > 0, there exists a unique
(up to phase shift) minimizer of the energy, under the constraint of fixed
mass alone (without momentum) or fixed mass with fixed momentum equal
to 0, among periodic functions. Moreover, the minimal energy is finite and
negative. Furthermore, there exists m̃ > 0 such that if m > m̃, then the
minimizer is not a constant, the associated Lagrange multiplier a < 0, the
minimizer is positive, and it is a solution of the ordinary differential equation
(1.4.4).

Proposition 1.4.4. In the defocusing case, for all m ∈ (0,∞) the minimizer of
the energy, under the constraint of fixed mass alone (without momentum) or
fixed mass with fixed momentum equal to 0, among periodic functions is the
same and unique (up to phase shift). It is the constant function u∞ ≡

√
2m
T
.
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For the anti-periodic case, we limit ourselves to the nonlinearity of the
type f(u) = |u|p−1u+ |u|q−1u, with p, q > 1. We prove that in this case there
exists a unique (up to phase shift and complex conjugate) minimizer of the
energy, under the constraint of fixed mass among anti-periodic functions. It
is the plane wave u∞ ≡

√
2m
T
e
iπx
T .

Finally, we investigate the minimization problem on the Nehari manifold.
We restrict ourselves to the nonlinearity of the form f(u) = |u|p−1u, with
p > 1. We define a functional S : H1(R)→ R by setting for v ∈ H1(R)

S(v) :=
1

2
‖∇v‖2

L2(R) +
ω

2
‖v‖2

L2(R) −
a1

p+ 1
‖v‖p+1

Lp+1(R).

The functional S is often called action. We are interested in the following
minimization problems on the Nehari manifold:

min{S(u) : u ∈ H1
loc ∩ PT , u 6= 0, I(u) = 0}, (1.4.5)

and
min{S(u) : u ∈ H1

loc ∩ AT
2
, u 6= 0, I(u) = 0}, (1.4.6)

where I is defined by

I(u) = ‖∂xu‖2
L2 − a‖u‖2

L2 − b‖u‖p+1
Lp+1 .

We also consider the following minimization problem

min

{(
1

2
− 1

p+ 1

)
‖v‖2

H1 : v 6= 0, I(v) 6 0, v ∈ H1
loc ∩ AT

2

}
. (1.4.7)

We prove that in the periodic case, with b > 0 and a < 0, the minimum
of (1.4.5) is finite and there exists a unique minimizer which is solution of
(1.4.4). In the anti-periodic case, with b > 0 and a < 4π2

T 2 , the minimization
problems (1.4.6) and (1.4.7) share the same minimizer. Moreover when p is
an odd integer the minimizer is real and it is the solution of the ordinary
differential equation (1.4.4).

1.5 Outline of the thesis

The thesis is organized as follows. In Chapter 2, we focus on the double
power nonlinear Schrödinger equation, where we provide a complete stabil-
ity analysis of the standing waves. In Chapter 3, we investigate the one-
dimensional cubic nonlinear Schrödinger equation and establish a variational
characterization of the minimizer of the energy with fixed mass and momen-
tum. We also establish a connection between these minimizers and the so-
lutions of the ordinary differential equation. Chapter 4 extends the work on
the cubic case to the more general case of a nonlinearity, where we consider
various minimization problems.



Chapter 2

Analysis of stability and
instability for standing waves of

the double power one dimensional
nonlinear Schrödinger equation

Abstract

For the double power one dimensional nonlinear Schrödinger equation, we
establish a complete classification of the stability or instability of standing
waves with positive frequencies. In particular, we fill out the gaps left open
by previous studies. Stability or instability follows from the analysis of the
slope criterion of Grillakis, Shatah and Strauss. The main new ingredients
in our approach are a reformulation of the slope and the explicit calculation
of the slope value in the zero-frequency case. Our theoretical results are
complemented with numerical experiments.

2.1 Introduction

Consider the one dimensional nonlinear Schrödinger equation with double
power nonlinearity

i∂tu+ ∂2
xu+ ap|u|p−1u+ aq|u|q−1u = 0, (2.1.1)

where u : Rt × Rx → C, ap, aq ∈ R \ {0} and 1 < p < q < ∞. When ap < 0,
aq > 0, we say that the nonlinearity is defocusing-focusing, with analogous
definitions for other possible signs combinations.

Nonlinear Schrödinger equations appear in many areas of physics such
as nonlinear optics (see e.g. [3]) or Bose-Einstein condensation. The double
power nonlinearity is an important example of the possible nonlinearities ap-
pearing in soliton theory (see e.g. [4]). Via gauge transformations, the double
power nonlinearity is also connected with the derivative nonlinear Schrödinger
equation (see e.g. [48, 56, 70]). The double power nonlinearity is also a typical
example of a nonlinearity breaking the scaling invariance of the pure power
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case, while still being relatively tractable, and it may be used to study phe-
nomena in the absence of scaling symmetry (see e.g. [55] for the construction
of blowing-up solutions).

The Cauchy problem for (2.1.1) is well known (see [24] and the refer-
ences therein) to be well-posed in the energy space H1(R): for any u0 ∈
H1(R), there exists a unique maximal solution u ∈ C((−T∗, T ∗), H1(R)) ∩
C1((−T∗, T ∗), H−1(R)) of (2.1.1) such that u(t = 0) = u0. Moreover, the
energy E and the mass M , defined by

E(u) =
1

2
‖ux‖2

L2 − ap
p+ 1

‖u‖p+1
Lp+1 −

aq
q + 1

‖u‖q+1
Lq+1 , M(u) =

1

2
‖u‖2

L2 ,

are conserved along the flow and the blow-up alternative holds (i.e. if T ∗ <∞
(resp. T∗ <∞), then limt→T ∗ (resp −T∗)‖u(t)‖H1 =∞).

A standing wave is a solution of (2.1.1) of the form u(t, x) = eiωtφ(x) for
some ω ∈ R and a profile φ ∈ C2(R), which then satisfies

− φ′′ + ωφ− ap|φ|p−1φ− aq|φ|q−1φ = 0. (2.1.2)

We only consider real-valued φ in this paper. Define ω∗ by

ω∗ = sup

{
ω > 0 : ∃s > 0 such that

ω

2
s2 − ap

p+ 1
sp+1 − aq

q + 1
sq+1 < 0

}
.

It is well known (see [17]) that existence of non-trivial solutions of (2.1.2)
with lim|x|→∞ φ(x) = 0 holds if and only if

{
0 6 ω < ω∗ when ap < 0, aq > 0,

0 < ω < ω∗ otherwise.

In that case, the solution is positive (up to phase shift), even (up to transla-
tion) and unique. We denote it by φω, or simply φ when there is no ambiguity.

Solitary waves are the building blocks for the nonlinear dynamics of (2.1.1),
as it is expected that, generically, a solution of (2.1.1) will decompose into
a dispersive linear part and a combination of nonlinear structures as solitary
waves. This vague statement is usually referred to as the Soliton Resolution
Conjecture.

Therefore, understanding the dynamical properties of standing waves, in
particular their stability, is a key step in the analysis of the dynamics of
(2.1.1). Several stability concepts are available for standing waves. The most
commonly used is orbital stability, which is defined as follows. The standing
wave eiωtφ(x) solution of (2.1.1) is said to be orbitally stable if the following
holds. For any ε > 0 there exists δ > 0 such that if u0 ∈ H1(R) verifies

‖u0 − φ‖H1 < δ,
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then the associated solution u of (2.1.1) exists globally and verifies

sup
t∈R

inf
y∈R,θ∈R

∥∥u(t)− eiθφ(· − y)
∥∥
H1 < ε.

In the rest of this paper, when we talk about stability/instability, we always
mean orbital stability/instability.

The groundwork for orbital stability studies was laid down by Beresty-
cki and Cazenave [15], Cazenave and Lions [25] and Weinstein [72, 71]. Two
approaches lead to stability or instability results: the variational approach
of [15, 25], which exploits global variational characterizations combined with
conservation laws or the virial identity, and the spectral approach of [72, 71],
which exploits spectral and coercivity properties of linearized operators to
construct a suitable Lyapunov functional. Later on, Grillakis, Shatah and
Strauss [43, 44] developed an abstract theory which, under certain assump-
tions, boils down the stability study of a branch of standing waves ω → φω to
the study of the sign of the quantity (usually called slope) ∂

∂ω
M(φω). Note that

the theory of Grillakis, Shatah and Strauss has known recently a considerable
revamping in the works of De Bièvre, Genoud and Rota-Nodari [31, 32].

With the above mentioned techniques, the orbital stability of positive
standing waves has been completely determined in the single power case
(i.e. aq = 0) in any dimension d > 1 in [15, 25, 72, 71]. If aq = 0, posi-
tive standing waves exist if and only if ap > 0 and ω > 0. In this case, they
are stable if 1 < p < 1 + 4

d
(i.e. 1 < p < 5 in dimension d = 1), and they are

unstable if 1+ 4
d
6 p < 1+ 4

(d−2)+
(i.e. 5 6 p <∞ in dimension d = 1). Scaling

properties of the single power nonlinearity play an important role in the proof
and ensure in particular that stability and instability are independent of the
value of the frequency ω. It turns out that there is no scaling invariance for
double power nonlinearities, which makes the stability study more delicate.
As a matter of fact, only very partial results are available so far in higher di-
mensions. In dimension 1, the situation is a bit more favorable, as one might
exploit the ODE structure of the profile equation (2.1.2) in the analysis.

Preliminary investigations for the stability of standing waves in dimension
1 were conducted by Iliev and Kirchev [49] in the case of a generic nonlinearity.
In particular, a formula for the slope condition was obtained in [49]. The ear-
liest work devoted to the stability of standing waves for nonlinear Schrödinger
equations with double power nonlinearity in dimension 1 is the work of Ohta
[61]. In this work, using the integral expression for the slope condition derived
by Iliev and Kirchev [49], Ohta established the stability/instability of standing
waves in a number of cases. Later on, Maeda [59] further refined the approach
of Ohta and established the stability/instability in most of the situations not
covered in [61]. However, the stability picture was still not complete, as the
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following case was left partially open:

ap < 0, aq > 0, 1 < p < q < 5, p+ q 6 6 or p 6
7

3
.

In the above case, Ohta [61] established the stability of standing waves for
ω large enough. The instability for small ω was obtained by Ohta [61] for
p + q > 6, a condition which was later improved to (p + 3)(q + 3) > 32 by
Fukaya and Hayashi [36]. What happens in the intermediate range of ω when

(p+ 3)(q + 3) > 32 and
(
p+ q 6 6 or p 6

7

3

)
,

was not elucidated in [36, 59, 61], nor what happens for small ω when (p +

3)(q + 3) 6 32, (except for the notable case p = 2, q = 3, where explicit
calculations are possible and show that the wave is stable for any ω > 0).

For convenience, we adopt the following convention. When a standing
wave is stable for any ω ∈ (0, ω∗), we say that it is of type S. When there
exists ω1 ∈ (0, ω∗) such that the standing wave is unstable for ω ∈ (0, ω1) and
stable for ω ∈ (ω1, ω

∗), we say that it is of type US. Other types are defined
in a similar manner.

Note that when instability holds the endpoint ω1 could be included in the
instability range under regularity assumptions on the nonlinearity (thanks to
the criterion of Comech and Pelinovsky [29], see (2.2.4) and Remark 2.1.2).

Our goal in this paper is to fill out the gaps left open by the previous works
[36, 59, 61] and to provide a complete stability picture for the standing waves
of the Schrödinger equations with double power nonlinearity. Our main result
is the following.

Theorem 2.1.1. Let (φω)ω∈(0,ω∗) be the family of standing waves of (2.1.1).
The following gives the stability type of the family of standing waves.

1. Assume that ap > 0 and aq > 0.

(a) If q 6 5, then it is of type S.

(b) If p > 5, then it is of type U .

(c) If p < 5 < q, then it is of type SU .

2. Assume that ap > 0 and aq < 0.

(a) If p 6 5, then it is of type S.

(b) If p > 5, then it is of type US.

3. Assume that ap < 0 and aq > 0.

(a) If q 6 7− 2p, then it is of type S.

(b) If 7− 2p < q < 5, then it is of type US.
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(c) If q > 5, then it is of type U .

This theorem implies in particular that stability change occurs at most
once, which is conjectured in [59, p. 265], and is in contrast to NLS with
triple power nonlinearity considered in [58].

Remark 2.1.2. The critical frequency at which the stability change occurs is
not included in our statement. Indeed, it was established by Comech and
Pelinovsky under a higher regularity assumption on the nonlinearity that the
standing wave at the critical frequency is unstable if (2.2.4) holds. Alternative
proofs with improved assumptions on the regularity are provided in [60, 62].
However, the regularity required is still too high to cover the whole range of
double-power nonlinearities. Strategies to treat the critical frequency without
regularity assumptions have been developed for other types of equations, see
e.g. [45, 73]. In this paper, we will not try to cover the critical frequency and
we simply verify that the criterion (2.2.4) holds.

In Theorem 2.1.1, cases (1), (2) and (3)(c) were already covered in [59,
61]. For the sake of completeness, and as the proofs are not very long, we will
also cover them in our work. Cases (3)(a) and (b) were only partially solved.
We provide a definitive result for these cases. Our approach relies on several
ingredients. First of all, we express the slope condition in a concise, while
easily tractable integral, factoring out terms which are in any case positive.
Instead of working with the parameter ω, we manipulate the slope condition
with the parameter φ0 = φω(0) (which is in a bijective relation with ω). We
are left with an integral expression F (φ0) (see (2.3.2)), of which we need to
determine the sign. A refactorisation allows us to introduce an auxiliary pa-
rameter γ, and differentiation with respect to φ0 gives us an expression which
we can prove to have sign, provided we have suitably chosen the parameter γ.
This gives the information that F (φ0) changes sign at most once. The sign for
large ω (or equivalently large φ0) had already been established in [61]. On the
other hand, the sign for ω close to 0 had not been computed before. Here, an
astute rewriting of the slope in terms of Beta functions allows us to determine
the sign for ω close to 0.

Observe that our results are not covering the zero-frequency case ω = 0.
Stability or instability of the corresponding (algebraic) standing waves (when
existing) can be conjectured to be the same as the one for small ω > 0 (which
is consistent with the results obtained by Fukaya and Hayashi [36]).

In the case ap < 0, aq > 0 and 1 < p < q < 5, we complement our theoret-
ical results with numerical experiments. We first represent the critical surface
{ωc(p, q)} at which the stability change occurs and discuss the different possi-
ble shapes of the surface depending on the ratio ap/aq. We then simulate the
dynamics of (2.1.1) around a standing wave with the Crank-Nicolson scheme
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with relaxation of Besse [19]. Three types of behaviors are observed depend-
ing on the type of initial data : stability, growth followed by oscillations, and
scattering.

To end this introduction, we point out that many works are devoted to
standing waves of the double power nonlinear Schrödinger in higher dimen-
sion (for which our approach does not apply), and just give a small sample
of the existing literature. The cubic quintic case in higher dimension was in-
vestigated in [23]. Stability of standing waves in higher dimension for generic
nonlinearities was considered in [37]. Strong instability was studied in [63].
Stability results for algebraic standing waves were obtained in [36]. Unique-
ness and non-degeneracy was considered in [57]. Existence or non-existence
of minimizers of the energy at fixed mass was obtained in [14]. Let us also
mention in dimension 1 the work [41], which is devoted to the stability of
standing waves for cubic-quintic nonlinearities in the presence of a δ potential
(see [8, 9] for further developments).

This paper is organized as follows. We start by some preliminaries in
Section 2.2, recalling in particular the properties of the standing wave profiles
and the stability criterion. In Section 2.3, we reformulate the slope condition
for stability, using the profile equation. In Section 2.4, we analyze the limit of
the slope at the endpoints of the interval of admissible frequencies ω and in
particular determine the sign of the slope at the endpoints. The sign of the
slope on the full interval of admissible frequencies is recovered in Section 2.5,
which shows Theorem 2.1.1. Finally, numerical experiments are presented in
Section 2.6.

After the first version of this paper was posted to arXiv, Professor Hayashi
kindly informed us he had an independent similar result and posted it as [47].
His Theorem 1.3 is similar to our Theorem 1.1 although it does not include
the case 1 < p < 9/5.

We would like to thank the anonymous referee for his valuable comments
which helped in the improvement of our paper.

2.2 Preliminaries

2.2.1 The profile equation

We start by some analysis around the ordinary differential equation (2.1.2)
and its solutions (φω). Apart in a few specific cases (e.g. when q = 2p− 1, see
e.g. [58]), there does not exist an explicit formula for the full standing waves
profile. Note that ω∗ =∞ when aq > 0, 0 < ω∗ <∞ when ap > 0 and aq < 0,
and ω∗ = −∞ (i.e. there is no solution of (2.1.2) in H1(R)) when ap, aq < 0.
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All along this paper, we assume that 0 < ω < ω∗ (excluding in particular
the possibility that ap, aq < 0). Under this assumption, there exists φ0 > 0

(depending implicitly on ω) such that

φ0 = inf{φ > 0 :
ω

2
φ2 − ap

p+ 1
|φ|p+1 − aq

q + 1
|φ|q+1 = 0},

and we have
φω(0) = φ0.

Observe that ω may be expressed in terms of φ0 as follows

ω =
2ap
p+ 1

φp−1
0 +

2aq
q + 1

φq−1
0 . (2.2.1)

Moreover, as ω < ω∗, we have

ω − apφp−1
0 − aqφq−1

0 < 0.

This implies in particular φ0 is a C1-function of ω. Moreover, we always have

∂φ0

∂ω
=

(
2ap(p− 1)

p+ 1
φp−2

0 +
2aq(q − 1)

q + 1
φq−2

0

)−1

> 0. (2.2.2)

As a consequence, the following result holds.

Lemma 2.2.1. The function ω → φ0 is a strictly increasing bijection from
(0, ω∗) to (φ∗, φ

∗) where

φ∗ =





(
−ap
aq

q+1
p+1

) 1
q−p if ap < 0,

0 if ap > 0,
φ∗ =




∞ if aq > 0,
(
−ap
aq

p−1
q−1

q+1
p+1

) 1
q−p if aq < 0.

(2.2.3)

2.2.2 The stability criterion

As we already mentioned, stability criteria have been derived in the general
case in [43, 49]. For the double power nonlinearity, the stability of the standing
wave is determined by a slope condition (the spectral condition of [43] being
always verified in this case when ω > 0). The standing wave eiωtφω(x) will be
stable if

∂

∂ω
M(φω) > 0,

and it will be unstable if
∂

∂ω
M(φω) < 0.
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When ∂ωM(φω) = 0, under regularity assumption on the nonlinearity, the
stability can be decided by looking at the second derivative, as was established
by Comech and Pelinovsky [29]: If ∂ωM(φω) = 0 and

∂2

∂ω2
M(φω) 6= 0, (2.2.4)

then the standing wave eiωtφω(x) is unstable.

2.3 Reformulation of the slope

For notational convenience, we introduce the function J defined by

J(ω, p, q) =
∂

∂ω
M(φω).

Hence the sign of J determines the stability of the corresponding standing
wave.

The main idea in this section is to express J in terms of φ0 instead of ω.
Before doing that, we introduce some convenient notation. Let Φp and Φq be
defined by

Φp =
2ap
p+ 1

φp+1
0 (1− sp−1), Φq =

2aq
q + 1

φq+1
0 (1− sq−1), (2.3.1)

where ap, aq 6= 0, 1 < p < q <∞ and 0 < s < 1.

Lemma 2.3.1. The function J may be expressed in terms of φ0 as follows

J(ω, p, q) = C(φ0)F (φ0),

where

F (φ0) =

∫ 1

0

(5− p)Φp + (5− q)Φq

(Φp + Φq)
3
2

sds, (2.3.2)

and C(φ0) is positive and explicitly known (see (2.3.4)).

Proof. We multiply the equation (2.1.2) of the profile by φx and we integrate
to obtain

−1

2
|φx|2 +

ω

2
|φ|2 − ap

p+ 1
|φ|p+1 − aq

q + 1
|φ|q+1 = c.

When x→∞, we know that φ(x)→ 0 and φ′(x)→ 0. Therefore c = 0, and

− 1

2
|φx|2 +

ω

2
|φ|2 − ap

p+ 1
|φ|p+1 − aq

q + 1
|φ|q+1 = 0. (2.3.3)
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For x > 0, as φ is decreasing, from (2.3.3) we have

φx = −
√
ωφ2 − 2ap

p+ 1
φp+1 − 2aq

q + 1
φq+1.

Still for x > 0, let t = φ(x), then

dx =
dt

φx
= − dt√

ωφ2 − 2ap
p+1

φp+1 − 2aq
q+1

φq+1
.

Therefore we may perform the following change of variable:

M(φ) =
1

2

∫

R
|φ(x)|2dx =

∫ ∞

0

|φ(x)|2dx =

∫ φ0

0

t2√
ωt2 − 2ap

p+1
tp+1 − 2aq

q+1
tq+1

dt.

Changing again variable by setting t = φ0s, we have

M(φ) =

∫ 1

0

φ3
0s

2

s
√
ωφ2

0 − 2ap
p+1

φp+1
0 sp−1 − 2aq

q+1
φq+1

0 sq−1
ds.

Replacing ω by its value (2.2.1) in terms of φ0, we have

M(φ) =

∫ 1

0

φ3
0s√

2ap
p+1

φp+1
0 + 2aq

q+1
φq+1

0 − 2ap
p+1

φp+1
0 sp−1 − 2aq

q+1
φq+1

0 sq−1
ds,

which, using the notation (2.3.1) for Φp and Φq, gives

M(φ) =

∫ 1

0

φ3
0s√

Φp + Φq

ds.

Differentiating with respect to ω, we have

∂ωΦp = (p+ 1)Φpφ
−1
0 ∂ωφ0, ∂ωΦq = (q + 1)Φqφ

−1
0 ∂ωφ0.

Therefore we obtain

J(ω, p, q) = ∂ωM(φ)

=

∫ 1

0

3φ2
0∂ωφ0s(Φp + Φq)− 1

2
φ3

0s
(
(p+ 1)Φpφ

−1
0 + (q + 1)Φqφ

−1
0 )
)
∂ωφ0

(Φp + Φq)
3
2

ds,

=
∂ωφ0

2
φ2

0

∫ 1

0

6(Φp + Φq)− ((p+ 1)Φp + (q + 1)Φq))

(Φp + Φq)
3
2

sds,

=
∂ωφ0

2
φ2

0

∫ 1

0

(5− p)Φp + (5− q)Φq

(Φp + Φq)
3
2

sds,= C(φ0)F (φ0),
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where F (φ0) is defined in (2.3.2) and

C(φ0) =
∂ωφ0

2
φ2

0. (2.3.4)

This concludes the proof.

We will now analyze the variations of J(ω, p, q) in terms of φ0. For fu-
ture convenience (the reason for such a choice will appear clearly later), we
introduce an auxiliary parameter γ in the following way

J(ω, p, q) = C(φ0)φ−γ0 Fγ(φ0),

where

Fγ(φ0) =

∫ 1

0

φγ0

(
(5− p)Φp + (5− q)Φq

(Φp + Φq)
3
2

)
sds.

Denote the integrand of Fγ by

Iγ(φ0) = φγ0

(
(5− p)Φp + (5− q)Φq

(Φp + Φq)
3
2

)
. (2.3.5)

Observe that there is a implicit dependency in s. In the following lemma we
differentiate Iγ(φ0) with respect to φ0.

Lemma 2.3.2. For any 0 < s < 1, the following holds:

∂Iγ
∂φ0

= φγ−1
0

(
((5− p)(2γ − (p+ 1))Φp + (5− q)(2γ − (q + 1))Φq) (Φp + Φq)

2 (Φp + Φq)
5
2

)

− φγ−1
0

(
3(q − p)2ΦpΦq

2 (Φp + Φq)
5
2

)
.

Proof. We start by differentiating the term in parenthesis in Iγ(φ0). We have

∂φ0Φp = (p+ 1)Φpφ
−1
0 , ∂φ0Φq = (q + 1)Φqφ

−1
0 .
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Therefore, we have

∂φ0

(
(5− p)Φp + (5− q)Φq

(Φp + Φq)
3
2

)

= φ−1
0

(
((5− p)(p+ 1)Φp + (5− q)(q + 1)Φq) (Φp + Φq)

(Φp + Φq)
5
2

)

− φ−1
0

(
3
2

((5− p)Φp + (5− q)Φq) ((p+ 1)Φp + (q + 1)Φq)

(Φp + Φq)
5
2

)

= φ−1
0

(
−(5− p)(p+ 1)Φ2

p − (5− q)(q + 1)Φ2
q

2 (Φp + Φq)
5
2

)

+ φ−1
0

(
((5− p)(2p− 3q − 1) + (5− q)(2q − 3p− 1))ΦpΦq

2 (Φp + Φq)
5
2

)

= φ−1
0

(
− ((5− p)(p+ 1)Φp + (5− q)(q + 1)Φq) (Φp + Φq)− 3(q − p)2ΦpΦq

2 (Φp + Φq)
5
2

)
.

Before going on, observe that we may rewrite the term in parentheses in Iγ(φ0)

as
(5− p)Φp + (5− q)Φq

(Φp + Φq)
3
2

=
2 ((5− p)Φp + (5− q)Φq) (Φp + Φq)

2 (Φp + Φq)
5
2

.

Finally, the full derivative of Iγ(φ0) is given by

∂Iγ
∂φ0

= ∂φ0

(
φγ0

(
(5− p)Φp + (5− q)Φq

(Φp + Φq)
3
2

))
,

= φγ−1
0

(
((5− p)(2γ − (p+ 1))Φp + (5− q)(2γ − (q + 1))Φq) (Φp + Φq)

2 (Φp + Φq)
5
2

)

− φγ−1
0

(
3(q − p)2ΦpΦq

2 (Φp + Φq)
5
2

)
.

This concludes the proof.

For future reference, we establish here the following technical lemma which
we will use at several occasions.
Lemma 2.3.3. The function s → 1−sq−1

1−sp−1 is an increasing bijection from (0, 1)

to (1, q−1
p−1

).

Proof. Let h(s) = 1−sq−1

1−sp−1 . We have

h′(s) =
sp−2

(1− sp−1)2
l(s),
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where
l(s) = (q − p)sq−1 + p− 1− (q − 1)sq−p.

Note that l(1) = 0 and for 0 < s < 1,

l′(s) = (q − p)(q − 1)(sq−2 − sq−p−1) < 0.

Hence l′(s) < 0 and l(s) > 0 for 0 < s < 1. We conclude that h′(s) > 0 for
0 < s < 1. As a consequence, h is increasing on the interval (0, 1). Moreover,
we have h(0) = 1 and, by L’Hospital’s rule,

lim
s→1

h(s) =
q − 1

p− 1
.

This concludes the proof.

2.4 The slope at the endpoints

Our goal in this section is to investigate what happens for J(ω, p, q) when
ω is close to 0 and ω∗.

2.4.1 The zero frequency case

In this section, we determine the limit of J(ω, p, q) when ω tends to zero.
Let J0 be defined by

J0(p, q) = lim
ω→0

J(ω, p, q).

We first consider the case where ap > 0.

Proposition 2.4.1. Let ap > 0. The following holds.

1. If 1 < p < 7
3
, then J0(p, q) = 0+.

2. If p = 7
3
, then 0 < J0(p, q) <∞.

3. If 7
3
< p < 5, then J0(p, q) =∞.

4. If p = 5, then three cases have to be distinguished.

(a) If q < 9, then J0(p, q) = − sign(aq)∞.

(b) If q = 9, then 0 < − sign(aq)J0(p, q) <∞.

(c) If q > 9, then J0(p, q) = 0− sign(aq).

5. If 5 < p, then J0(p, q) = −∞.

Proof. When ap > 0, we have

lim
ω→0

φ0 = φ∗ = 0.
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Recall that we have shown in Lemma 2.3.1 that J may be written as J(ω, p, q) =

C(φ0)F (φ0). We have (recalling the definition (2.3.4) of C and the expression
(2.2.2) of ∂ωφ0)

C(φ0) =
1

2
∂ωφ0φ

2
0 =

1

4

(
ap(p− 1)

p+ 1
φp−4

0 +
aq(q − 1)

q + 1
φq−4

0

)−1

= φ4−p
0

1

4

(
ap(p− 1)

p+ 1
+
aq(q − 1)

q + 1
φq−p0

)−1

= φ4−p
0

(
p+ 1

4ap(p− 1)
+ o(1)

)
.

The function F (defined in (2.3.2)) can be written, substituting Φp and Φq by
their expressions (2.3.1), as

F (φ0) =

∫ 1

0

2ap(5−p)
p+1

(1− sp−1)φp+1
0 + 2aq(5−q)

q+1
(1− sq−1)φq+1

0

(
2ap
p+1

(1− sp−1)φp+1
0 + 2aq

q+1
(1− sq−1)φq+1

0

) 3
2

sds.

As we are interested in the limit φ0 → 0, we factor out the terms in φp+1
0 to

get

F (φ0) = φ
− p+1

2
0

∫ 1

0

2ap(5−p)
p+1

(1− sp−1) + 2aq(5−q)
q+1

(1− sq−1)φq−p0

(
2ap
p+1

(1− sp−1) + 2aq
q+1

(1− sq−1)φq−p0

) 3
2

sds

= (5− p)φ−
p+1
2

0

(∫ 1

0

(
2ap
p+ 1

(1− sp−1)

)− 1
2

sds+ o(1)

)
.

In the particular case p = 5, we instead write

F (φ0) = aq(5− q)φq−8
0



∫ 1

0

2
q+1

(1− sq−1)
(ap

3
(1− s4)

) 3
2

sds+ o(1)


 .

In summary, when φ0 → 0 (i.e. ω → 0), we have established that there exists
C = C(p, q) > 0 such that when p 6= 5 we have

J(ω, p, q) = (5− p)φ
7−3p

2
0 C(1 + o(1)),

and when p = 5 we have

J(ω, p, q) = (5− q)aqφq−9
0 C(1 + o(1)).

This gives the desired result.

We now discuss the case ap < 0 and aq > 0.
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Proposition 2.4.2. Let ap < 0 and aq > 0.

1. Assume that p < 7
3
. Then J0(p, q) ∈ R and the following holds.

(a) If 2p+ q < 7, then J0(p, q) > 0.

(b) If 2p+ q = 7, then J0(p, q) = 0.

(c) If 2p+ q > 7, then J0(p, q) < 0.

2. Assume that p > 7
3
. Then J0(p, q) = −∞.

We start with some preliminaries. To establish the first part of Proposition
2.4.2, we will calculate J0 in terms of the Beta function. Recall that the Beta
function, also called Euler integral of the first kind, is a special function closely
related to the Gamma function. It is defined for x > 0 and y > 0 by the
integral

B(x, y) =

∫ 1

0

tx−1(1− t)y−1dt. (2.4.1)

The relation between the Beta function and the Gamma function is given by
(see e.g [1])

B(x, y) =
Γ(x)Γ(y)

Γ(x+ y)
.

We introduce the function H defined for x > 0 and y > 0 by

H(x, y) =

∫ 1

0

tx−1(1− ty)
(1− t) 3

2

dt. (2.4.2)

The relation between H and B is given in the following lemma.

Lemma 2.4.3. For x > 0 and y > 0, we have

H(x, y) = −(2x− 1)B

(
x,

1

2

)
+ (2x+ 2y − 1)B

(
x+ y,

1

2

)
. (2.4.3)

Proof. Let
u(t) = tx−1(1− ty).

Rewrite
1

(1− t) 3
2

= v′(t)− 1

(1− t) 1
2

,

where

v(t) =
2

(1− t) 1
2

− 2(1− t) 1
2 =

2t

(1− t) 1
2

.



2.4. The slope at the endpoints 31

We have

H(x, y) =

∫ 1

0

u(t)

(
v′(t)− 1

(1− t) 1
2

)
dt,

=u(1−)v(1−)− u(0+)v(0+)−
∫ 1

0

u′(t)v(t)dt−
∫ 1

0

u(t)

(1− t) 1
2

dt,

=0−
∫ 1

0

2tu′(t) + u(t)

(1− t) 1
2

dt.

Above we have used u(1) = 0 of order 1 to cancel the singularity of v(1−) of
order 1

2
, and v(0) = 0 with order 1 to cancel the singularity of u(0+) of order

x− 1. Note that

2tu′(t) + u(t) = (2x− 1)tx−1 − (2x+ 2y − 1)tx+y−1.

Therefore, using the definition of B given in (2.4.1) with y = 1
2
, we have

H(x, y) = −(2x− 1)B

(
x,

1

2

)
+ (2x+ 2y − 1)B

(
x+ y,

1

2

)
.

This concludes the proof.

The value J0(p, q) may be expressed using B as follows.
Lemma 2.4.4. Let ap < 0 and aq > 0. Assume that 1 < p < 7/3. Then

J0(p, q) = (7− 2p− q)C0B

(
7− 3p

2(q − p) ,
1

2

)
,

where C0 is a positive constant explicitly known (given by (2.4.5)).
The first part of Proposition 2.4.2 is a direct consequence of Lemma 2.4.4.

Proof of Lemma 2.4.4. Let 1 < p < 7/3. Recall that J(ω, p, q) = C(φ0)F (φ0),
with C(φ0) > 0 and F given by (2.3.2). Observe that, using the value of φ∗
given in (2.2.3), we may introduce the constant

C∗ =
2aq
q + 1

φq+1
∗ = − 2ap

(p+ 1)
φp+1
∗ .

Using the definition (2.3.4) of C(φ0) and the expression (2.2.2) of ∂ωφ0, we
have

lim
φ0→φ∗

C(φ0) = C(φ∗) =
φ5
∗

2C∗(q − p)
> 0,

lim
φ0→φ∗

Φp =
2ap

(p+ 1)
φp+1
∗ (1− sp−1) = −C∗(1− sp−1),

lim
φ0→φ∗

Φq =
2aq

(q + 1)
φq+1
∗ (1− sq−1) = C∗(1− sq−1).
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As a consequence, we get

lim
φ0→φ∗

(Φp + Φq) = C∗(s
p−1 − sq−1),

lim
φ0→φ∗

((5− p)Φp + (5− q)Φq) = C∗
(
−(5− p)(1− sp−1) + (5− q)(1− sq−1)

)
.

As a consequence,

F (φ∗) = C
− 1

2
∗

∫ 1

0

−(5− p)(1− sp−1) + (5− q)(1− sq−1)

(sp−1 − sq−1)
3
2

sds

= C
− 1

2
∗

∫ 1

0

−(q − p)(1− sp−1) + (5− q)(sp−1 − sq−1)

(1− sq−p) 3
2

s
5−3p

2 ds

= C
− 1

2
∗

(
−(q − p)

∫ 1

0

(1− sp−1)s
5−3p

2

(1− sq−p) 3
2

ds+ (5− q)
∫ 1

0

s
3−p
2

(
1− sq−p

)− 1
2 ds

)
.

(2.4.4)
Changing variable t = sq−p, we obtain

F (φ∗) = C
− 1

2
∗

(
−
∫ 1

0

(1− t
p−1
q−p )t

7−p−2q
2(q−p)

(1− t) 3
2

ds+
5− q
q − p

∫ 1

0

t
5+p−2q
2(q−p) (1− t)− 1

2 ds

)
.

We now use B and H to express the above quantity. Setting

(x1, y1) =

(
7− p− 2q

2(q − p) + 1,
p− 1

q − p

)
=

(
7− 3p

2(q − p) ,
p− 1

q − p

)
,

(x2, y2) =

(
5 + p− 2q

2(q − p) + 1,
1

2

)
=

(
5− p

2(q − p) ,
1

2

)
,

we get

F (φ∗) = C
− 1

2
∗

(
−H(x1, y1) +

5− q
q − pB(x2, y2)

)
.

Observe that we have assumed p < 7
3
, p < q, which ensures that x1, x2, y1, y2

are positive. This a posteriori justifies the fact that J0(p, q) is finite. The
formula (2.4.3) allows us to express H(x1, y1) in the following way (using
y2 = 1/2):

H(x1, y1) = −(2x1 − 1)B (x1, y2) + (2x1 + 2y1 − 1)B (x1 + y1, y2) .

It turns out that

−(2x1−1) = −7− 2p− q
q − p , (2x1+2y1−1) =

5− q
q − p, x1+y1 =

5− p
2(q − p) = x2.

As a consequence, there is a simplification in the expression of F (φ∗), which
becomes

F (φ∗) = C
− 1

2
∗

7− 2p− q
q − p B (x1, y2) .
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Setting

C0 =
C
− 1

2
∗

q − pC(φ∗) > 0 (2.4.5)

gives the desired result.

Lemma 2.4.5. Assume that ap < 0 and aq > 0. For p > 7/3 and 1 < p < q,
we have

lim
ω→0

J(ω, p, q) = −∞.

The second part of Proposition 2.4.2 is a direct consequence of Lemma
2.4.5.

Proof. Coming back to the expression (2.4.4) of F (φ∗) in the proof of Lemma
2.4.4, we observe that if 5−3p

2
6 −1, i.e. p > 7

3
, then F (φ∗) = −∞, and, since

limφ0→φ∗ C(φ0) = C(φ∗) > 0, we also have J0(p, q) = −∞ when p > 7
3
.

2.4.2 The large frequency case

In this section, we determine the limit of J(ω, p, q) when ω tends to ω∗.
Let J∗ be defined by

J∗(p, q) = lim
ω→ω∗

J(ω, p, q).

We first consider the case where aq > 0.

Proposition 2.4.6. Let aq > 0. The following holds.
1. If 1 < q < 7

3
, then J∗(p, q) = 0+.

2. If q = 7
3
, then 0 < J∗(p, q) <∞.

3. If 7
3
< q < 5, then J∗(p, q) =∞.

4. If q = 5, then J∗(p, q) = 0sign(ap).
5. If 5 < q, then J∗(p, q) = −∞.

Proof. Since aq > 0, we have ω∗ =∞ and therefore φ∗ =∞. Following similar
arguments as in the proof of Proposition 2.4.1, as φ0 →∞, for q 6= 5, we have

C(φ0) = φ4−q
0

(
q + 1

4aq(q − 1)
+ o(1)

)
,

F (φ0) = (5− q)φ−
q+1
2

0

(∫ 1

0

(
2aq
q + 1

(1− sq−1)

)− 1
2

sds+ o(1)

)
.

As a consequence, for q 6= 5, when φ0 → ∞ (i.e. ω → ∞), there exists
C = C(aq, q) > 0 such that

J(ω, p, q) = (5− q)φ
7−3q

2
0 C(1 + o(1)).
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In the particular case q = 5, we instead write

F (φ0) = ap(5− p)φp−8
0



∫ 1

0

2
p+1

(1− sp−1)
(aq

3
(1− s4)

) 3
2

sds+ o(1)


 .

and therefore we get

J(ω, p, q) = ap(5− p)φp−9
0 C(1 + o(1)).

The two estimates on J lead to the desired result.

Then we consider the case where aq < 0 (and thus ap > 0 to ensure
existence of standing waves).
Proposition 2.4.7. Let ap > 0, aq < 0 and 5 6 p. Then

J∗(p, q) =∞.
Proposition 2.4.7 does not cover the whole possible range of p and q. As

it was not necessary in our analysis, we did not try to cover the remaining
cases.

Proof of Proposition 2.4.7. By construction, ω∗ = ω(φ∗) is the value of ω at
which ∂φ0ω(φ∗) = 0. As a consequence, we have

lim
φ0→φ∗

∂φ0

∂ω
=∞,

which, given the value (2.3.4) of C(φ0), readily implies

lim
φ0→φ∗

C(φ0) =∞.

Using the expressions of (2.3.1) of Φp and Φq and the expression (2.3.2) of F
we have

F (φ∗) =

∫ s

0

2ap
(5−p)(φ∗)p+1(1−sp−1)

p+1
+ 2aq

(5−q)(φ∗)q+1(1−sq−1)
q+1

(
2ap

(φ∗)p+1(1−sp−1)
p+1

+ 2aq
(φ∗)q+1(1−sq−1)

q+1

) 3
2

sds.

If p = 5, then we have F (φ∗) > 0 and the conclusion follows. From now on,
assume that p > 5. Recalling the value of φ∗ given in (2.2.3), we infer that

2ap
(5− p)(φ∗)p+1(1− sp−1)

p+ 1
+ 2aq

(5− q)(φ∗)q+1(1− sq−1)

q + 1

= 2aq(φ
∗)p+1(1− sq−1)

(5− q)
q + 1

(
ap(5− p)(q + 1)

aq(5− q)(p+ 1)

(1− sp−1)

(1− sq−1)
+ (φ∗)q−p

)

= 2ap(φ
∗)p+1(1− sq−1)

(5− q)
q + 1

(
(5− p)(q + 1)

(5− q)(p+ 1)

(1− sp−1)

(1− sq−1)
− p− 1

q − 1

q + 1

p+ 1

)

= 2ap(φ
∗)p+1(1− sq−1)

(5− q)
p+ 1

(
(5− p)
(5− q)

(1− sp−1)

(1− sq−1)
− p− 1

q − 1

)
> 0,
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where we have used in particular Lemma 2.3.3 for the last inequality. This
implies that F (φ∗) > 0 which, since J(ω, p, q) = C(φ0)F (φ0), finishes the
proof.

2.5 Determination of the sign of the slope

In this section, we determine for each possible values of ap, aq, p and q the
sign of J(ω, p, q). Combined with the stability criteria of Section 2.2.2, this
will prove Theorem 2.1.1. The general strategy of our proofs is the following.
Recall from Lemma 2.3.1 that J(ω, p, q) = C(φ0)F (φ0), where

F (φ0) =

∫ 1

0

(5− p)Φp + (5− q)Φq

(Φp + Φq)
3
2

sds,

and C(φ0) > 0. Moreover, ω and φ0 are in an increasing one to one corre-
spondence. Hence, to determine the sign of J , it is sufficient to determine the
sign of F (φ0). To do this, we have two ingredients at our disposal. First, it is
usually not difficult to establish that F has a constant sign on intervals of the
type (φ∗, φ0,1) or (φ0,1, φ

∗). On the other hand, the expression for ∂φ0F (φ0)

given in Lemma 2.3.2 allows us to show that ∂φ0F (φ0) has a constant sign
on intervals of the type (φ∗, φ0,2) or (φ0,2, φ

∗). If the intervals of the two in-
gredients overlap and if the signs are matching, the conclusion will follow.
For example, if F (φ0) > 0 on (φ∗, φ0,1), and ∂φ0F (φ0) > 0 on (φ0,2, φ

∗) and
φ0,1 > φ0,2, then F (φ0) > 0 on (φ∗, φ

∗). The detail of each case is given in the
following sections.

2.5.1 The focusing-focusing case

In this section, we consider the case ap > 0, aq > 0. In this case we have
Φp > 0 and Φq > 0.

Lemma 2.5.1. Let ap > 0, aq > 0 and q 6 5. Then for all ω ∈ (0,∞) we have

J(ω, p, q) > 0,

and the family of standing waves is of type S.

Proof. If q 6 5, then 5− p > 0 and 5− q > 0. Therefore for any φ0 ∈ (0,∞)

we have
F (φ0) > 0,

which gives the desired conclusion.
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Lemma 2.5.2. Let ap > 0, aq > 0 and p > 5. Then for all ω ∈ (0,∞) we have

J(ω, p, q) < 0,

and the family of standing waves is of type U.

Proof. If p > 5, then 5− p 6 0 and 5− q < 0. Therefore for any φ0 ∈ (0,∞)

we have
F (φ0) < 0,

which gives the desired conclusion.

The remaining case p < 5 < q is a bit more involved to consider.

Lemma 2.5.3. Let ap > 0, aq > 0 and p < 5 < q. There exists φ0,1 (explicitly
given in (2.5.1)) such that if φq−p0 > φq−p0,1 then

F (φ0) < 0.

Proof. Using the formula (2.3.2) of F (φ0) and replacing in the numerator of
the integrand Φp and Φq by their expressions (2.3.1), we obtain

F (φ0) =

∫ 1

0

(5− p) 2ap
p+1

φp+1
0 (s− sp) + (5− q) 2aq

q+1
φq+1

0 (s− sq)
(Φp + Φq)

3
2

ds.

Let
l(s) = (5− p) 2ap

p+ 1
φp+1

0 (s− sp) + (5− q) 2aq
q + 1

φq+1
0 (s− sq),

and
k(s) = (Φp + Φq)

3
2 .

We may reformulate l(s) in the following way:

l(s) =

(
(5− p) 2ap

p+ 1
φp+1

0 + (5− q) 2aq
q + 1

φq+1
0

1− sq−1

1− sp−1

)
(s− sp).

From Lemma 2.3.3, we know that the function s→ 1−sq−1

1−sp−1 is increasing from
1 to q−1

p−1
when s goes from 0 to 1. Let φ0,0 be given by

φq−p0,0 = −ap(5− p)(q + 1)(p− 1)

aq(5− q)(p+ 1)(q − 1)
,

and assume from now on that φ0 > φ0,0. Then

lim
s→1

l(s)

s− sp < 0,
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and there exists s∗ ∈ [0, 1) such that l(s) > 0 for s ∈ (0, s∗) and l(s) < 0 for
s ∈ (s∗, 1).

Define k̃ by k̃(s) = k(s)
k(s∗)

. Then k̃(s∗) = 1. As k and therefore k̃ is a
positive decreasing function of s, for all s ∈ (0, 1) we have

l(s)

k̃(s)
< l(s).

Integrating over (0, 1), we obtain

F (φ0) <
1

k(s∗)

∫ 1

0

l(s)ds,

and F (φ0) will be negative if the integral in the right member is. Define
φ0,1 > φ0,0 by

φq−p0,1 = −ap(5− p)(p− 1)(q + 1)2

aq(5− q)(q − 1)(p+ 1)2
. (2.5.1)

If φ0 > φ0,1, then
∫ 1

0

l(s)ds = (5− p) ap
p+ 1

φp+1
0

(
p− 1

p+ 1

)
+ (5− q) aq

q + 1
φq+1

0

(
q − 1

q + 1

)
< 0.

Hence for any φ0 > φ0,1 we have F (φ0) < 0. This concludes the proof.

Lemma 2.5.4. Let ap > 0, aq > 0 and p < 5 < q. Let γ = p+1
2
. There exists

φ0,2 (explicitly given in (2.5.4)) such that the integrand Iγ of Fγ defined in
(2.3.5) verifies

∂Iγ
∂φ0

< 0

for all φ0 ∈ (0, φ0,2).

Proof. As γ = p+1
2
, from Lemma 2.3.2 we have

∂Iγ
∂φ0

=
1

2
φγ−1

0

(
((5− q)(p− q)Φq) (Φp + Φq)− 3(p− q)2ΦpΦq

(Φp + Φq)
5
2

)
,

=
1

2
φγ−1

0 Φq(p− q)
(

(5 + 2q − 3p)Φp + (5− q)Φq

(Φp + Φq)
5
2

)
.

As a consequence ∂φ0Iγ < 0 if

(5 + 2q − 3p)Φp + (5− q)Φq > 0.
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Replacing Φp and Φq by their expressions (2.3.1), this is equivalent to

(5 + 2q − 3p)
ap

p+ 1
φp+1

0 (1− sp−1) + (5− q) aq
q + 1

φq+1
0 (1− sq−1) > 0. (2.5.2)

Since p < 5 < q, we have 5 + 2q − 3p > 0, and therefore (2.5.2) becomes

φq−p0 < −ap
aq

(5 + 2q − 3p)

(5− q)
(q + 1)

(p+ 1)

(1− sp−1)

(1− sq−1)
. (2.5.3)

We know from Lemma 2.3.3 that

p− 1

q − 1
<

1− sp−1

1− sq−1
.

Define
φq−p0,2 = −ap

aq

(5 + 2q − 3p)

(5− q)
(q + 1)

(p+ 1)

(p− 1)

(q − 1)
. (2.5.4)

If φ0 < φ0,2 then (2.5.3) is verified, which concludes the proof.

Lemma 2.5.5. Let ap > 0, aq > 0 and p < 5 < q. The function Fγ(φ0) has at
most one zero in (0,∞).

Proof. As p < q, we have

3(p− 1)(p− q) < 0,

hence
(5− p)(q + 1) < (p+ 1)(5 + 2q − 3p).

It implies

−ap
aq

(5− p)
(5− q)

(q + 1)2

(p+ 1)2

(p− 1)

(q − 1)
< −ap

aq

(5 + 2q − 3p)

(5− q)
(q + 1)

(p+ 1)

(p− 1)

(q − 1)
.

Therefore, we have
φq−p0,1 < φq−p0,2 .

We know from Lemma 2.5.3 that Fγ(φ0) < 0 if φ0 ∈ (φ0,1,∞), and from
Lemma 2.5.4 that Fγ(φ0) is decreasing for all φ0 ∈ (0, φ0,2). As φ0,1 < φ0,2,
this implies that Fγ(φ0) has at most one zero.

Lemma 2.5.6. Let ap > 0, aq > 0 and p < 5 < q. There exists ω1 ∈ (0,∞)

such that

J(ω, p, q) > 0 for ω < ω1, J(ω1, p, q) = 0, J(ω, p, q) < 0 for ω > ω1,

and the family of standing waves is of type SU.

Proof. From Proposition 2.4.1, we know that J(ω, p, q) > 0 for ω close to 0.
Combined with Lemmas 2.5.3 and 2.5.5, this implies the desired result.
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2.5.2 The focusing-defocusing case

In this section, we consider the case ap > 0, aq < 0. In this case Φp > 0

and Φq < 0.

Lemma 2.5.7. Let ap > 0, aq < 0 and p 6 5 < q. For any ω ∈ (0, ω∗), we have

J(ω, p, q) > 0,

and the family of standing waves is of type S.

Proof. We have 5 − p > 0, and 5 − q < 0. Therefore F (φ0) > 0 for any
φ0 ∈ (0, φ∗), which gives the desired result.

Lemma 2.5.8. Let ap > 0, aq < 0 and p < q 6 5. Let γ = p+1
2
. Then the

integrand Iγ of Fγ defined in (2.3.5) verifies

∂Iγ
∂φ0

> 0

for all φ0 ∈ (0, φ∗).

Proof. From Lemma 2.3.2 with γ = p+1
2
, we have

∂Iγ
∂φ0

=
1

2
φγ−1

0

(
((5− q)(p− q)Φq) (Φp + Φq)− 3(p− q)2ΦpΦq

(Φp + Φq)
5
2

)
.

Since 5−q > 0, p−q < 0 and Φq < 0, we have ∂Iγ
∂φ0

> 0 for any φ0 ∈ (0, φ∗).

Lemma 2.5.9. Let ap > 0, aq < 0 and 5 < p < q. Let γ = p− q+ 3. Then the
integrand Iγ of Fγ defined in (2.3.5) verifies

∂Iγ
∂φ0

> 0

for all φ0 ∈ (0, φ∗).

Proof. Let γ = p− q + 3.

∂Iγ
∂φ0

= φγ−1
0

(
((5− p)(p− 2q + 5)Φp + (5− q)(2p− 3q + 5)Φq) (Φp + Φq)

2 (Φp + Φq)
5
2

)

− φγ−1
0

(
3(p− q)2ΦpΦq

2 (Φp + Φq)
5
2

)
.
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The sign of ∂Iγ
∂φ0

is the same as the sign of the numerator of the fraction. Fac-
toring out Φ2

p, the sign is the same as the one of the second order polynomial
in Φq

Φp
given by

(5− q)(2p−3q+ 5)

(
Φq

Φp

)2

+ 2(5−p)(2p−3q+ 5)

(
Φq

Φp

)
+ (5−p)(p−2q+ 5).

As 2p − 3q + 5 < 0 and 5 − q < 0, the coefficient of the term of order 2 is
positive. Therefore to show that the polynomial is positive, it is sufficient to
show that the discriminant ∆, given by

∆ = 4(5− p)(2p− 3q + 5)((5− p)(2p− 3q + 5)− (5− q)(p− 2q + 5)),

= −8(5− p)(2p− 3q + 5)(p− q)2,

is negative. We have 2p − 3q + 5 < 0 and 5 − p < 0, therefore ∆ < 0. This
concludes the proof.

Lemma 2.5.10. Let ap > 0, aq < 0.
— Let p < q 6 5. Then for any ω ∈ (0, ω∗), we have

J(ω, p, q) > 0,

and the family of standing waves is of type S.
— Let 5 < p < q. Then there exist ω1 ∈ (0,∞) such that

J(ω, p, q) < 0 for ω < ω1, J(ω1, p, q) = 0, J(ω, p, q) > 0 for ω > ω1,

and the family of standing waves is of type US.

Proof. In both cases, we infer from Lemmas 2.5.8 and 2.5.9 that for any ω ∈
(0, ω∗), the function ω → J(ω, p, q) changes sign (from negative to positive)
at most once on ω ∈ (0, ω∗).

To establish the desired conclusion, we consider the values of J close to
the endpoints. As ω → 0, we have established in Proposition 2.4.1 that for ω
close to 0, we have

J(ω, p, q) > 0 for p 6 5, J(ω, p, q) < 0 for p > 5.

As J is increasing, this gives the conclusion for the first part of the Lemma.
For the second part of the Lemma, we look at the limit ω → ω∗ (i.e. φ0 →

φ∗). From Proposition 2.4.7, for 5 < p < q and for ω close to ω∗ we have

J(ω, p, q) > 0,

which gives the second part of the Lemma.
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2.5.3 The defocusing-focusing case

In this section, we consider the case ap < 0, aq > 0. In this case Φp < 0

and Φq > 0.

Lemma 2.5.11. Let ap < 0, aq > 0 and p < q < 5. Let γ = q+1
2
. If 3q > 2p+5,

then the integrand Iγ of Fγ defined in (2.3.5) verifies

∂Iγ
∂φ0

> 0

for all φ0 ∈ (φ∗,∞).

Proof. As γ = q+1
2
, from Lemma 2.3.2 we have

∂Iγ
∂φ0

=
1

2
φγ−1

0

(
((5− p)(q − p)Φp) (Φp + Φq)− 3(p− q)2ΦpΦq

(Φp + Φq)
5
2

)
,

=
1

2
φγ−1

0 Φp(q − p)
(

(5− p)Φp + (5− p)Φq + 3(p− q)Φq

(Φp + Φq)
5
2

)
,

=
1

2
φγ−1

0 Φp(q − p)
(

(5− p)Φp + (5 + 2p− 3q)Φq

(Φp + Φq)
5
2

)
.

As 0 < 5− p and 2p+ 5− 3q 6 0 we have

(5− p)Φp + (5 + 2p− 3q)Φq < 0.

As a consequence ∂Iγ
φ0

> 0 for all φ0 ∈ (φ∗,∞) when 5 + 2p− 3q 6 0, which is
the desired conclusion.

Lemma 2.5.12. Let ap < 0, aq > 0 and p < q < 5. Let γ = p − q + 3. If
3q < 2p+ 5 then the integrand Iγ of Fγ defined in (2.3.5) verifies

∂Iγ
∂φ0

> 0

for all φ0 ∈ (φ∗,∞).

Proof. As γ = p− q + 3, from Lemma 2.3.2 we have

∂Iγ
∂φ0

= φγ−1
0

(
((5− p)(p− 2q + 5)Φp + (5− q)(2p− 3q + 5)Φq) (Φp + Φq)

2 (Φp + Φq)
5
2

)

+ φγ−1
0

(
−3(p− q)2ΦpΦq

2 (Φp + Φq)
5
2

)
.
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If the numerator of the fraction is positive then the derivative is positive.
Factorizing out Φ2

p, the sign of the numerator is the same as the one of the
quadratic polynomial in Φq

Φp
given by

(5− q)(2p−3q+ 5)

(
Φq

Φp

)2

+ 2(5−p)(2p−3q+ 5)

(
Φq

Φp

)
+ (5−p)(p−2q+ 5).

As 2p − 3q + 5 > 0 and 5 − q > 0, the coefficient of the term of order 2 is
positive. Therefore to show that the polynomial is positive, it is sufficient to
show that the discriminant ∆, given by

∆ = 4(5− p)(2p− 3q + 5)((5− p)(2p− 3q + 5)− (5− q)(p− 2q + 5)),

= −8(5− p)(2p− 3q + 5)(p− q)2,

is negative. We have 2p − 3q + 5 > 0 and 5 − p > 0, therefore ∆ < 0. This
concludes the proof.

Lemma 2.5.13. Let ap < 0, aq > 0 and p < q < 5.
— If q 6 7− 2p, then for any ω ∈ (0,∞), we have

J(ω, p, q) > 0,

and the family of standing waves is of type S.
— If q > 7− 2p, then there exist ω1 ∈ (0,∞) such that

J(ω, p, q) < 0 for ω < ω1, J(ω1, p, q) = 0, J(ω, p, q) > 0 for ω > ω1,

and the family of standing waves is of type US.

Proof. Lemmas 2.5.11 and 2.5.12 implies Fγ changes sign only once on (0, ω∗).
From Proposition 2.4.2, we know that as ω → 0, we have J(ω, p, q) > 0

when q 6 7− 2p, which gives the conclusion for the first part of the Lemma.
When q > 7 − 2p, from Proposition 2.4.2, we know that as ω → 0, we have
J(ω, p, q) < 0. Since, from Proposition 2.4.6, we know that J(ω, p, q) > 0 for
large ω, the conclusion follows for the second part of the Lemma.

Lemma 2.5.14. Let ap < 0, aq > 0 and p < 5 6 q. For any ω ∈ (0,∞), we
have

J(ω, p, q) < 0,

and the family of standing waves is of type U .

Proof. We have 5 − p > 0, 5 − q 6 0, Φp < 0 and Φq > 0. Therefore we
directly see on the expression (2.3.2) of F (φ0) that F (φ0) < 0, which gives
the desired result.
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Lemma 2.5.15. Let ap < 0, aq > 0 and 5 6 p < q. For any ω ∈ (0,∞), we
have

J(ω, p, q) < 0,

and the family of standing waves is of type U .

Proof. We know that φ∗ < φ0, therefore −ap
aq

q+1
p+1

< φq−p0 . As 5−p
5−q < 1, we have

−ap
aq

q+1
p+1

5−p
5−q < φq−p0 . From Lemma 2.3.3 we know that 1−sp−1

1−sq−1 < 1, hence

−ap
aq

(q + 1)

(p+ 1)

(5− p)
(5− q)

1− sp−1

1− sq−1
< φq−p0 ,

which is equivalent to
(5− p)
(5− q) < −

Φq

Φp

,

which implies
(5− p)Φp + (5− q)Φq < 0.

This implies that F (φ0) < 0 which gives the desired result.

2.5.4 The critical frequency

Observe that, as a by-product of the analysis of the previous sections, we
should have instability at the critical frequency (under regularity assumptions
on the nonlinearity) when there is a stability change. Indeed, we have

∂2
ωM(φω) = ∂ω

(
C(φ0)φ−γ0 Fγ(φ0)

)

= ∂ωφ0

(
∂φ0
(
C(φ0)φ−γ0

)
Fγ(φ0) + C(φ0)φ−γ0 ∂φ0Fγ(φ0)

)
.

At the stability change, we have F (φ0) = 0. Therefore, at the stability change,

∂2
ωM(φω) = (∂ωφ0)C(φ0)φ−γ0 ∂φ0Fγ(φ0).

As we have shown that in this case ∂φ0Fγ(φ0) 6= 0, the criterion (2.2.4) holds.

2.6 Numerical experiments

To explore further the stability/instability of standing waves, we have
performed a series of numerical experiments in the case ap < 0, aq > 0,
1 < p < q < 5.

The Python language and the specific libraries Numpy, Scipy and Mat-
plotlib have been used to perform the experiments. The code is made available
in [53].
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2.6.1 The critical surface for stability/instability

We first analyzed the critical surface in (ω, p, q) separating instability
from stability. To this aim, we first have implemented the calculation of
J(ω, p, q). The function integrate.quad has been used to perform the inte-
gration. While the results are overall satisfactory, in some cases the function
returned incorrect results, with problems increasing as ω was taken closer to
0.

To estimate the critical ω at given (p, q), we have used the classical bisec-
tion method, which has the advantage of being very robust. The algorithm is
divided into two parts.

First, we find an initial interval [ω0, ω1] in which we are sure that ω →
J(ω, p, q) changes sign. A natural choice for ω0 is 0. To find a suitable ω1,
we simply start with ω1 = 1 and test if J(ω1, p, q) > 0. If not, we replace ω1

by 2ω1 and repeat until J(ω1, p, q) > 0. To avoid running an infinite loop, we
break it when ω1 > 1010 and do not search for ωc in these cases. Second, we
apply the bisection method to search for a root of J(ω, p, q) inside [ω0, ω1]. As
this approach, while being efficient, is also relatively slow, we took advantage
of the computer power of our department to run computations in parallel on
the (p, q) ∈ [1, 5]× [1, 5] grid with dp = dq = 0.01.

We have represented the critical surface

{(p, q, ωc(p, q))}

for ap = −1 and three different values of aq = 1/2, 1, 2 in Figure 2.1.
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Figure 2.1 – Critical surface {(p, q, ωc(p, q))} for ap = −1 and aq = 1/2, 1, 2.
The white lines represent q = 7 − 2p and q = p, where the transition from
ωc = 0 to ωc > 0 occurs.

Several observations can be made on the critical surface. As (p, q) ap-
proaches the line q = 5, we have ωc(p, q) → ∞, which is consistent with the
fact that standing waves are all unstable on this line.
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It can be observed that on the line q = 7− 2p the transition is continuous,
no matter the value of aq. To the contrary, the transition is continuous on the
line p = q when aq > 1, whereas it becomes discontinuous when aq < 1, in
which case ωc(p, q)→∞ as q → p.

To investigate more the transition close to the lines q = 7− 2p and q = p,
we plot slices of the critical surface for a fixed value of q in Figure 2.2. We
chose to present the results when q = 4, but similar results are obtained with
other values of q. On Figure 2.2, we observe that when aq = |ap| = 1, the
transition between ωc(p, q) = 0 and ωc(p, q) > 0 at q = p and q = 7 − 2p is
Lipschitz. When aq = 2 > |ap| = 1, the transition seems smoother (but closer
observations will reveal otherwise) when q = p, whereas it remains Lipchitz
when q = 7 − 2p. To the contrary, when aq = 1/2 < |ap| = 1, the transition
is discontinuous when q = p, whereas it seems smoother at q = 7− 2p.
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Figure 2.2 – Slices of the critical surface for fixed value of q = 4

To confirm our previous observations, we zoomed on the slices of Figure
2.2 and obtained the results presented in Figure 2.3. Observing closer the
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Figure 2.3 – Zoom on slices of the critical surface for fixed value of q = 4

transition from ωc > 0 to ωc = 0 on fixed q slices of Figure 2.3, we realize
that the transition on the left (q = 7− 2p) seems to be always only Lipschitz,
contrary to what could be inferred from the previous observation. On the
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other hand, the previous observation when p = q is confirmed: the transition
seems smooth when aq = 2, Lipschitz when aq = 1, and discontinuous when
aq = 1/2. This is reflecting the fact that when p → q, the family of soliton
profiles has a different behavior for different values of aq. When aq > |ap|,
soliton profiles for p = q exist and are stable (hence ωc(p, q = p) = 0), whereas
for aq = |ap| the two nonlinearities exactly compensate and for |ap| > aq the
defocusing nonlinearity becomes the dominant one (and solitary waves do not
even exist).

From the previous observations, we know that at fixed q the map p →
ωc(p, q) has a unique maximum if aq = 1 or aq = 2 (if aq = 1/2, we have seen
that the map increases towards infinity as p approaches q). Denote by pmax(q)

the value realizing this maximum, i.e.

ωc(pmax(q), q) = max
1<p<5

ωc(p, q).

The line {(pmax(q), q), q > 7/3} is represented in Picture 2.4. When aq = 1,
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Figure 2.4 – Curve of the argument of maxp ωc(p, q) in terms of q

we observe that the line is tangent to the line p = q when q is close to 7/3

or close to 5. On the other hand, when aq = 2, the line seems to be tangent
to the line p = 7/3 when q is close to 7/3. It approaches the point (5, 5) as q
goes to 5, but does not seem to be tangent to the line p = q (it was however
not possible to obtain numerically a relevant picture closer to q = 5, which
leaves open the question of the behavior when q is close to 5).
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2.6.2 Evolution for initial data close to standing waves

We now turn to numerical experiments for the stability/instability of
solitary waves for the flow of (2.1.1). For the experiments, we have used
the Crank-Nicolson scheme with relaxation presented in [19] which has been
proved to be efficient for the numerical simulation of the Schrödinger flow
(see e.g. [10] for the comparison of various schemes used for the dynamical
simulations of the nonlinear Schrödinger flow).

For a time discretization step δt (typically δt = 10−3), denote by un the
approximation of u at time tn = nδt. The semi-discrete (in time) relaxation
scheme is then given by





φn+
1
2 +φn−

1
2

2
= ap|un|p + aq|un|q,

iu
n+1−un
δt

+ ∂xx

(
un+1+un

2

)
= −

(
un+1+un

2

)
φn+ 1

2 ,

with the understanding that u0 = u0 and φ−
1
2 = ap|u0|p + aq|u0|q. For the

implementation, the scheme is further discretized in space with second order
finite differences for the second derivative operator, with Dirichlet boundary
conditions.

We have performed simulations for (p, q) on the line q = 2p− 1, as for this
range of exponents explicit formulas are available for solitary wave profiles
(see e.g. [58]) and can be used easily to construct initial data. Considering
other ranges of (p, q) would have been possible, to the extend of additional
computations to first obtain numerically solitary waves. As we do not expect
different behavior to occur for other values of (p, q), the restriction to the line
q = 2p− 1 is harmless.

The initial data that we construct are all based on a solitary wave profile
φω. They are of the form

u0 = φω + εψ,

where 0 < ε � 1 is used to adjust the size of the perturbation and ψ is the
direction of perturbation, which can be for example

ψ = φω, ψ = φω cos, ψ = φω tanh, ψ = φω(· − 3).

As our numerical scheme uses Dirichlet conditions at the bounds of the space
interval, we have chosen to work with well-localized perturbation in order
to avoid possible numerical reflections due to the boundary conditions. Our
experiments consisted in taking one of the previous possibility as initial data,
running the simulation of the nonlinear Schrödinger flow, and observe the
pattern of the outcome. It turns out that after running numerous simulations,
we have observed only three possible types of behavior:
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— Stability;
— Growth followed by slightly decreasing oscillations;
— Dispersion.

Observe that our numerical results are in part similar to the ones obtained and
discussed in further details in [23, Section 4] in the case of the 2d cubic-quintic
(focusing-defocusing) nonlinear Schrödinger equation.

Stability means that the solution does not leave the neighborhood of φω
(up to phase shift and translations). We obviously expect to see this behavior
in the cases where the values of the parameters p, q, and ω ensure that the
solitary wave will be stable. However, one thing which is not easily decided
by the theory is the size of the basin of stability of the solitary wave. In
other words, finding a perturbation of the solitary wave sufficiently large to
be visible, but small enough so that the corresponding solution remains in the
vicinity of the solitary wave requires delicate adjustments.

An example of a stable behavior is provided in Figure 2.5. Observe that
while on the global scale the solution seems to be behave exactly as a solitary
wave (left picture), when getting a closer look at the maximum value (right
picture) we observe small oscillations (with an amplitude of order 0.03).
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Figure 2.5 – Example of a stable numerical solution. The initial data is u0 =

(1 + ε)φω, ε = 10−2.

The second behavior consists in a first phase of focusing growth of the
profile, which is similar to what can be observed when instability of solitons is
by blow-up (e.g. for power-type supercritical nonlinearities. However, after a
certain time, the focusing phase stops and is followed by a phase in which the
solution seems to oscillate around another profile. The size of the oscillation is
decaying, but at a slow pace, and we have not run the simulation long enough
to observe convergence toward a final state. An example of such a behavior
is presented in Figure 2.6.

Finally, the third behavior that we have observed could be characterized as
scattering, as the profile of the solution is simultaneously decreasing in height
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Figure 2.6 – Example of a growing/oscillating numerical solution. The initial
data is u0 = (1 + ε)φω, ε = 10−2.

while spreading over the whole line. As before, the decay is rather slow and
we have not run the simulation long enough for the solution to converge to
0. An example of such a behavior is presented in Figure 2.7. Observe that
the domain of calculation is [−50, 50], but the solution is represented only on
[−20, 20], which explains the non-zero values observed at the boundaries on
the left figure.
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Figure 2.7 – Example of a scattering numerical solution. The initial data is
u0 = (1− ε)φω, ε = 10−2.
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2.7 Notebooks

This section contains the Python code that we have developed in order to
illustrate our results. The first notebook provided is dedicated to the identi-
fication of the critical ω value, at which stability changes occur. The critical
surface has been represented in (ω, p, q) to provide a clear visual representa-
tion of the transition between instability and stability. In addition, we have
also included a second notebook in this section. This notebook centers on
numerical experiments and specifically explores the evolution of initial data
close to standing waves.



Notebook 1

[1]: %%file script_critical_omega.py

"""
Script for the surface w_critical(p1,p2).
Here with small values of p1 p2.
True script is runned on a dedicated server where multiprocessing will␣

↪→allow rapid calculations.
Outcomes of the script are saved under w_critical_{date}.out
Exploitation of datas obtained with the script is given at the end of␣

↪→the notebook.
"""

import numpy as np
import scipy as sp
import scipy.optimize as sco
from scipy import integrate
import time
from datetime import datetime
from concurrent.futures import ProcessPoolExecutor
from functools import partial
import shelve

Overwriting script_critical_omega.py

[2]: %%file --append script_critical_omega.py

def f1(z,p1,p2,a1=-1,a2=1):
s=np.abs(z)
return -a1*s**((p1-1)/2)-a2*s**((p2-1)/2)

def F1(z,p1,p2,a1=-1,a2=1):
s=np.abs(z)
return -(a1*s**((p1+1)/2))*2/(p1+1)-(a2*s**((p2+1)/2))*(2/(p2+1))

def U(s,w,p1,p2,a1=-1,a2=1):
s=np.abs(s)
return w*s+F1(s,p1,p2,a1,a2)

def U_der(s,w,p1,p2,a1=-1,a2=1):
s=np.abs(s)
return w+f1(s,p1,p2,a1,a2)

def U_div_s(s,w,p1,p2,a1=-1,a2=1):
s=np.abs(s)
return (w-(a1*s**((p1-1)/2))*2/(p1+1)-(a2*s**((p2-1)/2))*(2/(p2+1)))
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def U_div_s_prime(s,w,p1,p2,a1=-1,a2=1):
s=np.abs(s)
return -(a1*s**((p1-3)/2))*2/(p1+1)*(p1-1)/2-(a2*s**((p2-3)/2))*(2/

↪→(p2+1))*(p2-1)/2

def a(w,p1,p2,a1=-1,a2=1):
a=sco.fsolve(U_div_s,␣

↪→10,args=(w,p1,p2,a1,a2),fprime=U_div_s_prime,xtol=10**(-12))
a=np.abs(a)
if a==0:

print("error in a , a is 0")
return a

def J(w,p1,p2,a1=-1,a2=1):
A=a(w,p1,p2,a1,a2)
def integrand(s):

C=-A**(1.5)/(2*U_der(A,w,p1,p2,a1,a2))
I=(3+A*s*(U_der(A,w,p1,p2,a1,a2)-U_der(A*s,w,p1,p2,a1,a2))/

↪→U(A*s,w,p1,p2,a1,a2))*np.sqrt(s)/np.sqrt(np.
↪→abs(U(A*s,w,p1,p2,a1,a2)))

return C*I
I=integrate.quad(integrand, 0, 1,epsabs=10**(-100),limit=100)
return I[0]

# construction of a function returning the critical omega

def w_critical(p1,p2,a1=-1,a2=1):
dp1=0.0001
dp2=0.0001
if ((p2<=p1+dp1/2) or (p2-dp2/2<(-2*p1+7))):

return 0
else:

try:
precision=1
tol=0.00001
w1,w2=0,1
while J(w2,p1,p2,a1,a2)<0:

w2=2*w2
if w2>10**(10):

w1=10**(10)
break

while precision>tol:
w_tmp=w1+(w2-w1)/2
if J(w_tmp,p1,p2,a1,a2)>0:

w2=w_tmp
else:
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w1=w_tmp
precision=(w2-w1)/w2
if w2<10**(-12):

break
except:

pass
return w1

Appending to script_critical_omega.py

[13]: %%file --append script_critical_omega.py

# computation of the critical omega map with multi-processing

p1 = np.linspace(2, 5, 5, endpoint=False)
p2 = np.linspace(2, 5, 5, endpoint=False)
P1,P2 = np.meshgrid(p1,p2)
#P1P2=np.array([P1.flatten(),P2.flatten()])

# construct a new w_critical function for fixed values of a1 and a2
a1=-1
a2=0.5
partial_w_critical = partial(w_critical,a1=a1,a2=a2)

w_critical_P1P2=[]
if __name__ == "__main__":

PPE = ProcessPoolExecutor()
w_critical_P1P2 = list(PPE.map(partial_w_critical,P1.flatten(),P2.

↪→flatten()))

Appending to script_critical_omega.py

[14]: %%file --append script_critical_omega.py

# Save all variables (with in particular w_critical) to file with date␣
↪→in file name

date = datetime.now().strftime("%Y_%m_%d-%I_%M_%S_%p")

filename=f'w_critical_{date}.out'
my_shelf = shelve.open(filename,'n') # 'n' for new

for key in dir():
try:

my_shelf[key] = globals()[key]
except:

#

2.7. Notebooks 53



# __builtins__, my_shelf, and imported modules can not be␣
↪→shelved.

#
pass

my_shelf.close()

Appending to script_critical_omega.py

[15]: # To restore all needed variables (with in particular p1,p2, and␣
↪→w_critical)

import shelve

#filename='w_critical_2021_07_10-07_59_17_PM.out' # a2=2
filename='w_critical_2021_07_10-08_00_51_PM.out' # a2=1
#filename='w_critical_a1_is_-1_a2_is_0.5_2021_07_20-01_03_33_PM.out'#␣

↪→a2=1/2

my_shelf = shelve.open(filename)
list_of_variables = ['a1','a2','p1','p2','P1','P2','w_critical_P1P2']
for key in list_of_variables:#my_shelf:

try:
globals()[key]=my_shelf[key]

except:
print(f'Houston, we have a problem with {key}')
pass

my_shelf.close()

[16]: print(f"a1={a1}")
print(f"a2={a2}")
print(f"p1={p1[1]} {p1[2]} ... {p1[-2]} {p1[-1]}")
print(f"p2={p2[1]} {p2[2]} ... {p2[-2]} {p2[-1]}")

a1=-1
a2=1
p1=1.01 1.02 ... 4.98 4.99
p2=1.01 1.02 ... 4.98 4.99

[7]: #%matplotlib notebook
%matplotlib inline
%config InlineBackend.figure_format = 'retina'
import numpy as np
import matplotlib
import matplotlib.pyplot as plt

[8]: TeXFont = True
#plt.rcParams['figure.figsize']=[6,(3/4)*6]
if TeXFont:

plt.rcParams['font.size'] = 14.0 # font size
plt.rcParams['mathtext.fontset'] = 'cm' # computer moder math font
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plt.rcParams['text.usetex'] = True # use tex engine for␣
↪→everything (useful for the axes labels)

else:
plt.rcParams['text.usetex'] = False

FontSize = 14

[9]: w_critical_P1P2=np.reshape(w_critical_P1P2,(-1,np.shape(P2)[1]))
w_critical_P1P2_clip=np.copy(w_critical_P1P2)
w_critical_P1P2_clip[w_critical_P1P2_clip>10]=10# clipping the larger␣

↪→values of w_critical
fig1 = plt.figure(figsize=[6,6])
ax1 = plt.axes(projection='3d')
ax1.plot_surface(P1,P2,w_critical_P1P2_clip,cmap='gist_gray',␣

↪→edgecolor='none')
ax1.plot(p1[p1>7/3],p1[p1>7/3],zorder=3,color='w')
ax1.plot(p1[p1<7/3],7-2*p1[p1<7/3],zorder=3,color='w')
ax1.azim = -120
ax1.set_title(rf"Critical surface when $a_p={a1}$ and $a_q={a2}$")
# choose colormap from https://matplotlib.org/stable/tutorials/colors/

↪→colormaps.html
# e.g. gist_gray or binary or inferno or viridis
ax1.set_xlabel(r"$p$",fontsize=FontSize)
ax1.set_ylabel(r"$q$",fontsize=FontSize)
ax1.set_zlabel(r"$\omega_c$",fontsize=FontSize)
ax1.xaxis.set_rotate_label(False) # disable automatic rotation
ax1.yaxis.set_rotate_label(False) # disable automatic rotation
ax1.zaxis.set_rotate_label(False) # disable automatic rotation
fig1.savefig(f'surface_w_c_a1_is_{a1}_a2_is_{a2}.

↪→pdf',transparent=True,orientation='landscape',format='pdf',
bbox_inches='tight')
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Legend: Critical surface {(p, q, ωc(p, q))} for ap = −1 and aq = 1/2, 1, 2. The white
lines represent q = 7− 2p and q = p, where the transition from ωc = 0 to ωc = 0
occurs.

Several observations can be made on the critical surface. As (p, q) approaches the line
q = 5, we have ωc(p, q) → ∞, which is consistent with the fact that standing waves
are all unstable on this line, or in other word ω2(p, q = 5) = ∞.

Different behaviors appear close to the line p = q depending on the value of ap and aq.
When aq > ap, the transition is smooth, when aq = ap, the transition is sharp, whereas
when aq < ap we have ωc(p, q)→ ∞ as q→ p.

To investigate more the transition close the lines q = 7− 2p and q = p, we plot slices
of the critical surface for fixed values of q.

[10]: value_p2=4
index=np.argmax(p2>=value_p2)

fig2 = plt.figure(figsize=[6,6])
ax2 = plt.axes()
# Slice of the critical surface for $q={value_p2}$\n
ax2.set_title(f"when $a_p={a1}$ and $a_q={a2}$")
if np.isclose(a2,0.5) and np.isclose(value_p2,4):

to_pop=np.where((p1 > 3.465) & (p1 < 3.525))
newp1=p1
neww_critical=w_critical_P1P2[index,:]
for ind in to_pop[0][::-1]:

newp1=np.concatenate((newp1[:ind],newp1[ind+1:]), axis=0)
neww_critical=np.concatenate((neww_critical[:

↪→ind],neww_critical[ind+1:]),axis=0)
ax2.plot(newp1,neww_critical,label=f'$\omega_c(p,q={p2[index]:.

↪→2f})$')
else:

ax2.plot(p1,w_critical_P1P2[index,:
↪→],label=f'$\omega_c(p,q={p2[index]:.2f})$')

ax2.set_xlabel(r"$p$", rotation=0, fontsize=FontSize)
y_max=np.min([np.max(w_critical_P1P2[index,:]),1000])*1.1
ax2.set_ylim(-0.3,y_max)

legend = ax2.legend()
fig2.savefig(f'slice_w_c_a1_is_{a1}_a2_is_{a2}_p2_is_{value_p2}.

↪→pdf',transparent=True,orientation='landscape',format='pdf',
bbox_inches='tight')

56 Chapter 2. Standing waves of the double power 1d NLS



Observing closer the transition from ωc > 0 to ωc = 0 on fixed q slices, we realize
that the transition on the left (q = 7− 2p) is never smooth, whereas it is smooth when
aq = 2 not smooth but continuous when aq = 1, and discontinuous when aq = 1/2.
This is reflecting the fact that when p→ q, the family of soliton profiles has a different
behavior for different values of aq. When aq > ap, soliton profiles for p = q exist and
are stable (hence ωc(p, q = p) = 0), whereas for ap = aq the two nonlinearities exactly
compensate and for ap > aq the defocusing nonlinearity becomes the dominant one.

[11]: # close up view to check the regularity on the left and on the right
fig3 = plt.figure(figsize=[6,6])
ax3 = plt.axes()
# Slice of the critical surface for $q={value_p2}$\n
ax3.set_title(f"when $a_p={a1}$ and $a_q={a2}$")
ax3.plot(p1,w_critical_P1P2[index,:],label=f'$\omega_c(p,q={p2[index]:.

↪→2f})$')
ax3.set_xlabel(r"$p$", rotation=0, fontsize=FontSize)
y_max=1
ax3.set_ylim(-0.3,y_max)

legend = ax3.legend()
fig3.

↪→savefig(f'slice_close_up_w_c_a1_is_{a1}_a2_is_{a2}_p2_is_{value_p2}.
↪→pdf',transparent=True,orientation='landscape',format='pdf',

bbox_inches='tight')
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From the previous observations, we know that at fixed q the map p → ωc(p, q) has
a unique maximum if aq = 1 or aq = 2 (if aq = 1/2, we have seen that the map
increases towards infinity as p approaches q. Denote by pmax(q) the value realizing
this maximum, i.e.

ωc(pmax(q), q) = max
1<p<5

ωc(p, q).

The line {(pmax(q), p2), q > 7/3} is represented in Picture ??. When aq = 1, we ob-
serve that the line is tangent to the line p = q when q is close to 7/3 or close to 5. On
the other hand, when aq = 2, the line seems to be tangent to the line p = 7/3 when
q is close to 7/3. It approaches the point (5, 5) as q goes to 5, but does not seem to be
tangent to the line p = q (it was however not possible to obtain numerically a relevant
picture closer to q = 5, which leaves open the question of the behavior when q is close
to 5).

[12]: fig4 = plt.figure(figsize=[6,6])
ax4 = plt.axes()
ax4.plot(np.ones_like(p2)*7/3,p2,'k-.',label='$p=7/

↪→3$')#,linestyle='dashdot')
ax4.plot(p1,p2,'k:',label='$p=q$')
ax4.plot(p1,7-2*p1,'k--',label='$q=7-2p$')#,linestyle='dashed')
ax4.set_title(f"when $a_p={a1}$ and $a_q={a2}$")
ax4.set_xlabel(r"$p$", rotation=0, fontsize=FontSize)
ax4.set_ylabel(r"$q$", rotation=0, fontsize=FontSize)
ax4.set_ylim(7/3+0.1,4.8)

w_critical_P1P2=np.reshape(w_critical_P1P2,(-1,np.shape(P2)[1]))
p1_of_p2=p1[np.argmax(w_critical_P1P2,axis=1)]

if a2==2:
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# remove obviously wrong values
to_delete=[]
for index,pp1 in enumerate(p1_of_p2):

if p2[index]<3 and np.abs(pp1-7/3)>0.01:
to_delete.append(index)

new_p1_of_p2=np.delete(p1_of_p2,to_delete)
new_p2=np.delete(p2,to_delete)
ax4.plot(new_p1_of_p2,new_p2,'k',label='$p_{\max}(q)$')
legend=ax4.legend(loc="upper left",prop={'size': 12})
fig4.savefig(f'p1_line_of_max_w_c_a1_is_{a1}_a2_is_{a2}.

↪→pdf',transparent=True,orientation='landscape',format='pdf',
bbox_inches='tight')

elif a2==1:
ax4.plot(p1_of_p2,p2,'k',label='$p_{\max}(q)$')
legend=ax4.legend(loc="upper left",prop={'size': 12})
fig4.savefig(f'p1_line_of_max_w_c_a1_is_{a1}_a2_is_{a2}.

↪→pdf',transparent=True,orientation='landscape',format='pdf',
bbox_inches='tight')

#p$ which realizes $\max_{p}\omega_c(p,q)
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Notebook 2

[15]: # This can be used also as a script (created by uncommenting the␣
↪→following line in each cell)

#%%file 2021_07_23_script_nls_evolution.py
#%matplotlib notebook
import numpy as np
from numpy.linalg import norm
import scipy as sp
import scipy.special
import scipy.sparse as scs
import scipy.sparse.linalg as scl
import scipy.integrate as integrate
from scipy.integrate import solve_bvp
import scipy.optimize as sco
from scipy import integrate
import time
from datetime import datetime
import sys
import shelve
import matplotlib
import matplotlib.pyplot as plt
import matplotlib.animation as animation
from mpl_toolkits.mplot3d import Axes3D # <--- This is important for 3d␣

↪→plotting
import plotly.express as px
import plotly.graph_objects as go
import pandas as pd
from concurrent.futures import ProcessPoolExecutor
from functools import partial

[16]: #%%file --append 2021_07_23_script_nls_evolution.py
TeXFont = True
#plt.rcParams['figure.figsize']=[6,(3/4)*6]
if TeXFont:

plt.rcParams['font.size'] = 14.0 # font size
plt.rcParams['mathtext.fontset'] = 'cm' # computer moder math font
plt.rcParams['text.usetex'] = True # use tex engine for␣

↪→everything (useful for the axes labels)
else:

plt.rcParams['text.usetex'] = False

FontSize = 14

In the following cell, we introduce the discretization of the real line R as a finite num-
ber N of points equally distributed between−L and L and we construct the discretized
Laplacian matrix with Dirichlet boundary conditions.
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[3]: #%%file --append 2021_07_23_script_nls_evolution.py

L=50 # half length of the interval on which we discretize
N=10000+1 # number of discretization points
#x,dx=np.linspace(-L, L, num=N, endpoint=False,retstep=True) # without␣

↪→right end point for periodic
x,dx=np.linspace(-L, L, num=N,retstep=True) # with right end point for␣

↪→Dirichlet

# construction of the Laplacian matrix with Dirichlet conditions
def Laplace(N,dx):

main_diag = [-2 for i in range(N)]
upper_diag= [1 for i in range(N-1)]
lower_diag= upper_diag
diagonals=[lower_diag,main_diag,upper_diag]
Lap=scs.diags(diagonals,[-1,0,1])/dx**2
return Lap

Lap=Laplace(N,dx)

Before simulating the evolution flow, we compute the critical omega associated with
our parameters.

[4]: #%%file --append 2021_07_23_script_nls_evolution.py

def f1(z,p1,p2,a1=-1,a2=1):
s=np.abs(z)
return -a1*s**((p1-1)/2)-a2*s**((p2-1)/2)

def F1(z,p1,p2,a1=-1,a2=1):
s=np.abs(z)
return -(a1*s**((p1+1)/2))*2/(p1+1)-(a2*s**((p2+1)/2))*(2/(p2+1))

def U(s,w,p1,p2,a1=-1,a2=1):
s=np.abs(s)
return w*s+F1(s,p1,p2,a1,a2)

def U_der(s,w,p1,p2,a1=-1,a2=1):
s=np.abs(s)
return w+f1(s,p1,p2,a1,a2)

def U_div_s(s,w,p1,p2,a1=-1,a2=1):
s=np.abs(s)
return (w-(a1*s**((p1-1)/2))*2/(p1+1)-(a2*s**((p2-1)/2))*(2/(p2+1)))

def U_div_s_prime(s,w,p1,p2,a1=-1,a2=1):
s=np.abs(s)
return -(a1*s**((p1-3)/2))*2/(p1+1)*(p1-1)/2-(a2*s**((p2-3)/2))*(2/

↪→(p2+1))*(p2-1)/2
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def a(w,p1,p2,a1=-1,a2=1):
a=sco.fsolve(U_div_s,␣

↪→10,args=(w,p1,p2,a1,a2),fprime=U_div_s_prime,xtol=10**(-12))
a=np.abs(a)
if a==0:

print("error in a , a is 0")
return a

def J(w,p1,p2,a1=-1,a2=1):
A=a(w,p1,p2,a1,a2)
def integrand(s):

C=-A**(1.5)/(2*U_der(A,w,p1,p2,a1,a2))
I=(3+A*s*(U_der(A,w,p1,p2,a1,a2)-U_der(A*s,w,p1,p2,a1,a2))/

↪→U(A*s,w,p1,p2,a1,a2))*np.sqrt(s)/np.sqrt(np.
↪→abs(U(A*s,w,p1,p2,a1,a2)))

return C*I
I=integrate.quad(integrand, 0, 1,epsabs=10**(-100),limit=100)
return I[0]

# construction of a function returning the critical omega

def w_critical(p1,p2,a1=-1,a2=1):
dp1=0.0001
dp2=0.0001
if ((p2<=p1+dp1/2) or (p2-dp2/2<(-2*p1+7))):

return 0
else:

try:
precision=1
tol=0.00001
w1,w2=0,1
while J(w2,p1,p2,a1,a2)<0:

w2=2*w2
if w2>10**(10):

w1=10**(10)
break

while precision>tol:
w_tmp=w1+(w2-w1)/2
if J(w_tmp,p1,p2,a1,a2)>0:

w2=w_tmp
else:

w1=w_tmp
precision=(w2-w1)/w2
if w2<10**(-12):

break
except:
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pass
return w1

To perform the numerical simulations, it might be helpful to restrict ourselves to the
case q = 2p− 1, for which we have explicit formulas for the standing waves (as given
in the next cell).

[5]: #%%file --append 2021_07_23_script_nls_evolution.py

def profile_explicit(x,beta,w=1,a1=-1,a2=1):
# Explicit standing wave profile
# for double power nonlinearities of the form p1=1+1/beta,p2=1+2/

↪→beta
# in such a way that p2=2p1-1
# See 234nls-v218.pdf page 36
A=a1/(2+1/beta)
B=a2/(1+1/beta)
return (w/(A+np.sqrt(A**2+B*w)*np.cosh(beta**(-1)*np.

↪→sqrt(w)*x)))**beta

“scipy.integrate.solve_bvp” Solve a boundary value problem for a system of ODEs.

This function numerically solves a first order system of ODEs subject to two-point
boundary conditions.

Our system is

y′1 = y2

y′2 = ωy1 − ap|y1|p−1y1 − aq|y1|q−1y1

with the boundary conditions φ(0) = initialvalue(φ), φ(L) = 0.

[6]: #%%file --append 2021_07_23_script_nls_evolution.py

def initialvalue(phi,p1,p2,w=1,a1=-1,a2=1):
return (a1/(p1+1)*phi**(p1-1)+a2/(p2+1)*phi**(p2-1)-w/2)

def fun(x, y,p1,p2,w=1,a1=-1,a2=1):
return np.vstack((y[1], w*y[0]-a1*np.abs(y[0])**(p1-1)*y[0]-a2*np.

↪→abs(y[0])**(p2-1)*y[0]))

def bc(ya, yb,p1,p2,w=1,a1=-1,a2=1):
partial_initialvalue = partial(initialvalue,␣

↪→p1=p1,p2=p2,w=w,a1=a1,a2=a2)
return [ya[0]-sco.fsolve(partial_initialvalue,1), yb[0]]

def profile(x,p1,p2,w=1,a1=-1,a2=1):
# if p2=2p1-1, we use the explicit formula

2.7. Notebooks 63



if np.abs(p2-2*p1+1)<1e-14:
beta=1/(p1-1)
return profile_explicit(x,beta,w,a1,a2)

# else, we compute with the solve_bvp method
# not working well for larger w (above 2 or 3 ?)
else:

N=len(x)
partial_initialvalue = partial(initialvalue,␣

↪→p1=p1,p2=p2,w=w,a1=a1,a2=a2)
partial_fun = partial(fun, p1=p1,p2=p2,w=w,a1=a1,a2=a2)
partial_bc = partial(bc, p1=p1,p2=p2,w=w,a1=a1,a2=a2)
y_init =[1/(np.cosh(x)),np.tanh(x)/(np.cosh(x))]*sco.

↪→fsolve(partial_initialvalue,1)
sol = solve_bvp(partial_fun, partial_bc, x, y_init,tol=0.

↪→00001,max_nodes=N)
# to get the right solution, we even it
even_sol_left=sol.y[0][int((N-1)/2):]
even_sol_right=sol.y[0][int((N+1)/2):]
even_sol=np.concatenate([even_sol_right[::-1],even_sol_left])
return even_sol

[7]: #%%file --append 2021_07_23_script_nls_evolution.py

def initial_data(x,p1,p2,w=1,c=0,a1=-1,a2=1,init=0):
# return a soliton profile with frequency w and speed c,
# modified according to the following rule:
# init=0 -> no modification
# init=1 -> profile multiplied by 1.01
# init=2 -> profile multiplied by 0.99
# init=3 -> profile multiplied by randn(x)*0.01
# init=4 -> profile multiplied by 1+cos(x)*0.01
# init=5 -> profile multiplied by 1+sin(x)*0.01
# init=6 -> profile multiplied by 1+sech(x)*0.01
# init=7 -> profile multiplied by 1+tanh(x)*0.01
# init=8 -> profile multiplied by 1+sech(x-1)*0.01
if init==0:

return profile(x,p1,p2,w,a1,a2)
elif init==1:

return profile(x,p1,p2,w,a1,a2)*1.01
elif init==2:

return profile(x,p1,p2,w,a1,a2)*0.99
elif init==3:

return profile(x,p1,p2,w,a1,a2)*(np.ones_like(x)+np.random.
↪→randn(np.shape(x)[0])*0.01)

elif init==4:
return profile(x,p1,p2,w,a1,a2)*(np.ones_like(x)+np.cos(x)*0.01)

elif init==5:
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return profile(x,p1,p2,w,a1,a2)*(np.ones_like(x)+np.sin(x)*0.01)
elif init==6:

return profile(x,p1,p2,w,a1,a2)*(np.ones_like(x)+1/np.cosh(x)*0.
↪→01)

elif init==7:
return profile(x,p1,p2,w,a1,a2)*(np.ones_like(x)+np.tanh(x)*0.

↪→01)
elif init==8:

shift=np.argmax(x>1)-len(x)//2
x_shifted=np.roll(x, shift)

return profile(x,p1,p2,w,a1,a2)*(np.ones_like(x)+1/np.
↪→cosh(x_shifted)*0.01)

In the next cell, we implement a Crank-Nicolson scheme with relaxation.

[8]: #%%file --append 2021_07_23_script_nls_evolution.py

# Numerical simulation of NLS with Crank-Nicolson scheme with␣
↪→relaxation (see Besse 2004)

# SIAM Journal on Numerical Analysis, 2004, Vol. 42, No. 3 : pp.␣
↪→934-952

# A Relaxation Scheme for the Nonlinear Schrödinger Equation
# Christophe Besse
# https://doi.org/10.1137/S0036142901396521

def nls(x,p1,p2,T=1,delta_t = 1e-3,w=1,c=0,a1=-1,a2=1,init=0):
# Warning: output is trimmed so that only approximately 100 values␣

↪→in x and in t are kept.
# Use next cell for full output
Id=scs.identity(N)
M_1 = Id - 1j*delta_t/2*Lap
psi=initial_data(x,p1,p2,w,c,a1,a2,init)
# u_t_x stores the values of psi troncated in such a way that a bit␣

↪→more than 100 values of x and t are taken into account
N_x=len(x)
psi_tmp=psi[N_x//4:3*N_x//4]
u_t_x=psi_tmp[::len(psi_tmp)//100]
#initialisation step
phi = -(a1*np.abs(psi)**(p1-1)+a2*np.abs(psi)**(p2-1))
nb_iter=int(T//delta_t)
iter_save_step=nb_iter//100
y_size_u_t_x=1
max_u_t_x=np.max(np.abs(psi))
for n in range(nb_iter):

phi = -2*(a1*np.abs(psi)**(p1-1)+a2*np.abs(psi)**(p2-1)) - phi
M = M_1 + 1j*delta_t/2*scs.diags(phi)
varphi = scl.spsolve(M,psi)
psi = 2*varphi - psi
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max_u_t_x = np.append(max_u_t_x,np.max(np.abs(psi)))
if n%iter_save_step==0:

print(f'iteration {n+1} over {nb_iter}',end='\r')
psi_tmp=psi[N_x//4:3*N_x//4]
u_t_x=np.append(u_t_x,psi_tmp[::len(psi_tmp)//100])
y_size_u_t_x=y_size_u_t_x+1

u_t_x=np.reshape(u_t_x,(y_size_u_t_x,-1))
u_t_x=u_t_x.T
return u_t_x,max_u_t_x

[9]: #%%file --append 2021_07_23_script_nls_evolution.py

def make_pdf_figure(u_t_x,x,p1,p2,T=1,delta_t =␣
↪→1e-3,w=1,w_c=float("nan"),c=0,a1=-1,a2=1,init=0):

N_x=len(x)
x_clip=x[N_x//4:3*N_x//4]
x_clip=x_clip[::len(x_clip)//100]
nb_x_clip,nb_iter_clip=np.shape(u_t_x)
Tt_clip=np.linspace(0,T,nb_iter_clip)
u_t_x_clip=np.abs(u_t_x)
fig = plt.figure()
fig.suptitle(rf"$a_p={a1}$, $a_q={a2}$, $p={p1:.2f}$, $q={p2:.2f}$,␣

↪→$\omega={w:.2f}$, $\omega_c={w_c:.2f}$, init=${init}$")
ax = fig.add_subplot(111, projection='3d')
X, TT = np.meshgrid(x_clip,Tt_clip)
ax.plot_surface(X,TT,u_t_x_clip.T)
ax.set_xlabel(r"$x$",fontsize=FontSize)
ax.set_ylabel(r"$t$",fontsize=FontSize)
ax.set_zlabel(r"$|u(t,x)|$",fontsize=FontSize)
ax.xaxis.set_rotate_label(False) # disable automatic rotation
ax.yaxis.set_rotate_label(False) # disable automatic rotation
#ax.zaxis.set_rotate_label(False) # disable automatic rotation
fig.savefig(f"nls_evol_a1_is_{a1}_a2_is_{a2}_p1_is_{p1:.

↪→2f}_p2_is_{p2:.2f}_w_is_{w:.2f}_w_c_is_{w_c:.2f}_init_is_{init}.
↪→pdf",transparent=True,orientation='landscape',format='pdf',

bbox_inches='tight')

[10]: #%%file --append 2021_07_23_script_nls_evolution.py

def make_html_figure(u_t_x,x,p1,p2,T=1,delta_t =␣
↪→1e-3,w=1,w_c="nc",c=0,a1=-1,a2=1,init=0):

N_x=len(x)
x_clip=x[N_x//4:3*N_x//4]
x_clip=x_clip[::len(x_clip)//100]
nb_x_clip,nb_iter_clip=np.shape(u_t_x)
Tt_clip=np.linspace(0,T,nb_iter_clip)
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u_t_x_clip=np.abs(u_t_x.T)
fig = go.Figure(data=[go.Surface(z=u_t_x_clip, x=x_clip,␣

↪→y=Tt_clip)])
fig.update_layout( title=f'a1={a1}, a2={a2}, p1={p1:.2f}, p2={p2:.

↪→2f}, w={w:.2f}, w_c={w_c:.2f}, init={init}',
scene = dict(
xaxis_title=r"space x",
yaxis_title='time t',
zaxis_title='|u(t,x)|'))

# known limitation : latex cannot be displayed in axis title
fig.show()
fig.write_html(f"nls_evol_a1_is_{a1}_a2_is_{a2}_p1_is_{p1:.

↪→2f}_p2_is_{p2:.2f}_w_is_{w:.2f}_w_c_is_{w_c:.2f}_init_is_{init}.
↪→html")

#https://plotly.com/python/3d-surface-plots/

[11]: #%%file --append 2021_07_23_script_nls_evolution.py

def make_max_figure(max_u_t_x,p1,p2,T=1,delta_t =␣
↪→1e-3,w=1,w_c=float("nan"),c=0,a1=-1,a2=1,init=0):

N_t=len(max_u_t_x)
Tt=np.linspace(0,T,N_t)
fig = plt.figure(figsize=(8,6))
fig.suptitle(f"Plot of $t\mapsto\max|u(t,x)|$ when\n$a_p={a1}$,␣

↪→$a_q={a2}$, $p={p1:.2f}$, $q={p2:.2f}$, $\omega={w:.2f}$,␣
↪→$\omega_c={w_c:.2f}$, init=${init}$")

ax = fig.add_subplot(111)
ax.plot(Tt,max_u_t_x)
ax.set_xlabel(r"$t$",fontsize=FontSize)
ax.set_ylabel(r"$\max|u(t,x)|$",fontsize=FontSize)
fig.savefig(f"nls_max_a1_is_{a1}_a2_is_{a2}_p1_is_{p1:.

↪→2f}_p2_is_{p2:.2f}_w_is_{w:.2f}_w_c_is_{w_c:.2f}_init_is_{init}.
↪→pdf",transparent=True,orientation='landscape',format='pdf',

bbox_inches='tight')

[12]: #%%file --append 2021_07_23_script_nls_evolution.py

def variables_backup(u_t_x,max_u_t_x,x,p1,p2,T=1,delta_t =␣
↪→1e-3,w=1,w_c="nc",c=0,a1=-1,a2=1,init=0):

# Save all variables (with in particular w_critical) to file with␣
↪→date in file name

filename=f"nls_var_bckup_a1_is_{a1}_a2_is_{a2}_p1_is_{p1:.
↪→2f}_p2_is_{p2:.2f}_w_is_{w:.2f}_w_c_is_{w_c:.2f}_init_is_{init}.npy"

with open(filename, 'wb') as f:
np.save(f, T)
np.save(f, a1)
np.save(f, a2)
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np.save(f, p1)
np.save(f, p2)
np.save(f, c)
np.save(f, delta_t)
np.save(f, init)
np.save(f, w)
np.save(f, w_c)
np.save(f, x)
np.save(f, u_t_x)
np.save(f, max_u_t_x)

# to reload the variables :
#with open(filename, 'rb') as f:
# T = np.load(f)
# a1 = np.load(f)
# a2 = np.load(f)
# p1 = np.load(f)
# p2 = np.load(f)
# c = np.load(f)
# delta_t = np.load(f)
# init = np.load(f)
# w = np.load(f)
# w_c = np.load(f)
# x = np.load(f)
# u_t_x = np.load(f)

[13]: #%%file --append 2021_07_23_script_nls_evolution.py

def nls_evolution_process(p1,p2,w,init):
T=40
delta_t=1e-3
c=0
a1=0
a2=1
try:

u_t_x,max_u_t_x=nls(x,p1,p2,T,delta_t,w,c,a1,a2,init)
w_c=w_critical(p1,p2,a1,a2)
make_html_figure(u_t_x,x,p1,p2,T,delta_t,w,w_c,c,a1,a2,init)
make_pdf_figure(u_t_x,x,p1,p2,T,delta_t,w,w_c,c,a1,a2,init)
make_max_figure(max_u_t_x,p1,p2,T,delta_t,w,w_c,c,a1,a2,init)
␣

↪→variables_backup(u_t_x,max_u_t_x,x,p1,p2,T,delta_t,w,w_c,c,a1,a2,init)
except Exception as e:

print(f"we have a problem with p1={p1}, p2={p2}, w={w},␣
↪→init={init}")
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print(e)

#Run the cell to complete and run script #%%file –append
2021_07_23_script_nls_evolution.py

p1=np.arange(1.1,3,0.1)

w=np.arange(0.1,3.01,0.1)

init=np.arange(0,9,1)

P1,W,INIT=np.meshgrid(p1,w,init)

#list(map(nls_evolution_process,P1.flatten(),2*P1.flatten()-
1,W.flatten(),INIT.flatten()))

if name == “main”: PPE = ProcessPoolExecutor()
list(PPE.map(nls_evolution_process,P1.flatten(),2*P1.flatten()-
1,W.flatten(),INIT.flatten()))

!python 2021_07_23_script_nls_evolution.py

[14]: # Cell for simulations one by one
plt.close()
#beta=5/8
#beta=0.6
#p1=1+1/beta
#p2=1+2/beta
p1=1.25
p2=1.5
w=1
#w=0.2
#init=2
init=1
T=15
delta_t=1e-3
c=0,
a1=-1
a2=1
u_t_x,max_u_t_x=nls(x,p1,p2,T,delta_t,w,c,a1,a2,init)
w_c=w_critical(p1,p2)
#make_html_figure(u_t_x,x,p1,p2,T,delta_t,w,w_c,c,a1,a2,init)
make_pdf_figure(u_t_x,x,p1,p2,T,delta_t,w,w_c,c,a1,a2,init)
make_max_figure(max_u_t_x,p1,p2,T,delta_t,w,w_c,c,a1,a2,init)

iteration 14901 over 14999
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Chapter 3

Analysis of the quasi-periodic
waves for the cubic nonlinear

Schrödinger equation

3.1 Introduction

In this chapter, we consider the one dimensional cubic nonlinear Schrödinger
equation

iψt + ψxx + b|ψ|2ψ = 0, (3.1.1)

where ψ : Rt × Rx → C and b ∈ R \ {0}. Equation (3.1.1) appears in many
areas of physics such as quantum mechanics, optics, water waves and serves
as a model for nonlinear dispersive wave phenomena, more generally see [35,
68]. It is said to be focusing if b > 0, where the nonlinearity is attractive and
defocusing if b < 0, where the nonlinearity is repulsive. Note that (3.1.1) is
invariant under the following transformations:

— spatial translation: ψ(t, x)→ ψ(t, x+ ξ), for ξ ∈ R,
— phase multiplication: ψ(t, x)→ eiαψ(t, x), for α ∈ R.

We are particularly interested in the spatially quasi-periodic solutions to
(3.1.1). At least formally, they conserve the mass M , the momentum P ,
and the energy E , which are defined by

M(ψ) =
1

2

∫ T

0

|ψ|2dx, P (ψ) =
1

2
Im
∫ T

0

ψψxdx,

E(ψ) =
1

2

∫ T

0

|ψx|2dx−
b

4

∫ T

0

|ψ|4dx.

The simplest non-trivial solutions of (3.1.1) are the standing waves, which
have the form

ψ(t, x) = e−iatu(x), a ∈ R.

The profile function u(x) satisfies the ordinary differential equation

uxx + au+ b|u|2u = 0. (3.1.2)
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The conserved quantities of (3.1.2) on C are the angular momentum J and
the ordinary differential equation energy E, defined by

J = Im(uxu), E =
1

2
|ux|2 +

a

2
|u|2 +

b

4
|u|4.

To find the angular momentum J , we start by multiplying (3.1.2) by u, then we
take the imaginary part to obtain Im(uxxu) = 0. On the other side ∂x(uxu) =

uxxu + |ux|2, then ∂x(Im(uxu)) = 0, therefore there exists J ∈ R such that
Im(uxu) ≡ J . To find the energy E we multiply (3.1.2) by ux and then we
take the real part.

Define the space

Hθ
T = {f ∈ H1

loc(R) : f(x+ T ) = eiθf(x),∀x ∈ R},

where θ the Floquet multiplier, i.e. the increment of the phase over a period.
When the Floquet multiplier is 0 we are talking about periodic waves and
when it is π we are in the case of anti-periodic solutions. Non-constant, real-
valued, periodic solutions of (3.1.2) are well known to be given by the Jacobi
elliptic functions: dnoidal (dn), cnoidal (cn) and snoidal (sn), see Section
3.2.1 for details.

We are interested in the following minimization problem:

min{E(u) : u ∈ Hθ
T , M(u) = m,P (u) = p}. (3.1.3)

It is known that there exists u∞ minimizer of (3.1.3), and there exist Lagrange-
multipliers ω and σ such that

−E ′(u∞) + ωM ′(u∞) + σP ′(u∞) = 0,

that is
−∂xxu∞ + ωu∞ − b|u∞|2u∞ ± iσ∂xu∞ = 0.

Our main goal is to characterize variationally the solutions of the ordinary
differential equation (3.1.2) by identifying them as the minimizers of the min-
imization problem (3.1.3). This will be achieved using a mixture of analytical
and numerical methods.

In Section 3.2 we start from the ordinary differential equation (3.1.2) and
we consider the links between the solution of this equation and the solution
of the minimization problem (3.1.3). We establish a diffeomorphic correspon-
dence between the conserved quantities of the ordinary differential equation
(3.1.2) and the conserved quantities of the nonlinear Schrödinger equation
(3.1.1). To do so we start in Section 3.2.1, by reviewing the well-known prop-
erties of Jacobi elliptic functions. Next, in Section 3.2.2 we study the analysis
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of the profile of the ordinary differential equation (3.1.2) for the two different
cases depending whether or not J = 0. For each case we describe the solutions
whether we know them explicitly or not. Then we give some monotonicity
results on the period T . Moreover, in Section 3.2.3 we find the expressions of
the mass M and the momentum P inside the domain and on its boundaries.
Afterwards, in Section 3.2.4 we prove the diffeomorphism between (J,E) and
(M̃(J,E), P̃ (J,E)) where we used a part of the results and methods of Gallay
and Haragus [38].

In Section 3.3 we start from the solution of the minimization problem
(3.1.3) and consider the links between the minimizer of this problem and the
solution of the ordinary differential equation (3.1.2). By that means, we start
in Section 3.3.1 by recalling the results concerning global variational char-
acterizations of elliptic function periodic waves as constrained-mass energy
minimizers among periodic functions and subspaces of periodic functions. Af-
ter, in Section 3.3.2 we explain how to proceed to compute numerically the
solution of the ordinary differential equation (3.1.2). When we know the exact
solution we compare it to the numerical solution. In Section 3.3.3, we present
the method of the gradient flow with discrete normalization in order to find
the minimizer of the energy E with fixed mass m > 0 and fixed momentum p:
at each step of time, we evolve in the direction of the gradient of the energy
and renormalize the mass and the momentum of the outcome. Such scheme is
popular in the physics literature under the name "imaginary time method".
When there is no momentum, and only real-valued functions are considered,
such approach to compute the minimizers was developed by Bao and Du [13].
In the case of the nonlinear Schrödinger equation on the line R with focusing
cubic non linearity, Faou and Jezequel [34] performed a theoretical analysis of
the various level of the discretization of the method, from the continuous one
to the fully discrete scheme. To characterize variationally the Jacobi elliptic
functions, Gustafson, Le Coz and Tsai [46] developed a numerical method to
obtain the minimizer of the energy with fixed mass m > 0 and fixed mo-
mentum p = 0. Another study is presented in the work of Besse, Duboscq
and Le Coz [20] for the gradient flow on nonlinear quantum graphs. They
implemented a method based on normalized gradient flow of the energy to
compute ground states of nonlinear Schrödinger equations on metric graphs.
Accordingly, in Section 3.3.5 we performed different tests using the scheme
described above. In every test we were comparing the minimizer that we ob-
tained from the normalized gradient flow with the numerical solution of the
ordinary differential equation. Finally, in Section 3.3.6, we evaluate the order
of the scheme by making various simulations, using the numerical solution of
the ODE and the solution of minimization problem.
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3.2 From the ordinary differential equation to
the minimization problem

3.2.1 Jacobi elliptic functions

The Jacobi elliptic functions are standard forms of elliptic functions. The
three basic functions are denoted cn(x, k), dn(x, k), and sn(x, k), where k ∈
(0, 1) is known as the elliptic modulus.

The incomplete elliptic integral of the first kind is defined by

x = F(φ, k) :=

∫ φ

0

dθ√
1− k2 sin2(θ)

,

where φ is called the Jacobi amplitude, and the Jacobi elliptic functions are
defined through the inverse of F (., k):

sn(x, k) := sin(φ), cn(x, k) := cos(φ), dn(x, k) :=
√

1− k2 sin2(φ).

The relations
1 = sn2 + cn2 = k2sn2 + dn2

follow. The period of the elliptic functions can be expressed in terms of the
complete elliptic integral of the first kind

K(k) := F
(π

2
, k
)
, K(k)→

{
π
2
, k → 0

∞, k → 1.

Moreover, for k ∈ (0, 1), the incomplete elliptic integral of the second kind
is defined by:

E(φ, k) :=

∫ φ

0

√
1− k2 sin2(θ)dθ.

The complete elliptic integral of the second kind is defined as

E(k) := E
(π

2
, k
)
, E(0) =

π

2
, E(1) = 1.

The derivatives of elliptic functions (with respect to x) are expressed in
terms of elliptic functions. For fixed k ∈ (0, 1), we have:

∂xsn = cn.dn, ∂xcn = −sn.dn, ∂xdn = −k2cn.sn.

We can easily verify that sn, cn and dn are solutions of (3.1.2):

uxx + au+ b|u|2u = 0,

with the coefficients a, b ∈ R given by:

a = 1 + k2, b = −2k2, for u = sn,

a = 1− 2k2, b = 2k2, for u = cn,

a = −(2− k2), b = 2, for u = dn.
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3.2.2 Analysis of the profile ODE

In this section, we study the bounded solutions of the ordinary differen-
tial equation (3.1.2). We distinguish between two different cases depending
whether or not J = 0 and in each case we study the defocusing and focus-
ing cases. The analysis presented here gathers elements already presented in
earlier works such as [38, 46].

3.2.2.1 The case J 6= 0

We start with the case J 6= 0. By definition of J , this implies in particular
that u(x) 6= 0 for all x ∈ R. Hence we can introduce the polar coordinates
u(x) = r(x)eiφ(x), with r > 0 and r, φ ∈ C2(R). Moreover J = r2φx 6= 0 and
this implies that φx 6= 0 so u(x) ∈ C with a non-trivial phase. The energy
becomes

E =
r2
x

2
+ VJ(r),

where VJ(r) is given by

VJ(r) =
J2

2r2
+ a

r2

2
+ b

r4

4
.

We start with the defocusing case, i.e. we assume b < 0. We will distin-
guish between three different cases depending on the values of J . The first
case is when J2 > 4

27
a3

b2
. Then V ′J(r) < 0 for all r > 0, hence (3.1.2) has no

bounded solution in this case. If J2 < 4
27
a3

b2
(which implies in particular a > 0)

then we can parametrize J in a unique way as

J = q
(q2 − a)

b
= Q

(Q2 − a)

b
, where 0 < q2 <

a

3
< Q2 < a.

With this parametrization VJ(r) has a unique local minimum at rQ =
√

Q2−a
b

and a unique local maximum at rq =
√

q2−a
b

. We define:

E−(J) = VJ(rQ) =
1

4b
(Q2−a)(3Q2+a), E+(J) = VJ(rq) =

1

4b
(q2−a)(3q2+a).

The curves E+ and E− delimit the region of the (J,E) plane where there exist
bounded solutions to (3.1.2). We have the following description.

1. If E = E−(J) then u is a plane wave, i.e. u(x) = rQe
iQx up to phase

shift and complex conjugate.

2. If E = E+(J) then u is a plane wave (i.e. u(x) = rqe
iqx up to phase

shift and complex conjugate) or |u| is homoclinic to rq as x→ +∞.
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3. If E−(J) < E < E+(J) the modulus r = |u| and the phase derivative
φx are periodic with the same period. If we denote by r1 < r2 < r3 the
three positive roots of E − VJ(r), the (minimal) period is

T (J,E) = 2

∫ r2

r1

dr√
2(E − VJ(r))

. (3.2.1)

Finally the last case is when J2 = 4
27
a3

b2
. In this case, the effective potential

VJ(r) is strictly decreasing over R+ with an inflexion point at r =
√
−2a
3b

. Since

u is bounded we must have E−(J) = E+(J) = −a2
3b

hence u(x) =
√

q2−a
b
eiqx

with q = (a/3)
1
2 sign(J).

Now for the focusing case with a positive (a negative respectively): the
potential VJ(r) is strictly convex for any J ∈ R, and we can parametrize J in
a unique way as J = Q (Q2−a)

b
, where Q ∈ R, Q2 > a, (Q ∈ R respectively).

Then VJ(r) has a unique critical point at rQ =
√

Q2−a
b

, where VJ attains its
global minimum:

E−(J) = VJ(rQ) =
1

4b
(Q2 − a)(3Q2 + a).

In the case of positive a, the equation (3.1.2) has quasi-periodic solutions for
all E > E−(J). In the case of negative a, the equation (3.1.2) has quasi-
periodic solutions for all E > E−(J) with E 6= 0. In both cases, the period T
of these solutions is given by (3.2.1).

3.2.2.2 The case J = 0

In the case J = 0, u(x) ∈ R up to a constant phase, so we’re in the case of
real-valued solutions. The only (non-constant) real-valued, periodic solutions
of (3.1.2) are the elliptic functions. We have the following result (see e.g.
[46]).

Lemma 3.2.1. Fix a period T > 0, a ∈ R and u ∈ PT a nontrivial real-valued
solution of (3.1.2). By invariance under translation, and negation, we may
suppose u(0) = maxu > 0. There exist α > 0, β > 0, and k ∈ (0, 1), uniquely
determined by T, a, b and maxu such that the following hold.

1. If b < 0 (defocusing case) then 0 < |b|u(0)2 < a, and u(x)= 1
α
sn(K(k)+

x
β
, k) or u(0)2 = |a|

b
and u(x) =

√
−a
b
.

2. If b > 0 (focusing case), we have 3 possible cases:
(a) if 0 6 minu < u(0), then a < 0, |a| < bu(0)2 < 2|a|, and

u(x)= 1
α
dn(x

β
, k),
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(b) if minu = u(0), then a < 0, u(0)2 = |a|
b
, and u(x) =

√
−a
b
,

(c) if minu < 0, then max(0,−2a) < bu(0)2, and u(x) = 1
α
cn(x

β
, k).

The parameters satisfy the a-independent relation: bβ2 = −2k2α2 for (1),
bβ2 = 2α2 for (2)-(a) and bβ2 = 2k2α2 for (2)-(b). In addition, there exists
n ∈ N such that 4K(k)βn = T for (1) and (2)-(b) and 2K(k)βn = T for
(2)-(a).

Remark 3.2.2. In the case of non periodic solution, in the defocusing case
if E = −a2

4b
then the solution can be u(x) =

√−a
b

tanh(x
√

a
2
) and in the

focusing case with negative a if E = 0 the equation (3.1.2) can have the
pulse-like solution u(x) =

√
−2a

b
sech(x

√−a).

The graph of E as a function of J for each case is given in Figure 3.1. From
left to right we chose (b = −1, a = 1), (b = 1, a = 1) and (b = 1, a = −1).

Figure 3.1 – Graphs of E as a function of J .

Given u solution of (3.1.1), the function given by ū(−t, x) is also solution
of (3.1.1). Therefore without loss of generality we restrict our work to the
positive case (i.e. J > 0). We define the domain of existence of nontriv-
ial quasi-periodic solutions of (3.1.2) for each case as the following: In the
defocusing case b < 0 , let

D1 = {(J,E) ∈ R2 : 0 < J2 <
4

27

a3

b2
, E−(J) < E < E+(J)}. (3.2.2)

In the focusing case b > 0 with a > 0, let

D2 = {(J,E) ∈ R2 : J > 0, E > E−(J)}. (3.2.3)

In the focusing case b > 0 with a < 0, let

D3 = {(J,E) ∈ R2 : J > 0, E > E−(J)}. (3.2.4)
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Lemma 3.2.3. Assume that (J,E) ∈ D1 (D2, D3 respectively) where it is
understood that for each case a and b take the corresponding values. We
denote by 0 6 y1 < y2 < y3, (y3 < 0 6 y1 < y2, y3 6 0 6 y1 < y2 respectively)
with r =

√
y, the roots of the cubic polynomial P (y) = −by3 − 2ay2 + 4Ey −

2J2. Then

T (J,E) =
√

2

∫ y2

y1

dy√
−b(y − y1)(y − y2)(y − y3)

= 2
√

2

∫ π
2

0

dφ√
b(S(φ)− y3)

,

(3.2.5)
where S(φ) = y1 cos2 φ+ y2 sin2 φ.

Proof. Notice that P (r2) = 4r2(E − VJ(r)), therefore P (y) has three roots
whenever (J,E) ∈ D1 (D2, D3 respectively). Hence, using the change of vari-
ables r =

√
y in (3.2.1), we obtain the first expression in (3.2.5). Moreover

by setting y = S(φ), we have dy = 2
√

(y − y1)(y2 − y)dφ, thus we obtain the
last expression.

3.2.3 Mass and momentum inside the domain and on the
boundaries

We start by finding the mass and momentum of the solutions in the do-
mains D1, D2 and D3, where we know that u(x) = r(x)eiφ(x).Then

M(u) =
1

2

∫ T (E,J)

0

|u|2dx =
1

2

∫ T (E,J)

0

(r(x))2dx

=

∫ r2

r1

r2dr√
2(E − VJ)

=
√

2

∫ π
2

0

S(φ)√
b(S(φ)− y3)

dφ = M̃(J,E),

and

P (u) =
1

2
Im
∫ T (E,J)

0

uuxdx = −1

2

∫ T

0

Jdx = −1

2
TJ = P̃ (J,E).

Note that M̃ and P̃ is used to distinguish P and M as functions of J and
E. Next we want to find the mass and momentum of the solutions on the
boundaries E = E−(J) for the focusing/defocusing cases and on E = E+(J)

for the defocusing case.
Proposition 3.2.4. Let (J,E) ∈ D1 (D2, D3 respectively). When E → E−(J)

the following holds:

lim
E→E−(J)

T (J,E) =
π
√

2√
3Q2 − a

, lim
E→E−(J)

M̃(J,E) =
(Q2 − a)

2|b|
π
√

2√
3Q2 − a

,

lim
E→E−(J)

P̃ (J,E) = −1

2
Q

(Q2 − a)

b

π
√

2√
3Q2 − a

.
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Proof. We know that T (J,E) = 2
√

2
∫ π

2

0
dφ√

b(S(φ)−y3)
, where S(φ) = y1 cos2 φ+

y2 sin2 φ. When E → E−(J), y2 → y1, therefore lim
E→E−(J)

T (J,E) = π
√

2√
b(y1−y3)

.

On the other hand we have y1 = r2
Q = Q2−a

b
, and since y1, y2, y3 are solutions

of the cubic equation −by3−2ay2 +4Ey−2J2 = 0, we have y1 +y2 +y3 = −2a
b
,

which implies that y3 = −2a
b
−2y1 and we can conclude that lim

E→E−(J)
T (J,E) =

π
√

2√
3Q2−a

. Recall that J = Q (Q2−a)
b

and on the boundary E = E−(J), we have

u(x) =
√

(Q2−a)
b

eiQx. We can find now the mass on this boundary

lim
E→E−(J)

M̃(J,E) = lim
E→E−(J)

1

2

∫ T

0

|u|2dx

= lim
E→E−(J)

1

2

∫ T

0

Q2 − a
|b| dx =

(Q2 − a)

2|b|
π
√

2√
3Q2 − a

. (3.2.6)

The momentum is obtained by a direct computation:

lim
E→E−(J)

P̃ (J,E) = −1

2
TJ = −1

2
Q

(Q2 − a)

b

π
√

2√
3Q2 − a

. (3.2.7)

Proposition 3.2.5. For the defocusing case, when E → E+(J) the following
holds:

lim
E→E+(J)

T (J,E) = +∞, lim
E→E+(J)

M̃(J,E)

T (J,E)
=
|1− q2|

2
,

lim
E→E+(J)

P̃ (J,E)

T (J,E)
= −1

2
q(1− q2).

Proof. Recall that T (J,E) = 2
√

2
∫ π

2

0
dφ√

b(S(φ)−y3)
. When E → E+(J), y3 →

y2, therefore

lim
E→E+(J)

T (J,E) =
2
√

2√
b(y1 − y2)

∫ π
2

0

dφ

cos(φ)
= +∞.

Finally the graph of P as a function of M for each case is given in Figure
3.2. From left to right we chose (b = −1, a = 1), (b = 1, a = 1) and (b =

1, a = −1).
Note that when a = −1 in the focusing case, the behavior of the graph

of P as a function of M is determined by the transition of E from negative
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Figure 3.2 – Graphs of P as a function of M .

values to positive values. Specifically, if Q2 < −a
3
, then it corresponds to the

negative values of E which form the central part of the graph. On the other
hand, if Q2 > −a

3
, then it corresponds to the positive values of E which form

the two side parts of the graph.

3.2.4 Diffeomorphism

In this section we establish a diffeomorphic correspondence between J,E
and M,P for the defocusing case only. To this aim, we use a part of the
results and methods of [38]. Without loss of generality, we set b = −1 and
a = 1. We start with monotonicity results on T .

Proposition 3.2.6. We have ∂T
∂E

> 0 and ∂T
∂J
< 0 for all (J,E) ∈ D1.

Proof. Let (J,E) ∈ D1. Since y1, y2, y3 are solutions of the cubic equation
y3 − 2y2 + 4Ey − 2J2 = 0, we have y1 + y2 + y3 = 2, and

∂yi
∂E

= − 4yi
3y2

i − 4yi + 4E
,

∂yi
∂J

=
4J

3y2
i − 4yi + 4E

, i = 1, 2, 3. (3.2.8)

In particular

∂y1

∂E
< 0,

∂y2

∂E
> 0,

∂y1

∂E
+
∂y2

∂E
= −∂y3

∂E
> 0,

because P ′(y1) > 0, P ′(y2) < 0, P ′(y3) > 0, where P (y) = y3−2y2+4Ey−2J2

was defined in Lemma 3.2.3. Similarly, since J > 0,

∂y1

∂J
> 0,

∂y2

∂J
< 0,

∂y1

∂J
+
∂y2

∂J
= −∂y3

∂J
< 0.

On the other hand, differentiating (3.2.5) with respect to E and J , we find

∂T

∂E
= A1

∂y1

∂E
+ A2

∂y2

∂E
,

∂T

∂J
= A1

∂y1

∂J
+ A2

∂y2

∂J
,
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where

A1 =
√

2

∫ π
2

0

1 + cos2 φ

(y3 − S(φ))
3
2

dφ, A2 =
√

2

∫ π
2

0

1 + sin2 φ

(y3 − S(φ))
3
2

dφ.

We have that

A2 − A1 =
√

2

∫ π
2

0

sin2 φ− cos2 φ

2(y3 − S(φ))
3
2

dφ > 0.

Indeed, we have the following results. Let µ be a (Borel) probability mea-
sure on some interval I ⊂ R, and let f, g : I → R be bounded and measurable
functions. If both f and g are strictly increasing or strictly decreasing, and if
the support of µ is not reduced to a single point, then

∫

I

f(x)g(x)dµ >

(∫

I

f(x)dµ

)(∫

I

g(x)dµ

)
.

Therefore A2 − A1 > 0 follows from the result above, with I = [0, π
2
],

dµ = 2
π
dφ, f(φ) = sin2 φ − cos2 φ and g(φ) = (y3 − S(φ))−

3
2 (notice that f, g

are strictly increasing, and that
∫ π

2

0
f(φ)dφ = 0). Thus, A2 > A1 > 0. We

conclude that
∂T

∂E
= (A2 − A1)

∂y2

∂E
+ A1

(
∂y1

∂E
+
∂y2

∂E

)
> 0.

Similarly,
∂T

∂J
= (A2 − A1)

∂y2

∂J
+ A1

(
∂y1

∂J
+
∂y2

∂J

)
< 0.

This concludes the proof.

For all (J,E) ∈ D1, let

∆ =

∣∣∣∣∣
∂P̃
∂E

∂M̃
∂E

∂P̃
∂J

∂M̃
∂J

∣∣∣∣∣ .

Proposition 3.2.7. For all (J,E) ∈ D1 we have ∆ > 0.

Proof. We have

∂P̃

∂E
= −1

2
J
∂T

∂E
= −1

2
J

(
A1
∂y1

∂E
+ A2

∂y2

∂E

)
,

∂P̃

∂J
= −1

2

(
J
∂T

∂J
+ T

)
= −1

2

(
J

(
A1
∂y1

∂J
+ A2

∂y2

∂J

)
+ T

)
,

∂M̃

∂E
=
∂M̃

∂y1

∂y1

∂E
+
∂M̃

∂y2

∂y2

∂E
+
∂M̃

∂y3

∂y3

∂E
,

∂M̃

∂J
=
∂M̃

∂y1

∂y1

∂J
+
∂M̃

∂y2

∂y2

∂J
+
∂M̃

∂y3

∂y3

∂J
.
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We start with

∂M̃

∂y1

=
√

2

∫ π
2

0

cos2 φ
√
y3 − S(φ)− − cos2 φS(φ)

2
√
y3−S(φ)

y3 − S(φ)
dφ,

=
√

2

∫ π
2

0

2(y3 − S(φ)) cos2 φ+ cos2 φS(φ)

2(y3 − S(φ))
3
2

dφ,

=
√

2

∫ π
2

0

2y3 cos2 φ− cos2 φS(φ)

2(y3 − S(φ))
3
2

dφ,

=
√

2

∫ π
2

0

2y3 cos2 φ+ S(φ) sin2 φ− S(φ)

2(y3 − S(φ))
3
2

dφ.

And same for

∂M̃

∂y2

=
√

2

∫ π
2

0

2y3 sin2 φ+ S(φ) cos2 φ− S(φ)

2(y3 − S(φ))
3
2

dφ,

and
∂M̃

∂y3

=
√

2

∫ π
2

0

−S(φ)

2(y3 − S(φ))
3
2

dφ.

Then

∂M̃

∂E
=
∂M̃

∂y1

∂y1

∂E
+
∂M̃

∂y2

∂y2

∂E
+
∂M̃

∂y3

∂y3

∂E
,

=
∂M̃

∂y1

∂y1

∂E
+
∂M̃

∂y2

∂y2

∂E
+
∂M̃

∂y3

(
−∂y1

∂E
− ∂y2

∂E

)
,

=
∂y1

∂E

(
∂M̃

∂y1

− ∂M̃

∂y3

)
+
∂y2

∂E

(
∂M̃

∂y2

− ∂M̃

∂y3

)
= C1

∂y1

∂E
+ C2

∂y2

∂E
,

with

C1 =
√

2

∫ π
2

0

2y3 cos2 φ+ S(φ) sin2 φ

2(y3 − S(φ))
3
2

dφ,

and

C2 =
√

2

∫ π
2

0

2y3 sin2 φ+ S(φ) cos2 φ

2(y3 − S(φ))
3
2

dφ.

Similarly, we have
∂M̃

∂J
= C1

∂y1

∂J
+ C2

∂y2

∂J
.
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Therefore,

∆ =

(
−1

2
J

(
A1
∂y1

∂E
+ A2

∂y2

∂E

))(
C1
∂y1

∂J
+ C2

∂y2

∂J

)

+
1

2

(
J

(
A1
∂y1

∂J
+ A2

∂y2

∂J

)
+ T

)(
C1
∂y1

∂E
+ C2

∂y2

∂E

)
,

= −1

2

(
JA1C1

∂y1

∂E

∂y1

∂J
+ JA1C2

∂y1

∂E

∂y2

∂J
+ JA2C1

∂y2

∂E

∂y1

∂J
+ JA2C2

∂y2

∂E

∂y2

∂J

)

+
1

2

(
JA1C1

∂y1

∂E

∂y1

∂J
+ JA1C2

∂y1

∂J

∂y2

∂E
+ JA2C1

∂y2

∂J

∂y1

∂E
+ JA2C2

∂y2

∂E

∂y2

∂J

)

+
1

2
T
∂M̃

∂E
,

= (A2C1 − A1C2)

(
1

2
J

)(
∂y1

∂E

∂y2

∂J
− ∂y2

∂E

∂y1

∂J

)
+

1

2
T
∂M̃

∂E
.

Using the identity (3.2.8)
∂yi
∂E

= −yi
J

∂yi
∂J

,

we find

∆ =
1

2
(A2C1 − A1C2)(y2 − y1)

(
∂y1

∂J

∂y2

∂J

)
+

1

2
T
∂M̃

∂E
.

First we will prove that C2 > C1 > 0.
Let f(φ) = sin2 φ − cos2 φ and g(φ) = 2y3−S(φ)

2(y3−S(φ))
3
2
. We know that f is

increasing. We will prove that g is also increasing.

g′(φ) =
−S ′(φ)(y3 − S(φ)

3
2 + 3

2
(2y3 − S(φ))S ′(φ)(y3 − S(φ))

1
2

2(y3 − S(φ))3

=
S ′(φ)

(
− (y3 − S(φ)) + 3y3 − 3

2
S(φ)

)

2(y3 − S(φ))
5
2

=
S ′(φ)(2y3 − 1

2
S(φ))

2(y3 − S(φ))
5
2

=
(sinφ cosφ)(y2 − y1)(2y3 − 1

2
S(φ))

(y3 − S(φ))
5
2

> 0,

because sinφ cosφ > 0, y2−y1 > 0, y3−S(φ) > 0 and 2y3− 1
2
S(φ) > 0. Then

g is strictly increasing and same as before, as we have two strictly increasing
functions, we have C2 > C1 > 0. Therefore

∂M̃

∂E
= C1

∂y1

∂E
+ C2

∂y2

∂E

= (C2 − C1)
∂y2

∂E
+ C1(

∂y1

∂E
+
∂y2

∂E
) > 0.
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Now we will prove that A1C2 − A2C1 > 0.
Let σ(φ) = (1− y−1

3 S(φ))
1
2 . Then

A1 =
√

2

∫ π
2

0

1 + cos2 φ

(y3 − S(φ))
3
2

dφ = 2
√

2y
− 3

2
3 A

′

1, A
′

1 =

∫ π
2

0

1 + cos2 φ

2σ(φ)3
dφ,

A2 =
√

2

∫ π
2

0

1 + sin2 φ

(y3 − S(φ))
3
2

dφ = 2
√

2y
− 3

2
3 A

′

2, A
′

2 =

∫ π
2

0

1 + sin2 φ

2σ(φ)3
dφ,

C1 =
√

2

∫ π
2

0

2y3 cos2 φ+ S(φ) sin2 φ

2(y3 − S(φ))
3
2

dφ =
√

2y
− 1

2
3 C

′

1,

C
′

1 =

∫ π
2

0

2 cos2 φ+ (1− σ(φ)2) sin2 φ

2σ(φ)3
dφ,

C2 =
√

2

∫ π
2

0

2y3 sin2 φ+ S(φ) cos2 φ

2(y3 − S(φ))
3
2

dφ =
√

2y
− 1

2
3 C

′

2,

C
′

2 =

∫ π
2

0

2 sin2 φ+ (1− σ(φ)2) cos2 φ

2σ(φ)3
dφ.

Therefore

A1C2 − A2C1 = (2
√

2y
− 3

2
3 A

′

1)(
√

2y
− 1

2
3 C

′

2)− (2
√

2y
− 3

2
3 A

′

2)(
√

2y
− 1

2
3 C

′

1)

= 4y−2
3 (A

′

1C
′

2 − A
′

2C
′

1).

We want to prove that A′1C
′
2 − A

′
2C
′
1 > 0. In fact,

C
′

1 = A
′

1 − C̃1 with C̃1 =

∫ π
2

0

sin2 φ

2σ(φ)
dφ,

C
′

2 = A
′

2 − C̃2 with C̃2 =

∫ π
2

0

cos2 φ

2σ(φ)
dφ,

which implies that

A
′

1C
′

2 − A
′

2C
′

1 = A
′

1(A
′

2 − C̃2)− A′2(A
′

1 − C̃1)

= A
′

1A
′

2 − A
′

1C̃2 − A
′

2A
′

1 + A
′

2C̃1

= A
′

2C̃1 − A
′

1C̃2

We know that A′2 > A
′
1 > 0 and C̃1 > C̃2 > 0 so A′1C

′
2 − A

′
2C
′
1 > 0 and then

A2C1 − A1C2 < 0. Finally from A2C1 − A1C2 < 0 , y2 − y1 > 0, ∂y1
∂J

∂y2
∂J

< 0

and 1
2
T ∂M̃
∂E

> 0, we conclude that

∆ > 0,

which concludes the proof.
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Figure 3.3 – Domain D̃.

Let D̃ = {(M̃, P̃ ) ∈ R2 : M̃ > 0, |P̃ | <
√

3M̃2+π2−
√

9M̃4+4M̃2π2

π
}.

Theorem 3.2.8. The map Ψ : D1 → D̃, defined by Ψ(J,E) = (M̃(J,E), P̃ (J,E))

is a diffeomorphism.

Proof. We know from Section 3.2.3 that lim
E→E−(J)

T (J,E) = π
√

2√
3Q2−1

, and

lim
E→E+(J)

T (J,E) = +∞. Moreover we have

lim
E→E−(J)

M̃(J,E) =
(1−Q2)

2

π
√

2√
3Q2 − 1

, lim
E→E+(J)

M̃(J,E) = +∞,

and

lim
E→E−(J)

P̃ (J,E) = −1

2
Q(1−Q2)

π
√

2√
3Q2 − 1

, lim
E→E+(J)

P̃ (J,E) = −∞.

The range of the map M̃ : D1 → R is exactly the interval (0,+∞) since
∂M̃
∂E

> 0. We fix M̃0 > 0, and let Σ = {(J,E) ∈ D1 : M̃(J,E) = M̃0}.
By the implicit Function Theorem, Σ is a smooth curve in D1 which can

be represented as a graph over the J-axis. Moreover, we know that Σ connects
the boundary points (0, E0) and (J0, E−(J0)) is determined by the relation

(1−Q2
0)

2

π
√

2√
3Q2

0 − 1
= M̃0,

where J0 = Q0(1 − Q2
0), Q0 ∈ ( 1√

3
, 1) and E0 the corresponding energy for

J = 0 and M̃ = M̃0. We know that ∆ > 0 which implies that the restriction
of P̃ to the curve Σ is a strictly decreasing function of J , because

d

dJ
P̃|Σ =

(
∂M̃

∂E

)−1(
∂M̃

∂E

∂P̃

∂J
− ∂M̃

∂J

∂P̃

∂E

)
< 0.
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Thus P̃ varies from 0 to −P̃0 on the curve Σ, where

P̃0 = −1

2
Q0(1−Q2

0)
π
√

2√
3Q2

0 − 1
=

√
3M̃2

0 + π2 −
√

9M̃4
0 + 4M̃2

0π
2

π
.

This proves that Ψ is onto and therefore Ψ is a diffeomorphism.

For the focusing case we recall the results of [38] on the monotonicity of
the period T .

Proposition 3.2.9. Let b = 1, a = 1. We have

∂T

∂E
< 0,

∂T

∂J
< 0 for all (J,E) ∈ D2.

Proposition 3.2.10. Let b = 1, a = −1. Unlike in the previous cases, the
period T is no longer a monotone function of the energy E. In fact the period
T (J,E) satisfies

∂T

∂E
(0, E) > 0 for − 1

4
< E < 0, and

∂T

∂E
(0, E) < 0 for E > 0.

On the other hand, sine J > 0, the period T is still a monotone function of J
and it satisfies

∂T

∂J
(J,E) < 0.

3.3 From the minimization problem to the or-
dinary differential equation

In this section, we aim to study the minimizing problem and establish
the link between the minimizer and the solution of the ordinary differential
equation (3.1.2). One of the difficulties in this problem is identifying the
minimizer as a solution of the ODE. The existence of the minimizer can be
proven by taking a sequence that minimizes the energy and showing that it is
bounded in Hθ

T , which implies that it has a weakly convergent subsequence in
Hθ
T . The weak convergence of the subsequence, along with the compactness

of the embedding of Hθ
T into Lp for p ∈ (1,∞), implies the convergence of

the subsequence in Lp. Therefore, the minimizing sequence converges to a
function that minimizes the energy. In the cubic case, it was further shown
in [46] that the minimizer is a stationary wave, which is a periodic solution
of the NLS equation with a special form of the profile function. Specifically,
the minimizer was identified as a Jacobi elliptic function cn or dn depending
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on the value of the mass parameter. Moreover it was conjectured that the
minimizer of the energy with fixed mass and momentum is a snoidal periodic
wave. In the complex-valued case we need to identify the minimizer as a
solution of the ODE (3.1.2).

3.3.1 Variational problems

We start by recalling the result of Gustafson, Le Coz and Tsai [46] on
the global variational characterizations of the elliptic function periodic waves
as constrained-mass energy minimizers among periodic functions. Later on,
we use these results to compare our numerical method with the theoretical
results.

For m > 0, we consider the following minimization problem with fixed
mass

min{E(u) : u ∈ Hθ
T , M(u) = m}, (3.3.1)

and the minimization problem with fixed mass and momentum

min{E(u) : u ∈ Hθ
T , M(u) = m,P (u) = 0}. (3.3.2)

Theorem 3.3.1. Assume b > 0 (focusing case). We have the following proper-
ties:

1. Let θ = 0, we are in the periodic case:

(a) If 0 < m 6 π2

bT
then there exists a unique (up to phase shift)

minimizer for (3.3.1) and (3.3.2), which is the constant function
umin =

√
2m
T

(b) If π2

bT
< m <∞ then there exists a unique minimizer (up to trans-

lations and phase shift) for (3.3.1) and (3.3.2), which is the rescaled
function dnα,β,k = 1

α
dn
(
.
β
, k
)
, where the parameters α, β, k are

uniquely determined. In particular given k ∈ (0, 1), if b = 2,
T = 2K(k) and m = E(k), then the unique minimizer is dn(., k).

2. If θ = π, we are in the anti-periodic case, then there exists a unique
minimizer (up to translations and phase shift) for (3.3.1) and (3.3.2),
which is the rescaled function cnα,β,k = 1

α
cn
(
.
β
, k
)
, where the param-

eters α, β, k are uniquely determined. In particular given k ∈ (0, 1),
if b = 2k2, T = 2K(k) and m = (K−E)

k2
, then the unique minimizer is

cn(., k).

Proof. First we start with the periodic case by proving that (3.3.1) and (3.3.2)
share the same minimizer. Without loss of generality we can restrict the
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minimization problem to real-valued non negative functions. Indeed, if u ∈
H1
loc∩PT , then |u| ∈ H1

loc∩PT and we have ‖∂x|u|‖L2 6 ‖∂xu‖L2 . This implies
that (3.3.1) and (3.3.2) share the same minimizers. Next we prove that the
minimal energy is finite and negative. To prove the negativity, let φm,0 ≡

√
2m
T

be a test function. We have M(φm,0) = m, E(φm,0) < 0. To prove that it
is finite, we consider a minimizing sequence (un) ⊂ H1

loc ∩ PT for (3.3.1). It
is bounded in H1

loc ∩ PT . We observe that by Gagliardo-Nirenberg inequality:
for any u ∈ H1

loc ∩ PT , we have

‖u‖4
L4 . ‖u‖3

L2‖ux‖L2 + ‖u‖4
L2 .

Consequently, for any u ∈ H1
loc ∩ PT , such that M(u) = m, we have

E(u) & ‖ux‖L2(‖ux‖L2 −m 3
2 )−m2.

The previous inequality implies the boundedness of ‖∂xun‖L2 . Indeed, by
contradiction, let’s suppose that ‖∂xun‖L2 →∞, therefore E(un)→∞, which
is a contradiction with the minimizing nature of (un). Hence the sequence (un)

is bounded in H1
loc ∩ PT , hence E(u) is bounded from below. Therefore up to

a subsequence, (un) converges weakly in H1
loc ∩ PT and strongly in L2

loc ∩ PT
and L4

loc ∩ PT towards u∞ ∈ H1
loc ∩ PT . By weak convergence, we have

‖∂xu∞‖2
L2 6 lim

n→+∞
‖∂xun‖2

L2 .

Hence E(u∞) 6 lim
n→+∞

E(un). On the other hand M(u∞) = m, so by the

definition of the minimizer E(u∞) = lim
n→+∞

E(un). Therefore the convergence

from (un) to u∞ is also strong in H1
loc∩PT . Since u∞ is a minimizer of (3.3.1),

there exists a Lagrange multiplier a ∈ R such that

−E ′(u∞) + aM ′(u∞) = 0

that is
∂xxu∞ + au∞ + bu3

∞ = 0. (3.3.3)

Multiplying by u∞ and integrating (recall that the functions considered are
assumed to be real), we find that

a =
‖∂xu∞‖2

L2 − b‖u∞‖4
L4

‖u∞‖2
L2

.

Note that
‖∂xu∞‖2

L2 − b‖u∞‖4
L4 = 2E(u∞)− b

2
‖u∞‖4

L4 ,
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therefore
a < 0.

We know from Lemma 3.2.1 that the solutions of (3.3.3) are either the constant
function or the dnα,β,k function, where dnα,β,k(x) = 1

α
dn(x

β
, k). We start by

proving that if m > π2

bT
then u∞ = dnα,β,k. By contradiction we suppose that

u∞ =
√

2m
T
. Therefore a = −2bm

T
. Since u∞ is a constrained minimizer, the

operator

−∂xx − a− 3bu2
∞ = −∂xx −

4bm

T

must have at most 1 negative eigenvalue, where the eigenvalues are given by:(
2πn
T

)2− 4bm
T

. For n = 0, the eigenvalue is negative. For n = 1,
(

2πn
T

)2− 4bm
T

> 0

if and only if m 6 π2

bT
, which gives the contradiction. Now we prove that if

u∞ = dnα,β,k then m > π2

bT
. We find the mass of dnα,β,k which is equal to

M(dnα,β,k) = 4
bT
E(k)K(k). We have ∂kEK(k) > 0 therefore for k ∈ (0, 1),

M(dnα,β,k) is a strictly increasing function of k from
(
π2

bT
,∞
)
, which concludes

the proof. Thus u∞ must be constant when 0 < m 6 π2

bT
. Finally we will prove

that given k ∈ (0, 1), if b = 2, T = 2K(k) and m = E(k), then the unique
minimizer is dn(., k). In this case m > π2

bT
since EK > π2

4
and therefore

from before we know that u∞ = dnα,β,s for s ∈ (0, 1). By Sturm-Liouville,
the fundamental period of u∞ is T = 2K(s)β. So M(dnα,β,s) = E(s)K(s) =

E(k)K(k) and by the monotonicity of EK we have k = s. Thus α = β = 1

and u∞ = dn(x, k).
For the anti-periodic case, from [46] we have the following result: Let

v ∈ H1
loc ∩ AT . There exists ṽ ∈ H1

loc ∩ AT such that:

ṽ(x) ∈ R, ‖ṽ‖L2 = ‖v‖L2 , ‖∂xṽ‖L2 = ‖∂xv‖L2 , ‖ṽ‖L4 > ‖v‖L4 .

Therefore we can restrict the minimization problem to real valued functions,
and this implies the equivalence between the two minimization problems
(3.3.1) and (3.3.2). Same as for the periodic case we consider a minimiz-
ing sequence (un) ⊂ H1

loc ∩ AT and the convergence from (un) to u∞ is also
strong in H1

loc∩PT . Since u∞ is a minimizer of (3.3.1), there exists a Lagrange
multiplier a ∈ R such that

−E ′(u∞) + aM ′(u∞) = 0

that is
∂xxu∞ + au∞ + bu3

∞ = 0.

We assume that maxu = u(0) > 0 and therefore u∞ = cnα,β,k. Moreover with
the same method as before, using the monotonicity of m with respect to k,
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we prove that given k ∈ (0, 1), if b = 2k2, T = 2K(k) and m = (K−E)
k2

, then
the unique minimizer is cn(., k). This concludes the proof.

Theorem 3.3.2. Assume b < 0 (defocusing case). We have the following prop-
erties:

1. If θ = 0, we are in the periodic case, then there exists a unique mini-
mizer (up to phase shift) for (3.3.1) and (3.3.2), which is the constant
function umin =

√
2m
T
.

2. If θ = π, we are in the anti-periodic case: There exists a unique min-
imizer (up to phase shift) for (3.3.1) which is the plane wave umin =√

2m
T
e

2iπx
T .

Proof. For the periodic case we know that for all f ∈ L4(0, T ), we have
by Hölder’s inequality: ‖f‖L2 6 T

1
4‖f‖L4 , with equality if and only if |f |

is constant. We want to prove that φm,0 =
√

2m
T

is the minimizer. Let
v ∈ H1

loc ∩ PT such that M(v) = m, and v 6= eiθφm,0, (θ ∈ R). We have:

0 = ‖∂xφm,0‖2
L2 < ‖∂xv‖2

L2 ,

and
‖φm,0‖4

L4 = 4T−1M2(φm,0) = 4T−1M2(v) 6 ‖v‖4
L4 ,

therefore E(φm,0) < E(v) which concludes the proof of the first part of the
theorem.

For the anti-periodic case we denote w(x) =
√

2m
T
e

2iπx
T . Let v ∈ H1

loc ∩AT
such that M(v) = m and v 6= eiθw (θ ∈ R). We have

‖w‖4
L4 = 4T−1M2(w) = 4T−1M2(v) 6 ‖v‖4

L4 .

Since v ∈ AT , v must have 0 mean value. Therefore by Poincaré-Wirtinger
inequality we have

‖v‖2
L 6

T

2π
‖v′‖L2 .

Moreover
‖∂xw‖2

L2 =
8π2

T
M(w) =

8π2

T
M(w) < ‖∂xv‖2

L2 ,

therefore E(φm,0) < E(v) which concludes the proof.

Conjecture 3.3.3. There exists a unique minimizer (up to translations and
phase shift) of (3.3.2) which is the rescaled function snα,β,k = 1

α
sn
(
.
β
, k
)
,

where the parameters α, β, k are uniquely determined. In particular given
k ∈ (0, 1), if b = −2k2, T = 2K(k) and m = 8

bT
K(K − E), then the unique

minimizer is sn(., k).
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3.3.2 Numerical solutions of the ordinary differential equa-
tion

In this section we explain how we proceeded to compute numerically the
solution of the ordinary differential equation (3.1.2):

uxx + au+ b|u|2u = 0.

The Python function odeintw has been used to find the numerical solution.
In order to use this function we need to find the period T and the initial data
at a fixed (J,E). Recall that

VJ(r) =
J2

2r2
+ a

r2

2
+ b

r4

4
.

We start our numerical experiments by fixing a value of J in the domain
D1 (D2, D3 respectively) for each defocusing and focusing case. Recall that
when J 6= 0, u is of the form u(x) = r(x)eiφ(x). If we are in the defocusing
case we find the minimum rQ and the maximum rq of VJ(r). We know that
E− = VJ(rQ) and E+ = VJ(rq). Then we choose E such that E− 6 E < E+.
Note that we chose E < E+ since lim

E→E+(J)
T (J,E) = +∞. Moreover we find

the three positive roots r1 < r2 < r3 of E − VJ(r). If we are in the focusing
case we find the minimum rQ of VJ(r) and we have E− = VJ(rQ). Then we
choose E such that E− 6 E. Moreover we find the two positive roots r1 < r2

of E − VJ(r). Recall that the period T is given by (3.2.1)

T (J,E) = 2

∫ r2

r1

1√
2(E − VJ(r))

dr.

Furthermore, the Floquet multiplier is given by

θ(J,E) = φ(x+ T )− φ(x) =

∫ T

0

φx(x)dx

=

∫ T

0

J

r(x)2
dx = 2

∫ r2

r1

J

r2
√

2(E − VJ(r))
dr,

the mass is given by

M(J,E) =
1

2

∫ T

0

|u|2dx =
1

2

∫ T

0

r(x)2dx =

∫ r2

r1

r2

√
2(E − VJ(r))

dr,

and the momentum is given by

P (J,E) =
1

2
Im
∫ T

0

uuxdx = −1

2

∫ T

0

φxr(x)2dx

= −1

2

∫ T

0

Jdx = −
∫ r2

r1

J√
2(E − VJ(r))

dr.



92 Chapter 3. Analysis of the quasi-periodic waves

Recall that on the boundary E = E− the period T is given by the limit when
E tends to E−, which is given in Proposition (3.2.4).

To use the function odeintw, we set y =

(
u

v

)
, where v = u′, therefore

y′ =

(
v

−au− b|u|2u

)
. For the initial data, we suppose that u(0) = r(0) = r1

and u′(0) = iφ′(0)r(0) = J
r1
i, therefore we find the numerical solution.

The results of the numerical experiments are presented in Section 3.3.5.

3.3.3 Continuous gradient flow with discrete normaliza-
tion

The variational problem that we consider is the following:

min{E(u) : u ∈ Hθ
T , M(u) = m,P (u) = p}, (3.3.4)

where m > 0 and p ∈ R. Our goal in this section is to compute the minimizer
of the energy at fixed mass m and momentum p. The approach that we use
is the normalized gradient flow: at each step we evolve in the direction of the
gradient of the energy and renormalize the mass and the momentum of the
outcome. One of the earliest mathematical analysis was performed by Bao
and Du [13]. They proved the energy diminishing property of a normalized
gradient flow and compared several discretization methods. In the case of the
nonlinear Schrödinger equation on the line R with focusing cubic non linearity,
Faou and Jezequel [34] performed a theoretical analysis of the various level of
the discretization of the method, from the continuous one to the fully discrete
scheme. In the periodic setting Gustafson, Le Coz and Tsai [46] developed
a numerical method to obtain the minimizer of the energy with fixed mass
m > 0 and fixed momentum p = 0. More recently Besse, Duboscq and Le Coz
[20] implemented a method based on normalized gradient flow of the energy to
compute ground states of nonlinear Schrödinger equations on metric graphs.

Define an increasing sequence of time 0 = t0 < ... < tn and take an initial
data u0. Between each time step, let u(t, x) evolve along the gradient flow

{
ut = −E ′(u) = uxx + b|u|2u,
u(tn, x) = un(x),

(3.3.5)

where x ∈ R, tn < t < tn+1, n > 0. At each time step tn, the function
is renormalized so as to have the desired mass m and momentum p. Recall
that, as noted in [13], the renormalization of the mass is equivalent to solving
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exactly the following ordinary differential equation:

ut = µnu, tn < t < tn+1, n > 0, µn =
1

tn+1 − tn
ln

( √
2m

‖u(tn)‖L2

)
.

(3.3.6)
Inspired by this remark, we consider the following numerical algorithm which
gives the desired mass m and momentum p simultaneously by one flow. Sup-
pose ũn+1 has been computed from un using the semi-implicit Euler scheme.
To normalize ũn+1 we proceed in the following way. Let

m0 = M(ũn+1), p0 = P (ũn+1), k0 =
1

2

∫ T

0

|∂xũn+1|2dx.

Consider the following flow

∂tu = (µ+ iω∂x)u.

We have at (t = tn+1)

d

dt
M(u) = Re

∫ T

0

ūutdx = 2m0µ+ 2p0ω,

d

dt
P (u) = Im

∫ T

0

ūxutdx = 2p0µ+ 2k0ω.

We want to choose µn = µδt and ωn = ωδt so that

2m0µn + 2p0ωn = m−m0,

2p0µn + 2k0ωn = p− p0.

Note that by Cauchy-Schwarz

p2
0 =

(
1

2
Im
∫ T

0

uūxdx

)2

6

(
1

2

∫ T

0

|u|2dx
)(

1

2

∫ T

0

|ux|2dx
)

= m0k0.

In the case m0k0 − p2
0 > 0, we can solve

µn =
k0(m−m0)− p0(p− p0)

2(m0k0 − p2
0)

,

ωn =
m0(p− p0)− p0(m−m0)

2(m0k0 − p2
0)

.

In the case m0k0− p2
0 = 0, we have Cauchy-Schwarz equality. To be periodic,

ũn+1 is a plane wave and for some real constants r, α for the Cauchy-Schwarz
equality we have

ũn+1 = reiαx.

We choose

un+1 =

√
2m

T
e−i

p
m
x.
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3.3.4 Discretization

Several numerical methods can be considered for discretizing (3.3.5). For
example, a standard Crank-Nicolson scheme would consist in

un+1 − un
δt

= ∂xx

(
un+1 + un

2

)
+ b|un|2

(
un+1 + un

2

)
.

This method can be proved to be energy diminishing. However in the above
discretization, we need to solve a fully nonlinear system at every time step,
which is time and resource consuming in practical computation. A more
efficient method is the Gradient Flow with Discrete Normalization (GFDN)
which consists into one step of classical gradient flow followed by a mass and
momentum normalization step. The discretized problem is of the form





ũn+1 − un
δt

= ∂xxũn+1 + b|un|2ũn+1,

un+1 − ũn+1

δt
= (µ+ iω∂x)un+1.

Note that in the first equation, we used Euler explicit for the nonlinear term,
and Euler implicit for the linear terms. Therefore we obtain a semi-implicit
Euler scheme and the first equation becomes linear. Finally we present the
fully discretized problem. We discretize the space interval [0, T ] by setting

x0 = 0, xl = x0 + lδx, δx =
T

N
, N ∈ N.

We denote by uln the numerical approximation of u(tn, x
l). Using the (Back-

ward Euler) semi-implicit scheme for time discretization and second-order
centered finite difference for the second spatial derivatives, and the first cen-
tered finite difference for the first spatial derivatives, we obtain the following
scheme: 




ũln+1 − uln
δt

=
ũl−1
n+1 − 2ũln+1 + ũl+1

n+1

δx2
+ b|uln|2ũln+1,

uln+1 − ũln+1

δt
= µuln+1 + iω

ul−1
n+1 − ul+1

n+1

2δx
.

Recall that as we are in the space Hθ
T , we know that u(x + T ) = eiθu(x),

therefore with the discretization on the space interval [0, T ], we have

uLn+1 = eiθu0
n+1

Remark 3.3.4. Since the problem is invariant under phase multiplication and
spatial translation, at each step we shift uj so that the minimum of its modulus
is at the boundary, and is real. We do the same for the numerical solutions of
the ordinary differential equation.
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3.3.5 Experiments

Our main observation is the following.

Observation 3.3.5. Let (J,E) ∈ D1 (D2, D3 respectively) for each defocusing
and focusing case, uode be the associated solution of the ordinary differential
equation (3.1.2). Then (up to phase shift and translation) the minimizer of
the problem

min{E(u) : u ∈ Hθ
T , M(u) = M(uode), P (u) = P (uode), u ∈ Hθ

T},

is given by uode.

We performed different tests using the schemes described above. In every
test we were comparing the minimizer that we obtained from the normalized
gradient flow with the numerical solution of the ordinary differential equation.
The choice of the initial data was arbitrary and equal to u0(x) = 1 + i +

cos
(

2πx
T

)
. Other initial data lead to similar results. We use N = 1000 grid

points for the interval [0, T ]. We run the algorithm until a maximal difference
of ε = 10−6 between the absolute values of the moduli of ulj. For the time
discretization we take δt = 10−3.

Minimization among periodic functions is completely covered by theoreti-
cal results (see Theorems 3.3.2, 3.3.1). Therefore we started the experiments
by testing the conjecture on these cases: the dnoidal, the cnoidal and the
snoidal functions. We have chosen to fix k = 0.9. Recall that to run the
algorithm we have to fix a, b, J and E. For these three cases we fix J = 0.

We start with the periodic case. Let

E = −0.095, b = 2, a = −(2− k2).

As mentioned in Section 3.3.2, after fixing J and E we can now find the period
T , the Floquet multiplier θ , the mass m and the momentum p. We found the
following quantities:

T = 2K(k), θ = 0, m = E(k), p = 0,

which are exactly the period, mass and momentum of the dnoidal function.
We start by plotting uode the numerical solution of the ordinary differential
equation (3.1.2) and the function dn(x, k). We can see on the left of Figure
3.4 that uode is very close to the exact solution dn. The second step is to run
the algorithm and find the minimizer umin which we compare to the solution
of the ODE uode. We observe convergence towards dnoidal functions as we see
on the right of Figure 3.4 with a maximum difference between the solutions
of 3× 10−3.
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Figure 3.4 – Comparison of the dn function and the solutions of the ODE and
the minimization problem.

The second case is the anti-periodic functions. We fix

E = 0.095, b = 2k2, a = 1− 2k2.

Same as before we find the period T , the mass m and the momentum p. For
the Floquet multiplier θ, we impose θ = π and therefore we have:

T = 2K(k), θ = π, m =
(K− E)

k2
, p = 0.

We start by comparing the numerical solution of the ODE with the exact
solution. We can see on the left of Figure of 3.5 that the numerical solution
of the ODE is the exact solution cn. Then we compare it to the solution of
the minimization problem. We observe convergence towards cnoidal functions
as we see on the right of Figure 3.5 with a maximum difference between the
solutions of 3× 10−4.

Figure 3.5 – Comparison of the cn function and the solutions of the ODE and
the minimization problem.

For the third case, let

E = 0.5, b = −2k2, a = 1 + k2.
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With the same method as before we have

T = 2K(k), θ = π, m =
8

bT
K(K− E), p = 0.

First we can see on the left of Figure of 3.6 that the numerical solution of
the ODE is the exact solution sn. Then we compare it to the solution of
the minimization problem. We observe convergence towards snoidal functions
as we see on the right of Figure 3.6 with a maximum difference between the
solutions of 1× 10−2. This case is not covered by the theoretical result. Our
observation here is similar to the one of [46]: snoidal functions minimize the
energy on fixed mass and 0 momentum among anti-periodic functions.

Now we will test the conjecture on the other cases where we do not know
the theoretical results i.e. for complex valued solutions of (3.1.2). To do so
we fix different values of J and for each of these values, we choose E such
that (J,E) ∈ D1, ((D2), (D3)) defined in (3.2.2), (3.2.3), (3.2.4). We plot the
numerical solution of the ODE and the solution of the minimization problem
and we do the comparison.

We start with the defocusing case, and we fix b = −1 and a = 1. We
choose J = 0.2 arbitrarily. For other values of (J,E) ∈ D1 that we tested, we
obtain the same result. Then we fix three values of E such that: the first one
corresponds to E = E−(J) = V (J, rQ), where we know that the solution is a
plane wave, the second is strictly between E−(J)and E+(J) and the third is
very close to E+(J). For each value of E we plot the numerical solution of the
ODE and the solution of the minimization problem. As we can see in Figure
3.7, we obtain a very good agreement with the conjecture. For the first value
of E we have a maximum difference between the solutions of 5× 10−8, for the
second value of E a maximum difference of 1 × 10−2 and for the third value
of E a maximum difference of 3× 10−2.

Figure 3.6 – Comparison of the sn function and the solutions of the ODE and
the minimization problem.
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Figure 3.7 – Comparison between umin and uode for the defocusing case.

We do the same for the focusing case, with positive a. We fix b = 1 and
a = 1 and an arbitrary J = 1. We choose two values for E. The first one
E = E−(J) = V (J, rQ) and the second such that E−(J) < E = 5. We plot
the solutions and we can see in Figure 3.8 that the solution of the ODE is the
minimizer with a maximum difference of 1.2 × 10−7 for the first value of E
and 1× 10−2 in the second.

Figure 3.8 – Comparison between umin and uode for the focusing case with
a = 1.

Finally the focusing case with negative a. We fix b = 1 and a = −1 and
an arbitrary J = 4. We choose two values for E. The first one E = E−(J) =

V (J, rQ) and the second E−(J) < E = 7. We plot the solutions and we can
see in Figure 3.9 that the solution of the ODE is the minimizer. For the first
value of E we have a maximum difference between the solutions of 6× 10−8,
for the second value of E a maximum difference of 2× 10−3.

3.3.6 Order of the scheme

Using the numerical solution of the ODE and the solution of minimization
problem, we were able to evaluate the order of the scheme which is of order
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Figure 3.9 – Comparison between umin and uode for the focusing case with
a = −1.

1. To confirm this we make various simulations for different mesh sizes δx and
present the results below. We tried to change the Laplacien and the matrix of
the derivative to order 4 in order to obtain a better order of the scheme but
the observed order of the scheme was still 1.

For the defocusing case, we choose to fix (J,E) = (0.15, 0.25) and (J,E) =

(0.3, 0.29) arbitrarily. We present the results in Figure 3.10. For the focusing
case with positive a = 1, we choose to fix (J,E) = (1, 2) and (J,E) = (2, 5)

arbitrarily. We present the results in Figure 3.11. For a = −1 we fix (J,E) =

(2, 6) and (J,E) = (3, 6). We can see in Figure 3.12 that the scheme is of
order 1.

Remark 3.3.6. When we minimize the energy without the momentum con-
straint, for the dnoidal function the scheme is of order 2. For the cnoidal
function it is of order 1.

Figure 3.10 – Defocusing case.
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Figure 3.11 – Focusing case with a = 1.

Figure 3.12 – Focusing case with a = −1.

3.4 Surfaces

3.4.1 The conserved quantities surfaces

In this section we plot the surfaces of the conserved quantities of the ordi-
nary differential equation with respect to the period T , the Floquet multiplier
θ and the conserved mass and momentum of the nonlinear Schrödinger equa-
tion (3.1.1). We start with the defocusing case. Let b = −1 and a = 1. We
take 25 values of J between 0.1 and 4

27
a3

b2
. For each value of J we take 40 value

of E such that E−(J) 6 E < E+(J) − 0.001. For each couple (J,E) we find
the period T , the Floquet multiplier θ, the mass M and the momentum P .
Recall that from Section 3.2.4 we know that in the defocusing case the period
T is strictly increasing in function of E and strictly decreasing in function of
J for all J > 0. We represent each of the surfaces in Figures 3.13 and 3.14 .

For the focusing case let b = 1. For each positive or negative a, we take
50 values of J between 0.1 and 10. For each value of J we take 40 value of E
such that E−(J) 6 E 6 30. For each couple (J,E) we find the period T , the
Floquet multiplier θ, the mass M and the momentum P . Recall that from
Section 3.2.4 we know that in the focusing case with positive a the period T
is strictly decreasing in function of E and strictly decreasing in function of J
for all J > 0. Unlike the other cases for the focusing case with a negative T
is no longer a monotonic function of E (see Proposition 3.2.10). We represent
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each of the surfaces in Figures 3.15 and 3.16 for a = 1 and in Figures 3.17
and 3.18 for a = −1.

Figure 3.13 – Surfaces (J,E, T ) and (J,E, θ) for the defocusing case.

Figure 3.14 – Surfaces (J,E,M) and (J,E, P ) for the defocusing case.

Figure 3.15 – Surfaces (J,E, T ) and (J,E, θ) for the focusing case with a = 1.
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Figure 3.16 – Surfaces (J,E,M) and (J,E, P ) for the focusing case with a = 1.

Figure 3.17 – Surface (J,E, T ) for the focusing case with a = −1.

Figure 3.18 – Surfaces (J,E, θ), (J,E,M) and (J,E, P ) for the focusing case
with a = −1.
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3.4.2 The energy surfaces

In this section we will represent the surface in (M,P, E) for each of the
focusing/defocusing case. We fix N = 500, T = π and we will take 2 values
of θ which are 0 and π. We start with the defocusing case. Let b = −1 and
a = 1. Let θ = 0. We choose the mass such that it varies from 1 to 3 with
r = 17 values. Then for each value ofM we let P varies in (0, 2M) with k = 11

values. Using the gradient flow algorithm we find the solution for every fixed
(M,P ) and we calculate the energy E of every solution and we represent the
surface (M,P, E). As we can see in Figure 3.19, for the defocusing case with
θ = 0 the energy is increasing as a function of P and the minimum of the
energy is at P = 0 which is consistent with the fact that in the defocusing
case with periodic solutions the minimizer of the energy with fixed mass is
the constant function. Now we fix θ = π. In this case and same as before
we represent the surface in (M,P, E) in Figure 3.20. We can see that the
energy starts decreasing from P = 0 to P = M and then increases. This is
consistent with the fact that in the anti-periodic case the minimizer is a plane
wave which occurs at P = M .

Finally, for the focusing case let b = 1 and a = −1. In this case the surface
(M,P, E) is represented in Figure 3.21. We can see that the energy is an
increasing function of P .

Figure 3.19 – Defocusing case with θ = 0.
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Figure 3.20 – Defocusing case with θ = π.

Figure 3.21 – Focusing case with a = −1 and θ = π.
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3.5 Notebook

This section includes the Python code that we have developed to demon-
strate our findings. Our goal is to compute the minimizer of the energy at a
fixed mass m and momentum p using the normalized gradient flow approach.
Furthermore, we compare the obtained minimizer with the solution of the
ordinary differential equation, which we also compute.



[1]: import matplotlib.pyplot as plt
import numpy as np
import numpy.linalg as nl
import math
import functools
import scipy as sp
import scipy.optimize
import scipy.integrate as integrate
import scipy.sparse as scs
import scipy.sparse.linalg as scl

from scipy.integrate import odeint
from odeintw import odeintw

from IPython.display import display, clear_output

[2]: TeXFont = True
#plt.rcParams['figure.figsize']=[6,(3/4)*6]
if TeXFont:

plt.rcParams['font.size'] = 14.0 # font size
plt.rcParams['mathtext.fontset'] = 'cm' # computer moder math font
plt.rcParams['text.usetex'] = True # use tex engine for␣

↪→everything (useful for the axes labels)
else:

plt.rcParams['text.usetex'] = False

FontSize = 14

[3]: N=1000

[15]: b=-1 #fix b
a=1 #fix a

[16]: #In the case of the Jacobi elliptic functions, we fix a,b,k and m

#k=0.9
#m=k**2

#b=2 #dn
#a=-(2-k**2) #dn

#b=2*k**2 #cn
#a=1-2*k**2 #cn

#b=-2*k**2 #sn
#a=1+k**2 #sn

#u0=1
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#E=a*(u0)**2/2+b*(u0)**4/4
#print(E)

The effective potential

VJ(r) =
J2

2r2 + a
r2

2
+ b

r4

4
. (1)

[17]: def V(J,r):
return (J**2)/(2*r**2)+a*(r**2)/2+b*(r**4)/4

We start our numerical experiments by fixing a value of J in the domain D for each
focusing/defocusing case.

[18]: print(math.sqrt(abs(4*a**3/(27*b**2))))

0.3849001794597505

[21]: J=0.2 #fix J
if b<0 and (J**2)>(4*a**3/(27*b**2)):

print('J is not in the admissible range for existence of solutions')

[22]: r = np.linspace(0.02,3,200)
plt.plot(r,V(J,r))

[22]: [<matplotlib.lines.Line2D at 0x7f9d0fd8e520>]

If we are in the defocusing case we find rQ and rq where the minimum and the maxi-
mum of VJ(r) occurs. We know that E− = VJ(rQ) and E+ = VJ(rq). If we are in the fo-
cusing case we find rQ where the minimum of VJ(r) occurs and we have E− = VJ(rQ).

[23]: def v(J,r): #derivative of V(J,r) to find the minimum and the maximum
return -(J**2)/(r**3)+a*r+b*r**3

[24]: coeff= [b,0,a,0,0,0,-J**2]
s=np.roots(coeff)
real_valued = s.real[abs(s.imag)<1e-8] # where I chose 1-e5 as a␣

↪→threshold
roots=real_valued[real_valued>=0]
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if b<0:
rQ=roots[1]

else:
rQ=roots[0]

rq=roots[0]
print(rQ,rq)
print(V(J,rQ),V(J,rq))

0.4770335840617313 0.9778838168185794
0.18872302001819116 0.2704365170651153

[25]: # Keep for non polynomial V
# For polynomial V, use the roots
#vv=functools.partial(v,J)
#rQ=scipy.optimize.fsolve(vv,0.01) #rQ where the minimum of V(J,r)␣

↪→occurs
#rq=scipy.optimize.fsolve(vv,1) #rq where the maximum of V(J,r)␣

↪→occurs
#print(rQ,rq)
#print(V(J,rQ),V(J,rq))

[28]: Q=math.sqrt(abs(a+b*rQ**2))
q=math.sqrt(abs(a+b*rq**2))
print(Q,q)

0.8788850662499729 0.20914884844131254

We know that E− = VJ(rQ) and E+ = VJ(rq). Then in the defocusing case, we choose
E such that E− ≤ E < E+. And in the focusing case we choose E such that E− ≤ E.

[29]: n=10
if J==0:

E=np.linspace(E,E,n) # To keep the values used for dn, cn, sn
elif b<0:

E=np.linspace(V(J,rQ),V(J,rq)-0.001,n) #should be between␣
↪→V(J,rQ)<E<V(J,rq)

#E=np.linspace(V(J,rQ),0.29,n)
else:

E=np.linspace(V(J,rQ),7,n) #should be V(J,rQ)<E, 7 arbitrary value

print(E)

[0.18872302 0.19769119 0.20665935 0.21562752 0.22459569 0.23356385
0.24253202 0.25150018 0.26046835 0.26943652]

We find the positive roots of E−VJ(r).

[30]: R=[] # we solve E-V(J,r)=0 to find the roots r1,r2 and␣
↪→r3

for i in range(n):
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print(i)
c=[-b,0,-2*a,0,4*E[i],0,-2*J**2]
l=np.roots(c)
real_valued = l.real[abs(l.imag)<1e-5] #where I chose 1-e5 as a␣

↪→threshold
roots= real_valued[real_valued>0]
roots.sort()
print(roots)
R+=[roots]

0
[0.47703357 0.4770336 1.24293118]
1
[0.4032382 0.57043643 1.22963459]
2
[0.37717092 0.61704513 1.21531782]
3
[0.35871481 0.6572121 1.19974828]
4
[0.34412042 0.69502394 1.18259159]
5
[0.33194925 0.73243323 1.16333626]
6
[0.32146987 0.77102879 1.1411274 ]
7
[0.31225131 0.81288612 1.11432278]
8
[0.304015 0.86236914 1.07883935]
9
[0.29656889 0.94321343 1.01113566]

On the boundary E = E− the period T is given by the limit when E tends to E−. The
period T is given by

T(J, E) = 2
∫ r2

r1

1√
2(E−VJ(r))

dr.

The Floquet multiplier is given by

θ(J, E) = φ(x + T)− φ(x) =
∫ T

0
φx(x)dx

=
∫ T

0

J
r2(x)

dx = 2
∫ r2

r1

J

r2
√

2(E−VJ(r))
dr.

The mass is given by

M(J, E) =
1
2

∫ T

0
|u|2dx =

1
2

∫ T

0
r2(x)dx =

∫ r2

r1

r2
√

2(E−VJ(r))
dr.
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And the momentum is given by

P(J, E) =
1
2
=
∫ T

0
uūxdx = −1

2

∫ T

0
φxr2dx

= −1
2

∫ T

0
Jdx = − JT

2
= −

∫ r2

r1

J√
2(E−VJ(r))

dr.

When E→ E−(J) the following holds:

lim
E→E−(J)

T(J, E) =
π
√

2√
3Q2 − a

, lim
E→E−(J)

M(J, E) =
|Q2 − a|

2|b|
π
√

2√
3Q2 − a

,

lim
E→E−(J)

P(J, E) = −1
2

Q
(Q2 − a)

b
π
√

2√
3Q2 − a

.

For the defocusing case, when E→ E+(J) the following holds:

lim
E→E+(J)

T(J, E) = +∞, lim
E→E+(J)

M(J, E) = +∞,

lim
E→E+(J)

P(J, E) = −∞.

[32]: # Warning: does not take J=0 into account
T=[]
Theta=[]
Mass=[]
P=[]
for i in range(n):

if E[i]==V(J,rQ): #plane wave on the boundary E=E_
t=(math.pi* math.sqrt(2))/math.sqrt(abs((3*Q**2-a)))
theta=Q*t
mass=abs((Q**2-a)/b)*t/2
p=-Q*abs((Q**2-a)/b)*t/2

else:
t=integrate.quad(lambda r: 2/(math.

↪→sqrt(2*(E[i]-V(J,r)))),R[i][0],R[i][1])[0]
theta=integrate.quad(lambda r: 2*J/(r**2*math.

↪→sqrt(2*(E[i]-V(J,r)))),R[i][0],R[i][1])[0]
mass=integrate.quad(lambda r: r**2/(math.

↪→sqrt(2*(E[i]-V(J,r)))),R[i][0],R[i][1])[0]
p=integrate.quad(lambda r: -J/(math.

↪→sqrt(2*(E[i]-V(J,r)))),R[i][0],R[i][1])[0]

T+=[t]
Theta+=[theta]
Mass+=[mass]
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P+=[p]

print(T)
print(Theta)
print(Mass)
print(P)

[3.8709694357533957, 3.9485816232601585, 4.037153071335709, 4.
↪→140091496655486,

4.262662811923297, 4.413637390919369, 4.6092835723471905, 4.
↪→8853781622577745,

5.350452558101836, 7.063792023604424]
[3.4021372289937433, 3.4143576837487988, 3.4285582296326544, 3.

↪→445388344853337,
3.4658617612291454, 3.4916848623211587, 3.526059027086435, 3.

↪→5761123703181696,
3.6637750705155403, 4.007528305825266]
[0.44044091592886525, 0.4843078001338, 0.5337798144019222, 0.

↪→5905526075453051,
0.6572345919189245, 0.7381494793422435, 0.8412772233349577, 0.

↪→9840726921022922,
1.2191687539643439, 2.0559075637909263]
[-0.38709694357533947, -0.3948581623260117, -0.40371530713356835,
-0.414009149665553, -0.4262662811923308, -0.4413637390919343,
-0.46092835723471903, -0.4885378162257671, -0.5350452558101829,
-0.7063792023640353]

[34]: j=0 # take a value inside E

[35]: #Theta=np.linspace(np.pi,np.pi,n)
# case J=0 to be treated

[36]: def D(delta_x,N):
A=scs.identity(N,dtype = 'complex_')
A=A.tolil()
for i in range(N):

A[i,i]=0
for i in range(N-1):

A[i+1,i]=-1
A[i,i+1]=1

A[0,N-1]=-np.exp(-1j*Theta[j])
A[N-1,0]=np.exp(1j*Theta[j])
A=A/(2*delta_x)
return A

def Lap(delta_x,N):
A=scs.identity(N,dtype = 'complex_')
A=A.tolil()
for i in range(N):
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A[i,i]=-2
for i in range(N-1):

A[i,i-1]=1
A[i+1,i]=1
A[i,i+1]=1

A[0,N-1]=np.exp(-1j*Theta[j])
A[N-1,0]=np.exp(1j*Theta[j])
A=A/(delta_x**2)
return A

[37]: delta_t=10**(-3)
Epsilon=10**(-6)
IterMax=10**(5)
x=np.linspace(0,T[j],N,endpoint=False)
delta_x=x[1]-x[0]
u=1+np.cos(2*math.pi*x/T[j])+1j # futur initial data
#u=sol[:,0]
plt.plot(x,np.abs(u))

[37]: [<matplotlib.lines.Line2D at 0x7f9d1016d220>]

[38]: #In the case of the Jacobi elliptic functions
#sn, cn, dn, ph=sp.special.ellipj(x, m)

#if J==0:
# if b==2:
# y0= [dn[0],-k**2*cn[0]*sn[0]]
# elif b==2*k**2:
# y0= [cn[0],-sn[0]*dn[0]]
# elif b==-2*k**2:
# y0= [sn[0],cn[0]*dn[0]]
#z=sn
#zmin=np.argmin(np.abs(z))
#z=np.concatenate((np.exp(-1j*Theta[j])*z[zmin:],z[:zmin]),axis=0)
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#z=(np.conjugate(z[np.int(0)])/np.abs(z[np.int(0)]))*z

[40]: #Numerical solution of the ordinary differential equation
def fun(y, x):

# x is space/time and y the vector solution of the first order ODE
u, v = y
dydx = [v,-a*u-b*abs(u)**2*u]
return dydx

y0=[R[j][0],1j*J/(R[j][0])]

sol =odeintw(fun, y0, x)

[41]: solmin=np.argmin(np.abs(sol[:, 0]))
sol[:, 0]=np.concatenate((np.exp(-1j*Theta[j])*sol[:, 0][solmin:],sol[:

↪→, 0][:solmin]),axis=0)
sol[:, 0]=(np.conjugate(sol[:, 0][np.int(0)])/np.abs(sol[:, 0][np.

↪→int(0)]))*sol[:, 0]
sol[:, 0]=sol[:, 0]*np.sign(np.real(sol[:, 0][0]))

[42]: #Compare the fixed Mass m with the mass of the ODE solution
#same for the momentum P
print(1/2*(nl.norm(sol[:, 0])*math.sqrt(delta_x))**2-Mass[j])
print(1/2*(delta_x*sum((sol[:, 0])*(D(delta_x,N)*(sol[:, 0])).

↪→conjugate())).imag-P[j])

-2.4082479843645643e-08
7.679099551793911e-07

[43]: plt.plot(x,abs(sol[:, 0]),'k',marker='.
↪→',markevery=50,label='$|u_{ode}|$')

plt.plot(x, (np.real(sol[:, 0])),'k:',marker='.
↪→',markevery=50,label='$Re(u_{ode})$')

plt.plot(x, np.imag(sol[:, 0]),'k--',marker='.
↪→',markevery=50,label='$Im(u_{ode})$')

#plt.plot(x,abs(z),'k',label='$|sn|$')
#plt.plot(x,np.real(z),'r--',label='Real(dn)')#
#plt.plot(x, np.imag(z),'g--',label='Imag(dn)')

#plt.plot(x,(np.sqrt(1-Q**2))*np.real(np.exp(1j*Q*x)),'r-.
↪→',label='plane wave')

plt.xlabel('$x$')
#plt.ylabel('y label')
plt.title("Numerical and exact solutions of the ODE")
plt.legend()
plt.show()
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[44]: def Energie(u):
return 1/2*(nl.norm(D(delta_x,N)*u))**2*delta_x-b/4*(nl.

↪→norm(u**2))**2*delta_x

[46]: def cngf(u,Mass,P,b,delta_t,delta_x,Epsilon,IterMax):
N=np.size(u)
M_1 = scs.identity(N) - delta_t*Lap(delta_x,N)
for n in range(IterMax):

u_old = u
M = M_1 - b*delta_t*scs.diags(abs(u)**2)
u = scl.spsolve(M,u)

m0= 1/2*(nl.norm(u)*math.sqrt(delta_x))**2
p0= 1/2*(delta_x*sum(u*(D(delta_x,N)*u).conjugate())).imag
k0= 1/2*(nl.norm(D(delta_x,N)*u)*math.sqrt(delta_x))**2

print(p0**2-m0*k0)
if abs(m0*k0-p0**2)>10**(-2):

mu= (k0*(Mass[j]-m0)-p0*(P[j]-p0))/(delta_t*2*(m0*k0-p0**2))
om= (m0*(P[j]-p0)-p0*(Mass[j]-m0))/(delta_t*2*(m0*k0-p0**2))
K=(1-delta_t*mu)*scs.csr_matrix(scs.

↪→identity(N))-delta_t*1j*om*D(delta_x,N)
u=scl.spsolve(K,u)

else:
u= np.sqrt(2*Mass[j]/T[j])*np.exp(1j*(-P[j]/Mass[j])*x)
break

umin=np.argmin(abs(u))
u=np.concatenate((np.exp(-1j*Theta[j])*u[umin:],u[:

↪→umin]),axis=0)

u=(np.conjugate(u[np.int(0)])/np.abs(u[np.int(0)]))*u

114 Chapter 3. Analysis of the quasi-periodic waves



u=u*np.sign(np.real(u[0]))

clear_output(wait=True)
print('iteration',n,'stop-crit',nl.norm(u-u_old)/nl.norm(u_old))

Stop_crit = nl.norm(u-u_old)/nl.norm(u_old)<Epsilon
if Stop_crit:

break

print(f'End at iteration {n+1} on {IterMax}')
return u

[47]: v=cngf(u,Mass,P,b,delta_t,delta_x,Epsilon,IterMax)

iteration 880 stop-crit 0.0006650850053313828
-0.009981388128428997
End at iteration 882 on 100000

[50]: print(Energie(sol[:,0])-Energie(v))
print(1/2*(nl.norm(v)*math.sqrt(delta_x))**2-Mass[j])
print(1/2*(delta_x*sum((v)*(D(delta_x,N)*(v)).conjugate())).imag-P[j])

-2.4082360494670496e-08
-5.551115123125783e-17
7.467442608155572e-07

[51]: plt.subplots(figsize=(15, 5))

plt.subplot(1, 2, 1)
plt.plot(x,np.abs(v),'g')
plt.plot(x,np.real(v),'r')
plt.plot(x,np.imag(v),'b')

plt.subplot(1, 2, 2)
plt.plot(x, np.abs(sol[:, 0]),'g--')
plt.plot(x, np.real(sol[:, 0]),'r--')
plt.plot(x, np.imag(sol[:, 0]),'b--')

[51]: [<matplotlib.lines.Line2D at 0x7f9d1051d3d0>]
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[52]: plt.plot(x, np.abs(sol[:, 0]),'k',marker='.
↪→',markevery=50,label='$|u_{ode}|$')

plt.plot(x, np.abs(v),'k',label='$|u_{min}|$')

plt.plot(x, np.real(sol[:, 0]),'k:',marker='.
↪→',markevery=50,label='$Re(u_{ode})$')

plt.plot(x,np.real(v),'k:',label='$Re(u_{min})$')

plt.plot(x, np.imag(sol[:, 0]),'k--',marker='.
↪→',markevery=50,label='$Im(u_{ode})$')

plt.plot(x,np.imag(v),'k--',label='$Im(u_{min})$')

plt.xlabel('$x$')
plt.title("ODE and Minimization solutions")

plt.legend()
plt.show()
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[53]: plt.subplots(figsize=(15, 5))

plt.subplot(1,3,1)
plt.plot(x,abs(v-sol[:, 0]),'g')

plt.subplot(1,3,2)
plt.plot(x,np.real(v)-np.real(sol[:, 0]),'r')

plt.subplot(1, 3, 3)
plt.plot(x,np.imag(v)-np.imag(sol[:, 0]),'b')

[53]: [<matplotlib.lines.Line2D at 0x7f9d10a25790>]
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Chapter 4

General nonlinearity

4.1 Introduction

We consider in one space dimension the nonlinear Schrödinger equation

iψt + ψxx + bf(ψ) = 0, (4.1.1)

where ψ : Rt × Rx → C, the nonlinearity f : C→ C is defined for any z ∈ C
by f(z) = g(|z|2)z with g ∈ C0([0,+∞),R)∩C2((0,+∞),R) and b ∈ R\{0}.
For simplicity, we denote by f ′ the derivative of f|R. We make the following
assumptions on the nonlinearity:
• The function

h(s) := (sf(s)− 2F (s))s−2, (4.1.2)

is strictly increasing on (0,+∞), where F (z) =
∫ |z|

0
f(s)ds = 1

2
G(|z|2),

with G′ = g and G(0) = 0. Also lim
s→0

h(s) = 0 and lim
s→0

f(s)
s

= 0.
• There exist M > 0 , 1 < p < 5 and s0 such that for all s > s0 we have
|f(s)| 6Msp.

Under these assumptions, the functions s→ F (s)
s2

and s→ f(s)
s

are increasing
functions that grow to infinity. We also assume that f satisfies the inequality:

s2f ′′(s) > sf ′(s)− f(s). (4.1.3)

Finally, to avoid linear behavior of f at infinity, we assume that:

lim
s→∞

(
f(s)

s
− f ′(s)

)
= −∞. (4.1.4)

Note that these assumptions hold for nonlinearities of the form of sum of
powers with positive coefficients, for example.

We are particularly interested in the spatially periodic solutions ψ(t, .) ∈
H1
loc ∩ PT , and anti-periodic solutions ψ(t, .) ∈ H1

loc ∩ AT where

PT = {f ∈ L2
loc(R) : f(x+ T ) = f(x)},

and
AT = {f ∈ L2

loc(R) : f(x+ T ) = −f(x)}.
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The Cauchy problem (4.1.1) is known to be globally well posed in H1
loc ∩ PT

(see [24]). Solutions to (4.1.1) conserve the mass M , the momentum P , and
energy E :

M(ψ) =
1

2

∫ T

0

|ψ|2dx, P (ψ) =
1

2
Im
∫ T

0

ψψxdx

E(ψ) =
1

2

∫ T

0

|ψx|2dx− b
∫ T

0

F (ψ)dx.

The simplest non-trivial solutions of (4.1.1) are the standing waves. They are
solutions of the form

ψ(t, x) = e−iatu(x), a ∈ R.

The profile function u(x) satisfies the ordinary differential equation

uxx + au+ bf(u) = 0. (4.1.5)

It is an integrable ordinary differential equation, whose conserved quantities
(on C) are the momentum J and the energy E, given by

J = Im(uxu), E =
1

2
|ux|2 +

a

2
|u|2 + bF (u).

In the work of Gustafson, Le Coz and Tsai [46] they provided a global vari-
ational characterization of the cnoidal, snoidal, and dnoidal elliptic functions
for the cubic case, and proved some orbital stability results for the correspond-
ing solutions of the nonlinear Schrödinger equation.

In this work, we aim to generalize their results to the case of a general
nonlinearity. Specifically, we start with the analysis of the profile equation
(4.1.5), which describes the behavior of stationary solutions to (4.1.1). We
will consider the real and complex-valued solutions and represent their phase
portraits for various parameter regimes. We will then study the minimization
problems for the energy functional with fixed mass and momentum constraints
for the periodic and anti-periodic cases, extending the previous results to this
more general setting. We will analyze the existence, uniqueness, and stability
of the minimizers for each case, and investigate their properties in detail using
variational methods. Finally, we will consider the minimization problem on
the Nehari manifold. The ground state solutions for the minimization problem
lie on the Nehari manifold, and we can characterize them by minimizing the
energy functional subject to the Nehari constraint. The analysis of these
problems is expected to provide a better understanding of the dynamics of
the nonlinear Schrödinger equation.
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4.2 Preliminaries

When dealing with functions in PT , we will denote norms such Lq(0, T ) by

‖u‖Lq = ‖u‖Lq(0,T ) =

(∫ T

0

|u|q
) 1

q

,

and the complex L2 inner product by

(f, g) =

∫ T

0

fḡdx.

4.2.1 Orbital stability

Recall that we say that the standing wave ψ(t, x) = e−iatu(x) is orbitally
stable for the flow of (4.1.1) in the function space X if for all ε > 0, there
exists δ > 0 such that the following holds: if ψ0 ∈ X verifies

‖ψ0 − u‖X 6 δ,

then the solution ψ of (4.1.1) with initial data ψ(0, x) = ψ0 verifies for all
t ∈ R the estimate

inf
θ∈R,y∈R

‖ψ(t, .)− eiθu(.− y)‖X < ε.

4.3 Analysis of the profile equation

In this section, we study the bounded solutions of the profile equation
(4.1.5). We will distinguish between two different cases depending whether or
not J = 0. We introduce the polar coordinates

u(x) = r(x)eiφ(x),

with r > 0 and r, φ ∈ C2(R). The invariants become

J = r2φx, E =
rx

2

2
+
J2

2r2
+ a

r2

2
+ bF (r).

If J = 0, then replacing r(x)eiφ(x) with r(x)eiφ for some φ ∈ [0, 2π] we can
assume that u(x) ∈ R up to a constant phase. If J 6= 0, then u(x) 6= 0 for all
x ∈ R, and φx 6= 0. Define the effective potential by

VJ(r) =
J2

2r2
+ a

r2

2
+ bF (r).



122 Chapter 4. General nonlinearity

By elementary calculations, we have

V ′J(r) = −J
2

r3
+ ar + bf(r).

In what follows, we describe the potential VJ . We start with the case J = 0.
Then

V (r) = a
r2

2
+ bF (r), V ′(r) = ar + bf(r).

If V ′(r) = 0, then f(r)
r

= −a
b
. We know that f(r)

r
is an increasing function for

all r > 0 therefore there exists at most one value r0 > 0 such that

ar0 + bf(r0) = 0.

We now discuss what happens depending on the values of a and b. We know
that lim

r→0

f(r)
r

= 0 and then sign(V ′(r)) = sign(a), when r approaches 0. And

we know that lim
r→+∞

V (r) = sign(b)∞, because we have lim
r→+∞

F (r)
r2

= +∞.
We start with the defocusing case where b < 0, and assume a > 0. Then
V ′(r) = 0 has exactly one solution. Therefore the graph of V as a function of
r is given on the left of Figure 4.1. The second case is the focusing case where
b > 0 with a > 0. Then V ′(r) has always the same sign. The graph of V as
a function of r is represented on the center of Figure 4.1. The last case is the
focusing case where b > 0 with a < 0, then V ′(r) = 0 has again exactly one
solution, and the graph of V as a function of r is represented on the right of
Figure 4.1.

Figure 4.1 – V (r) as a function of r with J = 0.

Now we suppose that J 6= 0. If V ′J(r) = 0, then −J2 + r4
(
a+ bf(r)

r

)
= 0.

Let

h(r) = r4

(
a+ b

f(r)

r

)
.
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We will study the variations of the function h, which will give us the graph of
the potential. We have

h′(r) = 4ar3 + bf ′(r)r3 + 3br2f(r) = r3

(
4a+ bf ′(r) + 3b

f(r)

r

)
.

We start with the defocusing case where b < 0 and a > 0. In this case the
graph of h(r) as a function of r is presented on the left of Figure 4.2. Hence
V ′J(r) = 0 has 2 solutions for J2 < rc where h′(rc) = 0 and the maximum
occurs. Then the graph of VJ as function of r is presented on the left of
Figure 4.3. The second case is the focusing case where b > 0 and a > 0.
We know that h(r) is a strictly increasing function presented on the center of
Figure 4.2. Hence V ′J(r) = 0 has a unique solution. Then the graph of VJ as
function of r is given on the center of Figure 4.3. The last case is the focusing
case where b > 0 and a < 0. The graph of h as a function of r is represented
on the right of Figure 4.2. Hence V ′J(r) = 0 has a unique solution. Then the
graph of VJ as function of r is represented on the right of Figure 4.3.

Figure 4.2 – h(r) as a function of r.

Figure 4.3 – VJ(r) as a function of r with J 6= 0.
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4.3.1 Phase portraits

In this section we will represent the phase portraits for each focusing and
defocusing cases and depending whether or not J = 0. In polar coordinates,
the equation (4.1.5) becomes

rxx −
J2

r3
+ ar + bf(r) = 0.

We rewrite this second order differential equation in the form of a first order
system by introducing new coordinates

y =

(
y1

y2

)
=

(
r

rx

)
.

Then the differential system is the following

y′ = G(y) =

(
y2

J2

y31
− ay1 − bf(y1)

)
=

(
f1(y1, y2)

f2(y1, y2)

)
.

We start by finding the equilibrium points y such that G(y) = 0. Then we
find the isoclines I0 and I∞, where

Iα =

{
(y1, y2) ∈ R2 :

f2(y1, y2)

f1(y1, y2)
= α

}
.

We start with the case J = 0. We have

I0 = {(y1, y2) ∈ R2 : y2 6= 0, ay1 + bf(y1) = 0},

and
I∞ = {(y1, y2) ∈ R2 : −ay1 − bf(y1) 6= 0, y2 = 0}.

These isoclines I0 and I∞ meet at the equilibrium points of the system and
determine the regions where the trajectories are monotone:

Q++ = {y ∈ R2, f1(y) > 0, f2(y) > 0}.
Q+− = {y ∈ R2, f1(y) > 0, f2(y) < 0}.
Q−+ = {y ∈ R2, f1(y) < 0, f2(y) > 0}.
Q−− = {y ∈ R2, f1(y) < 0, f2(y) < 0}.

Then we study the stability of the equilibrium points. The Jacobian matrix
of F is of the form

JF =

(
0 1

−a− bf ′(y1) 0

)
.

Classification of equilibrium points is determined by the eigenvalues λ1 and λ2

of the Jacobian matrix JF . There are 4 different types of equilibrium points:
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1. If λ1, λ2 are real numbers of the same sign the point is called a node.

2. If λ1, λ2 are real numbers and non-zero of opposite sign the point is
called a saddle.

3. If λ1, λ2 are complex numbers, the real parts are equal and non-zero
the point is called focus.

4. If λ1, λ2 are purely imaginary numbers the point is called center.

Let’s start with the defocusing case where b < 0 and a > 0. We know
that f(r)

r
is an increasing function on (0,∞) therefore in this case there exists

a unique r0 > 0 such that ar0 + bf(r0) = 0. Thus we have three equilibrium
points (0, 0), (r0, 0) and (−r0, 0). Hence

I0 = {(y1, y2) ∈ R2 : y1 ∈ {0,±r0}, y2 6= 0},

and
I∞ = {(y1, y2) ∈ R2 : y1 /∈ {0,±r0}, y2 = 0}.

The characteristic polynomial of the Jacobian matrix JF is given by P (λ) =

λ2 + a + bf ′(y1). At the equilibrium point (0, 0) the eigenvalues are λ =

±i√a (recall that a > 0). Since the eigenvalues are purely imaginary, the
equilibrium point (0, 0) is a center. At the equilibrium points (±r0, 0) we
have a + bf ′(r0) < 0, therefore the eigenvalues are non-zero real numbers of
opposite signs and the equilibrium point is a saddle point. The phase portrait
is given in Figure 4.4.

For the focusing case where b > 0 with a > 0 we have one equilibrium
point (0, 0) satisfying the equation ar0 + bf(r0) = 0. The eigenvalues are
given at the equilibrium point (0, 0) by λ = ±i√a and the equilibrium point
(0, 0) is a center. The phase portrait is given on the left of Figure of 4.5.

The last case is the focusing case with b > 0 and a < 0. There exists
a unique r0 > 0 such that ar0 + bf(r0) = 0 and we have three equilibrium
points (0, 0), (r0, 0) and (−r0, 0). Same as before we have the iscolines I0 and
I∞. At the equilibrium point (0, 0) the eigenvalues are λ = ±√−a and the
equilibrium point (0, 0) is a saddle. At the equilibrium points (±r0, 0) the
eigenvalues are purely imaginary numbers hence the equilibrium point is a
center. The phase portrait is given on the right of Figure 4.5.

The second case is when J 6= 0. We have

I0 = {(y1, y2) ∈ R2 :
J2

y3
1

− ay1 − bf(y1) = 0, y2 6= 0},

and
I∞ = {(y1, y2) ∈ R2 :

J2

y3
1

− ay1 − bf(y1) 6= 0, y2 = 0}.
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Figure 4.4 – Phase portraits of the solutions for the defocusing when J = 0.

Figure 4.5 – Phase portraits of the solutions for the focusing case when J = 0.

The Jacobian matrix of F (y) is of the form

JF =

(
0 1

−3J
2

y41
− a− bf ′(y1) 0

)
.

We start with the defocusing case where b < 0 and a > 0. In this case the
equation J2

y41
−ay1−bf(y1) = 0 has 2 solutions rQ and rq such that 0 < rQ < rq.

Thus we have two equilibrium points (rQ, 0) and (rq, 0). The characteristic
polynomial of the Jacobian matrix JF is given by P (λ) = λ2+ 3J2

y41
+a+bf ′(y1).

On the first equilibrium point (rQ, 0) we have λ2 = −3J2

r4Q
− 1 + f ′(rQ) =

−V ′′J (rQ) < 0, because VJ(r) is convex at rQ and therefore the eigenvalues are
purely imaginary and the equilibrium point (rQ, 0) is a center. On the second
equilibrium point (rq, 0) we have λ2 = −3J2

r4q
− 1 + f ′(rq) = −V ′′J (rq) > 0,

because VJ(r) is concave at rq and therefore the eigenvalues are non-zero real
numbers of opposite signs hence the equilibrium point is a saddle. The phase
portrait is given on the left of Figure 4.6.

For the focusing case where b > 0, with both cases a > 0 or a < 0, the
equation J2

y31
− ay1 − bf(y1) = 0 has 1 solution rQ. On the equilibrium point

(rQ, 0) we have λ2 = −3J2

r4Q
− a − f ′(rQ) < 0, therefore the eigenvalues are

purely imaginary and the equilibrium point (rQ, 0) is a center. The phase
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portrait for these two cases is given on the right of Figure 4.6.

Figure 4.6 – Phase portraits of the solutions when J 6= 0.

4.3.2 Triple power nonlinearity

In this section we treat a special case not included in the general case we
treated before. Let f(u) = a1|u|u + a2|u|2u + a3|u|3u = 0, where a1, a3 > 0

and a2 < 0. After using the symmetry of (4.1.1), we may assume a1 = a3 = 1

and a2 = −γ < 0. Let

f(φ) = |φ|φ− γ|φ|2φ+ |φ|3φ.

Denote also
F (φ) =

1

3
|φ|3 − γ

4
|φ|4 +

1

5
|φ|5.

We study the critical points of V . Since f is gauge-invariant, V is even in
r and we may restrict the study to positive critical points. Let ω = −a, we
have

V ′(r) = −ωr + f(r).

Define
f1(r) =

f(r)

r
.

The difference between this case and the case we treated before is that f1(r)

is not strictly increasing. A positive zero of V ′ is a positive solution of

0 = −ω + f1(r) = −ω + r − γr2 + r3. (4.3.1)

To determine the number of zeros of V ′, we analyze the variations of f1. We
have

f ′1(r) = 1− 2γr + 3r2,

which has constant sign when γ <
√

3 and otherwise has two (positive) zeros
given by

r± =
1

3

(
γ ±

√
γ2 − 3

)
.
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As a consequence, when 0 < γ 6
√

3, the function f1 is strictly increasing on
[0,∞) and there exists a (unique) positive solution of (4.3.1) if and only if
ω > 0.

When γ >
√

3, we have f ′1(r) > 0 for r ∈ (0, r−)∪(r+,∞) and f ′1(r) < 0 for
r ∈ (r−, r+). In this case, (4.3.1) has between 0 and 3 solutions. In particular,
(4.3.1) has three positive solutions if and only if ω > 0 and

1

27

(
γ(−2γ2 + 9)− 2(γ2 − 3)

3
2

)
=

f1(r+) < ω < f(r−)

=
1

27

(
γ(−2γ2 + 9) + 2(γ2 − 3)

3
2

)
.

The γ − ω regions of existence of solutions for (4.3.1) is represented in the
figure below (zero solution, one solution, two solutions, three solutions).

0 1 2 3 4

−0.4

−0.2

0

0.2

0.4

0.6

γ

ω

Whenever they exist, we denote the solutions of (4.3.1) by

0 < c1 < r− < c2 < r+ < c3,

with the convention that when r± do not exist the solution is called c1.
Let us now distinguish the various possibles phase portraits depending on

γ and ω.

4.3.2.1 Case ω < min{0, f1(r+)}
In this case the only critical point of V is 0, which is a center. Solutions

of (4.1.5) are all of sn/cn type. The phase portrait is given in Figure 4.7.

4.3.2.2 Case ω > 0, ω 6∈ {(f1(r+), f1(r−))}
In this case, V has two non-negative critical points: 0 and c1. The point

0 is a saddle point. The other critical point c1 is a center. The phase portrait
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Figure 4.7 – Phase portrait 0 solution.

is similar to the one of the single focusing power. We have dn type solutions
close to the center and cn type solutions for higher first integrals. The phase
portrait is given in Figure 4.8.

3 2 1 0 1 2 3
3

2

1

0

1

2

3
= 1, = 1

Figure 4.8 – Phase portrait 1 solution.

4.3.2.3 Case f1(r+) < ω < 0

In this case, V has three non-negative critical points: 0 and c2, c3. The
points 0 and c3 are centers. The other critical point c2 is a saddle point. Only
one possible phase portrait with discussion about the co-existence of periodic
solutions for same values of the first integral. The phase portrait is given in
Figure 4.9.

4.3.2.4 Case max(0, f1(r+)) < ω < f1(r−)

In this case, V has four non-negative critical points: 0 and c1, c2, c3. The
points 0 and c2 are saddle points. The other critical point c1 and c3 are centers.
Three possible phase portraits depending on the value of V (c2). If V (c2) > 0,
then we have a homoclinic solution connecting 0 to itself without passing
through c2 and an heteroclinic solution connecting c2 to −c2. If V (c2) < 0,
then the heteroclinic solution connecting 0 to itself passes through c2 and c3
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Figure 4.9 – Phase portrait 3 solution.

and there are two homoclinic solutions at c2 (one by lower values and the
other by upper values). Finally, at the borderline case V (c2) = 0 the main
distinguishing feature is a half-kink solution connecting 0 to c2. In the plane
(γ, ω), the half-kink line corresponds to the curve

γ → −5γ (5γ2 − 24)

432
+

√
5
√

(5γ2 − 16)3

432
,

starting at the point
(

4√
5
, 2
√

5
27

)
(observe that this is nothing but the line of

non-existence of solitons found in [58]). The phase portraits are given in
Figure 4.10.
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4.4 The minimization problems

In the work of Gustafson, Le Coz and Tsai [46], the authors gave global
variational characterizations of the cnoidal, snoidal, and dnoidal elliptic func-
tions for the cubic nonlinear Schrödinger equation. Specifically, they showed
that these functions arise as minimizers of the energy functional subject to
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Figure 4.10 – Phase portrait 3 solution, V (c2) > 0, V (c2) = 0, V (c2) < 0,
bottom line is a zoom of the top one.

appropriate mass and momentum constraints. Their work built upon earlier
results in [25], which established the stability of the minimizers of the energy
functional subject to fixed mass constraints. By combining the variational
characterization of stability with the existence of minimizers for the mass-
constrained problem, the authors of [46] were able to prove the stability of the
cnoidal, snoidal, and dnoidal elliptic functions.

In this section, we are looking to study the minimization problems where
we minimize the energy to fixed mass and momentum constraints for the
nonlinear Schrödinger equation (4.1.1). We shall provide some stability results
on the minimizer.

4.4.1 Minimization among the periodic functions

Let m > 0. The basic variational problem is to minimize the energy at
fixed mass:

min{E(u) : u ∈ H1
loc ∩ PT , M(u) = m}. (4.4.1)

Since the momentum is also conserved for (4.1.1), it is natural to consider the
problem with a further momentum constraint:

min{E(u) : u ∈ H1
loc ∩ PT , M(u) = m, P (u) = 0}. (4.4.2)

The minimization problems (4.4.1) and (4.4.2) seek to find functions u which
minimize the energy subject to the constraint that the mass is fixed and, in
the case of (4.4.2), the momentum is also zero. Note that when we minimize
the energy with fixed mass and fixed momentum p 6= 0 the problem is more
complicated. It is known that there exists u∞ minimizer, and there exist
Lagrange-multipliers ω and σ such that

−E ′(u∞) + ωM ′(u∞) + σP ′(u∞) = 0,
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that is
−∂xxu∞ + ωu∞ − b|u∞|2u∞ ± iσ∂xu∞ = 0.

In this chapter we will only focus on the case p = 0.

4.4.1.1 The focusing case in PT

Assume that b > 0.

Proposition 4.4.1. For all m > 0, the minimization problem (4.4.1) admits a
minimizer which is also a minimizer of the minimization problem (4.4.2). The
minimal energy is finite and negative.

Proof. Without loss of generality, we can restrict the minimization to real
valued non-negative functions. Indeed, if u ∈ H1

loc ∩ PT , then |u| ∈ H1
loc ∩ PT

and we have ‖∂x|u|‖L2 6 ‖∂xu‖L2 . This implies that (4.4.1) and (4.4.2) share
the same minimizers.

Let us prove that the minimal energy is negative. To do so, let φm,0 ≡
√

2m
T

be a test function. We have

M(φm,0) = m, E(φm,0) = −
∫ T

0

F

(√
2m

T

)
dx = −TF

(√
2m

T

)
< 0,

where the last inequality holds because F (z) > 0 for any z ∈ C by the
assumptions on f .

Consider now a minimizing sequence (un) ⊂ H1
loc∩PT for (4.4.1). We first

prove that it is bounded in H1
loc ∩ PT . To this aim, we rely on the Gagliardo-

Nirenberg inequality: for any u ∈ H1
loc ∩ PT , we have

‖u‖p+1
Lp+1 . ‖ux‖α(p+1)

L2 ‖u‖(1−α)(p+1)

L2 + ‖u‖p+1
L2 ,

where α = 1
2
− 1

p+1
. We also know that there exists p > 1 such that

F (u) 6 |F (u)| . |u|2 + |u|p+1.

Consequently, for any u ∈ H1
loc ∩ PT , such that M(u) = m, we have

E(u) =
1

2
‖ux‖2

L2 −
∫ T

0

F (u)dx,

&
1

2
‖ux‖2

L2 − ‖u‖2
L2 − ‖u‖p+1

Lp+1 ,

&
1

2
‖ux‖2

L2 −m− ‖ux‖α(p+1)

L2 m
(1−α)(p+1)

2 −m p+1
2 ,

= ‖ux‖2
L2

(
1

2
− ‖ux‖α(p+1)−2m

(1−α)(p+1)
2

)
−m p+1

2 −m.
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The previous inequality implies the boundedness of ‖∂xun‖L2 when 1 < p < 5.
Indeed, by contradiction, we suppose that ‖∂xun‖L2 → ∞. Since 1 < p < 5,
we have α(p + 1) − 2 < 0, and this implies that ‖∂xun‖α(p+1)−2

L2 → 0, and
therefore E(un)→∞, which is a contradiction with the minimizing nature of
(un). Moreover, the same arguments show that if 1 < p < 5, then the minimal
energy is finite. Hence the sequence (un) is bounded in H1

loc∩PT . Therefore up
to a subsequence, (un) converges weakly in H1

loc∩PT and strongly in L2
loc∩PT

and Lp+1
loc ∩ PT towards u∞ ∈ H1

loc ∩ PT . We now show that (un) converges
strongly towards u∞ in H1

loc ∩ PT . By weak convergence, we have

‖∂xu∞‖2
L2 6 lim

n→+∞
‖∂xun‖2

L2 .

Up to a subsequence, we also have F (un)→ F (u∞) almost everywhere. More-
over, we have

|F (un)| . |un|2 + |un|p+1

. ‖un‖2
L∞ + ‖un‖p+1

L∞

. ‖un‖2
H1 + ‖un‖p+1

H1 6 max
n∈N
{‖un‖2

H1 + ‖un‖p+1
H1 } <∞.

then by the dominated convergence theorem we have

lim
n→+∞

∫ T

0

F (un)dx =

∫ T

0

F (u)dx.

Combining the previous arguments, we obtain

E(u∞) 6 lim
n→+∞

E(un), M(un) = m,

which in turn implies

‖∂xu∞‖2
L2 = lim

n→+∞
‖∂xun‖2

L2 .

Therefore the convergence from (un) to u∞ is also strong in H1
loc ∩ PT .

Proposition 4.4.2. If m > m̃, then the minimizer is not a constant, the as-
sociated Lagrange multiplier verifies a < 0, the minimizer is positive, it is a
solution of the ordinary differential equation (4.1.5).

Remark 4.4.3. In the cubic case, it is known that for small enough values of
m, the minimizer of the energy functional in this case is the constant function.
However, in our work, we do not provide a rigorous proof of this conjecture,
but we believe it to be true based on the known result in the cubic case.
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Proof. Since u∞ is a minimizer of (4.4.1), there exists a Lagrange multiplier
a ∈ R such that

−E ′(u∞) + aM ′(u∞) = 0

that is
∂xxu∞ + au∞ + bf(u∞) = 0.

Multiplying by u∞ and integrating (recall that the functions considered are
assumed to be real), we find that

a =
‖∂xu∞‖2

L2 − b
∫ T

0
f(u∞)u∞dx

‖u∞‖2
L2

.

Note that

‖∂xu∞‖2
L2 − b

∫ T

0

f(u∞)u∞dx = 2E(u∞) + 2b

∫ T

0

F (u∞)dx−
∫ T

0

bf(u∞)u∞dx

= 2E(u∞) + b

∫ T

0

(2F (u∞)− f(u∞)u∞)dx,

where E(u∞) < 0 and 2F (u∞)− f(u∞)u∞ < 0, by the assumption on (4.1.2).
Therefore, we have

a < 0.

We introduce an auxiliary function

A(s) =
4π2

T 2
+ b

(
f(s)

s
− f ′(s)

)
.

By assumption (4.1.3), we have

A′(s) = b

(
f ′(s)s− f(s)

s2
− f ′′(s)

)
< 0.

Therefore A is a decreasing function, from 4π2

T 2 to −∞ from assumption (4.1.4).
Let m∗ be such that A(m∗) = 0 and define

m̃ =
Tm∗2

2

We want to prove that if m > m̃, then u∞ is not constant.
By contradiction, we assume that u∞ is constant for m > m̃. Then we

necessarily have u∞ ≡
√

2m
T
. The Lagrange multiplier can also be computed

and we find

a =
−b
∫ T

0
f
(√

2m
T

)√
2m
T
dx

2m
= −bf

(√
2m

T

)√
T

2m
.
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Since u∞ is supposed to be a constrained minimizer for (4.4.1), the operator

−∂xx − a− bf ′(u∞) = −∂xx + b

√
T

2m
f

(√
2m

T

)
− bf ′

(√
2m

T

)
,

must have Morse Index at most 1, i.e, at most 1 negative eigenvalue. The
eigenvalues are given for n ∈ Z by the following formula:

(
2πn

T

)2

+ b

√
T

2m
f

(√
2m

T

)
− bf ′

(√
2m

T

)
, n ∈ Z.

If n = 0, the eigenvalue is negative:

b

√
T

2m
f

(√
2m

T

)
− bf ′

(√
2m

T

)
< 0.

Indeed as f(s)
s

is an increasing function we have that for all s > 0,
(
f(s)
s

)′
=

f ′(s)s−f(s)
s2

> 0. If n = 1 the eigenvalue is of the form:

4π2

T 2
+ b

√
T

2m
f

(√
2m

T

)
− bf ′

(√
2m

T

)
= A

(√
2m

T

)
.

Recall that A
(√

2m
T

)
is non-negative if and only if

√
2m
T

6 m∗ which is
equivalent to m 6 m̃ which gives the contradiction. Therefore when m > m∗

the minimizer u∞ is not constant, which concludes the proof.

4.4.1.2 The defocusing case in PT

Assume that b < 0.

Proposition 4.4.4. For all m ∈ (0,∞) the constrained minimization problems
(4.4.1) and (4.4.2) have the same unique (up to phase shift) minimizer, which
is the constant function u∞ ≡

√
2m
T
.

Proof. Consider a minimizing sequence (un) ⊂ H1
loc ∩ PT for (4.4.1). We first

prove that it is bounded in H1
loc ∩ PT . We have

E(un) =
1

2
‖∂xun‖2

L2 +

∫ T

0

F (un)dx.

By contradiction, we suppose that ‖∂xun‖L2 → ∞. Therefore E(un) → ∞,
which is a contradiction with the minimizing nature of (un). Moreover, the
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same argument show that the minimal energy is finite. Hence the sequence
(un) is bounded in H1

loc ∩ PT . Therefore up to a subsequence, (un) converges
weakly in H1

loc ∩ PT and strongly in L2
loc ∩ PT and Lp+1

loc ∩ PT towards u∞ ∈
H1
loc ∩ PT . As in the proof of Proposition 4.4.1 we have that (un) converges

strongly towards u∞ in H1
loc ∩ PT .

As in the proof of Proposition 4.4.2, we know that there exists a Lagrange
multiplier a such that

− E ′(u∞) + aM ′(u∞) = 0, (4.4.3)

i.e. u∞ satisfies the ordinary differential equation (4.1.5). Hence a might be
explicitly expressed in the following way:

a =
‖∂xu∞‖2

L2 − b
∫ T

0
f(u∞)u∞dx

‖u∞‖2
L2

.

Since b < 0, we have a > 0. In this case we know that the phase portrait for
real valued solutions of (4.1.5) is given in Figure 4.4.

As for the focusing case, for any v ∈ H1
loc ∩ PT , we have

M(|v|) = M(v), E(|v|) 6 E(v),

therefore we may assume that u∞ > 0. The only solutions of (4.1.5) that do
not change sign are the constant functions ±

√
2m
T
. As a consequence, there

exists θ ∈ R such that

u∞ = eiθ
√

2m

T
,

which concludes the proof.

Remark 4.4.5. Under the assumptions of Proposition 4.4.4, the minimizer
is u∞ ≡

√
2m
T

(up to phase shift), and therefore the associated Lagrange
multiplier is given by

a = −bf
(√

2m

T

)√
T

2m
.

Therefore, the eigenvalues of the associated linearized operator

−∂xx − a− bf ′(u∞) = −∂xx + b

√
T

2m
f

(√
2m

T

)
− bf ′

(√
2m

T

)

are given for n ∈ Z by the following formula:
(

2πn

T

)2

+ b

(√
T

2m
f

(√
2m

T

)
− f ′

(√
2m

T

))
.

Since b < 0 and f(s)s−1 − f ′(s) < 0 (see assumption (4.1.2)), we remark that
the eigenvalues are all positive.
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4.4.2 Minimization among anti-periodic functions

We will also consider variational problems restricted to anti-symmetric
functions:

min{E(u) : u ∈ H1
loc ∩ AT

2
, M(u) = m}, (4.4.4)

min{E(u) : u ∈ H1
loc ∩ AT

2
, M(u) = m, P (u) = 0}. (4.4.5)

4.4.2.1 The defocusing case for anti-periodic functions

Assume b < 0. In this section, we restrict ourselves to the sum of two
powers to use the Hölder inequality that cannot be used in the general case.
Moreover we can generalize to the sum of several powers.

Proposition 4.4.6. Let f(u) = |u|p−1u+ |u|q−1u, with p, q > 1. There exists a
unique (up to phase shift and complex conjugate) minimizer of (4.4.4). It is
the plane wave u∞ ≡

√
2m
T
e
iπx
T .

Proof. Denote the supposed minimizer by w(x) =
√

2m
T
e±

iπx
T . Let v ∈ H1

loc ∩
AT

2
such that: M(v) = m and v 6≡ eiθw (θ ∈ R). Since v ∈ H1

loc ∩AT
2
, v must

have 0 mean value. Recall that in this case v verifies the Poincaré-Wirtinger
inequality

‖v‖L2 6
T

2π
‖v′‖L2 ,

and that the optimizers of the Poincaré-Wirtinger inequality are of the form
ce±

iπx
T , c ∈ C. This implies that

‖∂xw‖2
L2 =

8π2

T 2
M(w) =

8π2

T 2
M(v) < ‖∂xv‖2

L2 .

We will prove now that
∫ T

0
F (w)dx 6

∫ T
0
F (v)dx. We have

∫ T

0

(
1

p+ 1
|w|p+1 +

1

q + 1
|w|q+1

)
dx,

=

∫ T

0



(

1

p+ 1

) ∣∣∣∣∣

√
2m

T

∣∣∣∣∣

p+1

+

(
1

q + 1

) ∣∣∣∣∣

√
2m

T

∣∣∣∣∣

q+1

 dx,

= T

((
1

p+ 1

)(
T−

p+1
2 2

p+1
2 m

p+1
2

)
+

(
1

q + 1

)(
T−

q+1
2 2

q+1
2 m

q+1
2

))
,

= T

((
1

p+ 1

)(
T−

p+1
2 ‖v‖p+1

L2

)
+

(
1

q + 1

)(
T−

q+1
2 ‖v‖q+1

L2

))
,

6 T

((
1

p+ 1

)(
T−

p+1
2 T

p−1
2 ‖v‖p+1

Lp+1

)
+

(
1

q + 1

)(
T−

q+1
2 T

q−1
2 ‖v‖q+1

Lq+1

))
,
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where the last inequality came from Hölder inequality:

‖v‖p+1
L2 6 T

p−1
2 ‖v‖p+1

Lp+1 ,
1
p+1

2

+
1
p+1
p−1

= 1.

Therefore we have
1

p+ 1
‖w‖p+1

Lp+1 +
1

q + 1
‖w‖q+1

Lq+1 6
1

p+ 1
‖v‖p+1

Lp+1 +
1

q + 1
‖v‖q+1

Lq+1

which implies that
E(w) < E(v),

which concludes the proof.

4.5 A Fourier rearrangement inequality

Lemma 4.5.1. Let v ∈ H1
loc ∩ AT

2
and p an odd integer. Then there exists

ṽ ∈ H1
loc ∩ AT

2
such that:

ṽ(x) ∈ R, ‖ṽ‖L2 = ‖v‖L2 , ‖∂xṽ‖L2 = ‖∂xv‖L2 , ‖ṽ‖Lp+1 > ‖v‖Lp+1 .

Proof. Since v ∈ H1
loc ∩ AT

2
, its Fourier series expansion contains only terms

indexed by odd integers:

v(x) =
∑

j∈Z
jodd

vje
ij 2π
T
x.

We define ṽ by its Fourier series expansion

ṽ(x) =
∑

j∈Z
jodd

ṽje
ij 2π
T
x, ṽj :=

√
|vj|2 + |v−j|2

2
.

It is clear that ṽ(x) ∈ R, and by Plancherel formula, we have

‖ṽ‖L2 = ‖v‖L2 , ‖∂xṽ‖L2 = ‖∂xv‖L2 ,

so all we have to prove is that ‖ṽ‖Lp+1 > ‖v‖Lp+1 . We have

|v(x)|2 =
∑

j∈Z
jodd

|vj|2 +
∑

n∈2N
n>2

wne
in 2π

T
x + w̄ne

in 2π
T
x,

where we have defined

wn =
∑

j>k,j+k=n
j,kodd

vj v̄−k + vkv̄−j.
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Let N = p+1
2
. We start with

|v|p+1 =
(
|v|2
) p+1

2

=



∑

j∈Z
jodd

|vj|2 +
∑

n∈2N
n>2

wne
in 2π

T
x + w̄ne

in 2π
T
x




N

,

=
N∑

k=0

(
N

k

)


∑

j∈Z
jodd

|vj|2



N−k

∑

n∈2N
n>2

wne
in 2π

T
x + w̄ne

in 2π
T
x




k

.

We have



∑

n∈2N
n>2

wne
in 2π

T
x + w̄ne

in 2π
T
x




k

=
k∑

s=0

(
k

s

)∑

p1

· · ·
∑

pk

w̄p1 · · · w̄ps · wpswps+1 · · ·wpkei(−p1−···−ps+ps+1+···+pk) 2π
T
x,

=
k∑

s=0

(
k

s

)∑

p1

· · ·
∑

pk

(
s∏

l=1

w̄ple
−ipl 2πT x

)(
k∏

l=s+1

wple
ipl

2π
T
x

)
,

where

0∏

l=1

w̄ple
−ipl 2πT x = 1,

k∏

l=k+1

wple
ipl

2π
T
x = 1.
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Then we have

1

T

∫ T

0

|v|p+1dx

=
1

T

∫ T

0

N∑

k=0

(
N

k

)


∑

j∈Z
jodd

|vj|2



N−k

∑

n∈2N
n>2

wne
in 2π

T
x + w̄ne

in 2π
T
x




k

dx

=
N∑

k=0

(
N

k

)


∑

j∈Z
jodd

|vj|2



N−k

·

1

T

∫ T

0

k∑

s=0

(
k

s

)∑

p1

...
∑

pk

(
s∏

l=1

w̄ple
−ipl 2πT x

)(
k∏

l=s+1

wple
ipl

2π
T
x

)
dx

=
N∑

k=0

(
N

k

)


∑

j∈Z
jodd

|vj|2



N−k
k∑

s=0

(
k

s

) ∑

p1,...,pn∈σ

(
s∏

l=1

w̄pl

)(
k∏

l=s+1

wpl

)
,

where σ = {(p1, ..., pn) : ∃α ∈ {0, 1}n :
∑
j

(−1)αjpj = 0}, and where we have

used the fact that for n ∈ N, n 6= 0, we have

∫ T

0

ein
2π
T
xdx = 0.

On the other hand, we observe that

wn =
∑

j>k,j+k=n
j,kodd

(
vj
ṽ−j

)
.

(
vk
ṽk

)
, (4.5.1)

where the . denotes the complex vector scalar product. Therefore,

|wn| 6
∑

j>k,j+k=n
j,kodd

∣∣∣∣
(
vj
ṽ−j

)∣∣∣∣
∣∣∣∣
(
vk
ṽk

)∣∣∣∣ =
∑

j>k,j+k=n
j,kodd

√
2ṽ2

j

√
2ṽ2

k

= 2
∑

j>k,j+k=n
j,kodd

ṽj ṽk = w̃n,

where by w̃n, we denote the quantity defined similarly as in (4.5.1) for (ṽj).
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Therefore,

1

T

∫ T

0

|v|p+1dx

6
N∑

k=0

(
N

k

)


∑

j∈Z
jodd

|vj|2



N−k
k∑

s=0

(
k

s

) ∑

p1,...,pn∈σ

(
s∏

l=1

|w̄pl |
)(

k∏

l=s+1

|wpl |
)
,

6
N∑

k=0

(
N

k

)


∑

j∈Z
jodd

|vj|2



N−k
k∑

s=0

(
k

s

) ∑

p1,...,pn∈σ

(
s∏

l=1

w̃pl

)(
k∏

l=s+1

w̃pl

)
,

=
N∑

k=0

(
N

k

)


∑

j∈Z
jodd

|vj|2



N−k

·

1

T

∫ T

0

k∑

s=0

(
k

s

)∑

p1

...
∑

pk

(
s∏

l=1

w̃ple
−ipl 2πT x

)(
k∏

l=s+1

w̃ple
ipl

2π
T
x

)
dx,

=
1

T

∫ T

0

|ṽ|p+1dx,

which concludes the proof.

4.6 Minimizing problem on the Nehari manifold

In this section we restrict ourselves to the nonlinearity of the form f(u) =

|u|p−1u, with p > 1. We define the functional S : H1
loc → R by setting for

u ∈ H1
loc

S(u) :=
1

2
‖∂xu‖2

L2 − a

2
‖u‖2

L2 − b

p+ 1
‖u‖p+1

Lp+1 .

It is standard that S is of class C2. The Fréchet derivative of S at u is given
by

S ′(u) = −uxx − au− b|u|p−1u.

Therefore, u is a solution of the ordinary differential equation (4.1.5) if and
only if S ′(u) = 0. Let I(u) = ‖∂xu‖2

L2 − a‖u‖2
L2 − b‖u‖p+1

Lp+1 . The set

{u ∈ H1
loc : u 6= 0, I(u) = 0}

is called Nehari manifold. We are interested in the minimization problem on
the Nehari manifold:

min{S(u) : u ∈ H1
loc ∩ PT , u 6= 0, I(u) = 0}, (4.6.1)
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and
min{S(u) : u ∈ H1

loc ∩ AT
2
, u 6= 0, I(u) = 0}. (4.6.2)

The minimization problem on the Nehari manifold has been studied in
numerous works. In this regard, we mention the work of Szulkin and Weth
[6], the work of Pankov [64] and Pankov and Zhang [74] for the discrete non-
linear Schrödinger equation. We also mention the work of Hayashi [47] on the
nonlinear Schrödinger equation of derivative type and the work of Colin and
Watanabe [28] on the nonlinear Klein-Gordon-Maxwell type system.

4.6.1 Periodic case

4.6.1.1 Focusing case

Let b > 0 and a < 0. We have the following lemma.

Lemma 4.6.1. The minimum of (4.6.1) is finite and there exists a minimizer
solution of (4.1.5).

Proof. Consider a minimizing sequence (un) ⊂ H1
loc ∩PT for (4.6.1). We have

I(un) = 0, therefore

S(un) = S(un)− 1

p+ 1
I(un) =

(
1

2
− 1

p+ 1

)(
‖∂xun‖2

L2 − a‖un‖2
L2

)
. (4.6.3)

We have the boundedness of the sequence (un) in H1
loc ∩ PT . Indeed, by

contradiction we suppose that ‖un‖2
L2 → ∞, or ‖∂xun‖2

L2 → ∞, therefore
S(un) → ∞, which is a contradiction with the minimizing nature of (un).
Therefore up to a subsequence, (un) converges weakly inH1

loc∩PT and strongly
in L2

loc ∩PT and Lp+1
loc ∩PT towards u∞ ∈ H1

loc ∩PT . By the weak convergence
we have

‖u∞‖H1 6 lim
n→∞

inf ‖un‖H1 ,

then
‖∂xu∞‖2

L2 − a‖u∞‖2
L2 6 lim

n→∞
inf
(
‖∂xun‖2

L2 − a‖un‖2
L2

)
.

Therefore
S(u∞)− 1

p+ 1
I(u∞) 6 lim

n→∞
inf S(un).

On the other hand we have

I(u∞) = ‖∂xu∞‖2
L2 − a‖u∞‖2

L2 − b‖u∞‖p+1
Lp+1

6 lim
n→∞

inf
(
‖∂xun‖2

L2 − a‖un‖2
L2

)
− b lim

n→∞
‖un‖p+1

Lp+1

6 lim
n→∞

I(un) = 0.
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Then
I(u∞) 6 0,

and this implies that

S(u∞) 6 S(u∞)− 1

p+ 1
I(u∞) 6 lim

n→∞
inf S(un).

The graph of I(tu) is given in the figure 4.11. We know that I(t1u∞) 6 0,
there exists t0 < 1 such that I(t0u∞) = 0. We have

S(t0u∞) = S(t0u∞)− 1

p+ 1
I(t0u∞),

=

(
1

2
− 1

p+ 1

)
‖t0u∞‖2

H1 ,

6

(
1

2
− 1

p+ 1

)
‖u∞‖2

H1 ,

= S(u∞)− 1

p+ 1
I(u∞) 6 lim

n→∞
inf S(un).

Therefore
S(t0u∞) 6 lim

n→∞
inf S(un), I(t0u∞) = 0,

which implies the existence of the minimizer.

Figure 4.11 – I(tu) in function of t.

We have I(u) = ‖∂xu‖2
L2 − a‖v‖2

L2 − b‖v‖p+1
Lp+1 . Therefore

I ′(u) = −2uxx − 2au− b(p+ 1)|u|p−1u,

= −2uxx − 2au− 2b|u|p−1u+ b(2− (p+ 1))|u|p−1u,

= 2S ′(u)− b(p− 1)|u|p−1u.

Moreover I(u) =< S ′(u), u >, therefore

< I ′(u), u > = 2 < S ′(u), u > −b(p− 1)‖u‖p+1
Lp+1 ,

= −b(p− 1)‖u‖p+1
Lp+1 6= 0.
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On the other hand S ′(u) = λI ′(u), this implies that

0 =< S ′(u), u >= λ < I ′(u), u > .

Since < I ′(u), u > 6= 0, this implies

λ = 0.

Therefore the minimizer u∞ verifies S ′(u∞) = 0, so it is a solution of the
ordinary differential equation (4.1.5).

4.6.2 Anti-periodic case

4.6.2.1 Focusing case

Lemma 4.6.2. The minimum of (4.6.2) is finite.

Proof. Consider a minimizing sequence (un) ⊂ H1
loc∩AT

2
for (4.6.2). We have

I(un) = 0, therefore

S(un) = S(un)− 1

p+ 1
I(un) =

(
1

2
− 1

p+ 1

)(
‖∂xun‖2

L2 − a‖un‖2
L2

)
. (4.6.4)

We will distinguish between two cases whether a < 0 or a > 0. In the first
case, as in the periodic case, we can directly conclude by contradiction with
the minimizing nature of (un) that it is bounded in H1

loc ∩AT
2
. In the second

case, we suppose that a > 0. Since un ∈ AT
2
, un must have 0 mean value. In

that case un verifies the Poincaré-Wirtinger inequality:

‖un‖L2 6
T

2π
‖∂xun‖L2 .

Replacing in (4.6.4), we obtain that

S(un) >

(
1

2
− 1

p+ 1

)(
4π2

T 2
− a
)
‖un‖2

L2 .

Then by the same arguments as in the first case we can prove that (un) is
bounded in H1

loc ∩ AT
2
if

a <
4π2

T 2
.

Therefore up to a subsequence, (un) converges weakly inH1
loc∩AT

2
and strongly

in L2
loc∩AT

2
and Lp+1

loc ∩AT
2
towards u∞ ∈ H1

loc∩AT
2
. By the weak convergence

we have
‖u∞‖H1 6 lim

n→∞
inf ‖un‖H1 .
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If a < 0, by the equivalence of the norms we have

‖∂xu∞‖2
L2 − a‖u∞‖2

L2 6 lim
n→∞

inf
(
‖∂xun‖2

L2 − a‖un‖2
L2

)
.

And if a > 0, by the strong convergence in L2
loc ∩ AT

2
we also have the above

inequality. Therefore

S(u∞)− 1

p+ 1
I(u∞) 6 lim

n→∞
inf S(un).

On the other hand we have

I(u∞) = ‖∂xu∞‖2
L2 − a‖u∞‖2

L2 − ‖u∞‖p+1
Lp+1

6 lim
n→∞

inf
(
‖∂xun‖2

L2 − a‖un‖2
L2

)
− lim

n→∞
‖un‖p+1

Lp+1

6 lim
n→∞

I(un) = 0.

Then
I(u∞) 6 0,

and this implies that

S(u∞) 6 S(u∞)− 1

p+ 1
I(u∞) 6 lim

n→∞
inf S(un).

As in the periodic case with the Figure 4.11 we prove that there exists t0 <
1 such that I(t0u∞) = 0 and S(t0u∞) 6 lim

n→∞
inf S(un) which implies the

existence of the minimizer.

We now consider the following minimization problem:

min

{(
1

2
− 1

p+ 1

)
‖v‖2

H1 : v 6= 0, I(v) 6 0, v ∈ H1
loc ∩ AT

2

}
. (4.6.5)

We have the following lemma.

Lemma 4.6.3. The minimization problems (4.6.2) and (4.6.5) share the same
minimizer. Moreover when p is an odd integer the minimizer is real and it is
a solution of (4.1.5).

Proof. Let

m1 := min{S(u) : u ∈ H1
loc ∩ AT

2
, u 6= 0, I(u) = 0},

and

m2 := min{
(

1

2
− 1

p+ 1

)
‖v‖2

H1 : v ∈ H1
loc ∩ AT

2
, v 6= 0, I(v) 6 0}.
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We will prove that m1 = m2. Let u be such that m1 is reached. Hence
I(u) = 0. We have

m1 = S(u) = S(u)− 1

p+ 1
I(u) =

(
1

2
− 1

p+ 1

)
‖u‖2

H1 > m2.

Let u be such thatm2 is reached. Then I(u) 6 0. We will prove that I(u) = 0.
By contradiction, we suppose that I(u) < 0. As we can see in Figure 4.11
there exists t0 < 1 such that I(t0u) = 0. Therefore we have

(
1

2
− 1

p+ 1

)
‖t0u‖2

H1 6

(
1

2
− 1

p+ 1

)
‖u‖2

H1 = m2,

which gives the contradiction. Thus I(u) = 0. That being the case, we have

m2 =

(
1

2
− 1

p+ 1

)
‖u‖2

H1 = S(u) > m1.

Hence m1 = m2. On the other hand from Lemma 4.5.1 of the Fourier rear-
rangement inequality, we conclude that if p is an odd integer, then there exists
ũ ∈ H1

loc ∩ AT
2
such that:

ũ(x) ∈ R, ‖ũ‖L2 = ‖u‖L2 , ‖∂xũ‖L2 = ‖∂xu‖L2 , ‖ũ‖Lp+1 > ‖u‖Lp+1 .

Hence the minimizer is real. Moreover as in the periodic case the minimizer
is a solution of (4.1.5) and this concludes the proof.

4.7 Spectral stability around the constant

This section is concerned with the spectral stability of the constant so-
lution for the nonlinear Schrödinger equation. We begin by examining the
linearization of the equation around the constant solution in the general case.
In particular, we focus on the triple power nonlinearity case and we establish
conditions under which the constant solution is spectrally stable.

Given a standing wave u(t, x) = eiωtφ(x) solution to (4.1.1), we consider
the linearization of (4.1.1) around this solution: if u(t, x) = (φ0 + h(t, x))eiωt

then h verifies
i∂th− Lh−N(h) = 0,

where L denotes the linear part and N the non linear part. We have

ut = (∂th+ iω(φ0 + h))eiωt

and
uxx = hxxe

iωt.
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In the general case the nonlinearity f : C→ C is defined for any z ∈ C by
f(z) = g(|z|2)z with g ∈ C0([0,+∞),R) ∩ C1((0,+∞),R). Let

G : t→ g(|φ+ th|2)(φ+ th).

We suppose that φ ∈ R, we have

∂G

∂t |t=0
= hg(φ2) + 2φ2Re(h)g′(φ2)

= (g(φ2) + 2φ2g′(φ2))Re(h) + ig(φ2)Im(h) = f ′(φ)Re(h) + i
f(φ)

φ
Im(h).

We know that u is a solution of (4.1.1), therefore h verifies the following
equation

ht = ihxx − iωh+ if ′(φ)Re(h)− f(φ)

φ
Im(h) +N(h),

where N(h) holds in all of the nonlinear terms. We separate h into real and
imaginary parts and let h = hR + ihI , hence we have:

(
hR
hI

)

t

= L

(
hR
hI

)
+N(h)

where

L =

(
0 −∂xx(.) + ω − f(φ)

φ

∂xx(.)− ω + f ′(φ) 0

)
.

For the triple power case where f(u) = |u|u − γ|u|2u + |u|3u we have the
following lemma.

Lemma 4.7.1. Let θ = 2kπ
T
. For a given value of θ, there exists a constant

γ∗ such that if γ > γ∗, then the determinant of the linearization of the non-
linear Schrödinger equation around the constant solution is positive. As a
consequence, the eigenvalues of the linearization are purely imaginary, and
the constant solution is spectrally stable. The value of γ∗ depends on θ and
the specific form of the nonlinear term in the equation.

Proof. We have

|u|u = (φ0 + h)
3
2 (φ0 + h̄)

1
2 eiωt, |u|2u = (φ0 + h)2(φ0 + h̄)eiωt,

|u|3u = (φ0 + h)
5
2 (φ0 + h̄)

3
2 eiωt.

Hence we have (
hR
hI

)

t

= L

(
hR
hI

)
+N(h)
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where

L =

(
0 −∂xx(.) + ω − φ0 + γφ2

0 − φ3
0

∂xx(.)− ω + 2φ0 − 3γφ2
0 + 4φ3

0 0

)
.

As the perturbations are periodic, using the Fourrier variable we have

L̂ =

(
0 −

(
2ikπ
T

)2
+ ω − φ0 + γφ2

0 − φ3
0(

2ikπ
T

)2 − ω + 2φ0 − 3γφ2
0 + 4φ3

0 0

)
.

The characteristic polyniomal of L̂ is given by

P (λ) = λ2 + det(L̂),

where

det(L̂) = −
((

2ikπ

T

)2

− ω + 2φ0 − 3γφ2
0 + 4φ3

0

)
·

(
−
(

2ikπ

T

)2

+ ω − φ0 + γφ2
0 − φ3

0

)
.

We are interested in whether the entire spectrum of L lies on the imaginary
axis, in which case, we say the periodic wave u is spectrally stable. If there
exists at least one eigenvalue λ such that Re(λ) > 0 then the solution is
spectrally unstable. Therefore if det(L̂) is positive then the eigenvalues of L̂
are purely imaginary and we have the spectral stability. As θ = 2kπ

T
, we have

det(L̂) =
(
θ2 + ω − 2φ0 + 3γφ2

0 − 4φ3
0

) (
θ2 + ω − φ0 + γφ2

0 − φ3
0

)
.

If φ0 = 0 then det(L̂) = (θ2 +ω)2 > 0. Moreover we know that φ0 is a solution
of (4.1.5), therefore as we suppose that φ0 is a real constant we have

−ωφ0 + φ2
0 − γφ3

0 + φ4
0 = 0.

Hence if φ0 6= 0 we have ω = φ0 − γφ2
0 + φ3

0 which gives

det(L̂) = θ2
(
θ2 + ω − 2φ0 + 3γφ2

0 − 4φ3
0

)
.

Replacing ω as a function of φ0 we obtain

det(L̂) = θ2
(
2φ0γ + θ2 − 3φ3

0 − φ0

)
.

We can see that 2φ0γ + θ2 − 3φ3
0 − φ0 is linear and increasing in γ. If we

fix θ and φ0, then there exists a γ∗ depending on θ such that det(L̂) > 0 if
γ > γ∗.
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Etude des ondes périodiques et stationnaires pour l’équation de Schrödinger
non linéaire

Résumé: La thèse s’intéresse à l’étude des ondes périodiques et stationnaires pour l’équation de
Schrödinger non linéaire unidimensionnelle. La première partie de la thèse se concentre sur la stabil-
ité orbitale des ondes stationnaires pour l’équation de Schrödinger non linéaire à double puissance.
Dans cette thèse, nous fournissons une image de stabilité complète pour le problème en utilisant
le critère de pente de Grillakis, Shatah et Strauss. Les principaux nouveaux ingrédients de notre
approche sont une reformulation de la pente et le calcul explicite de la valeur de la pente dans le
cas de la fréquence zéro. Nous avons fourni des expériences numériques pour compléter nos résul-
tats théoriques. Dans la deuxième partie de la thèse, nous étudions les solutions quasi-périodiques
pour l’équation de Schrödinger cubique non-linéaire. Nous utilisons une approche variationnelle
pour étudier les solutions quasi-périodiques, en minimisant l’énergie à masse et moment fixes en
utilisant la méthode du flux de gradient avec normalisation discrète : à chaque pas de temps, nous
évoluons dans la direction du gradient de l’énergie et renormalisons la masse et le moment du
résultat. Nous établissons un lien entre les minimiseurs de l’énergie et les solutions de l’équation
différentielle ordinaire. La dernière partie étend le travail sur le cas cubique à une non-linéarité plus
générale et fournit des caractérisations variationnelles pour ce cas. La thèse dans son ensemble,
contribue à la compréhension de la dynamique des équations de Schrödinger non linéaires, en met-
tant l’accent sur l’étude des ondes périodiques et stationnaires. Nous utilisons une combinaison de
méthodes analytiques, numériques et variationnelles pour fournir une compréhension plus profonde
du comportement des équations et de leurs solutions.

Study of periodic and standing waves for the nonlinear Schrödinger equation

Abstract: The thesis focuses on the study of periodic and standing waves for the one dimensional
nonlinear Schrödinger equation. The first part of the thesis focuses on the orbital stability of stand-
ing waves for the double power nonlinear Schrödinger equation. In this thesis we provide a complete
stability picture for the problem using the slope criterion of Grillakis, Shatah and Strauss. The
main new ingredients in our approach are a reformulation of the slope and the explicit calculation of
the slope value in the zero-frequency case. We provided numerical experiments to complement our
theoretical results. In the second part of the thesis, we study the quasi-periodic solutions for the
cubic nonlinear Schrödinger equation. We use a variational approach to study the quasi-periodic
solutions by minimizing the energy at fixed mass and momentum, using the method of the gradient
flow with discrete normalization:at each step of time, we evolve in the direction of the gradient of
the energy and renormalize the mass and the momentum of the outcome. We establish a connection
between the minimizers of the energy and the solutions of the ordinary differential equation. The
final part extends the work on the cubic case to a more general nonlinearity and provides varia-
tional characterizations for this case. Overall, the thesis contributes to the understanding of the
dynamics of nonlinear Schrödinger equations, with a focus on the study of periodic and standing
waves. We use a combination of analytical, numerical, and variational methods to provide a deeper
understanding of the behavior of the equations and their solutions.


